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Abstract: We show the existence of ground states in the massless spin boson model
without any infrared regularization. Our proof is non-perturbative and relies on a com-
pactness argument. It works for arbitrary values of the coupling constant under the hy-
pothesis that the second derivative of the ground state energy as a function of a constant
external magnetic field is bounded.

1. Introduction

The spin bosonmodel describes a quantummechanical two-level systemwhich is linearly
coupled to a quantized field of bosons. If the bosons are relativistic and massless, the
model is used as a simplified caricature describing an atom, coarsely approximated by
two states, coupled to the quantized electromagnetic field. Although the model has been
extensively investigated, see for example [6,18,34] and references therein, it is still an
active area of research, cf. [8,14].

If this system has a ground state, i.e., if the infimum of the spectrum is an eigenvalue,
this physically means that it exhibits binding. Furthermore, ground states are a necessary
ingredient to study scattering theory in quantum field theories. In the case of massless
bosons or photons in R

d , we have the dispersion relation ω(k) = |k|. As a consequence,
the infimum of the spectrum is not isolated from the rest of the spectrum and establishing
existence of a ground state is non-trivial. If one imposes a mild infrared regularization
of the interaction function f , such that the quotient f/ω is square-integrable, e.g., in the
case d = 3 if we have δ > −1/2 such that f (k) ∼ |k|δ for small photon momentum
|k|, then existence of ground states has been shown [5,6,10,11,18,30,33,34] and its
analytic dependence on coupling parameters has been established [19]. However, in
models of physical interest where d = 3, the coupling function typically has the behavior
f (k) ∼ |k|−1/2 and f/ω is no longer square-integrable. In such a situation the model
is infrared-critical in the sense that an infrared problem may occur and a ground state
ceases to exist. Such a behavior was most prominently observed for translation invariant
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models in [13,17,21], see also references therein.Moreover, the absence of ground states
was shown for the Nelson model [30] as well as for generalized spin boson models [7],
provided a nonvanishing expectation condition is satisfied. However, it may also happen
in the infrared-critical case that the infrared divergences cancel and a ground state exists.
Heuristically, the reason behind this cancellation is an underlying symmetry of themodel.
In particular, existence of ground states have been shown for models of non-relativistic
quantum electrodynamics [9,12,20,22,24,27]. Due to the absence of diagonal entries in
the coupling matrix, Herbst and the first author [23] proved that the spin boson model
does actually exhibit a ground state even in the infrared-critical case, see also [8] for a
recent alternative proof providing new insight.

In this paper, we consider couplings which are more singular than in [8,23] and prove
the existence of a ground state in the spin boson model, e.g., in d = 3 for any coupling
f (k) ∼ |k|δ for |k| → 0 with δ > −1, provided an energy bound is satisfied. We
note, this result is optimal in the sense that for δ = −1 the field operator is no longer
bounded in terms of the free field energy. In contrast to previous results, our result is
non-perturbative and holds for all values of the coupling constant as long as the energy
inequality holds. Let us be more precise on the statement. Denote by ω : R

d → [0,∞)

the boson dispersion relation and f : R
d → R the interaction of the quantum field

and the two-level system. Then, the lower-bounded and self-adjoint Hamilton operator
describing the spin boson model acts on the Hilbert space C

2 ⊗ F , with F being the
usual Fock space on L2(Rd), and is given as

H(ω, f ) = σz ⊗ 1 + 1 ⊗ dΓ(ω) +
∫
Rd

f (k)σx ⊗ (a†k + ak)dk. (1.1)

Here, dΓ(ω) denotes the second quantization of the operator of multiplication by ω,
moreover ak , a

†
k are the distributions describing annihilation and creation operators,

respectively, and σx and σz denote the Pauli matrices. A more rigorous definition can
be found in Sect. 2. For the energy inequality we consider en(μ) = inf σ(H(ωn, f ) +
μ(σx ⊗1)), where the sequence (ωn)n∈N converges to ω uniformly and is chosen, such
that f/ωn is square-integrable. The parameter μ ∈ R can hereby by interpreted as an
external magnetic field. Explicitly, we assume that the second derivative of en(μ) exists
atμ = 0 and is bounded as n → ∞, for our result to hold. Using a Feynman-Kac-Nelson
type formula [26], this assumption is related to a bound on the magnetic susceptibility
of a continuous Ising model. We note that such a bound has been shown in our situation
for the case d = 3 and δ = −1/2 [33]. For d = 3 and δ ∈ (−1,−1/2), the bound has
been shown to hold for the discrete Ising model, cf. [15] and references therein. We give
a proof of our assumption by taking a continuum limit of the discrete Ising model in
[25]. As a consequence of our result, non-existence of a ground state for large coupling
would imply the divergence of the magnetic susceptibility in the corresponding Ising
model.

For the proof of our result, we utilize that the existence of ground states for the infrared
regular situation has been established using a variety of techniques. Hence, if we consider
H(ωn, f ) as above, then a ground state ψn exists. We then prove these ground states
lie in a compact set and hence there exists a strongly convergent subsequence (ψnk )k∈N.
The limit of this sequence will be the ground state of H(ω, f ).
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2. Model and Statement of Results

Throughout this paper we assume d ∈ N and write h = L2(Rd) for the state space of a
single boson. Then, let F be the bosonic Fock space defined by

F = C ⊕
∞⊕
n=1

F (n) with F (n) = L2
sym(Rnd), (2.1)

where we symmetrize over the n R
d -variables in each component. We write an element

ψ ∈ F as ψ = (ψ(n))n∈N0 and define the vacuum Ω = (1, 0, 0, . . . ).
For a measurable function ω : R

d → R, we define

dΓ(ω) = 0 ⊕
∞⊕
n=1

ω(n) with ω(n)(k1, . . . , kn) =
n∑

i=1

ω(ki ) (2.2)

as operators on F . Further, for f ∈ h, we define the annihilation operator a( f ) and
creation operator a†( f ) using a( f )Ω = 0, a†( f )Ω = f and for g ∈ F (n)

(a( f )g)(k1, . . . , kn−1) = √
n

∫
f (k)g(k, k1, . . . , kn−1)dk ∈ F (n−1), (2.3)

(a†( f )g)(k1, . . . , kn, kn+1) = 1√
n + 1

n+1∑
i=1

f (ki )g(k1, . . . , k̂i , . . . , kn+1) ∈ F (n+1),

(2.4)

where k̂i means that ki is omitted from the argument. One can show that these operators
can be extended to closed operators on F that satisfy (a( f ))∗ = a†( f ). From the
creation and annihilation operator, we define the field operator

ϕ( f ) = a( f ) + a†( f ). (2.5)

The following properties are well-known and can for example be found in [4,31].

Lemma 2.1. Let ω,ω′ : R
d → R and f ∈ h. Then

(i) dΓ(ω) and ϕ( f ) are self-adjoint.
(ii) If ω′ ≥ ω, then dΓ(ω′) ≥ dΓ(ω). Especially, if ω ≥ 0, then dΓ(ω) ≥ 0.
(iii) Assume ω > 0 almost everywhere and ω− 1

2 f ∈ h. Then ϕ( f ) and a( f ) are
dΓ(ω)1/2-bounded and for ψ ∈ D(dΓ(ω)1/2) we have

‖a( f )ψ‖ ≤ ‖ω− 1
2 f ‖‖dΓ(ω)

1
2 ψ‖ and

‖ϕ( f )ψ‖ ≤ 2‖(ω− 1
2 + 1)g‖‖(dΓ(ω) + 1)

1
2 ψ‖.

In particular, ϕ(g) is infinitesimally dΓ(ω)-bounded.

Now, let

H = C
2 ⊗ F ∼= F ⊕ F , (2.6)
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where the unitary equivalence is implemented by (v1, v2) ⊗ ψ �→ v1ψ ⊕ v2ψ . Further-
more, let σx and σz be the usual 2 × 2 Pauli-matrices

σx =
(
0 1
1 0

)
and σz =

(
1 0
0 −1

)
. (2.7)

For ameasurable functionω : R
d → R and f ∈ h, we define the spin bosonHamiltonian

onH as

H(ω, f ) = σz ⊗ 1 + 1 ⊗ dΓ(ω) + σx ⊗ ϕ( f ). (2.8)

Lemma 2.2. Assume that ω : R
d → R is measurable and almost everywhere positive,

f ∈ h, ω−1/2 f ∈ h, and μ ∈ R. Then H(ω, f ) + μσx ⊗ 1 defines a lower-bounded
self-adjoint operator on the domain D(1 ⊗ dΓ(ω)). Any core for 1 ⊗ dΓ(ω) is a core
for H(ω, f ) + μσx ⊗ 1.

Proof. The operator K = σz ⊗ 1 + 1 ⊗ dΓ(ω) + μσx ⊗ 1 is self-adjoint as a sum of
a self-adjoint operator with bounded self-adjoint operators and has domain D(K ) =
D(1 ⊗ dΓ(ω)). Moreover, it is bounded from below since dΓ(ω) is non-negative by
Lemma 2.1 and σx , σz are bounded. The symmetric operator σx ⊗ϕ( f ) is infinitesimally
K -bounded by Lemma 2.1. Hence, the statement follows from the Kato-Rellich theorem
(cf. [31, Theorem X.12]). ��
From now on, we fix a measurable non-negative function ω : R

d → R and an f ∈ h
and work under the following assumptions.

