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LIMIT POINT AND LIMIT CIRCLE TRICHOTOMY FOR STURM-LIOUVILLE

PROBLEMS WITH COMPLEX POTENTIALS

FLORIAN LEBEN, EDISON LEGUIZAMÓN, CARSTEN TRUNK, AND MONIKA WINKLMEIER

Abstract. The limit point and limit circle classification of real Sturm-Liouville problems by

H. Weyl more than 100 years ago was extended by A.R. Sims around 60 years ago to the case
when the coefficients are complex. Here the main result is a collection of various criteria which

allow us to decide to which class of Sims’ scheme a given Sturm-Liouville problem with complex

coefficients belongs. This is subsequently applied to a second order differential equation defined
on a ray in C which is motivated by the recent intensive research connected with PT -symmetric

Hamiltonians.

1. Introduction

The search for criteria that guarantee that a Sturm-Liouville equation with real coefficients is in
the limit point or the limit circle case has a long tradition since the seminal paper of H. Weyl [18]
in 1910 where he classifies Sturm-Liouville problems into two classes: Either all solutions of the
eigenvalue problem are square integrable (limit circle) or there exists at least one solution without
this property (limit point). This behaviour is independent of the chosen eigenvalue parameter.

Sturm-Liouville problems with complex-valued coefficients were investigated in the (also seminal)
paper by A.R. Sims in 1957 [17] with further refinements in [6] and [15, 16]. The classification pro-
posed by A.R. Sims contains three different cases, where one takes into account also the behaviour
of the derivative of the solutions (for details we refer to Section 2).

Our interest in the classification proposed by A.R. Sims arises from a second order differential
equation defined on a ray in C. This is motivated by the recent intensive research connected with
PT -symmetric Hamiltonians, cf. [5]. In the seminal paper by C.M. Bender and S. Boettcher [5]
a new view at Quantum Mechanics was proposed which adopts all its axioms except the one that
restricts the Hamiltonian to be Hermitian, relaxing it to the assumption that the Hamiltonian is
PT -symmetric. Here, P is parity and T is time reversal. Since then, PT -symmetric Hamiltonians
have been analyzed intensively by many authors. In [12] PT -symmetry was embedded into a more
general mathematical framework: pseudo-Hermiticity or, what is the same, self-adjoint operators
in Krein spaces, [1, 9, 10, 11]. For a general introduction into PT -symmetric Quantum Mechanics
we refer to [13] and [3].

Let Γ be a ray in the complex plane with angle ϕ ∈ (−π/2, π/2),
Γ := {z ∈ C : z = xeiϕ, x ∈ [a,∞)}

for some a ≥ 0. Our main interest is to obtain a Weyl criterion for the differential equation

−y(z)′′ + q(z)y(z) = λy(z), z ∈ Γ, (1.1)
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where q : Γ → C is locally integrable.
A prominent class of potentials consists of the PT -symmetric potentials

q(z) := −(iz)N+2

where N is a positive integer [5, 4]. Other Hamilitonians can be found in [7, 13].
Via a parametrization (1.1) can be mapped back to the real line leading to a Sturm-Liouville

problem on an interval of the form

−
(
py′
)′
+ qy = wλy. (1.2)

We give an asymptotic approximation for its solutions in Section 3 via an approach based on [8].
A careful analysis of these asymptotic approximations leads to new criteria for limit point/limit
circle cases in the sense of A.R. Sims for the equation in (1.2) (see Section 4) and then, via the
parametrization, also for (1.1), see Section 5.

Notations. For −∞ < a < b ≤ ∞ we denote by ACloc(a, b) the set of locally absolutely
continuous functions on each compact subinterval of (a, b). For a locally integrable function w :

(a, b) → C we set L2
w(a, b) := {f : (a, b) → C : f measurable,

∫ b

a
|f(x)|2|w(x)| dx < ∞}. If w = 1,

then we write L2(a, b). Recall that the normed space of uniformly locally integrable functions
L1
u(a, b) is defined as

L1
u(a, b) =

{
f ∈ L1

loc(a, b) : sup
n∈Z

∫
[n,n+1]∩(a,b)

|f(t)| dt <∞

}
.

2. Weyl’s alternative for complex Sturm-Liouville problems

Consider the Sturm-Liouville problem

−
(
p(x)y′(x)

)′
+ q(x)y(x) = w(x)λy(x), x ∈ [a, b) (2.1)

where a ∈ R, b ∈ R ∪ {∞}, λ ∈ C and w, 1/p, q : [a, b) → C are locally integrable in [a, b) and
satisfy w(x) > 0, p(x) ̸= 0 for a.a. x ∈ [a, b). Here we always assume that the end point a is regular
and b is singular (which is indicated by writing x ∈ [a, b) or L1

loc[a, b)). A solution for (2.1) is a
function y such that y, py′ ∈ ACloc(a, b) and y satisfies (2.1) for a.a. x ∈ [a, b).

