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Abstract

In the past decades, wireless communication systems have undergone rapid development, and many in-
vestigations have been done since Maxwell predicted the existence of electromagnetic waves. In recent
years, vehicle to X (V2X) communication research has been growing steadily. V2X describes the ability
to transmit data between a vehicle (V) and “everything”. In the future, vehicles might be able to com-
municate with their environment to prevent traffic accidents and reduce congestion by allowing vehicles
to transmit and receive data through a vehicular ad hoc network at their speed and position. In order
to achieve the ultimate goal of enhancing transportation safety, it is crucial to establish reliable commu-
nication links. The main challenge of vehicular communications introduces new properties because the
physical layer properties are rapidly changing due to inherent mobility within the channel, high vehicle
speeds, varying antenna positions, and many handovers due to smaller cells. This brings up a number
of challenges in terms of channel characterization because it is a strong time-variant channel and many
transitions occur; therefore, it is a non-stationary channel.

In this thesis, non-stationary tapped delay line (TDL) models are used to describe the vehicle to infras-
tructure (V2I) channels. This thesis proposes a new strategy to extract TDL channel model parameters
from measurement data. The proposed approach is based on an existing method to derive parameters
for a TDL model. It will be shown that with a different method of choosing taps, the number of taps
necessary to regenerate the root mean square delay spread (RMS-DS) of a channel can be significantly
reduced. An approach is proposed to verify the correctness of the channel model parameters derivation.
The feasibility of the method will be confirmed using channel-sounding measurements.

This dissertation devises a generator to produce channel impulse responses (CIRs) and describes the
non-stationary behavior of the channels via employing an ON/OFF process. Different order Markov
chains are modeled with the aim of better capturing the non-stationary behavior. The investigation
shows that first-order two-state Markov chains are preferable to represent multipath’s frequent ON/OFF
behavior, and the second- and third-order Markov models do not make enormous effects.

A method for extending a single input single output (SISO)-TDL model to multiple input multiple
output (MIMO) under non-wide sense stationary uncorrelated scattering (non-WSSUS) assumption is
introduced to develop TDL channel models for the V2I MIMO systems. The analysis evaluates SISO-
with MIMO-configuration in terms of channel capacity. Different MIMO configurations are explored, and
it will be illustrated that the position of antennas plays an important role. Using only four antennas at
the transmitter (Tx) and receiver (Rx) that radiate towards different directions will make a qualitative
leap in the performance of the system.
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Zusammenfassung

In den vergangenen Jahrzehnten haben drahtlose Kommunikationssysteme eine rasante Entwicklung
durchgemacht und es wurden viele Untersuchungen durchgeführt, seit Maxwell die Existenz von elek-
tromagnetischer Wellen vorausgesagt hat. In den letzten Jahren hat die Forschung im Bereich der vehicle
to X (V2X)-Kommunikation stetig zugenommen. V2X beschreibt die Fähigkeit, Daten zwischen einem
Fahrzeug oder vehicle (V) und “allem” zu übertragen. In Zukunft könnten Fahrzeuge mit ihrer Umge-
bung kommunizieren, um Verkehrsunfälle zu vermeiden und Staus zu verringern. Dazu werden sie ihr
Geschwindigkeits- und Positionsdaten über Ad-hoc-Fahrzeugnetze senden und empfangen können. Um die
Verkehrssicherheit zu erhöhen, ist eine zuverlässige Kommunikationsverbindung notwendig. Die größte
Herausforderung bei der Fahrzeugkommunikation besteht darin, dass sich die Eigenschaften des Physical
Layers aufgrund der inhärenten Mobilität innerhalb des Kanals, der hohen Fahrzeuggeschwindigkeiten,
der unterschiedlichen Antennenpositionen und der vielen Handover aufgrund kleinerer Zellen schnell än-
dern. Dies bringt eine Reihe von Herausforderungen in Bezug auf die Kanalcharakterisierung mit sich.
Es handelt sich um einen Kanal mit starker Zeitvarianz und es treten viele Übergänge auf. Somit handelt
es sich um einen nicht-stationärer (non-stationary) Kanal.

Das Hauptziel dieser Untersuchung ist es, eine Methode zu finden, mit der der Kanal einer komplexen
Umgebung in einer einfachen Form mit weniger strengen Beziehungen zur Geometrie dargestellt werden
kann. Dabei werden die statistischen Eigenschaften ähnlich der Messdaten beibehalten. In dieser Arbeit
werden nicht-stationäre tapped delay line (TDL)-Modelle verwendet, um vehicle to infrastructure (V2I)-
Kanäle zu beschreiben. Es wird eine neue Strategie zur Extraktion von TDL-Kanalmodellparametern
aus Messdaten vorgeschlagen. Dieser Ansatz basiert auf einer bestehenden Methode zur Ableitung von
Parametern für ein TDL-Modell. Es wird gezeigt, dass mit einer anderen Methode zur Auswahl der
Taps die Anzahl der Abgriffe, die zur Rekonstruktion der root mean square delay spread (RMS-DS)
eines Kanals erforderlich sind, erheblich reduziert werden kann. Ein neuer Ansatz zur überprüfen der
Korrektheit der Ableitung der Kanalmodellparameter wird aufgezeigt. Die Durchführbarkeit der Methode
wird anhand von Channel Sounding Messungen bestätigt.

In dieser Dissertation wird ein Generator zur Erzeugung von Kanalimpulsantworten entwickelt und das
nicht-stationäre Verhalten der Kanäle durch die Verwendung eines ON/OFF-Prozesses beschrieben. Es
werden Markov-Ketten unterschiedlicher Ordnung modelliert, um das nicht-stationäre Verhalten besser
zu erfassen. Die Untersuchung zeigt, dass Markov-Ketten erster Ordnung mit zwei Zuständen vorzuziehen
sind, um das häufige ON/OFF-Verhalten von Mehrwegpfaden darzustellen, und dass die Markov-Modelle
zweiter und dritter Ordnung keine großen Auswirkungen haben.

Eine Methode zur Erweiterung eines single input single output (SISO)-TDL-Modells auf multiple in-
put multiple output (MIMO) unter der non-wide sense stationary uncorrelated scattering (non-WSSUS)-
Annahme wird eingeführt, um TDL-Kanalmodelle für V2I MIMO-Systeme zu entwickeln. Die Analyse
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bewertet die SISO- mit der MIMO-Konfiguration in Bezug auf die Kanalkapazität. Es werden ver-
schiedene MIMO-Konfigurationen untersucht, und es wird gezeigt, dass die Position der Antennen eine
wichtige Rolle spielt. Die Verwendung von nur vier Antennen am transmitter (Tx) und receiver (Rx), die
in unterschiedliche Richtungen abstrahlen, führt zu einem qualitativen Sprung in der Leistungsfähigkeit
des Systems.
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Chapter 1

Introduction

1.1 Motivation and Context of the Goal

The Propagation Channel for Wireless Communication Systems

In the past decades, wireless communication systems have undergone rapid development, and many in-
vestigations have been done since Maxwell predicted the existence of electromagnetic waves. A significant
number of techniques have been applied in a variety of ways in the area of wireless communication. For
instance, it is easy to identify the use of wireless communication techniques for the operation of global
positioning system (GPS) or cell phones. The term “wireless communication” comes from the earlier
“radio communication,” which describes transmitting any information without the use of cables such
as fiber cables. It provides transmitting information with cheaper and more convenient alternatives,
but sometimes worse qualities in comparison to the wired case. In communication systems, the physical
medium between the transmitter (Tx) and receiver (Rx) is termed the channel, which may be subject to
unpredictable signal distortions and delays. In wireless communication systems, there are other critical
issues such as limited bandwidth, user privacy, and information security; therefore, in the design and
deployment of a system, there are always numerous trade-offs to be addressed [96,155]. Here, it is worth
discussing the definition of channel characterization. The channel can be defined as the “object under
study” [155]. The complete set of parameters for the complete set of paths in the frequency band of
interest determines the channel. The term “characterization” refers to a good description of the channel
over a spatial region of interest [155].

In recent years, vehicle to X (V2X) has been a hot topic and many researchers have performed research
in the field of vehicular communication systems. V2X describes the ability to transmit data between a
vehicle (V) and “everything” e.g., X. In general, there are mainly four possible node types to be deployed
in V2X communication systems that are vehicle to vehicle (V2V), vehicle to infrastructure (V2I), vehicle
to pedestrian (V2P), and Vehicle to Network (V2N) [3, 81]. V2X communication system is an essential
topic of current research as it makes transportation safer and more efficient. In the future, vehicles might
be able to communicate with their environments, such as other vehicles, roadside units, and many more.
The goal of the V2X communication system is to prevent traffic accidents, improve transportation safety,
and reduce congestion. In the event of presumed accident risk, a driver can receive a warning, or a vehicle
might be able to take preventive actions itself, e.g., emergency braking. Furthermore, vehicle crashes are
due to different factors, such as bad weather, vehicle mechanical problems, or drivers’ behaviors. Drivers
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are considered to cause around 90% of overall accidents, especially chain collisions caused by drivers’
inability to react in time in emergency situations [24]. The study [161] shows that if the vehicle operator
was provided a warning at least one-half second prior to a collision, about 60% of roadway collisions could
be avoided. Hence, in order to achieve the ultimate goal to enhance transportation safety, it is crucial
to establish reliable communication links between those various partners. The channel characterization
of such applications should contain a set of channel models in order to assist evaluations. These models
are defined by sets of parameters that are defined mathematically and by their structure. A way how to
interpret there models is that they can be used as blocks in a cascade of models in wireless communication
systems, as illustrated in Fig. 1.1 [96].

Fig. 1.1 Conceptual illustration of use of channel model, note adapted from [96]

In Fig. 1.1, the ellipse block and rectangular ends components lie within the physical layer (PHY)
of the communications network stack, whereas the parameters and settings of the medium access control
(MAC) layer and data link layer (DLL) can be incorporated. The value of parameters of the transmission
scheme, such as the required bit rate, and the value of parameters of the reception scheme are specified
performance requirements of the communication system, as indicated in Fig. 1.1. The performance
evaluation output for a given transmission- and reception-scheme often depends strongly upon the channel
model(s) used. If the performance evaluation outputs indicate that the system will not meet requirements,
then appropriate remedies can be added at the transmission- or reception-scheme or both ends with
knowledge of the channel, and the evaluation will be repeated. On the other hand, if the performance
evaluation outputs will meet the system requirements, then system design can proceed on to higher layers.
As a consequence, the design and performance prediction for higher layers in the communications protocol
stack depends upon the physical layer performance characterization. Thus, it is an indispensable part
of the system because it directly affects the medium access control and data link layers 1, and through
those layers, it affects the performance of the higher layers [96,134].

Channel Modeling

Universally, the use of channel models is accepted as an important element of system design, evaluation,
and optimization [6, 96, 139, 155]. Proper developed models and simulations are much like a laboratory

1Examples of physical and data link layer design items such as forward error correction coding, companion interleaving
schemes, modulation, signal bandwidth, and receiver processing algorithms. Example of channel parameters has a significant
effect on the system design parameters, such as multipath delay spread affecting symbol rate, and channel attenuation affects
transmit power, modulation, detection type, and link ranges [6,16,23,27,59,90,117,133,137,139,155].

2
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implementation of a system; thus, a valuable tool for gaining insight into system behavior is simula-
tion [146]. Since parameter values can be changed at will, such as signal to noise ratio (SNR) and
filter bandwidth (B), the effects of these changes can quickly be observed on system performance [146].
The evaluation of a system using a channel model developed from measured data provides realistic esti-
mates [6, 16, 90, 96, 133, 139, 155]. This brings us to the conclusion that an accurate propagation channel
model is required to achieve the optimum performance of any wireless system. Before the system is ac-
tually deployed, an appropriate modulation scheme, error correction coding techniques, and equalization
technique can be selected by using the precise knowledge of the channel [12, 23, 27, 59, 117, 137]. These
are key steps before actual system deployment to avoid expensive remedial approaches after deployment.

The channel models developed in this investigation are based upon both theory and measurements;
therefore, these models are in this dual sense more “realistic” than models based upon analysis only.
These models can be used by any engineers or researchers, who evaluate the performance of V2I com-
munication systems 2. The goal of channel modeling is in general to find a method of describing or
generating the channel impulse response (CIR) of the radio channel. There are different methods known
in the literature, where either the CIR is determined directly or indirectly by means of a geometrical
model of the propagation environment. In the literature, channel models can be categorized into two
classes, which are stochastic models and geometry based deterministic models (GBDMs). The stochastic
models can be classified as the non-geometrical stochastic models (NGSMs) and geometry based stochas-
tic models (GBSMs) [85, 152]. GBDM is a deterministic approach and characterizes channel parameters
in a deterministic manner as considered in [101]. The drawback of such models cannot easily be general-
ized. In the GBSMs, predefined stochastic distribution of effective scatters around the Tx, and the Rx is
used to simulate the channel. The GBSMs can be further classified into the irregular-shaped geometry
based stochastic model (GBSM) and the regular-shaped GBSM, more detail can be found in [14,80]. The
GBSMs can be generalized to more scenarios due to the static nature of the geometry. Static discrete
scatters, mobile discrete scatters, and diffuse scatters are randomly generated, but as claimed in [85], the
non-wide sense stationary uncorrelated scattering (non-WSSUS) properties of the V2X channels cannot
be fully represented by this model. The non-geometrical stochastic model (NGSM) characterizes typical
channel parameters in a completely statistical manner [7, 85, 152], and it can be extended via Markov
chains models to represent the non-WSSUS properties of the V2X channels as in [93,96,129]. The main
goal of this investigation is to find a method that captures the statistical properties of the channel in
a similar way to real measurement data. By keeping the statistical measures similar to the measured
data, researchers can evaluate the performance of communication systems, such as signal processing algo-
rithms or wireless protocols under realistic channel conditions. Radio channel models for 20 MHz channel
bandwidth in a form of tapped delay line (TDL) model will be developed to cover a different number of
scenarios and capture the primary behavior of V2I channels. TDL models are based on the concept that
the wireless channel can be represented as a superposition of delayed versions of the transmitted signal,
each with a specific delay and amplitude. These taps correspond to the multipath components of the
channel, including the direct path, scattering and reflections from various obstacles. A detailed literature
review is provided to clearly confirm that our investigation in the environment of interest and the band
of interest has not been previously studied.

Since the licensed frequency range for intelligent transport systems (ITS) applications is in a range
of 5.85GHz to 5.925GHz [2], many channel measurements have been conducted in that range or close to

2V2I technologies allow vehicles to exchange information with road systems (such as traffic lights, lamps, cameras, lane
markers) to collect data about a particular situation.
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it as in [4,12,78,111]; therefore, most likely communications of V2X applications are to be in the 5 GHz
range. Other measurements have been made in slightly lower center frequencies, such as 5.2GHz [77,112].
Besides the IEEE802.11p standard, another well-known standard for dealing with V2X communications is
long term evolution-vehicle (LTE-V) [30,104]. Since the foundation is built by long term evolution (LTE),
a variety of frequencies becomes available. This means, at those different frequencies, further measure-
ments must be conducted in order to understand the respective characteristics of the V2X channel. Our
measurement campaign was executed in the frequency region of about 2.5 GHz to fill that gap. It has
been planned to collect data from different environments where V2I communication might be developed.
Our aim was to measure a range of potential V2I conditions by varying Rx locations and collecting data
under different traffic conditions, at different times of the day, and measuring on different streets. One of
the crucial roles in the development of radio channel models is driving parameters. The underlying data
model plays the most important part in any estimation framework.

A TDL Based Non-WSSUS V2X Channel Model

Many researchers have described the dispersive channel model in the form of TDL model for V2X channels
as in [61,63–67,85,93,94,96,129,153] due to its low complexity and simple notation, and its straightforward
implementation in channel emulators. The TDL modeling approach has been approved by standardization
bodies not only as a reference model for universal mobile telecommunications system (UMTS) [72, 163],
and global system for mobiles (GSM) [35], but also adopted by the IEEE802.11p standard for the vehicular
radio channel [22, 79]. TDL models are widely used for cellular system evaluation and system level
simulation for mobile communication scenarios [35,103], but in particular, TDL models are based on the
wide sense stationary uncorrelated scattering (WSSUS) assumption [21]. The same model assumption
(TDL model based on WSSUS assumption) has been developed by Ingram and coworkers for the V2V
channel [9,11,12], but as reported by Ingram in [9], the classical model is not useful for the V2X channel
as it does not feature non-stationarity.

The main challenge of vehicular communications introduces new properties because the physical layer
properties are rapidly changing. When a vehicle becomes a link partner, the communication system needs
to be robust against inherent mobility within the channel, high vehicle speeds, varying antenna positions,
and many handovers due to smaller cells. These properties bring up several challenges in terms of channel
characterization. While low mobility is assumed in macro-cell communication scenarios in order to have
reasonably high stationarity. In V2X communication system, this does not apply; therefore, it results
in the invalidity of WSSUS assumption [22,36,92–94,129,164,165]. Many measurement campaigns have
shown non-stationarities of the channel statistics; for an overview see [36,36,102,105,123].

The non-wide sense stationary (non-WSS) property in the context of V2X communication channels
refers to the fact that channel characteristics change over time due to the dynamically changing envi-
ronment. The high speed of vehicles and the low antenna height of vehicles cause channel conditions to
change. This means that the statistical properties of the channel may not remain constant over time. Cor-
related fading property (non-uncorrelated scattering (non-US)) refers to a common phenomenon where the
transmitted signal reaches the receiver via reflections, scattering, and diffractions. Meaning multipaths
with different delays are not uncorrelated. Instead, due to interactions between the different multipaths
and objects in the environment, they are correlated. The combination of non-WSS and non-US properties
of the channel gives rise to a new assumption called non-WSSUS [64,67,85,155]. The TDL channel model
can be extended via Markov models to represent the non-WSSUS properties. Many sources are focusing
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on developing accurate TDL models for V2X channels. The approach used in this investigation is based
on [129], where a tap is a sample of the bandlimited CIR. The goal of defining TDL models is then to
select only the relevant samples (or set of clusters) of the CIR, derive their parameters and then model
their amplitudes and Doppler shifts properly. In [129], the authors proposed to sub-select the samples
based on power to reproduce 99% of the total power. The proposed approach of [129] is applied, but the
problem of using that approach is the under-estimated root mean square delay spread (RMS-DS) because
it neglects the low power taps with large delays. On the other hand, it generates a large number of taps.
Reducing the number of taps is a very important feature because the implementation of such a model in
channel emulators is limited up to 12 taps 3. Hence, in this investigation, a new approach is proposed
based on an existing method [129]. The extension was done by a base delay compensation and a modified
selection of taps. We concentrate on the channel taps, whose amplitudes and delays are necessary to
compute the RMS-DS of the channel because the RMS-DS is the major factor in the performance of
most digital communication systems, including the orthogonal frequency division multiplexing (OFDM)
system proposed for V2X communication. When the RMS-DS is greater than a guard interval, this
will lead to inter symbol interference (ISI) and degrade performance, in other words, individual symbols
overlap with the following ones; as a result, transmission errors occur [37]. Hence, designers most often
rely on RMS-DS, as that is directly relatable to communication system performance. As a result, the
proposed approach has demonstrated that the model is fairly accurate when representing the statistics
of the measured channel.

1.2 Thesis Outline and Contributions

This thesis is organized into seven chapters. Chapter 2 contains the main topics of theoretical basics of the
time-variant wireless channels followed by a discussion on the non-stationary behavior of V2X channels
and how to extend the conventional representation of CIR to feature non-stationary. It is followed by
Chapter 3 “channel measurement campaign,” which provides an overview of measurement equipment
and then it presents underlying scenarios e.g. an insight into the surrounding buildings to provide a
better understanding of the findings. Chapter 4 introduces a new algorithm for selecting taps for TDL
channel models from measurement data with the aim of describing the CIR of any complex radio channel
using a simple method. All essential parameters are derived from measured data, and to verify the
correctness of parameters derivation, this chapter proposes an approach to verify those parameters. This
is followed by Chapter 5, which discusses the implementation of TDL channel models for V2I channels
and devises a generator to produce CIRs based on derived model parameters (in Chapter 4). Chapter 6
characterizes slow- and fast-fading variations of each tap by separating the received signal in respective
scales of spatial variations. This is followed by Chapter 7, which introduces a method to develop multiple
input multiple output (MIMO)-TDL model under the non-WSSUS assumption to devise a model, which
is useful for testing V2I MIMO systems. The analysis evaluates single input single output (SISO)- with
MIMO-configuration in terms of capacity. Finally, Chapter 8 summarizes the main thesis findings and
highlights related research topics that are open for further investigation.

The summary and major contributions of each chapter are listed below.

1. Chapter 2: Radio channel and multipath propagation. It describes the theoretical basics of
the time-variant wireless channels, including the viewpoint of mobile radio channels used throughout

36-tap and 12-tap are employed by IEEE802.11p [10,12].
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this investigation. A literature review on modeling non-stationary V2X channels is described. The
non-WSSUS assumption is expressed by employing an additional term in the expression of the CIR
that is so-called “persistence process”.

2. Chapter 3: Channel measurement campaign. It provides an overview of radio channel-
sounding measurement devices and underlying scenarios, such as an insight into the surrounding
buildings to provide a better understanding of the found results. A raytracer tool is used to detect
different scenarios, such as line of sight (LOS) and non line of sight (NLOS). After detecting all
measurement points, three different scenarios (LOS, NLOS1, and NLOS2) exist in our measured
data. A contribution of the thesis is each measurement file will be examined separately and then
based on different scenarios, tracks will be merged into different data sets. Another contribution
of this chapter is that statistical measures are used to examine the differentiation between those
scenarios. Initial parameters such as RMS-DS and delay window (DW) are derived based upon
information on the physical environment to differentiate between those scenarios.

The results of this chapter are partially presented in [61,64,66].

3. Chapter 4: SISO-TDL model parameter estimation. The first contribution of this chapter is
proposing a new strategy of extracting parameters for TDL channel models for V2X channels from
measurements. The proposed approach is based on an existing method to derive parameters for a
non-stationary TDL model using first-order Markov chains. It will be shown that by using different
methods of choosing taps, the number of taps necessary to regenerate the RMS-DS of a channel
can be significantly reduced. The proposed approach uses less taps while retaining the delay spread
performances. Furthermore, this chapter addresses the amplitude fading of taps and investigates
the correlation coefficient between the taps’ amplitude and taps’ persistence. The second major
contribution of this chapter is proposing an approach as a solution to verify the correctness of the
channel model parameters derivation.

The material of this chapter is partially presented in [61,64,66].

4. Chapter 5: SISO-TDL channel modeling and simulation. The first contribution of this
chapter is the development of a generator to produce CIRs based on derived model parameters from
measurement data (the outcome of Chapter 4). Log-normal, Weibull, and Rayleigh generators are
devised. Outcomes of those generators lead to the second major contribution of this chapter, which
is modeling different order Markov Chains. The first-, second-, and third-order two-state Markov
models are developed with the aim of better capturing the non-stationary behavior. The outcomes
of those generators are evaluated by comparing statistical measures of the simulated sequences to
the measured data sequences.

A part of the research contributions covered in this chapter is published in [67].

5. Chapter 6: Characterization of slow- and fast-fading of the active taps. The main
contribution of this chapter is the amplitude fading of taps, which is divided into two classes to
characterize slow- and fast-fading variations of each tap. Received signal is separated into two
scales of spatial variations, which are slow- and fast-variations. In total, nine various setups are
studied, which are omnidirectional antenna, two antennas faced directly towards each other, and
two antennas faced away from each other. In each scenario, LOS and two different NLOS categories
are studied.
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Some of the materials of this chapter are published in [62].

6. Chapter 7: MIMO-TDL model. The first contribution of Chapter 7 is extending a classical
SISO-TDL model to MIMO under the non-WSSUS assumption to develop TDL channel models for
V2I MIMO systems. The same algorithm as in Chapter 4 is used for selecting taps. Correlation
among taps in each channel, as well as among the channels, is studied. The analysis evaluates SISO-
with MIMO-configuration in terms of capacity and then results in terms of a different number of
antennas and different values of SNR are investigated. These lead to the second contribution, which
is studying the capacity as a function of distance and investigating the position of antennas with
its role in achieving capacity.

Some of the findings in Chapter 7 are presented in [63,65].
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Chapter 2

Radio Channel and Multipath
Propagation

A communication system (wired/wireless) is designed to send data packets from a transmitter (Tx) to
a receiver (Rx) via a physical medium, which is called a channel. In wireless communication systems, a
transmitted wave propagates over an air-interface, whose called a propagation channel. The number of
factors influence the propagation channel, such as the bandwidth (narrow-/wide-band), carrier frequency,
number of Tx and Rx antennas (single input single output (SISO)/multiple input multiple output (MIMO)
system), and the propagation environment [6]. The goal of channel modeling is in general to find a method
of describing or generating the channel impulse response (CIR) of the radio channel. There are different
methods known in the literature, where the CIR is either determined directly or indirectly by means
of a geometrical model of the propagation environment. The derivation of a mathematical framework
to describe an observation of the radio channel is focused in this chapter. It is important to note that
the radio channel measurements contain finite information; therefore, it is sufficient to choose a channel
model that can be derived from the measurement data. Since we want to estimate a specific channel
class such as a tapped delay line (TDL) to capture the multipath propagation effect; thus, it is desirable
to describe the data model as precisely as possible.

What is focused in this thesis is to get a statistical description of the propagation path to provide
another step toward an engineering understanding and approximating characteristics of a radio channel
for the vehicle to infrastructure (V2I) communication system, including shadowing and multipath effects.
Understanding the properties of the propagation channel becomes extremely important for a system
design because they ultimately define the performance of wireless communication systems such as the
model can be used for preliminary testing and evaluating system before investing in prototype hardware
[6, 61,64].

In this chapter, the theoretical background on channel modeling is introduced and represented math-
ematically and then the model is extended to feature the non-stationary channel model to be suitable for
vehicle to X (V2X) communication system.
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2.1. MOBILE CHANNEL TERMINOLOGY

2.1 Mobile Channel Terminology

In the scientific and technical literature, the term “mobile channel” takes on several meanings. The
concept of different types of communications channels is defined in Fig. 2.1. Since each half of the link
in radio communications can be viewed as a mirror image, only half of the link is demonstrated. For
the typical speech user, the immediate environment (including room reverberation and any effects of
acoustic noise) forms part of the communications channel. As depicted in Fig. 2.1, for (other) analogue
information sensors and also speech, there is an information channel. Note that it includes the effects of
the environment, multiple sensors, and any intentional signal conditioning [150].

The sensors convert the analogue information into electrical form, which is called raw data. This
means a raw data channel is defined once the analogue information is converted into electrical form. A
time-varying binary symmetric channel describes the digital channel once the electrical form is digitized by
a (de)coder and then the signal undergoes data processing in preparation for transmission and reception
[18,150].

Fig. 2.1 A definition of different types of channels in radio communications, note adapted from [150]

The channel can be referred to as the radio channel when the data are modulated. The effects of
antenna processing, front ends, antennas, and electromagnetic propagation are included in the radio
channel. The antennas are often multiple ports in mobile communications, and each of them gathers
different signals, which arrive via multiple paths. In particular, a clarification is required to define the
channels here. Resulting of the fields via a multipath environment is considered as a channel transfer
function (it is known as the (electromagnetic) propagation channel) at a receiving antenna.

In Fig. 2.1, the electromagnetic signal channel is referred to the received signal by a loaded antenna
element. In the communications signal processing literature, this channel is often referred as the propaga-
tion channel. The effects of the fields, the interaction of the antenna, and the antenna itself are comprised
by a transfer function of that channel. Therefore, the antennas contribute as a filter in the propagation
signal channel, and it is difficult to separate them from measurement data [150]. In brief, the “mobile
channel” will rise confusion unless a form of the channel, which is under discussion is understood. In this
investigation, the term “mobile channel” is referred to the propagation channel. Several possible types
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of communications channels have been described, to summarize them, the interpretation definition for
each of them is illustrated below [150]

• (Electromagnetic) Propagation channel: It refers to the link between fields at the Tx and
fields at the Rx.

