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Abstract

The pervasion of both affordable capture technology and increasing average band-
width of internet connections has resulted in videos of high-quality (resolutions
> 1080p and framerates > 60f ps) being streamed on the internet. The most pre-
ferred method to stream these videos is HTTP-based adaptive streaming, where
usually an adaptation of video quality according to the available bandwidth is im-
plemented using different media representations. Although adaptive streaming
reduces the occurrences of video playout being stopped (called “stalling”) due to
narrow network bandwidth, the automatic adaptation has an impact on the quality
perceived by the user, which results in the need to systematically assess the perceived
quality. Such an evaluation is usually done on a short-term (few seconds) and overall
session basis (up to several minutes). In this thesis, both these aspects are assessed
using subjective and instrumental methods. The subjective assessment of short-term
video quality consists of a series of lab-based video quality tests which have resulted
in publicly available datasets. The overall integral quality was subjectively assessed
in lab tests with human viewers mimicking a real-life viewing scenario. In addition
to the lab-based tests, the out-of-the-lab test method was investigated for both short-
term video quality and overall session quality assessment to explore the possibility of
alternative approaches for subjective quality assessment. This resulted in proposing
an approach based on a pre-defined crop of the video cut out from the centre of the
video for the out-of-the-lab settings. The instrumental method of quality evaluation
was addressed in terms of bitstream- and hybrid pixel-based video quality models
developed as part of this thesis. For this, a family of models, namely AV QBits has
been conceived using the results of the lab tests as ground truth. Based on the avail-
able input information, four different instances of AVQBits are presented, that is, a
Mode 3 model with full access to the bitstream, a Mode 0 variant using only metadata
such as bitrate, resolution, framerate and codec as input, a Mode 1 model using
metadata and frame-type and framesize information, and a Hybrid Mode 0 model
that is based on Mode 0 and the decoded video pixel information. The Mode 3 model



that forms the core of AVQBits was developed in the context of the “PNATS Phase
2 competition” conducted by ITU-T Study Group 12, Question 14, and has been
standardized as ITU-T Rec. P.1204.3. Based on the winning model determination
criteria outlined in the “P.NATS Phase 2 competition”, this model has been adjudged
the winning bitstream model and, indirectly, also the best model among the 35
models in different categories consisting of bitstream-based, pixel-based, and hybrid
models following an extensive validation. The AV QBits model instances have been
evaluated under a large variety of different conditions and show either better or
on-par performance in comparison with other state-of-the-art models considering
their specific use case. The AV QBits models have further been evaluated for other
application scopes such as 360° video, high framerate content, gaming videos, and
images. Also, to assess the overall integral quality, a long-term integration model
based on the standardized ITU-T P.1203.3 model is presented that can be applied
for 30 s up to 5 min long audiovisual sequences. The different instances of AVQBits
with the per-1-sec scores output are employed as the video quality component of
the proposed long-term integration model. All AV(QBits variants as well as the
long-term integration module and the subjective test data have been made publicly
available following an open-science approach for use by the community for further

research.
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Zusammenfassung

Die Verbreitung von erschwinglichen Aufnahmetechnologien und die zunehmende
durchschnittliche Bandbreite von Internetverbindungen hat dazu gefiihrt, dass
Videos in hoher Qualitdt (Auflosungen > 1080p und Frameraten > 60f ps) tiber das
Internet gestreamt werden. Die bevorzugte Methode zum Streamen dieser Videos
ist das HTTP-basierte adaptive Streaming, bei dem in der Regel eine Anpassung
der Videoqualitdt an die verfiigbare Bandbreite unter Verwendung verschiedener
Mediendarstellungen vorgenommen wird. Obwohl adaptives Streaming die Prob-
leme des Anhaltens (“stalling”) von Videos aufgrund geringer Netzwerkbandbreite
reduziert, hat die automatische Anpassung Auswirkungen auf die vom Benutzer
wahrgenommene Qualitdt, was die Notwendigkeit einer systematischen Bewertung
dieser zur Folge hat. Eine solche Bewertung erfolgt in der Regel fiir einen kurzen
Zeitraum (mehrere Sekunden) und fiir langere Sequenzen (bis zu mehreren Minuten).
In dieser Arbeit werden diese beiden Aspekte mit subjektiven und instrumentellen
Methoden bewertet. Die im Rahmen dieser Arbeit vorgenommene subjektive Bew-
ertung der kurzfristigen Videoqualitdt besteht aus einer Reihe von laborgestiitzten
Videoqualitétstests, die zu 6ffentlich verfiigbaren Datensdtzen gefiihrt haben. Die
gesamte integrale Qualitdt wurde in subjektiven Labortests mit menschlichen Betra-
chtern bewertet, die ein reales Betrachtungsszenario nachahmen. Zusétzlich zu den
laborbasierten Tests wurde die Methode des Out-of-the-Lab-Tests sowohl fiir die
kurzfristige Videoqualitdt als auch fiir die Bewertung der integralen Gesamtqualitit
untersucht, um die Moglichkeit alternativer Ansitze fiir die subjektive Qualitédtsbe-
wertung zu erkunden. Als Ergebnis wurde ein Ansatz vorgeschlagen, der auf einem
vordefinierten Ausschnitt des Videos basiert, der aus der Mitte des Videos fiir die
Out-of-the-Lab-Einstellungen herausgeschnitten wurde. Die instrumentelle Methode
der Qualitdtsbewertung wurde in Form von Bitstrom- und hybriden Pixel-basierten
Videoqualitdtsmodellen behandelt, die im Rahmen dieser Arbeit entwickelt wur-
den. Zu diesem Zweck wurde eine Familie von Modellen, im Folgenden AV QBits,

konzipiert, wobei die Ergebnisse der Labortests als Basiswahrheit verwendet wurden.

1ii



Basierend auf den verfiigbaren Eingabeinformationen werden vier verschiedene
Instanzen von AV QBits vorgestellt, d. h. ein Mode-3-Modell mit vollem Zugriff
auf den Bitstrom, eine Mode-0-Variante, die nur Metadaten (Bitrate, Auflosung,
Framrate, Videocodec) als Eingabe verwendet, ein Mode-1-Modell, das Metadaten
und Frame-Informationen verwendet, und ein hybrides Mode 0 Modell, das auf
Mode 0 und den dekodierten Videopixelinformationen basiert. Das Mode-3-Modell,
das den Kern von AV(QBits bildet, wurde im Rahmen des von der ITU-T Study
Group 12, Question 14, durchgefiihrten Wettbewerbs “PNATS Phase 2” entwickelt
und als ITU-T Rec. P.1204.3 standardisiert. Basierend auf den im “PNATS Phase 2
Wettbewerb” beschriebenen Kriterien zur Bestimmung des Gewinners wurde dieses
Modell nach einer umfangreichen Validierung als bestes Modell unter den eingere-
ichten 35 Modellen in verschiedenen Kategorien, bestehend aus bitstrombasierten,
pixelbasierten und hybriden Modellen, eingestuft. Die AV QBits-Modellinstanzen
wurden unter einer Vielzahl unterschiedlicher Bedingungen bewertet und zeigen
entweder eine bessere oder gleichwertige Leistung im Vergleich zu anderen State-of-
the-Art-Modellen unter Beriicksichtigung ihres spezifischen Anwendungsfalls. Die
Modelle wurden auch fiir andere Anwendungsbereiche wie 360°-Videos, Inhalte mit
hoher Framerate, Spielevideos und Bilder bewertet. Zur Bewertung der integralen
Gesamtqualitdt wird aufSerdem ein Langzeit-Integrationsmodell auf der Grundlage
des standardisierten Modells ITU-T P.1203.3 vorgestellt, das fiir 30 Sekunden bis zu 5
Minuten lange audiovisuelle Sequenzen angewendet werden kann. Die verschiede-
nen Instanzen von AV QBits mit einer Ausgabe von einem Qualitatsschatzwert pro
Sekunde werden als Videoqualitdtskomponente des vorgeschlagenen Langzeitin-
tegrationsmodells verwendet. Alle AV QBits-Varianten sowie das Langzeitintegra-
tionsmodul und die subjektiven Testdaten wurden im Rahmen eines Open-Science-
Ansatzes offentlich zuganglich gemacht, damit sie von der Forschungsgemeinschaft
fiir weitere Forschungsarbeiten genutzt werden kénnen.

iv
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Introduction

Video today has become the most dominant type of all the data uploaded, shared,
and streamed on the internet, due to the availability of affordable capture technology
and an increase in the average bandwidth of internet connections available to the
users. Also, these factors have resulted in an increased proportion of these videos
being of high-resolution. It was predicted that video traffic would account for 82% of
all consumer traffic in 2022, up from 75% in 2017 with 4K/UHD-1 (3840 x 2160 pixels)
video traffic accounting for 22% of this global video traffic [ ]. This increase in
video traffic is also very well reflected in different statistics of popular streaming
service providers, e.g., an average of 500 hours of video being uploaded per minute
on YouTube [ ] and more than one billion videos watched per day on the
same platform [ ]. Similar statistics have been reported for other streaming
service providers as well. This trend is also substantiated by the increase in the paid
subscriber count of these services, e.g., the number of paid subscribers on Netflix
has increased to approximately 223 million in the third quarter of 2022 as compared
to approximately 221 million in the second quarter of 2022 [ ]. In addition, these
services have also been increasingly spending on producing their own content. One
example of this is Netflix, which has increased its spending on content creation from
approximately $12 billion in 2020 to $17 billion in 2021 [ ]. This increase is
not limited to traditional 2D video with a significant upsurge being witnessed in
streaming of other video formats such as gaming video streaming [ ; ]
and 360° videos.

The main focus of any video streaming service provider is to enable an increase in the
overall Quality of Experience (QoE) of the viewing session for the users/customers
for a given bandwidth connection. Two key components that have attracted consid-
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erable attention in this regard are the choice of the appropriate video compression

method and the associated streaming technology.

A typical uncompressed 24-bit 1080p video at 60 fps requires a data rate of 2.98
Gbit/s - which makes transmission over networks an impractical task. Hence,
videos are typically compressed before transmission. For this, efficient compression
methodologies also called “video codecs” have to be developed which are capable
of efficiently compressing videos while still maintaining a good visual quality for a
specific target bitrate. The focus is on maintaining a good visual quality as that forms
an important constituent in the overall QoE of the end user. In this regard, there has
been continuous development and improvement over the past decades. Most notably,
the Moving Pictures Expert Group (MPEG) has been involved in developing multiple
standardized video codecs including H.264/AVC (Advanced Video Coding) [ ;

1, H.265 (High Efficiency Video Codec (HEVC)) [ ; ] and the
more recently developed H.266 (Versatile Video Codec (VVC)) [ ; ]. In
addition, other bodies such as the Alliance for Open Media (AOM) have also been
involved in codec development, resulting, among others in the AV1 codec [ I
Several studies have demonstrated the higher compression efficiency of newer
codecs in comparison with older codecs. For example, studies have shown that
VVC outperforms HEVC enabling the same visual perceived quality with a bitrate
reduction of approximately 40% [ ] for 4K/UHD-1 videos. Similarly, it has been
reported that AV1 outperforms HEVC with average bitrate savings of approximately
8% for 4K/UHD-1 content [ ].

The other component that plays a vital role in guaranteeing an overall good QoE is
the streaming mechanism. The available bandwidth is expected to fluctuate during
a streaming session. Hence, any kind of streaming approach should be able to adapt
to these fluctuations and be able to stream the video maintaining a desired level of
QoOE for the user. This has led to the widespread adoption of HTTP-based adaptive
streaming (HAS) [ ] as the preferred mechanism for both Video on Demand
(VoD) and live-streaming use cases. Prominent streaming service providers such
as YouTube | ], Netflix, Amazon Prime Video, Vimeo, etc. use HAS as the
underlying mechanism to stream videos. To enable HAS to adapt to the available
bandwidth and also the device type, different representations of the video in terms

of the considered resolution, framerate, and video codec are stored on the server and



the most fitting one is streamed based on the available bandwidth. Optimal encoding
settings have to be determined to create such representations to enable a smooth
and good streaming experience as the available bandwidth fluctuates. Different
strategies have been proposed to choose optimal encoding settings, e.g. fixed-bitrate
ladder [ ] by Apple, per-title encoding [ ] and per-shot encoding [ ] by
Netflix and context-aware encoding [ ] by Brightcove. To determine which
encoding settings are appropriate for a given available bandwidth, it is required to
quantify the perceived quality of the videos that are encoded with different settings.

All these developments demonstrate the need for an accurate assessment of the per-
ceived video quality. This can usually be done using two different approaches. One
approach is conducting subjective studies for perceptual assessment of short-term
video quality, especially for videos of higher resolutions and framerate, and overall
integral quality assessment of a HAS session. Subjective studies are considered a
gold standard in multimedia quality assessment. Another approach is using highly
accurate quality prediction models. These models are developed using the data

obtained from subjective studies as ground truth.

This doctoral work focuses on perceptual video quality assessment, mainly in the
context of HTTP-based adaptive streaming and consists of two main parts. The first
part includes subjective assessment of short-term video quality with focus on videos
of up to a resolution of 4K/UHD-1 and framerate up to 60f ps being displayed on
screens with a resolution > 1080p and also the overall integral quality of a HAS
session. The second part mainly focuses on the development of bitstream-based and
hybrid quality models for videos up to a resolution of 4K/UHD-1 in the context of
HAS.

To enable the reader to better understand this work and its potential applications, the
subsequent sections in this chapter will introduce the concepts of QoE, HAS, short-
term video quality models, and overall session quality assessment in the context of
HAS.



Chapter 1 Introduction

1.1 Quality of Experience

Traditionally, Quality of Service (QoS) has been used for assessing different tech-
nologies. ITU-T Rec. E.800 [ ] defines QoS as “Totality of characteristics of
a telecommunications service that bear on its ability to satisfy stated and implied

needs of the user of the service.”

However, over the years, technology-related assessment has evolved from system-
centric QoS-oriented approaches to user-centric QoE-oriented approaches. In this
work, the focus has been on developing models capable of estimating the QoE
or a constituent of QOE, i.e., video quality in the context of multimedia adaptive

streaming.

The Qualinet White Paper [ ] defines QoE as follows:

Definition 1 Quality of Experience (QoE): “is the degree of delight or annoyance of the
user of an application or service. It results from the fulfillment of his or her expectations
with respect to the utility and/or enjoyment of the application or service in the light of the
user’s personality and current state.”

This definition is restrictive as it only addresses experiencing a particular service
or application. Instead, defining QoE from a global view that comprises not only
experiencing a particular service or application, but also evaluating the contribution
of a given application, system, or service implementation to the overall quality of
experiencing is desired [ ]. As a result, Raake and Egger [ ] proposed the
following definition of QoE.

Definition 2 Quality of Experience (new) (QoE) is the degree of delight or annoyance of
a person whose experiencing involves an application, service, or system. It results from the
person’s evaluation of the fulfillment of his or her expectations and needs with respect to the

utility and/or enjoyment in the light of the person’s context, personality and current state.

QoE of a particular application or service may be influenced by several factors. The
factors influencing QoE in the context of multimedia services, also called “Influence
Factors” is defined in the Qualinet White Paper [ ] as follows:
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Definition 3 Influence Factor (IF): Any characteristic of a user, system, service, appli-
cation, or context whose actual state or setting may have influence on the Quality of
Experience for the user.

The IFs can be classified into three different categories, namely, Human IFs (HIFs),
System IFs (SIFs), and Context IFs (CIFs) [ ]. These IFs are frequently interre-
lated, as illustrated in Figure 1.1.

HIFs
> (Low Level I J——

High Level)

l

—> QOE <«

CIFs SIFs

(Physical, Temporal, (Content, Media,

A
Y

Social, Economic, .....) ”| Network, Device, ....)

Figure 1.1: Factors influencing Quality of Experience.

A HIF is any characteristic of a human that impacts QoE. This is further classified
into factors resulting from low- and high-level processing that may influence the
perceptual and quality formation process. Low-level processing-related HIFs include
demographic aspects such as visual acuity, age, and gender. In addition, it also com-
prises aspects related to the user’s mood, motivation, attention, etc. Elements such
as understanding and interpreting the stimuli that are presented, and the knowledge

a particular user brings into a situation constitute the high-level processing-related
HIFs.

Any aspect that affects the technically produced quality of an application or service
falls into the category of SIFs. In the particular context of HAS, it may relate to any
component in the end-to-end video processing chain. This can be associated with
the content characteristics of the video and media-related aspects such as encoding,

resolution, framerate, etc. Furthermore, network-related factors in the end-to-end
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video processing chain such as bandwidth, packet loss, jitter, etc., and device-related

factors associated with the end device also form part of SIFs.

The final category of IFs affecting QoE i.e., CIFs relates to aspects related to the user’s
environment. This comprises physical (location and space), temporal (time of day,

content duration, etc.), social, economic, task, technical and information contexts.

For a typical media viewing session, QoE comprises different “constituents” such as
audio quality, video quality, overall audiovisual quality, immersion, presence and
more. Video quality forms one of the major “constituents” of QoE that is of concern
to any streaming service provider, both for VoD and live-streaming scenarios. Hence,
the main focus of this work is to model the effects of technical parameters such as
bitrate, resolution, framerate etc. on the perception of video quality by users, in
particular by using bitstream information. Following this, as one of the applications
scopes, the developed models are used to estimate the overall QoE of a HAS viewing
session by incorporating HAS-related aspects such as initial loading delay, stalling

and quality switches, the details of which are explained in Section 1.4.

1.2 HTTP-based Adaptive Streaming

In recent years, HAS has replaced progressive download as the most widely used
streaming technology for delivering videos on the internet. Different implementa-
tions of HAS have been used with Dynamic Adaptive Streaming over HTTP (DASH)
being one of the most commonly used implementations [ ]. Additionally, other
proprietary implementations are also available, e.g. Apple Inc.’s HTTP Live Stream-
ing (HLS) [ 1.

To illustrate the concept of HAS, MPEG-DASH is considered in the following as an
example. The entire MPEG-DASH streaming process consists of three main steps,

namely, encoding and segmentation, delivery, and decoding and playback.

> Encoding and segmentation: On the server side, a video is encoded and divided
into smaller temporal chunks referred to as segments. The duration of the seg-
ments depends on the particular implementation of the streaming protocol and
the considered application (e.g. VoD, Live streaming, etc.). Usually, in MPEG-
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DASH, the typical segment duration is between 2-10s [ ; ]. The
encoding settings for video consist of varying parameters such as resolution,
bitrate, framerate, codec, etc. Over the years, several encoding strategies have
been used to efficiently encode videos, with the aim of delivering optimal qual-
ity in case of constrained bandwidth. Starting with a fixed bitrate ladder [ ]
which is content agnostic, several encoding strategies have been developed.
Notable examples are per-title [ ] and per-shot [ ] encoding, which
take content into consideration.

In addition to the representations, manifest files also called Media Presentation
Description (MPD) files are created and stored on the server, which assign a
segment to a particular representation and additional metadata that is required
to enable playout.

> Delivery: Content delivery networks (CDNs) are used to deliver the requested
representations to the client devices, along with the manifest files.

> Decoding and playback: On the client side, the DASH client first requests
the MPD file to play the content. MPD describes a manifest of the available
content, its representations, their URL addresses, and other characteristics. The
client then parses the MPD and extracts information about the program timing,
available media content, media types, resolutions, minimum and maximum
bandwidth, and other features. Then, based on the factors such as available
bandwidth, preferred settings, etc. the client selects the appropriate streaming
alternative and plays out the content [ ]. The MPD hierarchical model
based on the work from Sodagar [ ] is illustrated in Figure 1.2.

The behaviour of the client w.r.t requesting segments can further be used to
create better bitrate ladders, for optimizing the overall streaming quality by
considering network and device playback statistics, as it is done for example in
the Context-Aware Encoding developed by Brightcove [ I

HAS can be implemented in various forms, for example, MPEG DASH, Apple’s HLS
or Microsoft Smooth Streaming (MSS). Furthermore, to simplify the delivery of HTTP-
based adaptive streaming media, MPEG created the Common Media Application
Format (CMAF) [Cis]. CMAF is a container format with tools that enables single-
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Figure 1.2: The MPD hierarchical model. This example shows how the client requests the appropriate
representation and plays out the segment (adapted from [ D.

approach video streaming that works with different protocols like MPEG-DASH,
HLS, etc.
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Figure 1.3: An example HAS session

Figure 1.3 illustrates a typical HAS session. It can be characterized by three types of
streaming-related events that occur during such a session. These are initial loading
delay, stalling and quality switching. Initial loading delay (ILD) is defined as the time
elapsed between the request for a video and the first played-out frame [ I
Also, during an HAS session, the playout buffer may run empty resulting in the
freezing of the video. This event is called stalling. [ ; ]. Here, the
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number and the duration of stalling play an important role in the overall quality
perception of a user [ ]. In addition to ILD and stalling, a typical HAS session
involves the client adapting the playout depending on the target device and its
screen or playout window resolution, as well as the available network bandwidth.
Due to this, the video quality varies based on the representation that is chosen for
playout. This variation of video quality at different instances during a HAS session

is termed as quality switching.

As mentioned above, over the years, significant advancements have been made in
terms of encoding optimization so as to create an efficient representation of segments.
This is done with the aim of both reducing the number and duration of stalling
events and also quality switches and reducing the overall used bandwidth. Based on
a study by Wassermann, Wehner, and Casas [ ], more than 90% of the video
sessions played smoothly without stalling events on smartphones as of 2018. This is
significantly better compared to 2016 during which only 60% of the video sessions
played smoothly without stalling events [ I

All these special characteristics of HAS including the encoding- and playout-related
aspects require models for assessing the quality of the segments and the overall QoE
of an HAS session. Hence, there is a need for the development of both short-term
video quality models and overall QoE estimation models. These models are also
needed for usage in various other applications, starting from encoding optimization,
to overall quality monitoring. In the following, the fundamentals of both these model

types are described.

1.3 Short-term Video Quality Models

Short-term video quality models refer to objective quality models used to assess the
quality of the encoded video representation, in the special case of HAS, encoded
segments. They measure the distortion due to compression on the perceived video
quality. Such short-term video quality models can then be used together with the
measurement of other degradations such as stalling or perceivable quality switches to
predict the overall QoE of a HAS session. They can additionally be used to optimize
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the encoding settings to generate optimal encodes, thus leading to a high QoE of the

end user.

In general, based on the input information used for quality assessment, video quality
models can be classified into several categories [ ; ; ], for
example, metadata-based, pixel-based, bitstream-based, or hybrid models.

For the first type of models, namely, metadata-based models, the input information
available is limited to video resolution, video bitrate, video framerate, and video
codec and usually does not require parsing of the given bitstream. Since no informa-
tion related to the underlying video content is available to the model, these models

are content-agnostic.

The second type of models is called pixel-based and has access to pixel information
to estimate video quality. Based on the availability of the pixel information of a
reference (uncompressed source) video, pixel-based models can be further divided

into three categories:

> Full-Reference (FR) models: FR models have complete access to the pixel
information of the reference video, in addition to the distorted video; e.g.:
VMAF | ]

> Reduced-Reference (RR) models: These models have “reduced” /“partial”
access to the reference video, along with the distorted video; e.g.: ITU-T
P.1204.4 ]

> No-Reference (NR) models: NR models only have access to the distorted video
for quality estimation; e.g: Deviq [ ]

The third type of models is called bitstream-based, which are usually NR models
that just use the encoded bitstream without decoding to estimate the visual quality.
Based on the degree of availability of the bitstream information, bitstream models

can be categorized into the following modes of operation:

> Mode 0: This is a metadata-based model and has access to bitrate, resolution,
framerate and codec as input information for quality estimation. A notable
example of such a model is the ITU P.1203.1 Mode O [ ; ].

10
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> Mode 1: This category of models have access to frame size and frame type
information (I and Non-I) in addition to metadata; for example ITU-T P.1203.1

Mode 1 [ ; ]
> Mode 3: A Mode 3 model has complete access to the bitstream to estimate the
video quality; for example, ITU-T P.1203.1 Mode 3 [ ; ], ITU-T
P.1204.3 [ ; Raa+20a; Rao+20a]
It is noted that also Mode 2 was proposed as another model category, cf. [ ;
; ], with access to the full bitstream like Mode 3, yet with a maximum
of 2% of the bitstream being parsed. In ITU-T Rec. P.1203 [ ], this model type

is still comprised. The idea was to enable in-network measurements with a massive
number of streams parsed at the same time. With today’s encrypted traffic, this

model variant has become mostly obsolete.

The last type of models to estimate video quality are hybrid models. Here, usually,
a combination of bitstream and pixel information is used to estimate video quality.
One example of a hybrid model is ITU-T P.1204.5 [ ; Raa+20a].

Each model category has different application scopes. For example, a bitstream-
based Mode 3 model can be used for bitrate ladder derivation by a service provider
as the provider has complete access to the encoded bitstream. The advantage of such

bitstream models is they are usually less computationally complex.

Pixel-based models can be used for different use cases depending on the availability
of the reference video. FR models can be efficiently used for bitrate ladder derivation
at the server side where there is potential access to the reference video. The advantage
of a pixel-based model over a bitstream-based model for such a use case is that the
pixel-based model is codec-independent. Another advantage of the pixel models
is the quality monitoring at the client side despite having encrypted streams as
the decoded pixels are available. The realistic model type that can be used is the
NR type of models as the reference video is typically unavailable at the client side.
However, studies have shown that pixel-based NR models perform worse than a
Mode 0 model [RGR22]. Furthermore, as compared to the bitstream-based models,

pixel models are usually computationally more complex.

Similarly, hybrid models can be used for client-side monitoring, depending on the
type of the hybrid model and the information that is available from the bitstream.

11
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In general, different approaches have been used to develop such models. These ap-

proaches range from a simple curve-fitting-based approach [ ; ; ;
; ] to more complex machine-learning-based (ML) approaches [ ;
; GRR19] and approaches based on deep neural network (DNN) [ ;
; Zad+20a].

As part of this work, a combination of approaches consisting of traditional curve
fitting and machine-learning has been used to develop the proposed models. DNN

models are not considered due to the following two reasons:

1. The ML-alternatives employed in the models proposed as part of this thesis
are more light-weight compared to DNN models.

2. The lack of availability of large amount training data needed to develop a
well-performing DNN model, e.g. ImageNet uses more than 1 million images
for training [ ]. Obtaining such large amounts of video data with quality

annotations obtained from subjective tests as ground truth is infeasible.

1.4 Overall Session Quality

There is a general tendency to regard QOE as a static event and as a result, the QoE
measured for a stimulus of delimited length is assumed to be stable along with its
duration. However, in an audiovisual session extending over several minutes, this is
rarely the case [ ]. This is more evident in a typical HAS session lasting several
minutes, as such a session would include different quality-related events, which are,
for example, audio and video quality switching, initial loading delay, and stalling as
illustrated in Figure 1.3. Hence, to assess the overall session quality it is important to
include the time-dependent impact of these different quality-related events, and thus
also the recency and primacy effects [ ] on the quality perception of users. One
notable example of such a model is ITU-T Rec. P.1203.3 [ ; ]. The current
amendment of this model is based on the author’s contribution to ITU-T SG12/Q14.
In the present work, an adaptation of the ITU-T Rec. P.1203.3 model is proposed by
taking into account the advancements in encoding strategies and the updated user
preferences and is included as an appendix in ITU-T Rec. P.1204.3 [ I

12
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1.5 Research Questions

Based on the considerations above, as well as the need to develop both short-term and
long-term quality models for newer codecs and high-resolution contents (> 1080p),
the following research questions have been derived to address the existing challenges
in the quality assessment and modeling of high-resolution videos considering HTTP-
based adaptive streaming applications.

Research Question 1 Can video quality be accurately predicted for higher resolutions

using only bitstream information?

The primary focus of this research question is to investigate the possibility of devel-
oping quality models using only bitstream information in the context of 4K/UHD-1.
These models should be able to estimate the quality of videos with higher resolutions
such as 4K/UHD-1, and framerates up to 60 fps, and which are encoded with widely
used video codecs, e.g. H.264, H.265, and VP9. Moreover, it is important to ensure
to evaluate the performance of such models on unknown data, to investigate the
robustness of the models on varying encoding conditions. The main intention of
considering only bitstream-based models is that they are usually both computation-
ally less complex and faster in comparison with traditional FR or other pixel-based
models. It is also beneficial to develop models with a common architecture that
can be adapted to different scenarios, based on the available input information and

specific use cases.

Research Question 2 How can bitstream models be used in cases where only a limited
amount of input data is available for precise video quality estimation?

There exist scenarios where the entire bitstream information may not be available to
assess the video quality and the overall QoE in an HAS context. In such cases, it is
desirable to have a model that can easily be adapted to such scenarios. Hence, this
research question 2 addresses this need and involves adapting a model which has
access to the complete bitstream information to different scenarios. For example, in
such scenarios, a model may only have access to metadata, a reduced set of bitstream

data, or the pixel information of the distorted video.
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Research Question 3 Can bitstream and hybrid models be applied for video quality
assessment of application scopes other than traditional 2D videos?

In addition to different scenarios based on the availability of input information,
there are use cases that differ based on video formats such as 360° video, High
Framerate (HFR) video, etc. Here, it would be advantageous that a traditional 2D
video quality model could be applied to the new use cases either out-of-the-box or
with minimal modifications. This would reduce the development time of models for
newer applications. Therefore, as part of this research question, models developed
in the process of addressing research questions 1 and 2 will be assessed for their
applicability and adaptability to other applications such as 360°, HFR and gaming

videos and also images encoded with video codecs [ ].

Research Question 4 Can bitstream and hybrid models be used to predict the overall
QoE of a longer (> 1min) HAS session?

A typical HAS session lasts more a than a few minutes and is characterized by various
factors outlined in Section 1.4. One of the main factors affecting the overall perceived
QoE of a HAS session is the perceivable video quality switches. Therefore, in this
research question, the focus is on assessing the applicability of the developed models
for the prediction of the overall quality of a HAS session involving audiovisual
sequences of duration ranging from 1 min to 5 min by employing them as the video

quality component in a long-term integration model.

Research Question 5 How can quality assessment of high resolution videos be conducted

in an out-of-the-lab setting?

Traditionally, video quality assessment tests have mostly been conducted in a con-
trolled lab setting. However, conducting lab tests is both time-consuming and
expensive. Moreover, other aspects, e.g., the Covid-19 pandemic, have shown that
there may be instances where such lab tests cannot be conducted, due to reasons that

are not just limited to technical aspects. Hence, alternative testing paradigms for
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out-of-the-lab settings have to be conceived. There is a vast literature on using crowd
and remote testing for multimedia quality assessment [ ; ; ]. How-
ever, most of the conducted studies cannot be applied to videos of higher resolution
such as 4K/UHD-1, for example, since users do not necessarily have 4K/UHD-1
capable screens and hardware. As a result, with this research question, the focus
is on developing a methodology for the assessment of video quality in the case of
higher-resolution videos in an out-of-the-lab setting.

1.6 Contributions by the Author

In the course of addressing the research questions outlined in the previous section,
the author has contributed to the state-of-the-art in various ways. The contributions
can be classified into three categories, namely, publications, open source software
and data, and patent applications. The publications are organized into different
categories based on the research focus. Firstly, publications that are relevant to
this thesis are listed. These include publications related to high resolution video
quality datasets, bitstream-based, pixel-based, and hybrid video quality models and
contributions to standardization. Following this, other publications of the author are
listed. As part of this thesis, data and software have been made publicly available
for reproducibility and further development. These include high resolution video
quality datasets consisting of source videos, distorted videos, quality ratings in
the form of mean opinion scores (MOS) and other metadata, and also the reference
implementation of the proposed models. Finally, the patent applications that resulted

as part of this thesis are listed.

In addition, the “Mode 3” type model developed by the author as part of this work
has been standardized as ITU-T Rec. P.1204.3 | ]. Furthermore, the models
developed by the author in the categories of “Mode 0” and “Mode 1” and submitted
to the “PNATS Phase 2” competition conducted by ITU-T Study Group 12 / Question
14 (SG12/Q14) were part of the winning groups in both the categories.
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Publications

The publication categories are ordered according to their applicability to this thesis.

Dataset Publications

[Rao+19a] Rakesh Rao Ramachandra Rao, Steve Goring, Werner Robitza, Bernhard
Feiten, and Alexander Raake. “AVT-VQDB-UHD-1: A Large Scale Video Quality
Database for UHD-1". In: 21st IEEE International Symposium on Multimedia (IEEE
ISM). Dec. 2019

[RGR21b] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“Towards High Resolution Video Quality Assessment in the Crowd”. In: 13th IEEE
International Conference on Quality of Multimedia Experience (QoMEX). 2021

[GRR23] Steve Goring, Rakesh Rao Ramachandra Rao, and Alexander Raake.
“Quality Assessment of Higher Resolution Images and Videos with Remote Test-
ing”. In: Quality and User Experience (QUEX) 8 (2023)

[Rao+23] Rakesh Rao Ramachandra Rao, Silvio Borer, David Lindero, Steve Goring,
and Alexander Raake. “PNATS-UHD-1-Long: An Open Video Quality Dataset for
Long Sequences for HTTP-based Adaptive Streaming QoE Assessment”. In: 15th
International Conference on Quality of Multimedia Experience (QoMEX). 2023

Publications related to Bitstream Models

[Rao+19b] Rakesh Rao Ramachandra Rao, Steve Goring, Patrick Vogel, Nicolas
Pachatz, Juan Jose Villamar Villarreal, Werner Robitza, Peter List, Bernhard Feiten,
and Alexander Raake. “Adaptive video streaming with current codecs and formats:

Extensions to parametric video quality model ITU-T P.1203”. In: Electronic Imaging
(2019)

[Rao+20a] Rakesh Rao Ramachandra Rao, Steve Goring, Peter List, Werner Rob-
itza, Bernhard Feiten, Ulf Wiistenhagen, and Alexander Raake. “Bitstream-based
Model Standard for 4K/UHD: ITU-T P.1204.3 — Model Details, Evaluation, Analy-
sis and Open Source Implementation”. In: Twelfth IEEE International Conference on
Quality of Multimedia Experience (QoMEX). Athlone, Ireland, May 2020
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[Rao+20b] Rakesh Rao Ramachandra Rao, Steve Goring, Robert Steger, Saman Zad-
tootaghaj, Nabajeet Barman, Stephan Fremerey, Sebastian Moller, and Alexander
Raake. “A Large-scale Evaluation of the bitstream-based video-quality model
ITU-T P.1204.3 on Gaming Content”. In: 2020 IEEE 22nd International Workshop on
Multimedia Signal Processing (MMSP). IEEE. 2020

[Raa+20a] Alexander Raake, Silvio Borer, Shahid Satti, Jorgen Gustafsson, Rakesh
Rao Ramachandra Rao, Stefano Medagli, Peter List, Steve Goring, David Lindero,
Werner Robitza, Gunnar Heikkild, Simon Broom, Christian Schmidmer, Bernhard
Feiten, Ulf Wiistenhagen, Thomas Wittmann, Matthias Obermann, and Roland
Bitto. “Multi-model standard for bitstream-, pixel-based and hybrid video quality
assessment of UHD/4K: ITU-T P.1204”. In: IEEE Access 8 (2020)

[GRR20] Steve Goring, Rakesh Rao Ramachandra Rao, and Alexander Raake.
“Prenc — Predict Number Of Video Encoding Passes With Machine Learning”. In:
Twelfth IEEE International Conference on Quality of Multimedia Experience (QoMEX).
Athlone, Ireland, May 2020

[Rob+21] Werner Robitza, Rakesh Rao Ramachandra Rao, Steve Goring, and
Alexander Raake. “Impact of Spatial and Temporal Information on Video Quality
and Compressibility”. In: 13th IEEE International Conference on Quality of Multimedia
Experience (QoMEX). June 2021

[RGR22] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“AVQBits - Adaptive Video Quality Model Based on Bitstream Information for
Various Video Applications”. In: IEEE Access 10 (2022)

[Rob+22] Werner Robitza, Rakesh Rao Ramachandra-Rao, Steve Goring, Alexander
Dethof, and Alexander Raake. “Deploying the ITU-T P.1203 QoE Model in the
Wild and Retraining for New Codecs”. In: Proceedings of the 1st Conference on Mile-
High Video. MHYV "22. Denver, Colorado: Association for Computing Machinery,
2022

> Contributions to standardization: ITU-T Rec. P.1203.3 [ ], 21204 | 1,
P.1204.3 [ ]
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Publications related to Pixel Models

[GRR19] Steve Goring, Rakesh Rao Ramachandra Rao, and Alexander Raake. “nofu
- A Lightweight No-Reference Pixel Based Video Quality Model for Gaming Con-
tent”. In: Eleventh IEEE International Conference on Quality of Multimedia Experience
(QoMEX). Berlin, Germany, June 2019

[Gor+20] Steve Goring, Robert Steger, Rakesh Rao Ramachandra Rao, and Alexan-
der Raake. “Automated Genre Classification for Gaming Videos”. In: 22nd IEEE
International Workshop on Multimedia Signal Processing (MMSP). IEEE. 2020

[Zad+20a] Saman Zadtootaghaj, Nabajeet Barman, Rakesh Rao Ramachandra Rao,
Steve Goring, Maria G. Martini, Alexander Raake, and Sebastian Moller. “DEMI:
Deep Video Quality Estimation Model using Perceptual Video Quality Dimen-
sions”. In: 22nd IEEE International Workshop on Multimedia Signal Processing
(MMSP). IEEE. 2020

[RGR21a] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake. “En-
hancement of Pixel-based Video Quality Models using Meta-data”. In: Electronic
Imaging, Human Vision Electronic Imaging. 2021

[Gor+21a] Steve Goring, Rakesh Rao Ramachandra Rao, Bernhard Feiten, and
Alexander Raake. “Modular Framework and Instances of Pixel-Based Video
Quality Models for UHD-1/4K”. in: IEEE Access 9 (2021)

Publications on 360° Video, VR and other Video Aspects/Formats

[Sin+19] Ashutosh Singla, Rakesh Rao Ramachandra Rao, Steve Goring, and
Alexander Raake. “Assessing Media QoE, Simulator Sickness and Presence for
Omnidirectional Videos with Different Test Protocols”. In: 26th IEEE Conference on
Virtual Reality and 3D User Interfaces. Osaka, Japan, Mar. 2019

[Raa+20b] Alexander Raake, Ashutosh Singla, Rakesh Rao Ramachandra Rao,
Werner Robitza, and Frank Hofmeyer. “SiSiMo: Towards Simulator Sickness
Modeling for 360° Videos Viewed with an HMD”. in: 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). 2020

[Fre+20] Stephan Fremerey, Steve Goring, Rao Rakesh Ramachandra Rao, Rachel
Huang, and Alexander Raake. “Subjective Test Dataset and Meta-data-based
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Models for 360° Streaming Video Quality”. In: 2020 IEEE 22nd International
Workshop on Multimedia Signal Processing (MMSP). IEEE. 2020

[Sin+21] Ashutosh Singla, Steve Goring, Dominik Keller, Rakesh Rao Ramachandra
Rao, Stephan Fremerey, and Alexander Raake. “Assessment of the Simulator
Sickness Questionnaire for Omnidirectional Videos”. In: 28th IEEE Conference on
Virtual Reality and 3D User Interfaces. 2021

[Kel+21] Dominik Keller, Markus Vaalgamaa, Erkki Paajanen, Rakesh Rao Ra-
machandra Rao, Steve Goring, and Alexander Raake. “Groovability: Using
Groove as a Novel Measure for Audio QoE with the Example of Smartphones”.
In: 13th IEEE International Conference on Quality of Multimedia Experience (QoMEX).
2021

[Gor+21b] Steve Goring, Rakesh Rao Ramachandra Rao, Stephan Fremerey, and
Alexander Raake. “AVRate Voyager: An open source online testing platform”.
In: 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP).
IEEE. 2021

[Kel+23] Dominik Keller, Felix von Hagen, Julius Prenzel, Kay Strama, Rakesh
Rao Ramachandra Rao, and Alexander Raake. “Influence of Viewing Distances
on 8K HDR Video Quality Perception”. In: 15th International Conference on Quality
of Multimedia Experience (QoMEX). 2023

[Bra+23] Florian Braun, Rakesh Rao Ramachandra Rao, Werner Robitza, and
Alexander Raake. “Automatic Audiovisual Asynchrony Measurement for Quality
Assessment of Videoconferencing”. In: 15th International Conference on Quality of
Multimedia Experience (QoMEX). 2023

[Gor+23] Steve Goring, Rakesh Rao Ramachandra Rao, Rasmus Merten, and
Alexander Raake. “Appeal and quality assessment for Al-generated images”.
In: 15th International Conference on Quality of Multimedia Experience (QoMEX). 2023

[Dia+23] Chenyao Diao, Luljeta Sinani, Rakesh Rao Ramachandra Rao, and Alexan-
der Raake. “Revisiting Videoconferencing QoE: Impact of Network Delay and
Resolution as Factors for Social Cue Perceptibility”. In: 15th International Conference
on Quality of Multimedia Experience (QoMEX). 2023
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Open Source Software and Data

In addition to the aforementioned publications, some software tools and datasets
that have been used as part of the publications have been made publicly available,
to promote reproducible research and aid further development.

> AVT—VQDB—UHD—I]: A database consisting of data of the conducted 4K/UHD-1
video quality tests, presented in [Rao+19a; RGR21b].

> ITU-P.1204.3 reference implementation’: P.1204.3 reference implementation, pre-
sented in [Rao+20a].

> ITU-P.1204.3 video bitstream parser’: Contributions to the reference video parser for
the P.1204.3 prediction model; see [Rao+20a].

> ITU-T P.1204.3 extensions*: Reference implementation of different bitstream and
hybrid-based extensions of ITU-T P.1204.3, presented in [RGR22].

> PNATS-UHD-1-Long™: A database consisting of data of the conducted 4K/UHD-1

long duration (1-5 min) audiovisual quality tests, presented in [Rao+23].

Patent Applications

> R. Ramachandra, S. Goring, A. Raake, P. List, W. Robitza, B. Feiten, U. Wiisten-
hagen. WO002021064136: Information-adaptive mixed deterministic/ machine-
learning-based bit stream video quality model.

> P. List, R. Ramachandra, W. Robitza, A. Raake, S. Goring, U. Wiistenhagen, B.
Feiten. W0O002021013946: System and method to estimate blockiness in transform-
based video encoding.

1https://github.com/TelecommunicationfTelemediafAssessment/
AVT-VQDB-UHD-1

Zhttps://github.com/Telecommunication-Telemedia-Assessment/bitstream_
mode3_pl204_3

3https://github.com/Telecommunication-Telemedia-Assessment/bitstream_
mode3_videoparser

4https://github.com/TelecommunicationfTelemediafAssessment/p1204_3_
extensions

5https://github.com/Telecommunication—Telemedia—Assessment/
PNATS-UHD-1-Long
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1.7 Thesis Structure

1.7 Thesis Structure

To address the research questions outlined in Section 1.5, this thesis is organized into
different chapters. Firstly, a detailed overview of the state-of-the-art is provided in
Chapter 2 “State of the Art” which includes the subjective assessment of video quality
of high-resolution videos, quality models for estimating short-term video quality,
and overall QoE of a HAS session to get better insights to answer the defined research
questions. Following this, a series of datasets is described, related to short-term video
quality assessment of 4K/UHD-1 videos and overall QoE assessment of an HAS
session. These datasets have been created as part of this thesis and are described in
Chapter 3 “Subjective Quality Assessment of 4K/UHD-1 Videos”. These comprise
tests conducted in traditional lab settings and also out-of-the-lab. Afterwards, in
Chapter 4 “AV QBits: Adaptive Bitstream-based Video Quality Model”, the different
models developed during this thesis are presented. These include three bitstream-
based models and two versions of a hybrid model. The performance of the developed
models is then extensively evaluated using the datasets described in Chapter 3, and
also other publicly available video quality datasets to assess the robustness of the
models. In addition to the proposed models, the extension of the ITU-T P.1203.1
mode 0 model [ ] for newer codecs and higher resolutions and framerates, and
a hybrid variant of VMAF [ ] are described in this chapter. Following this, an
overall QoE assessment model based on ITU-T Rec. P.1203.3 is described in Chapter 5
“Overall Integral Quality”. This chapter also includes an evaluation of the proposed
models using the long-video dataset described in Chapter 3.

Furthermore, in Chapter 6 “Extended Application Scopes of AVQBits”, the applica-
bility of the developed bitstream models for different application scopes such as 360°,
gaming, HFR videos, live-streamed sports content and images is evaluated. For this
purpose, publicly available datasets are used. Finally, in Chapter 7 “Conclusion and
Future Work”, a brief conclusion of this thesis is presented, along with an outlook
for future work concerning the subjective assessment of high-resolution videos and

video quality model development for newer use cases.
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Multimedia quality assessment can be conducted using two approaches, namely,
subjective and instrumental methods. Subjective methods consist of conducting
quality assessment studies and gathering opinion scores. Instrumental methods
involve developing models for quality prediction. As already mentioned in Chapter
1, both these approaches are explored in this thesis for quality assessment of short-
term video quality and overall quality of a HAS session. Hence, this chapter will first
provide an in-depth overview of subjective studies using both lab- and crowd-based
approaches, and bitstream-based and hybrid models related to short-term video
quality assessment of videos up to a resolution of 4K/UHD-1 videos. Following this,
subjective studies and models related to the overall quality assessment of an HAS

session reported in literature are outlined.
This chapter is based on the following publications:

[Rao+19a] Rakesh Rao Ramachandra Rao, Steve Goring, Werner Robitza, Bernhard
Feiten, and Alexander Raake. “AVT-VQDB-UHD-1: A Large Scale Video Quality
Database for UHD-1". In: 21st IEEE International Symposium on Multimedia (IEEE
ISM). Dec. 2019

[RGR21b] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“Towards High Resolution Video Quality Assessment in the Crowd”. In: 13th I[EEE
International Conference on Quality of Multimedia Experience (QoMEX). 2021

[Rao+20a] Rakesh Rao Ramachandra Rao, Steve Goring, Peter List, Werner Rob-
itza, Bernhard Feiten, Ulf Wiistenhagen, and Alexander Raake. “Bitstream-based
Model Standard for 4K/UHD: ITU-T P.1204.3 — Model Details, Evaluation, Analy-
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sis and Open Source Implementation”. In: Twelfth IEEE International Conference on
Quality of Multimedia Experience (QoMEX). Athlone, Ireland, May 2020

[RGR22] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“AVQBits - Adaptive Video Quality Model Based on Bitstream Information for
Various Video Applications”. In: IEEE Access 10 (2022)

2.1 Commonly Used Acronyms

Before proceeding further with describing the state-of-the-art (SoA) studies related
to subjective and instrumental quality assessment of videos with a resolution of up
to 4K/UHD-1, a list of commonly used acronyms related to the quality assessment

of videos, in general, is presented in this section.

> SRC (Source): The original undistorted source material that is subjected to
different encodings is referred to as SRC. This is also called as reference video.

> HRC (Hypothetical Reference Circuit): This refers to the various encoding
conditions that are applied to a SRC.

> PVS (Processed Video Sequence): This is the result of the application of a HRC
to a SRC which is then shown to the subjects for rating the video quality.

2.2 Short-term Video Quality Assessment

In this section, different subjective studies for quality assessment of videos with
a resolution of up to 4K/UHD-1 reported in literature are presented. In addition,
different SoA bitstream and hybrid video quality models for the prediction of video

quality are also presented in this section.

Subjective Studies

In general, two approaches have been widely used for subjective video quality as-

sessment. One approach is the traditional lab-based subjective tests under controlled
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conditions. The other approach is based on crowdsourcing, where usually the test
environment is not well controlled. Hence, this section provides an overview of
both lab-based and crowdsourcing-based subjective quality assessments of high-
resolution videos. It should be noted that the primary approach for video quality
assessment of 4K/UHD-1 resolution used in this thesis has been lab-based subjective

tests.

2.2.1.1 Lab-based Approach

Following the standardization of UHDTV [ | by the International Telecommu-
nication Union (ITU-R) in 2012, several studies on perceptual assessment of 4K/ UHD-
1 content have been presented [ ; ; ]. In addition, some studies
have been published on benchmarking of SoA objective models [ ; ], and
some on making 4K/UHD-1 datasets publicly available [ ; I

Song et al. ] present a study describing a set of 15 4K/UHD-1 video contents
that are made publicly available for further research. It was focused on the qualitative
analysis of the video contents in the form of spatiotemporal complexity of the source
contents and hence no quality-related analysis regarding encoding-related effects
was made. On the other hand, Bae et al. | ] present the results of a subjective
quality test with 4K/UHD-1 content which focused on investigating the impact of
encoding on the perceived quality of 4K/UHD-1. For this purpose, videos encoded
with H.265 were considered. Unlike many experiments using the Absolute Category
Rating (ACR) method for quality assessment of 4K/UHD-1 content, the Double-
stimulus Impairment Scale (DSIS) | ] method was used to assess perceptual
quality differences between 4K/UHD-1 contents encoded at different bitrates, color
formats, and viewing distances in this test. Note that, studies have shown that there
is no significant difference between DSIS and ACR test methodologies [ ;

]. Another subjective evaluation, conducted by Bae et al. [ ], focused
on comparisons between contents in 4K/UHD-1 resolution with different encoding

parameters, but not between different resolutions.

In Xu and Jiang [ ], a subjective quality assessment of 4K/UHD-1 videos using
the Double-Stimulus Continuous Quality Scale (DSCQS) [ ] method was
presented. The goal of the test was to analyze the effect of bitrate on 4K/UHD-1
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content. H.264 was the only codec used for encoding. One limitation of this study
is that there is no comparison between different resolutions in the subjective test.
This is vital as HAS consists of adapting the resolution of the video depending on
the available bandwidth and hence it is important to assess the perceived quality
differences across different resolutions.

Furthermore, to analyze the differences between full-HD and UHD, and if users can
perceive a difference, Berger et al. [ | present a study comparing the perceived
quality of transmitting 4K/UHD-1 content compared to Full-HD content at the
same bitrate, encoded with HEVC. In total, 15 different contents and 4 different
bitrate settings were chosen to span a wide range of the employed quality scale. The
ACR-HR (ACR with Hidden Reference removal) test method was used. From the
results it can be concluded that there is not always a significant quality difference
between videos transmitted in Full-HD and 4K/UHD-1 resolution, however, the
results strongly depend on the content type and the capture quality. No analysis
based on SoA models is included in that study. Van Wallendael et al. | ]
performed a similar test, where 4K/UHD-1 and Full-HD resolutions were compared.
They also come to a similar conclusion as [ ], namely that the perceptibility
of a 4K/UHD-1 advantage over Full-HD is highly content-dependent. In [ 1
Goring et al. developed an automated system to predict whether there is a benefit of
using 4K/UHD-1 over Full-HD. They conclude that nearly 50% of their analyzed

source videos will not have any perceivable benefit in 4K/UHD-1.

Besides the aforementioned research, there are also studies available that evaluate
the applicability of SoA models for the quality evaluation of 4K/UHD-1 videos.
For example, the authors in Hanhart, Korshunov, and Ebrahimi [ ] compare
several common quality models such as PSNR, VSNR, SSIM, MS-SSIM, VIF, and
VOM for 4K/UHD-1 videos based on a subjective quality test conducted by the
authors. The authors conclude that VIF may be used as a general-purpose metric for
4K /UHD-1 videos. However, only 4 contents in total (1 for training + 3 for testing)
have been considered and no modern quality features and models such as VMAF
were used, mainly because those models were not available when the research was
conducted. Further, the study only analyses the effect of two codecs, H.264 and
HEVC.
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Similarly, Lee et al. [ ], investigated the applicability of traditional models such
as PSNR, SSIM, etc., to monitor the perceptual quality of adaptive streaming services.
For evaluation, subjective test data for high-quality 4K/UHD-1 video sequences
along with the down-scaled versions were used. However, no coding degradations

were considered.

In Rassool [ ], VMAF has been analyzed to determine whether it can be used
for quality prediction in the case of 4K/UHD-1 content. The study uses 10 video
sequences from a Xiph dataset [VQEG4K] which are encoded with bitrates ranging
between 3mb/s and 10mb /s and show a high correlation between MOS and VMAF
scores. However, one limitation of this study is that only one proprietary video codec

(rmXD) was used.

Cheon and Lee [ ] present a larger comparison of subjective and instrumental
quality assessments of compressed 4K/UHD-1 videos. Three codecs, H.264, HEVC,
and VP9 are addressed. In addition to analyzing the effect of different encoding
parameters and benchmarking the existing SoA quality models, they also make the
video and subjective data publicly available. The study only uses source contents
with a framerate of 30 fps whereas it is recommended to use a framerate of at least
50fps in the UHD-1 specification. Moreover, only a comparison test of 4K/UHD-1
and Full-HD was conducted. However, in a classical HAS or DASH scenario, several
low-resolution representations should also be included. Further, no results for more
recent models such as VMAF are reported. All the analysis was based on just one
subjective test with 25 participants who rated 250 video sequences (240 compressed
+ 10 reference sequences). This dataset has been made publicly available. In addition,
other 4K/UHD-1 datasets have also been made publicly available [ ; ].

More recently, video quality assessment studies for higher resolution have also
focused on other aspects which are, for example, higher framerates, and newer
application scopes such as assessment of live-streamed content and user-generated
content (UGC). Madhusudana et al. [ ] conducted a large-scale study on
the subjective and instrumental quality of high framerate video with framerates up
to 120 fps. For this purpose, a large dataset called the LIVE-YouTube-HFR (LIVE-
YT-HFR) containing 480 PVSs was created which are subjectively evaluated by a
total of 85 participants. The LIVE-YT-HFR dataset was made publicly available.
An evaluation of existing FR and NR models has been performed and it has been
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reported that the GSTI [ ] model outperforms all the considered SoA models
including VMAE. GSTT uses a statistical entropic differencing method based on a
Generalized Gaussian Distribution model expressed in both the spatial and tem-
poral band-pass domains to measure the difference in quality between reference
and distorted videos. Furthermore, Lee et al. | ] conducted a subjective and
instrumental assessment of the video quality of space-time subsampled videos. The
ETRI-LIVE Space-Time Subsampled Video Quality (ETRI-LIVE STSVQ) database
was created for the purpose and contains a total of 437 PVSs with framerates varying
between 30 fps and 120 fps. The evaluation shows that the VSTR model proposed
by Lee et al. [ 1, which is specifically developed to take into account the joint
perceptual effects of spatio-temporal subsampling and compression, outperforms all
the considered SoA models including VMAF.

For quality assessment of live streaming videos, Shang et al. [ ] present a
study with a particular focus on high motion live streaming videos. This included an
assessment of a total of 315 sequences derived from 45 SRCs. The source sequences
were subjected to six different distortions namely, compression (H.264 encoding),
aliasing, judder, flicker, frame drops, and interlacing. The evaluation also includes a
comparison of different NR and FR models for the particular use case. Furthermore,

the developed dataset is made publicly available.

2.2.1.2 Crowdsourcing Approach

Crowdsourcing as a viable alternative to lab-based tests for perceptual quality assess-
ment of both images and audiovisual content has garnered considerable attention
in recent years [ ; ; ]. Consequently, several studies have in-
vestigated the applicability and reliability of crowdsourcing for perceptual quality
assessment of audiovisual content. In this section, a brief overview of best practices
in crowdsourcing, frameworks for conducting such studies, and using them for
quality assessment will be presented.

Two important aspects of conducting crowdsourcing tests are selecting the appropri-
ate crowdsourcing framework and ensuring the reliability of the obtained results. A
number of crowdsourcing frameworks have been proposed in the literature [ ;

], and Hofsfeld et al. [ | provided a survey of different web-based
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crowdsourcing frameworks for subjective quality assessment. With the goal of en-
suring validity and reliability of the results, different studies have analyzed the
results of crowd tests, or recommend a set of best practices for crowdsourcing QoE
testing [ ]. To evaluate the reliability of the crowdsourcing paradigm, in the
best case, a comparison of crowd results and lab tests is performed, e.g. as it has

been done in [ ; ; I

For the assessment of video quality, Hofsfeld et al. [ ] propose a generic sub-
jective QoE assessment methodology for multimedia applications based on crowd-
sourcing. They conclude that crowdsourcing is a highly effective method not only
for QoE assessment of online videos but also for other current and future internet

applications.

A study on the usage of crowdsourcing for subjective quality assessment in the
HAS context was conducted by Shahid et al. [ ]. Here, the results of the
crowdsourcing test showed a strong correlation with the corresponding lab test.
Similarly, Rainer and Timmerer [ ] conducted a crowdsourcing study in the HAS
context with the objective of comparing QoE performance of different HAS-based
web clients namely, YouTube, DASH-JS and dash.js. Rainer and Timmerer conclude
that the delivered representation bitrate and the number of stalls are the main

influencing factors of QoE, as can also be confirmed by lab-based studies [ ].

In addition, crowdsourcing has been used to create large datasets annotated with
human ratings. A few examples are the Konvid-1K database by Hosu et al. | ]
which consists of 1200 public-domain video sequences sampled from YFCC100m,
containing a very small number of high-quality videos, and the LIVE-VQC dataset
by Sinno and Bovik [ ], consisting of 585 videos with 240 recorded human ratings

per video.

Notably, Seufert and Hossfeld [ ] conducted a crowdsourcing study to test
the limits of crowdsourced subjective video quality testing. They investigated the
extreme case of presenting only a single test condition with a stimulus duration of
10s to each subject (i.e. fully corresponding to a between-subjects test design) and
the possibility of using such a simple “one-shot” design with a large number of
subjects instead of using sophisticated test designs in crowdsourcing. The results

7

suggest that when training effects are negligible, the extreme case of the “one-shot
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design seems to be applicable. In this study, source videos of 1080p were downscaled
to 576p to meet the possibly low internet connections of the crowd users.

Moreover, crowdsourcing has also been widely used in the perceptual assessment of
image quality, and in creating large image datasets annotated with human ratings.
Ghadiyaram and Bovik [ ] designed and created the “LIVE in the Wild” image
quality challenge database consisting of 1162 images rated by over 8100 unique
observers. In addition, Hosu et al. | ] created an image database consisting
of 10073 images scored in terms of quality by 1459 crowd users. On the other
hand, Bosse et al. [ ] investigated the feasibility of patch-based image quality
assessment and found that humans can evaluate perceived quality on patch size of

128 x 128 pixels from a source image of 512 x 512 pixels.

In addition to image and video quality assessment, crowdsourcing has been used

in other multimedia applications such as image annotation [ ; ], video
summarization [ ; ], speech quality assessment [ ] and visual atten-
tion [ ].

Although crowdsourcing was widely used for subjective image and video quality
assessment, most research was focused on low-quality /-resolution content, due to
issues such as lack of control on the display device, low bandwidth connections of
crowd users, etc. Hence, there is a clear lack of crowdsourcing methods and also
studies for quality assessment of high-quality /-resolution videos.

Video Quality Models

As the focus of the thesis is the development of bitstream-based and hybrid quality
models for the prediction of video quality, the SoA survey will focus only on these
two model types. For an overview of other pixel-based models, the reader is referred

to, for example [Gor+21a].

2.2.2.1 Bitstream Models

As mentioned in Chapter 1, bitstream models consists of three different types, namely,
Mode 0, 1 and 3. It should be noted that a detailed survey of Mode 2 models is not
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considered because with today’s encrypted traffic, this model variant has become
mostly obsolete. This section presents a detailed overview of the SoA models of

these three types.

Mode 0 This section briefly summarizes the SoA of Mode 0 models. A Mode 0
model has access to metadata such as bitrate, resolution, framerate and codec for
video quality estimation. The most notable Mode 0 model for quality monitoring
of video streaming is the ITU-T P.1203.1 Mode 0 model [ ]. As mentioned
before, this model is applicable for H.264 encoded videos for resolutions of up to
1080p and framerates up to 30 fps. A first extension of this model for newer codecs
such as H.265 and VP9 was provided by a proprietary implementation from TU
Iimenau which has been made publicly available' [ ; ]. This extension
used VMAF scores as ground truth to derive the mapping coefficients for the newer
codecs.

Furthermore, Rao et al. [Rao+19b] propose an extension of this model to newer
codecs such as H.265, VP9, AV1, and also for videos up to a resolution of 4K/UHD-
1 and framerate up to 60fps. However, this extension was based on only two
subjective tests with limited encoding settings unlike the original standardized Mode
0 model in ITU-T Rec. P.1203, which was developed based on a large-scale dataset
containing 17 training and 13 validation databases. In addition to this, Lebreton and
Yamagishi [ ] have also extended the application scope of the ITU-T P.1203.1
Mode 0 model for H.265 encoded videos for resolution up to 4K/UHD-1.

To shorten the development time and the associated subjective quality assessment
tests needed for such newer extensions, Yamagishi et al. [ ] proposed a
generic method to derive coefficients for metadata-based models for adaptive bitrate
streaming services. The proposed method uses full-reference model scores as ground
truth to estimate the new coefficients.

Mode 1 A Mode 1 model has access to frame type and frame size information

for quality estimation, in addition to metadata such as bitrate, resolution and fram-

1https://github.com/Telecommunication—Telemedia—Assessment/
itu-pl203-codecextension
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erate, as for Mode 0 models. This additional access to the frame type and frame
size information allows the quality estimation process to be content-dependent
to a certain extent. As with the Mode 0 model, the ITU-T Rec. .1203.1 Mode 1
model [ ; ; ] is the first standardized model of this type for the
HAS scenario and has been trained on the same 17 databases and validated on the
same 13 databases as the Mode 0 model.