Given A ⊂ C, we define co(A) as the closed convex hull of A. We impose

Q := co

{
q(x)

w(x)
+ rp(x) : 0 < r <∞, x ∈ [a, b)

}
̸= C. (2.2)

Let λ /∈ Q. Then there exists a unique point K ∈ Q which minimizes the distance between λ and
Q. Moreover, there exists an angle θ such that

Re[eiθ (z −K)] ≥ 0 for all z ∈ Q. (2.3)

In fact, let Q−K := {z ∈ C : z = w −K,w ∈ Q}. Since the set Int(Q−K) = Int(Q)−K is open
and convex and does not intersect the trivial subspace {0}, the geometric form of the Hahn-Banach
Theorem (see e.g. [14, Theorem 7.7.4]) shows that there is a linear functional f : C → C such that
Re[f(z)] > 0 for all z ∈ Int(Q) − K. Without restriction we may assume that f is normalized.
Hence there exists a real number θ such that f(z) = eiθz for all z ∈ C and Re[eiθv] > 0 for all
v ∈ Int(Q)−K.

For K ∈ C and θ ∈ R we define the open half-plane

ΛK,θ :=
{
z ∈ C : Re[eiθ (z −K)] < 0

}
,
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and the set

S := {(θ,K) : (2.3) is satisfied} .
In [6] it is proved that the Sturm-Liouville problem (2.1) falls in exactly one of the cases of the

next definition.

Definition 2.1. Given (θ,K) ∈ S and λ ∈ ΛK,θ, we have the following cases:

(1) There is, up to a multiplicative constant, only one solution y of the equation (2.1) such that∫ b

a

Re(eiθp)|y′|2dt+
∫ b

a

Re[eiθ(q −Kw)]|y|2dt+
∫ b

a

w|y|2dt <∞ (2.4)

and this is the only solution belonging to L2
w(a, b). In this case we say that (2.1) is in the

limit point I case.
(2) All solutions of (2.1) are in L2

w(a, b) but, up to a multiplicative constant, there is only one
solution that satisfies (2.4). In this case we say that (2.1) is in the limit point II case.

(3) All solutions of (2.1) are in L2
w(a, b) and all solutions satisfy (2.4). In this case we say that

(2.1) is in the limit circle case.

Remark 2.2. In the situation of Definition 2.1 (3) we have

Re(eiθ(q −Kw)) = Re(weiθ(
q

w
−K)) = wRe(eiθ(

q

w
−K)) ≥ 0.

Hence the three summands on the left hand side of (2.4) are nonnegative and therefore, if a solution
of (2.1) satisfies (2.4), then it is automatically in L2

w(a, b).

Remark 2.3. In [6, Remark 2.2] the method of variation of parameters is used to deduce that the
classification is independent of λ, that is

• If all solutions satisfy (2.4) for some λ0 ∈ Λθ,K , then the same is true for all λ ∈ C.
• If all solutions are in L2

w(a, b) for some λ0 ∈ C, then the same is true for all λ ∈ C.

Note that θ = π
2 in the case of real coefficients. Hence the first two terms in (2.4) are zero and

therefore the limit point case II is not possible for real Sturm-Liouville equations.

3. Asymptotic approximation of second order differential equations

In this section we find an asymptotic approximation of solutions of (3.1). Since (1.1) can be
transformed into such an equation, this will allow us to establish limit point/limit circle criteria in
Section 5. Our approximations of the solutions are primarily based on [8, Theorem 1.3.1]. Consider
the following differential equation:

(py′)′(x) = s(x)y(x), x ∈ [a, b) (3.1)

where s, p : [a, b) → C are functions such that 1
p , s ∈ L1

loc[a, b). In what follows we define the nth

root of a complex number z = rei arg(z) with −π < arg(z) ≤ π as z1/n = r1/nei arg(z)/n. Our first
theorem is a variation of Theorem 2.5.1 in [8]. It leads to slightly different assertions which form
the basis for the subsequent section.

Theorem 3.1. Assume that p(x) ̸= 0, s(x) ̸= 0, arg s(x)
p(x) ̸= π, arg p(x)s(x) ̸= π for all x ∈ [a, b)

and let u := (ps)−1/4. Assume that u, pu′ ∈ ACloc(a, b) and u(pu′)′ ∈ L1(a, b). Then there exist
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Fj , F̂j : [a, b) → C and a fundamental system {y, ŷ} for (3.1) with

y(x) = (p(x)s(x))−1/4e−
∫ x
a

√
s(t)/p(t) dt(F1(x) + 1), x ∈ [a, b), (3.2)

((ps)1/4y)′(x) = (s(x)/p(x))1/2e−
∫ x
a

√
s(t)/p(t) dt(F2(x)− 1), x ∈ [a, b),

ŷ(x) = (p(x)s(x))−1/4e
∫ x
a

√
s(t)/p(t) dt(F̂1(x) + 1), x ∈ [a, b), (3.3)

((ps)1/4ŷ)′(x) = (s(x)/p(x))1/2e
∫ x
a

√
s(t)/p(t) dt(F̂2(x)− 1), x ∈ [a, b),

and, for j = 1, 2,

∥Fj∥∞, ∥F̂j∥∞ ≤ 2e2M − 2, and Fj(x), F̂j(x) → 0, when x→ b,

where ∥ · ∥∞ is the supremum norm and M := ∥u(pu′)′∥L1 .

