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Abstract

Yang-Mills theory is a non-Abelian field theory that constitutes the cornerstone of the strong
interaction (QCD) and is at the core of the unification of electromagnetic and weak interactions
(electroweak). Developing an approach which can monitor and extract its physical properties
at all energy scales, while at the same time maintain certain desired symmetries is a task that
is as challenging as it is interesting. In this thesis, we concentrate on the sector of QCD that
does not include quarks, i.e. pure Yang-Mills, for which we investigate different BRST-invariant
realizations in perturbative and non-perturbative settings. Such an analysis yields information
regarding long-range physics and the effect of BRST symmetry.

Following the off-shell prescription of the Faddeev-Popov quantization, we set up a gauge-
fixing action that is linear in the gauge-fixing condition by choosing instead of the conventional
Gaussian, a Fourier weight. This comes at the expense of introducing an external Nakanishi-
Lautrup field v. The v field can be considered as a spacetime-dependent set of gauge parameters
in the adjoint representation. Then, by employing the background field method we construct an
IR regulated background and BRST-invariant action. This is achieved by an appropriate choice
of a non-linear gauge-fixing condition that includes regulator-mass parameters.

Following a one-loop perturbative analysis, we find no v-field dependencies for the one-loop
effective action which leads to the universal one-loop beta function. The effects of the mass pa-
rameters are explored with a phenomenological study of the effective action. Then, we infer that
the inclusion of BRST-invariant mass parameters suffices to cure the Nielsen-Olesen instabilities
for constant magnetic backgrounds within a certain range of validity. Furthermore, assuming
covariantly constant and self-dual backgrounds, we circumvent such tachyonic modes and we
observe the presence of a non-trivial minimum which is justified as a manifestation of dynamical
breaking of scale symmetry.

An explicit investigation of the v-field dependence as it appears in the one-loop Schwinger
functional reveals no additional divergences coming from nonlocal interactions. Furthermore,
we classify all possible forms of the associated two-point v-dependent correlator, which vanish
in the limit of the Landau gauge.

Finally, we concern ourselves with the extension of our model to mass-dependent renormal-
ization schemes and more precisely within the functional Renormalization Group. For that, we
promote the mass parameters to regulators that are introduced in our theory through suitable
non-linear gauge-fixing conditions and we construct truncated flow equations compatible with
BRST symmetry at any scale. In the absence of a background field, we derive a v-dependent
beta function that can be aligned with the universal one-loop beta function by averaging the v
field with an appropriate Gaussian distribution. In the presence of a background field, we find a
truncated flow equation which is similar to the one found in the literature and reproduces proper
universal results without any further restrictions.
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Zusammenfassung

Die Yang-Mills-Theorie ist eine nicht-abelsche Feldtheorie, die den Eckpfeiler der Starken Wech-
selwirkung (QCD) bildet und den Kern der Vereinigung der elektromagnetischen und der schwachen
Wechselwirkung (elektroschwach) darstellt. Die Entwicklung eines Ansatzes, mit dem die physikalis-
chen Eigenschaften der Theorie auf allen Energieskalen überwacht und extrahiert werden kön-
nen, während gleichzeitig bestimmte gewünschte Symmetrien erhalten bleiben, ist eine ebenso
anspruchsvolle wie interessante Aufgabe. In dieser Arbeit legen wir den Fokus auf verschiedene
BRST-invariante Realisierungen in perturbativen und nicht-perturbativen Einstellungen in dem
Sektor der QCD, der keine Quarks enthält, d.h. die reine Yang-Mills-Theorie (pure Yang-Mills
theory). Eine solche Analyse liefert Informationen über die Langstreckenphysik und den Effekt
der BRST-Symmetrie.

In Anlehnung an die Off-Shell-Vorgehensweise der Faddejew-Popow-Quantisierung richten
wir eine Eichfixierungswirkung ein, die linear zur Eichfixierungsbedingung ist, indem wir eine
Fourier-Gewichtung anstelle der konventionellen Gauß-Gewichtung wählen. Dies geschieht auf
Kosten der Einführung eines externen Nakanishi-Lautrup Feld v. Das v-Feld kann als raumzeitab-
hängige Menge von Parametern zur Eichfixierung in der adjungierten Darstellung betrachtet wer-
den. Dann konstruierenwirmit Hilfe der Hintergrundfeldmethode eine IR-regulierte, Hintergrund-
und BRST-invariante Wirkung. Dies wird durch eine angemessene Wahl einer nichtlinearen Eich-
fixierungsbedingung erreicht, die Regulatormassenparameter enthält.

Nach einer Störungsrechnung der Ein-Loop-Ordnung finden wir keine v-Feld-Abhängigkeiten
für die effektive Ein-Loop-Wirkung, die zur universellen Ein-Loop-Betafunktion führt. Die Auswirkun-
gen der Massenparameter werden mit einer phänomenologischen Studie der effektiven Wirkung
untersucht. Daraus folgern wir, dass die Einbeziehung von BRST-invarianten Massenparametern
ausreicht, um die Nielsen-Olesen-Instabilitäten für konstante magnetische Hintergründe inner-
halb eines bestimmten Gültigkeitsbereichs zu heilen. Unter der Annahme von kovarianzkonstan-
ten und selbstdualen Hintergründen umgehen wir außerdem solche tachyonischen Modi und
beobachten das Vorhandensein eines nicht-trivialen Minimums, welche als eine Manifestation
der dynamischen Brechung der Skalensymmetrie zu begründen ist.

Eine explizite Untersuchung der Abhängigkeit vom v-Feld, wie sie im einteiligen Schwinger-
Funktional auftritt, zeigt keine zusätzlichen Divergenzen aufgrund nicht-lokaler Wechselwirkun-
gen. Außerdem hinaus klassifizieren wir alle möglichen Formen des zugehörigen 2-Punkt-v-
abhängigen Korrelators, welche im Limes der Landau-Eichung verschwinden.

Schließlich reformulieren wir unser Modell für massenabhängige Renormierungsschemata
und zwar innerhalb der funktionalen Renormierungsgruppe. Dazu machen wir die Massenpa-
rameter zu Regulatoren, die in unserer Theorie durch geeignete nichtlineare Eichfixierungsbe-
dingungen eingeführt werden, und konstruieren wir trunkierte Flussgleichungen, die mit der
BRST-Symmetrie auf jeder Skala kompatibel sind. In Abwesenheit eines Hintergrundfeldes leiten
wir eine v-abhängige Betafunktion ab, die mit der universellen Ein-Loop-Betafunktion in Ein-
klang gebracht werden kann, indem das v-Feld mit einer geeigneten Gauß-Verteilung gemittelt
wird. Unter Berücksichtigung eines Hintergrundfeldes finden wir eine trunkierte Flussgleichung,
die die richtigen universellen Ergebnisse ohne weitere Einschränkung reproduziert und mit der
Literatur übereinstimmt.
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CHAPTER 1

Introduction

The journey for a complete description of the fundamental constituents of Nature has led us to
the conclusion that all visible matter is composed of a few basic building blocks, known as the
elementary particles, governed by the four fundamental forces. These four fundamental forces of
Nature are the gravitational, electromagnetic, weak and strong forces. According to our current
understanding, the gravitational force emerges from the curvature of spacetime, while the other
three forces are mediated by bosonic force-carrier particles between the fundamental fermions
that constitute the matter particles and contribute over different energy ranges with varying
strength.

The successful integration of the electromagnetic, weak, and strong forces within a unified
theoretical framework, known as the Standard Model (SM) of particles, represents a significant
achievement of theoretical physics in our quest to comprehend the workings of Nature. The
development of the SM is predicated on the preservation of certain symmetries, which play a
critical role in its construction. As it turns out, the model is described by gauge theories that are
invariant under certain local gauge transformations.

The SM enjoys a far-reaching compatibility between theoretical predictions and experimental
observations in the subatomic world. Notably, the discovery of the Higgs boson [1, 2] was a major
triumph for the SM, as it was conjectured to be responsible for particle mass generation [3–5].

Quantum Chromodynamics (QCD) encodes the physical content of strong interactions in the
SM. The force-carrier particles of the strong interactions are called gluons, while the matter par-
ticles are referred to as quarks. Together, they build up hadrons, such as the proton and the
neutron.

Several interesting phenomena arise from the study of QCD at different energy scales. At
short-range scales, the coupling strength weakens and renders the theory asymptotically free, as
was first discovered by Politzer, Gross & Wilczek [6, 7]. However, at lower energies (long-range),
perturbation theory exhibits a Landau pole, i.e. the coupling strength diverges at a finite energy
scale ΛQCD ∼ O(100)MeV. Such a breakdown does not indicate a pathological inconsistency of
the theory but rather a limitation of the perturbative methodology used to describe the physics at
these scales. Consequently in this infrared (IR) energy regime, non-perturbative (in terms of the
coupling) methods should be employed. Another interesting aspect which arises in this energy
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regime of QCD is the origin of mass generation which is associated with both the quark and the
gluon sectors.

The origin of the mass generation in the quark sector can be understood by comparing the
masses of light hadrons with their current quark masses, acquired through the Higgs mechanism.
Given that the current quarks account for only a small fraction of the hadron’s total mass, the
bulk of the mass is attributed to QCD binding energy obtained from chiral symmetry breaking.
Such mass generation has been investigated with various approaches [8–13].

For the gluon sector, this problem is tied to gluon (color) confinement which in turn is related
to the emergence of a mass gap in pure Yang-Mills (YM), i.e. QCD without quarks. Such phenom-
ena are less understood and manifest themselves in the correlation functions at the IR energy
regime. Therefore, a sophisticated description of pure YM and its building blocks as described by
the correlation functions at different energy scales needs to be developed.

For (pure) YM theory, in order to determine finite gauge invariant quantities, the Faddeev-
Popov (FP) method is generally employed. Following this procedure, one imposes an appropriate
constraint equation which affects the field configuration space, so that as many symmetries of
the non-gauge fixed action pass over to the corresponding gauge-fixed action. Additionally, the
resulting action should be unitary. The gauge-fixing method is based on the underlying philoso-
phy that one can impose a constraint condition that appropriately selects a unique representative
of each gauge-equivalent field configuration, thus fixing the gauge. Such an idealized realization
is unfortunately at odds with the current conventional choices.

Gribov was the first to notice that finding a well-behaved constraint equation, also known as
gauge-fixing condition, is a highly non-trivial task due to the existence of Gribov copies, [14].
These are certain over-counted or under-counted gauge equivalent sections in configuration
space. Singer later extended Gribov’s work to a larger class of gauge-fixing conditions, [15].
Furthermore, Neuberger analyzed the effect of these Gribov copies on physical observables, par-
ticularly on reproducing undetermined 0

0 results, a problem known as the Neuberger problem,
[16, 17].

To eliminate the effect of Gribov copies, Gribov proposed a strategy based on exploring the
zero modes of the associated Faddeev-Popov (FP) operator1. This method involves restricting
the analysis to the region where the FP operator is strictly positive-definite, known as the first
Gribov region. This is equivalent to finding the gauge configurations that minimize the quadratic
gauge field functional trxcL (A2), as discussed in several works, cf. [21–26]. As a result, the
IR gluon propagator is found to be suppressed and no longer possesses a valid Källen-Lehmann
spectral representation. Conclusively, it implies the confinement of gluons, affected by the struc-
tural properties of the modified theory. An enhanced IR ghost propagator was also deduced, cf.
[14]. Zwanziger achieved a successful reformulation of Gribov’s domain constraints to a local
renormalizable theory, at the expense of introducing additional auxiliary fields, known as the
Gribov-Zwanziger (GZ) model [27–29]. The gluon and ghost propagators obtained from the GZ
action display similar IR behavior as the ones from Gribov’s study, cf. [30, 31].

However, it was later shown in [19] that the first Gribov region still contains additional Gribov
copies, necessitating a further restriction of the configuration space to only include the set of ab-
solute minima of the associated gauge functional. This restricted space is called the fundamental
modular region (FMR). Although analytical calculations within that restricted region are highly

1See [18–20] for an explicit construction.
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CHAPTER 1. INTRODUCTION

challenging, geometric arguments indicate that the presence of Gribov copies are expected to
impact the IR dynamics of non-Abelian field theories [19, 21, 29].

Hence, the presence of Gribov copies can cause inconsistencies in the FP procedure at certain
energy scales, when Lorenz-like gauges are considered. In principle, perturbation theory can pro-
vide an accurate description of short-range phenomena to a certain extent, due to the irrelevance
of Gribov copies. However, perturbation theory beyond a certain validity domain, restricted by
the magnitude of the coupling constant, becomes unreliable due to the existence of a Landau pole
at finite energy scales, which produces large values of the couplings in the IR regime. Therefore,
to study the effects of the IR region, various sophisticated continuous and discrete approaches
have been devised in addition to the techniques mentioned previously.

Many studies of the IR properties of non-Abelian field theories focused mainly, but not ex-
clusively cf. [39], on computing the form of the ghost an gluon propagator. This is because the
ghost-gluon vertex allows for a determination of the beta function in the Landau gauge. Tay-
lor’s non-renormalization theorem for the ghost-gluon vertex function yields a propagator-based
definition of the beta function, cf. [37, 38]. However, several computations of associated correla-
tion functions beyond the Landau gauge have been performed, cf. [32–36] for a non-exhaustive
literature.

On the discretized front, lattice simulations have been used to derive the IR behavior of rele-
vant correlation functions [40–69]. Lattice computations do not need an implementation of the
gauge-fixing condition but the use of gauge fixing allows for a direct comparison with analytic
approaches. For gauge-fixed studies on the lattice, the minimum Landau gauge was mainly used,
where one chooses an arbitrary minimum of the gauge functional. This corresponds to a random
choice of a Gribov copy. As a result, various lattice simulations have inferred a finite ghost dress-
ing function (form factor of the ghost propagator) in the deep IR, along with a saturated and
finite IR behavior for the gluon propagator.

On the continuum front, non-perturbative methods such as the Dyson-Schwinger equations
(DSE) and the functional Renormalization Group (fRG) contributed to the analytical study of the
IR properties of non-Abelian field theories, constructing solutions at different truncation schemes
for the behavior of the ghost and gluon propagators [35, 39, 70–99]. The DSE approach treats the
correlation functions as self-consistent solutions of a set of integro-differential equations, while
the fRG studies the form of the correlation functions by evolving their generating functional with
a floating momentum scale, thus potentially exploring the whole energy domain.

Broadly speaking, one can classify the solutions which characterize the long-range behavior
of the gluon and ghost propagators into the scaling and the decoupling solutions. While there have
been numerous studies on the effects of these solutions at various dimensions, we will focus on
the results in d = 42. The scaling solution provides a vanishing saturated gluon propagator and
an enhanced ghost propagator in the deep IR, cf. [72–80]. Note that such behavior of correlation
functions is consistent with the Kugo-Ojima (K-O) confinement scenario, which is based on global
color and Becchi-Rouet-Stora-Tyutin (BRST) invariance, cf. [93, 101, 102]. On the other hand,
the decoupling solution predicts a gluon propagator that saturates at a constant value and a finite
ghost dressing function. This behavior is similar to the tree-level divergent ghost propagator, in
the deep IR [35, 39, 85, 88, 93–99].

2See [100] for an analytic study of IR aspects of YM correlation functions at various dimensions in the context of
the DSE.
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Overall, the results from the continuum approaches seem to be in agreement with the basic
features observed in lattice simulations. However, a more detailed quantitative comparison be-
tween the lattice predictions and the available non-perturbative solutions indicate a remarkable
agreement with the decoupling solution [46].

Furthermore, compatibility between the GZ scenario and lattice simulations was observed,
for the IR behavior of gauge theories. This was achieved through a refined version of the GZ
model that incorporates dimension-two mass condensates [96, 97, 103–105].

On an alternative continuum front, motivated by the the concept of a massive gauge-fixed YM
action, put forth in the Curci-Ferrari model [106], the idea of dynamical mass generation gained
traction. Such a realization focuses on the resolution of the Gribov ambiguities and reproduction
of discretized observed IR properties of the correlation functions by means of a decoupled gauge
field massive sector [89, 107, 108]. However, ad hoc mass deformed actions are incompatible
with conventional BRST symmetry (absence of nilpotency), potentially affecting the renormal-
izability and unitarity of the theory [50, 77, 88, 90, 98, 106, 109–114]. Studying models of
massive propagators, by considering such modifications at face value, were found to provide
quite accurate phenomenological descriptions of the IR physics in non-Abelian field theories, in
accordance with lattice simulations [46, 59, 91, 95, 107, 108, 115–120].

Following the aforementioned philosophy of deforming the gauge-fixed action, a recent study
[121] explored a novel approach of including such (non-)perturbative regulator deformation con-
tributions, in a BRST respecting manner. As such, a non-linear and Fourier weighted gauge-fixing
condition, with a modified version of the mass sector of the often called Curci-Ferrari-Delbourgo-
Jarvis (CFDJ) gauge [106, 117, 122], was utilized to incorporate the regulator dependencies
as part of the renormalization procedure. This technique provides different avenues of explor-
ing gauge systems while maintaining the well-established FP procedure. Implementation in the
context of the fRG led to a one-loop and BRST-exact flow equation, cf. [121].

The main focus of this work will be around this newly developed framework and our goal will
be to examine the properties of such a methodology through the lenses of both perturbative and
non-perturbative renormalization schemes.

On the perturbative end, we will recast the aforementioned approach within the framework
of the background field method and explore its one-loop perturbative behavior. Its underlying
philosophy is based on splitting the gauge field into a fixed background and a fluctuating part.
Such formalism introduces a particular class of background covariant gauges, which give rise
to correlation functions that ought to respect invariance under a subset of local gauge transfor-
mations [123]. The background field method constitutes a powerful tool that greatly facilitates
both perturbative [124, 125] and non-perturbative [126–146] calculations implemented at var-
ious renormalization and truncations schemes. Such a realization will provide us with a better
understanding of how the dynamically generated terms affect different aspects of the theory. In
addition, the consideration of the modified mass CFDJ sector will allow us to mimic the decou-
pling solution and gain further information on its effect.

Note that the background formalism presents a promising avenue for addressing the problem
of Gribov ambiguities. Early attempts to utilize the formalism in the GZ framework, motivated by
[23], were hampered by a lack of background and BRST invariance [147, 148]. However, recent
refinements to the model have resolved these issues by introducing a Stueckelberg-type field,
although this has made manipulations of the theory at finite temperatures more challenging,
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CHAPTER 1. INTRODUCTION

[149]. Alternatively, a competing formalism was proposed in [150].
On the non-perturbative end, in this work we will study the truncated one-loop flow equation,

derived in [121] using conventionally simulated gauges. This will enable us to derive a set of flow
equations for the contributing renormalization factors and gain explicit access to the form and
behavior of the beta function at varying couplings. By doing so, we will be able to investigate
the non-perturbative effects of the dynamically generated terms while maintaining explicit BRST
invariance at all energy scales. Such an approach can provide valuable insights into the nature
of YM theory and its properties in the deep IR.

The contents of the thesis are organized as follows. Chpts. 2 & 3 are dedicated to setting up a
BRST-invariant pure YM model and motivating the need of developing a BRST/gauge-invariant
formalism. In Chpt. 4 we perform an explicit study of the model within the background field
method (BFM) with the inclusion of an appropriate non-linear gauge-fixing condition. A one-
loop perturbative study and phenomenological results of the one-loop Effective Action (EA) are
also stated. For Chpt. 5, we turn our attention to the v-dependent part of the Schwinger func-
tional, whose form is investigated after imposing several constraints for the v field. Afterwards,
we abandon the perturbative method and in Chpt. 6 we perform a non-perturbative study of
the associated flow equation within a certain truncation scheme without any background field
and in the presence of it, for which we derive and discuss a Renormalization Group (RG) im-
proved/resummed version of the beta function.

The compilation of this thesis is solely due to the author. However, parts of this work have been de-
veloped in collaborations with members of the Theoretical Physical Institute in Jena and the National
Institute for Nuclear Physics in Bologna. The results on the one-loop Effective Action and Schwinger
functional within a background and BRST-invariant framework, presented in Chpts. 4 & 5 respec-
tively, have been discovered in collaboration with H. Gies & L. Zambelli and published in [151]. The
development of a background and BRST-invariant functional renormalization group equation and
the complete computation of the beta function for BRST-invariant flows, as displayed in Chpt. 6, is
based on completed but so far unpublished material that has been developed in collaboration with S.
Asnafi and L. Zambelli [152].
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CHAPTER 2

Theoretical Background

In this Chapter, we lay the theoretical foundations for the proper description of non-Abelian
gauge theories and introduce the framework that will be adopted in Chpts. 4-6 during the study
of pure YM theory. In particular, after formulating, the action for the pure YM theory, within a
geometrically focused framework, we explore different ways one can follow in order to properly
quantize such a theory. Among these different but ultimately equivalent considerations, we focus
our attention on quantization with a constraint equation that includes an isolated stochastic
sector. Such a procedure, explored in the literature for the description of field models where the
field configurations are constrained by stochastic differential equations, e.g. Langevin equations,
provides a valuable input for the implementation of the gauge-fixing condition which can be
exploited for gauge theories. From the off-shell quantization procedure of pure YM theory, we
observe the emergence of a global supersymmetry called the BRST symmetry. Finally, we discuss
the importance of such a symmetry for a well-defined unitary gauge theory via the separation of
particle modes to physical and unphysical states with the method of the quartet mechanism from
which one is able to deduce, under a certain set of conditions, color confinement. The connection
between BRST and gauge symmetry will also be explored.

2.1 Non-abelian gauge theories

We begin by investigating the gauge-invariant action of pure YM theory. To do so, let us construct
the underlying symmetric action from first principles by focusing on the geometric interpretation
of the building quantities. Note that for our considerations in Miknowski spacetime, the mostly
positive metric gµν = (−,+,+,+) is considered. Let H be a semi-simple compact Lie group,
referred to as the gauge group of our system and h = Lie(H) the Lie algebra which spans the
infinitesimal group transformations. We want to construct a field theory where the action is
invariant under space-dependent group transformations of the fields, called local gauge transfor-
mations, denoted by U(x) ∈ H.

Let us introduce the parallel transporter C(y, x) which is a curve-dependent element of the
group representation, called the comparator or Wilson line, which joins the spacetime point y to

9



CHAPTER 2. THEORETICAL BACKGROUND

x. Under local gauge transformations the Wilson line changes as,

C′(y, x) = U(y)C(y, x)U−1(x), (2.1)

with the boundary behavior ofC(x, x) = 1. Consider a differentiable curve connecting these two
distinct spacetime points which can be parametrized in terms of Aµ. Infinitesimally it can be
represented as yµ = xµ + dxµ. Performing a Taylor expansion of the Wilson line, this leads to

C(x+ dx, x) = 1+ iḡAµ(x)dx
µ, (2.2)

where an arbitrary constant ḡ has been extracted. Expanding Eq.(2.1) at first order in dxµ, one
determines how the quantity Aµ(x) changes under local gauge transformations,

A′
µ(x) = U(x)Aµ(x)U

−1(x)− i

ḡ
(∂µU(x))U−1(x), (2.3)

As it can be seen in Eq.(2.2), from a geometric point of view, the quantity Aµ(x) corresponds to
a connection which parametrizes an infinitesimal Wilson line. Equivalently, Eq.(2.3) shows that
under local gauge transformations,Aµ(x) corresponds to a local dynamical field called the gauge
field.

With the aid of the Wilson line and the connection, we can construct the covariant derivative,

Dµ = 1∂µ + iḡAµ, (2.4)

which changes as a tensor under local gauge transformations of the symmetry group,

D′
µ = U(x)DµU

−1(x). (2.5)

From a geometric perspective, the covariant derivative establishes a sensible notion of derivative
by comparing neighboring field configurations on an equal footing. In addition, as far as the
symmetry group is concerned, the covariant derivative corresponds to a tensorial differential
operator.

Taking the commutator of the covariant derivative, we find the curvature tensor

Fµν(x) = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ,Aν ] , (2.6)

where under local gauge transformations,

F′
µν(x) = U(x)Fµν(x)U

−1(x). (2.7)

The curvature tensor can be associated with the parallel transport of an infinitesimal closed Wil-
son line and is called the field strength tensor since it provides the generalization of the electro-
magnetic tensor of Quantum Electrodynamics (QED) to non-Abelian field theories.
Finally, we can consider infinitesimal local gauge transformations

U(ω) := U(x) = 1+ iḡω(x) +O
(
ω2
)

(2.8)

where the infinitesimal parameter ω ∈ h, under infinitesimal local gauge transformations be-
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2.1. NON-ABELIAN GAUGE THEORIES

comes

ω′(x) = U(x)ω(x)U−1(x). (2.9)

The YM action is given by

SYM[A] = −1

4

∫
x
trF2

µν , (2.10)

where
∫
x =

∫
ddx. As it can be seen from (2.7), it is invariant under local gauge transformations

of the gauge group.
Let {τa} be a complete set of generators of H, i.e. a basis of the Lie algebra h of the under-

lying gauge group. In order for {τa} to span the Lie algebra of the theory, then the following
commutation relations must be satisfied

[τa, τ b] = ifabcτ c, (2.11)

where fabc correspond to the antisymmetric structure constants and tr(τaτ b) > 0. This leads to
the following Jacobi identity for the structure constants

fadef bcd + f bdef cad + f cdefabd = 0. (2.12)

The component form of the generators will be determined by the choice of the group representa-
tion and equals the dimension of the vector space in which the representation of the group exists
whereas the number of the independent generators is associated to the dimension of the vector
space spanned by the generators. Thus, the matrix representation of the Lie algebra generators
can vary depending on the particular choice of representation. For our purposes, we restrict our
attention to Hermitean generators of the adjoint group representations

(τaG)
bc = ifabc. (2.13)

Note that in the adjoint representation, the following relation holds

facdf bcd = C2(G)δab, (2.14)

where C2(G) is called the quadratic Casimir operator, and is a representation-dependent quantity
that commutes with the generators of the Lie algebra.

In order to translate the YM action into a component form, we choose, according to the
desired properties, the gauge group H = SU(Nc) with the Lie algebra h = su(Nc) and work in
the adjoint representation. Then, the fields and differential operators of the action will transform
accordingly and the dimension of the Lie algebra denoted by the adjoint indices will be referred
to as colors. Thus, the gauge field is written as

Aµ(x) = Aa
µ(x)τ

a
G. (2.15)

11
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The covariant derivative in the adjoint representation reads as

Dab
µ = ∂µδ

ab + ḡfacbAc
µ (2.16)

and the components of the field strength tensor Fµν = F a
µντ

a
G are

F a
µν = ∂µA

a
ν − ∂νA

a
µ + ḡfabcAb

µA
c
ν . (2.17)

It is worth noting that the components of the aforementioned quantities in the adjoint represen-
tation exhibit the same transformation rules under local gauge transformations as their corre-
sponding representation-independent counterparts, cf. Eqs.(2.3), (2.5) & (2.7). In addition, in
the adjoint representation a finite local transformation takes the form

U(ω) = eiḡω
aτaG = eḡω

afacb (2.18)

and infinitesimally,

δωA
a
µ = Dab

µ ω
b. (2.19)

Thus, we can now readily find that, the YM action in the adjoint representation takes the form

SYM[A] = −1

4

∫
x
F a
µνF

aµν . (2.20)

The YM action is still invariant under local gauge transformations. However, due to Eq.(2.18) it
gives rise to cubic and quartic gauge-field self interactions. Such a novel characteristic arises due
to the non-Abelian character of the gauge group and extends the spectrum of possible interactions
with very interesting implications. Finally, note that in the adjoint representation of the SU(Nc)

gauge group, C2(G) = Nc.

2.2 Gauge fixing

In order to implement YM theory for the description of physically interacting systems, the next
step is to quantize it. Thus, let us introduce the generating functional of quantum YM theory,

Z =

∫
A
DA exp

[
i

(
SYM[A] +

∫
x
jaµA

aµ

)]
, (2.21)

where we have inserted a source jaµ for the gluon gauge field Aa
µ to aid in the construction of

the building blocks of the theory. A naive attempt to define a sensible quantum field theory from
Eq.(2.21) fails due to the fact that the functional integral is ill-defined. The reason is that the
functional integral, defined over all possible gauge field configurations, contains a huge redun-
dancy which comes from the physically equivalent field configurations and renders the quantity
divergent.

To illustrate this point, let us determine the inverse free gluon propagator operator which
corresponds to the quadratic part of the YM action, Eq.(2.20),

G−1
A =

(
−∂21+ ∂ ⊗ ∂

)−1
. (2.22)
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2.2. GAUGE FIXING

The free gluon propagator is singular with vanishing eigenvalues for the longitudinal component
of the gauge field. In addition, local gauge invariance, (2.18), yields an infinite number of such
equivalent gauge field configurations. A proper definition of the generating functionalrequires to
remove these redundancies from the functional integration.

The procedure of removing these gauge equivalent redundant degrees of freedom in a consis-
tent manner is called gauge fixing. Even though there are different but equivalent ways on how
to perform gauge fixing, the underlying idea is the same. In particular, we wish to impose an ap-
propriate constraint, called the gauge-fixing condition, which will restrict the field configuration
space over only gauge inequivalent configurations. In other words, we wish to pick one and only
one representative out of each set of gauge equivalent configurations, called gauge orbits. The
task of finding such a gauge-fixing condition turns out, to be highly non-trivial due to the exis-
tence of Gribov copies, [14, 15]. As we focus mostly on perturbative applications in this thesis,
we will not consider potential modifications of the theory arising from the inclusion of nonlocal
terms which account for the existence of Gribov copies and lead to the Gribov-Zwanziger action
with implications on the IR behavior of non-Abelian gauge theories cf. [27, 30, 153].

Next, let us review the conventional procedure of gauge fixing. In Subsecs. 2.2.1, 2.2.2 &
Sec. 2.3, we further explore the different ways with which one can implement it and the respective
advantages of each method. The YM functional integral, Eq.(2.21), is defined over the space of
all gauge equivalent field configurations, cf. Eq.(2.3) & (2.18)

A =
{
AU

µ := A′
µ

∣∣U(ω) ∈ SU(Nc)
}
. (2.23)

Then the physically inequivalent configurations will belong to the quotient space of all the con-
figurations over the ones obtained under a gauge transformation, denoted by

A
/
SU(Nc) = {Aµ ∼ AU

µ |Aµ ∈ A,U(ω) ∈ SU(Nc)}

Then, we can redefine the path integral in order to extract the contribution of the physically
equivalent and inequivalent terms as∫

A
DA→

∫
DU

∫
Dµ[A],

where DU and Dµ[A] are measures over gauge equivalent and inequivalent field configurations
respectively. Then, we can factor out the contribution of the first part which is equivalent to
choosing a representative from each gauge orbit [154]. To perform such a decomposition, we
introduce the gauge-fixing condition

F [A] = 0, (2.24)

which ideally has a unique solution for each gauge orbit, i.e. F [AU] = 0. Next, rewriting the
partition of unity as the path integral over gauge equivalent configurations of the delta functional
times the Jacobian determinant as follows

1 =

∫
DF δ[F ] =

∫
DU δ

[
F [AU]

]
∆FP[A

U],
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CHAPTER 2. THEORETICAL BACKGROUND

leads to the following decomposition of the functional integration,∫
A
DA =

∫
DU

∫
A
DA δ[F [A]] ∆FP[A

U] =

∫
DU

∫
Dµ[A].

Inserting it into Eq.(2.21), leads to

Z =

∫
A
DA δ[F [A]] ∆FP[A] e

iSYM[A], (2.25)

where
∫
DU has been neglected as it contributes an overall factor which will not affect the cor-

relation functions. Moreover, the gauge-invariant Jacobian determinant of the transformation,
known as the Faddeev-Popov determinant is given by

∆FP[A] = |detMFP[A]| , where MFP[A] =
δF [A]

δω

∣∣∣∣
ω=0

=
δF [A]

δA

δA

δω

∣∣∣∣
ω=0

. (2.26)

Thus, we obtain the following form of the gauge-fixed YM generating functional,

Z =

∫
DA δ [F [A]] det (MFP[A]) exp

[
i

(
SYM[A] +

∫
x
jaµA

aµ

)]
, (2.27)

where functional integration over the space of gauge equivalent field configurations is implied
and the modulus signs for the ∆FP have been dropped, which holds in the perturbative domain.
The conventional method of dealing with the FP determinant is to replace it with an additional
functional integration over some Hermitian auxiliary bosonic Grassmann-valued fields c and c̄
called Faddeev-Popov ghosts and antighosts respectively, as follows [155]

det (MFP[A]) =

∫
DcDc̄ exp

[
i

∫
x,y
c̄a(x)Mab

FP(x, y)c
b(y)

]
. (2.28)

Note that upon substitution of Eq.(2.28) in Eq.(2.27), we observe that implementation of the
gauge-fixing procedure results in the insertion of two contributions in the YM generating func-
tional. The Dirac delta functional part is closely associated to the implementation of the gauge-
fixing condition, according to the properties discussed before. The FP determinant which gives
rise to a deformation of the action originates from the Jacobian of the change of the functional
measure over gauge equivalent configurations, cf. Eq.(2.25). However, both additional terms are
dependent on the gauge-fixing condition F [A]. Thus, the form of the gauge-fixing condition is
expected to affect the generating functional. Moreover, the gauge-fixing procedure lifted the local
gauge invariance of our generating functional. In the following we construct concrete expressions
for the YM generating functional for an arbitrary gauge-fixing condition, following an on-shell
and an off-shell approach. The off-shell approach utilizes the additional freedom of inserting an
auxiliary field and encodes information concerning an additional global supersymmetry, called
BRST symmetry.
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2.2. GAUGE FIXING

2.2.1 Fixing the gauge on-shell

In order to arrive at the on-shell YM generating functional, we consider an extended class of
gauge-fixing conditions of the form

F [A]− f(x) = 0, (2.29)

where f(x) = fa(x)(taG)
bc is an arbitrary test function. We rewrite the delta functional as

δ[F [A]] →
∫

Df δ[F [A]− f ] exp

(
− i

2ξ

∫
x
fafa

)
(2.30)

with a real constant ξ called the gauge-fixing parameter. Note that different values of ξ result
in a different implementation of the gauge-fixing condition. Thus, they correspond to different
gauges. The most frequently used gauges and the ones that we exclusively consider in this thesis
(with somemodification) are the Landau gaugewhere ξ → 0 and the Feynman gaugewhere ξ = 1.
In the Landau gauge, Eq.(2.30) approaches the delta functional up to an overall normalization
factor.

Inserting it into the YM generating functional, while integrating over the test function results
in an additional contribution to the action. Writing,

Z[j] =

∫
DA det (MFP[A]) exp

[
i

(
SA[A] +

∫
x
jaµA

aµ

)]
, (2.31)

the gauge-fixed YM action is given by

SA[A] = SYM[A]−
1

2ξ

∫
x
FaFa. (2.32)

2.2.2 Fixing the gauge off-shell

The generating functional (2.31), is sometimes referred to as an on-shell formalism in the sense
that all fields are dynamical. In this part, we deviate from the aforementioned procedure and
construct an off-shell gauge-fixed YM generating functional by means of an auxiliary Nakanishi-
Lautrup (NL) field b(x) = ba(x)(taG)

bc, initially introduced in the context of QED in [156, 157].
The procedure of rewriting the delta functional is similar to Eq.(2.30), with the difference that
we introduce the NL as the weight of the delta functional of the extended class of gauge-fixing
conditions, i.e.

δ[F [A]] →
∫

DfDb exp

[
− i

2ξ

∫
x
fafa − i

∫
x
ba (Fa − fa)

]
. (2.33)

Completing the square and ignoring any constant contributions, we find the following YM
generating functional

Z[j] =

∫
DADb det (MFP[A]) exp

[
i

(
SA[A, b] +

∫
x
jaµA

aµ

)]
, (2.34)
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where

SA[A, b] = SYM[A]−
∫
x
baFa +

ξ

2

∫
x
baba. (2.35)

Eliminating the contribution of the NL field from Eq.(2.35), by means of its equations of motion
yields the on-shell gauge-fixed generating functional, Eq.(2.31). This illustrates the equivalence
between the methods used for implementing the corresponding gauge-fixing condition. From
Eq.(2.35) one can naturally interpret the NL field in the Landau gauge as a Lagrange multiplier
which implements the constraints of the gauge-fixing condition.

