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Abstract

Due to the extensive growth of big data applications, the widespread use of multisensor

technologies, and the need for efficient data representations, multidimensional tech-

niques are a primary tool for many signal processing applications. Multidimensional

arrays or tensors allow a natural representation of high-dimensional data. Therefo-

re, they are particularly suited for tasks involving multi-modal data sources such as

biomedical sensor readings or multiple-input and multiple-output (MIMO) antenna

arrays. While tensor-based techniques were still in their infancy several decades ago,

nowadays, they have already proven their effectiveness in various applications.

There are many different tensor decompositions in the literature, and each finds use

in diverse signal processing fields. In this thesis, we focus on two tensor factorization

models: the rank-(Lr ,Lr ,1) Block-Term Decomposition (BTD) and the Multilinear Ge-

neralized Singular Value Decomposition (ML-GSVD) that we propose in this thesis.

The ML-GSVD is an extension of the Generalized Singular Value Decomposition

(GSVD) of two matrices to the tensor case. The properties of the original matrix GSVD

render it an attractive tool for different applications, including genomic signal proces-

sing, MIMO relaying, coordinated beamforming, physical layer security, and multiuser

MIMO systems. Yet, since the GSVD is restricted to two matrices, its use in wireless

communications is limited to two users. Furthermore, this also ties into the fact that

the literature lacked the extension of the GSVD for more than two matrices that would

also inherit the properties of the original decomposition. Therefore, in this thesis, we

extend the GSVD of two matrices to the tensor case while preserving its orthogonality

properties and demonstrate its efficient application to multi-user MIMO communica-

tion systems. We provide a detailed discussion of the ML-GSVD subspace structure

and propose an algorithm to compute it.

Furthermore, we present three applications of the ML-GSVD in MIMO communication

systems: multiuser downlink MIMO systems with joint unicast and multicast trans-

missions; non-orthogonal multiple access (NOMA); and multi-user MIMO broadcast

systems with rate splitting at the transmitter. For these applications, we exploit the

structure of the ML-GSVD with common and private subspaces and show how the

factors of the ML-GSVD can be used for the design of the precoders and decoders.
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In the other part of the thesis, we focus on the rank-(Lr ,Lr ,1) Block-Term Decom-

position. In contrast to the more common Canonical Polyadic (CP) decomposition,

the rank-(Lr ,Lr ,1) decomposition has not yet been investigated as extensively and

still has unexplored areas, such as its efficient computation. This thesis provides the

algorithms to calculate both single and coupled rank-(Lr ,Lr ,1) decompositions by ex-

ploiting the connection of the BTD and CP decompositions. The proposed SECSI-BTD

(SEmi-algebraic framework for approximate Canonical polyadic decompositions via

SImultaneous Matrix Diagonalizations) algorithm includes the initial calculation of

the factor estimates, followed by clustering and refinement procedures that return

the appropriate rank-(Lr ,Lr ,1) BTD terms. Moreover, we introduce a new approach

to estimate the multilinear rank structure of the tensor based on the higher-order

singular value decomposition (HOSVD) and k-means clustering. Since the proposed

SECSI-BTD algorithm does not require a known rank structure but can still take advan-

tage of the known ranks when available, it is more flexible than the existing techniques

in the literature.

As an application of the coupled rank-(Lr ,Lr ,1) decomposition, we consider near-

field localization in multi-static MIMO radar systems. We show how the BTD can be

employed for parameter estimation in 3D space based on the exact spherical wavefront

model.

Finally, we consider the application of the coupled rank-(Lr ,Lr ,1) BTD to the Elec-

troencephalogram (EEG) and Magnetoencephalogram (MEG) recordings of soma-

tosensory evoked electrical potentials (SEPs) and somatosensory evoked magnetic

fields (SEFs) to separate the signal components related to the 200 Hz band activity. In

contrast to state-of-the-art works on the EEG and MEG recordings, we perform the

fusion of the complete data set, including the gradiometer measurements, i.e., yielding

a coupled rank-(Lr ,Lr ,1) BTD of four tensors (EEG, MEG-MAG, MEG-GRAD1, and

MEG-GRAD2).

Additionally, this thesis provides the background material on the fundamentals of

multilinear algebra, reviews the basic matrix and tensor decompositions, and identifies

future research directions.
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Zusammenfassung

Aufgrund des starken Wachstums von Big-Data-Anwendungen, der weit verbreiteten

Nutzung von Multisensortechnologien und der Notwendigkeit einer effizienten Da-

tendarstellung sind mehrdimensionale Techniken ein primäres Werkzeug für viele

Anwendungen der Signalverarbeitung. Mehrdimensionale Arrays oder Tensoren er-

möglichen eine natürliche Darstellung hochdimensionaler Daten. Daher eignen sie

sich besonders für Aufgaben mit multimodalen Datenquellen wie biomedizinischen

Sensorwerten oder MIMO-Antennenarrays (Multiple Input and Multiple Output). Wäh-

rend tensorbasierte Techniken vor einigen Jahrzehnten noch in den Kinderschuhen

steckten, haben sie heute bereits ihre Wirksamkeit in verschiedenen Anwendungsge-

bieten unter Beweis gestellt.

In der Literatur gibt es viele verschiedene Tensorzerlegungen, die jeweils in verschie-

denen Bereichen der Signalverarbeitung Anwendung finden. In dieser Arbeit konzen-

trieren wir uns auf zwei Tensorfaktorisierungsmodelle: die Rang-(Lr ,Lr ,1) Block-Term

Decomposition (BTD) und die Multilinear Generalized Singular Value Decomposition

(ML-GSVD), die wir in dieser Arbeit vorschlagen.

Die ML-GSVD ist eine Erweiterung der Generalized Singular Value Decomposition

(GSVD) zweier Matrizen auf den Tensorfall. Die Eigenschaften der ursprünglichen Ma-

trix GSVD machen sie zu einem attraktiven Werkzeug für verschiedene Anwendungen,

einschließlich genomischer Signalverarbeitung, MIMO-Relaying, koordinierter Strahl-

formung, Sicherheit der physikalischen Schicht und Mehrbenutzer-MIMO-Systemen.

Da die GSVD jedoch auf zwei Matrizen beschränkt ist, ist ihre Verwendung in der draht-

losen Kommunikation auf zwei Teilnehmer beschränkt. Darüber hinaus hängt dies

auch mit der Tatsache zusammen, dass in der Literatur eine Erweiterung der GSVD für

mehr als zwei Matrizen fehlte, die auch die Eigenschaften der ursprünglichen Zerle-

gung erben würde. Daher erweitern wir in dieser Arbeit die GSVD zweier Matrizen auf

den Tensorfall unter Beibehaltung ihrer Orthogonalitätseigenschaften und demons-

trieren ihre effiziente Anwendung auf Mehrbenutzer-MIMO-Kommunikationssysteme.

Wir bieten eine detaillierte Diskussion der ML-GSVD-Unterraumstruktur und schlagen

einen Algorithmus zu ihrer Berechnung vor.
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Darüber hinaus stellen wir drei Anwendungen der ML-GSVD in MIMO Kommunikati-

onssystemen vor: Multiuser Downlink MIMO Systeme mit gemeinsamer Unicast- und

Multicast-Übertragung; nicht-orthogonaler Mehrfachzugriff (NOMA); und Mehrbe-

nutzer-MIMO-Broadcast-Systeme mit Ratenaufteilung am Sender (RSMA). Für diese

Anwendungen nutzen wir die Struktur der ML-GSVD mit gemeinsamen und priva-

ten Unterräumen und zeigen, wie die Faktoren des ML-GSVD für den Entwurf der

Precoder und Decoder genutzt werden können.

Im anderen Teil der Arbeit konzentrieren wir uns auf die Rang-(Lr ,Lr ,1) Block-Term

Decomposition. Im Gegensatz zur häufigeren Canonical Polyadic (CP)-Zerlegung wur-

de die Rang-(Lr ,Lr ,1) BTD noch nicht so umfassend untersucht und weist noch uner-

forschte Bereiche auf, beispielsweise ihre effiziente Berechnung. Diese Arbeit stellt die

Algorithmen zur Berechnung sowohl einzelner als auch gekoppelter Rang-(Lr ,Lr ,1)

Zerlegungen bereit, indem sie die Verbindungen der BTD- mit CP-Zerlegungen aus-

nutzt. Der vorgeschlagene SECSI-BTD-Algorithmus (SEmi-algebraic Framework for

approximate Canonical polyadic decompositions via SImultaneous Matrix Diagona-

lizations) umfasst die anfängliche Berechnung der Faktorschätzungen, gefolgt von

Clustering- und Verfeinerungsverfahren, die den entsprechenden Rang det BTD-Terme

zurückgeben. Darüber hinaus stellen wir einen neuen Ansatz zur Schätzung der mul-

tilinearen Rangstruktur des Tensors vor, der auf der Singulärwertzerlegung höherer

Ordnung (HOSVD) und k-Means-Clustering basiert. Da der vorgeschlagene SECSI-

BTD-Algorithmus keine bekannte Rangstruktur erfordert, aber dennoch die bekannten

Ränge nutzen kann, sofern verfügbar, ist er flexibler als die in der Literatur vorhande-

nen Techniken.

Als Anwendung der gekoppelten Rang-(Lr ,Lr ,1) Zerlegung betrachten wir die Nah-

feldlokalisierung in multistatischen MIMO-Radarsystemen. Wir zeigen, wie die BTD

zur Parameterschätzung im 3D-Raum basierend auf dem exakten sphärischen Wellen-

frontmodell verwendet werden kann.

Abschließend betrachten wir die Anwendung des gekoppelten Rang-(Lr ,Lr ,1) BTD auf

die Elektroenzephalogramm- (EEG) und Magnetoenzephalogramm- (MEG) Aufzeich-

nungen somatosensorisch evozierter elektrischer Potentiale (SEPs) und somatosenso-

risch evozierter Magnetfelder (SEFs), um die damit verbundenen Signalkomponenten

im 200 Hz Band zu trennen. Im Gegensatz zu aktuellen Arbeiten zu diesen Daten

faktorisieren wir gemeinsam den gesamten EEG-MEG-Datensatz, einschließlich der

Gradiometermessungen, d. h. wir erhalten eine gekoppelte Rang-(Lr ,Lr ,1) BTD von

vier Tensoren (EEG, MEG-MAG, MEG-GRAD1 und MEG-GRAD2).
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Darüber hinaus liefert diese Arbeit Hintergrundmaterial zu den Grundlagen der multi-

linearen Algebra, gibt einen Überblick über die grundlegenden Matrix- und Tensorzer-

legungen und identifiziert zukünftige Forschungsrichtungen.
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Introduction and scope of the
thesis 1
1.1 Introduction and Motivation

Over the last few decades, the amount of data people and machines generate, process,

store, and use has grown unimaginably. The extensive internet usage, availability, and

continuous evolution of telecommunication technology significantly contributed to

this data explosion. Moreover, its scientific and commercial value has also increased:

the machine learning models that are trained on large data sets provide personalized

services, produce art, can help recognize diseases or abnormalities in a body function,

and many more. Yet, these remarkable advancements would not be possible without

progress in signal processing techniques that allow extracting significant information

from the data.

In many signal processing applications, data is commonly represented as matrices,

capturing relationships along two dimensions. However, the advancements in mul-

tisensor technology and the emergence of large data sets have highlighted the lim-

itations of standard two-dimensional models when dealing with the increasingly

complex, high-dimensional data encountered in modern applications. The tensors,

multidimensional equivalents of matrices [DDV00a], provide a more natural way to

represent higher-order data without destroying its multilinear structure. For example,

the received data in multiple-input multiple-output (MIMO) systems or electroen-

cephalography (EEG) and magnetoencephalography (MEG) recordings are inherently

three-dimensional (for instance, space × space × frequency [CAVP21] or time × sen-

sors × trials [NLK+20; CRHH21]), and the employment of tensors in these fields shows

a clear benefit. Moreover, the data that is not multidimensional by nature can still

be tensorized [DD15] and benefit from tensor-based processing techniques such as

various tensor decompositions.

Tensor factorizations allow the representation of data tensors by other matrices and/or

tensors, often of much smaller dimensions than the original tensor, thereby enabling

their efficient storage and manipulation.
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While tensor-based techniques were still in their infancy several decades ago, nowa-

days, they have already proven their effectiveness in various applications and con-

tinue gaining attention from researchers in different fields, from image [SL01] and

sensor data processing [SBG00] to machine learning [SDF+17] and big data analy-

sis [SGCH19].

Wireless communication is one of the areas where tensor-based techniques have

shown significant promise [CAVP21]. In modern wireless communication systems,

multiple antennas are often used to transmit and receive signals simultaneously,

which results in high-dimensional complex data and channel models. Higher order

techniques allow exploiting the underlying structure of these data to improve the

performance of communication systems, for instance, by enabling efficient MIMO

channel estimation and precoding. Tensor-based algorithms have also found their

use in relay systems [DYHL15], joint communications and sensing [PZNH19], satellite

systems [dLA+19], and many others.

Considering more interdisciplinary fields, another great example is the application

of tensor-based techniques to biomedical data processing. The extensive develop-

ment of biomedical research, the broad spectrum and diversity of the data, and the

requirement for fast analysis opened up many signal processing questions. The com-

monly large, inherently multidimensional, and highly noise-corrupted data require

efficient processing solutions developed at the intersection of biomedical engineering

and data analysis. Higher-order techniques have already shown a high potential in

this area. Tensor representation allows capturing the multidimensional structure of

these signals and a more accurate and robust feature extraction. For example, when

applied to EEG-MEG signals, tensor-decompositions enable artifact detection, feature

extraction, and can serve as a denoising tool or provide a low-dimensional input for

further processing using deep learning [TJR19].

Probably the most prominent and extensively used tensor decompositions are the

higher-order singular value decomposition (HOSVD) [DDV00a; Tuc66] and the canon-

ical polyadic decomposition (CPD), sometimes also referred to as CANDECOMP

(canonical decomposition) [CC70] or PARAFAC (parallel factors) [Har70]. Their appli-

cations include statistics, communications, localization, biomedical signal processing,

source separation, and others [KB09; SDF+17].

Generally, tensor decompositions can be considered as multidimensional extensions

of matrix factorizations, such as eigendecomposition and singular value decomposi-

tion (SVD). However, unlike the matrix methods, tensor decompositions offer unique-

ness under mild and natural conditions. Moreover, the variety of higher-order decom-
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positions and their flexibility in the choice of constraints allow finding and adapting

the decomposition to specific data. This, in turn, leads to an improved performance

in, for instance, feature extraction compared to the matrix-based methods.

As previously noted, tensors have a high potential in different areas of signal processing

and optimization: they can preserve the data structure, enable lower-rank compact

representations, and can be employed in independent component analysis, deep

learning, and wireless systems optimization. Yet, various challenges still have to be

addressed when going toward higher dimensions. These include, for example, the

efficiency, reliability, and complexity of the algorithms in the scaled-up settings of

future wireless communication systems with their huge data rates and extremely large

antenna arrays.

There are many different tensor decompositions in the literature, and each finds use

in diverse signal processing fields. In this thesis, we focus on two tensor factoriza-

tion models: the rank-(Lr ,Lr ,1) block-term decomposition (BTD) and the multilinear

generalized singular value decomposition (ML-GSVD) that we propose in this the-

sis. The latter, the ML-GSVD, extends the generalized singular value decomposition

(GSVD) [PS81; Van76] of two matrices to the tensor case. The properties of the original

matrix GSVD render it an attractive tool for different applications, including genomic

signal processing, MIMO relaying, coordinated beamforming, physical layer security,

and multi-user MIMO systems. Yet, since the GSVD is restricted to two matrices, its

use in wireless communications is limited to two users. Furthermore, this also ties into

the fact that the literature lacked the extension of the GSVD for more than two matrices

that would also inherit the properties of the original decomposition. Therefore, in

this thesis, we extend the GSVD of two matrices to the tensor case while preserving

its orthogonality properties and demonstrate its efficient application to multi-user

MIMO communication systems.

In the other part of the thesis, we focus on the rank-(Lr ,Lr ,1) block-term decom-

position. In contrast to the more common canonical polyadic (CP) decomposition,

the rank-(Lr ,Lr ,1) decomposition has not yet been investigated as extensively and

still has unexplored areas, such as its efficient computation. This thesis provides the

algorithms to calculate both single and coupled rank-(Lr ,Lr ,1) decompositions by

exploiting the connection of the BTD and CP decompositions. Moreover, we intro-

duce the application of the BTD to near-field localization in multi-static MIMO radar

systems and to the analysis of EEG and MEG recordings.
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1.2 Outline

This thesis contains four main parts: (I) an introduction to fundamental concepts and

notations used in the thesis; (II,III) the achieved scientific contributions in two tensor

decomposition domains; and (IV) conclusions with a discussion on the future research

directions. The complementary materials are provided in the appendix (V).

The main goal of Part I is to familiarize the readers, who are new to the subject, with the

essentials of tensor-based signal processing and to revise them for the knowledgeable

ones.

Chapter 2 of this part provides the background material on the basics of multilinear

algebra and the notations used in the thesis. Moreover, it reviews the relevant matrix

and tensor decompositions. Section 2.1 introduces the notations and essential defini-

tions of tensor algebra, such as the tensor rank, slices and fibers of a tensor, and the

concept of unfoldings. Section 2.2 focuses on some of the fundamental matrix and

tensor factorizations. Specifically, we review the following decompositions

• Singular Value Decomposition (SVD). We start our review of essentials by sum-

marizing the singular value decomposition and its truncated and economy-size

versions in Section 2.2.1.

• Generalized Singular Value Decomposition (GSVD). Section 2.2.2 gives a short

summary of the Generalized Singular Value Decomposition of two matrices.

In Chapter 3, we propose an extension of the GSVD to factorize a set of K ≥ 2

matrices.

• Tucker and Higher-Order Singular Value Decompositions (HOSVD). Section 2.2.3

reviews the Tucker decomposition and its most common representation, the

Higher-Order Singular Value Decomposition. We also briefly cover the truncated

model and the computation techniques.

• Canonical Polyadic Decomposition (CPD). In Section 2.2.4, we focus on the

Canonical Polyadic Decomposition, another primary tensor factorization. In

addition to the representation of the CPD and its computation, this section

also provides the essentials on the uniqueness of the decomposition and the

ambiguities, such as matrix product, permutation, and scaling ambiguities.

• PARAFAC2. Section 2.2.5 is devoted to the PARAFAC2 (parallel factors 2) decom-

position to factorize a set of matrices with one common dimension. We cover

the uniqueness properties of the decomposition, some of the applications, and
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the computation. We exploit the PARAFAC2 decomposition later in Chapter 3 as

it has some similarities to our proposed ML-GSVD.

• Block-Term Decompositions (BTD). Section 2.2.6 revises three different types of

block-term decompositions, the decomposition in rank-(Lr ,Lr ,1) terms, the

decomposition in rank-(Lr , Mr , Nr ) terms, and the type-2 decomposition in

rank-(Lr , Mr , ·) terms. We provide the tensor and matrix representations that are

utilized for their computation. We will go into more detail on the decomposition

in rank-(Lr ,Lr ,1) terms in Chapter 7.

• Coupled decompositions. In Section 2.2.7 we briefly discuss another category of

factorizations, the coupled tensor decompositions, an effective data fusion tool.

Part II tackles this thesis’ goal to extend the GSVD of two matrices to the tensor case

while preserving its original properties and to demonstrate its efficient application to

multi-user MIMO communication systems.

Generally, the chapters in Parts II and III are divided into four main sections. We start

the chapter with an introduction that provides a state-the-art review and summarizes

the contributions. Then, we present the data model, the problem, and the proposed

solution. Next, we provide the numerical simulation results, and summarize the results

in the conclusions section.

In Chapter 3, we introduce a multilinear generalized singular value decomposition

(ML-GSVD) as an extension of the generalized singular value decomposition (GSVD)

of two matrices to higher orders. The proposed decomposition allows a joint factor-

ization of a set of matrices with one common dimension. In comparison with other

approaches that extend the GSVD, the ML-GSVD preserves the essential properties

of the original (matrix-based) GSVD, such as the orthogonality of the second-mode

factor matrices and the subspace structure of the third-mode factor matrices. The

subspace structure of the decomposition depends on the dimensionality and the ranks

of the slices of the decomposed tensor. We will discuss it in detail and introduce three

different cases of the ML-GSVD depending on the existence of common and private

subspaces. For the computation of the ML-GSVD, we introduce an ALS-based algo-

rithm, which has been inspired by PARAFAC2 decomposition algorithms. Moreover,

we briefly describe some of the applications of the proposed ML-GSVD, which we

examine in more detail in the subsequent chapters.

In Chapter 4, we consider an application of the proposed ML-GSVD to multi-user

downlink MIMO orthogonal frequency division multiplexing (OFDM) systems with

joint unicast and multicast transmissions. We show how the common and individual

1.2 Outline 5



factor matrices of the ML-GSVD can be utilized as the precoding and decoding matri-

ces, respectively. We also demonstrate that the three cases of the decomposition corre-

spond to the transmission of private or common messages (or both). The simulation

results show that the ML-GSVD-based precoding scheme outperforms the reference

multicast and unicast precoding techniques in terms of the sum rate [KAH22].

Chapters 3 and 4 are based on the following journal paper: L. Khamidullina,

A. L. F. de Almeida, and M. Haardt, “Multilinear Generalized Singular Value

Decomposition (ML-GSVD) and Its Application to Multiuser MIMO Systems”,

IEEE Transactions on Signal Processing, vol. 70, 2022 [KAH22].

In Chapter 5 of the thesis, we focus on non-orthogonal multiple access (NOMA), which

has been considered a promising technique for 5G and beyond wireless networks. We

consider a power-domain downlink MIMO-NOMA system with an arbitrary number

of users and propose the design of the precoding and decoding matrices based on the

ML-GSVD that we have presented in Chapter 3. Moreover, we demonstrate how the

generalized singular values of the ML-GSVD can be used for power allocation. We also

compare the proposed MIMO-NOMA scheme with orthogonal multiple access (OMA)

techniques and provide various numerical results [KAH21].

Chapter 5 is based on the following peer-reviewed conference publication:

L. Khamidullina, A. L. F. de Almeida, and M. Haardt, “ML-GSVD-based MIMO-

NOMA Networks”, in Proc. 25th International ITG Workshop on Smart Antennas

(WSA 2021), Nov. 2021 [KAH21].

In Chapter 6, we explore multi-user multiple-input multiple-output (MU-MIMO)

broadcast systems with rate splitting at the transmitter. We propose a precoder design

that applies to both underloaded and overloaded communication systems and sup-

ports the transmission of multiple common and private streams. We show how the

generalized singular value and multilinear generalized singular value decompositions

can be used to define the number of common and private streams and how to adjust

the message split. Additionally, we present transmit precoding and receive combining

designs that allow the simultaneous transmission of common and private streams

but do not require successive interference cancellation (SIC) at the receivers and can

be used in cases where the total number of streams does not exceed the number of

transmit antennas.
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Chapter 6 is based on the following peer-reviewed conference publication:

L. Khamidullina, A. L. F. de Almeida, and M. Haardt, “Rate Splitting and Pre-

coding Strategies for Multi-User MIMO Broadcast Channels with Common and

Private Streams”, in Proc. IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP 2023), 2023 [KAH23].

Part III of the thesis is dedicated to another type of tensor decompositions: multilinear-

rank block-term decompositions. If the ML-GSVD can be considered more like a

"structure revealing" factorization (as the full-size SVD or HOSVD), the block-term

decompositions, similar to, for example, the approximate CPD or truncated HOSVD of

the noise-corrupted data, belong to the "low-rank (compact) models" that allow ex-

tracting the significant information from the data. Therefore, we use it in the context of

denoising and feature extraction. In general, the block-term decompositions have not

yet been investigated as extensively as, for example, the CP decomposition. In Part III,

we concentrate on one particular type of BTD, the rank-(Lr ,Lr ,1) decomposition and

its applications. We provide the efficient computation algorithms for both versions,

the single BTD and the coupled BTD. Moreover, we demonstrate its application to

localization problems and EEG-MEG data analysis.

In Chapter 7, we introduce the SECSI-BTD framework, which exploits the connec-

tion between Canonical Polyadic and rank-(Lr ,Lr ,1) decompositions to estimate the

block-terms of the rank-(Lr ,Lr ,1) BTD. The proposed SECSI-BTD algorithm includes

the initial calculation of the factor estimates using the semi-algebraic framework for

approximate canonical polyadic decompositions via simultaneous matrix diagonal-

izations (SECSI), followed by clustering and refinement procedures that return the

appropriate rank-(Lr ,Lr ,1) BTD terms. Moreover, we introduce a new approach to es-

timate the multilinear rank structure of the tensor based on the HOSVD and k-means

clustering. Since the proposed SECSI-BTD algorithm does not require a known rank

structure but can still take advantage of the known ranks when available, it is more

flexible than the existing techniques in the literature. Additionally, our algorithm does

not require multiple initializations, and the simulation results show that it provides

more accurate results and a better convergence behavior for an extensive range of

SNRs (signal-to-noise ratio).

Chapter 7 is based on the following journal paper: L. Khamidullina, G. Seidl,

I. A. Podkurkov, A. A. Korobkov, and M. Haardt, “Enhanced Solutions for the

Block-Term Decomposition in Rank-(Lr ,Lr ,1) Terms”, IEEE Transactions on

Signal Processing, vol. 71, 2023 [KSP+23].
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The coupled decompositions prove to be attractive in many signal processing fields

and data fusion tasks where multiple sets of data exhibit common properties, such

as joint EEG-MEG analysis and data fusion. Therefore, in Chapter 8, we focus on the

coupled extension of the rank-(Lr ,Lr ,1) decomposition. We present an algorithm to

calculate the coupled rank-(Lr ,Lr ,1) decomposition of multiple three-dimensional

tensors with a coupled mode and possibly an unknown rank structure. The proposed

approach is composed of three main parts. The first is an extension of the linear

regression of global eigenvalues (LaRGE) [KDHH21] technique to estimate the number

of blocks and the sum of the multilinear ranks in the coupled tensors. The second part

accounts for the calculation of the preliminary multilinear factors of the coupled BTD

by means of the coupled SECSI. The last part contains the final refinement procedures

that return the estimated BTD factors. Moreover, we provide some synthetic data

simulations showing that the proposed algorithm demonstrates more stable and

accurate results than the schemes from the literature.

Chapter 8 is based on the following peer-reviewed conference publication:

I. Safiullin, L. Khamidullina, A. A. Korobkov, and M. Haardt, “Enhanced Compu-

tation of the Coupled Block-Term Decomposition in Multilinear Rank Terms”,

in Proc. IEEE 12th Sensor Array and Multichannel Signal Processing Workshop

(SAM), Trondheim, Norway, Jun. 2022 [SKKH22].

In Chapter 9, we present a high-resolution coupled rank-(Lr ,Lr ,1) decomposition-

based near-field localization scheme for multi-static MIMO radar systems. The pro-

posed COBRAS (COupled Block-term decomposition for multi-static RAdar Systems)

algorithm estimates the target location parameters in 3D space based on the exact

wavefront model and is applicable to arbitrary array geometries. Compared to the

far-field models, the exact near-field wavefront model allows exploiting the distance

information for high-accuracy positioning. Moreover, we consider a system with mas-

sive antenna arrays, which increases the Fresnel region and renders the near-field

assumption applicable in practical scenarios. The COBRAS algorithm includes the

initial tensor decomposition of the data and further postprocessing steps that allow

extracting the location parameters. The simulation results demonstrate that the em-

ployment of coupling vastly improves the localization performance compared to the

non-coupled solutions. Moreover, we show that the coupled BTD algorithm proposed

in Chapter 8 outperforms its alternatives from the literature.

Chapter 10 is devoted to one of the common and promising applications of tensor

decompositions, joint EEG and MEG data processing. In particular, we show how the

coupled rank-(Lr ,Lr ,1) decomposition can be applied to the EEG-MEG recordings
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of the somatosensory evoked electrical potentials (SEPs) and somatosensory evoked

magnetic fields (SEFs) to separate the signal components related to the 200 Hz band

activity. In our study, we use the SEP and SEF recordings evoked through electrical

median nerve stimulations conducted on eight healthy volunteers. In this study,

we extend the work in [CRHH21], where the authors utilized the multilinear rank-

(Lr ,Lr ,1) decomposition to process EEG and MEG magnetometer (MAG) recordings.

In contrast to the aforementioned paper, we focus on the complete data set, which

additionally includes the gradiometer (GRAD) measurements, resulting in a coupled

decomposition of four tensors: EEG, MEG-MAG, MEG-GRAD-1, and MEG-GRAD-

2. Furthermore, we address the problem of the proper initialization of the coupled

rank-(Lr ,Lr ,1) decomposition and use the SECSI-based approach that we propose

in Chapter 8 instead of multiple random initializations employed in [CRHH21]. In

essence, this chapter validates the application of the coupled BTD algorithm proposed

in Chapter 8 for the analysis of neural oscillations via an efficient data fusion of four

tensors which, in turn, holds the potential to provide enhanced insights into brain

function and dynamics.

Part IV summarizes the findings of this thesis and identifies future research directions.

Finally, Part V contains the appendix with the lists of acronyms, figures, notations, and

some additional materials such as derivations, selected matrix products definitions,

and notable references.
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Part I.

Background





Multilinear Algebra
Fundamentals 2
For the most part, this thesis focuses on multi-dimensional signal processing, more

precisely, on tensor decompositions and their communication, sensing, and biomed-

ical applications. Therefore, before transitioning to the core content, let us begin

the exploration by briefly revising multilinear algebra’s fundamental concepts and

notations used in this thesis, building a foundation for the following chapters.

2.1 Basic concepts and notation

In the context of this thesis, we use the term (higher-order) "tensor" to refer to an array

of numerical values in three or more dimensions. The tensors can also be intuitively

imagined as multidimensional analogs of matrices (second-order tensors) or vectors

(first-order tensors) [DDV00a], (Figure 2.1). The order of a tensor corresponds to the

number of its dimensions or, equivalently, its modes or ways.

In the following, we provide some basic definitions and notations that generally ap-

ply to n-way tensors. Since in this thesis we primarily focus on 3-way arrays, some

concepts are demonstrated using third-order tensors as an example.

Notation. Throughout this thesis, we denote the matrices and vectors by upper-case

(A) and lower-case (a) bold-faced letters, respectively. Bold-faced calligraphic letters

denote tensors (A). The superscripts {·}T, {·}H, {·}−1, and {·}+ denote the transpose,

Hermitian transpose, matrix inverse, and Moore-Penrose pseudoinverse, respectively.

Moreover, the mth column and the l th row of A is denoted as A(:,m) and A(l ,:), re-

spectively. The field of real (R) or complex (C) numbers is represented by F when the

difference is unimportant. We use ⊗, ⋄, and ◦ to denote the Kronecker, Khatri-Rao

(column-wise Kronecker), and outer products, respectively. The operator ∥·∥F denotes

the Frobenius norm, and ∥·∥ denotes the Euclidean norm. The operator diag
(·) de-

notes the construction of a diagonal matrix with diagonal elements being the entries

of the input vector, whereas bdiag
(·) is the operation of constructing a block-diagonal
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Figure 2.1. Left to right: scalar, vector, matrix, and a third-order tensor.

matrix with the input matrices on the main diagonal. The matrix OM×N denotes the

M ×N matrix of zeros. An identity matrix of size d ×d is denoted as Id , and a column

vector of ones of size R is denoted as 1R . The mathematical notation used in this thesis

is also summarized in the Section "Symbols & Notation" on page 187.

Rank-1 tensor. As the rank-1 matrix can be represented as an outer product of two

vectors

A = a1 ◦a2, (2.1)

the rank-1 N -way tensor A ∈ FI1×...×IN can be viewed as an outer product N vec-

tors [KB09]

A= a1 ◦a2 ◦ . . .◦aN . (2.2)

Fibers. Analogously to matrix rows and columns, the n-mode vectors or fibers of

a higher-order tensor are obtained by fixing every index but one [KB09]. A 1-mode

fiber of a matrix is a matrix column, and a 2-mode fiber is its row. Taking third-order

tensors as an example, in addition to the 1- and 2-mode fibers, they have 3-mode

(tube) fibers [KB09]. The third-order tensors in terms of the different mode fibers are

illustrated in Figures 2.3 and 2.4. When extracted from the tensor, fibers are assumed

to be oriented as column vectors.

Slices. The slices of a tensor are the matrices defined by fixing all but two indices in

a tensor [KB09]. A third-order tensor A ∈ FI×J×K has horizontal, lateral, and frontal

slices (see Figure 2.2) commonly denoted as A(i ,:,:), A(:, j ,:), and A(:,:,k), respectively. In

the thesis, we also use Ak to denote the frontal slices of A ∈ FI×J×K .

Elements. The element (i1, . . . , iN ) of an N -way tensor A ∈ FI1×...×IN is denoted as

A(i1,...,iN ), or equivalently, as ai1,...,iN . For the third-order tensorA ∈ FI×J×K , its (i , j ,k)th

element is denoted as A(i , j ,k) = ai , j ,k
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Figure 2.2. Slices of a third-order tensor. Left to right: horizontal, lateral, and frontal slices.

(a) 1-mode (column) fibers and 1-mode unfolding.

(b) 2-mode (row) fibers and 2-mode unfolding.

(c) 3-mode (tube) fibers and 3-mode unfolding.

Figure 2.3. Fibers and unfoldings of a 3×3×3 tensor in the forward column ordering.

Unfolding. Furthermore, the process of matricization, denoting the transformation

of a tensor into a matrix, is alternatively referred to as unfolding or flattening [KB09;

DDV00a]. For the third-order tensors A ∈ FI×J×K , we can define the 1-mode, 2-mode,

and 3-mode unfoldings. These are represented as
[A]

(1) ∈ FI×JK ,
[A]

(2) ∈ FJ×I K ,

and
[A]

(3) ∈ FK×I J . The unfolding process involves arranging the respective n-mode

vectors into matrices. Different orders of the n-mode vectors result in varying tensor

unfoldings. Following the forward column ordering, the n-mode unfolding of an N -

way tensor A ∈ FI1×...×IN involves arranging the n-mode vectors in ascending order.

Consequently, we start with varying the first index, keep increasing up to the (n −1)th

index, then continue with the (n+1)th up to the N th index. An illustration of the three

distinct unfoldings of a 3-way tensor in the forward ordering is shown in Figure 2.3.
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An alternative ordering method is the reverse cyclical ordering [DDV00a], where the

unfolding
[A]

(n) of an N -way tensor follows the sequence that starts with the (n−1)th

index, keeps decreasing to the first index, continue with the N th index, and proceeds

backward until reaching the (n +1)th index (visualized in Figure 2.4).

The different ordering approaches lead to differing definitions of tensor operations.

Therefore, meticulous attention must be given to the chosen ordering, maintaining

consistency when deriving new concepts or outcomes. Throughout this thesis, we use

the reverse cyclical ordering unless explicitly stated otherwise.

n-ranks. The n-rank of a tensor A is equal to the rank of its n-mode unfolding

rankn (A) = rank
([A]

(n)

)
. (2.3)

In contrast to matrices, where the column and the row ranks are equal, the tensors’

n-ranks may differ.

Generalized unfolding. In addition to single n-mode unfoldings, we can define the

generalized matrix unfoldings using two subsets of any of the N dimensions [RSH12;

LA11]. For instance, the set of modes (1,2, . . . , N ) of an N -way tensor A can be di-

vided into two non-overlapping, P and N −P dimensional subsets, where the indices

contained in the first subset vary along the rows and the indices contained in second

subset vary along the columns [RSH12]. However, since this type of unfoldings is not

common, and in this thesis, we focus on 3-dimensional tensors, we refer the reader

to [RSH12] for further information on the generalized unfoldings. For the tensors of

order three, the generalized unfoldings correspond to n-mode unfoldings.

Super-diagonal tensor. An N -dimensional tensorD ∈RR×R×...×R is called super-diagonal

if its elements are non-zero only if all N indices are equal and zeros otherwise. We use

IN ,R to denote a super-diagonal tensor with ones along its super-diagonal. Figure 2.5

ilustrates the super-diagonal tensor I3,5.

Vectorization. Vectorization of a tensor is a linear transformation that converts a

tensor into a column vector. The vec(A) can be obtained by stacking the n-mode

fibers of A into one column

vec(A) = vec
([A]

(n)

)
(2.4)
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(a) 1-mode (column) fibers and 1-mode unfolding.

(b) 2-mode (row) fibers and 2-mode unfolding.

(c) 3-mode (tube) fibers and 3-mode unfolding.

Figure 2.4. Fibers and unfoldings of a 3×3×3 tensor in the reverse cyclical ordering.

Similarly to the unfoldings, the ordering of the fibers should be consistent through the

derivations [KB09].

Norm of a tensor. We denote the Frobenius norm of an N -way tensor A ∈ FI1×I2...×IN

by ∥A∥F defined as the square root of the sum of the squares of all its elements, the

2-norm of the vectorized tensor, or equally, as the Frobenius norm of an arbitrary

n-mode unfolding of the tensor [KB09; DDV00a]

∥A∥F =
√√√√ I1∑

i1=1

I2∑
i2=1

. . .
IN∑

iN=1

∣∣A(i1,i2,...,iN )
∣∣2 = ∥vec(A)∥ =

∥∥∥[A]
(n)

∥∥∥
F

. (2.5)

The n-mode product. The n-mode product between a tensor A ∈ FI1×I2...×IN and a

matrix U ∈ FJ×In is denoted by

A×n U ∈ FI1×...×In−1×J×In+1...×IN . (2.6)
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Figure 2.5. Super-diagonal tensor I3,5 with ones along its super-diagonal.

In terms of the element-wise notation, it can be expressed as

(A×n U )(i1,i2,...,in−1, j ,in+1,...,iN ) =
In∑

in=1
A(i1,i2,...,iN ) ·U( j ,in), (2.7)

and terms of an n-mode tensor unfoldings as

[A×n U
]

(n)=U · [A]
(n). (2.8)

Considering a third-order tensor A ∈ FI×J×K as an example, the three n-mode prod-

ucts between tensor A and the matrices U1 ∈ FM1×I , U2 ∈ FM2×J , and U3 ∈ FM3×K can

be expressed as follows

B=A×1 U1 ∈ FM1×J×K ,
↕
B(i , j ,k) =

I∑
ℓ=1

A(ℓ, j ,k) ·U1,(i ,ℓ),

↕[B]
(1) =U1 ·

[A]
(1),

(2.9)

Figure 2.6. 1-mode product.

B=A×2 U2 ∈ FI×M2×K ,
↕
B(i , j ,k) =

J∑
ℓ=1

A(i ,ℓ,k) ·U2,( j ,ℓ),

↕[B]
(2) =U2 ·

[A]
(2),

(2.10)

Figure 2.7. 2-mode product.
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B=A×3 U3 ∈ FI×J×M3 ,
↕
B(i , j ,k) =

K∑
ℓ=1

A(i , j ,ℓ) ·U3,(k,ℓ),

↕[B]
(3) =U3 ·

[A]
(3).

(2.11)

Figure 2.8. 3-mode product.

Properties of n-mode products and unfoldings. Given N -way tensors A ∈ FI1×...×IN and

B ∈ FJ1×...×JN , and the matrices Un ∈ FIn×Jn , n ∈ {1, . . . , N }, the n-mode unfolding of

A=B×1 U1 ×2 U2 ×3 · · ·×N UN , (2.12)

in reverse cyclical ordering, takes the form [DDV00a]

[A]
(n) =Un · [B]

(n)·
(
Un+1 ⊗·· ·⊗UN ⊗U1 ⊗·· ·⊗Un−1

)T, (2.13)

and in forward ordering, it follows

[A]
(n) =Un · [B]

(n)·
(
UN ⊗·· ·⊗Un+1 ⊗Un−1 ⊗·· ·⊗U1

)T. (2.14)

Moreover, for the series of multiplications

X ×n Un ×m Vm =X ×m Vm ×n Un , for m ̸= n, (2.15)

the order of multiplication along different modes is irrelevant. Furthermore, for the

products in the same mode

X ×n Un ×n Vn =X ×n (Vn ·Un), (2.16)

where X ∈ FI1×...×IN , Un ∈ FJn×In and Vn ∈ FNn×Jn are the tensor and matrices of com-

patible dimensions [KB09].

Taking the third-order tensors Y ∈ FI1×I2×I3 and X ∈ FJ1×J2×J3 , and matrices A ∈ FI1×J1 ,

B ∈ FI2×J2 , and C ∈ FI3×J3 as an example, if Y =X ×1 A ×2 B ×3 C , we can express the

tensor unfoldings in reverse cyclical ordering as follows [KB09]

[Y]
(1) = A · [X ]

(1) · (B ⊗C )T, (2.17)[Y]
(2) = B · [X ]

(2) · (C ⊗ A)T, (2.18)[Y]
(3) =C · [X ]

(3) · (A ⊗B )T, (2.19)
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where the symbol ⊗ denotes the Kronecker product. For the definitions of Kronecker

and other tensor-related products, see Appendix A.1.

2.2 Matrix and tensor decompositions

Compared to matrices, tensors allow capturing the original complex and high-di-

mensional structure of the data, such as those that are often encountered in real-life

applications. Therefore, higher-dimensional decompositions have shown to be a

powerful tool that can be effectively utilized in different areas of signal processing

and optimization. Tensor decompositions play a significant role in modern data

analysis and computation, providing mechanisms to uncover latent structures and

relationships within complex data sets. These decompositions involve expressing

a given tensor as a product of simpler and more interpretable matrices or tensors,

thereby bringing complex and big data into a more comprehensible form. Many

tensor decompositions, such as canonical polyadic decomposition (CPD) or higher-

order singular value decomposition (HOSVD), expand the matrix decompositions to

more dimensions. Therefore, in the following, we will review some matrix and tensor

decompositions that we directly or indirectly touch upon in this thesis.

