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Abstract

For a closed densely defined linear operator A and a bounded linear

operator B on a Banach space X whose essential spectrums are contained

in disjoint sectors, we show that the essential spectrum of the associated

operator pencil λA + B is contained in a sector of the complex plane

whose boundaries are determined purely by the angles that define the two

sectors, which contain the essential spectrums of A and B.
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1 Introduction

It is a well-known fact that the essential spectrum of a linear operator is
invariant under compact perturbations. Here we understand the essential spec-
trum as the complement of the Fredholm domain. In many applications, e.g. in
mathematical physics or in transport theory, one is interested in the (essential)
spectrum of operator pencils, see, e.g., [3, 4]. There are also applications in the
theory of differential-algebraic equations, see [12].

A linear operator pencil is a first order polynomial with operators as coeffi-
cients, that is, it is of the form

P (λ) = λA+B,

where λ ∈ C, A is a closed and B a bounded operator acting in a Banach
space. By definition (see, e.g., [6, 10]) a complex number λ is in the spectrum
of the pencil P if zero is in the spectrum of the operator λA+ B. In the same
way the essential spectrum of P is defined as the set of all λ ∈ C such that the
operator λA+B is no Fredholm operator. Obviously, it follows immediately from

1



this definition that the essential spectrum of such an operator pencils remains
unchanged if the coefficients A and B are perturbed by a compact operator. For
a somehow different class of perturbation results which are based on the theory
of linear relations we refer to [2].

Here, we investigate the question what can be said of the essential spectrum
of the pencil P if the essential spectra of its coefficients A and of B lie in two
disjoint sectors of the complex plane. If in addition, A and B fulfill some mild
commutation property (i.e., the commutator is compact) then it is the main
result of this paper to determine a sector in the complex plane which contains
the essential spectrum of P , cf. Theorem 3.2.

2 Preliminaries

Here we recall some standard terminology connected with Fredholm operators
and the essential spectrum of operators and operator pencils. For this let X be
a Banach space and L(X) be the set of bounded operators on X. We denote
by K(X) ⊂ L(X) the set of compact operators and by C(X) the closed densely
defined operators. An operator F ∈ C(X) is called a Fredholm operator if the
dimensions of its kernel and cokernel is finite and the set of Fredholm operators
in X is denoted by Φ(X) ⊂ C(X). Consequently, its Fredholm index

ind(F ) = dim (ker(F ))− dim (coker(F ))

is well defined and its value is finite, see, e.g., [5]. For some operator A ∈ C(X)
we call

ΦA = {λ ∈ C : λI −A ∈ Φ(X)} ⊂ C

the Fredholm domain of A ∈ C(X) and set

ΦA,0 = {λ ∈ C : ind(λI −A) = 0} ⊂ ΦA.

The set σe(A) := C\ΦA is called the essential spectrum. Note that the boundary
∂ΦA,0 of ΦA,0 belongs to σe(A) [5, Chapter IV 5.4].

In what follows, we will drop the letter I in λI −A and write for simplicity
λ−A instead of λI −A. The spectrum σ(A) of A ∈ C(X) is defined as

σ(A) := {λ ∈ C : (λ−A)−1 has a bounded inverse}

and the resolvent as ρ(A) := C \ σ(A). For λ ∈ ρ(A), the resolvent operator is
defined as

Rλ(A) := (λ−A)−1 ∈ L(X)

Let A ∈ C(X) and B ∈ L(X). An operator pencil P associated to A and B
is the map

P : C → C(X)

λ 7→ λA+B,
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The essential spectrum of the operator pencil P is defined by

σe(P ) = {λ ∈ C | 0 ∈ σe(λA+B)} .

If not otherwise stated, the branch of the argument arg z of a complex num-
ber z ∈ C is [0, 2π). Sometimes it is convenient, for the sake of brevity, to make
an exception from this rule. Whenever we do such an exception, it is stated
explicitly.

