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ABSTRACT 

Operating current advanced production systems, including Cyber-Physical Systems, often 

requires profound programming skills and configuration knowledge, creating a disconnect 

between human cognition and system operations. To address this, we suggest developing 

cognitive algorithms that can simulate and anticipate teaming partners' cognitive processes, 

enhancing and smoothing collaboration in problem-solving processes. Our proposed solution 

entails creating a cognitive system that minimizes human cognitive load and stress by 

developing models reflecting humans individual problem-solving capabilities and potential 

cognitive states. Further, we aim to devise algorithms that simulate individual decision 

processes and virtual bargaining procedures that anticipate actions, adjusting the system’s 

behavior towards efficient goal-oriented outcomes. Future steps include the development of 

benchmark sets tailored for specific use cases and human-system interactions. We plan to refine 

and test algorithms for detecting and inferring cognitive states of human partners. This process 

requires incorporating theoretical approaches and adapting existing algorithms to simulate and 

predict human cognitive processes of problem-solving with regards to cognitive states. The 

objective is to develop cognitive and computational models that enable production systems to 

become equal team members alongside humans in diverse scenarios, paving the way for more 

efficient, effective goal-oriented solutions. 

Index Terms - Human-machine teaming, cognitive modeling, problem-solving, goal-

oriented-solutions, benchmark 
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1. INTRODUCTION 

 

The fourth industrial revolution, known as “Industry 4.0”, has catalyzed a significant 

transformation in manufacturing practices. This transformation is marked by the integration of 

technologies such as the Internet of Things (IoT), data analytics, and machine learning. These 

technologies have endowed automation components with intelligence and established a 

distributed data environment. This has fundamentally altered traditional manufacturing 

processes [33]. 

 

However, the use of these advanced production systems often requires a comprehensive 

understanding of the system. This includes knowledge of the heterogeneously distributed 

functions across the system components, and specialized knowledge of system configurations 

and programming. As a result, these systems are predominantly viewed as “smart tools”. This 

perspective differentiates them from their users and creates a divide between “operator” and 

“smart tool”, following the old but powerful idea of men-are-better-at, machines-are-better-at 

(MABA-MABA) lists of Fitts [19]. In this line of thought, operators are trained to develop more 

skills and to acquire more knowledge and machines are engineered that become more and more 

powerful over time [14]. On the other hand, this approach may foster a paradigm of task 

substitution without considering either variation of strengths and weaknesses in systems and 

people or additional cognitive demands through increasing complexity of supervisory control 

tasks [13]. 

 

Today, humans and machines takeover parts of tasks, but they do not work together as equal 

partners in a productive team. This partly originates in a discrepancy between the cognitive 

operations of human users and the intrinsic attributes of these systems, sometimes described as 

difficulties in “cognitive coupling” [6]. This disconnection can impact the experienced sense of 

agency in humans when working with the system, and thus impact trust and acceptance towards 

the system, leading to a diffusion of responsibility, increased stress consequently cognitive load 

[6] [30]. High cognitive load decreases human efficiency in various aspects [23], which can be 

relevant when working with technical systems. Long periods of training are additionally needed 

to gain the necessary expertise for engaging in working with complex systems. 

 

One approach to avoid high cognitive load is to leave the MABA-MABA list line of thinking 

by trying to transform systems into true team members. Having two team partners instead of an 

operator and a (smart) technical system bears the potential to create collaborative working 

environments in which humans can interact with their technical team partners in the way they 

would do with other humans. We expect this to lower the length of initial training phases and 

increase the efficiency of human-system collaboration. To do so, technical systems should be 

augmented with aspects of human cognition. Cognitive algorithms have the ability to emulate 

and predict certain aspects of human cognition [20]. Examples include large language models 

(LLM) like GPT4 [35] for language processing, Convolutional Neural Networks (CNNs) [53] 

for image and pattern recognition, and Deep Neural Network models (DNNs) [17] for 

predicting human behavior. The aim is to establish a cognitive system that reduces the cognitive 

demands on human users by both taking over certain cognitively demanding aspects of a task 

or intertwining with human cognitions (mentioned “cognitive coupling”), thereby fostering a 

more integrated and effective workflow, and facilitating inherent problem-solving processes.  

