First on-line detection of radioactive fission isotopes produced by laser-accelerated protons

Zugehörigkeit
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
Boller, Pascal;
Zugehörigkeit
Lawrence Livermore National Laboratory, Livermore, USA
Zylstra, Alex;
Zugehörigkeit
Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Neumayer, Paul;
Zugehörigkeit
Lawrence Livermore National Laboratory, Livermore, USA
Bernstein, Lee;
Zugehörigkeit
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Brabetz, Christian;
Zugehörigkeit
Lawrence Livermore National Laboratory, Livermore, USA
Despotopulos, John;
Zugehörigkeit
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Glorius, Jan;
Zugehörigkeit
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Hellmund, Johannes;
Zugehörigkeit
Lawrence Livermore National Laboratory, Livermore, USA
Henry, Eugene A.;
GND
1241286582
ORCID
0000-0002-5336-6191
Zugehörigkeit
Friedrich-Schiller-Universität Jena
Hornung, Johannes;
Zugehörigkeit
Lawrence Livermore National Laboratory, Livermore, USA
Jeet, Justin;
Zugehörigkeit
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Khuyagbaatar, Jadambaa;
Zugehörigkeit
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Lens, Lotte;
Zugehörigkeit
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
Roeder, Simon;
GND
1156630649
ORCID
0000-0003-0461-3560
Zugehörigkeit
Friedrich-Schiller-Universität Jena
Stoehlker, Thomas;
Zugehörigkeit
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Yakushev, Alexander;
Zugehörigkeit
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Litvinov, Yuri A.;
Zugehörigkeit
Lawrence Livermore National Laboratory, Livermore, USA
Shaughnessy, Dawn;
Zugehörigkeit
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
Bagnoud, Vincent;
GND
1293643076
Zugehörigkeit
Helmholtz-Institut Jena
Kuehl, Thomas;
Zugehörigkeit
Lawrence Livermore National Laboratory, Livermore, USA
Schneider, Dieter H. G.

The on-going developments in laser acceleration of protons and light ions, as well as the production of strong bursts of neutrons and multi- MeV \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MeV}$$\end{document} photons by secondary processes now provide a basis for novel high-flux nuclear physics experiments. While the maximum energy of protons resulting from Target Normal Sheath Acceleration is presently still limited to around 100 MeV \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100 \, \hbox {MeV}$$\end{document} , the generated proton peak flux within the short laser-accelerated bunches can already today exceed the values achievable at the most advanced conventional accelerators by orders of magnitude. This paper consists of two parts covering the scientific motivation and relevance of such experiments and a first proof-of-principle demonstration. In the presented experiment pulses of 200 J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$200 \, \hbox {J}$$\end{document} at ≈ 500 fs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx \, 500 \, \hbox {fs}$$\end{document} duration from the PHELIX laser produced more than 10 12 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{12}$$\end{document} protons with energies above 15 MeV \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$15 \, \hbox {MeV}$$\end{document} in a bunch of sub-nanosecond duration. They were used to induce fission in foil targets made of natural uranium. To make use of the nonpareil flux, these targets have to be very close to the laser acceleration source, since the particle density within the bunch is strongly affected by Coulomb explosion and the velocity differences between ions of different energy. The main challenge for nuclear detection with high-purity germanium detectors is given by the strong electromagnetic pulse caused by the laser-matter interaction close to the laser acceleration source. This was mitigated by utilizing fast transport of the fission products by a gas flow to a carbon filter, where the γ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upgamma$$\end{document} -rays were registered. The identified nuclides include those that have half-lives down to 39 s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$39 \, \hbox {s}$$\end{document} . These results demonstrate the capability to produce, extract, and detect short-lived reaction products under the demanding experimental condition imposed by the high-power laser interaction. The approach promotes research towards relevant nuclear astrophysical studies at conditions currently only accessible at nuclear high energy density laser facilities.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © The Author(s) 2020

Nutzung und Vervielfältigung: