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Abstract

Thermal convection is the essential mechanism by which heat is transported in many
natural flows and reveals often a hierarchy of different flow structures. Any of the present
environments may offer its own set of specific boundary conditions, whereas the solar
convection zone represents one of the most prominent examples for a natural convection
flow that exhibits a distinguished pattern hierarchy. The formation of the latter and the
role of its involved flow structures on material transport are important open questions in
science.

This thesis at hand (1) expands our understanding of the alteration of large-scale
flow structures by different boundary conditions, and (2) investigates the former from a
Lagrangian material transport perspective. To this end, Rayleigh-Bénard convection – a
paradigm of natural thermal convection – is studied via direct numerical simulations.

The first main result is obtained by an explorative study with respect to idealised
mechanical and thermal boundary conditions. It is shown that the latter fundamentally
determine the nature of large-scale flow structures, opening an entirely new path for more
detailed studies. If the flow is driven by a constant heat flux, the gradual aggregation of
smaller convection cells to a domain-filling convection structure – which is in reminiscence
to the astrophysical motivation termed supergranule – can be observed for all accessible
Rayleigh and Prandtl numbers. It is furthermore shown that weak rotation around the
vertical axis is capable of limiting this aggregation process, and the scaling of the resulting
pattern size is investigated. The dynamical origin and formation of the supergranules is
analysed in the context of instabilities and spectral cascades.

The second main result is obtained by examining the evolution of massless Lagrangian
particles in the classical, constant temperature-driven scenario. Unsupervised machine
learning is used to identify coherent spatial regions, the latter of which are subsequently
related to the large-scale flow patterns and analysed in terms of their heat transport
across different working fluids. A new evolutionary clustering method, which overcomes
observation window restrictions of previous approaches, is developed. It is part of future
work to apply this technique to the gradual supergranule aggregation.

This thesis describes a new mechanism of self-organisation of flows and significantly
expands our understanding of large-scale flow structures in thermal convection. Due to
the simplicity of the underlying dynamical system, it applies to various natural flows
and allows to interpret their extremely complex nature more successfully.

i



ii



Kurzzusammenfassung

Thermische Konvektion ist der essentielle Mechanismus durch welchen Wärme in vielen
natürlichen Strömungen übertragen wird und weist zugleich oftmals eine Hierarchie von
verschiedenen Strömungsstrukturen auf. Jedes Umfeld kann dabei über seine eigenen
charakteristischen Randbedingungen verfügen, wobei die solare Konvektionszone das wohl
bekannteste Beispiel mit ausgeprägter Strukturhierarchie repräsentiert. Die Entstehung
Letzterer und die Rolle der involvierten Strömungsmuster bzgl. des materiellen Transports
stellen wichtige offene Fragen der Wissenschaft dar.

Die vorliegende Arbeit (1) erweitert unser Verständnis von der Beeinflussung großskali-
ger Strömungsstrukturen durch verschiedene Randbedingungen und (2) untersucht diese
Muster aus der Perspektive materiellen Transports. Zu diesem Zweck wird Rayleigh-
Bénard Konvektion – ein Paradigma natürlicher thermischer Konvektion – mittels direkter
numerischer Simulationen untersucht.

Das erste wesentliche Ergebnis wird durch eine explorative Studie verschiedener ideali-
sierter mechanischer und thermischer Randbedingungen erreicht. Es wird gezeigt, dass
Letztere die Natur der großskaligen Strömungsstrukturen fundamental bestimmen. Wird
eine konstante Wärmestromdichte aufgeprägt, so kann eine allmähliche Aggregation
kleinerer Konvektionszellen zu einer die gesamte Domäne füllenden Konvektionsstruktur
– welche in Analogie zur astrophysikalischen Motivation als Supergranule bezeichnet wird
– für alle zugänglichen Rayleigh- und Prandtl-Zahlen beobachtet werden. Es wird zudem
gezeigt, dass schwache Rotation um die vertikale Achse imstande ist, den Aggregations-
prozess zu beschränken. Der dynamische Ursprung und die Formierung der Supergranulen
werden im Kontext von Instabilitäten und spektralen Kaskaden analysiert.

Das zweite wesentliche Ergebnis wird durch die Analyse der Entwicklung von masselosen
Lagrange’schen Partikeln im klassischen, durch konstante Temperaturen angetriebenen
Szenario erzielt. Unüberwachtes maschinelles Lernen wird dazu benutzt, kohärente Re-
gionen zu identifizieren, welche anschließend mit den großskaligen Strömungsstrukturen
in Verbindung gebracht und bzgl. ihres Wärmetransportes in verschiedenen Fluiden ana-
lysiert werden. Abschließend wird eine neue evolutionäre Clustering-Methode entwickelt,
welche künftig auf die Supergranulenaggregation angewendet werden kann.

Diese Arbeit beschreibt einen neuen Mechanismus der Selbstorganisation von Strömun-
gen und erweitert damit unser Verständnis großskaliger Strömungsstrukturen thermischer
Konvektion. Die Einfachheit des untersuchten dynamischen Systems erlaubt eine Übertra-
gung auf verschiedenste natürliche Strömungen sowie deren erfolgreichere Interpretation.
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‘The experiment is the mightiest and most reliable lever
through which we can wrest its secrets from nature.’

– Wilhelm Conrad Röntgen, 2nd January 1894
(translated from German [1])

Mr Röntgen was the discoverer of X-Rays (also called Röntgen radiation) and grantee
of the first Nobel Prize in Physics in 1901. What if we could show him nowadays the
possibility of measuring numerical experiments even without the use of rays?
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Chapter 1
Introduction

1.1 Motivation
Gravity — the weakest of the four fundamental interactions in physics — pervades
the whole universe while being inescapable by acting as a body force. In contrast
to electromagnetic interactions, which may act on similar length scales and can be
considered as being 1039 times stronger than gravitational interactions1, there are no
negative gravitational masses [2]. This fact that gravity cannot be neutralised grants it
a very special omnipresent role, especially on large scales.

The interplay of gravity with mass density inhomogeneities, typically caused by thermal
heterogeneities, is called buoyancy and induces without any further help natural (thermal)
convection – the latter of which represents the essential mechanism by which heat is
transported in natural flows [3]. On the one hand, such a convective heat transfer is
much more efficient than pure heat conduction, whereas on the other hand the existence
of a fluid is mandatory to absorb and release heat. If this is not present, radiation as a
third mechanism may transfer heat even without any transmitting matter and becomes
dominant especially when the surface temperature of a body is extraordinary high.

Examples for such natural convection processes driven by heat transfer can be found
on Earth throughout its layers from mantle convection [4] over deep ocean convection [5]
up to convection in its atmosphere [6], eventually determining local and global aspects
of weather and climate. But natural convection is not only an effect that accompanies
humans, it can also be used and exploited by us through engineering. For instance,
natural thermal convection can be used to cool electrical devices without the need of an
additional fan and thus a plus of energy input. Vice versa, wind turbines may exploit
the pressure gradients across the Earth’s atmosphere by translating kinetic energy into
electricity.

Thermal convection flows reveal often a hierarchy of different structures and flow
patterns, e.g. as clusters of clouds over the warm ocean in the tropics of Earth [7]. The
solar convection zone in the outer 30% of the Sun [8], see also figure 1.1, might represent

1Considering exemplary the attracting forces between a proton and electron.
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Chapter 1: Introduction

Figure 1.1: Schematic structure of the Sun [9]. Heat that is generated in its core
is transferred through the convection zone and eventually radiated at its photosphere
into space. A prominent hierarchy of different patterns at and close to its surface is
observable from Earth.

one of the most prominent astrophysical examples of such a hierarchy formation. So-called
granules, i.e. small convection cells with typical horizontal extensions of lG ∼ 103 km that
exhibit lifetimes of about 10 minutes, represent the first stage and form the basic pattern
at the solar surface where a heat flux drives convection [8, 10]. The next larger building
block in this hierarchy is termed supergranules, offering extensions of lSG ∼ 30lG and
lifetimes of a day. Finally, observed giant long-living fluid motions [11], that extend with
lGM ∼ 200lG across major parts of the solar convection zone and exhibit lifetimes of more
than a month, represent a third stage in this hierarchy [8]. However, our understanding
of this hierarchy’s origins is still far from complete [12].

Supergranules as part of this hierarchy are known to be connected to magnetic networks
such as sunspots [8, 10, 13, 14], the latter of which are directly related to the solar
cycle. On the one hand, this cycle impacts the solar radiation [10] and thus – besides
other cycles that originate in the orbital parameters of Earth [15–17] – the thermal
forcing of weather and climate on Earth. On the other hand, and even more important,
such magnetic networks are related to coronal mass ejections and thus to adverse space
weather. In other words, supergranules are related to accelerated and from the Sun
ejected particles, which can in turn pose severe danger to humans and their technology
[8, 18]. From this point of view it becomes clear that such hierarchies in natural flows
are of particular interest in research.

The phenomenon of natural convective heat transfer with its many facets is crucial
for many processes – so does it not surprise that the idea of convection is quite old
and that first quantitative experiments have already been performed around the year

2



1.2 Fundamentals of Rayleigh-Bénard convection

1900 by Henri Bénard [19, 20]. He studied the stability of a thin fluid layer with a free
surface, influenced by a vertical temperature gradient. Later in 1916, Lord Rayleigh
studied convection between two plates in more detail and developed a complete linear
stability analysis for selected boundary conditions [21]. Many scientists followed the
works of Bénard and Rayleigh in the last century while focussing on the thermally driven
turbulent convection – but still a large number of questions remains open, even for the
simplest experimental setup of so-called Rayleigh-Bénard convection [3, 20].

1.2 Fundamentals of Rayleigh-Bénard convection

1.2.1 Basic experimental setup
Rayleigh-Bénard convection is the simplest paradigm for research of thermal convection
and thus of thermally driven turbulence [3, 22]. There, ‘a continuous medium, whose
equilibrium state is uniform, is contained between two parallel uniform plates [...] whose
width L is large compared to their [vertical] separation H. The medium is driven out of
equilibrium [...] by gradients of temperature [...]. Because the plates are uniform, the
gradients are normal to the plates and independent of their position along the plates’
[23]. In other words, heat shall be transferred across a layer of fluid that gets confined
between two horizontal planes – the bottom plane is heated whereas the top plane is
cooled. Because of the variation of mass density with temperature, this may destabilise
the fluid once the system is subjected to gravity. This is all that is necessary and thus
the reason for the simplicity of this setup.

Although already complicated in its own, various extensions can be made to include
further physical mechanisms into this dynamical system. Examples of such extensions
that are of particular importance to geo- and astrophysical flows include complex fluid
property dependencies [24–26], phase changes [27, 28], rotation around some axis [29,
30] or magnetohydrodynamic effects [31–33].

This present thesis deals mostly with the very basic setup of Rayleigh-Bénard convection
and includes rotation around the vertical axis at selected places as the only extension. If
not mentioned explicitly, rotation is not included. The underlying experimental setup is
visualised in figure 1.2.2

It should be stressed that this experimental setup of Rayleigh-Bénard convection is
in contrast to the more complex Bénard-Marangoni convection, which is the original
setup used by Henri Bénard. The key difference is that Bénard-Marangoni convection
offers a free surface at the top such that the flow is driven by surface tension instead of
buoyancy. Thus, it works even in a zero-gravity environment [20, 34–36].

When the applied temperature gradient between the plates in Rayleigh-Bénard con-
vection is increased starting from zero and eventually exceeds a certain point, the fluid
that was at rest before begins to move. If this thermal driving is constant over time,
the system might even enter a non-equilibrium statistically steady state. The strength

2Figure 3.12 and section 3.4.2.2 will point out and discuss in more detail how this Cartesian domain is
related to the motivating geo- and astrophysical objects.
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Chapter 1: Introduction

warm impermeable plane

cold imper-
meable plane

Figure 1.2: Basic setup of Rayleigh-Bénard convection in Cartesian coordinates.
A fluid is confined between two horizontal planes, the latter of which prescribe a
temperature gradient, and subjected to gravity. Rotation around the vertical axis with
angular velocity Ω is optional. If Ra ≥ Racrit, flow structures manifest that are driven
by hot ascending and cold descending fluid just as sketched on the right side.

of thermal driving can be quantified by the so-called Rayleigh number Ra, and so the
before-mentioned critical point is then given by the critical Rayleigh number Racrit which
is typically of order O (103) − O (104), see table 1.1. This point of onset of convection
solely depends on boundary conditions [37, 38], the aspect ratio Γ of the domain [20,
23, 35], and (if present) the strength of rotation [39, 40] which can be quantified by the
Rossby number Ro. In contrast, it is mostly independent of the working fluid3 which
can be characterised by the Prandtl number Pr. These four dimensionless quantities
represent the fundamental system parameters that govern the entire fluid flow and will
be defined in section 1.2.2.

It is peculiar that a fluid suddenly gets in motion after the Rayleigh number is increased
beyond its critical value. At first thought one could expect that the unstable thermal
arrangement of the fluid, whose mass density becomes larger at the colder top but smaller
at the hotter bottom of the fluid layer, causes immediately a convective motion [37].
In fact, this is not the case. Suppose for this a quiescent state with Ra < Racrit. If a
volume element is moved due to a random fluctuation e.g. upwards – see also figure 1.2
–, it is hotter than its vicinity. Due to the heat conduction in the fluid, this temperature
difference will get balanced and also by friction, the volume element gets slowed down
and will stagnate. But if the temperature gradient gets increased beyond a certain critical
value, implying Ra ≥ Racrit, the stabilising mechanisms of heat conduction and viscosity
will not suffice any more. The hotter particle is also less dense than its vicinity, leading
to a buoyancy that strengthens the initial random fluctuation. The particle reaches even
colder vicinities, leading to a further enhanced buoyancy. The same is also valid for
a volume element which is moved downwards: it reaches hotter vicinities and thus its
density is higher than the density of its neighbouring volume elements. In the end also
this particle will continue to move downwards [41]. Nothing but this proportion between
buoyancy on the one side and dissipation through viscosity and heat conduction on the
other side is quantified by the Rayleigh number.

3This vague introductory statement will be rendered more precisely in section 3.2.1.

4



1.2 Fundamentals of Rayleigh-Bénard convection

Mechanical BC Racrit kcrit λcrit Reference
Thermal BC: Dirichlet / constant temperature

no-slip 1707.8 3.13 2.01 [42]
free-slip 27

4 π4 ≈ 657.5 π√
2 ≈ 2.221 2

√
2 ≈ 2.828 [21]

Thermal BC: Neumann / constant heat flux
no-slip 6! = 720 0 ∞ [38]
free-slip 5! = 120 0 ∞ [38]

Table 1.1: Critical parameters at the onset of convection. The critical Rayleigh
number Racrit, horizontal wave number kcrit ≡ kh, crit, and horizontal wavelength
λcrit ≡ λh, crit with λ = 2π/k are provided for selected combinations of thermal and
mechanical boundary conditions, the latter of which will be explained in section 1.2.2.4.
These numbers hold for the non-rotating scenario with Γ → ∞ only.

1.2.2 Mathematical model

1.2.2.1 Oberbeck-Boussinesq approximation

Although more than a century old, the basic concept of Lord Rayleigh’s theoretical
treatment has not become outdated – he described the fluid flow as a continuum based on
the so-called Oberbeck-Boussinesq approximation [43, 44]. In general, material parameters
depend on the temperature T and pressure p. The key idea of this approximation is
now that their dependence on ‘pressure is unimportant and that even the variation
with temperature may be disregarded except in so far as it modifies the operation of
gravity’ [21]. As a consequence, the mass density ρ becomes a linear function of only the
temperature such that [3, 45]

ρ(T, p) = ρ(T ) ≃ ρref [1 − α (T − Tref)] with α = 1
V

∂V

∂T

⃓⃓⃓⃓
⃓
p

= − 1
ρ

∂ρ

∂T

⃓⃓⃓⃓
⃓
p

, (1.1)

where α represents the volumetric thermal expansion coefficient at constant pressure,
V the volume and ρref = ρ(Tref) the density at a reference temperature Tref – the latter
is typically chosen as the mean temperature in the system. This equation (1.1) comes
only into play when the mass density acts together with gravity, otherwise the fluid is
considered to be incompressible with ρ = ρref.

Physically, this incompressibility implies that and may be used only if the flow is
highly subsonic, as well as the height of the convection layer is small enough to assume
a uniform and constant background density [3, 10, 46]. In addition, the Oberbeck-
Boussinesq approximation might allow for ‘small’ temperature differences only [47, 48]
due to the linearisation in eq. (1.1) and the elsewhere assumed temperature-independent
fluid properties. Despite these restrictions, the approximation remains valid for many
practical flows and is thus commonly used even today.
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Chapter 1: Introduction

1.2.2.2 Dimensional governing equations

Based on the Oberbeck-Boussinesq approximation, the fundamental governing equations
of rotating thermal convection are [45, 48–52]

∇ · u = 0, (1.2)
∂u

∂t
+ (u · ∇)u + 2Ω ez × u = − 1

ρref
∇p + ν ∇2u + αg (T − Tref) ez, (1.3)

∂T

∂t
+ (u · ∇) T = κ ∇2T. (1.4)

Here, u = u (x, t) with u = (ux, uy, uz) is the velocity field, T = T (x, t) the absolute
temperature field and p = p (x, t) the pressure variation field around the hydrostatic
equilibrium profile that is further modified under the action of rotation. x = (x, y, z)
represents the spatial coordinate and t the time. The coordinate system is chosen
such that the acceleration due to gravity g points against the z-axis, see also figure
1.2, therefore ez represents the unity vector along this axis. Rotation is, if present at
all, considered to be aligned along the vertical axis, anti-parallel to the direction of
gravity, constant in space and time, and explicitly included with respect to the Coriolis
acceleration only – the centrifugal acceleration term is not neglected but just absorbed in
the pressure field [53–56].4 Further, Ω represents the angular velocity around the vertical
axis, ν the kinematic viscosity, and κ = λt/ (ρrefcp) the thermal diffusivity with λt as the
thermal conductivity and cp as the specific heat capacity at constant pressure.

The outstanding generality of the above equations is provided by the fact that the
continuity equation (1.2), the Navier-Stokes equation (1.3), and the energy equation (1.4)
represent conservation equations for the mass density, the momentum density, and the
internal energy density of any incompressible Newtonian fluid, respectively [57]. Crucially,
the temperature represents an active scalar as it enters the Navier-Stokes equation – so,
these equations are coupled.

1.2.2.3 Non-dimensional governing equations

The large number of parameters in equations (1.2) – (1.4) hampers a systematic study
capturing the relative strengths of the various terms in these equations. However, a
dimensional analysis reveals that the problem can be reduced to only three parameters
which can be obtained by non-dimensionalising the field variables based on characteristic
length, time, temperature, and thus also velocity scales.

In general, the height H of the fluid layer represents the characteristic length scale of
the Rayleigh-Bénard convection system. In contrast, the velocity scale can be chosen from
several options and depends on arguments of the strength of selected terms to each other
[56]. For large-scale structures in turbulent flows at high Rayleigh numbers, diffusion
becomes unimportant and the free-fall inertial balance will be achieved – i.e., the forcing in
eq. (1.3) through buoyancy is balanced by the non-linear term. Thus, (u · ∇)u ∼ αgTez

4A more detailed explanation on this is provided in section 3.4.2.
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1.2 Fundamentals of Rayleigh-Bénard convection

and so U2
char/H ∼ αgTchar, which leads after solving for the characteristic velocity Uchar

to the so-called free-fall velocity Uchar ∼ Uf :=
√

αgTcharH [52]. As will become clear
when defining the boundary conditions in section 1.2.2.4, the characteristic temperature
Tchar can be either the applied constant temperature difference ∆T between the plates
such that Tchar ∼ ∆T , or obtained via the applied constant temperature gradient β
which leads to Tchar ∼ βH. With this diffusivity-free velocity scale, the corresponding
time scale becomes the so-called inertial free-fall time scale τf := H/Uf =

√︂
H/ (αgTchar).

The pressure scale results in pf := U2
f ρref. Thus, in a nutshell,

x = H x̃, u = Uf ũ, T = Tchar T̃ , t = τf t̃, p = pf p̃, (1.5)

with variables exhibiting tildes being non-dimensional – these tildes are, as is common,
dropped in the following.

A subsequent non-dimensionalisation translates equations (1.2) – (1.4) to [58, 59]

∇ · u = 0, (1.6)
∂u

∂t
+ (u · ∇)u + 1

Ro ez × u = −∇p +
√︄

Pr
Ra ∇2u + Tez, (1.7)

∂T

∂t
+ (u · ∇) T = 1√

RaPr
∇2T. (1.8)

Starting here and throughout the remainder of this thesis, all field variables u, p, T as
well as times and lengths are (unless otherwise noted) non-dimensional, i.e. they do
not exhibit a physical unit any more – instead, their unit is 1. Velocities, times and
temperatures are measured in units of the above-introduced free-fall velocity, free-fall
time and characteristic temperature of the system, respectively, whereas the lengths are
measured in units of the height of the fluid layer.5

Comparing equations (1.6) – (1.8) with (1.2) – (1.4) highlights the vast reduction
of the parameter space. The whole dynamics is now described by the following three
non-dimensional parameters only. The (molecular [61] or thermal [8]) Prandtl number

Pr := ν

κ
(1.9)

represents the ratio of viscous to thermal diffusion and characterises the working fluid.
The Rayleigh number Ra, whose definition [58, 62] depends on the choice of the thermal
boundary condition – Dirichlet (D) or Neumann (N), see section 1.2.2.4 –, is given by

RaD := αg∆TH3

νκ
or RaN := αgβH4

νκ
, (1.10)

5In contrast to this non-dimensionalisation based on the free-fall velocity Uf, it can also be performed
based on a diffusivity. This results in either the viscous or the thermal vertical diffusion time scale,
τν := H2/ν ≡

√︁
Ra/Pr τf or τκ := H2/κ ≡

√
RaPr τf, respectively. Finally, the Rayleigh and Prandtl

number comprise all these time scales as Ra = τντκ/τ2
f and Pr = τκ/τν [60]. More information on

time scales especially corresponding to rotation are provided in section 3.4.2.
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Chapter 1: Introduction

repectively, and quantifies the strength of the thermal driving compared to diffusion
of momentum and heat. Finally, the (convective [52, 63] or gravitational [64]) Rossby
number

Ro := Uf

2ΩH
(1.11)

represents the ratio between the freely falling convective inertia to the system’s rotational
inertia [52]. This comes only into play if rotation around the vertical axis is considered –
otherwise Ro = ∞ and the Coriolis acceleration term vanishes.

One might wonder why scientists need to put so much effort in solving these equations
that obey only three control parameters – the reasons here are two-fold. Firstly, the Navier-
Stokes equation contains the non-linear term which prohibits applying the superposition
principle for a general analytic solution [65]. Secondly, the solution of the Navier-Stokes
equation is non-local due to the involved pressure field, the latter of which needs to be
computed based on the knowledge of the field variables across the entire domain (see
also eq. (1.18)). This in particular is caused by the incompressibility which implies to
set the speed of sound to cs → ∞. Because of these two reasons, researchers are asked to
perform complex simulations or experiments to study the particular system of interest.

1.2.2.4 Boundary conditions

Many natural buoyancy-driven convection processes, see also again section 1.1, can
be described by the governing equations (1.6) – (1.8). However, this set of equations
must always be complemented by appropriate boundary conditions (BCs) specifying the
environment in which it may then describe the actual flow.

First of all, the domain geometry needs to be defined. This can be very complex
in nature and systematic research relies on mathematical idealisations. These may
range from spherical shells – approximating, e.g., the entire solar convection zone –
up to Cartesian boxes, the latter of which might represent in the same example one
particular section of this zone while neglecting the spherical character (see also figure
3.12 and section 3.4.2.2). Every such flow domain introduces at least one additional
non-dimensional parameter, the aspect ratio

Γ := L

H
, (1.12)

describing the ratio of the typical horizontal length scale L of the flow domain to the
vertical length scale H.

Further, the variety of convection processes in nature and technology exhibits combin-
ations of different mechanical and thermal boundary conditions. Although sometimes
more a valid approximation than a perfect description of reality, the following ones [56,
65] capture typical scenarios.

On the one hand, boundary conditions for the velocity field demand always – due to
the nature of the experiment – impermeable top and bottom planes. However, the role of
tangential stress can be very different ranging from ‘as large as necessary to prevent any
fluid motion’ as one limit to ‘being absent’ as the complementary limit. The former is
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1.2 Fundamentals of Rayleigh-Bénard convection

called no-slip (or rigid) boundary condition. Physically, this means that the fluid sticks
perfectly to the planes and so this is the typical boundary condition that laboratory
experiments or technological applications obey. It can mathematically be described by

u (z ∈ {0, H}) = 0 or ũ (z̃ ∈ {0, 1}) = 0 (1.13)

for dimensional or non-dimensional quantities, respectively. In contrast, the latter is
called free-slip (or stress-free) boundary condition. This can be the case when one fluid
flows over another one and has practical relevance in many geo- and astrophysical settings
[8, 66, 67]. It implies that

uz (z ∈ {0, H}) = 0,
∂ux,y

∂z
(z ∈ {0, H}) = 0 or (1.14a)

ũz (z̃ ∈ {0, 1}) = 0,
∂ũx,y

∂z̃
(z̃ ∈ {0, 1}) = 0. (1.14b)

Navier-slip boundary conditions [49, 68] represent an interpolation between these two
limits of tangential stress [69] and are, e.g., often used in microfluidics [70].

On the other hand, boundary conditions on the temperature field at the top and
bottom planes depend critically on the choice of working materials. Physically, this
depends on the ratio of thermal diffusivities κF/κS between the fluid (F) and solid plate
(S) [37, 38, 62, 71]. If κF/κS → 0, temperature inhomogeneities in the solid top or
bottom plate relax much more rapidly by thermal diffusion than in the fluid such that
their temperature can be assumed to be constant. Thus, this case is called constant
temperature (or iso-thermal) boundary condition and of Dirichlet type. Mathematically,

T (z = 0) = Tbot = Ttop + ∆T, T (z = H) = Ttop or (1.15a)
T̃ (z̃ = 0) = 1, T̃ (z̃ = 1) = 0 (1.15b)

with the fixed temperature difference between the plates ∆T > 0. In the complementary
case of κF/κS → ∞, the plates act – relative to the fluid – as thermal insulators which
prescribe a heat flux independently of the fluid motion. This case is called constant heat
flux (or iso-flux) boundary condition and of Neumann type. It is described by

∂T

∂z
(z ∈ {0, H}) = −β or ∂T̃

∂z̃
(z̃ ∈ {0, 1}) = −1 (1.16)

with the fixed vertical temperature gradient β > 0. Robin boundary conditions [72] cover
the range between these two extreme cases [58].

The lateral boundaries may either close the domain – i.e. they exhibit similar velocity
or temperature boundary conditions to any of the above-mentioned, which is for instance
the case in laboratory experiments – or be periodic. Periodic boundary conditions are
often appropriate for geo- and astrophysical settings and indicate that the domain is
topologically equivalent to a ring [23]. Mathematically, this means that any quantity Φ
is repeated after the periodic length L such that

Φ (x) = Φ (x + ixLxex + iyLyey) or (1.17a)
Φ̃ (x̃) = Φ̃ (x̃ + ixΓxex + iyΓyey) (1.17b)

9



Chapter 1: Introduction

for arbitrary integers i ∈ Z [23, 55, 56, 65].
The pressure field as the last of the three fields in equations (1.6) – (1.8) becomes under

the Oberbeck-Boussinesq approximation an enslaved field only – it is not independent
any more but instead directly coupled to the velocity and temperature field. Its governing
pressure equation can be obtained by taking the divergence of the Navier-Stokes equation
(1.7) with the continuity equation (1.6) acting as a boundary condition and reads

∇2p = −∇ ·
[︃
(u · ∇)u + 1

Ro ez × u − Tez

]︃
, (1.18)

representing mathematically a Poisson equation. Thus, the before-mentioned boundary
conditions from the velocity and temperature fields affect immediately the pressure field.

1.2.3 Heat and momentum transport and the role of large-scale flow
structures

As vividly explained in section 1.2.1, convection sets in once Ra ≥ Racrit that eventually
supports the conductive heat transfer across the fluid layer. When Rayleigh-Bénard
convection is progressively driven out of equilibrium state, it becomes increasingly
dynamic and chaotic as the dissipative viscous effects compete only at small length scales
effectively with the strong thermal driving. This implies that a large number of degrees
of freedom participates in the dynamics [23].

Right at the onset of convection, a well-ordered flow structure establishes which consists
of straight convection rolls [39–41] with characteristic horizontal length scales dependent
of the boundary conditions [37–40]. For increased thermal forcing, these rolls become
susceptible to instabilities towards more complex structures and the flow gets strongly
influenced by the Prandtl number Pr [73–75]. Once Rayleigh-Bénard convection is driven
far from the onset such that Ra ≫ Racrit, disorder in space and time establishes due to
the influence of instabilities and defects on each other, as well as uncontrolled initial
conditions [23]. This leads finally to fully developed, chaotic turbulence in the flow.
However, recent research showed that not a completely disordered state manifests but
instead a large-scale order in the form of rolls and cells re-appears once the instantaneous
fluctuations of temperature and velocity are removed. These structures are termed large-
scale circulation [76] or turbulent superstructures [75] if Γ ≈ 1 or Γ ≫ 1, respectively.
While both exhibit typical horizontal length scales of order O (H), the latter are even
reminiscent to those patterns known from slightly above the onset of convection [75].

This dynamical response of the convection system – defined by its input parameters
Ra, Pr, Ro and Γ, as well as boundary conditions; see table 1.2 for typical values in geo-
and astrophysical flows – with respect to the resulting heat and momentum transport is
at the heart of modern research.

Heat transport comprises both diffusive and convective contributions and varies in
space and time. The (classical) Nusselt number quantifies the ratio of the (average)
total heat current J = uT + Jdiff across the fluid layer to the diffusive heat current
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1.2 Fundamentals of Rayleigh-Bénard convection

Ra Pr Ro . . .
Mantle convection 106 − 109 1022 − 1025 – . . .
Deep ocean convection 1024 − 1031 7 10−2 − 100 . . .
Shallow atmosphere convection 1018 − 1021 0.7 10−1 − 101 . . .
Earth’s outer core 1023 − 1027 10−2 − 10−1 10−7 − 10−5 . . .
Solar convection zone 1012 − 1024 10−13 − 10−3 100 − 105 . . .

. . . Γ mechanical BCs thermal BCs References

. . . 54 fs D [3, 4, 56, 77–79]

. . . 102 − 103 ns, fs N [3, 5, 80–82]

. . . 102 ns, fs D, N [3, 6, 83–86]

. . . 100 − 101 ns D [56, 87–89]

. . . 10 fs N [3, 8, 14, 90–92]

Table 1.2: Geo- and astrophysical thermal convection systems. Examples and
estimates of corresponding parameters and best matching boundary conditions (ns
= no-slip, fs = free-slip, D = Dirichlet, N = Neumann). Note that the estimated
parameter ranges are subject to partly large uncertainties.

Jdiff = −∇T/
√

RaPr that would take place in case of pure heat conduction,

Nu (t) := ⟨J · ez⟩Φ

⟨Jdiff · ez⟩Φ
= −∂⟨T ⟩A

∂z
+

√
RaPr ⟨uzT ⟩A (1.19a)

= 1 +
√

RaPr ⟨uzT ⟩V , (1.19b)

and can be derived from eq. (1.8) [93]. ⟨·⟩Φ represents an average over the quantity Φ,
the latter of which can be the horizontal cross-section A = Γ × Γ or the entire volume
V = A×1.6 Hence by definition, Nu = 1 for Ra < Racrit and Nu > 1 else. The individual
terms on the right side represent the diffusive and convective vertical heat transport.
Although they depend on the vertical coordinate in eq. (1.19a), their sum is constant
for all z allowing for the equivalent definition (1.19b). These above definitions hold for
Dirichlet boundary conditions, as well as for the re-scaled fields (see section 3.1.2) in the
Neumann case.

In contrast, momentum transport can be quantified by the Reynolds number

Re :=
√︄

Ra
Pr Uchar (1.20)

through the ratio of inertial to viscous forces in eq. (1.7). Uchar represents a characteristic
velocity and is in simulations typically chosen as the root-mean-square velocity Uchar =
urms :=

√︂
⟨u2⟩V in the numerical domain [75, 94].

Researchers aim to predict these transports through scaling laws such as [8]

Nu = f1 (Ra, Pr, Ro, Γ, BCs) and Re = f2 (Ra, Pr, Ro, Γ, BCs) (1.21)
6One may also omit the averaging and define a local Nusselt number, see eq. (4.11).
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with commonly observed functional forms like [95]

Nu = c Prγ1

(︄
Ra

Racrit

)︄γ2

Roγ3 . (1.22)

Here, c is some constant and the exponents

γ1 := ∂ ln (Nu)
∂ ln (Pr) , γ2 := ∂ ln (Nu)

∂ ln (Ra) , γ3 := ∂ ln (Nu)
∂ ln (Ro) (1.23)

with ln representing the natural logarithm. As the coefficient and these exponents may
depend on the range of input parameters and boundary conditions, such a question for
the response of the dynamical system becomes challenging.

Nevertheless, such scaling laws can be deduced either empirically or theoretically [95]
and are of particular interest for several reasons. Firstly, they may offer insights into
force balances in the governing equations. Once such balances are known and understood,
they allow for model reductions based on the identified key dynamics [95] which in turn
may let expensive experiments or numerical simulations become dispensable. Secondly,
scaling laws and knowledge about their range of validity permit extrapolations to study
even settings that are not accessible for experiments and direct numerical simulations.
This is of particular importance in geo- and astrophysical settings where extreme Pr and
Ra can be found [95]. Thirdly, the question of interest can especially in these settings
just be the opposite of eq. (1.21) – the heat transfer through the convection layer is
known but one would like to understand the flow structure that enables this heat transfer
to occur [8].

Interestingly, it is the above-mentioned large-scale flow structures that predominantly
cause the heat transport in the turbulent regime [96], raising and highlighting their
crucial role in current research.

1.3 Scientific objectives of the present thesis
The variety of natural flows with their different boundary conditions in the presence of
large aspect ratios, as summarised in table 1.2, stresses the complexity in research and
detection of large-scale flow structures, as well as the subsequent understanding of heat
transport across a fluid layer.

The twofold goal of the thesis at hand is thus

1. to understand how large-scale flow structures are altered by different boundary
conditions, as well as

2. to infer these large-scale flow structures from a Lagrangian material transport
perspective.

In general, fluid flows can be studied analytically, by the use of numerical simulations,
or by performing laboratory experiments. Analytical solutions, however, are limited to the
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1.3 Scientific objectives of the present thesis

onset of convection and right above, providing no chance of studying turbulent large-scale
flow structures. Instead, numerical simulations offer several advantages over laboratory
experiments that are beneficial for achieving the above-mentioned objectives. For
instance, boundary conditions can be flexibly chosen, easily modified and hold perfectly.
Furthermore, any global or even local quantity can be measured without interfering
the fluid flow, and material properties can be chosen at will allowing the Oberbeck-
Boussinesq approximation to be ideally satisfied [97]. Moreover, physical mechanisms of
arbitrary strength – such as rotation around some axis – can be implemented easily. In
contrast, laboratory experiments allow for inexpensive long-term investigations of the
slow dynamics of large-scale flow structures, realistic fluid properties and partly broader
parameter ranges [98, 99]. These drawbacks of numerical simulations are not expected
to cause serious limitations for reaching the goals of the present thesis, rendering this
method ideally suited. Fundamentals of the applied numerical method are provided in
chapter 2. In order to comply with the objectives, the following scientific contributions
were made.

The impact of different boundary conditions is investigated in an explorative study
with respect to idealised cases of velocity and temperature boundary conditions in
chapter 3. This part of the thesis offers predominantly an Eulerian perspective to allow
for a bird’s eye view on the entire flow. It is found and explained in section 3.1 that
switching the thermal boundary conditions changes the nature of the large-scale flow
structures fundamentally, opening an entirely new path for more detailed studies. In case
of constant heat flux boundary conditions, the gradual aggregation of smaller convection
cells to a domain-filling convection structure, the latter of which is termed supergranule
in reminiscence to the astrophysical motivation of this thesis, can be observed for all
accessible Ra (and Pr, see section 3.3). A subsequent leading Lyapunov vector (stability)
analysis, see section 3.2, reveals similarities between pattern formation in the turbulent
regime and the stability of convection rolls slightly above the onset of convection – in
both scenarios, patterns at intermediate scale give continuously rise to new patterns at
larger scale. The resulting hierarchy of flow structures is only in accordance with natural
examples when this aggregation process stops at some intermediate scale. Rotation
around the vertical axis is thus added in section 3.4 as an additional physical mechanism.
It is shown that this limits the aggregation process effectively and that the Rossby number
serves as control parameter for the resulting supergranule size. Ultimately, an energy
transfer analysis in spectral space, see section 3.5, shows that the gradual supergranule
aggregation represents an inverse cascade in the subset of two-dimensional modes within
the fully three-dimensional flow which can be limited by the effect of rotation. To the
best knowledge of the author, this is the first time that such an inverse cascade is proven
in naturally forced three-dimensional convection. Hence, these studies investigate the
gradual supergranule aggregation across the three-dimensional control parameter space
and analyse the former in particular with respect to its dynamical origin and transient
formation.

Insights on large-scale flow structures from a Lagrangian material transport perspective
are obtained in chapter 4. This part of the thesis obtains major results by advecting
massless particles that follow the turbulent flow perfectly, see sections 4.1 and 4.2. Such a
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material transport perspective represents a Lagrangian description of the flow. In section
4.3, coherent spatial regions in the flow are identified via unsupervised machine learning
for the case of classical thermal boundary conditions. These regions are related to the
turbulent superstructures, and their significantly reduced heat transport is detected.
Current Lagrangian analysis methods are limited to short observation time windows
and do not allow for investigations of gradually evolving structures over long periods
of time. To overcome this hitherto restriction, a new evolutionary clustering method is
developed and applied for the same case in section 4.4. It is part of future work to apply
this technique to the gradual supergranule aggregation found in this thesis to study for
instance how heat transport is altered during such a gradual long-term process from a
material perspective.

Finally, this thesis finishes with some concluding remarks and perspectives in chapter
5, underlining the extensive character of the present work.

As many results and details have already been published – or should probably be
published in the near future – in peer-reviewed journals, the general spirit of this thesis
at hand elaborates more on the fundamentals of the underlying concepts that offer a
more general picture. Hence, it should serve as a read-worthy and valuable accompanying
source of information.
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Chapter 2
Fundamentals of the applied
numerical method

All numerical studies in the present thesis are carried out as direct numerical simulations
using the open-source spectral element solver Nek5000 .1 In the following, a brief
introduction into key aspects of this numerical method is given.

2.1 General classification
From a more distant perspective, two points of the above statement are of particular
importance when comparing different numerical methods with each other.

Firstly, the actually solved equations. Direct numerical simulations (DNSs), in con-
trast to large-eddy simulations (LESs) and Reynolds-averaged Navier-Stokes (RANS)
simulations, provide access to the full information from all dynamically relevant scales
of the flow. This is not the case for its two alternatives. On the one side, LES filter
the flow spatially, resolving only the larger energy-containing structures of the flow on
coarse meshes while incorporating contributions of smaller structures through sub-grid
approximations. On the other side, RANS simulations follow the philosophy of the
Reynolds decomposition [100], splitting the fields into their (typically) temporal means
and fluctuations. The resulting equations contain the so-called Reynolds stress tensor
as the only term that depends on the (unknown) fluctuations. This is known as the
closure problem and requires approximations based on the mean values. Hence, both the
LES and RANS simulations rely on modelling of (either spatial or temporal) small-scale
components of the flow to reduce the complexity of the simulation [101–103]. The recently
developed generalised quasilinear (GQL) approximation can be seen as a combination
of RANS and LES as it decomposes the flow into low and high wave number modes
while circumventing the closure problem by excluding selected spectral interactions [104].
However, this thesis aims to answer questions for which it is necessary to include all
possible interactions, i.e. any conceivable energy transfer, and hence to resolve even the

1Nek5000 version 17.0. Argonne National Laboratory, Illinois. http://nek5000.mcs.anl.gov
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Chapter 2: Fundamentals of the applied numerical method

Finite element Spectral Spectral element

+ =

Figure 2.1: Spectral element discretisation. Two-dimensional example for Ne = 3
spectral elements and polynomial order N = 4. Inside each spectral element, the GLL
nodal lines are indicated. The spectral element method combines complex geometries
from finite elements with high accuracies from spectral methods. Figure based on
[101].

finest scale of the flow – namely the Kolmogorov ηK or Batchelor scale ηB – without
further assumptions or models.

Secondly, the numerical discretisation for solving the underlying equations. The options
range from the finite difference method over the finite element method or finite volume
method to the spectral method. Especially the finite element and volume methods allow
easily for complex geometries and thus a variety of problems, representing in contrast a
weak point of spectral methods. However, the latter offer excellent spatial accuracy due
to the choice of high-order basis functions. A hybrid approach is the spectral element
method, combining the advantages of the generality and the accuracy from finite element
and spectral methods, respectively, into one framework [103, 105]. These high accuracies
are indispensable in fundamental research.

