

Advanced 3D Cell Culturing and Monitoring

System

Dissertation

for obtaining the academic degree

Doctor rerum naturalium

(Dr. rer. nat.)

submitted to the

Department of Mathematics and Natural Sciences

Ilmenau University of Technology

by

Ing. Martin Bača

1. Examiner: Prof. Dr. rer. nat. habil. A. Schober

2. Examiner: PD Dr. phil. nat. I. Oehme

3. Examiner: Prof. Dr. R. O'Connor

Submission date: 21.03.2023

Defense date: 05.09.2023

DOI: 10.22032/dbt.59056

URN: urn:nbn:de:gbv:ilm1-2023000277

2

3

Zusammenfassung

Die vorgelegte Doktorarbeit stellt ein 3D-Zellkultursystem mit einem vollautomatisierten

analytischen, biochemischen Assay und vollautomatisierter Kultivierung mit

Mediumwechsel vor. Dieses integrierte Kultivierungs- und Analysesystem wurde in

dieser Arbeit mit 3D-Hepatozytenkulturen in Polycarbonat-MatriGrid®-Gerüsten für das

3D-Wachstum von Zellkulturen prototypisiert. Das System perfundiert MatriGrid-

Kulturen kontinuierlich mit Wirkstoff-ergänztem Medium und führt bei Bedarf eine

Bewertung der Wirkstofftoxizität durch Beobachtung und Messung der Konzentration

eines Indikators, des Biomarkers Albumin, durch. Das System kann die MatriGrid-Kultur

mit unterschiedlichen Flussraten perfundieren, automatisierte Medienwechsel

durchführen und mit dem mitgelieferten ELISA-Modul Proben des zu analysierenden

Kulturmediums nach Bedarf untersuchen. Das System unterstützt die parallele

Kultivierung von Zellen in mehreren Bioreaktoren. Das Fluidnetzwerk wurde aus

Materialien konstruiert, die wenig Proteine und kleine Moleküle binden, absorbieren oder

adsorbieren, um seine Anwendung für niedrige Biomarkerkonzentrationen und

Langzeitexperimente zu erweitern. Die Doktorarbeit beschreibt das Systemdesign, den

Aufbau, das Testen und die Verifikation unter Verwendung von 3D-gewachsenen

HepaRG-Zellkulturen. Die zeitabhängige Wirkung von APAP auf die Albuminsekretion

wurde über 96 h untersucht, wobei sowohl mit dem neu entwickelten System als auch

konventionell in Mikrotiterplatten, gemessen wurde. Es zeigte sich, dass die Ergebnisse

vergleichbar sind. Dieses Resultat belegt die Verwendung des Systems als eigenständiges

Gerät, das in Echtzeit arbeitet und in der Lage ist, gleichzeitig Zellkultur- und

Mediumanalyse in mehreren Bioreaktoren durchzuführen, mit erhöhter Zuverlässigkeit

der 3D-Kultivierung, in einfacher Handhabung und Messung. Auf diese Weise soll das

neu entwickelte 3D-Zellkultivierungs- und Analysesystem 3D-

Zellkultivierungstechniken und -experimente für weitere Forschungsgruppen bekannt

machen.

4

5

Abstract

This thesis presents a 3D cell culturing system with a fully automated analytic

biochemistry assay and fully automated culturing with medium change. This integrated

culturing and analytic system was prototyped in this work with 3D hepatocyte cultures in

polycarbonate MatriGrid® scaffolds for 3D growth of cell cultures. The system

continuously perfuses MatriGrid cultures with drug supplemented medium and performs,

on demand, drug toxicity evaluation by observing and measuring the amount of an

indicator, the biomarker albumin. The system can perfuse the MatriGrid cultures using

different flow rates, performs automated medium changes and can make on-demand

samples of the culture medium to be analyzed with the included ELISA module. The

system supports parallel culturing of cells in multiple bioreactors. The fluidic network

was constructed from low protein and small molecules binding, absorbing or adsorbing

materials to extend its application for low biomarker concentration and long-term

experiments. The thesis describes the system design, construction, testing, and

verification using 3D-grown HepaRG cell cultures. The time-dependent effect of APAP

on albumin secretion over 96 h, measured with newly developed system and conventional

microtitre plates was measured and the results are comparable. These results confirm the

use the system as a standalone device that works in real time and is capable of

simultaneous cell culture and medium analysis in multiple bioreactors, with increased

reliability of 3D-culturing, ease of handling and measurement. This way the newly

developed 3D cell culturing and analysis system is aimed to promote 3D cell culturing

techniques and experimentation to more research groups.

6

7

Table of Contents

Abbreviations and acronyms ..10

1 Introduction ...13

1.1 Motivation ..13

1.2 Thesis Aims and Objectives ...14

1.3 Thesis layout ..15

2 State of the art ...17

2.1 Cell culturing systems ..17

2.2 Automated ELISA systems ..20

3 Designing the prototype of the ELISA analytical device25

3.1 Introduction ..25

3.2 Fluidics ...25

3.2.1 Selected Elisa Assay ..25

3.2.2 Selection of the fluidic components ...27

3.2.3 Fluidic Topology ..30

3.2.4 Flow-through optimized sandwich ELISA protocol32

3.3 Readout system ..47

3.3.1 Excitation light source selection ..49

3.3.2 Detector selection ...50

3.3.3 Fluorimeter configuration ..52

3.3.4 Excitation optical path description ...52

3.3.5 Emission optical path description ..53

3.3.6 DPSS Laser driver circuit ...54

3.3.7 The photodiode front end amplifier ...55

3.3.8 The Analog to Digital (ADC) interface56

3.3.9 The fluorimeter detector and amplifier noise estimation57

3.4 Control Unit ...62

3.4.1 Control unit schematics ..63

3.4.2 Printed circuit board (PCB) design for the control unit72

3.4.3 Control unit embedded code overview ..73

3.5 Intermediate summary..79

8

4 Designing the prototype of automated 3D cell culture device81

4.1 Introduction ..81

4.2 Required functionality definition of the culture unit81

4.3 The culture platform: Micro Bioreactor and MatriGrid®82

4.4 Fluidics design ...83

4.4.1 Culture unit during the active perfusion of the cell culture84

4.4.2 Automated medium change ..85

4.4.3 Automated sampling of the cell culture medium87

4.5 Intermediate summary..88

5 Evaluation of the prototype system ...91

5.1 Introduction ..91

5.2 Fluidics evaluation ...91

5.3 Readout system evaluation...92

5.4 Albumin assay evaluation ..95

5.5 Intermediate summary..98

6 Optimizing the performance of analytical module99

6.1 Introduction ..99

6.2 Analyzer unit cleaning procedure ..99

6.2.1 Extension of the cleaning procedure ..100

6.3 The cause of decreased assay performance ..101

6.4 Standard curve measurement in low concentration range106

6.5 Accuracy verification of the flow-through ELISA107

6.6 Intermediate summary..109

7 Evaluation of the prototype system ...111

7.1 Introduction ..111

7.2 APAP toxicity in 2D and 3D hepatocyte cultures..................................111

7.3 Online flow ELISA with APAP ...115

7.4 Intermediate summary..116

8 Culturing and analytic system extensions ...119

8.1 Introduction ..119

8.2 Parallelization of the culturing units ..119

8.2.1 Driver design for culturing unit ..120

8.2.2 The common control module for culturing units122

8.3 Increasing throughput of the analyzer module123

8.4 Other future system improvements ..125

8.4.1 Adding sensorics to the culturing unit125

9

8.4.2 Temperature management of the analyzer unit126

8.4.3 Analyzer unit – on-site substrate preparation126

8.4.4 Analyzer unit – further optimization of cleaning protocol127

8.4.5 Control unit – implementation of curve fitting algorithms127

8.4.6 Analyzer unit – extending the readout system for absorbance

measurement possibility ...127

8.4.7 Miniaturization of the analyzer unit ...128

9 Application possibilities of the culturing and analytical system129

9.1 Applications of the Cell culturing systems ..129

9.1.1 Drug toxicity tests ..129

9.1.2 Microenvironments testing ...129

9.1.3 Influence of the fluidic shear stress in the cell culture130

9.1.4 Cell line maintenance ...130

9.2 Applications of the analytical module ...131

10 Summary ..133

References ...137

List of Figures ...143

List of Tables ..149

Appendixes ...151

10

Abbreviations and acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

3D-ACAD automatic 3D-culturing and analysis device

ABTS 2,2'-azino-di [3-ethylbenzthiazoline] sulfonate

AC alternating current

ADC analog to digital converter

ADHP 10-Acetyl-3,7-dihydroxyphenoxazine

ALF acute liver failure

ANSI American National Standards Institute

APAP N-acetyl-para-aminophenol

ARM advanced RISC machines

BSA bovine serum albumin

BW bandwidth

CAN controller area network

CDT C/C++ development tooling

CFA cyst fluid antigens

CK-MB creatine kinase myocardial band

CMOS complementary metal–oxide–semiconductor

CPU central processor unit

CYP cytochrome P450 family

DC direct current

DI de-ionized

DMSO dimethyl sulfoxide

DPSS diode-pumped solid state

EC50 half maximal effective concentration

ECM extracellular matrix

EEPROM electrically erasable programmable read-only memory

ELISA enzyme-linked immunosorbent assay

EMA European Medicines Agency

EMI electromagnetic interference

11

FBS fetal bovine serum

FCS fetal calf serum

FDA Food and Drug Administration

FEP poly-(tetrafluoroethylene-co-hexafluoropropylene)

FMIA flow-through membrane immunoassay

FTA flow-through assay

GBW gain–bandwidth product

GDB GNU debugger

GNU extensive collection of free software

GSH glutathione

GST-α glutathione-S-transferase alpha

HepaRG immortalized human hepatic cell line

HepG2 human hepatocyte carcinoma cell line

HPA hydroxyphenylacetic acid

HPLC high-performance liquid chromatography

HPPA 3-p-hydroxyphenylproprionic acid

HRP horseradish peroxidase

I2C inter-integrated circuit

IDE integrated development environment

iPSC-CM induced pluripotent stem cell–derived cardiomyocytes

JTAG Joint Test Action Group

KTP potassium titanyl phosphate

LDH lactate dehydrogenase

LED light-emitting diode

LQFP low profile quad flat package

LSB least significant bit

MIT Massachusetts Institute of Technology

MTP microtiter plate

Na:YVO4 neodymium-doped yttrium orthovanadate

NAPQI N-acetyl-p-benzoquinone imine

NEMA National Electrical Manufacturers Association

OEM original equipment manufacturer

OPD o-phenylenediamine

12

PBS phosphate-buffered saline

PC polycarbonate

PC personal computer

PCB printed circuit board

PDMS polydimethylsiloxane

PEEK polyether ether ketone

PEG polyethylene glycol

PMT photomultiplier tube

POF plastic optical fiber

PS polystyrene

PVA polyvinyl alcohol

PVC polyvinyl chloride

R&D research and development

RISC reduced instruction set computer

RMS root mean square

RTC real time clock

SD secure digital

SDS sodium dodecyl sulfate

SMD surface-mount device

SPI serial peripheral interface

TFT thin-film transistor

TIA transimpedance amplifier

TMB 3,3',5,5' tetramethylbenzidine

TRIS tris(hydroxymethyl)aminomethane

UART universal asynchronous receiver-transmitter

USB universal serial bus

WCA whole cyst antigens

WME Williams′ medium E

13

1 Introduction

YOU, WHO are blessed with shade as well as light, you,

who are gifted with two eyes, endowed with a knowledge of

perspective, and charmed with the enjoyment of various

colours, you, who can actually see an angle, and

contemplate the complete circumference of a Circle in the

happy region of the Three Dimensions.

 (Edwin Abbott, Flatland, 1884)

1.1 Motivation

2D cell culture schemes grow cells on flat surfaces. Such surfaces are coated with material

to promote the adherence of cells, growth, and the spread of the culture. Having been used

successfully for decades in labs, 2D culturing remains the primary method used in most

cell culturing applications. Certainly, the technology and techniques involved in 2D

culturing are straight-forward and comparatively inexpensive, and the long-standing use

of 2D cultures has generated a wealth of available literature. However, the strongest

argument in favor of 2D systems is the ease with which cells can be observed and

measured. 2D cell schemes are characteristically simpler to evaluate compared to the

widely varying and non-standard 3D cell culture systems which are currently available.

This latter point, the ease of observation and measurement, is the primary issue. The

advantages of 3D culturing are certainly numerous and can be listed in extraordinary

detail, but this does not change the fact that the observation and measurement of cells in

the majority of new 3D culturing systems is more complex, requiring more intricate 3D-

specific culturing laboratories. This, regrettably, inhibits the use of 3D culturing systems

for many laboratories which would require a complete retooling of equipment and

training for staff to be specific to the new 3D system. The ideal situation would therefore

be a 3D culturing system, which is reproducible and simple to use for interested

laboratories, and which increase the ease of observation and measurement, using the

14

automation and system integration techniques. The importance of development of new

scientific techniques was also recognized by Nobel Prize laureate Sydney Brenner:

“Progress in science depends on new techniques, new discoveries and new ideas,

probably in that order.”[1]

1.2 Thesis Aims and Objectives

At first glance, an extensive study of commercially or otherwise available automated

systems for cell culture management and analysis revealed a wide range of possibilities.

What until now is not available, however, is a device platform that combines these two

claims. In the case of 3D cell culture, such a link is necessary, since the inherent properties

of 3D cell culture make it necessary in the most cases for analysis to interrupt the

experiment. From this point of view, a combined solution of automatic cell culture

management and directly linked analytics is of great scientific interest. This is exactly

what in this thesis should be done.

The aim of this thesis is therefore to develop a new cell culturing system suitable for 3D

cell cultures which would be easy to work with and encourage more research laboratories

to transition towards 3D cell cultures. The new culturing tool must be robust, easy to

handle and provide high reliability of culturing. Additionally, reliable way of monitoring

the cell culture state by measuring the concentration of selected biomarkers should be

provided. This analysis should be performed in an automated way and on-demand to

support the concept of easy-to-use tools. The 3D culturing part and the analytical part

should be compatible and create an integral 3D culturing and analytical system. Further

objective is to design whole system in a compact and portable form, which could be used

anywhere needed. Such 3D culturing system could be advantageously in routine

preparation of 3D cell cultures or to perform toxicity assessment of various drugs towards

the 3D cultured cells. It is known that 3D cultures resemble more closely in-vivo

environment and thus toxicity tests performed on 3D cultures provide more relevant

results [2, 3]. It is obvious that both scientific aspects from the life sciences field and

engineering considerations play a role in answering such a question and play a role in the

construction of such a device platform.

15

The functionality of the developed system should be verified on real 3D cell culture and

the analytical measurement results should be verified by comparing with the results

measured by conventional analytical methods.

The prototype of culturing device should preferably support the micro-bioreactor and

MatriGrid® polycarbonate scaffolds - the tools previously developed at Ilmenau

University of Technology [4].

The automated analytic part of the system should be preferably based on the enzyme-

linked immunosorbent assay (ELISA). ELISA is a method which uses optical readout and

antibodies to detect a molecule of interest in, for example, the cell medium. More

specifically, ELISA is based on the detection of this molecule of interest in a liquid

environment by way of a liquid reagent, a reagent which creates a series of biochemical

reactions and yields a final indicator, an indicator which can be easily observed and

measured to give the amount of this molecule of interest in the liquid environment.

The problem posed for this thesis should be therefore approached from two sides, with

the life science question taking the lead and the engineering side working as an assistant

for the problems to be solved.

1.3 Thesis layout

Chapter 2, which follows this introduction reviews available 3D culturing systems with

respect to the possibility of biomarker level measurements and degree of automation.

Second part of this chapter reviews existing automated ELISA systems. Chapter 3 lies

out the concept of the analytical module, discuss the selection of its building components

and describes the assay protocol in detail. This is followed by the detailed description of

the readout system and its integration to the analytical module. The last part of chapter 3

is dedicated to the control unit design and functional explanation of underlying

electronics. Short description of associated software and corresponding software

development tools is also included. The 3D culturing unit prototype design is described

in the Chapter 4. The topology and functionality of its fluidic network is explained in

detail. This chapter also include description of the MatriGrid® scaffolds and the micro-

bioreactor tools. The initial testing and functional evaluation of the 3D culturing and

16

analytical modules are described in the Chapter 5. This includes the testing of the

culturing unit fluidics, the analytical module fluidics and readout performance evaluation.

Finally, the complete albumin ELISA was conducted by the analytical module. Few

problems were identified, which required design adjustment. Chapter 6 describes the

identification of the functionality flaws pointed out in the previous chapter and their

solving. This include the cleaning procedure improvement and the fluidic manifold

redesign. The performance improvement is demonstrated by the standard curve

measurement in the low concentration range, as well as by comparing the measurements

results with the conventional ELISA method results. The usability of the complete 3D

culturing and analytical system is demonstrated in Chapter 7. The toxicity of APAP on

the 3D grown and perfused HepaRG cell culture was evaluated over 96 hours. Again, the

results provided by the prototype system were compared to conventional ELISA protocol.

Chapter 8 discuss the drawbacks of the newly developed system and proposes

possibilities for improvement during the further development. Additionally, finished and

tested extension of the 3D culturing system, which allows parallel operation of 8 units is

described. In the Chapter 9, potential applications of the culturing and analytic systems

are discussed. The last part of the thesis is the conclusion provided in Chapter 10.

17

2 State of the art

2.1 Cell culturing systems

In general, although simpler for observation and measurement, 2D cell cultures are not

demonstrative of the real situation of cells in real 3D in-vivo environment. Mounting cells

on a flat surface is certainly a fast method to visualize growth and differentiation, however

the resulting biological system is perhaps not the most optimal to comprehend function

in the human body. For simple experiments to answer simple questions, the complexity

of 3D cultures is likely unwarranted, but it is very clear that cells in 3D behave quite

differently compared to cells which are surrounded by other cells in 3D.

This latter point is important in the context of predictivity. 2D cell systems are currently

used in numerous drug and therapy screening applications but if the system is not

demonstrative of the real situation, can the system be trusted to always be predictive? By

slightly increasing the complexity of the technology and system into 3D, in the long-term

this could decrease the price and failure-rate in clinical trials for novel drug discovery

(which succeeded in and pre-clinical study at the 2D level). Indeed, large pharma

companies devote extraordinary monetary resources each year for trials of novel drug

therapies, with the majority of such trials ending in failure. 3D culture systems could

provide a greater degree of predictivity at the pre-clinical level.

At the experimental level, a typical result of cell growth and differentiation is that cells

consume molecules form the cell media and correspondingly release waste. This media

must necessarily be changed, in almost all cases manually by the user. This disrupts the

cell culture, the hermeticity, and, due to the manual nature of the process makes large-

scale testing of the culture (for example in screening or therapeutic applications) an

impossibility. This means, a culture should be 3D to increase predictivity, but the

culturing should be automated to increase through-put and applicability to large-scale

pre-clinical testing.

Following the previous sentence in detail, there are numerous 3D cell culture and

culturing products available on the market today. However, the automation of culturing

in these products is still in its infancy. In Table 2.1, essentially all relevant 3D culturing

18

technologies, commercially or semi-commercially available, are summarized. In the

context of “Fully Automated Culturing”, this means that the cells of interest can be seeded

and the device will provide all necessary interim steps without manual user intervention.

In the context of “Fully Automated Measurement”, this means that the molecule or

molecules of interest for measurement can be sampled by the system without manual user

intervention. There is not a single instance of a system meeting both these requirements.

In extreme contrast, as will be presented in this text, the 3D-Automated Culturing and

Analysis Device (3D-ACAD) does meet both requirements.

Table 2.1 Overview of 3D culturing systems and their automation capabilities.

Company 3D area of expertise
Fully

Automated
Culturing

Fully
Automated

Measurement

3D Biomatrix
(2010, spin-off, U. of Michigan) Hanging drop plates
for the generation of 3D spheroids.

No No

3D Biotek
(2007) Inserts of various materials designed to turn
2D culture plates into 3D culture environments. Also,
3D inserts for bioreactors.

No No

Biontex Laboratories
(1998) 3D cell cultures on solid substrates, optimized
for hydrogel substrates.

No No

CellASIC
(2005, 2012 acquired by Merck) MiCA (Microfluidic
Cell Array) for 3D culture, a perfused plate for
hepatocytes.

No No

Cellec Biotek
(spin-off, U. of Basel) Bioreactors (“U-cup”s) for 3D
cell culture and tissue generation.

Yes No

Cellendes

(2009, spin-off, U. of Tubingen) 3D hydrogel
kits/components (PEG-link, CD-link, Maleimide-PVA
set, Maleimide-Dextran set), adhesion peptides. BSA-
based gels.

No No

CELLnTEC

(2002) products to improve isolation and
proliferation of undifferentiated cells, or encourage
complete differentiation in 2D or 3D cultures, using
3D (and 2D) epithelium models.

No No

Cosmo Bio
(1978) Mebiol Gel 3D, an atelocollagen-coated
scaffold for 3D culturing.

No No

Epithelix Sari
(2006, U. of Geneva) MucilAir-HF: 3D human airway
epithelia reconstituted in vitro by a co-culture of
epithelia with human fibroblasts.

No No

Geistlich Pharma AG
(1851) Orthoss, Chondro-Gide, technologies for
regeneration of bone and cartilage.

No No

Hamilton
BioLevitator, a bench-top incubator and bioreactor
hybrid utilizing magnetic Global Eukaryotic
Microcarrier (GEM) technology.

Yes No

InSphero

(2009, spin-off, U. of Zurich) GravityPLUS plates for
spheroids (scaffold-free 3D microtissues)
organotypic, for biomimetic drug testing with
embryonic stem cells.

No No

Invitrogen
Reagent, cell, and kit supplier. AlgiMatrix, Geltrex,
primary cells, stem cells.

No No

Irisbiosciences

3D cell culturing products, biomaterials, Xeno-free
polysaccharide-based hydrogels (mimsys G,
heteropolysaccharide based on Gellan Gum); mimsys
U (sulfated heteropolysaccharide from Ulva Lactuca).

No No

Kirkstall Ltd (2006, U. of Sheffield) Quasi-Vivo, system for co- Yes No

19

culture of several cell types under controlled media
flow

Kiyatec
(2005, U. of Clemson) 3D co-culture. 3DKUBE
configurations: independent chambers, segregated
co-culture, cell migration.

Yes No

MatTek Corporation

(1985, MIT) Produces in vitro human cell-derived
tissue equivalents for use in product
development/efficacy. EpiDerm-FT, a full thickness
skin model, EpiVaginal, an ectocervico-vaginal model,
and EpiOral, an oral (buccal) model.

No No

Medical Device
Company Ltd

Medical hydrogel compression devices. No No

Microtissues Inc
3D cell culture devices. Autoclavable, reusable
micromolds allowing casting 3D Petri dishes from
agarose.

No No

Nanofiber Solutions

(2009, Ohio State U.) culture plates and scaffolds for
bioreactors, scaffolds for in vivo tissue engineering
made from aligned (NanoAligned) or randomly
oriented (NanoECM) polycaprolactone electrospun
nanofibers.

No No

QuinXell Technologies
Ltd.

(2011) TisXell biaxial spherical bioreactors for
regeneration medicine and tissue engineering.
Supports various scaffolds.

No No

regenHU

3D bioprinters and biomaterials. Bioreactors and
microbioreactors. Bioink: universal matrix for 3D
tissue printings; Biofactory: bioprinters for tissue
engineering; Biomanufacturing: 3D optical biopsy
unit and tissue modeling software.

Yes No

Reinnervate
Alvetex products. Polystyrene scaffold inserts for
microplates.

No No

SCIVAX corporation

NanoCulture Plates (NCP), conventional clear
bottomed plate with an engineered micropatterned
base that encourages 3D growth and formation of
spheroids.

No No

Stemmatters Hydrogel systems based on polysaccharides. No No

TAP Biosystems
RAFT, a system to automate compression of
hydrogels in microtiter plate formats.

No No

Tecan Group Ltd

Automation of fluid and plasticware handling.
Automation of Alvetexand and RAFT collagen
scaffold-based 3D culture, automation of Hydrogel-
based 3D culture.

Yes No

TEDD Competence
Centre

(U. of Zurich) 3D cell and tissue models, assays,
imaging technologies, automation, molecular
reporter systems, biomimetic scaffold substances,
bioprinting.

No No

Vitrocell Systems
(2007) Vitrocell, equipment designed to accept 3D
cell inserts for culturing

No No

ZenBio
(1995) ZenComplete, ZenSkin, donor-specific tissue
acquisition to full thickness skin testing or 3D skin
equivalents.

No No

Zyoxel

(2009, spin-off, U. of Oxford) LiverChip, a multi-well
plate platform enabling maintenance of 3D liver
tissue cultures under constant perfusion. TissueFlex,
3D perfused cell culture under microchemostat
conditions.

Yes No

20

In contrast to many 3D culturing systems listed in Table 2.1, the 3D-ACAD design strictly

avoids the use of hydrogels or construction materials based on PDMS. Hydrogels based

on natural or synthetic polymers are commonly used in commercial 3D culturing systems

as the support matrix for cell culture. (Biontex Labotatories, Cellendes, Irisbiosciences,

Stemmaters, etc.) However, the use of hydrogel in general slows down the diffusion (or

even traps) of the biomarkers and other molecules from cells to the medium [5].

Moreover, PDMS-based technology strongly interferes with the detection of soluble

protein metabolites or markers due to absorption and adsorption [6]. To avoid these

problems, the 3D-ACAD system uses the scaffold mediated 3D culture.

2.2 Automated ELISA systems

The enzyme-linked immunosorbent assay (ELISA) is an analytical measurement method

which has existed in various forms for more than 40 years. During that time, iterations on

the method have developed ELISA into the immunoassay with the highest sensitivity and

highest specificity, leaving ELISA the clear and obvious choice to measure molecules of

interest, in particular in complex liquid environments with numerous other molecules. As

such, ELISA was the obvious choice for an automated system analyzing cell medium

from 3D cultures. The work presented in this text demonstrates the full automation of the

ELISA method, taking cures from classic automated flow systems developed previously

by Lund University in Sweden [7].

In the previous work of Lund, a fully automated immunoassay was developed by joining

flow-injection analysis with ELISA resulting in a fast flow-ELISA system. The system

utilized competitive binding between antibodies, antigens, and fixed amounts of enzyme-

labelled antigens, all in the liquid environment. Although novel for the time, the method

unfortunately relies on antibodies to be immobilized to a solid support and then to be

placed in a small column of the flow system. This does not allow for multiple assays and

multiple concentrations as the solid support is necessarily manually replaced by the user

leaving the system essentially dedicated to a single assay. Although protein interactions

were used instead of real immunochemical interactions, the system did at least show that

flow-ELISA could be suitable for on-line monitoring of biological macromolecules.

21

In the classic follow-up from Lund process integration using fermentation was studied

with on-line process monitoring of the molecule of interest, alpha-Amylase [8]. A column

of crosslinked starch was used to adsorb the a-amylase before and after specific

fermentation steps so that the concentration of a-amylase could be continuously

monitored using flow-injection and immunochemical measurement. This system,

although not technically more advanced than their previous system, did show that flow-

ELISA could be suitable for living cells (being from the fermentation process). However,

due to the industrial nature of the fermenter, only simple measurements of the

concentration were performed. Multiple parameters were not investigated and modified.

In contrast to the work of Lund, two key papers have recently claimed to have fluidic

methods which outperform ELISA and therefore both of these papers deserve a brief

comment. In the first such study, the flow-through membrane immunoassay (FMIA)

platform was utilized as an alternative to ELISA in fast high-throughput scheme [9].

However, the FMIA utilizes a 96-well vacuum plate in which the molecule of interest and

other reagents are drawn through a fixed nitrocellulose membrane. This already limits the

design of the system as the nitrocellulose the membrane must necessarily be covered in

advance with the capture molecules (concentrations therefore remain invariable).

Additionally, the capture molecules in this study are gold nanoparticle-labeled antibodies

which are then utilized for the visible assay signals. Gold-nanoparticles are toxic to

cells/cultures [10], immediately limiting the technology as the possibility of

contamination, in particular with complex (3D) cultures is too great to risk using metal

nanoparticles. On the positive side, the FMIA does provide rapid results (<30 min), but

the authors further claim to require fewer user steps than ELISA which is simply not true

if the individual steps of the FMIA are counted. Finally, the final three arguments for

FMIA over ELISA are that FMIA: 1) “provides multiple assay results (including controls)

for each sample”, and 2) “uses reagents that can be stored in stable dry form”, and

“generates visible spots that can be quantified by a camera or a flatbed scanner”. Standard

ELISA meets these criteria, and the system presented in this thesis exceeds the FMIA

parameters in all aspects.

In the second such study, a flow through assay (FTA) was developed on cellulose acetate

membranes for the cysticercosis, a parasitic tissue infection caused by larval cysts of the

tapeworm [11]. FTA was claimed to be as good as ELISA in such a situation. Trying both

22

cyst fluid antigens (CFA) and whole cyst antigens (WCA) in the FTA, the assay consisted

of (very similar to the previous alternative method) an antigen coated onto a membrane

and then the membrane being mounted on a flow-through device. The membrane is again

the assay capture matrix, with the criticisms from the previous paragraph still valid in this

case. Although not as toxic as nano-particles, a colloidal gold conjugate was used as the

antigen-antibody reagent for detection – again, possibly not ideal for cell cultures. The

authors showed that between CFA and WCA, that results in the FTA were better with CFA

(96.0% sensitivity; 96.0% specificity) compared to WCA (92.0% sensitivity; 96.0%

specificity). These results were then compared to tests performed using ELISA. The

ELISA showed 96 per cent sensitivity with both the antigens. This demonstrates that FTA

is not superior to ELISA, the FTA simply has a sensitivity and specificity which agrees

closely with the results of the ELISA, and only under certain conditions. Indeed, as the

authors say, “The highest diagnostic accuracy (96%) was obtained with CFA-FTA and

CFA-ELISA”. However, the FTA is by no means fully automated as the work presented

here.

More recently, four proof of concept studies were published, using the electrochemical

sensor as the means of readout. Lebogang at all (2017) uses the Separose™ beads filled

into micro column for the quantification of microcystin-LR [12]. The setup is based on

flow-ELISA with amperometric sensor and 2,2’-azinobis-(3-ethylbenzothiazoline-

sulfonic acid) (ABTS) as the substrate. The run time of automated sequential flow assay

is 20min. The setup does not provide means for parallel measurements and it can be

regarded as single channel system. The amperometric sensor is connected to laboratory

potentiostat and can perform up to 6 measurements without significant accuracy

degradation. The setup is based on standard laboratory equipment and it is not portable.

Riahi at all (2016) uses flow-ELISA in combination with PDMS microfluidic chips to

measure transferrin and albumin levels in hepatocyte culture medium [13]. Disposable

magnetic beads are used as the solid phase and electrochemical amperometric sensor

connected to the potentiostat as the detector. The system comprises microfluidic

bioreactor for perfusing 2D hepatocyte culture. Similarly, to previously described system,

the setup was designed as single channel quantitation tool. The supporting equipment is

not integrated with the fluidic part.

23

The works presented by Shin at all (2017) and Zhang at all (2017) use the same

electrochemical sensor design with functionalized surface by antibodies to achieve

specific selectivity for detection of desired biomarkers [14, 15]. The sensor uses the

electrochemical impedance measurement as the means of detection. Other common

features are automated flow-ELISA architecture and the use of microfluidic chips based

on PDMS material. The system presented by Shin was designed to measure the

concentration of albumin and glutathione-S-transferase-alpha (GST-α) in samples from

hepatic culture bioreactor. The multiparameter sensing capability was extended in work

presented by Zhang, where additional measurement of cardiac biomarker creatine kinase

MB (CK-MB) was included, together with three environmental sensors (temperature, pH

and dissolved O2). Separate, gel-based 3D hepatocyte HepG2 culture and cardiomyocyte

culture (iPSC-CMs) were grown in micro bioreactors and perfused in one common loop.

The functionalized immunosensors saturate after several measurements and require

invasive in-situ regeneration process where the thin layer surface of gold electrode is

etched out. As the consequence, the sensor lifetime (number of regeneration cycles) is

reduced. However, it was demonstrated that 25 regeneration cycles cause no significant

loss of functionality. Both systems, despite being capable of multiparameter sensing,

provide no more than single channel, meaning no support for parallel sample

measurement. The complexity and handling requirements of those systems are extensive.

The use of PDMS material is not optimal for cell culture systems due to problems

associated with adsorption and absorption of hydrophobic small molecules and drugs [6,

15, 16]. This becomes the limiting factor during long experiments and low biomarker

concentrations. For long term 3D cell culture experiments, a reliable and robust culture

and analysis platform is needed, which is hard to achieve using PDMS technology.

Moreover, contamination is a major problem that arises in most modern culture and

analysis devices due to complex handling of units during cell seeding/harvesting, medium

exchange and sale collection [17]. The immuno-electrochemical sensors technology,

despite the excellent sensitivity they provide, is not matured and the stability of those

sensors is not sufficient for use in measurement equipment where the reliability and

robustness is the priority. The principal disadvantage of single channel system is the lack

of concurrent calibration. The sensor must be calibrated prior to sample measurement and

recalibrated in regular intervals to avoid the loose of accuracy. This becomes even more

important for sensors with reduced stability.

24

In summary, the presented work here aimed to develop a fully automated and robust

device (the 3D-ACAD) which combines 3D cell culture with a fully automated perfusion,

medium change, ability for repeated drug applications, sampling, and followed by an

automated flow-ELISA for detection of cell-derived albumin for the assessment of

hepatotoxicity. In comparison to other works, this device was focused on developing a

scaffold-based 3D-culture-and analysis system which allows good accessibility of the

drug to the cells, minimizing adsorption and absorption of small molecules, drugs, and

biomolecules inside the closed system. Additionally, the readout system is based on robust

optical sensing principle designed for multi-channel operation, with inherent calibration.

In contrast to some of the problems and methods discussed above, the ELISA analyzer

module in this work has been designed in such a way that almost any commercially

available ELISA assay kit can be used with this system and therefore made available to a

wide range of users rather than using custom membranes and custom assays.

25

3 Designing the prototype of the ELISA analytical device

3.1 Introduction

This chapter describes the development and design of the prototype of the automated

ELISA analytical device, including the associated electronic control unit. The purpose of

the prototype device is to verify the possibility of automated ELISA assay in a flow-

through configuration. The prototype device was preferentially built from commercially

available components, rather than custom components, allowing for rapid improvements

and modifications in trial versions of the system. The following text describes the design

of the fluidic part along with the sandwich ELISA details and the design of the integrated

fluorimeter as the means of readout. The associated control unit schematics, layout and

the embedded software are also briefly described.

3.2 Fluidics

The design of the fluidics must support all fluidic operations required by the typical

ELISA procedure. This includes sequential transfer of the capture antibody, the analyte,

the labeled antibody, and the substrate into the reaction chamber. Thorough washing of

the fluidic paths is very important. The fluidic designs must enable efficient washing to

prevent cross contamination of the fluidic paths by different regents.

3.2.1 Selected Elisa Assay

For the detection of albumin in the cell culture medium the commercial Human Albumin

Quantitation Set (Bethyl, E80-129) was selected. The analyzer device is supposed to

replicate the protocol recommended by the manufacturer. It is based on the sandwich

ELISA assay (Figure 3.1) using the Goat anti-Human Albumin Coating Antibody, human

reference serum and the HRP labelled Goat anti-Human Albumin Detection Antibody.

Useful quantitation range lies inside the concentration interval from 6,25 ng/ml to 400

ng/ml of albumin.

26

Ag

E

Substrate

Capture
antibody

Secondary
antibody
conjugate

Figure 3.1 Sandwich ELISA principle.

The assay protocol as recommended by the manufacturer comprises the following steps:

1. Coat the plate using the primary (capture) antibody

2. Incubate the plate at room temperature 1 hour

3. Wash the plate five times

4. Coat the plate using the blocking solution

5. Incubate 30min at room temperature

6. Wash the plate five times

7. Add samples and standards to plate wells

8. Incubate 1hour at room temperature

9. Wash the plate five times

10. Add HRP conjugated (detection) antibody to the plate wells

11. Incubate 1 hour at room temperature

12. Wash the plate five times

13. Add the substrate solution to the plate wells

14. Develop the plate 15 min

15. Stop the reaction adding the stop solution to the plate wells

16. Measure the absorbance or fluorescence (depending on the used substrate) using

plate reader.

This protocol uses MTP as the solid phase reaction carrier assuming the fluid operations

are performed by the pipetting operations. The protocol needs to be adapted for the flow-

through configuration to address the different means of liquid handling. On the other side,

the fluidic components should be selected with regard to assay protocol requirements.

27

In order to automate the assay, one could choose to use pipetting robots, complex

machines optimized for using MTPs and automated pipetting. However, pipetting robots

tend to be large in size and quite expensive, and trained personnel are necessary to operate

such robots. Furthermore, many biological experiments simply require the monitoring of

some metabolic indicator in the cell culture medium at regular intervals and for such a

trivial task, the use of pipetting robots would be a unnecessarily expensive investment

and not economically justified. Therefore, there is a need for a smaller, simpler device

which could provide repeated and automated analysis using e.g. ELISA as the analysis

method. One way to achieve this goal is to utilize a flow-through configuration. The

pipetting operations are eliminated this way and replaced by the pumps and valves as the

means of liquid handling according to required protocol. This configuration is rarely

utilized because it creates new challenges – e.g. to avoid cross contamination of the

commonly used fluidic paths or cleaning the fluidics after the end of essay. Careful choice

of the fluidics material, components and washing procedures is very important to

successfully implement of selected assay in the flow-through configuration analytic

device.

3.2.2 Selection of the fluidic components

In the first step of the ELISA protocol, the capture antibody needs to be bound to a solid

surface (also referred to as solid phase). Various materials have been used for this purpose

– polystyrene (PS) and polyvinyl chloride (PVC) are among the most commonly used

[18]. For the implemented flow-through configuration the 20µl size PVC capillary (SC-

Sanguia Counting, Type 100024) was chosen as the solid phase component. PVC and PS

are reported to have a high protein binding capacity. The selected volume is sufficiently

high to enable the measurement by the optical readout device, but reasonably small to

save expensive reagents. The selected PVC capillary had internal diameter of 0.96 mm,

outside diameter 1.8 mm and are approximately 28 mm long.

3.2.2.1 Tubing selection

The appropriate tubing material for this application needs to have a low protein binding

capacity. The ELISA protocols usually use highly diluted antibody solutions. It is

therefore important that binding of antibodies to the tubing walls be minimized to prevent

28

the depletion of reagent solution and also to prevent unwanted reactions inside the tubing.

The tubing material should be also chemically inert to withstand cleaning and protein

desorption operations. Optimal material properties for this application has the flexible

polymer with a trade name C-Flex manufactured by the Saint Gobain Performance

plastics [19]. This polymeric compound is based on hydrogenated styrene/isoprene-

butadiene/styrene block copolymer and belongs to the thermoplastic elastomers group. It

is highly biocompatible, has low protein binding capacity, and sufficient chemical

resistance. Moreover, it is also compatible with the selected pinch solenoid valves of the

system designed here. Another material used in the manifold construction is the Teflon

FEP. It is characterized by excellent chemical resistance, high temperature processability

and low protein binding capacity compared to other standard materials. The tubing

internal diameter should be small to minimize dead volume on one side, but of sufficient

size to prevent clogging by eventual precipitates. The internal diameter of 0.58 mm

seemed to be a good compromise and was therefore chosen for this application.

3.2.2.2 Active fluidic components

An analytical flow-through device is expected to use a rather higher number of fluidic

paths. The switching between different fluidic paths as required by the ELISA protocol is

realized by use of two-way and three-way valves. For practical reasons, only solenoid

(electromechanically operated) isolation valves were considered. Important requirements

for our selected valves were low dead volume and biocompatibility of all the wetted parts.

A low footprint area and a low power operation are of secondary importance. The use of

pinch valves over traditional seat or membrane valves is preferred for truly zero dead

volume and very simple washing and maintenance. The pinch valves manufactured by

Bio-Chem Fluidics Inc. perfectly fit all these requirements. The 19 mm diameter valves

optimized for 0.5mm internal diameter C-Flex tubing were selected: the type

075P2NC12-23B is normally closed two-way valve and the type 075P3MP12-23B is the

three-way valve (Figure 3.2). The valves require 12 V / 240 mA (2.9 W) for switching,

after that the power can be reduced to 5 V / 100 mA (0.5 W) to hold the valve in the

switched position. The tubing can be easily inserted to or removed from the valve head.

29

Figure 3.2 Selected types of the 2-way (left) and 3-way (right) solenoid valves

The pump selection is primarily dictated by the flexibility. It is required to operate in a

wide flow-rate range (10 µl/min to 1000 µl/min), the precise (accuracy 10% of pumped

volume is sufficient) and predictable dosing must be possible and reverse operation is

also required. Similarly, as in the case of the valves, all wetted parts must be

biocompatible and have sufficient chemical resistance. The low protein binding property

is not required for the pump. The syringe pumps and the peristaltic pump are principally

suitable for this application, however the peristaltic pump is preferred over the syringe

pump because the pumped volume can be unlimited and does not depend on the syringe

size. Syringe pumps are more precise and have more uniform flow-rate compared to

peristaltic pumps, which makes the very suitable for segmented flow and microfluidic

applications. The pumping accuracy of the peristaltic pump is mainly dependent on the

accuracy of controlling its rotor speed and position. For that reason, peristaltic pumps

using a DC motor or asynchronous AC motor are not suitable. The preferred motor for

controlling the peristaltic pump suitable for the ELISA analyzer is a DC stepper motor,

because a stepper motor is synchronous, the rotor position depends only on the number

of step pulses issued by the motor controlled and is independent of the mechanical load

(to a certain maximum limit). Suitable stepper motor controlled peristaltic pump heads

are manufactured by the company Boxer GmbH and the type 61131.000 was selected for

use in the analyzer (Figure 3.3). It is powered by NEMA23 size stepper motors with 200

steps per revolution. The pump head uses the pharmed tubing with internal diameter of

0.5 mm arranged in four independent channels. The measured pumped volume is 12.5 µl

per revolution. The calculated motor speed for the flow-rate 10 µl/min is 0.8 rpm or 160

30

steps/min and the calculated motor speed for the maximum flow-rate 1000 µl/min is 80

rpm or 16000 steps/min.

Figure 3.3 Selected stepper motor driven peristaltic pump

3.2.3 Fluidic Topology

Figure 3.4 shows schematically the complete fluidic topology of the prototype analyzer

device. It accomplishes all steps of the sandwich ELISA protocol for seven samples

and/or analyte standards. Special attention was paid to the design of the washing and

cleaning operations. The whole fluidic subsystem is composed of the following

components:

• Two peristaltic pumps (type 61131.0000, Boxer GmbH)

• 19 two-way normally closed solenoid pinch valves (075P2NC12-23B, Bio-Chem

Fluidics Inc.)

• One three-way solenoid pinch valve (075P3MP12-23B, Bio-Chem Fluidics Inc.)

• Four nine-port manifolds (P-191, IDEX Health & Science)

• Two 50ml polypropylene containers – one for the washing buffer and one for the

waste.

• Eleven 2ml polypropylene containers – seven for the samples or analyte standards

and four for sandwich ELISA reagents.

• Eight replaceable 20µl PVC capillaries (Type 100024, SC-Sanguia Counting)

• C-Flex tubing, internal diameter 0.58mm (type 10025-23B, Bio-Chem Fluidics

Inc.)

31

V
1

V
2

V
3

V
4

V
5

V
6

V
7

1 2 3 4 5 6 7

C
O

A
TI

N
G

B
LO

C
K

IN
G

C
O

N
JU

G
A

TE

SU
B

ST
R

A
TE

V
1

7

V
1

8

V
1

9

V
2

0

V
2

1
W

A
SH

IN
G

 P
U

M
P

WASHING AIR

V
9

V
1

0

V
1

1

V
1

2

V
1

3

V
1

4

V
1

5

V
1

6

C
A

P
IL

LA
R

Y1

C
A

P
IL

LA
R

Y2

C
A

P
IL

LA
R

Y3

C
A

P
IL

LA
R

Y4

C
A

P
IL

LA
R

Y5

C
A

P
IL

LA
R

Y6

C
A

P
IL

LA
R

Y7

C
A

P
IL

LA
R

Y8

WASTE
MAIN PUMP

SAMPLE MANIFOLD REAGENT MANIFOLD CAPILLARY MANIFOLD

WASTE MANIFOLD

N

C

N
O

SAMPLES

Figure 3.4 The fluidic topology of the analyzer based on the ELISA protocol

The operation of this fluidic network is relatively simple. The valves V17 to V20 select

which reagent will be transferred to the selected capillary. The valves V1 to V7 select

which sample or analyte standard will be transferred to the selected capillary. Normally,

only one valve from the groups V1 to V7 and V17 to V20 will be open at the same time.

The valves V9 to V16 select the destination capillary into which the fluid will be pumped.

The main Pump is the pump used for the transfer of selected sample or reagent into

selected capillary. The washing pump is stopped during this operation. The washing pump

is used to wash all the fluidic paths and capillaries using the washing buffer. When some

capillary needs to be washed, one of the valves V9 to V16 corresponding to selected

capillary will be opened and both the main pump and the washing pump will be started

at the same speed. By opening the valve V21 during the washing procedure, it is possible

to empty the whole fluidic network. Capillary 8 has a special purpose as it is used as the

fluidic bypass during the washing operations – in case capillaries 1 to 7 are filled with

reagents according to the protocol and in case it is also necessary to wash the manifold

common fluidic paths. Then capillary 8 is used to drain the washing solution to the waste.

This way the washing of the common fluidic paths can be realized without disturbing the

content of the other capillaries.

For example, if the protocol requires to pump a conjugated antibody into capillary 2, the

following sequence will be executed: V19 will be open to connect the conjugate antibody

to the fluidic network, V10 will be also open to enable the flow through the capillary 2

and the Main Pump will be instructed to pump a calculated amount of reagent so that

capillary 2 will be filled with it. All remaining valves are in the closed position and the

washing pump is stopped.

32

Because this prototype analyzer version contains only seven capillaries available for the

measurement, it is possible to measure only seven points in one run. Those seven points

comprise the actual samples as well as the concentration standards. A typical

configuration is to use the 5 capillaries to measure points of the standard curve and the

remaining two capillaries can be used to measure samples automatically taken from the

two culturing units (described in the Chapter 4)

The following section describes the complete sandwich ELISA protocol optimized for

this flow-through configuration in detail. The specific flow-rates and volumes used in the

protocol are dependent on the fluidic network physical size, taking into account the dead

volume of the fluidic paths, and preventing a significant pressure drop over the fluidic

network.

3.2.4 Flow-through optimized sandwich ELISA protocol

3.2.4.1 Step 1 – Coating the capillaries with the capture antibody.

The first step of the human albumin ELISA protocol coats the walls of capillaries (solid

phase) with the capture antibody. The capture antibody as purchased (A80-129A-11,

Bethyl Inc.) was diluted with the coating buffer in the ratio 1:100. The coating buffer has

the following composition:

Coating Buffer:

• 50 mM Na2CO3

• pH adjusted to 9.6 using HCl or NaOH

During step 1 the diluted capture antibody is pumped to capillaries 1 to 7 using the

following sequence:

• Valves V16 and V17 will open, all other valves remain closed (unpowered)

• The main pump will be activated to pump 300 µl at the speed of 350 µl/min of

diluted capture antibody solution through the reagent and capillary manifolds to

capillary 8. The purpose is to fill the fluidic paths and manifolds with the reagent.

33

• The valve V16 will be closed again and the valve V9 will open

• The main pump will be activated to pump 50 µl at the speed of 100 µl/min of

diluted capture antibody solution to capillary 1. The pumping speed is reduced to

prevent turbulent flow through the capillary

• The previous step will be repeated six more times to fill the capillaries 2 to 7 in

the serial sequence. The corresponding valves V10 to V15 will be used instead of

the valve V9.

The flow path of step 1 for filling capillary 1 is illustrated in Figure 3.5. During this step

all the capillaries are filled with the capture antibody solution. The total duration of step

1 is 4 minutes and 28 seconds. 700 µl of the capture antibody reagent is consumed in the

first step.

V
1

V
2

V
3

V
4

V
5

V
6

V
7

1 2 3 4 5 6 7

C
O

A
TI

N
G

B
LO

C
K

IN
G

C
O

N
JU

G
A

TE

SU
B

ST
R

A
TE

V
1

7

V
1

8

V
1

9

V
2

0

V
2

1
W

A
SH

IN
G

 P
U

M
P

WASHING AIR

V
9

V
1

0

V
1

1

V
1

2

V
1

3

V
1

4

V
1

5

V
1

6

C
A

P
IL

LA
R

Y1

C
A

P
IL

LA
R

Y2

C
A

P
IL

LA
R

Y3

C
A

P
IL

LA
R

Y4

C
A

P
IL

LA
R

Y5

C
A

P
IL

LA
R

Y6

C
A

P
IL

LA
R

Y7

C
A

P
IL

LA
R

Y8

WASTE
MAIN PUMP

SAMPLE MANIFOLD REAGENT MANIFOLD CAPILLARY MANIFOLD

WASTE MANIFOLD

N

C

N
O

SAMPLES

Figure 3.5 Flow path for filling capillary 1 with the capture antibody during step 1. Capillaries 2 to

7 are subsequently filled using the valves V10 to V15 instead of V9.

3.2.4.2 Step 2 – Incubation of the capture antibody.

During step 2, the dissolved capture antibodies in the capillaries are adsorbed on the

surface of the PVC capillaries. The incubation period is 15 min and takes place at room

temperature. The schematic picture of the ELISA after step 2 is shown in Figure 3.6.

PVC capillary wall
Capture antibody

Figure 3.6 The first step of sandwich ELISA - the capture antibody was attached to the solid phase.

34

The incubation time remains constant for all capillaries despite the serial way of filling

the capillaries and the non-negligible pumping time. This is achieved by keeping the

capillary filling speed the same for the steps before and after the incubation period. The

incubation period is only slightly extended by the time required to fill the manifold and

drain capillary 8 of the liquid, which is the duration of the first part of the sequence

following the incubation (usually 75 seconds). The incubation time can be easily

corrected for this increase if needed. The timing of the first three steps of the ELISE

sequence: the coating with capture antibody, the incubation and the washing is shown in

Figure 3.7. The same principle is used also in the following parts of the ELISA sequence.

Figure 3.7 The beginning of the ELISA sequence – capture antibody coating (blue), incubation period

(green) and the first part of the washing (orange). The time between the start of coating and the

capillary with antibody to the washing of the same capillary is constant for all channels.

3.2.4.3 Step 3 – Washing

After the capture antibody was attached to the solid phase, the fluidic paths and the

capillaries need to be washed to remove all residuals of the capture antibody reagent. The

cleaning is performed using the washing buffer of the following composition:

Washing Buffer:

• 50 mM Tris(hydroxymethyl)aminomethane (TRIS)

• 140 mM NaCl

• pH adjusted to 8.0 using HCl or NaOH

During this washing step the washing buffer is pumped to all capillaries using the

following sequence:

35

• The valve V16 will open and the valve V21 will switch to the washing container

fluidic path, all other valves remain closed (unpowered)

• The main pump and the washing pump will be simultaneously activated to pump

500 µl at the same speed of 400 µl/min. This will wash the sample manifold, the

reagent manifold and the capillary manifold. The washing buffer will be pumped

through capillary 8.

• The valve V16 will be closed again and the valve V9 will open

• The main pump and the washing pump will be simultaneously activated to pump

50 µl at the same speed of 100 µl/min. This will wash capillary 1 at low speed to

not desorb the attached antibodies.

• The previous step will be repeated six more times to wash capillaries 2 to 7 in the

serial sequence. The corresponding valves V10 to V15 will be used instead of the

valve V9.

This washing procedure is repeated two times during the step 3. The total time required

to complete step 3 is 9 minutes and 42 seconds. 1700 µl of washing buffer is consumed

during this time. The Figure 3.8 shows the washing flow path.

V
1

V
2

V
3

V
4

V
5

V
6

V
7

1 2 3 4 5 6 7

C
O

A
TI

N
G

B
LO

C
K

IN
G

C
O

N
JU

G
A

TE

SU
B

ST
R

A
TE

V
1

7

V
1

8

V
1

9

V
2

0

V
2

1
W

A
SH

IN
G

 P
U

M
P

WASHING AIR

V
9

V
1

0

V
1

1

V
1

2

V
1

3

V
1

4

V
1

5

V
1

6

C
A

P
IL

LA
R

Y1

C
A

P
IL

LA
R

Y2

C
A

P
IL

LA
R

Y3

C
A

P
IL

LA
R

Y4

C
A

P
IL

LA
R

Y5

C
A

P
IL

LA
R

Y6

C
A

P
IL

LA
R

Y7

C
A

P
IL

LA
R

Y8

WASTE
MAIN PUMP

SAMPLE MANIFOLD REAGENT MANIFOLD CAPILLARY MANIFOLD

WASTE MANIFOLD

N

C

N
O

SAMPLES

Figure 3.8 Flow path used for washing the capillary 1. Capillaries 2 to 7 are washed in the same

manner using the valves V10 to V15 instead of V9.

3.2.4.4 Step 4 - Blocking the capillaries with the bovine serum albumin (BSA)

The coverage of the solid phase with the capture antibody performed in the steps 1 and 2

leaves a lot of binding sites on the surface free. The purpose of blocking step is to saturate

those free sites with the BSA which is inactive in the assay. This greatly reduces the

36

interference and lowers the background reading. The blocking solution has the following

composition:

Blocking buffer:

• 50mM Tris(hydroxymethyl)aminomethane (TRIS)

• 150mM NaCl

• 1% Bovine serum albumin (BSA)

• pH adjusted to 8,0 using HCl or NaOH

The fluidic operation to complete step 4 is very similar to the first step. It differs in using

the blocking reagent instead of the capture antibody reagent. The exact sequence of the

step 4 is following:

• Valves V16 and V18 will open, all other valves remain closed (unpowered)

• The main pump will be activated to pump 300 µl at the speed of 350 µl/min of the

blocking buffer through the reagent and capillary manifolds to the capillary 8.

• The valve V16 will be closed again and the valve V9 will open

• The main pump will be activated to pump 50 µl at the speed of 100 µl/min of the

buffer solution to the capillary 1.

• The previous step will be repeated six more times to fill the capillaries 2 to 7 in

the serial sequence. The corresponding valves V10 to V15 will be used instead of

the valve V9.

The step 4 flow path for filling the capillary 1 is illustrated on the Figure 3.9. During this

step all the capillaries are filled with the blocking buffer solution. The total duration of

step 1 is 4 minutes and 28 seconds. 700 µl of the blocking reagent is consumed in the step

4.

37

V
1

V
2

V
3

V
4

V
5

V
6

V
7

1 2 3 4 5 6 7

C
O

A
TI

N
G

B
LO

C
K

IN
G

C
O

N
JU

G
A

TE

SU
B

ST
R

A
TE

V
1

7

V
1

8

V
1

9

V
2

0

V
2

1
W

A
SH

IN
G

 P
U

M
P

WASHING AIR

V
9

V
1

0

V
1

1

V
1

2

V
1

3

V
1

4

V
1

5

V
1

6

C
A

P
IL

LA
R

Y1

C
A

P
IL

LA
R

Y2

C
A

P
IL

LA
R

Y3

C
A

P
IL

LA
R

Y4

C
A

P
IL

LA
R

Y5

C
A

P
IL

LA
R

Y6

C
A

P
IL

LA
R

Y7

C
A

P
IL

LA
R

Y8

WASTE
MAIN PUMP

SAMPLE MANIFOLD REAGENT MANIFOLD CAPILLARY MANIFOLD

WASTE MANIFOLD

N

C

N
O

SAMPLES

Figure 3.9 Flow path for filling the capillary 1 with the blocking buffer. Capillaries 2 to 7 are

subsequently filled using the valves V10 to V15 instead of V9.

3.2.4.5 Step 5 – Blocking Incubation

During incubation time the BSA will saturate the surface of the solid phase and it will

block all free binding places not occupied by the capture antibody. The blocking

incubation time is 30 min and the operation is also made at room temperature. The

schematic picture of the ELISA after step 5 is shown on the Figure 3.10.

Capture antibody

PVC capillary wallPVC capillary wall Bovine serum albumin

Figure 3.10 Situation at the capillary surface after blocking step. No free place is left on the surface

for binding more proteins.

3.2.4.6 Step 6 – Washing

After the completion of the blocking step, the washing is needed again to clean the fluidic

paths and to remove the blocking solution from the capillaries. This washing step is

exactly the same as the washing described in the step 3. Again, it requires 9 minutes and

42 seconds and 1700 µl of washing buffer to complete.

38

3.2.4.7 Step 7 – Filling the capillaries with human serum albumin samples

During this step the analyte samples held in the containers 1 to 7 will be transferred one

by one to respective capillaries 1 to 7. Until now the procedure was the same for all 7

capillaries. Starting from this step each capillary will have different protein compositions

on the surface, depending on the analyte composition.

The fluidic topology as designed contains 8 capillary channels. The capillary 8 is not used

for the measurement and serves as the draining the fluid through manifolds while not

affecting the capillaries 1 to 7, which are the actual measurement channels. The typical

ELISA procedure includes the standard curve measurement along with the samples

containing unknown concentration of the analyte. The standard curve serves as way of

concentration calibration. The standards curve is created by measurement of a series of

standards with different but known concentration of analyte. The seven available channels

of the proposed device can be allocated either to the sample or standard measurement.

The configurations providing reasonable measurement accuracy are: 6 standards + 1

sample, 5 standards + 2 samples or 4 standards + 3 samples.

The sample source

There are two ways in which the sample solution can be interfaced to this analytic device:

The sample can be place in a small container directly in the device. This is the way the

concentration standards are connected to the device. Alternatively, and preferably the

fluidic connection is used to interface the culturing unit (see the Chapter 4) with the

selected sample valve (V1 to V7). This will enable the automated sample feeding from

the culturing unit to the analytic device. In this case the volume of pumped sample is

increased to compensate for the dead volume of the inter-module fluidic connection.

The step 7 will start with the transfer of the sample 1 to capillary 1 according this sequence

(Figure 3.11):

• Valves V1 and V16 will open, all other valves remain closed (unpowered)

• The main pump will be activated to pump 300 µl at the speed of 350 µl/min of the

first sample solution through the reagent and capillary manifolds to the capillary

8.

39

• The valve V16 will be closed again and the valve V9 will open

• The main pump will be activated to pump 50 µl of the sample 1 solution at the

speed of 100 µl/min of to the capillary 1.

• Valve V9 will close

V
1

V
2

V
3

V
4

V
5

V
6

V
7

1 2 3 4 5 6 7

C
O

A
TI

N
G

B
LO

C
K

IN
G

C
O

N
JU

G
A

TE

SU
B

ST
R

A
TE

V
1

7

V
1

8

V
1

9

V
2

0

V
2

1
W

A
SH

IN
G

 P
U

M
P

WASHING AIR

V
9

V
1

0

V
1

1

V
1

2

V
1

3

V
1

4

V
1

5

V
1

6

C
A

P
IL

LA
R

Y1

C
A

P
IL

LA
R

Y2

C
A

P
IL

LA
R

Y3

C
A

P
IL

LA
R

Y4

C
A

P
IL

LA
R

Y5

C
A

P
IL

LA
R

Y6

C
A

P
IL

LA
R

Y7

C
A

P
IL

LA
R

Y8

WASTE
MAIN PUMP

SAMPLE MANIFOLD REAGENT MANIFOLD CAPILLARY MANIFOLD

WASTE MANIFOLD

N

C

N
O

SAMPLES

Figure 3.11 Fluidic path for transferring the sample 1 into the corresponding capillary 1

After the sample 1 has been transferred to the capillary 1 and before the transfer of sample

2 to corresponding capillary 2 the fluidic paths must be washed to avoid the cross

contamination of the samples. This “washing after sample” procedure is performed after

each sample transfer and has the following sequence:

• The valve V16 remains open after the previous sample transfer. All other valves

stay closed.

