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Abstract

We use the recently introduced Weyr characteristic of linear relations in Cn

and its relation with the Kronecker canonical form of matrix pencils to describe
their dimension. Then, this is applied to study one-dimensional perturbations
of linear relations.
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1. Introduction

Linear relations are a natural generalization of linear operators and they can
be traced back to [1], see also [7]. Linear relations in Cn are nothing else than
(linear) subspaces of Cn × Cn, but there is a well developed spectral theory
behind them which is mainly expressed in terms of (proper) eigenvalues, Jordan
and singular chains, and multishifts, see [1, 7, 4, 5, 6, 11].

Recently, the notion of the Weyr characteristics for a linear relation were
introduced, both as a tool for developing a canonical form for linear relations in
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finite dimensional vector spaces [6] and also to relate the Kronecker invariants
of a matrix pencil with the invariants of its kernel and range representations
[11]. Given a matrix pencil P (s) = sE−F ∈ C[s]n×m, its kernel representation
is defined by E−1F := N(

[
F −E

]
) ⊆ Cm × Cm, where N(X) stands for

the kernel of a matrix X. Analogously, its range representation is given by

FE−1 = R

([
E
F

])
⊆ Cn × Cn, where R(X) stands for the range of a matrix

X.
We show that the Weyr characteristics of the kernel and range representa-

tions of a pencil P (s) can be recovered from the Weyr characteristic of P (s).
Conversely, given a linear relation S, it is possible to find matrix pencils of dif-
ferent sizes whose range or kernel representations are S. We also show that the
dimension d = dimS is the minimal number of columns of a pencil necessary to
describe S as the range representation of it. Also, the minimal number of rows
necessary to describe S as the kernel representation of a matrix pencil is 2n−d.
Hence, from the Weyr characteristic of the linear relation we are able to recover
the Weyr characteristic of the pencil, which depends on the size of the chosen
pencil.

Moreover, in [11] new perturbation results for the Kronecker form of matrix
pencils under rank-one perturbations were derived from perturbation results for
the Weyr characteristic of linear relations given in [12].

The main goal of this paper is to use this relationship one more time, but
in the opposite direction. Now, given linear relations S and T in Cn, we would
like to determine if there exist linear relations S̃, T̃ ∈ Cn×Cn which are strictly
equivalent to S and T , respectively, and such that S̃ and T̃ are one dimensional
perturbations of each other in the sense of [11]. To do so, we make use of recent
results from [2, 3] and [9].

The paper is organized as follows. Section 2 is devoted to preliminaries. In
Section 3 we present some properties of linear relations, mainly of the kernel
and range representations of matrix pencils. In Section 4 we state the problem
to be studied, and we relate it to a matrix pencil completion problem. Section
5 contains some known results about matrix pencil completion problems which
are used later, and we show that they can be stated in terms of the Weyr char-
acteristics of the pencils involved. In Section 6 we obtain necessary conditions
to solve the problem, and in Section 4 we solve the problem completely. Finally,
in the Appendix we include some technical results.

2. Preliminaries

Let C be the field of complex numbers, and C̄ the extended field C̄ = C∪{∞}.
C[s] denotes the ring of polynomials in the indeterminate s with coefficients in
C, Cn×m is the vector spaces of n × m matrices over C, and C[s]n×m is the
bimodule of n×m matrices over C[s], respectively. Gln(C) is the general linear
group of invertible matrices in Cn×n.

Given a matrix X ∈ Cn×m, R(X) ⊆ Cn is the subspace spanned by the
columns of S and N(X) ⊆ Cm is the kernel of X.
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We call partition to a finite or infinite sequence of nonnegative integers
a = (a1, a2, . . .), almost all being zero, such that a1 ≥ a2 ≥ . . .. The num-
ber of nonzero components of a is the length of a (denoted ℓ(a)) and |a| is
the sum of the components of a, i.e., |a| =

∑ℓ(a)
i=1 ai. Given a finite parti-

tion a = (a1, a2, . . . , an), if necessary, we take ai = 0 if i > n. We iden-
tify two partitions that differ only in the number of zero components. The
conjugate of a partition a = (a1, a2, . . .) is the partition ā = (ā1, ā2, . . .), where
āk := #{i : ai ≥ k}, k ≥ 1.

We will also work with finite sequences of integers c = (c1, c2, . . . , cm) such
that c1 ≥ c2 ≥ . . . ≥ cm. When necessary, we take ci = +∞ if i < 1 and
ci = −∞ if i > m. Observe that a finite sequence has a fixed number of
components. As before, |c| =

∑m
i=1 ci. All along this paper, the sequences

of integers involved have nonnegative components. The conjugate of a finite
sequence of nonnegative integers c = (c1, . . . , cm) is the conjugate partition
of the partition c = (c1, . . . , cm, 0, . . . ). When necessary, we define the term
c̄0 = #{i : ci ≥ 0} = m.

A polynomial matrix of the form P (s) = sE − F , E,F ∈ Cn×m, is a
matrix pencil. For basic notions on matrix pencils we refer to [10, Chapter
XII]. Two matrix pencils P1(s) = sE1 − F1 and P2(s) = sE2 − F2 in C[s]n×m

are strictly equivalent, denoted P1(s)
s.e.∼ P2(s), if there exist invertible matrices

U ∈ Gln(C), V ∈ Glm(C), such that P2(s) = UP1(s)V .
Given a matrix pencil P (s) ∈ C[s]n×m, the normal rank of P (s), denoted

rank(P (s)), is the order of the largest nonidentically zero minor of P (s), i.e.,
it is the rank of P (s) considered as a matrix on the field of fractions of C[s].
The spectrum of the pencil P (s) = sE − F , denoted Λ(P (s)), is defined as
Λ(P (s)) = {λ ∈ C̄ : rank(P (λ)) < rank(P (s))}, where we agree that P (∞) = E.
The elements λ ∈ Λ(P (s)) are the eigenvalues of P (s). If rank(P (s)) = r and
Λ(P (s)) = {λ1, . . . , λℓ}, then the Kronecker invariants of P (s) are ℓ partitions
n(λi) = (n1(λi), n2(λi), . . . ), where n(λi) is the Segre characteristic at λi of P (s)
and ℓ(n(λi)) ≤ r, and two sequences of nonnegative integers, ϵ = (ϵ1, . . . , ϵm−r),
η = (η1, . . . , ηn−r), called column minimal indices and row minimal indices of
P (s), respectively. They satisfy:

ℓ∑
i=1

|n(λi)|+ |ϵ|+ |η| = r. (1)

For λ ∈ C̄ \ Λ(P (s)) we define n(λ) = (0, 0, . . . ).
The homogeneous invariant factors of P (s) are homogeneous polynomials in

the indeterminate s and t, ϕ1(s, t) | · · · | ϕr(s, t), that collect the information of
the finite and infinite eigenvalues. They are defined as

ϕj(s, t) = tnr−j+1(∞)
∏

λ∈Λ(P (s))\{∞}

(s− λt)nr−j+1(λ), 1 ≤ j ≤ r.

As usual, we take ϕj(s, t) = 1 for j < 1, and ϕj(s, t) = 0 for j > r.
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Following the notation of [11], we define the sequences of nonnegative inte-
gers α, β, γ as

α = n(∞), β = (ϵ1 + 1, . . . , ϵm−r + 1), γ = (η1 + 1, . . . , ηn−r + 1).

The Weyr characteristic of P (s) is (w, b, c), where w = (w(λ1), . . . , w(λℓ))
and w(λi) is the conjugate partition of n(λi), 1 ≤ i ≤ ℓ, b = (b1, b2, . . .) is the
conjugate partition of β, and c = (c1, c2, . . .) is the conjugate partition of γ (see
[11, Definition 4.1]). Notice that (1) is equivalent to

ℓ∑
i=1

|w(λi)|+ (|b| − b1) + (|c| − c1) = r. (2)

We denote |w| =
∑ℓ

i=1 w(λi), and for λ ∈ C̄ \ Λ(P (s)) we define w(λ) =
(0, 0, . . . ).

Two matrix pencils P1(s) and P2(s) are strictly equivalent if and only if
their Weyr characteristics (equivalently, their Kronecker invariants) coincide
([10, Chapter XII, Theorem 5]). A canonical form for the strict equivalence of
matrix pencils is the Kronecker canonical form. It is a matrix pencil of the form

Pc(s) = sEc − Fc =


sIn0

− J0 O O O
O sNα − I|α| O O
O O sKβ − Lβ O

O O O sKT
γ − LT

γ

 , (3)

where n0 =
∑

λ∈Λ(P (s))∩C |n(λ)| and J0 is a diagonal of Jordan blocks, Nα =

diag(Nα1 , . . . , Nαw1(∞)
) (observe that α1 ≥ · · · ≥ αw1(∞) > 0 = αw1(∞)+1 =

. . . ) and

Nk =


0

1
. . .

. . .
. . .

1 0

 ∈ Ck×k,

Kβ =
[
diag(Kβ1 , . . . ,Kβb2

) O(|β|−b1)×(b1−b2)

]
, KT

γ =

[
diag(KT

γ1
, . . . ,KT

γc2
)

O(c1−c2)×(|γ|−c1)

]
,

Lβ =
[
diag(Lβ1 , . . . , Lβb2

) O(|β|−b1)×(b1−b2)

]
, LT

γ =

[
diag(LT

γ1
, . . . , LT

γc2
)

O(c1−c2)×(|γ|−c1)

]
,

and for k > 1,

Kk =


1 0

. . .
. . .

. . .
. . .

1 0

 , Lk =


0 1

. . .
. . .

. . .
. . .

0 1

 ∈ C(k−1)×k.
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Observe that b1 is the number of column minimal indices, i.e., b1 = m− r, and
b1 − b2 is the number of column minimal indices equal to 0, i.e., b1 − b2 = #{i :
βi = 1}. Analogously, c1 = n− r, and c1 − c2 = #{i : γi = 1}.

A linear relation S in Cn is a vector subspace of Cn×Cn. A matrixX ∈ Cn×n

can be identified with a linear relation in Cn via its graph Γ(X) := {(x,Xx) :
x ∈ Cn}. For basic notions and properties of linear relations we refer to [1, 15].