Nek5000 is used, benchmarked and validated for many years in fundamental research
of turbulent thermal convection [75, 106–108]. This well-established tool allows efficient
parallelisations exploitable on high-performance computing systems and is thus perfectly
suited for this present thesis.

2.2 Domain discretisation

Figure 2.1 visualises the characteristic domain decomposition applied in Nek5000, stress-
ing the key concept of spectral element methods. First, the global domain Ω is split
into Ne non-overlapping sub-domains (elements) Ωi with i = 1 . . . Ne. Second, a spectral
method is applied within each element individually, placing (N + 1) collocation points
along each direction. Global and local coordinates can be translated into each other by
a proper mapping.

For a one-dimensional example, the spectral element approximation Φi
N of a quantity
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Φ within one element Ωi can be written as [101]

Φi
N(ζ) =

N∑︂
j=0

Φi
j Zj(ζ) with ζ ∈ Ωi. (2.1)

Obviously, the quality of this approximation along the local coordinate ζ ∈ [−1, 1]
depends on the polynomial order N and the size of the sub-domain. Zj are orthogonal
basis functions – more precisely, they represent so-called Lagrangian interpolation basis
functions, i.e. Zj (ζ = ζk) = δjk at the collocation points with coordinates ζk (see below)
with the Kronecker delta δjk and k = 0 . . . N . Thus, the basis coefficients Φi

j represent
nodal values of the unknown. The present implementation exploits Legendre polynomials
of order N which are given by

LN(ζ) =
⌊N/2⌋∑︂
k=0

(−1)k (2N − 2k)!
(N − k)! (N − 2k)! k! 2N

ζN−2k = 1
2N N !

dN

dζN

[︃(︂
ζ2 − 1

)︂N
]︃

(2.2)

to construct these basis functions. Note that the expression on the right is the so-called
Rodrigues’s formula. The ordered set of (N + 1) discrete collocation points – with
ζk ∈ [−1, 1], ζ0 = −1 and ζN = 1 – is crucial for the Lagrangian interpolation basis and
determined from solutions of(︂

1 − ζ2
)︂

L′
N(ζ) = 0 with ζ ∈ Ωi (2.3)

where L′
N is the derivative of the corresponding Legendre polynomial. These points are

called Gauss-Lobatto-Legendre (GLL) quadrature nodes. Finally, the resulting elements of
the spectral basis are given by combining the information on the Legendre polynomials
and the collocation points via

Zj(ζ) = −1
N(N + 1)

(1 − ζ2) L′
N(ζ)

(ζ − ζj) LN(ζj)
for j = 0 . . . N, ζ ∈ Ωi. (2.4)

Figure 2.2 visualises such a set of basis functions together with the corresponding
GLL nodes for N = 4 (see also again figure 2.1). Although the GLL nodes result in non-
uniform grids which are more dense at the element boundaries, the final approximation
benefits from a good conditioning and minimal round-off errors compared to uniform
node placements. In particular, these benefits originate in avoiding Runge’s phenomenon,
i.e. the increasing divergence of the polynomial interpolation due to oscillations close
to the element boundaries for an increasing polynomial order when using uniform node
distributions [109, 110].

From a more practical perspective it is worth to mention that while the elements Ωi

are configured during the mesh generation in advance of a simulation run, the polynomial
order N can be set flexibly during the simulation to adjust the grid spacing to the
simulation’s needs. With increasing N , the user implicitly benefits from the exponential
convergence – i.e., exponentially increasing accuracy – that spectral element methods
offer [103, 108].
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Figure 2.2: Legendre spectral element basis functions, exemplary for a polynomial
order N = 4 (see also figure 2.1). The Gauss-Lobatto-Legendre collocation points are
provided as red dots along the abscissa, highlighting their non-uniform distribution
and the characteristics of Lagrangian interpolation basis functions.

2.3 Adaptation and solution of provided equations
For incompressible flows, Nek5000 provides the following set of equations [111]

∇ · u = 0, (2.5)

ρ

[︄
∂u

∂t
+ (u · ∇)u

]︄
= −∇p + η ∇2u + ρfvol, (2.6)

ρcp

[︄
∂T

∂t
+ (u · ∇) T

]︄
= ∇ · (λt ∇T ) + qvol. (2.7)

Here, fvol and qvol represent volume forces and volumetric heat sources, respectively, and
the dynamic viscosity η = νρ. To adapt these equations to any problem, the coefficients
ρ, η, ρcp and λt, as well as fvol and qvol can be defined.

These equations can be translated into equations (1.6) – (1.8) by setting the coefficients
ρ → 1, η →

√︂
Pr/Ra, ρcp → 1, λt → 1/

√
RaPr, the volumetric heat source qvol → 0,

and the volume forces fvol → Tez − (uxey − uyex) /Ro. In the non-rotating case, the
Coriolis acceleration is omitted in the latter. As a consequence, non-dimensional fields
manifest naturally.

Equations (2.6) and (2.7) represent evolution equations of the velocity and temperature,
implying that these fields need to be advanced in time – numerically, this is done by
the so-called time marching. Generally, the time marching ∂Φ/∂t = f (Φ) of a quantity
Φ can be performed either explicitly or implicitly, i.e. Φn+1 = f (Φn, Φn−1, . . . ) or
Φn+1 = f (Φn+1, Φn, Φn−1, . . . ), respectively, with some functions f and n denoting here
the discrete time step. These approaches follow thus the philosophy of either a forward
or backward difference in time. Although the latter requires solving a linear system of
equations to obtain the corresponding field at the next time step – which is not necessary
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in case of the former and thus much more expensive –, it benefits from an increased
numerical stability. This, in turn, allows for larger discrete time steps [101, 103, 112].

Nek5000 performs the time marching using a k-th order backwards differentiation
formula BDFk with k = 2 in this work. The non-linear term, as well as user-provided
right-hand-side terms (i.e. here the buoyancy and Coriolis terms) are incorporated
explicitly using high order extrapolations EXTk – in contrast, the linear terms are
treated implicitly. The pressure field can be either obtained via a Poisson equation
from the velocity field with special boundary conditions, or solved in a coupled manner
together with the velocity field. An algebraic multigrid is used as part of the pressure
pre-conditioner to enhance performance [105, 108, 109].

In order to make use of discretised versions of equations (2.5) – (2.7) at all, these are
transformed into a weak formulation using Galerkin methods. Afterwards, the latter are
spatially and temporally discretised using the basis functions outlined in section 2.2 and
the methods described above, respectively. This allows for exact evaluations of integrals
in the scalar products based on Gauss’s theorem and translates the equations into big
matrix systems [108, 113].

Such numerical procedures represent discrete approximations of the continuous equa-
tions and are thus subject to residuals. The (weighted) residual tolerances are set based
on past experience of the research department to 10−4, 10−6 and 10−6 for the pressure,
velocity and temperature field, respectively.

2.4 Methodical details
All simulations will take place in Cartesian domains, thus the spatial domain will get
subdivided into Ne = Ne, x × Ne, y × Ne, z spectral elements. While their spacing is
uniform along the horizontal directions, it is non-uniform in the vertical direction to
allow for a more detailed representation of the boundary layers close to the top and
bottom planes. The final resolution – and thus the total number of discrete grid points –
is determined by the combination of this spatial subdivision and the number of GLL
collocation points placed inside each element. The latter can be controlled via lx1 = N +1
with lx1 representing a simulation configuration parameter.

The spacing of the discrete numerical grid is crucial for the CPU and memory con-
sumption during the simulation runtime as the total number of grid points Ntot ≃ NeN

3.
Thus, the grid should be as fine as necessary but as coarse as possible. The smallest
observable scales in the flow are given by either the Kolmogorov or the Batchelor scale
– ηK or ηB, see section 3.3.1 – for Pr ≤ 1 or Pr ≥ 1, respectively. To resolve them
sufficiently, it is common to apply the (refined) Grötzbach criterion [108]

∆z

⟨ηK⟩A,t

≲
π

2 for Pr ≤ 1, or ∆z

⟨ηB⟩A,t

≲
π

2 for Pr ≥ 1 (2.8)

with the vertical grid spacing ∆z.
The spatial grid spacing affects also the stability of the numerical time integration.
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Chapter 2: Fundamentals of the applied numerical method

The Courant-Friedrich-Lewy (CFL) number [101]

CFL := max
u,∆x

⃓⃓⃓⃓
⃓u ∆t

∆x

⃓⃓⃓⃓
⃓ (2.9)

quantifies the ratio of the distance a fluid parcel travels in a given time step to the local
grid spacing and is here of particular importance. Interpreting this as a propagation of
information across the numerical grid within one time step makes clear, why this quantity
affects the stability of the numerical time integration. Stability of the Navier-Stokes
equation in Nek5000 requires CFL ≲ 0.5 [109, 111]. This shows that the spatial and
temporal grid spacings are coupled to some extend – typical time step sizes are of order
O (10−3τf) – O (10−2τf).

This time advancement of numerical simulations always starts with well-defined initial
conditions that are typically given by

u (x, t = 0) = 0 and T (x, t = 0) = 1 − z + Υ. (2.10)

Υ = Υ (x) represents small random thermal fluctuations of size 0 ≤ Υ ≤ 10−3 that are
added on top of the linear conduction profile to accelerate the attraction of the dynamical
system towards the fully developed flow. Note that this initialisation provides a global
mean temperature of ⟨T (t = 0)⟩V = 0.5 + ⟨Υ⟩V .

The above introduced requirements on the spatial and temporal discretisation become
even more challenging when considering that the (numerically discrete) total number
of degrees of freedom Ndof of the dynamical system is Ndof = 3Ntot. The coefficient 3 is
due to two velocity components (the third one is enslaved due to incompressibility) and
the additional scalar temperature field. This asks for professional computing resources –
thus, all numerical simulations of the present thesis were performed on either the local
compute cluster MaPaCC4, or on the national supercomputing machines JUWELS and
SuperMUC-NG. The largest simulation run – see simulation Nfs2_Pr001 in table 3.3
– occupied 131, 072 CPUs in parallel with a peak memory footprint of 181 TB during
runtime and Ndof ≈ 7.2 × 1010. At the time of writing, this represents almost half
of the largest2 national supercomputer SuperMUC-NG. These numbers underline the
tremendous complexity of research of thermal convection flows, as well as its need for
efficient, highly parallelisable solvers like Nek5000 and extensive access to supercomputing
systems.

2Measured in terms of CPU resources.
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Chapter 3
Large-scale flow structures at
different boundary conditions

As highlighted in chapter 1, the enormous variety of thermal convection settings present
in nature exhibits a variety of different combinations of thermal and mechanical boundary
conditions especially at large aspect ratios.

Historically, past research started several decades ago to investigate the influence of
many different boundary conditions analytically with respect to the onset of convection.
However, this scenario is far off the before-mentioned examples. The emergence of precise
measurement techniques for experimental setups on the one hand, and computational
resources that allow to perform numerical simulations for increasingly disordered flows
on the other hand, paved the way to study thermal convection even for turbulent flows
far beyond the onset of convection. Unfortunately, these previous studies are typically
restricted to constant temperature boundary conditions – which is why this can be seen
as the ‘classical’ thermal boundary condition – and do not offer a systematic comparison
of various thermal and mechanical boundary conditions at large aspect ratios at once.

This chapter investigates the impact of boundary conditions in a first systematic
approach – in contrast to the Lagrangian material transport perspective from chapter
4, most of the analyses here follow an Eulerian approach. The first section 3.1 aims to
answer the open question in research, how long-living large-scale flow structures – that
coexist with local turbulence acting on very short time scales – are altered by variations of
boundary conditions. It comes out that thermal boundary conditions play a crucial role
in defining the nature of large-scale flow structures, which is the reason why subsequent
sections are dedicated to studying flow structures in case of the complementary constant
heat flux boundary conditions in much more detail. Here, the transient process of
the gradual pattern formation and its dynamical origin represent aspects of particular
interest.

Many parts of this chapter have already been published [V1, V5] or extended [V6] –
these publications may provide even additional information as for instance resolution
studies or the interpretation of laboratory experiment results.
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Chapter 3: Large-scale flow structures at different boundary conditions

3.1 The impact of thermal and mechanical boundary
conditions

3.1.1 General considerations and remarks
The flow that establishes in the dynamical system of Rayleigh-Bénard convection is
inherently biased by the available numerical domain as the latter prescribes the largest
accessible length scale – this holds equally for closed and periodic domains. Thus, the
domain represents an important aspect of scientific studies. An infinite aspect ratio is
only hypothetically possible in analytical treatises, whereas numerical studies rely on
finite geometries. Generally, the influence of lateral boundaries on the flow decreases
rapidly with O (Γ−2) [20, 23, 35] and containers with Γ ≳ 20 are presumed to represent
fairly close approximations of infinite fluid layers for which the effect of lateral boundaries
practically disappears [22, 35, 96].

Here, the impact of boundary conditions on large-scale flow structures is studied in
a Cartesian domain with square cross-section and an extraordinary large aspect ratio
Γ = Γx = Γy = 60, while the lateral boundaries are decided to be periodic (see eq.
(1.17)). This releases the dynamical system from the lateral bounds and simultaneously
ensures an isotropy in both horizontal directions x and y.

This fundamental analysis starts with the non-rotating scenario, i.e. Ro = ∞. Fur-
thermore, the Prandtl number be Pr = 1 which roughly approximates air (Pr = 0.7 [56])
as working medium.

3.1.2 Constructing sets of boundary condition combinations
Varying the thermal and mechanical boundary conditions, each between two idealised
options as set out in section 1.2.2.4, leads to a set of four possible combinations – a
subsequent systematic comparison between all of these options relies thus on a well-
defined scaling. Figure 3.1 visualises the scaling and comparison scheme that is applied
in this thesis.

The combination of the classical thermal Dirichlet with mechanical no-slip boundary
conditions, the latter of which apply to laboratory experiments, serves as starting point
for this scaling where Ra is varied in powers of 10. Pattern formation in Rayleigh-Bénard
convection depends at a given Pr on the distance of the applied Rayleigh number to
the critical Rayleigh number [23]. As the latter depends on the boundary conditions,
the Dirichlet free-slip case is obtained by keeping this distance or supercriticality r :=
Ra/Racrit fixed (see also eq. (1.22) where this ratio was already used).

The relation of the Neumann scenario to the corresponding Dirichlet case can again –
similar to the mechanical boundary conditions above – be performed based on either
the supercriticality r, or the Rayleigh number Ra. Taking the linear stability (see again
table 1.1) as a first guess of emerging patterns, one might expect the latter to manifest
very differently for varying thermal boundary conditions. Thus, a scaling based on Ra is
preferred in favour of r. Here, it becomes important to understand the relation between
both definitions of Ra from eq. (1.10) as they do generally not equal.
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Figure 3.1: Scaling scheme for different boundary conditions allowing for a sys-
tematic comparison of the set of four different combinations of thermal and mechanical
boundary conditions. The abbreviation for each case is printed in bold at the top of
each box and will be used throughout this thesis. The most common scenario Dns
serves as reference, providing the initial RaD from which all other Ra will be derived.

In the Dirichlet case, the applied temperature difference ∆T is used as characteristic
parameter – thus, the non-dimensional temperature difference between the plates is
∆TD := ⟨T (z = 0) − T (z = 1)⟩A = T (z = 0) − T (z = 1) = 1 as indicated by eq. (1.15).
However, in the Neumann case the applied temperature gradient β serves as characteristic
parameter as shown in eq. (1.16), so the non-dimensional temperature difference between
the plates ∆TN := ⟨T (z = 0) − T (z = 1)⟩A ≤ 1 is consequently not specified. Yet, based
on dimensional arguments it is possible to relate both cases via [93]

∆T = ⟨T (z = 0) − T (z = H)⟩A (3.1a)
= βH ⟨T̃ (z̃ = 0) − T̃ (z̃ = 1)⟩Ã⏞ ⏟⏟ ⏞

=∆TN

. (3.1b)

Note that this simply represents a non-dimensionalisation of the dimensional ∆T based
on the characteristic parameters from the Neumann case. This relation, connected with
eq. (1.10), leads naturally to

RaD = RaN ∆TN = RaN

NuN
. (3.2)

Here, the right-most expression makes use of another important relation: In case of
periodicity at the lateral boundaries and thermal Neumann boundary conditions, it can
be deduced from the definition of the Nusselt number in eq. (1.19) that [93, 114]

NuN = βH

∆T
= 1

∆TN
. (3.3)

It should be stressed that relation (3.2) only connects both Rayleigh numbers such
that they represent a comparable thermal driving – however, this does not imply that the
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Chapter 3: Large-scale flow structures at different boundary conditions

resulting Nusselt numbers of the individual flows will equal. Unfortunately, the Nusselt
number is known a posteriori only, which asks for a slight variation from relation (3.2)
to allow for an a priori scaling and comparison scheme that uses the Dirichlet scenario
as starting point – here, presuming NuN ≃ NuD (which holds in particular at large Ra
[62]) suffices.

As pointed out in section 1.2.2, different thermal boundary conditions ask for different
characteristic temperatures for the non-dimensionalisation. Consequently, the resulting
temperature drop ∆TN across the fluid layer may vary. Contrasting different simulations
might thus ask for a re-scaling of the flow field – typically, this is done via eq. (3.1). The
non-dimensional quantities can thereto be re-scaled as follows: xrs = x, urs = u/

√
∆TN,

Trs = (T − ⟨T ⟩V ) /∆TN + ⟨T ⟩V , trs = t
√

∆TN, and prs = p/∆TN. Note that consequently
0 ≤ ⟨Trs⟩A ≤ 1. Such a re-scaling (from, e.g., τf, N to τf, D) is not always necessary and
applied only at selected parts of the present thesis – if so, this will be explicitly signified.

3.1.3 Rayleigh-Bénard convection at various boundary conditions
The investigation of the impact of boundary conditions starts with scenarios at RaD ∈
{104, 105, 106, 107} in the no-slip case – as the corresponding RaN are subsequently derived
based on the simulations’ NuD, the actual Ra differ significantly. Table 3.1 summarises
the important parameters for all simulations relevant for this section 3.1, underlining
that they cover the weakly non-linear up to the fully turbulent regimes independently of
the combination of boundary conditions.

3.1.3.1 Comparison of the global heat and momentum transport

Every simulation is run as long as necessary to relax into a statistically stationary regime,
which may – depending on especially the thermal boundary condition – require up to
O (104τf). From a qualitative point of view, the global heat and momentum transport –
as measured by Nu and Re – increase when substituting no-slip by free-slip conditions.
This is due to the weaker impact of the plates on the flow in case of the latter, allowing
higher velocities and thus an increased heat transfer. The qualitative change of the global
transport is similar when replacing the Dirichlet with Neumann boundary conditions,
as well as when the Rayleigh number is increased while the specific combination of
boundary conditions is fixed. Overall, these global measures taken at the final phase of
the simulations confirm that the scaling scheme introduced above is well-chosen.

The quantitative scaling of the Nusselt number is visualised in figure 3.2 (a, b) for all
simulations. As can be seen, the estimated scaling exponents for RaN in the Neumann
scenarios differ significantly from the ones obtained for RaD at Dirichlet conditions.
However, re-scaling RaN to RaD via eq. (3.2) – yielding scaling exponents of roughly
γ2,Nns ≈ 0.223 and γ2,Nfs ≈ 0.251, see also the dashed lines in the panels – supports the
expected increasing congruence [62] at large Ra. The vertical profiles of the temperature
fields confirm this similarity by an extended mixed bulk of the fluid layer. The bulk is a
region close to the midplane (i.e. z = 0.5) which is mostly unaffected by the (thermal)
boundary layers – the characteristic thickness of the latter is given by δT = 1/(2 Nu).
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Run Ra Γ Ne N tr Nu Re ΛT

Dns1 10, 000 60 2002 × 4 7 2, 300 2.22 ± 0.01 17.3 ± 0.0 4.55 ± 0.04
Dns2 100, 000 60 2002 × 4 11 1, 450 4.34 ± 0.02 68.6 ± 0.1 4.60 ± 0.07
Dns3 1, 000, 000 60 4002 × 8 7 1, 100 8.30 ± 0.03 219.2 ± 0.3 5.06 ± 0.05

Dfs1 3, 850 60 2002 × 4 7 1, 250 2.71 ± 0.02 21.6 ± 0.1 5.25 ± 0.09
Dfs2 38, 501 60 2002 × 4 11 1, 450 5.29 ± 0.04 74.2 ± 0.2 5.30 ± 0.17
Dfs3 385, 014 60 4002 × 8 7 1, 100 10.21 ± 0.04 215.8 ± 0.5 5.34 ± 0.10
Dfs4 3, 850, 139 20 2802 × 16 7 200 19.97 ± 0.26 608.7 ± 4.5 6.17 ± 0.14

Nns1 22, 263 60 2002 × 4 7 7, 000 3.03 ± 0.01 18.9 ± 0.0 59.75 ± 0.00
Nns2 434, 290 60 2002 × 4 11 14, 500 4.87 ± 0.04 73.3 ± 0.4 59.75 ± 0.01
Nns3 8, 310, 000 60 4002 × 8 7 21, 400 8.93 ± 0.04 229.6 ± 0.5 59.76 ± 0.01

Nfs1 10, 432 60 2002 × 4 7 4, 000 3.93 ± 0.12 26.4 ± 0.4 59.66 ± 0.04
Nfs2 203, 576 60 2002 × 4 11 6, 500 6.74 ± 0.10 81.4 ± 0.7 59.66 ± 0.02
Nfs3 3, 928, 297 60 4002 × 8 7 10, 000 12.29 ± 0.16 229.0 ± 1.4 59.72 ± 0.02
Nfs4 76, 887, 279 60 8302 × 16 7 19, 000 23.47 ± 0.24 635.9 ± 3.1 59.68 ± 0.02

Table 3.1: Simulation parameters of the direct numerical simulations studying the
impact of different thermal and mechanical boundary conditions – the Prandtl number
Pr = 1 for all runs. The table contains the Rayleigh number Ra, the aspect ratio Γ, the
total number of spectral elements Ne in the simulation domain via Ne, x × Ne, y × Ne, z,
the polynomial order N on each spectral element, the total runtime of the simulation
tr in units of the corresponding free-fall times τf, the resulting Nusselt number Nu,
the Reynolds number Re, and the integral length scale ΛT (see eq. (3.4)) of the
temperature field at midplane. All values correspond to the late state of the flow
where the large-scale flow structures are completely established. Nu, Re and ΛT are
typically determined from 50 snapshots within the last 500τf of each simulation, while
error bars are determined by the standard deviation.

Such profiles are exemplified for one pair of simulations in panel (c). Interestingly, the
Neumann runs exhibit a (weak) stable stratification close to the midplane. As this
corresponds to a density stratification that is counter-directed to the applied inverse
one which initially causes the convective motion in Rayleigh-Bénard convection, this
observation suggests to analyse the flow structure in the following in more detail.

3.1.3.2 Comparison of instantaneous temperature fields at the midplane

The generated dataset provides three complete sets of simulations for which all four
combinations of boundary conditions, just as shown by figure 3.1, are available. Figure
3.3 visualises the temperature field of one instantaneous snapshot at the midplane for all
of them.
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Figure 3.2: Heat transfer at different boundary conditions. (a, b) The global heat
transport scales differently with RaD or RaN for different combinations of boundary
conditions. The legends include the estimated scaling exponents from eq. (1.23),
whereas the smaller brown markers result from re-scaling RaN via eq. (3.2). (c)
Vertical profiles of the temperature field indicate the extended bulk region and thermal
boundary layers independently of the thermal boundary condition. The inset highlights
the slight stable stratification in this bulk for the Neumann scenario by plotting the
re-scaled temperature profile ⟨Trs⟩A,t.

The temperature pattern of Dirichlet simulation run Dns1 offers pretty regular and only
weakly time-dependent structures – these are called spiral defect chaos and reminiscent of
the straight convection rolls at the onset of convection. In this case, the temperature and
velocity fields are closely connected as (up-) down-welling fluid corresponds to (hot) cold
regions. As the Rayleigh number is increased, the flow becomes successively more affected
by fluctuations. The observation is similar for the Dfs scenario. Hence, independently
of the mechanical boundary condition, the flow evolves towards the recently studied
turbulent superstructures [75].

The flow structures transform fundamentally once the Neumann boundary conditions
are applied instead. All flows evolve in a characteristic way, exhibiting in the final state
basically one cold and one hot spot which both span across extremely extended parts of
the domain. As will be shown later in section 3.1.3.3, it is the gradual aggregation process
towards these structures that requires the extraordinary long evolution times of all the
Neumann simulations. These spots represent the thermal footprint of domain-sized
counter-rotating convection cells in x- and y-direction that are superposed by smaller
structures especially for larger Rayleigh numbers. Their arrangements indicate that they
represent the largest wavelength possible for the present domain – the rotated square
pattern is thus nothing but a final adjustment of the flow to the periodic boundary
conditions in the lateral directions. Simultaneously, the critical mode from the onset of
convection offers independently of mechanical boundary conditions an infinite wavelength
(see table 1.1), which suggests to interpret this large-scale pattern as a finite-size relic
of the critical mode. Remarkably, this critical mode seems not to be forgotten by the
dynamical system even far beyond Racrit and dominates still the fully turbulent flows.
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Figure 3.3: Flow patterns at midplane for all boundary conditions. All panels
visualise the temperature field T (x, y, z = 0.5) across the entire horizontal cross-
section from the final statistically stationary state. Different combinations of boundary
conditions are arranged in different columns, whereas the Rayleigh numbers increase
from top to bottom. Obviously, the thermal boundary conditions rule the large-scale
flow structure. See table 3.1 for detailed information on the simulations.

Figure 3.4 (a) proves the existence of this large-scale cell for the highest accessible
Rayleigh number. Enlarging a small fraction from within the thermal boundary layer
close to the top plane, see figure 3.4 (b), underlines the coexistence of very differently
sized structures in this flow. In analogy to the astrophysical motivation – for which the
free-slip boundary conditions are closest too –, the large-scale convection cell will be
termed supergranule whereas the significantly smaller fine-scale pattern will be termed
granules. As will be shown in section 3.1.3.3, these two hierarchical stages correspond
to different spectral peaks, whereas the granules will be related to instabilities of the
thermal boundary layer and the associated thermal plume formation later in section
3.2.2.3.
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Figure 3.4: Hierarchies of flow structures. (a, b) The supergranule emerges even
for the highest accessible Ra and is superposed by finer granule patterns. The zoom
enlarges a region of size 5 × 5. (c – h) Reynolds decomposition of one Dirichlet and one
Neumann flow field. Panels (d, g) highlight the striking differences between turbulent
superstructures and the supergranule. All fields are taken close to the top plane at
z0 = 1 − δT /2 with t0 located in the final phase of the simulation and ∆t = 500. Unless
otherwise noted, all panels visualise the entire horizontal cross-section.

The different character between turbulent superstructures known from the Dirichlet
case, and the supergranule discovered for the Neumann case is underlined by figure 3.4
(c – h). Here, a Reynolds decomposition is applied to the temperature field such that
T (x, t) = ⟨T (x)⟩∆t + T ′ (x, t). With ∆t = 500, this temporal filter separates the slowly
evolving characteristics of the flow from the rapid fluctuations. In the Dirichlet case,
this allows to differentiate between the turbulent superstructures and a fine skeleton
of plume ridges. Both of these structures are in terms of their horizontal extension
definitely related. In contrast, in the Neumann case the supergranule is now clearly
revealed. Although the instantaneous fluctuations are more similar to the Dirichlet case,
their horizontal extension differs significantly from that of the supergranule.

This systematic comparison shows unambiguously that Rayleigh-Bénard convection
as the paradigm of thermal convection is governed by the thermal boundary conditions.
Albeit the mechanical boundary conditions impact the flow to some extend, the thermal
ones transform the flow exceptionally. The similarity of the large-scale cell to the critical
structure known from the onset of convection is striking, however previous studies have
not recognised such fundamental differences to the Dirichlet scenario in the turbulent
regime. This might be attributed to the following three important aspects in which the
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3.1 The impact of thermal and mechanical boundary conditions

present study differs from the majority of previous numerical studies:

1. Neumann boundary conditions are applied to the temperature field.

2. The simulations are performed for extraordinary long evolution times O (104τf).

3. A horizontally widely extended domain is considered.

This clearly asks to study the emergence of this large-scale structure in more detail.

3.1.3.3 Time-dependent gradual supergranule aggregation

Figure 3.5 visualises the investigation of the entire evolution of simulation run Nfs1
from the initial condition over the transient state into the statistically stationary regime.
Panels (a – e) prove that the supergranule is the result of the gradual aggregation of
smaller flow structures. This process ceases only when the growing circulation rolls reach
domain size and is most easily detectable from the temperature field.

Interestingly, the global measures of heat and momentum transport, Nu and Re, stay
mostly unaffected during this process as shown in panel (f). However, as demonstrated
in [V1], the fraction of the convective heat flux transported by the supergranule shifts
throughout the slow formation and makes up eventually up to 40%.

To measure the growth of the patterns, the so-called integral length scale [115]

ΛT (z0, t) := 2π

∫︁
kh

[ET T (kh, z0, t) /kh] dkh∫︁
kh

ET T (kh, z0, t) dkh
(3.4)

based on the azimuthally averaged Fourier energy spectrum (see below) of the temperature
variance, ET T (kh, z0, t), is computed throughout the evolution. As indicated in panel
(g), this quantity converges during the transient towards the horizontal periodic length
given by the aspect ratio and finally indicates the numeric bound on the pattern size.
Its value for the statistically stationary state is given in table 3.1.

In spite of the converging pattern size for t ≳ 1, 500, the aggregation has not completely
finished as the thermal variance of the flow field still increases until t ≈ 3, 000. To
measure this, the temperature field is decomposed into the linear temperature profile
Tlin (z) := 1−z which manifests in case of pure heat conduction, and its deviation Θ (x, t)
such that

Θ (x, t) := T (x, t) − Tlin (z) . (3.5)

The standard deviation – also known as the root-mean-square value – of the temperature
deviation field Θrms :=

√︂
⟨Θ2⟩V is included in panel (g). Its convergence marks the reach

of the statistically stationary regime of the flow.
This supergranule aggregation cannot only be observed in physical space, but also in

spectral space. Any horizontally periodic quantity can be expanded in a Fourier series
of the form

Φ (xh, z0, t) =
∑︂
kh

Φ̂ (kh, z0, t) eıkh·xh (3.6)
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Figure 3.5: Gradual supergranule aggregation. The final supergranule of simula-
tion run Nfs1 establishes after a long initial transient that takes until t ≈ 3, 000 and is
statistically stationary just afterwards. (a – e) Horizontal slices of the instantaneous
temperature field at z0 = 1 − δT /2 visualise the gradual pattern formation across the
entire horizontal cross-section. (f) The global heat and momentum transport remain
mostly unaffected during the entire evolution. (g) In contrast, the integral length
scale of the temperature field ΛT (z0), as well as the standard deviation Θrms of the
temperature deviation field indicate an ongoing transient process. (h – l) Azimuthally
averaged instantaneous Fourier spectra at z0 – corresponding to the kinetic energy
with respect to the vertical velocity component Euzuz , the co-spectrum of the turbulent
convective heat flux EuzT , and the temperature variance ET T – exhibit a shift of energy
towards large scales.
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3.2 Relating supergranule aggregation to stability mechanisms

with the imaginary number ı, as well as the vectors of horizontal wave numbers kh =
(kx, ky) and coordinates xh = (x, y). The numerically discrete wave numbers, here
exemplary along the x-direction, are given by kx,n := 2π n/Lx with n ∈ N and Lx = Γx.
Thus, n represents the number of complete waves over the non-dimensional periodic
length Lx. Φ̂ = F (Φ) ∈ C is the so-called Fourier coefficient with the Fourier transform
F (·). With this in mind, the two-dimensional (co-)spectrum of the quantities Φ1 and Φ2
is defined by

EΦ1Φ2 (kh, z0, t) := 1
2 R

[︂
Φ̂1 (kh, z0, t) Φ̂∗

2 (kh, z0, t)
]︂

(3.7)

where R denotes the real part and the asterisk Φ∗ the complex conjugate. In the present
domain, both horizontal directions are isotropic and so it might be equally expressed as
EΦ1Φ2 (kh, z0, t) ≡ EΦ1Φ2 (kh, ϕ, z0, t) with the absolute horizontal wave number kh := |kh|
and the azimuthal angle ϕ. Due to the horizontal isotropy, the azimuthally averaged
spectra EΦ1Φ2 (kh, z0, t) := ⟨EΦ1Φ2 (kh, ϕ, z0, t)⟩ϕ will be studied in the following.

Panels (h – l) of figure 3.5 plot the spectrum of the kinetic energy with respect to the
vertical velocity component Euzuz , the co-spectrum of the turbulent convective heat flux
EuzT , and the temperature variance ET T at several times throughout the flow evolution.
During the transient, there is a clear shift of spectral energy from larger to smaller wave
numbers, i.e., from structures of smaller to larger horizontal extension, which eventually
accumulates at the smallest available wave number kmin = 2π/Γ ≈ 0.1. Although the
supergranule is most prominent in the temperature field, it leaves its footprint even in
the vertical velocity field as indicated by Euzuz . Panels (k, l) underline once more the
reach of the statistically stationary regime at late times.

The analysis of the full evolution of simulation run Nfs1 from above highlights the
complexity of the supergranule establishment. The transient process alters both the
velocity and temperature field, although global measures remain mostly unaffected.
Based on ΛT and Θrms, the pattern size seems to increase roughly linearly. This process
proceeds very slowly – interestingly, it seems not to be related to either a vertical or
horizontal diffusion time scale, τΦ = τν,κ or τΦ,h := Γ2τΦ, respectively.

This supergranule formation was not studied previously and is thus an original result
of this comparison of different boundary conditions in Rayleigh-Bénard convection.
Hence, the subsequent sections in this chapter are dedicated to investigate its enthralling
character in more detail and even throughout the multi-dimensional parameter space. As
mechanical boundary conditions show relatively little impact, the focus is in the following
on the free-slip boundary condition in reminiscence to the astrophysical motivation.

3.2 Relating supergranule aggregation to stability
mechanisms

The previous section 3.1.3 revealed that the final supergranule – which establishes in
the Neumann case only – can be interpreted as the finite size relic of the critical mode
from the onset of convection which is included in table 1.1. This suggests to analyse the
stability properties of the flow in more detail.
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Chapter 3: Large-scale flow structures at different boundary conditions

3.2.1 Linear stability at the onset of convection
The primary instability of a flow at rest towards convection can be studied analytically
by a linear stability analysis. In fact, this is the method that already Lord Rayleigh used
back in 1916 to analyse Rayleigh-Bénard convection – the experimental setup that is
now named after him to honour his contributions – and to successfully explain the onset
of convection [116].

The key idea of such an analysis is to study the time-dependence of tiny perturbations
that are added onto a base (quiescent) state. As these perturbations are very small,
only the leading (linear) contribution is retained – disturbances of higher order become
successively smaller and are thus neglected. This terms the analysis linear. The fluid
at rest represents the equilibrium state in Rayleigh-Bénard convection from which
perturbations may either decay, persist or grow. This can be quantified by the growth
rate σ = σr + ıσi ∈ C, see also eq. (A.37). Excluding oscillatory motions, i.e. σi = 0,
the case of σr = σ = 0 is of particular importance as this marks the transition of the
system from being stable to being unstable against disturbances. In case of the latter,
the base state is left and perturbations grow over time. The transition state itself marks
eventually the neutral (or marginal) stability.

The linear stability analysis for (rotating) Rayleigh-Bénard convection with free-slip
boundary conditions is provided in appendix A step-by-step for stationary modes. The
solution is independent of the Prandtl number1 but depends on the thermal boundary
conditions. In the Dirichlet case, the marginal state is given by [39]

RaD, marg = 1
k2

h

[︃(︂
k2

h + π2
)︂3

+ Ta π2
]︃

, (3.8)

whereas in the Neumann case [29]

RaN, marg = π2

8

[︄(︂
k2

h + π2
)︂2

+ Ta π2

k2
h + π2

]︄
(3.9)

can be derived for a truncated system. The Taylor number

Ta := 4Ω2H4

ν2 ≡ Ra
Pr Ro−2 (3.10)

represents the squared ratio of the system’s Coriolis to viscous forces [52] and can be
related to the Rossby number as seen in eq. (3.10). Its appearance clearly indicates the
importance of viscous interactions at the onset of convection (in favour of the free-fall
inertial balance).2

1The situation is actually very subtle. In the rotating scenario, oscillatory modes (i.e. σr = 0 but
σi ≠ 0) might set in earlier than stationary modes (i.e. σ = 0) if Pr < Prcrit with Prcrit ≃ 0.677 and
rotation is strong enough. In contrast, stationary modes will always set in first if Pr ≥ Prcrit. In the
non-rotating scenario, stationary modes dominate independently of Pr [29, 39, 40].

2This can be further understood by a closer look at the definition of the Taylor number – it represents
in fact the squared ratio of the vertical viscous diffusion time scale to the (Coriolis) rotation time scale,
Ta = τ2

ν /τ2
Ω. The Ekman number Ek = τΩ/τν ≡ Ta−1/2 represents just another popular parameter

which can be used equivalently. More information on time scales related to rotation are provided in
section 3.4.2.
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Figure 3.6: Linear stability for varying thermal boundary conditions. The
primary instability is governed by the thermal boundary condition as highlighted by
slices at different Ta within the three-dimensional Ra–Ta–kh parameter space (see eq.
(3.8) and (3.9)). The dashed lines trace the global minimum, indicating the course of
the critical values. Free-slip boundary conditions are applied throughout.

Figure 3.6 visualises the neutral stability curves for both thermal boundary conditions.
The global minimum of the individual curves mark the critical point at the onset of
convection – this is exactly what is provided in table 1.1 for the non-rotating scenario.
It is easy to realise that there is a striking qualitative difference between Dirichlet and
Neumann conditions already in this case.

Additional rotation around the vertical axis generally stabilises the fluid independently
of the thermal boundary conditions. However, while the critical wave number at the
onset of convection steadily increases in the Dirichlet case, the Taylor number needs
to surpass the critical value Tacrit ≃ 180.15 [29, 40] to move the critical wave number
off zero in the Neumann case. In other words, the critical wavelength at the onset
of Rayleigh-Bénard convection with Neumann boundary conditions becomes finite if
rotation is only strong enough. The dashed black lines in figure 3.6 trace the critical
point through the parameter space and underline the qualitative differences between
both thermal boundary conditions once more. These differences vanish in the asymptotic
limit of strong rotation [29, 117], i.e. Ro → 0 or Ta → ∞.

A further very interesting result is obtained by an analytical, fully non-linear stability
analysis of two-dimensional convection rolls in non-rotating Rayleigh-Bénard convection
with Neumann boundary conditions slightly above the onset of convection with Ra ≳
Racrit. Such a study of secondary instabilities reveals ‘that each mode is unstable to one
of longer wavelength than itself, so that any long box will eventually contain a single
roll’ [118]. This implies that flow structures slightly above the onset of convection tend
to extend horizontally towards the largest possible scale. This seems to be a striking
analogy to the growing size of the supergranule during its aggregation process, although
the latter takes place even far beyond the onset of convection.
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Chapter 3: Large-scale flow structures at different boundary conditions

3.2.2 Leading Lyapunov vector analysis
The non-linearity of the Navier-Stokes equation and the resulting complexity of its
solutions in the turbulent regime far off the onset of convection render an analytical
solution intractable. Thus, the stability analysis in this extended region of the parameter
space asks for different methods. One method to analyse the stability of complex flows
is the so-called leading Lyapunov vector analysis.

