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Abstract

Matteo Breschi

Inferring the equation of state with multi-messenger signals
from binary neutron star mergers

The joint detection of the GW170817 and its electromagnetic counterparts was a mile-
stone in multi-messenger astronomy. We investigate the observational constraints
on the neutron star equation of state provided by multi-messenger data of binary
neutron star mergers, analyzing the gravitational-wave transient GW170817 and its
kilonova counterpart AT2017gfo and exploring new scenarios with next-generation
gravitational-wave detectors. The LIGO-Virgo data of GW170817 are analyzed us-
ing different template models focusing on the implications for neutron star matter
properties. We study the systematic tidal errors between current gravitational-wave
models finding that waveform systematics dominate over statistical errors at signal-
to-noise ratio ≳ 100. We study AT2017gfo using semi-analytical model showing that
observational data favor multi-component anisotropic geometries to spherically sym-
metric profiles. By joining GW170817 and AT2017gfo information with the NICER
measurements, we infer the neutron star equation of state constraining the radius
R1.4M⊙ of a 1.4 M⊙ neutron star to 12.39+0.70

−0.65 km and the maximum mass MTOV
max to

2.08+0.16
−0.09 M⊙ (90% credible level). Finally, we explore future constraints on extreme-

matter delivered by postmerger gravitational-waves from binary neutron star merger
remnants. These transients can be detected with matched-filtering techniques and
numerical-relativity-informed models for signal-to-noise ratios ≳ 7. Postmerger rem-
nants can probe the high-density regimes of the nuclear equation of state, allowing the
inference of the maximum neutron star mass MTOV

max with an accuracy of 12% (90%
credible level). Moreover, postmerger transients can be used to infer the presence of
non-nucleonic matter phases through the inference of softening of the equation of state.
For particular binary configurations, softening effects of the equation of state can lead
to breaking of quasiuniversal properties and earlier collapse into black hole. These
deviations can be detected for postmerger signals with signal-to-noise ratio ≳ 9.
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Introduction

Neutron stars (NSs) are compact stars with typical masses M ≃ 1.4 M⊙ and equatorial
radii R ≃ O(10 km). These objects are created as a result of gravitational collapse of
the central core of giant stars with mass ∼10−25 M⊙ [2, 3]. The gravitational collapse
combined with the supernova (SN) compresses the star core to densities comparable
to atomic nuclei, triggering electronic capture processes. Due to their significant com-
pactness, i.e. C = (GM)/(c2R) ≃ 0.1 − 0.3, NSs are relativistic objects and their
constituent matter reaches an extreme-density regime, i.e. ρ ≳ ρsat. In general relativ-
ity (GR), the hydrostatic equilibrium of spherically-symmetric self-gravitating objects,
such as NSs, is governed by the Tolman-Oppenheimer-Volkoff (TOV) equation [4, 5]
and by the equation of state (EOS), that defines the density-pressure relation P (ρ)

in the interior of the star [e.g. 6, 7, 8]. The determination of the NS EOS is an open
theoretical problem since it requires the characterization of the nuclear many-body
interaction in extreme conditions of density, neutron-proton asymmetry and temper-
ature [9, 10, 11]. The central density of a NSs with mass of 1.4 M⊙ is expected to
be ∼2ρsat [12]; while, for a 2 M⊙ NS, the central density may reach values ≳ 4ρsat.
In these conditions, the actual nuclear constituents of NSs are largely uncertain [e.g.
12, 13] and astronomical data of NSs can provide important observational informa-
tion [e.g. 14, 15, 16, 17]. In particular, binary neutron star (BNS) mergers can probe
the properties of the nuclear matter thanks to the direct observation of dense matter
in dynamical and strong-field conditions.

Astronomical observations of neutron stars. The existence of NSs has been
proposed in 1933 by Baade and Zwicky [18] one year after the discovery of neutrons [19],
in order to tentatively explain the massive SN remnants. Three decades later, the radio
astronomers Hewish and Okoye [20] and Bell Burnell [21] detected radio pulses from
stars that are now believed to be highly magnetized and rapidly spinning NSs, known
as pulsars. A pulsar is a NS that emits beams of electromagnetic (EM) radiation out
of their magnetic poles. The EM radiation originates pulses with a regular period
that can be observed if a beam is pointing toward Earth. Of particular interest is
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the discovery of Hulse and Taylor [22] in 1974 of the first pulsar in a binary system.
Thanks to the measurement of the orbital period decay, this system provided the first
indirect observational evidence for the existence of gravitational radiation [23]. Radio
pulsars represented a milestone for the history of NS observations since they provided
accurate estimates of the NS masses, proved the existence of NSs in binary systems,
and allowed for the first tests of GR with compact binary coalescences (CBCs) [e.g.
23, 24, 25].

The promising observations of radio pulsars and the indirect proof of gravitational
radiation increased the interest of scientific community for gravitational-wave (GW)
observations. The development of the first GW detectors was mainly led by Weber
[26, 27] in the late 1960s, with the employment of resonant bars coupled with piezo-
electric transducers. However, these instruments did not permit a confident detection
of GWs due to their narrow sensitivity band and the excess of thermal noise [28].
This pushed the community towards the development of improved instruments with
wider sensitivity ranges, such as laser interferometers (IFOs), initiating the large-scale
experiments of Laser Interferometer Gravitational-Wave Observatory (LIGO) [29, 30]
and Virgo [31] at the European Gravitational Observatory (EGO). About a century
after their theoretical prediction [32, 33], the first GW signal was been detected by the
ground-based IFOs of LIGO on September 15, 2014 [34]. This unprecedented tran-
sient, known as GW150914, corresponded to the gravitational radiation emitted by a
binary black hole (BBH) merger with binary mass M = m1 + m2 ≃ 62 M⊙ located
at a luminosity distance of ∼400 Mpc. The detection of GW150914 opened a win-
dow on the GW universe, permitting new studies and investigations of several aspects
of fundamental physics and observational astrophysics, such as strong-field gravity,
astrophysical populations and cosmology [e.g. 35, 36, 37, 38].

The first direct observation of a BNS GW signal, namely GW170817 [39, 40],
was recorded two years later, on August 17, 2017, by the ground-based IFOs LIGO
and Virgo. GW170817 data are consistent with the gravitational radiation emit-
ted by two inspiralling NSs. The transient lasted in the detectors for more than
one minute, showing the characteristic chirping frequency pattern expected for these
sources [41]. GW170817 was followed by a short gamma-ray burst (GRB), labeled
GRB170817A [42], which reached the space observatories ∼1.7 s after the binary co-
alescence time [43, 44]. Eleven hours later, several telescopes started to collect pho-
tometric and spectroscopical data from AT2017gfo, a kilonova (KN) transient coming
from a coincident region of the sky [45, 46, 47, 48, 49, 50, 51, 52, 53]. The follow up of
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the source lasted for more than a month and included also non-thermal emission from
the GRB170817A afterglow [e.g., 54, 55].

More recently, LIGO-Virgo IFOs recorded a second BNS merger, i.e. GW190425 [56],
with no identification of EM counterparts. This unfortunate result is primarily due
to the fact that the source was located at a luminosity distance ≳ 150 Mpc and the
signal was observed with high confidence only in a single IFO, leading to an inaccurate
sky localization of the source, i.e. ∼104 deg2 at the 90% confidence level. Moreover,
the GW190425 progenitors had a total mass ≳ 3 M⊙, reinforcing the hypothesis of a
faint KN transient [57, 58]. On the other hand, astronomical observatories identified
a possible KN candidate associated to a long GRB [59]; however, the interpretation of
this event is uncertain since no GW counterpart has been observed. In recent years, a
facility providing new NS observations is the Neutron Star Interior Composition Ex-
plorer (NICER) [60, 61, 62, 63, 64, 65]. This telescope is located on the International
Space Station and performs spectroscopic observations of the thermal and non-thermal
emissions coming from known pulsars in the X-ray band. To date, NICER has provided
estimates of the masses and the radii of PSR J0030+0451 and PSR J0740+6620.

The combined observation of GW170817, GRB170817A and AT2017gfo decreed
the dawn of multi-messenger (MM) astronomy with CBCs [66]. MM inference of as-
trophysical events, such as BNS mergers, is a fundamental resource to shed light on
the mechanism at the origin of the observed transients, obtain accurate measurements
of the source properties and improve theoretical models, by gaining information from
observational data. Among all the possible physical information that can be extracted
from these events, in this Thesis we focus on constraints on the NS EOS [e.g. 67,
68, 69, 70, 71, 72]; however, we recall as relevant GW170817-AT2017gfo analyses the
studies on cosmological expansion [73] and strong-field gravity [74]. Furthermore, in
the coming years, current IFOs are expected to upgrade their sensitivities, increasing
the signal-to-noise ratios (SNRs) of the observed sources and improving their progen-
itors properties identification [29, 30, 31, 75, 76, 77]. Moreover, the GW detector
network is expected to extend by annexing the Kamioka Gravitational Wave Detec-
tor (KAGRA) [78] and implementing next-generation (XG) facilities [75, 77, 79]. These
developments will provide a broader coverage of the sky and a wider range of sensi-
tivity in the GW spectrum. In view of these new facilities, it is essential to develop a
framework for MM data analysis (DA) of BNS mergers and EOS inference.



Introduction 4

Figure 1: Exemplary set of mass-radius sequences for non-rotating zero-temperature NS
extracted from polytropic and microphysical EOSs. For each EOS, we highlight the maximum
mass configuration MTOV

max (stars) and the radius R1.4M⊙ for a 1.4 M⊙ NS (circles). The plot
also shows the masses from two pulsar observations [87, 88] and the theoretical constraints.

The equation of state. The core of a non-rotating zero-temperature NS is typically
modeled as a fluid of neutrons in β-equilibrium. The NS core is sustained by the neu-
tron degeneracy pressure and repulsive nuclear forces that prevent it from collapsing
into a black hole (BH). More accurate descriptions of NS cores include also protons,
electrons and muons [e.g. 80]. Moving outward, the crust is expected to be composed
of electrons and atomic nuclei, as well as of free neutrons [80]. Matching the predic-
tions for the crust and the core, it is possible to estimate the pressure-density relation
P (ρ). The latter can be plugged in the TOV system in order to estimate the mass-
radius sequence M(R) for a non-rotating zero-temperature NS. The nuclear origin of
the forces that sustain a NS permit the connection between the microscopical nuclear
description of the interior and the macroscopical observable quantities, such as NS
masses and radii. Furthermore, in a realistic scenario, the properties of NS matter are
affected by several physical contributions that extend the previous description, such
as finite temperatures [e.g. 81], rotational support [e.g. 82], neutrino trapping [e.g. 83]
and non-nucleonic matter [e.g. 8, 84, 85, 86].

Figure 1 shows the mass-radius sequences extracted from an exemplary subset of
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hadronic and polytropic EOSs together with a few notable theoretical and observa-
tional constraints. In this Thesis, we make use of nuclear EOSs computed in differ-
ent works. The finite temperature, composition-dependent EOSs are: BHBΛϕ [85],
BLh [8, 11], BLQ [8, 11, 86], DD2 [10, 89], LS220 [9], SFHo [90], SLy [80, 91]; the
EOSs in piecewise polytropic forms are: ALF2 [92], ENG [93], MPA [94], MS1(b) [95],
2B, 2H, 15H, 125H, B, H, H4, HB from Ref. [6, 96] and the Γ=2 ideal gas EOS. In
general, the low-density properties of EOS, i.e. ρ ≲ ρsat, are extrapolated employing
nuclear experimental results from hadron and heavy ions collisions [e.g. 97, 98, 99,
100, 101, 102, 103]. Moving toward higher densities, i.e. ρ ≳ ρsat, different approaches
and modeling choices lead to different description of the NS matter. In particular,
the radius R1.4M⊙ of a 1.4 M⊙ NS can span roughly the range 9−15 km, while the
maximum mass MTOV

max for a non-rotating zero-temperature NS lies between 1.8 M⊙

and 2.7 M⊙. It is common practice to qualitatively label as soft EOSs the relations
that sustain small radii and small MTOV

max (e.g. 2B and APR4), in order to distinguish
them from the stiff EOSs that support larger values of R1.4M⊙ and MTOV

max (e.g. DD2
and MS1b). However, the presence of non-hadronic phases of matter may lead to a
softening of the EOS, decreasing the maximum supported mass MTOV

max [67, 85, 86].
Fundamental theoretical results can only impose upper-bounds in the mass-radius

diagram, denoting prohibited regions for the TOV solutions, that are localized in a
very-high-density regime. The weaker constraint is given by pure GR arguments and
it is labeled as the BH limit: this region yields to a compactness C ≥ 1/2; then,
this object is expected to collapse into a BH. The Buchdahl’s limit [104] comes as a
consequence of the TOV equation imposing non-negative density and pressure and it
requires the mass to be M < 4Rc2/9G. Finally, the strongest theoretical constraint
is given by the causality principle, for which the speed of sound in the NS matter is
imposed to be smaller or equal than the speed of light c. We include in this context
the estimates of NS masses from the massive radio pulsars PSR J0348+0432 [87] and
PSR J0740+6620 [88], as shown in Figure 1. These values can be interpreted as lower
bounds for the maximum mass MTOV

max of a non-rotating stable NS in equilibrium. In
general, pulsar data show that the NS EOS sustains a maximum mass MTOV

max ≳ 2 M⊙.

The dynamics of binary neutron star mergers. The dynamics of BNS mergers
is governed by multiple interactions that act on different timescales: gravitational fields
determine the orbital dynamics; (strong) nuclear forces between the NS components
determine the matter properties during the plunge; electroweak decays occur in the
unbound matter after merger, brightening the EM counterparts. Furthermore, the
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Figure 2: Schematic representation of a BNS merger. The cartoon highlights the consecu-
tive stages of the system and the relevant phenomena that are expected to occur during the
evolution. The typical timescale of the different stages are reported between brackets. The
blue and red bands (at the bottom) show the nature of the transients emitted by the system

during the consecutive stages, corresponding respectively to GW and EM radiations.

inclusion of finite-temperature effects and general-relativistic hydrodynamics (GRHD)
is necessary in order to accurately model the evolution of a BNS system. The variety
of interactions is reflected in several information carriers, that span from GWs to radio
transients and make BNS mergers extraordinary system to test physical models against
observational data. On the other hand, the complexity of these phenomena places
challenging theoretical problems for the determination of a complete and unified model
for BNS mergers. However, resorting to numerical relativity (NR) simulations [e.g.
105, 106, 107, 108, 109, 110, 111] we can access these extreme regimes, extracting
information on the merger dynamics and characterizing the different stages of the
system.

Figure 2 depicts the phenomenology of a BNS coalescence. If a binary forms
through standard formation channels [29], eccentricity is efficiently radiated during
the early evolution and the motion is circularized by the time the binary enters the
frequency band of ground-based GW detectors. In these conditions, the NSs inspiral
towards each with monotonically increasing orbital frequency, as described by post-
Newtonian (PN) and effective-one-body (EOB) predictions [e.g. 112, 113, 114]. In gen-
eral, binaries in quasi-circular orbits evolve from a low-velocity regime to a strong-field
condition, dissipating energy through GWs. The radiated GWs carry the footprint
of the BNS dynamics, characterized by a chirping frequency evolution and increas-
ing amplitude. The maximum of the GW amplitude is conventionally denoted as the
moment of merger. Approaching the merger, tidal effects become relevant and affect
the outgoing gravitational radiation [e.g. 115, 116, 117]. For unequal mass binaries,
tidal forces in proximity of the merger can cause partial or complete disruption of the
low-mass NS [82, 118].
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When the NSs collide, a considerable amount of neutron-rich hot material, known
as dynamical ejecta, becomes unbounded at mildly relativistic velocities [119]. Sub-
sequently, the NS cores merge together generating a dynamical remnant. Depending
on the EOS and on the properties of the remnant, the final object can undergo a BH
collapse at any time after the merger [e.g. 120, 121]. The case in which the BH forms
promptly after the collision of the NS cores is known as prompt collapse (PC) [57,
122, 123, 124]. Crucially, the PC avoids bounces in the dynamics of the NS remnant,
mitigating the ejection of shocked matter [125]. Moreover, if PC occurs, a large frac-
tion of the tidally-disrupted ejected matter (if present) is expected to fall back into
the BH remnant [82]. In general, when a BH forms, the central remnant stabilizes on
timescales ≲ O(1 ms) and the GW signal dampens with characteristic frequencies and
times defined by the quasi-normal modes (QNMs) of the BH [126].

If the remnant does not promptly collapse after the merger, the central object is
dynamically unstable [82, 127] due to hydrodynamical and gravitational forces that
cause the matter to stretch and wobble, favoring matter ejection and formation of
baryonic winds [83, 128]. Rotation and thermal pressures are expected to provide
additional support to sustain the remnant above the maximum rigidly-rotating mass
limit during the early postmerger (PM) phase. On timescales ≲ 10 ms, the system
loses a considerably part of its energy through GWs [129]. The PM GW signal is
mainly characterized by a central frequency peak, known as f2 and related with the
rotational dynamics of the remnant [129, 130]. In this early stage, it is also expected
a burst of neutrino radiation with luminosity peaks of O(1053 erg s−1) [131, 132].

For timescales of O(10 ms) after merger, the majority of the disposable energy has
been dissipated and the remnant undergoes a spin-down due to viscosity effects [125].
A stable NS remnant reaches an approximately axisymmetric configuration with a cold
and slowly-rotating core, i.e. T ∼ O(10 MeV) and Ω ∼ O(100 Hz) [83, 133, 134, 135,
136]. On these timescales, an accretion disk is expected to form in the surrounding
the central object, triggering neutrino irradiation, nuclear recombination, magneto-
hydrodynamic viscosity and driving mass outflows to the outer environment [137, 138,
139]. Moreover, the merger remnant is expected to launch a relativistic jet [140] that
travels across the ejected matter leading to the formation of a GRB [141].

Whether the remnant collapses into BH or a massive NS originates, the BNS coales-
cence are expected to generate O(10−2 M⊙) of unbounded matter in the surrounding
environment. On timescales of a day after merger, the ejected material is expand-
ing, thermalizing and undergoing several thermo-nuclear processes [142]. This matter
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represents an ideal site for rapid-neutron-capture processes (r-processes). These in-
teractions are responsible for the nucleosynthesis of elements heavier than iron, i.e.
with mass number A ≳ 58 [143]. The production of heavy elements is associated to
a characteristic EM transient called KN [50, 144, 145, 146, 147]. A KN transient
is quasi-thermal EM emissions characterized by a luminosity peak located between
the optical and near infrared (NIR) bands with typical magnitudes ∼18. The sig-
nals fades after timescales of 15 days after merger reaching magnitudes ≲ 20. On
much longer timescales, i.e. O(103 days), the jet decelerates shocking the insterstellar
medium (ISM) and powering a non-thermal emission known as GRB afterglow [54,
55, 148]. A similar phenomenon is expected also from the high-velocity tails of the
dynamical ejecta [149, 150].

The EOS properties have multiple implications on the BNS dynamics, such as the
tidal effects during the late inspiral [117, 151], the PM dynamics of the remnant [e.g.
82, 122, 129, 152, 153, 154] and the properties of the unbound material [e.g. 125, 155,
156, 157]. Then, MM information is expected to impose significant constraints on
the NS matter properties and consecutively on the behavior of nuclear interactions in
extreme conditions.

Summary of contents. In this Thesis, we investigate the EOS constraints provided
by observational data of BNS mergers, studying current MM observation of GW170817
and its KN counterpart, and exploring new perspectives with XG GW detectors. The
analyses are performed within a Bayesian framework relying on the Bayesian Jenaer
Software (bajes) [158, 159]. The employed methods make use of NR data extracted
from the database of the Computational Relativity (CoRe) Collaboration [57, 58, 82,
83, 86, 125, 160, 161]. This Thesis is structured as follows. Chapter 1, introduces the
methods of Bayesian inference and we discuss the implementations of bajes. Chap-
ter 2 presents the studies on GW170817, discussing the implications for NS matter
properties and studying statistical and systematic errors in tidal inference. In Chap-
ter 3, we analyze the KN counterpart AT2017gfo and we perform MM EOS inference
combining GW and KN information with NICER measurements. Chapter 4 discusses
the PM GW signals from BNS remnants and the development of NR-informed PM
models. In Chapter 5, we show GW DA applications of BNS transients with XG
detectors, focusing on PM inference and high-density EOS constraints. Finally, in
Conclusions, we present future plans and perspectives. We include a discussion on
the sampling methods in Appendix A; while, Appendix B and Appendix C present in
detail the development of the BNS PM models, respectively NRPM and NRPMw.
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Chapter 1

Bayesian inference

The modern formulation of probability theory was developed by Bayes [162] in 1763
and successfully used by Laplace [163] in various scientific applications, from astronomy
to medicine. These works are elegantly discussed in his book, in which he asserted: la
thèorie des probabilitès n’est que le bon sens reduit au calcul 1. However, the Bayesian
methods were largely forgotten until 1939, when Jeffreys [164] developed a compre-
hensive framework for Bayesian inference. In more recent times, these methods have
been expounded and extended [e.g. 165, 166, 167, 168, 169, 170, 171]. Nowadays,
Bayesian inference has become a standard DA method of astrophysical and cosmolog-
ical events [e.g. 172, 173, 174, 175, 176], since it offers a generic statistical framework
to rigorously test hypothesis against observational information. Given an observable
event and a set of background hypotheses, Bayesian inference allows one to infer the
properties of the observed data in terms of probability distributions, and also to select
the best-fitting model among competing hypotheses. In particular, Bayesian meth-
ods are central tools used in GW astronomy to determine the source properties of an
observed signal [177, 178, 179] and the related applications. Furthermore, Bayesian
inference offers a suitable framework to combine different observational datasets from
MM astronomical observations, such as GWs and EM counterparts emitted by BNS
mergers [e.g. 16, 180].

This Chapter is structured as follows. We introduce the concept of probability in
Section 1.1 and discuss the theoretical foundations of Bayesian inference in Section 1.2.
Finally, Section 1.3 presents the implementation of the Bayesian framework used for
this Thesis. The detailed discussion of the sampling methods implemented in the
pipeline is deferred to Appendix A.

1The theory of probabilities is only common sense reduced to calculation.
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1.1 Definitions

Following the approach of Cox [181] and Jaynes [182], the probability of an event is
interpreted as its degree of belief. For continuous stochastic variables, the probability
of obtaining a specific realization is described by the cumulative distribution function
(CDF) or analogously by the probability density function (PDF). Considering the
random variable θ and its domain Θ ≡ [θmin, θmax] with generic boundaries (i.e. θmin

and θmax can be independently finite or infinite), the CDF P(θ ≤ θ∗) evaluated at
θ∗ ∈ Θ is the probability that θ will take a value lower than or equal to θ∗. This
definition ensures that the CDF is a monotonic increasing function of every random
variable θ. Note that P(θ > θ∗) = 1 − P(θ ≤ θ∗). The PDF p(θ) is defined as the
density of the CDF with respect to the stochastic variable θ, i.e.

p(θ) =
d

dθ
P(θ ≤ θ∗) . (1.1)

In other terms, the integral of the PDF p(θ) over a range [θ1, θ2] ⊆ Θ corresponds to
the probability P(θ1 ≤ θ ≤ θ2). From Eq. (1.1), we have p(θ) ≥ 0 for all θ ∈ Θ and∫
Θ
p(θ) dθ = 1. Given the probability of a stochastic variable of interest, it is possible

to compute expectation values and credibility regions, that deliver the information
on the inferred variable. Furthermore, in the context of DA, we are interested in the
estimations of conditional PDFs p(θ|λ), i.e. the probability of θ given the condition
λ, and joint PDFs p(θ, λ) = p(θ|λ) p(λ), i.e. the probability that both θ and λ occur.
Note that, if θ and λ are independent, then p(θ|λ) = p(θ). These notions can be
straightforwardly generalized to a multi-dimensional parameters’ space.

The task of a Bayesian inference is the formulation and the computation of con-
ditional probabilities for the quantities of interest. It is possible to classify this topic
in two main problems: parameter estimation (PE) and model selection (MS). With
PE we mean the evaluation of the characteristic conditional PDFs for the parameters
that define the model. On the other hand, with MS we refer to the discrimination
between competing models in light of the data, comparing the suitability of different
assumptions directly on the observation.

1.2 Bayes’ theorem

In real physical experiments, observational information is encoded in a set of data d,
the realization of which depends on the observable under consideration. Employing
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a theoretical model based on some background hypotheses H and parameterized by
a set of parameters θ, it is possible to extract this information in terms of posterior
PDFs of the parameters θ, i.e. p(θ|d, H). This procedure takes advantage of the
Bayes’ theorem [183, 184, 185],

p(θ|d, H) =
p(d|θ, H) p(θ|H)

p(d|H)
, (1.2)

where p(d|θ, H) is the likelihood function, p(θ|H) is the prior distribution and p(d|H)

is the evidence. The likelihood function describes the probability of observing the data
d for a given combination of θ under the assumption that the hypothesis H is true.
Therefore, it encodes the observational information and it predicts the agreement
between the observed data d and the expected outcome for every given sample θ of
the parameter space. The prior PDF p(θ|H) depicts the knowledge on the parameters
before performing the estimation (or takes into account previous experimental results).
Usually, the functional form of this term is chosen in accordance with geometrical or
physically-motivated argumentation. The term p(d|H) is labeled as evidence and
it represents the probability of observing the data d given the hypothesis H. The
evidence is also called marginalized likelihood since, according to the marginalization
rule, it can be expressed as

p(d|H) =

∫

Θ

p(d,θ|H) dθ =

∫

Θ

p(d|θ, H) p(θ|H) dθ , (1.3)

where the integral is extended over the entire parameters space Θ. Subsequently, the
PDF p(θ|d, H) represents the probability of the parameters θ in light of the data
overhauled by our a priori information. The knowledge of p(θ|d, H) allows us to
compute the expectation of the statistical quantities of interest. From this argument
it follows that, in order to perform PE, we have to introduce a prior distribution p(θ|H)

and a likelihood function p(d|θ, H); then, the properties of the model are encoded in
the posterior distribution p(θ|d, H) that can be computed imposing Eq. (1.2).

In Eq. (1.2), for a fixed set of assumptions H, the evidence acts like a normalization
constant; however, this quantity plays a crucial role in the context of MS. If we are
interested in comparing two competing hypotheses, say HA and HB, in the Bayesian
framework it is natural to introduce the odds ratio as, i.e.

OB
A =

p(HB|d)
p(HA|d)

=
p(HB)

p(HA)

p(d|HB)

p(d|HA)
, (1.4)
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The ratio OB
A encodes the will of the data in favoring one model over another and it

quantifies which one is better predicting the data. Assuming that the two hypotheses
are equiprobable p(HB) = p(HA), it is possible to reduce the computation to the ratio
of the evidences, also known as Bayes’ factor (BF),

BB
A =

p(d|HB)

p(d|HA)
. (1.5)

If BB
A < 1 then the hypothesis HA is preferred by the data, otherwise HB is favored if

BB
A > 1. However, this rule is not always straightforward since the estimation of the

BF might suffer from uncertainties [186, 187]. Then, in order to achieve robust and
conservative inferences, more stringent bounds are required in order to prefer a tested
hypothesis [188].

1.3 bajes: the Bayesian Jenear software

In a realistic scenario, the form of the likelihood function is not always analytically
determinable and the parameter space has usually a large number of dimensions. For
these reasons, the evaluation of the posterior PDF and the estimation of its integral are
performed with stochastic techniques. In particular, sampling methods have proven
to be reliable and generic tools for the analysis of non-analytical forms and multi-
dimensional parameter spaces [178, 189, 190, 191], capable to give robust and stable
results. We defer to Appendix A for a detailed discussion of the sampling algorithms
employed in this Thesis, i.e. Markov-chain Monte Carlo (MCMC) algorithms [e.g. 170,
192, 193, 194, 195] and nested sampling [185, 196, 197, 198, 199].

In order to tackle Bayesian DA problems, we developed bajes [baIEs] [158, 159], a
Python package for generic Bayesian inference with specific functionalities for GW
and MM astrophysics. bajes aims to provide a versatile and robust framework for
generic Bayesian inference within a simple and clear approach. In order to achieve this
task, the software relies on a modular and composed architecture and it implements
logically specialized objects. Furthermore, we decided to keep a light-weight setup with
minimal dependencies on external libraries. These properties make bajes a simple
and general tool with a wide range of applicability. The body of the bajes software is
constituted by two components: the inf module, that represents an implementation
of the Bayesian logic, and the obs module, that contains the tools to manage and
process physical data. Currently, bajes.obs includes two sub-modules: gw and kn.
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The gw module provides the tools necessary to deal with GW analysis described in
Chapter 2. The kn module supplies a framework for the analysis of KNe discussed in
Chapter 3.

The Bayesian approach is constituted by three fundamental stages [169]: formu-
lating a model, comparing the model with the data and inferring the properties of
the model. The goal of the inf module is to provide a flexible and general inter-
face capable to adapt itself to a broad variety of problems. The bajes.inf module
supplies a Prior and a Likelihood objects, the combination of which defines the
Bayesian model. Then, it is possible to fit the model to the data relying on a specific
Sampler method. bajes interfaces with the MCMC algorithm emcee [170] and the
nested samplers cpnest [197], dynesty [198] and ultranest [199]. Moreover, ba-

jes includes a customized parallel tempering Markov-chain Monte Carlo (PTMCMC)
sampler based on ptemcee [200]. The output of the sampling routines is the predic-
tion of the conditioned probability of interest.

In the DA context, the statistical infrastructure has to be flanked by the physical
characterization of the experimental data with the purpose of defining a full Bayesian
model. Moreover, within a MM framework, it is essential to develop a flexible pipeline
capable of combining different datasets and physical models. This issue can be tackled
allowing the infrastructure to merge different Bayesian models, extending the consid-
ered parameter space and generalizing the definition of the likelihood function. This
implies the use of large amounts of data and computationally expensive models. It
follows that efficient parallelization techniques and well-calibrated proposal methods
are necessary to optimize the performances of such a flexible pipeline. We discuss the
pipeline provided with the bajes package in Section 1.3.1 and we show parallelization
performances of different sampling methods in Section 1.3.2.

1.3.1 Pipeline

bajes provides an automatized pipeline for the inference of MM transients, with a
particular focus on GW DA. By default, bajes includes the likelihood definitions
used for GW and KN studies, that can be combined in an unique MM framework.
The package provides the data for the GW events released in the first gravitational-
wave transients catalog (GWTC-1) [172] and the KN data of AT2017gfo corresponding
to the bolometric magnitudes for different photometric bands [45, 46, 47, 48, 49, 50, 51,
52, 201]. Moreover, the GW sector of the pipeline includes additional functionalities,
such as spectral calibration envelopes for recorded data [202], reparameterization of
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Figure 1.1: Left panel: Fraction of events found within a confidence interval of the estimated
posterior PDFs. The data are estimated with a simulated set of 100 mock BBH signals. For
every parameter, the label shows the p-value of the Kolmogorov-Smirnov test. Right panel:
Probability-probability plot for the posteriors of GW150914 parameters. On the x-axis, the
CDFs estimated with the bilby pipeline and on the y-axis the same quantities computed
with the bajes pipeline. The legend shows the square root of the Jensen–Shannon divergence

for each parameter.

noise curve uncertainties [177, 178], reduced-order-quadrature (ROQ) approximation
for accelerating likelihood evaluations [203] and TOV solver [e.g. 6]. These tools are
crucial in order to efficiently carry out robust and reliable inferences.

