
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17183  | https://doi.org/10.1038/s41598-020-74045-5

www.nature.com/scientificreports

First on‑line detection 
of radioactive fission isotopes 
produced by laser‑accelerated 
protons
Pascal Boller1,2*, Alex Zylstra3, Paul Neumayer1,4, Lee Bernstein3, Christian Brabetz1, 
John Despotopulos3, Jan Glorius1, Johannes Hellmund1, Eugene A. Henry3, 
Johannes Hornung1,5,6, Justin Jeet3, Jadambaa Khuyagbaatar1, Lotte Lens1, Simon Roeder1,2, 
Thomas Stoehlker1,5,6, Alexander Yakushev1, Yuri A. Litvinov1, Dawn Shaughnessy3, 
Vincent Bagnoud1,2, Thomas Kuehl1,5,7 & Dieter H. G. Schneider3

The on-going developments in laser acceleration of protons and light ions, as well as the production 
of strong bursts of neutrons and multi-MeV photons by secondary processes now provide a basis for 
novel high-flux nuclear physics experiments. While the maximum energy of protons resulting from 
Target Normal Sheath Acceleration is presently still limited to around 100MeV , the generated proton 
peak flux within the short laser-accelerated bunches can already today exceed the values achievable at 
the most advanced conventional accelerators by orders of magnitude. This paper consists of two parts 
covering the scientific motivation and relevance of such experiments and a first proof-of-principle 
demonstration. In the presented experiment pulses of 200 J at ≈ 500 fs duration from the PHELIX laser 
produced more than 1012 protons with energies above 15MeV in a bunch of sub-nanosecond duration. 
They were used to induce fission in foil targets made of natural uranium. To make use of the nonpareil 
flux, these targets have to be very close to the laser acceleration source, since the particle density 
within the bunch is strongly affected by Coulomb explosion and the velocity differences between ions 
of different energy. The main challenge for nuclear detection with high-purity germanium detectors 
is given by the strong electromagnetic pulse caused by the laser-matter interaction close to the laser 
acceleration source. This was mitigated by utilizing fast transport of the fission products by a gas flow 
to a carbon filter, where the γ-rays were registered. The identified nuclides include those that have 
half-lives down to 39 s . These results demonstrate the capability to produce, extract, and detect short-
lived reaction products under the demanding experimental condition imposed by the high-power 
laser interaction. The approach promotes research towards relevant nuclear astrophysical studies at 
conditions currently only accessible at nuclear high energy density laser facilities.

At present, Target Normal Sheath Acceleration (TNSA)1, 2 produces protons with energies up to around 100MeV3, 
with abundances of more than 1012 protons above 15MeV4. One of the pre-requisites for TNSA is the necessity to 
maintain relativistic intensities during the laser-matter interaction over many tens of femtoseconds, a capability 
which is met by low-repetition-rate high-intensity lasers of 10Hz and below. This acceleration scheme opens up 
new opportunities for proton-induced reactions that until now have not been possible. Indeed, while the average 
proton flux of a laser-based proton source remains low compared to standard accelerators, the peak proton flux 
reaches 1022 particles per second within the laser-accelerated particle bunch, which dramatically exceeds the 
capabilities of conventional particle accelerators. This gives a perspective to probe into new regimes or reliably 
trigger and detect processes with small cross-sections at ultrashort lifetimes. Additional improvements of these 
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parameters by novel laser-driven acceleration schemes, although not yet substantiated, are expected and will 
increase the proton flux5, 6. A requirement is the combination of the laser production method with spectroscopy 
setups and tools, allowing for sensitive nuclear spectroscopy on nuclides with a short half-life. In order to explore 
this new field, a platform had to be developed that can detect γ-ray and β-particle emission from the fission 
fragments in the presence of the strong electromagnetic pulse (EMP) created by the laser-matter interaction. 
Such a platform based on the radiochemistry method opens up the possibility for the investigation of nuclear 
excitation processes at the nuclear-atomic interface in high-energy-density (HED) environments7.