Even though the two previously developed ways of finding the gauge-fixed YM generating
functional are equivalent on-shell, the off-shell formalism exhibits, due to the presence of the
NL field, invariance under a new global supersymmetry, discovered by Benchi, Rouet and Stora
[158] and independently by Tyutin [159, 160], called the BRST symmetry1. Invariance under
BRST transformations can be readily displayed by rewriting the FP determinant in terms of the
FP ghosts, cf. Eq.(2.28), thus finding the following off-shell YM action

SA[A, b, c, c̄] = SYM[A]−
∫
x
baFa +

ξ

2

∫
x
baba +

∫
x,y
c̄a(x)Mab

FP(x, y)c̄
b(y). (2.36)

Introducing a Grassmann BRST operator s which acts on the fields, the BRST transformation
reads

(sA)µa = Dab
µ c

c, (sc)a = − ḡ
2
fabccbcc,

(sc̄)a = ba, (sb)a = 0.
(2.37)

One very important property of the BRST operator is its nilpotency, i.e. s2 = 0. This trait can be
used to show the BRST invariance of the gauge-fixed YM action. Using Eq.(2.26) we can rewrite
the YM action, Eq.(2.36), as

SA[A, b, c, c̄] = SYM[A] + sΨ[c̄, A], (2.38)

where Ψ[c̄, A] = c̄aFa[A] and spacetime integration is implied. This was first observed in the
context of covariant gauges in [161]. Note that for the gauge field, the BRST transformation
corresponds to an infinitesimal local gauge transformation, cf. Eq.(2.8), with the infinitesimal
parameter replaced by a ghost field. This is justified due to the anticommuting character of the
BRST operator. Therefore, the YM part of the gauge-fixed action is BRST invariant. In addition,
due to the nilpotency of the BRST operator we can readily deduce that

sSA[A, b, c, c̄] = 0. (2.39)

This shows that the off-shell gauge-fixed YM action is indeed invariant under this residual BRST
symmetry generated by the transformations in Eq.(2.37), as long as the BRST operator is nilpo-
tent.

1Note that BRST symmetry does not necessarily require the presence of the NL field. But with the NL field, BRST
is nilpotent.
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2.3 Gauge fixing with a stochastic variable

The gauge-fixed YM action that we have obtained after implementing the gauge-fixing procedure
describes a constraint system of gauge field configurations, governed by the dynamics and so
on of the underlying pure YM theory that solve the constraint equation (2.24). For such an
action, we have observed the natural emergence of a global supersymmetry on the quantum
level, the BRST symmetry. The various implications of such a symmetry in the context of non-
Abelian field theores will be discussed in Sec. 2.4. In this section, within the framework of gauge
theories (which is where conventionally but not solely BRST symmetry is studied), we explore the
connection between field theories with field configurations satisfying a constraint equation and
BRST symmetry. This alternative and well established viewpoint provides a valuable assistance in
the understanding of the gauge-fixing procedure. This section, motivated by [162, 163], is one
of the ingredients for the results derived in Sec. 2.2 and its underlying philosophy is an integral
part of the framework developed in this thesis.

Note that BRST symmetry arises naturally not only in the framework of gauge theories but
also in statistical field models governed by Langevin equations [162]. Langevin equations corre-
spond to linear in time stochastic differential equations related to stochastic processes such as
diffusion and Brownian motion, [164–166] and have been proposed to describe the dynamics
of critical phenomena, cf. [167–173]. By introducing a stochastic field configuration n(x) called
the noise field, one can impose the corresponding Langevin equation and construct a generating
functional for the constraint system. The noise field is conventionally implemented as a Gaus-
sian distribution (Gaussian white noise) and effectively reflects the way by which the Langevin
equation (constraint equation) is imposed. Such a system exhibits invariance under an associated
BRST symmetry. Given that the solutions of these equations exhibit divergences on a perturbative
level, the emergent BRST symmetry of the associated action which arises through the implemen-
tation of these constraint equations allows to prove the stability of the Langevin equations under
renormalization.

Therefore, it is worth exploring the appearance of BRST symmetry on a more generic setting
and more specifically for a system subject to a stochastic constraint equation with a decoupled
stochastic sector. By adopting this method for pure YM, we will show how to relate it to the
conventional gauge-fixing result derived in Sec. 2.2, while having an additional degree of freedom
encoded in the noise field.

We begin our study by introducing a stochastic gauge-fixing condition, with the stochastic
variable n(x) = na(taG)

bc ∈ SU(Nc), as follows

E [A,n] = F [A]− ϕ(n) = 0, (2.40)

where ϕ(n) is an arbitrary function of the stochastic variable or noise and the noise field has a
normalized probability distribution, Dn. Similarly to Sec. 2.2, taking the variation of Eq.(2.40)
with respect to the infinitesimal gauge transformations, Eq.(2.8), results in the Faddeev-Popov
matrix, i.e.

MFP[A] =
δE [A,n]
δω

∣∣∣∣
ω=0

=
δF [A]

δA

δA

δω

∣∣∣∣
ω=0

. (2.41)

Next, we shall derive a generic form for the unity under the generalized constraint (2.40). To
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do so, let us first derive the formal expression for an arbitrary function Φ(A) after imposing the
gauge-fixing condition, Eq.(2.40). Due to the stochastic character of the gauge-fixing condition,
we are ultimately interested in expectation values of functions of gauge fields, i.e.

⟨Φ(A)⟩n =

∫
DEDn δ[E [A,n]] Φ(A) =

∫
DUDn δ

[
E [AU, n]

]
J[AU] Φ

(
AU
)
, (2.42)

where similarly to Sec. 2.2, the Jacobian of the transformation for the stochastic gauge-fixing
condition takes the form

J
[
AU
]
= N det

(
MFP[A

U]
)
= N

∫
DcDc̄ exp

[
i

∫
x,y
c̄a(x)Mab

FP[A
U]c̄b(y)

]
, (2.43)

with N an overall normalization constant. Next, we rewrite the delta functional in the Fourier
representation as

δ[E [A]] →
∫

Db exp

[
−i
∫
x
baEa[A,n]

]
. (2.44)

Inserting Eqs.(2.43) and (2.44) in Eq.(2.42), we arrive at

⟨Φ(A)⟩n = N
∫

DUDbDn det
(
MFP[A

U]
)
Φ(AU) e−ibaEa[AU,n], (2.45)

where integration over spacetime points is implied.
Thus, the partition of unity can be written as

1 = N
∫

DUDbDn ∆FP[A
U] e−ibaEa[AU,n]. (2.46)

Taking into account that the inverse Jacobian is a gauge invariant quantity and changing AU →
A, we find that up to an irrelevant normalization factor, the gauge-fixed YM generating functional
reads

Z =

∫
DADcDc̄DbDn eiSA[A,c,c̄,b,n], (2.47)

with the gauge-fixed action

SA[A, c, c̄, b, n] = SYM[A]− baFa + Snoise[b, n] + c̄aMab
FPc

b. (2.48)

The noise action Snoise[b, n] comes as a result of the stochastic gauge-fixing condition, Eq.(2.40).
We can radily integrate out the noise field

eiSNL[b] =

∫
Dn eiSnoise[b,n] (2.49)

and associate it with the NL auxiliary field that appears during the off-shell quantization, cf.
Subsec. 2.2.2. The importance of this method lies in the fact that by inserting the noise field as
an extended sector of the gauge-fixing condition, we gain an additional degree of freedom, by
properly manipulating the noise field, on the gauge-fixing procedure. In extension, integrating
out the noise field gives us direct access to the implementation of the gauge-fixing condition in
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our theory. Note that as long as we consider a sensible form of the noise action, BRST symmetry
of the action is manifest. In the following, in order to make contact with well-known results and
also exploit our additional freedom to facilitate further calculations, we choose to integrate out
the noise field using Gaussian and Fourier distributions.

2.3.1 Yang-Mills action with a Gaussian noise distribution

Let us now determine the form of the gauge-fixed YM action by choosing a Gaussian weight for
the noise action of the form [121],

Snoise[b, n] = − 1

2ξ
nana − bana. (2.50)

Averaging over the noise field and associating it with the NL field according to Eq.(2.49) we find
that

SNL[b] =
ξ

2
baba, (2.51)

which reproduces the BRST-invariant off-shell YM action, cf. (2.36).

2.3.2 Yang-Mills action with a Fourier noise distribution

In this case, we choose a Fourier weight for the noise action of the form [121, 151],

Snoise[b, n] = na(va − ba), (2.52)

where v = va(taG)
bc corresponds to an external NL-type scalar field which extends the space of

colored fields of the theory. Integrating over the noise field, according to Eq.(2.49), we find that

eiSNL[b] =

∫
Dn e−ina(ba−va) = N δ[ba − va]. (2.53)

As a result, the gauge-fixed generating functional becomes

Z =

∫
DADcDc̄Db δ[ba − va] exp

[
i
(
SYM − baFa + c̄aMab

FPc
b
)]

=

∫
DADcDc̄ eiSA[A,c,c̄,v],

(2.54)

with the gauge-fixed action

SA[A, c, c̄, v] = SYM[A]− vaFa + c̄aMab
FPc

b. (2.55)

Next, let us address the BRST invariance of the generated action. Firstly, note that due to the
presence of the auxiliary v field, the gauge-fixed action, Eq.(2.55), is still off shell. As mentioned
in Sec. 2.4, the existence of an auxiliary NL field is essential for a BRST-invariant action. This
role is played by the v field. Indeed, the off-shell action is invariant under the following BRST
transformations,

(sAµ)
a = Dab

µ c
b, (sc)a = − ḡ

2
fabccbcc,

(sc̄)a = va, (sv)a = 0.
(2.56)
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This can readily be seen by bringing Eq.(2.55) in the form

SA[A, c, c̄, v] = SYM[A] + sΨ[c̄, A], (2.57)

which is similar to Eq.(2.38). Thus, taking into account the nilpotency of the BRST operator, we
verify the BRST invariance of the action, i.e.

sSA[A, c, c̄, v] = 0. (2.58)

Notice themutual connection between the different steps followed in this section. In summary,
by extending the gauge-fixing condition by a noise sector decoupled from the dynamical fields,
we were able to get access to the way with which the gauge-fixing condition is implemented
in the action by properly tuning the corresponding form of the noise action and associating it
with the NL field, cf. Eq.(2.49). The choice of a Gaussian weight reproduced the conventional
off-shell gauge-fixed YM action which upon integration of the NL field will depend quadratically
on the gauge-fixing condition, cf. Eq.(2.32). Choosing a Fourier weight for the noise action
at the expense of introducing an additional NL-type v field, we obtained a modified version of
the gauge-fixed YM action, which upon integration over the b field was linear to the gauge-fixing
condition, cf. Eq.(2.55). In addition, we deduced that the off-shell action enjoys invariance under
BRST transformations, cf. Eq.(2.56). Given that the upcoming Chapters deal with a non-linear
form for the gauge-fixing condition, a linear dependence on the action is a very desirable trait
since it does not give rise to complicated interactions that require more computational power. It
makes any non-trivial inclusion through the gauge-fixing condition straightforward. Due to this
reasoning, the following parts of the thesis rely exclusively on the Fourier weighted gauge-fixed
YM action given by Eq.(2.55).

2.4 Importance of BRST symmetry

Even though the invariance of the YM action under the BRST transformations seems to have
appeared arbitrarily, BRST symmetry is a fundamental symmetry of gauge theories with tremen-
dous physical implications. Here, we shall present the most important aspects that highlight the
physical meaning of a BRST-invariant theory in the context of non-Abelian gauge theories. Note
that the results mentioned below were established on covariant (mainly Lorenz) gauges.

2.4.1 Unitarity and the quartet mechanism

The power of the FP method lies in the formal introduction of the FP ghost fields. The reason
behind it is that in non-Abelian theories, as opposed to Abelian theories, unitarity is only main-
tained as a virtue of the inclusion of the FP ghosts. The inconsistency of unitarity for non-Abelian
theories when only intermediate contributions of gauge fields are considered, was initially pin-
pointed by Feynman for the case of a fermion-antifermion scattering to lowest non-trivial order
of the coupling constant, [174–176]. Inclusion of ghosts in closed loops gives rise to additional
graph contributions essential in order to obtain a unitary S-matrix element as outlined in [177].

The main goal of this subsection is to motivate, from a physical point of view, the fact that in
the context of non-Abelian gauge theories, unitarity is closely connected to the construction of a
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well-defined physical Fock space Hphys, which itself is related to the BRST symmetry. The key for
such an identification comes from the analysis of the structure of the state vector space V.

Given that BRST symmetry is a global symmetry, from Noether’s theorem, it comes with an
associated BRST charge, QB, which itself generates the BRST transformations2. The introduction
of QB facilitates the definition of the physical subspace Vphys. In particular, an elegant subsidiary
condition was proposed by Kugo and Ojima [178, 179], where

QB |phys⟩ = 0, Vphys =
{
|ϕ⟩
∣∣ QB |ϕ⟩ = 0

}
. (2.59)

In a covariant formulation of gauge theories, the state vector space V, contains potentially
also negative norm states. This translates to the fact that V is a vector space with an indefinite
metric. For a meaningful interpretation of the underlying theory, one must properly consider a
physical subspace of the state vector space, Vphys = {|phys⟩} that exhibits norm positivity.

To clarify this point, it is worth to make a distinction between genuine unitarity of the physical
S-matrix with respect to physical states with positive norm and (pseudo-)unitarity of the total
S-matrix with respect to states of indefinite norm in V. For a physical S-matrix between states
in Vphys that satisfies genuine unitarity, the following conditions should be met:

(i) (Pseudo-)unitarity of the total S-matrix. Such a criterion is equivalent to having a Her-
mitian Lagrangian, which motivates the consideration of the FP ghosts in (4.16), such that
c† = c and c̄† = c̄, cf. [179].

(ii) Temporal stability of Vphys. In other words, the physical subspace should not be affected
by the total S-matrix. This criterion is automatically satisfied due to the conserved nature
of the BRST charge QB.

(iii) Positive semi-definiteness of Vphys. This criterion is translated to

|ψ⟩ ∈ Vphys ⇒ ⟨ψ|ψ⟩ ≥ 0. (2.60)

Satisfying this criterion is non-trivial and model dependent. However, such an analysis
results in a general norm-cancellation mechanism called the quartet mechanism. Kugo and
Ojima [101], introduced this mechanism which was a breakthrough in understanding the
role of BRST symmetry in gauge theories. The quartet mechanism is a generalization of
the Gupta-Bleuler formalism [180, 181] to non-Abelian theories. In order to be able to
appreciate this machinery to its full extend, we should fix some relevant terminology.

BRST cohomology

Nilpotency of the BRST operator, s2 = 0, infers the nilpotency of the BRST charge, Q2
B = 0. Then,

any state can be classified according to the dimension of the representation of QB to a BRST
singlet and a BRST doublet, cf. [182].

Any state |θ⟩ ∈ V : |θ⟩ = QB |ϕ⟩ ̸= 0 is called BRST exact. The two state vectors |ϕ⟩ & |θ⟩ are
called a parent state and a daughter state respectively and they constitute a BRST doublet. The
parent state |ϕ⟩ ∈ Im(QB).

2In canonical quantization, the BRST charge is promoted to an operator by noting that [QB,Φ] = sΦ, which
generates the BRST symmetry [178, 179].
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Any state |Θ⟩ which satisfies the subsidiary condition, Eq.(2.59), is called BRST closed with
|Θ⟩ ∈ Ker(QB). If a BRST closed state is accompanied by a parent state, i.e. |Θ⟩ = QB |ϕ⟩, then
it is the daughter state of a BRST doublet whereas otherwise it corresponds to a BRST singlet.
BRST-exact states have zero norm and are orthogonal to BRST closed states. Hence, we write
Im(QB) ≡ V0.

There is an ambiguity in identifying a BRST singlet state and a parent state in a BRST dou-
blet due to the arbitrary addition of daughter states. Such an ambiguity can be alleviated by
considering the BRST cohomology group, i.e.

H(QB) =
Ker(QB)

Im(QB)
=

Vphys
V0

. (2.61)

H(QB) consists of BRST singlet states where their difference is given by a daughter state. In other
words, we create equivalence classes of BRST closed states differing only by a BRST-exact one.
Such states have the same norm. Thus, all physical contents of the theory should correspond to
BRST singlets in H(QB).

Classification of BRST states

With the help of the FP ghost numbers, NFP, assigned to particle states, we can classify the state
space to different classes which encode the physical and unphysical content of the underlying
theory. Note that from the study of the BRST cohomology, any state with non-vanishing NFP

requires the existence of an additional FP conjugate state with opposite FP ghost number, −NFP,
[182]. In particular, the BRST singlets can be decomposed into the following classes:

(I) BRST singlets with NFP = 0. Under the assumption of asymptotic fields in the state space,
cf. [101], it was deduced that the states of this class constitute the genuine particle states
of the theory.

(II) BRST singlets withNFP ̸= 0. This class can be further divided into the following subclasses:

(a) Unpaired singlets. They correspond to BRST singlets with a FP conjugate state as an
unphysical parent state in a BRST doublet.

(b) Singlet pairs. They correspond to FP conjugate pairs in two BRST doublets.

In view of generic arguments discussed in [182], the BRST singlet states with NFP ̸= 0 do
not enter the physical state space and thus this class of states can be neglected.

For the case of BRST doublets, an additional BRST doublet to the original one is required which
implies the final category:

(III) Quartets. They correspond to FP conjugate pairs of BRST doublets. Quartet states appear
in gauge theories [101, 183].

From the aforementioned classification, we can conclude that the relevant states which can
potentially affect the physical contents of the theory enter as BRST singlets with NFP = 0 or as
quartets. However, quartets only contribute in zero norm combinations, thus not affecting the
properties of H(QB) which is shown with the aid of the quartet mechanism.
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Quartet mechanism for off-shell YM theory with unbroken global color symmetry

In order to implement the quartet mechanism, one introduces a projection operator P (n), which
projects the particle states onto the sector of state space with n unphysical particles, cf. [178,
179]. Then, it can be deduced that every quartet state enters in the physical theory as zero norm
combinations. Through the projection operator, one defines a physical Fock space of genuine
states, Hphys, which is isomporphic to the BRST cohomology H(QB), i.e.

P (0)V = Hphys ∼= H(QB) =
Vphys
V0

. (2.62)

This ensures a semi-positive norm of genuine physical particles and the condition (iii) is met,
which further guarantees, the unitarity of the physical S-matrix. Eq.(2.62) clearly displays that
in a gauge theoretic framework, a seemingly arbitrary global symmetry turns out to be an integral
part for the establishment of a sensible theory.

An essential property of the construction of the aforementioned mechanism is the nilpotency
of the BRST operator. The importance of the nilpotency can be viewed by considering an explicit
mass term in pure YM theory. Such a contribution will result in the breaking of this property and
a non-unitary S-matrix [109].

Implementing the quartet mechanism in the description of the off-shell pure YM theory with
an unbroken global color symmetry3, while ignoring potential IR divergences, results in the clas-
sification of the corresponding field configuration modes [184, 185]. In particular, it turns out
that the modes of the transverse gauge field are associated with positive norm BRST singlets
which are classified as genuine physical particle states. The unphysical modes of the longitudinal
gauge field, the NL field and the FP ghosts constitute the so called elementary quartet and as such
are confined, maintaining the norm positivity of Hphys. Here, one must highlight the presence of
the NL field which is essential for the proper norm cancellation in the quartet mechanism of pure
YM.

Note that, as previously mentioned, for the study of the norm positivity of the physical Fock
space in pure YM, the presence of IR divergences can affect the unitarity property of the S-matrix.
However, in such a case one departs from the perturbative regime and should explore alternative
non-perturbative routes, e.g. lattice methods, fRG, etc. Considerations of such generalizations
will be addressed on the level of the fRG but their structural effect on the theory in terms of the
K-O construction will not be further explored in this thesis.

2.4.2 The Kugo-Ojima color confinement scenario

Based on global color invariance, Kugo &Ojima derived a scenario [101], in view of the conserved
color charge, that ensures color confinement in non-Abelian theories. Initially, from the equations
of motion for the gauge field, one obtains the following Maxwell-like form [186]

ḡ jaµ = ∂νF a
µν + {QB, (Dµc̄)

a} , (2.63)

3Invariance under global gauge transformations is to be understood when global color invariance is mentioned.
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where jaµ is the Noether current of global color symmetry. This current yields the global color
charge Qa, of the global color symmetry, given by

ḡ Qa = Ga +Na =

∫
x
∂iF

a
0i +

∫
x
{QB, (D0c̄)

a} , (2.64)

with
∫
x =

∫
d3x. Note that Ga & Na are conserved charges of the associated conserved currents

that constitute jaµ.
Due to the ambiguity of Noether’s current, one can add an arbitrary anticommuting term

without affecting the dynamics of the theory, thus rewriting the color charge as

Qa =

∫
x

[
ja0 −

1

ḡ
∂iF

a
0i

]
=

1

ḡ

∫
x
{QB, (D0c̄)

a}, (2.65)

which takes a BRST-exact form. Then, any genuine physical state (BRST singlet) when acted by
Qa

Qa |phys⟩ = 0, (2.66)

since, according to the quartet mechanism, the genuine physical states obey by definition the
subsidiary condition Eq.(2.59). Eq.(2.66) implies that colored elementary particles (which can
appear as final states) are confined to the unphysical part of the Hilbert space and all final particle
states are color singlets. Such a result would generically impose color confinement.

However, the global color charge, defined in Eq.(2.65) is not well-defined, due to non-convergence
of the spatial integration. Hence, we turn our attention back to Eq.(2.64) and study each con-
tributing charge individually. Note that Ga is explicitly related to gluons, whereas Na mixes
different field configurations.

Study of the Ga part

If the conserved current, ∂νF a
µν contains no discrete massless pole, then

Ga = 0, (2.67)

as it corresponds to a spatial integration over a total derivative. In addition, Eq.(2.67) is satisfied
even for massive genuine gauge fields as the unphysical (longitudinal) configurations drop out
for both the massless and massive case due to the antisymmetry of the field strength tensor.

Study of the Na part

In order to examine the behavior of the Na charge, we introduce the dynamical parameter uab,
called the K-O function as the IR limit of the two-point correlator of the composite operator
Oa(x) = ḡfabcAb

µc
c,∫
x
eip(x−y) ⟨0|T

[
(Dµc)

a (x)Ob(y)
]
|0⟩ =

(
gµν −

pµpν
p2

)
uab(p2). (2.68)

The well-definedness of Na is realized from the study of the asymptotic behavior of (Dµc̄)
a
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which contains the aforementioned composite operator Oa. Then,

(Dµc̄)
a (x)

x0→∓∞−−−−−→
(
δab + uab

)
∂µγ̄

b, . (2.69)

where γ̄a(x) corresponds to the massless asymptotic field of c̄a(x). Eq.(2.69) entails that if the
following condition (written in matrix notation), called the color confinement criterion, is satisfied

u(0) + 1 = 0, (2.70)

then the conservedNa charge generates a well-defined global color charge, which in combination
with Eq.(2.67) equals to Eq.(2.65).

Color confinement

We can collectively formulate the previously obtained results from the study of each constituting
charge in the following concluding statement. Color confinement, is realized as a well-defined
color charge Qa4, where

Qa = 0, in Hphys, (2.71)

or equivalently,

⟨ϕ|Qa|ψ⟩ = 0, ∀ |ψ⟩ , |ϕ⟩ ∈ Vphys. (2.72)

Such condition is met if the two following confinement criteria are satisfied:

(i) There is no discrete massless pole in ∂νF a
µν for massless/massive gauge field configurations.

(ii) The IR pole residue of the composite operator Oa(x), u(0), satisfies Eq.(2.70).

In other words, when the K-O color confinement criteria (i) & (ii) are met, then elementary
particles correspond to confined colored states and genuine physical particle states appear only
as color singlets. The K-O confinement scenario encapsulates both quark and gluon condensate
depending on the underlying theory. The K-O confinement criterion, Eq.(2.70), was found to
be a necessary condition for the restoration of a broken residual local gauge symmetry [187,
188], thought of as combinations of global gauge transformations with spacetime independent
parameters [189, 190].

One important consequence of the K-O confinement scenario, as computed in [191] is an
IR enhanced ghost propagator. In particular, the ghost propagator in the Landau gauge can be
parametrized as

Dab(p2) = −δabCc(p
2)

p2
, (2.73)

with

lim
p2→0

Cc(p2) =
1

1 + u(0)
. (2.74)

4This is equivalent to the statement that global color symmetry is not spontaneously broken.
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Finally, following a perturbative study, the stability of the K-O function, Eq.(2.68), was ex-
plored in the IR regime which naturally furnished the K-O confinement criterion, Eq.(2.70), cf.
[101].

2.4.3 BRST symmetry and gauge invariance

Most interestingly, BRST symmetry inherits the essence of local gauge transformations. In partic-
ular, Refs. [192, 193] were motivated by the Maurer-Cartan structure of the ghost BRST transfor-
mation, cf. Eq.(2.37) and provided a geometrical interpretation of the FP ghosts asMaurer-Cartan
forms that live on the gauge group of infinitesimal gauge transformations. They achieved a re-
striction of the gauge group over solely infinitesimal local gauge transformations by expanding
the finite local gauge transformations, Eq.(2.18) and truncating at order O

(
ḡ2
)
. In such a way,

one promotes the approximate relation of the infinitesimal gauge transformations to an exact one
which becomes identical to its finite transformation. In addition, with an appropriate identifica-
tion of the nilpotent BRST operator, they discovered a mutual relation between the nilpotency of
the BRST operator, the BRST transformation of the ghost and preservation of closed Lie algebra
structure (Jacobi identity in the adjoint representation). Providing two of the aforementioned
conditions, the BRST transformations and the corresponding nilpotency follows. Therefore, by
identifying the FP ghosts as Maurer-Cartan forms, they concluded that invariance of the theory
under BRST transformations entails invariance under infinitesimal gauge transformations.

On the same year, [194] promoted the BRST symmetry as the fundamental symmetry of
gauge theories and by constructing BRST invariant actions of physical and ghost fields from first
principles, elaborated that they lead to gauge independent theories. Such a procedure, not only
facilitates the construction of the theory by providing a consistent underlying symmetry which
is not affected by the procedure of gauge fixing, but it can also be related to the conventional FP
approach for linear gauges fixing conditions on-shell. This construction serves as an improvement
of the conventional FP approach. Moreover, constructing an off-shell BRST invariant action allows
for the presence of quartic ghost interactions, as required in [195, 196] but are absent in the FP
method.

We see that there is quite a lot of motivation towards adopting the off-shell quantization
procedure of YM and maintaining BRST invariance. This argumentation in combination with
the study of an extended gauge-fixing condition with a stochastic variable, carried in Sec. 2.3,
corresponds to the main motivation of developing our theory in an off-shell framework.
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Functional Methods

This chapter will be dedicated to introducing all essential concepts and quantities that will be
instrumental later on in the construction and renormalizability of a manifestly BRST-invariant
theory. By enforcing BRST symmetry, we will promote invariance under underlying symmetry
transformations in correlation functions, albeit at the expense of introducing functional constraint
equations. As we will examine both perturbative and non-perturbative renormalization schemes
in this thesis, we aim at a transition from the (perturbative) RG to the fRG and provide a brief
introduction to the basics of the fRG. We conclude this chapter by investigating the compatibility
of the underlying symmetries for mass-dependent renormalization schemes, such as the fRG,
encoded in the aforementioned constraint equations, with the associated flow equation.

3.1 Basic functional tools

This section will serve as a short introduction to the definition and form of the generating func-
tionals required to perform perturbative and non-perturbative calculations, adjusted for pure YM
theory.

As found in Subsec. 2.3.2, cf. Eq.(2.55), the action functional for pure YM theory, when a
Fourier weight is considered, reads

SA[A, v] = SYM[A]− vaFa. (3.1)

From this action, the following path integral is generated

Z[j; v] =

∫
DA det (MFP[A]) e

i(SA[A,v]+jaµA
aµ). (3.2)

To facilitate further computations, we perform a Wick rotation of the gauge-fixed generating
functional, Eq.(3.2). Then, the Euclidean path integral takes the form

Z[j; v] =

∫
DA det (MFP[A]) e

−(SE[A,v]−jaµA
a
µ), (3.3)
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with a Euclidean gauge-fixed action

SE[A, v] = SYM[A] + vaFa (3.4)

and a Euclidean YM action

SYM =
1

4
F a
µνF

a
µν . (3.5)

Note that we have suppressed the subscript E which highlights the Euclidean character. Given
that we mostly work in Euclidean spacetime we do not bother about the position of spacetime
indices.

The FP determinant is generated by the following Euclidean integral,

det (MFP[A]) =

∫
DcDc̄ e−Sgh[A,c,c̄], (3.6)

with the Euclidean ghost action

Sgh[A, c, c̄] = −c̄aMab
FP[A]c

b. (3.7)

In order to promote the FP ghosts to elementary fields, we introduce appropriate sources (η̄, η)
for (c, c̄) respectively, so that these fields are treated on an equal footing as the gauge field. After
this addition of extra sources, we find the generating functional

Z[j, η, η̄; v] =

∫
DADcDc̄ e−(S[A,c,c̄,v]+Ssou), (3.8)

where

S[A, c, c̄, v] = SYM[A] + vaFa + Sgh[c, c̄], (3.9)

Ssou = −jaµAa
µ − η̄aca − c̄aηa. (3.10)

Eq.(3.8) corresponds to the generating functional of the full correlation functions. The gen-
erating functional of the connected correlation functions, denoted by W [j, η, η̄; v] and called the
Schwinger functional, is given by

Z[j, η, η̄; v] = eW [j,η,η̄;v]. (3.11)

The Legendre transform1 of the Schwinger functional, known as the effective action (EA),

Γ[A, c, c̄; v] = sup
j,η,η̄

{
jaµA

a
µ + η̄aca + c̄aηa −W [j, η, η̄; v]

}
, (3.12)

generates the one-particle irreducible (1PI) correlation functions. It is worth noting that at the
1The Legendre transform is a mathematical tool used in physics to establish a connection between conjugate quan-

tities. Note that even though the Legendre transform of a convex function is convex, this is not an invertible statement,
meaning that a convex Legendre transformed function does not guarantee the convexity of the original function. A
prime example is the Schwinger functional which can be non-convex whereas its Legendre transform is a convex
functional. Furthermore, it relates functions of velocity, the Lagrangian in classical mechanics and the Helmholtz free
energy in statistical mechanics, to functions of momentum, the Hamiltonian and the Gibbs free energy respectively,
[124, 197, 198].
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supremum, the sources are functionals of the classical fields, which correspond to the expectation
values of the associated quantum fields. Furthermore, in a common abuse of notation, we will
refer to the classical fields using the same notation as the quantum fields.

Eq.(3.12) entails that the classical fields, conjugate to the sources, satisfy

Aa
µ =

δW

δjaµ
, ca =

δW

δη̄a
, c̄a = −δW

δηa
=W

⃗δ

δηa
. (3.13)

Combining Eq.(3.12) with Eqs.(3.13), one deduces the quantum equations of motion

jaµ =
δΓ

δAa
µ

, ηa =
δΓ

δc̄a
, η̄a = − δΓ

δca
= Γ

⃗δ

δca
. (3.14)

3.1.1 Gauge and BRST symmetry generators

Let us now introduce a useful tool that will aid the construction of the functional constraint
equations, as discussed in Sec. 3.3. Promoting the FP ghosts to dynamical fields and considering
a Fourier noise distribution results in the off-shell generating functional of Eq.(3.8) with an action
given by Eq.(3.9). As discussed in Sec. 2.4, the gauge-fixed theory still exhibits manifest global
color invariance. Global gauge invariance, i.e. invariance under the transformations with the
Lie-valued parameter ω = const, dictates that the additional fields change homogeneously under
local gauge transformations. Combining their changewith the change of the gauge field, Eq.(2.3),
we find the off-shell extended finite local gauge transformations

AU
µ = UAµU

−1 − i

ḡ
(∂µU)U−1, cU = UcU−1,

c̄U = Uc̄U−1, vU = UvU−1.

(3.15)

Then, one finds the set of off-shell extended infinitesimal local gauge transformations

δωA
a
µ = Dab

µ ω
b, δωc

a = ḡfacbωbcc,

δω c̄
a = ḡfacbωbc̄c, δωv

a = ḡfacbωbvc.
(3.16)

Equivalently, Eqs.(3.16) are induced by the off-shell generator of infinitesimal extended local
gauge transformations which correspond to the following functional operator

Ga
local = Ga

global + Ga
(∂) = Dab

µ

δ

δAb
µ

+ ḡfacb
(
cc

δ

δcb
+ c̄c

δ

δc̄b
+ vc

δ

δvb

)
. (3.17)

Note that the off-shell generator of global color rotations corresponds to a homogeneous change
in all fields and reads

Ga
global = ḡfacb

(
Ac

µ

δ

δAb
µ

+ cc
δ

δcb
+ c̄c

δ

δc̄b
+ vc

δ

δvb

)
(3.18)

and Ga
(∂) = ∂µ

δ
δAa

µ
. Indeed, Eq.(3.17) reproduces the infinitesimal off-shell transformations, as it

can be seen from

ωbGb
localΘ

†
i = δωΘ

†
i , (3.19)

29



CHAPTER 3. FUNCTIONAL METHODS

where a spacetime integration is involved, cf. [199]. Note that we have introduced the following
collective representation which includes all fields

Θ†
i =

(
Aa

µ,−ca, c̄a, va
)
, Θi =


Aa

µ

ca

−c̄a
va

 . (3.20)

Even though at this stage, the gauge-fixed action, Eq.(3.9) and as a consequence the generating
functional Eq.(3.8) are not invariant under local gauge transformations, Eq.(3.17) will be of great
assistance in the formulation of the functional constraint equation when we restore manifest local
gauge invariance on the level of the path integral, see Subsec. 3.3.2.

Finally, we formulate the BRST transformations, Eq.(2.56), with the aid of the BRST genera-
tor, which corresponds to a non-linear to the fields functional operator of the form

GBRST = (Dµc)
a δ

δAa
µ

− ḡ

2
fabccbcc

δ

δca
+ va

δ

δc̄a
= (sΘ)i

δ

δΘ†
i

. (3.21)

Note that the BRST generator is nilpotent, i.e. G2
BRST = 0 in agreement with the BRST operator.

In contrast to Eq.(3.17), the BRST symmetry is non-linear to the fields and as such when incorpo-
rated in the theory can make the renormalization procedure more intricate, a fact that can give
rise to nonlocalities. Similar to the previous case, the BRST generator will help to restore mani-
fest BRST invariance for the generating functional using the Zinn-Justin equation, as explained
and derived in Subsec. 3.3.3.

3.2 Fundamentals of the background field method

In this section, we briefly go through the main idea behind the well-established, in different con-
texts, BFM [200], applied to the gauge-fixed YM action. Even though the gauge-fixing procedure
followed in Sec. 2.2 resulted in an action which is no longer invariant under local gauge transfor-
mations, but rather the residual BRST symmetry, the BFM allows to maintain the local symmetry
of background gauge transformations in a manifest way. Such a manifest invariance significantly
simplifies the renormalization procedure by allowing only contributions that are consistent with
the background gauge symmetry and filtering out the rest. More importantly, without any loss
of information, such symmetry properties can be associated with the full EA, cf. [123, 201].

In order to transition to the BFM, let us strip off any FP ghost dependence from the generating
functional, Eq.(3.8), i.e.

Z[j; v] =

∫
DA det (MFP[A]) e

−(S[A,v]−jaµA
a
µ). (3.22)

Then, we decompose the gauge field Aa
µ

Aa
µ → Āa

µ + aaµ, (3.23)

into an auxiliary non-dynamical field Āa
µ, called the background field and its quantum fluctuations,

denoted by aaµ. Such a split will affect all contributing quantities of the theory. In particular, the
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field strength tensor becomes,

F a
µν = F̄ a

µν +
(
D̄µaν

)a − (D̄νaµ
)a

+ ḡfabcabµa
c
ν (3.24)

with the background field strength tensor,

F̄ a
µν = ∂µĀ

a
ν − ∂νĀ

a
µ + ḡfabcĀb

µĀ
c
ν (3.25)

and the background covariant derivative in the adjoint representation

D̄ab
µ = ∂µδ

ab − ḡfabcĀc
µ. (3.26)

The action now becomes

S[a, Ā, v] = SYM[a, Ā] + vaFa[a, Ā], . (3.27)

where we allow the gauge-fixing condition Fa to depend separately on Ā and a.
Next, the background generating functional is related to a full generating functional via the

relation2

Z̄[j, Ā; v] = Z[j, Ā; v] e−jaµĀ
a
µ , (3.28)

as obtained by shifting Āa
µ → Āa

µ − aaµ and keeping a fixed background which entails that the
functional integration is carried entirely over the quantum fluctuations, i.e. DA → Da. Note
that the shift of the background, which in scalar theories connects the conventional and the
background functionals, is spoiled in gauge theories due to the field dependence in the gauge-
fixing condition. As a result, the full gauge obtained from the shift of the background may take
an unusual form, F ′ = F [Ā− a, Ā]. Such unconventional gauge-fixing condition leads to the full
generating functional Z[j, Ā; v] which differs in general from the conventional one, cf. Eq.(3.22).