Proof. Note that y is a solution for (3.1) if and only if Y is a solution for Y ′(x) = A(x)Y (x) where

Y (x) :=

(
y(x)

p(x)y′(x)

)
and A(x) :=

(
0 1/p(x)

s(x) 0

)
x ∈ [a, b). (3.4)

We call Y a solution for Y ′ = AY if Y is locally absolutely continuous in [a, b) and satisfies the
differential equation (3.4) for a.a. x ∈ [a, b).

For z(x) := u(x)−1y(x) and

Z(x) :=

(
z(x)

p(x)u(x)2z′(x)

)
, (3.5)

we obtain the relations

Y (x) =

(
u(x) 0

p(x)u′(x) u−1(x)

)
Z(x) (3.6)

and

Z(x) =

(
u−1(x) 0

−p(x)u′(x) u(x)

)
Y (x).

The transformation (3.6) takes (3.4) into

Z ′(x) =

(
0 p(x)−1u(x)−2

s(x)u(x)2 − u(x) (p(x)u′(x))
′

0

)
Z(x), x ∈ [a, b). (3.7)

By the transformation

W (x) :=
1

2

(
1 1
1 −1

)
Z(x) (3.8)

with inverse transformation

Z(x) =

(
1 1
1 −1

)
W (x)

we obtain the following system, using that p−1u−2 = su2 =
√
s/p ∈ L1

loc[a, b),

W ′(x) =


(

s(x)
p(x)

)1/2
0

0 −
(

s(x)
p(x)

)1/2
W (x)− 1

2
(u(x)(pu′)′(x))

(
1 1

−1 −1

)
W (x). (3.9)

If we set

S(x) :=
−u(x)(pu′)′(x)

2

(
1 1

−1 −1

)
,
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then (3.9) can be written as

W ′(x) =

(
s(x)

p(x)

)1/2(
1 0
0 −1

)
W (x) + S(x)W (x). (3.10)

Note that by hypothesis
∫ b

a
∥S(t)∥C2 dt =

∫ b

a
∥u(pu′)′(t)∥ dt =M <∞ and

M(x) :=

∫ b

x

∥S(t)∥C2 dt ≤M <∞, x ∈ [a, b)

where ∥ · ∥C2 denotes the operator norm of a 2 × 2 matrix. Now we will construct two linearly
independent solutions of (3.9) using a fixed point argument. For our first solution, we set V (x) :=

W (x)e
∫ x
a

√
s(t)/p(t) dt which solves the differential equation

V ′(x) =

(
2
(

s(x)
p(x)

)1/2
0

0 0

)
V (x) + S(x)V (x), x ∈ [a, b). (3.11)

A fundamental system for the homogeneous differential equation

V ′
0(x) =

(
2
(

s(x)
p(x)

)1/2
0

0 0

)
V0(x) (3.12)

is given by the matrix

Φ(x) =

(
e2

∫ x
a

√
s(t)/p(t) dt 0
0 1

)
.

Since Re (p(x)s(x))
1/2 ≥ 0 in [a, b), we obtain

∥Φ(x)Φ(x̂)−1∥2 =

∥∥∥∥∥
(
e−2

∫ x̂
x (

s(t)
p(t) )

1/2
dt 0

0 1

)∥∥∥∥∥
C2

= 1, a ≤ x < x̂. (3.13)

Let C([a, b),C2) denote the Banach space of continuous bounded functions f : [a, b) → C2 equipped
with the supremum norm ∥·∥∞. We define the continuous operator F : C([a, b),C2) → C([a, b),C2)
by

(Ff)(x) :=

(
0
1

)
− Φ(x)

∫ b

x

Φ(t)−1S(t)f(t) dt. (3.14)

Next we construct a sequence of functions {hk}k∈N by

h1 :=

(
0
1

)
, hk+1(x) = (Fhk)(x), k ≥ 1.

We proceed by induction to prove that for all x ≥ a

∥hk+1(x)− hk(x)∥ ≤ 1

k!