Another example of a Mode 1 model is the Bitstream-based Quality Prediction of
Gaming Video (BQGV) [ ]. It has been developed along the lines of P.1203.1
Mode 1. It takes a multi-dimensional approach to quality modeling, where the model
consists of quality dimensions such as video discontinuity, video fragmentation, and
video unclearness. Video discontinuity is related to the degradation caused due to
the variation in framerate, while video fragmentation is mainly due to the chosen
bitrate. Furthermore, video unclearness is the impairment that is a result of the
scaling of the encoded video to the display resolution. The model was developed
with gaming video quality estimation as the main focus and its efficacy is to be tested
for traditional 2D video quality estimation. As it is the case for the P.1203.1 Mode 1
model, too, this model is applicable to videos of resolutions up to FHD (1920 x 1080
pixels).

Mode 3 A Mode3-type model has complete access to the bitstream for estimating
video quality. Many early Mode 3-type models that have been proposed were mainly
focused on non-reliable transport and lower resolutions (< 1080p) [ ; ;

; ; ; ; ; ; ; ; ]. Hence, these
models include degradations due to packet loss, besides coding- and resolution-

related effects.

One of the first Mode 3-type models that focused on reliable transport is the extension
of P.1201.2 for progressive download for H.264 encoded videos. As with H.264
encoded videos, Izumi et al. [ ], developed a Mode 3-based model using
QP and spatial features based on coding units to estimate the quality of H.265
encoded videos | ] based on bitstream information. Also, Huang, Sogaard,
and Forchhammer [ ] proposed an approach to estimate the quality of H.265
encoded videos in terms of PSNR that can be used either as a bitstream-based

or a pixel-based method. The model includes QP and transform coefficients as
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features and has been trained on the LIVE dataset [ ] and validated on the
SJTU dataset [ ].

ITU-T Rec. P.1203 | ] is the first standardized model for a holistic evaluation of
HAS-type video streaming. This recommendation consists of three different modules
corresponding to video quality [ ], audio quality [ ], and the overall
integral quality [ ]. The video quality models in ITU-T Rec. P.1203.1 [ ]
are further divided into four different modes of operation, depending on the input
information available for quality estimation, namely, Mode 0, 1,2, and 3 | ].
These models have been specifically developed for the HAS scenario and are applica-
ble for videos encoded with H.264 for resolutions up to 1080p and framerates up to
30 fps. The reference implementation of this model is publicly available” | I
The Mode 3 model corresponding to the standard ITU-T Rec. P.1203.1 has been
extended to be applicable to H.265 encoded videos of resolution up to 4K/UHD-1
by Lebreton and Yamagishi [ I

Furthermore, He et al. [ ] present a model for quality assessment of H.264
and H.265 encoded bitstreams. This model uses QP, skip ratio, motion information,
bitrate, and framerate as features and shows performance comparable to the ITU-T
Rec. P.1203.1 Mode 3 model. In addition, early models for reliable transport and HAS
have been proposed by [ ; ]. The different approaches and models
related to holistic QoE evaluation where the cumulative effects of HAS-specific
distortions such as momentary audio and video quality and quality switches, and

stalling on quality perception are included, will be discussed in Section 2.3.

2.2.2.2 Hybrid Models

A hybrid model has access to both pixel and bitstream information for estimating
video quality. Similar to pixel-based models, hybrid models can be classified into
different categories depending on the access to the reference video for quality esti-
mation. These include hybrid-FR, hybrid-RR, and hybrid-NR models which have
complete, partial, and no access to the reference video, respectively. Furthermore,
each of the categories can be divided into Mode 0, 1, and 3 based models, depending
on the amount of bitstream information available as input.

2https://github.com/itu-pl203/itu-pl203
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Yamagishi, Kawano, and Hayashi [ ] present a hybrid-NR model for the
IPTV scenario using information from packet headers and pixel-based spatial and
temporal information for quality estimation [ . The model is applicable for
H.264 encoded videos of resolutions up to 1440x1080 and framerates up to 30 fps.

Another example of a hybrid model for non-reliable transport is the model proposed
by Farias et al. [ ]. This model estimates blockiness and blurriness with the
pixel information, which are then combined with the packet loss rate information
to predict video quality. Like the model presented in [ ], this model, too, is
applicable only for H.264 encoded videos, in light of the video technology primarily
used at the time. Similarly, the ITU-T ].343 series of recommendations also propose

standardized hybrid models of all types, for the case of non-reliable transport.

Moreover, Osamu et al. [ ] propose a mode 3 hybrid-NR model where the
QP is used as the bitstream feature, along with the pixel-based spatial and temporal
information to calculate video quality [ ]. This model is again restricted to
videos encoded with H.264 only.

More recently, hybrid models have been developed also for the HAS scenario. One
example is the recently standardized ITU-T Rec. P.1204.5 which is a Mode 0 hybrid-
NR model. It was developed as part of the same modeling competition as the
bitstream-instance of AV QBits, ITU-T Rec. P.1204.3 which was developed as part of
this thesis. Like all P.1204 models, the P.1204.5 model is applicable to videos encoded
with H.264. H.265 and VP9 with resolutions up to 4K/UHD-1 and framerates up to
60 fps.

Another Mode 0 hybrid-NR model called “hyfu” has been developed by Goring
et al. [Gor+21a] as part of a larger framework for pixel-based video quality models
using machine learning. Accordingly, at its core, “hyfu” is a random forest (RF) based
model. The model has been trained on four databases and validated independently
on the four tests of the AVI-VQDB-UHD-1 database [Rao+19a]. The application
scope of “hyfu” is the same as ITU-T Rec. P.1204.5.
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2.3 Overall Integral Quality of a HAS session

This section details the different subjective studies and quality models presented for

the estimation of the overall QoE of a HAS session reported in literature.

Subjective Studies

In addition to video compression-related distortions, a typical HAS session is also
affected by rebuffering-related events in the form of initial loading delay (ILD) and
stalling events. Hence, it is important to assess how these factors are perceived by
humans in terms of overall quality perception. As a result, a number of studies have
been reported in the literature conducting subjective tests for the overall quality

assessment of an HAS session.

A notable study is based on the ITU-T P.1203 standardization project where 30
different databases were created for quality assessment of audiovisual content in
a HAS scenario | ; ]. These databases were created with the goal
of developing quality models capable of estimating the short-term video quality,
audio quality, and overall integral quality of a HAS session. This resulted in the
P.1203 series of ITU recommendations | ; ; ]. The factors that were
varied in these databases consisted of the sequence duration (1min to 5min), quality
switches, stalling events, and the used display device (PC/TV and mobile). Of the
30 databases, four have been made publicly available [ I

Furthermore, Bampis et al. [ ] conducted a study to assess the effects of
aspects such as bitrate adaptation algorithms, network conditions, and video content
on the overall QoE with the aim of perceptually optimized end-to-end adaptive
video streaming. The resulting dataset has been made publicly available for further

research.

In addition to assessing the cumulative effect of quality switches and stalling events
on perceived quality, various studies have analyzed the impact of these factors
separately. A study on the impact of ILD and stalling on the overall perceived
quality was presented by Duanmu et al. [ ]. Extending this work, the same

authors evaluated the effect of quality switches (direction of switch, intensity of
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switch, duration between switches etc.) on the overall quality without any stalling
events [ ]. Furthermore, the authors investigated the cumulative effect of
both stalling events and quality switches on the overall perceived quality in their
subsequent study [ ]. Although these studies perform a systematic investi-
gation of the effects of different factors related to adaptive streaming on the overall
perceived quality, the duration of the sequences used is short (10s) and hence the
question of the impact of video duration on the perceived quality is not addressed.

The datasets resulting from all three studies have been made publicly available.

Although the aforementioned evaluations investigate the HAS-related factors on
perceived quality, the highest resolution of the videos considered is restricted to
1080p and also the range of the factors addressed represents the user preference
at the time of the conducted subjective evaluation. Further studies with videos of
higher resolution such as 4K/UHD-1 and updated user preferences are needed to
understand the effects of quality switching and stalling on overall QoE. As part of this
thesis, videos of 4K/UHD-1 are considered for quality assessment of long-duration

videos in a HAS session.

Quality Models

In general, a typical HAS session is characterized by various factors such as initial
loading delay, momentary audio, and video quality and quality switches, and stalling
as illustrated in Figure 1.3. A holistic QoE evaluation model has to consider all these
factors, while also taking into account the time at which these changes occur in a
video viewing session (see also [ ). ITU-T Rec. P.1203.3 [ ; ] is the
first standardized model that incorporates all these factors. Here, ITU-T Rec. P.1203.1
and P.1203.2 are used to compute the video and audio quality, respectively, of each
segment at a per-second level. In the integration module P.1203.3, the per-second
audio and video quality values are further aggregated with regard to their time of
occurrence, the longest quality change, and the total number of quality changes,
to obtain the final audiovisual quality of the video. A second component called
“stalling quality” that handles the impact of initial loading delay and stalling is
computed using the number of stalls, average stalling duration, and average interval

between stalls as features. Then, the overall audiovisual quality and the stalling
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quality are integrated to obtain the initial overall quality. Besides a parametric,
curve-fitting-based model component, an additive RF-based component is used
to compute the overall quality using features such as per-second video and audio
quality scores, stalling ratio, stalling frequency, duration before the last stalling event
etc. The final overall integral quality is the convex linear combination of the initial
overall quality and RF-based overall quality. This model is applicable to videos of

durations between 1 and 5 minutes and the implementation is publicly available’.

As the ITU-T Rec. P.1203 model only covers H.264 encoded videos, Lebreton and
Yamagishi [ ] have further extended ITU-T Rec. P.1203 for H.265 encoded videos
of resolutions up to 4K/UHD-1. For this purpose, six subjective tests with varying

encoding conditions involving up to 192 participants in total were used.

In addition to this, other models for holistic QoE evaluation have been proposed
[ ; ], but unlike the ITU-T Rec. P.1203.3, these models have not been

trained and validated on large-scale databases.

2.4 Summary and Conclusion

As described in this chapter, various studies have been conducted for perceptual
quality assessment of videos of 4K/UHD-1 resolution and also for overall QoE
assessment of a HAS session. Some of the conducted research has also resulted in
publicly available databases that can be used to train and benchmark existing video
quality models and also develop newer quality models for estimating the quality of
high resolution. However, these datasets cannot be considered large-scale subjective
studies in terms of the number of different source contents and also the number of
encoded sequences used. Also, several of these datasets do not provide access to the
bitstreams and hence not suitable for this thesis work. Also, the number of encoding
parameters tested as part of the reported evaluations is limited. In addition to this, a
number of models both bitstream and hybrid, have been proposed in the literature
for predicting video quality. However, these models have a limited scope in terms of
the applicability considering video resolution and the different codecs. Furthermore,

there is a lack of studies focusing on assessing the applicability of out-of-the-lab

Shttps://github.com/itu-pl203/itu-pl203
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testing method for quality assessment of high-resolution videos (> 1080p). The
identified limitations with datasets, subjective test method and models are part of

the research questions of this thesis and will be handled in the subsequent chapters.
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Subjective Quality Assessment of
4K/UHD-1 Videos

Subjective testing is considered a gold standard in multimedia quality assessment.
Hence, subjective studies play an important role in investigating the impact of the
different degradations that are encountered in a typical HAS session on the percep-
tion of the end-user. These tests can either be conducted in a well-controlled lab
setting or in an out-of-the-lab setting with less control over the testing environment
but closer to real-life settings. The impact of the different influence factors on the
final perceived quality can either be investigated by considering each degradation
individually or by considering the cumulative effect of the different degradations. In
this thesis, subjective tests have been conducted both in a well-controlled lab setting
and in an out-of-the-lab setting. The out-of-the-lab tests are conducted using two
different methods. The first method was an online study approach in which partici-
pants were recruited from among the university student and staff body and were
not compensated. The second method was a crowdsourcing-based approach using a
crowdsourcing framework to recruit participants and also compensate them. The
first part of the chapter focuses on tests conducted in a lab setting following standard
recommendations. Firstly, the influence of the video encoding settings on short-term
video quality (=~ 7-10s) is assessed in a series of subjective tests. Following this,
the effect of quality changes, initial loading delay and stalling events on the overall
perceived quality is evaluated with various audiovisual sequences ranging between

1 min to 5 min duration.

The second part of the chapter presents tests conducted in an out-of-the-lab setting.

For this, an approach to assess both short-term video quality and the overall quality
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of a HAS session in an out-of-the-lab setting considering videos of high resolution
(> 1080p) is proposed. This is done with the aim of answering research question
4 as defined in Chapter 1. Using the proposed approach, two separate tests, one
each focusing on short-term video quality and the overall integral quality of a HAS
session conducted in an out-of-the-lab setting are described in detail. In addition
to this, an analysis of the agreement of the proposed approach in comparison with
traditional lab tests is performed. These studies are conducted in both well-controlled

lab settings and out-of-the-lab settings using online testing and crowdsourcing.

It should be noted that the analyses of the results of the subjective test presented in
this chapter are limited to the overall MOS distributions. No further benchmarking of
the codecs or subjective test results analysis in terms of user-specific rating behaviour
is conducted because the primary objective of designing and conducting tests was
to gather ground truth for model development and use it further for comparison of
performances of the proposed and the SoA models.

This chapter is based on the following publications:

[Rao+19a] Rakesh Rao Ramachandra Rao, Steve Goring, Werner Robitza, Bernhard
Feiten, and Alexander Raake. “AVT-VQDB-UHD-1: A Large Scale Video Quality
Database for UHD-1". In: 21st IEEE International Symposium on Multimedia (IEEE
ISM). Dec. 2019

[Raa+20a] Alexander Raake, Silvio Borer, Shahid Satti, Jorgen Gustafsson, Rakesh
Rao Ramachandra Rao, Stefano Medagli, Peter List, Steve Goring, David Lindero,
Werner Robitza, Gunnar Heikkild, Simon Broom, Christian Schmidmer, Bernhard
Feiten, Ulf Wiistenhagen, Thomas Wittmann, Matthias Obermann, and Roland
Bitto. “Multi-model standard for bitstream-, pixel-based and hybrid video quality
assessment of UHD /4K: ITU-T P.1204”. In: IEEE Access 8 (2020)

[RGR21b] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“Towards High Resolution Video Quality Assessment in the Crowd”. In: 13th IEEE
International Conference on Quality of Multimedia Experience (QoMEX). 2021

[RGR22] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“AVQBits - Adaptive Video Quality Model Based on Bitstream Information for
Various Video Applications”. In: IEEE Access 10 (2022)
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[GRR23] Steve Goring, Rakesh Rao Ramachandra Rao, and Alexander Raake.
“Quality Assessment of Higher Resolution Images and Videos with Remote Test-
ing”. In: Quality and User Experience (QUEX) 8 (2023)

3.1 Lab-based Subjective Quality Assessment

In this section, the design and results of the short-term video quality and overall
integral quality of a HAS session tests conducted during the course of this work are

described in detail.

The details of the protocol followed and instructions provided during these tests are
described in Appendix A.

Short-term Video Quality Assessment

Two sets of lab-based subjective tests consisting of a total of eight different subjective
tests have been performed. These resulted in two datasets, namely, AVI-PNATS-
UHD-1 and AVT-VQDB-UHD-1. Hence, this section is further organized in terms of

these two sets.

For all the lab-based tests, the test environment in terms of lighting, curtains and
viewing distance follows ITU-R Rec. BT.500-13 [ ] in order to ensure a con-
trolled test environment and also to guarantee repeatability of the tests. Two different
screens were used during the course of these subjective assessment studies, namely,
a 65" 4K Panasonic VIERA TX-65CXW804 display and a 55" 4K LG OLED55C7D
screen. Furthermore, to ensure a seamless playback, an interface to a DeckLink 4K

Extreme 12G card was used.

All ratings were collected using the AVRateNG!' tool. As the test method, 5-point
absolute category rating (ACR) [ ] was used in all eight tests. Prior to the
ACR-based subjective test, every test participant underwent a visual acuity test
using Snellen charts. In total, each test lasted approximately 60 minutes with two

optional 5 min breaks in between. Each test included a short training phase in which

lnttps://github.com/Telecommunication-Telemedia-Assessment/avrateNG
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5 different videos spanning the entire quality range were shown to the participants
to get them acquainted with the test procedure and the expected quality range. For
all the tests, the outlier detection criterion was based on a threshold of 0.75 Pearson
Correlation Coefficient (PCC) [ ; 1.

In addition to AVI-PNATS-UHD-1 and AVT-VQDB-UHD-1, the author of this thesis
was actively involved in the design of a third dataset, namely, PNATS-UHD-1 which
encompasses the 26 different subjective tests designed and conducted as part of the
“P.NATS Phase 2” modeling competition in ITU-T SG12/Q14. As outlined above,
the “PNATS Phase 2” competition resulted in the ITU-T P.1204 | ] series of
Recommendations. The respective dataset is also described in this section, as it is
used to train and validate the ITU-T P.1204.3 [ ] model which forms a major
component of this thesis (cf. Chapter 4). It should be noted that the AVI-PNATS-
UHD-1 dataset is a subset of the PNATS-UHD-1 dataset.

Furthermore, the “AV1 dataset” created to extend the ITU-T Rec. P.1203.1 Mode 0
model for newer codecs and higher resolutions and framerate is described in this
section.

3.1.1.1 PNATS-UHD-1

This dataset consists of 26 different tests that were designed and conducted by nine
proponents. Of the 26 different tests, 13 were used for training the models submitted
to the competition and the remaining 13 were used for model validation. It should be
noted that the 13 validation databases were created after model submission. Out of
the 13 training tests, nine were created with a PC/TV as the viewing device and four
with mobile devices for viewing. For validation, nine tests used a PC/TV as viewing
devices, three a mobile and one a tablet. For the PC/TV tests, the considered display
resolution was 4K/UHD-1 (3840 x 2160) with a viewing distance of 1.5H [ ].
For Mobile/Tablet (MO/TA) tests, a display resolution of 2560 x 1440 was used with
a viewing distance of 5-7H [ ]. The viewing distances for both device classes
follow the recommendation in ITU Rec. BT.500-13 [ ]. All tests included PVSs
with a duration of 7-9s. As a result of all tests, 2464 PVSs were used for training,
and 2483 for validation, resulting in a total number of 4947 PVSs.
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A detailed overview of the used source contents is provided in Section 3.1.1.1 and
about the encoding parameter ranges and the test design are given in Section 3.1.1.1.
It should be noted that these details are sourced from Raake et al. [Raa+20a], which is
co-authored by the author of this thesis as well as by the other proponents involved

in the competition.

Source Contents: In the process of gathering source contents, as a first step,
4K /UHD-1 source footages that are publicly available and provided by some of the
proponents (TU Ilmenau, Yonsei University, and Ericsson AB) were collected. In this
step, in addition to the 4K/UHD-1 footage, 1440p source footage was also considered
for databases that were planned to be run on Mobile or Tablet. From these different
source footages, cuts of 7-9 s duration were defined and created. These cuts were then
manually reviewed and some which have a scene cut either in the first 2 or last 2
seconds were rejected. The selected video cuts after this review process formed the
sources (SRCs) for the training and validation phases. Three SRCs were chosen to
be used in both training and validation databases to create the “common set PVSs”.
The overall number of unique source footages and SRCs used to generate the training

and validation databases are summarized in Table 3.1.

Table 3.1: Number of unique footages and SRC files used in the training (TR) and validation (VL)
databases in the PNATS Phase 2 competition [Raa+20a].

TR VL TOTAL

50/60fps 27 20 43 (4 common TR/VL)
Footages 24/25/30 fps 32 97 129
Total 59 117 172 (4 common TR/VL)

50/60 fps 203 79 278 (4 common TR/VL)
SRC files 24/25/30fps 138 294 432
Total 341 373 710 (4 common TR/VL)

The SRCs that were chosen had a wide range of spatial and temporal complexity. This
spatial and temporal complexity is characterized in terms of the SI and TI measures
respectively as specified in ITU-T Rec. P.910 [ ] and is illustrated in Figure 3.1.
The reason to select such a wide range of content is, to ensure that the videos used

for the datasets are realistic for common TV /streaming content. Moreover, the focus
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was on using pristine quality professional content and excluded the user-generated

content.
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Figure 3.1: SI-TI of all the sources used in training and validation in the PNATS Phase 2 competition.

Test Design: The hypothetical reference circuits (HRCs) that have been used for
the tests were created by varying different encoding parameters. The parameters
that were considered were as follows: video codec, resolution, bitrate, framerate,
encoding presets/speed, GOP size, encoder implementations, chroma subsampling,
bit-depth, encoding types, and bitstream container. The ranges of these different
parameters that were used are reported in Table 3.2. In addition, the bitrate ranges
used for different encoders for each resolution are depicted in Figure 3.2. A detailed
per-database test plan is provided in Appendix B.

As shown in Table 3.2, in addition to the FFmpeg-based encoder implementations,
three different online services, namely, Youtube, Bitmovin, and Vimeo were consid-
ered to produce the encoded bitstream. The HRCs corresponding to these services
was termed as “online conditions”. For these cases, SRCs were uploaded to these
services and the corresponding bitstreams were then downloaded. In the case of
YouTube and Vimeo, no encoding parameters were allowed to be specified whereas,
for Bitmovin, specific input parameters could be specified. However, for all three
services, the actual encoding process was unknown. The reason to select such online
cases was to simulate real-world encodings to enable the developed models to be
capable of handling such conditions.
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Table 3.2: Parameter ranges considered in the PNATS Phase 2 competition [Raa+20a].

Parameter Range
Video Codec H.264, H.265, VP9

Encoded Resolution TV /Monitor: 640 x 360 — 3840 x 2160,
Mobile/Tablet: 426 x 240 — 2560 x 1440

Framerate 15, 24, 25, 30, 50, 60 frames per seconds

Presets H.264/H.265: online, i.e. Youtube, Bitmovin or Vimeo; medium,
ultrafast, fast, veryfast, slower, slow, veryslow.
VP9: speed presets 0, 1, 2, 3, 4

GOP Size Auto, 2, 5 seconds

Encoder Implementation H.264: libx264 (FFmpeg),
H.265: 1ibx265 (FFmpeg),
VP9:libvpx-vp9 (FFmpeg),
YouTube, Bitmovin, Vimeo

Chroma Subsampling  YUV420, YUV422
Bit-depth 8,10 bits

Encoding Types 1-pass, 2-pass (with and without min max bitrate constraints),
Constant rate factor (CRF) encoding.
Unknown encoding recipes employed by YouTube, Vimeo, Bit-
movin

Bitstream Container mp4, webm, mkv

These HRCs were then coupled with different SRCs and assigned to individual
databases by random sampling of the bitrate ranges. In this process, it was ensured
that roughly equal representations of different codecs, resolutions, and framer-
ates were mapped to individual databases. After the HRCs were defined for each
database, these were processed with different SRCs and manually checked for quality
distribution to enable having PVSs covering the entire range of the 5-point ACR scale.
In addition to ensuring that HRCs are assigned based on the aforementioned criteria,
SRCs were also assigned to individual databases in a manner so as to balance the
content complexity of the SRCs used in each database. For this purpose, a content
complexity measure based on CRF encoding using H.264 codec was defined (more
details are described in [Raa+20a]). Using this measure, the SRCs were classified into

four different complexity categories ranging from 0 to 4. Based on the complexity of
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Figure 3.2: Bitrate ranges for each encoder-resolution pair used in the PNATS Phase 2 competi-
tion [Raa+20a].

the SRC, the encoding bitrate was adjusted. One other aspect that was considered
while creating HRCs was that none of the PVSs generated would either have resolu-
tion and framerate higher than that of the used SRC. The videos were encoded using

a dedicated processing chain?.

Furthermore, to have a way to normalize the subjective results across different
subjective tests, anchor conditions were defined. For this purpose, 5 common HRCs
in combination with 3 common SRCs were used in each database. The highest
and lowest anchors were adjusted considering the display devices as the subjective
expectations on these different device types differ. Hence, for the case of PC/TV, the
highest anchor had a resolution of 4K/UHD-1 whereas for the Mobile/Tablet case, it
was 2560 x 1440. Similarly, the lowest anchor for the PC/TV scenario was 640 x 360
at a framerate of 24/25/30 fps (the fps was source dependent) and for Mobile/Tablet,
it was 426 x 240 at a framerate of 15fps. The MOS range for the common HRCs
across different databases is reported in Table 3.3.

The training and validation databases in terms of the average confidence interval

(Avg. CI), average correlation (Avg. Correlation), target display (Display), number

2https://qithub.com/pnats2avhd/processing—chain
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Table 3.3: Common HRCs used in the PNATS Phase 2 competition. The video codec is H.264 for all
common conditions [Raa+20al].

HRC-ID Resolution Bitrate (kbps) FPS MOS Range
PC/TV MO/TA

HRC0001 240p 100/200 15 - 1.167 - 2.476
HRCO0115 360p 300/500 24/25/30 1.160-2917 1.792-3.571
HRC0388 720p 800/1600 50/60 1.500-3.917 2.833-4.542
HRC0436 1080p 3500/7000 50/60 2.958-4.833  3.833-4.810
HRC0484 1440p 6000/10000 50/60 3.333-4.875 4.083-4.762
HRCO0571 2160p 30000/45000 50/60 3.667 - 5.000 -

of test participants (N), and the number of PVSs (PVSs) rated by each participant are
summarized in Tables 3.4 and 3.5.

Table 3.4: Training database details [Raa+20a].
DB-ID Display N Avg. Correlation Avg.CI PVSs

P2STR01 Mobile 26 0.82 0.29 203
P2STR02 Mobile 24 0.87 0.27 199
P2STR03 Mobile 30 0.87 0.23 200
P2STR04 PC 26 091 0.24 199
P2STRO5 PC 26 0.84 0.27 187
P2STR06 Mobile 24 0.82 0.25 187
P25TR08 TV 24 0.89 0.26 179
P25TR09 PC 25 0.86 0.25 187
P2STR10 PC 34 0.86 0.21 187
P2STR11 TV 24 0.89 0.25 187
P2S5TR12 PC 24 0.85 0.28 183
P25TR13 ™V 25 0.87 0.25 187
P25TR14 TV 24 0.84 0.24 179

A dedicated screening process was used to remove some training PVSs due to bad
content or wrong encoding settings. The total number of training and validation

PVSs after the screening process was 2464 and 2483 respectively.

The details pertaining to the competition structure and the statistical evaluation of
the models will be presented in Chapter 4.
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Table 3.5: Validation database details [Raa+20a].
DB-ID Display N Avg. Correlation Avg.CI PVSs

P2SVLO01 TV 30 0.82 0.25 185
P2SVL02 Mobile 24 0.82 0.26 186
P2SVL03 Mobile 21 0.82 0.30 186
P2SVL04 Mobile 24 0.88 0.28 195
P25VL05 TV 25 0.87 0.28 194
P2SVL06 TV 24 0.89 0.26 191
P2SVL07 TV 25 0.86 0.26 188
P25VL08 pPC 27 0.82 0.29 195
P25VL09 TV 28 0.81 0.28 191
P25VL10 TV 26 0.86 0.21 195
P2SVL11 TV 24 0.87 0.27 195
P2SVL12  Tablet 24 0.84 0.20 195
P25VL13 TV 26 0.84 0.25 187

" Extra subjects were removed from this database due to file copying bugs. Database was kept since
correlation and CI was deemed ok after extensive analysis.

3.1.1.2 AVT-PNATS-UHD-1

Four out of the 26 training and validation databases from the “PNATS Phase 2”
competition that were assigned to TU Ilmenau for conducting subjective tests form
the AVI-PNATS-UHD-1 dataset. In the following, these four tests are described in
detail.

The tests were targeted to cover a wide range of source contents and hence more
than 50 source contents were used in each of the four tests. Due to a large number of
source contents, the tests are not full-factorial in their design as that would result in
an infeasible number of PVSs that would have to be assessed by participants. An
SRC was repeated between 3 and 5 times within a test. Three sources were used
across all tests and are referred to as “common sources”. A 55" 4K LG OLED55C7D

screen was used to present the videos in all four tests.

In the first test, 52 different SRCs were included and encoded with different HRCs
which resulted in a total of 187 PVSs. These 187 PVSs were rated by 27 participants.
Following the outlier detection criterion based on PCC described earlier, two outliers
were detected and removed from further analysis. The second test covered a total
of 53 different SRCs with 187 PVSs created from these, which were rated by a total
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of 36 participants. Further analysis based on the aforementioned outlier criterion
detected two outliers in this test. 52 different sources were used in the third test, and
the 185 PVSs resulting from the HRC processing were rated by 30 participants, with
five outliers detected. The fourth test had 53 SRCs processed according to different
HRCs, resulting in 191 PVSs that were rated by 28 participants. Here, 3 outliers were
detected following the PCC-based criterion.

The distribution of the mean opinion scores (MOS) is illustrated in Figure 3.3. It can
be observed that there is a tendency towards higher quality. This test design was
motivated to yield better distinction for higher quality levels by test participants and
also models.

0.12
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0.08
z Test ID
£ 0.06 — test 1
8 test 2
/, — test 3
0.04 — test 4
0.02
0.00
1.0 15 20 25 30 35 40 45 50
MOS
Figure 3.3: MOS distribution of AVI-PNATS-UHD-1 dataset.
The SOS analysis as described in [ ] was conducted for each of the four tests of

the AVT-PNATS-UHD-1 dataset and the results of this are illustrated in Figure 3.4.
The values of the SOS parameter “a” for all the tests are in the typical range reported

in the SoA for video quality assessment studies.
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Figure 3.4: SOS analysis of the AVT-PNATS-UHD-1 dataset.

3.1.1.3 AVT-VQDB-UHD-1

Like the AVT-PNATS-UHD-1 dataset, this dataset also consists of four different
subjective tests. All four tests had a full-factorial design. In total, 17 different
SRCs with a duration of 7-10 s were used across all four tests. All the sources had a
resolution of 38402160 pixels and a framerate of 60 fps. For HRC design, bitrate was
selected in fixed (i.e. non-adaptive) values per PVS between 200 kbps and 40000 kbps,
resolution between 360p and 2160p and framerate between 15 f ps and 60 fps. In all
the tests, a 2-pass encoding approach was used to encode the videos, with medium
preset for H.264 and H.265, and the speed parameter for VP9 set to the default value
“0”. As with the tests in AVT-PNATS-UHD-1, the same PCC-based criterion is used
for outlier detection. Unlike the AVT-PNATS-UHD-1 dataset, this dataset is publicly

available®.

3https://github.com/Telecommunication—Telemedia—Assessment/

AVT-VQDB-UHD-1
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Source Contents: The thumbnails of the used source contents are depicted in
Figure 3.5. The source contents for each of the four tests were selected based on
their spatial and temporal complexities using spatial information (SI) and temporal
information (TT) as desribed to ITU-T P.910 [ITU99]. These SI and TI scores were
calculated using the publicly available implementation of SITI*. The distribution of
SI and TI of all the source contents as shown in Figure 3.6 indicate that they cover a
wide range of values. The duration of the contents used in the tests was between
8-10 seconds, and no quality-switching was used. This way, scores can be considered
as “per-segment” scores for different DASH implementations, where segment sizes
typically range from 1-15 s [Seu+15]. All the source contents have a framerate of
60 fps. More details about the sources used in the tests are summarized in Table 3.6.
The "Shareable" column in the table indicates whether the video (source + encoded
versions) is publicly available. In case "No" is stated, all the other features such as
MOS and predicted scores by the considered quality models are publicly available.

Figure 3.5: Thumbnails of source videos in the AVT-VQDB-UHD-1 dataset.

4https://github.com/Telecommunication—Telemedia—Assessment/SITI
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Table 3.6: Source details for the AVI-VQDB-UHD-1 dataset.

Name Duration Details Origin Shareable
American Football ~ 10s 3840 x 2160, 60fps  Undisclosed No
(AF)
Big Buck Bunny 10s 3840 x 2160, 60fps Blender Foun- Yes
(BBB) dation [Ble]
Cutting Orange 10s 3840 x 2160, 60fps TU Ilmenau Yes
(CO)
Surfing (SU) 10s 3840 x 2160, 60fps  Undisclosed No
Vegetables (VE) 10s 3840 x 2160, 60fps TU Ilmenau Yes
Water (WA) 10s 3840 x 2160, 60fps  Netflix Inc. Yes
League of Legends  8s 3840 x 2160, 60 fps  Private No
(LoL)
Dancers (DA) 8s 3840 x 2160, 60fps  Netflix Inc. Yes
Moment of 8s 3840 x 2160, 60fps Cable Labs No
Intensity (Mol)
Venice (VN) 8s 3840 x 2160, 60fps  Undisclosed No
fr-041-debris (FR) 8s 3840 x 2160, 60fps NASA Yes
Air acrobatics (AA) 8s 3840 x 2160, 60fps  Undisclosed No
Monkeys (MO) 8s 3840 x 2160, 60fps  Undisclosed No
Sparks (SP) 8s 3840 x 2160, 60fps  Netflix Inc. Yes
Daydreamer (DD)  8s 3840 x 2160, 60fps  TU Ilmenau Yes
Giftmord (GI) 8s 3840 x 2160, 60fps  TU Ilmenau Yes
test_1 . test_ 2 and test_3

%0,
o

o 2
Source 30
‘0 - EY S
= BBB _ 44 CO_8s
30 co . .
su 20 EE S '! E:L
20 &i Mol
10 o WA_8s
10 [
0 0 - .
0 10 20 30 40 50 60
Sl
test_4
70
60
50 Source
o AA
40 ’ oo
= 1 s FR
30 e Gl
gl ° MO
’,ph o SP_13
20 SP_14

0 20 40 60 80 100 120
SI

Figure 3.6: Spatial and temporal complexities SI, TI of all the video contents used in the AVT-VQDB-
UHD-1 dataset.
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test 1 The HRC design of this test was based on choosing from different bitrates
for each of the different resolutions. For this purpose, four different resolutions were
considered, namely 360p, 720p, 1080p and 2160p. Two bitrates each were selected for
360p and 720p and three bitrates each for 1080p and 2160p. The detailed test design
is presented in Table 3.7. Three different codecs, namely, H.264, H.265, and VP9 were
used to encode the videos. These HRCs were applied to six different SRCs of 9-10's
duration. This resulted in a total of 180 PVSs. The framerate of all the PVSs was kept
at the source framerate of 60 fps. A 65" Panasonic VIERA TX-65CXW804 display was
used to present the videos in the test. The 180 PVSs were rated by 29 participants.
Following the PCC-based outlier criterion, no outliers were detected.

Table 3.7: Test Design — test_1.

Resolution Bitrate [kbit/s]

360p 200 750

720p 750 2000

1080p 2000 7500 15000
2160p 7500 15000 40000

test_2 For this test, the HRC design was based on using different bits-per-pixel
(bpp) settings for different resolutions. Four different bpp values were considered,
per each of the same four resolutions used also in test_1. As the number of bpp —
resolution combinations considered was higher than the bitrate — resolution combina-
tions for test_1, only H.264 and H.265 were used to encode the videos. Details of the
test design are described in Table 3.8. Six SRCs including the three common set SRCs
from test_1 were used. The SRCs had a duration of 7-9s. As in test_1, the framerate
of the PVSs was kept at the source framerate of 60 fps. Overall, 192 PVSs were created
using the six SRCs and the defined HRCs. The test videos were presented to the
participants on a 55" LG OLED55C7D screen. A total of 24 participants rated these
PVSs, and no outliers were detected.

test_3 This test followed the same philosophy for HRC design as test_2, and
hence the same bpp values and resolutions were used. Also, the same SRCs were
employed. Mainly H.265 and VP9 were selected to encode the videos. In test_2, it was
observed that some of the PVSs associated with one of the sources (Dancers_8s) had
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Table 3.8: Test Design — test_2 and test_3 (Bit-per-pixel based test).

Resolution Bits-per-pixel (bitrate in kbps)

360p 0.007 (97) 0.0447 (617) 0.0823 (1138)  0.12 (1659)
720p 0.007 (387)  0.0447 (2470)  0.0823 (4553)  0.12 (6636)
1080p 0.007 (871)  0.0447 (5557)  0.0823 (10244) 0.12 (14930)
2160p 0.007 (3484) 0.0447 (22229) 0.0823 (40974) 0.12 (59720)

uncharacteristically low scores due to encoding errors. The HRCs associated with
these PVSs corresponding to H.264 were repeated in this test. The corresponding
HRCs associated with H.265 were dropped, to keep the total number of PVSs at 192
as in test_2. 26 participants rated the 192 PVSs presented on a 55" LG OLED55C7D
screen. No outliers were detected in this test. As test_2 and test_3 are based on the

same design philosophy, these two tests can be combined for further analysis.

test_4 The objective of this test was to assess the effect of different framerates
on perceived video quality. Hence, the HRC design was based on selecting from
different framerates for each of the chosen different resolutions. Four different
framerates, namely, 15 fps, 24 fps, 30 fps, and 60 f ps were used across six different
resolutions between 360p and 2160p. Only H.264 was selected to encode videos for
this test. Table 3.9 provides the details of the test design. Eight SRCs with a duration
of 7-9s each was used, with no overlap between sources from the other tests. The
selected HRCs in combination with these eight SRCs resulted in a total of 192 PVSs.
These PVSs were presented on a 55" LG OLED55C7D screen. 25 participants took
part in the test, with two outliers being detected.

Table 3.9: Test Design — test_4 (Framerate variation test).

Resolution Bitrate [kbit/s] (framerate)

360p 200 (15) 500 (15) 500 (24) 1000 (24)
480p 500 (15) 1000 (15) 1000 (24) 2000 (24)
720p 1000 (24) 2000 (24) 2000 (30) 4000 (30)
1080p 2000 (24) 4000 (24) 4000 (30) 6000 (30)
1440p 4000 (30) 6000 (30) 6000 (60) 8000 (60)
2160p 6000 (30) 8000 (30) 8000 (60) 15000 (60)

The distribution of MOS for each of the four tests is illustrated in Figure 3.7.
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Figure 3.7: MOS distribution of AVT-VQDB-UHD-1 dataset.

In addition to the analysis of the MOS distribution for each of the four tests, SOS
analysis was also performed for these tests. The result of this analysis is presented in
Figure 3.8 and it can be seen that the values of the SOS parameter “a” for all the tests
are in the typical range reported in the SoA for video quality assessment studies.

During analysis of the results for test_2, it was observed that the scores were un-
characteristically low for the Dancers_8s sequence, for specific cases of 11 Mbps
and 40 Mbps for H.264. On further analysis, it was found that they were some
errors during processing due to a bug in the encoding pipeline. To confirm that this
indeed was a processing issue, these specific HRCs were re-processed and repeated
in test_3, although it was otherwise focused on HEVC and VP9. In test_3, the results
for these “problematic” videos from test_2 were as expected for the specific bitrate
and resolution conditions, confirming the assumed processing issue for test_2. The
respective cases are not included in the presentation of the test_2 results and are also

removed from the publicly shared dataset.
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Figure 3.8: SOS analysis of the AVI-VQDB-UHD-1 dataset.

Further analysis was performed on the 60 repeated conditions between test_2 and _3
to analyze the inter-test correlation. It can be concluded from Figure 3.9 that the tests
are well correlated and the conditions are rated similarly in both of the tests.

3.1.1.4 AV1 Dataset

In addition to the subjective tests described in the aforementioned sections, further
tests were conducted during this work to extend existing SoA models such as ITU-T
P.1203.1 Mode O [ ] for newer codecs such as AV1 and higher resolutions and
framerates. This section describes a dataset consisting of H.265- and AV1-encoded

videos.

Seven different source contents of 10s duration were used in the development of
the AV1 dataset. The used SRCs are illustrated in Figure 3.10. The source contents
were selected based on different spatial and temporal complexities. Similar to the
other datasets described in this chapter, the spatial and temporal complexities were
characterized using the SITI metric. Figure 3.11 shows the SI and TI of all the SRCs
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Figure 3.9: Inter-test correlation (test_2 and test_3).

of the AV1-dataset. It can be observed that the SRCs span a wide range of SI and TI.
Further details of the source contents are mentioned in Table 3.10. As it can be seen
in Table 3.10, the "Space" video was originally in 30 fps. This source was sped up to
60 fps with no negative impact on the content.

Figure 3.10: Overview of the source videos used in the AV1 dataset.
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Figure 3.11: SI and TI of all the source contents used in the AV1 dataset.

Table 3.10: Source details for the AV1 dataset.

Content Duration Details Source of the content
Name

Animation 10s 3840x2160@60fps  Blender Foundation [Ble]
Landscape 10s 3840x2160@60fps  Harmonic Inc. [Har]
Crowd 10s 3840x2160@60fps  Netflix Inc.

Dialog 10s 3840x2160@60fps  Netflix Inc.

Face 10s 3840x2160@60fps  TU Ilmenau

Sport 10s 3840x2160@60fps  Harmonic Inc. [Har]
Space 10s 3840x2160@30fps* NASA

3.1.1.5 Test Design

The details of the bitrate-resolution settings used in this test are presented in Ta-
ble 3.11. Furthermore, two different codecs, namely, H.265 and AV1 are considered.
The seven different source contents were encoded with H.265 and AV1 (version
released in April 2018) using FFmpeg 4.0. The encoding followed a 2-pass scheme
with a 10-bit color depth and a color sub-sampling of 4:2:2. The preset used for H.265

was the default medium and the corresponding cpu-used parameter for AV1 was
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4. It was decided to use the cpu-used=4 parameter due to performance reasons in
the encoding process and to have a comparable preset as for H.265. Each source was
encoded in 4 resolutions and 3 bitrates per resolution resulting in a total of 168 PVS's.
The detailed test design in terms of bitrate and resolution is described in Table 3.11.
In total, 27 subjects participated in the test.

Table 3.11: Test Design - AV1 dataset.

Resolution Bitrate [kbit/s]

360p 512 1024 2048

720p 1024 2048 4096

1080p 2048 4096 8192
2160p 4096 8192 16384

3.1.1.6 Test Results

For checking the reliability of the users, outlier detection was performed during the
analysis. The criterion for outlier detection was based on PCC. PCC was computed
between the raw scores of each user and the mean opinion score (MOS). A threshold
of 0.8 PCC was used as a criterion to detect outliers. This was slightly different
than the thresholds considered for the AVT-PNATS-UHD-1 and AVT-VQDB-UHD-
1 datasets. Based on this threshold, there were two outliers. The MOS and the
associated confidence interval (95% CI) were computed after removing these outliers.
Figure 3.12 shows the overall distribution of the MOS in this test and it can be
observed like the other tests described in this chapter, the tendency is toward higher
ratings. This is due to the fact that the test was designed to address the quality
assessment of high-quality videos.

As with the other datasets, the SOS analysis was conducted on this dataset too. From
the result illustrated in Figure 3.13, it can be seen that the value of the SOS parameter

“"_7m

a” is of the same order of magnitude as the other tests.

Furthermore, a comparison of the MOS for the AV1 and H.265 encoded videos was
performed and it can be observed from Figure 3.14 that on an average AV1 performs
slightly better than H.265.
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Figure 3.13: SOS analysis of AV1 dataset.

Overall Quality Assessment of a HAS Session

Similar to the short-term video quality assessment, lab-based tests have been used

to subjectively assess the overall quality of a HAS session. The tests described in
this section consist of tests designed and conducted as part of the “PNATS Phase 2”

competition.
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Figure 3.14: MOS comparison between AV1 and H.265.

This consists of a total of six different subjective tests. Two out of these six tests
were designed and conducted before the training phase of the competition while
the remaining four were designed and conducted after the training phase of the
competition. In addition to the variation in video encoding settings, the long tests
also involved variation in the duration of the PVSs, initial loading delay, and stalling

events. The range of these parameters are summarized in Table 3.12.

Table 3.12: Range of parameters used in the long-duration tests in the PNATS Phase 2 competition.

Parameter Range

Duration of the PVS 60 seconds - 5 min
Initial loading delay 0 - 30 seconds
Total stalling duration 0 - 26 seconds
Number of stalling events 0-5

Total number of quality level switches 0 -39

Like the short-term tests, these long-term tests were also assigned to different pro-
ponents for test conduction. In this section, only five out of the six tests will be
described as formal permission was only received for these tests to be described as
part of this work. These five tests will be referred to as the “PNATS-UHD-1-Long”

hereon.

This dataset consists of five different tests with videos of duration between 1 and
5min. The tests were designed based on the “immersive” paradigm [ ]in
which the participants never view the same source stimulus more than once. Each
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test included a short training phase in which 3 different videos which included
typical HAS-specific degradations such as video quality changes, initial loading
delay, and stalling were shown to the participants to familiarize them with these
kinds of degradations and consider them in the final assessment of quality.

test_1 and test_2 involved rating videos of 1 min duration. For this purpose, 60
different SRCs in each test were encoded with different HRCs with each HRC
consisting of a combination of different HAS specific quality related effects such as
quality switches, initial loading delay, and stalling. This resulted in a total of 60 PVSs
in both tests. In test_1, 24 participants rated the 60 PVSs and in test_2, 37 participants
rated the 60 PVSs with 6 outliers being detected following the criterion of PCC = 0.7.
The PVSs were displayed on a mobile screen in test_1 with a viewing distance of
6-8H and on a TV in test_2 with a viewing distance of 1.5H. The highest resolution of
the PVS used in test_1 was restricted to 2560 x 1440 as this was the display resolution
of the mobile whereas for test_2 the highest resolution of the PVS was kept at the
SRC resolution of 3840 x 2160.

In test_3 and test_4, the objective was to assess the overall quality of videos of
2min duration. 30 different SRCs in each test were used and in combination with
different HRCs resulted in 30 PVSs. The number of PVSs was adapted to keep the
test duration to within 60 min duration. The PVSs in test_3 were presented on a
mobile screen and as with test_1 the highest resolution of the PVS used in test_1 was
restricted to 2560 x 1440 and in test_4 it was kept at 3840 x 2160 as it was a TV test.
24 participants rated 30 PVSs in test_3. In test_4, the 30 PVSs were rated by a total of
31 participants with no outliers being detected.

test_5 involved quality assessment of videos of 5 min duration with 14 different SRCs
being used for this purpose. In total 14 PVSs were rated by 31 participants with 5
outliers being detected. As the videos were presented on a mobile screen, the highest
resolution of the PVS was again restricted to 2560 x 1440.

The following laboratories and companies were involved in conducting the subjective
tests. test_1 and test_2 were conducted by Netscout in England, test_3 by SwissQual

in Switzerland, test_4 by TU Ilmenau in Germany, and test_5 by Ericsson in Sweden.
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The MOS distribution of all the four tests is shown in 3.15 and reflects a similar
tendency of having more PVSs in the higher quality range as in AVI-PNATS-UHD-1
due to a similar test design philosophy used in the design of the dataset.
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Figure 3.15: MOS distribution of PNATS-UHD-1-Long dataset.

3.2 Out-of-the-lab Subjective Quality Assessment

Although lab-based subjective testing provides an ideal platform for perceptual
video quality assessment in a controlled environment, it is both time-consuming and
expensive. In addition to this, unforeseen circumstances can make it infeasible to
conduct lab tests. For example, the Covid-19 pandemic minimized person-to-person
contact to a significant extent and hence made it impractical to conduct lab tests.
Hence, other out-of-the-lab approaches have to be developed and investigated for

conducting such studies.

Conducting high-resolution video quality assessment studies outside the traditional
lab-based settings has its own challenges. Apart from an uncontrolled and non-

standardized environment, the devices used for playing out content also vary widely
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in an out-of-the-lab setting. Hence, any testing approach should take into account
both of these factors. For this, a method to overcome such problems and conduct an
out-of-the-lab test for higher resolution content by using a pre-defined crop cut out
from the center of the original high resolution (>2160p) video is proposed in this
section.

Short-term Video Quality Assessment

To test the proposed approach of using a pre-defined crop cut out from the center of
the original high-resolution video, quality assessment of 4K/UHD-1 videos is used
as a first use case. This section describes the dataset and platform used as well as
the necessary pre-processing of the encoded videos to conduct a short-term quality
assessment of high-resolution videos in an out-of-the-lab setting.

3.2.1.1 Dataset

The videos from test_1 of the AVT-VQDB-UHD-1 [Rao+19a] dataset are used in this
study. Accordingly, six different source videos of a duration of 10 s each were used.
The source videos have a resolution of 3840 x 2160 pixels and a framerate of 60 fps.
They were encoded with three different codecs, namely, H.264, H.265, and VP9. For
each of the codecs, multiple (bitrate, resolution) conditions were used to encode the
videos, resulting in a total of 180 processed video sequences (PVS). The framerate
of the encoded videos was kept at the source sequence framerate of 60 fps. In the
original lab test, a total of 29 participants took part. As described above, there were
no outliers, based on the criterion of 0.75 Pearson correlation between individual

subjects and the remaining group of participants.

3.2.1.2 Test Platform

To conduct the crowdsourcing test, a modified version of the publicly available tool
avrateNG’ was used. According to the developers, the tool avrateNG was originally

designed for lab-based tests with a rating by a single user. In a crowdsourcing

Shttps://github.com/Telecommunication-Telemedia-Assessment/avrateNG
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scenario, it is desirable to enable multiple participants to take part in the test with
a self-selected timing and hence possibly simultaneously. To this aim, avrateNG
was extended in the following ways: allowing multiple participants to take the test
simultaneously, presenting the video stimuli in the client browser, and adding a
token-based system to ensure participants do not repeat the same test. This extended

version of avrateNG is made publicly available as AVrateVoyager [Gor+21b]°.

3.2.1.3 Pre-processing

The encoded video segments were decoded as described in the publicly available im-
plementation of AVI-VQDB-UHD-1 [Rao+19a], which involves a lossless upscaling
of the encoded videos to the source sequence resolution and framerate (referred to
as the AVPVS in the remainder of the section). In a typical lab test, hardware capable
of seamlessly playing out the AVPVS can be ensured. Whereas, in an out-of-the-lab
context, neither appropriate playout hardware nor a UHD-1 capable display device
can be guaranteed. Since a variety of screen sizes may be used across the participants
in an out-of-the-lab test, the fixed 4K/UHD-1 screen and target resolution used in the
AVT-VQDB-UHD-1 tests by Rao et al. [Rao+19a] will exceed the available resources
in many cases. Hence, different approaches like displaying the most salient regions

in a scene are required for quality assessment.

As a consequence, it was decided to display a 540p center crop of the AVPVS which
is ({z)th the number of pixels of the AVPVS in the lab test. This is based on the
results by Bosse et al. | 1, who concluded that a 128 x 128 pixels patch out of
a 512 x 512 pixels image is sufficient for subjective image quality assessment and
the observations by Goring, Krammer, and Raake [ ] on different pre-defined
center crops for full reference model evaluation. However, there still exists the issue
of playing out the 540p center-cropped AVPVS seamlessly in the browser. To reduce
the data rate of the AVPVS and thus ensure a smooth playout in the browser, the
540p center-cropped version was encoded using H.264 with a CRF of 22. A CRF
of 22 guarantees seamless playout in the browser while entailing negligible loss in
the visual quality of the AVPVS. In the context of the P.1204 competition [Raa+20a],

bhttps://github.com/Telecommunication-Telemedia-Assessment/AVrateVoyager
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a similar CRF encoding was used for the playout of stimuli in the case of mobile
devices.

3.2.1.4 Test Procedure

The out-of-the-lab test was designed with the intention of restricting the total dura-
tion of the test to below 15 minutes. At the beginning of the test, each participant is
asked to fill out a form consisting of information regarding the age range, self-judged
visual acuity on an ACR scale, the device type being used in the test, and also about
the environment the participant is in when doing the test. Only a minimal number
of questions were asked to limit annoyance, and all data is stored in an anonymized
manner to ensure data protection. Desktops, laptops, tablets, and mobile phones
with a recommended minimum resolution of 720p were the devices allowed for the
test. The extension of avrateNG included a check for a minimum height and width
of the used browser, indicating to the subject to enlarge the window when width <
1100 or height < 500. Three choices were provided to describe the test environment:
“Alone in a quiet room”, “Some noise and distractions” and “Significant noise and

distractions”.

For the proof-of-concept, a pragmatic approach of asking each participant to rate
30 PVSs that were randomly selected out of the overall number of 180 PVSs was
chosen. These 30 PVSs were pre-loaded while the participants answered the pre-test
questionnaire and this data had a size of 73MB on average. There was no training
phase since the question remains whether training in perceptual quality studies
only helps the workers to understand the rating task, or whether it also implicitly
suggests the notion of perception/quality of the researchers themselves, and thus,
may lead to biased results [ ]. Foregoing the training phase also has an added
effect of keeping the test duration to within 15 minutes.

3.2.1.5 Results and Evaluation

In the first part of this section, the results of the out-of-the-lab study are discussed,
and in the second part, the results are compared with the lab test by Rao et al. [Rao+19a]
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to demonstrate the validity and reliability of the proposed crowdsourcing approach
for quality assessment of high quality /resolution videos.

Out-of-the-Lab Test Results and Analysis: The crowd panel was mostly recruited
from the university body. As the participants were not compensated, this test
falls into the category of online testing. Figure 3.16 summarizes the results of the
responses to the pre-test questionnaire (cf. Section 3.2.1.4). It can be seen that most of
the participants self-reported a good vision and that they took part in the test in an
environment with “less distractions”. In addition, most of the participants carried
out the test either on a laptop or desktop PC. Most of the participants were in the
age range from 18 — 39 years.

Device type
<18
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1810 24
» 251029
o Desktop
2 301039
S
§ 40t 49
° Tablet
3
< 50t0 59
60 to 69 Phone
70+
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Figure 3.16: Responses to the pre-test questionnaire.

While the participant filled in the questions, the videos were pre-cached and dimen-
sions of the used browser window were collected, see Section 3.2.1.4. The distribution
of the extracted height of the window in which the video was viewed is shown in
Figure 3.17.
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Figure 3.17: Distribution of browser window height across crowd participants.

It can be seen that most of the subjects used the recommended screen resolution
of 720p to watch and rate the videos. An interesting observation is that there are
very few subjects, ~18%, who used a device with a resolution of Full-HD or higher.
This indicates that running an out-of-the-lab study for quality assessment of higher-
resolution videos is challenging. The device distribution substantiates the need for a
test method such as the centre-crop approach used in the presented out-of-the-lab
study.

A total of 175 subjects participated in the online study. The participants in this
study consisted of people recruited from the university body via email reflectors
(reaches students and staff). To determine the outliers in the test, a criterion based
on Pearson correlation coefficient (PCC) was used. In the case of a PCC lower than
0.75 of the individual subject’s ratings to the mean ratings across all subjects, that
subject was considered as an outlier. Based on a threshold of PCC = 0.75, 19 outliers
were detected and the ratings from these participants were removed from further
analysis. A total of 3987 ratings were obtained after outlier removal, with an average
of 22.15 ratings per PVS. In addition, an analysis of how often each PVS is rated was
conducted, and created a histogram of these counts is shown in Figure 3.18.

Furthermore, since each participant rated only 30 randomly selected PVSs out of the
180 total PVSs, further analysis was performed to determine the minimum number of
subjects needed to have each PVS rated at least once. For this purpose, an analysis of
the test results with 64 different randomizations of the order of participants’ ratings
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Figure 3.18: Count distribution of how often PVSs were rated; e.g. x=24 and y=10 means that 10 PVSs
were rated 24 times in the crowd test, etc.

was performed and the results were averaged. This analysis indicated that for the
given test, it took 39 participants to have each PVS rated at least once, and 144
participants to have each PVS rated at least ten times.

Lab versus Out-of-the-Lab Comparison: In this part, the comparison of the results
of the out-of-the-lab and the lab tests is presented.

The distributions of the MOS values of both lab [Rao+19a] and out-of-the-lab tests
are shown is Figure 3.19. From the more negative ratings, it can be observed that
participants in the out-of-the-lab test are more critical as compared to the participants
in the lab test while rating the videos. This can likely be attributed to the fact that in
the out-of-the-lab test, the 540p center-cropped versions of the video were rated by
the participants and not the full UHD-1 version as in the lab test. As a consequence,
the participants in the out-of-the-lab test focused on a smaller area of the video, and
hence may have been more sensitive to any kind of distortions. Further, since only a
small portion of the video was shown, semantic information and a full understanding
of the sequences were not enabled, so the test subjects may have had a stronger
focus on the video-signal quality than with the full video frame being shown. In
future work, such hypotheses can be investigated by assessing the same sequences
within an eye-tracking study, comparing the cropped versus the lab-based full-screen

presentation.
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Figure 3.19: Distribution of MOS in the lab and out-of-the-lab tests.
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Figure 3.20: SOS analysis of the lab and out-of-the-lab tests.

Furthermore, an analysis of the distribution of standard deviations over the MOS
(SOS analysis) as described in [ ] is performed to estimate the similarity be-
tween the lab and out-of-the-lab tests. The results of the SOS analysis are illustrated
in Figure 3.20. For the lab test, the value of the SOS parameter was found to be
a1 = 0.240, and for the out-of-the-lab test of a.,,,,;s = 0.249, indicating the same
order of magnitude and hence a strong similarity of both tests in this regard.

Figure 3.21 shows the comparison of the MOS from the lab and out-of-the-lab tests. It
can be seen that there is a very high correlation between the two tests, with a Pearson
correlation of 0.96, which is comparable to the performance achieved for cross-lab
testing for video quality assessment [I”\V]. This indicates the validity and reliability
of the out-of-the-lab approach of using a 540p center-cropped version of a UHD-1
upscaled video to evaluate the video quality.
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Figure 3.21: Scatter plot of the MOS values from lab [Rao+19a] and out-of-the-lab tests.

Table 3.13: Per-source comparison of lab [Rao+19a] and out-of-the-lab test results.

source pearson spearman kendall rmse
american_football_harmonic 0.98 0.96 0.85 0.535
bigbuck_bunny_8bit 0.99 0.95 0.84 0.305
cutting_orange_tuil 0.96 0.89 0.75 0.276
surfing_sony_8bit 0.97 0.96 0.86 0.689
vegetables_tuil 0.96 0.88 0.73 0.346
water_netflix 0.99 0.98 0.89 0.444

there is a very high correlation between the two tests.

Furthermore, a comparison of the performance of the two test paradigms on a per-

source basis is conducted. As can be seen from Table 3.13, also at a per-source level

In addition, the correlation between the lab and out-of-the-lab tests as a function of
the number of participants in the out-of-the-lab test is analysed. The reason for this is
to evaluate how many participants are required in such a non-full-factorial out-of-the-
lab test. For this analysis, the same approach of randomizing the participant order

64 times as described in Section 3.2.1.5 was used and computing the average overall
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randomizations. Figure 3.22 shows the variation of the correlation between the lab
and out-of-the-lab tests with regard to the number of crowd participants. It should
be noted that it took 39 participants to rate each PVS at least once as described earlier.
From the figure it can be seen that for a correlation between the tests greater than
0.92, a minimum of 39 participants is required, then leading to a similar correlation
as found for cross-lab test comparisons [I’\V]. It should be noted that the required
participants in both cases being the same at 39 is a mere coincidence.
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Figure 3.22: Correlation between lab and out-of-the-lab tests as a function of the number of partici-
pants in the out-of-the-lab test.

Overall Quality Assessment of a HAS Session

The crowd test to assess overall HAS session quality uses the approach described
in Section 3.2.1.3. As with the short-term video quality assessment studies, overall
HAS session quality assessment studies can be conducted in an out-of-the-lab setting.
However, this comes with additional challenges. One major challenge to conducting
such tests with videos of longer duration is the number of PVSs that each participant
in a out-of-the-lab setting is asked to rate. Unlike short-term video quality assessment
where it is still possible to subsample the PVSs to ensure that each test subject views
and rates videos covering the overall quality range, it becomes more difficult when
using videos of longer duration as the overall number of PVSs that is rated by a
participant is limited. Hence, it is needed to compare the subjective ratings between

lab- and crowd-based tests to investigate the rating behavior of the subjects in these
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two different scenarios and thereby check the agreement of the crowd-based studies

in comparison with lab-based tests.

In this section, a test for overall quality assessment of a HAS session conducted in a
crowdsourcing environment following the approach described in Section 3.2.1.3 is

presented.

3.2.2.1 Dataset

For this study, the videos from test_4 of the PNATS-UHD-1-Long dataset are used.
This consisted of a total of 30 PVSs generated from 30 different SRCs of 2min
duration. The SRCs used in this are illustrated in Figure 3.23. The considered SRCs
had a wide distribution of spatial and temporal complexities as shown in Figure 3.24.
All the source videos had a resolution of 3840 x 2160. The HRCs were defined by
varying the parameters described in Table 3.12 to create the PVSs. The original lab
test had 31 participants rating all 30 PVSs with no outliers being detected.

Figure 3.23: Overview of the source videos used for the long term audiovisual quality evaluation in
the centre-crop crowd test.
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Figure 3.24: SI-TI of all the sources used for the long-term audiovisual quality evaluation in the
crowd.