In order to validate the reliability of the GW pipeline, we perform a confidence
interval test shown in Figure 1.1 (left). The confidence interval test has become a
standard control check to verify the reliability of a pipeline [e.g. 173, 178, 204], since
it ensures that the recovered probability PDFs are truly representative of the inferred
confidence levels. For each parameter employed in the analyses, the test measures the
fraction of true values that follow below a given credible level and, if the algorithm
is well-calibrated, we expect this two quantities to be proportional. For our study,
we generate 100 mock BBH GW signals of duration 8 s observed by the LIGO IFOs
and we estimate the posterior PDFs using the dynesty nested sampling with 1024
live points. For each parameter, we compute the p-value of Kolmogorov-Smirnov test,
quantifying the consistency with uniformly distributed events. The results are shown
between round brackets in Figure 1.1 (left). We estimate a combined p-value of 58%.
This implies that the results are in agreement with analogous computations performed
with a set of 9 random uniformly-distributed samples, confirming that the pipeline is
well-calibrated.
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The validation of the robustness of the implemented tools is verified by direct com-
parison with independent pipelines. In particular, we compare the posterior CDFs
of GW150914 estimated with bajes and with bilby [204, 205, 206]. Figure 1.1
(right) shows the probability-probability plot of the marginalized posteriors recovered
for every parameter. The probability-probability plot compares the CDFs estimated
with two methods. Then, if two probability distributions are identical, the associated
probability-probability plot is represented by a bisector line. In our case, the results
coming from the two pipelines are largely consistent between each other, reporting
deviations < 15% and Jensen-Shannon distances ≲ 2× 10−2 [207].

1.3.2 Parallelization

By default, bajes analyses can be performed taking advantage of the parallel-threading
Python library. However, with this method the number of available processes is
strictly limited by the size of the single machine and for non-trivial problems this
could be a strong limitation. For this reason, bajes implements a customized method
for multi-nodes communication based on the message passing interface (MPI) proto-
col [208, 209, 210]. For ideal scaling, the execution-time of a machine computation is
inversely proportional to the number of central processing units (CPUs), that leads
to a linearly increase of the speedup. However, in a realistic scenario, the scaling
performances of sampling techniques are affected by unavoidable computational steps
serially performed and by the continuous exchange of information between different
processes, required to adapt the evolution of the algorithm.

MCMC and nested sampling algorithms require separate treatments. The perfor-
mances of MCMC sampling are typically quantified in terms of proposal acceptance
and correlation length of the chains [170, 178, 200, 211, 212, 213], and generally the
overall execution-time is determined by several contributions, such as the total number
of chains, the complexity of the parameter space and the employed proposal techniques.
Estimations of MCMC execution-times have shown that the efficiency drastically de-
creases for an increasing number of parallel chains [214, 215, 216]. Regarding nested
sampling routines, their parallelization performances are well studied [see e.g. 191, 206,
217, 218, 219] and the theoretical speedup factor SNS of this algorithm is expressed as
a sub-linear scaling,

SNS(nlive, ncpu) = nlive · log
(
1 +

ncpu

nlive

)
. (1.6)
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Figure 1.2: Scaling plot for the bajes pipeline. The square markers are the measured
speedup factors with respect to the serial execution-time. The settings for the PTMCMC
(orange squares) and the nested sampling (pink squares for multi-threading and green squares
for MPI) are discussed in Section 1.3.2. The blue solid line is the ideal linear scaling and the

yellow solid line is the theoretical scaling of nested sampling in Eq. (1.6).

For nlive ≫ ncpu, the values predicted by Eq. (1.6) are comparable with a linear trend.
Figure 1.2 shows the measured speedup factors in the execution-time as a function

of the number of CPUs for different samplers and different parallelization methods.
The speedup factors are computed with respect to the execution-time measured from
the serial job, i.e. ncpu = 1. The execution-times are estimated from the bajes GW
pipeline using GW150914 [34] as target signal. For the PTMCMC, we estimate the
speedup performing 103 iterations with 128 × 4 tempered chains, while, for nested
sampling, we employ the dynesty software [198] with 1024 live points and tolerance
equal to 0.1. The PTMCMC is not optimal in terms of execution-time scaling, mainly
due to the serial swapping routine. However, it gives acceptable scaling performances
with efficiency ≳ 40% up to ncpu ≃ 16 using multi-threading methods. The results
with MPI (not shown) are worst compared to multi-threading due to the data com-
munication. Regarding the nested sampling, for a very small number of processes,
roughly ncpu ≲ 2, the multi-threading method gives more efficient results, since the
MPI protocol requires additional time for data communication. For an increasing
number of CPUs, roughly ncpu ≳ 6, the two parallelization methods give comparable
results. However, the strength of MPI parallelization is the capability of accessing
multiple CPUs located in different physical machines: the MPI interface implemented
in bajes gives an efficiency greater than 70% up to ncpu ≃ 100.
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Chapter 2

Inspiral gravitational-waves

On August 17, 2017 at 12:41:04 UTC the LIGO and Virgo GW detectors made their
first observation of a low-mass CBC inspiral consistent with a BNS merger [39, 40,
172]. GW170817 lasted in the recorded data for more than 1 min, corresponding to
the last O(103) orbits before merger, and making this transient the loudest observed
GW with a SNR of 32. This considerable GW power permitted a tight estimation of
the binary mass and of the extrinsic properties of the source, such as distance and sky
location. The signal vanishes before merger around ∼600 Hz in the high-frequency
detector noise, preventing the observation of a PM GW signal [220, 221] and avoiding
a direct inference on the fate of the remnant.

In this Chapter, we analyze the LIGO-Virgo data corresponding to GW170817,
focusing on the implication on the NS matter. In Section 2.1, we review the waveform
models employed in the analysis. In Section 2.2, we introduce the GW PE framework
and we present the recovered posterior distributions, discussing the properties of the
source. Section 2.3 discusses systematic errors of current GW models, focusing on
the impact on the inference of the tidal sector. Finally, in Section 2.4, we investigate
possible PM scenarios quantifying the probability that the remnant underwent PC
into BH.

2.1 Waveform models

The generation and the propagation of GWs can be predicted within GR at linearized
level [222],

□

(
hµν −

1

2
ηµνh

α
α

)
= −16πG

c4
Tµν , (2.1)

where hµν is the GW perturbation, ηµν is the Minkowskian background metric, □ =

∂α∂
α is the d’Alembertian operator and Tµν is the stress-energy tensor of the source.
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GR predicts two GW polarizations h+ and h×, plus and cross respectively, that can
be decomposed in (ℓ,m) multipoles as

h+ − ih× = D−1
L

∞∑

ℓ=2

ℓ∑

m=−ℓ

hℓm(t) −2Yℓm(ι, φ), (2.2)

where DL is the luminosity distance, −2Yℓm are the s = −2 spin-weighted spherical
harmonics and ι, φ are respectively the polar and azimuthal angles that define the
orientation of the binary with respect to the observer. The leading-order term cor-
responds to the quadrupole component (2, 2) of the source mass distribution [223].
Focusing on CBCs, as a first approximation the source term can be modeled as two in-
spiralling point-particles (PPs) with increasing frequency evolution defined by the GW
energy. This computation leads to the Newtonian waveform [224, 225], that naturally
introduces the concept of chirp mass,

M =
(m1m2)

3/5

M1/5
=M ν3/5 , (2.3)

where m1,2 are the component masses, M = m1 + m2 is the total mass and ν =

m1m2/M
2 is the symmetric mass ratio.

In order to take into account full-GR contributions and accurately estimate the
radiated waveform for a fixed combination of parameters, high-precision methods are
required to solve the two body problem in GR [e.g. 116, 226, 227, 228]. NR is an
accurate and established approach that can provide GW templates for the whole bi-
nary evolution [e.g. 105, 106, 107, 108, 109, 110, 111]. Within this framework, the
Einstein’s equations [32] are numerically solved together with the dynamics of the
source on a finite-size discrete grid. The numerical errors generally affects the results
of the simulations [229, 230, 231] and they can be mitigated increasing the grid res-
olution, enforcing the robustness of the physical predictions. On the other hand, the
computational cost drastically increases increasing grid resolution, incapacitating the
practical use of NR templates for PE studies. For this reason, advanced analytical
methods and accurate calibration techniques have been employed for the modeling
of GW radiation [e.g. 232, 233, 234, 235]. Among the different methods, we focus
on the following GW approximants, depicted in Figure 2.1 for an exemplary binary
configuration. These families have shown to provide consistent results at the current
SNRs [40].

• Post-Newtonian approximation: The PN framework [e.g. 236, 237, 238, 239,
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Figure 2.1: GW waveform templates for an exemplary combination of parameters of three
different GW models. The templates are computed for a non-spinning equal-mass BNS with
M = 2.8 M⊙, Λ̃ = 500 and DL = 40 Mpc. The blue line shows TEOBResumS, the orange
line shows TaylorF2 and PhenomPv2_NRTidal is reported with green lines. The moment of
merger corresponds to the origin of the time axis, i.e. tmrg = 0. The subplots show two

exemplary zooms, highlighting dephasing in proximity of the merger.

240, 241] is a theoretical milestone for the description of the two-body problem.
This approach solves the dynamical evolution of an inspiralling compact binary
with a perturbative method assuming low velocities and weak field approxima-
tions, which are reflected in the condition v = (π GMf)1/3 ≪ c, where v is the
characteristic velocity in the binary and f is the GW frequency. The metric gµν
and the stress-energy tensor Tµν are expanded in orders of 1/c in order to solve
the Einstein’s equations. The solution to this formalism gives us a time-domain
template; however, a frequency-domain representation of the GW waveform can
be obtained employing the stationary-phase approximation (SPA) [e.g. 242]. Fi-
nally, the frequency-domain GW template can be expressed as expansions in v/c,
where the phase reads

ϕ(v) = ϕref+2πftref+
3 c5

128 ν v5

∞∑

i=0

(
αi + α′

i log
v

c
+ α′′

i log
2 v

c
+ . . .

) (v
c

)i
(2.4)

where ϕref and tref are respectively reference phase and time and {αi, α
′
i, α

′′
i , . . . }

are the PN coefficients that are functions of the intrinsic binary properties. The
exact analytic solution of the gravitational radiation emitted by a PP binary is
known up to the 3.5PN order [237] order and recent studies [243] introduced an
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incomplete 5.5PN description of the GW phase. The PN results are expected to
provide accurate descriptions of the motion and radiation of CBCs only during
their early-inspiral stages, i.e. GM/(c2r) ≪ 1, where r is the separation between
the binary components. In our studies, we consider the PN waveform labeled as
TaylorF2, including 5.5PN PP description and 7.5PN tidal corrections [244].

• Effective-one-body formalism: The EOB formalism [112, 228, 245, 246, 247, 248,
249, 250] is an Hamiltonian approach that represents the general relativistic gen-
eralization of the reduced two-body problem, in which the system is described
by a single orbiting object in an effective external potential. The key idea is to
create a map between the real conservative dynamics and the effective motion of
the reduced mass. This procedure is accomplished estimating an external metric
such that the geodesic dynamics of a PP (with reduced mass µ = m1m2/M) is
equivalent to the original, relative PN-expanded dynamics. Finally, EOB frame-
work is completed including radiation-reaction effects and defining a resummed
expression for the Hamiltonian, that can be employed to solve the Hamilton-
Jacobi equations for the reduced mass coordinates and their momenta. The
EOB Hamiltonian HEOB can be written as

HEOB =Mc2
√

1 + 2ν
(
Heff − 1

)
, (2.5)

whereHeff is the (µ-scaled) effective Hamiltonian. Using the mass-reduced phase-
space variables {r, φ, pr, pφ} for the effective mass and limiting to aligned-spin
binaries [112, 114], the effective Hamiltonian can be expressed as Heff = Horb +

G̃ pφ, where G̃ is the gyro-gravitomagnetic contributions determining the spin-
orbit couplings [251] and Horb includes orbital contributions. The latter reads at
3PN as

Horb =

√
pr∗ + A(r, ν)

[
1 +

p2φ
r2c

+ 2ν(4− 3ν)
p4r∗
r2c

]
, (2.6)

where pr∗ is the momentum associated to the tortoise coordinate r∗, i.e. pr∗ =√
A/B pr, {A(r), B(r)} are the EOB potentials defined in [114], and rc is the

centrifugal radius [114, 234, 252]. In particular, the radial potential A(r) for a
non-spinning PP binary can be written at 2PN order as A(u) = 1− 2u + 2νu3,
where u = GM/c2r. Making use of NR data to calibrate high-order terms and
non-quasi-circular corrections, the EOB prescription has shown to provide an
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accurate representation of the CBC dynamics up to merger [e.g. 251, 253]. In
our studies, we consider the frequency-domain EOB model TEOBResumS [254]
computed from the corresponding time-domain counterpart employing SPA.

• Phenomenological models: Employing the results of NR simulations, it is possi-
ble to calibrate phenomenological GW models on targeted templates [255, 256,
257]. In particular, for quasi-circular CBCs, the analytical PN baseline is typ-
ically extended with additional degrees of freedom that are fit on NR data as
functions of the binary properties. The modeling choices and the calibration set
determine the accuracy of the model. Then, it is crucial to provide an optimal
parameterization for the waveform properties and to accurately extract the in-
formation from NR data. Within the assumption of optimal modeling choices,
the calibration of the additional degrees can be adjusted up to a requested design
accuracy. The models are generally validated against an independent set of NR
templates. This method leads to fully analytical waveform templates that can
be directly used for PE studies. In our work, we focus on the phenomenological
template PhenomPv2_NRTidal [258].

Given a model for the radiated GW polarization components h+,× and the location
of the source with respect to the observer, the signal can be projected on the requested
IFO reducing the tensorial perturbation to a scalar time series,

h(t) = F+h+(t) + F×h×(t) , (2.7)

where F+,× are the antenna pattern functions of each polarization. that describe
the sensitivity of the detector as functions of the polarization angle ψ and the sky
location of the source, i.e. right ascension α and declination δ [259]. The resulting
GW waveform h(t) is a function of the binary parameters θgw,

θgw = {m1,m2,χ1,χ2,Λ1,Λ2, DL, ι, α, δ, ψ, t0, ϕ0} (2.8)

where m1,2 are the mass components, χ1,2 are the dimensionless spin parameters de-
fined from the spin vectors of the binary components as χi = cSi/(Gm

2
i ) for i = 1, 2,

DL is the luminosity distance of the source, ι is the inclination angle between the total
angular momentum and the line of sight, and {t0, ϕ0} are the reference quantities. We
also introduce the mass ratio q = m1/m2 ≥ 1, taken with the convention m1 ≥ m2.
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The tidal parameters Λ1,2 are defined in the context of BNS mergers and introduced
in the next section (Section 2.1.1).

2.1.1 Tidal interaction

Consider a static, spherically symmetric NS of mass m placed in a static external
quadrupolar field Eij. In the local asymptotic rest frame of the NS for r → ∞, the
temporal metric coefficient is given by [260]

g00 = −1 + 2
Gm

c2r
+ 3

GQij

c2r3

(
ninj − 1

3
δij
)
− Eijxixj + . . . , (2.9)

where ni = xi/r and Qij is the NS quadrupole moment induced by the external field
Eij. In Newtonian approximation, Qij is related with density perturbations of the
NS [115]. Including GR contributions, these approximations are no longer valid, but
the expansion of the metric Eq. (2.9) still holds in the asymptotically flat region.

In the adiabatic limit, the induced deformation Qij is expected to have a linear
response to the external field Eij. Then, it is possible to introduce a (quadrupolar)
tidal polarizability λ2 [116, 226, 261, 262], i.e.

Qij = λ2 Eij . (2.10)

Note that in general the higher-order multipoles in Eq. (2.9) will have different cou-
plings, i.e. λℓ. We focus here on the dominant quadropolar tidal effects; however,
the tidal polarizabilities λℓ for ℓ > 2 can be related to the quadrupolar term λ2 em-
ploying EOS-insensitive relations [263, 264, 265]. From linearized NS perturbation
models [115, 266, 267], the tidal polarizability λ2 can be expressed in terms of the NS
radius, i.e.

λ2 =
2

3

c2

G
k2R

5 , (2.11)

where k2 is the quadrupolar gravito-electric Love number [see 115, 262, 268] and R is
the NS radius. It is common practice to report λ2 in its mass-scaled form; thus, we
introduce the dimensionless tidal polarizability Λ as

Λ =
2

3
k2C

−5 , (2.12)

where C is the compactness of the NS. Eq. (2.12) explicitly shows the relation between
the tidal parameter Λ and the EOS properties. The Love number k2 has typical values
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of O(10−1) for NS masses of 1 – 2 M⊙ and it weakly depends on the NS radius. Thus,
the value of the tidal parameter is dominated by the scaling Λ ∝ C−5, showing that
soft EOSs predict smaller tidal parameters than stiff EOSs for a fixed NS mass.

Following PN arguments [269, 270, 271], the tidal effects in binary systems are
computed fixing the external field Eij to the quadrupolar gravito-electric tidal moment
of the companion, considering only monopole-quadrupole interactions. The energy of
the system reads as

E =
µv2

2
− µM

r

(
1 +

λ̂

r5

)
+O

(
1/c2

)
, (2.13)

where r is the relative separation, v is the relative velocity and λ̂ = (3m1/2m2)λ2,1 +

(3m2/2m1)λ2,2. The additional tidal term affects the GW signal, the phase of which
can be written as ϕ(f) = ϕPP(f) + ϕT(f), where ϕPP is defined by the PP dynamics
Eq. (2.4) and ϕT is the tidal contribution. The leading-order tidal term appears at
5PN order as ϕT(v) = −(117/256)(Λ̃/ν)(v/c)5, where Λ̃ is the reduced tidal parameter,

Λ̃ =
16

13

[
(m1 + 12m2)m

4
1Λ1

M5
+ (1 ↔ 2)

]
. (2.14)

The next-to-leading tidal term enters at 6PN order and it is proportional to the asym-
metric tidal parameter δΛ̃,

δΛ̃ =

[
1− 7996

1319

m2

m1

− 11005

1319

(
m2

m1

)2
]
m6

1Λ1

M6
− (1 ↔ 2) . (2.15)

Within the PN formalism, tidal corrections are computed up to 7.5PN [117, 244, 271],
whereas spin-quadrupole terms are known up to 3.5PN [272].

The effects of tidal interaction are incorporated in the EOB formalism extending the
definition of A(r) potential and including the tidal contributions as A(r) = APP(r) +

AT(r) [e.g. 116, 262, 273, 274, 275]. Following the description of the GR properties of
NSs described above, the leading-order tidal term can be written as AT(u) = −κT2 u6,
where κT2 is the (quadrupolar) tidal coupling defined as as

κT2 = 3ν

[(m1

M

)3
Λ1 + (1 ↔ 2)

]
. (2.16)

The expression of AT(r) makes explicit the 5PN-order contribution of tidal effects,
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analogously to the PN method. Moreover, κT2 ∝ C−5 similarly to Λ̃. The expression
for the tidal potential AT(r) can be generalized including higher-order multipoles, i.e.
ℓ > 2 [116, 262].

Despite the relative high PN order, the tidal terms are expected to impact the
GW waveform due to the large values predicted for the tidal polarizabilities, i.e. Λ is
O(100) for realistic EOSs. This argument makes it consistent to add the (high-order)
tidal contributions to the (low-order) PP baseline description, since these terms for-
mally correspond to comparable orders of magnitude in a numerical sense. Moreover,
the relatively high order of tidal terms implies that these contributions become more
significant as the separations between the binary components decreases.

2.2 Inference of GW170817

Ground-based GW detectors measure the local perturbations of the spacetime as time
series, as shown in Eq. (2.7). Under the assumption that a physical GW transient s(t)
is recorded in the data, the detector output d(t) is assumed to be the sum of the noise
contribution n(t) and the GW signal s(t), i.e.

d(t) = n(t) + s(t) . (2.17)

In real observing conditions, the GW observations are performed simultaneously by a
worldwide network of ground-based IFOs, permitting the correlation of multiple data
segments so as to vet transient disturbances that can mimic GW signals [276, 277].

An accurate characterization of the noise is crucial in order to detect GWs and infer
the properties of their sources. An improper noise modeling can lead to systematic PE
biases. Typically, detector noise is assumed to satisfy the conditions of Gaussianity
and stationarity. Then, a noise segment n(t) of duration T can be fully characterized
by the power spectral density (PSD) Sn(f) [e.g. 278], defined as

⟨
|n(f)|2

⟩
=
T

2
Sn(f) , (2.18)

where the brackets ⟨ ⟩ denote the average over many noise realizations, each having
duration T . Departures from stationarity result in correlations between samples in
different frequency, while departures from Gaussianity can be identified by comparing
the distribution of samples to a unit normal distribution. In the real scenario, the IFO
noise is approximately Gaussian and locally stationary, i.e. the timescales associated
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to non-stationary processes are larger than the GW characteristic times, with few
exceptions such as glitches [179, 279].

If we dispose of a template h(t) able to reproduce the real signal s(t), it is possible
to filter out the noise contribution revealing the presence of a signal in the observed
data [158, 177, 178, 280]. In this context, we introduce the inner product between two
time series, say a(t) and b(t), as

(a|b) = 4ℜ
∫ ∞

0

a∗(f) b(f)

Sn(f)
df , (2.19)

where a(f) is the Fourier transform of the time series a(t),

a(f) =

∫ +∞

−∞
a(t) e−2πift dt , (2.20)

and analogously for b(f), while Sn(f) is the noise PSD. Under the assumptions of
Gaussian and stationary noise, we can define the GW likelihood function as

log p(d|θgw) ∝ −1

2

(
h(θgw)− d

⏐⏐h(θgw)− d
)
, (2.21)

where every frequency-bin is assumed to be normally distributed with variance pre-
scribed by the PSD. The likelihood Eq. (2.21) can be generalized for multiple detec-
tors, assuming that the noise recorded by the different IFOs are independent of each
other [177, 178].

Given a GW template model, it is possible to compute the evidence p(d|HS) of
the signal hypothesis marginalizing Eq. (2.21) over the prior domain. It is interesting
to compare this value with the evidence of the noise hypothesis p(d|HN), i.e. the
assumption h(t) = 0, the evidence for which follows directly from Eq. (2.21). Then the
ratio of these evidences corresponds to the BF of the signal vs. noise hypotheses, i.e.
BS
N = p(d|HS)/p(d|HN). In the context of GW inference, we often refer to this quantity

just as B. The BF encodes the will of the data in favoring the employed modeling over
the no-signal assumption. Another characteristic quantity that is typically used to
quantify the strength of a GW is the SNR. This quantity is introduced in the context
of matched-filtering signal-processing and it is defined from Eq. (2.19) as

SNR =
(d|h)√
(h|h)

. (2.22)
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Figure 2.2: Posterior distributions for chirp mass M (measured in M⊙), mass ratio q and
spin components χi,z for i = 1, 2 of GW170817 computed with PN (left) and EOB (right)
waveform models. The contours show the 50% and 90% credibility regions. The quoted

values are the medians and the 90% credibility levels.

The SNR estimates the power of the signal h(t) enfolded in the data d(t) weighted on
the variance of the background noise. Note that, if d(t) = h(t), then SNR =

√
(h|h).

The latter is typically labeled as optimal SNR to distinguish it from the matched-
filtered SNR, i.e. Eq. (2.22).

Within this framework, we analyze the GWOSC data of LIGO and Virgo cen-
tered around GPS time 1187008857 with a sampling rate of 4096 Hz and a duration
of 128 s considering the frequency range from 20 Hz to 2 kHz [39]. The prior dis-
tribution is taken uniform in the mass and tidal components spanning the ranges
M ∈ [1.18, 1.21] M⊙, q ∈ [1, 8] and Λ1,2 ∈ [0, 5000] and isoptropic in spin components
bounded to |χ1,2| ≤ 0.89. We employ identical prior distribution for the extrinsic pa-
rameters as the one in [158], in particular the luminosity distance is taken volumetric
in the range DL ∈ [5, 75] Mpc. The study is performed with the nested sampling
algorithm [196] as implemented in the dynesty library [198], employing 2048 live
points and including spectral calibration envelopes. We discuss the binary properties
in Section 2.2.1, and the tidal parameters in Section 2.2.2.
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2.2.1 Source properties

Figure 2.2 shows the posterior distributions for the parameters recovered employing
the TEOBResumS model and the TaylorF2 approximant assuming aligned spin compo-
nents. The analysis is repeated with PhenomPv2_NRTidal template with precessing
spin components. Interestingly, the recovered BFs and SNRs are consistent between
different approximants, logB ≃ 475 and SNR ≃ 32, with negligible differences.

The recovered detector-frame chirp mass corresponds to M ≃ 1.1976 M⊙ with
broad agreement between all the waveform models and errors of O(10−4 M⊙) at the
90% credibility level. We remind that the chirp mass M affects the phase evolution
at the leading order and then it is the best constrained among the source parameters,
as shown by the recovered posteriors. The mass ratio is constrained to be q ≲ 2.5 at
the 90% credibility level. Note that spin contributions correlate with the mass ratio,
widening the recovered PDF. The spin components do not show departures from zero.
Consistently with Ref. [40], we estimate an effective spin parameter χeff = 0.04+0.06

−0.03.
Regarding the luminosity distance, we estimateDL = 36.7+6.2

−8.0 Mpc for TEOBResumS,
DL = 37.1+10.3

−12.1 Mpc for TaylorF2 and DL = 38.5+9.4
−11.4 Mpc for PhenomPv2_NRTidal.

Employing standard cosmological parameters [281], these values lead to a source-
frame chirp mass of Msrc ≃ 1.188 M⊙. The mass components fall in the NS range,
i.e. 1–2 M⊙, validating the hypothesis of a BNS merger. Assuming equal-mass
case (q = 1), the source-frame mass components can be roughly constrained around
∼1.36 M⊙, typical values expected for these compact objects. In all these analy-
ses, the inclination angle is inferred to be ι ≳ π and the recovered sky location is
{α ≃ 3.42 rad, δ ≃ −0.35 rad} with errors of O(10−2). The estimation of the extrinsic
parameters is generally consistent with existing results [e.g. 40, 172, 254]. Moreover,
the recovered sky position covers an area of ∼28 deg2. Combined with the associated
GRB information [66], the sky localization of the source facilitated and validated the
identification of the KN counterpart (see Chapter 3).

2.2.2 Tidal inference

The main effect that allows us to confidently discriminate between merging NSs and
BHs is the tidal interaction between the binary components. Figure 2.3 shows the
recovered reduced tidal parameters Λ̃, where the posterior PDF have been re-weighted
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Figure 2.3: Posterior distributions for the reduced tidal parameter Λ̃ of GW170817 for
different waveform models, i.e. EOB (blue), PN (orange) and phenomenological (green).
The posteriors are re-weighted to a uniform prior, and the original prior is shown in gray.
Left panel: Posterior PDFs computed with an upper-cutoff frequency fmax = 2 kHz. Right

panel: Posterior PDFs computed with an upper-cutoff frequency fmax = 1 kHz.

to a uniform prior. The figure includes the results computed with different wave-
form models and upper cutoff-frequencies, i.e. fmax = 1 kHz and 2 kHz, in order to
investigate the effect of high-frequency contributions.

For the EOB model, the primary tidal parameter Λ1 is constrained to be ≲ 950 at
the 90% credibility level, while the secondary component Λ2 is more broadly distributed
over the prior due to the correlations with the mass components. The recovered tidal
parameter posterior estimates a value of Λ̃ = 607+477

−356 and its posterior distribution
excludes the Λ̃ = 0 hypothesis at the 90% credibility level. These results are in agree-
ment with previous estimates obtained with EOB models [172, 254]. The asymmetric
tidal parameter δΛ̃ shows a posterior distribution centered around non-zero values, i.e.
δΛ̃ = 92+200

−258. However, the hypothesis δΛ̃ = 0 is confidently included in the posterior
support, corresponding to the 27th percentile. Employing PN and phenomenological
templates, we obtain similar results. The primary tidal component is constrained be-
low Λ1 < 700 and the secondary is broadly distributed over the prior. The reduced
tidal parameter is measured to be Λ̃ = 404+701

−246 for TaylorF2 and Λ̃ = 227+530
−148 for

PhenomPv2_NRTidal. The asymmetric tidal term δΛ̃ is well constrained around zero
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with an uncertainty of ∼150 at the 90% credibility level for both models. The poste-
riors of the tidal parameter can be translated in EOS constraints using the solutions
of the TOV equations, disfavoring very soft EOSs such as MS1b.

The main differences between the analyses with different fmax lie in the results of
the tidal sector. Overall, the recovered tidal parameters with fmax = 2 kHz appear
more constrained with respect to the cases with fmax = 1 kHz. On the other hand, the
choice of fmax = 2 kHz enlarges multimodal and asymmetric behaviors in the posterior
distribution of the reduced tidal parameter and systematic effects appear to be more
relevant between different template families [282, 283, 284]. The posterior distributions
for EOB and PN approximants show a good agreement with fmax = 1 kHz. The
differences in the Λ̃ parameters can be traced back to the modeling choices of the
employed approximants [see 40, 172, 243]. Note also that PhenomPv2_NRTidal analysis
includes the contribution of precessing spins, that introduce additional correlations
with the BNS parameters. In general, the results estimated at 1 kHz show posteriors
shifted toward lower values with respect to the analysis at 2 kHz, favoring the Λ̃ = 0.

2.3 Parameter estimation errors

Following the work presented in Gamba et al. [284], we further investigate PE errors
associated to the tidal parameter in GW BNS inferences, in order to understand and
characterize the biases induced by the modeling choices. This study is also motivated
by the results discussed in Section 2.1.1. Moreover, different studies [243, 284, 285,
286, 287, 288, 289, 290] have pointed out that the measured tidal parameters can
be strongly biased depending on the employed description. The tidal parameters are
of great relevance in our context since they permit the mapping between BNS GW
observations and the EOS properties.

Statistical errors are the fluctuations related with the stochastic noise that affects
the IFO and they are dominant for low SNR events. They affect the inference mainly
widening the posterior distributions, leading to a decreasing accuracy of the measure-
ment. In general, if the measurement is unbiased, we expect the true value to fall
into the credibility interval of the posterior. On the other hand, the systematic errors
refer to the incorrect interpretations of the observed data that generate biases in the
posterior PDFs and might introduce multimodalities. The source of these errors is
independent of the SNR, since they can be traced back to intrinsic differences in the
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waveform models. Then, when the systematic errors overcome the statistical fluctu-
ations, the inference of the BNS properties become dependent on the employed GW
approximant.

We study the behavior of statistical errors in the Fisher approximation in Sec-
tion 2.3.1 and the systematic waveform errors are discussed in Section 2.3.2.

