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ABSTRACT 

The product development process could benefit from a synergistic human-machine teaming, 
potentially shortening product development cycles and improving product performance and 
sustainability. However, there is a lack of available methods to achieve this goal. A technical 
product has to satisfy numerous requirements. Due to the variety and complexity of these 
requirements, the design process is challenging for human engineers. While engineers are 
supported by various tools (e.g. FEM) for analyzing product properties, tools for computer-
aided synthesis of product properties considering the corresponding requirements are still only 
available in exceptional cases. However, such synthesis capabilities are necessary to qualify a 
computer-aided tool for productive teaming with engineers. Special methods based on artificial 
intelligence show a high potential for general computer-aided synthesis methods. This 
contribution presents an innovative approach in this direction based on topology optimization 
techniques. 

Index Terms - productive teaming, ai-driven design, topology optimization 

1. INTRODUCTION

Technical products are developed to meet existing or expected needs of different stakeholders 
[1]. In the development process, various constraints must be taken into account that result from 
the context of the product's use or from legal and organizational regulations, etc. The 
requirements and constraints lead to a variety of required product properties. The required 
properties must be implemented as product characteristics and verified during development (see  
Figure 1). Not all required properties can be implemented equally well, so compromises must 
always be made. For the implementation of the individual required properties in product 
characteristics within the scope of the synthesis as well as for their verification, extensive 
knowledge (e.g., about physical interrelationships, technological processes, etc.) is required, 
which must be applied in a problem-specific fashion, e.g., via design guidelines or 
dimensioning calculations. The synthesis has to be performed down to the detailed level of the 
product (e.g. down to the detailed design of the components including material specifications 
or surface finishes). The definition of characteristics for relevant required properties always has 
an impact on other properties, which may change, or new, previously unknown properties may 
emerge (so-called emergent properties). 
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Figure 1 Characteristics and properties, and their two main relationships [2] 

In order to meet the challenges described above, problem-solving procedures and methods have 
been developed for product design that provide engineers with means and make use of people's 
skills and cognitive abilities (see also Table 1). Especially in product development, flexibility 
and abstraction of problems or existing solutions and adaptation of goals to changes are 
essential. 
Due to the large number of relevant required properties, the complex relationships between 
properties and characteristics, and the associated parameters, computer-based tools (here 
referred to as machines) can demonstrate their strengths in the context of product development. 
Machines are able to process large amounts of data in a reproducible manner with problem-
specific procedures and can recognize relevant patterns in the data (see also Table 1). 

Table 1 Complementary strengths of humans and machines (quotation from [3]) 
Human skills Machine skills 

Flexibility & Transfer Pattern Recognition 
Empathy & Creativity Probabilistic 

Annotate Arbitrary Data Consistency 
Common Sense Speed & Efficiency 

Since humans and machines have complementary capabilities, the question of purposeful 
collaboration between humans and machines is increasingly arising in the context of 
development. Historically, this cooperation has existed for a very long time. Supporting 
solutions exist, among others, for information storage and supply [4, 5] or analysis of as-is 
properties (e.g. for numerical simulations [6, 7] or simulations using surrogate models [8, 9]). 
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Previous approaches usually assume separate tasks in which the human uses the machine 
specifically for certain purposes. The progress of AI technologies already shows extended 
possibilities of collaboration between humans and machines [10], so that teaming between 
humans and machines will become more and more possible in the future. Teaming in this 
context means that humans and machines act as partners, develop common goals and 
complementary activities. According to Johnson and Bradshaw [10], teaming is characterized 
by the three features observability, predictability, and directability (OPD).  
The synthesis of mechanical products and in general of technical products is probably the best 
area in which the idea of teaming can be developed. As opposed to analysis, synthesis is a task 
of much higher complexity. Its translation into algorithms is made difficult, among others, by 
the absence of uniqueness in the solution: while the determination of a product’s behavior as a 
function of its layout has, by nature, a unique solution, the uniqueness of the inverse problem, 
i.e. finding a layout which shows a given behavior, is usually not given. There is a large range
of feasible solutions and the choice of the final design includes, in most cases, some degree of
arbitrariness. Up to now, formalizing design into algorithmic procedures was made possible by
translating the design problem into an optimization problem, which requires a forced
uniqueness of the formulation and somehow distorts the original issue. By nature, this not
eliminate arbitrariness but just proposes one individual way of proceeding to the solution.
Computer-aided analysis is not likely to lead to a constructive interaction between human and
machine, since it just represents a tool which passively support the human specialist and cannot
engage in a sort of cooperation at eye level. In design, there is a multitude of approaches to
identify feasible solutions and choose a suitable representative for final design. Relying on an
optimization formulation is just one possible option, which is a typical machine-oriented one.
Classical engineering based on intuition and experience is a completely different process, which
will be probably never transferred to machines as a whole. A ML-based design procedure like
the one presented later on, which evolves on an optimization-related problem definition but
does not solve the optimization directly is a third of several possible ways. The coexistence of
alternative philosophies which cannot be made equivalent to another and require active
cooperation to be harmonized with another (sort of “points of view”) and the above mentioned
degree of arbitrariness which is inherent to the synthesis task makes this issue to the perfect
terrain to develop teaming.