Hypothesis A.

(i) ω takes positive values almost everywhere,

(ii) ω(k)
|k|→∞−−−−→ ∞.

(iii) There exists α1 > 0, such that ω is locally α1-Hölder continuous.
(iv) There exists ε > 0, such that ω−1/2 f ∈ L2(Rd) ∩ L2+ε(Rd).
(v) There exists α2 > 0, such that

sup
|p|≤1

∫
Rd

| f (k + p) − f (k)|√
ω(k) |p|α2 dk < ∞.

(vi) We have

sup
|p|≤1

∫
Rd

| f (k)|√
ω(k)ω(k + p)

dk < ∞.

Example 2.3. In d = 3 dimensions elementary estimates show that the assumptions of
Hypothesis A hold for the choices

ω(k) = |k| , f (k) = gκ(k)|k|δ (2.9)

for any δ > −1, g ∈ R, and a cutoff function κ of the form κ(k) = 1|k|≤Λ, for some
Λ > 0, or κ(k) = exp(−ck2), for some c > 0. The number g will be referred to as the
coupling parameter.
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Example 2.4. More generally as in Example 2.3, we consider, for k ∈ R
d , the functions

ω(k) = |k|α, f (k) = gκ(k)|k|β, with some α > 0, β ∈ R, g ∈ R, and κ a cutoff
function as in Example 2.3. Then Hypothesis A holds under the condition d > max{α −
2β, 3

2α − β, 1
2α − 2β}.

The second assumption we need is a differentiability condition for the infimum of
the spectrum with respect to the constant magnetic field μ. For this, we need to ensure
that ω can be approximated by a family of functions which are bounded from below by
some positive constant.

Hypothesis B. There exists a decreasing sequence (ωn)n∈N of nonnegative measurable
functions ωn : R

d → R converging uniformly to ω, with the following properties.

(i) There exists α1 > 0, such that ωn is locally α1-Hölder continuous for all n ∈ N.
(ii) infk∈Rd ωn(k) > 0.
(iii) The function en(μ) = inf σ(H(ωn, f ) + μσx ⊗ 1) is twice differentiable at zero

and
Cχ := sup

n∈N
(−e′′

n(0)) < ∞. (2.10)

Remark 2.5. We note that (i) and (ii) of Hypothesis B are satisfied for the typical choice
of a massive photon dispersion relation

ωn =
√
m2

n + ω2, (2.11)

or also ωn = ω + mn , where (mn)n∈N is any sequence of positive numbers decreasing
monotonically to zero. The constant mn can be understood to be a photon mass. The
result we prove is, however, independent of the specific choice of ωn .

Remark 2.6. The differentiability assumption in Hypothesis B (iii) can be shown to hold
by regular analytic perturbation theory provided (ii) holds, since (ii) implies that the
ground state energy is separated from the rest of the spectrum (cf. [5,6] or Proposition
3.2). However, the uniform bound on the second derivative is nontrivial to establish. We
note that this assumption will be translated into a bound on the resolvent by means of
second order perturbation theory, see Lemma 4.3. In fact, this bound on the resolvent is
what we need in the proof of the main result, i.e., Theorem 2.8 holds if one replaces (iii)
by the bound in Lemma 4.3.

Remark 2.7. Let us discuss (2.10) in d = 3 dimensions for the case given in (2.9) and
(2.11). If δ > −1/2 then (2.10) follows, e.g., from the estimates in [19]. In the case
δ = −1/2, (2.9) has been shown for small values of the coupling constant in [33], using
that ground state properties of the spin boson Hamiltonian are related to the correlation
functions of a continuous one dimensional Ising model with long range interaction, cf.
[35] and [3]. In particular, (2.10) translates to the corresponding Isingmodel having finite
magnetic suszeptibility. For δ ∈ (−1/2,−1) the finiteness of the magnetic suszeptibility
has been shown for the discrete Ising model, [15]. In fact, for δ ∈ [−1/2,−1) the bound
(2.10) does not hold anymore for large values of the coupling constant. This follows
from the relation to the Ising model and the phase transition for Ising models with
coupling decaying quadratically in the distance, cf. [3,28,33]. On the other hand, for
small couplings, using the relation to a continuous Ising model, it has been shown in [1]
that g �→ inf σ(H(| · |, g f )) is analytic in a neighborhood of zero if f, f | · |−1/2 ∈ h,
which corresponds to δ > −1. Note that the infimum of the spectrum can be analytic
although there does not exist a ground state (cf. [2]). Thus, it is not unreasonable to
suspect that (2.10) might in fact hold for δ > −1 provided the coupling is sufficiently
small.
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Our main result now is the following.