 

The necessity for such systems is emphasized by the complexities faced in real-world assembly 

systems, considering the variance and interference in assembly processes. These complexities 

include tracking the adaptability of assembly workers, optimizing assembly line planning and 
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configuration, managing large amounts of data from multiple sensors, and maintaining effective 

communication and safety within the assembly environment [34]. 

 

Artificial Intelligence (AI) has demonstrated power to resolve such complexities, offering 

substantial cost reductions and efficiency improvements. For example, AI can be implemented 

to help workers with digital work instructions, guiding them through complex assembly 

processes, thereby relieving their working memory load. Real-time data analytics may lead to 

individual fitting of working tasks and procedures to maintain the workers high level of 

attention and medium levels of cognitive load [11]. In a small-scale pilot-study Shin and Prabhu 

[43] compared the effects of an AI-based support system and a Fault Tree (FT) based support 

system on peoples’ ability to diagnose errors of a proximity sensor that mimicked a part of a 

real-world industrial machine. They found that the AI-based support system led to a decrease 

of 55% in time needed compared with the FT-group. In addition, participants reported lower 

levels of cognitive load with the AI-based support system compared with participants who used 

the FT-based support system. Additional work by Hudon et al. [24] revealed that cognitive load 

of operators decreases when these operators understand the decisions and actions of the AI 

systems. 

 

The primary objective of this research is to design cognitive and computational models that 

empower intelligent production systems to operate as equal team members alongside their 

human counterparts in a variety of scenarios, leading to increased efficiency and effectiveness 

of goal-oriented solutions [46]. A proposal of elements to incorporate in such a production 

system is shown in Figure 1. The potential impact of this research direction on the evolution of 

production systems is significant, indicating a shift towards more human-oriented and 

cognitively advanced systems. 

 

2. BACKGROUND AND RELATED WORK 

 

As our focus lies on the development of cognitive algorithms for industrial production systems, 

it is essential to understand the technological milieu within which our research is situated. This 

milieu is heavily impacted by the convergence of several technological advancements, 

including IoT, data analytics, machine learning, and companion systems, which have 

collectively led to a shift from traditional to Cognitive Production Systems (CPS). CPS 

incorporate elements of cognition that help grasping the complexities of real-world problems. 

These complexities range from monitoring the adaptability of workers to managing vast 

amounts of data, including live data from various sensors [22]. Nevertheless, while CPS have 

brought significant enhancements to production systems, they still face challenges, especially 

regarding intertwining cognitive operations with those of humans. 

 

A potential strategy to alleviate these challenges lies in the creation of modular and scalable 

Cognitive Architectures for Artificial Intelligence (CAAI) in CPS. These architectures could 

support a learning system capable of independently selecting suitable algorithms, thus 

minimizing the need for expert intervention [18] [45]. 

 

However, safety assurance in CPS, especially in critical applications such as automated 

systems, remains an area of concern. Researchers have proposed multi-faceted approaches that 

go beyond technical measures to include human factors, management and operations, and 

governance and regulation [4] [28] [32]. 
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Figure 1 (own representation): Summary of key capabilities required for an effective cognitive system. These capabilities span 

across three main areas: Cognition, Teaming, and Problem-Solving. Cognition involves understanding the cognitive 

architecture of the human partner, modeling their knowledge and inference mechanisms, and the ability to share goals. Teaming 

requires adherence to the Observe-Predict-Direct principles, effective communication, and adaptability to the user. Problem-

Solving encompasses domain-specific and general mechanisms to represent and solve problems, handling multiple objectives 

and constraints, and the ability to perform Test-Operate-Test-Exit (TOTE) cycles. Cognitive modeling, which occurs at the 

intersection of cognition and its algorithmic realization, serves as a bridge between humans and systems. 

 

AI becomes highly relevant when it comes to potential disruptions in the process to support 

humans. A machine can support its human teaming partner by (i) providing respective 

information (the help-as-needed approach), (ii) providing users with help in problem solving, 

and (iii) supporting them in epistemic (re-)planning. 