From Eq.(3.28), the background Schwinger functional is found to be

W̄ [j, Ā; v] =W [j, Ā; v]− jaµĀ
a
µ, (3.29)

whereW [j, Ā; v] corresponds to the full Schwinger functional. Taking the Legendre transform of
Eq.(3.29), one finds the background EA

Γ̄[a, Ā; v] = sup
j

{
jaµa

a
µ − W̄ [j, Ā; v]

}
= sup

j

{
jaµ
(
aaµ + Āa

µ

)
−W [j, Ā; v]

}
, (3.30)

computed at the supremum j = j[a]. The background classical field aaµ and the quantum equation
of motion are given by

aaµ =
δW̄ [j, Ā; v]

δjaµ
, jaµ =

δΓ̄[a, Ā; v]

δaaµ
. (3.31)

2In this context, the term full generating functional implies that its associated source couples to the full gauge field
as opposed to the background generating functional where the source couples only to the fluctuations.
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Taking the functional derivative of Eq.(3.30) with respect to the source, results in

aaµ = Aa
µ − Āa

µ, (3.32)

which relates the background with the full classical field. The relation between the background
EA and the full EA is obtained by inserting Eq.(3.32) in Eq.(3.30). Setting A = Ā, one finds that

Γ̄[0, A; v] = Γ[A; v], . (3.33)

where the full EA, on the right side of the relation, depends on the background field both through
the gauge-fixing condition and because A = Ā, [123, 201–203]. Even though, the shift property
is no longer guaranteed, it allows to preserve background invariance which yields the same ob-
servables as the usual full gauge, despite the difference in the correlation functions reflecting the
choice of the gauge [123, 201].

Hence, the driving force behind adopting the BFM is unveiled when one considers local gauge
transformations. Due to Eq.(3.23), there are different ways of writing the local gauge transfor-
mations in terms of the decomposed gauge field.

The quantum gauge transformations transform only the fluctuation field, e.g.

aUµ = U
(
Āµ + aµ

)
U−1 − i

ḡ
(∂µU)U−1 − Āµ, ĀU

µ = Āµ (3.34)

and infinitesimally,

δQωa
a
µ = (Dµω)

a , δQω Ā
a
µ = 0. (3.35)

The background gauge transformations affect both the background and the fluctuation fields, e.g.

aUµ = UaµU
−1, ĀU

µ = UAµU
−1 − i

ḡ
(∂µU)U−1, (3.36)

or infinitesimally,

δBωa
a
µ =

[
Dab

µ (a+ Ā)− D̄ab
µ

]
ωb = ḡfacbωbacµ, δBωĀ

a
µ =

(
D̄µω

)a
. (3.37)

Note that both the quantum and background gauge transformations add up to the local gauge
transformations of the full gauge field, cf. Eq.(2.3), as they should. In addition, it is the quantum
gauge transformations which must be fixed during the gauge-fixing procedure to make sense of
the path integral in perturbation theory and thus their breaking gives rise to the residual global
BRST symmetry.

Reinstating the FP ghost contribution, as in Eq.(3.6), results in the ghost action in the BFM

Sgh[a, Ā, c, c̄, v] = −c̄aMab
FP[a, Ā, v]c

b. (3.38)

At this point one should mention that no FP ghosts or v-field background split took place. This
can be justified since these fields appear as the product of the gauge-fixing condition and their
decomposition would be irrelevant on the level of the EA in the limitA = Ā. Hence, their classical
fields and sources are identical to the ones in Eqs.(3.13) & (3.14) respectively.
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However, the introduction of a v field through the Fourier weighted gauge-fixing condition
in combination with the BFM can provide valuable insights into its properties. The v field has
been treated as a background/external field, in the sense that it is not an integration variable
as a consequence of the Fourier weight chosen during the gauge-fixing procedure and as such is
unaffected by the background decomposition. Even though it differs from the NL b field, they
are both products of the gauge fixing and affect the same sectors of the theory. Therefore, it is of
interest to investigate whether one can relate these field configurations by exploiting the BFM.

An alternative approach to understanding these fields is to view the v field as the background
field of the NL field. This can be illustrated by examining the Fourier weighted NL sector. Manip-
ulating Eq.(2.53), one can find that∫

Db e−SNL[b+v]−baFa → ev
aFa

. (3.39)

The relation above suggests that the v field can be considered as a background field, while the b
field corresponds to the fluctuations of the NL field, i.e. Ba = ba + va. Then, the Fourier noise
prescription encoded in Eq.(2.52) leads to the right side of Eq.(3.39) and corresponds to the
limit where the fluctuations of the NL field are frozen, leaving only the fixed background v field
to contribute.

Such a behavior is attainable in regimes where the NL field can exhibit a preferred non-
vanishing expectation value and thus be described to first approximation by the considered limit.

3.2.1 Background gauge and BRST symmetry generators

Similarly to Subsec. 3.1.1, one can extend the background gauge transformations, to include a
homogeneous transformation of the remaining fields (ca, c̄a, va). Thus, we are led to the off-shell
extended background gauge field transformations

aUµ = UaµU
−1, ĀU

µ = UAµU
−1 − i

ḡ
(∂µU)U−1,

cU = UcU−1, c̄U = Uc̄U−1, vU = UvU−1,

(3.40)

or infinitesimally,

δBωa
a
µ = ḡfacbωbacµ, δBωĀ

a
µ =

(
D̄µω

)a
,

δBωc
a = ḡfacbωbcc, δBω c̄

a = ḡfacbωbc̄c, δBωv
a = ḡfacbωbvc.

(3.41)

Note that the homogeneous change of the remaining fields under the extended background
transformations is governed by the condition that background gauge invariance is manifest on
the level of the gauge-fixed action, Eq.(3.27). This places a restriction on the class of admissible
gauge-fixing conditions.

The extended off-shell background gauge transformations are generated by the background
functional operator Ḡa

B, such that

ωaḠa
B = ωaD̄ab

µ

δ

δĀb
µ

+ ḡfacbωa

(
acµ

δ

δabµ
+ cc

δ

δcb
+ c̄c

δ

δc̄b
+ vc

δ

δvb

)
=
(
δBωΘ̄i

) δ

δΘ̄†
i

, (3.42)

where Θ̄i represents the collective field in the BFM, an extension of Eq.(3.20) which trivially
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includes the background field.
Moreover within the BFM, the action can be brought into the same form as Eq.(2.57), which

implies invariance under the following nilpotent BRST transformations that derive from the quan-
tum gauge transformations

(saµ)
a = (Dµc)

a ,
(
sĀµ

)a
= 0,

(sc)a = − ḡ
2
fabccbcc, (sc̄)a = va, (sv)a = 0.

(3.43)

The BRST generator of Eq.(3.43) takes the same form as in Eq.(3.21) with the difference that
the BRST transformation of the full gauge field is carried by the fluctuating field, i.e.

ḠBRST = (Dµc)
a δ

δaaµ
− ḡ

2
fabccbcc

δ

δca
+ va

δ

δc̄a
=
(
sΘ̄
)
i

δ

δΘ̄†
i

. (3.44)

Note that the form of the extended BRST transformations in the BFM, Eq.(3.43), is not unique.
In fact, there are alternative extended versions of the BRST transformation for the BFM, un-
der which the background field changes as a BRST closed ghost field, thus extending the color
space, cf [204]. Such realizations are motivated from the simplicity of the associated Zinn-Justin
equation and have been further implemented in various models in [205–208]. Such potential
deformations of the BRST transformations will not be explored in this thesis.

3.3 Functional constraint equations - Ward identities

Constraint equations are a crucial aspect for a theory to be well-defined. As illustrated in Chpt. 2,
during quantization of pure YM, a constraint equation at the level of the gauge field configura-
tions, the gauge-fixing condition, was required to obtain a finite generating functional, at the
expense of breaking manifest local gauge invariance. However, this gave rise to an additional
global supersymmetry of the action, the BRST symmetry, which turned out to be a vital compo-
nent for many physical aspects of the theory, as discussed in Sec. 2.4.

To compute the building blocks of the theory, such as correlation functions, the EA etc., which
were introduced in Sec. 3.1, source terms must be introduced for each associated dynamical field
configuration. Generally, we want to investigate under what circumstances a symmetry or pre-
viously valid symmetry of the action can be realized at the level of the generating functional
and, in turn, for the EA. To achieve this, one imposes manifest invariance under a desired sym-
metry at the level of the EA, which yields a set of functional constraint equations known as the
Ward Identities (WIs). In principle, these WIs correspond to constraint equations of the theory’s
functionals that, once obeyed, guarantee invariance under the associated symmetry. It should be
highlighted that the difference between the constraint equation, introduced in Section 2.2, and
that of the functional constraint equations is that the former was imposed at the level of the field
configurations, restricting the space of integration, whereas the latter is employed at the level of
the functional itself, restricting its admissible form as an effect.

3.3.1 Ward identities from global color invariance

Before we embark on the study of more complicated forms of WIs, it is more instructive to mo-
tivate their structural importance with a simpler example within the context of YM theory. In
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particular, let us consider global color rotations. These transformations can be realized linearly
to the fields and are generated by Ga

global, cf. Eq.(3.18). Under global color rotations, the action
and the functional measure remain invariant.

Enforcing such a symmetry on the level of the generating functional translates into

0 =
Ga
globalZ[J ; v]

Z[J ; v]
=

1

Z[J ; v]

∫
DΦ Ga

global e
−(S[Θ]+Ssou). (3.45)

The generator of global color rotations will act on the action as

0 =
1

Z[J ; v]

∫
DΦ

[
−Ga

globalS[Θ] + J †
i

(
Ga
globalΦi

)]
e−(S[Θ]+Ssou), (3.46)

where Θi is the same as in Eq.(3.19) and we collect the dynamical fields and their associated
sources as

Φ†
i =

(
Aa

µ,−ca, c̄a
)
, Φi =

Aa
µ

ca

−c̄a

 ,

J †
i =

(
jaµ, η̄

a, ηa
)
, Ji =

j
a
µ

η̄a

ηa

 .

(3.47)

Eq.(3.47) was chosen such that

Ssou[Φ] = −J †
i Φi = −Φ†

iJi (3.48)

and will significantly compactify the upcoming computations. Hence, Eq.(3.46) leads to the
equality

⟨Ga
globalS[Θ]⟩ = ⟨Ga

globalSsou[Φ]⟩ (3.49)

In order to extract the physical meaning of the constraint, we observe that the first part of
Eq.(3.46) corresponds to the expectation value of the variation of the action under global color
rotations whereas the second term can be manipulated as follows

0 = −⟨Ga
globalS[Θ]⟩+ 1

Z[J ; v]

∫
DΦ J †

i

(
Ga
global

δ

δJ †
i

)
e−(S[Θ]+Ssou) (3.50)

Exchanging the functional with the implied spacetime integral of the source action, we arrive at

0 = −⟨Ga
globalS[Θ]⟩+ 1

Z[J ; v]
J †
i

(
Ga
global

δZ[J ; v]

δJ †
i

)
. (3.51)

Eq.(3.51) can be rewritten in terms of the Schwinger functional, (3.11), as

0 = −⟨Ga
globalS[Θ]⟩+ e−W [J ;v] J †

i

(
Ga
global

δW [J ; v]

δJ †
i

)
eW [J ;v]. (3.52)
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In the collective field representation, the EA, Eq.(3.12), can be rewritten as

Γ[Φ; v] = sup
Ji

{
J †
i Φi −W [J ; v]

}
. (3.53)

In addition, the equivalent expressions of Eqs.(3.13) & (3.14) that connect the classical fields
and their sources with the Schwinger functional and the EA respectively in the collective field
representation reads,

Φi =
δW [J ; v]

δJ †
i

, Φ†
i =W [J ; v]

⃗δ

δJi,

Ji =
δΓ[Φ; v]

δΦ†
i

, J †
i = Γ[Φ; v]

⃗δ

δΦi
.

(3.54)

Performing a Legendre transform at the supremum, cf. (3.53), then Ji = Ji[Φ]which results into
a mutual cancellation of the exponential terms of the Schwinger functional. In addition, using
Eq.(3.54), we are left with

0 = −⟨Ga
globalS[Θ]⟩+ Γ[Φ; v]

⃗δ

δΦi

(
Ga
globalΦi

)
, (3.55)

where the fields involved in the second term should be realized as the classical fields. Finally,
noting that

Ga
globalΓ[Φ; v] = Γ[Φ + GglobalΦ; v]− Γ[Φ; v] = Γ[Φ; v]

⃗δ

δΦi

(
Ga
globalΦi

)
,

helps us obtaining

Ga
globalΓ[Φ; v] = ⟨Ga

globalS[Θ]⟩ . (3.56)

In a broader context, the relationship illustrated by Eq.(3.56) indicates that a linear trans-
formation in the fields that preserves the action corresponds to a symmetry of the EA, provided
that the functional measure remains invariant. The above relation corresponds to the Ward Iden-
tity for global color rotations in YM theory and yields a symmetry of the EA since the off-shell
gauge-fixed action is manifestly invariant under the off-shell global gauge transformations, i.e.
Ga
globalS[Θi] = 0.
However, the WIs associated with local gauge symmetry, which is no longer a manifest sym-

metry, and with BRST transformations, which are non-linear in the fields, exhibit a more intricate
structural form. To clarify the terminology, we shall refer to the WIs of local gauge symmetry as
Ward-Takahashi Identities (WTIs) and those of BRST symmetry as the Zinn-Justin equation or con-
ventionally as the Slavnov-Taylor Identities (STIs), as originally proposed in [37, 209], albeit from
a different perspective. The Zinn-Justin equation is also known as the master equation since, as
argued in Subsec. 2.4.3, it embodies the information about local gauge transformations. Further-
more, when deriving the functional constraint equations, we will not assume any specific form
of the gauge-fixing condition, but rather treat it as a generic functional of the relevant field con-
figurations. The investigation of these functional constraints in diverse contexts will be the topic
of the forthcoming Subsecs. 3.3.2-3.3.4.
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3.3.2 Ward-Takahashi identities

Let us now study theWIs which correspond to the functional constraints of the EAwhen enforcing
local gauge invariance. During the gauge-fixing procedure, local gauge invariance is spoiled on
purpose by additional contributions in the action. For clarity, we rewrite Eq.(3.9),

S[Θ] = SYM + Sgf + Sgh.

Given that the YM action, SYM is invariant under local gauge transformations by construction, i.e.
Ga
localSYM = 0, then the Ward-Takahashi Identity reads

Ga
localΓ[Φ; v] = ⟨Ga

local
(
Sgf + Sgh

)
⟩ . (3.57)

Recalling that functional derivatives of the EA with respect to the classical fields reproduces
the 1-Particle Irreducible (1PI) correlation functions, the solutions of Eq.(3.57) clearly place a
constraint on the underlying building blocks of the theory and the admissible form of the EA with
vital implications for the renormalization of the theory.

For a Lorenz gauge-fixing condition in the Landau gauge expressed in terms of the bare fields
and couplings, Eq.(3.57) connects the 1PI correlation functions at L-loops with up to (L + 2)-
loop corrections to the connected ghost, gluon propagators and ghost-gluon vertex function, see
[199]. In addition, an explicit inclusion of a gluon mass parameter in this gauge is prohibited
according to the WTIs.

3.3.3 Zinn-Justin equation

Next, we focus our attention on the derivation of the WIs for BRST symmetry, the so called
Zinn-Justin equation or STIs or master equation. BRST transformations are generated by the
non-linear generator Eq.(3.21). If we were to follow the same steps as for the global and color
gauge transformations, such a non-linearity would propagate into the WIs, e.g.

⟨GBRSTSsou⟩ = 0. (3.58)

Note that the generator of BRST transformations is non-linear to the fields and as such the study
of the 1PI correlation functions as solutions of the WIs, Eq.(3.58), ends up being more involved.

Following [210, 211], one obtains a simpler expression for the associated WIs, by introducing
appropriate BRST-exact sources of the BRST variations of the fields, extending the source action
to

Ssou = −Φ†
iJi + Ka

µ (sA)
a
µ + La (sc)a , (3.59)

with Ka
µ and La being anticommuting and commuting sources respectively. The WIs for the ex-

tended action (including the BRST sources) take the expected form, cf. Eq.(3.18)

⟨GBRSTSsou⟩ = ⟨(sΘ)i

(
δSsou

δΘ†
i

)
⟩ = 0. (3.60)
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Inserting Eq.(3.59), we arrive at

⟨sΦ†
i ⟩ Ji = 0, (3.61)

because the contribution of the additional sources vanishes due to their BRST-exact character,
i.e.

⟨GBRST Ka
µ (sA)

a
µ⟩ = ⟨GBRST La (sc)a⟩ = 0.

Expanding the collective fields and sources in Eq.(3.61), one finds

jaµ ⟨(sA)aµ⟩ − η̄a ⟨(sc)a⟩+ ηa ⟨(sc̄)a⟩ = 0. (3.62)

Given the inclusion of the BRST source, one can establish a relation between the expectation
values of the BRST transformation, which appear in the WIs and the EA. Then, one finds that

⟨(sA)aµ⟩ =
δΓ

δKa
µ

, ⟨(sc)a⟩ = δΓ

δLa
, ⟨(sc̄)a⟩ = va. (3.63)

Substituting Eq.(3.63) into Eq.(3.62), we get

δΓ

δAa
µ

δΓ

δKa
µ

+
δΓ

δca
δΓ

δLa
+ va

δΓ

δc̄a
= 0. (3.64)

The WIs of Eq.(3.64) correspond to the so called Zinn-Justin or master equation for the gauge-
fixed YM action, cf. Eqs.(3.9) & (3.59), i.e.

S[A, c, c̄, v,K, L] = SYM[A] + vaFa + Sgh[c, c̄] + Ssou.

The Zinn-Justin equation, is satisfied by the total action, thus

δS

δAa
µ

δS

δKa
µ

+
δS

δca
δS

δLa
+ va

δS

δc̄a
= 0, (3.65)

which encodes the BRST symmetry of the action and entails that Γ[Φ; v] = S[Θ,K, L] is a solution
of the Zinn-Justin equation. The significance of Eq.(3.65) as a solution of Eq.(3.64) lies in its
predictive power for constructing a renormalizable theory. As elaborated in [163], a construction
of a renormalized action from first principles and building on Eq.(3.65)is possible by virtue of
power counting at the expense of an emerging BRST-exact term quartic in the FP ghosts. In
that case, Eq.(3.65) is stable under renormalization and BRST symmetry is ensured. Hence, we
see that the Zinn-Justin equation translates the connection between renormalization and BRST
symmetry to a restrictive class of admissible actions.

3.3.4 Ward identities in the background field formalism

During the BFM, we have imposed on the level of the action manifest invariance under BRST and
background gauge transformations, cf. Eqs.(3.43) & (3.41), generated by Eqs.(3.44) & (3.42)
respectively. Motivated by [212, 213], we derive a compatibility relation between the background
gauge and BRST generators which entails a necessary condition for the form of the gauge-fixing
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condition.
Firstly, let us rewrite the action in the BFM in a BRST closed form,

S[a, Ā, c, c̄, v] = SYM[a, Ā] + ḠBRSTΨ[a, Ā, c̄, v], (3.66)

with Ψ[a, Ā, c̄, v] = c̄aFa[a, Ā, v].
Manifest background gauge invariance implies that

Ḡa
BS[Θ̄] = 0. (3.67)

Furthermore, manifest BRST invariance of the action translates to the following condition

ḠBRSTS[Θ̄] = 0. (3.68)

One can verify, that the BRST and background gauge transformations generators commute with
each other [212],

[
Ḡa
B, ḠBRST

]
= 0. (3.69)

Applying Eq.(3.68), while considering Eqs.(3.66) & (6.27), one readily derives that

ωaḠa
BΨ =

(
δBωΘ̄i

) δ

δΘ̄†
i

Ψ = 0. (3.70)

Expanding the Ψ functional in Eq.(3.70), then

(
δBωΘ̄i

) δ

δΘ̄†
i

Fa = ωbḠb
BFa = ḡfacbωbFc. (3.71)

Eq.(3.71) shows that under background gauge transformations, the gauge-fixing condition must
change homogeneously in order to maintain manifest background gauge invariance. This condi-
tion implies that within the BFM, non-linear gauge-fixing conditions are valid and in accordance
with the underlying symmetries, as long as they are constructed from tensorial quantities of the
gauge group. Such a remark will be exploited in Chpts. 4 & 5.

Finally, suppressing the FP ghost dependence for a moment, manifest background invariance
imposes a functional constraint on the background EA and gives rise to WIs of the form

Ḡa
BΓ̄[Ā; v] = 0. (3.72)

However, as shown in Eq.(3.33), the background EA can be related to a full EA in the limit of
Ā = A. In that case, Ḡa

B → Ga
local. Thus, Eq.(3.72) reduces to

Ga
localΓ[A; v] = 0, (3.73)

which implies that the full EA constructed within the formalism of BFM is a gauge invariant quan-
tity and thus consists of only gauge-invariant building blocks, resulting to appropriate physical
observables.

Hence, we infer that invariance of the theory under the auxiliary background gauge trans-
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formations is associated to the local gauge transformations of the full gauge field, since it leads
to a gauge invariant full EA, which can differ from the standard EA but yields the same physi-
cal observables. Therefore, it is sensible and many times computationally advantageous to work
within the background field formalism without loss of information.

3.4 From RG to fRG

The effective action (EA) is a crucial quantity in the study of a theory as it provides information
about the theory’s long-range behavior and the realization of symmetries. Physical information,
encoded in the EA, can be extracted using perturbative or non-perturbative techniques. To briefly
elaborate on this point, let us rewrite the EA of Eq.(3.12), in terms of a functional integral in
which, for the moment only, the macroscopic dynamical collective fields are denoted by Φ′, and
an ultraviolet (UV) cutoff scale is introduced (cf. Subsec. 3.4.2),

e−Γ[Φ′;v] =

∫
Λ
DΦ e

−S[Φ+Φ′,v]+Φ†
i

δΓ

δΦ
′†
i . (3.74)

Eq.(3.74) implies that solving a set of first-order non-linear functional differential equations
yields the EA. One way to do this is by performing a vertex expansion and determining the ex-
pansion coefficients that correspond to the 1PI proper vertices, which results in a set of integro-
differential equations known as the Dyson-Schwinger equations, cf. [214–217]. Such an imple-
mentation of functional methods allows access to the non-perturbative regime of gauge theories
at the cost of introducing appropriate truncation schemes to obtain an approximate solution of
the corresponding EA.

3.4.1 The procedure of perturbative renormalization

In the context of perturbative treatments, the EA can be expanded to small values of the coupling
constant. The resulting perturbative series expansion can be organized in terms of loop contri-
butions, providing a useful approach for analyzing the theory. However, it should be noted that
this approach has a limited range of validity. This technique can be used to derive an explicit
expression for the EA up to a certain loop order, by writing the right-hand side of Eq.(3.74) as
a Gaussian of the dynamical fields and then explicitly performing the functional integral. In this
way, the one-loop perturbative EA can be brought to the conventional form of

Γ1L = S +
1

2
tr lnS(2), (3.75)

as found in Chpt. 4, where S(2) is to be understood as the Hessian of the action in terms of the
dynamical fields.

Further computation of associated correlation functions may result in the appearance of di-
vergences arising from loop integrals. Nonlocal interactions can be a source of these emerging
divergent contributions. In perturbation theory, these divergences can be handled through the
process of renormalization. Renormalization is a valuable tool in the study of quantum field the-
ory, allowing for the removal of infinities that arise in loop calculations.

There are various methods that can be used to renormalize a theory and remove its diver-
gences. In Chpt. 4, a two-step procedure will be employed to achieve this, first by regularizing
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the divergences and then by reparametrizing the field and coupling constant accordingly. This
adjustment requires the introduction of renormalization constants which serve as counterterms
and connect the initial or bare quantities to the reparametrized or renormalized ones. By adjusting
these constants to counteract loop divergences, the resulting theory will have finite correlation
functions. The degree to which the theory can be renormalized is determined by the number of
independent divergent loop contributions that must be regularized using the available parame-
ters that can be reparametrized. In Chpts. 4 & 5, the perturbative study of the one-loop EA and
1-Particle Reducible (1PR) correlators for pure YM with nonlocal interactions is explored.

However, it is possible to achieve renormalization of a theory in a more controlled manner.
It is important to note that there is not a unique method of renormalization and that observ-
ables must ultimately be independent of the chosen renormalization scheme. As a result, during
renormalization, a mass scale k can be introduced into the theory which makes the couplings
scale-dependent. By appropriately varying the renormalization mass scale, new couplings are
induced at the newly varied scale. Repeating this procedure results in the RG, that generates a
set of scale-dependent couplings which in turn are associated with the correlation functions at
that scale. This approach provides an algorithmic method for dealing with divergences by con-
sistently screening the energy scale at which they appear, but their effect remains integrated in
the scale dependence of the effective couplings.

This scale dependence is described in terms of a beta function for the corresponding coupling
gi, defined as

βgi = k
dgi
dk

. (3.76)

The RG machinery offers valuable insights into the effects of microscopic degrees of freedom by
studying the macroscopic aspects of a determined Effective Field Theory (EFT). This approach
establishes a useful interplay between energy scales and renormalization, revealing information
of the "full" theory from the structural study of an EFT confined within a well-defined scale do-
main. Ultimately, the RG provides a powerful tool for analyzing the behavior of a theory and
extracting valuable information regarding its underlying structure. Therefore, renormalization
plays an essential role in quantum field theory, enabling precise predictions and facilitating a
better understanding of the behavior of quantum systems at small and large scales.

3.4.2 Functional renormalization group

Other successful non-perturbative versions for obtaining approximate solutions of the EA by solv-
ing a set of exact functional RG equations have been devised throughout the years [218–226]. In
this work, we shall concern ourselves with the functional renormalization group (fRG) approach
[227–231] which has been successfully implemented in the investigation of different physical
models, cf. [232–251] for a non-exhaustive list and cf. [71, 136, 199, 244, 246, 252–254] for a
sample of reviews on the topic.

The fRG is a non-perturbative approach to solve Eq.(3.75) by implementing the Wilsonian
RG formulation [219–221, 255–259]. According to Wilson’s idea, one can construct an EFT of
low energy modes (long distance) by integrating over high energy ones (short distance). Such a
procedure is based on the philosophy that the contribution of long range fluctuations, also called
slow modes, is not affected by the short distance fluctuations or fast modes and as such they can
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Figure 3.1: Graphical depiction of the possible energy scales of a regularized theory, as indicated by the cutoff Λ and
integrating out modes by following Wilson’s RG and fRG approaches. The central image shows the energy scales of
the theory, with the cutoff Λ at the top. To the right and left of it, the underlying philosophy of integrating out modes
by following Wilson’s RG approach and fRG is shown in an intuitive manner. The blue shaded region corresponds to
the energy domain of modes that contribute in the corresponding flows whereas the red shaded region represents the
energy domain of modes that are integrated in the microscopical flow of Wilson’s approach or that will be integrated
in the macroscopic flow of the fRG. The role of the RG scale k, can also be clearly observed, where in Wilson’s RG
corresponds to a UV cutoff whereas in the fRG to an IR cutoff.

be integrated out.
Wilson’s approach to the RG involves starting with a QFT that has been regularized up to

a cutoff scale Λ. This cutoff scale is related to relevant microscopic scales, such as an inverse
lattice spacing in a discrete setting and governs the microscopic dynamics. Consequently, the
functional measure is restricted to an integration over fields with momenta up to the cutoff scale,
i.e.

∫
DΦ →

∫
ΛDΦ. By employing the RG procedure, one can reformulate the underlying theory

up to a different energy scale k, potentially experimentally accessible, by integrating out the fast
modes and studying the effects of such a scale reduction on the microscopic dynamics.

The RG is generated by employing infinitesimally, coarse graining and successively a scale
transformation in an iterative fashion. Coarse graining is responsible for modifying the theory’s
scale down to the desired scale k, providing an EFT for the slow modes with momenta p < k,
above which all quantum fluctuations are integrated out. Computationally, this is achieved by
splitting the slow from the fast varying modes and then integrating over the fast modes on the
partition function. This results in a modified action. In such a way, there might not be an explicit
dependence of the partition functional on the integrated out fast modes, but their information is
encoded in the modified action.

However, as noted in Subsec. 3.4.1, each modified action can be associated with a modi-
fied correlation function at each scale. In order to extract meaningful information, the correla-
tion functions from different energy scales need to be comparable, which can be performed by
rescaling the momenta and field configurations to match those of the previous iterations. This
is accomplished by applying an infinitesimal scale transformation on top of the coarse graining
already applied. Repetition of the aforementioned procedure will result in a history of modified
actions, generated at each coarse graining step, that interpolate between the cutoff scale Λ and
the desired scale k. Such a dataset of modified action traces a trajectory in the space of actions,
called the RG trajectory.
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In the spirit of Wilson’s idea, the fRG adopts an "inverse" logic and by employing functional
methods manipulates the RG on amacroscopic scale, in contrast to the previous microscopic level.
The main feature of the fRG is that instead of computing the history of modified actions of the
slow modes, one derives a one-parameter family of scale-dependent EA, called Effective Average
Action (EAA) of the fast modes, generated by the RG machinery. This approach shifts the focus
of the RG procedure from the microscopic action to the macroscopic EAA, thereby enabling the
exploration of the system’s properties at different energy regimes by appropriately adjusting the
scale k. Notably, the scale k no longer corresponds to a UV cutoff for the contributing slow modes,
but instead to an IR cutoff regulated by the fast modes. Consequently, the IR limit corresponds
to k → 0, whereas the UV limit of the regulated theory corresponds to k → Λ. When the
UV regulator Λ is removed, i.e., Λ → ∞, we gain access to the deep UV domain. A graphical
representation of the two differing methods is depicted in Fig. 3.1.

Thus, according to the aforementioned structure, the EAAmust interpolate between two fixed
asymptotic behaviors. The microscopic bare action at the UV cutoff k → Λ, since at that limit
there are no integrated out fast modes and the full quantum EA of the theory at the IR limit
k → 0,

lim
k→Λ

Γk[Φ; v] ∼ S[Φ; v], lim
k→0

Γk[Φ; v] = Γ[Φ; v]. (3.77)

In order to build the EAA, due to the underlying principle, one should decouple the slow
and fast varying modes of the theory on the level of the generating functional. This can be
achieved by associating a largemass to the slowmodes, by explicitly implementing an IR regulator
∆Sk[Φ] in the generating functional. Thus, one finds an IR regulated, scale-dependent generating
functional

Zk[J ; v] =

∫
Λ
DΦ e−S[Θ]−∆Sk[Φ]+J †

i Φi ≡ eWk[J ,v], (3.78)

where in general, the IR regulator has a momentum dependent mass form

∆Sk[Φ] =
1

2

∫
p
Aa

µ(−p) (Rgl
k )µν(p) A

a
µ(p) +

∫
p
c̄a(−p) (Rgh

k )(p) ca(p), (3.79)

where for each associate sector, appropriate gluon and ghost regulators were introduced. Next,
we can define the Effective Average Action (EAA) as a modified Legendre transform

Γk[Φ; v] = sup
J

{
J †
i Φi −Wk[J ; v]

}
−∆Sk[Φ]

= Γ̃[Φ; v]−∆Sk[Φ].

(3.80)

Furthermore, at J = Jsup, we find the scale-independent macroscopic fields and scale-dependent
quantum equations of motion, (fRG extension of Eqs.(3.54)),

Φi =
δW [J ; v]

δJ †
i

, Φ†
i =W [J ; v]

⃗δ

δJi,

Ji =
δΓ[Φ; v]

δΦ†
i

+
δ∆Sk[Φ]

δΦ†
i

, J †
i = Γ[Φ; v]

⃗δ

δΦi
+∆Sk[Φ]

⃗δ

δΦi
.

(3.81)
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At this point, we can study the expected behavior of the regulator function Rk(p) of Eq.(3.79).
In particular, it must satisfy the following conditions:

• At k → 0, when all quantum fluctuations are integrated out, it should vanish in order to
ensure that the generating functional coincides with the scale-independent one i.e.

lim
k2/p2→0

Rk(p) = 0 ⇔ lim
k→0

Zk[J , v] = Z[J , v]. (3.82)

• At k → Λ, when no quantum fluctuations are integrated out, then, in order to reproduce
the proper behavior of the EAA, cf. Eq.(3.77), the regulator function must diverge,

lim
k2→Λ

Rk(p) → ∞ ⇔ lim
k2→Λ

Γ[Φ] = S[Φ] + const.. (3.83)

Note that these requirements can be justified by exploiting the convex property of the EAA
through a saddle point expansion of the corresponding action and regulator. At one-loop or-
der and taking into account the scale-dependent quantum equations of motion in Eq.(3.81),
any first functional derivative contribution will vanish and only the Hessians of the action
and the regulators will survive in the functional integral. However, imposing the condition
Eq.(3.83) will result in a Gaussian integral in terms of the field-independent Hessian of the
regulator, i.e.

(
∆S

(2)
k

)
ΦΦ

∼ Rk. Performing the remaining Gaussian functional integral
explicitly will result in a field-independent constant contribution which can be filtered out,
thus reproducing the desired behavior of Eq.(3.77). Similar behavior will be exhibited if
one considers the deep UV region, k2 → Λ → ∞.

• At 0 < k < Λ, then the fast modes should be unaffected by the regulator whereas the slow
modes are regularized in a mass-like fashion, m2 ∼ k2,

lim
p2/k2→0

Rk(p) > 0. (3.84)

The flow equation of the EAA with respect to the RG scale k is described by the Wetterich
equation, cf. [231, 260–262],

∂tΓk =
1

2
tr

[
(∂tRk)

(
Γ
(2)
k +Rk

)−1
]
, (3.85)

where t = log k, is called the RG "time",
(
Γ
(2)
k

)
ΦiΦj

= δ

δΦ†
i

Γk
⃗δ

δΦj
represents the Hessian of the EAA

in terms of all dynamical macroscopic fields and tr accounts for all relevant field dependencies
and contributes an additional minus in fermionic sectors.

Long-range physics should be independent of the choice of the regularization scheme and in
extend from the choice of the regulator. This can be achieved by finding an exact solution for the
associated flow equation, subject to an appropriate adjustment of the initialization of the action,
which is a very involved task.

In practice, we employ certain approximations/truncations of the EAA which in turn can
spoil this expected behavior. Therefore, it is important to select an optimized regulator that
minimizes the effect of this breaking and yields the appropriate physical observables. Despite the
aforementioned restrictions there is still a large class of possible regulators. For convenience, let
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us reparametrize the regulator function as

R(p2) = p2r(p2) (3.86)

where r(p2) is called regulator shape function. In this work we shall exclusively choose the Litim
regulator shape function for concrete computations, [263], which reads

r(p2) =

(
k2

p2
− 1

)
θ(k2 − p2). (3.87)

Due to the presence of the step function θ(k2 − p2), the behavior of the shape function is not
smooth for varying RG scales. It should thus be used with care during the derivative expansion
[264].

3.5 Towards BRST/gauge invariant fRG flows

In Sec. 3.3, we discussed the introduction of functional constraint equations or WIs as means of
monitoring global and local symmetries on the level of the building blocks of non-Abelian field
theories. Among the different symmetries involved, we highlighted the importance of BRST sym-
metry and its close relation to gauge invariance, cf. Sec. 2.4. On that note, we incorporated
the information of BRST symmetry on the level of the correlation functions spanning across all
loop orders, as a functional constraint equation called the master equation, cf. Subsec. 3.3.3, at
the expense of introducing additional BRST sources in the generating functional, Eq.(3.59). Fur-
thermore, we argued that such a master equation provides a valuable tool to extract information
for various aspects of the theory, among which is the stability under renormalization. Thus, it is
natural to examine the possible modification of certain WIs within the context of mass-dependent
regularization schemes and more precisely the fRG, cf. Sec. 3.4.

At the setting of the fRG, the presence of the regulator in the EAA, Eq.(3.79), affects the
underlying symmetry invariance of the theory and in extent results in a modification of the as-
sociated functional constraints, leading to the so called modified Ward Identities (mWIs). Note
that at the physical limit of k → 0, the mWIs must agree with the WIs of the scale-independent
theory, cf. [265–269].

Formulating the mWIs of the explicitly broken local gauge symmetry, i.e. the WTIs, in the
fRG setup, one finds [199]

Wk = Ga
localΓk[Φ; v] + Ga

local∆Sk[Φ]− ⟨Ga
local(Sgf + Sgh +∆Sk)[Θ]⟩ = 0, (3.88)

which correspond to the modified Ward-Takahashi Identities (mWTIs). Comparing Eq.(3.57) to
Eq.(3.88), we observe that the explicit breaking of local gauge invariance is enhanced by the
presence of the regulator contributions.