2.3.1 Statistical errors

The Fisher approximation [226, 269, 291, 292] is an analytical framework that allows
us to study the statistical quantities of interest in the Gaussian limit. Eq. (2.21) can
be expanded around θ ≃ θtrue obtaining a quadratic form at leading order, i.e.

log p(d|θ) ∝ −1

2
Σij(θtrue)∆θ

i∆θj +O
(
∆θ3

)
, (2.23)

where ∆θ = θ − θtrue and the covariance matrix Σij corresponds to

Σij(θ) =

(
∂h

∂θi

⏐⏐⏐⏐
∂h

∂θj

)
. (2.24)

The validity of this expansion holds in the limit of high SNRs, i.e. d→ h. We observe
that the linear term in the expansion Eq. (2.23) has been neglected since we assume
that θtrue is a maximum for log p(d|θ). This condition is not valid when systematic
errors are dominant.

Within the Fisher approach, the tidal information IΛ̃Λ̃(f) can be defined from the
covariance Eq. (2.24) as

IΛ̃Λ̃(f) =
4

Sn(f)

⏐⏐⏐⏐
∂h(f)

∂Λ̃

⏐⏐⏐⏐
2

. (2.25)

Figure 2.4 (left) compares the tidal information and the signal power gathered in each
frequency bin, i.e. the integrand of the optimal SNR, for three exemplary equal-mass
binary configurations with design sensitivities of current and XG detectors. We can
evince that, while the signal power decreases for increasing frequency, the tidal infor-
mation is primarily gathered at high frequencies, i.e. f ≳ 500 Hz. This behavior is
expected considering that tidal interactions become more relevant to the BNS dynam-
ics as the separation between the two companions decreases. This is reflected in the
inference of the tidal sector justifying the widening of the posterior distributions for
decreasing upper cutoff-frequency. In fact, the tidal information is related to the Λ̃
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Figure 2.4: Left panel: Signal power (thick lines) and tidal information IΛ̃Λ̃ (thin lines)
as functions of the frequency for different binary configuration and detector sensitivities.
Red lines refer to design LIGO sensitivity [29], purple lines refer to design Virgo sensitiv-
ity [293], blue lines refer to design KAGRA sensitivity [78] and green lines refer to fiducial
ET-D sensitivity [75, 76]. Solid lines show low-mass binary M = 1 M⊙, dashed lines show
intermediate-mass binary M = 1.2 M⊙ and dotted lines show high-mass binary M = 1.5 M⊙.
Right panel: Threshold frequency fthr (solid lines) and information loss LΛ̃Λ̃ (dashed lines)
as functions of the threshold SNR for GW170817 with different waveform templates. Blue
lines refer to the PN model, black lines refer to the EOB model and red lines refer to the
phenomenological model. The solid lines correspond to the median values and the bands are

the 90% credible regions.

uncertainty through the Cramer-Rao bound, i.e.

σ2
Λ̃
≥
(
∂h

∂Λ̃

⏐⏐⏐⏐
∂h

∂Λ̃

)−1

. (2.26)

Aiming to the characterization of statistical fluctuations of the tidal parameter,
it is interesting to investigate the amount of tidal information loss as function of the
upper cutoff-frequency fthr. Then, we introduce the (normalized) information loss as

LΛ̃Λ̃(fthr) =

∫ ∞

fthr

IΛ̃Λ̃(f) df

∫ ∞

0

IΛ̃Λ̃(f) df

. (2.27)

Eq. (2.27) quantifies the percentage of tidal information that is neglected reducing the
upper cutoff-frequency to fthr. On the other hand, the amount of signal loss can be
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computed introducing a threshold SNR ρthr associated to the cutoff-frequency fthr,

ρ2thr = 4

∫ ∞

fthr

|h(f)|2
Sn(f)

df . (2.28)

Figure 2.4 (right) shows the evolution of LΛ̃Λ̃ and fthr as functions of ρthr, computed
from the posterior PDFs of GW170817 for different waveform models. For fthr = 1 kHz,
we estimate ρthr ≲ 1 denoting that a negligible amount of signal power is gained for
f > 1 kHz. However, LΛ̃Λ̃ ≃ 25% for fthr = 1 kHz showing that a considerable
fraction of tidal information is not included in the inference. Moreover, the results
of GW170817 show that ∼50% of the tidal information is collected for f > 650 Hz,
while, ∼5% of the total SNR is collected above this threshold. Even if these results are
computed within Fisher approach, hence neglecting the contribution of the stochastic
detector noise, they allows us to better interpret the tidal inference at different cutoff
frequencies. While a decreasing cutoff frequency will mildly affect the overall signal
power, it will considerably affect the tidal inference.

2.3.2 Systematic errors

Systematic biases originate when a critical combination of parameters θcrit ̸= θtrue

minimizes the likelihood function Eq. (2.21), yielding to the condition (∂h/∂θ|h−d) =
0 in θcrit. The existence of such critical value can be related to inaccurate modelings
and representations of the GW templates. These inconsistencies can be investigated
from the GW templates comparing the predictions of different prescriptions. Instead
of examining the evolution of the waveform phases, we introduce the Qω as

Qω =
ω2

ω̇
, (2.29)

where ω = 2πf is the instantaneous GW frequency and ω̇ is its derivative with respect
to the temporal variable. The Qω is related to the phase acceleration of the frequency-
domain waveform and its integral over a fixed frequency range is proportional to the
number of cycles performed within these frequencies. Thus, Qω can be employed
for waveform comparison without ambiguities and information losses related to phase
alignment. For each GW model, we estimate the Qω and we report in Figure 2.5 (right)
the differences ∆Qω = QTEOBResumS

ω − QX
ω , with X = TaylorF2, PhenomPv2_NRTidal,

estimated with respect to the EOB model for five exemplary combinations of intrin-
sic parameters. The differences ∆Qω show an increasing trend proportional to the
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Figure 2.5: Left panel: Systematic differences ∆Qω of the Qω of TaylorF2 (blue) and
PhenomPv2_NRTidal (red) with respect to TEOBResumS as function of the frequency for five
exemplary combination of intrinsic parameters. Right panel: PDFs of the fractional deviation
between the injected Λ̃inj and the inferred Λ̃. The color code show the approximant employed
for the PE (red for PhenomPv2_NRTidal, blue for TaylorF2), and the results are displayed
for two different frequency cutoffs fmax = 1 kHz (top) and 2 kHz (bottom). Thicker ticks

identify the binary corresponding to the left panel.

frequency variable for f < 1 kHz. TaylorF2 and PhenomPv2_NRTidal behave in op-
posite direction showing respectively weaker and stronger matter effects compared to
TEOBResumS. The differences are amplified for increasing Λ̃. We verified that the tidal
sector is the largest contribution in the differences of the recovered ∆Qω [284]. These
results qualitatively explain the tidal inference of GW170817. The impact of matter
effects in PhenomPv2_NRTidal leads this approximant to recover a smaller Λ̃ compared
to PN and EOB models. The broad consistency between TEOBResumS and TaylorF2

can be explained by a mixture of PP and tidal sectors.
In order to provide quantitative estimates of systematic errors, we perform a survey

of mock PE studies. We generate 15 mock GW signals, label as injections, using
the TEOBResumS waveform model for different combination of intrinsic parameters.
The extrinsic parameters of the injected data are chosen to match the best-fitting
parameters of GW170817. The SNRs of the injected signals lies in the range 82 – 94,
depending on the specific combination of masses and tidal parameters. The mock data
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are generated with LIGO-Virgo IFOs using the fiducial PSDs for design configurations.
In order to avoid noise contributions and focus on waveform errors, we use zero-noise
segments. The posterior PDFs are recovered with PE studies similarly to the ones
discussed in Section 2.2 employing the TaylorF2 and PhenomPv2_NRTidal template
models. The data are analyzed employing low cutoff-frequency (fmax = 1 kHz) and
high cutoff-frequency (fmax = 2 kHz), simulating the study of Section 2.2.

While the mass components are correctly estimated within the 90% credibility
region, the inference of the tidal parameter shows biased results, similarly to the
GW170817 case. Figure 2.5 (right) show the posterior PDFs of the relative deviation
between the recovered Λ̃ and the injected value Λ̃inj. We can see that the phenomeno-
logical model systematically underestimates the injected value, leading to biases larger
than the 90% credible level for Λ̃ ≳ 350. As matter effects grow, the deviation between
the two approximants and the TEOBResumS baseline increases, reaching approximately
±20% when Λ̃inj = 1366. Increasing fmax, the differences in the recovery of Λ̃ between
different models become larger, consistently with GW170817. Remarkably, the recov-
ered tidal posterior for PhenomPv2_NRTidal do not show any multimodal behavior,
in contrast to GW170817 analyses and consistently with analogous studies [39, 40].
TaylorF2 do not show deviations above the 90% credibility intervals for the consid-
ered SNRs; while, PhenomPv2_NRTidal is systematically biased toward smaller values.
Moreover, the recovered deviations are consistent with the results of the Qω study.
Projecting our results on XG detectors [284], we estimate that systematic tidal er-
rors will dominate over statistical fluctuations for SNR ≳ 100 with current waveform
models, posing severe issues for GW DA and EOS inference with XG detectors.

2.4 Black hole collapse

The LIGO-Virgo detectors sensitivity at high frequencies was not sufficient to detect
the signal corresponding to the merger and PM phases [40, 220, 221]. Hence, the
question whether the merger outcome was a prompt BH formation or not must be
answered using either the premerger GW signal or EM counterparts. A first answer
was given by the interpretation of the EM counterparts observed with delays of seconds
to days with respect to the GW and composed by a GRB and a KN [66, 70, 294].
Energetic and timing of the latter exclude both a prompt BH formation and a long-
lived NS remnant. Most likely, the merger dynamics produced a massive NS that
collapsed on timescales of ∼0.01 to ∼2 seconds. Such a conclusion is informed and
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Figure 2.6: Left panel: PC analysis of GW170817 based on threshold mass method. The
plot show the CDFs on the ratio M/Mthr. The fraction of the posterior that lies above
X = 1 gives the probability of PC with (blue) and without (orange) a constraint of MTOV

max ≥
1.97 M⊙. Right panel: PC probability for GW170817 based on the threshold-Λ̃ method.
Solid (dashed) colored curves plot the posterior CDFs for Λ̃ for different approximant with
fmax = 2 kHz (fmax = 1 kHz). The solid black sigmoid curve gives the prior PC probability
at each value of Λ̃, based on NR simulations. The PC probabilities can be visually estimated

by the value of each curve as it crosses the transition region.

supported by NR results that established the formation of massive NS remnants for
canonical NS masses and EOSs supporting MTOV

max > 2 M⊙.
On the other hand, considering the premerger GW information, the posterior PDFs

of the binary parameters can be combined with NR information in order to estimate
the probability of PC PPC, i.e. the probability that the remnant collapsed into BH
immediately after merger. In the following sections, we employ the methods presented
in Agathos et al. [122] in order to infer the prompt BH formation from the premerger
GW data of GW170817. In particular, Section 2.4.1 discusses the method based on the
threshold mass and Section 2.4.2 presents the method based on the tidal parameter.

2.4.1 Threshold mass

NR simulations indicate that a BNS merger will be followed by a PC into a BH, if the
total gravitational mass M of the binary exceeds a threshold mass [295, 296],

Mthr = kthrM
TOV
max , (2.30)

where kthr depends, in general, on the EOS, mass ratio, and spin. For typical hadronic
equal-mass nonspinning binaries, the threshold coefficient in Eq. (2.30) is found in the
range 1.3 ≲ kthr ≲ 1.7 [295, 296, 297]. This coefficient has shown an approximately
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EOS-independent linear behavior in the maximum compactness CTOV
max of non-rotating

equilibrium NS solution [122, 296]. Note that by inverting Eq. (2.30) and assuming
that the merger did not promptly form a BH, one may obtain a bound on the maximum
stable NS mass [69, 298, 299]. Using the results reported by [122, 160, 296, 297, 300],
we find that kthr can be estimated with the linear fit

kthr(C
TOV
max ) = a0 + a1C

TOV
max , (2.31)

where {a0, a1} = {2.392 ± 0.064,−3.29 ± 0.23} are determined by a least-squared
minimization method. Note that this relation has been recently recalibrated in Ref. [57]
and extended in the large-mass-ratio regime in Ref. [124].

Within this framework, the threshold mass Mthr is a function of the progenitor
masses and of the EOS properties. Then, disposing of a posterior representation of
the EOS, the information can be translated in term of {M,Mthr}. This task can
be achieved employing EOS-parameterized sampling [e.g. 301, 302]. These methods
employ additional degrees of freedom in order to parameterize the EOS and they
explore the parameters’ space estimating the EOS posterior together with the BNS
properties. The algorithm does not require the sampling of the tidal polarizabilities
Λi since they can be estimated as functions of the NS masses for each EOS. These
data naturally provide information on MTOV

max , CTOV
max and kthr. Then, the fraction of

the posterior distribution that lies above the diagonal is equal to the posterior PC
probability, i.e.

PPC = P(M > Mthr|d) . (2.32)

As an additional step, one may choose to impose further implicit constraints on the
parameter space, such as requiring that the EOS support NS masses larger than a
given value, e.g. the observation of the binary pulsar PSR J0348+0432 [87].

Figure 2.6 (left) shows the application of the threshold mass method to GW170817
data, reporting the posterior CDFs of M/Mthr. The results are computed by post-
processing the publicly available LVK posterior samples [14] estimated with a phe-
nomenological GW model and a spectral EOS parameterization based on the adiabatic
index [301, 303]. We find a significant difference between the analyses with and without
the MTOV

max constraint, that estimate the PC probability at 0.09 and 0.59 respectively.
The reason is that the MTOV

max constraint removes part of the EOS parameter space that
is too soft to support a NS mass of 1.97 M⊙. The effect on PPC is significant, since the
recovered binary parameters of GW170817 happen to lie close to the PC threshold.



Chapter 2. Inspiral gravitational-waves 37

2.4.2 Tidal threshold

By inspecting the NR database [300], we observe that all the reported PC mergers are
captured by the condition Λ̃ < Λ̃thr with 338 ≲ Λ̃thr ≲ 386. Then, instead of choosing
a hard cutoff at a fixed value, we define an empirical PC probability as function of
a given Λ̃ such that these bounds are included within the support of its distribution.
We opt for a sigmoid-type conditional PC probability as

P(PC|Λ̃) =
(
1 + e

Λ̃−Λ̃0
β

)−1

, (2.33)

which tends to 1 (0) for small (large) values of Λ̃. The values for the sigmoid parame-
ters, i.e. the central value and the width, are chosen based on the available set of NR
simulations in this region to be Λ̃0 ≃ 362 and β ≃ 13.7 respectively. Then, once the
posterior p(Λ̃|d) is estimated via PE routines, the PC probability is simply computed
by integrating the posteriors from the minimum value up to the threshold value using
the sigmoid of Eq. (2.33) as a kernel

PPC =

∫
P(PC|Λ̃) p(Λ̃|d) dΛ̃ . (2.34)

Figure 2.6 (right) shows the PC probability obtained with the threshold-Λ̃ method
employing the posterior PDFs discussed in Section 2.2.2 (re-weighted to uniform prior).
We find a PC probability between PPC ∼ 24% and ∼70%, depending on the waveform
approximant and on the upper cutoff frequency used in the analysis. The waveform
approximants estimating the largest Λ̃ give the smaller probabilities. The largest PC
probability is obtained using the phenomenological model, which tends to introduce
a systematic bias favoring PC (see Section 2.3). We observe that the parameters of
GW170817 are measured around the threshold region both for the threshold-mass
method and for the threshold-Λ̃ method. In general, these results seem to provide an
non-definitive answer as to whether the BNS merger was followed by a PC to a BH.
However, taking a more comprehensive point of view and including EM counterparts
and heavy pulsar information, the PC hypothesis is strongly disfavored [e.g. 66, 146,
294].
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Chapter 3

Electromagnetic counterparts

The spectrum of the KN transient AT2017gfo has been recorded from ultraviolet (UV)
to NIR [49, 304] starting from ∼11 hrs after the GW peak. This delay was due to the
sky position of the source at the moment of the merger, which was located above the
Southern Ocean making it inaccessible to the majority of the telescopes. At early times,
the observed data showed a bright blue spectrum with a peak of magnitude ∼17 in the
g band 1 day after the merger (blue KN). Between five to seven days after merger, the
peak moved towards NIR frequencies with fainter magnitudes around ∼19 in the Ks

band (red KN). In order to explain these features, the KN models require at least two
ejecta components [e.g. 201, 305]. The presence of multiple shells of ejected matter
evinces also from NR simulations, that indicate the existence of multiple engines that
contribute to matter outflows, from the dynamical to the disk winds ejecta [137, 139,
306, 307, 308]. NR simulations also show that the geometry profiles of the ejecta are
not spherically symmetric and their distributions are not homogeneous [83, 128, 139].
Given the challenges and uncertainties associated to the theoretical prediction of KN
features, Bayesian inference and MS of the observational data can provide important
insights on physical processes hidden in the KN signature.

In this Chapter, we perform Bayesian inference on the AT2017gfo data, investigat-
ing the geometry of the ejecta components and we constrain the EOS properties of NS
matter combining the MM data. In Section 3.1, we review the light-curve (LC) model
employed in this Thesis. We introduce the KN PE framework in Section 3.2 and we
present the results of the MS, discussing the inferred ejecta properties. Finally, in
Section 3.3, we perform MM EOS inference by combining KN and GW PEs through
NR-calibrated relations and by considering the recent NICER observations [60, 61, 64,
65].
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3.1 Light-curve models

After the BNS collision, an amount of O(10−3 M⊙) is ejected on dynamical timescales
and the accretion disk can reach O(10−2 M⊙) on viscous timescales. The NS matter
is neutron-rich and this environment represents an ideal site for r-process nucleosyn-
thesis [e.g. 83, 146], which constitutes the primary engine that brightens the KN.
The density conditions are such that that neutrons are captured much faster than
the involved nuclei can decay and, once the neutron supply becomes insufficient, the
temporarily formed nuclei decay toward the valley of β-stability. Thus, the energetic
processes of the KN are governed by the nuclear forces that intervene in the envi-
ronment surrounding the remnant. Moreover, the KN LCs depend on the intrinsic
properties of the ejected matter, such as mass and velocity [125, 155, 156, 157], that
can be related to the EOS [e.g. 309, 310].

The modeling of KNe is a challenging task due to the complexity of the under-
lying physics [146]. Current KN models suffer from theoretical uncertainties due to
the incomplete knowledge of the thermalization processes [311, 312] and the energy-
dependent photon opacities in r-process matter [309, 313]. Accurate descriptions of
the radiation transport processes can help in this regard, offering a robust framework
to model the energy transfer in the form of EM radiation [e.g. 312, 314, 315]. How-
ever, these implementations are generally based on numerical methods, significantly
increasing the computational costs of the model and incapacitating the practical use
for PE studies. Another source of error come from the choice of the ejecta profiles.
Current KN models often use either simplistic ejecta profiles or simplistic radiation
schemes [e.g., 128, 201, 316, 317]. Thus, due to the complicated (partially-modeled)
underlying physics, the KN inference is subject to much larger systematic uncertainties
compared to GW one.

In the following Sections, we first discuss the modeling of the KN LC from a single
shell of ejected matter (Section 3.1.2), and we extend the discussion to the multi-
component ejecta shells used in our analyses (Section 3.1.2).

3.1.1 Single-component ejecta

The KN model employed in our work is based on Ref. [128, 316, 318]. Let us consider
a shell of ejected matter characterized by a mass density ϱ(r), with total mass mej

and gray opacity κ (mean cross section per unit mass). We assume that the shell
is in homologous expansion symmetrically with respect to the equatorial plane with
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root-mean-square (RMS) velocity v, such that its mean radius is R ∼ vt after a time t
following the merger. Matter opacity to EM radiation can be expressed in terms of the
optical depth τ , which is estimated as τ ≃ ϱκR. After the BNS collision, when matter
becomes unbound and r-process nucleosynthesis occurs, the ejecta are extremely hot,
T ∼ 109 K [83, 319, 320]. However, at early times the thermal energy is not dissipated
efficiently since the environment is optically thick (τ ≫ 1) and photons diffuse out
only on the diffusion timescale until they reach the photosphere (τ = 2/3). As the
outflow expands, its density drops (ρ ∝ t−3) and the optical depth decreases, allowing
photons to escape.

The key concept behind KNe is that photons can contribute to the EM emission at
a given time t if they diffuse on a timescale comparable to the expansion timescales,
i.e. if they escape from the shells outside Rdiff , where Rdiff is the radius at which
the diffusion time tdiff ≃ Rτ/c equals the dynamical time t [141, 146, 316] . Since
tdiff ∝ t−1, a larger and larger portion of the ejecta becomes transparent with time.
The luminosity peak of the KN occurs when the bulk of matter that composes the
shell becomes transparent. As first approximation [321], the characteristic timescale
at which the light curve peaks can be estimated as

tpeak =

√
3mejκ

4πβvc
, (3.1)

where the dimensionless factor β depends on the density profile of the ejecta. For
a spherical symmetric, homologously expanding ejecta (β ≃ 3) with mass mej =

10−2 M⊙, velocity v = 0.1 c and opacity in the range κ ≃ 1−50 cm2 g−1, which are
typical values respectively for lanthanide-free and for lanthanide-rich matter [322, 323],
Eq. (3.1) predicts a characteristic tpeak in the range 1–10 days [294].

The radioactive r-process decays provide a time-dependent nuclear heating rate.
An additional time dependence is introduced by the thermalization efficiency, i.e. the
efficiency at which this nuclear energy thermalizes within the expanding ejecta [311,
312, 324, 325]. The time-dependent nuclear heating rate ϵnuc entering these calculations
is approximated by an analytic fitting formula, derived from detailed nucleosynthesis
calculations [311],

ϵnuc(t) = 2 ϵ0 ϵth(t) ϵnr(t)

[
1

2
− 1

π
arctan

(
t− t0
σ

)]α
, (3.2)
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Figure 3.1: Graphic representation of a KN and BNS remnant. The figure highlights the
ejecta components and the remnant with the accretion disk. The colors refer to the opacity of
the environment, i.e. red for low opacities and blue for high opacities. The ejecta components

are assumed to be symmetric with respect to the orbital plane (dashed line).

where σ = 0.11 s, t0 = 1.3 s, α = 1.3 and ϵth(t) is the thermalization efficiency tabu-
lated according to Ref. [312]. The heating factor ϵnr(t) is introduced as in Ref. [16, 128]
to improve the behavior of Eq. (3.2) in the regime of mildly neutron-rich matter [318].
Then, the total luminosity is calculated as

L =

∫ Rph(Ω)

Rdiff(Ω)

ϵ̇nuc ϱ(r) d
3r . (3.3)

Note that the radii Rdiff and Rdiff are in principle functions of the solid angle Ω.
The radiated power and the photospheric surface determine the effective emission
temperature, Teff through the Stefan-Boltzmann law, i.e. Teff = (L/σSph)

1/4 where
Sph is the surface of the photosphere. In order to improve the description in the high-
frequency bands (i.e. V, U, B and g) within the timescale of the KN emission [326], we
introduce a floor temperature, i.e. a minimum value for Teff . This is physically related
to the drop in opacity due to the full recombination of the free electrons occurring
when for the matter temperature drops below Tfloor [144, 327].

3.1.2 Multi-component ejecta

A multi-component KN is described by multiple expanding ejecta shells that are in
principle characterized by different profiles and properties, i.e. mej, v and κ. The
total bolometric luminosity is given by the sum of the single contributions, i.e. L(t) =∑

k L
(k)(t) where k runs over the components. The outermost photosphere is the one

that determines the thermal spectrum of the emission. Once Rph and Teff have been
determined, the spectral flux at the observer location is computed as thermal radiation
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from the photosphere, i.e.

Fν(n, t) =

∫

nΩ·n>0

(
Rph(Ω, t)

DL

)2

Bν(Teff(Ω, t)) n · dΩ (3.4)

where n is the unitary vector along the line of sight, nΩ is the unitary vector spanning
the solid angle Ω, DL is the luminosity distance, and Bν(Teff) is the spectral radiance
at frequency ν for a surface of temperature Teff . Lastly, from Eq. (3.4), it is possible
to compute the apparent bolometric magnitude magb in a given photometric band b

as:
magb(n, t) = −2.5 log10 (Fνb(n, t))− 48.6 , (3.5)

where νb is the effective central frequency of the photometric band b.
By inspecting NR and long-duration GRHD simulations [161, 314, 328], it is pos-

sible to understand the dynamics of the unbound matter identifying different ejecta
component. An ejecta component is characterized by a physical engine that origi-
nates it, yielding to different geometries and compositions, e.g. dynamical ejecta and
baryonic winds [128, 316, 318, 329]. Figure 3.1 shows a graphic representation of a
three-component anisotropic KN. In our work, we assume the ejecta to be either spher-
ical or axisymmetric with respect to the rotational axis of the remnant, and symmetric
with respect to the equatorial plane. In general, the geometry of each ejecta compo-
nent could be inferred through PE routines, using parameterized profiles. However, in
order to limit the number of the total degrees of freedom and to avoid redundancies
in the KN description, we consider fixed ejecta profiles and we perform MS in order
to understand which configuration is preferred by the data. In our work, we include
the following ejecta components.

• Dynamical ejecta: The BNS collision ejects unbound matter on the dynamical
timescale, whose properties strongly depend on the total mass of the BNS, on
the mass ratio and on the EOS [e.g. 119, 125, 138, 155, 156, 330, 331, 332]. This
ejecta component is primarily generated by two engines. The first channel of
dynamical ejection is related to tidal forces that occur in proximity of the merger
and contribute in the formation of a equatorial outflow of matter. On the other
hand, the BNS collision generates shocks at the contact interface between the
merging stars unbinding a considerable amount of matter by hydrodynamical
processes. In general, the expansion of this ejecta component has a velocity
of roughly v ∼ 0.2 c. Moreover, the unbound matter is expected to have a
composition similar to the one of the progenitors, i.e. low electron fraction
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Ye < 0.25 and large opacities. Nevertheless, neutrino irradiation (if significant),
might increase the ejecta Ye and prevents the formation of lanthanides. For the
anisotropic analyses, the mass profile is taken to be ϱ(θ) ∝ sin θ, where θ is the
polar angle, and the opacity profile is taken as a step function in θ characterized
by the parameters {κlow, κhigh}, respectively for low- and high-latitudes.

• Disk’s viscous ejecta: Viscous torques of dynamical and magnetic origin can
unbind matter from the disk around massive NSs or BHs [308, 333, 334]. This
viscous component is expected to unbound a large fraction of the disk matter
on longer timescale, reaching mej ≲ 10−1M⊙, with a relatively low velocity,
v ≲ 0.05c. The corresponding ejecta are more uniformly distributed over the
polar angle than the other components [320, 335]. Thus, ϱ(θ) is always assumed
to be isotropic for this component. The presence or the lack of a massive NS in
the center can influence the Ye of these ejecta component.

• Neutrino-driven wind: Simulations of the remnant evolution in the aftermath of
a BNS merger reveal the presence of other ejection mechanisms happening over
the thermal and viscous evolution timescales [e.g. 137, 336, 337, 338, 339]. If the
ejection happens while the remnant is still a relevant source of neutrinos, neutrino
irradiation has enough time to increase Ye above 0.25, preventing full r-process
nucleosynthesis, especially close to the polar axis. Detailed simulations [137,
318, 340, 341] show that a relatively small fraction of the expelled disk localized
around the polar axis contributes to this component and its velocity is expected
to be v ≲ 0.1c. For this component, we assume uniform mass distribution ϱ for
θ ≤ π/6 and ϱ = 0 for θ > π/6.

The intrinsic global parameters represent the properties of the source common to
every component, such as the floor temperatures, TNi

floor and T LA
floor, and the heating rate

constant ϵ0. In principle, the latter is a universal property which defines the nuclear
heating rate as expressed in Eq. 3.2. The whole set of intrinsic parameters determines
the physical dynamics of the system and, therefore, they determine the properties of
the KN emission, irrespectively of the observer location. The extrinsic parameters are
the luminosity distance of the source, DL and the viewing angle ι. These parameters
do not depend on the physical properties of the source and they are related with the
observed signal through geometrical arguments. Finally, the set of KN parameters
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employed in our model corresponds to

θkn =
{
{mej, v, κ}i, TNi

floor, T
LA
floor, ϵ0, DL, ι

}
, (3.6)

where i runs over the number of employed components.

3.2 Inference of AT2017gfo

The properties of some ejecta components could be inferred extrapolating the tidal
GW information [e.g. 294]. However, we take here the more comprehensive approach
of analyzing the observed KN LCs with theoretical models within a Bayesian frame-
work. The prior PDFs for all the parameters are taken uniform in their bounds,
except for the followings. For the extrinsic parameters {DL, ι}, we set the priors equal
to the marginalized posterior PDFs coming from the low-spin-prior measurement of
GW170817 [172]; For the heating rate factor ϵ0, we use a uniform prior PDF in log ϵ0,
i.e. p(ϵ0|H) ∝ ϵ0

−1, since this parameter strongly affects the LC and it is free to vary
in a wide range. Moreover, we adopt a prior range according with the estimation given
in Ref. [311]. We assume the sky position of the source to be known and the time of
coalescence to be the same of the trigger time of GW170817 [39]. Furthermore, we do
not take into account redshift contributions.

The data {db,i, σb,i} are the apparent magnitudes observed from AT2017gfo, with
their standard deviations, from [201]. The index b runs over all considered photometric
bands, covering a wide photometric range from the UV to the NIR, while for each
band b the index i runs over the corresponding sequence of Nb temporal observations.
Additionally, the magnitudes have been corrected for Galactic extinction [342]. We
introduce a Gaussian likelihood function in the apparent magnitudes with mean and
variance, db,i, σ2

b,i, from the observations of AT2017gfo,

log p(d|θkn) ∝ −1

2

∑

b

Nb∑

i=1

[
db,i −magb,i(θkn)

σb,i

]2
, (3.7)

where magb,i are the magnitudes predicted by the KN model. The likelihood definition
Eq. (3.7) is in accordance with the residuals introduced in Ref. [128] and it takes into
account the uncertainties due to possible technical issues of the instruments and generic
non-stationary contributions, providing a good characterization of the noise.
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Table 3.1: Logarithmic evidences for the analyzed KNe models. The geometries are either
isotropic or anisotropic. The D label refers to the dynamical ejecta, the V label corresponds
to the viscous ejecta, and the N label is the ν-driven wind. The evidences are normalized to

the value of the isotropic one-component case, i.e. log p(d|Iso−D) = −23510± 1

Geometry Iso. Iso. Ani. Ani. Ani. Ani.
Components D D+V D N+V D+V D+N+V
log p(d|Model)

p(d|Iso−D)
0± 2 3791± 2 13590± 2 12407± 2 13954± 2 14071± 2

Given a Bayesian model for KN transients, it is possible to infer the ejecta com-
position and geometry directly from the observed data. Then, we perform Bayesian
KN analyses on AT2017gfo employing the cpnest [197] nested sampling algorithm
with 1024 live points. We perform KN inference varying the number of ejecta compo-
nents and considering two geometric configurations, i.e. isotropic and anisotropic. We
present the MS results in Section 3.2.1 and we discuss the recovered ejecta properties
in Section 3.2.2.