This present experiment, conducted at the PHELIX facility8, the Petawatt High-Energy Laser for Heavy-Ion 
eXperiments at GSI in Darmstadt, Germany, is part of the early development phase of a platform for future 
nuclear physics experiments at other advanced laser facilities (e. g. ELI-NP (Romania)9, 10 and ARC (LLNL)11). 
Due to its continuous gas flow, the method used is also well suited for high repetitive lasers like ELI-Beamlines 
(Czech Republic)12, BELLA (LBNL)13, Draco (HZDR)14, J-KAREN (KPSI)15, and CoReLS (South Korea)16. The 
platform utilizes a state-of-the-art short pulse, high temporal contrast, high energy laser (in the experiment 
≈ 200 J in ≈ 500 fs at < 10−12 temporal contrast) to provide laser-accelerated protons to induce nuclear 
reactions. The rapid high-efficiency detection of reaction products is the primary focus.

In this experiment, we studied proton-induced fission of uranium, motivated by the appropriate matching of 
the wide cross-section profile to the range of the proton spectrum produced by TNSA. A particularly interesting 
aspect of these experiments with short-pulsed, laser-driven particle beams is that the pulse duration is much 
shorter than in conventional sources and limited only by the laser pulse itself and the associated time-of-flight 
spread of the accelerated ions. An abundance of fission fragments is produced within this time, providing 
sensitivity to short-lived isotopes. Nuclei with half-lives down to several seconds have been identified. So far, very 
little experience exists in this short-pulsed time domain. The transportation of the fragments to the detection 
apparatus can take several seconds, which ultimately impairs sensitivity to very short-lived isomers. Nevertheless, 
the build-up of daughter isotopes from the chain-yield and the γ-rays resulting from their deexcitations can be 
expected in the measured spectra, potentially revealing heretofore unobserved aspects of the reaction process. 
Our successful proof-of-principle experiment opens a new perspective for a variety of nuclear structure and 
nuclear astrophysics, where some of the very small reaction cross-sections with shortest lifetimes require huge 
luminosities not yet available at conventional accelerators.

Results and discussion
The purpose of this work is to demonstrate the use of laser-accelerated high-flux proton bursts for nuclear physics 
applications. The immediate goal of this first beam time was to observe short-lived natU(p,f) fission products. 
Nuclides with half-lives as short as 39 s were readily identified in the measured spectra. Observation of products 
with even shorter half-lives requires an upgraded detector setup planned in future studies.

Using the setup described in Fig. 1, two 15-µm-thick uranium foils located 50 and 80mm away from the 
proton source were irradiated by (1.35± 0.12) × 1011 and (0.506± 0.047) × 1011 protons with energies above 
15MeV , respectively, taking into account the solid angle of irradiation. Figure 2 gives the retrieved proton 
spectra for calibration shots using radiochromic films at imaging spectroscopy (RIS) at the distance of the first 
uranium foil. The exponential function is obtained by an iterative fit to the deposited energy in the RCF layers. 
Altogether, this illustrates the statistical and systematic sources of error made in estimating the proton numbers. 
Applied to the uranium target, this corresponds to an effective conversion efficiency of (0.50± 0.16)% at the first 
uranium foil and of (0.19± 0.06)% at the second, and represents the fraction of laser energy that is converted into 

Figure 1.   Experimental setup. The produced protons from TNSA enter the uranium-target container through a 
titanium window. RCFs located in front and behind the uranium-target container measure the proton spectrum. 
The fission products are stopped by a gas mixture of helium and argon in the same mass flow proportion 
and transported to a carbon filter 12m away outside the PHELIX target chamber. The various γ-lines from the 
transported isotopes are measured with a HPGe detector.
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usable kinetic energy. The cross-section of proton-induced fission reaches 500mb around 15MeV and is rising 
to a maximum of 1.75 b at 70MeV17, well matching the energy spectrum achieved. The most energetic protons 
arrive at the first uranium foil in 0.46 ns subsequent to laser irradiation of the gold target, while less energetic 
protons with E = 15MeV arrive at 0.94 ns . The overall exposure of uranium to the proton flux was shorter than 
1 ns , which corresponds to an effective peak current in excess of 1020 protons/s . During the irradiation, gas is 
constantly flushed through the uranium target container resulting in the transport of the freshly produced fission 
fragments to a carbon filter located directly in front of an HPGe detector.

