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We absolutely must leave room for doubt

or there is no progress and there is no learning.

There is no learning without having to pose a question.

And a question requires doubt.

Richard Feynman
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Abstract

Sequencing technologies enabled us to decode sequence of bases that shape the genome and to
identify sequence stretches with biological functions, such as genes. Such technologies also enable us
to study the expression and regulation base sequences. Intriguingly, transposable elements (TEs) can
occupy a substantial proportion of a genome. TEs provide a comprehensive repertoire of (non)-coding
sequences with biological functions that can potentially impact gene expression. However,
quantification of TE expression remains challenging due to their high sequence similarity and the
limited lengths of base sequences decoded by state-of-the-art sequencing technologies.

In my thesis, | evaluated five TE quantification software applications with respect to their
performance in quantifying the expression of individual TEs. Originally, three of the five tools were
unable to quantify the expression of individual TEs. I slightly modified these tools to enable the
output of locus-specific quantification data. My tool evaluation was based on simulated datasets for
model and non model organisms created using publicly available as well as self-implemented
simulation software. Notably, we found that SalmonTE, a tool originally designed to asses TE
expression at the family-level, could recover simulated TE expression fairly accurately upon
modification. Thus, | showed that modified SalmonTE can be applied for reliable differential

expression analyses in model and non-model organisms.

In the second part of my thesis, | applied modified SalmonTE to study (differentially) TE
expression in blood, brain, and skin of mice of different ages (6 and 24 months). While previous family-
level studies of TE expression identified up-regulation of TEs as a characteristic of aging, my results
indicate that individual TEs are also commonly down-regulated during aging. Integration of
transcription start site sequencing data identified TE regions, i.e., stretches of expressed TEs that
share common transcription start sites, to be nested in genes with highly tissue-specific functions. Co-
regulation of TEs and host genes indicates potential biological functions of independently expressed
TEs concerning the transcriptional regulation of genes involved in highly tissue-specific pathways.
Analyses of the putative promoter regions of independently expressed TEs identified transcription
factors of the Sox family as candidates controlling their regulation. Together, this study revealed the
expression dynamics of individual TEs during aging and provides a comprehensive resource of
independently expressed TEs. These data can be a promising starting point to intensify research into
locus-specific TE expression to gain a better understanding of the biological functions, interactions,
and regulation of TEs.
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In the last part of my thesis, | developed an expression database on p53 and cell cycle-dependent
gene regulation with an intuitive web interface. This database serves as a blueprint to make the

expression data of TEs and their associated genes easily accessible to the scientific community.
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Zusammenfassung

Sequenzierungstechnologien haben es uns ermdglicht, die Abfolge der Basen zu entschliisseln,
die das Genom formen, sowie Sequenzabschnitte mit biologischen Funktionen, wie z. B. Gene, zu
identifizieren. Diese Technologien ermdglichen es uns auch, die Expression und Regulierung von
Basensequenzen zu untersuchen. Interessanterweise konnen transponierbare Elemente (TEs) einen
erheblichen Teil eines Genoms einnehmen. TEs bieten ein umfassendes Repertoire an (nicht)-
kodierenden Sequenzen mit biologischen Funktionen, die moglicherweise die Genexpression
beeinflussen konnen. Die Quantifizierung der TE-Expression bleibt jedoch aufgrund ihrer hohen
Sequenzahnlichkeit und der begrenzten Lange der Basensequenzen, die mit modernen

Sequenzierungstechnologien entschlusselt werden kdnnen, eine Herausforderung.

In meiner Dissertation habe ich flinf TE-Quantifizierungssoftwareanwendungen im Hinblick auf
ihre Leistung bei der Quantifizierung der Expression individueller TEs bewertet. Urspriinglich waren
drei der finf Tools nicht in der Lage, die Expression einzelner TEs zu quantifizieren. Ich habe diese
Tools leicht modifiziert, um die Ausgabe von lokusspezifischen Quantifizierungsdaten zu ermdglichen.
Meine Bewertung der Tools basierte auf simulierten Datensatzen fir Modell- und Nicht-
Modellorganismen, die mit offentlich zuganglicher und selbst implementierter Simulationssoftware
erstellt wurden. Insbesondere haben wir festgestellt, dass SalmonTE, ein Tool, das urspriinglich fir
die Bewertung der TE-Expression auf Familienebene entwickelt wurde, die simulierte TE-Expression
nach einer Modifizierung ziemlich genau messen konnte. So konnte ich zeigen, dass das adaptierte
SalmonTE fir zuverlassige differentielle Expressionsanalysen in Modell- und Nicht-Modellorganismen

eingesetzt werden kann.

Im zweiten Teil meiner Arbeit habe ich das adaptierte SalmonTE eingesetzt, um die TE-
Expression in Blut, Gehirn und Haut von Mausen unterschiedlichen Alters (6 und 24 Monate) zu
untersuchen. Wahrend friihere Studien zur TE-Expression auf Familienebene eine Hochregulierung
von TEs als Merkmal des Alterns identifiziert haben, deuten meine Ergebnisse darauf hin, dass
einzelne TEs wahrend des Alterns auch haufig herunterreguliert werden. Durch die Integration von
Daten zur Sequenzierung von Transkriptionsstartstellen wurden TE-Regionen identifiziert, d. h.
Abschnitte exprimierter TEs, die gemeinsame Transkriptionsstartstellen aufweisen und in Genen mit
sehr gewebespezifischen Funktionen eingebettet sind. Die Ko-Regulation von TEs und Wirtsgenen
deutet auf mogliche biologische Funktionen unabhéngig exprimierter TEs hin, die die
Transkriptionsregulation von Genen betreffen, die an hochgradig gewebespezifischen Funktionen
beteiligt sind. Analysen der potentiellen Promotorregionen unabhangig exprimierter TEs
identifizierten Transkriptionsfaktoren der Sox-Familie als Kandidaten, die deren Regulierung
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kontrollieren. Insgesamt hat diese Studie die Expressionsdynamik einzelner TEs wahrend des Alterns
aufgezeigt und bietet eine umfassende Ressource unabhangig exprimierter TEs. Diese Daten kdnnen
ein vielversprechender Ausgangspunkt sein, um die Erforschung der lokusspezifischen TE-Expression
zu intensivieren und ein besseres Verstandnis der biologischen Funktionen, Interaktionen und der

Regulierung von TEs zu erlangen.

Im letzten Teil meiner Dissertation habe ich eine Expressionsdatenbank fiir p53 und
zellzyklusabhangige Genregulation mit einer intuitiven Webschnittstelle entwickelt. Diese Datenbank
dient als Blaupause, um die Expressionsdaten von TEs und den mit ihnen verbundenen Genen der

wissenschaftlichen Gemeinschaft leicht zuganglich zu machen.
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Introduction

1.1. Prolog

The blueprint of all living matter is encoded in the genome. The genome is full of components
that orchestrate the process of live. Since the description of the deoxyribonucleic acid (DNA) structure
by James Watson and Francis Crick [1], enormous efforts have been made to decipher the
composition of the DNA code and its function. Thus, the development of a method for determining the
base sequence of DNA by Frederick Sanger [2] and others was an important milestone in the history of
genetics. Decades later, the development of next generation high-throughput sequencing methods
advanced genome analysis to a new era by drastically increasing availability and reducing costs.
Complementary sequencing protocols, e.g., to study ribonucleic acid (RNA) expression (RNA-Seq) or
DNA-associated factors via chromatin immunoprecipitation DNA sequencing, opened the door to get

unprecedented insights into the dynamics of gene expression and their regulation.

The initial publication of the human genome reported that only 2% of the genome are protein
coding genes [3], reinvigorating controversial debates about the functional role of the other 98%.
Notably, the Human Genome Project estimated that ~45% of the human genome consists of
transposable elements (TEs) [3]. Initially described by Barbara McClintock and termed “controlling
elements” during the 1950s [4], TEs are genomic sequences that can change their location (DNA-
transposons) or create copies of themselves (retrotransposons) within their host genomes. In fact, the
accumulation of TEs can be observed across eukaryotes, e.g., mouse (~39%, [5]), zebrafish (~50%, [6]),
and maize (between ~64% and ~85%, [7, 8]). McClintock received the Nobel Prize for her

groundbreaking discovery in 1983.

The activity of TEs is often associated with diseases like cancer [9-11], neurological impairments
[12], or aging [13]. One of the mechanisms by which TEs can contribute to pathological or
deteriorating processes is the recognition of TE products by cell defense mechanisms leading to the
inflammatory processes [14, 15]. Furthermore, the de novo integration of TEs into the genome has the
potential to negatively affect coding genes and impact the genome’s integrity [16, 17]. On the other
hand, TEs may also have constructive roles in the genome’s architecture and provide regulatory
components for genes in close proximity [18, 19]. For example, TEs provide landing platforms for
proteins such as transcription factors (TF) [18, 20, 21] or provide molecules regulating the activity of
closely located genes [22, 23].
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Consequently, the biological role of TEs appears complex, and their repetitive occurrence in
genomes complicates their analysis. Most of the current knowledge is based on analysis of either
specific TE loci or entire groups of TE elements sharing sequence similarities. The latter approach,
however, impedes the resolution of the precise genomic location of active TEs. In my thesis, | focus on
the analysis of locus-specific TE activity on a genome-wide scale. In the following, | am providing a
brief introduction concerning the categorization and regulation of TEs, before moving on to their
biological implication and the quantification of TE expression.

1.2. Transposable elements

1.2.1. Classification of transposable elements

Briefly, transposable elements are components of the genome that have inserted themselves
into new genomic loci. Barbara McClintock was the first scientist to discover such “jumping genes” in
maize several decades ago [4]. Since then, with few exceptions, TEs have been discovered in almost
all higher eukaryotes that have been sequenced [24, 25]. The whole set of TEs in a genome are
referred to as the transposome. In general, TEs are separated into two classes based on their
transposition mechanism (Figure 1). Elements of Class | (retrotransposons) use a copy-and-paste
mechanism. These elements are transcribed into RNA, reverse-transcribed into DNA and ultimately
integrated at a new locus of the host genome [26]. Therefore, each successful transposition event of a
retrotransposon leads to a novel copy. On the other hand, Class Il elements (DNA transposons) use a
cut-and-paste mechanism, which means that the element is excised from the genome and integrated

into a new genomic locus [27, 28].

Transposons

7
o

Class | Class Il
Retroransposons DNA-Transposons
LTR Non-LTR
<ERV (e.g. ERVK) | +LINE (e.g. L1)
« SINE (e.g. Alu

Figure 1 Classification of transposons. Transposons are categorized into two classes by their used transposition
mechanism. Class | elements (retrotransposons) use a copy-paste mechanism to propagate within their host genome.
Retrotransposons are further classified into LINE, SINE and LTR-retrotransposons. Class Il elements (DNA-transposons) use a
cut-paste mechanism to change the loci within the host genome. Abbreviations: ERV - endogenous retrovirus; ERVK -
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endogenous retrovirus K; LINE - long interspersed nuclear element; LTR - long terminal repeats; SINE - short interspersed
nuclear element

Retrotransposons are further subdivided into Long Terminal Repeat (LTR) retrotransposons and
non-LTR-retrotransposons while the latter are further comprised Long Interspersed Nuclear Elements
(LINE) and Short Interspersed Nuclear Elements (SINE). Copies with a common ancestor are further
grouped into families, e.g., LINE1 (L1) or primate-specific Alu elements, based on common structural
features. Individual TE elements exhibiting high sequence similarity and sufficient differences to other
instances within the same family are grouped into subfamilies.

Characteristically, LTR-retrotransposons have a body of protein-coding open reading frames
(ORFs) enclosed by LTRs at their 5’- and 3’-ends [24, 29]. As this enclosure is reminiscent of the
structure of endogenous retroviruses (ERV) [30, 31] it is assumed that LTRs are descendants of ERVs,
which have lost the capability for extracellular replication [32, 33]. ORFs of LTR-retrotransposons
encode the genes gag, pol, and env, while the coding region for the env gene is usually deleted [32]
and is not essential for transposition [34]. The gag gene encodes a capsid and a nucleocapsid protein,
while pol provides the blueprints for a protease, the reverse transcriptase (RT), and the integrase (IN)
[24, 35]. Notably, LTR-regions contain promoter sequences facilitating binding of RNA polymerase
(Pol) I [36, 37], and other transcription factor binding sites (TFBSs) [37]. Prototypically, the RNA of LTR
elements is reverse transcribed into DNA in the cytosol of a cell, transferred to the nucleus, and
integrated into the DNA by the IN [31]. Intact LTR-retrotransposons encode for all proteins necessary
for their transposition, hence, they are classified as autonomous TEs.

In contrast, LINEs and SINEs lack LTRs at their 5’ and 3’-ends (non-LTR-retrotransposons). Full
length LINE elements do have a length of 6-7 kb [38] and contain a Pol Il binding site within their 5’-
end as well as two ORFs: ORF1 and ORF2. The ORF2 encodes for an endonuclease (EN) and the RT.
Once translated, ORF1 and ORF2 build a ribonucleoprotein complex (RNP) that binds the LINE
messenger RNA (mRNA) and transfers it to the nucleus. The EN nicks the DNA and the RT uses the free
3’0OH as primer for the mRNA template in the RNP to reverse transcribe the RNA into the DNA
beginning at the 3’-end [39-41]. Since intact LINEs encode for all proteins that are needed for the
transposition they are also part of autonomous TEs. In comparison, SINEs do not have any ORF that
code for proteins, which they can use for transposition (non-autonomous TEs) and rely on the
transposition apparatus of LINEs [42-45]. While the origin of LINEs are uncertain [46], SINEs may
derive from tRNA, 7SL RNA, and 5S RNA, contain a Pol Ill promoter [24], and have a length of 80-500
base pairs (bp) [38].

The majority of DNA transposons code for a transposase that is flanked by terminal inverted
repeats (TIRs) of variable length. The TIR sequences are used to categorize these elements into nine

super families [24]. The self-encoded transposase recognizes the TIRs, cuts out the DNA transposon
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sequence, and integrates it at another locus of the host genome. Copies of DNA transposons can be
created during chromosome replication when they are reinserted in front of the replication fork [47].

1.2.2. TEs as integral part of the genome

The proliferation of TEs can have a fundamental impact on the size of host genomes. It has been
reported that the genome size positively correlates with the amount of TEs contained in a genome
[48, 49]. Retrotransposons usually dominate the TE content of the majority of eukaryotic genomes [3,
46, 50] due to their copy-and-paste mechanism. Notably, the integration process is not always
perfect. For example, the integration of LINEs begins at the 3’end and an interruption during the
reverse transcription process leads to 5’-end-truncated TE sequences [41, 51, 52]. Such 5-end
truncated elements may lack essential binding sites, so that further transpositions are impaired [53].
Interestingly, truncated ORF1 proteins of L1 elements provide for a suppression of full length L1
elements [54]. Indeed, the majority of TEs within human and mouse are immobilized [55] while only a
small fraction of TEs are actually mobile in mammalian genomes [41, 47]. Besides, TEs have
accumulated mutations over millions of years additionally impacting the transposition capability [56].
Mutations in TEs are useful to estimate the age of individual TEs. The Kimura distance [57] is a
frequently used measure that serves as a proxy for the age of TEs. To calculate the Kimura distance of
a TE, first a multiple sequence alignments of all members of the TE’s family is carried out and the
most abundant base at each position in the alignment is stored in a consensus sequence.
Subsequently, the distance of each individual TE to its family consensus sequence can be calculated.
The Distance serves to approximate the time that has passed since the individual transposition event.
It is assumed that, the more recent a transposition took place, the fewer mutations are accumulated
in an individual TE locus, e.g., the smaller the Kimura distance. Ancient TEs spent a long time in the
genome, so they accumulated more mutations, resulting in greater Kimura distances. According to
this rationale, the distance can also be an indicator for the probability a TE is still mobile in the

genome and was not inactivated by sequence alterations over time.

1.2.3. TEs as architects of genome structure and instructors of gene regulation

From an evolutionary perspective, TEs may be an important resource contributing to transcript
diversity [58-60]. TEs can donate coding sequences they acquired and these can be used by their host
(i.e., domestication) [61, 62]. For example, the envelope gene of human endogenous retrovirus (HERV)
subfamily W has been adopted and evolved into the gene Syncytin involved in the human placental
morphogenesis [63]. Likewise, it has been demonstrated that the knockout of the TE-derived gene
Peg10 leads to early embryonic lethality in mice [64]. TEs can take parts of the genome along on their

journey, resulting in exon shuffling that can allow genes to acquire new functions [65, 66].
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Additionally, TEs can transduce host mRNA or facilitate chromosomal rearrangements leading to
gene duplications [60, 67, 68]. Intriguingly, also somatic transposition events of TEs have been
reported, which lead to the genomic mosaicism in neuronal cells [69-73]. It is proposed that between
0.6 [69] and 13.7 [72] new L1 insertions exist per neuron in human. Indeed, it has been reported that
early-life experiences drive the expression of TEs in the brains of mice, for example, the lack of
maternal care was shown to lead to an increased L1 activity in pubs [74]. Importantly, the TE activity
experienced during development appears to be a determining factor for the TE activity in adult brains
as well [75].

Moreover, TEs are loaded with TFBS [37] and thus potentially influence their genomic
environment in cis by recruiting TFs or acting as alternative promoters for nearby genes [76, 77].
Domestication of TE-derived regulatory sequences at appropriate loci allows rewiring of gene
regulatory pathways, which may be advantageous for species adaptation to environmental changes
[78]. For example, CTCF is an important protein shaping the 3D genomic landscape, which is essential
for gene regulation [79]. TEs are important resource that helped distributing CTCF binding sites
throughout the mammalian genome [80].

A tight regulation of gene expression is essential for cell homeostasis and cell identity. In recent
years, it became apparent that non-coding RNAs (ncRNAs) also contribute to this regulatory orchestra
[81-84]. In this context, TEs contribute to the repertoire of ncRNAs [85, 86] and thus provide regulatory
units that can impact gene expression in trans [87, 88]. The identification of species-specific TE-
derived regulatory transcripts indicates a high regulatory innovation by TEs [18]. For example,
transcripts from the B2 family in mice keep stress response genes (SRGs) in a poised state [22]. The
induction of stress signals leads to a degradation of these transcripts that turns on the SRGs and
enables a quick reaction of the cell. Enhancer RNAs represent another regulatory entity that acts on
the 3D structure of the chromatin and intensifies the expression of the enhancer-associated genes.
Indeed, multiple TE families show an enrichment of signals that are typical for enhancers [89]. For
example, the HERV-H is a long noncoding RNA with an enhancer functionality that is essential for

human embryonic cell identity [85, 90].

In summary, recent literature has demonstrated the capability of TEs to affect the genome and
its regulation, e.g., by rewiring gene regulation networks [91]. Theoretically, shuttling (copies of)
coding or regulatory sequences thru the genome would have the advantage that functional entities
do not need to evolve at multiple positions in the genome independently. Thus, it is supposed that
TEs are an important resource to quickly adapt on environmental changes [47, 60], so that TEs could
have been responsible for an accelerated genome evolution [21, 92, 93].
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1.2.4. TEs expression during aging

While not entirely straightforward, aging may be defined as a progressive loss of molecular
functions combined with decreased fertility and increased mortality [94]. The global improvement of
life expectancy [95, 96] entails an uptick of age-associated diseases like cancer or neurological
disorders [97]. Thus, our understanding of the molecular foundation of aging processes is critical for
the prevention and treatment of age-related diseases. One of these mechanisms is the age-associated
activation of TEs.

So far, multiple safeguards have been described that protect the cell against the activation of
TEs. In addition to the epigenetic repression of TE regions via heterochromatinization or DNA
methylation [98, 99], also post-transcriptional mechanisms involving short interfering RNAs and PIWI
(P-element induced wimpy testis)-interacting RNA contribute to TE silencing by initiating their
degradation [13]. Indeed, compromised small RNA and RNA interference pathways have been shown

to substantially increase the TE content in the fruit fly Drosophila melanogaster [100].

It is believed that a gradual loss of repression during aging leads to the expression of TEs [101].
Once exported to the cytoplasm, cellular sensing mechanisms recognizing TE-RNA (e.g., the retinoic
acid-inducible gene | and the melanoma differentiation-associated gene 5) or the reverse-transcribed
TE-DNA (e.g., cyclic GMP-AMP synthase [cGAS] and absent in melanoma 2) trigger a sterile
inflammation [13]. Thus, the expression itself, without reverse transcription, may already contribute
to age-associated inflammation, also known as, “inflammaging” [102]. Indeed, the de-repression of
LINEs in aging mice has been shown to result in an accumulation of TE cDNA copies in the cytosol,
which triggers the cGAS DNA sensing pathway and leads to inflammation [103].

Although the overwhelming majority of TEs is affected by truncations [104, 105] and mutations
[56, 106] leading to their inactivity, even the human genome still contains some fully functional
mobile TEs [11, 106-108]. In principle, the activation of such elements could be detrimental for
genome integrity [109, 110] and could afflict damages to the coding sequences of genes [11] or their
regulation [10]. However, while L1 elements, for instance, are strongly expressed in many cancer
types, there is little evidence that insertions of these elements actually contribute to this disease [40].

In summary, the transcription and genomic insertion of TEs has been described to be a
characteristic hallmark of aging and age-related diseases. Given the large number of TEs and the
wealth of proposed control mechanisms [111], however, it is unclear which TE is controlled by which
molecular safeguards. Thus, to obtain a comprehensive picture on TE (dys-)regulation during aging as
well as under healthy or diseased conditions it is essential to develop locus-specific analysis
strategies that integrate many levels of genomic, transcriptomic, and epigenomic data.
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1.2.5. Quantification of Transposable element expression

The first step towards a detailed understanding of TE regulation and expression is the
development of suitable tools to assess the (differential) expression of TEs, e.g., during aging or
comparing healthy and diseased samples.

Transcription, i.e., the production of RNA molecules based on a given DNA template, refers to a
complex process involving many proteins generating both coding mRNA as well as ncRNA. LTR-
retrotransposons, ERVs, and LINEs are typically transcribed by Pol Il and frequently polyadenylated
while SINEs are often transcribed by Pol Il [87] and thus lack a 5° m7G-cap structure [112]. Thus, the
TE-derived RNA molecules are detectable - in principle - by several transcriptome sequencing
technologies. For this, the RNA is isolated, broken down into small pieces (i.e., fragments), and
reversely transcribed into cDNA. These fragments are amplified and read by the sequencing machine.
These reads can then be mapped back to the reference genome for quantification. Nevertheless, the

quantification of transcripts from TEs is still a challenging task for bioinformatics.