Due to the close interconnectivity between BRST and gauge symmetry, cf. Subsec. 2.4.3, in
order to gain insight into the gauge invariance of the theory one usually studies the implications of
the WIs of the BRST symmetry, i.e. the master equation or STIs, cf. Subsec. 3.3.3. The elegance
and practical accessibility of the master equation, Eq.(3.64), lies in the systematic way with
which one can construct iteratively perturbative correlation functions by employing algebraic
cohomological methods. Furthermore, its resolution does not require the computation of loop
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terms. In the context of the fRG, the corresponding mWIs of BRST symmetry read

Sk = ⟨GBRSTSsou⟩+ GBRST∆Sk[Φ]− ⟨GBRST∆Sk[Φ]⟩ = 0, (3.89)

called the modified Slavnov-Taylor Identities (mSTIs). The mSTIs encode the gauge invariance of
correlation functions generated by the EAA for fRG flows. Moreover, Eq.(3.89) reproduces the
STIs, Eq.(3.58), at the physical limit k → 0. Maintaining this limit is important to guarantee
physical gauge invariance. Since Rk → 0 eliminates the regulator-dependent contributions, we
rediscover the standard STIs in the physical limit of k → 0. Furthermore, in [261], the mSTIs
were rephrased in terms of a regulator-dependent extension of the master equation Eq.(3.64),
called the modified master equation (mME). For further details see reviews [136, 199, 253, 254,
270].

Owing to the quadratic structure of the regulator Eq.(3.79), the regulator-dependent terms
introduce one-loop contributions which make the resolution of the mSTIs more involved [271,
272]. Furthermore, due to the presence of the regulator, manifest BRST invariance is lost during
the functional RG flow at finite scales k. However, the structural form of the mSTIs signifies the
soft breaking of BRST invariance and as an extension of gauge invariance, since at high energies
the operators associated to the regulator are suppressed, cf. [254] and references therein.

The flow of the mWTIs can be compactly written as [199]

∂tWk = −1

2
GAB

k ∂tR
AC
k GCD

k

δ

δΦ†
D

Wk

⃗δ

δΦB
, (3.90)

where GAB
k =

(
1

Γ
(2)
k +Rk

)
AB

corresponds to the AB component of the fully dressed propagator

of the theory. Note that in order to avoid confusion with the notation of the collective fields and
the RG scale, we denote the collective indices as {A,B,C, . . .}.

Eq.(3.90) dictates how the mWTIs and in extension the functional constraints between cor-
relation functions change at different RG scales. Most importantly, Eq.(3.90) entails that the
resolution of the mWTIs, i.e. Wk = 0, is a fixed point of the flow, i.e. ∂tWk = 0. This ensures
that if the mWTIs are respected at some scale k, at which a Γk is generated, then they are also
met at a different scale k′ with Γk′ , [199].

Broadly speaking, the flow of the mWTIs or mSTIs monitors potential violations of gauge
invariance in the case of mWTIs, or BRST symmetry (and in extension gauge symmetry) in the
case of the mSTIs, in mass-dependent regularization schemes such as the fRG. They describe the
limit where the symmetry is softly broken due to the inclusion of regulators and is reinstated
at the physical limit k → 0. However, such a description is unambiguously valid when one can
derive the corresponding histories of generated EAAs that exactly solve the flow equation. In the
case of gauge theories, the flow equation is solved approximately, which implies that the EAA
is subject to the chosen truncation scheme. To that extent, the confidence level of the flow of
the mWIs is directly related to the selected approximation scheme. Hence, potential violations
of the underlying symmetries, as encoded by the flow of the mWIs, can arise from relevant or
irrelevant RG operators. Thus for practical applications where truncation schemes are inevitable,
the mWIs control the corresponding truncation by providing self-consistency and stability checks
[271, 272].

Even though irrelevant symmetry violating RG operators do not affect the flow at the physical
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Wk

Wk: manifold on theory space
spanned by the mWTIs

W

W: manifold on theory space
spanned by the WTIs

*
Γk=0

*
Γk=Λ

*Sk=Λ

*Γk=Λ

(1)

(2)

Figure 3.2: Graphical depiction of gauge invariant flows in theory space realized by the associated constraint
equations and truncation schemes [199, 274]. In the above:
*: Generates a history of gauge invariant action functionals as determined by the WTIs.
*: Generates a history of gauge invariant EAAs as determined from the flow of the mWTIs and agrees with the WTIs
in the physical limit of k → 0 where the symmetry is softly broken due to the regulator insertion. However, it requires
an EAA that solves the fRG equation exactly, which constitutes a strong constraint.
*: Belongs neither on the WTIs nor the mWTIs spanned manifolds and its flow depends on the chosen truncation
scheme, thus potentially diverging the flow from the physical limit. Resolution of the truncated flow equation in
accordance to the scale-dependent mWTIs dictates the class of admissible operators.
(1): Resolution of the flow equation within a truncation where the deviation from the Wk subspace is given only by
RG-irrelevant operators, thus reproducing the correct physical limit.
(2): Resolution of the flow equation within a truncation where the deviation from the Wk subspace is given also by
RG-relevant operators, which can result to a divergent trajectory and should be avoided.

limit, thus resulting in a resolution of the underlying functional constraint equations, violations
induced by relevant RG operators as part of the truncation can potentially affect the behavior in
the physical limit. Consequently, we require computational tools that will alleviate this ambiguity.
A naive classification of the operators with power counting methods in the fRG setup falls short.
As it turns out, resolution of the associated mWIs works hand in hand with that of the flow
equation, such that seemingly relevant RG operators are suppressed at k → 0, [87, 273].

In other words, the mWIs assist during the RG flow, by regulating the considered approxima-
tion according to the symmetries, in a controlled manner, realizing possible classes of admissible
operators that become RG irrelevant in the physical limit. This procedure can be generalized to
the mSTIs. A graphical depiction of the aforementioned procedure, for the case of the flow of the
mWTIs can be found in Fig. 3.2.

Furthermore, consistency of a truncation in terms of the mWIs is linked to the IR behavior
of correlation functions [87, 90, 93], which governs the physical properties of the system, cf.
Chpt. 1. Therefore, the development of a procedure that applies the fRG flows coupled to the
resolution of the underlying mWIs beyond perturbation theory, is a key ingredient in the under-
standing of gauge theories and there are several proposals for such a procedure for truncated
fRG flows [79, 93, 271, 275].

A convenient option to devise non-perturbative truncations in gauge theories relies on the
BFM with the construction of background gauge invariant flows. Such an approach, not only
preserves gauge invariance encoded in mWTIs/mSTIs, but also includes constraint equations
which monitor the gauge/background independence of correlation functions. These constraint

47



CHAPTER 3. FUNCTIONAL METHODS

equations are known as modified Nielsen Identities (mNIs), which, in the absence of regulators,
reduce to the Nielsen Identities (NIs) and on-shell incorporate the background independence of
proper vertices, δΓ

δĀ
= 0, [136, 254]. In practice, they have been treated on an approximate level

[132–135, 143, 145, 146].
In another approach, gauge-invariant functional flows that are stable under renormalization

were constructed, at the expense of introducing composite operators that lead to regulator-
dependent BRST transformations for the renormalized fields. Such a construction infers a modi-
fied version of the associated symmetry constraint equations [270, 276–278]. Applications of the
compatibility of the derived constraint equations and their functional flows have been studied in
the context of QED [279, 280] and perturbative YM theory [281].

Alternatively, the authors in [282, 283] constructed manifestly gauge-invariant exact RG
flows, without the use of gauge fixing, for SU(N) pure YM theory. This was achieved by em-
bedding the theory into a supergauge group using a higher derivatives regularization scheme
and a manifest spontaneous breaking of supergauge invariance SU(N |N) → SU(N) × SU(N).
Following this gauge-invariant approach, several loop computations for various theoretic frame-
works were carried out, including that of the one-loop and two-loop YM beta functions [253,
284–289].

Due to the conceptual and computational accessibility of the gauge-fixing procedure, it re-
mains advantageous to explore the behavior of non-Abelian field theories at different energy
regimes by employing the FP quantization. Built on this reasoning, the authors of [121] derived
BRST-invariant flows through an fRG equation, compatible with the extended STIs in a suitable
truncation scheme.

A novel feature of this method is that the BRST-breaking regulators are incorporated as part
of the regularization procedure by imposing a non-trivial gauge-fixing condition. As discussed in
[121] & Sec. 2.3, such a modification comes at the expense of extending the color space with the
inclusion of a NL-type v field which is expected to appear in the generated loop graphs. Further-
more, the truncation scheme, due to the inclusion of extra BRST sources, allows for additional
regulator-dependent vertex interactions. Therefore, it is of interest to examine whether one can
reproduce the universal one-loop beta function from the associated flow equation, considering
the additional degrees of freedom which come from the v field. A preliminary study of the gluon
anomalous dimension compared quite favorably with existing literature results for an appropriate
choice of the weight of the v field, [121].

The computation of the one-loop beta function in a manifestly BRST-invariant manner is the
subject of study in Chpt. 6.
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CHAPTER 4

Background and BRST-Invariant One-Loop EA for Non-Linear Gauge Fixing

This chapter focuses on the perturbative analysis of our model within the BFM. The goal is to
construct a modified background invariant non-linear gauge-fixing condition with a decoupled
mass-regulator sector. The Fourier weighted gauge-fixing procedure used in Subsec. 2.3.2 intro-
duces a v-field dependence in the bare action, which affects the classical equations of motion.
This, in turn, constrains the admissible forms of the v field. However, the gauge-fixing condi-
tion introduces nonlocal terms, which may cause additional divergences. To address this, we
study the perturbative stability of our model obtaining explicit expressions for the one-loop per-
turbative EA and Schwinger functional in the BFM. The focus will be on the presence of the v
field in the structure of these quantities and the impact of the regulator parameters. This anal-
ysis reveals a v-independent EA and a v-dependent Schwinger functional, which will be further
studied in Chpt. 5. Next, from the renormalization of the one-loop EA we determine the asso-
ciated beta function under various regularization schemes. Finally, a phenomenological study
of the potential-like quantity in terms of the action density provides insight into the role of the
regulator parameters that govern the IR dynamics of the model.

4.1 Background-invariant non-linear gauge-fixing condition

In order to proceed with further calculations in our framework, let us turn our attention to deter-
mining a concrete form of the gauge-fixing condition, in accordance with the desired symmetries.
For that, we impose the BFM. As mentioned in Chpt. 1 and introduced in Sec. 3.2, the BFM con-
stitutes a valuable tool that can greatly facilitate (non-)perturbative calculations due to manifest
background gauge invariance, which can be associated to a gauge invariant EA, cf. Subsec. 3.3.4.
Furthermore, in Subsec. 3.3.4, we deduced that manifest BRST and background gauge invariance
of the action restricts the class of gauge-fixing conditions to those that change in a tensorial man-
ner which, in turn, dictates the admissible construction terms, cf. Eq.(3.71). Building on this
principle, one can generically choose a set of Lorenz-like linear covariant gauges [123, 201].
However, we deviate from this conventional choice. Following [121], we choose a non-linear
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background gauge-fixing condition of the form with a decoupled modified mass CFDJ sector

Fa[a, Ā, v] = abµQabc
µν a

c
ν + Lab

µ a
b
µ, (4.1)

where
Qabc

µν =
va

2|v|2
[
m̄2δbcµν −

1

ξ

(
D̄µD̄ν

)bc]
,

Lab
µ =

(
1 +

m̄2
gh

−D̄2

)
D̄ab

µ .

(4.2)

Here, we have used the condensed notation,

D̄ab
µ − m̄2

gh

(
1

D̄2
D̄µ

)ab

=

(
1 +

m̄2
gh

−D̄2

)
D̄ab

µ .

The choice of the non-linear gauge-fixing condition, may appear arbitrary at first sight but it
becomes clear when writing down the resulting gauge-fixed action,

Sgf[a, Ā, v] = SLorenz[a, Ā] + SmCFDJ[a, Ā, v]

= − 1

2ξ
aaµ
(
D̄µD̄ν

)ab
abν +

m̄2

2
aaµa

a
µ + va

(
1 +

m̄2
gh

−D̄2

)
D̄ab

µ a
b
µ.

(4.3)

Note that the quadratic contribution reproduces the conventional background gauge term SLorenz,
whereas the combination of the linear and quadratic parts gives rise to the mass-regulator parts
for the dynamical fields. In particular, SmCFDJ corresponds to amodified version of the CFDJ gauge
[106, 117, 122], adjusted for the Fourier weight distribution that was chosen during the FP pro-
cedure. Here, let us highlight once more that, even though the inclusion of a ghost mass regulator
seems to be at odds with associated considerations, such an IR contributing effect will be respon-
sible for potential regularization of emerging divergences in mass-dependent renormalization
schemes such as the fRG. It will also provide the means of simulating on a perturbative level the
effects of the well-established, on a non-perturbative level, decoupling solution, cf. Sec. 4.5. In
such a way, it creates a bridge between perturbative and non-perturbative treatments, while still
maintaining the FP procedure and respecting the desired symmetries. Such a modifications of
the gauge-fixing condition comes at the cost of the inclusion of the NL-type v field and a nonlocal
action. Both points require further investigation, which will be carried out in the following.

For the ghost sector, the FP determinant can be cast into a nonlocal ghost action, according
to Eq.(3.6), which reads

Sgh[a, Ā, c, c̄, v] = c̄a
{

va

2|v|2
[
2m̄2abµ − 1

ξ

(
D̄µD̄ν

)bc
acν −

1

ξ
acν
(
D̄νD̄µ

)cb]
+

(
1 +

m̄2
gh

−D̄2

)
D̄ab

µ

}
(Dµc)

b .

(4.4)

It is a straightforward task to prove the invariance of the generated action under background
gauge transformations, Eqs.(3.40) & (3.41). In particular, noting that the background covari-
ant derivatives change homogeneously under background gauge transformations, Eq.(4.1) im-
plies that the gauge-fixing condition changes homogeneously as well. Thus, as discussed in Sub-
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sec. 3.3.4, this is a sufficient condition to ensure invariance of the generated ghost and gauge-
fixing actions under the extended background gauge transformations. Furthermore, the fact that
the modified contributions were introduced through the gauge-fixing sector entails that the action
can still be organized in the form of Eq.(3.66) which implies manifest BRST invariance.

4.2 Equations of motion in the background formalism

As the v field enters the action, it is expected to affect the associated background field equations
of motion. Firstly, using Eq.(3.24), one writes the YM action, Eq.(3.5), in the background field
formalism as

SYM[a, Ā] =
1

4
F̄ a
µνF̄

a
µν + F̄ a

µν

(
D̄µaν

)a − 1

2

(
D̄µaν

)a (
D̄νaµ

)a
+

1

2

(
D̄µaν

)a (
D̄µaν

)a
+
ḡ

2
fabcF̄ a

µνa
b
µa

c
ν +O(a3).

(4.5)

We introduce the following shorthand notation for the vector boson’s action, i.e. the total action
at vanishing ghost fields,

Sv[a, Ā, v] = SYM[a, Ā] + Sgf[a, Ā, v]. (4.6)

Inserting, Eqs.(4.4) & (4.5) in Eq.(4.6), one obtains the relation

Sv[a, Ā, v] =
1

4
F̄ a
µν +

[
F̄ a
µν + va

(
1 +

m̄2
gh

−D̄2

)](
D̄µaµ

)a
+

1

2
aaµ

{[
−
(
D̄2
)
+ m̄2δab

]
δµν +

(
1 +

1

ξ

)(
D̄µD̄ν

)ab}
abν

+ ḡfabcabµa
c
νF̄

a
µν +O(a3).

(4.7)

For the classical equations of motion in the BFM, we assume a vanishing classical configuration
of the FP ghosts, which eliminates the Sgh contribution from the equations of motion and set the
quantum field fluctuations to zero. Thus, the classical equations of motion are obtained from the
following relation

δSv[a, Ā, v]

δaaν

∣∣∣∣
a→0

= 0. (4.8)

Taking Eq.(4.7) into account, the classical equations of motion in the BFM for the non-linear
gauge-fixing condition Eq.(4.1) are written as

D̄ab
µ F

b
µν = −Ja

ν [Ā, v], (4.9)

where the information associated with the non-conventional gauge-fixing procedure is encoded
in an external current

Ja
µ [Ā, v] = D̄ab

µ

(
1 +

m̄2
gh

−D̄2

)
vb. (4.10)

In other words, such a term expresses the deviations from the classical equations of motion, i.e.
DF = 0, as a result of the novel linear consideration in the gauge-fixing condition. However,

51



CHAPTER 4. BACKGROUND AND BRST-INVARIANT ONE-LOOP EA

background covariant current conservation places a constraint on the admissible class of v-field
configurations, as they must satisfy a massive Klein-Gordon equation governed by the ghost reg-
ulator mass, i.e.

D̄ab
µ J

b
µ = 0 ⇔

(
D̄2 − m̄2

gh

)
va = 0. (4.11)

Thus, in order for the background equations of motion Eq.(4.9) to be consistent, the v field is
restricted within a class of solutions dictated by Eq.(4.11). Such a realization will be exploited
during the forthcoming Chpt. 5 and corresponds to the background field generalization of the
massive Klein-Gordon equation found in [121].

4.3 One-loop Schwinger functional and effective action

The goal of this section is to investigate the explicit form the one-loop EA and Schwinger func-
tional. The study of such quantities is of vital importance since they provide a linkage between
the non-linear character of the gauge-fixing condition, the mass-regulator parameters and the
correlation functions generated by the modified generating functionals. Such a modification can
potentially affect the stability of the theory under renormalization with the emergence of addi-
tional divergences. In the following, we will drop the bar of the background field, i.e Ā→ A and
denote the quantum fluctuations as a′ in order to distinguish them from the classical fields, for
clarity’s sake.

In order to carry out a one-loop perturbative study of our model, we expand the corresponding
action Eq.(4.7) to second order around small quantum field fluctuations,

Sv[a
′, A, v] ≃ Sv[A, v] +

δSv[A, v]

δa′µ
a

a′µ
a +

1

2
a′µ

aMab
µν [A, v]a

′
ν
b. (4.12)

Inserting the one-loop expansion in the background Schwinger functional, Eqs.(3.28) & (3.29),
one obtains the integral equation

eW1L[j,A;v] = e−Sv[A,v] ∆FP[A, v]

∫
Da′ e−

1
2
a′µ

aMab
µνa

′
ν
b+ δSv

δa′µa a
′
µ
a

. (4.13)

Completing the square in the exponent of the integral equation reproduces a Gaussian integral
which upon computation leads to the Schwinger functional

−W1L[j, A; v] = Sv[A; v]− ln∆FP[A] +
1

2
ln detM [A]−Wsource[j, A; v], (4.14)

where

Sv[A] =
1

4
F a
µνF

a
µν , (4.15)

∆FP[A] = det

[(
1 +

m̄2
gh

−D2

)(
D2
)ab]

, (4.16)

Mab
µν [A; ξ] = m̄2δabµν + 2ḡfabcF c

µν −
(
D2
)ab

δµν +

(
1− 1

ξ

)
(DµDν)

ab , (4.17)

Wsource[j, A; v] =
1

2

(
Ka

µ[A, v] + jaµ
) (
M−1

)ab
µν

[A]
(
Kb

ν [A, v] + jbν

)
. (4.18)
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Here, we denote the Hessian of the gluon action as M = δ2Sv
δa′δa′ , which in turn represents the

inverse gluon propagator in the background field formalism. We have also introduced

Ka
µ[A, v] = −δSv[A, v]

δa′µ
a

= (DνFνµ)
a + Ja

µ [A, v] (4.19)

The effect of the choice of the non-linear gauge-fixing condition can be observed both in the
form of the FP determinant, Eq.(4.16), as well as that of the gluon fluctuation operator, (4.17).
In particular, both quantities are shifted by a corresponding mass regulator as compared to their
respected form in the linear gauge, cf. [202, 290, 291]. The result for the Schwinger functional
however is also interesting due to the appearance of the novel Wsource contribution which is a
direct consequence of the particular non-linear choice of the gauge-fixing condition, Eq.(4.1) and
carries all the v-field dependence. It explicitly enters from the linear part δSv

δa′µ
a in the expansion

of the bare action. In addition, during the computation of the integral equation, we consider that
the gluonic fluctuation operatorM is invertible, with the computation of the form of the inverse
to be of main interest in the upcoming sections.

Next, let us determine the form of the one-loop EA. Taking the exponential of Eq.(3.30), one
finds

e−Γ[a,A;v] =

∫
Da′ e−Sv[a′,A,v]+

δΓ[a,A;v]
δaaµ

a
′a
µ − δΓ[a,A;v]

δaaµ
aaµ ∆FP[a

′, A, v]. (4.20)

By performing the shift a′ → a′ + a, Eq.(4.20) becomes

e−Γ[a,A;v] =

∫
Da′ e−Sv[a′+a,A,v]+

δΓ[a,A;v]
δaaµ

a
′a
µ ∆FP[a

′ + a,A, v]. (4.21)

Next, we perform an expansion to Gaussian order, similar to Eq.(4.12). Then, the constituents
of Eq.(4.21) take the form

Sv[a
′ + a,A, c] = Sv[a,A, v] +

δSv[a,A, v]

δa′a
µ

a
′a
µ +

1

2
a
′a
µ

δ2Sv[a,A]

δa′a
µ δa

′b
ν

a
′b
ν +O(a

′3),

∆FP[a
′ + a,A, v] = ∆FP[a,A, v] +O(a′).

This expansion corresponds to one-loop order. The EA in the background field formalism is
related to the full EA according to Eq.(3.33). Then, we obtain the integral equation for the
full one-loop EA in the limit a→ 0

e−Γ1L[0,A;v] = e−Sv[A,v] ∆FP[A, v]

∫
Da′ e

(
Ka

µ[A,v]+
δΓ[0,A;v]

δaaµ

)
a′µ

a

e−
1
2
a′µ

aMab
µν [A;ξ]a′ν

b (4.22)

The term δΓ[0,A;v]
δaaµ

requires a more detailed study. In general, one can decompose the EA into
the bare action plus some loop corrections as follows

Γ[a,A; v] = Sv[a,A; v] + ∆Γv[a,A; v]. (4.23)
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Taking the functional derivative in the limit where a→ 0 results in

δΓ[A; v]

δaaµ
= −Ka

µ[A; v] +
δ∆Γv[A; v]

δaaµ
. (4.24)

Inserting Eq.(4.24) into Eq.(4.22), we get

e−Γ1L[A] = e−Sv[A] ∆FP[A]

∫
Da′ e−

1
2
a′µ

aMab
µνa

′
ν
b+

δ∆Γv[A]
δaaµ

a′µ
a

. (4.25)

The linear part which is proportional to the external current gets canceled by the first functional
derivative of the EA. Performing the Gaussian integral by completing the square results in the
following form of the one-loop EA

Γ1L[A] = Sv[A]− ln∆FP[A] +
1

2
ln detM [A] +

1

2

δ∆Γv[A]

δaaµ

(
M−1

)ab
µν

δ∆Γv[A]

δabν
. (4.26)

The effect of Eq.(4.24) appears as the last term in the EA. However, such a term is a higher-loop
contribution and thus it does not contribute to one-loop order.

Thus, the one-loop EA for the non-linear gauge-fixing condition takes the form

Γ1L[A] = Sv[A]− ln∆FP[A] +
1

2
ln detM [A]. (4.27)

One can notice that the quantum corrections which arise on the right side of Eq.(4.27) corre-
spond to the expected ones from the ghost loop and gluon loop. The kinetic operators appearing
in these loops are, for the present gauge fixing choice, the usual background covariant Lorentz-
DeWitt operators, augmented by two standard mass terms featuring regulator-mass parameters
m̄2 and m̄2

gh for the gluons and ghosts respectively. In order to further evaluate these quantities,
conventional heat-kernel techniques can be employed. This is explored in the Sec. 4.4. Notice
that, as seen from Eqs.(4.16) & (4.17), the fact that the mass matrices are proportional to the
identity will simplify our computation. Furthermore, even though the one-loop EA came out
to be v-field independent, we found that the one-loop Schwinger functional indeed exhibits a
v-field dependence, Eq.(4.14), due to the presence ofWsource which is closely related to the back-
ground equations of motion. From a structural perspective, the EA and the Schwinger functional
represent generating functionals of the 1PI and 1PR correlators. Thus, the Wsource contribution
has a structure of a 1PR correlator with an internal gluon propagator. In the background field
formalism, the difference between the Schwinger functional and the EA on the level of the 1PR
correlators can be constructed also at higher-loop orders [292–296].

4.4 Stability under renormalization to one-loop order

Despite using a non-linear gauge-fixing condition, we have derived a one-loop EA that takes on a
standard form, comprising the bare action, the ghost and gluon sectors. Importantly, this process
ensures manifest background gauge and BRST invariance of the theory. However, this has come at
a cost of introducing an auxiliary v field and modifying the form of the quantities involved in the
EA, namely the FP determinant and the gluon fluctuation operator. While the dependence on the
auxiliary v field drops out at one-loop order, the form of these quantities is modified by a shift of
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the corresponding mass regulators, as shown in Eqs.(4.16) & (4.17) respectively. Consequently,
a natural question arises as to whether such novel contributions have an effect on the stability of
the renormalization procedure.

To address this question, we employ perturbative renormalization, within various renormal-
ization schemes, outlined in Subsec. 3.4.1, such that we determine the RG flow of the coupling
constant encoded within the one-loop beta function Eq.(3.76). This incorporates information
about the change of our model across different scales. To facilitate comparison with existing
literature, we will focus on covariantly constant background fields in this section, which by defi-
nition obey

(DµFνρ)
a = 0. (4.28)

Consequently, under this assumption and by choosing the field strength tensor to be solely
dependent on the constant magnetic field, cf. Eq.(A.4), the bare action can be written as

Sv[A] =
1

4
F a
µνF

a
µν =

1

2
B2. (4.29)

To accommodate further manipulations, we briefly introduce the eigenvalues νℓ of the color ma-
trix n̂a (τaG)

bc, with ℓ = 1, . . . , N2
c − 1 and B̄ℓ = ḡBνℓ. For further clarification and a discussion

on the implications of covariantly constant backgrounds see App. A and references therein.
Finally, let us rewrite the one-loop EA of Eq.(4.27) as

Γ1L[A] = Sv[A] + ∆Γgh[A] + ∆Γgf[A]. (4.30)

4.4.1 Study of the ghost sector

Let us begin by examining the ghost sector. Write Eq.(4.16) as,

log∆FP = log det
(
D2 − m̄2

gh

)
= trxcL

[
log
(
D2 − m̄2

gh

)]
, (4.31)

where the relation log (detA) = tr (logA) for a matrix A was used. To simplify our notation, we
have introduced the functional trace, which depending on its corresponding indices can denote,
integration over spacetime points (x), summation over all color (c) or Lorentz (L) indices.

Multiplying both sides of Eq.(4.31) with log (det (−1)), results in

log (−∆FP) = trxcL

[
log
(
−D2 + m̄2

gh

)]
. (4.32)

Subtracting the divergent vacuum contribution of the functional supertrace as an overall constant
leads to

∆Γgh[A] = − trxcL

[
log

(
−D2 + m̄2

gh

−∂2 + m̄2
gh

)]
. (4.33)

One can further simplify the functional trace by introducing the proper-time representation
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of the logarithm of a fraction, see Eq.(B.26) and [297, 298]. Then, Eq.(4.33) becomes

∆Γgh[A] =

∫ ∞

0

ds

s
trx

[
e
−s

(
−∂2+m̄2

gh

)]
−
∫ ∞

0

ds

s
trxcL

[
e
−s

(
−D2+m̄2

gh

)]
. (4.34)

Employing conventional heat-kernel techniques, discussed in App. B, by using Eq.(B.15) for each
functional trace and then substituting Eqs.(B.19) & (B.17) for the first and second functional
traces respectively, one finds in d-dimensions

∆Γgh = − Ωd

(4π)d/2

∫ ∞

0

ds

s1+d/2
e
−m̄2

ghs
N2−1∑
ℓ=1

[
1− sBℓ

sinh (sBℓ)

]
, (4.35)

where Ωd is the d-dimensional spacetime volume. The integral is divergent at the lower bound
of the proper-time parameter, thus resulting in the emergence of a UV divergence.

4.4.2 Study of the gluon sector

We continue with the contribution of the gluon sector. First, we rewrite the gluon fluctuation
operator, Eq.(4.17), in terms of the transversal kinetic operator. For convenience, we perform the
computation in the Feynman gauge ξ = 1, which eliminates the dependence on the longitudinal
kinetic operator and reduces its form to

Mab
µν [A; ξ = 1] = m̄2δabµν + (DT)

ab
µν , (4.36)

where (DT)
ab
µν = −δµν

(
D2
)ab

+ 2igF ab
µν denotes the spin-1 Laplacian. Subtracting the divergent

vacuum contribution from the gluon loop, we obtain

∆Γgl[A] =
1

2
tr

[
ln

(
m̄2 +DT[A]

m̄2 +DT[0]

)]
. (4.37)

Following similar steps as in the preceding case, while tracing over the spectrum of the transversal
kinetic operator, Eq.(B.18), one finds in d dimensions:

∆Γgl =
Ωd d

2(4π)d/2

∫ ∞

0

ds

s1+d/2
e−m̄2s

N2−1∑
ℓ=1

[
1− sBℓ

sinh (sBℓ)
− 4sBℓ

d
sinh (sBℓ)

]
. (4.38)

Similarly to the ghost sector, the integral expression exhibits a UV divergence.

4.4.3 One-loop running coupling

Substituting Eqs.(4.29), (4.35) & (4.38) into Eq.(4.30),

Γ1L =
1

2
ΩdB

2 +
Ωd

(4π)d/2

N2−1∑
ℓ=1

∫ ∞

0

ds

s1+d/2

[
e
−m̄2

ghs
(
1− sBℓ

sinh (sBℓ)

)
−d
2
e−m̄2s

(
1− sBℓ

sinh (sBℓ)
− 4sBℓ

d
sinh (sBℓ)

)]
.

(4.39)

In order to address the UV divergences which arise in the ghost and gluon sectors, we reparametrize
our field and coupling parameters by introducing a renormalized coupling gR and renormalized
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field parameters. Note that BR can be associated to the gauge field under the assumption of
covariantly constant backgrounds Eq.(A.4). Manifest background gauge invariance implies that
the wave-function renormalization of the background field and the renormalization constant of
the coupling, denoted by ZF and Zḡ, are related with each other as, cf. App. C and [123, 201]

Zḡ =
√
ZF. (4.40)

Therefore, the bare and renormalized quantities in our framework are associated with each other

gR =
√
ZFḡ, BR =

B√
ZF
. (4.41)

In terms of the reparametrized quantities, we can rewrite the one-loop EA as

Γ1L =
Ωd

2
B2

R +∆Γgl +∆Γgh −
Ωd

2
(1− ZF)B

2
R

=
Ωd

2
B2

R +∆Γgl,R +∆Γgh,R. (4.42)

We have chosen ZF so that the UV log-divergences from the bare loop contributions ∆Γgl/gh are
canceled and render finite renormalized quantities ∆Γgl/gh, R. It is worth noting that in d = 4,
only terms quadratic to the renormalized constant field will diverge at the lower bound of s due
to the form of the integrals in Eq.(4.39). Consequently, by performing a weak field expansion
BR → 0, we can identify the divergent contributions in the ghost and gluon sectors.1 As it turns
out,

ZF = 1 +
Nc g

2
R

6(4π)d/2

∫ ∞

0

ds

s−1+d/2

[
(24− d) e−m̄2s + 2e

−m̄2
ghs
]
, (4.43)

where we have used Eq.(A.5).
After isolating the divergent contributions by means of a redefinition of the associated terms,

the next step is to regularize them. This procedure serves a two-fold purpose for studying the sta-
bility of the theory under renormalization. Firstly, it provides an algorithmic asset for extracting
an analytic expression of divergent contributions which can be further manipulated during renor-
malization. Regularization introduces a notion of a mass scale which is then used to study the
underlying theory at different energy regimes. This step enables us to derive the one-loop beta
function, which characterizes the running of the coupling constant at one-loop level. Although
different regularization schemes may not be expected to yield the same one-loop beta function,
the one-loop beta function of Yang-Mills in d = 4 is known to be universal and hence renor-
malization scheme independent under certain assumptions [124]. Therefore, it is instructive to
compute the one-loop beta function by choosing different regularization schemes and compare
the results. In our study, we will compute the one-loop beta function using both dimensional reg-
ularization with the MS scheme and also employ a sharp UV proper-time cutoff. In the following
we shall concern ourselves not only with different regularization schemes but also with different
renormalization scales.

1The form of divergence is obtained in but not restricted to the weak field expansion BR → 0 but it is valid for
arbitrary magnetic fields.
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4.4.3.1 Dimensional regularization and MS

In this case, we express the divergent integral Eq.(4.43) in terms of a dimensionless coupling by
introducing an arbitrary mass scale µ and subsequently analytically continue to d = 4. This will
allow us to regularize the divergent quantity through dimensional manipulations. For the first
step, we define the dimensionless renormalized coupling as

g2 = µ4−dg2R. (4.44)

Choosing d = 4− 2ϵ, then

ZF = 1 +
Nc g

2µ2ϵ

3 (4π)2−ϵ

∫ ∞

0

ds

s1−ϵ

[
(10 + ϵ) e−m̄2s + e

−m̄2
ghs
]
. (4.45)

Expanding around ϵ→ 0 within the MS scheme, while considering Eq.(B.29) results in

ZF = 1− 22Ng2

6 (4π)2

[
−1

ϵ
+

11

10
ln
m̄2

µ2
+

1

11
ln
m̄2

gh
µ2

− ln 4π + γE −
1

11

]
, (4.46)

where γE corresponds to the Euler–Mascheroni constant. It is worth mentioning that only loga-
rithmic divergences arose from the gluon and ghost sector as can be seen from Eq.(4.46) (due to
the 1

ϵ form).
The divergent part which appears in Eq.(4.46) is of the form discussed in App. C, cf. Eq.(C.6).

Therefore, the one-loop beta function, taking into account Eq.(C.8) reads

βg2 = µ
dg2

dµ
= − 22Nc

3 (4π)2
g4, (4.47)

which corresponds to the universal one-loop beta function for Yang-Mills theory in d = 4 [124].

4.4.3.2 Sharp UV proper-time cutoff

Next, let us derive the one-loop beta function by regularizing the divergent integral in Eq.(4.43).
For this, we impose a sharp proper-time cutoff at the (divergent) lower bound of the integral (UV
region). Then in d = 4, gR = g and the computation of the divergent integral is possible. The
wave-function renormalization becomes

ZF = 1 +
Ncg

2

6 (4π)2

∫ ∞

1
Λ2

ds

s

(
20 e−m̄2s + 2 e

−m̄2
ghs
)
, (4.48)

with Λ corresponding to a UV regulator. The corresponding integral was computed in Eq.(B.35).
Then, the wave-function renormalization becomes

ZF = 1 +
Nc g

2

3 (4π)2

[
10 Γ

(
0,
m̄2

Λ2

)
+ Γ

(
0,
m̄2

gh
Λ2

)]
. (4.49)

Identifying the sharp UV proper-time cutoff Λ as the renormalization scale, the one-loop beta
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function can readily be deduced

βg2 = −Λ
dg2

dΛ
= − Nc g

4

3 (4π)2

(
20 e−

m̄2

Λ2 + 2 e−
m̄2

gh
Λ2

)
. (4.50)

During the previous calculation we have kept Λ finite in order to obtain a generic expression
for the one-loop beta function. However, setting Λ → ∞ or m̄2, m̄2

gh → 0 one reproduces the
universal one-loop result for the beta function, cf. Eq.(4.47).

Finally, it is worth exploring the form of the one-loop beta function following the same regu-
larization procedure but considering a different RG scale. For convenience and independently of
the scheme, we choose a common (renormalization) scale k for the ghost and gluon masses,

k2 = m̄2 = m̄2
gh. (4.51)

In d = 4, the wave-function renormalization becomes

ZF = 1 +
22Nc g

2

6 (4π)2
Γ

(
0,
k2

Λ2

)
. (4.52)

Considering a finite Λ, the one-loop beta function takes the form

βg2 = k
dg2

dk
= −22Nc g

4

3 (4π)2
e−

k2

Λ2 . (4.53)

Once more, Eq.(4.53) agrees with the universal one-loop beta function result of Eq.(4.47) in the
limit of Λ → ∞ or k → 0.

In summary, the results of various one-loop beta functions computed either in different regu-
larization schemes or at different renormalization scales show an agreement in the appropriate
limits. This finding is consistent with the expected universality of the YM one-loop beta func-
tion in d = 4. Additionally, a mass-dependent scheme with a finite Λ contribution, results in a
beta function with a threshold behavior when the mass scale surpasses the UV regulator. As the
mass scale dominates over the UV regulator, integrated out considerations become incompatible,
leading to a beta function that approaches zero, indicating mode decoupling.