3.2.2.1 Conceptual framework

In the framework of dynamical systems (in which this analysis is well-established),
the evolution of the turbulent convection flow is seen as a trajectory in the very high-
dimensional (phase or) state space. In this space, the state of the fluid flow can be
described by the column vector y (t) = [u (xi, t) , T (xi, t)] which combines the velocity
and scalar temperature field for all discrete grid points xi with i = 1 . . . NeN

3 (in different
rows) for any time. The non-linear governing equations (1.6) – (1.8) can thus be seen as
an operator F that acts on this vector y such that [119, 120]

d y (t)
dt

= F [y (t)] . (3.11)

Rayleigh-Bénard convection represents a chaotic dynamical system [121–123], i.e. its
trajectory depends sensitively on the initial conditions [119, 123]. The key idea of
the leading Lyapunov vector analysis3 is now to probe the strength of the exponential
separation of two initially very close system trajectories y (t) and y (t) + δy (t) in this
high-dimensional state space [57, 123] – see figure 3.7. The perturbation field or separation
vector δy (t) = [δu (xi, t) , δT (xi, t)] of these two trajectories develops out of the random,
infinitesimal initial perturbation δy (0) due to the chaotic nature of the system via [119]

d δy (t)
dt

= J (y) δy + G (y, δy) ≃ J (y) δy. (3.12)

Here, J (y) δy represent the tangent linear terms with the Jacobian J = ∂F /∂y and
G (y, δy) covers the high-order non-linear terms [119]. As the perturbation is infinitesimal,
one can presume that its evolution is captured sufficiently by the linear terms which
avoids the complexity of the non-linear problem and leads to the expression on the right

3Theoretically it would be possible to evolve n ≤ Ndof orbiting trajectories along with the original
system trajectory [57]. However, due to the computational complexity this becomes quickly impossible
as this requires to solve n versions of equations (3.13) – (3.15) for n different initial perturbations
δyn (0) simultaneously with the original equations (1.6) – (1.8). Furthermore, to avoid numerical
overflows as well as errors that might originate from the tendency that all perturbation vectors
point towards the direction of fastest growth in the tangent space, these δyn are periodically re-
orthonormalised using a Gram-Schmidt (GS) procedure [57, 122, 123]. Consequently the leading
Lyapunov vector δy ≡ δy1 represents the only one that points in a physically important direction
[122]. This underlines the importance of the leading perturbation vector and justifies the restriction
to its analysis.
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3.2 Relating supergranule aggregation to stability mechanisms

state space

Figure 3.7: Concept of the leading Lyapunov vector analysis. The original
system trajectory y (t) is orbited in the high-dimensional state space by another very
close trajectory y (t) + δy (t). The separation δy (t) quantifies eventually the former’s
susceptibility to infinitesimal perturbations and is periodically re-orthonormalised (see
the footnote on page 34) as indicated by τGS.

of eq. (3.12) [119, 124]. In the particular Rayleigh-Bénard convection scenario at hand,
this set of linearised governing equations is given by [111, 124]

∇ · δu = 0, (3.13)
∂ δu

∂t
+ (u · ∇) δu + (δu · ∇)u + 1

Ro ez × δu = −∇δp +
√︄

Pr
Ra ∇2δu + δTez, (3.14)

∂ δT

∂t
+ (u · ∇) δT + (δu · ∇) T = 1√

RaPr
∇2δT. (3.15)

This time-dependent separation δy of the two nearby trajectories quantifies the system
trajectory’s susceptibility to infinitesimal perturbations. If this separation grows over
time, the system trajectory depends sensitively on the initial conditions and the system
can thus be termed chaotic. The resulting exponential growth can be quantified by the
instantaneous leading Lyapunov exponent [124]

λ (t) ≡ λ1 (t) := d

dt
ln
[︄

∥δy (t) ∥
∥δy (0) ∥

]︄
(3.16)

and implies λ > 0 for a chaotic system [122, 123] with a norm that is given by

∥δy (t) ∥ =
√︄

1
V

∫︂
V

[δu2 (t) + δT 2 (t)] dV . (3.17)

Besides this global aspect, the perturbation field δy allows even further insights as it is
the local magnitude of its components that encodes the regions of largest susceptibility to
local instabilities out of the present (turbulent) state [122]. Hence, it should contain the
essential information to relate the supergranule aggregation to instability mechanisms.
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Run Ra Γ Ne N tr Nu Re ΛT

Dfs2_L 38, 501 60 2002 × 4 7 785 5.29 ± 0.03 74.0 ± 0.3 5.27 ± 0.12
Nfs2_L 203, 576 60 2002 × 4 7 6, 770 6.71 ± 0.10 80.2 ± 0.5 59.37 ± 0.06

Table 3.2: Simulation parameters of the direct numerical simulations performing a
leading Lyapunov vector analysis – the Prandtl number Pr = 1 and free-slip boundary
conditions are applied for all runs. Nu, Re and ΛT are determined from several
hundreds of snapshots within the last 500τf of each simulation. For more information,
see table 3.1.

3.2.2.2 Associating the temperature perturbation vector with flow instabilities

To study stability mechanisms in Rayleigh-Bénard convection through a leading Lyapunov
vector analysis, selected simulations from section 3.1 with free-slip boundary conditions are
repeated with a simultaneous evolution of the orbiting trajectory – table 3.2 summarises
important parameters for these additional simulation runs.

Figure 3.8 exhibits in panels (a – d) the temporal evolution of a local defect genera-
tion that can be detected in the temperature field T (x, y, z0 = 0.5, t) at midplane. In
particular, the split of a turbulent convection roll as part of turbulent superstructures
in the Dirichlet case can be observed. Interestingly, this change in the flow structure
can also be detected based on the corresponding dynamical sequence of the temperature
perturbation field’s magnitude |δT (x, y, z0 = 0.5, t) |, see panels (e – h).

This observation proves that the leading Lyapunov vector analysis – which got es-
tablished in the past for the weakly non-linear regime of Rayleigh-Bénard convection
only [120–122, 125] – is a useful tool even for a fully turbulent flow as it connects the
separation of the two nearby system trajectories with local instabilities. Moreover, the
detected instabilities are very similar to those found in the weakly non-linear regime.

As pointed out above in section 3.2.2.1, the magnitude of the perturbation field δy
encodes the regions of largest susceptibility to instabilities. Although the described
dynamical sequence is taken at the midplane where such a defect generation can be
related most easily to turbulent superstructures, it follows that horizontal slices at very
different vertical positions are most susceptible in the flow. In particular, in case of
Dirichlet boundary conditions the most sensitive regions can be found at the top of the
thermal boundary layer, whereas it is the top and bottom planes that are most sensitive
in the Neumann case [V1].

The dynamical sequence from above is thus repeated for z1 = 1 − 2/3 δT in figure 3.8
(i – p). It can be found that instabilities in the Dirichlet case are largest close to (but
not at) the downflow regions.

This is in contrast to the Neumann case for which a temporal evolution is provided in
figure 3.8 (q – x) for a horizontal slice close to the top plane at z2 = 1 − δT /2. Here, the
most unstable regions are found to coincide with the downflow regions. Interestingly, the
temperature perturbation field consists of a connected pattern of high-amplitude ridges
with a coarser spacing indicating a larger scale of instability.
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Figure 3.8: Leading Lyapunov vector analysis. (a – h) The temperature perturb-
ation vector comprises information on pattern susceptibility in space and time as
shown here for a roll split at midplane, i.e., z0 = 0.5. The most susceptible region
depends on the thermal boundary condition. (i – p) The same Dirichlet simulation as
in (a – h) but here for z1 = 1 − 2/3 δT . (q – x) The Neumann scenario offers different
and stronger susceptibilities at z2 = 1 − δT /2. The first column visualises the entire
horizontal cross-section, whereas the remaining panels highlight dynamical sequences
via enlarged regions of interest of size 10 × 10.
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supergranule aggregation. (d) This is captured by the temporal evolution of the
unstable wavelengths λ̂δT δT that correspond to local maxima in EδT δT . The spectra
are time-averaged over 50τf and EδT δT is multiplied by 106 for better comparability.

3.2.2.3 Scales of instability

The striking differences of unstable structures between the Dirichlet and Neumann
flow – see again figure 3.8 (m – p) and (u – x), respectively – ask for a more detailed
analysis of the perturbation field. Hence, figure 3.9 provides additional information on
the instabilities and corresponding scales.

From a global perspective it can be confirmed that the leading Lyapunov exponent
λ (t) fluctuates – as a global measure of instability – over time similar to the Nusselt
number Nu (t) – as a global measure of heat transfer – around a mean value. Both these
measures are contrasted in figure 3.9 (a). The fact that λ > 0 proves the flow to be
chaotic even in the Neumann case.

In contrast from a local perspective, the particular scales of instability are studied via
the azimuthally averaged spectrum of the temperature perturbation vector EδT δT (kh, z2 =
1 − δT /2, t) in panels (b, c). Interestingly, this scale analysis seems to offer again a
hierarchy of two separate instabilities. First, there is a large-wave-number bump with
a peak at k̂h ≈ 2 which can be related to instabilities of the fine granule patterns
visualised in figure 3.4 (b). While these instabilities are time-independent, a second but
time-dependent peak k̂h (t) can be found to move gradually towards larger scales. A
comparison of EδT δT with ET T confirms that this instability corresponds to the gradual
supergranule aggregation that yields eventually the supergranule pattern as another step
in the pattern hierarchy and is visualised in figure 3.4 (a). This gradual shift suggests
finally that the turbulent flow develops instabilities at an increasingly larger scale.

These two scales of instability are given by their corresponding peak wavelength
λ̂δT δT = 2π/k̂h and plotted over time in figure 3.9 (d). In fact, this underlines that the
instability mechanism corresponding to the supergranule formation moves steadily to
larger wavelengths and ceases only artificially when domain size is reached. It is worth to
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3.3 Supergranule aggregation across various fluids

stress that the discrete nature of its growth in this panel is just a result of the coarsening
of the spectral coordinates at large scales.

Interestingly, this dynamical behaviour of instability mechanisms, especially the time-
dependent character, is fundamentally different to the Dirichlet case. For the latter, no
time-dependent peak can be found in the temperature perturbation spectrum EδT δT [V1].
In other words, the crucial distinction seems to be the lack of a hierarchy of instabilities
that eventually prevents the formation of a related hierarchy of patterns.

The above leading Lyapunov vector analysis evaluates the dynamical system from a
Lagrangian perspective in the very high-dimensional state space. This allows to identify
the basic instability mechanism that eventually yields the supergranule as a separate
flow structure at a separate scale. It is found that the fully turbulent flow develops
instabilities at increasingly larger wavelengths – crucially, this is analogous to secondary
instabilities which can be found analytically for slightly above the onset of convection
(see section 3.2.1 and [118]). Thus, in addition to the critical mode from the onset of
convection, even this formation mechanism seems to persist far into the turbulent regime
at Ra ≫ Racrit.

In this regime, the Prandtl number becomes typically very important for the dynamics
[56, 75, 97] which asks to extend the study of the supergranule along this second control
parameter in the following section.

3.3 Supergranule aggregation across various fluids
The comparison of the impact of different thermal boundary conditions in section 3.1
revealed their striking effect on large-scale flow patterns. While the supergranules were
found to form for all accessible Rayleigh numbers, a subsequent linear stability analysis
in section 3.2.1 showed that their final state resembles the critical mode from the onset
of convection. Crucially, this critical mode is independent of the working fluid, the
latter of which is characterised by the second of the two control parameters of basic
Rayleigh-Bénard convection – the Prandtl number.

A subsequent numerical stability analysis of the turbulent system trajectory far beyond
the onset of convection via the leading Lyapunov vector, see section 3.2.2, found that
the transient flow develops instabilities at increasingly larger scales. Interestingly, a
similar behaviour was previously reported in [118] for secondary instabilities slightly
above the onset of convection. However, although the authors state that their ‘results
hold quite generally for all Prandtl numbers’ [71] – the latter of which does not enter the
analysis for symmetric mechanical boundary conditions [118] –, they simultaneously ‘do
not expect the theory to remain accurate for very small Pr’ [118].

As the final supergranule results from the transient supergranule aggregation, clarifying
this uncertainty becomes crucial especially due to the strongly varying Prandtl numbers
in geo- and astrophysical convection flows – see again table 1.2. The need for this
investigation is further supported by the well-known fact that the Prandtl number
strongly impacts instability mechanisms slightly above the onset of convection in the
complementary Dirichlet case [73, 74].
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Chapter 3: Large-scale flow structures at different boundary conditions

3.3.1 Diffusion of momentum and advected scalars
In fluid dynamics, diffusion represents the transfer of momentum, heat or other scalar
quantities from regions of high concentration to regions of low concentration due to
molecular processes. For instance, even in a simple turbulence scenario without advected
scalars, the inhomogeneous motion of any viscous fluid will eventually be relaxed by
molecular, viscous diffusion from fluid parcels of high momentum to adjacent ones of
lower momentum. Beside the gradients of velocities, the strength of this diffusion is
governed by the kinematic viscosity ν which enters the Navier-Stokes equation (1.3). As
diffusion dominates smaller length scales but becomes practically irrelevant for larger
ones, it dictates the smallest observable dynamical length scale – in other words, any
inhomogeneous fluid motion below a certain length scale is relaxed immediately due
to the effect of viscous diffusion and thus subsequently dissipated into heat.4 Within
the cascade picture of turbulence, see section 3.5.1 and in particular figure 3.15, this
corresponds to the last stage and thus the dissipation range.

Dimensional considerations based on this intuition allowed Andrey N. Kolmogorov
to quantify the (on average) smallest dynamical length scale in homogeneous, isotropic
turbulence – the (mean) Kolmogorov scale [126]

⟨ηK⟩V,t :=
(︄

ν3

⟨ε⟩V,t

)︄1/4

≡ H ⟨η̃K⟩Ṽ ,t̃ with ⟨η̃K⟩Ṽ ,t̃ :=
⎛⎝ Pr3/2

Ra3/2 ⟨ε̃⟩Ṽ ,t̃

⎞⎠1/4

, (3.18)

which depends in turn on the kinetic energy dissipation rate

ε := 1
2ν
[︂
(∇u) + (∇u)T

]︂2
≡ U2

f
τf

ε̃ with ε̃ := 1
2

√︄
Pr
Ra

[︃(︂
∇̃ũ

)︂
+
(︂
∇̃ũ

)︂T
]︃2

. (3.19)

Here, the superscript ΦT represents the transpose, whereas tildes indicate non-dimensional
quantities based on the free-fall inertial balance – see again section 1.2.2.3. As diffusion
dominates conceptually at the Kolmogorov scale, the characteristic Reynolds number
becomes unity and thus the corresponding Kolmogorov time scale τK =

√︂
ν/⟨ε⟩V,t ≡

(Pr/Ra)1/4 /
√︂

⟨ε̃⟩Ṽ ,t̃ τf [126].
The presence of any scalar in the flow introduces a potentially new diffusion process

which may in turn be compared to the diffusion of momentum from above. For instance,
in case of molecular concentrations the mass diffusivity D can be compared to the
kinematic viscosity via the Schmidt number Sc := ν/D [127]. In terms of heat transport,
the temperature represents the scalar quantity – the ratio between its thermal diffusivity κ
and the kinematic viscosity yields eventually the Prandtl number Pr which was introduced
in eq. (1.9) and related to diffusion time scales in the footnote on page 7. In case of
Pr = 1 (as used for the studies in sections 3.1 and 3.2), viscous diffusion is just as strong
as thermal diffusion and so both fields exhibit the same level of details. In contrast, in
case of Pr < 1 (Pr > 1) viscous diffusion is weaker (stronger) than thermal diffusion and

4The contribution of viscous dissipation as heat source is typically – as is also the case in the present
work – neglected in the heat equation (1.4) due to its vanishing significance [56].
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3.3 Supergranule aggregation across various fluids

so the velocity (temperature) field exhibits potentially more details compared to the
temperature (velocity) field.

As a complement to the Kolmogorov scale from above, this effect of thermal diffusion
similarly dictates the smallest observable scale in the temperature field. Based on the
work of Kolmogorov, Stanley Corrsin argued using dimensional considerations that the
(on average) smallest observable scale in the temperature field is given by the (mean)
Corrsin scale [128]

⟨ηC⟩V,t :=
(︄

κ3

⟨ε⟩V,t

)︄1/4

= ⟨ηK⟩V,t

Pr3/4 ≡ H ⟨η̃C⟩Ṽ ,t̃ with ⟨η̃C⟩Ṽ ,t̃ :=
⟨η̃K⟩Ṽ ,t̃

Pr3/4 . (3.20)

In fact, this assumes the temperature field to be nested in the inertial sub-range of
the velocity field which requires Pr ≤ 1 to hold – a detail that was clarified later by
George K. Batchelor [129]. In the opposing case of Pr ≥ 1, thermal diffusion becomes
important only at scales smaller than the Kolmogorov scale, so different arguments
become necessary. A dimensional analysis based on the advective transport of material
iso-surfaces leads in this case to the (mean) Batchelor scale [129]

⟨ηB⟩V,t :=
(︄

νκ2

⟨ε⟩V,t

)︄1/4

= ⟨ηK⟩V,t√
Pr

≡ H ⟨η̃B⟩Ṽ ,t̃ with ⟨η̃B⟩Ṽ ,t̃ :=
⟨η̃K⟩Ṽ ,t̃√

Pr
. (3.21)

Despite the different underlying arguments, both scales coincide with the Kolmogorov
scale for Pr = 1. Coming back to non-dimensional quantities in the following, tildes will
again be dropped.

In a nutshell, these 3 different mean length scales deserve significance as follows. On
the one hand, the Kolmogorov scale ⟨ηK⟩V,t represents the smallest mean scale in the
velocity field. On the other hand, the Corrsin scale ⟨ηC⟩V,t ≥ ⟨ηK⟩V,t describes the
smallest mean scale in the temperature field if Pr ≤ 1, whereas this is replaced by the
Batchelor scale ⟨ηB⟩V,t ≤ ⟨ηK⟩V,t in case of Pr ≥ 1.

As becomes further clear after this brief review, both of the dissipation scales for
advected scalars5 are conceptually and by definition related to the Kolmogorov scale.
Hence, all 3 scales are linked to homogeneous, isotropic turbulence at large Re which is
not exactly the case for Rayleigh-Bénard convection. However, the latter is yet similar
enough to the former [56] to justify the use of these scales even in thermal convection
[61, 108]. To account for variations of the kinetic energy dissipation field ε = ε (x, t) in
space and time [108, 130, 131], the global definitions of the mean Kolmogorov, Corrsin
and Batchelor scale may be generalised to the local ones ηK = ηK (x, t), ηC = ηC (x, t),
and ηB = ηB (x, t), respectively [108, 132]. This supports eventually tailoring them to
the inhomogeneous setup of Rayleigh-Bénard convection.
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Chapter 3: Large-scale flow structures at different boundary conditions

Run Pr Ne N tr Nu Re ΛT

Nfs2_Pr001 0.01 8302 × 16 13 5, 575 3.17 ± 0.01 2063.0 ± 0.7 59.65 ± 0.00
Nfs2_Pr01 0.1 4002 × 8 9 4, 250 4.94 ± 0.09 433.0 ± 3.4 59.71 ± 0.01
Nfs2 1 2002 × 4 11 6, 500 6.74 ± 0.10 81.4 ± 0.7 59.66 ± 0.02
Nfs2_Pr7 7 2002 × 4 7 4, 000 7.21 ± 0.14 16.2 ± 0.2 59.76 ± 0.01
Nfs2_Pr10 10 2002 × 4 7 6, 000 7.13 ± 0.10 11.7 ± 0.0 59.80 ± 0.01
Nfs2_Pr100 100 2002 × 4 7 14, 000 7.02 ± 0.03 1.1 ± 0.0 59.78 ± 0.02

Table 3.3: Simulation parameters of the direct numerical simulations at different
Prandtl numbers Pr – the Rayleigh number Ra = 203, 576, aspect ratio Γ = 60, and
free-slip boundary conditions are applied for all runs. Nu and Re are determined from
several thousand iterations, whereas ΛT is based on 50 (10 for Nfs2_Pr001) snapshots
within the last 5τf in case of Nfs2_Pr001, 1000τf in case of Nfs2_Pr100, or 500τf in
case of any other simulation run. Information on the base run Nfs2 is re-printed as
reference in grey. For more information, see table 3.1.

3.3.2 Supergranules at different Prandtl numbers
In order to study the gradual supergranule aggregation for different fluids, a series of
simulations at fixed Rayleigh number but varying Prandtl number is conducted. To keep
the computational complexity tractable despite the large aspect ratio Γ = 60, simulation
Nfs2 at RaN = 203, 576 is chosen as reference. Table 3.3 summarises all for this section
relevant runs that cover the range Pr ∈ [10−2, 102] centred around Pr = 1.

3.3.2.1 Flow structures

Similar to the previous sections, every simulation is run as long as necessary to indicate a
stationary pattern size with a particular focus on the temperature field. Doing so reveals
two important results.

Firstly, the gradual supergranule aggregation proceeds even beyond Pr = 1 at all
accessible Prandtl numbers. Yet, the varying diffusivities affect the pace of the dynamics
and thus the necessary simulation runtime tr, see table 3.3. Although tr is by far largest
for the upper limit of Pr, one finds a similar trend towards longer necessary runtimes
in the opposing lower limit. This observation itself suggests that the efficiency of the
aggregation process depends on both the kinematic viscosity as well as thermal diffusivity,
and thus the interplay of the velocity and temperature field. This is in line with later
results from section 3.5.5 which trace the (thermal) supergranule aggregation basically
back to an advective transfer of thermal variance. These runtimes do thus again not
support any relation to diffusive time scales which agrees with the findings from section
3.1.3.3. Interestingly, the increase of runtime is larger in the direction Pr → ∞.

5In fact, both the Corrsin and the Batchelor scale are originally stated for temperature fields where
variations are small enough to render buoyancy effects negligible [129] and so temperature represents
a passive scalar. Hence, they can also be exploited for other scalars which brings the reader back to
the Schmidt number from above.
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Figure 3.10: Supergranulation across 4 orders of Prandtl numbers. Although
the velocity field exhibits successively smaller features for decreasing Prandtl numbers
Pr, the supergranule aggregation can still easily be observed in the temperature field.
Panels (a, c, f, i, k, m, o, p, q, r) visualise the entire cross-section at z0 = 1 − δT /2.
To highlight the vast scale-separation between the temperature and (vertical) velocity
field for small Pr, panels (b, d, g, j, l, m) enlarge a region of interest of size 15 × 15.
Panels (e, h) underline this fact by additional magnifications of regions of size 4 × 4.
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Chapter 3: Large-scale flow structures at different boundary conditions

Secondly, this process ceases again only once the domain size is reached. Figure 3.10
visualises the temperature and vertical velocity field in horizontal planes within the
upper thermal boundary layer for the final states of the flows. In particular, panels (a, i,
k, o, q) depict the temperature fields across the entire horizontal cross-sections of the
domains, whereas panels (c, f, m, p, r) exemplary contrast them to the velocity field with
respect to its vertical component. This compilation underlines the enormous footprint
of the supergranule aggregation in the temperature field and justifies thereby the focus
on this scalar field at many places in the thesis at hand. Together with the previous
paragraph, this suggests that the instability mechanism found and described in section
3.2.2 rules the pattern formation independently of Pr.

While the flows display well-ordered stems of localised up- and down-flow regions for
large Pr, they become increasingly disordered for increasingly smaller Pr due to the
reduced importance of molecular friction. Consequently, the ranges of observable scales
or details diverge when comparing the temperature and vertical velocity field – this is
highlighted by magnifications of fractions of the flows. In case of Pr = 1, both fields
offer an equivalent richness of details which is shown in panels (l, n). This changes
once the Prandtl number moves off unity and the diffusivities of momentum and the
scalar temperature differ. On the one hand, the temperature field becomes successively
diffuse or imprecise for increasingly smaller Pr, compare thereto panels (b, j, l). On
the other hand, the velocity field becomes simultaneously successively more chaotic as
directly contrasted in panels (d, g, n). The tremendous scale separation between the
two fields is ultimately highlighted by further magnifications of even smaller regions in
panels (e, h), underlining the vast complexity of low-Pr thermal convection flows. Despite
its significantly smaller Rayleigh number RaN ≈ 2.0 × 105, simulation run Nfs2_Pr001
required more computational resources than run Nfs4 at RaN ≈ 7.7 × 107 (see table 3.1).

The increasing local disparity of the temperature and velocity field due to the different
time scales of the underlying diffusion processes suggests to investigate in the following
the impact of the Prandtl number on the global transport of heat and momentum.

3.3.2.2 Global transport properties and the role of stratification

The previous section showed that the supergranule aggregation takes place across the
entire range of investigated Prandtl numbers. Simultaneously, the flow structures are
significantly affected by the varying relative strength of viscous and thermal diffusion
processes. The incorporation of these two fields together with the Prandtl number in
the global measures of heat and momentum transport, see equations (1.19b) and (1.20),
suggests to analyse them in the presence of supergranules in more detail.

Figure 3.11 (a) visualises the dependence of these global transport measures on the
Prandtl number for the final flow states. On the one hand, the Reynolds number as
the global measure of momentum transport can be found to increase steadily when the
Prandtl number is decreased. This is in accordance with the vanishing role of viscous
diffusion, leading to successively more inertial flows. As this holds for the entire covered
range of Prandtl numbers, it implies that the flow becomes laminar for Pr ≫ 1. On the
other hand, the Nusselt number as the global measure of the importance of convective
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Figure 3.11: Global and local transport for different fluids. (a) While the global
momentum transport increases with decreasing Pr, the convective heat transport is
reduced only for Pr ≲ 1. (b) A stable stratification in the bulk, previously observed in
the inset of figure 3.2 (c), is no necessity for the emergence of the supergranule. The
temperature field is re-scaled for this panel to allow for a direct comparability.

against diffusive heat transport shows a more complex behaviour. For decreasing Prandtl
numbers in the range Pr ≲ 1, thermal diffusion gains relevance as the disorder in the
flow intensifies. In contrast, Nu stagnates for Pr ≳ 1 – this might be induced by the full
nesting of the thermal boundary layer into the viscous one [3], so buoyancy effects get
suppressed or protracted by viscous diffusion and thermal plumes detach less frequently.

These observations are in line with the effect of the Prandtl number in case of the
complementary Dirichlet-type thermal boundary condition [61]. As the large-scale flow
structures differ fundamentally between these two cases (see section 3.1), this underlines
that diffusion processes are primarily locally important mechanisms.

The gradual supergranule aggregation was found in section 3.1.3.1 to be related to
a slightly stable stratification of the temperature field close to the midplane for all
accessible Rayleigh numbers. To answer the question if this represents a characteristic
feature or necessary condition for the supergranule aggregation, the vertical temperature
profiles of all for this section relevant simulations are plotted in figure 3.11 (b). Note that
the temperature fields are re-scaled here to allow for a direct comparability, see again
section 3.1.2. Despite the presence of supergranules for any Pr, the stratification develops
qualitatively differently. While it is stable for Pr ≥ 1 and converges for Pr ≳ 10, it is
increasingly unstable for successively smaller Prandtl numbers Pr < 1. These convergence
properties agree with the above findings regarding the Nusselt number. Hence, the stable
stratification in the bulk is no necessity for the emergence of the supergranule.

In spite of the impact of the Prandtl number on the global heat and momentum
transport, as well as on the stratification in the bulk of the convection layer, the gradual
supergranule aggregation emerges across the entire range of investigated Pr and ceases
only when the artificially prescribed domain size is reached. This ubiquitous appearance
and dominance of this large-scale flow structure raises fundamental questions on the
completeness of the dynamical system and its involved physical mechanisms.
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Chapter 3: Large-scale flow structures at different boundary conditions

Figure 3.12: Physical interpretation of rotation around the vertical axis. The
region at the geographical pole (left) of geo- and astrophysical objects can be seen as
a fraction of their spherical shell (centre) – neglecting this spherical character results
in the Cartesian domain depicted in figure 1.2. Regions away from the poles (right)
add further complexity.

3.4 Limiting the supergranule aggregation
While it was shown in section 3.1 that the supergranule aggregation takes place for all
accessible Rayleigh numbers at fixed Pr = 1, the previous section 3.3 proved that it
prevails even across all accessible Prandtl numbers at fixed Ra ≈ 2.0 × 105. Assuming
that (1) the qualitative results of these two series of simulations are independent of
the particular fixed Ra or Pr, and (2) this pattern formation mechanism exists even
beyond the numerically accessible ranges of Ra and Pr, one might hypothesise that the
supergranule formation prevails throughout the entire two-dimensional Ra–Pr parameter
space of any basic, heat flux-driven Rayleigh-Bénard convection flow (recall here equations
(1.6) – (1.8)). As shown in section 3.1.3.3, this process ceases only when the (artificially
prescribed finite) domain size is reached. Such an infinite growth is, however, in contrast
to natural examples, implying in turn that this basic dynamical system needs to be
extended to offer additional physical mechanisms that may eventually balance the
instability.

3.4.1 Rotation as a promising candidate
While natural geo- and astrophysical flows offer a variety of extensions, they all have
rotation as an additional physical mechanism in common (see also table 1.2). Figure
3.12 visualises the spherical shell of such a rotating object6 and cuts selected fractions
out of it. Although the angle between the vectors of gravity and rotation covers the
entire spectrum of possibilities in case of a planet or star, a vector of rotation that is
anti-parallel to the vector of gravity represents the most accentuated setting. In fact,
this situation is given at the geographical pole of such spherical objects and can even be
mimicked by Cartesian domains if the sphericity is neglected – compare for this purpose

6The background of the centre part of this figure 3.12 shows exemplary a photograph of the Sun with
its several visible sunspots taken on 14/12/2022, 17:42:46 GMT via MicroObservatory [133].

46



3.4 Limiting the supergranule aggregation

the left part of this figure 3.12 with the basic experimental setup of Rayleigh-Bénard
convection in figure 1.2.7 This circumstance suggests to continue to work with the simple
latter system and to incorporate the effect of rotation correspondingly.

In the previous sections, the behaviour of the non-rotating system at and slightly
above the onset of convection has turned out to be quite insightful even for the turbulent
flow. As already pointed out in section 3.2.1, additional rotation around the vertical
axis generally stabilises the flow at the onset of convection. It is important to realise
that this effect is more intense on large scales than on small scales – i.e., it suppresses
large-scale motions –, consequently the critical mode may eventually become finite if
rotation is only strong enough. Hence, rotation might turn out as a promising extension
to limit the supergranule aggregation even in the fully turbulent flow.8

Studies in Rayleigh-Bénard convection (in particular with Dirichlet boundary condi-
tions) report indeed that the flow patterns can be influenced under the action of rotation
[30, 134] (see also [52, 63] for examples from even more complex flows). In the limit of
rapid rotation, the flow structures transform towards so-called Taylor columns [117] with
smaller horizontal scales as a consequence of the Taylor-Proudman theorem [45, 55, 56,
135–137]. In contrast, it might be expected that the stop of the gradual supergranule
aggregation at large scales makes only weak rotation (Ro ≳ 2.5 [30, 138]) necessary.

In the following, rotation around the vertical axis will be added as the only additional
physical mechanism to the dynamical system and extend the parameter space by Ro.

3.4.2 Mathematical inclusion and involved time scales
3.4.2.1 Frames of reference

Mathematically, a measured quantity of a rotating system depends on the frame of
reference, the latter of which can be either the inertial (I) or the rotating (R) frame.
These frames imply that the observer is standing either outside or inside the rotating
domain, respectively. Concerning the velocity field as part of the (dimensional) Navier-
Stokes equation (1.3), the relation between these two frames is given by [55, 84](︄

duI

dt

)︄
I

=
(︄

duR

dt

)︄
R

+2Ω × uR + Ω × (Ω × xR) (3.22a)

=
(︄

duR

dt

)︄
R

+2Ω × uR⏞ ⏟⏟ ⏞
Coriolis

acceleration

−1
2∇

(︂
|Ω × r|2

)︂
⏞ ⏟⏟ ⏞

centrifugal
acceleration

(3.22b)

7Regions away from the geographical pole add further complexity as the rotation of the spherical shell
needs to be decomposed into a vertical and an additional horizontal component. The latter causes an
anisotropy in the horizontal directions [100], see also the right part of figure 3.12.

8An analysis of the evolution equation for the temperature perturbation above the onset of convection
(similar to [118]) was reportedly started in [40]. Although not finished, it might be expected that the
instability mechanism (which drives the supergranule aggregation) does not disappear suddenly when
rotation is added to the system. Thus, one might expect this instability to rival with the stabilising
effect of rotation on large scales.
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once the angular velocity and the reference point of the rotating frame are assumed to
be time-independent and non-accelerated, respectively. It introduces generally both the
Coriolis acceleration as well as the centrifugal acceleration term, while r = (rx, ry, rz)
represents here the perpendicular distance of the fluid parcel from the axis of rotation.
Obviously, these two frames coincide in the non-rotating scenario – it is thus convenient
to refer always to the ‘rotating’ frame and drop the subscript R in the following.

These above considerations point out that the Coriolis and centrifugal accelerations
are fictitious accelerations for an observer inside a rotating frame [55]. The particular
role of the Coriolis acceleration is to deflect fluid parcels perpendicular to their direction
of motion.

3.4.2.2 Mathematical inclusion of rotation and its physical interpretation

It is crucial to understand the relation between the studies within a Cartesian domain
and the actual physics in the motivating spherical geo- and astrophysical objects. In a
spherical shell of the latter, the projection of the angular velocity or rate of rotation Ω
onto to the local unit vector along the vertical direction ez (which is anti-parallel to the
vector of gravity) depends on the latitude (lat), i.e.

2Ω · ez = 2Ω cos (ϕ) =
Taylor series
around ϕ0=0

2Ω + h.o.t. ≈ 2Ω (3.23)

with ϕ ≡ π/2−ϕlat being measured from the geographical pole as indicated in figure 3.12.
Considering now – as described above in section 3.4.1 – a region close to the geographical
pole at ϕ ≃ ϕ0 = 0, the truncation of a Taylor series after the very first term yields the
expression given on the right of eq. (3.23). Neglecting the sphericity of the region close
to the geographical pole, rotation is thus anti-parallel to the acceleration due to gravity
as well as constant throughout the spatial domain.9 Note that the angular velocity is, as
stated above, further assumed to be constant in time. Given these considerations, the
inclusion of an angular velocity Ω = Ωez in the Cartesian domain indeed approximates
the physics at the geographical pole.

Based on the characteristic angular velocity Ω, a non-dimensionalisation (further based
on the free-fall inertial balance as in section 1.2.2.3) of the Coriolis and centrifugal
acceleration terms from eq. (3.22b) yields

2ΩH

Uf
ez × u − Ω2H2

2U2
f

∇
(︂
r2
)︂

with r =
√︂

r2
x + r2

y (3.24)

within the (non-dimensional) Navier-Stokes equation (1.7).
The centrifugal acceleration term represents basically a gradient field, and as such it

can be included into a modified pressure field pmod := p − Ω2H2/ (2U2
f ) r2 [53, 54]. Hence,

9This is known as the so-called f-plane approximation and represents a good approximation in case
of a negligible sphericity [84], i.e. Γ2H/Rchar ≪ 1 with a characteristic radius Rchar of the spherical
object. The β- or γ-plane approximations represent higher-order approximations [29, 84, 100, 139]
but lie beyond the very general scope of this work.
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the centrifugal acceleration term disappears from the governing equations although not
being neglected [55, 56]. Further, there is no need to solve it numerically as a separate
term as its solution is consequently part of the elliptic equation (1.18) for the pressure
field. For simplicity, the pressure field will be termed p even in the rotating scenario.

3.4.2.3 Time scales associated with rotation

The inclusion of the two terms from eq. (3.24) introduces also two new time scales to
the system. Firstly, the left term indicates the ratio of the free-fall time scale τf = H/Uf
to the system’s rotation time scale due to Coriolis acceleration τΩ ≡ τΩu := 1/ (2Ω).
Secondly, the right term can be interpreted as the squared ratio of the free-fall time
scale τf to the system’s rotation time scale due to centrifugal acceleration τΩr :=

√
2/Ω.

Recalling the definition of the Rossby number in eq. (1.11) (which corresponds closely
to the non-disappearing Coriolis term), eq. (3.24) can be re-written as

1
Ro ez × u − 1

8⏞⏟⏟⏞
=τ2

Ω/τ2
Ωr

1
Ro2 ∇

(︂
r2
)︂

with Ro = τΩ

τf
. (3.25)

This highlights clearly that these two rotation time scales are not independent but
closely connected via τΩr ≡ 2

√
2 τΩ. As τΩr ≳ τΩ, processes or effects caused by Coriolis

acceleration may be roughly expected to dominate processes caused by centrifugal
accelerations.

It might be of interest how these time scales compare with the remaining time scales –
see section 1.2.2.3 and especially the footnote on page 7 – in the flow. Such a hierarchy,
however, depends sensitively on the particular parameters Ra, Pr and Ro. Based on
typical values of natural convection flows (see table 1.2), Pr ≫ 1/Ra and Pr ≪ Ra.
From this, the hierarchy establishes in the non-rotating scenario to

(τΩr, τΩ) ≫ (τν , τκ) ≫ τf. (3.26)
Presuming for the rotating scenario Pr ≃ O (100), Ra ≳ O (104) and Ro ≃ O (101)
instead (for the latter, see also table 3.4),

τν ≃ τκ ≫ τΩr ≳ τΩ ≫ τf (3.27)
holds. Thus, although buoyancy-driven processes continue to set the smallest time scale,
effects caused by weak rotation may eventually dominate diffusion effects (on large length
scales, as on small length scales still τf ≫ τK) and become more important.

3.4.3 Controlling the size of supergranules
The effect of rotation as an additional physical mechanism is studied by approaching the
weakly rotating regime starting from the non-rotating limit – the non-rotating simulation
runs performed in section 3.1 serve thus as starting points. In terms of control parameters
of the flow, this implies that the two previous ones (Ra and Pr = 1) are kept fixed while
rotation is introduced via the new parameter Ro, the latter of which will subsequently
be varied. Table 3.4 summarises all simulations that are relevant for this section 3.4.
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Run Ra Ro N tr Nu Re ΛT

Dfs3 385, 014 ∞ 7 1, 100 10.21 ± 0.04 215.8 ± 0.5 5.34 ± 0.10
Dfs3_Ro10 385, 014 10 7 625 10.22 ± 0.05 212.0 ± 0.5 5.18 ± 0.10

Nfs1 10, 432 ∞ 7 4, 000 3.93 ± 0.12 26.4 ± 0.4 59.66 ± 0.04
Nfs1_Ro5s 10, 432 5 7 1, 250 3.69 ± 0.05 24.4 ± 0.2 21.85 ± 3.31

Nfs2 203, 576 ∞ 11 6, 500 6.74 ± 0.10 81.4 ± 0.7 59.66 ± 0.02
Nfs2_Ro10 203, 576 10 9 4, 500 6.62 ± 0.09 80.3 ± 0.8 42.25 ± 0.73
Nfs2_Ro9 203, 576 9 9 4, 500 6.58 ± 0.09 78.7 ± 0.9 33.43 ± 1.83
Nfs2_Ro8 203, 576 8 9 4, 500 6.53 ± 0.09 76.3 ± 0.5 29.17 ± 0.92
Nfs2_Ro7 203, 576 7 9 4, 500 6.45 ± 0.07 72.8 ± 0.3 25.11 ± 0.82
Nfs2_Ro6 203, 576 6 9 4, 500 6.32 ± 0.07 69.1 ± 0.3 18.32 ± 0.47
Nfs2_Ro5 203, 576 5 9 4, 500 6.13 ± 0.05 65.1 ± 0.3 15.92 ± 1.54

Nfs3 3, 928, 297 ∞ 7 10, 000 12.29 ± 0.16 229.0 ± 1.4 59.72 ± 0.02
Nfs3_Ro30 3, 928, 297 30 7 4, 500 12.38 ± 0.13 286.0 ± 1.3 59.24 ± 0.07
Nfs3_Ro20 3, 928, 297 20 7 4, 500 12.26 ± 0.08 231.5 ± 1.0 45.70 ± 0.21
Nfs3_Ro17 3, 928, 297 17 7 4, 500 12.27 ± 0.13 231.4 ± 1.6 36.84 ± 2.18
Nfs3_Ro15 3, 928, 297 15 7 4, 500 12.23 ± 0.10 224.5 ± 1.3 28.85 ± 1.49
Nfs3_Ro13 3, 928, 297 13 7 4, 500 12.18 ± 0.09 217.4 ± 1.2 25.37 ± 0.57
Nfs3_Ro10 3, 928, 297 10 7 4, 500 12.05 ± 0.09 205.1 ± 0.9 19.55 ± 1.11
Nfs3_Ro10s 3, 928, 297 10 7 4, 500 12.05 ± 0.09 199.9 ± 0.7 17.73 ± 1.56
Nfs3_Ro9 3, 928, 297 9 7 4, 500 11.97 ± 0.09 199.6 ± 1.1 15.02 ± 0.55
Nfs3_Ro8 3, 928, 297 8 7 4, 500 11.85 ± 0.08 197.5 ± 0.7 10.98 ± 0.46
Nfs3_Ro7 3, 928, 297 7 7 4, 500 11.71 ± 0.08 205.9 ± 0.8 9.71 ± 0.59

Nfs4 76, 887, 279 ∞ 7 19, 000 23.47 ± 0.24 635.9 ± 3.1 59.68 ± 0.02
Nfs4_Ro30 76, 887, 279 30 7 7, 500 23.44 ± 0.17 640.2 ± 3.3 27.34 ± 0.47

Table 3.4: Simulation parameters of the direct numerical simulations including
rotation as an additional physical mechanism – the Prandtl number Pr = 1, the aspect
ratio Γ = 60 and free-slip boundary conditions are applied for all runs. All values
correspond to the late state of the flow where the large-scale flow structures converged
with respect to their mean size. Nu, Re and ΛT are typically determined from 50
snapshots within the last 500τf of each simulation, while error bars are determined by
the standard deviation. While simulation runs Nfs1_Ro5s and Nfs3_Ro10s started
from scratch, all other simulations started with the final corresponding non-rotating
flow as initial condition – run Nfs3_Ro10s thus proves the independence of statistical
results from the specific initial condition. The total number of spectral elements Ne
coincides for all runs with their corresponding non-rotating scenario. Information on
these base runs are re-printed as reference in grey. For more information, see table 3.1.
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Figure 3.13: Effect of weak rotation on the flow structure hierarchy. (a – d)
Weak rotation as an additional physical mechanism is capable of fragmenting the
domain-sized supergranule into smaller, yet large-scale supergranule filaments. (e – h)
Despite this significant transformation, the smaller-scale granular flow patterns are
still preserved. While the top row visualises the temperature field T (x, y, z0) across
the entire cross-section of the domain for a late state, the bottom row magnifies regions
of size 5 × 5 at z0 = 1 − δT /2. Note the analogies to the granule patterns observed in
the non-rotating scenario as shown in figure 3.4 (a, b) for even higher Ra.