The γ spectra recorded by the HPGe detector were analyzed on the basis of published nuclear data tables18, 

19 for the identification of the observed γ-ray peaks, and associated lifetimes. All major volatile fission product 
isotopes having a lifetime in the range of 39.68 s to 14.14min were identified. These are: 134m I, 136m I, 137Xe, 138Xe, 
139Xe, and 140Cs. Figure 3 depicts the γ-ray spectra recorded at three different times, 27 (red), 65 (green), and 
238 (blue) seconds, respectively, following the laser pulse. The time information facilitates the identification. 
Each spectrum represents an accumulation of detected γ-rays up to the indicated times. The background in the 
spectra is low, due to the short integration time and the ability to massively shield the detector against the EMP 
and high-energy radiation. Due to a large number of various radioactive nuclei produced in this experiment, we 
focused on unambiguous identification of abundantly generated fission products and did not aim at identification 
of all γ-lines in the spectra. Broader features at low energies may stem from X-ray emission following internal 
conversion and positron decays, and secondary excitation from the lead shielding. Neutron-deficient nuclides 
responsible for the latter decays are probably produced in proton-induced direct reactions like (p,pn), (p,2n) or 
(p,3n). Also, the fragmentation or spallation reactions due to incident protons are not excluded. The presence of 
such neutron-deficient nuclides is evidenced by a relatively strong γ-line = 511 keV responsible for positron-
electron annihilation. For these spectra, the results of eleven laser shots are added up. It should be noted that 
the γ-lines associated with the nuclei 134m I, 136m I, and 139 Xe can be clearly extracted even from a single shot, as 
they are produced with high enough yield.

Table 1 lists the identified γ-rays present in the spectra. Given are the parent isotope, the respective decay 
mode, the associated lifetime, and the γ energy as well as the number of collected nuclides in the filter and the 
integral cross-sections. Other γ-ray energies are expected from isotopes produced later in the decay chain but 
are not visible due to the selected time window.

For comparison, Fig. 4 shows the spectrum of the irradiated uranium targets after the experiment. In this 
spectrum, a large number of reaction products can be identified, including long-lived daughter nuclei from the 
decay chains of fission fragments and nuclides generated by a direct reaction like 237 U from 238U(p,pn) and 
236 Np from 238U(p,3n). In addition, γ-lines from the natural decay of uranium appear. Since the spectrum was 
taken several hours after the irradiation, short-lived isotopes are not visible. This demonstrates and validates 
that the experimental setup enables the detection of short-lived isotopes, that can otherwise not be identified 
by post-irradiation measurements.

Figure 2.   Proton spectrum of calibration laser shots recorded with RCFs 5 cm behind the laser acceleration 
source. To reflect the aperture of the uranium target container, only 1 cm of the RCFs in the middle were 
evaluated. The exponential function is obtained by an iterative t to the deposited energy in the RCF layers. 
Above the dotted line at 15MeV the protons contribute significantly to the fission process.
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One interesting feature of this experimental platform is the possibility to calibrate the various modules off-line 
and deliver quantitative reaction yield values. The proton source is calibrated with radiochromic films (RCFs), 
which is an established calibration method. RCFs are readily available for medical applications from various 
vendors. By calibrating the RCFs against an external accelerator source, an absolute error in dose deposition 
around 5% is normally achieved. At the other end of the system, the detector efficiency was cross-calibrated using 
radioactive sources. Additionally, the losses in the gas transport in the capillary were determined off-line for 
219 Rn to be less than 1% including the capture efficiency in the carbon filter. Given that the container reaction 
geometry is well known, this platform could be used to determine integral reaction cross-sections quantitatively. 
For this purpose, the stopping range of the generated fission fragments and the proportion of the generated 
fission fragments that can enter the gas was determined. The number of target particles available for the measured 
fission products is (1.71± 0.11) × 1019 for iodine and (1.56± 0.11) × 1019 for xenon depending on the different 
stopping range. 10.27% of the iodine and 11.22% of the xenon elements diffuse into the gas and have the possibility 
to be stopped there. It should be noted, that the error of the cross-sections are mainly statistical, which can be 
reduced by a longer series of measurements and by adding up several spectra of laser shots. The ratios between 
the isotopes are completely consistent with literature values20, 21. The measured cross-sections are too low by a 
factor of 8. This has to be explained by deficiency of the extraction from the target container.