3.2.1 Multi-component model selection

Table 3.1 reports the evidences computed for the considered models. The results
show an increasing trend with the number of models’ components, in agreement with
previous findings [e.g. 48, 128, 201]. Moreover, for a fixed number of components,
the anisotropic description of the ejecta components is strongly preferred with respect
to isotropic profiles, with a logarithmic BF of the order of ∼104. According to the
estimated evidences, the isotropic two-components model is already disfavored with
respect to the anisotropic single-component. This is consistent with the hierarchy
observed in the LC residuals, and the better match to the data for multi-component
models. Moreover, the favored model is the three-component KN constituted by a fast
dynamical ejecta (comprising both a red-equatorial and a blue-polar portion), a slow
isotropic shell and a polar wind. These results confirm the non-trivial dependence
of the LCs from the ejecta geometries and distributions. Note that the prior choices
can affect the recovered BFs up to O(10) [343, 344, 345]. Considering this additional
uncertainty, the results on geometries remain robust.

The motivation for such results can be deduced comparing the observed data to
the recovered LCs. Figure 3.2 shows the comparison between isotropic and anisotropic
cases for the two-component case. This behavior is observed for all the considered
cases. The isotropic models give a good fitting for early times and their LCs capture
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Isotrop.

Anisotr.

Figure 3.2: Recovered LCs for isotropic (blue) and anisotropic (orange) two-components
models compared to the AT2017gfo data (black squares). The shadowed areas are the 90% of
the LCs. Different panels show the absolute bolometric magnitudes for different photometric

bands.

the general trends of the data. However, for times larger than ∼8 days after merger,
these models do not capture all the features of the data within the provided prior
bounds. This inaccuracy is particularly evident in the NIR, where the LCs predicted
by the isotropic models do not recover the correct slopes of the data. On the other
hand, the anisotropic cases are more suitable at adapting the model to the different
features present in the data, even for large time-scales. However, it overestimates the
KN emission in the blue band.

Remarkably, none of the considered models is able to fully capture the trend de-
scribed by the observed data in the Ks band for time larger then 10 days, within the
provided prior bounds. This is expected from the simplified treatment of the radiation
transport and the approximated heating rate in our models. This could indicate a
significant deviation from the black-body emission adopted in our model at late times.

3.2.2 Ejecta properties

A general fact is that the marginalized posterior PDFs for the ejected mass of the
viscous component is always constrained against the lower bound 10−2 M⊙, when this
component is involved. Moreover, for the majority of the analyses, the distance param-
eter is biased towards larger values, inconsistently with the estimates from Ref. [39,
66], and the heating rate parameter ϵ0 is generally overestimated comparing with
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Figure 3.3: Marginalized posterior PDF for dynamical ejecta parameters for three selected
cases: isotropic two-components (blue), anisotropic two-components (orange) and anisotropic
three-components (green). For the dynamical component (D), we show the ejected mass mej,
RMS velocity v and the opacity κ (low-latitude component for anisotropic cases). For the
viscous component (V), we show the ejected mass mej and the opacity κ. The contours report

the 50% and the 90% credible regions.
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the estimates from nuclear calculations [311, 312, 327, 346, 347]. This behavior can
be explained looking at Eq. (3.2) and (3.5): DL and ϵ0 are largely degenerate and
both concur to determine the brightness of the observed LCs. Thus, the correlations
between these parameters induce biases in the recovered values. The physical expla-
nation of this effect can be motivated with the poor characterization of the model in
the NIR bands. Note that this bias concurs in the overestimation of the LC in the
high-frequency bands (i.e. U, B and V), where the number of measurements is lower
with respect to the other employed bands. Furthermore, the viewing angle is biased
toward larger values, roughly ∼60 deg. The same trend is shown by the anisotropic
three-component model employed in Ref. [201]. These results suggest that, under a
modeling perspective, current KN description contains large theoretical uncertainties.
Hence, the development and the improvements of KN templates is an urgent task in
order to conduct reliable and robust analyses in the future.

Regarding the isotropic model, the individual most-likely value for dynamical
ejected mass parameter lies around ∼ 10−2 M⊙, as shown in Figure 3.3 (blue), in
agreement with the measurement presented in Ref. [294]. This range of values is
slightly overestimating the expectations coming from NR simulations for the dynami-
cal component [82, 83, 139, 161, 348]. This could be explained by considering the effect
of the spiral-wave wind [139], that constitute a massive and fast ejecta on timescales
of 10 − 100 ms. The spiral-wave wind is not considered as components in our mod-
els because it would be highly degenerate with the dynamical ejecta. The recovered
opacity parameters are roughly 4−5 cm2 g−1. The velocity of the dynamical compo-
nent is greater than secular velocity, accordingly with the theoretical expectations.
Comparing with other fitting models, the recovered ejected masses mej result smaller
with respect to the analogous analysis of Ref. [201], while the results roughly agree
with the estimations coming from Ref. [305]. However, it is not possible to perform an
apples-to-apples comparison between these results, due to the systematic differences
in modeling between the semi-analytical model and the radiative-transport methods
employed in Ref. [201, 305].

Figure 3.3 shows also the posterior PDFs for the ejecta parameters for the anisotropic
models for two (orange) and three (green) components. The latter gives the best-fitting
results among the considered cases. Also for these cases, the dynamical ejected mass
value lies around ∼10−2 M⊙, in agreement with previous estimates [294] and the recov-
ered mass slightly overestimates the results coming from targeted NR simulations [82,
83, 139, 161, 348], similarly to isotropic case. The velocity is well constrained around
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∼0.23 c. The recovered low-latitude opacity corresponds roughly to 12 cm2 g−1 and
high-latitude opacity is constrained around the lower bound, 0.1 cm2 g−1. This result
can be explained by considering that the mass of the dynamical component slightly
overshoots the NR expectations [82, 83, 139, 161, 348] (of a factor ∼1.25), and by
noticing that the ejected mass correlates with the luminosity distance and the heat-
ing factor (that are generally biased). This combination generates the overestimation
of the data in the UV region. In order to improve the fitting to the observed data,
the model tries to compensate this effect and the high-latitude opacity tends to move
towards lower values. Furthermore, the dynamical component results into the faster
ejected shell, validating the interpretation that this contribution is generated at dy-
namic time-scales. Concerning the viscous component, its velocity results an order of
magnitude smaller than the one of the dynamical ejecta, in agreement with the expec-
tations. This enforce the hypothesis for which the viscous ejecta contributes mostly to
the red KN. The posterior PDF of opacity parameter peaks around ∼5 cm2 g−1, de-
noting a medium opaque environment. These results agree with the studies presented
in [138] and they contribute to the KN LC in the optical band.

The neutrino-driven wind component is employed only for the three-component
anisotropic case. The posterior PDF for its ejected mass shows a bimodality and this
degeneracy correlates with the heating rate parameter ϵ0. The marginalized posterior
PDF for the ν-wind ejected mass has its dominat peak in proximity of 2.5×10−3 M⊙,
while the secondary mode is located slightly below 2×10−3 M⊙. These results are
largely consistent with aftermath computations [137] and with theoretical expecta-
tions [128], as it is for the recovered velocity and opacity parameters, corresponding
to v ≃ 0.05 c and κ ≃ 2.3 cm2 g−1.

3.3 Multi-messenger parameter estimation

The combination of GW and EM signals coming from the same BNS merger allows
to improve the constraints on the intrinsic properties of the system and the nuclear
EOS. In this section, we employ NR information [161, 310] in order to map the KN
posterior PDF of the preferred model (i.e. anisotropic three-component) into the BNS
properties and we employ GW and EM information in the inference of the NS EOS.
In Section 3.3.1, we discuss the mapping of the KN parameters and we show the joint
GW-KN PE. Subsequently, in Section 3.3.2, we include the information of electron
fraction and disk mass during the KN inference. In Section 3.3.3, we constrain the
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Figure 3.4: Posterior PDFs of tidal parameter Λ̃ and mass ratio q inferred from the joint
GW170817-AT2017gfo PE study. Left panel: The blue solid lines refer to the resampled
values extracted from the KN analysis. The orange solid lines refer to the GW results, where
the samples have been weighted over a flat prior in Λ̃. The green solid lines are the combined
inference. The contours represent the 90% credible regions The plot shows the expectations
of some representative EOS. Right panel: Posterior PDF in the {Λ̃, q} plane analogously to

the left panel but with the inclusion of Ye and Mdisk information.

NS radius through NR-calibrated relations. Finally, in Section 3.3.4, we perform MM
EOS inference combining GW170817-AT2017gfo results with NICER observations.

3.3.1 Mapping the dynamical ejecta properties

The NR fits presented in [310] use simulations targeted to GW170817 [82, 83, 139,
161, 348] and give the mass mej and velocity v of the dynamical ejecta as functions
of the BNS parameters {q, Λ̃}. In order to recover the posterior PDF of the latter,
we adopt a resampling method, similar to the procedure presented in Ref. [305, 317]:
a sample {q, Λ̃} is extracted from the prior PDF exploiting the ranges q ∈ [1, 2] and
Λ̃ ∈ [0, 5000]. In particular, the prior PDF is taken uniformly distributed in the tidal
parameters Λ̃; while, regarding the mass ratio q, we employ a prior PDF uniform in
the mass components, analogously to GW analyses [39, 158, 254]. Subsequently, the
tuple {q, Λ̃} is mapped into the dynamical ejecta parameters {mej, v} using the NR
formulae presented in Ref. [310]. Furthermore, since NR-calibrated relations carry
non-negligible intrinsic uncertainties, we introduce calibration parameters {αm, αv},
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such that

log10mej = (1 + αm) · log10mfit
ej (q, Λ̃) ,

v = (1 + αv) · vfit(q, Λ̃) .
(3.8)

The calibrations parameters αm,v are sampled along the other parameters using a nor-
mally distributed prior with vanishing means and standard deviations prescribed by
the relative uncertainties of NR fits equal to 0.2 for both. The likelihood is estimated
in the dynamical ejecta parameter space {mej, v} using a kernel density estimation
of the marginalized posterior PDF recovered from the preferred KN model. The re-
sampled posterior PDF is marginalized over the calibration parameters {αm, αv}. The
BNS parameter space is explored using MCMC technique. Note that a correct charac-
terization of the fit uncertainty is crucial, since this contribution is the largest source
of error in the inference of {q, Λ̃}.

The posterior PDF in the {q, Λ̃} plane as obtained from the dynamical ejecta
properties fitted to AT2017gfo data is shown in Figure 3.4 (left). The measurement
of the tidal parameter leads to Λ̃ = 900+310

−780, with a bimodality in the marginalized
posterior PDF, due to the quadratic nature of the employed NR formulae, with modes
Λ̃ ≃ 370 and Λ̃ ≃ 1000. The mass ratio is constrained to be lower than 1.54 at the
90% credibility level. The uncertainties of the KN measurement are larger than those
of the GW analyses [39, 40, 254] due to the errors introduced by the NR fit formu-
lae. Figure 3.4 (left) shows also the results coming from the GW170817 analysis with
TEOBResumS [254], which employs a low-spin prior and a cutoff-frequency of 1 kHz.
The GW posterior samples have been re-weighted with a rejection sampling to the
prior PDFs employed in the KN study, in order to use the same prior information for
both analyses. Under the assumption that GW170817 and AT2017gfo are generated
by the same physical event, the {q, Λ̃} posterior PDFs coming from the two indepen-
dent analyses can be combined, in order to constrain the estimation of the inferred
quantities. The joint probability PDF is computed as the product of the single terms,

p
(
q, Λ̃

⏐⏐dkn,dgw

)
∝ p

(
dgw,dkn

⏐⏐q, Λ̃
)
p
(
q, Λ̃

)
= p

(
dkn

⏐⏐q, Λ̃
)
p
(
dgw

⏐⏐q, Λ̃
)
p
(
q, Λ̃

)
, (3.9)

and the samples are extracted with a rejection sampling.
The combined inference, shown in Figure 3.4 (left), leads to a constraint on the

mass ratio of ≲1.27 and on the tidal parameter Λ̃ = 460+210
−190, at the 90% credibility

level. The error on Λ̃ is ∼20% at 1−σ level. Fixing the source-frame chirp mass
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M = 1.188 M⊙, we can constrain the total binary mass M ∈ [2.73, 2.75] M⊙ at the
90% credibility level. These estimates are in agreement with independent results from
literature [e.g. 349, 350]. Our observational constraints disfavor stiff EOSs, such as
DD2, and support mildly-soft EOSs, such as SFHo and BLh. Interestingly, GW170817-
targeted NR simulations performed with these EOSs [161] show a delayed collapse on
timescales of O(10 ms), supporting the discussion of Section 2.4 and supporting studies
of PM GW radiation (see Chapter 4).

3.3.2 Incorporating electron fraction and disk mass

From NR simulations, it is possible to estimate the average electron fraction, Ye, of the
dynamical ejecta [161, 310]. This quantity is the ratio of the net number of electrons
to the number of baryons and it is tightly related with the opacity of the shell [83, 351,
352], since it mostly determines the nucleosynthesis rates in low-entropy neutron-rich
matter. We compute the average opacity κ̄ of a shell as the integral of the opacity
over the polar angle weighted on the mass distribution,

κ̄ =
1

mej

∫ π

0

ϱ(θ)κ(θ) sin θ dθ . (3.10)

Imposing the assumptions on the profiles of the dynamical ejecta, we get

κ̄ =

(
1

2
+

1

π

)
κlow +

(
1

2
− 1

π

)
κhigh . (3.11)

Thanks to this definition, it is possible to map the opacity κ̄ into the electron fraction
Ye, using the relation presented in [309]. Subsequently, the Ye can be related with
the BNS parameters {q, Λ̃}, using NR fit formulae [310]. We introduce an additional
calibration parameter αY , such that

Ye = (1 + αY ) · Yefit(q, Λ̃) , (3.12)

with a Gaussian prior with mean zero and standard deviation of 0.2. This method
allows us to take into account also the contribution of the opacity posterior PDF during
the inference of the NS matter.

The employed KN model contains information also on the baryonic wind ejecta.
These components are expected to be generated by the disk that surrounds the rem-
nant [308, 334, 353], if present. The disk mass can be estimated from NR simulations
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as function of the BNS parameters {q, Λ̃}, albeit with large uncertainties [70, 125,
310]. We map a fraction ξ of the disk mass Mdisk into the mass of the baryonic wind
components,

m
(V)
ej +m

(N)
ej = ξ ·Mdisk , (3.13)

where m(V)
ej and m

(N)
ej are respectively the ejected masses of the viscous and the ν-

wind components. The mass fraction ξ is sampled along the other parameters with a
uniform prior in the range [0.1, 0.5]. We include the disk mass information together
with the electron fraction contribution, previously discussed.

The posterior PDFs reinforced with the Ye and the Mdisk information are shown
in Figure 3.4 (right). Focusing on the KN results, the Ye contributions reinforce the
constraint on the mass ratio posterior, giving q ≤ 1.18 at 90% credibility level. This
effect is motivated by the fact that high-mass-ratio BNS mergers are expected to have
Ye ≲ 0.1 [82, 161]; while, the recovered electron fraction is Ye = 0.20+0.04

−0.08. On the
other hand, the additional inclusion of Mdisk information increases the agreement to
the GW measurement and attenuates the bimodality of the Λ̃ KN posterior. The
recovered mass fraction corresponds to ξ = 0.14+0.27

−0.04. The joined inference with the
GW posterior leads to a mass ratio ≲ 1.13 and a tidal parameter of Λ̃ = 430+180

−140, at
the 90% credibility. The inclusion of Ye and Mdisk information significantly narrowed
the posterior PDF reducing the error on the Λ̃ measurement of 20% with respect to
the study of Section 3.3.1.

3.3.3 Inferring the neutron star radius

Using the EOS-insensitive relation presented in Ref. [349, 354], it is possible to impose
a constraint on the radius R1.4M⊙ of a NS of 1.4 M⊙. We employ the marginalized
posterior PDF for the (source-frame) chirp mass M coming from the GW170817 mea-
surement [254] and the posterior on the tidal parameter Λ̃ obtained with the joint
analyses AT2017gfo-GW170817. We adopt a resampling technique to account for the
uncertainties in the NR-calibrated relations, introducing a Gaussian calibration coeffi-
cient with variance prescribed by Ref. [349, 354]. In Figure 3.5, the NS radius R1.4M⊙

estimation is compared with the mass-radius curves from a sample of nuclear EOS.
We estimate R1.4M⊙ = 12.16+0.89

−1.11 km. The presented measurement agrees with the re-
sults coming from literature [14, 180, 349, 350, 354, 355, 356, 357, 358] and its overall
error at 1−σ level corresponds roughly to 500 m. Our bounds impose observational
constraints on the nuclear EOS, excluding both very stiff EOSs, such as DD2, BHBΛϕ
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Figure 3.5: Posterior PDFs of the radius R1.4M⊙ estimated with the joined inference of
AT2017gfo and GW170817 plotted on top of the mass-radius sequences extracted from a
sample of nuclear EOSs (dashed lines). The blue solid line is computed using the mass
and velocity information of the dynamical component and the orange solid curve takes into

account also the contribution of electron fraction Ye and disk mass Mdisk.

and MS1b, and very soft equations, such as 2B. Moreover, the plot shows also the
analogous results obtained including the additional information of electron fraction Ye
and disk mass Mdisk. These analysis leads to the results of R1.4M⊙ = 11.99+0.82

−0.85 km at
the 90% credibility level.

The relations employed here used exclusively targeted data and simulations with
state-of-art treatment of microphysical EOSs and neutrino treatment [82, 83, 139, 161,
348]. However, the simulation sample is limited to about hundreds of simulations,
with fitting errors that could be reduced by considering data at even higher grid
resolutions [310]. For example, assuming all the fit formulae to be exact (i.e. removing
all calibration terms), it will be possible to infer the Λ̃ parameter from AT2017gfo with
an accuracy of O(10), that corresponds to a constraint on the radius R1.4M⊙ of roughly
100 m.

3.3.4 Including NICER information

The constraints presented in Section 3.3.2 and 3.3.3 could be improved including the
information of GRB170817A [44, 54, 150, 359, 360] and of more recent GW observa-
tions of BNS and BH-NS binaries [56, 361]. However, the relation between the GRB
properties and the nuclear EOS are unknown and this messenger can only inform us
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on the position and orientation of the source [66, 362]. On the other hand, the SNRs
of the more recent GW observations is significantly smaller compared to GW170817
and these signals do not provide informative measurements of the tidal parameters.
Thus, the inclusion of these events in the presented EOS inference is expected to mildly
affect the overall results, as shown also in Ref. [363]. Going beyond BNS merger phe-
nomena, the X-ray observatory NICER recently provided EOS constraints on the NS
mass-radius by resolving the pulse profiles of known pulsars [60, 61, 62, 63, 64, 65].
The observation of PSR J0030+0451 and PSR J0740+6620 provided measurements of
NS masses (respectively 1.34+0.15

−0.16 M⊙ and 2.07+0.07
−0.07 M⊙) and equatorial radii (respec-

tively 12.7+1.1
−1.2 km and 12.4+1.3

−1.0 km). Interestingly, the mass of PSR J0030+0451 falls
in the posterior support for the mass components of GW170817. Comparing the GW
results with the NICER measurements, the EOB predictions show improved agreement
compared to the other approximants, supporting the hypothesis of Λ̃ ≳ 200 [284].

It is interesting to investigate the constraints on the NS EOS provided by the
combination of GW-KN and the NICER data. We employ an EOS resampling in
order to avoid usage of NR-calibrated relations. Employing the EOS set proposed in
Ref. [364] as prior, the GW-KN and the NICER information can be (independently
and jointly) imposed weighting the EOS samples by the corresponding posterior PDFs.
The EOS prior [364] contains two-million EOS that support maximum NS mass above
MTOV

max > 1.97 M⊙, consistently with pulsar observations of PSR J0348+0432 [87], and
satisfy the condition Λ < 800 for a 1.4 M⊙ NS, in order to focus on the relevant
posterior support of GW170817 [14, 39, 40]. The only additional assumptions used to
construct the EOS set are the validity of GR and causality up to the central density
of the maximum mass NS. For each EOS, the corresponding GW-KN probability is
computed from the {Λ̃, q} posterior PDF (including Ye and Mdisk information) as

p(EOS|dgw,dkn) ∝ p(EOS)

∫
p(dgw,dkn|Λ̃, q) p(Λ̃, q|EOS) dΛ̃ dq

∝ p(EOS)

∫
p(Λ̃, q|dgw,dkn) δ

(
Λ̃− Λ̃EOS(q)

)
dΛ̃ dq ,

(3.14)

where the step makes use of the uniform prior on Λ̃. Moreover, δ is the Dirac function
and Λ̃EOS(q) corresponds to the reduced tidal parameter predicted by the EOS as a
function of the mass ratio q. This computation assumes a fixed chirp mass M =

1.188 M⊙. We opt to use the {Λ̃, q} posterior instead of the R1.4M⊙ PDF in order to
minimize errors and biases introduced by NR-calibrated relations. Similarly, for the
NICER data, the EOS probability can be computed from the mass-radius posterior
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Table 3.2: EOS constraints from MM PE. We remark that GW data corresponds to LIGO-
Virgo (de-glitched) segments of GW170817 [172] and GW data are the photometric data
of AT2017gfo [201]. NICER (Miller et al.) data correspond to mass-radius posterior PDFs
of Ref. [60, 65]. NICER (Riley et al.) data correspond to mass-radius posterior PDFs of
Ref. [61, 64]. The prior is the EOS set presented in Ref. [364]. The reported data are the

medians and the 90% credible intervals of fiducial EOS properties.

MM data R1.4M⊙ Λ1.4M⊙ MTOV
max RTOV

max log10

(
P2ρsat

dyn cm−2

)
log10

(
P4ρsat

dyn cm−2

)
[km] [M⊙] [km]

Prior 12.23+0.86
−0.80 371+135

−128 2.12+0.28
−0.13 11.1+1.3

−1.0 34.61+0.12
−0.15 35.46+0.16

−0.10

GW-KN 12.23+0.75
−0.80 372+135

−128 2.12+0.28
−0.14 11.1+1.3

−1.0 34.61+0.12
−0.15 35.46+0.16

−0.10

NICER (Miller et al.) 12.58+0.72
−0.82 461+127

−165 2.10+0.19
−0.11 11.8+1.2

−1.2 34.68+0.14
−0.15 35.44+0.12

−0.13

NICER (Riley et al.) 12.47+0.81
−0.94 429+152

−168 2.10+0.14
−0.09 11.5+1.3

−1.3 34.65+0.14
−0.18 35.44+0.09

−0.10

GW-KN-NICER (Miller et al.) 12.39+0.70
−0.65 407+119

−116 2.08+0.16
−0.09 11.5+1.2

−1.1 34.63+0.12
−0.11 35.44+0.10

−0.10

GW-KN-NICER (Riley et al.) 12.32+0.72
−0.72 389+125

−121 2.09+0.12
−0.09 11.3+1.2

−0.9 34.62+0.12
−0.13 35.44+0.09

−0.08

PDFs of the pulsar observations [60, 61, 64, 65] as

p(EOS|dNICER) ∝ p(EOS)
∏

k

∫
p(m,R|dk) δ (m−mEOS(R)) dm dR , (3.15)

where mEOS(R) corresponds to the mass predicted by the EOS as a function of the
NS radius R and k runs over all the observed NSs, i.e. PSR J0030+0451 (Miller
[60] and Riley [61]) and PSR J0740+6620 (Miller [65] and Riley [64]). Eq. (3.15) is
estimated separately for both available data sets, Miller [60, 65] and Riley [61, 64].
Finally, the joint GW170817-AT2017gfo-NICER EOS probability can be estimated as
the product of Eq. (3.14) and Eq. (3.15) under the assumption that the measurements
are independent. Notably, in addition to the study of Section 3.3.3, a EOS sampling
method allows to infer the maximum-mass configuration supported by the NS EOS.
However, note that the strongest constraints are expected to be provided around the
densities (or the masses) of the progenitors.

Figure 3.6 shows the EOS posteriors in the mass-radius plane obtained imposing
the GW-KN and the NICER posterior PDFs and Table 3.2 reports the posterior
statistics some exemplary EOS properties. The GW-KN posterior Eq. (3.14) predicts
a NS radius R1.4M⊙ = 12.23+0.75

−0.80 km and a maximum TOV massMTOV
max = 2.12+0.28

−0.14 M⊙.
The inclusion of GW-KN improves the constraints on R1.4M⊙ and the pressures relation
for densities < 2ρsat. The estimate on R1.4M⊙ is roughly consistent with the results
of Section 3.3.3, recovered with NR-informed method, and it slightly overestimates
similar results from literature [e.g. 14, 180], mainly due to the tidal systematic errors
between GW models. The NICER posterior Eq. (3.14) of Miller [60, 65] favors stiffer
EOSs and it predicts a NS radius R1.4M⊙ = 12.58+0.72

−0.82 km and a maximum NS mass



Chapter 3. Electromagnetic counterparts 57

MTOV
max = 2.10+0.19

−0.11 M⊙. On the other hand, the NICER posterior of Riley [61, 64] shifts
toward softer EOSs compared to Miller [60, 65], predicting a NS radius R1.4M⊙ =

12.47+0.81
−0.94 km and a maximum NS mass MTOV

max = 2.10+0.14
−0.09 M⊙. The two NICER

inferences show broad agreement between each other. The results from Riley [61, 64]
show improved constraints for MTOV

max and P4ρsat due to the narrow posterior PDF of
the massive pulsar PSR J0740+6620. The joint MM GW170817-AT2017gfo-NICER
inference significantly tighten the previous results. From the data of Miller [60, 65], we
recover R1.4M⊙ = 12.39+0.70

−0.65 km and MTOV
max = 2.08+0.16

−0.09 M⊙; while, for Riley [61, 64],
we recover R1.4M⊙ = 12.32+0.72

−0.72 km and MTOV
max = 2.09+0.12

−0.09 M⊙. The results computed
with Miller [60, 65] data show narrower constraints of R1.4M⊙ due to the agreement
with GW-KN analysis (employing EOB model [254, 284]). On the other hand, the
Riley [61, 64] data confidently constrain the maximum TOV mass to MTOV

max ≲ 2.2 M⊙

at the 90% credibility level. In general, the joint MM PEs show preference towards
mildly stiff EOSs, such as BLh and LS220.

Similar MM inferences have been performed in Ref. [63, 180, 349, 350, 357, 358,
363, 365, 366, 367, 368, 369]. In order to connect the EOS properties to the BNS pa-
rameters, the majority of these methods rely on EOS-insensitive relations calibrated
on NR data. Moreover, computational PE costs are generally improved employing
finite-sized EOS priors or performing post-processing analysis of existing results. No-
tably, the EOS prior considered in our analyses is the largest set among those used
in similar studies [180, 357, 363, 368]. Regarding the construction of the EOS prior,
different studies typically employ different parameterizations and modelings, implying
different prior assumptions between different analyses. However, the majority of the
employed EOS sets include identical constraints from massive pulsars [87, 88] and from
heavy-ion collisions [102, 103, 370, 371]. Thus, they share part of their prior infor-
mation. As shown in Ref. [366], the EOS parameterization can have a non-negligible
impact on the final results, suggesting that current inferences can be partially af-
fected by prior information. However, all the approaches lead to a similar result of
R1.4M⊙ ≃ 12 km with errors of ∼0.5 − 1 km. Comparing our results with Ref. [363],
we observe a consistent estimates of R1.4M⊙ , although our analysis recovers larger un-
certainties of a factor ∼1.5. The main differences between our work and the results
of Ref. [363] lie in the employed models, since we use EOB GW and anisotropic KN
models, while Ref. [363] employs phenomenological GW and isotropic KN models.
Moreover, Ref. [363] employs a coherent joint approach that takes into account full
correlations of the parameters space and can lead to improved measurements.
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Figure 3.6: MM EOS constraints imposed by GW170817, AT2017gfo and NICER data.
Top panel: The blue contour reports the GW170817-AT2017gfo constraint. The orange
contour reports the NICER constraint of Miller [60, 65]. The joint GW170817-AT2017gfo-
NICER is reported in green. The gray area (prior) corresponds to the prior, i.e. EOS set
proposed in Ref. [364]. All contours report the 90% credibility regions. The plot shows also
some exemplary EOSs. Bottom panel: EOS inference analogous to top panel but with the

employment of NICER data from Riley [61, 64].
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Chapter 4

Postmerger gravitational-wave models

Models of PM GWs were presented in Ref. [154, 372, 373, 374, 375, 376, 377, 378,
379, 380, 381, 382, 383]. These templates are phenomenological models that capture
the main PM spectral features but do not attempt to model the underlining remnant’s
dynamics. The complex spectral frequencies are either inferred from the observations
or (in part) fixed by EOS-insensitive relations that connect the main spectral features
to the binary parameters. The relevance of these relations is twofold: on one hand they
are used for waveform modeling, on the other hand they can be used to extract informa-
tion from the analysis. Depending on whether the calibrated relations are employed or
not during the GW inference, the templates might be used in fully-informed, partially
informed or agnostic approach. Minimal-assumption models employs dimensionality
reduction, learning algorithms or unmodeled approaches [374, 375, 376]. However, sim-
ilar fitting factors can be achieved with significantly less modeling efforts in agnostic
approaches based on wavelets or sinusoidal basis [379, 380, 383]. A main motivation
for (partially) informed approaches is the possibility to design inspiral-merger-PM
templates by consistently extending inspiral-merger templates [154, 381].

In this Chapter, we discuss the development and the validation of NR-informed
model for GWs from BNS PM remnants. We review the main morphological properties
of PM signals in Section 4.1. We present and discuss the main EOS-insensitive proper-
ties used for PM modeling in Section 4.2. We introduce the NR-informed PM models
in Section 4.3, i.e. the time-domain approximant NRPM and its frequency-domain coun-
terpart NRPMw, discussing their faithfulness to NR data. Finally, Section 4.4 discusses
the construction and the validation of full-spectrum GW model for BNS mergers. In
this Chapter, we use geometrical units G = c = 1 in order to lighten the notation,
except when differently stated.
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Figure 4.1: Representative examples of BNS PM morphologies. The reported NR simula-
tions are extracted from the CoRe database [118, 160, 274]. The plot shows the time-domain
waveforms together with simulation number, EOS, total mass M , mass ratio q and tidal po-

larizability κT2 . The waveform are aligned such that tmrg = 0.

4.1 Morphology

The PM waveform morphology and its connection to the remnant’s dynamics have
been primarily studied employing NR simulations [e.g. 82, 118, 129, 130, 300, 372,
384, 385, 386, 387, 388, 389, 390, 391]. Figure 4.1 shows the PM signal in exemplary
cases; the time axis is shifted to the moment of merger. A merger remnant is a massive,
hot and rotating NS whose mass is usually larger than the maximum mass sustained
by a cold, isolated TOV NS. It can either collapse to a BH or settle to a stable rotating
NS on secular timescales.

