
Accessible software frameworks for
reproducible image analysis of

host-pathogen interactions

D i s s e rt a t i o n

zur Erlangung des akademischen Grades eines

„doctor rerum naturalium“ (Dr. rer. nat.)

vorgelegt dem Rat der Fakultät für Biowissenschaften der
Friedrich-Schiller-Universität Jena

von Ruman Gerst

geboren am 19.05.1993 in Alsfeld

Gutachter

1. Prof. Dr. Marc Thilo Figge (Leibniz-Institut für Naturstoff-Forschung und
Infektionsbiologie, Jena, Deutschland)

2. Prof. Dr. Peter Zipfel (Leibniz-Institut für Naturstoff-Forschung und Infek-
tionsbiologie, Jena, Deutschland)

3. Prof. Dr. Sabine Fischer (Center for Computational and Theoretical Biology,
Würzburg, Deutschland)

zusätzliche Mitglieder der Kommission zur Verteidigung am 13.12.2022

1. Prof. Dr. Günter Theißen (Matthias-Schleiden-Institut, Friedrich-Schiller-
Universität Jena, Jena, Deutschland)

2. Prof. Dr. Stefan Schuster (Matthias-Schleiden-Institut, Friedrich-Schiller-
Universität Jena, Jena, Deutschland)

3. Prof. Dr. Steve Hoffmann (Leibniz-Institut für Alternsforschung, Jena,
Deutschland)

i CONTENTS

Contents

Summary . iii

Zusammenfassung . v

Glossary . vii

Acronyms . ix

1 Introduction . 1
1.1 Host-pathogen interactions . 5

1.1.1 Endocytosis and phagocytosis 6
1.2 Imaging techniques . 7

1.2.1 Transmitted light microscopy 8
1.2.2 Confocal microscopy . 9
1.2.3 Light sheet microscopy . 11
1.2.4 Multispectral optoacoustic tomography 12

1.3 Automated image analysis . 14
1.3.1 Image representation in computers 15
1.3.2 Image transformations and spatial filtering 15
1.3.3 Image enhancement . 17
1.3.4 Segmentation . 19
1.3.5 Morphological processing . 20
1.3.6 Classification . 21
1.3.7 Deep neural networks . 22
1.3.8 Image analysis tools . 25

1.4 Web applications and services . 27

2 Objectives of this thesis . 29

3 Overview of manuscripts . 31

4 Manuscripts . 37
4.1 Spatial quantification of clinical biomarker pharmacokinetics through

deep learning-based segmentation and signal-oriented analysis of
MSOT data . 39

4.2 JIPipe: Visual batch processing for ImageJ 71
4.3 Bacterial endosymbionts protect beneficial soil fungus from nema-

tode attack . 113

CONTENTS ii

4.4 MISA++: A standardized interface for automated bioimage analysis 155

5 Discussion . 185
5.1 Fully automated processing of MSOT data differentiates healthy

from septic mice . 186
5.2 Visual programming opens the development of fully automated pipelines

to non-programmers . 191
5.3 Visual programming pipelines quantify toxicity of fungus endosym-

bionts to nematodes . 199
5.4 Standardizing high-performance image analysis software enables the

rapid quantification of big data volumes 202
5.5 Concluding remarks . 206

Bibliography . 207

Danksagung . 217

Ehrenwörtliche Erklärung . 219

Tabellarischer Lebenslauf . 221

Anhang . 225

iii SUMMARY

Summary

To gain a full understanding of life-threatening diseases, it is essential to fully
characterize the interactions between host cells and pathogenic microorganisms.
The ongoing advancements in imaging techniques and computer hardware allow
the implementation of image-based systems biology (IbSB) that is based around
the extraction of precise measurements from visualizations of cells, tissues, or
whole organs via advanced software tools. To meet the current standards of dig-
ital research data management, the software must implement the principles of
Findability, Accessibility, Interoperability, and Reusability (FAIR) and contribute
towards their propagation in the scientific community. This is especially important
for interdisciplinary teams of experimentalists and computer scientists which ben-
efit from computer programs that bridge communication gaps, and facilitate the
adoption of new technologies. In this thesis, software frameworks were introduced
that contribute towards the propagation of FAIR principles in the field of IbSB by
the development of standardized, reproducible, high-performance, and accessible
software for the quantification of interactions in biological systems.

The subject of the first study was multispectral optoacoustic tomography (MSOT),
which is a non-invasive imaging method capable of measuring pharmacokinetics
in vivo. We aimed to confirm the viability of MSOT for the differentiation be-
tween healthy and septic mice by tracking the liver function via the dynamics of
indocyanine green (ICG). The standard approach for the quantification of MSOT
data relies on manually defined regions of interest (ROIs), making the analysis
time consuming and hard to reproduce. Additionally, the study showed that the
manual approach was sensitive to small changes in the ROIs and was generally un-
successful in finding significant differences between the extracted measurements.
We thus developed an algorithm termed MSOT cluster analysis toolkit (Mcat)
that allows the fully automated quantification of MSOT images by a combination
of two machine-learning methods. The automated approach successfully differen-
tiated septic from healthy mice based on ICG signal kinetics. The algorithm was
distributed as plugin for the ImageJ platform, thus making the automated analysis
of MSOT data accessible to non-programmers.

The second publication addressed a general disadvantage of the ImageJ platform:
while one of its hallmarks is the user-friendly graphical user interface (GUI), repro-
ducible, automated, and FAIR-compliant image processing pipelines can only be
created in a script language. Consequently, this reliance on programming hinders
the discourse within interdisciplinary teams and their adoption of FAIR guide-
lines. To bridge the gap between computer- and life-scientists, we encapsulated

SUMMARY iv

the functionality of ImageJ into a visual programming language termed Java im-
age processing pipeline (JIPipe). It combines the reproducibility of programming
languages with the accessibility of flow charts, and thus opens the design of ad-
vanced quantitative image analysis pipelines to non-programmers. Beyond the
capabilities of ImageJ, JIPipe also introduces standardized formats for the storage
of data and algorithm parameters that further simplify the implementation of the
FAIR principles.
JIPipe was utilized in the third study that aimed to characterize the defense mech-
anism of the soil-dwelling fungus Mortierella verticillata against the fungivorous
nematode Aphelenchus avenae. We discovered a new species of endosymbiotic bac-
teria that produces cytotoxic macrolactones and showed through viability assays
that the newly identified secondary metabolite inhibits both Aphelenchus avenae
and Caenorhabditis elegans. These finding were realized due to the application of
a fully automated image analysis pipeline based on JIPipe, which could identify
and track the nematodes with the purpose of quantifying their mobility.
The fourth publication addressed the challenges in developing high-performance
image analysis pipelines. Light sheet fluorescence microscopy and other mod-
ern imaging techniques produce big volumes of data that are only processable by
purpose-built and highly optimized algorithms. While the machine-oriented pro-
gramming language C++ already enables the development of such tools, these are
usually not easily accessible to non-programmers. To facilitate the standardization,
FAIR-compliance, and ease of access to high-performance software, we developed a
framework termed modular image stack analysis for C++ (MISA++) that simpli-
fies the design of optimized image analysis pipelines via standardized components.
These allowed the creation of a user-friendly GUI around any software developed
with the MISA++ framework.
In summary, this thesis showcases how software frameworks can contribute to-
wards the characterization of host-pathogen interactions by simplifying the design
and application of quantitative image analysis pipelines according to the FAIR
principles. These developments are the ideal starting points for future collabora-
tions with life scientists and medical doctors that will lead to the development of
improved experiments, imaging methods, algorithms, and computer models in the
spirit of the image-based systems biology approach.

v ZUSAMMENFASSUNG

Zusammenfassung

Um die Mechanismen hinter lebensgefährlichen Krankheiten zu verstehen, müssen
die zugrundeliegenden Interaktionen zwischen den Wirtszellen und krankheitser-
regenden Mikroorganismen bekannt sein. Die kontinuierlichen Verbesserungen in
bildgebenden Verfahren und Computertechnologien ermöglichen die Anwendung
von Methoden aus der bildbasierten Systembiologie, welche moderne Computeral-
gorithmen benutzt um das Verhalten von Zellen, Geweben oder ganzen Organen
präzise zu messen. Um den Standards des digitalen Managements von Forschungs-
daten zu genügen, müssen Algorithmen den FAIR-Prinzipien (Findability, Accessi-
bility, Interoperability, and Reusability) entsprechen und zur Verbreitung ebenje-
ner in der wissenschaftlichen Gemeinschaft beitragen. Dies ist insbesondere wichtig
für interdisziplinäre Teams bestehend aus Experimentatoren und Informatikern, in
denen Computerprogramme zur Verbesserung der Kommunikation und schnellerer
Adaption von neuen Technologien beitragen können. In dieser Arbeit wurden da-
her Software-Frameworks entwickelt, welche dazu beitragen die FAIR-Prinzipien
durch die Entwicklung von standardisierten, reproduzierbaren, hochperformanten,
und leicht zugänglichen Softwarepaketen zur Quantifizierung von Interaktionen in
biologischen System zu verbreiten.

Der Gegenstand der ersten Studie ist das nicht-invasive Bildgebungsverfahren
der multispektralen optoakustischen Tomografie (MSOT), welches in der Lage ist
Pharmakokinetiken in vivo zu erfassen. Da die Dynamik von Indocyaningrün in
Verbindung mit der Leberfunktion steht, sollten daher gesunde von septische Mäu-
sen anhand von MSOT unterschieden werden. Das Standardverfahren zur Analyse
von den produzierten Bilddaten basiert auf einer von einem Experten manuell de-
finierten Region, was den Prozess verlangsamt und schwer reproduzierbar macht.
Die Studie konnte zudem zeigen, dass das klassische Verfahren empfindlich ge-
genüber kleinen Änderungen in den Regionen ist und teilweise nicht in der La-
ge war signifikante Unterschiede zwischen Messungen zu erkennen. Daher wurde
der Algorithmus MSOT cluster analysis toolkit (Mcat) entwickelt, der durch die
Kombination von zwei Methoden des maschinellen Lernens eine vollautomatische
Quantifizierung von MSOT-Daten erzielt. Diese Methode war in der Lage septi-
sche von gesunden Mäusen korrekt zu unterscheiden. Eine für Nichtprogrammierer
zugängliche Implementierung wurde in Form einer ImageJ-Erweiterung bereitge-
stellt.

Die zweite Publikation befasst sich mit einem generellen Problem der ImageJ-
Plattform: während einerseits durch eine grafische Benutzeroberfläche die Benut-
zung erleichtert wird, so ist andererseits der Entwurf von reproduzierbaren, au-

ZUSAMMENFASSUNG vi

tomatischen und FAIR-kompatiblen Bildverarbeitungswerkzeugen nur durch Pro-
grammierung möglich. Da Skriptsprachen nicht jedem zugänglich sind, wird sowohl
die Kommunikation, als auch die Umsetzung der FAIR-Prinzipien in interdiszipli-
nären Teams erschwert. Aus diesem Grund wurde die visuelle Programmierspra-
che Java image processing pipeline (JIPipe) entwickelt, welche es Nutzern erlaubt
Funktionen von ImageJ mithilfe eines Flussdiagramms anzuordnen. Dadurch wird
auch Nichtprogrammierern der Entwurf von quantitativen und FAIR-kompatiblen
Bildverarbeitungspipelines ermöglicht.
JIPipe wurde in der dritten Studie angewendet, deren Gegenstand die Charakte-
risierung eines Verteidigungsmechanismus des Bodenpilzes Mortierella verticillata
gegen den pilzfressenden Fadenwurm Aphelenchus avenae war. Es wurde eine neue
Spezies von endosymbiontischen Bakterien entdeckt, welche zytotoxische Makro-
lactone produzieren. Deren Giftigkeit gegenüber Aphelenchus avenae und Caenor-
habditis elegans wurde mithilfe von Experimenten und darauffolgender Bildanalyse
von Mikroskopiebildern festgestellt. Die Quantifizierung der Daten wurde durch
eine vollautomatische Pipeline basierend auf JIPipe durchgeführt, die in der La-
ge war individuelle Fadenwürmer zu verfolgen und deren Bewegungsverhalten zu
quantifizieren.
Die vierte Publikation adressiert die Probleme in der Entwicklung von hochperfor-
manten Bildanalyseprogrammen. Moderne Bildgebungsverfahren wie Lichtschei-
benmikroskopie erzeugen große Datenvolumen und können nur von speziell op-
timierten Algorithmen hinreichend schnell quantifiziert werden. Die maschinen-
nahe Programmiersprache C++ erlaubt bereits die Entwicklung von hochperfor-
manten Werkzeugen, welche aber oft nur von Programmierern bedient werden
können. Daher wurde das Software-Framework modular image stack analysis for
C++ (MISA++) entwickelt, das standardisierte Komponenten zur vereinfachten
Entwicklung von standardisierten, hochperformanten und FAIR-kompatiblen Bild-
analyseprogrammen bereitstellt. Durch die Standardisierung war es möglich, eine
einheitliche Benutzeroberfläche für jedes auf MISA++ basierende Programm zur
Verfügung zu stellen.
Zusammenfassend zeigt diese Arbeit wie Software-Frameworks zu der Charakteri-
sierung von Interaktionen zwischen Wirtszellen und Pathogenen beitragen können,
indem der Entwurf und die Anwendung von quantitativen und FAIR-kompatiblen
Bildanalyseprogrammen vereinfacht werden. Diese Verbesserungen erleichtern zu-
künftige Kollaborationen mit Lebenswissenschaftlern und Medizinern, was nach
dem Prinzip der bildbasierten Systembiologie zur Entwicklung von neuen Experi-
menten, Bildgebungsverfahren, Algorithmen, und Computermodellen führen wird.

vii GLOSSARY

Glossary

e.g. exempli gratia (for example)

i.e. id est (that is)

ix ACRONYMS

Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

4D four-dimensional

ABM agent-based model

API application programming interface

CLAHE contrast limited adaptive histogram equalization

CLI command line interface

CNN convolutional neural network

CPU central processing unit

DNA deoxyribonucleic acid

DNN deep neural network

FAIR Findability, Accessibility, Interoperability, and Reusability

GFP green fluorescent protein

GPU graphics processing unit

GUI graphical user interface

HTTP hypertext transfer protocol

IbSB image-based systems biology

IC50 inhibitory concentration at 50%

ICG indocyanine green

JIPipe Java image processing pipeline

ACRONYMS x

JNI Java Native Interface

JSON Javascript object notation

LED light-emitting diode

LSFM light sheet fluorescence microscopy

Mcat MSOT cluster analysis toolkit

MISA++ modular image stack analysis for C++

MSOT multispectral optoacoustic tomography

PSF point spread function

RAM random access memory

RDM research data management

ReLU rectified linear unit

REST Representational State Transfer

RNA ribonucleic acid

ROI region of interest

ROS reactive oxygen species

TL transmitted light

URL uniform resource locator

VM virtual machine

VPL visual programming language

vRAM video random access memory

1 CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The invention of the microscope around 1600 [118, Appendix 6, Page 787] pro-
vided humanity with the means to resolve objects beyond the capabilities of their
eyes or simple magnifying glasses. This lead to the first description of microorgan-
isms by Robert Hooke [125, Chapter 1.6, Page 13], who among other things pro-
duced the first depictions of mold fruiting bodies and compartmentalized structures
termed “cells”. While the first bacteria were already discovered 1676 by Antoni van
Leeuwenhoek, the role of microorganisms as vectors of disease was not yet estab-
lished. An important factor that contributed towards the further characterization
of diseases was the continued improvements of microscopes that include the cor-
rection against spherical aberrations by Joseph Jackson Lister, the establishment
of the diffraction theory by Ernst Carl Abbe, and the development of a uniform
illumination technique by August Köhler [118, Appendix 6, Page 787]. The im-
provements still continue to this day and for example, lead to methods for resolving
objects below the diffraction limit [58]. While the microscope technology improved,
Louis Pasteur showed that microorganisms do not form spontaneously [125, Chap-
ter 1.7, Page 15] and must be introduced into an environment, thus establishing the
concept of sterilization. The proof that specific microorganisms are the causative
agents of diseases was provided by Robert Koch, who successfully isolated Bacillus
anthracis, cultivated the bacterium in vitro, and showed by the application of an
animal model that infections can be transferred between hosts [125, Chapter 1.8,
Page 16]. The newly developed methods for cultivating microorganisms were then
successfully applied to identify Mycobacterium tuberculosis and Vibrio cholerae as
the causes of tuberculosis and cholera respectively [125, Chapter 1.8, Page 17].
The new field of microbiology and its methods continued to advance, recognizing
that microorganisms are part of complex cross-species interaction networks [125,
Chapter 1.9, Page 20].
It is not trivial to characterize the processes and rules behind these interactions,
for example, how hosts can defend against pathogenic microorganisms. The rea-
son behind this is that to gain information from an interaction, one cannot merely
observe the behavior of a singular cell. Instead, the characteristics only emerge if
multiple agents are put into the same environment. This principle of where the
“whole is not the same as the sum of its parts” (Aristotle) [7] is the fundament of
modern systems biology [72, 80] that aims to characterize a whole system of mul-

