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Abstract. Quantum dynamics of a particle confined in a box with time-dependent

wall is revisited by considering some unexplored aspects of the problem. In particular,

the case of dynamical confinement in a time-dependent box in the presence of purely

time-varying external potential is treated by obtaining exact solution. Also, some

external potentials approving separation of space and time variables in the Schrödinger

equation with time-dependent boundary conditions are classified. Time-dependence

of the average kinetic energy and average quantum force are analyzed. A model

for optical high harmonic generation in the presence of dynamical confinement and

external linearly polarized monochromatic field is proposed.

1. Introduction

Dynamical confinement in quantum mechanics attracted much attention during past

few decades. It is described in terms of the Schrödinger equation with time-dependent

boundary conditions.

Early treatments of the problem date back to Doescher, who explored basic aspects

of the problem [1]. Munier et al. considered more detailed treatment of the problem

and computed some physically observable quantities for the problem of time-dependent
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box [2]. Later Makowsky [3]-[5] and Razavy [6, 7] presented a systematic study of

the problem, by considering one-dimensional box with moving walls and classifying

time-dependence of the wall approving exact solution of the Schrödinger equation with

time-dependent boundary conditions. Unitary transformation mapping time-dependent

box to that with fixed walls was found in [6, 7] using an approach developed earlier by

Berry and Klein [8]. Some aspects of the problem of quantum box with moving walls

and its applications to dynamical Casimir effect was studied in a series of papers by

Dodonov et al. [9]-[12]. Berry phase in time-dependent box was considered in [13, 14, 15].

Seba considered the problem of time-dependent box in the context of quantum Fermi

acceleration [16]. Application of the time-dependent box to the problem of confined

quantum gas was considered in [17, 18], where quantum force operator for dynamical

confinement was introduced.

The problem of hydrogen atom confined in time-dependent spherical box was

considered in [19]. Time-dependent harmonic oscillator which is directly related to

time-dependent quantum box was presented in a series of papers by Lewis [20, 21].

Different aspects of the problem of dynamical confinement was studied in [22] -[28].

Inverse problem for dynamical confinement, i.e. the problem of recovering boundary’s

time-dependence from existing solution is considered in [29]. Dynamical confinement

in a half-line is studied in [30]. The probem of time-dependent Neumann boundary

conditions is treated in [31]. Extension of the dynamical confinement to relativistic case

by considering Dirac equation for time-dependent box was done in [32]. Time-dependent

quantum graphs have been considered in the Refs.[33, 34, 35].

Despite the fact that considerable aspects of the problem of dynamical confinement

have been considered, some issues in the topic are still remaining as less- or not studied.

This concerns such aspects as time-dependent Neumann boundary conditions, non-

adiabatic limit and exactly solvable models. Another important problem in this context

is extension of the model to the case when time-dependent box interacts with an external

potential. In such case, if the potential is position independent, the problem approves

factorization of space and time variables.

In this paper we address the problem of dynamical confinement in the presence

of a external electromagnetic field. By assuming that time-dependence of the wall’s

position approves separation of space and time-variables, we obtain general solution of

the problem and compute such physically observable characteristics, as average kinetic

energy and average force. Moreover, we consider the case of dynamical confinement

driven by external linearly polarized monochromatic optical field. For this system, we



Quantum particle under dynamical confinement 3

study high harmonic generation induced by optical field.

This paper is organized as follows. In the next section we briefly recall the problem

of time-dependent boundary conditions for the Schrodinger equation on a quantum

box. In Section 3 we consider a particle in a time-dependent box in the presence of

external potentials with the focus on exactly solvable cases, i.e., when the problem

allows factorization of the time- and space variables. Section 4 presents the treatment

of the average kinetic energy of the particle and of the average quantum force acting to

the particle by moving wall. Section 5 presents a quantum optics model for dynamical

confinement by considering high harmonic generation, Fermi acceleration and average

quantum force as a function of time.

2. Dynamical confinement in 1D quantum box

Here, following [3, 6], we briefly recall the problem of time-dependent boundary

conditions in quantum mechanics, by considering 1D quantum box with moving wall.