• (Electromagnetic) Signal channel: It is the link between voltage source at the Tx and voltage
across the load in the Rx.

• (Base-band) Radio channel: It is the link between (base-band) voltage from the modulator of
Tx and (baseband) voltage into the demodulator of Rx.

• Digital channel: It is the link between digital data into the modulator and digital data from the
demodulator.

• Raw data channel: It refers to the link between the electronic signal from receiving electronic
sensor and the electronic signal at the actuator.

• Raw information channel: It is the link between information source signals to sensors such as
sound waves and (reproduced) information signals from the actuator.

2.2 Definition of a Radio Wave

A radio wave is the smallest entity that is used to describe the radio channel. The transmitted wave
may spread out in different directions and interact with objects in the environment. In a continuum
of reflecting, diffracting, and scattering objects, wave propagation phenomena can be approximately
modeled by a superposition of discrete waves with the assumption of ideal omnidirectional antennas [15].
The single wave model can be considered, as illustrated in Fig. 2.2. It has the following parameters, ϕT ,
θT , ϕR, and θR. The angle pair ϕT and θT are the transmit-azimuth and -elevation, which determine the
part of the wave moving in the direction. The azimuth and elevation of the approaching wave reaching
the Rx along this wave are determined by the angle pair ϕR, and θR. Due to propagation speeds within
mediums along the wave, as well as the geometrical length of the wave, the transmitted wave needs a
certain time (it is called the time-delay of arrival (TDoA)) to arrive at the receiving antenna. Therefore,
the transmitted wave reaches the Rx after a certain time-delay (τ) and with some amplitude (γ) [135].

Fig. 2.2 Definition of a radio wave, note adapted from [125]

In the local coordinate systems, the angles at a Tx and Rx are defined. The angles information is
gathered by the local antenna arrays at the Tx and Rx; thus, the angles of the waves can be related to
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the local coordinate system. This means if the absolute positions of Tx and Rx are known, the wave
parameters can always be projected into the global coordinate system; more detail can be found in [106].
The Poynting-vectors at the Tx- and Rx-position (kT and kR) are defined by using the transmit- and
receive-angle pairs. The two linear polarized components eϕT

, eθT (of the wave leaving the Tx) and eϕR
,

eθR (of the wave reaching the Rx) are defined by using the definitions of the azimuth and elevation angles,
as well as the Poynting-vectors, more detail can be found in [47].

2.3 Definition of a Propagation Path

The ray model has been derived in Section 2.2, and it is useful to interpret wave propagation mechanisms
and to generate a realization of the stochastic process radio channel (in simulations). Due to the limited
resolution of any radio channel measurement system, only finite information about the underlying physical
phenomena can be gathered, and the transmitted wave arrives at the Rx via multiple waves; therefore, it is
desirable to introduce the propagation path. It is a superposition of multiple waves that are close together,
such as a cluster [125], as anticipated in Fig. 2.3. A propagation path has unique characteristics, which
are created by characteristics of those multiple rays (commonly termed multipath components (MPCs))
combined in the propagation path; thus, the parameters of a propagation path are the mean values of
the parameters of multiple rays. To represent the propagation path mathematically, let us assume we
transmit x(t), which is a baseband representation of a narrow-band signal over a single propagation path.
Then, a baseband representation of the received signal y(t) can be expressed as

Fig. 2.3 Definition of a propagation path, note adapted from [125]

y(t) = γ
′

p gR (t) ∗ gT(t) ∗ x

(
t− lp

c

)
e−j2πfc

lp
c , (2.1)

where gT(t) and gR(t) are the impulse responses of a Tx and Rx, respectively. c is the wave velocity, fc
is a carrier frequency, lp is the length, and ∗ denotes the convolution operator. The time a signal needs
for the transmission over the pth propagation path is denoted by τP =

lp
c . All effects can be treated as

frequency independent, such as free-space loss, complex antenna gains, loss on scattering or reflection
points are described by γ

′

p. The frequency domain of the received signal y(t) is expressed as follows

Y (f) = X(f) · γ
′

p · GR(f) ·GT(f) · e−j2πfτP · e−j2πfc
lp
c , (2.2)

From the above, a frequency domain representation of a time-invariant SISO system is obtained as

H(f) = γ
′

p · GR(f) ·GT(f) · e−j2πfτP · e−j2πfc
lp
c . (2.3)
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If the Tx, Rx, or any scatterer related to this propagation path is moving, (2.3) becomes time-variant
system. Let us assume that within a short observation interval, the effective speed vp of the moving
object is constant; therefore, the time-variant frequency response H(t, f) can be represented as (2.4) for
a small change in lp, which is the electrical length.

H(f, t) = γ
′

p · GR(f) ·GT(f) · e−j2πfτP · e−j2π
lp+vpt

λ , (2.4)

where λ = c
fc

is the wavelength. This model (2.4) assumes a constant complex amplitude γ
′

p and neglects
any change in the parameter τP . This approximation (2.4) only valid as long as c

B >> vp · t, where B is
the bandwidth of the measurement system [125]. If we introduce the Doppler-shift αp = − fc

c · vp in (2.4)
and then merge the phase shift into the complex amplitude, then we obtain the following expression

H(f, t) =γ
′

p · GR(f) ·GT(f) · e−j2πfτP · e−j2π
(lp+vpt)fc

c

=γ
′

p · GR(f) ·GT(f) · e−j2πfτP · e−j2π
lpfc

c e−j2π
vpfct

c

=γ
′

p · GR(f) ·GT(f) · e−j2πfτP · e−j2π
lpfc

c ej2παpt

=γp · GR(f) ·GT(f) · e−j2πfτP · ej2παpt ,

(2.5)

where

γp =γ
′

p · e−j2π
lpfc

c

=γ
′

p · e−j2πφp ,
(2.6)

where φp denotes the starting (random) phase of the pth path. To sum up, this section defines and derives
a radio channel model for pth propagation path (a SISO system with omnidirectional antennas at both
the Tx and the Rx site).

2.4 Polarisation of Multipath Fields

In general, the Tx emits a field with most likely a defined polarization. The polarization of the field may
be changed randomly after several reflections from rough surfaces or scatterers. At the Rx, the incident
field (ER) has three complex components as [150]

ER(ω, r) = Ex(ω, r)x̂+ Ey(ω, r)ŷ + Ez(ω, r)ẑ , (2.7)

where each component (e.g., Ey) is a function of frequency (ω) and position (r), and it is a complex
scalar. ER is also dependent on both frequency (ω) and position (r). Figure 2.4 assists visualization
of multiple random incident waves, each has an elliptical polarization with the plane of ellipse having a
random direction. This means the polarization is elliptical at each point in space, and there will also be
three magnetic field components at the same point in the space (2.8) [150]. Each magnetic field with its
own plane of polarization. This means in multipath fields; there are six complex components in total.

HR(ω, r) = Hx(ω, r)x̂+Hy(ω, r)ŷ +Hz(ω, r)ẑ . (2.8)
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2.5. FREQUENCY FLAT CHANNEL AND FREQUENCY
SELECTIVE CHANNEL

Fig. 2.4 Visualization of multiple random incident waves, each has elliptical polarization, note adapted from [150]

2.5 Frequency Flat Channel and Frequency Selective Channel

The transmitted signal undergoes either a flat- or frequency selective-fading due to time dispersion, which
is caused by the multipath propagation [150]. The flat fading has been referred the channel when all the
frequency components in the band fade together because the bandwidth is sufficiently small. In such a
case, the bandwidth of the transmitted radio signal is less than the coherence bandwidth (Bc). Bc is a
statistical measurement to approximate the range of bandwidth, where the channel can be assumed “flat”.
The opposite will hold for undergoing frequency selective-fading conditions. These types of fading can
be interpreted in the following way, assuming that for a given bandwidth with two frequencies belonging
to a transmitted signal, the different propagation paths will have approximately the same electrical
lengths (2πd/λ1 and 2πd/λ2), if these two frequencies are close. In other words, their corresponding
received signals (such as amplitudes and phases) will vary in time in approximately the same way. This
phenomenon is known as flat fading conditions, which is illustrated in Fig. 2.5(a). On the other hand,
the fading behavior at one of the frequencies tends to be uncorrelated with respect to the other as the
frequency separation increases because the electric lengths (2πd/λ1 and 2πd/λ2) will be significantly
different. In addition to that, the correlation between them depends on the time spreading caused
by the environment; therefore, signals occupying larger bandwidth will be distorted. In this case, we
would have frequency selective fading, as illustrated in Fig. 2.5(b). In the context of mobile channels, a
wideband channel has frequency-selective fading, and a narrowband channel has flat fading [8, 121, 150].
The narrowband- and wideband-channel will be explained in the next section.
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2.6. IMPULSE RESPONSE OF NARROWBAND AND
WIDEBAND CHANNELS

(a) (b)

Fig. 2.5 Channel frequency transfer function vs. transmitted signal bandwidth, note adapted from [48] (a)
frequency flat channel, (b) frequency selective channel

2.6 Impulse Response of Narrowband and Wideband Channels

A narrowband channel is described as one where the fading is almost constant or the same across the
band [8, 121, 150]. For an ideal static mobile channel, the impulse response and transfer function are
expressed as

γ δ (τ − τ0) = hph(τ) ⇐⇒ H(ω) = γ e−jωτ0 . (2.9)

In the propagation and multipath processing study, it is important to understand and distinguish
between the clock-time/time and delay-time/delay. τ denotes the delay, which is a signal propagation
parameter, and t denotes time. From (2.9), τ0 is the time-of-flight delay, ω is the radio-channel angular
frequency. γ is a complex coefficient, which is defined as γ = γ′ej2πφ ∈ C, with γ′ ∈ R is the amplitude
and φ is the (random) phase 1. Mathematically, δ indicates the delta function notation for an infinite
bandwidth. The impulse response at a given (clock) time is replaced by a sinc-shaped function (the
Fourier transform of the frequency window), for a finite bandwidth imposed on the flat fading [150]. As
the mobile starts changing position, the value of the delay τ0, as well as the channel gain, start changing.
The modeling equation is expressed by writing the parameters with time dependency, denoted as in (2.10)
2.

hph(t, τ) = γ(t)δ(τ − τ0(t)) . (2.10)

The alternative way to view the frequency-selective fading in a wideband channel is to consider the
spreading of the CIR (over a delay range). Mathematically, the impulse response of a wideband channel is
frequently expressed as a sum of delta functions (2.11), which represent collections of propagation paths
or individual paths, with each function having its own complex amplitude and delay.

P∑
p=1

γpδ(τ − τp) = hph(τ) ⇐⇒ H(ω) =

P∑
p=1

γpe
−jωτp . (2.11)

As the position of the mobile change, the dispersive impulse response (2.11) changes with time, as
expressed in (2.12).

hph(t, τ) =

P∑
p=1

γp(t)δ (τ − τp(t)) . (2.12)

1 ⇐⇒ indicates the Fourier transform
2The same expression can be illustrated in terms of position dependency denoted by z′, as in γ(z′) and τ0(z′)
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Here, the finite bandwidth complicates the situation. The channel bandwidth has an impact on the
dispersion of the CIR, and it is defined by the communications system filters. On the other hand, the
impact of the finite bandwidth signals at different delays being forced to mix together. Therefore, the
propagation channel and the communications system govern the channel dispersion [150]. The impact of
finite bandwidth on the CIR will be explained in Section 2.8.

2.7 Channel Impulse Response Form

The term “channel characterization” is a terminology used to define the characteristics of a propagation
channel in a specific environment to understand the channel behavior. In general, waves propagate
according to four mechanisms: free-space propagation due to a line of sight (LOS) path, reflection,
diffraction, and scattering. The CIR contains information about all of these components, and it is given
by the superposition of all these components at a certain instant. In other words, in the multipath case,
the CIR is a summation of contributions from scatterers and reflectors in different directions and with
different lengths (delays).

The propagation channel can be classified as a linear time-invariant (LTI) filter, whose CIR does not
change over time (the channel is static), or a linear time-variant (LTV) filter, whose CIR varies with
time. First, the behavior of a time-invariant channel is modeled in a deterministic way and then it
will be extended to account for the dynamic nature of the V2X environment. In the case of constant
point scatterers, the signal transfer function over a region, which typically comprises many multipath is
modeled as a summation over many constant point scatterers (2.13) [150].

H(ω, z′) =

P∑
p

γp · e−jklp , (2.13)

where γp is the complex amplitude of the pth scatterer (it has been defined in Section 2.3), and z′ is the
position. The scalar electrical distance is represented by klp, where lp is the physical distance and k is
the scalar wave number 3. When the Rx (or Tx) is moving, as depicted in Fig. 2.6, the electrical distance
to the pth point scatterer can be expressed as follows

klp(z
′) =

2π

λ
lp(z

′)

= ω
lp(z

′)

c

= ω τp(z
′) ,

(2.14)

where z′ is the position along the direction of motion, and τp is the time delay from pth scatterer.
3Wave number is a direct acknowledge to frequency for waves in space as it to waves in time
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Fig. 2.6 Visualization for the changing phase, the distance moved by the Rx is much shorter than the distance to the
scatterers, note adapted from 150

The assumption of this model is that the magnitude of the waves from the sources is no distance
dependence, in other words, slowly varying magnitudes are neglected, and only delay variation with
distance is kept as defined in (2.14). This phase mixing of the wave contributions is the reason for the
fast-fading of the signal envelope [150] (it will be explained in detail in Section 6). Assuming that the
distance moved by the Rx is much shorter than the distance to the scatterers (as shown in Fig. 2.6),
the angle (θp) between the direction of movement and the direction to the scatterer can be defined by
rearranging the electrical distance (2.14) in these following steps 4 150.

klp ≈ k l0p − k z′ cos(θp)

= ω τp −
ω

c
cos(θp) z′

= ω τp − up z′ ,

(2.15)

up =
ω

c
cos(θp)

= k cos(θp) ,
(2.16)

where up is the spatial Doppler shift in rad m−1. The phase shift is proportional to distance and by
defining z′ = vt, where v is the speed of the Rx, then the Doppler shift is

ωDp = up v

ωDp = k v cos(θp)

2παp =
2π

λ
v cos(θp)

αp =
fc
c

v cos(θp) ,

(2.17)

where ωDp and αp are obtained in rad s−1 and Hz, respectively. It is essential to distinguish between the
4By linearising the equation as in [150]
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base-band frequency (ωBB), which is shifted by the carrier frequency (ωc), and the actual radio frequency
(ω), namely

ω = ωBB + ωc , (2.18)

similarly, for the wave-number (2.19),

k = kBB + kc . (2.19)

Therefore, the electrical distance to the scatterer from (2.15) may be written as follows

klp = ωτp −
ω

c
cos(θp)z′

= ωcτp + ωBBτp −
ωc

c
cos(θp)z′ −

ωBB

c
cos(θp)z′

= ωcτp + ωBBτp − kc cos(θp)z′ − kBB cos(θp)z′

= ωcτp + ωBBτp − upz
′ − uBBz

′ .

(2.20)

The fourth term on the right-hand side of the equation can be neglected because it is small compared
to the third term. This brings us to approximately model the transfer function of the channel (2.13) as
follows

H(ω, z′) =

P∑
p

γp · e−jklp

=

P∑
p

γp e−j(ωτp−z′up)

=

P∑
p

γp e−jωτp ejz
′up

=

P∑
p

γp e−jωτp ejk cos(θp)z′
.

(2.21)

The change position of the Rx results in a movement of the CIR contribution along the time axis;
hence, the time-varying frequency response is

H(f, t) =

P∑
p

γp e−j2πfτp ej
2π
λ cos(θp)vt

=

P∑
p

γp e−j2πfτp ej
2πfc

c v cos(θp)t

=

P∑
p

γp e−j2πfτp ej2παpt .

(2.22)

The time-domain of the transfer function (2.22) is the impulse response (it can be obtained by taking
the Fourier transform of (2.22))

hph(τ, t) =

P∑
p

γpδ(τ − τp)e
j2παpt , (2.23)
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where δ indicates the delta function notation for an infinite bandwidth. It is defined by

δ(t) =

+∞ if t = 0

0 if t 6= 0
(2.24)

The impulse response at a given time is replaced by a sinc-shaped function, and this will be detailed in
Section 2.8. Delays and angles could be used to resolve scatterers by using a sufficiently wide bandwidth
(e.g. having infinite bandwidth), whereas the band limitation is usually imposed on the signal by the radio
electronics and antennas [150]. From the propagation channel point of view, the effective scatterers5 can
be considered resolvable, but due to the bandwidth restriction of the radio channel, they are quantized
in the delay domain, meaning the resolution is also correspondingly restricted. It is important to note
that the resolvability of effective scatterers does not imply the resolvability of physical scatterers. There
might be a case where numerous physical scatterers can make up a single resolvable scatterer [150]. From
(2.17), it may be possible to keep track of the received Doppler spectrum to assess the angles of arrival
because there is a direct relationship between the angle of arrival and the Doppler shift. The expression
of Doppler shift is a function of echos angle of arrival. Depending on the Rx is moving away or toward the
Tx, the Doppler shift can be +/− [48,63]. Fig. 2.7 shows a simple model containing three scatterers (A,
B, and C) with the transmitter (T) and the receiver (R) positions. It is possible to distinguish between
TCR 6 and TAR by their Doppler shifts despite having the same delay because by measuring the Doppler
shift, the angles of arrival may be obtained [48,116]. Furthermore, paths TBR and TAR may be resolved
by their delays while they have the same Doppler shift.

Fig. 2.7 Defining scattering points using ellipses, note adapted from [117]

To sum up, the CIR can be regarded as deterministic if the receive filter has infinite bandwidth.
Therefore, each time delay and Doppler shift in the CIR is due to an individual physical scatterer. In
other words, all the multipath components are resolvable. Mathematically, the channel model is expressed
in (2.23) and a change in position of the Rx is imposing a new phase at each delay and it is proportional
to up (the Doppler shift). In real-world scenarios, systems are bandlimited. This means multiple effective
scatterers will be lumped together into delay bins.

2.7.1 WSSUS Assumption

In mobile communications, mathematical models for insightful system performance analysis and a statis-
tical description of the transmission behavior are provided by wide sense stationary uncorrelated scatter-

5The term effective is used because the receiving pattern weights the signals from the physical sources
6T and R are the transmitter and receiver. C is a scatterer.
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ing (WSSUS) assumption [35,43,84,93,148]. WSSUS assumption is often made because it allows Fourier
theory for the channel description [150]. The assumption of randomly time-variant radio channels is
wide sense stationary (WSS) combined with the uncorrelated scattering (US) assumption. In 1963, the
characterization of randomly time-variant linear channels, as well as a set of system functions, were first
introduced by Bello [21]. This assumption is used in traditional wireless channel modeling such as cel-
lular communication system evaluation [35, 84, 93]. Different definitions of a stationarity behavior are
used in literature, but most of them include at least the following three conditions for a time series to be
stationary.

• The mean (µ) of the time series is constant.

• The standard deviation (σ) is constant overall time.

• Correlation between lags is zero; in other words, there is no correlation between the time series and
the lag version of the time series.

It is interesting to note that if a time series is white noise, it is stationary because white noise
conditions are similar except the mean needs to be zero, which is a constant. However, if a time series is
stationary does not mean it is white noise because the mean may not be zero.

The second-order statistic of the channel is stationary in the time domain, this is understood as WSS,
and the US means there is no correlation between these paths with respect to delay [5, 97, 129, 148]. A
channel can be assumed to follow the WSSUS if both assumptions are satisfied. Through this assumption,
four complex functions carry the same information for describing the characterization of the channel.
Section 2.3 has illustrated how the input and output signals can be linked. Once any channel function is
found, the other system functions can be derived by Fourier transformations, as sketched in Fig. 2.8. This
is called the first set of Bello functions. The properties of the channel in time (t), delay (τ), frequency (f),
and Doppler (fD) domain are described. The channel time-variant transfer function H(t, f) is recorded
in our channel sounding measurement campaigns.

Fig. 2.8 Relations between the time-varying channel functions in time, frequency, Doppler and delay
domain, note adapted from [48]

As stated previously, the second-order statistics of the channel are stationary in the time domain,
and paths are uncorrelated with respect to delay [5, 97, 129, 148]. The so-called second set of Bello
functions presents an approach to describe the channel statistically. Since a realistic mobile wireless
channel is not fully deterministic but also includes a random process, the above-illustrated functions
become stochastic. A stochastic description of the wireless channel is provided in detail in [48]. However,
when the focus is shifted to vehicular communications, which is highly dynamic in time, frequency, and
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space due to inherent mobility, it turned out that WSSUS assumptions are not fulfilled in V2X real-world
channels [36, 64, 85, 110]. In V2X channels, this assumption has to be extended to non-WSSUS, and it
will be provided in Section 2.9.

2.8 Finite Bandwidth Effects on the CIR

As illustrated in the previous section, the CIR of the physical wireless channel can be represented as
follows

hph(τ, t) =

P∑
p

γpδ(τ − τp)e
j2παpt , (2.25)

where hph(τ, t) is not bandlimited. The formulas that have been derived in the previous sections are
not bandlimited. Thus, we cannot apply those formulas directly when we deal with measured channels
because they are sampled and bandlimited. In other words, we employ bandlimiting filters at Tx and Rx
sides. The CIR is obtained as following [8, 69]

h(t, τ) = hT (τ) ∗ hph(t, τ) ∗ hR(τ) , (2.26)

where hT (τ) and hR(τ) are the impulse responses of the filter at Tx and Rx sides, respectively. ∗ denotes
the convolution operator. For instant, a root raised cosine filter7 can be considered for both filters at the
Tx and Rx sides (2.27) in [8, 69].

hT (τ) = hR(τ) =
√
hRC(τ) , (2.27)

where

hRC(τ) =
sin(πτ/Tc)

πτ/Tc

cos(βπτ/Tc)

1− (2βτ/Tc)2
, (2.28)

where β the roll-off factor, which can be any value within [0, 1] and Tc represents the sampling in delay
[8, 69]. This leads to a reduction of the deterministic model into a model with a limited number of
taps with equally-spaced delay. This means the discrete signal delays of the propagation channel model
are combined and quantized into P th delay bins. Each bandlimited component at τP is composed of a
superposition of individual MPCs, as visualized in Fig. 2.9. The magnitude of the CIR of the propagation
channel is depicted in Fig. 2.9 with effectively infinite bandwidth versus bandlimited representation of the
CIR. In band limited case, the delta functions, which describe different paths replaced by sinc functions
that are quantized in the delay domain. Briefly, the radio-channel bandwidth is bandlimited by elements
of the communications system itself, such as receiving antenna, filters, and the transmission system,
which are related to the communications application. As a result, the final CIR is obtained by

h(t, τ) =

P∑
p=1

γp hRC(τ − τp) exp(j2παpt) . (2.29)

Our measured CIR is sampled in the delay domain with Tc = 1/B (in (2.28)), where B is the
communication bandwidth. In the time domain, the collected number of snapshots is represented by m,
meaning by sampling (2.29), we obtain the discrete-time CIR as follows

7A root raised cosine filter in a cascade, result in a raised cosine filter with impulse response (2.28).
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(a)

(b)

Fig. 2.9 Bandlimited representation of propagation channel, note adapted from [8], (a) infinite bandwidth,
(b) bandlimited

h[m,n] =

P∑
p=1

γp hRC(nTc − τp) exp(j2παpm) , (2.30)

where n ∈ {0, ..., N − 1} denoting the delay index, and m ∈ {0, ...,M − 1} denoting the snapshot index
of measured CIR.

2.9 V2X CIR Form

The classical model (2.23) is not useful for the V2X channel as it does not feature non-stationarity. The
main challenge of vehicular communications is that the environment has frequent and rapid changes due
to the high mobility and low antenna heights of the mobiles [22,92–94,129,164,165]. Many measurement
campaigns have shown non-stationarities of the channel statistics as in [36, 102, 105, 123]. In such an
environment, strengths and the number of multipath components frequently change [58,92,93,129]; thus,
it is a strong time-variant channel [22], and these transitions are essential and need to be investigated.
This means the individual radio paths and their associated delays vary over time [58]. In order to make
this clear, Fig. 2.10 and 2.11 illustrate different scenarios. At time t1 (Fig. 2.10), the Rx received three
paths, and each path has an amplitude, a phase, and a delay. At time t2, the Rx received only two paths
with different amplitudes, different phases, and different delays; thus, the channel changes over time [58].
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(a) (b)

Fig. 2.10 CIR at time t1, the Rx received three paths, each path has an amplitude, a phase and a delay,
note adapted from [58]

(a) (b)

Fig. 2.11 CIR at time t2, the Rx received only two paths with different amplitudes, phases, and delays
compared to Fig. 2.10, note adapted from [58]

In order to extend the model in (2.23) to feature non-stationary, an additional term (zp(t)) is employed,
which is an ON/OFF process or “persistence process (PP)” (2.31). It is to account for the finite “lifetime”
of pth multipath. This has been proposed by [129]. In order to make the model non-stationary, each tap
could be selectively turned ON or OFF depending on a so-called PP.

hph(t, τ) =

P∑
p=1

zp(t) γp(t) δ(τ − τp(t)) exp(j2παpt) , (2.31)

where zp is a binary vector that determines whether tap p is currently switched ON or OFF. A first-order
two-state Markov chains (MC) can be used to generate the ON/OFF process (in a generator); this will be
explained in the following subsection. As explained in Section 2.8, the measured CIR is sampled; hence,
the final discrete-time CIR is obtained by

h[m,n] =

P∑
p=1

zp(m) γp(m) hRC(nTc − τp(m)) exp(j2παpm) . (2.32)
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2.9.1 Markov Chains Modeling of Persistence Process

As stated in Section 2.9, in order to account for the dynamic nature of the non-stationary V2X envi-
ronment, a new term (zp(t)) is employed in the conventional representation of CIR (2.31) to account for
the finite “lifetime” of each tap. This PP will be estimated from measured data (it will be illustrated in
Section 4.2.1). A first-order two-state Markov chain is the frequently used method to model the ON/OFF
process (in a generator) [67,93,94,96,129,155]. Markov chain is a stochastic process that can be parame-
terized by estimating transition- and steady-state probabilities between discrete states [13]. In Fig. 2.12,
transition graphs with nodes are used for visualizing Markov chains. The nodes and edges represent the
states and transitions. The transition probabilities are represented by labels on the arrow on the graph.

0 1
P01

P10

P00 P11

Fig. 2.12 The block diagram of first-order two-state Markov chains

The first order two-state Markov chains are stochastic processes for which future states depend only
on the immediately preceding states, not any further previous states. This Markovian property can be
expressed mathematically as in (2.33) [13]. The second or higher order Markov chain is the one in which
the next state depends on two or more preceding ones [13].

P (Xn+1 = j|Xn = in, Xn−1 = in−1, ..., X0 = i0) = P (Xn+1 = j|Xn = in) ,
8 (2.33)

where P is the probability and j, in, in−1,..., and i0 are states of Xn+1, Xn, Xn−1,..., and X0,
respectively. Symbol | indicates “the given condition”. Namely, only the condition at time n−1 does affect
the condition at time n. This means the conditions at time n− 2, n− 3, ..., n0 do not affect the condition
at time n [51]. At each time instant n, the Markov chain may remain in the same state or move from
one state to another, according to the transition probabilities, which is P (Xn+1 = j|Xn = in) [155].
Mathematically, a transition-state matrix (TS) and a steady-state matrix (SS) represent a Markov chain
parameters, which are given in (2.34) and (2.35), respectively.

TS =

[
P00 P01

P10 P11

]
, (2.34)

SS =

[
SS0

SS1

]
, (2.35)

where P01 defines as the probability of going from state-OFF to -ON, and P11 is defined as the probability
of going from state-ON to -ON 9. In the SS matrix, SS1 gives the “steady-state probability” associated
with the ON state, in other words, SS1 represents the probability of being ON 10. Those elements

8Equation (2.33) reads as “the probability of Xn+1 being equal to j given that Xn,..., and X0 are equal to in,..., and i0
is equal to the probability of Xn+1 being equal to j only if Xn is equal to in” [51]. It is important to note that in our case
we only have two states, which are 0 and 1

9P10 is defined as the probability of going from state-ON to -OFF, and P00 is defined as the probability of going from
state-OFF to -OFF.