CHAPTER 1. INTRODUCTION 2

tiple players and their interactions on a holistic level [70], i.e., how they contribute
towards the function of the system [21]. Bruggeman and Westerhoff further clas-
sify systems biology into “top-down” approaches which involve the integration of
large data volumes, and methods based on the “bottom-up” principle that predicts
emerging interactions from precise molecule-level models. An implementation of
the top-down approach is enabled by the ongoing improvements in the charac-
terization of whole genomes [98], proteomes [4], and metabolomes [68] that allow
the description of system components and their behavior by the analysis and in-
tegration of such “omics” data. For example, Kitano, Levesque and Benfey focus
on the study of genetic networks, with the purpose of understanding the interac-
tions between proteins, deoxyribonucleic acid (DNA), and ribonucleic acid (RNA).
A notable aspect of systems biology is the close collaboration between computer
scientists and experimentalists: the required data can only be obtained from wet
lab experiments that produce large volumes of data, thus requiring the utilization
of computer tools designed by computer scientists. The result is an iterative cy-
cle [71] which begins with the experiments in the wet lab that are analyzed to
produce a high abundance of data. This is followed by the creation of computer
models for the generation of new hypotheses, thus leading to the development of
new experiments.

The systems biology approach by Kitano, Levesque and Benfey focus on inter-
action between molecules within a single cell. Over time, great advancements
were made in the investigation of interspecies interactions [124] based on “omics”
data, including approaches that infer molecular interactions from the transcrip-
tome, proteome, or metabolome. These methods allowed the characterization of,
for example, the cellular responses in bacteria that inhabit oral cavities [124], or
the relationship between gut bacteria and the fungus Candida albicans [94]. A
disadvantage of an “omics”-based approach is that higher-level functions need to
be reconstructed from molecular reactions between metabolites, DNA, and pro-
teins, which is comparable to the “bottom-up” approach established by Bruggeman
and Westerhoff. This makes it difficult to model interactions that have a spatial
component and involve a high number of different yet unknown processes.

An alternative is to infer the functionality by the quantification of microscopy or
tomography images that capture the interactions of multiple single cells, struc-
tures within whole organs, or even pharmacokinetics within whole animals. This
concept of image-based systems biology (IbSB) [93] thus implements a “top-down”
alternative to the extraction and analysis of “omics” data that incorporates the
spatial component of characterizing and modelling cell interactions. Similar to the
systems biology approach presented by Kitano, IbSB is implemented as iterative
cycle beginning with a laboratory experiment that here produces data in form of
images (see Figure 1.1). These can be sourced from a wide range of imaging meth-
ods, including wide-field, confocal, and super-resolution microscopy. Images are
analyzed with computer programs that apply steps for enhancing the contrast, al-
gorithms for segmenting and tracking the objects of interest, and the extraction of
quantitative characterizations of the interactions. As measurements cannot always
give a full insight into the underlying processes, computer models are utilized to
infer parameters unavailable to image-based measurements. In combination with

3 CHAPTER 1. INTRODUCTION

the capability of computer models of simulating a system without involving labo-
ratory experiments, new hypotheses can be generated that form the basis of future
experiments, thus starting a new cycle.
We have to note that the cyclic concept of IbSB is idealized and not always ap-
plicable to all projects. For example, Pollmächer and Figge generated a fungal
infection model of a human alveolus based on existing literature [110, 109], leaving
out the acquisition and analysis of image data. Due to the available literature, the
model could be iteratively improved to simulate processes in a spatial environment
that are highly difficult to capture in vivo. The model was expanded to encom-
pass the characteristics of murine lungs, revealing differences in the effectiveness
of infection clearing [16]. Another study based on a revised model showed the
importance of Pores of Kohn in the clearance of infections [17].
A similar implementation of an “incomplete cycle” can be observed in the applica-
tion of laboratory experiments with subsequent image acquisition and analysis. For
example, Kraibooj et al. developed the initial implementation of a software tool to
quantify the uptake of Aspergillus fumigatus spores by murine macrophages [74].
The analysis relied on the staining of macrophages, which is a time-consuming pro-
cess. Consequently, new laboratory experiments were performed and resulted in an
enhanced image analysis software that is capable of detecting macrophages with-
out requiring a contrast-enhancing agent [32]. These improvements allowed the
implementation of a third study that proved that staining impacts the quantita-
tive results [33], thus highlighting the need for advanced image analysis algorithms
that are capable of extracting quantitative results from low-contrast images.
Additional challenges in the analysis of images are introduced by the characteris-
tics of newly developed imaging systems that include the handling of data with
a size on a terabyte-level [111] according to the principles of Findability, Accessi-
bility, Interoperability, and Reusability (FAIR), the complexity in reconstructing
images obtained from single molecule localization microscopy [117] or multispec-
tral optoacoustic tomography (MSOT) [133], and the difficulties in establishing a
dialogue between experimentalists and bioimage analysis software developers [90].
This thesis aims to contribute towards the resolution of these challenges by the
implementation of standardized, reproducible, high-performance, and accessible
software for the quantification of interactions in biological systems.
First, we will introduce the term “host-pathogen interaction”, and explain its basic
mechanisms with the focus on the human immune system (see section 1.1). In
section 1.2, we will give an overview of image acquisition techniques, including
methods for microscopy and tomography. This is followed by an introduction into
the basic operations for image processing and available software implementations
(see section 1.3). Finally, we will briefly explain technologies for the development
of web applications (see section 1.4).

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Image-based systems biology approach. A laboratory experi-
ment is set up with the purpose of capturing characteristic interactions via images.
These are analyzed with computer programs to obtain quantitative information
about the visualized processes. A detailed insight is given by the implementation
of computer models that are built on the knowledge gained from the images. In
silico experiments based on the models lead to the generation of new hypotheses
that are evaluated by the implementation of new laboratory experiments. Adapted
from [93, Figure 1].

5 CHAPTER 1. INTRODUCTION

1.1 Host-pathogen interactions

To understand the mechanisms of host-pathogen interactions, these terms first
need to be defined. The simplest to explain is “host”, which refers to the organ-
ism that interacts with microorganisms [26, 25]. The latter are not necessarily
pathogens and can alternatively form commensal or even symbiotic relationships
with the host. An organism is only referred to as pathogen, if it causes significant
damage to the host with the result of its inability to maintain homeostasis [26]. In
the context of immune reactions this means that the immune system is perturbed
to a level that generates a response [30, Chapter 1, Page 9]. Damage is character-
ized by interruptions in the structure or function of affected areas and can happen
on multiple scales: a small-scale harm on a single-cell level, medium-scale damage
affecting a region of tissue, and the large-scale loss of organ function. For example,
cells can be damaged by necrosis, apoptosis, loss of signal transporter functions, or
malignant transformations. Tissues can be affected by tumors, fibrosis, or inflam-
mation, while whole organs can lose their function if transport ducts are blocked,
or due to the loss of functional cells, e.g., glomeruli in a kidney [73].
The two major mechanisms behind pathogen-induced damage are toxins and harm
that is introduced by the immune system. Various microorganisms produce toxic
agents responsible for the clinical symptoms [30, Chapter 21, Page 334]. Exam-
ples for toxin-producing microorganisms are Corynebacterium diphtheriae, Vibrio
cholerae, Clostridium tetani, or Shiga-toxin producing Escherichia coli [73]. All
toxins have in common that even a minuscule amount is sufficient to induce the
detrimental effect to the host. The mechanisms behind the toxicity vary greatly
and include the induction of muscle spasms by acting as exciting agents, change of
water uptake in intestinal cells, or specific damage to immune cells. For example,
Bacillus anthracis toxin damages the expression of anti-apoptotic genes in certain
immune cells, thus causing their death.
The immune system itself can be the source of the damage by responding inap-
propriately, i.e., the immune system is too inactive or responds too aggressively.
This is the case for sepsis [11], where a local infection caused by a microorganism
escalates into a systemic inflammation of the whole organism due to regulatory
issues in the immune system. As inflammation interferes with the normal function,
e.g., by causing hypoxia, sepsis can lead to a failure of multiple organs.
The interaction between a host and a microorganism [25] starts with their contact
(see Figure 1.2, blue box), followed by an infection, which is characterized by the
multiplication of the microorganism inside the host. Depending on the state of the
host and the properties of the microorganism, the infection can evolve into one of
three conditions characterized by their damage to the host: if the host is not dam-
aged over time, the microorganism is a commensal; a colonization is characterized
by a linear damage over time; finally, if the host is damaged exponentially over
time, the interaction is referred to as “disease” that can kill the host if eradication
is unsuccessful. The complexity of host-pathogen interactions is highlighted by
their dynamic nature, meaning that the interactions can transition based on the
state of the host or microorganism. For example, it is possible for a commensalist
to transform into a pathogen, as showcased by the fungus Candida albicans which

CHAPTER 1. INTRODUCTION 6

Figure 1.2: Interactions between hosts and microorganisms. The starting
point is the contact between host and microorganism (blue box), leading to an
infection. Via transitioning (arrows) between different condition types, the out-
come can be either positive for the host (green boxes), or end in its death (red
box). Host-pathogen interactions are dynamic and can shift between multiple
intermediary states (gray boxes). Adapted from [26, Figure 1].

is known to transition from a commensal into a pathogen if the immune system is
compromised [62]. Another possibility is that a commensalism is converted into a
mutualism where both the host and pathogen greatly benefit from the interaction.
Colonies can develop into diseases, or transition to a chronic infection where the
damage over time is only applied on a constant level. Eradicating the microor-
ganism from the host is possible during the infection, colonization, and disease
phases and involves physical barriers, elimination via the existing flora of the host,
externally applied treatments, or the immune system.