2. STATE OF THE ART

Before presenting the approach discussed in this paper, the historical outline and state of the art 
of research will be briefly presented. 
The wish to automate synthesis existed for a very long time. With the development of computer 
technology in the last century, the first approaches to automation were developed. Initially, 
these were mainly analytical designs of individual product features within a defined range 
(dimensional optimizations). With the progress of computer technology and in particular of 
computer-aided optimization, the focus of automated design moved to optimization-based 
approaches. In those approaches, one particular feature of the searched design is chosen as a 
quantity to be minimized or maximized, while a set of restrictions are to be fulfilled. If more 
than one quantity is to be maximized or minimized, a multi-objective problem is created, in 
which the targets are mixed in some way. Optimization-based approaches distinguish between 
deterministic methods (hill-climbing [11] or gradient methods) and stochastic methods 
(evolutionary algorithms [12, 13], neural networks, swarm techniques, etc.) [14]. 
Among optimization-based approaches, topology optimization (TO) deals with the search of 
optimal distribution of material over a given design domain. In mono-material topology 
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optimization the material of which the structure is to be build is a constant of the problem, and 
the geometry remains unknown. 
In stiffness optimization, the function to be minimized is usually the scalar measure of structural 
compliance. In addition, a condition on material quantity (degree of filling) must be fulfilled. 
This material quantity corresponds to the fraction of the maximum possible amount of material 
The minimization of compliance results in maximizing the stiffness [15, 16]. Typically 
considered restrictions are the available design domain, the static and kinematic boundary 
conditions for the regarded load cases as well as strength thresholds. 
There are numerous possible approaches to TO [17]. According to the “Solid Isotropic Material 
with Penalization” (SIMP) approach of Bendsøe [15], a subdivision of the design domain into 
elements takes place. A factor, yet to be determined (density), scales the contribution of each 
element to the overall stiffness of the structure. Today, engineers commonly use topology 
optimization during product development to generate an initial design [18, 19]. However, the 
traditional iterative calculation method is time-consuming and requires significant 
computational power. Some newer approaches use artificial intelligence (AI) to speed up the 
process [20], but they still depend on the availability of pre-optimized data in sufficient quality 
and quantity. 

3. APPROACH

This contribution proposes an alternative AI-based design method that does not rely on pre-
optimized data. Instead, an artificial neural network (the predictor) generates designs based on 
input data such as boundary conditions and degree of filling. During the training phase, the 
predictor is fed by random input data and learns how to create optimized designs by supervision 
operated by so-called evaluators. They assess the predictor’s output according to given criteria 
and provide the error function which controls the learning process. Once training is complete, 
the AI-assisted design method produces designs that are comparable to those generated by 
conventional topology optimizers but with a fraction of the computational effort. 

4. THE PEN-METHOD

The PEN-Method (PEN is an acronym for Predictor-Evaluator-Network) is an AI-based method 
devised for synthetizing optimal topologies. In its original form, the method was published in 
[20]. The underlying optimization problem consists in the search of the geometry of maximum 
stiffness within a given design domain and under fulfilment of a volume constraint. The 
geometry is parameterized by subdividing the design domain into small regions (elements) and 
by scaling the stiffness of each element by an individual factor (density) which can take, for a 
real structure, the values 0 (no material) or 1 (full material). Intermediate values have no 
physical meaning and are accepted for algorithmic reason, but made unfavorable by a proper 
penalization technique. After the optimization is completed, the intermediate values are 
eliminated during a post-processing step. When performed by a classic optimization procedure, 
the synthesis process accepts, for a given design domain and a given discretization, the 
boundary conditions (fixed displacements and given forces) as well as the so-called degree of 
filling (which percentage of the available volume can be filled by material) and provides the 
density values of the single elements as results. 

An AI-based approach aims to model this input-output relationship by a parametric algorithm 
(e.g. an artificial neural network – ANN), whose parameter are determined by proper training 
based on available data. The most obvious way of realizing such an objective is to provide a 
large number of data sets (input values with the corresponding optimal geometry) by 
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conventional optimization and use them for the training process [9]. Examples of applications 
of this principle were already present in the literature at the time at which the PEN method was 
developed. The method adopted an innovative strategy which avoids the cumbersome and 
somehow problematic task of providing pre-optimized data. 

The method is based on the interaction between a trainable ANN named predictor, which is in 
charge of generating the optimal geometries based on data sets, and a proper number of 
evaluators, which are in charge of supervising the predictor’s training. Each evaluator assesses 
the outputs of the predictor with respect to a certain criterion and returns a corresponding scalar 
value as measure of the criterion's fulfilment. The predictors’ outputs are combined in a single 
value which serves as error function. During the training, the predictor is fed by randomly 
generated data sets and its parameter are optimized with the error function as objective. 