2.2.1 Singular Value Decomposition

Given a matrix A ∈ FI×J , the singular value decomposition (SVD) decomposes it into a

product of three matrices

A =UΣV H, (2.20)

where U ∈ FI×I is a square unitary matrix, containing the left singular vectors of A as

its columns, Σ ∈ FI×J is the diagonal matrix of singular values, with r non-zero entries

σ1 ≥σ2 ≥ . . . ≥σr along its diagonal, where r is the rank of A, and V ∈ FJ×J is a square

unitary matrix, containing the right singular vectors of A as its columns.

Since only the first r diagonal elements of Σ are non-zero, the SVD in (2.20) can be

expressed in a more compact (“economy-size”) form

A =UsΣsV H
s , (2.21)

where the matrices Us and Vs contain the first r columns of U and V , respectively, and

Σs ∈Rr×r is the upper-left submatrix of Σ.

20 Chapter 2 Multilinear Algebra Fundamentals



. .

Bk CkHk AH

=

Figure 2.9. Generalized singular value decomposition (GSVD).

Moreover, the optimal rank-k approximation of A in the Frobenius norm is given

by truncating the SVD to k < rank
(

A
)

leading columns in U and V , and the k × k

upper-left submatrix of Σ [EY36]

arg min
Â

∥∥A − Â
∥∥

F =UkΣkV H
k . (2.22)

The SVD is a fundamental matrix factorization technique that plays a primary role in

many applications, such as solving linear systems of equations, computing pseudoin-

verses, and performing principal component analysis. The tensor decompositions

that we review in the following can be considered as multidimensional extensions of

the SVD.

2.2.2 Generalized Singular Value Decomposition

Generalized singular value decomposition (GSVD) is an extension of the SVD for two

matrices and is proposed in [PS81], [Van76], and [GVL96]. Let H1 ∈ FJ1×I and H2 ∈ FJ2×I

be two matrices having the same number of columns, and an arbitrary number of

rows J1 and J2. Then, the GSVD of H1 and H2 is defined as

H1 = B1 ·C1 · AH,

H2 = B2 ·C2 · AH,
(2.23)

where B1 ∈ FJ1×J1 and B2 ∈ FJ2×J2 have orthogonal columns, A ∈ FI×q is non-singular

and common for both matrices with q = rank
([

H H
1 , H H

2

])
. Moreover, C1 ∈RJ1×q and

C2 ∈RJ2×q are non-negative diagonal matrices. The ratios of the corresponding entries
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of C1 and C2 are called generalized singular values of H1 and H2. Let r = q − rank
(

H2
)

and s = rank
(

H1
)+ rank

(
H2

)−q , then, C1 and C2 have the following structures

C1 =


O(J1−r−s)×(q−r−s)

Σ̂

Ir

 , (2.24)

C2 =


I(q−r−s)

Λ̂

O(J2−q+r )×(r )

 , (2.25)

where Ir and I(q−r−s) are identity matrices, O(J1−r−s)×(q−r−s) and O(J2−q+r )×(r ) are

zero matrices possibly having no rows or no columns, Σ̂ = diag
(
σ1, . . . ,σs

)
, Λ̂ =

diag
(
λ1, . . . ,λs

)
are diagonal matrices, such that 0 <σn < 1,0 <λn < 1, and σ2

n +λ2
n = 1

for n ∈ {1, . . . , s}. The Matlab implementation of the GSVD additionally provides the

"economy-size" version of the GSVD, where C1 ∈Rmin(J1,I)×q and C2 ∈Rmin(J2,I)×q . An

example illustration of the "economy-size" GSVD for a case where q = I = 5 is given in

Figure 2.9.

The matrices Σ̂, Λ̂, and the identity matrices in C1 and C2 allow us to distinguish the

common subspaces (columns (q −r − s+1, . . . , q −r − s+ s) corresponding to Σ̂ and Λ̂)

and the private (columns corresponding to identity matrices in C1 and C2) subspaces

in C1 and C2. Depending on the values of q , r , and s, the private or common subspaces

can be empty. Moreover, note that the private subspaces correspond to generalized

singular values that are either 0 or infinity.

Choosing H2 = I I and A = B2, we can obtain the SVD of H1 = B1C1B2. Furthermore, in

the scenario where the matrices H1 and H2 have full column rank, the generalized sin-

gular values are equal to the singular values of H1 (H2)+ = B1C1 AH
(

AH
)+

(C2)+ B H
2 =

B1C1 (C2)+ B H
2 = B1diag

(
σ1/λ1, . . . ,σI /λI

)
B H

2 .

There are some small variations in the representation of the GSVD, for instance,

in [Van76] it is assumed that J2 ≥ I . However, most of the algorithms to calculate

the GSVD commonly consist of a sequential computation of the QR and the cosine-

sine decompositions. For more details on the GSVD and its applications, we refer the

reader to [Van76; PS81], and [Bai92].

Part II of this thesis is devoted to an extension of GSVD, the multilinear generalized

singular value decomposition (ML-GSVD), and its applications.
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Figure 2.10. Higher-Order Singular Value Decomposition of a 3-way tensor.

2.2.3 Tucker and Higher-Order Singular Value
Decompositions

The Tucker decomposition is a powerful extension of the classical matrix-based SVD

designed to handle multi-dimensional data arrays. Given a tensor X ∈ FI1×I2×...×IN ,

the Tucker decomposition factorizes it into a core tensor G ∈ FP1×...×PN and a set of

factor matrices Vn ∈ FIn×Pn for each mode n as follows [KB09]

X =G×1 V1 ×2 V2 ×3 . . .×N VN , (2.26)

where the Pns denote the number of components (columns). If Pn < In , the core

tensor can be viewed as a compressed version of X . Equation (2.26) refers to a Tucker

decomposition in its most general case, without any constraints on the core tensor

and the factors.

However, the most common representation of the Tucker decomposition, also known

as higher-order singular value decomposition (HOSVD) or multilinear singular value

decomposition [DDV00a; KB09], takes the form

X =S×1 U1 ×2 U2 ×3 . . .×N UN , (2.27)

with the orthogonal loading matrices Un ∈ FIn×In representing the basis of the n-

mode space of X , and a core tensor S ∈ FI1×...×IN with the property of “all-orthog-

onality” [DDV00a]. The decomposition is illustrated in Figure 2.10. The loading
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matrices of the HOSVD can be computed as the left singular vectors from the SVDs of

the n-mode unfoldings as

[X ]
(n) =UnΣnV H

n ∈ FIn×Īn , Īn = I1 · I2 . . . In−1 · In+1 . . . IN (2.28)

where the matrices Σn ∈RIn×Īn and Vn ∈ FĪn×Īn correspond to the singular values and

the right singular vectors of the matrix
[X ]

(n), respectively.

Taking into account the unitary property of the matrices Un ,n ∈ {1, . . . , N }, the core

tensor can be expressed as

S =X ×1 U H
1 ×2 U H

2 ×3 . . .×N U H
N . (2.29)

Furthermore, the n-mode unfolding of the core tensor S is related to the singular

values of the n-mode unfolding of X , such that [S](n) · [S]H
(n) =ΣnΣ

T
n ∈RIn×In , and the

Σn is defined in (2.28). Similar to the SVD, we can define the truncated HOSVD as

follows

X ≈S [s] ×1 U [s]
1 ×2 U [s]

2 ×3 . . .×N U [s]
N , (2.30)

where the factor matrices U [s]
n ∈ FIn×rn hold the first rn ≤ rank

([X ]
(n)

)
columns of the

matrices Un in equation (2.28).

In case of the three-dimensional tensor X ∈ FI×J×K , the HOSVD can be expressed

as [KB09]

X =S×1 A ×2 B ×3 C =
I∑

i=1

J∑
j=1

K∑
k=1

si , j ,k ai ◦b j ◦ck = �S; A,B ,C �, (2.31)

where A ∈ FI×I , B ∈ FJ×J , and C ∈ FK×K are the orthogonal factor matrices and S ∈
FP×Q×R is a core tensor with the property of “all-orthogonality” [DDV00a].

The most straightforward way of computing the HOSVD, as shown in (2.28), is via SVD

of the tensor unfoldings. Consequently, the core tensor can be computed according

to (2.29). The truncated version of the HOSVD can be calculated by taking into account

only the first rn ≤ rank
([X ]

(n)

)
columns of the loading matrices. There are also more

solutions in the literature, for example, Higher-order Orthogonal Iteration (HOOI) or

sequentially truncated HOSVD algorithms from [DDV00b; VVM12].
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Figure 2.11. Canonical Polyadic Decomposition of a 3-way tensor with rank R = 3.

2.2.4 Canonical Polyadic Decomposition

The canonical polyadic decomposition (CPD), also referred to as CANDECOMP (canon-

ical decomposition) and PARAFAC (parallel factors), is a fundamental tensor decompo-

sition technique that expresses a multi-dimensional tensor as the sum of the minimum

number of rank-one tensors [Kie00; KB09].

Given a tensor X ∈ FI1×I2×...×IN , CPD represents it as the sum of R rank-one tensors

(assuming the noiseless case):

X =
R∑

r=1
a(1)

r ◦a(2)
r ◦ . . .◦a(N )

r =IN ,R ×1 A1 ×2 A2 ×3 . . .×N AN , (2.32)

where the vectors a(n)
r ∈ FIn represent the r th columns of the CPD factor matrices

An ∈ FIn×R . In contrast to the HOSVD, the factor matrices of the canonical polyadic

(CP) decomposition do not have to be unitary, which makes it attractive for many

applications.

Considering the third-order tensor X ∈ FI×J×K , the CP decomposition can be ex-

pressed as

X =
R∑

r=1
a(1)

r ◦a(2)
r ◦a(3)

r =I3,R ×1 A1 ×2 A2 ×3 A3, (2.33)

where the vectors a(1)
r , a(2)

r , and a(3)
r represent the r th columns of the matrices A1 ∈

FI×R , A2 ∈ FJ×R , and A3 ∈ FK×R , respectively. The value R denoted the tensor rank

(also called CPD rank), i.e., the minimum number of rank-one components that sum

up to X . The tensor rank does not have to be equal to the n-ranks. Moreover, there is

no straightforward way to determine the tensor rank of a given tensor. More details on

the tensor rank can be found in [KB09].
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Using the factor matrices in (2.33), the n-mode unfolding of X can be expressed as

follows (in reverse cyclical order)

[X ]
(1) = A1(A2 ⋄ A3)T,[X ]
(2) = A2(A3 ⋄ A1)T,[X ]
(3) = A3(A1 ⋄ A2)T.

(2.34)

Another common notation of the CPD is

X =
R∑

r=1
λr a(1)

r ◦a(2)
r ◦a(3)

r , (2.35)

in which the factor matrices are normalized to length one, and the scaling factors are

absorbed in a vector λ= [λ1, . . . ,λR ]. Additionally, the CPD of X can also be expressed

in terms of its frontal slices as

Xk = A1D (k) AT
2 , (2.36)

where D (k) ∈ FR×R = diag
(

(A3)(k,:)
)
, k ∈ {1, . . . ,K }.

As the most straightforward way to compute the CP decomposition, we can consider

the alternating least squares (ALS) scheme from [CC70; Har70; KB09]. It is an iter-

ative algorithm that computes one factor matrix at a time, assuming that the other

factor matrices are already known. The factor matrices are approximated in the least

squares sense from the tensor unfoldings in (2.34). It is important to note that the ALS

algorithm does not guarantee convergence, and its required number of iterations can

be quite high. Some improved versions of the ALS algorithm include the incorpora-

tion of dimensionality reduction techniques, better initialization, and imposing the

constraints [TB06].

Other more advanced methods for computing the (approximate) CP decomposition

from noise-corrupted data include, for example, the line search [RCH08], pencil-

based [DD14], simultaneous diagonalization [RH13], gradient-based [SDF+17], and

other optimization algorithms [TB06]. Note that most of the CP decomposition algo-

rithms assume prior knowledge of the tensor rank. However, estimating the tensor

rank from noisy observations is a challenging problem. Some researchers propose

estimating the tensor rank by fitting CP decompositions for varying ranks and selecting

the rank corresponding to the smallest residual. Nonetheless, this approach does not

consistently guarantee reliable outcomes. Addressing this issue, the CORCONDIA

(core consistency diagnostic) algorithm, proposed in [BK03], employs a core consis-

tency check to estimate the tensor rank. There are some subsequent algorithms that try
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to mitigate the complexity of the algorithm in [BK03] and also algorithms that jointly

estimate both the tensor rank and the factors of the CP decomposition [HAK+17a].

Uniqueness

A notable characteristic of higher-order tensors is their tendency for unique decompo-

sitions, unlike matrix decompositions that lack this property, for example, due to the

matrix product ambiguity.

Matrix product ambiguity. Consider the matrix factorization X = AB T. Replacing the

matrix A by AH and B by H−1B T, where H is an arbitrary non-singular matrix, still

results in a valid decomposition of X :

X = AB T = (
AH

)(
H−1B T)= A′B ′T. (2.37)

The ways to overcome this kind of ambiguity include, for instance, introducing addi-

tional constraints such as orthogonality, triangular form, sparsity, etc.

In general, the CP decomposition of a tensor X is called essentially unique if there

is only one possible combination of rank-one tensors that sums to X , except for the

elementary indeterminacies of scaling and permutation [KB09; DeL06].

Permutation ambiguity. The permutation indeterminacy means that the rank-one

component tensors (columns in the factor matrices) can be arbitrarily permuted by a

permutation matrix1 P ∈RR×R

X =I3,R ×1 A1 ×2 A2 ×3 A3

=I3,R ×1 A1P ×2 A2P ×3 A3P

=I3,R ×1 A′
1 ×2 A′

2 ×3 A′
3,

(2.38)

where A′
1, A′

2, and A′
3 are equally valid factors of the CP decomposition.

1 A permutation matrix P is a square matrix such that each row and column contains one element equal
to 1, and the remaining elements are equal to 0 (identity matrix with re-ordered rows) [GVL96].
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Figure 2.12. PARAFAC2 decomposition.

Scaling ambiguity. The scaling ambiguity means that the individual columns of the

rank-1 terms can be arbitrarily scaled, i.e.,

X =
R∑

r=1

(
αr a(1)

r

)◦ (
βr a(2)

r

)◦ (
γr a(3)

r

)
, (2.39)

as long as their product stays the same: αrβrγr = 1, r ∈ {1, . . . ,R} [KB09].

Kruskal Rank. The k-rank of a matrix A, denoted kA , is defined as the maximum value

k such that any k columns of A are linearly independent [Kru77].

The most well-known uniqueness condition for the CP decomposition is Kruskal’s

condition, which states that a sufficient condition for the uniqueness of the third-order

CPD is

kA1 +kA2 +kA3 ≥ 2R +2, (2.40)

where kA1 , kA2 , and kA3 denote the k-rank (Kruskal Rank) of the matrices A1, A2, and

A3, respectively.

For the N -way tensors, the sufficient condition for uniqueness is [SB00]

N∑
n=1

kA(n) ≥ 2R + (N −1). (2.41)

There are more works on the CPD uniqueness conditions in the literature, such

as [DeL06; LS01].

Generally, the CP decomposition is one of the most commonly used decompositions.

It found applications in a broad range of fields, including signal processing, chemo-

metrics, data analysis, neuroscience, communications, and many more [CMD+15].
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2.2.5 PARAFAC2

The PARAFAC2 (parallel factors 2) decomposition is an extension of a three-way CP

decomposition that factorizes a collection of matrices Xk ∈ FIk×J , k ∈ {1, . . . ,K } with

the same number of columns but (possibly) a different number of rows (Ik is allowed

to vary with k). Therefore, the PARAFAC2 decomposition can also be seen as a coupled

decomposition applied to k matrices or as a tensor decomposition of a tensor X with

matrices Xk being its frontal slices. In a slice-wise fashion, the PARAFAC2 model is

expressed as follows [KB09]

Xk ≈Uk SkV T, (2.42)

where Uk is an Ik ×R matrix, Sk is an R ×R diagonal matrix, k = {1, . . . ,K }, and V

is a J ×R factor matrix that does not vary with k. Moreover, R corresponds to the

number of components (rank). In general, this decomposition is not unique. The

essential uniqueness of the PARAFAC2 decomposition is achieved by imposing the

Harshman constraints [Har72], such that U H
k Uk = H HH , Uk =Qk H , and Qk ∈ RIk×R

has orthonormal rows.

One of the ways to compute the PARAFAC2 decomposition is proposed in [KBB99] and

is called the direct fitting approach, in which the factor matrices are computed in a

two-step iterative way, where first the matrix Qk is calculated utilizing the SVD, and

the remaining unknowns H , Sk , and V are updated via a CPD-ALS procedure [KBB99;

KB09].

The applications of the PARAFAC2 include biomedical signal analysis [CHGH18;

CNH+18], chromatograhic data analysis [BAK99], wireless communications [KCH19],

and others [KB09].

2.2.6 Block-Term Decompositions

The block-term decompositions (BTD) allow the decomposition of a tensor into blocks

of smaller sizes [DeL08a] and are considered as extensions of the HOSVD and the

CP decompositions. There are several types of BTDs in the literature. In this section,

we briefly review three of them, namely, the decomposition in rank-(Lr ,Lr ,1) terms,

the decomposition in rank-(Lr , Mr , Nr ) terms, and the type-2 decomposition in rank-

(Lr , Mr , ·) terms.
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Rank-(Lr ,Lr ,1) decomposition

The rank-(Lr ,Lr ,1) BTD of a three-dimensional tensor T ∈ FI×J×K can be expressed

as (in the noiseless case) [VDS+16]

T =
R∑

r=1

(
Ar ·B T

r

)◦cr , (2.43)

where R and Lr are the number of block-terms and the multilinear ranks, respectively.

Moreover, Ar ∈ FI×Lr and Br ∈ FJ×Lr are the r -th submatrices of A and B so that

A = [A1, A2, ..., AR ] ∈ FI×ΣLr and B = [B1,B2, ...,BR ] ∈ FJ×ΣLr . The vectors cr ∈ FK×1,

r = {1, ...,R} are stacked in the matrix C such that C = [c1,c2, ...,cR ] ∈ FK×R . For an

illustration of the rank-(Lr ,Lr ,1) decompostion, we refer the reader to Figure 7.2 on

page 100.

The rank-(Lr ,Lr ,1) BTD can be seen as a special case of the CP decomposition with

collinearity in one of the factors (in the 3-mode, in case of the model in (2.43)) (we will

give more details and exploit this connection in Chapter 7). Similar to the CPD, the

rank-(Lr ,Lr ,1) decomposition can be written in terms of unfoldings and Khatri-Rao

products as follows [DeL08a]:

[T ]
(1) = A · (B ⋄s C )T,[T ]
(2) = B · (C ⋄s A)T,[T ]
(3) =C · [(A1 ⋄B1) ·1L1 , · · · , (AR ⋄BR ) ·1LR ]T,

(2.44)

where ⋄s denotes the partition-wise Khatri-Rao product (see Appendix A.1 for the

definition). Due to the matrix product ambiguities in the product
(

Ar ·B T
r

)
(see the

definitions of the ambiguities on page 27), the rank-(Lr ,Lr ,1) decomposition can also

be expressed as follows

T =
R∑

r=1
Er ◦cr , (2.45)

where Ar and Br are merged into Er = Ar ·B T
r . Since the ambiguity in

(
Ar ·B T

r

)
is

difficult to resolve, the representation in (2.45) is often used when considering the

applications of the rank-(Lr ,Lr ,1) BTD. For the conditions under which the rank-

(Lr ,Lr ,1) decomposition is unique, we refer the reader to Appendix A.4.

The rank-(Lr ,Lr ,1) decomposition is one of the main focuses of this thesis. We propose

an algorithm to compute the decomposition, show some of the applications of the

rank-(Lr ,Lr ,1) BTD, and discuss the state-of-the-art schemes and other details in

Part III of the thesis.
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Figure 2.13. Decomposition in rank-(Lr , Mr , Nr ) terms. In this example, L1 = . . . = LR , M1 =
. . . = MR , and N1 = . . . = NR .

Decomposition in rank-(Lr , Mr , Nr ) terms

The decomposition of a (noisless) tensor T ∈ FI×J×K into a sum of rank-(Lr , Mr , Nr )

terms, r ∈ {1, . . . ,R}, is expressed as

T =
R∑

r=1
Dr ×1 Ar ×2 Br ×3 Cr (2.46)

where the tensors Dr ∈ FLr ×Mr ×Nr have full multidimensional rank (Lr , Mr , Nr ) and

Ar ∈ FI×Lr , (I ≥ Lr ), Br ∈ FJ×Mr , (J ≥ Mr ), and Cr ∈ FK×Nr (K ≥ Nr ) are of full column

rank, r ∈ {1, . . . ,R}. The rank-(Lr , Mr , Nr ) decomposition can be seen as a generaliza-

tion of the CP and Tucker decompositions.

Using the partitioned matrices A = [A1, . . . , AR ] ,B = [B1, . . . ,BR ], and C = [C1, . . . ,CR ],

the tensor T can be expressed as

[T ]
(1) = (B ⋄s C ) ·bdiag

([D1
]

(1), . . . ,
[DR

]
(1)

)
· AT,[T ]

(2) = (C ⋄s A) ·bdiag
([D1

]
(2), . . . ,

[DR
]

(2)

)
·B T,[T ]

(3) = (A ⋄s B ) ·bdiag
([D1

]
(3), . . . ,

[DR
]

(3)

)
·C T,

(2.47)

where ⋄s denotes the partition-wise Khatri-Rao product (see Appendix A.1 for the

definition). The ALS algorithm to compute the rank-(Lr , Mr , Nr ) BTD using the tensor

unfoldings in (2.47) is presented in [DN08]. For more details on the rank-(Lr , Mr , Nr )

BTD, its computation, and uniqueness, we refer the reader to [DeL08b; DeL08a; DN08].

The decomposition is visualized in Figure 2.13.

Decomposition in rank-(Lr , Mr , ·) terms

A type-2 decomposition of a tensor T ∈ FI×J×K into a sum of rank-(Lr , Mr , ·) terms,

r ∈ {1, . . . ,R}, is expressed as [DeL08a]

T =
R∑

r=1
Cr ×1 Ar ×2 Br , (2.48)
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Figure 2.14. Decomposition in rank-(Lr , Mr , ·) terms. In this example,L1 = . . . = LR and M1 =
. . . = MR .

where Cr ∈ FLr ×Mr ×K has 1-rank and 2-rank equal to Lr and Mr , respectively. The

matrices, Ar ∈ FI×Lr , (I ≥ Lr ) and Br ∈ FJ×Mr , (J ≥ Mr ) are of full column rank. The

label "type-2" refers to the Tucker2 decomposition (the Tucker2 decomposition of a

3-way tensor assumes that one of the factor matrices is an identity matrix) [Tuc66;

DeL08a; KL80]. The decomposition is illustrated in Figure 2.14.

Let A = [A1, . . . , AR ] and B = [B1, . . . ,BR ]. Then, the rank-(Lr , Mr , ·) decomposition can

be computed based on ALS using the unfoldings of T
[T ]

(1) =
[ [C1 ×2 B1

]T
(1), . . . ,

[CR ×2 BR
]T

(1)

]
· AT,[T ]

(2) =
[ [C1 ×1 A1

]T
(2), . . . ,

[CR ×1 AR
]T

(2)

]
·B T,

[T ]
(3) = (A ⋄s B ) ·


[C1

]T
(3)

...[CR
]T

(3)

 ,

(2.49)

where ⋄s denotes the partition-wise Khatri-Rao product (see Appendix A.1 for the

definition).

More details on the decomposition, its computation, and its uniqueness can be found

in [DeL08b; DeL08a; DN08].

2.2.7 Coupled decompositions

Coupled tensor decompositions represent the tensor factorization methods that allow

extracting shared patterns and interdependencies from multiple tensors. Processing

the data from multiple sources jointly often provides deeper insights and is more

accurate. Moreover, data fusion can provide factor uniqueness in cases where the

single tensor or matrix factorization is not unique. In general, the scenarios where

several data sets exhibit shared underlying structures are not unusual, and coupled
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tensor decompositions emerge as powerful tools to capture the shared and individual

information [SVBD15].

Therefore, coupled decompositions and data fusion are increasingly attractive topics

in signal processing and data analysis [SD15].

In the scope of this thesis, in Part III in particular, we will exploit the coupled rank-

(Lr ,Lr ,1) decomposition and its application to radar systems and joint electroen-

cephalography (EEG) and magnetoencephalography (MEG) signal processing.

In general, all tensor decompositions we have discussed in previous sections have

their coupled extensions, for example, the coupled CP decomposition of L third-order

tensors X ℓ ∈ FI1×I (ℓ)
2 ×I (ℓ)

3 , ℓ ∈ {1, . . . ,L} can be expressed as (in the noiseless case)

X =I3,R ×1 A1 ×2 A(ℓ)
2 ×3 A(ℓ)

3 , (2.50)

where A1 is a common factor matrix, and A(ℓ)
2 and A(ℓ)

3 are the individual factor matri-

ces.

For more details on data fusion and different coupled decompositions and applica-

tions, we refer the reader to [SVBD15; SD15; SDD15; MGK+21; CNH+18].

Additionally, we collected some interesting overview papers and textbooks on tensor

decompositions in Appendix A.8.

2.3 Conclusions

In this chapter, we introduced the notation and reviewed the fundamental concepts of

tensor algebra used in the following chapters. The presented material included essen-

tial definitions and concepts of multilinear algebra, such as n-mode products, ranks,

unfoldings, and vectorization. Moreover, in this chapter, we gave a brief overview of

the basic tensor and matrix decompositions that will be exploited in the subsequent

chapters. We have covered the generalized singular value decomposition of two matri-

ces, which we extend to the tensor case in Chapter 3. Additionally, we reviewed the

PARAFAC2 decomposition, which, as the readers will see, is also utilized in Chapter 3.

Moreover, we reviewed the HOSVD and the CP decomposition, the most well-known

tensor decompositions, and discussed some of the characteristics of the tensor factor-

izations, such as uniqueness, ambiguities, and matrix representations. Furthermore,

we reviewed some of their computational algorithms and applications.
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In addition, this chapter provided a brief introduction to the block-term decomposi-

tions and their different representations. The BTDs in this chapter can be considered

as multirank extensions of the Tucker and CP decompositions. In Chapter 7 of this

thesis, we will focus on the rank-(Lr ,Lr ,1) block-term decomposition, introduce an al-

gorithm to compute it, and present its applications to wireless systems and biomedical

signal processing in the subsequent chapters.
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Part II.

Multilinear Generalized Singular Value
Decomposition and Applications





Multilinear Generalized
Singular Value Decomposition 3
This chapter introduces the multilinear generalized singular value decomposition

(ML-GSVD) of two or more matrices with one common dimension. The ML-GSVD

extends the generalized singular value decomposition (GSVD) of two matrices to

higher orders. The proposed decomposition allows us to jointly factorize a set of

matrices with one common dimension. In comparison with other approaches that

extend the GSVD, the ML-GSVD preserves the essential properties of the original

(matrix-based) GSVD, such as the orthogonality of the second-mode factor matrices

as well as the subspace structure of the third-mode factor matrices. We introduce an

alternating least squares (ALS)-based algorithm to compute the ML-GSVD, which has

been inspired by PARAFAC2 (parallel factors 2) decomposition algorithms [KAH22].

Furthermore, we briefly present some of the applications of the proposed ML-GSVD

that we will discuss in more detail in the subsequent chapters of the thesis.

3.1 Introduction

During the last decades, interest in tensor-based signal processing methods has expo-

nentially grown due to their advantages over the conventional matrix-based methods.

The higher-order extensions of the matrix decompositions enable their generaliza-

tion to multiway data processing. Tensor techniques allow us to exploit the original

structure of the multidimensional data in many applications.

A lot of existing tensor decompositions generalize the matrix decompositions. Despite

the fact that there already exist multidimensional extensions of the generalized sin-

gular value decomposition (GSVD) in the literature, none of them fully inherits the

features of the original decomposition. On the contrary, the multilinear generalized

singular value decomposition (ML-GSVD) that we have first presented in [KAH20]

simplifies to the GSVD when performed on two matrices and extends its properties to

higher orders. The GSVD is useful in various communication and biomedical appli-

cations, such as coordinated beamforming [FS12; MCF16; HRML21], multiple-input
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multiple-output (MIMO) relaying [ST10; ST13], physical layer security [KWWE07;

WWW+17], and genomic signal processing [AA16; ABB03; LASA12]. In this chapter of

the thesis, we present an extension of the GSVD [PS81], [Van76] to factorize a three-

way tensor. The proposed ML-GSVD can be used for the joint analysis of a collection

of an arbitrary number (more than two) matrices with a (possibly) varying number

of rows and the same number of columns. Thus, the ML-GSVD has the potential

to be employed in the current GSVD applications without being limited to two ma-

trices. The initial investigations on the ML-GSVD and its calculation we have first

presented in [KAH20]. Then in [KAH22], we introduced a more general definition of

the ML-GSVD, which is applicable to a set of both full-rank and rank-deficient matri-

ces. Moreover, we specified the corresponding optimization problem. Additionally,

we provided an enhanced algorithm to calculate the ML-GSVD and its application to

multi-user MIMO orthogonal frequency division multiplexing (OFDM) systems with

multicast and unicast transmissions.

Before presenting the main differences and advantages of the ML-GSVD over other

GSVD extensions, let us first give a brief overview of the existing generalizations of the

GSVD in the literature. Two different multidimensional decompositions that extend

the GSVD to the tensor case have been introduced in [PSVLA11] and [SSAA15]. The

authors in [PSVLA11] define the higher order generalized singular value decompo-

sition (HO GSVD) as an exact decomposition of two or more full-rank real-valued

matrices that preserves some properties of the matrix-based GSVD. However, it does

not preserve the orthogonality of the factor matrices as in the GSVD. The HO GSVD

in [PSVLA11] is used for a comparative analysis of a global messenger ribonucleic acid

(mRNA) expression datasets from different organisms. The "common HO GSVD sub-

space" represents the similarity in three different organisms. However, the definition

of the "common HO GSVD subspace" does not exactly match the representation of

the common and private subspaces in the original GSVD. In contrast to the aforemen-

tioned paper, the authors in [KGD21] do not restrict their decomposition to full-rank

matrices and present additional steps that enable the application of the HO GSVD to

rank-deficient third-mode slices. In [SSAA15], the authors have presented a Tensor

GSVD to jointly decompose two tensors with the matched column but independent

row dimensions. The decomposition is then used for the deoxyribonucleic acid (DNA)

analysis. Both [PSVLA11] and [SSAA15] consider real-valued matrices in a biomedical

data processing context.

In contrast to the HO GSVD and the Tensor GSVD, the ML-GSVD proposed in our work,

inherits most of the properties of the original GSVD and is applicable to both real- and

complex-valued data, which paves the way for its use in many signal processing appli-
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cations, such as in wireless communications, where the data tensors usually represent

the communication channel and/or the received signal in their equivalent complex-

valued baseband form. In this thesis, we will focus on the following applications of the

ML-GSVD:

• Downlink MIMO-OFDM systems with unicast and multicast transmissions

(Chapter 4);

• Non-orthogonal multiple access systems(Chapter 5);

• Rate splitting multiple access systems (Chapter 6).

Additionally, it is important to acknowledge that while we have extensively explored

and discussed certain applications of ML-GSVD, there exist additional intriguing

applications that merit attention. For example, as an interesting perspective, we see

a physical layer security application [KWWE07], where the ML-GSVD can be used to

extend the existing results to more than two users. Furthermore, the similarity to the

HO GSVD [PSVLA11] inspires the exploration of the ML-GSVD in the biomedical signal

processing context. Yet, before coming to the applications, let us give an overview of

the ML-GSVD.

Main contributions. In this chapter we:

• Define a new extension of the GSVD [PS81], [Van76] to factorize a three-way

tensor. The proposed multilinear generalized singular value decomposition

(ML-GSVD) can be used for the joint analysis of a collection of two or more

matrices with a varying number of rows and the same number of columns. In

contrast to other GSVD extensions, the ML-GSVD inherits the properties of

the original matrix-based GSVD. Moreover, we do not place any restrictions on

the matrix ranks and consider three different cases depending on the dimen-

sions of the decomposed matrices. We also show that in one of these cases the

decomposition is exact.

• Introduce a general ALS-based algorithm to compute the proposed ML-GSVD

decomposition. In particular, we show that any algorithm to calculate the

PARAFAC2 (parallel factors 2) decomposition can be modified to compute the

proposed ML-GSVD.

Moreover, since the ML-GSVD of two matrices with one common dimension is exact

and equal to the GSVD, the proposed algorithm leads to an alternative way to calculate

the GSVD of two matrices.
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The rest of this chapter is organized as follows. We introduce the ML-GSVD in Sec-

tion 3.2. Section 3.3 presents an algorithm to compute the ML-GSVD. The numerical

results are shown in Section 3.4, and the conclusions are drawn in Section 3.5.

3.2 Multilinear Generalized Singular Value
Decomposition (ML-GSVD)

We define the ML-GSVD for a set of K ≥ 2 complex valued matrices1 Hk ∈CJk×I with

the same column dimension and possibly different row dimensions as follows

H1 =B1 ·C1 · AH ∈CJ1×I ,

...

HK =BK ·CK · AH ∈CJK ×I .

(3.1)

The K matrices can be viewed as 3-mode slices of the tensor H ∈ CJ×I×K , where

J = max
(

J1, . . . , JK
)

(zeros are added for those elements that are not defined in (3.1)).

The tensor representation enables the use of tensor-based algorithms to compute the

matrices A,Ck , and Bk . Subsequently, the ML-GSVD of the tensor H (Figure 3.1) can

be defined in a slice-wise fashion as

Hk = Bk ·Ck · AH ∈CJk×I , (3.2)

where Hk , k ∈ {1, . . . ,K }, is the kth slice ofH. The matrix A ∈CI×Q , Q = min
(∑K

k=1 Jk , I
)
,

is left invertible and common for all the K 3-mode slices of the tensor H. The non-zero

subcolumns B̂k ∈CJk×rk of the matrix Bk ∈CJk×Q , corresponding to the k-th slice of

H, have orthogonal columns such that B̂ H
k · B̂k = Irk , rk = rank

(
Hk

)
. The matrices

Ck ∈RQ×Q are diagonal with non-negative entries satisfying
∑K

k=1 C 2
k = IQ . In contrast

to the GSVD in (2.23), in the ML-GSVD, the matrices Ck are square such that the zero

matrices in (2.24) and (2.25) are filled with zeros when they have no rows and are

empty if they have no columns. We additionally define a matrix C ∈ RK×Q in which

the diagonal elements of Ck are stacked as rows, i.e., Ck = diag
(
C(k,:)

)
. Then, C has

1 In general, the proposed decomposition is also applicable to real-valued matrices. Since we further
focus on an application in communications, we consider the decomposition of complex-valued
matrices in this thesis.
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Figure 3.1. Illustration of Multilinear Generalized Singular Value Decomposition.

unit column norms:
∑K

k=1 c2
k,i = 1 for all i = 1. . .Q. Consequently, the optimization

problem to be solved can be stated as follows

arg min
A,Bk ,Ck

K∑
k=1

∥∥Hk −BkCk AH
∥∥2

F

subject to B̂ H
k · B̂k = Irk ,

K∑
k=1

C 2
k = IQ .

(3.3)

Note that due to the imposed constraints, the model in (3.2) is an approximation of

Hk in the least squares sense. However, in the following, we will show that in some

cases the decomposition is exact.

As for the computation of the GSVD in [GVL13], we assume that the null spaces of

the Hk s do not overlap, i.e., null(H1)∩null(H2)∩ ·· · ∩null(HK ) = ;. The elements

of C ∈ RK×Q are non-negative, and the columns of C have unit norm. The values of

the first row of C are sorted in ascending order, such that the first row of C has the

following structure

C(1,:) =
[

0T
p2+...+pK

σT
1 1T

p1

]
∈R1×Q , (3.4)

where C(1,:) = diag
(
C1

)
, 1p1 is a vector of ones, and 0p2+...+pK is a vector of zeros, which

might have no entries. The values of σk ∈Rck are in the range (0,1), ck and pk are the

dimensions of the common and private subspaces, respectively. The remaining rows

of C are sorted according to the first row. Whenever there are ambiguities (elements

that correspond to zeros in the first row), we sort the elements of the second row in

ascending order. Then, we turn to the third row, the elements of which are sorted

according to the first and second rows. Whenever there are ambiguities (zeros in the

previous row), we sort the elements of the third row in ascending order. After that, we

switch to the fourth row, and so on. Then, the columns of A and Bk are rearranged

accordingly. Generally, a permutation of the elements in C does not change the

meaning of the decomposition and is performed for notational simplicity. The vectors

3.2 Multilinear Generalized Singular Value Decomposition (ML-GSVD) 41



of ones represent the private subspace of the kth matrix, whereas σk corresponds

to the common subspace of all matrices or a group of matrices. Since
∑K

k=1 c2
k,i = 1,

the private subspace of the matrix Hk always coincides with the zero vectors of the

remaining matrices.

The numerical example in (3.5) and (3.6) below (I = 6, J1 = J2 = J3 = J4 = 2) illustrates

the matrix C before and after the reordering of the columns. First, the columns are

permuted in ascending order according to the first row. Then, the columns one to

four (that correspond to zero elements in the first row) are reordered according to the

ascending order of the second row. Next, the rearrangement is applied to columns

one, two, and three that coincide with zeros in the second row.

Cbefore reordering =
1.0000 0.7050 0.0000 0.0000 0.0000 0.0000

0.0000 0.7092 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 1.0000 0.9193 0.0000 0.0000

0.0000 0.0000 0.0000 0.3935 0.0000 1.0000

 ,
(3.5)

Cafter reordering =
0.0000 0.0000 0.0000 0.0000 0.7050 1.0000

0.0000 0.0000 0.0000 1.0000 0.7092 0.0000

0.0000 0.9193 1.0000 0.0000 0.0000 0.0000

1.0000 0.3935 0.0000 0.0000 0.0000 0.0000

 .
(3.6)

Depending on the dimensions and the individual ranks of the Hk s, where rk = rank
(

Hk
)
,

we distinguish three different cases:

Case 1

rk = I for ∀k. In this case, the matrix C has the following structure:

C(k,:) =
[
σT

k

]
∈R1×I , (3.7)
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where σT
k = [σk,1, . . . ,σk,I ], such that 1 >σk,i > 0 for i ∈ {1, . . . , I }. The decomposition

has the following form

Hk = Bk ·


σk,1

. . .

σk,I


︸ ︷︷ ︸

diag(C(k,:))

·AH ∈CJk×I , (3.8)

where diag
(
C(k,:)

)
is a full-rank diagonal matrix. The columns of A ∈CI×I are shared

for all factorizations, and the decomposition provides only the common subspace of

size I for all the matrix slices Hk , k = 1, . . . ,K . If the matrices Hk have full rank, then

the decomposition has the form as in (3.8) if I ≤ JK , otherwise Case 2 applies.

Case 2

In this case, rk < I for some k, with
∑K

k=1 rk > I . This configuration provides both

private and common subspaces. The dimensions of these subspaces depend on

the realization of the tensor and the sizes of the matrices Hk . The zeros and ones

correspond to the private subspaces, while the other non-zero terms correspond to

the common subspaces. Such a configuration implies a common subspace for all

the K slices H1, . . . , HK , or for some groups of matrices. In this case, in general, the

decomposition has the following structure

Hk =
[

O Jk×I−rk B̂k

]
·


OI−rk

Σck

Ipk

 ·


AH

ok

AH
ck

AH
pk

 , (3.9)

where Σck = diag
(
σk

)
and B̂k ∈CJk×rk . The matrix A ∈CI×I is partitioned into subma-

trices Aok , Ack , and Apk of size I×(I−rk ), I×ck , and I×pk , respectively. The values of ck

and pk are defined by the realization and the dimensions of the Hk s, and ck +pk = rk .

The submatrix Ack is associated with the common subspaces of the kth and some (or

all) other matrices, and the submatrix Apk corresponds to the private subspace of Hk .

The matrix Aok corresponds to the private and common subspaces of other matrices

than the matrix k. While the matrix Ack is shared between the corresponding matrices,

the matrices Apk are specific for each factorization and insure a private subspace. Note

that depending on the dimensions of the different 3-mode slices Hk , k ∈ {1, . . . ,K }, the

number of common and private subspaces is not the same for all the K slices. This

means that for a set of values of k, the decomposition provides both common and
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private subspaces, while for the remaining set, only common subspaces exist. For full

rank matrices satisfying I ≥ Jk for some or all slices k, the decomposition leads to (3.9).

For K = 2, the ML-GSVD of two matrices corresponds to the matrix-based GSVD. The

dimensionality of the common subspace for K = 2 is r1 + r2 − I and the dimensionality

of the two private subspaces are I − r2 for H1 and I − r1 for H2, respectively.

Case 3

∑K
k=1 rk ≤ I . In this case, the rows of C contain only ones and zeros, and their ordering

is defined as follows

C =


0T

pK
· · · 0T

p2
1T

p1

0T
pK

· · · 1T
p2

0T
p1

...

1T
pK

· · · 0T
p2

0T
p1

 ∈RK×Q , (3.10)

where Q = min
(∑K

k=1 Jk , I
)
. The dimensions of the private subspaces (1pk ) are equal to

rk = pk = rank
(

Hk
)
. As it can be seen from (3.10), this case provides only private sub-

spaces for each matrix Hk , and therefore, the common factor matrix can be rewritten

as

A =
[

AK , . . . , A1

]
. (3.11)

Then, we obtain:

H1 =
[

O J1×Q−p1 B̂1

]
·
[

OQ−p1

Ip1

]
︸ ︷︷ ︸

Ck

·


AH

K
...