Gravitational collapse to BH takes place as the remnant reaches densities compa-
rable to the TOV’s maximum density [124]. The remnant of a very massive BNS can
promptly collapse after the moment of merger and crucially before the first bounce of
the two cores [120, 121]. A PC signal is showed in the first panel of Figure 4.1. In
the case of a equal mass BNS, the PC is described by empirical relations relating the
binary mass to the TOV maximum mass, discussed in Section 2.4.1. For very asym-
metric BNS, the tidal disruption of the secondary drives the gravitational collapse [82]
and is mainly controlled by the incompressibility parameter of nuclear matter around
the TOV maximum density [124]. While a robust PC criterion is not known in these
conditions [82, 123, 124], tidal disruption effects are of the order of current EOS effects
in the equal-mass criterion, at least for mass-ratio q ≲ 1.4 [57, 124]. PC mergers have
the largest GW luminosities (at merger) [300] but the PM signal is the rapidly damped
ringdown of the BH and it is practically negligible for the sensitivities of current and
XG detectors.

If the remnant does not collapse into BH, the evolution of the NS is driven by
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an intense emission of GWs lasting ∼10−20 milliseconds (early PM) [133, 300]. Dur-
ing this phase, the remnant either collapses to BH (short-lived remnant) or settles to
an approximately axisymmetric rotating NS (long-lived remnant). Examples of NR
templates for short- and long-lived remnants are shown in the last three panels of Fig-
ure 4.1. The early PM phase is associated to a luminous GW transient at frequencies
2 – 4 kHz [129, 372, 384, 385, 386, 388]. The spectrum of this transient is rather
complex but has robust and well-studied features at a few characteristic frequencies.
Most of the power is emitted in the ℓ = m = 2 GW mode around the characteristic
frequency f2. The f2 frequency is extracted from simulation data and it was shown to
correlate with various binary quantities in a EOS-insensitive way [e.g. 129, 130, 154,
388].

However, the PM spectrum is not composed of a discrete set of frequencies. The
presence of broad peaks with typical full width at half maximum (FWHM) of 300−600 Hz
is a consequence of the efficiency of the emission process. Indeed, inspection of the
time-domain waveform’s instantaneous frequency shows that ω22(t) increases as the
remnant becomes more compact and has a steep acceleration towards gravitational
collapse [129]. Moreover, the instantaneous GW frequency has modulations with fre-
quencies f0 ∼ O(1 kHz) that are stronger for remnants closer to collapse. These
modulations are associated to the violent radial bounces of the remnant’s core prior to
collapse. This effect introduces two secondary peaks in the PM spectrum at frequen-
cies f2±0, respectively at larger and smaller frequencies than f2. These features are
associated to hydrodynamical modes in the remnant [e.g. 385, 392, 393] and have been
interpreted as nonlinear coupling between f2 and f0 [385], in analogy to perturbations
of rotating NS [394, 395, 396].

When a NS remnant forms in an asymmetric binary, i.e. q ≳ 1.5, the signal can
carry with it the footprint of tidal disruption. An example is shown in the fourth panel
of Figure 4.1. The tidal disruption of the secondary object redistributes the matter over
a larger volume surrounding the remnant. As a consequence, radial fluctuations are
generally milder and the PM GW luminosity is smaller than the comparable-mass case.
These dynamical features are reflected in the GW waveform, e.g. the PM amplitude
can be significantly smaller than in the equal-mass cases and the f0 frequency typically
decreases to O(100 Hz) suppressing the subdominant peaks at frequencies f2±0.

The evolution of a NS remnant beyond the early PM phase is highly uncertain at
present. It requires detailed simulations of viscous and nuclear processes on timescales
beyond hundreds of milliseconds, for example to quantify precisely the mass accreting
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or outflowing the central object. NS remnants after the early PM phase have an excess
of both gravitational mass and angular momentum when compared to equilibrium
configuration with the corresponding baryon mass [157, 161]. Possible mechanisms to
shed (part of) this energy are long-term GW instabilities [397, 398] including one-arm
instabilities [389, 399], that would lead to potentially detectable, long GW transients
at ≲1 kHz.

4.2 Quasiuniversal properties

From the study of the GW morphology of NR templates, it is possible to extract
EOS-insensitive (quasiuniversal) properties for the PM waveform. This information
is essential in order to map the morphological PM properties to the intrinsic binary
parameters, i.e. masses, tides and spins, and construct NR-informed GW models for
BNS PM remnants.

An euristic justification in favor of the construction of quasiuniveral relations is
given in Ref. [154, 274] and it can be summarized as follows using perturbative argu-
ments. In the EOB description of the two-body dynamics, the interbinary potential
A(r) is the main quantity which describes the binary dynamics (see Section 2.1). The
radial force governing the circular motion is given by

dA

dr
= − (M/r)2

[
−2 + aPP(ν, r) + aT(κ

T
2 , ν, r)

]
, (4.1)

where aPP and aT are the PP and the tidal corrections to the Newtonian term respec-
tively (we neglect here spin interactions) [114]. At leading order, the two terms above
read

âPP(ν, r) ∝ ν/r2 , âT(κ
T
2 , ν, r) ∝ −κT2 /r3 , (4.2)

where the tidal contribution is parameterized by the tidal polarizability κT2 [116].
Hence, finite mass-ratio and tidal effects are parameterized at leading order by ν

and κT2 . As noted in [274], in the strong field regime (where the expansion above is
not accurate), the tidal term aT can become numerically comparable to aPP as κT2 ∼
O(100). This reflects the physical fact that the tidal term grows faster (∼ 1/r3) at small
separations than the non-tidal one (∼ 1/r2). Based on this picture, it is thus natural
to interpret the NR data in terms of κT2 because the latter is the theoretically justified
parameter that encode the main effects of the EOS and masses on the dynamics.
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The construction of quasiuniversal properties assumes that the formalism of Eq. (4.1)
can be extended to early times after merger and that the inspiral-merger dynamics
are the primary contributions to determine the PM outcome. However, this argument
cannot be generalized for all the PM properties. For example, some PM quantity
might correlate with physical properties that are not fully captured by the intrin-
sic binary parameters, e.g. viscous and turbolent phenomena, NS remnant collapse
dynamics, and tidal disruption [153, 383, 400]. Moreover, other physical effects can
lead to a breaking of quasiuniversality, i.e. a significant deviation from the prediction
of the EOS-insensitive relation. This is expected as a result of the appearance of
non-nucleonic degrees of freedom for some BNS configurations [86, 154, 401, 402]. In
general, the lack of an analytical scheme for the analysis of NS merger remnants pose
severe limits in the development of reliable and accurate GW models. Some studies
naively tried to associate the BNS remnant dynamics to NS perturbation models [403,
404]. However, the NS remnant of a typical BNS (i.e. M ≃ 2−3 M⊙) is far from
the cold equilibrium assumed in the TOV equations [e.g. 67, 121, 127, 389]. For this
reason, NR data are key to inform BNS PM models [154, 374, 376, 380, 383].

We rely on the NR data provided by the CoRe database [57, 58, 82, 83, 86, 139,
160, 161, 348] and by the Sacra database [405, 406, 407]. We remark that these data
include BNS simulations computed with ALF2 and BLQ EOSs, that include a phase
transition to deconfined quark matter, and with BHBΛϕ EOS, which takes into account
the appearance of hyperons at high densities. The intrinsic parameters of the data
cover the ranges M ∈ [2.4, 3.4] M⊙, q ∈ [1, 2], κT2 ∈ [22, 458] and χeff ∈ [−0.14,+0.22].
In the following subsections, we model the main morphological features extracted from
NR data. In particular, we introduce the nodal points in Section 4.2.1 and we show
the calibration of the characteristic PM frequency in Section 4.2.2.

4.2.1 Nodal points

Figure 4.2 illustrates some of the qualitative features extracted from the NR waveforms
for short- and long- lived NS remnants. If the NS remnant does not collapse, the time-
domain amplitude shows modulations related to the remnant bounces. In Figure 4.2,
we identify as Ai the stationary points of the strain’s occurring at times ti with i =

0, 1, 2, 3. We label these times as nodal points and we assume this structure for the
modeling of our PM GW templates. The amplitude maxima occur for odd indeces;
while, the minima have even indices. Amplitude maxima correspond to minima in
the instantaneous GW frequency, and viceversa. This can be naively interpreted as a
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Figure 4.2: NR waveform from two exemplary BNSs with mass M = 1.35+ 1.35 M⊙. The
SLy BNS (top panel) is an example of short-lived remnant collapsing at t/M ∼ 850 after
merger time (tmrg = 0). The MS1b BNS (bottom panel) is an example of long-lived remnant.
The left axes and solid lines report the GW amplitude. The right axes and dashed lines
report the instantaneous GW frequency. In both cases, the PM waveform amplitude has
characteristics maxima and minima Ai at times ti with i = 0, ..., 3. Note the jump in the

phase at t0, where the instantaneous frequency is not defined.

consequence of the conservation of the angular momentum of the remnant. Note that
at t0 the GW phase has a jump and the instantaneous frequency is discontinuous; this
corresponds to a moment in which the remnant has a strongly suppressed quadrupolar
deformation.

The PM properties at the nodal points {Ai, ti} are estimated from the time-domain
NR data. The PM amplitudes Ai show a decreasing trend for increasing κT2 and for
increasing mass ratio. This can be understood as the effects of stiffer EOSs and larger
mass ratios that produce less violent dynamics in the remnant (for a fixed M). As
a consequence of tidal disruption, the first amplitude A0 increases with increasing
mass ratio. In general, also the nodal times ti show increasing trends for increasing
mass ratios. However, this morphological choice is non-optimal for large mass ratio,
i.e. q > 1.5, since these binaries show additional phase discontinuities and thus the
determination of t0 is non-trivial.

At timescales ∼10−20 ms, the remnant has either collapsed or dissipated most of its
energy via GWs. For long-lived remnants (MS1b in Figure 4.2), there is no significant
GW emission at timescales ≳ 50 ms [389, 408]. For short-lived remnant (SLy in
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Figure 4.3: Quasi-universal relation for the PM peak frequency f2 as function of the tidal
polarizability κT2 . Top panel: Calibrated relations (black lines) compared to NR data (col-
ored dots) extracted from the CoRe and the Sacra databases. Each color corresponds to
a different EOSs. NR medians and error-bars are reported averaging over different numeri-
cal resolutions (when available) for the same binary configuration. Bottom panel: Relative
residuals between the calibrated relation and the NR validation set. The gray areas show the

50% (dark) and 90% (light) credible regions of the residuals.

Figure 4.2), it is possible to introduce an additional nodal point in correspondence of
the time of collapse into BH, reported as tcoll in Figure 4.2. After this time, the GW
signal can be approximated using the QNMs complex frequencies estimated from BH
perturbation theory given the properties of the final BH (i.e. mass and spin) [e.g. 126,
409, 410]. However, there are no available models capable to accurately predict the
final mass and the spin of a remnant BH for a generic BNS coalescence. The final
BH mass is expected to lie around the total binary mass M , since the total amount
of radiated GW energy and of ejected matter correspond to few percents of it. On
the other hand, the final BH spin can be only bounded to be smaller than the total
angular momentum of the system at merger [82, 121].

4.2.2 Postmerger peak frequency

The main quantity for PM modeling is the dominant f2 frequency peak. We extract the
PM frequency f2 from NR PM spectra of the (2, 2) mode. Generally, the f2 frequency
is estimated as the global maximum of the PM spectrum; however, when modulations
are prominent and the PM segments are short (i.e. ≲ 8 ms), the f2 contribution
is no longer the dominant peak and it needs to be identified in the local maxima.
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The calibration is performed with a rational polynomial form in κT2 that is corrected
with ν-dependent and spin-dependent terms (see Appendix C) [383]. Figure 4.3 show
the f2 quasiuniversal relation: the frequency Mf2 primarily correlates with the tidal
polarizability κT2 , while mass ratio and spin contributions mildly affect the overall
value of this quantity. This relation is accurate to ∼4% at 1−σ level (6−7% at 90%

credibility level), that corresponds to an error of about 100 Hz (200 Hz). The latter
is typically smaller than the FWHM of the spectrum peaks.

The bottom panel of Figure 4.3 shows data points with deviations larger than
2−σ. Around κT2 ≃ 207, it is possible to identify a cluster of NR data corresponding
to spinning unequal-mass H4 binaries 1.65+1.10 M⊙ with different combinations of
spins [118, 391]. For these large mass-ratio cases, the spin corrections would require
an improved treatment. The largest residual (∼15%) is given by the non-spinning
equal-mass binaries BHBΛϕ 1.50+1.50 M⊙ [67] and BLQ 1.40+1.40 M⊙ [86]. In both
cases, the remnant collapses into BH shortly after merger, i.e. tcoll ≃ 3 ms, and the
determination of the peak and secondary frequencies from this signal is rather delicate
due to the short duration of the transient. From the Fourier spectra, it is possible to
identify two dominant broad peaks at frequencies Mf2−0 ≃ 0.036 and Mf2 ≃ 0.048 for
the BHBΛϕ binary and Mf2−0 ≃ 0.036 and Mf2 ≃ 0.047 for the BLQ binary. These
values agree with the estimate of Mf0 coming from the instantaneous GW frequency;
however, the peak widths vary depending on the window used to smooth the NR
data and it is not possible to clearly identify a carrier frequency and a modulation
magnitude from the time-domain waveform. Consistently with Ref. [154] we chose to
identify the second peak with f2 and conservatively include it in the determination of
the quasiuniversal relation. In contrast, the choice of the first peak as f2 would be
consistent with Ref. [67, 86], and the datapoints would not be outliers in the residual
plot.

4.3 Numerical-relativity-informed models

For our models, we use the signal description modeled through the nodal points dis-
cussed in Section 4.2.1. The signal amplitude and phase are constructed in order to
match the predictions of the nodal points assuming continuity except for the t0 instant.

As shown in [154, 383], some PM properties cannot be accurately calibrated on
NR data, while others show dependency on physical properties of the system that are
not parameterized by the standard CBC parameters Eq. (3.6). For this reason, we
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generally decide to leave some parameters free to vary, in order to be inferred during
PE routines. These parameters are: the PM phase discontinuity in correspondence
of t0 which shows a strong dependence on the simulation’s grid resolutions and on
the physical models [e.g. 71, 229, 411]; the time of collapse is difficult to robustly
determine from simulations due its dependence on grid resolution [154] and it strongly
depends on the high-density properties of the EOS [67, 86, 412]; the frequency drift
is also connected to the collapse dynamics and, as such, it can be affected by various
processes, especially in long-lived remnants.

In the following sections, we discuss the developed models for PM BNS GW radia-
tion, NRPM in Section 4.3.1 and NRPMw in Section 4.3.2. For a more detailed discussion
on the PM models, we remand to Appendix B and Appendix C. Subsequently, we
discuss the method employed to include theoretical uncertainties in PE routines in
Section 4.3.3 and we validate the PM models computing fitting-factors against an
independent set of NR data in Section 4.3.4.

4.3.1 NRPM

In Ref. [154], we developed NRPM, a time-domain PM model calibrated on 148 NR
data extracted from the CoRe database [160] corresponding to non-spinning BNS
mergers. The NR calibration set is bounded to q = 1.5 and includes 14 different
EOSs. The merger segment uses the quasiuniversal predictions for the GW proper-
ties at merger and the corresponding GW frequency evolution is approximated with
PN computations. Subsequently, the model is constructed connecting the quasiuni-
versal predictions for the nodal points using sinusoidal functions, including a phase
discontinuity ϕPM in correspondence of t0. This model aims to capture the early-time
amplitude and frequency modulations of the GW signals. For t > t3, the signal is
modeled as a damped sinusoidal with damping time βPM and constant frequency f2.
The damping time βPM can be fixed via quasiuniversal relations or kept free to vary.
Moreover, NRPM include an additional parameter αPM that accounts for linear devia-
tions from the frequency f2. Then, NRPM can be augmented including three additional
parameters θNRPM

free = {ϕPM, αPM, βPM}.

4.3.2 NRPMw

In Ref. [383], we developed NRPMw, a frequency-domain PM model calibrated on 618
NR data extracted from the CoRe database [160] and the Sacra database [405, 406,
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407] corresponding to aligned-spin BNS mergers. The calibration set includes NR data
with q ≤ 2 and |χi| ≤ 0.2 computed with 21 different EOSs. The model is constructed
in the frequency-domain matching complex Gaussian wavelets with a morphology sim-
ilar to Section 4.3.1. Differently from NRPM, the drift of the GW frequency at merger
is calibrated on NR data, showing that tidal disruption can significantly affect this
term. Moreover, the model includes complete description of damped frequency modu-
lations based on analytic computations, that make explicit the effect of subdominant
components. Similarly to NRPM, the updated model includes a phase discontinuity ϕPM

in correspondence of t0 and permit the parameterization of linear frequency evolution
through αpeak. Moreover, NRPMw includes a parameter tcoll in order to model the time of
BH collapse, that defines the duration of the GW template. Then, the NRPMw’s param-
eter space is extended with respect to the standard BNS space with three additional
degrees of freedom, i.e. θNRPMw

free = {ϕPM, tcoll, αpeak}.

4.3.3 Recalibration parameters

The EOS-insensitive relations developed in Section 4.2 carry intrinsic uncertainties
due to small violations of universality (EOS dependence) and/or fitting inaccuracies.
Calibration errors of the empirical relations should be taken into account every time
such mappings are employed, in particular during the calculation of fitting factors and
during PE, in order to perform robust predictions. This can be done by introducing
appropriate parameters associated with the fluctuation of the residuals. A by-product
of this process is that the additional flexibility is expected to significantly improve the
data fitting by adjusting the PM morphology of the template to match the targeted
signal, similarly to agnostic approaches [e.g. 375, 379].

Labeling Q a generic quantity estimated from a quasiuniversal relation calibrated
on NR data, we introduce an associated recalibration δQ that affects the prediction
Qfit of the quasiuniversal relation as

Q = Qfit (1 + δQ) . (4.3)

The recalibration δQ corresponds to a fractional displacement from the prediction Qfit

of the quasiuniversal relation. The recalibration procedure employed here is similar to
the spectral calibration envelopes used in GW analyses [202]. However, here we aim
to integrate the model’s uncertainties in the inference rather than the instrumental
errors, similarly to the approach used in Eq. (3.8).
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In GW inference applications, the recalibrations of each calibrated PM property are
treated as standard parameters. In this context, it is key that the prior distribution
used in the inference is a good representation of the residuals of the quasiuniversal
relation. Following the methods of Ref. [16, 202], a simple approach is to consider
a normally distributed prior with variance prescribed by the errors of the residuals.
Interestingly, under the assumption that the NR error is subdominant compared to
the physical breaking of quasiuniversality, the measurement of the recalibration pa-
rameters from the data could also be used to distinguish between different EOSs and
observatively probe the breaking of quasiuniversality.

In the developed PM models, the recalibration parameters δfit = {δi} are considered
for each calibrated quantity, see Eq. (B.6) for NRPM and Eq. (C.19) for NRPMw. These
additional degrees of freedom mildly affect the merger portion, i.e. t < t0 due to the
accuracy of the empirical relations close to merger. However, the recalibrations have
larger effects on the late-time PM features whose EOS-insensitive relations introduce
larger uncertainties.

4.3.4 Unfaithfulness

We validate the PM models by computing their faithfulness F against 102 NR wave-
forms of Refs. [58, 82, 125, 154, 161, 413] that were not used for the calibration.
Among the considered simulations, 12 binaries show PC into BH. The validation
set is composed by NR simulations of non-spinning BNS performed with THC [110]
that include different neutrino treatments, turbolent viscosity schemes and five EOSs,
i.e. BHBΛϕ [85], DD2 [10], LS220 [9], SFHo [90] and SLy [80]. The intrinsic binary
properties cover the ranges M ∈ [2.6, 3.4] M⊙, q ∈ [1, 1.8] and κT2 ∈ [47, 199]. The
unfaithfulness F̄ = 1−F between two waveform templates, say h1 and h2, is defined
as

F̄(h1, h2) = 1− max
tmrg,ϕmrg

(h1|h2)√
(h1|h1)(h2|h2)

, (4.4)

where the maximization is performed over the coalescence time and phase, respectively
tmrg and ϕmrg. The inner product (h1|h2) is defined in Eq. (2.19). For these compu-
tations, we employ the PSD curve of the XG detector ET [75, 76] (configuration D)
and we integrate over the frequency range [1, 8] kHz. The unfaithfulness is computed
employing the PM portions of the NR waveforms.

In Figure 4.4, we report histograms of the unfaithfulness computed for the following
cases:
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(a) NR accuracy

(b) NRPM + θfree

(c) NRPM + θfree + δfit

(d) NRPMw + θfree

(e) NRPMw + θfree + δfit

(e) (calibration set)

Figure 4.4: Unfaithfulness F̄ between PM models and NR data of the validation set [58,
82, 125, 154, 161, 413] employing ET-D sensitivity [75, 76]. Case (a) (black) shows the
accuracy of the NR templates computed between different resolutions. For NRPM, case (b)
(yellow) shows the results with θNRPMfree and case (c) (orange) includes the recalibration δfit.
Analogously for NRPMw, case (d) (blue) shows the results with θNRPMfree and case (e) (green)
includes the recalibration δfit. The dashed histogram shows F̄ for case (e) computed over the

calibration set of ∼600 NR data.

(a) Accuracy of the NR validation set;

(b) NR validation set against NRPM, minimizing over θNRPM
free (δfit = 0);

(c) NR validation set against NRPM, minimizing over θNRPM
free and δfit;

(d) NR validation set against NRPMw, minimizing over θNRPMw
free (δfit = 0);

(e) NR validation set against NRPMw, minimizing over θNRPMw
free and δfit.

For a fixed BNS configuration, the accuracy of the NR validation set, shown in case
(a), is computed as the unfaithfulness between the high-resolution NR waveform and
the templates with lower resolutions. The values recovered from the considered set go
from F̄ ≃ 0.7 to O(10−2), with a median value of F̄ ≃ 0.25, similarly to Ref. [154].
These non-negligible errors originate from finite resolution of numerical data. For
the remaining cases, i.e. (b) – (e), the minimization method is performed as follows.
For each NR waveform, we compute the corresponding model template (NRPMw or
NRPM) fixing the intrinsic parameters θbin to the values of the NR simulation and
estimating the additional parameters (θfree and δfit) minimizing the unfaithfulness F̄ ,
i.e. Eq. (4.4), using a differential evolution method [414]. For each case and for each
NR data, the additional degrees of freedom are independently varied over a physically-
motivated range in order to estimate the F̄ minimum.
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In case (b), NRPM with the inclusion of the θNRPM
free recovers a median value of F̄ ≃ 0.27,

roughly comparing NR accuracy. However, the majority of the recovered values lies
above F̄ = 0.1, i.e. 97%. The additional inclusion of the recalibration parameters,
shown in (c), considerably enhances the quality of the recovered waveforms. The
median F̄ decreases to 0.06. The F̄ distribution shows a tail with values F̄ ∼ O(10−3),
corresponding to short-lived remnants and PCs. The fraction of cases with F̄ < 0.1

corresponds to 83% and we recovered F̄ < 0.2 for all binaries in the validation set.
Moving to NRPMw, case (d) shows an overall improvement in the faithfulness com-

pared to the equivalent case (b), with median F̄∼0.13 and a fraction of 38% with
F̄ < 0.1. We attributed this enhancement to the modeling choices employed in NRPMw,
since the number of parameters minimized (θfree) is the same as case (b). More-
over, case (d) shows a small cluster with F̄ ≲ 3×10−2 (∼20%), mainly populated by
short-lived remnant and prompt BH collapses. In case (e), the additional inclusion
of recalibration terms considerably improves the agreement of NRPMw to the NR data.
We obtain a median F̄ of 2.5×10−2 and report 94% of the validation set with F̄ < 0.1.
We recover similar statistics applying case (e) over the six-hundred NR simulations of
the calibration set, shown with dashed line in Figure 4.4. Moreover, the histogram (e)
shows that the cluster constituted by short-duration signals moves toward F̄ ≃ 10−2

and we recovered values comparable to or smaller than F̄ = 3×10−2 for several long-
duration transients, such as SLy 1.30+1.30 M⊙, and unequal-mass binaries, such as
DD2 1.50+1.25 M⊙. The overall improvement with respect to the comparable case (c)
is roughly half order of ma

The significant improvement made by recalibration parameters suggests that in-
accuracies in the EOS-insensitive relations are the largest source of error in the PM
models. On the other hand, the F̄ values computed on simulations with different
grid resolution or physical schemes suffer from considerable fluctuations for some bi-
naries. Some examples are: LS220 1.47+1.27 M⊙ that gives F̄ = 1.5×10−1 at stan-
dard resolution without turbolent viscosity and F̄ = 3.8×10−2 at high resolution with
turbolent viscosity; and LS220 1.35+1.35 M⊙ (with turbolent viscosity) that gives
log10 F̄ = 8.9×10−2 at standard resolution and log10 F̄ = 1.6×10−2 at low resolution.
These results suggest that the largest recovered F̄ might be related to inaccurate
modeling choices for the late-time features or to excesses of numerical error in the
data. Comparing with NRPMw’s results (e), the majority of the recovered values lie
below the NR accuracy threshold, representing an improvement with respect to the
non-recalibrated scheme and validating the usage of NRPMw in practical data analysis.
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Figure 4.5: Comparison between PM models and exemplary NR data of the validation set.
Colored lines show the spectra for the different models, analogously to Figure 4.4. Solid lines
are used for NRPMw spectra and dashed lines are employed for NRPM. NR spectra are reported
with black solid lines. The plot includes also the corresponding unfaithfulnesses estimated

with NRPM and NRPMw, i.e. cases (b), (c), (d), and (e).

Considering the faithfulness condition proposed in Ref. [284, 415, 416] and fixing
N = 9 as number of intrinsic parameters {θbin,θfree}, the recovered upper-bound
accuracy F̄ ≃ 10−1 of NRPMw in case (e) can be translated into a model robustness
threshold of SNR ∼7. Above this threshold, systematic waveform errors can become
relevant. The threshold moves to SNR ∼11 if we include the recalibrations δfit as
intrinsic parameters, i.e. N = 22. On the other hand, employing the recovered median
value F̄ ≃ 2.5×10−2, we estimate a faithfulness threshold SNR equal to 13 for N = 9

and 21 for N = 22. Considering an averaged threshold of SNR ∼10, this limit matches
the requirements imposed by ET detector for (optimally-oriented) sources located at
luminosity distances ≳ 40 Mpc [17, 154, 158, 378, 379]. These results implies that,
for the current knowledge (limited by number and accuracy of NR templates), NRPMw
includes the necessary degrees of freedom required to match PM GW signals for SNRs
expected for XG detectors [17, 417].

Finally, Figure 4.5 shows the comparison between the PM model spectra and NR
data for four exemplary cases extracted from the validation set. The first case is
DD2 1.509+1.235 M⊙ which generates a long-lived remnant, tcoll ∼ O(100 ms). NRPM

recovers F̄ ≃ 0.4 for the cases (b). The result improves to F̄ ≃ 5×10−2 in case
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(c); while, NRPMw gives F̄ ≃ 5×10−2 in case (d) and F̄ ≃ 3×10−2 in case (e). The
second case is LS220 1.635+1.146 M⊙ with tidal-disruptive behavior. NRPMw (d) does
not match the dominant PM peak returning F̄ ≃ 0.3. Then, the recalibrations (e)
strongly improve the agreement to NR data, leading to F̄ ≃ 2×10−2. The remaining
cases highlight the relevance of modulation effects in PM signals. The third case is
SFHo 1.364+1.364 M⊙ and it generates a short-lived remnant with tcoll ≃ 4 ms. The
comparison shows the flexibility of the recalibrated NRPMw (e) in capturing the several
Fourier peaks, delivering F̄ ≃ 10−2. The last case is SLy 1.364+1.364 M⊙, for which
PM models does not match subdominant peaks, returning F̄ ≃ 0.2 in case (c) and
(d). However, the inclusion of recalibrations in (e) to leads to F̄ ≃ 2×10−2.

4.4 Full-spectrum models

The NR-calibrated models NRPM and NRPMw can be used to extend existing inpiral-
merger GW templates in the kilohertz regime, characterizing the full GW spectrum
of BNS mergers. The employment of quasiuniversal relations facilitates the relation
between the BNS parameters and the corresponding PM GW template.

Given an inspiral-merger model and a PM model, the attachment procedure em-
ployed to join these two regimes is the most relevant step for the construction of
a full-spectrum template. For time-domain templates, the attachment can be di-
rectly performed joining the two waveforms at merger assuming continuity of GW
phase and amplitude. An example is shown in Ref. [154], where we proposed the the
first full-spectrum model for BNS mergers, combining TEOBResumS [234] and NRPM.
Frequency-domain templates require a more accurate treatment. In order to avoid
double-counting of the merger portion and ensure a smooth transition between the
two regimes, we opt to remove the initial wavelet Wfus in NRPMw during attachment
procedure. The GW signal description is determined by the inpiral-merger model for
times earlier than the first nodal point, i.e. t < t0 (see Section 4.2.1). In our studies,
we extend the frequency-domain representation of TEOBResumS [254] with NRPMw.

We validate the full-spectrum model TEOBResumS-NRPMw computing fitting fac-
tors against a validation set of six non-spinning hybrid EOB-NR templates. The
NR data of the validation set are computed with THC [110] which simulate micro-
physics, neutrino transport (with various schemes) and turbulent viscosity. The set
includes two long-lived remnants (SLy with total mass 1.30+1.30 M⊙ [154] and LS220
1.40+1.20 M⊙ [83]), two short-lived remnants (SFHo 1.35+1.35 M⊙ [133] and BLQ
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Figure 4.6: Recovered unfaithfulness F̄ between full-spectrum TEOBResumS-NRPMw model
and hybrid EOB-NR data of a validation set [82, 83, 86, 133, 154, 402] employing ET-D
sensitivity [75, 76]. For each binary, F̄ is computed as a function of the lower integration
frequency, while the upper cutoff is fixed to 8 kHz. Vertical dashed lines report the merger
frequency fmrg estimated from NR data for each binary. A gray horizontal line indicates the

value F̄ = 10−1.

1.40+1.40 M⊙ [86]), and two large-mass-ratio binaries with tidal disruptive morphol-
ogy (DD2 1.80+1.08 M⊙ [402] and BLh 1.772+1.065 M⊙ [82]). The NR waveforms are
extended in the early inspiral with the corresponding TEOBResumS template in order to
cover the GW spectrum above 20 Hz For the F̄ computation, we employ the fiducial
ET-D sensitivity curve and we minimize over the additional PM parameters θNRPMw

free and
the recalibrations δfit analogously to the study of Section 4.3.4.