4.1 Predictor 

The predictor is based on a Deep-Learning (DL) architecture consisting of multiple hidden 
layers, convolutional layers and output layers. Different activation functions were used in the 
different layers. the trainable parameter of the predictor are the weights and the bias of the 
single layers as well as the parameters of the activation functions. In the output layer, the 
sigmoid function is used, which provides results in the interval (0,1) and therefore makes the 
predictor's output directly suitable to describe the densities. 

4.2 Compliance evaluator 

The task of the compliance evaluator is the computation of the global mean compliance which 
provides a scalar measure of the structure’s stiffness. It performs this calculation on a FEM-
based procedure. The global mean compliance c  is defined as follows: 

T Tc = =u ku u f  (1) 

where k  is the stiffness matrix, f  the force vector and u  the displacement vector. 

4.3 Degree-of-filling evaluator 

The task of this evaluator is to determine the deviation of the degree of filling isM  from the 
target value tarM as follows: 

tar isM M M= − (2) 

By considering the filling degree's deviation M  in the objective function, the predictor is 
penalized by the extent that it deviates from the target degree of filling tarM . 

4.4 Filter evaluator 

The filter evaluator searches for checkerboard patterns in the geometry and outputs a scalar 
value [ ]0,1F ∈  that measures the amount and extent of checkerboard patterns detected.
Checkerboard patterns consist of alternating high and low density values of the geometry. They 
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are undesirable because they do not reflect the optimal material distribution and are difficult to 
transfer to real parts. This is realized by discrete convolution. 

4.5 Uncertainty evaluator 

When calculating the density values of the geometry, the predictor should, as far as possible, 
focus on the limit values 0 and 1 and penalize intermediate values. The deviation from this goal 
is expressed by the uncertainty evaluator with the output: 
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where eN  is the number of elements, ix  the density of the i -th element and a  a process 
parameter. 

4.6 Objective function 

The quality function 

( )( )( )( )1 1 1 1Qf c M F P= α + β + γ + δ + (4) 

with , ,α β γ and δ as process parameters. In order to speed up the process and avoid numerical 
instabilities, the quality function is computed for a large number of geometries and averaged, 
which leads to the objective function: 

( )( )( )( )
1

1 1 1 1 1
nb

i i i i
in

J c M F P
b =

= α + β + γ + δ +∑ (5) 

4.7 Results 

The PEN method was implemented in the programming language Python and tested with 
conventional optimized geometries as benchmarks. These geometries were obtained by the “88 
lines of code“ (top88), made available by Andreassen et al. [21]. The training processed 
approximately 7.6 million randomly generated training data sets. 

The results were validated using 100 randomly generated input data sets (validation data), 
which were not part of the training. The corresponding optimized geometries were 
conventionally calculated by the top88 algorithm. The results of the comparison are shown in 
Figure 2. 
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Figure  2 Computing time (left) and compliance (right) comparison [20]. 

On average, the PEN method delivers similar results to the ones obtained by conventional 
optimization in about 7.3 ms, while the conventional optimizer requires, on average, 1.9 s (and 
is, therefore, roughly 259 times slower); see Figure  2 left. It can also be seen that the majority 
of geometries generated by PEN have a compliance that is close to the geometries generated by 
top88; see Figure  2 right. 

In  Figure  2 a comparison between geometries obtained by the PEN method and top88 is shown. 
Some deviations can be seen (e.g. column four or five). The results can be improved by an 
enhanced choice of layers or hyperparameters of the predictor and by adapting the objective 
function. For all sample geometries in Figure  3, the compliance is reported under the geometry 
diagram. 

Figure  3 Sample geometries: (a) PEN (b) top-88. [20] 
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5. CONCLUSION

The PEN method is able to generate topology-optimized geometries without any need of pre-
optimized data for the training. The generated geometries are, in most cases, very similar to the 
results of conventional topology optimization.  
The PEN-based optimization is much faster than the conventional one, due to the fact that the 
computing-intensive part is shifted into the training.  
The method was tested for the 2D case up to an output resolution of 64 × 64. This choice is not 
a limitation of the method and can be improved by using better hardware for training or by 
high-performance computing. 
In cases in which conventional optimization is possible, we expect that the PEN method is able 
to deliver comparable solutions, like in the analyzed application. However, the PEN method 
could prove superior in handling applications and optimization problems of higher complexity, 
such as those involving stress limitations or those dealing with the design of compliant 
mechanisms. This expectation is related to the fact that no optimized data are needed. All 
methods that process pre-optimized data suffer from the difficulties encountered by 
conventional optimization while managing the above-mentioned problems. Because the PEN 
method works without optimized data, it could also be applied to problems that have no optimal 
solutions or solutions that are hard to calculate. 
The PEN method shows the potential of AI-based solutions for teaming in product 
development. Further research activities address the development of common and aligned goals 
as well as the extension of the approaches to other synthesis tasks. 
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