1.1.1 Endocytosis and phagocytosis

A defense against pathogens is provided by the host’s immune system. In its sim-
plest form, it is based around the ingestion of pathogens by specialized cells. In
the human immune system, this includes macrophages, polymorphonuclear leuko-
cytes, and dendritic cells [30, Chapter 2, Page 12-14]. Ingesting molecules or
macro-particles into a cell is called “endocytosis” [30, Chapter 2, Page 19] that is
further differentiated into “pinocytosis” and “receptor-mediated endocytosis”. The
former targets very small particles or liquids unspecifically [30, Page 370], while
the latter is characterized by the ingestion of specific particles.
Pinocytosis is an unspecific ingestion that forms an invagination at the plasma
membrane with the purpose of encompassing particles or molecules in a close
vicinity to the membrane. This is followed by the closing of the membrane, leading
to the formation of a vesicle, i.e., a compartment within the cell. These are also
produced by the specific mode of ingestion with the difference that the invagination

7 CHAPTER 1. INTRODUCTION

only occurs if particle of interest binds to an array of receptor molecules that are
present on the cell membrane. After being incorporated into the cell, vesicles are
merged with an existing acidic compartment called “endosome”. The environment
created by this incorporation is necessary for the function of nucleases, lipases, and
proteases obtained from the absorption of a lysosome. The result is the degradation
of the ingested particles into molecules useful for cells, e.g., nucleotides, sugars,
and peptides.
The ingestion of invading particles is called “phagocytosis” and targets, for exam-
ple, bacteria or viruses [30, Page 19, Page 58]. Similar to a receptor-mediated
endocytosis, the phagocytic cell can recognize molecules specific to the pathogen.
It is also possible that the particle is marked with opsonins that can consist of
antibodies and other pathogen-recognizing immune system components. The par-
ticle is engulfed into a compartment termed “phagosome” that is merged with
lysosomes to introduce ingesting enzymes. As these usually cannot penetrate the
physical barriers around the particle, the newly formed phagolysosome produces
cytotoxic agents that include nitric oxide, hypochlorous acid, or reactive oxygen
species (ROS).
Many pathogens adapted to such immune system responses. For example, spores
of the fungus Aspergillus fumigatus produce types of melanin that protects the cell
against ROS [57]. Another example of an unsuccessful elimination of a pathogen is
the non-lytic expulsion of Candida albicans spores [8] that involves the raise in pH
levels within the phagolysosome. Similar strategies are applied by the bacterium
Mycobacterium tuberculosis that can survive phagocytosis events and keeps sur-
viving inside the host cell, thus avoid elimination by the immune system and drug
treatments [112]. These examples highlight the need for understanding the full set
of interactions between hosts and pathogens, as these can lead to the development
of more effective treatments for live-threatening conditions. With the continuing
development of imaging technologies, it is possible to visualize the involved cells
and derive the mechanisms of host-pathogen interactions via quantitative mea-
surements.

1.2 Imaging techniques

In the following section, we will briefly describe commonly utilized methods for
imaging host-pathogen interactions. The first technique that will be presented is
transmitted light (TL) microscopy which is based around focusing light through
the specimen to capture its shadow (see section 1.2.1). To generate images with
higher contrast, methods based on fluorescence were developed. One approach is
confocal microscopy that is capable of visualizing specimens in three dimensions
via optical sectioning (see section 1.2.2), although with limitations on the depth
especially in highly scattering tissues. We thus also introduce light sheet fluores-
cence microscopy (LSFM) which illuminates the specimen via a sheet of laser light
from a direction orthogonal to the optical axis with the purpose of avoiding light
scattering (see section 1.2.3). Finally, we will present multispectral optoacoustic
tomography (MSOT) that exploits the optoacoustic effect to capture pharmacoki-

CHAPTER 1. INTRODUCTION 8

netics within whole organs in vivo via laser-induced ultrasonic sound waves (see
section 1.2.4).

1.2.1 Transmitted light microscopy

The most straightforward method to image the interactions of cells is a transmitted
light (TL) microscope, which focuses light through the object of interest and a set
of magnifying lenses [118, Chapter 4.1, Page 75-78]. The basic components of such
a microscope are a light source, collector and condenser lenses, the specimen to be
imaged, and the objective and eyepiece lenses (see Figure 1.3). Light is generated
by an incandescent or halogen-based lamp, or a light-emitting diode (LED). Due
to the unevenness of this light, a set of lenses and diaphragms are used to collect
and condense the light into a parallel or direct beam. The light is then transmitted
trough the specimen to be magnified by the objective lens, which comprises a set of
four to six elements. Finally, the light is focused through the eyepiece and reaches
a camera or the human eye.

Figure 1.3: Transmitted light microscope. Light (red line) generated by
a light source passes through the collector and condenser to achieve even illumi-
nation. After reaching the specimen, magnification is applied in the objective.
Finally, the light reaches the eyepiece. Adapted from [118, Figure 4.1].

Given this simple and easily extendable structure, a multitude of variants have
been developed that that use different techniques for distinguishing the object of
interest from the background. Examples include dark-field microscopy [118, Chap-
ter 11.4.2, Page 252-255], phase contrast microscopy [118, Chapter 11.12, Page

9 CHAPTER 1. INTRODUCTION

264-270], and differential interference contrast microscopy [118, Chapter 11.14,
Page 273-278].

1.2.2 Confocal microscopy

TL microscopy and its variants are limited in their ability to generate contrast due
to their reliance on external illumination. For example, bright field microscopy only
allows contrast improvements by up to 40% [118, Chapter 15.4, Page 388-389]. An-
other disadvantage is the difficulty of differentiating structures with similar optical
properties. A solution is to make structures of interest emit light by themselves.
This can be achieved by labeling these with fluorophores [118, Chapter 16.1, Page
405-409], which are molecules that generate light of a specific wavelength shortly
(10−9s to 10−12s) after being excited with light of another specific wavelength.
This process is referred to as “fluorescence” and allows precise targeting of struc-
tures and even molecules by controlling the excitation wavelengths [118, Chapter
15.3, Page 389]. As the excitation and emission wavelengths are highly specific,
multiple structures can be stained and recorded, making it possible to distinguish
multiple characteristics of an interaction within the same experiment.
These achievements rely on the presence of the appropriate dye. It is possible to
introduce these by providing pre-made fluorophores. Alternatively, the organism
can be genetically modified to synthesize fluorescent proteins, for example, green
fluorescent protein (GFP) [118, Chapter 16.3, Page 409-411]. Depending on the
targeted structure, it is even possible to avoid the artificial introduction of dyes
or genes and target a variety of natural fluorophores present in many cells [118,
Chapter 16.7, Page 417].
Challenges of fluorescence microscopy include the distinction of overlapping emis-
sion frequencies of certain fluorophores, photobleaching that leads to gradual loss
of their emission functionality [118, Chapter 15.3, Page 389], and the capture of
all emissions regardless of their depth. This last property leads to the blurring of
signal outside the focal plane of origin [118, Chapter 17.1, Page 426], resulting in a
limitation on the achievable contrast. As this effect is related to depth, specimens
of a certain thickness cannot be sufficiently visualized.
A solution to blurring is to exclude light emitted outside the current focal plane
via optical sectioning. An implementation can be found in confocal microscopes,
where pinholes restrict the illumination to a specific location [118, Chapter 17.3,
Page 427-430]. The components of a confocal microscope (see Figure 1.4) include
one or multiple gas or LED laser light sources that emit the excitation frequencies,
one or multiple pinholes for focusing the excitation and emission light, a set of
mirrors and lenses to control the location of the illumination, and photomultiplier
tube for capturing the emitted light. The targeted excitation is achieved by a
set of movable mirrors that scan the specimen in a raster pattern, controlling the
point where the fluorophores should be excited. To suppress the blurring in the
depth axis, the laser light is focused to ensure that the maximum intensity is at
the specified depth.
The disadvantages of such a raster-scanning microscope include the increased pho-