 

Support in problem-solving process requires that the human knows the initial state including its 

variance (e.g., the components to be assembled may be present with different desired and 

undesired properties, results of initialization of the production system, etc.) as well as the target 

state (e.g., assembly result, permissible energy consumption, etc.) [47]. Moreover, Meyer [37] 

investigated the effect of knowledge distribution in a Complex Problem-Solving Scenario 

(Tailorshop) between experimental participant dyads. It was shown that in the subsequent 

individual processing of the tailor store, groups that exhibited medium knowledge 

heterogeneity in advance showed the best performance measured by the profit made in the tailor 

store. In complex problem-solving tasks, the developer/programmer transfers the problem into 

a mental model suitable for him/her to systematically create the solution. This always involves 

Test-Operate-Test-Exit (TOTE) cycles [39] with definitions and detailings of the necessary 

functions and their implementation as well as their evaluation [25]. For humans, this iterative 

work is essential, as the problems always have a multiplicity of objectives, so in addition to 

basic functions of the production system, the numerous parameters must always be optimized 

in such a way that numerous other properties can be implemented (e.g., permissible vibrations, 

reproducibility, usability, etc.) [21] [48]. During the implementation of machine development 

and programming, the challenge arises that the analysis and evaluation can only be implemented 

in a target-oriented manner when a corresponding virtual verification or physical 

implementation has been performed [36]. In the case of a physical implementation on a real 

machine, machine-related constraints must be considered - for example, a source code should 

only be executed on a machine if it can be ensured that it will not cause any damage.  
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Action planning in AI has recently shifted towards epistemic planning, taking knowledge and 

beliefs of agents into account [5] [9]. In short: Epistemic planning is automated planning with 

theory of mind reasoning, i.e., considering the mental states of human agents in the computation 

process. This is relevant in multi-agent-scenarios where only decentralized information with 

restricted communication is possible. To model this formally Bolander et al. [10] have 

developed a Dynamic Epistemic Logic (DEL), a semantic (where states are represented by 

models), and implicit approach, i.e., the initial state and an action library are given.  The 

computational complexity for finding a restricted subclass of DEL (with a propositional 

precondition in operators), an optimal plan, is PSPACE-complete [10].  In a recent test, the 

implicit coordinated planner [38] in a round-based testing was able to find all existing solutions, 

for two to three agents in seconds and almost no solution for 4 and 5 agents. While using a 

cognitively inspired algorithm [7] and heuristics the performance dropped to about 95% in two 

agent scenarios, and then with each additional agent for additional 5%, the solution times were 

orders of magnitudes smaller (about 5 ms per number of agents per scenario). Hence, 

cognitively inspired algorithms cannot only make a substantial contribution to solving such 

scenarios, they are closer to actual human processes and can offer a formal way to model the 

underlying processes in epistemic planning. 

 

Johnson and Bradshaw [27] have identified three key factors as fundamental conditions for 

teamwork between humans and machines, which are like those for human-only teams: 

Observability, Predictability, and Directability (OPD). They are described as facilitating 

properties and efforts for effective teamwork and pose prerequisites for teaming as they lay the 

groundwork for understanding a situation, recognizing the contextual environment, and 

identifying each other's state and intentions. Observability involves mutual understanding and 

observation of each member's tasks, intentions, environment, and status within the team. 

Predictability allows team members to anticipate each other's behavior, states, and intentions, 

fostering trust and acceptance, and enabling the team to adapt to evolving needs and goals. 

Directability pertains to the ability to influence and be influenced by others in the team, 

including the delegation of roles and responsibilities or offering advice or resources, while 

considering the team's environment and each member's state. Converging these capabilities into 

machines' cognitive architectures for teaming situations allows them and their team members 

to align shared goals, strategize specific actions, and effectively collaborate on an operational 

level, forming a vital basis for mutual support, trust, and acceptance. 

 

Action and discourse coordination depend on the personal state of human team members. Here, 

relevant dispositions [16] and timing factors [44] for action coordination have been identified. 

Multimodal observations of affective and attentional states, their change and team dynamics 

lead to a construction of a user-adaptive interfacing in the spirit of companion technology [8]. 