• The main pump and the washing pump will be simultaneously activated to pump

350 µl at the same speed of 350 µl/min. This will empty the fluidic path inside the

sample manifold, reagent manifold and capillary manifold. The liquid will be

drained through the capillary 8.

• The valve V16 will close and the valve V9 will open

• The washing pump will be activated to pump 3 µl at the speed of 100 µl/min. This

will make small air gap inside the capillary manifold from the common fluidic

path towards the fluidic path of the capillary 1.

• The valve V9 will close and the valve V1 will open

• The washing pump will be activated to pump 50 µl at the speed of 100 µl/min.

This will make small air gap inside the sample manifold from the common fluidic

path towards the fluidic path of the sample 1.

40

• The valve V1 will close and the valves V16 and V21 will open

• The main pump and the washing pump will be simultaneously activated to pump

500 µl at the same speed of 350 µl/min. This will wash the sample manifold, the

reagent manifold and the capillary manifold common fluidic paths. The washing

buffer will be pumped through the capillary 8.

• The valve V21 will close

In this moment the transfer of the sample 1 to the capillary 1 has been finished and the

fluidic paths were washed and transfer of the sample 2 to the capillary 2 can take place.

The sequence of emptying the flow path is depicted on Figure 3.12.

V
1

V
2

V
3

V
4

V
5

V
6

V
7

1 2 3 4 5 6 7

C
O

A
TI

N
G

B
LO

C
K

IN
G

C
O

N
JU

G
A

TE

SU
B

ST
R

A
TE

V
1

7

V
1

8

V
1

9

V
2

0

V
2

1
W

A
SH

IN
G

 P
U

M
P

WASHING AIR

V
9

V
1

0

V
1

1

V
1

2

V
1

3

V
1

4

V
1

5

V
1

6

C
A

P
IL

LA
R

Y1

C
A

P
IL

LA
R

Y2

C
A

P
IL

LA
R

Y3

C
A

P
IL

LA
R

Y4

C
A

P
IL

LA
R

Y5

C
A

P
IL

LA
R

Y6

C
A

P
IL

LA
R

Y7

C
A

P
IL

LA
R

Y8

WASTE
MAIN PUMP

SAMPLE MANIFOLD REAGENT MANIFOLD CAPILLARY MANIFOLD

WASTE MANIFOLD

N

C

N
O

SAMPLES

1

23

Figure 3.12 After the sample 1 has been transferred to the corresponding capillary 1, the fluidic path

will be emptied in three steps: 1st – the fluid is pumped out of all manifolds through the capillary 8,

2nd – the side arm of the capillary manifold is emptied by introducing a small air gap, 3rd – the side

arm of the sample manifold is also emptied. Subsequent washing of the common fluidic path (marked

as red “1” on the figure) completes the “washing after sample” sequence.

The step 7 then continues with transferring of sample 2 to the capillary 2 followed by the

“washing after sample” sequence again. This scheme is repeated until all seven samples

are transferred to their corresponding capillaries. The step 7 consumes 350 µl of each

sample and 3500 µl of washing buffer. The total time required for completion of this

sequence step is 30 minutes and 55 seconds.

3.2.4.8 Step 8 – Sample Incubation

During this incubation time the human serum albumin contained in the sample bonds to

the capture antibody. The number of the antibody-albumin pairs will be different in each

41

capillary depending on the albumin concentration in the samples. The samples must be

sufficiently diluted so that even for the maximum sample albumin concentration the

antibody binding capacity will be not exceeded at the end of the incubation time, which

is set to 15 minutes. The incubation takes place at room temperature. The schematic

picture of the ELISA after step 8 is shown on the Figure 3.13.

Capture antibody

PVC capillary wallPVC capillary wall

Bovine serum albumin

Human serum albumin

Figure 3.13 Situation at the capillary surface at the end of sample incubation time. The human serum

albumin is selectively bonded to the capture antibody. Ideally there is no other possibility for the

albumin to bond.

3.2.4.9 Step 9 – Washing

The sample incubation is followed by washing again. This washing uses the sequence

described the step 3. This washing step requires 9 minutes and 42 seconds and 1700 µl of

washing buffer to complete – same values are used in the step 3.

3.2.4.10 Step 10 – Filling the capillaries with enzyme labeled secondary antibody.

The secondary antibody binds specifically to the human serum albumin. The amount of

bonded antibody will be therefore directly proportional to the amount of human serum

albumin already bonded to the capture antibody. If the sample contained no human serum

albumin, no secondary antibody will be bonded and it will be washed away in the

following steps. This secondary antibody has covalently bonded HRP enzyme which later

allows substrate conversion to a colored dye. The secondary antibody as purchased (A80-

129P-30, Bethyl Inc.) was diluted with the blocking buffer (described in the step 4) in the

ratio 1:105.

During step 10 the diluted secondary antibody is pumped to capillaries 1 to 7 using the

following sequence:

42

• Valves V16 and V19 will open, all other valves remain closed (unpowered)

• The main pump will be activated to pump 300 µl at the speed of 350 µl/min of

diluted secondary antibody solution through the reagent and capillary manifolds

to the capillary 8.

• The valve V16 will be closed again and the valve V9 will open

• The main pump will be activated to pump 50 µl at the speed of 100 µl/min of

diluted capture antibody solution to the capillary 1. Low pumping speed prevents

disturbing the surface layer.

• The previous step will be repeated six more times to fill the capillaries 2 to 7 in

the serial sequence. The corresponding valves V10 to V15 will be used instead of

the valve V9.

The step 10 flow path for filling the capillary 1 is illustrated on the Figure 3.14. During

this step all the capillaries are filled with the secondary antibody solution. The total

duration of step 10 is 4 minutes and 28 seconds. 700 µl of the secondary antibody reagent

is consumed.

V
1

V
2

V
3

V
4

V
5

V
6

V
7

1 2 3 4 5 6 7

C
O

A
TI

N
G

B
LO

C
K

IN
G

C
O

N
JU

G
A

TE

SU
B

ST
R

A
TE

V
1

7

V
1

8

V
1

9

V
2

0

V
2

1
W

A
SH

IN
G

 P
U

M
P

WASHING AIR

V
9

V
1

0

V
1

1

V
1

2

V
1

3

V
1

4

V
1

5

V
1

6

C
A

P
IL

LA
R

Y1

C
A

P
IL

LA
R

Y2

C
A

P
IL

LA
R

Y3

C
A

P
IL

LA
R

Y4

C
A

P
IL

LA
R

Y5

C
A

P
IL

LA
R

Y6

C
A

P
IL

LA
R

Y7

C
A

P
IL

LA
R

Y8

WASTE
MAIN PUMP

SAMPLE MANIFOLD REAGENT MANIFOLD CAPILLARY MANIFOLD

WASTE MANIFOLD

N

C

N
O

SAMPLES

Figure 3.14 Flow path for filling the capillary 1 with the secondary antibody solution. Capillaries 2

to 7 are subsequently filled using the valves V10 to V15 instead of V9.

The secondary antibody is covalently bonded to the HRP enzyme, which converts the

substrate to colored compound. This reaction is supposed to take place inside capillary

where the enzyme is attached to the capillary walls as a part of the sandwich ELISA stack.

Even traces of HRP enzyme inside the fluidic paths preceding the capillary start the

substrate conversion prematurely and result in the increased signal background. It is

therefore very important to carefully clean the common fluidic paths to remove traces of

43

HRP enzyme before substrate enters the flow paths. For that reason, a special cleanup

sequence is executed at the end of the step 10.

This cleanup sequence comprises following operations:

• The valve V16 will open while all the other valves remain closed.

• The main pump and the washing pump will be simultaneously activated to pump

350 µl at the same speed of 350 µl/min. This will empty the fluidic path inside the

sample manifold, reagent manifold and capillary manifold. The liquid will be

drained through the capillary 8.

• The valve V16 will close and the valve V17 will open

• The washing pump will be activated to pump 50 µl at the speed of 100 µl/min.

This will remove the fluid still remained in the coating reagent side flow path of

the reagent manifold.

• The previous operation will be repeated two more times to remove fluid remaining

in the blocking and conjugated flow paths of the regent manifold. The valves V18

and V19 will be used instead of the valve V17.

• The valves V16 and V20 will open while all the other valves remain closed.

• The main pump will be activated to pump 25 µl at the speed of 200 µl/min. This

will extract any secondary antibody solution possibly present in the substrate side

flow path of the reagent manifold.

• The valves V20 will close and the valves V16 and V21 will open

• The main pump and the washing pump will be simultaneously activated to pump

500 µl at the same speed of 350 µl/min. This will wash the sample manifold, the

reagent manifold and the capillary manifold common fluidic paths. The washing

buffer will be pumped through the capillary 8.

• The valves V16 will close and the valves V17 will open

• The washing pump will be activated to pump 50 µl at the speed of 350 µl/min.

This will pump the washing buffer into the coating reagent side flow path of the

reagent manifold.

• The previous operation will be repeated two more times to pump the washing

buffer into the blocking and conjugated flow paths of the regent manifold. The

valves V18 and V19 will be used instead of the valve V17.

44

This special reagent manifold cleanup requires 4 minutes, 38 seconds and 650 µl of

washing buffer to complete.

3.2.4.11 Step 11 - Incubation of the secondary antibody

This incubation time provides sufficient time for the conjugated secondary antibody to

bind to the human serum albumin which was possibly (depending on the albumin content

of the sample) present on the capillary surface layer. The secondary antibody contains

covalently attached label which later convert the substrate to detectable substance. The

amount of the enzyme attached to the protein stack during the incubation period is directly

proportional to amount of immobilized albumin on the capillary surface. The incubation

time is set to 15 minutes. The operation is performed at room temperature. The schematic

picture of the ELISA after step 11 is shown on the Figure 3.15.

Capture antibody

PVC capillary wallPVC capillary wall

Bovine serum albumin

Human serum albumin

HRP conjugated
secondary antibody

Figure 3.15 The complete sandwich ELISA stack at the end of step 11. If the sample contained human

serum albumin, the HRP conjugated secondary antibody will be attached to it.

3.2.4.12 Step 12 – Washing

A regular washing procedure is introduced at the end of the incubation time. The sequence

already described in the step 3 is repeated three times to address increased requirements

for cleanliness before the substrate pumping step. This step requires 14 minutes and 33

seconds to complete. Additionally 2550 µl of washing buffer is consumed.

45

3.2.4.13 Step 13 – Transferring substrate to the capillaries

The substrate is generally colorless solution which can be converted by the action of

enzyme to colored, fluorescent or chemiluminescent compound depending on the

substrate type. The concentration of resulting compound can be measured by suitable

optical detector. The substrate chosen for this albumin assay is QuantaRed™ Enhanced

Chemifluorescent HRP Substrate (Number 15159, Thermo Scientific). For more details

see the Chapter 3.3.

The substrate solution is prepared according to manufacturer instructions and has the

following composition:

• 50 parts of QuantaRed™ Stable Peroxide Solution

• 50 parts of QuantaRed™ Enhancer Solution

• 1 part of QuantaRed™ ADHP Concentrate

This substrate solution is pumped to capillaries 1 to 7 using the following sequence:

• Valves V16 and V20 will open, all other valves remain closed (unpowered)

• The main pump will be activated to pump 300 µl at the speed of 350 µl/min of the

substrate solution through the reagent and capillary manifolds to the capillary 8.

• The valve V16 will be closed again and the valve V9 will open

• The main pump will be activated to pump 50 µl at the speed of 100 µl/min of the

substrate solution to the capillary 1.

• The previous step will be repeated six more times to fill the capillaries 2 to 7 in

the serial sequence. The corresponding valves V10 to V15 will be used instead of

the valve V9.

The corresponding flow path for filling the capillary 1 is illustrated on the Figure 3.16.

During this step all the capillaries are filled with the substrate solution. The total duration

of step 13 is 4 minutes and 28 seconds. 700 µl of the substrate reagent is consumed.

46

V
1

V
2

V
3

V
4

V
5

V
6

V
7

1 2 3 4 5 6 7

C
O

A
TI

N
G

B
LO

C
K

IN
G

C
O

N
JU

G
A

TE

SU
B

ST
R

A
TE

V
1

7

V
1

8

V
1

9

V
2

0

V
2

1
W

A
SH

IN
G

 P
U

M
P

WASHING AIR

V
9

V
1

0

V
1

1

V
1

2

V
1

3

V
1

4

V
1

5

V
1

6

C
A

P
IL

LA
R

Y1

C
A

P
IL

LA
R

Y2

C
A

P
IL

LA
R

Y3

C
A

P
IL

LA
R

Y4

C
A

P
IL

LA
R

Y5

C
A

P
IL

LA
R

Y6

C
A

P
IL

LA
R

Y7

C
A

P
IL

LA
R

Y8

WASTE
MAIN PUMP

SAMPLE MANIFOLD REAGENT MANIFOLD CAPILLARY MANIFOLD

WASTE MANIFOLD

N

C

N
O

SAMPLES

Figure 3.16 Flow path for filling the capillary 1 with the substrate solution. Capillaries 2 to 7 are

subsequently filled using the valves V10 to V15 instead of V9.

3.2.4.14 Step 14 – Substrate incubation and readout

Immediately after the substrate solution enters the capillary, the immobilized enzyme

starts to convert the optically inactive substrate into a detectable compound. In this

specific case the non-fluorescent ADHP substrate is converted in the presence of

hydrogen peroxide into resorufin - a highly fluorescent compound (Figure 3.19). The

fluorescence of the substrate solution is measured by the integrated fluorimeter after

exactly measured incubation time (same incubation time is used for each capillary). More

details about the readout system can be found in the Chapter 3.3. The situation inside the

capillary during this phase is depicted on the figure Figure 3.17.

Capture antibody

PVC capillary wallPVC capillary wall

Bovine serum albumin

Human serum albumin

HRP conjugated
secondary antibody

+H2O2

ADHP – nonfluorescent substarte

Resorufin – highly fluorescent dye

Figure 3.17 Conversion of the non-fluorescent ADHP substrate to fluorescent resorufin dye by the

action of immobilized HRP enzyme during the step 14.

47

The fluorescence measurement is performed at fixed time points of 7, 14, and 21 minutes

for each capillary to provide possibility to measure reaction kinetics. The duration of this

step is 21 minutes and 26 seconds.

Step 14 completes the whole ELISA protocol with the total execution time of 3 hours, 13

minutes and 26 seconds.

3.3 Readout system

The selection of the readout system is based on the used enzyme label. The horseradish

peroxidase (HRP) is widely used because the molecule is relatively small, does not cause

hindrance problems, and is robust and inexpensive. A variety of substrates are available

for HRP and they can be divided into the following categories:

• Colorimetric substrates

• Fluorescent substrates

• Luminescent substrates

Colorimetric substrates provide directly visible colored product which absorbs light in

the visible range. The absorbance is proportional to the analyte concentration and it is

measured photometrically. The usual dynamic range is about two orders of magnitude.

The representative example of colorimetric substrate is TMB (3,3',5,5'

tetramethylbenzidine), which produces a blue dye which can be measured at a wavelength

of 650 nm. Other colorimetric substrates compatible with HRP are ABTS (2,2'-azino-di

[3-ethylbenzthiazoline] sulfonate), and OPD (o-phenylenediamine).

In the fluorimetric assay a non-fluorescent substrate is converted to fluorescent dye by

the action of the enzyme. The produced dye fluoresces when excited by the light of

suitable wavelength. The intensity of the fluorescence is proportional to the analyte

concentration. Compared to the colorimetric substrates, the fluorescent substrates benefit

from higher sensitivity and broader dynamic range. On the other side the instrumentation

is more complicated than for the absorbance measurement. Commonly used fluorimetric

substrates include Amplex Red™, HPA (hydroxyphenylacetic acid) and HPPA (3-p-

hydroxyphenylproprionic acid).

48

In a luminescent assay the enzyme converts the substrate to a chemical compound which

emits photons of visible light instead of producing a colored product. Enhanced

luminescent assays provide the highest sensitivity and dynamic range. The intensity of

the produced light is proportional to the analyte concentration. The drawback is the

stability of the luminescent light emission which is transient in its nature. The produced

light must be intense, since it is not accumulated over time like in the case of color or

fluorescence. Examples of luminescent substrates suitable for HRP comprise the luminol,

luciferin, and some polyphenols.

The choice of the fluorimetric substrate for this prototype device is preferred over the

other options. It provides the advantage of the higher dynamic range over the photometric

assay (four orders of magnitude required) and the stability of the output signal. After

reviewing the markets substrates for HRP, the use of QuantaRed™ Enhanced

Chemifluorescent substrate (15159, Thermo Fisher Scientific) was selected as the most

suitable for this application. The kit contains the ADHP (10-Acetyl-3,7-

dihydroxyphenoxazine) non-fluorescent compound which is converted by the action of

HRP in the presence of hydrogen peroxide to highly fluorescent dye resorufin (Figure

3.19). The sensitivity of this enhanced substrate is comparable with luminescent

substrates. The development of the colored resorufin allows also the colorimetric

measurement if needed.

The fluorimeter creates an integral part of the analyzer system. Its mechanical, optical,

and electrical properties should be specifically designed to support the resorufin spectral

properties. This will provide the advantage or easier automation and optimal price to

performance ratio.

The design of the optics is driven by the properties of the fluorophore and the physical

size of the measurement cell. The fluorophore used in the selected albumin assay is

resorufin (Figure 3.18), which is created by the deacetylation and oxidation of the

QuantaRed™ substrate catalyzed by HRP enzyme.

N

O OOH

Figure 3.18 The chemical structure of the resorufin fluorescent dye

49

Resorufin has the peak excitation wavelength 571 nm and the peak emission wavelength

585 nm. Figure 3.20 shows the corresponding spectra. The Stokes shift is about 14 nm

and the corresponding spectra partly overlap. For accurate fluorescence measurements it

is therefore necessary to use optical filters with an optical density of 5 or higher to prevent

even traces of the excitation light to reach the detector. Otherwise the sensitivity and the

dynamic range of the fluorimeter would be decreased.

Figure 3.19 ADHP substrate reaction. Non-fluorescent ADHP compound is converted by the action

of HRP enzyme in the presence of H2O2 into highly fluorescent resorufin dye.

In a typical configuration the short pass excitation filter is used to block the higher

wavelength part of the excitation light, which would otherwise pass through the emission

filter and reach the detector. Similarly, the emission filter blocks the filtered excitation

light to reach the detector. Obviously, the excitation filter cut-off wavelength should be

lower than the emission filter cut-off wavelength. Ideally the excitation light source

should have maximum radiation energy close to the 571 nm and the emission filter allows

as much as possible of the emission light to reach the detector.

3.3.1 Excitation light source selection

During the initial testing both the Green LED (SSL-LX5093SGC/B, Lumex) and green

DPSS laser (DJ532-10, Thorlabs) were evaluated as the possible excitation sources for

the resorufin. Green high intensity LEDs with peak wavelengths between 525 nm to 565

nm are available on the market. Typical spectral width for these LEDs is about 40 nm to

50 nm, which requires use of the excitation filter to limit the excitation spectrum at the

upper end.

N

OOH OH

CH3 O

N

OOH O
HRP

H
2
O

2

ADHP Resorufin

50

Figure 3.20 The excitation and emission spectrum of resorufin fluorescent dye with overlaid emission

filter passband (blue area) and excitation laser line (green line)

During the initial test it was found very problematic to focus the LED generated beam

precisely without significant loss of intensity. The tested packages were T-1¾ (5 mm

diameter through-hole LED) with standard hemispherical ends and also with the flat end.

The other advantages of the LED source are low price, simple driver circuit, longer

lifetime, and good temperature stability.

The other option was to use a green diode-pumped solid state (DPSS) laser. With a 532

nm spectral line the absorption by the fluorophore is only 56% of the maximum. This

disadvantage is more than compensated by the very intense light compared to LED. Also,

thanks to very narrow spectrum and higher distance from the emission spectra, the use of

the excitation filter is not necessary. On the other side laser source is more expensive,

requires precise driver, and has a relatively narrow operating temperature range.

After considering the advantages and disadvantages for both the LED and laser solutions,

the 10 mW green DPSS laser (DJ532-10, Thorlabs) was selected as the excitation light

source for the fluorimeter design.

3.3.2 Detector selection

Many fluorimeters use the photomultiplier tube (PMT) or the photodiode as the detector.

PMTs are special sort of vacuum tubes with high internal gain (up to several millions).

Photomultiplier tubes are used in application which require high sensitivity and low noise

51

operation. Single photon counting mode can be used if required. PMTs are not affected

by the Johnson (thermal) noise, which is another great advantage. The operation of PMTs

requires using of high voltages (low KV range), they are generally sensitive to

electrostatic and magnetic fields. Long term stability is affected by the diffusion of the

helium from the surrounding atmosphere into the tube through the glass walls. The price

is relatively high (hundreds to thousands €).

Photodiodes have generally lower sensitivity compared to PMTs, they have no internal

gain (with the exception of avalanche photodiodes) and are affected by thermal noise.

Photodiodes are low voltage devices, small physical size and insensitivity to

electromagnetic interference makes them easy to integrate into portable devices. The

photodiodes are very cheap when compared to prices of photomultiplier tubes.

Because the volume of the measured sample is relatively high (about 10 µl) and the

concentration of the resorufin in a typical assay sample is also reasonably high (nM to

µM range) the selection of the photomultiplier tube as the detector for this application is

not justified. The use of difficult to integrate, environmentally sensitive and expensive

device is not outweighed by the requirement for higher sensitivity.

Use of the silicon photodiode has proven to be satisfactory for this application during the

initial tests. The preferred type should have radiant sensitive area of several square

millimeters, high quantum yield, low capacitance, low noise equivalent power and metal

housing. After reviewing datasheets of several potentially suitable photodiodes (S1223,

OSD5-5T, BPX61, BPW21R) the BPX61 and S1223 types have very low capacitance,

dark current and good noise performance. The BPX61 type (OSRAM) was selected as

the fluorimeter detector because of better pricing and availability while the performance

is similar to the S1223 type.

The traditional way ELISA reactions take place in the wells of a microtiter plate. For a

flow-through setup a kind of “flow cell” is needed. In this application the transparent PVC

capillary tubes (20 µl, SC-Sanguia Counting 100024) normally used for the blood

sampling. The capillary has the outer diameter 1.8 mm, the inner diameter 0.9 mm and

length approximately 27 mm. It is inside this capillary where the resorufin fluorophore

will be produced by the oxidation of ADHP catalyzed by HRP enzyme. The fluorimeter

should be therefore adapted to excite and sense the emission light from this cylindrical

shaped space.

52

3.3.3 Fluorimeter configuration

Fluorimeters are usually constructed is such way that the emission sensing axis is at the

right angle with the excitation beam axis. This minimizes the amount of excitation light

entering the sensing path thus improving the signal to noise ratio. The fluorimeter of the

ELISA analyzer uses the same configuration. The cross section of the fluorimeter with

the depicted excitation and emission optical pathways is shown on the Figure 3.21. The

fluorimeter uses construction components of the ½ inch lens tube system marketed by

Thorlabs.

Figure 3.21 Cross section of the fluorimeter showing the excitation beam (green) and emission

pathway (yellow)

3.3.4 Excitation optical path description

The DJ532-10 laser output beam diameter is approximately 50-60 µm. The beam is first

expanded using the sapphire ball lens (diameter 0.5 mm, type 46117, Edmund Optics)

and collimated into parallel beam using the plano-convex lens (LA1540, Thorlabs). The

beam is then passed through the 50:50 beam splitter (BS010, Thorlabs) which diverts the

portion of the beam to the feedback photodiode (BPW34, Vishay) of the laser driver

circuit. The other portion of the excitation beam is focused by the cylindrical lens (type

46194, Edmund Optics) to the center of the modified cage cube (SC6W, Thorlabs) where

the capillary will be positioned by the rotary capillary holder. The rotary holder is a motor

powered double disc which has eight capillaries mounted on its circumference. The

cylindrical surface (with the diameter equal to the diameter of the rotary capillary holder)

was milled at the diagonal plane of the cube cage, which allows the capillary to be aligned

53

with the center of the cube and the focal line of the excitation beam (Figure 3.22). The

length of the capillary interior which is illuminated by the excitation beam is about 8 mm.

Figure 3.22 The Fluirimeter assembly including the rotary holder with capillaries (blue color)

3.3.5 Emission optical path description

A portion of the resorufin emitted light is collimated into a parallel beam using the

cylindrical lens (type 46194, Edmund Optics), which is passed through the suitable

optical filter (type 67020, Edmund Optics). The filter is a bandpass filter with center line

591.5 nm, bandwidth of 43 nm and OD >6 blocking in the stopband. Although the use of

longpass filter would allow emission light with longer wavelengths to reach the detector

and slightly increase the sensitivity, the bandpass filter provides better signal to noise ratio

by filtering out the stray light with longer wavelengths. The transmission profile of the

filter is shown on the Figure 3.23. The filtered light is focused by the plano-convex lens

(LA1540, Thorlabs) to the radiant sensitive area of the photodiode (BPX61).

54

Figure 3.23 Transmission profile of the bandpass filter, type 67020 (Edmund Optics, center

wavelength 591,5nm, bandwidth 43nm)

3.3.6 DPSS Laser driver circuit

It is important to keep the excitation light optical power constant in order to provide

stable, reproducible measurements. If the required dynamic range of the fluorimeter is

four orders of magnitude, the excitation power density must not fluctuate more than

0.01%. Used DPSS laser contains the monitoring photodiode. This photodiode senses the

optical power of the 808 nm pumping laser diode and not the power of the 532 nm output

beam produced by the Nd:YVO4 and KTP crystals. The performance of those crystals is

temperature dependent. Stabilizing the pumping diode optical power therefore does not

provide stable output power of the green light. The heat dissipated by the pumping diode

heats the crystals and the output power will have significant drift. It was necessary to use

a separate photodiode sensing the portion of the excitation beam to stabilize the output

optical power.

The diver circuit is based on a dedicated integrated circuit (iC-WKN, iC-Haus). The

functional schematic is shown on the Figure 3.24. iC-WKN is designed to drive laser

diodes in the continuous mode. It contains multiple protection circuits for the laser diode

and requires only a few external components to operate. The adjustable resistor RP1

serves for adjusting the laser output power (up to 10mW). The laser beam intensity is

sensed by the PD1 photodiode ad is fed back to the driver U2. All capacitors in this circuit

work like bypass or filtration capacitors. The input voltage in the range 3 to 5V is

55

connected to XC5. The current consumption is in the range 120 to 200 mA depending on

the adjusted optical output power.

Figure 3.24 Laser diode driving circuit schematic

3.3.7 The photodiode front end amplifier

The fluorimeter photodiode usually needs to measure very low light intensities. It requires

an amplifier with the gain of several millions to provide voltage suitable to interface to

analog to digital converter (ADC). The photodiode BPX61 works in photovoltaic mode

and it is connected to the transimpedance amplifier, which provides many performance

advantages. The schematic of the photodiode amplifier is shown on Figure 3.25. The zero

bias means no dark current, the internal diode capacitance stays at constant (zero)

potential, therefore its influence on the detector speed is minimal. The R2 defines the gain

of the transimpedance amplifier, which is 107 in this case. C1 limits the bandwidth of the

detector to reduce the noise. Another noise reduction occurs at the output filter R1 C2.

The corner frequency is set to 1.59 KHz. Operational amplifier U1 (LTC6244, Linear

Technology) is a low noise CMOS type with low input bias current. The reference voltage

is set to 2.5V and it is generated by the U3.

The voltage output vs. incident light characteristic has negative slope. The output voltage

is highest at 2.5V in the dark (no light reaching the photodiode) and it is decreasing with

the increasing light level. The minimum output voltage (maximum light reaching the

photodiode) is defined by the low saturation voltage of the U1, which is about 25 mV.

This negative slope was necessary to use in order to interface to the ADC in the

environment with the unsymmetrical power supply.

56

Figure 3.25 The functional schematic of the photodiode amplifier

3.3.8 The Analog to Digital (ADC) interface

The functional schematic of the ADC part is shown in Figure 3.26. The AD7794 AD

converter is configured in the differential input mode, internal gain set to unity and update

rate to maximum (470Hz). According to AD7794 datasheet, the converter has effective

noise free resolution 16 bits in this configuration. Using only one half of the input

differential range (+2.5V down to 0V) the final noise free resolution is 15 bits. And the

ADC input voltage resolution will be:

𝑉1𝐿𝑆𝐵 =
𝑉𝑟𝑒𝑓

215
= 76.3𝜇𝑉 (3. 1)

Where:

Vref is the ADC reference voltage

The maximum photodiode current for the full-scale ADC reading is given by the

following equation:

𝐼𝑃𝐷max =
𝑉𝑟𝑒𝑓

𝑅𝑓
= 250𝑛𝐴 (3. 2)

Where:

Vref is the ADC reference voltage,

Rf is the transimpedance amplifier feedback resistance

On the other side, the minimum photodiode current needed for ADC reading of one

(1LSB) will be calculated as follows:

𝐼𝑃𝐷min =
𝑉𝑟𝑒𝑓

𝑅𝑓 · 215
= 7.63𝑝𝐴 (3. 3)

57

Where:

Vref is the ADC reference voltage,

Rf is the transimpedance amplifier feedback resistance

Figure 3.26 The functional schematic of the fluorimeter ADC converter

In order to maintain the noise free resolution of 15 bits, the photodiode and

transimpedance amplifier total peak-to-peak noise must be kept below 76.3 µV. Typically

noise calcullations use the root-mean-square noise (RMS). The conversion between the

peak-to-peak noise and RMS noise uses the fact that both thermal noise and shot noise

have the Gaussian probability distribution. By specifiing the noise amplitude interval

normalized to the standard deviation σ it is possible to estimate the probability of

occurrence of the amplitude. Using the Gauss error function for the 6.6σ interval provides

the 99.9% probability of occurrence [20]. In this way the 76.3 µV peak to peak noise

corresponds to the 11.56 µV RMS noise using the factor 6.6. The following part the

electrical noise background of the fluorimeter will be investigated.

3.3.9 The fluorimeter detector and amplifier noise estimation

The photodiode noise is calculated as the sum of three components: the thermal (Johnson)

noise ith of the photodiode internal shunt resistor Rsh , the dark current shot noise isd and

the photocurrent shot noise isl [21]. The internal shunt resistor Rsh of the BPX61

photodiode was calculated to be 2 GΩ using the dark current and the reverse bias voltage

values provided in the datasheet. Because the photodiode works in the photovoltaic mode,

the bias voltage is zero (see Figure 3.25), the dark current is also zero and the dark current

58

shot noise will not contribute to the total photodiode noise. In the following noise

calculations the temperature of 300 K is assumed. The thermal noise density of the

photodiode is calculated as follows:

𝑖𝑡ℎ = √
4𝐾𝑏𝑇

𝑅𝑠ℎ
= 2.88𝑓𝐴𝐻𝑧−1╱2 (3. 4)

Where:

Kb is the Boltzmann constant,

Rsh is the photodiode shunt resistance,

T is the temperature in K

The noise density due to photocurrent shot noise is calculated according to equation (3.5).

It is calculated for the minimum photocurrent because this case will be affected the most

by noise and the signal to noise ratio (SNR) will be the worst.

𝑖𝑠𝑙 = √2𝑞𝐼𝑃𝐷min = 1.56𝑓𝐴𝐻𝑧−1╱2 (3. 5)

Where:

q is the elementary electric charge,

IPDmin is the photocurrent corresponding to the one quantization step of the ADC

Total RMS noise at the output of the TIA amplifier originating from the photodiode only

and contained within defined bandwith BW is calculated using the following formula:

𝑉𝑝𝑑 = 𝑅𝑓√(𝑖𝑡ℎ
2 + 𝑖𝑠𝑑

2 + 𝑖𝑠𝑙
2) · 𝐵𝑊 = 1.64𝜇𝑉 (3. 6)

Where:

ith is the thermal photodiode noise density,

Isd is the photodiode noise density originating from the dark current

Isl is the photodiode noise density originating from the photocurrent

Rf is the transimpedance amplifier feedback resistance

BW is the noise bandwidth

The corresponding bandwidth is defined as the brick-wall equivalent of the TIA low pass

filter and it is calculated as follows:

𝐵𝑊 =
1

4𝑅𝑓𝐶𝑓
= 2500𝐻𝑧 (3. 7)

59

Where:

Rf is the transimpedance amplifier feedback resistance

Cf is the transimpedance amplifier feedback capacitance

This way, the total noise voltage originating from the photodiode is estimated to be 1.64

µV (RMS value). TIA limits the photodiode noise bandwidth to 2.5 KHz.

The TIA noise must be also evaluated. Usually its noise contribution is the most

significant. The Amplifier noise can be separated into three components: the thermal

noise of the feedback resistor Rf, the input voltage noise of the operational amplifier and

the input current noise of the operational amplifier [22]. The photodiode internal

capacitance Ci (72 pF for BPX61 and zero bias) at in input of the amplifier causes the

amplifier noise gain peaking at higher frequencies which has negative impact on the noise

performance of the detector. The noise gain begins to increase at the Fz frequency:

𝐹𝑧 =
1

2𝜋𝑅𝑓(𝐶𝑖 + 𝐶𝑓)
= 194𝐻𝑧 (3. 8)

Where:

Rf is the transimpedance amplifier feedback resistance

Cf is the transimpedance amplifier feedback capacitance

Ci is the photodiode internal capacitance

The thermal noise originating from Rf has limited bandwidth with corner frequency Fp:

𝐹𝑝 =
1

2𝜋𝑅𝑓𝐶𝑓
= 1.59𝐾𝐻𝑧 (3. 9)

Where:

Rf is the transimpedance amplifier feedback resistance

Cf is the transimpedance amplifier feedback capacitance

The total thermal noise contained within this bandwith will be:

𝑉𝑡ℎ = √4𝐾𝑏𝑇𝑅𝑓

𝜋. 𝐺𝐵𝑊

2
·

𝐹𝑝

𝐹𝑝 + 𝐺𝐵𝑊
= 20.35𝜇𝑉 (3. 10)

Where:

Kb is the Boltzmann constant,

Rf is the transimpedance amplifier feedback resistance,

60

T is the temperature in K,

GBW is the gain bandwidth product of used operational amplifier (50 MHz for LTC6244)

The noise contribution by the operational amplifier input current noise is calculated

according the following formula:

𝑉𝑖𝑛 = 𝑖𝑛𝑅𝑓√
𝜋 · 𝐺𝐵𝑊

2
·

𝐹𝑝

𝐹𝑝 + 𝐺𝐵𝑊
= 0.28𝜇𝑉 (3. 11)

Where:

in is the input noise current density of used operational amplifier (0.56 fA/√Hz for

LTC6244),

Rf is the transimpedance amplifier feedback resistance,

GBW is the gain bandwidth product of used operational amplifier (50 MHz for LTC6244)

The noise contribution by the operational amplifier input voltage noise is calculated

according the following formula:

𝑉𝑒𝑛 = 𝑒𝑛√
𝜋 · 𝐺𝐵𝑊

2
·

𝐹𝑝(𝐺𝐵𝑊 + 𝐹𝑧)

𝐹𝑧(𝐺𝐵𝑊 + 𝐹𝑝)
= 202.92𝜇𝑉 (3. 12)

Where:

en is the input noise voltage density of used operational amplifier (8 nV/√Hz for

LTC6244),

Rf is the transimpedance amplifier feedback resistance,

GBW is the gain bandwidth product of used operational amplifier (50 MHz for LTC6244)

It can be seen that this last noise contribution alone is one order of magnitude higher than

other noise sources. This is caused by high bandwidth of the LTC6244 amplifier. To

reduce this noise contribution, a simple RC low pass filter needs to be connected to the

output of the transimpedance amplifier. This filter is represented on the Figure 3.25 by

the components R1 and C2. The corner frequency of this filter will be:

𝐹𝑙𝑝 =
1

2𝜋𝑅1𝐶2
= 15.9𝐾𝐻𝑧 (3. 13)

The noise contribution by the operational amplifier input voltage noise after the low pass

filter is calculated according the following formula:

61

𝑉𝑒𝑛𝑓 = 𝑒𝑛√
1

4𝑅1𝐶2
= 1.26𝜇𝑉 (3. 14)

Where:

en is the input noise voltage density of used operational amplifier (8 nV/√Hz for

LTC6244),

The Vin and Vth noise component contributions will be unaffected by the filter, because

their bandwidth is within the passband of the output filter. The total noise of the

transimpedance amplifier will be calculates as a square root of the sum of squared

components:

𝑉𝑎𝑚𝑝 = √𝑉𝑒𝑛𝑓
2 + 𝑉𝑖𝑛

2 + 𝑉𝑡ℎ
2 = 20.39𝜇𝑉 (3. 15)

This calculation does not include the flicker noise of the operational amplifier and the

thermal noise of the otput filter resistor R1. Their contribution is neglible. The Figure

3.27 shows the PSPICE noise simulation of the TIA with and without the output filter.

The total noise density and integrated noise are shown. The simulated total noise of the

TIA is 22.14 µV, which is in good agreement with the previous calculations.

Figure 3.27 The simulated noise density and integrated noise of the transimpedance amplifier

The ADC quantization noise also significantly contributes to the overall noise

performance. It is calculated according the following equation [23]:

62

𝑉𝑛𝐴𝐷𝐶 =
𝑉1𝐿𝑆𝐵

√12
= 22.03𝜇𝑉 (3. 16)

The resulting noise is calculated by combining the total photodiode noise Vpd, the total

amplifier noise Vamp and the ADC quantization noise VnADC together:

𝑉𝑛 = √𝑉𝑎𝑚𝑝
2 + 𝑉𝑝𝑑

2 + 𝑉𝑛𝐴𝐷𝐶
2 = 30.06𝜇𝑉 (3. 17)

The total noise is still higher than required RMS maximum 11.56 µV for the flicker-free

ADC conversion. A further possibility to decrease noise is to use signal processing in the

digital domain. Provided that the signal is almost stationary and the noise is not correlated

to the signal the averaging of N ADC samples will reduce the noise by factor √N, while

the signal remains unaffected [23, 24]. In this case the averaging of 16 samples is used to

decrease the noise four times:

𝑉
−

𝑛 =
𝑉𝑛

√𝑁
= 7.52𝜇𝑉 (3. 18)

Where N is the number of averages

This resulting RMS noise 7.52 µV should provide the flicker-free digital representation

of the photodiode detected emission light intensity.

3.4 Control Unit

There is an obvious need to electrically drive all the active fluidic components of the

analyzer and culturing unit in a specific preprogrammed way to enable its proper

functionality. During the early testing phase, it is likely that some changes or adjustments

in the fluidics and its active components will be made. The control unit should therefore

provide sufficient flexibility to support the varying count of the active fluidic components

(valves, pumps) or ability to interface sensors with various interfaces. Widely used

approach to control such systems is to use a commercially available modular system (e.g.

LabVIEW) using the personal computer (PC) as the central control element. Although

this may be practical approach for many laboratory experimental setups, the control unit

for the analyzer and culturing modules described in this work benefits from the

advantages which provides the customized embedded technology. Among the most

important is the real-time operation and high degree of integration which provides the

63

timing precision and reliability required by this application. The additional benefits are

independence on the control PC, low power consumption, portability and cost

effectiveness. The control unit described here has the ability to control six stepper motors

in microstepping mode, 32 solenoid valves and two constant current sources capable of

driving low power laser diodes. Additionally, the control unit provides direct interfaces

for various sensors (spectrometer head, fluorimetric and photometric sensors, pressure

sensor, capacitive sensors, analog voltage inputs and others). The core of the control unit

makes use of the 32-bit microcontroller STM32F103ZET [25] which is based on the ARM

CORTEX-M3 architecture. Interfacing to potential host system is possible through the

USB or serial interfaces. Graphical LCD display and two rotary encoders serve as the

user interface. The corresponding printed circuit board (PCB) was designed using four

electrical layers and has the size 160 x 200 mm. The whole system is powered by single

12V source. The schematic and layout design were made using the Altium Designer

software [26], version 10.391.

3.4.1 Control unit schematics

This section describes the function of important schematic parts of the control unit in

more detail. The complete schematics can be found in the Appendix 1.

3.4.1.1 Microcontroller and communication interfaces

The central element of the control unit is the 32-bit microcontroller STM32F103ZET [25]

(STMicroelectronics, U6) in the 144-pin LQFP package which offers sufficient I/O ports

to interface all used peripherals. The controlling program is stored in the internal 512KB

nonvolatile memory. The schematic part covering the microcontroller and related system

and interface circuitry is shown on the Figure 3.28. The system clock is generated by

internal oscillator stabilized by the 8 MHz crystal X2. The microcontroller core is clocked

by the 72 MHz clock signal internally multiplied and derived from the 8 MHz oscillator.

A low frequency oscillator synchronized by X1 serves as the clock source for internal

real-time-clock (RTC). A small lithium battery BT1 keeps the RTC running during the

time the control unit is unpowered. The microcontroller is powered by single supply

voltage VCC (3.3V). Capacitors C13-C23, C31, C37, C47, C50 and C51 serve as power

supply decoupling. In the normal state the jumpers J1 and J2 are switched to ground, so

64

the microcontroller always boots from the internal flash memory. The control unit

contains two USB interfaces. Both are configured as the “USB Device” and support the

standard USB2.0 Full Speed. The connection USB1 (XC2) serves for sending control

commands by the host system, while the USB2 connection (XC1) is intended for hi-speed

debugging. The control unit also provides two serial interfaces without hardware

handshake function supporting maximum transfer rate 115200 Baud. These allow

connection of various slave integrated sensors or modules. Alternatively, it can be used

for low-speed debugging. CAN bus interface (XC4) allows direct interfacing of the

CETONI neMESYS [27] syringe pumps.

Figure 3.28 Schematic of the microcontroller part and communication interfaces

Additionally, the powered connector with I2C bus is available for connecting low-speed

OEM sensor modules. The JTAG interface (JP2) allows programming of the internal

65

memory of the microcontroller and the low-level debugging. The address decoder (U7)

provides chip select signal demultiplexing for all peripheral chips controlled by the SPI

bus.

Figure 3.29 Schematic of the human interaction interfaces

3.4.1.2 Human control interfaces

For the interaction with user, the control unit contains a graphical display (U8) with

resolution of 64 x 128 pixels and resistive touchscreen connected through the connector

XC8. Display is controlled over a serial SPI bus. The touchscreen is connected directly

to the microcontroller and is read using the internal AD converters. Additionally, two

rotary encoders (S6, S7) simplify the numerical input by the user. Quadrature signals are

internally decoded by the microcontroller. Acoustic signalization is provided by small

piezo transducer B1. Eight directly controlled LEDs (D2 - D9) and four pushbuttons (S2

- S5) are intended for software debugging purposes. The schematic of the human control

interface part is shown on the Figure 3.29.

3.4.1.3 External memory interface

The control unit of the standalone system should have the possibility to store the system

configuration and the measurement results on the internal or removable media. For this

purpose, the control unit has one Secure Digital (SD) memory card interface and one

internal ferroelectric random-access memory (F-RAM, U5) for storing up to 32KB of

configuration data (Figure 3.30). Both devices can communicate with the microcontroller

over the SPI bus. The SD card interface additionally supports faster 4-bit data bus mode.

66

Figure 3.30 Schematic of the memory interfaces

3.4.1.4 Power supply

The control unit is powered by the single DC source of 12V with maximum current 3A.

However, typical current consumption is much lower – 1A to 1,5A so the whole system

could be powered by larger accumulator if needed. The schematic of the power supply

circuitry is shown on the Figure 3.31. Connector XC30 serves as the 12V power supply

input. The fuse F3 serves as the overcurrent protection, while the diodes D56 and D59

provide overvoltage and reverse polarity protection. The 12V power supply for stepper

motor drivers 12VMOT is derived from the main power over the EMI filter (L3, C174,

C176, C183 and C185). Powering of the solenoid valves comprises two phases: during

the active switching phase the voltage is set to 12V, while during the standby phase (the

solenoid valve is in the steady ON state) the driving voltage is lowered to approximately

5V. During the active phase the solenoid power supply 12VSOL is connected to the main

power supply node VIN through the EMI filter (L2, C172, C173, C182 and C184) and

transistor Q11. The signal EN12V controls switching of the Q11. When the Q11 is

switched off, the 12VSOL node is powered from the +6V source through decoupling

diode D62. This way the power needed to keep the solenoid valve in the switched-on

position is reduced from 240mW to 100mW. In the situation where multiple solenoids are

switched on, the power saving is significant. The power supply for all the digital circuitry

is provided by the switching step-down regulator U38, providing stable voltage output of

3.3V at the node VCC. Most of the analog circuitry requires stable +5V power supply

with low ripple voltage. This is derived from the main 12V supply using the two-stage

regulator. The first stage is switched step down regulator generating output voltage +6V.

To remove the switching ripple a second linear low-drop regulator U37 downregulates

67

the +6V input voltage to the required ripple-free +5V output AVCC5. The switching

regulators operate with high efficiency of 70-90% which helps to save power and reduce

thermal losses at higher load currents.

Figure 3.31 Schematic of the control unit power supplies

3.4.1.5 Spectrophotometer and combined photometric/fluorimetric sensor

interfaces

The control unit was designed to accommodate a commercial spectrophotometer head

based on the Hamamatsu S8378 CMOS linear sensor chip (U40, Figure 3.32)[28]. The

spectral range is 316nm to 1210nm with a spectral resolution of 3,5nm/pixel. Optical

input is provided via SMA connector attached optical cable. After the light exposure the

pixels values are sequentially clocked out of the chip to the video output. Because the

sensor chip works with 5V level signals, a voltage level converter (U36) is necessary to

interface to the 3.3V signal level of the microcontroller. The analog pixel voltage is

digitized using the 16-bit imaging signal processor (U35). The signal processor has three

analog input channels. Only one channel is used by the spectrometer part. Additionally,

two four-channel combined photometric/fluorimetric sensors can be connected to the

control unit. Each channel of the sensor comprises one excitation LED and two

photodiodes with integrated preamplifiers. The amplified signals provided by the

68

photometric channels are connected to the inputs S1A – S8A of the multiplexer U41.

Similarly, amplified signals of the fluorimetric channels are connected to the inputs S1B

– S8B of the same integrated circuit. The outputs of the multiplexer are connected to the

remaining two channels of the signal processor U35 where they are digitized and read by

the microcontroller. The LED diodes of the sensor are driven by the adjustable constant

current source created by operational amplifiers U32, U33. Those are connected as the

differential amplifiers regulating the voltage drop across the output 50 Ω resistor

according to the input voltage provided by the D/A converter U42.

Figure 3.32 Schematic of the spectrometer interface and photometric/fluorimetric sensors interface

The differential amplifier has internal gain of 1/2. Therefore, for the input voltage of 1V,

voltage drop of 0.5V across the output 50 Ω resistor will be created, which means 10 mA

LED current. The A/D converter U42 has internal gain 2 and using the reference voltage

of 1.25V the maximum output voltage will be 2.5V and the maximum LED current will

69

be 25 mA. Figure 3.32 shows the constant current sources for the first sensor only. The

identical constant current sources for the second sensor are connected to the respective

outputs VOUTE – VOUTH of the D/A converter U42.

3.4.1.6 Solenoid valve drivers

The control unit allows connection up to 32 solenoid valves. Each valve is directly

switched by the Darlington transistor inside the integrated circuit U11, U12. The

maximum driver output current is 500 mA. The drivers U11 and U12 contain integrated

free-wheeling diodes, therefore are capable of switching inductive loads. The Darlington

drivers are controlled by the I/O extension circuit U9 controlled by the SPI bus. The power

source 12VSOL is set to 12V during the switching period, after which it is decreased to

5V to reduce power consumption.

Figure 3.33 Schematic of the solenoid valves driver

This switching is realized using the signal EN12V as described in the power supply

section. The indication LED diodes are connected in parallel to the solenoid valves. The

driver circuitry for the first 16 valves is shown on the Figure 3.33. The remaining valve

drivers are of identical design.

70

3.4.1.7 Stepper motor drives

The control unit can independently operate up to six two-phase bipolar stepper motors in

the microstepping mode. The driver circuitry is based on the integrated stepper motor

driver L6208 (STMicroelectronics)[29]. Figure 3.34 shows the driving circuitry for one

stepper motor. The I/O expanders U19, U20 and the D/A converters U21, U22 are shared

by several stepper motor drivers L6208 (U24 – U29). The L6208 driver has built in pulse

width modulated (PWM) output stages with adjustable current limit. L6208 does not

natively support microstepping operation. However, by varying the maximum phase

current limit for both phases independently the microstepping can be realized. The

software implements the microstepping operation with up to 32 microsteps for smooth

motor operation. The dynamic current limit setting is provided by the D/A converter U22.

The decay mode, direction of operation, driver enable signal and stepping mode control

signal are controlled by the I/O extension chip U20.

Figure 3.34 Schematic of the stepper motor driver

The stepping clock input is routed directly to the timer module of the microcontroller.

The maximum phase current, which is possible to set by the D/A converter is 5A, however

the peristaltic pump motors operate with the phase current 3A or less, depending on the

motor speed. The maximum supported motor speed is 160 rpm, which corresponds to

stepping frequency of 17066 microsteps per second using the 32 microstepping mode.

71

3.4.1.8 Pressure sensor and capacitive sensors

The integrated differential pressure sensor with the maximum pressure range of 1000KPa

(U18, MPXV5100DP, NXP Semiconductors)[30] was added to the design of the control

unit to help diagnose possible problems in the fluidic part of the system by measuring

pressure profiles during fluidic operations. The sensor has linear analog output in the

range 0.2 – 4.7 V with a slope of 4.5 mV/KPa. The sensor is connected to the input of 24-

bit A/D converter U17. For the correct operation with the sensor, the reference inputs 2

are selected by the software (REFIN2+, REFIN2- inputs of the U17). The reference

voltage source U15 is connected to the primary reference inputs of the U17 (REFIN1+,

REFIN1-) and is needed for the fluorimeter readout, as the A/D converter U17 is also

shared with this peripheral. The schematic part relevant to the pressure sensor and the

capacitive sensors is shown on the Figure 3.35.

Figure 3.35 Schematic of the pressure sensor and capacitive sensors

The capacitive sensors are intended to be used for detection of a fluid inside the tubing.

Total of twelve sensors are supported and the interface uses the capacitance-to-digital

72

converter chip AD7147 (U16, Analog Devices)[31]. The AD7147 chip contains all

necessary circuitry for the intended functionality, so the corresponding schematic part

contains minimum of external components. The chip communicates with the

microcontroller using the SPI bus.

3.4.2 Printed circuit board (PCB) design for the control unit

Design of the PCB is of crucial importance for good overall performance of the control

unit. Sensitive analog circuitry intended for measuring of low-level signals are combined

with the high-speed digital integrated circuits on the same board. The layout was designed

with focus to physically and electrically decouple those parts using proper shielding

techniques. Together with the effort to keep the board size as small as possible, the layout

design resulted in a four-layer PCB with the dimensions of 200 mm x 160 mm and

standard thickness of 1.6 mm. The layer stack details can be found in the Table 3.1. The

layout was designed with the minimum track width 0.2 mm and minimum clearance

between different tracks 0.2 mm. The minimum plated through-hole diameter is 0.4 mm.

The top and bottom layers were protected by the green solder mask. The assembly is

combined using mostly surface mounted devices (SMD), but some through-hole

components are also used. The prototype board contains 783 components in total, with

566 components assembled on the top side and 217 components on the bottom side. The

prototype board was assembled manually. The assembly plan and layout of all layers can

be found in the Appendix 2 and Appendix 3. Figure 3.36 shows assembled control unit

PCB.

Table 3.1 The layer arrangement of the control unit printed circuit board

Layer Layer designator Copper Thickness Purpose

Top Layer L1 35µm top signal layer

Internal Layer 1 L2 35µm ground plane

Internal Layer 2 L3 35µm power supply plane

Bottom Layer L4 35µm bottom signal layer

73

Figure 3.36 Assembled top side of the control unit PCB including the spectrometer module

3.4.3 Control unit embedded code overview

The code for the control unit was written in ANSI C programming language and it was

compiled for the ARM CORTEX-M3 architecture. The latest source code version v1.09

contains approximately 10 thousand lines of code excluding used libraries. Additionally,

the open source bootloader OpenBLT [32] was used to simplify the firmware update

procedure. The embedded code makes use of two external libraries provided by the

microcontroller manufacturer: STM32F10x Standard peripheral library v3.5.0 and

STM32F10x USB-FS-Device Driver v3.3.0. Additionally a ported code for formatted

output (printf.c) is also used [33]. Table 3.2 lists the shortly described source code files.

The hierarchical order of the embedded code modules is shown on the Figure 3.37.

74

usb_pwr.cusb_prop.c

usb_desc.cusb_istr.c

glcd.csm_cntr.c

Touchscreen.cvirtual_com.c

startup.c

stm32f10x_it.c

system_stm32f10x.c
STM32F10x Standard

peripheral library
STM32F10x USB-FS-Device

Driver System layer – configuration
and drivers

Application layer drivers

Application layer

printf.c st7565.c

main.c

elisa.c

commands.c

Figure 3.37 the hierarchical order of the control unit code modules

The control unit embedded code in the recent version allows the user to control whole

system using a host computer. The communication between the computer and control unit

is realized over the USB bus. The control unit behaves as the USB device class with

implemented virtual serial communication interface. The host computer uses arbitrary

terminal program to facilitate the serial communication. The control unit has implemented

a set of commands for controlling and debugging all analyzer and culturing unit functions.

Table 3.3 lists the implemented command set including the command parameter

description.

Bootloader implementation

The OpenBLT bootloader simplifies the embedded code updating. The bootloader is

located at the beginning of the embedded flash memory of the microcontroller. After the

microcontroller system reset the bootloader is always executes as the first. The bootloader

checks if a valid application code is present in the flash memory using the checksum

mechanism. If valid application has been found, the bootloader exits and the application

75

code starts to execute. Otherwise the bootloader will wait for connection with the host

computer in order to program new application code into the flash memory.

Table 3.2 The list of embedded code files with corresponding description

File name Description

elisa.c High-level routines for the sandwich ELISA protocol and culturing unit

main.c Low-lever routines for the peripheral chips and sensors

commands.c Definition of host control and debug commands

Touchscreen.c Touchscreen driver code

glcd.c Graphical LCD driver code

st7565.c High-level routines for graphical LCD

sm_cntr.c Stepper motor driver code

printf.c High-level formatted output routines

startup.c System initialization code, interrupt vectors definition

stm32f10x_it.c Interrupt handler routines

system_stm32f10x.c System routines, system clock management

virtual_com.c Virtual communication port high-level routines

usb_desc.c USB descriptor definition

usb_endp.c USB endpoint routines

usb_istr.c USB interrupt routines

usb_prop.c Virtual communication port low-level routines

usb_pwr.c USB power handling routines

 global.h I/O port definitions, peripheral chip registers definitions

elisa.h Header file for elisa.c, definition of parameters for fluidics

main.h Header file for main.c

commands.h Header file for commands.c

Touchscreen.h Header file for Touchscreen.c, configuration parameters for the touchscreen

glcd.h Header file for glcd.c

st7565.h Header file for glcd.c, configuration parameters for LCD

sm_cntr.h Header file for sm_cntr.c, configuration parameters for stepper motors

printf.h Header file for printf.c

font5x7.h Small font definition for LCD

fontgr.h Large font definition for LCD

mnlogo.h Definition of MN logo for LCD

stm32f10x_it.h Header file for stm32f10x_it.c

stm32f10x_conf.h STM32F10X Peripheral library configuration file

virtual_com.h Header file for virtual_com.c, configuration parameters for USB

usb_desc.h Header file for usb_desc.c, configuration parameters for USB

usb_conf.h USB endpoint configuration file

usb_istr.h Header file for usb_istr.c

usb_prop.h Header file for usb_prop.c

usb_pwr.h Header file for usb_pwr.c

76

The uploading utility named “MicroBoot” is part of the OpenBLT project [32], and

communicates with the microcontroller over a USB interface. The complied code to be

uploaded should be in the Motorola S-record format (*.srec).

Bootloader
16KB

Application code
Max. 192KB

Unused area

EEPROM emulation area
4KB

0x08000000

0x08004000

0x0807F000

0x0807FFFF

Fl
as

h
m

em
o

ry
 s

iz
e:

 5
1

2K
B

Figure 3.38 the microcontroller flash memory map

The application code must be compiled with starting address of 0x08004000. The

microcontroller flash memory map is shown on the Figure 3.38. The 4KB area at the top

of the flash is reserved for emulation of EEPROM memory to store the application

configuration data. The bootloader can be called directly from the application code using

the command “callbootloader”.

Software development tools

For developing the embedded code, the open source development tools were used

exclusively. The compiler, debugger and integrated development environment (IDE) was

running on personal computer using Windows as the operating system. The compiler was

based on the YAGARTO GNU ARM toolchain, version v2.22 [34]. Eclipse was used as

the IDE, version 4.2.1 [35]. Additional C/C++ Development Tooling (CDT) plugin was

installed into Eclipse IDE. The JTAG interface was used for code debugging. The used

OpenOCD debugger tool consists from the software part and the hardware debugging tool

[36]. The software part (used version v0.9.0) enables the remote debugging and

communicates with the GNU GDB tool. The hardware part (JTAG adapter) is of own

design and it is based on the original OpenOCD FTDI2232 interface [37]. The schematic

and layout of this JTAG interface can be found in the Appendix 8 and Appendix 9.

77

Table 3.3 the list of the control commands for the control unit including the syntax and description.

The commands are marked in blue and the command parameters are marked in red.

Main menu commands Parameter: (valid range) - parameter description Command description

setled led_index new_state
led_index: (0 - 7) - selects LED to be controlled

controls the eight debug LEDs
new_state: (0 or 1) - new LED state 0=OFF, 1=ON

laser new_state new_state: (0 or 1) - 0= turn laser OFF, 1= turn laser ON switch ON or OFF the fluorimeter laser

changer home
move the sample changer to home
(the first) position

changer move position position: (1 - 8) - new position the changer will move to
move the sample changer to selected
position

flmeasure
enter to the fluorescence
measurement menu

elisa enter to the ELISA menu

start pump pump_index
volume speed

pump_index: (main | wash | br1) - selects the pump.
Multiple selection is possible.