3.4.3.1 Qualitative observations

Generally, it can be found that the global heat and momentum transfers are almost
unchanged when introducing weak rotation. This can be realised when comparing
simulation runs Dfs3_Ro10, Nfs1_Ro5s, Nfs2_Ro10, Nfs3_Ro20, Nfs4_Ro30 with their
non-rotating counterparts. As this series shows, this holds not only for the Dirichlet
case – for which this effect was already previously reported [30, 138, 140] –, but can
similarly be confirmed for the Neumann case here. Increasing rotation tends to suppress
convective motions [134, 138, 140], i.e. Nu and Re decrease. Although this effect is quite
small, it can be confirmed for within the regime of weak rotation that is covered by the
two simulation series Nfs2_Ro and Nfs3_Ro.

In the classical Dirichlet case, the large-scale flow structures – which predominantly
cause the heat transport [96] – are almost unchanged. This is supported quantitatively
by the integral length scale ΛT (which is included for all simulations in the table) and
might explain why the regime of weak rotation got only little attention in past studies.
In contrast to these turbulent superstructures, the situation becomes very different for
the supergranules.

In the Neumann case, the large-scale flow structure depends strongly on the strength
of rotation even in the case of weak rotation as shown in figure 3.13 (a – d). The
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Figure 3.14: Scaling of fragmented supergranule filaments in the weakly rotating
regime. The two comprehensive series of simulations at Γ = 60 indicate a linear scaling
up to Roproj as described by eq. (3.28).

gradual aggregation process can be stopped at an intermediate scale (when starting the
simulation from scratch) or fragmented into smaller supergranules of intermediate scale
(when rotation is suddenly introduced to an existing supergranule) once the strength of
rotation is only strong enough. While simulation run Nfs3_Ro30 substantiates that latter,
runs Nfs3_Ro10 and Nfs3_Ro10s prove the former by confirming the independence of
statistical results from initial conditions. One might at this point extend the hypothesis
from the beginning of section 3.4 and expect that there exists some transition in the
three-dimensional parameter space which separates the regions of infinite and finite
supergranule growth. Interestingly, the global heat and momentum transport is barely
altered during this massive re-organisation of the large-scale flow. This is, in fact, in line
with the behaviour of the flow during the gradual supergranule aggregation as previously
shown in figure 3.5. The smaller-scale granular flow patterns, however, are not affected
in an equal manner as shown in figure 3.13 (e – h).

3.4.3.2 Scaling of the fragmented supergranules

The observations from figure 3.13 suggest to quantify the resulting supergranule size as
a function of the control parameter for the strength of rotation, Ro. Figure 3.14 reveals
that the characteristic horizontal scale of the large-scale flow structures is in fact a linear
function of the Rossby number which can be described by

ΛT (Ro) ≈ f1 (Ra) Ro + f0 (Ra) for 2.5 ≲ Ro ≲ Roproj. (3.28)

This linear scaling can be understood by a closer look at the definition of the Rossby
number in terms of time scales, see eq. (3.25). From this perspective, Ro defines basically
the time scale of mechanisms induced by Coriolis accelerations. As the supergranule
formation proceeds during its transient aggregation with a constant speed (see figure 3.5),
a variation of this time scale via Ro might eventually set a limit to this buoyancy-driven
aggregation process. Clearly, this argument relies on the independence of these two
mechanisms.
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3.4 Limiting the supergranule aggregation

Section 3.5 will highlight the responsibility of the non-linear term to the supergranule
aggregation, allowing for an alternative argument for this linear scaling here. Suppose
the (dimensional) non-linear term in eq. (1.3) will be constrained by the Coriolis term in
magnitude, i.e. |(u · ∇)u| ∼ |2Ω ez × u|. For a characteristic dimensional flow structure
of size Λchar and velocity Uf, this translates to U2

f /Λchar ∼ 2ΩUf or a Λchar-based Rossby
number of RoΛchar = Uf/ (2ΩΛchar) ∼ 1. A subsequent re-translation to the original
definition from eq. (1.11) results then in ΛT ≡ Λ̃T = Λchar/H ∼ Ro, supporting the
observed linear nature of the scaling further.

From table 3.1 it is known that in the non-rotating case the supergranule aggregation
proceeds slower when the strength of turbulent fluctuations – or in other words the
Rayleigh number – is increased. One may thus expect that the slope f1 depends on Ra
too, which is confirmed by figure 3.14. However, further series of simulations at different
Ra are required to draw a firm conclusion on this dependence.

One might wonder if it should not be possible to collapse the data onto a single line
when plotting it against another rotation-based parameter such as Ta or Ek – these
parameters are, however, not able to do justice to such expectations. This circumstance
is just the logical result of the independence of the supergranule aggregation time from
diffusive time scales as stated before in sections 3.1.3.3 and 3.3.2.1.

In eq. (3.28), Roproj is the projected, Rayleigh number-dependent Rossby number
beyond which the aggregation process becomes independent of Coriolis accelerations and
thus ΛT = Γ establishes just as in the non-rotating scenario. For the two available series
of simulations at varying Rossby numbers, Nfs2_Ro and Nfs3_Ro, this projection yields
Roproj ≈ 14 and Roproj ≈ 26, respectively.

As pointed out in section 3.2.1, the critical mode at the onset of constant heat
flux-driven Rayleigh-Bénard convection transitions from kcrit = 0 to kcrit > 0 once
Tacrit ≃ 180.15 is surpassed. In other words, the critical flow structure changes from
infinite to finite size once the weakly rotating regime is approached sufficiently from
the limit of no rotation. This critical point corresponds to critical Rossby numbers of
Rocrit ≈ 34 and Rocrit ≈ 148 for the series Nfs2_Ro and Nfs3_Ro, respectively. Assuming
a continuing validity of the slopes from figure 3.14 even beyond the covered range, these
Rocrit correspond to critical structure sizes of ΛT , crit ≈ 162 and ΛT , crit ≈ 392 – a potential
numerical domain might need to be even significantly larger to obtain definite results.
However, one single simulation in a domain of aspect ratio, e.g., Γ = 400 ≈ 2.5 × 162
exhibits roughly (400/60)2 ≈ 44 times the complexity of a simulation in the current
domain with Γ = 60. Keeping further in mind that the time which is necessary to form
the supergranule increases with increasing aspect ratio [V1], it becomes clear that this
exceeds what can be investigated with the current computational resources. Hence, it is
not possible to confirm or reject this transition for the turbulent regime at this point.

Lastly, it is worth to mention that the linear nature of these results is not altered when
considering another horizontal plane at a different height, vertically averaged fields [V5],
or when quantifying the structure size based on different measures such as for instance
the first zero-crossing of the correlation function [141]. The above findings thus clearly
prove that rotation as an additional physical mechanism is able to limit the gradual
supergranule aggregation at an intermediate scale Γ ≫ ΛT ≫ 1.
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Even stronger rotation than the ones listed in table 3.4 will eventually change the
characteristics of the flow significantly as the weakly rotating regime will be left [30]
and the flow patterns converge eventually towards Taylor columns [117]. These effects
beyond the weakly rotating regime are, however, not at the focus of the present study.

3.4.4 Relating rotation to the vortex stretching term
While incompressible flows are most typically described by the evolution equation for
the velocity – see the Navier-Stokes equation (1.7) –, their evolution can be formulated
mathematically equivalently [57] by the use of the so-called vorticity ω := ∇ × u. This
corresponding (non-dimensional) vorticity equation is obtained by taking the curl of the
Navier-Stokes equation (1.7) and reads [52]

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u⏞ ⏟⏟ ⏞

vortex
stretching term

+
(︃ 1

Ro ez · ∇
)︃
u⏞ ⏟⏟ ⏞

additional
Coriolis term

+
√︄

Pr
Ra ∇2ω + ∇ × ez T, (3.29)

including here only rotation around the vertical axis as an additional physical mechan-
ism.10 Note that ω = ω (x, t) with ω = (ωx, ωy, ωz).

Using this representation of the dynamics of the system, it becomes clear that the shape
of the first two terms on the right side of this equation – i.e. the vortex stretching term
and the additional Coriolis term – is similar, which suggests to merge them hypothetically
into one as

(ω · ∇)u +
(︃ 1

Ro ez · ∇
)︃
u =

[︃(︃
ω + 1

Ro ez

)︃
· ∇

]︃
u (3.30a)

=
[︄
ωx

∂

∂x
+ ωy

∂

∂y
+
(︃

ωz + 1
Ro

)︃
∂

∂z

]︄⎛⎜⎝ux

uy

uz

⎞⎟⎠ . (3.30b)

This highlights that additional rotation can in fact be interpreted as a reinforcement or
extension of the vortex stretching term.

Interestingly, the vortex stretching term exists only in three-dimensional turbulence
but disappears in two-dimensional problems. Hence, also the governing vorticity equation
(3.29) differs fundamentally, leading to qualitatively different physics [57, 142]. Two-
dimensional turbulence [143–146] – or three-dimensional turbulence which is by external
mechanisms, such as rapid rotation [147, 148] or suitable artificial forcing [149, 150],
rendered quasi-two-dimensional – is commonly associated with the growth of flow struc-
tures up to domain size. In contrast, in three-dimensional turbulence such phenomena are
typically absent [57]. For this reason, the vortex stretching term was originally suspected
of being responsible for this phenomenological disparity [55, 142]. Indeed, recent research
confirmed that the latter can – beside the slightly more important self-amplification of
10Note that although the pressure disappears in this formulation, the equation is still non-local due to

the presence of u which has to be computed according to the Biot-Savart law [55, 57].
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the strain-rate field – partly be related to the presence of the vortex stretching term
in the three-dimensional case [151–153]. Roughly speaking, the vortex stretching term
supports the suppression of a large-scale flow structure formation in three-dimensional
turbulence.

Constant heat flux-driven Rayleigh-Bénard convection in a horizontally extended
domain seems to contain characteristics from both scenarios. On the one hand, the
ongoing supergranule aggregation up to domain size is accompanied by an accumulation
of energy on large horizontal scales (see again figure 3.5 (h – l)) and resembles a
characteristic of two-dimensional turbulence. On the other hand, even though the vortex
stretching might be too weak in the non-rotating scenario to suppress this large-scale
effect, additional weak rotation – which is related via eq. (3.30) – is able to limit the large-
scale aggregation eventually which provides finally closer analogies to three-dimensional
turbulence.

Although these considerations might help to classify the character of the flow, they
lack a well-founded explanation of root-causes for the transfer of energy towards large
scales in the fully three-dimensional flow. Nevertheless, the necessary direction of the
scientific journey becomes clearer as these considerations suggest to analyse the (spectral)
energy transfer of constant heat flux-driven Rayleigh-Bénard convection in the following.

3.5 Superganule aggregation as inverse spectral cascade
process

The discovered supergranule aggregation is a transient process that proceeds over thou-
sands of convective time units before it is limited by the finite domain size, see again
figure 3.5. Albeit the underlying constant heat flux-driven convection is fully three-
dimensional and naturally forced over a whole range of scales [154] – which incorporates
the locally fluctuating thickness of the (detached) thermal boundary layer fragments –,
it simultaneously exhibits characteristics of a two-dimensional flow. Several signs for the
latter can already be found in previous parts of this work, e.g.:

1. The thermal variance in the domain increases throughout the transient process and
accumulates at the largest scales, see figure 3.5. As mentioned in the discussion
in section 3.4.4, such an accumulation is typically observed in two-dimensional
processes.

2. The (thermal) supergranule is practically height-independent. This can be detected
when comparing figure 3.3 (l) and figure 3.4 (f), which both visualise the temperature
field of the same snapshot but at very different vertical coordinates – once at
midplane, and once within the upper thermal boundary layer close to the top plane,
respectively.

Additional rotation around the vertical axis seems to control the extension of the
two-dimensional characteristics as it has been shown in section 3.4.3 to limit the growth
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of the large-scale flow structures at intermediate scales. Note that this also interrupts
the growth of the thermal variance [V5].

Hence, one might ask how energy is actually transported across different scales in this
three-dimensional flow and what in particular causes the accumulation of kinetic energy
and thermal variance on large scales. This fundamental question shall be started to be
answered by a spectral energy transfer analysis.

3.5.1 Basics on the nature of turbulence
3.5.1.1 Richardson’s cascade picture

The cascade picture is yet the most revealing insight into the nature of turbulence and its
transfer of energy [155]. This picture goes back to Lewis F. Richardson who summarised
it in his book on weather prediction in 1922 in the following famous rhyme:

‘Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.’

– L. F. Richardson [156]

More precisely, this concept supposes the coexistence of vortices or eddies of different
size in turbulent flows and consists basically of three stages [57, 142, 157].

1. Kinetic energy, which is injected to the system at a relatively large scale l0, generates
large vortices.

2. These vortices become unstable after some time and break up into smaller vortices
– without the loss of energy. These new vortices exhibit the same instability and
decay again and again to even smaller vortices.

3. The transfer of energy towards even smaller vortices comes finally to an end at a
scale where viscous diffusion becomes important. Here, kinetic energy is dissipated
into heat.

These three stages allow a statistically stationary transfer of energy – from the initial
injection at larger scales over intermediate scales down to the smallest scales – if the
source of energy is maintained. In this case, the rate of energy input ⟨εin⟩V , throughput,
and dissipation ⟨ε⟩V coincides.

The general arrangement of this process in a series of stages, such that each stage –
in particular the recursive second one – is driven from the preceding one, terms this
process a cascade [158]. Its concept is visualised in figure 3.15.11 This cascade picture of
turbulence describes the energy exchange across different length scales (which is not to
be confused with the energy flux across a certain area in physical space) [159], which
immediately suggests to analyse the flow in spectral space in favour of physical space.
From this spectral perspective, the three stages of the above picture are thus termed the
forcing range, inertial range, and dissipation range [159].
11Note that flow structures of all available scales are superposed during this entire process, i.e. the

region of a large vortex may also contain smaller vortices [142].
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Figure 3.15: Sketch of the three-dimensional cascade of turbulence. The at
large scales l0 injected energy is transferred towards increasingly smaller scales until
dissipation becomes effective at the mean Kolmogorov scale ⟨ηK⟩V . The three arrows
at the top correspond to the transport of energy in the three stages of the cascade
model. If the process is statistically stationary, all these arrows correspond to ⟨ε⟩V .

3.5.1.2 Energy transfer in two- and three-dimensional turbulence

The qualitative picture of Richardson’s energy cascade got quantified in 1941 by
Kolmogorov for three-dimensional homogeneous, isotropic turbulence [126, 142, 159,
160]. Exploiting the constancy of energy flux and dimensional arguments, some of his
main results were to find the scaling of the kinetic energy spectrum Euu (k) ∼ k−5/3

in the inertial range and to quantify the (on average) smallest dynamical length scale
in the flow, the mean Kolmogorov scale ⟨ηK⟩V,t (see eq. (3.18)). The latter allows
further to estimate the range of present dynamical length scales in a turbulent flow as
Re = UcharLchar/ν ∼ U0l0/(UKηK) ∼ (l0/ηK)4/3 – the subscripts correspond here to the
first and third stage of the cascade, see figure 3.15. Assuming l0 to be of the size of the
system, this relation has important implications also for direct numerical simulations as
it sets the minimum requirement on the numerical grid resolution [159].

The above picture exhibits a transfer of energy from large to small scales – this is
called a forward cascade. However, also the opposite is possible which is termed inverse
cascade. Which of them applies depends on the dimensionality of the flow, as well as on
the quantity of interest – the following statements can be derived for conserved quantities
of inviscid flows. In three-dimensional turbulence, the kinetic energy u2/2 exhibits a
forward cascade whereas the kinetic helicity h := u ·ω [55, 159] shows an inverse cascade.
In two-dimensional turbulence, the kinetic energy u2/2 exhibits just the opposite, an
inverse cascade, while the enstrophy ω2/2 offers a forward cascade [56, 159, 161].

Using these conservation laws, Robert H. Kraichnan was eventually able in 1967
to provide statements on the scaling of kinetic energy in two-dimensional turbulence,
resulting in Euu (k) ∼ k−5/3 or ∼ k−3 depending on the wave number range [56, 162].
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The above considerations on two- and three-dimensional turbulence provide first
valuable insights on the nature of turbulence. However, the complexity of Rayleigh-
Bénard convection goes (because of its dimension and anisotropy in the vertical direction)
beyond these general theories – in particular, none of them applies strictly [159]. Albeit
the bulk region of Rayleigh-Bénard convection can be interpreted to be similar to three-
dimensional turbulence [56], its natural forcing via the thermal boundary layer is very
complex and only numerical investigations of such complex flows allow detailed insights.

3.5.2 Spectral description of the dynamical system
As outlined above in section 3.5.1.1, the study of energy transfer across scales – which
allows eventually to conclude over the existence of inverse or forward cascade processes –
requires a spectral description of the dynamical system. This implies that the governing
equations (1.6) – (1.8) need to be translated into spectral space. The corresponding
spectral expansion, however, must be performed in accordance with the boundary
conditions. The focus is here, just as in the previous sections, again on the combination
of free-slip and constant heat flux boundary conditions.

3.5.2.1 Spectral expansion of all fields

For this set of boundary conditions, the velocity, pressure and temperature fields can be
expanded as Fourier series via

ux (x, t) =
∑︂
kh

∑︂
kz

ûx(kh, kz, t) eıkh·xh cos (kzz), (3.31)

uy (x, t) =
∑︂
kh

∑︂
kz

ûy(kh, kz, t) eıkh·xh cos (kzz), (3.32)

uz (x, t) =
∑︂
kh

∑︂
kz

ûz(kh, kz, t) eıkh·xh ı sin (kzz), (3.33)

p (x, t) =
∑︂
kh

∑︂
kz

p̂ (kh, kz, t) eıkh·xh cos (kzz), (3.34)

Θ (x, t) =
∑︂
kh

∑︂
kz

Θ̂ (kh, kz, t) eıkh·xh cos (kzz). (3.35)

In general, these expansions represent three-dimensional generalisations of the two-
dimensional expansion described by eq. (3.6). The spectral Fourier coefficients Φ̂
represent thus the key elements to describe the fields in spectral space – these depend
on wave numbers k = (kh, kz) instead of locations x = (xh, z). Recall thereto also from
section 3.1.3.3 the vectors of horizontal wave numbers kh = (kx, ky) and coordinates
xh = (x, y), as well as the definition of the numerically discrete kx and ky. In the
vertical direction, strictly either kz,n := 2π n/Lz with n ∈ N for cosine basis functions
or kz,m := 2π m/Lz with m ∈ N+ for sine basis functions and Lz = 2. By defining
Φ̂ (kz,m=0 = 0) = 0, it follows that kz ≡ kz,n for all fields. The resulting leading vertical
spectral basis functions are visualised in figure 3.16.
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Figure 3.16: Leading vertical spectral basis functions. The particular choice –
cosine or sine basis functions – depends on the boundary conditions of the spectrally
expanded quantity. Amplitudes are highlighted by the shaded areas.

Note also that, due to the periodicity of the lateral boundaries, all fields support using
the typical Fourier basis function eıΦ = cos (Φ) + ı sin (Φ) in both horizontal directions.
In contrast, the basis function in the vertical direction depends on the particular quantity
and is either cos (Φ) or ı sin (Φ). Remark in case of the latter the usage of the coefficient
ı – this allows for a direct comparability of the resulting Fourier coefficient with the one
obtained for a similar but periodic quantity that is expanded through the typical basis
function eıΦ.

The above spectral expansion requires (in case of both Dirichlet and Neumann boundary
conditions) to describe the temperature field through the temperature deviation field Θ,
recall thereto eq. (3.5) and find more details on this requirement in appendix B. This field
will for simplicity just be termed ‘temperature field’ in this section. The corresponding
evolution equation12 and boundary conditions13 in physical space are given by

∂Θ
∂t

+ (u · ∇) Θ = 1√
RaPr

∇2Θ + uz (3.36)

and
∂Θ
∂z

(z ∈ {0, 1}) = 0, (3.37)

respectively.

3.5.2.2 Modal governing equations

To the knowledge of the author, a derivation of the governing equations in spectral
description – which are in particular in accordance with constant heat flux boundary
conditions – cannot be found in literature. Hence, a detailed derivation is included in
appendix B.
12In contrast, the evolution equation for the velocity field – the Navier-Stokes equation (1.7) – does

basically not change and can be simply adjusted by replacing T with Θ. This involves a modification
of the pressure field.

13In case of Dirichlet boundary conditions, this reads Θ (z ∈ {0, 1}) = 0 and makes in eq. (3.35) an
expansion in the vertical direction with respect to sine basis functions necessary.
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The spectral governing equations read eventually

ık · û = 0, (3.38)
∂û

∂t
+ (u · ∇)uÿ�+ 1

Ro ez × û = −ık p̂ −
√︄

Pr
Ra k2û + Θ̂se ez, (3.39)

∂Θ̂
∂t

+ (u · ∇) ΘŸ�= − 1√
RaPr

k2Θ̂ + ûz, ce. (3.40)

These equations describe the evolution of the modal energy of both the velocity and
temperature field, i.e. they are projected onto one particular wave number k with a
magnitude given by k := |k|. For this reason, Θ̂ needs to be described by a sine expansion
(se) in eq. (3.39) and ûz by a cosine expansion (ce) in eq. (3.40) – this can be done by
either projecting the Fourier coefficients obtained from sine (cosine) expansions onto
cosine (sine) basis functions, or by directly transforming the corresponding field with
cosine (sine) basis functions.14 More details on this are included in appendix B – see in
particular equations (B.29) and (B.30) for the definitions of Θ̂se and ûz, ce, respectively.
In order to keep a compact notation, the advection terms are transformed here after
computing the corresponding product – see also equations (B.14) – (B.17). However,
they can be expressed equivalently via convolution sums as will be shown later in section
3.5.2.4.

Note that an evaluation of these spectral equations does not require to run different
numerical simulations – so, the same numerical method can be used. However, as the
latter makes use of non-uniformly spaced GLL nodes, it becomes necessary to spectrally
interpolate the snapshot data onto a uniformly spaced grid to subsequently compute the
Fourier coefficients from equations (3.31) – (3.35).

3.5.2.3 Spectral evolution equations for kinetic energy and thermal variance

The observations from section 3.1.3.3 and especially figure 3.5 (h – l) suggest to analyse
the transfer of kinetic energy Euu and thermal variance EΘΘ across scales. Recalling
that in spectral space |Φ̂|2 = Φ̂ Φ̂∗ for Φ̂ ∈ C – which is similar to the physical space
product |Φ|2 used in, e.g., the kinetic energy density u2/2 –, it becomes clear that the
corresponding modal evolution equations for these two quantities can be derived from
equations (3.39) and (3.40) by a multiplication with the projected complex conjugates
û∗ and Θ̂∗, respectively, as well as subsequently taking the real part to ensure real results
for all terms [159]. This yields after some re-arrangements

∂Euu

∂t
(k, t) = −R

[︃
(u · ∇)uÿ�· û∗

]︃
−
√︄

Pr
Ra k2 û · û∗ + R

(︂
Θ̂se û∗

z

)︂
, (3.41)

∂EΘΘ

∂t
(k, t) = −R

[︃
(u · ∇) ΘŸ�Θ̂∗

]︃
− 1√

RaPr
k2 Θ̂Θ̂∗ + R

(︂
ûz, ce Θ̂∗)︂ (3.42)

14This implies that a forcing of, e.g., ûz (kh, kz = k0) in eq. (3.39) happens not only via Θ̂ (kh, kz = k0)
but also via many different kz.
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3.5 Superganule aggregation as inverse spectral cascade process

with the kinetic energy and thermal variance defined spectrally as

Euu (k, t) := 1
2û · û∗ and EΘΘ (k, t) := 1

2Θ̂Θ̂∗
, (3.43)

respectively. Note in eq. (3.41) that two terms from eq. (3.39) vanished: (1) the pressure
term drops out due to incompressibility, and (2) the Coriolis term15 drops out due to
symmetry constraints as R

(︂
Φ̂1Φ̂

∗
2

)︂
= R

(︂
Φ̂∗

1Φ̂2
)︂

for
(︂
Φ̂1, Φ̂2

)︂
∈ C.

Both evolution equations become thus very similar as they consist basically (from left
to right) of a time derivative, as well as an advection, a dissipation, and a forcing term.
So, it is convenient to assign certain abbreviations for these terms [159], all of which are
in the following16

Au (k, t) := R
[︃
(u · ∇)uÿ�· û∗

]︃
, (3.44)

Du (k, t) :=
√︄

Pr
Ra k2 û · û∗ = 2

√︄
Pr
Ra k2 Euu, (3.45)

Fu (k, t) := R
(︂
Θ̂se û∗

z

)︂
, (3.46)

AΘ (k, t) := R
[︃
(u · ∇) ΘŸ�Θ̂∗

]︃
, (3.47)

DΘ (k, t) := 1√
RaPr

k2 Θ̂Θ̂∗ = 2√
RaPr

k2 EΘΘ, (3.48)

FΘ (k, t) := R
(︂
ûz, ce Θ̂∗)︂

, (3.49)

translating equations (3.41) and (3.42) into

∂Euu

∂t
(k, t) = −Au − Du + Fu, (3.50)

∂EΘΘ

∂t
(k, t) = −AΘ − DΘ + FΘ. (3.51)

Now that the fundamental evolution equations are derived, the exploration for the
root cause of the supergranule aggregation raises two particular questions:

1. Which wave numbers k capture the observed supergranule aggregation principally?

2. Which mechanism – and thus which term in eq. (3.50) or (3.51) – is responsible?

The first question might seem trivial at first glance as one might state that large
scales and thus small wave numbers should be relevant. Albeit this is not entirely wrong,
the inherent anisotropy of the setup allows to deduce even more valuable statements.
As explained at the beginning of section 3.5, the temperature field becomes practically
height-independent – in the spectral description, this corresponds to the kz = 0 plane, see
15Physically, the Coriolis acceleration is a fictitious acceleration and acts only perpendicular to the

velocity field, thus (2Ω × u) · u = 0 and so there is no contribution to the kinetic energy [55].
16Some works, such as [55, 159], may also define the spectral transfer function TΦ := −AΦ instead.
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Chapter 3: Large-scale flow structures at different boundary conditions

again figure 3.16. However, this plane does not capture the convectively heat transporting
velocity structures. Convection rolls fundamentally require up- and downflow regions.
The vertical velocity – which is expanded as a sine function, see eq. (3.33) – does, however,
not participate in this plane and so the main velocity structures of the supergranules
are only captured by higher vertical modes. As ideal convection rolls correspond to
the kz = π plane, see also figure B.1, one may expect most of the kinetic energy there.
In a nutshell, the vertical mode kz to focus on depends on the particular quantity of
interest. In any case, large horizontal scales are of importance which correspond to small
horizontal wave numbers kh.

To answer the second question it becomes helpful to contemplate the general effect
of the different terms in these equations. The dissipation terms DΦ are mathematically
positive definite and (because of the negative sign) thus always reduce the amount of
energy in these modes – this dissipated energy is provided by the forcing terms FΦ. In
the Dirichlet case Fu = FΘ, whereas in the Neumann case Fu ≠ FΘ due to the projection
onto complementary basis functions. Albeit the forcing becomes thus more complex in
the Neumann case, the nature of these dissipation and forcing terms is still rather simple.
In contrast, the advection terms AΦ couple (as will be shown below in equations (3.53)
and (3.54)) three different wave number vectors, and re-distribute thereby energy across
scales while keeping the total amount of energy constant, i.e. ∑︁k AΦ = 0 [55, 159]. It
seems thus conclusive to suspect that the advection terms are responsible for the gradual
transfer of energy across scales. As will be proven later in section 3.5.5, it is indeed a
subset of the advection term that can be identified to be responsible for the (thermal)
supergranule aggregation.

3.5.2.4 The advection terms revisited

Most terms in equations (3.50) and (3.51) consist of ‘pure’ expansions of either the velocity
or temperature field – this is not (yet) the case for the advection terms. These terms
contain still expansions of the product (u · ∇)u or (u · ∇) Θ, respectively. However, due
to the particular choice of trigonometrical basis functions in equations (3.31) – (3.35)
(which leads in combination with the coefficient ı to typical Fourier coefficients), these
products can be expressed and evaluated as well-known convolution [159]

ˆ︃uΦ (k, t) =
∑︂
p,q

û (q, t) Φ̂ (p, t) with q = k − p (3.52)

as in case of incompressibility (u · ∇)Φ = ∇ · (uΦ). Further, the above-mentioned
projection onto a particular wave number vector k requires q = k − p to hold. In other
words, the three wave number vectors k, q, p must form a closed triangle – this basic
unit of interaction is often called a triad [159]. With this convolution in mind, it is hence
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3.5 Superganule aggregation as inverse spectral cascade process

possible to re-formulate eq. (3.44) and (3.47) to

Au (k, t) = R

{︄
ı
∑︂
p,q

[k · û (q, t)] û (p, t) · û∗ (k, t)
}︄

(3.53a)

= −
∑︂
p,q

I {[k · û (q, t)] û (p, t) · û∗ (k, t)}⏞ ⏟⏟ ⏞
=:Su(k|p|q,t)

, (3.53b)

AΘ (k, t) = R

{︄
ı
∑︂
p,q

[k · û (q, t)] Θ̂ (p, t) Θ̂∗ (k, t)
}︄

(3.54a)

= −
∑︂
p,q

I
{︂
[k · û (q, t)] Θ̂ (p, t) Θ̂∗ (k, t)

}︂
⏞ ⏟⏟ ⏞

=:SΘ(k|p|q,t)

(3.54b)

with the imaginary part I. The second line of each above equation defines the so-called
(rate of) mode-to-mode energy transfer SΦ (k|p|q, t). This quantity describes the transfer
of energy from mode p (giver) to mode k (receiver) with q acting as mediator [159].

3.5.3 Fluxes of spectral energy
3.5.3.1 An intuitive introduction

The net budget of spectral energy EΦΦ within certain ranges of wave numbers k can be
obtained by accumulating the energy in all modes up to a threshold wave number k′.
This concept thus helps answering why kinetic energy or thermal variance grows over
time on large scales. The question is now: how is a sum like ∑︁k≤k′ over equations (3.50)
and (3.51) related to the direction of the cascade?

This can be answered by defining the spectral energy flux terms (just as required by
the above concept) [55, 159]

Πu (k′, t) :=
∑︂
k≤k′

Au (k, t) as well as ΠΘ (k′, t) :=
∑︂
k≤k′

AΘ (k, t) , (3.55)

and relating them to the mode-to-mode energy transfer SΦ (k|p|q, t) from equations
(3.53) and (3.54). Together with p = |p|, this yields [159]

ΠΦ (k′, t) :=
∑︂
k≤k′

AΦ (3.56a)

=−
∑︂
k≤k′

∑︂
p,q

SΦ (k|p|q, t) (3.56b)

=−
∑︂
k≤k′

∑︂
p>k′

SΦ (k|p|q, t) −
∑︂
k≤k′

∑︂
p≤k′

SΦ (k|p|q, t)
⏞ ⏟⏟ ⏞

=0

(3.56c)

=
∑︂
k>k′

∑︂
p≤k′

SΦ (k|p|q, t) . (3.56d)
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(a) (b) (c)

Figure 3.17: Subsets of triads. All possible triads are disentangled based on the
dimensionality of the involved wave number vectors. (a) Purely two-dimensional triads
with kz = pz = qz = 0. (b) Triads ending up in the kz = 0 plane that interact with
three-dimensional modes pz = −qz ̸= 0. (c) Fully three-dimensional triad interactions.

In other words, the sum of AΦ over all k within a sphere of radius k′ equals the total
transfer of energy from modes p inside of this sphere to modes k outside of this sphere.

This allows eventually to define mathematically the ranges of existence of inverse or
forward cascades [56], i.e. the types of cascades that were already introduced conceptually
in section 3.5.1.2. An inverse cascade exists in the range of wave numbers where

ΠΦ (k′, t) =
∑︂
k>k′

∑︂
p≤k′

SΦ (k|p|q, t) ≤ 0, (3.57)

whereas a forward cascade exists where

ΠΦ (k′, t) =
∑︂
k>k′

∑︂
p≤k′

SΦ (k|p|q, t) > 0. (3.58)

The above explanations and their relation to spectral spheres cohere with isotropic
flows. This is in contrast to Rayleigh-Bénard convection, the latter of which exhibits
anisotropic physics already due to the action of gravity in the vertical direction. As,
however, the above argument from equation (3.56) can be interpreted as Gauss’s theorem,
one may equivalently re-formulate the initial sum ∑︁

k≤k′ to another one that describes
the quantity of interest in a better way (and simply changes the volume or surface over
which is being integrated).

3.5.3.2 Disentangling the energy flux

As elaborated at the beginning of section 3.5, the supergranule aggregation leaves a
practically height-independent footprint in the temperature field. It was further explained
in section 3.5.2.3 that this is in contrast to the complementary velocity field – its situation
becomes more advanced, which suggests to give the scalar field imprint priority.

The observations thus suggest, on the one hand, to focus the spectral energy flux on
the two-dimensional receiving modes at kz = 0, and, on the other hand, to disentangle
all the possible triads based on the dimensionality of the involved modes. Three different
subsets of spectral interactions can be derived from these considerations, all of which
are visualised in figure 3.17. Interactions of the first subset – visualised in panel (a) –
capture all those interactions that are made up of purely two-dimensional modes, thus
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3.5 Superganule aggregation as inverse spectral cascade process

kz = pz = qz = 0 and one may define the corresponding energy flux due to purely
horizontal interactions as

Πh
Φ (k′

h, t) := −
∑︂

kh≤k′
h

∑︂
p,q

SΦ (k|p|q, t)
⃓⃓⃓
kz=0,
pz=qz=0

. (3.59)

In contrast, the second subset – which is visualised in panel (b) – contains all those triads
that still end up in the kz = 0 plane but which result from interactions with vertically
non-homogeneous modes. The corresponding energy flux is given by

Πv
Φ (k′

h, t) := −
∑︂

kh≤k′
h

∑︂
p,q

SΦ (k|p|q, t)
⃓⃓⃓
kz=0,
pz=−qz ̸=0

. (3.60)

All the remaining, fully three-dimensional interactions – see panel (c) – do not contribute
to the kz = 0 plane and are thus not of particular interest here.

These above definitions and explanations will be used in the following to evaluate the
spectral energy transfer of the dynamical system at hand.

3.5.4 Spectral energy transfer analysis
The preceding sections 3.5.2 and 3.5.3 introduced the formalism that allows to study the
spectral energy transfer in three-dimensional, constant heat flux-driven Rayleigh-Bénard
convection. In a nutshell, this enables to identify inverse and forward cascade mechanisms
by evaluating the net budget of the spectral energy flux, the latter of which is caused
by the advection term. The phenomenon of interest – the supergranule aggregation –
is most prominent in the temperature field where it leads to a significant increase of
thermal variance over time and leaves a clear footprint in the kz = 0 plane. To this
end it becomes necessary to study how energy is exchanged with this particular plane.
Equations (3.59) and (3.60) provide eventually corresponding definitions of energy fluxes
for two different subsets based on arguments on the dimensionality of the involved modes.

3.5.4.1 The non-rotating system

The spectral energy transfer analysis is shown exemplary for the non-rotating simulation
run Nfs1, see also table 3.1. The absence of rotation is important as rotation increases
the complexity while simultaneously not appearing explicitly in the evolution equations
for kinetic energy and thermal variance, see section 3.5.2.3. Furthermore, this simulation
run is the same as the one used in figure 3.5. This run at lower Ra offers a large
number of snapshots which allows in turn to compute averages over a few subsequent
snapshots without being significantly biased by the slow evolution. Figure 3.18 captures
all important quantities for this analysis.

Panels (a1 – a4) visualise the instantaneous temperature fields Θ of the entire horizontal
cross-section during and after the transient supergranule aggregation. Note that these
depict the kz = 0 plane which correspond to a vertical average of the numerical domain.
A comparison of some of these panels with the ones contained in figure 3.5 (a – e) confirms
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Figure 3.18: Spectral energy transfer analysis. The supergranule aggregation of the
non-rotating simulation Nfs1 is captured by (a) the kz = 0 plane of the instantaneous
temperature field Θ, as well as (b) the corresponding azimuthally averaged spectrum
EΘΘ. (c – f) The disentangled spectral thermal variance or kinetic energy fluxes
Πh, v

Θ,u exhibit both inverse and forward cascades which are shaded here in blue and
red, respectively. The solid and dashed khaki vertical lines quantify the current and
preceding pattern size, respectively, based on the integral length scale of the above
EΘΘ. The data in (b4 – f4) corresponds to the statistically stationary state and is
thus time-averaged over 103τf centred around the indicated time.
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3.5 Superganule aggregation as inverse spectral cascade process

that this plane captures indeed the (growing and final) supergranules. All subsequent
rows in this figure will correspond to the times given above these top panels. Note that
the subsequent panels (b1 – f3) contain (almost) instantaneous data that corresponds to
the transient growth of the supergranule. In contrast, the data in the right-most panels
(b4 – f4) corresponds to the statistically stationary state where the supergranule growth
finished. Hence, this data is time-averaged over 103τf centred around the indicated time.

Panels (b1 – b4) plot the respective azimuthally averaged thermal variance spectrum
EΘΘ (kh, kz = 0, t). In agreement with figure 3.5 (h – l), these spectra capture the
aggregation of thermal variance in the smallest horizontal wave numbers. The size of the
temperature patterns is evaluated based on the integral length scale corresponding to
this kz = 0 plane, see also eq. (3.4). The current values are included in these and all
subsequent panels as solid khaki vertical lines – the dashed lines re-plot this quantity
from the previous column to highlight the gradual growth.

In accordance with these previous panels, the study of spectral energy flux is started
with a focus on the thermal variance. Panels (c1 – c4) show how purely two-dimensional
mode interactions contribute to the thermal variance in the kz = 0 plane. Indeed,
throughout the transient period an inverse cascade with Πh

Θ ≤ 0 can be discovered acting
at large scales. Moving towards larger wave numbers k′

h, Πh
Θ changes its sign and thus

a forward cascade can be found at smaller scales. The region of an inverse (forward)
cascade is filled with blue (red) colour. This qualitative picture persists throughout the
transient times albeit the gradual supergranule aggregation leaves a clear footprint in the
spectrum of Πh

Θ. Once the statistically stationary state is reached, this changes and the
inverse cascade vanishes – a forward cascade establishes then throughout the spectrum.

This analysis is repeated in panels (d1 – d4) for the spectral thermal variance flux
into the kz = 0 plane but due to three-dimensional interactions. Despite a footprint of
the supergranule aggregation, Πv

Θ > 0 throughout the spectrum which thus exhibits a
forward cascade only. It can be found that this behaviour is predominantly caused by
interactions with the high-energetic pz = −qz = ±π modes.

As Πv
Θ > 0 throughout the spectrum, interactions between purely two-dimensional

modes – captured by the spectral flux Πh
Θ – can be identified as the only interactions

causing an inverse cascade of thermal variance at large scales. The involved triads com-
prise (beside the temperature) also velocities from the kz = 0 plane, see again equations
(3.59) and (3.54b). However, a closer look at the governing kinetic energy equation (3.50)
and in particular its forcing term from eq. (3.46) reveals that Fu (kh, kz = 0, t) = 0, i.e.
there is no forcing in this spectral plane. In other words, the advection term is the only
source for kinetic energy in this kz = 0 plane. For this reason, the above spectral flux
analysis is repeated for the kinetic energy fluxes Πh

u and Πv
u in the following.

As shown in panels (e1 – e4), one can identify a pronounced inverse cascade of spectral
kinetic energy at scales k′

h ≲ 3 caused by purely two-dimensional modes – this corresponds
to large-scale structures of horizontal extension larger than 2H. For smaller scales, a
forward cascade establishes. Interestingly, this picture is quite time-independent.

Further, it is in contrast to the contribution of three-dimensional interactions to the
kinetic energy in the kz = 0 plane, see panels (f1 – f4). These interactions cause an
inverse cascade on small scales with k′

h ≳ 1 only which corresponds to structures up to a
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Chapter 3: Large-scale flow structures at different boundary conditions

horizontal extension of about 6H. For larger scales, a relatively weak forward cascade can
be found. Similarly to the analysis of Πh

u, this picture is again quite time-independent.
The scale separation of the two identified inverse cascade processes in the kinetic

energy field suggests to attribute them to either the supergranule or granule patterns.
Moreover, the overlap allows the emergence of velocity structures of arbitrary horizontal
extension in the kz = 0 plane which enter subsequently the thermal variance flux Πh

Θ.
The above analysis of the spectral flux of thermal variance Πh, v

Θ and kinetic energy Πh, v
u

proves that interactions between purely two-dimensional modes cause inverse cascades
in both the temperature, as well as the velocity field on large scales. As shown in [V5],
the situation is similar for simulations at higher Rayleigh numbers. Thus, one might
eventually be able to attribute the gradual supergranule aggregation to these purely
two-dimensional mode interactions.