AH
1


= B̂1 AH

1

H2 = B̂2 AH
2

...

HK = B̂K AH
K

(3.12)

As it can be observed from (3.12), the matrix Ck can be viewed as a selection matrix,

which separates A ∈CI×Q into the subblocks that are not shared between the different

Hk s. Therefore, the matrices in this case do not have any common factors. All Hk s are
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decomposed separately, and the submatrices in A correspond to a private subspace of

each matrix. Equation (3.12) shows that by multiplying B̂1 from the right-hand side

by an arbitrary non-singular matrix T and premultiplying AH
1 by T −1 gives the same

function value. The decomposition is essentially unique when it is subject only to this

indeterminacy. For the full-rank Hk s, i.e., rank
(

Hk
)= Jk , the decomposition has the

form as in (3.10) if
∑K

k=1 Jk ≤ I .

3.3 Computation of the ML-GSVD inspired by
PARAFAC2 algorithms

We can see from equation (3.2), that the ML-GSVD has a similar representation (see Fig-

ure 2.12 on page 28) as the PARAFAC2 decomposition [Har72]. It is known from [Har72]

that the uniqueness of the PARAFAC2 decomposition (up to column permutation and

scaling) is ensured by the Harshman constraint B H
k Bk = F HF , such that B H

k = F TVk ,

VkV H
k = IR . In the ML-GSVD, since the non-zero columns of matrices Bk are orthogo-

nal, we set F to the identity matrix, which implies B̂ H
k ·B̂k = Irk . By extending the GSVD

to the tensor case, we also impose additional nonnegativity and unit norm constraints

to the diagonal matrices Ck . The similarity between PARAFAC2 and the ML-GSVD

motivates us to extend efficient algorithms for PARAFAC2 to compute the ML-GSVD,

as discussed in this section.

The ML-GSVD optimization problem can be formulated as follows

arg min
A,Bk ,Ck

K∑
k=1

∥∥Hk −BkCk AH
∥∥2

F

subject to B̂ H
k · B̂k = Irk ,

K∑
k=1

C 2
k = IQ ,

(3.13)

where Ck = diag
(
C(k,:)

)
is a diagonal matrix with non-negative entries, and the matrix

C ∈RK×Q has unit norm columns:
∑K

k=1 c2
k,i = 1 for all i = {1, . . . ,Q}.

To compute the ML-GSVD, we propose an algorithm that has been inspired by the

direct fitting algorithm for PARAFAC2 in [KBB99]. To this end, we alternately mini-

mize (3.13) over Bk for fixed A and C , and over A and C for a fixed Bk . The main steps

of the algorithm are summarized in Algorithm 1.

In the first step, the algorithm is initialized with the values of A based on the I left sin-

gular vectors of
∑K

k=1 H H
k Hk (singular value decomposition (SVD)-based initialization)
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and with a random non-negative matrix C satisfying
∑K

k=1 C 2
k = IQ . The unitary matrix

Bk is updated in the second step via minimizing

K∑
k=1

∥∥B H
k Hk −Ck AH

∥∥2
F (3.14)

subject to B H
k Bk = IQ , which corresponds to the Orthogonal Procrustes Problem [Sch66]

with the solution

Bk = (Tk T H
k )−

1
2 Tk , (3.15)

where Tk = Hk H̃k , and H̃k = H H
k Bk ≈ ACk . For more details on the Orthogonal Pro-

crustes Problem, see Appendix A.2. Next, we update the matrices A and Ck by solv-

ing (3.14) jointly for all ks. Let H̃ be a tensor in which all H̃k s are stacked as 3-mode

slices. Then the constrained canonical polyadic (CP) decomposition of H̃ in terms of

its frontal slices is written as

H̃k = ACk IQ . (3.16)

Therefore, the 1-mode and the 3-mode unfoldings of H̃ satisfy

[H̃](1) = A(IQ ⋄C )T, (3.17)

[H̃](3) =C (A ⋄ IQ )T, (3.18)

where the rows of C contain the diagonal elements of the matrices Ck . Consequently,

the least squares (LS) solution for the matrices A and C is calculated as follows

A = [H̃](1)(IQ ⋄C )T+ (3.19)

= [H̃](1)

(
bdiag

(
C(:,1)

H∥∥C(:,1)
∥∥2 , . . . ,

C(:,Q)
H∥∥C(:,Q)
∥∥2

))T

, (3.20)

C = [H̃](3)(A ⋄ IQ )T+ (3.21)

= [H̃](3)

([
diag

(
A(1,:)

H∥∥A(:,1)
∥∥2

)
, . . . ,diag

(
A(Q,:)

H∥∥A(:,Q)
∥∥2

)])T

. (3.22)

Equations (3.20) and (3.22) allow us to avoid the explicit computation of the pseudo-

inverse in (3.19) and (3.21), see Appendix A.3 for details.

In the original PARAFAC2 algorithm, the matrices A and C are computed by calculating

the CP decomposition of H̃. In contrast to PARAFAC2, by taking into account the ML-
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GSVD constraints in (3.13), we can directly update the matrices A and C without

computing the CP decomposition.

Algorithm 1 ALS-based direct fitting algorithm for the computation of the ML-GSVD
of the set of K matrices Hk ∈CJk×I .

Require: Tensor H
1: Initialize A and C
2: repeat
3: for k = 1,2. . . ,K do
4: Reconstruct H̃ with A and C :

H̃k = A ·diag
(
C(k,:)

)
5: Update Bk (k = 1, . . . ,K )

Bk = (Tk T H
k )−

1
2 Tk , Tk = Hk H̃k

6: Update H̃: H̃k = H H
k ·Bk

7: end for
8: Update A and C

A = [H̃](1)

(
bdiag

(
C(:,1)

H∥∥C(:,1)
∥∥2 , . . . ,

C(:,Q)
H∥∥C(:,Q)
∥∥2

))T

,

C = [H̃](3)

([
diag

(
A(1,:)

H∥∥A(:,1)
∥∥2

)
, . . . ,diag

(
A(Q,:)

H∥∥A(:,Q)
∥∥2

)])T

9: Normalize the columns of C
10: To ensure that the entries of C are real and non-negative, replace the columns

of C by their absolute values, and compensate it in the columns of A
11: for i = 1,2. . . , I do
12: solve

∣∣C(:,i )
∣∣=αC(:,i ), A(:,i ) = 1

α A(:,i )

13: end for
14: for k = 1,2. . . ,K do
15: Ĥk = A ·diag

(
C(k,:)

) ·B H
k ∈CI×Jk

16: end for
17: ER =

(∥∥Ĥ−H∥∥2
F

)
/∥H∥2

F

18: until ∆ER = (
E old

R −ER
)

/E old
R is smaller than a predefined threshold or the maxi-

mum number of iterations is reached. E old
R is the residual in the previous iteration

19: Order the columns of C as in (3.4), and reorder the columns of A and Bk accord-
ingly.

In the fourth step, a normalization of the columns of C is performed to ensure that

they have unit norm. To ensure that the elements of C are real-valued, we multiply

diag
(
C(k,:)

)
by its complex conjugate, and compensate it in the columns of A in the fifth

3.3 Computation of the ML-GSVD inspired by PARAFAC2 algorithms 47



step. The algorithm stops if it exceeds the predefined maximum number of iterations

or if the change of the residual given by ∆ER =
(
E old

R −ER
)

E old
R

is smaller than a predefined

threshold, implying the convergence of the algorithm, where E old
R represents the

residual in the previous iteration. In the end of the algorithm, the elements of C are

ordered as in (3.4) and in the description below this equation, while the columns of A

and the rows of Bk are reordered accordingly.

3.3.1 Initializations and computational complexity

In the first case (described in the previous section), where rk = I for ∀k, the algorithm

provides an essentially unique approximate solution up to a scaling of the columns in

A and Bk . It requires only one initialization of the algorithm. In the second case, we

recommend to initialize the algorithm multiple times and choose the solution with

the minimum reconstruction error ER in order to avoid hitting a local minimum of the

cost function (3.13). Given an arbitrary tensor, our simulations show that the proposed

ML-GSVD is exact in Case 3. Taking into account the structure of the matrix C in (3.10),

for Case 3, the algorithm can be directly initialized with the matrix of ones and zeros

as in (3.10) ("closed form (CF)" initialization). Then, an update of C should be skipped

in Step 3 of the algorithm. In Cases 1 and 2, a good approximation is obtained in the

least squares sense. If K = 2, the ML-GSVD leads to an exact solution, and it is equal to

the GSVD of two matrices.

The computational complexity per iteration of the main steps of the proposed Al-

gorithm 1 is as follows. The SVD-based initialization would amount to O(I 3). The

computational load to estimate the matrix Bk is O(K I 3). The direct LS solution (3.20)

and (3.22) for the matrices A and B has complexity O(K I 2).

3.3.2 Alternative ways to update the factor matrices

In this subsection, we consider three alternative ways to compute the matrices A

and C .

PARAFAC2 and tensor contractions

As previously mentioned, in general, any PARAFAC2 algorithm can be modified for the

calculation of the ML-GSVD. Therefore, in the following, we will show how the matrices

A and C can be calculated via generalized tensor contractions [NCdH18]. In contrast

to a slice-wise representation, the generalized tensor contractions allow representing
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an N -way array explicitly in tensor form. Following the derivations in [NCdH18], we

can express the tensor H ∈CI×K×J (the dimensions are permuted) in the constrained

CP format

H=I3,Q ×1 Ā ×2 C̄ ×3 B̄ , (3.23)

which is equal to a constrained CP decomposition [FA14], where Ā = A
(
1T

K ⊗ IQ
)
, C̄ =

(IK ⊗1T
Q )⋄vec

(
C T

)T
, and B̄ = [B]

(1). The kth slice of B is the matrix Bk , k ∈ {1, . . . ,K }.

Consequently, the matrix A can be estimated as follows

A = [H]
(1) ·

(
(1T

K ⊗ IQ ) · (B̄ ⋄ C̄ )T)+
. (3.24)

Then the matrix C is computed by solving the following non-negative least squares

problem

vec
([H]T

(3)

)
≈ (

B̄ ⋄ (IK ⊗1T
R )⋄ Ā

) ·vec
(
C T)

. (3.25)

For more details on PARAFAC2 via tensor contractions, we refer the reader to [NCdH18].

Least squares Khatri-Rao factorization

The 2-mode unfolding of the tensor H̃ in (3.16) can be written as follows

[H̃](2) = (C ⋄ A)T, (3.26)

which means that we can employ the least squares Khatri-Rao factorization (LSKRF) [RH10]

to estimate the matrices A and C .

Joint diagonalization (JD)

Let us consider the Gramian matrix H H
k Hk

H H
k Hk = (BkCk AH)H(BkCk AH) (3.27)

= ACk B H
k BkCk AH (3.28)

= AC 2
k AH = H̃k H̃ H

k . (3.29)
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The matrix A jointly diagonalizes the K Gramians H H
k Hk and therefore can be found

from the following approximation problem [Yer02]

arg min
A,Λk

K∑
k=1

∥∥H̃k H̃ H
k − AΛk AH

∥∥2
F , (3.30)

where Λk = C 2
k is a diagonal matrix. The author in [Yer02] proposes the "AC-DC"

(alternating columns-diagonal centers) algorithm that iteratively minimizes (3.30)

alternating between the LS solution for the diagonalizing matrix A and the diagonal

matricesΛk . It should be noted that the solution of (3.30) is only essentially unique

(permutation and scaling ambiguities are present), and the convergence of (3.30)

does not guarantee the convergence of the parameters A andΛk . However, we have

observed in practice that this joint diagonalization (JD) provides satisfactory estimates

for the matrices A and Ck and, therefore, can be used as a reliable starting point for

the ML-GSVD algorithm.

3.4 Numerical results

In this section, we carry out a simulation study of the ML-GSVD. In order to assess the

performance of the proposed algorithm, we apply it to synthetic data. As an accuracy

measure, we use the squared reconstruction error (SRE)

SRE =
∥∥Ĥ−H∥∥2

F

∥H∥2
F

, (3.31)

where H is the original tensor, and Ĥ is the reconstructed tensor based on the es-

timated factor matrices A, Bk , and Ck . In addition to the SRE, for each case of the

ML-GSVD presented in Section 3.2, the performance is also evaluated in terms of

the average run time. In our simulations, a complex-valued tensor H is generated

randomly from a zero mean unit variance complex Gaussian distribution. The maxi-

mum number of iterations of the algorithm is set to 500. The algorithm stops when

the change in the error is smaller than a predefined threshold (set to 10−5 in our

simulations), or it reaches the maximum number of iterations.

We compare the SVD- and JD-based initializations of the algorithm and different

estimation schemes for the matrices A and Ck : Direct LS solution ((3.20) and (3.22)),

tensor contractions based (TC), and the LSKRF-based solutions. For our simulations,

we assume that the matrices in the decomposition have a full rank. The performances
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of the algorithms are represented by complementary cumulative distribution functions

(CCDFs). In our simulations, the CCDF curves describe the probability that the SRE

or the run time will be greater than a certain value on the x-axes. We present the

CCDF of the error (time) since it allows an illustration of both the average error (time)

and its distribution. In all plots presented below the results were averaged over 1000

Monte Carlo runs. The vertical lines in the CCDF plots represent the mean values for

each curve. Solid, dashed, and dotted lines represent SVD, JD, and CF initializations.

Markers denote algorithms: blue triangle, red circle, and green square denote the

direct least squares (Direct LS), tensor contractions (TC), and least squares Khatri-Rao

factorization (LSKRF), respectively.

In Figures 3.2(a) and 3.2(b) we depict the CCDF of the SRE and the CCDF of the

execution time for Case 1 of the ML-GSVD, where the common column dimension

is I = 3 and the row dimension Jk is equal to 4 for all 3-mode slices of the tensor.

Figure 3.2(a) depicts the SRE for tensors with K = 3 and K = 10 slices. As it can be

observed, the reconstruction error increases with increasing K . This is also true for

other cases of the ML-GSVD. Therefore, for the remaining simulations, we only display

the results for K = 3 in order to avoid an overload of the plots. Although all initialization

and factor estimation schemes display a similar SRE performance, the computational

complexity varies. Figure 3.2(b) shows that the Direct LS and LSKRF solutions have

the lowest time complexity, and the solution using tensor contractions is the most

complex from the computational point of view. This is explained by the fact that the

first method does not require the computation of a matrix inverse, and the second

solution involves the tensor unfolding and hence the multiplication of matrices of

higher dimensions. If we configure the tensor as in Case 1, the ML-GSVD provides only

a common subspace for all K matrices in the decomposition. Below is an example of

the matrix C for Case 1:

C =


σ1,1 . . . σ1,I

...
. . .

...

σK ,1 . . . σK ,I

 ∈RK×I , (3.32)

where σk,i ∈ (0,1). We have observed in practice that this case requires only one

initialization of the algorithm.

For the second case, the decomposition provides both common and private subspaces.

Depending on the dimensions and ranks of the slices of the tensor, the private sub-

space can be empty for some ks. The common subspace can be shared by all the

matrices in the decomposition or by some groups of matrices. Therefore, the second
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Figure 3.2. CCDF vs. SRE and time for three cases of the ML-GSVD. Averaged over 1000
realizations of H. Solid, dashed, and dotted lines represent SVD, JD, and CF
initializations. Markers denote algorithms: blue triangle, red circle, and green
square denote the direct least squares (LS), tensor contractions (TC), and least
squares Khatri-Rao factorization (LSKRF), respectively.
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case is of great interest in terms of the applications. Below is an example of the matrix

C for the Case 2 with I = 8 and the Jk s are equal to 3, 4, and 4, respectively

C =


0 0 0 0 0 σ1,6 σ1,7 1

0 0 σ2,3 1 1 σ2,6 0 0

1 1 σ3,3 0 0 0 σ3,7 0

 ∈RK×I . (3.33)

As it can be observed from the third, sixth, and the seventh columns, the common

subspace is shared by groups of two matrices ({σ2,3, σ3,3}, {σ1,6, σ2,6}, and {σ1,7, σ3,7}).

Moreover, all the matrices have a private subspace of dimension 1, 2, and 2, respectively.

The CCDFs of the SRE and the time are shown in Figures 3.2(c) and 3.2(d). In contrast

to the previous results, for Case 2, the JD initialization leads to a smaller reconstruction

error and converges faster.

Figures 3.2(e) and 3.2(f) show the CCDFs of the SRE and the time for Case 3, where

I = 9, K = 3, and all Jk = 3. The resulting matrix C has the following structure

C =


0 0 0 0 0 0 1 1 1

0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 0 0 0

 ∈RK×I . (3.34)

Case 3 results in an exact decomposition with a private subspace for each slice of

the tensor. We have observed in practice that in this case, the algorithm is prone

to hit a local minimum. Therefore, for the SVD- and JD-based initializations, we

recommend to use several initializations to ensure convergence. For the simulation

results shown here, the algorithms were initialized 10 times. As it can be seen in

Figure 3.2(e), the closed form (CF) initialization converges in all runs, as well as the

SVD-based initialization always converges to the exact solution because the matrix C

is chosen randomly, and at least one initialization will lead to the global minimum. In

Case 3 an initialization via JD is not recommended as it can be seen by the error floor in

Figure 3.2(e). The SVD initialization outperforms the JD in terms of the computational

time, due to the iterative nature of the JD algorithm and the higher column dimension,

compared to the row dimension. The probability of convergence also depends on the

number of slices, and is higher for the smaller K s.

Recommended implementations for the three cases

As it can be seen from Figure 3.2(e), the CF initialization ensures the 100% convergence

of the algorithm as compared to the JD-based initialization. Additionally, it reduces

the time complexity of the algorithm in comparison to SVD or JD-based initializations.
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Figure 3.3. Simulation time. The third dimension (K ) is changing, I = 3, Jk = 3.

Table 3.2 shows the algorithms and initializations that have the best reconstruction

error and the lowest time complexity performances. Considering the simulation results

and the accuracy-complexity trade-off, we recommend to use the Direct LS solution

with one SVD-based initialization for Case 1, multiple JD-initializations for Case 2, and

Direct LS with closed form initialization for Case 3.

In the next simulation, we assess how the simulation time changes with increasing K

(number of tensor slices). We use the SVD-based initialization and different ways to

estimate the matrices A and C . As it can be observed in Figure 3.3, the computational

time increases with increasing K for the tensor contractions based estimation, but

does not change significantly in case of the direct LS or LSKRF-based solutions.

Case 1 Case 2 Case 3

Reconstruction
error

all alg-s, any
init.

all alg-s, JD
init.

TC, SVD, CF
init.

Time
complexity

LSKRF, LS,
SVD init.

LS, JD init. LS, CF init.

Table 3.2. Algorithms with the lowest reconstruction error and the lowest time complexity.

3.5 Conclusions

We have presented a new Multilinear Generalized Singular Value Decomposition

(ML-GSVD) as an extension of the matrix-based GSVD to jointly factorize a set of an ar-
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bitrary number (K ≥ 2) of matrices with a common number of rows or columns. To this

end, we have proposed algorithms to compute the ML-GSVD as a tensor factorization

with constraints. In comparison with existing GSVD generalizations, our ML-GSVD

preserves the properties of the original GSVD, such as the orthogonality of the 2-mode

factor matrices. We have considered three different cases of the ML-GSVD depending

on the dimensions and the rank structure of the decomposed matrices. Moreover, we

have shown that every case provides a certain decomposition structure with private

and/or common subspaces. An ALS-based algorithm to compute the ML-GSVD has

been developed as an extension of an algorithm to compute the PARAFAC2 decom-

position. Furthermore, we have specified an appropriate initialization scheme for

each case of the ML-GSVD to guarantee convergence. Since the ML-GSVD extends the

matrix GSVD, it can be employed further in a number of different communication and

biomedical applications, such as coordinated beamforming, MIMO relaying, physical

layer security, and genomic signal processing. The ML-GSVD allows to increase the

number of jointly factorized matrices and, therefore, can be used in more complex

systems.
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Joint Unicast and Multicast
Transmission using the
ML-GSVD 4
As one of the promising applications of the ML-GSVD, we consider a multi-user down-

link MIMO orthogonal frequency division multiplexing (OFDM) system with joint

unicast and multicast transmissions. We show that the factor matrices of the ML-

GSVD can be used as the precoding and decoding matrices, respectively. We also

demonstrate that the three cases of the decomposition correspond to the transmission

of private or common messages (or both). The simulation results show that the ML-

GSVD outperforms the reference multicast and unicast precoding schemes in terms of

the sum rate [KAH22].

4.1 Introduction

Due to the fact that the ML-GSVD provides orthogonal factor matrices for the indi-

vidual slices, it is a valuable tool for coordinated downlink beamforming in wireless

multi-user multiple-input multiple-output (MIMO) systems. More specifically, by

applying the ML-GSVD to a set of channel matrices (associated with different users),

we are able to identify common subspaces (CSs) to a group of users, as well as private

subspaces (PSs) to individual users. Hence, by exploiting the structure of these sub-

spaces, broadcast and multicast transmission can be simultaneously combined on

the downlink for several users. In [ST10], [ST13], and [KWWE07] the singular value de-

composition (SVD)-based beamforming has been generalized to GSVD-based MIMO

downlink beamforming. The authors illustrate how the GSVD can be exploited for

coordinated beamforming in a multi-user MIMO system, but the approach is limited

to two users. The authors in [HRML21] propose the GSVD for polynomial matrices

(PGSVD) and present its application to two-user frequency-selective MIMO channels.

In [CDDS19; RDD20] the GSVD is combined with a non-orthogonal multiple access

(NOMA) scheme in a MIMO downlink scenario. The use of the ML-GSVD allows us to

go further by increasing the number of users to be simultaneously served. In [KAH20],

we show how the ML-GSVD can be used for coordinated beamforming in a multi-user

MIMO downlink channel with more than two users. Moreover, in [KAH21] and in
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Chapter 5 of this thesis, we apply the ML-GSVD to a NOMA communication system

with an arbitrary number of users. Depending on the number of transmit and receive

antennas (tensor dimensions), the subspace structure of the ML-GSVD distinguishes

between common and private subspaces. Common subspaces are used to transmit

the same data to several users, while private subspaces allow sending confidential

messages to different users simultaneously. Hence, the ML-GSVD enables handling an

arbitrary number of users that is less or equal to the number of transmit antennas in

the downlink of a coordinated MIMO beamforming system.

The authors in [JNTS15] consider a MIMO orthogonal frequency division multiplexing

(OFDM) multicasting system and propose an SVD-based non-iterative linear pre-

coding scheme that allows sending common messages to a group of users. Various

multicast precoding methods have also been studied in [JL06; SDL06; KLP11; ZPR12;

XTW13; YD18; YD19; DNDT17; IKS20; SBL+18]. The authors in [SK09] use zero forcing

(ZF), minimum mean square error (MMSE), and signal-to-interference-plus-noise

ratio (SINR) balancing for the multicast transmission. In contrast to [JNTS15], the ap-

proach of [SK09] assumes a multigroup multicast scenario and a single-carrier system

with single antenna users.

Main contributions. Most of the proposed techniques in the literature are limited to

pure multicast or unicast transmission, but practical systems are interested in joint

services. This has motivated the study of a joint unicast and multicast transmission.

However, the existing techniques have so far been limited to a simple system with two

users or multiple single-antenna users. None of the aforementioned papers considers

a joint multicast and unicast precoding for a MIMO system with multiple antenna

users. In our work, we show that the ML-GSVD is a valuable tool that allows combining

broadcast and unicast transmissions, which leads to an increased average spectral

efficiency.

The rest of this chapter is organized as follows. We introduce the system model and

ML-GSVD-based beamforming Section 4.2. In Section 4.2.2 we discuss the state-of-

the-art multicast techniques and present the numerical results. Section 4.3 draws the

conclusions.
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…

Figure 4.1. Joint multicast and unicast transmission.

4.2 Application of the ML-GSVD in multicast
beamforming

As a promising application of the proposed ML-GSVD, we consider coordinated beam-

forming using joint broadcast and unicast transmissions. We view the 3-mode slices

of the tensor H as the channels of K users and construct the precoding and decoding

matrices based on the ML-GSVD factor matrices. In the following, we will describe

a simple "toy" model of the ML-GSVD-based communication system and show how

the subspace structure of the ML-GSVD, presented in Section 3.2, can be utilized to

simultaneously send the common messages to a group of users and private messages

to individual users.

4.2.1 System model and ML-GSVD-based beamforming

We consider a downlink MIMO-OFDM system with multicast transmission as depicted

in Figure 4.1, where one base station (BS) equipped with MT antennas transmits

common and private messages to K users with MRk receive antennas each using N

subcarriers. We represent the MIMO-OFDM channel between the BS and the kth user
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on the nth subcarrier by Hk,n ∈CMRk
×MT . We focus on the case where MRk < MT , and∑K

k=1 MRk > MT . This scenario corresponds to the case where the ML-GSVD provides

both private and common subspaces (Case 2). Furthermore, each user observes

additive zero mean circularly symmetric complex Gaussian white noise nk,n with

variance σ2
n . Then, the received signal on subcarrier n of the kth user is given by

yk,n = Hk,nFn xn +nk,n , (4.1)

and at the detector we get

ŷk,n =Wk,n
(

Hk,nFn xn +nk,n
)

, (4.2)

where xn denotes the transmitted signal on the nth subcarrier that satisfies E
{

xn xH
n

}=
IMT /MT . The matrices Fn and Wk,n are the common transmit beamforming and the

receive beamforming matrices, respectively. As in (3.2), the ML-GSVD of the channel

matrices Hk,n is given by Hk,n = Bk,nCk,n AH
n . Therefore, the precoding matrix Fn can

be determined as Fn =α{
AH−

n

}
C(Q) (since we focus on the case where

∑K
k=1 MRk > MT

(Case 2 of the ML-GSVD), the matrix A is MT ×MT ), and the receive decoding matrices

as Wk,n =
{

B H
k,n

}
R(Q)

, where α is a power normalization coefficient, and C(Q) and

R(Q) denote columns and rows of the matrix with indices in the set Q⊆ {1, . . . , MT }.

An appropriate selection scheme will be described at the end of this subsection. The el-

ements of Ck contain the normalized gains of the corresponding virtual channels (VCs)

(private or common). The condition MT > MRk is the requirement to have private

subspaces, while if MT ≤ MRk only broadcasting is possible. The private subspaces

(ones and zeros) in Ck are used by the transmitter to send confidential messages to

the user Uk , while the common subspace (σk in Ck ) is used for broadcasting common

messages to all users or a set of users. The private subspaces always have unit nor-

malized gains, while the normalized gains of the common subspaces are less than

one. Note that the resulting number of private and common subspaces depends

both on the dimensionality and realization of the channel tensor Hn ∈ CMR×MT ×K ,

MR = max
(
MR1 , . . . , MRK

)
.

The matrices An and Bk,n jointly diagonalize the channel represented by Hk,n to get

virtual channels that enable a simultaneous point-to-multi-point connection with

private and common messages. The required subset of VCs (private or common)

can be chosen by an appropriate selection of the columns of the transmit precoding

matrix and the corresponding rows of the receive beamforming matrices. For instance,

if the i th and (i + 1)th columns of C lie in a common subspace, for broadcasting,

we choose Q ∈ {i , i + 1}, and select the i th and (i + 1)th columns and rows of the
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Figure 4.2. Multicast transmission: Private (PS) and common (CS) subspaces. 3 users, MT = 9,
MR = [6,6,6], rk = [3,3,3]. Averaged over 5 subcarriers and 10000 trials. The
solid lines represent the proposed ML-GSVD precoding, and the dashed lines
correspond to the reference algorithms.

transmit and receive beamforming matrices, respectively. For the transmission of the

private messages, we choose the vectors that correspond to a private subspace (values

equal to one in C ), thus enabling simultaneous transmission of private and common

messages. If multiple private subspaces are available, we transmit multiple streams

to that particular user. We construct the channel tensor Hn for each subcarrier and

calculate the ML-GSVD of the set of K matrices to obtain the precoding and decoding

matrices on each subcarrier.

4.2.2 Simulation results

In this subsection, we evaluate the performance of the proposed ML-GSVD-based

beamforming in terms of the achievable sum rates and compare it with the state-

of-the-art techniques. To the best of our knowledge, there are no schemes in the

literature that combine MIMO-OFDM and multicast-unicast transmission. Therefore,

when assessing the performance of the multicast transmission, we compare it to the

algorithm in [JNTS15], and in the case of the unicast transmission we use the flexible

coordinated beamforming (FlexCoBF) [SRH10; SRH13] scheme as a reference.

The authors in [JNTS15] propose a multicast precoding scheme for MIMO-OFDM

system to transmit only common messages to a selected group of users. They employ

the linear sum (LinS)-based precoding matrix, which is given as follows

F LinS
n =α ∑

k∈S
βkVn,k , (4.3)
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Figure 4.3. Histogram - Private and common channels (ML-GSVD). MT = 9, MR = [6,6,6].
Colors indicate the average number of VCs (streams) at each subcarrier: 0, 1, 2, 3,
and 4 VCs, respectively. Labels on the x-axis of the histogram represent the users
or the groups of users (p1 is a private channel to user 1, c1,2 is a common channel
to users 1 and 2, etc.)

to maximize the individual rate of user k on the subcarrier n. The matrix Vn,k is

the right singular matrix corresponding to the non-zero singular values of the chan-

nel matrix Hn,k , S is the subset of users that receive the common message, βk is a

power normalization according to the effective channel gain, and α is a normalization

constant to fulfill the power constraint

∥∥F LinS
n

∥∥2
F = Pn . (4.4)

We compare this linear sum based precoding in (4.3) with the ML-GSVD-based pre-

coding

Fn =α{
AH−

n

}
C(Q) , (4.5)

where An is obtained from the ML-GSVD of the channel tensor Hn , and C(QS ) is the

set of columns that correspond to a common subspace of the group of users S .

For the private messages transmission, we compare the ML-GSVD-based scheme with

FLexCoBF proposed in [SRH10; SRH13]. The FlexCoBF technique is applicable in the

case where the total number of receive antennas of the served users is larger than the

number of transmit antennas of the serving base station (BS). For more details, we

refer the reader to [SRH10; SRH13].
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We compare the performance of the different algorithms in terms of the sum rate, and

calculate the achievable rate of the user k on subcarrier n as follows

Rk,n = log2 det

(
INr +

ρn

MT
Hn,k FnF H

n H H
n,k

)
, (4.6)

whereρn is the SNR. In contrast to the aforementioned schemes, the ML-GSVD enables

the simultaneous transmission of common and private messages. In the following,

we will consider two simulation scenarios to assess the performance of the ML-GSVD

scheme in terms of the achievable sum rate. Furthermore, we will compare it with the

aforementioned schemes.

Subcar. # Channels # of streams

1 p1, p2, p3 r1,r2,r3

2 c123 min
(
MT , MRk

)3
k=1

3 c12 min
(
MT , MR1 , MR2

)
4 c13 min

(
MT , MR1 , MR3

)
5 c23 min

(
MT , MR2 , MR3

)
Table 4.1. Joint multicast and unicast transmission using state-of-the-art algorithms (example

with 5 subcarriers and 3 users): every subcarrier is utilized for a specific type
of messages (private or particular common). In contrast, the ML-GSVD-based
scheme allows simultaneous transmission of both private and common messages
on one subcarrier, based on the channel conditions of the users. Therefore, in this
case, the total number of streams for the kth user is

∑N
n=1 rk,n , and the number of

private and common streams on every subcarrier can vary as pk ∈ {
0, . . . , MRk

}
and

c{l } ∈
{
0, . . . ,min

(
MR{l }

)}
, {l } ⊆ {1, . . . ,K }, depending on the correlation of the users’

channels.

For the first simulation, we consider a MIMO-OFDM system with 5 uncorrelated

subcarriers and K = 3 users with 6 antennas each. The number of transmit antennas

at the base station is equal to MT = 9. Such a configuration of the system enables

both unicast and multicast transmission (see Section 3.2). To illustrate the effect of

simultaneously serving common and private channels via the ML-GSVD, we consider

a simple uncorrelated Rayleigh fading MIMO channel model. With the ML-GSVD-

based scheme, we can transmit both common and private messages simultaneously

on the same subcarrier based on the channel conditions of the users. Therefore, in

case of the ML-GSVD-based transmission, the total number of streams for the kth

user is
∑N

n=1 rk,n , and the number of private and common streams at every subcarrier

can vary as pk ∈ {
0. . . MRk

}
and c{l } ∈

{
0. . .min

(
MR{l }

)}
, {l } ⊆ {1, . . . ,K }, depending on

the correlation of the users’ channels. For the reference algorithms, we use some

subcarriers for the unicast and some for the multicast transmission as it is shown
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Figure 4.4. Multicast transmission: Private (PS) and common (CS) subspaces. 4 users, MT = 9,
MR = [4,5,5,5], rk = [2,2,2,3]. Averaged over 12 subcarriers and 10000 trials. The
solid lines represent the proposed ML-GSVD precoding, and the dashed lines
correspond to the reference algorithms.

in Table 4.1, where p1, p2, and p3 denote the private channels to the corresponding

users, and c123, c12, c13, and c23 are the common channels to all three users, and

to two selected users, respectively. Note that the ML-GSVD enables the automatic

user grouping and scheduling based on the ML-GSVD singular values (matrix C in

(3.2)). On the other hand, for the reference algorithms, we have to fix the unicast

and multicast groups and assign them to different subcarriers. Furthermore, we also

fix the number of streams rk for the different users and channels as it is shown in

Table 4.1. For the reference algorithms, we set the number of private streams to each

user to rk = 3, where
∑K

k=1 rk = MT , and the number of common streams is shown in

Table 4.1. In case of the ML-GSVD-based beamforming, the number of virtual channels

(VCs) depends on the realization of the channel and can vary for each subcarrier. We

calculate the minimum achievable sum rate for each type of channel (common or

private) as min
(∑N

n=1 Rk,n
)K

k=1 and average the results over T = 10000 Monte-Carlo

trials.

Figure 4.2(a) depicts the sum rate of the private channels to all three users and Fig-

ure 4.2(b) shows the average sum rate for common channels to a group of two users

or to all three users. The solid and dashed lines correspond to the ML-GSVD-based

and reference schemes based beamforming, respectively. As it can be observed, the

ML-GSVD-based scheme outperforms the reference schemes for both private and

common messages. This is explained by the fact that the ML-GSVD precoding allows
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transmitting both private and common messages on one subcarrier, which increases

the average total number of streams to each user, which can be calculated as follows

r̂k = 1

T

N∑
n=1

sk,n , (4.7)

where sk,n is the number of streams for the given channel type, N is the number of

subcarriers, and T is the number of simulation trials. Additionally, the proposed

ML-GSVD-based scheme does not fix the number of private and common streams,

and their number depends on the realization of the channel and, therefore, can vary

depending on the channel conditions. As a result, we observe a higher sum rate for

most of the channel types. The rates for the common channels are higher than the

rates of the private channels due to the fact that, as can be seen on the histogram,

there are on the average more common channels than private channels.

Figure 4.3 illustrates the histogram of the probability of having private subspaces (PSs)

and common subspaces (CSs) for each user or user group. Labels on the x-axis repre-

sent the users or the groups of users (p1 is a private channel to user 1, c1,2 is a common

channel to users 1 and 2, etc.). The results are averaged over all subcarriers. As can

be seen from the histogram, the proposed ML-GSVD-based beamforming provides

CSs between all three users and CSs between two of three users. As described in Sec-

tion 3.2, the number of these subspaces (virtual channels) depends on the realization
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of the channel, the number of receive and transmit antennas (tensor dimensions), and

the channel rank. In case of two users, the number of common virtual channels is

equal to MR1 +MR2 −MT and number of private channels is MT −MR2 and MT −MR1 ,

respectively (assuming full-rank channels). While for two users (where the ML-GSVD

simplifies to the GSVD), the dimensions of PSs and CSs can be described explicitly,

with K > 2 users, additional subspaces between the subgroups of users can appear,

which highly depends on the realization of the channel. With an increasing number

of users and antennas, more combinations of private and common subspaces are

possible. The histograms demonstrate the probabilities for the expected dimensions

of those particular channels. As it can be observed from Figure 4.3, in this simulation

scenario users can have 0, 1, or 2 private channels (1 with the highest probability).

There is also a high probability to obtain 1 or 2 common channels to a group of two

users, and 2 or 3 common channels to all users. The total number of virtual channels

(streams) for one realization of the channel tensor is equal to MT . Therefore, for some

of the Monte-Carlo runs, there are zero channels of a certain type. This can be associ-

ated, for instance, with bad channel conditions and has the potential to be used for

the selection of the optimal set of users to be served.

In contrast to the first simulation, in the next simulation, we consider an asymmetric

scenario with the same number of transmit antennas MT = 9 but an increased number

of K = 4 users having 4, 5, 5, and 5 antennas, respectively. This configuration also leads

to both private and common virtual channels. Due to the increased number of users,

the number of possible channel types also increases. Therefore, in this scenario, we

assume 12 subcarriers. As in the previous simulation, we transmit private and common

messages simultaneously on all subcarriers based on the ML-GSVD. For the reference

algorithms, one subcarrier is used for the private messages, and the other subcarriers

are employed for the transmission of common messages, similarly as in Table 4.1.

There are 15 types of virtual channels in total, which includes private channels p1,

p2, p3, and p4, common channels to all four users c1234, common channels to three

of four users c123, c124, c234, and c134 (combinations of 3 users out of a set of 4 users

which is described by the binomial coefficient
(4

3

)
), and common channels to two of

four users c12, c13, c14, c23, c24, and c23 (combinations of 2 users out of a set of 4 users,

described by the binomial coefficient
(4

2

)
). Figure 4.4(a) depicts the achievable sum

rates for the private channels of four users. The solid lines represent the proposed

scheme, and the dashed lines denote the FlexCoBF precoding scheme from [SRH10]

and [SRH13]. Figure 4.4(b) depicts the average sum rates for the common channels

to a group of two, three, and four users. As in the previous simulation scenario, the

ML-GSVD scheme (solid lines) is compared to the multicast beamforming technique

in [JNTS15] (dashed lines). As it can be seen, the proposed scheme outperforms the
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reference techniques for all channel types. Figure 4.5 shows the possible channel types

associated with this simulation scenario and their corresponding probabilities in case

of the ML-GSVD-based transmission.

We have also observed in practice that with an increasing number of users K , the

probability of obtaining a common channel to all users decreases, and there is a higher

chance of having private channels or common channels to a group of two or three

users. This also opens up an opportunity to use the ML-GSVD for user scheduling

since it can be performed automatically based on the generalized singular values of

the ML-GSVD.

4.3 Conclusions

In this chapter, as an application of the ML-GSVD proposed in Chapter 3, we have

considered multi-user MIMO-OFDM systems with joint unicast and multicast trans-

missions. For such a scenario, we have shown that the factor matrices of the ML-GSVD

can be used as precoding and decoding matrices, respectively. Moreover, we demon-

strate that the three cases of the ML-GSVD correspond to the transmission of private or

common messages (or both) to different sets of users. Our numerical results show that

the ML-GSVD outperforms the reference multicast and unicast precoding schemes in

terms of the average sum rate.
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Utilizing the ML-GSVD for
non-orthogonal multiple
access 5
Future generations of wireless networks become more and more demanding due to

the exponential growth of mobile traffic with billions of connected smart devices.

In this chapter of the thesis, we focus on non-orthogonal multiple access (NOMA),

which has been considered as a promising technique for 5G and beyond wireless

networks. We consider a power-domain downlink MIMO-NOMA system with an

arbitrary number of users and propose to design the precoding and decoding matrices

based on the multilinear generalized singular value decomposition (ML-GSVD) that we

have presented in Chapter 3. Moreover, we demonstrate how the generalized singular

values of the ML-GSVD can be used for the power allocation. We also compare the

proposed MIMO-NOMA scheme with orthogonal multiple access (OMA) techniques

and provide various numerical results [KAH21].

5.1 Introduction

The substantial growth of the global data traffic puts higher demands on 5G and

beyond networks. The extensive use of smart devices and the increasing interest

in the Internet of things (IoT) require reliable low-latency communication, massive

connectivity, and increased data rates. Due to limited bandwidth and limited power

resources, providing a sufficient quality of service (QoS) becomes more and more

challenging.

In conventional orthogonal multiple access (OMA) techniques (Figure 5.1(a)), the

users exploit the orthogonal resources in time, frequency, code, or in the joint time-

frequency domain to avoid multiple access interference. However, since each resource

block can only support one user equipment (UE), the number of served users is limited.

As an alternative, non-orthogonal multiple access (NOMA) has been proposed to be

employed in future wireless communication systems [Kiz16]. NOMA allows using the

same non-orthogonal resources to transmit the data of different users simultaneously.
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It has gained a significant attention due to its potential to considerably improve spec-

tral efficiency, enhance connectivity, and reduce latency [DWD+18]. In general, NOMA

solutions can be separated into two main groups, power-domain and code-domain

multiplexing [DLK+17]. However, the majority of the NOMA contributions focus on

the power-domain NOMA (Figure 5.1(b)) due to its relatively simple implementation,

tolerable user fairness, and spectral efficiency trade-off [ATG+18].

Several overviews and surveys [ATG+18; DWD+18; IADK17; ZLL+18; MCBA20; DLK+17;

BSL+15; CQC+18] on NOMA techniques have been published in recent years. They

present the basic principles of the NOMA technique, discuss the open issues, and com-

pare it with the performance of OMA-based transmission. The authors in [DWD+18]

additionally highlight the key challenges and the future research trends in NOMA

exploration, which includes performance analysis, beamforming and receiver de-

sign, channel estimation, resource allocation, and an extension to MIMO. The study

in [AHA19] investigates efficient user clustering and power allocation algorithms for

MIMO-NOMA systems. The authors derive the sum rate capacity for the uplink system

with a massive antenna array at the base station (BS) and single antenna UEs. A MIMO-

NOMA downlink scenario with multiple antenna users has been considered in [DAP16].