Consider a particle confined between two infinitely high walls. The position of the left

wall is assumed to be fixed at x = 0, while the right one moves according to some

positively determined function L(t) which is a smooth function, L : [0,∞) → (0,∞).

Then the particle dynamics in such a box is described in terms of the following time-

dependent Schrödinger equation (h̄ = m = 1):

i
∂Ψ(x, t)

∂t
= H(x, t)Ψ(x, t), t ∈ [0,∞), x ∈ [0, L(t)] (1)

with the Hamiltonian

H(x, t) = −1

2

∂2

∂x2
+ V (x, t). (2)

Here, for simplicity, we assume the potential V to be continuous on its domain

{(x, t) | t ∈ [0,∞), x ∈ [0, L(t)]}. We impose, for Equation (1), the following Dirichlet

boundary conditions given at the interval [0, L(t)]:

Ψ(x, t)|x=0 = Ψ(x, t)|x=L(t) = 0. (3)

Introducing a new coordinate

y =
x

L(t)
, (4)

Equation (1) can be rewritten as

i
∂Ψ(y, t)

∂t
= − 1

2L2

∂2Ψ(y, t)

∂y2
+ i

L̇

L
y
∂Ψ(y, t)

∂y
+ V (yL(t), t)Ψ(y, t), (5)
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where L̇ = dL/dt and new boundary conditions are given by

Ψ(y, t)|y=0 = Ψ(y, t)|y=1 = 0 for all t ∈ [0,∞). (6)

However, such transformation leads to breaking of the self-adjointness of the

problem, i.e., the Schrödinger operator in the right hand side of (5) is not self-adjoint.

Therefore, one needs to recover self-adjointness using the transformation

Ψ(y, t) =
√
2/L exp

(
i

2
LL̇y2

)
φ(y, t), (7)

that reduces Equation (5) to the following form [3]

i
∂φ(y, t)

∂t
= − 1

2L2

∂2φ(y, t)

∂y2
+

(
1

2
LL̈y2 + V

)
φ(y, t), (8)

where L̈ = dL̇/dt and φ(y, t) satisfies the boundary conditions (6). We mention that

(8) can also be obtained from Equation (1) via some unitary transformation, cf. [7].

In this section we consider the case V = 0. Assume that the expression 4L3L̈ is a

non-positive constant for all t ∈ [0,∞), i.e.

0 ≤ B2 = −4L3L̈ = const (9)

for some real B. Introduce a new “time variable” τ via

τ(t) =
∫ t

0

ds

[L(s)]2
. (10)

Equation (8) reduces to

i
∂φ(y, τ)

∂τ
= −1

2

∂2φ(y, τ)

∂y2
− 1

8
B2y2φ(y, τ), (11)

see also [3]. The solution of (11) can now be factorized as

φ(y, τ) = f(τ)Φ(y). (12)

Using a separation constant K, the equation for Φ reduces to the Kummer equation

z
d2U

dz2
+

(
1

2
− z

)
dU

dz
+

1

4
(κ2 − 1)U = 0, (13)

where z = (iB/2)y2, κ2 = 4K/iB, U(z) = exp (z/2)Φ(z). Hence (see 13.1.13 from [36])

the Kummer function z1/2M
(
3−κ2

4
, 3
2
, z
)
is a solution of Equation (13). Hence, a solution

for

H0Φ(y) = KΦ(y) with H0 := −1

2

d2

dy2
− 1

8
B2y2. (14)

is of the form

Φ(y) = CyM

(
3iB − 4K

4iB
,
3

2
,
iB

2
y2
)
e−

iB
4
y2 , (15)
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where C is the normalization constant. Exact solution of Equation (1) can be written

as [3]

Ψ(x, t) =
Cx√
L3

e
i
2
x2

(
L̇
L
− B

2L2

)
−iKτ(t)

M

(
3iB − 4K

4iB
,
3

2
,
iB

2

x2

L2

)
. (16)

Note that Ψ(0, t) = 0 for all t. However, Ψ(L, t) = 0 if and if

M
(
3iB − 4K

4iB
,
3

2
,
iB

2

)
= 0. (17)

Therefore the boundary condition (3) is satisfied if and only if K equals a zero of the

Kummer function in (17). Denote these zeros by Kn, n ∈ N . Define the function Ψn

via the right hand side of Equation (16) where K is replaced by Kn.