Two linear relations S and T are strictly equivalent, denoted S
s.e.∼ T , if there

exists P ∈ Gln(C) such that

T =

[
P 0
0 P

]
S.

The set of proper eigenvalues of a linear relation S (see [11, Section 2] for the
definition) will be denoted by Λ(S). Let Λ(S)∩C = {λ1, . . . , λℓ}, then the Weyr
characteristic of S consists of ℓ + 3 partitions W (λ1), . . . ,W (λℓ), A, B, and C
(for details see [11, Definitions 3.1 and 3.2]). In this work we put A = W (∞),
thus, the Weyr characteristics of S will be denoted by (W,B,C). We denote

| W |=
∑ℓ

i=1 | W (λi) |, and for λ ∈ C̄ \ Λ(S) we define W (λ) = (0, 0, . . . ).
Two linear relations S and T are strictly equivalent if and only if their Weyr

characteristics coincide ([11, Theorem 5.4]).

3. Linear relations and their dimension

In this section we show that there exists a close relationship between linear
relations and matrix pencils, and we analyze how the corresponding Weyr char-
acteristics are related. We must introduce some notions about linear relations.

The product of two linear relations S1 and S2 in Cn is the linear relation in
Cn defined by

S1S2 = {(x, z) : ∃ y ∈ Cn such that (y, z) ∈ S1 and (x, y) ∈ S2}.

The inverse of a linear relation S in Cn is the linear relation S−1 in Cn defined
by

S−1 = {(y, x) ∈ Cn × Cn : (x, y) ∈ S}.

Also, the adjoint of S is the linear relation S∗ in Cn given by

S∗ = {(u, v) ∈ Cn × Cn : ⟨x , v ⟩ = ⟨ y , u ⟩ for every (x, y) ∈ S}.

Geometrically, the adjoint of S can be described as S∗ = −S⊥ = (−S)⊥, where
−S = {(x,−y) : (x, y) ∈ S}, see [14].

Given a matrix pencil P (s) = sE − F ∈ C[s]n×m, the range and the kernel
representations of P (s) are the linear relations

FE−1 = R

([
E
F

])
⊆ Cn × Cn and E−1F = N

([
F −E

])
⊆ Cm × Cm,
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respectively, see [11]. Then,

dimFE−1 = rank

([
E
F

])
and dimE−1F = 2m− rank

([
F −E

])
.

Remark 3.1. Given P (s) = sE − F ∈ C[s]n×m, define P ∗(s) := sE∗ − F ∗ ∈
C[s]m×n. Then,

(FE−1)∗ = (F ∗)−1E∗ and (E−1F )∗ = F ∗(E∗)−1,

i.e. the adjoint of the range representation of P (s) is the kernel representa-
tion of P ∗(s) and the adjoint of the kernel representation of P (s) is the range
representation of P ∗(s).

In the next remark we analyze when two pencils have the same range or
the same kernel representation. Also, we show that given a pencil, there exists
another one having the same range (kernel) representation and minimal number
of columns (rows).

Remark 3.2. Given two pencils P (s) = sE−F, P̄ (s) = sĒ−F̄ ∈ C[s]n×m, then
FE−1 = F̄ Ē−1 if and only if there exists an invertible matrix V ∈ Glm(C) such

that

[
E
F

]
V =

[
Ē
F̄

]
, equivalently, P̄ (s) = P (s)V . Moreover, if dimFE−1 =

d, V ∈ Glm(C) can be chosen such that

[
E
F

]
V =

[
E1 O
F1 O

]
, where

[
E1

F1

]
∈

C(n+n)×d has full (column) rank. Hence, P1(s) = sE1 − F1 ∈ C[s]n×d has the
same range representation as P (s), i.e. F1E

−1
1 = FE−1, and minimal number

of columns.

Analogously, E−1F = Ē−1F̄ if and only if there exists U ∈ Gln(C) such that
U
[
F −E

]
=

[
F̄ −Ē

]
, equivalently, P̄ (s) = UP (s). If dimFE−1 = 2m − r

then U ∈ Gln(C) can be chosen such that U
[
F −E

]
=

[
F1 −E1

O O

]
, where[

F1 −E1

]
∈ Cr×(m+m) has full (row) rank. Hence, P1(s) = sE1 − F1 ∈

C[s]r×m has the same kernel representation as P (s), i.e. E−1
1 F1 = E−1F .

Lemma 3.3 ([4, Theorem 3.3]). Let S be a linear relation in Cn with dimS = d.

Then there exists a pencil P (s) = sE−F ∈ C[s]n×d with rank

([
E
F

])
= d such

that S = FE−1.
Moreover, for r = 2n−d there exists a pencil Q(s) = sG−H ∈ C[s]r×n with

rank(
[
H −G

]
) = r such that S = G−1H.

Lemma 3.4. Given matrix pencils P (s) = sE − F, P̄ (s) = sĒ − F̄ ∈ C[s]n×m,
let S = N(

[
F −E

]
), S̄ = N(

[
F̄ −Ē

]
) be their kernel representations. Then,

P (s)
s.e.∼ P̄ (s) ⇔ S

s.e.∼ S̄.
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Proof. If the matrix pencils are strictly equivalent, the strict equivalence of their
kernel representations follows from [11, Proposition 4.3].

Conversely, if S
s.e.∼ S̄ then there exists T ∈ Glm(C) such that S̄ =

[
T O
O T

]
·

S. Therefore,

S̄ = {(Tx1, T y1) : (x1, y1) ∈ S} = {(Tx1, Ty1) : Fx1 = Ey1}
= {(x2, y2) : FT−1x2 = ET−1y2} = N

([
FT−1 −ET−1

])
= (ET−1)−1(FT−1).

Now, let P ′(s) = P (s)T−1 = sET−1−FT−1. Since Ē−1F̄ = (ET−1)−1(FT−1),
by Remark 3.2 there exists U ∈ Gln(C) such that P ′(s) = UP̄ (s). Hence,
P (s) = UP̄ (s)T .

The following result for range representations can be proved similarly.

Lemma 3.5. Given matrix pencils P (s) = sE − F, P̄ (s) = sĒ − F̄ ∈ C[s]n×m,
let S = FE−1, S̄ = F̄ Ē−1 be their range representations. Then,

P (s)
s.e.∼ P̄ (s) ⇔ S

s.e.∼ S̄.

In the next lemma we calculate the dimensions of the range and kernel
representations of a given pencil.

Lemma 3.6. Let P (s) = sE − F ∈ C[s]n×m be a matrix pencil with Weyr
characteristic (w, b, c). Then,

dimFE−1 = m− b1 + b2, dimE−1F = 2m− n+ c1 − c2.

Proof. Since P (s)
s.e.∼ Pc(s), where Pc(s) = sEc − Fc is its Kronecker canonical

form (3), by Lemmas 3.4 and 3.5, we have that E−1F
s.e.∼ E−1

c Fc and FE−1 s.e.∼
FcE

−1
c . Then, dimE−1F = dimE−1

c Fc and dimFE−1 = dimFcE
−1
c .

It is easy to see that rank

[
Kβ

Lβ

]
= |β| − b1 + b2 and rank

[
KT

γ

LT
γ

]
= |γ| − c1.

Hence,

dimFE−1 = rank

[
Ec

Fc

]
= rank

[
In0

J0

]
+ rank

[
Nα

I|α|

]
+ rank

[
Kβ

Lβ

]
+ rank

[
KT

γ

LT
γ

]
= n0 + |α|+ |β|+ |γ| − c1 − b1 + b2 = m− b1 + b2.

Analogously, rank
[
Lβ −Kβ

]
= |β| − b1 and rank

[
LT
γ −KT

γ

]
= |γ| − c1 + c2,

meanwhile
[
J0 −In0

]
and

[
I|α| −Nα

]
have full rank. Therefore,

rank
[
Fc −Ec

]
= n0 + |α|+ |β| − b1 + |γ| − c1 + c2,

and

dimE−1F = 2m− rank
[
Fc −Ec

]
= 2m− (n0 + |α|+ |β| − b1 + |γ| − c1 + c2)

= 2m− n+ c1 − c2.
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As an immediate consequence of Lemma 3.6, we obtain

dimFE−1 = m ⇔ b1 = b2,

and
dimE−1F = 2m− n ⇔ c1 = c2.

In [11] the relationship between the eigenvalues and the Weyr characteristic
of a matrix pencil and those of its kernel and range representations was obtained.
We state those results adapting the notation to the one used in this work.

Lemma 3.7 ([11, Proposition 4.2]). Let P (s) = sE−F ∈ C[s]n×m be a matrix
pencil, then

Λ(P (s)) = Λ(E−1F ) = Λ(FE−1).

Lemma 3.8 ([11, Theorem 5.1]). Let P (s) = sE − F ∈ C[s]n×m be a matrix
pencil with Weyr characteristic (w, b, c). If (W,B,C) is the Weyr characteristic
of the kernel representation E−1F , then W = w, B = b, and if c = (c1, c2, . . . , ),
then C = (c3, c4, . . . ).

Lemma 3.9 ([11, Proposition 5.2]). Let S be a linear relation in Cm with Weyr
characteristic (W,B,C), where C = (C1, C2, . . . ). If S is the kernel representa-
tion of a pencil P (s) = sE−F ∈ C[s]n×m, then the Weyr characteristic (w, b, c)
of P (s) is given by w = W , b = B, and c = (n − m + B1,m − |W | − |B| −
|C|, C1, C2, . . . ).

Lemma 3.10 ([11, Theorem 6.1]). Let P (s) = sE − F ∈ C[s]n×m be a matrix
pencil with Weyr characteristic (w, b, c). If (W,B,C) is the Weyr characteristic
of the range representation FE−1, then W = w, and if b = (b1, b2, . . . , ) and
c = (c1, c2, . . . , ), then B = (b2, b3, . . . ) and C = (c2, c3, . . . ).

Lemma 3.11 ([11, Proposition 6.2]). Let S be a linear relation in Cm with
Weyr characteristic (W,B,C), where B = (B1, B2, . . . ) and C = (C1, C2, . . . ).
If S is the range representation of a pencil P (s) = sE − F ∈ C[s]n×m, then the
Weyr characteristic (w, b, c) of P (s) is given by w = W , b = (m− |W | − |B| −
|C|, B1, B2, . . . ) and c = (n− |W | − |B| − |C|, C1, C2, . . . ).