Start selected pump(s) to pump
selected volume at selected speed

volume: (-20000 - 20000) - pumped volume in µl,
negative number means opposite direction

speed: (1 - 5000) - pumping speed in µl/min

stop pump pump_index
pump_index: (main | wash | br1) - selects the pump.
Multiple selection is possible.

stop selected pump(s)

valve valve_index new_state

valve_index: (0 - 31) - selects the valve to be controlled

controls the 32 solenoid valves
new_state: (0 or 1) - 0= turn valve OFF, 1= turn valve
ON

pulsevalve valve_index time
valve_index: (0 - 31) - selects the valve to be controlled switches the selected valve ON only for

specified time
time: (1 - 30000) - pulse time in milliseconds

sample2capillary sample_idx
capilary_idx

sample_idx: (1 - 8) - index of the sample to be pumped
pump selected sample to selected
capillary capilary_idx: (1 - 8) - index of the capillary the sample

will be pumped into

empty path path_idx volume
speed

path_idx: (0 - 19) - index of the fluidic path to be
emptied

empty the selected path with defined
volume and speed

volume: (0 - 32000) - pumped volume in µl to empty the
fluidic path

speed: (1 - 5000) - pumping speed in µl/min

wash path path_idx volume
speed

path_idx: (0 - 19) - index of the fluidic path to be
emptied

wash the selected path with defined
volume and speed

volume: (0 - 32000) - pumped volume in µl to empty the
fluidic path

speed: (1 - 5000) - pumping speed in µl/min

measure sample
measure the fluorescence of current
sample

empty all empty all fluidic paths in the system

wash all wash all fluidic paths in the system

set rtc hours minutes
seconds

hours: (0 - 23) - the hour-part of the new time to be set

set new RTC time

minutes: (0 - 23) - the minutes-part of the new time to
be set

seconds: (0 - 23) - the seconds-part of the new time to
be set

debug motors
enter to the stepper motors debug
menu

end clean start the end-cleaning procedure

stop cleaning immediately stop all cleaning services

callbootloader start the bootloader

callcisservice
enter photometric/fluorimetric sensor
measurement service

78

ELISA menu commands

exit
exit ELISA menu and return back to the
main menu

sequence start starting_step
starting_step: (1 - 250) - selects the starting point of the
sequence

start execution of the ELISA sequence

sequence stop
immediately stop executing the ELISA
sequence

sequence pause
pause the ELISA sequence execution,
but finish the current step

sequence continue
resumes the execution of the ELISA
sequence

current incubation time
new_time

new_time: (0 - 30000) - new incubation time in seconds
change the recently running
incubation time

substrate time new_time new_time: (0 - 3000) - new incubation time in seconds change the substrate incubation time

global incubation time
new_time

new_time: (0 - 30000) - new incubation time in seconds
change the all incubation periods in
the sequence except the current time
and the substrate time

measurements repeats
repeats: (1 - 10) - number of measurement repeats for
each channel

set the measurement repeating for
each channel, the interval between
successive measurements is defined by
substrate time command

dosing speed speed speed: (1 - 1000) - new pumping speed to be set
set the pumping speed when pumping
liquid to the capillary

sample mode mode
mode: (br1 | prepared) - select one of two sampling
modes

configure the sampling mode: br1 -
take sample directly from the culturing
device, prepared - take the sample
from the sample container

shortcut start end

start: (1 - 255) - the shortcut starting point (as the
protocol step) - will be not executed allows to skip certain steps in the ELISA

sequence end: (1 - 255) - the shortcut end point (as the protocol
step) - will be executed

manifold speed speed speed: (1 - 1000) - new pumping speed to be set
set the pumping speed when pumping
liquid to the manifolds

wash manifold speed speed speed: (1 - 1000) - new pumping speed to be set
set the pumping speed when pumping
liquid to the manifolds during washing
operations

wash dosing speed speed speed: (1 - 1000) - new pumping speed to be set
set the pumping speed when pumping
liquid to the capillary during the
washing operations

wash manifold volume
volume

volume: (1 - 10000) - new washing volume to be set
set the volume for washing the
manifold fluidic paths

wash dosing volume volume volume: (1 - 10000) - new washing volume to be set
set the volume for washing the
capillary fluidic paths

wash repeat repeats repeats: (1 - 10) - number of washing steps
set the number of washing repeats
between the ELISA protocol steps

Bioreactor related

commands

br control new_state new_state: (0 | 1) - turn ON (1) or OFF (0) the perfusion
control the culturing unit bioreactor
perfusion

br change medium volume
speed

volume: (-10000 - 10000) - pumped volume in µl,
negative number means opposite direction change the medium inside the

bioreactor
speed: (1 - 5000) - pumping speed in µl/min

br sample volume speed
volume: (0 - 10000) - pumped volume in µl sample the bioreactor medium of

defined volume with defined speed speed: (1 - 5000) - pumping speed in µl/min

br mix
volume: (0 - 30000) - pumped volume of air in µl mix the sampled bioreactor medium

using stream of air speed: (1 - 5000) - pumping speed in µl/min

br prepare sample
start the bioreactor sample
preparation - comprise sampling and
mixing operations

br set speed speed speed: (1 - 500) - perfusion speed in µl/min set new bioreactor perfusion speed

79

br stop reset all ongoing bioreactor operations

Cleaner related commands

cleaner start starting_step
starting_step: (1 - 250) - selects the starting point of the
sequence

start the cleaning of the fluidics from
defined step

cleaner stop
immediatelly stop the clening
procedure

cleaner pause
pause the cleaning sequence
execution, but finish the current step

cleaner continue
resumes the execution of the cleaning
sequence

cleaner shortcut start end

start: (1 - 255) - the shortcut start point (as the protocol
step) - will be not executed allows to skip certain steps in the

cleaning sequence end: (1 - 255) - the shortcut end point (as the protocol
step) - will be executed

3.5 Intermediate summary

As can be seen, the development of the proof of the concept analytical device for the

automated flow-through human albumin sandwich ELISA was relatively complex. The

performance in the terms of sensitivity and assay time will can be potentially improved

to the standard MTP ELISA procedure. This was evaluated during the testing phase and

it is described in the later chapters. As with every prototype device some optimization

was necessary to reach the required performance level. Figure 3.39 and Figure 3.40 show

the finished ELISA analytical unit and the control unit respectively.

80

Figure 3.39 The automated flow-through ELISA module prototype

Figure 3.40 The control unit prototype

81

4 Designing the prototype of automated 3D cell culture

device

4.1 Introduction

The use of 3D cell cultures, especially when perfused, are more closely related to in vivo

conditions, making them potentially a more relevant model than 2D cultures [2]. Recently,

two new tools, micro bioreactors and MatriGrid® porous polycarbonate (PC) scaffolds,

were developed at Ilmenau University of Technology for 3D culturing of cell [4]. The

culture device described here serves as an extension of these two tools to create an

incubator environment compatible with a platform having integrated active perfusion and

automated medium change. This chapter first briefly describes the MatriGrid® and micro

bioreactor devices, following by the design and functionality description of the automated

culture unit.

4.2 Required functionality definition of the culture unit

The intended purpose of the culture unit within the automated system is to automate the

3D cell culturing process and provide the fluidic interface for transferring medium

samples to the analytical module for further analysis. The basic functionality of the

culture unit comprises:

• Compatibility with the existing micro bioreactor and MatriGrid® devices

• Active perfusion of the cell culture

• Automated medium change

• Sampling of the culture medium for the purpose of analysis with the optional

possibility of dilution

Aside from the main functionality, some additional properties are also required: The

culture unit should be compatible with the incubator environment, it should allow easy

handling and maintenance. The culture unit size should be therefore compact. The

prototype device may be constructed from commercially available fluidic components to

verify the design concept and required functionality.

82

4.3 The culture platform: Micro Bioreactor and MatriGrid®

The porous polycarbonate scaffolds termed MatriGrid® (Figure 4.1, left side) were

previously developed at Ilmenau University of Technology for 3D cell culturing [4]. The

scaffold contains up to 187 microcavities in which the cells are cultured. In contrast to

2D cultures, cells grow 3-dimensionally due to the limited space inside these

microcavities. The scaffold consists of a rectangular 50 m thick biocompatible

polycarbonate piece with a microstructured seeding area of 5 x 5 mm2. Porous

polycarbonate foils are structured to achieve pore sizes that are necessary for the nutrient

supply in active perfusion of 3D cultured cells during bioreactor culture.

Figure 4.1 The MatriGrid® scaffold (left) and the micro bioreactor (right)

The externally perfused micro bioreactor (Figure 4.1, right side) used for 3D organotypic

cell culture has a total fluid volume of 1350 µl and outer dimensions of 41 x 43 x 40 mm

(W x D x H) [4]. The housing consists of heat-resistant biocompatible PC components

and is therefore autoclavable. Within the bioreactor, two fluid chambers are located above

and below the inserted 3D cell carrier MatriGrid® which are connected to an in- and out-

flow channel to facilitate medium exchange and sample extraction. The inlet and outlet

of the micro bioreactor are connected to medium containing tubes via 1/4-28 UNF

flangeless tube connectors (Upchurch Scientific, IDEX Health & Science LLC, USA).

De-aeration of the fluid cycle is via an infusion port (B. Braun Melsungen AG, Germany).

83

4.4 Fluidics design

Based on the requirements defined before the prototype version of the fluidics for the

culture unit has been designed (Figure 4.2). It contains five active fluidic components:

one peristaltic pump (type 61131.000, Boxer GmbH), one two-way solenoid valve

(075P2NC12-23B, Bio-Chem Fluidics Inc.) and three three-way solenoid valves

(075P3MP12-23B, Bio-Chem Fluidics Inc.). The use of the components of the same type

as in the case of the analytical module is advantageous, because this allows using the

control unit also for driving the culture unit components. The control unit has sufficient

hardware resources to control one analytical unit and two culture units simultaneously.

Two kinds of tubing were used for the culture unit: The C-Flex® with internal diameter

of 0.58 mm (type 10025-23B, Bio-Chem Fluidics Inc.) and the PharMed® BPT tubing

with internal diameter of 0.51 mm (type SC0339, Cole-Parmer GmbH). Additionally,

three 15 ml Eppendorf tubes serve as the reservoirs for the fresh medium, sample and

waste containers.

V1PUMP

FRESH
MEDIUM

AIR

 NC

NO

V3

PUMP

 NC

NO

AIR

WASTE

V
2

Micro Bioreactor

V4

NC

NO

NC

NO

N
C

R
em

o
va

b
le

 a
n

d
 s

te
ri

le
 p

ar
t

DILUENT/SAMPLE

TO THE ANALYZER
CALIBRATED VOLUME 200ul

Figure 4.2 Fluidic diagram of the culture unit

The fluidic network is divided into two parts. The circulation loop including the

bioreactor and the fresh medium reservoir must work under sterile conditions. Therefore,

this part was designed as removable (Figure 4.2, lower part). The cell culture supported

on the MatriGrid® can be inserted into the bioreactor and the whole circulation loop can

84

be filled with culture medium under the clean bench. Once completed, the circulation

loop can be mounted on the culture unit outside the clean bench. The PharMed® material

was selected for circulation loop tubing, because in contrast to the C-Flex® material it can

withstand the autoclaving cycle. The second part of the fluidic network (Figure 4.2, upper

part) is designed to handle sample or the waste medium from the bioreactor and the

sterility or autoclaving operation is not required. The C-Flex tubing is therefore used for

this second fluidic part.

The culture unit functionality will be described in more detail in the following paragraphs

separately for each operating mode.

4.4.1 Culture unit during the active perfusion of the cell culture

Most of the time the culture unit perfuses the cell culture located in the micro bioreactor.

The peristaltic pump maintains the circulation. The medium flow path is shown on the

Figure 4.3. The valve V2 stays closed and V1 is also powered off, which means the V1-

NO part remains open and the V1-NC part remains closed. This way the cell culture

medium circulates in the loop and the atmospheric oxygen diffuses through the tubing

walls and facilitates the medium oxygenation. The entire culture unit may be placed into

incubator with controlled temperature and atmosphere. For that reason, the culture unit

does not contain any electronics, which could cause problems with the heat management

and moreover the electronics would need to be protected from the humid incubator

atmosphere as well. The solenoid valve and peristaltic pump drivers are located inside the

control unit. The perfusion speed should be selected sufficiently low that the cells are not

loaded with excessive shear stress. At the other hand too low perfusion can limit the

oxygen supply to the cells. The typical perfusion speed is in the low tens of microliters

per minute. The culture unit allows setting the perfusion speed in the range from 1 µl/min

to 500 µl/min. The direction of the perfusion can be also changed if needed. The second

channel of the peristaltic pump is not used in this mode. The circulation loop dead volume

is about 250 µl including the pump. The total internal volume including the micro

bioreactor is 1600 µl. For a perfusion speed of 25 µl/min the time for one complete

medium cycle will be 64 minutes.

85

V1PUMP

FRESH
MEDIUM

AIR

 NC

NO

V3

PUMP

 NC

NO

AIR

WASTE

V
2

Micro Bioreactor

V4

NC

NO

NC

NO

N
C

DILUENT/SAMPLE

TO THE ANALYZER
CALIBRATED VOLUME 200ul

Figure 4.3 Culture unit active perfusion flow path

4.4.2 Automated medium change

The regular refreshment of the cell culture medium is essential in the cell culturing

experiments. It is always connected with the risk of microbial contamination, so it must

be carried out under aseptic conditions. The cell culture unit was designed to automate

the medium change process and minimize the risk of contamination. This is achieved by

keeping the fluidic system closed during the medium change operation. The whole

procedure consists of two phases. During the first phase the fresh medium is pumped into

the bioreactor while the old medium is pumped out of the bioreactor to the waste

container. The second phase empties the fluidic paths. The respective flow paths are

shown on the Figure 4.4 and Figure 4.5. During the Phase I the solenoid valves V1 and

V2 are powered on, while the valves V3 and V3 stay powered off. The circulation loop is

opened and the pump delivers now the fresh medium to the bottom end of the bioreactor.

86

V1PUMP

FRESH
MEDIUM

AIR

 NC

NO

V3

PUMP

 NC

NO

AIR

WASTE

V
2

Micro Bioreactor

V4

NC

NO

NC

NO

N
C

DILUENT/SAMPLE

TO THE ANALYZER
CALIBRATED VOLUME 200ul

Figure 4.4 The culture unit flow path during the medium change or sampling, phase I

V1PUMP

FRESH
MEDIUM

AIR

 NC

NO

V3

PUMP

 NC

NO

AIR

WASTE

V
2

Micro Bioreactor

V4

NC

NO

NC

NO

N
C

DILUENT/SAMPLE

TO THE ANALYZER
CALIBRATED VOLUME 200ul

Figure 4.5 The culture unit flow path during the medium change phase II

The old medium is continuously displaced from the top part of the bioreactor through the

valve V2 and the calibrated volume fluidic part (which plays no role in this mode of

operation) to the waste container. By keeping the flow inside the bioreactor laminar

(which is always the case for the relevant perfusion speed range) the mixing between old

and new medium is limited to the diffusion. The user has the freedom to select the medium

87

change volume and speed. Partial or full medium exchange can be achieved by varying

the exchange volume. The exchange speed is usually the same like the perfusion speed,

but it can be also increased for speeding up the medium change process if the cultured

cells can handle such perfusion rate increase. At the end of phase I the valves V1 and V2

switch off again, which will restore the circulation loop and the cell culture continues to

be perfused with the refreshed medium. The fluidic paths behind the valve V2 are filled

with the old medium, which needs to be removed. This is the purpose of the phase II in

which the valve V3 switches on and the old medium in the tubing behind the valve V2

will be displaced by the air pumped by the second channel of the peristaltic pump. At the

end of phase II, the valve V3 will be switched off. The cell culture perfusion is not affected

during the phase II. The volume of the fresh medium container (15 ml) together with the

medium exchange volume sets the limit how many times the medium exchange can be

performed without refilling it and thus opening the aseptic part. Another limitation is the

stability of the medium at the incubator temperature.

4.4.3 Automated sampling of the cell culture medium

The basic feature of the integrated culture and analytic system is the possibility of

automated online medium sampling and subsequent analysis. The culture medium can be

supplemented with vehicle control or test chemical as needed. The sampling procedure is

similar to the medium change and consists of two phases as well. During the first phase

the solenoid valves V1 and V2 are powered on. The medium being sampled flows out

from the top side of the bioreactor through the valve V2 and the calibrated fluidic part to

the waste container. The fresh medium flows through the valve V1 to the bottom side of

the bioreactor. The situation is shown on the Figure 4.4. However, the volume displaced

during the phase I is chosen so that it will fill the fluidic paths until the point of valve V4.

The required volume will be slightly more than the calibrated value if 200 µl. The

difference accounts for the dead volume of the tubing connecting the calibrated part with

the valves V2 and V4. The medium stored in the calibrated part is displaced into the

sample container during the phase II (Figure 4.6). This way the volume delivered to the

sample container will be always known and constant. This approach was preferred over

the simple metering by peristaltic pump. Although the stepper motor can rotate for exact

angle, the pumped volume depends also on the exact position of the tubing inside the

peristaltic head or the degree of tubing wearing. During the sampling phase II the valves

88

V3 and V4 are powered on, while the valves V1 and V2 remain powered off. The

circulation loop is closed and the cell culture remains to be perfused.

V1PUMP

FRESH
MEDIUM

AIR

 NC

NO

V3

PUMP

 NC

NO

AIR

WASTE

V
2

Micro Bioreactor

V4

NC

NO

NC

NO

N
C

DILUENT/SAMPLE

TO THE ANALYZER
CALIBRATED VOLUME 200ul

Figure 4.6 The culture unit flow path during the medium sampling phase II

The optional sample dilution can be reached by filling the required amount of diluent into

the sampling container prior to sampling. The amount of sample is known so the amount

of diluent can be calculated for required dilution factor. Once the sample was displaced

into the diluent there is possibility to mix the resulting solution by the stream of air. In

this case the pumped volume during the phase II is increased several times, so after the

sample was flushed into the diluent the air continues to be further pumped to the solution.

The sample container tubing must end at the bottom of the container. At the end of phase

II, the sample ready for the analysis is present in the sample container. The additional

tubing provides the fluidic connection between the culture unit sample container and the

analytical module. Alternatively, the sample can be cryopreserved and analyzed later.

4.5 Intermediate summary

The culture unit described in this chapter together with the analytical module and the

control unit presents a new tool for cell culturing with high degree of automation and

system integration. The possibility of automated medium change while keeping the

89

fluidic system closed minimizes risk of cell culture contamination. The prototype of the

culture unit shows Figure 4.7. The evaluation of this culturing system will be described

in the following chapters.

Figure 4.7 The culture unit prototype

90

91

5 Evaluation of the prototype system

5.1 Introduction

This chapter describes initial testing of the culturing and analytical system after the

hardware and software development has been finished as described in the previous two

chapters. First the basic functionality of the fluidic components was verified. Next the

flow rates were optimized for the culturing part and the analytical part. The measurement

of standard curves for ELISA protocols was performed to confirm the assay validity after

its adaptation to the flow-through topology. During this testing phase some problems were

discovered, which required some design changes and protocol optimizations. Those

changes are discussed in detail in the following chapter.

5.2 Fluidics evaluation

The initial fluidic testing of the analyzer unit was performed with water as the working

fluid. The complete flow-through ELISA sequence was executed and the proper function

of active fluidic components (peristaltic pumps and solenoid valves) was visually

inspected. No leaks were detected. Furthermore, the pumping speed was optimized. It is

desirable to use the highest possible pumping speed to shorten the assay time. The upper

limit of the pumping speed is 2000 µl/min (software limitation). However, pumping

speeds above 500 µl/min caused significant increases in the liquid pressure, which

together with the tubing elasticity caused inconsistency in the pumped volume.

Experimental testing showed that it is necessary to keep the pumping speed bellow 500

µl/min in order to maintain the pumped volume accuracy. The pumping speed needed to

be further reduced for pumping liquids to the capillaries to prevent the desorption of

antibodies and to not affect the assay accuracy. Pumping volumes were determined

according to dead volume of the respective fluidic paths and increased by 15 – 25% to

compensate for priming phase and peristaltic tubing wearing. The satisfactory pumping

parameters for various assay fluidic operations are listed in the Table 5.1.

Similarly, the fluidic system of the culture unit was inspected for proper functionality.

Since its fluidic system is much simpler compared to the analytical unit and the pumping

92

speed used for perfusing cell culture are typically in the range of tens of µl/min, no

additional optimization of the fluidic network was necessary during the initial testing

phase. One minor problem however, was occasionally observed. The MatriGrid®

mounting in the Bioreactor proved to be critical. If the MatriGrid® was nor perfectly

aligned with its support, the O-rings sealing of the bioreactor was leaky and the loop

circulation in this case failed.

Table 5.1 Optimized fluidic parameters for flow-through ELISA assay

 Fluidic operation
Pumped volume

[µl]
Pumping speed

[µl/min]

1 Filling manifolds with a reagent 300 350

2 Filling capillary with a reagent 50 100

3 Filling manifolds with washing buffer 500 350

4 Filling capillary with washing buffer 50 100

5 Filling manifolds with a sample 300 350

6 Filling capillary with a sample 50 100

7 Removing reagent or sample from manifolds 350 350

8 Removing sample from sample manifold 50 100

9 Removing reagent from reagent manifold 50 100

10 Washing after sample 500 350

11 Washing reagent manifold 50 350

5.3 Readout system evaluation

Functionality of the fluorimeter as the readout subsystem was evaluated first by

measuring the noise level in the dark. The transfer curve - the dependence of measured

fluorescence on the resorufin concentration was measured and the limit of detection was

determined. The fluorimeter was also tested in cooperation with the sample changer to

evaluate the “autofocusing” algorithm for proper sample alignment.

The fluorescence measurement sequence begins with the ADC sampling in the dark, i.e.

with the excitation laser turned off. This ADC reading includes the transconductance

amplifier offset and it is used as a baseline for the final fluorescence calculation. Those

dark ADC readings can be also used for the fluorimeter electrical noise evaluation. The

dark ADC readings obtained during the 48 florescence measurements of the resorufin

standards were used to estimate the noise level. Out of the 48 readings, the ADC generated

the output number 32828 - 21 times and the number 32829 27 times. No other codes were

93

generated. Obviously, the peak-to-peak noise is 1 LSB and the design goal in the terms

of noise performance was met.

Because the transconductance amplifier transfer function has a negative slope, the actual

fluorescence reading is calculated by subtracting the measured value from the dark

(baseline) value. This way the fluorescence reading is proportional to the fluorophore

concentration and blank solution provide the reading of 0. The sensitivity of the

fluorimeter was evaluated by measuring a series of concentration standards of resorufin

sodium salt (R3257-5G, Sigma Aldrich). The measured dependence is shown on the

Figure 5.1.

Figure 5.1 Dependence of the fluorimeter reading on the resorufin concentration. Blank, 10nM and

20nM solution of resorufin was not detected (reading of 0). Lower limit of detection is 50nM of

resorufin.

It can be seen that blank solutions resulted in consistent zero readings. This proves we

had the appropriate optical filter selection, because no excitation light caused false

readings. The resorufin concentration of 10 nM and 20 nM was too low and was not

detected by the fluorimeter. The lower limit of detection was found to be 50 nM of

94

resorufin. This limit is more than adequate for adapted assay, as will be shown later by

measuring the standard curve.

The fluorimeter was designed to work together with the rotary sample changer. The rotary

sample changer is formed by a double disk and contains eight capillaries equally spaced

around its circumference. The implemented algorithm eliminates problems with the

sample alignment with the focal line of the fluorimeter. During the actual measurement

the capillary is positioned at some angular distance before the focal line. The sample

changer then rotates through the focal line while continuously measuring the

fluorescence. The extent of rotation is adjustable, but the value of 100 microsteps was

found to be satisfactory. The sample changer stepper motor is configured to make 6400

microsteps per one revolution, so 100 microsteps corresponds to the angle of 5.625°. The

Figure 5.2 shows the fluorescence dependence on the angular distance (number of

microsteps) for 10µM resorufin solution. It can be seen that the area near the maximum

is relatively flat, implying that the fluorescence is not very sensitive to the angular

position.

Figure 5.2 Dependence of the fluorescence on the capillary angular position during the sample holder

rotation. The x-axis span shown (100 microsteps) corresponds to angular distance 5.625°. The

capillary was filled with 10µM resorufin solution.

95

5.4 Albumin assay evaluation

To fully evaluate the analyzer functionality, complete human albumin assay was run on

the analyzer module as described in the Chapter 7. A series of human albumin solutions

with known concentration was used to measure the standard curve. The actual

concentrations were selected according to quantitation kit manufacturer

recommendations (Bethyl, E80-129): 0, 6.25, 12.5, 25, 50, 100 and 200 ng/ml of albumin.

According to used QuantaRed™ substrate manufacturer instructions (15159, Thermo

Fisher Scientific), the enzymatic color reaction needs to be stopped using the stop

solution, following the fluorescence measurement in the MTP reader. In contrast to that,

in a flow-through protocol there is no need to use the stop solution, because the

fluorimeter creates an integral part of the analyzer and the fluorescence of each capillary

is measured after exactly the same incubation time. This way, no manipulation with the

capillaries is required and all related errors are thus eliminated. Moreover, this approach

allows fluorescence measurement in multiple time points which allows internal quality

control and the measurement of reaction kinetics, if required. For this reason, all

fluorescence data measured by the analyzer module was taken for at least three time

points. Table 5.2 shows the fluorescence data for the standard curve test. The

measurement at three substrate incubation times: 370s, 740s and 1110s.

Table 5.2 Standard curve test – measured fluorescence

Albumin conc. [ng/ml]
Fluorescence [arb. units]

370s 740s 1110s

0 172 281 401

6.25 363 642 849

12.5 492 881 1318

25 1013 1863 2593

50 1529 2649 3890

100 2923 4846 6926

200 3463 5722 8154

The shape of dose-dependent curves of the sandwich immunological assay has sigmoidal

shape [38] and the four-parameter logistic model is considered the most suitable for

nonlinear regression of such assays [39]. The four-parameter model is based on the

following equation:

96

𝒚 = 𝒅 +
𝒂 − 𝒅

𝟏 + (
𝒙
𝒄)

𝒃
(5. 1)

The parameters a, b, c and d have following meaning:

a – corresponds to response (y) at zero analyte concentration (x)

b – represents the slope of the sigmoid curve

c – represents the sigmoid curve inflexion point

d – represents expected response (y) for infinitely high analyte concentration (x)

The equation x is typically solved numerically using various iterative algorithms (e.g.

Gauss–Newton algorithm), to find model parameters for a given concentrations and

measured fluorescence [38]. Initial parameter setting is needed as starting point, and

following procedure was used for this purpose:

a – use the minimal value of the response y

b – use the slope defined by minimal and maximal response y

c – use the response value y which is closest to the middle point between minimum

and maximum

d – use the maximal value of the response y

The regression algorithm uses residual sum of squares (RSS) as the assessment criteria

for the quality of curve fit. The RSS is calculated according the following equation:

𝑅𝑆𝑆 = ∑ 𝑤𝑖[𝑌𝑖 − (𝑌𝑐)𝑖]
2

𝑙

𝑖=1

(5. 2)

Where Y is the observed response and Yc is calculated response. The wi is weighting factor

for i-th data point. The use of weighting factor greatly improves the accuracy of curve fit,

because the error tends to be proportional to the signal (Y) magnitude [40, 41].

The curve fitting in the frame of this work was done using an automated MS Excel sheet

[42], which implements weighted logistic model and Solver add-in tool to calculate model

parameters. The estimated model parameters for the standard curve measurement

contained in Table 5.2 are shown in the Table 5.3, and corresponding curves are shown in

Figure 5.3.

97

Table 5.3 Estimated model parameters for standard curve for three different incubation times

 370s 740s 1110s

a 4789 7824.23 10726.3

b -1.26769 -1.21539 -1.25709

c 89.07887 84.08654 76.5626

d 176.9873 286.172 404.1411

R2 0.9959 0.9965 0.9978

Once the model parameters are known; any sample analyte concentration X can be

calculated from the corresponding fluorescence Y using the following equation:

𝑋 = 𝑐 (
𝑎 − 𝑑

𝑌 − 𝑑
− 1)

1
𝑏

(5. 3)

Figure 5.3 Standard curve fitting of data shown in Table 5.2. Quality of fit: R2=0.9959 for 370s

incubation time; R2=0.9965 for 740s incubation time; R2=0.9978 for 1110s incubation time.

The measured standard curve shown on Figure 5.3 confirm that the analyzer unit is

functional and the adaptation of standard MTP based ELISA protocol was successfully

modified to a flow-through version. However, the fluorescence data is not ideal. The

recorded fluorescence for blank standard is approximately 10x higher than expected. This

98

high background signal decreases overall dynamic range of the assay and indicates

problems with contamination of fluidic paths or insufficient cleaning procedure. To find

the concrete source of the problem, additional testing was necessary, which is described

in the following chapter.

5.5 Intermediate summary

The initial hardware and software testing of the whole system described in this chapter

successfully verified basic functionality of the whole culturing and analytical system and

proves its suitability for intended purpose – that is an automated cell culturing and

automated cell culture analysis utilizing the sandwich ELISA assay. During this testing

phase, minor problems were identified. By solving those problems, the accuracy and

dynamic range of the immunoassay could be increased on the side of analytical module,

as well as the manipulation reliability on the side of culturing unit.

99

6 Optimizing the performance of analytical module

6.1 Introduction

This chapter describes the analyzer unit modifications to solve some assay accuracy

problems as described in the previous chapter. The analyzer performance after those

modifications made the measurement of standard curves in low concentration ranges

possible, allowing the measurement of values lower than recommended by the substrate

kit manufacturer. The accuracy of the assay was verified by comparing with standard

microtiter plate assay and the results are presented.

6.2 Analyzer unit cleaning procedure

Cleaning of all the fluidic pathways before the start of new assays is of critical

importance. A proper cleaning procedure removes all chemically active residuals which

remain after the previous assay, such as the adsorbed proteins on the tubing and manifold

walls. The extent of removal must be sufficient to not influence or distort the results of

the following assay. The assay interference caused by insufficient cleaning can be

observed as increased background fluorescence or the incoherent standard curve.

The initial cleaning procedure involved the emptying of all fluidic paths and washing it

with 70% ethanol, followed by washing with deionized (DI) water. Although it is known

that 70% ethanol denatures proteins and it is an efficient disinfectant, this cleaning

procedure did not provide a satisfactory result. The background fluorescence was

significantly higher after each assay, which indicated insufficient desorption and / or

denaturation of proteins. The cleaning procedure was therefore extended, and as the first

step a desorption solution of the following composition was used: 70% ethanol, 2% citric

acid and 0.5% sodium dodecyl sulfate (SDS). In the second step, washing with 70%

ethanol was used, followed by final washing with DI water. All three components of the

desorption solution cause protein denaturation by various mechanisms. The ethanol

disrupts the hydrophobic interactions of the protein core, the citric acid at concentration

of 100 mM lowers pH to approximately 2, which causes negative charge neutralization

of the protein amino acid residues. SDS is a well-known detergent and causes protein

100

unfolding by binding of the SDS hydrophobic part to the protein amino acids [43].

Moreover, disrupting hydrophobic interaction between the protein and fluidic channel

surface helps to desorb and remove the proteins. The use of above described three stage

cleaning procedure proved to be satisfactory and allows running multiple assays without

replacing the C-Flex™ tubing. The only part required to be replaced for each assay run

are the capillaries which are considered to be critical component, because they serve as

the assay’s solid phase. The cleaning procedure is automated and it is part of the control

unit firmware.

6.2.1 Extension of the cleaning procedure

During later tests using the optimized FEP manifolds it was found that occasionally, those

manifolds become clogged by precipitated proteins. The cleaning procedure was

therefore extended for additional washing by 1M sodium hydroxide solution. It is known

that proteins, including BSA, can be desorbed and solubilized by NaOH at high pH values

[44, 45]. All used fluidic component materials are chemically compatible with 1M NaOH

solution: PharMed™, C-Flex™, PVC, FEP and PEEK. The sodium hydroxide washing

was selected as the first step in the cleaning sequence to dissolve and remove most of the

proteins, which prevents formation of the protein precipitates in the following steps. The

citric acid in the second cleaning step helps to neutralize rests of the alkaline solution

trapped in the fluidic network. At the end of the last cleaning step (DI water), a pH

measurement confirmed the neutral reaction of the effluent. The final version of the

cleaning procedure is listed in the Table 6.1.

Table 6.1 The final cleaning sequence of the analyzer fluidic network

Cleaning
sequence

step
Description

1 Empty the fluidic network

2 Wash the network with 1M NaOH solution

3 Empty the fluidic network

4 Wash the network with desorption solution

5 Empty the fluidic network

6 Wash the network with 70% Ethanol

7 Empty the fluidic network

8 Wash the network with DI water

9 Empty the fluidic network

101

6.3 The cause of decreased assay performance

Looking at the fluorescence data listed in the Table 5.2, two problems can be identified:

the relatively high background fluorescence of the blank standard, and additionally

slightly decreased accuracy which can be seen on the Figure 5.3, where the measured

points do not coincide closely with the standard curve (i.e. it was not possible to make

curve fittings with a smaller error). This may be caused by several reasons, such as

improper washing, instability of the substrate, contamination of the substrate by

secondary antibody or various assay protocol problems. To diagnose the origin of this

inaccuracy, a series of tests were conducted and evaluated.

The stability of the substrate was tested for stability as the first step. The substrate mix

consists of the non-fluorescent ADHP dye, the enhancer and stabilized hydrogen peroxide

solution. This mix should be used within 30 minutes according the manufacturer

instructions. The presence of traces of HRP enzyme or possibly other interfering

compounds may result in resorufin dye development. The flow-through ELISA sequence

was used for this test as described in the Chapter 3.2.4 with one modification: it was

started from the step 13 (Introducing the substrate to the capillaries). Also, new capillaries

were used for this test and the whole fluidic system was washed using previously

described three-step cleaning procedure. Recorded fluorescence is shown in the Table 6.2.

Ideally, fluorescence values of zero or close to zero should be recorded for all 7 channels.

It can be seen that the fluorescence after 5 minutes is zero for all channels except the

channels 3 and 7, where minimal fluorescence was recorded.

Table 6.2 Substrate stability test – measured fluorescence

Channel
Fluorescence [arb. units]

5 min 10 min 15 min

1 0 10 15

2 0 9 15

3 5 13 18

4 0 9 14

5 0 3 6

6 0 12 16

7 4 9 10

102

The fluorescence in all channels slowly increased with time and after 15 minutes the

fluorescence remained below 18 units. Those values are more than 20 times lower than

the values for channel 0 (blank) listed in the Table 5.2. It may be therefore assumed that

the substrate is sufficiently stable and does not contribute to problems with assay

accuracy.

Logically, the next test should involve the conjugated secondary antibody. This test was

aimed to evaluate substrate contamination by the conjugated antibody. Ideally, the

conjugated antibody is pumped to all capillaries, followed by a washing step using the

washing buffer and finally the substrate solution will be pumped to the capillaries. If the

fluidic system will be completely washed of the conjugated antibody, the fluorescence

reading should stay close to the levels listed in Table 6.2. The whole fluidic system must

be previously blocked by BSA blocking buffer, to prevent non-specific binding of

conjugate antibody to the surface of capillaries and fluidic pathways. Again, an

incomplete flow-through ELISA sequence was used for this test, starting from the step 4

(pumping the BSA blocking buffer to the capillaries). The blocking incubation time was

extended to 1 hour to allow for sufficient surface blocking. The steps 7, 8 and 9 were

skipped as no standards were using in this test and the sequence continued by the step 10

(pumping the conjugate antibody to the system). The fluorescence levels measured in the

last step (14) are listed in the Table 6.3.

Table 6.3 Conjugated antibody contamination test – fluorescence data

Channel
Fluorescence [arb. units]

5 min 10 min 15 min

1 467 928 1365

2 426 708 1085

3 432 834 1125

4 400 770 1055

5 265 490 666

6 349 685 949

7 325 558 798

The result of the test shows high fluorescence values, implying substrate contamination

by the enzyme conjugated antibody. However, it is not clear whether this contamination

originates from cross-contamination of fluidic pathways or there might be some

conjugated antibody adsorbed on the capillary walls caused by possible insufficient

103

blocking. To investigate this possibility, the test was repeated with one important

modification: at the end of step 13, when the conjugate antibody was pumped to the

capillaries and washed afterwards, all capillaries were replaced for new ones and the

sequence then continued with the step 14 (pumping the substrate). This way, it was

guaranteed that no conjugated antibody was present in new capillaries and eventual

substrate color reaction must be inevitably caused by conjugated antibody remained in

the fluidic system. The fluorescence data as the result of this experiment is presented in

the Table 6.4.

Table 6.4 Conjugated antibody contamination test with replaced capillaries – fluorescence data

Channel
Fluorescence [arb. units]

5 min 10 min 15 min

1 84 158 234

2 155 259 351

3 225 441 651

4 164 258 390

5 394 717 945

6 494 955 1291

7 25 39 47

Comparing the fluorescence data with the previous test it can be concluded that the

contamination was reduced but not significantly. Moreover, the fluorescence between the

channels differs significantly! This fact implies various degree of contamination for

various channels. This cannot be attributed to improper washing directly, because the

washing cycle in the step 12 is repeated 3 times with exactly same pumping volumes and

timing for all capillaries. It is obvious that, despite intense washing cycle, traces of

conjugate antibody solution remain in the fluidic system. Logically, the most probable

place in the fluidic system where the washing could be problematic are the places with

highest topologic complexity, more specific – the manifolds. The analyzer unit used

during those tests the commercial 9-port manifolds with the “star” topology (P-191, IDEX

Health & Science, Figure 6.1 - left).

It is difficult to prevent the contamination of adjacent channels in the star joint. A small

portion of solution always diffuses to all channels connected to the center point. Also, the

washing procedure sequenced as switching of one arm only at same time, will not result

in perfect cleaning for the same reason.

104

Figure 6.1 The 9-port manifold with “star” fluidic topology (left), and its internal fluidic channels

(right)

This idea led to change of the manifold topology, which would allow more efficient

reagent separation and cleaning. The topology of nine port manifold was therefore

changed from the star configuration to series of 7 “tee” joints. This way, no joint has more

than three branches: one inlet, one outlet and one side arm. Also, the problem with

diffusion will be limited to one side arm, and the sequencing algorithm can easily correct

this effect. The Figure 6.2 shows redesigned 9-port manifold.

Figure 6.2 The fluidic topology of 9-port manifold composed from series of “T” joints

Three out of four manifolds were replaced with the new version (see Figure 3.4): the

sample manifold, the reagent manifold and the capillary manifold. Only the waste

manifold was kept unchanged, because it is located in the waste stream and is therefore

105

irrelevant for the assay accuracy. New manifolds were built by hot-air welding of pieces

of FEP tubing (VICI JR-T-6802, 1/16” x 0.5 mm). The capillary manifold is located at

the top of the circular sample changer and it is therefore required to have a circular shape.

A dedicated manifold holder was therefore manufactured to support the FEP tubing (see

Figure 6.3).

Figure 6.3 The circular holder of the capillary manifold (left), and corresponding FEP tubing

manifold (right)

After the manifolds replacement, the analyzer was tested with full sequence to evaluate

possible improvements in the background fluorescence and cross-channel contamination.

The result of the are listed in the Table 6.5.

Table 6.5 Full sequence test with redesigned manifolds – fluorescence data

Albumin
conc.
[ng/ml]

Fluorescence [arb. units]

7 min 14 min 21 min

0 61 104 150

6.25 172 319 474

12.5 405 773 1126

25 828 1573 2211

50 2000 3689 5135

100 4922 8370 9903

200 6148 9903 9903

 The fluorescence data of the assay test after the replacement of the manifolds show

significant improvement in the background fluorescence for blank standards.

Additionally, the florescence values for monotonically increasing albumin concentrations

in standards are also monotonically increasing in uniform steps, which is presumably

caused by reduced cross-channel contamination. The fluorescence values of 9903 units

106

for the high albumin concentrations and longer times (14 min and 21 min) represents the

maximum readout value under the fluorimeter amplifier saturation. This value is not

constant for every assay and may slightly vary, depending on the offset calibration, which

is performed at the beginning of each fluorimeter operation.

6.4 Standard curve measurement in low concentration range

According to Human Albumin Quantitation Set (Bethyl, E80-129) manufacturer

instructions, recommended standard concentrations cover the albumin concentration

range from 6.25 ng/ml to 400 ng/ml. Given the improved analyzer performance with

optimized manifolds and improved cleaning procedure, a trial test was conducted to

investigate the analyzer performance with the albumin concentrations below 6.25 ng/ml.

Result of this test represents the standard curve in low albumin concentration range and

corresponding fluorescence data are listed in the Table 6.6, the 4-parameter logistic model

fit parameters are listed in the Table 6.7, and the standard curve is plotted on the Figure

6.4.

Table 6.6 Fluorescence data of standard curve in low albumin concentration range.

Albumin
conc.
[ng/ml]

Fluorescence [arb. units]

7 min 14 min 21 min

0 40 60 60

0.78 43 64 84

1.5 51 85 121

3.13 90 164 234

6.25 172 295 425

12.5 414 788 1141

25 906 1677 2523

Table 6.7 Estimated model parameters for standard curve in low concentration range

 7 min 14 min 21 min

a 2360.463 4427.98 19753.53

b -1.62841 -1.61524 -1.39027

c 34.35895 34.56781 100.74

d 38.7509 57.90703 60.86779

R2 0.995 0.9959 0.9973

107

Figure 6.4 Measured standard curve in the low albumin concentration range.

The background fluorescence value was 40 units after 7 minutes, which is completely

acceptable. Table 6.6 also shows that even the albumin concentration as low as 0.78 ng/ml

can be clearly distinguished from the background and it is above the detection limit. For

such low albumin concentration, longer substrate incubation times provide steeper curves,

as can be seen on Figure 6.4. The measured points coincide more closely with the standard

curve, compared to situation on Figure 5.3, despite the albumin concentration levels are

8x lower.

6.5 Accuracy verification of the flow-through ELISA

The final verification step of the analyzer functional assessment is the comparison of an

albumin standard measurement by the analyzer unit utilizing the flow-through protocol,

with the measurements of the same standard by standard laboratory ELISA protocols.

Two albumin solutions with concentration of 9 ng/ml and 18 ng/ml were prepared and

108

used for testing by both protocols. Both solutions were measured as triplicates, allowing

the evaluation of measurement error. Both protocols used same human albumin

quantitation set (Bethyl, E80-129), but different substrates. The QuantaRed™ Enhanced

Chemifluorescent substrate (15159, Thermo Fisher Scientific) was used for flow-through

ELISA, while the TMB substrate was used for the MTP ELISA (Immunochemistry

Technologies, #6275). The Spectramax® M5 reader was used to measure samples optical

density when using the MTP ELISA. The substrate incubation time for flow-through

ELISA was 7 minutes. The comparison of the measured albumin levels is shown on

Figure 6.5 and the statistical assessment of the measurement error is listed in Table 6.8.

Figure 6.5 Comparison of albumin measurement with two different ELISA protocols. The error bars

represent the standard error of mean (SEM)

According to current regulatory guidelines from the U.S. Food and Drug Administration

(FDA) and the European Medicines Agency (EMA), a validated assay to quantify the

antibody should demonstrate an accuracy with ±20% of the known antibody

concentration and precision of less than 20% coefficient of variance [40]. The results in

the Table 6.8 shows that the accuracy of the analyzer unit implementing the optimized

flow-through ELISA protocol is significantly better than the required 20%. The MTP

ELISA protocols provided slightly lower results then the flow-through protocol (11.88%

lower result for 9 ng/ml standard and 6.35% lower result for 18 ng/ml standard). There

109

may be various reasons for that, such as variation of surrounding temperature, or the use

of different substrate and different readout method (colorimetric vs. fluorimetric).

Diagnosing the source of this error is beyond the scope of this work and it was not carried

out.

Table 6.8 Statistical evaluation of measurement accuracy for both ELISA protocols.

Flow - through ELISA

Albumin
standard
[ng/ml]

Measured
values
[ng/ml]

Mean
value

[ng/ml]

Standard
deviation
[ng/ml]

Measurement
error [%]

Coefficient of
variation [%]

9

9.60

9.34 0.29 3.73 3.07 9.03

9.38

18

16.11

16.99 0.82 -5.59 4.85 17.13

17.74

MTP ELISA

Albumin
standard
[ng/ml]

Measured
values
[ng/ml]

Mean
value

[ng/ml]

Standard
deviation
[ng/ml]

Measurement
error [%]

Coefficient of
variation [%]

9

7.93

8.23 0.26 -8.60 3.18 8.42

8.34

18

15.81

15.91 0.26 -11.59 1.65 15.72

16.21

6.6 Intermediate summary

The issues identified and described in the Chapter 5 served as a starting point for the

analyzer unit improvement. Two key modifications – the redesign of the manifolds and

improvement of the cleaning procedure leaded to desired level of assay accuracy, as was

confirmed at the end of this chapter. The ability of standard curve measurement at

concentration levels 8x below the recommended level was demonstrated. Additionally,

the assay accuracy was compared to standard MTP ELISA protocol and it was

confirmed that it fulfills recent international standards for validation of antibody

quantitation assays. At this point, the analyzer unit is considered fully functional and

ready to be used in connection with cell culturing units for on-line albumin level

measurement in cell culture medium.

110

111

7 Evaluation of the prototype system

7.1 Introduction

The applicability of the automated compact device in online-kinetics measurement of

albumin secretion was verified as a proof-of-concept using 3D HepaRG cultures perfused

with acetaminophen (APAP) over a period of 96 h. This chapter demonstrates how this

integrated in vitro system can be used for drug toxicity tests and show the potential for

adaptation of online-monitoring to measure other secreted proteins, such as hormones and

signaling molecules from 3D mono- and co-cultures. The APAP toxicity is discussed

first, followed by the experimental part in which the APAP induced EC50 values were

determined for HepaRG cell culture in various formats. To provide additional evidence

of APAP metabolism in cell culture, the APAP consumption was measured by HPLC

methods. Albumin measurements in the perfused 3D HepaRG culture with and without

APAP supplemented medium using the integrated culturing and analytical system are

described and the results are compared with conventional MTP ELISA.

7.2 APAP toxicity in 2D and 3D hepatocyte cultures

APAP is a well-known representative method for dose-related intrinsic liver toxicity [46,

47], making it an ideal test compound to use in these proof-of-concept studies. While

predominantly phase II reactions account for the major metabolites of APAP, namely the

APAP-sulfonate and APAP-glucuronide conjugates, toxic doses of APAP result in

reactive metabolite formation (N-acetyl-p-benzoquinoneimine (NAPQI), Figure 7.1) via

phase I enzymes, namely CYP3A4, CYP1A2 and CYP2E1 [48-50]. At lower

concentrations, NAPQI is detoxified by reduced glutathione (GSH) but once GSH is

depleted, NAPQI covalently binds to cellular proteins, e.g. from mitochondria [50-52].

The resulting mitochondrial dysfunction leads to a number of forms of toxicity which

initiate pathways ultimately leading to acute liver failure (ALF) [53]. These pathways

include the impairment of hepatocyte mitochondrial respiration, ATP depletion and

formation of reactive oxygen species ([54-56] (such as NO and superoxides resulting

from mitochondrial permeability transition (MPT) [57]).

112

Figure 7.1 Metabolic conversion of acetaminophen (APAP) to toxic N-acetyl-p-benzoquinoneimine

(NAPQI)

For individual experiments, HepaRG cells (BIOPREDIC International, Saint Grégoire)

were seeded at a density of 50.000 cells per well either in collagen pre-coated (5 µg/cm2)

24-well plates (monolayer) or collagen pre-coated scaffolds (3D organotypic cell culture)

in 24-well plates. Cells were seeded in the scaffolds in a small volume (25 µl) to ensure

selective growth in the microcavities. Subsequently, cells were allowed to adhere for 2 h

before adding the remaining culture medium into the wells. After seeding, cells were

cultured for 2 weeks in the maintenance medium in a cell incubator at 37°C, 95% relative

humidity and 5% CO2. Thereafter, cells were either cultured in the maintenance medium

for another 2 weeks or shifted to a differentiation medium on day 14 (supplemented with

1% DMSO). For perfused 3D cell cultures, the MatriGrid® scaffolds were inserted in the

supporting bioreactor and mounted on the culturing unit of the automated system. The

culture medium was renewed every 2 days in all experiments.

APAP toxicity was measured by the determination of metabolic activity and albumin

secretion. Metabolic activity of HepaRG cells was analyzed using the commercially

available Alamar Blue® kit (BIO-RAD, BUF012A). Albumin levels in the culture

supernatants were analyzed using the Albumin-ELISA Quantitation kit (Bethyl, E80-129)

with TMB substrate (Immunochemistry Technologies, #6275). After 4 weeks of

differentiation, HepaRG cells grown either in monolayer or scaffolds were incubated with

increasing concentrations of APAP (0, 1, 5, 10, 15, 20, 40, 80 mM) in Williams medium

E (WME) + 0.1% FBS in wells or in perfused micro-bioreactors for 24 h. Cells grown in

monolayer culture (2D) or in scaffolds (3D) were treated with trypsin to return cells to

suspension and the total cell number was determined. After centrifugation for 5 min at

515g cells were incubated with resazurin for 2 h at 37°C in the incubator. The

NH CH3

O

OH

N CH3

O

O

N CH3

O

OH

OH

Dehydration
 N-hydroxylation
(cytochrome P450)

APAP NAPQI

113

fluorescence of the metabolite, resorufin, was measured at 560 nm excitation and 590 nm

emission with a Spectramax® M5 microplate reader. Albumin levels were measured in

the culture supernatants according to kit manufacturer instructions. The absorbance of the

TMB oxidation product was measured by Spectramax® M5 microplate reader at 450 nm.

Metabolic activity and albumin level values were normalized to the total cell number (per

million cells), and values of APAP-treated samples were normalized against the control

values (i.e. without APAP), which was set to 100 %.

To assess whether the culture format affects APAP-induced toxicity and the effect of

APAP on secretion of hepatic albumin, DMSO differentiated HepaRG cells grown under

2D and static (i.e., not perfused) 3D conditions were treated with increasing

concentrations of APAP either statically (2D, 3D) or under perfusion (bioreactor “3D

BR”). After 24 h of incubation, the concentration dependent toxicity of APAP was

measured using two different readout parameters: resazurin metabolism and albumin

secretion. As illustrated in Figure 7.2, 3D static cultures of HepaRG cells were more

sensitive to APAP than 2D cultures according to resazurin metabolism (EC50 3D: 21.0

mM, EC50 2D: 27.1 mM). This could be due to the more highly differentiated state of the

cells under 3D conditions, especially with respect to the presence of the bioactivating

CYPs. Continuous perfusion of 3D cultures in a bioreactor (“3D BR”) significantly

enhanced the sensitivity of HepaRG cells to APAP, with an EC50 value of 9.7 mM, which

is due to the increased accessibility of the hepatocytes for the drug.

Figure 7.2 Effect of APAP on resazurin metabolism (left) and albumin secretion (right) in HepaRG

cells cultured under different conditions. The fluorescence of resorufin, the product of the resazurin

assay, was measured with a SpectraMax M5 microplate reader. Each experiment was replicated 3

times (n = 3 per concentration, mean ± SEM).

114

In comparison to the resazurin assay, inhibition of albumin secretion by APAP occurred

at lower concentrations of APAP. The lowest concentration of APAP that inhibited

albumin synthesis was detected in perfused 3D cultures (EC50 3D perfused: 2.8 mM). The

EC50 value for statically cultured 3D cultures was 3.9 mM, while 2D cultures were the

least sensitive to albumin inhibition by APAP (EC50 2D: 7.0 mM). The results are

consistent with those of others and show that in addition to the impairment of

mitochondrial function, the secretion of albumin is also affected by APAP [15, 58-60].

To investigate whether the higher sensitivity of 3D HepaRG cultures to APAP are due to

an increased metabolism of APAP (to NAPQI), we measured APAP consumption during

the incubations. Differentiated 2D and 3D HepaRG cells were incubated with 20 mM

APAP in Williams medium E with 0.1% FBS for 1 h in wells or under perfusion in the

micro bioreactor. After incubation, culture supernatant was immediately frozen at -80°C

and the total cell number was determined. Before analyzing the samples by HPLC, the

supernatant was processed by solid phase extraction using Sephadex® G-50, according to

the manufacturer’s instructions. A volume of 0.5 µl sample was injected onto the HPLC

system for analysis. The depletion of APAP was calculated by comparing the amount of

APAP in each sample using the area under the chromatogram peak with the peak area of

20 mM APAP and normalized to the total number of cells.

Figure 7.3 Consumption of APAP by HepaRG cells cultured in different formats (2D, 3D and 3D BR).

The consumption of APAP in the medium was calculated by HPLC analysis before and after culture

with the cells. Each experiment was replicated at least 3 times (mean ± SEM).

115

In comparison to 2D cultures, APAP consumption was significantly increased in static

and perfused 3D cultures (Figure 7.3; 3D vs 2D: 4.8-fold; 3D BR vs 2D: 5.9-fold,

respectively). These data correlate well with the observed higher toxicity of APAP in

static and perfused 3D HepaRG cultures. Based on these results, it can be concluded that

3D cell cultures show enhanced metabolic activity compared to 2D cell cultures, which

is in keeping with other reports that 3D cell culture provides an in vivo-like realistic

extracellular microenvironment that modulates differentiation and cellular functionality

[61]. The extracellular matrix conditions in our MatriGrid® helps to maintain CYP2E1

and CYP3A4 activities, which in turn enhance the metabolism of APAP.

7.3 Online flow ELISA with APAP

The influence of APAP on albumin secretion was measured using online flow ELISA and

also by conventional MTP, and the results were compared. After 4 weeks of static

culturing, differentiated HepaRG cells in scaffolds were inserted into the micro bioreactor

either filled with Williams Medium E with 0.1% FCS, 5 µg/ml insulin, 5 x 10-5 M

hydrocortisone hemisuccinate, 2 mM glutamine, 100 U/ml penicillin and 100 µg/ml

streptomycin (vehicle) or the same medium supplemented with APAP in a final

concentration of 5 mM. Micro bioreactors were mounted on the culturing unit and

continuously perfused with aforementioned media using an integrated peristaltic pump

using the flowrate of 25 µl/min over 96 h. To measure the initial albumin levels, cells

were continuously perfused with control cell culture medium for the first 24 h. After the

first automatic medium change and sampling run was completed, the cell culture was

supplemented with 5 mM APAP for another 72 h. Automatic medium change and

sampling was carried out every 24 h.

Albumin secretion increased in vehicle-treated HepaRG cells over 72 h (by more than

150% of the initial level, Figure 7.4). By contrast, albumin secretion in APAP-treated

HepaRG cells decreased to approx. 50% of the initial value within the first 24 h and was

further decreased to 24% after 72 h. The 50% decrease of albumin levels in the first 24 h

correlated well with the APAP EC50 value of 2.8 mM after 24 h incubation with perfused

HepaRG cells and measured using MTP ELISA (Figure 7.2, right).

116

Figure 7.4 Albumin secretion measurement by automated culturing and analysis system with and

without administration of 5 mM APAP over the period of 96 h. Values are from at least 3 experiments

(mean ± SEM).

The albumin concentrations of the online samples were also measured using traditional

MTP ELISA and confirmed the accuracy of the adapted flow-through ELISA (i.e. the

values were not significantly different, as can be seen on Figure 7.5).

7.4 Intermediate summary

According to both measurements of toxicity, 3D cell cultures were more sensitive to

APAP than 2D cultures, which is in line with the findings of others [2, 62]. The use of 3D

cell cultures, especially when perfused, are more closely related to in vivo conditions,

making them potentially a more relevant model than 2D cultures [2]. The functionality of

the automated culturing and analysis device with polycarbonate-scaffold cultured

HepaRG organoids was demonstrated. Their excellent hepatofunctional properties can be

used with advantage in spheroid culture toxicity assays. The use of this robust 3D cell

culturing tool provides advantages of automated medium change, minimal contamination

risk, and additional labor-saving benefit especially in long-term experiments.

117

Figure 7.5 Validation of measured albumin levels by automated system with conventional MTP

ELISA. Albumin secretion increased in vehicle-treated HepaRG cells (top) and decreased in APAP-

treated HepaRG cells (bottom). Values are from at least 3 experiments (mean ± SEM).

118

119

8 Culturing and analytic system extensions

8.1 Introduction

The automated system as described in previous chapters was built as a prototype device

to verify the automation possibilities of 3D cell culturing with on-demand automated

analysis based on ELISA. This functionality was achieved after several design

improvements (Chapter 6) and demonstrated by the APAP toxicity evaluation in 3D

hepatocyte culture (Chapter 7). However, the development of this system should not stop

at this point. This chapter addresses the most important parts of the automated system,

which would further improve the assay accuracy, long term culturing reliability or the

analysis throughput. Some of those ideas has been realized, but majority serve as the basis

for further development of this automated system.

8.2 Parallelization of the culturing units

During the experiments described in the previous chapter, it was realized that the

possibility of conducting the automated culturing in more than one bioreactor would

accelerate the experimental work. In a typical toxicity study, one needs to perform cell

culturing in the presence of the active compound as well as in the control culture. In both

cases, the culturing should be replicated at least three times to provide statistical

relevance. Because the control unit of the automated system does not support more than

two culturing units, a way for efficient controlling of six or more culturing unit was

needed.

A concept of “the smart driver” was chosen, where each culturing unit would be

controlled by a separate driver module. The driver module should be able to directly

control the peristaltic pump and solenoid valves of corresponding culturing unit. It should

be equipped with suitable microcontroller, programmed to manage the complete

functionality of the culturing unit in an autonomous way. This covers the culture

perfusion, automated medium change and also medium sampling. This driver should be

controlled by a host system via high level commands and it should provide culturing unit

status information on demand. Six or more culturing units with corresponding drivers

120

should be controlled by one common controller module, which would also serve as the

user interface (Figure 8.1).

This parallel culturing system was realized as described in the two following subchapters

and it was found to be extremely useful for conducting long term cell culturing in multiple

bioreactors. The automated medium change significantly reduces the risk of culture

contamination and additionally provides labor saving benefit. This second aspect

becomes significant in long term experiments requiring operation of six or more

bioreactors.

Controller module

Culturing unit 1 Driver module 1

Culturing unit 2 Driver module 2

Culturing unit N Driver module N

Figure 8.1 Block diagram of parallel operation of multiple culturing units.

8.2.1 Driver design for culturing unit

In contrast to the automated culturing and analysis system control unit, where the main

objective was universality, the driver was designed with focus on simplicity and covers

the culturing unit control requirements with little additional functionality. The driver is

based on the 8-bit ATmega32 microcontroller with more than adequate CPU speed. It

provides the following functionality:

• One stepper motor driver with microstepping support

• Eight solenoid valve drivers

121

• Two galvanically isolated digital inputs

• Two analog inputs

• Asynchronous serial interface (UART)

• I2C serial interface

The communication between driver units and the controller is accomplished via I2C serial

interface. It is two-wire bi-directional serial interface with addressing. All drivers are

connected to this interface in parallel and each driver must have assigned a unique

address. The asynchronous serial interface serves for debugging purposes. The driver

PCB was designed as two layers board with dimensions of 100 x 65 mm. The driver board

is placed in aluminum housing and it is physically separated from the culturing unit. The

main reason for that is incompatibility of power electronics with humid incubator

environment. Figure 8.2 shows the assembled driver board without housing. The driver

schematic can be found in the Appendix 6 and the corresponding printed circuit board

layout in the Appendix 7.

Figure 8.2 The assembled culturing unit driver module.

Similar to the automated system control unit, the driver code comprises two parts – the

bootloader and the driver application, and the source code was written in C programming

language. The bootloader simplifies the application upgrade procedure, as no special tool

is necessary and the upgrade is made via the UART interface. The recent application

version is v1.1 and it contains more than 2000 lines of code (excluding the bootloader).

122

The driver source code is listed in the Appendix 10. The implemented command set for

communicating with the control unit is listed in Table 8.1.