It is important to mention that the time-dependent Dirichlet boundary conditions

imposed for (1) approve norm conservation. Indeed, let N(t) be the norm at time t as

the L2-norm of Ψ with respect to the spatial variable x,

N(t) := ||Ψ(x, t)||2 =
∫ L(t)

0
|Ψ|2dx. (18)

Then, for the time-derivative we have

dN

dt
(t) =

∫ L(t)

0

∂

∂t
|Ψ(x, t)|2dx+ L̇(t)|Ψ|2|x=L(t) =

∫ L(t)

0

∂

∂t
|Ψ(x, t)|2dx (19)

Taking into account (1), (3) and

i
∫ L(t)

0

∂

∂t
|Ψ|2dx =

1

2

(
Ψ
∂Ψ∗

∂x
−Ψ∗∂Ψ

∂x

)∣∣∣∣∣
x=L(t)

x=0

= 0, (20)

we have norm conservation dN
dt
(t) = 0.

3. Dynamical confinement in the presence of external potential:

Exactly solvable models

The model in Section 2 approves factorization of the variables in the case of constraint

(9). However, when the system interacts with an external position-independent time-

varying field, factorization is also possible. Here we consider time-dependent quantum

box driven by external purely time-dependent potential V . The dynamics of the system

is governed by the following time-dependent Schrödinger equation:

i
∂Ψ(x, t)

∂t
= −1

2

∂2Ψ(x, t)

∂x2
+ V (t)Ψ(x, t) (21)

The boundary conditions for this equation are imposed as in (3). Following the

previous section, we transform the boundary conditions into time-independent ones

by introducing a new coordinate y which is given by (4). Using the transformation of
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the wave function given by Equation (7) and under the assumption that L(t) fulfills the

condition in Equation (9), we have with Equation (8)

iL2∂φ(y, t)

∂t
= −1

2

∂2φ(y, t)

∂y2
− 1

8
B2y2φ(y, t) + L2V (t)φ(y, t), (22)

Let Φn satisfy (14) with Dirichlet boundary conditions (17) with respect to the

eigenvalue K = Kn and denote its normalization constant by Cn. It is well-known that

the system {Φn}n forms an orthonormal basis of L2(0, 1). We choose as an Ansatz for

the solution of (22)

φ(y, t) =
∑
n

Cn(t)Φn(y) (23)

By substituting (23) into Equation (22), we (formally) obtain

iL2
∑
n

Ċn(t)Φn(y) =
∑
n

Cn(t)H0Φn(y) + L2V (t)
∑
n

Cn(t)Φn(y). (24)

Then, after multiplying both sides of equation to Φ∗
m(y), integrating over y and

using the orthonormal condition for a basis,
∫ 1
0 Φ∗

m(y)Φn(y)dy = δmn, we have

iL2Ċn(t) = Cn(t)Kn + L2V (t)Cn(t) (25)

It’s solution is in the form

Cn(t) = Cn(0)e
−i
∫ t

0
(Kn

L2 +V (s))ds (26)

where Cn(0) can be determined from a smooth initial condition which insures∑
n |Cn(0)|2 < ∞. Finally, one obtains the general solution for Equation (21)

Ψ(x, t) =
∑
n

Cn(0)e
−i
∫ t

0
(Kn

L2 +V (s))dsCn

√
2

L3
xM

(
3iB − 4Kn

4iB
,
3

2
,
iB

2

x2

L2

)

×e−
iB
4

x2

L2+
i
2

L̇
L
x2

. (27)

It is worthful to consider some other potentials approving factorization of variables

in the Schrödinger equation with time-dependent boundary conditions. One of them is

interaction proportional to inverse square of the distance given as

V =
α

x2

where α is constant. For this case Equation (8) can be written as

i
∂φ(y, t)

∂t
= − 1

2L2

∂2φ(y, t)

∂y2
+

(
1

2
LL̈y2 +

α

L2y2

)
φ(y, t), (28)