The authors propose to use user pairing to enhance the NOMA performance and con-

sider the identity matrix as a precoding matrix to reduce the system overhead. More

sophisticated precoding and decoding based on QR and generalized singular value

decomposition (GSVD) decompositions have been proposed in [DDP16; CDDS19;

RDD21; RDD20; QV20; HD19; MDFT16]. However, the aforementioned schemes are

restricted to systems with two users in one resource block due to the limitation that

the GSVD uses only two matrices.

In Chapter 3 and in [KAH22], we have proposed the ML-GSVD as an extension of the

GSVD to decompose more than two matrices with one common dimension. Compared

to the other multidimensional extensions of the GSVD, the ML-GSVD inherits the

properties of the original decomposition, such as orthogonality and the structure of

the diagonal matrices.

Main contributions. This chapter of the thesis focuses on power-domain NOMA, which

employs superposition coding (SC) at the transmitter and successive interference

cancellation (SIC) at the receiver. We propose a new ML-GSVD-based NOMA scheme

for downlink MIMO systems with more than two users in one resource block. We

show how the ML-GSVD can be applied to MIMO-NOMA systems with an arbitrary

number of users. Additionally, we propose a new power allocation scheme based on

the generalized singular values of the ML-GSVD and compare it to the schemes from

the literature.
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Figure 5.1. Orthogonal and non-orthogonal multiple access (power domain).

The remainder of this chapter is organized as follows. We first provide the system

model of the considered power-domain downlink MIMO-NOMA system in Section 5.2.

Then, we present the design of the precoding and decoding matrices based on the

ML-GSVD and consider different scenarios exploiting the properties of this recently

proposed decomposition in Section 5.3. At the end of Section 5.3, we demonstrate

how the generalized singular values of the ML-GSVD can be used for power allocation.

In Section 5.5, we also show the numerical results to evaluate the performance of the

ML-GSVD-based NOMA scheme in terms of the achievable rate and compare it to

OMA.

5.2 System model

Let us consider a downlink MIMO-NOMA communication system with one base

station (BS) and K users, where the BS and the kth user are equipped with MT and

MRk antennas, respectively (Figure 5.2). Assuming flat fading, the MRk ×MT channel

matrix from the BS to the kth user is denoted as Hk . In a downlink NOMA network, the

BS transmits a superposition of the desired signals of K users with different allocated

power to all K users. The power allocation coefficients αk are inversely proportional

to the channel conditions of the users (e.g., path loss). The precoding matrix at the BS

is denoted as P ∈CMT ×MT . Then, the transmitted signal can be written as x = P s, and

s = [
s1, . . . , sMT

]T ∈CMT ×1 is a combined signal for all users, given by

s =
K∑

k=1
Λk s̃k , (5.1)
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Figure 5.2. Downlink MIMO-NOMA system with K users.

whereΛk = diag
(
αk,1, . . . ,αk,MT

) ∈RMT ×MT and s̃k = [
s̃k,1, . . . , s̃k,MT

]T ∈CMT ×1 contain

the power allocation coefficients and the data for user k, respectively. The power

allocation coefficients satisfy
∑K

k=1Λ
2
k = IMT . Consequently, the received signal at the

kth user can be expressed as

yk = 1√
dη

k

Hk P s +nk ∈CMRk
×1, (5.2)

where nk denotes the additive Gaussian noise vector of user k, whose elements are i.i.d.

complex Gaussian random variables with zero mean and unit variance. The quantity
1√
dη

k

denotes the large-scale fading, where dk is the distance between the BS and the

kth user, and η is the path loss exponent [CDDS19]. We assume that E
{

s̃ s̃H
} = IMT .

After applying the decoding matrix Dk at the kth user we get

Dk yk = 1√
dη

k

Dk Hk P s +Dk nk . (5.3)

In the following section we discuss the design of the precoding and the decoding

matrices.

5.3 ML-GSVD-based NOMA scheme

In the following, we will show how the ML-GSVD can be used for defining the precoding

and decoding matrices P and Dk that will jointly diagonalize the channel matrices Hk .

Yet before we move to the proposed scheme, we encourage the readers to refer back

to the definition (3.2) and the Cases 1, 2, and 3 of the ML-GSVD provided earlier in
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Section 3.2 to enhance the comprehension of the upcoming discussions. Recalling

the three cases briefly, in the first case, the columns of the matrix A in (3.2) are shared

for all factorizations, and the ML-GSVD provides only the common subspace for all

jointly decomposed matrices. Therefore, in this chapter, we mostly focus on this case.

We use the aforementioned common subspace for the MIMO-NOMA transmission

of the combined signals to all K users. The second case provides both private and

common subspaces for all K matrices or for groups of matrices. In this scenario, the

common subspace can be used for the NOMA transmission of the combined signals,

and the private subspace might be used for confidential messages to ensure security.

In the third case, the entries of Ck only contain ones and zeros, i.e., only a private

subspace exists, and the tensor slices do not share any common factors. Thus, we do

not consider Case 3 of the ML-GSVD for the NOMA transmission. However, since it

allows isolating the private channels to users, Case 3 can be utilized in conventional

OMA systems without superposition coding.

Using the ML-GSVD of the channel matrices Hk , the precoding matrix P can be

defined as P =
p

P
β AH−, where P is the total transmit power at the BS, and β is a power

normalization coefficient. Since we focus on the case with only common subspaces,

(Case 1 of the ML-GSVD), the matrix A is MT ×MT and invertible. The decoding matrix

of the kth user is defined as Dk = B H
k . Consequently, the received data at the kth user

can be written as

B H
k yk =

p
P

β
√

dη

k

B H
k Hk AH−s +B H

k nk (5.4)

=
p

P

β
√

dη

k

Ck s + ñk , (5.5)

where ñk = B H
k nk . After applying the ML-GSVD, the MIMO channels Hk of K users

can be considered as independent parallel sub-channels

yk,n =
p

P

β
√

dη

k

ck,n sn + ñk,n , (5.6)

where yk,n , ck,n , sn , and ñk,n are the nth elements of yk , diag
(
Ck

)
, s, and ñk , respec-

tively. For notational simplicity, we assume that the first user is the farthest, and the

K th user is the closest (strongest), so that

∥∥∥∥∥ 1√
dη

1

H1

∥∥∥∥∥
F

≤ . . . ≤
∥∥∥∥∥ 1√

dη

K

HK

∥∥∥∥∥
F

. In NOMA, the

highest power is assigned to the user with the weakest channel [DLK+17]. Therefore,

the power allocation coefficients satisfy α2
1,n > ·· · >α2

K ,n , n ∈ {1, . . . , MT }.
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Depending on the ratio between the number of transmit and receive antennas, accord-

ing to the three cases of the ML-GSVD described above, the value of ck,n in (5.6) can

be equal to 0, 1, or σk,n , corresponding to private or common subspaces. Notice that

signals that are transmitted on the sub-channels that correspond to private subspaces

of the kth user will not be detected by other users. Therefore, if ck,n = 1, on the nth

sub-channel the user k receives

yk,n =
p

P

β
√

dη

k

s̃n + ñk,n . (5.7)

Thus, the individual information rate of user k is given as

R(k)
n = log2

(
1+ P

β2dη

k N0

)
, (5.8)

whereas the rate of other users l ̸= k is zero. In this case, the signal sn in (5.1) can be

designed in a way that it only contains the data of user k, which will correspond to

a conventional OMA signal. For the NOMA transmission, we use the sub-channels

that are shared between several users, i.e., we utilize the common subspace of the

ML-GSVD to transmit the superimposed signals of multiple users. For simplicity,

we assume that MT ≤ MRk for all k. This scenario corresponds to the Case 1 of the

ML-GSVD, where the common subspace is shared among all users, and no private

subspace exists for any user. In general, Case 2 of the ML-GSVD can also be used

in NOMA systems. Since this case combines both private and common subspaces,

only the channels corresponding to the common subspace should be used for the

NOMA communication. Assuming transmission via the common channel, we can

rewrite (5.6) as

yk,n =
p

P

β
√

dη

k

σk,n sn + ñk,n , (5.9)

where σ2
k,n is the generalized singular value of the ML-GSVD corresponding to the nth

common sub-channel, and the signal sn contains the combined data of all users. To

recover the individual signals, users have to perform the SIC process. Therefore, the

information rate of s̃k,n for the kth user is given by

R(k)
n = log2

(
1+

Pα2
k,nσ

2
k,n∑K

j=k+1 Pα2
j ,nσ

2
j ,n +β2dη

k N0

)
, (5.10)
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where N0 is the noise power. The closest user, user K , needs to decode the signals of

all users before decoding his own. Consequently, assuming perfect SIC, the achievable

rate of the K th user is given by

R(K )
n = log2

(
1+

Pα2
K ,nσ

2
K ,n

β2dη

K N0

)
. (5.11)

Next, we consider the choice of the power allocation coefficients αk,n . In general,

power allocation is considered one of the main problems in NOMA systems [ATG+18].

In this study, we propose to allocate the power based on the ML-GSVD generalized

singular values.

It has been mentioned before that the σk,ns from the ML-GSVD satisfy 0 <σk,n < 1,

and the stronger channel gets a larger generalized singular value, i.e., σK ,n >σ1,n . This

relation can be used to calculate the power allocation coefficientsαn = [
α1,n , . . . ,αK ,n

]
that account for the channel conditions of each user. Let us define the matrix C̃ as

C̃ = 1⊘


diag

(
C1

)T

...

diag
(
CK

)T

 , (5.12)

where the matrices Ck are defined in (3.2), and ⊘ denotes the element-wise division.

The values C̃(:,n) =
[

1
σ1,n

, . . . , 1
σK ,n

]T
are inversely proportional to the generalized singu-

lar values of the channel matrices Hk . Thus, we can express the power allocation as

αn = Ĉ(:,n), where Ĉ denotes the matrix C̃ with normalized columns. Such a choice of

αk,ns means that the power will be allocated according to the channel conditions that

are represented by the generalized singular values of the channel.

5.4 Simulation results

In this section, we present the numerical results to assess the performance of the

proposed ML-GSVD-based MIMO-NOMA scheme. For the simulations, we consider

a downlink MIMO-NOMA scenario with one BS and three users. The noise power

is calculated as N0 =−174+ log10 B , where the bandwidth B = 1 MHz. The sum rate

is expressed as Rsum =∑K
k=1

∑MT
n=1 R(k)

n , while the individual user rates are calculated

as R(k) =∑MT
n=1 R(k)

n , where R(k)
n is defined in (5.10). All results are averaged over 1000

Monte Carlo trials.
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In the first simulation, each user is equipped with MRk = 4 antennas, and the BS

has MT = 3 antennas. This scenario corresponds to the case where the ML-GSVD

decomposition provides only the common subspace (Cases 1), i.e., the users receive

superimposed data of all users. We set the distances between the BS and the kth

user to d1 = 200 m, d2 = 15 m, and d3 = 10 m, respectively. The path loss exponent

is equal to η = 3. Figure 5.3 shows the sum rate and the individual rates of each

user with different power allocation coefficients. For the fixed power allocation, the

coefficients are calculated according to the distances and a path loss, while in the case

of the ML-GSVD-based power allocation, the coefficients are calculated dynamically
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based on the generalized singular values. In both cases, the precoding and decoding

matrices are determined based on the proposed ML-GSVD-NOMA scheme. As it can be

observed, the ML-GSVD-based dynamic power allocation shows a better performance,

especially for the sum rate and the individual rates of the second and third users,

which is explained by the fact that the fixed power allocation does not adapt to the

small changes in the channels.

In the second simulation, we compare the performances of the proposed ML-GSVD-

based scheme with the technique proposed in [DAP16]. We consider the scenario,
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where the BS has one antenna1, and the users have four antennas each. The distances

are d1 = 200 m, d2 = 15 m, and d3 = 10 m, respectively. The path loss exponent is set

to η= 3. The results are shown in Figure 5.4. As it can be seen, the proposed scheme

outperforms the reference scheme in terms of the achievable sum rate and the rates of

the second and third users. It should be noted, that the scheme in [DAP16] is limited

to the scenario where MT < MR and assumes that all users have an equal number of

antennas.

In the next simulation, we consider an asymmetric scenario, where the BS has MT = 3

antennas, and three users are equipped with 3, 4, and 6 antennas, respectively, and

compare the performance of the NOMA and OMA schemes. The simulation results are

depicted in Figure 5.5. One can see that the proposed ML-GSVD outperforms the OMA

scheme in terms of the achievable rates of all three users. As it can be observed, the

achievable rate of the third (strongest) user is much higher in case of NOMA, especially

with the increased power, due to the absence of interference from the weaker users.

The rates of the first and the second users are approximately constant at high powers

because they consider the signals of the stronger users as noise. Figure 5.6 depicts

the outage probabilities for NOMA and OMA. The target rates are set to 2 bps/Hz,

4 bps/Hz, and 5 bps/Hz, respectively. As it can be observed, the outage probability

of the weak NOMA user is smaller than for the OMA user which makes the NOMA

transmission more reliable. Whereas with a given transmit power, the strong users

maintain the target rates without outages.

5.5 Conclusions

In this chapter of the thesis, we have presented a new ML-GSVD-based NOMA trans-

mission technique that can be applied in power-domain MIMO-NOMA downlink

communication systems with multiple users. It utilizes the ML-GSVD proposed in

Chapter 3 to design the precoding and decoding matrices that jointly diagonalize the

channels between the BS and the users. Compared to the GSVD-based technique

proposed in [CDDS19], the ML-GSVD can support more than two users on one fre-

quency resource, and the common subspace of the ML-GSVD can be employed to

transmit the combined signals of the K users. Additionally, we have presented a simple

power allocation technique based on the generalized singular values of the ML-GSVD

that outperforms the conventional fixed power allocation. The performance of the

1 The authors in [DAP16] assume that the number of transmit antennas is equal to the number of
clusters, which means that each cluster with K users is maintained by one antenna. Therefore, for a
fair comparison, we assume a single antenna BS in this simulation.
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proposed scheme has been evaluated in terms of the achievable rate and compared to

traditional OMA and to the state-of-the-art NOMA techniques.
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Precoding and rate splitting
with the ML-GSVD for MIMO
broadcast channels 6
In this chapter of the thesis, we present a precoder design for multi-user multiple-input

multiple-output (MU-MIMO) broadcast systems with rate splitting at the transmitter.

The proposed scheme applies to both underloaded and overloaded communication

systems and supports the transmission of multiple common and private streams. We

show how the generalized singular value (GSVD) and multilinear generalized singular

value (ML-GSVD) decompositions can be used to define the number of common

and private streams and adjust the message split. Additionally, we present transmit

precoding and receive combining designs that allow the simultaneous transmission of

common and private streams but do not require successive interference cancellation

(SIC) at the receivers and can be used in cases where the total number of streams does

not exceed the number of transmit antennas [KAH23].

6.1 Introduction

An increasing number of smart devices connected to the global network puts higher

demands on every successive generation of mobile communications. The sixth gener-

ation (6G) networks are anticipated to offer massive connectivity with ultra-reliability

and high quality of service, which in turn, requires more sophisticated technologies

that will provide more efficient use of the bandwidth and power resources. To this end,

the authors in [MCL18; MDC+22] propose the rate splitting multiple access (RSMA)

framework, which encompasses the advantages of two extreme interference manage-

ment strategies, namely, space division multiple access (SDMA) and non-orthogonal

multiple access (NOMA), while enabling their joint and flexible use.

In recent years, the RSMA has attracted particular attention from researchers and

continues to gain popularity. However, the technology has not yet reached its maturity,

and there are still various challenges to be addressed and underdeveloped research

directions to be investigated [MDC+22]. Most of the publications that overview and
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explore rate splitting are dedicated to the multiple-input single-output (MISO) sys-

tems with single-antenna users [MCL18; MDC+22; JC16; MC20]. Yet, several papers

discuss the extension of RSMA to multiple-input multiple-output (MIMO) systems.

The authors in [HRC17] characterize the achievable degree-of-freedom (DoF) regions

of a general two-receiver MIMO broadcast (BC) and MIMO interference channels (IC)

with imperfect channel state information at the transmitter (CSIT). The achievable

rates of linearly precoded BC RSMA schemes with K users have been investigated

in [LYS21; LY18]. Moreover, rate splitting has found an application in massive MIMO

systems in [DCGC16; DMC21]. The precoder design and optimization for the multi-

user (MU) MIMO downlink with rate splitting has been studied in [MMDC22]. The

authors additionally validate their results via link-level simulations. However, the

model in [MMDC22] is limited to a scenario where all receivers have the same number

of antennas. Linear and non-linear precoding and stream combining techniques for

RSMA in MIMO systems with imperfect CSIT have been developed in [FLC20; FDLC21].

Moreover, in [FL22] the authors consider another essential RSMA problem and present

adaptive power allocation schemes to distribute the transmit power between the com-

mon and private streams with a reduced computational cost. The precoder design for

an underloaded and critically loaded1 downlink MIMO system with rate splitting has

been presented in [KS22; DKS22].

Main contributions. Similarly, in this contribution, our focus falls on the precoder

design for MIMO broadcast systems with common and private streams where both

the base station (BS) and the receivers are equipped with multiple antennas. How-

ever, in contrast to [FLC20; FDLC21; FL22], we do not limit the number of common

streams to one and allow the transmission of multiple common and private streams.

We propose a precoding design for the common and private streams based on the mul-

ticast precoder design in [JNTS15] and the FlexCoBF (flexible coordinated beamform-

ing) scheme in [SRH13]. In contrast to the schemes in [KS22; DKS22], the proposed

techniques are applicable in both under- and overloaded communication scenarios.

Moreover, we show how the generalized singular value (GSVD) [Van76; PS81] and the

multilinear generalized singular value (ML-GSVD) [KAH20; KAH22] decompositions

can be used to define the number of common and private streams and adjust the

message split. The ML-GSVD extends the GSVD to the multiple matrices case, enabling

a joint decomposition of more than two matrices. Therefore, it applies to systems with

more than two users where the common streams can also be transmitted to selected

groups of users (generalized or multi-layer RS, where the number of SICs corresponds

to the number of groups [MDC+22]). Additionally, we present the transmit precoding

1 In the under- and critically loaded MU-MIMO systems, the total number of receive antennas is less or
equal to the number of antennas at the BS.
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Figure 6.1. One-layer MIMO rate-splitting multiple access with K users.

and receive combining designs that enable the simultaneous transmission of common

and private streams but do not require successive interference cancellation (SIC) at

the receivers and can be used in cases where the total number of streams does not

exceed the number of transmit antennas.

The remainder of this chapter is organized as follows. Section 6.2 provides the system

model and a brief description of the considered RSMA system. Then, we present

a technique to design precoders for common and private streams in Section 6.3.

Section 6.3.2 considers the special case of rate splitting, where the common and

private streams can be decoded jointly without SIC at the receivers. Section 6.4 shows

the simulation results, and Section 6.5 concludes the chapter.

6.2 System model

We consider a multi-user MIMO downlink system where the base station (BS) equipped

with MT transmit antennas serves K users, each equipped with MRk receive antennas.

The MRk ×MT channel matrix from the BS to the kth user is represented by Hk , and

the transmitted data is denoted as x ∈CMT ×1. The transmitted signal is subject to a

total power constraint E
{∥x∥2

}≤ Pt . Consequently, the signal received at the kth user

is given by

yk = Hk x +nk ∈CMRk
×1, (6.1)

where nk ∼ CN
(
0,σ2

k IMRk

)
is an Additive White Gaussian Noise (AWGN) vector whose

elements are i.i.d. complex Gaussian random variables with zero mean and variance

σ2
k .

In this study, we consider the rate splitting technique to transmit the data to multiple

users. In one-layer RSMA every user’s message set Wk is split into common and
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private parts denoted as Wc
k and Wp

k , respectively (see Figure 6.1). The common

parts are then combined and encoded together into a common stream sc of size

lc , whereas the private message sets Wp
k are encoded independently into K private

streams sk of size lk , k = {1, . . . ,K }. Consequently, the resulting data stream vector to

be transmitted is equal to s = [
sT

c , sT
1 , . . . , sT

K

]T ∈Cl×1, where l = lc +∑K
k=1 lk denotes the

total number of data streams. We assume that the total number of common streams

lc cannot exceed min
(
MT , MRi

)K
i=1 and the total number of private streams satisfies∑K

k=1 lk ≤ MT . Subsequently, the common stream sc and the K private streams sk are

precoded via the precoding matrices Pc ∈CMT ×lc and Pk ∈CMT ×lk , respectively. Thus,

the combined transmit precoding matrix can be written as P = [Pc ,P1, . . . ,PK ] ∈CMT ×l .

Then, the resulting transmitted signal is expressed as

x = Pc sc +
K∑

k=1
Pk sk = P s ∈CMT ×1. (6.2)

The signal received at the kth user can be rewritten as

yk = Hk x +nk (6.3)

= Hk (Pc sc +
K∑

k=1
Pk sk )+nk (6.4)

= Hk P s +nk (6.5)

with E
{

ssH
} = Il . As a result, the total power is subject to the constraint ∥P∥2

F ≤ Pt .

In the following sections, we present the precoder designs and a message splitting

approach based on the GSVD (for two users) and the ML-GSVD (for more than two

users). Therefore, to ensure clarity and avoid unnecessary repetition, we invite readers

to review briefly the definition (3.2) and the Cases 1, 2, and 3 of the ML-GSVD provided

in Section 3.2.

6.3 Precoder design for common and private
streams

In this section, we present two methods to design the precoders for the RSMA system

with private and common streams. Section 6.3.1 focuses on the general case, where

the total number of streams can exceed the number of transmit antennas. Whereas,

in Section 6.3.2 we consider a special case where the total number of data streams

does not exceed the number of transmit antennas and show that common and pri-
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Figure 6.2. Interference level based strategies in RSMA.

vate messages can be precoded and decoded jointly without performing SIC at the

receivers.

6.3.1 Channel assignment and precoder design

Considering the MIMO scenario where users can receive multiple data streams, the

number of common and private streams transmitted in parallel has to be determined.

Moreover, the authors in [MDC+22] showed (for the MISO case) that RSMA can be

reduced to SDMA or NOMA depending on the strength or orthogonality of the users’

channels (see Figure 6.2). In this regard, the ML-GSVD and the GSVD provide an

elegant and straightforward way to determine the channels’ strengths and alignment.

As an example, let us consider the GSVD of two channel matrices H1 and H2 with

the diagonal terms as in (2.24) and (2.25). The GSVD separates the channels into

three independent subspaces (or parallel virtual channels (VCs)): a common subspace

(S12) shared between the two users and two private subspaces (S1 and S2) that are

orthogonal to each other. Bases for these subspaces are given by the corresponding

columns of the matrix A in (2.23). The presence or absence of the private and com-

mon subspaces depends on the channel conditions. Therefore, we use the GSVD to

determine the existence of a common subspace to transmit the common messages

and, consequently, the selected number of common streams, which is equal to the size

ck of the common subspace. For scenarios with more than two users, the ML-GSVD

can be applied. It estimates the common subspace shared between all K users and

between groups of users, which can be further used in multi-layer rate splitting. Again,

the bases for these subspaces are given by the corresponding columns of the matrix A

of the ML-GSVD in (3.2).

Subsequently, the defined number of common and private streams can be used for the

design of the precoding matrices Pc and Pk in (6.4). The authors in [JNTS15] propose

a multicast precoding scheme for MIMO orthogonal frequency division multiplexing

(OFDM) systems to transmit common messages to a selected group of users. It can
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also be generalized for MIMO-RSMA to transmit the common streams to all or selected

groups of users as

Pc = 1

βc

∑
k∈SK

gkVk , (6.6)

where the matrix Vk is the right singular matrix corresponding to the first lc = ck

singular values of the channel matrix Hk , SK is the set of users K that decode the

common message, gk is a power normalization according to the effective channel gain,

and βc is a normalization constant to fulfill the transmit power constraint. All users

will first decode the common streams sc by treating the interference from the private

streams as noise. Thus, the achievable rate for the common streams at user k can be

expressed as

Rc
k = log2 det

(
Ilc +P H

c H H
k (Gc

k )−1Hk Pc
)

, (6.7)

where the term Gc
k =σ2

k IMRk
+∑K

i=1 Hk Pi P H
i H H

k denotes the noise plus interference

covariance matrices. To ensure that all K users successfully decode the common

message, the resulting achievable common rate Rc should not exceed min
(
Rc

i

)K
i=1

.

The private streams sk are decoded independently by the corresponding users after

performing SIC by subtracting the successfully decoded common signal Hk Pc sc from

the received signal yk . The private precoding matrices Pk can be designed based on

the FlexCoBF scheme proposed in [SRH13], which provides freedom in the choice of

the linear transmit and receive beamforming strategies and can be applied in both

under- and overloaded MU-MIMO systems. Thus, the achievable rates for the private

streams can be expressed as

Rp
k = log2 det

(
Ilk +P H

k H̃ H
k (G p

k )−1H̃k Pk
)

, (6.8)

where the term G p
k =σ2

k IMRk
+∑K

i=1,i ̸=k H̃k Pi P H
i H̃ H

k corresponds to the noise plus in-

terference from the private streams of the users other than k, and H̃k =W H
k Hk is the

effective channel matrix, where Wk is the decoding matrix of user k. The resulting

rate achieved at user k is written as Rk = Rp
k +Ck , where Ck is a portion of the com-

mon rate assigned to the kth user, such that
∑K

k=1 Ck = Rc . The precoding schemes

presented above assume that the number of common streams lc does not exceed

min
(
MT , MRi

)K
i=1. The total number of private streams satisfies

∑K
k=1 lk ≤ MT . There-

fore, the described schemes are applicable in a wide range of scenarios, including

cases where the total number of streams l > MT .
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6.3.2 Special case: ML-GSVD-based transmission

Next, let us introduce the precoding and decoding schemes for the scenario where the

total number of streams transmitted in parallel satisfies l = lc +∑K
k=1 lk ≤ MT . Based

on the ML-GSVD of the channel matrices Hk , the overall precoding matrix P can be

defined as

P = 1

β
AH−, (6.9)

where β is a normalization coefficient ensuring the total power constraint. When

considering a scenario with both common and private channels, (Case 2 of the ML-

GSVD), the matrix A is MT ×MT and is invertible. The decoding matrix of the kth user

is defined as Wk = Bk . Consequently, the received data at the kth user in (6.5) can be

rewritten as

W H
k yk =W H

k Hk P s +W H
k nk (6.10)

=Ck s + ñk , (6.11)

where ñk = B H
k nk , and Ck is a diagonal matrix as in (3.2) and (3.9). As it can be seen

from (6.10), after applying the ML-GSVD, the MIMO channels Hk of K users can be

considered as independent parallel virtual channels. Then, common streams can

be transmitted on the common VCs (common ML-GSVD subspace) and decoded

by the corresponding users. Private VCs (private ML-GSVD subspaces) are used to

transmit the private streams that are detected individually by the intended users. It

should be noted that by utilizing the ML-GSVD or GSVD for the transmission of private

and common streams, we enable the joint detection of private and common streams

without performing SIC at receivers, which reduces the complexity of the system and

avoids error propagation, especially in multi-layer RSMA systems where several SIC

steps have to be performed. Let us denote the entries of the diagonal matrixΣck in (3.9)

asλk,n , n ∈ {1, . . . ,ck }. Then since the common VC gains are equal toλk,n , n ∈ {1, . . . ,ck },

the achievable rate of the nth common stream for the kth user is given by

Rc
k,n = log2

(
1+

Pc,nλ
2
k,n

β2σ2
k

)
, (6.12)

where Pc,n is the portion of the total transmit power assigned to the common streams.

As in (6.7), the resulting common rate Rc
n for the nth stream should not exceed

min
(
Rc

i ,n

)K

i=1
. The private channels have a unit channel gain. Thus, the individual
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Figure 6.3. Virtual channel gains of the users.

information rate of user k for the private stream m, m ∈ {1, . . . , pk } can be expressed

as

Rp
k,m = log2

(
1+ Pp,m

β2σ2
k

)
, (6.13)

where Pp,m is the portion of the total transmit power assigned to the mth private

stream. The resulting rate achieved at user k is written as Rk =∑pk

j=1 Rp
k, j +

∑ck

i=1 Ck,i ,

where Ck,n , n ∈ {1, . . . ,ck }, is the portion of the common rate Rc
n assigned to the kth

user, such that
∑K

k=1 Ck,n = Rc
n . We can choose the Ck,ns to be proportional to λk,n , i.e,

the individual VC gains.
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Figure 6.4. Sum Rates. K = 2. Results are averaged over 1000 Monte Carlo trials.

6.4 Simulation results

In this section, we present some numerical results to evaluate the performance of

the proposed rate splitting schemes. The first simulation illustrates the private and

common subspaces of the channel matrices provided by the GSVD and the ML-GSVD.

For the simulations, we consider an uncorrelated Rayleigh fading MIMO channel

model. Figure 6.3(a) shows the virtual channel gains obtained via the GSVD for an

overloaded MIMO downlink system with MT = 8 transmit antennas and two users

equipped with MRk = 5 antennas each. As it can be observed, the two users have

three private channels (with unit channel gain) and two common channels which

can be used to transmit the common message. Since User 2 experiences a higher

common channel gain on the VC 4, it can be assigned a larger portion of the common

rate on that stream. Figure 6.3(b) demonstrates the virtual channel gains obtained

with the ML-GSVD of the channels Hk for an asymmetrical scenario where the BS is

equipped with MT = 8 antennas, and three users are equipped with MR1 = 3, MR2 = 4,

and MR3 = 5 antennas, respectively. The ML-GSVD overcomes the limitation of the

GSVD to two matrices and allows a joint decomposition of K ≥ 2 users’ channels. As it

can be seen from Figure 6.3(b), in such a case the ML-GSVD distinguishes 1, 1, and 3

private VCs for the users 1, 2, and 3, respectively. Moreover, there are two common

channels for a group of two users (S23 and S12) and one common channel for all three

users (S123).

In the next simulation experiments, we assess the performance of the proposed pre-

coding schemes. First, we consider a two-user downlink MIMO scenario with one
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Figure 6.5. Sum Rates. K = 3. Results are averaged over 1000 Monte Carlo trials.

BS equipped with MT = 5 transmit antennas and two receivers both equipped with

MRk = 3 antennas. The total number of streams is equal to MT . This scenario corre-

sponds to the GSVD providing both common and private subspaces. Figure 6.4 shows

the sum rate performances for the precoding schemes proposed in Sections 6.3.1

and 6.3.2 and their comparison to NOMA (data of the first user is transmitted on

the private streams, and data of the second user is transmitted on the common

streams [MDC+22]) and SDMA (zero power is assigned to the common streams).

We perform the power allocation based on an exhaustive search, maximizing the sum

rate and assuming that the users have equal weights.

Figure 6.5 shows the achievable sum rates for a scenario with K = 3 users, where the

BS and every user is equipped with MT = 10 and MRk = 4 antennas, respectively. In

this case, the common streams can be sent to all three or to a group of two users (for

K > 2 we employ the ML-GSVD to define the common and private subspaces as well as

the number of streams). Such a scenario corresponds to the generalized RS where the

number of SIC layers L can increase up to 4 for K = 3 users (L = 2K−1, see [MDC+22] for

details). The scheme described in Section 6.3.2 allows transmitting and receiving the

common and private steams without SIC. As shown in Figures 6.4 and 6.5, it performs

better than the RSMA scheme for the higher SNRs. In general, both proposed rate

splitting techniques outperform the SDMA and NOMA for the presented two and three

users scenarios.

90 Chapter 6 Precoding and rate splitting with the ML-GSVD for MIMO broad-
cast channels



6.5 Conclusions

In this chapter of the thesis, we have proposed a precoder design for MIMO broadcast

systems with rate splitting at the transmitter. We have shown how the GSVD and the

ML-GSVD can be employed to define the number of common and private streams

as well as to adjust the message split. The proposed scheme applies to both under-

loaded and overloaded communication systems and supports the transmission of

multiple common and private streams. Moreover, for the cases where the total number

of streams does not exceed the number of transmit antennas, we have introduced

transmit precoding and receive combining designs based on the ML-GSVD, which

allow simultaneous transmission of common and private streams but do not require

SIC at the receivers. The use of the ML-GSVD overcomes the two-user limitation of

the GSVD, allowing its application to systems with more than two users where the

common streams can also be transmitted to selected groups of users (multi-layer

hierarchical or generalized RS). Simulation results have shown that both proposed

rate splitting schemes outperform SDMA and NOMA.
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Rank-(Lr ,Lr ,1) Block-Term
Decomposition 7
The block-term decompositions (BTD) represent tensors as a linear combination of low

multilinear rank terms and can be explicitly related to the canonical polyadic decom-

position (CPD). In this chapter of the thesis, we introduce the SECSI-BTD framework,

which exploits the connection between these two decompositions to estimate the

block-terms of the rank-(Lr ,Lr ,1) BTD. The proposed SECSI-BTD algorithm includes

the initial calculation of the factor estimates using the SEmi-algebraic framework

for approximate Canonical polyadic decompositions via SImultaneous Matrix Diag-

onalizations (SECSI), followed by clustering and refinement procedures that return

the appropriate rank-(Lr ,Lr ,1) BTD terms. Moreover, we introduce a new approach

to estimate the multilinear rank structure of the tensor based on the higher-order

singular value decomposition (HOSVD) and k-means clustering. Since the proposed

SECSI-BTD algorithm does not require a known rank structure but can still take advan-

tage of the known ranks when available, it is more flexible than the existing techniques

in the literature. Additionally, SECSI-BTD does not require multiple initializations,

and the simulation results show that it provides more accurate results and a better

convergence behavior for an extensive range of SNRs [KSP+23].

7.1 Introduction

Owing to multidimensionality-related benefits, tensor-based techniques have become

a primary tool for many signal processing applications. Tensor decompositions are

often identifiable under mild uniqueness conditions [DD17], and compared to classical

matrix-based approaches, they allow preserving the data’s original structure when

it is inherently multidimensional. This enables modeling a signal across multiple

domains and facilitates the interpretation of results. Additionally, a variety of tensor

factorizations allow choosing a technique that best suits a given task or data.

Probably the most prominent and extensively used tensor decompositions are the

higher-order singular value decomposition (HOSVD) [DDV00a; Tuc66] and the canon-

ical polyadic decomposition (CPD), sometimes also referred to as CANDECOMP
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(canonical decomposition) or PARAFAC (parallel factors) [CC70; Har70; KB09]. They

have found their applications in a wide range of fields, including statistics, commu-

nications, localization, biomedical signal processing, source separation, and many

others [KB09; SDF+17]. Furthermore, both decompositions have several variations

and extensions, and the block-term decomposition (BTD) can be considered as one

of them. Depending on the ranks of sub-blocks in the BTD, several types of this de-

composition have been distinguished in the literature, for example, decomposition in

rank-(L,L,1) terms, in rank-(L, M , N ) terms, or in rank-(L, M , ···) terms [DeL08a; DN08].

In this study, our focus falls on the block-term decomposition in rank-(Lr ,Lr ,1) terms,

which has gained increasing attention from researchers in the last decade.

Whereas CPD techniques are quite well understood in the literature (there are elegant

uniqueness theorems, stable and powerful tools for their computation and model

order estimation), block-term decompositions are still a subject of active research

since they pose a more complex problem due to inherent ambiguities and weaker

uniqueness properties. Interestingly, exactly these properties render the block-term

decompositions attractive for some applications since their uniqueness conditions are

less strict, and they can be applied under more general circumstances than the CPD.

However, state-of-the-art BTD frameworks as, for example, Tensorlab [VDS+16], do

not always provide a stable decomposition performance, implying that they are prone

to erroneous estimation of the factors for a great range of possible model parameters

(these can be traced back to suboptimal initialization of the BTD-algorithm). An

additional challenge that arises before computing the BTD is the estimation of the

number of BTD terms and the multilinear ranks. For instance, in Tensorlab solutions,

the number of rank-(Lr ,Lr ,1) terms as well as the Lr s have to be known beforehand,

which might not be the case for some applications.

Recently, block-term decompositions of noise-corrupted tensors have received a lot of

attention in different research areas. The authors in [DeL08b; DeL08a; DN08; ND09;

DeL11; SVBD13] introduce the definitions, a link to the CPD, and the uniqueness

conditions for different types of block-term decompositions as well as optimization-

based and algebraic algorithms to estimate the block-term factors assuming that the

rank structure is known beforehand. On the other hand, the authors in [RKG21b;

RKG21a; RGK21; GRK22; GOF+20] present the hierarchical iteratively reweighted least

squares and the alternating group lasso algorithms that estimate both the ranks and the

factors of rank-(Lr ,Lr ,1) BTDs. However, they do not exploit prior knowledge of ranks

when available and require multiple initializations to ensure convergence. Another

recent paper on the multilinear rank decomposition investigates the conditions under

which the decomposition in rank-(Lr ,Lr ,1) terms is unique and can be computed via
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an eigenvalue decomposition [DD20]. The BTD algorithm based on the group sparsity

property of the loading matrices introduced in [HAK+17b] also allows performing the

decomposition and the model order estimation. Still, it is limited to a rank-(L,L,1)

BTD with equal multilinear ranks.

Other research directions, that further exploit the BTD, include a variety of different

applications and the extension to coupled decompositions. For instance, the unique-

ness conditions and the algorithms for coupled CPD and BTD in rank-(Lr,n ,Lr,n ,1)

terms are discussed in [SD15; SDD15], and structured data fusion by means of cou-

pled tensor decompositions is presented in [SVBD15]. The authors in [GLD+16] use a

coupled block simultaneous generalized Schur decomposition to calculate the cou-

pled rank-(Lm ,Ln , ···) BTD. In [SKKH22] and in Chapter 8 of this thesis, we propose

an algorithm to calculate the coupled rank-(Lr ,Lr ,1) BTD of multiple tensors with a

common mode which often occurs in biomedical data applications [CRHH21]. More-

over, several authors have presented many other practical applications of the BTD,

which include communications signal processing [DB08], image and graph analy-

sis [GPP20], radar systems [YGL+19], and biomedical data processing [RHMZ15; OZ19;

RAZ16; Zar17; HCS+14]. The nonnegative rank-(Lr ,Lr ,1) and coupled rank-(Lr ,Lr ,1)

decompositions with application to hyperspectral imagery and cartography are inves-

tigated in [ZFHW19; XQZT19; ZFW+20]. The authors in [GP20] propose an algorithm

to compute the rank-(L, M , N ) BTD of large streaming tensor datasets. Another way

of looking at the CPD and BTD is discussed in [TPC19; TPC21]. The authors view

these decompositions as a special case of the Tucker decomposition and introduce

the Krylov-Levenberg-Marquardt algorithm to compute it. Compared to the rank-

(Lr ,Lr ,1) BTD studied in this thesis, the BTD in [TPC19] is considered as a sum of

Tucker tensors with a block-diagonal core tensor which in turn requires prior knowl-

edge of the block structure (multilinear ranks).

Main contributions. This chapter of the thesis proposes a new approach to calculate

the rank-(Lr ,Lr ,1) block-term decomposition of noise-corrupted data based on the

SEmi-algebraic framework for approximate Canonical polyadic decompositions via

SImultaneous Matrix Diagonalizations (SECSI) [RH13], which shows enhanced nu-

merical stability even for low SNR scenarios. In contrast to the schemes in [RKG21b;

RKG21a; RGK21; GOF+20], our algorithm does not require multiple initializations to

ensure convergence. Moreover, compared to the algorithm in [VDS+16], the proposed

approach can perform the decomposition even with an unknown rank structure. To

this end, we introduce an extension of the LaRGE (LineAr Regression of Global Eigen-

values) [KDHH21] scheme, originally designed for the estimation of the CPD rank of a

noise-corrupted low-rank tensor, to estimate the number of Lr terms. We also show
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how the Lr s can be estimated through k-means clustering. This chapter explores a

general rank-(Lr ,Lr ,1) decomposition of a single three-dimensional tensor with possi-

bly unknown block- and multilinear ranks. We provide a detailed description of the

proposed approach, including the CPD to BTD transformation, the estimation of ranks,

and the calculation of the BTD factors. Moreover, we conduct extensive and thorough

synthetic data simulations to validate the proposed algorithm and compare it to the

schemes from the literature. We refer to the proposed rank-(Lr ,Lr ,1) BTD framework

as SECSI-BTD. It should be mentioned that it does not require a known rank structure

but can still exploit prior knowledge of the model order when available. Altogether,

the SECSI-BTD framework to compute an approximate BTD from noise-corrupted

measurements is composed of three main blocks (Figure 7.1):

• The model order estimation block based on the LineAr Regression of Global

Eigenvalues (LaRGE) scheme to estimate the number of block-terms and the

sum of multilinear ranks (can be skipped if the ranks are known beforehand);

• The computation of the initial estimates using the BTD extension of the SECSI

framework and clustering, which includes the calculation of the initial rank-

(Lr ,Lr ,1) decomposition factors via simultaneous matrix diagonalizations and

clustering via the k-means algorithm;

• The refinement procedures that bring the initial estimates to the BTD form and

return the final estimates of rank-(Lr ,Lr ,1) terms by employing ALS or NLS

iterations [DN08; SVBD13].

For notational simplicity, hereafter, by writing "BTD" or "rank-(Lr ,Lr ,1) decomposi-

tion" we refer to the block-term decomposition in rank-(Lr ,Lr ,1) terms. Moreover, we

use ΣLr to denote
∑R

r=1 Lr .