3.2.2.2 Crowdsourcing Platform

The study was conducted using the Clickworker” platform. The countries from
which the participants were recruited were restricted to Europe. For the rating task,
AVrateVoyager [Gor+21b] was used. All the checks mentioned in Section 3.2.1.4 were
also repeated in this test.

3.2.2.3 Pre-processing

The encoded videos were decoded as done for the short-video segments along
with lossless upscaling of the encoded videos to SRC resolution and framerate.
Furthermore, a 720p centre-crop of the video was extracted to be played out in the
rating task. The decision for using a larger centre-crop as compared to the short-
duration video quality crowdsourcing test was to provide more context in terms of
the video content as the duration of the content was longer. This centre-crop version
of the video was then encoded with a CRF of 22 using H.264 with a yuv420 8-bit
pixel format. Also, the decision of using the centre-crop and the chosen CRF-based
encoding was primarily motivated by the challenges outlined in Section 3.2.1.3.

"nttps://www.clickworker.com/
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3.2.2.4 Test Procedure

As with the short-duration video quality test, the overall test duration was restricted
to 15 min. This included the time required to fill in the pre-test questionnaire which
consisted of the same questions asked in short duration video quality assessment
study. Unlike the short-duration video test, this test had a training phase consisting
of one training video with all the possible degradations related to a HAS session such
as initial loading delay, quality switches, and stalling events to familiarize the test
participants with these degradations while evaluating the video quality. Furthermore,
the subjects were provided explicit instructions to consider only the degradations
and not the content to evaluate the overall quality of a session. There were no
distortions introduced to the audio. A total of 100 crowdworkers were recruited
via the Clickworker platform and as a pragmatic approach, each crowdworker was
asked to rate 5 PVSs that were randomly selected out of the overall number of 30
PVSs. The crowdworkers were compensated with an appropriate payment for this
task thus making this study a traditional crowdsourcing study. These 5 PVSs were
pre-loaded while the subjects answered the pre-test questionnaire.

3.2.2.5 Results and Evaluation

The results are presented in two parts. The results of the crowdsourcing study are
presented in the first part. In the second part, the comparison results of the lab and
crowdsourcing tests to demonstrate the applicability and reliability of extending
the centre-crop-based video quality assessment for long-duration videos with HAS

related impairments.

Crowdsourcing Test Results and Analysis: As mentioned above, the crowdwork-
ers were recruited using Clickworker, and hence unlike the short-duration video test,
the subjects were paid. Figure 3.25 shows the results of the pre-test questionnaire. It
can be observed that most of the participants did the test alone in a quiet room with a
significant proportion of them doing it on their laptop or desktop and self-reporting

good to excellent visual acuity. It should be noted that visual acuity determination is
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based on self-reporting on a 5-point ACR scale. Also, there is a good distribution in
the age range of participants taking part in the study.
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Figure 3.25: Responses to the pre-test questionnaire.

In addition to gathering responses of the participants using the pre-test questionnaire,
the dimensions of the used browser window were also collected in parallel to the
subjects answering the questionnaire. From Figure 3.26, it can be observed that like
in the short-duration video test, very few subjects (<10%) used a screen with 1080p
or higher resolution, thus justifying the decision to use a 720p center-crop for quality
assessment.

In addition to this, an analysis of how often each PVS was rated was performed and
is illustrated in 3.27 and the average number of ratings for each PVS was 17.2.

Lab versus Crowd Comparison: A comparison of the lab and crowd tests is de-
scribed in this section to show that the centre-crop approach can be used for the
assessment of long-duration videos with HAS-related impairments. Figure 3.28
shows the distribution of the MOS in both lab and crowd tests. As with the short-
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Figure 3.26: Distribution of browser window height across crowd participants.
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Figure 3.27: Count distribution of how often PVSs were rated; e.g. x=18 and y=5 means that 5 PVSs
were rated 18 times in the crowd test, etc.

duration video test, the crowd participants are more critical than the lab subjects
also most likely because they had a smaller region to focus on and hence would
have been more critical to the video-related degradations. As with the short test, this
hypothesis has to be further investigated.

Furthermore, an SOS analysis of both the lab and crowd tests, respectively, was
conducted to estimate the similarity between the two tests. There exists a high
similarity between the tests which is confirmed by the SOS plots illustrated in Figure
3.29 and same order of the magnitude of the SOS parameter with a;,;, = 0.221 and
Acrowd = 0.226.
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Figure 3.29: SOS analysis of the lab and crowd tests.

In addition to these analyses, a comparison of the MOS from the lab and crowd tests
was performed and is shown in Figure 3.30. A high correlation can be observed
between the two tests with a PCC of 0.96 thus indicating the validity and reliability
of extending the crowdsourcing approach to assess the overall quality of a HAS
session. Also, it can be observed from the high value of the Spearman correlation
of 0.94 that the rank order of the PVS is similar in both the tests, and the general
agreement in assessing the cases related to stalling events further establishes that the
instructions provided to the participants were sufficient.
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Figure 3.30: Scatter plot of the MOS values from lab [Rao+19a] and crowd tests.

3.3 Summary

To summarize, this chapter focused on subjective quality assessment of short-term
video quality for high-resolution videos and the overall integral quality of a HAS ses-
sion in both lab and out-of-the-lab contexts. Hence, a series of short-duration video
quality assessments and overall HAS session quality assessment studies designed

and conducted over the course of this thesis have been presented.

Mainly, lab-based tests were used for the quality assesssment for both use cases.
For this, two different series of short-term video quality assessment tests have been
presented. The first set of short-duration video quality tests was designed and
conducted as part of the PNATS Phase 2 competition. This consisted of four different
subjective tests using a wide range of source contents with more than 50 different
SRCs in each of the four tests. All these tests follow a non-full-factorial test design
due to the high number of SRCs employed in each of the tests. These tests form the
AVT-PNATS-UHD-1 dataset. The second set of tests was developed in the context

79



Chapter 3 Subjective Quality Assessment of 4K/UHD-1 Videos

of this thesis in parallel to the PNATS Phase 2 competition, and also consisted of
four different tests. A total of 17 different SRCs were used in these tests and all the
tests in this set followed a full-factorial design. These four tests together form the
publicly available AVT-VQDB-UHD-1 dataset. Furthermore, a brief description of the
dataset created as part of the PNATS Phase 2 competition, namely, PNATS-UHD-1, is
provided.

In addition to these two test series, another test was designed and conducted to
compare the performance of AV1 with H.265 in terms of subjective ratings and also
generating ground truth to extend existing SoA models for newer codecs and higher

resolution and framerate.

Following this, a series of overall HAS session quality assessment studies were
designed as part of the PNATS Phase 2 competition. These tests used audiovisual
sequences of duration 1-5min across five different tests. These five tests form the
PNATS-UHD-1-Long dataset. Out of five tests designed for this purpose, one was
conducted as part of this thesis. The remaining four tests were conducted by other
proponents involved in the PNATS Phase 2 competition, namely, Ericsson, Netscout,
and SwissQual. These databases were shared by the respective proponents for model

development and evaluation conducted as part of this thesis.

All these datasets were created with the primary objective of generating ground
truth for developing models capable of short-term video quality prediction for high-
resolution video and overall HAS session quality. Hence, this will be used as ground
truth for the model development and evaluation performed as part of this work and

will be presented in Chapter 4.

To assess the viability of using out-of-the-lab testing approaches for quality assesss-
ments of the short-term video quality of high-resolution videos and overall integral
quality of a HAS session, further tests were conducted. For this purpose, an approach
based on a pre-defined centre-crop was proposed to conduct short-term quality as-
sessment of high-resolution videos in an online scenario. Using this approach, an
online study using the PVSs from test_1 of AVI-VQDB-UHD-1 was conducted. A
high correlation between the MOS of the lab and out-of-the-lab tests demonstrated
the validity of the out-of-the-lab test and its agreement with the corresponding lab
test.
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As a next step, the applicability of the proposed centre-crop approach for overall
HAS session quality assessment was tested. For this, the PVSs from test_4 of the
PNATS-UHD-1-Long dataset consisting of videos of 2 min duration were used. The
analysis of the results from the lab and crowd tests in terms of SOS and correlation
showed a high similarity between the tests and validity and agreement of the crowd
test respectively. From the observations from the two out-of-the-lab studies, it can be
concluded that these can be used as a viable alternative to the lab tests for both use

cases, thus addressing research question 5.

Using the data from the subjective tests, a family of models referred to as AVQBits
has been developed and evaluated as part of this thesis and will be presented in the

next chapter.
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AV Bits: Adaptive Bitstream-based
Video Quality Model

With the aim of accurate video quality monitoring either at the client side, in the
network, or directly after encoding, which is critical to assess and improve the
Quality of Experience perceived by the end-user, a versatile, bitstream-based video
quality model namely AV QBits is presented in this chapter. It can be applied in
several contexts such as service monitoring, evaluation of encoding quality, gaming
video QoE, and even omnidirectional video quality assessment. At its core, AV QBits
encompasses the standardized ITU-T P.1204.3 model, with further model instances
that can either have restricted or extended input information, depending on the
application context. Four different instances of AV QBits are proposed and investi-
gated: (1) P.1204.3 as a bitstream-based model with full access to encoded bitstream
information, (2) a “Mode 0” variant, with access only to metadata; (3) a “Mode 1”
instance using frame-level data and metadata; (4) a Hybrid no-reference Mode 0
(two variants) extension which has access to pixel data and metadata. For training,
the AVI-PNATS-UHD-1 subjective test dataset presented in Chapter 3 is used. The
evaluation is performed with the publicly available AVT-VQDB-UHD-1 [Rao+19a]
dataset. All AVQBits variants are made publicly available for the community for
further research.

With this, research questions 1 and 2 as outlined in Chapter 1 will be tackled in this
chapter.
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This chapter is based on the following publications:

[Raa+20a] Alexander Raake, Silvio Borer, Shahid Satti, Jorgen Gustafsson, Rakesh
Rao Ramachandra Rao, Stefano Medagli, Peter List, Steve Goring, David Lindero,
Werner Robitza, Gunnar Heikkild, Simon Broom, Christian Schmidmer, Bernhard
Feiten, Ulf Wiistenhagen, Thomas Wittmann, Matthias Obermann, and Roland
Bitto. “Multi-model standard for bitstream-, pixel-based and hybrid video quality
assessment of UHD/4K: ITU-T P.1204”. In: IEEE Access 8 (2020)

[Rao+20a] Rakesh Rao Ramachandra Rao, Steve Goring, Peter List, Werner Rob-
itza, Bernhard Feiten, Ulf Wiistenhagen, and Alexander Raake. “Bitstream-based
Model Standard for 4K/UHD: ITU-T P.1204.3 — Model Details, Evaluation, Analy-
sis and Open Source Implementation”. In: Twelfth IEEE International Conference on
Quality of Multimedia Experience (QoMEX). Athlone, Ireland, May 2020

[RGR22] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“AVQBits - Adaptive Video Quality Model Based on Bitstream Information for
Various Video Applications”. In: IEEE Access 10 (2022)

[Rao+19b] Rakesh Rao Ramachandra Rao, Steve Goring, Patrick Vogel, Nicolas
Pachatz, Juan Jose Villamar Villarreal, Werner Robitza, Peter List, Bernhard Feiten,
and Alexander Raake. “Adaptive video streaming with current codecs and formats:
Extensions to parametric video quality model ITU-T P.1203”. In: Electronic Imaging
(2019)

[RGR21a] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake. “En-
hancement of Pixel-based Video Quality Models using Meta-data”. In: Electronic
Imaging, Human Vision Electronic Imaging. 2021

The base model, AVQBits| M3 P.1204.3, was developed as part of the “PNATS Phase
2” competition conducted in ITU-T SG12/Q14 which resulted in the ITU-T P.1204
series of Recommendations. To enable a detailed understanding of the model devel-
opment and validation in the standardization context, an overview of the “PNATS
Phase 2” competition is provided before presenting the details of the model algo-

rithms and the extensive evaluation of the models.
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4.1 P.NATS Phase 2 Competition

The details related to the “PNATS Phase 2” competition presented in this thesis is
based on Raake et al. [Raa+20a]. The overall procedure was designed by the propo-

nents and was formalized in the of form contributions and temporary documents
presented at ITU-T SG12/Q14.

General Details

With the aim of developing more accurate short-term video quality models than the
ones recommended as part of the ITU-T P.1203 series of Recommendations, ITU-T
SG 12 in collaboration with the Video Quality Experts Group (VQEG) launched the
P.NATS Phase 2 competition. Initially, a total of 11 proponents agreed to be part of
the competition. Over the course of the competition, two out of the 11 proponents
dropped out and did not submit any models for further evaluation.

Models in the following categories were allowed to be submitted as part of the compe-
tition for consideration to be standardized based on the criteria that will be outlined
later: Bitstream Mode 0 (BSMO), Bitstream Mode 1 (BSM1), Bitstream Mode 3 (BSM3),
Pixel Full-Reference (PXFR), Pixel Reduced-Reference (PXRR), Pixel No-Reference
(PXNR), Hybrid Full-Reference Mode 0 (HYFO), Hybrid Full-Reference Mode 1
(HYF1), Hybrid Full-Reference Mode 3 (HYF3), Hybrid Reduced-Reference Mode 0
(HYRO), Hybrid Reduced-Reference Mode 1 (HYR1) and Hybrid Reduced-Reference
Mode 3 (HYR3), Hybrid No-Reference Mode 0 (HYNO), Hybrid No-Reference Mode
1 (HYN1) and Hybrid No-Reference Mode 3 (HYN3).

As part of the competition, 13 training databases were jointly created by the propo-
nents for model development. After the models were trained using these databases
and submitted to the ITU-T TSB, 13 validation databases were jointly designed by
the proponents. The details of the test design and overview in terms of the average
confidence interval, average correlation, target display, number of test participants,
and the number of PVSs rated by each participant for these training and validation
databases have been presented in Chapter 3.
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As part of performing the validation using unknown databases, the subjective scores
of the validation tests were submitted to the ITU-T TSB. A period of bug-fixing was
allowed for the models before the final validation of the submitted models and a
well-defined bug-fixing procedure was designed for this purpose. Following the
bug-fixing procedure, each proponent had to compute the scores using the models
that were submitted and uploaded these scores to a dedicated folder only accessible
to a given proponent on the ITU-T TSB.

Once the prediction scores of all the models were uploaded, a model verification
procedure was carried out. The objective of this procedure was to ensure that the
submitted predictions were produced by the submitted models that were uploaded
to the ITU-T TSB. The process consisted of proponents reproducing scores for a

dedicated number of PVSs under the supervision of one other proponent.

Following the verification of all the models, the subjective scores of the validation
databases were disclosed to all the proponents to validate the models and compute
the performance numbers in terms of the root mean square error (RMSE) for each
model to determine either a winning model or a winning group. In total, 35 model
candidates spanning 10 different model categories were submitted as part of the
competition. The determination of the winning candidates was done by following a

well-defined statistical evaluation procedure.

The following section is mainly focused on describing the used statistical evaluation.
In-depth information on the databases used to determine the winning candidates is

presented in Chapter 3.

P.NATS Phase 2 Statistical Evaluation

The first step of the statistical evaluation procedure consisted of data cleaning and
mapping.

4.1.2.1 Data Cleaning and Mapping:

In this step, each database from both training and validation was inspected to

identify problematic cases related to errors in applying the specific encoding settings,

86



4.1 PNATS Phase 2 Competition

unsuitable sources, or improper subjective test conduction. This process involved

both removing individual PVSs and entire databases if issues were found.

To analyse the validity of a database, the common set PVSs were used. The rank
order and absolute scores of these common PVSs were investigated to determine if
the different subjective tests had a similar range in terms of quality scores. During
this analysis, it was found that one training database did not comply with the agreed-
upon subjective testing procedure and hence was removed from further analysis and

winning model determination procedure.

Furthermore, to remove the bias between subjective tests across different labs, a per-
database linear mapping was applied to the predicted scores before computing the
performance evaluation metrics as recommended in ITU-T Rec. P.1401 [ ]. Fol-
lowing this, the performance evaluation metrics were computed for each submitted
model.

4.1.2.2 Performance Measure:

As aforementioned, the performance measure used to evaluate the submitted mod-
els is RMSE aggregated across all databases [ ]. For the determination of
model performance and subsequent comparison of the models, both training and
validation databases were used with different weights. For the final performance
calculation, the training databases had a weight of 0.1 (Wy4ining = 0.1) and the vali-
dation databases had a weight of 0.9 (wy1idation = 0.9). Following the per-database
RMSE computation, the aggregated error across all the databases was computed as a
weighted sum of the RMSE per database and is defined by Equation (4.1).

1 M

Po =7 2 Wk RMSEZ, (4.1)

k=1

where M represents the total number of (training and validation) databases, wy is
the weight of each database, and RMSE , is the root mean square error of model v
for database k. The normalization constant W is given by W = Y™ w;. The model

achieving the lowest p, value is the best model.
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In addition to computing the performance evaluation measure for each of the sub-
mitted models, a minimum performance criterion based on a baseline model was

determined.

4.1.2.3 Minimum Requirement:

A simple model which uses bitrate to predict the quality of a video was chosen as a

baseline model. The baseline model is as described in Equation (4.2).

Qpaseline = a - log(bitrate +b) + ¢ 4.2)

The coefficients of the model are both codec and target display device dependent
and the values were determined by training against the corresponding training data.
Using the determined coefficients, the performance of the model was calculated
as described in Section 4.1.2.2 and the p, associated with this ppse1ine Was used
as a minimum threshold which each of the submitted models had to better to be

considered for winning model determination.

Following the determination of the py,siine, the performances of the models were

compared to determine the winning candidate models.

4.1.2.4 Model Performance Comparison

The models passing the minimum required performance criterion were considered
for winning models determination. The comparison of the model performances was
not done based on absolute-RMSE and was instead tested for statistical significance.
The statistical significance test was applied to the aggregated error p,. p, is approxi-
mately x2-distributed according to the Welch-Satterthwaite approximation [ ]
with the degrees of freedom 6 given by Equation (4.3).

(E]](Vi1 wk)z

0~ 5
Y (ag,i)

, (4.3)
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where wy represents the weight of the database k and 6; denotes the degrees of
freedom of RMS E]%’v and is given by 0, = Ny — 2, with Nj the number of PVSs in the
database k. For the aggregated error p, of model v, the statistical significance test

takes the form shown in Equation (4.4).

t, = max (o, Po _ F(0.95, 9,9)) (4.4)
P in

Here, v,,;,, denotes the model with lowest error p,, . in the evaluation, F(0.95,6,0)

denotes the 0.95-quantile of the F-distribution with 6 degrees of freedom [ ]. If

ty = 0, the model v is considered to be statistically equivalent to the model v,,;,. In

case that t, > 0, the difference in performance between the model v,,;,, and model v

is termed "statistically significant".

Following this significance test, the winning models were determined.

4.1.2.5 Model Selection Procedure

For a model to be regarded as a winning candidate it had to pass the following
three criteria. Firstly, the considered model should significantly outperform the
baseline model described in Equation (4.2). Secondly, the model has to either perform
significantly better or be statistically equivalent to the other models in the category
to which the models belong. Finally, the model under consideration should perform
significantly better than the models that are simpler than themselves in complexity'.

4.1.2.6 Winning Models

Following the described procedure, winning models in five different categories were
determined. The five categories in which the winning models were determined were
BSMO, BSM1, BSM3, HYNO, and PXRR. In the BSMO category, three different models
were part of the winning group and in the BSM1 category, there were two different
winning models. For the remaining three categories, namely, BSM3, HYNO, and

IComplexity was defined in terms of either additional information that are required (e.g. a pixel-
based NR model vs. a pixel-based hybrid NR model) or referring to the complexity of input
information of similar type (e.g. RR vs. FR, with FR being more complex.)
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Figure 4.1: General model structure of AVQBits including all four model instances.

PXRR, there was only one winning model per category. As per the rules set out
for the competition, all winning models of a certain category were required to be
merged and optimized to create one model that could be finally standardized. As
no agreement could be reached by the winning proponents for the BSM0 and BSM1
categories, no model was standardized in these two categories. Hence, the final
outcome of the competition was the three standardized models for the categories
of BSM3, PXRR, and HYNO which resulted in ITU-T Rec. P.1204.3, P.1204.4, and
P.1204.5 respectively.

The models developed by the author during the course of this work were part of the
winning groups in the BSM0, BSM1, and BSM3 categories.

In the next section, a detailed description of the AVQBits models along with the

training procedure and validation results is presented.

4.2 Short-term Video Quality Models: Model Description

This section presents a detailed description of the algorithms of the different instances
of AV(QBits focused on demonstrating the versatility of the AV QBits model in terms
of scalability and adaptability regarding the available input information, starting
with the standardized ITU-T P.1204.3 model. As aforementioned, in this chapter,
model instances of two different types are introduced, namely, bitstream-based
and hybrid. For the bitstream domain, the focus is on the ITU-T P.1204.3 standard,
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which is a Mode 3 model with access to full bitstream information, referred to as
AV QBits|M3 in the following. Two further AVQBits instances are considered for
application scenarios where the full bitstream information is not available. For
these cases, Mode 0 and Mode 1 variants of AVQBits are proposed (AVQBits| MO,
AV QBits|M1). To describe all AVQBits instances, the AVQBits| M3 algorithm with
its full Mode 3 bitstream access forms the starting point. The Mode 0 and 1 instances
are implemented by synthetically generating missing model input information based
on the Mode 0 or 1 type information available, as will be outlined in subsequent
sections. For the case that only Mode 0 type metadata is available, but a more
accurate video quality estimation is sought than what can be achieved with a Mode
0 model, a hybrid no-reference Mode 0 model instance of AVQBits is proposed
(AVQBits|HO). It has access to Mode 0 metadata and the decoded pixel information.
The pixel information is used as an additional input by converting the degraded
video into a “quality-equivalent bitstream” using an external video encoder and then

applying the existing and unchanged full-bitstream-based AV QBits|M3.

The general model structure of the proposed AV QBits model is shown in Figure 4.1.
The approach is centred around the full-bitstream-based video quality model by the
authors [Rao+20a] standardized as ITU-T P.1204.3, i.e. AVQBits|M3. For example,
in the case of a Mode 0 or Mode 1 model, the required parts of the full-bitstream
AV QBits|M3 model are adapted to handle the input and use the underlying other
components for the final prediction. For the hybrid case, in the first iteration a

quality-equivalent video bitstream mimicking the original bitstream is created.

To enable reproducibility, an open-source reference implementation of all the pro-

posed models is made publicly available’.

AVQBits|M3 / P.1204.3

All AVQBits instances are based on the Mode 3 AVQBits| M3 model (ITU-T Rec.
P.1204.3). Hence, its algorithm is described here first, followed by the different further
AV QBits instances. An overview of ITU P.1204.3 model is shown in Figure 4.2, which
highlights the individual components of the AV QBits general structure. It should be

Zhttps://github.com/Telecommunication-Telemedia-Assessment/pl204_3_
extensions
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noted that the model is developed for two different target device categories, namely,
PC/TV and Mobile/Tablet (MO/TA). This and all further models presented here are
applicable to videos encoded with the H.264, H.265 and VP9 codecs. An extension to
AV1 is currently underway. For all codecs, a corresponding bitstream parser is used
to extract the relevant bitstream information as input to AVQBits| M3. The model
consists of two components, a traditional curve-fitting-based component (referred to
as the “Core Model”) and a machine-learning component, which are described in

more detail in the following sections.

4.2.1.1 Core Model

The “Core Model” is based on the principle of degradation-based modeling, similar
to ITU-T Rec. P.1203.1 [ |- It is initially inspired by the so-called E-model for
speech quality [ ; ; ] and also based on the work on modeling televi-
sion picture quality by Allnatt [ ]. In the core model, three different degradations
expressed on a [0,100] scale are considered: quantization degradation D,, upscal-
ing degradation D, and temporal degradation D;. Values on the 100-scale can be
mapped to the 5-point ACR-scale used in the subjective test (i.e. the resulting mean
opinion score, MOS) using the S-shaped transformation from the E-model [ 1,
as further described in Appendix C. This way, scale-compression effects of the ACR-
scale at the scale ends can be avoided [ ], improving predictions, especially for
the higher-quality range of the scale.

Quantization Degradation: D, The observable degradation that results from the
chosen quantization settings during the encoding process is termed “Quantization
degradation” (D), see also [ ; ]. This type of degradation manifests
itself as blockiness or deblocking-filter-related blurring to the end-user. Since this
type of degradation is dependent on the specific encoding settings, the “Core Model”
handles D, separately per codec. The number of codec categories is extended from
the initial three (H.264, H.265, VP9) to five, by including the bit-depth information
and splitting H.264 and H.265 into 8- and 10-bit variants.

D, is a function of the quantization parameter (QP) used to encode the video, which

is extracted as model input information using the respective bitstream parser. To
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calculate Dy, firstly, quant, which is the normalized value of the QP is defined, cf.
Equation (4.5).

QPon— Iframes

uant = 4.5
q meax ( )
Here, QP is codec and bit-depth dependent.
QP10 =51, if codec is H.264-8-bit or H.265-8-bit (4.6)
QPy0 =63, if codec is H.264-10-bit or H.265-10-bit 4.7)
QP10 =255, if codec is VP9 (4.8)

QPron—Iframes is the average of the QP for all non-I frames for an entire segment.

The resulting quant € (0,1]. This quant value is then used to estimate mos,, see
Equation (4.9).
mosy; = a+b-exp(c-quant +d) 4.9)

mos, is used to estimate Dj ;q, that uses RfromMOS as the mapping function to

map the 5-point ACR scale to a 100-point scale similar to the one recommended in
ITU-T G.107 [ 1.

Dy _raw = 100 — RfromMOS(mos,) (4.10)

The final D, value is the result of constraining Dy sy to [0,100] as shown in Equa-
tion (4.11).

Upscaling Degradation: D, In addition to the degradations resulting from the
chosen encoding settings, there are observable degradations resulting from upscaling
the distorted video to the screen resolution during playback, which can be perceived
by an end-user as blurriness. This kind of degradation is termed the upscaling degra-
dation (D,). Hence, the “Core Model” should be able to account for this upscaling

degradation and it is assumed that this degradation is codec-independent. Due
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Figure 4.2: General model structure of the AVQBits|M3 / P.1204.3 model.

to the fact that in real-world streaming scenarios, upscaling is typically performed
by the player software, where streaming resolutions lower than the target screen
resolution typically are a result of the adaptive streaming of bandwidth-dependent
representations, this degradation is assumed to be codec-independent.

Dy raw =x -log(y - scale_factor) (4.12)
Du :max(mln(DH_raw, 100), 0) (4.13)

Equation (4.12) shows how D, is estimated, where D,, is the [0,100] constrained
value of D, 140, with log being the natural logarithm. The scale_factor is calculated

according to Equation (4.14)

coding_res

display_res (4.14)

scale_factor =

as the ratio of coding and display resolution, with display_res = 3840 x 2160 for
PC/TV and 2560 x 1440 for mobile/tablet. coding_res is the resolution of the encoded
video and is expressed in terms of height x weight. The scale_factor is always limited
to values € (0,1].

Temporal Degradation: D; Finally, the “Core Model” handles the degradations due
to the adjustment of the lower framerate representations to the display framerate
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as temporal degradation (D;). This type of degradation may be perceivable as
jerkiness. Similar to upscaling D,,, it is handled in a codec-independent fashion and

is estimated as follows:

D:,,, =z -log(k - framerate_scale_factor) (4.15)
D; = max(min(D _ya,100),0) (4.16)

The temporal degradation D; is mainly a function of the encoded and the display
frame rates (the latter assumed to be constant with 60) that are combined in a
framerate_scale_factor, cf. Equation (4.17), a value scaled in the range (0, 1]:

coding_framerate

" (4.17)

framerate_scale_factor =

4.2.1.2 Prediction

The Equation (4.18) describes the final prediction of the “Core Model”, My,,. Here,
the described degradation-based approach is shown, using the 100-scale, My, -

The final prediction is further rescaled to a 5-point MOS-scale, Equation (4.19). Here,
MOS fromR is the inverse mapping from the 100-point scale to the 5-point scale,

similar to the one recommended in ITU-T G.107 [ ]
MP[O,loo] =100 — (Dq + Dy + Dt) (4.18)
MP[1,4.5] :MosfmmR(Mp[g,mo]) (4.19)
Mpar =scalet05(Mp[L 4.5]) (4.20)

During the training of the model, the subjective scores were linearly mapped to a 4.5-
point scale from the 5-point scale to avoid information loss due to the R fromMOS
and MOS fromR computations, since both of these mapping functions assume that
the highest MOS that can be reached is 4.5. Hence, the coefficients predict the
video quality scores on a 4.5-scale, denoted as M, .. Consequently, as a final
step, the predictions on the 4.5-point scale are mapped back to the full 5-point scale
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range using a simple linear transformation, denoted as scaleto5 (see Appendix C),

Equation (4.20), resulting in the final prediction of the parametric core model My,;.

4.2.1.3 Machine-learning-based Video Quality Model

The second part of the model uses a machine-learning approach to estimate video
quality. It is used to estimate the “residual”, that is, the part of the MOS that the
parametric “core model” part is unable to predict. Hence, the target for the training
for the machine-learning part of the model is the difference between MOS and the
“core model” output, see Equation (4.21).

target_residual = MOS — Mpay (4.21)

This machine-learning part of the model uses Random Forest (RF) regression as the
underlying machine-learning algorithm and is referred to as Mgr in the following.
Two different RF models, one each for the PC/TV and MO/TA cases are trained.

In addition to the features the “Core Model” uses, bitstream features such as the
average motion per frame, motion in the x-direction (horizontal motion), and frame
sizes with frame types are extracted with the bitstream parser and employed as
model input. The rationale behind this is that the parametric part is not able to fully
incorporate the spatio-temporal content complexity of the video sequences. The RF
model also uses the “Core Model” prediction M,,, as an additional feature. These
features are aggregated according to different functions and used as input to the
random forest. The required aggregations are presented in Table 4.1. The Random
Forest model used 20 trees with a fixed depth of 8. The final output was calculated
as shown in Equation (4.22):

MRr = Mpgr + predicted_residual (4.22)

Hence, the RF-based quality prediction is the addition of the predicted residual value
predicted_residual to the My,, value predicted by the core model.
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Table 4.1: Aggregated features for RF model.

Aggregated Feature Type
Framerate float
Resolution (width - height) of the distorted video int
Codec (H.264, H.264_10bit, H.265, H.265_10bit, VP9) boolean
Mpar float
Mean bitrate per segments float
Maximum frame size int
Kurtosis of the non-I frame sizes float
Standard deviation of frame size of non-I frame in bits float
Quant float
IOR of the average QP of non-I frames float
IQR of the minimum QP per frame float
Kurtosis of the average QP of non-I frames float
Mean of the average QP of non-I frames float
Standard deviation of maximum QP of non-I frames float
Kurtosis of the average motion per frame over all frames in a segment float
Minimum standard deviation of motion in the x-direction (horizontal motion) float
per frame

4.2.1.4 Overall Video Quality Prediction

The overall final video quality prediction is the convex linear combination of the
predictions from the parametric M,, and machine learning parts Mgp. In this case,
equal weights, thus w = 0.5, are assigned to both of the predictions, shown in
Equation (4.23). Considering Equation (4.22), it is shown that the RF residual part
overall has a weight of 0.5, with the core model prediction being weighted with
0.5+05=1.

Prediction = w - My + (1 — w) - Mgr (4.23)

To enable reproducibility, an open-source reference implementation of the model
along with the FFmpeg-based bitstream parser for all three codecs H.264, H.265, and

VP9 is made available®, including also the trained random forest model.

3https://github.com/Telecommunication-Telemedia-Assessment/bitstream_
mode3_videoparser
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Figure 4.3: General model structure of the AVQBits| M0 model.

4.2.1.5 Per-1-Second Score Prediction

In addition to the overall per-segment video quality score, the model also outputs

per-1-second scores. The per-1-second score is calculated using Equation (4.24).

Qpnon—l,per—seg

per-1-sec-score = X Prediction (4.24)

QPyon—1,per—sec
where,

> QPpon—1,per—seg 18 the average QP of all non-I frames in a segment

> QPuon—1,per—sec is the average QP of all non-I frames for each second

> Prediction is per-segment video quality score described in Equation (4.23)

It should be noted that the per-1-second scores are calculated with a non-overlapping

1-sec window.

AV QBits| MO

A Mode 0 model is the least complex of bitstream models, both in terms of avail-
able input information and computational complexity. It has access to metadata
such as bitrate, resolution, framerate, and codec information as available input for
video quality estimation. The proposed Mode 0 model AV QBits| MO instantiates the
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AV QBits model using the same general model structure as outlined for AV QBits| M3
above and underlying ITU-T Rec. P.1204.3, with some key modifications which are
indicated in Figure 4.3. The traditional curve-fitting-based part of AVQBits|M3,
referred to as the “Core Model” in Sec. 4.2.1, is exclusively used in AVQBits| MO,
due to the limited numbers of features available for a Mode 0 model. The RF-based
model component of AVQBits| M3 for the residual is not used in AVQBits| M0, and
with the purely metadata-based input information, the model is not content-aware.
The “Core Model” is made up of three different degradations, namely, coding/quan-
tization degradation, upscaling degradation, and temporal degradation. For the
Mode 0 instance AV QBits| MO, the focus is only on the quantization degradation,
because this part is the only one affected by the lack of full-bitstream information.

The quantization degradation in the case of AVQBits|M3 is a function “quantization
parameter” (QP), which is codec dependent. Since in a Mode 0 model, there is
usually no access to the bit-depth information as input, only three codec categories
are defined, namely, H.264, H.265, and VP9, in contrast to five codec categories in
AV QBits| M3, see Sec. 4.2.1. Accordingly, QPy,,x which is required to define quant
as proposed in Equation (4.5) is restricted to one of the following two values based
on the used codec.

QP =63, if codec is H.264 or H.265 (4.25)
QP =255, if codec is VP9 (4.26)

Because QP is not accessible as direct input information in the case of a Mode 0
model, it is approximated using the available metadata information, namely, bitrate,

resolution, and framerate, see Equation (4.27).

Qppred = dgp_mo + bgp_mo - log(bitrate)
+ cqp_mo - log(resolution) (4.27)

+dgp_mo - log( framerate)
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Figure 4.4: General model structure of the AVQBits| M1 model.

The resulting quant is defined as in Equation (4.2.2) and is content agnostic, due to
the lack of content-specific features.

QP pred

OPrn (4.28)

quant =

Using quant as defined in Equation (4.2.2), quantization degradation is calculated as
described in Sec. 4.2.1.1. As a result of using QP instead of the actual QP value as
in AV QBits| M3, the coefficients related to the quantization degradation should also
be re-trained by taking into account the QP,,,; values. The training procedure and

the resulting coefficients are detailed in Section 4.3.2.

4.2.2.1 Per-1-Second Score Prediction

For the AVQBits| M0 model, no separate windowing approach is used unlike in the
case of AVQBits|M3 / P.1204.3 and hence the per-1-second scores are just equal to

the per-segment scores.

AV QBits|M1

In addition to the metadata such as bitrate, resolution, framerate, and codec infor-

mation, a Mode 1 model has access to frame size and frame type information. This
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information enables the inclusion of source-, and hence, content-specific features into
the model. Like the Mode 0 model AV QBits|MO0, the Mode 1 model AVQBits|M1
introduced in this thesis is based on the same general model structure as that of
AV QBits|M3 (i.e. ITU-T P.1204.3) and just modifies the information pre-processing
for the “Core Model”, as seen in Figure 4.4 which is a reduced variant of the gen-
eral model structure shown in Figure 4.1 for clarity. Here too, the focus is on the
quantization degradation Dy, as it is the only Mode-dependent part of the model.

As in Mode 0, the AVQBits| M1 model has been developed for three codecs, namely,
H.264, H.265, and VP9, for one single bit-depth, as the exact profile usually cannot
be known based on the available input information. Hence, the same QP values
are used for the three categories as for AVQBits| MO, cf. Equations (4.25) and (4.26).

For the purpose of QP estimation, two new features using the framesize and frame-
type information are defined in Equations (4.29) and (4.30).

The feature fsratio represents the ratio between the average sizes of I-frames and

non-I-frames for a given segment under consideration:

1/N1Yi(S1,)
1/Nn1 Xi(Sut,j))

fsratio = (4.29)

Here, S is the size of I-frame 7, S, ; is the size of a non-I-frame, that is, P- or B-frame,
which are treated alike for this calculation, with index j. Nj is the overall number
of I-frames, Ny,; is the overall number of non-I-frames. Like for AVQBits| M3, all
I-frames i and non-I-frames j belonging to a given segment under consideration are

used.

The second feature introduced is the mean size of non-I-frames ms_nI.

ms_nl =1/ Ny anl,]’ (4.30)
j

Asin AVQBits|M1, QPyreq is calculated according to Equation (4.31).
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QPpred = agp_m

+ bgp_m1 - log(ms_nl)
+ cqp_m1 - log(resolution) (4.31)
+dgp_m - log(framerate)

+ egp_m1 - log(fsratio)

(
(

Considering the QP estimation of gp_m1 following AV QBits| MO0, the quantization
degradation is retrained to be Mode 1 specific. The details of the training procedure

and the final coefficients are described in Section 4.3.3.

4.2.3.1 Per-1-Second Score Prediction

Like the AVQBits| M0 model, the per-1-second scores for the AVQBits|M1 model

are just equal to the per-segment scores.

AV QBits|HO

As mentioned earlier, a hybrid no-reference Mode 0 model has access to both the
metadata and the decoded pixel information of the distorted video to estimate video
quality.

7

The main idea of the proposed model is to create a “quality equivalent bitstream”
(QEB) which is similar to the original bitstream using the decoded pixels and the
provided metadata. After the QEB is created, the AVQBits| M3 model (i.e. ITU-T
P.1204.3) is applied with slight changes. A somewhat related approach has been used
in ITU-T Rec. P.563 [ ] to provide a more general description of the received
speech quality, which is given by comparing the input signal with a pseudo reference

signal generated by a speech enhancer.

The process of creating the QEB is shown in Figure 4.1 and Figure 4.5, wherein the
provided metadata such as bitrate, resolution, framerate, and codec information is

used. The distorted video is re-encoded with the encoding settings corresponding
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Figure 4.5: General model structure of the AVQBits| HO model.

to the metadata following a 1-pass encoding strategy. This is based on the results
reported in Stankowski et al. [ ] that the quality loss across different QP values
remains constant for the second round of encoding, which can be compensated by
the model due to the use of QP as the feature for quality estimation in the Core
Model. Furthermore, the QP that an encoder chooses for a bitrate-resolution during
the QEB generation process will be in the same range as that of the initial encoding
due to the same bitrate and resolution settings.

In the following, two variants of the hybrid no-reference Mode 0 model AV QBits|HO
are proposed. These variants are based on the codec used to re-encode the video and
are referred to as the “same” and “fixed” codec variants. In the case of the “same”
codec variant, hereafter referred to as AVQBits|HO|s, the QEB is created using
the codec specified by the metadata. After the QEB is created, the AVQBits|M3
model ITU-T P.1204.3 is directly applied to estimate the video quality without any
modifications.

The second, “fixed” codec variant, is referred to as AVQBits|HO|f in the following.
By using a fixed, pre-defined codec to create the QEB, no stream-specific encoding
and then bitstream parsing is needed, reducing the complexity of the implementation.
After the creation of the QEB, the AVQBits| M3 model ITU-T P.1204.3 estimates the
video quality. For the proof-of-concept of AVQBits|HO|f presented in this thesis,
H.265 is selected as the codec to create the QEB, irrespective of the codec used to

generate the original bitstream. Different codecs have a different impact on quality
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for a given specific setting. Since H.265 is used to create the QEB irrespective of the
codec to generate the original bitstream, the initially estimated quality of this QEB
may not optimally reflect the impact of the original codec. As a result, to estimate
the final quality score, a simple linear mapping function is proposed that takes into
account the impact of the original codec on quality to map the initial prediction of
the ITU-T P.1204.3 model to the respective codec characteristics.

Prediction = acyap - Prediction s + bemap (4.32)

where, Predictionys is the prediction from the AVQBits|M3 P.1204.3 model and
Aemap and bemqp are codec-specific mapping coefficients. The coefficient values are
provided in Section 4.3.4.

It is noted that besides this instance of the “fixed” codec hybrid model variant
presented as a proof-of-concept, other realizations can be conceived. For example, a
more sophisticated codec-specific mapping function can be developed instead of the
simple linear mapping as proposed in this work. Further, in principle also another
of the three encoders and hence bitstream-parsers can be used to create and analyze
the QEB. With H.265, the newest of the three codecs was selected, and currently
developed updates of the proposed models can use even newer codecs such as AV1
or VVC.

The impact of the “fixed” instead of the “same” codec variant on quality prediction

accuracy is extensively analyzed in Sec. 4.4.2.

4.3 Short-term Video Quality: Model Training

This section details the training procedure that was performed to obtain the coeffi-
cients for the different AV QBits models.
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AV QBits|M3 / P.1204.3

The presented model coefficients in Tables 4.2, 4.3, 4.4 and 4.5 are based on the
26 databases that were designed as part of the PNATS Phase 2 competition and
presented as PNATS-UHD-1 in Chapter 3.

During the training of the model, the subjective scores were linearly mapped to a
4 5-point scale from the 5-point scale in order to avoid information loss due to the
RfromMOS and MOS fromR computations, since both of these mapping functions
assume that the highest MOS that can be reached is 4.5. Hence, the coefficients

predict the video quality scores on a 4.5-scale, denoted as M), As a final step,

145)°
the predictions on the 4.5-point scale were mapped back to the full 5-point scale
range using a simple linear transformation, denoted as “scaleto5”, Equation (4.20),

resulting in the final prediction of the parametric core model My, .

In the following, the required coefficients for all parts are summarized. The
quantization-degradation-related coefficients are presented for the PC/TV case in
Table 4.2, and for the mobile/tablet case in Table 4.3. The upscaling- and temporal-
degradation-related coefficients are reported in Table 4.4 for the PC/TV case and in
Table 4.5 for the mobile/tablet case.

Table 4.2: AVQBits / P.1204.3 Quantization-degradation coefficients, PC/TV case.

Codec a b C d

H.264 44344 -1.7058 49654 -4.1203
H.264-10bit 4.6467 -0.8091 5.9835 -4.4398
H.265 43789 -1.0208 5.7572 -4.5625
H.265-10bit 4.5458 -0.866 6.1116 -3.3828
VP9 4.3404 -0.9961 45282 -3.9641

Table 4.3: AVQBits / P.1204.3 Quantization-degradation coefficients, MO/ TA case.

Codec a b C d

H.264 44365 -1.4909 5.4251 -4.5198
H.264-10bit 4.5399 -0.414  6.2249 -4.2599
H.265 43089 -0.6685 6.0551 -4.6974
H.265-10bit 4.9999 -2.6821 15069 -1.7664
VP9 44024 -1.2504 2.9268 -3.0087
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Table 4.4: Upscaling- and temporal-degradation coefficients, PC/TV case.

X y k z
-9.5497 11999 4.1696 -8.3084

Table 4.5: Upscaling- and temporal-degradation coefficients, MO/TA case.

X y k z
-8.4690 1.1999 42701 -6.3648

AV QBits| MO

For the AVQBits|M0 model instance, a two-step training procedure was imple-
mented to estimate the coefficients related to QP,,.; and quantization degradation.
In the first step, the QP4 prediction module as described in Equation (4.27) was
trained using the true QP values extracted from the 764 PVSs of AVI-PNATS-UHD-1
as ground-truth. The resulting coefficients for determining QP,,.; are detailed in
Table 4.6.

Following this, the coefficients in Table 4.6 were used to estimate QP values, and
the resulting estimates QP,,.s were used as input to the quantization degradation.
The new coefficients of the core model were obtained by training the model using
the subjective MOS from AVT-PNATS-UHD-1 as ground truth. The resulting new

coefficients of the core model are as shown in Table 4.7.

To estimate the upscaling degradation and temporal degradation component of the “Core
Model”, the coefficients for the AVQBits|M3 / P.1204.3 model reported in Table 4.4

are used.

Table 4.6: QP-Prediction coefficients for AV QBits|M0, PC/TV case.

Codec  agp mo bgp_mo Cqp_m0 dgp_mo

H.264 -5.7284 -5.3586  4.1965  5.6231
H.265 -7.6866 -6.0256  4.8298  4.0869
VP9 -140.8384 -46.5290 37.5395 27.5876

As there were no MO/TA databases that were part of the training dataset, AVT-
PNATS-UHD-1, a synthetic dataset consisting of AVQBits|M3 / P.1204.3 was devel-

106



4.3 Short-term Video Quality: Model Training

Table 4.7: Quantization-degradation coefficients for AVQBits|MO0, PC/TV case.
Codec a b c d

H264 47342 -09469 4.0831 -2.0624
H.265 45731 -0.6835 3.3163 -1.4604
VP9 42624 -0.6135 3.2368 -2.2657

oped to determine the coefficients for the MO/TA case. These coefficients can be
found in the reference implementation that is publicly available.

AV QBits|M1

For the AVQBits| M1 model instance, the same two-step training approach as for
Mode 0 was used to determine the coefficients related to QP,,.s and subsequently
the quantization degradation component D, of the “Core Model”, cf. Equation (4.9) to
Equation (4.11). The coefficients related to QP,,.s and the quantization degradation Dy
(i.e. mos, at first, cf. Equation (4.9)) are presented in Tables 4.8 and 4.9, respectively.
Similar to the Mode 0 model AV QBits| MO, the coefficients for the AVQBits| M3 /
P.1204.3 model detailed in Table 4.4 are used to estimate the upscaling degradation and
temporal degradation.

Table 4.8: QP-Prediction coefficients for AVQBits|M1, PC/TV case.

Codec Agqp_m0 bqp?mO Cqp_m0 dqpfm() €qp_mo

H.264 284333 -7.3951 57821  0.2479 -5.4537
H.265 223936 -6.5297 51573 -0.8999  -2.2889
VP9 921245 -51.1209 40.6832 -10.2195 -18.7809

Table 4.9: Quantization-degradation coefficients for AV QBits|M1, PC/TV case.
Codec a b C d

H.264 4.6602 -1.1312 4.2268 -2.4471
H.265 45375 -0.6829 3.5053 -1.6074
VP9 45253 -1.2635 2.0732 -1.8051

A similar approach to determine the MO/ TA coefficients for the AV QBits| M0 model
was used for the AVQBits| M1 model and the corresponding coefficients can be

found in the publicly available reference implementation.
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AV QBits|HO

As discussed in Section 4.2.4, two different variants of the AVQBits|HO model are
proposed in this thesis. The first, AVQBits|HO|s, applies the same encoder used
for initially encoding the video to be evaluated, plus Mode 0 data for a quality-
equivalent re-encoding of the video. The AVQBits|M3 / P.1204.3 model is then
directly applied to the resulting bitstream, without any further modifications to the
model. Hence, no additional training of the AV QBits|HO|s model is needed.

Instead of the original video codec, that has been used for encoding the distorted
video, the AVQBits|HO|f model has a fixed video encoder for generating the quality-
equivalent bitstream. For the model instance presented in this thesis, H.265 is
selected. As a result, the prediction from the AVQBits|M3 / P.1204.3 model requires
a codec-specific mapping of the predicted score to represent the quality that would
be provided by the originally applied encoder. Hence, a simple mapping function
as described in Equation (4.32) is proposed. MOS data from AVT-PNATS-UHD-1
are applied as training targets to determine the coefficients of the mapping function.

The resulting coefficients are presented in Table 4.10.

Table 4.10: Codec mapping coefficients for AVQBits|HO|f, PC/TV case.

COdeC ﬂcmap bcmap

H.264 09053 0.0931
VP9 0.8530 0.6979

4.4 Short-term Video Quality: Model Evaluation

This section focuses on the evaluation of the different models making up AVQBits
and is divided into two parts. In the first part, details of the validation of
AV QBits|M3 / P.1204.3 as part of the PNATS Phase 2 competition is described.
Following this, a detailed evaluation of all four models of AVQBits using the AVT-
VQDB-UHD-1 dataset described in Chapter 3 and a comparison with SoA models is

presented.
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Validation of AVQBits|M3 / P.1204.3

The models submitted to the PNATS Phase 2 competition were validated using
the 13 validation databases of PNATS-UHD-1 described in Chapter 3. The results
of the validation process and the performance of both the submitted and finally
standardized BSM3 model in comparison with the other two standard models are
described in Table 4.11.

Table 4.11: Aggregated RMSE on validation and on all databases (training and validation databases
according to (Equation (4.1))) of the models submitted to the competition, and the stan-
dardized (re-trained) versions of the models [Raa+20a].

Model Validation DBs All DBs
Submitted Bistream Model 0.429 0.421
P.1204.3 Standard 0.397 0.394
Submitted Pixel RR Model 0.448 0.444
P.1204.4 Standard 0.415 0.418
Submitted Hybrid NR Model 0.451 0.452
P.1204.5 Standard 0.442 0.440

Following the statistical significance test outline in Section 4.1.2.4, it can be concluded
from Table 4.11 that the ITU-T P.1204.3 (BSM3) model significantly outperforms both
the ITU-T P.1204.4 (PXRR) and ITU-T P.1204.5 (HYNO) models.

In addition to this, a comparison of the submitted BSM3 model with the submitted
PXRR and HYNO models and other SoA FR models is presented in Table 4.12. The
procedure of per-database linear mapping before determining RMSE as used in the
P.NATS Phase 2 competition was used to determine the RMSE of the three submitted
models and VMAF. As both PSNR and SSIM show a non-linear relationship to MOS,
a 3rd-order polynomial mapping is applied per database before computing the RMSE
values. In addition to RMSE, PCC values were calculated for each of the models for
comparison purposes. It can be seen from the table that the ITU-T P.1204.3 (BSM3)
model significantly outperforms all the considered models.
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Table 4.12: Overall model performance of different models on PNATS Phase 2 validation databases
only. Left: All HRCs. Right: Only HRCs where the HRC framerate corresponds to that of
the SRC [Raa+20a].

Model All HRCs HRCs using SRC fps
RMSE Pearson Spearman RMSE Pearson Spearman

PSNR 0.716 0.630 0.615 0.688 0.625 0.609
SSIM 0.648 0.609 0.704 0.580 0.665 0.725
VMAF 0.611 0.761 0.773 0.548 0.794 0.790
P1204.3 0.422 0.899 0.883 0.429 0.891 0.875
P1204.4 0.441 0.889 0.872 0.440 0.884 0.864
P1204.5 0.448 0.885 0.880 0.447 0.880 0.871

Evaluation of AV (QBits Model Instances

For evaluating the model instances of AV QBits, the publicly available AVT-VQDB-
UHD-1 dataset [Rao+19a] consisting of 756 PVSs is used, see also Sec. 3.1.1.3. Note
that only 432 PVSs are publicly available due to source copyright issues. However, in
this thesis, the evaluation is performed on the entire dataset consisting of 756 PVSs,
as the author has access to the complete set. Table 4.13 provides a detailed overview
of the performance of the model instances AVQBits|M3 / P.1204.3, AVQBits| MO,
AV QBits| M1 and the two versions of the Hybrid Mode 0 model AV QBits|HO. Perfor-
mance is given in terms of RMSE, Pearson Correlation Coefficient (PCC), Spearman
Rank Order Correlation Coefficient (SROCC), Kendall correlation, and R? score for
the four tests individually and all databases together. As is expected, AVQBits|M3 /
P.1204.3 outperforms all other model instances for all databases combined as it has
access to the entire bitstream to estimate video quality. An interesting observation is
that the other model instances perform slightly better than AVQBits|M3 / P.1204.3
for test_4. This specific test considers a wide range of framerate variations. It should
be noted that such a high variation in framerate between SRC and PVS is rather
unrealistic for HAS applications. However, it can be seen from Table 4.13, that
AV QBits|M3 / P.1204.3 performs significantly better across all databases.

Figure 4.6 show the scatter plots for all models. It can be observed that AVQBits| M3
/ P.1204.3 leads to very few outliers as compared to the subjective tests, whereas
results for the other instances show a larger number of outliers. Most notably, it
can be observed that for Mode 1 AVQBits| M1, the Surfing sequence suffers from
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Table 4.13: Performance of the AV QBits instances on the AVT-VQDB-UHD-1 dataset (*The RMSE and
R? numbers for AV QBits|M3 / P.1204.3 may differ from the ones reported in [Rao+20a],
as here the RMSE and R? values after linear mapping whereas in [Rao+20a] the RMSE
and R? values were calculated on raw predictions).

Database  Model RMSE PCC SROCC Kendall R?Score
test_1 AV QBits|M3 / P.1204.3* 0.280 0.968 0.953 0.822 0.937
test_1 AV QBits|M1 0.614 0.836 0.851 0.677 0.699
test_1 AV QBits| MO 0.507 0.891 0.888 0.703 0.795
test_1 AVQBits|HO|s 0.298 0.964 0.954 0.817 0.929
test_1 AV QBits|HO|f 0.324 0.957 0.946 0.805 0.916
test_2 AV QBits|M3 / P.1204.3* 0.287 0.966 0.960 0.830 0.934
test_2 AV QBits|M1 0.441 0.918 0.930 0.780 0.844
test_2 AV QBits| M0 0.511 0.889 0.895 0.714 0.790
test_2 AV QBits|HO|s 0.394 0.936 0.934 0.782 0.875
test_2 AV QBits|HO|f 0.451 0.915 0.916 0.752 0.837
test_3 AV QBits|M3 / P.1204.3* 0.324 0.957 0.935 0.785 0.917
test_3 AV QBits|M1 0.363 0.946 0.924 0.766 0.895
test_3 AV QBits|M0 0.464 0911 0.896 0.712 0.830
test_3 AV QBits|HO|s 0.395 0.936 0.920 0.756 0.877
test_3 AV QBits|HO|f 0.450 0.916 0.908 0.737 0.840
test_4 AV QBits|M3 / P.1204.3* 0.485 0.876 0.853 0.681 0.767
test_4 AV QBits|M1 0.366 0.931 0911 0.756 0.867
test_4 AV QBits| M0 0.443 0.897 0.851 0.673 0.805
test_4 AV QBits|HO|s 0.460 0.889 0.876 0.699 0.790
test_4 AV QBits|HO|f 0.405 0.915 0.898 0.734 0.837
All AV QBits|M3 / P.1204.3* 0.370 0.942 0.927 0.768 0.887
All AV QBits|M1 0.476 0.901 0.900 0.730 0.811
All AV QBits| M0 0.499 0.890 0.877 0.684 0.792
All AV QBits|HO|s 0.408 0.928 0.919 0.755 0.861
All AV QBits|HO|f 0.433 0.919 0.909 0.743 0.844

under-prediction in a few cases due to a large error in the method used for QP
estimation in this case. In addition, it can also be seen that AVQBits| MO suffers
from slightly more over-prediction, which is a result of the lack of source-specific
information for quality estimation, which AV QBits|M3 and hence also AV QBits|HO
partly handle in the random forest model part. Also, AVQBits|HO|f would benefit
from a more sophisticated codec mapping than the linear one defined in Section 4.2.4
to better take into account codec-specific differences.

The performance of the AV QBits instances is also compared with that of SoA models.
For this purpose, the performance numbers for SoA models on the AVT-VQDB-UHD-
1 dataset reported in [Raa+20a] are used. In Tables 4.14 and 4.15, different FR and NR
models are compared with the proposed models for tests without and with framerate
variation respectively. As can be seen from the results, AVQBits|M3 / P.1204.3 is
the best performing model across all tests, with VMAF being the best performing
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Figure 4.6: Scatter plot of AV QBits instances for AVI-VQDB-UHD-1 dataset.

FR model. Despite the reduced input data for these models, the other AVQBits
instances are still able to outperform a number of the SoA models. For example,
AV QBits| MO0 shows a better performance than Brisque and SSIM, or AVQBits|M1
shows a better performance than VMAF. The hybrid models also outperform VMAF
and generally are surpassed only by AVQBits|M3 / P.1204.3 in performance. It is
noted that the good performance of the AV QBits instances other than AVQBits| M3
/ P1204.3 and AVQBits|HO may be due to the selected specific encoding settings
and their range. In general, test_4 seems to be the most difficult test in terms of
estimating video quality, due to the wide range of framerates included in this test.
The comparatively bad performance of VMAF for test_4 can be attributed to the lack
of a sophisticated motion-related feature in the model.
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Table 4.14: Performance comparison of the AVQBits instances with SoA models for tests in the
AVT-VQDB-UHD-1 dataset without framerate as dependent variable (*The RMSE and R?
numbers for AVQBits|M3 / P.1204.3 may differ to the ones reported in [Rao+20a], as here
the RMSE and R? values after linear mapping are shown, whereas in [Rao+20a] the RMSE

and R? values were calculated on raw predictions).

Model RMSE PCC SROCC Kendall R?Score
VMAF [ ] 0.531 0.880 0.889 0.721 0.774
Brisque [ ] 0.653 0.815 0.838 0.653 0.660
NIQE [ ] 1.009 0.432 0.445 0.301 0.187
PSNR 1.109 0.131 0.682 0.531 0.017
SSIM [ ] 0.956 0.520 0.761 0.569 0.270
MS-SSIM [ ] 0.896 0.599 0.752 0.563 0.358
ADM2 [ ] 0.580 0.855 0.874 0.698 0.731
VIEP [ ] 0.757 0.736 0.756 0.562 0.542
AV QBits|M3 / P.1204.3* 0.306 0.962 0.948 0.804 0.925
AV QBits|M1 0.486 0.901 0.904 0.738 0.812
AV QBits|M0 0.503 0.894 0.891 0.701 0.799
AV QBits|HO|s 0.373 0.943 0.935 0.778 0.889
AV QBits|HO|f 0.439 0.920 0.914 0.749 0.846

Table 4.15: Performance comparison of AV QBits instances with SoA models for tests with framerate
as independent variable in the AVT-VQDB-UHD-1 dataset (*The RMSE and R? numbers
for P.1204.3 may differ to the ones reported in [Rao+20a], as here the RMSE and R? values
after linear mapping are shown, whereas in [Rao+20a] the RMSE and R? values were

calculated on raw predictions).

Model RMSE PCC SROCC Kendall RZ?Score
VMAF [ ] 0.592 0.807 0.811 0.624 0.652
Brisque [ ] 0.641 0.813 0.833 0.646 0.657
NIQE [ ] 1.006 0.393 0.387 0.265 0.154
PSNR 1.004 0.313 0.491 0.352 0.000
SSIM [ ] 0.871 0.497 0.580 0.418 0.247
MS-SSIM [ ] 0.832 0.559 0.581 0.421 0.312
ADM2 [ ] 0.598 0.803 0.806 0.615 0.644
VIFP [ ] 0.789 0.618 0.612 0.449 0.381
AV QBits|M3 / P.1204.3* 0.485 0.876 0.853 0.681 0.767
AV QBits|M1 0.366 0.931 0911 0.756 0.867
AV QBits| M0 0.443 0.897 0.851 0.673 0.805
AV QBits|HO|s 0.460 0.889 0.876 0.699 0.790
AVQBits|HO|f 0.405 0.915 0.898 0.734 0.837

4.5 Other Prototype Models

In addition to the different instances of AV QBits, other models focusing on mainly

Mode 0 and Hybrid models have been developed as part of this work. These models

are to be seen as pre-cursors to the corresponding instances of AVQBits and are

partly based on other previously reported models such as VMAF [ ] and ITU-T

Rec. P.1203.1 Mode 0 [ ].
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ITU-T P.1203.1 Mode 0 Extension

The ITU-T P.1203.1 Mode O [ ] model was developed for videos encoded with
H.264 and resolutions up to 1080p and framerates up to 30 fps. However, due to the
proliferation of newer codecs such as H.265, VP9, and AV1 and also a widespread
capture and streaming of videos of resolutions higher than 1080p and framerates
higher than 30 fps, it was necessary to extend the P.1203.1 Mode 0 model. With
the motivation of predicting video quality for this newer parameter space, before
the newly expected ITU-T P.1204 series of Recommendations were finalized, the

following extension was proposed.

4.5.1.1 Proposed P.1203.1 Mode 0 Extension

The subjective ratings from test_1 of AVT-VQDB-UHD-1 and the AV1 dataset de-
scribed in Chapter 3 were used to derive a mapping/correction function for the
ITU-T P.1203.1 Mode 0 model to handle new codecs, resolution, and framerate. As a
pre-processing step, MOS were obtained by averaging the individual ratings overall
individual sources to eliminate content dependency as the mode 0 model is unable
to handle this content dependency in a meaningful way. Various extensions were
developed using different parameters such as bitrate, resolution, and codec as input
parameters in several combinations. In addition to these parameters, the output of
P.1203.1 mode 0 model, referred as to mode0_output, was also used as an additional
input to the mapping/correction function. While computing the P.1203.1 mode 0
output for the subjective data, appropriate changes in terms of codec and resolution
handling were made to the existing model to take into account newer codecs and
resolution. Different possible input parameters were analyzed, e.g. only {codec},
only {resolution, codec}, only {bitrate} and {resolution, codec, bitrate}. It was found
that {resolution, codec, bitrate} parameters are required for good performance of
such a correction function since modern codecs are designed to handle lower and
higher resolutions with varying bitrates differently than H.264.