Variables of this equation can be separated, provided L(t) fulfills (9).
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Similarly to the above, one can show that potential in the form V = xε(t) also

approves of separation time and space variables and one obtains Schrödinger equation

for anharmonic oscillator given as

i
∂φ(y, t)

∂t
= − 1

2L2

∂2φ(y, t)

∂y2
+

(
1

2
LL̈y2 + Lyε(t)

)
φ(y, t), (29)

Variables of this equation can be separated when L3L̈ = const = β and L3ε(t) = const =

γ conditions are fulfilled. From those two conditions one can see ε(t) = γ
β
L̈ and (29)

becomes

iL2∂φ(y, t)

∂t
= −1

2

∂2φ(y, t)

∂y2
+

1

2
βy2φ(y, t) + γyφ(y, t). (30)

Finally, for potential given in the form of nonlinearly polarized monochromatic field

given by V = x2ϵ cosωt, where ϵ, ω are strength and frequency of external field, one can

also factorize space and time variables and have

i
∂φ(y, t)

∂t
= − 1

2L2

∂2φ(y, t)

∂y2
+

(
1

2
LL̈y2 + L2y2ϵ cosωt

)
φ(y, t), (31)

Conditions for factorization of variables for this equation given in the form of constraint

L3L̈+ 2ϵL4 cosωt = const = β.

4. Average kinetic energy and quantum force induced by dynamical

confinement

Having found the solution of the Schrödinger equation for time-dependent quantum box,

one can compute physically observable variables, such as average kinetic energy and

average (quantum) force. The average kinetic energy is determined as the expectation

value of the kinetic energy operator:

Ĥ = −1

2

∂2

∂x2
. (32)

The expectation value of energy is given by

< E(t) >= ⟨Ψ|Ĥ|Ψ⟩, (33)

where |Ψ⟩ is a solution of (21). We have

< Ek(t) >=
∫ L(t)

0
Ψ∗(x, t)

(
−1

2

∂2

∂x2

)
Ψ(x, t)dx =

1

2

∫ L(t)

0

∣∣∣∣∣∂Ψ(x, t)

∂x

∣∣∣∣∣
2

dx(34)

or with (7)

< Ek(t) >=
1

L2

∫ 1

0

∣∣∣∣∣∂φ(y, t)∂y

∣∣∣∣∣
2

dy +
2L̇

L
Im

(∫ 1

0
yφ∗(y, t)

∂φ(y, t)

∂y
dy

)
+
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L̇2
∫ 1

0
y2|φ(y, t)|2dy =

1

L2
S0 +

2L̇

L
Im(S1) + L̇2S2.

Explicit expressions for S0, S1 and S2 are provided in Appendix A.

Quantum force can be determined as the expectation value of the force operator as

F̂ = − ∂Ĥ

∂L(t)
. (35)

Then for the expectation value of the force operator one has [17]

< F (t) >= −∂⟨Ek(t)⟩
∂L

=
2

L3
S0 +

2L̇

L2
Im(S1). (36)

5. Quantum Fermi acceleration and high harmonic generation in driven

time-dependent box

An important effect that can be realized in a quantum box with oscillating walls is the

so-called Fermi acceleration in quantum regime, or quantum Fermi acceleration. It is a

quantum analog of the classical Fermi acceleration that occurs in bouncing balls colliding

with oscillating wall. In classical regime, unbounded growth of the average kinetic

energy of a particle can be observed in such a system. Quantum Fermi acceleration

in a time-dependent box was studied in [7, 16]. Here we extend these studies to the

case of interaction (in addition to the interaction with oscillating wall) with an external

time-periodic potential.

We consider a version of the dynamically confined system which can be

experimentally realized in optics. Namely, we propose a model for time-dependent

box driven by linearly polarized monochromatic field given by

V (x, t) = ϵx cosωt, (37)

where ϵ and ω are the field strength and the frequency, respectively.

In the following we consider a quantum particle in a box with oscillating wall

and interacting with the external linearly polarized monochromatic field given by (37).

Wall’s oscillation is assumed to be given as

L = L0 + a cosω0t.

In this case, Equation (8) cannot be separated and one has to solve it numerically.