Notice that given a matrix pencil P (s) = sE − F ∈ C[s]n×m with Weyr
characteristic (w, b, c), and (Wk, Bk, Ck) and (Wr, Br, Cr) as Weyr characteris-
tics of its kernel E−1F ⊆ Cm×Cm and range representations FE−1 ⊆ Cn×Cn,
respectively, by (2) and Lemmas 3.6, 3.9 and 3.11 we obtain

rank(P (s)) = |Wk|+ |Bk| −Bk,1 + |Ck|+ c2 = |Wr|+ |Br|+ |Cr|, (4)

dimE−1F = 2m− n+ c1 − c2 = |Wk|+ |Bk|+ |Ck|+Bk,1 and

dimFE−1 = m− b1 + b2 = |Wr|+ |Br|+ |Cr|+Br,1.

Lemma 3.12. Given an integer n ≥ 0, a finite subset {λ1, . . . , λℓ} ⊂ C̄, two
partitions B = (B1, B2, . . . ), C = (C1, C2, . . . ), and a collection of partitions
W = (W (λ1), . . . ,W (λℓ)), where W (λi) = (W1(λi),W2(λi), . . . ), 1 ≤ i ≤ ℓ,
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there exists a linear relation S ⊆ Cn × Cn with Weyr characteristic (W,B,C)
if and only if

n− (|W |+ |B|+ |C|) ≥ C1.

Proof. Assume that (W,B,C) is the Weyr characteristic of a linear relation
S ⊆ Cn×Cn and denote d = dimS. By Lemma 3.3, there exists a pencil P (s) =
sE − F ∈ F[s]n×d such that S = FE−1. Let (w, b, c) the Weyr characteristic of
P (s). Then by Lemma 3.10, w = W , b = (b1, B1, B2, . . . ), c = (c1, C1, C2, . . . ),
and by (4) we have rank(P (s)) = |W |+ |B|+ |C| and

C1 = c2 ≤ c1 = n− rank(P (s)) = n− (|W |+ |B|+ |C|).

Conversely, assume that n − (|W | + |B| + |C|) ≥ C1. Define w = W , b =
(B1, B1, B2, . . . ), c = (n−(|W |+|B|+|C|), C1, C2, . . . ) and let P (s) = sE−F be
a pencil with Weyr characteristic (w, b, c) (for instance, the Kronecker canonical
form with Weyr characteristic (w, b, c)). Note that

rank(P (s)) = |w|+ (|b| − b1) + (|c| − c1) = |W |+ |B|+ |C|.

The number of rows of P (s) is given by c1 + rank(P (s)) = n − (|W | + |B| +
|C|) + rank(P (s)) = n. Hence, S := FE−1 is a linear relation in Cn and, by
Lemma 3.10, its Weyr characteristic is (W,B,C).

Remark 3.13. The above lemma can also be proved using the kernel represen-
tation of a matrix pencil and Lemma 3.8. We omit the details.

4. Rank one perturbation of linear relations

Given two linear relations S and T in a vector space X, we define

r(S, T ) = max

{
dim

S

S ∩ T
, dim

T

S ∩ T

}
.

Notice that r(S, T ) ≥ 0, and r(S, T ) = 0 if and only if S = T . Also, r(S, T ) can
be alternatively calculated as

r(S, T ) = max

{
dim

S + T

T
, dim

S + T

S

}
.

Using this notation we can state the low rank perturbation problem for linear
relations in Cn as follows:

Problem 4.1. (low rank perturbation for linear relations). Given two linear
relations S, T ⊆ Cn × Cn and a nonnegative integer r, find necessary and suf-
ficient conditions for the existence of linear relations S̄, T̄ ⊆ Cn × Cn, such
that

S̄
s.e.∼ S, T̄

s.e.∼ T and r(S̄, T̄ ) ≤ r.

9



Remark 4.2. If S
s.e.∼ T , then Problem 4.1 is trivial. Taking S̄ = T̄ = T we

have S̄
s.e.∼ S, T̄

s.e.∼ T and r(S̄, T̄ ) = r(T, T ) = 0 ≤ r.

Given a pair of linear relations S and T in Cn, to solve Problem 4.1 we will
represent them as range or kernel representations of a pair of suitable matrix
pencils with n rows or n columns, respectively. We start analyzing the case
when one of the linear relations contains the other one and the difference of
their dimensions is r.

Lemma 4.3. Given two linear relations S and U in Cn, assume that U ⊆ S.
Denote d = dimS, g = dimU and m = 2n − g = dimU⊥. Let r ≥ 1 be an
integer. The following statements are equivalent:

(i) dim S
U = r.

(ii) There exist pencils P (s) = sE − F ∈ C[s]n×d, P1(s) = sE1 − F1 ∈
C[s]n×(d−r) and P2(s) = sE2 − F2 ∈ C[s]n×r such that

P (s) =
[
P1(s) P2(s)

]
, FE−1 = S and F1E

−1
1 = U.

(iii) There exist pencils Q(s) = sG − H ∈ C[s]m×n, Q1(s) = sG1 − H1 ∈
C[s](m−r)×n and Q2(s) = sG2 −H2 ∈ C[s]r×n such that

Q(s) =

[
Q1(s)
Q2(s)

]
, G−1

1 H1 = S and G−1H = U.

Proof. Assume that (i) holds. Then g = dimU = d − r. By Lemma 3.3 there

exists a pencil P1(s) = sE1 − F1 ∈ C[s]n×(d−r) such that rank

[
E1

F1

]
= d − r

and F1E
−1
1 = U . Note that the columns of

[
E1

F1

]
form a basis of U ⊂ S.

Let {(e1, f1), . . . , (er, fr)} be a basis for a subspace V ⊂ S such that S =
U ∔ V , and let E2, F2 ∈ Cn×r be the matrices whose columns are {e1, . . . , er}
and {f1, . . . , fr}, respectively. Then, defining P2(s) := sE2 − F2 and P (s) :=[
P1(s) P2(s)

]
= sE − F , it is immediate that FE−1 = R

([
E1 E2

F1 F2

])
=

U ∔ V = S, which proves (ii).

Conversely, assume that (ii) holds. Then, d = dimS = dimR

([
E
F

])
=

dimR

([
E1 E2

F1 F2

])
. Hence, both

[
E
F

]
and

[
E1

F1

]
have full (column) rank.

Therefore, g = dimU = dimR

([
E1

F1

])
= d − r, or equivalently, dim S

U = r.

This completes the proof of the equivalence (i) ⇔ (ii).
The equivalence (i) ⇔ (iii) is obtained applying the above case to the in-

clusion S⊥ ⊂ U⊥, i.e., dim U⊥

S⊥ = r if and only if there exist pencils Q∗(s) =

sG∗−H∗ ∈ C[s]n×m, Q∗
1(s) = sG∗

1−H∗
1 ∈ C[s]n×(m−r) and Q∗

2(s) = sG∗
2−H∗

2 ∈

10



C[s]n×r such that Q∗(s) =
[
Q∗

1(s) Q∗
2(s)

]
, H∗(G∗)−1 = U⊥ and H∗

1 (G
∗
1)

−1 =
S⊥. Moreover, H∗(G∗)−1 = U⊥ if and only if G−1H = U , and H∗

1 (G
∗
1)

−1 = S⊥

if and only if G−1
1 H1 = S.

The main objective of this work is to characterize the Weyr characteristics
of two linear relations S and T such that r(S, T ) ≤ 1, i.e. to give a solution to
Problem 4.1 for r = 1. As mentioned, we deal with linear relations as kernel or
range representations of appropriate pencils. Note that every rank one matrix
pencil in C[s]n×m can be written in one of the following ways:

(su− v)w∗, (0, 0) ̸= (u, v) ∈ Cn × Cn, 0 ̸= w ∈ Cm, (5)

or
w(su∗ − v∗), (0, 0) ̸= (u, v) ∈ Cm × Cm, 0 ̸= w ∈ Cn. (6)

In [11] we have the following result.

Lemma 4.4 ([11, Lemma 7.3]). Let P (s) = sE−F, P̄ (s) = sĒ− F̄ ∈ C[s]n×m,

(a) If P̄ (s)− P (s) is a rank one matrix as in (5), then r(FE−1, F̄ Ē−1) ≤ 1.

(b) If P̄ (s)− P (s) is a rank one matrix as in (6), then r(E−1F, Ē−1F̄ ) ≤ 1.

The next two corollaries follow straightforward from Lemma 4.3.

Corollary 4.5. Given two linear relations S and T in Cn, denote d = dimS,
g = dim(S ∩ T ) and m = 2n − g = (S ∩ T )⊥. Then, the following statements
are equivalent:

(i) dim S
S∩T = 1 and dim T

S∩T = 0.

(ii) There exist pencils P (s) = sE − F ∈ C[s]n×d, P1(s) = sE1 − F1 ∈
C[s]n×(d−1) and u(s) = se− f ∈ C[s]n×1 such that P (s) =

[
P1(s) u(s)

]
,

FE−1 = S and F1E
−1
1 = T .

(iii) There exist pencils Q1(s) = sG1 −H1 ∈ C[s](m−1)×n, Q(s) = sG −H ∈

C[s]m×n and v(s) = sg−h ∈ C[s]n×1 such that Q(s) =

[
Q1(s)
v(s)∗

]
, G−1

1 H1 =

S and G−1H = T .

Corollary 4.6. Given two linear relations S and T in Cn denote d = dimS,
g = dim(S∩T ) and m = 2n−g = dim(S∩T )⊥. Then, the following statements
are equivalent:

(i) dim S
S∩T = dim T

S∩T = 1.

(ii) dimS = dimT and there exist pencils P (s) = sE − F, P̄ (s) = sĒ − F̄ ∈
C[s]n×d, P1(s) = sE1 − F1 ∈ C[s]n×(d−1), and u(s) = se − f, ū(s) =
sē − f̄ ∈ C[s]n×1 such that P (s) =

[
P1(s) u(s)

]
, P̄ (s) =

[
P1(s) ū(s)

]
,

FE−1 = S, F̄ Ē−1 = T and F1E
−1
1 = S ∩ T .