Figure 4.6 shows the F̄ between TEOBResumS-NRPMw and the hybrid templates of
the validation set as a function of the lower cutoff frequency fmin. TEOBResumS-NRPMw
returns typical values between 10−3 − 10−4 over the full frequency range, consistently
with SPA accuracy [254]. At fmin ≃ 1 kHz, the errors related to the PM portion affects
the recovered F̄ , showing values of O(10−2). The F̄ increases up to O(10−1) for fmin ≃
fmrg and, subsequently, it reaches a plateau consistent with the PM unfaithfulness of
Section 4.3.4. We observe that typically the maximum F̄ occurs in proximity of fmrg.
This is related to an inaccurate modeling of the GW portion between [tmrg, t0] due to
matter effects that are not accounted in current inspiral-merger models. Thus, future
inpiral-merger BNS templates need to correct these inaccuracies in order to provide a
reliable representation around the merger.
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Chapter 5

Next-generation gravitational-wave
observations

From GW170817 posteriors of masses and tides, the merger frequency fmrg is pre-
dicted to fall in the range 1.2− 2 kHz [154]. The sensitivity of the detectors in August
2017 was insufficient to identify a signal at frequencies f ≳ fmrg and LVK searches
for PM transients from a NS remnant in GW170817 data resulted in upper limits
of ∼10−1 M⊙c

2Hz−1 [40, 220, 221]. However, various works have suggested that for
GW170817-like sources PM frequencies are accessible by improving the design sensitiv-
ity of current detectors by a factor two-to-three [220, 374, 418, 419]. In general, BNS
PM remnants are one of the main targets of XG GW observatories [29, 76, 420, 421,
422, 423]. The significant complexity of the PM source emission implies that standard
PE techniques, relying on extremely accurate models parameterized by the minimal
set of the system’s degrees of freedom, can no longer be applied. For this reason, recent
Bayesian studies of BNS PM transients employed largely different modeling choices,
ranging from signal-agnostic reconstructions to semi-agnostic descriptions calibrated
on NR simulations [e.g. 154, 374, 375, 376, 378, 379, 402, 418]. The advantage of
agnostic techniques lies in an unbiased reconstruction of the signal, coming however
at the price of losing information content buried in the noise. Semi-agnostic recon-
structions, which can directly incorporate information from NR simulations, allow to
dig deeper into the detector background and hence detect signals at lower SNR. How-
ever such measurements require extensive training datasets and the inclusion of all the
relevant contributions in order to provide a faithful recovery of the signal’s properties.

In this Chapter, we employ the PM models NRPM and NRPMw in mock Bayesian
inferences of GW signals from BNSs with the XG detector ET, investigating the PE
performances and future EOS constraints. Section 5.1 presents the ET IFO. PM infer-
ence is performed in Section 5.2, focusing on detectability and constraints on the PM
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properties. In Section 5.3, we discuss methods to infer EOS softening effects, intro-
ducing a consistency test based on full-spectrum inference. Finally, in Section 5.4, we
investigate high-density EOS constraints provided by full-spectrum BNS GW signals.

5.1 Einstein Telescope

The ET detector is a XG facility for GW observations proposed by EGO and other
European institutes [75, 76, 77, 417, 420, 424, 425, 426, 427]. ET design consists of a
triad of underground laser IFOs arranged in an equilateral triangular shape. At each
vertex, a photodetector measures the GW fluctuations employing laser beams running
along the adjacent sides at a 60 degree angle. ET will improve the sensitivities of
modern observatories by increasing the size of the IFO from the 3 km arm length of
the Virgo detector to 10 km, and by implementing a series of new technologies. These
include a cryogenic system, quantum technologies to reduce the laser fluctuations
and noise-mitigation measures to reduce environmental perturbations. Moreover, the
instrument will exploit a xylophone-design in which each GW detector is composed of
two individual IFOs: a cryogenic low-power IFO with sensitivity plateau in the low-
frequency band, roughly between 7 Hz and 20 Hz, and an high-power IFO that covers
the higher portion of the spectrum, roughly above ∼100 Hz. The combination of these
two information channels yields an improved sensitivity over a larger frequency band
compared to current infrastructures [e.g. 29, 30, 31, 179, 428, 429, 430]. The ET-D
configuration discussed in Ref. [75] and employed in this Chapter has a sensitivity
bucket covering the GW spectrum from ∼5 Hz up to ∼3 kHz. Such broad-band
sensitivity is ideal for BNS observations. Low-frequency measurements follow the
binary evolution for many cycles before merger extracting precise measurements of the
progenitor’s properties. In contrast, the high-frequency end, i.e. ≳ 1 kHz, enables the
detection of PM signals at sensitivities that are unreachable by current infrastructures.

5.2 Postmerger inference

In this section, we perform full PE injection-recovery experiments using PM NR signals
and NRPMw. The validation set is composed by the six non-spinning binaries discussed
in Section 4.4. We present injection settings in Section 5.2.1. We discuss detectability
performances in Section 5.2.2. We show PE results and posterior PDFs in Section 5.2.3.
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5.2.1 Injection settings

We generate artificial GW data, i.e. the injections, for the triangular, triple-IFO ET
detector [77, 417, 424], segmented into chunks of 1 s duration with a sampling rate
of 16384 Hz. For each detector i, the artificial data series di(t) = si(t) + ni(t) is
composed of the signal si(t) projected onto the i-th detector and the respective noise
contribution ni(t). We label with bold symbols the sets s(t) = {si(t)}, n(t) = {ni(t)},
and d(t) = {di(t)} such that d(t) = s(t) + n(t). The injected signals correspond
to the NR GW templates in order to study the performance of NRPMw in a more
realistic scenario. The noise is assumed to be Gaussian, wide-sense stationary, and
colored according to the fiducial PSD of ET-D [76]. The templates s(t) are injected
at seven different SNRs, i.e. 5, 6, 6.5, 7, 7.5, 8 and 10, which corresponds to locating
the binaries at different luminosity distances. Moreover, the simulated binaries are
oriented with ι = 0, ψ = 0, and optimal sky position for the employed detector
{α = 2.621, δ = 0.706}.

The PE studies on the artificial data are performed with the nested sampling
algorithm ultranest [199] with 3000 initial live points. The GW likelihood Eq. (2.21)
is integrated over the frequency range [1, 8] kHz, in order to isolate the contribution
from the PM signal. The sampling is performed in total mass M ∈ [1, 6] M⊙ and mass
ratio q ∈ [1, 2], differently to what is presented in [154, 158], due to the analytical form
of the empirical relations. In order to maintain a uniform prior in the mass components
m1,2, the prior p(M, q|HS) is modified according to [431]. We include aligned spin
parameters and employ an isotropic prior with the constraint |χi| ≤ 0.2 for i = 1, 2.
Tidal parameters Λ1 and Λ2 are sampled with a uniform prior in the range [0, 4000].
For the luminosity distance DL, we use a volumetric prior in the range [20, 500] Mpc in
order to confidently include the injected values. The remaining extrinsic parameters
are treated according to [158]. Moreover, we include the PM parameters θNRPMw

free in the
PE routine and perform the sampling in the mass-scaled quantities using a uniform
prior PDF for tcoll/M ∈ [t0/M, 3000], M2αpeak ∈ [−10−5, 10−5] and ϕPM ∈ [0, 2π].
Finally, we introduce in the sampling the recalibration parameters δfit in order to
account the intrinsic errors of the quasiuniversal relations. For these terms, we employ
a normally distributed prior with zero mean and variance defined by the estimated
relative errors [383].

The near-threshold SNR of the signals under consideration requires additional care
when extracting information from a simulation study. As such, in order to investi-
gate the impact of noise fluctuations, we generate artificial data dk(t) = s(t) + nk(t)
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by injecting the targeted template s(t) into different random noise realizations nk =

{ni(t)}k, where i runs over the employed detectors and k runs over the noise realiza-
tions. We employ a total of five different noise realizations fixing the initialization
seed of the pseudo-random number generator in the bajes pipeline. The PE studies
are performed on all the included realizations k for each signal s(t) and every injected
SNR. Once the posterior PDFs p(θ|dk, HS) are estimated for each k, we compute an
overall posterior in order to average over the different noise realizations. The overall
posterior PDF is computed equally weighting each noise realization and averaging the
recovered posteriors, i.e.

p(θ|s, HS) ∝
∑

k

p(θ|dk, HS) , (5.1)

where k runs over the employed noise realizations. This approach aims to estimate an
agnostic and comprehensive posterior distribution that correctly incorporates the full
statistical uncertainties. As we will show below, such uncertainties are relevant when
discussing some of the cases under consideration. This estimate will improve with a
larger number of noise configurations, k ≫ 1, and is limited only by the computational
cost. In the limit of an infinite sum over all the possible noise realizations, Eq. (5.1)
is equivalent to the posterior in zero-noise realization [432].

5.2.2 Detectability

Figure 5.1 shows the recovered mean, maximum and minimum BFs for the signal vs.
noise hypothesis. In general, the BFs show the expected increasing trend deviating
from logB ≃ 0 and recovering informative posterior distributions at PM SNR ≃ 6.
Averaging over all the analyzed cases, the nominal detectability threshold is reached for
PM SNR of 7.2+0.8

−0.5. These SNRs correspond to (optimally-oriented) binaries located at
luminosity distances of ∼100 Mpc, that are values consistent with recent observations
of BNS mergers [56]. Employing estimates of BNS merger rates [433], the threshold
distance of 100 Mpc can be translated in an upper limit of ∼4 observable BNS mergers
per year.

These results improve the results coming from damped-sinusoidal templates [378,
379] and are comparable with similar estimates performed with unmodeled stud-
ies [375]. On the other hand, when the employed template is a good representation of
the signal, template-based analyses are expected to deliver better detectability thresh-
old than model-independent estimates. Then, in this perspective, this claim might
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Figure 5.1: Logarithmic BFs logB as functions of the PM SNR of the injected NR template.
The dots refer to the mean values averaged over the different noise realizations and the
shadowed areas correspond to the minimum and maximum values recovered in the survey.

Two horizontal lines identify logB = 0 (black) and logB = 5 (gray).

appear counterintuitive. However, the poorer (or comparable) results of template-
based studies of PM transients with respect to more flexible models can be explained
by the considerable mismatch between the employed template and the signal. In
NRPMw, these biases are corrected with the recalibration δfit, accounting for deviations
from the predictions of the calibrated relations.

Noise fluctuations affect the estimates, leading to larger threshold SNRs, with
pronounced and non-homogeneous fluctuations. The recovered BFs for the binaries
with κT2 ≲ 90 have a slower trends compared with the other cases, showing logB ≲ 30

for SNR 10. The corresponding PM transients show the most significant modulation
effects among the considered cases and a short duration, except for SLy 1.30+1.30 M⊙.
Moreover, the characteristic PM peaks for these cases are located at higher frequency
values compared to the other binaries, i.e. f2 ≳ 3 kHz, where the noise contributions
increase. The detectability threshold for these cases could be improved by a refined
characterization of the frequency modulations (e.g. introducing a free modulation
phase as a free parameter), or refining the late-time portion of the template (e.g.
including the wavelet for the BH collapse).

Figure 5.2 shows the posterior PDFs of the recovered spectra for an illustrative
noise realization at SNR 10. We opt to report this case because it corresponds to the
loudest employed SNR and therefore the systematic errors between NRPMw model and
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Figure 5.2: Posterior PDFs of the GW spectra for the PM plus polarization h+(f) recovered
for PM SNR 10 for an illustrative noise realization. The colored lines report the medians
and the shadowed regions correspond to the 90% credibility region. The injected spectra are
reported with black solid lines and the corresponding f2 peaks are denoted with vertical black
dotted lines. Black dashed line show the noise amplitude spectral density (ASD) of ET-D,

i.e. the square root of the PSD.

NR data are more evident. In general, the majority of the injected signals are included
within the 90% credibility levels of the recovered spectra.

The large mass ratio binaries BLh and DD2 underestimate the characteristic PM
peak. In particular, the predicted spectra for the BLh case is primarily informed by
the merger portion of data and it strongly deviates from the injected value due to the
faint PM burst that does not permit a clear identification of the dominant peak. The
90% credibility level of the recovered time-domain waveform shows a non-vanishing
tail for late times; however, the median value is consistent with zero, showing that the
signal is not resolved. These errors can be related with a non-optimal modeling for
large mass ratios, i.e. q > 1.5. In particular, tidally-disruptive mergers show additional
phase discontinuities and multiple bumps in the time-domain GW amplitude, related
with the remnant dynamics.

5.2.3 Parameter estimation

In NRPMw, the actual f2 value is determined by several quantities. A first estimate re-
lies on the binary parameters through the quasiuniversal relation. Then, the frequency
drift parameter αpeak and the value of the respective recalibrations δfit can shift the
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Figure 5.3: Posterior PDFs for the PM peak f2 at the different PM SNRs recovered in the
PE survey. For each case, thin dashed lines report the recovered posteriors for each run and
the filled areas show the equally-weighted combined posterior PDFs. Black horizontal dotted

lines indicate the values of the injected NR templates.

actual peak from the prediction of the quasiuniversal relation. Thus, a robust deter-
mination of the PM frequency can be estimated from the peak of the reconstructed
spectra, consistently with the extraction method discussed in Section 4.2.2. For each
sample, we generate the corresponding GW spectrum hNRPMw(f), considering only the
time support t > t0 in order to isolate the PM contribution of interest. Then, f2
is identified as the (typically dominant) spectral peak of the carrier frequency com-
ponent. When the template corresponds to prompt BH collapse, a prior sample is
extracted.

Figure 5.3 shows the recovered posterior PDFs on f2 as a function of the injected
SNR. As mentioned in the previous section, for the majority of the cases the recov-
ered posteriors report informative inferences for SNR ≳ 6 with errors of O(1 kHz).
The errors on the estimated f2 decrease to O(100 Hz) at PM SNR 10. At SNR 8,
all posterior PDFs show informative measurements, with uncertainties ranging from
1 kHz to 500 Hz, and the injected NR values are included in the 90% credible regions.
The uncertainties on the f2 posteriors reach O(100 Hz) at SNR 10 and systematic
uncertainties start to play a more significant role. In particular, the analyses of the
short-lived remnant BLQ show bimodalities in the f2 posteriors for some noise real-
izations. These biases are attributable to subdominant couplings that have a larger
contribution on the overall spectrum for short-lived remnants, whose power can exceed
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that of the f2 peak (see Figure 5.2). Similar biases are recovered also in the analysis
of the DD2 binary. On the other hand, as discussed in Section 5.2.2, the inference of
the BLh binary is not capable to resolve the f2 peak.

Figure 5.4 shows the posterior PDFs for the time of BH collapse tcoll as functions
of the injected SNR. This term is strongly affected by noise fluctuations, since the
late-time signal tail is no more observable when its amplitude goes below the noise
threshold. However, the injected values are generally included within the 90% cred-
ibility levels. The associated uncertainties go from O(30 ms) at threshold SNR to
O(20 ms) at PM SNR 10. A particular case is the BLQ binary that corresponds to the
most massive binary with the shortest PM transient among the considered cases. The
corresponding posterior for SNR 10 is tightly constrained around the injected value,
implying that tcoll can be better estimated for very-short-lived remnants. The inference
of tcoll can be improved introducing the model for the remnant collapse in NRPMw [383].
However, the observation of the BH collapse is strongly limited by the sensitivity of
the detectors at the corresponding BH frequencies, that occur at f ≳ 6 kHz for typical
BNS systems.

The subdominant frequency f0 is another relevant PM properties, since it can
provide insights on the NS structure under the assumptions that it is related to the
radial oscillations of the remnant [e.g. 109, 385, 434, 435, 436]. The recovered f0
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posteriors are generally broader than the f2 ones, due to the weaker magnitude of
these spectral peaks. The results show informative measurements for PM SNR ≳ 7.5

with errors of O(1 kHz). The uncertainties decrease to O(500 Hz) at PM SNR 10.
Another interesting PM properties is the frequency drift parameter αpeak. This term
appears to be better constrained for long-lived equal-mass binaries, due to the nature
of these PM GW transients, with errors of O(0.1 kHz2) at PM SNRs of 8. However,
for SNR ≳ 10, systematic errors become more relevant. A particular case is the LS220
binary, for which the recovered posterior overestimates the injected value due to the
non-monotonic frequency evolution of the injected NR template. We verified that
NRPMw recovers the initial slope of the LS220 transient, corresponding to the loudest
contribution. For unequal-mass binary, αpeak is poorly constrained since the PM GW
transient is fainter compared to equal-mass cases.

The intrinsic binary parameter are generally poorly constrained compared to the
premerger analysis due to the considerably smaller SNR of the PM signal. The median
binary masses M are typically shifted toward larger values, with errors of O(1 M⊙).
Nevertheless, the injected values are always included in the 90% credible regions,
indicating that our inference is unbiased at the SNRs under consideration. The mass
ratio is typically well identified up to PM SNR ∼8 with errors of ∼0.6 at sensitivity
threshold. For increasing SNRs, systematic errors become more dominant especially
for equal-mass binaries, where the overall PM power is larger. The tidal polarizability
κT2 shows systematic errors for PM SNR ≳ 8, underestimating the injected values. In
a real scenario, these biases can be cured with the inclusion of premerger information.

5.3 Softening effects

Non-nucleonic matter phases at ρ ≳ 3 ρsat can impact the remnant dynamics and
leave detectable imprints on the GWs. Case studies considered matter models in-
cluding hyperon production [e.g. 67, 401, 437] or zero-temperature models of phase
transitions to quark-deconfined matter [e.g. 86, 401, 438]. These additional degrees
of freedom lead to more compact NSs for masses ≳ 1.5 M⊙ compared to nucleonic
models, inducing a softening of the EOS. The detectability of these effects crucially
depends on the densities at which the EOS softening takes place. We demonstrate
the possibility of investigating the EOS softening at extreme densities using the PM
GW observations. We discuss the specific case of BHBΛϕ and DD2 EOSs [67]. The
BHBΛϕ EOS is identical to DD2 except that at densities ρ ≳ 2.5ρsat it softens due
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Figure 5.5: Comparison between the BHBΛϕ (red) and the DD2 (blue) EOSs and the
corresponding BNS templates [67]. Left panel: Mass of individual TOV NSs as a function
of the central density. The markers refer to simulated BNSs. Right panel: Plus polarization
h+(t) of the NR waveforms for the simulated BNSs with mass M = 3 M⊙ and M = 2.5 M⊙.
The binary are located at a fiducial distance of 40 Mpc. The origin of the time axis t = 0

corresponds to the moment of merger.

to the formation of Λ-hyperons. Inspiral-merger GW signals from binaries described
by the two EOSs and M ≲ 3 M⊙ are indistinguishable since the individual progenitor
NSs have maximal densities ρ ≲ 2.5ρsat, similar compactnesses and tidal parameters,
as shown in Figure 5.5 (left). On the other hand, for M ≳ 3 M⊙ the PM remnants
reach higher densities at which the two EOSs differ, leading to different PM GWs as
shown in Figure 5.5 (right).

We consider a pair of high-mass binaries with M = 3 M⊙. The DD2 1.50+1.50 M⊙

binary has f2 ≃ 2.76 kHz; while, the respective BHBΛϕ remnant has f2 ≃ 3.29 kHz.
As discussed in [383], the precise identification of f2 is challenging for the BHBΛϕ
binary due to the short duration of the PM signal. Here, we assume the second peak
of the spectrum is f2. The difference between the two NR values is ∼500 Hz, which
corresponds to ∼18%. The BHBΛϕ data deviates of ∼3−σ from the prediction of the
quasiuniversal relation presented in Section 4.2.2 (ffit

2 = 2.88 kHz), encoding a more
compact remnant than the DD2 case. The two binaries have also different times of BH
collapse: the DD2 case collapses at late times, i.e. tcoll ≃ 21 ms; while, the BHBΛϕ
remnant collapses into BH shortly after merger with tcoll ≃ 2.6 ms. The BHBΛϕ
1.50+1.50 M⊙ binary shows the largest deviations from the quasiuniversal fits.

In the following sections, we discuss the detection of breaking of quasiuniversality
via comparison of posteriors PDFs (Section 5.3.1) and we introduce a consistency test
to identify EOS softening effects (Section 5.3.2).
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Figure 5.6: Posterior PDFs of the recovered spectra for the DD2 (top panel, blue) and the
BHBΛϕ (bottom panel, red) binaries at PM SNR 8. The solid colored lines report the median
spectrum and the contours show the 90% credible regions. The black solid lines correspond
to the injected signals and black dotted lines correspond to the f2 peak. The green lines show

the PSD. The gray lines show the artificial data.

5.3.1 Breaking of quasiuniversality

The main question we address is whether an analysis of PM signal can inform us on the
EOS softening effects at extreme densities, and what are the most relevant quantities
that indicate the softening. Then, we perform Bayesian studies with NRPMw model and
ET detector on the PM transients solely. The injected signals correspond to the DD2
and BHBΛϕ binaries with M = 3 M⊙ and the PE analyses are performed within the
same framework discussed in Section 5.2 with PM SNR 8 and 10 using a single noise
realization.

The spectra recovered in the new analyses performed with NRPMw at PM SNR 8
are shown in Figure 5.6. The recovered SNRs are consistent with the injected values,
recovering 7.5+1.0

−1.4 and a BF logB = 6.3± 0.2 for the DD2 case; while, for the BHBΛϕ,
we recover an SNR of 7.4+1.2

−1.2 and logB = 6.5±0.2. The posterior PDFs for the intrinsic
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binary parameters do not show significant differences between the two cases. This is
key in view of coherent and informative consistency tests [e.g. 154, 381]. We recover
M ≃ 4.3 M⊙ with an error of ∼1.5 M⊙. The mass ratios are constrained around
the equal-mass case with errors of ∼0.25. The tidal polarizability κT2 underestimates
the injected values with medians κT2 ≃ 30 and errors ∼150. The spins posteriors are
dominated by the priors and not informative.

At SNR 8, the f2 posteriors show different median values corresponding to f2 =

2.73+0.05
−0.06 kHz for DD2 and f2 = 3.2+0.9

−1.0 kHz for BHBΛϕ. The hypothesis fDD2
2 =

fBHBΛϕ
2 lies on the 50% credibility level, indicating a mild breaking of quasiuniversal-

ity. This deviation is partially encoded in the related recalibration parameters that
recovered opposite values, i.e. δf2 = −1+7

−4 % for DD2 and δf2 = 2+6
−9 % for BHBΛϕ. In

this context, the inclusion of the recalibration coefficients is crucial since they allow
the observed PM peak to deviate from the prediction of the quasiuniversal relation
for a common combination of intrinsic binary parameters. However, the short dura-
tion of the BHBΛϕ transient and the strong modulations can introduce biases and
multimodalities in the estimates of the associated peak frequency, as also shown in
the analysis of the BLQ binary in Section 5.2. Another quantity that encodes the
softening of the EOS at high densities is the time of BH collapse tcoll. A softer EOS
allows the NS remnant to reach higher densities, yielding to an earlier BH collapse
for comparable masses [67, 86, 412]. The recovered posteriors at SNR 8 for tcoll give
tcoll = 28+36

−24 ms for DD2 and tcoll = 6+41
−4 ms for BHBΛϕ, consistently with the injected

values. Even if this term can be strongly affected by noise fluctuations at low SNRs,
as discussed in Section 5.2.3, the estimate of tcoll appears to be less biased and more
conservative compared to the f2 one.

In order to validate the robustness of the inference, we repeat the analysis injecting
the signals at PM SNR 10. The recovered SNRs are 7.8+1.2

−1.2 for the DD2 case and
7.6+1.8

−1.9 for the BHBΛϕ case, consistently with the corresponding mismatches of ∼10−1

for both NR templates. The dominant systematic appears in the f2 posterior PDF for
BHBΛϕ. This posteriors shows pronounced multimodalities due to the contribution of
the subdominant coupled frequencies f2±0, as discussed previously. The median values
and the 90% credibility intervals correspond to f2 = 2.75+0.03

−0.03 kHz for the DD2 binary
and f2 = 3.7+0.3

−2.7 kHz for the BHBΛϕ binary, excluding the fDD2
2 = fBHBΛϕ

2 hypothesis
within ∼65% credibility level. The tcoll posterior PDFs predict tcoll = 54+5

−41 ms for
the DD2 binary and tcoll = 16+11

−13 ms for the BHBΛϕ binary. The tcoll medians show
significant fluctuations due to noise contributions especially for the long-lived DD2
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Figure 5.7: Posterior PDFs for the deviation from the quasiuniversality defined in Eq. 5.2
for characteristic PM frequency f2 and tidal coupling κT2 . The contours report the 50% and
the 90% credibility regions. Red lines refer to low-mass BHBΛϕ binary, blue lines refer to
high-mass DD2 binary and red lines refer to high-mass BHBΛϕ binary. The red area denotes
deviations due to softening effects, while blue area identify the stiffening effects. The grey

band report the 90% credibility region of the f2 EOS-insensitive relation.

case; however, the uncertainties tighten with respect to SNR 8, denoting convergence
toward the injected value.

These results show that the short-lived binaries (such as the BHBΛϕ case) show
more ambiguous f2 posteriors for increasing SNRs; while, the tcoll posterior unam-
biguously converged to the true value for increasing SNR, as shown also by the BLQ
binary in Section 5.2.3. On the other hand, for the long-lived binaries (such as the
DD2 case), the f2 posterior is typically unbiased and the tcoll posterior is more affected
by noise fluctuations, but including the injected value within the 90% credibility in-
tervals. Thus, the measurement of tcoll is expected to be a robust probe of softening
effects in the NS EOS for PM SNR ≳ 9.

5.3.2 Consistency test

In order to better characterize the deviations from quasiuniversality in a realistic sce-
nario of BNS GW detection, we employ TEOBResumS and NRPM in the analysis of the
inpiral-merger-PM data of the high-mass DD2 and BHBΛϕ BNSs [154]. Moreover, we
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include in the analysis the low-mass BHBΛϕ binary with M = 2.5 M⊙, whose mor-
phology is identical to the corresponding DD2 case. The corresponding NR templates
are shown in Figure 5.5 (right). The data are generated as EOB-NR hybrid waveforms.
We analyze 128 s of data with sampling rate of 16 kHz injecting the signal with PM
SNR 11 using the three-detector LIGO-Virgo network at design sensitivity [29, 31].

Following the approach of Ref. [38, 439], we introduce a consistency test that
aims to reveal breaking of quasiuniversality in the PM frequency f2 For each injected
signal, we perform PE analysis on the PM data only (labeled as ‘PM’), on the inspiral-
merger data only (labeled as ‘IM’) and on the full-spectrum data (labeled as ‘IMPM’).
As discussed in Ref. [439], inspiral-merger-PM consistency tests rely on the cutoff
frequency fcut used to split the low-frequency and high-frequency regimes. In our case
study, the cutoff frequency is defined by the merger frequency of the known injected
(2, 2) waveform, i.e. fcut ≃ fmrg. In a realistic scenario, the cutoff frequency can
be estimated from the full-spectrum posterior using EOS-insensitive relations for the
merger frequency for the dominant (2, 2) mode [121, 154, 383]. Then, we can introduce
the (fractional) deviation from the quasiuniversal prediction as

∆f2
f2

=
fPM
2 − f IM

2

f IMPM
2

,
∆κT2
κT2

=
κT2

PM − κT2
IM

κT2
IMPM

. (5.2)

Note that f IM
2 is computed using EOS-insensitive relations, while fPM

2 and f IMPM
2 are

estimated from the waveform spectra as discussed in Section 5.2.3. Formally, the
computation of p(∆f2/f2,∆κT2 /κT2 ) is performed with a probabilistic approach. Given
the posteriors {f2, κT2 }i for i = IM,PM, IMPM, the posterior PDF of ∆f2 = fPM

2 − f IM
2

and ∆κT2 are estimated

p∆(∆f2,∆κ
T
2 |dIM,dPM) =

∫
p(f2, κ

T
2 |dPM) p(κ

T
2 −∆κT2 , f2−∆f2|dIM) df2 dκ

T
2 . (5.3)

Eq. (5.3) is the convolution product between the inspiral-merger PDF and the PM
PDF. Then, defining εf2 = ∆f2/f2 and εκT

2
= ∆κT2 /κ

T
2 , the posterior PDF for the

quantities in Eq. (5.2) can be computed from the recovered posterior PDFs as

p(εf2 , εκT
2
) =

∫
(κT2 f2) p∆(εf2 · f2, εκT

2
· κT2 |dIM,dPM) p(f2, κ

T
2 |dIMPM) df2 dκ

T
2 . (5.4)

As discussed in Ref. [439], p(f2, κT2 |dIMPM) represents our best guess for the {f2, κT2 }
posterior and it is used in Eq. (5.4) to weight the contributions of the inspiral and PM
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inferences. Within this approach the origin of the axes, i.e. ∆f2 = 0 and ∆κT2 = 0,
represents the null-hypothesis for which no deviation from quasiuniversality is ob-
served. On the other hand, a deviation of the posterior PDF towards the region with
∆f2/f2 > 0 (< 0) and ∆κT2 /κ

T
2 < 0 (> 0) can be interpreted with EOS softening

(stiffening) effects.
Figure 5.7 shows the posterior PDFs estimated for the three considered binaries.

The low-mass BHBΛϕ case confidently include the null hypothesis within the 90%
credibility level of the posterior. The high-mass DD2 case show mild deviations toward
the stiffness portion of the plane, with ∆κT2 /κ

T
2 = 0.5+0.3

−0.3 at the 90% credibility level.
However, ∆f2/f2 is consistent with zero within the fit uncertainty. On the other hand,
the high-mass BHBΛϕ case show deviations toward the softness portion of the plane,
with ∆κT2 /κ

T
2 = −0.2+0.5

−0.2 and ∆f2/f2 = 0.2+0.2
−0.1, significantly above the fit uncertainty

and including the injected difference within the 90% credibility interval.
These results show that it is possible to observe departures from the quasiuniversal

predictions employing PM transients. Remarkably, we stress that the breaking of a
quasiuniversal relation within a given credibility level does not necessarily imply the
presence of an EOS softening. Instead, more generally, such a breakdown has to be
interpreted as the invalidation of a particular empirical relation due to physical effects
that not captured by the constructed fit. Similarly, a EOS softening might break a
quasiuniversal relation only in a marginally significant way, as in our case study, or
the remnant’s densities might be such that these effects are not evident, e.g. small
mass binaries M ≪ 3 M⊙ [67, 86].