CHAPTER 1. INTRODUCTION 10

Figure 1.4: Components of a confocal microscope. Excitation laser light
(blue) passes through the primary chromatic beamsplitter and a set of movable
mirrors that allow to target a specific location in the X and Y axis. Afterwards,
it continues through a scan lens, tube-lens, and objective to excite fluorophores in
the specimen. The resulting emission light (green) passes through the objective,
tube-lens, scan-lens, and mirrors, and is reflected by a beamsplitter. Here, it is
reflected by a steering mirror and is focused through a lens and the pinhole to be
captured by a photomultiplier tube. Adapted from [118, Figure 17.2b].

tobleaching due to the use of lasers, and the slow image generation caused by the
point-by-point buildup of the image, thus severely limiting the achievable time
resolution. These issues are partially resolved in the “spinning disk confocal mi-
croscope” that is based around the principle of illuminating multiple points in
parallel. This is achieved by replacing several components: the singular illumi-
nation lens is replaced with a disk that contains an array of micro lenses, thus
generating multipoint illumination (see Figure 1.5). The same principle is applied
to the illumination pinhole by replacing it with another disk containing holes that
are corresponding to the micro lenses [118, Chapter 17.6, Page 437-439].
These improvements, however, do not address another disadvantage of confocal
microscopy: both the excitation and emission light travel through the same optical
axis [118, Chapter 19.1, Page 485]. This greatly reduces the brightness of the
resulting excitation light if the specimen is of sufficient thickness or consists of

11 CHAPTER 1. INTRODUCTION

Figure 1.5: Components of a spinning disk confocal microscope. Ex-
citation laser light (blue) passes through micro lenses within a spinning disk, a
dichromatic beamsplitter, the second spinning disk providing the appropriate pin-
hole. The light continues through the objective lens to the specimen, where it
excites the fluorophores. The resulting emissions (green) pass through the objec-
tive and pinhole, but are reflected by the mirror, where it is filtered and captured
by a camera after being focused via a tube-lens. Adapted from [118, Figure 17.9].

highly scattering tissue. While a compensation by an increase of the laser light
intensity is possible, this strategy must be weighed against the effects of increased
photobleaching.

1.2.3 Light sheet microscopy

Light sheet fluorescence microscopy (LSFM) addresses the disadvantages of con-
focal microscopy (see section 1.2.2) by illuminating the sample from the side [118,
Chapter 19.1, Page 484-486]. This light is usually an approximately 1µm to 10µm
thin sheet of laser light that illuminates a whole plane at once. To capture the
entire three-dimensional (3D) object, the sheet is moved across the whole depth
of the specimen while capturing the emitted light with a camera. Later, com-
puter software is utilized to combine these individual planes into a 3D image (see
Figure 1.7).
A simple light sheet fluorescence microscopy setup consists of two axes that are
responsible for illumination and detection (see Figure 1.6), respectively. To illu-
minate the specimen, laser light passes through a set of lenses that are responsible
for creating the light sheet. These include a beam expander lens, a cylindrical
lens, and a tube-lens. The detection axis is perpendicular to the illumination axis.
Here, the emitted light is focused through an objective lens to be captured by a

CHAPTER 1. INTRODUCTION 12

camera. As a whole image plane is captured in one step, a high time resolution
can be achieved without running into issues with photobleaching. For example, it
is possible to capture a time series of whole organisms in 3D [135] or track em-
bryonic cells during their development [134]. The basic setup presented here can
be extended by, for example, adding components for rotating the sample or light
source with the purpose of improving the illumination, and inclusion of multiple
light sources and cameras to capture multiple fluorophores.

Figure 1.6: Components of a light sheet microscope. The microscope
can be roughly divided into an axis for illuminating the fluorophores and one for
detecting the emitted light. Excitation laser light (blue) is controlled with a mirror
and passes through a beam expander, cylindrical lens, tube-lens, and illumination
objective lens to form a sheet of light that excites one plane of the specimen.
The resulting emission light (green) passes through the detection objective lens,
a tube-lens, and filter for the excitation wavelength to be captured by a camera.
Adapted from [118, Figure 19.2a].

A drawback of light sheet fluorescence microscopy is that specimens are required
to be translucent, which makes the application of clearing protocols necessary [118,
Chapter 19.7, Page 497-498]. As the function of organ tissue is destroyed by these,
light sheet fluorescence microscopy cannot be utilized to analyze organs in vivo,
unless they are translucent to begin with. If this is not the case, alternative imaging
methods can be applied instead.

1.2.4 Multispectral optoacoustic tomography

An alternative to microscopy that is capable of visualizing the function of whole
organs in vivo is multispectral optoacoustic tomography (MSOT) [114]. The ba-
sic principle behind this technique is the optoacoustic effect: if tissue absorbs
light, sound waves are generated due to thermoelastic expansion. Consequently,
nanosecond pulses of nano-joule laser light lead to the creation of ultrasound waves

13 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.7: light sheet fluorescence microscopy image of a whole murine
kidney. The data was obtained from an existing study [73] and shows a whole
murine kidney with glomeruli visible inside (bright dots). The image stack consists
of 784 slices. (a) Selection of two-dimensional (2D) image slices from different
depths. (b) Render of the whole 3D image. A black-to-red look-up-table was
applied.

that can be captured by multiple detectors. With MSOT, the sample is illumi-
nated sequentially with multiple wavelengths [128] that can be distinguished by a
computer software via spectral unmixing. Due to the fast recording time, MSOT
records the presence of specific fluorophores as 3D time series, thus allowing to
infer the pharmacokinetics from the resulting four-dimensional (4D) image.
The setup of an MSOT experiment involves a laser light source, and ultrasonic de-
tectors based on interferometry or the piezoelectric effect (see Figure 1.8). To allow
generated ultrasound waves to reach these detectors, the specimen is put into gel
or water. The captured signals are multiple one-dimensional (1D) sound record-
ings. To obtain an image, a computer program must be used [114] to solve two
problems: the first is the “acoustic inverse problem”, where it must be estimated
how much energy was put into the specimen at the specified point. Afterwards,
the computer must find a transformation to convert multiple sound signals into an
image. This is also referred to as “optic inverse problem”. Advanced algorithms
were developed to solve these problems by implementing various strategies, for
example, by the conversion of the signal into the frequency domain, application of
time-reversal, or the utilization of computer models [114].
A benefit of MSOT is the ability to illuminate a specimen with multiple wave-
lengths. As the method is not able to resolve the molecular level, each voxel
contains signals from multiple molecules [133]. These need to be unmixed to
obtain intensities for each targeted molecule. This is a challenging task due to
spectral features changing in deeper tissue regions, and the presence of intrinsic
chromophores that include blood, lipids, or melanin. There are multiple algorithms
available that, for example, attempt a spectral unmixing by employing linear or
non-linear mixture models to find all involved components [133]. Independent of

CHAPTER 1. INTRODUCTION 14

Figure 1.8: Components of a multispectral optoacoustic tomography
setup. The specimen is held within a water tank via a holding mechanism and
a plastic membrane. It is evenly illuminated via optical fibers with short pulses
of laser light. The resulting ultrasonic waves are detected in an array of acoustic
transducers. This setup was designed to image mice. Adapted from [22, Figure
1a].

the chosen algorithms, computer tools then produce images with three spatial and
one time dimension with multiple channels.

1.3 Automated image analysis

In the previous sections, we introduced various methods to capture the interac-
tions present in a wet lab experiment as images. According to the principles
of image-based systems biology (IbSB), the next step is to quantify the data. A
straightforward approach is to analyze the images manually, which is time consum-
ing and error-prone due to researcher bias. An alternative is to create a computer
program that applies all necessary steps automatically, which makes it possible
to reproducibly process thousands of images in a short time. In section 1.3.1, we
will first give a brief explanation on how images are represented inside computers,
followed by establishing the foundations of many image processing operations in
form of spatial filters (see section 1.3.2). Afterwards, we introduce various classes
of image operators that are commonly applied in automated image analysis: as
the captures produced by microscopes are affected by various scattering and noise
processes, we establish the image degradation model and how it is utilized to re-
vert the aforementioned processes (see section 1.3.3). The restored image is the
subject of section 1.3.4 that introduces segmentation operators based on intensity
thresholding for the extraction of regions of interest (ROIs). These are further
processed by morphological operations with the purpose of applying corrections

15 CHAPTER 1. INTRODUCTION

(see section 1.3.5). Finally, we will briefly introduce classification as generaliza-
tion of segmentation (see section 1.3.6), as well as deep learning as a method that
implements supervised machine learning (see section 1.3.7).