The rest of the chapter is organized as follows. Section 7.2 provides some preliminaries

on the BTD. In Section 7.3, we present an algorithm to estimate the model order of the

rank-(Lr ,Lr ,1) BTD. Then, we introduce a simultaneous matrix diagonalization (SMD)-

based technique to calculate the block-term factor matrices in Section 7.4. Section 7.5

presents the refinement procedures to construct the final estimates. The numerical

results are shown in Section 7.6, and Section 7.7 is devoted to the conclusions.
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Figure 7.1. Block-diagram of the SECSI-BTD framework.

7.2 Preliminaries: BTD vs. CPD

In this study, we exploit the connection between the CPD and the BTD to estimate

the block-terms of a rank-(Lr ,Lr ,1) decomposition. Even though their uniqueness

properties differ, the BTD and CPD have much in common. The BTD can be seen as a

special case of the CPD with collinearity in one of the factors, see Figure 7.2. Then, the

rank-(Lr ,Lr ,1) BTD of a three-dimensional noise-corrupted tensor T ∈ FI×J×K can

either be written in a BTD form [VDS+16]

T =
R∑

r=1

(
Ar ·B T

r

)◦cr +N , (7.1)

or in a CPD form

T =
R∑

r=1

Lr∑
ℓ=1

Ar,(:,ℓ) ◦Br,(:,ℓ) ◦cr +N (7.2)

=I3,ΣLr ×1 A ×2 B ×3 C (r) +N , (7.3)

where R and Lr are the number of block-terms and the multilinear ranks, respectively.

Moreover, Ar ∈ FI×Lr and Br ∈ FJ×Lr are the r -th submatrices of A and B so that
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Figure 7.2. Rank-(Lr ,Lr ,1) BTD with L1 = 3, L2 = 2, and R = 2 as a CPD with repeated columns
in the 3-mode (matrix C ).

A = [A1, A2, ..., AR ] ∈ FI×ΣLr and B = [B1,B2, ...,BR ] ∈ FJ×ΣLr . The vectors cr ∈ FK×1,

r = {1, ...,R} are stacked in the matrix C so that C = [c1,c2, ...,cR ] ∈ FK×R . The matrix

C (r) = [c1 ·1T
L1

,c2 ·1T
L2

, · · · ,cR ·1T
LR

] ∈ FK×ΣLr (7.4)

has repeated (or linearly dependent) columns. Then, the BTD in (7.1) and (7.2) can

be viewed as CPD with linear dependencies in the third factor matrix or, similarly, the

CPD can be considered as a BTD with all Lr s being equal to one. With repeated or

colinear columns in C (r), Kruskal’s condition [SS07] (see Section 2.2.4) for uniqueness

is evidently not satisfied. On the other hand, the authors in [DeL08a; DD20] point

out that the assumption that some Lr s are different from 1 is more realistic for some

applications, and multilinear rank decompositions still possess attractive uniqueness

properties (we list some uniqueness conditions for the rank-(Lr ,Lr ,1) BTD in Ap-

pendix A.4). At the same time, while the CPD is said to be essentially unique up to an

arbitrary permutation and scaling of its rank-one terms, an additional matrix product

ambiguity occurs when considering the essential uniqueness of the multilinear-rank

terms in the BTD

Ar B T
r = (Ar Hr )

(
H−1

r B T
r

)= A′
r B ′T

r , (7.5)

where Hr is an arbitrary nonsingular matrix. Since this submatrix product ambiguity

is hard to resolve, the BTD is often written in the following form

T =
R∑

r=1
Er ◦cr +N , (7.6)

where Ar and Br are merged into Er ∈ FI×J such that Er = Ar B T
r [DeL08a].

In the next sections, we will introduce an approach to determine the number of

terms R and the multilinear ranks Lr using the HOSVD and clustering, followed by an

estimation of the BTD factors via SECSI [RH13].
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7.3 HOSVD-based model order estimation

In the most common applications of the BTD, such as electrocardiography (ECG), or

electroencephalography (EEG) and magnetoencephalography (MEG) data processing

or source separation, the rank structure is usually not available beforehand. Some

papers determine the ranks by trial and error, which is very straightforward but not

efficient [CRHH21; dVD+07]. The authors in [RKG21b; RKG21a; RGK21; GOF+20]

propose approaches that compute the factors and ranks of the BTD jointly in an

iterative way which is computationally not effective in cases when, for example, only

the rank structure itself is a subject of interest. In this study, we show how to estimate

the model order of noise-corrupted BTD tensors by separating the signal and noise

subspaces based on an extension of the linear regression of global eigenvalues (LaRGE)

approach in [KDHH21].

To this end, let us consider a noise-corrupted three-dimensional measurement ten-

sor T given by T = T 0 +N ∈ FI×J×K , where T 0 = ∑R
r=1

(
Ar ·B T

r

)◦ cr ∈ FI×J×K is the

noiseless BTD structured data, and N ∈ FI×J×K is an additive noise tensor. Whereas

the rank of the first two modes of this rank-(Lr ,Lr ,1) block-term decomposition is

assumed to be equal to ΣLr , the rank in the 3-mode is assumed to be R. Then, the

HOSVD of T is given by

T =S×1 U1 ×2 U2 ×3 U3, (7.7)

where S ∈ FI×J×K is the core tensor, and U1 ∈ FI×I , U2 ∈ FJ×J , and U3 ∈ FK×K contain

the left singular vectors of the n-mode unfoldings of X computed from
[T ]

(n) =
UnΣnV H

n , n ∈ {1,2,3}, where Σn contains the n-mode singular values σ(n)
i on its main

diagonal. The n-mode singular values σ(n)
i are related to the n-mode eigenvalues λ(n)

i

of
[T ]

(n)

[T ]H
(n) through λ(n)

i =
(
σ(n)

i

)2
. Moreover, the eigenvalues can be computed

as diag
(
λ(n)

1 , . . . ,λ(n)
Q

)
= [S]

(n) ·
[S]H

(n), where Q ∈ {I , J ,K } and
[S]

(n) is the n-mode

unfolding of the core tensor S in (7.7).

The main concept of LaRGE is based on the fact that (asymptotically) the noise eigen-

values have an exponential decay and, therefore, unlike the signal eigenvalues, can

be approximated by a straight line on a logarithmic scale. Hence, the point where the

linear regression fails will indicate the detection of the smallest signal eigenvalue and,

accordingly, the rank. In the original LaRGE algorithm [KDHH21] for the estimation of

the CPD rank, the authors perform the linear regression on the so-called global eigen-

values [CHRDG07]. The i th global eigenvalue is equal to the product of the i th n-mode

eigenvalues, where i = 1, . . . , M , M = min
(
I , J ,K

)
. The assumption that all factors in

the CPD model have the same rank (column dimension) allows taking into account
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the eigenvalues from all modes and leads to more reliable estimates. On the other

hand, as it follows from the definition of the multilinear rank decompositions, not all

the n-mode ranks have to be equal. If this asymmetric rank structure is not taken into

account, the global eigenvalues might be heavily affected by the rank deficiencies in

the third mode. Therefore, we split the BTD rank structure estimation procedure into

two runs to accommodate this. During the first run, the ΣLr are estimated based on

the semi-global eigenvalues from the 1-mode and the 2-mode

λ̃(1,2)
i =

(
σ(1)

i

)2 ·
(
σ(2)

i

)2
, (7.8)

and during the second run, only the 3-mode is used

λ̃(3)
i =

(
σ(3)

i

)2
. (7.9)

The linear regression scheme can be applied to λ(1,2)
i = ln λ̃(1,2)

i and λ(3)
i = ln λ̃(3)

i sepa-

rately to estimate ΣLr and R as follows. Starting from the smallest eigenvalue λM , find

a prediction λ̂i of the next eigenvalue on a logarithmic scale1 subject to

arg min
a1,a2

(
M−k∑
i=M

(
λ̂i −λi

)2

)
, (7.10)

where

λ̂i = a1i +a2 (7.11)

is the smallest predicted eigenvalue, k = {1, . . . , M − 1} is the step index, and M is

equal to min
(
I , J

)
when estimating ΣLr and to K when estimating R. For each step k

calculate the relative prediction error as follows

δM−k = λM−k − λ̂M−k∣∣λ̂M−k
∣∣ = ∆M−k∣∣λ̂M−k

∣∣ . (7.12)

Next, calculate the standard deviation of the approximation error as

σM−k =
√√√√ 1

k

M−k∑
i=M

(
∆i − 1

k

M−k∑
i=M

∆i

)2

, (7.13)

1 Since the further rank estimation steps are the same for both ΣLr and R, for notational simplicity, we

skip the superscripts (1,2) and (3) in λi (λi corresponds to λ(1,2)
i when estimating ΣLr , and to λ(3)

i
when estimating R) and M .
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Algorithm 2 LaRGE-BTD: ΣLr (case 1) and R (case 2)

Require: 3-way tensor T ∈ FI×J×K

1: σ(n)
i ← HOSVD(T )

2: Case 1: M = min
(
I , J

)
, Case 2: M = K

3: for i = 1, . . . , M do

4: Case 1: λ̃i =
(
σ(1)

i

)2 ·
(
σ(2)

i

)2
; Case 2: λ̃i =

(
σ(3)

i

)2

5: λi = ln λ̃i

6: end for
7: for k = 1, . . . , M −1 do
8: prediction λ̂M−k according to (7.11)

9: δM−k = λM−k−λ̂M−k∣∣λ̂M−k

∣∣ = ∆M−k∣∣λ̂M−k

∣∣
10: σM−k =

√
1
k

∑M−k
i=M

(
∆i − 1

k

∑M−k
i=M ∆i

)2

11: PESDRk = δM−k
σM−k−1

12: if (PESDRk−1 < ρ)∧ (PESDRk ≥ ρ) then
13: Rank = M −k
14: break
15: end if
16: end for

where the second quantity in parentheses denotes the mean value of the absolute

prediction error ∆i . Then, compute the ratio between the relative prediction error and

the standard deviation of the approximation errors in the previous steps as

PESDRk = δM−k

σM−k−1
. (7.14)

The first signal eigenvalue is detected when the Prediction Error to Standard Deviation

Ratio (PESDR) exceeds the predefined threshold ρ for the first time. The number of

signal eigenvalues corresponds to an estimate of ΣLr when regression is performed

on the 1-mode and 2-mode eigenvalues, and to an estimate of R when the 3-mode

eigenvalues are used. The estimate of ΣLr is further employed for the computation of

initial estimates via SECSI, while the estimate of R is used for the clustering of the BTD

terms as depicted in Figure 7.2.

We refer to the proposed model order estimation algorithm (for the BTD) as LaRGE-

BTD, whose main steps are summarized in Algorithm 2. Moreover, to avoid estima-

tion errors appearing due to a relatively small difference between the rank and the

smallest dimension of the tensor, LaRGE with a penalty function (LaRGE PF) can be

employed [KDHH22]. The penalty function ensures that the value of σM−k exceeds

a certain threshold ε, which allows reducing the outliers that may lead to wrong esti-

mates. For more details on the LaRGE algorithm, we refer the reader to [KDHH21].
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ρR = 1.5 and ρΣLr = 0.5.

Figure 7.3. Performance of LaRGE-BTD. Tensor of size 40×40×40 with R = 3, Lr = [3,3,3].
Results are averaged over 1000 Monte-Carlo trials.

The numerical results of the LaRGE-BTD estimation performance are demonstrated

in Figure 7.3. For the simulations, 1000 complex-valued tensors were constructed

according to the model in (7.1) with factor matrix entries drawn from a zero mean

uncorrelated Gaussian distribution with variance σ2
n . Accordingly, the SNR is defined

as 1/σ2
n . Figure 7.3(a) depicts the percentage of correct rank estimates as a function

of the threshold ρ. As it can be observed, different thresholds should be used for

the estimation of the number of block-terms and the sum of the multilinear ranks.

According to the simulation results, the recommended threshold ρ for R and ΣLr are

between 1.5−2 and 0.4−0.5, respectively. The second simulation in Figure 7.3(b) shows

the performance of LaRGE-BTD as a function of the SNR (ρR = 1.5 and ρΣLr = 0.5). As

it can be seen, the estimation of the number of block-terms R is more reliable. This

can be explained by the fact that the difference between ΣLr and the dimensions of a

tensor is smaller than the difference between R and the dimensions of a tensor.
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7.4 Extension of the SECSI framework for
block-term decomposition

In contrast to previous [DeL06] simultaneous matrix diagonalization (SMD)-based

approaches, the SECSI framework exploits the tensor structure of the CPD to construct

not only one but the full set of possible SMDs. By solving all SMDs, multiple estimates

of the factor matrices can be obtained, and strategies have been presented to choose

the best estimate in a subsequent step [RH13].

In this chapter, we introduce an extension of SECSI that enables the computation of

initial estimates of the rank-(Lr ,Lr ,1) block-term decomposition. The new extension

includes the following major enhancements and contributions:

• An introduction of a new heuristic that reduces the number of SMDs to be

computed, thereby decreasing the computational load.

• An estimation of the multilinear ranks Lr using clustering.

• A befitting partitioning of the columns of the estimated matrices A and B into

multilinear rank submatrices.

• A design of highly reliable initial BTD estimates that guarantees the convergence

of the refinement procedures and does not require multiple initializations.

7.4.1 Brief overview of the SECSI framework

The SECSI framework [RH13] has originally been designed to decompose a tensor

into the sum of rank-1 terms. Before presenting its extension to a multilinear rank

decomposition, let us review its main steps.

Truncated HOSVD

Let T 0 ∈ FI×J×K be a noise-free tensor with a given (or estimated) rank d whose CPD

is given by

T 0 =I3,d ×1 F1 ×2 F2 ×3 F3, (7.15)

where F1, F2, and F3 are the corresponding factor matrices.
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Figure 7.4. Simultaneous matrix diagonalization of the slices of the tensor S(3).

The first step of SECSI is the computation of a truncated HOSVD2 of T to generate a

truncated core tensor S [s] ∈ Fd×d×d and a set of truncated unitary matrices U [s]
1 ∈ FI×d ,

U [s]
2 ∈ FJ×d , and U [s]

3 ∈ FK×d that span the column space of the corresponding n-mode

unfolding of T 0

T 0 =S [s] ×1 U [s]
1 ×2 U [s]

2 ×3 U [s]
3 . (7.16)

Only the first d singular values and their corresponding left singular vectors are chosen

to take into account the given (or estimated) CPD rank. The columns of each of the

unitary matrices span the same vector space as the CPD factor matrices in the same

mode. Thus, there exist three non-singular d ×d transform matrices3 T1, T2, and T3

that diagonalize the core tensor S [s] and provide a connection between the two sets of

matrices

F1 =U [s]
1 ·T1, F2 =U [s]

2 ·T2, F3 =U [s]
3 ·T3. (7.17)

In the next step, these transformation matrices are estimated (in several different

ways).

Simultaneous matrix diagonalization of the core tensor’s slices

It has been shown in [RH13] that the n-mode slices of the core tensor S have a direct

relation to the columns of the n-mode’s factor matrix and the transformation matrices

of the other two modes from equation (7.17). For example, if S(3)
(:,:,k) is the k-th 3-mode

2 If the HOSVD has been already calculated during the LaRGE-based rank estimation step (Section 7.3),
then it can be further truncated in the first step of SECSI without a need to calculate it again. This will
significantly reduce the computational cost.

3 The assumption of the existence of the three non-singular transform matrices holds when the CPD is
not rank-deficient in any of the three modes, i.e., all factor matrices have full column rank. If the CP
decomposition is rank-deficient in one mode, the corresponding transform matrix and SMDs do not
exist anymore. However, if the remaining two modes are not rank-deficient, we can still construct two
SMDs (left-hand and right-hand sides) that do not contain the transform matrix corresponding to the
rank-deficient mode. Therefore, the SECSI framework is applicable if at least two of the tensor modes
are not rank-deficient.
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slice of the modified core tensor S(3) =S [s] ×3 U [s]
3 ∈ Fd×d×K , and ĉk is the k-th row of

F3, then

S(3)
(:,:,k) = T1diag

(
ĉk

)
T T

2 , (7.18)

and

diag
(
ĉk

)= T −1
1 ·S(3)

(:,:,k) · (T T
2 )−1. (7.19)

Equation (7.19) corresponds to a non-symmetric SMD [RH13]. An example illustration

of the SMD in (7.18) is given in Figure 7.4. It can be converted into a symmetric one by

multiplying (7.19) by the inverse of an arbitrary pivoting slice p ∈ {1, . . . ,K } from either

the right-hand side (rhs)

S(3)rhs
(:,:,k) =S(3)

(:,:,k) · (S(3)
(:,:,p))

−1 (7.20)

= T1 ·diag
(
ĉk

) ·diag
(
ĉp

)−1 ·T −1
1 , (7.21)

or the left-hand side (lhs)

S(3)lhs
(:,:,k) = ((S(3)

(:,:,p))
−1 ·S(3)

(:,:,k))
T (7.22)

= T2 ·diag
(
ĉk

) ·diag
(
ĉp

)−1 ·T −1
2 . (7.23)

The slice with the smallest condition number4 is considered as a clever choice for

a pivot. As it can be seen from (7.21) and (7.23), the transform matrices T1 and T2

can be estimated by simultaneous diagonalization of the slices of S(3)rhs and S(3)lhs,

respectively. Moreover, from the diagonal elements of the jointly diagonalized matrices,

estimates of F3 can be obtained from the right-hand side SMD (7.21) or the left-hand

side SMD (7.23). The ambiguity that is brought to each column by diag
(
ĉp

)−1
lies

within the scaling ambiguity that is inherent for any CPD and can therefore be ignored.

The current implementation of SECSI employs the SMD algorithm described in [FG06],

which builds up the transformation matrix iteratively out of alternating shear matrices

and unitary transform matrices. The acquired T1 (T2) obtained from this SMD can

be used to estimate F1 (F2) according to (7.17). After two of the three factor matrix

estimates have been found, a least squares solution for the last factor can be computed

from one of the following equations

F1 = [T 0](1) · (F2 ⋄F3)T+,

F2 = [T 0](2) · (F3 ⋄F1)T+,

F3 = [T 0](3) · (F1 ⋄F2)T+.

(7.24)

4 The condition number of a matrix A is defined as the ratio of its largest singular value to the smallest
singular value and quantifies the sensitivity of the Ax = b problem to the changes in A [GVL13].
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The similarity between this problem and the generalized eigenvalue decomposition

(GEVD) approach that is used to initialize the Tensorlab algorithm should be men-

tioned here. Whereas both algorithms are essentially pencil-based, the approach

in [DD17] uses only two slices of the tensor to compute a generalized eigenvalue

decomposition and, subsequently, estimate the factor matrices. In contrast, the SECSI

framework uses an SMD-based approach that examines different modes and, instead

of considering only one subpencil, takes all the slices of the tensor into account.

The authors in [BBV19] study the performances of the pencil-based algorithms for the

CPD and state that "for every pencil-based algorithm, there exists an open set of the

rank r tensors in Rn1×n2×n3 for which it is unstable" and the instability is caused by

a significant difference between the condition number of a tensor rank decomposi-

tion [BV18b] in Rn1×n2×n3 and Rn1×n2×2: the expected condition number of a tensor

rank decomposition for n1 ×n2 ×2 tensors is much larger on the average than the

tensor condition number5 for n1 ×n2 ×n3 tensors. The paper also states that "as n3

increases, very large condition numbers become increasingly unlikely". Consequently,

the fact that we consider the simultaneous matrix diagonalization of tensors of size

d ×d ×K (equations (7.20)-(7.22)), according to the aforementioned paper, greatly

increases the probability of a low tensor condition number, and consequently, leads to

more stable solutions.

Another CPD computation technique that improves the accuracy of the GEVD-based

solutions is proposed in [EVD22]. The authors introduce the generalized eigenspace

decomposition (GESD) algorithm for computation of CPD that exploits not one but

many subpencils of the tensor to find the generalized eigenvectors and eigenspaces

that correspond to sufficiently well-separated generalized eigenvalues. Two of the

three factor matrices are then obtained by combining information from the different

subpencils. The GESD algorithm outperforms the GEVD, especially for the corre-

lated factors case, and therefore its extension to block-term decompositions might

be promising. Compared to the GESD, SECSI does not consider the subpencils of

the tensor but all the slices jointly. Moreover, in the non-degenerate CPD cases, the

algorithm allows computing the SMDs in different modes (not only in the 3-mode) to

get the best solution.

5 Here, by "condition number" and "tensor condition number" we refer to "condition number of tensor
rank decomposition" [BV18b; BBV19].
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Choice of the Final Estimate

As mentioned above, the three factor matrices can either be retrieved by the left-hand

side estimate or the right-hand side estimate, which enables a choice out of two

sets of estimated factor matrices for each mode, resulting in 6 sets of factor matrix

estimates for a tensor with three dimensions. The best accuracy in terms of the

reconstruction error can be achieved by considering all combinations of estimated

factor matrices F1, F2, and F3 (from all SMDs) and choosing the combination with

the smallest reconstruction error as final estimates ("Best Matching (BM)" approach).

Since, in this case, all the combinations, including the factor matrices from different

SMDs have to be checked, this solution is computationally quite expensive. On the

positive side, the SECSI framework offers several heuristics that allow controlling

the trade-off between performance and complexity. Therefore, the final estimates of

the framework can be chosen according to predefined heuristics, which are based

on different selection criteria such as reconstruction error, condition number, or

SMD residuals. The SECSI framework features the following heuristics to choose

from [RH13]:

• REC PS (reconstruction error - paired solutions): Instead of enabling factor matrix

combinations from different SMDs as in the "BM" approach, only the combi-

nations that originate from the same SMD ("paired solutions") are evaluated.

As an accuracy measure, this heuristic uses the reconstruction error between

the tensor reconstructed from the estimated loading matrices and the original

data tensor. The set of matrices that provides the smallest reconstruction error

is picked as the final output.

• RES (SMD residuals): Out of all estimates, the set of factor matrices that originate

from the "best" SMD is used, which is the SMD whose transformation matrix T

provides the best diagonalization of the n-mode core tensor slices, thus leaving

the smallest residual error. The residual error is defined as the average Frobenius

norm of the off-diagonal elements of the tensor slice pencils after the estimated

transformation matrices T and T −1 are applied to it.

• CON PS (condition number - paired solutions): Instead of solving all possible

SMD problems, only the two SMDs in the mode where the pivot slice has the best

condition number are computed. The final solution is selected from the SMD

(left-hand side or right-hand side) that yields the lower reconstruction error.

Subsequently, the two solutions are compared in terms of their reconstruction

error, and the one which yields the lower reconstruction error is returned as the

final solution. The combinations between the estimates from the two different
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Figure 7.5. Histogram of paired solutions chosen by SECSI ("REC PS") after comparing their
reconstruction errors. "lhs" and "rhs" refer to the left-hand side and right-hand
side transformation matrix estimate, respectively. T ∈ R20×30×40, SNR = 50dB.
Results are averaged over 1000 Monte-Carlo trials.

SMDs are not considered ("paired solutions"). This heuristic is the fastest since

not all SMDs have to be solved.

These heuristics allow reducing computational complexity by offering an excellent

trade-off between the complexity and accuracy of the solution. Since the smallest pos-

sible reconstruction error is achieved by the "best matching" approach, we consider it

as a benchmark solution that determines the achievable reconstruction error in the

SECSI framework.

The proposed BTD extension of SECSI uses new BTD heuristics which exploit the prior

knowledge of the block-term structure of the tensor to reduce the computational load

of SECSI.

7.4.2 Extension to block-term decomposition

When considering the link between the CP and rank-(Lr ,Lr ,1) block-term decomposi-

tions, the factor matrices F1, F2, and F3 in (7.15) correspond to the BTD factors A, B ,

and C (r) in (7.3), respectively. Then, the 3-mode matrix F3 correcponding to C (r) will

have collinear columns.

The SECSI framework is capable of computing an approximate CPD even in so-called

"degenerate" cases, when one factor matrix has proportional (or highly correlated)

columns or if one dimension of the tensor is smaller than the CP-rank of the tensor. In

these cases, a non-singular transformation matrix for the corresponding mode does
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Figure 7.6. The core tensor S of the HOSVD with the rank-deficiency in the 3-mode.

not exist. However, to be able to generate an estimate for the CPD factor matrices of

a three-way array, at least two of the three transformation matrices have to exist and

have to be non-singular, so that equations (7.21) and (7.23) can be obtained. If a BTD

scenario is viewed as a special case of the CPD, one of the CPD factor matrices must

have repeated columns, leading to a degenerate case. A CPD approximation is still

possible under these circumstances, although it is only essentially unique (see (7.5)

in Section 7.2). Note that the existence of the transformation matrices coincides with

one of the sufficient conditions for essential uniqueness defined in [DeL08a].

Reducing the Computational Load of the SMDs

The high numerical stability of the estimates (which makes them favorable) obtained

via SECSI comes with a computational cost. If we consider the BTD as a special case of

the CPD, we assume that one of the factors has linearly dependent columns. This can

be exploited to decrease the computational load of the SECSI framework. For most

of the heuristics, all six possible SMD have to be calculated in order to choose the

best estimate. This is reasonable in case of the CPD because, apart from the different

dimensions of the tensor for each of the modes, the CPD problem is a symmetrical one

and the factor matrices often feature similar mathematical properties. In the case of a

BTD however, the problem becomes asymmetrical due to the specific rank structure,

which is also one of the reasons why two of the factor matrices are only unique up to

the product of their submatrices. Moreover, this asymmetry affects the choice of the

estimates in the last step of SECSI as follows.

If one of the modes is rank-deficient (assume the third mode in case of the rank-

(Lr ,Lr ,1) BTD), the corresponding transform matrix and the SMDs where this trans-

form matrix is present do not exist anymore. However, we can still construct the two

SMDs (left-hand side and right-hand side, equations (7.21) and (7.23)) in the 3-mode.
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Then, the 3-mode factor matrix can be directly obtained from the K diagonal ma-

trices, and the remaining factors are estimated from the transform matrix and the

least squares fit. This procedure will result in two sets of estimates for every factor

matrix. An example illustration of the HOSVD core tensor S with rank-deficiency in

the 3-mode in shown in Figure 7.6.

The following numerical experiments demonstrate the probabilities with which the

final solutions were chosen from particular SMDs when applying SECSI on CPD- and

BTD-model tensors. First, we generate three factor matrices with CP rank ΣLr and

random complex Gaussian-distributed entries according to the model in (7.15) to

build up a CPD tensor. After that, a noise tensor with a small power is added to the

tensor. Then, we decompose the noise-distorted tensor via the SECSI framework with

the "REC PS" heuristic and track which of the 6 sets of estimated factor matrices is

used as the final output. As the histogram in Figure 7.5(a) shows, there are no preferred

modes in the CPD scenario, and the final estimates can originate from all SMDs with a

non-zero probability.

The second simulation is conducted in the same way as the one described above, but

the tensor is now constructed from block-terms according to (7.1) and with the multi-

linear rank-(Lr ,Lr ,1) structure. Whereas the first and second mode factor matrices

A and B have ΣLr distinct columns, the third mode factor matrix C (r) has repeated

columns as in (7.3). The results for the second simulation are shown in Figure 7.5(b).

We can see that for the BTD-constructed tensor, in all cases, one of the estimates with

the diagonalizations in the 3-mode is used, whereas no such tendency can be seen for

the CPD-constructed tensor.

These simulations demonstrate the advantages of the utilization of different mode

SMDs in the original SECSI framework for the CPD. In a given application, we might

not know beforehand in which mode the rank-deficiency will occur. Most of the

GEVD-based algorithms, by default, are applied to the 3-mode slices and fail to obtain

an accurate solution when the rank-deficiencies occur in the other modes. SESCI,

by contrast, constructs all SMDs, and allows choosing the solution with the best

performance (in terms of the chosen selection criterion)

Nevertheless, the computation of the SMDs in all modes increases the computational

time. Therefore, we have added new heuristics to the SECSI-framework: "REC PS BT"

(reconstruction error - paired solutions - block-terms) and "RES BT" (residual error -

block-terms). Similarly to the CPD-SECSI heuristics described in Section 7.4.1, they

choose the final estimates based on the reconstruction error and SMD residual error,

respectively. In contrast, to the original heuristics, they only consider the SMDs in
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Figure 7.7. Clustering procedure to restore the original sub-matrix structure of the BTD blocks.

the rank-deficient mode. The "REC PS BT" heuristic solves both right-hand and left-

hand side SMDs and picks the estimates from the SMD that provides the smallest

reconstruction error. The "RES BT" heuristic computes the final estimates only from

one SMD that provides the best diagonalization in terms of the residual error. This

lowers the computation time of the SMDs up to a factor of three (depending on which

heuristic is used as a reference).

Since in the BTD case, we only consider "paired solutions", i.e, the final estimates al-

ways originate from the same SMD problem, the scaling and permutation ambiguities

of the factor matrices are consistent and do not affect the reconstruction error.

Restoring the submatrix structure

As it can be observed from (7.1) and (7.3), the BTD can be transformed into a CPD by

repeating the r -th column of C in (7.1) Lr times. Whereas the transformation of C from

the BTD into C (r) in the CPD is therefore rather trivial (if the submatrix structure of A

and B is assumed to be known), the reverse operation is a more challenging task. After

performing an approximate CPD on the noise-corrupted BTD tensor, the estimated

matrix Ĉ (r) will not perfectly match the structure of C (r) in (7.4). The columns in Ĉ (r)

will be arbitrarily permuted and scaled, and the repeated columns in C (r) will not

be explicitly equal in Ĉ (r). Therefore, one has to find an efficient way to reduce the

number of columns of the estimated matrix Ĉ (r) to R columns to obtain Ĉ without

clipping off valuable information.

First, let us consider the output of the SECSI framework. In the noiseless case, the

columns of Ĉ (r) are repetitions of the columns of Ĉ in random order. For the computa-

tion of Ĉ from the CPD approximation Ĉ (r), the submatrix structure of A and B has to

be restored. This means that the columns that belong to the same (Lr ,Lr ,1)-term need
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to be adjacent to each other. In the noiseless case, this can be done by rearranging the

columns of Ĉ (r) so that equal columns are adjacent and by rearranging the columns of

Â and B̂ in the same way. If the tensor is disturbed by noise, however, the repeated

columns of Ĉ (r) become more distinct from each other, bringing up the need for a more

sophisticated approach. The k-means clustering [Llo82], a commonly used technique

in data analysis, shows to be quite effective for this task since it only requires the

number of clusters to be known beforehand. It is a simple, iterative algorithm that tries

to find a set of cluster centers so that the summed squared distance of all elements to

their nearest cluster center is minimized. In the BTD context, each cluster belongs to a

different (Lr ,Lr ,1) block-term, and if there are no clustering errors, the r -th cluster

will contain Lr columns.

In our simulations, we use the k-means++ algorithm [AD07] with a distance measure

defined as a cosine of an angle between two unit-norm vectors (cosθ = Re
{

c H
i c j

}
∥ci ∥∥c j∥ ). After

the columns of Ĉ (r) have been grouped into clusters, a permutation matrix P can

be retrieved that rearranges the columns of Ĉ (r) so that all columns that belong to

the same cluster are adjacent to each other. By multiplying Â and B̂ by the same

permutation matrix, their submatrix structure can be restored (see Figure 7.7). The

k-means clustering algorithm is also used in the GEVD initialization of the Tensorlab

BTD algorithm [VDS+16]. It can be observed that in some cases, the k-means fails

to generate clusters of the desired size from the GEVD estimates. In that event, the

Tensorlab algorithm switches to random initialization. As discussed in Section 7.4.1,

these instabilities might be caused by the fact that the expected tensor condition

number of the selected two-slices subtensor might be very high on the average, com-

pared to the expected tensor condition number of the more-than-two slices tensor.

On the contrary, SECSI exploits the information of all available tensor slices which

stabilizes its performance. In cases when the Lr s are not available, we utilize k-means

to estimate the multilinear ranks. But if the multilinear ranks are known, we employ

the constrained k-means [ZWL10] to guarantee the appropriate cluster sizes.

Another approach to calculate Lr based on symmetric joint block diagonalization is

proposed in [DD20]. However, it still requires prior knowledge of R and ΣLr .

7.5 Refinements

After clustering, the columns of Â, B̂ , and Ĉ (r) are sorted in a way that the columns

that belong to the same submatrix are adjacent to each other. We denote the permuted

matrices as Ã, B̃ , and C̃ (r). Next, the following refinement steps can be applied to
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Algorithm 3 SECSI-BTD framework for rank-(Lr ,Lr ,1) BTD with rank estimation

Require: 3-way tensor T
1: R̂, ˆΣLr ← LaRGEBT(T ) ▷ Ranks est.

2: Â, B̂ ,Ĉ (r) ← SECSIBT(T , ˆΣLr ) ▷ Factors in CPD form

3: P , L̂r s ← k-means(Ĉ , R) ▷ Clustering

4: Ã, B̃ ,C̃ (r) ← reordering(Â, B̂ ,Ĉ (r),L̂r , P )
5: Ãr , B̃r , c̃r ← refinement ▷ C in BTD form, ALS or NLS

Figure 7.8. Reducing the colinear columns in a 3-mode (rank-deficient) matrix.

generate the final block-term estimates as in (7.1). At this stage, the matrix C̃ (r) still

contains the colinear columns ordered according to R clusters and needs to be brought

to the BTD form. In other words, the colinear columns have to be reduced (see

Figure 7.8). To perform the reduction effectively, i.e., without cutting off any data, we

first refine the matrices Ã and B̃ in an ALS fashion as follows

Ã = [T ]
(1)(B̃ ⋄ C̃ (r))T+, (7.25)

B̃ = [T ]
(2)(C̃

(r) ⋄ Ã)T+. (7.26)

This step incorporates the multiple estimates of the columns of C̃ (r) into Ã and B̃ . Then,

an estimate of C ∈ FK×R can be computed using equation for C̃ from the ALS-based

scheme for the BTD in [DN08]

C̃ = [T ]
(3)[(Ã1 ⋄ B̃1) ·1L1 , · · · , (ÃR ⋄ B̃R ) ·1LR ]T+. (7.27)

Next, to finalize the factor matrix estimation, we perform the refinements either using

nonlinear least squares (NLS) or alternating least squares (ALS) [DN08; SVBD13] (We

summarize the NLS in Appendix A.5). In the BTD-ALS procedure, the factor matrices

Ã and B̃ are updated as

Ã = [T ]
(1)(B̃ ⋄s C̃ )T+, (7.28)

B̃ = [T ]
(2)(C̃ ⋄s Ã)T+, (7.29)
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where ⋄s denotes the submatrix-wise Khatri-Rao product defined for two matrices X =
[X1, ..., XR ] ∈ FI×ΣLr and Y = [Y1, . . . ,YR ] ∈ FJ×ΣLr as X ⋄s Y = [X1 ⊗Y1, . . . , XR ⊗YR ] ∈
CI J×ΣL2

r (see Appendix A.1). The matrix C̃ is updated as in (7.27). The NLS or ALS

schemes are run until one of the stopping criteria is met (the relative change between

two successive iterations is small, the maximum number of iterations is reached, or the

change in objective function value relative to the tensor norm is less than a specified

tolerance).

The proposed SECSI-BTD framework to compute the rank-(Lr ,Lr ,1) BTD with rank

estimation is summarized in Algorithm 3. For tensors with a known rank structure,

step 1 can be skipped.

7.6 Numerical results

In this section, we conduct simulations with synthetically generated data to assess the

performance of the proposed algorithms and compare it to the algorithms from the

Tensorlab toolbox [VDS+16; SVBD13] for computing an approximate rank-(Lr ,Lr ,1)

decomposition.

The tensors for the simulations are constructed according to the rank-(Lr ,Lr ,1) BTD

model in (7.1) where the factor matrices have been drawn from a zero mean circularly

symmetric complex Gaussian (ZMCSCG) distribution with unit variance, and the noise

tensor N have been formed from ZMCSCG entries with variance σ2
n . Accordingly, the

SNR is defined as 1/σ2
n .

We use two different accuracy measures, a relative squared reconstruction error (SRE)

and a relative squared factor error (SFE), to evaluate the accuracy of an estimated BTD.

The SRE is defined as

SRE =
∥∥T̂ −T 0

∥∥2
F

∥T 0∥2
F

, (7.30)

where T 0 is the original noise-free tensor, and T̂ is a tensor reconstructed from the

estimated BTD factors as T̂ =∑R
r=1

(
Ãr · B̃ T

r

)◦ c̃r . The SFE for the matrix C is defined

as

SFE =
∥∥C̃ ·Pc −C

∥∥2
F

∥C∥2
F

, (7.31)

where the matrix Pc corrects the permutation and scaling ambiguity that is inherent

in the estimation of the factor matrices. These ambiguities are resolved as follows.

First, the columns of both C̃ and C are normalized to unit norm. The permutation is
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Figure 7.9. T ∈C20×30×40 with asymmetric and symmetric multilinear rank structures. 1000
realizations of a tensor.
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corrected by rearranging the columns in C̃ so that the inner product c̃ H
r ·cr between

the estimated and original factor columns is maximized. Then, the scaling is resolved

by multiplying the estimated columns by their scalar projection c̃ H
r ·cr in the direction

of the original vectors cr . Whereas the matrix C can be estimated up to scaling and

column permutation ambiguities, the multilinear factor matrices Ar and Br are only

unique up to the products of their submatrices due to the submatrix product ambigu-

ities show in (7.5). Therefore, when evaluating the performance for the matrices Ar

and Br , in case of the SFE calculations we consider the products Ar B T
r as follows

SFE(AB T) = 1

R

R∑
r=1

∥∥Ãr B̃ T
r − Ar B T

r

∥∥2
F∥∥Ar B T

r

∥∥2
F

, (7.32)

where Ar and Br are the original factor matrices, and Ãr and B̃r are the estimated

factors after resolving the permutation and scaling ambiguities.

We compare the estimation performances of the proposed SECSI-BTD algorithm

with the performance of the NLS algorithm with GEVD initialization from [SVBD13],

which has been commonly used in many BTD applications [CQA17; SBG17; dVD+07;

CRHH21]. For the proposed SECSI-BTD approach, we examine both the ALS and

NLS refinement procedures. ALS stops when the change in the reconstruction error

between two successive iterations is less than a specified threshold (10−6) or the

maximum number of iterations (30) is reached. For the NLS refinement, we use the

nonlinear least squares procedure based on Gauss-Newton with dogleg trust region

from Tensorlab [VDS+16] with its default settings. The algorithm stops when one of

the following criteria is met: the maximum number of iterations has been reached

(200), the change in the objective function value relative to the norm of the tensor

is less than a specified tolerance (10−12), or the ratio of the step size relative to the

norm of the current iterate is less than a specified tolerance (10−6). To ensure a fair

comparison, the rank structure is assumed to be known for all algorithms.

In the simulations, we consider four scenarios with asymmetric and symmetric multi-

linear rank structures. In the first two scenarios, the tensors are of size (20×30×40)

with the rank structures R = 3, Lr = [2,3,4] and R = 4, Lr = [5,5,5,5]. In the other two

scenarios, the tensors have a smaller 3-mode dimension and are of size (30×40×15)

with Lr = [2,3,4] and Lr = [2,2,2]. The SRE and SFE performances for T ∈C20×30×40

and T ∈ C30×40×15 are shown in Figures 7.9 and 7.10, respectively. The blue curves

denote the proposed SECSI-BTD approach with the "REC PS BT" heuristic and ALS

refinement, red lines correspond to SECSI-BTD with "REC PS BT" and NLS refine-

ment, the green and the light blue curves denote the SECSI-BTD approach with the

118 Chapter 7 Rank-(Lr ,Lr ,1) Block-Term Decomposition



0.1 0.15 0.2 0.25 0.3

SRE

10
-2

10
-1

C
C

D
F

SECSI
REC PS BT

-ALS

SECSI
REC PS BT

-NLS

SECSI
RES BT

-ALS

SECSI
RES BT

-NLS

GEVD-NLS

(a) CCDF vs. SRE. Asymmetric scenario.
Lr = [2,3,4], SNR = 30dB.

0 10 20 30 40 50 60

SNR [dB]

10
-6

10
-4

10
-2

10
0

S
F

E

SECSI
REC PS BT

-ALS

SECSI
REC PS BT

-NLS

SECSI
RES BT

-ALS

SECSI
RES BT

-NLS

GEVD-NLS

(b) SFE vs. SNR for C . Asymmetric scenario.
Lr = [2,3,4].

10
0

10
5

10
10

SFE

10
-3

10
-2

10
-1

10
0

C
C

D
F

SECSI
REC PS BT

-ALS

SECSI
REC PS BT

-NLS

SECSI
RES BT

-ALS

SECSI
RES BT

-NLS

GEVD-NLS

(c) CCDF vs. SFE for Ar B T
r . Asymmetric

scenario. Lr = [2,3,4], SNR = 30dB.

0.1 0.15 0.2 0.25

SRE

10
-2

10
-1

C
C

D
F

SECSI
REC PS BT

-ALS

SECSI
REC PS BT

-NLS

SECSI
RES BT

-ALS

SECSI
RES BT

-NLS

GEVD-NLS

(d) CCDF vs. SRE. Symmetric scenario.
Lr = [2,2,2], SNR = 30dB.

0 10 20 30 40 50 60

SNR [dB]

10
-6

10
-4

10
-2

10
0

S
F

E

SECSI
REC PS BT

-ALS

SECSI
REC PS BT

-NLS

SECSI
RES BT

-ALS

SECSI
RES BT

-NLS

GEVD-NLS

(e) SFE vs. SNR for C . Symmetric scenario.
Lr = [2,2,2].