(∫ b

x

∥S(t)∥C2 dt

)k

=
(M(x))k

k!
≤ Mk

k!
. (3.15)

To this end, note that for all x ≥ a

∥h2(x)− h1(x)∥ =

∥∥∥∥∥−Φ(x)

∫ b

x

Φ(t)−1S(t)h1(t) dt

∥∥∥∥∥ ≤
∫ b

x

∥S(t)∥C2 dt =M(x) ≤M.
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By the induction hypothesis we obtain

|hk+1(x)− hk(x)| ≤
∫ b

x

∥S(t)∥C2 |hk(t)− hk−1(t)| dt

≤
∫ b

x

∥S(t)∥C2

(∫ b

t
∥S(u)∥C2 du

)k−1

(k − 1)!
dt

≤

∣∣∣∣∣∣∣−
∫ b

x

d

dt

(∫ b

t
∥S(u)∥C2 du

)k
k!

dt

∣∣∣∣∣∣∣
=

1

k!

(∫ b

x

∥S(u)∥C2 du

)k

=
(M(x))k

k!
≤ Mk

k!
.

For all n ≥ m ≥ 1 we have that

∥hn(x)− hm(x)∥ =

∥∥∥∥∥
n−1∑
k=m

hk+1(x)− hk(x)

∥∥∥∥∥ ≤
n−1∑
k=m

(M(x))k

k!
≤ eM(x)

and consequently ∥hn−hm∥∞ ≤ eM , so {hn}k∈N converges uniformly to a bounded and continuous
function h ∈ C([a, b),C2). Moreover, h is a fixed point of F because F is continuous. Let us show
that h is a solution of (3.11).

h′(x) =
d

dx
(F (h))(x)

=

(
2
√
s(x)/p(x) 0

0 0

)
h1 − Φ′(x)

∫ b

x

Φ(t)−1S(t)h(t) dt+ S(x)h(x)

=

(
2
√
s(x)/p(x) 0

0 0

)(
h1 − Φ(x)

∫ b

x

Φ(t)−1S(t)h(t) dt

)
+ S(x)h(x)

=

(
2
√
s(x)/p(x) 0

0 0

)
F (h)(x) + S(x)h(x) =

(
2
√
s(x)/p(x) 0

0 0

)
h(x) + S(x)h(x).

From (3.15) we obtain

∥h− h1∥∞ =:

∥∥∥∥(G1

G2

)∥∥∥∥
∞

≤
∞∑
k=1

Mk

k!
= eM − 1. (3.16)

Finally, by hypothesis, for any ϵ > 0, there exists C ∈ R such that M(C) < ln(1+ ϵ) and therefore,
by (3.15),

|h(x)− h1(x)| ≤ eM(x) − 1 < ϵ

for all x ≥ C. It follows that

Gi(x) → 0, when x→ b, for i = 1, 2,

hence by (3.16)

h(x) =

(
G1(x)

G2(x) + 1

)
→
(
0
1

)
for x→ b.
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Since h is a solution for (3.11), a solution Z0 for (3.7) is given by

Z0(x) =

(
z0(x)

p(x)u2z′0(x)

)
= e−

∫ x
a

√
s(t)/p(t)dt

(
1 1
1 −1

)(
G1(x)

G2(x) + 1

)
. (3.17)

Recall that z = uy. Setting F1 := G1 +G2 and F2 := G1 −G2 we obtain

y(x) = (p(x)s(x))−1/4e−
∫ x
a

√
s(t)/p(t)dt(1 + F1(x))

and

((ps)1/4y)′(x) = (s/p)1/2(x)e−
∫ x
a

√
s(t)/p(t)dt(F2(x)− 1)

where we used that (ps)1/4y = z0 and z′0 as given in (3.17).

In order to obtain a second solution of (3.9), we set V̂ (x) :=W (x)e−
∫ x
a

√
s(t)/p(t) dt. It satisfies

V̂ ′(x) =

(
0 0

0 −2
√
s(x)/p(x)

)
V̂ (x) +

1

2
(−u(x)(pu′)′(x))

(
1 1

−1 −1

)
V̂ (x). (3.18)

As before, we note that the constant ĥ1 :=

(
1
0

)
is a solution of the homogeneous equation

V̂ ′(x) =

(
0 0

0 −2
√
s(x)/p(x)

)
V̂ (x) (3.19)

and that

Φ̂(x) :=

(
1 0

0 e−2
∫ x
a

√
s(t)/p(t) dt

)
is a fundamental system for (3.19). Again, for a ≤ x̂ < x

∥Φ̂(x)Φ̂−1(x̂)∥2 =

∥∥∥∥∥
(
1 0

0 e−2
∫ x
x̂

√
s(t)/p(t)) dt

)∥∥∥∥∥
2

= 1

and arguing as before, the operator F̂ defined by

(F̂ f)(x) := ĥ1 + Φ̂(x)

∫ x

a

Φ̂−1(t)S(t)f(t) dt

yields a solution ĥ := limn→∞ Fn(ĥ1) for (3.18) which in turn leads to a solution ŷ of (3.1) which
satisfies (3.3).