Curve fitting was used for training. The software is based on Python 3 and uses
LmPFit*. Several candidate functions were checked to determine the best perform-

4https://lmfit.github.io/lmfit-py/
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ing function. Out of these candidates, the below mentioned candidate, see Equa-

tion (4.33), was the best performing extension.

The final correction/mapping function is given by Equation (4.33):

predicted_mos = a+ b+ mode0_output + ¢ xlog(bitrate) + d = log(resolution) (4.33)

For each video codec, a different set of coefficients is used. In Table 4.16 all coefficients
are summarized. To determine the coefficients, the AV1 dataset and test_1 of AVT-
VQDB-UHD-1 described in Chapter 3 are used.

Table 4.16: Correction Mapping - Coefficients per codec.

Codec a b C d

H264 -019 004 072 -0.18
H265 005 047 040 -0.09
VP9 -3.55 -0.008 043 025
AV1 -738 -0.18 046 054

4.5.1.2 Evaluation of the proposed P.1203.1 Mode 0 extension

In this section, a comparison of the correction method with non-adjusted P.1203.1
Mode 0 is conducted. At first, the non-adjusted P.1203 Mode 0 Pv model was used to
obtain the predicted MOS for the two subjective tests that were conducted. This was
done to ascertain if the existing model works well for all the codec, resolution, and
framerate extensions or if there is a need for a correction mapping to handle these
extensions. The evaluation of the unadjusted model showed that the performance
in terms of rmse is as follows for the three new codecs: rmsejygq = 0.66, rmsej g5
= 0.65, rmseyp9 = 0.69 and rmse;,; = 0.9. These values were obtained by using the
coefficients reported in the corresponding standard [ ] for all three codecs.
These values diverge considerably from the rmse of 0.465 for mode 0 as reported in
the standard [ ] even considering only H.264. Even for the case of H.264, the

difference between the rmse reported in the standard and the one for our test is also
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considerably large. This deviation in performance is expected as the existing model
was trained for H.264 for only resolutions up to 1080p and framerates up to 24fps.
For the model to take into account the new input data, either the model has to be

re-trained or else a correction mapping can be done.

The decision to go for a simple correction mapping over re-training the model was
based on the rationale that such a correction mapping would keep the structure and
coefficients of the original model intact and ensures that the development process
can rely on the well-developed P.1203 models. Moreover, it was planned as an
intermediate solution, as the PNATS Phase 2 competition was underway to develop
the ITU-T P.1204 series of recommendations. Keeping in view this rationale, a
correction mapping that takes the output of the original mode 0 model as an input
and performs the correction based on bitrate, resolution, and framerate is proposed.
Figure 4.7 shows the performance of the correction mapping for all the four codecs.
It can be seen that the RMSE is lower than 0.3 for all the codecs for the mapped
version, and hence it can be concluded that the developed method is better in terms

of RMSE than the original non-adjusted model for the new application scenarios.

Codec = avl, RMSE = 0.23, PCC = 0.97 5o Codec = h264, RMSE = 0.12, PCC = 0.99
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Codec = hevc, RMSE = 0.21, PCC = 0.98 o

Codec = vp9, RMSE = 0.15, PCC = 0.99
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Figure 4.7: Performance of the correction mapping for all considered video codecs.
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Hybrid-VMAF

With the objective of proposing an approach to extend existing SoA models using ad-
ditional metadata that can be extracted from a video to improve prediction accuracy,
a hybrid version of VMAF using metadata such as video resolution and framerate

was developed and is presented in the following section.

4.5.2.1 Proposed Approach

The general model structure is shown in Figure 4.8. The approach starts with
extracting pixel-based features from the video input. In the case of an underlying
full-reference model, the video inputs are the source video and the distorted video.
Whereas, in the case of other model types, the video input can be only the distorted
video or different variants of reference video information and distorted video. In
this prototype, a full-reference model is considered as the underlying pixel model for
the hybrid extension. To prove the validity of the concept, the popular full-reference
model, Netflix’s VMAF is used as a feature extractor. Similar extensions can also be

used for no- or reduced-reference models.

Ground Truth Training .

;“ Hyper-parameter + Feature set ";

Pixel-based model : optimization
i H . Feature Pooling : Machine N
Re\f;ia(;z(r;ce H—E ngtlr:stai:)ur:e (mean, median, ; Learning Prediction
per-frame std, ...) ' Algorithm 3
features : e
Distorted H H ; /
video H H T T B

Metadata Feature ‘

Extraction Resolution,

Framerate

Figure 4.8: General Machine Learning Pipeline, indicating the involved steps from pixel-based feature
extraction based on any kind of pixel-based model, to temporal feature pooling to the final
training of the included machine learning algorithm.

After feature extraction, the per-frame feature values are temporally pooled to obtain
the final per-video features. Temporal feature pooling is a well-known approach
to remove the time dependency of short video sequences and therefore to provide
a constant number of features to the underlying machine learning model. Similar
methods have been used in other models, e.g. nofu [GRR19; Gor+21a]. Such a
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Chapter 4 AV QBits: Adaptive Bitstream-based Video Quality Model

temporal feature pooling can range from simple arithmetic mean to more complex
methods such as harmonic mean, Minkowski summation, percentile, etc. For the

presented model, the focus is on the widely used and simple, arithmetic mean.

In addition to the pooled features, resolution and framerate are included as metadata
features, resulting in a hybrid extension of the considered FR model. FFprobe which

is part of FFmpeg is used to estimate the required metadata.

In the hyperparameter and feature optimization step, a large combination of (hy-
perparameter, feature set) values are considered while training the machine learning
algorithm for enhancing the pixel-based model using metadata. The combination
which performs best in terms of Pearson correlation coefficient was chosen for the

final model.

The AVT-VQDB-UHD-1 dataset is used to train and validate the proposed hybrid-
VMAF model.

4.5.2.2 Evaluation

In total, three machine learning algorithms, namely, support vector regression (SVR),
random forest (RF), and extreme gradient boosting trees (XGBoost), are considered
for evaluation. Besides the evaluation of different machine learning approaches,
the hyper-parameters and feature sets of the different hybrid-FR models are further
optimized. These machine learning algorithms were selected because they have
been used already in other models, e.g. SVRs in VMAF, RF in P.1203/1204.3 [ ;

] and extreme gradient boosting trees to predict the number of video encoding
passes in [GRR20] and for video quality modeling in [Gor+21a]. Other models based
on neural networks are possible, however, due to the low number of training samples

within the used databases, that choice is out of scope in this context.

In the case of RF and XGBoost-based models, only the number of trees parameter
was considered for hyper-parameter optimization. Otherwise, default values were
used for all other parameters as included in the scikit-learn and xgboost implemen-
tation of RF and XGBoost, respectively. For the proof-of-concept, no hyperparameter
optimization for the SVR-based approach was employed. For SVR, the radial ba-

sis function (RBF) is used as the kernel and default values for all the parameters
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4.5 Other Prototype Models

that are included in scikit-learn; this is similar to VMAF, BRISQUE | ] and
NIQE | 1.

For optimizing the feature set, a full grid search covering all possible combinations
of features is performed. Finally, the combination of features that results in the best
performance in terms of PCC and RMSE was selected This approach resulted in
255 possible feature combinations, where 6 features are based on VMAF’s pixel-
based calculations and two result from added metadata, namely resolution, and
framerate. The hyper-parameter and feature set optimization is a joint optimization
process where for every value of the number of trees parameter, all possible feature
combinations were tested, and finally, the (number of trees; feature set) that results in
the best performance is selected. 20 different values for the number of trees parameter

ranging between 1 and 101 with a step size of 5 are considered.

Other parameters of RF and XGBoost can be optimized in a similar manner. Some of
the parameters were checked with several pre-tests, and it was finally decided to use
the default values, as the optimization of additional parameters did not show any
significant improvement in the overall performance of the models. For each of the
aforementioned variations of parameters, a separate model is trained and evaluated,

considering the prediction performance of the validation set.

The training-validation ratio for all three machine learning algorithms was chosen to
be 50:50, ensuring that none of the common sources are used in training so that the
model variants are validated with completely unknown videos.

Table 4.17 shows the results using the best combination of (number of trees; feature
set). In addition, Table 4.18 summarizes the performance using a (number of trees;
feature set) set with as few values as possible for both parameters, with comparable
performance with the best case. For the case of SVR, even with just 4 features, the
performance is comparable to the best case.

The best combination is 26 trees with 4 features for the RF case, and 101 trees with
4 features for the XGBoost-based model. Even with only 6 trees and 4 features, the
RF model has comparable performance with the best RF case. Similarly, a model
with 71 trees and 4 features shows comparable performance with the best case for
the XGBoost-based model. All these best-performing cases included resolution and

framerate as features. Furthermore, a detailed feature relevance analysis by counting
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Chapter 4 AV QBits: Adaptive Bitstream-based Video Quality Model

the number of occurrences of features is performed which is detailed in Figure 4.9. It
can be observed that all hybrid-VMAF instances outperform the retrained VMAF
significantly, in terms of all applied performance criteria, namely PCC, SROCC,
Kendall rank correlation coefficient, and RMSE. This demonstrates the validity of the
proposed approach and also the suitability of the used machine learning algorithms
to develop such models. In addition to the performance metrics, a significance
analysis was performed according to ITU-T P.1401 [ I

Besides VMAF, model performance is compared with a number of further metrics,
as shown in Tables 4.17 and 4.18. It should be noted that for BRISQUE and NIQE,
the performance numbers reported in Tables 4.17 and 4.18 result after retraining, as
described in the AVT-VQDB-UHD-1 study [Rao+19a].

Table 4.17: Performance comparison between Hybrid-VMAF and other SoA video quality models
(considering the best performing feature combination).

Metric RMSE PCC SROCC Kendall #Tree #Feature
VMAF [ ] 0.592 0.807 0.811 0.624 NA NA
BRISQUE [ ] 0.641 0.813 0.833 0.646 NA NA
NIQE [ ] 1.006 0.393 0.387 0.265 NA NA
PSNR 1.004 0.313 0.491 0.352 NA NA
SSIM [ | 0.871 0.497 0.580 0.418 NA NA
MS-SSIM | ] 0.832  0.559 0.581 0.421 NA NA
ADM2 [ ] 0.598 0.803 0.806 0.615 NA NA
VIFP [ ] 0.789 0.618 0.612 0.449 NA NA
VMAF (50:50 retraining) 0.588 0.849 0.870 0.690 NA 6
Hybrid-VMAF (SVR) 0.397 0.939 0.929 0.774 NA 5
Hybrid-VMAF (RF) 0.434 0.921 0.918 0.756 26 4
Hybrid-VMAF (XGBoost) 0.433 0.924 0.927 0.772 101 4

In addition to the performance analysis in terms of correlation and RMSE, an analysis
of the number of times of occurrence of all the features for the top 100 performing
(number of trees; feature set) set is performed. It can be seen from Figure 4.9 that for
all three cases (SVR, RF, XGBoost), resolution and framerate occurred the highest
number of times. Also, in the best performing (number of trees; feature set) set in both
Tables 4.17 and 4.18, resolution and framerate were part of the feature set for all
three machine learning algorithms. This further shows that the additional metadata-
based input features, resolution, and framerate, indeed play an important role in

improving the performance of FR models. It further indicates that only a small
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Table 4.18: Performance comparison between Hybrid-VMAF and other SoA video quality models
(considering lowest number of trees and features with comparable performance as the

best case).

Metric RMSE PCC SROCC Kendall #Tree #Feature
VMAF [Net18] 0.592  0.807 0.811 0.624 NA NA
BRISQUE [MMB12] 0.641 0.813 0.833 0.646 NA NA
NIQE [MSB13] 1.006 0.393 0.387 0.265 NA NA
PSNR 1.004 0.313 0.491 0.352 NA NA
SSIM [Wan+04] 0.871 0.497 0.580 0.418 NA NA
MS-SSIM [WSB03] 0.832  0.559 0.581 0.421 NA NA
ADM?2 [Li+11] 0.598  0.803 0.806 0.615 NA NA
VIEP [SB06] 0.789 0.618 0.612 0.449 NA NA
VMATF (50:50 retraining) 0.588 0.849 0.870 0.690 NA 6
Hybrid-VMAF (SVR) 0.438 0.930 0.913 0.744 NA 4
Hybrid-VMAF (RF) 0.442 0.919 0.920 0.751 6 4
Hybrid-VMAF (XGBoost) 0.438 0.921 0.925 0.769 71 4

amount of additional data is required to develop a hybrid model variant with good
overall performance. As mentioned before, the inclusion of bitrate and video codec
as metadata features is also evaluated, but no improvement was observed; hence

these metadata features were removed for the proposed hybrid model framework.
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Figure 4.9: Frequency of occurrence of features in top 100 performing cases.

4.6 Summary

With the objective of developing quality models for both short-term video quality
assessments for high-resolution videos and addressing research questions 1 and 2,
different types of models are described in this chapter. In this regard, AVQBits, a

versatile, bitstream-based video quality model that can be used in different scenarios
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Chapter 4 AV QBits: Adaptive Bitstream-based Video Quality Model

based on the available input information is presented. It consists of four different
model types, namely, Mode 3, Mode 1, Mode 0, and Hybrid No-reference Mode 0.

The Mode 3 model developed as part of this work was submitted as a candidate
model for the PNATS Phase 2 competition. Hence, firstly, a detailed overview of the
P.NATS Phase 2 competition including the winning model selection procedure was
outlined. The work of the author as part of this thesis resulted in being part of three
winning categories in the PNATS Phase 2 competition. Among them, the winning
Mode 3 model is standardized as ITU-T Rec. P.1204.3 and forms the base for all the
other models AV QBits.

Following this, the Mode 3 model was described in detail. A detailed evaluation
of the models as part of the competition showed that the proposed Mode 3 model
performed the best in comparison to all the models submitted to the competition.
In addition to this, the submitted Mode 3 model is further compared with the SoA
models using the PNATS Phase 2 validation database. The comparison showed that
the Mode 3 model outperformed all considered SoA models.

Subsequently, four different extensions of the ITU-T Rec. P.1204.3 model were
developed. These extensions consist of a Mode 0 model, a Mode 1 model, and
two variants of a hybrid NR Mode 0 model. The AVI-PNATS-UHD-1 dataset was
used to train these models. All five instances of AV QBits were evaluated using the
AVT-VQDB-UHD-1 dataset. Furthermore, all five models were compared with the
SoA FR and NR models using the AVT-VQDB-UHD-1 dataset. This comparison
showed that ITU-T P.1204.3 and hybrid NR Mode 0 models significantly outperform
the SoA FR and NR models with the Mode 0 and Mode 1 extensions performing
significantly better than the considered NR models.

After this, two other models developed as part of the overall model development
process were presented. The first one is an extension of the ITU-T P.1203.1 Mode
0 model to handle newer codecs and videos of resolution up to 4K/UHD-1 and
framerates up to 60 fps. This extension was developed as a precursor to the P.1204.3-
based Mode 0 model. This development also resulted in the creation of a new dataset
which is described in Chapter 3 as the “AV1 Dataset”. The second model is a hybrid
version of the VMAF model. With the objective of developing approaches to extend
existing SOA pixel-based models using metadata to enhance prediction accuracy,
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4.6 Summary

a generalized approach to developing hybrid models is presented. VMAF is used
as a candidate FR model to validate the proposed approach. The hybrid extension
of VMAF was developed using video resolution and framerate as additional input
information. The AVI-VQDB-UHD-1 dataset was used to train and validate this
extension. Results indicate that the proposed approach to developing hybrid models
does increase prediction accuracy significantly.

This chapter primarily focuses on the development and evaluation of models for
the prediction of the short-term video quality of traditional video content mainly
streamed on platforms such as YouTube, Netflix, Amazon Prime Video, etc. However,
the developed models may not be limited to this particular use case. Hence, all four
instances of AV QBits are tested for their applicability to other use cases to address
research questions 3 and 4. For this purpose, firstly, the four models instances
of AV(QBits are tested for the prediction of the overall quality of a HAS session
using the model instances as the video quality component in a long-term integration
model in Chapter 5. Following this, all four model instances are evaluated for other

application scopes such as gaming, 360°, HFR videos, and images in Chapter 6.
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Overall Integral Quality

Usually, there is a tendency to treat QoE as a static event, and the QoE measured for
a stimulus of delimited length is assumed to be stable along its duration. However,
this rarely happens for stimuli extending over several minutes [ ]. This can be
well observed in a typical HAS session lasting several minutes, which may include
different quality-related events, for example, quality switching, initial loading delay,
and stalling. Hence, any model designed to estimate the overall integral quality of a

HAS session has to take into account the impact of these events.

ITU-T Rec. P.1203.3 [ ] is the first standardized model that takes into account
all these factors to predict the QoE of a HAS session [ ]. This model takes
per-1-second video and audio quality scores, stalling-related information, and the
device type (either “PC/TV” or “Mobile/Tablet”) as input to calculate the QoE of a
HAS viewing session. The main model output (referred to as O.46 in [ Disa
final media session quality score on the 5-point “MOS-scale”. Further, besides the
parametric input information, the model produces intermediate values that can be
used for HAS-system diagnostics, such as a perceptual stalling indication, audiovi-
sual segment coding quality per output sampling interval, and a final audiovisual
coding quality score. The design of the subjective tests conducted to gather ground
truth for model training and validation used a retrospective rating by the participants
on a 5-point ACR scale given at the end of an audiovisual stimulus lasting between
1 — 5min. Due to this test design, it becomes pertinent to address cognitive effects
such as the recency effect and primacy effect (see, e.g., [ ] for more details and
references around these effects). Accordingly, ITU-T Rec. P.1203.3 considers these

cognitive effects as part of the model.
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An adaptation of the ITU-T Rec. P.1203.3 which takes into account the more accurate
short-term video quality prediction obtained from the different instances of AV QBits
is proposed in this chapter. This proposed extension has been extensively evaluated
using the PNATS-UHD-1-Long dataset described in Chapter 3.

This chapter is based on the following publication:

[RGR22] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“AVQBits - Adaptive Video Quality Model Based on Bitstream Information for
Various Video Applications”. In: IEEE Access 10 (2022)

5.1 Model Description

In this section, a long-term integration model specifically designed for the four types
of AV(QBits models is presented, which is based on ITU-T Rec. P.1203.3 [ ] It
relies on the same model structure as P.1203.3, adapting the final audiovisual coding
quality estimation, using more accurate short-term video quality models such as
ITU-T P.1204.3. The final audiovisual coding quality score O.35 in ITU-T Rec P.1203.3
is estimated following Equation (5.1).

0.35 = 0.35p5¢1ine — negBias — oscComp

— adaptComp
Y wi(t) -wat) - O34t
O.35p450line =
baseline Zt wl(t) ) wz(t) (5.1)
t—1
wi(t) =t + 1t -exp <tL>
3

ZU2(t) =ty —t5- O.34[f]

Here, O.34 is the audiovisual segment coding quality per output sampling interval.
The values w; are weighting coefficients specified in the standard [ ; I
The three factors negBias, oscComp and adaptComp are used to take into account certain
temporal effects related to video-quality fluctuations. In the proposed model, these

three factors are ignored, reflecting two assumptions:
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1. The per-second and per-segment scores of the AVQBits model instances are
generally more accurate than those from the short-term video-quality mod-
ule variants of ITU-T Rec. P.1203.1 [ ; ], where these were re-
engineered from the final, retrospective and longer-session media session

quality score (O.46) (see, e.g., [ ] for more details).

2. This re-engineering may have been impacted by specific ITU-T P.1203.1 im-
plementations, and thus be very specific for data created as part of the ITU-T
P.1203 development process, and not optimally suited for the AV QBits variants
proposed in this thesis.

The AVQBits model instances are specifically trained on short-term videos and
hence are capable of more accurately estimating both per-segment and per-1-second
video quality scores. As a result, the new, simplified O.35 is given by Eq (5.2).

0.35 = 0.354c01ime (5.2)

It should be noted that no other changes to the model algorithm or coefficients
inherited from ITU-T P.1203.3 have been applied.

5.2 Evaluation of the Overall Integral Quality Model

The proposed long-term integration model, a simplified version of ITU-T Rec.
P.1203.3 ] is evaluated on PNATS-UHD-1-Long consisting of five tests with
PVSs ranging from 1-5min in duration (cf. Ch.. 3). As explained in Section 5.1,
for estimating the overall integral quality, the proposed model follows the same
architecture as ITU-T Rec. P.1203.3 and takes per-1-second video and audio scores
as input, along with stalling-related information. In this evaluation, to estimate the
per-1-second video quality scores, the different AV QBits instances are considered.
The per-1-second audio quality scores are assumed to be 4.5, which is the highest
quality estimated by ITU-T Rec. P.1203.2 [ ]. This assumption is based on the
fact that the audio quality is not varied and the best possible audio quality is used in

all the five tests considered for evaluation.
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Table 5.1: Performance of AV QBits instances on the PNATS-UHD-1-Long dataset.

Database = Model RMSE PCC SROCC Kendall R?Score
test_1 AV QBits|M3 / P.1204.3 0.353 0.892 0.823 0.649 0.795
test_1 AV QBits|M1 0.432 0.831 0.822 0.655 0.691
test_1 AV QBits| M0 0.399 0.859 0.863 0.694 0.738
test_1 AV QBits|HO|s 0.357  0.888 0.870 0.706 0.789
test_1 AVQBits|HO|f 0352  0.891 0.868 0.705 0.798
test_2 AV QBits|M3 / P.1204.3 0.559 0.813 0.801 0.610 0.661
test_2 AVQBits\Ml 0.624 0.760 0.744 0.562 0.577
test_2 AV QBits| M0 0.658 0.728 0.707 0.514 0.529
test_2 AVQBits|HO|s 0.640 0.745 0.689 0.511 0.556
test_2 AVQBits\HO\f 0.650 0.736 0.679 0.498 0.541
test_3 AV QBits|M3 / P.1204.3 0.485 0.888 0.798 0.630 0.788
test_3 AV QBits|M1 0.552  0.852 0.809 0.644 0.725
test_3 AV QBits| M0 0.641 0.794 0.749 0.570 0.630
test_3 AVQBits|HO|s 0514 0.873 0.804 0.635 0.762
test_3 AVQBits\HO\f 0.540 0.858 0.818 0.658 0.737
test_4 AVQBits\MCS / P.1204.3 0.377 0.917 0.899 0.748 0.842
test_4 AV QBits|M1 0.517  0.838 0.798 0.627 0.702
test_4 AV QBits| M0 0.534 0.826 0.782 0.609 0.683
test_4 AVQBits|HO|s 0392 0910 0.878 0.729 0.829
test_4 AVQBits\HO\f 0.370 0.920 0.878 0.715 0.847
test_5 AVQBits\M?; / P.1204.3 0.386 0.934 0.922 0.796 0.872
test_5 AV QBits|M1 0.700 0.762 0.796 0.641 0.581
test_5 AV QBits|M0 0.832  0.638 0.594 0.464 0.407
test_5 AVQBits|HO|s 0.502  0.855 0.842 0.684 0.732
test_5 AVQBits|HO|f 0.500 0.857 0.825 0.658 0.734
All AVQBits|M3 / P.1204.3 0.479 0.864 0.844 0.660 0.747
All AV QBits|M1 0.596 0.780 0.787 0.602 0.608
All AV QBits|M0 0.694  0.686 0.683 0.500 0.471
All AV QBits|HO|s 0.570 0.797 0.768 0.584 0.635
All AVQBits|HO|f 0582 0787  0.756 0.572 0.619

Table 5.1 shows the performance numbers for all the tests for the proposed models.
It can be concluded that using AVQBits| M3 / P.1204.3 to estimate the per-1-second
scores results in a very good performance of the proposed long-term integration
model. This is due to the high accuracy of the ITU-T P.1204.3 model. The estima-
tion of per-1-second and per-segment quality scores is better as compared to the
other instances of AVQBits, which use less complex input information without full
bitstream access for video quality prediction. Furthermore, it can be observed that
the AVQBits|HO|s and AVQBits|HO|f variants show similar performance to the
AV QBits|M3 / P.1204.3 in terms of PCC but have worse performance in terms of
RMSE for each of the five tests. This is unlike the short-term video quality prediction
where the AVQBits|HO|s and AVQBits|HO|f variants have a similar performance to
AV QBits|M3 / P.1204.3 both in terms of PCC and RMSE. This can be attributed to
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5.2 Evaluation of the Overall Integral Quality Model

the fact that in the case of short-term video quality prediction a simple linear map-
ping according to ITU-T P.1401 before computing the RMSE would accommodate for
the difference in prediction due to the usage of the QEB instead of the original bit-
stream. Whereas in the case of overall integral quality prediction, the input consists
of per-1-sec scores, and these per-1-sec scores are computed on the QEB which may
not reflect the true quality of the original bitstream. A dedicated linear mapping
of the per-1-sec scores to take into account the effect of QEB at the per-1-sec level
could alleviate such a problem and hence result in a lower RMSE value. Despite
this, the overall performance of the AVQBits|HO|s and AVQBits|HO|f variants are
significantly better than the AV QBits| M0 and AV QBits| M1 models.

The scatter plots illustrated in Figure 5.1 show that both AVQBits|M0 and
AV QBits|M1 seems to over-predict in the lower-quality range, which can be at-
tributed to the less accurate per-1-second score estimation by these models. This is
assumed to reflect that the quality impact due to more encoder-demanding video
content is less well captured by these models.
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Figure 5.1: Scatter plot of AV QBits instances for PNATS-UHD-1-Long dataset.
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5.3 Summary

To address the need for the short-term video quality models proposed as AVQBits in
Chapter 4 to be more ecologically valid, the scope of their usage has been extended
to include typical viewing sessions in real-world in this chapter. For this purpose, a
long-term integration model based on ITU-T Rec. P.1203.3 has been proposed. This
model takes into account the effects of the typical degradations encountered in a
HAS session such as audio and video quality switches, initial loading delay, and
stalling events. As the video quality prediction module in this long-term integration
model, all five model instances of AVQBits are considered. The analysis of the
results shows that the Mode 3 and HYNO variants perform better than the Mode 0
and Mode 1 variants owing to their more accurate per-1-second quality predictions.
From this usage of the AV QBits variants, it can be seen that they can be applied to
real-world HAS viewing sessions with an appropriate long-term integration model,

thus addressing the objectives outlined in research question 4.

Following the successful demonstration of the usage of the AVQBits variants for
assessment of the overall quality of a HAS session, an investigation of their applica-
bility to other use cases such as gaming video, 360° video, HFR content, and images

will be conducted in the next chapter.
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Extended Application Scopes of
AV OBits

As described in Chapter 1, there has been an increase in not only traditional 2D video
streaming but also in other application areas such as gaming video streaming and
360° videos. This can be attributed to multiple factors. Some of those factors include
an increase in affordable capture equipment and dedicated display devices such as
head-mounted displays (HMDs) in case of 360° videos, and better and affordable
equipment to stream video game play. In addition to this, significant advancements
in transmission technologies focus on reducing the overall data, e.g. tiled-based
streaming in the case of 360° videos, and also dedicated encoding strategies have
made this expansion into newer application scopes feasible. Even in traditional
2D videos, apart from VoD services, there has been a considerable increase in the
amount of live-streamed content and also HFR-related content mainly in live gaming
streaming scenarios. Furthermore, all these use cases have been increasingly using
HAS for delivering the content to the end-user. Hence, there is a need for automated
assessment of the overall quality of such services and therefore the need for video
quality models that can be used for these different use cases. There can either be
dedicated models focused on a particular application scenario or one model that can
be satisfactorily used across these different use cases with minimal adjustments. Of
all the SoA models, VMAF has been shown to perform satisfactorily across these
different scenarios of gaming [ 1, 360° video [Fre+20], etc. This chapter is
focused on investigating the applicability of the AV (QBits instances for different
use cases such as gaming video, 360° video, HFR content, live-streamed content,

user-generated content (UGC), and images.
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This chapter is partially based on the following publications.

[Rao+20b] Rakesh Rao Ramachandra Rao, Steve Goring, Robert Steger, Saman Zad-
tootaghaj, Nabajeet Barman, Stephan Fremerey, Sebastian Moller, and Alexander
Raake. “A Large-scale Evaluation of the bitstream-based video-quality model
ITU-T P.1204.3 on Gaming Content”. In: 2020 IEEE 22nd International Workshop on
Multimedia Signal Processing (MMSP). IEEE. 2020

[RGR22] Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“AVQBits - Adaptive Video Quality Model Based on Bitstream Information for
Various Video Applications”. In: IEEE Access 10 (2022)

6.1 Gaming

As a first extended application scope to evaluate the AV QBits instances, gaming
video quality evaluation is considered. In the following, a brief survey of gaming
video quality evaluation SoA, the details of the datasets considered for this purpose,

and the performance evaluation are described.

Related Work for Gaming Video Quality Assessment

Besides traditional 2D video, there has been a significant increase in gaming video
streaming. As a result, several video quality models dedicated to gaming video
quality evaluation have been proposed in the literature. The focus has mainly been
on the development of no-reference video quality models, due to the lack of high-
quality reference videos in a gaming video streaming session. NR-GVQM is an
example of machine-learning-based NR-models specifically developed for video
quality estimation of gaming videos [ ]. The model is based on support vector
regression (SVR) and includes nine frame-level features indicating impairments
such as blockiness, naturalness, etc. VMAF was used as the ground truth for model
training, and hence this model can be viewed as a no-reference counterpart to VMAF.
The model was trained and validated with the GamingVideoSet [ ]. 408 out of
the 576 processed video sequences (PVS) were used for training and the remaining
144 PVSs for validation.
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Another NR-based gaming video quality model was proposed by Goéring, Rao, and
Raake [GRR19] referred to as “nofu”. It is based on a number of features that are
integrated using a random forest model. There are two instances of the nofu model,
with the first developed to predict VMAF scores and the second to predict subjective
MOS. Both model instances were trained on the GamingVideoSet [ ] dataset

and shown to perform well based on 10-fold cross-validation.

Using a similar approach, Barman et al. [ ] develop two NR model instances,
namely, “NR-GVQSI” and “NR-GVQSE”, with NR-GVQSI using subjective MOS
as training target and NR-GVQSE using VMAF as the training ground truth. The
models were trained and tested using two different datasets: KUGVD [ ] and
GVS | ]. NR-GVSQI is based on neural networks and extracts seven features
for quality prediction and was trained on one dataset and tested on the other and vice
versa. NR-GVQSE is based on SVR and also uses seven (different from NR-GVQSI)
parameters. The model was trained on GVS using a 10-fold cross-validation strategy.
Additionally, it was tested on KUGVD for its performance using MOS data.

In addition to other machine-learning-based models, deep learning approaches
have been explored to develop gaming video quality models. One example of
such a model is the NDNetGaming model proposed by Utke et al. [ ], which
shows a good performance in terms of PCC on the KUGVD [ ] dataset. A
further extension of the NDNetGaming model called “DEMI” has been presented by
Zadtootaghaj et al. [Zad+20a]. “DEMI” incorporates a more sophisticated pooling
of the per-frame quality scores to obtain the per-segment quality score, in addition
to other improvements. This model is developed to be applicable to non-gaming
videos, too. The performance of the model was evaluated on the CGVDS [ ]

dataset, showing the model to be on par with or better than SoA models.

Although a bigger focus has been on pixel-based NR models for gaming video
quality assessment, some studies have investigated bitstream-based models for
gaming video quality prediction. One example of a gaming-specific bitstream-based
model is the BQGV proposed by [ ], which is described in Section 2.2.2.1. A
5-fold cross-validation approach using the CGVDS | ] dataset was performed
for performance evaluation, and it has been reported to outperform the ITU-T Rec.
P.1203.1 Mode 1 and Mode 3 models. However, it should be noted that the ITU-T

133



Chapter 6 Extended Application Scopes of AV QBits

Rec. P.1203.1 Mode 1 and Mode 3 models were not retrained for gaming videos in
that study.

Moreover, a gaming-specific planning model called GamingPara has been presented
by Zadtootaghaj et al. [ |. It is based on a multidimensional approach, where
overall video quality is a combination of impairments related to video discontinuity,
video fragmentation, and video unclearness. The model is shown to outperform
ITU-T P.1203.1 Mode 0 on gaming data.

In addition, ITU-T Rec. G.1072 comprises a video quality component that can be
used to evaluate gaming video quality. It is based on retraining the video quality
component of the IPTV-related planning model described in ITU-T G.1071 [ I

Datasets

Four different datasets, namely the three publicly available datasets GamingVideoSet
[ ], KUGVD | 1, CGVDS | ], and a self-developed proprietary
Twitch dataset [Rao+20b] are considered for the evaluation of the AVQBits model
instances. In the following, the datasets are described in more detail.

6.1.2.1 GamingVideoSet (GVS)

GVS | ] consists of 24 SRCs that have been extracted from 12 different games.
The SRCs are of 1920 x 1080 pixels resolution, 30 f ps framerate and have a duration
of 30s. The HRCs included 24 different bitrates across three different resolutions,
namely, 480p, 720p and 1080p. H.264 was selected to encode the videos with the
defined bitrate-resolution pairs, resulting in a total of 576 PVSs. A Constant Bitrate
(CBR) encoding approach with veryfast preset was selected to encode the videos. Out
of the 576 PVSs, a reduced sample of 90 PVSs with six SRCs and 15 bitrate-resolution
pairs was chosen for subjective evaluation. A total of 25 participants rated all the 90
PVSs.
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6.1.2.2 Kingston University Gaming Video Dataset (KUGVD)

Six SRCs out of the 24 SRCs from the GamingVideoSet were used to develop
KUGVD [ ]. The same bitrate-resolution pairs from GamingVideoSet were
included to define the HRCs. Following the encoding approach in GamingVideoSet,
144 PVSs were created and 90 PVSs out of these were selected for the subjective
evaluation, with 17 participants taking part in the test. This dataset was created
mainly for the development of the NR-GVSQI and NR-GVSQE models.

6.1.2.3 Cloud Gaming Video Dataset (CGVDS)

Compared to the aforementioned datasets, CGVDS [ ] consists of a larger
number of games, i.e. 15, and also includes videos captured at 60fps. Similar to the
previously discussed two datasets, three different resolutions, namely, 480p, 720p,
and 1080p are considered at three different framerates of 20, 30, and 60fps. A total
of 17 bitrate conditions spread across all the resolutions are used in the design of
this dataset. Unlike the GamingVideoSet and KUGVD datasets, this dataset uses a
hardware-accelerated implementation of H.264/ MPEG-AVC (NVENC) because most
cloud providers use this for delay-sensitive cloud gaming services. A CBR mode of
encoding with the preset of llhq (low latency, high quality) was used to encode the
videos. 5 different subjective tests were conducted to make sure all 15 games were
addressed, using 3 video sequences as anchor conditions. Each subjective test had a
total of 72 PVSs using a display with FHD resolution. Over 100 subjects participated

across all tests with a minimum of 20 subjects for each test.

6.1.2.4 Twitch Dataset

The last considered dataset, referred to as Twitch Dataset [Rao+20b], was created
with the initial aim of using it for genre classification, hence, a due effort was spent
to make sure that the dataset comprises gaming videos of different genres. This
dataset consists of a total of 36 different games, with each genre being represented
by 6 games. The genres were chosen based on their relevance and popularity on
Twitch. Three different streamers were recorded three times per game to maintain

high diversity for each game. A total of 351 video sequences with a duration of
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approximately 50 s spanning all representation levels were downloaded from Twitch.
This was done to ensure the usage of real-world encodings in the subjective test. A
subset of 90 sequences out of the 351 sequences was used in the test. Only the first
30's of each video in the chosen subset were shown to the test subjects to maintain
a fixed duration of one hour for the test. All 36 games from the original dataset
are represented in the test with either two or three streamers. Resolutions of 160p,
360p, 480p, 720p, 900p and 1080p and framerates of 30 and 60 fps were used. The
encoding scheme was the one used in Twitch.tv since the encoded representations
were directly downloaded from Twitch. A total of 29 subjects participated in the
test. One outlier was detected using a criterion of 0.75 PCC and was removed from

further analysis.

The datasets are summarized in Table 6.1 and the MOS distribution of all the four
datasets is as shown in Figure 6.1.

Table 6.1: Overview of the used gaming datasets.

Parameter GVS KUGVD CGVDS Twitch
No. of sources 6 6 15 36
No. of PVS’s 90 90 72 x5 90
No. of subjects 25 17 >100 (5 tests) 29
Resolution 480p, 720p, 480p, 720p, 480p, 720p, 160p, 360p, 480p,
1080p 1080p 1080p 720p, 900p, 1080p
Framerate (fps) 30 30 20, 30, 60 30, 60
Duration (s) 30 30 30 30
Encoder ffmpeg x264  ffmpeg x264  ffmpeg H.264
NVENC
(H.264)
Encoding mode CBR CBR CBR Twitch default
Preset veryfast veryfast lIhq Twitch default
Evaluation

It should be noted that all model instances of AVQBits are used without any re-
training to estimate the video quality for the four gaming datasets considered for
performance evaluation. The only difference to the case of “normal” 2D video is that
here all databases were created for a Full-HD (1920 x 1080 pixels) display instead
of the 4K/UHD-1 target screen resolution used in the case of the PC databases for
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Figure 6.1: MOS distribution of GVS, KUGVD, CGVDS, and Twitch datasets.

“normal” video and the initial development of AV QBits|M3 / P.1204.3 in ITU-T SG12.
In this evaluation, AVQBits|M3 / P.1204.3 and its extensions are used directly with
the target resolution of 4K/UHD-1.

Table 6.2 provides a detailed view of the performance of the proposed models on
all four considered tests. AVQBits|M3 / P.1204.3 and AVQBits|M1 perform on par
across all datasets, with AVQBits| M0 being the least well performing model. The
good performance of the AVQBits|M1 model indicates that the features related to
frame size and frame type can be used to estimate the impact of content improving
the estimation of the QP value and bringing it closer to the one of the AVQBits|M3
model with its full bitstream access. Although AV QBits|M1 performs on par with
AV QBits|M3 / ITU-T P.1204.3 on average, from the scatter plots shown in Figure
6.2 it can be observed that there is a general tendency of the AVQBits|M1 model to
slightly over-predict as compared to ITU-T P.1204.3. Furthermore, it can be observed
from the scatter plot associated with AVQBits|MO0 in Figure 6.2 that AVQBits| MO0
suffers significantly from the lack of content-related features, leading to cases with
a larger prediction inaccuracy. In case Mode 0 type data and pixel information can
be accessed in a practical monitoring scenario, the AVQBits|HO models are highly
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Table 6.2: Performance of AV QBits instances using the considered gaming datasets.

Dataset Model RMSE PCC SROCC Kendall R2Score
GVS AV QBits|M3 / P.1204.3 0.45 0.88 0.87 0.69 0.77
GVS AV QBits|M1 0.42 0.89 0.87 0.71 0.79
GVS AV QBits|MO 0.69 0.67 0.65 0.49 0.45
GVS AV QBits|HO|s 0.48 0.86 0.86 0.69 0.74
GVS AV QBits|HO| f 0.62 0.75 0.73 0.56 0.56
KUGVD AV QBits|M3 / P.1204.3 0.39 0.93 0.92 0.77 0.86
KUGVD AVQBits|M1 0.50 0.87 0.86 0.69 0.76
KUGVD AV QBits| M0 0.84 0.59 0.57 0.41 0.35
KUGVD AVQBits|HO|s 0.46 0.90 0.89 0.72 0.80
KUGVD AVQBits|HO|f 0.65 0.78 0.76 0.58 0.61
CGVDS  AVQBits|M3 / P.1204.3 0.38 0.85 0.84 0.65 0.72
CGVDS AVQBits|M1 0.36 0.90 0.88 0.70 0.78
CGVDS AV QBits| MO 0.47 0.78 0.75 0.56 0.60
CGVDS  AVQBits|HO|s 0.36 0.89 0.88 0.70 0.79
CGVDS  AVQBits|HO|f 0.38 0.87 0.87 0.68 0.76
Twitch AV QBits|M3 / P.1204.3 0.40 0.93 0.93 0.77 0.87
Twitch AV QBits|M1 0.37 0.94 0.93 0.77 0.89
Twitch AV QBits|MO 0.43 0.92 0.89 0.71 0.85
Twitch AV QBits|HO|s 0.31 0.96 0.95 0.82 0.92
Twitch AV QBits|HO| f 0.30 0.96 0.95 0.81 0.92
All AV QBits|M3 / P.1204.3 0.41 0.90 0.90 0.73 0.81
All AV QBits|M1 0.41 0.90 0.89 0.73 0.81
All AV QBits|MO 0.60 0.76 0.75 0.56 0.58
All AV QBIits|HO|s 0.40 0.90 0.90 0.73 0.82
All AV QBits|HO| f 0.48 0.86 0.85 0.67 0.73

usable. The results show that AVQBits|HO|s performs as well as AVQBits|M3 /
P.1204.3 for all the four considered gaming datasets. The AVQBits|HO|f model
variant with fewer requirements on the set of codecs available during monitoring
performs on par with AVQBits|M3 / P.1204.3 for the CGVDS and Twitch datasets,
but less well for GVS and KUGVD. This may be due to the coefficients @,y and by
being obtained by training on traditional 2D video datasets. Dedicated retraining of

these two coefficients for gaming content may result in improved performance.

In addition to this, the performance of the proposed AV QBits model instances
are compared with SoA models and the details are reported in Table 6.3. The
performance numbers corresponding to the SoA models relating to the open datasets

are directly taken from respective papers. In general, it can be concluded that
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Figure 6.2: Scatter plot of AV QBits instances for the considered gaming datasets.

AV QBits|M3 / P.1204.3 and AVQBits|M1 perform on par with VMAF across all
datasets. It should be noted that two out of the four datasets, namely, CGVDS
and the Twitch dataset use completely different encoding strategies than the ones
these models were trained on. CGVDS uses a hardware-accelerated encoder and
the Twitch dataset consists of PVSs with proprietary Twitch encoding. Despite
this, the models perform well indicating the generalizability of the model w.r.t
different encoder implementations and strategies. Although AVQBits|MO is the
worst performing bitstream model, it still outperforms all the considered NR models
for all datasets. The performance of AVQBits|MO0 can be enhanced by retraining
it for the gaming-specific use case. Furthermore, AVQBits|HO|s performs as well
as both the best-performing pixel and bitstream models. Although AVQBits|HO| f
suffers from a lower performance for the GVS and KUGVD datasets, the average
performance across all four datasets is still competitive in comparison with the SoA
models.
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Table 6.3: Comparison of performance of AV QBits instances with SoA models using the considered
gaming datasets.

Dataset Model RMSE PCC SROCC Kendall R2? Score
GVS PSNR 0.63 0.74 0.74 0.57 0.55
GVS SSIM 0.57 0.80 0.80 0.61 0.62
GVS VMAF 0.47 0.87 0.86 0.69 0.75
GVS NIQE 0.64 0.77 0.71 0.53 0.52
GVS AV QBits|M3 / P.1204.3 0.45 0.88 0.87 0.69 0.77
GVS AV QBits|M1 0.42 0.89 0.87 0.71 0.79
GVS AV QBits|MO 0.69 0.67 0.65 0.49 0.45
GVS AV QBIits|HO|s 0.48 0.86 0.86 0.69 0.74
GVS AV QBits|HO| f 0.62 0.75 0.73 0.56 0.56
KUGVD PSNR 0.62 0.80 0.84 0.67 0.64
KUGVD SSIM 0.48 0.89 0.91 0.74 0.79
KUGVD VMAF 0.41 0.92 0.92 0.77 0.85
KUGVD NIQE 0.55 0.85 0.84 0.66 0.72
KUGVD AVQBits|M3 / P1204.3 0.39 0.93 0.92 0.77 0.86
KUGVD AV QBits|M1 0.50 0.87 0.86 0.69 0.76
KUGVD AV QBits| MO 0.84 0.59 0.57 0.41 0.35
KUGVD AVQBits|HO|s 0.46 0.90 0.89 0.72 0.80
KUGVD AVQBits|HO|f 0.65 0.78 0.76 0.58 0.61
CGVDS PSNR 0.60 0.64 0.65 0.47 0.41
CGVDS SSIM 0.59 0.67 0.78 0.60 0.45
CGVDS VMAF 0.38 0.88 0.87 0.69 0.77
CGVDS NIQE 0.66 0.54 0.56 0.41 0.29
CGVDS  AVQBits|M3 / P.1204.3 0.38 0.85 0.84 0.65 0.72
CGVDS  AVQBits|M1 0.36 0.90 0.88 0.70 0.78
CGVDS  AVQBits|MO0 0.47 0.78 0.75 0.56 0.60
CGVDS  AVQBits|HO|s 0.36 0.89 0.88 0.70 0.79
CGVDS  AVQBits|HO|f 0.38 0.87 0.87 0.68 0.76
Twitch NIQE 0.96 0.24 0.11 0.17 0.04
Twitch AV QBits|M3 / P1204.3 0.40 0.93 0.93 0.77 0.87
Twitch AV QBits|M1 0.37 0.94 0.93 0.77 0.89
Twitch AV QBits|MO0 0.43 0.92 0.89 0.71 0.85
Twitch AV QBits|HO|s 0.31 0.96 0.95 0.82 0.92
Twitch AV QBits|HO|f 0.30 0.96 0.95 0.81 0.92

In the next section, an FHD-mapped version of AVQBits|M3 / P.1204.3 is proposed
and evaluated.
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6.1.3.1 FHD-mapped P.1204.3 model

The standardized P.1204.3 model was trained and validated on two different target
devices, namely, a TV /PC monitor with 3840 x 2160 and a mobile/tablet (MO/TA)
with 2560 x 1440 as the two target resolutions. Hence, the corresponding scale_factor
that is used in P.1204.3 to determine the “upscaling degradation” is specified dif-
ferently for PC/TV and MO/TA, as given in Equations (6.1) and (6.2), respectively
[Rao+20a]:

coding_resolution

scale_factor = 3840 . 2160 for PC/TV (6.1)
_ coding_resolution
scale_factor = 2560 - 1440 for MO/TA (6.2)

All described gaming datasets use PC/TV as the target device, and hence only the
PC/TV case was used for the FHD-mapped P.1204.3 version. As can be seen from
Equation (6.1), the normalization of the coding_resolution is done w.r.t the display
resolution of 3840 x 2160. This is expected to lead to over-predicting the upscaling
degradation when a lower resolution video is considered, that in the actual test was
presented on an FHD screen rather than a 4K/UHD-1 screen. For example: If a
Full-HD video is considered, the upscaling degradation should be 0 since the coding
resolution of the video matches the display resolution used in the tests. But, if we use
the original scale_factor definition, this would result in a finite non-zero upscaling
degradation which is not the case. Similarly, the relative perception of other lower

resolutions changes with the target display resolution.

To develop the FHD-mapped version of P.1204.3, the focus is on developing a ded-
icated adaptation of P.1204.3 targeting FHD resolution. Here, a correction factor
to account for the overly strong handling of the upscaling degradation part by the
original model when applying it to FHD resolution is proposed. This correction
factor is referred to as D,_corr_fac and is defined in Equation (6.3).

codmg_resolutzon)) 63)

Du_corr_fac = ax lOg (b * ( 1920 * 1080

where coding_resolution = coding_height x coding_width and log is the natural loga-

rithm.
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Hence, the final prediction of the P.1204.3 model is adjusted using D,,_coys_fac as de-
fined in Equation (6.3) to obtain a final FHD-mapped prediction. This is represented
in Equation (6.4).

pre‘ihd_mapped = predp1204_3 + Du_corr_fac (6.4)

where pred,1204 3 is the output of the standardized P.1204.3 model. The additive
term preserves the overall architecture of the P.1204.3 model, considering the overly
strong handling of the upscaling effect when applying P.1204.3 to FHD. With this
approach, the original P.1204.3 model could be kept unchanged.

For training the correction factor D;,_coyr_f4c, the four datasets are split into a training
and a validation set. GamingVideoSet and KUGVD are considered as the training
datasets, which have a total of 24 encoding conditions (i.e. bitrate and resolutions).
These two datasets consider 12 different sources in total which are encoded at 3
different resolutions (480p, 720p, and 1080p) to result in a combined total of 180 PVSs
(90 + 90). The remaining two datasets, namely, the CGVDS and Twitch datasets were

used as validation datasets.

The final coefficient values (cf. Equation (6.3)) after the training procedure are:
a = —0.10756695 and b = 0.08303269.

The performance of the FHD-mapped P.1204.3 for the validation databases is reported
in Table 6.4.

Table 6.4: Performance of FHD-mapped P.1204.3 on the validation datasets.
Dataset RMSE PCC SROCC Kendall R?Score

CGVDS  0.40 0.84 0.83 0.62 0.70
Twitch 0.45 091 0.92 0.75 0.83

6.2 360° Video

As the next application scope, 360° video quality evaluation is considered to inves-
tigate the applicability of AVQBits on different video formats. For this evaluation
360 Streaming Video Quality Dataset [Fre+20] is considered. This section provides a
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brief overview of the SoA for 360° video quality evaluation and describes the dataset
considered for this evaluation in detail and also presents the performance results.

State of the Art for 360° Video Quality Assessment

Like for gaming video quality assessment, pixel-based models have been the main
focus of the quality assessment of 360° videos. For example, variants of PSNR to
take into account the possibility of viewing 360° in all directions have been proposed.
S-PSNR [ ], a sphere-based PSNR computation, and WS-PSNR [ ], a
position-weighted PSNR have been proposed as quality metrics to ultimately increase

compression efficiency while maintaining a similar quality.

Tran et al. [ ] conduct a performance evaluation of 360° video quality metrics
considering different variants of PSNR including S-PSNR and WS-PSNR, among
others. They concluded that the traditional approach of calculating PSNR was the

most appropriate for 360° video.

More perception-oriented, traditional 2D video quality models such as VMAF have
also been evaluated for quality assessment of 360° video. For example, Fremerey
et al. [Fre+20] evaluated the applicability of both the original version of VMAF and
the centre-cropped version of VMAF [ ] for 360° video quality evaluation and
reported good performance in terms of PCC. Also, Orduna et al. [ ] report
similar results for VMAF as reported by Fremerey et al. [Fre+20] for 360° video
quality evaluation. Furthermore, extensions to VMAF to make it more suitable for
360° video quality evaluation have been proposed. To this aim, Croci et al. [ ]
present a Voronoi-based extension of VMAF. In addition to the Voronoi-based exten-
sion of VMAF, the study also presents Voronoi-based extensions for PSNR, SSIM,
and MS-SSIM and reports that the Voronoi-based extensions generally outperform
their traditional counterparts for 360° video.

More sophisticated models based on neural network approaches have also been
proposed. For example, Li et al. [ ] present a viewport-based convolutional
neural network (V-CNN) to estimate 360° video quality and is shown to outperform
the SoA models. The model is also capable of predicting viewport saliency.
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In addition to the mentioned pixel-based models, bitstream and hybrid models
could also be used to estimate 360° video quality. One example is Yao, Fan, and
Hsu [ ], who propose a series of bitstream-based and hybrid models using
QP as the bitstream feature and additional features such as spatial genre (simple
versus complex), temporal genre (slow- versus fast-paced) and projection scheme.
The described models are reported to outperform S-PSNR-I and V-PSNR based
on a three-fold cross-validation approach. Furthermore, Fremerey et al. [Fre+20]
presented lightweight metadata-based and hybrid models for the quality assessment
of 360° videos. The hybrid model calculates spatial and temporal information (SI,
TI, cf. [ ]) as input features, in addition to metadata such as bitrate, framerate,
and resolution. Both presented models show performance comparable with the SoA
models such as VMAF, ADM2, WS-SSIM, and VIFE.

Besides the aforementioned models, extensions to existing bitstream models were
proposed to accommodate 360° video-specific transmission aspects such as tile-based
streaming. In this regard, Koike et al. [ ] introduced a tile-based extension
of the recently standardized ITU-T Rec. P.1204.3 (i.e., the proposed AVQBits|M3

model), and report good performance in comparison with subjective test results.

360 Streaming Video Quality Dataset

The 360 Streaming Video Quality Dataset [Fre+20] consists of a total of three different
subjective tests. The playback, subjective score and head-rotation data collection was
automated using the publicly available AVTrack [ ] software'. The participants
were instructed that they could freely explore the 360° videos. A criterion based on
PCC with a threshold of 0.7 was used to detect outliers in all three tests.

test_1 and test_2 had a joint objective of comparing the effect of different HMDs on
the perceived video quality. Hence, both tests include the same SRCs and HRCs.
Eight SRCs with a resolution of 3840 x 1920 pixels, framerate of 30 fps, and duration
of 20 s were used in these tests. The bitrate and resolutions chosen in the two tests
are detailed in Table 6.5. H.265 was used to encode the videos. A 2-pass encoding
approach with the preset of slow was chosen. The eight SRCs were encoded with the

lnttps://github.com/Telecommunication-Telemedia-Assessment /AVTrack360
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defined HRCs and resulted in a total of 64 PVSs including high-quality audio. In
test_1, the videos were presented using an HTC Vive HMD, and in test_2, using an

HTC Vive Pro. The total test duration of each test was 90 minutes.

Table 6.5: HRCs for test_1 and test_2.
Resolution Target Bitrate (Mbps)

19201080 0.5 1 3.5 7
3840x1920 1 2 6 12

In test_1, all the 64 PVSs were rated by a total of 27 participants. 6 outliers were
detected following the criterion of PCC < 0.7. 27 participants took part in test_2.
There were 3 outliers detected in this test.

test_3 focused on the quality assessment of high resolution (> 3840 x 1920) content.
For this test, seven SRCs of 7680 x 3840 pixels were selected. The framerate of the
selected SRCs was 30 f ps, and sequence duration was 20s. There was no overlap
with the SRCs from test_1 and test_2. The videos were encoded at three different
resolutions, namely, 3840, 5760 x 2880 and 7680 x 3840 pixels. Three bitrates each
were used for each resolution, the details of which are described in Table 6.6. As in
test_1 and test_2, H.265 was used to encode the videos following a 2-pass encoding
approach with slow preset. In total, 63 PVSs were rated by 27 participants, with 4
outliers detected according to the criterion of PCC < 0.7. The PVSs were presented
on an HTC Vive Pro HMD.

The overall MOS distribution of all three tests is as illustrated in Figure 6.3.

Table 6.6: HRCs for test_3.
Resolution Target Bitrate (Mbps)

3840x1920 0.5 2 6
5760x2880 1 45 13.5
7680x3840 2 8 24

Evaluation

As in the case of gaming, no retraining of the proposed models has been performed.
In addition to this, as with the gaming use-case, in this thesis, AVQBits|M3 / P.1204.3
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Figure 6.3: MOS distribution of 360 Streaming Video Quality Dataset.

and its extensions are applied directly with the target resolution of 4K/UHD-1
despite the different tests that are considered, have different target resolutions. Table
6.7 provides a detailed view of the performance numbers for all the tests for the

proposed bitstream-based models.

Table 6.7: Performance of AVQBits instances using the 360 Streaming Video Dataset.

Test Model RMSE PCC SROCC Kendall R?Score
test. 1 AVQBits|M3 / P.1204.3 0.319 0917 0.880 0.709 0.841
test. 1 AVQBits|M1 0.482 0.798 0.785 0.612 0.637
test 1 AV QBits|MO 0.558 0.717 0.757 0.578 0.514
test_1 AVQBits|HO 0.343 0.903 0.872 0.700 0.816
test 2 AVQBits|M3 / P.1204.3 0314 0.926 0.917 0.757 0.858
test 2 AVQBits|M1 0.452  0.841 0.849 0.669 0.707
test 2 AVQBits|MO 0.527 0.775 0.834 0.653 0.600
test 2 AV QBits|HO 0314 0.927 0.916 0.753 0.859
test_ 3 AVQBits|M3 / P.1204.3 0495 0.824 0.707 0.504 0.679
test 3 AV QBits|M1 0.780 0.324 0.224 0.134 0.105
test_ 3  AVQBits|MO 0.770  0.382 0.405 0.267 0.146
test 3  AVQBits|HO 0.395 0.880 0.796 0.596 0.775
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In general, it can be observed from Table 6.7 that AV QBits|M3 / P.1204.3 performs
well for all the tests. Mode 0 (AVQBits|M0) and Mode 1 (AV QBits|M1) show sat-
isfactory performance for test_1 and test_2, but perform considerably worse for
test_3. The general tendency toward the worse performance of these models can be
attributed to the fact that the QP estimation is not optimal for 360° video, as encoders
may use different strategies in QP selection for specific bitrates. Hence, a more use-
case-specific QP estimation should be considered to enhance the model performance.
Especially for these low-complexity bitstream models, a dedicated model could
be used, which is usually even how it is handled for existing 2D video streaming
applications, due to the sheer amount of different encoding strategies [Rob+22].
The difference in performance for the different bitstream-based models can also
be observed in the scatter plots depicted in Figure 6.4. Here, it can be seen that
both AVQBits|M0 and AVQBits|M1 suffer from large prediction errors for cer-
tain cases. The difference in performance between the proposed models is most
prominent for test_3 which involved a comparison between 4K, 6K, and 8K 360°
videos. It should be noted that the proposed models have only been trained and
validated on videos up to 4K/UHD-1 resolution. Furthermore, from the results for
the Hybrid No-reference Mode 0 model AV QBits|HO|s it can be seen that the model
performs well for all three tests, and is on par with the performance of AVQBits| M3
/ P1204.3. The AV QBits|H0|s model performs significantly better than AV QBits| MO0
and AVQBits|M1 due to its ability to better estimate the complexity of the content
compared to either AVQBits| MO0 or AVQBits| M1, as it can use the entire bitstream
information of the QEB. AVQBits|HO|f is not explicitly considered for evaluation
because the codec used to encode videos in the test was H.265, which is the default
codec for AVQBIits|HO|f and hence both AVQBits|HO|s and AV QBits|HO|f are the

same models in this case.

In Table 6.8, a comparison of the proposed bitstream models with a number of SoA
models is reported. The performance numbers for the SoA models are taken directly
from the work by Fremerey et al. [Fre+20]. It can be observed that AVQBits|M3
/ P.1204.3 performs on par with the best performing FR model, i.e. VMAF. It is
further shown that the Mode 0 model proposed in [Fre+20], hereafter referred to as
“Mode0F”, performs better than the Mode 0 model AV QBits| M0 proposed in this
thesis. It should be noted that the ModeOF model was specifically trained for the
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Figure 6.4: Scatter plot of AV QBits instances for 360 Streaming Video Quality Dataset.

360° video use-case and the performance numbers reported in Table 6.8 are based on
a 50:50 training-validation strategy. Moreover, the sources in test_1 and test_2 are
the same, which leads to an increase in the prediction accuracy of the ModeOF model.
Furthermore, it can be seen that the proposed AV QBits|HO|s model outperforms the
hybrid model proposed by Fremerey et al. [Fre+20], despite not being specifically
trained for 360° videos. This is due to the fact that a more holistic approach is
proposed in this thesis with the QEB, using re-encoded bitstream features that are
considerably more indicative of content complexity in the Random Forest part of
the underlying AV QBits|M3 / P.1204.3 model than the SI and TI information used

in [Fre+20].
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Table 6.8: Comparison of performance of AVQBits instances with SoA models using the 360 Video
Streaming Quality Dataset.

Model RMSE PCC SROCC Kendall
Hybrid [Fre+20] 0425 0.891  0.890 0.714
Mode 0 [Fre+20] 0503 0.832  0.865 0.680
VMAF_cc [ ] 0384 0.898  0.872 0.700
VMAF [ ] 0431 0.870 0.834 0.664
ADM2 | ] 0494 0.825 0.819 0.640
WS_SSIM 0500 0.820  0.864 0.671
VIFP [SB06] 0554 0773  0.656 0.502
WS_PSNR 0598 0729  0.767 0.582
SSIM [ ] 0622 0702  0.730 0.563
PSNR 0762 0489  0.627 0.469
AVQBits|M3 / P12043 0377 0.894  0.870 0.679
AVQBits|M1 0581 0709  0.677 0.497
AV QBits| M0 0627 0658  0.686 0.401
AV QBits|HO 0356 0906  0.886 0.695

6.3 High Framerate Video

The third extended application scope is the quality estimation of HFR videos. The
LIVE-YT-HEFR [ ] dataset is used to investigate this. A brief overview of the
SoA related to HFR video quality assessment along with the details of the dataset
and the evaluation process is presented in the following sections.

Related Work for Quality Assessment of HFR Videos

The 4K/UHD-1 and 8K/UHD-2 standards cover higher framerates compared to
traditional cinema or TV, which usually has 24 fps or 30 fps. In the following section,
the SoA will be briefly analyzed considering the video quality assessment/prediction
of videos with a higher framerate of > 60 fps. A study on the impact of framerate
on perceived quality was conducted by Mackin, Zhang, and Bull [ ] in which
videos with framerates varying from 15 Hz to 120 Hz were analyzed. The subjective
evaluations conducted using these videos show a significant relationship between
framerate and perceived video quality. Further, it was observed that the effect of
framerate on perceived video quality is content dependent. The study also reports

diminishing improvements in terms of quality as framerates increase.
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Furthermore, Mackin, Zhang, and Bull [ ] develop a high-framerate video
quality database, BVI-HFR, containing videos captured at a framerate of 120 fps.
Based on their tests they conclude that models such as FRQM [ ] which
explicitly account for temporal distortions are more accurate in predicting video

quality as compared to traditional metrics such as PSNR.