The repeated presence of TE copies in a genome can lead to reads that map to multiple loci in
the reference genome with equal scores (multi-mapped reads) [50]. Inappropriate handling of multi-
mapping reads can lead to wrong biological conclusions [113, 114]. Increasing the read length is one
possibility to decrease the number of multi-mapping reads [115], as the likelihood of a read being
unique grows with its length. To partially remedy this problem, current short-read sequencing
technologies like Illumina enable the sequencing of paired-end reads. Here, a fragment of several
hundred base pairs is sequenced from both ends in parallel. Aligning both paired-end reads under the
constraint that the sequences are mapping in close vicinity to each other helps to reduce the multi-
mapping problem [115]. It has been shown that longer reads as well as paired-end reads improve the
assignability of reads that originate from TEs [116]. However, the analysis of evolutionarily young TEs,
i.e., elements exhibiting high sequence similarities (i.e., small Kimura distance), may still be
substantially obfuscated by multi-mapping reads. Analyses that simply discard multi-mapping reads
bear the risk to underestimate TE expression and therefore miss the expression signal for entire
families. Thus, TE quantification analyses based on unique reads are not recommended [117, 118]. In
recent years, sophisticated algorithms to assign multi-mapping reads were developed and
implemented in different computer programs, e.g., TEtranscripts [118], TEtools [119], SalmonTE [120],
SQUIRE [121], and Telescope [122] (Figure 2). In the following | will briefly explain the assignment

concepts used by these tools.
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Figure 2 Assignment concepts of RNA-Seq derived reads. Reads derived from TEs can be analyzed to quantify TE
expression in different ways. In grouped analysis, reads are either assigned to individual TEs (light blue) and subsequently all
reads belonging to TEs of the same family (dark blue) are aggregated (TEtools, TEtranscripts), or a consensus sequence per
TE family (dark blue) is first calculated and the reads are mapped to consensus sequence representing a TE family
(SalmonTE). Individual analysis avoids aggregation steps and provides read counts for individual TE instance (light blue;
Telescope, SQUIRE). The individual analysis has the advantage of obtaining coordinates of expressed individual TEs, which is
lost in grouped analysis. Abbreviations: RNA - ribonucleic acid; TE - transposable element.

TEtranscripts has the advantage to quantify gene and TE expression in one run and is equipped
with two modes. The first mode considers only unique reads while the second also handles multi-
mapped reads. TEtranscripts quantifies the TE expression at the family level by estimating a
combined abundance per TE family. In the “multi-mode”, all multi-mapped reads are weighted by the
number of loci they were mapped to and subsequently assigned by an expectation-maximization (EM)
algorithm. The EM-algorithm alternates between two steps, e.g., the E- and M-step. The E-step

calculates the fractional distribution of multi-mapped reads, which means the likelihood that the read
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comes from a certain TE instance. Different parameters can be considered for the likelihood
calculation such as relative length of the TE, strand orientation, and the starting point of a read [120].
This relative abundance of reads is used in the M-step to update the relative abundance of each TE.
These two steps are repeated for a certain number of iterations or until the program converges [118].

SalmonTE is based on salmon [123], an alignment-free mapper, which works with TE consensus
sequences, hence, it produces family based counts. This tool does also use an EM algorithm for the
assignment of multi mapped reads.

In contrast, TEtools considers the genomic sequences of individual TE loci and randomly assigns
multi-mapping reads during the mapping procedure. Afterwards, read counts of all TE loci belonging
to the same TE family are aggregated. However, TEtools exclusively uses TE sequences in their default
reference, so that reads originating from genes for example can be miss assigned to TEs, which leads

to an overestimation of the TE expression [117].

These three tools (TEtranscripts, TEtools, and SalmonTE) share a common drawback, namely the
TE quantification at the family level. Consequently, the loci where transcripts originated from cannot
be resolved and, thus, expression dynamics of individual TE loci remain in the dark. To bridge this
gap, two additional tools, SQUIRE and Telescope, became available. Both tools aim to provide a TE
locus-specific resolution and use an EM-algorithm for the assignment of multi-mapping reads. Other
tools and strategies based on similar concepts are reviewed in [124].

1.3. Databases providing comprehensive expression profiles

In the past two decades, high-throughput sequencing technologies led to an accumulation of
gene expression profiling data sets that cover thousands of genes simultaneously. Differential
expression profiling data sets provide information on gene expression changes under certain
conditions, e.g., aging, disease, or treatment. Following increasingly improved guidelines of good
scientific practice, the raw sequencing data of such studies is available through databases, such as
Gene Expression Omnibus data base maintained at the National Center for Biotechnological
Information (NCBI) [125], which enables researches to re-use the data.

Usually, sequencing data sets are created for specific scientific questions in a particular context
where specific subsets of genes are studied in depth, which has the consequence that there is a large
number of genes usually remains out of focus. However, such data sets provide an important resource
to verify and compare expression profiles of genes of interest various conditions. This is a powerful
method that offers the opportunity to derive new hypothesis or conclusions that are supported by

multiple data sets, which is also known as meta-analysis [126-128]. However, leveraging large

numbers of publicly available data sets can still be a huge effort for individual scientists to dig
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through tables from individual studies to obtain expression data on their genes of interest. In
addition, data from different studies may have been analyzed differently, so that direct comparisons
are limited. To accelerate discovery in the scientific communities, databases are generated through
the collection and re-analysis of raw data. Such databases, for instance, can provide web interfaces
for scientists to easily and quickly browse gene expression information across multiple data sets. For
example, the expression atlas from the European Bioinformatics Institute provides comprehensive
information about gene expression from thousands of studies [129]. Another example is the database

from Mouse Genome Informatics [130], which provides mouse-specific expression data.

Given that TEs have been considered “junk” DNA for long, their study was often neglected [131].
In addition, the tardy development of appropriate methods to investigate TE expression likely
contributed to the lack of standardized TE quantification pipelines and databases for TE expression.
Since the burgeoning recognition that TEs have biological relevant functions, attempts have been
made to combine the quantification of genes and TEs [118], which remains an ongoing development.
Most of RNA-Seq data sets that are publicly available have not been investigated with respect to TE

expression and provide a promising treasure for TE expression profiling on a large scale.

Given that databases on TE expression in different species, tissues, and specific conditions are
still missing, it is difficult to obtain a comprehensive overview of TE expression. The emerging trend
towards locus-specific expression analysis provides an opportunity to provide a powerful resource to
the research community through the generation of a database that contains information about the
expression of individual TE instances and their associated genes across species, tissues, and

conditions.
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1.4. Thesis focus and aim

TEs are ubiquitous in essentially all eukaryotic genomes, and their expression can be quantified
with modern sequencing technologies. However, the technical limitation of read length and sequence
similarities of TE copies poses a major challenge to assigning reads derived from TEs. Thus, most of
our current knowledge about TE regulation comes from family-based analyses that lack information
on the individual TE loci that express TE transcripts. Certainly, the biological functions of TEs in
various contexts, e.g., aging, cancer, or brain development, require a deeper understanding of their
(dys)-regulation. Therefore, the localization of actively transcribed TEs is an important step to obtain
insights into their regulation and biological roles. The aim of this thesis was to perform a genome-
wide, locus-specific quantification of TE expression in an age-dependent setting. The specific points

addressed in this thesis were on the following:

I.  Evaluation of currently available TE quantification tools according to their performance
with respect to the locus-specific quantification of TE expression.
Il.  Realization of a locus-specific TE quantification in different tissues (blood, brain, skin) of
mice of different ages (6 and 24 months).
lll.  Development of a database structure with a web interface that can host expression data

for an easy access by any scientists.
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This manuscript provides a comprehensive evaluation of TE quantification software in
M1 terms of their performance in quantifying locus-specific TE expression. For this, | published;
manipulated TE family quantification tools to provide locus-specific expression 13.99
information and evaluate their performances along with tools that already address the
challenge of multi-mapping reads in a locus-specific manner. That manuscript
concludes that the locus-specific expression analysis is sufficiently possible with

currently available sequencing technologies and quantification tools.

Expression differences of transposable elements during aging affect major tissue-
specific pathways
Schwarz R., Koch P., Forste S., Groth M., Wilbrandt J., Fischer M., Hoffmann S.

In this study | performed a comprehensive locus-specific TE quantification analysis in

different tissues (brain, blood, and skin) of six and 24 months old mice. Beyond pervious submitted:;
studies, | indicate that TEs can be also down-regulated during aging and identify a set of
TEs that are regulated by their own promoter. In addition, a co-regulation between TEs
and their host genes was indicated that show highly tissue-specific expression patterns.
Furthermore, a TFBS analysis suggests the involvement of Sox TFs in the regulation of
independently expressed TEs. Overall, that study provides an interesting set of TEs that

M2

represents a striking starting point du investigate the relevance of TEs during aging.

TargetGeneReg 2.0: a comprehensive web-atlas for p53, p63, and cell cycle-
dependent gene regulation

Fischer M., Schwarz R., Riege K., Decaprio J., Hoffmann S.

NAR Cancer. 2022 Mar; 4(1): zcac009.

published;

M3 This study provides a comprehensive web-atlas for p53, p63 and cell cycle dependent
gene regulation created by analyzing datasets from multiple studies. In this project, |
built a suitable data structure that allows both storage of the complex data and
convenient accessibility. In addition, | designed and developed a website to make the
data available to the public.

* IF - Impact factor
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Summary:

The transcripts of TEs are part of the transcriptome, which can theoretically be measured with
modern sequence technology, but is hampered by their repeated occurrence in the genome. This
manuscript provides a comprehensive evaluation of TE quantification software in terms of their
performance in quantifying locus-specific TE expression. For this, | manipulated TE family
guantification tools to provide locus-specific expression information and evaluate their performances
along with tools that already address the challenge of multi-mapping reads in a locus-specific
manner. That manuscript concludes that the locus-specific expression analysis is sufficiently possible

with currently available sequencing technologies and quantification tools.
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Abstract

Transposable elements (TEs) have been associated with many, frequently detrimental, biological roles. Consequently, the
regulations of TEs, e.g. via DNA-methylation and histone modifications, are considered critical for maintaining genomic
integrity and other functions. Still, the high-throughput study of TEs is usually limited to the family or consensus-sequence
level because of alignment problems prompted by high-sequence similarities and short read lengths. To entirely
comprehend the effects and reasons of TE expression, however, it is necessary to assess the TE expression at the level of
individual instances. Our simulation study demonstrates that sequence similarities and short read lengths do not rule out
the accurate assessment of (differential) expression of TEs at the instance-level. With only slight modifications to existing
methods, TE expression analysis works surprisingly well for conventional paired-end sequencing data. We find that
SalmonTE and Telescope can accurately tally a considerable amount of TE instances, allowing for differential expression
recovery in model and non-model organisms.

Key words: RNA sequencing; transposable elements; tool comparison; simulation; differential expression analysis

Introduction a detailed understanding of the regulatory mechanisms is still

missing. The major difference between TEs and other genomic
features such as exons or IncRNAs is their high repetitiveness.

The expression of transposable elements (TEs) has been repeat-
edly associated with various disorders including neurodegener-

ative [1, 2] and age-dependent diseases [3] or cancer [4, 5]. From
an evolutionary perspective, however, expressed and reinserted
TEs may play an advantageous role for the development of new
genes by limiting gene conversion [6]. Likewise, it is suggested
that TEs contribute to the heterogeneity and complexity of the
brain [7]. While the activity of individual TEs is influenced by
epigenomic factors such as DNA-methylation in vertebrates [8],

Specifically, TE families contain long stretches of sequence that
occur multiple times across the genome. Consequently, read
aligners often face the challenge to correctly align TE reads to
their locus of origin; i.e. the locus where the transcript read by
the sequencer originated from. To deal with this multi-mapping
read problem specialized tools have been developed in the past
years.
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Table 1. Overview of compared TE expression methods adapted from Lanciano et al. [31]. EM- Expectation maximization; TE- transposable
element

Tool Level Used alignment tool Multi-mapper handling Used references Ref.
SalmonTE Family Salmon EM-Algorithm Consensus of families [13]
Telescope Instance Free Choice EM-Algorithm Reference genome [12]
TEtranscripts Family Free Choice EM-Algorithm Reference genome [15]
SQuIRE Instance STAR EM-Algorithm Reference genome [11]
TEtools Family Bowtie/Bowtie2 Random assignment TE pseudogenome [14]

The first important step to investigate this critically under-
studied part of genome regulation is the accurate and precise
measurement of the expression of individual TE copies (TE
instances). In this study, we systematically compare methods
with regard to their ability to detect and quantify the expres-
sion of individual TE instances from simulated high-throughput
sequencing data of three species (Mus musculus, house mouse;
Homo sapiens, human; and Nothobranchius furzeri, turquoise killi-
fish). Our analysis of the vertebrate model-organisms mice and
human is complemented by the short-lived killifish N. furzeri, as
it is quickly becoming an important model organism in aging
research [9]. With an estimated TE content of 42.1%, its genome
contains a considerable amount of TEs [10] and could be an
interesting organism to study the regulation of TEs during aging.
In contrast to the other two reference genomes used here, the
assembly still is in a comparably early phase. Thus it provides
TE expression benchmarks for genomes of lower quality.

Major obstacles for TE detection and quantification are the
technical read length limitation of most RNA sequencing (RNA-
Seq) experiments and the high sequence similarity of TEs. Since
most TEs are too long for many sequencers to be read at once or
already underwent RNA processing prior to library construction,
many reads are expected to map to multiple instances of a TE,
i.e. a TE family. In addition, low quality genomes render the
analysis of repetitive elements particularly hard, as TEs may be
misplaced or absent in the reference. Therefore, the analysis
of TE expression has frequently been restricted to TE families,
which often means that a consensus sequence per family is
calculated and used as a reference. Consequently, the detection
and analysis of individual TEs with pathological or physiological
relevance remains a critical challenge for the investigation of
sizable parts of genomes across all kingdoms of life. Notably,
family-level investigations are also obfuscated when family
members are not coordinately up- or down-regulated. Only
recently, tools such as SQUIRE [11] and Telescope [12] became
available to tackle TE expression analysis on instance-level.

Here, we investigate to which extent existing methods
implemented in SalmonTE [13], TEtools [14], TEtranscripts [15],
SQUIRE and Telescope (see Table 1) can be used to quantify
locus-specific TE expression. We simulated RNA-Seq data for
M. musculus, H. sapiens, and the non-model organism N. furzeri,
because as it allows benchmarking of tool performances. In
contrast to real data, exact expression values and expression
differences are known and thus serve as a gold standard in
all evaluations. To this end, we modified the three methods
originally designed for family-level analyses to obtain expres-
sion estimates for individual TEs. Using DESeq2 [16], a tool
to estimate differential expression from count data of high-
throughput sequencing reads, we additionally investigate the
ability to recover differentially expressed TEs (DETEs) based
on the tools’ alignments. Furthermore, our analysis provides
insights into the relation of Kimura distances [17] and the
ability to investigate expression levels of individual TE orders as

defined by RepeatMasker [18]. In summary, our study provides
a comprehensive assessment of the possibilities of DETE detec-
tion. This is an important step towards a better understanding
of mechanisms underlying TE regulation in health, disease and

aging.

Methods

The workflow of the tool evaluation is shown in Figure 1 and
all in-house scripts, used in the following section, can be found
at GitHub (simulation, evaluation and scripts: https://github.co
m/Hoffmann-Lab/TEdetectionEvaluation). Additionally, all com-
mand line calls are listed in Supplemental File 6.

Generation of repeat reference library

We used the repeat annotation of RepeatMasker of M. musculus
(mm10, based on Repeat Library 20140131 downloaded in
January 2020, https://www.repeatmasker.org/genomes/mm10/
RepeatMasker-rm405-db20140131/mm10.fa.align.gz), H. sapiens
(hg38, based on Repeat Library 20140131 downloaded in
January 2020, https://repeatmasker.org/genomes/hg38/Repea
tMasker-rm405-db20140131/hg38.fa.align.gz) and N. furzeri
(Nfu_20150522 downloaded in January 2020, https://nfingb.leibni
z-fli.de/data/raw/notho4/Nfu_20150522.dispersed_repeats.Nf-
RepLib.20141117.align.gz), along with the reference genome of
M. musculus mm10 (v102 downloaded in January 2021 from ftp://
ftp.ensembl.org/pub/release-102/fasta/mus_musculus/dna/), H.
sapiens hg38 (v102 downloaded in January 2021 from ftp:/ftp.e
nsembl.org/pub/release-102/fasta/homo_sapiens/dna/) and N.
furzeri Nfu_20150522 (downloaded from https://nfingb.leibni
z-fli.de/data/raw/notho4/Nfu_20150522.softmasked_genome.
fa.gz) [10] to generate a reference sequence library of TEs
in FASTA format for each organism. Specifically, coordinates
of TEs from the RepeatMasker annotation were converted
into BED format and used to generate a reference library of
nucleotide sequences for each annotated TE by using bedtools
getfasta (v2.29.2-41-g4ebba703) [19]. Genomic position, Kimura
distance, strand and TE categories are tracked for each instance
throughout the evaluation pipeline via unique TE identifiers
(TE ids, in the format christartlend|TE-repclass|TE-family|TE-
subfamily|score|KimuraDistance). All following steps are based
on these generated reference libraries.

Simulation of short read RNA-Seq data

In this study, we consider single-end (50 and 100 bp read length)
as well as paired-end (100 bp read length) sequencing exper-
iments. For either experimental setup, two distinct sets with
five replicates each are generated. Throughout this study, the
first set is considered a control (Set 1), while the second set
contains 5% uniformly randomly drawn DETEs (Set 2; 2.5% up-
and down-regulated, respectively). As a basis for our simulation,
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Figure 1. Workflow of tool evaluation. A count matrix for 100.000 randomly selected TEs was simulated, which was used to simulate reads with polyester. The tools
SalmonTE*, SQUIRE, Telescope, TEtools* and TEtranscripts (* marks adapted tools) were applied to estimated counts per TE. The tool-specific estimated counts were
compared with the ground truth (Expression detection & quantification). The ground truth of DETEs of the simulated TEs was determined with DESeq2 and compared
to the tool-specific DESeq2 results (DETE detection). TE - Transposable element; DETEs - differentially expressed TEs.

we uniformly randomly drew 100,000 TEs, i.e. LINE, SINE, LTR
or DNA elements, with at least 100 bp in length and a known
Kimura distance from the reference library.

Polyester (v1.22.0) from the Bioconductor universe (v3.10) [20]
was used to simulate RNA-Seq data in FASTQ format. It allows
simulating GC-biases and sequencing errors based on Illumina
sequencing error profiles that are provided with the polyester
package. A mean read coverage of 20-fold per TE was simulated
and the fragment length for the paired-end data was drawn from
a Gaussian distribution with a mean of 250 bp (SD =25 bp; default
settings, see Supplemental methods). The number of simulated
reads per TE and sample is stored in a count matrix, which serves
as a reference in the evaluation process. This matrix was also
used as input for DESeq2 (v1.26.0), to identify those TEs that
can be detected as differentially expressed with a perfect read
assignment.

An additional simulation was done for M. musculus using
an in-house script implementing an alternative GC-bias
unaware simulation strategy using quality values of real
experiments to introduce sequencing errors (see Supplement
methods).

Tool adaption, invocation and filtering of results

As described above, TEtools (v1.0.0), SalmonTE (v0.4) and TEtran-
scripts (v2.2.1) use different strategies to estimate TE expression
at family-level (Table 1). We adapted the tools in order to eval-
uate their performance at the level of individual TEs instances
and compare them with the dedicated instance-specific tools

Telescope (v1.0.3) and SQUIRE (v0.9.9.92). As we did not change
the algorithm of the tools, which are responsible for the assign-
ment of multi-mapping reads, we do not expect an interfering of
the outcomes.

By default, TEtools aligns reads to the instance-specific ref-
erence sequences and aggregates individual read counts after-
wards to a family read count using a translation file. To suppress
the aggregation step, we substituted the ids of TE families with
ids of TE instances. Similarly, TEtranscripts uses an annotation
file mapping TEs to their respective families. Again, we sub-
stituted the family names by TE ids to avoid the aggregation
process. Since TEtranscripts and Telescope require precomputed
alignments, simulated sequencing data was aligned with STAR
(v2.7.6a) [21] according to the recommendation of TEtranscripts.
Conversely, SalmonTE ships with an index for M. musculus and
H. sapiens based on consensus sequences for each family. For our
evaluation, we created an instance-specific index with Salmon
(v0.9.1) [22] for each species instead, based on our repeat ref-
erence libraries. In the following, modified tools are referred to
with an appended asterisk (*).

SQuIRE requires RepeatMasker’s ‘.out’ file format. To provide
such a file, we translated the downloaded ‘.align’ files into the
‘out’ format via an in-house script. This mapping is bijective,
as the coordinates of each annotated TE are unique. From this,
SQUIRE generates its own annotation file in BED format with
SQuIRE-specific TE ids.

SQuIREs TE ids differ to ours, so that we cannot compare the
results to the simulated counts by a simple merging process.
However, both TE ids contain the genomic coordinates of the
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Figure 2. Comparison of TE expression detection in the M. musculus dataset. Mean F-scores were calculated across the ten replicates per tool and are given per setup
(single-end 100 bp in light grey; paired-end 100 bp in dark grey) for (A) all TEs, (B) TEs with Kimura distance <5, (C) orders of all TEs, and (D) orders of TEs with Kimura
distance <5. Note that in (D), DNA transposons are not shown, because no instance with a Kimura distance <5 was present in the simulated data (see Supplemental

File 1). TE — Transposable element.

respective TE. These coordinates are unique for each TE and
allow to find the corresponding instances in both count tables;
i.e. there is a one-to-one relationship of the entries in the count
tables.

Except for the modifications described above, all tools were
run with default settings. Subsequently, the outputs were parsed
and aggregated across all samples with an in-house script to
obtain instance-specific read count tables for each tool, which
were used for all downstream comparisons. We removed all TEs
with 10 or less reads summed up over all 10 samples. This cut-
off was chosen as it translates to more than one read per TE
and sample on average. Removing low count genes allows the
mean-variance relationship in the data to be estimated with
greater reliability and also reduces the number of statistical tests
that need to be carried out in downstream analyses looking at
differential expression [23].