Theorem 2.8. Assume HypothesisA and B hold. Then inf σ(H(ω, f )) is an eigenvalue
of H(ω, f ).

Remark 2.9. This result has been proven for infrared regular models, e.g., under the
additional assumption infk∈Rd ω(k) > 0 in [5] (see [6] for a generalization of this result)
and under the assumptionω−1 f ∈ h in [18], which in d = 3 corresponds to δ > −1/2 in
(2.9). Specifically for d = 3 the existence has been shown in situations whereω−1 f /∈ h
in [8,23]. The results in these papers include the case (2.9) with δ = −1/2 provided the
coupling g is sufficiently small. The results are perturbative in nature and were obtained
using operator theoretic renormalization and iterated perturbation theory, respectively.
In particular, [23] not only shows existence, but also analyticity of the ground state and
the ground state energy in the coupling constant. Concerning existence, the result of
Theorem 2.8 goes beyond. It shows existence for any δ > −1 and arbitrary coupling, as
long as the derivative bound (2.10) is finite.

Remark 2.10. In [33] finite temperatureKMS states of the spin bosonHamiltonianwhere
investigated for

∫
Rd f (k)2e−ω(k)|t | dk ∼= t−2 for large t . For d = 3 this corresponds to

δ = −1/2 in (2.9). Using results about the one dimensional continuous Ising model, it
was established that the KMS states have a weak limit as the temperature drops to zero.
In particular, it was shown that there exists a critical coupling such that the expectation
of the number of bosons is finite below and infinite at and above the critical coupling
strength. We note that for the proof of the main theorem we use a similar bound on the
number of photons, see Lemma 4.5 (i) (which is in fact weaker than the one in [33]).

Remark 2.11. We note that our result gives a physically explicit bound on the coupling
constant via (2.10), where the left hand side of (2.10) is proportional to the magnetic
suszeptibility of the corresponding Ising model. As a consequence of Theorem 2.8 the
absence of a ground state implies that the magnetic suszeptibility must diverge. Given
the existence results in [8,23], in case δ = −1/2 in (2.9), the absence of a ground state
for large coupling could provide an alternative method of proof for phase transitions
in continuous long range Ising models. To the best of our knowledge the absence of a
ground state in the spin boson model withμ = 0 for δ ∈ (−1,−1/2] and large coupling
has not yet been shown. Nevertheless, we refer the reader to results [14,33] where the
large coupling limit has been investigated.

Themethod of proofwe use is based on the proof in [20]. Itwas applied to the infrared-
critical model of non-relativistic quantum electrodynamics by two of the authors in [27].

For the proof of Theorem 2.8, we denote by ψn the ground state of H(ωn, f ), which
exists due to the assumption infk∈Rd ωn > 0. We then prove, that all of them lie in
a compact set K ⊂ C

2 ⊗ F . Hence, there exists a subsequence (ψn j ) j∈N converging
strongly to some ψ ∈ K . It then remains to show that ψ �= 0 actually is a ground state
of H(ω, f ).

The rest of this paper is organized as follows. In Sect. 3, we show some simple
properties of the states ψn and the corresponding ground state energies. In Sect. 4, we
then derive necessary upper bounds with respect to the photon number to construct the
compact set K in Sect. 5.

3. Ground State Properties for Massive Photons

In this section,we derive some simple properties of the ground state energy of the infrared
regular spin boson Hamiltonian. Throughout this section we will assume Hypothesis A
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and that the sequence (ωn)n∈N is chosen as in Hypothesis B (ii). We set

H = H(ω, f ) and Hn = H(ωn, f ), (3.1)

as well as E = inf σ(H) and En = inf σ(Hn) for all n ∈ N.

Lemma 3.1. We have

(i) H ≤ Hn′ ≤ Hn for n ≤ n′,
(ii) lim

n→∞ En = E.

Proof. (i) follows from themonotonicity of (ωn) andLemma2.1.We set N = 1⊗dΓ(1).
Then, due to the uniform convergence of (ωn), there is a sequence (Cn) ⊂ R

+ satisfying

Cn
n→∞−−−→ 0 and ωn ≤ ω + Cn . Hence,

dΓ(ωn) ≤ dΓ(ω) + CndΓ(1), which implies Hn ≤ H + CnN .

On the other hand let ε > 0 and fix ϕε ∈ D(N ) ∩ D(H0) with ‖ϕε‖ = 1, such that

〈ϕε, Hϕε〉 ≤ E + ε.