10SS0 gives the probability of being OFF.
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are probabilities; thus, the sum of elements on each row yields one. P00 + P01 = 1, P10 + P11 = 1,
and SS0 + SS1 = 1 [91]. The ON/OFF process is estimated from measured data to capture the non-
stationary nature of the V2I environment, then Markov chains parameters TS and SS matrices are
computed. Furthermore, q-order Markov chains are defined as processes having the property that can be
expressed as follows

P (Xn+1 = j|Xn = in, Xn−1 = in−1, ..., X0 = i0) =

P (Xn+1 = j|Xn = in, Xn−1 = in−1, ..., Xn−q+1 = in−q+1) , (2.36)

1 2 3 4

P12

P23

P24

P43P43

P32

P31

P44P11

(a)

1

2

3

4

5

6

7

8

P12

P23

P24

P35

P36

P47

P48

P87

P76

P75

P64

P63

P52

P51

P88P11

(b)

Fig. 2.13 The block diagram of different order Markov chains, (a) Second-order two-state Markov chains, (b) Third order
two-state Markov chains

This defines the future state is influenced by the past q states. Fig. 2.13 shows second-order and
third order two-state Markov chains. The transition matrix associated with the second/third-order can
be represented by a 4×4/8×8 matrix similar to a transition matrix of a 1st-order 4-state Markov chains
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model. This will be illustrated in detail in Section 5.5.

2.10 MIMO CIR Form

A radio channel model for a SISO system at both Tx and Rx sides is derived in the previous sections.
Here, we extend this to MIMO antennas on both sides. Accordingly, the channel has to be characterized
for all transmit and receive antenna pairs. For example, consider a MIMO system with NR receive-
and NT transmit-antennas; hence, it is an NT × NR MIMO system. From system-level viewpoint, the
NT ×NR channel matrix represents a linear time-variant MIMO channel (2.37) [28,46,63,65,76,87,107].

Hph(t, τ) =


hph11(t, τ) hph12(t, τ) · · · hph1NR(t, τ)

hph21(t, τ) hph22(t, τ) · · · hph2NR(t, τ)
...

...
. . .

...
hphNT 1(t, τ) hphNT2(t, τ) · · · hphNTNR(t,τ)

 . (2.37)

2.11 Channel Models

Channel models can be structured into two different groups

2.11.1 Geometry Based Deterministic Channel Models

For a specific environment, the Maxwell equations can be used in principle to obtain the time-variant CIR
[163]. An approximate solution can be obtained by ray tracing by applying the fundamental geometric
principles. Accordingly, the properties of every physical object must be known in detail [17,41,52,89]. Ray
tracing has been applied by the authors in [99] for the modeling of vehicular communication channels.
It is well known that ray tracing is an important and valuable tool for characterizing a cite-specific
environment, whereas for describing general scenarios, it cannot be used [29,163].

2.11.2 Stochastic Channel Models

The stochastic models can be classified as two classes

2.11.2.1 Geometry Based Stochastic Channel Models

In geometry based stochastic channel models (GSCMs), according to a given distribution, point scatters
are randomly placed on a map [79,103]; thus, able to capture the non-stationary properties of the prop-
agation channel [163]. The Third Generation Partnership Project (3GPP) specified GSCMs as reference
models for long term evolution (LTE). An example such as Wireless World Initiative New Radio (WIN-
NER), describes modeling arbitrary double directional channels by randomly placing scatters around the
Tx and Rx according to statistical distributions, which are characterized by large scale parameters [103].
The aim was to define channel models that meet the requirements beyond 3G simulations.

2.11.2.2 Non-Geometrical Stochastic Channel Models

The generated CIR fulfills given statistical properties such as first- and second-order moments, but an
underlying geometry is not assumed. Most often, it describes in a form of TDL model to capture basic
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statistical properties e.g., power delay profile (PDP) [156,163]. TDL models are widely used for cellular
system evaluation and system-level simulation for mobile communication scenarios [7, 35, 103]. Many
researchers have described the dispersive channel model in the form of TDL model for V2X channels
[93, 94, 96, 129] due to its low complexity and simple notation and its straightforward implementation in
channel emulators [11,12]. The TDL modeling approach has been adopted by standardization bodies not
only as a reference model for universal mobile telecommunications system (UMTS) [72, 163] and global
system for mobiles (GSM) [35] but also adopted by the IEEE802.11p standard for the vehicular radio
channel [22, 79]. TDL model based WSSUS assumption has been developed by Ingram and coworkers
for the vehicle to vehicle (V2V) channel [9, 11, 12], but as reported by Ingram, this assumption does not
represent the non-stationary channel responses [9]. A TDL model with two active taps (one LOS and
one strong reflector) and equal power for stress testing IEEE 802.11p modems are implemented by the
authors in [151]. The main drawback underlying the TDL model is that path delays can only be equally
spaced and be set in integer multiples of the sampling rate, but this can be solved via the Markov chain
model. This modeling approach can be extended to be able to capture non-stationary behavior via first
order/high order-two state Markov chain [61,63–65,67,91,93–96,129].
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Chapter 3

Channel Measurement Campaign

In this investigation, the conducted evaluations rely upon measurement data; thus, this chapter describes
the underlying measurement data to allow interpretation of the modeling results. A measurement cam-
paign was planned and conducted in 2013. Channel characteristics were measured in Cologne, Germany.
In this chapter, we begin with a short explanation of channel sounding and then a description of under-
lying scenarios, including surrounding background, is provided. Widely used channel parameters such as
multipath delay spread and delay window are defined and calculated from measured data.

3.1 Channel Sounding

The set of test equipment used to measure the channel’s characteristics is called the channel sounder. To
achieve this, a transmitter (Tx) transmits a signal into the (unknown) channel, and a receiver (Rx) collects
the signal. Those two units together are known as the sounder [96]. The channel impulse response (CIR)
can be estimated in a particular scenario with a channel sounder. The following formula is used to achieve
an estimate of the CIR h(t, τ) by leveraging the system equation given below (3.1) [98,163].

y(t) =

∫ ∞

0

h(t, τ)s(t− τ)dτ + n(t) , (3.1)

where n(t) denotes the noise. The dimension of the collecting data depends on the type of channel
sounder e.g. a channel sounder might directly obtain a sampled time-variant frequency response H[m, f ′],
where the discrete-time index is represented by m ∈ {0, . . . ,M − 1}, and the discrete frequency index
is denoted by f ′ ∈ {0, . . . , F ′ − 1}. In any multiple input multiple output (MIMO) system, the channel
response matrix between all NT antenna ports and all NR antenna ports is measured by MIMO channel
sounder. NT and NR denote the number of transmit- and receive-antenna ports, respectively. This can
be interpreted as collecting data NT ×NR single input single output (SISO) channels [105]. However, a
truly parallel system is not only inflexible and susceptible to phase drift errors but also it is extremely
expensive. In addition to that, the NT transmitted signals have to be separated at the Rx; therefore,
parallel operation of the Tx channels would cause problems (such that orthogonal transmit signals must
be used). A much more suitable sounder architecture is the so-called switched-array architecture, as
sketched in Fig. 3.1 [105,142,143,145,147]. In a switched-array sounder, through an electronic switch, a
single available radio frequency (RF) chain is used to connect sequentially to the elements of an antenna
array at Tx and Rx, respectively. Such a sounder is cheap and easy to calibrate, but it requires a long
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time period to record a complete MIMO snapshot [105].

Fig. 3.1 Sketched drawing of switched-array architecture, note adapted from [105]

3.2 Underlying Scenario

The measurement data was measured in a vehicle to infrastructure (V2I)-MIMO channel sounding cam-
paign using a MIMO-RUSK channel sounder [132]. The measurement campaign and signal setup are
summarized in Table 3.2 and 3.1.

TABLE 3.1
Measurement Campaign description [132]

Measurement Campaign

Scenario Urban macro cell
Location City center of Cologne, Germany
Measurement Setup full 3D MIMO

TABLE 3.2
Measurement setup [132]

Measurement System

Channel Sounder RUSK (MEDAV GmbH)
Transmit power 46dBm
Center frequency 2.53GHz
Bandwidth 20MHz
CIR length 12.8µs
MIMO sub-channels 32x32 (#Tx x #Rx)
AGC switching within MIMO sub-channels

The Tx was a base station mounted on a rooftop, and the Rx has been moving using a car. At the
Tx and Rx sides, 2× 8 antennas array stacked polarized uniform circular array (SPUCA) were installed
(32 ports at Tx and Rx, respectively), as shown in Fig. 3.2 and Fig. 3.3. The Rx antenna height was
2.3m, which is close to typical rooftop heights of passenger cars, and the antenna height of Tx was 33 m.
More details of the antenna arrays are given in Table 3.3.
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Fig. 3.2 The Tx (SPUCA 2x8) was a base station mounted on a roof top

Fig. 3.3 SPUCA 2x8 at the Rx has been moved using a car

TABLE 3.3
Measurement antenna setup [132]

Measurement Antenna Setup

Tx Rx

Name(type) SPUCA2x8 SPUCA2x8
Geometry 8 elements per ring 8 elements per ring

two rings two rings
dual polarized yes yes
number of ports 32 32
Mounting Height 33 m 2,30 m

The measurement time under the RUSK channel sounder for a dual polarized 2 × 8 SPUCA config-
uration amounts to more than 27ms per snapshot. Fig. 3.4 indicates a cylindrical arranged antenna
array, which has been used during the channel sounding measurement campaign. In addition to that, the
simulation model of the dual polarized circular arranged patch antenna array is illustrated in Fig. 3.5,
and more detailed descriptions can be found in [109].
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Fig. 3.4 Realized antenna array has been used during channel sounding measurement campaign, note copyright from [109]

Fig. 3.5 Dimensions and simulation model of the SPUCA, which has been used during channel sounding measurement
campaign, note copyright from [109]

During the measurements, the Rx car was driving approximately up to 9 km h−1, and the traveled
distance between the Tx and Rx is known from recorded GPS data and given in Table 3.4. During the
entire measurement campaign, positioning data was recorded using a global positioning system (GPS),
which was mounted on the roof of both sides. Fig. 3.6 shows a top view of the realized measurement
tracks, and the properties of all the collected files are summarized in Table 3.4. In this thesis, the entire
measurement campaign will be investigated. A raytracer tool is used to detect different scenarios such
as LOS and NLOS. After detecting all measurement points, three different scenarios (LOS, NLOS1, and
NLOS2) exist in our measured data. This is illustrated in Fig. 3.7 and given in Table 3.4. Difference
between NLOS1 and NLOS2 is a number of reflections/interactions. NLOS1 has one interaction, and
NLOS2 assumes two or more interactions. The differentiation has been indicated by the raytracer. In this
investigation, each measurement file will be examined separately and then based on different scenarios,
tracks will be merged into different data sets. Three data sets will be used, which are LOS (1896
snapshots), NLOS1 (2714 snapshots) and NLOS2 (46402 snapshots).
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TABLE 3.4
Basic track properties; a raytracer tool is used to detect different scenarios (LOS, NLOS1 and NLOS2);
the mean delay spread is computed to examine the differentiation between those scenarios

Measurement site: Cologne
Scenarios Mean RMS-DS per scenario [µs]

Filename #Snap Rx av. Speed Distance Tx→ Rx Rx track length LOS NLOS1 NLOS2 LOS NLOS1 NLOS2
Cologne_MT1-2 1831 5.0 km h−1 230m to 286m 138m x x 0.2054 0.2430
Cologne_MT2-3 2356 5.2 km h−1 228m to 258m 185m x x 0.1292 0.1905
Cologne_MT3-4 2681 3.9 km h−1 258m to 393m 158m x 0.3837
Cologne_MT4-5 2958 3.5 km h−1 393m to 540m 155m x 0.3684
Cologne_MT6-7 1013 5.9 km h−1 562m to 595m 90m x 0.2183
Cologne_MT7-8 3231 6.1 km h−1 359m to 593m 298m x 0.6102
Cologne_MT8-9 2381 4.5 km h−1 343m to 458m 161m x 0.50
Cologne_MT9-10 1772 4.3 km h−1 480m to 538m 113m x 0.3476
Cologne_MT10-11 883 2.9 km h−1 538m to 569m 39m x 0.2189
Cologne_MT11-12 2103 3.0 km h−1 533m to 574m 95m x 0.2898
Cologne_MT13-14 1607 4.6 km h−1 363m to 472m 110m x 0.1040
Cologne_MT14-15 1792 4.8 km h−1 234m to 363m 130m x 0.2666
Cologne_MT15-16 2643 4.4 km h−1 226m to 326m 176m x 0.2806
Cologne_MT16-17 1244 5.0 km h−1 326m to 402m 92m x 0.4686
Cologne_MT17-18 2362 4.5 km h−1 402m to 546m 160m x 0.4778
Cologne_MT19-20 907 5.6 km h−1 491m to 526m 76m x 0.4479
Cologne_MT21-22 1814 5.0 km h−1 392m to 473m 137m x 0.4057
Cologne_MT23-24 599 6.1 km h−1 184m to 237m 55m x 0.3370
Cologne_MT24-25 1291 6.9 km h−1 85m to 184m 134m x x x 0.0561 0.1781 0.3679
Cologne_MT25-26 1308 5.9 km h−1 83m to 185m 117m x x 0.067 0.1348
Cologne_MT27-28 1625 8.2 km h−1 82m to 211m 201m x x 0.0901 0.1057
Cologne_MT28-29 708 8.5 km h−1 211m to 293m 90m x 0.1710
Cologne_MT30-31 1545 7.2 km h−1 282m to 433m 166m x 0.5983
Cologne_MT31-32 1587 9.1 km h−1 433m to 646m 218m x 0.3755
Cologne_MT33-34 1762 5.0 km h−1 643m to 648m 132m x 0.2233
Cologne_MT34-35 1497 5.3 km h−1 531m to 645m 120m x 0.2267
Cologne_MT35-36 1167 6.3 km h−1 424m to 531m 110m x 0.4113
Cologne_MT36-37 896 6.6 km h−1 414m to 425m 88m x 0.4580
Cologne_MT37-38 1810 4.0 km h−1 310m to 417m 109m x 0.6195
Cologne_MT38-39 2097 4.1 km h−1 295m to 311m 128m x 0.4243

Fig. 3.6 A top view of the realized measurement tracks in Cologne
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Fig. 3.7 A raytracer tool is used to detect different scenario in each measurement track; three different scenarios (LOS,
NLOS1, and NLOS2) exist in our measured data

3.3 Surroundings

An insight into the surrounding buildings and other elements in the environment that may influence
the propagation of the signal is given in this chapter. The following sub-sections may provide a better
understanding of the found results. Latitude and longitude of the Rx are provided for each measurement
file such that the reader can use Google street view to get an overview of the surrounding environment.
1. Due to a large number of measurement track, the surrounding environment is presented only for few
measurement tracks. Appendix A.1 contains the surrounding detail of other measurement tracks. The
selected tracks in this chapter briefly provide the reader another step towards a deeper understanding of
surrounding environment, which includes wide streets, pedestrian areas, narrow street, small and large
trees and etc. The Rx has been driven beside, behind, and in front of other vehicles.

3.3.1 Measurement track 3-4

The car was driving into a narrow street and the measurement track has been stopped after the car
reached a square. Table 3.5 provides description of surrounding environment and the reader can use
Google street view to get an overview of the surrounding environment.

1The pictures from Google street view have not been illustrated because street view imagery cannot not be used for any
print purposes.
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TABLE 3.5
Description of surrounding environment for measurement track 3-4

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT3-4 50.936343 6.956245 50.937686 6.956308

3.3.2 Measurement track 24 → 25

Measurement track 24-25 goes through different scenarios. There was a wide street and the car was driving
from NLOS2, then was driving to NLOS1 and then drove to LOS. Table 3.6 gives the approximated
starting point of the measurement track (it is in NLOS2 scenario), which was in the middle of a wide
street. Later on, the vehicle was driving into the line of sight (LOS) region. The Tx was on a roof top
on the left hand side of the driving direction of the car. The measurement track was ended after the car
turned to a crossroad.

TABLE 3.6
Description of surrounding environment for measurement track 24-25

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT24-25 50.935187 6.956527 50.935126 6.954635

3.3.3 Measurement track 25-26

This track started directly after the track 24-25 was leaving the crossroad. The car was driving from
LOS scenario and then it drove to NLOS1 scenario. The description of starting point and end point of
measurement track are given in Table 3.7. The traveled street is passed over by a small bridge and the
car drove the road until a pedestrian area occurred.

TABLE 3.7
Description of surrounding environment for measurement track 25-26

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT25-26 50.935126 6.954634 50.936026 6.954865

3.3.4 Measurement track 30-31

In this measurement track, the car was driving on a wide street and then it was driving towards a
crossroad. The measurement track ended before entering this crossroad. The description is given in
Table 3.8.
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TABLE 3.8
Description of surrounding environment for measurement track 30-31

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT30-31 50.936809 6.952854 50.93827 6.953287

3.4 Extracting Initial Parameters

As explained in Chapter 3.2, three different scenarios (LOS, NLOS1, NLOS2) have been indicated by
the raytracer. The aim of this chapter is to examine the differentiation between those scenarios using
statistical measures such as mean delay spread. In [96], the authors divide different regions by using
root mean square delay spread (RMS-DS). The RMS-DS and delay window (DW) are key parameters
used to quantify the spread of a signal in time domain. The length of a power delay profile (PDP) that
contributes x% of the total energy 2 is defined as the DW [73]. The RMS-DS (στk) is calculated using
(3.3) [25,73,92].

µτk =

∑P
p=1 τpγ

′2
p∑P

p=1 γ
′2
p

, (3.2)

στk =

√√√√∑P
p=1 τ

2
pγ

′2
p∑P

p=1 γ
′2
p

− µ2
τk , (3.3)

where µτk is a power weighted average delay of the kth snapshot, τp and γ′
p are the delay and amplitude of

pth tap. The more dispersive the channel causes the larger value of the DW and RMS-DS. The value of the
RMS-DS and DW are computed for each snapshot from the measured CIR and compared in Fig. 3.8(a).
A difference in the values of both metrics can be noticed, whereas a strong correlation exists between
them. Fig. 3.8(b) shows the corresponding RMS-DS for each scenario. The RMS-DS value increases
under NLOS2 and NLOS1 conditions, compared with LOS scenario the RMS-DS oscillates around 80ns.

2After the noise threshold and the multipath threshold (25 dB below the main peak)
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Fig. 3.8 (a) Comparison between the RMS-DS and delay window versus snapshot index; a strong correlation between the
RMS-DS and DW is existed, (b) The corresponding RMS-DS for each scenario; the RMS-DS value decreases under LOS
condition and oscillates around 80ns

As already stated previously, our aim is to differentiate between those three scenarios (LOS, NLOS1,
NLOS2) using the statistical measures. The mean delay spread is computed to examine the differentiation
between them. It is calculated for each measurement track in accordance with the scenario and given
in Table 3.4. Based on the results, three different groups can be distinguished. The statistics result of
NLOS1 (value of the mean delay spread) indicates that it lies between LOS and NLOS2 scenarios. For
those specific regions (NLOS1), a transmitted wave is attenuated by only one interaction. Therefore, it
has relatively large energy and smaller delay; thus, the value of the mean delay spread is smaller compared
to NLOS2, which is assumed to undergo more than one interaction.
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Chapter 4

SISO-TDL Model Parameter
Estimation

4.1 Motivation and Related Work

Many researchers have described the dispersive channel model in a form of tapped delay line (TDL)
model for vehicle to X (V2X) channels [93, 94, 96, 129] due to its low complexity and simple notation
and its straightforward implementation in channel emulators [11, 12]. Mainly, the class of TDL model
is single input single output (SISO) channel, and it is based on the assumption of wide sense stationary
uncorrelated scattering (WSSUS), which is not realistic for V2X channels due to the frequent transitions
[85, 129]. It can be extended to non-WSSUS using the first-order two-state Markov chains [61, 64, 67, 94,
96,129], in contrast to the higher-order Markov Chain considered in [93], where it has been observed that
the order of the Markov Chain does not need to be larger than second-order. As explained in Sections
2.7-2.9, from a mathematical point of view (2.31), the superposition of multiple rays constitutes the full
CIR. Each individual ray could be identified as a tap and be used in a TDL model. However, deriving the
parameters of each such tap from measurement data would require advanced signal processing methods
such as high-resolution parameter estimation [82,144], as the measured data is always done with limited
bandwidth; thus, the individual Dirac-deltas are not directly visible. Therefore, different definitions of
taps are used in literature, with less strict relations to the geometrical ray. Based on the definition
in [95, 96, 129, 155], where a tap is a sample of the bandlimited channel impulse response (CIR). In
general, a TDL model consists of at least one tap, each having a set of parameters. The TDL model is
the discrete form representation of the CIR, and it is widely used to match the symbol period of a given
system [96]. In literature, different strategies are available to select sufficient samples; in [129], the authors
proposed to sub-select the samples based on power to reproduce 99% of the total power. In [157, 160],
authors define dense- and sparse-taps, which are placed to cover the range with 80% and 20% power
contribution, respectively. They have been developed by averaging samples along with the delay domain
(after computing the mean power delay profile (PDP)) by dividing the delay axis of the mean PDP using
an interval and then summing those samples in the delay domain that tend into the interval. Based on
the definition in [108], a tap is a cluster of bins containing highly correlated amplitudes. In [56], the
authors use a clustering technique to select the tap to reduce the number of taps. In other words, paths
with similar properties, such as delay, are grouped together and represented as an active tap. The goal
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of defining a TDL is to select only the relevant samples (or set of clusters) of the CIR and model their
amplitudes and Doppler shifts properly.

The approach used in this investigation is based on the definition in [95,129], where a tap is a sample
of the bandlimited CIR. Consequently, one tap can be a ray, multiple rays, or no ray at all. In this
investigation, the proposed approach of [129] to extract TDL model parameters from measured data is
extended. In addition to that, the proposed approach of [129] is applied to verify and compare to the
extended model. We concentrate on the channel taps, whose amplitudes and delays are necessary to
compute the root mean square delay spread (RMS-DS) of the channel because the RMS-DS is the major
factor in the performance of most digital communication systems, including orthogonal frequency division
multiplexing (OFDM) system proposed for V2X communication. When the RMS-DS is greater than a
guard interval, this will lead to inter symbol interference (ISI) and degrade performance, in other words,
individual symbols overlap with the following ones, as result transmission errors occur 1 [37, 64]. Hence,
designers most often rely on RMS-DS, which has been shown to be directly relatable to communication
system performance.

To summarize, the classical TDL model is extended to a non-WSSUS model, which is suited for
V2X communication systems. The proposed extension is based on a discussed model [92, 129] using a
persistence process (PP). The remainder of this chapter is organized as follows. We first describe selecting
the relevant samples of the CIR and estimating their parameters from measured data and then we address
their amplitude fading. Next, an approach is proposed to verify the correctness of the channel model
parameters derivation. The analysis investigates the correlation coefficient among taps amplitude as well
as taps persistence. All those parameters are essential for implementing the channel models and building
a generator, which will be devised in Chapter 5.

The material of this chapter is partially presented in [61,64,66].

4.2 Time-Delay of the Active Taps

As defined earlier, a tap is a sample of the bandlimited CIR. However, using all possible taps in a TDL
model would not be feasible and also not necessary. For instance, in our case, where the total CIR length
is 12.8µs and a bandwidth is 20 MHz; therefore, 256 taps need to be considered. In general, using only a
subset is sufficient to characterize the channel (on average). The PDP is of high practical significance in
terms of determining taps for the TDL model [61,63,64,66,95,129,157,160]. In this chapter two methods
will be presented that can be used to determine the relevant or “active taps ” 2. The first approach is
based on cumulative tap energy and was proposed by [129], the second one is a variant of the first, but
it is based on finding “peak taps”. Entire measurement campaign will be used in this investigation. As
indicated in Chapter 3, three different scenarios (LOS, NLOS1, and NLOS2) exist in our measured data.
In this chapter, each measurement file will be examined separately and then based on different scenarios,
tracks will be merged into different data sets, which are LOS (1896 snapshots), NLOS1 (2714 snapshots)
and NLOS2 (46402 snapshots). Then these data sets will be investigated. It is important to note that in
this chapter illustration for parameter extraction will be presented exemplary for track number (24 → 25)
because it goes through all three different scenarios as described in Chapter 3.3.2.

1Although channels with the same RMS-DS, but different CIRs can yield different ISI effects, it is impossible to account
for the infinite number of such “equal-RMS-DS” CIRs.

2Active taps are those samples, which is selected from measured data to fully describe the CIR
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4.2.1 Determination of Active Taps Based on the Cumulative Energy

As already stated, this approach is proposed by [129]. The outcome of this method is called model-1
(M1). The algorithm to extract the model parameters is illustrated below:

1. Hann Window: The Hann window is applied to the data to reduce and confine the leakage [19].

2. Noise Cutting: The noise level is estimated using the algorithm in [44]. Subsequently, all samples
in the measured impulse response below the noise threshold (6 dB above the noise level) are set to
zero. In order to obtain a PDP for a single snapshot, the PDP is averaged over the channels of the
transmitter (Tx) and receiver (Rx) antenna array. The PDP is calculated

Pk(t, τ) =
1

NTNR

NT∑
u=1

NR∑
v=1

|hk(t, τ, u, v)|2 , (4.1)

where Pk(t, τ) is the PDP of the kth snapshot, NT and NR are the numbers of Tx- and Rx-
antennas, respectively. An example of PDP with its noise threshold is shown in Fig. 4.1(a) and
those multipaths that are below the noise threshold are set to zero.

(a) (b)

Fig. 4.1 (a) Example of recorded PDP with its noise threshold; those multipaths that are below the noise
threshold are set to zero, (b) PDP versus PDP with PP; each component whose power is below the

multipath threshold is considered to be “OFF,” which is indicated using green stems

3. Persistence Process (PP): The “ON”/“OFF”-state of each multipath is determined (zp(t) in
2.31). In order to make this clear, consider an example if we could measure the CIR with an
ideally infinite delay resolution, and we get the PDP, which is depicted in Fig. 4.1(b). Blue stems
show a PDP that contains three components. Each of those whose power is below a multipath
threshold (MT) is considered to be “OFF,” which is indicated using green stems. As a result, an
ON/OFF sequence for each multipath will be obtained, which is relevant to compute a Markov
chain parameters (these parameters is essential for a generator). Fig. 4.3(a) provides an example
of measured PDP versus applying MT to obtain the persistence process (PP). In this investigation,
the MT is set to be 25 dB below the main peak in each snapshot. Fig. 4.2(a) shows a dynamic range
of the normalized PDP corresponding to the CIR in each snapshot. Additionally, the normalized
PDP under NLOS2 condition is plotted in Fig. 4.2(b), where a dynamic range of 37 dB is achieved.
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Fig. 4.3(b) illustrates PP versus tap index, the yellow color indicates when a tap is “ON,” and the
blue color indicates the “OFF” state. The lifetime of tap is determined by the number of snapshots,
where a tap is in the “ON” state. Additionally, an exemplary life time of a tap is shown in Fig.
4.4(a).

(a) (b)

Fig. 4.2 (a) Dynamic range of the normalized PDP versus snapshot index (track number 24 →25), (b)
Normalized PDP corresponding to one of the CIRs under NLOS2 condition, where a dynamic range of 37

dB is achieved
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Fig. 4.3 (a) An example of measured PDP versus applying MT to obtain the PP; the MT is set to be 25
dB below the main peak, (b) PP versus tap index, the yellow color indicates when a tap is “ON” and the

blue color indicates the “OFF” state

4. MC Parameters: From the “ON”/“OFF”-sequence from step 3, we can find the probabilities of
the TS matrix (4.2) of each multipath using (4.3) [155].