Evaluation of the results
Expression detection and quantification

Throughout this study, a TE is considered to be detected by a
given tool in a particular replicate if the reported read count
is equal to or larger than five. This step is common praxis
to eliminate noise produced by occasional misalignments of
individual reads [24]. Using this binary measure we are able to
categorize the results for each TE as true positive (TP), false
positive (FP), and false negative (FN). Using these, the recall (sen-
sitivity), precision, and F-score are calculated. Additionally, mean
F-scores were separately calculated for TEs grouped by Kimura
distances (binned with step sizes of 5) and by TE orders. Both
distances and orders are given by the RepeatMasker annotation
(Figure 2).

Furthermore, based on the count data generated by each tool
we calculated the mean expression levels per TE i and Set

J
baseMean; = =12

,where n;; (Read counts e K¥) is the count of TE i in replicate j and
compare them to the mean expression levels of the simulated
TEs. Based on these base means, the coefficient of determination
(r?) was calculated from simulated and recovered read counts
for true positives only (r?(TP)). For visualization (Figure 3, Sup-
plemental Figs 4-7), the logarithm of the mean expression levels
was calculated and set to 0 if the original value was 0.

DETE detection

DETEs generated in our simulation may escape the detection
by DESeq2 due to low expression, low expression fold changes
and/or high dispersion. Additionally, DESeq2 might identify
DETEs that were not simulated as such. To distill the set of DETEs
that are detected by DESeq?2 using the counts of an ideal aligner,
we first ran DESeq2 on the simulated counts directly. Using
the DESeq2 output, the subset of TEs detected as differentially
expressed was used for further analysis as our ground truth.
In this setup, a perfect aligner would have the power of 1.
Subsequently, we ran DESeq2 with the count tables generated by
all tools tested in this study. Afterwards, we evaluated the tools
by comparing the output to the ground truth. The evaluation is
based on true positive rates (TPRs) and the false discovery rates
(FDRs) and is calculated as follows: (1) sort the DESeq2 result
table in ascending order by the adjusted p-value; (2) count TPs
and FPs in a cumulative manner; (3) use the cumulative values
to calculate a TPR and FDR for each instance.
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Figure 3. Comparison of recovered and simulated TE read counts of Set 2 of M. musculus. Scatter plots for simulated and recovered read counts for each tool (row)
and sequencing setup (column; single-end: light-grey, paired-end: dark-grey). Dashed diagonal lines represent the perfect recovery (data points above: overestimation,
points below: underestimation); dashed horizontal/ vertical lines indicate the detection cut-offs to distinguish TP (upper right area), FP (upper left), and FN (lower right)
at an expression value of 5. For each tool and setup, a coefficient of determination for TPs (r2(TP)) is given (colored boxes) as well as counts of TEs considered as TP,
FP, and FN (boxes in respective areas). TNs are here filtered out due to their high number. Note that data points lying on the horizontal dashed line are counted to the
upper categories (TP or FP) and those on the vertical are counted either to FN or TP, due to usage of the R-package ggpmisc (v0.4.0) [25]. FN — false negative; FP — false

positive; TE—transposable element; TP—true positive.

Ranking

The tools are ranked for each part of the evaluation (detection
and quantification of TE expression, detection of differential TE
expression), based on different categories within the evaluation

parts (see Supplemental methods).

Results

mentary Material.

The following results are based on the 100-bp polyester-based
data sets, if not stated explicitly otherwise. The results of a
complementary alternative simulation are shown in the Supple-
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Simulation

After filtering for minimum read count (see Methods), 99 427
simulated expressed TEs were used for downstream analyses of
M. musculus, 99 765 of H. sapiens and 99 235 of N. furzeri (Supple-
mental File 1). DESeq2 predicted 5 153 differentially expressed
TEs in the M. musculus dataset (adjusted p-value threshold
of 0.05), 5 174 in H. sapiens and 5 148 in N. furzeri when the
simulated counts are used directly. These sets of DETEs are used
as ‘ground truth’ of each species (see Methods).

Detection of TE expression

We first analyzed the tools’ abilities to distinguish between
truly expressed and silent TEs. Overall, similar observations
can be made in M. musculus (Figure 2), H. sapiens and N. furz-
eri (Supplemental Figure 3). Across all species and sequenc-
ing setups, our results consistently indicate that tools using
expectation maximization algorithms to assign multi-mapping
reads perform better on average than TEtools*, which omits
such a step. The overall improvement upon using paired-end
data, as measured by the F-score (Supplemental File 2), appears
to be surprisingly limited in all species when considering TEs
across all Kimura distances (Figure 2A; Supplemental Figure 3A).
With median F-scores from 0.93 (single-end) to 0.97 (paired-end)
only SalmonTE* shows consistently improved F-scores across
all species. In some cases, the single-end data delivers higher
F-scores compared to paired-end data, e.g. Telescope for M.
musculus (0.86 to 0.89, Figure 2A).

Consequently, the most substantial F-score increase com-
paring single-end (0.78) and paired-end (0.91) is observed for
SalmonTE* for Kimura distances <5 in M. musculus. On the other
hand, the F-score is significantly decreased for Telescope for the
same set of TEs from 0.73 to 0.56 (Figure 2B). Tools using the STAR
aligner (Telescope, TEtranscripts*, and SQuIRE) obtain higher F-
scores for single-end than for paired-end data in M. musculus.
However, in H. sapiens and N. furzeri, SQUIRE and TEtranscripts*
show the expected improvement of F-scores using paired-ends
for Kimura distances <5 (Supplemental Figure 3B).

Conversely, the length of single-end reads had a stronger
impact. Compared to 50 bp single-end reads, the mean F-scores
for the 100 bp single-ends improved from 0.8 to 0.82 across all
tools in M. musculus (0.87 to 0.91 in H. sapiens, 0.76 to 0.82 in N.
furzeri).

When considering F-scores for the four investigated TE
classes (DNA, LINE, LTR and SINE) separately, best results are
consistently obtained for DNA elements (Figure 2C, Supplemen-
tal Figure 3C). Despite its large number of DNA elements with a
Kimura distance <5 (n =10 916), this is also true in N. furzeri. On
the other hand, the lowest F-scores are observed for LINEs with
a Kimura distance <5 in all species (Figure 2D; Supplemental
Figure 3D, Supplemental File 2). Again, we also observe the
strongest F-score increase for LINEs upon paired-end data usage
for SalmonTE* in all species (from 0.67 to 0.91 in M. musculus,
from 0.90 to 0.98 in H. sapiens and from 0.83 to 0.93 in N. furzeri).

The superior performance of SalmonTE* is also confirmed
using the alternative simulation strategy. Importantly, the rank-
ing of all tools is comparable using this alternative data, only
SQuIRE and TEtranscripts* swap their ranks (see Supplemental
File 5). Here, however, the tools appear to make slightly better
use of paired-end information.

Quantification of TE expression

In terms of the tools’ performances in quantifying TE expression,
we evaluated the expression detection performance based on FP,
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TP, and FN counts, as well as r?(TP), for single- and paired-end
data. Results for M. musculus are shown in (Figure 3). Analogous
data for the other species and simulations are shown in the
Supplement (Supplementary Figs 4-7; Supplementary File 3).
SalmonTE* and Telescope continuously show the lowest counts
of FPs across all studied species and setups ranging from 3 028
in H. sapiens (SalmonTE) to 35 551 in M. musculus (Telescope).
Surprisingly, in the case of Telescope, the numbers of FPs are
consistently increase by using paired-end data. The differences
between the tools are less pronounced regarding FNs. Here,
TEtools* consistently yields the lowest count of FNs across all
species and sequencing setups.

We observe a tendency of SalmonTE*, TEtranscripts* and
TEtools* towards underestimating the TP counts. This is most
pronounced in N. furzeri (Supplementary Figure 6) where almost
half of simulated TEs (48%; median of all three tools) receive
fewer reads than simulated while this is the case for only 24%
of human TEs. Overestimation of TE expression appears to be
most pronounced for TEs quantified with SQUIRE, which can be
consistently observed in all species and sequencing setups.

Our analysis also indicates that the r?(TP) values obtained
with Telescope are the only ones consistently improving when
paired-end data is used, while the other tools exhibit inconsis-
tencies or, in the case of TEtools*, don’t improve. The majority
of the tools show slightly increased r?(TP) for M. musculus and N.
furzeri, and slightly decreased values in H. sapiens.

Differential TE expression

Subsequently, we evaluated the ability to detect expression
changes with DESeq2 based on the tools’ read count tables.
For benchmarking, we used the FDRs and TPRs to analyze the
DETE detection performances (Figure 4A and B; Supplemental
Figure 8). Exact numbers for the recall are given in Supplemental
File 4. In general, we observe that the ranking of the tools in
this exercise is comparable for all genomes, sequencing- and
simulation strategies.

At a fixed FDR of 0.1, SalmonTE* achieves the highest TPRs
(0.81 to 0.99) across all data sets. With TPRs from 0.47 to 0.95,
Telescope always takes the second rank. Both tools benefit from
paired-end information. Conversely, TPRs across all data sets for
TEtranscripts* (0.26 to 0.43) or TEtools* (0.24 to 0.61) are smaller
and results do not substantially improve with paired-end reads.
SQUIRE does not reach TPRs bigger than 0.05 for an FDR of 0.1 in
all species and simulation strategies.

Overall performances are apparently impacted by the
genome quality. Consequently, results in H. sapiens are generally
better compared to M. musculus and N. furzeri. With the exception
of individual performances for paired-end data, the results for
M. musculus are generally better than for the non-model genome
of N. furzeri. Especially Telescope shows a decline in performance
when applied to the killifish transcriptome simulation. Again,
for all species investigated here, SalmonTE* outperforms the
other tools (cf. Supplemental Figure 8).

Calculating TPRs for TEs with a Kimura distance <5
(Figure 4B, Supplemental Figure 8), we observe that SalmonTE*
and Telescope maintain their leading ranks. Again, paired-end
data typically improves the results of both tools. The TPRs of
SalmonTE* (0.73 to 0.97) and Telescope (0.70 to 0.98) indicate
their overall suitability for the expression measurement of
young elements in both, model and non-model organisms.

Given that SQuIRE ranks overall second in the quantifica-
tion of TE expression, it is surprising that the tool shows a
comparatively poor performance in the differential expression
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Figure 4. Comparisons of DETE detection performance and expression changes in all FPs of Set 2 versus Set 1 for single-end (left column in respective panel, light-grey)
and paired-end setup (right column, dark-grey). (A, B) DETE detection performance (recovery of TEs simulated as differentially expressed in Set 2 compared to their
expression in Set 1) is visualized as TPR in relation to FDR, shown per tool (lines) for (A) all detected TEs and (B) TEs with Kimura distance <5. The dashed horizontal
lines represent a fixed FDR of 0.1. (C) Expression fold changes of FPs between Set 2 and 1 in contrast to mean read counts across all replicates for each tool (rows).
Data points with a [log(fold change)| < 0.5 were removed for the sake of clarity. DETE - differentially expressed TE; FDR - false discovery rate; FP - false positive; TE

transposable element; TPR - true positive rate.

exercise (TPR of 0.002 to 0.02). This result may be explained by
the combination of a relatively high number of FPs and a stronger
tendency for over-estimation of read counts (Figure 3; Supple-
mental File 3). To investigate the role of FPs in this phenomenon,
we selected all TEs that were simultaneously wrongly detected

in Set 1 and Set 2. This examination revealed populations of
1571 and 1518 TEs in the single- and paired-end setups, respec-
tively, with comparably high read counts (mean count >20) and
fold-changes |log(fold change)| >1, Figure 4C). Of these, 97% were
in fact also wrongly detected as differentially expressed. Thus,
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we reason that the rather large number of FPs in combination
with more pronounced mis-estimations of read counts could
explain this result.

Discussion

While TEs have repeatedly been shown to play a role in patho-
logical and physiological processes [3, 4, 26, 27], little is known
about their expression patterns across different species, tissues
and developmental stages. As the elevated expression of TEs has
been observed during aging, a better understanding of molec-
ular causes and consequences of TE dysregulation could, for
instance, also yield new insights in age-related diseases and
phenotypes [3, 28-30]. The lack of knowledge on TE regulation
may be a consequence of a perceived lack of suitable meth-
ods to investigate the expression of repetitive regions of the
genomes. Analyses on the level of TE families may only reveal
transcriptional variation of single instances or sets of them if
the changes are strong and consistent enough to compensate for
contra-directional expression patterns of other family members.
This may be exceptionally critical for families with multiple
active instances. The most important shortcoming of family-
level strategy, however, is the blindness regarding the precise
genomic context in which the expression occurs. Since it is hard
to imagine that all active instances of a TE family are governed
by the same mechanisms or exert identical effects on cellular
functions, it is critical to investigate TE expression at the level of
single instances.

While achieving this goal is hampered by inherently high
degrees of sequence similarity, technical, and, ultimately, finan-
cial limitations, our study explores to which extent the mea-
surement of locus-specific TE expression is achievable with
existing methods. Notably, three of the tools tested here are
originally designed to work on the family-level only (SalmonTE,
TEtranscripts and TEtools).

Detection of expression

The analysis of repetitive elements is critically obfuscated
by multi-mapping reads and different strategies have been
devised to assign these reads over the years [31]. Two of
the methods tested here, implemented by Telescope and
SalmonTE, involve read-generating models and maximum
likelihood objectives for distributing multi-mapping reads to
candidate loci. Of note, SalmonTE is based on Salmon and
relies entirely on its quasi-read-mapping algorithm. Different
solutions, also involving expectation maximization algorithms
for the assignment of multi-mapping reads, are employed by
SQuIRE and TEtranscripts. TEtools, also intended for use on the
family-level only, omits such a step and assigns multi-mapping
reads randomly to the TE pseudogenome (Table 1).

In general, we observe that the detection of expressed
TEs works better with tools that employ expectation maxi-
mization steps, i.e. SalmonTE*, Telescope, TEtranscripts* and
SQUIRE (Figure 2A). Telescope and TEtranscripts* work with
pre-computed alignment files and recommended alignment
parameters are the same for both tools. Even though Telescope
and TEtranscripts®* were thus called with the very same
alignment files, their performances differed strongly. Thus, it is
safe to assume that these differences are due to post-alignment
calculations rather than the accurate assignment of reads to
a genomic locus by the aligner. Apparently, SQUIRE’s strategy
to assign reads to multiple loci (Supplemental File 1) tends to
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increase the number of falsely detected expressed TEs. In turn,
this has negative effects on the F-score statistics.

The analysis of repetitive genomic regions is substantially
influenced by the amount of effective sequence information.
Thus, paired-end setups should facilitate the detection of tran-
scripts from many TEs [32]. In general, SalmonTE* is able to
benefit the most from the additional sequence information in
paired-end data. However, the degree to which individual tools
take advantage of the additional sequence information varies
strongly. Surprisingly, in the case of Telescope, paired-end data
led to a drop of performance in detecting expressed TEs in all
genomes and simulation strategies. This phenomenon might in
part be explained by the tool’s filtering strategies. By default,
reads and read-pairs mapping to more than 100 possible loci
are removed. In comparison with single-end, paired-end data
typically reduces the number of multi-mappers such that fewer
reads are removed by this filter [32]. Consequently, a higher num-
ber of read alignments are reported (shown by increased map-
ping rate, Supplemental File 1). On the flip side, the threshold
might also substantially safeguard against misalignments and
could explain the elevated number of FPs for paired-end data.

The Kimura distance [17] of a TE describes the sequence
similarity to its family consensus sequence. Since sequence
similarity plays a crucial role in tool performances, we evalu-
ated the tools for distinct Kimura distances. As expected, we
observe decreasing F-scores for elements with low Kimura dis-
tances (Figure 2B, Supplemental Figure 2), which can be miti-
gated by paired-end sequencing strategies. Naturally, this has
consequences for exact measurement of elements from active
families. Among young elements with a high sequence simi-
larity (Kimura distance <5), LINE instances of M. musculus are
especially difficult to track, as their similarity distribution is
skewed to a Kimura distance of 0 (Supplemental Figure 1). In
contrast to DNA transposons, families of LINE, SINE and LTR
classes are still active in M. musculus [33]. The detection of young
LINE instances appears to be more successful in H. sapiens and
N. furzeri, since in these genomes the distribution of Kimura
distances is not as strongly skewed to 0 indicating a reduced or
less recent LINE activity (Supplemental Figure 1). On the other
hand, all tools perform well for DNA transposons. In the case of
N. furzeri this is a bit surprising, as this organism appears to have
a very high number of young DNA transposons. Here, the cut-
and-paste transposition mechanism of DNA transposons and
rather small family sizes [34] appear to substantially ameliorate
the multi-mapping read problem and its consequences.

While SalmonTE* came up as the top runner in most of
our benchmarks, we noted some exceptions. Importantly, it did
not recover the highest number of ‘truly’ expressed TEs (TP).
This might be a drawback in all such cases where maximum
sensitivity is of essence. Furthermore, SalmonTE* does not show
the highest r? values for the count estimation of TP, as the
underestimation of the counts is more pronounced compared
to other tools (Supplementary File 3).

Quantification and detection of differential expression

In light of mounting evidence for the biological relevance of TEs
in health and disease, we evaluated the applicability of the five
methods for differential expression analysis. A critical factor for
the reliable detection of differential expression is the accuracy
of read count estimates. While the majority of the tools show
a systematic bias, i.e. an underestimation, in single- and paired-
end setups, paired data improves estimates on average (Figure 3,
Supplemental Figures 4-7). This result can be expected as the
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Table 2. Ranking of the tools concerning their performance of detection and quantification of TE expression and detection of differential

expression. TE- transposable element

Tool Detection of TE expression Quantification of TE expression Detection of differential TE
expression

SalmonTE* 1 1 1

Telescope 2 4 2

SQuIRE 3 2 5

TEtools* 5 3 3

TEtranscripts* 4 5 4

number of unaligned or misaligned reads is reduced by addi-
tional paired-end information. Despite the fact that Telescope
yields an increased number of FPs when paired-end data are
used, it is able to substantially improve the read count estimates
for truly expressed TEs, and shows the highest accuracy and
precision (i.e. in M. musculus, Figure 3). The best performance in
terms of detecting DETESs is observed for SalmonTE*.

On the flip side, SQUIRE’s usability for the detection of DETEs
appears to be limited by the assignment of reads to multiple loci
(Supplemental File 1). Despite the second rank considering the
quantification of TE expression (Table 2), a substantial number
of FPs show such a high difference between Set 1 and Set 2
(Figure 4C) that they are called as DETEs. Consequently, the TPR
for an FDR of 0.1 of SQuIRE lags behind the other evaluated
approaches in this specific exercise.

Simulation

Simulations allow the systematic analysis of computational
methods when the ground truth for actual data is unknown
or difficult to obtain. On the flip side, simulated data cannot
reflect reality in all its facets. For instance, unknown alternative
transcription starts, termination sites, or post-transcriptional
processes leading to RNA degradation lead to specific transcripts
not covered by any annotation. Thus, simulations may not
reach the level of complexity in real data. Also, it is essential
to keep in mind that models and parameters accounting
for phenomena such as GC-biases or sequencing errors are
global approximations. However, for benchmarking alignment
algorithms entirely relying on the sequence information of
reference genomes and individual reads or read-pairs, such
simulations provide indispensable insight into the tools’
capabilities to deal with repetitive sequences.

Conclusion

Within the limits of our simulation study, a tool originally
designed for family-level quantification, SalmonTE, emerges
as the most convincing results. In addition to favorable results
in detecting expressed TEs, SalmonTE* results enable a surpris-
ingly high recall of differentially expressed TE transcripts. The
general ranking of the tools regarding DETE detection (Table 2)
based on TPRs for an FDR of 0.1 — SalmonTE* performing best,
Telescope second, TEtools* third, followed by TEtranscripts*
and SQUIRE — holds for all sequencing setups and studied
species.

Arguably, the detection, quantification, and differential
expression analysis of transcribed TEs remains one of the
most challenging tasks in genome research. The misplacement
or absence of instances from reference genomes, especially
in the case of active TEs, insufficient read lengths, and high

degrees of sequence similarity often restrain investigations of
this biologically relevant class of RNA. Despite all technical
difficulties, our analysis shows that an accurate and precise
reference mapping of many individual TEs is already possible
and encourages a more intensive research into this direction.

Key Points

® Accurate expression assessment of individual trans-
posable elements is possible and can help to study
their biological role more in detail, here demonstrated
on simulated data.

RNA-Seq protocols affect the detection of locus spe-
cific TE expression, however, even older protocols, e.g.
single-end, are appropriate to get a comprehensive
overview about individual TE expression.

Detection of differentially expressed TE instances can
be achieved with existing methods, partially with
slight modifications.
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Summary:

Transposable elements (TEs) are arguably the largest class of genetic material with an unclear
biological role. In this study | performed a comprehensive locus-specific TE quantification analysis in
different tissues (brain, blood, and skin) of six and 24 months old mice. Beyond pervious studies, |
indicate that TEs can be also down-regulated during aging and identify a set of TEs that are regulated
by their own promoter. In addition, a co-regulation between TEs and their host genes was indicated
that show highly tissue-specific expression patterns. Furthermore, a TFBS analysis suggests the
involvement of Sox TFs in the regulation of independently expressed TEs. Overall, that study provides
an interesting set of TEs that represents a striking starting point du investigate the relevance of TEs

during aging.
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Abstract

Transposable elements (TEs) are arguably the largest class of
genetic material with an unclear biological role. At the same time, it
is increasingly appreciated that TEs play critical roles in wvarious
pathophysiological processes. Recent research suggests that the up-
regulation of TEs is a characteristic of aging and could be a critical
factor in the aging process. To investigate the aging dynamics of TE
expression, we dgenerated a transcription data set of mice (M.
musculus) from three tissues (brain, blood, skin) using RNA-Seqg and
CAGE-Seqg. This combination enabled the identification of independently
expressed TEs with proper transcription start sites and putative TE
promoters. Using a locus-specific analysis, we unexpectedly find that
TEs are up- and down-regulated during aging to the same extent,
challenging the narrative of an entirely detrimental role of TE
expression. Strikingly, independently expressed TEs are substantially
enriched in genes with highly tissue-specific functions such as
synapse regulation in brain and cell-substrate junctions in skin. 1In
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the mouse brain, we identify highly tissue-specific genes such as the
protocadherin-beta cluster to be affected Dby differential TE
expression. Moreover, our data strongly suggest the involvement of Sox
transcription factors in the regulation of TE expression. Our findings
demonstrate the tissue-specific and age-dependent expression of
individual TEs 1in mice that may be regulated by Sox transcription
factors. These TEs are enriched in tissue-specific genes and show
independent but strong co-regulation with their host genes. Thus, we
provide a striking and consequential starting point to elucidate the
full relevance of TEs during aging.