This is possible, since D(N ) ∩ D(H0) is a core for 1 ⊗ dΓ(ω) and hence for H , by
Lemma 2.2. Together with (i), we obtain

E ≤ En ≤ 〈ϕε, Hnϕε〉 ≤ 〈ϕε, Hϕε〉 + Cn〈ϕε, Nϕε〉
≤ E + ε + Cn〈ϕε, Nϕε〉 n→∞−−−→ E + ε.

Now (ii) follows in the limit ε → 0. ��
As mentioned above the bound Hypothesis B (ii) implies the existence of a ground state,
which is the content of the following proposition.

Proposition 3.2. For all n ∈ N, En is a simple eigenvalue of Hn.
Further,

[
En, En + infk∈Rd ωn(k)

) ∩ σess(Hn) = ∅.
Proof. The existence has been shown in [5] and the uniqueness for arbitrary couplings
has been shown in [23], see also [17]. ��
Let ψn be a normalized eigenvector of Hn to the eigenvalue En . A main ingredient of
our proof then is the following proposition.

Proposition 3.3. The sequence (ψn)n∈N is minimizing for H, i.e.,

0 ≤ 〈ψn, (H − E)ψn〉 n→∞−−−→ 0.

Proof. We use Lemma 3.1 and find

0 ≤ 〈ψn, (H − E)ψn〉 ≤ 〈ψn, (Hn − E)ψn〉 = En − E → 0.

��



426 D. Hasler, B. Hinrichs, O. Siebert

4. Infrared Bounds

In this section we derive essential bounds on the ground states ψn , which are uniform
in n ∈ N. Throughout this section we will assume that Hypothesis A and B hold. We
recall the following definition in Hypothesis B

en(μ) = inf σ(H(ωn, f ) + μσx ⊗ 1) for n ∈ N and μ ∈ R. (4.1)

Note that by the definitions in (3.1), we have En = en(0). The next Lemma is a simple
symmetry argument.

Lemma 4.1. We have en(μ) = en(−μ) for all n ∈ N.

Proof. We define the unitary operatorU = ei
π
2 σz ⊗ (−1)dΓ (1). It easily follows from the

definitions that ei
π
2 σzσx e−i π2 σz = −σx and (−1)dΓ (1)ϕ( f )(−1)dΓ (1) = ϕ(− f ). Now,

using that dΓ -operators commute, we obtainU (H(ωn, f )+μσx ⊗1)U∗ = H(ωn, f )−
μσx ⊗ 1, which proves the claim. ��
Now, letψ(�+1) ∈ F (�+1) for some � ∈ N. Then themap k �→ ψ(�+1)(k, · · · ) is an element
of L2(Rd ,F (�)), by the Fubini–Tonelli theorem (cf. [16, Theorem 2.37]). Hence, the
prescription

(akψ
(�+1))(k1, . . . , k�) = √

� + 1ψ(�+1)(k, k1, . . . , k�). (4.2)

yields a well-defined element akψ(�+1) ∈ F (�) for almost every k ∈ R
d . Further, for

n ∈ N, we define the operator

Rn(k) = (Hn − En + ωn(k))
−1 for k ∈ R

d , (4.3)

which is bounded by Hypothesis B, and the spectral theorem directly yields

‖Rn(k)‖ ≤ 1

ωn(k)
. (4.4)

The next statement is well-known and can be found under the name pull-through formula
throughout the literature, cf. [10,18]. In the statement we writeψn = (ψn,1, ψn,2) in the
sense of (2.6) and denote

akψn = (akψn,1, akψn,2) and σxψn = (σx ⊗ 1)ψn = (ψn,2, ψn,1). (4.5)

Lemma 4.2. Let n ∈ N. Then, for almost every k ∈ R
d , the vector akψn ∈ H and

akψn = − f (k)Rn(k)σxψn .

The infrared bounds we want to obtain in this section are bounds on Rn(k)σxψn . To that
end, we start by translating Hypothesis B into a resolvent bound.

Lemma 4.3. For all n ∈ N, we have 〈ψn, σxψn〉 = 0 and

0 ≤ 〈σxψn, (Hn − En)
−1σxψn〉 = −1

2
e′′
n(0).
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Proof. The proof uses second order analytic perturbation theory, for details see [29,32].
The operator valued function η �→ Hn(η) := Hn +ησx ⊗1 defines an analytic family of
type (A) for η ∈ C (cf. [29, Chapter VII, Theorem 2.6]). By Proposition 3.2, we know
that en(0) is a non-degenerate eigenvalue of Hn(0) in the discrete spectrum. Hence, in
some ball around η = 0 there exists a unique analytic function en(·) and aD(Hn)-valued
analytic function φn(·), such that φn(0) = ψn and

Hn(η)φn(η) = en(η)φn(η), (4.6)

cf. [32, Theorem XII.8]. Thus, en(0) = En .
The first derivative of (4.6) yields H ′

n(0)ψn + Hnφ
′
n(0) = e′

n(0)ψn + Enφ
′
n(0).