We prove that y and ŷ are linearly independent. We calculate the following Wronskian

W ((sp)1/4y, (sp)1/4ŷ)(x) = (sp)1/4
(
((sp)1/4y)′(x)ŷ(x)− y(x)((sp)1/4ŷ)′(x)

)
=

(
s(x)

p(x)

)1/2 (
(F2(x)− 1)(1 + F̂1(x))− (1 + F̂2(x))(1 + F1(x))

)
.

As Fj(x), F̂j(x) → 0 for x→ b and s(x) ̸= 0 for x ∈ [a, b) the Wronskian is non-zero for all x. □
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4. Summability properties of solutions

Now we discuss properties of the solutions of (3.1) for the case p = 1 and b = ∞. In this section
we will always assume that the conditions of the Theorem 3.1 hold. Let y and ŷ be the fundamental
system of (3.1) as in (3.2) and (3.3).

Remark 4.1. Note that Re[s(x)1/2] > 0 for all x ∈ [a,∞). Since both F1 and F̂1 tend to zero for
x→ ∞, it follows that |y(x)| ≤ |ŷ(x)| for large x. In particular, ŷ ∈ L2[a,∞) implies y ∈ L2[a,∞).

We start with a helpful comparison.

Lemma 4.2. Assume p = 1 and b = ∞ and that the conditions of the Theorem 3.1 are fulfilled.
Let y and ŷ be the fundamental system in (3.2) and (3.3). Let ψ ≥ 0 be a measurable function on
[a,∞).

(a) If ψ ∈ L1(α,∞) for some α ≥ a and

lim sup
x→∞

1

ψ(x)

e2
∫ x
a

Re[s(t)1/2] dt

|s(x)|1/2
<∞,

then ŷ ∈ L2(a,∞).
(b) If ψ /∈ L1(α,∞) for any α ≥ a and

lim inf
x→∞

1

ψ(x)

e2
∫ x
a

Re[s(t)1/2] dt

|s(x)|1/2
> 0,

then ŷ /∈ L2(a,∞).
(c) All solutions of (3.1) are in L2[a,∞) if and only if the following function is in L2[a,∞):

x 7→ s(x)−1/4e
∫ x
a

√
s(t) dt

Proof. Note that for any nonnegative function ψ we have that

|ŷ(x)|2 = |s(x)|−1/2|1 + F̂1(x)|2e2
∫ x
a

Re[s(t)1/2] dt = ψ(x)
e2

∫ x
a

Re[s(t)1/2] dt

ψ(x)|s(x)|1/2
|1 + F̂1(x)|2.

Since limx→∞ F̂1(x) = 0, we have for large enough x

1

2
ψ(x) lim inf

η→∞

e2
∫ η
a

Re[s(t)1/2] dt

ψ(η)|s(η)|1/2
≤ |ŷ(x)|2 ≤ 2ψ(x) lim sup

η→∞

e2
∫ η
a

Re[s(t)1/2] dt

ψ(η)|s(η)|1/2

and (a) and (b) are proved. Assertion (c) follows from the equality in (3.3) and from Remark 4.1. □

The next corollary follows from Lemma 4.2 (a), Remark 4.1 and setting ψ(x) := x−ρ.

Corollary 4.3. If for some ρ > 1

lim sup
x→∞

xρe2
∫ x
a

Re[s(t)1/2] dt

|s(x)|1/2
<∞,

then all solutions of (3.1) are in L2[a,∞).

Theorem 4.4. Assume p = 1 and b = ∞ and that the conditions of the Theorem 3.1 are fulfilled.
Let y and ŷ be the fundamental system as in (3.2) and (3.3). Then

ŷ /∈ L2[a,∞)

if one (or more) of the following conditions is satisfied.
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(a) |s|−1/2 /∈ L1[a,∞).
(b) The function s is bounded, i.e., ∥s∥∞ <∞.
(c) We have ∫ ∞

a

Re[s(x)1/2] dt <∞ and lim inf
x→∞

Re[s(x)1/2]

|s(x)|1/2
> 0.

(d) We have∫ ∞

a

Re(s(x)1/2) dt = ∞ and lim inf
x→∞

(
Re[s(x)1/2]

)N
|s(x)1/2|

> 0 for some N ∈ N.

(e) | arg s| ≤ π − ϵ0 for some ϵ0 > 0.

