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Abstract: In recent years, hybrid order picking systems like Robotic Mobile 
Fulfilment Systems (RMFS) have become established and widely used in e-
commerce. Companies from other logistics areas with different use cases often decide 
against investing in RMFS due to high investment risks or unknown performance 
benefits. This work contains a performance evaluation of three different use case 
configurations based on logistics areas in e-commerce and production conducted by a 
simulation model for multi-level RMFS with an integrated rolling planning approach. 
The model leads to a demonstrator supporting logistics managers in their decision-
making. Those and other users can vary input parameters in the demonstrator, create 
different use case configurations, and run the simulation model to evaluate 
performance by key performance indicators (KPIs). The work depends on several 
discussions and interviews with logistics experts to define realistic use cases the 
logistics manager can identify.  

1 Introduction 
Mobile picking robots have been increasingly used in logistics for several years 
(Azadeh et al., 2019; Boysen et al., 2017a). In contrast to manual person-to-goods 
picking and automatic goods-to-person picking, individual shelves are moved by 
mobile robots and transported to a stationary picking base. A particular type of mobile 
picking robot is the Robotic Mobile Fulfilment System (RMFS), where mobile robots 
transport shelves (pods) through the shop floor to picking stations with order pickers 
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(Boysen et al., 2019). Compared to traditional order picking systems (picker-to-parts) 
in which pickers move to shelves in the warehouse, RMFS as a parts-to-picker system 
increases productivity (Boysen et al., 2017b). 
Limited storage density and the possibility of analysing the performance of RMFS 
prevent companies from investing in this technology. A few recent publications about 
their performance by simulation studies exist (Merschformann et al., 2019). 
Nevertheless, performance evaluations in science are not attractive enough to logistics 
managers and their investment decision-making process if they do not seem 
predictable to them. Based on interviews with experts in logistics areas, we 
implemented a simulation model for multi-level RMFS with an integrated rolling 
planning horizon for analysing the performance of RMFS. In order to make the results 
more transparent and to support logistics managers, and other users, in their decision-
making, the simulation model based on the software AnyLogic is extended to a 
demonstrator. It allows users to make decisions based on well-founded arguments 
resulting from the quantitative study of performance analysis of different use case 
configurations of RMFS that are similar to their shop floor. The user can define the 
input of the quantitative study via the demonstrator interface and vary different 
structures of order sizes, article types, or robot numbers. The performance analysis 
involves typical KPIs of throughput definitions, which are necessary to decide for or 
against a new logistics system resulting from discussions with logistics experts. 

2 Recent literature 
The integrated planning problems for the simulation model are described in this 
section to give an overview of the current state of the literature. Merschformann et al. 
(2019) present a simulation tool for RMFS, solving different planning tasks and 
problems and analysing performance. It becomes visible that the several solutions of 
the planning problems (see below) significantly influence the RMFS performance 
and, thus, the decision whether to use RMFS or not. The publications stated below 
revive the planning tasks introduced by Merschformann et al. (2019). 
1. Allocating goods to individual shelves (cf. Weidinger and Boysen, 2018; 

Weidinger et al., 2018; Guan and Li, 2018, Kim et al., 2020). 
2. Assignment of orders to picking stations & assignment of shelves to picking 

stations (cf. Tadumadze et al., 2022). 
3. Order processing at the picking stations (cf. Boysen et al., 2017b). 
4. Space allocation of shelves in the warehouse (cf. Merschformann et al., 2019; Li 

et al., 2021). 
5. Control of transport orders of individual robots (cf. Zhu and Li, 2022; Xie et al., 

2021). 
It should be noted that there has not yet been a simulation study of the complexity of 
Merschformann et al. (2019). Other simulation studies in the context of RMFS relate 
to solving one or more (maximum two) planning problems. Simulation studies have 
not been used as a basis for comparison in this paper, as they do not have generic 
planning problems.  
Further research was included to get a related simulation study with the central aspect 
of improvement of the system performance of RMFS. The current state of research is 
used to extend the considered assumptions in the work of Merschformann et al. 
(2019). An example is the use of ground-level storage RMFS warehouses which 