Introduction

Three-quarters of a century after Barbara McClintock's [1]
groundbreaking discovery, our understanding of the biological roles of
transposable elements (TEs) remains limited. TEs, colloquially called
"jumping genes", either Jjump to a new position (DNA-transposons) or
spread within their host genome via copy-paste mechanisms
(retrotransposons) [2]. Such transposition events can have a critical
impact on genome integrity and impair its functionality. Importantly,
successful transposition events may also have substantial effects on
genome regulation, as TEs harbor transcription factor binding sites
potentially affecting gene expression in c¢is and trans [3, 4]. Given
the high abundance of TE's in many genomes, it 1is quintessential to
investigate the impact of TE accessibility and expression on cellular
function [5, 6].

In the scientific literature, the expression of TEs is typically
reflected in the context of deteriorating processes. For instance, the
up-regulation of TEs has been associated with diseases like cancer [7-
10], neurological disorders [11, 12], or aging [13, 14]. L1, a TE-
superfamily within the TE class of long interspersed nuclear elements
(LINEs) amounting to more than 20% of the human genome [2], have been
of special interest because several of their members are still able to
transpose in humans and mice. In this context, it has been shown that
the escape of an Ll element from repression may result in a
transposition event impairing the APC gene ultimately paving the way
for colorectal cancer development [10].

Importantly, a successful transposition event is not required for
having substantial effects on a cell [15]. For instance, TE-derived
RNAs and DNAs alone can trigger the immune system via double-stranded
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RNA and DNA detection mechanisms within the cytoplasm [16, 17]. Such
immune responses to TE up-regulation have been reported for different
malignomas [7] as well as in senescent cells [18]. In cancer, TE-
triggered inflammation may even be a defense mechanism to suppress
carcinogenesis and i1t has been suggested that down-regulation of TEs
could protect some cancer tissues against the immune response [19].

Despite this disease-centric view of TEs, it 1is important to note
that also healthy tissues show TE expression and transposition [7,
20]. For instance, the activity of TEs 1is regularly observed during
brain development and is considered to be a major contributing factor
to the mosaicism of the neuronal genome [12, 21-25]. Recently, a study
on the effects of maternal care on the mouse brain established a link
between the activity of TEs and psychosocial conditions [207].
Furthermore, it has been proposed that the expression of TEs during
development also impacts TE expression in adult brains and may thus
have long-term effects [26]. On the molecular level, gene regulatory
functions of TEs have been suggested for B2 elements in brain, a TE
superfamily that is part of the short interspersed nuclear element
(SINE) TE class [3, 27]. Specifically, B2 elements might act in trans
to keep the transcription machinery of stress response genes 1in a
poised state [28]. Finally, TE activity triggered by environmental
changes could enable somatic cells to overcome hurdles during lifetime
[12]. The associations of TE activity 1in Dbrain indicate tissue
specificity and a tissue-specific accessibility to TEs has Dbeen
demonstrated [29, 30]. Thus, it appears necessary to analyze data on
multiple tissue types to obtain a comprehensive picture on the causes
and effects of TE expression.

The repetitive nature of TEs renders systematic investigations of
expression patterns, regulatory mechanisms, or potential functions
challenging [31]. Much of our current understanding about TEs and
their transcription is based on approaches that aggregate expression
data on the level of TE superfamilies [7, 9, 13, 20] or are focused on
specific TE elements [10, 32]. Aggregation approaches, however, easily
miss the effects of individual elements (locus-specific) or subsets of
elements. Here, we provide a locus-specific expression analysis to
enable a more detailed characterization of TE expression and 1its
biological consequences using a SalmonTE-based [33] analysis strategy
that we described recently [34].
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Results

Age- and tissue-specific TE expression based on RNA-Seq data

We performed 150 bp paired-end sequencing of rRNA-depleted RNA from
blood, brain, and skin tissue samples of young (6 months) and old (24
months) male mice (Mus musculus; see Methods). Comparing the age-
associated RNA-Seq expression data of TEs at the superfamily level, we
observe comparably small mean log, fold changes (L2FC) between the ages
for individual tissues (Figure 1A; L2FCppgin = 0.001, L2FCgin = -0.007,
L2FCpppq = 0.014). Notably, at this resolution, we already see a
tendency for the majority of TE superfamilies 1in skin to be down-
regulated during aging. In contrast, the majority of TE superfamilies
in blood show a tendency towards up-regulation. In brain, we observe a
more balanced picture.

The superfamily-based analysis, however, largely prohibits the
investigation of the expression dynamics within a single superfamily.
Using our previously described and evaluated strategy [34], we
identified differentially expressed TEs (DETEs) at the level of
individual 1loci during aging (24 wvs. 6 months) 1in three different
tissues (blood, Dbrain, skin; see Methods). In total, we detected
between ~50,000 and 100,000 expressed TEs (brain = 46,834, skin =
96,457, blood = 97,960; Supplemental Table 1). Of this rather large
number of TEs with expression signals, only a minority of elements
(~50-1,000) were found to be significantly differentially expressed
during aging (Figure 1B; Supplemental Table 1). Assignment of the
detected TEs to their TE <classes revealed a tissue-specific
composition of expressed TEs and DETEs (Figure 1C). Interestingly,
only 4 % (n=7,441) of the total 241,251 detected TEs (across all
tissues) were detected in all three tissues (Supplemental Figure 1),
indicating a pronounced tissue specificity of TE expression. This
observation could be explained by the tissue-specific accessibility of
DNA, e.g., during development [30]. In brain, the majority of detected
TEs belong to the LINE class (39%), almost twice as many compared with
blood and skin (20.29% and 23.68%, respectively).

Beyond previous findings of TE superfamily-based reports [13, 18,
35-37], we discovered down-regulated TEs during aging (brain = 142,
skin = 580, blood = 23; false discovery rate [FDR] < 0.05; Benjamini
and Hochberg) at the same order of magnitude as up-regulated ones (see
Figure 1B; brain = 93, skin = 466, blood = 32; FDR £ 0.05; Benjamini
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and Hochberg). Additionally, the locus-specific expression analysis
(see Methods) shows stronger regulatory TE dynamics during aging. In
several cases, we observe L2FCs that are orders of magnitude larger
than the mean L2FC of their respective superfamily, e.g., an

LlLx IT orf2 element in brain (chrl8:37378135-37382301; L2FC = 1.99
vs. L2FC;, = 0.00036), an ERVK/IAPEz-int element in skin
(chr3:51240387-51241612; L2FC = -7.13 wvs. ZfFEHWK = 0.012), and
B4/RSINE1 element in blood (chr4:32516261-3251637; L2FC = -1.52 wvs.

L2FCgy = 0.015). Again, the different counts of DETEs in the analyzed
tissues indicate a more tissue-specific regulation of TEs during

aging.

Standardized expression scores for the top 50 DETEs (sorted by FDR,
see Methods) reveal distinct expression patterns between young and old
mice within TE classes (Figure 1D). Importantly, individual TEs within
the same superfamily were frequently regulated in opposite directions.
Such patterns likely contribute to the comparably small L2FC at the
superfamily level (Figure 1A) since the opposite effects can cancel
out each other. In addition, the data indicate a tissue-specific
regulation of 1individual TEs within superfamilies. For example, we
observe that the majority of differentially expressed endogenous
retrovirus-K (ERVK) elements in the top 50 DETEs were up-regulated in
brain, whereas the majority was down-regulated in aged skin.
Furthermore, the top 50 DETEs from skin, blood, and brain underscore a
high tissue specificity of differential TE expression (Figure 1D). On
the global level (see Figure 1C) as well as among the top 50 DETEs, L1
elements were more frequently differentially expressed 1in brain
compared to blood and skin. In brain, we typically observe the up-
regulation of LIMd elements, i.e., members of a large and active Ll
superfamily in mice [38, 39]. Of note, among differentially expressed
L1Mds we predominantly observe ORF2 loci that contain sequence
information for the multifunctional ORF2p protein, which carries the
endonuclease and reverse transcriptase activities of L1.
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Figure 1 - Locus-specific quantification of TE expression. (A) Mean L2FC of TE superfamilies
(rows) in brain (green), skin (orange), and blood (purple) compared between 24 months and 6
months old mice. (B) Volcano plots of individual TE expression in brain (green), skin (orange),
and blood (purple) (L2FC of expressed TEs [x-axis] and their significance [y-axis]). Colored dots
indicate differentially expressed TE loci (FDR < 0.05; blue: down-regulated TE loci; red: up-
regulated TE loci). (C) Proportion of TE classes among expressed or differentially expressed
individual TE loci. ‘“background’ represents the proportion of TE classes among all TEs in the
mouse genome. expressed’ (gray) denotes TEs with an expression signal, while ‘up’ (red) and
“down® (blue) denote differentially expressed TEs. (D) Heatmap of standardized expression scores
(i.e., z-scores) derived from TPM of differentially expressed individual TEs (top 50, sorted by
FDR; rows) 1in brain (green), skin (orange), and blood (purple) grouped by TE class and
superfamily and clustered by up- and down-regulated individual TEs. The TE element annotation is
based on the mml0 RepeatMasker annotation (version: open-4.0.5 - Repeat Library 20140131).
Abbreviations: FDR - False discovery rate; L2FC - log;(fold change); TE - transposable element;

TPM - transcripts per million.

In contrast, only few SINEs were (differentially) expressed in
brain tissue. Instead, SINEs were strongly up-regulated in the Dblood
of aging mice. This expression was predominantly sustained by Bl, B2
and B4 elements. Concerning LTR elements, the picture is dominated by
differentially expressed endogenous retroviruses (ERVs) typically up-
regulated in aged brain tissue and down-regulated in aged skin. Among
the down-regulated LTRs in brain are ERVL-MaLR elements of type
ORR1A2, ORR1B1l, and ORR1B2. Previous research has suggested that these
elements harbor binding sites for the developmentally decisive
transcription factor Tbx6 [40] and, in the case of ORR1A2, for the
differentiation factor K1f4 [41]. The latter has been associated with
aging and neurodegeneration [42, 43]. Moreover, the down-regulated
ORR1A2 element itself is located at the opposite strand of an intron
of PdelOa. PdelOa is a gene mainly expressed in brain and a target for
psychiatric and neurodegenerative drug discovery [44]. These examples
highlight that TEs with differential expression during aging are
associated with tissue-specific hallmarks of aging, such as

neurodegenerative processes.

In summary, the locus-specific analysis of TE expression reveals
tissue-specific differences on the level of TE classes, superfamilies,
subfamilies, and individual TEs. At the same time, the data indicate
that the direction of regulation during aging is not the same for all
members of a superfamily. In all three tissues, the count of up- and
down-regulated TEs are of the same order of magnitude.

Independent expression of TEs

Many TEs are located in introns (n = 793,002 of ~4.2 million
[18.75%]) or in close proximity of a gene (n = 2,627,938 [62%] within
100 kb up or downstream). Thus, we checked whether the observed TE
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expression is a mere consequence of the transcription of its host.
Clearly, TEs located within an intron or downstream of a gene may be
co-transcribed as a consequence of intron retention [45] or separate
splicing processes [46]. Such host-initiated TE expression could
entail a lack of transcription start sites (TSS) within or nearby the
TE. On the other hand, host-independent TE expression would require a
separate TSS at the TE. To distinguish between these cases, we applied
Cap-analysis gene expression sequencing (CAGE-Seq) (471, an
established method to identify TSS on a genome-wide scale [29], to the
same samples used for the RNA-Seq. This enabled us to create a map of
TSSs associated with TEs for all three tissues (see Methods;
Supplemental Table 1). The enrichment patterns of TSSs in TE
superfamilies (against the genomic TE Dbackground) underscore the
observed highly tissue-specific TE expression (Figure 2A): the Bl
superfamily is the only set of TEs that consistently accumulates TSSs

in all three tissues.
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Figure 2 - Identification of independently expressed TEs. The intersection of CAGE-Seq peaks with
TEs allows to predict TE-specific TSSs. (A) Significance (-1log;o(FDR), point size) of depleted
(left) and enriched (right) TE superfamilies based on individual TEs with a TSS. Normalized by
the number of TEs in the respective superfamily as given by the genomic annotation. The x-axis
displays the log(odds ratio) in-set vs. in-genome (by count; see Methods). (B-D) CAGE- (green)
and RNA-Seq (black) coverage tracks of genomic regions with putatively independently expressed
TEs in brain (green), skin (orange), and blood (purple) for 6 (middle row of each panel) and 24
months old mice (last row). The first row shows the annotation of TEs, genes and enhancers in the
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respective region. (B) Example of a region with multiple TEs that is jointly up-regulated during
aging in brain. The TSSs indicates that the transcript starts in an ERV1 element (coverage track
of CAGE). (C) Example of a region with individual TEs that is down-regulated during aging in
skin. Transcription starts from an ERVK? element. (D) Example of an independently expressed TE
(ERVL-MaLR) 1in blood that intersects with an enhancer (light blue) associated with the gene
Faml26a. The independently expressed TE itself is located in the last intron of the gene Faml26a.
(E) RT-gPCR analysis shows the tissue-specific expression and co-regulation of ERVL MALR and
Faml26a. Data are shown as mean + s.e.m. and p-values are from a two-sided unpaired t-test (*** -

p-value <0.001). Abbreviations: CAGE - Cap-analysis gene expression sequencing; FDR - False
discovery rate; L2FC - 1log;(fold change); RT-gPCR - real-time quantitative polymerase chain
reaction; TE - transposable element; TSS - transcription start site.

The overall strongest enrichment of TSSs is observed for LINE/RTE-
BovB elements in skin (log(odds ratio) = 0.97, FDR = 2.8e™; standard
binomial test, corrected with Benjamini and Hochberg). In brain, we
observe a reduction of putatively independently expressed TEs in the
majority of TE superfamilies. In particular, we observe a depletion of
TSS-carrying TEs 1in ERVL, ERVK and ERV1 superfamilies. In turn,
independently expressed ERVs appear to be enriched in blood and skin.
A particularly strong enrichment is observed for ERV1 superfamily
members in skin. Just recently, it has been suggested that the
expression of ERVs are critical means for controlling the inflammatory

response to exogenous skin microbiota [48]. In Dbrain, a notable
exception is the TSS enrichment in the L1 superfamily (log(odds ratio)
= 0.16, FDR = 1e%; standard binomial test, corrected with Benjamini
and Hochberg). Its elements are repeatedly associated with neuronal

(dys-) functions in the literature [12, 21, 22, 24, 25].

To illustrate that the complexity of TE expression and associated
TSSs 1is not reflected by the above summary statistics, we provide
examples of age-dependently expressed TEs (Figure 2B-C). Here,
neighboring TEs are either up- (Figure 2B) or down-regulated (Figure
2C) during aging according to RNA- and CAGE-Seqg data. The example in
brain shows that multiple TEs from the SINE and ERV classes appear to
be expressed in a single transcript jointly up-regulated during aging
(Figure 2B). A single down-regulated TSS indicates that an ERV1-
associated promoter drives the expression of this TE structure.

Intriguingly, TEs have been found to be frequently associated with
enhancers [30, 49-51]. Thus, we explored potential co-regulations of
TEs and their coding host genes. One example for a potential co-
regulation of independently expressed TEs and a host gene is found in
the intron of Faml26a (chr5:23915277-24030312; Figure 2D). Here, an
element of the ERVL-MaLR superfamily expressed in blood overlaps with
an annotated enhancer. Our RNA-Seq data indicate that the host gene is
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down-regulated (L2FC = -0.80, FDR = 1.6e%), while the TE shows a
borderline down-regulation (L2FC = -0.01, p-value = 0.12). The CAGE-
Seq signal intersecting with the ERVL-MalLR element also shows a
tendency for down-regulation (L2FC = -0.093, p-value = 0.16). Indeed,
we were able to confirm the differential expression of the TE, the
3'UTR of Faml26a as well as the entire host gene by RT-gPCR (see
Methods, Figure 2E). These findings suggest that the ERVL-MalR element
may affect the overlapping Faml26a enhancer to elicit a co-regulation
of the TSSs that give rise to Faml26a upstream and ERVL-MaLR itself.

Together, the CAGE-Seq data enable the distinction between TEs that
possess their own TSS and TEs that most 1likely require co-
transcription from a TSS belonging to a host gene or another TE. Our
data corroborate tissue specificity also for independently expressed
TEs, which include the specific enrichment of L1 expression in brain
and the skin-specific expression of ERVls.

Expression of independent TE regions

As illustrated in Figure 2B-D, the arrangement of TEs in the genome
as well as their expression is complex. TEs of different subfamilies
may occur in clusters or even overlap with each other in the genome.
Therefore, we grouped closely spaced TEs (distance < 500 bp) into TE
regions. Analogously to our analysis for single TEs, TE regions
overlapping with a CAGE-Seg-determined TSS were deemed to be

independently expressed (Figure 3A). In total, we identified between
3,332 and 11,610 independently expressed TE regions (blood = 3,332,
brain = 11,610, skin = 4,234) and categorized them into single-,

double-, and multi-TE regions, i.e., regions that contain one, two, or
more TEs (Supplemental Figure 2A). In agreement with our previous
results, elements of the L1 superfamily made up the majority of all
three TE region types 1in brain. In skin and blood, the strongest
contribution came from B4 and Bl elements (Supplemental Figure 2B).
Based on this categorization, we asked whether specific TE families
are more frequently present in the body or at the 5'- or 3’-ends of
multi-TE regions (Figure 3B) . While we observed a clear
overrepresentation of L1 elements (brain) and Bl elements (skin,
blood), it was not restricted to or overrepresented at any location

within the regions.

Next, we analyzed the distribution of TSSs within independent TE
regions. In skin and blood, we observed a pronounced TSS frequency
peak just at the beginning of TE regions steadily decreasing towards
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the end of the region (Figure 3C). Interestingly, these data provide
evidence that the 5’-element of a chain of closely spaced TEs is more
likely to carry a TSS than any other downstream element (Supplementary
Figure 2E). Thus, downstream elements may frequently be co-regulated
by regulatory regions located near the regions 5’-end and within the
first element. In brain, the distribution was markedly different. In
contrast to the two other tissues, TSSs were more frequently located
at the 3'-end of the regions. Of note, previous work reported that L1
elements are frequently truncated at the 5’ —-end [52, 53] and
transcription initiated at their 3’ -end [29]. Thus, the
overrepresentation of L1 elements 1in brain-expressed TEs offers an
explanation for the unexpected enrichment of TSSs at the 3’-end of TE

regions in brain.

We performed a DNA motif analysis upstream of TSSs of the TE
regions to identify transcription factors that may be involved in the
TE expression (see Methods). In all three tissues, a motif was
enriched that was most similar to a binding site of Sox transcription
factors, with brain showing the most significant enrichment (Figure
3D). Intriguingly, Sox motifs are most strongly enriched within the L1
superfamily (Supplemental Figure 3E), and, thus, we checked whether
Sox motif-carrying L1 elements may explain the frequent occurrence of
TSSs at the 3’-end of brain-expressed TE regions. To investigate the
spatial relationship between TSS and the Sox-motif, we calculated a
Sox/TSS ratio along the TE regions (Figure 3E; Supplemental Figure 3A-
B). In brain, the Sox/TSS ratio strongly increases towards the 3’-end,
indicating that initiation of TE transcription is linked to the Sox
motif (Figure 3E). Moreover, we found that there is a rather large
population of Sox-motif-carrying TEs with a length of 1,000 = 50 bp
(n=667, Figure 3F). Strikingly, all elements in this set are annotated
by RepeatMasker [54] as 3'-ends of L1 subfamilies (Figure 3F, inset).
In summary, our data indicate that a substantial amount of L1
expression in brain, but not in skin or blood (Supplemental Figure 3C-
D), can be attributed to a specific type of L1 3’-ends which harbors
binding sites for the Sox transcription factor family.
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Figure 3 - Characterization of TE regions. Adjacent TEs can be co-expressed, therefore,
individual TEs in close proximity were combined to TE regions and characterized. (A) Scheme of
the definition of TE regions and its division into independently and dependently expressed TEs.
(B) Proportion of TE superfamilies (rows) at respective positions (first, body, last; in columns)

in TE regions with more than two members in brain (green), skin (orange), and blood (purple). (C)
CAGE-Seq peak frequency across all TE regions in brain (green), skin (orange), and blood (purple)
and their adjacent areas (£ 1Kb). The frequencies result from the peak count (greyscale) across

the TE regions as depicted below frequency plots. (D) Enriched Sox motifs in putative promoter
regions (starting at TSS and ending 500 bp up-stream) of independently expressed TE regions in
brain (green), skin (orange), and blood (purple) with the respective FDR. (E) Counts (left y-
axis) of TSSs (gray) and Sox motifs (blue) and their ratio (red, right y-axis) across TE regions
and their adjacent areas (up- and down-stream; < 500 bp) in brain. (F) Length histogram of Sox-
motif-carrying TEs in brain. Highlighted bars (blue) indicate individual TEs with a length of 950
to 1050 bp. The inset displays the member counts of subfamilies (rows) within the highlighted
length interval. The motif logo shows the frequency of respective base-pair occurrence within the
Sox-motif of those TEs. Abbreviations: bp - base-pair; CAGE - Cap-analysis gene expression
sequencing; FDR - False discovery rate; Kb - kilo-base; L2FC - 1log2(fold change); TE -
transposable element; TSS - transcription start site.

The expression of intronic TEs or TEs proximal to important
regulatory elements may elicit effects on host genes or associated
genes [26, 55-57]. To analyze this relation, we compared the RNA-Seq
data between 24 and 6 months old mice for independently expressed TE
regions and their hosts (Figure 4, see Methods). Overall, we detected
between ~2,600 and 10,200 independent TE regions (brain = 10,195, skin
= 3,244, Dblood = 2,604) that intersect with a gene. Accounting for
multiple overlaps, Dbetween ~1,500 and 2,000 genes are potentially
affected by independent TE region expression (brain = 1,788, skin =
2,047, blood=1,478) (Figure 4A).