3 Main result

In what follow, we wish to determine the sector in the complex plane which
contain the essential spectrum of the operator pencil P (λ) = λA + B. In the
present article, we base our results on the following assumption.

Assumption (A).

(i) The operators A and B satisfy

A ∈ C(X) and B ∈ L(X).

(ii) Let S1 and S2 be two sectors,

S1 = {λ | ϕ1 6 arg λ 6 ϕ2} and S2 = {λ | θ1 6 arg λ 6 θ2},

with ϕ1, ϕ2, θ1, θ2 ∈ [0, 2π) such that

(a) ϕ1 6 ϕ2 < θ1 6 θ2, that is, S1 ∩ S2 = {0},

(b) σe(A) ⊂ S1 and σe(B) ⊂ S2,

(c) C \ σe(A) ⊂ ΦA,0 and assume that ΦA,0 is connected,

(d) there exists λ0 ∈ ρ(A) such that λ0 ∈ C \ S1.

Remark 3.1. Obviously, by imposing Assumption (A), the essential spectra of
the operators A and B are contained in two different sectors such that the
essential spectrum of A is in a sector with the smaller arguments, i.e., ϕ1 6

ϕ2 < θ1 6 θ2. Moreover item (ii) in Assumption (A) implies that the essential
spectra of A and of B are not contained in a neighbourhood of the positive
real axis. These two conditions (essential spectrum of A is contained in the
sector with the smaller arguments and the essential spectra of A and of B
are not contained in a neighbourhood of R+) are no restrictions. Multiplying
both operators A and B by exp(iθ) for an appropriate θ ∈ (0, 2π) leads to the
operators exp(iθ)A and exp(iθ)B. These operators satisfy Assumption (A) for
an appropriate angle θ ∈ (0, 2π). The essential spectrum of A and B are rotated
proportionally to θ. Likewise if the essential spectrum of A or B is contained in
a neighbourhood of the positive x-axis, it can be dilated such that the positive
x-axis does not intersect the essential spectrum.
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Our main result is the following theorem, which characterizes the sector
W that contains the essential spectrum of the operator pencil. The angles of
this sector is calculated as −π < θ1 − ϕ2 − π 6 θ2 − ϕ1 − π < π (oriented
counterclockwise) and Σ may contain the positive real line. Note, that here, for
the sake of simplicity, we allow the arguments to be between −π and +π. The
key tool for proving this result is Lemma 4.2 below.

Theorem 3.2. Suppose that Assumption (A) holds and that there exist a natu-
ral number n and a compact operator K ∈ K(X) such that B : D(An) → D(A)
and

ABx = BAx+Kx for all x ∈ D(An).

Then, the essential spectrum σe(P ) of the operator pencil

P (λ) = λA+B

is contained in the sector Σ defined by the angles between θ1 − ϕ2 − π and
θ2−ϕ1−π oriented counterclockwise, where these angles lie between −π and π.

Some auxilliary statements are necessary in order to prove Theorem 3.2 and
this proof is presented at the end of Section 4.

4 Proof of Theorem 3.2

The following theorem is essentially contained in [8]. Our statement and proof
are adopted to the present setup, and we include the proof for completeness.

Theorem 4.1. Suppose that Assumption (A) hold, there exist a natural number
n and a compact operator K ∈ K(X) such that B : D(An) → D(A) and

ABx = BAx+Kx for all x ∈ D(An).

Then, for λ ∈ ρ(A1) ∩ ρ(B), we have

Rλ(A1)Rλ(B) = Rλ(B)Rλ(A1) +K ′ (4.1)

where A1 = γ −A for some γ ∈ C and K ′ ∈ K(X). Moreover, we have

σe(A+B) ⊆ σe(A) + σe(B). (4.2)

Proof. We prove (4.1). Indeed, let x ∈ D(An) then we have

(λ−A1)(λ−B)x =(λ− γ +A)(λ−B)x

=(λ2 − λB − λγ + γB + λA−AB)x

=(λ2 − λB − λγ + γB + λA−BA)x−Kx

=(λ−B)(λ−A1)x−Kx.