10
0

10
5

SFE

10
-2

10
-1

C
C

D
F

SECSI
REC PS BT

-ALS

SECSI
REC PS BT

-NLS

SECSI
RES BT

-ALS

SECSI
RES BT

-NLS

GEVD-NLS

(f) CCDF vs. SFE for Ar B T
r . Symmetric

scenario. Lr = [2,2,2], SNR = 30dB.

Figure 7.10. T ∈C30×40×15 with asymmetric and symmetric multilinear rank structures. 1000
realizations of a tensor.

7.6 Numerical results 119



Scenario

SECSI-BTD-
ALS

("REC PS
BT")

SECSI-BTD-
ALS

("RES BT")

SECSI-BTD-
NLS

("REC PS BT")

SECSI-BTD-
NLS

("RES BT")
GEVD-NLS

30×40×15
Lr = [2,2,2]

0.5216 0.5184 1.4900 1.4752 1.3346

30×40×15
Lr = [2,3,4]

1.1037 1.2001 1.9106 2.2164 1.4910

20×30×40
Lr = [5,5,5,5]

29.4994 27.9834 32.5071 30.4271 2.0646

20×30×40
Lr = [2,3,4]

3.2022 3.2068 4.1025 3.9924 1.6720

Table 7.1. Average run time of the algorithms in different scenarios [sec].

"RES" heuristic and ALS or NLS refinements, respectively. The NLS algorithm with

GEVD-based initialization from [SVBD13] is denoted with yellow color.

Figures 7.9(a), 7.9(d), 7.10(a) and 7.10(d) show the complementary cumulative distri-

bution functions (CCDF) with respect to the reconstruction errors for all scenarios (for

better visual representation without overwhelming the figures, we plot only 10 out of

1000 markers for the bins of the CCDF plots).

The vertical dashed lines represent the mean of the errors for each algorithm. The

factor reconstruction errors with respect to SNRs for the matrix C in different scenarios

are shown in Figures 7.9(b), 7.9(e), 7.10(b) and 7.10(e). As it can be observed, the

proposed algorithms outperform the GEVD-based scheme in a large range of SNRs

for all scenarios. In the scenario with Lr = [5,5,5,5] (difficult scenario, since ΣLr =
I = 20) the SECSI-BTD schemes with the NLS refinement show a better convergence

behavior than the other algorithms. The CCDFs with respect to SFE for the matrix

products Ar B T
r are presented in Figures 7.9(c), 7.9(f), 7.10(c) and 7.10(f). As can be

seen from the CCDF plots, the GEVD scheme results in more outliers, and the proposed

algorithms provide better initialization and, consequently, more stable performance

in all scenarios. The explanations of the increased robustness of the SMD-based

initialization are discussed in Section 7.4.1.

The average run times of the algorithms for SNR = 20dB are shown in Table 7.1 (the

algorithm performances were evaluated on an Intel Xeon Gold 6342 CPU 2.80GHz

machine running Linux CentOS 7, kernel 3.10.0-1160.el7.x86_64 and MATLAB R2020b

64-bit). We can observe that for the scenario with T ∈ C30×40×15 and Lr = [2,2,2],
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the SECSI-BTD with ALS refinement is almost three times faster than the GEVD-NLS

and SECSI-NLS algorithms, which show similar time performance. In case of the

scenario with T ∈C30×40×15 and Lr = [2,3,4], the algorithms show a comparable time

performance with the SECSI-BT-ALS being slightly faster on average. For the scenarios

with T ∈C20×30×40 the proposed algorithms are slower than the GEVD-NLS solutions.

However, considering that the SECSI-BTD schemes provide more accurate and reliable

error performance results, they can be an appealing solution for applications where

accuracy is more important. Moreover, SECSI-BTD is still faster than the GEVD-based

approaches for the cases where the dimension in the rank-deficient mode is smaller

than in other modes. These differences in the computational time performances are

explained by the fact that the rank-deficient mode determines the dimensionality

of the SMD problem: it increases the number of matrices to be jointly diagonalized.

Similary, the time increase in the third scenario is related to the increased sizes of

simultaneously diagonalized matrices (ΣLr = 20). However, for these scenarios, the

complexity might still be decreased by considering a more efficient diagonalization

algorithm than in [FG06].

7.7 Conclusions

In this chapter of the thesis, we have exploited the connection between the Canonical

Polyadic and the rank-(Lr ,Lr ,1) block-term decompositions and presented the SECSI-

BTD framework to compute an approximate rank-(Lr ,Lr ,1) BTD. We have divided

the proposed algorithm into three main blocks, which include the rank structure

estimation, the initial estimation of the BTD factors, and a final refinement procedure.

For the rank structure estimation, we have introduced an extension of the LaRGE

technique for CPD model order estimation to estimate the number of blocks and the

sum of Lr s in the BTD. Moreover, a procedure that uses clustering for the estimation

of multilinear ranks has been presented. Furthermore, we have shown how the Semi-

algebraic framework for approximate CPD via Simultaneous Matrix Diagonalizations

(SECSI) can be employed for the computation of the initial BTD factors. Additionally,

new heuristics have been added to the original algorithm to reduce the computational

time and make the estimation more efficient. In the last block of the algorithm,

we have presented the clustering and refinement procedures that return the final

rank-(Lr ,Lr ,1) decomposition estimates. The simulation results have shown that

the proposed SECSI-BTD algorithm outperforms the state-of-the-art techniques in

terms of accuracy and robustness, especially in the context of factor reconstruction

errors. The run time simulations show that the time complexity depends on the ranks
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and dimensionality of the rank-deficient mode, and the algorithm is faster than the

state-of-the-art schemes for some scenarios. Moreover, our algorithm does not require

multiple initializations or a known rank structure. However, it can still take advantage

of the known ranks when available, which makes it more flexible than the existing

techniques in the literature.

122 Chapter 7 Rank-(Lr ,Lr ,1) Block-Term Decomposition



Coupled Rank-(Lr ,Lr ,1)

Block-Term Decomposition 8
Coupled tensor decompositions proved to be a valuable tool for many signal process-

ing applications, including biomedical data analysis, source separation, data fusion,

and many others. In this chapter of the thesis, we present an algorithm to calculate the

coupled block-term decomposition (BTD) of multiple three-dimensional tensors with

a coupled mode and possibly an unknown rank structure. The proposed approach

is an extension of the SECSI-BTD algorithm in Chapter 7 to the coupled tensors case

and composed of three main parts, the first is an extension of the linear regression

of global eigenvalues (LaRGE) technique to estimate the number of blocks and sum

of multilinear ranks in the coupled tensors. The second part accounts for the cal-

culation of the preliminary multilinear factors of the coupled BTD by means of the

semi-algebraic framework for approximate canonical polyadic decompositions via

simultaneous matrix diagonalizations (SECSI). The last part contains the final refine-

ment procedures that return the estimated BTD factors. Moreover, we provide some

synthetic data simulations showing that the proposed algorithm demonstrates more

stable and accurate results than the schemes from the literature [SKKH22].

8.1 Introduction

The apparent popularity of tensors in all possible signal processing areas is an elo-

quent indication that they are evidently an effective and promising tool for many

applications, from statistics and communications to linguistics and big data analysis.

Apart from their mild uniqueness conditions and data structure preserving qualities,

tensor decompositions provide effective denoising and feature extraction capabili-

ties [KB09].

The focus of this chapter falls on the block-term decompositions (BTD), to be more

specific, on the coupled block-term decomposition in rank-(Lr ,Lr ,1) terms. Although

it might not be yet as widely used as, for example, the higher-order singular value

decomposition (HOSVD) [DDV00a; Tuc66] or the canonical polyadic decomposition
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(CPD) (sometimes also referred to as CANDECOMP (canonical decomposition) or

PARAFAC (parallel factors)) [CC70; Har70], the BTDs prove to be particularly interesting

for applications where the data have a heterogeneous rank structure and possess

collinearity is some of the modes.

There are some variations in the definitions of the block-term decomposition based

on the ranks of the block-terms. These definitions, uniqueness conditions, and the

algebraic and optimization-based algorithms are well described in [DeL08b; DeL08a;

DN08; ND09; SVBD13; DeL11]. From the applications point of view, the rank-(Lr ,Lr ,1)

block-term decomposition appears to be the most attractive one. It has found its appli-

cations in communications [DB08], biomedical data processing [OZ19; RAZ16; Zar17;

CRHH21], image and graph analysis [GPP20], and many others [YGL+19; HAK+17b;

ZFHW19; ZFW+20].

Commonly, when it comes to applications, the question that arises before applying

any low-rank approximation concerns the rank of the tensor. Given that it is rarely

known beforehand, one should find a way to define it. Some techniques to estimate

the factors and the ranks of a single block-term tensor are introduced in [RKG21b;

RKG21a; RGK21; GOF+20].

Another direction, in which the BTDs are evolving, is the computation of coupled

decompositions and data fusion. Many applications that have multiple related data

sets to be analyzed can genuinely benefit from coupled factorizations. They often

provide more flexible uniqueness conditions and improved feature extraction capabil-

ities, and thus deeper insights into the data. Several studies on the uniqueness and

the algorithms for coupled decompositions, including the coupled BTD, can be found

in [GLD+16; SD15; SDD15; SVBD15].

Main contributions. In this chapter, we propose a new approach to estimate the

factors of the coupled block-term decomposition of multiple tensors with a com-

mon mode based on the semi-algebraic framework for approximate coupled canoni-

cal polyadic (CP) decompositions via simultaneous matrix diagonalizations (SECSI)

[RH13; MGK+21]. The coupled SECSI-BTD algorithm that we present in this chapter

is an extension of the SECSI-BTD algorithm in Chapter 7 to the scenarios with M

coupled tensors. Moreover, we show how the multilinear rank structure of the coupled

rank-(Lr ,Lr ,1) decomposition can be estimated based on the extension of the linear re-

gression of global eigenvalues (LaRGE) and clustering techniques. The block-diagram

of the proposed coupled rank-(Lr ,Lr ,1) decomposition is presented in Figure 8.1.

The simulation results show that compared to the algorithm in [VDS+16; SVBD15],

which requires a known rank structure to perform the decomposition, the proposed
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Figure 8.1. The block-diagram of the proposed coupled rank-(Lr ,Lr ,1) decomposition.

algorithm is more accurate, numerically stable, and can perform the decomposition

even if the ranks are not available beforehand.

As we note in Chapter 7, for notational simplicity, by writing "BTD" or "rank-(Lr ,Lr ,1)

decomposition" we refer to the block-term decomposition in rank-(Lr ,Lr ,1) terms,

and we use ΣLr to denote
∑R

r=1 Lr .

The rest of this chapter is organized as follows. Section 8.2 provides the coupled rank-

(Lr ,Lr ,1) block-term decomposition model. In Section 8.3, we present an algorithm to

estimate the ranks of the coupled rank-(Lr ,Lr ,1) decomposition. Then, we introduce

the coupled SECSI-BTD technique to estimate the factor matrices of the rank-(Lr ,Lr ,1)

decomposition in Section 8.4. The numerical results are shown in Section 8.5, while

the conclusions are drawn in Section 8.6.
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8.2 Data model

Let us consider a set of M noise-corrupted three-dimensional tensorsX (m) ∈CI (m)
1 ×I (m)

2 ×I3

with the third mode in common1 (Figure 8.2). Then the coupled rank-(Lr ,Lr ,1) BTD

of M tensors can be written as follows

X (m) =X (m)
0 +N (m) =

R∑
r=1

(
A(m)

r ·B (m)T
r

)◦cr +N (m) (8.1)

=I3,ΣLr ×1 A(m) ×2 B (m) ×3 C (r) +N (m), (8.2)

where m ∈ {1, . . . , M }, and R is a number of block-terms with ranks Lr , r ∈ {1, . . . ,R}

(for notational simplicity, we assume that the multilinear ranks L(m)
r are equal for

all M tensors (L(1)
r = L(2)

r = . . . = L(m)
r = Lr ), which is usually the case for the coupled

data sets2). Moreover, X (m)
0 ∈ CI (m)

1 ×I (m)
2 ×I3 is the noise-free BTD tensor, and N (m) ∈

CI (m)
1 ×I (m)

2 ×I3 is the additive noise tensor.

The factors A(m)
r ∈CI (m)

1 ×Lr can be stacked in a matrix A(m) as A(m) = [A(m)
1 , A(m)

2 , ..., A(m)
R ] ∈

CI (m)
1 ×ΣLr , and the individual factors B (m)

r ∈CI (m)
2 ×Lr are represented as a submatrices

of B (m) = [B (m)
1 ,B (m)

2 , ...,B (m)
R ] ∈CI (m)

2 ×ΣLr . The common vectors cr are stacked in the

matrix C = [c1,c2, ...,cR ] ∈CI3×R . Then, it can be seen from (8.2), that the BTD in (8.1)

may be viewed as a CP decomposition with CP-rank ΣLr and with repeated or linearly

depended columns in C (r)

C (r) =
[

c1 ·1T
L1

,c2 ·1T
L2

, · · · ,cR ·1T
LR

]
∈CI3×ΣLr . (8.3)

In this study, we use this link between the two decompositions to first calculate the

initial estimates in the coupled CPD form and subsequently convert them to coupled

BTD factors.

1 In general, any mode (or two modes) can be coupled. For example, in Chapter 9, we apply the coupled
BTD to multi-static radar systems and consider a coupled rank-(Lr ,Lr ,1) decomposition with the
2-mode in common. The authors in [CRHH21] use the coupled BTD of two tensors with the 3-mode in
common for an analysis of electroencephalography (EEG) and magnetoencephalography (MEG) data.
Moreover, in Chapter 10, we consider the coupled rank-(Lr ,Lr ,1) BTD of four tensors (one EEG and
three MEG tensors) with the 3-mode in common.

2 The ranks L(m)
r can be different across the block-terms r .
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Figure 8.2. Coupled rank-(Lr ,Lr ,1) decomposition (noiseless case).

8.3 Rank structure estimation

Since in most of the tensor decomposition applications the rank structure is usually

unknown, its correct estimation becomes essential in relation to low-rank tensor de-

compositions. While a number of algorithms for CPD rank estimation are available in

the literature, there are not yet many options for block-term decompositions. More-

over, to the best of our knowledge, there are no techniques devoted to the estimation of

ranks in coupled BTD models. Therefore, in this contribution, we present an extension

of the LaRGE [KDHH21; AKK+22] and the LaRGE-BTD techniques from Chapter 7 to

estimate the rank structure of the coupled rank-(Lr ,Lr ,1) decomposition. The LaRGE

algorithm estimates the CP-rank of a tensor by performing a linear regression of its

noise eigenvalues, which commonly follow an exponential decline, i.e., a linear decline

on a logarithmic scale. Since the signal eigenvalues do not possess the same property,

the linear approximation will fail when reaching the signal eigenvalues, which will

indicate the detection of the rank. In the following, we present the extension of LaRGE

for coupled BTD rank estimation.

Given a set of M noise-corrupted three-dimensional tensors X (m) ∈ CI (m)
1 ×I (m)

2 ×I3 as

in (8.1), the coupled HOSVD of X (m) can be written as

X (m) =S(m) ×1 U (m)
1 ×2 U (m)

2 ×3 U3, (8.4)

where S(m) ∈ CI (m)
1 ×I (m)

2 ×I3 are the core tensors, U (m)
1 ∈ CI (m)

1 ×I (m)
1 and U (m)

2 ∈ CI (m)
2 ×I (m)

2

are composed of the left singular vectors of the 1- and 2-mode unfoldings of X (m)
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computed from [X (m)](n) =U (m)
n Σ(m)

n V (m)H
n , whereΣ(m)

n contains the n-mode singular

values σ(m)
(n),i , n ∈ {1,2} on its main diagonal. Moreover, U3 ∈ CI3×I3 is the common

unitary matrix calculated from the singular value decomposition (SVD) of the concate-

nated 3-mode unfoldings of X (m) [MGK+21], and therefore, σ(m)
(3),i is common for all

tensors. For model order estimation, we are interested in the first J = min
(
I3, I (m)

n

)
singular values.

Due to the asymmetric rank structure, we divide the rank estimation processes into

two separate procedures. In the first run, only the semi-global eigenvalues λ̃(m)
(1,2),i ,

i = {1, . . . , J }

λ̃(m)
(1,2),i =

(
σ(m)

(1),i

)2 ·
(
σ(m)

(2),i

)2
(8.5)

from the 1- and 2-mode are used to estimate ΣLr . To take into account the infor-

mation from all coupled tensors, we compute the geometric mean of M semi-global

eigenvalues in (8.5) as follows

λ̃(1,2),i = M
√
λ̃(1)

(1,2),i · λ̃(2)
(1,2),i · ... · λ̃(M)

(1,2),i . (8.6)

Since there are rank-deficiencies in the 3-mode, we consider it separately to estimate

the number of block-terms R using the 3-mode eigenvalues λ̃(m)
(3),i =

(
σ(m)

(3),i

)2
averaged

along all M tensors as

λ̃(3),i = M
√
λ̃(1)

(3),i · λ̃(2)
(3),i · ... · λ̃(M)

(3),i . (8.7)

Then, the linear regression is applied separately to λ(1,2),i = ln
(
λ̃(1,2),i

)
and λ(3),i =

ln
(
λ̃(3),i

)
to estimate ΣLr and R, respectively. For notational convenience, in the

following, we simply use λi which will refer either to λ(1,2),i or λ(3),i , depending on

which rank, ΣLr or R , is to be estimated. The estimation starts from the smallest noise

eigenvalue (i = J), and subsequently finds a linear prediction λ̂i by moving up the

scale. For each step k in the prediction, the relative prediction error is computed as

δJ−k = λJ−k − λ̂J−k∣∣λ̂J−k
∣∣ = ∆J−k∣∣λ̂J−k

∣∣ , (8.8)

followed by the standard deviation of the approximation error

σJ−k =
√√√√ 1

k

J−k∑
i=J

(
∆i − 1

k

J−k∑
i=J

∆i

)2

, (8.9)

where ∆i is the absolute prediction error. Then, by computing the ratio between the

relative prediction error and the standard deviation of the approximation errors in the
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Figure 8.3. Correct rank estimations vs. Threshold. Simulation parameters: ΣLr = 9, R = 3,
Lr = [2,3,4] (asymmetric), SNR =−11 dB; ΣLr = 20, R = 4, Lr = [5,5,5,5] (symmet-
ric), SNR =−5 dB. 300 Monte-Carlo trials.

previous steps as PESDRk = δJ−k

σJ−k−1
, the algorithm can detect the first signal eigenvalue

(corresponding either to ΣLr or R) if the prediction error to standard deviation ratio

(PESDR) exceeds the predefined threshold ρ for the first time. For a more detailed

description of the LaRGE algorithm, we refer the reader to [KDHH21; AKK+22]. Fig-

ures 8.3(a) and 8.3(b) show the percentage of correct rank estimations with respect

to a threshold ρ for the estimation of ΣLr and R, respectively. For this simulation, we

generated two (X (1)
0 ∈C50×60×70 and X (2)

0 ∈C52×60×70) and four coupled BTD tensors

(X (1)
0 ∈ C50×60×70, X (2)

0 ∈ C52×60×70, X (3)
0 ∈ C54×60×70, and X (4)

0 ∈ C55×60×70) with the

3-mode in common, and added zero mean circularly symmetric complex Gaussian

(ZMCSCG) noise. We consider an asymmetric case with multilinear ranks Lr different

for every block (Lr = [2,3,4]) and a symmetric case, where the multilinear ranks are

equal (Lr = [5,5,5,5]). The SNR is −11 dB in the asymmetric case and −5 dB in the

symmetric case. For higher SNRs, the percent of correct rank estimations tends to 100

for all ρs in the considered range. As it can be observed, the threshold value does not

depend on the number of tensors and is approximately equal to 0.75 for ΣLr and to

3.5 for R.

8.4 CPD-based computation of the coupled
rank-(Lr ,Lr ,1) BTD

In this section we describe the next steps of the proposed coupled SECSI-BTD algo-

rithm. They include three main parts, an initial estimation step based on the simulta-
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neous matrix diagonalizations (SECSI), clustering, and final refinements. These are an

extension of the corresponding SECSI-BTD steps in Chapter 7 to the scenarios with M

coupled tensors.

Initial coupled BTD estimates via coupled CPD In order to compute the initial coupled

BTD estimates, we employ the SECSI framework for the coupled CPD. The coupled de-

composition with rank ΣLr is performed on the BTD tensors as in (8.2). SECSI utilizes

the simultaneous matrix diagonalization (SMD) [DeL06] approach that defines several

heuristics to enhance the accuracy of the CP decomposition [RH13; MGK+21]. The

main steps of SECSI include the computation of the truncated HOSVD and subsequent

estimation of the transformation matrices that represent the connection between the

CPD and truncated HOSVD. Assuming that the SVD of unfoldings in the uncoupled

modes has been previously computed in the rank estimation step in (8.4), they can be

used to calculate the truncated HOSVD without repeating the calculations. Assuming

the noiseless case for simplicity, the coupled truncated HOSVD of M tensors X (m)
0

with the third mode in common is written as

X (m)
0 =S [s](m) ×1 U [s](m)

1 ×2 U [s](m)
2 ×3 U [s]

3 , (8.10)

where S [s](m) ∈CΣLr ×ΣLr ×ΣLr are the core tensors, and a set of truncated unitary ma-

trices U [s](m)
1 ∈CI (m)

1 ×ΣLr , U [s](m)
2 ∈CI (m)

2 ×ΣLr , and U [s]
3 ∈CI3×ΣLr span the column space

of the corresponding n-mode unfoldings of X (m)
0 . The 3-mode matrix U [s]

3 is shared

for all factorizations and can be calculated from the following SVD (in the noiseless

case) [[X (1)
0

]
(3), . . . ,

[X (M)
0

]
(3)

]
=U [s]

3 Σ
[s]
3 V [s]H

3 . (8.11)

Given that these unitary matrices share the same column space as the CPD factors

in (8.2), the CPD factor matrices can be expressed through the non-singular transform

matrices T (m)
1 , T (m)

2 , and T3 as follows

A(m) =U [s](m)
1 T (m)

1 , B (m) =U [s](m)
2 T (m)

2 ,

C (r) =U [s]
3 T3.

(8.12)

The inverses of the transform matrices diagonalize the core tensors S [s](m). Thus, if

we consider, for instance, a tensor S(m)
3 such that S(m)

3 =S [s](m) ×3 U [s]
3 , and a tensor

D3 =I3,ΣLr ×3 C (r), then S(m)
3 =D3 ×1 T (m)

1 ×2 T (m)
2 , where every i th 3-mode slice of
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D3 is a diagonal matrix D3,i with the i th row of C (r) on its main diagonal. The previous

equation can be rewritten as

S(m)
3,i = T (m)

1 D3,i T (m)T
2 , (8.13)

where S(m)
3,i is the i th 3-mode slice of S(m)

3 , i ∈ {1, . . . , I3}. Equation (8.13) corresponds

to a non-symmetric SMD [RH13] (an example illustration of the non-symmetric SMD

is given in Figure 7.4 on page 106). By multiplying (8.13) from either the right-hand

side (rhs) or the left-hand side (lhs) by an arbitrary pivot slice (S(m)
3,p )−1, p ∈ {1, . . . , I3},

the asymmetric SMD problem in (8.13) can be transformed to a symmetric one

S(m)rhs
3,i = S(m)

3,i

(
S(m)

3,p

)−1

= T (m)
1

(
D3,i D3,p

−1)(T (m)
1

)−1
,

(8.14)

S(m)lhs
3,i =

((
S(m)

3,p

)−1
S(m)

3,i

)T

= T (m)
2

(
D3,i D3,p

−1)(T (m)
2

)−1
.

(8.15)

Consequently, the transform matrices T (m)
1 and T (m)

2 can be estimated by means of

SMD [FG06]. The matrix C (r) can be then retrieved from the jointly diagonalized

matrices D3,i up to one scaling ambiguity per column, and for each SMD problem

(rhs or lhs), the factors A(m) and B (m) are obtained either from (8.12) or from the least

squares (LS) fit as A(m) = [X (m)
0 ](1) · (B (m) ⋄C (r))T+ or B (m) = [X (m)

0 ](2) · (C (r) ⋄ A(m))T+.

Similar SMD problems can be constructed by multiplying the core tensors S [s](m) by

U [s](m)
1 or U [s](m)

2 in the 1-mode or the 2-mode, respectively. This, in the CPD case,

will lead in total to 2+ 4M SMD problems, and thus 4+ 2M estimates of the third

factor matrix and six sets of estimates of non-coupled factor matrices [MGK+21].

Then the final best set of factor estimates can be chosen according to a predefined

heuristic [RH13]. However, as we have discussed in Section 7.4.2 of the previous

chapter, in contrast to the CPD model data, the rank-(Lr ,Lr ,1) BTD tensors always

lead to the final estimates from the 3-mode SMDs. Therefore, to estimate the BTD

factors by means of SECSI, we only solve the SMDs in (8.13). For more details on the

SECSI and the coupled SECSI frameworks, we refer the reader to [RH13; MGK+21].

Clustering The solution of SMDs in (8.14) or (8.15) leads to initial estimates Â(m),

B̂ (m), and Ĉ (r),(m) in the CPD form. Therefore, in the next step, the matrix Ĉ (r),(m) with

collinear columns has to be brought to the proper BTD form. This can be done by k-
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means clustering [Llo82] (in our simulations, we use the k-means++ algorithm [AD07]).

By applying the clustering to Ĉ (r),(m), we retrieve permutation matrices P (m) that assign

each column in Ĉ (r),(m) to one of the R clusters. Additionally, the k-means finds the

optimal number of elements in each cluster (Lr ). Therefore, it can also be employed

in cases when the multilinear ranks are not known. For the cases with a known rank

structure, clustering with size constraints can be used [ZWL10].

By multiplying Â(m), B̂ (m), and Ĉ (r),(m) by the permutation matrices P (m), we rearrange

their columns in a way that the columns corresponding to r th block are grouped

together and follow the correct order as in the description of (8.1). These permuted

factors are denoted as Ã(m), B̃ (m), and C̃ (r),(m).

Final refinements To return the final BTD estimates of A(m)
r , B (m)

r , and cr , the collinear

columns in C̃ (r),(m) have to be reduced. We perform this by using one ALS iteration

as follows. First, recalculate Ã(m) and B̃ (m) with a current C̃ (r),(m) as Ã(m) = [X (m)](1) ·
(B̃ (m) ⋄ C̃ (r),(m))T+, and B̃ (m) = [X (m)](2) · (C̃ (r),(m) ⋄ Ã(m))T+. Then the submatrices in

C̃ (r),(m) are reduced to vectors as follows [DN08]

C̃ (m) = [X (m)](3) ·
[(

Ã(m)
1 ⋄ B̃ (m)

1

)
1L1 , · · · ,

(
Ã(m)

R ⋄ B̃ (m)
R

)
1LR

]T+
. (8.16)

Since there are M similar estimates of C , we choose the one with the smallest re-

construction error, and use the obtained Ã(m), B̃ (m), and C̃ as an initialization of the

nonlinear least squares (NLS) algorithm in [SVBD15].

8.5 Numerical results

In this section, we compare the performances of the proposed coupled BTD algorithm

with the algorithm from the Tensorlab toolbox which is based on the structured data

fusion via nonlinear least squares (SDF-NLS) in [SVBD15]. For the simulations, we have

generated two coupled BTD tensorsX (1)
0 ∈C50×60×70 andX (2)

0 ∈C54×60×70 according to

the model in (8.1), and added the noise tensors N (m) containing ZMCSCG entries with

variance σ2
n . Accordingly, the SNR is defined as 1/σ2

n . The 3-mode is in common.

132 Chapter 8 Coupled Rank-(Lr ,Lr ,1) Block-Term Decomposition



10
-2

10
-1

SRE

10
-3

10
-2

10
-1

10
0

C
C

D
F

C-SECSI-NLS

Rand Init-NLS

GEVD-NLS

(a) CCDF vs. SRE.

10
-3

10
-2

10
-1

10
0

SFE

10
-3

10
-2

10
-1

10
0

C
C

D
F

C-SECSI-NLS

Rand Init-NLS

GEVD-NLS

(b) CCDF vs. SFE for A(m)
r B (m)T

r .

10
-4

10
-3

10
-2

10
-1

10
0

SFE

10
-3

10
-2

10
-1

10
0

C
C

D
F

C-SECSI-NLS

Rand Init-NLS

GEVD-NLS

(c) CCDF vs. SFE for C .

Figure 8.4. CCDF vs. Reconstruction errors. SNR = 0 dB. Blue lines denote the proposed
algorithm, and the red and green lines denote the Tensorlab [SVBD15; VDS+16]
algorithms. Simulation parameters: R = 3, Lr = [2,3,4] (asymmetric); 500 Monte-
Carlo trials.

8.5 Numerical results 133



We use two metrics to compare the performances, squared reconstruction error (SRE)

and squared factor reconstruction error (SFE)

SRE = 1

M

M∑
m=1

∥∥∥X̂ (m)
0 −X (m)

0

∥∥∥2

F∥∥∥X (m)
0

∥∥∥2

F

, (8.17)

SFE(C ) =
∥∥C̃ ·Pc −C

∥∥2
F

∥C∥2
F

, (8.18)

SFE(AB T) = 1

RM

R∑
r=1

M∑
m=1

∥∥∥Ã(m)
r B̃ (m)T

r − A(m)
r B (m)T

r

∥∥∥2

F∥∥∥A(m)
r B (m)T

r

∥∥∥2

F

, (8.19)

where X̂ 0 is a tensor reconstructed from the estimated BTD factors, (A(m)
r , B (m)

r ), and

C are the original and Ã(m)
r , B̃ (m)

r , and C̃ are the estimated factors, respectively. The

matrix Pc resolves the permutation and scaling. The errors for A(m) and B (m) are

shown together due to inherent matrix product ambiguities [DeL08a]. Similarly to the

simulations in Section 8.3, we consider an asymmetric case with multilinear ranks Lr

different for every block (Lr = [2,3,4]) and a symmetric case, where the multilinear

ranks are equal (Lr = [5,5,5,5]).

The complementary cumulative distribution functions (CCDFs) of the SRE and the

SFE for asymmetric and symmetric scenarios are presented in Figures 8.4 and 8.5,

respectively. The errors for (A(m)
r B (m)T

r ) are averaged across all values of r . C-SECSI-

NLS corresponds to the proposed coupled SECSI-BTD approach with NLS refinement,

and GEVD-NLS denotes the generalized eigenvalue decomposition (GEVD)-based

initialization and NLS refinement. "Rand Init-NLS" denotes the NLS with random

initialization. As we can see, the proposed coupled SECSI-BTD algorithm outperforms

both the GEVD-NLS and randomly initialized NLS algorithms. It can be explained by

the fact that in contrast to the GEVD in [VDS+16], the coupled SECSI framework uses

an SMD-based approach that takes all the slices of a tensor into account and chooses

the best estimate instead of considering only one pencil in GEVD, which makes its

performance more stable.

8.6 Conclusions

In this chapter of the thesis, we have introduced the coupled SECSI-BTD algorithm

to estimate the factors of the coupled rank-(Lr ,Lr ,1) BTD of multiple tensors with a
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Figure 8.5. CCDF vs. Reconstruction errors. SNR = 40 dB. Blue lines denote the proposed
algorithm, and the red and green lines denote the Tensorlab [SVBD15; VDS+16]
algorithms. Simulation parameters: R = 4, Lr = [5,5,5,5] (symmetric). 1000 Monte-
Carlo trials.
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common mode based on the coupled extension of the semi-algebraic framework for

approximate CP decompositions via simultaneous matrix diagonalizations (SECSI).

The approach is an expansion of the algorithm proposed in Chapter 7 to factorize a set

of tensors with common mode(s). We have exploited the joint HOSVD of multiple ten-

sors and the link between the HOSVD, the CPD and the BTD to estimate the common

and individual factors of the coupled rank-(Lr ,Lr ,1) decomposition. Additionally, we

have shown how the multilinear rank structure of the coupled rank-(Lr ,Lr ,1) decom-

position can be estimated based on the extension of the LaRGE scheme and clustering

techniques. The numerical results demonstrate that compared to the GEVD-based

approach in [VDS+16; SVBD15], the proposed SECSI-based initialization guarantees

convergence, and therefore is more accurate and numerically stable. Moreover, in

contrast to [VDS+16; SVBD15], our approach allows performing the decomposition

even if the ranks are not available beforehand. Therefore it can be further used in

real data applications with unknown rank structure, for instance, in EEG-MEG data

processing, since these signals are usually recorded simultaneously and thus exhibit

coupling.
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Tensor-based Near-field
Localization in MIMO Radar
Systems 9
This chapter presents a high-resolution coupled rank-(Lr ,Lr ,1) block-term decom-

position-based near-field localization scheme for multi-static MIMO radar systems.

The proposed COBRAS (COupled Block-term decomposition for multi-static RAdar

Systems) algorithm uses the exact wavefront model to estimate the target location

parameters in 3D space and can be applied for arbitrary array geometries. Compared

to the far-field models, the exact near-field wavefront model allows exploiting the

distance information for high-accuracy positioning. Moreover, we consider a system

with massive antenna arrays, which increases the Fresnel region and expands the

range of the near-field assumption. The COBRAS algorithm includes the initial tensor

decomposition of the data and further post-processing steps that allow extracting

the location parameters. Additionally, we compare the performance of different rank-

(Lr ,Lr ,1) decomposition algorithms (including the algorithms proposed in Chapters 7

and 8) and demonstrate how the employment of coupling improves the localization

performance compared to the non-coupled solutions.

9.1 Introduction

The near-field region provides new opportunities and challenges for communication

and sensing applications. Compared to the far-field design, the near-field allows

exploiting the distance information. Therefore, near-field beamforming can yield

a higher spatial multiplexing gain by transmitting different data to users located at

different locations in the same direction. Moreover, the near-field is highly beneficial

in radar systems: in contrast to far-field systems, it allows a more accurate localization

with not only angle but also distance parameters. Until recently, most applications of

wireless systems have focused on the far-field assumption. However, operations in

the mmWave and THz bands, the use of large antenna arrays, and the deployment of

reconfigurable intelligent surfaces make the exploitation of the near-field essential

and inevitable [CWL+23]: the near-field region increases, and the wavefronts cannot

be considered as planar anymore.
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Commonly, publications that focus on near-field signal processing consider the Fresnel

approximation of the spherical wavefronts [HCS96; EP12; SWC16; SWC17a; ZJQ15;

ZXO+19], which uses a Taylor expansion of the true phase distribution of the wavefront

across antennas. Alternatively, some authors [SWC17b; SWC16; PHT+18; PSK+21]

avoid using the Fresnel approximation and utilize the exact spherical wavefront model,

which avoids systematic errors introduced by the Fresnel approximation and improves

the estimation accuracy. Other tools that demonstrate promising results in the area

of multiple-input multiple-output (MIMO) radar signal processing include tensor

decompositions and multidimensional signal processing. For example, in [PSK+21],

we propose a canonical polyadic (CP) decomposition-based localization and channel

estimation algorithm for massive antenna arrays. The studies in [SWC17b; SWC16],

and our paper [PHT+18] employ the CP decomposition for parameter estimation in

bistatic MIMO radar systems. The multi-static MIMO radar scenario is considered

in [YGL+19; CZYG19]. The authors propose to use the coupled CP and coupled rank-

(Lr ,Lr ,1) decompositions to localize the targets in the far-field. However, the algorithm

suggested in [YGL+19] is limited to 2D space localization when considering a uniform

rectangular array (URA) antenna configuration due to the chosen wavefront model.

Tensor-based techniques are also widely employed for direction-of-arrival estimation

using a planar wavefront model [SBG00; SDD18; LLN+20].

Main contributions. This chapter of the thesis focuses on multi-static MIMO radar

systems with multiple receive and transmit massive antenna arrays. We consider

the parameter estimation of multiple targets in 3D space using the exact spherical

wavefront model. Moreover, we use the signal model from [YGL+19] to arrange the

received data as a low-rank tensor and employ a robust coupled block-term decompo-

sition (BTD) algorithm that we presented in [SKKH22] and in Chapter 8 to estimate

the steering matrices. We also develop appropriate post-processing steps, such as

phase unwrapping, the solution of the system of linear equations, and the parameter

extraction to obtain the final parameter estimates. We refer to the proposed algorithm

as "COBRAS" (COupled Block-term decomposition for multi-static RAdar Systems).

In contrast to the algorithm in [YGL+19], our approach is designed for near-field sys-

tems and uses the exact spherical wavefront model. Additionally, we compare the

performance of the different BTD algorithms in terms of their impact on localization

accuracy.

The remainder of this chapter is organized as follows: Section 9.2 provides a system

model. Section 9.3 outlines the main steps of the proposed coupled rank-(Lr ,Lr ,1)

decomposition-based near-field localization algorithm. Section 9.4 presents our ex-

perimental setup, simulation results, and a comparison of the impact of different BTD
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algorithms on localization performance. Finally, Section 9.5 concludes the study by

summarizing the key findings.

9.2 System model

We consider a multi-static multi-pulse MIMO radar system that uses MT transmit

and MR receive arrays to localize R targets. Each transmitter emits temporally or-

thogonal signals that impinge on the targets, and their reflections are intercepted by

receiving arrays. At the receiver side, the signals are matched-filtered using the known

waveforms from the transmitter side. The targets are assumed to be in the near-field

region1 of both arrays, such that the wavefronts of the impinging and reflecting waves

can be considered spherical, and the target radar cross section (RCS) is assumed to

be uncorrelated from pulse to pulse (Swerling 2 model [RHS10]). In the sequel, we

focus on uniform rectangular arrays and describe a high-resolution algorithm to es-

timate the range, azimuth, and elevation parameters of the dominant wavefronts in

3D space. However, the COBRAS algorithm is also applicable to arrays of arbitrary

(known) geometries.

9.2.1 Scenario

An example scenario is shown in Figure 9.1. The antennas in the transmit and receive

arrays are depicted with red and blue dots, respectively. The black dots denote targets.

Each transmit and receive array consists of N [mT]
T , mT ∈ {1, . . . , MT} and N [mR]

R , mR ∈
{1, . . . , MR} antennas, respectively. In the following, to ease the notation, we skip the

superscripts [mT] and [mR] in the notations of NT and NR, and assume an equal

number of antennas in all transmit and all receive arrays. However, the algorithm

supports scenarios with different numbers of elements in the antenna arrays. We

denote the Cartesian coordinates of the transmit antennas as
{

x[mT]
T,nT

, y [mT]
T,nT

, z[mT]
T,nT

}
, nT ∈

{1, . . . , NT} and the Cartesian coordinates of the receive antennas as
{

x[mR]
R,nR

, y [mR]
R,nR

, z[mR]
R,nR

}
,

nR ∈ {1, . . . , NR}.

1 It is also refered to as the Fresnel region rF , which can be expressed as [BEO16] 0.62
(

d 3

λ

) 1
2 < rF < 2d 2

λ
,

where d is the maximum diameter of the antenna aperture, and λ is a wavelength. As an example, for
the antenna array of size 10×10 with inter-element spacing λ/2 the Fresnel region is approximately
10λ to 81λ; and for the 25×25 antenna array, it is approximately 43λ to 576λ.
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Every r th target in 3D space (see Appendix A.6) is characterized by a set of parame-

ters

Θ
[mT]
T,r =

{
ρ

[mT]
T,r ,φ[mT]

T,r ,θ[mT]
T,r

}
(9.1)

and

Θ
[mR]
R,r =

{
ρ

[mR]
R,r ,φ[mR]

R,r ,θ[mR]
R,r

}
, (9.2)

where ρ[mT]
T,r and ρ[mR]

R,r are the distances from the r th target to the reference transmit

and receive antennas of the transmit and receive arrays, respectively, and r ∈ {1, . . . ,R}.

Moreover,φ[mT]
T,r andφ[mR]

R,r are the azimuth, and θ[mT]
T,r and θ[mR]

R,r are the elevation angles,

defined with respect to the transmit and the receive systems of coordinates. We assume

that the reference antennas of the transmit and receive arrays are located at the origin

of the "local" system of coordinates (at every array). Furthermore, we introduce a

"global" system of coordinates with the origin at the reference antenna of the first

transmit array. Then the coordinates
{

xT,mT , yT,mT , zT,mT

}
and

{
xR,mR , yR,mR , zR,mR

}
denote the locations of the mTth and mRth reference antennas with respect to the

global origin. Additionally, we introduce a set of Cartesian coordinates of the r th target

asΘ[mT]
T,r =

{
x[mT]

T,r , y [mT]
T,r , z[mT]

T,r

}
andΘ[mR]

R,r =
{

x[mR]
R,r , y [mR]

R,r , z[mR]
R,r

}
defined with respect to

the reference antennas at the transmit and receive arrays, respectively.

9.2.2 Signal model

The received signal Y [mR]
p ∈CNR×T at the mRth receiving array in the pth pulse can be

written as [YGL+19]

Y [mR]
p =

MT∑
mT=1

R∑
r=1

α
[mR]
r ϱ

[mR ,mT ]
r,p b[mR]

r a[mT]T
r S[mT]T +N [mR]

p , (9.3)

where mT, mR, r , and p are the transmit array, the receive array, the target, and the

pulse indices. The complex gain parameters α[mR]
r represent such effects as atten-

uation and random phase shifts. The complex quantity ϱ
[mR ,mT ]
r,p is the reflection

coefficient of the r th target relative to the mRth receive and mTth transmit array in

the pth pulse. The matrix S[mT] ∈CT×NT contains the transmitted signal during one

pulse period after matched-filtering at the receiver, where T is the number of time

snapshots in each pulse. The matrix N [mR]
p ∈CNR×T represents the independently and

identically distributed (i.i.d.) zero mean spatially and temporally white additive noise
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Figure 9.1. Scenario geometry with R = 3 targets, MT = 3 transmit URAs, and MR = 2 receive
URAs. The parameters of one of the targets are given with respect to transmit and
receive reference antennas of the first transmit and the first receive arrays.

with variance σ2
n . Moreover, the transmit and receive array steering vectors for the r th

target are defined in terms of the path differences as

a[mT]
r =

[
1, e− j 2π

λ
δ

[mT]
T,r,2 , . . . , e

− j 2π
λ
δ

[mT]
T,r,NT

]T
∈CNT (9.4)

and

b[mR]
r =

[
1, ,e− j 2π

λ
δ

[mR]
R,r,2 , . . . , e

− j 2π
λ
δ

[mR]
R,r,NR

]T
∈CNR , (9.5)

respectively.