In all three tissues, we observed a positive correlation between
the L2FC of pairs of independent TE regions and their host genes
(Figure 4B). In skin, a pronounced common up-regulation of multiple
TSS-carrying TE regions was observed with the neighboring genes Skintb
and Skintll (Figure 4B), located on opposite strands in an 800 kb
region on chromosome 4. The genes are located at the 3’-end of an even
longer cluster comprising all members of the paralogous Skint family

(Skintl-11). Recent studies demonstrated that the Skint family
regulates Vy5Vdl+ dendritic epidermal T-cells (DETC), the dominant T
cell compartment in the epidermis [58, 59]. DETCs are of special

relevance 1in keratinocyte proliferation, survival, and antimicrobial
protection [60] and may thus play a critical role in the development
of skin aging hallmarks and affect skin Dbarrier function [61].
Interestingly, a second prominent cluster of differentially expressed
TSS-carrying TE regions 1is located within the type I keratin family
genes Krt27, Krt28, and Krt35 (Figure 4B). Keratin genes are the
largest subset of intermediate filament genes that arose from
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extensive evolutionary gene duplication events creating a diverse set
of paralogs [62]. All three mentioned keratin genes appear to play a
role in the hair follicle and its inner root sheath. Although highly
variable, hair loss is commonly observed in aging mice [63]. In brain,
one functionally interesting co-regulated pair is found at the locus
of the Ras guanine nucleotide releasing factor 1 (Rasgrfl). The TE
region as well as the host gene was up-regulated during aging (Figure
4B) . Early studies have shown that RasGRF1l’s downstream signaling
pathway is critical for the consolidation of long-term memory [64].
Additional evidence for a neuronal function of RasGRF1 has Dbeen
provided through recent studies that found RasGRF1l to be important for
axonal growth of cortical neurons from rats [65] and for regulating
dendritic density in human stem cell-derived neurons [66]. However,
Rasgrfl-deficient mice have been shown to age significantly slower
than their wild-type counterparts and display strongly improved
neuromuscular coordination [67]. Together, these data indicate that
the co-regulation of TSS-carrying TE regions and proximal protein-
coding genes may contribute to their tissue-specific and age-dependent
expression dynamics.

Our data on blood was less conclusive as compared to the other
tissues. However, we observed a strong down-regulation of one TE
region located in the first intron of Kcng5, a member of the KCNQ
potassium channel family that did not coincide with a differential
regulation of the host. Importantly, only one pair at the PlaZgde
locus displayed a clearly divergent regulation. While the PlaZg4e gene
was up-regulated in brains of old mice (L2FC = 0.4, FDR = 6e %), the TE

region showed a trend towards down-regulation (L2FC=-0.4, p-value = Te
%, n.s. after correction). Previously, the gene has been suggested to
play a role in the development of Alzheimer's disease [68]. The

overexpression of PlaZg4e in brain tissue of mice expressing amyloid
precursor proteins (APP) led to the amelioration of disease associated
impairments, e.g., an improvement of memory [68]. Thus, there may be
an antagonistic regulatory association between the TE region 876806
(chr2:120217502-120225936) and PlaZgde through which TE down-—
regulation could promote neuroprotective processes during aging.
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Figure 4 - Association of independent TE regions and host genes. (A) Volcano plots of expressed
TE regions in brain (green), skin (orange), and blood (purple) showing the log;(fold change) (24-
vs. 6-months old mice) and their significance (loglO(FDR), y-axis). Each point indicates one
independently expressed TE region (dark blue: TE region intersects with gene = intragenic; gray:
TE region between genes = intergenic). Data points above the dashed line (FDR = 0.05) represent

differentially expressed TE regions and the asterisk symbol indicates differential expression of
their host gene (FDR < 0.05). The most highly expressed TE regions in brain overlap with gene
Gm37013, which spans a cluster of protocadherin genes. Protocadherin genes in close proximity to
the respective TE regions are indicated in parentheses (* - differentially expressed). (B)
Scatter plots showing the positive correlation between L2FCs of independently expressed TE
regions (x-axis) and their host genes (y-axis) in Dbrain (green), skin (orange), and blood
(purple) . Each data point indicates an independently expressed TE region that overlaps with a
gene. The green line shows the best fit to the linear model. In the brain panel (green), the
underlined protocadherin genes represent the expression of the respective protocadherin gene (y-
axis) and the closest independently expressed TE region. Abbreviations: FDR - False discovery
rate; L2FC - log,;(fold change); TE - transposable element.

A marked up-regulation of multiple TE regions overlapping with
Gm37013, the protocadherin alpha 4-gamma precursor gene, was observed
in aged brains (Figure 4A and B). The gene spans an entire region of
different protocadherins, subdivided in three separate gene clusters
(o, B, and Y chrl18:36930184-37841870) . Mechanistically,
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protocadherins are present 1in the synaptic membrane and thought to
play a critical role in the neuronal signal transduction [69]. The
neuron-specific combination of expressed protocadherins equips each
neuron with a unique combination of cell-surface homophilic
recognition molecules that result in self-avoidance [70]. This
neuronal self-avoidance prevents dendrites and axons to connect to
their own soma [71]. We find that the protocadherin cluster is loaded
with independently expressed TE regions. The ones strongly up-
regulated during aging are specifically found in the f-cluster (Figure
5A) . The increased expression of TE regions is accompanied by the up-
regulation of all f-cluster genes indicating potential co-regulation
(Figure 5B). Two TE regions mainly composed of L1 elements
(TE region 728239, TE region 728242) are located directly upstream of
Pcdhbl5 (chrl18:37473540-37476340). Their up-regulation is supported by
the RNA- and CAGE-Seq data. Additionally, TE region 728239 shows a
Sox-motif close to the TSS (Figure 5C) . Intriguingly, the
transcription start site of Pcdhbl5 is down-regulated (Figure 5D blue
arrow), while the transcript itself is up-regulated. Thus, our data
suggest that the TE regions ©provide alternative transcription
initiation sites for Pcdhbl5 enabling its up-regulation during aging
despite a down-regulation of its own TSS. The transcription of the
protocadherin cluster is highly complex and the promoter usage of the
a-cluster was recently found to be driven by stochastic processes
guided by an antisense long non-coding RNA (lncRNA) [72]. Our data
suggest the hypothesis that TSSs provided through TEs have a role in
the stochastic promoter selection.
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Figure 5 - Differentially expressed TE regions in protocadherin cluster in brain. (A) Genome-

Browser-like overview of the protocadherin cluster with tracks for TE regions, CAGE-peaks, Sox-
Motifs, expressed TE regions in brain, and gene annotations. (B) Heatmap of standardized
expression scores derived from TPM of protocadherins and TE regions in the protocadherin beta
cluster in young (6 months, left) and old (24 months, right) mice sorted by their genomic start
position (5’ - 3’) in brain. L2FC and FDR values are displayed for each gene/TE region. (C)
Genome-Browser-like view of the TE regions 728239 and 728242. The top track shows differentially
expressed TE regions (black arrows indicate TSS and transcription direction) located up-stream of
Pcdhbl5 in brain. The CAGE and RNA coverage tracks for young and old mice are shown below. In the
CAGE row, red arrows indicate the up-regulation in aged mice (positive L2FC) of TSSs that overlap
with the TE regions. The last two tracks show the location of individual TEs (superfamily level)
and a predicted Sox-motif in the first L1 element. (D) Genome-Browser-like view of the Pcdhblb
gene. At the top, the annotation of the gene Pcdhbl5 is shown (black arrow indicates TSS and
transcription direction). The CAGE and RNA coverage tracks for young and old mice are shown
below. In the CAGE row, the blue arrow indicates the down-regulation in aged mice (negative L2FC)
of the TSS that overlaps with Pcdhbl5, while the RNA-Seq track below indicates an up-regulation
of Pcdhbl5 during aging. Abbreviations: CAGE - Cap-analysis gene expression sequencing; FDR -
false discovery rate; L2FC - log2 fold change; TPM - transcripts per million; TE - Transposable

element; TSS - transcription start site.
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The co-regulation of independent TE regions and their host genes
may point to a coupled functional role for common pathways. Such
relations have already been shown for ncRNAs and their host genes
[46]. Therefore, we investigated the biological role of genes that
were affected by independently expressed TE regions. Against the
background of all brain-expressed genes, a gene ontology (GO) analysis
(see Methods) revealed a strong enrichment of genes with functions in
neuronal synapses and signaling (Figure 6A). Surprisingly, the
enrichment is substantially stronger for genes associated with
independently expressed TE regions than for differentially expressed
genes (DEGs) during aging (Supplemental Figure 4A). To analyze the
influence of the genomic TE distribution on this result, we checked
whether genes with neuronal functions harbor TEs as frequently as
other brain-expressed genes. To this end, we counted the number of TEs
in genes from the previously identified GO terms and compared them
with the number of TEs in other randomly drawn expressed genes.
Strikingly, our data show a strong and consistent accumulation of TEs
in tissue-specific genes with neuronal functions (Figure 6B), while TE
free genes are depleted in similar GO terms, e.g., neuron to neuron
synapse (Supplemental Figure 5). Analogous analyses in skin and blood
corroborated that TEs appear to be enriched for localization in genes
that belong to key tissue-specific pathways (Supplemental Figure 4B-
C). In skin, for instance, the strongest enrichments are observed for
regulation of Wnt signaling pathways and cell-substrate junctions. In
contrast, we find the strongest enrichments for B cell activation and
immune signaling pathways for blood.
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Discussion

co-regulation

with these TSS-carrying TE

Despite the potentially beneficial roles of TEs on an evolutionary

scale, TE activity in somatic cells is mainly associated with the
erosion of genome integrity and regulation promoting diseases [73-75].
In aging cells, it has been shown that the loss of (epigenomic)
control over TEs leads to chronic sterile inflammation typically
referred to as “inflammaging” [76]. To better assess the dynamics,
causes, and potential effects of TE expression during aging on a
genome-wide scale, we applied a locus-specific approach to
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characterize the expression of TEs [34] in three tissues of young and
0ld mice. Thus, our study closes a gap between superfamily-level-based
analyses and studies that focused on individual elements.
Specifically, it demonstrates that the expression dynamics of multiple
TE loci differ substantially from their superfamily-based averages
(Figure 1). Hence, future research should intensify efforts to provide
locus-specific data rather than aggregates at the TE class,
superfamily, or subfamily level. Nevertheless, aggregation of
transcribed TEs on the superfamily level clearly shows distinct
expression patterns for the three analyzed tissues. Previous research
reported that members of the L1 superfamily are active in the mouse
brain and key drivers of genomic mosaicism in neurons [21, 77, 78].
Well in line, we observe a characteristic enrichment of expressed L1
superfamily members in that tissue.

In the context of aging, 1t was proposed that the relaxation of
heterochromatin in gene-poor regions during aging makes TEs accessible
and leads to increased TE activity [13, 35]. Our study clearly shows
that TEs are about as often down-regulated as up-regulated (Figure
1B). While not too surprising at a first glance, this finding thwarts
the notion of a categorically detrimental role of TE expression. In
analogy to the reported TE down-regulation potentially helping cancer
cells to hide from the immune system [19], one may surmise that TEs
are sentinels for the (epi-)genomic integrity of a cell. The question
arises to which extent age-related TE down-regulation could facilitate
the emergence of diseases by diminishing the clearance of deregulated
cells.

In addition to these potential global functions, our RNA-Seq
analysis established that expressed TEs are frequently located
intragenic of coding genes (Supplemental Table 1). To clearly
distinguish TEs piggybacking on their host’s transcription, e.g.,
through intron retention, from TEs with their own TSS, we performed a
CAGE-Seq analysis. In addition to TSSs, CAGE-Seq enabled us to
identify the putative promoters of expressed TEs. In all three
tissues, the putative promoter regions significantly enriched DNA
recognition motifs of the Sox transcription factor family (Figure 3D).
The distribution of TSSs across regions with one or more closely
spaced TEs in skin and blood indicated that it is the first element of
a region that frequently serves as a starting point for transcription
(Figure 3C). The marked difference of the TSS distribution in brain,

i.e., a more frequent occurrence of TSS at the regions’ 3’-ends, was
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associated with an increased presence of Sox motifs and L1 3’-end
subfamilies of a characteristic length (Figure 3E). Thus, our data
suggest that Sox transcription factors could be involved 1in the
control of these regions. The strongest motif similarity was seen for
Sox5, a transcription factor of the SoxD group. Sox5 was reported to
be involved in controlling critical fate decisions for subtype-
specific neuronal differentiation [79]. Further, it was shown that
Sox5 (together with its sibling Sox6) 1is required for the activation
of reversibly quiescent neural stem cells [80]. Moreover, the gene has
been suggested to be involved in the development of autism spectrum
disorders [81]. The strong and spatially correlated enrichment of
these motifs near TSSs of TE’s begs the dquestion whether the
expression of TEs affects the function of this essential neuronal

transcription factor.

We observed a strong positive correlation of age-related expression
changes of TEs and their overlapping genes (Figure 4B). Our results
indicate that TEs - despite having their own TSSs - are co-regulated
with their host genes. It remains to be established whether TE and
host gene expression might reinforce each other and which mechanisms
are «critical for this correlation, e.g., by keeping the DNA in
accessible configurations or by co-opting distal enhancers. Analyzing
significantly differentially regulated pairs of TEs and host genes
during aging, we identified tissue-specific loci with fundamental
roles 1in synaptic signal transduction or <critical immunological
functions (Figure 6A) . Notably, the recurrently affected
Protocadherin, Keratin, and Skint genes are all organized in clusters.
Moreover, Protocadherin and Keratin clusters exhibit remarkable
evolutionary conservation [62, 82, 83]. The accumulation of co-
regulated TEs 1in these regions poses the exciting question to which
extent TEs facilitated their generation and still affect their
regulation. One could speculate that a cluster of highly conserved
genes 1s 1indeed an optimal pen to domesticate TEs and use their
regulatory potential to orchestrate its expression. If so, the
transposon would need to be reinstated as a controlling element.

Conclusion

In summary, our study demonstrates that the tissue-specific and
independent expression of individual TEs in mice 1is strongly co-
regulated with host genes. TEs with age-dependent expression dynamics
are located in the neighborhood of genes with critical importance for
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the tissue function and marked relevance for aging phenotypes. We
provide evidence that the Sox transcription factor family is a

critical driver of TE expression - especially in brain tissue.

Methods
Mice

All mice were kept solely for aging until 24 months in a controlled
environment and health status. Organs (brain, blood, skin) from 6- and
24-month-old C57BL/6JRj] male mice were obtained from Janvier Labs.

Sequencing

Total RNA was extracted using the innuPREP RNA Mini Kit (Analytik
Jena, Jena, Germany). Sequencing of RNA samples was performed using
Illumina’s next-generation sequencing methodology [84]. In detail,
total RNA was quantified and quality checked using Tapestation 4200
Instrument in combination with RNA ScreenTape (both Agilent

Technologies) .

RNA-Seq libraries were prepared from 300 ng of input material
(total RNA) using NEBNext Ultra II Directional RNA Library Preparation
Kit in combination with NEBNext rRNA Depletion Kit (Human/Mouse/Rat)
and NEBNext Multiplex Oligos for Illumina (Unique Dual Index UMI
Adaptors RNA) following the manufacturer's instructions (New England
Biolabs). Quantification and quality checked of 1libraries was done
using an Agilent 4200 Tapestation Instrument and a DNA 1000 ScreenTape
(Agilent Technologies). Libraries were pooled and sequenced on a
NovaSeq 6000 wusing S1 300 cycle v1.5 reagents. System runs in 151

cycle/paired-end/standard loading workflow mode.

CAGE-Seq libraries were prepared from 1,700 - 5,000 ng of input
material (total RNA) using CAGE Preparation Kit
(Kabushiki Kaisha DNAFORM) following the manufacturer's instructions.
For RNA derived from blood, pools of two or three samples were built
up 1n order to achieve the quantity of 5,000 ng per library
preparation reaction. Quantification and quality checked of libraries
was done using an Agilent 2100 Bioanalyzer Instrument and a High
Sensitivity DNA kit (Agilent Technologies). Libraries were pooled and
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sequenced on a NextSeqg 500 using 75 cycle, high-output, v2.5 reagents.

System runs in 81 cycle/single-end mode with spiking-in around 5 % of
PhiX library (Illumina).

Sequence information was converted to FASTQ format using bcl2fastg
(v2.20.0.422; default).

Quantification of gene and TE expression by RNA-Seq
Generation of SalmonTE reference index

TE sequences were extracted from the reference genome based on the
RepeatMasker annotation of Mus musculus (mml0, based on Repeat Library
20140131, downloaded in January 2020,
https://www.repeatmasker.org/genomes/mml0/RepeatMasker—-rm405-
db20140131/mml10.fa.align.gz) as described in [34] and combined with
the gene annotation of M. musculus mm1 0 (v102 from

http://ftp.ensembl.org/pub/release-
102/fasta/mus_musculus/cdna/Mus_musculus.GRCm38.cdna.all.fa.gz) . The
Alu superfamily was relabeled to Bl, as the Alu superfamily is the
primate specific counterpart of the mouse specific Bl. The generated
sequence file served as input for the SalmonTE index generation with
salmon (parameter: --type quasi -k 31) [85].

Alignment and expression quantification

Raw data was deduplicated for over-amplified PCR fragments based on
uniqueness of read pair and UMI sequence. Reads were then mapped to
the generated index using SalmonTE (v0.4) [33], with the expression
measurement type was set to count (parameter: --exprtype=count). The
expression matrix generated by SalmonTE was split-up; one for the
genes and the other for TEs. The counts of the individual isoforms of
a gene were summed-up to calculate the respective gene count. Features
with less than or equal to ten reads in total across all samples were
removed from the count matrices. DESeqg?2 (v1.34.0) [86] was separately
applied to each count matrix to determine differentially expressed
genes (DEGs) and differentially expressed TEs (DETEs). L2FC wvalues
were shrunken using the apeglm function [87] built into DESeqg2. All TE
instances which got an adjusted p-value assigned Dby DESeqg2 were
considered expressed in all downstream analyses. Aside from that, the
raw counts were converted into transcripts per million (TPM; Equation
1-1) and subsequently scaled and centered for each gene to obtain z-
scores (Equation 1-2).
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Number of reads mapped to a gene = 103 10°

gene length in bp Number of reads mapped to a gene * 103
z( genelength in bp )

TPM =

Equation 1-1

Z score =£Zﬂ%:i2 Equation 1-2

Peak-calling and expression quantification by CAGE-Seq data

CAGE-seqg captures transcripts with 5’-caps which are characterized
by a methylated guanine. This guanine is appended to the mRNA right
after 1its transcription and hence, it 1is not represented in the
genomic sequence. Therefore, the raw reads were G-clipped with an in-
house script. Then, we utilized Trimmomatic (v0.39) [88] (5nt sliding
window approach, mean quality cutoff 20) for read quality trimming
according to manual inspections of FastQC (v0.11.9) [89] reports.
Cutadapt (v3.3) [90] was used to clip Illumina TruSeqg adapter sequence
from reads of young samples or Nextera adapter sequences from reads of
old samples, respectively, as well as to clip mono- and di-nucleotide
content. Subsequently, possible sequencing errors were detected and
corrected using Rcorrector (v1.0.4) [91]. Further, ribosomal RNA
(rRNA) transcripts were artificially depleted Dby read alignment
against rRNA databases as performed by SortMeRNA (v2.1) [92]. The
remaining high-quality reads were then aligned to the reference genome
of M. musculus mml10 (v102 downloaded in January 2021 from
ftp://ftp.ensembl.org/pub/release-102/fasta/mus musculus/dna/) . For

this purpose, we used the splice-aware mapping software segemehl
(v0.3.4) [93,94] with adjusted accuracy (95%). The resulting mappings
of the vyoung samples were filtered by samtools (v1.12) [95] for
uniquely mapped reads. Brain samples were sequenced with a higher
coverage than those of blood and skin, thus we performed downsampling
of the brain samples to the level of skin using samtools (v.1.12).
Finally, all sample-specific alignments were merged in a tissue-
specific manner and then separated into forward and reverse aligned
reads. PEAKachu (https://github.com/tbischler/PEAKachu, v0.2.0,
default setting) was used to call strand-specific peaks in brain,
blood, and skin. Called peaks with a distance < 50 bp were merged with
bedtools (v2.30.0-20-g484c0d4f-dirty) [96]. The genomic position at
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which most reads of a CAGE-peak start is defined as the TSS
(transcription start site).

Start and end coordinates of peaks were used to extract read counts
from the alignment files using featureCounts (v2.0.3) [97]. DESeg2 was
applied to determine differential CAGE-peak expression. Intersection
of peak coordinates with either gene or TE coordinates provides the
gene or TE specific CAGE-peaks, respectively.

Enrichment analysis of TSSs in TEs

For each superfamily, the proportion of TSS-containing TEs
belonging to this superfamily among all TSS-containing TEs (=target
set) 1s calculated. The same was done for the genomic background of
the TEs (background set). The ratio between the proportion of the
superfamilies in the target and background set was calculated (odds
ratio), and the standard binomial test was used to estimate the
significance of the enrichment (corrected with Benjamini and

Hochbergqg) .
Analysis of TE regions
TE-regions and their characterization

TEs with a distance of 500 bp or less were merged to TE regions
utilizing bedtools. The TE regions were 500 bp prolonged towards the
5’"-end with bedtools. TE regions containing at least one expressed TE
were defined as expressed TE regions. Such regions are further
categorized into independently or dependently expressed TE region in
case they either harbor a TSS or not, respectively. Independently
expressed TE regions were categorized into single-, double-, and
multi-TE regions according to the number of TEs that form the TE
region. Only for multi-TE regions, the proportion of TE superfamilies
at three positions of the regions was calculated, separately for each
tissue. For the flanking positions (first/last), the single flanking
TE was considered while the central position (i.e., body) was averaged
over all remaining TEs of that TE region. The density of CAGE-peaks

along the TE regions was calculated with deeptools (v.3.5.0) [98]
(computeMatrix scale-regions; parameter: --missingDataAsZero, -
afterRegionStartLength 1000, --regionBodyLength 2000, -

beforeRegionStartLength 1000), whereas the score of each CAGE-peak was
set to one.
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Motif analysis of independently expressed TE regions

The sequence starting at the TSSs and extending to 500 bp up-stream
of the TSSs is defined as the promoter region, thus TE regions with
multiple TSSs contain multiple promoter sequences. HOMER [99]
(findMotifsGenome.pl) was utilized to predict regulatory motifs within
the promoter regions, using promoter coordinates and the reference
genome (mmlO v102) as input. All genomic coordinates of Sox-motifs
were extracted using scanMotifGenomeWide.pl from the HOMER suite. The
intersection of Sox coordinates and TEs provided all individual TEs
that contain at least one Sox motif. The relative positions of TSSs
and Sox motifs within independent TE regions and their adjacent
regions were determined using bedtools. In addition, the ratio of the
amount of TSS and Sox-motifs at each relative position was calculated.