Table 1.   Identified nuclides with their lifetimes, their excited daughters and their γ-ray energies from 
literature18, 19 as well as the number of collected nuclides per shot in the filter and the calculated integral cross-
sections.

Parent decay Lifetime Excited daughter Gamma in keV
Number of collected 
nuclides per shot

Integral cross-section 
in mb

134mI 3.52min 134I 272.1 551 ± 59 1.17 ± 0.10
136mI 46.6 s 136Xe 197.32, 381.36, 1313.02 147 ± 16 0.636 ± 0.051
137Xe 3.82min 137Cs 455.49 860 ± 130 2.04 ± 0.24
138Xe 14.08min 138Cs 434.56 750 ± 400 1.09 ± 0.38

139Xe 39.68 s 139Cs 174.97, 218.59, 289.78
296.53, 393.5 627 ± 47 3.13 ± 0.17

140Cs 63.7 s 140Ba 602.35 529 ± 75 1.85 ± 0.20

Figure 3.   Measured γ spectra and some identified fission products. The spectra were accumulated for periods 
of 27 (red), 65 (green), and 238 (blue) seconds following the laser pulse. For these spectra, the results of eleven 
laser shots are added up.
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It is important to emphasize that the ability to identify shorter-lived isotopes is improved when lasers such 
as PHELIX are utilized. In our realization, the lower limit of observed lifetimes and the restriction to transport 
only volatile elements were dictated by the specific conditions chosen for the gas transport parameters, aiming 
for improved operation safety. By changing these parameters, much faster transport times can be achieved.

Scientific motivation and relevance
Laser-driven ion acceleration produces particle bunches of unprecedented density. In a secondary target that 
is close enough to the laser acceleration source, this leads to a nuclear-interaction-rich scenario. However, this 
environment is not background free and hinders a direct detection of the processes of interest. In combination 
with a gas transport system, we achieved to transfer the reaction products to a safe location for typical HPGe 
detection, more than 10m away from the point of laser interaction. This allowed for high-detection sensitivity 
and nearly background-free γ spectroscopy while mitigating the interference of the strong EMP.

High-flux proton pulses of sub-nanosecond down to picosecond duration provide an opportunity to study 
nuclear reactions in a plasma-like environment. For example, this pulsed-beam regime could cause additional 
Coulomb excitations of the target material by the impinging protons within the pulse duration, similar to the 
low-lying states’ coupling effects in highly-charged states heavy-ion reactions. Effects on the cross-sections 
from varying excited state populations due to the plasma environment will be of interest in future experiments.

Fission in HED environment.  For fissionable nuclei embedded in a HED environment, the plasma 
interaction is expected to affect “transition” states and alter the fission probability. The initial studies involve 
measurements of the isotope distributions of fission fragments identified from the observation of characteristic 
γ-rays. In the nuclear fission process, a heavy nucleus typically separates into energetic fission fragments with 
different masses sharing a total kinetic energy gain of approximately 200MeV22, 23. Details of the induced fission 
process over a wide range of projectile species and energies are still not well understood for many fissionable 
nuclei. Furthermore, a fully microscopic theory of fission describing experimental data is still to be developed. 
Accurate measurements of cross-sections as well as new techniques to measure short-lived fission fragments 
will provide new insight into the nucleon-nucleus interaction. In particular, information on the properties and 
effects of highly excited nuclei, e.g., level densities and fission barriers, can be gained.

Neutron-induced fission experiments at the National Ignition Facility (NIF) have demonstrated the capability 
to rapidly collect and detect short-lived gaseous fission fragment isotopes for the first time, following an 
approximately 80 ps-long pulse of nearly 1016 14−MeV neutrons into 4π from a burning deuterium-tritium 
fusion plasma23. The neutron-induced fission at NIF, and the present experiment at PHELIX, demonstrate fission 
studies in a new time-domain amid plasma environments.