Proof. (a) By assumption, arg(s(t)) ̸= π, hence Re[s(t)1/2] > 0 for all t ∈ [a,∞). Moreover F̂1

is a bounded function with limx→∞ F̂1(x) = 0. Therefore, for any c ∈ (0, 1) we can take

α > a such that |1 + F̂1(x)| > c and hence

|ŷ(x)| = |s(x)|−1/4|1 + F̂1(x)|e
∫ x
a

Re[s(t)1/2] dt ≥ c|s(x)|−1/4, x > α. (4.1)

Recall that s−1/4 is absolutely continuous by assumption in Theorem 3.1, hence the right
hand side in (4.1) is not square integrable on [α,∞) and therefore also ŷ /∈ L2[a,∞).

(b) If s is bounded, then clearly |s|−1/2 is not square integrable on [a,∞) and the claim follows
from (a).

(c) By assumption,

lim inf
x→∞

Re[s(x)1/2]

|s(x)|1/2
:= c > 0 and 0 <

∫ ∞

a

Re[s(t)1/2] dt =: R <∞.

Hence the Lebesgue measure of the set A := {t ∈ [a,∞) : Re[s(t)1/2] ≤ 1} is infinite. Note

that the function x 7→
∫ x

a
Re
√
s(t) dt is non-decreasing and for large enough x, we have

that ∫ x

a

Re
√
s(t) dt ≥ R

2
.

We conclude

|ŷ(x)|2 = |1 + F1(x)|2
e2

∫ x
a

Re
√

s(t) dt

|s(x)|1/2
≥ ceR

2

1

Re[s(x)1/2]
≥ ceR

2
χA(x)

where χA is the characteristic function of A. Since R > 0 it follows that ŷ /∈ L2[a,∞).
(d) We define

ψ(x) :=
e2

∫ x
a

Re[s(t)1/2] dt

(Re s(x)1/2)N
, x ∈ [a,∞).

Then

ψ(x)−1 e
2
∫ x
a

Re[s(t)1/2] dt

|s(x)|1/2
=

(Re s(x)1/2)N

|s(x)|1/2

and by Lemma 4.2 (b) it suffices to show that ψ /∈ L1[a,∞). If we set

g(x) :=

∫ x

a

Re[s(t)
1
2 ] dt,
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then g satisfies the differential equation

e2g(x)

(g′(x))N
= ψ(x).

For

G(x) :=

∫ x

a

(ψ(t))−1/N dt

we obtain

e−
2
N g(x) = 1− 2

N
G(x).

By assumption, g(x) → ∞ for x→ ∞, so G(x) → N/2 and
∫∞
a
ψ−1/N (t) dt <∞. Similarly

as above, the Lebesgue measure of the set {t ∈ [a,∞) : ψ−1/N (t) ≤ 1} is infinite. Hence∫ ∞

a

ψ1/N (t) dt = ∞,

which implies that
∫∞
a
ψ(t) dt diverges.

(e) The assumption on s implies that | arg(s(x))1/2| < (π − ϵ0)/2. Setting c := cos
(
π−ϵ0

2

)
, we

have that Re s(x)1/2 = |s(x)|1/2 cos arg(s(x))1/2 and

Re s(x)1/2

|s(x)|1/2
≥ c, x ∈ [a,∞).

If
∫∞
a

Re[s(t)1/2] dt = ∞, then the claim follows from (d) with N = 1. If on the other hand∫∞
a

Re[s(t)1/2] dt =: R <∞, the claim follows from (c).
□

Remark 4.5. If, in addition to the assumptions in Theorem 4.4 (b), we have Re[s1/2] ∈ L1[a,∞),
then there exists K > 0 such that

|y(x)| ≥ K|s(x)|−1/4|1 + F1(x)| ≥ K∥s∥−1/4
∞ |1 + F1(x)|,

which implies that y /∈ L2[a,∞).

5. Sturm-Liouville equation on a ray

In this section the results of the previous section are used to investigate a second order differential
equation defined on a ray in C. This is motivated by the recent intensive research connected with
PT -symmetric Hamiltonians, cf. [5]. Let Γ be a ray with angle ϕ ∈ (−π/2, π/2),

Γ := {z ∈ C : z = xeiϕ, x ∈ [a,∞)} (5.1)

for some a ≥ 0. Our main interest is to obtain a Weyl criterion for the differential equation

−y(z)′′ + q(z)y(z) = λy(z), z ∈ Γ

where q : Γ → C is locally integrable. Setting

v(x) := y(z(x)) and q(x) := q(z(x)) with z(x) := xeiϕ, x ∈ [a,∞), (5.2)

we obtain the Sturm-Liouville problem

−e−2iϕv′′(x) + q(x)v(x) = λv(x), x ∈ [a,∞). (5.3)
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In order to describe the solutions of (5.3), we re-write it in the form

v′′(x) = e2iϕ (q(x)− λ) v(x), x ∈ [a,∞). (5.4)

If we set
s(x) := e2iϕ (q(x)− λ) , x ∈ [a,∞), (5.5)

then (5.4) is in the form of (3.1) with p = 1 and solutions for (5.3) are obtained from Theorem 3.1.