Overrepresentation analysis of GO terms

For expressed genes with at least one independently expressed TE
region within their introns in sense direction and for all genes that
do not have TEs in their introns (sense), separate GO term enrichment
analyses were done with an in-house script (Fisher’s exact test,
corrected with Benjamini and Hochberg, significance cut-off at FDR <
0.05). Only GO terms with 10 to 500 genes were considered in this
analysis. Expressed genes were used as background in the first
analysis, while all genes served as Dbackground for the second

analysis.
TE enrichment in introns of genes

To test for enrichment of TEs within introns of genes,
bootstrapping was performed as follows. The gene set of the GO term of
interest represents the target set, while randomly selected expressed
genes (of the same size as target set) represents the background.
Then, one gene was drawn from each set, the numbers of TEs within
introns were counted (restricted to the same strand) and the ratio was
calculated (ratio = target gene+0.1/background gene+0.1). This
procedure was repeated 1,000 times for each GO term.

RNA extraction and reverse transcription semi-quantitative real-time
PCR (RT-gPCR)

Total cellular RNA was extracted using the innuPREP RNA Mini Kit
(Analytik Jena, Jena, Germany) following the manufacturer’s protocol.
One-step reverse transcription and real-time PCR was performed with a
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Quantstudio 5 wusing Power SYBR Green RNA-to-CT 1-Step Kit (Thermo
Fisher Scientific, Waltham, USA) according to the manufacturer’s

protocol. The following RT-gPCR primer sequences were used: Faml26a

(forward: AGAGGTGTGAGCAGCAGGAT, reverse: TGCATTAGCAACCAGCAGAG) ,
Faml26a-3’'UTR (forward: GGGCTGCCTTCTGTACTTTG, reverse:
ATGGCCAGTTCCAACAAGAC), MaLR MTC (forward: CACCATGACCACAAGCTACG,

reverse: GAACAAACCAGTGAGCAGCA).
Data Availability

Raw and processed data of RNA- and CAGE-Seqg have been deposited
in the Gene Expression Omnibus repository [100] and are accessible

through GEO Series accession number GSE220773
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE220773) . Full
quantification results and positional data are stored at

https://zenodo.org/ and are accessible via doi 10.5281/zenodo.7426786

(see Supplementary table 2).
Code Availability

All in-house scripts that were used in to analyze the data will
be made available upon publication in a suited repository. All applied
publicly available software is mentioned in the methods.
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Supplemental Table 1 - Counts of detected

6 months old male mice in different tissues
intersect with a CAGE transcription start site
into TE counts for specific positions

transcription start site.

(columns) .

(differentially)

(brain,

skin,
(CTSS) .
Abbreviations:

blood;
The total counts are further separated
TE

TOwWS)

expressed TEs comparing 24 months and
and counts of TEs that

- transposable element;

Count at specific position

%)

(proportion of total count in

total
) down-stream
. (proportion | promoter . . .
tissue ) exon intron located intergenic
of genomic (500 bp)
. (500 bp)
TEs in %)
46,834 249 17,031 28,755
brain (1.11) (0.53) 457 (0.98) ](36.36) 342 (0.73) (61.40)
expressed 96,457 563 1125 34,582 59,212
(RNA-Seq) skin (2.30) (0.58) (1.17) (35.85) 975 (1.01) (61.30)
97,960 504 37,122 58,683
blood (2.33) (0.51) 799 (0.82) |(37.90) 852 (0.87) (59.91)
) . Jbrain 135 (0.003) 1 (0.74) |4 (2.96) 43 (31.85) 2 (1.48) 85 (62.96)
differentia
1ly
skin 1,048 (0.02) |7 (0.67) [39 (3.72) 325 (31.01) (24 (2.20) 653 (62.31)
expressed
(RNA-Seq)
blood 55 (0.001) 1 (1.82) |1 (1.82) 15 (27.27) 1 (1.82) 37 (67.27)
61,476 726 2,681 50,374 7,023
brain (1.46) (1.18) (4.36) (81.94) 672 (1.09) (11.42)
CTSS
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TEs (CAGE- |skin 8,572 (0.20) |(5.31) (14.94) (43.93) 166 (1.94) (33.88)
Seq)
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Supplemental Table 2 - Overview of additional files stored at https://zenodo.org/ (doi:
10.5281/zenodo.7426786)

File Description

DESeq2 results for individual TEs based on

01 gquantification TEs.csv
- - RNA-Seq

DESeqg2 results for individual TE regions

02 quantification TE region.csv
- - based on RNA-Seq

DESeq2 results for individual TEs based on

03 CAGE quantification TEs.csv
- - - CAGE-Seq

DESeqg2 results for individual TE regions

04 CAGE quantification TEs region.csv
- - - - based on CAGE-Seq

TE_regions.bed Annotation of TE regions in .bed format.

Supplemental Figures

brain skin

6,218
(3.3%)

32,331
(17.4%)

49,117
(26.5%)

55,994
(30.2%)

blood
Supplemental Figure 1 - Tissue-specific expression of TEs. The Venn diagram shows the
intersection of expressed TEs detected by RNA-Seq in brain (blue), skin (orange), and blood

(purple) as counts and percentages. While the minority 1is expressed in multiple tissues, the
absolute majority 1is expressed exclusively in one tissue. Abbreviations: TE - transposable

element.
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CAGE - Cap-analysis gene expression sequencing;
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Supplemental Figure 3 - Sox-Motif intersection with individual TE elements. (A-B) Counts of TSSs
(gray) and Sox motifs (blue) and their ratio (red) across TE regions and their adjacent areas
(up- and down-stream; < 500 bp) in skin (A) and blood (B). The red line indicates the ratio
between counts of Sox-motif and TSSs at each relative position in TE regions (right y-axis). The
blue vertical lines under the y-axis indicate the relative position of the Sox motif within
independent TE regions and their adjacent areas. (C-D) Counts of individual TE instances at the
superfamily level within TE regions that intersect with a Sox motif in skin (C) and blood (D).
(E) Counts of individual TE instances (superfamily level) that intersect with a predicted Sox
motif in a genome wide view in brain. Abbreviations: bp - base-pair; TE - transposable element;

TSS - transcription start site.
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Supplemental Figure 4 - GO term analyses of differentially expressed genes and genes containing
independently expressed TEs. (A) Top 10 GO terms (sorted by FDR) of Biological Process, Cellular
Component, and Molecular Function of differentially expressed genes (background all expressed
genes) in brain, skin and blood. The x-axis shows the significance (log;o(FDR); Benjamini-Hochberg
corrected) for each GO term (y-axis), while the numbers in each bar represent the count of DEGs.
(B) On the left side, top 10 GO terms (sorted by FDR) of Biological Process, Cellular Component,
and Molecular Function where genes overlapping with independently expressed TE regions in skin
are enriched (background all detected genes 1in skin). The x-axis shows the significance
(logio (FDR) ; Benjamini-Hochberg corrected) for each GO term (y-axis), while the numbers in each
bar represent the count of genes overlapped by independent TE regions and the count of genes
within each GO term. On the right side, ratio of counts of intronic TEs in gene set of interest
(red = GO term genes; gray = randomly sampled set with same size of GO term gene set) and a
randomly selected gene for the gene set of expressed gene in skin. For each GO term, one gene was
drawn from each set and the ratio was calculated, which was repeated 1000 times (content of one
box). The box plot center line represents the median, the upper and lower bounds correspond to
the first and third quartiles, and the whiskers reach to 1.5 times the interquartile range. (C)
on the left side, top 10 GO terms (sorted by FDR) of Biological Process, Cellular Component, and
Molecular Function where genes overlapping with independently expressed TE regions in blood are
enriched (background all detected genes in blood). The x-axis shows the significance (log;,(FDR);
Benjamini-Hochberg corrected) for each GO term (y-axis), while the numbers in each bar represent
the count of genes overlapped by independent TE regions and the count of genes within each GO
term. On the right side, ratio of counts of intronic TEs in gene set of interest (red = GO term
genes; gray = randomly sampled set with same size of GO term gene set) and a randomly selected
gene for the gene set of expressed gene in blood. For each GO term, one gene was drawn from each
set and the ratio was calculated, which was repeated 1000 times (content of one box). The box
plot center line represents the median, the upper and lower bounds correspond to the first and
third quartiles, and the whiskers reach to 1.5 times the interquartile range. Abbreviations: FDR

— false discovery rate; GO - Gene Ontology; TE - transposable elements.
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Summary:

The combined analysis of multiple datasets provides a valuable resource that fully realizes its
power through public accessibility. This study provides a comprehensive web-atlas for p53, p63 and
cell cycle dependent gene regulation created by analyzing datasets from multiple studies. In this
project, | built a suitable data structure that allows both storage of the complex data and convenient
accessibility. In addition, | designed and developed a website to make the data available to the public.
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ABSTRACT

In recent vyears, our web-atlas at www.
TargetGeneReg.org has enabled many researchers
to uncover new biological insights and to identify
novel regulatory mechanisms that affect p53 and the
cell cycle — signaling pathways that are frequently
dysregulated in diseases like cancer. Here, we
provide a substantial upgrade of the database that
comprises an extension to include non-coding
genes and the transcription factors ANp63 and
RFX7. TargetGeneReg 2.0 combines gene expres-
sion profiling and transcription factor DNA binding
data to determine, for each gene, the response to
p53, ANp63, and cell cycle signaling. It can be used
to dissect common, cell type and treatment-specific
effects, identify the most promising candidates, and
validate findings. We demonstrate the increased
power and more intuitive layout of the resource
using realistic examples.

GRAPHICAL ABSTRACT
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INTRODUCTION

The cell proliferation cycle and the tumor suppressor p53
are closely linked and represent the most commonly dys-
regulated signaling pathways in cancer. Despite more than
40 years of research on p53 and many more on the cell cycle,
we still lack a comprehensive understanding of the p53 and
the cell cycle-dependent regulation of a surprisingly large
number of genes. Several mechanisms have been proposed
to explain the temporal regulation of hundreds of cell cycle
genes (1,2) and the downstream targets of p53 (3-5), but the
substantial overlap between p53 and the cell cycle render the
analysis of individual genes difficult.

The expansion of publicly available high-throughput
datasets has enabled a more detailed understanding of
gene regulatory mechanisms and networks in recent years.
We developed a meta-analysis approach to cross-validate
results and to improve statistical power by integrating
datasets derived from different experimental setups (6).
The meta-analysis allows inferring pS3 and cell cycle reg-
ulation of genes from multiple cell types and treatment
conditions and derive common signature genes. It follows
the intuitive idea that when multiple independent datasets
agree on a finding it is more likely to be accurate and that
the sum of available evidence provides the best guess for
the truth. Previously, we employed this meta-analysis ap-
proach to chart the transcriptional programs of the cell cy-
cle, human and mouse p53, the viral oncoprotein E7, and
the transcription factor ANp63 (6-10). Key findings from
these meta-analyses included that p53 serves as a transcrip-
tional activator, while genes repressed by p53 were actu-
ally cell cycle-dependent genes (6). Specifically, while p53
up-regulates hundreds of genes directly through engaging
with chromatin in physical contact with the gene locus, it
also down-regulates the large group of cell cycle genes indi-
rectly through its target gene CDKNI1A. CDKNIA encodes
for the cyclin-dependent kinase (CDK) inhibitor p21 that
suppresses cyclin:CDK activity leading to the activation
of the cell cycle trans-repressor complexes DREAM (DP,
RB-like, E2F4 and MuvB) and RB:E2F (11-17). More-
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over, our meta-analyses revealed that the transcription fac-
tor complexes RB:E2F, DREAM, and MM B:FOXM1 con-
trolled essentially all of the cell cycle genes. The analysis re-
vealed a small number of genes that were specifically acti-
vated by p53 and controlled within the cell cycle by RB:E2F
and DREAM (6). However, transcriptome analyses suggest
that larger subnetworks of the p53 and cell cycle-dependent
gene regulation networks (GRN) are yet to be understood
(5,6).

The target gene regulation (TargetGeneReg) database
developed from the meta-analyses was made available
through a web-based atlas at www.TargetGeneReg.org (6)
to enable researchers to easily scrutinize the influence of
the cell cycle and p53 on any gene of interest. Through
www.TargetGeneReg.org, researchers can rapidly deter-
mine common as well as treatment, cell type, and species-
specific regulations, identify promising targets, and validate
findings. In numerous research projects, it is necessary to
establish the degree to which a given gene is directly or in-
directly affected by p53 and major cell cycle signaling path-
ways. [ts easy-to-use interface enables researchers to quickly
gather evidence about the extent and frequency their genes
of interest are affected by these critical regulators. Target-
GeneReg has been used for understanding cell cycle regu-
lators, their signaling cues, and their disease relevance (18—
26). Moreover, our database has helped to identify pathways
that respond to drugs and stress conditions (27,28), among
many other applications.

Alternative resources such as the p53 BAER hub and
the Cyclebase v3.0 either focus on p53-dependent regula-
tion or the influence of the cell cycle on gene expression,
respectively (29,30). However, the integration of both layers
of information necessary to understand p53’s contributions
to target gene regulation is not readily possible using these
tools. Likewise, it is of interest for many researchers to study
the target gene expression in other species such as Mus mus-
culus. While Cyclebase v3.0 includes cell cycle-dependent
gene regulation data from other species, the p5S3 BAER hub
does not provide information beyond Homo sapiens.

The TargetGeneReg resource enabled us to compare the
p53 GRN between mouse and human. Surprisingly, up-
regulation by p53 displayed substantial evolutionary diver-
gence, while down-regulation of cell cycle genes by p53—
p21is well conserved (9,31). Moreover, we employed the re-
source to compare the GRN of p53 to its sibling ANp63
and, in contrast to previous reports, we demonstrated that
ANp63 minimally affects any direct pS3 target. Instead, a
large number of ANp63 targets were cell cycle genes, but
the mechanistic link between ANp63 and the cell cycle re-
mained unclear (10,32). Most recently, TargetGeneReg en-
abled the discovery of the transcription factor RFX7, an
emerging tumor suppressor, as a novel node in the p53
GRN, proposing a mechanism for how p53 regulates sev-
eral targets (33). RFX7 is linked to multiple lymphoid can-
cers (34), such as Burkitt lymphoma where we and others
identified RFX7 as a potential cancer driver (35,36).

Here, we provide a major update for TargetGeneReg
through a substantial expansion of the underlying data re-
sources to include recent RNA-seq and ChIP-seq datasets
on p53 and cell cycle regulation, inclusion of data resources
on ANp63 and RFX?7, an upgrade of the website, and vi-
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sualizations of expanded ChIP-seq data through the UCSC
Genome Browser.

MATERIALS AND METHODS
RNA-seq analysis pipeline

We used Trimmomatic (37) v0.39 (Snt sliding win-
dow approach, 5 leading and mean quality cutoff
20) for read quality trimming according to inspections
made from FastQC (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) v0.11.9 reports. I[llumina adapters as
well as mono- and di-nucleotide content were clipped us-
ing Cutadapt v2.10 (38). Potential sequencing errors were
detected and corrected using Rcorrector v1.0.4 (39). Ribo-
somal RNA (rRNA) transcripts were artificially depleted
by read alignment against rRNA databases through Sort-
MeRNA v2.1 (40). The preprocessed data was aligned to
the reference genome hg38, retrieved along with its gene an-
notation from Ensembl v102 (41), using the mapping soft-
ware segemehl (42,43) v0.3.4 with adjusted accuracy (95%)
and split-read option enabled. Mappings were filtered by
Samtools v1.12 (44) for uniqueness and, in case of paired-
end data, properly aligned mate pairs. Differential gene ex-
pression and its statistical significance was identified us-
ing DESeq2 v1.30.0 (45). Common thresholds of llog,fold-
changel >0.25 and FDR <0.05 were used to identify signif-
icantly differentially expressed genes.

Microarray analysis pipeline

All microarray datasets were available at a pre-processed
stage at the Gene Expression Omnibus (GEO) and we re-
analyzed the datasets with GEO2R to obtain fold expres-
sion changes and Benjamini Hochberg-corrected P-values
(FDR) (46). Gene identifiers were mapped to Ensembl Gene
IDs using the Ensembl annotation data v102 (41). Common
thresholds of llog2fold-changel >0.25 and FDR <0.05 were
used to identify significantly differentially expressed genes.

Meta-analysis / generation of Expression Scores

Following our meta-analysis approach (6), Expression
Scores for genes regulated by human and mouse p53 and
ANp63 were calculated as the number of datasets that find
the gene to be significantly up-regulated minus the num-
ber of datasets that find the gene to be significantly down-
regulated by the respective transcription factor. Both, the
mouse p53 and the ANp63 Expression Score were published
previously (9,10). The p53 Expression Score 2.0 (human)
contains two additional quality control measures. First,
only datasets derived from at least two biological replicates
have been considered for this updated score. Second, all
datasets were removed that failed to identify at least 50 out
of 116 direct p53 target genes that were most recurrently
identified in a previous meta-analysis (3). The Cell Cycle
Expression Score reflects the number of datasets that identi-
fied a gene as cell cycle-regulated gene. The Cell Cycle Gene
Category is calculated by a majority vote of the nine datasets
on cell cycle-dependent gene expression and is displayed
for each gene that shows a Cell Cycle Expression Score >
3. Precisely, each dataset that identified peak expression of
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Comparison of TargetGeneReg v2.0 features and resource properties to TargetGeneReg v1.0/1.1 (6,9), p5S3 BAER hub (26), and Cyclebase v3.0

(27). Numbers concern data from human except for when ‘mouse’ is indicated. While Cyclebase v3.0 contains multiple datasets on cell cycle-dependent
gene regulation from various species, it contains only one dataset from human. ChIP-seq replicates were combined to single datasets for TargetGeneReg
but kept separate for the p53 BAER hub. N4 — not available, information was not provided in the respective publications

TargetGeneReg v2.0 TargetGeneReg v1.0/1.1 p53 BAER hub Cyclebase v3.0
# human genes 37243 18845 NA NA
human genome version hg38 hgl9 hgl9 NA
# p53 expression datasets 57 20 16 -
# p53 ChIP-seq tracks/datasets 32/28 15 41 -
pS3RE prediction yes no yes -
# mouse p53 expression datasets 15 15 - -
# mouse p53 ChIP-seq datasets 9 9 - -
# cell cycle expression datasets 9 5 - 1
# DREAM ChlIP-seq datasets 17 9 - -
# RB ChIP-seq datasets 6 2 - -
# MMB-FOXM!1 ChIP-seq datasets 22 6 - -
CHR and E2F motif predictions yes yes - -
# ANp63 expression datasets 16 - - -
# ANp63 ChIP-seq datasets 20 - -
p63RE prediction yes - -
RFX7 target gene prediction yes - -
Genome browser visualizations yes no yes no

the gene in ‘G1’, ‘G1/S’, or ‘S-phase’ is grouped as ‘G1/S’,
and peak expression in ‘G2’, ‘G2/M’, ‘M’, and ‘M/G1’ is
grouped as ‘G2/M’.

ChIP-seq data integration

Peak datasets and bigwigs from ChIP-seq experiments were
retrieved from CistromeDB (47) ensuring a common data
processing pipeline and thereby a direct comparability. Only
RFX7 ChIP-seq data were taken from our recent study (33)
as they were not yet available through CistromeDB. Big-
wigs (ChIP-seq tracks) have been made available through
track hubs for the UCSC Genome Browser (48). Notably,
while ChIP-seq replicates are available as individual tracks
in the track hubs, they have been jointly considered as one
dataset for the generation of peak-of-peaks summaries. Pre-
cisely, when replicate experiments were available, all peaks
were used that have been identified in at least two replicates.
To identify overlapping and non-overlapping peaks, Bed-
tools ‘intersect’ was employed, and to generate the peak-
of-peaks summaries, multiple peak files were combined us-
ing Bedtools ‘multiinter’ (49). The p53 and p63 ChIP-
seq collections and summaries on human and mouse p53
and ANp63 have been published previously (9,10). Simi-
larly, pS3REs and p63REs were taken from our previous
study (10).

RESULTS

Similar to TargetGeneReg v1.0 (6), TargetGeneReg v2.0 fo-
cuses on gene regulation by the tumor suppressor p53 in
conjunction with the human cell cycle. An earlier upgrade
(TargetGeneReg v1.1) introduced p53-dependent gene reg-
ulation and p53 binding data from mouse to Target-
GeneReg (9), which, to our knowledge, is unique to the Tar-
getGeneReg resources. Similarly, transcription factor bind-
ing data for central transcriptional cell cycle regulators, in-
cluding the DREAM complex, RB, the MMB complex, and
FOXM1, is unique to TargetGeneReg. The upgrade to ver-
sion 2.0 not only expands the data, but also includes data

on p53’s oncogenic sibling ANp63 and the emerging tumor
suppressor REX7 (Table 1). In the following sections we
provide more detailed information on the data and the ap-
plicability of the upgraded TargetGeneReg resource.