Multiplying ψn from the left and using ‖ψn‖ = 1 as well as H ′
n(0) = σx ⊗ 1

yields e′
n(0) = 〈ψn, σxψn〉. Hence, Lemma 4.1 implies 〈ψn, σxψn〉 = 0. Using that

e′
n(0) = 0, we can solve for the first derivative of the eigenvector and obtain φ′

n(0) =
−(Hn − En)

−1σxψn + αψn for some α ∈ C. Now, taking the second derivative of (4.6)
and using H ′′

n (0) = 0, we similarly obtain e′′
n(0) = 2〈ψn, σxφ

′
n(0)〉. Inserting the first

derivative of the eigenvector, we obtain the statement. ��
This gives us the required infrared bound.

Lemma 4.4. We have ‖Rn(k)σxψm‖ ≤
√

−e′′
n(0)

ωn(k)
for all n ∈ N.

Proof. By the product inequality, we have

‖Rn(k)σxψn‖ ≤ ‖Rn(k)(Hn − En)
1/2‖‖(Hn − En)

−1/2σxψn‖. (4.7)

By Lemma 4.3, the second factor on the right hand side can be estimated using

‖(Hn − En)
−1/2σxψn‖ ≤ √−e′′

n(0) .

It remains to estimate the first factor in (4.7). Using
∥∥Rn(k)1/2(Hn − En)

1/2
∥∥ ≤ 1 we

find with (4.4)
∥∥∥Rn(k)(Hn − En)

1/2
∥∥∥ ≤

∥∥∥Rn(k)
1/2

∥∥∥ ≤ 1√
ωn(k)

.

��
We combine this result with the pull-through formula. To that end let Cχ be defined as
in Hypothesis B (iii).

Lemma 4.5. Let B1 = {x ∈ R
d : |x | ≤ 1}.

(i) For all n ∈ N and almost all k ∈ R
d , we have ‖akψn‖ ≤ | f (k)|√

ω(k)
C1/2

χ .

(ii) There exist an α > 0 and a measurable function h : B1 × R
d → [0,∞) with

sup
p∈B1

‖h(p, ·)‖1 < ∞,

such that for all n ∈ N and almost all p ∈ B1 and k ∈ R
d

‖ak+pψn − akψn‖ ≤ |p|α h(p, k).
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Proof. (i) follows directly from Lemmas 4.2 and 4.4, and from the monotonicity of
(ωn)n∈N.

Let α1 be the minimum of the values from Hypothesis A (iii) and Hypothesis B (i)
and let α2 be as in Hypothesis A (v). Then, we set α = min{α1, α2} and

h̃(p, k) = max

{ | f (k + p) − f (k)|
|p|α √

ω(k)
,

| f (k + p)|
ω(k)

√
ω(k + p)

}
.

Then, byHypothesis A, h̃ satisfies the above statements on h. Further, using the resolvent
identity and Lemma 4.2, we obtain

ak+pψn − akψn = f (k)Rn(k)σxψn − f (k + p)Rn(k + p)σxψn

= ( f (k) − f (k + p))Rn(k)σxψn

+ f (k + p)(Rn(k) − Rn(k + p))σxψn

= ( f (k) − f (k + p))Rn(k)σxψn (4.8)

+ f (k + p)Rn(k)(ωn(k + p) − ωn(k))Rn(k + p)σxψn .(4.9)

By Lemma 4.4 and Hypothesis B, we find

|(4.8)| ≤ C1/2
χ

| f (k + p) − f (k)|√
ω(k)

≤ C1/2
χ |p|α h̃(p, k).

Further, the local α1-Hölder continuity of ωn yields there is C > 0, such that

|(4.9)| ≤ C |p|α h̃(p, k).

This proves the statement for the function h = (C1/2
χ + C)h̃. ��

We use the above infrared bounds to derive an upper bound on the photon number
operator and the free field energy

N = 1 ⊗ dΓ(1) and Hf = 1 ⊗ dΓ(ω) (4.10)

acting on the ground states ψn . The proof uses the following well-known representation
of the quadratic form associatedwith second quantization operators in terms of pointwise
annihilation operators.