Theorem 5.1. The differential equation (5.3) with ϕ ∈ (−π
2 ,

π
2 ) and λ ∈ C such that

(i) q, q′ ∈ ACloc[a,∞),

(ii) λ /∈ co{e−2iϕr + q(x) : 0 < r <∞, x ∈ [a,∞)} and

(iii) M :=

∫ ∞

a

∣∣∣∣ 5(e2iϕq′(x))2

16(e2iϕ(q(x)− λ))5/2
− e2iϕq′′(x)

4(e2iϕ(q(x)− λ))3/2

∣∣∣∣ dx <∞

has a fundamental system {y, ŷ} of the form

y(x) = s(x)−1/4e−
∫ x
a

√
s(t) dt(1 + F1(x)), x ∈ [a,∞), (5.6)

ŷ(x) = s(x)−1/4e
∫ x
a

√
s(t) dt(1 + F̂1(x)), x ∈ [a,∞), (5.7)

with |F̂1(x)|, |F1(x)| → 0 when x→ +∞, ∥F1∥∞ ≤ 2eM − 2 and ∥F̂1∥∞ ≤ 2eM − 2.

Proof. We show that the assumptions of Theorem 3.1 for the function s in (5.5) are fulfilled.
We have p = 1 and it follows from (ii) (by sending r to zero) that q(x) ̸= λ for all x ∈ [a,∞],

hence s(x) ̸= 0. Assume that there exists x0 ∈ [a,∞] with s(x0) ∈ (−∞, 0]. Therefore, by definition
of s in (5.5),

λ = q(x0)− s(x0)e
−2iϕ,

a contradiction to (ii). Hence arg s(x) ̸= π for all x ∈ [a,∞). Moreover, by (i), s−1/4 and (s−1/4)′

are in ACloc[a,∞) and we have

s−1/4(s−1/4)′′ = s−1/4

(
5

16
(s′)2s−9/4 − 1

4
s′′s−5/4

)
.

Now, (iii) implies that

s−1/4(s−1/4)′′ ∈ L1(a,∞)

and we obtain the desired solutions from Theorem 3.1. □

We prove a limit point/limit circle criteria for the differential expression (5.3). This is our main
result. Note that, if co{e−2iϕr + q(x) : 0 < r < ∞, x ∈ [a,∞)} ̸= C, then the equation (5.3) is in
the Weyl trichotomy described in the Definition 2.1.

Theorem 5.2. Assume that the assumptions (i)–(iii) from Theorem 5.1 are satisfied for some
ϕ ∈ (−π

2 ,
π
2 ) and λ ∈ C. Then the following is true.

(a) The equation (5.3) is in the limit point I case if one of the following conditions is fulfilled:
(α) We have |q − λ|−1/2 /∈ L1[a,∞) or
(β) we have ∥q∥∞ <∞ or
(γ) we have∫ ∞

a

Re
(
eiϕ
√
q(x)− λ

)
dx <∞ and lim inf

x→∞

Re
(
eiϕ
√
q(x)− λ

)
∣∣∣√q(x)− λ

∣∣∣ > 0 or
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(δ) for some N ∈ N we have

∫ ∞

a

Re
(
eiϕ
√
q(x)− λ

)
dx = ∞ and lim inf

x→∞

(
Re eiϕ

√
q(x)− λ

)N∣∣∣√q(x)− λ
∣∣∣ > 0 or

(ϵ) we have for some ϵ0 > 0

| arg eiϕ
√
q(x)− λ| ≤ π − ϵ0.

In the cases (α)–(δ) this classification is independent of the choice of λ, cf. Remark 2.3.
(b) If for some ρ > 1

q ∈ L1
u(a, b) and lim sup

x→∞

xρe
2
∫ x
a

Re
(
eiϕ

√
q(x)−λ

)
dt

|
√
q(x)− λ|

<∞,

then the equation (5.3) is in the limit circle case. This classification is independent of the
choice of λ, cf. Remark 2.3.

Proof. By Theorem 5.1 we know that there exist two linearly independent solutions y and ŷ. Cases
(α)–(ϵ) follow directly from Theorem 4.4. It remains to show item (b). By Corollary 4.3 all
solutions of (3.1) are in L2[a,∞). It is easy to see that the statements in the appendix of [2] also
hold true for non-real (i.e. complex-valued) potentials. Then multiplying (5.3) by e2iϕ and applying
[2, Lemma A.2 (i)] one obtains that all solutions fulfill (2.4). □

Example 5.3. Consider Γ as in (5.1) with ϕ = 0. Moreover we set λ = 0 and q(x) := −f(x) + i
with f(x) > 0 in [a,∞) and f, f ′ ∈ ACloc[a,∞) such that item (iii) of Theorem 5.1 is satisfied.