11



(iii) There exist pencils Q1(s) = sG1 −H1, Q̄1(s) = sḠ1 − H̄1 ∈ C[s](m−1)×n,
Q(s) = sG − H, Q̄(s) = sḠ − H̄ ∈ C[s]m×n, and v(s) = sg − h, v̄(s) =

sḡ−h̄,∈ C[s]n×1 such that Q(s) =

[
Q1(s)
v(s)∗

]
, Q̄(s) =

[
Q̄1(s)
v̄(s)∗

]
, G−1

1 H1 = S,

Ḡ−1
1 H̄1 = T and G−1H = Ḡ−1H̄ = S ∩ T .

Now, we can prove the converse of Lemma 4.4.

Theorem 4.7. Given two linear relations S and T in Cn, denote d = dimS,
g = dimT , and m = dimT⊥ = 2n − g. Then, the following statements are
equivalent:

(i) r(S, T ) ≤ 1.

(ii) There exist pencils P (s) = sE − F, P̄ (s) = sĒ − F̄ ∈ C[s]n×d such that
S = FE−1, T = F̄ Ē−1 and

P̄ (s)− P (s) = (su− v)w∗, (u, v) ∈ Cn × Cn, w ∈ Cd.

(iii) There exist pencils Q(s) = sG −H, Q̄(s) = sḠ − H̄ ∈ C[s]m×n such that
S = G−1H, T = Ḡ−1H̄ and

Q̄(s)−Q(s) = w(su∗ − v∗), (u, v) ∈ Cn × Cn, w ∈ Cm.

Proof. The implications (ii) ⇒ (i) and (iii) ⇒ (i) are immediate consequences
of Lemma 4.4.

Conversely, assume that (i) holds.
If r(S, T ) = 0, then S = T and g = d. By Lemma 3.3 there exists a pencil

P (s) = sE − F ∈ C[s]n×d such that FE−1 = S = T . Taking P̄ (s) = P (s), (ii)
follows.

If dim S
S∩T = 1 and dim T

S∩T = 0, then g = dim(S ∩ T ) = d − 1. By
Corollary 4.5 there exist pencils P (s) = sE − F ∈ C[s]n×d, P1(s) = sE1 − F1 ∈
C[s]n×(d−1) and u(s) = se − f ∈ C[s]n×1 such that P (s) =

[
P1(s) u(s)

]
,

FE−1 = S and F1E
−1
1 = T . Let P̄ (s) = sĒ − F̄ =

[
sE1 − F1 O

]
∈ C[s]n×d.

Then F̄ Ē−1 = F1E
−1
1 = T and P̄ (s) − P (s) =

[
O −u(s)

]
= u(s)w∗, where

w∗ =
[
O −1

]
∈ C[s]1×((d−1)+1).

If dim S
S∩T = 0 and dim T

S∩T = 1, the proof is analogous.

If dim S
S∩T = dim T

S∩T = 1, then g = d. By Corollary 4.6 there exist pencils

P (s) = sE − F, P̄ (s) = sĒ − F̄ ∈ C[s]n×d, P1(s) = sE1 − F1 ∈ C[s]n×(d−1),
u(s) = se− f, ū(s) = sē− f̄ ∈ C[s]n×1 such that P (s) =

[
P1(s) u(s)

]
, P̄ (s) =[

P1(s) ū(s)
]
, FE−1 = S, F̄ Ē−1 = T and F1E

−1
1 = S ∩ T . Hence,

P̄ (s)− P (s) =
[
O ū(s)− u(s)

]
= (ū(s)− u(s))w∗,

where w∗ =
[
O 1

]
∈ C[s]1×((d−1)+1).

We can prove (i) ⇒ (iii) in a similar way, or it can be derived from case (ii)
applied to the adjoint pencils (see Remark 3.1).

12



5. Matrix pencil completion theorems

As we have seen in Section 4, the rank perturbation problem of linear re-
lations is related to a matrix pencil completion problem. In this section we
introduce, in Lemmas 5.2 and 5.4, some known results about the latter prob-
lem. Although they are valid over arbitrary fields, here we state them over C.
First, we need to define the 1step-majorization, which is a particular case of
generalized majorization [8, Definition 2].

Definition 5.1. Given two finite sequences of integers g = (g1, . . . , gm) and
d = (d1, . . . , dm+1), we say that d is 1step-majorized by g (denoted by d ≺′ g)
if

gi = di+1, h ≤ i ≤ m,

where h = min{i = 1, . . . ,m : gi < di}.

Lemmas 5.2 and 5.4 are particular cases of [9, Theorem 4.3] and they can
also be seen in [2, Lemmas 4.3 and 4.4].

Lemma 5.2. Given two matrix pencils H1(s) ∈ C[s](n+p)×(n+m), H(s) ∈
C[s](n+p+1)×(n+m) of rank(H1(s)) = rank(H(s)) = n, let π1

1(s, t) | · · · | π1
n(s, t),

g1 ≥ · · · ≥ gm ≥ 0 and t1 ≥ · · · ≥ tp ≥ 0 be the homogeneous invariant fac-
tors, the column and the row minimal indices of H1(s), respectively, and let
π1(s, t) | · · · | πn(s, t), k1 ≥ · · · ≥ km ≥ 0 and u1 ≥ · · · ≥ up+1 ≥ 0 be the
homogeneous invariant factors, the column and the row minimal indices indices
of H(s), respectively.

Let g = (g1, . . . , gm), t = (t1, . . . , tp), k = (k1, . . . , km), u = (u1, . . . , up+1).

There exists a pencil h(s) ∈ C[s]1×(n+m) such that H(s)
s.e.∼

[
h(s)
H1(s)

]
if and only

if
πi(s, t) | π1

i (s, t) | πi+1(s, t), 1 ≤ i ≤ n, (7)

u ≺′ t, (8)

g = k. (9)

Remark 5.3. Let θ = #{i : ti > 0} and θ = #{i : ui > 0}. Lemma 4.3 in
[2] also contains the condition

θ̄ ≥ θ. (10)

But we show that (7)-(9) implies (10): we have rank(H(s)) = n =
∑n

i=1 deg(πi)+∑m
i=1 ki +

∑p+1
i=1 ui and rank(H1(s)) = n =

∑n
i=1 deg(π

1
i ) +

∑m
i=1 gi +

∑p
i=1 ti.

Therefore
∑p

i=1 ti =
∑p+1

i=1 ui+
∑n

i=1(deg(πi)−deg(π1
i ))+

∑m
i=1(ki−gi). From

(7) and (9) we obtain
∑p

i=1 ti ≤
∑p+1

i=1 ui. Then, by (8) and Lemma 5.10 of [2]
we derive (10).

Lemma 5.4. Given matrix pencils H1(s) ∈ C[s](n+p)×(n+m) with rank(H1(s)) =
n, and H(s) ∈ C[s](n+p+1)×(n+m) with rank(H(s)) = n + 1, let π1

1(s, t) | · · · |
π1
n(s, t), g1 ≥ · · · ≥ gm ≥ 0 and t1 ≥ · · · ≥ tp ≥ 0 be the homogeneous invariant

factors, the column and the row minimal indices of H1(s), respectively, and let
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π1(s, t) | · · · | πn+1(s, t), k1 ≥ · · · ≥ km−1 ≥ 0 and u1 ≥ · · · ≥ up ≥ 0 be
the homogeneous invariant factors, the column and the row minimal indices of
H(s), respectively.

Let g = (g1, . . . , gm), t = (t1, . . . , tp), k = (k1, . . . , km−1), and u = (u1, . . . , up).

There exists a pencil h(s) ∈ C[s]1×(n+m) such that H(s)
s.e.∼

[
h(s)
H1(s)

]
if and only

if (7),
g ≺′ k, (11)

t = u. (12)

To solve Problem 4.1, we must express these results in terms of the Weyr
characteristics of the pencils involved.

Lemma 5.5 ([13, Lemma 3.2], see also [3, Lemma 4.3]). Let (a1, . . . ) and (b1, . . . )
be partitions. Let (p1, . . . ) = (a1, . . . ) and (q1, . . . ) = (b1, . . . ) be the conjugate
partitions. Let k ≥ 0 be an integer. Then,

aj ≥ bj+k, j ≥ 1,

if and only if
pj ≥ qj − k, j ≥ 1.

Lemma 5.6. For i = 1, 2 let P i(s) ∈ C[s]ni×mi

be matrix pencils such that
rank(P i(s)) = ρi. Let ϕi

1(s, t) | · · · | ϕi
ρi
(s, t) be the homogeneous invariant

factors of P i(s).
For λ ∈ C̄, let ni(λ) = (ni

1(λ), n
i
2(λ) . . . ) be the Segre characteristic at λ of

P i(s), and let (wi
1(λ), w

i
2(λ), . . . ) = (ni(λ)), be the conjugate partition of ni(λ).

Let x ≥ ρ2 − ρ1 be an integer. Then, the following statements are equivalent

(i) ϕ1
j (s, t) | ϕ2

j+x(s, t), j ≥ 1,

(ii) n1
j+ρ1−ρ2+x(λ) ≤ n2

j (λ), λ ∈ C̄, j ≥ 1,

(iii) w1
j (λ) + ρ2 − ρ1 − x ≤ w2

j (λ), λ ∈ C̄, j ≥ 1.

Proof. The equivalence between (i) and (ii) is immediate, it is enough to take
into account that

ϕi
j(s, t) = tn

i
ρi−j+1(∞)

∏
λ∈Λ(P i(s))\{∞}

(s− λt)n
i
ρi−j+1(λ), 1 ≤ j ≤ ρi.

The equivalence between (ii) and (iii) follows from Lemma 5.5.

Definition 5.7 ([3, Definition 4.1]). Given two partitions r = (r0, r1, . . . ) and
s = (s0, s1, . . . ), we say that s is conjugate majorized by r (denoted by s ∠ r)
if r0 = s0 + 1 and

ri = si + 1, 0 ≤ i ≤ g,

where g = max{i : ri > si}.
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Notation. Given two partitions p = (p1, p2, . . . ) and q = (q1, q2, . . . ), we write
p ≤ q if pj ≤ qj for j ≥ 1.