5.4 High-density constraints

As discussed in Section 5.2.3, at the threshold SNR of 7 the inference on f2 delivers
a result accurate at ∼20 %. As shown by previous works [440, 441], the f2 peaks
correlates with the NS radii R1.6M⊙ and R1.8M⊙ of a 1.6 M⊙ and 1.8 M⊙ NS respectively.
Thus, the PM frequency could be translated into an estimate of the radius of a non-
rotating equilibrium star of fixed mass with an uncertainty of ∼2 km. In a real scenario
this is not particularly interesting since the radius (or equivalently the tidal parameters,
R ∼ Λ̃1/5 [442, 443]) will be known with a better accuracy from the inspiral-merger
analysis. We find from our analyses that inspiral-merger inference at the minimal
PM SNR delivers δΛ̃/Λ̃ ∼ 4 % and δR/R ∼ 2 % [17, 154]. More interesting is to
explore constraints on the radius of the maximum mass (most compact) non-rotating
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Figure 5.8: Empirical relations for the minimum radius RTOV
max (left panel) and the maximum

central density ρTOV
max (right panel) of a non-rotating NS as function of the PM peak frequency

f2. The colored markers show the data extracted from NR simulations of CoRe database
for different EOSs. Each marker corresponds to a different binary configuration and the error
bars are computed using different numerical resolutions (when available). The shadowed

areas report the 90% credibility region of the quasiuniversal relations.

equilibrium NS RTOV
max [152, 154], since the latter corresponds to the largest matter

densities that can be reached for a given EOS. Using the 263 NR data extracted from
the CoRe database [82, 86, 125, 160, 161], we find an approximate relation in the
form

c2

GM
RTOV

max = a0

[
1 + a1

(
πGM

c3
f2

)−4/5
]
, (5.5)

where a0 = 1.03± 0.02, a1 = 0.30± 0.01, are determined by a standard least-squared
minimization method with χ2 = 0.4. The NR data includes binaries with NS masses in
the range 1−2M⊙ and dimensionless spin magnitudes ≤ 0.2. The predicted RTOV

max has
an error of ∼2% at 1−σ level. Figure 5.8 (left) shows the calibrated relation together
with the NR data used for calibration. Measurements of PM signals at the minimum
SNR deliver an estimation of RTOV

max accurate at O(10%).
A PM detection can also provide lower bounds on the maximum TOV mass MTOV

max

[122, 296]; although, multiple PM observations could provide a few percent measure-
ment [152] complementary to that from an inspiral EOS inference [14, 444, 445]. On
the other hand, we observed that the PM peak correlates to the maximum central den-
sity ρTOV

max of a non-rotating equilibrium NS with a weak dependence on the EOS [17].
The existence of this relation was suggested by previous works [152, 296, 446], but
the relation obtained there involves the binary configurations with the largest possible
mass that does not promptly collapse to BH. We propose a more general approach
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that improves the previous NR-calibrated relations providing direct link between a PM
observable property and a high-density EOS feature. Figure 5.8 (right) shows the ap-
proximate quasiuniversal relation ρTOV

max (f2) compared to the calibration NR sample of
289 simulations of the CoRe database [82, 86, 125, 160, 161]. The sample includes bi-
naries with NS masses in the range 1−2M⊙ and dimensionless spin magnitudes ≤ 0.2.
The relation ρTOV

max (f2) fits to the expression:

G3M2

c6
ρTOV
max = a0

[
1 + a1

(
πGM

c3
f2

)−1/6
]
. (5.6)

where a0 = 0.136 ± 0.002, a1 = −0.595 ± 0.001 are determined by a standard least-
squared minimization method at χ2 = 0.016 corresponding to a relative error of ∼6%

at 1−σ level.
The right-hand sides of Eq. (5.5) and Eq. (5.6) can be entirely determined from

the measurement of the binary mass M and the PM peak frequency f2. Hence, the
maximum-mass properties {RTOV

max , ρ
TOV
max } can be best inferred from a full-spectrum

BNS GW observation. Figure 5.8 includes BHBΛϕ and BLQ BNS data that show
deviations comparable or larger than the 90% credibility level of the EOS-insensitive
relations. Thus, Eq. (5.5) and (5.6) (and consequently the Bayesian methods that
rely on them) are expected to break for particular binary and EOS configurations.
Interestingly, the employed NR sample show milder deviations from quasiuniversality
for the ρTOV

max relation.
We next discuss the potential accuracy of such measurement using a mock Bayesian

inference study with ET detector and NRPM model. In the next Sections, we show
how to constrain the high-density EOS properties, i.e. ρTOV

max and RTOV
max , from a full-

spectrum BNS GW data (Section 5.4.1) and we investigate the implications of such a
measurement for the EOS (Section 5.4.2).

5.4.1 Inferring the maximum density

We inject into an artificial noise strain generated with ET-D PSD two simulated signals
extracted from fiducial equal-mass non-spinning BNSs. The first case is a binary
with mass M = 2.73M⊙ and a stiff EOS DD2 [10] and the second corresponds to
a binary of M = 2.6M⊙ and a soft EOS SLy [80]. For our case study, we perform
full Bayesian analyses of the PM signals at different SNR and employ the Fisher
matrix approach to estimate the uncertainties of the parameters measured from the
inspiral signals. Fisher matrix analyses of the inspiral-merger signals are performed
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Figure 5.9: Posterior PDF for {ρTOV
max , RTOV

max } compared to the EOS of the injected signals.
The contours show the 90% credibility regions. Green and red lines correspond respectively
to the results obtained with DD2 and SLy EOSs and color intensities refer to the injected
SNR of the PM data. The dashed lines show the central density as function of the NS radius

and the crosses denote the maximum-density values.

with gwbench [447]. NR data are injected in a segment of 1 s with a sampling
rate of 16 kHz. The sampling is performed with dynesty [198] with 3200 live points
analyzing the frequency region from 1 kHz to 8 kHz. The prior PDF is assumed to be
uniform in the mass components, spanning the ranges M ∈ [1.5, 6] M⊙ and q ∈ [1, 2],
and in the individual NS quadrupolar tidal parameters Λi ∈ [0, 5000] for i = 1, 2. Spin
magnitudes are kept fixed to zero. The extrinsic parameters are treated as discussed
in [158], with volumetric prior for the luminosity distance in the range [5, 500] Mpc.
Moreover, we include the additional parameters, i.e. θNRPM

free and δfit, in the PE routines.
Once the NRPM analyses are completed, the posterior PDF for {ρTOV

max , R
TOV
max } is ob-

tained by combining the posteriors of M from the inspiral analysis and the posteriors
of f2 from the PM analysis using a resampling strategy. In particular, the samples
{M, f2} are mapped into {ρTOV

max , R
TOV
max } using Eq. (5.5) and Eq. (5.6). The uncertain-

ties of the fits are taken into account introducing appropriate recalibration parameters,
similarly to Section 3.3. The result is shown in Figure 5.9. The injected values, de-
noted with crosses, confidently lay within the 90% credibility regions of the recovered
posterior PDFs. The true ρTOV

max value is recovered at the detectability threshold with
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Figure 5.10: Mass-radius diagram constraints from a single full-spectrum ET BNS observa-
tion with PM SNR 10 (total SNR 180). The gray area (prior) corresponds to the two-million
EOS sample of Ref. [364]. The orange and green areas are the 90% credibility regions given
by inspiral-merger and inspiral-merger-PM inferences respectively. The full-spectrum (green)
posterior confidently agrees with the injected EOS (black) within the 90% credibility region.

an error of ∼15% at the 90% credibility level. At the same SNR, the uncertainty on the
radius RTOV

max are of the order of 30% (90% credibility level). Such precision is sufficient
to distinguish soft and stiff EOSs within the 90% credibility regions, as illustrated
using the SLy and DD2 cases. Notably, the inference on ρTOV

max hits the theoretical
uncertainties on the quasiuniveral relation in Eq. (5.6) at SNR ∼10. A more precise
measure is either not possible, because at that level the relation ρTOV

max (f2) becomes
EOS-dependent, or it requires a more precise quasiuniversal relation from improved
simulations.

5.4.2 Implications for the equation of state

To illustrate the potential impact of this approach, we show how a single detection
of PM signal at SNR 10 (total SNR 180 and luminosity distance of 120 Mpc) can
constrain the mass-radius relation for NSs. We take the SLy binary as fiducial binary.
The analysis makes use of the two-million EOS sample of Ref. [364], similarly to
study in Section 3.3.4. We assign a weight to each EOS sample corresponding to the
posteriors of the masses and the tidal parameters from the inspiral-merger (labeled as
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‘IM’) and with the maximum density and minimum radius posteriors from the PM
measurement, i.e.

p(EOS|dIM) ∝ p(EOS)
∏

i=1,2

∫
p(mi,Λi|dIM) δ (Λi − ΛEOS(mi)) dmi dΛi , (5.7)

p(EOS|dIM,dPM) ∝ p(EOS) p(dIM|EOS) p
(
dPM

⏐⏐⏐RTOV
max ,EOS, ρ

TOV
max ,EOS

)
, (5.8)

where ΛEOS, RTOV
max ,EOS and ρTOV

max ,EOS are respectively the tidal parameter, the mini-
mum radius and the maximum central density predicted by the EOS.

Figure 5.10 shows the 90% credibility regions of the posterior PDFs in the mass-
radius diagram. The inspiral-merger posteriors Eq. (5.7) give the strongest constraint.
They are mostly informative at the EOS at densities ρ ≃ 2ρsat corresponding to the
individual NS components of the binary [448]. This inference leads to a measurement
of the maximum NS mass of MTOV

max = 2.13+0.20
−0.14M⊙ (90% credibility level), consistent

with the injected value (2.05M⊙). However, the EOS posterior shows a biased be-
havior for high mass values, i.e. M ≳ 1.5M⊙, excluding the SLy sequence from the
90% credibility region. This shows that the inspiral-merger signal does not directly
constrain the high-density EOS and the inferred MTOV

max represents an extrapolation
based on the EOS representation and, therefore, more subjected to the prior choices.
Notably, the considered ET BNS signal provides a constraint on R1.4M⊙ that is tighter
than current GW170817 estimate of a factor ≳ 4.

The inclusion of PM information in Eq. (5.8) strengthens the agreement with the
injected EOS at higher densities allowing a measurements of MTOV

max = 2.04+0.08
−0.06M⊙,

which agrees with the injected value and carries an error lower than 7% and it im-
proves over current MM estimates of a factor ∼1.5. The joint constraint reduces
of ∼60% the P (ρ) posterior area of the initial EOS sample leading to tight pres-
sure constraints at fiducial densities, i.e. log10 (P2ρsat/dyn cm

−2) = 34.52+0.04
−0.04 and

log10 (P4ρsat/dyn cm
−2) = 35.39+0.04

−0.03 at the 90% credibility level. For a detection at the
sensitivity threshold (PM SNR ∼7), we find that the measured maximum NS mass is
MTOV

max = 2.07+0.15
−0.09M⊙ with a relative error of roughly ∼12%. The multiple observation

of about five PM BNS transients at sensitivity threshold can lead to a measurement
of the maximum NS mass with an error of ∼5% [379, 418]. This information provides
narrow observational constraints that would significantly inform nuclear models in the
very-high-density regimes, i.e. ρ > 3ρsat, which are unreachable conditions for modern
nuclear experiments.
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Conclusions

In this Thesis, we inferred the nuclear EOS from current MM observations of BNS
mergers and presented perspectives of full-spectrum GW observations with XG detec-
tors. The joint analysis of multiple messengers is key in order to achieve improved
constraints on the source properties. NR data are fundamental resources for BNS
modeling, driving the construction of empirical templates and calibration of EOS-
insensitive relations. Moreover, the analyses of GWs from BNS PM remnants with XG
detectors have proven the capabilities of these signals in constraining the high-density
EOS properties. Exploratory studies with XG detectors are crucial to understand the
capabilities of these instruments and investigate limitations of current methods.

Gravitational-wave analysis. The GW DA of GW170817 predicts a source-frame
chirp mass M ≃ 1.188 and a reduced tidal parameter 200 ≲ Λ̃ ≲ 800. The Λ̃

PDFs recovered with larger cutoff frequency fmax = 2 kHz show larger systematic
biases between different waveform templates compared to the fmax = 1 kHz analyses.
This can be understood by studying the tidal information. The latter is primarily
gathered in the high-frequency portion of the spectrum, i.e. f ≳ 500 Hz; thus, a larger
fmax takes into account a larger amount of tidal information, highlighting systematic
biases. Significant waveform systematics are to be expected for GW170817-like signals
observed by advanced and XG IFOs. At design sensitivity, the expected bias in the
reduced tidal parameter between TEOBResumS, TaylorF2 and PhenomPv2_NRTidal is
about 2-σ, for typical BNS parameters as shown in Section 2.3.2. This would reflect
in systematics on the NS radius of about 1 km (10%), that are comparable or well
above of the current best estimates of the NS radius [14, 349, 354, 355, 357]. Moving
to higher sensitivities and XG detectors, we estimate that the systematics between the
approximants become dominant over statistical errors at SNRs of O(100). This implies
that EOS constraints from the potentially most informative events will be harmed by
tidal waveform systematics. A possible solution to overcome current systematic errors
in GW templates is the full calibration of waveform approximants on high-precision
NR data with the employment of learning algorithms [e.g. 235, 449].
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Kilonova analysis. The KN DA of AT2017gfo shows that the anisotropic descrip-
tion of the ejecta components is strongly preferred with respect to isotropic profiles,
with a logarithmic BF of the order of ∼104. Moreover, the favored model is the
three-component KN constituted by a fast dynamical ejecta (comprising both a red-
equatorial and a blue-polar portion), a slow isotropic shell and a polar wind. The
dynamical ejecta mass lies around ∼10−2 M⊙ with typical velocities of ∼0.2 c and
gray opacities of ∼10 cm2 g−1, consistently with Ref. [294]. Resorting to NR-calibrated
relations, the information on the dynamical ejecta and the disk mass can be employed
to constrain the BNS intrinsic parameters. Using the KN data solely, we constrain the
mass ratio to be ≤ 1.18 at the 90% credibility level. Under a modeling perspective,
current KN description contains large theoretical uncertainties, such as thermalization
effects, heating rates and energy-dependent photon opacities [e.g. 347]. These effects
propagate into systematic biases in the global parameters of the model. Hence, the
development and the improvements of KN templates is an urgent task in order to
conduct reliable and robust analyses in the future [450]. In particular, an improved
modeling for the thermo-nuclear heating rates and for the dynamics of the disk’s winds
are relevant short-term tasks [16, 120, 128]. In addition to the KN modeling uncer-
tainties discussed above, another source of error of our estimates is the accuracy of
the NR-calibrated formulae used to map the ejecta properties in terms of the BNS pa-
rameters. The current simulation set is limited to O(100) of simulations, with fitting
errors that could be reduced by considering data at even higher grid resolutions [310].

Multi-messenger analysis. Combining the GW-KN inference we constrain the
radius of a 1.4 M⊙ non-rotating NS to R1.4M⊙ = 12.23+0.75

−0.80 km at the 90% credibility
level. Including X-ray pulsar data of NICER observatory [60, 65], this measurement
can be improved to R1.4M⊙ = 12.39+0.70

−0.65 km, corresponding to a maximum TOV mass
of MTOV

max = 2.08+0.16
−0.09 M⊙. These results favor mildly soft EOSs, such as BLh [8]

and LS220 [9]. Comparing our results with the literature, we note that all studies
show broad agreement with each other, constraining R1.4M⊙ between 11 – 13 km [e.g.
16, 63, 357, 358, 363, 367, 368, 369]. This broad agreement might be related to
the limited EOS information that does not allow to reveal systematic errors between
different methods; or it can indicate that current MM inferences are affected by the
prior information used to parameterize the EOS [366].

The inclusion of low-SNR GW events of NSs mergers [56, 361] is not expected to
significantly enhance the presented estimates, since the tidal sector of these mergers is
poorly constrained. Also the GRB information [44, 54, 150, 359, 360] is not expected
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to improve the current EOS constraints, since the physics behind GRB emission in
the context of BNS mergers and its connection to the EOS are uncertain [e.g. 451,
452, 453]. Current studies of GRB emission in BNS mergers are primarily driven by
GRHD simulations [e.g. 454, 455, 456, 457, 458, 459, 460, 461, 462] and the mainstream
interpretation relates the prompt GRB launch to the BH formation [44]. Within the
fireball model [463, 464], the observable non-thermal GRB radiation is formed in an
optically thick and highly relativistic outflow characterized by a Lorentz factor Γ, when
kinetic energy is conveyed to particles through internal shocks. On longer timescales,
i.e. O(103 days), the interaction of the structured jet with the surrounding medium
yields to a non-thermal emission powered by synchrotron radiation, as shown by the re-
brightening of GRB170817A in the X-ray band [149, 150]. In general, a robust mapping
between the source parameters and the GRB properties, e.g. initial energy E0 and
the Lorentz factor Γ, is currently unknown. Thus, the availability of robust models
for the generation and emission of GRBs, with a clear map to the source and EOS
properties, is key in order to tighten the current EOS constraints and to construct an
optimal MM framework for BNS DA. Nonetheless, the usage of a joint MM likelihood,
with a coherent joint PE for different messengers, can improve the estimations of the
correlations between the parameters, tightening additionally the constraints [363]. The
majority of MM PE methods rely on EOS-insensitive relations typically calibrated on
NR data; thus, the development of high-precision NR infrastructures can yield to
improved observational constraints.

Postmerger remnants. GW signals from BNS PM remnants are predicted to lie in
the kilohertz regime and they are one of the main targets of XG IFOs [75, 76]. NS rem-
nants are primarily studied and modeled employing NR simulations [e.g. 154, 374, 376,
380, 383]. Nonetheless, the employment of NR-calibrated relations facilitate the con-
struction of full-spectrum GW models, permitting the attachment to inspiral-merger
templates [154]. On the other hand, the EOS-insensitive relations introduce theoreti-
cal errors that can be taken into account during the PE routines including appropriate
recalibration parameters. DA applications show that NR-informed PM models can
provide informative measurements for PM SNRs ≳ 7, comparing the performances of
minimal-assumption models [e.g. 375, 379] The uncertainties on f2 are O(1 kHz) at
PM SNR 7 and O(100 Hz) at PM SNR 10. However, systematic errors arise for short-
lived and large-mass-ratio remnants for SNR ≳ 8 primarily related to an inaccurate
identification of the characteristic PM peak. In a real scenario of full-spectrum BNS
observation, the f2 measurement can be translated in constraints on the maximum
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NS mass MTOV
max with errors of ∼12% at sensitivity threshold, providing information at

matter densities unreachable with modern nuclear experiments on Earth. Moreover,
PM signals can inform us on the appearance of non-nucleonic degrees of freedom.
The considered BNSs simulated with non-nucleonic EOSs (ALF2 [92], BHBΛϕ [85],
and BLQ [8, 86]) consistently show earlier BH formation compared to the hadronic
counterparts [e.g. 67, 86, 401]. These deviations can be revealed for PM SNR ≳ 9

comparing the inferred time of collapse tcoll with theoretical predictions of targeted
NR simulations. Another possible imprint of an EOS softening in the signal is the
breaking of the quasiuniversal relations that characterizes the spectral features. We
consider a short-lived remnant as a case study and demonstrate that ∼3−σ violations
of EOS-insensitive relations are potentially observable at PM SNR 8. In the future,
it would be interesting to verify the performances of NR-informed PM models against
NR templates computed with more extreme EOSs that show neater deviations from
the quasiuniversal trends [e.g. 381, 401]. In general, more accurate studies of BNS
merger with non-nucleonic EOSs, driven by high-precision NR simulations [e.g. 67,
86, 412], are essential in order to comprehensively characterize to what extend the
breaking of EOS-insensitive relations can probe EOS softening.

Simulated data of BNS remnants show that the full EOS information might be
relevant for an accurate modeling of BNS remnants. This conclusion is suggested by
studies of merger outcomes and PM dynamics, that show correlation with generic EOS
properties [17, 124]. Nonetheless, turbolent viscosity and different neutrino treatments
affect the characteristic time-scales of subdominant effects [e.g. 383, 465, 466]. Then,
an improved NR-calibrated PM models could be achieved relying on regression meth-
ods and learning algorithms trained on high-precision NR data with the combined
information of the full EOS. On the other hand, a clear relation between the dy-
namics of BH collapse and the source properties is crucial for PM modeling and for
interpretation of EM counterparts [e.g. 57, 122, 124]. In this context, the observational
GW data of BNS remnants can unambiguously provide evidence in favor of prompt or
delayed BH collapse, guiding the mapping between the source properties and the PM
dynamics.

Perspectives with next-generation detectors. Considering XG sensitivities, the
sky localizations provided by GW detectors will significantly improve, facilitating the
identification of EM counterparts [29, 426]. The combination of multiple MM data can
maximize the gained observational information, improving the constraints on the NS
EOS and clarifying the behavior of nuclear matter in extreme conditions of density.
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However, the PE analysis of BNS signals with XG detectors might become an
Herculean problem within the current framework due to the theoretical and practi-
cal challenges placed by the expected signals. In addition to tidal and PM modeling
issues, XG IFOs are expected to detected eccentric contributions in BNS mergers en-
hancing systematic differences between different modeling schemes [e.g. 251, 467, 468].
These events are expected from computations of period decay from binary radio pul-
sar observations [22, 23]. GW data from highly-eccentric BNS mergers can also reveal
the signatures of f -mode oscillations of the NS components [469, 470]. Other exam-
ples of physical effects that will require an accurate modeling are GW higher-order
modes (HOMs) [253, 471] and magnetic fields [457, 472]. Moreover, PE studies with
XG detectors will compute the matched-filtered analyses of broad frequency ranges,
i.e. from O(1 Hz) to ≳ 4 kHz, and long segments, i.e. ≳ O(1 hr), demanding the
inclusion of frequency-dependent (or time-dependent) antenna pattern functions [e.g.
473, 474, 475]. Another urgent issue posed by high-SNR and long-duration GWs is
related to the computational costs of these PE analyses. Parallelization methods are
key for PE of BNS signals associated to long data segments ≳100 s. The bajes runs
discussed in Chapter 2 were efficiently performed on 128 CPUs with total execution-
time of ∼1 day. However, the current implementation will not be sufficient to perform
XG PE studies within comparable timescales due to the larger number of computa-
tions. Nevertheless, for increasing SNRs, the gained information grows proportionally
narrowing the posterior PDF. Then, the sampler must minutely explore the parameter
space, requiring longer convergence times and demanding the employment of efficient
proposal methods [e.g. 476]. Moreover, in a full MM approach, the analysis includes
also EM counterparts and EOS parameterization, which can considerable increase the
computational costs. In order to overcome these limitations, XG EOS inferences might
be confronted with improved parallel methods for sampling algorithms [e.g. 158, 206,
476] and acceleration techniques for the likelihood evaluations [e.g. 203, 235, 477, 478].

Outlook. In summary, Figure 3 shows the current astrophysical MM framework for
EOS inference. The low-density region, i.e. ρ ≲ ρsat, can be constrained by hadrons
and heavy ions collisions [e.g. 102, 103, 370, 371]. The observations of pulsars with
radio and X-rays impose bounds on the mass-radius sequence through the measurement
of NS masses and radii. Inspiralling BNSs, such as GW170817, can provide constraints
at the densities of the progenitors, labeled as intermediate densities, i.e. ρsat ≲ ρ ≲

3ρsat. Generic binary systems with at least a NS component can also deliver similar
information [e.g. 153, 479, 480]. On the other hand, BNS PM GWs carry information
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Figure 3: Design and information channels of the current MM framework for EOS inference
with astronomical NS observations. Each black box encloses a different source. Dark blue
boxes report the observable signals and light blue boxes show the information that can be
extracted from each source. The horizontal axis reports the densities of the associated EOS
constraints. Dashed lines indicates that the connection between the measured parameters

and the EOS properties relies on NR-inform methods.

on the NS remnant’s densities, reported as high densities, i.e. ρ ≳ 3ρsat. The KN
observations provide information over a broad range: dynamical ejecta can constrain
the intermediate densities and disk’s properties inform the estimate of maximum NS
mass [481]. GRB parameters are not currently connected to EOS properties. In this
context, we can also include possible sources that might be observed in the future,
such as core-collapsing SNe that inform us on the NS formation [e.g. 482, 483, 484],
and continuous GWs from isolated NSs that provide information on the inertia tensor
of the source NSs [e.g. 485, 486, 487]. The inclusion of all available information is key
in order to cover a broad range of densities.

We are currently planning the development of a full MM infrastructure in ba-

jes, in order to perform coherent joint analysis of MM data taking into account full
correlations of parameters space. Moreover, we plan to include a TOV solver for
EOS-parameterized inference, permitting more accurate explorations of the parame-
ters space compared to finite-sized EOS priors. Other ongoing developments are the
ROQ approximation for full-spectrum BNS GWs, a combined multi-threading–MPI
parallelization scheme, and methods for XG detectors, such as time-dependent an-
tenna patterns [488]. The availability of a comprehensive Bayesian MM pipeline will
also permit validation studies of current methods and models with consistent injection-
recovery PEs, that are currently absent in literature.
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Appendix A

Sampling methods

A motivation for the employment of sampling methods in the estimation of targeted
PDFs can be extracted from Ref. [183, 489] using simple scaling arguments. For an
arbitrary function f defined on a N -dimensional support, its integral can be computed
resorting to a numerical grid approximation. However, for large N , the computational
cost grows as LN , where L is the characteristic size of the parameter space, e.g. the
number of grid points. Nonetheless, the accuracy of the estimation depends on the cho-
sen grid-step. On the other hand, the standard random-walk strategies implemented
in sampling algorithms behave similarly to thermalization processes, with typical costs
proportional to N2. Moreover, in the context of statistical DA, the errors associated
to sampling estimates depend only on the variance of the targeted PDF and are inde-
pendent from N . These properties make sampling methods optimal tools to explore
multi-dimensional parameters spaces.

In this Appendix, we discuss the main sampling methods employed in this work. We
introduce the MCMC methods in Section A.1 and the nested sampling algorithm [185,
196, 197, 198, 199] in Section A.2.

A.1 Markov-chain Monte Carlo

A generic MCMC algorithm is a random iterative process that explores the parameter
space by extracting samples according to a given probability (or potential). The
output of this procedure is a set of independent samples representative of the target
probability density.

The MCMC routine can be summarized as follows. A chain is initialized with a
random prior sample, sat θ0. This position is evolved and a new sample θ∗ is proposed
according to predefined proposal methods [e.g. 177, 178, 490, 491, 492, 493, 494, 495,
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496]. The new sample θ∗ is accepted with probability

min

[
1,

p(θ∗|d, H)

p(θ0|d, H)

q(θ0|θ∗)

q(θ∗|θ0)

]
, (A.1)

where q(θi|θj) is the proposal density function computed between θi and θj. Note
that, according with prescription Eq. (A.1), the probability of the proposed sample is
not required to be strictly greater than that of the current sample. If θ∗ is accepted
θ1 = θ∗; otherwise, θ1 = θ0. This procedure is iterated for θ1 and generally for
θi, collecting a chain of samples. In modern MCMC implementations [e.g. 170, 200],
the algorithms typically employ multiple simultaneous chains, in order to improve the
exploration of the parameters space and the correlations between the samples. The
algorithm eventually converges to the target PDF after a certain amount of iterations,
labeled as burn-in, that depends on the complexity of the parameters space and on
the sampling settings. After this time, the routine starts the collection of independent
posterior samples. Given a set of posterior samples, it is possible to estimate the
evidence using the approximation

p(d|H) ≈ 1

nsamples

nsamples∑

i=1

p(θi|d, H) , (A.2)

where the index i = 1, . . . , nsamples runs over the posterior samples.
The MCMC algorithm disposes of a light-weighted and versatile settings. However,

for non-trivial PDFs, (e.g. large number of degrees of freedom and prominent multi-
modalities), these methods could present issues, such as inaccurate exploration of the
parameter space. These issues can be mitigated resorting to a large number of parallel
chains or to problem-specific proposal methods. Another issue of MCMC techniques
is related to Eq. (A.2). This approximation carries non-negligible uncertainties that
prevent an accurate estimation of the evidence.

On the other hand, PTMCMC methods [e.g. 193, 194, 195, 200] perform improved
exploration of the parameter space and it provides a more accurate estimations of the
evidence integral compared to standard MCMC strategies. The main difference with
standard MCMC is the introduction of an inverse temperature coefficient β = 1/T ∈
[0, 1] in the computation of posterior PDF, i.e.

pβ(θ|d, H) ∝
[
p(d|θ, H)

]β
p(θ|H) . (A.3)



Appendix A. Sampling methods 103

Each chain is associated with a value of β and the algorithm proceeds as a standard
MCMC for every chain using the corresponding tempered posterior Eq. (A.3). For T =

1, the tempered posterior is identical to the original one, focusing on the estimation
of the likelihood bulge. The contribution of the likelihood function is mitigated by
increasing values of T , up to the limit T → ∞ where the posterior is identical to the
prior. The high-temperature chains will be able to freely explore the majority the
prior support, inspecting the tails of the targeted posterior distribution and providing
a good coverage of the entire prior volume. Moreover, the algorithm proposes swaps
between pairs of chains, received with acceptance

min

[
1,

(
p(d|θi, H)

p(d|θj, H)

)βj−βi

]
, (A.4)

where θi and βi are respectively the last sample and the inverse temperature of the
i-th chain, and analogously for j. The swapping procedure permits to propagate the
information of the high-temperature chains to the low-temperature ones and viceversa,
improving the correlation between the samples.

Using the auxiliary coefficient β and thermodynamic integration [497], it is possible
to write the evidence as

log p(d|H) =

∫ 1

0

log pβ(d|H) dβ . (A.5)

Eq. (A.5) can be estimated through numerical integration. The terms log pβ(d|H) cor-
respond to the expectation values of log p(d|θ, H) for the different tempered posterior,
i.e.

log pβ(d|H) =

∫
pβ(θ|d, H) log p(d|θ, H) dθ . (A.6)

For a fixed β, Eq. (A.6) can be estimated applying Eq. (A.2) to the tempered posterior
samples. Then, the integral Eq. (A.5) is approximated using the trapezoidal rule
integrating over the initial β ladder. The PTMCMC represents an improved version
of a standard MCMC technique, that aims to provide much accurate estimations of
the evidence. However, the accuracy of the estimation Eq. (A.5) strongly depends
on the number of employed temperatures. In complex situations, the total number
of chains needed to accurately estimate the evidence could overcome the number of
available processes, affecting the efficiency of the sampler [498].
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A.2 Nested sampling

The nested sampling [185, 196] is a computational Bayesian method designed to accu-
rately estimate the evidence integral and provide a set of posterior samples. The main
advantage of this technique is the reduction of the multidimensional integral Eq. (1.3)
to a one-dimensional problem [499, 500], introducing the variable

X(λ) =

∫

p(d|θ,H)>λ

p(θ|H) dθ . (A.7)

The quantity X(λ) is usually labeled as prior mass and it corresponds to the cumula-
tive prior volume covering all likelihood values greater than λ. The prior mass takes
values in the range [0, 1], where X = 1 corresponds to the entire prior volume and
X = 0 corresponds to the maximum likelihood value. Thanks to Eq. (A.7), the likeli-
hood can be written as function of the prior mass, i.e. p(d|X(λ), H) = λ, from which
follows the evidence,

p(d|H) =

∫ 1

0

p(d|X,H) dX . (A.8)

Eq. (A.8) has a further advantage: by definition, the likelihood p(d|X,H) is a mono-
tonic decreasing function of X. Accomplishing the transformation θ → X involves
dividing the unit prior mass range into small bins and sorting them by likelihood.

In order to accomplish this task, standard nested sampling routines require an input
number of live points nlive and a real positive number ζ representing the final tolerance
of the computation. The live points are samples of the parameter space that are evolved
during the routine. Starting from a set of nlive initial samples (usually extracted from
the prior distribution), the live point with lowest likelihood value, say θi, is discarded
and replaced with a new point θ∗

i extracted from the prior distribution that satisfies the
relation p(d|θ∗

i , H) > p(d|θi, H). The new point θ∗
i is usually proposed using internal

MCMC routines. The procedure is repeated taking the lowest-likelihood live point
at every iteration, such that the algorithm starts inspecting the entire prior volume
(X0 = 1), and it moves toward lower values of the prior mass, i.e. X0 > · · · > Xi > 0,
up to the the most likely sample(s). The n-th extracted sample can be taken as
representative element of the respective isoprobability level of likelihood and, since
the algorithm accepts strictly increasing likelihood values, it ensures that each level is
nested in the previous one. At the n-th iteration, the evidence is approximated from
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Eq. (A.8) using trapezoidal rule,

pn(d|H) ≈ 1

2

n∑

k=1

(Xk−1 −Xk+1) p(d|θk, H) , (A.9)

where k runs over all collected nested samples andXk is estimated with the expectation
value [500], i.e. Xk ≈ e−k/nlive . Then, we can deduce that the average volume occupied
by a live point corresponds to the nlive-th part of the current prior mass.