This type of interaction comes with models of team dynamics, specifically shared mental 

models (for the area of cognitions) about the expected success of the team as well as 

communication and cooperation strategies (behavior), which also allows for a joint approach in 

hybrid teams to adapt and define strategies of action and planning [51]. Structured discourse 

representations and flexible dialogue models implement policies for choosing the 

means/strategies for coordination and alignment of artificial and human team members which 

all appear as peers [50]. 

 

The development of cognitive algorithms for CPS is a suitable research direction to tackle the 

above-mentioned challenges. Such algorithms have the potential to harmonize cognitive 

operations of CPS with those of human users, thereby reducing cognitive demands and fostering 

effective problem-solving processes. In the forthcoming sections, we will expound upon these 
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topics, detailing the current state of research, identifying gaps, and proposing future research 

directions in the field of cognitive algorithms for industrial production systems. 

 

3. PROPERTIES OF A COGNITIVE ALGORITHM TO SIMULATIE AND 

ANTICIPATE A HUMAN TEAMING PARTNER IN UNCERTAIN SITUATIONS 

 

One core aspect that enables smooth interactions between humans is the so-called cognitive 

theory of mind, i.e., the capability to reason about beliefs, knowledge, and intentions of another 

person). Through this reasoning process, less direct communication is necessary and subgoals 

and solution steps can be assumed. Hence, for collaborative problem-solving this capability to 

reason about what the other may or may not know, can significantly increase the efficiency in 

solving problems. Humans can infer the ToM of another human being because they are similar. 

It has even been reported that humans do ascribe a ToM to some animals [31] and even robots 

[3]. One can assume that human-machine teams may benefit from some form of machine theory 

of mind [42]. 

 

Machine-based ToM aims at embedding artificial systems with the capacity to perceive and 

attribute mental states like beliefs, intentions, and knowledge, integral for effective teamwork 

[42]. This includes discerning intentions for synchronizing goals [47], attributing beliefs to 

manage disparate knowledge landscapes, adopting perspectives to optimize task allotment, and 

recognizing deception and trust to bolster problem-solving precision [26] [12]. Learning 

cooperative behavior in multi-agent scenarios is a challenge at machine-based ToM because 

the complexity and dynamics of the state space while simultaneously adapting other agents 

result in non-stationarities (e.g., drift). Current work in this context only considers small teams 

(<5 agents) and is based on a variety of simulations in which approaches using hierarchical 

Reinforcement Learning or Deep-Reinforcement Learning [1] have achieved promising results 

[39]. Resource adaptive theory of mind capabilities [41] have been studied, as well as predictive 

algorithms for the interpretation and production of socio-intentional actions [29] [52]. As the 

integration of ToM in machines involves data-driven learning, there is high demand for suitable 

kinds of data. Shared focus and objectives align algorithmic operations with team aims. Ethical 

implications, predominantly privacy-related, are essential. 

 

The benefits of ToM-integrated machines potentially lie in enhanced teamwork efficiency, 

problem-solving ability, and human-machine interfacing. However, challenges encompass the 

technical intricacy of implementing ToM and the ethical dilemmas revolving around privacy 

and potential data misuse. Regardless of these barriers, exploring ToM in machines opens 

promising avenues for understanding and applying AI. A system must be able to understand 

how its interaction partner processes information, reasons, and what respective beliefs might 

be. To develop a system that can take cognitive states into account to allow smooth interaction. 

We are not focusing here on the human part that may or may not understand the system. We 

will outline what a cognitive algorithm must be capable of - one that goes beyond a pure AI 

problem solver. 

 

We humans have a naive understanding of another person's psychology. We know from 

introspection that we have a memory (that can make it easy or difficult to retrieve information), 

that we have reasoning and decision-making capabilities (including potentially different 

systems, and sometimes even deviating from optimal solutions due to a lack of concentration 

or biases), and that we can communicate to gather further information. There are specifically 

human ways to do this. A cognitive algorithm must take these into account. In the following, a 

selection of these will be briefly outlined. 
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If we want to equip systems with a theory of mind module, we need ways to formulate the 

theory of mind via an algorithm. Hence, we will consider some of the requirements of such 

cognitive models. 