Lemma 4.6. Assume A : R
d → [0,∞) is measurable and ψ ∈ F . Then the map

k �→ ‖A(k)1/2akψ‖ is in L2(Rd) if and only if ψ ∈ D(dΓ(A)1/2). Further, for any
φ1, φ2 ∈ D(dΓ(A)1/2) we have

〈dΓ(A)1/2φ1,dΓ(A)1/2φ2〉 =
∫
Rd

A(k)〈akφ1, akφ2〉dk.

Proof. The statement is standard in the literature, see for example [31]. ��
The next lemma will provide a photon number bound.

Lemma 4.7. For all n ∈ N we have ψn ∈ D(N 1/2) ∩ D(Hf) and the inequalities
〈N 1/2ψn, N 1/2ψn〉 ≤ Cχ‖ω−1/2 f ‖2 and 〈ψn, Hfψn〉 ≤ Cχ‖ f ‖2.
Proof. The property ψn ∈ D(Hf) was proven in Lemma 2.2. The remaining statements
follow from combining the upper bound in Lemma 4.5(i) and Lemma 4.6. ��
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5. The Compactness Argument

In this section, we construct a compact set K ⊂ H, such that (ψn)n∈N ⊂ K . We then
use the compactness of K to prove Theorem 2.8. Throughout this section, we assume
that Hypothesis A and B hold.

Let us begin with the definition of K . To that end, assume yi for i = 1, . . . , � is the
position operator acting on ψ(�) ∈ F (�) as

̂yiψ(�)(x1, . . . , x�) = xîψ(�)(x1, . . . , x�), (5.1)

where ·̂ denotes the Fourier transform. For δ > 0, we now define a closed quadratic form
qδ acting on φ = (φ1, φ2) ∈ Q(qδ) ⊂ H with natural domain as

qδ(φ) = 〈N 1/2φ, N 1/2φ〉 +
∑
�∈N

s∈{1,2}

1

�2

�∑
i=1

〈
φ(�)
s , |yi |δφ(�)

s

〉
+ 〈H1/2

f φ, H1/2
f φ〉, (5.2)

where N and Hf are defined as in (4.10). Now define

Kδ,C := {φ ∈ Q(qδ) : ‖φ‖ ≤ 1, qδ(φ) ≤ C} for C > 0. (5.3)

Lemma 5.1. For all δ,C > 0 the set Kδ,C ⊂ H is compact.

Proof. By definition, qδ is nonnegative. Hence, there exists a self-adjoint nonnegative
operator T associated to qδ . By the general characterization of operators with compact
resolvent (cf. [32, Theorem XIII.64]), Kδ,C is compact iff T has compact resolvent iff
the i-th eigenvalues of T obtained by the min-max principle μi (T ) tend to infinity, i.e.,
lim
i→∞ μi (T ) = ∞.

To that end, we observe T preserves the � photon sectors C
2 ⊗ F (�) and denote

T� = T � C
2 ⊗F (�). Now, since (ω + 1)(�)(K ) → ∞ as K → ∞ by Hypothesis A (ii),

we can apply Rellich’s criterion (cf. [32, Theorem XIII.65]) and hence T� has compact
resolvent for all � ∈ N0. As argued above, we have lim

i→∞ μi (T�) = ∞. Further, since

T� ≥ �, we have μi (T�) ≥ � and therefore lim
i→∞ μi (T ) = ∞. ��

We now need to prove the following proposition, where ψn are the normalized ground
states of Hn as defined in Sect. 3.

Proposition 5.2. There are δ,C > 0, such that ψn ∈ Kδ,C for all n ∈ N.

For the proof the following lemma is essential. Hereby, for n ∈ N, s ∈ {1, 2} and
y, k ∈ R

d , we introduce the notation

̂
ψ

(�)
n,s(y) : (y1, . . . , y�−1) �→ ψ(�)

n,s(y, y1, . . . , y�−1),

ψ(�)
n,s(k) : (k1, . . . , k�−1) �→ ψ(�)

n,s(k, k1, . . . , k�−1).
(5.4)

Due to the Fubini–Tonelli theorem, we have
̂
ψ

(�)
n,s(y), ψ

(�)
n,s(k) ∈ L2(R(�−1)d) for almost

every k, y ∈ R
d . Further, comparing with the definition (4.2), we observe

ψ(�)
n,s(k) = 1√

� + 1
(akψn,s)

(�). (5.5)
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Lemma 5.3. There exist δ > 0 and C > 0, such that for all p ∈ R
d and n, � ∈ N,

s ∈ {1, 2}
∫
Rd

|1 − e−i py |2
∥∥∥∥̂
ψ

(�)
n,s(y)

∥∥∥∥
2

L2(R(�−1)d )

dy ≤ C

� + 1
min

{
1, |p|δ} . (5.6)

We note that δ can be chosen as δ = εα

1 + ε
, where α > 0 and ε > 0 are as in Lemma

4.5 (ii) and Hypothesis A (iv), respectively.