3.5.4.2 The weakly rotating system

The above analysis has proven the existence of inverse cascades in the case of non-
rotating constant heat flux-driven Rayleigh-Bénard convection. The inverse cascade in
the temperature variance vanished once the supergranule size reached the horizontal
extent of the numerical domain. However, as shown in section 3.4, additional rotation
around the vertical axis may stop the growth of the supergranules at intermediate scales
Γ ≫ ΛT ≫ 1. This suggests to repeat the analysis for the corresponding weakly rotating
run Nfs1_Ro5s – see also table 3.4 – to study the effect of such rotation on the inverse
cascades.

As shown in more detail in [V5], the cascade pictures are not altered qualitatively
during the transient supergranule growth even in the weakly rotating scenario. This
holds even in the statistically stationary regime for the observed cascades of kinetic
energy. However, the situation changes at these late times to some extent for the cascades
in Πh

Θ. Despite its initial appearance during the transient supergranule growth, the
inverse cascade is interrupted once the statistically stationary pattern size and thus also
thermal variance in the system is reached. As eventually Πh

Θ ≈ 0 at scales larger than
this final pattern size, Πh

Θ ≥ 0 throughout the entire spectrum and the complex Coriolis
acceleration becomes dominant at the given horizontal extension.

3.5.5 Is the advective transfer the root cause of the thermal
variance aggregation?

The spectral energy transfer analyses above identified time-dependent inverse and forward
cascade regions of horizontal wave numbers k′

h in the spectral thermal variance fluxes
Πh, v

Θ – the particular existence of an inverse cascade on large scales during transient
times implies that energy is re-distributed from small to large scales. However, as shown
and explained in section 3.5.2.3, a growth of thermal variance over time could – beside
the advection term AΘ – also be caused by the forcing term FΘ. So the final question to
answer in this section 3.5 becomes eventually: Is the advective transfer really the root
cause of the thermal variance aggregation?
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Figure 3.19: Root cause identification. (a – c) Temperature can be advected via

height-independent velocity components. All panels visualise the entire horizontal
cross-section. (d, e) A comparison of azimuthally averaged terms that participate in
the thermal variance equation (3.51) allows to identify such an advective transfer as
the root cause of the supergranule aggregation. Here, the advection term is split and
each term is plotted in accordance with its corresponding sign in this equation. All
data corresponds to simulation run Nfs1 at time t0 = 350, see also figure 3.18.

If there is one single term that is responsible for the observed (thermal) supergranule
aggregation, its spectrum should coincide with the spectrum of the time derivative
∂EΘΘ/∂t at the spectral plane kz = 0 for transient times. So to conquer the above
question, the azimuthally averaged spectra of all terms from the thermal variance equation
(3.51) will be compared. Figure 3.19 captures the corresponding data for one snapshot
of the early transient of simulation run Nfs1 – this is the same run as analysed above in
the non-rotating case. The time t0 = 350 coincides with the time in the first column of
figure 3.18, allowing a direct comparability.

Panels (a – c) visualise all important physical space fields. Note that the depicted
horizontal velocity fields represent constant translations of fluid across the entire domain
height. Further, their structure already appears to be related to the early superganules.

Panels (d) and (e) compare the azimuthally averaged spectra. In accordance with
the above disentangling of involved triads, see figure 3.17, the advection term is split
into Ah

Θ and Av
Θ with AΘ (kh, kz = 0, t) = Ah

Θ (kh, t) + Av
Θ (kh, t). These subsets of

the advection term are thus directly related to Πh
Θ and Πv

Θ, respectively. Each of
these two panels captures an important point. Firstly, panel (d) shows that while the
forcing FΘ supplies thermal variance, a similar amount is immediately compensated by
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three-dimensional interactions Av
Θ and thus transferred to three-dimensional structures.

Secondly, a comparison of the time derivative of the thermal variance with the advection
Ah

Θ due to purely horizontal mode interactions in panel (e) confirms that these two
terms agree almost perfectly on horizontal scales where ∂EΘΘ/∂t > 0.17 This comparison
allows to conclude eventually two important points:

1. The growth of thermal variance and thus the gradual (thermal) supergranule
aggregation can indeed be associated with inverse cascades between purely two-
dimensional modes at large scales. The responsible inverse cascade can be found in
the non-rotating, as well as in the weakly rotating dynamical system.

2. In case of the latter, the final balance between the non-linear term on the one hand,
and the Coriolis term on the other hand allows for scaling arguments as exploited
in section 3.4.3.2.

These points prove that even the three-dimensional dynamics of a system can be signific-
antly affected by two-dimensional characteristics of the flow. This becomes even more
striking considering that three-dimensional modes outnumber the two-dimensional ones.

Crucially, not all convection flows allow for the above identified inverse cascades
mechanisms. In particular, the complementary constant temperature boundary conditions
require Θ to be expanded with respect to sine basis functions along the vertical direction
in eq. (3.35). Hence, the corresponding dynamical system exhibits fewer spectral degrees
of freedom and does generally not allow for the spectral thermal variance fluxes Πh, v

Θ .
This explains eventually the different characteristics of large-scale flow structures for
these two scenarios as discovered in section 3.1.

3.6 Summary
As elaborated in chapter 1, geo- and astrophysical convection systems exhibit a variety of
different combinations of boundary conditions and sometimes even particular hierarchies
of flow structures. This observational fact motivated the first objective of the thesis at
hand.

This chapter 3 aimed at understanding how large-scale flow structures are altered by
different boundary conditions. To this end, sets of combinations of idealised thermal and
mechanical boundary conditions were deduced and studied in an explorative approach.
In order to minimise the influence of the lateral boundaries of the flow domain on this
systematic comparison, an extraordinary large aspect ratio combined with periodic
boundary conditions in the horizontal directions was chosen.

From a perspective of global statistical values it was found that the heat transport
across the fluid layer scales differently for different combinations of boundary conditions in
17Note that the time derivative ∂EΘΘ/∂t needs to be reconstructed from the other terms AΘ, DΘ, and

FΘ. However, the determination of the advection term Ah
Θ represents an independent computation

and does thus not alter this time derivative.
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the Ra-range under consideration. Even more strikingly, it was discovered that the large-
scale flow structures changed fundamentally once the classical constant temperature
boundary conditions were substituted by the opposing constant heat flux boundary
conditions. Albeit large-scale skeletons emerge in both scenarios as backbone of turbulent
heat transport, they are extraordinarily different in nature.

For constant heat flux-driven convection layers, a large-scale flow structure grew
gradually until the domain size was reached while being superposed to smaller (but
still large-scale) flow structures. This exemplified that hierarchies of different large-
scale flow structures are achievable even in simple Rayleigh-Bénard convection flows.
In reminiscence to the astrophysical motivation, this interesting structure was termed
supergranule. Albeit the common global measures of heat and momentum transport,
Nu and Re, were mostly unaffected by the slow transient growth of the supergranule,
several alternative observables – e.g. the standard deviation of the temperature deviation
field – were able to capture it and to mark reaching the statistically stationary state of
pattern formation. This effect of a gradual supergranule aggregation was not observed in
previous studies and hence asked for more detailed investigations. Subsequent sections
of this chapter thus aimed at improving our understanding of this new mechanism of
self-organisation of the flow.

It was found that, in addition to the thermal driving, this mechanism seems to continue
to exist for all accessible working fluids. This is in particular because of the astrophysical
motivation remarkable. Given the reachable limits, one might hypothesise that this
supergranule aggregation mechanism prevails throughout the entire two-dimensional
Ra–Pr parameter space of any basic, heat flux-driven Rayleigh-Bénard convection flow.

This quasi-unlimited growth is in contrast to the observed flow structures in geo- and
astrophysical examples. Rotation as one promising candidate was thus added around
the vertical axis as an additional physical mechanism to the dynamical system. It was
shown that weak rotation allowed indeed to control the final size of the supergranules or
large-scale flow structures, whereas the granules or smaller structures remained mostly
unaffected.

The computational costs of simulations at the given aspect ratio did not allow to study
a hypothesised separating transition between unlimited and limited supergranule growth
in the three-dimensional Ra–Pr–Ro parameter space. Instead, its dynamical origin and
formation were studied by two different methods.

On the one hand, a leading Lyapunov vector analysis was performed. This dynamical
system approach evaluated the susceptibility of the high-dimensional system trajectory
to linear instabilities. From this, the turbulent flow was found to develop instabilities
at increasingly larger wavelengths. Interestingly, the same behaviour can be found
analytically for secondary instabilities slightly above the onset of convection. One may
thus conclude that the dynamical system has not forgotten its origin although being
fully turbulent where non-linearity plays typically a crucial role.

On the other hand, a spectral energy transfer analysis was performed to classify
the supergranule formation into the picture of energy cascades. In contrast to the
Lyapunov vector analysis, which represents a Lagrangian ansatz, this approach evaluates
the governing equations in spectral space for (discrete) wave numbers and represents thus
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Chapter 3: Large-scale flow structures at different boundary conditions

an Eulerian ansatz. The transfer of thermal variance due to the advection term was at
the focus of this investigation. The observations suggested to pay particular attention to
the kz = 0 plane, i.e. two-dimensional height-independent structures. Disentangling the
transfer contributions correspondingly allowed to identify inverse cascades in the subsets
of purely two-dimensional mode interactions for the thermal variance (as well as kinetic
energy) at large scales during the transient supergranule growth. This analysis proved
eventually the inverse cascade as the root cause for the growth of thermal variance,
underlining the importance of two-dimensional characteristics even for three-dimensional
flows.

The initial explorative study of the impact of different boundary conditions on large-
scale flow structures provides in its essence information about what kind of large-scale
flow structures can emerge from Rayleigh-Bénard convection as the paradigm of natural
thermal convection – this fundamental insight should turn out to be really insightful for
several geo- and astrophysical convection flows. Especially the gained understanding of
the dynamical origin and transient formation of the gradual supergranule aggregation
might help building or significantly improving reduced order convection models, the latter
of which simultaneously avoid the vast complexity of direct numerical simulations while
still capturing the essential key dynamics. Galerkin projections [159, 163] that make use
of the identified spectral inverse cascade mechanisms might represent one particularly
promising extension of the reported discoveries.
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Chapter 4
Large-scale flow structures from
a material transport perspective

Nature offers a variety of different flows that are of particular interest for scientists, see
again table 1.2 for examples of corresponding thermal convection flows. Albeit chapter 3
has contrasted such flows numerically for various boundary conditions and subsequently
described and analysed their large-scale flow structures, comparably detailed velocity
and scalar field data can most typically not be collected from any natural flow – even
not at a single time. The observation techniques do simply not allow to do so.

Instead of measuring a dense Eulerian grid, one may track (coherent) structures or
point-like objects – as for instance sunspots [164], the great red spot [165], ocean surface
drifters [166], or (weather) balloons in the atmospheres of geo- [167] and astrophysical
[168] objects – that are drifted by the surrounding flow and eventually provide some
sparse data. Beside inferring properties of this surrounding flow from the gathered data,
it can also be desired to know how such structures interact or mix with their vicinity.
This latter aspect in particular would not just improve our understanding of natural
convection flows in general, but becomes crucial when considering, e.g., the anthropogenic
release of radioactive material into the ocean or atmosphere [169–172].

This chapter bridges the gap between observations from the Lagrangian (i.e. material
[173]) perspective and the turbulent superstructures, the latter of which are known from
the Eulerian framework. To this end, coherent flow structures will be identified based on
particle data by unsupervised machine learning techniques in section 4.3 – the extracted
coherent regions of the turbulent flows will be related to spatial regions of the large-scale
flow structures described in the previous chapter 3. It follows eventually that these
coherent flow regions interact only weakly with their spatial complement as they reduce
the heat transport significantly across different fluids. To allow for an investigation of
the gradual supergranule aggregation via Lagrangian techniques, a new evolutionary
clustering method will be developed and applied to turbulent superstructures in section
4.4. Its application to the supergranule aggregation remains open for future studies.

Many parts of this chapter have already been published [V2, V3] or extended [V7],
which may again provide additional information beyond this chapter’s content.
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Chapter 4: Large-scale flow structures from a material transport perspective

4.1 The Lagrangian framework and particles
4.1.1 Lagrangian coherent features
As pointed out for several examples in this chapter’s introduction, natural flows are often
inferred from observations of coherent features, i.e. parts of the flow that mix or interact
only weakly with their surroundings [174, 175]. This perspective is inherently linked
to material transport as those features consist of particles which in turn may exhibit
certain scalar properties – they can, for instance, describe the advective transport of
concentrations or heat. This role of Lagrangian coherent features in classical Rayleigh-
Bénard convection on the global heat transport will be studied later in section 4.3.4.

Coherent features of the flow can basically be extracted from two different categories of
approaches [176, 177]. Lagrangian coherent structures are interested in finding material
surfaces based on the deformation of nearby material elements and thereto rely on detailed
local gradients of the flow field [173]. In contrast to this ‘dense’ method, Lagrangian
coherent sets use ‘sparse’ particle data to detect coherent behaviour between different
trajectories [178]. Albeit these two categories are quite different, the extracted coherent
features may coincide as the Lagrangian coherent sets represent the interior spatial
regions that are bounded by the Lagrangian coherent structures [173, 176, 177].

In accordance with the motivation of this chapter, Lagrangian coherent sets will be used
in the following to extract coherent sets from numerically obtained particle trajectories.

4.1.2 Properties and advection of particles
Placing particles in fluid flows is not trivial – they can be, e.g., light or heavy, small or
big, spherical or non-spherical. The situation is similarly complex when describing the
corresponding effects of the flow on the particles, as well as their feedback on the flow.

To narrow down this vast complexity, it is common to study point-like particles – i.e.
the particles’ radii rp ≪ ηK [179] – that do not support particle-particle interactions
[180]. Presuming them further to exhibit the same density as the fluid, i.e. ρp = ρref, the
(dimensional) equation of motion for any particle can be written as [180]

up = (up − u)|t=0 e−t/τr + u with τr =
r2

p

3ν
≡
√︄

Ra
Pr

r̃2
p

3 τf (4.1)

where τr represents the inertial response time scale. In the ultimate limit of vanishing
radii with rp → 0, the particles will follow the flow without any delay and one arrives at
the concept of Lagrangian particles, the latter of which represent the simplest conceivable
sort of point-like particles. Conceptually, they can be seen as individual particles of the
original (continuum of) fluid. They introduce no additional parameters, and as being
massless they do not provide any feedback on the fluid flow. Note that these particles
correspond to a Stokes number St := τr/τK → 0 [180].

The evolution of any Lagrangian particle is eventually given by [181]

dxLp (t)
dt

= uLp (t) and uLp (t) = u [x = xLp (t) , t] (4.2)
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Figure 4.1: Lagrangian particle pair dispersion and coherence. Suppose the
blue particle trajectory to represent a reference in a turbulent flow. Any initially
extremely close particle (grey trajectory) will eventually be separated – hence, coherent
behaviour is always limited to intermediate time intervals (red trajectory).

with the particle’s (non-dimensional) trajectory xLp and velocity uLp. Scalar properties
of the Lagrangian particles, such as the temperature, can be similarly obtained via
ΦLp (t) = Φ [x = xLp (t) , t]. In the following, these Lagrangian particles will be used to
extract material transport behaviour that is inherent to the turbulent flow.

4.1.3 The obstacle to Lagrangian coherent sets: pair dispersion
The previous sections introduced concepts for Lagrangian coherent feature detection
as well as particles – Lagrangian coherent sets and Lagrangian particles got selected
because of their applicability to sparse trajectory data and paradigmatic simplicity as
the methods of choice for the subsequent analysis of large-scale flow structures from a
material transport perspective. One might expect now that it should be easily possible
to detect coherent features in the convection flow from comparing Lagrangian particles’
trajectories, and – given the access to long corresponding histories – to track these
coherent spatial regions’ evolutions over time. Unfortunately, meeting this expectation is
not trivial due to one fundamental obstacle: Lagrangian particle pair dispersion.

Section 3.2.2.1 introduced the concept of chaoticity of a dynamical system’s trajectory
in the high-dimensional state space and illustrated that any two initially close system
trajectories will eventually diverge in case of turbulent flows. Such a sensitivity on the
initial conditions can be found equivalently for Lagrangian particles that participate in
these flows, see figure 4.1. Suppose two initially adjacent particles as shown at the bottom
left of the figure – as long as their initial position does not coincide, their trajectories
will be separated once advected only long enough by the turbulent flow.
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Figure 4.2: Regimes of Lagrangian particle pair dispersion. The tiny initial
displacement of partner particles grows over time while going through the Batchelor,
Richardson and Taylor sub-regimes. In the end, the particles will be de-correlated and
correspond to substantially different regions of the turbulent flow. This statistics is
based on the entire particle ensemble of simulation run L2, see also table 4.1.

The effect of Lagrangian particle pair dispersion can easily be quantified for actual
trajectory data. To show this numerically, the trajectory data from simulation run L2
(which will be reported in more detail in section 4.2.1, see also table 4.1) is analysed. In
a nutshell, two sets of 5122 particles each are seeded once the turbulent superstructures
have formed – the difference between the two sets is an initial vertical displacement
of dpp (t = 0) = 5 × 10−3. In other words, there are Npp = 5122 pairs of particles and
every single particle from one set exhibits a ‘partner’ particle (pp) which is initially
highly nearby. After seeding the particles, they are advected in the time-dependent flow
in accordance with eq. (4.2) while the distance dpp between the partner particles is
quantified via

dpp (t) = |xLp,1 (t) − xLp,2 (t)| . (4.3)
The subscripts 1 and 2 refer to the corresponding particle from set 1 and 2, respectively.
The average increase of squared displacement over time due to Lagrangian particle pair
dispersion, ⟨∆d2

pp⟩Npp (t) := ⟨d2
pp (t)⟩Npp − d2

pp (t = 0) [182–184], is obtained from the
statistics over all Npp particle pairs and quantified in figure 4.2.

Three different sub-regimes of pair dispersion can be identified from this dataset. At
early times t ≲ τf, the particles remember still their initial velocity difference ∆u. Hence,
as the separation ∆x ∼ ∆u t, the mean increase of displacement ⟨∆d2

pp⟩Npp ∼ t2. This
sub-regime is called Batchelor or ballistic regime [182–184]. Once the displacement is
large enough, the partner particles will be swept by different larger eddies in the second
sub-regime, which in turn increases their speed of separation. A dimensional analysis
motivated by the inertial range of the Richardson cascade – see section 3.5.1.1 – yields
⟨∆d2

pp⟩Npp ∼ ε t3 [159, 184], so this sub-regime at τf ≲ t ≲ τto (with the Lagrangian
turnover time scale τto, see section 4.2.2) is typically referred to as Richardson regime

76



4.2 Lagrangian trajectories in Rayleigh-Bénard convection

[182–184] (even if it might also just be a transition region between the surrounding sub-
regimes [184]). In the third sub-regime, the average vertical displacement has reached its
limits given the vertical confinement of the domain [183] and the continued displacement
of the particle pairs proceeds due to an increasing horizontal separation. The motions
are now completely de-correlated as the different particles participate now in different
turbulent superstructure rolls. This de-correlation resembles Brownian motion and
one finds accordingly ⟨∆d2

pp⟩Npp ∼ t1 for τto ≲ t. Therefore, this sub-regime is called
Taylor or diffusive regime [182–184]. For even longer evolutions of the trajectories, the
finite horizontal extent of the domain will become significant and the displacement will
eventually converge.

These vivid interactions of particle pairs with different scales of the flow represent a
fundamental obstacle for all Lagrangian coherent set detection methods. Undoubtedly,
in the course of the evolution of a single particle its trajectory might be swept into the
vicinity of another particle, see again figure 4.1. Both of them might then exhibit some
coherent behaviour over intermediate times, but will definitely diverge again eventually.
Hence, any (coherent) set of particles will vanish once just enough time has passed.

The remaining parts of this chapter will infer properties of coherent features of the
flow over longer times via different approaches such as independent time windows, see
section 4.3, or advanced evolutionary clustering methods, see section 4.4.

4.2 Lagrangian trajectories in Rayleigh-Bénard
convection

4.2.1 Generation of Lagrangian datasets
As indicated in the previous section 4.1.3, large-scale flow structures in Rayleigh-Bénard
convection seem to play a crucial role concerning the longer-term particle advection. The
nature of these structures is, however, governed by the thermal boundary conditions
as shown previously in chapter 3. In essence, in the (Neumann) case of an applied
constant heat flux a hierarchy of different large-scale flow structures – termed granules
and supergranules – can be observed, whereas turbulent superstructures emerge in the
opposing (Dirichlet) case of applied constant temperatures.

The dynamical character of these structures, i.e. their alteration over time, adds beside
pair dispersion another challenge to the detection of Lagrangian coherent sets. On the one
hand, turbulent superstructures re-organise extremely slowly over time while showing a
practically constant pattern size [185, 186]. On the other hand, supergranules re-organise
fundamentally during their gradual aggregation process. For this reason, Lagrangian
coherent features will be extracted in the following from turbulent superstructures in
Rayleigh-Bénard convection.

To account partly for the enormous variety of different fluids in natural convection
flows, a set of three simulations with varying Prandtl numbers is generated1 – table 4.1

1The raw data of simulation run L2 is acquired from [183].
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Run Pr Ne N tr Nu Re ΛT . . .
L1 0.1 1782 × 14 5 368 3.50 ± 0.04 409.0 ± 2.3 3.50 ± 0.04 . . .
L2 0.7 1662 × 16 5 469 4.13 ± 0.05 91.1 ± 0.5 4.13 ± 0.05 . . .
L3 7 1782 × 14 5 1, 400 4.18 ± 0.03 10.7 ± 0.0 4.18 ± 0.03 . . .

. . . tLr Λto τto ∆tow εks ⟨ncf⟩tLr ⟨Nucf⟩

. . . 133 3.66 ± 2.13 13.7 ± 8.7 3.25 49/800 75.9 ± 1.2 2.90 ± 6.65

. . . 234 3.58 ± 2.08 21.7 ± 14.5 5.5 9/200 79.8 ± 1.6 2.74 ± 9.98

. . . 700 4.98 ± 2.43 68.6 ± 51.1 17 9/200 39.5 ± 1.0 2.87 ± 11.08

Table 4.1: Simulation parameters of the direct numerical simulations performing
Lagrangian particle advection – the Rayleigh number RaD = 105, the aspect ratio
Γ = 16, the total number of advected Lagrangian particles Np = 2 × 5122, and
no-slip boundary conditions are applied for all runs. Besides values known from
table 3.1, the table includes the total Lagrangian runtime tLr (which is a fraction of
tr), the characteristic turnover wavelength Λto and time τto, the temporal width of
the observation windows ∆tow, the Gaussian kernel scale εks, the observed number
of coherent features ⟨ncf⟩tLr , and the Lagrangian Nusselt number of the extracted
coherent features ⟨Nucf⟩. All statistical values correspond to the time window captured
by tLr where the turbulent superstructures are fully established.

summarises the important parameters for all of them. The Prandtl numbers Pr = 7 and
0.7 correspond to water and air, respectively, whereas Pr = 0.1 addresses the transition
to fluids as found in the Earth’s outer core. All simulations take place in non-rotating
closed domains of aspect ratio Γ = 16 which exhibit no-slip boundary conditions at every
boundary. In addition to the fixed temperatures at the top and bottom planes, the
lateral walls are set adiabatic. With a fixed Rayleigh number of RaD = 105, this setup
resembles laboratory experiments and ensures that the complexity is still tractable.

Once the turbulent superstructures have formed after the initial transient of each
dynamical system, a total of Np = 2 × 5122 Lagrangian tracer particles is seeded on
two regular horizontal grids at z0 = 3 × 10−2 and z1 = z0 + 5 × 10−3. Every particle is
advected at each numerical iteration in accordance with eq. (4.2) using a third-order
Adams-Bashforth scheme [187] while its velocities and temperature are interpolated with
spectral accuracy to its time-dependent position – this advection procedure is performed
for a total Lagrangian runtime of tLr.

4.2.2 Lagrangian characteristics of turbulent superstructures
Lagrangian particles follow the time-dependent streamlines of the turbulent flows perfectly
[188], so one might expect that their trajectories can be related to the turbulent super-
structures which are known from the Eulerian perspective. To address this thought and to
obtain a better understanding of the Lagrangian properties of turbulent superstructures,
two objective Lagrangian measures [183] will be derived in this section.
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Figure 4.3: Distribution of Lagrangian turnover scales. Both the individual
turnover wavelengths (a) and times (b) are spread over extended ranges. The data is
based on the entire particle ensemble from simulation run L2.

The first measure, the characteristic turnover wavelength Λto, is a horizontal length
scale that can be associated with the counter-rotating double roll-like movement of the
particles. This characteristic is determined via

Λto := ⟨λito⟩Np with λito := 4 lht, (4.4)

where λito is the distribution of individual turnover wavelengths and lht captures the
particles’ horizontal travel distances between two successive intersections of the midplane.
The coefficient 4 is supposed to approximately convert the latter to a wavelength (which
is the well-known measure known from the Eulerian framework).

The second measure is the characteristic turnover time τto. This time scale is quantified
as the average time necessary for each particle to complete an entire turnover, the latter
of which is probed by passing the heights z1 = 0.2 and z2 = 0.8. An example helps
understanding how this is evaluated: suppose a particle is initially at zLp < z1 and
passes at time t1 the horizontal plane at z1. To finish an entire turnover, it is required
to continue moving upwards, pass z2, start moving downwards, pass z2 and z1 again,
start once more moving upwards and pass z1 at t2. The time difference t2 − t1 yields
subsequently the corresponding turnover time. The characteristic turnover time

τto := ⟨tito⟩Np (4.5)

is eventually determined from the distribution tito of these above described individual
turnover times.

Figure 4.3 provides the distribution of the individual turnover wavelengths λito and
times tito exemplary for simulation run L2 via their probability density functions (PDFs).
Both distributions are characterised by extended tails, underlining the high probability of
long excursions of the particles in either a boundary layer or the bulk. The corresponding
characteristic turnover wavelengths and times are included for all simulations in table
4.1 – as the characteristic turnover wavelengths can be found to be in good accordance
with the integral length scale of the temperature field, Λto ≃ ΛT , the consistency of the
Lagrangian with the Eulerian framework is confirmed.
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Chapter 4: Large-scale flow structures from a material transport perspective

4.3 Lagrangian coherent features and their impact on
the global heat transport

Albeit Lagrangian coherent features mix or interact only weakly with their surroundings
[174, 175], pair dispersion introduces chaoticity and prohibits any efficient manual
extraction of coherent sets. Instead, unsupervised machine learning – i.e. learning from
a dataset that is not biased by labels provided by a human – is the key to automated,
objective, and data-driven feature recognition [189, 190]. For this reason, previous
studies [174, 177, 178, 183, 191, 192] developed and applied corresponding approaches to
successfully detect coherent sets for simple flows or structures.

In this section, the knowledge on spectral clustering – i.e. the sub-division of data
into different groups by exploiting spectral properties – gained from these previous
studies will be combined with a recently developed feature separation technique [193]
to objectively extract a large number of individual coherent sets in three-dimensional
Rayleigh-Bénard convection. To subsequently quantify the interaction of these sets with
their surroundings, their transport of temperature as an advected scalar will be compared
with their complement.

4.3.1 Feature extraction procedure
The feature extraction procedure consists of several distinct steps [183, 191, 192] and
will be described in the following.

4.3.1.1 Generation of Lagrangian data

Lagrangian data is generated for 3 different flows as pointed out in section 4.2. In
every run, a vast number of Lagrangian particles is advected for about 10 characteristic
Lagrangian turnover times τto while position, velocity, and temperature are recorded
throughout. Although being seeded on regular grids, the particles are randomly distrib-
uted across the domain after approximately 3τto.

4.3.1.2 Graph construction using some (dis-)similarity measure

Coherent features are represented by trajectories that remain in close proximity through-
out the time interval of observation [176]. As pair dispersion destroys any coherence for
too long observation times, see again figure 4.1, coherent sets are extracted from several
distinct observation windows of length ∆tow ≪ tLr. In accordance with the intuition,
the (dis-)similarity of trajectories is evaluated within each window by the time-averaged
distance between the trajectories fragments [178, 191]

dij (t0) = ⟨ |xi − xj| ⟩∆tow . (4.6)

Here, t0 indicates the centre of the observation window – i.e. the average is computed for
the time interval t0 − ∆tow/2 ≤ t < t0 + ∆tow/2 –, and the subscripts i and j denote the
particle indices with (i, j) = 1 . . . nep where nep ≤ Np is the number of evaluated particles.
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Figure 4.4: Graph construction. (a) Different data points (here trajectory fragments)
are represented in graphs by different nodes. The relation between different nodes is
described by the edges (drawn thinner and less dark for weaker relations) and can be
used to extract features of the graph. (b) A Gaussian kernel adjusts the edges based
on the kernel scale εks and helps deciding which to cut off.

This measure relates any such particle to every other particle and thereby constructs
a graph or network amongst them, see figure 4.4 (a). In such a graph, different data
points are represented by different nodes and the relations between these different nodes
are characterised by the edges. As the time-averaged distance between the particles is
symmetric, the graph is undirected.

4.3.1.3 Adjustment of edge weights and sparsification of the graph

The constructed graph is an alternative representation of the high-dimensional dynamical
system. However, the measured data is often embedded on a lower-dimensional manifold
which might not be captured properly by the chosen (dis-)similarity measure. In contrast,
a diffusion process on this manifold would optimally feel its intrinsic geometry [194]. To
resemble such a diffusion process, the edge weights of the graph need to be adjusted.

In a first sub-step, a Gaussian (or diffusion) kernel [195, 196]

Kij =
⎧⎨⎩e−d2

ij/εks if dij ≤ dcut,

0 if dij > dcut,
(4.7)

with the kernel scale εks, see also figure 4.4 (b), is applied to the graph. The resulting
edge weights are now bounded between 0 and 1, include non-linearity (just as the
dynamical system), and can be interpreted in terms of similarity. Weak connections
between different nodes are hardly relevant for the global manifold, so these edges can
be cut off and the graph sparsified without loss of accuracy [196] – this is implemented
in the above equation by the cut-off distance dcut.

In a second sub-step, the graph Laplacian L is obtained via [196]

Lij = 1
εks

(Pij − δij) with Pij = K̂ij∑︁nep
j=1 K̂ij

, K̂ij = Kij

kα
i kα

j

, and ki =
nep∑︂
i=1

Kij. (4.8)
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Therefore, the kernel matrix K can be pre-normalised to account for density variations
on the manifold, and the edge weights are translated in the stochastic transition matrix
P to transition probabilities between different states of a Markov chain [197]. With
α = 1 (as used in this work), a random walk generated by P on the data points may
converge to Brownian motion on the manifold and the resulting graph Laplacian L may
be related to the Laplace-Beltrami operator [196, 198, 199]. In more detail, the entries of
this Laplacian rate matrix are related to the expected holding time of state i (for i = j)
and the transition probability from state i to j (for i ̸= j) of the Markov chain [192].

Hence, after these two sub-steps, the Laplacian L ∈ Rnep×nep describes eventually the
different data points or trajectory fragments effectively on the underlying manifold.

4.3.1.4 Translation of the graph data into eigenspace

To detect coherent features, the graph needs to be sub-divided such that the within-
cluster similarity is maximised whereas the between-cluster similarity is simultaneously
minimised [191], see again figure 4.4 (a). This aim requires a similarity graph and
could thus already be applied after the first sub-step from above. However, to avoid the
separation of a single node from the rest, a balanced or normalised cut is necessary [191]
– unfortunately, this is practically not solvable for large datasets [200]. Fortunately, the
solution of the eigenvalue problem

LΞn = ξnΞn (4.9)

approximates the solution of this cut problem [201] and serves as an indicator for the
sub-division of the graph [183, 191]. The subscript n = 1 . . . nep, and by construction
of the graph Laplacian the ordered eigenvalues ξn satisfy 0 = ξ1 ≥ ξ2 ≥ · · · ≥ ξnep [192]
– as these represent the spectrum of the Laplacian, the clustering derived from such
eigenvalue problems is termed spectral. Jumps in this spectrum, so-called spectral gaps,
provide information on the intrinsic connectivity of the graph [196] and thus potential
numbers of coherent features ncf [V3]. In contrast, the eigenvectors Ξn ∈ Rnep encode
the inherent (diffusion) coordinates of the data points on the manifold [194, 197]. They
can eventually be used to extract the desired features.

4.3.1.5 Feature separation and extraction

Different eigenvectors contain the coordinates of all the nep data points along different
axes in eigenspace. This implies in turn that individual features may be spread over
several different coordinates. This becomes unintuitive and an obstacle to feature
extraction – for instance via the k-means algorithm [177, 178, 183, 191] – once the
number of features becomes large (say, ≳ 10). For these reasons, the recently developed
sparse eigenbasis approximation algorithm [193] is utilised subsequently to the spectral
procedure from above. In a nutshell, its key idea is to iteratively apply a rotation to the
coordinates in eigenspace such that the set of eigenvectors {Ξn}n=1...ncf

is transformed to
a new set of vectors {Ψn}n=1...ncf

which span approximately the same sub-space but are
significantly sparser.
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In more detail, this is realised as follows. First, let the sub-space that is spanned by
the set of original orthonormal eigenvectors {Ξn}n=1...ncf

be V ⊂ Rnep . As the individual
features are spread over different coordinates, every entry of these eigenvectors is most
probably non-zero and so these eigenvectors are dense. One aims now at transforming
this set of eigenvectors to a new set of vectors {Ψn}n=1...ncf

which (1) spans a sub-space
S ⊂ Rnep such that S ≈ V, and (2) contains mostly sparse vectors. Considering the
matrices V := [Ξ1| . . . |Ξncf ] and S := [Ψ1| . . . |Ψncf ] with (V ,S) ∈ Rnep×ncf , as well as
some rotation matrix R ∈ Rncf×ncf , such an optimisation problem can mathematically
be expressed as [193]

arg min
R∈Sncf

S∈Unep,ncf

1
2∥V − SR∥2

F⏞ ⏟⏟ ⏞
sub-space

preservation

+ µ∥S∥1,1⏞ ⏟⏟ ⏞
sparsity

induction

. (4.10)

Here, Sncf = {Φ ∈ Rncf×ncf : ΦTΦ = Incf} is the Stiefel manifold with the identity matrix
Incf , and Unep,ncf = {Φ ∈ Rnep×ncf : each column of Φ has an l2 norm 1}. Furthermore,
µ = 0.99/

√
nep is a small positive sparsity parameter, whereas ∥Φ∥F :=

√︂∑︁
i,j Φ2

ij and
∥Φ∥1,1 := ∑︁

i,j |Φij| represent the Frobenius and l1,1 matrix norm, respectively. In contrast,
the l2 or Euclidean norm of a vector is given by ∥Φ∥2 :=

√︂∑︁
i Φ2

i . Thus, the optimisation
in eq. (4.10) considers the two conditions from above just as indicated below the two
individual terms. Unfortunately, finding a global minimum of (R,S) ∈ Sncf × Unep,ncf is
non-trivial due to non-convexity.

It is therefore proposed to find a local minimum by alternately fixing the rota-
tion matrix R and optimising the sparse vector matrix S, and vice versa. Both of
these steps can be solved fast and exactly. First, suppose the case that R is fixed.
The sparsification of S can be performed by a thresholding transformation such that
Ψn = fµ

[︂(︂
V RT

)︂
n

]︂
/
⃦⃦⃦
fµ

[︂(︂
V RT

)︂
n

]︂⃦⃦⃦
2

yields the n-th column of S where fµ (Φ) =
sgn (Φ) max {|Φ| − µ, 0} is an element-wise thresholding function. Second, suppose the
case that S is fixed. In order to find R, the Procrustes problem minR∈Sncf

1
2∥V −SR∥2

F
has to be solved by a polar decomposition. If the singular value decomposition of STV
is denoted as STV = MΣNT , then R = MNT .

After an initialisation with R = Incf , a loop of these two steps can iteratively be
applied until the rotation matrix has converged. Finally, S is re-scaled to allow for an
interpretation in terms of likelihoods – i.e., its columns Ψn exhibit maximum values of 1
–, and its columns get re-ordered based on their minimum values [193].

The central result of this algorithm is revealed when recalling that the columns of S
are composed of the new set of sparse vectors {Ψn}n=1...ncf

with Ψn ∈ Rnep : different
features are now separated into different vectors, because the many data points that
do not belong to a particular feature cause a high sparsity in the corresponding vector.
As the individual (non-negative) entries within each vector encode the likelihoods of
the nep data points to belong to this particular feature, these feature vectors Ψn are
extraordinarily intuitive and useful.

Ultimately, there are two particularly interesting things one can do with these sparse
vectors. Firstly, one may combine the information captured in the ncf sparse vectors
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into a single vector Ψmax with Ψmax, i = maxn=1...ncf Ψi, n which captures the maximum
likelihood of feature affiliation of every data point to any feature. Secondly, one may
threshold the sparse feature vectors using some threshold value ζ to extract distinct
clusters, i.e., to assign every data point either to exactly one feature or to the incoherent
background (in case no feature is assigned to the data point).

4.3.2 Algorithmic parameters and details
The above steps for Lagrangian coherent set extraction introduce several parameters.
Although this allows algorithms to be flexible, physical or data-driven arguments help
deciding for particular values which makes the process much more objective and auto-
matable.

The number of evaluated particles nep – for which the pair-wise time-averaged distances
are evaluated in eq. (4.6) – represents a spatial resolution parameter. Here, nep = Np to
allow for the most detailed feature detection.

The temporal width of the observation window ∆tow acts as a temporal coherence
filter – patterns that exist only for significantly shorter times do not offer coherence on
this time scale and thus cannot be detected. Physical arguments based on particle pair
dispersion, see section 4.1.3, suggest τf ≲ ∆tow ≲ τto. For these reasons, ∆tow ≃ τto/4 is
chosen for all flows.

The Gaussian kernel scale εks, see again figure 4.4 (b), represents in the present
context predominantly a spatial coherence filter – as it defines which time-averaged
distances are evaluated as ‘close’, patterns of size dij ≲

√
εks can (roughly speaking)

not be disentangled or extracted [197, 202]. So, while small values are desirable, this
affects the connectivity of the graph and the lower limit of this parameter is thus clearly
influenced by nep and ∆tow. Given their previous choices, εks is decided to be as small as
the connectivity of the graph permits.

The previous section has only briefly justified a sparsification of the graph via the
cut-off distance dcut. However, this is actually crucial for the evaluation of larger datasets –
why? Already the matrix D, collecting the pair-wise distances dij , scales with the number
of evaluated particles by D ∈ Rnep×nep . For nep = Np as chosen above, this implies
that D requires 2 TB of memory – beside its storage itself, its determination becomes
extremely expensive. Considering the properties of the Gaussian kernel, this effort
bears above some threshold no relation to its advantages. For this reason, already the
instantaneous pair-wise distances are efficiently computed using k-d tree data structures
(via scipy.spatial.KDTree) together with an intermediate threshold dicut > dcut. The
final cut-off dcut is eventually applied after the time-averaging. The resulting sparse
matrices can be stored using sparse array formats (see scipy.sparse). Setting the
sparsification parameter dcut =

√
2εks directly relates it to the kernel scale – avoiding

thus another independent parameter –, and simultaneously ensures that disregarded
edges of the graph do not affect its accuracy [192, 196].

The number of coherent features ncf depends on what one is searching for – in the
present context, this could be for instance entire double-roll related regions of turbulent
superstructures [183] or fractions of them [192]. Expecting coherent sets to be related to
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(a) = min(b) = 0.94(c)
0.25 0.50 0.75 1.00

Figure 4.5: Locating Lagrangian coherent features. (a) The entire horizontal
cross-section is covered by high maximum likelihoods of feature affiliation Ψmax of the
particles xi (t0). From this, (b, c) Lagrangian coherent features can be extracted and
further segregated from each other for different thresholds ζ. Different colours indicate
different features, whereas the isotherm ⟨T (x, y, z = 0.5, t)⟩∆tow = 0.5 is superposed
via black solid lines. The data corresponds to simulation L2 at t0 = 303.75.

individual convection rolls (which are not continuously disrupted by thermal plumes),
one may estimate the number of coherent features by ncf, est ≈ [Γ/ (Λto/2)]2. The precise
number of coherent features per time window is eventually determined based on a
data-driven spectral gap criterion with ncf ≈ ncf, est as described in [V2]. Furthermore,
this allows to efficiently compute only the leading nlep eigenpairs in eq. (4.9) with
ncf ≲ nlep ≪ nep (via scipy.sparse.linalg.eigs).

Finally, the threshold ζ applies the final clustering by prescribing a particular certainty
of cluster affiliation. In principle, this divides the data points into two different groups
depending on if they are part of some feature or not. While ζmin represents the minimum
threshold necessary to isolate the individual features, higher thresholds ζ > ζmin can be
used to focus even stronger on the core elements. For the flow data at hand, ζmin ≈ 0.7
and the final clustering is performed using ζ = 0.94 for all cases.

Hence, after these above considerations, ∆tow and εks represent the only simulation
run-dependent parameters, and so they are included in table 4.1.

4.3.3 Relating coherent features to large-scale flow structures
The previous sections outlined how unsupervised machine learning can be used to re-
organise the data in useful ways [190] by exploiting its spectral properties. This algorithm
is now applied to detect Lagrangian coherent features from the three simulation runs
introduced in section 4.2.