Table 8.1 Implemented command set of the culturing unit driver module (I2C interface)

Command name
Command

code
(Hex)

Number of
parameter

bytes

Parameter: (valid range) - parameter
description

Command description

COM_TEST 0x30 0 Toggles red LED

COM_BRCONTROL 0x31 1
P1 – new state: (0 or 1): 0= perfusion
OFF; 1= perfusion ON

Switches ON or OFF
bioreactor perfusion

COM_BRSTOP 0x32 0
Cancels any BR operation
(perfusion, medium
change or sampling)

COM_BRSPEED 0x33 2
P1 - speed: (1 - 500) - 16-bit value of
BR perfusion speed

Sets BR perfusion speed

COM_PREPSAMPLE 0x34 0
Starts medium sampling
operation

COM_BRCHANGEMED 0x35 4

P1 - volume: (-10000 - 10000) -16-bit
value, pumped volume in µl, negative
number means opposite direction

Start the medium change
operation by pumping
selected volume at
selected speed

P2 - speed: (1 - 500) - 16-bit value,
pumping speed in µl/min

COM_VALVE 0x38 2

P1 – valve index: (1 - 8) - selects the
valve to be controlled controls the 8 solenoid

valves P2 – new state: (0 or 1) - 0= turn the
valve OFF, 1= turn the valve ON

COM_STARTPUMP 0x39 4

P1 - volume: (-10000 - 10000) -16-bit
value, pumped volume in µl, negative
number means opposite direction

Start perfusion pump to
pump selected volume at
selected speed

P2 - speed: (0 - 500) - 16-bit value,
pumping speed in µl/min; 0 = stop
the pump

COM_BRSTATUS 0x41 0
Reads the culture unit
status

8.2.2 The common control module for culturing units

The control module provides a convenient way for a user to interact with multiple

culturing units. It works in real time, supports simultaneous controlling up to 8 culturing

units with corresponding drivers, and allows medium change scheduling in regular

intervals independently for each culturing unit. In addition, it allows manual control of

all solenoid valves and the pump of any connected culturing unit, as well as the manual

(i.e. immediate or non-scheduled) medium change. The control unit periodically monitors

the state of all culturing units and displays corresponding information or the medium

change progress for all connected modules (see Figure 8.3). The graphic TFT display with

resolution of 800 x 480 pixels and associated resistive touchscreen provides a convenient

user interface. The internal real time clock (RTC) module allows user to program multiple

medium change events on specific dates or hours.

123

The control unit was built using commercially available electronic modules as it did not

require any special or precise functionality. The construction is based on the Arduino®

Mega 2560 board and 5-inch TFT display module with resolution of 800x480 pixels and

integrated touchscreen. The ITDB02 Arduino MEGA Shield v2.0 is needed to interface

the display module to Arduino board. Additional RTC module based on the DS3231 chip

is connected directly to Arduino board via the I2C interface.

Figure 8.3 The control unit displaying status information from 8 culturing unit, showing the perfusion

in progress with perfusion speed 15 µl/min.

The whole assembly is mounted to aluminum housing for convenient handling. The

control unit was programmed using the Arduino integrated development environment

(IDE). The recent version of the source code is v1.2 and contains approximately 1500

lines of code. This source code is listed in Appendix 11.

8.3 Increasing throughput of the analyzer module

The analyzer module has 7 measurement channels which can be used either for standard

curve or the bioreactor sample measurement. The reliable standard curve measurement

requires a minimum of 5 points (including the blank), which leaves 2 channels for

bioreactor samples. This configuration was sufficient to operate whole automated system

with two culturing units connected to it. However, after the extension of the culturing

124

system to support up to 8 culturing units with corresponding bioreactors, a possibility of

measuring all 8 samples in one run would save significand amount of time, and

simultaneously increase the accuracy of sample comparison as all of them would be

referenced to same standard curve. Additionally, each point of standard curve could be

measured in triplicates, which would also improve standard curve precision. That way, a

minimum of 23 (8+15) channels would be required to be analyzed in a single run.

The simplest way to increase the analyzer throughput would be to keep the operation

principle and construction same but extend the number of capillary channels. This

approach is straightforward, requiring the extension of the capillary and waste manifold

for more branches, the addition of more capillaries to the sample holder, the addition of

one more solenoid valve for every new capillary, and the appropriate adjustment of the

control unit software. This way of system extension has its limits mainly for two reasons:

firstly - a limited number of capillaries will fit to the rotary sample changer, and secondly

- as the number of channel increases, the time needed to sequentially fill all capillaries

increases proportionally. This second point would mean significant increase of total assay

time. For those reason the practical upper limit for channel number increase without

conceptual change of the analyzer architecture is approximately 16 channels.

To increase the number of channels beyond this limit, preferably to 24, 36, or even more,

the analyzer working principle must be changed to extensively use parallel operation

where possible. The following list contains some key points for the design of such

analyzer:

• Filling of capillary with reagent, sample or washing buffer should be done in

parallel for all channels

• Readout should be done for all channels in parallel. This implies to use one

readout device per channel. For this reason, the readout design should be kept as

simple as possible, interfacing of optical sensors to capillaries should preferably

use the optical fibers. Additionally, all readout devices will need to be calibrated.

• Use preferably modular design. Each module may contain 2 to 6 channels

(capillaries) with associated readout devices and isolation valves. Each module

should be provided with sample fluidic input or container. The modules should be

connected to common manifold distributing the reagents.

125

• The capillaries are disposable, therefore the design should allow quick and easy

replacement of used capillaries for new ones.

It is obvious that the design of such modular analyzer for 24 channels will be challenging.

Nevertheless, the experience gained during the development of the prototype analyzer

unit will make this task easier.

8.4 Other future system improvements

8.4.1 Adding sensorics to the culturing unit

Continuous monitoring of the environmental conditions of the cell culture in the

bioreactor will certainly increase culturing reliability. A simple flow sensor inserted to

the perfusion loop would provide valuable and early information about any failure of the

perfusion. High accuracy sensors are not needed for this purpose. A simple mass flow

sensor based on the thermal principle would be fully adequate.

Another useful environmental parameter is the monitoring of the oxygen saturation of the

cell culture medium. A trial experiments were conducted using the OXY-4 mini device

(PreSens, Precision Sensing GmbH), which based on the noninvasive fluorescence

quenching measurement principle. Two SP-PSt3-NAU sensor spots were placed inside

the bioreactor, one of the sensors was located in the bioreactor reservoir compartment

near the perfusion inlet, while the other sensor was located on near the fluidic outlet. That

way, the oxygen concentration difference representing cell culture oxygen consumption

can be measured. The oxygen levels were measured during the 72h long culturing period

of HepaRG cell with automated medium change every 24h (Figure 8.4). The oxygen

consumption can serve as indirect indicator of cell culture metabolic activity.

Additionally, the acidity (pH) of the cell culture medium can be monitored either to prove

correct culturing conditions or to provide early warning signals to generate medium

change requests. The sensing principle can be used either using the pH sensor spots (e.g.

SP-LG1-SA, PreSens), or spectrophotometrically if the culture medium is supplemented

with pH indicator (e.g. phenol red). Both approaches are non-invasive.

126

Figure 8.4 The oxygen levels measured in the 3D HepaRG cell culture located in the bioreactor.

Automated medium change was performed every 24h and is visible as negative glitch on the

consumption curve (red).

8.4.2 Temperature management of the analyzer unit

Keeping the temperature constant is important for consistent measurements. The

prototype analyzer unit does not have the capability of thermostating the assay. This is

usually not a problem as far as the measurement is conducted in the laboratory with

controlled temperature. However, keeping the reagents and capillaries during the assay at

constant temperature would increase the measurement accuracy and analyzer robustness.

Another improvement, especially for long term experiments, would be embedding the

reagents cooling option to the analyzer. Most of the reagents have limited shelf-life at

room temperature, so keeping them in a cooled state (e.g. 4 ºC) would enable multiple

runs without the need to replace the reagents.

8.4.3 Analyzer unit – on-site substrate preparation

The shelf-life of ADHP substrates is 30 minutes at room temperature. Because the assay

run duration is approximately 3 hours, the substrate must be prepared fresh and placed to

the analyzer shortly before it will be consumed (protocol step 13, see Chapter 3.2.4). A

simple way of mixing 3 substrate components in pre-measured quantities would further

127

increase the comfort of analyzer operation. The components should be preferably stored

in cooled state and brought to the reaction temperature after mixing.

8.4.4 Analyzer unit – further optimization of cleaning protocol

The recent analyzer cleaning procedure which must be conducted after each assay was

optimized with respect to cleaning efficiency. However, this cleaning procedure takes

approximately three hours to complete, so further optimization with respect to the

cleaning duration would shorten the minimal time between two successive assays.

8.4.5 Control unit – implementation of curve fitting algorithms

The curve fitting was done using the external software tools (MATLAB or MS Excel).

However, extending the control unit software to include four- or five- parameter logistic

regression algorithms should be straightforward. The ARM CORTEX M3 architecture-

based microcontroller used in the control unit provides sufficient computational power to

allow this option.

8.4.6 Analyzer unit – extending the readout system for absorbance measurement

possibility

The current readout configuration allows using fluorescent or luminescent substrates.

However, the colorimetric substrates are very common and extending the readout system

to support those substrates would increase the range of assays the analyzer unit would

support. The conceptual layout of combined fluorometric and absorbance sensor is shown

on Figure 8.5. The redesign of the readout system will be required for extending the

analyzer to more than 16 channels, and utilization of plastic optical fibers (POF) will

make such miniaturized and combined sensor design feasible.

128

Figure 8.5 The layout of combined fluorescence and absorbance sensor. The excitation LED is on the

left side, the light passes through the excitation filter and is focused on the fluidic channel. The

emission light passes at 90º angle through the emission filter and is detected by photodiode (bottom

side). The absorbance is measured by photodiode aligned with the fluidic channel and emission light

source (right side).

8.4.7 Miniaturization of the analyzer unit

One of the design goal of the whole automated system was to make the whole system

portable. Miniaturization of the analyzer unit is generally required. The current design of

the analyzer prototype represents by no means the limit in down-scaling. It is not based

on microfluidic chip technology, which might be seen as obvious step towards

miniaturization. While it is true that using the microfluidic chip technology would

decrease the dead volume of the fluidic network, most of the space will remain to be

occupied by valves. The use of on-chip integrated pneumatic valves does not provide

overall space advantage, because switching of individual pressurized lines must be

provided by another set of some off-chip solenoid valves. Additionally, handling and

connecting of delicate microfluidic chips is more difficult, which may result in handling

discomfort for analyzer operator. The key factor to scale down in this case will be the

replacement of active fluidic components such as the peristaltic pumps and solenoid

valves. The current analyzer design uses two peristaltic pumps, which are larger than

required for this application. Similarly, more than 20 solenoid valves with the diameter

19 mm were used. Replacement of those valves with types with smaller footprint will

save considerable amount of space. If the decision will be made to use microfluidic chip

technology, care must be taken to use compatible materials with respect to low-protein

binding properties or the compatibility with cleaning agents. Materials based on PDMS

should be avoided because of the problems with the analyte adsorption on the surface and

associated cleaning difficulties.

129

9 Application possibilities of the culturing and analytical

system

In this chapter, application possibilities of the 3D-culturing and analytical system are

described. The overview is not exhaustive and covers main areas of use. The system is

very universal and it can be adapted to many other specific tasks. The applications are

described in a general way and references to specific examples are provided if related

experimental work was performed.

9.1 Applications of the Cell culturing systems

9.1.1 Drug toxicity tests

The combination of the automated culturing unit and the analytic unit provides many

benefits for conducting short- and long-term toxicity assays with 3D cultures. This was

demonstrated in acetaminophen toxicity study on 3D HepaRG cell culture [63]. In the

study the culturing was performed in actively perfused bioreactor with automated

medium exchange every 24 hours. The concentration of hepatocyte metabolite albumin

was repeatedly determined by analytical module using the flow-through ELISA. High

sensitivity of the assay combined with low protein binding materials for fluidics allowed

to measure albumin concentrations as low as one nanogram per milliliter.

Presented tool can be used in variety of other toxicology studies such as screening of anti-

cancer therapeutics using the 3D cell cultures or assessing of toxicity of various

nanoparticles or toxic substance on 3D cell culture. The ease of parallelization and

automation of the drug application to the cell culture makes this system ideal for toxicity

assays.

9.1.2 Microenvironments testing

The cellular behavior of organoid in 3D cell culture is influenced by particular

geometrical and biochemical boundaries of the growth microenvironment [64]. In the

case of scaffold-based 3D cell cultures, the properties of cultured cells are influenced by

physical and chemical properties of supporting scaffold. Therefore, another broad field of

application of this novel culturing system is to evaluate various scaffold morphologies,

130

materials and its chemical modifications on cell proliferation, viability or differentiation.

Possible applications include cell co-culturing, including organ-on-a-chip operation.

Moreover, connecting multiple bioreactors in serial manner enables more complex body-

on-a-chip experiments. In a previous work, human neuroblastoma cell lines (BE(2)-C,

IMR-32) were grown on MatriGrid® scaffolds in the form of spheroids [65]. Although

generally it is known that 3D-cultures are difficult to handle, the use of 3D-culturing units

reduces and simplifies the handling operations and improves the consistency of the

experiment results.

9.1.3 Influence of the fluidic shear stress in the cell culture

The fluid flow can directly influence cell proliferation [66] by means of mechanical

actions such as compression, shear stress or pressure. These are important factors for

organ development and function [67]. Advanced cell culture techniques such as

previously mentioned organ-on-chips offer the possibility to control some of these

factors. Therefore, advanced culturing techniques are suitable for studying biological

phenomena that depend on tissue microarchitecture and perfusion [68]. The ability of the

culture unit to precisely control of the perfusion flow rate in a time dependent manner

allows it to be used for advanced cell culturing applications. Previous work with

cooperation with the Jena University Hospital on the placenta explants revealed that the

placenta tissue in the explants is very sensitive to fluidic shear stress. In order to increase

the cell viability in the explant, a new adapted scaffold named TissGrid® was developed,

which incorporated a protective cylinder made of porous film [69]. The explant was

inserted inside the cylinder, where it was protected from excessive fluidic shear stress,

but thanks to the porous scaffold material, the explant remained supplied with nutrients.

9.1.4 Cell line maintenance

One of the frequent operations in the biological laboratory is the cell line maintenance

and passaging. The culturing unit can be used with advantage to maintain sensitive cell

lines requiring perfusion with oxygenated medium. Continuous perfusion prevents

consumptive oxygen depletion in cultures sensitive to hypoxia such as hepatocytes [70].

Automated medium change provides additional benefits of reducing the risk of

contamination and simultaneously reducing the manual labor.

131

9.2 Applications of the analytical module

The analytical module was optimized for flow-through albumin florescence assay. The

choice of Amplex™ Red (ADHP) as the fluorescence substrate was based on its desirable

properties, such as chemical and thermal stability, low background and increased dynamic

range and fluorescence emission outside the range of compound autofluorescence.

Because of these advantaged the substrate, it is used in many commercially available

assays. A few examples of fluorescent assays using the ADHP as substrate are listed here:

o Glucose / Glucose oxidase assay (A22189, ThermoFischer)

o Cholesterol assay (A12216, ThermoFischer)

o Catalase assay (A22180, ThermoFischer)

o Hydrogen peroxide / Peroxidase assay (A22188, ThermoFischer)

o Acetylcholine / Acetylcholinesterase assay (A12217, ThermoFischer)

o Galactose / Galactose oxidase assay (A22179, ThermoFischer)

o Glutamic acid / Glutamate oxidase assay (A12221, ThermoFischer)

o Monoamine oxidase assay (A12214, ThermoFischer)

o Neuraminidase assay (A22178, ThermoFischer)

o Phospholipase D assay (A12219, ThermoFischer)

o Phosphate assay (P22061, ThermoFischer)

o Pyrophosphate assay (P22062, ThermoFischer)

o Sphingomyelinase assay (A12220, ThermoFischer)

o Uric acid / Uricase assay (A22181, ThermoFischer)

o Xanthine / Xanthine oxidase assay (A22182, ThermoFischer)

Additionally, LDH assay using ADHP related substrate resazurin (C20302,

ThermoFischer) is also available as commercial product. Because all these assays are

based on the same fluorescent molecule (resorufin) as the albumin assay which the

analytical unit was designed for, no change on the readout part (fluorimeter) would be

required if the analytical unit should be adapted for one of these assays. The fluidic part

is flexible in design and it would not require extensive modifications to support these

assays. Obviously, the software of the control unit would require extensions in order to

support any additional assay.

132

Other fluorophores than resorufin can be supported if the fluorimeter would be

appropriately modified. For example, to adapt the fluorimeter for one other common

fluorophore – fluorescein, the excitation laser wavelength would need to be changed to

450 nm or 488nm (e.g. L450P1600MM or L488P60, Thorlabs) and the emission filter

would also need to be replaced to a suitable bandpass type (e.g. 513-556 nm, #67-017,

Edmund Optics). Thus, by replacing two components, the fluorimeter can be adapted to

an assay using different fluorophore.

133

10 Summary

“Genes are effectively one-dimensional. If you write down

the sequence of A, C, G and T, that's kind of what you need

to know about that gene. But proteins are three-

dimensional. They have to be because we are three-

dimensional, and we're made of those proteins. Otherwise

we'd all sort of be linear, unimaginably weird creatures”

(Francis Collins, led the Human Genome Project, director

of the National Institutes of Health in Bethesda, Maryland,

United States, 2001)

The observation made by Francis Collins, namely that humans are three-dimensional, and

not linear, unimaginably weird creatures, is amusing. Similarly, this thesis was started

with an amusing quote from the book Flatland, in which a series of characters interact in

a purely two-dimensional world, but a three-dimensional world is later discovered. These

quotes, which juxtapose 1D and 2D environments with 3D environments, are amusing

because the nature of our 3D environment is so self-evidently obvious to us. Here, it

would be a poor transition to now simply say, “so stop using 2D cultures, because 3D

is…, etc”. A more relevant transition would be to say, “although our 3D environment is

so self-evidently obvious, is there a justification for reducing the dimensionality?”. The

answer is certainly yes. There are many benefits of 2D systems (cost, ease of observation,

ease of measurement) and these benefits have been discussed in the context of cell

culturing in this text. For simpler systems, and simpler questions, the complexity of a 3D

environment (and the inclusion of automation) is not always necessary.

However, at the clinical level, humans are three-dimensional, and the issue is the

following. Although unautomated cell culturing systems in 2D can be used for some pre-

clinical questions, it is without question that cells act in much different manner when

surrounded by other cells in 3D. Therefore, the problem is predictivity. By introducing

a 3D system more representative of the clinical environment with a more complex

technology, this may reduce both the monetary cost and the degree of failures of drugs

and therapies at the level clinical trials which previously passed 2D screening systems.

134

Certainly, pharmaceutical companies dedicate astonishing amounts of money to R&D

each year for pre-clinical drug trials, with the majority of such trials ending in failure once

transferred to the clinical level. The introduction of 3D systems may give a better degree

of predictivity in trails at the pre-clinical level. Essentially, as stated in the introduction,

a culture should be 3D to increase predictivity, but the culturing should be automated

to increase through-put and applicability to large-scale pre-clinical testing.

Indeed, there is currently a genuine renaissance in attempts to include forms of

automation, or at least so-called online measurement, which allows the testing of certain

parameters of the biological system without actually opening or disturbing the system.

“New generation” organ-on-a-chip systems are equipped with biosensors or bioimaging

that enable the online monitoring of pH and oxygen [71, 72], the cellular metabolic state

[73, 74] and the detection of cell-derived analytes in the culture medium by microfluidic

enzyme linked immunosorbent assay (ELISA) [13-15]. Thus, cells do not need to be

removed from the perfused culture systems to define drug toxicity and cellular health. In

particular, quantitative analysis of cell-secreted proteins by microfluidic ELISA

provides a novel method of measuring non-invasively the toxicity of drugs to cells in

complex culture systems [63] where the removal of cells or the opening/exposure of the

system could compromise long-term experiments.

In the presented study of this text, a fully-automated and robust culturing system was

developed, which combined 3D cell culturing with automated perfusion, medium

change, and sampling, followed by an automated flow-ELISA for detection of cell-

derived albumin for the assessment of hepatotoxicity. The focus was on developing a

scaffold-based 3D culture and analysis system which allowed excellent exposure of the

cells to the applied drug and minimized adsorption and absorption of small molecules,

drugs, and biomolecules by the system. The ELISA analyzer module was designed in

such a way that almost any commercially available ELISA assay kit can be used with this

system and therefore made available to a wide range of users.

The presented study describes the development and operation of an automated 3D culture

system with a non-invasive online analysis system and its relevance compared to

routinely-performed standard sandwich ELISA protocols. It was demonstrated that 3D

cultures of HepaRG cells differ from 2D monolayer cultures in sensitivity to toxic

135

compounds, making them appropriate for online toxicity studies. Finally, the proper

system functionality was verified using the applicability of the device in online-kinetics

measurement of albumin secretion as a proof-of-concept using 3D HepaRG cultures

perfused with APAP over a period of 96 hours. This study demonstrates how this highly

integrated in vitro system can be used for drug toxicity tests and shows the potential for

adaptation of the online-detection to include other secreted proteins, such as hormones

and signaling molecules from 3D mono- and co-cultures.

136

137

References

1. Brenner, S., Life sentences: Detective Rummage investigates. Genome Biol, 2002.

3(9): p. comment1013 1-2.

2. Fey, S.J. and K. Wrzesinski, Determination of Drug Toxicity Using 3D Spheroids

Constructed From an Immortal Human Hepatocyte Cell Line. Toxicol Sci, 2012.

127(2): p. 403-11.

3. Jensen, C. and Y. Teng, Is It Time to Start Transitioning From 2D to 3D Cell

Culture? Front Mol Biosci, 2020. 7: p. 33.

4. Fernekorn, U., et al., Microbioreactor design for 3-D cell cultivation to create a

pharmacological screening system. Engineering in Life Sciences, 2011. 11(2): p.

133-139.

5. Geckil, H., et al., Engineering hydrogels as extracellular matrix mimics.

Nanomedicine (Lond), 2010. 5(3): p. 469-84.

6. Berthier, E., E.W. Young, and D. Beebe, Engineers are from PDMS-land,

Biologists are from Polystyrenia. Lab Chip, 2012. 12(7): p. 1224-37.

7. Nilsson, M., H. Håkanson, and B. Mattiasson, Flow-injection ELISA for process

monitoring and control. Analytica Chimica Acta, 1991. 249(1): p. 163-168.

8. Nilsson, M., et al., On-line monitoring of product concentration by flow-ELISA in

an integrated fermentation and purification process. Journal of Fermentation and

Bioengineering, 1994. 78(5): p. 356-360.

9. Ramachandran, S., et al., A Rapid, Multiplexed, High-Throughput Flow-Through

Membrane Immunoassay: A Convenient Alternative to ELISA. Diagnostics, 2013.

3(2): p. 244-260.

10. Sani, A., C. Cao, and D. Cui, Toxicity of gold nanoparticles (AuNPs): A review.

Biochem Biophys Rep, 2021. 26: p. 100991.

11. Sreedevi, C., et al., Development and evaluation of flow through assay for

detection of antibodies against porcine cysticercosis. Vol. 28. 2011. 160-170.

12. Lebogang, L., et al., Electrochemical Flow-ELISA for Rapid and Sensitive

Determination of Microcystin-LR Using Automated Sequential Injection System.

Sensors (Basel), 2017. 17(7).

13. Riahi, R., et al., Automated microfluidic platform of bead-based electrochemical

immunosensor integrated with bioreactor for continual monitoring of cell

secreted biomarkers. Scientific Reports, 2016. 6: p. 24598.

138

14. Shin, S.R., et al., Label-Free and Regenerative Electrochemical Microfluidic

Biosensors for Continual Monitoring of Cell Secretomes. Advanced Science,

2017. 4(5): p. 1600522-n/a.

15. Zhang, Y.S., et al., Multisensor-integrated organs-on-chips platform for

automated and continual in situ monitoring of organoid behaviors. Proceedings

of the National Academy of Sciences, 2017. 114(12): p. E2293-E2302.

16. Halldorsson, S., et al., Advantages and challenges of microfluidic cell culture in

polydimethylsiloxane devices. Biosens Bioelectron, 2015. 63: p. 218-31.

17. LeCluyse, E.L., et al., Organotypic liver culture models: meeting current

challenges in toxicity testing. Crit Rev Toxicol, 2012. 42(6): p. 501-48.

18. Shekarchi, I.C., et al., Evaluation of various plastic microtiter plates with measles,

toxoplasma, and gamma globulin antigens in enzyme-linked immunosorbent

assays. J Clin Microbiol, 1984. 19(2): p. 89-96.

19. Biopharmaceutical Products. 2013, Sani-Tech West, Inc.

20. Kay, A., Chapter 1 - Introduction and Review of Statistics, in Operational

Amplifier Noise. 2012, Newnes: Boston. p. 1-11.

21. M., J., Photodetection and Measurement: Maximizing Performance in Optical

System. 2003, New York: McGraw-Hill.

22. Gallant, M.I., Transimpedance Noise Calculation. 2012, JavaScience Consulting.

23. Oppenheim, A.V., Discrete-time Signal Processing. 1998: Prentice-Hall.

24. Collura, T.F., Averaging, Noise, and Statistics, in Comprehensive clinical

Neurophysilology, K. Levin, Luders, H., Editor. 1995, Elsevier.

25. STMicroelectronics, STM32F103xC STM32F103xD STM32F103xE High-

density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB,

CAN, 11 timers, 3 ADCs, 13 communication interfaces. April 2011.

26. Altium, Altium Designer. 2017.

27. CETONI, neMESYS LOW PRESSURE SYRINGE PUMP. 2015.

28. Hamamatsu Photonics, CMOS linear image sensor S8377/S8378 series. 2002.

29. STMicroelectronics, L6208 DMOS driver for bipolar stepper motor. 2014.

30. NXP Semiconductors, MPX5100 MPXV5100 Series Integrated Silicon Pressure

Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated.

2010.

139

31. Analog Devices, AD7147 CapTouch Programmable Controller for Single-

Electrode Capacitance Sensors. 2015.

32. Feaser, OpenBLT GNU GPL Bootloader. 2017.

33. Birkler, J., [avr-libc-dev] Re: printf in avr-libc. 2002.

34. Fischer, M., YAGARTO. 2012.

35. Foundation, T.E., Eclipse Juno. 2017.

36. Rath, D., Open On-Chip Debugger. 2017.

37. Rath, D., Open On-Chip Debugger, in Department of Computer Science. 2005,

University of Applied Sciences Augsburg: Augsburg.

38. Diamandis, E.P. and T.K. Christopoulos, Immunoassay. 1996, San Diego:

Academic Press.

39. Dudley, R.A., et al., Guidelines for immunoassay data processing. Clin Chem,

1985. 31(8): p. 1264-71.

40. Wild, D., The immunoassay handbook : theory and applications of ligand binding,

ELISA, and related techniques. 2013, Oxford: Elsevier.

41. Gottschalk, P.G. and J.R. Dunn, The five-parameter logistic: a characterization

and comparison with the four-parameter logistic. Anal Biochem, 2005. 343(1): p.

54-65.

42. Swart, A. Fully automated spreadsheet for 4– and 5– parameter logistics curve

fitting of bioassay calibrations. 2012 [cited 2017 May, 5th]; Available from:

http://rheumatologie-

neuss.net/index_files/ELISA%20AUTO%20CURVE%20FIT.xlsm.

43. Reynolds, J.A. and C. Tanford, Binding of Dodecyl Sulfate to Proteins at High

Binding Ratios. Possible Implications for the State of Proteins in Biological

Membranes. Proceedings of the National Academy of Sciences of the United

States of America, 1970. 66(3): p. 1002-1007.

44. Takehara, A., H. Urano, and S. Fukuzaki, Cleaning of Alumina Fouled with Bovine

Serum Albumin by the Combined Use of Gaseous Ozone and Alkaline Electrolyzed

Water. Biocontrol Science, 2001. 6(2): p. 103-106.

45. GE Healthcare Life Sciences, High-throughput process development for design of

cleaning-in-place protocols. 2010.

46. Roth, R.A. and P.E. Ganey, Intrinsic versus idiosyncratic drug-induced

hepatotoxicity--two villains or one? J Pharmacol Exp Ther, 2010. 332(3): p. 692-

7.

http://rheumatologie-neuss.net/index_files/ELISA%20AUTO%20CURVE%20FIT.xlsm
http://rheumatologie-neuss.net/index_files/ELISA%20AUTO%20CURVE%20FIT.xlsm

140

47. Blieden, M., et al., A perspective on the epidemiology of acetaminophen exposure

and toxicity in the United States. Expert Rev Clin Pharmacol, 2014. 7(3): p. 341-

8.

48. Prescott, L.F., Kinetics and metabolism of paracetamol and phenacetin. British

Journal of Clinical Pharmacology, 1980. 10(Suppl 2): p. 291S-298S.

49. Cheung, C., et al., The cyp2e1-humanized transgenic mouse: role of cyp2e1 in

acetaminophen hepatotoxicity. Drug Metab Dispos, 2005. 33(3): p. 449-57.

50. Cohen, S.D., et al., Selective protein covalent binding and target organ toxicity.

Toxicol Appl Pharmacol, 1997. 143(1): p. 1-12.

51. Qiu, Y., L.Z. Benet, and A.L. Burlingame, Identification of the hepatic protein

targets of reactive metabolites of acetaminophen in vivo in mice using two-

dimensional gel electrophoresis and mass spectrometry. J Biol Chem, 1998.

273(28): p. 17940-53.

52. Qiu, Y., L.Z. Benet, and A.L. Burlingame, Identification of hepatic protein targets

of the reactive metabolites of the non-hepatotoxic regioisomer of acetaminophen,

3'-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel

electrophoresis and mass spectrometry. Adv Exp Med Biol, 2001. 500: p. 663-73.

53. Liu, Z.X. and N. Kaplowitz, Role of innate immunity in acetaminophen-induced

hepatotoxicity. Expert Opin Drug Metab Toxicol, 2006. 2(4): p. 493-503.

54. Jaeschke, H., Glutathione disulfide formation and oxidant stress during

acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of

allopurinol. J Pharmacol Exp Ther, 1990. 255(3): p. 935-41.

55. Cover, C., et al., Peroxynitrite-induced mitochondrial and endonuclease-mediated

nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther,

2005. 315(2): p. 879-87.

56. Hanawa, N., et al., Role of JNK Translocation to Mitochondria Leading to

Inhibition of Mitochondria Bioenergetics in Acetaminophen-induced Liver Injury.

The Journal of Biological Chemistry, 2008. 283(20): p. 13565-13577.

57. Reid, A.B., et al., Mechanisms of acetaminophen-induced hepatotoxicity: role of

oxidative stress and mitochondrial permeability transition in freshly isolated

mouse hepatocytes. J Pharmacol Exp Ther, 2005. 312(2): p. 509-16.

58. Ullrich, A., et al., Use of a standardised and validated long-term human

hepatocyte culture system for repetitive analyses of drugs: repeated

administrations of acetaminophen reduces albumin and urea secretion. Altex,

2007. 24(1): p. 35-40.

59. Ullrich, A., et al., Long term cultures of primary human hepatocytes as an

alternative to drug testing in animals. Altex, 2009. 26(4): p. 295-302.

141

60. LeBlanc, A., et al., Absolute quantitation of NAPQI-modified rat serum albumin

by LC-MS/MS: monitoring acetaminophen covalent binding in vivo. Chem Res

Toxicol, 2014. 27(9): p. 1632-9.

61. Pampaloni, F., E.G. Reynaud, and E.H. Stelzer, The third dimension bridges the

gap between cell culture and live tissue. Nat Rev Mol Cell Biol, 2007. 8(10): p.

839-45.

62. Schyschka, L., et al., Hepatic 3D cultures but not 2D cultures preserve specific

transporter activity for acetaminophen-induced hepatotoxicity. Arch Toxicol,

2013. 87(8): p. 1581-93.

63. Baca, M., et al., Automated Analysis of Acetaminophen Toxicity on 3D HepaRG

Cell Culture in Microbioreactor. Bioengineering (Basel), 2022. 9(5).

64. Habanjar, O., et al., 3D Cell Culture Systems: Tumor Application, Advantages,

and Disadvantages. Int J Mol Sci, 2021. 22(22).

65. Bingel, C., et al., Three-dimensional tumor cell growth stimulates autophagic flux

and recapitulates chemotherapy resistance. Cell Death Dis, 2017. 8(8): p. e3013.

66. Petrik, D., et al., Epithelial Sodium Channel Regulates Adult Neural Stem Cell

Proliferation in a Flow-Dependent Manner. Cell Stem Cell, 2018. 22(6): p. 865-

878.e8.

67. Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature

Biotechnology, 2014. 32(8): p. 760-772.

68. Ingber, D.E., ‘Organ-on-a-chip’ technology: On trial., in Chemistry and Industry.

2011, Society of Chemical Industry: London. p. 18-20.

69. Mai, P., et al., MatriGrid(®) Based Biological Morphologies: Tools for 3D Cell

Culturing. Bioengineering (Basel), 2022. 9(5).

70. Place, T.L., F.E. Domann, and A.J. Case, Limitations of oxygen delivery to cells

in culture: An underappreciated problem in basic and translational research. Free

Radical Biology and Medicine, 2017. 113: p. 311-322.

71. Weltin, A., et al., Cell culture monitoring for drug screening and cancer research:

a transparent, microfluidic, multi-sensor microsystem. Lab Chip, 2014. 14(1): p.

138-46.

72. Shaegh, S.A.M., et al., A microfluidic optical platform for real-time monitoring of

pH and oxygen in microfluidic bioreactors and organ-on-chip devices.

Biomicrofluidics, 2016. 10(4): p. 044111.

73. Bavli, D., et al., Real-time monitoring of metabolic function in liver-on-chip

microdevices tracks the dynamics of mitochondrial dysfunction. Proceedings of

the National Academy of Sciences, 2016. 113(16): p. E2231-E2240.

142

74. Yu, F., et al., On chip two-photon metabolic imaging for drug toxicity testing.

Biomicrofluidics, 2017. 11(3): p. 034108.

143

List of Figures

Figure 3.1 Sandwich ELISA principle. ... 26

Figure 3.2 Selected types of the 2-way (left) and 3-way (right) solenoid valves 29

Figure 3.3 Selected stepper motor driven peristaltic pump .. 30

Figure 3.4 The fluidic topology of the analyzer based on the ELISA protocol 31

Figure 3.5 Flow path for filling capillary 1 with the capture antibody during step 1.

Capillaries 2 to 7 are subsequently filled using the valves V10 to V15 instead of V9. .. 33

Figure 3.6 The first step of sandwich ELISA - the capture antibody was attached to the

solid phase. .. 33

Figure 3.7 The beginning of the ELISA sequence – capture antibody coating (blue),

incubation period (green) and the first part of the washing (orange). The time between the

start of coating and the capillary with antibody to the washing of the same capillary is

constant for all channels. .. 34

Figure 3.8 Flow path used for washing the capillary 1. Capillaries 2 to 7 are washed in

the same manner using the valves V10 to V15 instead of V9. 35

Figure 3.9 Flow path for filling the capillary 1 with the blocking buffer. Capillaries 2 to

7 are subsequently filled using the valves V10 to V15 instead of V9. 37

Figure 3.10 Situation at the capillary surface after blocking step. No free place is left on

the surface for binding more proteins. .. 37

Figure 3.11 Fluidic path for transferring the sample 1 into the corresponding capillary 1

 .. 39

Figure 3.12 After the sample 1 has been transferred to the corresponding capillary 1, the

fluidic path will be emptied in three steps: 1st – the fluid is pumped out of all manifolds

through the capillary 8, 2nd – the side arm of the capillary manifold is emptied by

introducing a small air gap, 3rd – the side arm of the sample manifold is also emptied.

144

Subsequent washing of the common fluidic path (marked as red “1” on the figure)

completes the “washing after sample” sequence. ... 40

Figure 3.13 Situation at the capillary surface at the end of sample incubation time. The

human serum albumin is selectively bonded to the capture antibody. Ideally there is no

other possibility for the albumin to bond. ... 41

Figure 3.14 Flow path for filling the capillary 1 with the secondary antibody solution.

Capillaries 2 to 7 are subsequently filled using the valves V10 to V15 instead of V9. .. 42

Figure 3.15 The complete sandwich ELISA stack at the end of step 11. If the sample

contained human serum albumin, the HRP conjugated secondary antibody will be

attached to it. ... 44

Figure 3.16 Flow path for filling the capillary 1 with the substrate solution. Capillaries 2

to 7 are subsequently filled using the valves V10 to V15 instead of V9. 46

Figure 3.17 Conversion of the non-fluorescent ADHP substrate to fluorescent resorufin

dye by the action of immobilized HRP enzyme during the step 14. 46

Figure 3.18 The chemical structure of the resorufin fluorescent dye 48

Figure 3.19 ADHP substrate reaction. Non-fluorescent ADHP compound is converted by

the action of HRP enzyme in the presence of H2O2 into highly fluorescent resorufin dye.

 .. 49

Figure 3.20 The excitation and emission spectrum of resorufin fluorescent dye with

overlaid emission filter passband (blue area) and excitation laser line (green line) 50

Figure 3.21 Cross section of the fluorimeter showing the excitation beam (green) and

emission pathway (yellow) ... 52

Figure 3.22 The Fluirimeter assembly including the rotary holder with capillaries (blue

color) ... 53

Figure 3.23 Transmission profile of the bandpass filter, type 67020 (Edmund Optics,

center wavelength 591,5nm, bandwidth 43nm) .. 54

145

Figure 3.24 Laser diode driving circuit schematic ... 55

Figure 3.25 The functional schematic of the photodiode amplifier 56

Figure 3.26 The functional schematic of the fluorimeter ADC converter 57

Figure 3.27 The simulated noise density and integrated noise of the transimpedance

amplifier .. 61

Figure 3.28 Schematic of the microcontroller part and communication interfaces 64

Figure 3.29 Schematic of the human interaction interfaces .. 65

Figure 3.30 Schematic of the memory interfaces ... 66

Figure 3.31 Schematic of the control unit power supplies ... 67

Figure 3.32 Schematic of the spectrometer interface and photometric/fluorimetric sensors

interface .. 68

Figure 3.33 Schematic of the solenoid valves driver .. 69

Figure 3.34 Schematic of the stepper motor driver .. 70

Figure 3.35 Schematic of the pressure sensor and capacitive sensors 71

Figure 3.36 Assembled top side of the control unit PCB including the spectrometer

module .. 73

Figure 3.37 the hierarchical order of the control unit code modules 74

Figure 3.38 the microcontroller flash memory map ... 76

Figure 3.39 The automated flow-through ELISA module prototype 80

Figure 3.40 The control unit prototype ... 80

Figure 4.1 The MatriGrid® scaffold (left) and the micro bioreactor (right) 82

146

Figure 4.2 Fluidic diagram of the culture unit .. 83

Figure 4.3 Culture unit active perfusion flow path ... 85

Figure 4.4 The culture unit flow path during the medium change or sampling, phase I 86

Figure 4.5 The culture unit flow path during the medium change phase II 86

Figure 4.6 The culture unit flow path during the medium sampling phase II 88

Figure 4.7 The culture unit prototype ... 89

Figure 5.1 Dependence of the fluorimeter reading on the resorufin concentration. Blank,

10nM and 20nM solution of resorufin was not detected (reading of 0). Lower limit of

detection is 50nM of resorufin. ... 93

Figure 5.2 Dependence of the fluorescence on the capillary angular position during the

sample holder rotation. The x-axis span shown (100 microsteps) corresponds to angular

distance 5.625°. The capillary was filled with 10µM resorufin solution. 94

Figure 5.3 Standard curve fitting of data shown in Table 5.2. Quality of fit: R2=0.9959 for

370s incubation time; R2=0.9965 for 740s incubation time; R2=0.9978 for 1110s

incubation time. .. 97

Figure 6.1 The 9-port manifold with “star” fluidic topology (left), and its internal fluidic

channels (right) ... 104

Figure 6.2 The fluidic topology of 9-port manifold composed from series of “T” joints

 .. 104

Figure 6.3 The circular holder of the capillary manifold (left), and corresponding FEP

tubing manifold (right) .. 105

Figure 6.4 Measured standard curve in the low albumin concentration range. 107

Figure 6.5 Comparison of albumin measurement with two different ELISA protocols. The

error bars represent the standard error of mean (SEM) .. 108

147

Figure 7.1 Metabolic conversion of acetaminophen (APAP) to toxic N-acetyl-p-

benzoquinoneimine (NAPQI) ... 112

Figure 7.2 Effect of APAP on resazurin metabolism (left) and albumin secretion (right) in

HepaRG cells cultured under different conditions. The fluorescence of resorufin, the

product of the resazurin assay, was measured with a SpectraMax M5 microplate reader.

Each experiment was replicated 3 times (n = 3 per concentration, mean ± SEM). 113

Figure 7.3 Consumption of APAP by HepaRG cells cultured in different formats (2D, 3D

and 3D BR). The consumption of APAP in the medium was calculated by HPLC analysis

before and after culture with the cells. Each experiment was replicated at least 3 times

(mean ± SEM). .. 114

Figure 7.4 Albumin secretion measurement by automated culturing and analysis system

with and without administration of 5 mM APAP over the period of 96 h. Values are from

at least 3 experiments (mean ± SEM). .. 116

Figure 7.5 Validation of measured albumin levels by automated system with conventional

MTP ELISA. Albumin secretion increased in vehicle-treated HepaRG cells (top) and

decreased in APAP-treated HepaRG cells (bottom). Values are from at least 3 experiments

(mean ± SEM). .. 117

Figure 8.1 Block diagram of parallel operation of multiple culturing units. 120

Figure 8.2 The assembled culturing unit driver module. .. 121

Figure 8.3 The control unit displaying status information from 8 culturing unit, showing

the perfusion in progress with perfusion speed 15 µl/min. ... 123

Figure 8.4 The oxygen levels measured in the 3D HepaRG cell culture located in the

bioreactor. Automated medium change was performed every 24h and is visible as

negative glitch on the consumption curve (red). ... 126

Figure 8.5 The layout of combined fluorescence and absorbance sensor. The excitation

LED is on the left side, the light passes through the excitation filter and is focused on the

fluidic channel. The emission light passes at 90º angle through the emission filter and is

148

detected by photodiode (bottom side). The absorbance is measured by photodiode aligned

with the fluidic channel and emission light source (right side). 128

149

List of Tables

Table 2.1 Overview of 3D culturing systems and their automation capabilities. 18

Table 3.1 The layer arrangement of the control unit printed circuit board 72

Table 3.2 The list of embedded code files with corresponding description 75

Table 3.3 the list of the control commands for the control unit including the syntax and

description. The commands are marked in blue and the command parameters are marked

in red. .. 77

Table 5.1 Optimized fluidic parameters for flow-through ELISA assay 92

Table 5.2 Standard curve test – measured fluorescence ... 95

Table 5.3 Estimated model parameters for standard curve for three different incubation

times .. 97

Table 6.1 The final cleaning sequence of the analyzer fluidic network 100

Table 6.2 Substrate stability test – measured fluorescence ... 101

Table 6.3 Conjugated antibody contamination test – fluorescence data 102

Table 6.4 Conjugated antibody contamination test with replaced capillaries – fluorescence

data .. 103

Table 6.5 Full sequence test with redesigned manifolds – fluorescence data 105

Table 6.6 Fluorescence data of standard curve in low albumin concentration range. .. 106

Table 6.7 Estimated model parameters for standard curve in low concentration range 106

Table 6.8 Statistical evaluation of measurement accuracy for both ELISA protocols.. 109

Table 8.1 Implemented command set of the culturing unit driver module (I2C interface)

 .. 122

150

151

Appendixes

List of Appendixes

Appendix 1 – Control unit schematics .. 153

Appendix 2 – Control unit PCB assembly drawing .. 157

Appendix 3 – Fluorimeter amplifier module schematic ... 163

Appendix 4 – Fluorimeter amplifier PCB layout .. 164

Appendix 5 – Culturing module driver schematic .. 165

Appendix 6 – Culturing unit driver PCB assembly plan .. 166

Appendix 7 – Culturing unit driver PCB layout ... 167

Appendix 8 – Schematics of the OpenOCD debugger hardware 168

Appendix 9 – The assembly plan and layout of the OpenOCD debugger PCB 169

Appendix 10 – Culturing unit driver source code listing .. 171

Appendix 11 – Listing of the source code for control unit for smart drivers 194

152

153

Appendix 1 – Control unit schematics

Figure A - 1 Control unit schematic – the microcontroller part

11

22

33

44

55

66

D
D

C
C

B
B

A
A

T
it

le

N
u
m

b
er

R
ev

is
io

n
S

iz
e

B

D
at

e:
5
/3

1
/2

0
1
8

S
h
ee

t

 o

f
F

il
e:

D
:\

M
ar

ti
n
\.

.\
E

li
sa

_
C

o
n
tr

o
ll

er
_
1
.S

C
H

D
O

C
D

ra
w

n
 B

y
:

E
N

C
2
A

G
N

D

U
S

B
D

P

S
D

IO
_
D

1

S
D

IO
_
D

3

C
D

S
C

L
K

2
A

D
C

C
L

K

S
D

IO
_
D

2

S
D

IO
_
D

0

S
D

A
R

X
D

1
T

X
D

1

U
S

B
D

M

E
N

C
2
B

/R
X

F
/T

X
E

T
T

T
L

T
B

P
T

R
P

M
O

S
I1

S
C

K
1

M
IS

O
1

M
C

O

/R
E

S
E

T

T
C

K
T

M
S

T
D

O

T
D

I

T
X

C
A

N
R

X
C

A
N

S
C

L

E
N

C
1
B

E
N

C
1
A V

C
C

P
W

R
E

N

S
D

IO
_
C

K

S
D

IO
_
C

M
D

L
C

D
_
C

S
L

C
D

_
A

R
X

D
2

T
X

D
2

T
R

S
T

B
O

O
T

1

B
O

O
T

0

U
R

D
U

W
R

F
R

A
M

_
C

S

X
2

8
M

H
z

C48

2
2
p

C49

2
2
p

G
N

D

3
9
0
R

R
3
6

V
B

A
T

J3

B
T

1
C

R
2
0
3
2

X
1

3
2
7
6
8
H

z C
3
6

1
0
p

C
3
5

1
0
p

G
N

D

V
C

C
A

M
O

S
I2

S
C

K
2

M
IS

O
2

P
B

0
4
6

P
B

1
4
7

P
B

2
/B

O
O

T
1

4
8

P
B

3
/J

T
D

O
1
3
3

P
B

4
/N

JT
R

S
T

1
3
4

P
B

5
1
3
5

P
B

6
1
3
6

P
B

7
1
3
7

P
B

8
1
3
9

P
B

9
1
4
0

P
B

1
0

6
9

P
B

1
1

7
0

P
B

1
2

7
3

P
B

1
3

7
4

P
B

1
4

7
5

P
B

1
5

7
6

P
C

0
2
6

P
C

1
2
7

P
C

2
2
8

P
C

3
2
9

V
B

A
T

6

V
S

S
A

3
0

P
C

6
9
6

P
C

7
9
7

V
D

D
2

1
0
8

N
R

S
T

2
5

P
D

0
1
1
4

P
D

1
1
1
5

V
D

D
4

3
9

V
D

D
3

1
4
4

V
D

D
A

3
3

V
D

D
1

7
2

P
A

0
-W

K
U

P
3
4

P
A

1
3
5

P
A

2
3
6

P
A

3
3
7

P
A

4
4
0

P
A

5
4
1

P
A

6
4
2

P
A

7
4
3

P
A

8
1
0
0

P
A

9
1
0
1

P
A

1
0

1
0
2

P
A

1
1

1
0
3

P
A

1
2

1
0
4

P
A

1
3
/J

T
M

S
/S

W
D

IO
1
0
5

P
A

1
4
/J

T
C

K
/S

W
C

L
K

1
0
9

P
A

1
5
/J

T
D

I
1
1
0

P
C

8
9
8

P
C

9
9
9

P
C

1
0

1
1
1

P
C

1
1

1
1
2

P
C

1
2

1
1
3

P
C

1
3
/T

A
M

P
E

R
/R

T
C

7

P
C

1
4
/O

S
C

3
2
_
IN

8

P
C

1
5
/O

S
C

3
2
_
O

U
T

9

P
D

2
1
1
6

B
O

O
T

0
1
3
8

V
S

S
3

1
4
3

V
S

S
2

1
0
7

V
S

S
4

3
8

V
S

S
1

7
1

P
C

5
4
5

P
C

4
4
4

P
D

3
1
1
7

P
D

6
1
2
2

P
D

7
1
2
3

P
D

8
7
7

P
D

9
7
8

P
D

1
0

7
9

P
D

1
1

8
0

P
D

1
2

8
1

P
D

1
3

8
2

P
D

1
4

8
5

P
D

1
5

8
6

P
D

5
1
1
9

P
D

4
1
1
8

P
E

0
1
4
1

P
E

1
1
4
2

P
E

2
1

P
E

3
2

P
E

6
5

P
E

7
5
8

P
E

8
5
9

P
E

9
6
0

P
E

1
0

6
3

P
E

1
1

6
4

P
E

1
2

6
5

P
E

1
3

6
6

P
E

1
4

6
7

P
E

1
5

6
8

P
E

5
4

P
E

4
3

P
F

0
1
0

P
F

1
1
1

P
F

2
1
2

P
F

3
1
3

P
F

6
1
8

P
F

7
1
9

P
F

8
2
0

P
F

9
2
1

P
F

1
0

2
2

P
F

1
1

4
9

P
F

1
2

5
0

P
F

1
3

5
3

P
F

1
4

5
4

P
F

1
5

5
5

P
F

5
1
5

P
F

4
1
4

P
G

0
5
6

P
G

1
5
7

P
G

2
8
7

P
G

3
8
8

P
G

6
9
1

P
G

7
9
2

P
G

8
9
3

P
G

9
1
2
4

P
G

1
0

1
2
5

P
G

1
1

1
2
6

P
G

1
2

1
2
7

P
G

1
3

1
2
8

P
G

1
4

1
2
9

P
G

1
5

1
3
2

P
G

5
9
0

P
G

4
8
9

V
D

D
6

5
2

V
D

D
8

8
4

V
D

D
7

6
2

V
D

D
5

1
7

V
D

D
1
0

1
2
1

V
R

E
F

+
3
2

V
D

D
1
1

1
3
1

V
D

D
9

9
5

V
S

S
7

6
1

V
S

S
6

5
1

V
S

S
8

8
3

V
S

S
5

1
6

V
S

S
1
1

1
3
0

V
S

S
1
0

1
2
0

V
R

E
F

-
3
1

V
S

S
9

9
4

O
S

C
_
IN

2
3

O
S

C
_
O

U
T

2
4

U
6

S
T

M
3
2
F

1
0
3
Z

E
T

V
C

C

G
N

D

D
2

D
0

D
1

D
3

D
4

D
5

D
6

D
7

O
E

B

S
P

M
3
C

L
K

S
P

M
4
C

L
K

S
P

M
2
C

L
K

S
P

M
1
C

L
K

S
P

M
5
C

L
K

S
P

M
6
C

L
K

E
N

C
1
P

B
E

N
C

2
P

B

C
A

N
O

E
C

A
N

S
E

L

S
D

IO
_
C

P
S

D
IO

_
W

P

L
C

D
_
B

L

M
U

X
A

0
M

U
X

A
1

M
U

X
A

2

S
T

V
G

IN
T

1
IN

T
2

IN
T

3
IN

T
4

L
D

A
C

1
L

D
A

C
2

IN
T

C
A

P

C
A

P
C

S

A
D

C
C

S

F
L

H
T

C
3
1

1
0
n

C
3
7

1
u

/S
P

I1
C

S

C
S

A
0

C
S

A
1

C
S

A
2 P
B

2
P

B
3

L
E

D
3

L
E

D
1

L
E

D
2

L
E

D
4

L
E

D
5

L
E

D
6

L
E

D
7

L
E

D
8

P
B

1

P
B

4

B
U

Z

C
1
3

1
0
0
n

V
C

C

G
N

D

C
1
4

1
0
0
n

C
1
5

1
0
0
n

C
1
6

1
0
0
n

C
1
7

1
0
0
n

C
1
8

1
0
0
n

C
1
9

1
0
0
n

C
2
0

1
0
0
n

C
2
1

1
0
0
n

C
2
2

1
0
0
n

C
2
3

1
0
0
n

4
u
7
/1

6
V

C
3
4

C
3
2

1
0
0
n

JP
1

1
0
K

R
3
3

G
N

D

C
A

N
H

C
A

N
L

T
X

D
1

R
X

D
1

V
C

C
1
6

G
N

D
1
5

V+
2

V-
6 C

1
+

1

C
1
-

3

C
2
+

4

C
2
-

5

T
I1

1
1

T
I2

1
0

R
O

1
1
2

T
O

1
1
4

T
O

2
7

R
I1

1
3

R
I2

8
R

O
2

9

U
2

T
S

3
2
3
2

6 2 7 3 8 4 9 51

X
C

5

D
M

R
0
9
F

G
N

D
V

C
C

C
5 1
0
0
n

C
4

1
0
0
n

C
1
0

1
0
0
nC
1
1

1
0
0
n

T
X

D
2

R
X

D
2

G
N

D

6 2 7 3 8 4 9 51

X
C

6

D
M

R
0
9
F

G
N

D

COM2 COM1

G
N

D

1
0
0

R
1
5

1
0
0

R
1
6

1
0
0

R
1
3

1
0
0

R
1
4

1
0
K

R
1
9

1
0
K

R
2
0

BOOT0

BOOT1

J1

V
C

C

J2

V
C

C
G

N
D

G
N

D

BOOT OPTION

C
S

1

S
O

2

W
P

3

V
ss

4
S

I
5

S
C

K
6

H
O

L
D

7
V

d
d

8
U

5

F
M

2
5
W

2
5
6

G
N

D

V
C

C
F

R
A

M
_
C

S
M

IS
O

2
S

C
K

2
M

O
S

I2

L
B

K
5

R
4

D
1

C
A

N
L

6

V
C

C
3

R
S

8

C
A

N
H

7

G
N

D
2

U
1

S
N

6
5
H

V
C

2
3
3

V
C

C

G
N

D

6 2 7 3 8 4 9 51

X
C

4

D
M

R
0
9
F

1
2
0
R

R
7

C
A

N
S

E
L

C
A

N
O

E
R

X
C

A
N

T
X

C
A

N

CAN BUS

S
H

IE
L

D
5

V
cc

1

D
-

2

D
+

3

G
N

D
4

S
H

IE
L

D
6

X
C

2

U
S

B
 -

 B

G
N

D

C
2

1
0
0
n

1
M

R
2

4
K

7
R

3

D
1

K
P

3
2
1
6
E

C
F

1

B
L

M
2
1

U
S

B
D

M

U
S

B
D

P
IO

2
3

G
N

D
2

IO
1

1

IO
2

4

IO
1

6

V
R

E
F

5

U
3

U
S

B
L

C
6

V
C

C

C
1
2

1
0
0
n

V
C

C
C

8100n

V
C

C

G
N

D

C
3

1
0
0
n

S
I

3
6

S
C

L
3
7

A
0

3
8

R
S

T
3
9

C
S

1
B

4
0

V
3

2
4

A
1

1

A
2

2

A
3

3

V
0

2
1

V
1

2
2

V
2

2
3

V
4

2
5

C
A

P
1
P

2
9

C
A

P
1
N

3
0

C
A

P
2
P

2
8

C
A

P
2
N

2
7

V
O

U
T

3
2

C
A

P
3
P

3
1

V
D

D
3
5

V
S

S
3
3

V
S

S
2
6

V
D

D
2

3
4

C
1

1
8

C
2

1
9

C
3

2
0

U
8

E
A

 D
O

G
L

1
2
8
x
-6

1 2 3 4 5 6 7 8 9
1
0

1
1

X
C

3

S
D

C
M

F
-1

0
9
1
5
W

0
T

0

S
D

IO
_
D

0
S

D
IO

_
D

1

S
D

IO
_
C

M
D

G
N

D

S
D

IO
_
D

2

S
D

IO
_
C

K

S
D

IO
_
D

3

SD Card

47K

R
8

C
4
2

1
u

C
4
3

1
u

C
4
5

1
u

C
4
6

1
u

C
3
8

1
u

C
4
4

1
u

C
2
8

1
0
0
n

C
2
9

1
0
0
n

C
3
9

1
u

C
4
0

1
u C
4
1

1
u

V
C

C

G
N

D

6
8
R

R
5
4

6
8
R

R
5
5

6
8
R

R
5
6

1 2 3 4

X
C

8

W
F

1
0
0
-0

4
S

2
2
0
R

R
3
1

2
2
0
R

R
3
2

C
2
6

1
0
0
n

C
2
7

1
0
0
n

G
N

D

T
T

T
L

T
B

P

T
R

P

T
B

T
R

TOUCH PANEL

P
B

2
5

P
B

1
4

B
3

C
2

A
1

S
6

E
C

1
2
E

2
4
2
4
0
7

G
N

D

1
0
K

R
2
4

1
0
K

R
2
3

1
0
n

C
5
2

1
0
n

C
5
3

V
C

C

1
0
K

R
2
2

1
0
0
n

C
5
6

E
N

C
1
A

E
N

C
1
B

E
N

C
1
P

B

P
B

2
5

P
B

1
4

B
3

C
2

A
1

S
7

E
C

1
2
E

2
4
2
4
0
7

G
N

D

1
0
K

R
2
7

1
0
K

R
2
6

1
0
n

C
5
4

1
0
n

C
5
5

V
C

C

1
0
K

R
2
5

1
0
0
n

C
5
7

E
N

C
2
A

E
N

C
2
B

E
N

C
2
P

B

S
D

IO
_
W

P
S

D
IO

_
C

P

V
C

C

G
N

D

47K

R
9

47K

R
1
0

47K

R
1
1

47K

R
1
2

10K

R
1
7

10K

R
1
8

GRAPHIC LCD 128x64

L
C

D
_
C

S

L
C

D
_
A

/R
E

S
E

T

S
C

K
2

M
O

S
I2

1
K

R
5
3

G
N

D

Q
1

IR
F

7
4
1
3

LCD_BL

+
6
V

1 2 3 4

X
C

7

P
S

S
2
5
4
/4

G

4
K

7
R

5
4
K

7
R

6

G
N

D

S
D

A
S

C
L

I2C BUS

V
C

C

V
C

C

1
0
K

R
3
5

1
0
K

R
3
4

Q
2

B
C

8
4
7

G
N

D

+
6
V

B
1P

E
S

1
2
N

4
0

B
U

Z

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

1
K

5
R

4
5

1
K

5
R

4
6

1
K

5
R

4
7

1
K

5
R

4
8

1
K

5
R

4
9

1
K

5
R

5
0

1
K

5
R

5
1

1
K

5
R

5
2

G
N

D

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

S
5

KSM613

S
4

KSM613

S
3

KSM613

S
2

KSM613PB1

PB2

PB3

PB4

C
C

D
C

S

S
P

IO
C

S
1

S
P

IO
C

S
2

S
P

IO
C

S
3

S
P

IO
C

S
4

D
A

C
1
C

S
D

A
C

2
C

S
D

A
C

3
C

S

A
1

B
2

C
3

E
1

4

E
2

5

E
3

6

Y
0

1
5

Y
1

1
4

Y
2

1
3

Y
3

1
2

Y
4

1
1

Y
5

1
0

Y
6

9

Y
7

7

U
7

7
4
A

H
C

1
3
8

C
S

A
0

C
S

A
1

C
S

A
2

1
0
K

R
3
0

V
C

C

/S
P

I1
C

S

C
2
5

1
0
0
n

V
C

C

G
N

D

D
0

1

D
1

5

D
2

3

D
3

1
1

D
4

2

D
5

9

D
6

1
0

D
7

6

R
X

F
2
3

T
X

E
2
2

R
D

1
3

W
R

1
4

P
W

R
E

N
1
2

TEST
26

V
C

C
IO

4

V
C

C
2
0

U
S

B
D

M
1
6

U
S

B
D

P
1
5

N
C

8

R
E

S
E

T
1
9

N
C

2
4

O
S

C
I

2
7

O
S

C
O

2
8

3
V

3
O

U
T

1
7

AGND
25

GND
7

GND
18

GND
21

U
4

F
T

2
4
5
R

L

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

/R
X

F
/T

X
E

U
R

D
U

W
R

P
W

R
E

N

1
0
K

R
2
9

V
C

C

1
0
K

R
2
8

S
H

IE
L

D
5

V
cc

1

D
-

2

D
+

3

G
N

D
4

S
H

IE
L

D
6

X
C

1

U
S

B
 -

 B

C
3
0

1
0
n

G
N

D

G
N

D

F
2

B
L

M
2
1

C
1

1
0
0
n

G
N

D

1
M

R
1

C
6

1
0
0
n

C
9

1
0
0
n

4
u
7
/1

6
V

C
3
3

G
N

D

G
N

D

4
K

7

R
4

C
7

1
0
0
nV
C

C

C
2
4

1
0
0
n

G
N

D

S
1

K
S

M
6
1
3

G
N

D

RESET

R
4
4

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

JP
2 W

S
L

2
0
G

T
R

S
T

T
D

I
T

M
S

T
C

K

T
D

O
/R

E
S

E
T

JTAG

V
C

C

G
N

D

R
4
3

R
4
1

R
3
9

R
3
7

R
3
8 R

4
0R

4
2

V
C

C

G
N

D

5
x
1
0
K 4

x
1
0
K

R
2
1

V
C

C

G
N

D

1
0
0
u
H

L
1

1
0
0
n

C
5
0

1
0
u

C
5
1

V
C

C
A

E
L

IS
A

 A
n

al
y

se
r

C
o

n
tr

o
l

U
n

it

2
1
2
M

B
0
1

1
.0

1
4

M
ar

ti
n
 B

ac
a

1
0
0
n

C
4
7

/E
O

S

1
0
K

R
3
5
0

R
3
4
4

R
3
4
9

R
3
4
3

R
3
4
2

R
3
4
8

V
C

C

R
3
4
7

R
3
4
6

R
3
4
1

R
3
4
5

V
C

C

9
x
1
0
K

C
1
9
9

1
0
0
n

V
C

C

G
N

D

C
1
9
8

1
u

1
0
K

R
3
5
1 G

N
D

1
0
K

R
3
3
9

1
0
K

R
3
4
0

G
N

D

E
N

1
2
V

1
K

5
R

3
7
4

V
C

C

154

Figure A - 2 Control unit schematic – solenoid valve drivers, constant current sources, capacitive

sensors and A/D converter.

