The detection of fraudulent financial statements using textual and financial data

Gleichmann, Tobias GND

Das Vertrauen in die Korrektheit veröffentlichter Jahresabschlüsse bildet ein Fundament für funktionierende Kapitalmärkte. Prominente Bilanzskandale erschüttern immer wieder das Vertrauen der Marktteilnehmer in die Glaubwürdigkeit der veröffentlichten Informationen und führen dadurch zu einer ineffizienten Ressourcenallokation. Zuverlässige, automatisierte Betrugserkennungssysteme, die auf öffentlich zugänglichen Daten basieren, können dazu beitragen, die Prüfungsressourcen effizienter zuzuweisen und stärken die Resilienz der Kapitalmärkte indem Marktteilnehmer stärker vor Bilanzbetrug geschützt werden. In dieser Studie steht die Entwicklung eines Betrugserkennungsmodells im Vordergrund, welches aus textuelle und numerische Bestandteile von Jahresabschlüssen typische Muster für betrügerische Manipulationen extrahiert und diese in einem umfangreichen Aufdeckungsmodell vereint. Die Untersuchung stützt sich dabei auf einen umfassenden methodischen Ansatz, welcher wichtige Probleme und Fragestellungen im Prozess der Erstellung, Erweiterung und Testung der Modelle aufgreift. Die Analyse der textuellen Bestandteile der Jahresabschlüsse wird dabei auf Basis von Mehrwortphrasen durchgeführt, einschließlich einer umfassenden Sprachstandardisierung, um erzählerische Besonderheiten und Kontext besser verarbeiten zu können. Weiterhin wird die Musterextraktion um erfolgreiche Finanzprädiktoren aus den Rechenwerken wie Bilanz oder Gewinn- und Verlustrechnung angereichert und somit der Jahresabschluss in seiner Breite erfasst und möglichst viele Hinweise identifiziert. Die Ergebnisse deuten auf eine zuverlässige und robuste Erkennungsleistung über einen Zeitraum von 15 Jahren hin. Darüber hinaus implizieren die Ergebnisse, dass textbasierte Prädiktoren den Finanzkennzahlen überlegen sind und eine Kombination aus beiden erforderlich ist, um die bestmöglichen Ergebnisse zu erzielen. Außerdem zeigen textbasierte Prädiktoren im Laufe der Zeit eine starke Variation, was die Wichtigkeit einer regelmäßigen Aktualisierung der Modelle unterstreicht. Die insgesamt erzielte Erkennungsleistung konnte sich im Durchschnitt gegen vergleichbare Ansätze durchsetzen.

Fraudulent financial statements inhibit markets allocating resources efficiently and induce considerable economic cost. Therefore, market participants strive to identify fraudulent financial statements. Reliable automated fraud detection systems based on publically available data may help to allocate audit resources more effectively. This study examines how quantitative data (financials) and corporate narratives, both can be used to identify accounting fraud (proxied by SEC’s AAERs). Thereby, the detection models are based upon a sound foundation from fraud theory, highlighting how accounting fraud is carried out and discussing the causes for companies to engage in fraudulent alteration of financial records. The study relies on a comprehensive methodological approach to create the detection model. Therefore, the design process is divided into eight design and three enhancing questions, shedding light onto important issues during model creation, improving and testing. The corporate narratives are analysed using multi-word phrases, including an extensive language standardisation that allows to capture narrative peculiarities more precisely and partly address context. The narrative clues are enriched by successful predictors from company financials found in previous studies. The results indicate a reliable and robust detection performance over a timeframe of 15 years. Furthermore, they suggest that text-based predictors are superior to financial ratios and a combination of both is required to achieve the best results possible. Moreover, it is found that text-based predictors vary considerably over time, which shows the importance of updating fraud detection systems frequently. The achieved detection performance was slightly higher on average than for comparable approaches.

Cite

Citation style:
Could not load citation form.

Rights

Use and reproduction:
All rights reserved

Export