 

Causal cognition is of central importance for our conception of the world. It goes without saying 

that everyday life as well as technology and science heavily rely on causal inferences, such as 

explanations and predictions. Causal thinking comes as naturally as our three-dimensional 

vision or our sense of time. From a causal model, predictions as well as explanations can be 

deduced when information matches the rules. Here, the covariation between two events is 

crucial for a causal relation. However, research by Drewitz and Brandenburg [15] revealed that 

if peoples’ causal models are devalued in a few specific instances, other causal models for 

which people did not perceive negative evidence were equally affected. Thereby, the authors 

argue that peoples’ models of cause and effects do not exist separately in their minds but are 

instead interrelated. Cognitive models that are implemented in technical systems should 

consider this. 

 

The central role of memory has been investigated in a widespread range of tasks. There is much 

evidence showing that especially declarative memory accounts for human performance usually 

seen as smart or intelligent behavior [2]. Research revealed that causal learning and causal 

reasoning is largely based on declarative memory as well [15]. Decision-making under 

uncertainty is an example where human performance relies on declarative memory. Human 

behavior in such situations can be explained by retrieving instances of memory. Drewitz and 

Brandenburg [15] found that changes in context of decisions lead to lower levels of peoples’ 

confidence in their decisions and knowledge. This effect should also be considered by technical 

systems. 

 

4. DISCUSSION AND CONCLUSION 

The proposed enhancement of cognitive production systems (CPS) by incorporating elements 

of human cognition aligns with the current trend in the field but takes it a step further by 

suggesting a more cohesive problem-solving approach. We argue that integration of cognitive 

algorithms and artificial intelligence (AI) in industrial production systems can significantly 

improve collaboration between humans and machines. A central aspect of this improvement is 

the incorporation of a machine-based theory of mind into cognitive algorithms. This theory of 

mind, which involves the ability to perceive and attribute mental states like beliefs, intentions, 

and knowledge, could significantly enhance the ability of AI systems to work effectively with 

humans. However, implementing a machine-based theory of mind presents technical challenges 

and raises ethical dilemmas revolving around privacy and potential data misuse.  

Another key aspect is the role of memory and causal cognition in human intelligence and 

decision-making. By incorporating these factors into cognitive algorithms, we could improve 

the ability of these algorithms to emulate and predict human cognition, potentially transforming 

how humans interact with production systems and reducing the need for expertise. 

The shift towards epistemic planning in AI, which involves taking the knowledge and beliefs 

of agents into account, could also influence the development of cognitive algorithms. This shift 

presents both potential benefits, such as improved decision-making, and challenges, such as the 

increased complexity of the state space. 
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Effective teamwork between humans and machines is another crucial aspect. By incorporating 

key factors for effective teamwork, such as observability, predictability, and directability, into 

cognitive algorithms, we could improve human-machine interaction and foster a more 

integrated and effective workflow. 

Finally, the real-world applications and challenges of cognitive algorithms should be 

considered. The complexities faced in real-world assembly systems, such as tracking the 

adaptability of assembly workers and managing large amounts of data, highlight the potential 

of AI and cognitive algorithms to resolve these complexities and enhance the efficiency and 

effectiveness of production systems. 

This paper contributes to the existing knowledge base by providing a new insight into human-

machine interaction and a novel approach to addressing the challenges faced by complex 

production systems. It also confirms previous research on the potential of AI and cognitive 

algorithms in enhancing the efficiency and effectiveness of production systems. 

The proposed approach is theoretical and needs to be validated through empirical research. The 

complexity of human cognitive processes and the challenge of accurately simulating them in 

cognitive algorithms are significant limitations. The effectiveness of the proposed approach 

may also vary depending on the specific use cases and human-system interactions. Future 

research could focus on developing and testing cognitive algorithms that accurately simulate 

human cognitive processes. It could also explore the development of benchmark sets for various 

use cases and human-system interactions. Further research is also needed to validate the 

effectiveness of the proposed approach in real-world scenarios and to explore ways to overcome 

the identified limitations. 

In conclusion, this research proposes a transformative approach to industrial production 

systems, aiming to foster a more seamless and efficient collaboration between humans and 

machines. The potential impact of this research direction on the evolution of production systems 

is significant, indicating a shift towards more human-oriented and cognitively advanced 

systems. It is hoped that this work will inspire further exploration and development in the field 

of cognitive algorithms for industrial production systems. 
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