4.5 Phenomenological study of the action density

Let us now turn our focus towards the implications of the inclusion of mass parameters within
our theoretical framework from a phenomenological standpoint. Specifically, we will investigate
the behavior of the action density, which is the finite part of the one-loop EA, Eq.(4.42), for
various values of the coupling. To accomplish this, we will utilize different assumptions for the
background field, enabling us to explore a wider range of coupling constant validity. A discussion
on the applied set of assumptions for the background field can be found in App. A and [146, 291].
As the one-loop EA we have derived for pure YM only differs from the conventional one-loop EA
due to the presence of mass parameters, any changes in its form will be a direct consequence of
the mass deformation. Thus, the study of the action density can provide insights into how the
mass parameters affect the underlying YM theory.
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4.5.1 Action density for constant magnetic backgrounds

Let us begin our study by considering the same set of assumptions that were introduced in
Sec. 4.4, i.e. covariantly constant backgrounds and a constant magnetic field, cf. Eqs.(4.28)
& (A.4) respectively. Then, the renormalized one-loop action density, after subtraction of the
counterterms from the ghost and gluon loops takes the following form

Γ1L
Ω4

=
1

2
B2

R +
1

(4π)2

∫ ∞

0

ds

s3
e−k2s

N2−1∑
ℓ=1

[
1 +

11(sB̄ℓ)
2

6
− sB̄ℓ

sinh
(
sB̄ℓ

) − 2sB̄ℓ sinh
(
sB̄ℓ

) ]
.

(4.54)

The first term in the action density corresponds to the classical contribution whereas the
second one encodes the one-loop quantum corrections. The latter consists of four terms in the
proper-time integral of Eq.(4.54). The first two terms correspond to the contribution of the
vacuum subtraction and the inclusion of the counterterms, which render the one-loop action
density finite. The third term arises from the functional trace of the heat kernel of the covariant
Laplacian of gluons and ghosts, cf. Eq.(B.17), whereas the last term comes from the functional
trace of the gluonic heat kernel of the transversal kinetic operator,DT in d = 4, cf. Eq.(B.18). Such
functional trace computations involve tracing over the spectrum of the corresponding operators,
which under the assumption of covariantly constant magnetic background can be found in [143]
(see App. B within). A particularity comes from the spectrum of DT which contains negative
modes. Such "tachyonic" field fluctuations are called Nielsen-Olesen unstable modes and tend to
destabilize the Savvidy QCD vacuum [299]. Several attempts have been made to address this
instability, leading to modified QCD vacuum models ("Spaghetti vacuum") [300–304] or formal
mathematical techniques [305, 306].

In general, the existence of such modes spoils perturbative calculations [307–310]. However,
in our formalism, the inclusion of symmetry respecting regulator parameters provides a natural
tool to handle these gluonic modes, for k2 ≥ B̄ℓ. This implies that a sufficiently large BRST in-
variant mass scale k2, suppresses the divergent contribution of the unstable modes, allowing us
to investigate the behavior of the action density, Eq.(4.54), within the corresponding range of
validity. Fig. 4.1 displays such a study of the action density in terms of the dimensionless param-
eter ζ = B̄ℓ

k2
for various values of the coupling constant. Note that the computation of the action

density was restricted within the range of validity, k2 ≥ B̄ℓ as in further regions the unstable
gluonic modes dominate over the mass scale leading to an IR divergent result. Furthermore, we
restricted our computation of the action density to the SU(2) gauge group, which produces color
eigenvalues νℓ = −1, 0, 1.

In Fig. 4.1, we observe that for small values of the coupling constant, the classical contribution
dominates over the quantum corrections in the action density. As we approach the boundary ζ =
gRBR
k2

= 1, the quadratic increase begins to stabilize due to the effect of unstable modes, as seen
in the upper part of the line with gR = 3.5 or α =

g2R
4π = 0.98. Increasing the coupling constant to

higher values results in a reversal, where the quantum corrections become increasingly dominant
over the classical contribution. At a critical value of gcrit = 7.94 or αcrit = 5.02, the quantum
corrections become of the same order as the classical contribution. An ad hoc further increase
in the coupling results in an overtaking of the classical by the quantum corrections, as seen
in the line with gR = 12 or α = 11.46. As a preliminary conclusion, we can deduce that our
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system exhibits a tendency of deviating from the conventional minimum, signaling the existence
of a gluon condensate, even though our considerations for the coupling constant lie outside the
regime of perturbation theory.

The aforementioned consideration of the action density at varying values of the couplings,
despite the presence of unstable modes, is a novel aspect of our one-loop model that originates
from the inclusion of mass-regulator parameters. In particular, our modified gauge-fixing proce-
dure allows us to rigorously control the instabilities, thus extending the validity domain of the
one-loop EA, without the need for an analytic continuation of the gluon determinant. The latter
is required in a conventional one-loop treatment. In such cases, the corresponding counterterm
contribution 11

3 (sB)2 dominates in the proper-time integral, thus imposing a B2 ln B2

k2
behavior

which also displays a non-trivial minimum [311].
The expression given in Eq.(4.54) represents the one-loop EA for the background field, which

depends on the renormalized coupling, field strength and an IR regulator parameter k intro-
duced through the gauge-fixing condition and regularization of loop integrals. It is expected
that this dependence on k should be removable, as gauge-fixing parameters should not affect
BRST-invariant quantities and regularization scales should not affect observables. This expec-
tation is indeed realized through a systematic cancellation of the gauge-parameter dependence
in any renormalization scheme by redefining the essential coupling constants of the gauge the-
ory, as has long been established [312–315]. Similarly, the independence of observables from
the renormalization scale is guaranteed by the transformation of coupling constants under RG
evolution.

Therefore, our study highlights the significance of incorporating suitable mass parameters in
pure YM theory, which screen the unstable modes, within a certain validity domain and provide
a consistent way to handle such instabilities for a wide range of coupling values. This approach
entails valuable phenomenological conclusions for non-perturbative phenomena (e.g. gluon con-
densate). The absence of a non-trivial minimum of the action density, which would more con-
clusively indicate the existence of a gluon condensate, can be attributed to two factors. Either a
different set of assumptions that makes better use of the perturbative form of the action density
is needed to obtain more definitive results, or higher-order loop contributions could modify the
action density and drive the system to a finite non-trivial minimum. The former reasoning will
be explored in the next section where we will consider the behavior of the action density under
a different set of assumptions.

4.5.2 Action density for self-dual backgrounds

Considering a constant magnetic field led to a finite action density within a limited range of
validity which was controlled by the BRST invariant mass parameters. Beyond this range, the
Nielsen-Olesen unstable modes spoils the behavior of the action density which made it difficult
to draw conclusions. Therefore, it turns out to be advantageous to choose a different set of
assumptions in order to extend the domain of study of the action density and possibly reach
phenomenological conclusions.

Therefore, we shall use a known choice for the background field which is stable, i.e. co-
variantly constant and self-dual backgrounds [316–319]. The basic considerations for self-dual
backgrounds is briefly addressed in Appendix A. By analyzing the spectrum of DT, cf. Eq.(A.12),
we no longer encounter negative modes, which previously led to instabilities. However we do find
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Figure 4.1: Numerical result for the dimensionless action density, as determined in (4.54), in terms of the di-
mensionless parameter ζ = gRBR

k2 ⩽ 1, for various values of the renormalized coupling constant. Increasing the
renormalized coupling gR results in an increasing but finite contribution of the quantum part of the one-loop EA even-
tually dominating the classical one.

zero modes which at d = 4 have a multiplicity of 2. These modes, called chromons, [318, 319],
can significantly contribute and their effect on the action density requires a careful treatment.

First, let us rewrite the bare action as follows

Sv[A] =
1

4
F a
µνF

a
µν = f2 (4.55)

Choosing a self-dual field strength tensor, see Eq.(A.9), the functional traces in the one-loop EA,
Eq.(4.27), can be written in terms of fℓ = ḡfνℓ.

As an additional consideration, we choose a vanishing ghost mass m̄gh = 0 and a finite gluon
mass m̄ > 0 parameters. Such a choice of themass parameters is motivated from non-perturbative
studies and is constructed so that it mimics on a perturbative level the so called decoupling solu-
tion, which corresponds to a non-perturbative solution of the DSE that describes the IR properties
of the fully dressed propagators of gauge theories [35, 39, 46, 66–70, 88, 94, 96–99, 320].

Hence, similarly to the case of a constant magnetic field, we encounter the heat kernel of the
operators −D2,DT for self-dual backgrounds. Their form is determined in App. B, cf. Eqs.(B.20)
& (B.21), where one can notice the explicit contribution of the zero modes. Renormalizing the
divergences in the ghost and gluon sectors, we relate the bare with the renormalized quantities
as follows

gR =
√
ZFḡ, fR =

f√
ZF
. (4.56)

Subtracting the divergences appropriately in d = 4 and abbreviating f̄ℓ = gRfRνℓ, we find the
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finite action density

Γ1L
Ω4

= f2R +
1

(4π)2

∫ ∞

0

ds

s3

N2−1∑
ℓ=1

{
e−m̄2s

[
2 +

11(sf̄ℓ)
2

3
− 2(sf̄ℓ)

2

sinh2
(
sf̄ℓ
) − 4(sf̄ℓ)

2

]

−
(
1− (f̄ℓs)

2

sinh2(f̄ℓs)

)}
.

(4.57)

Notice that the counterterms have been subtracted entirely from the gluon loop, resulting in a
well-defined proper-time integral. This implies that the one-loop quantum corrections in the ac-
tion density are both UV and IR convergent. By contrast, subtracting the divergences separately
from the ghost and gluon loops would artificially induce an IR divergence in the ghost term,
rendering the action density IR divergent. This would become visible at the upper bound of the
proper-time integral. This unregularized divergence is an artifact of the specific choice of mass
regulators used to simulate the decoupling solution, rather than a natural occurrence within the
ghost sector and as such it can be circumvented with an appropriate placement of the countert-
erms. The current prescription ensures a pure UV subtraction scheme, as required from the ghost
and gluon loops.

An interesting aspect of the action density comes from the last term of the first line in the gluon
loop, i.e. −4

(
sf̄ℓ
)2, which arises from the zero mode contribution. This term has a significant

impact on the behavior of the action density. In the large field limit, it decreases as −f2 ln f2
R

m̄4

which dominates the quadratic increase of the classical contribution, i.e. f2R. This spoils the large
field behavior of the action density which becomes unbounded from below. Hence, an inherent
IR attribute of our theory, such as the zero modes ends up affecting the large field behavior. Such
an effect illustrates the interplay between UV and IR properties, discussed within the framework
of QED in [321]. However, one can regulate the large field effect of the zero modes in a consistent
manner, by an ad hoc inclusion of an IR suppressing regulator for the corresponding term, for
instance

−4
(
sf̄ℓ
)2 → −4

(
sf̄ℓ
)2

exp

(
s2

L4

)
, (4.58)

where L≫ 1
m̄ . After addressing the seeming inconsistency of the unboundedness from below of

the action density in the large field limit, it becomes possible to focus on the well-behaved regime
of the theory in the small field domain.

In Fig. 4.2, we present a study of the behavior of the action density for SU(2) by fixing differ-
ent values of the renormalized coupling constant in gluon mass units, as we did for the constant
magnetic field case, cf. Fig. 4.1. The results show that for small values of the renormalized cou-
pling, the classical contribution dominates over the one-loop corrections in the action density, as
seen in the upper line with gR = 4 i.e. αR = 1.3. This behavior persists up to the critical coupling
gR,crit ≃ 5, i.e. αR,crit ≃ 2, above which the quantum corrections drive the system to a non-trivial
minimum for small values of the field, as seen in the middle line with gR = 7.5 i.e. αR = 4.5.
Increasing the renormalized coupling even further drives this minimum to larger values of the
field, as seen in the lowest line with gR = 8 i.e. αR = 5.1. Such a behavior implies the existence
of a phase transition to a gluon condensation phase.

It remains to demonstrate the order of the phase transition. To this end, in Fig. 4.3 we il-
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Figure 4.2: Action density for a self-dual background field, Eq.(4.57), in terms of the parameter gRBR. All quantities
are plotted in units of the gluon mass which we choose as m̄2 = 1 here. An increase of the renormalized coupling
beyond a critical coupling gR,crit ≃ 5 results in the appearance of a non-trivial minimum which can be taken as an
indication for a gluon condensate.

lustrate the location of the minimum of the action density, as determined from Eq.(4.57), as a
function of the renormalized coupling. The graph shows the appearance of a non-trivial minimum
above the critical value of the coupling αR,crit ≃ 2which initially displays a quadratic increase, fol-
lowed by a linear increase as the coupling is increased further. This structural behavior suggests
a second order phase transition to a gluon condensate phase.

Our perturbative study of pure YM theory reveals that the action density for self-dual back-
ground displays a non-trivial minimum as the coupling strength increases. Such novel behavior
is a direct consequence of the inclusion of mass-regulator parameters and is qualitatively con-
sistent with non-perturbative fRG studies, although performed for the so-called scaling solution
[146]. Therefore, a sensible incorporation of these parameters allows for the appearance of previ-
ously observed non-perturbative phenomena, such as the gluon condensate, within a perturbative
framework. However, it should be noted that our perturbative study extends to couplings outside
the regime of perturbation theory. Despite this, the agreement of our results with the literature
within the perturbative range, as well as the behavior observed outside that domain, provides an
additional validation of our phenomenological results.

The consistent qualitative behavior of our model seems to be at odds with quantitative es-
timates and warrants further investigation. In our model, the value of the condensate depends
on the choice of an appropriate IR scale, which is determined by the energy range of interest
and governed by the gluon mass parameter and an additional input for the IR properties of the
coupling. For instance, selecting an IR bound at a typical hadronic scale of m̄ = 1 GeV and an ob-
served IR coupling range of αR ∈ [2, 8] yields a condensate of the order of fR,minm̄

2 ≃ 0.21 GeV2

in our conventions, which deviates from phenomenological estimates [322]. Such a quantitative
discrepancy can be attributed to the limitations of the one-loop expansion. Thus, our one-loop
consideration still leaves open the question of how higher loops would modify the observed be-
havior.
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Figure 4.3: Gluon condensate fR,min, in units of the gluon mass, corresponding to the non-trivial minimum of the
action density as a function of the renormalized coupling αR =

g2R
4π

. Our result shows a continuous increase of the
condensate beyond a critical coupling αR > αR,crit ≃ 2.
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CHAPTER 5

Schwinger Functional and the Two-Point Correlation Function

In this chapter, we investigate the impact of the v-field-dependent source term in the Schwinger
functional, Eq.(4.14), which is of nonlocal nature and hence requires an in-depth analysis. To this
end, we deduce a vanishing contribution in the large gluonic mass expansion (LGME) limit, for
covariantly constant background Eq.(4.28) and covariantly conserved external current Eq.(4.11).
Next relaxing these constraints, we use heat-kernel techniques and treat the v field as a disorder
field, which yields a v-independent result free of divergences and consistent with the conventional
theory in Landau gauge. Furthermore, we examine the effects of this term on the construction
of the building blocks of the theory, e.g. two-point correlators. To that extent, we explore the
contribution of the v field on the level of a two-point correlator at various settings and comment
on its asymptotic behavior. We conclude the chapter by organizing all adopted approaches and
the associated form of the two-point correlator in a tabular form.

5.1 Source term in the LGME limit for covariantly constant back-
grounds

In our previous work, we investigated the effect of a non-linear gauge-fixing condition, which
resulted, among others, in the emergence of a source term with a non-conventional form, as
presented in Sec. 4.3 and expressed by Eq.(4.18). This source term, beyond the structural differ-
ence, introduced a dependence on the v field, which is a consequence of the chosen gauge-fixing
procedure and should not affect observables. However, to fully understand the implications of
this term, it is crucial to study its form and behavior. We will focus on examining the case of
vanishing external sources (j = 0), which simplifies Eq.(4.18) to

Wsource[A; v] =
1

2
Ka

µ[A, v]
(
M−1

)ab
µν

[A]Kb
µ[A, v], (5.1)

where K = DF + J is given by Eq.(4.19).
The study of Eq.(5.1) requires to determine the inverse gluonic fluctuation operator, M−1.

We begin by calculating such a contribution in the approximate case of the LGME limit. To do

66



5.1. SOURCE TERM IN THE LGME LIMIT

so, we rewrite the gluonic fluctuation operator, given by Eq.(4.17), as

Mab
µν [A; ξ] = m̄2δabµν +Qab

µν [A; ξ] = m̄2

(
δabµν +

1

m̄2
Qab

µν [A; ξ]

)
, (5.2)

where
Qab

µν [A; ξ] = −2ḡfabcF c
µν −

(
D2
)ab

δµν +

(
1− 1

ξ

)
Dac

µ D
cb
ν . (5.3)

SchematicallyM andM−1 can be written as

M = m̄2
[
1+ m̄−2Q

]
, M−1 = m̄−2

[
1

1 + m̄−2Q

]
.

Considering a large gluonic mass, we expand these formulas in powers of the operator Q and
obtain the Neumann series

(
M−1

)ab
µν

= −
∞∑
n=0

[(
i

m̄

)2n+2

(Qn)abµν

]
, (5.4)

where for the product of the Q operators, the following condensed notation was adopted

(Qn)abµν = Qac
µρQcd

ρσ · · · Qer
κτQrb

τν︸ ︷︷ ︸
n times

.

Up to this point, we have not considered any restrictions on the form of the background and
v field. One can immediately deduce a vanishing contribution of this term in the case where
the background equations of motion are satisfied, Eq.(4.9), since in that case the current J [A, v]
vanishes as well. However, our goal is to display the form of this novel term as accurately and
generically as possible. To that extent, certain soft constraints will be placed on the background
and v field.

In the LGME limit, it turns out to be appropriate to choose covariantly constant backgrounds
and current conservation of the source, cf. Eqs.(4.28) & (4.11) respectively. For these choices of
field configurations, the source contribution, takes the form

Wsource[A; v] =
1

2
Ja
µ [A, v]

(
M−1

)ab
µν

[A]Jb
ν [A, v]. (5.5)

For the study of the inverse gluonic fluctuation operator to all orders, we shall rewrite it in
terms of the longitudinal DL and transversal DT kinetic operators

(DT)
ab
µν =− δµν

(
D2
)ab − 2iḡF ab

µν , (5.6)

(DL)
ab
µν =−Dac

µ D
cb
ν . (5.7)

These are further discussed in App. D and are motivated by [132, 133, 323]. The operator Qµν

splits into the sum

Qab
µν [A] = (DT)

ab
µν −

(
1− 1

ξ

)
(DL)

ab
µν . (5.8)
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Some useful properties of the kinetic operators that will be used in the following are

[DT,DL]
ab
µν = 0, (5.9)

(DL)
ab
µν J

b
ν = 0, Ja

µ (DL)
ab
µν = 0. (5.10)

Eq.(5.9) is proven in App. D, and is a consequence of the assumption of covariantly constant back-
ground field. Moreover, Eqs.(5.10) are a direct consequence of the definition of the longitudinal
kinetic operator given by Eq.(5.7) and of current conservation, Eq.(4.11).

The source contribution to the Schwinger functional, Eq.(5.5), in the LGME limit takes the
following form

Wsource[A; v] = −1

2
Ja
µ

∞∑
n=1

[(
i

m̄

)2n+2

(Dn
T)

ab
µν

]
Jb
ν , (5.11)

which implies that there is no contribution from the longitudinal kinetic operator and hence no
dependence on the gauge parameter. Thus, all possible nonvanishing contributions will come
from the transversal kinetic operator DT. This result holds true to all orders of the expansion.

It remains to be determined whether this term provides a nonvanishing contribution to the
one-loop Schwinger functional. To that extent, we must examine how the transversal kinetic
operator acts in the expansion, Eq.(5.11). This is done by employing the commutation relation
of the covariant Laplacian with the covariant derivative for covariantly constant background fields

[
D2, Dµ

]ab
= 2iḡ (FαµDα)

ab . (5.12)

Then,

Ja
µ

(
M−1

)ab
µν
Jb
ν = −

∞∑
n=1

(
i

m̄

)2n+2

Ja
µ

(
Dn−1

T
)ac
µρ

(DT)
cb
ρν J

b
ν .

Considering, Eqs.(5.6), (5.12) & Eq.(4.10),

Ja
µ

(
M−1

)ab
µν
Jb
ν =

∞∑
n=1

(
i

m̄

)2n+2 [
Ja
µ

(
Dk−1

T

)ac
µν
Dcd

ν D
db
α J

b
α

− 2iḡJa
µ

(
Dk−1

T

)ac
µρ
F cb
ρνJ

b
ν

+2iḡJa
µ

(
Dk−1

T

)ac
µρ
F cb
ρνJ

b
ν

]
.

However, from current conservation follows that the first term is zero and the other two exactly
cancel each other. Hence we conclude that

Wsource[A] |DF=0,D·J=0 = 0, (5.13)

which is valid to all orders in the LGME limit. This leads to a one-loop Schwinger functional of
the form

−W1L[A]

∣∣∣∣
DF=0,D·J=0

= Sv[A]− ln∆FP[A] +
1

2
ln detM [A], (5.14)
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where one can notice the absence of any v-field contribution. Therefore, for covariantly constant
background fields and covariantly conserved external current, the one-loop Schwinger functional
has a conventional form which is exhausted by a ghost loop and by a gluon loop.

5.2 Schwinger functional with a disorder v field

In our investigation of pure YM theory, we have succeeded in developing a formulation that is
both background and BRST invariant. However, achieving this required implementing a Fourier
weight during the gauge-fixing procedure, see Subsec. 2.3.2, leading to a v-dependent generat-
ing functional, Eq.(3.8). The dependence of the v field is inherited by the FP determinant and
subsequently affects the ghost action through the gauge-fixing procedure, see Eq.(4.4).

At one-loop, this v dependence drops out of the FP determinant, Eq.(4.16) and provides a
v-independent one-loop EA which exhibits a regulator deformed structure, see Secs. 4.3-4.5.
However, the v field still plays a role in the Schwinger functional through a novel source contri-
bution, Eq.(4.18), potentially affecting the 1PR correlators. Therefore, it is of interest to study
the impact of the v-dependent terms on the correlation functions and their effects, e.g. potential
emergence of additional divergences.

One approach to do so is by directly computing the contribution of these terms to the 1PR
correlation functions, which will be the subject of Secs. 5.3 & 5.4. Another method is to integrate
out the external v field. Although the v field itself is not expected to affect the observables,
the terms arising from it may have an impact. Therefore, averaging over the v field is a great
way to eliminate the contribution of an external field while studying the results it entails. Either
method of study requires a thorough understanding of how to handle the v field in the Schwinger
functional Eq.(4.14).

In Sec. 5.1 we proved that such a v-field dependence drops out on the level of the Schwinger
functional when certain consistency and/or on-shell conditions are satisfied, cf. Eq.(5.13). How-
ever, it is beneficial to investigate the structural form of the Schwinger functional from a broader
perspective, i.e. when no such conditions are imposed. To achieve this, we treat the v field as an
external stochastic field, similar to a disorder field in a statistic field theory.

In statistical physics, the disorder field can be treated through either the annealed or the
quenched average disorder methods. These two methods differ in the way they average over
the disorder field. The difference between these two methods can be understood from the two
following relations of the disordered-independent Schwinger functional

⟨W1L⟩a [j, A] = N log

[∫
Dv dρ(v) Z1L[j, A; v]

]
= N log ⟨Z1L[j, A; v]⟩, (5.15)

for an annealed average, whereas for a quenched average,

⟨W1L⟩q [j, A] = N
∫

Dv dρ(v) log (Z1L[j, A; v]) = N ⟨logZ1L[j, A; v]⟩ . (5.16)

Note that dρ(v) denotes the probability distribution of the disorder field which in our case will
be considered to have a Gaussian form. Eqs.(5.15) & (5.16) correspond to different ways of
averaging over the disorder field and typically result in different disorder-independent correlation
functions.
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In Eq.(5.15) the disorder field and quantum fluctuations are treated on the same footing,
making the disorder yet another degree of freedom. Alternatively, Eq.(5.16) first integrates over
the quantum fluctuations, i.e. quantum degrees of freedom to obtain the disorder-dependent
Schwinger functional and subsequently averages over the disorder field with an appropriate dis-
tribution. In such a way, the disorder degrees of freedom are "frozen".

To study the Schwinger functional, we will use the quenched average method to integrate
out the disorder v field. This choice is motivated by the fact that in our case, the v field, as
the product of the gauge-fixing condition, should not be viewed as an extension of our theory
but rather as a removable external contribution and as such should be integrated out indepen-
dently of the field configurations. Additionally, the quenched average method is appropriate for
statistical field theoretic systems with disorder contributions that exhibit self-averaging proper-
ties [324]. Self-averaging quantities are statistically stable and their disorder-independent value
can be obtained by averaging over the disorder [325]. The Schwinger functional is an example
of a self-averaging quantity, while the partition function is generally not self-averaging. There-
fore, using the quenched average method is expected to yield consistent disorder-independent
observables.

Let us begin our study, by performing the quenched Gaussian average over the disorder v field
of the Schwinger functional, then

⟨W1L⟩ [A] = N
∫

Dv e−SNL[v] W1L[A; v], (5.17)

SNL[v] =

∫
ddx

v2

2α
, (5.18)

whereN is a normalization constant determined by the constant condition ⟨1⟩ = 1. Note that we
dropped the subscript q from the average. Since only the source contribution in Eq.(4.14) will
be affected by the averaging, it is useful to denote

⟨Wsource⟩ [A] = −N
2

∫
Dv e−SNL[v] Wsource[A; v]. (5.19)

In the following, we perform an explicit study of the source contribution.

5.2.1 Functional traces of nonlocal operators

As mentioned before, the study of the source contribution Eq.(5.19) is of particular interest. It
corresponds to a new termwhich arises due to the choice of the non-linear gauge-fixing condition,
Eq.(4.1), in order to maintain BRST and background invariance. Inserting the definition of the
current Ja

µ Eq.(4.10) one obtains four terms of the following form up to a normalization constant
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⟨Wsource⟩ [A] = −
(
1

2

)∫
Dv e−

∫
v2

2α

[
(Dµv)

a (M−1
)ab
µν

(Dνv)
b (i)

− m̄2
gh (Dµv)

a (M−1
)ab
µν

(
Dν

(
1

D2

)
v

)b

(ii)

− m̄2
gh

(
Dµ

(
1

D2

)
v

)a (
M−1

)ab
µν

(Dµv)
b (iii)

+m̄4
gh

(
Dµ

(
1

D2

)
v

)a (
M−1

)ab
µν

(
Dν

(
1

D2

)
v

)b
]
. (iv)

(5.20)
Performing the Gaussian functional integral and recombining the remaining terms to functional
traces, the four previously determined terms become

(i) =
(α
2

)
trxc

[
DµM

−1
µν Dν

]
, (5.21a)

(ii) = (iii) = −
(
αm̄2

gh
2

)
trxc

[
1

D2
DµM

−1
µν Dν

]
, (5.21b)

(iv) =

(
αm̄4

gh
2

)
trxc

[
1

D2

1

D2
DµM

−1
µν Dν

]
, (5.21c)

where the cyclic property of the trace has been taken into account. In addition, for the last three
functional traces the following identity of the inverse Laplacian was employed

(
1
D2

)ab
xy

=
(

1
D2

)ba
yx
.

Finally, one can notice that (ii) & (iii) are equal to each other.
The aforementioned functional traces can be further simplified to the following form

(i) =
(α
2

)
trxc

 1

m̄2 −
(
1
ξ

)
D2

D2

, (5.22a)

(ii) = (iii) = −
(
αm̄2

gh
2

)
trxc

 1

D2

1

m̄2 −
(
1
ξ

)
D2

D2

, (5.22b)

(iv) =

(
αm̄4

gh
2

)
trxc

 1

D2

1

D2

1

m̄2 −
(
1
ξ

)
D2

D2

. (5.22c)

In App. E, an explicit derivation of the functional traces Eqs.(5.22a)-(5.22c) from Eqs.(5.21a)-
(5.21c) can be found. The assumptions made in this derivation include the existence of an in-
verse gluonic matrix M−1 and the condition of a covariantly constant background, as given in
Eq.(4.28). It should be emphasized that the assumption of a covariantly constant background
plays a crucial role in simplifying the four functional traces Eq.(5.21a)-(5.21c). Specifically, this
condition allows for a cancellation of terms, which greatly facilitates the implementation of di-
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agonal heat-kernel techniques in studying the functional trace behavior. Furthermore, there is a
convergence limit in the Landau gauge, ξ → 0, where all functional traces vanish.

Finally, the functional traces have an unconventional structure as they involve different powers
of the nonlocal operator 1

D2 . This raises the question of whether such a novel term introduces
additional divergences that could affect the 1PR correlators of the theory through the Schwinger
functional. To address this question, we employ heat-kernel techniques to regularize each trace.

Study of the (i) functional trace

In this section, we adopt the conventional approach to handle functional traces of functions of
the Laplacian. We achieve this by Laplace transforming each function in the functional trace,
resulting in an integration over the Laplace transformed function and the heat kernel of the
Laplacian. The integration variable corresponds to the proper-time or Schwinger parameter.
Once we substitute the expression for the heat kernel of the Laplacian, as given in Eq.(B.17), the
computation reduces to a proper-time integral. For a more comprehensive analysis, see App. B.2.

Starting from the first functional trace, Eq.(5.22a), we write symbolically the auxiliary func-
tion in the trace as

h(x) = − ξx

x+ ξm̄2
, (5.23)

which makes the trace

trxc [h(x)]|x=−D2 = trxc

[
ξx

x+ ξm̄2

]∣∣∣∣
x=−D2

. (5.24)

Similarly to the ghost and gluon loops, cf. Sec. 4.4, we subtract the infinite vacuum field
contribution. Then, by considering the Laplace transformation of the function, Eq.(B.22) and the
corresponding heat-kernel relations, Eqs.(B.17) & (B.19), we obtain

trxc
[
h
(
−D2

)
− h

(
−∂2

)]
= − Ω4

(4π)2

N2−1∑
ℓ=1

∫ ∞

0

ds

s2

[
(ξm̄)2 e−ξm̄2s − 2ξδ(s)

] [ sBℓ

sinh sBℓ
− 1

]
.

(5.25)
At the lower boundary of the proper-time parameter, δ(s) is to be understood as contributing half
of its weight, cf. Eq.(B.2). Considering a weak field expansion, see Eq.(5.34), then according to
Eq.(B.9) we have

trxc
[
h
(
−D2

)
− h

(
−∂2

)]
=

Ω4

(4π)2

N2−1∑
ℓ=1

∫ ∞

0

ds

s2

[
(ξm̄)2 e−ξm̄2s − 2ξ δ(s)

] (sBℓ)
2

6
. (5.26)

Computing the convergent integrals leads to

1

Ω4
(i)vs = 0 +O

(
B4

m̄8

)
, (5.27)

where the index vs denotes the subtraction of the infinite vacuum field contribution.
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Study of the (ii), (iii) functional traces

For the second and third functional traces, we abbreviate the function inside the trace as

g(x) =
ξ

x+ ξm̄2
(5.28)

Following similar steps to the first functional trace, while considering Eq.(B.23) for the Laplace
transformation of the function, we obtain

trxc
[
g
(
−D2

)
− g

(
−∂2

)]
= Ω4

ξ

(4π)2

N2
c−1∑
ℓ=1

∫ ∞

0

ds

s2
e−ξm̄2s

(
sBℓ

sinh sBℓ
− 1

)
. (5.29)

Performing a weak field expansion to second order, see Eq.(5.34), we are left only with a
convergent integral of the form

1

Ω4
(ii)vs =

1

Ω4
(iii)vs =

(
1

4π

)2(m̄gh
m̄

)2(Ncα

12

)
(ḡB)2 +O

(
B4

m̄8

)
, (5.30)

where we have used Eqs.(A.5) & (A.6).

Study of the (iv) functional trace

For the fourth functional trace, Eq.(5.22c), the situation is a bit more involved. In particular, the
function under consideration reads

f(x) = − ξ

x (x+ ξm̄2)
, (5.31)

which leads to the following vacuum subtracted functional trace

trxc
[
f
(
−D2

)
− f

(
−∂2

)]
= − Ω4

(4πm̄)2

N2−1∑
ℓ=1

|Bℓ|
∫ ∞

0

dx

x2

[
1− e

− ξm̄2

|Bℓ|
x
] [ x

sinhx
− 1
]
, (5.32)

where x = s|Bℓ|. A linear dependence in the constant magnetic field seems to exist. A naive
weak field expansion of the form |Bℓ| → 0 would not take into account all contributing terms
and would result in possible fictitious divergences. In addition, due to the variable change, it
would also create problems with the upper boundary of integration since it would correspond to
an undetermined value. Hence, one needs to use a different method to treat the integral. This
can be done by splitting the full integral into its divergent and convergent parts. Then, we can
regularize its divergent parts, whereas its convergent part can be trivially calculated. Only after
the divergent integrals have been regularized and brought to an appropriate form, we impose a
weak field expansion.

For the regularization of the divergent integrals, we introduce a convergence enforcing term
limϵ→0 x

ϵ. We have the freedom to introduce such a term, without the appearance of an extra
mass scale, since by dimensional analysis one can see that x is dimensionless. In particular, in
d = 4 we find that [Aµ] = 1 which means that [Fµν ] = 2 = [B] and [ḡ] = 0. This implies that
[β] =

[
ξm̄2

Bℓ

]
= 0 and subsequently [x] = 0. The explicit form of the divergent integrals, treated

with the ϵ technique is given in Eqs.(B.30) & (B.31).
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Computing the full integral, the divergences of the contributing integrals exactly cancel with
each other, cf. App. B see Eq.(B.34). The vacuum subtracted fourth functional trace then takes
the form

1

Ω4
(iv)vs = −

(
1

4π

)2(m̄gh
m̄

)4 (α
2

)[
m̄2 ln

1

2

∞∑
ℓ=1

|Bℓ|+
N

6ξ
(ḡB)2

]
+O

(
B4

m̄8

)
. (5.33)

Note that for the computation of the aforementioned relation we have assumed a weak-field ex-
pansion, via the following condition

|Bℓ|
ξm̄2

≪ 1. (5.34)

Consequently, Eq.(5.34) is to be understood as the range of validity for the weak field expansion.
In support of the analytic result of the fourth functional trace, we have performed a numerical

computation of the same integral as in Eq.(5.32). According to the weak-field expansion, we
compute the integral within the following range of values

|Bℓ|
ξm̄2

∈
[
10−6, 0.3

]
. (5.35)

Considering a linear line fitting of the numerical values of the integral in terms of our range of
values, we find

I

( |Bℓ|
ξm̄2

)
= −0.693 + 0.166

|Bℓ|
ξm̄2

. (5.36)

Inserting the numerical result for the proper-time integral of the functional trace, Eq.(5.36), in
the vacuum subtracted expression, Eq.(5.22c),

1

Ω4
(iv)num = −

(
1

4π

)2(m̄gh
m̄

)4 (α
2

)[
−0.693 m̄2

∞∑
ℓ=1

|Bℓ|+
0.166N

ξ
(ḡB)2

]
+O

(
B4

m̄8

)
.

(5.37)

At the outset, we observe that both the numeric and analytic approaches yield similar struc-
tural forms, as they both exhibit contributions from linear and quadratic magnetic fields. Specif-
ically, a comparison of the prefactors obtained from the analytic calculation in Eq.(5.33) with
those from the numeric calculation in Eq.(5.37) confirms this agreement up to the third decimal
point, thereby validating the analytic result. Notably, the analytic method provides a solution
to a question that arises during the numerical integration. To be more precise, the range of our
parameter does not start from zero but close to it, cf. Eq.(5.36). Analytically, this is due the
variable change which results in an undetermined value of the upper boundary of the integral.
Numerically, this reasoning is no longer valid since we have considered well-behaved integration
limits. Therefore it most probably corresponds to the inability of Mathematica to perform the
numerical integration at that point. This raises the question of whether this is a shortcoming of
the method of numerical integration that was considered or an inherent feature of the integral,
possibly resulting in divergences at |Bℓ|/

(
ξm̄2

)
→ 0. Here, the analytic computation is decisive,

demonstrating that such possible divergences cancel out. Thus, the analytic method complements
the numeric method, with the numeric result offering justification for the validity of the analytic
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result! We proceed with the elegant analytic result.