Fission research still is intensively pursued. A particular interest involving astrophysical HED environments 
now is driven by energy research, e.g., novel nuclear reactor schemes24, advanced nuclear astrophysics, and 
cosmogenic nucleosynthesis (e.g., r-processes)25. The long history of fission research and the renewed interest 

Figure 4.   Measured γ spectrum of the irradiated uranium targets after the experiment after an accumulation 
period of 81min.
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reveal that there are many open and new questions regarding fission in HED environments. The detection of 
plasma effects on nuclear reactions, for example, its influence on the nuclear fission process’s mechanisms, is a 
long-term focus at HED facilities. Since the discovery of fission in the 1930s, extensive data and literature on 
fission have been published19, 22, 26. The nuclear fission is treated within the macroscopic-microscopic nuclear 
models. Here, the macroscopic part is a charged liquid drop described by the standard formula for nuclear 
ground state energies: E = EVol + ESurf + ECoul + EPauli . The terms correspond to effects arising from the nuclear 
volume, the surface area, Coulomb repulsion, and the Pauli exclusion principle (asymmetry energy), respectively. 
The microscopic corrections, shell effects (utilizing the Nilsson model), and the pairing interaction, are taken 
into account22 as well as, most recently, fragment formation27. This led to a satisfactory description of the fission 
barrier with an appropriate height as well as oscillation (“hump structure”) of the potential energy barrier for 
actinide nuclei as a function of nucleus deformation26.

Motivated through new nuclear astrophysical observations, recent research on macroscopic-microscopic 
nuclear models aimed to improve the understanding of fission, the fission barriers, and dynamic aspects of fission 
in HED environments25. The heavy element nucleosynthesis in neutron star mergers involving fission and fission 
recycling are examples. For “multiple-hump” actinide fission barrier structures, the second potential minimum 
has been extensively investigated in fission isomer studies. The existence of a third potential minimum has 
recently been established for even-even uranium nuclei (as well as an odd isotope). The thin outer barriers result 
in shorter fission lifetimes than those from collectively excited states25. The detailed studies involve transmission 
resonance spectroscopy, where the prompt fission cross-section is measured. The cross-section exhibits resonance 
enhancements at certain excitation energies because the energies of the collective states in the first well coincide 
with those of the vibrational states in the second or third well. The verification of a third well led to an agreement 
between measured cross-sections and model calculations with appropriate assumptions for the multiple-hump 
structure and well depths (e.g. 232Thorium).

Excited states and nuclear decay.  The fission platform being developed will also enable research on the 
effects of a HED environment on other nuclear processes. In a plasma environment, atomic binding energies 
are modified due to charge state and screening effects, and atomic transitions may interact with excited nuclear 
states, thereby causing nuclear transitions7, 28, 29. Therefore, electron-mediated NPIs may cause significant 
changes in reaction cross-sections in HED environments such as astrophysical plasmas. However, NPIs remain 
largely unobserved due to the extremely narrow energies of nuclear transitions ( Ŵ ≤ 1µeV ). Various attempts 
to detect NPIs such as NEEC (Nuclear Excitation by Electron Capture)29, 30 or NEET (Nuclear Excitation 
Electron Transition)31–34 processes are in progress but no consistent experimental evidence has been reported 
yet. In hot stellar environments, the nuclei can reach a thermal population of low-lying nuclear states from 
photoexcitation35, 36, NEEC, NEET, and inelastic electron scattering in the dense stellar plasma. Since the nuclear 
reaction cross-sections dramatically depend on the spin-parities of the involved quantum states and the reaction 
Q-value, studies of nuclear reactions in hot plasma environments are essential. The relevance of NPI processes to 
the production of post-capture nuclei is due to a competition between the short lifetimes of highly-excited states 
versus a large number of nuclear transitions available, and high electron and photon flux.

Nuclear astrophysics relevance.  The nucleosynthesis research on the heavy-element abundance 
determined by s- and r-processes in supernovae and neutron-star mergers motivates laboratory astrophysics 
studies. The s-process, in which the time interval between neutron-captures is longer than the average β-
decay lifetime, proceeds through nuclides along the valley of stability with an isotopic abundance inversely 
proportional to neutron-capture rates. The s-process is sensitive to nuclear shell closures at which the neutron 
capture probabilities abruptly change. The work of the s-process is seen in the measured solar element 
abundance pattern as sharp peaks at Sr (N = 50), Ba (N = 82) and Pb (N = 126). The faster r-process occurs in 
high temperature ( > 109K ) and high neutron density ( > 1020 cm−3 ) environments in events that last several 
seconds37. A rapid capture succession on a seed nucleus goes until the neutron binding energy is sufficiently 
small so that the rate of capture is balanced by the photodisintegration by ambient black-body photons. Just as 
in the s-process, the neutron capture rates significantly change at nuclear closures, leading to so-called “waiting 
points”. After some time, β-decay occurs, and the capture process starts again. The r-process is terminated by 
reaching the nuclei that undergo fission, thereby fuelling the r-process by neutrons from fission and moving the 
abundance pattern to mid-Z nuclei. When the neutron flux ceases, radioactive products decay back to the valley 
of stability (low-mass side of s-process peaks), and the resulting, broader than in s-process, peaks in the mass 
distribution are identifiers for the r-process. The path of r-process flow is through neutron-rich nuclei far from 
the valley of stability through nuclei with binding energies of about 1 to 4MeV . At this stage, recycling fission 
may come into play: heavy elements produced by the r-process can undergo fission, enhancing the population 
of neutron-rich lower-Z elements. The r-process abundances are determined from solar abundances minus 
s-process contributions. Thus, uncertainties persist in the elemental abundances produced by the r-process.