The first observation window – at t0 = 303.75 – of simulation run L2 is used to obtain
first insights on the relation between Lagrangian coherent features and the turbulent
superstructures. For this time, the data suggests ncf (t0) = 80 coherent features.
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Chapter 4: Large-scale flow structures from a material transport perspective

After employing the algorithm, high maximum likelihoods of feature affiliation Ψmax (t0)
– see again section 4.3.1.5 for their definition – can be attributed to all data points. As
every such data point corresponds to a particular trajectory fragment, it is possible
to relate Ψmax spatially to the simulation domain. Figure 4.5 (a) plots the horizontal
position of all Lagrangian particles at time t0 and colours them according to Ψmax.
It can be found that the entire simulation domain is covered by pronounced spots
of extraordinarily high maximum likelihoods. To relate those regions to the present
turbulent superstructures, the isotherm ⟨T (x, y, z = 0.5, t)⟩∆tow = 0.5 is superposed via
black solid lines. Note that these lines correspond to the presence of the global mean
temperature, so they should typically indicate the cores of convection rolls where the fluid
is well mixed. As the isotherms intersect most of the pronounced maximum likelihood
spots, a relation to the turbulent superstructures can be confirmed.

To isolate different features from each other, a minimum threshold ζmin has to be
applied to the feature vectors Ψn [193] – after doing so, every trajectory fragment
corresponds either to one particular feature or to the incoherent background instead.
To focus on the former, figure 4.5 (b) re-plots only their corresponding particles. As
different features are indicated here by different colours, their proper separation can be
clearly verified.

In the following, only the very certain aspects of Lagrangian coherent features shall
be used to draw conclusions on their character and properties. For this reason, a
significantly higher threshold (see section 4.3.2) is applied. As visualised by figure 4.5
(c), this promotes the segregation of the individual features significantly without the
extinction of any of them.

These general insights into the relation between Lagrangian coherent features and
turbulent superstructures can also be drawn for other times, as well as the other simulation
runs. Furthermore, a statistical analysis of the corresponding particles shows that these
are located more likely outside of the boundary layers and exhibit more often close-to-
mean temperatures [V2]. These trends are in accordance with the expectation of finding
coherent sets at the centres of convection rolls.

Figure 4.6 visualises one Lagrangian coherent set for every simulation by evaluating
vertical slabs of the domains. Every particle that is part of the focussed feature and
located within the slab is drawn as a black dot for some time t0, whereas the background
shows the temperature field that is averaged over ∆tow – grey arrows indicate the
instantaneous surrounding flow field of the incoherent background. Firstly, this figure
shows nicely how different Prandtl numbers affect the flows – thermal stems become
thinner and the flow more organised for successively larger Pr. The increased spacing
between the stems indicates further the slight trend towards larger patterns [75]. Secondly,
it proves eventually that Lagrangian coherent features can indeed typically be related to
the centres of convection rolls and so to the large-scale flow structures independently
of the Prandtl number. Albeit the sets are located between regions that are more
frequently disrupted by up- or down-welling thermal plumes, they are not completely
decoupled from the background flow as can be expected for a continuum of fluid. Finally,
Lagrangian coherent structures, see section 4.1.1, might be expected to be related to the
quite regular shape of these Lagrangian coherent sets.
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L1

(a)

L2
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Figure 4.6: Lagrangian coherent sets at focus. Vertical slabs in the xz-plane of the
domains reveal detailed information on the fundamental character of coherent features
across the different Prandtl numbers. Particles that correspond to the coherent set at
focus are shown as black dots for some time t0 if located within the slab, whereas the
coloured background encodes the time-averaged temperature field ⟨T ⟩∆tow within the
slab. The grey arrows indicate the instantaneous surrounding flow field. The slabs’
thickness is 0.2 and placed around the centre of the coherent sets.

4.3.4 Heat transport of Lagrangian coherent features

Coherent sets or features are represented by trajectory fragments that remain in close
proximity throughout some intermediate time interval [176] and can thus be expected
to mix or interact only weakly with their surroundings [174, 175]. However, the above
detected coherent features in Rayleigh-Bénard convection are shown to be clearly embed-
ded into the surrounding flow – in other words, they are not fully decoupled from the
incoherent background. This suggests to analyse the participation of those sets in the
heat transfer across the fluid layer, which should eventually allow to conclude on their
interaction with the surrounding flow.

In order to evaluate the heat transfer of individual Lagrangian particles, one may start
by defining a local Nusselt number

Nuloc, i [xi (t) , t] := − ∂T

∂z

⃓⃓⃓⃓
⃓
xi(t)

+
√

RaPr uzT

⃓⃓⃓⃓
⃓
xi(t)

(4.11)

that is proportional to the vertical component of the heat current vector and corresponds
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Figure 4.7: Lagrangian heat transport statistics. The Lagrangian Nusselt numbers
are disentangled for all three simulation runs depending on the affiliation of the
trajectory fragments to either (a) coherent features or (b) the incoherent background.
The inset in panel (a) contrasts the statistics close to the peak for simulation L2.

to the instantaneous position of any particle.2 As entire trajectory fragments – which are
generated by the individual particles during the various distinct observation windows
∆tow – are evaluated in the feature extraction procedure, it is possible to subsequently
associate a Lagrangian Nusselt number NuL, i (t0) = ⟨Nuloc, i [xi (t) , t]⟩∆tow to any of
these fragments.

In the following, the Lagrangian heat transport of the trajectory fragments will be
disentangled depending on the affiliation of these fragments to any coherent feature (cf) –
or to the incoherent background (ib) otherwise – within the different observation windows.
More specifically, two statistics are generated for each such window: one for trajectory
fragments that correspond to coherent features and another one for the remaining
fragments, NuL, cf (t0) and NuL, ib (t0), respectively. Incorporating information from all
the different times t0 across the total Lagrangian runtime tLr allows eventually to obtain
more robust statistics and yields Nucf = ⟨NuL, cf⟩tLr as well as Nuib = ⟨NuL, ib⟩tLr . The
results of this statistical analysis are displayed for all three investigated Prandtl numbers
in figure 4.7.

On the one hand, by comparing the statistics between different Prandtl numbers it is
observed that both PDFs are most narrow for the smallest Prandtl number Pr = 0.1. This
observation is in line with the less efficient global convective heat transport across the
fluid layer and the coarse thermal stems3 shown in figure 4.6 (a). In contrast, the PDFs
corresponding to the largest investigated Prandtl number Pr = 7 exhibit pronounced
bi-modal shapes. While the peak on the positive side of the abscissa originates in strong
plume detachments from the bottom and top boundary layer, the peak on the negative
side is related to plume reversals – this effect is strongest for the largest Pr due to its

2This local definition can be obtained similar to eq. (1.19) but without taking any average.
3See also section 3.3 for similar effects of the Prandtl number on the global heat transport and thermal
stems in case of complementary thermal boundary conditions.
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smallest thermal diffusion and Reynolds number, i.e., the plumes do not lose as much
thermal energy on their way up or down due to thermal diffusion and turbulent mixing.

On the other hand, the two different statistics within each simulation run indicate
a significant separation of the coherent features from the incoherent background. For
instance, the peaks in Nuib due to the thermal plume dynamics (described above) are less
pronounced or even excluded in Nucf – the inset in panel (a) highlights this by a direct
comparison of the two statistics for run L2. The differences between the distributions
become even more prominent by their mean values. While these are close to the global
Nusselt numbers for the incoherent backgrounds, ⟨Nuib⟩ ≈ Nu [V2], the heat transfer of
the coherent features is substantially reduced. Table 4.1 includes these latter values for
all three simulations, highlighting eventually that ⟨Nucf⟩ ≈ 2/3 Nu.

This locally refined analysis of the heat transport demonstrates unambiguously that
coherent features – which are typically trapped for intermediate times at the centres of
convection rolls, see again figure 4.6 – contribute considerably less to the global heat
transport across the fluid layers than the incoherent background. Hence, the spatial
regions that are represented by the former are proven to interact or mix only weakly
with their surroundings.

It is clear that the individual particles are not trapped for arbitrary long times inside the
Lagrangian coherent features. Instead, some particles from the incoherent background
will join the coherent features whereas others will leave them – this is the effect of
Lagrangian particle pair dispersion, see again section 4.1.3. In turn, this suggests to
incorporate a memory in time into the clustering analysis such that the coherent features
can be treated as abstract entities.

4.4 Evolutionary clustering of Lagrangian trajectories
The previous section showed that a large number of Lagrangian coherent sets can be
extracted by the use of unsupervised machine learning from complex three-dimensional,
turbulent flows and related these sets to turbulent superstructures. On the one hand,
the spatial regions that correspond to the former are shown to interact only weakly with
the surrounding flow due to their coherent nature. On the other hand, however, such
observations are limited to finite intermediate time windows. With increasingly extended
observation, particle pair dispersion destroys any coherence and the underlying similarity
measure – see eq. (4.6) – becomes meaningless.

This circumstance might seem contradicting at first glance. How can coherent sets
vanish for times ∆tow ≳ τto while turbulent superstructures survive over t ≫ τto? Actually,
this question leads astray as it misses the point – it compares, casually speaking, apples
and oranges. In fact, even turbulent superstructures vanish once the flow field is averaged
over excessively long times [75] instead of being observed for shorter windows.

This comparison suggests that even coherent spatial flow regions – that are inferred
from (finite-time) Lagrangian coherent sets – do not need to disappear if evaluated
in the right way. Instead, they could be seen as abstract entities that may consist of
different particles or trajectory fragments over time. Some particles from outside of a
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Figure 4.8: Concepts of information blending. (a) Albeit different observation
windows ∆tow are technically independent, they may share significant historical inform-
ation if ∆ts ≪ ∆tow. (b) The active transfer of information I ≥ 0 from one instance to
the subsequent one allows to manipulate the results based on historical information.

coherent feature may join it, while others from inside may leave it. What matters is
not the particular sets of trajectories, but the ongoing existence of certain coherent flow
regions that trap sufficiently many particles. As the contributing trajectories may alter,
this concept can be termed leaking Lagrangian coherent sets. To keep identifying these
evolving sets, this makes necessary to remember their origins.

4.4.1 Concepts of incorporating historical information

In order to overcome the constraints of particle pair dispersion, the clustering procedure
should blend information from a given time with information from some previous time.
This concept of evolutionary spectral clustering [203] should eventually allow to study
the coherent features’ long-term evolution. Two possible approaches are outlined in the
following.

4.4.1.1 Technically independent temporal overlaps

Suppose the spectral clustering is performed for one observation window at t0. The
subsequent clustering at time t1 can be seen as shifting the observation window ∆tow in
time by ∆ts such that t1 = t0 + ∆ts. This concept is visualised in figure 4.8 (a).4

Clearly, if ∆ts ≪ ∆tow, the subsequent clustering incorporates a significant amount
of previously seen information, drops some historical information, and adds new future
information. As most of the information is shared, one can expect a smooth variation of
the different clustering results over time. This sliding window approach is the easiest
way to blend current information with some historical information, and an evaluation at
time t1 is technically independent of the clustering performed at t0.

4In section 4.3, this time lag ∆ts ≃ τto/2 ≃ 2 ∆tow, yielding thus fully separated observation windows.
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4.4.1.2 Active short-term memory about past coherent features

The inclusion of historical information through independent overlapping windows works
well when spectral gaps are sufficiently strong [V3], i.e., when the current intrinsic
connectivity of the graph deviates only slightly from the preceding time. However, in
the presence of a large number of coherent features that are subjected to a turbulent
flow, the induced noise in the graph can become a serious obstacle.

To overcome this issue, a short-term memory about the previously extracted sub-
dominant features can be added to the present evaluation. Mathematically, this can be
done in the form of a linear combination

K̂evo (t0) = µopK̂ (t0)⏞ ⏟⏟ ⏞
current situation

+ (1 − µop) F
[︂
K̂evo (t0 − ∆ts)

]︂
⏞ ⏟⏟ ⏞

short-term memory

(4.12)

and implemented into eq. (4.8) – thus, evolutionary techniques can be combined with
the feature extraction procedure developed in section 4.3.1. Here, 0 ≤ µop ≤ 1 is an
obliviousness parameter, whereas the operator F extracts information about the coherent
features from the past kernel matrix. Figure 4.8 (b) visualises this concept of adding an
active short-term memory about past coherent features to the current evaluation.

In the case of µop = 1, this approach ignores historical information but coincides instead
with the technically independent overlaps described above. In contrast, information
about the historical coherent features is incorporated for µop < 1 and weighted stronger
for smaller µop. This implies that once µop < 1, the evolutionary clustering result at
time t0 depends on the extracted features at time t0 − ∆ts. Hence, it is not independent
any more, but actively manipulated by the previously extracted features.

4.4.2 Evolving coherent features in Rayleigh-Bénard convection
Both of the above introduced concepts are suitable for extracting evolving coherent fea-
tures from turbulent Rayleigh-Bénard convection flows. First, the concept of technically
independent overlapping windows can successfully be applied to a two-dimensional flow
at Pr = 7, Ra = 108, Γ = 8 with 6 ≤ ncf ≤ 8 coherent features. Beside the successful
evolutionary clustering, this example proves the accordance of the (time-dependent)
number of coherent features in the flow with their stronger intrinsic connectivity in the
graph via pronounced spectral gaps. More information on this particular analysis can be
found in [V3]. In contrast, the increased complexity of three-dimensional simulations
suggests and requires the extraction of evolving coherent features by the use of the more
advanced active short-term memory. Here, the Lagrangian data from simulation run L2
is re-used, see again table 4.1.

Compared to section 4.3, the graph construction is slightly simplified for the following
as the evolutionary feature extraction code has leadingly been written by Christiane
Schneide during our collaboration. Amongst smaller modifications, the time-averaged
distance dij is replaced by the number of dicut-close encounters between the different
particles and the Gaussian kernel is thus omitted. Here, the features are extracted from
nep = 2562 particles with ∆tow ≃ τto, dicut = 14/100, ∆ts = ∆tow/10, and ζ = 0.7.
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Figure 4.9: Evolving Lagrangian coherent features. The maximum likelihood
of feature affiliation Ψmax (t) indicates rare dynamic events during the evolution of
leaking Lagrangian coherent sets. (a – c) An existing feature splits a new one off.
(d, e) This young feature merges shortly after its birth with another one, just before
(f) the situation relaxes. All panels visualise the entire horizontal cross-section from
simulation L2 and highlight the regions of interest by dashed circles.

Despite these different parameters, the first investigated observation window suggests
through its spectrum a roughly similar number of coherent features compared to the
previous analysis in section 4.3. All subsequent evaluations are biased to some extend by
the choice of this initial number of coherent features as historical information is included
from now on with µop = 0.9. To support the dynamical evolution of the coherent features,
their number is allowed to vary within 10% between subsequent observation windows.
Hence, the extraction of evolving Lagrangian coherent sets across the Lagrangian runtime
tLr can again be automated to a large extent.

This new method of evolving coherent feature detection allows to track a large number
of coherent features over long time spans. As the trajectory fragments within these
features exhibit still reduced heat transport properties, features extracted from this
evolutionary approach can be found to be in accordance with the previously extracted
features from section 4.3. Throughout their slow dynamical evolution, some features
might emerge while others might vanish or even join. Albeit these events of the birth or
death of coherent features can be presumed to be rare (due to the slow re-organisation
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(a) (b)

Figure 4.10: Alternating coherent feature affiliation. (a) Some trajectories parti-
cipate in one or more evolving features throughout their evolution, whereas (b) some
other trajectories cannot be associated to any feature during the entire Lagrangian
runtime. Trajectory fragments with feature affiliations are plotted using solid lines,
whereas the remaining fragments are dashed. Different colours indicate different
features. Both panels visualise the entire horizontal cross-section from simulation L2.

of turbulent superstructures), a few of them can be detected during the Lagrangian
runtime. Figure 4.9 visualises thereto a time series of the maximum likelihood of feature
affiliation Ψmax (t) of all evaluated particles. As highlighted by the dashed circles, the
split of a feature creates a new one which merges shortly afterwards with another feature.
Interestingly, such highly dynamic events leave again a clear trace in the spectrum of the
graph [V3].

Bearing this slow eternal evolution of Lagrangian coherent features in mind, it is
eventually time to return to the concept of leaking Lagrangian coherent sets. As raised
in the introduction of this section 4.4, different particles are expected to participate
in numerous evolving coherent features by joining or leaving them. This expectation
is confirmed by figure 4.10, the latter of which projects a few selected trajectories
onto a horizontal plane. Here, trajectory fragments are plotted as solid lines if the
corresponding particle can be associated at that time with some feature – different
features are again indicated by different colours. In contrast, the remaining trajectory
fragments – corresponding to times at which the particles cannot be associated with any
evolving feature – are plotted as dashed lines. As shown by panel (a), several trajectories
switch indeed between different evolving coherent features as time passes.

However, not every particle participates during the finite Lagrangian runtime in some
feature. This circumstance is underlined by panel (b), which plots only trajectories
that do not contribute to any feature throughout their entire evolution. Undoubtedly,
the number of such trajectories will decrease for an increasingly extended Lagrangian
runtime.
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The fact that dynamically evolving Lagrangian coherent features are constructed
by alternating trajectory fragments proves their independence from a particular set of
particles. Clearly, not every particle can participate in such a feature at once, and not
every particle will do so due to the limited lifetime of the evolving features. As turbulent
superstructures change over time, so do these coherent spatial regions of fluid. Hence,
these persistent features of turbulent natural thermal convection flows are excellent
candidates to serve as the Lagrangian counterpart of the large-scale flow structures in
the Eulerian frame of reference.

4.5 Summary
The vast complexity of geo- and astrophysical convection systems, such as the ones
outlined in chapter 1, exceeds by far what can be captured through measurements.
Instead, many aspects of their dynamics need to be inferred from sparse observational
data. This circumstance motivated the second objective of the thesis at hand.

This chapter 4 aimed at bridging the gap between such sparse observations of coherent
or point-like objects and the large-scale flow structures of natural thermal convection.
To this end, the dynamic evolution of massless Lagrangian (material) particles that are
advected in classical Rayleigh-Bénard convection flows was studied. As the chaoticity
of turbulent flows manifests in particle pair dispersion, automated feature extraction
techniques are vital to finding persistent coherent features in this framework. Here,
unsupervised machine learning was used to extract and learn from these coherent features.

In a first approach, spectral clustering was combined with a recently developed feature
separation algorithm to extract an immense number of coherent subsets of trajectory
fragments on the underlying manifold of the flow. Equipped with these tools it was
subsequently possible to relate these features to the large-scale flow structures. It was
found that Lagrangian coherent sets or features can be associated with the centres of
convection rolls, the latter of which are essential concepts of turbulent superstructures.
However, although these spatial regions offer an increased coherence, they are still
continuously embedded into the surrounding flow.

The mixing or interaction of coherent sets with their surroundings was studied by
means of an analysis of their heat transport across the fluid layer. As Lagrangian coherent
features mark spatial regions that are less frequently disrupted by up- or down-welling
thermal plumes, they contribute less to the global heat transport compared to the
incoherent background flow. A Lagrangian evaluation of the Nusselt number revealed
that Lagrangian coherent features transfer about one third less heat across the fluid layer
relative to the global average. Hence, albeit being a necessary skeleton for turbulent
superstructures, they reduce the overall heat transfer significantly across different fluids.

As the observation window is extended, increasingly more particles will leave the
spatial regions at which the coherent sets have been located – instead, other particles will
join them and so these regions will consist over time of alternating particles. This idea of
leaking Lagrangian coherent sets gave rise to study coherent features as abstract entities.
In a second approach, historical information was incorporated to the previous procedure.
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4.5 Summary

This allowed finally to study the evolution of Lagrangian coherent features – together
with their possible birth and death – successfully throughout the entire Lagrangian
runtime. It remains open for future studies to apply this new evolving feature extraction
technique to the gradual supergranule aggregation discovered in chapter 3.

These results from the material transport perspective connect Lagrangian observations
with the complementary Eulerian framework. The trapping of trajectories at some spatial
regions for an intermediate time allows thus to infer properties of the surrounding flow –
vice versa, this identifies the role of the large-scale flow structures on material transport.
This is not just useful for sparse particle tracking data obtained from long laboratory
experiment runs [185, 204], but also to cannibalise the previously collected data from
geo- and astrophysical flows even more. Moreover, the birth and death of such coherent
spatial regions might be used to extract a time scale that is characteristic to the lifetime
of large-scale flow structures such as turbulent superstructures. This access to more data
via inferred properties might ultimately pave the way for an improved understanding of
flow hierarchies in natural thermal convection flows.
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Chapter 5
Concluding remarks and
perspectives

In this thesis, turbulent Rayleigh-Bénard convection as the paradigm of natural thermal
convection flows was studied from both Eulerian and Lagrangian perspectives. In a
nutshell, the results can be summarised as follows:

• The thermal boundary conditions rule the large-scale pattern formation. In case of
an applied constant heat flux, a new mechanism of self-organisation was discovered,
termed gradual supergranule aggregation in accordance with the astrophysical
motivation, and studied across the Ra–Pr–Ro parameter space. On the one hand,
a leading Lyapunov vector analysis allowed to relate this transient mechanism’s
dynamical origin to secondary instabilities. On the other hand, a spectral energy
transfer analysis revealed that purely two-dimensional advective mode interactions
exhibit an inverse cascade on large scales and can be accounted for the growth of
thermal variance during this transient process of large-scale pattern formation.

• Unsupervised machine learning methods to successfully relate sparse observational
Lagrangian data to (evolving) turbulent superstructures – i.e., the large-scale flow
structures that form in the complementary case of applied constant temperatures
– were established. The role of these structures for the material transport was
identified as to trap particles for intermediate times in coherent regions close to
the centres of convection rolls, the latter of which interact only weakly with the
surrounding flow and thus offer a reduced heat transport across the fluid layer.

Due to the simplicity of the underlying dynamical system, it applies to various natural
flows (see again table 1.2) and so these results allow to interpret these flows’ extremely
complex nature more successfully.

Fluid dynamics is typically about looking at things from a far distance [205] – thus, the
fundamental governing equations (1.2) – (1.4) exploit continuum mechanics instead of
particle-particle interactions (see e.g. [206] for a corresponding study of constant heat flux-
driven Rayleigh-Bénard convection). The underlying physics of the latter is consequently
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captured in the fluid properties ρ, ν, λt, and so on, assuming further a Newtonian
fluid. These first simplifications are in this work complemented by the Oberbeck-
Boussinesq approximation. However, even after these steps, the main ingredients for
thermal convection are still included which allows eventually to study it numerically in a
horizontally extraordinarily extended domain with nowadays’ computational capabilities.

In the long run, these simplifications or approximations may be less restrictive than
they seem at first glance. For instance, Newtonian properties hold definitely not for all
fluids but even complex (e.g. colloidal [207]) ones may behave within certain ranges
of shear rates just like classical Newtonian fluids. The situation is quite similar for
the extension of the dynamical system by rotation around the vertical axis. Although
this is a first approximation to the behaviour close to the geographical pole, one can
nevertheless learn from it how geo- and astrophysical objects are influenced even farer
away from it if anisotropies due to horizontal rotation are disregarded.

The insights obtained in this thesis found on computationally expensive direct numerical
simulations which do not involve any additional, tailored modelling of physics. Hence,
the obtained understanding and collected data could be used to subsequently derive
and enhance models for LES and RANS simulations or to evaluate the quality of GQL
approximations. This is not only useful to allow for cheaper simulations in the field of
engineering – all our geo- and astrophysical observations collect sparse data (if at all)
on a coarse grid only. These measurements’ dynamics are thus inherently governed by
(filtered) equations for large-scale quantities.

This observational restriction is accompanied by our limited computational capabilities.
Albeit seemingly endless, there is currently no way to solve the governing equations
for an entire geo- or astrophysical object numerically [8, 208, 209]. For instance, a
full simulation of the Sun would require approximately 1022 W – as this represents the
entire energy produced by an M9V main sequence red dwarf [210], it becomes ultimately
clear that one will rely forever on simplified setups and approximations to project their
behaviour into future.

Fortunately, this inevitable circumstance can be conquered by our knowledge on the
present fundamental equations from which one may derive models for analytical and
numerical studies [8]. It can be conceptually helpful to think of such flows as multiple
loosely connected layers that allow for a separation of flow features into ones that
penetrate most of the fluid layer, and ones that become important just at the boundaries
[8, 211]. For instance, in the solar case the outer shallow layer (which makes basically up
the outer-most 1% of the convection zone) sets itself apart from the rest of the convection
zone due to its extreme gradients and supersonic flow velocities [8]. Large-scale flow
structures – such as those discovered and studied in the thesis at hand – correspond in
this context to the depth-penetrating layer. Some basic assumptions or simplifications
are thus not just allowed but key to a successful tailoring of such models.

The interplay of magnetic fields – as often part of geo- and astrophysical objects – with
these large-scale turbulent structures is yet almost unknown and even less is known about
the feedback of their induced magnetic field on the external magnetic field. Answering a
scientific question raises not rarely again several new ones, and so will it be the work of
future studies to address these interesting and exciting questions of physics.
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A Linear stability analysis

A Linear stability analysis
In this appendix A, the linear stability of rotating Rayleigh-Bénard convection – see
equations (3.8) and (3.9) in the main text – will be derived. While taking care of both
idealised thermal boundary conditions, the free-slip scenario is assumed throughout.

Governing equations
At the onset of convection, heat conduction is starting to be supported by convective
heat transfer across the fluid layer – consequently, the temperature profile changes from
the horizontally homogeneous linear conduction profile towards another profile. This
suggests to express the governing equations based on the temperature deviation field Θ –
see also eq. (3.5) –, the latter of which is zero below the onset and becomes non-zero
above. For simplicity, this temperature deviation field will be called just temperature
field in the following. These governing equations read in the dimensional form

∇ · u = 0, (A.1)
∂u

∂t
+ (u · ∇)u + 2Ω ez × u = − 1

ρref
∇p + ν ∇2u + αgΘez, (A.2)

∂Θ
∂t

+ (u · ∇) Θ = κ ∇2Θ + βuz (A.3)

with
Θ (x, t) := T (x, t) − Tlin (z) , Tlin (z) := Tbot − β (z − zbot) , (A.4)

and can be derived from equations (1.2) – (1.4) by inserting eq. (A.4). β represents the
applied vertical temperature gradient across the fluid layer – in the Dirichlet case, this
can be substituted by ∆T/H. Section 3.5 (and in particular section 3.5.2.1) made use
of these equations in the non-dimensional form based on the free-fall inertial balance,
for the latter see again section 1.2.2.3. This inertia-based scaling is not appropriate for
describing the situation at the onset of convection. Instead, diffusion is the important
mechanism to balance the buoyancy – recall here also the vivid explanations in section
1.2.1. Presuming that viscous diffusion balances the buoyancy, the equations can be
non-dimensionalised by

x = H x̃, u = ν

H
ũ, Θ = βH Pr Θ̃, t = H2

ν
t̃, p = ρrefν

2

H2 p̃, (A.5)

with variables exhibiting tildes being non-dimensional. Note that here the vertical viscous
diffusion time scale τν , which is known from the footnote on page 7, emerges. The tildes
are, as is common, dropped in the following.

The non-dimensional governing equations read eventually
∇ · u = 0, (A.6)

∂u

∂t
+ (u · ∇)u +

√
Ta ez × u = −∇p + ∇2u + Ra Θez, (A.7)

Pr ∂Θ
∂t

+ Pr (u · ∇) Θ = ∇2Θ + uz, (A.8)
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revealing the Prandtl number Pr, Rayleigh number Ra, and Taylor number Ta – see
equations (1.9), (1.10), and (3.10), respectively – as control parameters. To eliminate
the pressure from the Navier-Stokes equation, one may want to work with the vorticity
equation (see again section 3.4.4) as well as its curl, both of which read with this scaling

∂ω

∂t
+ ∇ × [(u · ∇)u] −

√
Ta ∂u

∂z
= ∇2ω + Ra ∇ × ez Θ, (A.9)

∂ (∇2u)
∂t

− ∇ × ∇ × [(u · ∇)u] +
√

Ta ∂ω

∂z
=

=
(︂
∇2
)︂2

u + Ra
[︄
∇2Θez − ∇

(︄
∂Θ
∂z

)︄]︄
.

(A.10)

Boundary conditions
The set of boundary conditions reads in the non-dimensional form

∂ux,y

∂z
(z ∈ {zbot, ztop}) = 0, (A.11)

uz (z ∈ {zbot, ztop}) = 0, (A.12)

Θ (z ∈ {zbot, ztop}) = 0, or ∂Θ
∂z

(z ∈ {zbot, ztop}) = 0, (A.13)

recall also equations (1.14), (3.37), and the footnote on page 59. There are two additional
boundary conditions that emerge from this set of equations and conditions. First, the
continuity equation (A.6) yields together with the free-slip boundary conditions (A.11)

∂2uz

∂z2 (z ∈ {zbot, ztop}) = 0. (A.14)

Second, the definition of the vorticity gives together with these free-slip boundary
conditions

∂ωz

∂z
(z ∈ {zbot, ztop}) = 0. (A.15)

This extended set of boundary conditions will be used in the following to analyse the linear
stability of Rayleigh-Bénard convection in a horizontally infinitely extended domain.

Basic idea of a linear stability analysis
The basic idea of a linear stability analysis is to apply a small perturbation (indicated in
the following by a dash Φ′) onto a base state (indicated by a bar Φ̄) such that

Φ = Φ̄ + εpΦ
′. (A.16)
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Here, εp ≪ 1 is a tiny perturbation parameter. For the set of variables present, this
yields

u = ū + εpu
′, (A.17)

p = p̄ + εpp′, (A.18)
Θ = Θ̄ + εpΘ′, (A.19)
ω = ω̄ + εpω

′. (A.20)

After defining the base state (in case of which εp = 0), these perturbations will be
introduced and their growth or decay will be studied subsequently – if they grow, the
base state becomes unstable. Hence, this switching point between growth and decay
marks the neutral or marginal stability of the system.

Definition of the base state

The non-convective state does not offer any motion and a linear conductive temperature
profile only – the base state of the dynamical system is thus given by

ū = ω̄ = Θ̄ = 0. (A.21)

Together with eq. (A.7), the base pressure can be found to be constant and is arbitrarily
set to zero, i.e., p̄ = 0.

In contrast, the boundary conditions (A.11) – (A.15) set the following constraints on
this base state

∂ūx,y

∂z
(z ∈ {zbot, ztop}) = 0, (A.22)

ūz (z ∈ {zbot, ztop}) = 0, (A.23)

Θ̄ (z ∈ {zbot, ztop}) = 0, or ∂Θ̄
∂z

(z ∈ {zbot, ztop}) = 0, (A.24)

∂2ūz

∂z2 (z ∈ {zbot, ztop}) = 0, (A.25)
∂ω̄z

∂z
(z ∈ {zbot, ztop}) = 0. (A.26)

Introduction of tiny perturbations

As a next step, the perturbations from equations (A.17) – (A.20) with εp ̸= 0 are
introduced into the governing equations (A.6) – (A.10). Results from the base state are
simultaneously incorporated. As the perturbation parameter εp ≪ 1 is tiny, only terms
of order O

(︂
ε1

p

)︂
are kept while higher-order terms are disregarded in the following – this
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terms this method a linear stability analysis. After dividing by εp,

∂u′
x

∂x
+

∂u′
y

∂y
+ ∂u′

z

∂z
= 0, (A.27)

∂u′

∂t
+

√
Ta ez × u′ = −∇p′ + ∇2u′ + Ra Θ′ez, (A.28)

Pr ∂Θ′

∂t
= ∇2Θ′ + u′

z, (A.29)
∂ω′

∂t
−

√
Ta ∂u′

∂z
= ∇2ω′ + Ra ∇ × ez Θ′, (A.30)

∂ (∇2u′)
∂t

+
√

Ta ∂ω′

∂z
=
(︂
∇2
)︂2

u′ + Ra
[︄
∇2Θ′ez − ∇

(︄
∂Θ′

∂z

)︄]︄
(A.31)

follows. Hence, the advection terms and their descendants drop out. Moreover, only
perturbations remain in these equations as the base state drops out completely.

Similarly, the ansatz is introduced into the boundary conditions (A.11) – (A.15), the
results from the base state are kept in mind, and

∂u′
x,y

∂z
(z ∈ {zbot, ztop}) = 0, (A.32)

u′
z (z ∈ {zbot, ztop}) = 0, (A.33)

Θ′ (z ∈ {zbot, ztop}) = 0, or ∂Θ′

∂z
(z ∈ {zbot, ztop}) = 0, (A.34)

∂2u′
z

∂z2 (z ∈ {zbot, ztop}) = 0, (A.35)
∂ω′

z

∂z
(z ∈ {zbot, ztop}) = 0 (A.36)

emerges as set of constraints for the perturbations.

Applying a normal mode ansatz
The equations (A.27) – (A.31) are linear and the system is presumed to be infinitely
extended in the horizontal directions. One can thus study its stability using a so-called
normal mode ansatz of the form

Φ′ (x, t) = Φ (z) eıkh·xh eσt with Φ (z) ≡ Φ̂′ (kh, z, t) . (A.37)

Note that this can be seen as a particular variation of the two-dimensional spectral
expansion in eq. (3.6). Here, the hat of the Fourier coefficient is skipped for simplicity –
the same is done with the dash as only perturbations remained in the equations. Moreover,
σ = σr + ıσi ∈ C is the so-called growth rate – its sign will be used in the following
to determine the stability of the system. In particular, the extracted modes are either
termed stationary if σ = 0, or termed oscillatory if σr = 0 but σi ≠ 0. As oscillatory
modes do not allow for a steady growth over time, the focus is here on stationary modes.
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With this normal mode ansatz, the computation of horizontal or temporal derivatives
becomes simple as they translate to a multiplication with ıkx,y or σ, respectively. Vertical
derivatives will in the following, as is common when studying the linear stability, be
represented by ∂Φ/∂z ≡ DΦ.

The insertion of the normal mode ansatz into equations (A.27) – (A.31) yields
ıkxU + ıkyV + DW = 0, (A.38)

σU −
√

Ta V =−ıkxP+
(︂
D2 − k2

h

)︂
U, (A.39)

σV +
√

Ta U =−ıkyP+
(︂
D2 − k2

h

)︂
V, (A.40)

σW =− DP+
(︂
D2 − k2

h

)︂
W+ Ra C, (A.41)

Pr σC =
(︂
D2 − k2

h

)︂
C + W, (A.42)

σZ −
√

Ta DW=
(︂
D2 − k2

h

)︂
Z, (A.43)(︂

D2 − k2
h

)︂
σW+

√
Ta DZ =

(︂
D2 − k2

h

)︂2
W−Ra k2

h C (A.44)

after a division by the common factor eıkh·xh eσt. The capital letters correspond to the
perturbation variables via

u′
x ∼ U, u′

y ∼ V, u′
z ∼ W, p′ ∼ P, Θ′ ∼ C, ω′

z ∼ Z. (A.45)
Note that only the z-components of equations (A.30) and (A.31) are exploited as no
boundary conditions are available for other components of ω′.

The occurrence of individual horizontal velocities and the pressure field in equations
(A.38) – (A.41) makes them less useful compared to the remaining equations. The
following analysis will thus be restricted to equations (A.42) – (A.44) which can be
re-arranged to (︂

D2 − k2
h −Pr σ

)︂
C =− W, (A.46)(︂

D2 − k2
h − σ

)︂
Z =−

√
Ta DW, (A.47)(︂

D2 − k2
h

)︂ (︂
D2 − k2

h − σ
)︂
W =

√
Ta DZ + Ra k2

h C. (A.48)

As horizontal velocities are not of interest any more, so is boundary condition (A.32).
The remaining conditions transform to

W (z ∈ {zbot, ztop}) = 0, (A.49)

C (z ∈ {zbot, ztop}) = 0, or ∂C

∂z
(z ∈ {zbot, ztop}) = 0, (A.50)

∂2W

∂z2 (z ∈ {zbot, ztop}) = 0, (A.51)
∂Z

∂z
(z ∈ {zbot, ztop}) = 0. (A.52)

These sets of equations and boundary conditions will be used in the following to derive
the particular neutral stability curves for the case of either Dirichlet or Neumann thermal
boundary conditions.
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Marginal stability of the Dirichlet case
In case of the classical constant temperature boundary conditions, C (z ∈ {zbot, ztop}) = 0
in condition (A.50). The set of equations transforms for marginal stability with σ = 0 to(︂

D2 − k2
h

)︂
C =− W, (A.53)(︂

D2 − k2
h

)︂
Z =−

√
Ta DW, (A.54)(︂

D2 − k2
h

)︂ (︂
D2 − k2

h

)︂
W =

√
Ta DZ + Ra k2

h C. (A.55)

After multiplying (D2 − k2
h) to eq. (A.55) and inserting equations (A.53) as well as

(A.54) to eliminate C as well as Z,[︃(︂
D2 − k2

h

)︂3
+ Ta D2 + Ra k2

h

]︃
W = 0 (A.56)

can be obtained after some re-arrangements. To solve this equation, a trial function that
satisfies the boundary condition (A.49) needs to be found. In accordance with eq. (3.33),

W (z) = sin (mπz) with m ∈ N+ (A.57)
for z ∈ [zbot, ztop] = [0, 1] is used. The boundary condition is thus already met by
the choice of this trial function – in order to satisfy also the situation within the fluid
layer, this function is subsequently inserted into eq. (A.56). The vertical derivative
D2W = −m2π2W and so(︂

−m2π2 − k2
h

)︂3
− Ta m2π2 + Ra k2

h = 0 (A.58)

follows. Solving for the Rayleigh number, one obtains eventually [39]

RaD, marg = 1
k2

h

[︃(︂
k2

h + m2π2
)︂3

+ Ta m2π2
]︃

. (A.59)

This describes finally the neutral stability for the Dirichlet case. The lowest characteristic
occurs for m = 1 – i.e. the smallest admissible vertical wave number – and is provided
in the main text in eq. (3.8), as well as visualised in figure 3.6 (a).

One might expect at first thought that the trial function should also hold for the
Neumann case, and that the solution of the linear stability thus coincides. However, this
is not the case. To understand this in more detail, all trial functions for the different
variables are listed in their general form. These are given by

W (z) =
∑︂
m

Wm sin (mπz) with m ∈ N+, (A.60)

C (z) =
∑︂
m

Cm sin (mπz) with m ∈ N+, (A.61)

Z (z) =
∑︂

n

Zn cos (nπz) with n ∈ N (A.62)

where Φm or n ≡ Φ (m or n). Albeit different basis functions are necessary in the vertical
direction, only one of them remains after placing them into equations (A.53) – (A.55).
Hence, the latter can be easily projected onto one particular vertical wave number (see
below) and are thus solvable mode-by-mode. This changes in the Neumann scenario.
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Marginal stability of the Neumann case
In the opposing scenario of the Neumann-type constant heat flux boundary conditions,
∂C/∂z (z ∈ {zbot, ztop}) = 0 in condition (A.50). Consequently, the necessary trial
functions are expressed for z ∈ [0, 1] via

W (z) =
∑︂
m

Wm sin (mπz) with m ∈ N+, (A.63)

C (z) =
∑︂

n

Cn cos (nπz) with n ∈ N, (A.64)

Z (z) =
∑︂

n

Zn cos (nπz) with n ∈ N (A.65)

as infinite trigonometrical Fourier series. An insertion of them into equations (A.53) –
(A.55) leads thus to mixed sine and cosine functions.