In addition to this, Madhusudana et al. [ ] conduct a large-scale study on
the subjective and objective quality of high framerate video with framerates up to
120 fps. For this purpose, a large dataset called the LIVE-YouTube-HFR (LIVE-YT-
HFR) with 480 PVSs is created, which are subjectively evaluated by a total of 85
participants. The LIVE-YT-HFR dataset is made publicly available’. An evaluation
of existing FR and NR models has been performed, and it has been reported that
the GSTI [ ] model outperforms all the SoA models including VMAEFE. GSTI
uses a statistical entropic differencing method based on a Generalized Gaussian
Distribution model expressed in both the spatial and temporal band-pass domains

to measure the difference in quality between reference and distorted videos.

Furthermore, Lee et al. [ ] conducted a subjective and objective assessment
of the video quality of space-time subsampled videos. The ETRI-LIVE Space-Time
Subsampled Video Quality (ETRI-LIVE STSVQ) database was created for this pur-
pose and contains a total of 437 PVSs with framerates varying between 30 fps, and
120 fps. The evaluation shows that the VSTR model proposed by Lee et al. [ 1,
which is specifically developed to take into account the joint perceptual effects of
spatio-temporal subsampling and compression, outperforms all the considered SoA
models including VMAFE

LIVE-YT-HFR Dataset

The LIVE-YT-HEFR [ ] dataset was designed to analyse the impact of framer-
ate on perceived video quality, like test_4 of the AVT-VQDB-UHD-1 dataset. For this
purpose, 16 SRCs captured at a framerate of 120 f ps were used. Eleven out of the 16
SRCs are from the BVI-HFR dataset [ ]. Although these 11 SRCs were captured

at 3840 x 2160 pixels resolution, the publicly available version of the dataset consists

thtps://live.ece.utexas.edu/research/LIVEiYTiHFR/LIVEiYTiHFR/index.html
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of SRCs downsampled to 1920 x 1080 (FHD) resolution, with a sequence duration
of 10s. The remaining five SRCs are of 3840 x 2160 (UHD) resolution, framerate of
120 fps, with a duration of 6 — 8 s. They mainly consist of sports content with high
motion. Six different framerates were included in the study, namely 24, 30, 60, 82,
98, and 120 fps. All the SRCs were encoded with VP9 at five different CRF values
for each framerate, thus resulting in 30 PVSs for each source and a total of 480 PVSs.
The dataset is divided into four subsets, with each subset containing 120 PVSs. 85
participants took part in the subjective test, with each subject rating two out of the
four subsets, thus rating a total of 240 PVSs in two sessions. The test sequences, both
FHD and UHD, were presented on a 27" UHD-1 screen. Each PVS was rated by a
minimum of 12 participants. The quality distribution of the PVSs in terms of MOS is

as shown in Figure 6.5.
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Figure 6.5: MOS distribution of LIVE-YT-HFR dataset.

Evaluation

Although this use-case falls into the broad category of traditional 2D videos, the HFR

use-case is still considered an extended application scope as the proposed models
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have been trained and validated only for video of framerate up to 60 fps. As was
the case with gaming and 360° video, no retraining was performed on the proposed

AV QBits model instances for the specific use case.

Table 6.9 compares the performance of the proposed AV QBits models with SoA
models for each framerate. The performance numbers for the SoA models are taken
directly from the work by Madhusudana et al. | . In general, it can be
observed that AVQBits|M3 / P.1204.3 model performs on par with VMAF for all
framerates. The performance is similarly good for the hybrid models AVQBits|HO|s
and AVQBits|HO|f, although AVQBits|HO|f with its fixed encoder shows a slightly
worse performance. The results for this model variant could be enhanced by a
dedicated retraining of the acmqp and bemap for HFR-specific content. The Mode 0
(AVQBits|M0) and Mode 1 (AVQBits| M1) models show similar performance to that
of SSIM, MS-SSIM, ST-RRED, and FRQM. It can also be seen that prediction accuracy
in terms of both PCC and SROCC is significantly worse for lower framerates than
for higher framerates for all the proposed models. This is due to the fact that the
temporal degradation component of the “Core Model” considers 60 fps as the maxi-
mum framerate as that was the framerate of the used display for subjective testing
for both AVI-PNATS-UHD-1 and AVT-VQDB-UHD-1. The temporal degradation
associated with the perceived video quality is then estimated relatively to 60 f ps
thereby underestimating the impact of lower framerates on perceived video quality
when viewed on a display with a higher framerate such as 120 fps. The models
show significantly better performance at higher framerates (> 60 fps), as the effect
of temporal degradation on perceived video quality decreases at higher framerates.
This is consistent with findings presented in [ ]. Figure 6.6 illustrates the
scatter plots for the different AV QBits variants on the LIVE-YT-HFR dataset.

6.4 Live Streaming Sports

One of the biggest challenges in a live streaming scenario is minimizing latency as it
has a significant impact on the QoE of the end-user. Latency can be due to any of
the following factors in a live streaming set-up: video encoding pipeline, ingest and
packaging, network propagation, CDN, and player policies [ ]. As the video
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Figure 6.6: Scatter plot of AVQBits instances for LIVE-YT-HFR dataset.

encoding pipeline is one of the factors contributing to the overall latency, dedicated
encoding settings are used and can vary in comparison to traditional VoD services.
Hence, models developed mainly using particular encoder implementations and
for a defined set of encoding settings targeted mainly towards VoD scenarios have
to be tested for their efficiency to be applicable to live streaming content. With this
objective, the AV QBits instances will be investigated for their applicability for live
streaming video quality evaluation. For this, the LIVE-Amazon Prime Video (LIVE-
APV) dataset consisting videos of subjected to distortions salient to live streaming is
used. Before discussing the results of this evaluation, a brief overview of the existing
SoA quality evaluation in live streaming scenarios.

Related work

One notable publicly available video quality assessment database for live streaming
is the LIMP video quality database [ ]. This database consists of nine videos

154



6.4 Live Streaming Sports

from the Live Quality Video Database [ ]. These videos were then subjected
to 12 levels of randomized packet loss to create PVSs. Vega et al. [ ] use
this database to evaluate their proposed unsupervised deep-learning model. How-
ever, this database suffers from the drawback that the considered videos are of low
resolution (768 x 432) and has only packet-loss degradations.

To overcome this drawback, Shang et al. [ ] develop a database focused on
distortions normally encountered in live streaming scenarios. This database is
developed using high-resolution high-motion sports content. The details of this
database are provided in the subsequent section. In addition to conducting subjective
tests using this database, a holistic evaluation of various FR and NR models is

performed for this specific use case.

In summary, the increasing amount of live streamed content using HAS-based
mechanisms necessitates the need for a quality model to be able to evaluate such
different encodings, and hence the proposed models are tested for their applicability

for this use case.

LIVE-APV Dataset

The LIVE-APV dataset consists of 315 PVSs derived from 45 different SRCs of
duration ranging between 5-8 s. The 45 different SRCs are extracted from 33 different
footages. The considered footages were all pristine videos with a resolution of either
1920 x 1080 or 3840 x 2160 pixels and had a framerate of 30 fps. This footage was

gathered from different publicly available sources.

Six different distortions were applied to the 45 SRCs. These include H.264 com-
pression, aliasing, judder, flicker, frame drops, and interlacing. In this evaluation,
the focus is only on the H.264 compression-related distortions as the models that
form AV QBits are only capable of handling compression-related distortions. Four
different CRF values were considered for compression. The four CRF values used
for videos with a resolution of 1920 x 1080 pixels were 9, 25, 35, and 39 and for
4K /UHD-1 videos they were 9, 27, 39, and 43. One CRF value was chosen for each
video as a full-factorial test design by considering all six distortions would result

in a large number of PVSs and hence would become infeasible for test conditions.
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Figure 6.7: MOS distribution of LIVE-APV dataset.

This resulted in 45 PVSs with compression-related distortions and these are used to
evaluate the AV QBits model instances. The PVSs were rated on a 0-100 scale. The
overall MOS distribution of these 45 PVSs is shown in Figure 6.7.

Evaluation

For performance comparison of the models, different SoA NR and FR models were
used in addition to the different variants of AVQBits. In the case of the proposed
models, a simple linear mapping [ ] was applied to the predicted scores to
compute the RMSE. Whereas for the other supervised methods, retraining with
1000 random splits with each split having 80% data for training and 20% for testing
was performed and within each training set a 5-fold cross-validation approach was
used. In doing this retraining, it was ensured that there was no overlap in content
between the training and testing set. For unsupervised methods, the predicted scores
were re-mapped using a non-linear logistic regression process before computing
RMSE and PCC. This additional corresponding retraining and logistic mapping were
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performed by the original developers of the database, Shang et al. [ ] and
the numbers corresponding to the SoA models reported in Table 6.10 are from that
paper.

Although just a simple linear mapping was used for all models of AV QBits, their
performance in terms of RMSE, PCC, and SROCC is comparable to other models that
have either been retrained or been re-mapped using a non-linear logistic regression
process. This shows that the developed models are well-suited for such content.

Table 6.10: Comparison of performance of AV QBits instances with SoA models using the LIVE-APV

dataset.
Metric RMSE PCC SROCC
NIQE 45.7805 0.2805 0.2775
BRISQUE 9.1434 0.7616  0.6409
CORNIA 8.0173 0.8197  0.7399
HIGRADE 7.7381 0.8395 0.7234
V-BLIINDS 7.7836 0.8313 0.7131
TLVOM 10.0801 0.6991 0.6574
ChipQA 7.7510 0.8408 0.7482
PSNR 42304 0.9586 0.8750
SSIM 3.8493 0.9659 09171
MS-SSIM 3.6708 09690 0.9154
SpEEDQA 45223 0.9526 0.8979
ST-RRED 4.7155 0.9483 0.8943
FAST 42267 0.9587  0.9283
VMAF 3.7600 09675 0.9135
AVQBits|M3 / P.1204.3 45095 0.9568  0.8996
AV QBits|M1 6.6759 09026 0.8711
AV QBits|MO0 79932 0.8570 0.8278
AV QBits|HO|s 5.6486 0.9313  0.8706
AV QBits|HO| f 7.8256 0.8634  0.8755

6.5 Quality Evaluation of Videos with Pre-Existing
Distortions

Due to the perpetration of affordable high-quality capture devices, the amount of
UGC has increased significantly on the internet, most notably on social media such as
TikTok, Facebook, YouTube, etc. These videos are partly characterized by the lack of
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pristineness in the source content. Also, these videos have often undergone a series
of processes such as editing, compression, etc. before being uploaded to a particular
online server. Furthermore, these videos also undergo further compression on the
servers where they are uploaded. Here, it is necessary to be able to guide this further
compression either without a reference video or by only using the distorted reference
instead of a pristine reference video as is the case in VoD services. For this purpose,
it becomes very important to have video quality models that can accurately predict
the quality of such videos with pre-existing distortions. It should be noted in this
evaluation only SoA UGC datasets for which a lab test was conducted by respective

authors have been considered.

Related work

Traditionally, the focus of video quality databases has mainly been on simulated dis-
tortions related to compression and transmission [Rao+19a; ; ; ].
However, in recent years, there has been a significant increase in research on the
quality assessment of videos with pre-existing distortions. This includes both de-
velopment of large-scale datasets of videos with pre-existing distortions with sub-
jective annotations and also of models for quality evaluation of such videos. One
example of a UGC-relevant dataset is the CVD2014 database [ ] focused
mainly on camera distortions. This database consists of videos captured from
78 different capture devices. Following this, other UGC-related databases have
been made public. Of them, the LIVE-Qualcomm mobile in-capture video quality
database [ ] comprising 208 videos having six common in-capture distortions,
and the KoNViD-1k database [ ] consisting of 1200 videos sampled from a
larger YFCC database [ ] are notable ones. The creators of the KoNViD-1k
database further extended their in-the-wild dataset and created the KonViD-150k
database [ ; ]. This database consists of two parts, namely, KonVid-
150k-A and KonVid-150k-B. The KonVid-150k-A part consists of 152,265 videos of
5s duration with each video having five quality ratings. The KonVid-150k-B part

has 1577 videos with a minimum of 89 ratings for each video.

Recently, YouTube developed a large-scale YouTube-UGC dataset [ ] consisting

of 1500 videos of 20 s duration sampled from millions of content on YouTube and
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covers different genres such as gaming, sports, etc., and also aspects such as HDR.
Also, the dataset is evaluated with three no-reference metrics, namely, noise, banding,
and SLEEQ. Furthermore, Yim et al. | ] conducted a large-scale crowdsourcing
study using the YouTube-UGC dataset and collected subjective ratings for all videos
with more than 100 ratings per video. In addition, subjective ratings for three
overlapping 10s chunks are collected with the objective of finding the relationship
between full video quality and chunk quality.

In parallel to the creation of these databases, there have been models that have been
developed for quality prediction of such videos with pre-existing distortions. These
models have been predominantly based on an NR approach as there is no availability
of pristine reference videos in such a scenario. An example of such a model is the
VIDeo quality EVALuator (VIDEVAL) [ ] developed by the authors of the
YouTube-UGC dataset. The results show that the considered approach shows similar
performance to the existing DNN-based SoA models such as FRIQUEE [ ]and
TVLVQM | ] using a lesser number of features compared to both these models.

Furthermore, Wang et al. | ] introduced a framework to analyze aspects such
as the importance of content, technical quality, and compression level in perceptual
quality for UGC videos with the results showing comparable performance to the
best performing SoA model TVLVQM. In addition to achieving higher prediction
accuracy, the focus of model development has also been on achieving improved
performance with considerably lower computational complexity [ ]. Also, Yu
etal. [ ] address the problem of predicting the quality of compressed videos
whose reference video were distorted UGC. For this purpose, a large database
consisting of UGC videos and their compressed versions of them, called “LIVE
Wild Compressed Video Quality Database” is created by Yu et al. | ]. Using
this database, the authors develop a framework called 1stepVQA for video quality
assessment. This database is used to assess the applicability of the AVQBits model
instances for quality prediction of distorted videos using videos with pre-existing

distortions as source content, using the available data in this thesis.

To summarize, it is evident that there has been an increasing focus on the quality
evaluation of videos with pre-existing distortions and hence any video quality model
that is developed should be applicable to such videos. Hence, the models proposed
in this thesis are investigated for this purpose in the following section.
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Figure 6.8: MOS distribution of LIVE Wild Compressed Video Quality Database dataset.

LIVE Wild Compressed Video Quality Database

Firstly, a set of 55 different randomly selected reference videos from 110 videos of a
resolution of 1920 x 1080 pixels from the LIVE VQC database [ ] was used. These
videos are of 10 s duration each and have been captured with a wide range of mobile
cameras. In [ ], each of the 55 videos was subjected to H.264 compression at
17 different settings using 17 different CRF values, such as CRF: 1, 4, 7, 10, ....., 49 at
four different resolutions of 1080p, 720p, 540p, and 360p. This resulted in a total of
3740 (55 SRCs x 4 resolutions x 17 crf values) PVSs. Using a realistic VMAF-Guided
perceptual rate-distortion optimization (RDO) criterion, 220 PVSs spanning VMAF
scores between 20 and 90 were selected. These 220 PVSs in addition to the 55 original
videos form the LIVE Wild Compressed Video Quality Database. As VMAF was used
to sample the PVSs, it is not included in the performance analysis. The PVSs were
rated by subjects on a scale of 0-100 and the overall MOS distribution is illustrated in
Figure 6.8.
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Table 6.11: Comparison of performance of AVQBits instances with SoA models using the LIVE Wild
Compressed Video Quality Database.

Metric RMSE PCC SROCC
NIQE 9.1012 0.7149  0.7150
BRISQUE 8.0702 0.7887  0.7877
V-BLIINDS 7.8482  0.8228  0.8276
TLVOM 7.5766  0.8303  0.8381
VSFA 7.0889 0.8339  0.8519
PSNR 11.2782 0.5074  0.5084
MS-SSIM 8.3797 0.7744  0.7856
FSIM 6.3419 0.8776  0.8778
ST-MAD 7.7239 0.8141 0.8197
VSI 8.1939 0.7806  0.7813
2stepQA 71600 0.8455  0.8493
1stepVQA 6.0275 0.8902  0.8918
1stepVQA-R 5.1551 09224  0.9236
AVQBits / P1204.3 7.0796 0.8732  0.8728
AV QBits|M1 6.6951 0.8875 09017
AV QBits| MO0 71317 0.8712  0.8925
AV QBits|HO|s 7.0464 0.8745  0.8822
AV QBits|HO| f 6.7218 0.8865 0.8911

Evaluation

In the following thesis contribution, the AV QBits models are tested for their applica-
bility to a particular use case of predicting the quality of compressed videos with
pre-existing distortions. In addition to this test, the performance of the AVQBits
model instances is compared with the SoA FR and NR models. The developers of the
database, Yu et al. [ ] perform a similar re-training and mapping as explained
in Section 6.4.3 before computing the performance metrics such as RMSE, PCC and
SROCC. The performance numbers corresponding to these SoA models outlined in
Table 6.11 have been taken from this work. Like with all other previous evaluations,
the predictions from the AV QBits models are linearly mapped before computing the
RMSE values.

From Table 6.11, it can be seen that the proposed models perform better than the
SoA NR models with a simple linear mapping. This shows that the AV QBits models
can take into account the effect of pre-existing distortions in the source video and

thereby predict the quality of the compressed versions of such source content well
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Figure 6.9: Scatter plot of AV QBits instances for LIVE Wild Compressed Video Quality Database.

too. Furthermore, Figure 6.9 illustrates the scatter plot of all the three bitstream
models.

6.6 Image Quality Evaluation

JPEG, GIF, and PNG have traditionally been the most popular image compression
formats in recent years. However, there has been a steady increase in the devel-
opment of new formats such as WebP?, BPG*, HEIF [Lai+16]° and AVIF®. These
new formats share the commonality of being based on video codecs with WebP
based on VP8, BPG and HEIF on HEVC and AVIF using AV1. Such a development

results in a question of whether the video quality models developed for quality

3https://developers.google.com/speed/webp/
4https://bellard.org/bpg/
5https://nokiatech.github.io/heif/
6https://aomediacodec.github.io/avl—avif/
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6.6 Image Quality Evaluation

evaluation of videos encoded with the underlying video codecs can be adapted for
quality prediction of images using the corresponding image formats. To answer
this question, the AVQBits|M3 and AV QBits|MO0 variants of AVQBits are used for
quality evaluation of images encoded using video codecs such as H.264. H.265, and
VP9. For this purpose, the ICy,st [GRR23] is used.

Related work

A comparison of WebP with other image compression methods such as JPEG, JPEG-
XR, and JPEG-2000 was conducted by Pintus et al. [ ]. For comparison, PSNR
and SSIM were used. The results indicate that JPEG is better than the WebP format.
This low performance of WebP can be attributed to the fact that it is based on VP8
and hence may not have the advantages in terms of compression efficiency that
its successor VP9 has. Furthermore, Lainema et al. | ] compare HEIF which
is based on H.265 with JPEG on high-resolution images. The highest resolution
considered in this study is 4064 x 4064 pixels. It is shown that HEIF results in lower
file sizes and still produces the same quality in comparison with JPEG. In addition,
other studies have also indicated the suitability of HEVC for image compression with
good results in comparison with traditional image compression algorithms [ ;
I

Along similar lines, Goring and Raake [ ] use H.264, H.265, VP9, and AV1 for
image compression and compare the results with JPEG using PSNR, SSIM, VMAF,
and VIFE. Video codec-based image compression outperforms JPEG compression with
AV1 performing best amongst all the considered video codecs. This is followed by
a subjective evaluation, both lab- and crowd-based, of H.265 encoded images by
Goring, Rao, and Raake [GRR23]. The dataset used in this study is used to evaluate
the applicability of the AVQBits|M3 and AVQBits|MO0 variants of AVQBits for
image quality evaluation. Also, Barman and Martini [ ] conduct a comparative
study of AVIFE, the image codec based on AV1, with SoA image codecs with the results
showing AVIF having highest bitrate savings across all the considered objective
models, namely, VMAEF, SSIM, MS-SSIM, VIE, and PSNR.

In essence, there is an increasing scope of using video codecs with intra-frame coding

and also image codecs based on video codecs for image compression. Hence, the
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adaptation of video quality models to predict image quality needs similar attention
for better and faster model development.

Dataset

For quality assessment of high-resolution images, Goring, Rao, and Raake [GRR23]
use 4K/UHD-1 frames extracted from several different 4K/UHD-1 videos. In total,
39 such 4K/UHD-1 frames are extracted, and following this, the frames were cropped
to have a height and width of 2160 pixels. The frames were extracted from videos
covering different genres such as animated content, movies, documentaries, etc.
These frames were then encoded with H.265 for several different resolutions from
144 x 144 pixels to 2160 x 2160 pixels with a step size of 16 pixels (along both width
and height) using CRF values in the range [0,1,2,....,51] with a step size of 1 resulting
in a total of 246,126 compressed images. A CRF-based one-pass scheme was used to
encode the images. Following this, VMAF was computed for all the encoded images.
Using VMAF as the criterion and the approach described in [GRR23], 371 images are
selected from this larger set for conducting a lab-based subjective test. In the test,
these images were presented on a 55" 4K LG OLED55C7D screen with a viewing
distance of approximately 1.6 times the height of the screen as recommended in
ITU-R BT.500-13 [ . The participants rated the images on a 5-point ACR
scale. A total of 21 participants took part in the study. The overall distribution of the
resulting MOS of the images is shown in Figure 6.10.

Evaluation

For evaluating the applicability of video quality models for quality prediction of im-
ages compressed using video codecs, the AVQBits| M0 and AV QBits| M3 instances
of AVQBits are considered. The rationale behind omitting AVQBits| M1 in this anal-
ysis is that AVQBits| M1 essentially becomes a AV QBits| M0 model for an image as
there is only a single frame and the additional features related to I- and Non-I-frame
sizes are redundant. Furthermore, as the models have been originally developed for
quality evaluation of videos, the models may have to be adapted for image quality

prediction in terms of the available input data. Hence, before describing the details of
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Figure 6.10: MOS distribution of the considered dataset.

the evaluation of the models on the considered dataset, the modifications necessary

for the considered models are presented.

6.6.3.1 Mode 3 Modifications for Image Quality Evaluation

The AVQBits|M3 model has two main components, namely, the traditional curve-
fitting part referred to as the “Core Model” and the Random Forest part. The “Core
Model” comprises three different degradations namely, quantization degradation,
upscaling degradation, and temporal degradation. The quantization degradation is
a function of the QP values of the non-I-frames. As an encoded image consists only
of one I-frame, the quantization degradation part has to be modified to reflect this.
The “new quantization degradation” is now just a function of the corresponding QP
value of the compressed image and is given by Equation (6.5). The values of QPy;ax
are as described in Section 4.2.1.1 of Chapter 4.

(6.5)

uant =
q QPmax
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In addition to this, the temporal degradation component which originally was
targeted to model the degradation associated with upsampling of the encoded video
to the corresponding display framerate is not applicable for images as there is only
one single static frame that is displayed to the user for rating. Furthermore, the
Random Forest which has features related to QP, frame sizes, and motion vectors
is also not considered as the frame sizes and motion vectors related features are
irrelevant for an image. Hence, the modified model consists of only the “Core Model”
with the quantization degradation (D;) and upscaling degradation (D,) parts as
shown in Equation (6.6) with D,, as defined in Equation (4.13).

MP[O,loo] =100 — (Dg + Du) (6.6)
MP[1,4.5] :MosfromR(MP[olloo]) (67)
Mpar =scaleto5(Mp,, ) (6.8)

The corresponding coefficients of both the quantization and upscaling degradations

remain unchanged and no retraining was done to modify the coefficients.

6.6.3.2 Mode 0 Modifications for Image Quality Evaluation

Similar to the Mode 3 modification, the quantization degradation part is modified to
include only the resolution and bitrate components and not the framerate component.

This new QP calculation is given by Equation (6.6.3.2).

QPpred = agp_mo + bgp_mo - log(Bitrate)

(6.9)
+ ¢4p_mo - log(Resolution)

The final model consists of only the quantization and upscaling degradations as
was the case for AVQBits|M3 and the final MOS-prediction model is as given in
Equation (6.6).

166



6.6 Image Quality Evaluation
6.6.3.3 Results

With the aforementioned modifications, the modified AVQBits|M0 and
AV QBits| M3 variants are evaluated for prediction accuracy along with different
SoA FR models. For computing the RMSE, a linear mapping as proposed in ITU-T
Rec. P.1401 [ ] is applied to the scores predicted by all the models. The re-
sults of the evaluation in terms of RMSE, PCC, SROCC, Kendall correlation, and
R? Score are detailed in Table 6.12. It can be observed that both the AVQBits|M3
and AV QBits| M0 models outperform all other models. From the results, it can be
concluded that QP is a defining factor for the quality prediction of images encoded
with video codecs. Based on the performance of the simple AVQBits| M0 model, it
can also be stated that bitrate and resolution are good features and hence simple

models with this information will result in high prediction accuracy.

Table 6.12: Comparison of performance of AVQBits|M3 and AV QBits| M0 with SoA models.

Metric RMSE PCC SROCC Kendall R2Score
PSNR 0.799  0.698 0.719 0.524 0.487
SSIM 0.839  0.658 0.948 0.802 0.434
MS_SSIM 0.796 0.701 0.851 0.658 0.491
VIF_scale0 0.876  0.619 0.643 0.472 0.384
VIF_scalel 0.594 0.846 0.859 0.674 0.716
VIF_scale2 0.566 0.861 0.911 0.740 0.742
VIF_scale3 0.583 0.852 0.941 0.786 0.726
ADM?2 0554  0.868 0.901 0.722 0.754
VMAF 0440 0.919 0.925 0.757 0.845
AVQBits|M3 / P1204.3 0319 0.958 0.967 0.846 0.918
AV QBits| MO0 0.377  0.942 0.951 0.808 0.886

Figure 6.11 shows the scatter plot for the AVQBits|M3 and AV QBits| M0 models
respectively. It can be seen that for the AVQBits|M0 model, there are cases with
prediction errors that are significantly larger than the average RMSE and also, the
lower bound saturates around a MOS of 1.5. It should be noted that the coefficients
have been taken from the video quality counterpart and dedicated retraining for

images may somewhat improve on these problems.
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Figure 6.11: Scatter plot of AV QBits instances for the considered dataset.

6.7 Summary

The models proposed in Chapter 4 were mainly developed for the use case of VoD
and hence the training and validation data consisted of encoding settings that are
typical to this scenario. With the aim of testing the applicability of the proposed
AV QBits model variants for use cases other than VoD, the models were tested for a
total of six use cases, namely, gaming video, 360° videos, HFR content, videos from
a live streaming context, compressed videos created using videos with pre-existing
distortions as sources and images encoded with video codecs. For this, as a first step,
publicly available databases for each of these use cases were gathered. Following
that, a brief description and analysis in terms of the overall MOS distribution were
presented. Finally, the performance of the proposed models was analyzed and further
compared with SoA models for each scenario. For the calculation of performance
metrics for the developed models, only a simple linear mapping as proposed in ITU-
T Rec. P.1401 [ITU14a] was used. In turn, for the SoA models, in several cases, the
performance numbers calculated using different retraining and non-linear logistic
mapping from the original works have been used. This comparison showed that the
AV QBits model variants perform either on par with or better than the SoA models.
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It was also observed that the AVQBits|M3 / P.1204.3 model, the most complex
bitstream models, along with AVQBits|H0|s were the best performing models as
compared to the other models included in the SoA. The other two less complex
bitstream models, namely, AVQBits| M0 and AVQBits|M1 also perform well and
in most cases outperform the considered SoA NR models. With this extensive
evaluation, it can be concluded that all five variants of AV QBits can be applied to

other use cases.

This demonstration of the applicability of AVQBits for other application scopes
along with its usage for the prediction of the overall quality of a HAS session as
shown in Chapter 5 shows the versatility of the AV QBits model instances, and thus
addresses the objectives outlined in research question 3. A conclusion of this thesis

along with outlook for future work will be presented in the next chapter.
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Conclusion and Future Work

In recent years, the video landscape on the internet has seen an enormous change
along multiple dimensions. These dimensions include the capture and upload of
high-resolution content and the ability to stream these high-resolution contents
(4K/UHD-1 and above) owing to the increase in both devices that can display such
content and average internet bandwidth and the corresponding streaming tech-
nologies, with HTTP-based adaptive streaming being the most dominant. This
warrants investigation of the overall QoE of the end-user in the context of HTTP-
based adaptive streaming, especially for high-resolution content. For such a quality
assessment, two methods can be used. These include subjective quality assessment
and instrumental methods using video quality models. This thesis addresses the
problem of quality assessment using both aforementioned methods. For this, five
different research questions were formulated with four of them focusing on instru-
mental methods of assessment and one on the subjective method. The four research
questions for instrumental quality assessment focused on developing video quality
models using bitstream information. The primary target of the developed models
is traditional VoD 2D content for different application scenarios, depending on the
available input information. Furthermore, additional use cases other than VoD 2D
content for the developed models are investigated. The subjective assessment-related
research question focused on analysing how quality assessment of high-resolution
videos can be conducted in an out-of-the-lab setting.

Subjective testing is considered the gold standard for multimedia quality assessment.
Hence, as a first method to assess the quality of high-resolution videos and also
the overall quality of a HAS session, subjective testing was considered. The goal

to use subjective testing was multi-fold. This included creating ground truth for
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developing quality models and also comparing the developed models and existing
state-of-the-art video quality models for short-term video quality prediction in the
context of 4K/UHD-1.

Firstly, a lab-based approach was used to conduct subjective tests. For these tests, the
ACR test paradigm and lab environment following the guidelines provided by ITU-R
Rec. BT.500-13 were used. The subjective assessment studies were divided into two
parts, with the first part focusing on the quality assessment of short-duration videos
and the other on the overall integral quality assessment of a HAS session. The
short-duration video quality assessment tests used videos of 4K/UHD-1 resolution
of 7-10s in duration with framerates up to 60 fps. Two parallel tracks were followed
for conducting subjective tests for short-duration video quality. In the first track, four
databases were created using 17 different source contents resulting in the publicly
available AVT-VQDB-UHD-1 dataset [Rao+19a]. A parallel second track was part of
a larger competition known as PNATS Phase 2 at ITU-T Study Group 12/Question
14. This involved the creation of databases for developing short-term video quality
models as a successor to the ITU-T P.1203.1 video quality models. The result of this
was a total of 26 different subjective tests conducted in collaboration with nine other
proponent labs in the competition. Out of these 26 tests, four were conducted as part
of the work presented in this thesis. The test conditions for all these tests were based
on varying different encoding parameters within a defined range, which are used
in a typical VoD scenario. Overall, eight different short-duration video quality tests
were conducted, which also doubled up as ground truth for model development for

automated video quality evaluation.

Following this, the focus was on assessing the overall quality of a HAS session in a
typical lab environment. For this, six different overall integral assessment studies
were designed as part of the same PNATS Phase 2 competition. These tests included
videos of 1 min to 5min duration with these videos subjected to typical HAS-specific
degradations such as initial loading delay, stalling events, and quality switching.
Out of these six tests, one was conducted by the author as part of this work. The
overall integral assessment tests followed an “immersive” paradigm, in which the
participants never view the same source stimulus more than once. All the data

created using lab tests were then used as ground truth for model development.
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Furthermore, as an alternative to lab-based testing, out-of-the-lab test methodology
was also investigated for both short-term video quality assessment and overall
quality of a HAS session. This was considered to facilitate subjective testing when
lab-based testing is not feasible, e.g.: as it was the case in earlier phases of the
COVID-19 pandemic. For this purpose, an approach using a pre-defined crop cut
out from the centre of the video was developed and used for the quality assessment
of high-resolution videos. This method is referred to as the “centre-crop” approach.
Using the centre-crop approach, a test to assess short-duration video quality using
the PVSs from one of the lab tests was conducted and the results showed good
agreement of the out-of-the-lab test in comparison with the corresponding lab test, in
terms of Pearson and Spearman correlations and the Standard deviation of Opinion
Scores (SOS) factor [ ]. Similarly, an overall integral assessment study with
the same centre-crop-based approach has been conducted using the PVSs from a
corresponding lab test. The results indicate that the crowd test had good agreement
as compared to the corresponding test. In addition, the AVI-VQDB-UHD-1 dataset

along with the corresponding online test data have been made publicly available.

The second major focus of the thesis was the development of video quality models
for quality evaluation of videos up to a resolution of 4K/UHD-1. The main model
development activity of this doctoral work was conducted as part of the PNATS
Phase 2 competition. As a result, three bitstream-based models were developed,
namely Mode 3, Mode 1, and Mode 0, corresponding to three different modes of
operation. All three models were submitted to the PNATS Phase 2 competition and
were evaluated against other competing models. Following this comparison, it was
determined that all three models developed by the author were either winning mod-
els or part of the winning group. The Mode 3 model developed as part of this thesis
was a winning candidate in the PNATS Phase 2 competition and was subsequently
standardized as ITU-T Rec. P.1204.3. The Mode 0 and Mode 1 models were part
of the winning group, but there were no corresponding recommendations due to a
lack of agreement between winning proponents to merge the winning candidates
into one single model, as required by the rules of the competition. Furthermore, the
Mode 3 model was the best among the 35 models spanning 10 different categories

and was significantly better than all these models.
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The proposed Mode 3 model consists of a traditional curve-fitting part and a Random
Forest part. The final model is the ensemble of these two parts. Using this model as
the basis, four other models, namely, Mode 0, Mode 1, and two variants of HYNO
models were developed. Both variants of the HYNO model involve creation of a
quality-equivalent bitstream (QEB) in the first step followed by the application of
the Mode 3 model on the QEB for quality prediction. All these models together
form the AVQBits model family. An extensive large-scale evaluation of these models
was conducted and the results showed that these models outperform the SoA NR
models for the VoD use case. Furthermore, from the results, it was observed that the
AV QBits|M3 / P.1204.3 and AVQBits|HO variants of AVQBits outperformed the
SoA FR models, too.

The different variants of AVQBits were developed to be applied to different scopes,
based on the available input information. Furthermore, all the developed models are
made publicly available to the research community.

In addition to the development of the short-duration video quality models, a modifi-
cation for the ITU-T P.1203.3 long-term integration model for overall integral quality
evaluation of a HAS session was proposed as part of this thesis. This modification is
added as an appendix to ITU-T P.1204.3. Using the different variants of AV QBits as
the video quality prediction module, the proposed long-term model was evaluated
using five different databases created as part of the PNATS Phase 2 competition,
containing audiovisual sequences ranging from 1 min to 5 min. The results show that
all the five AVQBits model variants can be used for this purpose with prediction

accuracy dependent on the used model variant.

Following this, the AVQBits model variants were tested for their applicability to
other use cases. For this, six different use cases, namely, gaming videos, 360° videos,
HER content, videos from a live streaming context, compressed videos created using
videos with pre-existing distortions as sources, and images encoded with video
codecs were considered. Using publicly available datasets for each of these use cases,
the models developed as part of this work were evaluated. The results illustrated that
the AV QBits model variants perform either on par with or better than the considered
SoA models, without further modifications.
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To summarize, all five research questions outlined in Chapter 1 have been addressed
with the development of AV QBits model instances and their extensive evaluation
and the development of the “centre-crop” approach for subjective testing in an
out-of-the-lab setting, .

Although both subjective and instrumental quality assessments of high-resolution
videos have been considered as part of the thesis, there are a lot of open problems still
existing, especially with out-of-the-lab subjective testing methods, newer formats
and newer streaming mechanisms. For out-of-the-lab subjective testing, the pre-
defined centre crop approach can be extended by using more sophisticated methods
to determine best-suited patches over the different video frames of a video, for
example using saliency-based region-of-interest estimation or formal derivation with
according eye-tracking data, if available. Furthermore, it can be investigated if such
an approach can be extended to quality assessment of HDR videos.

In the model development context, a first simple extension of the work conducted
as part of this thesis could be to extend the proposed models to 8K/UHD-2 videos
and newer codecs such as AV1 or VVC. A corresponding bitstream parser for these
newer codecs have to be developed. For model development, newer features that
can better estimate the content complexity both in terms of spatial and temporal
complexities can be considered. In addition to the existing motion based feature,
macro-block-based features could be used for such content complexity estimation.
In this regard, there is an ongoing activity at ITU-T SG12/Q14 to extend the ITU-T
Rec. P.1204.3 to be applicable for AV1 encoded videos, with active contribution from
the author. Within the domain of traditional 2D video, for better handling of the
framerate variation, existing Mode 3 bitstream features can be adapted to be more
framerate specific. One possible approach for this would be to scale the motion
vectors in a more precise way to the actual speed of motion in pixels per time. This
is expected to improve the specificity of the motion complexity information utilized
in the Random Forest part of the Mode 3 model.

The proposed models can be optimized to different 2D streaming use cases such as
live streaming. This would potentially involve adaptation of the existing Mode 3
features and addition of new features to take into account live-streaming-specific
distortions such as frame drops etc. Furthermore, investigation on the quality
assessment of high dynamic range (HDR) videos, both subjective and instrumental
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Chapter 7 Conclusion and Future Work

can be considered. Also, the models developed as part of this thesis can be further
used for perceptual encoding optimization of codecs.

In the domain of gaming video quality assessment, the focus can be on a more
holistic assessment of QoE in an interactive gaming session and the corresponding
model development. The corresponding model development can follow a modular
approach as done on ITU-T Rec. P.1203 [ ] and lead to the development of
an integration model that takes into account the impact of factors such as delay
on overall game play in addition to video quality. In addition to this, dedicated
assessment of more immersive media such as 360° videos, light field images, etc. can
be addressed. For 360° videos, modifications to motion-related features as well as
other features that better handle the specific projection geometry can be considered

for better performance of the models.

Another important area of focus for future work is the extension of the quality mod-
els for machine-learning and DNN-based codecs, and also enhancement codecs,
e.g. LCEVC [ ]. This becomes important, as the degradations introduced by
these codecs may differ from the degradations caused by traditional video codecs.
Hence, both subjective and instrumental quality assessment is needed for these
use cases. Also, different streaming mechanisms especially for newer formats are
being developed, tested, and deployed, e.g. tiled-streaming for 360° videos, with
P.1204.3 already being adapted for this use case [ ]. Therefore, the models de-
veloped as part of this thesis can be extended and adapted for such newer streaming

technologies.

Furthermore, different approaches to assessing the overall integral quality assess-
ment of an HAS session can be devised and tested. This is important, since the
preferences of the users both in terms of content and sensitivity to certain distortions
change over time and hence dedicated methodologies that can take these preferences
into account have to be developed. A corresponding activity referred to as PNATS
Phase 3 is ongoing in ITU-T SG12/Q14, with the active participation of the author.
Following the development of such new methodologies, models that can not only
predict quality but also other aspects, e.g. “quitting probability” can be developed.
Here, a user quitting a particular video is due to an annoyance related either to the

encountered degradations or content itself.
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In essence, there is ample scope to extend the work conducted as part of this doctoral
thesis to different domains and application scopes, both in terms of subjective and

instrumental quality assessment.

In the end, it’s all about perception!!!
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Subjective Test

The details of the protocol followed, instructions provided and the used post-test
questionnaires are described in this appendix.

For short tests, no post-test questionnaire was used whereas for the long test, a
post-test questionnaire was used to gather information on whether the participants
were able to judge quality differences easily when longer sequences (> 1min) were
used.

The protocol form and the instructions were provided in both English and German
as the participants were mostly from the university comprising both German and

international students.
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Appendix A Subjective Test
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Protocol- Project Name AVT (date)
Testinformationen

Verantwortlich fiir den Test: Versuchsbetreuer: .....................
Datum (JJJJ-MM-TT) Uhrzeit (hhemm): ..o
Testnummer: Probanden ID: ................. ... ...

Personenbezogene Daten

Vorname: Name: ... ...
Alter: Geschlecht: ...........................
Sehhilfe benétigt?: O nein  [Oja

Falls ja, Art und Starke: ... ...
Sehtest: Snellen-Index

Testaufbau: Sehprobentafel Snellen-Index (optimale Sehschérfe bei 8: 20/20 = 1 Winkelminute)
Korrekt erkannte Zeilen: 01 02 O3 04 OS5 0O6 O7 0O8 9 010 O11

Ziel der Studie

Ziel dieser Studie ist es die subjektiv wahrnehmbare Qualitat von Video zu testen. Die Ergebnisse helfen zu
verstehen, wie bestimmte Videocodecs in Kombination mit verschiedenen Auflésungen und Bitraten die Qualitéts-
wahrnehmung von UHD-Videostreaming beeinflussen.

Risiken

Dieser Versuch birgt keine speziellen gesundheitlichen Risiken. Allerdings kénnen bei manchen Menschen soge-
nannte , photosensitive epileptische Anfalle" auftreten, wenn sie bestimmten visuellen Reizen ausgesetzt sind. Falls
wahrend des Versuchs gesundheitliche Beschwerden oder Unwohlsein auftreten sollten (Schwindelgefiihl, veran-
derte Wahrnehmung, Augen- oder Muskelzucken, Zittern an Armen oder Beinen, Desorientierung, Verwirrung),
informieren Sie bitte unmittelbar den Versuchsleiter. Personen mit bekannter Epilepsie sollten nicht an diesem Test
teilnehmen.

Datenschutz

Im Rahmen dieser Studie werden personliche Daten erhoben. Zusétzlich werden die Antworten der miindlichen
Fragen mit einem Smartphone aufgenommen. Diese Daten werden anonymisiert gespeichert und ausgewertet.
Alle im Rahmen der Studie erhobenen Daten und Aufzeichnungen werden strikt vertraulich und gemaB dem
Datenschutz behandelt. Bei einer Publikation oder Prasentation der Studienergebnisse werden nur anonymisierte
Daten verwendet, sodass kein Riickschluss auf Ihre Person moglich ist.

Freiwillige Teilnahme

Die Teilnahme an dieser Studie ist rein freiwillig. Das Experiment kann durch Sie zu jeder Zeit ohne die Angabe von
Griinden abgebrochen werden. Daraus entstehen Ihnen keinerlei Nachteile. Sie miissen keinerlei Fragen beantworten,
die Sie nicht beantworten wollen.

Interne Teilnehmer Datenbank

Fir folgende Tests, unabhéngig vom aktuellen, wiirden wir Sie gern in unsere interne Teilnehmer-Datenbank
aufnehmen. Eine solche Aufnahme beinhaltet, dass wir Sie im Falle weiterer Tests direkt kontaktieren kénnen. Die
Aufnahme ist vollkommen freiwillig und umfasst nur eine Kontakt-Email Adresse.

Aufnahme: Oja O nein
Kontakt-Email:

Einverstandniserklarung

Der/die oben genannte Teilnehmer(-in) erklart hiermit, dass er/sie die rechtlichen Hinweise zur Versehrtheit und
zum Umgang mit seinen/ihren personenbezogenen Daten gelesen und verstanden hat und dass er/sie den gemach-
ten Angaben zustimmt.

Vorname: L Name:
Ort und Datum: ...l Unterschrift: ...
1



Protocol- Project Name AVT (date)

Test information

Responsible for the test: Test supervisor: .............ccooiun..
Date (YYYY-MM-DD): ... i Time (hh:mm): ...
Test number: L Subject ID: ...

Personal data

First name: Name: ... ...
Age: X
Visual aids used?: Ono [Oyes

If yes, kind and strength: ... ...
Visual test: Snellen-Index

Test setup: Visual test panel Snellen-Index (optimal visual acuity at 8: 20/20 = 1 angular minutes)
Correct perceived lines: 1 02 O3 0O4 O5 0O6 Ov O8 9 O10 O11

Study objective

The objective of this study is to understand the perceived subjective video quality. The results will allow to
understand how certain video codecs in combination with different resolutions and bit rates will influence the
quality perception of UHD video streaming.

Risks

This test will not have an influence on your physical health. However, for some people it can lead to an epileptic
seizure if they are confronted with certain visual stimulus. If during the test under any circumstances, if symptoms
like: dizziness, odd perception, eye or muscle twitches, shivering arms or legs, disorientation or confusion etc.
appear, please inform your supervisor immediately. People with known epileptic seizure attacks are not allowed to
take part in this test.

Privacy

In the scope of this study we will record personal data. In addition, the responses to the oral questions will be
recorded via a smartphone. This data will be anonymized, saved and evaluated. All recorded personal data in this
study will be treated confidentially (according to German data privacy law). In case of publication or presentation
of the results we will only use anonymized data, so that conclusion to any participant is impossible.

Voluntary participant

This is a voluntary study. The test can be aborted at anytime without reasons. There will not be any disadvantage
on your side. If you feel unconformable answering certain questions you do not have to answer.

Internal Database for Participants

For future tests, independent of the current test, we would like to include you in our internal database of parti-
cipants. Based on this inclusion we would contact you in the case of new tests. It is completly voluntary and we
will only collect your contact email address.

Inclusion: Oyes Ono
Contact-email:

Declaration of agreement

The named participant agrees to the above stated points and has read them carefully. He/She is informed and has
understood how his/her personal data will be treated and used. A signature states an agreement to all mentioned
points.

First name: Name:
Place and date: ... ...l Signature: L
2
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Erlauterungen zum Testablauf

Vielen Dank fiir Thre Teilnahme am Versuch!

Sehtest und Fragebogen

Bitte fiillen Sie den vorliegenden Fragebogen und das Formular fiir die Aufwandsentschédigung aus. Lesen Sie
dabei sehr sorgfiltig die Erkléarungen.

Anschlieilend wird ein Sehtest durchgefithrt, um Ihre Sehfihigkeit zu iiberpriifen. Dabei konnen Sie eventuelle
Sehhilfen (Brille oder Kontaktlinsen) tragen, sofern Sie sie dann auch im anschlieenden Test tragen werden.

Test

Im Folgenden werden einige Erlduterungen zu dem Testablauf umrissen. Dabei ist der Test im Allgemeinen in
zwei Phasen (Training- und Testphase) geteilt, die jeweils vom Ablauf her identisch sind.

Zunichst wird ein Video abgespielt. Anschliefend werden Sie als TeilnehmerIn aufgefordert, eine Bewertung
iiber die Videoqualitét durchzufiithren.

Trainingsphase
In der Trainingsphase werden erst 6 Videosequenzen mit unterschiedlichen Qualitdten und Inhalten gezeigt. Ziel

dieser Phase ist es, dass Sie als TeilnehmerIn einen ersten Eindruck iiber die verschiedenen Inhalte und Qualitdten
erhalten. Die Bewertungen aus dieser Phase werden daher nicht in die Gesamtbewertungen aufgenommen.

Testphase

In der Testphase werden Ihnen 187 Videosequenzen gezeigt, dabei variieren der Inhalt und die Videoqualitét.
Wihrend des Tests bitten wir Sie, zwei Pausen (maximal jeweils 5 Minuten) durchfiithren.

Bewertung der Videoqualitat

Die Bewertung erfolgt auf einer Skala von 1 bis 5, wobei 1 der schlechtesten Qualitit (“Bad”) und 5 der besten
wahrgenommenen Qualitéit (“Excellent”) entspricht.

Abbildung 1: Bewertung

Bitte bewerten Sie dabei intuitiv, ohne viel nachzudenken. Bitte beachten Sie auch, dass es hierbei um die
Qualitét des Videos geht und nicht darum, wie sehr Thnen der Inhalt gefllt.

Viel SpaB3



lllustration of test procedure

Thank you for participating in this test.

Eyesight test and questionnaire

Please fill out the handed questionnaire completely. Please also fill out the form of the ,,Aufwandsentschiadigung“

(allowance). Please read the questions and explanations carefully so that the tasks are clear. If not, do not
hesitate to ask questions to the supervisor.

An Eye sight test will then be conducted to check your vision.

Test
A description of the test procedure follows below. The test is divided into 2 parts (training- and test-phase)

whereas the procedure for both are same. A video will be played and the participant will be asked to rate the
quality of the video.

Training Phase
In this part, 6 different video sequences with changing qualities and content will be shown. The goal is to enable

the participant to understand what differences in qualities and content exist in the test. The ratings of this part
will not be included in the final results.

Test Phase

In this part, 187 different videos will be shown with changing quality and content according to different video
codecs. During the test you are allowed to take 2 breaks with max 5 min each.

Rating of video quality

The rating scale is from 1 to 5, where 1 is the worst (“Bad”) and 5 the best quality (“Excellent”) you perceive.

your opiion of the vdeo qualty? User D 1

Figure 1: Rating Screen

Please do your rating intuitively, without thinking a lot. Please consider also, that your rating is based on the
video quality and not how much you liked the content.

Have fun!
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Erlauterungen zum Testablauf

Vielen Dank fiir Thre Teilnahme am Versuch!

Sehtest und Fragebogen

Bitte fiillen Sie den vorliegenden Fragebogen und das Formular fiir die Aufwandsentschédigung aus. Lesen Sie
dabei sehr sorgfiltig die Erkléarungen.

Anschlieilend wird ein Sehtest durchgefithrt, um Ihre Sehfihigkeit zu iiberpriifen. Dabei konnen Sie eventuelle
Sehhilfen (Brille oder Kontaktlinsen) tragen, sofern Sie sie dann auch im anschlieenden Test tragen werden.

Test

Im Folgenden werden einige Erlduterungen zu dem Testablauf umrissen. Dabei ist der Test im Allgemeinen in
zwei Phasen (Training- und Testphase) geteilt, die jeweils vom Ablauf her identisch sind.

Zunichst wird ein Video abgespielt. Anschliefend werden Sie als TeilnehmerIn aufgefordert, eine Bewertung
iiber die Videoqualitét durchzufiithren.

Trainingsphase
In der Trainingsphase werden erst 2 Videosequenzen mit unterschiedlichen Qualititen und Inhalten gezeigt. Ziel

dieser Phase ist es, dass Sie als TeilnehmerIn einen ersten Eindruck iiber die verschiedenen Inhalte und Qualitdten
erhalten. Die Bewertungen aus dieser Phase werden daher nicht in die Gesamtbewertungen aufgenommen.

Testphase

In der Testphase werden Thnen 30 Videosequenzen gezeigt, dabei variieren der Inhalt und die Videoqualitét.
Es gibt eine 5-10 miniitige Pause nach jeweils 25 Minuten wihrend des Tests.

Bewertung der Videoqualitat

Die Bewertung erfolgt auf einer Skala von 1 bis 5, wobei 1 der schlechtesten Qualitit (“Bad”) und 5 der besten
wahrgenommenen Qualitéit (“Excellent”) entspricht.

Abbildung 1: Bewertung

Bitte bewerten Sie dabei intuitiv, ohne viel nachzudenken. Bitte beachten Sie auch, dass es hierbei um die
Qualitét des Videos geht und nicht darum, wie sehr Thnen der Inhalt gefllt.

Viel SpaB3



Post-test questionnaire

Thank you for participating in this test.

Eyesight test and questionnaire

Please fill out the handed questionnaire completely. Please also fill out the form of the ,,Aufwandsentschiadigung“

(allowance). Please read the questions and explanations carefully so that the tasks are clear. If not, do not
hesitate to ask questions to the supervisor.

An Eye sight test will then be conducted to check your vision.

Test
A description of the test procedure follows below. The test is divided into 2 parts (training- and test-phase)

whereas the procedure for both are same. A video will be played and the participant will be asked to rate the
quality of the video.

Training Phase
In this part, 2 different video sequences with changing qualities and content will be shown. The goal is to enable

the participant to understand what differences in qualities and content exist in the test. The ratings of this part
will not be included in the final results.

Test Phase

In this part, 30 different videos will be shown with changing quality and content according to different video
codecs.

There will be a 5-10 break after 25 minutes during the test.

Rating of video quality

The rating scale is from 1 to 5, where 1 is the worst (“Bad”) and 5 the best quality (“Excellent”) you perceive.

Figure 1: Rating Screen

Please do your rating intuitively, without thinking a lot. Please consider also, that your rating is based on the
video quality and not how much you liked the content.

Have fun!
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Appendix A Subjective Test

Post-test Questionnaire

Name :

Questions:

1) What is your subject background (technical/non-technical)? Please specify the subject
area if you are a student.

2) Were the breaks helpful? Please mention the reason for your answer.

3) Was the test too long?

4) Were you able to judge the quality difference easily? If no, please let us know why you
were not able to judge the quality differences easily.

5) Was the test room environment comfortable (too hot/too cold/too stuffy etc)?

6) Any other suggestions to improve the test.

Date : Signature :
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P.NATS Phase 2 Test Plan

The details of the test design of the 26 databases created as part of the PNATS Phase
2 competition is provided in this appendix. Four out of the 26 databases, namely,
P2STR09, P2STR10, P2SVL01, and P2SVL09 form the AVT-PNATS-UHD-1 dataset
described in Chapter 3.

The following abbreviations are used in the test plans:

>

>

>

HRC: Hypothetical Reference Circuit, this refers to the test condition
Passes: number of encoding passes used

Preset: in the case of H.264 and H.265 it refers to the used “preset” parameter
value for encoding and in the case of VP9, it refers to the “speed” parameter

value

Bitrate: target video bitrate in kbps

Height: encoding video height

Width: encoding video width

CRF: Constant Rate Factor

iFI: iFramelnterval (I-Frame interval in seconds)

MEFR: Maximum Factor Bitrate (specifies the maximum bitrate w.r.t the target

bitrate to be used for encoding)

Framerate is expressed in fps
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Appendix B PNATS Phase 2 Test Plan

Table B.1: Test Plan for P2STRO01.