The exact expression for the geometric path differences δ[mT]
T,r,nT

and δ[mR]
R,r,nR

between the

reference antenna and the nTth (nRth) antenna in the array depends on the chosen

wavefront model, which can be planar if the sources are in the far-field [SN89], ap-

proximated spherical (Fresnel approximation [HCS96]) or exactly spherical [PHT+18;

SWC16; PSK+21; KPH21]. In this work, we adopt the exact spherical wavefront model

given as

δ
[mT]
T,r,nT

=
√(

x[mT]
T,r −x[mT]

T,nT

)2 +
(

y [mT]
T,r − y [mT]

T,nT

)2 +
(
z[mT]

T,r − z[mT]
T,nT

)2 −ρ[mT]
T,r , ∀nT,∀mT,

(9.6)

δ
[mR]
R,r,nR

=
√(

x[mR]
R,r −x[mR]

R,nR

)2 +
(

y [mR]
R,r − y [mR]

R,nR

)2 +
(
z[mR]

R,r − z[mR]
R,nR

)2 −ρ[mR]
R,r , ∀nR,∀mR.

(9.7)
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By stacking the matrices Y [mR]
p with fixed mR and varying p along the 3-mode, the data

received at the mRth array for P pulses can be represented as a three-dimensional

tensor Y ′[mR]
(:,:,p) = Y [mR]

p ∈ CNR×T . After permuting the first and the third indices in

Y ′[mR] ∈CNR×T×P , we can rewrite it as the tensor Y [mR] ∈CP×T×NR (we refer the reader

to Appendix A.7 and to [YGL+19] for detailed derivations) in the following way

Y [mR] =
R∑

r=1
α

[mR]
r

(
F [mR]

r C T
r

)
◦b[mR]

r +N [mR] ∈CP×T×NR , (9.8)

where the columns of the matrix of reflection coefficients

F [mR]
r =

[
f [mR ,1]

r , . . . , f [mR ,MT ]
r

]
∈CP×MT (9.9)

are expressed as

f [mR ,mT ]
r =

[
ϱ

[mR ,mT ]
r,1 , . . . , ϱ

[mR ,mT ]
r,P

]T ∈CP . (9.10)

Moreover, the matrix

Cr =
[

c [1]
r , . . . , c [MT]

r

]
∈CT×MT (9.11)

is constructed from the vectors c [mT]
r = S[mT]a[mT]

r ∈ CT that combine the transmit-

ted signal and the transmit steering vectors. The representation of the data in (9.8)

corresponds to the noise-corrupted coupled rank-(Lr ,Lr ,1) block-term decomposi-

tion [YGL+19; SD15; SKKH22] with the MR tensors coupled in the 2-mode since the

arrays receive the same transmitted data. We assume that the matrices F [mR]
r ∈CP×MT

and Cr ∈ CT×MT in (9.8) have a full column rank equal to MT, i.e., the number of

pulses and snapshots is greater than MT. In this case, the rank-(Lr ,Lr ,1) BTD is

identifiable [DeL08a] and the matrices in (9.8) can be estimated through the coupled

rank-(Lr ,Lr ,1) decomposition. Then, the final target parameter estimates are obtained

via the solution of a system of linear equations and further processing, which we cover

in the following.

9.3 Coupled BTD-based target localization

This section describes the main steps of the proposed COBRAS algorithm that utilizes

the coupled rank-(Lr ,Lr ,1) decomposition for target localization in multi-static near-

field radar systems. It includes the estimation of the initial decomposition of the
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received data, phase unwrapping, the solution of the system of linear equations, and

the parameter extraction to calculate the final estimates.

9.3.1 Tensor decomposition and phase unwrapping

The first step of the algorithm is an estimation of the matrices F [mR]
r , Cr , and vectors

b[mR]
r which can be performed via an approximate coupled rank-(Lr ,Lr ,1) decomposi-

tion of the tensors Y [mR] with the block-rank R and the Lr -ranks equal to MT. Several

authors have proposed algorithms to compute the coupled rank-(Lr ,Lr ,1) decompo-

sition, for example, the coupled SECSI-BTD algorithm that we propose in [SKKH22]

and in Chapter 8, structured data fusion algorithms in [SVBD15], or simultaneous

diagonalization (SD) methods in [SD15; SDD15; SVBD15]. In this study, we focus on

the solution from Chapter 8 and compare its performance to the other schemes.

At this point, we should mention the additional matrix product ambiguity that oc-

curs in the rank-(Lr ,Lr ,1) decompositions when estimating the product
(
F [mR]

r C T
r

)
as

shown in [DeL08a] (see also (7.5) in Section 7.2). Since the ambiguities in
(
F [mR]

r C T
r

)
are difficult to resolve, in this chapter, we focus on the estimation of the steering

vectors b[mR]
r at the receive arrays, which are essentially unique (up to an arbitrary

permutation and scaling) [SD15; DeL08a] and can be used for the localization of the

targets. We denote the estimated vectors b[mR]
r as b̂[mR]

r and use them as columns in

the matrices B̂ [mR] = [b̂[mR]
1 , . . . , b̂[mR]

R ] ∈CNR×R . Based on the knowledge that at the ref-

erence (first) antenna, the path difference is equal to zero, the BTD scaling ambiguity

can be corrected by dividing the vectors b̂[mR]
r by their first element.

As described in [PHT+18], to acquire the correct phases of the steering vectors b̂[mR]
r ,

the unwrapping procedure has to be performed on the extracted phase angles as

δ̂
[mR]
r = λ

2π
·U

{
∠b̂[mR]

r

}
, ∀r, (9.12)

where δ̂[mR]
r is the vector of path difference estimates andU {•} denotes the unwrapping

algorithm. For uniformly distributed geometries, such as Uniform Linear Arrays (ULAs)

or URAs, the correct phase unwrapping is possible if the element spacing is not larger

than λ/2 with a simple 1-dimensional unwrapping algorithm [Ito82] (in case of a URA

it should be applied row- and column-wise). For other types of array geometries, 2-

(or 3-) dimensional unwrapping algorithms should be applied [PHT+18; GP98].
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9.3.2 Solving the system of linear equations

In order to calculate the target location parameters, the following post-processing

steps are applied independently for every δ̂[mR]
r , ∀r , ∀mR. Since the processing steps

are the same for every receiving array, for notational simplicity, we drop the superscript

[mR] and the subscript R, denoting the array number and the receive side, respectively.

Substituting the estimated path difference δ̂r,nR into (9.7), moving ρr to the left side,

and taking the square results in

(
δ̂r,nR +ρr

)2 = (
xr −xnR

)2 + (
yr − ynR

)2 + (
zr − znR

)2 . (9.13)

By expanding (9.13) further, we get

δ̂2
r,nR

+2ρr δ̂r,nR +ρ2
r = x2

r + y2
r + z2

r︸ ︷︷ ︸
ρ2

r

+x2
nR

+ y2
nR

+ z2
nR︸ ︷︷ ︸

d 2
nR

−2
(
xr xnR + yr ynR + zr znR

)
.

(9.14)

which results in a set of NR − 1 linear equations (since the reference antennas are

located at the origin of the system of coordinates, x1 = y1 = z1 = 0, and δ̂r,1 = 0,

∀r ) [PHT+18]

2


x2 y2 z2 δ̂r,2

x3 y3 z3 δ̂r,3
...

...
...

...

xNR−1 yNR−1 zNR−1 δ̂r,NR−1


︸ ︷︷ ︸

Xr ∈R(NR−1)×4

pr =


d 2

2 − δ̂2
r,2

d 2
3 − δ̂2

r,3
...

d 2
NR−1 − δ̂2

r,NR−1


︸ ︷︷ ︸

yr ∈R(NR−1)×1

(9.15)

where d 2
nR

= x2
nR

+ y2
nR

+ z2
nR

is the distance from the reference antenna (located at the

origin) to the nRth antenna, and

pr =


xr

yr

zr√
x2

r + y2
r + z2

r

=


ρr cos(φr )cos(θr )

ρr sin(φr )cos(θr )

ρr sin(θr )

ρr

 . (9.16)

The set of equations in (9.15) allows estimating the location of targets in the full 3D

space around the receive array if the antenna array geometry exhibits diversity in all

spatial directions (i.e., the arrays are not planar). In the case of the planar antenna

arrays, for example, URAs, the matrix Xr in (9.15) will not have full column rank.
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In such a situation, we choose a local system of coordinates with the origin at the

reference antenna such that all antennas lie in the x-y-plane. Then, znR = 0, ∀nR, and

equations (9.15) and (9.16) reduce to

2


x2 y2 δ̂r,2

x3 y3 δ̂r,3
...

...
...

xNR−1 yNR−1 δ̂r,NR−1


︸ ︷︷ ︸

Xr ∈R(NR−1)×3

pr =


d 2

2 − δ̂2
r,2

d 2
3 − δ̂2

r,3
...

d 2
NR−1 − δ̂2

r,NR−1


︸ ︷︷ ︸

yr ∈R(NR−1)×1

(9.17)

and

pr =


xr

yr√
x2

r + y2
r + z2

r

=


ρr cos(φr )cos(θr )

ρr sin(φr )cos(θr )

ρr

 , (9.18)

respectively. As can be seen from (9.18), in such a case, the parameter estimation is

only possible in the upper half of the 3D space where zr > 0 (or 0 ≤ θr ≤π/2).

The solution vector can, for example, be found by means of least squares (LS) or total

least squares (TLS). In the latter case, the solution vector pr is found as

p̂r =
(vr )(1:q−1)

(vr )(q)
(9.19)

where q is the number of elements in vr . We use (a)(i ) to denote the i th element of

a. The vector vr is the right-singular vector of the augmented matrix
[

Xr yr

]
that

corresponds to the smallest singular value [SWC17b; GVL13]. However, according to

our simulations, the LS solution performs similarly to the TLS solution.

9.3.3 Parameter extraction

In the general 3D case, the final range, azimuth, and elevation estimates can be

computed as

ρr =
(
p̂r

)
(4) , (9.20a)

φr = atan2

((
p̂r

)
(2)

ρr
,

(
p̂r

)
(1)

ρr

)
, (9.20b)
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and

θr = atan2

(
p̂r

)
(3)

ρr
,

√(
p̂r

)2
(1) +

(
p̂r

)2
(2)

ρr

 , (9.20c)

where atan2(y, x) denotes the four quadrant arctangent function (see Appendix A.6).

If all the array antennas are in the same plane (e.g., URA case), the range is ρr =
(
p̂r

)
(3)

and the elevation is computed as

θr = cos−1


√(

p̂r
)2

(1) +
(
p̂r

)2
(2)

ρr

 . (9.21)

The equation (9.21) additionally provides a simple reliability test that can be applied

in this case. If the value of
√(

p̂h
)2

(1) +
(
p̂h

)2
(2)/ρh is larger than one, then the test has

failed, and the location estimates should be considered as not reliable.

9.4 Simulation results

This section presents the empirical validation of the COBRAS algorithm, demonstrat-

ing its performance and the impact of the different rank-(Lr ,Lr ,1) decomposition

algorithms on the localization accuracy.

For the simulations, we consider a multi-static MIMO radar system with MT = 3 trans-

mitting arrays and MR = 2 receiving arrays. The carrier frequency is fc = 50 GHz which

results in a wavelength of λ= c/ fc ≈ 0.6 cm. As the transmitting and receiving arrays,

we use URAs of 10×10 elements, resulting in NT = NR = 100. The antenna element

spacing is set to λ/2. The Cartesian coordinates of the reference transmit antennas are

{0,0,0}, {0,12λ,0}, and {0,24λ,0}, and the coordinates of the receiving reference anten-

nas are {16λ,0,0}, {16λ,17λ,0}. The antenna arrays are rotated about the y-axis by the

angles γT = 140◦ and γR = 30◦, for transmit and receive sides, respectively. The number

of time snapshots is set to T = 200, and the number of pulses is P = 100. The size of

the received data tensors Y [1] and Y [2] for the given parameters is 100×200×100.

The range, azimuth, and elevation parameters of the R = 3 closely spaced targets with

respect to the reference antennas of two receive arrays areΘ[1]
R,1 =

{
22λ,116.6◦,44.7◦

}
,

Θ[1]
R,2 =

{
21λ,112.9◦,45.7◦

}
,Θ[1]

R,3 =
{
23.4λ,110.6◦,43.1◦

}
,Θ[2]

R,1 =
{
17.9λ,−156.8◦,63.8◦

}
,

Θ[2]
R,2 = {

16.4λ,−148.4◦,66◦}, and Θ[2]
R,3 = {

17.1λ,−170.5◦,69.1◦
}
, respectively. The ex-

ample scenario used for the simulations is illustrated in Figure 9.1. The reflection

coefficients and the transmitted signal after matched-filtering at the receiver are drawn
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Figure 9.2. CCDF vs. errors in terms of the Euclidian distance between true and estimated
locations. Results are averaged over all R = 3 targets. SNR = 30dB. 1000 Monte-
Carlo trials.

from a zero mean complex Gaussian distribution with unit variance. The additive noise

tensor N [mR] is modeled as an independently and identically distributed (i.i.d.) zero

mean spatially and temporally white additive noise with variance σ2
n . The simulations

were performed for K = 1000 trials.

We evaluate the accuracy of the target localization, defining the errors in terms of the

Euclidean distance between the true (u) and the estimated (ûk ) location of the target

as

err =
√
η(ûr,k )

∥∥ur − ûk,r
∥∥2 ∀r,∀k, (9.22)

where k ∈ 1, . . . ,K is a trial index and the

η(û) =
1, if û passed the reliability test

0, otherwise
(9.23)

represents the indicator function of the reliability test described at the end of Sec-

tion 9.3.3. Therefore, only the trials in which the reliability test did not fail are taken

into account.

Moreover, we measure the estimation accuracy of the location parameter x ∈ {
ρ,φ,θ

}
as

err(x) =
√
η(ûr,k )(xr − x̂r,k )2 (9.24)

where xr is the true value of the estimated quantity for the r th target and the η(ûr,k ) is

defined in (9.23), i.e. we again only consider the trials in which the reliability test has

been passed.
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Additionally, as in [PSK+21], we use the minimum separation measure between the

values of the parameter x of all targets as

s(x) = min
r1,r2

∣∣xr1 −xr2

∣∣
2

(9.25)

where r1,r2 ∈ {1, . . . ,R}, to ease the representation of the results.

The complementary cumulative distribution function (CCDF) of the errors in terms of

the Euclidian distance between the true and the estimated locations of the targets for

the SNR = 30dB is shown in Figure 9.2. The CCDFs in terms of range, azimuth, and

elevation parameters of targets are depicted in Figure 9.3. The colored vertical lines in

the plots represent the mean values for each curve. We compare three BTD algorithms

for the estimation of the steering matrices (the other steps are performed according

to COBRAS): (i) coupled rank-(Lr ,Lr ,1) BTD algorithm from Chapter 8 and [SKKH22]

(nonlinear least squares (NLS) with SECSI-based initialization, blue curve); (ii) NLS

solution for coupled rank-(Lr ,Lr ,1) BTD from [VDS+16] (random initialization, orange

curve); and (iii) non-coupled solution from Chapter 7 and [KSP+23] (green and purple

curves). In the third case, only the data from one given array is processed. Therefore,

there is no joint processing, and the coupling is not considered. The dash-dotted line

denotes the separation distance described in (9.25). In our simulation scenario, only

0.03% of estimates among all trials, targets, and arrays are not reliable for the first

and second algorithms. The third algorithm provided zero unreliable estimates. As

can be observed, the SECSI-NLS scheme outperforms the considered alternatives,

especially the non-coupled approaches. This can be explained by the more reliable

initialization provided by the SECSI algorithm, which reduces the number of outliers.

Conversely, the NLS solution with random initialization does not always converge.

The inferior performance of the single BTD demonstrates the benefits of the coupling:

the localization is more accurate and reliable when data from both arrays is processed

jointly.

The estimation performances can be further improved by, for example, constructing

the system in (9.15) using the estimates from both arrays and using a weighted least

squares solution. Another solution is to consider only the estimates from the array

that passed the reliability test in (9.23) or take into account only the estimates from

the array that is located closer to the target.
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Figure 9.3. CCDF vs. errors in terms of the range, azimuth, and elevation parameters of the
targets. Results are averaged over all R = 3 targets. SNR = 30dB. 1000 Monte-Carlo
trials.
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9.5 Conclusions

This chapter presents a high-resolution coupled rank-(Lr ,Lr ,1) decomposition-based

near-field localization algorithm for multi-static MIMO radar systems. The COBRAS

algorithm performs the target location parameters estimation in 3D space based on

the exact wavefront model and is applicable to arbitrary array geometries. Compared

to the far-field planar wavefront, the use of the exact wavefront model enables the

estimation of not only the direction-of-arrival parameters but also the range and,

consequently, the position of the target. Moreover, the use of massive antenna arrays

increases the Fresnel region and makes the near-field assumption applicable in practi-

cal scenarios. Furthermore, the algorithm utilizes a reliability measure, which allows

discarding unreliable parameter estimates. The simulation results show that the em-

ployment of coupling and joint processing of the data from multiple arrays improves

the localization performance compared to the non-coupled solutions. Moreover, we

have shown that the coupled BTD algorithm proposed in Chapter 8 outperforms its

alternatives from the literature.
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Rank-(Lr ,Lr ,1) Block-Term
Decomposition for Joint
Processing of Magnetic Fields
and Electrical Potentials 10
This chapter of the thesis is devoted to one of the common and promising applications

of tensor decompositions, electroencephalography (EEG) and magnetoencephalogra-

phy (MEG) data processing. In particular, we show how the coupled rank-(Lr ,Lr ,1)

decomposition can be applied to the EEG-MEG recordings of somatosensory evoked

electrical potentials (SEPs) and somatosensory evoked magnetic fields (SEFs) to sep-

arate the signal components related to 200 Hz band activity. The studies show that

explorations into oscillatory phenomena in this frequency range have yielded signifi-

cant insights into identifying and interpreting diverse brain activities. In our analysis,

we use the SEPs and SEFs recordings, evoked through electrical median nerve stimula-

tion conducted on eight healthy volunteers. By employing time-frequency analysis,

we produce the time-dependent spectra of the signals and organize them into three-

dimensional EEG, MEG magnetometer (MAG), MEG gradiometer (GRAD)-1, and MEG

gradiometer (GRAD)-2 data tensors. The approach that addresses the challenge of

separating signal components associated with the 200 Hz band activity in SEPs and

SEFs utilizing the coupled multilinear rank-(Lr ,Lr ,1) block-term decomposition has

already been proposed in [CRHH21]. The authors assessed and confirmed the advan-

tages of the joint processing of simultaneous EEG and MEG recordings in seven of

eight subjects. However, the analysis in [CRHH21] was limited to the joint analysis of

only EEG and MEG-MAG tensors. This study focuses on the complete data set, includ-

ing the gradiometer measurements. In essence, this chapter validates the application

of the coupled block-term decomposition (BTD) algorithm proposed in Chapter 8

on the analysis of neural oscillations, which, in turn, holds the potential to provide

enhanced insights into brain function and dynamics.

10.1 Introduction

This study focuses on the analysis of somatosensory evoked electrical potentials (SEPs)

and somatosensory evoked magnetic fields (SEFs) from EEG (Electroencephalogram)

and MEG (Magnetoencephalogram) recordings. These recordings capture signals
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from the human somatosensory cortex, originating from peripheral nerve stimula-

tions [HSM+01]. Previous research has identified activity within various frequency

bands, notably spectral components around 600 Hz [CMB+94; CMB+97] and around

200 Hz [HSM+01; PCP+13]. These components at approximately 600 Hz are often re-

ferred to as high-frequency oscillations (HFOs). The term HFOs also encompasses nor-

mal or pathological EEG and MEG signals within the 80 Hz to 250 Hz range [MRJ+17].

Spontaneous non-pathological HFOs occuring during sleep, linked to sleep-specific

transient signals [BDLP+16; MFG+18]. Pathological HFOs are emerging as potential

epilepsy biomarkers, more indicative of epileptogenic tissue than spikes [Gvv+17].

They appear to possess a more focal nature than spikes and might be involved in

initiating epileptic activity, particularly in childhood absence epilepsy [Gvv+17]. MEGs

can detect HFOs during the periictal state [JNN+17].

Similar to [CRHH21], in this chapter of the thesis, we exploit tensor decompositions to

separate signal components related to 200 Hz band oscillations in SEPs and SEFs. As in

many other signal processing fields, the application of tensors for MEG and EEG data

analysis is receiving an increased interest [CLK+15; BAC+14; NKHH17; KB09]. EEG and

MEG data are one of the examples, for which tensors are perfect representations: EEGs

naturally include information in different modes of trials, time, frequency, channel,

etc. Thus, there are several works in the literature that utilize tensor decompositions

for EEG data processing to perform feature extraction, classification, and source sepa-

ration [KSAD15; ZGK+21; CMD+15]. For instance, the authors in [GPBS22] propose

a method to detect a seizure before its actual manifestation based on the canonical

polyadic decomposition (CPD).

As the quality of the acquired EEG signals is often very poor, corrupted by the noise,

spikes, and artifacts (due to the sensor limitations, the background environmental

noise, or the human factors such as the winks), their suppression plays an important

role in the medical data analysis. Thus, for many years, the primary focus of biomedical

signal processing has been signal filtering and reduction of the noise. Organisms

are complex systems whose subsystems interact, so the measured signals of one

subsystem usually contain the signals of other subsystems. Removing unwanted

signal components can then support subsequent medical discoveries. A fundamental

method for noise cancellation analyzes the signal spectra and suppresses undesired

frequency components.

Other efficient methods to suppress the noise and detect the artifacts are based on the

independent component analysis and tensor decompositions [NLK+20; DCVP+05].

The factorization of the multiway data into the individual components or factors allows

not only isolating the essential signal subspace but also visualizing and removing the

152 Chapter 10 Rank-(Lr ,Lr ,1) Block-Term Decomposition for Joint Processing
of Magnetic Fields and Electrical Potentials



spikes and artifacts. The canonical polyadic (CP) decomposition is probably the one

that is most commonly utilized for these tasks. Moreover, the coupled extension

of the CPD is considered a good alternative to the single tensor CPD in cases when

several data sets have common modes and can be decomposed jointly. A coupled

variant of the PARAFAC2 supports simultaneous SEPs and SEFs processing [CNH+18].

While these multilinear processing-based studies offer insights into SEPs’ and SEFs’

multiplicity within the initial cortical response latency, they do not offer improved

descriptions of the 200 Hz band activity as compared to [HSM+01].

To address this, the authors in [CRHH21] suggest utilizing the multilinear rank-(Lr ,Lr ,1)

block-term decomposition [DeL11; SD15] to extract 200 Hz band activity-related signal

components in SEPs and SEFs. Prior applications of the multilinear rank-(Lr ,Lr ,1)

decomposition in blind source separation and analysis have focused on atrial fibril-

lation electrocardiogram (ECG) recordings [RAZ16; OZ19]. Limited results in EEG

data analysis relied on modeling EEG signals as a sum of exponentially damped sinu-

soids [HCS+14; DCVP+05].

Main contributions. As in [CRHH21], in this study, we employ the smoothed pseudo

Wigner-Ville distribution-based (SPWV) method [Coh95] for the time-frequency anal-

ysis of SEPs and SEFs. We arrange time-dependent spectra obtained after the time-

frequency analysis into three-dimensional tensors encompassing frequency, space

(channels), and time modes. In contrast to [CRHH21], we consider the joint processing

of not two but four data tensors. More precisely, we apply the coupled rank-(Lr ,Lr ,1)

block-term decomposition to EEG, MEG magnetometer (MAG), and MEG gradiometer

(GRAD-1 and GRAD-2) tensors. Then we use multilinear-rank factors of the decompo-

sition to visualize channel-dependent spectral signatures, enabling extraction of the

200 Hz signal component.

The remainder of this chapter is organized as follows. In Section 10.2, we describe the

analyzed data, the preprocessing steps, and the tensor construction. Section 10.3 is

devoted to the coupled rank-(Lr ,Lr ,1) decomposition-based analysis of the EEG-MEG

data. Section 10.4 presents the results, and Section 6.5 concludes the chapter.

10.2 Data description

The analysis in this study involved SEPs (Somatosensory Evoked Potentials) and SEFs

(Somatosensory Evoked Fields). These were recorded with a 60-channel EEG cap and
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a 306-channel helmet-shaped MEG system [GHWH14] at the Biomagnetic Center of

the University Hospital in Jena, Germany.

To stimulate the right median nerve, monophasic square wave constant current pulses

with a 200µs duration were employed. These pulses were generated by a clinical

constant current stimulator (DS7A, Digitimer Ltd., Welwyn Garden City, United King-

dom). Electrodes were placed on the right hand’s wrist for each volunteer. The current

amplitude was tailored individually based on the International Federation of Clinical

Neurophysiology’s motor plus sensory threshold guidelines [NAD+94]. Stimulation

occurred at a repetition rate of 2 Hz (consisting of 6000 trials) with intermittent pauses

introduced approximately every 15 minutes to ensure sustained participant attention.

These pauses, lasting 2 seconds, were to be counted by the participants.

For the determination of electrode positions, anatomical locations, and MEG localiza-

tion coil sets, a 3D Digitizer (3SPACE FASTRAK; Polhemus Inc., Colchester, VT) was

used. For further detailed information about the experimental setup, we refer the

reader to [GHWH14]. The study primarily concentrates on data collected from eight

participants. The data were sampled at 5 kHz. The initial raw MEG data underwent

filtering using Maxfilter Version 2.0.21 (Elekta Neuromag Oy, Helsinki, Finland) with

a time-domain extension [TH09]. A constant interpolation technique was applied

immediately post-stimulation to minimize artifacts.

We used the FieldTrip toolbox [OFMS11], to segment the data into trials in accordance

with the trigger information. The time window of interest spanned from 80 ms before

stimulation to 100 ms after the stimulation. The signals underwent a band-pass filter

(fourth-order Butterworth) ranging from 10 to 300 Hz. Taking subject 1 as an example,

two bad EEG and five bad GRAD-1 and GRAD-2 channels were identified, removed,

and the analysis proceeded with the remaining 58 EEG, 97 MEG-GRAD-1, 97 MEG-

GRAD-2, and 102 MEG-MAG channels. The time behaviors averaged across all trials,

are presented in Figure 10.1(a). The spatial distribution of EEG, MEG-MAG, MEG-

GRAD-1, and MEG-GRAD-2 at 21 ms after stimulation is depicted in Figure 10.1(c).

Recognizing the time-varying characteristics of the SEPs and SEFs, the smoothed

pseudo Wigner-Ville distribution (SPWV) [Coh95] was employed to obtain the time-

dependent spectra from these signals, with a frequency resolution of 20 Hz. The

outcomes are shown in Figure 10.1(b). An increase in power around 20 ms post-

stimulation is noticeable across various frequency bands.

For further analysis, the data were structured into three-dimensional tensors. Each

channel’s time-frequency representation formed one lateral slice of the corresponding

154 Chapter 10 Rank-(Lr ,Lr ,1) Block-Term Decomposition for Joint Processing
of Magnetic Fields and Electrical Potentials



10 20 30 40

Time [ms]

-5

0

5

E
E

G
 [

V
]

10 20 30 40

Time [ms]

-200

0

200

M
A

G
 [
fT

]

10 20 30 40

Time [ms]

-2000

0

2000

G
R

A
D

-1
 [
fT

/c
m

]

10 20 30 40

Time [ms]

-2000

0

2000

G
R

A
D

-2
 [
fT

/c
m

]

(a) Butterfly plots of all channels.

10 15 20 25 30 35 40

Time [ms]

20 

100

180

260

F
re

q
u
e
n
c
y
 [
H

z
]

0.05

0.1

0.15

0.2

10 15 20 25 30 35 40

Time [ms]

20 

100

180

260

F
re

q
u
e
n
c
y
 [
H

z
]

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 15 20 25 30 35 40

Time [ms]

20 

100

180

260

F
re

q
u
e
n
c
y
 [
H

z
]

0.02

0.04

0.06

10 15 20 25 30 35 40

Time [ms]

20 

100

180

260

F
re

q
u
e
n
c
y
 [
H

z
]

0.01

0.02

0.03

0.04

0.05

(b) Time-frequency representation of the
signals averaged over all channels.

EEG, 21 ms

-4

-2

0

2

10
-6

MEG MAG, 21 ms

-2

-1

0

1

10
-13

MEG GRAD-1, 21 ms

-2

0

2

10
-12

MEG GRAD-2, 21 ms

-2

-1

0

1

2

10
-12

(c) Spatial
distributions at
21 ms after the

stimulation.

Figure 10.1. Different representations of EEG, MEG-MAG, MEG-GRAD-1, and MEG-GRAD-2
signals.

EEG, MEG-MAG, MEG-GRAD-1, and MEG-GRAD-2 tensor. These tensors had dimen-

sions of NF ×NC ×NT , where NF refers to the number of frequency bins, NC denotes

the number of channels, and NT denotes the number of time samples. The tensors

were constructed for the time window from 10 ms to 40 ms after stimulation, resulting

in 151 samples. For subject 1, the dimensions of the EEG, MEG-MAG, MEG-GRAD-1,

and MEG-GRAD-2 data tensors, which were later analysed by the to coupled multi-

linear rank-(Lr ,Lr ,1) block-term decomposition, were 14×58×151, 14×102×151,

14×97×151, and 14×97×151, respectively.
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10.3 Coupled decomposition of EEG and MEG
tensors

Based on the results obtained [CRHH21], in this study, we employ the coupled multi-

linear rank-(Lr ,Lr ,1) decomposition to jointly process the simultaneously recorded

SEPs and SEFs. Leveraging the observation that temporal patterns in SEPs and SEFs

exhibit comparability, we couple the three-mode (temporal mode) of EEG, MEG-

MAG, MEG-GRAD-1, and MEG-GRAD-2 data tensors denoted as X EEG ∈RNF×N E
C ×NT ,

XMAG ∈RNF×N M
C ×NT , XGRAD1 ∈RNF×NG1

C ×NT , and XGRAD2 ∈RNF×NG1
C ×NT , respectively.

Here, N E
C , N M

C , NG1
C , and NG2

C denote the corresponding number of channels. The

coupled rank-(Lr ,Lr ,1) decomposition of the four tensors is expressed as follows

X EEG =
R∑

r=1

(
AEEG,r ·B T

EEG,r

)
◦cr +N EEG, (10.1a)

XMAG =
R∑

r=1

(
AMAG,r ·B T

MAG,r

)
◦cr +NMAG, (10.1b)

XGRAD1 =
R∑

r=1

(
AGRAD1,r ·B T

GRAD1,r

)
◦cr +NGRAD1, (10.1c)

XGRAD2 =
R∑

r=1

(
AGRAD2,r ·B T

GRAD2,r

)
◦cr +NGRAD2. (10.1d)

The tensors share the same three-mode factor matrix C = [c1,c2, . . . ,cR ] ∈ RNT ×R .

where R denotes the number of block-terms, or, equally, the number of temporal signa-

tures. The multilinear ranks of X EEG, XMAG, XGRAD1, and XGRAD2 are denoted as LE
r ,

LM
r , LG1

r , and LG2
r , respectively. Since we perform the coupling in the 3-mode, the mul-

tilinear ranks of the coupled tensors do not have to be equal. The corresponding factor

matrices for X EEG are AEEG,r ∈ RNF×LE
r and BEEG,r ∈ RN E

C ×LE
r . For the MEG tensors

XMAG, XGRAD1, and XGRAD2, the factor matrices are AMAG,r ∈ RNF×LM
r and BMAG,r ∈

RN M
C ×LM

r , AGRAD1,r ∈ RNF×LG1
r and BGRAD1,r ∈ RNG1

C ×LG1
r , and AGRAD2,r ∈ RNF×LG2

r and

BGRAD2,r ∈RNG2
C ×LG2

r , respectively. The four tensorsN EEG,NMAG,NGRAD1, andNGRAD2

collect the residuals.

Due to the uniqueness properties of the rank-(Lr ,Lr ,1) block-term decomposition

(see Section 2.2.6 for details), we use the following representation of the coupled BTD

decomposition of the tensors in (10.1a), (10.1b), (10.1c), and (10.1d)

X EEG =
R∑

r=1
GEEG,r ◦cr +N EEG, (10.2a)
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XMAG =
R∑

r=1
GMAG,r ◦cr +NMAG, (10.2b)

XGRAD1 =
R∑

r=1
GGRAG1,r ◦cr +NGRAD1, (10.2c)

XGRAD2 =
R∑

r=1
GGRAG2,r ◦cr +NGRAD2, (10.2d)

where

GEEG,r = AEEG,r ·B T
EEG,r ∈RNF×N E

C , (10.3a)

GMAG,r = AMAG,r ·B T
MAG,r ∈RNF×N M

C , (10.3b)

GGARD1,r = AGARD1,r ·B T
GARD1,r ∈RNF×NG1

C , (10.3c)

GGARD2,r = AGARD2,r ·B T
GARD2,r ∈RNF×NG2

C (10.3d)

represent the channel-dependent frequency signatures for the EEG, MEG-MAG, MEG-

GRAD-1, and MEG-GRAD-2 tensors, respectively. In this setup, the i th columns,

i ∈ {1, . . . , NC }, of GEEG,r , GMAG,r , GGRAD1,r , and GGRAD2,r represent the spectral sig-

natures of the i th channel of the r th component, r ∈ {1, . . . ,R}. The coupled BTD

according to the equations (10.2a), (10.2b), (10.2c), and (10.2d) is illustrated in Fig-

ure 10.2 (assuming zero residual for simplicity of the representation). The j th rows,

j ∈ {1, . . . , NF }, of GEEG,r , GMAG,r , GGRAD1,r , and GGRAD2,r are identified as the spa-

tial signature of the r th component, r ∈ {1, . . . ,R} with respect to the j th frequency

bin. The temporal signature of the r th component is represented by the r th column,

r ∈ {1, . . . ,R}, of the factor matrix C ∈RNT ×R of the time mode.

As has been mentioned before, the block-term decomposition is unique up to scaling

and permutation ambiguities [DeL08a]. Given the insignificance of resulting signature

scaling, normalization has been applied to ensure comparability of the r th signal

components signatures in plots. As one of the advantages of coupled BTD-based

multi-way component analysis can be considered its capability to extract channel-

dependent frequency signatures, an interesting feature compared to the other works

from the literature. We want to highlight that the PARAFAC2 decomposition [Har72]

of data tensors can be formulated in a manner similar to (10.2a)-(10.2d) [CHGH18].

However, the imposition of the Harshman constraint [Har72] is essential to ensure

PARAFAC2’s uniqueness, resulting in a full rank assumption for the Gr s in PARAFAC2.

These characteristics constrain the full exploitation of inherent variability within SEPs

and SEFs. By contrast, the multilinear rank-(Lr ,Lr ,1) block-term decomposition offers

greater flexibility. Fine-tuning of the parameters such as the number of components

R and the multilinear ranks Lr contributes to the alignment between the data and
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Figure 10.2. Coupled rank-(Lr ,Lr ,1) decomposition of four tensors (EEG, MEG-MAG, MEG-
GRAD-1, and MEG-GRAD-2) with 3-mode in common. Multilinear ranks are
equal to 7.

the decomposition model [CRHH21], leading to the extraction of significant signal

characteristics.

10.4 Results

In this section, we present the signal signatures obtained via the coupled rank-(Lr ,Lr ,1)

BTD of the data tensors defined in the previous section. For the decompositions, we

set the block-rank R to 2 and the multilinear ranks Lr to 7, as the authors in [CRHH21]

showed that these are suitable settings for the given data.

The common temporal signatures and separate spectral signatures of EEG, MEG-

MAG, MEG-GRAD-1, and MEG-GRAD-2 tensors of subject 1 obtained via the coupled

rank-(Lr ,Lr ,1) decomposition are shown in Figures 10.3(a) to 10.3(d), respectively
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(left column - temporal signatures, middle and right columns - spectral signatures

corresponding to components one and two). The different curves on the plots of the

spectral signatures correspond to different channels. Figures 10.4(a) to 10.4(d) show

the corresponding spatial signatures at selected frequencies. The spectral and tempo-

ral signatures reveal a clear difference between the spectral signature of component 1

and component 2. The ascending slope from approximately 100 to 200 Hz is exclusive

to the spectral component 1, which, according to [CRHH21], indicates a separation of

the 200 Hz component. Consequently, the first component is the signature related to

the 200 Hz band activity.

The examples of extracted spatial signatures are presented in Figures 10.4(a) to 10.4(d).

We can notice that the higher frequency components (at 200 and 260 Hz) are more

focal than the ones at lower frequencies. The spatial signature at 140 Hz marks a

transition, while the spatial signatures at 200 Hz and 260 Hz show similarities.

In contrast to the approach in [CRHH21], in this study, we utilize the coupled SECSI-

based algorithm for computing the joint rank-(Lr ,Lr ,1) decomposition proposed in

Chapter 8 and in [SKKH22]. It provides decent results in a single run without the need

for multiple random initializations recommended for the Tensorlab algorithm [SDD15].

Therefore, Figures 10.3(a) to 10.3(d) show that the coupled SECSI-BTD algorithm

proposed in Chapter 8 has an advantage over the conventional coupled rank-(Lr ,Lr ,1)

block-term decomposition algorithm employed in [CRHH21].

In this study, we primarily focused on the extraction of high-frequency components

from the noise-corrupted EGG-MEG measurements. Some more findings on the

evaluation of the results can be found in [CRHH21]. Generally, low-rank tensor de-

compositions, such as CP or block-term decompositions, allow the extraction and

separation of distinct components from the data. These distinct components may as

well correspond to artifacts. Therefore, tensor techniques have also been successfully

employed for the removal of artifacts [MGK+21; GHH14; GAT+16].

10.5 Conclusions

In this chapter, we have utilized the coupled rank-(Lr ,Lr ,1) block-term decomposition

for the joint processing of SEP and SEF recordings in EEG, MEG-MAG, MEG-GRAD-1,

and MEG-GRAD-2 data tensors. The results have shown that the coupled SECSI-BTD

algorithm we have proposed in Chapter 8 effectively extracts the channel-dependent
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Figure 10.3. Common temporal (first column) and respective separate spectral signatures
(second and third columns) of jointly decomposed EEG, MEG-MAG, MEG-GRAD-
1, and MEG-GRAD-2 tensors.
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Figure 10.4. Spatial signatures extracted via the coupled rank-(Lr ,Lr ,1) decomposition of
EEG, MEG-MAG, MEG-GRAD-1, and MEG-GRAD-2 tensors. For every data
set, the top and bottom rows represent the first and the second components,
respectively.
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spectral signatures and, therefore, achieves the separation of the 200 Hz band activity-

related signal components in SEPs and SEFs. Compared to the previous studies on

these data, we performed the data fusion of four measurement tensors, including not

only the conventional EEG and MEG-MAG data but also the gradiometer recordings.

The decomposition resulted in the effective extraction of temporal, spectral, and

spatial signatures that can potentially help neuroscientists to gain better insights

into the brain functions. The approach used in this study can also be applied to

other combined evoked potential and field recordings and can be utilized for artifact

removal.
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Conclusions & Future
Directions 11
In this final chapter, we summarize the key results from our study on the multilin-

ear generalized singular value decomposition (ML-GSVD) and the multilinear rank-

(Lr ,Lr ,1) block-term decomposition (BTD) and their applications. Additionally, we

outline possible research directions for future work.

11.1 Summary

Tensor decompositions are a powerful mathematical tool for processing, analyzing,

and handling multidimensional data. Unlike traditional matrix-based techniques,

tensor factorizations possess better uniqueness properties and can capture complex

relationships and patterns across multiple dimensions. Therefore, they find appli-

cations in diverse fields, including image and signal processing, machine learning,

neuroscience, communications, and more. There are many different tensor decom-

positions in the literature, and each finds use in various signal processing fields. The

core content of the thesis is divided into two main parts based on two types of tensor

decompositions: multilinear generalized singular value decomposition (Part II) and

rank-(Lr ,Lr ,1) block-term decompositions (Part III). More specifically, in Part II, we

introduce the ML-GSVD, an algorithm to compute it, and present its application in

multi-user MIMO communication systems. Moreover, in Part III of the thesis, we

explore the rank-(Lr ,Lr ,1) and coupled rank-(Lr ,Lr ,1) block-term decompositions,

propose new algorithms to calculate them, and demonstrate their application to

radar systems and joint electroencephalography (EEG) and magnetoencephalography

(MEG) data processing. In the following, we give a more specific summary of the thesis

chapters.

Chapter 2 is devoted to the basics of tensor algebra. We present the notation used in

the thesis and review the fundamental concepts and tools of multilinear algebra. The

presented material includes essential definitions and concepts of tensor algebra, such

as n-mode products, ranks, unfoldings, and vectorization. Moreover, in this chapter,
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we give a brief overview of the basic tensor and matrix decompositions that we then ex-

ploit in the subsequent chapters. The discussed factorizations include the generalized

singular value decomposition (GSVD) of two matrices, which extension to multiple

matrices we present in Chapter 3. Additionally, we briefly look at the PARAFAC2 de-

composition, also utilized in Chapter 3. Moreover, we review the higher-order singular

value decomposition (HOSVD) and the canonical polyadic (CP) decomposition, the

most popular tensor decompositions, and discuss some of the characteristics of the

tensor factorizations, such as uniqueness, ambiguities, and matrix representations.