1.3.1 Image representation in computers

Computers represent images as arrays of addressable square units called “pix-
els” [118, Chapter 30.3, Page 710-711]. Each pixel is assigned to a fixed space
coordinate and given an intensity value. As computers have finite memory, there
is a limit on the number of assignable intensity levels L, which is given by L = 2k,
where k > 0 denotes the number of bits, i.e., the smallest unit that can be stored in
a computer [51, Section 2.4.2, Page 55-57]. Each bit stores a binary digit, meaning
that it can only represent a zero or one. As with the decimal system, multiple
digits can be combined into a number. To calculate the decimal value (x)10 of a
binary number (x)2 with k positions, the value (x)2{i} of each position 0 > i ≥ k
is multiplied with 2i−1. The resulting values are summarized:

(x)10 =
k∑

i=1

2i−1 · (x)2{i}. (1.3.1.1)

For example, the binary number (10111)2 is evaluated to the decimal number
(23)10. We note that the position i here is evaluated from right to left, i.e., the
right-most digit is at the first position.
As only a limited number of bits is available, light levels generated by sensors
must be quantized into appropriate discrete approximations via an analog-digital
converter. Choosing an appropriate bit depth is thus essential to ensure a correct
representation of the information gained by an imaging method [118, Chapter 30.6,
Page 715].
Given all pixels were assigned a location and value, an image is formed, which
from a mathematical standpoint is a function f(x, y), where x and y are the
spatial coordinates [51, Section 1.1, Page 1]. In practice, it is represented as 2D
matrix with M rows and N columns, meaning that x and y are integral numbers.
As the size is fixed, the memory usage of an image can be calculated as M ·N · k
bits. Given this representation of an image, computer programs can be developed
that apply various operations on regions of pixels.

1.3.2 Image transformations and spatial filtering

Automated image analysis is based on transformation of pixel values to remove
noise, enhance features, and to extract and quantify structures of interest. Here
we again will focus only on grayscale images.
The simplest operation is applied to each individual pixel is a transformation
s = T (z) that yields a new pixel value s for an input pixel value z [51, Section
2.6.5, Page 85]. Applying such an operation to each pixel results in a new image

CHAPTER 1. INTRODUCTION 16

g(x, y) = T (f(x, y)). An example for a single pixel transformation is the addition
of a constant value c to each pixel:

Tadd constant(z) = z + c. (1.3.2.1)

Linear spatial filtering A more advanced operation involves neighboring points
around each pixel, and is also referred to as “spatial filtering” [51, Section 2.6.5,
Page 85]. This neighborhood is rectangular with a size m · n and centered around
the currently processed pixel location (x, y). The neighborhood can also be char-
acterized by two parameters a > 0 and b > 0 that indicate the extent of the
neighborhood around the center point. An example for a spatial filter is the local
average

glocal average(x, y) =
a∑

s=−a

b∑
t=−b

1

m · n · f(x+ s, y + b) (1.3.2.2)

that summarizes all values in the neighborhood and weights the result by dividing
it by the number of neighborhood pixels.
The local average applies a fixed weight 1

m·n to each neighborhood value, which
opens the possibility for a generalization: instead of a predefined value, the weights
are sourced from a function w(s, t), where s and t are relative to the current center
point (x, y):

w(x, y) ◦ f(x, y) = g(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t) · f(x+ s, y + t). (1.3.2.3)

The resulting function is termed “linear spatial filter”, due to the linearity of its
underlying mathematical operation [51, Section 3.4.1, Page 145].
An interesting observation can be made regarding the weight function: both of its
parameters are effectively discrete and limited to the extents of the neighborhood,
i.e., −a ≤ s ≤ a and −b ≤ t ≤ b. Thus, w(s, t) can be represented as matrix with
2 ·a+1 columns and 2 ·b+1 rows where elements are accessed relative to its center.
Such a matrix is also called a “filter matrix”. An example of a local average filter
with extents a = 1 and b = 1 is

wlocal average(s, t) =

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

 . (1.3.2.4)

Convolution The type of linear spatial filter defined in eq. (1.3.2.3) is also re-
ferred to as “correlation” [51, Section 3.4.2, Page 146-150]. A closely related group
of linear spatial filters is based on “convolution” and differs by rotating the filter
matrix by 180 °:

w(x, y) ⋆ f(x, y) =
a∑

s=−a

b∑
−b

w(s, t) · f(x− s, y − t). (1.3.2.5)

17 CHAPTER 1. INTRODUCTION

Symmetric filter kernels consequently fulfill both the properties of being a corre-
lation and convolution. If a non-symmetric filter is given, it is generally preferred
to apply a convolution. The reasoning behind this rule will be briefly explained in
the following part.
Let there be an image f(x, y) that has a value of one at its center and zero every-
where else, also referred to as a “discrete unit impulse”

f(x, y) =

{
1 if x = M

2 ∧ y = N
2

0 otherwise
. (1.3.2.6)

Let there also be a non-symmetric filter kernel w(s, t), for example,

w(s, t) =

1 2 3
4 5 6
7 8 9

 . (1.3.2.7)

The correlation w(x, y) ◦ f(x, y) results in a copy of the filter matrix, but rotated
by 180 °:

w(x, y) ◦ f(x, y) =

9 8 7
6 5 4
3 2 1

 . (1.3.2.8)

A convolution w(x, y) ⋆ f(x, y) on the other hand yields an unchanged copy of the
kernel:

w(x, y) ⋆ f(x, y) =

1 2 3
4 5 6
7 8 9

 . (1.3.2.9)

Thus, by utilizing a convolution, a copy of a function at the location of the im-
pulse is returned, which is an essential requirement for allowing filtering in Fourier
space [51, Chapter 4.2.3, Page 204].

1.3.3 Image enhancement

Two common problems that are faced during the analysis of images are noise and
degradation. These processes are caused by the generation of the images and
for example, include the capture of photons outside the selected focal plane in
fluorescence microscopes (see section 1.2.2). The consequence is a great influence
on various image processing steps, including edge detection [51, Section 10.2.4,
Page 704], and thresholding [51, Section 10.3.4, Page 704].
A common model for the relationship of degradation and noise assumes that the
true image f(x, y) is convolved with a degradation function h(x, y), while noise
η(x, y) is added to the convolved image:

g(x, y) = h(x, y) ⋆ f(x, y) + η(x, y). (1.3.3.1)

CHAPTER 1. INTRODUCTION 18

The cause and properties of h(x, y) greatly depend on the image source and cap-
turing methods. For example, atmospheric turbulence in landscape images [51,
Section 5.6, Figure 5.25, Page 348], blurring in fluorescence microscopy (see sec-
tion 1.2.2), or tissue scattering in confocal microscopy and light sheet fluorescence
microscopy (see section 1.2.3).
Given the degradation model in eq. (1.3.3.1) and the properties of convolutions in
Fourier space, it is possible to derive methods to revert the degradation.
Operations that remove the convolutional image degradation processes are referred
to as “deconvolution”. A naive deconvolution algorithm is “inverse filtering” [51,
Section 5.7, Page 351], which is based on the fact that convolution in the spatial
domain is equivalent to a multiplication in Fourier space [51, Section 4.2.5, Page
210]. As the inverse of a multiplication is a division, the original Fourier space
representation of the true image F̂ (u, v) in Fourier space can be reconstructed by
dividing the degraded image G(u, v) by the degradation function H(u, v):

F̂ (u, v) =
G(u, v)

H(u, v)
. (1.3.3.2)

The spatial domain then can be obtained by applying an inverse Fourier trans-
form [51, Section 4.4.1 and 4.5.5, Pages 221-222 and 235-236].
A disadvantage of the naive method is that it assumes that the exact parameters
of the degradation are known [51, Section 5.6, Page 346] and no noise is present,
which is not the case in microscopy images. Advanced methods thus attempt
to correct for both noise and degradation. An example is the Wiener filter [51,
Section 5.8, Page 352-355] that estimates the true image by incorporating both
the properties of the degradation function and the statistical nature of noise: the
method finds a filter that minimizes the mean square error between the estimation
of the true signal and the degraded image.
An alternative approach for deconvolution makes use of the point spread function
(PSF) that describes how a single point of light is scattered within the specimen.
The PSF can be utilized to re-assign photons back to their original location [118,
Chapter 21.9, Page 537-538]. These methods repeat two operations until the so-
lution converges: first, the object locations are estimated based on the properties
of the PSF; second, algorithms for constrained noise removal are applied. Conse-
quently, the approach is referred to as “constrained iterative deconvolution”.
The PSF can be roughly estimated from the microscope parameters, or measured
by imaging a bead smaller than the resolution limit [118, Chapter 21.6, Page 530].
Here we note that it is also beneficial to measure PSF within multiple depths to
correct for different scattering behavior in deeper tissues.
While advanced deconvolution methods attempt to remove noise, the success can
greatly vary based on the algorithm, its parameters, and the properties of the
data [92]. Thus, it is common that additional methods for the removal of the
remaining noise, and enhancement of contrast are applied. For example, an image
can be processed with a local average filter [51, Section 5.3.1, Page 322] that esti-
mates the true pixel value based on the surrounding values, while low-contrast
structures are enhanced with contrast limited adaptive histogram equalization

19 CHAPTER 1. INTRODUCTION

(CLAHE) [108]. The resulting image then can be further processed to extract
and quantify the visible structures.