11

22

33

44

55

66

D
D

C
C

B
B

A
A

T
it

le

N
u
m

b
e
r

R
e
v
is

io
n

S
iz

e

B

D
a
te

:
5
/3

1
/2

0
1
8

S
h
e
e
t

 o

f
F

il
e
:

D
:\

M
a
rt

in
\.

.\
E

li
sa

_
C

o
n
tr

o
ll

e
r_

2
.S

C
H

D
O

C
D

ra
w

n
 B

y
:

G
P

A
0

2
1

G
P

A
1

2
2

G
P

A
2

2
3

G
P

A
3

2
4

G
P

A
4

2
5

G
P

A
5

2
6

G
P

A
6

2
7

G
P

A
7

2
8

G
P

B
0

1

G
P

B
1

2

G
P

B
2

3

G
P

B
3

4

G
P

B
4

5

G
P

B
5

6

G
P

B
6

7

G
P

B
7

8
G

N
D

1
0

V
D

D
9

S
O

1
4

S
C

K
1
2

S
I

1
3

A
0

1
5

A
1

1
6

A
2

1
7

R
E

S
E

T
1
8

IN
T

B
1
9

C
S

1
1

IN
T

A
2
0

U
9

M
C

P
2
3
S

1
7

IN
1

1

IN
4

4

IN
5

5

IN
6

6

IN
7

7

IN
8

8

G
N

D
9

O
U

T
2

1
7

C
O

M
1
0

O
U

T
8

1
1

O
U

T
7

1
2

O
U

T
6

1
3

O
U

T
5

1
4

O
U

T
4

1
5

O
U

T
3

1
6

O
U

T
1

1
8

IN
2

2

IN
3

3

U
1
1

U
L

N
2
8
0
1
A

IN
1

1

IN
4

4

IN
5

5

IN
6

6

IN
7

7

IN
8

8

G
N

D
9

O
U

T
2

1
7

C
O

M
1
0

O
U

T
8

1
1

O
U

T
7

1
2

O
U

T
6

1
3

O
U

T
5

1
4

O
U

T
4

1
5

O
U

T
3

1
6

O
U

T
1

1
8

IN
2

2

IN
3

3

U
1
2

U
L

N
2
8
0
1
A

1
K

R
6
5

1
K

R
6
6

1
K

R
6
7

1
K

R
6
8

1
K

R
6
9

1
K

R
7
0

1
K

R
7
1

1
K

R
7
2

1
K

R
7
3

1
K

R
7
4 1

K
R

7
5

1
K

R
7
6

1
K

R
7
7

1
K

R
7
8

1
K

R
7
9

1
K

R
8
0

G
N

D

G
N

D

12
34
56
78
910
1112
1314
1516

X
C

9
W

S
L

1
6
G 1

K
R

1
1
3

1
K

R
1
1
4

1
K

R
1
1
5

1
K

R
1
1
6

1
K

R
1
1
7

1
K

R
1
1
8

1
K

R
1
1
9

1
K

R
1
2
0

D
1
0

D
1
4

D
1
8

D
3
8 D

2
5

D
2
4

D
2
3

D
2
2

1
2
V

S
O

L

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16

X
C

1
0

W
S

L
1
6
G

1
K

R
1
0
4

1
K

R
1
0
3

1
K

R
1
0
2

1
K

R
1
0
1

1
K

R
1
0
0

1
K

R
9
9

1
K

R
9
8

1
K

R
9
7 D

1
1

D
1
5

D
1
9

D
3
9D

2
6

D
2
7

D
2
8

D
2
9

1
2
V

S
O

L

V
C

C

G
N

D

/R
E

S
E

T

S
C

K
1

M
O

S
I1

M
IS

O
1

S
P

IO
C

S
1

IN
T

1

1
0
K

R
5
7

1
0
K

R
5
8

1
0
K

R
5
9

V
C

C
G

N
D

G
N

D

G
P

A
0

2
1

G
P

A
1

2
2

G
P

A
2

2
3

G
P

A
3

2
4

G
P

A
4

2
5

G
P

A
5

2
6

G
P

A
6

2
7

G
P

A
7

2
8

G
P

B
0

1

G
P

B
1

2

G
P

B
2

3

G
P

B
3

4

G
P

B
4

5

G
P

B
5

6

G
P

B
6

7

G
P

B
7

8
G

N
D

1
0

V
D

D
9

S
O

1
4

S
C

K
1
2

S
I

1
3

A
0

1
5

A
1

1
6

A
2

1
7

R
E

S
E

T
1
8

IN
T

B
1
9

C
S

1
1

IN
T

A
2
0

U
1
0

M
C

P
2
3
S

1
7

IN
1

1

IN
4

4

IN
5

5

IN
6

6

IN
7

7

IN
8

8

G
N

D
9

O
U

T
2

1
7

C
O

M
1
0

O
U

T
8

1
1

O
U

T
7

1
2

O
U

T
6

1
3

O
U

T
5

1
4

O
U

T
4

1
5

O
U

T
3

1
6

O
U

T
1

1
8

IN
2

2

IN
3

3

U
1
3

U
L

N
2
8
0
1
A

IN
1

1

IN
4

4

IN
5

5

IN
6

6

IN
7

7

IN
8

8

G
N

D
9

O
U

T
2

1
7

C
O

M
1
0

O
U

T
8

1
1

O
U

T
7

1
2

O
U

T
6

1
3

O
U

T
5

1
4

O
U

T
4

1
5

O
U

T
3

1
6

O
U

T
1

1
8

IN
2

2

IN
3

3

U
1
4

U
L

N
2
8
0
1
A

1
K

R
8
1

1
K

R
8
2

1
K

R
8
3

1
K

R
8
4

1
K

R
8
5

1
K

R
8
6

1
K

R
8
7 1

K
R

8
8 1

K
R

8
9

1
K

R
9
0 1

K
R

9
1

1
K

R
9
2

1
K

R
9
3

1
K

R
9
4

1
K

R
9
5

1
K

R
9
6

G
N

D

G
N

D

12
34
56
78
910
1112
1314
1516

X
C

1
1

W
S

L
1
6
G

1
K

R
1
2
1

1
K

R
1
2
2

1
K

R
1
2
3

1
K

R
1
2
4

1
K

R
1
2
5

1
K

R
1
2
6

1
K

R
1
2
7

1
K

R
1
2
8D
1
2

D
1
6

D
2
0

D
4
0 D

3
3

D
3
2

D
3
1

D
3
0

1
2
V

S
O

L

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16

X
C

1
2

W
S

L
1
6
G

1
K

R
1
1
2

1
K

R
1
1
1

1
K

R
1
1
0

1
K

R
1
0
9

1
K

R
1
0
8

1
K

R
1
0
7

1
K

R
1
0
6

1
K

R
1
0
5 D
1
3

D
1
7

D
2
1

D
4
1D

3
4

D
3
5

D
3
6

D
3
7

1
2
V

S
O

L

V
C

C

G
N

D

/R
E

S
E

T

S
C

K
1

M
O

S
I1

M
IS

O
1

S
P

IO
C

S
2

IN
T

2

1
0
K

R
6
0

1
0
K

R
6
1

1
0
K

R
6
2

V
C

C
G

N
D

G
N

D

V
A

L
V

E
S

 1
-8

V
A

L
V

E
S

 9
-1

6

V
A

L
V

E
S

 1
7
-2

4

V
A

L
V

E
S

 2
5
-3

2

C
IN

0
1
9

C
IN

1
2
0

C
IN

2
2
1

C
IN

3
2
2

C
IN

4
2
3

C
IN

5
2
4

C
IN

6
1

C
IN

7
2

A
C

S
H

IE
L

D
8

G
P

IO
1
8

IN
T

1
7

V
D

R
V

1
2

V
C

C
1
1

S
D

I
1
4

S
D

O
1
3

S
C

L
K

1
5

C
S

1
6

B
IA

S
9

G
N

D
1
0

C
IN

8
3

C
IN

9
4

C
IN

1
0

5

C
IN

1
1

6

C
IN

1
2

7

U
1
6

A
D

7
1
4
7

1
2

3
4

5
6

7
8

9
1
0

X
C

1
3

W
S

L
1
0
G

1
2

3
4

5
6

7
8

9
1
0

X
C

1
4

W
S

L
1
0
G

1
2

3
4

5
6

7
8

9
1
0

X
C

1
5

W
S

L
1
0
G

1
2

3
4

5
6

7
8

9
1
0

X
C

1
6

W
S

L
1
0
G

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

CAP SENSORS 1-3

CAP SENSORS 4-6
CAP SENSORS 7-9

CAP SENSORS 10-12

C
6
4

1
0
0
n

G
N

D

V
C

C

S
C

K
1

M
O

S
I1

M
IS

O
1

C
A

P
C

S

IN
T

C
A

P

1
0
K

R
6
3

C
6
0

1
0
0
n

C
7
2

1
u

R
E

F
IN

1
-

1
4

G
N

D
2
0

A
IN

1
+

7

A
IN

1
-

8

A
IN

2
+

9

A
IN

2
-

1
0

A
IN

3
+

1
1

A
IN

3
-

1
2

A
IN

5
+

/I
O

U
T

2
1
5

A
IN

5
-/

IO
U

T
1

1
6

D
IN

2
4

S
C

L
K

1

C
S

3

D
O

U
T

/R
D

Y
2
3

C
L

K
2

A
IN

6
+

/P
1

5

A
IN

6
-/

P
2

6
R

E
F

IN
1
+

1
3

A
V

D
D

2
1

P
S

W
1
9

D
V

D
D

2
2

A
IN

4
-/

R
E

F
IN

2
-

1
8

A
IN

4
+

/R
E

F
IN

2
+

1
7

U
1
7

A
D

7
7
9
4
B

R
U

Z

Vcc
2

GND
3

V
o
u
t

4

U
1
8

M
P

X
V

5
1
0
0
D

P

V
IN

4

E
N

3

G
N

D
F

o
rc

e
1

V
o
u
tF

o
rc

e
6

V
o
u
tS

e
n
se

5

G
N

D
S

e
n
se

2

U
1
5

A
D

R
3
4
2
5

1
K

R
1
2
9

C
6
5

1
0
0
n

1
K

R
1
3
0

1
K

R131

1
K

R132

1
K

R133

1
K

R134

C
6
6 1
0
0
n

C
6
7 1
0
0
n

C
6
8 1
0
0
n

C
6
9 1
0
0
n

C
7
7

1
n

C
7
3

1
u

C
6
3 1
0
0
n

1 2 3 4 5 6 7 8

X
C

1
7

P
S

S
2
5
4
/8

G

1 2

X
C

1
8

P
S

S
2
5
4
/2

G

1 2

X
C

1
9

P
S

S
2
5
4
/2

G

G
N

D

G
N

D

A
V

C
C

5

C
7
1

1
0
n

C
7
4

1
u

G
N

D

C
6
1

1
0
0
n

G
N

D

V
C

C
A

V
C

C
5

S
C

K
1

M
O

S
I1

M
IS

O
1

A
D

C
C

S

2
V

5
V

R
E

F

C75

1
0
u

C62

1
0
0
n

C70

1
0
n

C76

1
0
u

1
K

R
6
4

G
N

D

Q
3

IR
F

7
4
1
3

F
L

H
T

+
6
V

F
L

O
W

 S
E

N
S

O
R

P
t1

0
0
0
 S

E
N

S
O

R
1

P
t1

0
0
0
 S

E
N

S
O

R
2

C
5
9

1
0
0
n

V
C

C
G

N
D

C
5
8

1
0
0
n

V
C

C
G

N
D

E
L

IS
A

 A
n

al
y

se
r

C
o

n
tr

o
l

U
n

it

2
1
2
M

B
0
1

1
.0

2
4

M
a
rt

in
 B

a
c
a

1
0
K

R
3
5
2

G
N

D
R

1
2
9
 -

 R
1
3
4
:

0
,1

%
 T

o
le

ra
n
c
e
!

G
N

D

3 2
1

8 4

U
4
3
A

T
L

V
2
4
6
2
C

D

G
N

D

1
0
K

R
3
5
3

10K R355

2
K

R
3
6
1

2
K

R
3
6
2

1
R

R
3
6
5

+
6
V

C
2
0
0

1
0
0
n

G
N

D

5 6
7

U
4
3
B

T
L

V
2
4
6
2
C

D

1
0
K

R
3
5
4

10K R356

2
K

R
3
6
3

2
K

R
3
6
4

1
R

R
3
6
6

C
2
0
1

1
0
0
n

1
0
0
R

R
3
5
7

1
0
0
R

R
3
5
8

C
2
0
4

1
0
0
n

G
N

D

1 2 3 4

X
C

3
5

P
S

S
2
5
4
/4

G

Q
8

B
C

P
5
6

1
0
0
R

R
3
5
9

+
6
V

Q
9

B
C

P
5
6

1
0
0
R

R
3
6
0

+
6
V

G
N

D

IE
X

C
1

IE
X

C
2

H
ig

h
 C

u
rr

e
n
t

E
x
c
.
S

o
u
rc

e
s

IE
X

C
O

U
T

1

IE
X

C
O

U
T

2

1
R

R
3
7
2 1

R
R

3
7
3

J4

1
2
V

M
O

T

155

Figure A - 3 Control unit schematic – stepper motor drivers and optical sensors.

11

22

33

44

55

66

D
D

C
C

B
B

A
A

T
it

le

N
u

m
b

er
R

ev
is

io
n

S
iz

e

B

D
at

e:
5

/3
1

/2
0

1
8

S
h

ee
t

 o

f
F

il
e:

D
:\

M
ar

ti
n

\.
.\

E
li

sa
_

C
o

n
tr

o
ll

er
_

3
.S

C
H

D
O

C
D

ra
w

n
 B

y
:

C
O

N
T

R
O

L
2

8

H
A

L
F

/F
U

L
L

2
7

C
L

O
C

K
1

0

C
W

/C
C

W
1

1

E
N

2
9

R
E

S
E

T
8

V
R

E
F

A
9

V
R

E
F

B
2

6

R
C

A
1

3

R
C

B
2

4

G
N

D
3

6

V
S

A
4

V
S

B
3

3

V
C

P
7

V
B

O
O

T
3

0

O
U

T
1

A
1

5

O
U

T
1

B
2

2

O
U

T
2

A
5

O
U

T
2

B
3

2

S
E

N
S

E
A

1
2

S
E

N
S

E
B

2
5

G
N

D
1

G
N

D
1

8

G
N

D
1

9

U
2

4

L
6

2
0

8

1
0

0
R

R
2

2
3

1
R

R
1

7
5

39K

R
1

6
1

C83
100n 2

2
0

u
/1

6
V

C
1

3
1

C121

1
n

39K R
1

5
7

C
1

1
7

1
n

/R
E

S
E

T

D
4

2
T

S
4

1
4

8

D
4

6
T

S
4

1
4

8

C
1

0
5

1
0

n

C
1

3
7

2
2

0
n

G
N

D

G
N

D

1
2

V
M

O
T

1 2 3 4

X
C

2
0

P
S

S
2

5
4

/4
G

1
R

R
1

7
9 1

R

R
1

8
31

R

R187

1
R

R
1

9
1

1
R

R
1

9
5 1

R

R
1

9
9

1
R

R203

G
N

D

C
9

3
1

0
n

C
9

7

1
0

n

G
N

D

C
O

N
T

R
O

L
2

8

H
A

L
F

/F
U

L
L

2
7

C
L

O
C

K
1

0

C
W

/C
C

W
1

1

E
N

2
9

R
E

S
E

T
8

V
R

E
F

A
9

V
R

E
F

B
2

6

R
C

A
1

3

R
C

B
2

4

G
N

D
3

6

V
S

A
4

V
S

B
3

3

V
C

P
7

V
B

O
O

T
3

0

O
U

T
1

A
1

5

O
U

T
1

B
2

2

O
U

T
2

A
5

O
U

T
2

B
3

2

S
E

N
S

E
A

1
2

S
E

N
S

E
B

2
5

G
N

D
1

G
N

D
1

8

G
N

D
1

9

U
2

5

L
6

2
0

8

1
0

0
R

R
2

2
4

1
R

R
1

7
6

39K

R
1

6
2

C84
100n 2

2
0

u
/1

6
V

C
1

3
2

C122

1
n

39K

R
1

5
8

C
1

1
8

1
n

/R
E

S
E

T

D
4

3
T

S
4

1
4

8

D
4

7
T

S
4

1
4

8

C
1

0
6

1
0

n

C
1

3
8

2
2

0
n

G
N

D

G
N

D

1
2

V
M

O
T

1 2 3 4

X
C

2
1

P
S

S
2

5
4

/4
G

1
R

R
1

8
0

1
R

R
1

8
41

R

R188

1
R

R
1

9
21

R

R
1

9
6

1
R

R
2

0
01

R

R204

G
N

D

C
9

4

1
0

n

C
9

8

1
0

n

G
N

D

C
O

N
T

R
O

L
2

8

H
A

L
F

/F
U

L
L

2
7

C
L

O
C

K
1

0

C
W

/C
C

W
1

1

E
N

2
9

R
E

S
E

T
8

V
R

E
F

A
9

V
R

E
F

B
2

6

R
C

A
1

3

R
C

B
2

4

G
N

D
3

6

V
S

A
4

V
S

B
3

3

V
C

P
7

V
B

O
O

T
3

0

O
U

T
1

A
1

5

O
U

T
1

B
2

2

O
U

T
2

A
5

O
U

T
2

B
3

2

S
E

N
S

E
A

1
2

S
E

N
S

E
B

2
5

G
N

D
1

G
N

D
1

8

G
N

D
1

9

U
2

6

L
6

2
0

8

1
0

0
R

R
2

2
5

1
R

R
1

7
7

39K

R
1

6
3

C85
100n 2

2
0

u
/1

6
V

C
1

3
3

C123

1
n

39K

R
1

5
9

C119

1
n

/R
E

S
E

T

D
4

4
T

S
4

1
4

8

D
4

8
T

S
4

1
4

8

C
1

0
7

1
0

n

C
1

3
9

2
2

0
n

G
N

D

G
N

D

1
2

V
M

O
T

1 2 3 4

X
C

2
2

P
S

S
2

5
4

/4
G

1
R

R
1

8
1 1

R

R
1

8
51

R

R189

1
R

R
1

9
31

R

R
1

9
7 1

R

R
2

0
11

R

R205

G
N

D

C
9

5

1
0

n

C
9

9

1
0

n

G
N

D

C
O

N
T

R
O

L
2

8

H
A

L
F

/F
U

L
L

2
7

C
L

O
C

K
1

0

C
W

/C
C

W
1

1

E
N

2
9

R
E

S
E

T
8

V
R

E
F

A
9

V
R

E
F

B
2

6

R
C

A
1

3

R
C

B
2

4

G
N

D
3

6

V
S

A
4

V
S

B
3

3

V
C

P
7

V
B

O
O

T
3

0

O
U

T
1

A
1

5

O
U

T
1

B
2

2

O
U

T
2

A
5

O
U

T
2

B
3

2

S
E

N
S

E
A

1
2

S
E

N
S

E
B

2
5

G
N

D
1

G
N

D
1

8

G
N

D
1

9

U
2

7

L
6

2
0

8

1
0

0
R

R
2

2
6

1
R

R
1

7
8

39K

R
1

6
4

C86
100n 2

2
0

u
/1

6
V

C
1

3
4

C124

1
n

39K

R
1

6
0

C
1

2
0

1
n

/R
E

S
E

T

D
4

5
T

S
4

1
4

8

D
4

9
T

S
4

1
4

8
C

1
0

8
1

0
n

C
1

4
0

2
2

0
n

G
N

D

G
N

D

1
2

V
M

O
T

1 2 3 4

X
C

2
3

P
S

S
2

5
4

/4
G

1
R

R
1

8
2

1
R

R
1

8
61

R

R190

1
R

R
1

9
4

1
R

R
1

9
8 1

R

R
2

0
2

1
R

R206

G
N

D

C
9

6

1
0

n

C
1

0
0

1
0

n

G
N

D

G
P

A
0

2
1

G
P

A
1

2
2

G
P

A
2

2
3

G
P

A
3

2
4

G
P

A
4

2
5

G
P

A
5

2
6

G
P

A
6

2
7

G
P

A
7

2
8

G
P

B
0

1

G
P

B
1

2

G
P

B
2

3

G
P

B
3

4

G
P

B
4

5

G
P

B
5

6

G
P

B
6

7

G
P

B
7

8
G

N
D

1
0

V
D

D
9

S
O

1
4

S
C

K
1

2

S
I

1
3

A
0

1
5

A
1

1
6

A
2

1
7

R
E

S
E

T
1

8

IN
T

B
1

9

C
S

1
1

IN
T

A
2

0

U
1

9

M
C

P
2

3
S

1
7

V
O

U
T

A
4

V
O

U
T

B
5

V
O

U
T

C
6

V
O

U
T

D
7

V
O

U
T

E
1

0

V
O

U
T

F
1

1

V
O

U
T

G
1

2

V
O

U
T

H
1

3
V

R
E

F
E

-H
9

V
R

E
F

A
-D

8

/L
D

A
C

1

V
D

D
3

S
C

L
K

1
6

D
IN

1
5

/S
Y

N
C

2

G
N

D
1

4

U
2

1

A
D

5
3

0
8

R
U

Z

3
K

3
R

1
4

6

3
K

3
R

1
4

5

1
0

0
K

R
1

6
9

S
C

K
1

M
O

S
I1

M
IS

O
1

S
P

IO
C

S
3

IN
T

3

1
0

K
R

1
3

5

1
0

K
R

1
3

6

1
0

K
R

1
3

7

V
C

C
V

C
C

G
N

D

1
0

0
K

R
1

7
0

3
K

3
R

1
5

1

3
K

3
R

1
5

2

C
1

0
2

1
0

n
G

N
D

S
P

M
2

C
L

K

G
N

D

1
0

0
K

R
1

7
1

1
0

0
K

R
1

7
2

3
K

3
R

1
4

9

3
K

3
R

1
5

0

3
K

3
R

1
4

7

3
K

3
R

1
4

8

C
1

0
1

1
0

n
G

N
D S
P

M
1

C
L

K

C
1

0
3 1
0

n
G

N
D

C
1

0
4

1
0

n
G

N
D

S
P

M
3

C
L

K

S
P

M
4

C
L

K

S
C

K
1

M
O

S
I1

D
A

C
2

C
S

L
D

A
C

1

C
8

1

1
0

0
n

C
8

0

1
0

0
n

G
N

D
A

V
C

C
5

C
8

2
1

0
0

n

1
0

u
/1

0
V

C
1

2
9

V
C

C
G

N
D

/R
E

S
E

T

C
O

N
T

R
O

L
2

8

H
A

L
F

/F
U

L
L

2
7

C
L

O
C

K
1

0

C
W

/C
C

W
1

1

E
N

2
9

R
E

S
E

T
8

V
R

E
F

A
9

V
R

E
F

B
2

6

R
C

A
1

3

R
C

B
2

4

G
N

D
3

6

V
S

A
4

V
S

B
3

3

V
C

P
7

V
B

O
O

T
3

0

O
U

T
1

A
1

5

O
U

T
1

B
2

2

O
U

T
2

A
5

O
U

T
2

B
3

2

S
E

N
S

E
A

1
2

S
E

N
S

E
B

2
5

G
N

D
1

G
N

D
1

8

G
N

D
1

9

U
2

8

L
6

2
0

8

1
0

0
R

R
2

2
7

1
R

R
2

0
7

39K

R
1

6
7

C91
100n 2

2
0

u
/1

6
V

C
1

3
5

C127 1n
39K

R
1

6
5

C
1

2
5

1
n

/R
E

S
E

T

D
5

0
T

S
4

1
4

8

D
5

2
T

S
4

1
4

8

C
1

1
5

1
0

n

C
1

4
1

2
2

0
n

G
N

D

G
N

D

1
2

V
M

O
T

1 2 3 4

X
C

2
4

P
S

S
2

5
4

/4
G

1
R

R
2

0
91

R

R
2

1
1 1

R

R213

1
R

R
2

1
51

R

R
2

1
7 1

R
R

2
1

91
R

R221

G
N

D

C
1

0
9

1
0

n
C

1
1

1

1
0

n

G
N

D

C
O

N
T

R
O

L
2

8

H
A

L
F

/F
U

L
L

2
7

C
L

O
C

K
1

0

C
W

/C
C

W
1

1

E
N

2
9

R
E

S
E

T
8

V
R

E
F

A
9

V
R

E
F

B
2

6

R
C

A
1

3

R
C

B
2

4

G
N

D
3

6

V
S

A
4

V
S

B
3

3

V
C

P
7

V
B

O
O

T
3

0

O
U

T
1

A
1

5

O
U

T
1

B
2

2

O
U

T
2

A
5

O
U

T
2

B
3

2

S
E

N
S

E
A

1
2

S
E

N
S

E
B

2
5

G
N

D
1

G
N

D
1

8

G
N

D
1

9

U
2

9

L
6

2
0

8

1
0

0
R

R
2

2
8

1
R

R
2

0
8

39K

R
1

6
8

C92
100n 2

2
0

u
/1

6
V

C
1

3
6

C128

1
n

39K

R
1

6
6

C
1

2
6

1
n

/R
E

S
E

T

D
5

1
T

S
4

1
4

8

D
5

3
T

S
4

1
4

8

C
1

1
6

1
0

n

C
1

4
2

2
2

0
n

G
N

D

G
N

D

1
2

V
M

O
T

1 2 3 4

X
C

2
5

P
S

S
2

5
4

/4
G

1
R

R
2

1
0 1

R

R
2

1
21

R

R214

1
R

R
2

1
61

R

R
2

1
8 1

R

R
2

2
01

R

R222

G
N

D

C
1

1
0

1
0

n
C

1
1

2

1
0

n

G
N

D

G
P

A
0

2
1

G
P

A
1

2
2

G
P

A
2

2
3

G
P

A
3

2
4

G
P

A
4

2
5

G
P

A
5

2
6

G
P

A
6

2
7

G
P

A
7

2
8

G
P

B
0

1

G
P

B
1

2

G
P

B
2

3

G
P

B
3

4

G
P

B
4

5

G
P

B
5

6

G
P

B
6

7

G
P

B
7

8
G

N
D

1
0

V
D

D
9

S
O

1
4

S
C

K
1

2

S
I

1
3

A
0

1
5

A
1

1
6

A
2

1
7

R
E

S
E

T
1

8

IN
T

B
1

9

C
S

1
1

IN
T

A
2

0

U
2

0

M
C

P
2

3
S

1
7

V
O

U
T

A
4

V
O

U
T

B
5

V
O

U
T

C
6

V
O

U
T

D
7

V
O

U
T

E
1

0

V
O

U
T

F
1

1

V
O

U
T

G
1

2

V
O

U
T

H
1

3
V

R
E

F
E

-H
9

V
R

E
F

A
-D

8

/L
D

A
C

1

V
D

D
3

S
C

L
K

1
6

D
IN

1
5

/S
Y

N
C

2

G
N

D
1

4

U
2

2

A
D

5
3

0
8

R
U

Z

3
K

3
R

1
5

4

3
K

3
R

1
5

3

1
0

0
K

R
1

7
3

S
C

K
1

M
O

S
I1

M
IS

O
1

S
P

IO
C

S
4

IN
T

4

1
0

K
R

1
3

8

1
0

K
R

1
3

9

1
0

K
R

1
4

0

G
N

D

V
C

C
G

N
D

1
0

0
K

R
1

7
4

3
K

3
R

1
5

5

3
K

3
R

1
5

6

C
1

1
4

1
0

n
G

N
D

S
P

M
6

C
L

K

G
N

D

C
1

1
3

1
0

n
G

N
D S
P

M
5

C
L

K

S
C

K
1

M
O

S
I1

D
A

C
3

C
S

L
D

A
C

2

C
8

9

1
0

0
n

C
8

8

1
0

0
n

G
N

D
A

V
C

C
5

C
9

0
1

0
0

n

1
0

u
/1

0
V

C
1

3
0

V
C

C
G

N
D

/R
E

S
E

T

M
O

T
O

R
1

M
O

T
O

R
2 M

O
T

O
R

3

M
O

T
O

R
4

M
O

T
O

R
5

M
O

T
O

R
6

3 2
1

8 4

U
2

3
A

T
L

V
2

4
6

2
C

D
1

K
R

1
4

1

1
K

R
1

4
2

G
N

D

A
V

C
C

5

G
N

D

2
V

5
V

R
E

F
5 6

7

U
2

3
B

T
L

V
2

4
6

2
C

D
1

K

R143

1
K

R144 G
N

D

2
V

5
V

R
E

F

C
7

8
1

0
0

n

A
V

C
C

5

G
N

D

C
7

9

1
0

0
n

V
C

C

G
N

D

C
8

7

1
0

0
n

V
C

C

G
N

D

E
L

IS
A

 A
n

al
y

se
r

C
o

n
tr

o
l

U
n

it

2
1

2
M

B
0

1
1

.0

3
4

M
ar

ti
n

 B
ac

a

1 2 3 4

X
C

3
1

P
S

S
2

5
4

/4
G

4
7

0
R

R
3

3
5

1
0

K
R

3
2

5
1

K

R
3

3
1

1
0

K
R

3
2

3

Q
4

B
C

8
4

7

+
6

V

V
C

C

G
N

D

G
N

D
+

6
V

1 2 3 4

X
C

3
3

P
S

S
2

5
4

/4
G

4
7

0
R

R
3

3
7

1
0

K
R

3
2

9
1

K

R
3

3
3

1
0

K
R

3
2

7

Q
6

B
C

8
4

7

+
6

V

V
C

C

G
N

D

G
N

D
+

6
V

1 2 3 4

X
C

3
2

P
S

S
2

5
4

/4
G

4
7

0
R

R
3

3
6

1
0

K
R

3
2

6
1

K

R
3

3
2

1
0

K
R

3
2

4

Q
5

B
C

8
4

7

+
6

V

V
C

C

G
N

D

G
N

D
+

6
V

1 2 3 4

X
C

3
4

P
S

S
2

5
4

/4
G

4
7

0
R

R
3

3
8

1
0

K
R

3
3

0
1

K

R
3

3
4

1
0

K
R

3
2

8

Q
7

B
C

8
4

7

+
6

V

V
C

C

G
N

D

G
N

D
+

6
V

OPTO-SWITCH 3 OPTO-SWITCH 4

OPTO-SWITCH 1 OPTO-SWITCH 2

IE
X

C
1

IE
X

C
2

C
2

0
5

1
0

0
n G
N

D

C
2

0
6

1
0

0
n G
N

D

C
2

0
7

1
0

0
n G
N

D

C
2

0
8

1
0

0
n G
N

D

C
2

1
0

1
0

0
n G
N

D

C
2

0
9

1
0

0
n G
N

D

156

Figure A - 4 Control unit schematic – power supply, spectrometer interface and combined optical

sensors interface.

11

22

33

44

55

66

D
D

C
C

B
B

A
A

T
it

le

N
u
m

b
er

R
ev

is
io

n
S

iz
e

B

D
at

e:
5
/3

1
/2

0
1
8

S
h
ee

t

 o
f

F
il

e:
D

:\
M

ar
ti

n
\.

.\
E

li
sa

_
C

o
n
tr

o
ll

er
_
4
.S

C
H

D
O

C
D

ra
w

n
 B

y
:

D
2

D
0

D
1

D
3

A
D

C
C

L
K

C
D

S
C

L
K

2

O
E

B

G
N

D

C
A

P
B

2
0

D
R

V
D

D
5

A
V

S
S

1
9

D
0

1
4

D
1

1
3

D
2

1
2

D
3

1
1

D
4

1
0

D
5

9

D
6

8

D
7

7

V
IN

R
2
6

V
IN

G
2
4

V
IN

B
2
2

O
F

F
S

E
T

2
5

C
M

L
2
3

C
A

P
T

2
1

S
D

A
T

A
1
5

S
C

L
K

1
6

S
L

O
A

D
1
7

C
D

S
C

L
K

1
1

C
D

S
C

L
K

2
2

A
D

C
C

L
K

3

O
E

B
4

D
R

V
S

S
6

A
V

D
D

1
8

A
V

S
S

2
7

A
V

D
D

2
8

U
3
5

A
D

9
8
2
6

C
L

K
1

S
T

2

V
g

1
1

V
D

D
1
2

V
S

S
2
4

E
O

S
2
3

V
ID

E
O

1
4

N
C

1
3

N
C

2
0

U
4
0

S
8
3
7
8

5
K

6

R
2
9
6

1
0
0

R
2
2
9

D
4

D
5

D
6

D
7

G
N

D

G
N

D

G
N

D

V
C

C

A
V

C
C

5

G
N

D

C
C

D
C

S
S

C
K

1
M

O
S

I1

S
1
A

1
9

S
2
A

2
0

S
3
A

2
1

S
4
A

2
2

S
5
A

2
3

S
6
A

2
4

S
7
A

2
5

S
8
A

2
6

S
1
B

1
1

S
2
B

1
0

S
3
B

9

S
4
B

8

S
5
B

7

S
6
B

6

S
7
B

5

S
8
B

4
G

N
D

1
2

V
D

D
1

V
S

S
2
7

D
A

2
8

D
B

2

A
0

1
7

A
1

1
6

A
2

1
5

E
N

1
8

U
4
1

A
D

G
7
0
7

C
1
5
2

1
0
u

C
1
4
7

1
0
0
n

C
1
4
4

1
0
0
n

C
1
5
0

1
0
0
n

C
1
4
5

1
0
0
n

C
1
4
8

1
0
0
nC
1
4
9

1
0
0
n

C
1
4
3

1
0
0
n

M
U

X
A

0
M

U
X

A
1

M
U

X
A

2

C
1
5
3

1
0
0
n

A
V

C
C

5

G
N

D

A
V

C
C

5

A
V

C
C

5

G
N

D

V
C

C
A

1

A
2

4

A
3

5

E
N

8
G

N
D

7
Y

3
1
0

Y
2

1
1

Y
1

1
2

Y
0

1
3

V
C

C
Y

1
4

A
0

2

A
1

3

U
3
6

A
D

G
3
3
0
4
B

R
U

Z

1
0
K

R
2
3
2

V
C

C
A

V
C

C
5

C
1
4
6

1
0
0
n

C
1
5
1

1
0
0
n

G
N

D

V
C

C

G
N

D

/E
O

S
A

D
C

C
L

K
S

T
V

G

C
1
5
4

1
0
0
n

C
1
7
1

1
u

R
2
4
8

R
2
4
9

R
2
5
0

R
2
5
1

R
2
5
2

R
2
5
3

R
2
5
4

R
2
5
5

R
2
5
6

R
2
5
7

R
2
5
8

R
2
5
9

R
2
6
0

R
2
6
1

R
2
6
2

R
2
6
3

R230
R231
R233
R234
R235
R236
R237
R238

R239
R240
R241
R242
R243
R244
R245
R246

G
N

D

1
2

3
4

5
6

7
8

9
1
0

X
C

2
6

W
S

L
1
0
G

1
2

3
4

5
6

7
8

9
1
0

X
C

2
7

W
S

L
1
0
G

G
N

D

G
N

D

A
V

C
C

5

A
V

C
C

5

G
N

D

3 2
1

8 4

U
3
0
A

T
L

V
2
4
6
2
C

D

G
N

D

1
0
K

R
2
6
4

10K R268

5
K

1
R

2
9
9

5K1 R300

5
0
R

R
3
1
5

A
V

C
C

5

C159100n

1
0
0
R

R
2
8
4

G
N

D

5 6
7

U
3
0
B

T
L

V
2
4
6
2
C

D

1
0
K

R
2
6
5

10K R269

5
K

1
R

3
0
1

5
K

1
R

3
0
2

5
0
R

R
3
1
6

C
1
6
0

1
0
0
n

1
0
0
R

R
2
9
0

G
N

D

3 2
1

8 4

U
3
1
A

T
L

V
2
4
6
2
C

D

G
N

D

1
0
K

R
2
6
6

10K R270

5
K

1
R

3
0
3

5
K

1
R

3
0
4

5
0
R

R
3
1
7

A
V

C
C

5

C
1
6
1

1
0
0
n

1
0
0
R

R
2
8
5

G
N

D

5 6
7

U
3
1
B

T
L

V
2
4
6
2
C

D

1
0
K

R
2
6
7

10K R271

5
K

1
R

3
0
5

5
K

1
R

3
0
6

5
0
R

R
3
1
8

C
1
6
2

1
0
0
n

1
0
0
R

R
2
8
6

1 2
3 4
5 6
7 8
9 10

X
C

2
8

W
S

L
1
0
G

G
N

D

A
V

C
C

5

G
N

D

3 2
1

8 4

U
3
2
A

T
L

V
2
4
6
2
C

D

G
N

D

1
0
K

R
2
7
2

10K R276

5
K

1
R

3
0
7

5
K

1
R

3
0
8

5
0
R

R
3
1
9

A
V

C
C

5

C
1
6
5

1
0
0
n

G
N

D

5 6
7

U
3
2
B

T
L

V
2
4
6
2
C

D

1
0
K

R
2
7
3

10K R277

5
K

1
R

3
0
9

5
K

1
R

3
1
0

5
0
R

R
3
2
0

C
1
6
6

1
0
0
n

1
0
0
R

R
2
8
9

G
N

D

3 2
1

8 4

U
3
3
A

T
L

V
2
4
6
2
C

D

G
N

D

1
0
K

R
2
7
4

10K R278

5
K

1
R

3
1
1

5
K

1
R

3
1
2

5
0
R

R
3
2
1

A
V

C
C

5

C
1
6
7

1
0
0
n

1
0
0
R

R
2
8
7

G
N

D

5 6
7

U
3
3
B

T
L

V
2
4
6
2
C

D

1
0
K

R
2
7
5

10K R279

5
K

1
R

3
1
3

5
K

1
R

3
1
4

5
0
R

R
3
2
2

C
1
6
8

1
0
0
n

1
0
0
R

R
2
9
1

1 2
3 4
5 6
7 8
9 10

X
C

2
9

W
S

L
1
0
G

G
N

D

A
V

C
C

5

G
N

D
A

V
C

C
5

C
1
5
6

1
0
0
n

G
N

DS
C

K
1

M
O

S
I1

D
A

C
1
C

S

1
0
K

R
2
4
7

A
V

C
C

5

C
1
5
8

1
0
0
n

1
0
u
/1

0
V

C
1
8
1

S
E

N
S

O
R

 L
E

D
S

S
E

N
S

O
R

 L
E

D
S

V
O

U
T

A
4

V
O

U
T

B
5

V
O

U
T

C
6

V
O

U
T

D
7

V
O

U
T

E
1
0

V
O

U
T

F
1
1

V
O

U
T

G
1
2

V
O

U
T

H
1
3

V
R

E
F

E
-H

9
V

R
E

F
A

-D
8

/L
D

A
C

1

V
D

D
3

S
C

L
K

1
6

D
IN

1
5

/S
Y

N
C

2

G
N

D
1
4

U
4
2

A
D

5
3
0
8
A

R
U

Z

C
1
5
5

1
0
0
n

1
0
0
R

R
2
8
8

3 2
1

8 4

U
3
4
A

T
L

V
2
4
6
2
C

D
1
K

R281

1
K

R282

G
N

D

A
V

C
C

5

G
N

D

2
V

5
V

R
E

F

C
1
5
7

1
0
0
n

A
V

C
C

5

G
N

D

C
1
6
3

1
0
0
n

G
N

D

C
1
6
4

1
0
0
n

G
N

D
C

1
7
0

1
0
0
n

G
N

D

C
1
6
9

1
0
0
n

G
N

D
D

5
6 SK310A

F
3

F
4
A

D
5
9

P
6
S

M
B

1
5
A

DC12V IN

100n

C179

1
0
0
u
/1

0
VC189

G
N

D

1
0
0
u
H

/1
A

L
5

B
O

O
T

1

V
S

E
N

S
E

4
E

N
A

5

G
N

D
6

V
IN

7
P

H
8

U
3
8

T
P

S
5
4
5
0

1
0
n

C
1
9
6

4u7

C194
4u7

C192

2
m

2
/1

6
V

C
1
9
1

1
3
K

R
2
9
3

V
IN

D
6
0

S
S

2
4

G
N

D

1 2

X
C

3
0

A
K

L
2
2
0
-2

2
2
K

R
2
9
4

D
5
4KP3216SGC

4
7
0
R

R
2
9
7

V
C

C

1
0
0
n

C
1
8
0

1
0
0
u
/1

0
V

C190

1
0
0
u
H

/1
A

L
6

B
O

O
T

1

V
S

E
N

S
E

4
E

N
A

5

G
N

D
6

V
IN

7
P

H
8

U
3
9

T
P

S
5
4
5
0

1
0
n

C
1
9
7

4
u
7

C
1
9
5

4u7

C193

1
0
K

R
2
8
0

D
6
1

S
S

2
4

3
9
K

R
2
9
5

D
5
5

KP3216SGC

1
K

R
2
9
8

+
6
V

3
K

3
R

2
8
3

D
5
8

K
P

3
2
1
6
S

G
C

IN
3

2

O
U

T
1

G
N

D

U
3
7

L
F

5
0
C

D
T

1
0
0
n

C
1
7
8

100n

C177

1
0
0
u
/1

0
V

C187

G
N

D

A
V

C
C

5

1
0
0
u
/1

0
V

C
1
8
8

+
6
V

1
0
0
u
H

/1
A

L
4

1
0
0
u
/1

0
V

C186

1
0
0
n

C
1
7
5

100n

C173

1
0
0
u
/1

6
V

C184

1
2
V

M
O

T
1
0
u
H

/5
A

L
2

1m/16V

C182

100n

C172

100n
C176

1m/16V

C183

1
2
V

S
O

L

1
0
u
H

/5
A

L
3

1
0
0
u
/1

6
V

C185

100n

C174

G
N

D
G

N
D

G
N

D

D
5
7

K
P

3
2
1
6
S

G
C

4
K

7

R
2
9
2

G
N

D

E
L

IS
A

 A
n

al
y

se
r

C
o

n
tr

o
l

U
n

it

2
1
2
M

B
0
1

1
.0

4
4

M
ar

ti
n
 B

ac
a

1
6
x
1
0
K

1
6
x
1
0
K

5 6
7

U
3
4
B

T
L

V
2
4
6
2
C

D
G

N
D

Q
1
1

IR
F

7
4
1
6

D
6
2

S
K

3
1
0
A

1
0
K

R
3
6
8

1
K

R
3
7
0

1
0
K

R
3
6
7

1
0
K

R
3
6
9

Q
1
0

B
C

8
4
7

G
N

D

3
K

3
R

3
7
1

D
6
3

K
P

3
2
1
6
S

G
C

220u/16V
C203

100n

C202

G
N

D
E

N
1
2
V

3
,3

V

2
2
0
u
/1

6
VC211

G
N

D

157

Appendix 2 – Control unit PCB assembly drawing

Figure A - 5 Control unit PCB assembly – top side.

158

Figure A - 6 Control unit PCB assembly – bottom side.

159

Figure A - 7 Control unit PCB layout – top layer (layer 1).

160

Figure A - 8 Control unit PCB layout - ground layer (layer2).

161

Figure A - 9 Control unit layout – power plane layer (layer 3).

162

Figure A - 10 Control unit PCB layout – bottom layer (layer 4).

163

Appendix 3 – Fluorimeter amplifier module schematic

Figure A - 11 Fluorimeter front-end amplifier and laser driver schematic.

11

22

33

44

D
D

C
C

B
B

A
A

T
it

le

N
u
m

b
er

R
ev

is
io

n
S

iz
e

A

D
at

e:
5
/3

1
/2

0
1
8

S
h
ee

t

 o
f

F
il

e:
D

:\
M

ar
ti

n
\.

.\
E

li
sa

-O
p
to

F
E

.S
C

H
D

O
C

D
ra

w
n
 B

y
:

E
L

IS
A

 -
 O

p
ti

ca
l

D
ri

v
er

 a
n
d
 r

ec
ei

v
er

r

2
1
3
M

B
0
2

1
.0

1
1

M
ar

ti
n
 B

ac
a

1
M

R
2

1
0
K

R
4

32
1

84

U
1
A

L
T

C
6
2
4
4
C

M
S

8
56

7 U
1
B

L
T

C
6
2
4
4
C

M
S

8

1
0
K

R
3

1
0
0
R

R
1

C
3

1
0
n

C
1

1
0
p

1
0
0
R

R
5

C
1
0

1
0
0
n

G
N

D

G
N

D

G
N

D

+
5
V

V
R

E
F

G
N

D
V

R
E

F

V
IN

4

E
N

3

G
N

D
F

o
rc

e
1

V
o
u
tF

o
rc

e
6

V
o
u
tS

en
se

5

G
N

D
S

en
se

2

U
3

A
D

R
3
4
2
5

C
1
2

1
u

C
1
1

1
0
0
n

+
5
V

G
N

D

3
K

3
R

1
1

D
1

S
K

3
1
0
A

D
2

K
P

3
2
1
6
S

G
C

1 2

X
C

8

P
S

S
2
5
4
/2

G

C
4

1
0
0
n

0
R

R6

0
R

R7

G
N

D
V

R
E

F

V
R

E
F

O
S

C
7

L
V

6
C

A
P

-
4

O
U

T
5

B
O

O
S

T
1

V
+

8
C

A
P

+
2

G
N

D
3

IC
L

1

IC
L

7
6
6
0

G
N

D
1

A
G

N
D

3
V

C
C

6

L
D

K
8

M
K

D
4

C
I

2
L

D
A

7

M
D

A
5

U
2

iC
-W

K
N

12

X
C

7

P
S

S
2
5
4
/2

G

12

X
C

6

P
S

S
2
5
4
/2

G

1 2

X
C

5

P
S

S
2
5
4
/2

G
1
0
0
u
/1

6
V

C5

100n

C6

1
0
0
n

C
7

1
K

R
8

4
7
K

R
9

R
P

1 1
0
0
K

1
u

C
8 L

G
N

D

L
G

N
D

L
V

C
C

L
A

S
E

R
 D

IO
D

E

M
O

N
IT

O
R

 D
IO

D
E

AC AC

V
IN

1
0
0
p

C
9

1
0
u
/1

0
V

C
1
6

10u
C20

1
0
u
/1

0
VC17

100n

C18

1
0
0
n

C
1
3

1
0
u
/1

0
V

C
1
5

10u
C19

+
5
V

G
N

D

-5
V

V
IN

2

GND
1

O
U

T
5

A
D

J
4

B
Y

P
3

U
4

L
T

1
9
6
4
E

S
5
-B

Y
P

C
1
4 100n

1
K

8
R

1
0

1
K

R
1
2

-3
V

5

1 2 3 4

X
C

3

P
S

S
2
5
4
/4

G

12

X
C

4

P
S

S
2
5
4
/2

G

-3
V

5
+

5
V

G
N

D

V
p
d
1

T
O

 O
P

T
3
0
1

T
O

 A
n
al

y
se

r

+
5
V

 I
N

G
N

D

+
5
V

1 2

X
C

2

P
S

S
2
5
4
/2

G

V
R

E
F

=
+

2
,5

V

C
2

1
0
n

G
N

D
1 2 3 4

X
C

1

P
S

S
2
5
4
/4

G

G
N

D

G
N

D

T
O

 A
n
al

y
se

r
T

O
 B

P
X

6
1

164

Appendix 4 – Fluorimeter amplifier PCB layout

Figure A - 12 Fluorimeter amplifier PCB assembly of top layer (left) and the right layer (right).

Figure A - 13 Fluorimeter amplifier PCB top layer (left) and bottom layer (right).

165

Appendix 5 – Culturing module driver schematic

Figure A - 14 Culturing module smart driver schematic.

11

22

33

44

55

66

D
D

C
C

B
B

A
A

T
it

le

N
u

m
b

er
R

ev
is

io
n

S
iz

e

B

D
at

e:
5

/3
1

/2
0

1
8

S
h

ee
t

 o

f
F

il
e:

D
:\

M
ar

ti
n

\.
.\

B
R

 U
n

it
 D

ri
v

er
.S

C
H

D
O

C
D

ra
w

n
 B

y
:

C
3

0
1

0
0

n

V
C

C

1
0

0
n

C
3

4

1
0

0
u

H

L
2

A
V

C
C

C
2

8

1
0

u
/1

0
V

C
2

7

1
0

u
/1

0
V

G
N

D

1
2

3
4

5
6

7
8

9
1

0

JP
1

M
H

D
R

2
X

5

1
K

R
3

3

V
C

C

G
N

D
V

C
C

G
N

D

T
C

K
T

D
O

T
M

S

T
D

I

R
E

S
E

T

P
B

3

K
S

M
6

1
3

C
1

6

1
0

u
/1

0
V

G
N

D

V
C

C

C
1

8
2

2
p

C
1

9
2

2
p

X
1

1
6

 M
H

z

G
N

D
G

N
D

V
C

C

A
V

C
C

G
N

D

T
D

I
T

D
O

T
M

S
T

C
K

A
D

C
2

R
X

D
T

X
D

S
C

L
S

D
A

S
O

L
5

S
O

L
6

A
D

C
1

L
E

D
1

G
N

D

S
O

L
7

S
O

L
8

R
E

S
E

T

4
K

7

R
3

4

4
K

7

R
3

5

S
D

A
S

C
L

V
C

C

M
R

S
T

S
O

L
4

M
C

L
K

E
N

1
2

V
D

IN
1

D
IN

2

1
0

0
n

C
1

7

C
1

+
1

V
D

D
2

C
1

-
3

C
2

+
4

C
2

-
5

V
E

E
6

T
2

O
U

T
7

R
2

IN
8

R
2

O
U

T
9

T
2

IN
1

0
T

1
IN

1
1

R
1

O
U

T
1

2
R

1
IN

1
3

T
1

O
U

T
1

4

G
N

D
1

5

V
C

C
1

6

U
4

M
A

X
2

3
2

1
0

0
R

3
8

1
0

0
R

3
7

1
u

C
1

1 1
u

C
1

3

1
u

C
1

41
u

C
1

0

1
0

0
n

C
1

2

G
N

D

G
N

D

G
N

D

T
X

D

R
X

D

V
C

C

D
4

5
V

1

D
3

5
V

1

G
N

D

A
D

C
1

1
0

0
n

C
3

5

1
0

0
n

C
3

6

1
0

0
n

C
3

7

1
0

0
n

C
3

8

1
0

0
n

C
3

9

A
V

C
C

V
C

C

G
N

D

1
0

0
n

C
1

5

L
E

D
2

B
io

re
ac

to
r

U
n

it
 D

ri
v

er

M
R

S
T

C
O

N
T

R
O

L
2

8

H
A

L
F

/F
U

L
L

2
7

C
L

O
C

K
1

0

C
W

/C
C

W
1

1

E
N

2
9

R
E

S
E

T
8

V
R

E
F

A
9

V
R

E
F

B
2

6

R
C

A
1

3

R
C

B
2

4

G
N

D
3

6

V
S

A
4

V
S

B
3

3

V
C

P
7

V
B

O
O

T
3

0

O
U

T
1

A
1

5

O
U

T
1

B
2

2

O
U

T
2

A
5

O
U

T
2

B
3

2

S
E

N
S

E
A

1
2

S
E

N
S

E
B

2
5

G
N

D
1

G
N

D
1

8

G
N

D
1

9

U
1

L
6

2
0

8

1
0

0
R

R
5

39K

R
2

2

C3
100n 2

2
0

u
/3

5
V

C
4

C722n

39K R
2

3

C622n

D
2

T
S

4
1

4
8

D
1

T
S

4
1

4
8

C
5

1
0

n

C
1

220n/50V

G
N

D

G
N

D

1
2

V
M

O
T 1
R

R
1

2

1
R

R
1

1
1

R
R

1
0

1
R

R
7

G
N

D

C9

1
0

n

G
N

D

3K3

R
8

1
0

0
K

R
6

C8

1
0

n

M
C

L
K

C
2 1
0

0
n G
N

D

V
O

U
T

6

V
D

D
4

S
C

L
K

2

D
IN

3

/S
Y

N
C

1

G
N

D
5

U
2

A
D

5
6

0
1

3K3

R
9

V
C

C

1
0

0
R

R
3

9

G
N

D

S
O

L
1

S
O

L
2

S
O

L
3

M
E

N
M

D
IR

M
H

F

M
E

N

D
5

SK310A

F
1

F
4

A

D
6

P
6

S
M

B
1

5
A

DC12V IN

100n

C21

1
0

0
u

/1
0

VC22

G
N

D

1
0

0
u

H
/1

A

L
1

B
O

O
T

1

V
S

E
N

S
E

4
E

N
A

5

G
N

D
6

V
IN

7
P

H
8

U
5

T
P

S
5

4
2

0

1
0

n
C

2
0

4u7

C24
4u7

C25

1
0

K
R

4
4

V
IN

D
7

S
S

2
4

3
0

K

R
4

2

D
8KP3216SGC

1
K

R
4

3
V

C
C

1
2

V
M

O
T

100n
C33

2
2

0
u

/3
5

V

C32

1
0

u
H

/5
A

L
3

100n

C29

G
N

D

5
V

2
2

0
u

/3
5

VC23

JT
A

G

M
D

IR
M

H
F

D
A

C
L

K

D
A

D
IN

D
A

C
S

D
A

C
S

D
A

C
L

K
D

A
D

IN

1
0

K
R

4
1

1
0

K
R

1
N

A
R

2

V
C

C

G
N

D

T
o

ff
=

0
.5

m
s

T
o

n
=

1
3

u
s

P
B

0
 (

X
C

K
,

T
0

)
4

0

P
B

1
 (

T
1

)
4

1

P
B

2
 (

A
IN

0
,

IN
T

2
)

4
2

P
B

3
 (

A
IN

1
,

O
C

0
)

4
3

P
B

4
 (

/S
S

)
4

4

P
B

5
 (

M
O

S
I)

1

P
B

6
 (

M
IS

O
)

2

P
B

7
 (

S
C

K
)

3

P
D

0
 (

R
X

D
)

9

P
D

1
 (

T
X

D
)

1
0

P
D

2
 (

 I
N

T
0

)
1

1

P
D

3
 (

IN
T

1
)

1
2

P
D

4
 (

O
C

1
B

)
1

3

P
D

5
 (

O
C

1
A

)
1

4

P
D

6
 (

IC
P

1
)

1
5

P
D

7
 (

O
C

2
)

1
6

A
V

C
C

2
7

A
R

E
F

2
9

G
N

D
3

9

G
N

D
6

/R
E

S
E

T
4

X
T

A
L

1
8

X
T

A
L

2
7

V
cc

1
7

V
cc

5

V
cc

3
8

P
A

0
 (

A
D

C
0

)
3

7

P
A

1
 (

A
D

C
1

)
3

6

P
A

2
 (

A
D

C
2

)
3

5

P
A

3
 (

A
D

C
3

)
3

4

P
A

4
 (

A
D

C
4

)
3

3

P
A

5
 (

A
D

C
5

)
3

2

P
A

6
 (

A
D

C
6

)
3

1

P
A

7
 (

A
D

C
7

)
3

0

P
C

0
 (

S
C

L
)

1
9

P
C

1
 (

S
D

A
)

2
0

P
C

2
 (

T
C

K
)

2
1

P
C

3
 (

T
M

S
)

2
2

P
C

4
 (

T
D

O
)

2
3

P
C

5
 (

T
D

I)
2

4

P
C

6
 (

T
O

S
C

1
)

2
5

P
C

7
 (

T
O

S
C

2
)

2
6

G
N

D
1

8

G
N

D
2

8

U
3

A
T

M
E

G
A

3
2

G
N

D

G
N

D
1

0
K

R
4

0

G
N

D

1
0

K

R
3

6
V

C
C

D
9

KP2012EC

1
K

R
4

5

V
C

C LED1

2
1

6
M

B
0

1

IN
1

1

IN
4

4

IN
5

5

IN
6

6

IN
7

7

IN
8

8

G
N

D
9

O
U

T
2

1
7

C
O

M
1

0
O

U
T

8
1

1
O

U
T

7
1

2
O

U
T

6
1

3
O

U
T

5
1

4
O

U
T

4
1

5
O

U
T

3
1

6

O
U

T
1

1
8

IN
2

2

IN
3

3

U
6

U
L

N
2

8
0

3
A

1

2
02

2
13

2
24

2
35

2
46

2
57 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
7

2
6

J1 D
 C

o
n

n
ec

to
r

2
5

1 2 3 4 56 7 8 9

1
1

1
0

J2

D
 C

o
n

n
ec

to
r

9

Q
1

IR
F

7
4

1
6

1
0

K

R
1

8
1

K
R

1
9

1
0

K

R
2

0

1
0

K
R

2
1

Q
2

BC847

G
N

D

E
N

1
2

V

1
2

V
S

O
L

3
K

3
R

1
7

D
1

6

K
P

3
2

1
6

S
G

C

220u/25V
C31

100n

C40

G
N

D

D
1

5

S
S

2
4

V
C

C

1
2

V
M

O
T

1
2

V
S

O
L

A
D

C
2

1
0

0
n

C
2

6

1
0

0
R

R
1

6

G
N

D

U
7

P
C

3
5

7

D
1

1

KP3216EC

1
K

R
4

V
C

C

D
IN

1

G
N

D

D
1

0
T

S
4

1
4

8

1
K

R
3

IN
1

+

IN
1

-

U
8

P
C

3
5

7

D
1

4

KP3216EC

1
K

R
1

5
V

C
C

D
IN

2

G
N

D

D
1

3
T

S
4

1
4

8

1
K

R
1

4
IN

2
+

IN
2

-

IN
1

+
IN

1
-

IN
2

+
IN

2
-

V
IN

D
1

2

KP2012SGC

1
K

R
1

3

V
C

C LED2

R
S

2
3

2
_

T
X

R
S

2
3

2
_

R
X

O
U

T
1

A
O

U
T

2
A

O
U

T
1

B
O

U
T

2
B

O
U

T
1

A
O

U
T

2
A

O
U

T
1

B
O

U
T

2
B

166

Appendix 6 – Culturing unit driver PCB assembly plan

Figure A - 15 Assembly of the driver unit – top side (top) and bottom side (bottom).