Remark 5.8. Notice that, if (s0, s1, . . . ) ∠ (r0, r1, . . . ) and k ≥ 1 is an integer,
then (rk, rk+1, . . . ) ≤ (sk, sk+1, . . . ) or (sk, sk+1, . . . ) ∠ (rk, rk+1, . . . ).

Lemma 5.9 ([3, Proposition 4.5]). Given two finite sequences of nonnegative
integers k = (k1, . . . , km+1) and d = (d1, . . . , dm), let (r1, . . . ) = (k1, . . . , km+1),
(s1, . . . ) = (d1, . . . , dm) be the conjugate partitions, r0 = m + 1 = s0 + 1, and
r = (r0, r1, . . . ), s = (s0, s1, . . . ). Then k ≺′ d if and only if s ∠ r.

Applying Lemmas 5.6 and 5.9, Lemmas 5.2 and 5.4 can be expressed in terms
of the Weyr characteristics of the pencils H(s) and H1(s). By transposition
the results also apply for column completion instead of row completion. For
convenience, we present next the second option.

Lemma 5.10. Given two matrix pencils H1(s) ∈ C[s](n+p)×(n+m), H(s) ∈
C[s](n+p)×(n+m+1) of rank(H1(s)) = rank(H(s)) = n, let (w, b, c) and (w1, b1, c1)
be the Weyr characteristics of H(s) and H1(s), respectively.

There exists a pencil h(s) ∈ C[s](n+p)×1 such that H(s)
s.e.∼

[
h(s) H1(s)

]
if

and only
wj(λ) ≤ w1

j (λ) ≤ wj(λ) + 1, λ ∈ C̄, j ≥ 1, (13)

b1 ∠ b. (14)

c = c1, (15)

Lemma 5.11. Given two matrix pencils H1(s) ∈ C[s](n+p)×(n+m), H(s) ∈
C[s](n+p)×(n+m+1) of rank(H1(s)) = n and rank(H(s)) = n+1, let (w, b, c) and
(w1, b1, c1) be the Weyr characteristics of H(s) and H1(s), respectively.

There exists a pencil h(s) ∈ C[s](n+p)×1 such that H(s)
s.e.∼

[
h(s) H1(s)

]
if

and only if
wj(λ)− 1 ≤ w1

j (λ) ≤ wj(λ), λ ∈ C̄, j ≥ 1, (16)

b = b1, (17)

c ∠ c1. (18)

6. Necessary conditions for Problem 4.1 with r = 1

To find necessary conditions for solving problem 4.1 we distinguish two cases:
when dimS > dimT or when dimS = dimT . We start analyzing the case when
one of the linear relations is included in the other one.

Theorem 6.1. Let S,U be two linear relations in Cn such that U ⊆ S, dimS =
d and dim S

U = 1.
Let (W,B,C) and (W 1, B1, C1) be the Weyr characteristics of S and U ,

respectively. Then one of the two following conditions holds:
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(a)
Wj(λ) ≤ W 1

j (λ) ≤ Wj(λ) + 1, j ≥ 1, λ ∈ C̄, (19)

B1 ∠ B, (20)

C = C1. (21)

(b)
Wj(λ)− 1 ≤ W 1

j (λ) ≤ Wj(λ), j ≥ 1, λ ∈ C̄, (22)

B = B1, (23)

c ∠ c1, (24)

where c = (n− d+B1, C1, C2, . . . ) and c1 = (n− d+B1 + 1, C1
1 , C

1
2 . . . ).

Remark 6.2. Condition (24) is equivalent to

C ∠ C1 or C1 ≤ C.

Proof. By Lemma 4.3, there exist pencils P (s) = sE − F ∈ C[s]n×d,
P1(s) = sE1 − F1 ∈ C[s]n×(d−1), u(s) = se − f ∈ C[s]n×1 such that P (s) =[
P1(s) u(s)

]
, FE−1 = S and F1E

−1
1 = U .

Let (w, b, c) and (w1, b1, c1) be the Weyr characteristics of P (s) and P1(s),
respectively. Then by Lemma 3.10 w = W , w1 = W 1,

bj = Bj−1, b1j = B1
j−1, cj = Cj−1, c1j = C1

j−1, j ≥ 2.

As dimS = dimFE−1 = d and dimU = dimF1E
−1
1 = d− 1, we have b1 = b2 =

B1 and b11 = b12 = B1
1 . Then rank(P (s)) = d − b1 = d − B1 and rank(P1(s)) =

d− 1− b11 = d− 1−B1
1 ; hence c1 = n− d+B1 and c11 = n− d+ 1 +B1

1 .
We have rank(P1(s)) ≤ rank(P (s)) ≤ rank(P1(s)) + 1.

(a) If rank(P (s)) = rank(P1(s)), then, by Lemma 5.10, conditions (13), (14)
and (15) hold. From (13) and (15) we obtain inmediatly (19) and (21).

As b1 = b2 and b11 = b12, from (14) we obtain b2 = b12 + 1. By Remark 5.8,
from (14) we derive (b12, . . . ) ∠ (b2, . . . ), equivalently (20).

(b) If rank(P (s)) = rank(P1(s)) + 1, then, by Lemma 5.11, we obtain (16),
(17) and (18), which are equivalent to (22)-(24).

□

Remark 6.3. In the previous proof we have applied the equivalence between (i)
and (ii) of Lemma 4.3. Analogously, the proof could be made by applying the
equivalence between (i) and (iii)

As an immediate consequence of Theorem 6.1 we obtain in the next theorem
necessary conditions for Problem 4.1, with r = 1.

16



Theorem 6.4. Let S, T be two linear relations in Cn such that r(S, T ) = 1 and
dimS = d ≥ dimT .

Let (W,B,C) and (W̄ , B̄, C̄) be the Weyr characteristics of S and T , respec-
tively.

1. If dim S
S∩T = 1 and dim T

S∩T = 0 then one of the two following conditions
holds:

(a)
Wi(λ) ≤ W̄i(λ) ≤ Wi(λ) + 1, i ≥ 1, λ ∈ C̄, (25)

B̄ ∠ B, (26)

C = C̄. (27)

(b)
Wi(λ)− 1 ≤ W̄i(λ) ≤ Wi(λ), i ≥ 1, λ ∈ C̄, (28)

B = B̄, (29)

c ∠ c̄, (30)

where c = (n−d+B1, C1, C2 . . . ) and c̄ = (n−d+B1+1, C̄1, C̄2, . . . ).

2. If dim S
S∩T = dim T

S∩T = 1, let (W 1, B1, C1) be the Weyr characteristic
of S ∩ T . Then one of the four following conditions holds:

(c)

max{Wi(λ), W̄i(λ)} ≤ W 1
i (λ) ≤ min{Wi(λ), W̄i(λ)}+1, i ≥ 1, λ ∈ C̄,

(31)
B1 ∠ B, B1 ∠ B̄ (32)

C = C̄ = C1, (33)

(d)

max{Wi(λ), W̄i(λ)−1} ≤ W 1
i (λ) ≤ min{Wi(λ)+1, W̄i(λ)}, i ≥ 1, λ ∈ C̄,

(34)
B̄ = B1 ∠ B (35)

C = C1 and c̄ ∠ c, (36)

where c = (n−d+B1, C1, C2, . . . ) and c̄ = (n−d+B1−1, C̄1, C̄2, . . . , ).

(e)

max{Wi(λ)−1, W̄i(λ)} ≤ W 1
i (λ) ≤ min{Wi(λ), W̄i(λ)+1}, i ≥ 1, λ ∈ C̄,

(37)
B = B1 ∠ B̄ (38)

C̄ = C1 and c ∠ c̄, (39)

where c = (n−d+B1, C1, C2, . . . ) and c̄ = (n−d+B1+1, C̄1, C̄2, . . . ).
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(f)

max{Wi(λ), W̄i(λ)}−1 ≤ W 1
i (λ) ≤ min{Wi(λ), W̄i(λ)}, i ≥ 1, λ ∈ C̄,

(40)
B = B̄ = B1, (41)

c ∠ c1 and c̄ ∠ c1, (42)

where c = (n− d+B1, C1, C2, . . . ), c̄ = (n− d+B1, C̄1, C̄2, . . . ), and
c1 = (n− d+B1 + 1, C1

1 , C
1
2 , . . . ).

7. Solution to Problem 4.1 with r = 1

Lemma 7.1. Let S,U be two linear relations in Cn. Then, there exists a linear
relation S̄ in Cn such that S̄

s.e.∼ S and U ⊆ S̄ if and only if there exists a linear
relation Ū in Cn such that Ū

s.e.∼ U and Ū ⊆ S.

Proof. Let us assume that S̄
s.e.∼ S and U ⊆ S̄. Then, there exists T ∈

Gln(C) such that S̄ =

[
T O
O T

]
S. Let Ū =

[
T−1 O
O T−1

]
U . Then Ū

s.e.∼ U and

Ū ⊆
[
T−1 O
O T−1

]
S̄ = S.

Conversely, let us assume that Ū
s.e.∼ U and Ū ⊆ S. Then, there exists

V ∈ Gln(C) such that Ū =

[
V O
O V

]
U . Let S̄ =

[
V −1 O
O V −1

]
S. Then S̄

s.e.∼ S

and U =

[
V −1 O
O V −1

]
Ū ⊆

[
V −1 O
O V −1

]
S = S̄.

□

Theorem 7.2. Let S,U be two linear relations in Cn such that dimS = d =
dimU + 1 and let (W,B,C) and (W 1, B1, C1) be the Weyr characteristics of
S and U , respectively. Then there exists a linear relation S̄ in Cn such that
S̄

s.e.∼ S and U ⊂ S̄ (equivalently, there exists a linear relation Ū in Cn such

that Ū
s.e.∼ U and Ū ⊂ S) if and only if one of the conditions (a) or (b) of

Theorem 6.1 holds.