1.3.4 Segmentation

The techniques introduced in section 1.3.3 improve images by suppressing degrada-
tion and noise, and enhancing the contrast. At this state, the computer program is
not aware of which pixels are assigned to the structures of interest or to the back-
ground. The process that generates this differentiation is called “segmentation”
and divides the image into one or multiple ROIs [51, Chapter 10, Page 689].
An intuitive segmentation method is based around an intensity threshold that
changes the image intensities to predefined values that denote a classification into
foreground or background [51, Section 10.3.1, Page 738-739]. The decision depends
on whether the intensity of the pixel is larger than a threshold value T and results
in a binary image

g(x, y) =

{
1 if f(x, y) > T

0 if f(x, y) ≤ T
(1.3.4.1)

where a non-zero value indicates that the pixel is part of a structure.
The challenge of intensity thresholding is that a suitable T must be determined.
One option is to choose the threshold manually, which can be slow and difficult
to reproduce due to the manual assessment by an expert. An alternative is to
automatically calculate a threshold based on statistical properties of the image.
There exist multiple methods that achieve this; for example, there are operations
based on entropy [61, 69, 143], preservation of image moments [132], or functions
that consider geometric properties of the histogram [144]. A popular thresholding
operation is Otsu’s method [51, Section 10.3.3, Page 742-747] that is based on the
principle that the difference between foreground and background pixels should be
maximized. We will briefly explain Otsu’s method in the following paragraphs.
This inter-class variance σ2

B is measured for each possible threshold k, given the
mean intensity of pixels assigned to the background m1(k) and foreground m2(k),
the mean pixel value mG, the probability P1(k) of choosing the background pixel
randomly, and its inverse P2(k) = 1− P1(k):

σ2
B = P1(m1(k)−mG)

2 + P2(m2(k)−mG)
2. (1.3.4.2)

Based on the histogram of the pixel values h(rk), the probability P1(k) can be ob-
tained by calculating the normalized cumulative histogram of the pixel intensities:

P1(k) =
k∑

i=0

[
1

M ·N · h(ri)
]

. (1.3.4.3)

Otsu’s method then calculates the optimal threshold TOtsu by finding a k that
maximizes σ2

B:
TOtsu = argmax

k∈{0,1,...,L−1}
(σ2

B). (1.3.4.4)

The resulting value is then utilized in eq. (1.3.4.1) to binarize the image.

CHAPTER 1. INTRODUCTION 20

1.3.5 Morphological processing

The result of various segmentation methods is an image that contains ROIs, which
are usually represented by predefined pixel values (see section 1.3.4). In the case
that the results are not sufficient, operations for processing the shapes of objects
can be utilized to correct segmentation mistakes [51, Chapter 9, Page 627]. Ex-
amples for such morphological operations are the filling of holes [51, Section 9.5.2,
Page 643], extraction of connected components from a pixel image [51, Section
9.5.3, Page 645], and skeletonization of segmented areas into lines [51, Section
9.5.7, Page 651-653].
A family of morphological operations is based on two fundamental functions termed
“erosion” and “dilation” [51, Section 9.2, Page 630]. We note that while these can
be described with set theory [51, Section 9.1, Page 628-629], we will focus on an
alternative representation based on local rank operations.
Morphological operations are spatial filters (see section 1.3.2) where the neighbor-
hood is defined by a “structuring element”. This element is related to the filter
kernel utilized in linear spatial filters, with the constraint that it contains boolean
values, i.e., either zero or one, or equivalently “true” or “false”. Consequently, all
locations assigned to “true” indicate that a pixel around the current center pixel
(x, y) is part of the local neighborhood. For example, the neighborhood around a
location (x, y) with the structure element

Scross =

0 1 0
1 1 1
0 1 0

 (1.3.5.1)

contains the pixels (x, y − 1), (x− 1, y), (x, y), (x+ 1, y), and (x, y + 1).
The presence of pixel within a neighborhood allows the definition of the “erosion”
operation that assigns the current pixel f(x, y) to the local minimum of the values
in the neighborhood [51, Section 9.6.1, Page 666]:

[f ⊖ b] (x, y) = min
(s,t)∈b

{f(x+ s, y + t)} . (1.3.5.2)

If the image is a binary image, this is equivalent to only marking the current pixel as
foreground, if all pixels within the neighborhood are foreground pixels [51, Section
9.2.1, Page 631-632]. Otherwise, the pixel will be re-classified as background.
The “dilation” function applies a local maximum, thus marking the pixel as fore-
ground if any of the neighborhood pixels is classified as foreground [51, Section
9.2.2, Page 633]:

[f ⊕ b] (x, y) = max
(s,t)∈b

{f(x+ s, y + t)} . (1.3.5.3)

Dilation and erosion operations can be combined to form higher-order operators.
Morphological “closing” is defined by the application a dilation followed by an
erosion [51, Section 9.6.2, Page 668]:

[f • b] (x, y) = [(f ⊕ b)⊖ b] (x, y). (1.3.5.4)

21 CHAPTER 1. INTRODUCTION

It yields an image where different structures within the neighborhood range are
connected and holes smaller than the area are removed. A morphological “open-
ing” applies an erosion followed by a dilation to remove objects smaller than the
neighborhood area:

[f ◦ b] (x, y) = [(f ⊖ b)⊕ b] (x, y). (1.3.5.5)

1.3.6 Classification

A generalization of segmenting pixels into a foreground and background class is
to introduce different types of ROIs. For example, a pixel can be classified as
background, or two distinct types of objects [51, Section 10.3.1, Page 739]. In the
following text, we will use the term “classification” for the more generalized case
of segmentation.
A naive classification method is the application of multiple intensity threshold
levels that are associated with the types of foreground objects and the background
class, respectively. Gonzalez and Woods present a three-way classification [51,
Section 10.3.1, Page 739, Equation (10.3-2)], which we generalize into an operation
that can be adapted to any number of classes k > 1. It assigns a class-specific
value c1 ̸= c2 ̸= . . . ̸= ck to the each pixel based on whether the intensity is within
the threshold limits given by T1, T2, . . . , Tk−1:

g(x, y) =


c1 if f(x, y) ≤ T1

c2 if T1 ≤ f(x, y) ≤ T2

.

ck if T1 ≤ T2 ≤ . . . < Tk−1 ≤ f(x, y).