167

Appendix 7 – Culturing unit driver PCB layout

Figure A - 16 Culturing unit smart driver PCB layout – top layer (top) and bottom layer (bottom).

168

Appendix 8 – Schematics of the OpenOCD debugger hardware

Figure A - 17 The schematic of the OpenOCD debugger

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A

Date: 6/8/2018 Sheet of
File: D:\Martin\..\OPEN OCD.SCHDOC Drawn By:

3V3OUT
6

USBDM
8

USBDP
7

RSTOUT
5

RESET
4

XTIN
43

XTOUT
44

EECS
48

EESK
1

EEDATA
2

TEST
47

ADBUS0
24

ADBUS1
23

ADBUS2
22

ADBUS3
21

ADBUS4
20

ADBUS5
19

ADBUS6
17

ADBUS7
16

ACBUS0
15

ACBUS1
13

ACBUS2
12

ACBUS3
11

SI/WUA
10

BDBUS0
40

BDBUS1
39

BDBUS2
38

BDBUS4
36

BDBUS5
35

BDBUS3
37

BDBUS6
33

BDBUS7
32

BCBUS0
30

BCBUS1
29

BCBUS2
28

BCBUS3
27

SI/WUB
26

A
G

N
D

4
5

G
N

D
9

G
N

D
1
8

G
N

D
2
5

G
N

D
3
4

A
V

C
C

4
6

V
C

C
3

V
C

C
4
2

V
C

C
IO

A
1
4

V
C

C
IO

B
3
1

PWREN
41

U2 FT2232L

C19
100n

GND

VUSB

SHIELD
5

Vcc
1

D-
2

D+
3

GND
4

SHIELD
6

K1

USB/BU1B

C3

33n

GND

C16
47p

C15

47p

GND
X1

6MHz

CS
1

SK
2

DIN
3

DOUT
4

GND
5

NC
6

NC
7

VCC
8

U1

93C56

R9

2K2GND

VUSB

GNDUSB

27

R3

1K5
R1027

R4

470
R19

10K

R2

GNDJ1

10K

R1

F1

DSS306-55 FZ103

GND

100nF
C17

C1
47p

C2
47p

C14
100n

VUSB

100u
C18

F2

BLM21

GND

GND

1K
R8

1K
R7

D3

K
P

3
2

1
6

S
G

C

D5

K
P

3
2

1
6

E
C

VCCIOA

T
x
L

E
D

R
x
L

E
D

1K5
R6

D2

K
P

3
2

1
6

S
G

C

VUSB

GND

T_VCC

R18

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20

JP1

RST

TDI
TMS
TCK

DBGRQ

TDO

NTRST

JTAG

T_VCC

GND

R17
R16
R15

R14
R13
R12
R11

GND

8x47R

RST

TDI

TMS

TCK

RTCK

TDO

NTRST

DBGRQ

DBGACK

RxLED
TxLED

DCD

RxD

CTS

TxD

DSR

RTS

DTR

RI

DBGACK

1K
R5

D1
K

P
3

2
1
6

S
G

C

T_VCC

GND

C1+
28

V+
27

VCC
26

GND
25

C1-
24

FORCEON
23

FORCEOFF
22

INVALID
21

R2OUTB
20

R1OUT
19

R2OUT
18

R3OUT
17

R4OUT
16

R5OUT
15

C2+
1

C2-
2

V-
3

R1IN
4

R2IN
5

R3IN
6

R4IN
7

R5IN
8

T1OUT
9

T2OUT
10

T3OUT
11

T3IN
12

T2IN
13

T1IN
14

U3MAX3245

C5

100n

C6

100n

C7
100n

C11
100n C13

100n

C10
100n

C12
100n

C9
100n

C8
100n

6
2
7
3
8
4
9
5

1

K2

DMR09MGND

R
S

2
3
2

D8
5V6

GND

GND

GND GND GND

VUSB

GND
VUSB

DTR
RTS
TxD

RxD
CTS
DSR
DCD
RI

D4

KP3216SGC

D7
BAS85

D6

B
A

S
8
5

C4
100n

GND

VUSB

OIPEN OCD HW DEBUGGER

VCCIOA

VU2

VU2

169

Appendix 9 – The assembly plan and layout of the OpenOCD

debugger PCB

Figure A - 18 The assembly of the OpenOCD debugger – top layer

Figure A - 19 The layout of the OpenOCD debugger, top layer (left) and bottom layer (right)

170

171

Appendix 10 – Culturing unit driver source code listing

1 /***\

2 * BR Driver - HW ver1.0 *

3 *---*

4 * Description : Stepper motor controller with solenoid valves driver *

5 * controlled over I2C bus *

6 *---*

7 * Author : Martin Baca *

8 * Developed : 05.04.2016 Last Update : 12.09.2016 *

9 * Version : 1.1 *

10 *---*

11 * Compiler : avrgcc *

12 * Source file : brdriver.c *

13 *---*

14 * Target system : 216MB01 - HW Version 1.0 *

15 * ATmega32 @16 MHz, UART: 115200,N,8,1 *

16 * Emulator HW : *

17 ***/

18

19

20

21 #include <avr/io.h>

22 #include <avr/sleep.h>

23 #include <avr/interrupt.h>

24 #include <avr/pgmspace.h>

25 #include <avr/eeprom.h>

26 #include <stdio.h>

27 #include <stdlib.h>

28 #include <string.h>

29 #include <math.h>

30 #include <ctype.h>

31

32

33 /*** uncomment one the following lines according to HW version ***/

34

35 //#define PCB216MB01

36 #define PCB216MB01v2

37

38

39 /*** uncomment the following line for rotation direction change ***/

40 #define SM_REVERSE_ROTATION

41

42

43 //*** EEPROM MAP ***

44 #define EE_BR1_MAKESAMPLE 0x04

45 #define EE_BR1_PERFUSION 0x05

46 #define EE_BR_SPEED 0x06

47 #define EE_I2C_ADDR 0x08

48 #define EE_NEXT_FREE 0x09

49

50 //reserved for bootloader

51 #define EE_BOOT_FLAG E2END

52

53 //*** END OF EEPROM MAP ***

54

55 #define Reset2Boot 2 * 0x3C00 // The reset address of bootloader

56

57 //baudrate division constants for Xtal 16 MHz

58 #define baud1200 831

59 #define baud2400 415

60 #define baud4800 207

61 #define baud9600 103

62 #define baud19200 51

63 #define baud38400 25

64 #define baud57600 16

65 #define baud115200 8

66

67 // values for TWPS=00 - prescalling by 1 and XTAL=16MHz

68 #define I2C_400k 12

69 #define I2C_100k 72

70 #define I2C_50k 128

71

72 #define I2C_RXBUFSIZE 50

73 #define I2C_TXBUFSIZE 50

74

75 #define I2C_START TWCR=0xA5

76 #define I2C_STOP TWCR=0x95

77 #define I2C_CLRTWINT TWCR=0xC5

78 #define I2C_NACK TWCR=0x85

79 #define I2C_CLRTWINT_ACK 0xC4

80 #define I2C_CLRTWINT_NACK 0x84

81 #define I2C_INT_DIS 0x00

82 #define I2C_INT_ENA 0x01

83 #define I2C_TIMEOUT 2 //1LSB = 100ms,

84 #define COM_PARAM_ERR 0xFD //-3 - I2C parameter error - error state

85 #define COM_NOTVALID 0xFE //-2 - I2C command not valid - error state

86 #define GEN_ERROR 0xFF //-1 - I2C general error - error state

87 #define NO_ERROR 0x00 //0 - I2C no error - normal state

88

89 // I2C commands:

90 // I2C command syntax: I2C_address, Command,

91 // Parameters (optional - 1 or more bytes), '\n'(end of msg character)

92 //

93 #define COM_TEST 0x30 //no parameters, toggles the LED

94 #define COM_BRCONTROL 0x31 //1 parameter: 0x00 - disable br control,

95 //0x01 - enable br control

96 #define COM_BRSTOP 0x32 //no parameters

97 #define COM_BRSPEED 0x33 //2 parameter bytes: SpeedMSB, SpeedLSB,

172

98 //min speed=1, max speede=500 ul/min

99 #define COM_PREPSAMPLE 0x34 //no parameters

100 #define COM_BRCHANGEMED 0x35 //4 parameter bytes: VolumeMSB, VolumeLSB,

101 //SpeedMSB, SpeedLSB, volume limits: <-10000;10000> ul,

102 //speed limits: <1;500> ul/min

103 //#define COM_BRSAMPLE 0x36 //4 parameter bytes: VolumeMSB, VolumeLSB, SpeedMSB,

104 //SpeedLSB, volume limits: <1;10000> ul,

105 //speed limits: <1;500> ul/min

106 //#define COM_BRMIX 0x37 //4 parameter bytes: VolumeMSB, VolumeLSB,

107 //SpeedMSB, SpeedLSB, volume limits: <1;30000> ul,

108 //speed limits: <1;500> ul/min

109 #define COM_VALVE 0x38 // 2 parameters: Vavlve_Number: <1;8>, new_state: 0 or 1

110 #define COM_STARTPUMP 0x39 //4 parameter bytes: VolumeMSB, VolumeLSB, SpeedMSB,

111 //SpeedLSB, volume limits: <1;30000> ul,

112 //speed limits: <1;500> ul/min, speed=0 means STOP

113 #define COM_BRSTATUS 0x41 // no parameters

114

115

116 #define AIN1_ADC_CH 6

117 #define AIN2_ADC_CH 7

118 #define RXBUFSIZE 80

119

120

121 #define LEDR_ON (PORTB&=~0x01)

122 #define LEDR_OFF (PORTB|=0x01)

123 #define LEDR_TOGGLE (PORTB^=0x01)

124

125 #define LEDG_ON (PORTB&=~0x02)

126 #define LEDG_OFF (PORTB|=0x02)

127 #define LEDG_TOGGLE (PORTB^=0x02)

128

129 #define DACS_0 (PORTB&=~0x10)

130 #define DACS_1 (PORTB|=0x10)

131

132 #define DACSB_0 (PORTB&=~0x10)

133 #define DACSB_1 (PORTB|=0x10)

134

135 #define DACSA_0 (PORTB&=~0x02)

136 #define DACSA_1 (PORTB|=0x02)

137

138 #define SM_CLK_0 (PORTD&=~0x20)

139 #define SM_CLK_1 (PORTD|=0x20)

140

141 #define SM_DISABLE (PORTD&=~0x40)

142 #define SM_ENABLE (PORTD|=0x40)

143

144 #define SM_RESET (PORTD&=~0x80)

145 #define SM_UNRESET (PORTD|=0x80)

146

147 #define SM_DIR_CCW (PORTB&=~0x04)

148 #define SM_DIR_CW (PORTB|=0x04)

149

150 #define SM_STEP_FULL (PORTB&=~0x08)

151 #define SM_STEP_HALF (PORTB|=0x08)

152

153

154 #define VALVE1 1

155 #define VALVE2 2

156 #define VALVE3 3

157 #define VALVE4 4

158 #define VALVE5 5

159 #define VALVE6 6

160 #define VALVE7 7

161 #define VALVE8 8

162

163

164 #define SOL_SET_5V (PORTD&=~0x04)

165 #define SOL_SET_12V (PORTD|=0x04)

166

167 #define OFF 0

168 #define ON 1

169

170 #define DAC_CHAN_A 0

171 #define DAC_CHAN_B 1

172

173 // Speed ramp states

174 #define STOP 0

175 #define ACCEL 1

176 #define DECEL 2

177 #define RUN 3

178 #define STOPPED 4

179

180 #define NONE 0

181 #define SPEEDUP 1

182 #define SLOWDOWN 2

183 #define SLOWSTOP 3

184

185 #define TRUE 1

186 #define FALSE 0

187

188 #define CW 0

189 #define CCW 1

190

191 //#define HALFSTEPS

192 #define FULLSTEPS

193 //#define SLOWDECAY

194 #define FASTDECAY

195

196 // Timer/Counter 1 running on 16MHz / 64 = 0.25MHz (4uS). (T1-FREQ 250000)

197 #define T1_FREQ 250000

198

199 //! Number of (full)steps per round on stepper motor in use.

173

200 #define FSPR 200

201

202

203

204 // Maths constants. To simplify maths when calculating in speed_cntr_Move().

205 #define ALPHA (2*3.14159/FSPR) // 2*pi/spr

206 #define A_T_x1000 ((long)(ALPHA*T1_FREQ*1000)) // (ALPHA / T1_FREQ)*1000

207 #define A_T_x100 ((long)(ALPHA*T1_FREQ*100)) // (ALPHA / T1_FREQ)*100

208 #define T1_FREQ_148 ((int)((T1_FREQ*0.676)/100)) // divided by 100 and scaled by 0.676

209 #define A_SQ (long)(ALPHA*2*10000000000) // ALPHA*2*10000000000

210 #define A_x20000 (int)(ALPHA*20000) // ALPHA*20000

211

212

213 #define T0_TICKS_PS 250

214 #define TIME_100MS 25

215 #define TIME_200MS 50

216 #define TIME_500MS 125

217 #define TIME_1S 250

218

219 #define DISP_BLINK_1S 125 //period 1s

220

221 #define SOLENOID_12V_TIME 1000 //250 //turn-on time with 12V powering, 1LSB=1ms

222

223 #define CMD_OK 0

224 #define CMD_ERR_CMD 1

225 #define CMD_ERR_PARAM 2

226 #define CMD_ERR_PARAMCNT 3

227

228 #define STEP_RUNNING 1

229 #define STEP_FINISHED 0

230

231 #define BR1_V1 VALVE1

232 #define BR1_V2 VALVE4

233 #define BR1_V3 VALVE3

234 #define BR1_V4 VALVE2

235 #define PUMP1_VOL_PER_REVOLUTION 15120 //12600 //pump volume per revolution in nl

236

237 #define CALIBRATED_DEAD_VOLUME 120 //the dead volume of the callibrated tubing

238

239 #define BR1_PERFUS_VOL 30000

240 #define BR1_PERFUS_SPEED br1_pump_speed

241 #define BR1_MIX_VOL 500

242 #define BR1_MIX_SPEED br1_pump_speed

243 #define BR1_SAMP_VOL 400

244 #define BR1_SAMP_SPEED br1_pump_speed

245

246

247

248 typedef struct {

249 volatile uint8_t run_state : 3; //! What part of the speed ramp we are in.

250 uint8_t dir : 1; //! Direction stepper motor should move.

251 uint16_t step_delay; //! Peroid of next timer delay. At start this

252 // value set the accelration rate.

253 uint32_t decel_start; //! What step_pos to start decelaration

254 int32_t decel_val; //! Sets deceleration rate.

255 int16_t min_delay; //! Minimum time delay (max speed)

256 int32_t accel_count; //! Counter used when accelerateing/decelerateing

257 // to calculate step_delay.

258

259 uint32_t max_s_lim; //! Number of steps before we hit max speed.

260 uint32_t accel_lim; //! Number of steps before we must start deceleration

261 // (if accel does not hit max speed).

262

263 uint16_t new_step_delay; // Holds next delay period.

264 int16_t last_accel_delay; // Remember the last step delay used when accelrating.

265 uint32_t step_count; // Counting steps when moving.

266 uint16_t rest; // Keep track of remainder from new_step-delay

267 // calculation to incrase accurancy

268

269 uint16_t max_iphase; // maximum phase current

270 uint16_t standby_iphase; // standby phase current

271 uint16_t i_phasea; // actual current for phase a

272 uint16_t i_phaseb; // actual current for phase b

273 int8_t mstep_counter; // microsteps counter

274 uint8_t driver_state; // L6208 internal state counter

275 int8_t microstep_inc; // increment size for microstepping

276 uint8_t microsteps; // allowed values: 2,4,8,16,32 - microstepping

277 // enabled and resolution

278 uint8_t driver_control; // bits 0-3: mirror of L6208 control pins (bit3 - CONTROL,

279 // bit2 - HALF/FULL, bit1 - CW/CCW, bit0 - EN)

280 int32_t abs_position; //absolute position in microsteps

281 } speedRampData;

282

283

284 typedef struct {

285 uint8_t percent_done; //

286 int16_t time2end; //time to finish current task in seconds

287 } brtask_statistics;

288

289

290 //bit0 - br1_perfusion

291 //bit1 - br1_make sample

292 //bit2 - br1_changing_medium

293 //bit7 - pump running(1) or stopped(0)

294 unsigned char br_status_flags=0;

295

296

297 volatile unsigned int adc_result;

298 volatile unsigned char adc_flag;

299

300

301 volatile unsigned int tim_frac;

174

302 volatile unsigned char tim_sec;

303 volatile unsigned char tim_min;

304 volatile unsigned int tim_hrs;

305 volatile unsigned char tim_ena=0;

306

307 volatile uint16_t solenoid_pwr_timer;//1ms interval

308

309 unsigned char baudrate;

310

311

312 char rxbuf[RXBUFSIZE];

313 volatile unsigned char rx_ptr;

314 volatile unsigned char rx_overflow=0;

315 //unsigned char read_ptr;

316 volatile unsigned char new_msg=0;

317

318 // i2c variables

319 unsigned char i2c_rxbuf[I2C_RXBUFSIZE]; //i2c RX buffer

320 unsigned char i2c_txbuf[I2C_TXBUFSIZE]; //i2c TX buffer

321 volatile unsigned int i2c_rxptr_top=1;

322 volatile unsigned int i2c_rxptr_bot=0;

323 volatile unsigned char i2c_txptr_top=1;

324 volatile unsigned char i2c_txptr_bot=0;

325 volatile unsigned char i2c_rxbuf_err=0; //buffer owerflow flag

326 volatile unsigned char i2c_txbuf_err=0; //buffer owerflow flag

327 volatile unsigned char i2c_buserror=0; //i2c communication error flag

328 volatile unsigned char i2c_newmsg=0;

329

330 volatile unsigned char last_command=0;

331 volatile unsigned char last_txbyte=1;

332 volatile unsigned char i2c_status=0;

333 volatile unsigned char error=0;

334

335 unsigned char disp_blink_period=0; //8ms per LSB, defined display on and off time,

336 // range 8ms - 2s, 0=blink disabled

337

338 unsigned char cmd_valid=0;

339

340 signed int acceleration; // Accelration to use.

341 signed int deceleration; // Deceleration to use.

342 signed int steps; // Number of steps to move.

343 signed int speed; // current Speed to use.

344

345 signed int last_speed; // current Speed to use.

346

347 uint8_t br1_perfusion=0;

348 uint8_t br1_make_sample=0;

349 uint8_t br1_changing_medium=0;

350 int16_t medium_change_vol=5;

351 uint16_t medium_change_speed=25;

352 uint16_t br1_pump_speed=25;

353

354 volatile uint16_t delay_timer_br; //10ms interval

355

356 speedRampData srd_sm1;

357

358 #define MICROSTEPS_TABSIZE 32

359

360 const unsigned char microstep_tab[2][MICROSTEPS_TABSIZE]={

361 {0,5,10,15,20,24,29,34,38,43,47,51,56,60,63,67,71,74,

362 77,80,83,86,88,90,92,94,96,97,98,99,100,100},

363 {100,100,99,99,98,97,96,94,92,90,88,86,83,80,77,74,71,

364 67,63,60,56,51,47,43,38,34,29,24,20,15,10,5}};

365

366 uint8_t progress[8]={0,0,0,0, 0,0,0,0}c;

367

368

369 void speed_cntr_Init_Timer1(void);

370 unsigned int min(unsigned int x, unsigned int y);

371

372 void speed_cntr_Move(int32_t step, uint16_t accel, uint16_t decel, uint16_t speed);

373 void sm_set_iphase(uint16_t iphasea, uint16_t iphaseb);

374 void sm_set_istandby(speedRampData *srd_motorx, int16_t istandby);

375 void sm_motor_init(speedRampData *srd_motorx, uint8_t microsteps,

376 uint16_t max_iphase, uint16_t standby_iphase);

377 void sm_motor_deinit(speedRampData *srd_motorx);

378

379 void i2c_send_byte(void);

380 void i2c_recv_byte(void);

381 void parse_i2c_command(void);

382 void stop_pump(void);

383 uint8_t br1_init(void);

384 void br_status(void);

385 void control_solenoid(uint8_t solenoid_id, unsigned char state);

386 void start_pump(int16_t volume, uint16_t speed);

387

388

389

390 const char cmd_valve[] PROGMEM="valve";

391 const char cmd_startpump[] PROGMEM="start pump";

392 const char cmd_stoppump[] PROGMEM="stop pump";

393 const char cmd_pumpstatus[] PROGMEM="ps";

394 const char cmd_stats[] PROGMEM="stats";

395 const char cmd_callboot[] PROGMEM="CALL BOOT";

396 const char cmd_seti2caddr[] PROGMEM="set i2c addr";

397

398 //bioreactor commands

399 const char cmdb_control[] PROGMEM="br control";

400 const char cmdb_changemed[] PROGMEM="br change medium";

401 const char cmdb_sample[] PROGMEM="br sample";

402 const char cmdb_mix[] PROGMEM="br mix";

403 const char cmdb_prepsample[] PROGMEM="br prepare sample";

175

404 const char cmdb_setspeed[] PROGMEM="br set speed";

405 const char cmdb_stop[] PROGMEM="br stop";

406

407 const char resp_ok[] PROGMEM="\r\nOK.\r\n";

408 const char resp_err_cmd[] PROGMEM="\r\nCOMMAND SYNTAX ERROR!\r\n";

409 const char resp_err_param[] PROGMEM="\r\nPARAMETER SYNTAX ERROR!\r\n";

410 const char resp_err_paramcnt[] PROGMEM="\r\nPARAMETER COUNT ERROR!\r\n";

411

412

413 uint64_t uint64_mul32 (uint64_t a, uint32_t b)

414 {uint64_t r = 0;

415

416 while (b) {

417 if ((uint8_t)b & 1)

418 r += a;

419 a <<= 1;

420 b >>= 1;

421 }

422 return r;

423 }

424

425

426 uint64_t uint64_div32 (uint64_t a, uint32_t b)

427 {uint64_t r = 0;

428 uint32_t h = 0;

429 uint8_t c = 64, h2;

430

431 /* This looks much smoother in assembler (carry)... */

432 while (c--) {

433 h2 = (h & 0x80000000) ? 1 : 0;

434 h <<= 1;

435 if (a & 0x8000000000000000ULL)

436 h |= 1;

437 a = (a<<1);

438 r = (r<<1);

439 if (h2 || h >= b) {

440 h -= b;

441 r |= 1;

442 }

443 }

444 return r;

445 }

446

447 static unsigned long sm_sqrt(unsigned long x)

448 {

449 register unsigned long xr; // result register

450 register unsigned long q2; // scan-bit register

451 register unsigned char f; // flag (one bit)

452

453 xr = 0; // clear result

454 q2 = 0x40000000L; // higest possible result bit

455 do

456 {

457 if((xr + q2) <= x)

458 {

459 x -= xr + q2;

460 f = 1; // set flag

461 }

462 else{

463 f = 0; // clear flag

464 }

465 xr >>= 1;

466 if(f){

467 xr += q2; // test flag

468 }

469 } while(q2 >>= 2); // shift twice

470 if(xr < x){

471 return xr +1; // add for rounding

472 }

473 else{

474 return xr;

475 }

476 }

477

478 unsigned int min(unsigned int x, unsigned int y)

479 {

480 if(x < y){

481 return x;

482 }

483 else{

484 return y;

485 }

486 }

487

488

489

490

491 void delay(unsigned int ticks) //oneskorenie asi 100ms

492 {volatile unsigned char j,k;

493 volatile unsigned int i;

494

495 for(i=0;i<ticks;i++)

496 for(j=0;j<255;j++)

497 k++;

498 }

499

500 void longdelay(char a)

501 {

502 while(a){a--;

503 delay(1000);

504 };

505 }

176

506

507

508 // ---

509 unsigned int SetDelay (unsigned int t)

510 {

511 return((tim_frac + t + 1)%1000);

512 }

513

514 // ---

515 char CheckDelay(unsigned int t)

516 {

517 if(((signed int)t - (signed int)tim_frac)>0) return(0);

518 return(1);

519 }

520

521 // ---

522 void Delay_ms(unsigned int w)

523 {

524 unsigned int akt;

525 akt = SetDelay(w);

526 while (!CheckDelay(akt));

527 }

528

529

530 void ioinit(void) // init portov, watchdog

531 {// define inputs & outputs

532 DDRA = 0x3F;

533 DDRB = 0xBF;

534 DDRC = 0xC0;

535 DDRD = 0xE4;

536 PORTA = 0x00;

537 PORTB = 0x13;

538 PORTC = 0x00;

539 PORTD = 0x18;

540 }

541

542

543

544

545 void uartinit(unsigned char baud_rate)

546 {

547 UBRRL = baud_rate % 256;

548 UBRRH = baud_rate / 256;

549 UCSRA = 0x00;

550 UCSRB = 0x98; //RXEN=1, TXEN=1, RXIE=1

551 UCSRC = 0x86; // 8 bit, 1 stop bit, no parity, asynchro

552 rx_ptr=0;

553 // read_ptr=0;

554 rx_overflow=0;

555 new_msg=0;

556 }

557

558 void spi_init(void)

559 {

560 SPCR=0x00; //SPI Disable

561 SPCR=0x58; //Enable, Master, MSB first, SPI Mode 2, Cpuclk/4

562 }

563

564

565 void i2c_init(unsigned char i2c_baud)

566 {

567

568 i2c_rxptr_top=1;

569 i2c_rxptr_bot=0;

570 i2c_txptr_top=1;

571 i2c_txptr_bot=0;

572 i2c_rxbuf_err=0;

573 i2c_txbuf_err=0;

574 i2c_buserror=0;

575 TWBR=i2c_baud;

576 TWSR=0x00; //set prescaller to 1

577 TWAR=(eeprom_read_byte((uint8_t *)EE_I2C_ADDR)<<1);

578 TWCR=0xC5; //enable TWI, enable interrupt, enable ACK

579 }

580

581

582 void ad5601_write(unsigned char data, unsigned char channel)

583 {unsigned int tmp;

584 tmp=(unsigned int)data<<6;

585

586 if(channel==DAC_CHAN_A) DACSA_0; else DACSB_0;

587 SPDR=tmp>>8;

588 while(!(SPSR&0x80));

589

590 SPDR=tmp&0xFF;

591 while(!(SPSR&0x80));

592 if(channel==DAC_CHAN_A) DACSA_1; else DACSB_1;

593 }

594

595 void ad5302_write(unsigned char data, unsigned char channel)

596 {unsigned int tmp;

597

598 tmp=(unsigned int)data<<4;

599 if(channel==DAC_CHAN_B) tmp|=0x8000;

600

601 DACS_0;

602 SPDR=tmp>>8;

603 while(!(SPSR&0x80));

604

605 SPDR=tmp&0xFF;

606 while(!(SPSR&0x80));

607 DACS_1;

177

608 }

609

610 int uartsend (char a, FILE *dummy)

611 {

612 while(!(UCSRA & 0x20)); // wait for UDRE=1

613 UDR = a;

614 return 0;

615 }

616

617 void uart_SendByte(unsigned char data)

618 {

619 uartsend (data,0);

620 }

621

622

623

624 void T0_start(void)

625 {

626 TCNT0 = 0x00; // set sampling frequency

627 OCR0 = 250;

628 TIFR |= 0x02; // timer1 overflow flag clear

629 TCCR0 = 0x0B; // Timer mode CTC, /64 prescalling

630 TIMSK |= 0x02; // timer1 overflow interrupt enable

631

632 tim_frac=0;

633 tim_sec=0;

634 tim_min=0;

635 tim_hrs=0;

636 tim_ena=0;

637 }

638

639

640

641

642 void adc_start(void)

643 {

644 ADMUX=0x40; //CH0, right adjust result, Vref=AVCC

645 ADCSRA=0x9E; //ADC enable, ADC start, prescaller = 64

646

647 set_sleep_mode(SLEEP_MODE_ADC);

648 adc_flag=0;

649 }

650

651

652 void set_adc_channel(unsigned char channel)

653 {

654 channel&=0x07;

655 ADMUX&=0xF8;

656 ADMUX|=channel;

657 }

658

659 unsigned int get_adc_sample(unsigned char channel)

660 {

661 set_adc_channel(channel);

662 ADCSRA|=0x40;

663 while(!adc_flag);

664 //delay(1);

665 adc_flag=0;

666

667 ADCSRA|=0x40;

668 while(!adc_flag);

669 adc_flag=0;

670

671 return(adc_result);

672 }

673

674

675

676 SIGNAL(SIG_OUTPUT_COMPARE0) //TIMER0 OCR0, serviced every 1ms

677 {

678 if(solenoid_pwr_timer) solenoid_pwr_timer--;

679 if(solenoid_pwr_timer==1) SOL_SET_5V; //set solenoid power to +5V

680

681 if(tim_ena) tim_frac++;

682

683 if(!(tim_frac%10)){

684 if(delay_timer_br) delay_timer_br--;

685 }

686

687 if(tim_frac>=1000) {

688 tim_frac=0;

689 tim_sec++;

690 if(tim_sec>59) {tim_sec=0;

691 tim_min++;

692 if(tim_min>59) {tim_min=0;

693 tim_hrs++;

694 };

695 };

696 };

697

698 }

699

700

701 SIGNAL(SIG_ADC) //ADC ISR

702 {static unsigned char i,j;

703

704 j=ADCL;

705 i=ADCH;

706 adc_result=i<<8;

707 adc_result+=j;

708 adc_flag=1;

709 }

178

710

711 SIGNAL(SIG_UART_RECV) //UART receive ISR

712 {

713 rxbuf[rx_ptr]=UDR;

714 uart_SendByte(rxbuf[rx_ptr]); //echo character

715 if(((rxbuf[rx_ptr]=='\r') || (rxbuf[rx_ptr]=='\n')) && rx_ptr) new_msg=1;

716 if(rx_ptr<(RXBUFSIZE-1)) rx_ptr++; else rx_overflow=1;

717 }

718

719

720 ISR(TWI_vect) //I2C ISR

721 {

722 //i2c_spy[spyptr]=TWSR;

723 //if(spyptr<29) spyptr++;

724

725 /*

726 //sendhex(TWSR);

727 // MASTER TRANSMIT MODE

728 if((TWSR&0xF8)==0x08){ //START SENT

729 i2c_send_byte();

730 if(TWCR&0x80) I2C_CLRTWINT;

731 return;

732 }

733 if((TWSR&0xF8)==0x10){ //REPEATED START SENT

734 i2c_send_byte();

735 if(TWCR&0x80) I2C_CLRTWINT;

736 return;

737 }

738 if((TWSR&0xF8)==0x18){ //SLA+W SENT, ACK recv.

739 i2c_send_byte();

740 if(TWCR&0x80) I2C_CLRTWINT;

741 i2c_busy=0;

742 return;

743 }

744 if((TWSR&0xF8)==0x28){ //DATA SENT, ACK recv.

745 i2c_send_byte();

746 if(TWCR&0x80) I2C_CLRTWINT;

747 return;

748 }

749 if((TWSR&0xF8)==0x20){ //SLA+W SENT, NACK recv.

750 I2C_STOP;

751 i2c_busy=1;

752 return;

753 }

754 if((TWSR&0xF8)==0x30){ //DATA SENT, NACK recv.

755 I2C_STOP;

756 return;

757 }

758 if((TWSR&0xF8)==0x38){ //ARBITRATION LOST

759 I2C_STOP;

760 return;

761 }

762

763 // MASTER RECIEVER MODE

764 if((TWSR&0xF8)==0x40){ //SLA+R SENT, ACK recv.

765 //if(TWCR&0x80) I2C_CLRTWINT;

766 if((TWCR&0x80) && ack_gen) TWCR=I2C_CLRTWINT_ACK|i2c_int_ctrl;

767 if((TWCR&0x80) && (!ack_gen)) TWCR=I2C_CLRTWINT_NACK|i2c_int_ctrl;

768 return;

769 }

770

771 if((TWSR&0xF8)==0x48){ //SLA+R SENT, NACK recv.

772 I2C_STOP;

773

774 return;

775 }

776 if((TWSR&0xF8)==0x50){ //DATA RECIEVED, ACK sent.

777 i2c_recv_byte();

778 if((TWCR&0x80) && ack_gen) TWCR=I2C_CLRTWINT_ACK|i2c_int_ctrl;

779 if((TWCR&0x80) && (!ack_gen)) TWCR=I2C_CLRTWINT_NACK|i2c_int_ctrl;

780 return;

781 }

782

783 if((TWSR&0xF8)==0x58){ //DATA RECIEVED, NACK sent.

784 i2c_recv_byte();

785 I2C_STOP;

786 i2c_active=0;

787 return;

788 }

789 */

790 // SLAVE RECEIVE MODE

791 if((TWSR&0xF8)==0xA0){ //STOP OR REP. START RECV.

792 // LEDR_OFF;

793 if(TWCR&0x80) I2C_CLRTWINT;

794 return;

795 }

796 if((TWSR&0xF8)==0x60){ //SLA+W RECV., ACK returned

797 // LEDR_ON;

798 if(TWCR&0x80) I2C_CLRTWINT;

799 return;

800 }

801 if((TWSR&0xF8)==0x68){ //ARBITRATION LOST, SLA+W RECV., ACK returned

802 if(TWCR&0x80) I2C_CLRTWINT;

803 return;

804 }

805 if((TWSR&0xF8)==0x70){ //GENERAL CALL RECV., ACK returned

806 if(TWCR&0x80) I2C_CLRTWINT;

807 return;

808 }

809 if((TWSR&0xF8)==0x78){ //ARBITRATION LOST,GENERAL CALL RECV., ACK returned

810 if(TWCR&0x80) I2C_CLRTWINT;

811 return;

179

812 }

813 if((TWSR&0xF8)==0x80){ //SLA+W RECV.,DATA recv., ACK returned

814 i2c_recv_byte();

815

816 //delay(1);

817 if(TWCR&0x80) I2C_CLRTWINT;

818 return;

819 }

820 if((TWSR&0xF8)==0x88){ //SLA+W RECV.,DATA recv., NACK returned

821 i2c_recv_byte();

822 if(TWCR&0x80) I2C_CLRTWINT;

823 return;

824 }

825 if((TWSR&0xF8)==0x90){ //GENERAL CALL RECV.,DATA recv., ACK returned

826 i2c_recv_byte();

827 if(TWCR&0x80) I2C_CLRTWINT;

828 return;

829 }

830 if((TWSR&0xF8)==0x98){ //GENERAL CALL RECV. RECV.,DATA recv., NACK returned

831 i2c_recv_byte();

832 if(TWCR&0x80) I2C_CLRTWINT;

833 return;

834 }

835

836 // SLAVE TRANSMITTER MODE

837 if((TWSR&0xF8)==0xA8){ //SLA+R RECV., ACK returned

838 //LEDR_ON;

839 //parse_i2c_command();

840 i2c_send_byte();

841 if(TWCR&0x80) {

842 if(last_txbyte) TWCR=0x85;

843 else I2C_CLRTWINT;

844 };

845 return;

846 }

847 if((TWSR&0xF8)==0xB0){ //ARBITRATION LOST, SLA+R RECV., ACK returned

848 if(TWCR&0x80) I2C_CLRTWINT;

849 return;

850 }

851 if((TWSR&0xF8)==0xB8){ //DATA BYTE TRANSMITTED, ACK received

852 i2c_send_byte();

853 if(TWCR&0x80) {

854 if(last_txbyte) TWCR=0x85;

855 else I2C_CLRTWINT;

856 };

857 return;

858 }

859 if((TWSR&0xF8)==0xC0){ //DATA BYTE TRANSMITTED, NOT ACK received

860 if(TWCR&0x80) I2C_CLRTWINT;

861 return;

862 }

863 if((TWSR&0xF8)==0xC8){ //LAST DATA BYTE TRANSMITTED, NOT ACK received

864 if(TWCR&0x80) I2C_CLRTWINT;

865 return;

866 }

867

868

869 // I2C BUS ERROR

870 if((TWSR&0xF8)==0x00){ //I2C BUS ERROR

871 if(i2c_buserror!=0xFF) i2c_buserror++;

872 if(TWCR&0x80) I2C_CLRTWINT;

873 return;

874 }

875

876 //undefined state

877 if(TWCR&0x80){

878 I2C_CLRTWINT;

879 };

880 }

881

882 void i2c_putchar(unsigned char byte)

883 {unsigned char i;

884

885 i=i2c_txptr_top;

886 i2c_txbuf[i2c_txptr_top]=byte;

887 i2c_txptr_top++;

888 if(i2c_txptr_top==I2C_TXBUFSIZE) i2c_txptr_top=0;

889 if(i2c_txptr_top==i2c_txptr_bot) {i2c_txbuf_err=1;

890 i2c_txptr_top=i;

891 };

892 }

893

894 void i2c_send_byte(void)

895 {unsigned char i;

896

897 i=i2c_txptr_bot+1;

898 if(i>=I2C_TXBUFSIZE) i=0;

899 if(i==i2c_txptr_top) {

900 return;};

901 i2c_txptr_bot=i;

902 TWDR=i2c_txbuf[i2c_txptr_bot];

903

904 last_txbyte=0;

905 i=i2c_txptr_bot+1;

906 if(i>=I2C_TXBUFSIZE) i=0;

907 if(i==i2c_txptr_top){ last_txbyte=1;

908 i2c_txptr_top=1;

909 i2c_txptr_bot=0;

910 };

911 }

912

913 void i2c_recv_byte(void)

180

914 {static unsigned int i;

915

916 i=TWDR;

917

918 // j=i2c_rxptr_top;

919 i2c_rxbuf[i2c_rxptr_top]=i;

920 i2c_rxptr_top++;

921 if(i2c_rxptr_top>=I2C_RXBUFSIZE) i2c_rxptr_top=0;

922 if(i2c_rxptr_top==i2c_rxptr_bot) {i2c_rxbuf_err=1;

923 };

924 if(i=='\r' || i=='\n') i2c_newmsg=1;

925 }

926

927 void i2c_txflush(void)

928 {

929 i2c_txptr_top=1;

930 i2c_txptr_bot=0;

931 i2c_txbuf_err=0;

932 }

933

934 unsigned char i2c_getchar(void)

935 {unsigned int tmp;

936

937 if(i2c_rxbuf_err) return(0);

938 tmp=i2c_rxptr_bot;

939 i2c_rxptr_bot++;

940 if(i2c_rxptr_bot>=I2C_RXBUFSIZE) i2c_rxptr_bot=0;

941 if(i2c_rxptr_bot==i2c_rxptr_top) {i2c_rxptr_bot=tmp; return(0);};

942 return(i2c_rxbuf[i2c_rxptr_bot]);

943 }

944

945 void parse_i2c_command(void)

946 {unsigned char i=0;

947 unsigned int tmp;

948 signed int param1=0,param2=0;

949

950 i2c_status=COM_NOTVALID;

951 i2c_newmsg=0;

952

953 i=i2c_getchar();

954 if(i==COM_TEST){last_command=COM_TEST;

955 i2c_status=NO_ERROR;

956 LEDR_TOGGLE;

957 }

958 else if(i==COM_BRCONTROL){

959 i2c_status=NO_ERROR;

960 i=i2c_getchar();

961 if(i==0 || i==1){

962 br1_perfusion=i;

963 eeprom_write_byte((uint8_t *)EE_BR1_PERFUSION,br1_perfusion);

964 if(i==0) stop_pump();

965 }

966 }

967 else if(i==COM_BRSTOP){

968 i2c_status=NO_ERROR;

969 br1_changing_medium=0;

970 br1_make_sample=0;

971 eeprom_write_byte((uint8_t *)EE_BR1_MAKESAMPLE,br1_make_sample);

972 br1_init();

973 progress[0]=0;

974 progress[1]=0;

975 progress[2]=0;

976 progress[3]=0;

977 progress[4]=0;

978 stop_pump();

979 }

980 else if(i==COM_BRSPEED){

981 i2c_status=NO_ERROR;

982 tmp=i2c_getchar();

983 tmp=tmp*256;

984 tmp+=i2c_getchar();

985 if(tmp<1 || tmp>500) i2c_status=COM_PARAM_ERR;

986 else{

987 br1_pump_speed=tmp;

988 eeprom_write_word((uint16_t *)EE_BR_SPEED,br1_pump_speed);

989 }

990 }

991 else if(i==COM_PREPSAMPLE){

992 i2c_status=NO_ERROR;

993 br1_make_sample=1;

994 eeprom_write_byte((uint8_t *)EE_BR1_MAKESAMPLE,br1_make_sample);

995 }

996 else if(i==COM_BRCHANGEMED){

997 i2c_status=NO_ERROR;

998 tmp=i2c_getchar();

999 tmp=tmp*256;

1000 tmp+=i2c_getchar();

1001 param1=(int16_t)tmp; //1st parameter - pumped volume

1002 if(param1<-10000 || param1>10000) i2c_status=COM_PARAM_ERR;

1003 tmp=i2c_getchar();

1004 tmp=tmp*256;

1005 tmp+=i2c_getchar();

1006 param2=(int16_t)tmp; //2nd parameter - pump speed

1007 if(param2<1 || param2>500) i2c_status=COM_PARAM_ERR;

1008 if(i2c_status==NO_ERROR){

1009 medium_change_vol=param1;

1010 medium_change_speed=param2;

1011 br1_changing_medium=1;

1012 }

1013 }

1014 else if(i==COM_VALVE){

1015 i2c_status=NO_ERROR;

181

1016 tmp=i2c_getchar();

1017 param1=tmp; //1st parameter - valve number

1018 if(param1<1 || param1>8) i2c_status=COM_PARAM_ERR;

1019 tmp=i2c_getchar();

1020 param2=tmp; //2nd parameter - new state: 0-OFF, 1-ON

1021 if(param2<0 || param2>1) i2c_status=COM_PARAM_ERR;

1022 if(i2c_status==NO_ERROR){

1023 control_solenoid(param1, param2);

1024 }

1025 }

1026 else if(i==COM_BRSTATUS){

1027 i2c_status=NO_ERROR;

1028 br_status();

1029 }

1030 else if(i==COM_STARTPUMP){

1031 i2c_status=NO_ERROR;

1032 tmp=i2c_getchar();

1033 tmp=tmp*256;

1034 tmp+=i2c_getchar();

1035 param1=(int16_t)tmp; //1st parameter - pumped volume

1036 if(param1<-10000 || param1>10000) i2c_status=COM_PARAM_ERR;

1037 tmp=i2c_getchar();

1038 tmp=tmp*256;

1039 tmp+=i2c_getchar();

1040 param2=(int16_t)tmp; //2nd parameter - pump speed

1041 if(param2<0 || param2>500) i2c_status=COM_PARAM_ERR;

1042 if(i2c_status==NO_ERROR){

1043 if(param2==0) stop_pump();

1044 else{

1045 start_pump(param1,param2);

1046 }

1047

1048 }

1049

1050 }

1051

1052

1053 i2c_rxptr_top=1;

1054 i2c_rxptr_bot=0;

1055 }

1056

1057 void sm_start_timer(void)

1058 {//set clock - division factor 64

1059 TCCR1B |= ((0<<CS12)|(1<<CS11)|(1<<CS10));

1060 // Timer/Counter 1 Output Compare A Match Interrupt enable.

1061 TIMSK |= (1<<OCIE1A);

1062 }

1063

1064 void sm_stop_timer(void)

1065 {// stop the clock

1066 TCCR1B &= ~0x07;

1067 // Timer/Counter 1 Output Compare A Match Interrupt enable.

1068 TIMSK |= (1<<OCIE1A);

1069 }

1070

1071 void sm_driver_reset(void)

1072 {

1073 SM_DISABLE;

1074

1075 SM_RESET;

1076 delay(10);

1077 SM_UNRESET;

1078 }

1079

1080 //Sets L6208 control pins according to controldata bits 0-3

1081 //(CONTROL, HALF/FULL, CW/CCW, EN)

1082 void sm_set_driver_control(uint8_t controldata)

1083 {

1084 if(controldata&0x01) SM_ENABLE; else SM_DISABLE;

1085 if(controldata&0x02) SM_DIR_CW; else SM_DIR_CCW;

1086 if(controldata&0x04) SM_STEP_HALF; else SM_STEP_FULL;

1087 }

1088

1089 //sets the max. phase current for stepper motors

1090 //iphasea, iphaseb - current limit in mA, range: 0 - 3000 mA

1091 //1V of DAC voltage corresponds to 2000mA phase current

1092 void sm_set_iphase(uint16_t iphasea, uint16_t iphaseb)

1093 {uint32_t voltcode;

1094

1095 if(iphasea>3000) iphasea=3000;

1096 if(iphaseb>3000) iphaseb=3000;

1097 // if(iphasea==0 && iphaseb!=0) iphasea=iphaseb;

1098

1099 voltcode=(uint32_t)iphasea*((uint16_t)(1.024*1000)); // scaled up by factor 100

1100 voltcode=voltcode/20000;

1101 if(voltcode>=256) voltcode=255;

1102 #ifdef PCB216MB01

1103 ad5601_write((uint8_t)voltcode, DAC_CHAN_A); //write to DAC - value for Phase A

1104 #else

1105 ad5302_write((uint8_t)voltcode, DAC_CHAN_A); //write to DAC - value for Phase A

1106 #endif

1107

1108 voltcode=(uint32_t)iphaseb*((uint16_t)(1.024*1000)); // scaled up by factor 100

1109 voltcode=voltcode/20000;

1110 if(voltcode>=256) voltcode=255;

1111 #ifdef PCB216MB01

1112 ad5601_write((uint8_t)voltcode, DAC_CHAN_B); //write to DAC - value for Phase B

1113 #else

1114 ad5302_write((uint8_t)voltcode, DAC_CHAN_B); //write to DAC - value for Phase B

1115 #endif

1116

1117 }

182

1118

1119 void sm_set_istandby(speedRampData *srd_motorx, int16_t istandby)

1120 {

1121 srd_motorx->standby_iphase = istandby;

1122 }

1123

1124

1125

1126 // * \param imax_phase Max phase current, in mA (range: 50 - 3000mA).

1127 void sm_motor_init(speedRampData *srd_motorx, uint8_t microsteps,

1128 uint16_t max_iphase, uint16_t standby_iphase)

1129 {

1130

1131 if(microsteps && microsteps!=2 && microsteps!=4 &&

1132 microsteps!=8 && microsteps!=16 && microsteps!=32) microsteps=2;

1133

1134 srd_motorx->run_state = STOPPED;

1135 srd_motorx->step_count = 0;

1136 srd_motorx->mstep_counter = 0;

1137 srd_motorx->rest = 0;

1138 srd_motorx->abs_position = 0;

1139

1140 //srd_motorx->driver_state=0;

1141 srd_motorx->microstep_inc=0;

1142 if(microsteps)srd_motorx->microstep_inc=MICROSTEPS_TABSIZE/microsteps;

1143 srd_motorx->mstep_counter = srd_motorx->microstep_inc; //initial state is

1144 // the first state after zero

1145 srd_motorx->microsteps=microsteps;

1146 srd_motorx->max_iphase = max_iphase;

1147 srd_motorx->standby_iphase = standby_iphase;

1148 srd_motorx->i_phaseb = (standby_iphase/100)*(microstep_tab[0][srd_motorx->microstep_inc]);

1149 srd_motorx->i_phasea = (standby_iphase/100)*(microstep_tab[1][srd_motorx->microstep_inc]);

1150

1151 srd_motorx->driver_control=0x05; //enable on, Halfsteps

1152 #ifdef SLOWDECAY

1153 srd_motorx->driver_control|=0x08; //additionaly set decay mode

1154 #endif

1155

1156

1157 sm_set_driver_control(srd_motorx->driver_control);

1158

1159 //initial state - phase a current set to 0, phase b current set to standby

1160 sm_set_iphase(srd_motorx->i_phasea, srd_motorx->i_phaseb);

1161

1162 }

1163

1164 // * disables motor driver and timer channel

1165 void sm_motor_deinit(speedRampData *srd_motorx)

1166 {

1167

1168 // Timer/Counter 1 Output Compare A Match Interrupt disable.

1169 TIMSK &= ~(1<<OCIE1A);

1170

1171 srd_motorx->run_state = STOP;

1172 srd_motorx->driver_control&=(~0x01); //enable OFF

1173

1174 sm_set_driver_control(srd_motorx->driver_control);

1175 }

1176

1177

1178 void sm_driver_gostandby(speedRampData *srd_motorx)

1179 {int8_t next_xidx,next_yidx;

1180 int16_t i_phasea,i_phaseb;

1181

1182 next_yidx=(0x66>>srd_motorx->driver_state)&0x01;

1183 next_xidx=srd_motorx->mstep_counter;

1184

1185 i_phaseb=(srd_motorx->standby_iphase/100)*(microstep_tab[next_yidx][next_xidx]);

1186 i_phasea=(srd_motorx->standby_iphase/100)*(microstep_tab[next_yidx^0x01][next_xidx]);

1187 sm_set_iphase(i_phasea, i_phaseb);

1188 }

1189

1190

1191

1192 void speed_cntr_Move(int32_t step, uint16_t accel, uint16_t decel, uint16_t speed)

1193 {speedRampData *srd_motorx;

1194 int8_t next_xidx,next_yidx;

1195 volatile uint64_t tmp;

1196

1197 if(step==0) return;

1198 srd_motorx=&srd_sm1;

1199

1200 //wait until previous movement will finish

1201 while(srd_motorx->run_state != STOPPED);

1202

1203 srd_motorx->step_count = 0;

1204

1205 #ifdef SM_REVERSE_ROTATION

1206 step = -step;

1207 #endif

1208

1209 // Set direction from sign on step value.

1210 if(step < 0){

1211 srd_motorx->dir = CCW;

1212 step = -step;

1213 srd_motorx->driver_control&=(~0x02);

1214 if(srd_motorx->microstep_inc>0) srd_motorx->microstep_inc = -srd_motorx->microstep_inc;

1215 }

1216 else{

1217 srd_motorx->dir = CW;

1218 srd_motorx->driver_control|=0x02; //change direction

1219 if(srd_motorx->microstep_inc<0) srd_motorx->microstep_inc = -srd_motorx->microstep_inc;

183

1220 }

1221

1222 sm_set_driver_control(srd_motorx->driver_control);

1223

1224 // calculate phase currents for the next step

1225 next_yidx=srd_motorx->driver_state;

1226 if(next_yidx==0 || next_yidx==7 || next_yidx==3 || next_yidx==4) next_yidx=0;

1227 else next_yidx=1;

1228 next_xidx=srd_motorx->mstep_counter+srd_motorx->microstep_inc;

1229 if(next_xidx>=MICROSTEPS_TABSIZE){ next_xidx=0;

1230 next_yidx=(~next_yidx)&0x01;

1231 }

1232 if(next_xidx<0){ next_xidx+=MICROSTEPS_TABSIZE;

1233 next_yidx^=0x01;

1234 }

1235 srd_motorx->i_phaseb=

1236 (srd_motorx->max_iphase/100)*(microstep_tab[next_yidx][next_xidx]);

1237 srd_motorx->i_phasea=

1238 (srd_motorx->max_iphase/100)*(microstep_tab[(~next_yidx)&0x01][next_xidx]);

1239

1240

1241 // If moving only 1 step.

1242 if(step == 1){

1243 // Move one step...

1244 srd_motorx->accel_count = -1;

1245 // ...in DECEL state.

1246 srd_motorx->run_state = DECEL;

1247 // Just a short delay so main() can act on 'running'.

1248 srd_motorx->step_delay = 1000;

1249 // OCR1A=100;

1250 }

1251

1252 // Only move if number of steps to move is not zero.

1253 else if(step != 0){

1254 // Refer to documentation for detailed information about these calculations.

1255

1256 // Set max speed limit, by calc min_delay to use in timer.

1257 // min_delay = (alpha / tt)/ w

1258 srd_motorx->min_delay = A_T_x1000 / (speed*srd_motorx->microsteps);

1259

1260 // Set accelration by calc the first (c0) step delay .

1261 // step_delay = 1/tt * sqrt(2*alpha/accel)

1262 // step_delay =

1263 // (tfreq*0.676/100)*100 * sqrt((2*alpha*10000000000) / (accel*100))/10000

1264 srd_motorx->step_delay =

1265 (T1_FREQ_148 * sm_sqrt(A_SQ / (accel*srd_motorx->microsteps)))/100;

1266

1267 // Find out after how many steps does the speed hit the max speed limit.

1268 // max_s_lim = speed^2 / (2*alpha*accel)

1269 srd_motorx->max_s_lim = (int32_t)speed*speed/

1270 (int32_t)(((int32_t)A_x20000*accel*100)/(100*srd_motorx->microsteps));

1271

1272 // If we hit max speed limit before 0,5 step it will round to 0.

1273 // But in practice we need to move atleast 1 step to get any speed at all.

1274 if(srd_motorx->max_s_lim == 0){

1275 srd_motorx->max_s_lim = 1;

1276 }

1277

1278 // Find out after how many steps we must start deceleration.

1279 // n1 = (n1+n2)decel / (accel + decel)

1280 tmp=uint64_mul32(step,decel);

1281 tmp=uint64_div32(tmp, (accel+decel));

1282 srd_motorx->accel_lim = (uint32_t)(tmp);

1283 // We must accelrate at least 1 step before we can start deceleration.

1284 if(srd_motorx->accel_lim == 0){

1285 srd_motorx->accel_lim = 1;

1286 }

1287

1288 // Use the limit we hit first to calc decel.

1289 if(srd_motorx->accel_lim <= srd_motorx->max_s_lim){

1290 srd_motorx->decel_val = srd_motorx->accel_lim - step;

1291 }

1292 else{

1293 srd_motorx->decel_val = -((int32_t)srd_motorx->max_s_lim*accel)/decel;

1294 }

1295 // We must decelrate at least 1 step to stop.

1296 if(srd_motorx->decel_val == 0){

1297 srd_motorx->decel_val = -1;

1298 }

1299

1300 // Find step to start decleration.

1301 srd_motorx->decel_start = step + srd_motorx->decel_val;

1302

1303 // If the maximum speed is so low that we dont need to go via accelration state.

1304 if(srd_motorx->step_delay <= srd_motorx->min_delay){

1305 srd_motorx->step_delay = srd_motorx->min_delay;

1306 srd_motorx->run_state = RUN;

1307 }

1308 else{

1309 srd_motorx->run_state = ACCEL;

1310 }

1311

1312 // Reset counter.

1313 srd_motorx->accel_count = 0;

1314 }

1315

1316 OCR1A=100;

1317 sm_start_timer();

1318 }

1319

1320 void speed_cntr_Init_Timer1(void)

1321 {

184

1322 // Tells what part of speed ramp we are in.

1323 srd_sm1.run_state = STOPPED;

1324 // Timer/Counter 1 in mode 4 CTC (Not running).

1325 TCCR1B = (1<<WGM12);

1326 // Timer/Counter 1 Output Compare A Match Interrupt enable.

1327 TIMSK |= (1<<OCIE1A);

1328 }

1329

1330

1331 void Motor_Init(void)

1332 {

1333 // Init of IO pins

1334 sm_driver_reset();

1335

1336 sm_motor_init(&srd_sm1, 32, 750, 100);

1337 srd_sm1.driver_state=0;

1338 SM_CLK_0;

1339

1340 // Init of Timer/Counter1

1341 speed_cntr_Init_Timer1();

1342 }

1343

1344

1345 void sm1_driver_Step(void)

1346 {int8_t next_xidx,next_yidx;

1347 uint8_t step_flag=0;

1348

1349 sm_set_iphase(srd_sm1.i_phasea, srd_sm1.i_phaseb);

1350

1351 if(srd_sm1.microstep_inc>0) srd_sm1.abs_position++; else srd_sm1.abs_position--;

1352 srd_sm1.mstep_counter+=srd_sm1.microstep_inc;

1353 if(srd_sm1.mstep_counter>=MICROSTEPS_TABSIZE){srd_sm1.mstep_counter=0;

1354 step_flag=1;

1355 }

1356 else if(srd_sm1.mstep_counter<=0) { if(srd_sm1.mstep_counter<0)

1357 srd_sm1.mstep_counter+=MICROSTEPS_TABSIZE;

1358 step_flag=1;

1359 }

1360 else if(srd_sm1.driver_state&0x01){

1361 step_flag=1;

1362 }

1363

1364 if(step_flag==1) { step_flag=0;

1365 SM_CLK_1; //set SPM1CLK to 1

1366 if(srd_sm1.dir==CW) srd_sm1.driver_state++; else srd_sm1.driver_state--;

1367 srd_sm1.driver_state&=0x07;

1368 SM_CLK_0; //set SPM1CLK to 0

1369 }

1370

1371 next_yidx=(0x66>>srd_sm1.driver_state)&0x01;

1372 next_xidx=srd_sm1.mstep_counter+srd_sm1.microstep_inc;

1373 if(next_xidx>=MICROSTEPS_TABSIZE){ next_xidx=0;

1374 next_yidx^=0x01;

1375 }

1376 if(next_xidx<0){ next_xidx+=MICROSTEPS_TABSIZE;

1377 next_yidx^=0x01;

1378 }

1379

1380 srd_sm1.i_phaseb=(srd_sm1.max_iphase/100)*(microstep_tab[next_yidx][next_xidx]);

1381 srd_sm1.i_phasea=(srd_sm1.max_iphase/100)*(microstep_tab[next_yidx^0x01][next_xidx]);

1382 }

1383

1384

1385 //void sm1_update(void)

1386 SIGNAL(SIG_OUTPUT_COMPARE1A)

1387 {

1388 OCR1A = srd_sm1.step_delay;

1389 //LEDR_ON;

1390 switch(srd_sm1.run_state) {

1391 case STOP:

1392 srd_sm1.step_count = 0;

1393 srd_sm1.rest = 0;

1394 sm_stop_timer(); // Stop Timer/Counter 1.

1395 sm_driver_gostandby(&srd_sm1);

1396 srd_sm1.run_state = STOPPED;

1397 break;

1398

1399 case ACCEL:

1400 sm1_driver_Step();

1401 srd_sm1.step_count++;

1402 srd_sm1.accel_count++;

1403 srd_sm1.new_step_delay = srd_sm1.step_delay - (((2 * (int32_t)srd_sm1.step_delay)

1404 + srd_sm1.rest)/(4 * srd_sm1.accel_count + 1));

1405 srd_sm1.rest = ((2 * (int32_t)srd_sm1.step_delay)+

1406 srd_sm1.rest)%(4 * srd_sm1.accel_count + 1);

1407 // Check if we should start decelration.

1408 if(srd_sm1.step_count >= srd_sm1.decel_start) {

1409 srd_sm1.accel_count = srd_sm1.decel_val;

1410 srd_sm1.run_state = DECEL;

1411 }

1412 // Check if we hitted max speed.

1413 else if(srd_sm1.new_step_delay <= srd_sm1.min_delay) {

1414 srd_sm1.last_accel_delay = srd_sm1.new_step_delay;

1415 srd_sm1.new_step_delay = srd_sm1.min_delay;

1416 srd_sm1.rest = 0;

1417 srd_sm1.run_state = RUN;

1418 }

1419 break;

1420

1421 case RUN:

1422 sm1_driver_Step();

1423 srd_sm1.step_count++;

185

1424 srd_sm1.new_step_delay = srd_sm1.min_delay;

1425 // Check if we should start decelration.