Here we will use the following Ansatz for φ(y, t):

φ(y, t) =
∑
n

Cn(t) sin πny, (38)

where ϕn(y) := sin πny solves the equation −1
2
d2ϕn

dy2
= π2n2

2
ϕn with Dirichlet boundary

conditions on the interval [0, 1].
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Figure 1. Average kinetic energy and force as a function of time at different values

of amplitude of oscillating wall a for L0 = 10, ω0 = 0.5, ϵ = 0.1 and ω = 0.05

(L = L0 + a cosω0t and V=ϵx cosωt).

For the coefficients Cn we have the following system of differential equations

iL2Ċn(t) = Cn(t)
π2n2

2
+
∑
m

VnmCm(t) (39)

where Vnm = L3L̈I1nm + 2ϵL3 cosωtI2nm and

I1nm =
∫ 1

0
y2ϕ∗

nϕmdy =


1
6
+ 1

4n2π2 , n = m
1
π2

(
(−1)m−n

(m−n)2
− (−1)m+n

(m+n)2

)
, n ̸= m

and

I2nm =
∫ 1

0
yϕ∗

nϕmdy =


1
4
, n = m

1
2π2

(
(−1)m−n−1
(m−n)2

− (−1)m+n−1
(m+n)2

)
, n ̸= m

We solve (39) numerically by choosing initial condition as C1(0) = 1 and Cn(0) = 0 for

n ̸= 1. Having found Cn(t) one constructs ϕn and Ψ via (4) and (7).

In Figure 1 time-dependence of the average kinetic energy of the particle < Ek >

and the quantum force < F > acting on the wall are plotted at different values of the

wall’s oscillation amplitude a. For smaller values of a both average kinetic energy and

force are periodic, while at higher values they become quasi periodic and certain growth

of the ”peaks” can be observed. However, suppression of the growth occurs as time

elapses.
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Figure 2. Average kinetic energy and force as a function of time at different values

of field strength ϵ for L0 = 10, a = 3, ω0 = 0.5 and ω = 0.05 (L = L0 + a cosω0t and

V=ϵx cosωt).

Figure 2 presents the time-dependence of the average kinetic energy and the force

at different values of the external field strength ϵ. The behavior of < Ek(t) > and

< F (t) > are similar to that in Figure 1, which implies similarity of the roles of ϵ and

a in the particle dynamics. In other words, particle ”feels” both, oscillating wall and

external monochromatic field as a periodic perturbation.

In Figures 3 and 4, < Ek(t) > and < F (t) > are plotted at different values of the

external field and oscillating boundary frequency for L0 = 10, respectively. Qualitatively

plots look similar to those in Figures 1 and 2.

An important effect which can be considered in the system time-dependent quantum

box+ external monochromatic field is optical high harmonic generation (HHG) induced

by interaction of the time-dependent box with external optical field given by (37).

Evolution of the whole system, ”dynamical box + optical field” is governed by (1).

Detailed description of the high harmonic generation in quantum regime can be

found in [38]. Here we will focus on the role of confinement in optical harmonic

generation. The main physical characteristics of such process is the average dipole
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Figure 3. Average kinetic energy and force as a function of time at different values of

frequency of external field ω for L0 = 10, a = 3, ω0 = 0.5 and ϵ = 0.1 (L = L0+a cosω0t

and V=ϵx cosωt).

moment which is given by [38]

< d(t) >= − < Ψ(x, t)|x|Ψ(x, t) > .

The spectrum of high harmonic generation (HHG) is characterized by the quantity

[38]

I(ν) = | < d(ν) > |2 =
∣∣∣∣∣ 1T

∫ T

0
e−iνt < d(t) > dt

∣∣∣∣∣
2

, (40)

where T is the total duration of interaction.