TS =

[
P00 P01

P10 P11

]
, (4.2)

where

P00 =
n00

n
; P01 =

n01

n
; P10 =

n10

n
; P11 =

n11

n
, (4.3)
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(a) (b)

Fig. 4.4 (a) An exemplary life time of a tap in M1 (track number 24 →25 start from NLOS2 scenario and
it goes under NLOS1 condition), (b) A steady-state probability of taps being ON in M1; the SS1 decreases

as the tap index increases (track number 24 →25)

where n01 is the number of occurrences of a transition from state OFF to ON and n is the total
number of possible transitions 3. As a result, the TS matrix is obtained for each multipath. From
the parameters of the TS matrix, then we can calculate the probabilities of the SS matrix using
(4.5) and (4.6) [155].

SS =

[
SS0

SS1

]
, (4.4)

where

SS0 =
P10

P10 + P01
, (4.5)

SS1 = 1− SS0 =
P01

P01 + P10
. (4.6)

Fig. 4.4(b) provides the steady-state probability of state ON (SS1) versus tap index. The SS1

decreases as the tap index increases.

5. Average “ON”-Energy: Find the average “ON” energy (4.7) for each tap by averaging the
energy of a tap when it is in the “ON” state over snapshots.

EON
p =

∑K
k=1 E

k
p∑K

k=1 z
k
p

, (4.7)

where

Ek
p = P k

p · zkp , (4.8)

where Ek
p is valid energy of pth tap in the kth snapshot, P k

p is the power of the pth tap in the kth

snapshot. zkp is the PP of the pth tap in the kth snapshot. EON
p is the average ON energy for the

3n00 is the number of occurrences of a transition from state OFF to OFF, n11 is the number of occurrences of a transition
from state ON to ON, and n10 is the number of occurrences of a transition from state ON to OFF.
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pth tap. Fig. 4.5(a) depicts the average ON energy associated with each tap for the three scenarios.
It is evident that the average ON energy decreases as the tap index increases. Additionally, it is
observed that the rate at which the tap energy decreases with tap index is much slower under LOS
conditions compared to the other two scenarios.

(a) (b)

Fig. 4.5 (a) Average ON Energy in M1; the rate at which the tap energy decreases with tap index is much
slower under LOS condition compared to the other two scenarios (track number 24 →25), (b) The active

taps and cumulative energy of the ON taps in M1 (track number 24 →25)

6. Cumulative Energy: Find the cumulative energy by multiplying the average “ON”-energy with
SS1 for each tap (4.9). The result is shown in Fig. 4.5(b).

CEp = EON
p · SS1p . (4.9)

7. Active Taps: Sort the result from step 6 by magnitude in descending order and select the taps
that accumulate 99% of the total energy.

The outcome of this method (M1) is illustrated in Fig. 4.5(b). The plot depicts the cumulative energy
(outcome of step 6) of every ON tap’s for the three different scenarios. Black circles are used to indicate
the active taps, being sub-selected from the ON-taps4. Except for the NLOS2 scenario, this method tends
to select taps as active taps that are close to the main peak of the cumulative energy. We observe that
the negligence of taps with low energy but large delays can have unfavorable effects on the capability of
the TDL model to regenerate the RMS-DS. This will be illustrated in detail in Chapter 4.2.3.

4.2.2 Determination of the Active Taps Based on the Peak Energy

This section proposes a new approach to obtain the TDL model parameters that also select low-magnitude
taps that have larger delays. We call this approach model-2 (M2), and it is based on the previous
algorithm with some extensions. The extension introduces an additional step after the first step, which
is a base delay compensation, and in the last step, the selection of active taps from the cumulative tap
energy is modified.

In a V2X scenario, at least one of the Tx and Rx is mobile, and the CIR is subject to potential strong
shifts in its base delay (delay of the first tap with significant energy). Therefore, we suggest first aligning

4ON-taps are the taps that at least once in ON-state.
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the channel impulse responses (CIRs) to compensate for this. Consider an example where the Rx is first
moving towards the Tx and after some time moving away. The PP in such a case could look like the
example given in Fig. 4.6 (upper panel). Without any compensation of the base delay, this could lead to
a large number of taps with a low lifetime. After alignment, the number of ON taps is lower, and their
lifetime is increased; this is shown in Fig. 4.6 (lower panel). We also propose to perform the shifting of
CIR based on the change in distance between the Tx and Rx (known from recorded GPS data). It is
also possible to perform the shifting such that the first ON tap is always moved to the beginning of the
CIR at 0 s. However, we decided this would not be the best way due to the possible mixing of taps. For
example, if the first tap is OFF for the given snapshot; thus, the second tap would be shifted to 0 s. If the
first tap is in the ON state in the next snapshot, it would be moved to 0 s. Doing so would result in the
first tap (after shifting) being always ON. The impact of shifting can be clearly seen in our measurement
data; Fig. 4.7 shows the impact of shifting on the valid energy of the CIR. As explained previously, all
steps are identical to the previous method, except two steps are modified (called 1B and 7B). These two
steps are clarified below:
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Fig. 4.6 PP of the taps before and after shifting CIR; the approach of upper panel leads to a large number
of taps with low lifetime; after alignment the number of ON taps is smaller and their lifetime is increased

(lower panel)

(a) (b)

Fig. 4.7 Valid energy after merging the data, (a) Before shifting in M1, (b) After shifting in M2

1B. Base Delay Compensation: Determine the delay (∆τ) caused by change in distance between
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Fig. 4.8 ∆τ versus snapshot index (track number 24 →25)

the Tx and Rx. The algorithm to compute the ∆τ is illustrated below

1B1. Haversine distance: Distance between the Tx and Rx is calculated by using Haversine Formula
(4.10) [154].

∆dH = 2r sin−1

(√
∆M +∆W

)
, (4.10)

where

∆M = sin2

(
φ2 − φ1

2

)
, (4.11)

∆W = cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

)
, (4.12)

where r is earth radius and set to 6367 km, φ1 and φ2 are the Tx and Rx latitude in radians.
λ1 and λ2 are the Tx and Rx longitude in radians [154]. We have the latitude and longitude
of Tx and Rx from the GPS positioning.

1B2. Find a distance between the Tx and Rx antennas (∆D) using the Pythagoras theorem.

∆D =

√
∆d2H +∆H2 , (4.13)

where ∆dH is the Haversine distance (the outcome of step 1B1) and ∆H is a difference between
the Tx and Rx antenna height.

1B3. Find LOS delay ∆τ using (4.14)

∆τ =
∆D

c
, (4.14)

where c is the speed of light. The value of ∆τ versus snapshot index is depicted in Fig. 4.8.
As can be seen in the map (Fig. 3.6 and 3.7), over the different snapshot indices, the car
was coming closer to the Tx; thus, the value of ∆τ decreases gradually because the distance
decreases.

1B4. Find ∆s using (4.15). ∆s is the number of samples to be shifted.

∆s =
∆τ
1
B

, (4.15)
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where B is the bandwidth. Apply a fast Fourier transform (FFT) of the CIR to obtain a time
varying channel transfer function, then perform shifting.
To sum up, the value of ∆τ is computed for each snapshot and then the number of samples to
be shifted is calculated. Next, apply the FFT of CIR to obtain a time-varying channel transfer
function, then perform shifting. Fig. 4.9(a) shows one of the measured PDPs. Blue color
shows PDP without shifting. The LOS delay is 0.3129 µsec, which is corresponded to 6.2588
samples (∆s) to be shifted. When the shifting is performed, the PDP looks like a green color
in Fig. 4.9(a). Fig. 4.9(b) illustrates the PP after shifting the CIR, and it can be noticed that
the shifting has an impact (compare Fig. 4.3(b) with Fig. 4.9(b)).
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Fig. 4.9 (a) An example of the measured PDP with and without Shifting; the blue color shows PDP
without shifting and when the shifting is performed, the PDP looks like the green color, (b) PP of the taps

after shifting the CIR in M2; the impact of shifting can be noticed by comparing Fig. 4.9(b) with Fig.
4.3(b) (track number 24 →25)

7B. Active Taps: Active taps are chosen at the peaks of the cumulative energy. Any sample in the
data set more prominent than their couple neighboring samples is assumed to be a peak tap.

Fig. 4.10 shows the outcome of the second method (M2). Because of the shifting of the CIR, the
tap indices and cumulative energy changes in comparison to Fig. 4.5(b). It can be seen that when only
the peak taps are considered, fewer taps are selected as the active taps. Additionally, those taps are also
selected as active taps, which have lower energy with larger delays compared to the first approach.
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TABLE 4.1
Tap number comparison in M1 and M2 for each measurement track

Tap number comparison in M1 and M2 for each file

M1 M2

File name LOS NLOS1 NLOS2 LOS NLOS1 NLOS2

Cologne_MT1-2 17 19 7 9
Cologne_MT2-3 13 22 4 7
Cologne_MT3-4 37 14
Cologne_MT4-5 37 10
Cologne_MT6-7 27 5
Cologne_MT7-8 47 11
Cologne_MT8-9 39 17
Cologne_MT9-10 33 10
Cologne_MT10-11 19 6
Cologne_MT11-12 22 7
Cologne_MT13-14 14 4
Cologne_MT14-15 25 10
Cologne_MT15-16 22 11
Cologne_MT16-17 40 11
Cologne_MT17-18 44 14
Cologne_MT19-20 32 14
Cologne_MT21-22 31 11
Cologne_MT23-24 31 14
Cologne_MT24-25 7 14 36 2 6 12
Cologne_MT25-26 9 14 2 3
Cologne_MT27-28 13 12 2 4
Cologne_MT28-29 18 4
Cologne_MT30-31 53 18
Cologne_MT31-32 38 12
Cologne_MT33-34 20 4
Cologne_MT34-35 22 7
Cologne_MT35-36 38 20
Cologne_MT36-37 35 11
Cologne_MT37-38 49 14
Cologne_MT38-39 39 8
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Fig. 4.10 The active taps and cumulative energy of the ON taps in M2; only the peak taps are considered, this leads to
selecting fewer taps as the active taps (track number 24 →25)

4.2.3 Evaluation of the Outcome from M1 and M2

In Section 4.2.1 and 4.2.2, two algorithms have been clarified in order to derive the TDL model parameters
from the measurement data. The model parameters are extracted for each measurement track, and the
number of active taps for both models is compared in Table 4.1. The same characteristics of three
different groups, which are indicated in Table 3.4 are also noticeable in Table 4.1. From the results,
the outcome of model M2 is reducing the number of taps by more than 50%. The active taps for track
number (24 → 25) are plotted in Fig. 4.5(b) and 4.10 and indicated using a black circle. The outcome of
model M2 is not only reducing the number of taps substantially compared to M1 but also includes those
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taps that have low power with the large delay that are important for regenerating the delay spread. In
the literature, the accuracy of the channel models is verified and evaluated based on how well they agree
in terms of RMS-DS [38,55,129]. Here, an approach is proposed to verify the correctness of the channel
model parameters derivation. First, the RMS-DS is computed (3.3) for the measurement data (after the
noise threshold and the multipath threshold, 25 dB below the main peak) using all possible taps. After
that, the RMS-DS is calculated only for the tap indices where the models M1 and M2 would place an
active tap. The result is plotted in Fig. 4.11 for track number (24 → 25). The CDF of RMS-DS for the
NLOS1 region 5 is shown in Fig. 4.11(a), and for probabilities lower than 0.2, M1 fits better with the
measurement data. In order to explain this, a new term will be defined, which is active-ON tap. Those
taps that are active and in ON-state are called active-ON taps. This is referred to the PP; active taps are
not always active-ON taps due to incorporating ON/OFF behavior (PP). The PP of active taps indices
under NLOS1 conditions is plotted in Fig. 4.12 6. From the figure, it is observed that M1 selects almost
all the ON taps and tends to generate more than 91% of the active-ON taps because the active taps are
close to the main peak (this is shown in Fig. 4.5(b)). Therefore, they carry lots of energy, as a result,
they are active-ON taps most of the time. On the other hand, M2 generates 66% 7 of the active-ON
taps, as a consequence, for those regions M1 fits better.
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Fig. 4.11 CDF comparison of the RMS-DS between the measurement data and the active taps only (track number 24 → 25),
(a) NLOS1, (b) NLOS2

5Underlying different scenarios have been defined in Section 3.2
6The PP under NLOS1 scenario for one of those snapshots that the CDF-DS probabilities lower than 0.2
7Number of active tap= 6, Number of active-ON taps=4; range = 4

6
= 66%
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(a) (b)

Fig. 4.12 PP under NLOS1 scenario for one of those snapshots that the CDF-DS probabilities lower than 0.2 (track number
24 → 25), (a) M1, (b) M2

Table 4.2 provides a metric, which is the difference of mean RMS-DS to compare those CDFs in
Fig. 4.11. The overall statistic of the outcome from M1, the delay spread is under-estimated because
it neglects the low power taps with large delays. The outcome from M2 shows improvement of the
delay spread while reducing the number of taps significantly8, and it is closer to the measurement data.
Therefore, we assume M2 works better because at 0.5 value of the CDF its closer to the measurement.

TABLE 4.2
Difference of the mean RMS-DS [µsec] between the measured data and active taps for track number (24→25)

Scenario M1 M2

NLOS1 0.04 0.02
NLOS2 0.03 0.01

Fig. 4.11(b) illustrates the CDF of RMS-DS under the NLOS2 conditions. It is not surprising that
both models could generate almost the same delay spread because M1 filtered more than half of the ON
taps. Nevertheless, M2 could generate almost the same results, or even it is better in some areas by
filtering only 20% of the ON taps. For probabilities greater than 0.9, M1 fits better to the measurement
data due to the high percentage of active-ON taps, which is illustrated in Fig. 4.13, and the reason
is clarified for the NLOS1 scenario. Fig. 4.13 shows PP under the NLOS2 scenario for one of those
snapshots that the CDF-DS probabilities greater than 0.9. However, in most of the areas, both models
are equally good (it is illustrated in Fig. 4.11(b)), then we prefer the one that has fewer taps due to less
complexity, easier for computation, and channel emulator is limited to a finite number of taps.

8Reducing number of taps is very important feature because implementation of such a model in channel emulators is
limited up to 12 taps. In addition to that 6-tap and 12-tap are employed by IEEE 802.11p [10,12]
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(a) (b)

Fig. 4.13 PP under NLOS2 condition for one of those snapshots that the CDF-DS probabilities higher than 0.9 (track
number 24 → 25), (a) M1, (b) M2

As mentioned previously, measurement tracks are merged into different data sets depending on the
scenario. As a consequence, we have three data sets, which are LOS (1896 snapshots), NLOS1 (2714
snapshots) and NLOS2 (46402 snapshots). Both algorithms are applied, and the number of active taps for
both models is compared in Table 4.3, and the CDFs of RMS-DS are illustrated in Fig. 4.14. Moreover,
a comparison of CDF-RMSDS statistics between M1 and M2 with respect to the measured data is
provided in Table 4.4. As a result, M2 works better than M1 in retaining the RMS-DS. In brief, the
advantages of the new approach (M2) are reducing the number of required taps while retaining the RMS-
DS performance and the active taps are more spread over the cumulative energy; thus, low energy taps
with large delay are selected as they are necessary to regenerate the RMS-DS. As a result, this method
illustrates a better representation of the measured CIR. Therefore, all results pertain to the new approach
M2 for the following chapters. However, after merging the data in the line of sight (LOS) scenario, we
have only one active tap, which cannot regenerate RMS-DS. This will be illustrated in detail in the next
subsection.

TABLE 4.3
Tap number comparison in M1 and M2 after merging the data

Scenario LOS NLOS1 NLOS2

Active taps in M1 12 17 33
Active taps in M2 1 4 6

TABLE 4.4
Difference of the mean RMS-DS [µsec] between the measured data and active taps after merging the data

Scenario M1 M2

NLOS1 0.05 0.02
NLOS2 0.13 0.03
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Fig. 4.14 CDF Comparison of the RMS-DS between the measurement data and the active taps only after merging the data
(a) NLOS1 (b) NLOS2

4.2.3.1 Under LOS Condition

In the proposed approach (M2), the number of active taps depends on the number of peaks of the cumu-
lative energy. After merging the data under LOS conditions, we only have one active tap. As explained
previously, the aim of this approach is to regenerate the RMS-DS, which is close to the measurement
data. Using only one tap cannot provide such a result, as shown in Fig. 4.15. As a consequence, we need
to extend this approach.

Fig. 4.15 CDF comparison of the RMS-DS between the measurement data and the active taps in LOS scenario

Here, the tap number is calculated based on the maximum RMS-DS (4.16) [129].

P = dmax(στ )/(1/B)e+ 1 , (4.16)

where στ is the delay spread and B is the bandwidth. Based on (4.16), we need to select four taps, one of
them is selected based on the peak, and the other three are based on a steady-state probability of being
ON (SS1), in other words, those taps have been selected as active taps, which are ON taps for a long
period of time, and they are beyond the first peak tap. This extension is indicated in red color in the
block diagram in Fig. 4.16. As a result, for this model, we have four taps; one of them is the peak tap,
which is based on M2, and the other three are the stationary taps in terms of considering where is the
highest value of SS1.
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Fig. 4.16 Flow diagram of TDL model parameters extraction under LOS condition

cumulative distribution function (CDF) of the RMS-DS is compared (M1, M2 with measurement
data) and plotted in Fig. 4.17. M2 could generate better results in some areas (especially at the 0.5
value of the CDF). The difference of the mean RMS-DS between measured data and active taps is less
than 1

B (it is 0.026µs), while reducing the number of taps by more than 60%. We declare if the error is
in the range of 1

B , this will be equal to zero error because we sub-select taps out of many and our system
does not have higher resolution; thus, it always introduces these kinds of errors.

Fig. 4.17 CDF comparison of the RMS-DS between the measurement data and the active taps after extension under LOS
condition

4.3 Doppler Shift of the Active Taps

The time selectivity of wireless channels is described by the Doppler shift. This is due to relative motion
between the Tx and Rx. Consider an example where the Rx is moving towards the Tx; in a very short
period, the Doppler frequency changes from a positive value to a negative value [167]. The aim of this
section is to characterize the Doppler frequency for each tap. The COST-207 model has defined four
types of Doppler spectra conditioned to taps associated with time delays [35,48].

• Rice spectrum used for the first tap under LOS condition
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• Classic spectrum (bathtub-shaped Jakes Doppler spectrum) has been used for a tap, whose delay
is not greater than 0.5 µs

• Gaussian spectrum-1 associated with tap-delays in the range between 0.5 µs and 0.002 ms

• Gaussian spectrum-2 associated with delays in excess of 0.002 ms

The Doppler feature of the first tap can be specified as −fDmax, and the rest can be described as a
random variable that follows a uniform distribution, which is fv ∼ U [−fDmax, fDmax] as proposed in [167].
In this investigation, the same approach is considered as in [63,167]. The maximal Doppler frequency is
computed (4.17)

fD =
vfc
c

cos θ =
v

λ
cos θ = fDmax cos θ , (4.17)

where fDmax is the maximum Doppler shift, fc is a carrier frequency, c is the speed of light, v is the
speed of Rx, and θ is the angle of Tx with respect to the Rx. Depending on the Rx is moving away
or toward the Tx, the Doppler shift can be +/−. The result of the maximum Doppler shift is given in
Table 4.5. The Doppler feature of the taps can be described as a random variable that follows a uniform
distribution, fv ∼ U [−fDmax, fDmax].

TABLE 4.5
Maximum Doppler shift in different scenario (after merging data)

Scenario vmaxm s−1 fDmax (Hz)

LOS 2.27 20
NLOS1 2.36 20
NLOS2 2.52 22

4.4 Amplitude Fading of the Active Taps

Fading is a signal deterioration by multiple propagation paths. As explained in Chapter 2, a radio
signal propagates according to three mechanisms, which are reflection, diffraction, and scattering. These
mechanisms give rise to two nearly independent phenomena, which are slow fading/large-scale fading
caused by shadowing and path loss and fast fading/small-scale fading caused by multipath superposition.
The received signal may be broken down into these two components, which are slow- and fast-fading,
and we will study them individually and separately in Chapter 6. Nevertheless, in this section, the
amplitude distribution of pth tap is calculated from the superposition of delayed waves in the pth delay
bin. The large-scale fading will affect all taps the same over the large-scale fading duration. Typically,
this duration is much longer than the coherence time of small-scale fading (which is why it is called
large-scale fading or slow fading). Depending on vehicular velocities and how long a set of data samples
is used to estimate small-scale effects, neglecting the large-scale variation may be fine. Consequently,
large-scale fading and small-scale fading are not separated in this section. The aim of this assumption is
to recreate CIRs that look similar to the measured data, and we would like to consider power fluctuations
due to non-stationarity and regenerating the RMS-DS comparable with the measured one (a generator
will be devised to produce the CIR based on the derived model parameters in Chapter 4). Fig. 4.18
summarizes the steps of discussed assumption.
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Fig. 4.18 Summary flow diagram of processing steps

(a) (b)

Fig. 4.19 Histograms and pdf fits for the third tap under NLOS2 condition; the log-normal distribution
shows a better match between the probability density function (PDF) and the empirical histogram, (a)

Histogram for the third tap under NLOS2 condition, (b) PDF Illustration for the third tap

The fading amplitude statistics of the pth tap are computed from the square root of the power in the
pth delay bin. To address amplitude fading, we determine parameters for different distribution functions
that fit best to the observed data meaning the histogram of the data, which is plotted in Fig. 4.19(a).
In other words, the parameters of some known distributions are determined that fit best to the observed
tap amplitudes. The log-normal distribution shows a better match between the PDF and the empirical
histogram 9. Additionally, a histogram intersection (HI) is computed between the empirical histogram
of measurement data and the PDFs. In general, the HI calculates the intersected area between two
histograms at the exact bin locations to measure the similarity between them; an example is illustrated
in Fig. 4.20. HI = 1 when both histograms are identical. However, since we calculate the HI between
the empirical histogram and the PDF, we need a different approach. This is specified in these steps:

1. Compute the empirical histogram for each tap amplitudes and then obtain the values of the
histogram and the locations of the bins.

2. Derive the parameters of specified distribution from tap amplitudes, such as a scale parameter
σR of Rayleigh distribution, a shape factor β and scale parameter a of Weibull and σ with µ of
Log-normal distribution.

9The empirical histogram with the PDF curves for first and second taps amplitude under three different scenarios are
illustrated in Fig. B.2 and B.3.
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3. Compute the PDFs at locations of the center of the bins.

4. The HI is calculated (4.18) [88,120] after normalizing the empirical histogram and the PDF. This
is illustrated in Fig. 4.19(b).

HI =

I∑
i

min(Mi, Fi) , (4.18)

where i is the number of bins in the PDF range. The sets of probability density values for both are
indicated by Mi and Fi, in our case, M is the normalized empirical histogram, and F is the PDF.

Fig. 4.20 Illustration of metric “Histogram Intersection,” which calculates the intersected area between two
histograms at the same bin locations to measure the similarity between them

A resemblance between the empirical histogram of tap amplitudes and the PDFs is computed using
HI. The outcome is given in Table 4.6 and the log-normal distribution illustrates good agreement for a
large number of taps in terms of considering where the highest value of HI is. ‘It is likely that a large
number of effects contribute to the attenuation of the signal, including diffraction, reflection, energy
absorption, antenna losses, etc. Most of these effects are multiplicative or equivalently additive in the
log domain. By the central limit theorem, a large number of random multiplicative effects will converge
to a normal distribution in the log domain’ [49]. In addition to that, in [127] the authors states in an
urban environment, the randomness in building heights causes log-normality. The Weibull model has
two parameters, which are a shape factor and scale parameter; thus, it offers substantial flexibility and
provides a good fit to any data set that have been considered, but as stated in [129] it is based not
on an underlying propagation theory. The Rayleigh approximation becomes poorer because not only
the large-scale fading has not been removed, but also the range of delay resolution of our measurement
system is narrow (50ns) so that there are not many multipath components (MPCs) to justify the Rayleigh
distribution. In [53], the authors also substantiate similar declarations.

4.5 Pairwise Tap Correlation Coefficient

The classical TDL model assumes uncorrelated scattering (US), whereas, in V2V/V2I scenarios, the taps
are correlated because there might be a given scatterer that contributes to several multipaths associated
with different delay bins; therefore, a collection of taps follow similar trend over time. A consequence
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TABLE 4.6
Outcome of HI between measured data and fitting curve; the log-normal distribution illustrates good agree-
ment for a large number of taps in term of considering where is the highest value of HI

LOS

Taps Lognormal Weibull Rayleigh

1 0.7369 0.7131 0.6155
2 0.7098 0.6709 0.6665
3 0.6569 0.5996 0.6034
4 0.7207 0.6657 0.5976

NLOS1

Taps Lognormal Weibull Rayleigh

1 0.6768 0.7387 0.5424
2 0.7616 0.7308 0.6945
3 0.4643 0.4310 0.4050
4 0.3478 0.3079 0.3153

NLOS2

Taps Lognormal Weibull Rayleigh

1 0.7672 0.7168 0.2678
2 0.8125 0.7179 0.4224
3 0.7899 0.6864 0.4623
4 0.7422 0.6521 0.5053
5 0.7195 0.6394 0.4680
6 0.6985 0.6161 0.5186

of this is to study the correlation between them because in developed channel models, it is essential to
account for this correlation during designing and evaluating advanced signal processing algorithms at the
Rx. In general, the amount of correlation coefficient between the taps depends on the delay resolution,
the capability of the sounder, the richness of the scattering environment, etc [64, 155]. Nevertheless, the
PP associated with each tap; thus, the correlation coefficient between each pair of taps is estimated from
the channel only when both taps are valid ON taps, in other words, both of them must exist for the same
snapshot. This phenomenon is happening due to the PP; therefore, different number of snapshots are
used [63,64]. This is demonstrated in Fig. 4.21.
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Fig. 4.21 Number of snapshots used to compute correlation matrix; the PP associated with each tap;
therefore, the correlation coefficient between each pair of taps is estimated from the channel only when

both taps are valid ON taps; thus, different number of snapshots are used, (a) NLOS1, (b) NLOS2

The correlation coefficient between two taps is estimated from the channel using(4.19) [61,63,64,122,
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129,155].

ρi,j =
cov(γ′

iγ
′
j)√

var(γ′
i)var(γ

′
j)

, (4.19)

where γ′
i and γ′

j are magnitudes of tap i and j. cov and var denote the covariance and variance functions,
which are derived in the following expressions

cov(γ′
iγ

′
j) =E(γ′

iγ
′
j)− E(γ′

i)E(γ′
j)

=

∑M
1 γ′

iγ
′
j

M
− γ̄′

iγ̄
′
j ,

(4.20)

var(γ′
i) =

∑M
i=1 γ

′2
i

M
− γ̄′2

i

var(γ′
j) =

∑M
j=1 γ

′2
j

M
− γ̄′2

j ,

(4.21)

where

γ̄′
i = E(γ′

i) =

∑M
i=1 γ

′
i

M
, γ̄′

j = E(γ′
j) =

∑M
j=1 γ

′
j

M
, (4.22)

where M is the total number of snapshots that tap i and j are valid ON taps. The pairwise tap correlation
coefficient matrix is defined as 4.23.

Cγ =


c11 c12 · · · c1P
...

...
. . .

...
cP1 cP2 · · · cPP

 , (4.23)

where P is the selected active taps. The correlation coefficient matrix is computed, and the result is
given below (Cγ−LOS and Cγ−NLOS), which will be entries of the generator in Chapter 5. The correlation
coefficient matrices are symmetric; therefore, the upper and lower triangular parts are used for different
consequences in Cγ−NLOS. The lower triangular indicates the NLOS2 scenario, and the upper part depicts
under NLOS1 condition. There is a strong correlation among the active taps, whereas the correlation
coefficient decreases as the tap index increases.