5.2.2 Study the form of ⟨Wsource⟩ [A]

Collecting the results deduced for the functional traces in the small magnetic field expansion, e.g.
Eqs.(5.27), (5.30) & (5.33) and inserting them into the source contribution to the Schwinger
functional, Eq.(5.20), we determine

⟨Wsource⟩ [A] =
Ω4

(4π)2

(
m̄gh
m̄

)2 (α
2

)−m̄2 ln
1

2

N2−1∑
l=1

|Bℓ| +
ḡ2Nc

6

(
1−

m̄2
gh

ξm̄2

)
B2

]
. (5.38)

An important finding is that the contribution from the disordered source, which arises from the
dependence on the v field, itself stemming from the non-linear gauge fixing condition, produces
a finite term in the relevant part of the disordered one-loop Schwinger functional,

−⟨W1L⟩ [A] =Sv[A]− ln∆FP[A] +
1

2
ln detM [A]− ⟨Wsource⟩ [A]. (5.39)

It is in order to comment on the results that we derived. Starting off from the functional traces,
Eqs.(5.22a)-(5.22c), there exists two significant convergence limits. In particular, in the Landau
gauge, ξ → 0 or at vanishing disorder parameter α → 0, all functional traces vanish and give a
zero contribution of ⟨Wsource⟩ [A]. However, such a convergence limit seems to be lost on the level
of the disordered one-loop Schwinger functional, Eq.(5.39). In that case, the convergence limit
α → 0 is still valid, however in the Landau gauge we no longer obtain a vanishing result. The
assumption behind this illusive inconsistency is the range of validity of the weak-field expansion.
Performing such an expansion implies that we restrict our quantities within the corresponding
range denoted by Eq.(5.34). However, in that range, we can no longer consider the Landau gauge,
ξ → 0. Therefore, the inconsistent dependence of ⟨Wsource⟩ on the gauge parameter ξ between
Eqs.(5.20) & (5.39), is merely an artifact of the weak-field expansion we chose to perform for the
computation of the functional traces rather than an inconsistency of our calculational procedure.

Lastly, as it can be seen from Eq.(5.39), considering m̄2
gh = ξm̄2 eliminates the quadratic

magnetic field dependence from the source contribution. In that case, we obtain

⟨Wsource⟩ [A] =
Ω4

(4π)2

(
m̄gh
m̄

)2(ξα
2

)
m̄2 ln 2

N2−1∑
l=1

|Bℓ|

=
Ω4

(4π)2

(
m̄gh
m̄

)2 (α
2

)
m̄2

gh ln 2

N2−1∑
l=1

|Bℓ|
(5.40)

5.3 Two-point correlation function of Wsource[A; v]

In Sec. 5.2, we discussed an important aspect of our formalism which pertains to the v field and
its potential contribution to the building blocks of the theory, when considered as a disorder field
and the quenched average method is applied. Although not expected to contribute at the level of
observables, it is nevertheless worthwhile to study its effects on the correlation functions while
keeping an explicit v dependence. Thus in this section and the following, we focus on the study
of a two-point correlator that stems from the source term of the Schwinger functional, Wsource,
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Eq.(5.1). To this end, as long as it is computationally feasible, we shall maintain an explicit v
dependence. By employing different assumptions for the v field, we shall determine its impact
on the following two-point correlator

W (2)
v =

δ2Wsource[A; v]

δAδA

∣∣∣∣
A→0

, (5.41)

in the limit of vanishing backgrounds A → 0. Note that up to this point, no assumption for the
form of the v field has been made, only on the vanishing form of the background.

Computing the second functional derivative of Eq.(5.1), we find that

(
W (2)

v

)cd
αβ

=
δKa

µ

δAc
α

(
M−1

)ab
µν

δKb
ν

δAd
β

∣∣∣∣∣
A→0

+
δKa

µ

δAd
β

(
M−1

)ab
µν

δKb
ν

δAc
α

∣∣∣∣∣
A→0

. (5.42)

For the derivation of the Eq.(5.42), we have used that

Ka
µ

∣∣
A→0

= Ja
µ

∣∣
A→0

= 0, (5.43)

which makes use of current conservation, Eq.(4.11). For a generic proof of this result, see
Eqs.(F.9) & (F.11) in App. F.

Finally, the two missing pieces in the computation of Eq.(5.42) are the inverse gluonic oper-
ator M−1

∣∣
A→0

and δJ
δA

∣∣
A→0

. Schematically, the inverse gluonic operator for vanishing fields in
our gauge reads

M−1
∣∣
A→0

=

(
1

m̄2 − ∂2

)
ΠT +

(
1

m̄2 − ∂2

ξ

)
ΠL, (5.44)

where we have introduced the longitudinal and transversal projectors

(ΠL)
ab
µν =

(
∂µ∂ν
∂2

)
δab, (ΠT)

ab
µν = δµνδ

ab − (ΠL)
ab
µν . (5.45)

The second important piece of the puzzle has been computed in Eq.(F.11). Then, collecting all
aforementioned results, we can determine the form of the two-point correlator by implementing
different or no extra constraints on it.

5.3.1 v-dependent two-point correlator

A straightforward insertion of the results mentioned before in Eq.(5.42) leads to the following
two-point correlator

(
W (2)

v

)cd
αβ

(p1, p2) =δ
cd p21
m̄2 + p21

(
p21δαβ − p1αp1β

)
δp1,−p2

+ ḡ2fabcfaed
∫
q

(2q + p1)α

m̄2 + q2

ξ

(2q − p2)β
q2

ve−q−p1v
b
q−p2 .

(5.46)

The term in the first line, which is diagonal in momentum space and v-independent comes from
the δ2(DF )M−1(DF )

δAδA

∣∣∣
A→0

term. The v-dependent contribution comes solely from the δ2JM−1J
δAδA

∣∣∣
A→0

part of the two-point correlator. Finally, the δ2JM−1(DF )
δAδA

∣∣∣
A→0

vanishes. Thus, Eq.(5.46) corre-
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sponds to the two-point correlator of the Schwinger functional at vanishing background and
sources when the auxiliary v field is restricted to obey the massive Klein-Gordon equation, as
implied by current conservation, Eq.(4.11).

5.3.2 v-independent two-point correlator

From the form of the two-point correlator, Eq.(5.46), we see that there is indeed a contribution
coming from the v field that enters at the level of the correlation function. It is interesting to
study the effect that the v-dependent term has on the two-point correlator by averaging over the
auxiliary v field. However, unlike in the previous case, cf. Sec. 5.2, the v field is constrained
to obey the massive Klein-Gordon equation as a result of current conservation. This will be
implemented as an additional constraint by means of a Lagrange multiplier λa on top of the
Gaussian average of the v field.

Another important distinction to the previous case is that the averaging takes place on the level
of the correlation function, instead of that of the Schwinger functional as before. The averaged
two-point correlator is

⟨W (2)
v ⟩cdαβ (p1, p2) = N

∫
DλaDvaeiλ

a
(
−∂2+m̄2

gh

)
− v2

2α Wv(p1, p2).. (5.47)

Substituting the v-dependent two-point correlator, Eq.(5.46), in the above quantity there is a
constant and a quadratic contribution of the v field to the Gaussian integral coming from the
first and second term in the two-point correlator respectively. These Gaussian integrals have
been computed in App. G, cf. Eqs.(G.8) & (G.10) for the contribution of each term. Thus, the
complicated quadratic v-field contribution drops out, leaving

⟨W (2)
v ⟩cdαβ (p1, p2) = δcd

p41
m̄2 + p21

(
δαβ − p1αp1β

p21

)
δp1,−p2 . (5.48)

Notably, the asymptotic behavior of the propagator-like quantity ⟨W (2)
v ⟩

−1
is of interest. In

particular, at large momenta it exhibits a usual decay as ⟨W (2)
v ⟩

−1
∼ 1

p21
, indicating a tree-like

behavior of the S-matrix in the perturbative domain. At the other end of the spectrum at small
momenta, we observe an enhanced decay of ⟨W (2)

v ⟩
−1

∼ 1
p41
, reminiscent of IR slavery that agrees

with non-perturbative realizations of the underlying regime, i.e. mass gap of the background
field excitations.

5.3.3 Two-point correlator for a localized v field

Finally, let us study the form of the two-point correlator by choosing the following constant
localized form for the v field

vaq =

√
(2π)dvaδ(q). (5.49)

In that case, the class of possible v fields is restricted by current conservation Eq.(4.11), which at
vanishing background becomes a massive Klein-Gordon equation. Then a constant solution for
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the external v field is admissible only at vanishing ghost mass m̄gh = 0:

∂2va = 0.

Incidentally, this scenario is in line with the decoupling solution used in Sec. 4.5. Performing the
computation for a vanishing m̄gh, leads to

(
W (2)

v

)cd
αβ

(p) =ḡ2fabcfaedvbveδp1,−p2


[
δαβ − p1αp1β

p21

]
1

m̄2 + p21
+
p1αp1β
p21

1

m̄2 +
p21
ξ


+ δcd

p41
m̄2 + p21

(
δαβ − p1αp1β

p21

)
δp1,−p2 .

(5.50)

Note that for a constant v field the two-point correlator turns out to be diagonal in momentum
space.

In summary, the two-point correlators obtained with an explicit v dependence, given by
Eqs.(5.46) & (5.50) for a general gauge-fixing parameter, display both longitudinal and transver-
sal contributions. However, in the Landau gauge, ξ → 0, the longitudinal part decouples leaving
only a purely transversal contribution. Remarkably, in the Landau gauge, the two-point corre-
lator Eq.(5.46) becomes v independent and equal to the two-point correlator with an annealed
disorder, Eq.(5.48), whereas the two-point correlator for a constant v field, Eq.(5.50), retains its
v-field dependence.

5.4 Two-point correlation function of Wsource[A, v[A]]

In our study, we initially considered a v field without any constraints up to the level of the
Schwinger functional, where it entered through the source term contribution Wsource, as given
in Eq.(4.18). In order to gain a deeper understanding of the form and impact of this term on
our theory, we subsequently imposed the condition of current conservation at various stages, as
described in Secs. 5.1 & 5.3. This restriction limited the admissible v fields to those that satisfy
the massive Klein-Gordon equation. In this section we will consider current conservation from
the start, which entails a background-dependent v[A] field. Using the same approach as before,
we shall study the new form of the two-point correlator W (2)

v at vanishing background which is
expected to differ from the one we determined in the preceding section.

A background dependent v[A] field gives rise to an external current of the form

Ja
µ [A, v[A]] = Dab

µ

[(
1 +

m̄2
gh

−D2

)
v[A]

]b
(5.51)

The functional derivative of the external current provides an additional contribution to the result
of the previous section as found in Eq.(F.11),

δJ [A, v[A]]

δA
=
δJ [A, v]

δA

∣∣∣
v=v[A]

+N. (5.52)

The second term comes due to the background dependence of the v[A] field. At vanishing back-
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ground N becomes

(
Nac

µα

)
xy

∣∣∣
A→0

= ∂xµ

(
δvax
δAc

αy

)
− m̄2

gh

∫
w

(
1

∂2

)
xw

∂wµ

(
δvaw
δAc

αy

)
, (5.53)

where we have denoted

va = va[A→ 0],
δva

δAc
α

=
δva

δAc
α

∣∣∣∣
A→0

. (5.54)

In order to compute the novel termN and hence the extra contributions to the two-point cor-
relator, we first need to specify the form of δv

δA . To do so, we make use of the current conservation
condition,

(D2 − m̄2
gh)v[A] = 0. (5.55)

Functionally differentiating this relation with respect to A and then setting A → 0, we reach to
the following equation

∫
z

δ
(
D2
)ab
xz

δAc
αy

∣∣∣∣∣
A→0

vbz = (∂2x − m̄2
gh)

(
δvax
δAc

αy

)
. (5.56)

Multiplying both sides with the inverse of the kernel of the massive Klein-Gordon operator results
to the desired equation. Performing a Fourier transformation, we find that it reads in momentum
space

δvaq
δAc

αp

= iḡfabc

(
1

m̄2
gh + q2

)
(2q − p)α v

b
q−p. (5.57)

Inserting it into Eq.(5.53) and then into Eq.(5.52) we determine the functional derivative of the
external current at vanishing background for a background-dependent v[A] field,

δJa
µq

δAc
αp

∣∣∣∣
A→0

= ḡfabc
qµ (2q − p)α

q2

[
1− p2 − 2p · q

m̄2
gh + q2

]
vbq−p. (5.58)

5.4.1 v[A]-dependent two-point correlator

Having computed all the essential elements, we insert them into the two-point correlator, which
is given by the same relation as before, Eq.(5.42). After a straightforward computation we find
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that(
W (2)

v

)cd
αβ

(p1, p2) =δ
cd p21
m̄2 + p21

(
p21δαβ − p1αp1β

)
δp1,−p2

+ ḡ2fabcfaed
∫
q

(
1

m̄2 + q2

ξ

)(
1

q2

)
(2q + p1)α (2q − p2)β

×

( 1

m̄2
gh + q2

)2 (
p21 + 2p1 · q

) (
p22 − 2p2 · q

)
− (p22 − 2p2 · q)

m̄2
gh + q2

+
(p21 + 2p1 · q)
m̄2

gh + q2
+ 1

]
vbq−p2v

e
−q−p1 .

(5.59)
The background-dependence resulted in the appearance of extra terms in the two-point function
in relation to the one we found in the preceding section, cf. Eq.(5.46), as a consequence of the
consistency condition. These are the terms which depend on the m̄gh in the square brackets.
Therefore in the limit of large ghost mass, m̄gh → ∞, we recover the background independent
result. Finally, let us remark that the structure of the two-point correlator is the same as the one
in the background independent case.

5.4.2 v[A]-independent two-point correlator

Similarly to the previous section, let us average over the v[A] field in the two-point correlator,
Eq.(5.59), under the constraint of current conservation. The structure of the two-point correlator,
computed in this section and the one found in Eq.(5.46) have a similar structural form. For the
computation we will require the same Gaussian integrals as before, i.e. Eqs.(G.8) & (G.10).
Substituting them we find

⟨W (2)
v ⟩cdαβ (p1, p2) = δcd

p41
m̄2 + p21

(
δαβ − p1αp1β

p21

)
δp1,−p2 . (5.60)

Thus, after averaging over the v[A] field on the level of the two-point function, one discovers the
same result for the two-point function regardless of the assumption of a background-dependent
or background-independent v field.

5.4.3 Two-point correlator for a localized v[A] field

Let us conclude this section with a computation of the two-point correlator for a constant v[A]
field solution, cf. Eq.(5.49). In that case, we find that

(
W (2)

v

)cd
αβ

(p) =ḡ2fabcfaedvbveδp1,−p2


[
δαβ − p1αp1β

p21

]
1

m̄2 + p21
+
p1αp1β
p21

2

m̄2 +
p21
ξ


+ δcd

p41
m̄2 + p21

(
δαβ − p1αp1β

p21

)
δp1,−p2 ,

(5.61)

which up to a constant factor of 2 in the longitudinal part, agrees with the background-independent
result, Eq.(5.50). In the Landau gauge these results agree in full since in that case the longitudi-
nal contribution decouples.
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Different Approaches
Section 5.1 5.3 5.4

Background (A) DµFµν = 0 A→ 0 A→ 0

v-field
constraint

(
D2 − m̄2

gh

)
v = 0

(
∂2 − m̄2

gh

)
v = 0

(
D2 − m̄2

gh

)
v[A] = 0

M−1[A] Eq.(5.4) Eq.(5.44) Eq.(5.44)
Wsource[A, v] 0 0 0
W

(2)
v (p1, p2) − Eq.(5.46) Eq.(5.59)

⟨W (2)
v ⟩ (p1, p2) − Eq.(5.48) Eq.(5.60)
W

(2)
v (p) − Eq.(5.50) Eq.(5.61)

Table 5.1: Summary of the approaches adopted in the evaluation of the new source-like contributions to the back-
ground connected correlation functions, associated to the special gauge-fixing sector constructed in Sec. 4.1. These
contributions depend on two external fields: the background gluon field A, and the Nakanishi-Lautrup field v, which
have been chosen as specified in the second and third rows respectively. Notice that the v[A] of the third column differs
from the v of the second column, in that we consider the v field as a functional ofA before taking functional derivatives
w.r.t. an arbitrary A. The main actor in the evaluation of the source-like contributions is the gluon propagator M−1,
for which we refer to the corresponding explicit expression. Under each assumption considered, we report the con-
tributions to the zero-point function Wsource[A] and to the two-point function W

(2)
v (p1, p2). Special forms of the latter

have been obtained, either by averaging over the v field with a constrained Gaussian distribution, or by assuming v
to be constant. The corresponding results are respectively recalled in the last two rows. The empty entries in the
lower-left corner correspond to computations of the two-point correlator in non-vanishing backgrounds and are left
for future studies.

In Tab. 5.1 we have summarized all different approaches and assumptions that were consid-
ered in this chapter for the study of the novel source term in the Schwinger functional Wsource

with their corresponding sections.
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CHAPTER 6

fRG Study of BRST-Invariant Flows

As motivated in Sec. 3.5, this chapter extends the work of [121] to the computation of the one-
loop beta function and the model developed within the BFM in Chpts. 4 & 5 to a non-perturbative
setting. Consequently, in the forthcoming parts, initially we shall abandon the BFM and analyze
the implications of the associated fRG equation and then continue this non-perturbative study
within the BFM. In both cases the generated flows will be compatible with BRST symmetry.

6.1 Non-linear gauge fixing in the fRG

In order to transition the non-linear gauge-fixing condition to the fRG setup, it is natural to
promote the mass parameters, initially introduced in Eq.(4.2) in the BFM, to IR regulator kernels
each associated with the fields to be regularized. In particular,

m̄2δµν → Rµν(∂),

m̄2
gh → Rgh(∂) = (−∂2)rgh(−∂2).

(6.1)

Next, we consider the following non-linear gauge-fixing condition

Fa[A, v] = Ab
µQ

abc
µν A

c
ν + Lab

µ A
b
µ, (6.2)

where,
Qabc

µν =
va

2|v|2Qµνδ
bc, Qµν = Rµν(∂)−

1

ξ
∂µ∂ν ,

Lab
µ =

(
1 + rgh(−∂2)

)
∂µδ

ab.

(6.3)

Given that Rµν is a symmetric tensor and an even differential operator, a possible choice of its
form reads [121]

Rµν(∂) = RL(−∂2)Πµν
L +RT(−∂2)Πµν

T . (6.4)

Note that Rgh,T,L are the associated IR regulators that appear in the flow equation, exhibiting a
behavior in momentum space as described in Subsec. 3.4.2.
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The gauge-fixing action for the non-linear gauge-fixing condition Eq.(6.2) is given by

Sgf[A, v] =
1

2
Aa

µQµνA
a
µ + va

(
1 + rgh(−∂2)

)
∂µA

a
µ, (6.5)

whereas the associated ghost action reads

Sgh[A, c, c̄, v] =− c̄a
(
1 + rgh(−∂2)

)
(∂µDµc)

a − va

2|v|2 c̄
a
[(

QµνA
b
ν

)
(Dµc)

b +Ab
µQµν (Dνc)

b
]
.

(6.6)
Next, we extend even further the source action, cf. Eq.(3.59), by introducing further BRST

sources coupled to appropriate composite operators [121], denoted as

Ωa
µ =

vb

|v|2 c̄
bAa

µ,

Aa
µ =

vb

|v|2 c̄
b (Dµc)

a .

(6.7)

Then, the source action takes the form

Ssou = J †
i Φi + SBRST

so

= J †
i Φi + Ka

µ (sA)
a
µ + La (sc)a + IaµΩa

µ −Ma
µAa

µ. (6.8)

Note that {Iaµ,Ka
µ} correspond to anticommuting sources whereas {La,Ma

µ} to commuting ones.
Furthermore, the BRST variation of the composite operators infers that they are both nilpotent
and the difference (sΩ)aµ = Aa

µ − Aa
µ is BRST exact and as such, {Aa

µ,Aa
µ} belong in the same

cohomology class. For compactness and following a logic similar to Eq.(3.47), we collect all BRST
sources using the following collective notation

I†
i =

(
Ka
µ, La,Ma

µ, Iaµ
)
, Ii =


Ka
µ

La

Ma
µ

Iaµ

 . (6.9)

Then, in the collective field representation we obtain the following generating functional

Z[J , I; v] = eW [J ,I;v] =

∫
DΦ eS[Θ]−Ssou[I,v], (6.10)

where, S[Θ] corresponds to the BRST-invariant nonlocal action which contains the gauge-fixing
and the ghost actions Eqs.(6.5) & (6.6), i.e.

S[Θ] = SYM[A] + Sgf[A, v] + Sgh[A, c, c̄, v]. (6.11)

As it was anticipated in our previous study within the BFM, we inferred a nonlocal but BRST-
invariant action. This result highlights the trade-off between manifest BRST invariance and non-
locality on the level of the action. In the fRG setup, the inclusion of regulators through the gauge-
fixing condition can result in non-trivial regulator-dependent interactions, e.g. in the ghost-gluon
vertex and as such their effect merits further investigation.
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In our approach, a unique feature is the introduction of additional BRST sources of composite
operators. This is motivated by our requirement to establish BRST invariance on the level of the
EAA and serves a dual purpose. Firstly, their inclusion in the generating functional is essential
for deriving a one-loop flow equation (Wetterich-like) [136]. Secondly, the extra sources aid in
monitoring BRST symmetry on the level of the associated EAA, as encoded by themaster equation,
by bringing it in a compact form. Then, with an appropriate truncation of the EAA one can verify
the compatibility between the flow and the master equation, thereby ensuring BRST-invariant
flows, cf. Sec. 3.5.

6.2 BRST-invariant flow equation

Next, we sketch the derivation of the flow equation which arises within our framework, see
[121] for a more detailed derivation. We denote by Γ̃, the Legendre transform of the regularized
Schwinger functional Eq.(6.10), which we call Legendre EA

Γ̃[Φ, I; v] = sup
Ji

{
J †
i Φi −W [J , I; v]

}
, (6.12)

as opposed to Γ which represents the EAA and is obtained after subtracting the regulator depen-
dence in accordance with Eq.(3.80), i.e.

Γ[Φ, I; v] = Γ̃[Φ, I; v]−∆S[Φ; v]. (6.13)

Furthermore, ∆S incorporates both the gluon and ghost regulator dependencies as they con-
tribute to the gauge-fixing and ghost sectors,

∆S[Φ; v] = ∆Sgf[A; v] + ∆Sgh[Φ; v], (6.14)

where

∆Sgf[A; v] =
1

2
Aa

µRµνA
a
ν + vargh(−∂2)∂µAa

µ,

∆Sgh[Φ; v] = −c̄argh(−∂2) (∂µDµc)
a − va

2|v|2 c̄
a
[(
RµνA

b
ν

)
(Dµc)

b +Ab
µ (RµνDνc)

b
]
.

(6.15)

Making use of the functional relations for standard sources and fields, Eq.(3.54), one can
determine useful relations between the Hessians of the Schwinger functional and Legendre EA,
abbreviated with the following shorthand notation

W
(2)
JiJj

=
δ

δJ †
i

W [J , I; v]
⃗δ

δJj
,

Γ̃
(2)
ΦiΦj

=
δ

δΦ†
i

Γ̃[Φ, I; v]
⃗δ

δΦj
.

(6.16)

Therefore, {W (2), Γ̃(2)} can be thought of as matrix operators with entries classified by the asso-
ciated functional differentiation. Hence, one can easily derive a relation between their diagonal
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elements. In particular,
W

(2)
JiJj

=
(
Γ̃(2)

)−1

ΦiΦj

,

W
(2)
IiIj = −Γ̃

(2)
IiIj .

(6.17)

For the non-diagonal elements of the Hessians, the following slightly non-tivial relations hold,

W
(2)
JiIj = −

(
Γ̃(2)

)−1

ΦiΦk

Γ̃
(2)
ΦkIj ,

W
(2)
IiJj

= −Γ̃
(2)
IiΦk

(
Γ̃(2)

)−1

ΦkΦj

.
(6.18)

Having associated all relevant Hessian components, the form of the flow equation can be
determined after some algebraic manipulations, by considering the scale derivative of the gener-
ating functional, Eq.(6.10) and translating the result in terms of the Schwinger functional. Then,
one finds

∂tW =
1

2

(
∂tRµνδ

ab
)[ δW

δMa
µ

(
W

⃗δ

δjbν

)
+W

(2)

IaµKb
ν
+
δW

δIaµ

(
W

⃗δ

δKb
ν

)
+W

(2)

IaµKb
ν
− δW

δjaµ

(
W

⃗δ

δjbν

)
−W

(2)

jaµj
b
ν

]

+
(
∂µrgh∂µδ

ab
)[

vb
δW

δjaµ
− δW

δKa
µ

(
W

⃗δ

δηb

)
−W

(2)

Ka
µη

b

]
.

(6.19)
Relating the Schwinger functional to the Legendre EA, Eq.(6.12), its first functional derivative to
the associated dynamical macroscopic fields, Eq.(3.54) and its Hessian to that of the Legendre
EA, Eqs.(6.17) & (6.18), one arrives at the flow equation of the Legendre EA

∂tΓ̃ =
1

2

(
∂tRµνδ

ab
)[(

Γ̃(2)
)−1

Aa
µA

b
ν

+ Γ̃
(2)
Ma

µΦi

(
Γ̃(2)

)−1

ΦiAb
ν

+ Γ̃
(2)

Kb
ν Iaµ

+
δΓ̃

δMa
µ

Ab
ν −

(
δ

δKb
ν

Γ̃

)(
Γ̃

⃗δ

δIaµ

)]

+
(
∂µrgh∂µδ

ab
)[

Γ̃
(2)
Ka
µΦi

(
Γ̃(2)

)−1

Φi(−c̄b)
− c̄b

δΓ̃

δKa
µ

]
+ ∂t∆Sgf.

(6.20)
Note that according to the condensed notation, cf. App. F, differential operators acting on δab

imply differentiation with respect to xa. Eq.(6.20) can be rewritten in terms of the EAA, Eq.(6.13)
and yields a Wetterich-like flow equation [121]. The last term denotes the scale derivative of the
regulator dependent part in the gauge-fixing sector, given in Eq.(6.15) and reads as

∂t∆Sgf =
1

2

(
∂tRµνδ

ab
)
Aa

µA
b
ν +

(
∂trgh∂µδ

ab
)
vbAa

µ. (6.21)

To further computational manipulations, we require a suitable class of truncations for the
Legendre EA that reproduces flows of the associated functional, compatible with the BRST sym-
metry. As determined in [121], such a behavior for the Legendre EA can be realized in a trunca-
tion scheme where the BRST sources, collectively denoted by I and found in Eq.(6.8), contribute
in a linear fashion similar to the bare action, i.e.

Γ̃k[Φ, I; v] = Γ̃[Φ; v] + SBRST
sou [Φ, I; v]. (6.22)

Then, Eq.(6.22) can straightforwardly be translated in the language of the truncated EAA, which
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takes the form

Γk[Φ, I; v] = Γ[Φ; v] + SBRST
sou [Φ, I; v]. (6.23)

For this family of truncations, the flow equation for the BRST source-independent part of the
truncated EAA simplifies to

∂tΓ[Φ; v] =
1

2

(
∂tRµνδ

ab
)(

Γ̃(2)
)−1

Aa
µA

b
ν

+
1

2

(
∂tRµνδ

ab
)
Γ̃
(2)
Ma

µΦi

(
Γ̃(2)

)−1

ΦiAb
ν

+
(
∂trgh∂µδ

ab
)
Γ̃
(2)
Ka
µΦi

(
Γ̃(2)

)−1

Φi(−c̄b)
.

(6.24)

Let us turn our attention to the compatibility of the aforementioned truncated flow equation
with the (modified) master equation of the theory. Due to the inclusion of the additional BRST
sources of composite operators, BRST symmetry is encoded in a scale-dependent constraint equa-
tion of the following form

S[W ] =

(
jaµ

δ

δKa
µ

+ η̄a
δ

δLa
+ va −Ma

µ

δ

δKa
µ

+ Iaµ
δ

δjaµ
− Iaµ

δ

δMa
µ

)
W = G̃BRSTW = 0. (6.25)

The compatibility between the flow equation and the (modified) master equation, was proven in
[121] and translates on the level of the generating functional as

∂tS[W ] = GtS[W ], (6.26)

where Gt corresponds to the generator of the RG transformations of the Schwinger functional,
Eq.(6.19). One can verify the compatibility relation, Eq.(6.26), by noting that the generator of
the RG transformations and the BRST generator, commute with each other, i.e.

[G̃BRST,Gt] = 0. (6.27)

Thus, the compatibility relation describes the flow of the associated master equation and in-
corporates information both for the flow equation and the underlying BRST symmetry. In partic-
ular, it denotes that the (modified) master equation S[W ] = 0 is a fixed point of its flow equation
and as such it is satisfied at all scales by a Schwinger functional that solves the associated flow
equation, cf. Eq.(6.19), subject to the requirement that at an initial scale k = Λ the master equa-
tion is met. Such compatibility statement can be straightforwardly generalized to the Legendre
EA (and in extend to all other associated quantities), in the (modified) master equation,

S[Γ̃] = δΓ̃

δAa
µ

δΓ̃

δKa
µ

+
δΓ̃

δca
δΓ̃

δLa
+ va

δΓ̃

δc̄a
+Ma

µ

δΓ̃

δKa
µ

+Aa
µIaµ +

δΓ̃

δMa
µ

Iaµ = 0. (6.28)

In this section, we have introduced various quantities that are related to the EA. To summa-
rize, in Eq.(6.12), we defined the Legendre transform of the Schwinger functional, which we
called Legendre EA and denoted by Γ̃. The Legendre EA was associated with the EAA, denoted
by Γ in Eq.(6.13). Note that due to the gauge-fixing procedure, scale dependence, introduced via
the regulators, enters from the non-linear gauge-fixing condition, Eq.(6.2). This implies that both
the Legendre EA as well as the EAA are scale-dependent quantities and as such one can determine
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a flow equation for each one, cf. Eq.(6.20) for the flow equation of the Legendre EA. Further-
more, we introduced truncated versions of both quantities as realized in Eqs.(6.22) & (6.23) and
denoted by Γ̃k & Γk for the truncated Legendre EA and the truncated EAA respectively, which
have corresponding truncated flow equations, cf. Eq.(6.24) for the flow equation of the truncated
EAA. This truncated flow equation for the EAA in combination with the vertex functions, dictate
the contributing terms in the associated flows of the coupling at vanishing macroscopical fields.

6.3 Renormalized flow and simulated conventional gauges

Having chosen an appropriate truncation scheme, Eq.(6.22), for the Legendre EA and in exten-
sion for the EAA, Eq.(6.23), it is left to specify the form of their BRST-independent truncated
parts. We use the ansatz that they take a form identical to the bare action. Thus, the BRST
source-independent part of the truncated Legendre EA reads

Γ̃[Φ; v] = ZT SYM[A] + Γ̃gf[A; v] + Γ̃gh[Φ; v], (6.29)

where, from Eqs.(6.5) & (6.6)

Γ̃gf[A; v] =
1

2
Aa

µQµνA
a
ν + vaZgh

(
1 + rgh(−∂2)

)
∂µA

a
µ,

Γ̃gh[Φ; v] = −Zghc̄
a
(
1 + rgh(−∂2)

)
(∂µDµc)

a − va

2|v|2 c̄
a
[(

QµνA
b
ν

)
(Dµc)

b +Ab
µQµν (Dνc)

b
]
.

(6.30)
Note that wave-function renormalization constants have been appropriately included. To fur-

ther the renormalization procedure and reproduce the renormalized BRST source-independent
truncated Legendre EA (and EAA) with a form similar to the renormalized bare action, it is neces-
sary for the differential operatorQµν to depend on the longitudinal and transversal wave-function
renormalization constants. This can be achieved by performing a rescaling,

RT → ZTRT, ξ → ξ

ZL
,

RL →
ZL
ξ
RL, rgh → Zghrgh.

(6.31)

Then, the BRST source-independent part of the truncated EAA

Γ[Φ; v] = ZT SYM[A] + Γgf[A; v] + Γgh[Φ; v], (6.32)

consists of

Γgf[A; v] =
ZL
2ξ

(
∂µA

a
µ

)2
+ Zghv

a∂µA
a
µ,

Γgh[Φ; v] = −Zghc̄
a (∂µDµc)

a +
ZLv

a

2ξ|v|2 c̄
a
[(
∂µ∂νA

b
ν

)
(Dµc)

b −Ab
µ∂µ∂ν (Dνc)

b
]
.

(6.33)

As it is convenient to proceed with the calculations within a certain gauge by specifying the
gauge-fixing parameter ξ, an identification of the corresponding gauge from the gauge-fixing pa-
rameter is not guaranteed due to the non-linear gauge-fixing condition, Eq.(6.2). In the following,
we present a prescription that allows us to identify the commonly used gauges, i.e. Feynman and
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Landau gauge, within our framework.
One way to identify the Feynman or Landau gauge in the non-linear gauge-fixing condition

is to specify the gauge-fixing parameter ξ that yields the expected form of the associated gluon
propagator. In the Feynman and Landau gauge within the Lorenz gauge-fixing condition, the
gluon propagator has certain properties that allow for a different approach. For instance, in the
Landau gauge, the gluon propagator is purely transversal. Thus, instead of specifying a value
for ξ, we can characterize gauges based on the form of the gluon propagator. This leads to a
constraint relation which unambiguously identifies the gauge within the non-linear gauge-fixing
condition, but can involve a larger number of parameters. Therefore, the key ingredient in this
construction is to note the properties of the gluon propagator at the underlying gauges.

Hence, from Eq.(6.29) we find that in momentum space, the kernels of the transversal and
longitudinal gluon propagators correspond to

GT(p) =
1

ZT (RT(p) + p2)
, GL(p) =

1
ZL
ξ (RL(p) + p2)

. (6.34)

Landau gauge

In the Landau gauge, the gluon propagator is purely transversal, which according to Eq.(6.34)
corresponds to the choice

ξ = 0, RT(p
2) = RL(p

2). (6.35)

Therefore, we find that we can reproduce the Landau gauge of the Lorenz gauge-fixing condition
within our non-linear gauge-fixing condition by choosing appropriate constraint relations.

Feynman gauge

In the Feynman gauge, the longitudinal and transversal parts of the gluon propagator are equal.
According to Eq.(6.34), this holds true for

ZT =
ZL
ξ

= Z, RT(p
2) = RL(p

2), (6.36)

Similarly, Eq.(6.36) corresponds to the generic constraint which allows us to simulate the conven-
tional Feynman gauge of the Lorenz gauge-fixing condition within our non-linear gauge-fixing
condition. Furthermore, for ξ = 1 we obtain the special solution which was used in [121]. We
proceed by employing the generic Feynman gauge constraint relations.

We reparametrize the gluon and ghost regulator according to Eq.(3.86)

R(p2) = p2r(p2), rgh(p
2) = r(p2), (6.37)

for which we choose the Litim regulator shape function, Eq.(3.87). Finally, in d = 4 for the
Feynman gauge we define the dimensionless renormalized couplings and fields as

g2 =
ḡ2

Z
, ṽa =

Zghḡ

Zk2
va. (6.38)
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6.4 Beta function from BRST-invariant flows

We have reached a stage in our analysis where we can implement our chosen truncation scheme
in the flow equation and extract the flow of {ZT, Zgh, g} by studying different vertex interactions.
These flows are generated from one-loop diagrams with regulator-dependent vertices that may
receive contributions from the v field, as prescribed by the truncated fRG equation, Eq.(6.20).
The momentum space representation of the truncated fRG equation as well as all relevant n-point
vertex functions are detailed in App. H.

Our goal is to obtain the beta function, generated by BRST-invariant flows, in the presence of
regulator-dependent vertex interactions and a fixed external/background v field. Furthermore,
we aim to examine the impact of the v field on the renormalizability of the theory and whether
universal results can be reproduced by properly treating it. Such an investigation can facilitate
more involved v-field calculations and provide insights on the consistency of the theory.

In the course of our calculations, we must handle external and loop momenta contributions
carefully. To do so in accordance with the considered truncation scheme, we assume that the
external momenta are small compared to loopmomenta [124] and collect from the non-vanishing
contributions terms of the same order as those on the left side of the associated flow equation. This
momentum expansion is also expected to affect the regulator-dependent terms. Note that such
novel features (regulator-dependent vertices) serve as a check on whether the Litim regulator is
a valid choice for the description of our model. With these considerations in mind, we proceed
to study the one-loop generated contributions to the gluon and ghost anomalous dimensions, as
well as the ghost-gluon vertex.

In order to provide a more holistic and intuitive depiction of the contributing terms in the
associated flow equations, we introduce a Feynman diagrammatic representation within our
framework. This representation allows us to easily identify contributions from all relevant v-
field sectors, including the v-independent, v-dependent, and v2-dependent sectors. An overview
of all non-vanishing diagrams that contribute in the associated flow equations, are depicted in
Fig. 6.1.