Proof. Assume that there exists S̄ such that S̄
s.e.∼ S, U ⊂ S̄. Then

dim S̄
U = dimS − dimU = 1. By Theorem 5.4 of [11], (W,B,C) is the Weyr

characteristic of S̄. By Theorem 6.1, (a) or (b) holds.
By Lemma 3.3 there exist pencils P (s) = sE − F ∈ C[s]n×d, P1(s) =

sE1−F1 ∈ C[s]n×(d−1) such that rank

[
E
F

]
= d, rank

[
E1

F1

]
= d− 1, FE−1 = S.

and F1E
−1
1 = U .

Let (w, b, c) and (w1, b1, c1) be the Weyr characteristics of P (s) and P1(s),
respectively. As in the proof of Theorem 6.1, rank(P (s)) = d−B1, rank(P1(s)) =
d− 1−B1

1 ,

w = W, b = (B1, B1, B2, . . . ), c = (n− d+B1, C1, C2, . . . ),

w1 = W 1, b1 = (B1
1 , B

1
1 , B

1
2 , . . . ), c1 = (n− d+ 1 +B1

1 , C
1
1 , C

1
2 , . . . ).
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• Assume that (a) holds. Condition (19) is equivalent to (13). From (20)
we derive B1 = B1

1 + 1; hence b1 = b11 + 1, c1 = c11 and rank(P (s)) =
rank(P1(s)). Thus, from (20) and (21) we obtain (14) and (15). By

Lemma 5.10 here exists a pencil u(s) = se−f ∈ F[s]n×1 such that P (s)
s.e.∼[

P1(s) u(s)
]
.

• Assume that (b) holds. Condition (22) is equivalent to (16). From (23) we
derive B1 = B1

1 ; hence b1 = b11, c1 = c11+1 and rank(P (s)) = rank(P1(s))+
1. Thus, from (23) and (24) we obtain (17) and (18). By Lemma 5.11 here

exists a pencil u(s) = se− f ∈ F[s]n×1 such that P (s)
s.e.∼

[
P1(s) u(s)

]
.

In both cases, let P̄ (s) =
[
P1(s) u(s)

]
= s

[
E1 e

]
−

[
F1 f

]
and S̄ =[

F1 f
] [
E1 e

]−1
= R

([
E1 e
F1 f

])
. It is clear that U ⊂ S̄. By Lemma 3.5,

S̄
s.e.∼ S.

□

Remark 7.3. As in Theorem 6.1, a proof of Theorem 7.2 can be made using
pencils such that their kernel representations are the relations S and U (instead
of the range representations).

As an immediate consequence of Theorem 7.2 we obtain a solution to Prob-
lem 4.1 with r = 1 when dimS = dimT + 1.

Theorem 7.4. Let S, T be two linear relations in Cn such that dimS = d =
dimT + 1. Let (W,B,C) and (W̄ , B̄, C̄) be the Weyr characteristics of S and

T , respectively. Then there exists a linear relation S̄ in Cn such that S̄
s.e.∼ S

and r(S̄, T ) = 1 (equivalently, there exists a linear relation T̄ in Cn such that

T̄
s.e.∼ T and r(S, T̄ ) = 1) if and only if one of the conditions (a) or (b) of

Theorem 6.4 holds.

Proof. There exists S̄ such that S̄
s.e.∼ S and r(S̄, T ) = 1 (there exists T̄

such that T̄
s.e.∼ T and r(S, T̄ ) = 1) if and only if there exists S̄ such that S̄

s.e.∼ S,

dim S̄
S̄∩T

= 1 and dim T
S̄∩T

= 0 (there exists T̄ such that T̄
s.e.∼ T , dim S

S∩T̄
= 1

and dim T̄
S∩T̄

= 0) if and only if there exists S̄ such that S̄
s.e.∼ S, and T ⊂ S̄

(there exists T̄ such that T̄
s.e.∼ S, and T̄ ⊂ S). By Theorem 7.2 this occurs if

and only if one of the conditions (a) or (b) of Theorem 6.4 holds.
□

The solution to the case dimS = dimT is given in the next theorem. The
proof follows the ideas of [2, Theorem 5.1]. We need some technical lemmas
from [2] and [3], which, for the reader’s convenience, we include in Appendix
Appendix A.

Theorem 7.5. Let S, T be two linear relations in Cn such that dimS = dimT =
d and S ̸s.e.∼ T . Let (W,B,C) and (W̄ , B̄, C̄) be the Weyr characteristics of S
and T , respectively, and let Λ(S) ∪ Λ(T ) = {λ1, . . . , λℓ}.
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1. If B = B̄ and C = C̄, then there exist linear relations S̄, T̄ ⊆ Cn × Cn,
such that S̄

s.e.∼ S, T̄
s.e.∼ T and r(S̄, T̄ ) = 1 if and only if

Wi(λ)− 1 ≤ W̄i(λ) ≤ Wi(λ) + 1, i ≥ 1, λ ∈ C̄. (43)

2. If B = B̄ and C ̸= C̄, let x = min{i : Ci ̸= C̄i},

e = min{i ≥ x−1 : C̄i+1 ≥ Ci+1}, e′ = min{i ∈ {i ≥ x−1 : Ci+1 ≥ C̄i+1},

X =| W | + | C | −
ℓ∑

i=1

∑
j≥1

min{Wj(λi), W̄j(λi)} − 1.

Then there exist linear relations S̄, T̄ ⊆ Cn × Cn, such that S̄
s.e.∼ S,

T̄
s.e.∼ T and r(S̄, T̄ ) = 1 if and only if (43) and

X ≤
∑
i≥1

min{Ci, C̄i}+max{e, e′}. (44)

3. If B ̸= B̄ and B1 = B̄1, let x̄ = min{i : Bi ̸= B̄i},

ē = min{i ≥ x̄−1 : B̄i+1 ≥ Bi+1}, ē′ = min{i ∈ {i ≥ x̄−1 : Bi+1 ≥ B̄i+1},

Y =| W | + | B | −
ℓ∑

i=1

∑
j≥1

max{Wj(λi), W̄j(λi)}.

Then there exist linear relations S̄, T̄ ⊆ Cn × Cn, such that S̄
s.e.∼ S,

T̄
s.e.∼ T and r(S̄, T̄ ) = 1 if and only if (43),

C = C̄, (45)

and
Y ≥

∑
i≥1

max{Bi, B̄i} −max{ē, ē′}. (46)

4. If B1 ̸= B̄1, then there exist linear relations S̄, T̄ ⊆ Cn × Cn, such that
S̄

s.e.∼ S, T̄
s.e.∼ T and r(S̄, T̄ ) = 1 if and only if one of the two following

conditions hold:

(a)
W̄j(λ)− 2 ≤ Wj(λ) ≤ W̄j(λ), j ≥ 1, λ ∈ C̄, (47)

B̄ ∠ B, c̄ ∠ c, (48)

where c = (n− d+B1, C1, C2, . . . ), c̄ = (n− d+ B̄1, C̄1, C̄2, . . . ),

ℓ∑
i=1

∑
j≥1

max{Wj(λi), W̄j(λi)−1} ≤ x ≤
ℓ∑

i=1

∑
j≥1

min{Wj(λi)+1, W̄j(λi)},

(49)
where x =| W | + | B | − | B̄ |.
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(b)
Wj(λ)− 2 ≤ W̄j(λ) ≤ Wj(λ), j ≥ 1, λ ∈ C̄, (50)

B ∠ B̄, c ∠ c̄, (51)

where c = (n− d+B1, C1, C2, . . . ), c̄ = (n− d+ B̄1, C̄1, C̄2, . . . ),

ℓ∑
i=1

∑
j≥1

max{Wj(λi)−1, W̄j(λi)} ≤ y ≤
ℓ∑

i=1

∑
j≥1

min{Wj(λi), W̄j(λi)+1},

(52)
where y =| W̄ | + | B̄ | − | B |.

Remark 7.6. If λ ̸∈ {λ1, . . . , λℓ}, then min{Wj(λ), W̄j(λ)} = 0. Therefore, in
item 2. we can define

X =| W | + | C | −
∑
λ∈C̄

∑
j≥1

min{Wj(λ), W̄j(λ)} − 1.

Analogously, in item 3.,

Y =| W | + | B | −
∑
λ∈C̄

∑
j≥1

max{Wj(λ), W̄j(λ)}.

and, in item 4. conditions (49) and (52) can be written, respectively, as∑
λ∈C̄

∑
j≥1

max{Wj(λ), W̄j(λ)− 1} ≤ x ≤
∑
λ∈C̄

∑
j≥1

min{Wj(λ) + 1, W̄j(λ)},

and ∑
λ∈C̄

∑
j≥1

max{Wj(λ)− 1, W̄j(λ)} ≤ y ≤
∑
λ∈C̄

∑
j≥1

min{Wj(λ), W̄j(λ) + 1}.

Proof. Necessity. Let us assume that there exist linear relations S̄, T̄ ⊆
Cn × Cn, such that S̄

s.e.∼ S, T̄
s.e.∼ T and r(S̄, T̄ ) = 1. As dim S̄ = dim T̄

and S̄ ̸= T̄ , we have dim S̄
S̄∩T̄

= dim T̄
S̄∩T̄

= 1. Let (W 1, B1, C1) be the Weyr

characteristic of S̄ ∩ T̄ . Then one of the four conditions (c), (d), (e) or (f) of
Theorem 6.4 hold.

1. If B = B̄ and C = C̄, then (c) or (f) holds. Condition (43) is derived from
(31) if (c) holds, and from (40) if (f) holds.

2. If B = B̄ and C ̸= C̄, then (f) holds. From (40) we derive (43). By
Lemma Appendix A.8, from (42) we have that

| C1 |≤
∑
i≥1

min{Ci, C̄i}+max{e, e′}. (53)

We have | W 1 | + | B1 | + | C1 | +B1
1 = dim(S̄∩T̄ ) = d−1 =| W | + | B |

+ | C | +B1 − 1. From (41) we obtain | C1 |=| W | + | C | − | W 1 | −1.
From (40), X ≤| C1 |. Therefore, from (53) we obtain (44).
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3. If B ̸= B̄ and B1 = B̄1, then (c) holds. From (31) we derive (43) and from
(33), condition (45) is immediate. From (32), for any integer Z ≥ B1 =
B̄1, (Z−1, B1

1 , B
1
2 . . . ) ∠ (Z,B1, B2, . . . , ) and (Z−1, B1

1 , B
1
2 . . . ) ∠ (Z, B̄1, B̄2, . . . , ).