Cγ−NLOS =


1 0.8415 0.9196 0.315 − −

0.7683 1 0.7996 0.5813 − −
0.7273 0.7715 1 0.3475 − −
0.6017 0.616 0.649 1 − −
0.6682 0.715 0.633 0.560 1 −
0.5934 0.627 0.549 0.451 0.295 1



Cγ−LOS =


1 0.5216 0.2016 0.2845

0.5216 1 0.0184 0.5147

0.2016 0.0184 1 0.3213

0.2845 0.5147 0.3213 1



4.6 Correlation between Taps Persistence Processes

The author in [155] has observed the correlated PP. Consider an example when a large truck causes
multiple adjacent paths to be present or absent at the same time; thus, a collection of taps PP might
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be highly correlated [155]. The correlation coefficient among taps persistence can be obtained using
(4.24) [67,155].

ci,j =
cov(zizj)√

var(zi)var(zj)
, (4.24)

where ci,j is the correlation coefficient between persistence processes among tap i and j. cov and var

denote the covariance and variance functions, which have been derived in Section 4.5. zj and zi are the
PP of tap j and tap i, respectively. In brief, it is the same as the pairwise tap correlation coefficient, but
instead of using γ′, the entries are the finite “lifetime ” of the γ′, which is a binary vector and estimated
from measured data. The correlation coefficient matrix between taps persistence processes is given below
(Cz−NLOS), and the upper triangular part depicts under NLOS1 condition, and the lower triangular
indicates the NLOS2 scenario. The average correlation of PP between taps is around 0.0841 and 0.0825
under NLOS1 and NLOS2 conditions, respectively. As a consequence, the PP between different tap
indices is uncorrelated.

Cz−NLOS =


1 0.0197 0.2772 0.4507 − −

0.1567 1 0.0617 0.039 − −
0.1027 0.1382 1 0.4972 − −
0.1591 0.1747 0.3981 1 − −
0.1753 0.0293 0.2403 0.4027 1 −
0.1272 0.0144 0.1901 0.2865 0.3729 1



4.7 Parameter Extraction

In Section 4.2.1 and 4.2.2, two algorithms have been clarified to derive the TDL model parameters from
the measured data. Fig. 4.22 summarizes all the steps to select active taps for both models. Depending
on the model (M1/M2) scheme, the delay of active taps are derived from the cumulative energy of the
CIR. For example, Fig. 4.10 shows cumulative energy versus tap index; thus, we know the location of the
taps in the CIR; therefore, all essential parameters can be estimated. To compromise between number of
pages and precision (due to a large number of measurement tracks), the TDL tables parameters are only
given for the NLOS1 scenario (track number 24 → 25). It is given in Table 4.7 to compare both models’
outcomes.

Fig. 4.22 Tap selection block diagram in M1 and M2
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TABLE 4.7
TDL table parameters for NLOS1 scenario for

track number (24 → 25)

M1

Taps Delay (µ sec) Energy(lin) SS1 SS0 P11 P00 fD

1 1.25 0.381 0.9903 0.0097 0.9951 0.5 fv
2 1.3 0.2076 0.9903 0.0097 0.9951 0.5 fv
3 1.2 0.1489 0.8743 0.1257 0.9938 0.9565 fv
4 1.35 0.1174 0.9903 0.0097 0.9951 0.5 fv
5 1.4 0.0377 0.9903 0.0097 0.9951 0.5 fv
6 1.5 0.0293 0.9903 0.0097 0.9951 0.5 fv
7 1.45 0.0253 0.9903 0.0097 0.9951 0.5 fv
8 1.55 0.014 0.9903 0.0097 0.9951 0.5 fv
9 1.6 0.0099 0.9854 0.0146 0.9901 0.3333 fv
10 1.85 0.0082 0.8807 0.1193 0.9786 0.8421 fv
11 1.8 0.007 0.9082 0.0918 0.9845 0.8462 fv
12 1.65 0.0059 0.8559 0.1441 0.9895 0.9375 fv
13 1.9 0.0043 0.7532 0.2468 0.9887 0.9655 fv
14 1.7 0.0037 0.8545 0.1455 0.9838 0.9048 fv

M2

Taps Delay (µ sec) Energy(lin) SS1 SS0 P11 P00 fD

1 0.9 0.8962 0.9903 0.0097 0.9951 0.5 fv
2 1.15 0.0753 0.9903 0.0097 0.9951 0.5 fv
3 1.5 0.0204 0.8899 0.1101 0.9897 0.9167 fv
4 1.7 0.0034 0.8148 0.1852 0.9773 0.9 fv
5 1.8 0.0037 0.7907 0.2093 0.9706 0.8889 fv
6 2.75 0.0009 0.3447 0.6553 0.9155 0.9556 fv

In Section 4.2.3, an approach has been proposed to verify the correctness of the active taps. The
overall statistic of the outcome from M1, the delay spread is under-estimated because it neglects the
low power taps with large delays. The outcome from M2 shows improvement of the delay spread while
reducing the number of taps significantly10, and it is closer to the measurement data; thus, we assume
M2 works better (comparison is provided in Table 4.4). As explained in Section 3.2, measurement tracks
are merged into different data sets (depending on the scenario) and then the TDL tables parameters are
derived and given in Table 4.8. From Table 4.8, the energy of the taps is the average “ON” energy. SS0

and SS1 are steady-state probability of the tap being OFF and ON, P00/P11 is the probability of going
from state OFF to OFF or ON to ON. σLognormal and µLognormal are the standard deviation and mean
of the log-normal distribution. βWeibull and aWeibull are shape and scale factors of Weibull distribution,
and σRayleigh is a scale parameter of Rayleigh distribution. It is important to note that the delay of the
first tap is not equal to 0 s because the CIR is shifted in accordance with the distance change between
the Rx and Tx instead of shifting the first tap to the beginning of the CIR.

4.8 Concluding Remarks

One of the limitations of channel emulators is limited emulating the number of propagation paths simul-
taneously; thus, it is essential to find a proper approach to reduce the number of taps. This chapter
introduced an algorithm for selecting taps of a tapped delay line (TDL) model from measurement data.
The new approach is a modification of an existing method and improves the model (M2) with respect

10One of the limitation of channel emulators is limited emulating the number of propagation paths simultaneously. For
instance, the channel emulator described by authors in [12,56] allow for a maximum number of ten- and twelve-delay tap,
respectively. Therefore, it is important to find a proper approach to reduce the number of taps.
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TABLE 4.8
TDL table parameters for M2 after merging the data

LOS

Taps Delay (µ sec) Energy(lin) SS1 SS0 P11 P00

1 0.95 0.79 0.999 0.001 0.99 0.5
2 1.05 0.13 0.999 0.001 0.99 0.5
3 1.15 0.04 0.999 0.001 0.99 0.5
4 1.25 0.017 0.999 0.001 0.99 0.5

Taps σLognormal µLognormal aWeibull βWeibull σRayleigh fD

1 0.23 -13.38 1.7 ∗ 10−6 4.38 1.15 ∗ 10−6 fv
2 0.52 -14.48 6.6 ∗ 10−7 1.9 4.7 ∗ 10−7 fv
3 0.4 -14.89 4.16 ∗ 10−7 2.39 2.8 ∗ 10−7 fv
4 0.24 -15.29 2.58 ∗ 10−7 3.79 1.7 ∗ 10−7 fv

NLOS1

Taps Delay (µ sec) Energy(lin) SS1 SS0 P11 P00

1 0.95 0.9818 0.9670 0.033 0.9981 0.9439
2 1.35 0.0175 0.9897 0.0103 0.9974 0.75
3 2.1 0.0005 0.277 0.723 0.9558 0.9831
4 2.35 0.0001 0.133 0.867 0.9 0.9847

Taps σLognormal µLognormal aWeibull βWeibull σRayleigh fD

1 0.9344 -15.7 1.99 ∗ 10−7 0.86 2.3 ∗ 10−7 fv
2 0.697 -17.4 3.9 ∗ 10−8 1.46 3.15 ∗ 10−8 fv
3 0.6744 -19.1216 7.02 ∗ 10−9 1.533 5.5 ∗ 10−9 fv
4 0.4619 -19.61 3.8 ∗ 10−9 2.22 2.6 ∗ 10−9 fv

NLOS2

Taps Delay (µ sec) Energy(lin) SS1 SS0 P11 P00

1 1 0.8864 0.8346 0.1654 0.9919 0.9591
2 1.5 0.0671 0.9596 0.0404 0.9965 0.9168
3 1.85 0.0197 0.8089 0.1911 0.9802 0.9161
4 2.35 0.0093 0.4635 0.5365 0.9643 0.9692
5 2.65 0.0109 0.2615 0.7385 0.9444 0.9803
6 2.95 0.0066 0.1642 0.8358 0.9438 0.989

Taps σLognormal µLognormal aWeibull βWeibull σRayleigh fD

1 1.3016 -18.7 1.16 ∗ 10−8 0.6866 1.7 ∗ 10−8 fv
2 1.0681 -19.505 5.8 ∗ 10−9 0.9684 7.4 ∗ 10−9 fv
3 0.9874 -19.9532 3.6 ∗ 10−9 1.0892 4 ∗ 10−9 fv
4 0.903 -20.167 2.8 ∗ 10−9 1.2304 2.7 ∗ 10−9 fv
5 1.0255 -20.3244 2.7 ∗ 10−9 1.179 3.01 ∗ 10−9 fv
6 0.7604 -20.1 2.7 ∗ 10−9 1.3674 2.3 ∗ 10−9 fv
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to the delay spread and the number of taps. Model M2 in all scenarios uses a smaller number of taps
while retaining the delay spread performance. The taps are spread more widely over the cumulative
energy; thus, low energy and large delay taps are selected, which are relevant to regenerating the delay
spread. Furthermore, an approach was discussed to evaluate the model outcome. The feasibility was
investigated using channel-sounding measurement data. From the results, it was additionally observed
that more accurately shifting the channel impulse response (CIR) is necessary to reduce the number of
required taps.

Due to different communication environments, it is important to assess the amplitude fading by using
statistical measures. It has been illustrated that the amplitude fading of a large number of taps follows the
Log-normal distribution. Statistical measures were considered to address the fading amplitudes per tap in
contrast to the typical tap model that assumes independent Rayleigh fading. It was additionally observed
that there are strong correlations among taps amplitudes, but the persistence process (PP) between
different tap indices are uncorrelated; thus, the correlated Markov model is not necessary. Detection
results in different regions from the raytracer, and statistical measures that we applied show a good
match.

As mentioned previously, an essential tool in the performance analysis of communication systems is
an accurate propagation channel model. The aim of the next chapter is to discuss the implementation of
TDL channel model for vehicle to infrastructure (V2I) channels and devise a generator to produce a CIR
based on already derived model parameters from measurement data (Table 4.8). The root mean square
delay spread (RMS-DS) will be used for a model validation between simulated and collected data based
on how well they agree.

A part of the research contributions covered in this chapter is published in [61,64,66]

59



Chapter 5

SISO-TDL Channel Modeling and
Simulation

5.1 Motivation and Related Work

As explained in previous chapters, many researchers have described the dispersive channel model in the
form of tapped delay line (TDL) structure due to its simplicity, low complexity, and straightforward
implementation in channel emulators [7, 61, 129]. In [11, 12], the authors have considered TDL models
for vehicle to vehicle (V2V) channels for six scenarios (for certain RF channel emulators e.g., SPIRENT
5500 [1]), but they assumed that the different taps are uncorrelated and independent of each other, so
those models are based on wide sense stationary uncorrelated scattering (WSSUS). However, as mentioned
before, the propagation characteristics of V2V/vehicle to infrastructure (V2I) channels are different from
those of traditional cellular channels [61,64,85,129,155], and for an accurate description of V2V/V2I radio
communication channel, the WSSUS assumption is not valid. In [129], the non-WSS property of channel
is described by modeling multipath persistence via Markov chains, and the authors have observed often
correlated scattering among neighboring taps; thus, they have developed a generator to produce correlated
Weibull random variables 1. The correlated Nakagami fading model was devised by [166]. In [155], the
authors have investigated the correlation between taps persistence and modeled through correlated first-
order two-state Markov model. In [85], the authors have developed a generator by considering not only
the amplitude correlation but also the phase correlation between different taps. Then, the switching
function with the first-order two-state Markov chains is used to represent the non-WSS properties. The
phase of active taps is often modeled as uniformly distributed over the interval U ∼ [−π π] [40, 68, 155],
but in [85] the Laplace distribution is used to describe the angle distribution of the active taps.

This chapter continues of Chapter 4, where a new approach was proposed for selecting taps and
estimating their parameters from measured data. In this chapter, the implementation of TDL channel
model will be examined, and generators will be developed based on already derived model parameters
(Table 4.8). Log-normal, Weibull, and Rayleigh generators are devised, and uncorrelated persistence
process (PP) via the first-order two-state Markov model is modeled in those generators. Then, the first-
order two-state Markov model will be extended to the higher orders Markov model to better capture the
non-stationary behavior. To devise such generators, three components are essential to be addressed for

1It has been found that the Weibull distribution is a better fit over all measured data that have been considered [129]

60



CHAPTER 5. SISO-TDL CHANNEL
MODELING AND SIMULATION

5.2. MODELING THE ACTIVE TAP AMPLITUDE

each tap. The first one is the amplitude fading and then generating correlated random variables with a
certain distribution, and the last one is modeling a PP for each tap.

A part of the research contributions covered in this chapter is published in [67].

5.2 Modeling the Active Tap Amplitude

As noted before, γp in (2.31) is the complex active tap amplitudes. The sum of relevant scattered
components of the received signals can be modeled by addressing the magnitude fading of the active
taps, and their phase can be assumed uniformly distributed. As illustrated in Section 4.4, the (histogram
intersection (HI)) is applied to assess the amplitude fading of the active taps. Tap amplitudes are
generated using multivariate Log-normal, Weibull, and Rayleigh random variables with defined average
fading amplitudes, fading parameters, and correlation coefficients. In this section, two methods are
addressed to generate correlated random variables.

5.2.1 Correlated Multi-variate Log-normal Random Variable

As stated previously, the best fit for a large number of active taps is the Log-normal distribution; thus,
to compromise between the number of pages and precision, only the Log-normal generator is illustrated.
The following algorithm is used to obtain correlated multi-variate Log-normal random variables [20].

1. Correlated normal random variable: Generate random samples that follow standard Normal
distribution. The correlation matrix is considered as a covariance matrix since variance is one.

2. Mean and standard deviation: Compute the mean (m) and standard deviation (s) for active
taps only for those snapshots that are valid ON taps due to the PP.

3. σ and µ: Find Log-normal parameters using (5.1) and (5.2) [60].

σ =

√
log
(

s2

m2
+ 1

)
, (5.1)

µ = log
(

m

e
σ2

2

)
, (5.2)

where m and s are computed from step 2.

4. Computation of the parameters Use (5.3) to generate multivariate Log-normal random variables
with a specified correlation matrix [20].

X = eµ+σZ , (5.3)

where Z is the result from step 1, σ and µ are results from step 3. Fig. 5.1 summarizes discussed
steps.
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Fig. 5.1 Tap generator block diagram to generate correlated multi-variate Log-normal random variable

5.2.2 Inverse Transform Sampling

In a data science concept, a certain distribution can be taken (e.g., uniform distribution) and transformed
to turn it into a different distribution. This method is called inverse sampling transform [48]. It can
be used to generate correlated random variables following a specific distribution by using its inverse
cumulative distribution. Fig. 5.2 illustrates the inverse cumulative distribution function (CDF) method to
generate random samples following the wanted distribution. Uniform random samples on the probability
axis (ordinates) are drawn and then we were able to generate a Lognormal-distributed series by reading
the corresponding abscissa [58].

Fig. 5.2 Inverse CDF method to generate random samples following the wanted distribution, note adapted from [48]

In order to illustrate the discussed method, uniform distribution is transformed to generate an expo-
nential distribution 2 [42,45]. The transformation operation of the uniform distribution is represented in
(5.4).

T (U) =X , (5.4)

where T is a transformation function. U is a random variable uniformly distributed over an interval
∼ U [0, 1]. X is an exponential random variable. Using the definition of CDF, which is given in (5.5) and
substituting (5.4) into (5.5), equation (5.6) will be achieved.

2The exponential distribution is selected due to simplicity
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FX(x) =Pr(X ≤ x) , (5.5)

FX(x) =Pr (T (U) ≤ x) , (5.6)

then take the inverse transformation function (T−1) in (5.6)

FX(x) =Pr(T−1T (U) ≤ T−1(x))

=Pr(U ≤ T−1(x))

=T−1(x) ,

(5.7)

then take inverse of both sides

F−1
X (x) = T (x) , (5.8)

From (5.8), we observe that if we are able to calculate the inverse cumulative distribution of any certain
distribution, then we are able to generate the specified distribution. To illustrate this, the exponential
distribution is generated in the following steps

1. Generates uniformly distributed random variables ∼ U [0, 1].

2. The exponential distribution has the following probability density function (PDF) (5.9), and the
corresponding CDF is given by (5.10)

f(x) =

e−λx , x ≥ 0

0 , x < 0
(5.9)

FX(x) =

1− e−λx , x ≥ 0

0 , x < 0 ,
(5.10)

where λ is the exponential parameter (often called the rate parameter).

3. Here, compute the transformation function of the exponential distribution. Assume y is equal to
exponential CDF.

y = 1− e−λx , (5.11)

then take the natural log of both sides as in (5.12) and then divide both sides by λ

1− y = e−λx

ln(1− y) = −λx

x =
− ln(1− y)

λ
,

(5.12)

from (5.12), we can observe that we are able to generate the exponential distribution by entering a
uniform distribution, meaning instead of y, our input is U , as shown in (5.13).
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x =
− ln(1− y)

λ

x =
− ln(1− U)

λ

x =
− ln(U)

λ
.

(5.13)

5.2.3 Tap Phase

The uniform distribution is used to represent the angle distribution of the active taps as considered
in [40, 68, 155]. It is uniformly distributed over the interval U ∼ [−π π]. From the polar coordinates
(γ′, θ), where γ′ is generated random samples following the wanted distribution. Then convert polar
coordinates to Cartesian coordinates (x, y) as follow

x =γ′cos(θ)

y =γ′sin(θ) ,
(5.14)

Therefore, the complex amplitude of the active taps is

γ = x+ iy . (5.15)

5.3 Modeling Persistence Processes

As previously indicated, the non-WSS property of channel is described by modeling multipath persistence
via Markov chains as considered in [67, 85, 129, 155]. In order to account for the dynamic nature of the
non-stationary vehicle to X (V2X) environment, a binary vector (PP) is added to the conventional
representation of channel impulse response (CIR) in (2.32). In this section, the first-order two-state
Markov chains are used to model the persistence of each active tap. From Table 4.8, the probabilities
of going from state ON to ON and OFF to OFF are given; therefore, P01 and P10 can be calculated by
P01 = 1−P00 and P10 = 1−P11

3. The algorithm to generate PP is illustrated as a block diagram in Fig.
5.3, where r is uniformly distributed pseudo-random numbers [118]. The algorithm can be interpreted as
follows: assume that the current state is 1 (“ON”-state) and the value of r is less than or equal to P10;
thus, the next state will be 0 (“OFF”-state); therefore, this process produce binary sequences of 0’s and
1’s for each tap 4.

0 1
r ≤ P01

r ≤ P10

r > P01 r > P10

Fig. 5.3 The block diagram to generate the PP using first-order two-state Markov chain, where r is uniformly distributed
pseudo random numbers

The non-stationary CIR is obtained by multiplying the outcome from Section 5.2 (γ) by 5.3 (PP). It
has been shown in Fig. 4.18.

3P00 and P11 are computed from predetermined ON/OFF sequence of each tap and here we use them to model PP
4The Markov chains parameters are obtained from the generated binary sequences and then they are compared with

those from the measured data and the results show good agreement.
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5.4 Performance Evaluation of the Simulated Channel Model

In the literature, the accuracy of the model with respect to collected data is compared based on how well
they agree in terms of the root mean square delay spread (RMS-DS) [55, 129]. The RMS-DS (στk) is
computed using (3.3). In addition to that, the TDL model parameters are obtained from the simulated
channel models and then they are compared with those for the measured data. The results show good
agreement.

(a) (b)

Fig. 5.4 CDF comparison of the RMS-DS, the Log-normal and Weibull distribution are a better fit over all collected data
in contrast to the Rayleigh distribution, which underestimates the RMS-DS, (a) NLOS1, (b) NLOS2

Fig. 5.4 5 compares CDF of the RMS-DS for the measured data with simulated channel models 6 7 8.
For each simulated model, 100000 PDPs are generated using the proposed algorithm. The outcome of the
histogram intersection criterion (given in Table 4.6) indicates a good agreement between the measured
data and Log-normal fits. However, we generate not only correlated multivariate Log-normal random
variables but also correlated multivariate Weibull and Rayleigh random variables in order to examine their
effects in terms of RMS-DS. From Fig. 5.4, we observe that the Log-normal and Weibull distribution
are a better fit overall collected data in contrast to the Rayleigh distribution, which underestimates the
RMS-DS 9. Therefore, the amplitude distribution of taps has an impact on regenerating the RMS-DS;
thus, it is important to use statistical measures to assess the fading amplitudes per tap.

It is important to note that, so far, our PP model is assumed to be uncorrelated Markov random
process, whereas the PP from measured data is different from the generated one. This is illustrated in
Fig. 5.5, where the ON- and OFF-state are indicated using yellow and blue colors, respectively. As it
has been observed that there are no correlations among taps persistence (in Section 4.6); hence, they
are uncorrelated, but as can be noticed in Fig. 5.5, the change between states is less frequent in the
“Measured PP” than “Generated PP”. This might indicate that we need to extend first-order two-state
Markov chains to higher orders Markov model, which considers previous states to generate the current

5Underlying different scenarios have been defined in Section 3.2
6Using the term “Active taps” in the figure, we mean the RMS-DS is computed only for active tap indices from measured

data as explained in Section 4.2.3
7Using the term “G-x” in Fig. 5.4 means that we calculate RMS-DS for the tap amplitudes generated from x-generator.
8NLOS1 and NLOS2 scenarios have been defined in Section 3.2
9It is a sort of important to study different types of distribution and its effect on generators and investigate the reasoning

for that, but it is not a part of this thesis.
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state; thus, it is more difficult to change the state. Higher orders Markov model will be developed in
Section 5.5.

Generated PP
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Fig. 5.5 PP comparison under NLOS2 condition, the OFF-state is indicated using blue color, and the ON-state is indicated
using yellow color; the change between states is less frequent in the “Measured PP” than “Generated PP”, this might
indicate that we need to extend first-order two-state Markov chains to higher orders Markov model

(a) (b)

Fig. 5.6 CDF comparison of the RMS-DS (using estimated PP from measured data), (a) In NLOS1 scenario, there is no
difference in the results (compare Fig. 5.4(a) with Fig. 5.6(a)), (b) In NLOS2 scenario, the measured PP is underestimating
the RMS-DS

Furthermore, in order to investigate the influence of measured PP, the “ON” /“OFF”-state of each tap
from measured data is used in our simulated channel models (46402 and 2714 PDPs are generated; hence,
the measurement contains 46402 and 2714 snapshots under NLOS2 and NLOS1 conditions, respectively).
Here, we assume modeling higher order Markov chains is considered, despite the fact it is only the
“ON”/“OFF” sequence of each tap that has been predetermined from our collected data. Fig. 5.6
illustrates the CDF of RMS-DS. Our results show that under the NLOS1 scenario, there is no difference
in the results (compare Fig. 5.4(a) with Fig. 5.6(a)). The difference of the mean RMS-DS is 0.002, 0.005,
and 0.0007 for G-Lognormal, G-Weibull, and G-Rayleigh, respectively. This has happened because the
steady-state probability associated with the “ON”-state (SS1 from Table 4.8) of some of the taps are very
high, and the rest is very low. Nevertheless, in the NLOS2 scenario, the measured PP is underestimating
the RMS-DS. In order to investigate this, we examine the influence of generated PP on our collected
data and then the influence of measured PP on our simulated data (the results pertain to the Log-normal
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generator). The CDF of RMS-DS for the NLOS2 region is shown in Fig. 5.7. It is important to note that
from Fig. 5.7, “Active Taps + PP Generator” means that we calculate RMS-DS for the tap indices from
measured data while our simulated PP is used to turn ON or OFF each tap 10 11 12. By comparing the
statistics between green, blue and cyan curves, on the other hand, we know the measured PP is accurate.
As a consequence, we need to extend our PP model to the higher orders Markov model, which will be
studied in Section 5.5. It is obvious that the generator is artificially increasing the RMS-DS, although
the PP is not “accurate” (compare the gray curve in Fig. 5.4 with Fig. 5.7 under NLOS2 condition);
this is caused by the stochastic nature of the generator. To sum up, our simulated PP between different
tap indices is uncorrelated and independent. From the results, it is observed that the correlated Markov
model is not necessary, but the taps persistence Markov model needs to be extended to higher orders
Markov model.

Fig. 5.7 The influence of PP under NLOS2 condition

5.5 Higher Orders Markov Modeling Of Persistence Process

This section is a continuity of our previous section, and the higher order Markov chain models are
anticipated to describe the non-WSS properties more accurately. In Section 5.3, a first-order two-state
Markov Chain process is used to model PP, as considered in [67,85,96,129], but it has been observed that
our first-order two-state Markov model needs to be extended to higher orders Markov model. In [86,155],
the authors have considered higher-order Markov Chains to model PP, and in [93], the author has stated
that the order of the Markov Chain does not need to be larger than the second order. Higher-order
Markov model considers previous states to generate the current state; hence, it is expected to show more
accurate results at the expense of increased complexity. Here, we first extend our first-order two-state
Markov model to the second-order two-state Markov model and then to the third-order two-state Markov
model, which yields greater implementation complexity and required memory space such as they imply
exponentially increasing size of the state space. For example, third-order Markov chains require 8 states
space (23 = 8). The algorithms of second-order and third-order two-state Markov chains are illustrated

10“Active Taps + PP Measurement” means that we calculate RMS-DS for the tap indices from measured data with the
estimated PP from measured data.

11“G-Lognormal + PP Measurement” means that we calculate RMS-DS for the tap amplitudes generated from Log-normal
generator with the estimated PP from measured data.

12“G-Lognormal + PP Generator” means that we calculate RMS-DS for the tap amplitudes generated from Log-normal
generator with PP from the generator.
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in Fig. 5.8 and 5.9, where r is uniformly distributed pseudo-random numbers [118] and state sequence
are interpreted in the following example.

1 2 3 4

r <= P12

r <= P23

r > P23

r <= P43

r > P32

r <= P32

r > P43r > P12

Fig. 5.8 The block diagram to model the PP using second-order two-state Markov chain

1

2

3

4

5

6

7

8

r <= P12

r <= P23

r > P23

r <= P35

r > P35

r <= P47

r > P47

r <= P87

r > P75

r <= P75

r <= P64

r > P64

r <= P52

r > P52

r > P87r > P12

Fig. 5.9 The block diagram to model the PP using third-order two-state Markov chain

Example :
Obtain state sequence of this following PP, zp(t) = 1001101011

• First-order two-state Markov model: Two states (21 = 2 states). state sequence → 1,0,0,1,1,0,1,0,1,1

• Second-order two-state Markov model: Four states (22 = 4 states).
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10 → state 3

00 → state 1

01 → state 2

11 → state 4

10 → state 3

01 → state 2

10 → state 3

01 → state 2

11 → state 4



state sequence → 3,1,2,4,3,2,3,2,4

• Third-order two-state Markov model: Eight states (23 = 8 states).
100 → state 5

001 → state 2

011 → state 4

110 → state 7

101 → state 6

010 → state 3

101 → state 6

011 → state 4



state sequence → 5,2,4,7,6,3,6,4

Fig. 5.10 compares generated PP from higher-order Markov chain with pre-estimated PP from mea-
surement. The PP of third-order Markov chains tends to show that the change between states is less
frequent compared to the other models due to considering two previous states to generate the current
state. Therefore, it is more difficult to change the ON-/OFF-state; hence, it increases complexity and
memory space.
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(a) (b)

Fig. 5.10 PP comparison, the “OFF”-state is indicated using blue color, and “ON”-state is indicated using yellow color; the
PP of third-order Markov chain tends to show the change between states is less frequent compared to the other models, (a)
NLOS1, (b) NLOS2

5.6 Comparing Models to Measured Data

Different order Markov chains models are evaluated by comparing statistics of the simulated sequences
with the data sequences. Fig. 5.11 and 5.12 depict RMS-DS comparison with respect to high order
Markov model under NLOS1 and NLOS2 scenarios, respectively. Our goal here is to develop a higher-
order Markov model with the aim of better capturing the non-stationary behavior. It is observed that
different order does not make an enormous affect, as shown in Fig. 5.11 and 5.12 because there might be
very high-order Markov chains needed (such as 100th-order or more) to generate PP closer to estimated
PP. In order to show this, three different order Markov models for Log-normal generator is depicted in
Fig 5.13, the RMS-DS of third order Markov model, which is denoted by a gray curve, is closer to the
RMS-DS of estimated PP, which is depicted by a green/yellow curve, but it does not make an enormous
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effect 13 14. Therefore, to compromise between fidelity and complexity, the first-order two-state Markov
model will be used to describe the non-stationary processes of the channel.