1426 if(srd_sm1.step_count >= srd_sm1.decel_start) {

1427 srd_sm1.accel_count = srd_sm1.decel_val;

1428 // Start decelration with same delay as accel ended with.

1429 srd_sm1.new_step_delay = srd_sm1.last_accel_delay;

1430 srd_sm1.run_state = DECEL;

1431 }

1432 break;

1433

1434 case DECEL:

1435 sm1_driver_Step();

1436 srd_sm1.step_count++;

1437 srd_sm1.accel_count++;

1438 srd_sm1.new_step_delay = srd_sm1.step_delay -

1439 (((2*(int32_t)srd_sm1.step_delay)+srd_sm1.rest)/(4*srd_sm1.accel_count+1));

1440 srd_sm1.rest=((2*(int32_t)srd_sm1.step_delay)+

1441 srd_sm1.rest)%(4*srd_sm1.accel_count+1);

1442 // Check if we at last step

1443 if(srd_sm1.accel_count >= 0){

1444 srd_sm1.run_state = STOP;

1445 }

1446 break;

1447 }

1448 srd_sm1.step_delay = srd_sm1.new_step_delay;

1449 // LEDR_OFF;

1450 }

1451

1452

1453

1454

1455 void control_solenoid(uint8_t solenoid_id, unsigned char state)

1456 {unsigned char data;

1457 volatile uint8_t *dataport;

1458 //char msgstring[32];

1459 const char *tmpstr;

1460

1461

1462 switch(solenoid_id){

1463 case 1:

1464 data=0x01;

1465 dataport=&PORTA;

1466 break;

1467 case 2:

1468 data=0x02;

1469 dataport=&PORTA;

1470 break;

1471 case 3:

1472 data=0x04;

1473 dataport=&PORTA;

1474 break;

1475 case 4:

1476 data=0x08;

1477 dataport=&PORTA;

1478 break;

1479 case 5:

1480 data=0x10;

1481 dataport=&PORTA;

1482 break;

1483 case 6:

1484 data=0x20;

1485 dataport=&PORTA;

1486 break;

1487 case 7:

1488 data=0x40;

1489 dataport=&PORTC;

1490 break;

1491 case 8:

1492 data=0x80;

1493 dataport=&PORTC;

1494 break;

1495 default:

1496 data=0;

1497 dataport=&PORTA;

1498 break;

1499 };

1500

1501 if(state==OFF){*dataport&=(~data);

1502 tmpstr="OFF";

1503 };

1504 if(state==ON) {*dataport|= data;

1505 solenoid_pwr_timer=SOLENOID_12V_TIME;

1506 SOL_SET_12V;

1507 tmpstr="ON";

1508 };

1509

1510 // sprintf(msgstring,"\n\rSWITCHING SOLENOID %d %s ",solenoid_id,tmpstr);

1511 // uart_SendString(msgstring);

1512 printf_P(PSTR("\n\rSWITCHING SOLENOID %d %s"),solenoid_id,tmpstr);

1513 }

1514

1515

1516 //parameters:

1517 //volume - volume to be pumped in ul units,

1518 //negative value means backward pumping, range 1-16000 ul

1519 //speed - pump speed in ul/min, allowed range: 1 - 5000 ul/min

1520 void start_pump(int16_t volume, uint16_t speed)

1521 {int64_t steps,tmp;

1522 uint16_t accel=628;

1523 int8_t sign=1;

1524 int32_t stepsdir,tmp2;

1525 speedRampData *srd_motorx;

186

1526 // char tmpstr[64];

1527 //const char *pstr=str_unknown;

1528

1529 last_speed=speed;

1530 srd_motorx=&srd_sm1;

1531

1532 if(!speed || !volume) return;

1533 if(speed>5000) speed=5000;

1534

1535 if(volume<0){sign=-sign;

1536 volume=-volume;

1537 };

1538

1539 //calculate number of steps for required volume

1540 steps= uint64_mul32(volume,((uint32_t)32*FSPR*1000));

1541 steps= uint64_div32(steps, (uint32_t)PUMP1_VOL_PER_REVOLUTION);

1542 stepsdir=(int32_t)steps;

1543 stepsdir*=sign;

1544

1545 //calculate speed in radians per second *1000

1546 tmp=uint64_mul32(speed,((uint32_t)1000*6283));

1547 tmp+=(uint32_t)PUMP1_VOL_PER_REVOLUTION*60/2; //decrease rounding error

1548 tmp=uint64_div32(tmp,((uint32_t)PUMP1_VOL_PER_REVOLUTION*60));

1549

1550 //adjust acceleration and deceleration

1551 //accel=(speed/1000)*628;

1552 tmp2=speed*628;

1553 accel=(uint16_t)(tmp2/1000);

1554 if (accel<628) accel=628;

1555

1556 srd_motorx->max_iphase = 750;

1557 if(speed>=100) srd_motorx->max_iphase = 1000;

1558 if(speed>=1000) srd_motorx->max_iphase = 1500;

1559

1560 speed_cntr_Move(stepsdir, accel, accel, (uint16_t)tmp);

1561

1562 //print information

1563 printf_P(PSTR("\n\rStarting BR pump. Pumping %dul @ %dul/min."),volume*sign,speed);

1564 }

1565

1566 void stop_pump(void)

1567 {speedRampData *srd_motorx;

1568

1569 srd_motorx=&srd_sm1;

1570

1571 if(srd_motorx->run_state == DECEL) return; //return if already decelerating

1572 while(srd_motorx->run_state == ACCEL); //wait until acceleration is over

1573 if(srd_motorx->run_state == RUN){

1574 srd_motorx->step_count = srd_motorx->decel_start;

1575 }

1576 printf_P(PSTR("\n\rBR Pump has been stopped."));

1577 }

1578

1579 //checks if pump is running

1580 uint8_t get_pump_status(void)

1581 {speedRampData *srd_motorx=&srd_sm1;

1582

1583 if(srd_motorx->run_state == STOPPED) return (OFF);

1584 else

1585 return(ON);

1586 }

1587

1588 //checks the pumping progress. returns 0 if the pump is stopped, otherwise 1

1589 uint8_t get_pump_progress(brtask_statistics *stats)

1590 {speedRampData *srd_motorx=&srd_sm1;

1591 uint32_t tmp;

1592 // uint32_t time2end;

1593 //uint8_t percent_done;

1594 uint8_t rtn_val;

1595

1596 if(srd_motorx->run_state == STOPPED){rtn_val=0;

1597 stats->percent_done=100;

1598 stats->time2end=0;

1599 // printf_P(PSTR("\n\rBR pump is stopped.\n\r"));

1600 }

1601 else{

1602 rtn_val=1;

1603 tmp=100UL*srd_motorx->step_count;

1604 stats->percent_done=(uint8_t)(tmp/srd_motorx->decel_start);

1605

1606 if(srd_motorx->decel_start > srd_motorx->step_count)

1607 tmp=srd_motorx->decel_start-srd_motorx->step_count; else tmp=0;

1608 stats->time2end=(tmp*srd_motorx->min_delay)/250000UL;

1609

1610

1611 // printf_P(PSTR("\n\rBR pump is running.\n\r"));

1612 // printf_P(PSTR("\n\rBR pump status: \n\rProgress %d %% \n\rTime to end: %d sec"),

1613 // stats->percent_done,(int16_t)stats->time2end);

1614 }

1615

1616 return(rtn_val);

1617 }

1618

1619

1620

1621 void get_medchange_stats(brtask_statistics *stats, int16_t volume, uint16_t speed)

1622 {brtask_statistics stat1;

1623 uint32_t total_time2end;

1624

1625 total_time2end=(60UL*(abs(volume)+abs(CALIBRATED_DEAD_VOLUME)))/speed;

1626 //printf_P(PSTR("\n\rTotal time to end: %u\n\r"),total_time2end);

1627

187

1628 if(progress[1]<5){stats->percent_done=0;

1629 stats->time2end=total_time2end;

1630 }

1631 else if(progress[1]<6){

1632 stats->time2end=(60ul*abs(CALIBRATED_DEAD_VOLUME))/speed;

1633 get_pump_progress(&stat1);

1634 stats->time2end += stat1.time2end;

1635 stats->percent_done=100-

1636 (uint8_t)((100UL*stats->time2end+total_time2end/2)/total_time2end);

1637 }

1638 else if(progress[1]<8){

1639 stats->time2end = (60ul*abs(CALIBRATED_DEAD_VOLUME))/speed;

1640 stats->percent_done=100-

1641 (uint8_t)((100UL*stats->time2end+total_time2end/2)/total_time2end);

1642 }

1643 else{

1644 get_pump_progress(&stat1);

1645 stats->time2end = stat1.time2end;

1646 stats->percent_done=100-

1647 (uint8_t)((100UL*stats->time2end+total_time2end/2)/total_time2end);

1648 }

1649 if(stats->percent_done>100) stats->percent_done=0;

1650 }

1651

1652 void get_mix_stats(brtask_statistics *stats, int16_t volume, uint16_t speed)

1653 {brtask_statistics stat1;

1654 uint32_t total_time2end;

1655

1656 total_time2end=(60ul*(abs(volume)))/speed;

1657 //printf_P(PSTR("\n\rTotal time to end: %u\n\r"),total_time2end);

1658

1659 if(progress[3]<5){stats->percent_done=0;

1660 stats->time2end=total_time2end;

1661 }

1662 else{

1663 get_pump_progress(&stat1);

1664 stats->time2end = stat1.time2end;

1665 stats->percent_done=100-

1666 (uint8_t)((100UL*stats->time2end+total_time2end/2)/total_time2end);

1667 }

1668 if(stats->percent_done>100) stats->percent_done=0;

1669 }

1670

1671 void get_prepsamp_stats(brtask_statistics *stats)

1672 {brtask_statistics stat1;

1673 uint32_t total_time2end;

1674

1675 total_time2end=60ul*(abs(BR1_MIX_VOL))/BR1_MIX_SPEED;

1676 total_time2end+=60ul*(abs(BR1_SAMP_VOL))/BR1_SAMP_SPEED;

1677 //printf_P(PSTR("\n\rTotal time to end: %u\n\r"),total_time2end);

1678

1679 if(progress[4]==0){

1680 get_mix_stats(stats, BR1_MIX_VOL,BR1_MIX_SPEED);

1681 get_medchange_stats(&stat1, BR1_SAMP_VOL,BR1_SAMP_SPEED);

1682

1683 stats->time2end+=stat1.time2end;

1684 stats->percent_done=100-

1685 (uint8_t)((100UL*stats->time2end+total_time2end/2)/total_time2end);

1686 }

1687 else{

1688 get_mix_stats(stats, BR1_MIX_VOL,BR1_MIX_SPEED);

1689 stats->percent_done=100-

1690 (uint8_t)((100UL*stats->time2end+total_time2end/2)/total_time2end);

1691 }

1692 if(stats->percent_done>100) stats->percent_done=0;

1693 }

1694

1695

1696 void br_status(void)

1697 {uint8_t i;

1698 brtask_statistics stat1;

1699

1700 /*

1701 br_status_flags

1702 br1_pump_speed

1703 valves

1704 pump: percent done

1705 pump: time to end

1706

1707 task: percent done

1708 task: time to end

1709

1710 perfusion speed

1711 medium change speed

1712 medium change volume

1713 */

1714 i2c_txflush();

1715

1716 i=0;

1717 if(br1_perfusion) i|=0x01;

1718 if(br1_make_sample) i|=0x02;

1719 if(br1_changing_medium) i|=0x04;

1720 if(get_pump_status()==ON) i|=0x80;

1721 i2c_putchar(i);

1722 /*

1723 if(br1_changing_medium){

1724 i2c_putchar(medium_change_speed/256);

1725 i2c_putchar(medium_change_speed%256);

1726 }

1727 else{

1728 i2c_putchar(br1_pump_speed/256);

1729 i2c_putchar(br1_pump_speed%256);

188

1730 }

1731 */

1732 i2c_putchar(last_speed/256);

1733 i2c_putchar(last_speed%256);

1734

1735 i=PINA&0x3F;

1736 i|=PINC&0xC0;

1737 i2c_putchar(i);

1738

1739 get_pump_progress(&stat1);

1740 i2c_putchar(stat1.percent_done);

1741 i2c_putchar(stat1.time2end/256);

1742 i2c_putchar(stat1.time2end%256);

1743

1744 if(br1_make_sample) get_prepsamp_stats(&stat1);

1745 else if(br1_changing_medium)

1746 get_medchange_stats(&stat1,medium_change_vol,medium_change_speed);

1747

1748 i2c_putchar(stat1.percent_done);

1749 i2c_putchar(stat1.time2end/256);

1750 i2c_putchar(stat1.time2end%256);

1751

1752 i2c_putchar(br1_pump_speed/256);

1753 i2c_putchar(br1_pump_speed%256);

1754

1755 i2c_putchar('\n');

1756

1757 }

1758

1759 //compare string with message in RX buffer

1760 unsigned char buf_strcmp(PGM_P stringp,const char *strbuf)

1761 { unsigned char i,len;

1762 char tmp[20];

1763

1764 len=strlen_P(stringp); // get length of string to compare

1765 if(len>19) len=19;

1766 for(i=0;i<len;i++){tmp[i]= *strbuf++;

1767 };

1768 tmp[i]=0x00;

1769

1770 i=strcasecmp_P(tmp,stringp);

1771 if(i) return(1);

1772 return (0);

1773 }

1774 /*

1775 void send_status(void)

1776 {

1777

1778 printf_P(PSTR("\r\nCURRENT STATE: "));

1779 if(srd_sm1.run_state==STOP) printf_P(PSTR("STOP \r\n"));

1780 if(srd_sm1.run_state==RUN) printf_P(PSTR("RUNNING \r\n"));

1781 if(srd_sm1.run_state==ACCEL) printf_P(PSTR("ACCELERATING \r\n"));

1782 if(srd_sm1.run_state==DECEL) printf_P(PSTR("DECELERATING \r\n"));

1783

1784 }

1785 */

1786 char* find_number(char *position)

1787 {

1788 while(!isdigit((int)position) && (*position!='+') && (*position!='-')){

1789 position++;

1790 if(position>=rxbuf+RXBUFSIZE) return(NULL);

1791 }

1792 return(position);

1793 }

1794

1795 char* find_next_number(char *position)

1796 {

1797 while(isdigit((int)position)){ position++;

1798 if(position>=rxbuf+RXBUFSIZE) return(NULL);

1799 }

1800 position=find_number(position);

1801 return(position);

1802 }

1803

1804

1805

1806

1807

1808 //********************** BIOREACTOR ROUTINES **************

1809

1810

1811 uint8_t br1_init(void)

1812 {

1813 control_solenoid(BR1_V1, OFF);

1814 control_solenoid(BR1_V2, OFF);

1815 control_solenoid(BR1_V3, OFF);

1816 control_solenoid(BR1_V4, OFF);

1817

1818 return(STEP_FINISHED);

1819 }

1820

1821

1822 uint8_t br1_change_medium(int16_t volume, uint16_t speed)

1823 {

1824 //first stop the pump

1825 if(progress[1]==0){

1826 progress[1]=1;

1827 stop_pump();

1828 return(STEP_RUNNING);};

1829 //then switch all valves to correct position

1830 if(progress[1]==1){if(get_pump_status()!=OFF) return(STEP_RUNNING);

1831 progress[1]=2;

189

1832 control_solenoid(BR1_V1, ON);

1833 delay_timer_br=20;

1834 return(STEP_RUNNING);};

1835 if(progress[1]==2){if(delay_timer_br) return(STEP_RUNNING);

1836 progress[1]=3;

1837 control_solenoid(BR1_V2, ON);

1838 delay_timer_br=20;

1839 return(STEP_RUNNING);};

1840 if(progress[1]==3){if(delay_timer_br) return(STEP_RUNNING);

1841 progress[1]=4;

1842 control_solenoid(BR1_V3, OFF);

1843 control_solenoid(BR1_V4, OFF);

1844 delay_timer_br=20;

1845 return(STEP_RUNNING);};

1846 //start the pump at medium change speed and volume

1847 if(progress[1]==4){if(delay_timer_br) return(STEP_RUNNING);

1848 progress[1]=5;

1849 start_pump(volume,speed);

1850 return(STEP_RUNNING);};

1851 if(progress[1]==5){if(get_pump_status()==ON) return(STEP_RUNNING);

1852 progress[1]=6;

1853 control_solenoid(BR1_V1, OFF);

1854 control_solenoid(BR1_V2, OFF);

1855 delay_timer_br=20;

1856 return(STEP_RUNNING);};

1857

1858 if(progress[1]==6){if(delay_timer_br) return(STEP_RUNNING);

1859 progress[1]=7;

1860 control_solenoid(BR1_V3, ON);

1861 delay_timer_br=20;

1862 return(STEP_RUNNING);};

1863

1864 //start the pump at medium change speed to flush the medium from calibrated tubing

1865 if(progress[1]==7){if(delay_timer_br) return(STEP_RUNNING);

1866 progress[1]=8;

1867 start_pump(CALIBRATED_DEAD_VOLUME,speed);

1868 return(STEP_RUNNING);};

1869 if(progress[1]==8){if(get_pump_status()==ON) return(STEP_RUNNING);

1870 progress[1]=9;

1871 control_solenoid(BR1_V3, OFF);

1872 delay_timer_br=20;

1873 return(STEP_RUNNING);};

1874 //END

1875 if(progress[1]==9){if(delay_timer_br) return(STEP_RUNNING);

1876 progress[1]=0;

1877 return(STEP_FINISHED);

1878 };

1879

1880 //this is never reached

1881 return(STEP_RUNNING);

1882 }

1883

1884 uint8_t br1_sample(int16_t volume, uint16_t speed)

1885 {

1886 //first stop the pump

1887 if(progress[2]==0){

1888 progress[2]=1;

1889 stop_pump();

1890 return(STEP_RUNNING);};

1891 //then switch all valves to correct position

1892 if(progress[2]==1){if(get_pump_status()!=OFF) return(STEP_RUNNING);

1893 progress[2]=2;

1894 control_solenoid(BR1_V1, ON);

1895 delay_timer_br=20;

1896 return(STEP_RUNNING);};

1897 if(progress[2]==2){if(delay_timer_br) return(STEP_RUNNING);

1898 progress[2]=3;

1899 control_solenoid(BR1_V2, ON);

1900 delay_timer_br=20;

1901 return(STEP_RUNNING);};

1902 if(progress[2]==3){if(delay_timer_br) return(STEP_RUNNING);

1903 progress[2]=4;

1904 control_solenoid(BR1_V4, ON);

1905 delay_timer_br=20;

1906 return(STEP_RUNNING);};

1907 if(progress[2]==4){if(delay_timer_br) return(STEP_RUNNING);

1908 progress[2]=5;

1909 control_solenoid(BR1_V3, OFF);

1910 delay_timer_br=20;

1911 return(STEP_RUNNING);};

1912 //then run the pump at sampling speed and volume

1913 if(progress[2]==5){if(delay_timer_br) return(STEP_RUNNING);

1914 progress[2]=6;

1915 start_pump(volume,speed);

1916 return(STEP_RUNNING);};

1917 //then switch off all valves

1918 if(progress[2]==6){if(get_pump_status()==ON) return(STEP_RUNNING);

1919 progress[2]=7;

1920 control_solenoid(BR1_V1, OFF);

1921 control_solenoid(BR1_V2, OFF);

1922 control_solenoid(BR1_V4, OFF);

1923 delay_timer_br=20;

1924 return(STEP_RUNNING);};

1925 //END

1926 if(progress[2]==7){if(delay_timer_br) return(STEP_RUNNING);

1927 progress[2]=0;

1928 return(STEP_FINISHED);

1929 };

1930

1931 //this is never reached

1932 return(STEP_RUNNING);

1933 }

190

1934

1935 uint8_t br1_mix_sample(int16_t volume, uint16_t speed)

1936 {

1937 //first stop the pump

1938 if(progress[3]==0){

1939 progress[3]=1;

1940 stop_pump();

1941 return(STEP_RUNNING);};

1942 //then switch all valves to correct position

1943 if(progress[3]==1){if(get_pump_status()!=OFF) return(STEP_RUNNING);

1944 progress[3]=2;

1945 control_solenoid(BR1_V3, ON);

1946 delay_timer_br=20;

1947 return(STEP_RUNNING);};

1948 if(progress[3]==2){if(delay_timer_br) return(STEP_RUNNING);

1949 progress[3]=3;

1950 control_solenoid(BR1_V4, ON);

1951 delay_timer_br=20;

1952 return(STEP_RUNNING);};

1953 if(progress[3]==3){if(delay_timer_br) return(STEP_RUNNING);

1954 progress[3]=4;

1955 control_solenoid(BR1_V1, OFF);

1956 control_solenoid(BR1_V2, OFF);

1957 delay_timer_br=20;

1958 return(STEP_RUNNING);};

1959 //take the time point and wait mix_time

1960 if(progress[3]==4){if(delay_timer_br) return(STEP_RUNNING);

1961 progress[3]=5;

1962 if(get_pump_status()==OFF) start_pump(volume,speed);

1963 return(STEP_RUNNING);};

1964 //then switch off all valves

1965 if(progress[3]==5){if(get_pump_status()==ON) return(STEP_RUNNING);

1966 progress[3]=6;

1967 control_solenoid(BR1_V3, OFF);

1968 control_solenoid(BR1_V4, OFF);

1969 delay_timer_br=20;

1970 return(STEP_RUNNING);};

1971 //END

1972 if(progress[3]==6){if(delay_timer_br) return(STEP_RUNNING);

1973 progress[3]=0;

1974 return(STEP_FINISHED);

1975 };

1976

1977 //this is never reached

1978 return(STEP_RUNNING);

1979 }

1980

1981 uint8_t br1_prepare_sample(void)

1982 {uint8_t result;

1983

1984 //first fill the calibrated tubing length with the old medium

1985 if(progress[4]==0){result=br1_change_medium(BR1_SAMP_VOL,BR1_SAMP_SPEED);

1986 if(result==STEP_RUNNING) return(STEP_RUNNING);

1987 progress[4]=1;

1988 return(STEP_RUNNING);};

1989 //then flush that volume into the dilution container and mix with air

1990 if(progress[4]==1){result=br1_mix_sample(BR1_MIX_VOL,BR1_MIX_SPEED);

1991 if(result==STEP_RUNNING) return(STEP_RUNNING);

1992 progress[4]=0;

1993 return(STEP_FINISHED);};

1994

1995 //this is never reached

1996 return(STEP_RUNNING);

1997 }

1998

1999 void bioreactor_sequencer(void)

2000 {uint8_t status;

2001

2002 if((!br1_make_sample) && (!br1_changing_medium)){

2003 if(br1_perfusion){

2004 if(get_pump_status()==OFF)

2005 start_pump(BR1_PERFUS_VOL, BR1_PERFUS_SPEED);

2006 }

2007 else{

2008 //if(get_pump_status()==ON) stop_pump();

2009 }

2010 };

2011

2012 if(br1_make_sample){if(br1_make_sample==1){br1_make_sample++;

2013 eeprom_write_byte((uint8_t *)EE_BR1_MAKESAMPLE,br1_make_sample);

2014 printf_P(PSTR("\n\rpreparing sample"));}

2015 status=br1_prepare_sample();

2016 if(status==STEP_FINISHED) {

2017 br1_make_sample=0;

2018 eeprom_write_byte((uint8_t *)EE_BR1_MAKESAMPLE,br1_make_sample);

2019 printf_P(PSTR("\n\rsample ready"));

2020 }

2021 }

2022

2023 if(br1_changing_medium && (!br1_make_sample)){

2024 if(br1_changing_medium==1){br1_changing_medium++;

2025 printf_P(PSTR("\n\rstart of the medium change"));}

2026 status=br1_change_medium(medium_change_vol,medium_change_speed);

2027 if(status==STEP_FINISHED) {

2028 br1_changing_medium=0;

2029 printf_P(PSTR("\n\rmedium change has been finished"));

2030 }

2031 }

2032

2033 }

2034

2035

191

2036

2037

2038

2039 void parse_msg(void)

2040 {uint8_t cmderr=CMD_ERR_CMD;

2041 char *msgptr;

2042 int16_t cmdparameters[8];

2043 brtask_statistics mstats;

2044

2045 msgptr=rxbuf;

2046

2047

2048

2049 //switch on/off the solenoid valve

2050 if(!buf_strcmp(cmd_valve,msgptr)){cmderr=CMD_OK;

2051 msgptr+=strlen(cmd_valve);

2052 //read the 1st parameter - the valve number

2053 cmdparameters[0]=(uint16_t)strtol(msgptr, &msgptr, 0);

2054 if(cmdparameters[0]<1 || cmdparameters[0]>8) cmderr=CMD_ERR_PARAM;

2055 if(*msgptr != ' ') cmderr=CMD_ERR_PARAMCNT;

2056 //read the 2nd parameter - on(1) of off(0)

2057 cmdparameters[1]=(uint16_t)strtol(msgptr, &msgptr, 0);

2058 if(cmdparameters[1]!=0 && cmdparameters[1]!=1) cmderr=CMD_ERR_PARAM;

2059

2060 if(cmderr==CMD_OK) control_solenoid(cmdparameters[0], cmdparameters[1]);

2061 }

2062

2063 //start pump

2064 else if(!buf_strcmp(cmd_startpump,msgptr)){cmderr=CMD_OK;

2065 msgptr+=strlen(cmd_startpump);

2066

2067 //read the 1st numeric parameter - pumping volume

2068 cmdparameters[1]=(int16_t)strtol(msgptr, &msgptr, 0);

2069 if(!cmdparameters[1] || cmdparameters[1]<-20000 || cmdparameters[1]>20000)

2070 cmderr=CMD_ERR_PARAM;

2071 if(*msgptr != ' ') cmderr=CMD_ERR_PARAMCNT;

2072

2073 //read the 2nd parameter - pumping speed

2074 cmdparameters[2]=(int16_t)strtol(msgptr, &msgptr, 0);

2075 if(cmdparameters[2]<1 || cmdparameters[2]>5000) cmderr=CMD_ERR_PARAM;

2076 //printf("\n\rParameters: %d %d %d",cmdparameters[0],

2077 //cmdparameters[1], cmdparameters[2]);

2078 if(cmderr==CMD_OK){ start_pump(cmdparameters[1], cmdparameters[2]);

2079 //speed_cntr_Move(cmdparameters[1],acceleration,deceleration,cmdparameters[2]);

2080 }

2081 }

2082 //stop pump

2083 else if(!buf_strcmp(cmd_stoppump,msgptr)){cmderr=CMD_OK;

2084 //msgptr+=strlen(cmd_startpump);

2085 stop_pump();

2086 }

2087 //get pump status

2088 else if(!buf_strcmp(cmd_pumpstatus,msgptr)){cmderr=CMD_OK;

2089

2090 get_pump_progress(&mstats);

2091 }

2092 else if(!buf_strcmp(cmd_stats,msgptr)){cmderr=CMD_OK;

2093

2094 get_medchange_stats(&mstats,medium_change_vol,medium_change_speed);

2095 //get_prepsamp_stats(&mstats);

2096 printf_P(PSTR("\n\rM.Ch. done: %d %%, "),mstats.percent_done);

2097 printf_P(PSTR("Time to end: %d sec\n\r"),mstats.time2end);

2098 }

2099

2100 else if(!buf_strcmp(cmd_callboot,msgptr)){cmderr=CMD_OK;

2101 printf_P(PSTR("\n\rStarting Bootloader\n\r"));

2102 eeprom_write_byte((uint8_t *)E2END,0xFF);

2103 // Delay_ms(100);

2104 (*((void(*)(void))(Reset2Boot)))();

2105 }

2106

2107 else if(!buf_strcmp(cmd_seti2caddr,msgptr)){cmderr=CMD_OK;

2108 msgptr+=strlen(cmd_seti2caddr);

2109

2110 //read the 1st numeric parameter - the I2C address, allowed range: 0x01 - 0x7F

2111 cmdparameters[0]=(int16_t)strtol(msgptr, &msgptr, 0);

2112 if(cmdparameters[0]<1 || cmdparameters[0]>127) cmderr=CMD_ERR_PARAM;

2113

2114 if(cmderr==CMD_OK){

2115 eeprom_write_byte((uint8_t *)EE_I2C_ADDR,(uint8_t)cmdparameters[0]);

2116 TWAR=(uint8_t)cmdparameters[0]<<1;

2117 }

2118 }

2119

2120 //BIOREACTOR COMMANDS

2121 //turn on/off the perfusion of the bioreactor

2122 else if(!buf_strcmp(cmdb_control,msgptr)){cmderr=CMD_OK;

2123 msgptr+=strlen(cmdb_control);

2124 //read the 1st parameter - the on off witch> 0=off, 1=on

2125 cmdparameters[0]=(uint16_t)strtol(msgptr, &msgptr, 0);

2126 if(cmdparameters[0]<0 || cmdparameters[0]>1) cmderr=CMD_ERR_PARAM;

2127

2128 if(cmderr==CMD_OK){

2129 br1_perfusion=cmdparameters[0];

2130 eeprom_write_byte((uint8_t *)EE_BR1_PERFUSION,br1_perfusion);

2131 if(cmdparameters[0]==0) stop_pump();

2132 }

2133 }

2134 //change the cultivation medium

2135 else if(!buf_strcmp(cmdb_changemed,msgptr)){cmderr=CMD_OK;

2136 msgptr+=strlen(cmdb_changemed);

2137 //read the 1st parameter - the medium volume to change

192

2138 cmdparameters[0]=(uint16_t)strtol(msgptr, &msgptr, 0);

2139 if(cmdparameters[0]<-10000 || cmdparameters[0]>10000) cmderr=CMD_ERR_PARAM;

2140 if(*msgptr != ' ') cmderr=CMD_ERR_PARAMCNT;

2141 //read the 2nd parameter - the pump speed

2142 cmdparameters[1]=(uint16_t)strtol(msgptr, &msgptr, 0);

2143 if(cmdparameters[1]<1 || cmdparameters[1]>500) cmderr=CMD_ERR_PARAM;

2144

2145 if(cmderr==CMD_OK){

2146 medium_change_vol=cmdparameters[0];

2147 medium_change_speed=cmdparameters[1];

2148 br1_changing_medium=1;

2149 }

2150 }

2151 //sample the cultivation medium

2152 else if(!buf_strcmp(cmdb_sample,msgptr)){cmderr=CMD_OK;

2153 msgptr+=strlen(cmdb_sample);

2154 //read the 1st parameter - the medium volume to change

2155 cmdparameters[0]=(uint16_t)strtol(msgptr, &msgptr, 0);

2156 if(cmdparameters[0]<0 || cmdparameters[0]>10000) cmderr=CMD_ERR_PARAM;

2157 if(*msgptr != ' ') cmderr=CMD_ERR_PARAMCNT;

2158 //read the 2nd parameter - the pump speed

2159 cmdparameters[1]=(uint16_t)strtol(msgptr, &msgptr, 0);

2160 if(cmdparameters[1]<1 || cmdparameters[1]>500) cmderr=CMD_ERR_PARAM;

2161

2162 if(cmderr==CMD_OK){

2163 while(br1_sample(cmdparameters[0],cmdparameters[1]) != STEP_FINISHED);

2164 }

2165 }

2166 //mix the sample during dilution

2167 else if(!buf_strcmp(cmdb_mix,msgptr)){cmderr=CMD_OK;

2168 msgptr+=strlen(cmdb_mix);

2169 //read the 1st parameter - the air volume to pump

2170 cmdparameters[0]=(uint16_t)strtol(msgptr, &msgptr, 0);

2171 if(cmdparameters[0]<1 || cmdparameters[0]>30000) cmderr=CMD_ERR_PARAM;

2172 if(*msgptr != ' ') cmderr=CMD_ERR_PARAMCNT;

2173 //read the 2nd parameter - the pump speed

2174 cmdparameters[1]=(uint16_t)strtol(msgptr, &msgptr, 0);

2175 if(cmdparameters[1]<1 || cmdparameters[1]>500) cmderr=CMD_ERR_PARAM;

2176

2177 if(cmderr==CMD_OK){

2178 while(br1_mix_sample(cmdparameters[0],cmdparameters[1]) != STEP_FINISHED);

2179 }

2180 }

2181 //mix the sample during dilution

2182 else if(!buf_strcmp(cmdb_prepsample,msgptr)){cmderr=CMD_OK;

2183

2184 if(cmderr==CMD_OK){

2185 br1_make_sample=1;

2186 eeprom_write_byte((uint8_t *)EE_BR1_MAKESAMPLE,br1_make_sample);

2187 }

2188 }

2189 //change washing manifold pump speed

2190 else if(!buf_strcmp(cmdb_setspeed,msgptr)){cmderr=CMD_OK;

2191 msgptr+=strlen(cmdb_setspeed);

2192 //read the 1st parameter - the bioreactor perfusion speed

2193 cmdparameters[0]=(uint16_t)strtol(msgptr, &msgptr, 0);

2194 if(cmdparameters[0]<1 || cmdparameters[0]>500) cmderr=CMD_ERR_PARAM;

2195

2196 if(cmderr==CMD_OK){

2197 br1_pump_speed=cmdparameters[0];

2198 eeprom_write_word((uint16_t *)EE_BR_SPEED,br1_pump_speed);

2199 }

2200

2201 }

2202 //mix the sample during dilution

2203 else if(!buf_strcmp(cmdb_stop,msgptr)){cmderr=CMD_OK;

2204

2205 if(cmderr==CMD_OK){

2206 br1_changing_medium=0;

2207 br1_make_sample=0;

2208 eeprom_write_byte((uint8_t *)EE_BR1_MAKESAMPLE,br1_make_sample);

2209 progress[0]=0;

2210 progress[1]=0;

2211 progress[2]=0;

2212 progress[3]=0;

2213 progress[4]=0;

2214 br1_init();

2215 stop_pump();

2216 }

2217 }

2218

2219

2220 if(cmderr==CMD_OK) printf_P(resp_ok);

2221 else if(cmderr==CMD_ERR_CMD) printf_P(resp_err_cmd);

2222 else if(cmderr==CMD_ERR_PARAM) printf_P(resp_err_param);

2223 else if(cmderr==CMD_ERR_PARAMCNT) printf_P(resp_err_paramcnt);

2224

2225 new_msg=0;

2226 rx_ptr=0;

2227

2228 }

2229

2230

2231

2232

2233 void load_backup(void)

2234 {

2235 br1_make_sample=eeprom_read_byte((uint8_t *)EE_BR1_MAKESAMPLE);

2236 br1_perfusion=eeprom_read_byte((uint8_t *)EE_BR1_PERFUSION);

2237 br1_pump_speed=eeprom_read_word((uint16_t *)EE_BR_SPEED);

2238

2239 if(br1_make_sample==0xFF){br1_make_sample=0;

193

2240 eeprom_write_byte((uint8_t *)EE_BR1_MAKESAMPLE,

2241 br1_make_sample);

2242 };

2243 if(br1_perfusion==0xFF){br1_perfusion=0;

2244 eeprom_write_byte((uint8_t *)EE_BR1_PERFUSION,

2245 br1_perfusion);

2246 };

2247 if(br1_pump_speed==0xFFFF){br1_pump_speed=25;

2248 eeprom_write_word((uint16_t *)EE_BR_SPEED,

2249 br1_pump_speed);

2250 };

2251 }

2252

2253

2254 int main(void)

2255 {//unsigned char i;

2256 //int tmp;

2257

2258

2259 steps = 200;

2260 acceleration = 2000;

2261 deceleration = 2000;

2262 speed=10;

2263

2264 baudrate=baud115200;

2265

2266 GICR=0x01; //move interrupt vectors to appl section

2267 GICR=0x00;

2268

2269 ioinit();

2270 uartinit(baudrate);

2271 fdevopen(uartsend,0);

2272 printf_P(PSTR("\n\rBIOREACTOR DRIVER START\n\r"));

2273 T0_start();

2274 adc_start();

2275 spi_init();

2276 i2c_init(I2C_100k);

2277

2278 sei();

2279 tim_ena=1;

2280 Motor_Init();

2281

2282 LEDR_ON;

2283 delay(250);

2284 LEDR_OFF;

2285 LEDG_ON;

2286 delay(250);

2287 LEDG_OFF;

2288

2289

2290

2291 SOL_SET_5V;

2292 br1_init();

2293 load_backup();

2294 /*

2295 i2c_putchar('1');

2296 i2c_putchar('2');

2297 i2c_putchar('3');

2298 i2c_putchar('\n');

2299 */

2300 while(1) {

2301

2302 if(new_msg) parse_msg();

2303 if(i2c_newmsg) parse_i2c_command();

2304

2305 bioreactor_sequencer();

2306

2307 if(i2c_buserror){TWCR=0;

2308 //i2c_buserror=0;

2309 i2c_init(I2C_100k);

2310 };

2311

2312 }

2313

2314 return 0;

2315 }

194

Appendix 11 – Listing of the source code for control unit for

smart drivers

1 /***\

2 * Controller for BR drivers - HW ver1.0 *

3 *---*

4 * Description : Controller for up to 8 BR drivers, *

5 * controlled over I2C bus *

6 *---*

7 * Author : Martin Baca *

8 * Developed : 07.06.2016 Last Update : 29.12.2017 *

9 * Version : 1.2 *

10 *---*

11 * Compiler : arduino *

12 * Source file : BR_Controller_RTC_Diag.ino *

13 *---*

14 * Target system : Arduino Mega 2560 board, Rev.3 *

15 * ITDB50 - 5" TFT Display 800x480, *

16 * DS3231 RTC module *

17 * Target CPU : ATmega2560 @16 MHz, UART: 115200,N,8,1 *

18 * Emulator HW : *

19 ***/

20

21

22 #include <UTFT.h>

23 #include <Wire.h>

24 #include <UTouch.h>

25 #include <UTFT_Buttons_ITDB.h>

26 #include <DS3231.h>

27 #include <EEPROM.h>

28 #include "BR_Lib.h"

29

30 //EEPROM MAP

31 #define EE_I2CADR1 0x01

32 #define EE_I2CADR2 0x02

33 #define EE_I2CADR3 0x03

34 #define EE_I2CADR4 0x04

35 #define EE_I2CADR5 0x05

36 #define EE_I2CADR6 0x06

37 #define EE_I2CADR7 0x07

38 #define EE_I2CADR8 0x08

39

40 #define EE_MEDCHG_VOL1 0x10

41 #define EE_MEDCHG_VOL2 0x12

42 #define EE_MEDCHG_VOL3 0x14

43 #define EE_MEDCHG_VOL4 0x16

44 #define EE_MEDCHG_VOL5 0x18

45 #define EE_MEDCHG_VOL6 0x1A

46 #define EE_MEDCHG_VOL7 0x1C

47 #define EE_MEDCHG_VOL8 0x1E

48

49 #define EE_MEDCHG_SPEED1 0x20

50 #define EE_MEDCHG_SPEED2 0x22

51 #define EE_MEDCHG_SPEED3 0x24

52 #define EE_MEDCHG_SPEED4 0x26

53 #define EE_MEDCHG_SPEED5 0x28

54 #define EE_MEDCHG_SPEED6 0x2A

55 #define EE_MEDCHG_SPEED7 0x2C

56 #define EE_MEDCHG_SPEED8 0x2E

57

58 #define EE_TINT_HRS1 0x30

59 #define EE_TINT_HRS2 0x31

60 #define EE_TINT_HRS3 0x32

61 #define EE_TINT_HRS4 0x33

62 #define EE_TINT_HRS5 0x34

63 #define EE_TINT_HRS6 0x35

64 #define EE_TINT_HRS7 0x36

65 #define EE_TINT_HRS8 0x37

66

67 #define EE_TINT_MIN1 0x40

68 #define EE_TINT_MIN2 0x41

69 #define EE_TINT_MIN3 0x42

70 #define EE_TINT_MIN4 0x43

71 #define EE_TINT_MIN5 0x44

72 #define EE_TINT_MIN6 0x45

73 #define EE_TINT_MIN7 0x46

74 #define EE_TINT_MIN8 0x47

75

76 #define EE_TREP_TOT1 0x50

77 #define EE_TREP_TOT2 0x51

78 #define EE_TREP_TOT3 0x52

79 #define EE_TREP_TOT4 0x53

80 #define EE_TREP_TOT5 0x54

81 #define EE_TREP_TOT6 0x55

82 #define EE_TREP_TOT7 0x56

83 #define EE_TREP_TOT8 0x57

84

85 #define EE_TREP_LEFT1 0x60

86 #define EE_TREP_LEFT2 0x61

87 #define EE_TREP_LEFT3 0x62

88 #define EE_TREP_LEFT4 0x63

89 #define EE_TREP_LEFT5 0x64

90 #define EE_TREP_LEFT6 0x65

91 #define EE_TREP_LEFT7 0x66

92 #define EE_TREP_LEFT8 0x67

93

195

94 #define EE_TENA1 0x70

95 #define EE_TENA2 0x71

96 #define EE_TENA3 0x72

97 #define EE_TENA4 0x73

98 #define EE_TENA5 0x74

99 #define EE_TENA6 0x75

100 #define EE_TENA7 0x76

101 #define EE_TENA8 0x77

102

103 #define EE_TFIRST_START1 0x80

104 #define EE_TFIRST_START2 0x88

105 #define EE_TFIRST_START3 0x90

106 #define EE_TFIRST_START4 0x98

107 #define EE_TFIRST_START5 0xA0

108 #define EE_TFIRST_START6 0xA8

109 #define EE_TFIRST_START7 0xB0

110 #define EE_TFIRST_START8 0xB8

111

112 #define EE_TNEXT_START1 0xC0

113 #define EE_TNEXT_START2 0xC8

114 #define EE_TNEXT_START3 0xD0

115 #define EE_TNEXT_START4 0xD8

116 #define EE_TNEXT_START5 0xE0

117 #define EE_TNEXT_START6 0xE8

118 #define EE_TNEXT_START7 0xF0

119 #define EE_TNEXT_START8 0xF8

120

121

122

123 void timer_init(void);

124 void update_schedule_status(uint8_t channel);

125 void recalculate_schedule(uint8_t channel);

126 void print_global_diag(void);

127

128 extern uint8_t SmallFont[];

129 extern uint8_t BigFont[];

130 extern uint8_t Dingbats1_XL[];

131

132 // Remember to change the model parameter to suit your display module!

133 UTFT myGLCD(ITDB50,38,39,40,41);

134 UTouch myTouch(6,5,4,3,2);

135

136 // Finally we set up UTFT_Buttons :)

137 UTFT_Buttons myButtons(&myGLCD, &myTouch);

138

139 // Init the DS3231 using the hardware interface

140 DS3231 rtc(SDA, SCL);

141

142 // Init a Time-data structure

143 Time t;

144

145 int inByte = 0; // incoming serial byte

146 byte x = 0;

147 unsigned char i2c_txbuf[16];

148

149 int but0, but1, but2, but3, but4, but5, but6;

150 int but7, but8, but9, butDEL, butOK, butBACK;

151 int but_perstart, but_perstop, but_medstart;

152 int but_sampstart, but_reset, but_timer, but_sched;

153 int but_v1, but_v2, but_v3, but_v4, but_pump;

154

155 uint8_t i2c_adr_tab[8];

156 uint16_t medchg_vol_tab[8];

157 uint16_t medchg_speed_tab[8];

158

159 char* dw_tab[]={"Mon","Tue","Wed","Thu","Fri","Sat","Sun"};

160

161 #define MAX_REPEATES 10

162 #define MAX_INTERVAL_HOURS 99

163 #define INTERCHANNEL_DELAY 3

164

165 uint8_t timer_intervals_hour[8];

166 uint8_t timer_intervals_minutes[8];

167 uint8_t timer_repeates_total[8];

168 uint8_t timer_repeates_left[8];

169 uint8_t timer_enables[8];

170 Time timer_next_start[8];

171 Time timer_first_start[8];

172

173 char diag_msg[128];

174 uint8_t br_connections[8]={0,0,0,0,0,0,0,0};

175

176 void save_start_time_eeprom(uint8_t channel, Time* src)

177 {

178 EEPROM.write(EE_TFIRST_START1+8*(channel-1)+0, src->sec);

179 EEPROM.write(EE_TFIRST_START1+8*(channel-1)+1, src->min);

180 EEPROM.write(EE_TFIRST_START1+8*(channel-1)+2, src->hour);

181 EEPROM.write(EE_TFIRST_START1+8*(channel-1)+3, src->date);

182 EEPROM.write(EE_TFIRST_START1+8*(channel-1)+4, src->mon);

183 EEPROM.write(EE_TFIRST_START1+8*(channel-1)+5, (src->year)/256);

184 EEPROM.write(EE_TFIRST_START1+8*(channel-1)+6, (src->year)%256);

185 EEPROM.write(EE_TFIRST_START1+8*(channel-1)+7, src->dow);

186 }

187

188

189 void load_start_time_eeprom(uint8_t channel, Time* dest)

190 {uint8_t error = 0;

191

192 dest->sec= EEPROM.read(EE_TFIRST_START1+8*(channel-1)+0);

193 if(dest->sec > 59) {dest->sec=0; error++;}

194 dest->min= EEPROM.read(EE_TFIRST_START1+8*(channel-1)+1);

195 if(dest->min > 59) {dest->min = 0; error++;}

196

196 dest->hour= EEPROM.read(EE_TFIRST_START1+8*(channel-1)+2);

197 if(dest->hour > 23) {dest->hour = 12; error++;}

198 dest->date= EEPROM.read(EE_TFIRST_START1+8*(channel-1)+3);

199 if(dest->date > 31) {dest->date = 1; error++;}

200 dest->mon= EEPROM.read(EE_TFIRST_START1+8*(channel-1)+4);

201 if(dest->mon > 12) {dest->mon = 1; error++;}

202 dest->year= 256*EEPROM.read(EE_TFIRST_START1+8*(channel-1)+5);

203 dest->year += EEPROM.read(EE_TFIRST_START1+8*(channel-1)+6);

204 if(dest->year > 9999) {dest->year = 2000; error++;}

205 dest->dow = EEPROM.read(EE_TFIRST_START1+8*(channel-1)+7);

206 if(dest->dow > 7) {dest->dow = 1; error++;}

207

208 if(error) save_start_time_eeprom(channel, dest);

209 }

210

211

212

213 void timer_init(void)

214 {char i;

215

216 for(i=0;i<8;i++){

217 timer_intervals_hour[i]=EEPROM.read(EE_TINT_HRS1+i);

218 if(timer_intervals_hour[i]>MAX_INTERVAL_HOURS) timer_intervals_hour[i]=MAX_INTERVAL_HOURS;

219 timer_intervals_minutes[i]=EEPROM.read(EE_TINT_MIN1+i);

220 if(timer_intervals_minutes[i]>59) timer_intervals_minutes[i]=59;

221 timer_repeates_total[i]=EEPROM.read(EE_TREP_TOT1+i);

222 if(timer_repeates_total[i]>MAX_REPEATES) timer_repeates_total[i]=MAX_REPEATES;

223 timer_repeates_left[i]=EEPROM.read(EE_TREP_LEFT1+i);

224 if(timer_repeates_left[i]>MAX_REPEATES) timer_repeates_left[i]=MAX_REPEATES;

225 timer_enables[i]=EEPROM.read(EE_TENA1+i);

226 if(timer_enables[i]>1) timer_enables[i]=1;

227 load_start_time_eeprom(i+1, &timer_first_start[i]);

228 calc_next_start(i+1);

229 }

230 }

231

232

233 void setup()

234 {char i;

235 uint8_t tmp;

236 uint16_t tmp16;

237

238 Wire.begin(); // join i2c bus (address optional for master)

239 Serial.begin(115200);

240

241 // Setup the LCD

242 myGLCD.InitLCD();

243 myGLCD.setFont(SmallFont);

244

245 // Clear the screen and draw the frame

246 myGLCD.clrScr();

247

248 myTouch.InitTouch(LANDSCAPE);

249 myTouch.setPrecision(PREC_MEDIUM);

250 myTouch.calibrateRead(); //used to properly initialize XPT2046 - and enable the IRQ

251

252 myButtons.setTextFont(BigFont);

253 myButtons.setSymbolFont(Dingbats1_XL);

254

255 // Initialize the rtc object

256 rtc.begin();

257

258 timer_init();

259

260 for(i=0;i<8;i++){

261 tmp=EEPROM.read(EE_I2CADR1+i);

262 if(!tmp || tmp>127){tmp=127; EEPROM.write(EE_I2CADR1+i,tmp);}

263 i2c_adr_tab[i]=tmp;

264

265 tmp16=EEPROM.read(EE_MEDCHG_VOL1+2*i);

266 tmp16=tmp16<<8;

267 tmp16+=EEPROM.read(EE_MEDCHG_VOL1+2*i+1);

268 if(!tmp16 || tmp16>9999){tmp16=9999;

269 EEPROM.write(EE_MEDCHG_VOL1+2*i,tmp16/256);

270 EEPROM.write(EE_MEDCHG_VOL1+2*i+1,tmp16&0xFF);

271 };

272 medchg_vol_tab[i]=tmp16;

273

274 tmp16=EEPROM.read(EE_MEDCHG_SPEED1+2*i);

275 tmp16=tmp16<<8;

276 tmp16+=EEPROM.read(EE_MEDCHG_SPEED1+2*i+1);

277 if(!tmp16 || tmp16>500){tmp16=50;

278 EEPROM.write(EE_MEDCHG_SPEED1+2*i,tmp16/256);

279 EEPROM.write(EE_MEDCHG_SPEED1+2*i+1,tmp16&0xFF);

280 };

281 medchg_speed_tab[i]=tmp16;

282 };

283

284 diag_out("System Power ON.");

285 for(i=1;i<9;i++) draw_status(i,0);

286 print_global_diag();

287 }

288

289 uint8_t is_leap_year(uint16_t year)

290 {

291 return ((year & 3) == 0) && ((year % 400 == 0) || (year % 100 != 0));

292 }

293

294 //returns 1 if thistime os on future

295 // returns 0 otherwise

296 int8_t is_time_future(uint8_t channel, Time* thistime)

297 {Time curtime;

197

298

299 thistime->sec = ((channel-1)*INTERCHANNEL_DELAY)%60;

300

301 curtime = rtc.getTime();

302 if(thistime->year > curtime.year) return(1);

303 if(thistime->year < curtime.year) return(0);

304

305 if(thistime->mon > curtime.mon) return(1);

306 if(thistime->mon < curtime.mon) return(0);

307

308 if(thistime->date > curtime.date) return(1);

309 if(thistime->date < curtime.date) return(0);

310

311 if(thistime->hour > curtime.hour) return(1);

312 if(thistime->hour < curtime.hour) return(0);

313

314 if(thistime->min > curtime.min) return(1);

315 if(thistime->min < curtime.min) return(0);

316

317 if(thistime->sec > curtime.sec) return(1);

318 if(thistime->sec < curtime.sec) return(0);

319

320 return(0);

321 }

322

323 void calc_incr_start(uint8_t channel, Time* begining, Time* result)

324 {uint16_t tmp_hours;

325 uint16_t tmp_minutes;

326 uint8_t day_limit;

327 Time tmptime;

328

329 tmp_hours = timer_intervals_hour[channel-1];

330 tmp_minutes = timer_intervals_minutes[channel-1];

331

332 tmptime.sec=0;

333 tmptime.min=begining->min;

334 tmptime.hour=begining->hour;

335 tmptime.date=begining->date;

336 tmptime.mon=begining->mon;

337 tmptime.year=begining->year;

338

339 tmptime.min+=tmp_minutes;

340 if(tmptime.min>59){tmptime.min-=60; tmptime.hour++;};

341 tmptime.hour+=tmp_hours % 24;

342 if(tmptime.hour>23){tmptime.hour-=24; tmptime.date++;};

343 tmptime.date+=(tmp_hours / 24);

344

345 day_limit=31;

346 if(tmptime.mon==1 || tmptime.mon==3 || tmptime.mon==5 || tmptime.mon==7 ||

347 tmptime.mon==8 || tmptime.mon==10 || tmptime.mon==12) day_limit--;

348 if(tmptime.mon==2){ day_limit=28;

349 if(is_leap_year(tmptime.year)) day_limit++;

350 };

351 if(tmptime.date>day_limit){tmptime.date-=day_limit; tmptime.mon++;};

352 if(tmptime.mon>12){tmptime.mon=1; tmptime.year++;};

353

354 result->sec=tmptime.sec;

355 result->min=tmptime.min;

356 result->hour=tmptime.hour;

357 result->date=tmptime.date;

358 result->mon=tmptime.mon;

359 result->year=tmptime.year;

360 }

361

362 uint8_t calc_next_start(uint8_t channel)

363 {//uint16_t tmp_hours;

364 //uint16_t tmp_minutes;

365 uint8_t day_limit,i;

366 Time tmptime;

367

368

369 //tmp_hours = (uint16_t)timer_repeates_left[channel-1] * timer_intervals_hour[channel-1];

370 //tmp_minutes = (uint16_t)timer_repeates_left[channel-1] * timer_intervals_minutes[channel-1];

371

372 tmptime.sec=0;

373 tmptime.min=timer_first_start[channel-1].min;

374 tmptime.hour=timer_first_start[channel-1].hour;

375 tmptime.date=timer_first_start[channel-1].date;

376 tmptime.mon=timer_first_start[channel-1].mon;

377 tmptime.year=timer_first_start[channel-1].year;

378

379 i=timer_repeates_total[channel-1];

380 while(i){

381 if(is_time_future(channel, &tmptime)) break;

382 calc_incr_start(channel, &tmptime, &tmptime);

383 i--;

384 }

385

386 timer_repeates_left[channel-1]=i;

387 timer_next_start[channel-1].sec=tmptime.sec;

388 timer_next_start[channel-1].min=tmptime.min;

389 timer_next_start[channel-1].hour=tmptime.hour;

390 timer_next_start[channel-1].date=tmptime.date;

391 timer_next_start[channel-1].mon=tmptime.mon;

392 timer_next_start[channel-1].year=tmptime.year;

393 return(1);

394 }

395

396

397 void br_reset(uint8_t channel)

398 {

399 sprintf(diag_msg,"Reseting BR unit %d.",channel);

198

400 diag_out(diag_msg);

401

402 i2c_txbuf[0]=2;

403 i2c_txbuf[1]=0x32;

404 i2c_txbuf[2]='\n';

405 send_i2c_msg(i2c_adr_tab[channel-1],i2c_txbuf);

406 }

407

408

409 void control_perfusion(uint8_t channel, uint8_t new_state)

410 { if (new_state) sprintf(diag_msg,"Perfusion START for BR unit %d.",channel);

411 else

412 sprintf(diag_msg,"Perfusion STOP for BR unit %d.",channel);

413 diag_out(diag_msg);

414

415 i2c_txbuf[0]=3;

416 i2c_txbuf[1]=0x31;

417 i2c_txbuf[2]=0x00;

418 if(new_state) i2c_txbuf[2]++;

419 i2c_txbuf[3]='\n';

420 send_i2c_msg(i2c_adr_tab[channel-1],i2c_txbuf);

421 }

422

423 void control_valve(uint8_t channel,uint8_t valve, uint8_t new_state)

424 { if (new_state) sprintf(diag_msg,"Switch Valve%d ON on BR unit %d.",valve,channel);

425 else

426 sprintf(diag_msg,"Switch Valve%d OFF on BR unit %d.",valve,channel);

427 diag_out(diag_msg);

428

429 i2c_txbuf[0]=4;

430 i2c_txbuf[1]=0x38;

431 i2c_txbuf[2]=valve;

432 i2c_txbuf[3]=0;

433 if(new_state) i2c_txbuf[3]++;

434 i2c_txbuf[4]='\n';

435 send_i2c_msg(i2c_adr_tab[channel-1],i2c_txbuf);

436 }

437

438 void set_perfusion_speed(uint8_t channel,uint16_t pspeed)

439 { sprintf(diag_msg,"Setting prerfusion speed to %d ul/min for BR unit %d.",pspeed,channel);

440 diag_out(diag_msg);

441

442 i2c_txbuf[0]=4;

443 i2c_txbuf[1]=0x33;

444 i2c_txbuf[2]=(uint8_t)(pspeed/256);

445 i2c_txbuf[3]=(uint8_t)(pspeed&0xFF);

446 i2c_txbuf[4]='\n';

447 send_i2c_msg(i2c_adr_tab[channel-1],i2c_txbuf);

448 }

449

450 void start_pump(uint8_t channel, int16_t volume, int16_t pspeed)

451 { sprintf(diag_msg,"Starting pump of BR unit %d. Volume: %d, Speed: %d",channel, volume, pspeed);

452 diag_out(diag_msg)

453

454 i2c_txbuf[0]=6;

455 i2c_txbuf[1]=0x39;

456 i2c_txbuf[2]=(uint8_t)(volume/256);

457 i2c_txbuf[3]=(uint8_t)(volume&0xFF);

458 i2c_txbuf[4]=(uint8_t)(pspeed/256);

459 i2c_txbuf[5]=(uint8_t)(pspeed&0xFF);

460 i2c_txbuf[6]='\n';

461 send_i2c_msg(i2c_adr_tab[channel-1],i2c_txbuf);

462 }

463

464 void medium_change(uint8_t channel, int16_t volume, int16_t pspeed)

465 { sprintf(diag_msg,"Starting medium change on BR unit %d. Volume: %d, Speed: %d",channel, volume, pspeed);

466 diag_out(diag_msg);

467

468 i2c_txbuf[0]=6;

469 i2c_txbuf[1]=0x35;

470 i2c_txbuf[2]=(uint8_t)(volume/256);

471 i2c_txbuf[3]=(uint8_t)(volume&0xFF);

472 i2c_txbuf[4]=(uint8_t)(pspeed/256);

473 i2c_txbuf[5]=(uint8_t)(pspeed&0xFF);

474 i2c_txbuf[6]='\n';

475 send_i2c_msg(i2c_adr_tab[channel-1],i2c_txbuf);

476 }

477

478

479 uint8_t get_selected_ch(void)

480 {uint8_t result;

481 int touch_x;

482 int touch_y;

483

484 myTouch.read();

485 touch_x = myTouch.getX();

486 touch_y = myTouch.getY();

487

488 result=touch_y/STAT_SIZEY+1;

489 if(touch_x >= STAT_SIZEX) result+=4;

490

491 return(result);

492 }

493

494 #define BUTSIZEX 100

495 #define BUTSIZEY 50

496

497 void draw_keyboard(void)

498 {

499 but1 = myButtons.addButton(5+0*(BUTSIZEX+10), 479-15-2*BUTSIZEY, BUTSIZEX, BUTSIZEY, "1");

500 but2 = myButtons.addButton(5+1*(BUTSIZEX+10), 479-15-2*BUTSIZEY, BUTSIZEX, BUTSIZEY, "2");

501 but3 = myButtons.addButton(5+2*(BUTSIZEX+10), 479-15-2*BUTSIZEY, BUTSIZEX, BUTSIZEY, "3");

199

502 but4 = myButtons.addButton(5+3*(BUTSIZEX+10), 479-15-2*BUTSIZEY, BUTSIZEX, BUTSIZEY, "4");

503 but5 = myButtons.addButton(5+4*(BUTSIZEX+10), 479-15-2*BUTSIZEY, BUTSIZEX, BUTSIZEY, "5");

504 but6 = myButtons.addButton(5+0*(BUTSIZEX+10), 479-5-BUTSIZEY, BUTSIZEX, BUTSIZEY, "6");

505 but7 = myButtons.addButton(5+1*(BUTSIZEX+10), 479-5-BUTSIZEY, BUTSIZEX, BUTSIZEY, "7");