HRC Encoder Passes Preset Height Width  Bitrate CRF  Framerate iFI ~MRF
HRC0001 H.264 2 medium 240.0 426.0 100/200 None 15 5 2.0
HRC0011  H.265 2 slower 240.0 4260 95/190 None 15 2 2.0
HRCO0012 VP9 2 0 240.0 426.0 95/190 None 15 2 2.0
HRC0021 VP9 1 3 240.0 426.0 300/375 None 15 2 2.0
HRC0029 H.265 1 veryfast 360.0 640.0 225/375 None 15 2 2.0
HRC0087 VP9 2 2 240.0 426.0 75/150 None 24/25/30 5 2.0
HRC0090 VP9 1 3 240.0  426.0 190/300 None  24/25/30 2 2.0
HRC0099 VP9 2 0 240.0 426.0 190/300 None 24/25/30 2 2.0
HRC0109 H.264 1 fast 240.0  426.0 650/800 None 24/25/30 2 2.0
HRC0110 H.265 1 ultrafast 240.0 426.0  490/600 None 24/25/30 2 2.0
HRC0111 VP9 1 3 240.0 426.0  490/600 None 24/25/30 2 2.0
HRCO0112 H.264 2 medium 240.0 426.0 650/800 None 24/25/30 2 2.0
HRCO0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0120 VP9 1 3 360.0 640.0  300/450 None 24/25/30 2 2.0
HRCO0124 H.264 2 medium 360.0  640.0 400/600 None 24/25/30 5 2.0
HRCO0169 H.264 2 medium 480.0  854.0 1100/1400 None 24/25/30 5 2.0
HRC0180 VP9 2 2 480.0 854.0 1050/1500 None 24/25/30 5 2.0
HRC0193 H.264 2 medium 720.0 1280.0 500/750 None 24/25/30 5 2.0
HRC0200 H.265 2 veryslow 720.0 1280.0 375/565 None 24/25/30 2 2.0
HRC0221 H.265 2 medium 720.0 1280.0 1500/2250 None 24/25/30 5 1.1
HRC0230 H.265 2 medium 720.0 1280.0  2400/3000 None 24/25/30 2 2.0
HRC0245 H.265 2 medium 1080.0 1920.0  750/1500 None 24/25/30 5 2.0
HRC0249 VP9 2 2 1080.0  1920.0  750/1500 None 24/25/30 5 11
HRC0252 VP9 2 2 1080.0  1920.0 2250/4500 None 24/25/30 5 2.0
HRC0265 H.264 2 medium 1080.0  1920.0  7000/9500 None 24/25/30 2 1.1
HRC0272  H.265 2 medium 1080.0  1920.0 5250/7125 None 24/25/30 5 1.1
HRC0273 VP9 2 2 1080.0 1920.0 375/565 None 24/25/30 5 1.1
HRCO0312 VP9 2 2 1440.0 2560.0  3000/6000 None 24/25/30 5 2.0
HRC0337 H.264 2 medium 1440.0 2560.0 15000/20000 None 24/25/30 2 2.0
HRC0386 H.265 1 veryfast 720.0 1280.0 375/565 None  50/60 2 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0402 VP9 2 2 7200 1280.0 825/1200 None  50/60 5 2.0
HRC0423 VP9 2 0 720.0 1280.0  2400/3000 None 50/60 2 2.0
HRC0436 H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0437 H.265 2 medium 1080.0 1920.0 2625/5250 None  50/60 2 2.0
HRC0438 VP9 2 2 1080.0 1920.0  2625/5250 None  50/60 2 2.0
HRC0450 VP9 1 3 1080.0 1920.0 5250/7125 None  50/60 2 2.0
HRC0452 H.265 2 medium 1080.0 1920.0  5250/7125 None  50/60 2 2.0
HRC0458 H.265 2 medium 1080.0 1920.0 5250/7125 None  50/60 5 2.0
HRC0477 VP9 2 2 1440.0 2560.0 750/1500 None 50/60 5 1.1
HRC0704 H.264 2 medium 1440.0 2560.0 1000/1750 None  50/60 2 2.0
HRC0491 H.265 2 medium 1440.0 2560.0 750/1500 None  50/60 5 2.0
HRC0498 VP9 1 4 1440.0 2560.0 7500/11250  None 50/60 2 2.0
HRC0502 H.264 2 medium 1440.0 2560.0 10000/15000 None 50/60 2 1.1
HRC0521 H.265 2 medium 1440.0 2560.0 11250/15000 None 50/60 2 1.1
HRC0522 VP9 2 2 1440.0 2560.0 11250/15000 None 50/60 2 1.1
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Table B.2: Test Plan for P2STR02.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0001 H.264 2 medium 240.0 426.0 100/200 None 15 5 2.0
HRC0002 H.265 2 medium 240.0 426.0 60/115 None 15 5 2.0
HRCO0006 VP9 1 3 240.0 426.0 95/190 None 15 2 2.0
HRC0007 H.264 2 medium 240.0 426.0 125/250 None 15 2 2.0
HRC0014 H.265 1 fast 360.0 640.0  190/265 None 24/25/30 2 2.0
HRCO0015 VP9 1 3 360.0 640.0 190/265 None 24/25/30 2 2.0
HRC0018 VP9 2 2 360.0 640.0 190/265 None 24/25/30 2 2.0
HRC0022 H.264 2 medium 240.0 426.0 400/500 None 15 2 2.0
HRC0031 H.264 2 medium 360.0 640.0  100/100 None 15 2 2.0
HRC0048 VP9 2 2 360.0 640.0 600/750 None 15 2 2.0
HRC0053 H.265 2 medium 480.0 854.0 190/375 None 24/25/30 5 1.1
HRC0064 H.264 2 veryslow 480.0  854.0 500/800 None 24/25/30 2 2.0
HRC0070 H.264 2 medium 480.0 854.0 900/1200 None 24/25/30 2 2.0
HRC0077 H.265 1 fast 480.0 854.0  900/1050 None 24/25/30 2 2.0
HRC0085 H.264 2 medium 240.0 426.0 100/200 None 24/25/30 5 2.0
HRC0089 H.265 1 ultrafast 240.0 426.0  190/300 None 24/25/30 2 2.0
HRC0102 VP9 1 4 240.0 426.0 300/450 None 24/25/30 2 2.0
HRC0103 H.264 2 medium 240.0 426.0 400/600 None 24/25/30 2 2.0
HRCO0106 H.264 2 medium 240.0 426.0  400/600 None 24/25/30 5 2.0
HRC0107 H.265 2 medium 240.0 426.0  300/450 None 24/25/30 5 2.0
HRC0108 VP9 2 2 240.0 426.0 95/150 None 24/25/30 5 2.0
HRCO0115 H.264 2 medium 360.0 640.0  300/500 None 24/25/30 5 2.0
HRC0123 VP9 2 2 360.0 640.0  300/450 None 24/25/30 2 2.0
HRC0148 H.264 2 medium 480.0 854.0 200/250 None 24/25/30 5 1.1
HRC0149 H.265 2 medium 480.0 854.0 190/200 None 24/25/30 5 1.1
HRC0154 H.264 2 medium 480.0 854.0 700/1000 None 24/25/30 5 2.0
HRCO0167 H.265 2 medium 480.0 854.0 825/1050 None 24/25/30 2 1.1
HRC0197 H.265 2 medium 720.0 1280.0 375/565 None 24/25/30 5 1.1
HRC0212 H.265 2 medium 720.0 1280.0 1500/2250 None 24/25/30 2 2.0
HRC0218 H.265 2 medium 720.0 1280.0 1500/2250 None 24/25/30 5 2.0
HRC0232 H.264 2 slow 720.0 1280.0 3200/4000 None 24/25/30 2 2.0
HRC0258 VP9 2 0 1080.0 1920.0  2250/4500 None 24/25/30 2 2.0
HRC0263 H.265 2 medium 1080.0 1920.0 5250/7125 None 24/25/30 2 2.0
HRC0292 H.264 1 ultrafast 1440.0 2560.0  1500/3000 None 24/25/30 2 2.0
HRC0297 VP9 2 2 1440.0 2560.0 1125/2250 None 24/25/30 2 2.0
HRC0309 VP9 2 0 1440.0 2560.0 1125/2250 None 24/25/30 2 2.0
HRC0336 VP9 1 3 1440.0 2560.0 11250/15000 None 24/25/30 2 2.0
HRC0385 H.264 1 ultrafast 720.0 1280.0 500/750 None 50/60 2 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None 50/60 2 2.0
HRC0420 VP9 2 2 720.0 1280.0  2400/3000 None 50/60 2 2.0
HRC0436 H.264 2 medium 1080.0 1920.0  3500/7000 None  50/60 2 2.0
HRC0446 H.265 2 medium 1080.0 1920.0 2625/5250 None 50/60 5 1.1
HRC0480 VP9 2 1 1440.0 2560.0 300/500 None 50/60 2 2.0
HRC0484 H.264 2 medium 1440.0 2560.0  6000/10000 None  50/60 2 2.0
HRC0488 H.265 2 medium 1440.0 2560.0 500/500 None 50/60 2 1.1
HRC0492 VP9 2 2 1440.0 2560.0  3000/5250 None  50/60 5 2.0
HRC0497 H.265 1 ultrafast 1440.0 2560.0 7500/11250 None 50/60 2 2.0
HRC0500 H.265 2 medium 1440.0 2560.0 7500/11250 None  50/60 2 2.0
HRC0509 H.265 2 medium 1440.0 2560.0 7500/11250 None 50/60 5 1.1
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Appendix B PNATS Phase 2 Test Plan

Table B.3: Test Plan for P2STRO03.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0001 H.264 2 medium 240.0  426.0 100/200 None 15 5 2.0
HRC0003 VP9 2 2 240.0 4260 60/115 None 15 5 2.0
HRC0005 H.265 1 veryfast 240.0 4260 95/190 None 15 2 2.0
HRCO0016  H.264 2 medium 240.0  426.0 250/350 None 15 2 2.0
HRC0019  H.264 1 veryfast 240.0  426.0  400/500 None 15 2 2.0
HRC0020 H.265 1 veryfast 240.0  426.0 300/375 None 15 2 2.0
HRC0023 H.265 2 medium 240.0  426.0 300/375 None 15 2 2.0
HRC0033 VP9 2 2 360.0  640.0 225/375 None 15 2 2.0
HRC0037 H.264 1 ultrafast 360.0  640.0 600/800 None 15 2 2.0
HRC0039 VP9 1 3 360.0  640.0 450/600 None 15 2 2.0
HRCO0086  H.265 2 medium 240.0 4260 75/150 None  24/25/30 5 2.0
HRC0088  H.264 1 ultrafast 240.0  426.0 250/400 None 24/25/30 2 2.0
HRC0096 VP9 2 2 240.0  426.0 190/300 None 24/25/30 5 2.0
HRC0098 H.265 2 slower 240.0  426.0 190/300 None 24/25/30 2 2.0
HRC0100 H.264 1 ultrafast 240.0  426.0 400/600 None 24/25/30 2 2.0
HRC0101  H.265 1 ultrafast 240.0  426.0 300/450 None 24/25/30 2 2.0
HRC0104 H.265 2 medium 240.0  426.0 300/450 None 24/25/30 2 2.0
HRC0105 VP9 2 2 240.0  426.0 300/450 None  24/25/30 2 2.0
HRC0114 VP9 2 2 240.0  426.0 490/600 None 24/25/30 2 2.0
HRCO0115 H.264 2 medium 360.0  640.0 300/500 None  24/25/30 5 2.0
HRC0125 H.265 2 medium 360.0  640.0 300/450 None 24/25/30 5 2.0
HRCO0127 H.264 2 slow 360.0  640.0 400/600 None 24/25/30 2 2.0
HRC0136 H.264 2 medium 360.0  640.0 800/1000 None 24/25/30 5 2.0
HRC0156 VP9 2 2 480.0 8540 525/750 None 24/25/30 5 2.0
HRC0183 VP9 2 2 480.0  854.0 1050/1500 None 24/25/30 5 11
HRC0189 VP9 2 2 720.0 1280.0 375/565 None 24/25/30 2 2.0
HRC0194 H.265 2 medium 720.0 1280.0 375/565 None  24/25/30 5 2.0
HRC0217 H.264 2 medium 720.0  1280.0  2000/3000 None 24/25/30 5 2.0
HRC0222 VP9 2 2 720.0 1280.0  1500/2250 None 24/25/30 5 1.1
HRC0236 H.265 1 veryfast ~ 1080.0 1920.0 750/1500 None 24/25/30 2 2.0
HRCO0276 VP9 1 3 1080.0  1920.0  7125/9000 None 24/25/30 2 2.0
HRC0305 H.265 2 medium  1440.0 2560.0 1125/2250 None 24/25/30 5 11
HRC0316  H.264 1 fast 1440.0  2560.0 10000/15000 None 24/25/30 2 2.0
HRC0318 VP9 1 3 1440.0 2560.0 7500/11250  None 24/25/30 2 2.0
HRC0388  H.264 2 medium 720.0  1280.0  800/1600 None  50/60 2 2.0
HRC0390 VP9 2 2 720.0 1280.0 375/565 None  50/60 2 2.0
HRC0426 VP9 2 2 1080.0  1920.0  825/1200 None  50/60 5 2.0
HRC0427 H.264 2 medium  1080.0 1920.0 1100/1600 None  50/60 5 1.1
HRC0436 H.264 2 medium  1080.0 1920.0  3500/7000 None  50/60 2 2.0
HRC0448 H.264 1 veryfast ~ 1080.0 1920.0  7000/9500 None  50/60 2 2.0
HRC0460 H.264 2 medium  1080.0 1920.0  7000/9500 None  50/60 5 11
HRC0463 H.264 2 slower 1080.0  1920.0  7000/9500 None  50/60 2 2.0
HRC0470 H.265 2 medium  1080.0 1920.0  7125/9000 None  50/60 5 11
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0496 H.264 1 ultrafast ~ 1440.0  2560.0 10000/15000 None  50/60 2 2.0
HRC0505 H.264 2 medium  1440.0 2560.0 10000/15000 None 50/60 5 2.0
HRCO0528 VP9 2 2 1440.0  2560.0 11250/15000 None  50/60 5 1.1
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Table B.4: Test Plan for P2STR04.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0001 H.264 2 medium 240.0  426.0 100/200 None 15 5 2.0
HRCO0004 H.264 1 ultrafast 240.0 4260 125/250 None 15 2 2.0
HRC0008  H.265 2 medium 2400  426.0 95/190 None 15 2 2.0
HRCO0009 VP9 2 2 240.0  426.0 95/190 None 15 2 2.0
HRC0010 H.264 2 veryslow 240.0 4260 125/250 None 15 2 2.0
HRCO0013  H.264 1 fast 360.0  640.0 250/350 None 24/25/30 2 2.0
HRC0017  H.265 2 medium 240.0  426.0 190/265 None 15 2 2.0
HRC0024 VP9 2 2 360.0  640.0 300/375 None 24/25/30 2 2.0
HRC0060 VP9 2 2 480.0  854.0 375/600 None  24/25/30 2 2.0
HRCO0065  H.265 2 slower 480.0  854.0 375/600 None 15 2 2.0
HRCO0068  H.265 1 veryfast 480.0  854.0 675/900 None 24/25/30 2 2.0
HRC0076  H.264 1 veryfast 480.0  854.0 1200/1400 None 15 2 2.0
HRC0091 H.264 2 medium 240.0  426.0 250/400 None 24/25/30 2 2.0
HRC0092 H.265 2 medium 240.0  426.0 190/300 None 24/25/30 2 2.0
HRC0093 VP9 2 2 240.0  426.0 190/300 None 24/25/30 2 2.0
HRCO0094 H.264 2 medium 240.0  426.0 250/400 None  24/25/30 5 2.0
HRC0095  H.265 2 medium 240.0  426.0 190/300 None 24/25/30 5 2.0
HRC0097 H.264 2 slow 240.0  426.0 250/400 None 24/25/30 2 2.0
HRCO0113  H.265 2 medium 240.0  426.0 490/600 None 24/25/30 2 2.0
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0143  H.265 2 medium 360.0  640.0 750/900 None 24/25/30 2 2.0
HRC0144 VP9 2 2 360.0  640.0 750/900 None 24/25/30 2 2.0
HRC0147 VP9 2 2 480.0 8540 265/525 None 24/25/30 5 2.0
HRC0157 H.264 2 medium 480.0  854.0 700/1000 None 24/25/30 5 11
HRCO0166  H.264 2 medium 480.0  854.0 1100/1400 None  24/25/30 2 1.1
HRC0196  H.264 2 medium 720.0 1280.0  500/750 None 24/25/30 5 1.1
HRC0198 VP9 2 2 720.0 1280.0 375/565 None 24/25/30 5 1.1
HRC0250 H.264 2 medium 1080.0  1920.0  3000/6000 None 24/25/30 5 2.0
HRC0262 H.264 2 medium 1080.0  1920.0  7000/9500 None 24/25/30 2 2.0
HRC0266 H.265 2 medium 1080.0  1920.0 5250/7125 None 24/25/30 2 1.1
HRC0269  H.265 2 medium 1080.0  1920.0 5250/7125 None 24/25/30 5 2.0
HRC0287 H.265 2 medium 1080.0  1920.0  7125/9000 None 24/25/30 5 1.1
HRC0290 H.265 2 slower 1080.0  1920.0  7125/9000 None 24/25/30 2 2.0
HRC0295 H.264 2 medium 1440.0  2560.0  1500/3000 None 24/25/30 2 2.0
HRC0300 VP9 2 2 1440.0 2560.0 1125/2250 None 24/25/30 2 1.1
HRC0319 H.264 2 medium 1440.0 2560.0 10000/15000 None 24/25/30 2 2.0
HRC0321 VP9 2 2 1440.0 2560.0 7500/11250  None 24/25/30 2 2.0
HRC0330 VP9 2 2 1440.0 2560.0 7500/11250  None 24/25/30 5 1.1
HRC0334 H.264 1 ultrafast 1440.0 2560.0 15000/20000 None 24/25/30 2 2.0
HRC0388 H.264 2 medium 720.0  1280.0  800/1600 None  50/60 2 2.0
HRC0401 H.265 2 medium 720.0 1280.0  825/1200 None  50/60 5 2.0
HRC0407 H.265 2 veryslow 720.0 1280.0 825/1200 None  50/60 2 2.0
HRC0410 H.265 2 medium 720.0 1280.0  1800/2400 None  50/60 5 2.0
HRCO0412 H.264 2 medium 720.0 1280.0  2400/3200 None  50/60 5 1.1
HRC0431 H.265 2 veryslow  1080.0 1920.0  825/1200 None  50/60 2 2.0
HRC0436 H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0439 H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 2 1.1
HRC0484 H.264 2 medium 1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0489 VP9 2 2 1440.0  2560.0  3000/5250 None  50/60 2 1.1
HRC0494 H.265 2 medium 1440.0  2560.0  3000/5250 None  50/60 5 1.1
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Appendix B PNATS Phase 2 Test Plan

Table B.5: Test Plan for P2STRO05.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0028 H.264 1 veryfast 360.0  640.0 300/500 None 15 2 2.0
HRC0032 H.265 2 medium 360.0  640.0 225/375 None 15 2 2.0
HRC0044 H.265 1 ultrafast 360.0  640.0 600/750 None 15 2 2.0
HRC0083  H.265 2 slow 480.0  854.0 900/1050 None 15 2 2.0
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRCO0134 H.265 2 medium 360.0  640.0 600/750 None 24/25/30 2 2.0
HRC0135 VP9 2 2 360.0  640.0 600/750 None 24/25/30 2 2.0
HRC0138 VP9 2 2 360.0  640.0 600/750 None 24/25/30 5 2.0
HRC0163  H.264 2 medium 480.0  854.0 1100/1400 None 24/25/30 2 2.0
HRC0175 H.264 2 slower 480.0  854.0 1100/1400 None 24/25/30 2 2.0
HRC0178  H.264 2 medium 480.0  854.0 1400/2000 None 24/25/30 5 2.0
HRC0184 H.264 1 ultrafast 720.0 1280.0  500/750 None 24/25/30 2 2.0
HRC0187  H.264 2 medium 720.0 1280.0 500/750 None 24/25/30 2 2.0
HRC0195 VP9 2 2 720.0 1280.0  375/565 None 24/25/30 5 2.0
HRC0206 H.265 2 medium 720.0 1280.0 750/1125 None 24/25/30 5 1.1
HRC0229 H.264 2 medium 720.0 1280.0 500/750 None 24/25/30 2 2.0
HRC0235 H.264 1 fast 1080.0  1920.0 500/750 None 24/25/30 2 2.0
HRC0256 H.264 2 slow 1080.0  1920.0  3000/6000 None 24/25/30 2 2.0
HRC0278  H.265 2 medium  1080.0 1920.0  1000/2000 None 24/25/30 2 2.0
HRC0304 H.264 2 medium  1440.0 2560.0 1500/3000 None 24/25/30 5 11
HRC0310 H.264 2 medium  1440.0  2560.0  3000/6000 None 24/25/30 5 2.0
HRC0326  H.265 2 medium  1440.0 2560.0 3000/6000 None 24/25/30 5 2.0
HRC0349 H.264 2 medium  2160.0 3840.0 6000/12000  None 24/25/30 5 2.0
HRCO0353 H.265 2 medium  2160.0 3840.0  4500/9000 None 24/25/30 5 1.1
HRC0360 VP9 2 2 2160.0 3840.0  4500/9000 None 24/25/30 5 11
HRC0370 H.264 2 medium  2160.0 3840.0 11250/16500 None 24/25/30 2 11
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0400 H.264 2 medium 720.0 1280.0 1100/1600 None  50/60 5 2.0
HRC0404 H.265 2 medium 720.0 1280.0 825/1200 None  50/60 5 11
HRC0413  H.265 2 medium 720.0 1280.0  1800/2400 None  50/60 5 1.1
HRC0422 H.265 2 slower 720.0 1280.0  825/1200 None  50/60 2 2.0
HRC0702 H.264 2 medium  1080.0 1920.0  1800/2400 None  50/60 2 2.0
HRC0456 VP9 2 2 1080.0  1920.0  3500/7000 None  50/60 2 1.1
HRC0462 VP9 2 2 1080.0  1920.0  3500/7000 None  50/60 5 11
HRC0466  H.264 2 medium  1080.0  1920.0 9500/12000  None 50/60 5 2.0
HRC0473  H.265 2 medium  1440.0 2560.0 1315/2625 None  50/60 5 2.0
HRC0483 VP9 1 4 1440.0  2560.0  3000/5250 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0541 H.264 2 medium  2160.0 3840.0 6000/10000  None 50/60 2 11
HRC0544 H.264 2 medium  2160.0 3840.0 6000/10000  None  50/60 5 2.0
HRC0557 H.265 2 medium  2160.0 3840.0 6000/10000  None 50/60 2 2.0
HRCO0563  H.265 2 medium  2160.0 3840.0 16500/22500 None 50/60 5 2.0
HRC0564 VP9 2 2 2160.0 3840.0 16500/22500 None 50/60 5 2.0
HRC0571 H.264 2 medium  2160.0  3840.0 30000/45000 None 50/60 2 2.0
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Table B.6: Test Plan for P2STR06.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0034 H.264 2 veryslow 360.0  640.0 100/200 None 15 2 2.0
HRC0045 VP9 1 4 360.0  640.0 100/200 None 15 2 2.0
HRC0049 H.264 2 medium 480.0  854.0 150/350 None 15 5 2.0
HRCO0050  H.265 2 medium 480.0  854.0 140/325 None 15 5 2.0
HRC0054 VP9 2 2 480.0  854.0 140/325 None 15 5 1.1
HRC0055 H.264 1 veryfast 480.0 854.0  300/650 None 15 2 2.0
HRC0084 VP9 2 0 480.0  854.0 650/800 None 15 2 2.0
HRC0700 H.264 2 medium 360.0  640.0 100/200 None 24/25/30 5 2.0
HRCO0121 H.264 2 medium 360.0  640.0 250/450 None 24/25/30 2 2.0
HRC0132 VP9 1 4 360.0  640.0 350/550 None 24/25/30 2 2.0
HRCO0141 VP9 1 3 360.0  640.0 350/550 None 24/25/30 2 2.0
HRC0160  H.264 1 fast 480.0  854.0 1100/1400 None 24/25/30 2 2.0
HRC0161  H.265 1 veryfast 480.0  854.0 225/350 None 24/25/30 2 2.0
HRCO0171 VP9 2 2 480.0  854.0 225/350 None 24/25/30 5 2.0
HRC0186 VP9 1 4 720.0 1280.0 225/415 None 24/25/30 2 2.0
HRCO0191 H.265 2 medium 720.0 1280.0 225/415 None 24/25/30 2 1.1
HRC0213 VP9 2 2 720.0 1280.0 1500/2250 None 24/25/30 2 2.0
HRC0233  H.265 2 slower 720.0 1280.0  2400/3000 None 24/25/30 2 2.0
HRC0261 VP9 1 4 1080.0  1920.0 5250/7125 None 24/25/30 2 2.0
HRC0281 H.265 2 medium 1080.0  1920.0  7125/9000 None 24/25/30 2 1.1
HRC0285 VP9 2 2 1080.0  1920.0  7125/9000 None 24/25/30 5 2.0
HRC0294 VP9 1 4 1440.0 2560.0  1125/2250 None 24/25/30 2 2.0
HRC0298 H.264 2 medium 1440.0 2560.0 1500/3000 None 24/25/30 2 11
HRC0350 H.265 2 medium 2160.0  3840.0  4500/9000 None 24/25/30 5 2.0
HRCO0355 H.264 2 medium 2160.0 3840.0 15000/22000 None 24/25/30 5 2.0
HRC0365 H.265 1 ultrafast 2160.0 3840.0 16500/22500 None 24/25/30 2 2.0
HRCO0368  H.265 2 medium 2160.0 3840.0 16500/22500 None 24/25/30 2 2.0
HRC0372 VP9 2 2 2160.0  3840.0 16500/22500 None 24/25/30 2 1.1
HRC0373 H.264 2 medium 2160.0 3840.0 22000/30000 None 24/25/30 5 2.0
HRC0701 H.264 2 medium 720.0 1280.0  400/900 None  50/60 2 2.0
HRC0418 H.264 2 medium 720.0 1280.0  3200/4000 None  50/60 2 2.0
HRC0429 VP9 2 2 1080.0  1920.0 400/800 None  50/60 5 1.1
HRC0430 H.264 2 slower 1080.0  1920.0  1100/1600 None  50/60 2 2.0
HRC0434 H.265 1 fast 1080.0  1920.0  2625/5250 None  50/60 2 2.0
HRC0436  H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0457 H.264 2 medium 1080.0  1920.0  7000/9500 None  50/60 5 2.0
HRC0459 VP9 2 2 1080.0  1920.0 5250/7125 None  50/60 5 2.0
HRC0484 H.264 2 medium 1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0490 H.264 2 medium 1440.0 2560.0  4000/7000 None  50/60 5 2.0
HRC0510 VP9 2 2 1440.0 2560.0 7500/11250  None  50/60 5 1.1
HRC0525 VP9 2 2 1440.0 2560.0 11250/15000 None 50/60 5 2.0
HRC0532 H.264 2 medium 2160.0 3840.0 6000/12000  None 50/60 5 1.1
HRC0555 VP9 1 3 2160.0 3840.0 16500/22500 None 50/60 2 2.0
HRCO0558 VP9 2 2 2160.0  3840.0 16500/22500 None 50/60 2 2.0
HRCO0561 VP9 2 2 2160.0 3840.0 16500/22500 None 50/60 2 1.1
HRCO0571 H.264 2 medium 2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC0581  H.265 2 medium 2160.0 3840.0 22500/33750 None 50/60 5 1.1
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Appendix B PNATS Phase 2 Test Plan

Table B.7: Test Plan for P2STRO0S.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0041 H.265 2 medium 360.0  640.0 450/600 None 15 2 2.0
HRCO0058 H.264 2 medium 480.0  854.0 500/800 None 15 2 2.0
HRC0061  H.264 2 medium 480.0  854.0 500/800 None 15 2 11
HRC0069 VP9 1 3 480.0 8540 675/900 None 15 2 2.0
HRCO0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0165 VP9 2 2 480.0  854.0 825/1050 None 24/25/30 2 2.0
HRC0181 H.264 2 medium 480.0  854.0 1400/2000 None 24/25/30 5 11
HRC0185 H.265 1 ultrafast 7200 1280.0 375/565 None 24/25/30 2 2.0
HRC0203  H.265 2 medium 720.0 1280.0 750/1125 None  24/25/30 5 2.0
HRC0204 VP9 2 2 720.0 1280.0 750/1125 None 24/25/30 5 2.0
HRC0210 VP9 1 3 720.0 1280.0  1500/2250 None 24/25/30 2 2.0
HRC0214 H.264 2 medium 720.0 1280.0 2000/3000 None 24/25/30 2 11
HRC0231 VP9 2 2 720.0  1280.0  2400/3000 None 24/25/30 2 2.0
HRC0242 H.265 2 medium  1080.0 1920.0  750/1500 None 24/25/30 2 11
HRC0243 VP9 2 2 1080.0  1920.0  750/1500 None 24/25/30 2 11
HRC0260 H.265 1 fast 1080.0  1920.0 5250/7125 None  24/25/30 2 2.0
HRC0268 H.264 2 medium  1080.0 1920.0  7000/9500 None 24/25/30 5 2.0
HRC0314 H.265 2 medium  1440.0 2560.0 1050/2000 None 24/25/30 5 1.1
HRC0322 H.264 2 medium  1440.0 2560.0  4500/7000 None 24/25/30 2 11
HRCO0328 H.264 2 medium  1440.0 2560.0 10000/15000 None 24/25/30 5 1.1
HRC0329 H.265 2 medium  1440.0 2560.0 7500/11250  None 24/25/30 5 11
HRC0335 H.265 1 veryfast 480.0  854.0 1100/1500 None 24/25/30 2 2.0
HRC0358 H.264 2 medium  2160.0 3840.0 15000/22000 None 24/25/30 5 11
HRCO0366 VP9 1 4 360.0  640.0 550/800 None 24/25/30 2 2.0
HRC0374  H.265 2 medium  1080.0 1920.0  600/1200 None  24/25/30 5 2.0
HRC0380 H.265 1 fast 1080.0  1920.0  750/1500 None 24/25/30 2 2.0
HRCO0388  H.264 2 medium 720.0  1280.0  800/1600 None  50/60 2 2.0
HRC0391 H.264 2 medium 720.0 1280.0 500/750 None  50/60 2 11
HRC0393 VP9 2 2 720.0 1280.0  375/565 None  50/60 2 1.1
HRC0398 H.265 2 medium 720.0 1280.0 375/565 None  50/60 5 11
HRC0409 H.264 2 medium 720.0 1280.0  2400/3200 None  50/60 5 2.0
HRC0436 H.264 2 medium  1080.0 1920.0  3500/7000 None  50/60 2 2.0
HRC0444 VP9 2 2 1080.0  1920.0  2625/5250 None  50/60 5 2.0
HRC0476  H.265 2 medium  1440.0 2560.0 1315/2625 None  50/60 5 1.1
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None 50/60 2 2.0
HRC0520 H.264 2 medium  1440.0 2560.0 15000/20000 None  50/60 2 1.1
HRC0527 H.265 2 medium  1440.0 2560.0 11250/15000 None 50/60 5 11
HRCO0534 VP9 2 2 2160.0  3840.0  4500/9000 None  50/60 5 11
HRC0548 H.265 2 medium  2160.0 3840.0 11250/16500 None 50/60 5 11
HRC0562 H.264 2 medium  2160.0  3840.0 22000/30000 None 50/60 5 2.0
HRC0570 VP9 1 3 2160.0 3840.0 22500/33750 None  50/60 2 2.0
HRC0571  H.264 2 medium  2160.0  3840.0 30000/45000 None 50/60 2 2.0
HRC0574 H.264 2 medium  2160.0 3840.0 30000/45000 None 50/60 2 1.1

194



Table B.8: Test Plan for P2STR09.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0038 H.265 1 fast 360.0  640.0 450/600 None 15 2 2.0
HRC0059  H.265 2 medium 480.0  854.0 375/600 None 15 2 2.0
HRCO0067  H.264 1 veryfast 480.0  854.0 900/1200 None 15 2 2.0
HRC0074 H.265 2 medium 480.0 8540 675/900 None 15 2 1.1
HRC0079 H.264 2 medium 480.0  854.0 1200/1400 None 15 2 2.0
HRCO0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0118  H.264 1 ultrafast 360.0  640.0 400/600 None 24/25/30 2 2.0
HRCO0130 H.264 1 ultrafast 360.0  640.0 800/1000 None  24/25/30 2 2.0
HRC0137  H.265 2 medium 360.0  640.0 600/750 None 24/25/30 5 2.0
HRC0142 H.264 2 medium 360.0  640.0 1000/1200 None 24/25/30 2 2.0
HRC0151 H.264 2 slow 480.0  854.0 350/700 None 24/25/30 2 2.0
HRC0190 H.264 2 medium 720.0 1280.0  500/750 None 24/25/30 2 1.1
HRC0211  H.264 2 medium 720.0 1280.0  2000/3000 None 24/25/30 2 2.0
HRC0216 VP9 2 2 720.0 1280.0  1500/2250 None 24/25/30 2 1.1
HRC0223 H.264 2 slower 720.0 1280.0  2000/3000 None  24/25/30 2 2.0
HRC0225 VP9 2 1 720.0 1280.0  1500/2250 None 24/25/30 2 2.0
HRC0246 VP9 2 2 1080.0  1920.0  750/1500 None 24/25/30 5 2.0
HRC0254 H.265 2 medium  1080.0 1920.0  2250/4500 None 24/25/30 5 1.1
HRC0282 VP9 2 2 1080.0  1920.0  7125/9000 None 24/25/30 2 1.1
HRC0299 H.265 2 medium  1440.0 2560.0 1125/2250 None 24/25/30 2 1.1
HRCO0308  H.265 2 slower 1440.0 2560.0 1125/2250 None 24/25/30 2 2.0
HRC0317  H.265 1 ultrafast ~ 1440.0 2560.0 7500/11250  None 24/25/30 2 2.0
HRC0339 VP9 2 2 1440.0  2560.0 11250/15000 None 24/25/30 2 2.0
HRC0348 VP9 2 2 2160.0  3840.0  4500/9000 None  24/25/30 2 11
HRC0377  H.265 2 medium  2160.0 3840.0 16500/22500 None 24/25/30 5 1.1
HRC0388  H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0395 H.265 2 medium 720.0 1280.0 375/565 None  50/60 5 2.0
HRC0397 H.264 2 medium 720.0 1280.0  500/750 None  50/60 5 1.1
HRC0417 VP9 1 4 720.0 1280.0  2400/3000 None  50/60 2 2.0
HRC0432 VP9 2 1 1080.0  1920.0  825/1200 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None 50/60 2 2.0
HRC0464 H.265 2 slower 1080.0  1920.0 5250/7125 None  50/60 2 2.0
HRC0472 H.264 2 medium  1440.0 2560.0  1750/3500 None  50/60 5 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None 50/60 2 2.0
HRC0504 VP9 2 2 1440.0  2560.0 7500/11250  None  50/60 2 1.1
HRC0512  H.265 2 slow 1440.0 2560.0 7500/11250  None  50/60 2 2.0
HRC0513 VP9 2 1 1440.0 2560.0 7500/11250  None 50/60 2 2.0
HRC0515  H.265 1 ultrafast ~ 1440.0 2560.0 11250/15000 None  50/60 2 2.0
HRC0535 H.264 1 ultrafast ~ 2160.0  3840.0 15000/22000 None  50/60 2 2.0
HRC0537 VP9 1 3 2160.0 3840.0 11250/16500 None 50/60 2 2.0
HRC0538 H.264 2 medium  2160.0 3840.0 15000/22000 None 50/60 2 2.0
HRC0539  H.265 2 medium  2160.0 3840.0 11250/16500 None  50/60 2 2.0
HRC0553 H.264 1 ultrafast ~ 2160.0  3840.0 22000/30000 None 50/60 2 2.0
HRC0554 H.265 1 ultrafast ~ 2160.0  3840.0 16500/22500 None  50/60 2 2.0
HRC0559 H.264 2 medium  2160.0 3840.0 22000/30000 None 50/60 2 11
HRC0571 H.264 2 medium  2160.0  3840.0 30000/45000 None 50/60 2 2.0
HRC0572  H.265 2 medium  2160.0 3840.0 22500/33750 None 50/60 2 2.0
HRC0575  H.265 2 medium  2160.0  3840.0 22500/33750 None  50/60 2 1.1
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Appendix B PNATS Phase 2 Test Plan

Table B.9: Test Plan for P2STR10.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0026  H.265 2 medium 360.0  640.0 95/190 None 15 5 2.0
HRC0043  H.264 1 fast 360.0  640.0 800/1000 None 15 2 2.0
HRC0046  H.264 2 medium 360.0  640.0 800/1000 None 15 2 2.0
HRC0071  H.265 2 medium 480.0 8540 675/900 None 15 2 2.0
HRC0072 VP9 2 2 480.0  854.0 675/900 None 15 2 2.0
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0126 VP9 2 2 360.0  640.0 300/450 None 24/25/30 5 2.0
HRC0152  H.265 2 slower 480.0 8540 265/525 None 24/25/30 2 2.0
HRC0168 VP9 2 2 480.0 8540 825/1050 None 24/25/30 2 11
HRC0174 VP9 2 2 480.0  854.0 825/1050 None 24/25/30 5 1.1
HRC0188  H.265 2 medium 720.0 1280.0 375/565 None  24/25/30 2 2.0
HRC0234 VP9 2 0 720.0 1280.0  2400/3000 None 24/25/30 2 2.0
HRC0237 VP9 1 3 1080.0  1920.0  750/1500 None 24/25/30 2 2.0
HRC0251 H.265 2 medium  1080.0 1920.0  2250/4500 None 24/25/30 5 2.0
HRC0259 H.264 1 fast 1080.0  1920.0  150/250 None 24/25/30 2 2.0
HRC0277 H.264 2 medium  1080.0 1920.0 9500/12000  None 24/25/30 2 2.0
HRC0286 H.264 2 medium  1080.0 1920.0 9500/12000  None 24/25/30 5 1.1
HRC0291 VP9 2 0 1080.0  1920.0  7125/9000 None  24/25/30 2 2.0
HRC0313  H.264 2 medium  1440.0  2560.0  4000/8000 None 24/25/30 5 11
HRC0345 VP9 2 2 2160.0  3840.0  300/450 None  24/25/30 2 2.0
HRC0346 H.264 2 medium  2160.0 3840.0 6000/12000  None 24/25/30 2 11
HRCO0347 H.265 2 medium  2160.0 3840.0  4500/9000 None 24/25/30 2 1.1
HRC0382 H.264 2 medium  2160.0 3840.0 30000/45000 None 24/25/30 2 2.0
HRCO0388  H.264 2 medium 720.0 1280.0  800/1600 None  50/60 2 2.0
HRC0389  H.265 2 medium 720.0 1280.0 375/565 None  50/60 2 2.0
HRC0403 H.264 2 medium 720.0 1280.0 1100/1600 None  50/60 5 11
HRC0405 VP9 2 2 720.0 1280.0 825/1200 None  50/60 5 11
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0440 H.265 2 medium ~ 1080.0  1920.0  2625/5250 None  50/60 2 1.1
HRC0447 VP9 2 2 1080.0  1920.0  2625/5250 None  50/60 5 11
HRC0449 H.265 1 ultrafast ~ 1080.0  1920.0  600/750 None  50/60 2 2.0
HRC0453 VP9 2 2 1080.0  1920.0 5250/7125 None  50/60 2 2.0
HRC0468 VP9 2 2 1080.0  1920.0  7125/9000 None  50/60 5 2.0
HRC0475 H.264 2 medium  1440.0 2560.0 1750/3500 None  50/60 5 11
HRC0481 H.264 1 veryfast ~ 1440.0 2560.0  4000/7000 None  50/60 2 2.0
HRC0482 H.265 1 fast 1440.0  2560.0  3000/5250 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None 50/60 2 2.0
HRC0485 H.265 2 medium  1440.0 2560.0  3000/5250 None  50/60 2 2.0
HRC0499 H.264 2 medium  1440.0 2560.0 10000/15000 None  50/60 2 2.0
HRC0501 VP9 2 2 1440.0 2560.0 7500/11250  None 50/60 2 2.0
HRC0518  H.265 2 medium  1440.0 2560.0 600/750 None  50/60 2 2.0
HRC0536  H.265 1 ultrafast ~ 2160.0  3840.0 11250/16500 None  50/60 2 2.0
HRC0540 VP9 2 2 2160.0 3840.0 11250/16500 None  50/60 2 2.0
HRC0543 VP9 2 2 2160.0 3840.0 11250/16500 None 50/60 2 1.1
HRC0566  H.265 2 medium  2160.0 3840.0 16500/22500 None  50/60 5 1.1
HRC0571 H.264 2 medium  2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC0577 H.264 2 medium  2160.0 3840.0 30000/45000 None 50/60 5 2.0
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Table B.10: Test Plan for P2STR11.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0025 H.264 2 medium 360.0 640.0 125/250 None 15 5 2.0
HRC0036 VP9 2 0 360.0 640.0 225/375 None 15 2 2.0
HRC0040 H.264 2 medium 360.0 640.0  600/800 None 15 2 2.0
HRC0042 VP9 2 2 360.0 640.0  150/200 None 15 2 2.0
HRC0047 H.265 2 medium 360.0 640.0  600/750 None 15 2 2.0
HRC0062 H.265 2 medium 480.0 854.0 375/600 None 15 2 1.1
HRCO0115 H.264 2 medium 360.0 640.0  300/500 None 24/25/30 5 2.0
HRC0116 H.265 2 medium 360.0 640.0 115/190 None 24/25/30 5 2.0
HRC0122 H.265 2 medium 360.0 640.0  300/450 None 24/25/30 2 2.0
HRC0128 H.265 2 slower 360.0 640.0  300/450 None 24/25/30 2 2.0
HRCO0146 H.265 2 medium 480.0 854.0 265/525 None 24/25/30 5 2.0
HRCO0155 H.265 2 medium 480.0 854.0 250/375 None 24/25/30 5 2.0
HRC0159 VP9 2 2 480.0 854.0 250/375 None 24/25/30 5 1.1
HRC0162 VP9 1 4 480.0 854.0 825/1050 None 24/25/30 2 2.0
HRC0172 H.264 2 medium 480.0 854.0 1100/1400 None 24/25/30 5 1.1
HRC0192 VP9 2 2 720.0 1280.0 375/565 None 24/25/30 2 1.1
HRC0205 H.264 2 medium 720.0 1280.0 1000/1500 None 24/25/30 5 1.1
HRC0219 VP9 2 2 720.0 1280.0 1500/2250 None 24/25/30 5 2.0
HRC0239 H.265 2 medium 1080.0 1920.0  300/600 None 24/25/30 2 2.0
HRC0241 H.264 2 medium 1080.0 1920.0 1000/2000 None 24/25/30 2 1.1
HRC0253 H.264 2 medium 1080.0 1920.0  1500/3000 None 24/25/30 5 1.1
HRC0257 H.265 2 slower 1080.0 1920.0 2250/4500 None 24/25/30 2 2.0
HRC0283 H.264 2 medium 1080.0 1920.0  9500/12000 None 24/25/30 5 2.0
HRC0288 VP9 2 2 1080.0 1920.0 7125/9000 None 24/25/30 5 1.1
HRC0296 H.265 2 medium 1440.0 2560.0 500/1000 None 24/25/30 2 2.0
HRC0341 H.265 1 veryfast 2160.0 3840.0 1500/3000 None 24/25/30 2 2.0
HRC0342 VP9 1 4 2160.0 3840.0 1500/3000 None 24/25/30 2 2.0
HRC0375 VP9 2 2 2160.0 3840.0 6000/8000 None 24/25/30 5 2.0
HRC0379 H.264 1 veryfast 2160.0 3840.0 30000/45000 None 24/25/30 2 2.0
HRC0387 VP9 1 3 720.0 1280.0 375/565 None  50/60 2 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None 50/60 2 2.0
HRC0394 H.264 2 medium 720.0 1280.0 500/750 None  50/60 5 2.0
HRC0408 VP9 2 1 720.0 1280.0 825/1200 None 50/60 2 2.0
HRC0419 H.265 2 medium 720.0 1280.0 2400/3000 None 50/60 2 2.0
HRC0421 H.264 2 slower 720.0 1280.0 3200/4000 None  50/60 2 2.0
HRC0703 H.264 2 medium 1080.0 1920.0 1500/3000 None 50/60 2 2.0
HRC0443 H.265 2 medium 1080.0 1920.0 2625/5250 None 50/60 5 2.0
HRC0445 H.264 2 medium 1080.0 1920.0 3500/7000 None 50/60 5 1.1
HRC0478 H.264 2 veryslow  1440.0 2560.0 1750/3500 None  50/60 2 2.0
HRC0484 H.264 2 medium 1440.0 2560.0 6000/10000 None 50/60 2 2.0
HRCO0531 VP9 2 2 2160.0 3840.0 1500/3000 None 50/60 5 2.0
HRC0533 H.265 2 medium 2160.0 3840.0 1500/3000 None  50/60 5 1.1
HRC0549 VP9 2 2 2160.0 3840.0 11250/16500 None 50/60 5 1.1
HRCO0556 H.264 2 medium 2160.0 3840.0  7000/10000 None  50/60 2 2.0
HRC0571 H.264 2 medium 2160.0 3840.0 30000/45000 None 50/60 2 2.0
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Appendix B PNATS Phase 2 Test Plan

Table B.11: Test Plan for P2STR12.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0027 VP9 2 2 360.0  640.0 95/190 None 15 5 2.0
HRC0063 VP9 2 2 480.0  854.0 375/600 None 15 2 1.1
HRC0075 VP9 2 2 480.0  854.0 675/900 None 15 2 1.1
HRCO0082 H.264 2 slower 480.0  854.0 1200/1400 None 15 2 2.0
HRC0115  H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRCO0133  H.264 2 medium 360.0  640.0 800/1000 None 24/25/30 2 2.0
HRCO0145 H.264 2 medium 480.0  854.0 350/700 None 24/25/30 5 2.0
HRC0158  H.265 2 medium 480.0  854.0 525/750 None 24/25/30 5 1.1
HRC0176  H.265 2 veryslow 480.0  854.0 825/1050 None 24/25/30 2 2.0
HRC0207 VP9 2 2 720.0 1280.0 750/1125 None 24/25/30 5 1.1
HRC0215  H.265 2 medium 720.0 1280.0 1500/2250 None  24/25/30 2 1.1
HRC0226  H.264 1 ultrafast 720.0 1280.0  3200/4000 None 24/25/30 2 2.0
HRC0227 H.265 1 ultrafast 720.0 1280.0  2400/3000 None 24/25/30 2 2.0
HRC0248 H.265 2 medium 1080.0 1920.0 750/1500 None 24/25/30 5 1.1
HRC0271 H.264 2 medium 1080.0  1920.0  7000/9500 None 24/25/30 5 1.1
HRC0274 H.264 1 fast 1080.0 1920.0 9500/12000  None 24/25/30 2 2.0
HRC0301 H.264 2 medium 1440.0  2560.0  1500/3000 None 24/25/30 5 2.0
HRC0344 H.265 2 medium 2160.0 3840.0  4500/9000 None  24/25/30 2 2.0
HRC0351 VP9 2 2 2160.0  3840.0  4500/9000 None 24/25/30 5 2.0
HRC0352 H.264 2 medium 2160.0 3840.0 6000/12000  None 24/25/30 5 1.1
HRC0357 VP9 2 2 2160.0 3840.0 11250/16500 None 24/25/30 5 2.0
HRC0376 H.264 2 medium 2160.0 3840.0 22000/30000 None 24/25/30 5 1.1
HRC0383  H.265 2 medium 2160.0 3840.0  500/800 None 24/25/30 2 2.0
HRCO0388  H.264 2 medium 720.0  1280.0  800/1600 None  50/60 2 2.0
HRC0406 H.264 2 slower 720.0 1280.0 1100/1600 None  50/60 2 2.0
HRC0428 H.265 2 medium 1080.0  1920.0  825/1200 None  50/60 5 11
HRC0433 H.264 1 ultrafast 1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0435 VP9 1 3 1080.0  1920.0  2625/5250 None  50/60 2 2.0
HRC0436 H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0442 H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 5 2.0
HRC0451 H.264 2 medium 1080.0  1920.0  500/800 None  50/60 2 2.0
HRCO0461 H.265 2 medium 1080.0  1920.0 5250/7125 None  50/60 5 1.1
HRC0471 VP9 2 2 1080.0  1920.0  7125/9000 None  50/60 5 1.1
HRC0474 VP9 2 2 1440.0 2560.0 1315/2625 None  50/60 5 2.0
HRC0484 H.264 2 medium 1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0487 H.264 2 medium 1440.0  2560.0  4000/7000 None  50/60 2 1.1
HRC0506 H.265 2 medium 1440.0 2560.0 7500/11250  None  50/60 5 2.0
HRC0508 H.264 2 medium 1440.0 2560.0 10000/15000 None  50/60 5 1.1
HRCO0514 H.264 1 fast 1440.0 2560.0 15000/20000 None 50/60 2 2.0
HRC0516 VP9 1 4 1440.0 2560.0 11250/15000 None  50/60 2 2.0
HRC0517 H.264 2 medium 1440.0 2560.0 15000/20000 None  50/60 2 2.0
HRC0519 VP9 2 2 1440.0  2560.0  500/800 None  50/60 2 2.0
HRC0545  H.265 2 medium 2160.0 3840.0 11250/16500 None 50/60 5 2.0
HRC0550 H.264 2 veryslow  2160.0 3840.0 15000/22000 None 50/60 2 2.0
HRC0571 H.264 2 medium 2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC0573 VP9 2 2 2160.0 3840.0 22500/33750 None 50/60 2 2.0
HRC0580 H.264 2 medium 2160.0 3840.0 30000/45000 None 50/60 5 1.1
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Table B.12: Test Plan for P2STR13.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0052 H.264 2 medium 480.0  854.0 250/500 None 15 5 11
HRCO0080  H.265 2 medium 480.0  854.0 900/1050 None 15 2 2.0
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRCO0119  H.265 1 fast 360.0  640.0 300/450 None 24/25/30 2 2.0
HRC0129 VP9 2 0 360.0  640.0 300/450 None 24/25/30 2 2.0
HRCO0140  H.265 1 ultrafast 360.0  640.0 750/900 None 24/25/30 2 2.0
HRC0150 VP9 2 2 480.0 8540 75/150 None 24/25/30 5 1.1
HRC0164  H.265 2 medium 480.0  854.0 400/500 None 24/25/30 2 2.0
HRC0179  H.265 2 medium 480.0  854.0 1050/1500 None  24/25/30 5 2.0
HRC0209 H.265 1 fast 720.0 1280.0  1500/2250 None 24/25/30 2 2.0
HRC0220 H.264 2 medium 720.0 1280.0  2000/3000 None 24/25/30 5 1.1
HRC0228 VP9 1 4 720.0 1280.0  2400/3000 None 24/25/30 2 2.0
HRC0238 H.264 2 medium 1080.0  1920.0  1000/2000 None 24/25/30 2 2.0
HRC0247 H.264 2 medium 1080.0  1920.0  1000/2000 None 24/25/30 5 1.1
HRC0264 VP9 2 2 1080.0  1920.0  5250/7125 None 24/25/30 2 2.0
HRC0303 VP9 2 2 1440.0 2560.0 400/800 None  24/25/30 5 2.0
HRC0307 H.264 2 veryslow  1440.0 2560.0  1500/3000 None 24/25/30 2 2.0
HRC0320 H.265 2 medium 1440.0  2560.0  2500/3750 None 24/25/30 2 2.0
HRC0323 H.265 2 medium 1440.0 2560.0 2500/3750 None 24/25/30 2 1.1
HRC0325 H.264 2 medium 1440.0 2560.0 10000/15000 None 24/25/30 5 2.0
HRC0332 H.265 2 veryslow  1440.0 2560.0 2500/3750 None 24/25/30 2 2.0
HRC0333 VP9 2 1 1440.0  2560.0  2500/3750 None 24/25/30 2 2.0
HRC0338 H.265 2 medium 1440.0 2560.0 11250/15000 None 24/25/30 2 2.0
HRCO0361  H.264 2 slow 2160.0  3840.0  5000/7500 None 24/25/30 2 2.0
HRC0363 VP9 2 0 2160.0 3840.0 11250/16500 None 24/25/30 2 2.0
HRC0371  H.265 2 medium 2160.0  3840.0  6000/8000 None 24/25/30 2 1.1
HRCO0378 VP9 2 2 2160.0  3840.0  6000/8000 None 24/25/30 5 1.1
HRC0384 VP9 2 2 2160.0 3840.0 7500/10000  None 24/25/30 2 2.0
HRCO0388  H.264 2 medium 720.0  1280.0  800/1600 None  50/60 2 2.0
HRC0396 VP9 2 2 720.0 1280.0 375/565 None  50/60 5 2.0
HRC0436 H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0441 VP9 2 2 1080.0  1920.0 2625/5250 None  50/60 2 1.1
HRC0465 VP9 2 1 1080.0  1920.0 5250/7125 None  50/60 2 2.0
HRC0484 H.264 2 medium 1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0503 H.265 2 medium 1440.0 2560.0 7500/11250  None 50/60 2 1.1
HRC0523 H.264 2 medium 1440.0  2560.0  15000/20000 None  50/60 5 2.0
HRCO0551  H.265 2 veryslow  2160.0 3840.0 11250/16500 None 50/60 2 2.0
HRC0560  H.265 2 medium 2160.0  3840.0  6000/8000 None  50/60 2 1.1
HRCO0565 H.264 2 medium 2160.0 3840.0 22000/30000 None 50/60 5 1.1
HRC0569  H.265 1 veryfast 2160.0 3840.0 7500/10000  None 50/60 2 2.0
HRCO0571  H.264 2 medium 2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC0576 VP9 2 2 2160.0  3840.0 7500/10000  None 50/60 2 1.1
HRC0582 VP9 2 2 2160.0 3840.0 7500/10000  None 50/60 5 1.1
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Appendix B PNATS Phase 2 Test Plan

Table B.13: Test Plan for P2STR14.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRCO0035 H.265 2 slower 360.0  640.0 225/375 None 15 2 2.0
HRC0066 VP9 2 0 480.0  854.0 375/600 None 15 2 2.0
HRC0073  H.264 2 medium 480.0  854.0 900/1200 None 15 2 11
HRCO0115  H.264 2 medium 360.0  640.0 300/500 None  24/25/30 5 2.0
HRC0131  H.265 1 ultrafast 360.0  640.0 600/750 None 24/25/30 2 2.0
HRC0153 VP9 2 0 480.0  854.0 265/525 None 24/25/30 2 2.0
HRC0170 H.265 2 medium 480.0  854.0 825/1050 None 24/25/30 5 2.0
HRC0173  H.265 2 medium 480.0  854.0 825/1050 None 24/25/30 5 1.1
HRC0177 VP9 2 0 480.0  854.0 825/1050 None 24/25/30 2 2.0
HRC0202 H.264 2 medium 720.0 1280.0  1000/1500 None 24/25/30 5 2.0
HRC0208 H.264 1 fast 720.0 1280.0  2000/3000 None  24/25/30 2 2.0
HRC0224 H.265 2 slower 720.0 1280.0  1500/2250 None 24/25/30 2 2.0
HRC0255 VP9 2 2 1080.0  1920.0  2250/4500 None 24/25/30 5 1.1
HRC0275 H.265 1 veryfast 1080.0  1920.0  7125/9000 None 24/25/30 2 2.0
HRC0280 H.264 2 medium 1080.0  1920.0 9500/12000  None 24/25/30 2 1.1
HRC0284 H.265 2 medium 1080.0  1920.0  7125/9000 None 24/25/30 5 2.0
HRC0289 H.264 2 veryslow  1080.0 1920.0 9500/12000  None 24/25/30 2 2.0
HRC0302 H.265 2 medium 1440.0 2560.0 1125/2250 None  24/25/30 5 2.0
HRC0306 VP9 2 2 1440.0 2560.0  1125/2250 None 24/25/30 5 1.1
HRCO0315 VP9 2 2 1440.0  2560.0  3000/6000 None  24/25/30 5 1.1
HRC0324 VP9 2 2 1440.0 2560.0 7500/11250  None 24/25/30 2 1.1
HRC0327 VP9 2 2 1440.0 2560.0 7500/11250  None 24/25/30 5 2.0
HRC0340 H.264 1 ultrafast 2160.0 3840.0 6000/12000  None 24/25/30 2 2.0
HRC0359  H.265 2 medium 2160.0 3840.0 11250/16500 None 24/25/30 5 11
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0392 H.265 2 medium 720.0 1280.0 375/565 None  50/60 2 1.1
HRC0411 VP9 2 2 720.0 1280.0  1800/2400 None  50/60 5 2.0
HRC0414 VP9 2 2 720.0  1280.0  1800/2400 None  50/60 5 1.1
HRC0415 H.264 1 fast 720.0 1280.0  3200/4000 None  50/60 2 2.0
HRC0436 H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0454 H.264 2 medium 1080.0  1920.0  7000/9500 None  50/60 2 1.1
HRC0467 H.265 2 medium 1080.0  1920.0  7125/9000 None  50/60 5 2.0
HRC0479  H.265 2 slower 1440.0 2560.0  1315/2625 None  50/60 2 2.0
HRC0484 H.264 2 medium 1440.0 2560.0 6000/10000  None 50/60 2 2.0
HRC0493  H.264 2 medium 1440.0  2560.0  4000/7000 None  50/60 5 11
HRC0495 VP9 2 2 1440.0 2560.0  3000/5250 None  50/60 5 1.1
HRCO0511 H.264 2 slow 1440.0 2560.0 10000/15000 None 50/60 2 2.0
HRC0524 H.265 2 medium 1440.0 2560.0 11250/15000 None  50/60 5 2.0
HRC0529 H.264 2 medium 2160.0 3840.0 6000/12000  None 50/60 5 2.0
HRC0530  H.265 2 medium 2160.0  3840.0  4500/9000 None  50/60 5 2.0
HRC0546 VP9 2 2 2160.0 3840.0 11250/16500 None 50/60 5 2.0
HRC0552 VP9 2 1 2160.0 3840.0 11250/16500 None 50/60 2 2.0
HRC0567 VP9 2 2 2160.0 3840.0 16500/22500 None 50/60 5 1.1
HRC0568  H.264 1 fast 2160.0  3840.0 30000/45000 None 50/60 2 2.0
HRC0571 H.264 2 medium 2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC0578  H.265 2 medium 2160.0 3840.0 22500/33750 None 50/60 5 2.0
HRC0579 VP9 2 2 2160.0 3840.0 22500/33750 None 50/60 5 2.0
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Table B.14: Test Plan for P2SVLO01.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None 50/60 2 2.0
HRC0571 H.264 2 medium  2160.0  3840.0 30000/45000 None 50/60 2 2.0
HRC0618 VP9 2 3 720.0 1280.0 2206/2942 None 24/25/30 2 1.1
HRC0619 H.264 2 slow 1080.0  1920.0  300/450 None 24/25/30 2 1.1
HRC0620 H.264 1 slow 360.0  640.0 984/1313 None 24/25/30 2 1.1
HRC0621 H.264 2 medium  1080.0 1920.0 1326/1769 None  50/60 2 11
HRC0622 VP9 2 4 480.0  854.0 710/947 None 24/25/30 2 1.1
HRC0624 H.265 2 medium  2160.0 3840.0 8750/11667  None 24/25/30 5 11
HRC0625 H.264 2 medium  2160.0  3840.0 24507/32676 None  50/60 2 1.1
HRC0626 H.265 2 medium 480.0 8540 895/1194 None 24/25/30 5 1.1
HRC0627 H.264 2 medium  2160.0 3840.0 5538/7384 None  50/60 2 1.1
HRC0628 H.265 2 medium  2160.0 3840.0 3720/4960 None 24/25/30 2 1.1
HRC0629 VP9 2 2 1080.0  1920.0 606/809 None 24/25/30 2 11
HRC0630 VP9 1 2 1440.0  2560.0 2824/3766 None 24/25/30 5 11
HRC0631 VP9 2 2 2160.0 3840.0  3501/4669 None  50/60 2 11
HRC0632 H.264 2 medium  2160.0 3840.0 5343/7124 None  50/60 2 1.1
HRC0633  H.265 1 fast 1440.0  2560.0  7943/10591 None  24/25/30 5 11
HRC0634 H.265 2 medium  1440.0 2560.0 9627/12837  None 50/60 5 1.1
HRC0635 H.265 2 medium  2160.0 3840.0 9554/12739  None 24/25/30 5 1.1
HRC0636 VP9 2 3 2160.0 3840.0 4493/5991 None  50/60 5 1.1
HRC0638 H.264 2 medium  1080.0 1920.0 1201/1602 None  50/60 2 11
HRC0639 H.265 1 medium 720.0 1280.0 4232/5643 None 24/25/30 5 11
HRC0640 H.264 2 medium 480.0  854.0 1381/1842 None 24/25/30 5 11
HRC0641 VP9 1 2 2160.0 3840.0  400/550 None  24/25/30 5 11
HRC0642 VP9 2 2 1080.0  1920.0  3155/4207 None 24/25/30 2 1.1
HRC0643 VP9 2 2 2160.0  3840.0  450/600 None 24/25/30 2 1.1
HRC0644 H.265 2 medium 360.0  640.0 306/408 None 24/25/30 2 1.1
HRCO0645 VP9 1 0 540.0  960.0 988/1318 None 24/25/30 2 1.1
HRC0646  H.265 1 medium  2160.0 3840.0 4939/6586 None 24/25/30 5 11
HRC0647 H.265 2 ultrafast ~ 1440.0 2560.0  500/650 None 24/25/30 2 1.1
HRC0648  H.265 2 ultrafast ~ 1440.0 2560.0 10499/13999 None 24/25/30 2 11
HRC0650 H.265 2 medium 540.0  960.0  300/450 None 24/25/30 2 1.1
HRC0651  H.265 2 medium 480.0 8540 663/884 None 24/25/30 2 1.1
HRC0652 VP9 2 2 720.0 1280.0 4735/6314 None 24/25/30 5 1.1
HRC0653 VP9 2 1 2160.0 3840.0 15123/20165 None 24/25/30 2 1.1
HRC0654 H.264 2 medium  1440.0 2560.0 1461/1949 None 24/25/30 5 1.1
HRC0655 H.264 2 medium 720.0 1280.0 913/1218 None 24/25/30 2 1.1
HRC0656 H.264 1 medium 540.0  960.0 1461/1949 None 24/25/30 5 11
HRC0657 H.265 2 medium  1440.0 2560.0 11190/14921 None 24/25/30 5 11
HRC0658 H.265 1 fast 720.0 1280.0 1413/1884 None 24/25/30 5 11
HRC0659 H.264 2 medium  1080.0 1920.0 744/993 None 24/25/30 2 11
HRC0660  H.264 1 medium  2160.0 3840.0 3759/5013 None 24/25/30 2 1.1
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Appendix B PNATS Phase 2 Test Plan

Table B.15: Test Plan for P2SVL02.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0001  H.264 2 medium 240.0  426.0 100/200 None 15 5 2.0
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0 3500/7000  None 50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000 None 50/60 2 2.0
HRC0663  H.265 2 medium  1080.0  1920.0 4344/5793  None 24/25/30 5 1.1
HRCO0664 H.265 2 medium 480.0  854.0 374/499 None  24/25/30 2 1.1
HRC0668  H.264 2 medium  1440.0 2560.0 3396/4529  None 24/25/30 2 1.1
HRC0669 H.264 2 veryfast ~ 1080.0 1920.0 2453/3271 None 24/25/30 2 1.1
HRC0670 VP9 2 2 1440.0 2560.0 7869/10492 None 24/25/30 5 1.1
HRC0671 VP9 2 2 1440.0 2560.0 1337/1783  None 24/25/30 2 1.1
HRC0672 VP9 1 2 540.0  960.0 1402/1870  None 50/60 2 1.1
HRC0673 VP9 2 0 720.0 1280.0 1394/1859  None 24/25/30 2 1.1
HRC0675 H.264 2 medium  1080.0 1920.0 3341/4455  None 50/60 2 1.1
HRC0676  H.265 1 medium 480.0  854.0 1351/1802  None 24/25/30 5 11
HRC0677  H.265 2 medium 720.0 1280.0 762/1017 None  24/25/30 2 1.1
HRC0678 VP9 1 2 1080.0 19200 7416/9888  None 24/25/30 2 1.1
HRC0679 H.264 1 medium 240.0  426.0 474/632 None 24/25/30 2 1.1
HRC0680 H.265 1 veryfast 360.0  640.0 154/206 None 24/25/30 2 1.1
HRC0681  H.265 2 medium 720.0 1280.0 506/675 None 24/25/30 2 1.1
HRC0683  H.265 1 medium 540.0  960.0 469/626 None 24/25/30 2 1.1
HRC0684 VP9 1 2 480.0  854.0 1630/2174  None 24/25/30 2 1.1
HRC0685  H.265 1 slower 360.0  640.0 768/1025 None  24/25/30 5 11
HRC0687  H.265 1 fast 720.0 1280.0 3996/5328  None 24/25/30 5 1.1
HRC0689  H.265 2 medium 360.0  640.0 667/890 None 24/25/30 2 1.1
HRC0690 H.265 1 fast 1080.0 19200 1093/1458  None 24/25/30 2 1.1
HRC0692 VP9 2 2 720.0 1280.0 1245/1661 None 24/25/30 2 1.1
HRC0694 VP9 2 2 240.0 4260 588/785 None 24/25/30 2 1.1
HRC0695 H.264 2 fast 480.0  854.0 1488/1985  None 50/60 5 1.1
HRC0696 VP9 2 2 720.0 1280.0 516/689 None  24/25/30 5 11
HRC0697 VP9 2 2 1440.0 2560.0 6120/8161  None 50/60 2 1.1
HRC0699 H.264 2 veryfast 360.0  640.0 440/587 None 24/25/30 5 1.1
HRC0700 VP9 2 2 480.0  854.0 2471/3295 None 15 2 1.1
HRC0701  H.265 2 fast 540.0  960.0 456/609 None  50/60 5 1.1
HRC0702 H.264 1 ultrafast ~ 1440.0 2560.0 1194/1592  None 24/25/30 5 1.1
HRC0703 H.264 2 medium 540.0  960.0 1697/2263  None 24/25/30 5 1.1
HRC0705 VP9 1 2 240.0 4260 120/161 None 24/25/30 5 11
HRC0706  H.265 2 ultrafast ~ 1440.0 2560.0 5737/7650  None 24/25/30 5 11
HRC0707  H.264 2 medium 540.0  960.0 762/1016 None  50/60 5 1.1
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Table B.16: Test Plan for P2SVL03.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0001 H.264 2 medium 240.0  426.0 100/200 None 15 5 2.0
HRCO0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388  H.264 2 medium 720.0 1280.0  800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0708 H.264 1 medium 540.0  960.0 249/332 None  24/25/30 2 11
HRC0709 H.264 2 medium 720.0 1280.0 2582/3443 None 24/25/30 2 1.1
HRC0710 H.264 2 medium  1440.0 2560.0 5699/7599 None 24/25/30 5 1.1
HRC0711 VP9 2 0 720.0 1280.0 716/955 None 24/25/30 5 1.1
HRC0712 VP9 2 3 540.0  960.0 365/487 None 24/25/30 2 1.1
HRC0713 VP9 2 3 720.0 1280.0 646/862 None 24/25/30 2 11
HRC0715 H.264 2 medium 7200 1280.0 1512/2017 None 24/25/30 5 11
HRC0717 VP9 2 2 1080.0  1920.0 431/575 None  24/25/30 2 11
HRC0718 VP9 2 2 720.0 1280.0 2265/3020 None 24/25/30 2 1.1
HRC0719 VP9 1 3 1080.0  1920.0 401/535 None  50/60 2 1.1
HRC0720 H.265 1 medium 240.0  426.0 746/995 None 24/25/30 2 1.1
HRC0721 H.264 2 medium  1080.0 1920.0 10088/13451 None 24/25/30 2 1.1
HRC0722 VP9 2 2 240.0 4260 393/524 None 24/25/30 5 1.1
HRC0723  H.265 1 ultrafast 240.0 4260 697/930 None 24/25/30 5 11
HRC0724 H.264 2 medium 540.0  960.0 1186/1582 None 15 2 11
HRC0725 VP9 1 2 480.0  854.0 2238/2984 None  50/60 2 1.1
HRC0726 VP9 2 2 480.0 8540 1184/1579 None  50/60 2 11
HRC0727 H.264 1 medium  1080.0 1920.0  6894/9193 None  50/60 5 11
HRC0728 VP9 2 2 1440.0  2560.0 3778/5038 None 24/25/30 5 1.1
HRC0729 H.264 2 medium  1080.0 1920.0 720/961 None  50/60 2 1.1
HRC0730 H.265 2 medium 540.0  960.0  1956/2609 None 24/25/30 2 1.1
HRC0731  H.265 2 medium 360.0  640.0 718/958 None 24/25/30 2 11
HRC0732 H.264 1 medium 480.0  854.0 1194/1592 None 24/25/30 5 11
HRC0733  H.264 2 ultrafast 480.0 8540 438/584 None  24/25/30 5 11
HRC0735 H.264 2 medium 480.0  854.0 512/683 None 24/25/30 2 1.1
HRC0736 H.264 2 medium 720.0 1280.0 1406/1875 None  50/60 5 1.1
HRC0737 H.264 2 medium  1440.0 2560.0 4655/6207 None 24/25/30 2 1.1
HRC0739  H.265 1 medium 240.0  426.0 704/939 None 24/25/30 5 1.1
HRC0740 H.264 2 medium  1080.0 1920.0 8316/11088  None 24/25/30 2 11
HRC0742 VP9 2 0 720.0 1280.0  5604/7473 None 24/25/30 2 1.1
HRC0743  H.265 2 medium 240.0 4260 428/571 None  24/25/30 5 11
HRC0744 H.264 2 slower 2400  426.0 535/714 None 24/25/30 5 11
HRC0745 H.264 2 medium  1440.0 2560.0 1440/1921 None 24/25/30 2 1.1
HRCO0746 VP9 2 2 720.0 1280.0 3625/4834 None 24/25/30 2 1.1
HRC0747 VP9 1 2 1080.0  1920.0  7482/9977 None 24/25/30 2 1.1
HRC0748 H.265 2 slow 720.0 1280.0 2478/3304 None 24/25/30 2 1.1
HRC0749 VP9 2 2 2400 4260 561/748 None 24/25/30 5 11
HRC0750 H.264 2 medium 540.0  960.0 883/1178 None  50/60 5 11
HRC0752 H.264 2 medium  1440.0 2560.0 3826/5102 None  50/60 5 11
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Appendix B PNATS Phase 2 Test Plan