(a) (b) (c)

Fig. 5.11 RMS-DS comparison with respect to high order Markov model under NLOS1 scenario, different order does not
make an enormous affect, (a) first order, (b) second order, (c) third order

(a) (b) (c)

Fig. 5.12 RMS-DS comparison with respect to high order Markov model under NLOS2 scenario, different order does not
make an enormous affect, (a) first order, (b) second order, (c) third order

13The results of the Weibull-, Rayleigh-generator are illustrated in Fig C.1.
14Different order Markov chains models can also be evaluated using other methods such as calculating variance and

compared to the measured one, but this is not a part of this thesis.
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Fig. 5.13 RMS-DS comparison with respect to high order Markov model under NLOS2 scenario for Log-normal generator,
the RMS-DS of third order Markov model, who is denoted by a gray curve is closer to the RMS-DS of estimated PP, which
is depicted by a green/yellow curve

5.7 Concluding Remarks

In this chapter, the implementation of channel impulse response (CIR)s generators (under non-WSSUS)
have been studied. The Log-normal, Weibull, and Rayleigh generators have been devised. The simulated
CIRs were compared to the collected data in terms of the root mean square delay spread (RMS-DS)
statistics. We observe that both models (Log-normal and Weibull) tend to retain the delay spread
performance, but the Rayleigh generator underestimates the delay spread in all scenarios. Therefore, the
amplitude distribution of taps has a high impact on recreating the delay spread; thus, it is important to use
statistical measures to assess the fading amplitudes. The analysis investigated the correlation coefficient
among taps, and there are strong correlations among taps amplitudes. However, the persistence process
between different tap indices is uncorrelated; thus, a correlated Markov model is not necessary. From the
results, it was additionally observed that the first-order two-state Markov model needs to be extended to
higher orders Markov model, which has been modeled with the aim of better capturing the non-stationary
behavior. Different order Markov chains were studied and evaluated by comparing statistical measures
of the simulated sequences to the data sequences. However, it has been observed that different order
does not have an enormous effect; thus, to compromise between fidelity and complexity in the following
sections, the first-order two-state Markov model will be used to describe the non-stationary processes.

Some of the findings in this chapter are published in [67].
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Chapter 6

Characterization of Slow- and
Fast-Fading of the Active Taps

6.1 Motivation and Related Work

In this chapter, the variation in received signal due to the large- and small-scale fading will be char-
acterized in the vehicle to infrastructure (V2I) channels. Nine various setups are investigated, such as
quasi-omnidirectional antenna (by this, we mean that a power delay profile (PDP) for a single snapshot
is obtained by averaging over the channels of the transmitter (Tx) and receiver (Rx) antenna array;
therefore, we assumed it is quasi-omnidirectional PDP), two antennas faced directly to each other, and
two antennas faced away from each other. In each scenario, LOS and two different NLOS categories are
studied.

The usual starting point for developing basic performance results in the analysis of communication
systems is the additive white Gaussian noise (AWGN) channel. Thermal noise is generated in the Rx,
and it is the primary source of performance degradation. Practical systems are bandlimited, and defining
bandlimited filters is essential in modeling practical systems. Equalization techniques and special signal
design may be required to mitigate the inter symbol interference (ISI) because of the band-limiting and
phase-distortion properties of filters [131]. One infers that the signal attenuation versus distance behaves
as propagation takes place over ideal free space if a radio channel’s propagating characteristics are not
specified. This means the region between the Tx and Rx is treated as being free of all objects that
might absorb or reflect the transmitted wave. This is called the free space model, which expresses the
attenuation of transmit signal as a function of distance as expressed below [96,131]

PL(d) =

(
4πd

λ

)2

, (6.1)

where λ is the wavelength of the propagating signal and d is the distance between the Tx and Rx.
From 6.1, the received signal power can be predicted easily, but it is inadequate to describe the channel
behavior and predict system performance because in practical channels, signal propagation takes place
near the ground and in the atmosphere. A signal travels from a Tx to Rx over multiple reflective
paths, as presented Fig. 6.1(a), in other words, the received signal is the combination of many replicas
of the transmitted signal that can constructively or destructively interfere with each other; this refers
as multipath propagation. This phenomenon can cause fluctuations in the received signal, giving rise
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(a) (b)

Fig. 6.1 (a) The wireless propagation environment, (b) Dense scattering environment

to the terminology multipath fading 1 [83, 119, 126, 131, 150]. The knowledge of underlying multipath
fading and modeling the terminology multipath fading are an essential part of the propagation channel
model. In the system design and end-to-end modeling, techniques are incorporated in order to mitigate
the effects of fading [131]. Fading depends on various factors such as the channel between Tx and Rx
(can be fixed or time-varying channel), position of the Tx and Rx, atmospheric conditions e.g., rainfall,
etc. Fading can be grouped into two types, which are slow-fading (or large-scale fading) occurs due to
path loss and shadowing effects, and fast-fading (or small-scale fading) occurs mainly due to multipath
superposition. Path loss is the dissipation of the transmitted power as it propagates, and when obstacles
between the Tx and Rx absorb power cause deviation of the received power from the average value; this
is called shadowing [130,131]. Since these variations occur over large distances (path loss and shadowing
occur over 100-1000 m and 10-100 m, respectively) such that they are referred to large-scale fading
effects. On the other hand, small-scale fading occurs over very short distances on the order of half-
wavelength [58, 71]. Fast fading is more relevant to the design of reliable and efficient communication
systems, such as designing Rx, coding, and bit error rate (BER), on the other hand, slow fading is
more relevant to coverage issues such as cell-site planning2. The aim of this chapter is to describe the
fundamental fading manifestations and types of degradation and, in so doing, to characterize the fading
amplitude for each active tap.

As expressed in Chapter 2, a path is composed of a number of sub-paths, which are not observable.
Each path has its characteristics, which are created by the characteristics of these sub-paths [34]. In
narrowband systems, the Rx cannot resolve different paths e.g., early FM radios (25-30 kHz); therefore,
in such a system, all multipath are indistinguishable and may interfere constructively or destructively at
the Rx and are seen as a single composite signal [121]. This means that due to the bandwidth limitations,
it is assumed that all paths arrive at the same time [34]. By assuming a rich scattering environment, as
presented in Fig. 6.1(b), an amplitude of a signal varies according to the Rayleigh distribution by the
central limit theorem [74,121]. Therefore, in traditional wireless channel models, Rayleigh fading is used

1Fading is the deviation of the signal attenuation (the gradual loss in intensity) [83]
2Coverage is the largest distance between the Tx and Rx at which communication can reliably take place (with a limit

on the transmit power) [149].
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as a statistical model to illustrate the effect of multipath propagation. In cellular channels, narrowband
fading statistics are commonly described to be Rice (for line of sight (LOS) scenario) and Rayleigh (for
non line of sight (NLOS) scenario) [105]. However, the authors in [141] have shown Rayleigh conditions
hold in many cases, but not always. It was found that a good agreement between the measured data and
Nakagami with Rice distributions for the narrowband small-scale fading statistics in [100]. Nonetheless,
the vehicle to X (V2X) channel corresponds to a wideband channel because it exchanges mass data at a
short moment and demands on the communication link ranging from low latency and ultra-reliable. The
effect of wideband on the Rx is that the Rx able to resolve multipath. Each is made up of many distinct
sub-path, which are received from a variety of directions. Thus, each multipath has unique characteristics
by employing averaging over sub-path tends to be received in the range of 1

B (B is the bandwidth). The
statistical characteristics of fading change as the number of resolvable paths increases [34]. In [31], the
authors argue that large- and small-scale fading cannot easily be distinguished, and they suggest to fit
the Nakagami distribution for the compound fading statistics same as what we have considered in Section
4.4. In the wideband system, the Rayleigh approximation becomes poorer because the range of delay
resolution of the Rx is narrow (because the bandwidth is wide) such that there are not many multipath
components to justify the Rayleigh distribution [50].

Some of the materials in this chapter are published in [62].

6.2 Frequency Selective Fading

Analytically, we might be able to count the number of fades across the bandwidth. Consider an example
of two-path model, as shown in Fig. 6.2. They have different path lengths, d1, and d2, but let us
assume they have equal power. A phase of each path is measured at the Rx using (6.2) and (6.3) [34].
The phase difference between them is ∆φ = φ2 − φ1. The interaction of constructive (i.e. ∆φ = 0)
and destructive (i.e. ∆φ = π) produces frequency selective fading, as presented in Fig. 6.3 3. The
idea of how fading might arise in practice is illustrated in Fig. 6.4. A Tx and Rx are surrounded by
objects, and the transmitted wave may interact with the objects, which reflect and scatter the transmitted
signal; therefore, the transmitted wave arrives at the Rx via different routes. The received signal is the
combination of many replicas of the transmitted signal that can constructively or destructively interfere
with each other depending on the relative phase shift, as shown in Fig. 6.3. The phase difference between
signals plays a key role, and it depends on the frequency of transmission, speed of motion, and relative
path lengths. It can be associated with the phase relationship as in (6.4).

φ1 =
2πd1
λ

, (6.2)

φ2 =
2πd2
λ

, (6.3)

∆φ = φ2 − φ1 =
2π (d2 − d1)

λ
= π(2n− 1) , (6.4)

where n is an integer number. When phase differences are odd multiples of π, the frequency selective
fades are occurred [34]. Analytically, the number of fades across the bandwidth (e.g., f2 − f1 = ∆f)
might be counted ambiguity as follows

3When the phases between two paths nearly align, the signals are adding constructively and vice versa.
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Fig. 6.2 The two path channel model

Fig. 6.3 Representation of constructive and destructive interference between two signals

λ =
2(d2 − d1)

2n− 1
=

2∆d

2n− 1
−→ f =

(2n− 1)c

2∆d
, (6.5)

f1 =
(2n1 − 1)c

2∆d
, (6.6)

f2 =
(2n2 − 1)c

2∆d
, (6.7)

from (6.7), assume n2 = n1 + m, where m is the number of fades across the band, and it is an integer
number. Hence, we can derive the following formula to predict the number of fades across the bandwidth.

∆f = f2 − f1 =
c (2n1 + 2m− 1− 2n1 + 1)

2∆d
=

c m

∆d
−→ m =

∆f∆d

c
. (6.8)

For example, if ∆d = 60 m and ∆f = 20 MHz, the number of fades across the band is 4. In brief,
the signals are added constructively when the phases between two paths nearly align, but when the two
paths are out of phase; thus, they are canceling each other.

76



CHAPTER 6. CHARACTERIZATION
OF SLOW- AND FAST-FADING OF
THE ACTIVE TAPS

6.3. THE FADING AMPLITUDE ANALYSIS AND
PROCESSING OF THE MEASUREMENT DATA

(a) (b)

Fig. 6.4 Multipath propagation, (a) LOS scenario, (b) NLOS scenario

Fig. 6.5 Variation of path profiles encountered at a fixed range from a base station, note adapted from [126]

6.3 The Fading Amplitude Analysis and Processing of the Mea-
surement Data

In general, a radio signal propagates according to three basic mechanisms, which are reflection, diffraction
and scattering.

• Reflection occurs when a transmitted wave impinges on an object, which has a smooth surface with
dimensions that are very large when compared to a wavelength.

• Diffraction occurs when the propagation path between the Tx and Rx is obstructed by an object
with large dimensions compared to the transmitted signal wavelength, causing secondary waves to
propagate behind the obstructing body.

• Scattering occurs when a transmitted wave impinges on an object, either a surface whose dimensions
are on the order of wavelength or less or any large rough surface, causing the transmitted signal to
be reflected in all directions or spread out (scattered). Street lights, signs, and foliage are typical
objects that cause scattering 4.

These mechanisms give rise to two nearly independent phenomena, which are slaw- and fast-fading.
Fig. 6.5 illustrates the impact of the slow fading on an object, which is moving around a base station (BS)
at a constant range, some paths will be less obstructed and have increased signal strength, whereas others
will suffer increased loss [119, 126]. The aim of this section is to model the slow and fast fading for each
relevant multipath, which we called the active tap, and it is a continuity of our preliminary Section 4. In

4Keeping this in mind, any obstruction in the propagation path that causes a signal to be reflected or scattered can be
named a scatterer.
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general, the received signal is composed of slow- and fast-fading. It is feasible to study them individually
and separately. Presuming, rt(t) is the received field strength in the time domain. rt(t) may be broken
down into two components, which are the slow- or long-term variations rs(t) and the fast- or short-term
variations rf (t). Therefore, the product of these two terms describes the received signal in linear units
(6.9) [48,62,83]. The product becomes addition in dB scale (6.10).

rt(t) = rs(t).rf (t) . (6.9)

Rt(t) = Rs(t) +Rf (t) . (6.10)

In the literature, deriving the large scale parameters from measurement data by eliminating the small
scale variations is a commonly used assumption. Depending on the size of the stationary interval, PDPs
have to be averaged over a number of snapshots. Typically, the length of 10λ to 40λ is used to define
the stationary interval [48, 83, 128]. The total power per stationarity interval is necessary, which leads
to a sum along the delay domain [128]. In certain cases, averaging channel impulse response (CIR) over
snapshots is used in “removing ” or mitigating the effects of fast fading, and this leads to sum along the
delay domain to smooth out fast fading components. However, this approach is inconsistent for tapped
delay line (TDL) model because a tap is a sample of the bandlimited CIR (summing along the delay
domain is not an appropriate option for this case) and we are interested in characterizing the slow- and
fast-fading for each tap individually. Another approach would be the slow fading effect might be removed
by PDP normalization as considered in [155]. However, we decided to model and separate fading for each
tap from overall received variations. As explained previously, three data sets will be studied. In the first
data set, the PDP is obtained over a channel of Tx and Rx antenna array, which was faced directly to
each other and then between two antennas faced away from each other. In the third data set, the PDP
is obtained by averaging over the channels of the Tx and Rx antenna array; therefore, we assumed quasi-
omnidirectional PDP. In each data set, LOS and two different NLOS categories are studied; hence, in
total nine various setups are investigated. The data is pre-processed by estimating a noise threshold and
multipath threshold (25 dB below the main peak in each snapshot) and not considering any values below
them as presented in Chapter 4. Depending on how long a set of data samples is used to estimate large-
scale fading, neglecting the path-loss may be fine; thus, a determination of quasi-stationarity interval is
important [62].

6.3.1 Processing Interval

An appropriate measure is needed to determine and assess quasi-stationarity regions. The same assump-
tion as in [71] is applied. Depending on the scenario (LOS, NLOS1 or NLOS2), those measurement sites
are taken into account to find the maximal velocity of Rx that has been occurred and then maximum
Doppler frequency is computed from (2.17), where αp can be +/− depending on the Rx is moving away
or toward the Tx. In order to estimate quasi-stationarity interval, a minimal stationarity time is obtained
using (6.11), where a minimal stationarity length (dsmin) is assumed to be dsmin ≈ 20λ = 2.38m as has
been assumed in [158, 159]. The window length or the length of stationary interval (w) depends on the
values of Tsnap (Tsnap = 27.033ms in our case) and Tsmin as expressed in (6.12). This results in slightly
different numbers of snapshots for each scenario, as presented in Table 6.1 5.

5Keeping this in mind, obtaining these values are not fully satisfactory because they rely on parameters that are somewhat
arbitrary. For example, it is questionable and remains unclear how to choose vmax, whether vmax is set to the maximal
speeds of the Rx as it has been done in [71], or the maximal speeds of the mobile scatterers.
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Tsmin ≡ 1

∆fDmax
= dsmin/vmax , (6.11)

w =
Tsmin

Tsnap
. (6.12)

TABLE 6.1
Parameters to measure quasi-stationarity region (omnidirectional antenna)

Scenario vmax (mps) fDmax (Hz) Tsmin (s) w

LOS 2.27 20 1.04 39
NLOS1 2.36 20 1 38
NLOS2 2.52 22 0.93 36

6.3.2 Separating Slow- and Fast-Fading

As illustrated in Chapter 2, the CIR is defined as a function of time and delay. The amplitude fading
statistics of pth tap are computed from the square root of power in the pth delay bin. Among the
stationary interval, slow variations are extracted from overall variations by using a moving average filter,
which is a specific type of FIR filter. This method is proposed in [48,83]. Figure 6.6 illustrates five taps
moving average filter that takes the previous four samples and the current sample of the input signal and
computes the average namely, this operation is a convolution (6.13) [162].

Fig. 6.6 Five taps moving average FIR filter

rs(k) =

L−1∑
j=0

u(j)rt(k − j) , (6.13)

where u(j) is the coefficient of the filter, which is 1
L and L is the length of the filter that depends on the

value of w. The output of filter (rs) is slow variation, k is the point at which the output is considered,
rt is the input samples (overall variations). Fig. 6.7 shows a particular example of the measured signal
containing fast- and slow-components. The received signal is seen to vary by approximately 15 dB over
distances as small as λ

2 . From the figure, we can analyze that the received signal can vary by 20 dB over
a distance of few meters. This rapid fluctuation of the received signal over small areas is the fast fading,
and a change in the average due to the variation in the nearby buildings is the slow fading [119,124]. We
assumed that the fast variations are superposed on the slow variations; therefore, the fast fading can be
obtained by subtracting the slow variations (rs) from overall variations (rt) in dB scale (6.10) [48]. The
result of extracting slow variations from the overall variations for a particular number of snapshots is
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indicated in Fig. 6.8(a). Figure 6.8(b) illustrates the fast variations after filtering out the slow variations
in the NLOS1 scenario for the first tap 6.

Fig. 6.7 Amplitude of the second tap under NLOS1 condition, an example of the measured signal contains
both fast and slow components

(a) (b)

Fig. 6.8 Slow, fast and overall variations of the first tap under NLOS1 condition-omnidirectional antenna,
the fast variations are derived after filtering out the slow variations, (a) Overall and slow variations, (b)

Fast variations after removing the slow variations

6.3.3 Model Based Evaluation

The time-varying amplitudes with their corresponding distributions are generated to consider the slow-
and fast-signal variations. This means we mixed two distributions, such as we combine Rayleigh/Weibull
distribution with Log-normal distribution to model fast- and slow-fading variations, which are present in
the received signal. In general, Rayleigh plus Log-normal distribution is known as Suzuki distribution
[138], but we also combine Weibull- plus Log-normal-distribution to investigate the robustness of this
approach, and the same proposed approach as in Section 6.3.2 is applied. The implementation of the
model is summarized as a block diagram with its results and illustrated in Fig. 6.9 for Rayleigh- plus

6Fig. D.1 and D.2 illustrate another two exemplary graphs of the slow and fast fading components under LOS and
NLOS2 scenarios for the first tap.
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Log-normal-distribution 7. From the results, it is obvious that we are able to separate both types of
fading.

Fig. 6.9 Block diagram of separating slow and fast fading variation

6.4 Results and Evaluation

In the previous sections, an approach has been illustrated to extract the slow variations from overall
variations by computing a running mean. The results pertain to the NLOS1 scenario in the case of
omnidirectional antenna unless mentioned. The exemplary graphs of extracting slow variations from the
overall variations and the fast variations after filtering out the slow variations are indicated in Fig. 6.8.
To assess amplitude fading, the empirical histogram is calculated and then known distributions such as
Rayleigh-, Log-normal-, Weibull-, and Rice-distribution are fitted. The exemplary graph of the selected
PDFs fitted to the empirical distribution of the slow- and fast-fading magnitudes in linear scale is shown
in Fig. 6.10. As one can see, the shape of the Log-normal and Rice-distribution are the closest to the
empirical histogram of slow- and fast-variations, respectively. Additionally, some more examples of tap
amplitude fading with its fitting curves are presented in Section D.3. The histogram intersection is used
to compute the intersected area between the empirical histogram, and probability density function (PDF)

7The implementation of the approach for Weibull- plus Log-normal-distribution with its results are presented in Fig.
D.3.
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(a) (b)

Fig. 6.10 Histograms and pdf fits for the first tap under NLOS1 condition-omnidirectional antenna, the
Log-normal and Rice-distribution are the closest to the empirical histogram of slow- and fast-variations,

respectively, (a) Slow variations, (b) Fast variations

fits using the algorithm proposed in Section 4.4 in order to select the best-fitted distribution among those.
The outcome of histogram intersection is given in Table 6.2.

In the case of two antennas faced directly to each other and an omnidirectional antenna, the empirical
evidence of small scale fading supports the Rice distribution for the largest number of taps. We can
propose a physical explanation regarding the case of two antennas faced directly to each other. When a
strong dominant component/wave with many random weaker components are present, the tap amplitudes
follow Rician fading. Rician behavior was observed in our measurements data because there might always
be a strong reflection from Cologne Cathedral (≈144 × 86 × 157 m) with some numbers of reflected and
scattered waves. On the other hand, in the case of omnidirectional antenna, since directive antennas have
been used; thus, we are doing the summation in the power domain and not in the signal level (complex
domain). As a result, the path from the different directions do not interact anymore in the same time
slot; therefore, the fading also is more tending to Rice. The Weibull model has two parameters, which
are a shape factor and scale parameter; thus, it offers substantial flexibility and provides a good fit to any
data set that have been considered, but it is not based on an underlying theory of propagation effects [96].
From our results, the Rayleigh approximation becomes poorer because the range of delay resolution of
the Rx is narrow so that there might not be enough multipath to justify the Rayleigh distribution. To
model propagation paths, not only estimating the type of distribution is important, but also parameters
of the specified probability distribution are essential. Table 6.3 gives the parameters for selected PDFs.

Regarding the large scale fading (in the case of two antennas faced directly to each other and an
omnidirectional antenna) as is extensively reported in the literature [100, 116], a large scale fading is
characterized by Log-normal distribution because most practical situations in terms of the local-mean
received power fluctuations caused by obstacles are fitted by Log-normal. Our results (Table 6.2) show
that Lognormal distribution fits well with the measured data for all taps in all scenarios. We have derived
this in terms of considering where is the highest value of histogram intersection (HI). Table 6.4 gives the
PDF fits parameters of the large scale fading. According to our measurements, the shadowing standard
deviation is found to be between 2 and 11 dB. The variation factor decreases with decreasing Tx - Rx
distance, a similar finding has been observed by [113]. In the case of two antennas faced away from each
other, fitting any set of data, e.g., LOS, NLOS1, and NLOS2, the histogram intersection is approximately
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TABLE 6.2
Distance between measured data and pdf fits using HI (slow and fast variations) in the case of omnidirectional
antenna

Outcome of HI-Slow variations Outcome of HI-Fast variations

LOS

Taps Lognormal Weibull Rayleigh Lognormal Rician Weibull Rayleigh

1 0.6300 0.6480 0.5740 0.7549 0.7691 0.5937 0.3705
2 0.5974 0.5315 0.4850 0.7717 0.7866 0.7114 0.5055
3 0.5744 0.5571 0.5573 0.7852 0.7867 0.6997 0.4775
4 0.5903 0.5720 0.5682 0.7801 0.7807 0.6596 0.4412

NLOS1

Taps Lognormal Weibull Rayleigh Lognormal Rician Weibull Rayleigh

1 0.6003 0.6486 0.5105 0.7087 0.7816 0.7221 0.4915
2 0.6926 0.6544 0.6419 0.7752 0.7552 0.6306 0.4261
3 0.4127 0.3872 0.3691 0.5704 0.5729 0.5093 0.3221
4 0.3021 0.2729 0.2804 0.4858 0.4664 0.3953 0.2465

NLOS2

Taps Lognormal Weibull Rayleigh Lognormal Rician Weibull Rayleigh

1 0.7279 0.6768 0.2705 0.8683 0.9078 0.8048 0.3943
2 0.7695 0.6882 0.4235 0.8710 0.8826 0.6883 0.3189
3 0.7282 0.6459 0.4584 0.8579 0.8778 0.7352 0.3111
4 0.6249 0.5789 0.4861 0.8416 0.8426 0.6496 0.3256
5 0.6013 0.5824 0.4552 0.8419 0.8466 0.7104 0.3341
6 0.6008 0.5507 0.4885 0.8105 0.8131 0.6709 0.3572

similar for all kinds of distributions. In other words, a fitting error of slow- and fast-variations of the
received signal is almost the same for known distributions. Thus, we are not able to define the distribution
type; an example is shown in Fig. 6.11.

(a) (b)

Fig. 6.11 Histograms and pdf fits under NLOS1 condition-two antennas faced away from each other, a
fitting error of slow- and fast-variations of the received signal is almost same for known distributions, (a)

Slow variations, (b) Fast variations
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TABLE 6.3
Pdf fits parameters of small scale fading in the case of omnidirectional antenna

LOS

Taps µLognormal σLognormal aWeibull βWeibull σRayleigh sRice σRice

1 0 0.093 1.056 6.468 0.716 1.002 0.103
2 0 0.130 1.068 6.083 0.718 0.996 0.138
3 0 0.123 1.064 6.15 0.717 0.997 0.131
4 0 0.127 1.067 5.59 0.718 0.997 0.138

NLOS1

Taps µLognormal σLognormal aWeibull βWeibull σRayleigh sRice σRice

1 0 0.270 1.07 4.34 0.717 0.96 0.21
2 0 0.11 1.05 6.139 0.71 0.99 0.12
3 0 0.15 1.07 6.01 0.72 0.99 0.15
4 0 0.17 1.11 4.73 0.74 1.01 0.19

NLOS2

Taps µLognormal σLognormal aWeibull βWeibull σRayleigh sRice σRice

1 0 0.14 1.05 6.9 0.71 0.98 0.13
2 0 0.10 1.03 7.1 0.70 0.99 0.09
3 0 0.098 1.03 8.7 0.70 0.99 0.09
4 0 0.093 1.03 7.3 0.70 0.99 0.09
5 0 0.097 1.04 8.3 0.70 0.99 0.09
6 0 0.10 1.04 7.7 0.70 0.99 0.1

6.5 Concluding Remarks

In this chapter, the amplitude fading of active taps has been divided into two classes by separating the
received signal into two scales of spatial variations, which are slow- and fast-fading. In total, nine various
setups were studied. Estimating stationary interval is necessary to separate the slow- and fast-fading.
The fast variations in received signal strength between two antennas faced directly to each other follow
Rice distribution. Rician behavior is observed in our measurements data because when a strong dominant
component with many random weaker components is present, the tap amplitudes follow Rician fading.
In the case of omnidirectional antennas, the fading also is more tending to Rice because we have used
directive antennas; thus, we are doing the summation in the power domain and not in the signal level
(complex domain). As a result, the path from the different directions does not interact anymore in
the same time slot. From our results, the Rayleigh approximation becomes poorer because the range
of delay resolution of the receiver (Rx) is narrow, so there might not be enough multipath to justify
the Rayleigh distribution. Few models for slow fading have been considered, and in the case of two
antennas faced directly to each other and an omnidirectional antenna, the empirical evidence supports
the Log-normal distribution. From the results, it was additionally observed that when two antennas
faced away from each other, a fitting error and histogram intersection between the empirical histogram
and probability density function (PDF) fits of known distributions are approximately the same for all
kinds of distributions; thus, we were not able to select specific distribution for those scenarios. It has
been found that the shadowing standard deviation is between 2 and 11 dB, and the variation factor
increases with increasing transmitter (Tx) - Rx distance. Moreover, environments with a large number
of scatterers, such as in NLOS2 regions, lead to smaller quasi-stationarity intervals than regions under
line of sight (LOS) conditions.
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TABLE 6.4
Pdf fits parameters of large scale fading in the case of omnidirectional antenna

LOS

Taps µLognormal σLognormal aWeibull βWeibull

1 -13.83 0.2469 0.11 ∗ 10−5 5.2
2 -14.49 0.2480 0.05 ∗ 10−5 3.3
3 -14.97 0.4732 0.04 ∗ 10−5 2.05
4 -15.187 0.5411 0.03 ∗ 10−5 1.84

NLOS1

Taps µLognormal σLognormal aWeibull βWeibull

1 -16.03 1.29 2 ∗ 10−7 0.89
2 -17.38 0.62 3.9 ∗ 10−8 1.4
3 -19.07 0.54 6.9 ∗ 10−9 1.59
4 -19.06 0.47 3.7 ∗ 10−9 2.3

NLOS2

Taps µLognormal σLognormal aWeibull βWeibull

1 -18.9 1.25 1.17 ∗ 10−8 0.69
2 -19.4 0.86 5.89 ∗ 10−9 0.97
3 -19.8 0.71 3.6 ∗ 10−9 1.09
4 -20 0.6 2.85 ∗ 10−9 1.24
5 -20 0.57 2.71 ∗ 10−9 1.19
6 -20 0.59 2.76 ∗ 10−9 1.39

A part of the research contributions covered in this chapter is published in [62].
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Chapter 7

MIMO-TDL Model

7.1 Motivation and Related Work

Many researchers have described the dispersive channel model in the form of tapped delay line (TDL)
model for vehicle to X (V2X) channels, and there have been several papers on that topic [61, 63–66,
93, 96, 129, 155]. Mainly, the class of TDL model is a single input single output (SISO) channel, and
all the discussions so far have dealt with the SISO channel. In this chapter, we propose a modeling
method to extend the SISO-TDL model to multiple input multiple output (MIMO) under the non-
WSSUS assumption; this has not been studied yet. Techniques such as multiple antennas are attracting
the attention of industry; thus, MIMO systems are one of the most active research topics in the field
of wireless communication systems. Channel capacity of a MIMO system is increased as compared to
a SISO system, without any additional transmit power [87, 114]. In conventional SISO systems, data
rates can be increased by using high gain directional antennas or increasing transmit power. However,
those techniques have certain limitations, such as reducing battery life and increasing interference [114].
MIMO systems can be used to either increase the data transmission rate by sending independent bit
streams from transmit antennas (spatial multiplexing) or to obtain reliable communication by sending
the same bit streams (spatial diversity) [87, 107]. Before implementing any MIMO system, a proper
and accurate MIMO channel model is required for optimizing, testing, and evaluating the performance
of wireless communication systems such that various scenarios can be taken into account to ensure the
system can work efficiently in any scenario [87, 114, 167]. Briefly, multiple antenna technology gives
advantages that can be drawn as improving fading environments, extending the range, and providing
higher data throughput over conventional single antenna systems [39,107].