506 but8 = myButtons.addButton(5+2*(BUTSIZEX+10), 479-5-BUTSIZEY, BUTSIZEX, BUTSIZEY, "8");

507 but9 = myButtons.addButton(5+3*(BUTSIZEX+10), 479-5-BUTSIZEY, BUTSIZEX, BUTSIZEY, "9");

508 but0 = myButtons.addButton(5+4*(BUTSIZEX+10), 479-5-BUTSIZEY, BUTSIZEX, BUTSIZEY, "0");

509

510 butDEL = myButtons.addButton(5+5*(BUTSIZEX+10), 479-5-BUTSIZEY, BUTSIZEX, BUTSIZEY, "DEL");

511 butOK = myButtons.addButton(5+6*(BUTSIZEX+10), 479-5-BUTSIZEY, BUTSIZEX, BUTSIZEY, "OK");

512 butBACK = myButtons.addButton(5+5*(BUTSIZEX+10), 479-15-2*BUTSIZEY, BUTSIZEX*2+10, BUTSIZEY, "BACK");

513

514 myButtons.drawButtons();

515 }

516

517 int16_t read_keyboard(int16_t xpos, int16_t ypos, uint8_t len)

518 {char num[8];

519 uint8_t return_home,numptr,i;

520 int pressed_button, result;

521

522 if(len>5) len=5;

523 if(!len) return(0);

524

525 myGLCD.setFont(BigFont);

526 myGLCD.setBackColor(VGA_WHITE);

527 myGLCD.setColor(VGA_MAROON);

528

529 return_home=0;

530 numptr=0;

531 while(!return_home){

532 if(myTouch.dataAvailable()==true){

533 pressed_button = myButtons.checkButtons();

534 if (pressed_button==but0) {num[numptr++]='0';}

535 else if(pressed_button==but1){num[numptr++]='1';}

536 else if(pressed_button==but2){num[numptr++]='2';}

537 else if(pressed_button==but3){num[numptr++]='3';}

538 else if(pressed_button==but4){num[numptr++]='4';}

539 else if(pressed_button==but5){num[numptr++]='5';}

540 else if(pressed_button==but6){num[numptr++]='6';}

541 else if(pressed_button==but7){num[numptr++]='7';}

542 else if(pressed_button==but8){num[numptr++]='8';}

543 else if(pressed_button==but9){num[numptr++]='9';}

544 else if(pressed_button==butDEL){

545 if(numptr) numptr--;

546 }

547 else if(pressed_button==butOK){

548 return_home=1;

549 }

550 if(numptr>len) numptr=len;

551

552 for(i=numptr;i<len;i++) num[i]=' ';

553 num[len]=0;

554 myGLCD.print(num,xpos,ypos);

555 }

556 }

557

558 sscanf(num,"%d",&result);

559 while (myTouch.dataAvailable() == true);

560 return(result);

561 }

562

563 void check_num_fields(uint8_t channel)

564 {int result;

565 char tmp[8];

566

567 myTouch.read();

568 int touch_x = myTouch.getX();

569 int touch_y = myTouch.getY();

570 if(touch_x>190 && touch_x<260 && touch_y>40 && touch_y<80){ //Perfusion speed

571 myGLCD.setColor(VGA_WHITE);

572 myGLCD.fillRect(200, 50,250,69);

573 result=read_keyboard(202, 52,3);

574 if(result<1) result=1;

575 if(result>500) result=500;

576 myGLCD.setColor(VGA_GRAY);

577 myGLCD.fillRect(200, 50,250,69);

578 myGLCD.setBackColor(VGA_GRAY);

579 myGLCD.setColor(VGA_RED);

580 sprintf(tmp,"%d",result);

581 myGLCD.print(tmp,202,52);

582 set_perfusion_speed(channel,result);

583 }

584 if(touch_x>0 && touch_x<83 && touch_y>210 && touch_y<260){ //Medium Change Volume

585 myGLCD.setColor(VGA_WHITE);

586 myGLCD.fillRect(5, 230,5+68,249);

587 result=read_keyboard(7, 232,4);

588 if(result<1) result=1;

589 if(result>9999) result=9999;

590 myGLCD.setColor(VGA_GRAY);

591 myGLCD.fillRect(5, 230,5+68,249);

592 myGLCD.setBackColor(VGA_GRAY);

593 myGLCD.setColor(VGA_RED);

594 sprintf(tmp,"%d",result);

595 myGLCD.print(tmp,7, 232);

596 medchg_vol_tab[channel-1]=result;

597 EEPROM.write(EE_MEDCHG_VOL1+2*(channel-1),result/256);

598 EEPROM.write(EE_MEDCHG_VOL1+2*(channel-1)+1,result&0xFF);

599 }

600 if(touch_x>190 && touch_x<262 && touch_y>210 && touch_y<260){ //Medium Change Speeed

601 myGLCD.setColor(VGA_WHITE);

602 myGLCD.fillRect(200, 230,200+52,249);

603 result=read_keyboard(202, 232,3);

200

604 if(result<1) result=1;

605 if(result>500) result=500;

606 myGLCD.setColor(VGA_GRAY);

607 myGLCD.fillRect(200, 230,200+52,249);

608 myGLCD.setBackColor(VGA_GRAY);

609 myGLCD.setColor(VGA_RED);

610 sprintf(tmp,"%d",result);

611 myGLCD.print(tmp,202, 232);

612 medchg_speed_tab[channel-1]=result;

613 EEPROM.write(EE_MEDCHG_SPEED1+2*(channel-1),result/256);

614 EEPROM.write(EE_MEDCHG_SPEED1+2*(channel-1)+1,result&0xFF);

615 }

616 if(touch_x>539 && touch_x<610 && touch_y>200 && touch_y<240){ //I2C Address

617 myGLCD.setColor(VGA_WHITE);

618 myGLCD.fillRect(405+144, 210,405+144+52,229);

619 result=read_keyboard(551,212,3);

620 if(result<1) result=1;

621 if(result>127) result=127;

622 myGLCD.setColor(VGA_GRAY);

623 myGLCD.fillRect(405+144, 210,405+144+52,229);

624 myGLCD.setBackColor(VGA_GRAY);

625 myGLCD.setColor(VGA_RED);

626 sprintf(tmp,"%d",result);

627 myGLCD.print(tmp,551, 212);

628 i2c_adr_tab[channel-1]=result;

629 EEPROM.write(EE_I2CADR1+channel-1,result);

630 }

631

632 }

633

634 uint8_t wd(uint16_t year, uint8_t month, uint8_t day)

635 { uint32_t JND;

636 uint16_t a,m,y;

637

638 a = (14-month)/12;

639 m = month + (12*a) - 3;

640 y = year + 4800 - a;

641

642 JND = day;

643 JND += (((153 * m) + 2) / 5) ;

644 JND += (365ul * y);

645 JND += (y / 4);

646 JND -= (y / 100);

647 JND += (y / 400);

648 JND -= 32045;

649

650 return((JND % 7)+1);

651 }

652

653 char *get_name_weekday(uint8_t day)

654 {

655 if (day<1) day=1;

656 if (day>7) day=7;

657 day--;

658 return(dw_tab[day]);

659 }

660

661 void check_timer_fields(uint8_t channel)

662 {int result;

663 char tmp[8];

664 Time tmp_time;

665

666 myTouch.read();

667 int touch_x = myTouch.getX();

668 int touch_y = myTouch.getY();

669 if(touch_x>235 && touch_x<280 && touch_y>48 && touch_y<87){ //Hours

670 myGLCD.setColor(VGA_WHITE);

671 myGLCD.fillRect(240, 58,272,77);

672 result=read_keyboard(240, 60,2);

673 if(result<0) result=0;

674 if(result>23) result=23;

675 myGLCD.setColor(VGA_GRAY);

676 myGLCD.fillRect(240, 58,272,77);

677 myGLCD.setBackColor(VGA_GRAY);

678 myGLCD.setColor(VGA_RED);

679 sprintf(tmp,"%02d",result);

680 myGLCD.print(tmp,240,60);

681 tmp_time=rtc.getTime();

682 rtc.setTime(result, tmp_time.min, tmp_time.sec);

683 }

684 if(touch_x>283 && touch_x<328 && touch_y>48 && touch_y<87){ //Minutes

685 myGLCD.setColor(VGA_WHITE);

686 myGLCD.fillRect(240+48, 58,240+48+32,77);

687 result=read_keyboard(240+48, 60,2);

688 if(result<0) result=0;

689 if(result>59) result=59;

690 myGLCD.setColor(VGA_GRAY);

691 myGLCD.fillRect(240+48, 58,240+48+32,77);

692 myGLCD.setBackColor(VGA_GRAY);

693 myGLCD.setColor(VGA_RED);

694 sprintf(tmp,"%02d",result);

695 myGLCD.print(tmp,240+48, 60);

696 tmp_time=rtc.getTime();

697 rtc.setTime(tmp_time.hour, result, tmp_time.sec);

698 }

699 if(touch_x>331 && touch_x<376 && touch_y>48 && touch_y<87){ //Seconds

700 myGLCD.setColor(VGA_WHITE);

701 myGLCD.fillRect(240+96, 58,240+96+32,77);

702 result=read_keyboard(240+96, 60,2);

703 if(result<0) result=0;

704 if(result>59) result=59;

705 myGLCD.setColor(VGA_GRAY);

201

706 myGLCD.fillRect(240+96, 58,240+96+32,77);

707 myGLCD.setBackColor(VGA_GRAY);

708 myGLCD.setColor(VGA_RED);

709 sprintf(tmp,"%02d",result);

710 myGLCD.print(tmp,240+96, 60);

711 tmp_time=rtc.getTime();

712 rtc.setTime(tmp_time.hour, tmp_time.min, result);

713 }

714 if(touch_x>456 && touch_x<504 && touch_y>48 && touch_y<87){ //Day

715 myGLCD.setColor(VGA_WHITE);

716 myGLCD.fillRect(464, 58,464+32,77);

717 result=read_keyboard(464, 60,2);

718 if(result<1) result=1;

719 if(result>31) result=31;

720 myGLCD.setColor(VGA_GRAY);

721 myGLCD.fillRect(464, 58,464+32,77);

722 myGLCD.setBackColor(VGA_GRAY);

723 myGLCD.setColor(VGA_RED);

724 sprintf(tmp,"%02d",result);

725 myGLCD.print(tmp,464, 60);

726 tmp_time=rtc.getTime();

727 rtc.setDate(result, tmp_time.mon, tmp_time.year);

728 rtc.setDOW(wd(tmp_time.year, tmp_time.mon, result));

729 }

730 if(touch_x>504 && touch_x<552 && touch_y>48 && touch_y<87){ //Month

731 myGLCD.setColor(VGA_WHITE);

732 myGLCD.fillRect(464+48, 58,464+48+32,77);

733 result=read_keyboard(464+48, 60,2);

734 if(result<1) result=1;

735 if(result>12) result=12;

736 myGLCD.setColor(VGA_GRAY);

737 myGLCD.fillRect(464+48, 58,464+48+32,77);

738 myGLCD.setBackColor(VGA_GRAY);

739 myGLCD.setColor(VGA_RED);

740 sprintf(tmp,"%02d",result);

741 myGLCD.print(tmp,464+48, 60);

742 tmp_time=rtc.getTime();

743 rtc.setDate(tmp_time.date, result, tmp_time.year);

744 rtc.setDOW(wd(tmp_time.year, result, tmp_time.date));

745 }

746 if(touch_x>552 && touch_x<632 && touch_y>48 && touch_y<87){ //Year

747 myGLCD.setColor(VGA_WHITE);

748 myGLCD.fillRect(560, 58, 624, 77);

749 result=read_keyboard(560, 60, 4);

750 if(result<2000) result=2000;

751 if(result>9999) result=9999;

752 myGLCD.setColor(VGA_GRAY);

753 myGLCD.fillRect(560, 58, 624, 77);

754 myGLCD.setBackColor(VGA_GRAY);

755 myGLCD.setColor(VGA_RED);

756 sprintf(tmp,"%04d",result);

757 myGLCD.print(tmp, 560, 60);

758 tmp_time=rtc.getTime();

759 rtc.setDate(tmp_time.date, tmp_time.mon, result);

760 rtc.setDOW(wd(result, tmp_time.mon, tmp_time.date));

761 }

762 if(touch_x>235 && touch_x<280 && touch_y>88 && touch_y<127){ //Hours of the First Start

763 myGLCD.setColor(VGA_WHITE);

764 myGLCD.fillRect(240, 98,272,117);

765 result=read_keyboard(240, 100,2);

766 if(result<0) result=0;

767 if(result>23) result=23;

768 myGLCD.setColor(VGA_GRAY);

769 myGLCD.fillRect(240, 98,272,117);

770 myGLCD.setBackColor(VGA_GRAY);

771 myGLCD.setColor(VGA_RED);

772 sprintf(tmp,"%02d",result);

773 myGLCD.print(tmp,240,100);

774 timer_first_start[channel-1].hour=result;

775 recalculate_schedule(channel);

776 update_schedule_status(channel);

777 save_start_time_eeprom(channel, &timer_first_start[channel-1]);

778 }

779 if(touch_x>283 && touch_x<328 && touch_y>88 && touch_y<127){ //Minutes of the First start

780 myGLCD.setColor(VGA_WHITE);

781 myGLCD.fillRect(240+48, 98,240+48+32,117);

782 result=read_keyboard(240+48, 100,2);

783 if(result<0) result=0;

784 if(result>59) result=59;

785 myGLCD.setColor(VGA_GRAY);

786 myGLCD.fillRect(240+48, 98,240+48+32,117);

787 myGLCD.setBackColor(VGA_GRAY);

788 myGLCD.setColor(VGA_RED);

789 sprintf(tmp,"%02d",result);

790 myGLCD.print(tmp,240+48, 100);

791 timer_first_start[channel-1].min=result;

792 recalculate_schedule(channel);

793 update_schedule_status(channel);

794 save_start_time_eeprom(channel, &timer_first_start[channel-1]);

795 }

796 if(touch_x>456 && touch_x<504 && touch_y>88 && touch_y<127){ //Day of the First Start

797 myGLCD.setColor(VGA_WHITE);

798 myGLCD.fillRect(464, 98,464+32,117);

799 result=read_keyboard(464, 100,2);

800 if(result<1) result=1;

801 if(result>31) result=31;

802 myGLCD.setColor(VGA_GRAY);

803 myGLCD.fillRect(464, 98,464+32,117);

804 myGLCD.setBackColor(VGA_GRAY);

805 myGLCD.setColor(VGA_RED);

806 sprintf(tmp,"%02d",result);

807 myGLCD.print(tmp,464, 100);

202

808 timer_first_start[channel-1].date=result;

809 myGLCD.setBackColor(VGA_BLACK);

810 myGLCD.setColor(VGA_WHITE);

811 myGLCD.print(get_name_weekday(wd(timer_first_start[channel-1].year,

812 timer_first_start[channel-1].mon, timer_first_start[channel-1].date)),240+160,100);

813 recalculate_schedule(channel);

814 update_schedule_status(channel);

815 save_start_time_eeprom(channel, &timer_first_start[channel-1]);

816 }

817 if(touch_x>504 && touch_x<552 && touch_y>88 && touch_y<127){ //Month of the First Start

818 myGLCD.setColor(VGA_WHITE);

819 myGLCD.fillRect(464+48, 98,464+48+32,117);

820 result=read_keyboard(464+48, 100,2);

821 if(result<1) result=1;

822 if(result>12) result=12;

823 myGLCD.setColor(VGA_GRAY);

824 myGLCD.fillRect(464+48, 98,464+48+32,117);

825 myGLCD.setBackColor(VGA_GRAY);

826 myGLCD.setColor(VGA_RED);

827 sprintf(tmp,"%02d",result);

828 myGLCD.print(tmp,464+48, 100);

829 timer_first_start[channel-1].mon=result;

830 myGLCD.setBackColor(VGA_BLACK);

831 myGLCD.setColor(VGA_WHITE);

832 myGLCD.print(get_name_weekday(wd(timer_first_start[channel-1].year,

833 timer_first_start[channel-1].mon, timer_first_start[channel-1].date)),240+160,100);

834 recalculate_schedule(channel);

835 update_schedule_status(channel);

836 save_start_time_eeprom(channel, &timer_first_start[channel-1]);

837 }

838 if(touch_x>552 && touch_x<632 && touch_y>88 && touch_y<127){ //Year of the First Start

839 myGLCD.setColor(VGA_WHITE);

840 myGLCD.fillRect(560, 98, 624, 117);

841 result=read_keyboard(560, 100, 4);

842 if(result<2000) result=2000;

843 if(result>9999) result=9999;

844 myGLCD.setColor(VGA_GRAY);

845 myGLCD.fillRect(560, 98, 624, 117);

846 myGLCD.setBackColor(VGA_GRAY);

847 myGLCD.setColor(VGA_RED);

848 sprintf(tmp,"%04d",result);

849 myGLCD.print(tmp, 560, 100);

850 timer_first_start[channel-1].year=result;

851 myGLCD.setBackColor(VGA_BLACK);

852 myGLCD.setColor(VGA_WHITE);

853 myGLCD.print(get_name_weekday(wd(timer_first_start[channel-1].year,

854 timer_first_start[channel-1].mon, timer_first_start[channel-1].date)),240+160,100);

855 recalculate_schedule(channel);

856 update_schedule_status(channel);

857 save_start_time_eeprom(channel, &timer_first_start[channel-1]);

858 }

859 if(touch_x>235 && touch_x<280 && touch_y>128 && touch_y<167){ //Hours of Interval of change

860 myGLCD.setColor(VGA_WHITE);

861 myGLCD.fillRect(240, 138,272,157);

862 result=read_keyboard(240, 140,2);

863 if(result<0) result=0;

864 if(result>MAX_INTERVAL_HOURS) result=MAX_INTERVAL_HOURS;

865 myGLCD.setColor(VGA_GRAY);

866 myGLCD.fillRect(240, 138,272,157);

867 myGLCD.setBackColor(VGA_GRAY);

868 myGLCD.setColor(VGA_RED);

869 sprintf(tmp,"%02d",result);

870 myGLCD.print(tmp,240,140);

871 timer_intervals_hour[channel-1]=result;

872 recalculate_schedule(channel);

873 update_schedule_status(channel);

874 EEPROM.write(EE_TINT_HRS1+channel-1,timer_intervals_hour[channel-1]);

875 }

876 if(touch_x>283 && touch_x<328 && touch_y>128 && touch_y<167){ //Minutes of interval of change

877 myGLCD.setColor(VGA_WHITE);

878 myGLCD.fillRect(240+48, 138,240+48+32,157);

879 result=read_keyboard(240+48, 140,2);

880 if(result<0) result=0;

881 if(result>59) result=59;

882 myGLCD.setColor(VGA_GRAY);

883 myGLCD.fillRect(240+48, 138,240+48+32,157);

884 myGLCD.setBackColor(VGA_GRAY);

885 myGLCD.setColor(VGA_RED);

886 sprintf(tmp,"%02d",result);

887 myGLCD.print(tmp,240+48, 140);

888 timer_intervals_minutes[channel-1]=result;

889 recalculate_schedule(channel);

890 update_schedule_status(channel);

891 EEPROM.write(EE_TINT_MIN1+channel-1,timer_intervals_minutes[channel-1]);

892 }

893 if(touch_x>692 && touch_x<740 && touch_y>128 && touch_y<167){ //Number of changes

894 myGLCD.setColor(VGA_WHITE);

895 myGLCD.fillRect(700, 138,700+32,157);

896 result=read_keyboard(700, 140,2);

897 if(result<0) result=0;

898 if(result>59) result=59;

899 myGLCD.setColor(VGA_GRAY);

900 myGLCD.fillRect(700, 138,700+32,157);

901 myGLCD.setBackColor(VGA_GRAY);

902 myGLCD.setColor(VGA_RED);

903 sprintf(tmp,"%02d",result);

904 myGLCD.print(tmp,700, 140);

905 timer_repeates_total[channel-1]=result;

906 recalculate_schedule(channel);

907 update_schedule_status(channel);

908 EEPROM.write(EE_TREP_TOT1+channel-1,timer_repeates_total[channel-1]);

909 }

203

910

911

912 }

913

914 void draw_brcontrol_controls(uint8_t channel)

915 {char msg[24];

916

917 myGLCD.setColor(VGA_BLACK);

918 myGLCD.fillRect(0, 0,799,479);

919

920 myGLCD.setFont(BigFont);

921 myGLCD.setBackColor(VGA_BLACK);

922 myGLCD.setColor(VGA_YELLOW);

923 sprintf(msg,"BR Unit NR.%d CONTROL",channel);

924

925 myGLCD.print(msg,CENTER,0);

926 while (myTouch.dataAvailable() == true);

927

928 myGLCD.setColor(VGA_WHITE);

929 myGLCD.drawRect(0, 20,400-2,180-2);

930 myGLCD.print("PERFUSION",127,20);

931 myGLCD.print("Perf.Speed:",5,50);

932 myGLCD.print("ul/min",255,50);

933 myGLCD.setColor(VGA_GRAY);

934 myGLCD.fillRect(200, 50,250,69);

935

936 but_perstart = myButtons.addButton(25, 150-BUTSIZEY, 150, BUTSIZEY, "START");

937 but_perstop = myButtons.addButton(225, 150-BUTSIZEY, 150, BUTSIZEY, "STOP");

938

939 myGLCD.setColor(VGA_WHITE);

940 myGLCD.setBackColor(VGA_BLACK);

941 myGLCD.drawRect(0, 180,400-2,360-2);

942 myGLCD.print("MEDIUM CHANGE",95,180);

943 myGLCD.print("Volume:",5,210);

944 myGLCD.print("ul",77,230);

945 myGLCD.print("Speed:",200,210);

946 myGLCD.print("ul/min",257,230);

947 myGLCD.setColor(VGA_GRAY);

948 myGLCD.fillRect(5, 230,5+68,249);

949 myGLCD.fillRect(200, 230,200+52,249);

950 myGLCD.setBackColor(VGA_GRAY);

951 myGLCD.setColor(VGA_RED);

952 sprintf(msg,"%d",medchg_vol_tab[channel-1]);

953 myGLCD.print(msg,7,232);

954 sprintf(msg,"%d",medchg_speed_tab[channel-1]);

955 myGLCD.print(msg,202,232);

956

957 but_medstart = myButtons.addButton(25, 325-BUTSIZEY, 150, BUTSIZEY, "START");

958 but_timer = myButtons.addButton(225, 325-BUTSIZEY, 150, BUTSIZEY, "TIMER");

959 myGLCD.setBackColor(VGA_BLACK);

960 myGLCD.setColor(VGA_WHITE);

961 myGLCD.print("Next: ",10,338);

962 if(timer_repeates_left[channel-1] && timer_enables[channel-1]){

963 sprintf(msg,"%02d",timer_next_start[channel-1].hour);

964 myGLCD.print(msg,106,338);

965 sprintf(msg,"%02d",timer_next_start[channel-1].min);

966 myGLCD.print(msg,106+48,338);

967 sprintf(msg,"%02d",timer_next_start[channel-1].date);

968 myGLCD.print(msg,106+108,338);

969 sprintf(msg,"%02d",timer_next_start[channel-1].mon);

970 myGLCD.print(msg,106+108+48,338);

971 sprintf(msg,"%04d",timer_next_start[channel-1].year);

972 myGLCD.print(msg,106+108+96,338);

973 myGLCD.print(":",106+32,338);

974 myGLCD.print(".",106+108+32,338);

975 myGLCD.print(".",106+108+80,338);

976 }

977 else

978 {

979 myGLCD.print(" --- ",106,338);

980 }

981

982 myGLCD.setColor(VGA_WHITE);

983 myGLCD.setBackColor(VGA_BLACK);

984 myGLCD.drawRect(400, 20,799,180-2);

985 myGLCD.print("PREPARE SAMPLE",487,20);

986

987 but_sampstart = myButtons.addButton(400+125, 150-BUTSIZEY, 150, BUTSIZEY, "START");

988

989 myGLCD.setColor(VGA_WHITE);

990 myGLCD.setBackColor(VGA_BLACK);

991 myGLCD.drawRect(400, 180,799,360-2);

992 myGLCD.print("MANUAL CONTROL",487,180);

993

994 myGLCD.print("I2C ADDR:",405,210);

995 myGLCD.setColor(VGA_GRAY);

996 myGLCD.fillRect(405+144, 210,405+144+52,229);

997 myGLCD.setBackColor(VGA_GRAY);

998 myGLCD.setColor(VGA_RED);

999 sprintf(msg,"%d",i2c_adr_tab[channel-1]);

1000 myGLCD.print(msg,405+144+2,210);

1001

1002 but_v1 = myButtons.addButton(400+10, 350-2*BUTSIZEY-10, 75, BUTSIZEY, "");

1003 but_v2 = myButtons.addButton(400+10+75+10, 350-2*BUTSIZEY-10, 75, BUTSIZEY, "");

1004 but_v3 = myButtons.addButton(400+10, 350-BUTSIZEY, 75, BUTSIZEY, "");

1005 but_v4 = myButtons.addButton(400+10+75+10, 350-BUTSIZEY, 75, BUTSIZEY, "");

1006 but_pump = myButtons.addButton(800-150-10, 350-BUTSIZEY, 150, BUTSIZEY, "");

1007 but_reset = myButtons.addButton(800-150-10, 350-2*BUTSIZEY-10, 150, BUTSIZEY, "!RESET!");

1008

1009 draw_keyboard();

1010

1011 myGLCD.setBackColor(VGA_BLUE);

204

1012 myGLCD.setColor(VGA_WHITE);

1013 myGLCD.print("V1",431,249);

1014 myGLCD.print("V2",431+85,249);

1015 myGLCD.print("V3",431,249+60);

1016 myGLCD.print("V4",431+85,249+60);

1017 myGLCD.print("PUMP",720-32,249+60);

1018 }

1019

1020 void recalculate_schedule(uint8_t channel)

1021 {

1022 if(timer_repeates_total[channel-1]==0){

1023 timer_repeates_left[channel-1]=0;

1024 return;

1025 }

1026 calc_next_start(channel);

1027 }

1028

1029 void update_schedule_status(uint8_t channel)

1030 {char msg[30];

1031

1032 myGLCD.setBackColor(VGA_BLACK);

1033 myGLCD.setColor(VGA_WHITE);

1034

1035 sprintf(msg,"%02d",timer_repeates_left[channel-1]);

1036 myGLCD.print(msg,470,300);

1037

1038 if(timer_repeates_left[channel-1] && timer_enables[channel-1]){

1039 sprintf(msg,"%02d",timer_next_start[channel-1].hour);

1040 myGLCD.print(msg,380,330);

1041 sprintf(msg,"%02d",timer_next_start[channel-1].min);

1042 myGLCD.print(msg,380+48,330);

1043 sprintf(msg,"%02d",timer_first_start[channel-1].sec);

1044 myGLCD.print(msg,380+96,330);

1045 sprintf(msg,"%02d",timer_next_start[channel-1].date);

1046 myGLCD.print(msg,604,330);

1047 sprintf(msg,"%02d",timer_next_start[channel-1].mon);

1048 myGLCD.print(msg,604+48,330);

1049 sprintf(msg,"%04d",timer_next_start[channel-1].year);

1050 myGLCD.print(msg,604+96,330);

1051 myGLCD.print(get_name_weekday(wd(timer_next_start[channel-1].year,

1052 timer_next_start[channel-1].mon, timer_next_start[channel-1].date)),540,330);

1053 myGLCD.print(":",412,330);

1054 myGLCD.print(":",412+48,330);

1055 myGLCD.print(".",588+48,330);

1056 myGLCD.print(".",588+96,330);

1057 myGLCD.print(",",588,330);

1058 }

1059 else

1060 {

1061 myGLCD.print("--- ",380,330);

1062 }

1063

1064 }

1065

1066 void medium_change_schedule(uint8_t channel)

1067 {char msg[30];

1068 uint8_t i,tmp,return_home;

1069 int pressed_button;

1070 unsigned long nextUpdate=0;

1071 Time curr_time;

1072

1073 while (myTouch.dataAvailable() == true);

1074

1075 draw_keyboard();

1076

1077 myGLCD.setColor(VGA_BLACK);

1078 myGLCD.fillRect(0, 20,799,360);

1079 myGLCD.setColor(VGA_WHITE);

1080 myGLCD.setBackColor(VGA_BLACK);

1081 myGLCD.drawRect(0, 20,799,360-2);

1082 myGLCD.print("Medium Change scheduler settings:",150,20);

1083 myGLCD.print("Current time: ",20,60);

1084 myGLCD.setBackColor(VGA_BLACK);

1085 myGLCD.setColor(VGA_WHITE);

1086 myGLCD.print(":",272,60);

1087 myGLCD.print(":",272+48,60);

1088 myGLCD.print(".",496,60);

1089 myGLCD.print(".",496+48,60);

1090 myGLCD.setColor(VGA_GRAY);

1091 myGLCD.fillRect(240,58,272,77);

1092 myGLCD.fillRect(288,58,320,77);

1093 myGLCD.fillRect(336,58,368,77);

1094 myGLCD.fillRect(464,58,496,77);

1095 myGLCD.fillRect(512,58,544,77);

1096 myGLCD.fillRect(560,58,624,77);

1097

1098 myGLCD.setColor(VGA_WHITE);

1099 myGLCD.print("First start: ",20,100);

1100 myGLCD.setBackColor(VGA_BLACK);

1101 myGLCD.setColor(VGA_WHITE);

1102 myGLCD.print(":",272,100);

1103 myGLCD.print(":",272+48,100);

1104 myGLCD.print(".",496,100);

1105 myGLCD.print(".",496+48,100);

1106 myGLCD.print(",",448,100);

1107 myGLCD.setColor(VGA_GRAY);

1108 myGLCD.fillRect(240,98,272,117);

1109 myGLCD.fillRect(288,98,320,117);

1110 // myGLCD.fillRect(336,98,368,117);

1111 myGLCD.fillRect(464,98,496,117);

1112 myGLCD.fillRect(512,98,544,117);

1113 myGLCD.fillRect(560,98,624,117);

205

1114

1115 myGLCD.setBackColor(VGA_GRAY);

1116 myGLCD.setColor(VGA_RED);

1117 sprintf(msg,"%02d",timer_first_start[channel-1].hour);

1118 myGLCD.print(msg,240,100);

1119 sprintf(msg,"%02d",timer_first_start[channel-1].min);

1120 myGLCD.print(msg,240+48,100);

1121 sprintf(msg,"%02d",timer_first_start[channel-1].date);

1122 myGLCD.print(msg,240+224,100);

1123 sprintf(msg,"%02d",timer_first_start[channel-1].mon);

1124 myGLCD.print(msg,240+224+48,100);

1125 sprintf(msg,"%04d",timer_first_start[channel-1].year);

1126 myGLCD.print(msg,240+224+96,100);

1127 myGLCD.setBackColor(VGA_BLACK);

1128 myGLCD.setColor(VGA_WHITE);

1129 //sprintf(msg,"%s,",rtc.getDOWStr(FORMAT_SHORT));

1130 myGLCD.print(get_name_weekday(wd(timer_first_start[channel-1].year,

1131 timer_first_start[channel-1].mon, timer_first_start[channel-1].date)),240+160,100);

1132 sprintf(msg,"%02d",timer_first_start[channel-1].sec);

1133 myGLCD.print(msg,240+96,100);

1134

1135 myGLCD.setColor(VGA_WHITE);

1136 myGLCD.print("Change Period: ",20,140);

1137 myGLCD.print("Number of Changes: ",400,140);

1138 myGLCD.setBackColor(VGA_BLACK);

1139 myGLCD.setColor(VGA_WHITE);

1140 myGLCD.print(":",272,140);

1141 myGLCD.setColor(VGA_GRAY);

1142 myGLCD.fillRect(240,138,272,157);

1143 myGLCD.fillRect(288,138,320,157);

1144 myGLCD.fillRect(700,138,700+32,157);

1145 myGLCD.setBackColor(VGA_GRAY);

1146 myGLCD.setColor(VGA_RED);

1147 sprintf(msg,"%02d",timer_intervals_hour[channel-1]);

1148 myGLCD.print(msg,240,140);

1149 sprintf(msg,"%02d",timer_intervals_minutes[channel-1]);

1150 myGLCD.print(msg,240+48,140);

1151 sprintf(msg,"%02d",timer_repeates_total[channel-1]);

1152 myGLCD.print(msg,700,140);

1153

1154 myGLCD.setBackColor(VGA_BLACK);

1155 myGLCD.setColor(VGA_WHITE);

1156

1157 myGLCD.print("Scheduling is switched ",20,220);

1158 but_sched = myButtons.addButton(400, 220-BUTSIZEY/2+8, 75, BUTSIZEY, "");

1159 myButtons.drawButtons();

1160

1161 myGLCD.print("Remaining scheduled starts: ",20,300);

1162 myGLCD.print("Next scheduled start: ",20,330);

1163 myGLCD.print(":",380+32,330);

1164 myGLCD.print(":",380+80,330);

1165 myGLCD.print(",",588,330);

1166 myGLCD.print(".",588+48,330);

1167 myGLCD.print(".",588+96,330);

1168

1169 update_schedule_status(channel);

1170

1171

1172 return_home=0;

1173 while(!return_home){

1174

1175 if (millis() >= nextUpdate){

1176 nextUpdate = millis() + 250; // set up the next timeout period

1177

1178 // Get data from the DS3231

1179 curr_time = rtc.getTime();

1180

1181 myGLCD.setBackColor(VGA_GRAY);

1182 myGLCD.setColor(VGA_RED);

1183 sprintf(msg,"%02d",curr_time.hour);

1184 myGLCD.print(msg,240,60);

1185 sprintf(msg,"%02d",curr_time.min);

1186 myGLCD.print(msg,240+48,60);

1187 sprintf(msg,"%02d",curr_time.sec);

1188 myGLCD.print(msg,240+96,60);

1189 sprintf(msg,"%02d",curr_time.date);

1190 myGLCD.print(msg,240+224,60);

1191 sprintf(msg,"%02d",curr_time.mon);

1192 myGLCD.print(msg,240+224+48,60);

1193 sprintf(msg,"%04d",curr_time.year);

1194 myGLCD.print(msg,240+224+96,60);

1195 myGLCD.setBackColor(VGA_BLACK);

1196 myGLCD.setColor(VGA_WHITE);

1197 sprintf(msg,"%s,",rtc.getDOWStr(FORMAT_SHORT));

1198 myGLCD.print(msg,240+160,60);

1199

1200 myGLCD.setBackColor(VGA_BLUE);

1201 myGLCD.setColor(VGA_WHITE);

1202 if(timer_enables[channel-1]==0) myGLCD.print("OFF",415,220);

1203 else myGLCD.print(" ON ",415-8,220);

1204 recalculate_schedule(channel);

1205 update_schedule_status(channel);

1206 }

1207

1208 if(myTouch.dataAvailable()==true){

1209 check_timer_fields(channel);

1210 pressed_button = myButtons.checkButtons();

1211 if (pressed_button==butBACK){

1212 return_home=1;

1213 }

1214 if (pressed_button==but_sched){nextUpdate = millis();

1215 if(timer_enables[channel-1]) timer_enables[channel-1]=0;

206

1216 else timer_enables[channel-1]=1;

1217 if(EEPROM.read(EE_TENA1+channel-1)!= timer_enables[channel-1])

1218 EEPROM.write(EE_TENA1+channel-1,timer_enables[channel-1]);

1219 }

1220

1221

1222 }

1223 }

1224

1225 while (myTouch.dataAvailable() == true);

1226

1227 myButtons.deleteAllButtons();

1228 draw_brcontrol_controls(channel);

1229 }

1230

1231 void draw_brcontrol(uint8_t channel)

1232 {char msg[24];

1233 uint8_t i,tmp,return_home;

1234 int pressed_button;

1235 static uint8_t valve_states[8]={0,0,0,0,0,0,0,0};

1236 br_status tmpstatus;

1237 char err;

1238 unsigned long nextUpdate=0;

1239

1240 err=get_br_status(channel, &tmpstatus);

1241 if(!err){tmp=1;

1242 for(i=0;i<8;i++){valve_states[i]=0;

1243 if(tmpstatus.valves&tmp) valve_states[i]++;

1244 tmp=tmp<<1;

1245 }

1246 }

1247

1248 draw_brcontrol_controls(channel);

1249

1250 return_home=0;

1251 while(!return_home){

1252

1253 if (millis() >= nextUpdate){

1254 nextUpdate = millis() + 250; // set up the next timeout period

1255 err=get_br_status(channel, &tmpstatus);

1256 if(!err){tmp=1;

1257 for(i=0;i<8;i++){valve_states[i]=0;

1258 if(tmpstatus.valves&tmp) valve_states[i]++;

1259 tmp=tmp<<1;

1260 }

1261 myGLCD.setBackColor(VGA_BLUE);

1262 myGLCD.setColor(VGA_WHITE);

1263 if(!valve_states[BR_V1-1]) myGLCD.print("OFF",431-8,249+16);

1264 else myGLCD.print(" ON ",431-16,249+16);

1265 if(!valve_states[BR_V2-1]) myGLCD.print("OFF",431+85-8,249+16);

1266 else myGLCD.print(" ON ",431+85-16,249+16);

1267 if(!valve_states[BR_V3-1]) myGLCD.print("OFF",431-8,249+60+16);

1268 else myGLCD.print(" ON ",431-16,249+60+16);

1269 if(!valve_states[BR_V4-1]) myGLCD.print("OFF",431+85-8,249+60+16);

1270 else myGLCD.print(" ON ",431+85-16,249+60+16);

1271 if((tmpstatus.flags&0x80)==0) myGLCD.print("OFF",720-24,249+60+16);

1272 else myGLCD.print(" ON ",720-32,249+60+16);

1273 myGLCD.setBackColor(VGA_GRAY);

1274 myGLCD.setColor(VGA_RED);

1275 sprintf(msg,"%d",tmpstatus.perfusion_speed);

1276 myGLCD.print(msg,202,52);

1277 }

1278 }

1279

1280 if(myTouch.dataAvailable()==true){

1281 check_num_fields(channel);

1282 pressed_button = myButtons.checkButtons();

1283 if (pressed_button==butBACK){

1284 return_home=1;

1285 }

1286 else if(pressed_button==but_perstart){

1287 control_perfusion(channel,1);

1288 }

1289 else if(pressed_button==but_perstop){

1290 control_perfusion(channel,0);

1291 }

1292 else if(pressed_button==but_reset){

1293 br_reset(channel);

1294 }

1295 else if(pressed_button==but_v1){

1296 if(!valve_states[BR_V1-1]){valve_states[BR_V1-1]=1;

1297 control_valve(channel,BR_V1,1);

1298 }

1299 else {valve_states[BR_V1-1]=0;

1300 control_valve(channel,BR_V1,0);

1301 }

1302 }

1303 else if(pressed_button==but_v2){

1304 if(!valve_states[BR_V2-1]){valve_states[BR_V2-1]=1;

1305 control_valve(channel,BR_V2,1);

1306 }

1307 else {valve_states[BR_V2-1]=0;

1308 control_valve(channel,BR_V2,0);

1309 }

1310 }

1311 else if(pressed_button==but_v3){

1312 if(!valve_states[BR_V3-1]){valve_states[BR_V3-1]=1;

1313 control_valve(channel,BR_V3,1);

1314 }

1315 else {valve_states[BR_V3-1]=0;

1316 control_valve(channel,BR_V3,0);

1317 }

207

1318 }

1319 else if(pressed_button==but_v4){

1320 if(!valve_states[BR_V4-1]){valve_states[BR_V4-1]=1;

1321 control_valve(channel,BR_V4,1);

1322 }

1323 else {valve_states[BR_V4-1]=0;

1324 control_valve(channel,BR_V4,0);

1325 }

1326 }

1327 else if(pressed_button==but_pump && (!(tmpstatus.flags&0x7F))){

1328 //only in the stanby mode

1329 if((tmpstatus.flags&0x80)==0){

1330 start_pump(channel,medchg_vol_tab[channel-1],medchg_speed_tab[channel-1]);

1331 }

1332 else {

1333 start_pump(channel,1,0); //stop the pump

1334 }

1335 }

1336 else if(pressed_button==but_medstart){

1337 if((tmpstatus.flags&0x06)==0){

1338 //only if not sampling and not changing the medium

1339 medium_change(channel,medchg_vol_tab[channel-1],medchg_speed_tab[channel-1]);

1340 }

1341

1342 }

1343 else if(pressed_button==but_timer){

1344 if(/*(tmpstatus.flags&0x06)==0*/1){

1345 //only if not sampling and not changing the medium

1346 myButtons.deleteAllButtons();

1347 medium_change_schedule(channel);

1348 }

1349

1350 }

1351

1352 }

1353 }

1354

1355 while (myTouch.dataAvailable() == true);

1356

1357 myButtons.deleteAllButtons();

1358 for(i=1;i<9;i++) draw_status(i,0);

1359 }

1360

1361 void medium_change_scheduler(void)

1362 {uint8_t i;

1363

1364 for(i=0; i<8; i++){

1365 if(timer_enables[i]){

1366 if(timer_repeates_left[i] && (is_time_future(i+1, &timer_next_start[i])==0)){

1367 timer_repeates_left[i]--;

1368 medium_change(i+1,medchg_vol_tab[i],medchg_speed_tab[i]);

1369 recalculate_schedule(i+1);

1370 print_global_diag();

1371 }

1372 }

1373 }

1374 }

1375

1376 void print_global_diag(void)

1377 {uint8_t i;

1378 Serial.print("\r\n");

1379 sprintf(diag_msg,"BR unit Connections: %d %d %d %d %d %d %d %d",br_connections[0], \

1380 br_connections[1],br_connections[2],br_connections[3], br_connections[4], \

1381 br_connections[5],br_connections[6],br_connections[7]);

1382 diag_out(diag_msg);

1383 sprintf(diag_msg,"M.E. Timer enabled: %d %d %d %d %d %d %d %d",timer_enables[0], \

1384 timer_enables[1],timer_enables[2],timer_enables[3], timer_enables[4], \

1385 timer_enables[5],timer_enables[6],timer_enables[7]);

1386 diag_out(diag_msg);

1387 sprintf(diag_msg,"M.E. Intervals (hrs): %d %d %d %d %d %d %d %d",timer_intervals_hour[0], \

1388 timer_intervals_hour[1],timer_intervals_hour[2],timer_intervals_hour[3], \

1389 timer_intervals_hour[4],timer_intervals_hour[5],timer_intervals_hour[6], \

1390 timer_intervals_hour[7]);

1391 diag_out(diag_msg);

1392 sprintf(diag_msg,"M.E. Intervals (min): %d %d %d %d %d %d %d %d",timer_intervals_minutes[0], \

1393 timer_intervals_minutes[1],timer_intervals_minutes[2], \

1394 timer_intervals_minutes[3],timer_intervals_minutes[4],timer_intervals_minutes[5], \

1395 timer_intervals_minutes[6],timer_intervals_minutes[7]);

1396 diag_out(diag_msg);

1397 sprintf(diag_msg,"M.E. Repats total: %d %d %d %d %d %d %d %d", timer_repeates_total[0], \

1398 timer_repeates_total[1],timer_repeates_total[2],timer_repeates_total[3],\

1399 timer_repeates_total[4],timer_repeates_total[5],timer_repeates_total[6], \

1400 timer_repeates_total[7]);

1401 diag_out(diag_msg);

1402 sprintf(diag_msg,"M.E. Repats remaining: %d %d %d %d %d %d %d %d",timer_repeates_left[0], \

1403 timer_repeates_left[1],timer_repeates_left[2],timer_repeates_left[3], \

1404 timer_repeates_left[4],timer_repeates_left[5],timer_repeates_left[6], \

1405 timer_repeates_left[7]);

1406 diag_out(diag_msg);

1407

1408 for(i=0;i<8;i++){

1409 sprintf(diag_msg,"BR%d - 1st M.E. start: %d.%d.%d %02d:%02d, NEXT M.E. start: %d.%d.%d %02d:%02d.",i+1, \

1410 timer_first_start[i].date, timer_first_start[i].mon,timer_first_start[i].year, \

1411 timer_first_start[i].hour,timer_first_start[i].min, timer_next_start[i].date, \

1412 timer_next_start[i].mon,timer_next_start[i].year,timer_next_start[i].hour, \

1413 timer_next_start[i].min);

1414 diag_out(diag_msg);

1415 }

1416 Serial.print("\r\n");

1417 }

1418

1419 void diag_out(char* dg_msg)

208

1420 {Time curr_time;

1421 char msg[28];

1422

1423 // Get data from the DS3231

1424 curr_time = rtc.getTime();

1425

1426 sprintf(msg,"\r\n%s,%d.%d. %02d:%02d:%02d> ",rtc.getDOWStr(FORMAT_SHORT),curr_time.date, \

1427 curr_time.mon,curr_time.hour, curr_time.min, curr_time.sec);

1428 Serial.print(msg);

1429 Serial.print(dg_msg);

1430 }

1431

1432 void loop()

1433 {int pressed_button;

1434 static boolean default_colors = true;

1435 static char upd_ch=1;

1436 char i;

1437 static unsigned long nextUpdate=0;

1438 unsigned long timeout=200;

1439 unsigned int glob_diag_timeout=18000; //in "timeout" units (200ms)

1440 static unsigned int glob_diag_timer=0;

1441

1442 if (millis() >= nextUpdate){

1443 nextUpdate = millis() + timeout; // set up the next timeout period

1444 draw_status(upd_ch,1);

1445 upd_ch++;

1446 if(upd_ch>8) upd_ch=1;

1447 medium_change_scheduler();

1448 glob_diag_timer++;

1449 if(glob_diag_timer>=glob_diag_timeout) {glob_diag_timer=0;

1450 print_global_diag();

1451 }

1452 }

1453

1454 if (myTouch.dataAvailable() == true)

1455 {

1456 i=get_selected_ch();

1457 // Serial.print((int)i);

1458 // Serial.print("\n\r");

1459 draw_brcontrol(i);

1460 }

1461

1462

1463 }

1464

209

1 /***\

2 * Controller for BR drivers - HW ver1.0 *

3 *---*

4 * Description : supporting library for BR driver controller *

5 * *

6 *---*

7 * Author : Martin Baca *

8 * Developed : 07.06.2016 Last Update : 29.12.2017 *

9 * Version : 1.2 *

10 *---*

11 * Compiler : arduino *

12 * Source file : BR_lib.h *

13 *---*

14 * Target system : Arduino Mega 2560 board, Rev.3 *

15 * ITDB50 - 5" TFT Display 800x480, *

16 * DS3231 RTC module *

17 * Target CPU : ATmega2560 @16 MHz, UART: 115200,N,8,1 *

18 * Emulator HW : *

19 ***/

20

21 #ifndef _BR_Lib_h

22 #define _BR_Lib_h

23

24 //#include <Arduino.h>

25

26 #define STAT_SIZEX 400

27 #define STAT_SIZEY 120

28

29 #define BR_V1 1

30 #define BR_V2 4

31 #define BR_V3 3

32 #define BR_V4 2

33

34 #define BR_V1_MASK (1<<(BR_V1-1))

35 #define BR_V2_MASK (1<<(BR_V2-1))

36 #define BR_V3_MASK (1<<(BR_V3-1))

37 #define BR_V4_MASK (1<<(BR_V4-1))

38

39 typedef struct {

40 uint8_t flags; //

41 int16_t pump_speed; //

42 uint8_t valves; //

43 uint8_t pump_percent; //

44 uint16_t pump_time2end; //

45 uint8_t total_percent; //

46 uint16_t total_time2end;//

47 uint16_t perfusion_speed;//

48 } br_status;

49

50 extern uint8_t br_connections[];

51

52 void draw_status(uint8_t channel, uint8_t update_mode);

53 uint8_t get_br_status(uint8_t channel, br_status *brstatus);

54 void draw_valve_state(uint16_t posx, uint16_t posy, uint16_t sizex, uint16_t sizey,

55 uint8_t valvenr, uint8_t state, uint8_t update_mode);

56 void send_i2c_msg(uint8_t channel, unsigned char *data);

57

58 #endif

59

210

1 *---*

2 * Description : supporting library for BR driver controller *

3 * *

4 *---*

5 * Author : Martin Baca *

6 * Developed : 07.06.2016 Last Update : 29.12.2017 *

7 * Version : 1.2 *

8 *---*

9 * Compiler : arduino *

10 * Source file : BR_lib.h *

11 *---*

12 * Target system : Arduino Mega 2560 board, Rev.3 *

13 * ITDB50 - 5" TFT Display 800x480, *

14 * DS3231 RTC module *

15 * Target CPU : ATmega2560 @16 MHz, UART: 115200,N,8,1 *

16 * Emulator HW : *

17 ***/

18

19 #include <Wire.h>

20 #include <UTFT.h>

21 #include "BR_Lib.h"

22

23 extern uint8_t SmallFont[];

24 extern uint8_t BigFont[];

25 extern uint8_t Dingbats1_XL[];

26 extern uint8_t i2c_adr_tab[];

27

28 // Remember to change the model parameter to suit your display module!

29 extern UTFT myGLCD;

30

31

32 void send_i2c_msg(uint8_t channel,unsigned char *data)

33 {unsigned char len;

34

35 len=*data++;

36

37 Wire.beginTransmission(channel); // transmit to device

38

39 while(len--){ Wire.write(*data++); // sends one byte

40 }

41 Wire.endTransmission(); // stop transmitting

42

43 }

44

45

46 void draw_progress_bar(uint16_t posx, uint16_t posy, uint16_t sizex, uint16_t sizey,

47 uint8_t percent, uint8_t update_mode)

48 {char pstring[5];

49 uint16_t text_xpos;

50

51 if(percent>100) percent=100;

52 if(!update_mode){

53 myGLCD.setColor(VGA_BLACK);

54 myGLCD.fillRect(posx, posy, posx+sizex, posy+sizey);

55 myGLCD.setColor(VGA_BLUE);

56 myGLCD.drawRect(posx+1, posy+1, posx+sizex-1, posy+sizey-1);

57 }

58 myGLCD.setColor(VGA_BLUE);

59 myGLCD.fillRect(posx+1, posy+1, posx+(((long)sizex*percent)/100)-1, posy+sizey-1);

60

61 myGLCD.setFont(SmallFont);

62 if(percent<51)myGLCD.setBackColor(VGA_BLACK); else myGLCD.setBackColor(VGA_BLUE);

63 myGLCD.setColor(VGA_YELLOW);

64

65 text_xpos=posx+sizex/2-16;

66 if(percent<10) text_xpos+=8;

67 else if(percent<100) text_xpos+=4;

68

69 sprintf(pstring,"%d%%",percent);

70 myGLCD.print(pstring, text_xpos, posy+sizey/2-6);

71 }

72

73 void draw_valve_state(uint16_t posx, uint16_t posy, uint16_t sizex, uint16_t sizey, uint8_t valvenr,

74 uint8_t state, uint8_t update_mode)

75 {char tmp[8];

76 int16_t tmpcolor,tmpx;

77

78 if(valvenr<1 || valvenr>8) return;

79

80 if(!update_mode){

81 myGLCD.setFont(BigFont);

82 myGLCD.setColor(VGA_GRAY);

83 myGLCD.fillRoundRect(posx, posy, posx+sizex, posy+sizey);

84 myGLCD.setColor(VGA_BLUE);

85 myGLCD.drawRoundRect(posx, posy, posx+sizex, posy+sizey);

86 }

87 myGLCD.setFont(BigFont);

88 myGLCD.setBackColor(VGA_GRAY);

89

90 if(!update_mode){

91 sprintf(tmp,"V%d",valvenr);

92 myGLCD.setColor(VGA_BLACK);

93 myGLCD.print(tmp, posx+sizex/2-16, posy+4);

94 }

95

96 tmpcolor=VGA_RED;

97 if(state) tmpcolor=VGA_LIME;

98 myGLCD.setColor(tmpcolor);

99

100 sprintf(tmp,"OFF");

101 tmpx= posx+sizex/2-24;

102 if(state) {sprintf(tmp," ON ");

211

103 tmpx-=8;

104 }

105 myGLCD.print(tmp, tmpx, posy+4+16+8);

106 }

107

108

109 uint8_t get_br_status(uint8_t channel, br_status *brstatus)

110 {uint8_t tmp[16],i;

111 uint32_t timer=200;

112

113 if(channel<1 || channel>8){Serial.print("incorrect channel\n\r"); return(-1);}

114

115 tmp[0]=2;

116 tmp[1]=0x41;

117 tmp[2]='\n';

118 send_i2c_msg(i2c_adr_tab[channel-1],tmp);

119 delay(80);

120 // Serial.print("Requesting....");

121 Wire.requestFrom(i2c_adr_tab[channel-1], (uint8_t) 13); // request 13 bytes from slave device

122 // Serial.print("Done!\r\n");

123 i=0;

124 while (Wire.available()) { // slave may send less than requested

125 tmp[i++] = Wire.read(); // receive a byte as character

126 if(i>13) break;

127 }

128 if(i<11) {//Serial.print("not enough data\n\r");

129 return(-1);

130 }

131 if(tmp[12]!='\n') {//Serial.print("incorrect data\n\r");

132 return(-1);

133 }

134 /*

135 Serial.print(channel);

136 Serial.print("> ");

137 for(i=0;i<13;i++){

138 if (tmp[i] < 16) {Serial.print("0");}

139 Serial.print(tmp[i],HEX);

140 Serial.print(' ');

141 }

142 Serial.print("\n\r");

143 */

144 brstatus->flags=tmp[0];

145 brstatus->pump_speed=(tmp[1]<<8)+tmp[2];

146 brstatus->valves=tmp[3];

147 brstatus->pump_percent=tmp[4];

148 brstatus->pump_time2end=(tmp[5]<<8)+tmp[6];

149 brstatus->total_percent=tmp[7];

150 brstatus->total_time2end=(tmp[8]<<8)+tmp[9];

151 brstatus->perfusion_speed=(tmp[10]<<8)+tmp[11];

152 return(0);

153 }

154

155

156 void draw_status(uint8_t channel, uint8_t update_mode)

157 {char msg[26];

158 uint16_t posx,posy;

159 uint16_t sizex=STAT_SIZEX;

160 uint16_t sizey=STAT_SIZEY;

161 br_status tmpstatus;

162 char err,tmp;

163

164

165 if(channel<1 || channel>8) return;

166

167 posx=0;

168 if(channel>4) posx+=sizex;

169 posy=((channel-1)%4)*sizey;

170

171

172 err=get_br_status(channel, &tmpstatus);

173 if(!err) tmp=1; else tmp=0;

174 if(br_connections[channel-1]!=tmp){br_connections[channel-1]=tmp; update_mode=0;}

175

176 if(!update_mode){

177 myGLCD.setColor(VGA_BLACK);

178 myGLCD.fillRect(posx, posy,posx+sizex-1,posy+sizey-1);

179 myGLCD.setColor(VGA_WHITE);

180 myGLCD.drawRect(posx+1, posy+1,posx+sizex-2,posy+sizey-2);

181

182 myGLCD.setFont(BigFont);

183 myGLCD.setBackColor(VGA_BLACK);

184 myGLCD.setColor(VGA_YELLOW);

185 sprintf(msg,"BR Unit NR.%d - ",channel);

186 if(!err) sprintf(msg+15,"Connected");

187 else sprintf(msg+15,"Offline");

188

189 myGLCD.print(msg,posx+4,posy+3);

190 }

191 if(err) return;

192

193 myGLCD.setFont(BigFont);

194 myGLCD.setBackColor(VGA_BLACK);

195 myGLCD.setColor(VGA_WHITE);

196 if(!tmpstatus.flags) sprintf(msg,"Standby ");

197 else if(tmpstatus.flags&0x04) sprintf(msg,"Changing Medium ");

198 else if(tmpstatus.flags&0x02) sprintf(msg,"Preparing Sample ");

199 else if(tmpstatus.flags&0x01) sprintf(msg,"Perfusion / Incubation");

200 else if(tmpstatus.flags&0x80) sprintf(msg,"Manual Pump Control ");

201 myGLCD.print(msg, posx+4,posy+sizey-1-16-4-18);

202

203 if(tmpstatus.flags&0x06 || tmpstatus.flags==0x80){

204 draw_progress_bar(posx+4,posy+sizey-1-16-4,sizex-104-16,16,tmpstatus.total_percent, update_mode);

212

205 myGLCD.setFont(SmallFont);

206 myGLCD.setBackColor(VGA_BLACK);

207 myGLCD.setColor(VGA_YELLOW);

208 sprintf(msg,"End in:%dmin",tmpstatus.total_time2end/60);

209 myGLCD.print(msg, posx+sizex-1-4-104, posy+sizey-1-4-12);

210 }

211 else{

212 myGLCD.setColor(VGA_BLACK);

213 myGLCD.fillRoundRect(posx+4,posy+sizey-1-16-4,posx+sizex-4,posy+sizey-1-16-4+16);

214 }

215

216 if(!update_mode){

217 myGLCD.setFont(BigFont);

218 myGLCD.setColor(VGA_GRAY);

219 myGLCD.fillRoundRect(posx+8, posy+24, posx+4+80, posy+24+50);

220 myGLCD.setColor(VGA_BLUE);

221 myGLCD.drawRoundRect(posx+8, posy+24, posx+4+80, posy+24+50);

222 myGLCD.setBackColor(VGA_GRAY);

223 myGLCD.setColor(VGA_BLACK);

224 myGLCD.print("PUMP", posx+8+8,posy+24+4);

225 }

226 myGLCD.setBackColor(VGA_GRAY);

227 myGLCD.setColor(VGA_BLACK);

228 if(tmpstatus.flags&0x80) sprintf(msg,"%dul/min",tmpstatus.pump_speed);

229 else sprintf(msg," STOPPED");

230 myGLCD.setFont(SmallFont);

231 myGLCD.print(msg, posx+8+4, posy+24+4+12+12);

232

233

234 draw_valve_state(posx+8+80+10, posy+24, 70, 50, 1, tmpstatus.valves & BR_V1_MASK, update_mode);

235 draw_valve_state(posx+8+80+10+75, posy+24, 70, 50, 2, tmpstatus.valves & BR_V2_MASK, update_mode);

236 draw_valve_state(posx+8+80+10+2*75, posy+24, 70, 50, 3, tmpstatus.valves & BR_V3_MASK, update_mode);

237 draw_valve_state(posx+8+80+10+3*75, posy+24, 70, 50, 4, tmpstatus.valves & BR_V4_MASK, update_mode);

238 }

213

Acknowledgment

I would like to thank to my advisor Prof. Dr. Andreas Schober for providing me a great

opportunity to join the nano-biosystem technology research group. I am grateful for open

and friendly research environment and for allowing me to make my contribution to this

multidisciplinary research field.

Particular gratitude is expressed to Dr. Dana Brauer. Without her help and engagement

in overcoming many biology challenges this work would not succeed.

Additionally, I would like to thank to Dr. Sukhdeep Singh for advising me in the field of

chemistry and biochemistry and great suggestions during publishing of this work.

This work could not have been possible without the contribution from other members of

the nano-biosystem technology group. I am very grateful to Jörg Hampl and Frank Weise

for technical support with the bioreactors and fruitful discussions to solve technical

challenges. Further, I would like to thank to Dr. Alexander Groß for performing the HPLC

measurements. Particular thanks go to Maren Klett for her relentless help and assistance

during cell culture experiments. I am very thankful to Dr. Adam Williamson for his

precious advices and help during writing the thesis.

Special thanks to Dr. Michael Gebinoga and Maria Gebinoga for their unceasing support

and encouragement for me and my family during our time in Ilmenau.

Last but not the least, I want to thank to my family. Especially to my wife Jana for her

love and supportive home environment and also to my parents for their unwavering love

and prayers.

My sincere gratitude to all of you for your support!

214