Gene regulation by p53

In the first version of TargetGeneReg, we integrated 20
datasets on p53-dependent gene regulation (6). Since the
publication of TargetGeneReg v1.0, several additional high-
throughput datasets with varying resolution and experi-
mental strategies became available. To optimally use this
additional data and strengthen the power of our resource,
we have adjusted our quality control regiment. Specifi-
cally, we systematically searched the GEO database for
RNA-seq and microarray datasets that employed experi-
mental strategies known to affect p53 signaling. This search
included experiments involving MDM?2 inhibitors (Nut-
lin and RG7388), genotoxic and nucleolar stress induc-
ers (Doxorubicin, 5-FU, Actinomycin D, Daunorubicin,
Etoposide, Bleomycin, Camptothecin, and UV), viral on-
coproteins (SV40 LT, HPV16 E6, and HPV18 E6), exoge-
nous TP53 expression, TNFa, and senescence (oncogene
and replication-induced). For inclusion in the updated re-
source, we required all datasets to comprise at least two
biological replicates for both treatment and control condi-
tions. Notably, all datasets we obtained were derived from
cell line models. We integrated information from 64 RNA-
seq and 35 microarray datasets derived to identify signifi-
cantly differentially expressed genes. To verify the effects of
the selected experiments on known p53-regulated genes, we
used a benchmark dataset of 116 direct and highly respon-
sive p53 target genes identified earlier based on 16 genome-
wide analyses (3). All experiments that yielded <50 signif-
icantly differentially expressed benchmark targets were re-
moved from further analysis (see Materials and Methods).
This measure ensures focus on activation of the p53 path-
way by the experimental setup and sufficient power to iden-
tify specific p53 activities (Figure 1A). A total of 44 RNA-
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Figure 1. (A) Flow chart for the integration of datasets on p53-dependent gene regulation. (B) Datasets on p53-dependent gene regulation in TargetGeneReg
v2.0 compared to TargetGeneReg v1.0. (C) The p53 Expression Score v2.0 from TargetGeneReg v2.0 compared to the p33 Expression Score v2.0 from
TargetGeneReg v1.0 for 17 446 genes present in both databases. Genes are displayed by individual points. The median is indicated by a black line or a red
line to highlight ‘0’. (D) Genes passing the recommended p53 Expression Score threshold to be considered high-recurrence genes that are up or down-
regulated by p53 in TargetGeneReg v2.0 compared to TargetGeneReg v1.0. (E) The p53 Expression Score v2.0 and data from the underlying 57 individual
datasets visualized for 20 selected direct p53 target genes, 20 selected targets of the DREAM complex, and the non-regulated GAPDH genes. It is indicated
whether individual datasets were generated using RNA-seq or microarray. Individual datasets that were also present in TargetGeneReg v1.0 are indicated.
The IncRNAs NEATI, PINCR, and DINOL are highlighted as they were not available in TargetGeneReg v1.0. Details on three datasets in which most
DREAM targets are not down-regulated by p53 are shown.
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seq and 13 microarray datasets passed this control (Figure
1B).

The p53 Expression Score, based on these 57 datasets, was
calculated for each gene by the number of datasets yield-
ing significant up-regulation minus the number of datasets
with significant down-regulation of the gene by p53. To cal-
culate the score, we required a gene to be sufficiently ex-
pressed in at least three datasets. A gene was deemed to be
expressed when DESeq2 was able to include it in the dif-
ferential expression analysis, i.e. assign log,fold-change and
FDR values. A direct comparison of the updated score (p53
Expression Score v2.0) with the initial one (p53 Expression
Score v1.0) exhibits a strong correlation but also suggests an
improved resolution (Figure 1C). Most importantly, while
the previous version was limited to 18 845 protein-coding
genes from hgl9, the updated resource now provides a p53
Expression Score for 37 243 genes from hg38. The p53 Ex-
pression Score v1.0 had a minimum threshold of >5 and <-
5 to consider genes with high confidence as being up and
down-regulated by p53, respectively (6). In the case of the
updated p53 Expression Score v2.0, respective thresholds of
>10 and <-10 were passed by 3456 and 3971 genes (Figure
1D). To illustrate the advantage of the updated p53 Expres-
sion Score, we visualized it together with the underlying in-
dividual datasets for 20 selected direct pS3 target genes and
20 selected targets of the DREAM complex (Figure 1E).

Of note, some datasets show few if any down-regulated
DREAM targets. This is the case when p21 (CDKNIA)
negative cells were used, since they were unable to reacti-
vate the DREAM complex efficiently. Likewise, an experi-
ment where exogenous TP53 was induced for only 6 h, an
interval too brief to reactivate the cell cycle trans-repressor
complexes, did not lead to a down-regulation of critical
cell cycle genes. Moreover, our comparison identifies p53-
dependent IncRNAs such as DINOL (50), PINCR (51) and
NEATI (52,53) excluded from the previous version because
of insufficient data (Figure 1E). In addition to informa-
tion on the p53-dependent regulation of thousands of non-
coding RNAs, the updated p53 Expression Score v2.0 pro-
vides much more detailed information on p53-dependent
regulation for hundreds of genes for which the p53 Expres-
sion Score v1.0 was inconclusive. Consequently, 1674 and
1917 genes that previously displayed a p53 Expression Score
v1.0 between 5 and —5 now passed the threshold of a p53
Expression Score v2.0 of >10 and <-10, respectively, indi-
cating a differential regulation by p53 with high recurrence.

The direct binding of p53 to the gene promoter is a cru-
cial property of many genes up-regulated by this transcrip-
tion factor (3-5). While TargetGeneReg v1.0 integrated
15 datasets on p53 genome binding (6), the updated ver-
sion now integrates an expanded collection of 28 ChIP-
seq datasets. While the previous version displayed only the
number of datasets that identified p53 binding near a gene’s
TSS, the updated resource contains precise binding loca-
tion information and visualizations thereof. To enable users
to rapidly visualize the large number of 28 individual p53
ChIP-seq datasets, we provide a ‘peak-of-peaks’ data track
representing a pile-up of p53 peak regions from individual
datasets (Figure 2A). Therefore, the ‘peak-of-peaks’ track
provides quick summary information on how many datasets
identified p53 binding to any locus in the genome. In ad-
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dition, the p53 response element (pS3RE) most closely re-
sembling a canonical p5S3RE is displayed for each peak-of-
peaks, as described previously (10). In addition, the ChIP-
seq tracks from all individual datasets can be displayed
upon selection, providing a seamless visualization of cell
type and treatment-specific information next to the sum-
mary data (Figure 2A and B). As established previously,
any binding site with support from at least five datasets is
considered to be of high recurrence (9,10). The website’s
‘Overview’ section indicates for every gene whether it dis-
plays a high-recurrence binding site within 2.5 kb of a TSS,
and whether a high-recurrence binding site is linked to the
gene locus through a double-elite enhancer:gene association
listed in the GeneHancer database (54).

Together, TargetGeneReg v2.0 provides information on
pS53-dependent gene regulation for twice as many genes
from almost three times as many datasets in total and al-
most five times as many datasets that follow the tightened
control measures. In addition, it provides almost twice as
many p53 ChIP-seq datasets, predictions for the underlying
pS3RE, and precise location visualizations.

Cell cycle-dependent gene regulation

Cell cycle genes play essential roles in cell cycle progression
and therefore are typical markers of proliferation that are
dysregulated in many cancers (55). The tumor suppressor
p53 down-regulates cell cycle genes to sustain cell cycle ar-
rest. Based on TargetGeneReg v1.0, we consolidated the five
cell cycle gene peak clusters defined by Whitfield ez al. (56)
to two major groups of cell cycle genes, namely G1/S and
G2/M genes (6). Here, we expanded the previous resource’s
five datasets to include four additional datasets (Figure 3A).
For all genes identified as cell cycle-dependently regulated
in at least three of the nine datasets, we predicted whether
the geneisa G1/S or a G2/M gene based on a majority vote
by the nine datasets (see Materials and Methods). The web-
site’s ‘Overview’ section provides information on the num-
ber of datasets that suggest a gene to be driven by the cell
cycle (‘Cell Cycle Expression Score’) and its classification
prediction (‘Cell Cycle Gene Category’).

The two distinct groups of G1/S and G2/M genes are
primarily characterized by E2F and CHR (cell cycle genes
homology region) DNA recognition motifs in their pro-
moters, respectively (2,6,57). The DREAM complex can
bind to both E2F and CHR motifs through its respec-
tive subunits E2F4 and LINS54, while RB:E2F specifically
binds G1/S cell cycle genes through E2F motifs. In contrast,
the transcription factors B-MYB (also known as MYBL2)
and FOXMI1 associate with DREAM’s LIN54-containing
MuvB core complex later in the cell cycle to specifically
activate the expression of G2/M genes through binding
their CHR sequences (2). To allow a more comprehensive
analysis of cell cycle-dependent regulation, we expanded
the nine datasets on genome binding by DREAM complex
components to 17. Similarly, we extended the two previous
datasets on RB binding to six datasets, and the previous
six datasets on MMB:FOXM1 (B-MYB:MuvB:FOXM1)
binding to 22 datasets. Potential E2F and CHR motifs un-
der respective RB and MMB:FOXM1 binding sites have
been predicted using HOMER (58). The individual ChIP-
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Figure 2. (A) Image of UCSC Genome Browser displaying the CDKNIA locus linked from TargetGeneReg v2.0. The blue tracks display the p53_peak-
of-peaks summary and the most likely underlying pS3RE that has been identified. Individual p53 ChIP-seq tracks can be selected from (B) the track hub
that is loaded through the TargetGeneReg v2.0 linkage. Together, the visualization provides precise visualization of p53 binding sites locations and their
underlying pS3RE and enables seamless comparisons between summary data and individual datasets. (C) Image of UCSC Genome Browser displaying
the PTHLH locus linked from TargetGeneReg v2.0. The blue tracks display the p53_peak-of-peaks and p63_peak-of-peaks summaries and the most likely
underlying pS3RE and p63RE. Individual p63 ChIP-seq tracks can be selected from the track hub hat is loaded through the TargetGeneReg v2.0 linkage, as
shown for pS3 above. PTHLH is a direct target of ANp63 but not p53, and the unique p63 binding site can be readily seen by comparing the peak-of-peaks
summary binding data.

seq tracks, peak-of-peaks, and motif predictions are avail-
able through UCSC Genome Browser visualizations.

Gene regulation by mouse p53 and its difference to human
P53

Previously, we employed our meta-analysis approach on
mouse pS53 synthesizing pS53-dependent gene regulation
data across 15 datasets, and we made the data available
through TargetGeneReg v1.1 (9). Here, we integrated our
database on p53-dependent gene regulation in mice (mm10)
with the updated database on p53-dependent gene regu-

lation in humans (hg38) described above. Therefore, Tar-
getGeneReg v2.0 includes mouse p53-dependent gene reg-
ulation data for the one-to-one orthologs of 14 712 hu-
man genes. While there is a good correlation between the
mouse p53 Expression Score and the human p53 Expression
Score v2.0 for genes down-regulated by p53, the correla-
tion for up-regulated genes is poor (Figure 3B), indicating a
strong and a comparably low evolutionary conservation of
p53 down and up-regulated genes, respectively. Similar re-
sults have already been reported for the first p53 Expression
Score (9,31). Precise binding data (ChIP-seq) of mouse p53
is available through links to the UCSC Genome Browser
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Figure 3. (A) Four new datasets on cell cycle-dependent gene expression have been added (63-66). Following our previous quality control (6), we tested
whether the datasets were more likely to identify a gene as cell cycle gene when more datasets from TargetGeneReg v1.0 (X-axis) agreed on its cell cycle
gene status. (B) The mouse p53 Expression Score (9) compared to the human p53 Expression Score v2.0 for 14 712 one-to-one orthologs with both scores.
Genes are displayed by individual points. The median is indicated by a black line or a red line to highlight 0’

with embedded track hubs similar to human protein bind-
ing data described above.

Gene regulation by ANp63

We previously employed our meta-analysis approach to
provide a comprehensive resource for gene regulation by
pS53’s sibling ANp63, an essential oncoprotein in squa-
mous cell carcinomas (10). Given its relevance to cancer
and close connection to p53, we integrated our ANp63
database comprising 16 datasets on p63-dependent gene
regulation and 20 ChIP-seq datasets on p63 DNA bind-
ing into TargetGeneReg v2.0. The ANp63 Expression Score
and predictions of p63 targets (180 high-recurrence tar-
gets available in Table 1 from Riege et al. (10)) and po-
tential p63 targets (comprising all genes bound and regu-
lated by p63) are available through the website’s ‘Overview’
section. DNA binding data and identified p63 response
elements (p63RE) are available through UCSC Genome
Browser track hubs and enable a seamless comparison
between individual p63 ChIP-seq tracks, summary data
thereof (p63_peak-of-peaks), and respective data from p53.
PTHLH, for instance, is a direct target gene of ANp63 but
not of p53 (Figure 2C).

Expanding the p53 gene regulatory network through RFX7

Complex cross-talk between signaling pathways impedes
the identification of indirect gene regulatory mechanisms
employed by p53. For example, following two decades of
conflicting data on mechanisms of p53-dependent gene re-
pression, pS3 was found to serve as a transcriptional acti-
vator that represses genes indirectly, with its target p21 tak-
ing a predominant role through its profound influence on
down-regulating the cell cycle genes (3,4,6,7,59). Recently,
we identified the transcription factor and emerging tumor
suppressor RFX7 as a vital node in the p53 transcriptional
program. RFX7 orchestrates a subnetwork of tumor sup-
pressor genes in response to cellular stress and p53 (33) and
cooperates with p53 to inhibit the pro-survival kinases AKT

and mTORCI (60). Given the crucial role of the novel p53-
RFX7signaling axis in the p53 gene regulatory network and
its potential importance to cancer biology, we included the
data on RFX7 target genes in TargetGeneReg 2.0. The web-
site’s ‘Overview’ section displays whether a gene has been
predicted as an RFX7 target, offering a mechanistic ex-
planation for its p53-dependent up-regulation. In addition,
RFX7 ChIP-seq tracks are available through the UCSC
Genome Browser visualizations.

Navigating the TargetGeneReg 2.0 website

Our updated resource is tailored to rapidly provide infor-
mation on genes of interest entered in the main input field.
The arguably strongest asset of the TargetGeneReg resource
is summary data on gene regulation by various transcrip-
tion factors generated through a synthesis of multiple indi-
vidual datasets integrated by our meta-analysis approach.
Therefore, the ‘Overview’ section situated at the top of the
one-page website provides all summary information on the
genes of interest that have been entered (Figure 4). Impor-
tantly, it enables a quick direct comparison of the sum-
mary data between multiple genes. More detailed informa-
tion on gene regulation from the individual datasets, a pie
chart illustration of the summary data, as well as volcano
and box-plots of the dataset results are provided in the de-
tailed sections below, which are equipped with sorting op-
tions to quickly identify the most relevant data. Precise tran-
scription factor binding data visualized through the UCSC
Genome Browser (48) are available through the genomic po-
sition links provided in the ‘Overview’ section for both hu-
man (hg38) and mouse (mm10).

DISCUSSION

The TargetGeneReg has gained a strong reputation in the
p53 and cell cycle communities. It provides a deeper insight
into p53 and cell cycle-dependent gene regulation mecha-
nisms. The presented upgrade, TargetGeneReg v2.0, sub-
stantially improves this resource. Like its predecessor, the
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coding RNAs. Enter your gene of interest below. -

p53-dependent gene regulation Overview

Cell cycle-dependent gene regulatio! This section provides summary data on your genes of interest with respect to p53 and cell cycle-dependent regulation
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Precise transcription factor binding information is visualized through the UCSC genome browser (follow the
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‘About’ section below.
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(‘D Start at this input field: Enter your genes of interest as gene symbols or ensembl IDs separated by commas.
@ The one-page website contains several sections. Navigate through the navigation bar or by scrolling.

@ The additional sections provide more detailed information, such as data from individual datasets.

@ The overview section starts with general information on your genes of interest. Mind the genome position link!
@ Information on p53-dependent gene regulation are clustered together with the p53 network extender RFX7.
@ Information on cell cycle-dependent gene regulation are clustered together.

@ Information on ANp63-dependent gene regulation are clustered together.

Detailed information on mouse orthologs and gene regulation by mouse p53. Mind the genome position link!

Figure 4. The TargetGeneReg 2.0 website design. Start by entering your genes of interest as gene symbol or Ensembl gene ID. The overview section provides
a helpful summary on the regulation of your genes of interest. Details on each point in the overview section is available through mouse-over boxes and
through the ‘About’ section. The additional sections are available through the navigation bar in the upper left corner or by scrolling through this one-page
website design. The additional sections contain more detailed information, such as data from the individual datasets and citation and history data for the
resource.



Manuscripts

resource is tailored to quickly retrieve information on the
users’ genes of interest and provides swift comparisons be-
tween genes and experimental conditions. TargetGeneReg
v1.0 was a starting point to help the p53 and cell cycle com-
munities to gain deep biological insights by providing refer-
ence points and a platform that enables users to quickly test
whether their genes of interest are likely regulated by p53 or
the cell cycle. The new version integrates more datasets, sub-
stantially improving its power. Specifically, TargetGeneReg
now includes data on non-coding RNAs and provides in-
formation on the gene regulation by p53’s oncogenic sibling
ANp63 and the emerging tumor suppressor RFX7.

Visualization of the transcription factor binding data
through the UCSC Genome Browser provides precise loca-
tion information for the user to better interpret the potential
consequences of the binding for their gene of interest. For
example, pS3 binding to intronic locations can induce al-
ternative transcription start sites leading to transcript vari-
ants with shortened 5’ sequences, as reported for MDM?2
and FBXW?7 (61,62). Visualization of the strongest scoring
underlying pS3RE and p63RE provides an unprecedented
depth of binding information.

While the summary data, such as the Expression Scores
are particularly helpful to quickly assess the regulation of
genes, it is critical to tally the characteristics of individual
datasets and genes used for the generation of this summary.
Importantly, a low Expression Score does not rule out p53
or cell cycle-dependent regulation. In addition to biolog-
ical variability, such as cell line-specific differences, genes
may evade the differential expression detection due to low
transcript abundances, low but biologically relevant fold-
changes, or methodological limitations (e.g. limited num-
ber of replicates and sequencing depth). For example, many
non-coding RNAs have low expression levels and thus may
have a low p53 Expression Score although they are actually
strongly regulated by p53 (e.g. DINOL displayed in Figure
1E). From a statistical perspective, this situation would re-
quire the integration of more datasets to increase the statis-
tical power. To address this limitation in spite of additional
datasets, we display the ‘p53 median log2FC’. The combi-
nation of a low p53 Expression Score and a high ‘p53 me-
dian log2FC’ might indicate that a gene evades differential
expression detection due to a low overall expression level.

Together, with TargetGeneReg 2.0 we provide a compre-
hensive resource on p53-dependent regulation in humans
and mice. Additional information on ANp63 and cell cycle-
dependent gene regulation facilitates the discovery of fur-
ther novel biological insights.
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All data are available through the web-atlas at www.
TargetGeneReg.org. Accession numbers of individual
datasets are available through the website.
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Discussion

TEs are present in virtually all eukaryotic genomes. Although the transposome varies in
composition and magnitude along the tree of life, it has become evident that “jumping genes” are
longtime companions of evolution that account for a substantial part of the known genomic code.
Along with other non-coding but transcribed components of the genome, TEs were frequently
considered as “junk” DNA. Recent research, however, gradually debunks this narrative. For instance,
the Encyclopedia of DNA Elements project claimed that more than 80% of the human genome is
functional, particularly outside of protein-coding genes [132]. While this assertion has sparked vicious

criticism and raised questions about proper definitions of “function” [133], there is little doubt that
non-coding transcripts have the potential to take over regulatory functions [82-84, 86]. Seven decades
after the Nobel Prize-winning discovery of “controlling elements” by Barbara McClintock [4], TEs are
still central to the genomes’ “dark matter”. Recent research suggests that McClintock’s original
characterization of the Ac-Ds family as a gene control system might well be true for other TEs as well.
Given the vast repertoire of TFBSs nested within genomic TEs, they might well be essential drivers of
evolution that help rewire gene regulatory networks. Furthermore, TEs may have been domesticated
by their hosts in response to evolutionary pressures, e.g., exposure to pathogens.

Since TEs compromise more than the half of the human genome [3], it is not surprising that at
least a fraction of them is involved in regulatory processes of the host. In fact, a mounting number of
DNA appears to be outdated and begs the question to which extent the line between the once
invading elements and the host organism has already been crossed. Family level-based analyses of TE
expression yielded important insights into the biological role of TEs [14, 74, 90, 136]. Naturally, the
detection of differentially regulated TE expression in health, disease, or during aging is not sufficient
to determine whether the TE transcription is cause or consequence. Additionally, it is necessary to
investigate individual and hence locus-specific regulatory actions. By design, the analysis of
(differential) TE expression using family-based approaches does not deliver the required level of
resolution and renders functional follow-up experiments difficult to impossible. Moreover, expression
data aggregated at the family-level may obfuscate important expression dynamics within TE families

when family members are not coordinately up- or down-regulated.

In brief, accumulating reports of TE dysregulation in diseases such as cancer, neurodegenerative
disorders, and aging in somatic cells reinforce the need of appropriate tools for locus-specific TE
quantification. The aim of the first publication (M1) was a quantitative evaluation of different TE
quantification strategies. Our benchmarks have indicated that a slight modification of an existing tool
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is sufficient to achieve surprisingly good benchmarks. Apparently, the diversity of related TE
sequences is generally high enough that, in combination with EM methods, the number assigned
reads allows an accurate estimation of the expression level. From this perspective, the study should
encourage researchers to include TEs in their differential expression analyses.

3.1. Evaluation of tools with respect to locus-specific expression
quantification of TEs

Ambiguously mapping reads are challenging for the quantification of expression. Hence, TE
expression modules are generally not incorporated into standard transcript quantification pipelines.
The tool evaluation in M1 was motivated by the lack of appropriate tools for locus-specific TE
quantification at the beginning of the project. Therefore, we tried to answer the question whether
software designed for the family based quantification is a sufficient basis for locus-specific TE
expression analysis. While the project was ongoing, SQUIRE and Telescope became available claiming
to have solved the locus-specific quantification problem. However, still no study was available
evaluating the different tools with respect to locus specificity.

A high sequence similarity of particular TEs can be an indication for elements that are actively
transposing within their host genome. Such TEs are especially prone to produce multi-mapping reads
when short read sequencing technologies are used. Thus, active TEs are especially challenging for the
alignment tools. Consistently, in contrast to the whole set of simulated TEs, the performances of the
evaluated tools are decreased for elements with a small Kimura distance (< 5). However, the majority
of TEs in the human genome are ancient [121] and accumulated a sufficient amount of sequence

variations, e.g., mutations, so that the majority of the tools accurately quantify their expression.

TEtools, originally developed for family-based analyses, is an example for a tool that addresses
the multi-mapping read problem by randomly assigning multi-mapped reads to one of the identified
loci. When used in locus-specific analyses, this strategy leads to a substantial overestimation of TE
expression and thus a high number of false positive detected TEs. In comparison, tools that employ an
EM strategy to solve the multi-mapping read problem perform much better. Also, EM-based tools
consistently show an improved correlation between expected and detected read counts. In
agreement with earlier reports, our simulation confirmed that the TE quantification performance is
improved when paired-end data is used instead of single-end data [116]. Overall, SalmonTE
outperforms all other tools in locus-specific expression analysis, which was surprising for us as it was
also originally developed for family based quantification analysis.