Evaluation of Different Use Case Configurations in RMFS 305 

 

causes the disuse of available warehouse height. Approaches, e.g., Xie et al. (2021) 
and Tadumadze et al. (2022), create multiple levels in RMFS to compensate for that. 
Furthermore, recent works on the performance analysis of RMFS also exist (cf. Duan 
et al., 2021; Gong et al., 2021; van Gils et al., 2018; Jaghbeer et al., 2020; Hanson et 
al., 2018; Duan et al., 2021; Gong et al., 2021; Lamballais et al., 2017). 

3 Simulation approach and implementation 
This section describes how simulation and optimization solutions are combined, and 
the discussion with focus interviews with experts from logistics fields is integrated.  
This work addresses all mentioned planning problems and performance analysis 
approaches in the implemented simulation model to design the demonstrator. The 
simulation model extends the approach of RMFS of Merschformann et al. (2019) by 
creating a simulation model for multi-level RMFS with a rolling planning approach. 
Often, exact optimization solutions are verified with simulation studies as 
mathematical optimization (Juan et al., 2015). With this work, we want to present a 
realistic simulation model (combined with heuristic solutions) for use in practice and 
integrate experts’ decision outcomes in the implementation phase: The demonstrator 
aims to make optimization approaches more accessible to users and logistics managers 
by implementing a parametrized simulation model. The user can handle it by defining 
input parameters for each optimization instance (performed in optimization 
heuristics).  
For performance evaluation of different use cases in RMFS and better height 
utilization (dimensions comparable to an automated warehouse), this work pursues a 
multi-level RMFS warehouse designed for high-bay racking. As illustrated in Figure 
1, three steps had to be implemented to create the demonstrator. The planning 
problems mentioned in section 2 are implemented in the simulation model in the first 
step, followed by constructing an initialization instance (step 2) and the consolidation 
into a demonstrator in step 3. 

 
Figure 1: Process of creating the demonstrator for evaluating configurations of 
RMFS 
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3.1 Step 1: Implementing planning problems’ solutions 
The demonstrator includes a simulation model extending the approaches of Xie et al. 
(2021) (multi-level RMFS) and Merschformann et al. (2019) (demonstrator for 
RMFS). The development of the demonstrator is based on a simulation concept that 
reflects the order picking process from the robot’s perspective. For that reason, agent-
based simulation is used to implement the robot as an interactive agent and analyse its 
behaviour and interactions with other robots in the fleet (Borshchev, 2013).  
The simulation model displays the material and information flow of the mobile robots 
in RMFS. All planning problems, according to section 2, have been considered and 
solved heuristically in the simulation model with a focus on the heuristic solution of 
Tadumadze et al., 2022 which aims to distribute all orders evenly on the order picking 
stations, minimize the robots’ movements and maximize the order picking stations’ 
throughput. Furthermore, the simulation model also includes a rolling planning 
approach with a planning horizon . Rolling planning horizons are introduced in 
production and warehouse planning to control and optimize stock levels or order 
processing. Rolling planning is profitable in this context to regularly set new orders 
into the system. In this way, continuous planning and management of arrivals are 
replicated, which are the main aspects regarding the interviews with logistics experts. 
A distinction between different planning horizons also allows the definition of 
different scenarios and is considered an input parameter for the following step. The 
associated concept is shown as a flow chart in Figure 2. 