By Lemma Appendix A.8,

| B1 |≥
∑
i≥1

max{Bi, B̄i} −max{ē, ē′}. (54)

We have | W 1 | + | B1 | + | C1 | +B1
1 = dim(S̄ ∩ T̄ ) = d − 1 =| W | + |

B | + | C | +B1 − 1. From (32) and (33) we obtain | B1 |=| W | + | B |
− | W 1 |. From (31), Y ≥| B1 |. Therefore, from (54) we obtain (46).

4. If B1 ̸= B̄1, then (d) or (e) holds.
Assume that (d) holds. From (34) we derive (47) and from (35) and (36),
condition (48) is immediate. We have | W 1 | + | B1 | + | C1 | +B1

1 =
dim(S̄ ∩ T̄ ) = d − 1 =| W | + | B | + | C | +B1 − 1. From (35) and
(36) we obtain | W 1 |=| W | + | B | − | B̄ |. From (34) we derive

Λ(S̄ ∩ T̄ ) ⊆ Λ(T̄ ); hence | W 1 |=
∑ℓ

i=1

∑
j≥1 W

1
j (λi) and from (34) we

obtain (49).
Analogously, if (e) is satisfied, then we obtain (50)-(52).

Sufficiency.

1., 2. Case B = B̄. Assume that (43) holds, and that, if C ̸= C̄, (44) also holds.
As d =| W | + | B | + | C | +B1 =| W̄ | + | B̄ | + | C̄ | +B̄1, we obtain
| W | + | C |=| W̄ | + | C̄ |.
Define

B̂ = B = B̄, (55)

and
Ŵj(λ) = min{Wj(λ), W̄j(λ)}, j ≥ 1, λ ∈ C̄.

Then Ŵj(λ) ≥ Ŵj+1(λ), for j ≥ 1 and λ ∈ C̄, and from (43) we derive

Wj(λ)− 1 ≤ Ŵj(λ) ≤ Wj(λ), j ≥ 1, λ ∈ C̄,
W̄j(λ)− 1 ≤ Ŵj(λ) ≤ W̄j(λ), j ≥ 1, λ ∈ C̄.

(56)

Define
Ŵ (λi) = (Ŵ1(λi), Ŵ2(λi), . . . ), 1 ≤ i ≤ ℓ,

Ŵ = (Ŵ (λ1), . . . , Ŵ (λℓ)).

We have | Ŵ |≤| W | and | Ŵ |≤| W̄ |. Let c = (n− d+ B1, C1, C2, . . . ),
c̄ = (n− d+ B1, C̄1, C̄2, . . . ) and let X =| W | + | C | − | Ŵ | −1 =| W̄ |
+ | C̄ | − | Ŵ | −1. Then X ≥| C | −1 ≥ −1 and X ≥| C̄ | −1.
Let us see that X ≥ 0. If X = −1, then C = C̄ = 0 and | W |=| W̄ |=|
Ŵ |; i.e.,

∑ℓ
i=1

∑
j≥1(Ŵj(λi)−Wj(λi)) =

∑ℓ
i=1

∑
j≥1(Ŵj(λi)−W̄j(λi)) =

0, from where Ŵj(λi) = Wj(λi) = W̄j(λi)) for 1 ≤ i ≤ ℓ and j ≥ 1; hence,

Ŵ = W = W̄ . Then (W,B,C) = (W̄ , B̄, C̄), which contradicts S ̸s.e.∼ T .
Therefore X ≥ 0.
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• If C ̸= C̄, by Lemma Appendix A.8, from (44), there exists a par-
tition of nonnegative integers Ĉ = (Ĉ1, Ĉ2, . . . ) such that | Ĉ |= X
and

c ∠ (n− d+B1 + 1, Ĉ1, Ĉ2, . . . ), c̄ ∠ (n− d+B1 + 1, Ĉ1, Ĉ2, . . . ).
(57)

where c = (n− d+B1, C1, C2, . . . ) and c̄ = (n− d+B1, C̄1, C̄2, . . . ).

• If C = C̄, by Lemma Appendix A.2 there exists a partition of
nonnegative integers Ĉ = (Ĉ1, Ĉ2, . . . ) such that | Ĉ |= X and (57)
holds.

From (57), Ĉ1 ≤ C1 + 1 and | Ŵ | + | B̂ | + | Ĉ | +Ĉ1 =| Ŵ | + | B |
+X + Ĉ1 =| W | + | B | + | C | −1 + Ĉ1 ≤| W | + | B | + | C | +C1.
By Lemma 3.12, | W | + | B | + | C | +C1 ≤ n. By the same Lemma,
there exists a linear relation U in Cn such that the Weyr characteristic of
U is (Ŵ , B̂, Ĉ). Then dimU =| Ŵ | + | B̂ | + | Ĉ | +B̂1 =| W | + | B |
+ | C | +B1 − 1 = d − 1. From (55)-(57), by Theorem 7.2 there exists

linear relations S̄, T̄ in Cn such that S̄
s.e.∼ S, T̄

s.e.∼ T and U ⊆ S̄ ∩ T̄ . As
dimU = d− 1 ≤ dim(S̄ ∩ T̄ ) < dim S̄ = d, we have that U = S̄ ∩ T̄ ; hence

dim S̄
S̄∩T̄

= dim T̄
S̄∩T̄

= 1.

3. Case B ̸= B̄ and B1 = B̄1. Assume that (43), (45) and (46) hold. Let
Y ′ =

∑
i≥1 max{Bi, B̄i} − max{ē, ē′} and Z = B1 = B̄1. By Lemma

Appendix A.8, there exists a partition of nonnonnegative integers B̂ such
that (Z − 1, B̂1, . . . ) ∠ (Z,B1, . . . ), (Z − 1, B̂1, . . . ) ∠ (Z, B̄1, . . . ) and |
B̂ |= Y ′. As B̂1 ≤ Z − 1 = B1 − 1 < B1, we have B1 = B̄1 = B̂1 + 1;
hence

B̂ ∠ B, B̂ ∠ B̄. (58)

Define
Ĉ = C = C̄, (59)

and y = Y − Y ′. From (46), y ≥ 0.
Fix λ0 ̸∈ {λ1, . . . , λℓ} and define

Ŵj(λ) = max{Wj(λ), W̄j(λ)}, j ≥ 1, λ0 ̸= λ ∈ C̄,
Ŵj(λ0) = 1, 1 ≤ j ≤ y,

Ŵj(λ0) = 0, j > y.

Then Ŵj(λ) ≥ Ŵj+1(λ), for j ≥ 1 and λ ∈ C̄, and from (43) we derive

Wj(λ) ≤ Ŵj(λ) ≤ Wj(λ) + 1, j ≥ 1, λ ∈ C̄,
W̄j(λ) ≤ Ŵj(λ) ≤ W̄j(λ) + 1, j ≥ 1, λ ∈ C̄.

(60)

Let
Ŵ (λ) = (Ŵ1(λ), Ŵ2(λ), . . . ), λ ∈ C̄,

and Ŵ = (Ŵ (λ0), Ŵ (λ1), . . . , Ŵ (λℓ)).
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We have | Ŵ |=
∑ℓ

i=1

∑
j≥1 max{Wj(λi), W̄j(λi)}+y =| W | + | B | −Y ′

and | Ŵ | + | B̂ | + | Ĉ | +Ĉ1 =| W | + | B | + | C | +C1. By
Lemma 3.12, | W | + | B | + | C | +C1 ≤ n. By the same Lemma, there
exists a linear relation U in Cn such that the Weyr characteristic of U is
(Ŵ , B̂, Ĉ). Then dimU =| Ŵ | + | B̂ | + | Ĉ | +B̂1 =| W | + | B |
+ | C | +B1 − 1 = d − 1. From (58)-(60), by Theorem 7.2 there exists

linear relations S̄, T̄ in Cn such that S̄
s.e.∼ S, T̄

s.e.∼ T and U ⊆ S̄ ∩ T̄ . As
dimU = d− 1 ≤ dim(S̄ ∩ T̄ ) < dim S̄ = d, we have that U = S̄ ∩ T̄ ; hence

dim S̄
S̄∩T̄

= dim T̄
S̄∩T̄

= 1.

4. Case B1 ̸= B̄1.
Assume that (47)-(49) hold. Define

B̂ = B̄, (61)

Ĉ = C. (62)

From (48) we obtain
B̂ ∠ B, (63)

and
c̄ ∠ ĉ, (64)

where c̄ = (n − d + B̄1, C̄1, C̄2, . . . ) and ĉ = (n − d + B̄1 + 1, Ĉ1, Ĉ2 . . . ).
For λ ∈ C̄ and j ≥ 1,

mj(λ) = max{Wj(λ), W̄j(λ)− 1}, Mj(λ) = min{Wj(λ) + 1, W̄j(λ)}.

Then mj(λ) ≥ mj+1(λ) and Mj(λ) ≥ Mj+1(λ) for j ≥ 1 and λ ∈ C̄. Let
m(λ) = (m1(λ), . . . , ) and M(λ) = (M1(λ), . . . , ) for λ ∈ C̄. Con this
notation, condition (49) becomes

ℓ∑
i=1

| m(λi) |≤ x ≤
ℓ∑

i=1

| M(λi) | .