The general approach to solve for the stability of the system requires inserting these
trial functions into the set of equations (A.46) – (A.48). After doing so, every equation
contains sums over the infinite vertical wave numbers captured by m and n. To translate
these equations into evolution equations for one particular wave number, they need to be
projected onto the latter while exploiting the orthogonality of the basis functions. The
scalar product ⟨·, ·⟩ between two complex, one-dimensional functions (f, g) is given by

⟨f, g⟩ =
∫︂

z
f(z) g∗(z) dz. (A.66)

In the present case, this projection needs to be performed onto particular vertical
wave numbers (indicated in the following by a dash) of the basis function that cor-
responds to the growth rate σ – in more detail, one applies

∫︁ 1
0 (A.46) cos (n′πz) dz,∫︁ 1

0 (A.47) cos (n′πz) dz, as well as
∫︁ 1

0 (A.48) sin (m′πz) dz. This yields for instance∫︂ 1

0

∑︂
m

Φ (m) sin (mπz) cos (n′πz) dz =
∑︂
m

Φ (m)
∫︂ 1

0
sin (mπz) cos (n′πz) dz⏞ ⏟⏟ ⏞

=:⟨Sm,Cn′ ⟩

(A.67a)

=
∑︂
m

Φ (m) ⟨Sm, Cn′⟩, (A.67b)

where the scalar product between the sine (S) or cosine (C) functions at the wave
number provided as subscript is defined. The results of these scalar products between
trigonometrical functions depend on the particular wave numbers as well as functions,
and compute as follows

⟨Si, Sj⟩ =
⎧⎨⎩

π
2 if i = j and (i, j) > 0,

0 if i ̸= j and (i, j) ≥ 0 or just i = j = 0,
(A.68)

⟨Ci, Cj⟩ =

⎧⎪⎪⎨⎪⎪⎩
π if i = j = 0,
π
2 if i = j > 0,

0 if i ̸= j and (i, j) ≥ 0,

(A.69)
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⟨Si, Cj⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−(−1)i

i
if j = 0 and i > 0,

0 if i = j and (i, j) > 0 or just i = 0,
2i

(i+j)(i−j) if i ̸= j and (i, j) > 0 and (i + j) is odd,

0 if i ̸= j and (i, j) > 0 and (i + j) is even,

(A.70)

for (i, j) ∈ N. As can be realised, the infinite sums vanish due to orthogonality if the
original and target basis functions are of the same kind,∑︂

m

Φm ⟨Sm, Sm′⟩ = Φm′ ⟨Sm′ , Sm′⟩ and
∑︂

n

Φn ⟨Cn, Cn′⟩ = Φn′ ⟨Cn′ , Cn′⟩. (A.71)

This is not the case for mixed trigonometrical functions.
Making use of these insights, the projection of equations (A.46) – (A.48) onto particular

vertical wave numbers translates them after some re-arrangements into

σCn′ =− 1
Pr k2

n′ Cn′ + 1
Pr

∑︂
m

Wm
⟨Sm, Cn′⟩
⟨Cn′ , Cn′⟩

, (A.72)

σZn′ =− k2
n′ Zn′ +

√
Ta

∑︂
m

mπ Wm δmn′ , (A.73)

σWm′ =− k2
m′ Wm′+ Ra

∑︂
n

k2
h

k2
m′

Cn
⟨Cn, Sm′⟩
⟨Sm′ , Sm′⟩

−
√

Ta m′π

k2
m′

Zm′ (A.74)

where k2
Φ := k2

h + (Φπ)2. The resulting equations represent eventually the temporal
evolutions of the perturbations at one particular vertical wave number. This linear
system of equations can now be solved to find the (finite number of) Fourier coefficients
Cn′ , Zn′ , and Wm′ . As it has the form of an eigenvalue problem, established methods
can be used to solve it for a larger number of vertical wave numbers.

In order to make an analytical solution accessible, the system is truncated after
one complete wave in the vertical direction. Realising that σC1 = − (1/Pr) k2

1C1 and
σZ0 = −k2

hZ0 are independent, one obtains

σ

⎛⎜⎜⎝
C0
Z1

W1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
− 1

Pr k2
h 0 1

Pr
2
π

0 −k2
1

√
Ta π

Ra k2
h

k2
1

4
π

−
√

Ta π
k2

1
−k2

1

⎞⎟⎟⎠
⎛⎜⎜⎝

C0
Z1

W1

⎞⎟⎟⎠ . (A.75)

In the case of marginal stability with σ = 0, the determinant of this eq. (A.75) yields
its solution. Re-arranging for the Rayleigh number gives eventually [29]

RaN, marg = π2

8

[︄(︂
k2

h + π2
)︂2

+ Ta π2

k2
h + π2

]︄
. (A.76)

This describes finally the neutral stability for the Neumann case, which is provided in
the main text in eq. (3.9) and visualised in figure 3.6 (b). For the non-rotating case
with Ta = 0, this equation yields Racrit = π6/8 ≈ 120.17 – thus, it is very close to the
analytical result Racrit = 5! = 120 from [38] that was derived much earlier but using
another approach which did not include rotation.
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B Derivation of the spectral governing equations for
the Neumann scenario

In this appedix B, the spectral governing equations (3.38) – (3.40) from the main text
will be derived. Here, free-slip and constant heat flux boundary conditions are applied.

Physical space governing equations

The derivation starts with the non-dimensional governing equations in physical space

∇ · u = 0, (B.1)
∂u

∂t
+ (u · ∇)u + 1

Ro ez × u = −∇p +
√︄

Pr
Ra ∇2u + Θez, (B.2)

∂Θ
∂t

+ (u · ∇) Θ = 1√
RaPr

∇2Θ + uz, (B.3)

based on the free-fall inertial balance and exploiting the description based on the
temperature deviation field Θ. The latter has been defined in eq. (3.5) and will be
termed just temperature field in the following for simplicity. The dimensional variants of
these equations are provided in equations (A.1) – (A.3) in appendix A. In contrast to the
description based on the standard temperature field T , see equations (1.6) – (1.8) in the
main text, the continuity equation is unchanged. However, the Navier-Stokes equation
changes as described in the footnote on page 59 and the corresponding energy equation
has already been introduced in eq. (3.36).

Boundary conditions

The corresponding set of boundary conditions in the non-dimensional form is given by

∂ux,y

∂z
(z ∈ {0, 1}) = 0, (B.4)

uz (z ∈ {0, 1}) = 0, (B.5)
∂Θ
∂z

(z ∈ {0, 1}) = 0, (B.6)

which are provided in the main text in equations (1.14b) and (3.37). In addition, the
domain is horizontally periodic, see eq. (1.17b), so

Φ (x) = Φ (x + ixΓxex + iyΓyey) (B.7)

holds for every field and arbitrary integers i ∈ Z.
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artificial
domain

original
domain

Figure B.1: Periodicity of the domain. The domain can be made periodic in the
vertical direction when the fields are mirrored at the top plane. This is exemplified by
means of a convection roll (left) and the kz = π modes of the basis functions along
the vertical direction (centre) as provided by equations (B.8) – (B.11). The standard
temperature field (right), here taken from simulation run Nfs1, does not allow for an
expansion via trigonometrical functions. The red and blue lines spanning across the
entire width of the figure indicate the hot and cold planes, respectively.

Selection of appropriate basis functions

A spectral expansions requires to decide for the particular basis functions along the
different coordinates.

As all fields are horizontally periodic, they can be expanded as typical Fourier series
with the basis functions eıkh·xh in these directions. This basis is due to Euler’s formula
eıΦ = cos (Φ) + ı sin (Φ) directly related to both trigonometrical functions. Due to the
periodicity, the wave numbers kx,y := 2π n/Lx,y are discrete in these horizontal directions
with the number of complete waves n ∈ N over the periodic length Lx,y = Γx,y.

In the vertical direction, the domain is confined between the two different horizontal
planes and thus the fields are not periodic in z ∈ [0, 1]. However, the domain can
(hypothetically) be mirrored at the top plane with z = 1 – see figure B.1 – to obtain
vertically periodic fields in z ∈ [0, 2]. In particular, the fields of the horizontal velocities
and the temperature need to be stacked on top in reversed order, whereas the vertical
velocity requires an additional change of its sign. Note here that although the standard
temperature field T is periodic in this extended domain, its boundary conditions at
the planes are not unique (in the Neumann case, and can also not be satisfied by
trigonometrical basis functions in the Dirichlet case as, e.g., a cosine expansion comes
with vanishing derivatives) – for this particular reason, one needs to work instead with
the temperature deviation field Θ.

Despite this periodicity, the boundary conditions (B.4) – (B.6) are (when continuing
to work with trigonometrical functions) only properly satisfied by the use of either sine
or cosine functions. In accordance with these conditions, ux,y ∼ cos (kzz), uz ∼ sin (kzz),
and Θ ∼ cos (kzz) with the vertical wave number kz := 2π n/Lz and Lz = 2. Defining
the Fourier coefficients in case of sine basis functions at kz = 0 to be zero allows to use
the before-mentioned definition of kz independently of the particular trigonometrical
function.

110



B Derivation of the spectral governing equations for the Neumann scenario

The three-dimensional spectral expansions of the fields result eventually in

ux (x, t) =
∑︂
kh

∑︂
kz

ûx(kh, kz, t) eıkh·xh cos (kzz), (B.8)

uy (x, t) =
∑︂
kh

∑︂
kz

ûy(kh, kz, t) eıkh·xh cos (kzz), (B.9)

uz (x, t) =
∑︂
kh

∑︂
kz

ûz(kh, kz, t) eıkh·xh ı sin (kzz), (B.10)

Θ (x, t) =
∑︂
kh

∑︂
kz

Θ̂ (kh, kz, t) eıkh·xh cos (kzz), (B.11)

see also equations (3.31) – (3.35) in the main text.
The spectral expansion of the pressure field (along the vertical direction) is not clear a

priori. However, the pressure is related to velocity motion which is non-zero only for
horizontal velocities at the planes. This suggests to expand the pressure field similar to
those horizontal velocities using cosine functions. The entire expansion of the pressure
field is thus given by

p (x, t) =
∑︂
kh

∑︂
kz

p̂ (kh, kz, t) eıkh·xh cos (kzz). (B.12)

Finally, the advection terms need to be expanded and the proper basis functions along
the vertical direction need to be found. Here, symmetry properties can be exploited
to conclude which trigonometrical function to use. In more detail, the product of two
even functions is again an even function – similarly, the product of two odd functions
yields also an even function. Only the product of an even with an odd function results
in an odd function. Together with (u · ∇)Φ = ∇ · (uΦ) in the case of incompressibility
(see also sections 3.5.2.2 and 3.5.2.4), this can be used to determine the necessary basis
function along the vertical direction. Let Φ exemplary be even (as, e.g., ux) – then

(u · ∇) Φ = ∇ · (uΦ) = ∂

∂x
(uxΦ) + ∂

∂y
(uyΦ) + ∂

∂z
(uzΦ) = (B.13a)

= ∂

∂x

∑︂
kh

∑︂
kz

ˆ︃uxΦ (kh, kz, t) eıkh·xh cos (kzz) +

+ ∂

∂y

∑︂
kh

∑︂
kz

ˆ︃uyΦ (kh, kz, t) eıkh·xh cos (kzz) + (B.13b)

+ ∂

∂z

∑︂
kh

∑︂
kz

ˆ︃uzΦ (kh, kz, t) eıkh·xh ı sin (kzz) =

=
∑︂
kh

∑︂
kz

ıkx
ˆ︃uxΦ (kh, kz, t) eıkh·xh cos (kzz) +

+
∑︂
kh

∑︂
kz

ıky
ˆ︃uyΦ (kh, kz, t) eıkh·xh cos (kzz) + (B.13c)

+
∑︂
kh

∑︂
kz

ıkz
ˆ︃uzΦ (kh, kz, t) eıkh·xh cos (kzz) .
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Hence, the resulting basis function along the vertical direction is in accordance with
the basis function of the variable Φ for which the equation describes its evolution – this
is identical when Φ is odd (as, e.g., uz). Note in this example that ˆ︃uxΦ and ˆ︃uyΦ are
Fourier coefficients obtained from a cosine expansion, whereas ˆ︃uzΦ – as indicated in eq.
(B.13b) – still needs to be obtained from a sine expansion. If this is respected, ık · ˆ︃uΦ
coincides correctly with the coefficients from below.

Combining the equivalence (u · ∇)Φ = ∇ · (uΦ) and the above insights based on
symmetry arguments, the advection terms can alternatively be expanded via

(u · ∇) ux (x, t) =
∑︂
kh

∑︂
kz

(u · ∇) ux
Ÿ�(kh, kz, t) eıkh·xh cos (kzz), (B.14)

(u · ∇) uy (x, t) =
∑︂
kh

∑︂
kz

(u · ∇) uy
Ÿ�(kh, kz, t) eıkh·xh cos (kzz), (B.15)

(u · ∇) uz (x, t) =
∑︂
kh

∑︂
kz

(u · ∇) uz
Ÿ�(kh, kz, t) eıkh·xh ı sin (kzz), (B.16)

(u · ∇) Θ (x, t) =
∑︂
kh

∑︂
kz

(u · ∇) ΘŸ�(kh, kz, t) eıkh·xh cos (kzz). (B.17)

Due to their simplicity, these descriptions will be used in the following.
Note here that the basis function in the vertical direction of any above spectral

expansion is either cos (Φ) or ı sin (Φ), the latter of which contains the coefficient ı. This
coefficient brings this basis function in accordance with the typical Fourier basis function
– in other words, the Fourier coefficient corresponding to ı sin (Φ) coincides with the
Fourier coefficient corresponding to eıΦ for any properly periodic sine signal. This allows
eventually to apply the well-known convolution without further issues.

Beside the potential symmetry of the domain in physical space, also the Fourier
coefficients Φ̂ obey certain symmetry properties. Along the horizontal directions with
their typical Fourier transform,

Φ̂ (−kh, kz) = Φ̂∗ (kh, kz) (B.18)

holds. Because of the relation of the trigonometrical basis functions (and their coefficients)
to eıkh·xh , this can be extended to Φ̂ (−k) = Φ̂∗ (k). Additionally, these sine or cosine
expansions introduce

Φ̂ (kh, −kz) = −Φ̂ (kh, kz) or Φ̂ (kh, −kz) = Φ̂ (kh, kz) , (B.19)

respectively.
Technically, these symmetry properties allow an efficient computation of the Fourier

coefficients based on the original domain (z ∈ [0, 1]) only. Here one can make use of
discrete sine or cosine transforms (via scipy.fft.dst or scipy.fft.dct, respectively),
while the coefficients obtained from the former can be corrected (i.e. multiplied by −ı)
to account for the coefficient ı in the basis functions.
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B Derivation of the spectral governing equations for the Neumann scenario

Obtaining the modal governing equations
Once it is clear how to spectrally expand all the individual terms in the governing
equations (B.1) – (B.3) and how to obtain all the Fourier coefficients technically, these
expansions can be inserted. As it was already the case in appendix A, this introduces
again all the infinite sums into these equations. The equations are thus projected onto
particular wave numbers – see again eq. (A.66).

As the sine basis function differs here with its coefficient ı slightly compared to its use
in eq. (A.63), so do the inner products between sine and cosine functions that resulted
in equations (A.68) – (A.70). For the present basis functions, these products result in

⟨Si, Sj⟩ =
⎧⎨⎩−π

2 if i = j and (i, j) > 0,

0 if i ̸= j and (i, j) ≥ 0 or just i = j = 0,
(B.20)

⟨Ci, Cj⟩ =

⎧⎪⎪⎨⎪⎪⎩
π if i = j = 0,
π
2 if i = j > 0,

0 if i ̸= j and (i, j) ≥ 0,

(B.21)

⟨Si, Cj⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−(−1)i

i
ı if j = 0 and i > 0,

0 if i = j and (i, j) > 0 or just i = 0,
2i

(i+j)(i−j) ı if i ̸= j and (i, j) > 0 and (i + j) is odd,

0 if i ̸= j and (i, j) > 0 and (i + j) is even,

(B.22)

where (i, j) ∈ N are the numbers of complete waves over the periodic length onto which
the projection is performed.

In contrast, the projection onto horizontal wave numbers k′
h yields for every term∫︂

A

∑︂
kh

Φ̂ (kh) eıkh·xh e−ık′
h·xhdA =

∑︂
kh

Φ̂ (kh)
∫︂

A
eı(kh−k′

h)·xhdA⏞ ⏟⏟ ⏞
=δkhk′

h

= Φ̂ (k′
h) . (B.23)

As in appendix A, these projections reduce the sums of almost all terms in these
equations to just one single wave number – see also again eq. (A.71). The buoyancy
term in eq. (B.2) and the vertical velocity term in eq. (B.3) are the only terms for which
mixed products as provided by eq. (B.22) apply. A division of the continuity equation,
the x- and y-component of the Navier-Stokes equation, as well as the energy equation by
⟨Cn′ , Cn′⟩, and a division of the z-component of the Navier-Stokes equation by ⟨Sn′ , Sn′⟩
results eventually in

ık′ · û = 0, (B.24)
∂û

∂t
+ (u · ∇)uÿ�+ ez × û

Ro = −ık′ p̂ −
√︄

Pr
Ra k′2û + ez

∑︂
n

Θ̂ (k′
h, n, t) ⟨Cn, Sn′⟩

⟨Sn′ , Sn′⟩
, (B.25)

∂Θ̂
∂t

+ (u · ∇) ΘŸ�= − 1√
RaPr

k′2Θ̂ +
∑︂

n

ûz (k′
h, n, t) ⟨Sn, Cn′⟩

⟨Cn′ , Cn′⟩
. (B.26)
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If not mentioned explicitly, terms are functions of (k′
h, n′, t) due to the performed

projection.
The remaining infinite sum in the buoyancy (vertical velocity) term – which does not

cancel out – represents a projection of the corresponding quantity onto sine (cosine)
basis functions. Roughly speaking, this has become necessary as the evolution equation
of the vertical velocity (temperature) describes its evolution in the ‘coordinate system’
of sine (cosine) functions along the vertical direction – contributions provided in other
coordinates need thus to be translated. Note that such a projection is not necessary in
the Dirichlet case when the temperature field is expanded as a sine series. Furthermore,
the disappearance of such projections for the pressure confirm its proper expansion in eq.
(B.12).

There are basically two options on how to compute the projections of the temperature
or vertical velocity field onto the complementary trigonometrical basis functions. First
and most obvious, one can compute the infinite sums as included in the above equations.
Thus, one may define the sine (sp) and cosine projection (cp)

Θ̂sp (k′
h, n′, t) :=

∑︂
n

Θ̂ (k′
h, n, t) ⟨Cn, Sn′⟩

⟨Sn′ , Sn′⟩
, (B.27)

ûz, cp (k′
h, n′, t) :=

∑︂
n

ûz (k′
h, n, t) ⟨Sn, Cn′⟩

⟨Cn′ , Cn′⟩
. (B.28)

Alternatively, one may directly expand the quantity for this particular term in the
complementary basis and define equivalently the sine (se) and cosine expansion (ce)

Θ (x, t) :=
∑︂
kh

∑︂
kz

Θ̂se (kh, kz, t) eıkh·xh ı sin (kzz), (B.29)

uz (x, t) :=
∑︂
kh

∑︂
kz

ûz, ce(kh, kz, t) eıkh·xh cos (kzz) (B.30)

with kz = n π. The infinite sums, as well as the basis functions to the right of the Fourier
coefficients disappear when projecting these quantities onto particular wave numbers
in the course of the derivation. Albeit the results of both options coincide, the direct
expansion via the complementary basis is technically simpler.

Making use of these abbreviations and skipping the dashes again for improved clarity,

ık · û = 0, (B.31)
∂û

∂t
+ (u · ∇)uÿ�+ 1

Ro ez × û, = −ık p̂ −
√︄

Pr
Ra k2û + Θ̂se ez, (B.32)

∂Θ̂
∂t

+ (u · ∇) ΘŸ�= − 1√
RaPr

k2Θ̂ + ûz, ce (B.33)

result as the final modal governing equations and correspond to equations (3.38) – (3.40)
from the main text.

114



Bibliography

List of peer-reviewed publications
[V1] P. P. Vieweg, J. D. Scheel and J. Schumacher, ‘Supergranule aggregation for

constant heat flux-driven turbulent convection’, Phys. Rev. Research 3, 013231
(2021).

[V2] P. P. Vieweg, C. Schneide, K. Padberg-Gehle and J. Schumacher, ‘Lagrangian
heat transport in turbulent three-dimensional convection’, Phys. Rev. Fluids 6,
L041501 (2021).

[V3] C. Schneide, P. P. Vieweg, J. Schumacher and K. Padberg-Gehle, ‘Evolutionary
clustering of Lagrangian trajectories in turbulent Rayleigh–Bénard convection
flows’, Chaos 32, 013123 (2022).

[V4] P. P. Vieweg, Y. Kolesnikov and C. Karcher, ‘Experimental study of a liquid
metal film flow in a streamwise magnetic field’, Magnetohydrodynamics 58, 5–12
(2022).

[V5] P. P. Vieweg, J. D. Scheel, R. Stepanov and J. Schumacher, ‘Inverse cascades of
kinetic energy and thermal variance in three-dimensional horizontally extended
turbulent convection’, Phys. Rev. Research 4, 043098 (2022).

[V6] T. Käufer, P. P. Vieweg, J. Schumacher and C. Cierpka, ‘Thermal boundary
condition studies in large aspect ratio Rayleigh–Bénard convection’, Eur. J. Mech.
B-Fluids 101, 283–293 (2023).

[V7] P. P. Vieweg, A. Klünker, J. Schumacher and K. Padberg-Gehle, ‘Lagrangian
studies of coherent sets and heat transport in constant heat flux-driven turbulent
Rayleigh–Bénard convection’, Eur. J. Mech. B-Fluids 103, 69–85 (2024).

List of non-peer-reviewed scientific contributions
Beside the before-mentioned publications, several additional scientific contributions have
been made during the time of the PhD which are not (comparably) peer-reviewed. These
comprise articles in conference proceedings [V8, V9, V12, V13], as well as poster present-
ations at conferences and universities [V10, V11, V15, V16] and other contributions
[V14, V17] – also, [V10] was awarded with the 3rd place for one of the best poster

115

https://doi.org/10.1103/PhysRevResearch.3.013231
https://doi.org/10.1103/PhysRevResearch.3.013231
https://doi.org/10.1103/PhysRevFluids.6.L041501
https://doi.org/10.1103/PhysRevFluids.6.L041501
https://doi.org/10.1063/5.0076035
https://doi.org/10.22364/mhd.58.1-2.1
https://doi.org/10.22364/mhd.58.1-2.1
https://doi.org/10.1103/PhysRevResearch.4.043098
https://doi.org/10.1016/j.euromechflu.2023.06.003
https://doi.org/10.1016/j.euromechflu.2023.06.003
https://doi.org/10.1016/j.euromechflu.2023.08.007


Bibliography

contributions at the conference, and figure 3.13 (a) decorates the front page of [V17]. Es-
pecially [V11, V14, V15] served for public relations, allowing a non-scientific audience to
capture important aspects of research in fluid mechanics and its relevance to everyday life.

[V8] J. Schumacher, P. P. Vieweg, C. Schneide and K. Padberg-Gehle, ‘Lagrangian Co-
herent Sets as transport barriers in convection’, B. Am. Phys. Soc. 65, F16.00009
(2020).

[V9] P. P. Vieweg, J. Schumacher and J. D. Scheel, ‘Large-scale cell formation in
turbulent Rayleigh-Bénard convection’, B. Am. Phys. Soc. 65, F16.00002 (2020).

[V10] P. P. Vieweg, ‘Experimental study of a liquid metal film flow in a streamwise
magnetic field’, poster presentation, Electromagnetic Processing of Materials
(EPM) 2021 (Riga, Latvia), 2021.

[V11] P. P. Vieweg, ‘Structure formation in the Sun (Original German title: Struk-
turbildung in der Sonne)’, poster presentation, Engineering Sciences Day 2021
(Ilmenau, Germany), 2021.

[V12] P. P. Vieweg, Y. Kolesnikov and C. Karcher, ‘Experimental study of a liquid metal
film flow in a streamwise magnetic field’, in Proc. 10th Int. Conf. Electromagn.
Process. Mater. EPM (2021), pp. 150–154.

[V13] P. P. Vieweg and J. Schumacher, ‘Controlling supergranule aggregation in con-
vection by weak rotation’, B. Am. Phys. Soc. 66, H06.00009 (2021).

[V14] ‘Supercomputing Helps Unravel Mysteries of Turbulent Convection in the Sun’, in
Innovatives Supercomputing in Deutschland (InSiDE), Autumn 2022, 20-2 (Gauss
Centre for Supercomputing e.V., Berlin, 2022), pp. 20–23.

[V15] P. P. Vieweg, ‘Pattern formation in natural convection flows’, poster presentation,
Engineering Sciences Day 2022 (Weimar, Germany), 2022.

[V16] P. P. Vieweg, ‘Pattern formation in natural convection flows’, poster presentation,
Boulder School for Condensed Matter and Materials Physics 2022: Hydrodynamics
Across Scales (Boulder, CO, USA), 2022.

[V17] P. P. Vieweg, F. Heyder, J. P. John, J. D. Scheel and J. Schumacher, ‘Analysis of
the Large-Scale Order in Turbulent Mesoscale Convection’, in NIC Symposium
2022: Proceedings, Vol. 51 (Forschungszentrum Jülich GmbH, Zentralbibliothek
Verlag, Jülich, 2022), pp. 405–414.

116

https://ui.adsabs.harvard.edu/abs/2020APS..DFDF16009S
https://ui.adsabs.harvard.edu/abs/2020APS..DFDF16009S
https://ui.adsabs.harvard.edu/abs/2020APS..DFDF16002V
https://ui.adsabs.harvard.edu/abs/2021APS..DFDH06009V
https://www.gauss-centre.eu/news/publications/inside-autumn-2022
https://juser.fz-juelich.de/record/909654
https://juser.fz-juelich.de/record/909654


References

References
[1] W. C. Röntgen, Zur Geschichte der Physik an der Universität Würzburg: Festrede

zur Feier des dreihundert und zwölften Stiftungstages der Julius-Maximilians-
Universität, gehalten am 2ten Januar 1894 (Druck der Kgl. Universitätsdruckerei
von H. Stürtz, 1894).

[2] P. C. W. Davies, The forces of nature, 2nd ed. (Cambridge University Press,
Cambridge, UK; New York, 1986).

[3] F. Chillà and J. Schumacher, ‘New perspectives in turbulent Rayleigh-Bénard
convection’, Eur. Phys. J. E 35, 58 (2012).

[4] U. Christensen, ‘Effects of Phase Transitions on Mantle Convection’, Annu. Rev.
Earth Planet. Sci. 23, 65–87 (1995).

[5] T. Maxworthy and S. Narimousa, ‘Unsteady, Turbulent Convection into a Homo-
geneous, Rotating Fluid, with Oceanographic Applications’, J. Phys. Oceanogr.
24, 865–887 (1994).

[6] B. W. Atkinson and J. Wu Zhang, ‘Mesoscale shallow convection in the atmo-
sphere’, Rev. Geophys. 34, 403–431 (1996).

[7] B. E. Mapes and R. A. Houze, ‘Cloud Clusters and Superclusters over the Oceanic
Warm Pool’, Mon. Wea. Rev. 121, 1398–1416 (1993).

[8] J. Schumacher and K. R. Sreenivasan, ‘Colloquium: Unusual dynamics of convec-
tion in the Sun’, Rev. Mod. Phys. 92, 041001 (2020).

[9] Kelvinsong, Diagram of the Sun, (2012) https://en.wikipedia.org/wiki/
File:Sun_poster.svg (visited on 31/01/2022).

[10] F. Rincon and M. Rieutord, ‘The Sun’s supergranulation’, Living Rev. Sol. Phys.
15, 6 (2018).

[11] J. G. Beck, T. L. Duvall and P. H. Scherrer, ‘Long-lived giant cells detected at
the surface of the Sun’, Nature 394, 653–655 (1998).

[12] C. S. Hanson, T. L. Duvall, A. C. Birch, L. Gizon and K. R. Sreenivasan, ‘Solar
east-west flow correlations that persist for months at low latitudes are dominated
by active region inflows’, A&A 644, A103 (2020).

[13] J. I. G. De La Rosa, ‘Sunspot populations and their relation with the solar cycle’,
Sol. Phys. 74, 117–123 (1981).

[14] M. Ossendrijver, ‘The solar dynamo’, Astron. Astrophys. Rev. 11, 287–367 (2003).
[15] M. Milankovic, Mathematische Klimalehre und astronomische Theorie der Kli-

maschwankungen, Vol. 1 (Gebrüder Borntraeger, Berlin, 1930).
[16] M. Maslin, D. Seidov and J. Lowe, ‘Synthesis of the Nature and Causes of Rapid

Climate Transitions During the Quaternary’, in Geophysical Monograph Series
(American Geophysical Union, Washington, D. C., 2001), pp. 9–52.

[17] G. Roe, ‘In defense of Milankovitch’, Geophys. Res. Lett. 33, L24703 (2006).

117

https://doi.org/10.1140/epje/i2012-12058-1
https://doi.org/10.1146/annurev.ea.23.050195.000433
https://doi.org/10.1146/annurev.ea.23.050195.000433
https://doi.org/10.1175/1520-0485(1994)024<0865:UTCIAH>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<0865:UTCIAH>2.0.CO;2
https://doi.org/10.1029/96RG02623
https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2
https://doi.org/10.1103/RevModPhys.92.041001
https://en.wikipedia.org/wiki/File:Sun_poster.svg
https://en.wikipedia.org/wiki/File:Sun_poster.svg
https://doi.org/10.1007/s41116-018-0013-5
https://doi.org/10.1007/s41116-018-0013-5
https://doi.org/10.1038/29245
https://doi.org/10.1051/0004-6361/202039108
https://doi.org/10.1007/BF00151281
https://doi.org/10.1007/s00159-003-0019-3
https://doi.org/10.1029/GM126p0009
https://doi.org/10.1029/2006GL027817


Bibliography

[18] N. Gopalswamy, ‘The Sun and Space Weather’, Atmosphere 13, 1781 (2022).
[19] H. Bénard, ‘Les tourbillons cellulaires dans une nappe liquide transportant de

la chaleur par convection en régime permanent’, Ann. Chim. Phys. 23, 62–144
(1901).

[20] P. Manneville, ‘Rayleigh-Bénard Convection: Thirty Years of Experimental, The-
oretical, and Modeling Work’, in Dynamics of Spatio-Temporal Cellular Structures,
Vol. 207, Springer Tracts in Modern Physics (Springer New York, New York, NY,
2006), pp. 41–65.

[21] L. Rayleigh, ‘On convection currents in a horizontal layer of fluid, when the
higher temperature is on the under side’, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 32, 529–546 (1916).

[22] R. J. A. M. Stevens, A. Blass, X. Zhu, R. Verzicco and D. Lohse, ‘Turbulent
thermal superstructures in Rayleigh-Bénard convection’, Phys. Rev. Fluids 3,
041501 (2018).

[23] M. Cross and H. Greenside, Pattern Formation and Dynamics in Nonequilibrium
Systems (Cambridge University Press, Cambridge, UK; New York, 2009).

[24] V. Valori, G. Elsinga, M. Rohde, M. Tummers, J. Westerweel and T. van der Hagen,
‘Experimental velocity study of non-Boussinesq Rayleigh-Bénard convection’, Phys.
Rev. E 95, 053113 (2017).

[25] H. Yik, V. Valori and S. Weiss, ‘Turbulent Rayleigh-Bénard convection under
strong non-Oberbeck-Boussinesq conditions’, Phys. Rev. Fluids 5, 103502 (2020).

[26] A. Pandey, J. Schumacher and K. R. Sreenivasan, ‘Non-Boussinesq Low-Prandtl-
number Convection with a Temperature-dependent Thermal Diffusivity’, ApJ
907, 56 (2021).

[27] P. Oresta, R. Verzicco, D. Lohse and A. Prosperetti, ‘Heat transfer mechanisms
in bubbly Rayleigh-Bénard convection’, Phys. Rev. E 80, 026304 (2009).

[28] L. E. Schmidt, P. Oresta, F. Toschi, R. Verzicco, D. Lohse and A. Prosperetti,
‘Modification of turbulence in Rayleigh–Bénard convection by phase change’, New
J. Phys. 13, 025002 (2011).

[29] S.-i. Takehiro, M. Ishiwatari, K. Nakajima and Y.-Y. Hayashi, ‘Linear Stability
of Thermal Convection in Rotating Systems with Fixed Heat Flux Boundaries’,
Geophys. Astro. Fluid 96, 439–459 (2002).

[30] R. J. Stevens, H. J. Clercx and D. Lohse, ‘Heat transport and flow structure in
rotating Rayleigh–Bénard convection’, Eur. J. Mech. B-Fluids 40, 41–49 (2013).

[31] U. Burr and U. Müller, ‘Rayleigh–Bénard convection in liquid metal layers under
the influence of a vertical magnetic field’, Phys. Fluids 13, 3247–3257 (2001).

[32] U. Burr and U. Müller, ‘Rayleigh–Bénard convection in liquid metal layers under
the influence of a horizontal magnetic field’, J. Fluid Mech. 453, 345–369 (2002).

118

https://doi.org/10.3390/atmos13111781
https://doi.org/10.1007/978-0-387-25111-0_3
https://doi.org/10.1080/14786441608635602
https://doi.org/10.1080/14786441608635602
https://doi.org/10.1103/PhysRevFluids.3.041501
https://doi.org/10.1103/PhysRevFluids.3.041501
https://doi.org/10.1103/PhysRevE.95.053113
https://doi.org/10.1103/PhysRevE.95.053113
https://doi.org/10.1103/PhysRevFluids.5.103502
https://doi.org/10.3847/1538-4357/abd1d8
https://doi.org/10.3847/1538-4357/abd1d8
https://doi.org/10.1103/PhysRevE.80.026304
https://doi.org/10.1088/1367-2630/13/2/025002
https://doi.org/10.1088/1367-2630/13/2/025002
https://doi.org/10.1080/0309192021000036996
https://doi.org/10.1016/j.euromechflu.2013.01.004
https://doi.org/10.1063/1.1404385
https://doi.org/10.1017/S002211200100698X


References

[33] T. Zürner, F. Schindler, T. Vogt, S. Eckert and J. Schumacher, ‘Flow regimes
of Rayleigh–Bénard convection in a vertical magnetic field’, J. Fluid Mech. 894,
A21 (2020).

[34] J. R. A. Pearson, ‘On convection cells induced by surface tension’, J. Fluid Mech.
4, 489–500 (1958).

[35] E. L. Koschmieder, Bénard cells and Taylor vortices, Cambridge Monographs on
Mechanics and Applied Mathematics (Cambridge University Press, Cambridge,
UK; New York, 1993).

[36] T. Boeck, Bénard-Marangoni convection at low Prandtl numbers: results of direct
numerical simulations, Berichte aus der Physik (Shaker, Aachen, 2000).

[37] E. M. Sparrow, R. J. Goldstein and V. K. Jonsson, ‘Thermal instability in a
horizontal fluid layer: Effect of boundary conditions and non-linear temperature
profile’, J. Fluid Mech. 18, 513–528 (1964).

[38] D. T. J. Hurle, E. Jakeman and E. R. Pike, ‘On the solution of the Bénard
problem with boundaries of finite conductivity’, Proc. R. Soc. Lond. A 296,
469–475 (1967).

[39] S. Chandrasekhar, ‘The instability of a layer of fluid heated below and subject to
Coriolis forces’, Proc. R. Soc. Lond. A 217, 306–327 (1953).

[40] T. E. Dowling, ‘Rotating Rayleigh-Bénard Convection with Fixed Flux Bound-
aries’, in 1988 Summer Study Program in Geophysical Fluid Dynamics: The
Influence of Convection on Large-Scale Circulations (Woods Hole Oceanographic
Institution, Woods Hole Oceanographic Institution, Massachusetts, 1988), pp. 230–
247.

[41] M. Bestehorn, Hydrodynamik und Strukturbildung: mit einer kurzen Einführung
in die Kontinuumsmechanik (Springer, Berlin Heidelberg, 2006).

[42] A. Pellew and R. V. Southwell, ‘On maintained convective motion in a fluid
heated from below’, Proc. R. Soc. Lond. A 176, 312–343 (1940).

[43] A. Oberbeck, ‘Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der
Strömungen infolge von Temperaturdifferenzen’, Ann. Phys. Chem. 243, 271–292
(1879).

[44] J. V. Boussinesq, Théorie Analytique de la Chaleur, Vol. 2 (Gauthier-Villars,
Paris, France, 1903).

[45] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University
Press, Oxford, UK, 1961).

[46] E. A. Spiegel and G. Veronis, ‘On the Boussinesq Approximation for a Compress-
ible Fluid’, ApJ 131, 442–447 (1960).

[47] D. D. Gray and A. Giorgini, ‘The validity of the Boussinesq approximation for
liquids and gases’, Int. J. Heat Mass Tran. 19, 545–551 (1976).

119

https://doi.org/10.1017/jfm.2020.264
https://doi.org/10.1017/jfm.2020.264
https://doi.org/10.1017/S0022112058000616
https://doi.org/10.1017/S0022112058000616
https://doi.org/10.1017/S0022112064000386
https://doi.org/10.1098/rspa.1967.0039
https://doi.org/10.1098/rspa.1967.0039
https://doi.org/10.1098/rspa.1953.0065
https://apps.dtic.mil/sti/citations/ADA216024
https://apps.dtic.mil/sti/citations/ADA216024
https://doi.org/10.1098/rspa.1940.0092
https://doi.org/10.1002/andp.18792430606
https://doi.org/10.1002/andp.18792430606
https://doi.org/10.1086/146849
https://doi.org/10.1016/0017-9310(76)90168-X


Bibliography

[48] P. Mayeli and G. J. Sheard, ‘Buoyancy-driven flows beyond the Boussinesq
approximation: A brief review’, Int. Commun. Heat Mass 125, 105316 (2021).

[49] C.-L. Navier, ‘Mémoire sur les lois du mouvement des fluides’, Mém. Acad. Sci.
Paris 6, 389–440 (1822).

[50] G. G. Stokes, ‘On the Theories of the Internal Friction of Fluids in Motion, and of
the Equilibrium and Motion of Elastic Solids’, Trans. Camb. Phil. Soc. 8, 287–305
(1845).

[51] I. Gallagher, ‘From Newton to Navier–Stokes, or how to connect fluid mechanics
equations from microscopic to macroscopic scales’, Bull. Amer. Math. Soc. 56,
65–85 (2018).

[52] J. M. Aurnou, S. Horn and K. Julien, ‘Connections between nonrotating, slowly
rotating, and rapidly rotating turbulent convection transport scalings’, Phys. Rev.
Research 2, 043115 (2020).

[53] P. A. Davidson, Turbulence in rotating, stratified and electrically conducting fluids
(Cambridge University Press, Cambridge, United Kingdom, 2013).

[54] N. Becker, J. D. Scheel, M. C. Cross and G. Ahlers, ‘Effect of the centrifugal
force on domain chaos in Rayleigh-Bénard convection’, Phys. Rev. E 73, 066309
(2006).

[55] P. A. Davidson, Turbulence: an introduction for scientists and engineers (Oxford
University Press, Oxford, UK; New York, 2004).

[56] M. K. Verma, Physics of Buoyant Flows: From Instabilities to Turbulence (World
Scientific, New Jersey, 2018).

[57] J. H. Argyris, G. Faust, M. Haase and R. Friedrich, Die Erforschung des Chaos:
dynamische Systeme, 3rd ed. (Springer Vieweg, Berlin, Heidelberg, 2017).

[58] N. Foroozani, D. Krasnov and J. Schumacher, ‘Turbulent convection for different
thermal boundary conditions at the plates’, J. Fluid Mech. 907, A27 (2021).

[59] T. Vogt, S. Horn and J. M. Aurnou, ‘Oscillatory thermal–inertial flows in liquid
metal rotating convection’, J. Fluid Mech. 911, A5 (2021).

[60] J. von Hardenberg, D. Goluskin, A. Provenzale and E. A. Spiegel, ‘Generation
of Large-Scale Winds in Horizontally Anisotropic Convection’, Phys. Rev. Lett.
115, 134501 (2015).

[61] A. Pandey, D. Krasnov, K. R. Sreenivasan and J. Schumacher, ‘Convective
mesoscale turbulence at very low Prandtl numbers’, J. Fluid Mech. 948, A23
(2022).

[62] H. Johnston and C. R. Doering, ‘Comparison of Turbulent Thermal Convection
between Conditions of Constant Temperature and Constant Flux’, Phys. Rev.
Lett. 102, 064501 (2009).

[63] E. H. Anders, C. M. Manduca, B. P. Brown, J. S. Oishi and G. M. Vasil, ‘Predicting
the Rossby Number in Convective Experiments’, ApJ 872, 138 (2019).

120

https://doi.org/10.1016/j.icheatmasstransfer.2021.105316
https://perso.crans.org/epalle/M2/EC/Histoire/Navier1822MemoireSurLesLoisDuMouvementDesFluides.pdf
https://perso.crans.org/epalle/M2/EC/Histoire/Navier1822MemoireSurLesLoisDuMouvementDesFluides.pdf
https://pages.mtu.edu/~fmorriso/cm310/StokesLaw1845.pdf
https://pages.mtu.edu/~fmorriso/cm310/StokesLaw1845.pdf
https://doi.org/10.1090/bull/1650
https://doi.org/10.1090/bull/1650
https://doi.org/10.1103/PhysRevResearch.2.043115
https://doi.org/10.1103/PhysRevResearch.2.043115
https://doi.org/10.1103/PhysRevE.73.066309
https://doi.org/10.1103/PhysRevE.73.066309
https://doi.org/10.1017/jfm.2020.830
https://doi.org/10.1017/jfm.2020.976
https://doi.org/10.1103/PhysRevLett.115.134501
https://doi.org/10.1103/PhysRevLett.115.134501
https://doi.org/10.1017/jfm.2022.694
https://doi.org/10.1017/jfm.2022.694
https://doi.org/10.1103/PhysRevLett.102.064501
https://doi.org/10.1103/PhysRevLett.102.064501
https://doi.org/10.3847/1538-4357/aaff61


References

[64] S. Horn and J. M. Aurnou, ‘Regimes of Coriolis-Centrifugal Convection’, Phys.
Rev. Lett. 120, 204502 (2018).

[65] M. K. Verma, A. Kumar and A. Pandey, ‘Phenomenology of buoyancy-driven
turbulence: recent results’, New J. Phys. 19, 025012 (2017).

[66] P. Olson and G. M. Corcos, ‘A boundary layer model for mantle convection with
surface plates’, Geophys. J. Int. 62, 195–219 (1980).

[67] J. Marshall and F. Schott, ‘Open-ocean convection: Observations, theory, and
models’, Rev. Geophys. 37, 1–64 (1999).