 
Figure 2: Concept of rolling approach 

3.2 Step 2: Development of initialization instance 
The aim of instance generation at the second level of detail is to capture an initial 
state. An essential aim of the validation and verification is the definition of a most 
realistic instance. Therefore, the discussions with logistics experts resulted in the 
decision that the orders be processed in the time horizon  under consideration, their 
composition from the individual Stock Keeping Unit Types (SKU types), and the 
number of ordered SKUs and SKUs available in the warehouse define the most 
influencing parameters for RMFS. To create a demonstrator, it is necessary to avoid 
transient phases and use generic but realistic input variables in the simulation. 
Therefore, input parameters for an instance in this simulation model are:  
 the average order size 
 the number of robots used 
 the number of SKU types 
 number of pods 
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 number of orders in one planning horizon t
 number of stations
 the time window for planning horizon t

Different numbers of robots, pods, and picking stations are considered resources. 
Further components of the instance generation are the ABC structure of the shelf 
storage. The Pareto principle represented an exponential distribution function in the 
first dimensioning. Thus, it was assumed that the group of A-items represents 80 % 
of the total orders of a planning period. These contain 20 % of the available articles. 
This ratio can also be varied via a factor . 

3.3 Step 3: Development of the demonstrator 
The user of the demonstrator can vary the initial state of input parameters, mentioned 
in section 3.2, via Graphical User Interface (GUI), shown in Figure 3. The input 
parameters define an instance for optimization and the necessary input for starting the 
simulation model. Thus, the user can adopt different system configurations, reflecting 
different use cases. Handling multiple configurations of RMFS resulted from the 
discussion with logistics experts. The interpretation of the performance analysis is 
more comprehensible for users if they can identify the use case configuration with 
their logistics application area. Existing instances from given studies can only be 
interpreted in a limited way. 

Figure 3: Exemplary screenshot of the demonstrator’s input parameters (own 
illustration) 
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4 Analysis of different use case configurations 
To illustrate how to analyse different configurations of use cases in RMFS, a 
simulation study is performed in the next section of this paper. Three use cases reflect 
hypothetical scenarios of different application areas for RMFS. The objective is to 
show how to use the simulation model and to clarify the interfaces between the 
simulation and the demonstrator. 
A simulation study with three different instances is conducted as part of this work. 
Each instance represents a different use case configuration which can be selected via 
the demonstrator’s input GUI. The selected use case configurations are listed in Table 
1. The analysis of the different use cases is intended to identify an optimal 
configuration for RMFS for the user of the demonstrator. It will also be investigated 
which configuration best adapts to the system. Use case configuration 1 reflects a 
typical e-commerce scenario (e.g., Same-Day-Delivery of different products); use 
case configurations 2 and 3 correspond to a production warehouse. First one (use case 
configuration 2) represents a supermarket with low SKU type variety in the production 
line (e.g., containers with screws next to a pre-assembly line). Use case configuration 
3 is an example of a warehouse with many products (e.g., a warehouse after 
assembling the products). The design of instance implementation is based on 
interviews with experts who validate those use case scenarios.  

Table 1: Assumptions for simulation study according to each use case configuration 

 Configuration 1 Configuration 2 Configuration 3 
use case area e-commerce supermarket outbound 
the average order size 1,4 4,6 10,6 
the number of SKU types 200 50 500 
number of pods 750 750 750 
number of orders in t 1000 1000 200 
lambda 0,041 0,160 0,018 
number of stations 15 15 15 
the time window for t 30 min 30 min 30 min 
the number of robots  9 9 9 

 
With the provided simulation data of the input GUI, it is possible to run Monte-Carlo 
simulations based on internal sources of randomness (Borshchev, 2013). It enables 
the analysis of the different scenarios in comparison to each other. The stochastic 
random distributions are implemented in the instance generation and thus form an 
integrated stochastic model. Many repetitions are carried out with the assumptions 
made to map Monte Carlo simulations. The determination of the simulation frequency 
and thus the necessary number of simulation runs  is based on the defined key 
performance indicator   according to Merschformann et al. (2019) which is 
defined as ratio between the “Total Number of Picked SKUs” and the “Total Number 
of Pod Visits”. The ratio is measured at the end of the simulation runs (simulation 
period ( ) = 60 ). A negative value of this ratio would reveal a faulty simulation 
run in which too frequent or unresolvable blocking operations of the picking robots 
occur. The system performance in the respective use case configuration is measured 
by the typical key performance indicator "Total Number of Fulfilled Orders" and 
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"Total Number of Picked SKUs" in a logistics system. The first KPI reflects the 
possible warehouse throughput. The second is a central KPI for picking efficiency. 
Both KPIs are used in science (in reference to the literature of section 2) and practice 
to measure the performance and efficiency of a logistics process and form the 
framework for decisions by logistics managers. The simulation study results are 
summarized in Table 2 as averaged values. The results are considered at all levels of 
this multi-level RMFS.  