From (47), we have

mj(λ) ≤ Mj(λ), j ≥ 1, λ ∈ C̄;

hence | m(λi) |≤| M(λi) | for 1 ≤ i ≤ ℓ. From Lemma Appendix A.9,
there exist integers x(λ1), . . . , x(λℓ) such that

ℓ∑
i=1

x(λi) = x and | m(λi) |≤ x(λi) ≤| M(λi) |, 1 ≤ i ≤ ℓ. (65)

From (47) we have Λ(S) ⊆ Λ(T ); hence Λ(T ) = {λ1, . . . , λℓ}. For 1 ≤ i ≤
ℓ, let n̄i = max{j : : W̄j(λi) > 0}. Then mj(λi) = Mj(λi) = 0 for j > n̄i

and

| m(λi) |=
n̄i∑
j=1

mj(λi), | M(λi) |=
n̄i∑
j=1

Mj(λi).
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Again by Lemma Appendix A.9, from (65), for 1 ≤ i ≤ ℓ, there exist
integers Ŵ1(λi) ≥ · · · ≥ Ŵn̄i

(λi) such that

n̄i∑
j=1

Ŵj(λi) = x(λi) and mj(λi) ≤ Ŵj(λi) ≤ Mj(λi), 1 ≤ j ≤ n̄1. (66)

Define Ŵ (λi) = (Ŵ1(λi), . . . ), for 1 ≤ i ≤ ℓ, Ŵ = (Ŵ (λ1), . . . , Ŵ (λℓ))
and Ŵ (λ) = (0, . . . ) if λ ̸∈ {λ1, . . . , λℓ}. From (66) we have

Wj(λ) ≤ Ŵj(λ) ≤ Wj(λ) + 1, j ≥ 1, λ ∈ C̄, (67)

and
W̄j(λ)− 1 ≤ Ŵj(λ) ≤ W̄j(λ), j ≥ 1, λ ∈ C̄. (68)

From (66) and (65), | Ŵ |=
∑ℓ

i=1 | Ŵ (λi) |=
∑ℓ

i=1 x(λi) = x; hence

| Ŵ | + | B̂ | + | Ĉ | +Ĉ1 =| W | + | B | + | C | +C1. As in the case
3., by Lemma 3.12, | W | + | B | + | C | +C1 ≤ n. By the same Lemma,
there exists a linear relation U in Cn such that the Weyr characteristic of
U is (Ŵ , B̂, Ĉ). Then dimU =| Ŵ | + | B̂ | + | Ĉ | +B̂1 =| W | + |
B | + | C | +B1 − 1 = d− 1. On one hand, from (67), (63) and (62) and
on the other hand, from (68), (61) and (64), by Theorem 7.2 there exists

linear relations S̄, T̄ in Cn such that S̄
s.e.∼ S, T̄

s.e.∼ T and U ⊆ S̄ ∩ T̄ . As
dimU = d− 1 ≤ dim(S̄ ∩ T̄ ) < dim S̄ = d, we have that U = S̄ ∩ T̄ ; hence

dim S̄
S̄∩T̄

= dim T̄
S̄∩T̄

= 1.
If (50)-(52) hold, the proof is analogous.

□

Appendix A. Auxiliary results to prove Theorem 7.5

Lemma Appendix A.1 ([2, Lemma 5.5]). Let X ≥ 0 be a nonnegative integer
and let a = (a1, . . . , am) be a finite sequence of nonnegative integers. Then there
exists a finite sequence of nonnegative integers g = (g1, . . . , gm+1) such that
| g |= X and g ≺′ a.

From Lemmas Appendix A.1 and 5.9, we obtain Lemma Appendix A.2.

Lemma Appendix A.2. Let X ≥ 0 be a nonnegative integer and let A =
(A1, A2, . . . , ) be a partition. Then there exists a partition G = (G1, G2, . . . )
such that | G |= X and A ∠ (A1 + 1, G1, G2, . . . ).

Lemma Appendix A.3 ([2, Lemma 5.8]). Let X,Y ≥ 0 be nonnegative inte-
gers and let c = (c1, . . . , cm), d = (d1, . . . , dm) be finite sequences of nonnegative
integers such that c ̸= d. Let ℓ = max{i : ci ̸= di}, f = max{i ∈ {1, . . . , ℓ} :
ci < di−1} and f ′ = max{i ∈ {1, . . . , ℓ} : di < ci−1}.
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1. There exists a finite sequence of nonnegative integers g = (g1, . . . , gm+1)
such that | g |= X, g ≺′ c and g ≺′ d if and only if

X ≤
m∑
i=1

min{ci, di}+max{cf , df ′}.

2. If f > 1 and f ′ > 1, there exists a finite sequence of nonnegative integers
e = (e1, . . . , em−1) such that | e |= Y , c ≺′ e and d ≺′ e if and only if

Y ≥
m∑
i=1

max{ci, di} −max{cf , df ′}.

3. If f = 1 or f ′ = 1, there exists a finite sequence of nonnegative integers
e = (e1, . . . , em−1) such that | e |= Y , c ≺′ e and d ≺′ e if and only if

Y =
∑m

i=1 max{ci, di} −max{cf , df ′},
or
Y ≥

∑m
i=1 max{ci, di} −max{cf+1, df ′+1}.

Equivalently,

Y =
m∑
i=2

max{ci, di} or Y ≥ max{c1, d1}+
m∑
i=3

max{ci, di}.

Lemma Appendix A.4 ([3, Lemma 4.7]). Given two finite sequence of non-
negative integers a = (a1, . . . , am) and b = (b1, . . . , bm), let xi = min{ai, bi},
1 ≤ i ≤ m. Let (r1, r2 . . . ) = (a1, . . . , am), (s1, s2 . . . ) = (b1, . . . , bm), and
yi = min{ri, si}, i ≥ 1. Then

(y1, . . . ) = (x1, . . . , xm).

Analogously we can prove Lemma Appendix A.5.

Lemma Appendix A.5. Given two finite sequence of nonnegative integers
a = (a1, . . . , am) and b = (b1, . . . , bm), let Xi = max{ai, bi}, 1 ≤ i ≤ m. Let
(r1, r2, . . . ) = (a1, . . . , am), (s1, s2, . . . ) = (b1, . . . , bm), and Yi = max{ri, si},
i ≥ 1. Then

(Y1, . . . ) = (X1, . . . , Xm).

Lemma Appendix A.6 ([3, Lemma 4.6]). Given two sequences of nonnega-
tive integers a = (a1, . . . , am) and b = (b1, . . . , bm) such that a ̸= b, let

ℓ = max{i : ai ̸= bi},

f = max{i ∈ {1, . . . , ℓ} : ai < bi−1}, f ′ = max{i ∈ {1, . . . , ℓ} : bi < ai−1}.
Let (r1, r2, . . . ) = (a1, . . . , am), (s1, s2, . . . ) = (b1, . . . , bm), r0 = s0 = m,

x = min{i : ri ̸= si},

e = min{i ≥ x− 1 : si+1 ≥ ri+1}, e′ = min{i ≥ x− 1 : ri+1 ≥ si+1}.
Then

e = af , e′ = bf ′ .
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Remark Appendix A.7. From Lemmas Appendix A.5 and Appendix A.6,
we have

∑
i≥1 max{ri, si} − max{e, e′} =

∑m
i=1 max{ai, bi} − max{af , bf ′}. If

f ≤ f ′, then max{af , bf} ≥ max{af , bf ′} and, if f ≥ f ′, then max{af ′ , bf ′} ≥
max{af , bf ′}. Therefore

∑
i≥1

max{ri, si} −max{e, e′} =
m∑
i=1

max{ai, bi} −max{af , bf ′} ≥ 0.

From Lemmas Appendix A.3-Appendix A.6 and 5.9, we obtain Lemma
Appendix A.8.

Lemma Appendix A.8. Let X,Y ≥ 0 be nonnegative integers and let A =
(A1, A2, . . . ), B = (B1, B2, . . . ) be partitions such that A ̸= B.

Let x = min{i : Ai ̸= Bi},

e = min{i ≥ x− 1 : Bi+1 ≥ Ai+1}, e′ = min{i ∈ {i ≥ x− 1 : Ai+1 ≥ Bi+1}.

Let Z be an integer such that Z ≥ max{A1, B1}.

1. There exists a partition G = (G1, G2, . . . ) such that | G |= X, (Z,A1, . . . ) ∠ (Z+
1, G1, . . . ) and (Z,B1, . . . ) ∠ (Z + 1, G1, . . . ) if and only if

X ≤
∑
i≥1

min{Ai, Bi}+max{e, e′}.

2. If there exists a partition E = (E1, E2, . . . ) such that | E |= Y , (Z −
1, E1, . . . ) ∠ (Z,A1, . . . ) and (Z − 1, E1, . . . ) ∠ (Z,B1, . . . ) then

Y ≥
∑
i≥1

max{Ai, Bi} −max{e, e′}.

3. If

Y =
∑
i≥1

max{Ai, Bi} −max{e, e′}.

then there exists a partition E = (E1, E2, . . . ) such that | E |= Y , (Z −
1, E1, . . . ) ∠ (Z,A1, . . . ) and (Z − 1, E1, . . . ) ∠ (Z,B1, . . . ).

Lemma Appendix A.9. Let m1, . . . ,mn, M1, . . . ,Mn and x be integers such
that

n∑
i=1

mi ≤ x ≤
n∑

i=1

Mi and mi ≤ Mi, 1 ≤ i ≤ n.

Then, there exist integers x1, . . . , xn such that

n∑
i=1

xi = x and mi ≤ xi ≤ Mi, 1 ≤ i ≤ n.

And, if m1 ≥ · · · ≥ mn and M1 ≥ · · · ≥ Mn, then x1 ≥ · · · ≥ xn.
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Proof. Let k = min{j ≥ 0 : x ≤
∑j

i=1 Mi +
∑n

i=j+1 mi}. Then k ≤ n.

If k = 0, then x =
∑n

i=1 mi. Define xi = mi, 1 ≤ i ≤ n. Then x1, . . . , xn

satisfy the conditions.
If k > 0, then

k−1∑
i=1

Mi +
n∑

i=k

mi < x ≤
k∑

i=1

Mi +
n∑

i=k+1

mi. (A.1)

Define
xi = Mi, 1 ≤ i ≤ k − 1,

xk = x−
∑k−1

i=1 Mi −
∑n

i=k+1 mi,
xi = mi, k + 1 ≤ i ≤ n.

It is clear that
∑n

i=1 xi = x and that mi ≤ xi ≤ Mi for 1 ≤ i ≤ k − 1 and
k + 1 ≤ i ≤ n. From (A.1), we obtain mk < xk ≤ Mk.

If m1 ≥ · · · ≥ mn and M1 ≥ · · · ≥ Mn, then x1 ≥ · · · ≥ xk−1 and xk+1 ≥
· · · ≥ xn. Moreover, xk−1 = Mk−1 ≥ Mk ≥ xk > mk ≥ mk+1 = xk+1.

□
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