Proof. That the left hand side of (5.6) is bounded by a constant C , uniformly in p,
follows easily due to the Fock space definition, since the Fourier transform preserves
the L2-norm. Now lets consider |p| ≤ 1. Note that

∫
Rd

|1 − e−i py |2
∥∥∥∥̂
ψ

(�)
n,s(y)

∥∥∥∥
2

L2(R(�−1)d )

dy =
∫
Rd

∥∥∥ψ(�)
n,s(k + p) − ψ(�)

n,s(k)
∥∥∥2 dk

= 1

� + 1

∫
Rd

∥∥∥(ak+pψn,s)
(�) − (akψn,s)

(�)
∥∥∥2 dk,

where we used (5.5). Let θ ∈ (0, 1) and write

w(p, k) = max

{ | f (k)|
ω(k)1/2

,
| f (k + p)|
ω(k + p)1/2

}
.

By Lemma 4.5, we have some C > 0 such that
∥∥∥(ak+pψn,s)

(�) − (akψn,s)
(�)

∥∥∥ ≤ C |p|θαh(p, k)θw(p, k)1−θ .

For r, r ′ > 1 with 1
r + 1

r ′ = 1, we now use Young’s inequality bc ≤ br/r + cr
′
/r ′ to

obtain a constant Cr > 0 with
∥∥∥(ak+pψn,s)

(�) − (akψn,s)
(�)

∥∥∥2 ≤ Cr |p|2θα
(
h(p, k)2θr + w(p, k)2(1−θ)r ′)

. (5.7)

Set r = 1
2θ . Then, the first summand in (5.7) is integrable in k due to Lemma 4.5. Further,

the exponent of the second summand equals

2(1 − θ)r ′ = 2(1 − θ)

(
1 − 1

r

)−1

= 2(1 − θ)

1 − 2θ
.

Hence, we can choose θ > 0 such that
2(1 − θ)

1 − 2θ
= 2 + ε. By Hypothesis A (iv), it

follows that (5.7) is integrable in k and the proof is complete. ��
From here, we can prove an upper bound for the Fourier term in (5.2).

Lemma 5.4. Let δ > 0 be as in Lemma 5.3. Then there exists C > 0 such that for all
n, � ∈ N and s ∈ {1, 2}

∫
Rd·�

�∑
i=1

|xi |δ/2
∣∣∣∣̂ψ(�)

n,s(x1, . . . , x�)

∣∣∣∣
2

d(x1, . . . , x�) ≤ C.
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Proof. From Lemma 5.3, we know that there exists a finite constant C such that

∫
Rd

∫
Rd

|1 − e−i py |2‖̂ψ(�)
n,s(y)‖2

|p|δ/2 dy
dp

|p|d ≤ C

� + 1
.

After interchanging the order of integration and a change of integration variables q =
|y|p, we find

C

� + 1
≥

∫
Rd

‖̂ψ(�)
n,s(y)‖2

∫
Rd

|1 − e−i py |2
|p|δ/2

dp
|p|d dy

=
∫
Rd

‖̂ψ(�)
n,s(y)‖2|y|δ/2

∫
Rd

|1 − e−iqy/|y||2
|q|δ/2

dq
|q|d︸ ︷︷ ︸

=: c

dy ,

where c is nonzero and does not depend on y. ��
We can now conclude.

Proof of Proposition 5.2. Combine Lemmas 4.7 and 5.4. ��
Proof of Theorem 2.8. ByLemma5.1 and Proposition 5.2, we know there exists a subse-
quence (ψnk )k∈N, which converges to a normalized vector ψ∞ ∈ Kδ,C . By construction

and Lemma 2.2, we have Kδ,C ⊂ D(H1/2
f ) = D((H − E)1/2). Further, it is known

that any closed quadratic form is lower-semicontinuous, i.e., if x = limn→∞ xn in the
domain of a closed form q then q(x) ≤ lim infn→∞ q(xk) (see for example [29, Chapter
VI, Theorem 1.16]). Hence, Proposition 3.3 yields

‖(H − E)1/2ψ∞‖2 =
〈
(H − E)1/2ψ∞, (H − E)1/2ψ∞

〉

≤ lim inf
k→∞

〈
ψnk , (H − E)ψnk

〉 = 0.

Hence, (H − E)1/2ψ∞ = 0. This especially implies (H − E)1/2ψ∞ ∈ D((H − E)1/2),
which in turn gives ψ∞ ∈ D(H) and yields Hψ∞ = Eψ∞. �� ��
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