[68] C. Navier, ‘Mémoire sur les lois de l’équilibre et du mouvement des corps
élastiques’, Mém. Académie R. Sci. Inst. Fr. 7, 375–393 (1827).

[69] C. Nobili, ‘The role of boundary conditions in scaling laws for turbulent heat
transport’, MINE 5, 1–41 (2023).

[70] H. Park, ‘A method to determine zeta potential and Navier slip coefficient of
microchannels’, J. Colloid Interf. Sci. 347, 132–141 (2010).

[71] C. Chapman, S. Childress and M. Proctor, ‘Long wavelength thermal convection
between non-conducting boundaries’, Earth Planet. Sc. Lett. 51, 362–369 (1980).

[72] W. Arendt, ‘The Laplacian with Robin Boundary Conditions on Arbitrary Do-
mains’, Potential Anal. 19, 341–363 (2003).

[73] F. H. Busse, ‘Non-linear properties of thermal convection’, Rep. Prog. Phys. 41,
1929–1967 (1978).

[74] F. H. Busse, ‘The Sequence-of-Bifurcations Approach towards Understanding
Turbulent Fluid Flow’, Surv. Geophys. 24, 269–288 (2003).

[75] A. Pandey, J. D. Scheel and J. Schumacher, ‘Turbulent superstructures in Rayleigh-
Bénard convection’, Nat. Commun. 9, 2118 (2018).

[76] T. Zürner, F. Schindler, T. Vogt, S. Eckert and J. Schumacher, ‘Combined
measurement of velocity and temperature in liquid metal convection’, J. Fluid
Mech. 876, 1108–1128 (2019).

[77] S. Zhong, M. T. Zuber, L. Moresi and M. Gurnis, ‘Role of temperature-dependent
viscosity and surface plates in spherical shell models of mantle convection’, J.
Geophys. Res. 105, 11063–11082 (2000).

[78] N. Coltice, M. Gérault and M. Ulvrová, ‘A mantle convection perspective on
global tectonics’, Earth-Sci. Rev. 165, 120–150 (2017).

[79] G. Schubert, P. Olson and D. L. Turcotte, Mantle Convection in the Earth and
Planets (Cambridge University Press, Cambridge, 2001).

[80] R. W. Garwood, S. M. Isakari and P. C. Gallacher, ‘Thermobaric Convection’, in
The Polar Oceans and Their Role in Shaping the Global Environment (American
Geophysical Union, Washington, D. C., 1994), pp. 199–209.

121

https://doi.org/10.1103/PhysRevLett.120.204502
https://doi.org/10.1103/PhysRevLett.120.204502
https://doi.org/10.1088/1367-2630/aa5d63
https://doi.org/10.1111/j.1365-246X.1980.tb04851.x
https://doi.org/10.1029/98RG02739
http://sciences.amisbnf.org/fr/livre/memoire-sur-les-lois-de-lequilibre-et-du-mouvement-des-corps-solides-elastiques
https://doi.org/10.3934/mine.2023013
https://doi.org/10.1016/j.jcis.2010.03.024
https://doi.org/10.1016/0012-821X(80)90217-4
https://doi.org/10.1023/A:1024181608863
https://doi.org/10.1088/0034-4885/41/12/003
https://doi.org/10.1088/0034-4885/41/12/003
https://doi.org/10.1023/A:1024860722683
https://doi.org/10.1038/s41467-018-04478-0
https://doi.org/10.1017/jfm.2019.556
https://doi.org/10.1017/jfm.2019.556
https://doi.org/10.1029/2000JB900003
https://doi.org/10.1029/2000JB900003
https://doi.org/10.1016/j.earscirev.2016.11.006
https://doi.org/10.1029/GM085p0199


Bibliography

[81] S. Raasch and D. Etling, ‘Modeling Deep Ocean Convection: Large Eddy Sim-
ulation in Comparison with Laboratory Experiments’, J. Phys. Oceanogr. 28,
1786–1802 (1998).

[82] A. Pal and V. K. Chalamalla, ‘Evolution of plumes and turbulent dynamics in
deep-ocean convection’, J. Fluid Mech. 889, A35 (2020).

[83] T. Weidauer and J. Schumacher, ‘Moist turbulent Rayleigh-Bénard convection
with Neumann and Dirichlet boundary conditions’, Phys. Fluids 24, 076604
(2012).

[84] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-
Scale Circulation, 2nd ed. (Cambridge University Press, Cambridge, 2017).

[85] G. K. Vallis, D. J. Parker and S. M. Tobias, ‘A simple system for moist convection:
the Rainy–Bénard model’, J. Fluid Mech. 862, 162–199 (2019).

[86] S. Lee and M. H. van Putten, ‘Global climate by Rossby number in the solar
system planets’, New Astron. 72, 15–18 (2019).

[87] J. Aurnou, M. Calkins, J. Cheng, K. Julien, E. King, D. Nieves, K. Soderlund
and S. Stellmach, ‘Rotating convective turbulence in Earth and planetary cores’,
Phys. Earth Planet. In. 246, 52–71 (2015).

[88] C. Guervilly, P. Cardin and N. Schaeffer, ‘Turbulent convective length scale in
planetary cores’, Nature 570, 368–371 (2019).

[89] C. C. Finlay and H. Amit, ‘On flow magnitude and field-flow alignment at Earth’s
core surface’, Geophys. J. Int. 186, 175–192 (2011).

[90] P. Garaud, ‘Journey to the center of stars: The realm of low Prandtl number fluid
dynamics’, Phys. Rev. Fluids 6, 030501 (2021).

[91] M. S. Miesch, A. S. Brun, M. L. DeRosa and J. Toomre, ‘Structure and Evolution
of Giant Cells in Global Models of Solar Convection’, ApJ 673, 557–575 (2008).

[92] C. R. Cowley, ‘Second viscosity of the gas in the outer solar envelope’, ApJ 348,
328–332 (1990).

[93] J. Otero, R. W. Wittenberg, R. A. Worthing and C. R. Doering, ‘Bounds on
Rayleigh–Bénard convection with an imposed heat flux’, J. Fluid Mech. 473,
191–199 (2002).

[94] J. D. Scheel and J. Schumacher, ‘Predicting transition ranges to fully turbulent
viscous boundary layers in low Prandtl number convection flows’, Phys. Rev.
Fluids 2, 123501 (2017).

[95] M. Plumley and K. Julien, ‘Scaling Laws in Rayleigh-Bénard Convection’, Earth
Space Sci. 6, 1580–1592 (2019).

[96] D. Krug, D. Lohse and R. J. A. M. Stevens, ‘Coherence of temperature and
velocity superstructures in turbulent Rayleigh–Bénard flow’, J. Fluid Mech. 887,
A2 (2020).

122

https://doi.org/10.1175/1520-0485(1998)028<1786:MDOCLE>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<1786:MDOCLE>2.0.CO;2
https://doi.org/10.1017/jfm.2020.94
https://doi.org/10.1063/1.4737884
https://doi.org/10.1063/1.4737884
https://doi.org/10.1017/jfm.2018.954
https://doi.org/10.1016/j.newast.2019.04.001
https://doi.org/10.1016/j.pepi.2015.07.001
https://doi.org/10.1038/s41586-019-1301-5
https://doi.org/10.1111/j.1365-246X.2011.05032.x
https://doi.org/10.1103/PhysRevFluids.6.030501
https://doi.org/10.1086/523838
https://doi.org/10.1086/168239
https://doi.org/10.1086/168239
https://doi.org/10.1017/S0022112002002410
https://doi.org/10.1017/S0022112002002410
https://doi.org/10.1103/PhysRevFluids.2.123501
https://doi.org/10.1103/PhysRevFluids.2.123501
https://doi.org/10.1029/2019EA000583
https://doi.org/10.1029/2019EA000583
https://doi.org/10.1017/jfm.2019.1054
https://doi.org/10.1017/jfm.2019.1054


References

[97] G. Ahlers, S. Grossmann and D. Lohse, ‘Heat transfer and large scale dynamics
in turbulent Rayleigh-Bénard convection’, Rev. Mod. Phys. 81, 503–537 (2009).

[98] J. J. Niemela and K. R. Sreenivasan, ‘Confined turbulent convection’, J. Fluid
Mech. 481, 355–384 (2003).

[99] K. P. Iyer, J. D. Scheel, J. Schumacher and K. R. Sreenivasan, ‘Classical 1/3
scaling of convection holds up to Ra = 1015’, Proc. Natl. Acad. Sci. U.S.A. 117,
7594–7598 (2020).

[100] P. K. Kundu and I. M. Cohen, Fluid mechanics, in collab. with H. H. Hu, 2nd ed.
(Elsevier Academic Press, San Diego, 2002).

[101] M. O. Deville, P. F. Fischer and E. H. Mund, High-order methods for incom-
pressible fluid flow, Cambridge Monographs on Applied and Computational
Mathematics 9 (Cambridge University Press, Cambridge, UK; New York, 2002).

[102] P. Moin and K. Mahesh, ‘Direct Numerical Simulation: A Tool in Turbulence
Research’, Annu. Rev. Fluid Mech. 30, 539–578 (1998).

[103] O. Zikanov, Essential Computational Fluid Dynamics (Wiley, Hoboken, N.J,
2010).

[104] J. B. Marston and S. M. Tobias, ‘Recent Developments in Theories of Inhomo-
geneous and Anisotropic Turbulence’, Annu. Rev. Fluid Mech. 55, 1–29 (2023).

[105] E. Boström, ‘Investigation of Outflow Boundary Conditions for Convection-
Dominated Incompressible Fluid Flows in a Spectral Element Framework’, MA
thesis (KTH Royal Institute of Technology, Stockholm, 2015).

[106] M. R. Paul, M. C. Cross, P. F. Fischer and H. S. Greenside, ‘Power-Law Behavior
of Power Spectra in Low Prandtl Number Rayleigh-Bénard Convection’, Phys.
Rev. Lett. 87, 154501 (2001).

[107] G. L. Kooij, M. A. Botchev, E. M. Frederix, B. J. Geurts, S. Horn, D. Lohse, E. P.
van der Poel, O. Shishkina, R. J. Stevens and R. Verzicco, ‘Comparison of com-
putational codes for direct numerical simulations of turbulent Rayleigh–Bénard
convection’, Comput. Fluids 166, 1–8 (2018).

[108] J. D. Scheel, M. S. Emran and J. Schumacher, ‘Resolving the fine-scale structure
in turbulent Rayleigh–Bénard convection’, New J. Phys. 15, 113063 (2013).

[109] P. Fischer, A. Obabko, S. Kerkemeier, M. Min, J. Lottes, K. Heisey, S. Aithal
and Y. Peet, Nek5000 Tutorial, (2010) https://www.mcs.anl.gov/~fischer/
nek5000/fischer_nek5000_dec2010.pdf (visited on 24/10/2019).

[110] B. Fornberg and J. Zuev, ‘The Runge phenomenon and spatially variable shape
parameters in RBF interpolation’, Comput. Math. Appl. 54, 379–398 (2007).

[111] P. Fischer, J. Lottes, S. Kerkemeier, O. Marin, K. Heisey, A. Obabko, E. Merzari
and Y. Peet, Nek5000 User Documentation (Argonne National Laboratories,
Argonne, Illinois, 2015).

123

https://doi.org/10.1103/RevModPhys.81.503
https://doi.org/10.1017/S0022112003004087
https://doi.org/10.1017/S0022112003004087
https://doi.org/10.1073/pnas.1922794117
https://doi.org/10.1073/pnas.1922794117
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1146/annurev-fluid-120720-031006
https://doi.org/10.1103/PhysRevLett.87.154501
https://doi.org/10.1103/PhysRevLett.87.154501
https://doi.org/10.1016/j.compfluid.2018.01.010
https://doi.org/10.1088/1367-2630/15/11/113063
https://www.mcs.anl.gov/~fischer/nek5000/fischer_nek5000_dec2010.pdf
https://www.mcs.anl.gov/~fischer/nek5000/fischer_nek5000_dec2010.pdf
https://doi.org/10.1016/j.camwa.2007.01.028


Bibliography

[112] U. M. Ascher, Numerical methods for evolutionary differential equations, Com-
putational Science and Engineering 5 (SIAM, Soc. for Industrial and Applied
Mathematics, Philadelphia, Pa, 2008).

[113] P. F. Fischer, ‘An Overlapping Schwarz Method for Spectral Element Solution
of the Incompressible Navier–Stokes Equations’, J. Comput. Phys. 133, 84–101
(1997).

[114] R. Verzicco and K. R. Sreenivasan, ‘A comparison of turbulent thermal convection
between conditions of constant temperature and constant heat flux’, J. Fluid
Mech. 595, 203–219 (2008).

[115] A. Parodi, J. von Hardenberg, G. Passoni, A. Provenzale and E. A. Spiegel,
‘Clustering of Plumes in Turbulent Convection’, Phys. Rev. Lett. 92, 194503
(2004).

[116] J. Liu and G. Ahlers, ‘Rayleigh-Bénard convection in binary-gas mixtures: Ther-
mophysical properties and the onset of convection’, Phys. Rev. E 55, 6950–6968
(1997).

[117] M. A. Calkins, K. Hale, K. Julien, D. Nieves, D. Driggs and P. Marti, ‘The
asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary
conditions for rapidly rotating convection’, J. Fluid Mech. 784, R2 (2015).

[118] C. J. Chapman and M. R. E. Proctor, ‘Nonlinear Rayleigh–Bénard convection
between poorly conducting boundaries’, J. Fluid Mech. 101, 759–782 (1980).

[119] R. Ding and J. Li, ‘Nonlinear finite-time Lyapunov exponent and predictability’,
Phys. Lett. A 364, 396–400 (2007).

[120] A. Jayaraman, J. D. Scheel, H. S. Greenside and P. F. Fischer, ‘Characterization
of the domain chaos convection state by the largest Lyapunov exponent’, Phys.
Rev. E 74, 016209 (2006).

[121] M. Xu and M. R. Paul, ‘Spatiotemporal dynamics of the covariant Lyapunov
vectors of chaotic convection’, Phys. Rev. E 97, 032216 (2018).

[122] R. Levanger, M. Xu, J. Cyranka, M. F. Schatz, K. Mischaikow and M. R. Paul,
‘Correlations between the leading Lyapunov vector and pattern defects for chaotic
Rayleigh-Bénard convection’, Chaos 29, 053103 (2019).

[123] H. G. Schuster and W. Just, Deterministic chaos: an introduction, 4th rev. and
enl. ed. (Wiley-VCH, Weinheim, 2005).

[124] J. D. Scheel and M. C. Cross, ‘Lyapunov exponents for small aspect ratio Rayleigh-
Bénard convection’, Phys. Rev. E 74, 066301 (2006).

[125] D. A. Egolf, I. V. Melnikov, W. Pesch and R. E. Ecke, ‘Mechanisms of extensive
spatiotemporal chaos in Rayleigh–Bénard convection’, Nature 404, 733–736
(2000).

[126] A. N. Kolmogorov, ‘The Local Structure of Turbulence in Incompressible Viscous
Fluid for Very Large Reynolds Numbers’, Proc. Math. Phys. Sci. 434, 9–13 (1991).

124

https://doi.org/10.1006/jcph.1997.5651
https://doi.org/10.1006/jcph.1997.5651
https://doi.org/10.1017/S0022112007009135
https://doi.org/10.1017/S0022112007009135
https://doi.org/10.1103/PhysRevLett.92.194503
https://doi.org/10.1103/PhysRevLett.92.194503
https://doi.org/10.1103/PhysRevE.55.6950
https://doi.org/10.1103/PhysRevE.55.6950
https://doi.org/10.1017/jfm.2015.606
https://doi.org/10.1017/S0022112080001917
https://doi.org/10.1016/j.physleta.2006.11.094
https://doi.org/10.1103/PhysRevE.74.016209
https://doi.org/10.1103/PhysRevE.74.016209
https://doi.org/10.1103/PhysRevE.97.032216
https://doi.org/10.1063/1.5071468
https://doi.org/10.1103/PhysRevE.74.066301
https://doi.org/10.1038/35008013
https://doi.org/10.1038/35008013


References

[127] C. Gualtieri, A. Angeloudis, F. Bombardelli, S. Jha and T. Stoesser, ‘On the
Values for the Turbulent Schmidt Number in Environmental Flows’, Fluids 2, 17
(2017).

[128] S. Corrsin, ‘On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic
Turbulence’, J. Appl. Phys. 22, 469–473 (1951).

[129] G. K. Batchelor, ‘Small-scale variation of convected quantities like temperature
in turbulent fluid Part 1. General discussion and the case of small conductivity’,
J. Fluid Mech. 5, 113 (1959).

[130] J. Schumacher, ‘Sub-Kolmogorov-scale fluctuations in fluid turbulence’, Europhys.
Lett. 80, 54001 (2007).

[131] V. Valori and J. Schumacher, ‘Connecting boundary layer dynamics with extreme
bulk dissipation events in Rayleigh-Bénard flow’, Europhys. Lett. 134, 34004
(2021).

[132] K. Sreenivasan, ‘Possible Effects of Small-Scale Intermittency in Turbulent Re-
acting Flows’, Flow Turbul. Combust. 72, 115–131 (2004).

[133] P. M. Sadler, R. R. Gould, P. S. Leiker, P. R. A. Antonucci, R. Kimberk, F. S.
Deutsch, B. Hoffman, M. Dussault, A. Contos, K. Brecher and L. French, ‘Mi-
croObservatory Net: A Network of Automated Remote Telescopes Dedicated to
Educational Use’, J. Sci. Educ. Technol. 10, 39–55 (2001).

[134] H. T. Rossby, ‘A study of Bénard convection with and without rotation’, J. Fluid
Mech. 36, 309–335 (1969).

[135] S. S. Hough, ‘IX. On the Application of Harmonic Analysis to the Dynamical
Theory of the Tides. — Part I. On Laplace’s "Oscillations of the First Species,"
and on the Dynamics of Ocean Currents’, Phil. Trans. R. Soc. Lond. A 189,
201–257 (1897).

[136] J. Proudman, ‘On the motion of solids in a liquid possessing vorticity’, Proc. R.
Soc. Lond. A 92, 408–424 (1916).

[137] G. I. Taylor, ‘Motion of solids in fluids when the flow is not irrotational’, Proc. R.
Soc. Lond. A 93, 99–113 (1917).

[138] R. J. A. M. Stevens, J.-Q. Zhong, H. J. H. Clercx, G. Ahlers and D. Lohse,
‘Transitions between Turbulent States in Rotating Rayleigh-Bénard Convection’,
Phys. Rev. Lett. 103, 024503 (2009).

[139] T. Cai, K. L. Chan and H. G. Mayr, ‘Deep, Closely Packed, Long-lived Cyclones
on Jupiter’s Poles’, Planet. Sci. J. 2, 81 (2021).

[140] R. J. A. M. Stevens, H. J. H. Clercx and D. Lohse, ‘Optimal Prandtl number for
heat transfer in rotating Rayleigh–Bénard convection’, New J. Phys. 12, 075005
(2010).

[141] D. H. Lenschow and B. B. Stankov, ‘Length Scales in the Convective Boundary
Layer’, J. Atmos. Sci. 43, 1198–1209 (1986).

125

https://doi.org/10.3390/fluids2020017
https://doi.org/10.3390/fluids2020017
https://doi.org/10.1063/1.1699986
https://doi.org/10.1017/S002211205900009X
https://doi.org/10.1209/0295-5075/80/54001
https://doi.org/10.1209/0295-5075/80/54001
https://doi.org/10.1209/0295-5075/134/34004
https://doi.org/10.1209/0295-5075/134/34004
https://doi.org/10.1023/B:APPL.0000044408.46141.26
https://doi.org/10.1023/A:1016668526933
https://doi.org/10.1017/S0022112069001674
https://doi.org/10.1017/S0022112069001674
https://doi.org/10.1098/rsta.1897.0009
https://doi.org/10.1098/rsta.1897.0009
https://doi.org/10.1098/rspa.1916.0026
https://doi.org/10.1098/rspa.1916.0026
https://doi.org/10.1098/rspa.1917.0007
https://doi.org/10.1098/rspa.1917.0007
https://doi.org/10.1103/PhysRevLett.103.024503
https://doi.org/10.3847/PSJ/abedbd
https://doi.org/10.1088/1367-2630/12/7/075005
https://doi.org/10.1088/1367-2630/12/7/075005
https://doi.org/10.1175/1520-0469(1986)043<1198:LSITCB>2.0.CO;2


Bibliography

[142] S. B. Pope, Turbulent flows (Cambridge University Press, Cambridge; New York,
2000).

[143] J. Paret and P. Tabeling, ‘Experimental Observation of the Two-Dimensional
Inverse Energy Cascade’, Phys. Rev. Lett. 79, 4162–4165 (1997).

[144] M. A. Rutgers, ‘Forced 2D Turbulence: Experimental Evidence of Simultaneous
Inverse Energy and Forward Enstrophy Cascades’, Phys. Rev. Lett. 81, 2244–2247
(1998).

[145] G. Boffetta, ‘Energy and enstrophy fluxes in the double cascade of two-dimensional
turbulence’, J. Fluid Mech. 589, 253–260 (2007).

[146] G. Boffetta and R. E. Ecke, ‘Two-Dimensional Turbulence’, Annu. Rev. Fluid
Mech. 44, 427–451 (2012).

[147] K. Julien, A. Rubio, I. Grooms and E. Knobloch, ‘Statistical and physical balances
in low Rossby number Rayleigh–Bénard convection’, Geophys. Astro. Fluid 106,
392–428 (2012).

[148] B. Favier, L. J. Silvers and M. R. E. Proctor, ‘Inverse cascade and symmetry
breaking in rapidly rotating Boussinesq convection’, Phys. Fluids 26, 096605
(2014).

[149] S. Musacchio and G. Boffetta, ‘Condensate in quasi-two-dimensional turbulence’,
Phys. Rev. Fluids 4, 022602 (2019).

[150] A. van Kan and A. Alexakis, ‘Condensates in thin-layer turbulence’, J. Fluid
Mech. 864, 490–518 (2019).

[151] M. Carbone and A. D. Bragg, ‘Is vortex stretching the main cause of the turbulent
energy cascade?’, J. Fluid Mech. 883, R2 (2020).

[152] P. L. Johnson, ‘Energy Transfer from Large to Small Scales in Turbulence by
Multiscale Nonlinear Strain and Vorticity Interactions’, Phys. Rev. Lett. 124,
104501 (2020).

[153] W. J. Bos, ‘Three-dimensional turbulence without vortex stretching’, J. Fluid
Mech. 915, A121 (2021).

[154] D. Lohse and K.-Q. Xia, ‘Small-Scale Properties of Turbulent Rayleigh-Bénard
Convection’, Annu. Rev. Fluid Mech. 42, 335–364 (2010).

[155] G. Falkovich, Fluid mechanics: a short course for physicists (Cambridge University
Press, Cambridge, UK; New York, 2011).

[156] L. F. Richardson, Weather Prediction by Numerical Process, 1st ed. (Cambridge
University Press, Cambridge, 1922).

[157] M. Voßkuhle, ‘Statistische Analysen zweidimensionaler Turbulenz’ (Westfälische
Wilhelms-Universität Münster, Münster, 2009).

[158] K. R. Sreenivasan and G. Stolovitzky, ‘Turbulent cascades’, J. Stat. Phys. 78,
311–333 (1995).

126

https://doi.org/10.1103/PhysRevLett.79.4162
https://doi.org/10.1103/PhysRevLett.81.2244
https://doi.org/10.1103/PhysRevLett.81.2244
https://doi.org/10.1017/S0022112007008014
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1080/03091929.2012.696109
https://doi.org/10.1080/03091929.2012.696109
https://doi.org/10.1063/1.4895131
https://doi.org/10.1063/1.4895131
https://doi.org/10.1103/PhysRevFluids.4.022602
https://doi.org/10.1017/jfm.2019.29
https://doi.org/10.1017/jfm.2019.29
https://doi.org/10.1017/jfm.2019.923
https://doi.org/10.1103/PhysRevLett.124.104501
https://doi.org/10.1103/PhysRevLett.124.104501
https://doi.org/10.1017/jfm.2021.194
https://doi.org/10.1017/jfm.2021.194
https://doi.org/10.1146/annurev.fluid.010908.165152
https://doi.org/10.1007/BF02183351
https://doi.org/10.1007/BF02183351


References

[159] M. K. Verma, Energy Transfers in Fluid Flows: Multiscale and Spectral Perspect-
ives (Cambridge University Press, Cambridge; New York, NY, 2019).

[160] A. N. Kolmogorov, ‘A refinement of previous hypotheses concerning the local
structure of turbulence in a viscous incompressible fluid at high Reynolds number’,
J. Fluid Mech. 13, 82–85 (1962).

[161] R. Fjørtoft, ‘On the Changes in the Spectral Distribution of Kinetic Energy for
Twodimensional, Nondivergent Flow’, Tellus 5, 225–230 (1953).

[162] R. H. Kraichnan, ‘Inertial Ranges in Two-Dimensional Turbulence’, Phys. Fluids
10, 1417 (1967).

[163] L. Soucasse, B. Podvin, P. Rivière and A. Soufiani, ‘Proper orthogonal decom-
position analysis and modelling of large-scale flow reorientations in a cubic
Rayleigh–Bénard cell’, J. Fluid Mech. 881, 23–50 (2019).

[164] C. Verbeeck, P. A. Higgins, T. Colak, F. T. Watson, V. Delouille, B. Mampaey
and R. Qahwaji, ‘A Multi-wavelength Analysis of Active Regions and Sunspots by
Comparison of Automatic Detection Algorithms’, Sol. Phys. 283, 67–95 (2013).

[165] D. Choi, D. Banfield, P. Gierasch and A. Showman, ‘Velocity and vorticity
measurements of Jupiter’s Great Red Spot using automated cloud feature tracking’,
Icarus 188, 35–46 (2007).

[166] R. Lumpkin, T. Özgökmen and L. Centurioni, ‘Advances in the Application of
Surface Drifters’, Annu. Rev. Mar. Sci. 9, 59–81 (2017).

[167] J. M. C. Denissen, R. Orth, H. Wouters, D. G. Miralles, C. C. van Heerwaarden,
J. V.-G. de Arellano and A. J. Teuling, ‘Soil moisture signature in global weather
balloon soundings’, NPJ Clim. Atmos. Sci. 4, 13 (2021).

[168] R. A. Preston, C. E. Hildebrand, G. H. Purcell, J. Ellis, C. T. Stelzried, S. G.
Finley, R. Z. Sagdeev, V. M. Linkin, V. V. Kerzhanovich, V. I. Altunin, L. R.
Kogan, V. I. Kostenko, L. I. Matveenko, S. V. Pogrebenko, I. A. Strukov, E. L.
Akim, Y. N. Alexandrov, N. A. Armand, R. N. Bakitko, A. S. Vyshlov, A. F.
Bogomolov, Y. N. Gorchankov, A. S. Selivanov, N. M. Ivanov, V. F. Tichonov,
J. E. Blamont, L. Boloh, G. Laurans, A. Boischot, F. Biraud, A. Ortega-Molina,
C. Rosolen and G. Petit, ‘Determination of Venus Winds by Ground-Based Radio
Tracking of the VEGA Balloons’, Science 231, 1414–1416 (1986).

[169] N. G. Stewart and R. N. Crooks, ‘Long-Range Travel of the Radioactive Cloud
from the Accident at Windscale’, Nature 182, 627–628 (1958).

[170] P. Ballereau, Kyshtym riddle: possible kind of the accident, CEA-BIB–244 (France,
1988).

[171] D. A. Wheeler, ‘Atmospheric dispersal and deposition of radioactive material
from Chernobyl’, Atmos. Environ. 22, 853–863 (1988).

127

https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1111/j.2153-3490.1953.tb01051.x
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.1762301
https://doi.org/10.1017/jfm.2019.746
https://doi.org/10.1007/s11207-011-9859-6
https://doi.org/10.1016/j.icarus.2006.10.037
https://doi.org/10.1146/annurev-marine-010816-060641
https://doi.org/10.1038/s41612-021-00167-w
https://doi.org/10.1126/science.231.4744.1414
https://doi.org/10.1038/182627a0
https://doi.org/10.1016/0004-6981(88)90262-4


Bibliography

[172] O. Masson, A. Baeza, J. Bieringer, K. Brudecki, S. Bucci, M. Cappai, F. Carvalho,
O. Connan, C. Cosma, A. Dalheimer, D. Didier, G. Depuydt, L. De Geer, A. De
Vismes, L. Gini, F. Groppi, K. Gudnason, R. Gurriaran, D. Hainz, Ó. Halldórsson,
D. Hammond, O. Hanley, K. Holeý, Z. Homoki, A. Ioannidou, K. Isajenko, M.
Jankovic, C. Katzlberger, M. Kettunen, R. Kierepko, R. Kontro, P. Kwakman, M.
Lecomte, L. Leon Vintro, A.-P. Leppänen, B. Lind, G. Lujaniene, P. Mc Ginnity,
C. M. Mahon, H. Malá, S. Manenti, M. Manolopoulou, A. Mattila, A. Mauring,
J. Mietelski, B. Møller, S. Nielsen, J. Nikolic, R. Overwater, S. E. Pálsson, C.
Papastefanou, I. Penev, M. Pham, P. Povinec, H. Ramebäck, M. Reis, W. Ringer,
A. Rodriguez, P. Rulík, P. Saey, V. Samsonov, C. Schlosser, G. Sgorbati, B. V.
Silobritiene, C. Söderström, R. Sogni, L. Solier, M. Sonck, G. Steinhauser, T.
Steinkopff, P. Steinmann, S. Stoulos, I. Sýkora, D. Todorovic, N. Tooloutalaie,
L. Tositti, J. Tschiersch, A. Ugron, E. Vagena, A. Vargas, H. Wershofen and
O. Zhukova, ‘Tracking of Airborne Radionuclides from the Damaged Fukushima
Dai-Ichi Nuclear Reactors by European Networks’, Environ. Sci. Technol. 45,
7670–7677 (2011).

[173] G. Haller, ‘Lagrangian Coherent Structures’, Annu. Rev. Fluid Mech. 47, 137–162
(2015).

[174] A. Klünker, C. Schneide, A. Pandey, K. Padberg-Gehle and J. Schumacher, ‘Lag-
rangian perspectives on turbulent superstructures in Rayleigh-Bénard convection’,
Proc. Appl. Math. Mech. 19, e201900201 (2019).

[175] R. Banisch, P. Koltai and K. Padberg-Gehle, ‘Network measures of mixing’, Chaos
29, 063125 (2019).

[176] M. R. Allshouse and T. Peacock, ‘Lagrangian based methods for coherent structure
detection’, Chaos 25, 097617 (2015).

[177] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland and G. Haller, ‘A
critical comparison of Lagrangian methods for coherent structure detection’,
Chaos 27, 053104 (2017).

[178] G. Froyland and K. Padberg-Gehle, ‘A rough-and-ready cluster-based approach
for extracting finite-time coherent sets from sparse and incomplete trajectory
data’, Chaos 25, 087406 (2015).

[179] M. R. Maxey, ‘Equation of motion for a small rigid sphere in a nonuniform flow’,
Phys. Fluids 26, 883 (1983).

[180] L.-P. Wang, B. Rosa, H. Gao, G. He and G. Jin, ‘Turbulent collision of inertial
particles: Point-particle based, hybrid simulations and beyond’, Int. J. Multiphas.
Flow 35, 854–867 (2009).

[181] P. Maity, R. Govindarajan and S. S. Ray, ‘Statistics of Lagrangian trajectories in
a rotating turbulent flow’, Phys. Rev. E 100, 043110 (2019).

[182] B. L. Sawford, P. K. Yeung and J. F. Hackl, ‘Reynolds number dependence of
relative dispersion statistics in isotropic turbulence’, Phys. Fluids 20, 065111
(2008).

128

https://doi.org/10.1021/es2017158
https://doi.org/10.1021/es2017158
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1002/pamm.201900201
https://doi.org/10.1063/1.5087632
https://doi.org/10.1063/1.5087632
https://doi.org/10.1063/1.4922968
https://doi.org/10.1063/1.4982720
https://doi.org/10.1063/1.4926372
https://doi.org/10.1063/1.864230
https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.012
https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.012
https://doi.org/10.1103/PhysRevE.100.043110
https://doi.org/10.1063/1.2946442
https://doi.org/10.1063/1.2946442


References

[183] C. Schneide, A. Pandey, K. Padberg-Gehle and J. Schumacher, ‘Probing turbulent
superstructures in Rayleigh-Bénard convection by Lagrangian trajectory clusters’,
Phys. Rev. Fluids 3, 113501 (2018).

[184] G. Elsinga, T. Ishihara and J. Hunt, ‘Non-local dispersion and the reassessment
of Richardson’s t3-scaling law’, J. Fluid Mech. 932, A17 (2022).

[185] S. Moller, C. Resagk and C. Cierpka, ‘Long-time experimental investigation of
turbulent superstructures in Rayleigh–Bénard convection by noninvasive simul-
taneous measurements of temperature and velocity fields’, Exp. Fluids 62, 64
(2021).

[186] S. Moller, ‘Experimental characterization of turbulent superstructures in large
aspect ratio Rayleigh-Bénard convection’, PhD thesis (TU Ilmenau, Ilmenau,
Germany, 2022).

[187] D. R. Durran, ‘The Third-Order Adams-Bashforth Method: An Attractive Al-
ternative to Leapfrog Time Differencing’, Mon. Weather Rev. 119, 702–720
(1991).

[188] P. Götzfried, M. S. Emran, E. Villermaux and J. Schumacher, ‘Comparison of
Lagrangian and Eulerian frames of passive scalar turbulent mixing’, Phys. Rev.
Fluids 4, 044607 (2019).

[189] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, Adaptive Computation
and Machine Learning (The MIT Press, Cambridge, Massachusetts, 2016).

[190] B. Mehlig, Machine Learning with Neural Networks: An Introduction for Scientists
and Engineers, 1st ed. (Cambridge University Press, Cambridge, 2021).

[191] A. Hadjighasem, D. Karrasch, H. Teramoto and G. Haller, ‘Spectral-clustering
approach to Lagrangian vortex detection’, Phys. Rev. E 93, 063107 (2016).

[192] C. Schneide, M. Stahn, A. Pandey, O. Junge, P. Koltai, K. Padberg-Gehle and J.
Schumacher, ‘Lagrangian coherent sets in turbulent Rayleigh-Bénard convection’,
Phys. Rev. E 100, 053103 (2019).

[193] G. Froyland, C. P. Rock and K. Sakellariou, ‘Sparse eigenbasis approximation:
Multiple feature extraction across spatiotemporal scales with application to
coherent set identification’, Commun. Nonlinear Sci. 77, 81–107 (2019).

[194] J. de la Porte, B. M. Herbst, W. Heremann and S. van der Walt, ‘An Introduction
to Diffusion Maps’, in Proc. Ninet. Annu. Symp. Pattern Recognit. Assoc. South
Afr. (2008), pp. 15–25.

[195] R. Kondor and J. D. Lafferty, ‘Diffusion Kernels on Graphs and Other Discrete
Input Spaces’, in Proc. Ninet. Int. Conf. Mach. Learn. (2002), pp. 315–322.

[196] R. Banisch and P. Koltai, ‘Understanding the geometry of transport: Diffusion
maps for Lagrangian trajectory data unravel coherent sets’, Chaos 27, 035804
(2017).

129

https://doi.org/10.1103/PhysRevFluids.3.113501
https://doi.org/10.1017/jfm.2021.989
https://doi.org/10.1007/s00348-020-03107-1
https://doi.org/10.1007/s00348-020-03107-1
https://doi.org/10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2
https://doi.org/10.1103/PhysRevFluids.4.044607
https://doi.org/10.1103/PhysRevFluids.4.044607
https://doi.org/10.1103/PhysRevE.93.063107
https://doi.org/10.1103/PhysRevE.100.053103
https://doi.org/10.1016/j.cnsns.2019.04.012
https://dblp.org/rec/conf/icml/KondorL02.bib
https://doi.org/10.1063/1.4971788
https://doi.org/10.1063/1.4971788


Bibliography

[197] P. Koltai and S. Weiss, ‘Diffusion maps embedding and transition matrix ana-
lysis of the large-scale flow structure in turbulent Rayleigh–Bénard convection’,
Nonlinearity 33, 1723–1756 (2020).

[198] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and
S. W. Zucker, ‘Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps’, Proc. Natl. Acad. Sci. U.S.A. 102, 7426–7431
(2005).

[199] R. R. Coifman and S. Lafon, ‘Diffusion maps’, Appl. Comput. Harmon. A. 21,
5–30 (2006).

[200] D. Wagner and F. Wagner, ‘Between Min Cut and Graph Bisection’, in Proc.
18th Int. Symp. Math. Found. Comput. Sci. 1993, Vol. 711, Lecture Notes in
Computer Science (1993), pp. 744–750.

[201] J. Shi and J. Malik, ‘Normalized cuts and image segmentation’, IEEE Trans.
Pattern Anal. Machine Intell. 22, 888–905 (2000).

[202] R. V. Donner, Y. Zou, J. F. Donges, N. Marwan and J. Kurths, ‘Ambiguities in
recurrence-based complex network representations of time series’, Phys. Rev. E
81, 015101 (2010).

[203] Y. Chi, X. Song, D. Zhou, K. Hino and B. L. Tseng, ‘Evolutionary Spectral
Clustering by Incorporating Temporal Smoothness’, in Proc. 13th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Min. KDD-07 (2007), pp. 153–162.

[204] A. Loesch and R. du Puits, ‘The Barrel of Ilmenau: A large-scale convection
experiment to study dust devil-like flow structures.’, Meteorol. Z. 30, 89–97
(2021).

[205] S. Sharma, G. Marcucci and A. Mahmud, A complexity perspective on fluid
mechanics, 2022.

[206] Y. Ben-Ami and A. Manela, ‘Effect of heat-flux boundary conditions on the
Rayleigh-Bénard instability in a rarefied gas’, Phys. Rev. Fluids 4, 033402 (2019).

[207] N. J. Wagner and J. F. Brady, ‘Shear thickening in colloidal dispersions’, Phys.
Today 62, 27–32 (2009).

[208] B. Fox-Kemper, S. Bachman, B. Pearson and S. Reckinger, ‘Principles and
advances in subgrid modelling for eddy-rich simulations’, CLIVAR Exch. 65,
42–46 (2014).

[209] H. Hewitt, B. Fox-Kemper, B. Pearson, M. Roberts and D. Klocke, ‘The small
scales of the ocean may hold the key to surprises’, Nat. Clim. Change 12, 496–499
(2022).

[210] S. Tobias, ‘The turbulent dynamo’, J. Fluid Mech. 912, P1 (2021).
[211] B. Fox-Kemper, R. Ferrari and R. Hallberg, ‘Parameterization of Mixed Layer

Eddies. Part I: Theory and Diagnosis’, J. Phys. Oceanogr. 38, 1145–1165 (2008).

130

https://doi.org/10.1088/1361-6544/ab6a76
https://doi.org/10.1073/pnas.0500334102
https://doi.org/10.1073/pnas.0500334102
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1007/3-540-57182-5_65
https://doi.org/10.1007/3-540-57182-5_65
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1103/PhysRevE.81.015101
https://doi.org/10.1103/PhysRevE.81.015101
https://doi.org/10.1127/metz/2020/1046
https://doi.org/10.1127/metz/2020/1046
https://doi.org/10.1103/PhysRevFluids.4.033402
https://doi.org/10.1063/1.3248476
https://doi.org/10.1063/1.3248476
https://www.clivar.org/documents/exchanges-65
https://www.clivar.org/documents/exchanges-65
https://doi.org/10.1038/s41558-022-01386-6
https://doi.org/10.1038/s41558-022-01386-6
https://doi.org/10.1017/jfm.2020.1055
https://doi.org/10.1175/2007JPO3792.1


References

[212] P. Virtanen et al., ‘SciPy 1.0: fundamental algorithms for scientific computing in
Python’, Nat. Methods 17, 261–272 (2020).

[213] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S.
Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P.
Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke and T. E. Oliphant, ‘Array programming with NumPy’, Nature 585,
357–362 (2020).

[214] J. D. Hunter, ‘Matplotlib: A 2D Graphics Environment’, Comput. Sci. Eng. 9,
90–95 (2007).

131

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55


132



Index

acceleration
centrifugal, 48
Coriolis, 48
fictitious, 48

approximation
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boundary conditions, 8

constant heat flux, 9, 59
constant temperature, 9, 59
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picture of turbulence, 56
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equation

conservation, 6
continuity, 6
coupled, 6
energy, 6, 59
Navier-Stokes, 6
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transform, 31
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graph, 81
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solar convection zone, 1
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homogeneous isotropic turbulence, 40, 57

initial conditions, 20

kinetic energy dissipation rate, 40
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non-dimensional number

Courant-Friedrich-Lewy, 20
Ekman, 32
Nusselt, 10, 87
Prandtl, 7
Rayleigh, 7
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Rayleigh-Bénard convection, 3, 4
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direct numerical, 15
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spectral clustering, 80
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turbulent superstructures, 10, 26
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vortex stretching term, 54
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The picture on the cover visualises the instantaneous temperature field within the upper thermal boundary 
layer of the weakly rotating thermal convection simulation Nfs4_Ro30. The width captures the entire 
periodic domain with aspect ratio 60.
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