As mentioned previously, we propose a method for MIMO-TDL modeling under the non-WSSUS
assumption via employing an ON/OFF process. The aim is to develop a MIMO-TDL model based upon
MIMO vehicle to infrastructure (V2I) measurements. The analysis investigates the correlation coefficient
among taps persistence process, as well as among taps amplitude. In addition to that, amplitude fading
will be addressed. The analysis evaluates the extended approach in terms of channel capacity. The
channel capacity gain for various antenna configurations, as well as different values of signal to noise
ratio (SNR), will be studied. Additionally, we propose another modeling method to develop a time-
varying MIMO-TDL model, whose parameters (such as power, delay, fading parameters, etc.) vary over
time. Section E.2 provides the description of the proposed approach.

Some of the findings in this chapter are presented in [63,65].
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7.2 MIMO System Concepts

In this section, some MIMO-related concepts are introduced to clarify how multiple antennas can achieve
high data rates. The Shannon theorem provides a quantification of the capacity over a Gaussian com-
munication link, and it is expressed as follows [26,58]

C = log2(1 + ζ) b/s/Hz (7.1)

where ζ is a signal-to-noise ratio. This is a theoretical maximum, in other words, the maximum bits per
second per Hertz rate achievable for error-free transmission over a Gaussian communication link, whereas
this is unachievable in practice. We can get closer to that by using turbo codes as considered in [58]. If
we multiply B by C, where B is the bandwidth, the capacity is achieved in b/s [26,58]. For an n-antenna
array system, the capacity array is as (7.2). It means the received signal will be n times larger [58].

Carray = log2(1 + n2 ζ) b/s/Hz (7.2)

The combined capacity (Cn) would be (7.3) if we had n equal independent channels [58]

Cn = n log2(1 + ζ) b/s/Hz (7.3)

When we compare the above expressions, we can observe that we might achieve a much larger capacity
with n independent channels than with an array of n antennas. Here, we introduce the concept of the
MIMO transmission matrix in order to look into how this can be achieved. As presented in Chapter 2,
in the SISO system, the relationship between the input and output can be expressed as

y(f) = h(f) · x(f) , (7.4)

where h(f) is the channel transfer function, and y(f) and x(f) are the received and transmitted signals.
We drop the f variable in the following expressions for simplicity. The notation may seem misleading,
whereas we are referring h to a tap at a given frequency.

Fig. 7.1 Propagation between antenna pairs, (a) Single antenna system, (b) Multiple antenna system
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As illustrated in Fig. 7.1, the propagation conditions are different between each transmitter (Tx) and
receiver (Rx) antenna; hence, a single-channel function is not sufficient to characterize the MIMO system.
A set of as many channel functions as possible (Tx-Rx antenna pairs) is required, e.g., for the scenario
in Fig. 7.1(b), we need 2× 2 channel matrix [58].

y1 =h11x1 + h12x2

y2 =h21x1 + h22x2 ,
(7.5)

where hmn is the complex transfer function between transmit antenna m and receive antenna n. yn and
xm are the output and input complex voltages at receive antenna n and transmit antenna m, respectively.
We can put the above equation in a matrix form as follows[

y1
y2

]
=

[
h11 h12

h21 h22

] [
x1
x2

]
, (7.6)

or

y = H · x , (7.7)

where H is the transmission matrix, and x and y are the input and output complex voltage vectors. When
the channels are independent, the capacity will be maximum, in other words, when the transmission
matrix is diagonal (7.8). This means each Rx antenna receives only from a single Tx antenna as in
(7.9) [58].

H = D =

[
h11 0
0 h22

]
=

[
d1 0
0 d2

]
, (7.8)

[
y1
y2

]
=

[
d1 0
0 d2

] [
x1
x2

]
+
[
n1
n2

]
, (7.9)

or

y = D · x + n , (7.10)

where n is a noise vector and introduced for the sake of completeness but hardly occurs in reality. What we
can do is ‘diagonalizing’ matrix H by performing some sort of signal processing at both ends. It converts
the signal processing ensemble and channel into a diagonal matrix. It can be achieved by introducing
two matrices, e.g., Pt and Pr at the Tx and Rx sides as follows [58]

PH
r · H · Pt = D , (7.11)

where H means conjugate transposed (transposed hermitic matrix). The overall signal processing and
transmission chain is expressed by

y = PH
r · H · Pt · x = D · x . (7.12)

As a result, we obtain independent propagation paths. Performing singular value decomposition (SVD)
of the transmission matrix leads to achieving the ‘diagonalization’ process. For example, we have a m×m

transmission matrix and we put it in the form as [58,75]

H = U · D · VH , (7.13)
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where U and V are unitary orthonormal matrices (7.14), and D is a diagonal matrix

V · VH =I

U · UH =I ,
(7.14)

where I is the identity matrix (m×m). By performing the operation (7.15), we will arrive at the signal
processing, which is required to perform ‘diagonalization’ of the transmission matrix [58,75].

D = UH · H · V (7.15)

The square roots of the eigenvalues of HH · H and H · HH are the diagonal elements of matrix D.
We will look into this in the given example below.

Example: Assuming a transmission matrix as

H =

[
0.48 0.31

−j0.57 j0.41

]

Its hermitic transposed is

HH =

[
0.48 j0.57

0.31 −j0.41

]

The product HH · H is

HH · H =

[
0.5553 −0.0849

−0.0849 0.2642

]

The eigenvalues of HH · H can be calculated using MATLAB function eig. The elements of the
diagonal matrix D can also be calculated using square roots of the eigenvalues or MATLAB function svd.

U =

[
−0.5030 −0.8643

j0.8643 −j0.5030

]

D =

[
0.7604 0

0 0.4912

]

V =

[
−0.9653 −0.2610

0.2610 −0.9653

]

As a result, matrices Pt and Pr have been computed. This means obtaining as many independent
output signals as pairs of antennas is possible, such as

yi = di · xi , (7.16)

where i = 1, 2, 3, ..., n. |di|2 gives the amount of power transferred between xi and yi. Channel i is known
as propagation mode i. The achievable capacity through mode i is directly influenced by the coefficient
di. The larger di is, the greater its SNR ratio becomes [58].

We look at different examples represented by their transmission matrices to illustrate the influence
of the values of d2i on the mode capacity and their importance [58]. The first example corresponds to
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line of sight (LOS) propagation conditions. The corresponding diagonal and transmission matrices are
exemplary as follows

H =

[
1 1

1 1

]
,

D =

[
2 0

0 0

]
,

Thus, |d1|2 = 4, and |d2|2 = 0. In the second example, we will assume the differences between antennas
are very small such that

H =

[
1 0.98

0.98 1

]

D =

[
1.985 0

0 0.015

]
,

Thus, |d1|2 and |d2|2 are 3.9403 and 0.0002, respectively. Finally, significant differences are shown in the
third example, such as

H =

[
0.48 0.31

−j0.57 j0.41

]

D =

[
0.7604 0

0 0.4912

]

This one would correspond to a multipath-rich propagation scenario, and |d1|2 and |d2|2 are 0.5782

and 0.2413, respectively. In the LOS example, only one antenna pair (d1) contributes all the power; in
other words, all the power is transmitted through d1. In the second and third examples, the relevance of
the power at the output of the first antenna decrease; there starts to be power in the second antenna as
propagation differences appear. As a conclusion, when only one mode is excited, in other words, when the
direct LOS signal dominates, a MIMO system does not provide any practical advantage. MIMO systems
provide advantages when the propagation conditions between the various antenna pairs are different.
From those examples, it is observed that a rich multipath environment can lead to increased channel
capacity if multiple antennas are used [58,70].

7.3 MIMO Channel Capacity

As stated before, MIMO systems can offer substantial improvements over conventional SISO antenna
systems in either transfer rate or quality of service (QoS) [48,54]. A fundamental understanding, limitation
of MIMO channels, and an overview of the extensive results on the Shannon capacity were provided by the
authors in [57]. The MIMO channel capacity highly depends on its propagation characteristics, antenna
element correlations, and statistical properties of the channel [32, 46, 57]. The capacity of SISO systems
is given by [33,48,54]

CSISO = log2(1 + ζ|h|2) b/s/Hz (7.17)
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where ζ and h are a signal-to-noise ratio and the normalized complex gain of a particular realization of
the channel, respectively. Another option of interest is a single input multiple output (SIMO) system
with N -Rx antennas. For a 1×N SIMO system, the capacity is given by [48,54].

CSIMO = log2

(
1 + ζ

N∑
i=1

|hi|2
)

, (7.18)

where hi is the channel gain for ith Rx antenna. Another configuration is a multiple input single out-
put (MISO) system with M -Tx antenna, and the capacity is expressed as follow [48,54].

CMISO = log2

(
1 +

ζ

M

M∑
i=1

|hi|2
)

, (7.19)

where hi is the channel gain from ith Tx antenna and the transmit power is equally split between the M

transmit antennas [48,54]. Finally, the capacity of MIMO configuration with M -Tx and N -Rx antennas
is given by [48,54,136]

CMIMO = log2
[
det
(

IN +
ζ

M
HH∗

)]
, (7.20)

where (.)∗ is transpose-conjugate and H is the N ×M channel transmission matrix. Equation (7.20) can
be simplified to (7.21) by using the eigen decomposition (d2i ) of matrix HHH [48,140]. From (7.21), the
capacity of the MIMO channel is expressed as a sum of the capacities of M -SISO channels [48,140].

CMIMO =

n∑
i=1

log2
(
1 +

ζ

M
d2i

)
, (7.21)

where the term d2i and n = min(M,N) were already defined in Section 7.2. N and M denote the number
of Rx and Tx antennas, respectively. As we can see from (7.21), the summation operator is now outside
the logarithm operator; hence, we can see the significant capacity enhancement brought about by the
MIMO configuration. However, our model corresponds to a wideband channel because we observe more
than one tap. Thus, the same approach (7.22) as in [32, 46, 75, 76] is performed to compute the channel
capacity of our model.

CMIMOWB(t) =
1

F

F∑
f=1

n∑
i=1

log2
[(

1 +
ζ

M
d2i,f

)]
, (7.22)

where F is the total number of frequencies (the total number of taps). We can obtain two kinds of
statistics: in the narrow-band case with F = 1 or number of tap = 1, and in the wideband case, (7.22)
is used, and it is equivalent to averaging the narrow-band capacity over frequency [75].

7.4 Processing of the Measurement Data

A representation of the channel in a multiple antenna system has been defined (2.37) in Chapter 2.
Assume that h(s, τ,M,N) expresses the measured channel impulse response (CIR), where s is the number
of collected CIR, τ is the number of samples in the delay domain. M and N are the numbers of Tx- and
Rx-antennas, respectively. 4 × 4 elements (v-polarized) are being sub-selected from 32 × 32 elements1.

1The measurement antenna setup was presented in Table 3.3.

91



CHAPTER 7. MIMO-TDL MODEL 7.4. PROCESSING OF THE MEASUREMENT DATA

The simulation model of our antenna array has been shown in Fig. 3.4 and 3.5. Antennas on the left
and right sides and in front and rear are chosen at the Tx and Rx, respectively. This follows 90◦ rotated
antenna arrangement. The selected antennas position is indicated using a red circle in Fig. 7.2, where
number 1 and 3 correspond to antenna position in the front and rear sides, and number 2 and 4 indicate
antenna position on the left and right sides. In total, 16-link channels will be used in this investigation.
Keep in mind, this section is an extension of our previous sections, and a performance comparison will
be illustrated in terms of channel capacity. The algorithm for devising this channel model is given below.

Fig. 7.2 Simulation model of the selected antennas’ position

7.4.1 Quasi-stationary Interval

The same algorithm as in Section 6.3.1 is applied to estimate the stationary interval. In brief, a minimal
stationarity time is obtained using (6.11) and then the quasi-stationary interval (w) is estimated (6.12).
The resulting parameters are presented in Table 7.1.

TABLE 7.1
Parameters to measure quasi-stationarity interval

Scenario vmax (m s−1) Tsmin (s) w fDmax (Hz)

LOS 1.22 1.94 72 10.3
NLOS1 1.27 1.85 68 10.7
NLOS2 1.23 1.91 70 10.4

7.4.2 Determination of the Acive Taps

Our algorithm to select taps and derive their parameters has been detailed in Chapter 4. Fig. 7.3 presents
a summary of our algorithm in a form of a block diagram. Briefly, the measurement data is affected by
noise such that a noise threshold is estimated, and samples under the threshold are discarded. The
finite “lifetime” of the propagation paths is obtained by applying 25 dB below the main peak in each
snapshot; therefore, the persistence process (PP) for each multipath is obtained. The PP is associated
with the measured power delay profile (PDP) to obtain cumulative energy as expressed in (4.9). Finally,
active taps are sub-selected at the peaks of the cumulative energy. Selecting taps based on peak samples
are essential to avoid the negligence of taps with low energy but large delays because they can have
unfavorable effects on the capability of regenerating the root mean square delay spread (RMS-DS) that
has been experimentally proven in Section 4.2.3. The number of active taps for the three different scenarios
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is presented in Fig. 7.4. Fig. 7.5 illustrates the tap energy matrices. We normalize the computed tap
energy with respect to its maximum.

Fig. 7.3 Tap selection block diagram

(a) (b)

(c)

Fig. 7.4 Number of active taps, (a) LOS, (b) NOS1, (c) NLOS2
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(a) (b)

(c)

Fig. 7.5 Tap energy matrices, the computed tap energy is normalized with respect to its maximum, (a) LOS, (b) NOS1, (c)
NLOS2

7.4.3 Fading Statistics of the Active Taps

The amplitude distribution of pth tap can be obtained along the whole route in each scenario as in [159,160]
after separating and breaking down the measured received amplitude into slow- and fast-fading variations.
The same approach is applied as in Section 6.3.2. A moving average FIR filter is used to extract slow
variations from overall variations by computing a running mean (6.13), then fast variations are obtained
by subtracting the slow fading variations from overall fading variations using (6.10). A particular example
of the measured signal that contains both fast and slow components is depicted in Fig. 7.6. The result
of extracting slow variations from the overall variations for a particular number of snapshots with its
empirical histogram is indicated in Fig. 7.6(a) and 7.6(c). In Fig. 7.6(a), the received signal is seen to be
varied by more than 15 dB over small distances. This rapid fluctuation of the received signal over small
areas is a fast fading, which is extracted from overall fading and presented in Fig. 7.6(b) and 7.6(d).
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(a) (b)

(c) (d)

Fig. 7.6 Amplitude of the second tap under LOS condition between Tx-2 and Rx-2, extracting slow variations from the
overall variations for a particular number of snapshots with its empirical histogram, (a) Slow variations vs overall variations,
(b) Fast fading variations, (c) Slow fading distribution, (d) Fast fading distribution

The empirical histogram of fast variations is calculated and then the selected PDFs such as Weibull,
Lognormal, Rician, and Rayleigh distributions are fitted to the empirical distribution; exemplary graphs
under LOS, NLOS1, and NLOS2 conditions are presented in Fig. 7.7. In order to measure similarity be-
tween the empirical histogram and probability density function (PDF) fits, the histogram intersection (HI)
is computed using the algorithm proposed in Section 4.4. The outcome depicts that the Weibull distribu-
tion illustrates a better match for a large number of taps and the first tap under LOS conditions follows
Rician distribution, as shown in Fig. 7.7(a). The Weibull distribution provides a good fit to any data
set that have been considered due to substantial flexibility (a shape factor and scale parameter). In the
exemplary graphs Fig. 7.7(b) and 7.7(c), the Rician K factor is zero; thus, Rayleigh fading is recovered.
The conclusion can be drawn as a large number of taps follows the Weibull distribution. Additionally,
some more graphs of the selected PDFs fitted to the empirical distribution of the fast fading are presented
in Section E.1.1.

95



CHAPTER 7. MIMO-TDL MODEL 7.4. PROCESSING OF THE MEASUREMENT DATA

(a) (b)

(c)

Fig. 7.7 Tap amplitude distribution, the outcome depicts that the Weibull distribution illustrates a better match under
NLOS1 and NLOS2 and the first tap under LOS condition follows Rician distribution, (a) First tap under LOS condition
between Tx-1 and Rx-1, (b) Second tap under NLOS1 condition between Tx-2 and Rx-2, (c) Second tap under NLOS2
condition between Tx-4 and Rx-4

7.4.4 Doppler Shift of the Active Taps

The time selectivity of wireless channels due to relative motion between the Tx and Rx is described by
the Doppler shift. In order to characterize the Doppler frequency for each active tap, the same approach
as in Section 4.3 is considered. The maximum Doppler frequency is computed and then the Doppler
feature of the active taps is described as a random variable that follows a uniform distribution, which is
fv ∼ U [−fDmax, fDmax].

7.4.5 Pairwise Tap Correlation Coefficient and Correlation between Taps
Persistence Processes

As described in Section 4.5, tap i and j do not always for the same snapshot because PP is associated
with each tap; thus, correlation coefficient among the taps should be calculated using those snapshots
when both taps exist. Fig. 7.8 demonstrates different numbers of snapshots are used to calculate the
correlation matrix under LOS, NLOS1, and NLOS2 conditions. In order to make this clear, one of the
matrices is indicated using a red square in Fig. 7.8(b), and this portion of the figure is zoomed in and
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indicated in Fig. 7.9. As can be seen in Fig. 7.9, ρ1,2 is computed using more than 170 snapshots, and
ρ2,3 may have been computed using about 120 snapshots. The number of snapshots decreases as the
distance (delay) between taps increases. Note that for higher-indexed taps, it is possible that there might
not be any snapshots where both the taps exist.

(a) (b)

(c)

Fig. 7.8 Number of snapshots used to calculate correlation matrix, (a) LOS, (b) NLOS1, (c) NLOS2

Fig. 7.9 Number of snapshots to calculate tap correlation coefficient under NLOS1 condition after zooming a red square in
Fig. 7.8(b), ρ1,2 is computed using more than 170 snapshots and ρ2,3 may have been computed using 120 snapshots
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The pairwise tap correlation coefficient is obtained using (4.19). In MIMO systems, the pairwise taps
correlation coefficients are described by a matrix of coefficients, which has three dimensions Cγ(P

′,M ×
N,M ×N), where P ′ is the number of active taps, M and N are the numbers of Tx- and Rx-antennas,
respectively. On the other hand, the correlation coefficient among taps persistence is estimated using
(4.24). The result (Cz) is a correlation matrix expressed as Cz(P

′,M × N,M × N). Pairwise tap
correlation coefficient matrix with correlation matrix between taps persistence is demonstrated in Fig.
7.10 and 7.11, respectively. From the results, the following conclusions can be drawn:

• Under LOS condition:

– There is no correlation among taps amplitudes, as well as among taps persistence process, and
the mean values are 0.17 and 0.12, respectively.

• Under NLOS1 condition:

– As can be seen in Fig. 7.10(b), some of the taps amplitude are highly correlated in each
channel, as well as, among the channels, and the mean value of Cγ is 0.44.

– There is no correlations among the taps persistence process and the mean value of Cz is 0.1.

• Under NLOS2 condition:

– Some of the taps amplitude are correlated, and the mean value of Cγ is 0.35

– The correlation coefficient among taps persistence process is low, and the mean value is around
0.25
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(a) (b)

(c)

Fig. 7.10 Pairwise tap correlation coefficients matrix, (a) In LOS scenario, there is no correlation among taps amplitudes,
(b) In NLOS1 scenario, some of the taps amplitude are highly correlated in each channel, as well as among the channels,
(c) In NLOS2 scenario, some of the taps amplitude are correlated
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(a) (b)

(c)

Fig. 7.11 Correlation matrix among ON/OFF process, there is no correlation among taps persistence process, (a) LOS, (b)
NLOS1, (c) NLOS2

7.5 Analysis of MIMO Channel Capacity

In this section, gains offered by MIMO in terms of capacity bounds are explored. Fundamental results
such as a comparison between SISO- and MIMO- channel capacity in terms of different values of SNR
and a different number of antennas will be presented. Additionally, we want to investigate how well the
capacity of our channel model matches with the simulated channel. By simulated channel model, we
mean that our algorithm in Chapter 5 is used to create generators to produce channel impulse responses
based on the derived model parameters from measurement data. In total, three generators are devised
that are Log-normal, Weibull, and Rayleigh generators.

For each scenario (LOS, NLOS1, and NLOS2) four different configurations will be investigated, which
are SISO and three different MIMO setups. As explained previously, our 4 × 4 MIMO scenario follows
the basic 90◦ rotated antenna arrangement. This means antennas on the left and right sides, as well as
in the front and rear, are chosen at the Tx and Rx, as presented in Fig. 7.12. Note that the position
of antennas is indicated using red circles, and the front of the uniform circular array is depicted using a
green cross, which is equivalent to the green cross in Fig. 7.13. As explained previously, two different
scenarios of 2×2 MIMO configurations are studied to investigate the role of the position of antennas, and
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they will be called scenarios A and B. In scenario A, antennas in front and rear are chosen at the Tx and
Rx 2. Scenario B selects antennas on the left and right at both sides 3. It is important to note that those
figures are only presenting the positions of selected antennas. Regarding the propagation environment,
the reader should refer/imagine this installation in Fig. 3.6, where the Tx was acting as a base station
mounted on a rooftop, and the Rx has been moving using a car.

Fig. 7.12 Simulation model of antenna installation MIMO case 4× 4 antennas, antennas on the left and right sides, as well
as in front and rear, are chosen at the Tx and Rx; note that the position of antennas is indicated using red circles and the
front of the uniform circular array is depicted using a green cross, which is equivalent to the green cross in Fig. 7.13

Fig. 7.13 Realized antenna array has been used during channel sounding measurement campaign, note copyright from [109]

In Section 7.3, a method for calculating the channel capacity is presented. Fig. 7.14 shows the
cumulative distribution function (CDF) graphs of channel capacity for three different scenarios, which
are LOS and two different NLOS categories. In each scenario, SISO channel capacity is first determined,

2This corresponds to antenna number 1 and 3 in Fig. 7.12
3This means antenna number 4 and 2 in Fig. 7.12
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followed by three different MIMO setups. In each setup, the channel capacity is first determined for
measured data and compared to the simulated CIRs. These results are given for the SNR fixed at 20 dB
and they reveal that by increasing the number of receive and transmit antennas, MIMO models bring
about a drastic increase in capacity. The capacity of 4× 4 MIMO channel is greater than the capacity of
2×2 MIMO channel and SISO channel. Gain of approximately 18 b/s/Hz with 4×4 MIMO channel over
SISO channel is obtained. Additionally, we look at the capacity as a function of distance between Tx and
Rx, minor changes in the capacity with increasing distance between the Tx and Rx are found, as shown
in Fig. 7.14, where the distance from the Tx to Rx is between 85-100 m in Fig. 7.14(a) and is between
110-185 m in Fig. 7.14(c). Moreover, comparisons between blue, yellow curves indicate that the position
of antennas plays an important role. The received power level can drop significantly if the antenna has
a poor gain in the direction of the Tx, as shown in scenario B, which is the blue curves. Therefore,
using multiple antennas that radiate towards different directions, as in the case of 4× 4 MIMO, which is
indicated using the green curves retains high capacity performance.
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(a)

(b)

(c)

Fig. 7.14 CDF comparison of the channel capacity between the measurement data and generators in term of different number
of antenna, the SNR fixed at 20 dB; MIMO models bring about a drastic increase in capacity by increasing the number
of receive and transmit antennas; minor changes in the capacity observed with increasing distance between the Tx and Rx
(the distance is between 85-185 m), (a) LOS, (b) NLOS1, (c) NLOS2

As presented in Section 7.2 and 7.3, the SNR plays a key role in determining the channel capacity.
To explore the importance of the SNR and study the channel capacity in terms of different SNR values,
simulations are carried out to estimate the channel capacity at SNR of -20, -10, 0, 5, 10, 15, 20, 25, 30,
40 dB and results for 10 dB and 25 dB are illustrated in Fig. 7.15.

The complementary cumulative distribution function (CCDF) of the channel capacity is given in Fig.
7.16 4. Due to a large number of results, here we present the results only for the Weibull generator

4CCDF is defined as the probability that X will take a value more than x, FX(x) = P (X > x) = 1− Fx(x) [115].
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under the NLOS1 scenario. From the figure, it can be seen that with increasing SNR, we can achieve
more capacity gain. At SNR = 25 dB, there is 90% certainty that there is at least 24 b/s/Hz of capacity
available from the MIMO channel, and at SNR = 10 dB, there is 90% certainty that there is more than
8 b/s/Hz of capacity available. The capacity of MIMO configuration is approximately four times the
capacity of SISO. Additionally, Section E.2.1 provides the CDF of channel capacity for different SNR
values, such as -20, -10, 0, 5, 8, 15, 20, 30, 40 dB. As can be seen, the capacity variation decreases
significantly with increasing SNR.

Consequently, the following conclusions can be outlined, the channel capacity increases with the
increase of the number of Tx-Rx antenna pairs. When SNR increases, the variation of channel capacity
reduces. The capacity of MIMO system is approximately four times the capacity of the SISO system.
Additionally, it is observed that the position of antennas plays an essential role in achieving high channel
capacity performance.