Table 2: Simulation study results 

Configuration 1 Configuration 2 Configuration 3 
use case area e-commerce supermarket outbound 
Total Number of 
Fulfilled Orders 

1268 205 92 

Total Number of 
Picked SKUs 

1978 1732 1739 

Hit Rate 9,374 16,654 7,464 

Based on the simulation study results, evaluating different use case configurations for 
RMFS is possible. Visualization with GUI is important for interpreting simulation 
results (Wenzel et al., 2003). We use this possibility to connect the simulation model 
with GUI and create the demonstrator. All output parameters are collected in a 
database and displayed in the GUI (Figure 5). To consolidate the results, the 
demonstrator's approach is to represent the mentioned KPIs as output parameters. 

Figure 4: Exemplary screenshot of the demonstrator’s output parameters (own 
illustration) 
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The decision on the system variables and input parameter variation are based on 
interviews with practical experts from logistics areas or production fields. On the one 
hand, they validate the opportunity to take the demonstrator as a tool for consultation 
hours with simulation experts. On the other hand, the interviews conclude with the 
construction of use case scenarios close to reality. In this regard, it is obvious that 
using the demonstrator is more cost-effective than implementing the system directly.  
The demonstrator operates as decision-support, and the subsequent analysis of the 
different configurations aims to make clear the advantages of simulation for 
supporting decisions in logistics areas. The main advantages are the closeness to 
reality, the flexibility, the scalability, and the predictability of the simulation model 
(Borshchev, 2013). Furthermore, the agent-based simulation enables the mapping of 
different behaviours and, in this context, the behaviour of the logistical system. The 
model can be flexibly extended in the simulation in order to be able to carry out further 
investigations if the previously set conditions have changed or the analysis focus of 
logistics areas is changed.  
To give an example of flexibility, the GUI of output parameters (Figure 5) represents 
additional KPIs related to RMFS. These are the "Total Number of Pod Visits", the 
"Order Picker Utilization", as well as the distributions of the "Picked SKUs Per 
Station" and the "Processed Order Per Station". Those KPIs enable the evaluation of 
the utilization of a picker and the distribution of individual orders to the different 
stations. 

5 Conclusion 
Evaluating different use case configurations of RMFS is essential in decision-making 
to find the best possible configuration for the respective requirements and thus ensure 
an effective and efficient logistics solution. This work shows how a simulation model 
of multi-level RMFS with integrated rolling planning approach can be integrated into 
a demonstrator. A simulation study is performed to present how users of the 
demonstrator can analyse different use case configurations. Therefore, three use case 
configurations of logistics areas in e-commerce and production are defined and 
analysed by the main KPIs.  
The variation of input parameters can analyse new use case configurations. Therefore, 
logistics managers can achieve initial information about the performance of RMFS. 
Ideally, they can identify with the use case configuration and take these results as 
support for or against the system. For better validation, the input and output parameter 
decisions are grounded on interviews with experts from several logistics areas.  
However, the discussions with those experts have created a realistic model. Some 
assumptions of the system (e.g., neglect of energy consumption or cost calculation) 
are limitations of the work. Those aspects can also be content of future work 
implemented in the presented simulation model. The focus can therefore be shifted 
from analysing the whole system's performance to analysing each robot's 
performance. Further research can include evaluating robot blocking processes on the 
shop floor and analysing robot behaviour - adding KPIs such as the waiting time of 
each robot in front of order picking stations or the delay times of each robot due to 
blocking. 
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