(4.3)
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We multiply on the left and on the right by (λ−B)−1 and obtain for x ∈ D(An)

(λ−B)−1(λ−A1)x = (λ−A1)(λ−B)−1x−K1x (4.4)

where K1 ∈ K(X). By multiplying Equation (4.4) on the right by (λ − A1)
−1

one obtains

(λ−B)−1x = (λ−A1)(λ−B)−1(λ−A1)
−1x−K1(λ−A1)

−1x,

which equal to

(λ−A1)
−1(λ−B)−1x = (λ−B)−1(λ−A1)

−1x+K ′x

for K ′x = −(λ−A1)
−1K1(λ−A1)

−1.
Since (λ−A1)

−1(λ−B)−1 and (λ−B)−1(λ−A1)
−1 +K ′ are bounded and

D(An) = D((γ −A)n) = D((An
1 ) = D((λ−A1)

n) is dense by [9, Theorem 2.5],
(4.1) follows by continuity.

If σe(A) + σe(B) is the entire complex plane, the theorem holds trivially.
Therefore, we assume σe(A) + σe(B) 6= C. Let γ /∈ σe(A) + σe(B). We show
that γ ∈ ΦA+B . If λ ∈ σe(B) then (γ − λ) ∈ ΦA. Now, let A1 = γ − A. We
have

γ − λ ∈ ΦA ⇔ (γ − λ)−A ∈ Φ(X)

⇔ A1 − λ ∈ Φ(X)

⇔ λ−A1 ∈ Φ(X)

⇔ λ ∈ ΦA1
.

The same arguments imply γ − λ ∈ ΦA,0 ⇔ λ ∈ ΦA1,0. This and item (ii) (c)
in Assumption (A) imply

σe(B) ⊂ ΦA1,0. (4.5)

As B is bounded, Assumption (A) and (4.5) imply that there exists an open,
bounded set U ⊂ C with

σe(B) ⊂ U ⊂ ΦA1,0,

∂U consists of finite many rectifiable arcs.

As B is bounded, the unbounded component of ΦB has a non-empty intersection
with ρ(B). Hence, it consists only of Fredholm operators of index zero. As
∂ΦB,0 ⊂ σe(B), we obtain C \ U ⊂ ΦB,0. By the punctured neighbourhood
theorem, in this component the spectrum of B consists only of isolated normal
eigenvalues [5, Chapter VI , 5.4].

The same argument applies to the operator A1. Item (c) in Assumption
(A) implies that ΦA,0 is connected and, hence, ΦA1,0 is connected, By item (d)
the component ΦA1,0 has non-empty intersection with the resolvent set of A1.
Therefore, by the same arguments as above, there are at most finitely many
(isolated) eigenvalues of A1 and of B on ∂U . After changing U slightly, we
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find a neighbourhood Ũ with ∂Ũ consists of finite many rectifiable arcs which
satisfies ∂Ũ ⊂ ρ(A1) ∩ ρ(B) and σe(B) ⊂ Ũ ⊂ ΦA1,0.

Define the two operators S1 and S2 by

S1 =
−1

2iπ

∫

∂Ũ

Rλ(A1)Rλ(B)dλ,

S2 =
−1

2iπ

∫

∂Ũ

Rλ(B)Rλ(A1)dλ.

We will show that there is a compact operator K̃ such that (γ−B−A)S1 = I+K̃.
Indeed, we have

γ −B −A = (γ − λ−A) + (λ−B) = −(λ−A1) + (λ−B).

Thus,

(γ −B −A)S1 =
1

2iπ

∫

∂Ũ

Rλ(B)dλ−
1

2iπ

∫

∂Ũ

(λ−B)Rλ(A1)Rλ(B)dλ.