The specific stopping condition depends on the requested sampler. In general, if
the algorithm converged to the global maximum-likelihood value max[p(d|θ, H)], at
the n-th iteration the evidence is expected to vary at most of

∆n ≃ max
[
p(d|θ, H)

]
·Xn . (A.10)

The general stopping criterion requires that the estimated evidence is not expected to
change more than a factor eζ , i.e.

ζ ≥ log

(
1 +

∆n

pn(d|H)

)
. (A.11)

When the stopping condition is satisfied, the sampler includes the contributions of the
remaining live points to the overall evidence. The evidence is computed summing all
the likelihood contributions from each nested level weighted on the expected difference
in prior mass, according to Eq. (A.9). The posterior PDF can be reconstructed by the
chain of nested samples weighting them by their posterior weights [501].

The nested sampling routine offers a much better architecture for evidence es-
timation than MCMC techniques. In general, the estimated log-evidence carries a
statistical uncertainty inversely proportional to nlive due to the marginalization over
the prior mass. On the other hand, numerical errors are dominated by the use of
point estimates and by the length of the MCMC sub-chains nMCMC used to propose
new samples, as shown in Ref. [177]. These errors can be mitigated improving the
exploration of the parameters space during the MCMC proposal steps. Note that
also the estimation of the posterior samples is affected by statistical and numerical
uncertainty [219].
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Appendix B

Time-domain NRPM model

In this Appendix, we discuss the modeling of the time-domain GW approximant for
BNS PM remnants, labeled as NRPM [154]. We employ geometrical units G = c = 1

as convention throughout the whole Chapter in order to simplify the notation. We
discuss the NRPM modeling in Section B.1 and the NR calibration in Section B.2

B.1 Modeling choices

Our PM model builds on the results of [129, 300, 502] that showed the PM frequency
peak correlates with the tidal parameter and generalizing the approach to similar
relations for other characteristic frequencies of the spectrum and for the waveform’s
amplitudes and characteristic times. As mentioned in Chapter 4, nonlinear couplings
between proper modes result in new frequencies given by f2±0 = f2 ± f0. In the case
of BNS mergers, the two secondary peaks in the GW spectra can be interpreted as the
nonlinear pulsations of the remnant f2±0 [385]. In the following sections, we discuss
the NRPM modeling of phase (Section B.1.1) and amplitude (Section B.1.2). Finally,
in Section B.1.3, we discuss the approximations employed to model PC. Figure B.1
shows an exemplary NRPM template compared to the corresponding NR data.

B.1.1 Phase

We assume the PM GW frequency is composed of the three main characteristic fre-
quencies f2−0, f2, f2+0 and construct a model for f(t) as follows. The frequency
model starts at t = tmrg = 0 with the value of the merger frequency fmrg calibrated
on NR data; while, its derivative ḟmrg is estimated from a PN approximation, i.e.
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Figure B.1: Comparison between an exemplary NRPM template (solid red lines) and the
corresponding NR data (dashed black lines). The binary corresponds to an equal-mass non-
spinning BNS with M = 2.4 M⊙ and DD2 EOS located at 40 Mpc. The unfaithfulness of
NRPM model and the NR date corresponds to F̄ ≃ 0.13 with LIGO design PSD [29]. Top

panel: Time-domain waveforms. Bottom panel: Frequency-domain spectra.

ḟmrg = ḟPN(f = fmrg). Subsequently, we construct a piece-wise function for the time-
domain frequency imposing

f(tmrg) = fmrg , (B.1a)

f(t0 ≤ t ≤ t1) = f2−0 , (B.1b)

f(t2) = f2+0 , (B.1c)

f(t ≥ t3) = f2 . (B.1d)

A cubic interpolant is used to join fmrg to f2−0 in the interval [tmrg, t0] fixing the values
of the function and of the first derivatives at the interval’s extrema. The frequency
oscillation in the intervals [t1, t2] and [t2, t3] is modeled with a sine function in such a
way that f2+0 is a maximum and preserving the continuity and the differentiability of
f(t). Note the model can be reduced to a single-frequency one by simply joining fmrg

to f2 at t0 and omitting f2±0.
In order to model linear frequency evolution [379], it is possible to augment the

frequency model for t > t3 as f(t ≥ t3) = f2 · [1 + αPM(t − t3)]. Moreover, in
correspondence of t0, it is possible to include an additional phase ϕPM affects the
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phase evolution of NRPM introducing a phase discontinuity. As previously discussed in
Chapter 4, these effects are motivated by studies of NR data. Finally, the phase of
the waveform is given by integrating the frequency model,

ϕ(t) = 2π

∫ t

0

f(t′) dt′ + ϕ0 , (B.2)

where ϕ0 is either arbitrary chosen or fixed by requiring continuity with an inspiral-
merger phase.

B.1.2 Amplitude

We assume the PM amplitude has stationary points according to the nodal points
(Section 4.2.1) and that it decays exponentially after the third node. A continuous
model for A(t) is constructed assuming

A(tmrg) = Amrg , (B.3a)

A(ti) = Ai , (B.3b)

A(t ≥ t3 + 5) = A3 exp [−βPM (t− t3)] (B.3c)

and using sinusoidal functions to connect maxima and minima. The damping term
βPM is set as the time scale at which the waveform amplitude is 1/100 of the merger
value, i.e. when A falls below the threshold A(t)/Amrg = 10−2. Indicating t4 such
time, one obtains

βPM =
log(100A3/Amrg)

t4 − t3
. (B.4)

The timescale 1/βPM is identified from simulations and has range ∼[3, 70] ms for BNS
masses distributed M ∼ [2.5, 3] M⊙, if no collapse to a BH happens before [133].
However, βPM can be promoted to additional degree of freedom, improving the fitting
of the characteristic PM peak. This is also motivated by the relation between the time
of collapse and the high-density EOS properties [67, 86, 412] (see Chapter 4).

B.1.3 Prompt collapse

PC could be modeled employing Eq. (2.30) if we dispose of full EOS information. For
NRPM, we follow an alternative route, similar to Section 2.4.2. By analyzing the NR
data of the CoRe collaboration, we have found that the condition κT2 < 80 can broadly
capture PCs [300]. By further combining the estimate with Eq. (2.30) for a sample of
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non-rotating NS models, leads to the following criterion for PC [300]

κT2 < κTthr = 80± 40 . (B.5)

We adopt the above criterion in NRPM, setting A(t > t0) = 0 if this condition is
satisfied. In the context of a Bayesian PE, the threshold value can be either prescribed
or included in the set of intrinsic parameters.

This assumption is a simplification as the PC threshold is primarily determined by
the EOS pressure support at large densities (or the maximum mass). For example, for
a EOS sufficiently soft at the PM densities ρ ≳ 3ρsat and admitting small compactness
at inspiral densities (ρ ∼ 2ρsat), Eq. (2.30) might incorrectly predict a NS remnant
signal instead of a BH PC [57, 124]. Improvements in the modeling of the PC threshold
and the waveform amplitudes for the short-lived cases are crucial to inform PM GW
modeling. Currently, the PC models are strongly bounded to the available sample
of high-precision NR simulations [57, 123, 124] and the models will improve as more
accurate data become available.

B.2 Calibration

NRPM model is characterized by 14 parameters, i.e.

θPM = {t0, t1, t2, t3, t4, Amrg, A0, A1, A2, A3, fmrg, f2, f2−0, f2+0} . (B.6)

These quantities are related to the binary properties using NR information. Moreover,
as discussed in Section B.1, NRPM can be augmented with additional parameters, i.e.

θfree = {ϕPM, βPM, αPM} . (B.7)

This extension of the parameters space is motivated by investigations of NR simula-
tions. Note that the promotion of βPM to free parameter remove the dependency on
the EOS-insensitive relation for t4.

We use 172 simulations of the CoRe collaboration [125, 160]. The CoRe database
includes data computed with two different NR codes, BAM [503, 504] and THC [110],
that simulate microphysics, neutrino transport (with various schemes) and turbulent
viscosity. The set of simulations covers the range q ∈ [1, 1.5] and κT2 ∈ [73, 458]. The
frequency information is extracted from the spectra by identifying the three dominant
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Figure B.2: EOS-insensitive relations developed for the characteristic PM frequencies of
NRPM, i.e. the merger frequency fmrg, the dominant PM peak f2 and the subdominant com-
ponents f2±0. The markers show the values extracted from the NR set used for calibration
and the associated error-bars are estimated using different grid resolutions (when available).
The colors report the different EOSs (left) and mass ratios (right). The predictions of the
EOS-insensitive relations is reported with solid black lines and the gray contours correspond

to the 90% confidence intervals.

peak frequencies. Amplitudes Ai and the related times ti are extracted from the time-
domain nodal points. Specifically, we construct fit models using the variable

ξ = κT2 + c(1− 4ν) , (B.8)

where the constant c is also a fitting parameter. The frequency and amplitude at
merger Amrg, and the peak frequencies are well described by rational functions in the
form

QRational(κ
T
2 , ν) = F0

1 + n1ξ + n2ξ
2

1 + d1ξ + d2ξ2
, (B.9)

where {F0, n1, n2, d1, d2} are the fitting parameters. The amplitudes Ai for i = 0, 1, 2, 3

and the times ti are instead fit by linear polynomials in ξ

QLinear(κ
T
2 , ν) = p0 + p1ξ , (B.10)
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Figure B.3: EOS-insensitive relations developed for the characteristic PM amplitudes (left)
and times (right) of NRPM. The markers show the values extracted from the NR set used for
calibration and the associated error-bars are estimated using different grid resolutions (when
available). The colors report the different mass ratios. The predictions of the EOS-insensitive
relations is reported with solid black lines and the gray contours correspond to the 90%

confidence intervals.

where {p0, p1} are fitting parameters. The fitting is performed using a least squared
method.

Figure B.2 and Figure B.3 show the calibrated relations employed in NRPM. The
characteristic frequencies are generally well estimated, with errors from 2% for fmrg to
∼10% for f2±0 at 1−σ level. The EOS-insensitive relation for f2 has an intrinsic error
of ∼5%. The frequency f2+0 model is the most uncertain for the available data due
to faint contribution in the spectrum. Figure B.3 shows that, while PM amplitude
fits are well captured by the model (χ2 ∼ 10−1), the PM times are more uncertain
(χ2 > 1) with the uncertainty growing for larger times. This is expected since the
quantities at later times are less correlated with pre-merger parameters and NR data
are themselves more uncertain the longer the simulation is.
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Appendix C

Frequency-domain NRPMw model

In this Appendix, we discuss the modeling of the frequency-domain GW approximant
for BNS PM remnants, labeled as NRPMw [383]. We discuss the wavelet components
and their combination modeling in Section C.1. We present the NR calibration of
the PM properties in Section C.2. Finally, Section C.3 discuss computational costs
related to PM approximants. We employ geometrical units G = c = 1 as convention
throughout the whole Chapter in order to simplify the notation.

C.1 Wavelet components

In order to develop an analytical NR-informed PM model for BNS mergers in the
frequency-domain, we first introduce a truncated complex Gaussian wavelet W (t),

W (t;α, β, γ, τ) =

{
eαt

2+βt+γ if t ∈ [0, τ ]

0 otherwise
(C.1)

where α, β, γ ∈ C are time-independent parameters and the real interval [0, τ ] defines
the non-vanishing support of W . The coefficients {α, β, γ} can be interpreted as
follows: ℜ(α) and ℜ(β) determine respectively the concavity and the initial slope
of the time-domain wavelet amplitude; ℑ(α) and ℑ(β) define respectively the slope
and the initial value of the time-domain frequency evolution; γ is an overall factor
determining initial amplitude and phase. The wavelet W is the basic component of
NRPMw.

The frequency-domain wavelet W (f) can be analytically computed from Eq. (C.1)
using Gaussian integrals,

W (f) =
eγ

2

√
π

α
e−z2

[
erfi
(
z +

√
ατ
)
− erfi(z)

]
, (C.2)
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where z(f) encodes the frequency dependency,

z(f) =
β − 2πif

2
√
α

, (C.3)

and erfi(z) is the imaginary error function. For α = 0, Eq. (C.2) is not defined and it
is replaced by a Lorentzian function. Moreover, a direct implementation of Eq. (C.2)
can lead to floating point overflow in certain portions of the parameter space. In these
cases, we employ the analytical approximations [383]. Furthermore, we introduce a
global time-shift τ0 in order to allow the wavelet to move on the time axis. The time-
shift τ0 changes the wavelet support to [τ0, τ + τ0] and it is easily implemented by a
unitary factor, i.e. W (f ; τ0) = W (f) e−2πifτ0 .

In the following paragraphs we describe how different wavelets are combined based
on the universal features of the PM signal that are identified by characteristic nodal
points. We present the modeling of amplitude and frequency modulations in Sec-
tion C.1.1. We show the construction of the dominant ℓ = m = 2 mode in Sec-
tion C.1.2.

C.1.1 Modulation modeling

Ampitude and frequency modulations are prominent features of the PM spectrum, as
discussed in Section 4.1. NR simulations show that the main GW modulations are
given in the m = 0 channel, and are associated to the quasi-radial density oscillations
of the remnant [505]. We associate this mode to the fundamental frequency f0 and, for
the modeling of the (2, 2) mode, we consider only the modulation couplings between f2
and f0. Moreover, we neglect possible frequency evolution of the subdominant mode
f0, i.e. this frequency component is assumed to be constant in time. Modulation
effects appear after the collision of the NR cores, for t > t0, when the remnant is
strongly deformed and dynamically unstable.

Amplitude modulations can be easily taken into account by employing a combina-
tion of wavelets. Labeling the amplitude-modulated wavelet as W̆ , we can write

W̆ (t) = W (t) [1 + ∆am sin (Ωamt+ ϕam)] = W (t)− i∆am

2

∑

k=±1

kW (t) eik(Ωamt+ϕam) ,

(C.4)
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where ∆am defines the magnitude, Ωam the modulation frequency and ϕam the initial
phase of the modulation. Eq. (C.4) can be transformed in the Fourier space obtaining

W̆ (f) = W (f)− i∆am

2

∑

k=±1

kW (k)(f) , (C.5)

where
W (k)(f) = W (f ;α, β + ikΩam, γ + ikϕam, τ) . (C.6)

Eq. (C.5) shows explicitly that an amplitude-modulated wavelet W̆ can be easily
written in terms of the Gaussian wavelets W and it introduces two subdominant
contributions in the Fourier domain that are displaced with respect to the primary
peak of ±Ωam.

Frequency modulations affect the phase evolution of the time-domain wavelet. We
implement a frequency-modulated wavelet W̃ defining the frequency evolution as

ωW̃ (t) = ωW (t)−∆fme
−Γfmt sin(Ωfmt+ ϕfm) , (C.7)

where ωW̃ is the instantaneous frequency of the frequency-modulated wavelet W̃ , ωW

is the instantaneous frequency of the Gaussian wavelet W , and ∆fm, Γfm, Ωfm, ϕfm ∈
R are the parameters that define the frequency modulations, i.e. ∆fm is the initial
frequency displacement, Γfm the inverse damping time, Ωfm the modulation frequency
and ϕfm the initial phase. As shown in Ref. [383], the frequency-modulated wavelet W̃
can be rewritten in terms of the frequency-domain Gaussian wavelet W using Taylor
expansion, i.e.

W̃ (f) = eiF0

∞∑

n=0

(
∆fm

2|βfm|2
)n

wn(f)

n!
, (C.8)

where

wn(f) =
n∑

k=0

(
n

k

)
(β∗

fm)
k (−βfm)n−kW (f ;α, βn,k, γn,k, τ) , (C.9a)

F0 =
∆fm

|βfm|2
(Γfm sinϕfm + Ωfm cosϕfm) , (C.9b)

βfm = Γfm + iΩfm (C.9c)

βn,k = β − nΓfm + i(n− 2k)Ωfm , (C.9d)

γn,k = γfm + i(n− 2k)ϕfm , (C.9e)
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and {α, β, γ, τ} are the parameters of the corresponding non-modulated wavelet. Eq. (C.8)
generates several Fourier contributions centered around the frequencies ℑ(β)±nΩ, as
expected from these modulations. Note that, differently from the amplitude mod-
ulations shown in Eq. (C.4), the frequency modulation contributions presented in
Eq. (C.7) includes damped behavior, i.e. Γfm ̸= 0 a priori. This term is needed to
properly characterize the different time-scales of the PM frequency components f2 and
f0.

Combining the definitions of W̆ in Eq. (C.5), and W̃ in Eq. (C.8), it is possible to
write a general modulated Gaussian wavelet, labeled as W̃ . We consider amplitude
modulations over the interval [t0, t3] and frequency modulations for t > t0. We fix the
modulation frequencies to Ωam = Ωfm = 2πf0. The amplitude modulation magnitude
∆am and phase ϕam are fixed by the values of the GW amplitudes at the nodal points,
i.e. {ti, Ai} for i = 1, 2, 3. The frequency-modulation inverse damping time Γfm is
assumed to be identically zero for t < t1; then, it is fixed to a constant positive value
calibrated on NR data. Furthermore, NR simulations show that amplitude and fre-
quency modulations approximately fluctuate in opposite directions (see Section 4.2.1);
i.e. amplitude maxima occur at frequency minima and viceversa. Then, the frequency
modulation phase ϕfm is fixed in order to satisfy this requirement.

C.1.2 Wavelet combination

The NRPMw model is constructed by describing each part of the PM signal between
different nodal points with a modulated wavelet component. The overall strain h22

is computed summing all the contributions. Differently from Appendix B, here we
do not introduce t4 and we assume ti+1 − ti to be constant, for i = 0, 1, 2. Hence,
the nodal points can be reduced to two independent parameters: the moment t0 of
the first amplitude’s minimum after merger, and a characteristic time-scale T0 that
is computed as the difference t3 − t1. The time-scale T0 defines the subdominant
frequency f0 ≃ T0

−1 that characterizes the modulations of the PM signal.
The use of wavelets allow us to assign a clear interpretation of each parameter em-

ployed in the model. The combination of different wavelets can capture rather complex
signal morphologies. The majority of the physical quantities (times, amplitudes and
frequencies) is estimated using quasiuniversal relations calibrated on NR simulations
(see Section C.2).
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Figure C.1: Exemplary case showing the morphology of NRPMw model. Different wavelet
components are reported with different colors: Wfus in blue, W̃bnc in orange, W̃pul in green,
and W̃peak in purple. Top panel: The time-domain components and the overall GW amplitude
A(t) (black line) and the characteristic times with vertical lines, i.e. the time of the merger
tmrg, the nodal points ti for i = 0, 1, 2, 3 and the time of collapse tcoll. Bottom panel: The
Fourier spectra of each component, the overall h22 spectrum (black line) and the characteristic
PM frequencies (vertical lines), i.e. the merger frequency fmrg, the PM peak f2 and the

subdominant couplings f2±0 = f2 ± f0.

The time-domain ℓ = m = 2 mode is modeled employing a combination of four
different wavelet components,

h(f) ≈ Wfus(f) + W̃bnc(f) + W̃pul(f) + W̃peak(f) , (C.10)

assuming continuity in amplitude and phase (except for a phase-shift ϕPM, see later)
for the time-domain counterpart. The combination of wavelets includes the following
terms that are shown in color in Figure C.1:

1. Wfus (fusion) describes the signal after merger and up to t0, corresponding to
the fusion of the NS cores. The wavelet has an initial frequency fmrg and non-
vanishing frequency drift αmrg calibrated on NR data. The waveletWfus is written
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as

Wfus(f) = W (f ; α =
log(A0/Amrg)

t20
− iαmrg , β = −2πifmrg ,

γ = logAmrg − iϕmrg , τ = t0 , τ0 = 0) .

(C.11)

2. W̃bnc (bounce) describes the signal corresponding to the bounce after the collision
of the cores. The phase has a discontinuity ϕPM at t0. Moreover, for t > t0, all
wavelets include frequency modulations with the subdominant frequency f0. The
wavelet W̃bnc is written as

W̃bnc(f) = W̃ (f ; α =
log(A0/A1)

(t1 − t0)2
, β =

2 log(A1/A0)

t1 − t0
− 2πif2 ,

γ = logA0 − iϕbnc , τ = t1 − t0 , τ0 = t0

∆fm = ∆fm, Γfm = 0, Ωfm = 2πf0, ϕfm = ϕfm) ,

(C.12)

where
ϕbnc = ϕmrg + ϕPM + 2πfmrgt0 + αmrgt

2
0 . (C.13)

3. W̃pul (pulsating) describes the emission up to t3 during which the remnant is
typically highly dynamical. This component includes amplitude modulations
with the subdominant frequency f0 that are designed to match the nodal points,
i.e. A(ti) = Ai for i = 1, 2, 3. Since the largest amount of the GW luminosity is
emitted at times ≲ 5 ms [300], an accurate modeling of the early-PM dynamics
is key in order to maximize the faithfulness. The wavelet W̃pul is written as

W̃pul(f) = W̃ (f ; α = 0 , β =
log(A3/A1)

t3 − t1
− 2πif2 ,

γ = logA1 − iϕpul , τ = t3 − t1 , τ0 = t1 ,

∆am = 1− A2√
A1A3

,Ωam = 2πf0, ϕam = 0 ,

∆fm = ∆fm ,Γfm = Γfm, Ωfm = 2πf0, ϕfm = ϕfm) ,

(C.14)

where
ϕpul = ϕbnc + 2πf2(t1 − t0) . (C.15)

4. W̃peak (peak) describes the signal after the luminosity peak. The associated
wavelet is modeled as a damped sinusoidal with initial frequency f2, damping
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time βpeak and linear frequency evolution parameterized by the drift αpeak. This
component characterizes the dominant Fourier peak and it lasts until the time
of collapse parameterized by tcoll. The wavelet W̃peak is written as

W̃peak(f) = W̃ (f ; α = −iαpeak, , β = βpeak − 2πif2 ,

γ = logA3 − iϕpeak , τ = tcoll − t3 , τ0 = t3

∆fm = ∆fme
−Γfm(t3−t1), Γfm = Γfm,

Ωfm = 2πf0, ϕfm = ϕfm) ,

(C.16)

where
ϕpeak = ϕpul + 2πf2(t3 − t1) . (C.17)

Additionally, the GWs emitted after the BH collapse can be modeled as a fifth term in
Eq. (C.10), i.e. Wcoll. Knowing the properties of the final BH, this component could
be modeled with the QNMs of the remnant [126, 506]. However, we set here Wcoll = 0

since these component is expected to have a mild impact on the NRPMw accuracy for
XG sensitivities.

Figure C.1 shows an example of the discussed contributions in time- and frequency-
domain, with the different terms appearing in Eq. C.10 shown in different colors. The
overall spectrum shows the typical PM patterns: a dominant peak centered around
f2, a weaker peak at lower frequencies corresponding to the merger dynamics and sub-
dominant peaks due to modulations. The superposition of the wavelet components
generates several local minima and maxima in the overall h22 spectrum. Moreover,
the destructive interference of the wavelets originates a local minimum typically lo-
cated between fmrg and f2. This feature is also generally observed in BNS PM spectra
extracted from NR simulations. Moreover, the sharp cut at tcoll in time-domain wave-
form originates the ringing effects observed in the h22 spectrum. The further inclusion
of Wcoll will mitigate this effect, yielding to a smoother waveform representation.

C.2 Calibration

The NRPMw model is characterized by 17 parameters, i.e.

θPM = {ϕPM, ϕfm, t0, tcoll, Amrg, A0, A1, A2, A3,

fmrg, f2, f0,∆fm,Γfm, βpeak, αmrg, αpeak} .
(C.18)
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Most of these quantities can be related to the binary properties using NR information.
We chose to map only a subset of θPM and let some other parameters to be determined
by the inference or any other minimization procedure with given data. In particular,
we map 13 parameters, i.e.

θfit = {Amrg, A0, A1, A2, A3, fmrg, f2, f0, t0, βpeak, αmrg,∆fm,Γfm} , (C.19)

as functions of the intrinsic BNS parameters, i.e. {mi, χi,Λi} for i = 1, 2. We fix
ϕfm by the modulations as discussed in Section C.1.1, and we leave three additional
degrees of freedom, i.e.

θfree = {ϕPM, tcoll, αpeak} . (C.20)

This choice is motivated by the fact that these three parameters cannot be robustly
mapped using NR data.

The calibration set of binaries includes the public available non-precessing NR
simulations of the CoRe [58, 82, 86, 160] and the Sacra [405, 406, 407] databases.
The final dataset is composed by 618 simulations and it includes 190 different binary
configurations computed with three independent NR codes and 21 different EOSs,
including a hyperons and phase transition to deconfined quark matter at high densities.
The intrinsic parameters of the data cover the ranges M ∈ [2.4, 3.4] M⊙, q ∈ [1, 2],
κT2 ∈ [22, 458] and χeff ∈ [−0.14,+0.22]. Among the considered dataset, 80 simulations
(∼13% of the sample) resulted in PCs and ∼40% of the total data is composed by
equal-mass non-spinning binaries. The presented quasiuniversal relations extend those
in Section C including effects of large mass ratios, i.e. q > 1.5, and aligned spins with
|χeff | ≲ 0.2.

The mapping between binary and NRPMw parameters is performed on the mass-
rescaled PM parameters using a factorized fitting function (for any quantity Q),

Qfit = a0 Q
M(X) QS(Ŝ, X) QT(κT2 , X) , (C.21)

where QM = 1+aM1 X includes the mass ratio contributions in terms of the X = 1−4ν

parameter; QS = 1 + pS1Ŝ takes into account spin corrections in terms of the spin
parameter [507]

Ŝ =
(m1

M

)2
χ1 +

(m2

M

)2
χ2 , (C.22)
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Figure C.2: Residuals between NR data and the predictions of the quasiuniversal relations
for three exemplary PM parameters, i.e. Amrg (right panel), t0 (central panel) and f0 (left)
panel. The residuals are reported as functions of the tidal coupling κT2 and colored according
to the mass ratio q. Each marker shows the residual computed with a different BNS con-
figuration, where the circle is the mean value and the error bar reports the maximum and
minimum recovered values. The gray band correspond to the 90% (light) and 50% (dark)
credibility regions. The plots highlight that the accuracy of the calibrated relations decreases

for late-time features.

and pS1 = aS1(1 + bS1X). The term

QT =
1 + pT1 κ

T
2 + pT2 κ

T
2
2

1 + pT3 κ
T
2 + pT4 κ

T
2
2 , (C.23)

takes into account tidal effects in terms of κT2 and with pTi = aTi (1 + bTi X). The
coefficients {a·i, b·i} are determined fitting the NR data. We note that the choice of the
fitting function in Eq. (C.21) might be not unique nor optimal; we have experimented
with few functions and found Eq. (C.21) sufficiently simple, general and accurate for
our purposes. The choice of a rational function for QT(κT2 ) is instead motivated by the
argumentation of Section 4.2 [129, 151, 153, 154]. We stress the importance of using
mass-rescaled quantities in quasiuniversal relations [129, 154]. The fitting is performed
using a least squared method.

Figure C.2 shows the residuals for three exemplary PM quantities, i.e. Amrg, t0 and
f0. The calibration of the PM peak frequency f2 has been discussed in Section 4.2.2.
Regarding the amplitude Amrg and the frequency at merger fmrg, these properties show
similar trends to the ones of Appendix B with errors smaller than 3%. The time t0 of
the first nodal point can be also well captured by the EOS-insensitive relations with
errors of ∼10%. The NR-calibrated relations for the quantities {Amrg, fmrg, t0} are
constructed to match the BBH values within the nominal error bars for κT2 → 0 [507].
The frequency slope αmrg at merger shows uncertainties of ∼75% with clear trends
in the tidal parameter and in the mass ratio. In particular, large-mass-ratio binaries
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Figure C.3: Computational costs for NRPM (blue line) and NRPMw as function of the template
duration. For NRPMw, we show the performances without down-sampling (orange line) and
with down-sampling (green line). The top axis shows the corresponding number of points
in the frequency axis. The templates are computed for an equal-mass BNS remnant with
M = 2.6 M⊙ and Λ̃ = 492. The segment is generated with sampling frequency of 16 kHz.

We impose an additional lower cutoff at frequency fmin = 20 Hz.

(i.e. q ≳ 1.5) show αmrg ≲ 0 due to tidal disruption. The subdominant frequency
f0 is computed from the nodal points as T−1

0 and it shows errors of ∼60%. This
quantity shows a non-monotonic dependency on the tidal coupling κT2 for q ≃ 1 and
it decreases for increasing mass ratio to values an order of magnitude smaller than
in the equal-mass case. The PM amplitudes Ai of i = 1, 2, 3 have been discussed in
Section 4.2.1 and they show errors between 15% and 40%, except for A0, which has
uncertainties of ≳ 60% since this quantity is comparable in magnitude to NR errors.
The damping time βpeak of the decaying tail is estimated using the approximation
for exponential sinusoidal functions, i.e. βpeak ≃ max(A(t))/[2max(A(f))]. Despite
errors of ∼30%, the βpeak relation predicts a decreasing value for increasing mass ratios,
in agreement with the tidally disruptive dynamics of high-mass ratio mergers. The
frequency-modulation parameters ∆fm and Γfm are estimated from the instantaneous
NR frequencies and they show errors > 70%.

C.3 Computational costs

Figure C.3 shows the execution times for the computations of NRPM and NRPMw. The
costs associated to these models can be easily studied due to their fully analytical
forms. As the number of evaluation points grows, the computational times increase
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proportionally. However, NRPMw is more expensive than NRPM of ∼1.5 orders of magni-
tude due to multiple wavelet evaluations. In practical implementations, we limit the
expansion in Eq. (C.8) to n = 4 since it provides an accurate representation of the
main spectral peaks.

In order to further reduce computational costs of NRPMw, the frequency axis is
down-sampled to a constant binning of 10 Hz before the wavelet computations. Once
NRPMw is computed over the down-sampled axis, its amplitude and phase are linearly
interpolated in order to estimate the model over the initial frequency axis. This re-
duced frequency binning can be explained by the fact that PM signals are confidently
shorter than 100 ms, implying spectral features are broader the chosen binning. The
accuracy of the down-sampling strategy is validated computing the unfaithfulness be-
tween the standard NRPMw and the down-sampled version, recovering F̄ ≲ O(10−6).
This implementation significantly improve NRPMw performances. For short-duration
templates, i.e. < 10 s, the execution times of the down-sampled NRPMw model show a
constant execution time of ∼10 ms. In this regime, the most expensive contributions
are the multiple computations of the wavelets with a weight ≳ 90%. Note that this
strategy is expected to become inefficient for segments shorter than 62.5 ms. Then,
we avoid down-sampling procedures when the template duration is shorter than this
threshold. For long-duration templates, i.e. ≳ 10 s, the computational times are dom-
inated by the costs associated to the linear interpolation with a contribution of ∼85%

at duration 256 s, i.e. ∼2×106 points in the frequency axis. However, the recovered
times improve of ∼2 orders of magnitude over standard NRPMw results and of a factor
∼6 over NRPM performances.
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