Table B.17: Test Plan for P2SVL04.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0001 H.264 2 medium 240.0  426.0 100/200 None 15 5 2.0
HRCO0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0  1280.0  800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0 1920.0 3500/7000  None 50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000 None 50/60 2 2.0
HRC0753  H.265 2 medium 240.0  426.0 703/938 None 24/25/30 2 1.1
HRCO0754 H.264 2 medium  1440.0 2560.0 5956/7942  None 24/25/30 5 1.1
HRC0755 H.264 2 ultrafast 720.0 1280.0 1827/2436  None 24/25/30 5 1.1
HRCO0756  H.265 2 medium 540.0  960.0 1122/1496  None 24/25/30 2 1.1
HRC0758 VP9 1 2 720.0 1280.0 3369/4493  None 24/25/30 2 1.1
HRC0759 VP9 2 2 1080.0 19200 7593/10125 None 24/25/30 2 1.1
HRC0760 VP9 2 1 360.0  640.0 774/1032 None 24/25/30 5 1.1
HRC0761  H.265 2 medium 360.0  640.0 237/316 None 24/25/30 5 1.1
HRC0762  H.265 2 ultrafast ~ 1080.0  1920.0  300/400 None  50/60 2 1.1
HRC0763 H.264 2 medium  1080.0 1920.0 717/956 None 24/25/30 2 1.1
HRCO0765 H.264 2 medium 240.0 4260 739/986 None 15 5 1.1
HRC0766 VP9 2 2 360.0  640.0 438/585 None 24/25/30 5 1.1
HRCO0768  H.264 1 slower 240.0  426.0 342/457 None 24/25/30 5 1.1
HRC0769  H.264 2 medium  1440.0 2560.0 1227/1637  None 50/60 2 11
HRC0770  H.265 2 medium 720.0 1280.0 416/555 None 24/25/30 5 11
HRC0774 VP9 2 2 720.0 1280.0 5273/7031 None 24/25/30 5 11
HRC0775 H.264 1 medium  1440.0 2560.0 1200/1600  None 24/25/30 5 1.1
HRC0776  H.265 2 ultrafast 240.0  426.0 342/457 None 24/25/30 5 1.1
HRC0777  H.265 1 medium 480.0  854.0 90/120 None 24/25/30 5 1.1
HRC0778 VP9 2 2 1080.0 19200 4177/5570  None 24/25/30 2 1.1
HRC0779 VP9 2 4 2400  426.0 135/180 None 24/25/30 5 1.1
HRC0780 VP9 2 2 720.0 1280.0 3990/5320  None 24/25/30 2 1.1
HRC0781  H.265 1 medium 360.0  640.0 946/1262 None  50/60 2 1.1
HRC0782 H.265 2 veryfast 480.0 854.0 749/999 None 24/25/30 2 1.1
HRC0784 H.264 1 medium  1080.0 1920.0 4481/5975  None 24/25/30 5 1.1
HRC0785 H.265 2 medium  1080.0 1920.0 435/580 None  50/60 2 1.1
HRC0787 VP9 1 2 1440.0 2560.0 1432/1910  None 50/60 2 1.1
HRC0788  H.265 2 fast 720.0 1280.0 1791/2388  None 24/25/30 5 1.1
HRC0789  H.264 1 medium 240.0 4260 126/168 None 24/25/30 5 11
HRC0790 VP9 2 2 1080.0  1920.0 532/710 None 24/25/30 2 1.1
HRC0791 H.264 2 fast 540.0  960.0 705/941 None 24/25/30 2 1.1
HRC0793 VP9 2 2 540.0  960.0 863/1151 None 24/25/30 2 1.1
HRC0794 H.265 1 medium 240.0  426.0 100/140 None 24/25/30 5 1.1
HRC0796  H.265 1 ultrafast 360.0  640.0 502/670 None 24/25/30 5 1.1
HRC0797 H.264 2 ultrafast 480.0  854.0 340/440 None 24/25/30 2 1.1
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Table B.18: Test Plan for P2SVL05.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0571 H.264 2 medium  2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC0799  H.264 1 medium 720.0 1280.0 1448/1931 None 24/25/30 5 11
HRC0800  H.265 2 slow 2160.0 3840.0 2498/3331 None 24/25/30 2 1.1
HRC0801 H.264 2 medium 360.0  640.0 671/895 None 24/25/30 2 1.1
HRC0802 H.265 2 medium 480.0 8540 866/1155 None 15 2 1.1
HRC0803 VP9 2 3 1440.0  2560.0  3581/4775 None 24/25/30 2 1.1
HRC0804 H.265 2 veryfast ~ 1080.0 1920.0 550/650 None 24/25/30 2 11
HRC0807 VP9 1 3 360.0  640.0 450/650 None 24/25/30 5 11
HRC0808 VP9 2 2 360.0  640.0 200/250 None  24/25/30 2 11
HRC0809 H.264 2 medium 360.0  640.0 200/300 None 24/25/30 5 11
HRC0810 VP9 2 4 1440.0 2560.0 8298/11064  None 24/25/30 5 1.1
HRCO0811 VP9 2 4 1080.0  1920.0 579/773 None 24/25/30 2 1.1
HRCO0812 H.264 2 medium  1080.0  1920.0  2658/3545 None  50/60 5 1.1
HRC0813  H.265 2 fast 1440.0 2560.0 3336/4449 None 24/25/30 2 1.1
HRC0815 VP9 2 2 480.0  854.0 1024/1366 None 24/25/30 2 11
HRC0817  H.264 2 medium  1080.0 1920.0 2043/2724 None 24/25/30 2 11
HRC0818 VP9 2 3 2160.0 3840.0 2361/3149 None 24/25/30 5 11
HRC0819  H.264 1 fast 1440.0  2560.0 1495/1994 None  50/60 2 11
HRC0820 H.264 1 slow 1080.0  1920.0 3763/5018 None 24/25/30 5 1.1
HRCO0821 VP9 2 2 480.0  854.0 809/1079 None 24/25/30 2 1.1
HRC0822 VP9 2 2 720.0 1280.0 1515/2021 None 24/25/30 5 1.1
HRC0823 VP9 2 2 360.0  640.0 250/350 None 24/25/30 2 1.1
HRC0824 VP9 2 0 1440.0 2560.0 1011/1349 None 24/25/30 2 11
HRC0825 H.265 2 medium  2160.0 3840.0 6550/8734 None 24/25/30 5 11
HRC0826  H.264 1 fast 2160.0 3840.0 24474/32633 None 24/25/30 5 11
HRC0827  H.265 1 ultrafast 540.0  960.0 487/650 None 24/25/30 2 1.1
HRCO0828 H.265 2 medium 360.0  640.0 250/350 None 24/25/30 5 1.1
HRC0829 H.264 2 medium 480.0  854.0 300/400 None 24/25/30 2 1.1
HRC0830 VP9 2 2 720.0 1280.0 734/979 None 24/25/30 5 1.1
HRC0831 H.265 1 medium  2160.0 3840.0 14631/19508 None 24/25/30 2 11
HRC0832 VP9 2 2 1080.0  1920.0  691/922 None 24/25/30 2 11
HRC0833  H.265 1 medium  2160.0 3840.0 8718/11624  None 50/60 2 11
HRC0835 VP9 2 2 1440.0  2560.0 5889/7853 None 24/25/30 2 1.1
HRC0836  H.265 2 slower 480.0  854.0 2059/2746 None 24/25/30 2 1.1
HRC0837 H.265 2 slow 2160.0 3840.0 1602/2136 None  50/60 2 1.1
HRC0838 VP9 2 2 1440.0  2560.0 890/1187 None 24/25/30 2 1.1
HRC0839 VP9 2 4 2160.0 3840.0 9425/12567  None 24/25/30 5 1.1
HRC0840 VP9 2 4 1440.0  2560.0  4650/6200 None  50/60 5 11
HRC0841 H.264 2 medium  1440.0 2560.0 5988/7985 None 24/25/30 5 11
HRC0842 VP9 2 3 1080.0  1920.0 2786/3715 None 24/25/30 5 11
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Appendix B PNATS Phase 2 Test Plan

Table B.19: Test Plan for P2SVL06.

HRC Encoder Passes Preset Height Width  Bitrate CRF  Framerate iFI ~MRF
HRC0115 H.264 2 medium 360.0 640.0  300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium 1080.0 1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium 1440.0 2560.0  6000/10000 None  50/60 2 2.0
HRC0571  H.264 2 medium 2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC0843 H.264 2 ultrafast 480.0 854.0 1614/2152 None 24/25/30 2 1.1
HRCO0846 VP9 2 2 2160.0 3840.0 14809/19746 None  50/60 2 11
HRC0847 H.265 2 medium 480.0 854.0 263/351 None 24/25/30 5 1.1
HRC0848 H.264 2 medium 540.0 960.0 1664/2219 None 24/25/30 2 1.1
HRC0849 H.265 2 medium 1080.0  1920.0 633/844 None 24/25/30 2 1.1
HRC0850 H.265 2 medium 540.0  960.0 524/699 None 24/25/30 5 11
HRCO0851  H.265 1 fast 720.0 1280.0 5445/7260 None 24/25/30 2 1.1
HRC0852 H.265 2 medium 720.0 1280.0 4932/6576 None  50/60 2 1.1
HRC0853 VP9 2 1 2160.0 3840.0 12942/17257 None 50/60 5 1.1
HRC0855 H.265 1 medium 1440.0 2560.0 11111/14815 None 24/25/30 2 1.1
HRC0856  H.265 2 medium 1440.0 2560.0 4852/6470 None 24/25/30 2 1.1
HRC0857 VP9 2 2 480.0 854.0 498/664 None 24/25/30 5 1.1
HRC0858  H.265 2 medium 1440.0 2560.0 4590/6121 None  50/60 5 1.1
HRC0859  H.265 2 medium 1080.0 1920.0 3657/4877 None  50/60 2 1.1
HRCO0860 H.265 2 medium 720.0 1280.0 1610/2147 None  50/60 5 1.1
HRCO0861 VP9 2 2 1440.0 2560.0 1411/1882 None 24/25/30 5 1.1
HRC0863 H.264 2 medium 2160.0 3840.0 32393/43191 None 24/25/30 5 1.1
HRC0864 H.264 2 veryslow  1440.0 2560.0 9548/12731  None 24/25/30 5 11
HRCO0865 VP9 2 3 1440.0 2560.0 8475/11300 None 24/25/30 5 1.1
HRC0866 VP9 1 1 1080.0 1920.0 829/1106 None 24/25/30 5 1.1
HRC0867 H.264 2 medium 1440.0 2560.0 1267/1690 None 24/25/30 2 1.1
HRC0868 VP9 2 2 360.0  640.0 1050/1400 None 24/25/30 5 1.1
HRCO0869  H.265 2 medium 1440.0 2560.0 3291/4388 None  50/60 2 1.1
HRC0870 H.265 1 medium 7200 1280.0 502/670 None 24/25/30 2 1.1
HRC0871 H.264 2 veryslow 480.0  854.0 228/304 None 24/25/30 2 1.1
HRC0872 H.264 2 medium 720.0 1280.0 2091/2788 None 24/25/30 2 1.1
HRC0873 VP9 1 2 2160.0 3840.0 10347/13797 None 24/25/30 2 1.1
HRC0874 VP9 1 3 480.0 854.0  2274/3032 None 24/25/30 2 1.1
HRC0875 H.265 2 medium 540.0  960.0 1819/2426 None 24/25/30 5 1.1
HRCO0876 VP9 1 3 2160.0 3840.0 1967/2623 None 24/25/30 5 1.1
HRC0877 VP9 2 2 1080.0 1920.0  3408/4544 None 24/25/30 5 1.1
HRC0878  H.264 2 medium 720.0 1280.0 3027/4036 None 24/25/30 5 1.1
HRC0879 VP9 1 4 1440.0 2560.0  3420/4560 None 24/25/30 5 1.1
HRC0880 H.265 2 fast 2160.0 3840.0 1975/2634 None 24/25/30 2 1.1
HRCO0881 VP9 2 4 720.0 1280.0 2928/3904 None 24/25/30 2 1.1
HRC0882 H.265 1 medium 2160.0 3840.0 20463/27285 None 50/60 5 1.1
HRCO0883 VP9 1 2 2160.0 3840.0 2168/2891 None 24/25/30 2 1.1
HRC0884 H.264 2 medium 2160.0 3840.0 1938/2584 None  50/60 5 1.1
HRCO0885 H.265 2 medium 1440.0 2560.0 9250/12334 None 24/25/30 5 1.1
HRCO0886 H.265 2 medium 720.0 1280.0 1671/2228 None 24/25/30 5 1.1
HRC0887  H.265 2 medium 540.0  960.0 269/359 None  24/25/30 5 1.1
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Table B.20: Test Plan for P2SVL07.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRCO0115 H.264 2 medium 360.0 640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None 50/60 2 2.0
HRC0436 H.264 2 medium 1080.0 1920.0 3500/7000 None 50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000 None 50/60 2 2.0
HRC0571 H.264 2 medium  2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRCO0888 H.264 2 medium 720.0 1280.0 750/1000 None 50/60 2 1.1
HRC0889 H.264 2 medium 360.0 640.0 127/170 None 24/25/30 5 1.1
HRC0890 H.264 2 medium 1440.0 2560.0 1133/1511 None 24/25/30 2 1.1
HRC0891 H.264 2 medium 1440.0 2560.0 1340/1787 None 24/25/30 5 1.1
HRC0892 H.265 2 medium 1440.0 2560.0 1614/2153 None 50/60 2 1.1
HRC0894 H.264 2 medium 1440.0 2560.0 1332/1777 None 24/25/30 2 1.1
HRC0895 H.265 2 medium 360.0 640.0  1000/1250 None 24/25/30 2 1.1
HRC089% VP9 2 0 1440.0 2560.0 3793/5058 None 24/25/30 2 1.1
HRC0897 VP9 2 2 2160.0 3840.0 10874/14499 None 24/25/30 5 1.1
HRC0898 H.264 2 medium 1440.0 2560.0 6359/8479 None 24/25/30 2 1.1
HRC0899 H.265 2 medium 720.0 1280.0 418/558 None 24/25/30 5 1.1
HRC0900 VP9 1 4 1080.0 1920.0 1871/2495 None 24/25/30 2 1.1
HRC0901 VP9 2 2 1440.0 2560.0 889/1186 None 24/25/30 5 1.1
HRC0902 VP9 2 2 360.0 640.0 800/1000 None 24/25/30 5 1.1
HRC0903 H.265 2 medium 720.0 1280.0 984/1313 None 24/25/30 2 1.1
HRC0904 VP9 2 2 2160.0 3840.0 1572/2096 None 24/25/30 5 1.1
HRC0905 H.264 2 medium 360.0 640.0 750/1000 None 50/60 5 1.1
HRC0906 VP9 1 2 2160.0 3840.0 1917/2557 None 50/60 2 1.1
HRC0907 H.265 2 medium 360.0 640.0 150/201 None 15 2 1.1
HRC0908 H.265 2 medium 720.0 1280.0 639/853 None 24/25/30 5 1.1
HRC0909 H.265 1 medium 480.0 854.0  500/1000 None 24/25/30 5 1.1
HRC0910 VP9 2 2 360.0 640.0 507/676 None 24/25/30 2 1.1
HRC0911 VP9 2 2 480.0 854.0 400/800 None 24/25/30 2 1.1
HRC0912 H.264 1 ultrafast 720.0 1280.0 5673/7564 None 50/60 2 1.1
HRC0913 VP9 2 2 1440.0 2560.0 7851/10468 None 24/25/30 5 1.1
HRC0914 VP9 1 4 360.0 640.0 1057/1410 None 15 5 1.1
HRC0915 H.265 2 medium 720.0 1280.0 1777/2370 None 50/60 2 1.1
HRC0916 H.265 1 fast 2160.0 3840.0 2698/3598 None 24/25/30 5 1.1
HRC0917 H.265 2 medium 1080.0 1920.0 8736/11649 None 50/60 2 1.1
HRC0918 H.265 2 medium 360.0 640.0 474/633 None 24/25/30 2 1.1
HRC0920 H.264 1 medium 360.0 640.0 500/750 None 24/25/30 2 1.1
HRC0922 H.264 2 medium 720.0 1280.0 1288/1718 None 50/60 5 1.1
HRC0923 H.265 1 medium 360.0 640.0 297/397 None 24/25/30 2 1.1
HRC0924 VP9 2 2 1080.0 1920.0 1807/2410 None 24/25/30 2 1.1
HRC0925 H.265 2 medium 1080.0 1920.0 864/1153 None 50/60 2 1.1
HRC0926 H.265 1 medium 540.0 960.0  1087/1450 None 24/25/30 2 1.1
HRC0928 H.265 1 medium  2160.0 3840.0 2234/2979 None 24/25/30 2 1.1
HRC0929 VP9 2 2 360.0 640.0 500/750 None 24/25/30 2 1.1
HRC0930 H.264 1 medium  1080.0 1920.0  800/1200 None 24/25/30 2 1.1
HRC0932 VP9 2 2 1080.0 1920.0 3693/4925 None 24/25/30 5 1.1
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Appendix B PNATS Phase 2 Test Plan

Table B.21: Test Plan for P2SVL08.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None 50/60 2 2.0
HRC0571 H.264 2 medium  2160.0  3840.0 30000/45000 None 50/60 2 2.0
HRC0934 H.264 2 medium  1080.0 1920.0 8418/11225  None 50/60 5 11
HRC0935 H.264 2 medium  1440.0 2560.0 1185/1580 None  50/60 2 11
HRC0936 VP9 2 2 720.0 1280.0  1542/2057 None 24/25/30 5 1.1
HRC0937 VP9 2 1 360.0 6400 132/177 None 24/25/30 2 11
HRC0939 VP9 2 2 2160.0  3840.0  1654/2206 None 24/25/30 5 1.1
HRC0940 H.264 2 medium 540.0  960.0  2423/3231 None  24/25/30 2 11
HRC0942 H.265 2 medium 540.0  960.0 1006/1342 None 24/25/30 2 1.1
HRC0943 H.264 2 medium  1440.0 2560.0  2745/3660 None 24/25/30 5 11
HRC0944 H.265 2 medium  1440.0 2560.0 6193/8258 None 24/25/30 5 11
HRC0945 H.265 2 medium 720.0 1280.0 2052/2736 None  50/60 5 11
HRC0946  H.265 2 slower 1080.0  1920.0  2944/3926 None 24/25/30 2 11
HRC0947 H.265 1 medium 480.0  854.0 496/662 None 24/25/30 5 1.1
HRC0948  H.264 2 ultrafast ~ 2160.0  3840.0 17045/22727 None 24/25/30 2 11
HRC0950 VP9 2 2 1440.0 2560.0 1470/1961 None 24/25/30 2 1.1
HRC0951 VP9 1 2 720.0 1280.0  4389/5853 None  24/25/30 2 11
HRC0952 H.264 1 fast 360.0  640.0 712/950 None 24/25/30 2 1.1
HRC0953  H.264 2 medium  2160.0 3840.0 1336/1782 None  50/60 2 1.1
HRC0954 VP9 2 2 540.0  960.0 243/324 None 24/25/30 5 11
HRC0955 H.265 1 veryfast ~ 2160.0 3840.0 12372/16497 None 24/25/30 2 11
HRC0956 H.264 1 medium 480.0 8540 1370/1827 None 24/25/30 5 11
HRC0958 H.264 2 medium  1080.0 1920.0 10303/13738 None 24/25/30 5 1.1
HRC0959 VP9 2 2 2160.0 3840.0 3373/4498 None  24/25/30 2 11
HRC0960 VP9 1 2 1080.0 1920.0 7782/10376 =~ None 24/25/30 2 1.1
HRC0962 VP9 2 2 2160.0 3840.0 12686/16915 None 24/25/30 5 1.1
HRC0964 VP9 2 2 1080.0  1920.0  6566/8755 None 24/25/30 5 11
HRC0965  H.264 2 ultrafast 720.0 1280.0 1244/1659 None 24/25/30 2 1.1
HRC0966  H.265 1 ultrafast ~ 1440.0 2560.0 4479/5972 None 24/25/30 2 11
HRC0967 H.265 2 medium  1440.0 2560.0 1771/2362 None 24/25/30 5 1.1
HRC0968  H.265 1 medium  1440.0 2560.0 1157/1543 None  24/25/30 5 11
HRC0970 VP9 2 0 480.0  854.0 318/424 None 24/25/30 2 1.1
HRC0971  H.265 2 veryfast 480.0 8540 426/569 None 24/25/30 5 11
HRC0972 VP9 1 3 2160.0 3840.0 7815/10420  None 24/25/30 2 11
HRC0974 VP9 2 2 1440.0 2560.0 10058/13411 None 24/25/30 5 1.1
HRC0975 H.264 2 medium 360.0  640.0 739/986 None 15 2 11
HRC0976  H.265 2 fast 540.0  960.0 1089/1453 None 24/25/30 2 1.1
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Table B.22: Test Plan for P2SVL09.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0571 H.264 2 medium  2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC0978  H.265 1 medium 480.0 8540 883/1178 None 24/25/30 5 11
HRC0979 H.264 2 medium 480.0  854.0 375/500 None 24/25/30 2 1.1
HRC0980 VP9 2 4 720.0 1280.0 924/1232 None 24/25/30 5 1.1
HRC0981 H.265 2 medium  1080.0 1920.0 2746/3662 None 24/25/30 5 1.1
HRC0982  H.265 2 medium  1080.0  1920.0 5974/7966 None  50/60 2 11
HRC0983 VP9 2 2 540.0  960.0  1805/2407 None 24/25/30 5 11
HRC0984 VP9 1 3 1080.0  1920.0 7984/10646  None  50/60 2 1.1
HRC0985 VP9 2 0 1440.0 2560.0  3626/4835 None  50/60 5 11
HRC0986  H.264 2 medium 360.0  640.0 1111/1482 None 24/25/30 2 1.1
HRC0988  H.265 2 fast 360.0  640.0 604/806 None 24/25/30 2 1.1
HRC0989 VP9 2 2 1080.0  1920.0 5619/7492 None  50/60 5 1.1
HRC0990  H.265 2 medium 360.0  640.0 432/577 None 24/25/30 5 1.1
HRC0991 VP9 2 1 480.0  854.0 2394/3193 None 24/25/30 5 1.1
HRC0992 H.265 1 medium  1440.0 2560.0 4305/5741 None 24/25/30 5 11
HRC0993  H.264 2 medium  1440.0 2560.0 7705/10274  None 24/25/30 2 11
HRC0994 H.264 2 ultrafast ~ 2160.0 3840.0 2112/2816 None 24/25/30 2 11
HRC0995 VP9 2 3 480.0  854.0 2455/3274 None  24/25/30 2 11
HRC0996  H.264 2 slow 2160.0 3840.0 1915/2554 None 24/25/30 5 11
HRC0997 H.264 2 medium  1440.0 2560.0 10200/13600 None 24/25/30 2 1.1
HRC0998 VP9 2 1 540.0  960.0 571/762 None 24/25/30 2 1.1
HRC0999 VP9 2 2 1080.0  1920.0 543/724 None 24/25/30 5 1.1
HRC1000 H.264 2 ultrafast ~ 1080.0  1920.0  8303/11071 None 24/25/30 2 11
HRC1003  H.265 2 medium  2160.0  3840.0 2964/3952 None 24/25/30 5 11
HRC1004 VP9 2 2 360.0  640.0 440/587 None  24/25/30 2 11
HRC1006  H.265 1 veryfast ~ 2160.0 3840.0 7800/10400  None 24/25/30 2 1.1
HRC1007 VP9 2 2 1440.0 2560.0 10332/13776 None 24/25/30 5 1.1
HRC1008 H.264 2 medium 360.0  640.0 747/997 None 24/25/30 5 1.1
HRC1011 VP9 2 2 1440.0  2560.0  3395/4527 None 24/25/30 2 1.1
HRC1012  H.265 1 medium 360.0  640.0 1098/1465 None 24/25/30 5 11
HRC1013  H.265 1 medium 540.0  960.0 1008/1344 None 24/25/30 5 11
HRC1014 VP9 1 3 360.0  640.0 1077/1437 None  24/25/30 5 11
HRC1015 H.264 1 medium  2160.0 3840.0 13608/18145 None 24/25/30 5 11
HRC1016 H.265 2 fast 720.0 1280.0 413/551 None 24/25/30 2 11
HRC1017 H.265 2 medium  2160.0 3840.0 1262/1683 None 24/25/30 2 1.1
HRC1018 H.264 2 medium  1080.0 1920.0 3297/4397 None  50/60 2 1.1
HRC1019 H.264 2 medium  1440.0 2560.0 8213/10951 None 24/25/30 5 1.1
HRC1020 H.265 2 medium 480.0  854.0 753/1004 None 15 2 11
HRC1021 H.265 1 medium  1440.0 2560.0 1723/2298 None  50/60 2 11
HRC1022 H.265 1 medium  1080.0 1920.0  3222/4297 None 24/25/30 5 11
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Appendix B PNATS Phase 2 Test Plan

Table B.23: Test Plan for P2SVL10.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None  50/60 2 2.0
HRC0571  H.264 2 medium  2160.0  3840.0 30000/45000 None 50/60 2 2.0
HRC1023 H.264 2 ultrafast 360.0  640.0 345/461 None 24/25/30 2 1.1
HRC1024 H.265 2 medium  1080.0 1920.0  2542/3390 None  50/60 2 11
HRC1025 VP9 2 2 540.0  960.0 1102/1470 None 24/25/30 5 11
HRC1026 H.265 2 medium 480.0 8540 576/768 None 24/25/30 5 11
HRC1027 H.264 2 ultrafast ~ 1440.0 2560.0 2128/2838 None 24/25/30 2 1.1
HRC1028 H.264 2 medium 540.0  960.0 543/724 None 24/25/30 5 11
HRC1029 H.264 2 medium  1440.0 2560.0 8398/11198  None 50/60 2 1.1
HRC1031 H.264 1 veryfast ~ 1080.0 1920.0 5010/6680 None  50/60 5 1.1
HRC1032 H.265 2 medium  2160.0 3840.0 8085/10780  None 50/60 5 11
HRC1033  H.265 1 medium 480.0 8540 688/918 None 24/25/30 2 1.1
HRC1034 H.265 2 medium  1440.0 2560.0 1397/1863 None 24/25/30 5 11
HRC1035 H.265 2 medium  1080.0 1920.0 7932/10577  None 24/25/30 2 11
HRC1036 H.265 2 medium  2160.0 3840.0 9644/12859  None 24/25/30 2 11
HRC1037 H.264 1 medium 360.0  640.0 759/1013 None 24/25/30 5 1.1
HRC1038 VP9 1 2 720.0 1280.0 1795/2394 None 24/25/30 5 1.1
HRC1040 H.264 2 medium  1080.0 1920.0 510/681 None 24/25/30 5 11
HRC1041 H.264 2 medium  1440.0 2560.0 3259/4346 None 24/25/30 2 1.1
HRC1042 H.264 2 slower 720.0 1080.0  1401/1869 None 24/25/30 5 11
HRC1043 VP9 2 2 7200 1280.0 5918/7891 None 24/25/30 2 1.1
HRC1044 H.264 2 medium  2160.0 3840.0 1163/1551 None  50/60 5 11
HRC1045 VP9 2 2 1440.0 2560.0 1089/1453 None  50/60 5 1.1
HRC1046 VP9 2 4 1080.0  1920.0  1450/1820 None 24/25/30 2 11
HRC1047 H.264 2 ultrafast ~ 2160.0 3840.0 22827/30437 None 24/25/30 2 11
HRC1048 H.264 2 medium  1440.0 2560.0 10092/13457 None 24/25/30 5 1.1
HRC1049 H.264 1 medium  1440.0 2560.0 4928/6571 None 24/25/30 2 11
HRC1050 H.264 2 medium 540.0  960.0 900/1350 None 24/25/30 5 1.1
HRC1051 VP9 2 2 720.0 1280.0  5448/7265 None 24/25/30 2 11
HRC1052 VP9 1 2 2160.0  3840.0  1401/1869 None  50/60 2 11
HRC1053 H.264 2 slower 1080.0  1920.0 7976/10635  None  50/60 2 11
HRC1054 VP9 2 2 720.0 1280.0  5225/6967 None 24/25/30 5 1.1
HRC1056 VP9 2 1 2160.0  3840.0 1205/1607 None  50/60 2 1.1
HRC1057 VP9 2 2 1080.0 1920.0 8147/10863  None 24/25/30 2 11
HRC1058 H.264 2 medium 720.0 1280.0  4370/5827 None  50/60 2 1.1
HRC1059 VP9 2 2 1080.0  1920.0 5648/7531 None 24/25/30 2 11
HRC1060 H.264 2 medium 480.0  854.0 2580/3441 None 24/25/30 2 11
HRC1061 VP9 2 2 1080.0  1920.0 7151/9535 None 24/25/30 5 11
HRC1062  H.265 2 medium  1440.0 2560.0 998/1331 None  50/60 2 1.1
HRC1063  H.265 2 medium  2160.0 3840.0 10007/13343 None 24/25/30 5 11
HRC1064 H.264 2 ultrafast 540.0  960.0 1728/2304 None 24/25/30 5 1.1
HRC1065 VP9 2 3 1080.0  1920.0  6036/8048 None  50/60 2 1.1
HRC1066 H.264 2 ultrafast 720.0 1280.0 2947/3930 None 24/25/30 5 11
HRC1067 VP9 2 2 1080.0 1920.0 1334/1779 None 24/25/30 5 11
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Table B.24: Test Plan for P2SVL11.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium  1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000  None 50/60 2 2.0
HRC0571 H.264 2 medium  2160.0  3840.0 30000/45000 None 50/60 2 2.0
HRC1068 VP9 2 2 480.0  854.0 952/1270 None 24/25/30 2 1.1
HRC1069 H.265 2 slow 1080.0  1920.0 509/679 None 24/25/30 5 1.1
HRC1070 VP9 1 2 1080.0  1920.0 6713/8951 None  50/60 2 1.1
HRC1071 H.264 2 medium  2160.0 3840.0 2109/2813 None 24/25/30 2 11
HRC1072 VP9 2 2 720.0 1280.0 5160/6880 None 24/25/30 2 1.1
HRC1073 VP9 2 2 1080.0  1920.0  6006/8009 None  24/25/30 5 11
HRC1074  H.265 2 ultrafast ~ 2160.0 3840.0 18622/24830 None 24/25/30 2 1.1
HRC1075 H.265 2 medium  1440.0 2560.0 1898/2531 None 24/25/30 5 1.1
HRC1076  H.265 2 medium 360.0  640.0 143/191 None 24/25/30 5 1.1
HRC1077 VP9 2 2 1440.0  2560.0  3255/4340 None  50/60 5 1.1
HRC1078 VP9 2 2 540.0  960.0 585/781 None 24/25/30 5 11
HRC1079 VP9 2 2 540.0  960.0 1145/1527 None 24/25/30 5 11
HRC1080 H.264 2 medium 540.0  960.0 345/460 None 24/25/30 2 11
HRC1081 H.264 2 fast 1440.0  2560.0  1428/1905 None 24/25/30 5 11
HRC1082 VP9 2 2 1440.0  2560.0  2928/3904 None  24/25/30 2 11
HRC1083  H.265 2 medium 480.0  854.0 691/922 None 24/25/30 2 1.1
HRC1084 H.265 2 medium  1440.0 2560.0  4158/5545 None 24/25/30 2 1.1
HRC1086 H.265 2 medium  1440.0 2560.0 2295/3060 None 24/25/30 2 1.1
HRC1087 VP9 2 2 360.0  640.0 575/767 None 24/25/30 2 1.1
HRC1088 VP9 2 2 1080.0  1920.0 2229/2972 None 24/25/30 5 11
HRC1089  H.265 2 fast 540.0  960.0 1473/1965 None 24/25/30 5 11
HRC1090 VP9 2 4 2160.0 3840.0 7009/9346 None  24/25/30 2 11
HRC1091 H.264 2 medium  1080.0 1920.0 468/624 None 24/25/30 2 11
HRC1092 H.264 2 medium 480.0  854.0 1524/2033 None 24/25/30 2 1.1
HRC1093 H.265 2 medium  1440.0 2560.0 4860/6480 None 24/25/30 5 1.1
HRC1095 H.264 2 medium 720.0 1280.0 702/937 None 24/25/30 5 1.1
HRC1096 H.265 1 medium  1440.0 2560.0 2675/3567 None 24/25/30 5 11
HRC1097 H.265 2 medium  1440.0 2560.0 1371/1828 None  50/60 2 1.1
HRC1098 H.264 2 medium 480.0 8540 281/375 None  24/25/30 5 11
HRC1099 H.264 2 veryfast 540.0  960.0 1057/1410 None 24/25/30 5 11
HRC1100 H.265 2 medium  1080.0 1920.0 3735/4981 None 24/25/30 2 1.1
HRC1101 H.264 2 medium  2160.0 3840.0 19722/26297 None 24/25/30 2 1.1
HRC1104 H.264 2 medium  1440.0 2560.0 11344/15126 None 50/60 5 11
HRC1105 H.265 1 medium  2160.0 3840.0 1331/1775 None 24/25/30 2 1.1
HRC1106 ~ H.265 1 medium  2160.0  3840.0 7209/9613 None 24/25/30 2 1.1
HRC1107 VP9 2 2 1080.0  1920.0 5961/7949 None  50/60 5 11
HRC1108 H.264 2 medium  1440.0 2560.0 7175/9567 None 24/25/30 2 1.1
HRC1109 H.264 2 slower 1080.0  1920.0  744/993 None  50/60 5 11
HRC1110 H.264 2 medium  1440.0 2560.0 6714/8953 None 24/25/30 5 11
HRC1111  H.264 1 medium  2160.0 3840.0 12276/16369 None 24/25/30 5 11
HRC1112 H.264 1 medium  1080.0 1920.0 3848/5131 None  50/60 2 1.1
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Appendix B PNATS Phase 2 Test Plan

Table B.25: Test Plan for P2SVL12.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI ~MRF
HRC0001 H.264 2 medium 240.0  426.0 100/200 None 15 5 2.0
HRCO0115 H.264 2 medium 360.0  640.0 300/500 None 24/25/30 5 2.0
HRCO0388  H.264 2 medium 720.0  1280.0  800/1600 None  50/60 2 2.0
HRC0436 H.264 2 medium 1080.0  1920.0  3500/7000 None  50/60 2 2.0
HRC0484 H.264 2 medium 1440.0  2560.0 6000/10000  None  50/60 2 2.0
HRC1113  H.265 2 slow 1440.0 2560.0 10665/14220 None 24/25/30 5 1.1
HRC1114 H.264 2 medium 720.0 1280.0 6254/8339 None 24/25/30 2 1.1
HRC1115 VP9 2 2 360.0  640.0 773/1031 None 24/25/30 5 1.1
HRC1116  H.264 1 medium 540.0  960.0 578/771 None 24/25/30 5 1.1
HRC1118  H.265 2 medium 480.0  854.0 681/908 None 15 2 1.1
HRC1119 VP9 2 3 360.0  640.0 848/1131 None  24/25/30 5 1.1
HRC1120 H.265 2 medium 360.0  640.0 965/1287 None 24/25/30 5 1.1
HRC1122 VP9 1 2 540.0  960.0 425/567 None 24/25/30 2 1.1
HRC1123 VP9 2 2 360.0  640.0 815/1087 None 24/25/30 2 1.1
HRC1124 H.265 1 medium 1080.0  1920.0 486/648 None 24/25/30 2 1.1
HRC1125 VP9 1 2 1440.0 2560.0 1375/1834 None  50/60 5 1.1
HRC1126 VP9 2 2 1080.0  1920.0 534/712 None 24/25/30 2 1.1
HRC1127 H.264 2 medium 480.0 8540 1398/1864 None 24/25/30 5 1.1
HRC1128 H.264 2 medium 360.0 640.0 879/1172 None 24/25/30 2 1.1
HRC1129 H.264 2 medium 720.0 1280.0  1869/2492 None  24/25/30 5 1.1
HRC1130 H.265 1 veryslow 480.0  854.0 611/815 None 24/25/30 5 1.1
HRC1132 VP9 1 2 240.0  426.0 630/840 None 24/25/30 2 1.1
HRC1133  H.265 2 medium 240.0  426.0 339/452 None 15 2 1.1
HRC1134 H.264 2 slow 360.0  640.0 759/1012 None 24/25/30 2 1.1
HRC1135 H.264 1 medium 540.0  960.0 1434/1912 None 15 5 1.1
HRC1136 VP9 1 0 540.0  960.0 1540/2054 None 24/25/30 5 1.1
HRC1137  H.265 2 ultrafast 360.0  640.0 582/777 None  24/25/30 2 1.1
HRC1138 VP9 2 2 480.0  854.0 1003/1338 None 24/25/30 2 1.1
HRC1140 H.265 2 medium 1440.0 2560.0 8639/11519  None 24/25/30 5 1.1
HRC1141 H.265 2 medium 720.0 1280.0 4853/6471 None 24/25/30 2 1.1
HRC1142 H.264 2 medium 720.0 1280.0  4485/5980 None 24/25/30 2 1.1
HRC1143 VP9 2 3 720.0 1280.0 1574/2099 None 24/25/30 2 1.1
HRC1144 H.264 2 medium 540.0  960.0 394/526 None 24/25/30 5 1.1
HRC1145 VP9 2 0 1080.0  1920.0 4716/6289 None  50/60 2 1.1
HRC1146 VP9 2 2 720.0 1280.0 618/825 None  50/60 2 1.1
HRC1147 H.264 2 medium 240.0  426.0 341/455 None 24/25/30 5 11
HRC1149 H.265 2 medium 240.0  426.0 192/257 None 24/25/30 2 1.1
HRC1150 H.264 2 medium 1440.0 2560.0 14520/19360 None 24/25/30 5 1.1
HRC1152 H.264 2 medium 1440.0 2560.0 1647/2196 None 24/25/30 2 1.1
HRC1153  H.265 2 medium 480.0  854.0 795/1061 None 15 2 1.1
HRC1155 H.264 2 veryfast 360.0  640.0 636/849 None 24/25/30 2 1.1
HRC1156  H.265 2 medium 1440.0  2560.0  4984/6646 None  50/60 5 11
HRC1157  H.265 2 medium 1440.0 2560.0 834/1113 None  24/25/30 5 1.1
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Table B.26: Test Plan for P2SVL13.

HRC Encoder Passes Preset Height Width  Bitrate CRF Framerate iFI MRF
HRCO0115 H.264 2 medium 360.0 640.0 300/500 None 24/25/30 5 2.0
HRC0388 H.264 2 medium 720.0 1280.0 800/1600 None 50/60 2 2.0
HRC0436 H.264 2 medium 1080.0 1920.0 3500/7000 None 50/60 2 2.0
HRC0484 H.264 2 medium  1440.0 2560.0 6000/10000 None 50/60 2 2.0
HRC0571 H.264 2 medium  2160.0 3840.0 30000/45000 None 50/60 2 2.0
HRC1158 VP9 2 2 1440.0 2560.0 4459/5946 None 50/60 5 1.1
HRC1159 VP9 2 2 1080.0 1920.0 1802/2403 None 50/60 5 1.1
HRC1161 VP9 1 2 540.0 960.0 540/720 None 24/25/30 2 1.1
HRC1162 H.265 2 medium  2160.0 3840.0 22498/29998 None 24/25/30 2 1.1
HRC1163 VP9 2 2 1440.0 2560.0 1117/1490 None 24/25/30 5 1.1
HRC1164 H.264 2 medium 1080.0 1920.0 1249/1666 None 24/25/30 2 1.1
HRC1165 H.264 2 medium 360.0 640.0 911/1215 None 24/25/30 5 1.1
HRC1168 H.265 2 medium 480.0 854.0 256/342 None 24/25/30 2 1.1
HRC1169 H.264 2 medium 1440.0 2560.0 5754/7672 None 24/25/30 2 1.1
HRC1170 H.265 2 ultrafast 540.0 960.0 882/1176 None 24/25/30 2 1.1
HRC1171 H.264 1 medium  1080.0 1920.0 4340/5787 None 50/60 2 1.1
HRC1172 VP9 2 2 480.0 854.0 403/538 None 24/25/30 2 1.1
HRC1174 VP9 2 2 1440.0 2560.0 865/1154 None 24/25/30 5 1.1
HRC1175 H.265 2 medium  2160.0 3840.0 6765/9020 None 24/25/30 2 1.1
HRC1176 VP9 2 2 1440.0 2560.0 2638/3518 None 24/25/30 2 1.1
HRC1177 H.264 2 medium 480.0 854.0 2388/3185 None 24/25/30 2 1.1
HRC1178 H.264 2 medium 480.0 854.0 1372/1830 None 24/25/30 5 1.1
HRC1179 H.265 1 ultrafast 1080.0 1920.0 507/677 None 24/25/30 5 1.1
HRC1180 VP9 2 4 480.0 854.0 773/1031 None 24/25/30 2 1.1
HRC1181 H.264 1 medium 1080.0  1920.0 9740/12987 None 24/25/30 2 1.1
HRC1182 H.265 2 medium 1440.0 2560.0 1914/2552 None 24/25/30 2 1.1
HRC1183 H.264 1 medium 360.0 640.0 516/689 None 24/25/30 2 1.1
HRC1184 H.264 2 ultrafast  2160.0 3840.0 2159/2879 None 50/60 5 1.1
HRC1186 H.264 2 medium 2160.0 3840.0 10120/13494 None 24/25/30 2 1.1
HRC1187 H.264 2 ultrafast 2160.0 3840.0 12110/16147 None 24/25/30 2 1.1
HRC1188 H.265 2 medium 1080.0 1920.0 8484/11313 None 24/25/30 2 1.1
HRC1189 VP9 1 2 540.0 960.0 704/939 None 24/25/30 5 1.1
HRC1190 H.264 1 medium 2160.0 3840.0 1545/2060 None 50/60 2 1.1
HRC1191 H.264 1 medium 720.0 1280.0 1934/2579 None 24/25/30 5 1.1
HRC1192 H.265 1 medium 1440.0 2560.0 11016/14689 None 24/25/30 2 1.1
HRC1193 H.264 2 medium 720.0 1280.0 5822/7763 None 50/60 2 1.1
HRC1194 H.264 2 medium 360.0 640.0 927/1236 None 24/25/30 5 1.1
HRC1195 H.264 2 medium 720.0 1280.0 2313/3085 None 24/25/30 2 1.1
HRC1196 VP9 1 2 1440.0 2560.0 871/1162 None 24/25/30 5 1.1
HRC1197 VP9 2 2 2160.0 3840.0 2087/2783 None 24/25/30 2 1.1
HRC1198 H.265 1 medium 1080.0 1920.0 5951/7935 None 24/25/30 2 1.1
HRC1199 H.265 2 medium 1080.0 1920.0 566/755 None 24/25/30 5 1.1
HRC1200 VP9 2 2 540.0 960.0 2437/3250 None 24/25/30 2 1.1
HRC1201 H.264 1 medium 2160.0 3840.0 1733/2311 None 24/25/30 5 1.1
HRC1202 H.264 2 medium 2160.0 3840.0 11521/15362 None 50/60 5 1.1
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AV QBits Helper Functions

C.1 RfromMOS (5-Point MOS Scale to 100-Point Scale)

This transformation is based on the E-model [ I. If MOS represents the quality
score expressed in a 5-point MOS scale and R the quality score expressed in a 100-

point scale, then RfromMOS is calculated as follows:

procedure RFROMMOS(MOS)
x = (18566 — 6750 x MOS)
if MOS > 4.5 then

| MOS =45
end
if x < 0 then

num = 15 x /—903522 + 1113960 x MOS — 202500 x MOS x MOS
den = 6750 x MOS — 18566
fra = tan
h = pi—arctan(fra)
- 3

end

else

num = 15 x /—903522 + 1113960 x MOS — 202500 x MOS x MOS
den = 18566 — 6750 x MOS

fra =151

~ den
n— arctan(fra)
=

end

R — 20.0 x (87\/—(226)*§os(h+pi/3))

end procedure
Algorithm 1: Algorithm for RfromMOS calculation

215



Appendix C AVQBits Helper Functions

C.2 MOSfromR (100-Point Scale to 5-Point MOS Scale)

This section describes the algorithm for transforming the quality scores from a 100-
point scale to 5-point MOS scale. Like the R fromMOS transformation, this is also
based on the E-model | ].

procedure MOSFROMR(R)
MOS_MAX =45
MOS_MIN = 1.0
if MOS > 4.5 then
MOS = MOS_MAX
end
if MOS < 0 then
| MOS = MOS_MIN
end
MOS = MOS_MIN + ((MOS_MAX — MOS_MIN) x R/100) + R x (R —
60) x (100 — R) x 0.000007
end procedure
Algorithm 2: Algorithm for MOSfromR calculation

C.3 Scaleto5 (4.5-point scale of MOSfromR to 5-point
scale)

This section describes the final full 5-point scale range transformation that is done
in all AVQBits model instances. If MOS|; 45 denotes the model prediction on a
4.5-point scale, then the final transformation to the 5-point scale is done as follows:
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C.3 Scaleto5 (4.5-point scale of MOSfromR to 5-point scale)

procedure SCALETO5(MOS|; 4 5))
input_start = 1.0
input_end = 4.5
outout_start = 1.0
outout_end =5
if MOS[1’4.5] > 4.5 then
MOS =5
end
else
MOS = output_start + ((output_end — output_start)/ (input_end —
input_start)) X (x — input_start)
end
end procedure
Algorithm 3: Algorithm for Scaleto5 calculation

217



218



Bibliography

[AG17]

[Al175]

[AWS19]

[Bae+13]

[Bam+17]

[Bam+18]

[Bar+18]

Abhilash Antony and Sreelekha G. “HEVC-Based Lossless Intra Coding
for Efficient Still Image Compression”. In: Multimedia Tools Appl. 76.2
(Jan. 2017), pp. 1639-1658. 1sSN: 1380-7501.

John Allnatt. “Subjective rating and apparent magnitude”. In: Interna-
tional Journal of Man-Machine Studies 7.6 (1975), pp. 801-816.

AWS. Video Latency in Live Streaming. 2019. URL: https : / / aws .

amazon . com / media / tech / video - latency — in - live -

streaming/ (visited on 12/06/2019).

S. Bae, ]. Kim, M. Kim, S. Cho, and J. S. Choi. “Assessments of Subjective
Video Quality on HEVC-Encoded 4K-UHD Video for Beyond-HDTV
Broadcasting Services”. In: IEEE Trans. on Broadcasting 59.2 (June 2013),
pp- 209-222. 1SSN: 0018-9316.

Christos G Bampis, Praful Gupta, Rajiv Soundararajan, and Alan C
Bovik. “SpEED-QA: Spatial efficient entropic differencing for image
and video quality”. In: IEEE signal processing letters 24.9 (2017), pp. 1333-
1337.

Christos G. Bampis, Zhi Li, Ioannis Katsavounidis, Te-Yuan Huang,
Chaitanya Ekanadham, and Alan C. Bovik. Towards Perceptually Opti-
mized End-to-end Adaptive Video Streaming. 2018. arXiv: 1808 .03898

[eess.IV].

Nabajeet Barman, Saman Zadtootaghaj, Steven Schmidt, Maria G Mar-
tini, and Sebastian Moller. “GamingVideoSET: a dataset for gaming
video streaming applications”. In: 2018 16th Annual Workshop on Net-
work and Systems Support for Games (NetGames). IEEE. 2018, pp. 1-6.

219


https://aws.amazon.com/media/tech/video-latency-in-live-streaming/
https://aws.amazon.com/media/tech/video-latency-in-live-streaming/
https://aws.amazon.com/media/tech/video-latency-in-live-streaming/
https://arxiv.org/abs/1808.03898
https://arxiv.org/abs/1808.03898

Bibliography

[Bar+19]

[Ben13]

[Ber+15]

[Bit21]

[Ble]

[Blo15]

[BM20]

[Bos+16]

220

Nabajeet Barman, Emmanuel Jammeh, Seyed Ali Ghorashi, and Maria
G Martini. “No-reference video quality estimation based on machine
learning for passive gaming video streaming applications”. In: IEEE
Access 7 (2019), pp. 74511-74527.

Christopher Benitez. YouTube, changing the way of delivering videos:
Chunking and Adaptive Streaming are In, Progressive Download is Out!
2013. URL: https://www.netmanias.com/en/?m=view&id=
blog&no=5923&xtag=google—-http—-adaptive-streaming-
iptv-video-streaming-youtube&xref=youtube-changing-
the-way-of-delivering-videos—chunking—and-adaptive-
streaming-are-in-progressive-download-is-out (visited

on 10/04/2013).

K. Berger, Y. Koudota, M. Barkowsky, and P. Le Callet. “Subjective
quality assessment comparing UHD and HD resolution in HEVC trans-
mission chains”. In: 7th Int. Workshop on Quality of Multimedia Experience

(QOMEX). May 2015, pp. 1-6.

Bitmovin. Bitmovin Video Developer Report, 2021. 2021. URL: https :

//bitmovin.com/video—-dev-report/.

Blender Foundation. Bick Buck Bunny Distribution. URL: http : / /
distribution.bbb3d.renderfarming.net/video/png

Netflix Technology Blog. Per-Title Encode Optimization. 2015. URL:
https : / / netflixtechblog . com / per — title — encode —
optimization—-7e99442b62a2 (visited on 12/14/2015).

Nabajeet Barman and Maria G. Martini. “An Evaluation of the Next-
Generation Image Coding Standard AVIF”. In: 2020 Twelfth International
Conference on Quality of Multimedia Experience (QoMEX). 2020, pp. 1-4.

S. Bosse, M. Siekmann, J. Rasch, T. Wiegand, and W. Samek. “Quality
assessment of image patches distorted by image compression using
crowdsourcing”. In: 2016 IEEE ICME. 2016, pp. 1-6.


https://www.netmanias.com/en/?m=view&id=blog&no=5923&xtag=google-http-adaptive-streaming-iptv-video-streaming-youtube&xref=youtube-changing-the-way-of-delivering-videos-chunking-and-adaptive-streaming-are-in-progressive-download-is-out
https://www.netmanias.com/en/?m=view&id=blog&no=5923&xtag=google-http-adaptive-streaming-iptv-video-streaming-youtube&xref=youtube-changing-the-way-of-delivering-videos-chunking-and-adaptive-streaming-are-in-progressive-download-is-out
https://www.netmanias.com/en/?m=view&id=blog&no=5923&xtag=google-http-adaptive-streaming-iptv-video-streaming-youtube&xref=youtube-changing-the-way-of-delivering-videos-chunking-and-adaptive-streaming-are-in-progressive-download-is-out
https://www.netmanias.com/en/?m=view&id=blog&no=5923&xtag=google-http-adaptive-streaming-iptv-video-streaming-youtube&xref=youtube-changing-the-way-of-delivering-videos-chunking-and-adaptive-streaming-are-in-progressive-download-is-out
https://www.netmanias.com/en/?m=view&id=blog&no=5923&xtag=google-http-adaptive-streaming-iptv-video-streaming-youtube&xref=youtube-changing-the-way-of-delivering-videos-chunking-and-adaptive-streaming-are-in-progressive-download-is-out
https://bitmovin.com/video-dev-report/
https://bitmovin.com/video-dev-report/
http://distribution.bbb3d.renderfarming.net/video/png
http://distribution.bbb3d.renderfarming.net/video/png
https://netflixtechblog.com/per-title-encode-optimization-7e99442b62a2
https://netflixtechblog.com/per-title-encode-optimization-7e99442b62a2

[Bra+23]

[Bro+21]

[Bru+13]

[Cha21]

[Che+18]

[Chi+11]

[Cis]

Florian Braun, Rakesh Rao Ramachandra Rao, Werner Robitza, and
Alexander Raake. “Automatic Audiovisual Asynchrony Measurement
for Quality Assessment of Videoconferencing”. In: 15th International
Conference on Quality of Multimedia Experience (QoMEX). 2023.

Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary
J. Sullivan, and Jens-Rainer Ohm. “Overview of the Versatile Video
Coding (VVC) Standard and its Applications”. In: IEEE Transactions on
Circuits and Systems for Video Technology 31.10 (2021), pp. 3736-3764.

Kjell Brunnstrom, Sergio Ariel Beker, Katrien De Moor, Ann Dooms,
Sebastian Egger, Marie-Neige Garcia, Tobias Hossfeld, Satu Jumisko-
Pyykkd, Christian Keimel, Mohamed-Chaker Larabi, et al. “Qualinet
white paper on definitions of quality of experience”. In: (2013).

Stream Charts. All streaming data in one place. 2021. URL: https: //

streamscharts.com/.

Yue Chen, Debargha Murherjee, Jingning Han, Adrian Grange, Yaowu
Xu, Zoe Liu, Sarah Parker, Cheng Chen, Hui Su, Urvang Joshi, Ching-
Han Chiang, Yunqing Wang, Paul Wilkins, Jim Bankoski, Luc Trudeau,
Nathan Egge, Jean-Marc Valin, Thomas Davies, Steinar Midtskogen,
Andrey Norkin, and Peter de Rivaz. “An Overview of Core Coding
Tools in the AV1 Video Codec”. In: 2018 Picture Coding Symposium (PCS).
2018, pp. 41-45.

Shyamprasad Chikkerur, Vijay Sundaram, Martin Reisslein, and Lina J.
Karam. “Objective Video Quality Assessment Methods: A Classifica-
tion, Review, and Performance Comparison”. In: IEEE Transactions on
Broadcasting 57.2 (2011), pp. 165-182.

Cisco. About the Common Media Application Format with HTTP Live
Streaming (HLS). URL: https : / / developer . apple . com /
documentation/http_live_streaming/about_the_common_
media_application_format_with_http_live_streaming_
hls.

221


https://streamscharts.com/
https://streamscharts.com/
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming_hls
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming_hls
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming_hls
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming_hls

Bibliography

[Cis22]

[CL14]

[CL18]

[Cro+19]

[CWH16]

[Den+09]

[DG17]

[Dia+23]

222

Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017-2022.
2022. URL: https : //twiki .cern.ch/twiki /pub/HEPIX/
TechwatchNetwork / HtwNetworkDocuments / white — paper —
c11-741490.pdf.

M. Cheon and J. Lee. “Objective Quality Comparison of 4K UHD and
Up-Scaled 4K UHD Videos”. In: IEEE Int. Symp. on Multimedia. Dec.
2014, pp. 78-81.

M. Cheon and J. Lee. “Subjective and Objective Quality Assessment of
Compressed 4K UHD Videos for Immersive Experience”. In: IEEE Trans.
on Circuits and Systems for Video Technology 28.7 (July 2018), pp. 1467—
1480. 1SSN: 1051-8215.

Simone Croci, Cagri Ozcinar, Emin Zerman, Julidn Cabrera, and Aljosa
Smolic. “Voronoi-based Objective Quality Metrics for Omnidirectional
Video”. In: 2019 Eleventh International Conference on Quality of Multimedia
Experience (QoMEX). 2019, pp. 1-6.

Robert C. Streijl, Stefan Winkler, and David Hands. “Mean opinion
score (MOS) revisited: methods and applications, limitations and alter-
natives”. In: Multimedia Systems 22 (Mar. 2016), pp. 213-227.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
“Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. Ieee. 2009, pp. 248—
255.

Edip Demirbilek and Jean-Charles Grégoire. “Machine learning based
reduced reference bitstream audiovisual quality prediction models for
realtime communications”. In: 2017 IEEE International Conference on
Multimedia and Expo (ICME). 2017, pp. 571-576.

Chenyao Diao, Luljeta Sinani, Rakesh Rao Ramachandra Rao, and
Alexander Raake. “Revisiting Videoconferencing QoE: Impact of Net-
work Delay and Resolution as Factors for Social Cue Perceptibility”.
In: 15th International Conference on Quality of Multimedia Experience
(QoMEX). 2023.


https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf

[DMW17]

[DRW18]

[Dua+17]

[FAK13]

[Far+11]

[Fre+18]

[Fre+20]

[Gar+13]

Zhengfang Duanmu, Kede Ma, and Zhou Wang. “Quality-of-
Experience of Adaptive Video Streaming: Exploring the Space of Adap-
tations”. In: Proceedings of the 25th ACM International Conference on
Multimedia. MM "17. Mountain View, California, USA: Association for
Computing Machinery, 2017, pp. 1752-1760. ISBN: 9781450349062.

Zhengfang Duanmu, Abdul Rehman, and Zhou Wang. “A Quality-of-
Experience Database for Adaptive Video Streaming”. In: IEEE Transac-
tions on Broadcasting 64.2 (2018), pp. 474-487.

Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul Rehman, and Zhou
Wang. “A Quality-of-Experience Index for Streaming Video”. In: IEEE
Journal of Selected Topics in Signal Processing 11.1 (2017), pp. 154-166.

O. Figuerola Salas, V. Adzic, and H. Kalva. “Subjective quality evalua-
tions using crowdsourcing”. In: 2013 PCS. 2013.

M. C. Q. Farias, M. M. Carvalho, H. T. M. Kussaba, and B. H. A.
Noronha. “A hybrid metric for digital video quality assessment”. In:
2011 IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB). 2011, pp. 1-6.

Stephan Fremerey, Ashutosh Singla, Kay Meseberg, and Alexander
Raake. “AVtrack360: An Open Dataset and Software Recording Peo-
ple’s Head Rotations Watching 360° Videos on an HMD”. In: Proceedings
of the 9th ACM Multimedia Systems Conference. MMSys “18. Amsterdam,
Netherlands: Association for Computing Machinery, 2018, pp. 403—408.
ISBN: 9781450351928.

Stephan Fremerey, Steve Goring, Rao Rakesh Ramachandra Rao,
Rachel Huang, and Alexander Raake. “Subjective Test Dataset and
Meta-data-based Models for 360° Streaming Video Quality”. In: 2020
IEEE 22nd International Workshop on Multimedia Signal Processing
(MMSP). IEEE. 2020.

M. -. Garcia, P. List, S. Argyropoulos, D. Lindegren, M. Pettersson, B.
Feiten, J. Gustafsson, and A. Raake. “Parametric model for audiovisual
quality assessment in IPTV: ITU-T Rec. P.1201.2”. In: 2013 IEEE 15th

223



Bibliography

[GB16a]

[GB16b]

[Gha+18]

[GKR19]

[Gno21]

[Gor+19]

[Gor+20]

[Gor+21a]

[Gor+21b]

224

International Workshop on Multimedia Signal Processing (MMSP). Sept.
2013, pp. 482-487.

D. Ghadiyaram and A. C. Bovik. “Massive Online Crowdsourced Study
of Subjective and Objective Picture Quality”. In: IEEE Transactions on
Image Processing 25.1 (2016).

Deepti Ghadiyaram and Alan C. Bovik. Perceptual Quality Prediction
on Authentically Distorted Images Using a Bag of Features Approach. 2016.
arXiv: 1609.04757 [cs.CV].

Deepti Ghadiyaram, Janice Pan, Alan C. Bovik, Anush Krishna Moor-
thy, Prasanjit Panda, and Kai-Chieh Yang. “In-Capture Mobile Video
Distortions: A Study of Subjective Behavior and Objective Algorithms”.
In: IEEE Transactions on Circuits and Systems for Video Technology 28.9
(2018), pp. 2061-2077.