Substantial experimental and theoretical efforts are proposed and in progress for upcoming new laser 
facilities (e. g. ELI, ARC) and ion beam facilities (e.g. FAIR) to improve the database and theoretical modeling 
to understand astrophysical data. Concrete experiments are planned at ELI10, 38 to demonstrate the production 
of neutron-rich nuclei at the N = 126 waiting point with lasers. We believe that the method presented here is 
ideally suited to detect such products.

In the future, we plan on extending our method to investigate proton-induced reactions of astrophysical 
importance. Here unprecedented proton intensities might allow us to address reactions with tiny cross-sections 
that are presently inaccessible at dedicated underground accelerators. For instance, (p,γ ), (p,n), and (p,α ) reactions 
can be studied simultaneously. However, this might require to perform the laser experiment underground as 
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well. Furthermore, owing to the very short duration of the laser pulse, application of time-of-flight techniques 
will be pursued to enable energy-resolved measurements.

Experimental method
A schematic diagram for the experimental setup at the GSI PHELIX facility is depicted in Fig. 1. The setup 
includes the laser-driven proton source and the uranium target container inside the PHELIX target chamber and 
the fission isotope collection filter directly in front of the γ-detector outside the target chamber.

Laser‑driven proton source and laser setup for TNSA.  An extensive work has taken place in the last 
two decades on the generation of protons with lasers, after the pioneering work done at the Nova-Petawatt laser 
facility1. Since then, the developments have followed two main directions, the first one exploring theoretically 
and experimentally the various mechanisms underlying laser-driven proton acceleration, with the aim to 
generate highly-energetic and mono-energetic proton beams in the energy range of 0.1–1 GeV, and the second 
one is optimizing the proton sources for applications39.

As far as laser-driven proton acceleration is concerned, the high-energy sub-picosecond PHELIX system, 
which is based on a neodymium-doped-glass chain of amplifying modules, has distinct advantages over other 
short-pulse lasers. First, the laser energy and long interaction times of sub-picosecond lasers enable reaching 
the highest proton yields as a consequence of the combined effects of the energy and high conversion efficiency 
demonstrated with this type of laser40. Second, some preliminary work has been done at PHELIX, as in the 
framework of the LIGHT project41, to condition laser-generated protons for applications, and this knowledge lays 
the basis for further work. Previous findings have shown two optimal interaction conditions for the generation of 
stable and reliable protons beams. The first configuration, used in the LIGHT project, deals with relatively thick 
(several-micrometers) foils, irradiated with a laser pulse exhibiting a moderate nanosecond pedestal. In this case, 
the nanosecond pedestal creates a pre-plasma at the surface of the interaction foil that fosters improved light 
absorption, and therefore a more efficient proton generation. The acceleration takes place in the TNSA regime, 
and the target thickness helps with the proton beam homogeneity. In the second configuration, the laser irradiates 
a sub-micrometer or micrometer foil42. To avoid target pre-heating that destroys the foil, the level of the pulse 
pedestal is reduced by the use of an ultrafast optical parametric amplifier in the laser43. While the thinner targets 
deliver higher proton energies, the drawback comes from a lower laser-energy coupling into the target because 
of the thin nanometer-thick interaction volume at the target surface.