The first integral in the right hand side equals the spectral projection P
Ũ
(B)

onto the spectral set Ũ of B, see, e.g., [1, VII.3]. By the above construction, we

see that Ũ contains the spectrum of B except for at most finitely many isolated
eigenvalues of B. Hence, P

Ũ
(B) = I − K, K ∈ K(X). On the other hand,

applying Equation (4.1) on the second integral in the right hand side we obtain

−1

2iπ

∫

∂Ũ

(λ−B)Rλ(A1)Rλ(B)dλ =
−1

2iπ

∫

∂Ũ

Rλ(A1)dλ−
1

2iπ

∫

∂Ũ

(λ−B)K ′dλ

∈ K(X)

since 1

2iπ

∫
∂Ũ

Rλ(A1)dλ is the spectral projection onto the spectral set Ũ of A
which contains only finitely many isolated eigenvalues of A1.

By the same reasoning, we deduce that

S2(γ −B −A) =
1

2iπ

∫

∂Ũ

Rλ(B)dλ−
1

2iπ

∫

∂Ũ

Rλ(B)Rλ(A1)(λ−B)dλ

= I + K̂,

where K̂ ∈ K(X). Consequently, using [9, Lemma 2.4], we can deduce that
(γ −B −A) ∈ Φ(X).

Lemma 4.2. Suppose that assumptions in Theorem 4.1 are fulfilled. Let α ∈ C.
Then, ασe(A) ⊂ C \ (−S2) implies that

α /∈ σe(P ).

Proof. Suppose that 0 ∈ ασe(A) + σe(B). Let α1 ∈ ασe(A) and α2 ∈ σe(B)
such that 0 = α1 + α2.
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Since α2 ∈ σe(B) ⊂ S2, we obtain that

α1 = −α2 ∈ −S2,

which contradicts α1 ∈ ασe(A) ∈ C \ (−S2). Subsequently,

0 /∈ ασe(A) + σe(B). (4.6)

Thus, using Theorem 4.1, we obtain 0 /∈ σe(αA+B). Therefore,

α /∈ σe(P ).

In order to make use of Lemma 4.2 in the proof of Theorem 3.2, one needs
the defining angles of −S2. These defining angles could be expressed as θ1 − π
and θ2 − π. This is an easy description but now the values of θ1 − π and θ2 − π
are no longer in [0, 2π].

Proof of Theorem 3.2. Let

θ̃ ∈ [0, θ1 − ϕ2) ∪ (θ2 − ϕ1, 2π) and z ∈ σe(A). (4.7)

Note that arg z ∈ [ϕ1, ϕ2]. We see that

θ̃ + arg z ∈ [ϕ1, θ1) ∪ (θ2, 2π + ϕ2)

Hence, for some r > 0 we set

α̃ := reiθ̃

and we have
arg α̃z ∈ [0, θ1) ∪ (θ2, 2π)

as ϕ1 6 ϕ2 < θ1 by Assumption (A), that is

α̃z ∈ C \ S2. (4.8)

Set
θ := θ̃ − π and α := reiθ.

Then together with (4.8)

αz = reiθz = −reθ̃iz = −α̃z ∈ C \ {−S2}

for all z ∈ σe(A). Hence, by Lemma 4.2,

α /∈ σe(P ).

Note that θ = θ̃ − π in the above proof takes values in [−π, π), more precisely,
by (4.7),

θ ∈ [−π, θ1 − ϕ2 − π) ∪ (θ2 − ϕ1 − π, π)

and the statement of the theorem follows.
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Figure 1: The essential spectrum σe(P ) of the operator pencil is contained in
the wedge between θ1 − ϕ2 − π = 260◦ mod 2π and θ2 − ϕ1 − π = 315◦ mod
2π (shaded in green) for ϕ1 = 190◦, ϕ2 = 220◦, θ1 = 300◦, θ2 = 325◦ in view of
Theorem 3.2.
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