Steve Goring, Christopher Krammer, and Alexander Raake. “cencro
— Speedup of Video Quality Calculation using Center Cropping”. In:
2019 IEEE ISM. Dec. 2019, pp. 1-8.

Sully Gnome. Twitch statistics and analytics. 2021. URL: https : / /

sullygnome.com/.

Steve Goring, Julian Zebelein, Simon Wedel, Dominik Keller, and
Alexander Raake. “Analyze And Predict the Perceptibility of UHD
Video Contents”. In: EI, HVEI (2019).

Steve Goring, Robert Steger, Rakesh Rao Ramachandra Rao, and
Alexander Raake. “Automated Genre Classification for Gaming
Videos”. In: 22nd IEEE International Workshop on Multimedia Signal Pro-
cessing (MMSP). 1IEEE. 2020.

Steve Goring, Rakesh Rao Ramachandra Rao, Bernhard Feiten, and
Alexander Raake. “Modular Framework and Instances of Pixel-Based
Video Quality Models for UHD-1/4K”. In: IEEE Access 9 (2021).

Steve Goring, Rakesh Rao Ramachandra Rao, Stephan Fremerey, and
Alexander Raake. “AVRate Voyager: An open source online testing
platform”. In: 2021 IEEE 23rd International Workshop on Multimedia Signal
Processing (MMSP). IEEE. 2021.


https://arxiv.org/abs/1609.04757
https://sullygnome.com/
https://sullygnome.com/

[Gor+23]

[Got+21a]

[Got+21b]

[GPLO0]

[GR11]

[GR19]

[GRR19]

[GRR20]

[GRR23]

Steve Goring, Rakesh Rao Ramachandra Rao, Rasmus Merten, and
Alexander Raake. “Appeal and quality assessment for Al-generated
images”. In: 15th International Conference on Quality of Multimedia Experi-
ence (QoMEX). 2023.

Franz Gotz-Hahn, Vlad Hosu, Hanhe Lin, and Dietmar Saupe. “KonVid-
150k: A Dataset for No-Reference Video Quality Assessment of Videos
in-the-Wild”. In: IEEE Access 9. IEEE. 2021, pp. 72139-72160.

Franz Gotz-Hahn, Vlad Hosu, Hanhe Lin, and Dietmar Saupe. The
Konstanz 150k in-the-Wild Video Database (KonVid-150k). 2021. URL: ht tp:
//database.mmsp-kn.de.

Anthony Greene, Colin Prepscius, and William Levy. “Primacy Versus
Recency in a Quantitative Model: Activity Is the Critical Distinction”.
In: Learning & Memory 7 (Jan. 2000), pp. 48-57.

Marie-Neige Garcia and Alexander Raake. “Frame-layer packet-based
parametric video quality model for encrypted video in IPTV services”.
In: 2011 Third International Workshop on Quality of Multimedia Experience.
IEEE. 2011, pp. 102-106.

Steve Goring and Alexander Raake. “Evaluation of Intra-Coding Based
Image Compression”. In: 2019 8th European Workshop on Visual Informa-
tion Processing (EUVIP). 2019, pp. 169-174.

Steve Goring, Rakesh Rao Ramachandra Rao, and Alexander Raake.
“nofu - A Lightweight No-Reference Pixel Based Video Quality Model
for Gaming Content”. In: Eleventh IEEE International Conference on Qual-
ity of Multimedia Experience (QoMEX). Berlin, Germany, June 2019.

Steve Goring, Rakesh Rao Ramachandra Rao, and Alexander Raake.
“Prenc — Predict Number Of Video Encoding Passes With Machine
Learning”. In: Twelfth IEEE International Conference on Quality of Multi-
media Experience (QoMEX). Athlone, Ireland, May 2020.

Steve Goring, Rakesh Rao Ramachandra Rao, and Alexander Raake.
“Quality Assessment of Higher Resolution Images and Videos with
Remote Testing”. In: Quality and User Experience (QUEX) 8 (2023).

225


http://database.mmsp-kn.de
http://database.mmsp-kn.de

Bibliography

[GSR10]

[GSR18]

[Har]

[He+18]

[HKE13]

[Hos+17]

[Hos+20]

[Hofs+11]

[Hofs+14a]

226

MN Garcia, R Schleicher, and A Raake. “Towards a content-based
parametric video quality model for IPTV”. In: Proceedings of the 3rd
International Workshop on Perceptual Quality of Systems (PQS’10). 2010.

Steve Goring, Janto Skowronek, and Alexander Raake. “DeViQ — A
deep no reference video quality model”. In: Electronic Imaging, Human
Vision Electronic Imaging (2018).

Harmonic. Free 4K Demo Footage - Ultra HD Demo Footage. URL: ht tps :

//www.harmonicinc.com/4k—-demo—-footage—download/ (Vis-

ited on 10/20/2018).

Tiantian He, Rong Xie, Jia Su, Xin Tang, and Li Song. “A No Reference
Bitstream-Based Video Quality Assessment Model for H.265/HEVC
and H.264/AVC”. In: 2018 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB). 2018, pp. 1-5.

P. Hanhart, P. Korshunov, and T. Ebrahimi. “Benchmarking of quality
metrics on ultra-high definition video sequences”. In: 2013 18th Int.
Conference on Digital Signal Processing (DSP). July 2013, pp. 1-8.

Vlad Hosu, Franz Hahn, Mohsen Jenadeleh, Hanhe Lin, Hui Men,
Tamds Sziranyi, Shujun Li, and Dietmar Saupe. “The Konstanz natural
video database (KoNViD-1k)”. In: QoMEX. IEEE. 2017.

V.Hosu, H. Lin, T. Sziranyi, and D. Saupe. “KonlQ-10k: An Ecologically
Valid Database for Deep Learning of Blind Image Quality Assessment”.
In: IEEE Transactions on Image Processing 29 (2020).

T. Hof3feld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz.
“Quantification of YouTube QoE via Crowdsourcing”. In: 2011 IEEE
International Symposium on Multimedia. 2011, pp. 494-499.

T. Hofsfeld, M. Hirth, P. Korshunov, P. Hanhart, B. Gardlo, C. Keimel,
and C. Timmerer. “Survey of web-based crowdsourcing frameworks for
subjective quality assessment”. In: 2014 IEEE 16th International Workshop
on MMSP. 2014, pp. 1-6.


https://www.harmonicinc.com/4k-demo-footage-download/
https://www.harmonicinc.com/4k-demo-footage-download/

[HoR+14b]

[HSE11]

[HSF15]

[Inc14]

[Igb21]

[ISO19]

[ITUO4]

[ITU07]

[ITUO08]

[ITU09]

T. Hof3feld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold, and
P. Tran-Gia. “Best Practices for QoE Crowdtesting: QoE Assessment
With Crowdsourcing”. In: IEEE Transactions on Multimedia 16.2 (2014),
pp- 541-558.

Tobias Hofdfeld, Raimund Schatz, and Sebastian Egger. “SOS: The MOS
is not enough!” In: 2011 third international workshop on quality of multi-
media experience. IEEE. 2011, pp. 131-136.

Xin Huang, Jacob Sogaard, and Soren Forchhammer. “No-reference
video quality assessment by HEVC codec analysis”. In: 2015 Visual
Communications and Image Processing (VCIP). 2015, pp. 1-4.

Apple Inc. HLS Authoring Specification for Apple Devices. 2014. URL:
https : / /developer . apple . com/ documentation / http_
live _ streaming / hls_ authoring_ specification_ for _
apple_devices (visited on 02/28/2014).

Mansoor Igbal. Netflix Revenue and Usage Statistics (2021). 2021. URL:
https : / / www . businessofapps . com / data / netflix —
statistics/ (visited on 09/20/2021).

Information technology ISO/IEC 23009-1:2019. Dynamic adaptive stream-
ing over HTTP (DASH) — Part 1: Media presentation description and segment
formats. ISO/IEC 23009-1:2019, Information technology, 2019.

ITU-T Rec. P.563. Single-ended method for objective speech quality assessment
in narrow-band telephony applications. Geneva, Switzerland: International

Telecommunication Union, 2004.

ITU-T Rec.G.1070. “Opinion model for video-telephony applications.

Geneva, Switzerland: International Telecommunication Union, 2007.

ITU-T Rec. E.800. E.800 : Definitions of terms related to quality of service.

Geneva, Switzerland: International Telecommunication Union, 2008.

ITU-T Rec. G.107. The E-Model, a Computational Model for Use in Trans-
mission Planning. International Telecommunication Union. CH-Geneva,
2009.

227


https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices
https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices
https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices
https://www.businessofapps.com/data/netflix-statistics/
https://www.businessofapps.com/data/netflix-statistics/

Bibliography

[ITU12a]

[ITU12b]

[ITU14a]

[ITU14b]

[ITU16a]

[[TU16b]

[ITU16c]

[ITU17]

[ITU19a]

[ITU19b]

228

ITU-T. BT.2020 : Parameter values for ultra-high definition television sys-
tems for production and international programme exchange. Tech. rep. Int.
Telecomm. Union, 2012.

ITU-T Rec. P.1201.2. Parametric non-intrusive assessment of audiovisual
media streaming quality - Lower resolution application area. Geneva, Switzer-
land: International Telecommunication Union, 2012.

ITU-T. P.1401 : Methods, metrics and procedures for statistical evaluation,
qualification and comparison of objective quality prediction models. Tech. rep.
Int. Telecommunication Union, 2014.

ITU-T. RECOMMENDATION ITU-R BT.500-13 — Methodology for the
subjective assessment of the quality of television pictures. Tech. rep. Int.
Telecommunication Union, 2014.

ITU-T. ITU-T Rec. G.1022 (07/16). Tech. rep. Int. Telecommunication
Union, 2016.

ITU-T. Recommendation P.1203 - Parametric bitstream-based quality assess-
ment of progressive download and adaptive audiovisual streaming services
over reliable transport. Tech. rep. International Telecommunication Union,
201e6.

ITU-T Rec.G.1071. Opinion model for network planning of video and audio
streaming applications. Geneva, Switzerland: International Telecommu-

nication Union, 2016.

ITU-T Rec. P.1203.2. Parametric bitstream-based quality assessment of pro-
gressive download and adaptive audiovisual streaming services over reliable
transport — Audio quality estimation module. Geneva, Switzerland: Inter-

national Telecommunication Union, 2017.

ITU-T. Recommendation P.1204 - Video quality assessment of streaming ser-
vices over reliable transport for resolutions up to 4K. Tech. rep. International
Telecommunication Union, 2019.

ITU-T. Recommendation P.1204.3 : Video quality assessment of streaming
services over reliable transport for resolutions up to 4K with access to full
bitstream information. Tech. rep. International Telecommunication Union,
2019.



[ITU19c]

[ITU19d]

[ITU19e]

[ITU20]

[ITU21a]

[ITU21b]

[ITU22]

[ITU99]

[Tzu+14]

ITU-T. Recommendation P.1204.4 : Video quality assessment of streaming
services over reliable transport for resolutions up to 4K with access to full and
reduced reference pixel information. Tech. rep. International Telecommuni-
cation Union, 2019.

ITU-T. Recommendation P.1204.5 : Video quality assessment of streaming ser-
vices over reliable transport for resolutions up to 4K with access to transport
and received pixel information. Tech. rep. International Telecommunica-
tion Union, 2019.

ITU-T Rec. P.1203.1. Parametric bitstream-based quality assessment of pro-
gressive download and adaptive audiovisual streaming services over reliable
transport — Video quality estimation module. Geneva, Switzerland: Interna-

tional Telecommunication Union, 2019.

ITU-T Rec. P.1203.3. Parametric bitstream-based quality assessment of pro-
gressive download and adaptive audiovisual streaming services over reliable
transport - Quality integration module. Geneva, Switzerland: International

Telecommunication Union, 2020.

ITU-T Rec. H.264. H.264 : Advanced video coding for generic audiovisual
services. Geneva, Switzerland: International Telecommunication Union,
2021.

ITU-T Rec. H.265. H.265 : High efficiency video coding. Geneva, Switzer-
land: International Telecommunication Union, 2021.

ITU-T Rec. H.266. H.266 : Versatile video coding. Geneva, Switzerland:
International Telecommunication Union, 2022.

ITU-T Rec. P.910. Subjective video quality assessment methods for multimedia
applications. Geneva, Switzerland: International Telecommunication
Union, 1999.

Kosuke Izumi, Kei Kawamura, Tomonobu Yoshino, and Sei Naito. “No
reference video quality assessment based on parametric analysis of
HEVC bitstream”. In: 2014 Sixth International Workshop on Quality of
Multimedia Experience (QoMEX). 2014, pp. 49-50.

229



Bibliography

[Joh97]

[Kat18]

[Kei+12]

[Kel+21]

[Kel+23]

[Kim+18]

[Koi+21]

230

Nils Olof Johannesson. “The ETSI Computation Model: A Tool for
Transmission Planning of Telephone Networks”. In: IEEE Communica-
tions Magazine Jan. (1997), pp. 70-79.

Ioannis Katsavounidis. Dynamic optimizer — a perceptual video encod-
ing optimization framework. 2018. URL: https://netflixtechblog.
com / dynamic - optimizer - a - perceptual - video -
encoding-optimization-framework—el9fle3a277f (visited
on 03/05/2018).

C. Keimel, J. Habigt, C. Horch, and K. Diepold. “QualityCrowd — A
framework for crowd-based quality evaluation”. In: 2012 Picture Coding
Symposium. 2012, pp. 245-248.

Dominik Keller, Markus Vaalgamaa, Erkki Paajanen, Rakesh Rao Ra-
machandra Rao, Steve Goring, and Alexander Raake. “Groovability:
Using Groove as a Novel Measure for Audio QoE with the Example
of Smartphones”. In: 13th IEEE International Conference on Quality of
Multimedia Experience (QoMEX). 2021.

Dominik Keller, Felix von Hagen, Julius Prenzel, Kay Strama, Rakesh
Rao Ramachandra Rao, and Alexander Raake. “Influence of Viewing
Distances on 8K HDR Video Quality Perception”. In: 15th International
Conference on Quality of Multimedia Experience (QoMEX). 2023.

Woojae Kim, Jongyoo Kim, Sewoong Ahn, Jinwoo Kim, and Sanghoon
Lee. “Deep Video Quality Assessor: From Spatio-Temporal Visual Sen-
sitivity to a Convolutional Neural Aggregation Network”. In: Computer
Vision — ECCV 2018. Ed. by Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss. Cham: Springer International Publishing,
2018, pp. 224-241. 1SBN: 978-3-030-01246-5.

Masanori Koike, Yuichiro Urata, Noritsugu Egi, and Kazuhisa Yamag-
ishi. “Extension of ITU-T P.1204.3 Model to Tile-Based VR Streaming
Services”. In: 2021 IEEE International Workshop Technical Committee on
Communications Quality and Reliability (CQR 2021). 2021, pp. 1-6.


https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f

[Kor19]

[Lai+16]

[Leb+15]

[Lee+17]

[Lee+20]

[Lee+21]

[Li+11]

[Li+19a]

[Li+19b]

Jari Korhonen. “Two-Level Approach for No-Reference Consumer
Video Quality Assessment”. In: IEEE Transactions on Image Processing
28.12 (2019), pp. 5923-5938.

Jani Lainema, Miska M. Hannuksela, Vinod K. Malamal Vadakital, and
Emre B. Aksu. “HEVC still image coding and high efficiency image
tile format”. In: 2016 IEEE International Conference on Image Processing
(ICIP). 2016, pp. 71-75.

Pierre Lebreton, Evangelos Skodras, Toni Méki, Isabelle Hupont, and
Matthias Hirth. “Bridging the Gap Between Eye Tracking and Crowd-
sourcing”. In: vol. 9394. Feb. 2015.

C. Lee, S. Woo, S. Baek, J. Han, J. Chae, and J. Rim. “Comparison of
objective quality models for adaptive bit-streaming services”. In: 8th
Int. Conf. on Information, Intelligence, Systems Applications (IISA). Aug.
2017, pp. 1-4.

Dae Yeol Lee, Hyunsuk Ko, Jongho Kim, and Alan C. Bovik. “Video
Quality Model for Space-Time Resolution Adaptation”. In: 2020 IEEE

4th International Conference on Image Processing, Applications and Systems
(IPAS). 2020, pp. 34-39.

Dae Yeol Lee, Somdyuti Paul, Christos G. Bampis, Hyunsuk Ko, Jongho
Kim, Se Yoon Jeong, Blake Homan, and Alan C. Bovik. A Subjective
and Objective Study of Space-Time Subsampled Video Quality. 2021. arXiv:
2102.00088 [eess.IV].

S.Li, E Zhang, L. Ma, and K. N. Ngan. “Image Quality Assessment by
Separately Evaluating Detail Losses and Additive Impairments”. In:
IEEE Transactions on Multimedia 13.5 (2011), pp. 935-949.

Chen Li, Mai Xu, Lai Jiang, Shanyi Zhang, and Xiaoming Tao. “View-
port Proposal CNN for 360° Video Quality Assessment”. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2019, pp- 10169-10178.

Zhuoran Li, Zhengfang Duanmu, Wentao Liu, and Zhou Wang. “AVC,
HEVC, VP9, AVS2 or AV1? - A Comparative Study of State-of-the-Art
Video Encoders on 4K Videos”. In: ICIAR. 2019.

231


https://arxiv.org/abs/2102.00088

Bibliography

[Lin+12]

[LMP+12]

[LY19]

[Mad+20a]

[Mad+20b]

[Mad+21]

[MMB12]

[Moc+15]

[M5100]

232

X. Lin, H. Ma, L. Luo, and Y. Chen. “No-reference video quality assess-
ment in the compressed domain”. In: IEEE Transactions on Consumer
Electronics 58.2 (2012), pp. 505-512.

Patrick Le Callet, Sebastian Moller, Andrew Perkis, et al. “Qualinet
white paper on definitions of quality of experience”. In: European net-

work on quality of experience in multimedia systems and services (COST
Action IC 1003) 3.2012 (2012).

Pierre Lebreton and Kazuhisa Yamagishi. “Transferring Adaptive Bit
Rate Streaming Quality Models from H.264/HD to H.265/4K-UHD”.
In: IEICE Transactions on Communications E102.B.12 (2019), pp. 2226—
2242,

Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli,
and Alan C. Bovik. “Capturing Video Frame Rate Variations via
Entropic Differencing”. In: IEEE Signal Processing Letters 27 (2020),
pp- 1809-1813. 1SSN: 1558-2361.

Pavan C. Madhusudana, Xiangxu Yu, Neil Birkbeck, Yilin Wang, Balu
Adsumilli, and Alan C. Bovik. Subjective and Objective Quality Assess-
ment of High Frame Rate Videos. 2020. arXiv: 2007.11634 [cs.MM].

Pavan C. Madhusudana, Xiangxu Yu, Neil Birkbeck, Yilin Wang, Balu
Adsumilli, and Alan C. Bovik. “Subjective and Objective Quality Assess-
ment of High Frame Rate Videos”. In: IEEE Access 9 (2021), pp. 108069—
108082. 1SSN: 2169-3536.

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. “No-
reference image quality assessment in the spatial domain”. In: IEEE
Transactions on Image Processing 21.12 (2012), pp. 4695-4708.

Decebal Mocanu, Jeevan Pokhrel, Juan Pablo Garella, Janne Seppénen,
Eirini Liotou, and Manish Narwaria. “No-reference video quality mea-
surement: Added value of machine learning”. In: Journal of Electronic
Imaging 24 (Dec. 2015), p. 061208.

Sebastian Moller. Assessment and Prediction of Speech Quality in Telecom-
munications. Springer Science & Business Media, 2000.


https://arxiv.org/abs/2007.11634

[MPE20]

[MSB13]

[MVV20]

[MZB15]

[MZB19]

[Nad+20]

[Net+96]

[Net18]

[NM15]

[NR10]

MPEG. Low Complexity Enhancement Video Coding. 2020. URL: https:

//www.lcevc.org/.

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. “Making a “com-
pletely blind” image quality analyzer”. In: IEEE Signal Processing Letters
20.3 (2013), pp- 209-212.

Alexandre Mercat, Marko Viitanen, and Jarno Vanne. “UVG Dataset:
50/120fps 4K Sequences for Video Codec Analysis and Development”.
In: Proceedings of the 11th ACM Multimedia Systems Conference. MM-
Sys "20. Istanbul, Turkey: Association for Computing Machinery, 2020,
pp- 297-302. 1SBN: 9781450368452.

Alex Mackin, Fan Zhang, and David R. Bull. “A study of subjective
video quality at various frame rates”. In: 2015 IEEE International Confer-
ence on Image Processing (ICIP). 2015, pp. 3407-3411.

Alex Mackin, Fan Zhang, and David R. Bull. “A Study of High Frame
Rate Video Formats”. In: IEEE Transactions on Multimedia 21.6 (2019),
pp- 1499-1512.

Babak Naderi, Rafael Jiménez, Matthias Hirth, Sebastian Moller, Florian
Metzger, and Tobias Hossfeld. “Towards speech quality assessment
using a crowdsourcing approach: evaluation of standardized methods”.
In: Quality and User Experience 6 (Dec. 2020).

J. Neter, M.H. Kutner, C.J. Nachtsheim, and W. Wasserman. Applied
Linear Statistical Models. WCB McGraw-Hill, 1996.

Netflix. VMAF 4K included. [Online; 07.09.2018]. 2018. URL: https :
//github.com/Netflix/vmaf.

Tung Nguyen and Detlev Marpe. “Objective Performance Evaluation
of the HEVC Main Still Picture Profile”. In: I[EEE Trans. Cir. and Sys. for
Video Technol. 25.5 (May 2015), pp. 790-797. 1SSN: 1051-8215.

Stefanie Nowak and Stefan Riiger. “How Reliable Are Annotations via
Crowdsourcing: A Study about Inter-Annotator Agreement for Multi-
Label Image Annotation”. In: Proceedings of the International Conference
on Multimedia Information Retrieval. MIR "10. Philadelphia, Pennsylvania,
USA: ACM, 2010. 1SBN: 9781605588155.

233


https://www.lcevc.org/
https://www.lcevc.org/
https://github.com/Netflix/vmaf
https://github.com/Netflix/vmaf

Bibliography

[Nuu+16]

[Ord+20]

[Osa+09]

[Pan11]

[Pin+11]

[PSC14]

[R C19]

[Raa+08]

234

Mikko Nuutinen, Toni Virtanen, Mikko Vaahteranoksa, Tero Vuori,
Pirkko Oittinen, and Jukka Hakkinen. “CVD2014—A Database for
Evaluating No-Reference Video Quality Assessment Algorithms”. In:
IEEE Transactions on Image Processing 25.7 (2016), pp. 3073-3086.

Marta Orduna, César Diaz, Lara Mufioz, Pablo Pérez, Ignacio Benito,
and Narciso Garcia. “Video Multimethod Assessment Fusion (VMAF)
on 360VR Contents”. In: IEEE Transactions on Consumer Electronics 66.1
(2020), pp. 22-31.

Osamu, Sei Naito, Shigeyuki Sakazawa, and Atsushi Koike. “Objective
perceptual video quality measurement method based on hybrid no
reference framework”. In: 2009 16th IEEE International Conference on
Image Processing (ICIP). 2009, pp. 2237-2240.

R. Pantos. HTTP Live Streaming. 2011. URL: https://tools.ietf.
org/html/draft-pantos—http-live-streaming-13 (visited
on 07/07/2017).

Maurizio Pintus, Giaime Ginesu, Luigi Atzori, and Daniele D. Giusto.
“Objective Evaluation of WebP Image Compression Efficiency”. In:
MobiMedia. 2011.

M Pinson, Marc Sullivan, and Andrew Catellier. “A new method for
immersive audiovisual subjective testing”. In: Proceedings of the 8th In-
ternational Workshop on Video Processing and Quality Metrics for Consumer
Electronics (VPQM). 2014.

Margaret H Pinson and Stephen Wolf. “Comparing subjective video
quality testing methodologies”. In: vol. 5150. International Society for
Optics and Photonics.

R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria, 2019. URL:
https://www.R-project.org/.

A. Raake, M. -. Garcia, S. Moller, J. Berger, F. Kling, P. List, J. Johann,
and C. Heidemann. “T-V-model: Parameter-based prediction of IPTV
quality”. In: 2008 IEEE International Conference on Acoustics, Speech and


https://tools.ietf.org/html/draft-pantos-http-live-streaming-13
https://tools.ietf.org/html/draft-pantos-http-live-streaming-13
https://www.R-project.org/

[Raa+11]

[Raa+17]

[Raa+20a]

[Raa+20b]

[Rao+19a]

[Rao+19b]

Signal Processing. Mar. 2008, pp. 1149-1152. DOI: 10.1109/ICASSP.
2008.4517818.

Alexander Raake, Jorgen Gustafsson, Savvas Argyropoulos, Marie-
Neige Garcia, David Lindegren, Gunnar Heikkild, Martin Pettersson,
Peter List, and Bernhard Feiten. “IP-Based Mobile and Fixed Network
Audiovisual Media Services”. In: IEEE Signal Processing Magazine 28.6
(2011), pp. 68-79.

Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List,
Steve Goring, and Bernhard Feiten. “A bitstream-based, scalable video-
quality model for HTTP adaptive streaming: ITU-T P.1203.1”. In:
2017 Ninth International Conference on Quality of Multimedia Experience
(QoMEX). 2017, pp. 1-6.

Alexander Raake, Silvio Borer, Shahid Satti, Jorgen Gustafsson, Rakesh
Rao Ramachandra Rao, Stefano Medagli, Peter List, Steve Goring,
David Lindero, Werner Robitza, Gunnar Heikkild, Simon Broom,
Christian Schmidmer, Bernhard Feiten, Ulf Wiistenhagen, Thomas
Wittmann, Matthias Obermann, and Roland Bitto. “Multi-model stan-
dard for bitstream-, pixel-based and hybrid video quality assessment
of UHD/4K: ITU-T P.1204”. In: IEEE Access 8 (2020).

Alexander Raake, Ashutosh Singla, Rakesh Rao Ramachandra Rao,
Werner Robitza, and Frank Hofmeyer. “SiSiMo: Towards Simulator
Sickness Modeling for 360° Videos Viewed with an HMD”. In: 2020
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW). 2020.

Rakesh Rao Ramachandra Rao, Steve Goring, Werner Robitza, Bern-
hard Feiten, and Alexander Raake. “AVT-VQDB-UHD-1: A Large Scale
Video Quality Database for UHD-1". In: 21st IEEE International Sympo-
sium on Multimedia (IEEE ISM). Dec. 2019.

Rakesh Rao Ramachandra Rao, Steve Goring, Patrick Vogel, Nicolas
Pachatz, Juan Jose Villamar Villarreal, Werner Robitza, Peter List, Bern-

hard Feiten, and Alexander Raake. “Adaptive video streaming with

235


https://doi.org/10.1109/ICASSP.2008.4517818
https://doi.org/10.1109/ICASSP.2008.4517818

Bibliography

[Rao+20a]

[Rao+20Db]

[Rao+23]

[Ras+10]

[Ras17]

[RE14]

[Rez+20]

236

current codecs and formats: Extensions to parametric video quality
model ITU-T P.1203”. In: Electronic Imaging (2019).

Rakesh Rao Ramachandra Rao, Steve Goring, Peter List, Werner
Robitza, Bernhard Feiten, Ulf Wiistenhagen, and Alexander Raake.
“Bitstream-based Model Standard for 4K/UHD: ITU-T P.1204.3 — Model
Details, Evaluation, Analysis and Open Source Implementation”. In:
Twelfth IEEE International Conference on Quality of Multimedia Experience
(QoMEX). Athlone, Ireland, May 2020.

Rakesh Rao Ramachandra Rao, Steve Goring, Robert Steger, Saman
Zadtootaghaj, Nabajeet Barman, Stephan Fremerey, Sebastian Moller,
and Alexander Raake. “A Large-scale Evaluation of the bitstream-based
video-quality model ITU-T P.1204.3 on Gaming Content”. In: 2020 IEEE
22nd International Workshop on Multimedia Signal Processing (MMSP).
IEEE. 2020.

Rakesh Rao Ramachandra Rao, Silvio Borer, David Lindero, Steve
Goring, and Alexander Raake. “PNATS-UHD-1-Long: An Open Video
Quality Dataset for Long Sequences for HTTP-based Adaptive Stream-
ing QoE Assessment”. In: 15th International Conference on Quality of
Multimedia Experience (QoMEX). 2023.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier.
“Collecting Image Annotations Using Amazon’s Mechanical Turk”. In:
Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and
Language Data with Amazon’s Mechanical Turk. Los Angeles: Association
for Computational Linguistics, June 2010.

R. Rassool. “VMAF reproducibility: Validating a perceptual practical
video quality metric”. In: IEEE Int. Symp. on Broadband Multimedia
Systems and Broadcasting. June 2017, pp. 1-2.

Alexander Raake and Sebastian Egger. “Quality and quality of experi-
ence”. In: Quality of experience. Springer, 2014, pp. 11-33.

Yuriy Reznik, Xiangbo Li, Karl Lillevold, Robert Peck, Thom Shutt, and
Peter Howard. “Optimizing Mass-Scale Multi-Screen Video Delivery”.
In: SMPTE Motion Imaging Journal 129.3 (2020), pp. 26-38.



[RGR17]

[RGR21a]

[RGR21b]

[RGR22]

[Rib+11]

[RLOS]

[Rob+18a]

[Rob+18b]

Werner Robitza, Marie-Neige Garcia, and Alexander Raake. “A mod-
ular HTTP adaptive streaming QoE model — Candidate for ITU-T
P.1203 (“PNATS”)”. In: 2017 Ninth International Conference on Quality of
Multimedia Experience (QoMEX). 2017, pp. 1-6.

Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“Enhancement of Pixel-based Video Quality Models using Meta-data”.
In: Electronic Imaging, Human Vision Electronic Imaging. 2021.

Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“Towards High Resolution Video Quality Assessment in the Crowd”.
In: 13th IEEE International Conference on Quality of Multimedia Experience
(QoMEX). 2021.

Rakesh Rao Ramachandra Rao, Steve Goring, and Alexander Raake.
“AVQBits - Adaptive Video Quality Model Based on Bitstream Infor-
mation for Various Video Applications”. In: IEEE Access 10 (2022).

F. Ribeiro, D. Floréncio, C. Zhang, and M. Seltzer. “CROWDMOS: An
approach for crowdsourcing mean opinion score studies”. In: 2011
ICASSP. 2011.

Andreas Rossholm and Benny Lovstroem. “A new low complex ref-
erence free video quality predictor”. In: 2008 IEEE 10th Workshop on
Multimedia Signal Processing. 2008, pp. 765-768.

Werner Robitza, Steve Goring, Alexander Raake, David Lindegren,
Gunnar Heikkild, Jorgen Gustafsson, Peter List, Bernhard Feiten, Ulf
Wiistenhagen, Marie-Neige Garcia, Kazuhisa Yamagishi, and Simon
Broom. “HTTP Adaptive Streaming QoE Estimation with ITU-T Rec.
P.1203 — Open Databases and Software”. In: 9th ACM Multimedia Sys-
tems Conference. Amsterdam, 2018. ISBN: 9781450351928.

Werner Robitza, Dhananjaya G Kittur, Alexander M Dethof, Steve
Goring, Bernhard Feiten, and Alexander Raake. “Measuring YouTube
QoE with ITU-T P. 1203 under Constrained Bandwidth Conditions”.
In: Tenth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE. 2018, pp. 1-6.

237



Bibliography

[Rob+21]

[Rob+22]

[RT14]

[SBO6]

[SB13]

[SB19]

[SDF12]

[Ses+10]

[Seu+15]

238

Werner Robitza, Rakesh Rao Ramachandra Rao, Steve Goring, and
Alexander Raake. “Impact of Spatial and Temporal Information on
Video Quality and Compressibility”. In: 13th IEEE International Confer-
ence on Quality of Multimedia Experience (QoMEX). June 2021.

Werner Robitza, Rakesh Rao Ramachandra-Rao, Steve Goring, Alexan-
der Dethof, and Alexander Raake. “Deploying the ITU-T P.1203 QoE
Model in the Wild and Retraining for New Codecs”. In: Proceedings
of the 1st Conference on Mile-High Video. MHV "22. Denver, Colorado:
Association for Computing Machinery, 2022.

Benjamin Rainer and Christian Timmerer. “Quality of Experience of
Web-Based Adaptive HTTP Streaming Clients in Real-World Environ-
ments Using Crowdsourcing”. In: Proceedings of the 2014 Workshop on
Design, Quality and Deployment of Adaptive Video Streaming. VideoNext
"14. Sydney, Australia: ACM, 2014. 1SBN: 9781450332811.

H. R. Sheikh and A. C. Bovik. “Image information and visual quality”.
In: IEEE Transactions on Image Processing 15.2 (2006), pp. 430—444.

R. Soundararajan and A. C. Bovik. “Video Quality Assessment by
Reduced Reference Spatio-Temporal Entropic Differencing”. In: IEEE
Transactions on Circuits and Systems for Video Technology 23.4 (2013),
pp- 684-694.

Z. Sinno and A. C. Bovik. “Large-Scale Study of Perceptual Video
Quality”. In: IEEE Transactions on Image Processing (2019).

Hao Su, J. Deng, and L. Fei-Fei. “Crowdsourcing annotations for visual
object detection”. In: (Jan. 2012).

Kalpana Seshadrinathan, Rajiv Soundararajan, Alan Conrad Bovik,
and Lawrence K. Cormack. “Study of Subjective and Objective Quality
Assessment of Video”. In: IEEE Transactions on Image Processing 19.6
(2010), pp. 1427-1441.

M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofsfeld, and P. Tran-Gia.
“A Survey on Quality of Experience of HTTP Adaptive Streaming”.
In: IEEE Comm. Surveys Tutorials 17.1 (Mar. 2015), pp. 469—492. ISSN:
1553-877X.



[SH16]

[Sha+14a]

[Sha+14b]

[Sha+22]

[SHR12]

[Sid+19]

[Sin+19]

[Sin+21]

Michael Seufert and Tobias Hossfeld. “One Shot Crowdtesting: Ap-
proaching the Extremes of Crowdsourced Subjective Quality Testing”.
In: Aug. 2016, pp. 122-126.

M. Shahid, J. Segaard, ]. Pokhrel, K. Brunnstrém, K. Wang, S. Tavakoli,
and N. Gracia. “Crowdsourcing based subjective quality assessment of
adaptive video streaming”. In: 2014 QoMEX. 2014, pp. 53-54.

Muhammad Shahid, Andreas Rossholm, Benny Lovstrom, and Hans-
Jiirgen Zepernick. “No-reference image and video quality assessment:
a classification and review of recent approaches”. In: EURASIP Journal
on Image and Video Processing 2014 (2014), pp. 1-32.

Zaixi Shang, Joshua Peter Ebenezer, Yongjun Wu, Hai Wei, Sriram
Sethuraman, and Alan C. Bovik. “Study of the Subjective and Objective
Quality of High Motion Live Streaming Videos”. In: IEEE Transactions
on Image Processing 31 (2022), pp. 1027-1041.

K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino. “Quality of experience es-
timation for adaptive HTTP/TCP video streaming using H.264/AVC”.
In: 2012 IEEE Consumer Communications and Networking Conference
(CCNC). 2012, pp. 127-131.

Naty Sidaty, Wassim Hamidouche, Olivier Déforges, Pierrick Philippe,
and Jérome Fournier. “Compression Performance of the Versatile Video
Coding: HD and UHD Visual Quality Monitoring”. In: 2019 Picture
Coding Symposium (PCS). 2019, pp. 1-5.

Ashutosh Singla, Rakesh Rao Ramachandra Rao, Steve Goring, and
Alexander Raake. “Assessing Media QoE, Simulator Sickness and Pres-
ence for Omnidirectional Videos with Different Test Protocols”. In: 26th
IEEE Conference on Virtual Reality and 3D User Interfaces. Osaka, Japan,
Mar. 2019.

Ashutosh Singla, Steve Goring, Dominik Keller, Rakesh Rao Ra-
machandra Rao, Stephan Fremerey, and Alexander Raake. “Assessment

of the Simulator Sickness Questionnaire for Omnidirectional Videos”.
In: 28th IEEE Conference on Virtual Reality and 3D User Interfaces. 2021.

239



Bibliography

[SLY17]

[Sod11]

[Son+13]

[SRL11]

[SRL13]

[Sta+13]

[Sto22]

[Sul+12]

[TB12]

240

Yule Sun, Ang Lu, and Lu Yu. “Weighted-to-Spherically-Uniform Qual-
ity Evaluation for Omnidirectional Video”. In: IEEE Signal Processing
Letters 24.9 (2017), pp. 1408-1412.

Iraj Sodagar. “The MPEG-DASH Standard for Multimedia Streaming
Over the Internet”. In: IEEE MultiMedia 18.4 (2011), pp. 62-67.

Li Song, Xun Tang, Wei Zhang, Xiaokang Yang, and Pingjian Xia. “The
SJTU 4K video sequence dataset”. In: 2013 Fifth International Workshop
on Quality of Multimedia Experience (QoMEX). 2013, pp. 34-35.

Muhammad Shahid, Andreas Rossholm, and Benny Lovstrom. “A
reduced complexity no-reference artificial neural network based video
quality predictor”. In: 2011 4th International Congress on Image and Signal
Processing. Vol. 1. 2011, pp. 517-521.

Muhammad Shahid, Andreas Rossholm, and Benny Lovstrom. “A no-
reference machine learning based video quality predictor”. In: 2013
Fifth International Workshop on Quality of Multimedia Experience (QoMEX).
2013, pp. 176-181.

J. Stankowski, T. Grajek, K. Wegner, and M. Domanski. “Video quality
in multiple HEVC encoding-decoding cycles”. In: 2013 20th Interna-
tional Conference on Systems, Signals and Image Processing (IWSSIP). 2013,
pp. 75-78.

Julia Stoll. Number of Netflix paid subscribers worldwide from 1st quar-
ter 2013 to 3rd quarter 2022. 2022. URL: https://www . statista.

com/statistics/483112/netflix-subscribers/ (visited on
10/19/2022).

Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
“Overview of the High Efficiency Video Coding (HEVC) Standard”.
In: IEEE Transactions on Circuits and Systems for Video Technology 22.12
(2012), pp. 1649-1668.

Anthony Tang and Sebastian Boring. “#EpicPlay: Crowd-Sourcing
Sports Video Highlights”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI "12. Austin, Texas, USA: As-
sociation for Computing Machinery, 2012. 1SBN: 9781450310154.


https://www.statista.com/statistics/483112/netflix-subscribers/
https://www.statista.com/statistics/483112/netflix-subscribers/

[Tho+16]

[Tom+10]

[Tor+16]

[Tra+16a]

[Tra+16b]

[Tra+17]

[Tu+21]

[Utk+20]

Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde,
Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. “YFCC100M”. In:
Communications of the ACM 59.2 (Jan. 2016), pp. 64-73. ISSN: 1557-7317.

T. Tominaga, T. Hayashi, J. Okamoto, and A. Takahashi. “Perfor-
mance comparisons of subjective quality assessment methods for mo-
bile video”. In: 2nd Int. Workshop on Quality of Multimedia Experience
(QoMEX). June 2010, pp. 82-87.

Maria Torres Vega, Vittorio Sguazzo, Decebal Constantin Mocanu, and
Antonio Liotta. “An experimental survey of no-reference video qual-
ity assessment methods”. English. In: International journal of pervasive
computing and communications 12.1 (2016), pp. 66-86. I1SSN: 1742-7371.

Huyen T. T. Tran, Nam Pham Ngoc, Anh T. Pham, and Truong Cong
Thang. “A Multi-Factor QoE Model for Adaptive Streaming over Mo-
bile Networks”. In: 2016 IEEE Globecom Workshops (GC Wkshps). 2016,
pp- 1-6.

Huyen T. T. Tran, Thang Vu, Nam Pham Ngoc, and Truong Cong Thang.
“A novel quality model for HTTP adaptive streaming”. In: 2016 IEEE

Sixth International Conference on Communications and Electronics (ICCE).
2016, pp. 423-428.

Huyen T. T. Tran, Nam Pham Ngoc, Cuong Manh Bui, Minh Hong
Pham, and Truong Cong Thang. “An evaluation of quality metrics for
360 videos”. In: 2017 Ninth International Conference on Ubiquitous and
Future Networks (ICUFN). 2017, pp. 7-11.

Zhengzhong Tu, Chia-Ju Chen, Yilin Wang, Neil Birkbeck, Balu
Adsumilli, and Alan C. Bovik. “Efficient User-Generated Video Quality
Prediction”. In: 2021 Picture Coding Symposium (PCS). 2021, pp. 1-5.

Markus Utke, Saman Zadtootaghaj, Steven Schmidt, Sebastian Bosse,
and Sebastian Moller. “NDNetGaming-development of a no-reference
deep CNN for gaming video quality prediction”. In: Multimedia Tools
and Applications (2020), pp. 1-23.

241



Bibliography

[Van+16]

[Veg+17]

[Wan+04]

[Wan+21]

[Wei+14]

[WIA19]

[Wie+03]

[Woj20]

242

G. Van Wallendael, P. Coppens, T. Paridaens, N. Van Kets, W. Van
den Broeck, and P. Lambert. “Perceptual quality of 4K-resolution video
content compared to HD”. In: 8th Int. Conference on Quality of Multimedia
Experience (QoMEX). June 2016, pp. 1-6.

Maria Torres Vega, Decebal Constantin Mocanu, Jeroen Famaey, Stavros
Stavrou, and Antonio Liotta. “Deep Learning for Quality Assessment
in Live Video Streaming”. In: IEEE Signal Processing Letters 24.6 (2017),
pp- 736-740.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.

“Image quality assessment: from error visibility to structural similarity”.

In: IEEE transactions on image processing 13.4 (2004), pp. 600-612.
Yilin Wang, Junjie Ke, Hossein Talebi, Joong Gon Yim, Neil Birkbeck,

Balu Adsumilli, Peyman Milanfar, and Feng Yang. “Rich features for
perceptual quality assessment of UGC videos”. In: 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2021,
pp- 13430-13439.

Benjamin Weiss, Dennis Guse, Sebastian Moller, Alexander Raake,
Adam Borowiak, and Ulrich Reiter. “Temporal development of quality

of experience”. In: Quality of experience. Springer, 2014, pp. 133-147.

Yilin Wang, Sasi Inguva, and Balu Adsumilli. “YouTube UGC Dataset
for Video Compression Research”. In: 2019 IEEE 21st International Work-
shop on Multimedia Signal Processing (MMSP) (Sept. 2019).

T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. “Overview
of the H.264/AVC video coding standard”. In: IEEE Transactions on
Circuits and Systems for Video Technology 13.7 (2003), pp. 560-576. DOI:
10.1109/TCSVT.2003.815165.

Susan Wojcicki. YouTube at 15: My personal journey and the road
ahead. 2020. URL: https : / / blog . youtube / news — and -
events/youtube—-at-15-my—-personal - journey/ (visited on
02/15/2020).


https://doi.org/10.1109/TCSVT.2003.815165
https://blog.youtube/news-and-events/youtube-at-15-my-personal-journey/
https://blog.youtube/news-and-events/youtube-at-15-my-personal-journey/

[Woj21]

[WSBO03]

[WWC19]

[XJ13]

[Yam+21]

[YFH19]

[YG13]

[Yim+20]

[YKHO09]

Susan Wojcicki. YouTube by the Numbers: Stats, Demographics & Fun
Facts. 2021. URL: https://www.omnicoreagency.com/youtube—
statistics/ (visited on 01/03/2021).

Zhou Wang, Eero P Simoncelli, and Alan C Bovik. “Multiscale struc-
tural similarity for image quality assessment”. In: Signals, Systems and
Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Confer-
ence on. Vol. 2. IEEE. 2003, pp. 1398-1402.

Sarah Wassermann, Nikolas Wehner, and Pedro Casas. “Machine Learn-
ing Models for YouTube QoE and User Engagement Prediction in Smart-
phones”. In: 46.3 (Jan. 2019), pp. 155-158. 1SSN: 0163-5999.

J. Xu and X. Jiang. “Research on Subjective Assessment Method of
Ultra High Definition Video Quality”. In: 4th World Congress on Software
Engineering. Dec. 2013, pp. 326-330.

Kazuhisa Yamagishi, Noritsugu Egi, Noriko Yoshimura, and Pierre
Lebreton. “Derivation Procedure of Coefficients of Metadata-Based
Model for Adaptive Bitrate Streaming Services”. In: IEICE Transactions
on Communications E104.B.7 (2021), pp. 725-737.

Shun-Huai Yao, Ching-Ling Fan, and Cheng-Hsin Hsu. “Towards
Quality-of-Experience Models for Watching 360° Videos in Head-
Mounted Virtual Reality”. In: 2019 Eleventh International Conference
on Quality of Multimedia Experience (QoMEX). 2019, pp. 1-3.

Kazuhisa Yamagishi and Shan Gao. “Light-weight audiovisual quality
assessment of mobile video: ITU-T Rec. P. 1201.1”. In: 2013 IEEE 15th
International Workshop on Multimedia Signal Processing (MMSP). IEEE.
2013, pp. 464—469.

Joong Yim, Yilin Wang, Neil Aylon Charles Birkbeck, and Balu
Adsumilli. “Subjective Quality Assessment for YouTube UGC Dataset”.
In: 2020 IEEE International Conference on Image Processing. 2020.

Kazuhisa Yamagishi, Taichi Kawano, and Takanori Hayashi. “Hybrid
video quality-estimation model for IPTV services”. In: GLOBECOM
2009-2009 IEEE Global Telecommunications Conference. IEEE. 2009, pp. 1-
5.

243


https://www.omnicoreagency.com/youtube-statistics/
https://www.omnicoreagency.com/youtube-statistics/

Bibliography

[YLG15]

[Yu+21]

[Zad+18]

[Zad+20a]

[Zad+20Db]

[Zha+11]

[Zha+20]

[ZMB17]

244

Matt Yu, Haricharan Lakshman, and Bernd Girod. “A Framework
to Evaluate Omnidirectional Video Coding Schemes”. In: 2015 IEEE
International Symposium on Mixed and Augmented Reality. 2015, pp. 31—
36.

Xiangxu Yu, Neil Birkbeck, Yilin Wang, Christos G. Bampis, Balu
Adsumilli, and Alan C. Bovik. “Predicting the Quality of Compressed
Videos With Pre-Existing Distortions”. In: IEEE Transactions on Image
Processing 30 (2021), pp. 7511-7526.

Saman Zadtootaghaj, Nabajeet Barman, Steven Schmidt, Maria G. Mar-
tini, and Sebastian Moller. “NR-GVQM: A No Reference Gaming Video
Quality Metric”. In: 2018 IEEE International Symposium on Multimedia
(ISM). 2018, pp. 131-134.

Saman Zadtootaghaj, Nabajeet Barman, Rakesh Rao Ramachandra
Rao, Steve Goring, Maria G. Martini, Alexander Raake, and Sebastian
Moller. “DEMI: Deep Video Quality Estimation Model using Perceptual
Video Quality Dimensions”. In: 22nd IEEE International Workshop on
Multimedia Signal Processing (MMSP). IEEE. 2020.

Saman Zadtootaghaj, Steven Schmidt, Saeed Shafiee Sabet, Sebastian
Moeller, and Carsten Griwodz. “Quality Estimation Models for Gaming
Video Streaming Services Using Perceptual Video Quality Dimensions”.

In: Proceedings of the 11th International Conference on Multimedia Systems.
ACM. 2020.

L. Zhang, L. Zhang, X. Mou, and D. Zhang. “FSIM: A Feature Similarity
Index for Image Quality Assessment”. In: IEEE Transactions on Image
Processing 20.8 (2011), pp. 2378-2386.

Fan Zhang, Angeliki V Katsenou, Mariana Afonso, Goce Dimitrov, and
David R Bull. “Comparing VVC, HEVC and AV1 using objective and
subjective assessments”. In: arXiv preprint arXiv:2003.10282 (2020).

F. Zhang, A. Mackin, and D. R. Bull. “A frame rate dependent video
quality metric based on temporal wavelet decomposition and spa-
tiotemporal pooling”. In: 2017 IEEE International Conference on Image
Processing (ICIP). 2017, pp. 300-304.



List of Figures

1.1
1.2

1.3

3.1

3.2

3.3
3.4
3.5
3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

Factors influencing Quality of Experience. . . . ... ... ... ... ... 5
The MPD hierarchical model. This example shows how the client requests the

appropriate representation and plays out the segment (adapted from [Sod11]). 8
Anexample HASsession . . . . ... ... ... 0oL, 8

SI-TT of all the sources used in training and validation in the PNATS Phase 2

competition. . . . . ... L e 44
Bitrate ranges for each encoder-resolution pair used in the PNATS Phase 2

competition [Raa+20a]. . . . . . ... ... oo oo 46
MOS distribution of AVTI-PNATS-UHD-1 dataset. . . . ... ........ 49
SOS analysis of the AVT-PNATS-UHD-1 dataset. . . . . ... ... ..... 50
Thumbnails of source videos in the AVT-VQDB-UHD-1 dataset. . . . . . . . 51
Spatial and temporal complexities SI, TI of all the video contents used in the

AVT-VOQDB-UHD-1dataset. . . . . . . . . . . v i i i i et 52
MOS distribution of AVI-VQDB-UHD-1dataset. . . . . . ... ... .... 55
SOS analysis of the AVT-VQDB-UHD-1 dataset. . . ... .......... 56
Inter-test correlation (test 2and test_ 3). . . . . . . . ... ... ... .... 57
Overview of the source videos used in the AV1 dataset. . . . ... ... .. 57
SI and TT of all the source contents used in the AV1 dataset. . . . . ... .. 58
MOS distribution of AVl dataset. . . . . . ... ... ... ......... 60
SOS analysisof AVldataset. . . . . ... ... ... ............. 60
MOS comparison between AVland H265. . . .. ... ... ........ 61
MOS distribution of PNATS-UHD-1-Long dataset. . . . . . . ... ... .. 63
Responses to the pre-test questionnaire. . . . . . . ... ... ... ... .. 67
Distribution of browser window height across crowd participants. . . . . . 68
Count distribution of how often PVSs wererated . . . . . . ... ... ... 69
Distribution of MOS in the Lab and Out-of-the-Lab. . . . . ... ... ... 70
SOS analysis of the lab and out-of-the-lab tests. . . . . . .. ... ... ... 70
Scatter plot of the MOS values from lab and out-of-the-lab. . . . . .. ... 71
Correlation between lab and out-of-the-lab tests as a function of the number

of participants in the out-of-the-labtest.. . . . . . .. ... ... ... ... 72

245



List of Figures

3.23

3.24

3.25
3.26
3.27
3.28
3.29
3.30

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49

51

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11

246

Overview of the source videos used for the long term audiovisual quality

evaluation in the centre-crop crowd test. . . . . ... ... ... ... ... 73
SI-TI of all the sources used for the long-term audiovisual quality evaluation

inthecrowd. . . . .. ... . L o 74
Responses to the pre-test questionnaire. . . . . . . ... ... ... ..... 76
Distribution of browser window height across crowd participants. . . . . . 77
Count distribution of how often PVSs wererated. . . . .. ... ... ... 77
Distribution of MOS for the lab and crowd tests. . . . . . .. ... ... .. 78
SOS analysis of the lab and crowd tests. . . . . . . . ... ... ... .... 78
Scatter plot of the MOS values from lab [Rao+19a] and crowd tests. . . . . . 79
General model structure of AV QBits including all four model instances. . . 90
General model structure of the AVQBits|M3 / P1204.3 model. . . . .. .. 94
General model structure of the AVQBits|MOmodel. . . . ... ....... 98
General model structure of the AVQBits| M1 model. . . . ... ... .... 100
General model structure of the AVQBits|HOmodel. . . . . ... ... ... 103
Scatter plot of AVQBits instances for AVT-VQDB-UHD-1 dataset. . . . . . . 112
Performance of the correction mapping for all considered video codecs. . . . 116
General Machine Learning Pipeline. . . . . .. ... ... ......... 117
Frequency of occurrence of features in top 100 performing cases. . . . . . . 121
Scatter plot of AVQBits instances for PNATS-UHD-1-Long dataset. . . . . . 129
MOS distribution of GVS, KUGVD, CGVDS, and Twitch datasets. . . . . . . 137
Scatter plot of AV QBits instances for the considered gaming datasets. . . . . 139
MOS distribution of 360 Streaming Video Quality Dataset. . . . . . . . . .. 146
Scatter plot of AV QBits instances for 360 Streaming Video Quality Dataset. . 148
MOS distribution of LIVE-YT-HFR dataset. . . . . . .. ... ... ..... 151
Scatter plot of AVQBits instances for LIVE-YT-HFR dataset. . . . . . . . .. 154
MOS distribution of LIVE-APV dataset. . . . . . ... ... ... ...... 156

MOS distribution of LIVE Wild Compressed Video Quality Database dataset. . . 160
Scatter plot of AV QBits instances for LIVE Wild Compressed Video Quality

Database. . . . . . . . . . e e e 162
MOS distribution of the considered dataset. . . . . ... ... ... .... 165
Scatter plot of AV QBits instances for the considered dataset. . . . ... .. 168



List of Tables

3.1

3.2
3.3

34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12

Number of unique footages and SRC files used in the training (TR) and vali-
dation (VL) databases in the PNATS Phase 2 competition [Raa+20a]. . . .. 43
Parameter ranges considered in the PNATS Phase 2 competition [Raa+20a]. 45
Common HRCs used in the PNATS Phase 2 competition. The video codec is

H.264 for all common conditions [Raa+20a]. . . . . .. . . ... .. .... 47
Training database details [Raa+20a]. . . . . ... .. ... ... ..... 47
Validation database details [Raa+20a]. . . . . . .. ... ... ... .... 48
Source details for the AVI-VQDB-UHD-1 dataset. . . . ... ... ..... 52
Test Design—test 1. . . . . . . . ... e 53
Test Design — test_2 and test_3 (Bit-per-pixel based test). . . . . . . .. ... 54
Test Design — test_4 (Framerate variationtest). . . . . . ... .. ... ... 54
Source details for the AV1 dataset. . . . .. ... .. ... ......... 58
Test Design- AVldataset. . . . . ... ... ... .............. 59
Range of parameters used in the long-duration tests in the PNATS Phase 2

competition. . . . . ... oL e 61
Per-source comparison of lab [Rao+19a] and out-of-the-lab test results. . . . 71
Aggregated features for RFmodel. . . . . ... ... ... ... ...... 97
AV QBits / P.1204.3 Quantization-degradation coefficients, PC/TV case. . . 105
AV QBits / P.1204.3 Quantization-degradation coefficients, MO/TA case. . . 105
Upscaling- and temporal-degradation coefficients, PC/TV case. . . . . . . . 106
Upscaling- and temporal-degradation coefficients, MO/TA case. . . . . . . 106
QP-Prediction coefficients for AVQBits|M0,PC/TV case. . ... ... ... 106
Quantization-degradation coefficients for AVQBits| M0, PC/TV case. . . . . 107
QP-Prediction coefficients for AVQBits|M1, PC/TV case. . . ... ..... 107
Quantization-degradation coefficients for AVQBits|M1, PC/TV case. . . . . 107
Codec mapping coefficients for AVQBits|HO|f, PC/TV case. . .. ... .. 108
Aggregated RMSE on validation and on all databases. . . . ... ... ... 109
Overall model performance of different models on PNATS Phase 2 validation

databasesonly. . . . . . . .. oL e 110

247



List of Tables

4.13
4.14

4.15

4.16
4.17

4.18

5.1

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8

6.9

6.10

6.11

6.12

B.1
B.2
B.3
B4
B.5

248

Performance of the AV QBits instances on the AVT-VQDB-UHD-1 dataset.
Performance comparison of the AVQBits instances with SoA models for tests
in the AVT-VQDB-UHD-1 dataset without framerate as dependent variable.
Performance comparison of AVQBits instances with SOA models for tests
with framerate as independent variable in the AVT-VQDB-UHD-1 dataset. .
Correction Mapping - Coefficients percodec. . . . . . . ... ... .. ...
Performance comparison between Hybrid-VMAF and other SoA video quality
models. . . . . .. e

Performance comparison between Hybrid-VMAF and other SoA video quality

Performance of AVQBits instances on the PNATS-UHD-1-Long dataset.

Overview of the used gaming datasets. . . . . . ... ... ... ......
Performance of AV QBits instances using the considered gaming datasets.

Comparison of performance of AVQBits instances with SoA models using the
considered gaming datasets. . . . . . ... ... o oo
Performance of FHD-mapped P.1204.3 on the validation datasets. . . . . . .
HRCsfortest_landtest 2. . .. ... ... ... ... ...........
HRCsfortest 3. . . . ... . . ... e
Performance of AVQBits instances using the 360 Streaming Video Dataset. .
Comparison of performance of AVQBits instances with SoA models using the
360 Video Streaming Quality Dataset. . . . . . . ... ... .. ... ....
Comparison of performance of AV QBits instances with SoA models using the
LIVE-YT-HFR dataset. . . . . . ... ... ... ... ... . .....
Comparison of performance of AVQBits instances with SoA models using the
LIVE-APV dataset. . . . . . . . . . . o ittt
Comparison of performance of AV QBits instances with SoA models using the
LIVE Wild Compressed Video Quality Database. . . . . . . . . ... ... ...
Comparison of performance of AVQBits|M3 and AV QBits|M0 with SoA

Test Plan for P2STRO1. . . . . . . . . . . . . o e e e e
Test Plan for P2STRO2. . . . . . . . . . . e e e e e e e e e e
Test Plan for P2STRO3. . . . . . . . . o o v e e e e e e e e e e
Test Plan for P2STRO4. . . . . . . . . . . o o e e e
Test Plan for P2STRO5. . . . . . . . . . o e e e e e e e e e e

111

113

113
115

120

121

128

136
138

140
142
145
145
146
149
153
157

161



List of Tables

B.6 TestPlan for P2STRO6. . . . . . . . . . . . i i i e e e e e e e e e 193
B.7 TestPlan for P2STRO8. . . . . . . . . . . . . i e e e e e e e e 194
B.8 TestPlan for P2STR09. . . . . . . . . . . . . i i e e e e e e e e 195
B.9 TestPlan for P2STRI0. . . . . . . . . . . . . it s e e e e e e 196
B.10 Test Plan for P2STRI1. . . . . . . . . . . . . . i i e i s e e e e e 197
B.11 Test Plan for P2STRI12. . . . . . . . . . . o i i it e e e e e e e e e e 198
B.12 Test Plan for P2STR13. . . . . . . . . . . . o i i e e e e e e e e 199
B.13 Test Plan for P2STR14. . . . . . . . . . . . . e e e 200
B.14 Test Plan for P2SVLOL. . . . . . . . . . o i i e e e e e e e e 201
B.15 Test Plan for P2SVL02. . . . . . . . . . . . o e e e e e 202
B.16 Test Plan for P2SVLO03. . . . . . . . . 0 o i i e e e e e e e e e e 203
B.17 Test Plan for P2SVLO4. . . . . . . . i o i e e e e e e e e e e 204
B.18 Test Plan for P2SVLO05. . . . . . . . . . i v it e e e e e e e e e 205
B.19 Test Plan for P2SVLO06. . . . . . . . . o i v i e e e e e e e e e e 206
B.20 Test Plan for P2SVLO7. . . . . . . . . o i i e e e e e e e e e e e e e 207
B.21 Test Plan for P2SVLO08. . . . . . . . . . . . . e e e e e 208
B.22 Test Plan for P2SVL09. . . . . . . . . . . . . e e e 209
B.23 Test Plan for P2SVLI10. . . . . . . . . . . . . e e e e e e e 210
B.24 Test Plan for P2SVLI1. . . . . . . . . . . . . e e e e e e e 211
B.25 Test Plan for P2SVLI12. . . . . . . . . . . . . e e e e 212
B.26 Test Plan for P2SVLI13. . . . . . . . . . . . o i e e e e e e 213

249



250



List of Acronyms

A list of frequently used acronyms is given in the following table.

ACR Absolute Category Rating

CBR Constant Bitrate

CDN Content Delivery Network

CMAF Common Media Application Format
CRF Constant Rate Factor

DASH Dynamic Adaptive Streaming over HTTP
DNN Deep Neural Network

FR Full-Reference

HAS HTTP-based adaptive streaming

HDR High Dynamic Range

HEFR High Framerate

HLS HTTP Live Streaming

HMD Head-Mounted Display

HRC Hypothetical Reference Circuit

MOS Mean Opinion Score

MPD Media Presentation Description

MPEG Moving Pictures Expert Group

MSS Microsoft Smooth Streaming

NR No-Reference

PCC Pearson Correlation Coefficient

PVS Processed Video Sequence

QEB Quality Equivalent Bitstream

QoE Quality of Experience

Qr Quantization Parameter

RDO Rate-Distortion Optimization

RF Random Forest

RMSE Root Mean Square Error

RR Reduced-Reference

SI Spatial Information

SOS Standard deviation of Mean Opinion Scores
SRC Source

SROCC Spearman Rank Correlation Coefficient
SVR Support Vector Regression

TI Temporal Information

UGC User-Generated Content

V-CNN Viewport-based Convolutional Neural Networks
VQEG Video Quality Experts Group

VR Virtual Reality
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