Although we obtained similar results based on RNA-Seq data sets simulated with two distinct
strategies, it must be noted that simulated data is a critical limitation of our study. While our
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simulations were based on specific models reflecting certain biases and errors of an RNA-Seq
experiment, the simulated data must not be confused with real data. However, the similarity of our
benchmark results across two distinct simulation strategies indicates that our results are sufficiently
robust to make recommendations for the analysis of real RNA-Seq data.

The annotation of TEs is an ongoing endeavor. Thus, virtually all reference genomes have to be
considered to be incomplete in terms of TE annotations [17, 107]. This fact leads to a further obstacle
of our simulation, as we were able to simulate only annotated elements. Importantly, the human and

mouse genomes also still contain actively transposing TEs [99, 106, 107, 137, 138], resulting in

individual TE insertions that are unlikely to be reflected in the reference genomes and their
annotations [107].Taking L1 elements into account, two individual human genomes differ on average
at 285 sites [139]. The frequency of transpositions is assumed to be even higher in mice [140, 141]. In
addition to the inter-individual variations, TEs are also active in somatic cells, e.g., L1 elements are a
driver of the genomic mosaicisms in brain-specific cells [69, 72, 142]. Obviously, these actively
transposing elements are of special interest in the TE expression analysis. Unfortunately, they are also
particularly hard to analyze and their exact measurements depends on multiple factors, e.g., their
length or the site of insertion, which cannot be simulated in a meaningful way.

As stated above, the quantification of TE expression works surprisingly well with minor
adaptations of SalmonTE. However, our benchmarks also indicate that there is room for
improvement, especially of the investigation of young elements. We assume that the observed
shortcomings are best to be addressed by novel experimental strategies. Critically, the technical read
length limitation of the lllumina sequencing platform is a main reason for the decreased performance
quantifying young elements. For TEs with highly identical copies, reads are simply not long enough to
span a sufficient number of polymorphisms. Third generation sequencing technologies, e.g., PacBio
SMRT seq [143, 144] and Oxford Nanopore [145], produce considerably longer reads that can help to

overcome that problem. However, these technologies still suffer from higher error rates and lower
throughput, compared to the short-read sequencing technologies, which is particularly challenging
for the mapping process. Nevertheless, improvements of base calling algorithms and chemistries
presumably provide a more accurate quantification in the future. Alternatively, a combination of
short- and long-read sequencing technologies could obtain long reads that are subsequently

corrected using the accurate short-read information [146].

In summary, M1 shows that locus-specific quantification of TEs is possible already with the
sequencing technologies and bioinformatics tools that are currently available. Our proposed
approach outlines a comparably convenient way to quantify TE expression under many different
conditions. Notably, it encourages researchers to study TE expression by re-analyzing existing high-
throughput sequencing data.
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3.2. Locus-specific TE expression quantification during the process of aging

Age is a risk factor for many diseases [101, 147] and their effective prevention and treatment
requires a detailed molecular understanding of the aging process at the molecular level. The
investigation of the genome and its regulation is a major component of this complex endeavor.
Recent studies have demonstrated that TEs play a more important role in aging than previously
anticipated. The expression of certain TEs during aging can lead to sterile inflammation [14, 103] and
the potential involvement of TEs in malignancies [9, 10] or neurological conditions [12, 40, 148] are
evidence for a more fundamental role of the so-called “jumping genes”. Despite such observations, it
is not clear whether the dysregulation of TEs is a primary driver of the aging process [13]. In the
genome, TEs are usually heavily methylated [149, 150] and silenced due to heterochromatin
formation in somatic cells [151]. Since the chromatin architecture is dynamically changing during

aging [152], silenced TEs can become accessible and reactivated. In line with this, the up-regulation of

TE families has been reported during aging [14, 100, 137, 153] and in age-dependent diseases [9, 10,
148, 154]. However, family-based TE expression studies lack information on the expression dynamics
of individual TEs and to not provide insight to their potential function as transcriptional regulators,
e.g., through the establishment of promoters or enhancers.

As stated in the introduction, the complexity of TEs and their potential biological functions is
enormous. This underscores the need for locus-specific analyses to shed light on the expression
profiles of individual TEs gain insights on the regulation of individual TEs. Our tool evaluation in M1
provided us the unique opportunity to apply the best performing tool that is currently available, i.e.,
adjusted SalmonTE, to a data set of three different tissues (brain, skin, and blood) from aged mice to
study TE expression at locus resolution. In particular, we compared six versus 24 month old male
mice.

Intriguingly, our locus-specific expression analysis reveals complex TE expression patterns during
aging. Beyond previous studies that detected an age dependent up-regulation of specific TE families
in somatic cells [14, 137, 153], our data reveal a substantial number of TEs that are down-regulated in
24 compared to six month old mice. Importantly, individual TEs from the same family show divergent
regulatory patterns during aging, which differ substantially from their family-based averages. The
down-regulation of TEs evokes the question whether their suppression could have an aging-relevant
role. Recently, it has been suggested that actively transcribed TEs, i.e., members of LTR, LINEs, and
SINEs, function as tumor suppressors in blind mole rats to compensate for a mutated p53 gene [136].
In brief, the authors provided evidence that TEs could act as an alarm system sensing cellular
proliferation and triggering cell death via the cGAS-Sting pathway. The finding is reminiscent of other
studies suggesting that cancer cells may down-regulate TEs to be invisible and protected against the
host immune system [155, 156]. In blind mole rats, the leading cause for the activation of silenced TEs
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was attributed to a pervasive loss of DNA methylation in highly proliferating cells due to weakly
functioning DNA methyltransferase (DNMT) 1 [136]. Interestingly, overexpression of DNMTs correlates
with tumors aggressiveness [157, 158], which may lead to the silencing of TEs to avoid immune
responses.

The epigenome is an important regulator of cell type-specific gene expression, and hence a

quintessential maintainer of cell identity [159-161]. The cell type-specific configuration of chromatin
necessarily also affects the accessibility of TEs. For example, TE-derived promoters have been shown
to be used in a highly tissue-specific way in mouse development [134]. TE instances of specific TE
families have been shown to overlap with enhancer-associated chromatin marks, e.g., H3K4mel in
CD8* T-cells, and promote the expression of immune-related genes [89], also demonstrating the cell
type specificity. Concordantly, we find that the majority of expressed TEs are exclusively expressed in
one tissue. Just about 4% are expressed in all three tissues. Regarding the association of TEs and
enhancers, we identified an expressed TE that overlaps with an enhancer which is associated with the
Fam126a gene in blood. The expression of the TE and the gene was confirmed by reverse transcriptase
semi-quantitative polymerase chain reaction and both, the TE and Fami126a displayed a trend of
down-regulation during aging. The striking tissue specificity raised the question whether TEs merely
piggyback on tissue-specific accessible regions or instead contribute to the regulation in the first
place.

The genome-wide profiling of TSSs with CAGE-Seq allows identifying TEs that are independently
expressed and regulated through their own promoter. Our enrichment analysis of independently
expressed TEs corroborated the heterogeneous expression pattern across different tissues we
observed in the RNA-Seq data. In skin, for example, we identified a tissue-specific enrichment of TSSs
within several ERV families. Recently, a study suggested a “communication” between the skin and
exogenous skin microbiota through ERV elements of host regulating inflammatory processes [162].
Moreover, our data indicates an exclusive enrichment of TSS within L1 (a LINE) elements in brain.
LINEs are known to be mainly expressed in brain and have been implicated to have regulatory effects
there [19, 163, 164]. Only the B1 family (a SINE) consistently enriched TSSs in all three tissues. This is
an unexpected finding because TEs transcribed by RNA Pol IlI, like SINEs, do not contain the 5’ m7G-
cap structure [112], and thus should be hidden from the CAGE-Seq approach. However, Alu elements,
the primate-specific counterpart of B1, contain regulatory sequences which can be accessible for Pol
Il by mutations [165] and which offers an explanation for the TSSs we identified in the B1 family.

It is of note that PEAKachu [166], the tool we used for calling CAGE-Seq peaks, requires alignment

files, which cannot be provided by SalmonTE, so that an allocation of multi-mapping reads did not

take place. The exclusive use of uniquely aligned reads limits the identification of TSSs in TEs with
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high sequence similarity at their transcription initiation site. Consequently, the number of

independently expressed TE regions is rather underestimated in our analysis.

Given that neighboring TEs in the genome often showed a continuous RNA-Seq expression signal,
we grouped closely spaced TEs (distance = 500bp) into TE regions. Analogously to individual TE loci,
TE regions that intersected with a CAGE-Seq-derived TSS and showed sufficiently strong expression
signals were considered to be independently expressed TE regions. Analyzing the distribution of the
TSSs along the TE regions in skin and blood indicated that TE transcription is frequently initiated at
the regions’ 5’-end. This suggests, that the TE located 5’ in a TE region frequently donates a TSS. In
brain, however, this was not the case. Here, TSSs were most frequently located at the 3’-end of
independent TE regions. The accurate localization of TSS within TEs facilitates the systematic

inspection of putative TE promoter sequences.

Looking for common regulatory factors involved in the expression of TEs, we searched for TFBS
motifs. TEs from all tissues showed a substantial enrichment of potential TFBS of the Sox family near
their TSSs. The Sox family TFs share a high mobility group box domain that typically mediates DNA
binding. Sox TFs are known to regulate neuronal differentiation and to be involved in adult
neurogenesis [167]. Importantly, they may also have a role in the regulation of TEs. For instance, the
expression and transposition of human L1 elements containing two Sox-binding sites within their 5’
UTR were found to be negatively correlated with the expression of Sox2 [71]. Another Sox family
member contributing to neuronal development is Sox5, which is involved in controlling subtype-
specific neuronal differentiation [168]. It has been reported that Sox5 haploinsufficiency leads to the
neurodevelopmental disorder Lamb-Shaffer syndrome [169] and Sox5 may contribute to the
development of autism spectrum disorders [170]. The enrichment of Sox TFBS in TE-derived brain-
specific transcripts raised the question whether their expression mechanistically contribute to the
regulatory roles of Sox TFs. Intriguingly, Sox motifs that are co-localized with TSSs in brain are likely
caused by an L1 3’-end subfamily with a characteristic length between 950 and 1050 bp. In agreement
with our finding, truncated L1 elements are known to enrich TSSs near their 3’-end [55]. In addition,
L1 elements contain a weak polyadenylation site that leads to 3’ read-through events [65, 171]. Thus,
the independently expressed L1 3’-ends we identified may indicate a set of regulatory loci at which

the L1 instance functions as a regulator for down-stream genes.

Our expression analysis indicates a surprising co-regulation of independently expressed TEs and
their host genes, and, some of those pairs of TEs and host genes are located in gene clusters known to
have fundamental roles in synaptic signal transduction or critical immunological functions. In brain,
we identified the protocadherin cluster to be recurrently affected by differentially expressed TEs and
genes. The expression of genes in the protocadherin cluster is highly randomized and depends on the

expression of anti-sense RNAs [172]. The cluster equips each neuron with a unique set of cell surface
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proteins. This mechanism is critical for avoiding the connection of dendrites to their own soma [173].
Furthermore, TSS-carrying TEs are localized in the skint- and keratin clusters in skin. Genes of the
skint family have an important role in the development of the dominant T cell compartment in the
epidermis - Vy5Vd1ldendritic epidermal T-cells, which are a subset of ydT cells that thwart against

infections and tumor development [174-176]. The keratin cluster emerged from gene duplications and
builds the largest subset of intermediate filament genes [177]. Keratin genes are responsible for
keratin intermediate filaments that form important barriers, and mice lacking keratin genes exhibit
severe epidermal barrier damage leading to death [178]. Our finding poses the exciting question
about the role of TEs in stochastic expression of genes from these clusters. We hypothesize that TEs
provide regulatory platforms that enable distinct expression patterns from these gene clusters in
individual cells. In particular, the protocadherin and keratin clusters exhibit remarkable evolutionary
conservation [177, 179, 180], with TEs providing on of the few possibilities to alter their regulation.

The co-regulation of TEs and their host genes suggests a common function in certain biological
pathways. It is noticeable that genes associated with independent TEs are enriched in GO terms for
highly tissue-specific function. Genes involved in neuronal synapse plasticity and connectivity were
particularly enriched for independent TEs in brain. We found that those genes were particularly prone
to the host TEs within their introns. Notably, neuronal activity was shown to trigger DNA double
strand breaks (DSBs) that induce the expression of genes crucial for experience-driven changes to
synapses, learning, and memory [181]. Since proteins encoded by TEs can induce DSBs, TEs may be
involved in this process. In contrast to genes with tissue-specific functions, genes with general cell
functions tasks, e.g., genes encoding for RISC complex, immunoglobulin complex, and nucleosome,
harbor less TEs within their introns. Thus we hypothesize that the accumulation of TEs may be

evolutionarily beneficial in cell type-specific genes but less so in genes with general roles.

Taken together, the locus-specific characterization of TEs resolved the expression dynamics
within TE families and revealed that TEs are as frequently down- as up-regulated during aging. The
integration of CAGE-Seq and RNA-Seq data provides a catalogue of independently expressed TE
regions and their associated genes, which are largely involved in tissue-specific processes. In addition,
our analysis strongly suggests the involvement of Sox TFs in the regulation of TEs. Overall, our study
challenges the narrative of an entirely detrimental role of TE expression during aging and suggests
important roles for TEs in shaping the distinct transcriptional landscapes in tissues and individual

cells.

3.3. Blueprint of a data base for differential expression data

Our locus-specific TE expression data sets from aged mice cover differential expression data on
thousands of individual TEs. To make the data swiftly available and reusable by the research
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communities, | envision to create a web-based atlas. In M3, | implemented a data structure and web
interface for a web atlas that allows easy access to the differential expression information for genes of
interest. The web atlas created in M3, TargetGeneReg 2.0 (http://www.targetgenereg.org), provides

information on p53 and cell cycle-dependent gene regulation and serves as a blueprint for web
atlases that enable easy access to differential expression data. The web interface contains a search
bar that allows the user to enter their gene of interest and get access to differential expression profiles

and transcription factor binding data from multiple data sets.

The backbone of TargetGeneReg2.0 is based on shiny [182], an R package that allows to build

interactive web applications within R. Through the R universe, packages, thousands of which have
been made available by the R user community, can be integrated. One class of such packages
integrates read-to-use data handling methods that simplify parts oft the website, e.g., a highly-
efficient search function. The ready-to-use data processing methods of TargetGeneReg2.0 are
concerted to a specific data structure. Therefore, it is critical that each data set is structured
identically. A ready-to-use supporter script structurers and merges data to ensure proper processing.
The backend data structure allows for a seamless integration of new data without website shut-
downs. In addition, the modular structure of the website and its backend provides a blueprint that
can be adapted to provide any differential expression data of interest. Therefore, an extension of the
data structure generated for M3 will enable the simultaneous accessibility of expression data on host

genes and their associated TEs.

The modular design of the search engine in principle enables the integration of search requests
considering individual TEs. However, fast changing identifiers of individual TEs constitute challenges
to provide an intuitive search for specific TEs. The current data structure already deposits genomic
coordinates of each gene, which would allow the integration of a search engine that is based on
genomic coordinates rather than names or other identifiers. Thus, genomic coordinates may provide

a convenient way to search for individual TEs of interest.

The web atlas could be extended to include results of publicly available RNA-Seq data sets, which
would provide a solid basis for comprehensive analyses, e.g., meta-analyses. The latter are powerful
tools to gain deeper insights into molecular biological processes and mechanisms, with the
advantage of increased statistical power compared to single-case studies [183]. Overall, the easy
accessibility of TE expression data via a web-atlas would enable scientists to validate results and to
develop new hypothesis regarding biological functions of TEs.
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Conclusion & Outlook

As first part of this thesis, | evaluated TE quantification tools according to their performances
with respect to locus-specific quantification of TEs based on comprehensive simulations. Within the
limits of the simulation, a tool originally designed for family-level quantification of TEs, SalmonTE,
outperformed all other tools following minor adaptations of the reference library. The results indicate
that many individual TE instances can be quantified with sufficient confidence using currently
available algorithms. In addition, the accurate quantification of individual TEs provides an
opportunity for integration into standard expression quantification pipelines.

When | employed SalmonTE to assess the differential expression of individual TEs in young and
old mice, | found that TEs are commonly down- and up-regulated during aging, challenging the
narrative of TEs escaping repression during aging at large. The down-regulation of TEs in aged mice
raises questions concerning their biological consequences. The question of the biological functions is
reinforced by the integration of CAGE-Seq data. We uncovered stretches of expressed TEs (TE regions)
sharing common TSSs, providing transcripts with unknown functions. Therefore, in the future, it
would be of great interest to verify and extend the catalogue of independently expressed TE regions
using long-read sequencing technologies, e.g., PacBio SMRT seq or Oxford Nanopore. Additionally, a
genome-wide assessment of TE-induced transcription termination sites (TTSs) could provide
additional insights into the regulatory roles of TEs as they may provide alternative TTS for genes.
Moreover, such analyses can help to annotate TE-induced transcripts and may contribute to a more

comprehensive TE transcript catalogue.

In addition to down-regulated TEs, independently expressed TE regions are associated with
highly tissue-specific genes, of which those associated with neuronal functions in brain are
particularly interesting. The brain has an outstanding role during the evolution of humans. Its
comparably fast evolution is difficult to explain with random base mutations model, especially in a
species with such a small population size and long life span. TEs provide templates with potential
functions that can be distributed throughout the genome and affect the expression of multiple genes.
A quick distribution of TE-derived regulatory elements provides the evolutionary advantage that
regulation mechanisms with similar functions do not need to evolve independently at multiple loci.
TEs are already known as important contributors to genomic mosaicism in brain. Consequently, the
TE composition can be highly variable in individual cells from the same brain. Therefore, it is likely
that also the expression pattern is even more complex than shown in this study and requires locus-
specific TE quantification in single-cell studies. Altogether, the independently expressed TE regions
we identified will be a promising starting point to study their biological roles. Disruption of selected
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TE regions, e.g., using CRISPR-Cas technology, could help elucidate the effect on their host genes.
Moreover, over-expression or silencing of Sox proteins could reveal their regulatory impact on
individual TEs.

Notably, genome-wide analyses such as in the case of M2 combine data from thousands of loci
and it can be difficult to assess the regulation of individual loci, such as a gene or TE of interest.
Therefore, | envision to make the differential TE expression data easily accessible based on the
blueprint web-atlas | generated in M3. In addition to data obtained from M2, | envision to feed that
web-atlas with differential expression information on individual TEs across many more cell types and
conditions through systematic re-analysis of publicly available RNA-Seq data sets using the modified
SalmonTE | identified in M1. Such an extended database would provide a strong basis for meta-
analyses of TE expression across multiple experimental setups. An easy availability through a web-
atlas can enable scientists to validate results and develop new hypotheses on the regulation and

function of TEs.

Overall, this thesis demonstrates the feasibility of locus-specific TE expression analyses and
increases our understanding of the complexity of TE expression during aging. My locus-specific TE
expression analysis challenges models that ascribe largely detrimental roles to TE expression during
aging. Moreover, the tissue-specific co-regulation of TEs and their host genes highlights a potential
influence of TE and host gene on each other. Therefore, the results encourage intensifying research
into locus-specific TE expression analysis, to gain a better understanding of the biological functions,
interactions, and regulation of TEs. This thesis shall motivate to reconsider the roles of TEs in

development and disease.
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Abbreviation

cGAS
DNMT
DNA
DSB
e.g.
EM

EN
ERV
HERV
ie.

LINE
LTR
MRNA
NcRNA
ORF
PIWI
Pol
RNA
RNA-Seq
RNP
RT
SINE
SRG
TE

TF
TFBS
TIR
TSS
TTS

cyclic GMP-AMP synthase
deoxyribonucleic acid methyltransferase
deoxyribonucleic acid

double strand breaks

exempli gratia (for example)
expectation maximization
endonuclease

endogenous retrovirus

human endogenous retrovirus

id est (that is)

integrase

long interspersed nuclear element
long terminal repeat

messenger ribonucleic acid
non-coding ribonucleic acid

open reading frame

P-element induced wimpy testis
polymerase

ribonucleic acid

ribonucleic acid sequencing
ribonucleoprotein complex
reverse transcriptase

short interspersed nuclear element
stress response genes
transposable element
transcription factor

transcription factor binding site
terminal inverted repeats
transcription start site
transcription termination site
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Appendix

7.1. Manuscript 1 - Form 2

Manuskript Nr. 1

Kurzreferenz Schwarz et al. (2022), Briefings in Bioinformatics

Beitrag des Doktoranden [ der Doktorandin

Beitrag des Doktoranden zu Abbildungen, die experimentelle Daten wiedergeben:

Abbildung(en) # Alle

3]

100 % (die in dieser Abbildung wiedergegebenen Daten entstammen
vollstandig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgefiihrt hat)

0% (die in dieser Abbildung wiedergegebenen Daten basieren
ausschlieBlich auf Arbeiten anderer Koautoren)

Etwaiger Beitrag des Doktoranden / der Doktorandin zur Abbildung:
%

7.2. Manuscript 2 - Form 2

Manuskript Nr. 2

Kurzreferenz Schwarz et al., eingereicht

Beitrag des Doktoranden [ der Doktorandin

Beitrag des Doktoranden zu Abbildungen, die experimentelle Daten wiedergeben:

Abbildung(en) # Alle

3]

100 % (die in dieser Abbildung wiedergegebenen Daten entstammen
vollstandig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgefihrt hat)

0% (die in dieser Abbildung wiedergegebenen Daten basieren
ausschlieBlich auf Arbeiten anderer Koautoren)

Etwaiger Beitrag des Doktoranden / der Doktorandin zur Abbildung:
%




Appendix Page | 105

7.3. Manuscript 3 - Form 2

Manuskript Nr. 3
Kurzreferenz Fischer et al. (2022), NAR Cancer
Beitrag des Doktoranden [ der Doktorandin

Beitrag des Doktoranden zu Abbildungen, die experimentelle Daten wiedergeben:

Abbildung(en) # Alle O 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen
vollstandig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgefiihrt hat)

X 0% (die in dieser Abbildung wiedergegebenen Daten basieren
ausschlieBlich auf Arbeiten anderer Koautoren)

O Etwaiger Beitrag des Doktoranden / der Doktorandin zur Abbildung:
%
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