Figure 5 shows plots of the spectrum of harmonic generation as a function of

harmonic order at different values of external field strength for L0 = 10, a = 3, ω0 = 0.5,

ω = 1 and T = 200. The plot shows that the HHG intensity strongly depends on the

field strength. For higher values of ϵ, one can observe increasing of intensity. Figure 6

presents plots of HHG-spectra at different amplitudes of oscillating box. An important

feature of the HHG-spectra presented in Figures 5 and 6 is the existence of a plateau

in the curves, i.e. there is rather side range of frequencies having the same intensity of

generation (emission). Such a feature is of importance from the viewpoint of applications
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Figure 4. Average kinetic energy and force as a function of time at different values

of frequency of oscillating wall ω0 for L0 = 10, a = 3, ϵ = 0.1 and ω = 0.05

(L = L0 + a cosω0t and V=ϵx cosωt).

of the model in attosecond physics, where wide range of generated high frequencies with

high enough intensity is required.

6. Conclusion

In this paper we considered the problem of dynamical confinement in a time-dependent

1D quantum box interacting with external potentials. The main focus is given to find

an exact solution of the problem. In particular, an exact solution of the problem

is obtained for the purely time-dependent external potential. Some other external

potentials approving factorization of space and time variables in the time-dependent

Schrödinger equation with moving boundary conditions are classified.

Average kinetic energy and quantum force for the particle simultaneously subjected

to the influence of dynamical confinement and external time-periodic field are analyzed

as a function of time. A model for high harmonic generation in time-dependent box

that can be experimentally realized in quantum optics, is proposed. The spectrum of

high harmonics generated by such system is computed.

The proposed model can be directly applied to the problems of tunable quantum
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Figure 5. Spectrum of HHG as a function of harmonic order at different values of

field strength ϵ for L0 = 10, a = 3, ω0 = 0.5, ω = 1 and T=200 (L = L0 + a cosω0t

and V = ϵx cosωt).
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amplitude of oscillating box a for L0 = 10 ϵ = 0.1, ω0 = 0.5, ω = 1 and T = 100

(L = L0 + a cosω0t and V = ϵx cosωt).
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Fermi acceleration and quantum transport in low-dimensional confined systems arising

in optics and condensed matter. An extension of the model to the case of 2D and

3D systems, where the role of boundaries geometry is very challenging is a task for

forthcoming studies.

Appendix A

Here we will give explicit forms of the quantities S0, S1 and S2 Using the solution of

Equation (22) one can find S0, S1 and S2 that are defined as

S0 =
∑
n,m

C∗
n(t)Cm(t)

[
I1 +

Wm

6
I2 +

W ∗
n

6
I∗2 +

W ∗
nWm

36
I4 −

iBW ∗
n

12
I5 +

iBWm

12
I∗5 +

B2

4
I6
]

S1 =
∑
n,m

C∗
n(t)Cm(t)

[
I3 +

Wm

6
I∗5 −

iB

2
I6
]

S2 =
∑
n,m

C∗
n(t)Cm(t)I6

with Wn = 3iB − 4Kn and I1, I2, I3, I4, I5, I6 given by

I1 =
∫ 1

0
M∗

(
3iB − 4Kn

4iB
,
3

2
,
iB

2
y2
)
M

(
3iB − 4Km

4iB
,
3

2
,
iB

2
y2
)
dy

I2 =
∫ 1

0
y2M∗

(
3iB − 4Kn

4iB
,
3

2
,
iB

2
y2
)
M

(
7iB − 4Km

4iB
,
5

2
,
iB

2
y2
)
dy

I3 =
∫ 1

0
y2M∗

(
3iB − 4Kn

4iB
,
3

2
,
iB

2
y2
)
M

(
3iB − 4Km

4iB
,
3

2
,
iB

2
y2
)
dy

I4 =
∫ 1

0
y4M∗

(
7iB − 4Kn

4iB
,
5

2
,
iB

2
y2
)
M

(
7iB − 4Km

4iB
,
5

2
,
iB

2
y2
)
dy

I5 =
∫ 1

0
y4M∗

(
7iB − 4Kn

4iB
,
5

2
,
iB

2
y2
)
M

(
3iB − 4Km

4iB
,
3

2
,
iB

2
y2
)
dy

I6 =
∫ 1

0
y4M∗

(
3iB − 4Kn

4iB
,
3

2
,
iB

2
y2
)
M

(
3iB − 4Km

4iB
,
3

2
,
iB

2
y2
)
dy
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