(i) If ∥f∥∞ <∞, then (5.3) is in the limit point I.
(ii) If lim

x→∞
f(x) = ∞, then (5.3) is in the limit point I if and only if f−1/2 ∈ L1[a,∞).

Proof. Note that in both cases

co{r + q(x) : x ∈ [a,∞), 0 < r <∞} ⊆ {t+ i : t ∈ R},

with equality in case (ii), and that

|q(x)| =
√
f(x)2 + 1, arg q(x) = π − arctan

(
1

f(x)

)
.

The claim in (i) follows directly from Theorem 4.4(b).

Now assume that lim
x→∞

f(x) = ∞. Theorem 5.1 shows that ŷ ∈ L2[a,∞) if and only if the

function

x 7→ e2
∫ x
a (f(t)

2+1)
1/4

cos(π−arctan(1/f(t))
2 ) dt (f(x)2 + 1

)−1/4

is in ∈ L1[a,∞). Note that

cos

(
π − arctan(1/f(x))

2

)
= sin

(
arctan(1/f(x))

2

)
.

Given that

lim
x→∞

sin
( arctan(1/f(x))

2

)
1

2f(x)

= lim
x→∞

sin
( arctan(1/f(x))

2

)
arctan(1/f(x))

2

× arctan(1/f(x))
1

f(x)

= 1
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and

lim
x→∞

f(x)−1/2

(f2(x) + 1)−1/4
= 1,

it follows that ŷ ∈ L2[a,∞) if and only if the function

x 7→ e
∫ x
a

f−1/2(t) dtf−1/2(x)

is in L1[a,∞). Note that∫ l

a

e
∫ x
a

f−1/2(t) dtf−1/2(x)dx =

∫ α

0

ey(x)y′(x)dx = e
∫ l
a
f−1/2(t) dt − 1,

with α :=
∫ l

a
f−1/2(t) dt. Hence (5.3) is in the limit point I case if and only if f−1/2 ∈ L1[a,∞). □

Example 5.4. We review an example of more relevance from theoretical physics. In [5] the authors
consider for N ≥ 1, N ∈ N,

q(z) := −(iz)N+2, with z ∈ Γ,

where Γ is as in (5.1). Then the function q in (5.2) is given by

q(x) = −iN+2xN+2e(N+2)iϕ.

We apply the results from Section 4. Equation (5.4) equals now

v′′(x) = e2iϕ(−iN+2xN+2e(N+2)iϕ − λ)v(x), x ∈ [a,∞). (5.8)

Here we choose for simplicity a = 1 because then we can choose λ = 0, see below. This is without
loss of generality, as the classification into limit point/limit circle just describes the behaviour of
the solutions at the singular endpoint, which is here ∞. If

ϕ ̸= − (N + 2)

2(N + 4)
π +

2k

N + 4
π, for k = 0, . . . , N + 3, (5.9)

then
0 /∈ co{e−2iϕr − iN+2xN+2e(N+2)iϕ : 0 < r <∞, x ∈ [1,∞)}.

That is, assumptions (i) and (ii) from Theorem 5.1 are satisfied for λ = 0. Moreover,∫ ∞

1

∣∣∣∣ 5(e2iϕq′(x))2

16(e2iϕq(x))5/2
− e2iϕq′′(x)

4(e2iϕq(x))3/2

∣∣∣∣ dx ≤
∫ ∞

1

5(N + 2)2

16x3+N/2
+

(N + 2)(N + 1)

4x3+N/2
dx <∞

and (iii) from Theorem 5.1 is satisfied. Finally, note that

Re eiϕq(x)1/2 = x
N+2

2 cos θ, Im eiϕq1/2(x) = x
N+2

2 sin θ,

where

θ :=

(
N + 4

2

)(
ϕ+

π

2

)
A straightforward calculation shows that cos θ ̸= 0 if (5.9) holds. In this case,∫ ∞

1

Re
(
eiϕ
√
q(x)− λ

)
dx = ∞ and lim

x→∞

| Im eiϕq(x)1/2|
|Re eiϕq(x)1/2|

=
| sin θ|
| cos θ|

= | tan θ| <∞.

Therefore, for large x, we have | Im eiϕq(x)1/2| ≤ K|Re eiϕq(x)1/2| for some K > 0. Then

lim inf
x→∞

(
Re eiϕ

√
q(x)− λ

)2∣∣∣√q(x)− λ
∣∣∣ = lim inf

x→∞

xN+2 cos2 θ

x
N+2

2

= lim inf
x→∞

x
N+2

2 cos2 θ > 0



14 F. LEBEN, E. LEGUIZAMÓN, C. TRUNK, AND M. WINKLMEIER

and applying Theorem 5.2 (γ) we obtain that (5.8) is in the limit point I case as long as ϕ satisfies
(5.9). This was already proven in [11] with a somehow different argument.
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