(a) (b)

Fig. 7.15 CDF comparison of the channel capacity between SISO and MIMO cases, with increasing SNR capacity gain
increases, (a) SNR = 10, (b) SNR = 25

(a) (b)

Fig. 7.16 CCDF comparison of the channel capacity between SISO and MIMO cases, (a) SNR = 10, (b) SNR = 25
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7.6 Concluding Remarks

In this chapter, a method for extending a classical single input single output (SISO)-TDL model to
multiple input multiple output (MIMO) under the non-WSSUS assumption was introduced to develop
tapped delay line (TDL) channel models for vehicle to infrastructure (V2I) MIMO systems. An algorithm
for selecting taps was presented, and the taps were selected at the peaks of the cumulative energy. The
fading distribution of taps has been addressed. The results have been shown that a large number of taps
follow the Weibull distribution. It was additionally observed that there is no correlation among the taps
persistence process, on the other hand, there is a correlation between some of the taps amplitude in each
channel, as well as among the channels under NLOS1 and NLOS2 scenarios. Regarding the LOS scenario,
there is no correlation among the taps amplitudes.

The analysis evaluates SISO- with MIMO- configuration in terms of capacity and then results in terms
of different numbers of antennas, and different values of signal to noise ratio (SNR) were investigated.
The analysis shows that a drastic increase in capacity can be achieved by increasing the number of receive
and transmit antennas. The capacity of the MIMO system is approximately four times the capacity of
the SISO system. The channel capacity is directly proportional to SNR. Not only the channel capacity
of MIMO systems increase linearly with the increase of SNR, but also the variation of channel capacity
decreases. Moreover, we looked at the capacity as a function of distance, and from the results, minor
changes in the capacity with increasing distance between the transmitter (Tx) and receiver (Rx) were
found. Additionally, throughout this chapter, it has been observed that the position of antennas plays
an important role, as the received power level can drop significantly if the antenna has a poor gain in the
direction of the Tx. We conclude that using multiple antennas that radiate towards different directions,
as in the case of 4 × 4 MIMO is important for V2I application. As a conclusion, in V2I communication
systems, it is possible to make a qualitative leap by placing arrays of antennas on both sides of the system,
and when a large SNR value is applied, we will achieve a higher capacity, consequently remarkable stability
in the performance of the system.

The material of this chapter is partially presented in [63,65].
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Chapter 8

Conclusions and Outlook

8.1 Conclusions and Outlook

The promising potential of vehicle to X (V2X) communication systems to optimize traffic flow and
drastically reduce car accidents has led to a rich body of research in this field. One of the fundamentals in
the design of a communication system is the characterization of a channel. Throughout this investigation,
it has been noted that communication systems design and deployment cannot be performed without an
accurate knowledge of the underlying physical channel. The main goal of this thesis was to develop vehicle
to infrastructure (V2I) channel models in a form of tapped delay line (TDL) model that could describe
most of the propagation conditions in an urban area. The TDL model is one of the well-accepted models
e.g., in the Third Generation Partnership Project (3GPP) and long term evolution (LTE) standards.
The TDL model can be extended via Markov chains models to represent the non-wide sense stationary
uncorrelated scattering (non-WSSUS) properties of the V2X channels. Markov chains are a proper
choice for vehicular channel modeling because they offer the combination of statistical channels based on
stochastic processes. This type of model is based on the probability of an event given another past event.
The channel is then characterized through a certain number of states. In this thesis, non-stationary TDL
models have been used to describe the V2I channels.

An algorithm for selecting taps for TDL models from measurement data was introduced. The proposed
approach accurately captures the channels’ statistics (e.g., statistical measures of root mean square delay
spread (RMS-DS)); hence, our model is useful for communication systems design and deployment. The
RMS-DS is the major factor in the performance of most digital communication systems, including the
orthogonal frequency division multiplexing (OFDM) systems proposed for V2X communication systems.
When the RMS-DS is greater than a guard interval, this leads to inter symbol interference (ISI) and
degrades performance. In this case, individual symbols overlap with the following ones; as a result,
transmission errors occur. Therefore, designers most often rely on RMS-DS, as it has been shown to
be directly relatable to communication system performance. The proposed approach did not previously
exist, which further motivated this work for wideband stochastic channel models for V2I communication
systems.

TDL channel models at 20MHz bandwidth are provided for all propagation regions encountered in the
city of Cologne to describe the physical propagation conditions accurately. These models are developed
to evaluate the performance of V2I communication systems that would be deployed in urban areas, and
they can be used by researchers who investigate vehicular communication system design. One of the key
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features presented for these models is modeling non-stationary behavior via an ON/OFF process using
first-order two-state Markov chains. Numerical results and examples have been illustrated to clarify all
algorithms that have been used.

8.1.1 Summary of Contributions and Further Details

This thesis provides several contributions. A summary of contributions is provided, and each is followed
by further details.

• Statistical measures, e.g., mean RMS-DS were used to examine the differentiation between different
scenarios such as line of sight (LOS) and non line of sight (NLOS).

A raytracer tool has been used to detect different scenarios such as LOS and NLOS. After detecting
all of the measurement points, three different scenarios (LOS, NLOS1, and NLOS2 1) existed in
our measured data. Statistical measures such as mean RMS-DS and delay window (DW) were
computed to examine the differentiation between those scenarios. For example, the mean RMS-DS
was calculated for each measurement track in accordance with the scenario. Based on these results,
it is concluded that three different groups can be distinguished. The statistical results of NLOS1
scenario indicated that they laid between LOS and NLOS2 scenarios. For those specific regions
(NLOS1), a transmitted wave was attenuated by only one interaction; therefore, it had relatively
large energy and smaller delay. Thus, the value of the mean RMS-DS was smaller than NLOS2,
which was assumed to undergo more than one interaction. The RMS-DS value increased under
NLOS2 and NLOS1 conditions, compared with LOS scenario, where the RMS-DS oscillated around
80 ns. Consequently, the RMS-DS and DW clearly showed a decrease as the receiver (Rx) entered
the LOS region. Detection results in different regions from the raytracer and applied statistical
measures showed a good match.

• A new strategy for extracting parameters for a TDL model was proposed.

The new approach is a modification of an existing method, which has been proposed in [129]. The
proposed approach [129] was applied to verify and compare to the extended model. The extended
approach has improved the model with respect to the RMS-DS and number of taps. One of the
limitations of channel emulators is that it is limited to emulating the number of propagation paths
simultaneously; thus, it is important to find a proper approach to reduce the number of taps. A
complete set of V2I TDL models for 20 MHz channel bandwidth has been extracted from measure-
ment data. A complete description of the tap energies, tap amplitude statistics, tap correlation
coefficient matrices have been derived. There are strong correlations among taps amplitudes, but
the persistence process (PP) between different tap indices is uncorrelated. Additionally, each tap’s
transition probabilities and steady-state probabilities have been provided, which can be directly
used in the channel simulation. In the LOS region, taps persist longer, and multipath delay disper-
sion is smaller than in NLOS1 and NLOS2 regions.

• An approach was proposed as a solution to verify the correctness of the channel model parameters
derivation.

An approach was discussed to evaluate the model outcome. First, the RMS-DS was determined for
the measurement data (after the noise threshold and the multipath threshold (MT), 25dB below

1Underlying different scenarios have been defined in Section 3.2
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the main peak) using all possible taps. After that, the RMS-DS was calculated only for the tap
indices where the models M1 and M2 would place an active tap. It has been determined that our
proposed model M2 represents the channel with enhanced accuracy compared to model M1. Model
M2 uses a smaller number of taps in all scenarios while retaining the delay spread performance.
The taps are spread more widely over the cumulative energy; thus, low energy and large delay taps
are selected, which are relevant to regenerating the RMS-DS. From the results, it was additionally
observed that shifting the channel impulse response (CIR) based on the change in transmitter (Tx)-
and Rx-distance is necessary to reduce the number of required taps. It has been demonstrated that
model M2 is fairly accurate when representing the statistics of the measured channel, even when
it does not accurately represent the actual channel taps when they are not resolvable.

• Devising a generator to produce channel impulse responses (CIRs) based on derived model param-
eters.

Algorithms have been developed to generate multivariate Lognormal, Weibull, Rayleigh, and Rician
random variables with derived fading parameters and correlations from measured data. Hence, the
amplitudes of taps have been modeled as correlated Lognormal, Weibull, Rayleigh, and Rician
variables. In order to capture the frequent ON/OFF behavior of multipath, the PP has been
modeled via first-order two-state Markov chains. The results showed that the used Markov model
needs to be extended to the higher order Markov model.

• The higher orders two-state Markov chains have been modeled with the aim of better capturing the
non-stationary behavior.

Second- and third-order two-state Markov models have been modeled but introduce simulation
complexity. Different Markov models (first-, second-, and third-order two-state Markov model) were
compared and evaluated in terms of their ability to represent various statistics. The results showed
that the second- and third-order Markov models do not make significant effects or improvements.
Therefore, to compromise between fidelity and implementation complexity, the first-order two-state
Markov model is preferable to describe the non-stationary processes of the channel, and it matched
well with the data. From the analysis, it was found that the persistence process between different
tap indices was uncorrelated; accordingly, a correlated Markov model is not necessary.

• The amplitudes fading of active taps have been divided into two classes by separating the received
signal in two scales of spatial variations, which are slow- and fast-variations to characterize slow-
and fast-fading variations of each active tap.

In Chapter 6, the amplitudes fading of active taps has been divided into two classes by separating the
received signal in two scales of spatial variations, which are slow- and fast-variations. In total, nine
various setups were studied. The variations in received signal strength between two antennas faced
directly to each other and omnidirectional antennas follow Rice and Log-normal distributions for
fast- and slow-fading, respectively. From the results, it was observed that when two antennas faced
away from each other, a fitting error and histogram intersection between the empirical histogram
and probability density function (PDF) fits of known distributions were approximately the same for
all kinds of distributions; thus, a specific distribution was not selected for those scenarios. Moreover,
environments with a large number of scatterers, such as in NLOS2 regions, lead to smaller quasi-
stationarity intervals than regions under LOS conditions. It was discovered that when a LOS path
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exists between Tx and Rx, individual multipath does not fade significantly; on the other hand, for
higher indexed taps, deeper fading was observed as in the NLOS2 scenario.

• A method for extending a single input single output (SISO)-TDL model to multiple input multiple
output (MIMO) under non-WSSUS assumption was introduced to develop TDL channel models for
the V2I MIMO systems.

In all of the above, SISO-TDL models were considered. A method for extending a classical
SISO-TDL model to MIMO under the non-WSSUS assumption was introduced. Taps have been
selected using the proposed approach M2. The fading distribution of taps has been addressed. It
was observed that there is no correlation among the taps persistence process in all scenarios. On
the other hand, low correlations exist between some of the taps amplitude in each channel and
among channels under NLOS1 and NLOS2 conditions. Regarding the LOS scenario, there is no
correlation among taps amplitudes. Observing such a low correlation between taps may be due to
the antenna positions on the Tx and Rx 2.

• The analysis evaluated SISO- with MIMO-configuration in terms of channel capacity and then
results of a different numbers of antennas and different values of signal to noise ratio (SNR) were
investigated. Different MIMO configurations have been explored to investigate the role of antenna
placement and then the capacity as a function of distance between Tx and Rx has been studied.

The analysis investigates SISO- with MIMO-configuration in terms of channel capacity. Different
MIMO configurations have been explored to investigate the role of antenna placement. Throughout
the results, it has been observed that the position of antennas plays an important role; the received
power level can drop significantly if the antenna has a poor gain in the direction of the Tx. The use
of four antennas that radiate towards different directions can bring substantial performance gains,
and the capacity was approximately four times the capacity of the SISO system. It is obvious
that the channel capacity is directly proportional to SNR, not only the channel capacity increases
linearly with the increase of SNR but also the variation of channel capacity decreases. Moreover,
we have looked at the capacity as a function of distance between Tx and Rx. Minor changes in the
capacity with increasing distance between the Tx and Rx were found.

To sum up, channel statistics have been analyzed in an urban city, and channel models were developed
for a 20 MHz channel bandwidth. In this study, each measurement file has been examined separately
and then based on different scenarios, the tracks have been merged into different data sets. The model
specifies tap amplitude fading with its persistence process for modeling the appearance and disappear-
ance of multipath. Both severe fading and multipath persistence arise in all measurement tracks; thus,
the modeling techniques, which were presented here, may be applicable in other environments. The
first-order two-state Markov model with the higher-order Markov model has been modeled to capture
the non-stationary behavior of multipath. It was concluded that to compromise between fidelity and
implementation complexity, the fast time-varying channel of V2I communications should be modeled
via first-order two-state Markov chains. The received signal strength is stronger in the LOS regions,
taps persist is longer, and multipath delay dispersion is smaller than in the NLOS1 and NLOS2 regions.
Moreover, different MIMO configurations have been explored, and it was concluded that using multiple
antennas that radiate towards different directions, as in the shown case of 4× 4 MIMO, is important to
make a qualitative leap in V2I applications. When a large SNR value is applied, it will achieve a higher

2The position of antennas has been illustrated in Section 7.5.
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capacity and consequently remarkable stability in the performance of the system. Numerical results and
examples have been illustrated to clarify all algorithms that have been used. The results presented in this
thesis have implications for the purposes of performance evaluation and system design in V2I systems.
Researchers or engineers who evaluate the performance of waveforms or systems can use the developed
channel models, which are based upon both theory and measurements; thus, they are dual in sense.

8.1.2 Further Research Areas

In this section, based on the results, the various avenues for future research will be described. One of
the research areas is the “drift” of multipath, which has been reported from several V2X measurements,
as well as in measurement data 3, in which the delay of the tap changes over time and the tap moves
from one delay bin to another. Based on our knowledge, in the existing TDL models, this is not tracked.
Future research comprehends the incorporation of this “drift” effect into the considered models by using
a segmentation approach, which has been proposed in Section E.2. Consequently, the model parameters
such as power, delay, etc., will vary over time. Another extended focus should be the modeling of
multipath transition, more measurement data need to be investigated to find whether repeating transitions
exist or not and what are their causes. Moreover, incorporating the quasi-stationary region into a non-
stationary channel appears to be of advantage; thus, the ON/OFF process will not be completely random.
The main purpose of developing a stochastic channel model is to evaluate the system performance in real
environments. A further research topic would be to evaluate the performance of different modulation
waveforms such as OFDM under these stochastic channel models. Such a thorough evaluation would be
of potential interest to members of industry and academia.

Throughout Chapter 5, it was observed that different types of distributions lead to different effects
on the generator in terms of RMS-DS; therefore, it is important to study them and investigate their
causes. Another future work could be applying the proposed model to other sets of measurement data
to generalize the verification of the new approach or applying to the propagation conditions for highly
dynamic vehicle to vehicle (V2V) channels. Furthermore, the measurement data were carried out in
the summer season, from which those channel models have been developed, and accounting for different
seasonal effects such as snow/rain during winter has not been considered. A research area, which has
been widely ignored up to now, is to develop channel models for various seasons, which would then
account for different seasonal effects. Another research following this thesis could be to determine the
agreement between results of the presented stochastic models and the ray-tracing approach and how well
they agree in terms of statistical measures. In addition to that studying another way to find different
methods of modeling the non-stationary process in a way other than by multiplying the tap amplitude
process with the persistence process. One idea might be to model the fading more compactly as a single
non-stationary process, instead of separating amplitude tap fading and multipath persistence as two
multiplicative processes. To achieve this, one possible approach might be the use of a fading process,
whose statistics vary over time. This approach has already been discussed in E.2.

The use of MIMO is not only essential in recent wireless communication systems, but also is planned
in future V2X communications. It is interesting to see how the time-varying MIMO-TDL model 4

would perform in terms of key parameters, e.g., channel capacity, and compared to our model. Another
investigation could be investigating the influence of antennas and their placement on the car. For example,
the antenna has difficulties “seeing” if it is placed on a backward-slanted roof.

3It has been illustrated in Fig. 4.7
4The proposed approach in Section E.2.
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Appendix A

Measurement Surroundings

A.1 Surrounding

This section is continuity of Section 3.3.

A.1.1 Measurement track 2-3

In this measurement track, the car that was traveled through a pedestrian area. Then, the car left a
square over the street and then it drove toward the narrow crossroad, which is the end point of the track.
The Figures can be seen via Google StreetView using latitude and longitude of the receiver (Rx) from
Table A.1.

TABLE A.1
Description of surrounding environment for measurement track 2-3

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT2-3 50.936451 6.953634 50.936343 6.956245

A.1.2 Measurement track 4-5

The measurement track 4-5 started directly on the same square, as the end point of measurement track
3-4, then the car drove through a street. Table A.2 gives the description of surrounding environment for
measurement track 4-5.

TABLE A.2
Description of surrounding environment for measurement track 4-5

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT4-5 50.937687 6.956308 50.939078 6.956366
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A.1. SURROUNDING

A.1.3 Measurement track 8-9

In the starting point of track 8-9, the car drove through the street and then it turned to the left.
Before entering the crossroad, the measurement track was ended. Forward and rear views of surrounding
environment are given in Table A.3.

TABLE A.3
Description of surrounding environment for measurement track 8-9

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT8-9 50.936475 6.957999 50.936239 6.960055

A.1.4 Measurement track 15-16

The description of surrounding environment is given in Table A.4. It was started on a square besides a
wide road. The car crossed two crossroads. Before the car was reaching a third crossroad, the measure-
ment track was ended.

TABLE A.4
Description of surrounding environment for measurement track 15-16

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT15-16 50.935294 6.957241 50.936788 6.956926

A.1.5 Measurement track 16-17

The following track 16-17 started directly after track 15-16. The vehicle was traveled along a narrow
street and then it passed by a large intersection. The measurement track ended before entering the
crossroad. The Figures can be seen via Google StreetView using latitude and longitude of the Rx from
Table A.5.

TABLE A.5
Description of surrounding environment for measurement track 16-17

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT16-17 50.936789 6.956926 50.937614 6.956866

A.1.6 Measurement track 17-18

This measurement track follows the previous track 16-17 directly. The starting point of track 17-18 was at
the crossroad and then driving through a street and after traveling through the street, an intersection on
the right hand side occurred. The car continued to drive through a narrow street and this measurement
track was ended in the middle of the narrow street. The Figures can be seen via Google StreetView using
latitude and longitude of the Rx from Table A.6.
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TABLE A.6
Description of surrounding environment for measurement track 17-18

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT17-18 50.937615 6.956866 50.939037 6.956834

A.1.7 Measurement track 31-32

A starting point of this track was on the crossroad and it kept following the wide street. The car traveled
along the wide street. While the car drove along the street, it went over another crossroad. Then, the
track followed the street and it has been ended before entering another crossroad. The Figures can be
seen using the description of surrounding environment in Table A.7.

TABLE A.7
Description of surrounding environment for measurement track 31-32

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT31-32 50.938271 6.953287 50.9402 6.953323

A.1.8 Measurement track 33-34

The measurement track 33-34 was started after the car turning right the crossroad. The car drove along
a street, then it traveled by an intersection. At the end of the road, this measurement track was stopped.
Table A.8 gives the description of surrounding environment for measurement track 33-34.

TABLE A.8
Description of surrounding environment for measurement track 33-34

Description of surrounding environment

Starting point End of measurement track

File name Latitude Rx Longitude Rx Latitude Rx Longitude Rx

Cologne_MT33-34 50.940229 6.95361 50.940157 6.955467
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SISO-TDL Model Parameter
Estimation Results

B.1 A Steady-State Probability of Active Taps Being ON

Fig. B.1 shows the steady state probability of state ON (SS1) versus active tap index. In both models,
the SS1 is higher under LOS condition compared to other scenarios. Nevertheless, only the outcome of
M2 provides similar representation (the SS1 decreases as the tap index increases) as we have seen in the
measurement data that is shown in Fig. 4.4(b).

(a) (b)

Fig. B.1 A steady-state probability of active taps being ON track number 24 →25 (a) in M1 (b) in M2

B.2 Amplitude Fading of the Active Taps

Fading tap amplitudes has been addressed in Section 4.4. Fig. B.2 and B.3 provide the empirical
histogram and the probability density function (PDF) curves for the first and second taps amplitude
under three different scenarios (under LOS condition, we only have one tap).
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B.2. AMPLITUDE FADING OF THE ACTIVE
TAPS

(a) (b)

(c)

Fig. B.2 Histogram for the first tap, the log-normal distribution shows a better match between the PDF
and the empirical histogram, (a) under LOS condition, (b) under NLOS1 condition, (c) under NLOS2

condition

(a) (b)

Fig. B.3 Histogram for the second tap, the log-normal distribution shows a better match between the PDF
and the empirical histogram, (a) under NLOS1 condition, (b) under NLOS2 condition
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Higher orders Markov modeling of
Persistence Process

C.1 Results of Higher orders Markov modeling of Persistence
Process

In this section, different order Markov chains models is illustrated for Weibull-, Rayleigh-generator. As it
can been seen, the root mean square delay spread (RMS-DS) of third order Markov model, who is denoted
by a gray curve is closer to the RMS-DS of estimated persistence process (PP) from measurement data.

(a) (b)

Fig. C.1 Delay spread comparison with respect to high order Markov model under NLOS2 scenario, the RMS-DS of third
order Markov model, who is denoted by a gray curve is closer to the RMS-DS of estimated PP, which is depicted by a
green/yellow curve (a) Weibull generator, (b) Rayleigh generator
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Characterization of Slow and Fast
Fading of the Active Taps

D.1 Separating Slow- and Fast-Fading

D.1.1 Omnidirectional Antenna

D.1.1.1 LOS Scenario

(a) (b)

Fig. D.1 Magnitude of the first tap under LOS condition-omnidirectional antenna, (a) Overall and slow
variations, (b) Fast variations after removing the slow variations
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D.2. MODEL BASED EVALUATION

D.1.1.2 NLOS2 Scenario

(a) (b)

Fig. D.2 Magnitude of the first tap under NLOS2 condition-omnidirectional antenna (a) Overall and slow
variations (b) Fast variations after removing the slow variations

D.2 Model Based Evaluation

As explained in Section 6.3.3, to verify the robustness of the approach Weibull plus Log-normal are
combined (which means the time-varying amplitudes with their corresponding distributions is generated
to consider the slow and fast signal variations). The same proposed approach as in Section 6.3.2 is applied
to separate the slow- and fast-variations. The implementation of the model with its results are illustrated
in Fig. D.3.
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D.3. AMPLITUDE FADING OF THE ACTIVE TAPS

Fig. D.3 Block diagram of separating slow and fast fading variation

D.3 Amplitude Fading of the Active Taps

This section provides some examples of the empirical histogram of slow- and fast-fading with selected
fitting curves.
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D.3. AMPLITUDE FADING OF THE ACTIVE TAPS

D.3.1 Omnidirectional Antenna

(a) (b)

Fig. D.4 Histograms and pdf fits for the Second tap under LOS condition-omnidirectional antenna, the
Log-normal and Rice-distribution are the closest to the empirical histogram of slow- and fast-variations,

respectively, (a) Slow variations, (b) Fast variations

(a) (b)

Fig. D.5 Histograms and pdf fits for the Second tap under NLOS1 condition-omnidirectional antenna, the
Log-normal and Rice-distribution are the closest to the empirical histogram of slow- and fast-variations,

respectively, (a) Slow variations, (b) Fast variations
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D.3. AMPLITUDE FADING OF THE ACTIVE TAPS

(a) (b)

Fig. D.6 Histograms and pdf fits for the first tap under NLOS2 condition-omnidirectional antenna, the
Log-normal and Rice-distribution are the closest to the empirical histogram of slow- and fast-variations,

respectively, (a) Slow variations, (b) Fast variations

(a) (b)

Fig. D.7 Histograms and pdf fits for the Second tap under NLOS2 condition-omnidirectional antenna, the
Log-normal and Rice-distribution are the closest to the empirical histogram of slow- and fast-variations,

respectively, (a) Slow variations, (b) Fast variations
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D.3. AMPLITUDE FADING OF THE ACTIVE TAPS

D.3.2 Two Antennas Faced Directly to Each Other

(a) (b)

Fig. D.8 Histograms and pdf fits of fast fading variations under LOS condition-two antenna faced each
other, Rice-distribution are the closest to the empirical histogram, (a) First tap, (b) Second tap

(a) (b)

Fig. D.9 Histograms and pdf fits of fast fading variations under NLOS1 condition-two antenna faced each
other, Weibull-distribution are the closest to the empirical histogram, (a) First tap, (b) Second tap
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D.3. AMPLITUDE FADING OF THE ACTIVE TAPS

(a) (b)

Fig. D.10 Histograms and pdf fits of fast fading variations under NLOS2 condition-two antenna faced each
other, Weibull-distribution are the closest to the empirical histogram, (a) First tap, (b) Second tap

D.3.3 Two Antennas Faced Away from Each Other

(a) (b)

Fig. D.11 Histograms and pdf fits of fast fading variations under NLOS1 condition-two antenna faced away
from each other, a fitting error of fast-variations of the received signal is almost same for known

distributions, (a) First tap, (b) Fourth tap
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Appendix E

MIMO-TDL Model

E.1 Processing of the Measurement Data

E.1.1 Fading Statistics of the Active Taps

This section illustrates some more graphs of amplitude fading statistic.

(a) (b)

Fig. E.1 Amplitude fading statistic of second tap in LOS scenario, Rice-distribution are the closest to the
empirical histogram, (a) Between Tx-1 and Rx-1, (b) Between Tx-2 and Rx-2
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(a) (b)

Fig. E.2 Amplitude fading statistic in NLOS1 scenario, Weibull-distribution are the closest to the empirical
histogram, (a) First tap between Tx-2 and Rx-2, (b) Second tap between Tx-1 and Rx-1

(a) (b)

Fig. E.3 Amplitude fading statistic in NLOS2 scenario, (a) Second tap between Tx-1 and Rx-1,
Weibull-distribution are the closest to the empirical histogram, (b) Second tap between Tx-2 and Rx-2

E.2 Time-Varying MIMO-TDL Model

This Section provides another contribution, which is a modeling method to develop a time-varying mul-
tiple input multiple output (MIMO)-tapped delay line (TDL) model, whose parameters (such as power,
delay, etc.) vary over time. To achieve this, a segmentation approach is taken. The whole set of mea-
sured channel impulse response (CIR) is segmented based on the quasi-stationarity intervals (outcome
from Section 7.4.1), and for each segment, a unique TDL model is derived. From there, we able to track
active taps. Hence, the resulted model is much more complex than our previous approach because the
length of segments of each scenario (e.g., LOS, NLOS1, and NLOS2) are different, as well as each scenario
also has different numbers of segments.

Briefly, the whole set of measured CIR is divided into Ni subsets. The length of each subset (Ni)
is equal to w, which has been obtained in Section 7.4.1. As assumed previously, the measured CIR is
expressed as h(s, τ,M,N). In this step, for each subset of Ni, we get a matrix as h(Ni, τ,M,N,Na).
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Where Ni is the length of the subsets and Na is the number of subsets.
For each subset of Ni, we first select the taps using the same algorithm as considered in Section

7.4. Hence, the outcome of each subset will be a matrix as h(Ni, P
′, τP ′ ,M,N,Na), where P ′ is the

selected taps, and τP ′ is the delays corresponding to the selected active taps. Consequently, the taps
are sub-selected in each subset and then their parameters are derived from measured data. Consider an
example and choose one of the subsets of Ni and then the delay of the taps is derived at the peaks of the
cumulative energy; therefore, we know the location of the taps in the CIR; thus, all essential parameters
can be derived. Then, the correlation coefficients between the taps and taps persistence processes can be
obtained for each segment. The amplitude distribution of each tap can be addressed and studied among
each subset using a similar method, as illustrated in Section 7.4.3. Consequently, the model parameters
vary over time.

E.2.1 Analysis of MIMO Channel Capacity

This section presents the cumulative distribution function (CDF) comparison of the channel capacity
between SISO and MIMO setup for different signal to noise ratio (SNR) values.

(a) (b)

Fig. E.4 CDF comparison of the channel capacity between SISO and MIMO cases, (a) SNR = -20 dB, (b) SNR = -10 dB
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(a) (b)

Fig. E.5 CDF comparison of the channel capacity between SISO and MIMO cases, (a) SNR = 0 dB, (b) SNR = 5 dB

(a) (b)

Fig. E.6 CDF comparison of the channel capacity between SISO and MIMO cases, (a) SNR = 15 dB, (b) SNR = 20 dB

(a) (b)

Fig. E.7 CDF comparison of the channel capacity between SISO and MIMO cases, (a) SNR = 30 dB, (b) SNR = 40 dB
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