Optimization of the proton source by directly comparing quantitatively these proton-source geometries has 
been conducted. Our findings show that, for the current PHELIX parameters, a proton source generated by 
irradiating 1µm thick foils with P-polarized laser beams of the highest temporal contrast under 45◦ incidence 
is the best trade-off44. After the initial setup and test, the source delivered reliably, on every shot, TNSA proton 
beams with 1012 protons of energy higher than 15MeV and with cut-off energy around 70MeV . In comparison 
to standard experiments, the pulse profile of PHELIX was stabilized using an acousto-optic programmable 
dispersive filter (Fastlite, France) and the pulse profile (spectrum and phase) adjusted daily directly at the 
interaction point. A measured proton spectrum is shown in Fig. 2.

Experimental setup for proton‑induced fission.  The PHELIX target chamber contains the laser 
transport and focusing mirrors and diagnostics, as well as the target holder for the proton production. The setup 
is shown in Fig. 1. A compact target container, holding the uranium target foils, is positioned at a distance of 4 cm 
from the laser acceleration source. The proton bunch enters and leaves the uranium target container through 
15-µm-thick titanium windows. A stack of three radiochromic films (RCFs) is placed in front of the container to 
obtain a spatial diagnostic of the proton beam. On the backside, a stack of eleven RCFs is mounted, to diagnose 
the protons after they pass through the uranium targets. The sensitivity of these films was calibrated at a proton 
accelerator. While the PHELIX target chamber is operated at a vacuum of 10−5 mbar , the target container is 
connected to the gas transport system with a constant gas flow of 500 cm3 min−1 at a pressure of approximately 
1 bar. The container has a length of 60mm and a diameter of 40mm . Two uranium target foils with a size of 
16mm × 19mm and a thickness of 15µm are mounted between two metal frames of size 25mm × 20mm , 
with a 10-mm opening. Due to their fission energy, the fragments are emitted from a thin layer at the front and 
back of the target material. To increase the fission fragment production yield, two uranium foils were used with 
a distance of 30mm between them, equivalent to the approximate stopping distance of the fragments. Fission 
fragments are stopped in the gas and transported through a polytetrafluoroethylene (PTFE) tube with an inner 
diameter of 4mm , over a distance of 12m to be collected in a carbon filter at room temperature, in front of an 
HPGe detector system. This method is often practiced for nuclear chemistry experiments45, 46 but not adapted 
so far together with laser acceleration. The transport distance of several meters is crucial in this case in order to 
reduce EMP-induced background at the HPGe detector to an acceptable level.

In the experiment, helium, nitrogen, neon, and argon were used as a transport gas. Depending on the gas, the 
stopping power and the background in the spectrum changed, caused by the activation of the carrier gas. The 
best results were achieved with a mixture of helium and argon with a mass flow ratio of 1:1.

The carbon filter consists of a PTFE tube filled with carbon grains with 20–40 µm mesh held in place on 
both sides by quartz wool. The capture efficiency for rare heavy gases was tested before the main experiment 
with 219 Rn from an 227 Ac source. By comparison of the activity retained in the filter to the activity in a second 
identical filter, a capture rate of (99.29± 0.15)% was found. For the detection an N-type HPGe detector with 
electric cooling was used. The recorded spectra were stored at certain time intervals in order to obtain the 
time-dependent behavior of the spectrum. Even at a distance of 12m from the laser target, the detector and its 
electronics had to be shielded. In addition to a metallic cover, a thin, flexible shielding of polyamide spun-bond 
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fleece, which is internally metal-coated, was used. It offers damping of around 100 dB over a wide spectral range 
of electromagnetic radiation. The filter and the detector head were enclosed with lead shielding to minimize 
the γ-ray spectrum background in the relevant energy range. The collected fission products are identified on 
the basis of the observed γ-rays. The most short-lived isotope observed had a lifetime of 39 seconds, due to the 
transport time.

This transport time is given by the volume of the PTFE tube and the mass flow in the gas system. In the given 
setup, it is approximately 18 s . A transport time of around one second can be achieved by using a slightly higher 
pressure in combination with a stronger vacuum pump at the exhaust. The restriction of the present experiment 
to volatile elements can also be overcome by adding reactive gas or aerosols or a combination of both. For future 
experiments, it will be possible to use more advanced detection systems47, which will allow the detection of 
electrons and photons and registration of coincidences.
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