Furthermore, we review some of their computational algorithms and applications. At

the end of the chapter, we cover the block-term decompositions and their different

representations that we later use in Part III of the thesis.

In Chapter 3, we present a new Multilinear Generalized Singular Value Decomposition

(ML-GSVD) as an extension of the matrix-based GSVD to jointly factorize a set of K

matrices with one common dimension. In comparison with existing GSVD gener-

alizations, our ML-GSVD preserves the properties of the original GSVD, such as the

orthogonality of the 2-mode factor matrices. We consider three different cases of

the ML-GSVD depending on the dimensions and the rank structure of the decom-

posed matrices. Moreover, we show that every case provides a certain decomposition

structure with private and/or common subspaces. Furthermore, by exploiting the

connection to the PARAFAC2 decomposition, we develop an alternating least squares

(ALS)-based algorithm to compute the proposed ML-GSVD. Since the ML-GSVD ex-

tends the matrix GSVD, it can be employed further in several different communication

and biomedical applications, such as coordinated beamforming, MIMO relaying, phys-

ical layer security, and genomic signal processing. The ML-GSVD allows increasing

the number of jointly factorized matrices and, therefore, can be used in more complex

systems.

In Chapter 4, we introduce an application of the ML-GSVD to multi-user MIMO

systems with joint unicast and multicast transmissions. We show that in such a system

scenario, the factor matrices and subspace structure of the ML-GSVD can be utilized

to design precoding and decoding matrices. Moreover, we demonstrate that the three

cases of the ML-GSVD can correspond to the transmission of private or common

messages (or both) to different sets of users. According to our numerical results, the

ML-GSVD outperforms the reference multicast and unicast precoding schemes in

terms of the average sum rate.

Chapter 5 of this thesis presents ML-GSVD-based non-orthogonal multiple access

(NOMA) transmission technique that can be applied in power-domain MIMO-NOMA

downlink communication systems with multiple users. It utilizes the ML-GSVD to
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design the precoding and decoding matrices that jointly diagonalize the channels

between the BS and the users. Compared to the GSVD-based techniques proposed in

the literature, the ML-GSVD supports more than two users on one frequency resource,

and the common subspace of the ML-GSVD can be employed to transmit the com-

bined signals of multiple users. Additionally, we present a simple power allocation

technique based on the generalized singular values of the ML-GSVD that outperforms

the conventional fixed power allocation. We evaluate the performance of the proposed

scheme in terms of achievable rates and compare it to traditional orthogonal multiple

access (OMA) and state-of-the-art NOMA techniques.

In Chapter 6 of the thesis, we introduce another promising application of the ML-

GSVD presented in Chapter 3: rate-splitting multiple access (RSMA) systems. More

specifically, this chapter proposes a precoder design for MIMO broadcast systems with

rate splitting at the transmitter. We show how the GSVD and the ML-GSVD can be

employed to define the number of common and private streams as well as to adjust

the message split. The proposed scheme applies to both underloaded and overloaded

communication systems and supports the transmission of multiple common and

private streams. Moreover, for the cases where the total number of streams does not

exceed the number of transmit antennas, we introduce transmit precoding and receive

combining designs based on the ML-GSVD, which allow simultaneous transmission of

common and private streams but do not require SIC at the receivers. The use of the

ML-GSVD overcomes the two-user limitation of the GSVD, allowing its application to

systems with more than two users where the common streams can also be transmitted

to selected groups of users (multi-layer hierarchical or generalized RS). Simulation

results show that both proposed rate splitting schemes outperform the conventional

space division multiple access (SDMA) and NOMA.

Chapter 7 is devoted to the rank-(Lr ,Lr ,1) block-term decomposition that represents

a tensor as a linear combination of low multilinear rank terms and can be explicitly

related to the canonical polyadic decomposition. In this chapter, we introduce the

SECSI-BTD framework, which exploits the aforementioned connection between the

two decompositions to estimate the block-terms of the rank-(Lr ,Lr ,1) BTD. The pro-

posed SECSI-BTD algorithm includes the initial calculation of the factor estimates

using the SEmi-algebraic framework for approximate Canonical polyadic decomposi-

tions via SImultaneous Matrix Diagonalizations (SECSI), followed by clustering and

refinement procedures that return the appropriate rank-(Lr ,Lr ,1) BTD terms. More-

over, we introduce a new approach to estimate the multilinear rank structure of the

tensor based on the HOSVD and k-means clustering. Since the proposed SECSI-BTD

algorithm does not require a known rank structure but can still take advantage of
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the known ranks when available, it is more flexible than the existing techniques in

the literature. Additionally, our algorithm does not require multiple initializations,

and the simulation results show that it provides more accurate results and a better

convergence behavior for an extensive range of SNRs.

In Chapter 8 of the thesis, we introduce a new algorithm to estimate the factors of the

coupled rank-(Lr ,Lr ,1) BTD of multiple tensors with a common mode based on the

coupled extension of the semi-algebraic framework for approximate CP decompo-

sitions via simultaneous matrix diagonalizations (SECSI). The chapter content also

includes the technique to estimate the multilinear rank structure of the coupled de-

composition. The proposed framework extends the SECSI-BTD algorithm in Chapter 7

to the coupled tensors case. The numerical results demonstrate that compared to

the approaches in [VDS+16; SVBD15], the proposed coupled SECSI-based framework

provides a much more stable initialization resulting in better convergence and ac-

curacy performances. Moreover, in contrast to [VDS+16; SVBD15], our approach

allows performing the decomposition even if the ranks are not available beforehand.

Therefore, it can be further used in real data applications with unknown rank struc-

tures, for instance, for EEG-MEG recordings, since these signals are usually recorded

simultaneously and thus exhibit coupling.

Chapter 9 presents a new coupled rank-(Lr ,Lr ,1) block-term decomposition-based

near-field localization algorithm for multi-static MIMO radar systems. The proposed

COBRAS (COupled Block-term decomposition for multi-static RAdar Systems) algo-

rithm performs the target location parameters estimation in 3D space based on the

exact spherical wavefront model and is applicable to arbitrary array geometries. Com-

pared to the far-field planar wavefront, the use of the exact wavefront model enables

the estimation of not only the direction-of-arrival parameters but also the range and,

consequently, the position of the target. Additionally, the algorithm utilizes a reliability

measure, which allows removing the unreliable parameter estimates. The simulation

results demonstrate that the employment of coupling and joint processing of the data

from multiple arrays improves the localization performance compared to non-coupled

solutions. Moreover, our simulations show that the proposed coupled BTD algorithm

outperforms its alternatives from the literature.

In Chapter 10, we utilize the coupled rank-(Lr ,Lr ,1) block-term decomposition for

the joint processing of evoked electrical potentials (SEPs) and somatosensory evoked

magnetic fields (SEFs) recordings in EEG, MEG magnetometer (MAG), MEG-GRAD-1,

and MEG-GRAD-2 data tensors. Similar to the state-of-the-art publications on this

topic, we aim to extract the 200 Hz band activity-related signal components using

tensor decompositions. Compared to the previous studies on these data, we jointly
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process the complete data set, including not only the conventional EEG and MEG-

MAG data but also the gradiometer measurements. The results show that the coupled

SECSI-BTD algorithm we have proposed in Chapter 8 effectively extracts the channel-

dependent spectral signatures and, therefore, achieves the separation of the 200 Hz

band activity-related signal components in SEPs and SEFs. The decomposition results

in the effective extraction of temporal, spectral, and spatial signatures that can be used

for further processing and potentially help neuroscientists to gain better insights into

brain functions.

11.2 Future Work

Tensor-based signal processing, and in particular a newly proposed ML-GSVD and

BTD algorithms discussed in this thesis, reveal a broad landscape of possibilities for

future research and exploration. We have already outlined earlier that different tensor

decompositions find their use in various applications. In this section, we want to

identify some open aspects and future directions in the field of tensor decompositions

and their application to communication systems, sensing, and biomedical signal

processing.

As shown in Part II of the thesis, the ML-GSVD is an extension of GSVD to jointly

factorize the set of two or more matrices with one common dimension. In comparison

with other extensions of the GSVD, it preserves the original GSVD subspace structure

and the orthogonality of the individual factor matrices. However, in comparison to the

GSVD, the ML-GSVD is an approximation in the least squares sense. Therefore, there is

still a place for improvement of its computational algorithm, for example, in terms of

the reconstruction error performance or the computational cost. Moreover, a perfor-

mance analysis can be a not very straightforward but interesting topic. Furthermore,

we have discussed in Chapter 3, that the number of common and private subspaces of

the ML-GSVD depends on the ranks and the dimensions of the tensor slices, but can

also vary depending on the realization of a tensor. Therefore, we consider deriving the

analytical results on the subspace structure of the ML-GSVD as an appealing task.

As we have seen from Chapters 4 to 6, the ML-GSVD, with its subspace structure, is a

promising tool for the design of precoders in multi-user MIMO systems. In comparison

to the schemes from the literature, the ML-GSVD-based technique is more flexible and

intuitive, especially when considering joint multicast and unicast transmissions of the

rate-splitting multiple access. However, there are still many open issues in this area

of research. Thinking about a related direction, in our RSMA and unicast-multicast
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MIMO studies, we have focused primarily on design of the precoders. Therefore, the

channel estimation or the precoder optimization under the assumption of only partial

channel knowledge can be a very significant future contribution.

Considering more global open issues in the RSMA studies, the important research

directions include general studies on the RSMA framework. Many publications often

focus only on one aspect of the system and do not consider its interaction with the

adjacent fields or consider simplified settings, for example, single antenna users, only

two users, and one-layer RSMA. Therefore, investigations in more general settings

are important. Moreover, the complexity of a system increases greatly with more

layers and users. Then, the problem of optimizing the power allocation between

private and common streams becomes very complex and computationally expensive.

Thus, this is an essential issue to consider. Furthermore, many aspects of the RSMA

system, including its complexity, make the researchers question its efficient practical

implementation. Therefore, extensive studies with realistic modeling that will prove

them right or wrong are crucial. More than that, there are also other open issues in the

area, for which we refer the reader to [MDC+22].

Thinking about more applications of the ML-GSVD, as an interesting perspective,

we see a physical layer security application [KWWE07], where the ML-GSVD can be

used to extend the existing results to more than two users. Moreover, we discussed

in Chapter 3, that the authors in [PSVLA11; ABB03] employ the GSVD and one of its

extensions, the higher order generalized singular value decomposition (HO GSVD), for

genomic data processing. Therefore, we think it might be interesting to investigate the

applicability of the ML-GSVD for similar problems and compare it to the state-of-the-

art results.

Moving to the Part III of the thesis, where we considered the multilinear block-term de-

composition (BTD), its computation, and applications, also has several future research

directions to offer.

As we discussed in Chapter 7, the rank-(Lr ,Lr ,1) block-term decomposition is ex-

plicitly related to the CP decomposition. We exploited this link to design an efficient

algorithm to calculate the rank-(Lr ,Lr ,1) decomposition. However, we only consid-

ered one algorithm, but there are many more algorithms for the CP decomposition that

can potentially inspire researchers to design new fast and accurate schemes for the

rank-(Lr ,Lr ,1) and coupled rank-(Lr ,Lr ,1) block-term decompositions. For example,

the generalized eigenspace decomposition (GESD)-based algorithm in [EVD22] offers

a good complexity-accuracy performance for the CP decomposition, and its extension

to block-term decompositions might be promising. Moreover, as we have already
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mentioned in Chapter 7, an interesting direction for further research in the scope of

the proposed SECSI-BTD algorithm would be the implementation of more efficient

algorithms for the join diagonalization or better clustering approaches to improve the

computational-time performance of the proposed algorithm.

In this thesis, we have investigated the rank-(Lr ,Lr ,1) block-term decomposition and

its applications. However, as we also discussed in Chapter 2, there are other types of

block-term decompositions, such as rank-(L, M , N ) and rank-(L, M , ·) BTDs. In con-

trast to the rank-(Lr ,Lr ,1) BTD, these can be related more to the Tucker decomposition.

To the best of our knowledge, the rank-(L, M , N ) and the rank-(L, M , ·) BTDs have not

been studied very extensively in the literature. This opens up a huge space for explo-

ration, including but not limited to efficient computational algorithms, applications,

study of the uniqueness properties, and performance analysis.

As has been mentioned in Chapter 9, with the technology moving towards higher

frequency bands and extremely large aperture arrays, the electromagnetic diffraction

field moves from the far-field region to the near-field. Since the far-field assumptions

do not apply anymore, this opens a huge space for exploring novel near-field signal

processing techniques for wireless communications and sensing. Compared to the

far-field design, the near-field allows exploiting the distance information. Therefore,

near-field beamforming can yield higher spatial multiplexing by the transmission

of different data to users located at different locations in the same direction. In the

near-field you can even transmit multiple streams to the same user in a line-of-sight

scenario. Moreover, the near-field is highly beneficial in radar systems: in contrast

to far-field systems, it allows a more accurate localization with not only angle but

also distance parameters. Therefore, we consider tensor-based signal processing for

near-field communications and sensing as a highly attractive and promising topic.

In Chapter 10, we have considered the application of the BTD to EEG-MEG data analy-

sis. Processing these data is often challenging due to their high dimensionality and

non-stationary nature. This, therefore, reveals the following research directions in

the area: design of computationally effective algorithms that can handle big data ten-

sors, exploration of the tensor decompositions for artifact removal, feature extraction,

and noise removal. In general, due to its multidimensional nature, biomedical signal

processing is an excellent application for tensor decompositions.

Lastly, we obviously should mention the application of tensors in deep learning as an

inevitable future research direction [SDF+17]. Tensors enable the efficient and scalable

computation of complex mathematical operations such as convolutions or matrix

multiplications [FBH+22]. Additionally, deep learning models often involve large-scale

11.2 Future Work 171



and high-dimensional data, which can be efficiently represented and processed using

tensors. We have not touched this field in this thesis but find it a very attractive future

research direction.

We hope this chapter can also invite fellow researchers to further advance our findings

by investigating these unexplored research directions.
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Appendices A
A.1 Matrix products

In this appendix, we have summarized some of the matrix product definitions used in

the thesis.

Kronecker product. Given two matrices A ∈ FM×N and B ∈ FP×Q , the Kronecker prod-

uct A ⊗B is defined as

A ⊗B =


a1,1B a1,2B . . . a1,N B

a2,1B a2,2B . . . a2,N B
...

...
...

...

aM ,1B aM ,2B . . . aM ,N B

 ∈ FP M×QN . (A.1)

Column-wise Khatri-Rao product. Given two matrices A =
[

a1 . . . aN

]
∈ FM×N and

B =
[

b1 . . . bN

]
∈ FP×N , the column-wise Khatri-Rao (column-wise Kronecker)

product A ⋄B is defined as

A ⋄B =
[

a1 ⊗b1 a2 ⊗b2 . . . aN ⊗bN

]
∈ FMP×N . (A.2)

Partition-wise Khatri-Rao product. Given two partitioned matrices A = [A1, . . . , AR ] ∈
FM×∑R

i=r Nr and B = [B1, . . . ,BR ] ∈ FP×∑R
i=r Lr composed of R submatrices Ar ∈ FM×Nr

and R submatrices Br ∈ FP×Lr , a partition-wise Kronecker product A ⋄s B is expressed

as

A ⋄s B = [A1 ⊗B1, . . . , AR ⊗BR ] ∈ FMP×∑R
i=r Nr Lr . (A.3)

When R is equal to the number of columns in A and B , the partition-wise Kronecker

product is equal to the column-wise Khatri-Rao product.
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Hadamard product. Hadamard (element-wise) product between two matrices A ∈
FM×N and B ∈ FM×N of the same dimensions is denoted as

A ⊙B , and (A ⊙B )(i , j ) = A(i , j ) ·B(i , j ). (A.4)

Element-wise division. Inverse Hadamard product (element-wise division) between

two matrices A ∈ FM×N and B ∈ FM×N of the same dimensions, is denoted as

A ⊘B , and (A ⊘B )(i , j ) =
A(i , j )

B(i , j )
. (A.5)

Outer product. The outer product between two tensorsA ∈ FI1×···×IM andB ∈ FJ1×···×JN

is defined as

(A◦B)(i1,...,iM , j1,..., jN ) =A(i1,...,iM )B( j1,..., jN ) ∈ FI1×···×IM×J1×···×JN . (A.6)

For the properties, relations between different products, and further details, we refer

the reader to [PP12; LT08; DeL08a; GVL13].

A.2 Orthogonal Procrustes problem

The orthogonal Procrustes problem is a least squares problem of transforming a matrix

B ∈ FM×P into a matrix A ∈ FM×P by an orthogonal transformation matrix Q ∈ FP×P

such that ∥A −BQ∥2
F is minimized [Sch66; GVL13]

arg min
Q

∥A −BQ∥2
F s.t. QHQ = IP . (A.7)

Solution. Rewriting (A.7), we minimize

tr
(
(A −BQ)H (A −BQ)

)= tr
(

AH A − AHBQ −QHB H A +QHB HBQ
)

= tr
(

AH A
)+ tr

(
B HB

)−2Re
{
tr

(
QHB H A

)}
.

(A.8)

Since AH A and B HB are fixed, the minimization of (A.8) corresponds to the following

maximization problem

arg max
Q

tr
(
QHB H A

)
s.t. QHQ = IP . (A.9)
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If we express the singular value decomposition (SVD) of S = B H A as

S =UΣV H (A.10)

and introduce Z =V HQHU , we have

tr
(
QHB H A

)= tr
(
QHUΣV H)= tr(ZΣ) =

P∑
i=1

zi ,iσi ≤
P∑

i=1
σi . (A.11)

Since the matrix Z is a product of orthogonal matrices, Z is also orthogonal and has

unit norm columns. Thus, the trace in (A.11) is maximized by setting Z = IP , i.e.,

Q =UV H (A.12)

solves the Orthogonal Procrustes problem.

Another solution is proposed by Green [Gre52]

Q = (
SSH)− 1

2 S, (A.13)

which is an equivalent formulation of the SVD solution in (A.12).

Proof. Using the SVD of matrix S in (A.10), we get
(
SSH

)− 1
2 =UΣ−1U H. Moreover, we

can write the identity matrix as [Gre52; Sch66]

IP =Σ−1U HUΣ. (A.14)

Consequently, we can express (A.12) as

Q =UV H =U
(
Σ−1U HUΣ

)
V H

= (
UΣ−1U H)(

UΣV H)
= (

SSH)− 1
2 S,

(A.15)

which is the solution in (A.13).
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A.3 Appendix for Chapter 3

Exploiting the Khatri-Rao product with an identity matrix, the least squares solution

for the matrix A in (3.19), can be expressed as

A = [H̃]
(1)

(
bdiag

(
C (:,1) , . . . ,C (:,Q)

))T+
(A.16)

Then, using the Moore-Penrose pseudo-inverse of the block-diagonal matrix, we can

rewrite (A.16) as follows

A = [H̃]
(1)

([
1⊘diag

(∥C (:,1)∥2 , . . . ,∥C (:,Q)∥2)] (A.17)

·bdiag
(
C (:,1), . . . ,C (:,Q)

)H
)T

(A.18)

= [H̃]
(1)

(
bdiag

(
C (:,1)H

∥C (:,1)∥2 , . . . ,
C (:,Q)H

∥C (:,Q)∥2

))T

, (A.19)

where ⊘ denotes the element-wise division. With the identity on the right-hand side

of the Khatri-Rao product, equation (3.21) can be rewritten as follows

C = [H̃](3)




diag
(

A(1, :)
)

...

diag
(

A(Q, :)
)



T+

. (A.20)

Again, using the Moore-Penrose pseudo-inverse, the least squares solution for C can

be expressed as

C = [H̃]
(3)

[
1⊘diag

(∥A(:,1)∥2 , . . . ,∥A(:,Q)∥2)] ·


diag
(

A(1, :)
)

...

diag
(

A(Q, :)
)


H
T

= [H̃]
(3)

([
diag

(
A(1, :)H

∥A(:,1)∥2

)
, . . . ,diag

(
A(Q, :)H

∥A(:,Q)∥2

)])T

(A.21)

A.4 Uniqueness conditions for rank-(Lr ,Lr ,1)

block-term decomposition

This appendix summarizes some of the uniqueness conditions from [DD20; DeL08a;

DVD18] under which the rank-(Lr ,Lr ,1) block-term decomposition (BTD) is generi-

cally unique [DD20].
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Consider a decomposition of tensorT ∈ FI×J×K into a sum of R rank-(Lr ,Lr ,1) terms

T =
R∑

r=1

(
Ar ·B T

r

)◦cr , (A.22)

where Ar ∈ FI×Lr , Br ∈ FJ×Lr , and cr ∈ FK×R , r ∈ {1, . . . ,R}, are the first, the second, and

the third factor matrices of the rank-(Lr ,Lr ,1) block-term decomposition, respectively.

The matrices Ar and Br are of rank at most Lr .

The following presents five sets of bounds on the R and the Lr s under which the decom-

position in (A.22) is generically unique (assuming L1 ≤ . . . ≤ LR and min
(
I , J ,K ,R

)≥
2) [DD20].

1. The first and second factors have full-column rank [DeL08a]

I ≥∑
Lr , J ≥∑

Lr (A.23)

2. The third and second factors have full-column rank [DVD18]

K ≥ R, J ≥∑
Lr , (A.24)

and

I ≥ LR +1 (A.25)

3. The third factor has full-column rank [DeL08a]

K ≥ R, (A.26)

and

k ′
A +k ′

B ≥ R +2, (A.27)

where k ′
X denotes the k ′-rank of a partitioned matrix X , which is maximum num-

ber r such that any set of r submatrices of X yields a set of linearly independent

columns.

4. I ≥ L2 + . . .+LR +1 and J ≥ Lmin(K ,R)−1 + . . .+LR [DD20]

5. The first factor has full-column rank [DD20]

I ≥∑
Lr , (A.28)
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and
J ≥ LR−1 +LR ,

(K −1)(J −1) ≥∑
Lr .

(A.29)

For the detailed derivations, we refer the reader to [DD20; DeL08a; DVD18]

A.5 Nonlinear least squares

In Chapter 7, we employ the nonlinear least squares (NLS) algorithm for the refine-

ment steps in the proposed BTD algorithms. The Tensorlab implementation [SVBD13;

VDS+16] that we use is based on the Gauss-Newton method with a dogleg trust re-

gion [NW06]. This appendix presents its brief description.

Consider the following nonlinear least squares problem

arg min
z

fBTD(z) = 1

2

∥∥T̂ −T ∥∥2
F = 1

2
∥F∥2

F (A.30)

where T̂ is a tensor reconstructed from the estimated BTD factors as T̂ =∑R
r=1

(
Ãr · B̃ T

r

)◦
c̃r . For notational simplicity, we omit the ∼ in the matrices Ar , Br , and cr , and

express them as A = [A1, A2, ..., AR ] ∈ FI×ΣLr , B = [B1,B2, ...,BR ] ∈ FJ×ΣLr , and C =
[c1,c2, ...,cR ] ∈ FK×R , respectively. Consequently, F is a residual tensor, and z is a

vector of unknowns containing the elements of A, B , and C in a vectorized form.

In the nonlinear least squares methods such as Gauss-Newton, the residual tensor F
at a current iterate z̊k is approximated as

mF
k (p̊) = vec(F (z̊k ))+ ∂vec(F (z̊k ))

∂z̊T
p̊k , (A.31)

where F (z̊k ) is the objective function at a current iterate z̊k , and the superscript

◦ denotes the concatenation of its argument with its complex conjugate, i.e., z̊ =
(z , z∗) (we use (a,b) to denote the concatenation

[
aT,bT

]T
) [SvD12]. The matrix

∂vec(F )
∂z̊ T is a complex Jacobian Jk at z̊k [SvD12] and is composed of two parts ∂vec(F )

∂z̊ T =[
∂vec(F )
∂z T , ∂vec(F )

∂z∗T

]
obtained via transpose of the complex gradients of the compo-

nents of vec(F ) [SvD12]. The complex gradient at z̊k contains two parts, the cogradient
∂ f
∂z and the conjugate cogradient ∂ f

∂z∗ (Wirtinger calculus [Hjø11]).
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In case of the rank-(Lr ,Lr ,1) BTD, the complex cogradient of the objective function

in (A.30) is expressed as [SVBD13]

∂ fBTD

∂z
= 1

2


vec

(
A∗ [(

B HB
)⊙ (

DTC HC D
)]− [T ]∗

(1) ((C D)⋄B )
)

vec
(
B∗ [(

AH A
)⊙ (

DTC HC D
)]− [T ]∗

(2) ((C D)⋄ A)
)

vec
(
C∗D

[(
AH A

)⊙ (
B HB

)]
DT − [T ]∗

(3) (B ⋄ A)DT
)

 , (A.32)

where the matrix D is a R ×∑R
r=1 Lr block-diagonal matrix bdiag

(
1T

L1
, . . . ,1T

LR

)
with the

r th block on the diagonal is the row vector 1T
Lr

. For the real-valued BTD decomposition,

the real gradient is twice the expression for the complex cogradient [SvD12].

Consequently, the quadratic model of the objective function fBTD(z) in (A.30) can be

written as

m f
k (p̊) = 1

2

∥∥∥mF
k (p̊)

∥∥∥2
(A.33)

where p is the search direction. The control of the length and the direction of the

step can be done by using the trust-region frameworks. Then, the search direction is

obtained by solving the following system

J H
k Jk p∗

k =−J H
k vec(F (zk )) =−2

∂ fBTD

∂z∗ (zk ) , (A.34)

where J H
k Jk is an approximation of the objective function’s Hessian (one of the advan-

tages of the Gauss-Newton over the plain Newton’s method).

In line search methods, the next iterate is calculated as zk+1 = zk +αk pk , where the

real step length αk is commonly chosen to satisfy the Wolfe conditions [NW06].

Trust-region methods define a region with radius ∆k around the current iterate zk in

which a behavior of model function mk is similar to that of the actual objective function

f [NW06]. The next iterate zk+1 is then chosen to be the approximate minimizer of

the model in this region. Therefore, in trust-region methods, the direction and length

of the step are chosen simultaneously. The trust-region radius ∆k is updated every

iteration based on the trustworthiness ρk of the model, which is defined as the ratio

of the actual reduction f (z̊k )− f
(
z̊k + p̊k

)
of the objective function and the predicted

reduction m f
k (0)−m f

k

(
p̊k

)
. The dogleg method [Pow70] can be employed when the
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model’s Hessian (or its approximation) is a positive definite matrix. In a dogleg method,

the update step pk is selected as

pk =


pk,GN if

∥∥pk,GN
∥∥É∆k ,

∆k

∥pk,sd∥2 pk,sd if
∥∥pk,GN

∥∥>∆k and
∥∥pk,SD

∥∥Ê∆k ,

pk,sd +βk
(
pk,GN −pk,sd

)
if

∥∥pk ,GN
∥∥>∆k and

∥∥pk,sd
∥∥<∆k (dogleg step),

(A.35)

where pk,GN and pk,sd are the Gauss-Newton and the steepest descent steps. The

quantity βk ensures that
∥∥pk

∥∥≤∆k .

There are also other approaches to solve (A.30) by means of nonlinear least squares

methods, for example, the Levenberg-Marquardt, an extension of the Gauss-Newton

method [SVBD13; NW06].

A.6 Coordinate systems

The following introduces the coordinate systems used in the thesis (Chapter 9) and

their transformations.

We consider two common coordinate systems, Cartesian and spherical, where the

position of a point p is defined by a vector r with three parameters, {x, y, z} and {ρ,φ,θ}

(range, azimuth, and elevation), respectively. The illustration of the parameters is

given in Figure A.1. Note that we define the elevation angle as an angle above (positive

angle) or below (negative angle) the x-y plane.

The conversion from spherical coordinates to 3D Cartesian coordinates and vice versa

is expressed as

x = ρ cos(θ)cos(φ),

y = ρ cos(θ)sin(φ),

z = ρ sin(θ),

(A.36)

and
φ= atan2(y, x),

θ = atan2(z,
√

x2 + y2),

ρ =
√

x2 + y2 + z2,

(A.37)
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Figure A.1. 3D coordinate system and the axes rotations.

respectively. The function atan2 denotes the four-quadrant inverse tangent [DI15]

defined as

atan2(y, x) =



arctan
( y

x

)
if x > 0,

π
2 −arctan

(
x
y

)
if y > 0,

−π
2 −arctan

(
x
y

)
if y < 0,

arctan
( y

x

)±π if x < 0,

undefined if x = 0 and y = 0.

(A.38)

Another useful transformation of a coordinate system is a rotation. A basic 3D rotation

is a rotation about the x, y , and z- axes of a coordinate system. Each rotation is

specified by an angle of rotation. Commonly, the rotation angle is positive for a

counterclockwise rotation (when looking along the rotation axis towards the origin).

The rotation matrices that rotate a coordinates vector counterclockwise around the x,

y , and z-axes are expressed as

Rx (α) =


1 0 0

0 cosα −sinα

0 sinα cosα

 , (A.39a)

Ry (β) =


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

 , (A.39b)
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and

Rz (γ) =


cosγ −sinγ 0

sinγ cosγ 0

0 0 1

 , (A.39c)

respectively.

Any arbitrary rotation can be composed of a combination of these three (Euler’s

rotation theorem). A vector can be rotated in any direction using a sequence of three

rotations [GPS02]: r ′ = Ar = Rz (γ)Ry (β)Rx (α)r .

A.7 Appendix for Chapter 9

This appendix is a summary of the derivations in [YGL+19]. Considering the noiseless

case for simplicity, the received signal Y [mR ]
p ∈ CNR×T at the mR th receiving array in

the pth pulse in (9.3) can be rewritten as

Y [mR ]
p =

MT∑
mT =1

R∑
r=1

α
[mR ]
r ϱ

[mR ,mT ]
r,p b[mR ]

r a[mT ]T
r S[mT ]T ∈CNR×T . (A.40)

By stacking the matrices Y [mR ]
p with fixed mR and varying p along the 3-mode, the data

received at the mR th array for P pulses can be represented as a three-dimensional

tensorY ′[mR ]
(:,:,p) = Y [mR ]

p ∈CNR×T . Let f [mR ,mT ]
r =

[
ϱ

[mR ,mT ]
r,1 , . . . , ϱ

[mR ,mT ]
r,P

]T ∈CP and

c [mT ]
r = S[mT ]a[mT ]

r ∈CT . Then the tensor Y ′[mR ] can be expressed as

Y ′[mR ] =
MT∑
l=1

R∑
r=1

α
[mR ]
r b[mR ]

r ◦c [mT ]
r ◦ f [mR ,mT ]

r ∈CNR×T×P . (A.41)

After permuting the first and the third indices in Y ′[mR ], it can be rewritten as tensor

Y [mR ] ∈CP×T×NR

Y [mR ] =
R∑

r=1
α

[mR ]
r

(
MT∑
l=1

f [mR ,mT ]
r ◦c [mT ]

r

)
◦b[mR ]

r ∈CP×T×NR . (A.42)

Let us express the matrix of reflection coefficients F [mR ]
r as F [mR ]

r =[
f [mR ,1]

r , . . . , f [mR ,MT ]
r

]
∈ CP×MT and combine the transmitted signal and
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the transmit steering vectors in Cr =
[

c [1]
r , . . . , c [MT ]

r

]
∈CT×MT . Then the tensor

Y [mR ] in (A.42) can be expressed as

Y [mR ] =
R∑

r=1
α

[mR ]
r

(
F [mR ]

r C T
r

)
◦b[mR ]

r ∈CP×T×NR , (A.43)

where Y [mR ] ∈CP×T×NR is the received data tensor in (9.8) (in the noiseless case).

A.8 Further reading

Within the thesis, we have explored specific concepts of multilinear algebra and opti-

mization relevant to our discussions. For readers who want to learn more about these

subjects, we have compiled our selection of overview papers and textbooks on linear

algebra, tensor decompositions, and numerical optimization below.

Reference Description

Overview Papers on Different Tensor Decompositions

[KB09] 2 Overview of basic operators and notations of multilinear algebra,

tensor decompositions (Canonical Polyadic (CP), Tucker, and their

extensions), and applications.

[CMD+15] 2 Overview of tensor decompositions with various application

examples

[SDF+17] 2 Survey paper on tensor decompositions for signal processing and

machine learning with a focus on the decomposition algorithms.

[SVBD15] 2 Algorithms for structured data fusion (coupled tensor and matrix

factorizations).

Selected decompositions

[DeL08b] 2,

[DeL08a] 2,

[DN08] 2

Overview of block-term decompositions, their uniqueness properties

and computation

[DD20] 2,

[SVBD13] 2

Uniqueness and computation of rank-(Lr ,Lr ,1) block-term decom-

position, link to CP decomposition.

Continued on the next page
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https://epubs.siam.org/doi/10.1137/07070111X
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/JSTSP.2015.2400415
https://doi.org/10.1137/060661685
https://doi.org/10.1137/070690729
https://doi.org/10.1137/070690730
https://doi.org/10.1137/18M1206849
https://doi.org/10.1137/120868323


[SD15] 2,

[SDD15] 2

Uniqueness and computation of the coupled CP and coupled rank-

(Lr ,Lr ,1) decompositions.

[FA14] 2,

[CLA09] 2

Overview, algorithms, and discussion on CP and constrained CP

decompositions.

[KBB99] 2 PARAFAC2 and its computation via direct fitting algorithm.

[DDV00a] 2 Computation and properties of the multilinear generalization of the

singular value decomposition (HOSVD).

Textbooks

[GVL13] 2 Theory on linear and multilinear algebra, matrix decompositions,

products, and operators with focus on linear systems and efficient

computations.

[BV04] 2 Comprehensive introduction to convex optimization with theory,

applications, algorithms, and examples.

[BV18a] 2 Introduction to linear algebra and least squares with straightforward

explanations and examples.

[Str19] 2 Linear algebra for data science: fundamental concepts, important ma-

trix factorizations, basics on probability, statistics, and optimization.

[NW06] 2 Well-balanced book on fundamentals of numerical optimization with

a comprehensive description of different methods to solve optimiza-

tion problems.

[Bis06] 2,

[Mur12] 2,

[GBC16] 2

Comprehensive introduction to machine learning with fundamentals

of probability theory and a broad scope of other machine learning

related topics.

[PP12] 2 Quick reference on matrix-related products and operators

Others

[LT08] 2,

[LC18] 2

Tensor-related operators and products.

[SvD12] 2 Nonlinear optimization and nonlinear least squares methods for the

optimization of real functions in complex variables

Table A.1. Further reading.
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https://doi.org/10.1137/140956865
https://doi.org/10.1186/1687-6180-2014-142
https://hal.science/hal-00410057
https://doi.org/10.1002/(SICI)1099-128X(199905/08)13:3/4%3C275::AID-CEM543%3E3.0.CO;2-B
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.56021/9781421407944
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1017/9781108583664
https://math.mit.edu/~gs/learningfromdata/
https://doi.org/10.1007/978-0-387-40065-5
https://link.springer.com/book/9780387310732
https://mitpress.mit.edu/9780262304320/machine-learning/
http://www.deeplearningbook.org
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
https://api.semanticscholar.org/CorpusID:36767622
https://doi.org/10.1007/s11045-017-0481-0
https://doi.org/10.1137/110832124


Notation

Symbols & Notation

e, π, j Euler’s number, π, and imaginary unit: e jπ+1 = 0

R Set of real numbers

C Set of complex numbers

F Set of real or complex numbers (when the difference is unimportant)

a A scalar

a A column vector

A A matrix

A A tensor

a(i ), (a)(i ), ai The i th element of the vector a ∈ FI

A(i , j ), (A)(i , j ), ai , j The (i , j )th element of the matrix A ∈ FI×J

A(i , j ,k), (A)(i , j ,k),

ai , j ,k

The (i , j ,k)th element of the tensor A ∈ FI×J×K

A(i ,:) The i th row of the matrix A

A(:, j ) The j th column of the matrix A

{A}C(Q) Columns of the matrix A with the indices from the set Q
{A}R(Q) Rows of the matrix A with the indices from the set Q
1N Column vector of ones of size N

OM×N The M ×N matrix of zeros

IM An identity matrix of size M ×M

IN ,R An N -way super-diagonal tensor of size R ×R × . . .×R with ones

along its super-diagonal

AT Transpose of A

AH Hermitian transpose of A

A−1 Inverse of A

A+ Moore-Penrose pseudoinverse of A

AH− Hermitian transpose and inverse:
(

AH
)−1 = (

A−1
)H

AT+ Transpose and Moore-Penrose pseudoinverse:
(

AT
)+ = (

A+)T[A]
(n) The n-mode unfolding of the tensor A (Section 2.1)
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vec(A), vec(A) Transformation of the matrix A or the tensor A into a column vector

diag
(
a

)
A square diagonal matrix with diagonal elements being the entries

of the input vector

diag
(

A
)

A vector containing the diagonal elements of the matrix A

bdiag{A1, . . . , AN } A block-diagonal matrix with the input matrices A1, . . . , AN on the

main diagonal

rank
(

A
)

Rank of a matrix A

rankn (A) n-rank of a tensor A
tr(A) Trace of the matrix A (sum of diagonal elements)

Re{x} Real part of complex variable x

Im{x} Imaginary part of complex variable x

|x| Absolute value of complex variable x

det
(

A
)

Determinant of the matrix A

min
(·), max

(·) Minimum, maximum

z∗ Complex conjugate of z

A ⊗B Kronecker product between A ∈ FM×N and B ∈ FP×Q (Appendix A.1)

A ⋄B Column-wise Khatri-Rao (column-wise Kronecker) product be-

tween A ∈ FM×N and B ∈ FP×N (Appendix A.1)

A ⋄s B Partition-wise Khatri-Rao product between A ∈ FM×∑R
i=r Nr and B ∈

FP×∑R
i=r Lr (Appendix A.1)

A ◦B Outer product between matrices (vectors, tensors) A ∈ FM×N and

B ∈ FP×Q (Appendix A.1)

A ⊙B Hadamard (element-wise) product between two matrices (vectors,

tensors) of equal dimensions (Appendix A.1)

A ⊘B Inverse Hadamard product (element-wise division) between two

matrices (vectors, tensors) of equal dimensions (Appendix A.1)

A×n U The n-mode product between a tensor A and a matrix U (Sec-

tion 2.1)

∥a∥ Euclidean (two-) norm of the vector a

∥A∥F Frobenius norm of the matrix A

∥A∥F Frobenius norm of the tensor A (see the definition on page 17)

ΣLr The sum
∑R

r=1 Lr

188 Appendix A Notation



Acronyms & Abbreviations

3D Three-Dimensional

5G Fifth Generation (of wireless communication systems)

6G Sixth Generation (of wireless communication systems)

ALS Alternating Least Squares

AWGN Additive White Gaussian Noise

BC Broadcast

BM Best Matching

BS Base Station

BTD Block-Term Decomposition

CANDECOMP Canonical Decomposition

CCDF Complementary Cumulative Distribution Functions

CF Closed Form

COBRAS COupled Block-term decomposition for multi-static RAdar Systems

CON PS Condition number - Paired Solutions

CP Canonical Polyadic

CPD Canonical Polyadic Decomposition

CS Common Subspace

CSIT Channel State Information at the Transmitter

DoF Degree-of-Freedom

EEG Electroencephalography

FlexCoBF Flexible Coordinated Beamforming

GESD Generalized Eigenspace Decomposition

GEVD Generalized Eigenvalue Decomposition

GRAD Gradiometer

GSVD Generalized Singular Value Decomposition

HO GSVD Higher Order Generalized Singular Value Decomposition

HOSVD Higher-Order Singular Value Decomposition

i.i.d. independent and identically distributed

IC Interference Channel

JD Joint Diagonalization

LaRGE Linear Regression of Global Eigenvalues

LinS Linear Sum

LS Least Squares

LSKRF Least Squares Khatri-Rao Factorization

MAG Magnetometer

MEG Magnetoencephalography
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MIMO Multiple-Input Multiple-Output

ML-GSVD Multilinear Generalized Singular Value Decomposition

MU Multi-User

NLS Nonlinear Least-Squares

NOMA Non-Orthogonal Multiple Access

OFDM Orthogonal Frequency Division Multiplexing

OMA Orthogonal Multiple Access

PARAFAC Parallel Factors

PARAFAC2 Parallel Factors 2

PESDR Prediction Error to Standard Deviation Ratio

PF Penalty Function

PS Private Subspace

QoS Quality of Service

REC PS Reconstruction error - Paired Solutions

RES RESidual

RES BT Residual-Block-Terms

RMSE Root Mean Square Error

RSMA Rate Splitting Multiple Access

SDMA Space Division Multiple Access

SECSI Semi-Algebraic framework for approximate CP decomposition via

Simultaneous matrix diagonalization

SEF Somatosensory Evoked Magnetic Fields

SEP Somatosensory Evoked Electrical Potentials

SFE Squared Factor Error

SIC Successive Interference Cancellation

SINR Signal-to-Interference-Plus-Noise Ratio

SMD Simultaneous Matrix Diagonalization

SNR Signal-to-Noise Ratio

SPWV Smoothed Pseudo Wigner-Ville Distribution

SRE Squared Reconstruction Error

SVD Singular Value Decomposition

TC Tensor Contractions

UE User Equipment

ULA Uniform Linear Array

URA Uniform Rectangular Array

VC Virtual Channel

ZF Zero Forcing

ZMCSCG Zero Mean Circularly Symmetric Complex Gaussian
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