In particular, Fig. 6.1 illustrates the non-vanishing contributions of the transversal wave-
function renormalization ZT, which determines the transversal gluon anomalous dimensions ηT,
the ghost renormalization Zgh, which determines the ghost anomalous dimension ηgh, and the
c̄cA-vertex. The BRST source and regulator-dependent character of the truncated EAA introduces
novel vertices, which can be found in App. H.2 and are diagrammatically represented according
to the following notation. Regulator dependencies can appear both in the gluon and ghost in-
ternal lines as {∂tRµν , ∂trgh} respectively, as well as on vertices and are displayed with a crossed
circle. Vertices denoted with an empty circle or a full square are obtained by acting with the
{M,K} BRST sources respectively. Full dots represent conventional 3 & 4-gluon vertices. Finally,
the v field has been treated as a fixed background/external field and as such it can contribute to
the form of vertices. Therefore, vertices with an anchored field indicate the presence of a v field.
The symmetry factor which appears in front of some graphs corresponds to an exchange of the
external gluons legs.
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∂t

[
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c̄d ce
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ρ ]

= + + +

Figure 6.1: Diagrammatic representation of all non-vanishing contributions which arise from the truncated flow
equation, Eq.(6.24).

6.4.1 Gluon anomalous dimension

In the study of the wave-function renormalization, we observe that only a subset of graphs are
non-vanishing. Several generated contributions either cancel, vanish after projecting onto exter-
nal momenta or identically drop as a result of the considered truncation. All vanishing diagram-
matic contributions can be found in Fig. 6.2. Then, one arrives at the following flow equation

(∂tZT) δ
ab = ZTg

22v4

[
1

6
(19− 5ηT)Ncδ

ab +
ṽaṽb

4|ṽ|4
1

3

(
5− ηgh

2

)]
, (6.39)

where we have used the abbreviation v−1
d = 2d+1π

d
2Γ
(
d
2

)
. The color index notation on both

sides indicates that also the right side still has to be projected onto the terms proportional to δab.
Outside of the v contribution, notice the explicit dependence of the right side on the anomalous
dimensions

ηT = −∂t lnZT, ηgh = −∂t lnZgh, (6.40)

which originate from a resummation of a large class of diagrams, manifesting the "RG improve-
ment". Ignoring any resummation contributions, our result agrees with the perturbative one
obtained in [121].

6.4.2 Ghost anomalous dimension

Following the same line of reasoning, we arrive at the flow equation for Zgh

(
∂tZgh

)
δab = Zghg

22v4

[
fabc

ṽc

2|v|2
3

4
+
ṽaṽb

4|v|4
1

8

(
32− 109

30
ηT +

19

10
ηgh

)]
. (6.41)

The vanishing contributions of the flow of Zgh are represented in Fig. 6.3. It is worth mentioning
that due to the antisymmetry of the structure constants and the cancellation that occurs between
different diagrams, all v-dependent graphs with a fixed v anchored to the external antighosts
vanish. Furthermore, all v-independent contributions drop out within our truncation.
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+ = 0

+ = 0

+ + = 0

Figure 6.2: Vanishing contributions from the gluon anomalous dimension.

6.4.3 Ghost-gluon vertex

The study of the ghost-gluon vertex turns out to be more intricate and a careful treatment is
required in order to extract the associated flow equation. The relevant graphs that contribute in
the flow equation are determined by taking appropriate functional derivatives of the truncated
flow equation. In the case of the ghost-gluon vertex this is achieved by computing

δ

δAc
ρ(q3)

δ

δc̄d(q1)
∂tΓ

⃗δ

δce(q2)

∣∣∣∣∣
Φ→0

=
δ

δAc
ρ(q3)

δ

δc̄d(q1)
[R.H.S. of Eq.(H.1)]

⃗δ

δce(q2)

∣∣∣∣∣
Φ→0

. (6.42)

Due to energy-momentum conservation, we find an overall δ(q1+ q2+ q3), which imposes the
condition q1+q2+q3 = 0. This constraint fixes only one external momentum in terms of the other
two, leading to an ambiguity when expanding in external momenta. Since we have to expand
up to q31, then we are left with two possible choices for the remaining momenta. One is to keep
q2 fixed and expand around q1 = −q3 = q → 0, or fix q3 and expand around q1 = −q2 = q → 0.
The latter leads to divergent graphs that do not cancel whereas the former results in convergent
and vanishing graphs Fig. 6.4. Note that such issues do not arise in the case of the gluon and
ghost anomalous dimensions since in that case energy conservation fixes the external momenta
uniquely as q1 = −q2 = q. This serves as the motivation for adopting the scheme where we fix
the ghost external momentum.

Thus from the ghost-gluon vertex, we arrive at the following flow equation

fabc∂t

(
gZgh

√
ZT

)
=
g3

2
Zgh
√
ZT2v4

[
fabcNc

(
2− 5ηT

8

)
− fadc

ṽbṽd

4|v|4
(
1− ηT

6

)]
. (6.43)

Notice that the flow equation exhibits non-vanishing contributions up to O(v2) order. However,
similarly to the BFM case such novel contributions do not give rise to any divergences within a
suitable scheme.

Prior to deriving the one-loop beta function it is of essence to test the validity of the derived
flow equations, Eqs.(6.41)-(6.43), by rediscovering established results in the perturbative limit.

6.4.4 Rediscovering perturbative results

The confidence in the aforementioned flow equations within our considered truncated framework
can be put to the test by reproducing the associated perturbative results. To achieve such a
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+ = = 0

= = = = 0

Figure 6.3: Vanishing contributions from the ghost anomalous dimension.

comparison, we start from amodified version of the truncated EAA and repeat the same procedure
as before. In particular, the form of the truncated EAA is determined as follows. Firstly we
strip-off the regulator dependence from the vertex functions, next we neglect any generated
RG-resummation terms from the flow equations and finally we replace the v-field contribution
appropriately.

In order to obtain regulator-independent vertices, it is sufficient to set in Eq.(6.3)

Qµν(p
2)
∣∣
R=0

= Zpµpν . (6.44)

The effect of such a replacement in the ghost-gluon vertex is depicted in Fig. 6.5. Furthermore,
neglecting any RG resummation terms is equivalent to setting ηT = ηgh = 0 on the right side of
the generated flows when such terms appear. Tuning the v field appropriately is an important
step in this comparison, since it appears in the flow equations as the product of the gauge-fixing
procedure. For that, we replace −ṽaṽb/

(
4|ṽ|4

)
by δabg2Nc. Such a procedure, reproduces the

perturbative ghost-loop contribution in the Feynman gauge [121, 124].
Note that Eq.(6.44), directly affects the form of the truncated EAA. This, in turn, generates

a different class of diagrams when inserted into the fRG equation. Therefore, a naive imple-
mentation of the aforementioned perturbative conditions on the already derived flow equations
will not accurately reproduce the perturbative limit. To achieve this, one needs to first input the
perturbative conditions and subsequently compute the associated flows.

At the perturbative limit, the flow of Zgh generates a single one-loop diagram, cf. Fig. 6.5.
Then, one finds the perturbative ghost anomalous dimension

η0gh =
Nc

(4π)2
g2 +O(g4), (6.45)

which agrees with current literature [124].

6.4.5 Beta function

Our final task is to determine the YM beta function within our BRST-invariant framework. Com-
bining all flows Eqs.(6.41)-(6.43), one finds that

β(g)δab = −g32v4
[
1

12

(
7− 5

4
ηT

)
Ncδ

ab +
ṽaṽb

4|ṽ|4
1

6

(
29 +

37

40
ηgh −

109

40
ηT

)
+
ṽdṽe

4|ṽ|4
facdf bce

2Nc

(
1− ηT

6

)]
.

(6.46)
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= = = 0

Figure 6.4: Depiction of vanishing graphs when q2 is kept fixed that diverge in the case of a fixed q3 from the
ghost-gluon vertex.

Note that terms of the orderO(v) in the ghost-gluon vertex were neglected, due to computational
complexity and since in our scheme such contributions will drop out after averaging over the v
field.

As the v field corresponds to an external/background field, it can be treated appropriately.
Thus, we choose to integrate out the v field with a Gaussian weight of an adjusted width of the
following form

ṽaṽb

4|ṽ|4 → 37

64
Ncδ

ab. (6.47)

Interpreting the v field as a quenched disorder field, Eq.(6.47) fixes the disorder amplitude. This
leads to the beta function

β(g) = −g
3Nc

16π2

(
11

3
− 6373

15360
ηT +

37

1536
ηgh

)
. (6.48)

Combining the flow equations in Eqs.(6.39) & (6.41), one can find an analytic expression for
the resummation contributions in the one-loop beta function in different powers of the coupling,
cf. Eq.(I.1). Expanding these expressions to lowest order and inserting the result into Eq.(6.48),
one arrives at an estimate for the two-loop beta function

β(g) = − g3

16π2

(
11

3
Nc +

11

500
N2

c g
2

)
+O(g7), (6.49)

which to lowest order in the coupling reproduces the universal one-loop beta function.
Note that in order to arrive at Eq.(6.48), we had to adjust the v-field contribution by appro-

priately choosing the width of a Gaussian distribution. Tuning the width of the Gaussian weight
corresponds to an additional degree of freedom. Different widths are expected to affect differ-
ently the underlying flow equations and correspondingly the beta function. However, universal
results, such as the one-loop YM beta function in d = 4 alleviate this ambiguity and fix this
seemingly extra degree of freedom in a unique manner.

One would naively anticipate the substitution performed for the v field in Subsec. 6.4.4 to
persist in the derivation of Eq.(6.48). Such a reasoning would not take into account that we
ad hoc eliminated the regulator dependence from the vertices in the perturbative limit. Such a
consideration, reproduces the same diagrammatic contributions as in the perturbative case, but
alters the form of the truncated EAA. In this modified truncation scheme, the specific substitution
of the v field, as discussed in Subsec. 6.4.4 is sufficient to reproduce the universal one-loop beta
function. However, in the case where the truncated EAA is given by Eq.(6.32), the flow equation
gives rise to an extended class of diagramswhich differ from those at the perturbative limit exactly
due to the presence of regulator-dependent vertices. In that case, selecting a Gaussian weight
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Figure 6.5: Graphical depiction of the vertex and diagrammatic modifications for the ghost anomalous dimension.

with a width dictated by Eq.(6.47) reproduces the universal one-loop beta function.
In other words, our formalism seems to provide an extra degree of freedom with the inclusion

of a novel v field. Such a condition is constrained and uniquely determined by associated uni-
versal results, unless there are additional divergences. Therefore, we can draw a correspondence
between changes in such a condition and novel contributions within our formalism.

At two-loop level, even though the beta function Eq.(6.49) is in qualitative agreement with lit-
erature results obtained both perturbatively andwithinmass-dependent renormalization schemes,
the quantitative comparison is not favorable [143]. To improve the results of the associated flow
equation, two approaches can be considered. Firstly, an appropriate modification of the selected
truncation scheme can be made to include a larger class of contributions, thereby potentially
enhancing the accuracy at higher-loop orders. Secondly, an alternative framework for our non-
perturbative model, such as the BFM, can be adopted. The former approach extends the admissi-
ble diagrammatic contributions of the previously established flow equation Eq.(6.20), while the
latter can alter the form of the flow equation and is explored in Sec. 6.5.

6.5 Background & BRST-invariant RG flows

We close this Chapter by deriving an explicit BRST-invariant flow equation in the BFM. To achieve
this, we apply the BFM as introduced in Chpt. 4, within the previously developed non-perturbative
setup, for which we derive the associated fRG equation. Given that the forthcoming construction
is quite close to the one followed in Secs. 4.1, 6.1 & 6.2, to avoid repetition, we refer the reader
to the relevant relations and only highlight any minor modifications as necessary.

We commence our background-field analysis by constructing a background-invariant gauge-
fixing condition. Motivated by Sec. 4.1, this can be achieved by replacing the mass parameters in
Eqs.(4.1) & (4.2) with regulators, as in Eq.(6.1), that now depend on the background covariant
derivatives/Laplacian. Then, the background-invariant gauge-fixing condition corresponds to

Fa[a, Ā, v] = abµQ̄
abc
µν a

c
ν + L̄ab

µ a
b
µ, (6.50)

where,
Q̄abc

µν =
va

2|v|2 Q̄
bd
µνδ

dc, Q̄ab
µν = Rab

µν(−D̄2)− 1

ξ

(
D̄µD̄ν

)ab
,

L̄ab
µ =

(
1 + rgh(−D̄2)

)ac
D̄cb

µ .

(6.51)

Note that due to background invariance, the regulators can be represented as non-diagonal ma-
trices in color space.

The background gauge-fixing action is given by

Sgf[a, Ā, v] =
1

2
aaµQ̄

ab
µνa

b
µ + va

(
1 + rgh(−D̄2)

)ab
(D̄µaµ)

b, (6.52)
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whereas the background ghost action reads

Sgh[a, Ā, c, c̄, v] =− c̄a
(
1 + rgh(−D̄2)

)ab (
D̄µDµc

)b − va

2|v|2 c̄
a
[(
Q̄µνaν

)b
(Dµc)

b + abµ
(
Q̄µνDνc

)b]
.

(6.53)
As expected, the background gauge fixing and ghost actions are associated with the previously
determined Eqs.(6.5) & (6.6) respectively by replacing the full gauge field with the field fluctu-
ations, Aa

µ → aaµ and the partial derivative with the background covariant derivative, ∂µ → D̄ab
µ .

This will be the recipe that shall connect most background quantities with the ones without back-
ground.

Further, in order to ensure the compatibility of the generated background flow equation with
the BRST symmetry as in Eq.(6.26), we introduce additional BRST sources of composite operators
of the form

Ωa
µ =

vb

|v|2 c̄
baaµ,

Aa
µ =

vb

|v|2 c̄
b (Dµc)

a .

(6.54)

Similarly to Eq.(6.7), we find that the composite operators are nilpotent with (sΩ)aµ = aaµ −Aa
µ,

which implies that {aaµ,Aa
µ} belong in the same cohomological class.

Introducing the collective field notation for the BRST sources as in Eq.(6.9), while replacing
into Eq.(3.47) the entry for full gauge field with its field fluctuations, we arrive at the background
Legendre EA and EAA that are of the same form as in Eqs.(6.12) & (6.13) respectively. The gauge
fixing and ghost sectors of the regulators, in the presence of a background field take the form

∆Sgf[a, Ā; v] =
1

2
aaµR

ab
µνa

b
ν + varabgh(−D̄2) (Dµaµ)

b ,

∆Sgh[Φ, Ā; v] = −c̄arabgh(−D̄2)
(
D̄µDµc

)b − va

2|v|2 c̄
a
[
(Rµνaν)

b (Dµc)
b + abµ (RµνDνc)

b
]
.

(6.55)

Now we are in a position to derive the background flow equation for the Legendre EA

∂tΓ̃ =
1

2

(
∂tR

ab
µν

)[(
Γ̃(2)

)−1

aaµa
b
ν

+ Γ̃
(2)
Ma

µΦi

(
Γ̃(2)

)−1

Φiabν
+ Γ̃

(2)

Kb
ν Iaµ

+
δΓ̃

δMa
µ

abν −
(

δ

δKb
ν

Γ̃

)(
Γ̃

⃗δ

δIaµ

)]

+
(
∂trghD̄µ

)ab [
Γ̃
(2)

Kb
µΦi

(
Γ̃(2)

)−1

Φi(−c̄a)
− c̄a

δΓ̃

δKb
µ

]
+ ∂t∆Sgf,

(6.56)
where

∂t∆Sgf =
1

2

(
∂tR

ab
µν

)
aaµa

b
ν +

(
∂trghD̄µ

)ab
vbaaµ. (6.57)

Choosing a truncation linear to the BRST sources for the background Legendre EA and EAA,
as in Eqs.(6.22) & (6.23) respectively, we arrive at the truncated background flow equation for
the BRST source-independent part of the EAA,

∂tΓ[Φ, Ā; v] =
1

2

(
∂tR

ab
µν

)(
Γ̃(2)

)−1

aaµa
b
ν

+
1

2

(
∂tR

ab
µν

)
Γ̃
(2)
Ma

µΦi

(
Γ̃(2)

)−1

Φiabν

+
(
∂trghD̄µ

)ab
Γ̃
(2)

Kb
µΦi

(
Γ̃(2)

)−1

Φi(−c̄a)
.

(6.58)
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Similarly to Eq.(6.29), we consider the BRST source-independent part of the background
truncated Legendre EA and EAA to be of the form of the bare background action with gauge
fixing and ghost parts according to Eqs.(6.52) & (6.53) respectively. Thus, we have

Γ̃gf[a, Ā; v] =
1

2
aaµQ̄

ab
µνa

b
ν + vaZgh

(
1 + rgh(−D̄2)

)ab (
D̄µaµ

)b
,

Γ̃gh[Φ, Ā; v] = −Zghc̄
a
(
1 + rgh(−D̄2)

)ab (
D̄µDµc

)b − va

2|v|2 c̄
a
[(
Q̄µνaν

)b
(Dµc)

b + abµ
(
Q̄µνDνc

)b]
.

(6.59)
However, we are interested in the form of the flow equation in the limit where Ā = A andΦi →

0 after taking the associated functional derivatives. Furthermore, due to the linear dependence
of the chosen truncation on the BRST sources, the non-vanishing vertex interactions that appear
in Eq.(6.58) and involve BRST sources, have the same field dependence as the one presented in
App. H, with the distinction of replacing Aa

µ → aaµ when needed. This implies that Γ̃(2)
MΦ

∣∣∣
Φ→0

= 0

which eliminates the second term from the first line in the truncated background flow equation.
Then, we find that

∂tΓ[A] =
1

2

(
∂tR

ab
µν

)(
Γ̃(2)

)−1

Aa
µA

b
ν

+
(
∂trghD

ab
µ

)
Γ̃
(2)

Kb
µc

c

(
Γ̃(2)

)−1

cc(−c̄a)
. (6.60)

Recalling that Γ̃(2)

Kb
µc

c = Dbc
µ , Eq.(6.60) becomes

∂tΓ[A] =
1

2

(
∂tR

ab
µν

)(
Γ̃(2)

)−1

Aa
µA

b
ν

−
(
∂tR

ab
gh

)(
Γ̃(2)

)−1

c̄acb
, (6.61)

where we have used that Rgh(−D2) = (−D2)rgh(−D2). This reduced flow equation displays an
identical form as the conventional background flow equation for pure YM theory found in the
literature [199]. Furthermore, it does not exhibit any v-field dependence, in agreement with the
background one-loop perturbative study that was carried in Chpt. 4.

In the derivation of Eq.(6.61), other than the linear dependence of the truncated Legendre EA
on the BRST sources, cf. Eq.(6.23), we did not make use of the ansatz Eq.(6.59). We can further
exploit Eq.(6.59) in order to align our result with the one found in the literature. In particular,
performing the rescaling

Rab
µν → ZRab

µν , rabgh(−D̄2) → Zgh r
ab
gh(−D̄2), ξ → ξ

Z
, (6.62)

one finds inverse regularized gluon and ghost propagators of the form

G−1
AA = Z (DT +R), G−1

c̄c = Zgh
(
−D2 +Rgh

)
. (6.63)

Upon insertion into Eq.(6.61) and further specification of the gluon regulator as R = DT r(DT)

and Zgh = 1, one reproduces the same background flow equation which has been established to
reproduce the universal one-loop beta function and is even in line, within a small margin of error,
with the associated two-loop result [199].
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Outlook and Optimization

In this thesis, we have dealt with BRST-invariant representations of pure quantum YM theory. The
preservation of BRST symmetry is integral for the construction of non-Abelian field theories, as
it has implications for the IR regime of the theory which is governed by non-perturbative effects.
Consequently, through the lens of BRST invariance, our work has aimed to serve the purpose of
both analyzing the stability of the model under perturbative and non-perturbative renormaliza-
tion schemes and also performing a phenomenological study at different energy scales.

For our investigation, we have adopted the off-shell FP procedure as outlined in [121], which
enabled us to derive a gauge-fixed bare action that exhibited a linear dependence on the gauge-
fixing condition, at the expense of introducing an additional background/external v field. This
was achieved during the gauge-fixing procedure, after choosing a Fourier weight for the noise
action instead of the conventionally used Gaussian weight. In that way, we were able to study
the stability and properties of the model, by introducing appropriate mass-regulator parameters
in a BRST-invariant manner, thus bridging the chasm between perturbation theory and non-
perturbative aspects of non-Abelian field theories, without deviating from the computationally
accessible FP procedure.

Our perturbative study was carried out in the BFM, which greatly facilitates perturbative
calculations. We then examined a modified version of the non-linear gauge-fixing condition pro-
posed in [121] that includes gluon and ghost mass-regulator parameters and reduces to the
conventional Landau-DeWitt gauge in their absence. From the background equations of motion
we found that the v-field dependence acts as an external current and its conservation places a
constraint on the class of admissible forms of the v field. Using perturbative functional analysis,
we determined that the one-loop 1PI EA still comprehends the standard contribution of ghost and
gluon loops, augmented however by the associated mass-regulator parameters, while the struc-
tural form of the Schwinger functional is v dependent as observed in an isolated source sector,
Wsource.

We proceeded to investigate the stability of our model under renormalization, where we
deduced the universal one-loop beta function by employing dimensional regularization in the
MS scheme. Additionally, we applied a proper-time regularization scheme to obtain an analytic
form for the renormalized one-loop EA and the one-loop beta function. Our analysis revealed a
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threshold behavior for the beta function, which nevertheless reproduced the universal result in
the deep UV limit and/or at vanishing mass parameters, as it should.

Based on the renormalized one-loop EA, we discovered that by introducing sufficiently large
mass parameters, the Nielsen-Olesen instabilities arising from covariantly constant pseudo-Abelian
magnetic backgrounds can be mitigated within a specific range of applicability. Additionally, it
was found that quantum corrections progressively overtake classical contributions and dominate
above a critical value of the coupling, indicating the tendency towards a non-trivial minimum.
However, beyond this range of validity, the unstable gluonic modes destabilize our system thus
rendering any concrete results inconclusive.

To avoid instabilities caused by these "tachyonic" modes, we utilized covariantly constant and
self-dual backgrounds, which is a stable approximation for the background field. Within this
approach, we incorporated non-perturbative information for the gluon and ghost propagators,
allowing us to mimic the decoupling solution. As it turned out, this extended the domain of
validity up to certain large field values, above which zero gluonic modes prevailed. However
by introducing a suitable IR regulator, we demonstrated that the one-loop EA, supports a gluon
condensate beyond a critical coupling. This result compares quite favorably with non-perturbative
studies [146, 326] and is in agreement with the indications observed from the previous set of
approximations.

Such computations provide valuable insights into the interpretation of the mass-regulator
parameters. Given that these parameters enter through the gauge-fixing sector, they correspond
to BRST-exact deformations of the classical action. Hence, one might expect the associated scale
symmetry breaking to remain confined within the unphysical BRST-exact sector. However, as
elaborated from the study of the one-loop EA, the dynamical breaking of scale symmetry is driven
by quantum corrections which are structurally affected by the mass parameters. Therefore, we
infer that the tree-level scale symmetry breaking that occurs in the BRST-exact sector due to
the inclusion of the mass parameters manifests itself in the quantum corrections and as such
propagates by radiative corrections to the physical sector of theory space. We can further draw a
correspondence between our perturbative treatment of the non-linear gauge fixing condition and
mass-dependent renormalization schemes. For the latter, such phenomena emerge as part of the
inherent renormalization scale at the cost of BRST invariance, while in our case such a floating
scale is replaced by BRST-invariant mass parameters in a BRST-respecting manner.

To our knowledge such a novel perturbative technique to investigate pure YM theory in a
BRST-respecting manner has not been carried out in the literature and as such a higher-loop
study that analyzes the structural form of the EA provides an intriguing optimization avenue for
future research.

Having addressed the v-field independence of the one-loop EA and elaborated the role of the
mass parameters in the BFM, we focused on the v-dependent part of the Schwinger functional
in different settings. Firstly, we derived an analytic expression at the LGME limit which vanishes
by assuming covariantly constant backgrounds and color current conservation, thus reproducing
the conventional one-loop Schwinger functional.

Relaxing the aforementioned constraints, we followed a different approach where the asso-
ciated background two-point correlator at vanishing backgrounds was computed by imposing
color conservation at different stages of the calculation. In one approach, this constraint was
imposed after varying the Schwinger functional with respect to the background field. In an-
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other, color conservation was assumed from the start, which entailed a background-dependent
v[A] field. In both cases, we deduced v-dependent correlation functions that were classified to
appropriate longitudinal and transversal parts after averaging over the v-field contribution with
a suitable Lagrange multiplier to account for current conservation or by considering a constant
(i.e. homogeneous) v field as in [121].

Alternatively, we explored the potential emergence of divergences in the Schwinger functional
due to the novel v-field contribution by treating it as a quenched disorder field. This allowed us
to employ conventional heat-kernel techniques and investigate in detail the structural form of
Wsource to which we inferred no additional divergences. Our analysis supported the previously
found finite form of the corresponding two-point correlator. Thus, our findings forWsource further
substantiated our conclusion that at one-loop order no major interpretational novelties appear.

We then departed from the BFM framework and delved into the non-perturbative extension of
the pure YM theory which has been developed in the literature. The transition from our previously
discussed model to a non-perturbative study occurred by a mere replacement of the regulator-
mass parameters with associated scale-dependent regulators which translates to the appearance
of regulator-dependent vertices in our theory. In particular, the construction of a BRST-invariant
functional RG equation was discussed, at the expense of introducing additional BRST sources.
Choosing an appropriate truncation linear to the BRST sources, we extended the work of [121].

Deviating from the conventional approach in the literature, we generalized the conditions for
the most usual gauges, i.e. Feynman and Landau gauge, within our truncation scheme. For the
purposes of this thesis, we considered the Feynman gauge. As an internal consistency check, we
introduced perturbative conditions by dropping the regulator dependencies on the vertices and
ignoring higher-loop resummation terms. Then, the perturbative ghost anomalous dimension
was rediscovered through an appropriate treatment of the v field. In this case, the v field was
viewed as an auxiliary degree of freedom that upon integration reproduces expected or universal
results. Even though such an interpretation seems abstract, further confidence on our results
is gained by noting that following the same treatment for the v field within the perturbative
limit reproduces the one-loop ghost loop and ghost anomalous dimension found in literature
[121, 124]. Even though it has not been explicitly computed yet, we anticipate that a similar
calculation for the ghost-gluon vertex in the perturbative limit will yield conventional results,
thus after combination with the ones found before they shall reproduce the universal one-loop
beta function in a perturbative setting.

After finding an analytic expression for the flow of the ghost, gluon renormalization fac-
tors and the ghost-gluon vertex from the truncated BRST-invariant flow equation, we adopted a
suitable diagrammatic representation of the underlying interactions that includes the v-field de-
pendence. Further algebraic manipulations resulted in a v-dependent beta function, which was
brought into the universal one-loop beta function by averaging over the v field with a Gaussian
weight of an adjusted width.

Further interesting conclusions can be inferred from the form of the beta function. In partic-
ular, the beta function depends on both the ghost and gluon anomalous dimensions which enter
with an opposite sign. These resummation contributions combine in such a manner that they pro-
vide a two-loop beta function with the correct sign. In addition, the form of these RG-improved
terms feature a beta function which is free from singularities. This is an improvement compared
to earlier fRG studies where a pole necessarily results from RG resummation terms in low-order
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truncations [131].
In the last part of the thesis we introduced the BFM into our non-perturbative setup. By con-

structing a background-invariant non-linear gauge fixing condition, we derived the associated
truncated background flow equation. From a structural perspective, the truncated background
flow equation was found to be v independent with a conventional form. Such a flow equation
leads to interesting conclusions. Initially, it extends the class of generated graphs due to resum-
mation contributions. This implies that even beyond one loop and up to the extend specified by
the background flow equation, our model remains v independent with a form that is found to
reproduce universal results [199]. Furthermore, phenomena that were observed in our pertur-
bative study but could not be verified with certainty due to the limitations of perturbation theory,
are expected to manifest in our non-perturbative model.

Moving forward, a detailed analysis of our model and the study of emergent phenomenologi-
cal properties would be a natural continuation of our work. Additionally, the coupling of our YM
theory to matter presents an exciting opportunity for further investigation and study.

A critical view on our non-perturbative studies gives rise to the following question. How is it
that the truncated flow equation in the absence of a background field exhibits an additional free
parameter, as displayed with the appearance of the v field, whereas such a dependence does not
arise in the truncated background flow equation?

Although we currently lack a definitive answer, one potential explanation for this discrepancy
can be traced to the introduction of the new BRST sources. Recall that in order to derive a flow
equation that is compatible with BRST symmetry, we introduced two additional sources {Ωa

µ,Aa
µ}.

In the absence of a background field, we found that Ωa
µ ∝ Aa

µ. However, in the presence of a
background field, Ωa

µ ∝ aaµ, i.e. it is related to the field fluctuations. This modification induces a
difference in the source action, which due to the selected truncation scheme, is reflected in the
associated flow equation thus rendering their direct treatment on an equal footing inconsistent.

In that case, a possible resolution could be to introduce Ωa
µ − Ω̄a

µ ∝ Aa
µ instead of Ωa

µ ∝ aaµ in
the source action and then compute the corresponding background flow equation. Preliminary
calculations indicate that such an inclusion induces an explicit v-field dependent deformation
of the gluon and ghost sectors in the background flow equation, which is in line with the ob-
served behavior of the flow equation in the absence of a background field. However, further
computations must be performed in order to deduce more conclusive results. Such an extension
corresponds to another promising avenue for future research.
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APPENDIX A

Covariantly Constant Backgrounds

Here, we mention the implications of considering covariantly constant backgrounds. This was
an essential assumption in the computation of various quantities in the main body. We start by
imposing the covariantly constant condition which reads

(DµFνρ)
a = 0. (A.1)

If such a condition holds true, then the gauge field can be written as

Aµ = na (ta)bc

[
−1

2
Fµνxν −

i

g
(∂µU)U−1

]
, (A.2)

which demonstrates that the gauge field is Abelian for covariantly constant fields, up to a pure
gauge term. Therefore, we can always consider an Abelian gauge field by performing an appro-
priate gauge transformation which will eliminate the pure gauge contribution, [291]. The gauge
field and subsequently the field strength tensor take the form

Aa
µ = n̂aAµ ⇒ F a

µν = n̂aFµν , (A.3)

where Aµ & Fµν correspond to the Abelian gauge field and field strength tensor.
At this level, we still have the freedom to consider an explicit form for the Abelian field

strength tensor. In order to compare with current literature results, we choose to work with
a field strength tensor proportional to a constant magnetic field and with a self-dual one, cf.
Subsecs. 4.5.1 & 4.5.2. In the following we explore the implications of each set of assumptions.
Within the BFM, such a specification on the form of the field strength facilitates perturbative cal-
culations since only terms proportional to F 2 = F a

µνF
a
µν are relevant due to background gauge

invariance.
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APPENDIX A. HEAT-KERNEL TECHNIQUES

A.1 Constant magnetic field

For our purposes it is convenient to choose

Fµν = ∂µAν − ∂νAµ = Bϵ⊥µν = constant. (A.4)

The gauge field then represents a constant magnetic field in the direction of the constant unit
vector n̂a in color space, n̂an̂a = 1. Furthermore, ϵ⊥µν corresponds to the spatial directions affected
by the constant magnetic field, i.e. F12 = −F21 = B for a magnetic field pointing into the
3-direction.

Then, the Euclidean bare action, Eq.(4.15), can be brought into the form

Sv[A] =
1

2
B2.

Due to this pseudo-Abelian field consideration, all color dependence is expected to come in
the form of n̂a (ta)bc = −in̂afabc, for SU(N) in the adjoint representation. Thus, we consider νℓ
with ℓ = 1, ..., N2− 1 to be the eigenvalues of the structure constants. For the contribution to the
constant magnetic field, the following identity shall be used

N2−1∑
ℓ=1

ν2ℓ = Nc. (A.5)

Finally, in terms of the eigenvalues νℓ let us denote

Bℓ = gBνℓ. (A.6)

Such a diagonalization in color space enables us to compute the spectrum of a series of oper-
ators which constitutes an essential tool in the computation of functional traces using the heat-
kernel technique, cf. App. B.2. During our study such functional traces appear in the the one-loop
EA, Eq.(4.27). In particular, the spectrum of the ghost and gluon operators, cf. Eqs.(4.16) &
(4.36), need to be specified. In d = 4, the relevant spectra required for their specification read
[143],

Spec
{
−D2

}
= q2 + (2n+ 1)Bℓ, n = 0, 1, ..., (A.7)

Spec {DT} =


q2 + (2n+ 1)Bℓ, multiplicity 2

q2 + (2n+ 3)Bℓ, multiplicity 1

q2 + (2n− 1)Bℓ, multiplicity 1,

(A.8)

where qµ corresponds to a 2-dimensional Fourier momentum in the spacetime directions not
affected by the magnetic field and n is the quantum number which labels the Landau levels.
Notice the existence of negative modes in the spectrum of the transversal kinetic operator, DT,
for small enough momenta for n = 0. These correspond to the Nielsen-Olesen modes, which are
discussed in Sec. 4.5.
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A.2. SELF-DUAL FIELD STRENGTH TENSOR

A.2 Self-dual field strength tensor

Another assumption for the field strength which we employed in the main text corresponds to a
self-dual field strength tensor, F a

µν = F̃ a
µν . This results in a covariantly constant self-dual back-

ground which is free from the unstable Nielsen-Olesen instabilities.
In order to reproduce self-duality of the field strength tensor, we choose the components of

the Abelian field strength

Fµν =

F12 = F34 = f = constant

Fij = 0, otherwise,
(A.9)

where f2 = 1
4F

a
µνF

a
µν . In that case, it is straightforward to show that we obtain a self-dual field

strength tensor, i.e. F a
µν = F̃ a

µν , with F̃ a
µν = 1

2ϵµνρσF
a
ρσ representing the dual field strength.

Similarly to the constant magnetic field case, we diagonalize the color matrix contribution
−in̂afabc in the adjoint representation and express it in terms of its eigenvalues νℓ. This entails
that the spectra of the operators, −D2,DT, are in terms of

fℓ = gfνℓ. (A.10)

Computing the spectra of the relevant operators in d = 4 gives [146]

Spec
{
−D2

}
= 2 (n+m+ 1) fℓ, n,m = 0, 1, ... (A.11)

Spec {DT} =

2 (n+m+ 2) fℓ, multiplicity 2

2 (n+m) fℓ, multiplicity 2.
(A.12)

Note that the spectrum of the transversal kinetic operator, DT, does not exhibit negative modes
but it contains zero modes for n = m = 0. When heat-kernel techniques are implemented, the
contribution of these zero modes requires an independent and careful treatment, as followed in
Subsec. 4.5.2.
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APPENDIX B

Computation of Functional Traces

Computation of functional traces using heat-kernel techniques has been extensively used in QFT
for perturbative and non-perturbative calculations. As a result, in several Sections of the main
text, such functional traces appear. The goal of this Appendix is to provide a step by step treatment
of dealing with such quantities and to highlight the computational power of the heat kernel in
performing analytical calculations. Even though the integrals to be discussed correspond to the
ones that appear in our theory, the different steps provided can be generalized to more generic
forms of the heat-kernel operators.

B.1 Elementary relations

Euler-Mascheroni Constant:

γE = 0.57721 . . . . (B.1)

Step function:

θ(−z) =
∫ ∞

0
dz δ(z) =


1 for z < 0

1
2 for z = 0

0 for z > 0

. (B.2)

ψ-function:

ψ(z) =
Γ′(z)

Γ(z)
= (ln Γ(z))′ . (B.3)
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ϵ-expansion:

α
−ϵ = 1− ϵ ln α+

1

2
(ϵ ln α)2 +O

(
ϵ3
)

(B.4)

Γ(ϵ) =
1

ϵ
− γE +

1

2

(
γ2E +

π2

6

)
ϵ+O

(
ϵ2
)

(B.5)

Γ(ϵ− 1) = −1

ϵ
+ (γE − 1) +

(
−1

2
γ2E −

π2

12
− 1 + γE

)
ϵ+O

(
ϵ2
)

(B.6)

Γ(ϵ− n) =
(−1)n

n!

{
1

ϵ
+ ψ ((n+ 1) +

1

2

[
π2

3
+ (ψ(x+ 1))2 − ψ′(n+ 1)

]
ϵ+O

(
ϵ2
)}

(B.7)

ζ (ϵ, α) =
1

2
− α+ ϵζ ′ (0, α) +O

(
ϵ2
)
. (B.8)

Asymptotic behavior for |z| → 0:

z

sinh z
= 1− z2

6
+O

(
z4
)

(B.9)

z sinh z = z2 +O
(
z4
)
. (B.10)

Asymptotic behavior for |z| → ∞:

ln Γ(z) ∼
(
z +

1

2

)
ln z − z +

1

2
ln 2π +

1

12z
+O

(
1

z3

)
(B.11)

ln (z + 1) = ln z +
1

z
+O

(
1

z2

)
(B.12)

Γ(0, z) = − ln z − γE −
∞∑
k=1

(−1)k

k (k!)
zk (B.13)

ζ ′(0, z) = lnΓ(z) + ζ ′(0)
(B.11)
=

(
z − 1

2

)
ln z − z +

1

12z
+O

(
1

z3

)
. (B.14)

B.2 Functional traces with heat-kernel techniques

During the study of the one-loop EA and Schwinger functional, we are required to calculate
different functional traces, see Secs. 4.4 & 5.2. The power of the heat-kernel formalism comes
from relating the functional trace of the heat kernel with functional traces that are a function of
the covariant Laplacian. This is achieved by computing the Laplace transform of the so called
Schwinger or proper-time parameter s. The relation follows as

tr [i(x)]|x=−D2 =

∫ ∞

0
ds ĩ(s) tr

[
e−s(−D2)

]
, (B.15)

where the the trace of the covariant Laplacian which appears on the right side of the equation is
a well-known quantity and

i(x) = L
{
ĩ(s)

}
=

∫ ∞

0
ds ĩ(s) e−sx, (B.16)

is the Laplace transformation of i(x).
Next, our task is to compute the trace of the heat kernel. Thankfully, this has already been

worked out extensively in the literature, thus we only need to find the appropriate formula of the
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APPENDIX B. COMPUTATION OF FUNCTIONAL TRACES

trace of the heat kernel that is in accordance with the assumptions for the field configurations.

Trace of the heat kernel for a constant magnetic field

In our case, we have considered covariantly constant backgrounds, see App. A for more details.
By tracing over the spectrum, the trace of the heat kernel has been worked out to be,

trxcL

[
e−s(−D2)

]
= Ωd

N2−1∑
ℓ=1

2s−
d
2

2 (4π)
d
2

sBℓ

sinh sBℓ
, (B.17)

where Ωd =
∫
ddx is the d-dimensional spacetime volume and Bℓ = gBνℓ , [143].

For the gluon sector, in Sec. 4.4, we need to compute the functional trace of the logarithm of
the gluonic fluctuation operator which is a function of the transversal kinetic operator Eq.(5.6),
cf. Eq.(4.37). This entails, according to Eq.(B.17), the computation of the functional trace of the
aforementioned operator. However this has also been worked out in [143], by tracing over the
spectrum, yielding

trxcL

[
e−sDT

]
= Ωd

N2−1∑
ℓ=1

2s−
d
2

2 (4π)
d
2

(
d

sBℓ

sinh sBℓ
+ 4sBℓ sinh sBℓ

)
. (B.18)

In addition, we need to subtract from the functional traces the divergent zero-field contribu-
tion. This is achieved by subtracting the same functional trace at vanishing field configurations.
In our case, it gives rise to the heat kernel of the d’Alembert operator, which can readily be
determined to be

trx

[
e−s(−∂2)

]
= Ωd

2s−
d
2

2 (4π)
d
2

. (B.19)

Another advantage of using the heat-kernel technique is that the function, we wish to trace,
can also contain nonlocal operators as long as they are functions of the covariant Laplacian, e.g.
1
D2 ,

1
D4 , . . . . In that way, one can study the structural form of such terms in a straightforward

manner. Such a study of the functional traces of terms with nonlocal contribution appears during
our study of the one-loop Schwinger functional for a quenched field, cf. Eqs.(5.22a)-(5.22c). In
the next part we shall focus our attention in the computation of the Fourier transformation of
these novel nonlocal functional traces.

Trace of the heat kernel for a self-dual background

Considering the alternative choice of a self-dual background, then the trace of the heat kernel of
the covariant Laplacian operator −D2 equals to

trxc

[
e−s(−D2)

]
=

Ωd

(4π)
d
2

N2−1∑
ℓ=1

(
fℓ

sinh sfℓ

) d
2

, (B.20)

where fℓ = gfνℓ.
Incidentally, the trace of the heat-kernel of the DT operator can be expressed in terms of

the trace of the heat kernel of −D2 and the contribution of the zero modes of its spectrum, see
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Eq.(A.12), i.e.

trxcL

[
e−sDT

]
=

d Ωd

(4π)
d
2

N2−1∑
ℓ=1

[(
fℓ

sinh sfℓ

) d
2

+ 2
d
2
−1f

d
2
ℓ

]
. (B.21)

Laplace transformation

The task of this section is to determine the inverse Laplace transform of the functions inside the
following functional traces:

trxc

[
1

m̄2 − 1
ξD

2
D2

]
, trxc

[
1

D2

1

m̄2 − 1
ξD

2
D2

]
,

trxc

[
1

D2

1

m̄2 − 1
ξD

2
D2

]
, trxc

[
1

D2

1

D2

1

m̄2 − 1
ξD

2
D2

]
.

The inverse Laplace transform of the functions inside the trace reads

h(x) =
x

x+ α
⇔ L−1 {h(x)} = h̃(s) = −α e−αs + δ(s), (B.22)

g(x) =
1

x+ α
⇔ L−1 {g(x)} = g̃(s) = e−αs, (B.23)

f(x) =
1

x(x+ α)
⇔ L−1 {f(x)} = f̃(s) =

1

α

[
1− e−αs

]
, (B.24)

where L{...} denotes the Laplace transformation. The validity of the previously determined
quantities can be verified by substituting the result we obtained in the Laplace transformation
Eq.(B.16). Then, it reproduces the initial function.

Therefore, once the Fourier transformation of the underlying function is determined, given
that the trace of the heat kernel is a well-understood quantity, one can complete the computa-
tion by calculating the integral which is the goal of the following part. Furthermore, we have
restricted our attention to the study of the Fourier transformation of the functions included in
the aforementioned functional traces since in our study, they are the only non-trivial functions
which require the computation of the inverse Laplace transform.

However as it can be seen in Sec. 4.4, one is required to compute the functional trace of the
logarithm of an operator. To do so, one needs to follow a slightly different strategy in order to
bring the functional trace to a form of a proper-time integral.

Functional trace of the logarithm of an operator

The main goal of this part is to bring the functional trace of the logarithm of an operator to a
form where one can apply the heat-kernel tools in order to simplify the resulted calculations.
Such a procedure is facilitated significantly by considering the proper-time representation of the
logarithm. This will change the functional trace of the logarithm to a functional trace of an
exponential. Then, employing the relations for the heat kernel will bring the functional trace of
the logarithm to a mere computation of an integral over the proper-time parameter. However,
the computation of the functional trace of the exponential is not a trivial task given that its form
depends of the function on the logarithm. Thankfully, the traces of the heat kernel that appear
in the main text, cf. Sec. 4.4, are well understood quantities, see Eqs.(B.17)-(B.19).

107



APPENDIX B. COMPUTATION OF FUNCTIONAL TRACES

Let us summarize the most basic identities of the logarithm in the proper-time representation,

log x = lim
ϵ→0

[
1

ϵ
− µ2ϵ

ϵ Γ(ϵ)

∫ ∞

0
ds sϵ−1e−sx

]
, (B.25)

tr

[
log

(
x

y

)]
= −

∫ ∞

0

ds

s

[
tr e−sx − tr e−sy

]
, (B.26)

where due to the implementation of the ϵ-technique, a mass scale µ2ϵ has to be introduced in
order to render

[
µ2ϵs

]
= 0. In addition, Eq.(B.26) follows straightforwardly from Eq.(B.25).

B.3 Proper-time integrals

After the implementation of heat-kernel techniques, the functional trace has been reduced to the
computation of a proper-time integral. In general such a computation is non-trivial since the
computation of the integral depends on the form of the function in the functional trace and di-
vergences can occur. In order to regularize the divergent proper-time integrals we shall consider
the ϵ technique by introducing an appropriate factor. The underlying idea is based on the di-
mensional regularization scheme where an analytic continuation of the divergent quantity gives
rise to the ϵ factor that assists to isolate the corresponding divergences. Another technique to
regularize an infinite integral comes by by introducing a sharp regulator, which we will call Λ,
on the divergent boundary of integration, e.g.

∫∞
0 A(s) →

∫∞
1/Λ2 A(s) < ∞. Both regularization

schemes are used in various Sections of the main text, thus we will summarize all the results for
the integrals which appear.

General integrals

Stating relevant integrals from [327],∫ ∞

0

ds

s1−ν
e−μs =

Γ(ν)

μν
[Reμ > 0,Reν > 0] , (B.27)∫ ∞

0

ds

s1−μ
e−αs

sinh s
= 21−μΓ(μ) ζ

[
μ,

1

2
(α+ 1)

]
[Reμ > 1,Reα > −1] , (B.28)

we present the general form of the integrals which appear in the main text.

Computation of divergent and convergent integrals

We provide the computation of the divergent integrals that appear in Secs. 4.4 & 5.2 as part of
the corresponding regularization schemes that were chosen.

Divergent ϵ-Integrals (α > 0):∫ ∞

0

ds

s1−ϵ
e−αs = α−ϵΓ(ϵ)

(B.5)
=

1

ϵ
− ln α− γE, (B.29)

∫ ∞

0

ds

s2−ϵ
e−αs = α1−ϵΓ(1− ϵ)

(B.6)
= −α

ϵ
+ α ln α+ α (γE − 1) , (B.30)
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∫ ∞

0

ds

s1−ϵ

e−αs

sinh s
= 21−ϵΓ(ϵ) ζ

[
ϵ,
1

2
(α+ 1)

]
(B.5), (B.8)

= −α
ϵ
− (α+ 1) + 2ζ ′

[
0,

1

2
(α+ 1)

]
+ αγE + α ln 2

(B.14), (B.12)
= −α

ϵ
+

1

6α
+ α ln α+ α (γE − 1) , (B.31)

where in the last equality an expansion for |α| → ∞ was considered.

Convergent Integrals (α > 0):∫ ∞

0

ds

s2

(
1− s

sinh s

)
e−αs

(B.30), (B.31)
=

1

6α
, (B.32)

∫ ∞

0

ds

s2

( s

sinh s
− 1
)
= ln

1

2
, (B.33)

∫ ∞

0

ds

s2
(
1− e−αs

) ( s

sinh s
− 1
)

(B.32), (B.33)
= ln

1

2
+

1

6α
. (B.34)

Divergent Integrals with a Cutoff Regulator Λ:∫ ∞

1
Λ2

ds

s
e−α

2s = Γ

(
0,
α
2

Λ2

)
(B.13)
= − ln

α
2

Λ2
− γE +O

(
α
2

Λ2

)
, (B.35)

where O
(
α
2

Λ2

)
= −∑∞

k=1
(−1)k

k(k!)

(
α

Λ

)2k signifies all higher-order contributions.
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APPENDIX C

One-Loop Beta Function in the Background Field Formalism

This appendix is dedicated to the derivation of the generic form of the one-loop beta function
by considering covariantly constant backgrounds. The discussion will provide essential results of
the counterterm renormalization procedure in the BFM.

Let us begin by relating the renormalized with the bare quantities. Due to the covariantly
constant background assumption, there is a proportionality of the background gauge field Aµ

with the magnetic field B, cf. Eqs.(A.2) & (A.4). Then, the bare and renormalized quantities
would correspond to

BR =
B√
ZF
, gR = Zḡ ḡ, (C.1)

where ZF, Zḡ correspond to the wave-function and coupling constant renormalization constants
respectively. In addition, BR, gR corresponds to the renormalized field and coupling constant
whereas B, ḡ represent the bare field and coupling constant.

Manifest background gauge invariance on the level of the EA, implies that gauge covariant
quantities must remain RG invariant. Such a quantity corresponds to the covariant derivative
which entails the product ḡAµ. For covariantly constant backgrounds this product can be identi-
fied by ḡB which must also remain RG invariant. Such a condition holds true if

Zḡ =
√
ZF. (C.2)

Then Eq.(C.1) gives Eqs.(4.41) & (4.56) for covariantly constant background and for self-dual
background.

In d-dimensions, the dimensionless coupling is related to the bare coupling via the wave-
function renormalization as

g2 = ZFµ
d−4ḡ2. (C.3)
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Then, the beta function can readily be deduced to be equal to

βg2 = µ
dg2

dµ
= µd−4

[
µ
dZF
dµ

− 2 (d− 4)ZF

]
ḡ2. (C.4)

Choosing d = 4− 2ϵ and taking Eq.(C.3) into account, the preceding equation takes the form

βg2 = −2ϵg2 +
d lnZF
dg2

βg2g
2. (C.5)

We can further determine Eq.(C.5) by specifying the form of the wave-function renormaliza-
tion ZF. In particular, during our study of divergent contributions which arise in the one-loop
EA from the gluon and ghost sectors following dimensional regularization, we employed the
MS scheme, cf. Subsec. 4.4.3. In this renormalization scheme, we absorb both the infinities and
a universal constant which appear in the EA by introducing counterterms as parts of the infinite
renormalization constants. Doing so then in general the wave-function renormalization, has the
form

ZF = 1 +
∞∑
n=1

[
Z

(n)
F
ϵn

+ C(n)

]
, (C.6)

where n represents the generated number of loops and C(n) the universal constant which appears
at n loops. However, given that the beta function must be finite, whereas ZF contains a sum over
loops that runs over arbitrary powers of 1

ϵ , then the only possible finite combination comes when
the linear to ϵ part of the βg2 is multiplied with the one-loop expansion of ZF. In that case, one
finds that

βg2 = −2ϵg2 − 2g4

[
dZ

(1)
F

dg2
+ ϵ

dC(1)

dg2

]
. (C.7)

For ϵ→ 0, then

βg2 = −2g4
dZ

(1)
F

dg2
, (C.8)

which corresponds to the one-loop beta function in the BFM. Here one should highlight the fact
that the form of the beta function would have been the same had one chosen to employ the MS
renormalization scheme since the universal constant C(n) drops out on the level of the one-loop
beta function.
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APPENDIXD

Longitudinal DL and Transversal DT Kinetic Operators

Motivated by [132, 133, 323] and due to the form of the Q operator that determines the in-
verse gluonic fluctuation operator, it is essential to introduce and discuss some properties of the
following longitudinal and transversal operator matrices

(DT)µν =− δµνD
2 + 2igFµν , (D.1)

(DL)µν =−DµDν . (D.2)

These operators will help to parametrize the inverse gluonic fluctuation operator and de-
termine a systematic study of its form to all orders in the LGME limit. However, it is of vital
importance to discuss some important properties of these operators that will apply in our study
as well. The goal of this Appendix is to determine the commutation relations of the longitudinal
and transversal operators for covariantly constant backgrounds. Consequently, the operators in
the adjoint representation take the form

(DT)
ab
µν =− δµν

(
D2
)ab

+ 2igF ab
µν , (D.3)

(DL)
ab
µν =−Dac

µ D
cb
ν . (D.4)

For our subsequent study, we require the following relations

[
D2, Dµ

]ab
= −2igF ac

αµD
cb
α ,

[Dµ, Fµν ]
ab = 0.

Then, the commutator of the transversal and longitudinal operators takes the form

[DT,DL]
ab
µν = (DT)

ac
µρ (DL)

cb
ρν − (DL)

ac
µρ (DT)

cb
ρν

=
(
D2
)ac

Dcd
µ D

db
ν −Dad

µ D
dc
ν

(
D2
)cb − 2ig

[
F ac
µρD

cd
ρ D

db
ν −Dad

µ F
dc
ρνD

cb
ρ

]
.
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However, from the commutator of the Laplacian with the covariant derivative, we obtain that

(
D2Dµ

)ad
=
(
DµD

2
)ad − 2igF ac

αµD
cd
α ,(

DνD
2
)db

=
(
D2Dν

)db
+ 2igF dc

ανD
cd
α ,

where inserting in the commutator we arrive at

[DT,DL]
ab
µν = 0. (D.5)
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APPENDIX E

Simpli�cation of Functional Traces

This Appendix is dedicated to the derivation of the functional traces Eqs.(5.22a)-(5.22c). As
mentioned in the main text, for the following only the assumption of covariantly constant back-
grounds will be considered. We shall make use of the following relations

[Dµ, Fµν ]
ab
xy = 0, (E.1)[

D2, Dν

]ab
xy

= −2ig (FµνDµ)
ab
xy . (E.2)

Furthermore, the definition of the gluonic operator will be used so it is instructive to display its
form here explicitly,

(
Mab

µν

)
xy

= m̄2δabµνδxy + 2ig
(
F ab
µν

)
x
δxy −

(
D2
)ab
xy
δµν +

(
1− 1

ξ

)
(DµDν)

ab
xy , (E.3)

where we have denoted F ab
µν = −ifabcF c

µν and δ(x− y) = δxy.
Taking into account thatMM−1 = 1 and reinserting all contributing indices, then

δacµρδxy =

∫
z

(
Mab

µν

)
xz

(
M−1

νρ

)bc
zy

=

∫
z

[
m̄2δabµνδxz −

(
D2
)ab
xz
δµν + 2ig

(
F ab
µν

)
x
δxz +

(
1− 1

ξ

)
(DµDν)

ab
xz

] (
M−1

νρ

)bc
zy
. (E.4)

Next, we multiply Eq.(E.3) by
∫
x

(
Dda

µ

)
wx

from the left (the direction is irrelevant due to the form
of the covariant derivative but for completeness it shall be mentioned), then∫

x,z

[
m̄2
(
Ddb

ν

)
wx
δxz −

(
Dda

ν

)
wx

(
D2
)ab
xz

+ 2ig
(
Dda

ν

)
wx

(
F ab
µν

)
xz

+

(
1− 1

ξ

)(
Dda

µ

)
wx

(DµDν)
ab
xz

] (
M−1

νρ

)bc
zy

=
(
Dab

ρ

)
wy
.

(E.5)

Combining the color indices, performing the delta integration and employing Eq.(E.2) for the
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second term and Eq.(E.1) for the third term of Eq.(E.5), we find that[
m̄2δac −

(
1

ξ

)(
D2
)ac
x

] (
DνM

−1
νρ

)cb
xy

=
(
Dab

ρ

)
xy
, (E.6)

where we have changed the spacetime index not affected by integration from w → x. In addition,
one should notice the difference between covariant derivatives with one and two spacetime in-
dices. In particular, covariant derivative with one spacetime index as the one that appears inside
the square brackets on the left side of Eq.(E.6) denotes an operator that acts on every quantity to
its right with the same spacetime dependence. To be more precise,

(
Dab

µ

)
x
= δab∂xµ + gfabcAc

µx,
whereas the one in the covariant derivative with two spacetime indices indicates the existence of
a delta function in their definition is implied and corresponds to the one used extensively in the
main text. Therefore, one should be careful on how the covariant derivatives are moved in an
equation since the ones with two spacetime indices can be freely moved whereas the ones with
one index can be moved only through partial integration. Finally, for convenience, let us denote
the operator in the square brackets of Eq.(E.6) as

Oab
x = m̄2δab −

(
1

ξ

)(
D2
)ab
x
, (E.7)

which makes Eq.(E.6),

Oac
x

(
DνM

−1
νρ

)cb
xy

=
(
Dab

ρ

)
xy
. (E.8)

Next, let us multiply Eq.(E.8) by
∫
y

(
Dbe

ρ

)
yz

from the right. Then,

Oac
x

(
DµM

−1
µν Dν

)cb
xy

=
(
D2
)
xy
, (E.9)

where we have renamed some Lorentz indices and renamed z → y.
Finally, we multiply by

(
O−1

x

)ea from the left, then

(
DµM

−1
µν Dν

)ab
xy

=
(
O−1D2

)ab
x
δxy. (E.10)

Considering Eqs.(E.7), then Eq.(E.10) takes the form

(
DµM

−1
µν Dν

)ab
xy

=

 1

m̄2 −
(
1
ξ

)
D2

x

D2
x

ab

δxy. (E.11)

Inserting the identity ∫
x

(
D2 1

D2

)ca

zx

=

∫
x
δcaδzx, (E.12)

in both sides of Eq.(E.10), we arrive at

(
D2

z

)cd( 1

D2
DµM

−1
µν Dν

)bd

zy

=
(
O−1D2

)cb
z
δzy. (E.13)
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APPENDIX E. SIMPLIFICATION OF FUNCTIONAL TRACES

Multiplying by
(

1
D2

)ac
z

from the left, we have

(
1

D2
DµM

−1
µν Dν

)ab

xy

=

(
1

D2
O−1D2

)ab

x

δxy, (E.14)

or by inserting Eq.(E.7),

(
1

D2
DµM

−1
µν Dν

)ab

xy

=

( 1

D2
x

)
1

m̄2 −
(
1
ξ

)
D2

x

D2
x

ab

δxy. (E.15)

Similarly, one can readily deduce that(
1

D2

1

D2
DµM

−1
µν Dν

)ab

xy

=

(
1

D2

1

D2
O−1D2

)ab

x

δxy. (E.16)

or by inserting Eq.(E.7),

(
1

D2

1

D2
DµM

−1
µν Dν

)ab

xy

=

( 1

D2
x

)(
1

D2
x

)
1

m̄2 −
(
1
ξ

)
D2

x

D2
x

ab

δxy (E.17)

Taking the trace of Eqs.(E.11), (E.15) & (E.17), we deduce the functional traces which appear in
Sec. 5.2.
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APPENDIX F

Useful Relations for the Background Two-Point Correlator

In this Appendix we will summarize all useful results in position and momentum space, used in
Secs. 5.3 & 5.4 that lead to the two-point correlator. However, before doing so, it turns out to be
more trustworthy for the validity of the final results if we were to reinsert the explicit spacetime
dependence of the underlying quantities. This will will also facilitate the computation of certain
inverse operators. Therefore, we shall deviate from the condensed notation which was mainly
employed in the main body. By condensed notation, one means that the color indices represent
spacetime indices as well. For instance, the covariant derivative in the condensed notation is
written as

Dab
µ = ∂µδ

ab + ḡfacbAc
µ,

Reinstating the explicit spacetime dependence

Dab
µ (x, y) =

(
δab∂xµ + ḡfacbAc

µ(x)
)
δ(x− y).

Let us begin by establishing our Fourier conventions

Φi
x =

∫
p
e−ipxΦi

p, Φi
p =

∫
x
eipxΦi

x,

δxy =

∫
p
e−ip(x−y),

(F.1)

where ∫
p
=

∫
ddp

(2π)d
,

∫
x
=

∫
ddx.

In this slightly more compact convention, we can write the covariant derivative as(
Dab

µ

)
xy

=
(
δab∂xµ + ḡfacbAc

µx

)
δxy.

Having set our conventions, in the following, we provide all intermediate steps for the com-
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APPENDIX F. RELATIONS FOR TWO-POINT CORRELATOR

putation of the two-point correlator. For the Laplacian in position space,

(
D2
)ab
xy

=
[
δab∂2x + 2ḡfacbAx

µx∂
x
µ + ḡfacb

(
∂xµA

c
µx

)
+ḡ2facdf cbeAd

µxA
e
µx

]
δxy, (F.2)

whereas its functional derivative at vanishing background reads

δ
(
D2
)ab
xy

δAc
αz

∣∣∣∣∣∣
A→0

= 2ḡfacbδxz (∂
x
αδxy) + ḡfacb (∂xαδxz) δxy. (F.3)

The inverse Laplacian at vanishing background,

(
1

D2

)ab

xy

∣∣∣∣∣
A→0

= δabK(x− y), (F.4)

whereK(x−y) corresponds to the kernel of the massless propagator in position space and obeys
∂2xK(x− y) = δxy .

For the functional derivative of the inverse Laplacian operator at vanishing background, we
make use of the following relation for the functional derivative of the inverse of a generic operator,

δ
(
Θ−1

)ab
µν

δAc
ρ

= −
(
Θ−1

)al
µλ

(
δΘlk

λκ

δAc
ρ

)(
Θ−1

)kb
κν
. (F.5)

Then, one can deduce the derivative of the inverse Laplacian operator at vanishing background
which in momentum space reads

δ

δAc
αp

(
1

D2

)ab

q1q2

= −iḡfacb (q1 + q2)α
q21q

2
2

δq1q2p (F.6)

where we have abbreviated δ(q1 − q2 − p1) = δq1q2p1 .
External current conservation, Eq.(4.11), at vanishing backgrounds constraints the external

v field to obey a massive Klein-Gordon equation

(
Dab

µ

)
xy
Jb
µ

∣∣∣∣
A→0

= 0 ⇒
(
∂2x − m̄2

gh

)
vax = 0, (F.7)

which in momentum space takes the form(
q2 + m̄2

gh

)
vaq = 0. (F.8)

The external current can also be computed in momentum space. However, its form depends
on whether external current conservation holds true or not. In particular

Ja
µq

∣∣
A→0

=

−iqµ
(
1 +

m̄2
gh

q2

)
va(q), D · J |A→0 ̸= 0

0, D · J |A→0 = 0

(F.9)

Finally, collecting all pieces one can determine the functional derivative of the external current
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at vanishing background. Therefore, when Eq.(F.8) is not imposed as a constraint, then

δJa
µq

δAc
αp

∣∣∣∣
A→0

= −ḡfabc
[
δµα + m̄2

gh
δµα

(q − p)2
+m̄2

gh
qµ (2q − p)α
q2 (q − p)2

]
vbq−p, (F.10)

whereas imposing the constraint from current conservation, leads to

δJa
µq

δAc
αp

∣∣∣∣
A→0

= ḡfabcqµ (2q − p)α

(
1

q2

)
vbq−p. (F.11)
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APPENDIX G

Elementary Gaussian Functional Integrals

In this Appendix, we shall mention some elementary results from Gaussian integrals which are
used in Secs. 5.2-5.4, during the procedure of averaging over the external/disorder v field by
introducing a Gaussian weight and additional constraints via Laplace multipliers. Note that the
condensed notation has been adopted where repeated color indices are extended to represent
integration over the corresponding spacetime points as well.

G.1 Standard Gaussian functional integrals

Normalization condition:

⟨1⟩ = N
∫

Dv e−
v2

2α = N
∫

Dv e−
1
2α

vaKabvb = N (detK)−
1
2

!
= 1. (G.1)

Normalization constant:

N = det

(
K

α

) 1
2

. (G.2)

Single v-field contribution:

⟨va(x)⟩ = N
∫

Dv va(x) e− v2

2α = N
∫

Dv va(x) e− 1
2α

vaKabvb = 0. (G.3)

Quadratic v-field contribution:

⟨va(x)vb(y)⟩ = N
∫

Dv va(x)vb(y) e− v2

2α = N
∫

Dv va(x)vb(y) e− 1
2α

vaKabvb = δabδ(x− y).

(G.4)

Fourier Transformation of K to momentum space:

Kab(x, y) = δabδ(x− y) −→ Kab(p, q) = δabδ(p+ q). (G.5)

In Sec. 5.2, the Gaussian functional integral in Eq.(G.4) appears.
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G.2. GAUSSIAN FUNCTIONAL INTEGRALS WITH A CONSTRAINT

G.2 Gaussian functional integrals with a constraint

Next, we study the Gaussian functional integrals that contain an extra constraint. The com-
putation of these kinds of Gaussian integrals is mainly based on completing the square of the
integrated quantities.

v-field constraint:

∆ab
FP =

(
−∂2 + m̄2

gh

)
δab. (G.6)

Normalization condition:

⟨1⟩ = N
∫

DλDv eiλ
a∆ab

FP v
a− v2

2α = N
∫

DλDv e−
1
2α

(va−iα∆FPλ
a)2e−

α
2
λa(∆2

FP)
ab
λb

= N
∫

Dλ e−
α
2
λa(∆2

FP)
ab
λb
∫

Dv e−
1
2α

vaKabvb

= N det
(
∆2

FPK
)− 1

2 !
= 1. (G.7)

Normalization constant:

N = det
(
∆2

FPK
) 1

2 . (G.8)

Single v-field contribution with a constraint:

⟨va(x)⟩ = N
∫

DλDv va(x) eiλa∆ab
FP v

a− v2

2α

= N
∫

Dλ e−
α
2
λa(∆2

FP)
ab
λb
∫

Dv va(x) e− 1
2α

vaKabvb

= 0. (G.9)

Quadratic v-field contribution with a constraint:

⟨va(x)vb(y)⟩ = N
∫

DλDv va(x)vb(y) eiλa∆ab
FP v

a− v2

2α = 0, (G.10)

where for the derivation of Eq.(G.10) we completed the square in the exponent and introduced
vanishing sources that couple to the Lagrange multiplier λa. We make use of this result in the
Secs. 5.3 & 5.4.
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APPENDIXH

Flow Equation and Vertex Interactions in Momentum Space

In this Appendix, we summarize all relevant results that contribute in the derivation of the asso-
ciated flow equations which constitute the one-loop beta function. Furthermore, we provide the
expanded version of the truncated flow equation in momentum space, upon which the computa-
tions for the derivation of the one-loop beta function are built.

H.1 Flow equation in momentum space

The flow equation in momentum space according to the class of truncations which couple the
effective average action linearly to the BRST sources cf. Eq.(6.23), reads

∂tΓ =
1

2

∫
p1

∂tR
µν(p1)

(
Γ̃(2)

)−1

Aa
µ(p1)A

a
ν(−p1)

− i

∫
p1,p2,p3

∂t
(
Zghrgh(p

2
2)
)
pµ2

(
Γ̃(2)

)−1

Ab
ν(p3)c̄

a(−p1)
Γ̃
(2)

Ab
ν(−p3)Ka

µ(−p2)
δ(p1 + p2)

− i

∫
p1,p2,p3

∂t
(
Zghrgh(p

2
2)
)
pµ2

(
Γ̃(2)

)−1

cb(p3)c̄a(−p1)
Γ̃
(2)

cb(−p3)Ka
µ(−p2)

δ(p1 + p2)

− i

∫
p1,p2,p3

∂t
(
Zghrgh(p

2
2)
)
pµ2

(
Γ̃(2)

)−1

c̄b(p3)c̄a(−p1)
Γ̃
(2)

c̄b(−p3)Ka
µ(−p2)

δ(p1 + p2)

+
1

2

∫
p1

∂tR
µν(p1)

[
Γ̃
(2)

Ibµ(p1)K
b
ν(−p2)

+

∫
p2

(
Γ̃(2)

)−1

Ac
ρ(p2)A

b
ν(−p1)

Γ̃
(2)

Ac
ρ(−p2)Mb

µ(p1)

]
+

1

2

∫
p1,p2

∂tR
µν(p1)

(
Γ̃(2)

)−1

cc(p2)Ab
ν(−p1)

Γ̃
(2)

cc(−p2)Mb
µ(p1)

+
1

2

∫
p1,p2

∂tR
µν(p1)

(
Γ̃(2)

)−1

c̄c(p2)Ab
ν(−p1)

Γ̃
(2)

c̄c(−p2)Mb
µ(p1)

.

(H.1)

H.2 Propagators and vertex interactions

As one can observe from the right side of the expanded flow equation, Eq.(H.1), several regulator-
dependent and independent interactions can arise as a result of the truncation scheme. Let us
summarize the form of all contributing interactions in our theory.

122



To that extent, we begin by rewriting the relevant quantities from which one can read off all
associated interactions, which correspond to the chosen form of the truncation of the Legendre
EA Eq.(6.22) as well as its building blocks, Eqs.(6.29) & (6.30)

Γ̃k[Φ, I; v] = ZT SYM[A] + Γ̃gf[A; v] + Γ̃gh[Φ; v] + SBRST
sou [Φ, I; v], (H.2)

Γ̃gf[A; v] =
1

2
Aa

µQµνA
a
ν + vaZgh

(
1 + rgh(−∂2)

)
∂µA

a
µ,

Γ̃gh[Φ; v] = −Zgh
(
1 + rgh(−∂2)

)
c̄a (∂µDµc)

a − va

2|v|2 c̄
a
[(

QµνA
b
ν

)
(Dµc)

b +Ab
µQµν (Dνc)

b
]
.

(6.30)

Then, the following n-point vertex functions contribute in the associated flow equations

(
Γ̃(2)

)−1

c̄a(p1)cb(p2)
=

δabδ(p1 + p2)

Zgh
(
p21 +R(p1)

) = δabδ(p1 + p2)Ggh(p1)(
Γ̃(2)

)−1

Aa
µ(p1)A

b
ν(p2)

=
δabδµνδ(p1 + p2)

Z
(
p21 +R(p1)

) = δabδµνδ(p1 + p2)G(p1)

Γ̃
(2)

cb(−p3)Ka
µ(−p2)

= ip3µ δ
abδ(p2 + p3) + ḡfabc

∫
q
Ac

µ(q)δ(q − p2 − p3)

Γ̃
(3)

c̄a(p1)Ab
µ(p2)c

c(p3)
= iḡfabcZghp1µ

(
1 + rgh(p1)

)
δ(p1 + p2 + p3)

− i
va

2|v|2 δ
bc [Qµν(p2) + Qµν(p3)] p3ν δ(p1 + p2 + p3)

Γ̃
(3)

cb(−p3)Ad
ρ(q1)Ka

µ(−p2)
= ḡfabdδµρδ(q1 − p2 − p3)

Γ̃
(3)

Aa
µ(p1)A

b
ν(p2)A

c
ρ(p3)

= iZTḡf
abc
[
δµν (p1 − p2)ρ + δνρ (p2 − p3)µ + δµρ (p3 − p1)ν

]
δ(p1 + p2 + p3)

Γ̃
(3)

c̄a(p1)Mb
µ(p2)c

c(p3)
= − i

va

|v|2 δ
bcp3µδ(p1 + p2 + p3)

Γ̃
(3)

Aa
µ(p1)Kb

ν(p2)c
c(p3)

= ḡfabcδµνδ(p1 + p2 + p3)

Γ̃
(4)

c̄a(p1)Mb
µ(p2)c

c(p3)Ad
ν(p4)

= ḡ
va

|v|2 f
bcdδµνδ(p1 + p2 + p3 + p4)

Γ̃
(4)

Aa
µ(p1)A

b
ν(p2)A

c
ρ(p3)A

d
σ(p4)

= ZTḡ
2
[
f eabf ecd (δσνδρµ − δσµδνρ) + f eadf ecb (δσνδρµ − δµνδρσ)

+ f eacf edb (δµσδνρ − δµνδρσ)
]
δ(p1 + p2 + p3 + p4)

Γ̃
(4)

c̄a(p1)Ab
µ(p2)A

c
ν(p3)c

d(p4)
= 0
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APPENDIX I

Resummation Terms

In this Appendix we present the analytic expressions for the gluon and ghost anomalous dimen-
sions. To do so, we rewrite the left sides of Eqs.(6.39) & (6.41) in terms of the gluon and ghost
anomalous dimensions respectively, Eq.(6.40). Then, we obtain a system of two equations with
two unknowns. Upon solving this system, one finds that

ηT =− g22v4Nc
793

192

1 + g22v4Nc
4107

812032

32+ 86437
5760

g22v4Nc

1+5Nc
6 g22v4

1+ 703
5120

g22v4Nc+
149221
1966080

g4(2v4)
2N2

c

1+5Nc
6 g22v4

1 + 5Nc
6 g22v4

,

ηgh =− g22v4Nc
37

16

1 + g22v4Nc
86437
184320

1
1+ 5Nc

6
g22v4

1 + 703
5120g

22v4Nc +
149221
1966080g

4(2v4)2N2
c

1
1+ 5Nc

6
g22v4

.

(I.1)

With the help of Eq.(I.1), we find an estimate for the two-loop beta function Eq.(6.49).
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Acronyms

1PI 1-Particle Irreducible

1PR 1-Particle Reducible

BFM background field method

BRST Becchi-Rouet-Stora-Tyutin

CFDJ Curci-Ferrari-Delbourgo-Jarvis

DSE Dyson-Schwinger equations

EA Effective Action

EAA Effective Average Action

EFT Effective Field Theory

FMR fundamental modular region

FP Faddeev-Popov

fRG functional Renormalization Group

GZ Gribov-Zwanziger

IR infrared

K-O Kugo-Ojima

LGME large gluonic mass expansion

mME modified master equation

mNIs modified Nielsen Identities

mSTIs modified Slavnov-Taylor Identities

mWIs modified Ward Identities

mWTIs modified Ward-Takahashi Identities
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NIs Nielsen Identities

NL Nakanishi-Lautrup

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

RG Renormalization Group

SM Standard Model

STIs Slavnov-Taylor Identities

UV ultraviolet

WIs Ward Identities

WTIs Ward-Takahashi Identities

YM Yang-Mills
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Η Ιθάκη σ’ έδωσε τ’ ωραίο ταξίδι.
Χωρίς αυτήν δεν θα ‘βγαινες στον δρόμο.

΄Αλλα δεν έχει να σε δώσει πια.
Κι αν πτωχική την βρεις, η Ιθάκη δεν σε γέλασε.

΄Ετσι σοφός που έγινες, με τόση πείρα,
ήδη θα το κατάλαβες οι Ιθάκες τι σημαίνουν.

[Κωνσταντίνος Καβάφης - Ιθάκη]
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