(1.3.6.1)

As with the k = 2 case, a disadvantage is that the thresholds T1, T2, . . . , Tk−1 need
to be defined manually. The challenge is that it is not trivial to develop meth-
ods that generate the appropriate threshold values within a reasonable time. For
example, Otsu’s method is fast for two classes, but requires extensive improve-
ments to avoid an exhaustive search over the exponential number of threshold
combinations [83].
An alternative can be found in clustering methods that were designed to find
groups within a set of points [87, Chapter 20, Page 284-285]. As images can be
represented as set of points

{(x, y, f(x, y))|x ∈ {1, . . . ,M}, y ∈ {1, . . . , N}} (1.3.6.2)

in a 3D space, these clustering techniques can also be applied for image classifica-
tion.
A popular automated clustering technique is “K-means”, which is based on the
principle that points within the same cluster should have a small distance from
each other. This distance measurement can be any metric [77], i.e., a function

CHAPTER 1. INTRODUCTION 22

d(a, b) that satisfies the following constraints:

d(a, b) ≥ 0, (1.3.6.3)
a = b ⇔ d(a, b) = 0, (1.3.6.4)
d(a, b) = d(b, a), and (1.3.6.5)

d(a, b) + d(b, c) ≥ d(a, c). (1.3.6.6)

The function should always return a positive number or zero if and only if the
two points are equal. A distance metric must be symmetric, i.e., the function
parameters can be switched without changing the results. Finally, d(a, b) must
adhere to the triangle inequality, meaning that a direct path between two points
is never longer than a path through three points.
A central component of K-means is the definition of k “cluster centers” which are
points that are used to partition the space into nearest neighborhood cells. Based
on the location within the cluster space, each pixel is assigned to the closest cluster
center, thus assigning it to a class. K-means starts with an initialization phase,
where cluster centers are randomly assigned [87, Chapter 20.1, Page 286]. To find
the final clusters, the algorithm repeats two steps until the solution converges:
first, all points are assigned to the closest cluster center according to d(a, b). The
second step re-calculates the cluster centers based on the average of all assigned
points, hence the name K-means. A trivial criterion to stop the algorithm is the
case where the cluster centers are equal in two consecutive steps, reaching a fix
point.
Clustering methods are part of a family of machine learning algorithms that are
unsupervised, meaning that they take only the data to be grouped, estimated,
or visualized into consideration [15, Chapter 1, Page 3]. A different approach is
implemented by supervised learning that relies on labeled training data sets for
their functionality.

1.3.7 Deep neural networks

An implementation of supervised learning is based around the functionality of
neurons. The computer representation of such a cell is termed “perceptron” or
“linear unit” and consists of m > 1 numeric inputs and a single numeric output,
modelling the function of dendrites and axons, respectively [27, Chaper 1.1, Page
3-6] (see Figure 1.9).
A single perceptron is capable of applying classification tasks with two classes. To
classify an image, a model is generated with all pixel values as inputs. For example,
to classify an image with a size of 16× 16 pixels, the perceptron is provided with
256 inputs, each containing the grayscale value of a different pixel. The output fΦ
is calculated by first weighting each input xi by a factor wi. The resulting values
are then summarized and further modified by an additive bias parameter b. Based
on the biased integrated weighted inputs, it is decided whether the output is zero
or one, thus indicating the class of the whole image:

23 CHAPTER 1. INTRODUCTION

Figure 1.9: Computer model of a neuron. A perceptron or linear unit consists
of m inputs (green) that are integrated into a single output (blue). Adapted from
[27, Figure 1.3].

fΦ(x) =

{
1 if b+

∑m
i=1 xi · wi > 0

0 otherwise.
(1.3.7.1)

The weight and bias parameters are not set manually by the user, but instead
calculated automatically by the application of a training algorithm. The inputs
of this operation are three independent and labeled data sets that are termed
the “training data”, “test data”, and “validation data” [27, Chaper 1.1, Page 6-
7]. The training data is the basis for calculating the weights and the bias, while
the validation and test data sets are utilized to estimate the performance of the
classifier. The difference between the validation and test sets is that the training
algorithm incorporates only the measurements of the validation set to adjust the
training parameters, while the test data set is only intended for external review.
The training algorithm for a single perceptron starts with all parameters set to zero.
Then, it iteratively improves the model by first comparing the results produced by
the current settings with the expected classification and adjusting the parameters
according to this difference.
The result is a trained binary classifier and performance metrics that can be ob-
tained from the application of the test data set. As each perceptron produces a
boolean result, a general classifier can be implemented by introducing multiple lin-
ear units into the model [27, Chaper 1.1, Page 8]. Each perceptron is then trained
for detecting the presence of a specific class.
This shared “purpose” is the basis for the grouping of elements in a neural model
into “layers” [27, Chaper 1.2, Page 9-11] (see Figure 1.10), specifically the “input
layer” that contains the input data, and one or multiple “computational layers” that
generate an output based on their inputs. The type of input is not restricted to
external values from an input layer: by connecting the outputs of a computational
layer to the inputs of a second computational layer, a deep neural network (DNN)
is formed.
Compared to single-layered classification networks, perceptrons in a DNN have

CHAPTER 1. INTRODUCTION 24

(a) (b)

Figure 1.10: Representation of a neural model as set of layers. (a) Model
with multiple perceptrons. (b) Representation of the model as input layer (green),
computational layer (blue), and output layer (white). The arrows indicate that
all elements of the previous layer are connected to all elements of the next layer.
Adapted from [27, Figures 1.6-1.7].

two additional characteristics: non-linearity and a probabilistic output. The first
property is introduced as additional non-linear “activation function” that is applied
to the inputs of each perceptron prior to the multiplication with the weight [27,
Chaper 2.3, Page 38-40]. The reason behind this additional operation is that a
DNN with only linear units is mathematically equivalent to a single layer network
and thus is subject to the same limitations. A common non-linear function applied
in DNNs is the rectified linear unit (ReLU)

ρ(x) = max(x, 0). (1.3.7.2)

The probabilistic output is related to how the training of DNN is implemented.
The already established method for training single-layer networks is not suitable
for multi-layer networks. Instead, an alternative method is applied that for each
layer i searches for better parameters Φi. This is achieved by minimizing a loss
function L(Φi) that quantifies how poorly a network performs on the training data
set [27, Chaper 1.2, Page 10]. The basis for this search is a gradient descent,
which calculates the change in parameters by multiplying a learning rate L with
the partial derivative of the loss function with respect to the parameter:

∆Φi = −L∂L(Φ)

∂Φi
. (1.3.7.3)

Consequently, the loss function must be differentiable, which is not the case if
“steps” occur due to the comparison of discrete values. Thus, two modifications
are made: first, each perceptron calculates a real value

fΦ(x) = b+
m∑
i=1

ρ(xi) · wi ; (1.3.7.4)

second, all outputs of a layer are processed by a “softmax” function that divides
each output by the sum of all output values in a layer [27, Chapter 1.2 and 2.3,
Pages 11-12 and 39-40].

25 CHAPTER 1. INTRODUCTION

The training method based on gradient descent is also suitable for networks that
are not fully connected, meaning that not all outputs of a perceptron are connected
to all inputs in the next layer. A special case of such partially connected networks
are convolutional neural networks (CNNs) that are characterized by the purpose
of their parameters as weights of a linear spatial filter [27, Chaper 3.1, Page 53]
(see section 1.3.2). By stacking multiple convolutional layers [27, Chaper 3.3, Page
61] and combining them with up- and down-scaling (pooling) [27, Chaper 3.4.3,
Page 66] operations, CNNs are utilized in DNNs for image analysis.
A popular network based around CNNs is the “U-net” [113], which was designed
to solve various image analysis tasks with the focus on minimizing the required
training data and computational cost. The name is derived from its symmetric ar-
chitecture that can be visualized into a form resembling the letter “U”. The network
first processes the data in a “contracting” arm consisting of multiple convolution
layers, ReLU, and pooling operations. These produce images with a gradually
lower resolution, thus putting an emphasis on features at various scales. This is
followed by an “expansive” path that again applies convolutional and ReLU layers,
but replaces the pooling with up-scaling operations. The outputs of the pool-
ing operations are made available to the corresponding convolution stacks in the
expansive paths.
The U-net and other architectures can be implemented manually, or via dedicated
software frameworks designed for the application of deep learning, for example,
Tensorflow [1] or Pytorch [106]. Based on these libraries, tools for the processing
and analyzing of bioimage data sets were developed, including StarDist [121, 139],
CARE [138], and Cellpose [126].

1.3.8 Image analysis tools

In sections 1.3.2 to 1.3.7, we briefly introduced methods that allow the processing
and extraction of objects from images. To apply these operations, there are a
variety of existing software tools that implement the image processing methods
established in this thesis, as well as alternative and more advanced operations.
Many commercial and open source tools rely on a graphical user interface (GUI) to
display images and provide users with options to apply analysis steps. Examples
for commercial software include Imaris (Oxford Instruments) and Arivis (arivis
AG), with both placing a focus on the aspect of rendering 3D data and inter-
active processing of images. For applying deconvolution with a PSF, there exist
dedicated tools, for example Huygens (SVI), or Imaris ClearView-GPU (Oxford
Instruments).
An alternative to commercial software are open source tools maintained by a com-
munity of developers and include ImageJ [115], Icy [35], and the Microscopy image
browser [13]. These support the visualization of images on a computer screen and
the execution of filtering steps with the purpose of forming a image processing
pipeline. Especially ImageJ gained a wide popularity [122], due to the variety of
functions that are flexibly integrated into the interface via a plugin system. Exam-
ples for such plugins include the deconvolution algorithm DeconvolutionLab2 [116],

CHAPTER 1. INTRODUCTION 26

(a)

(b)

Figure 1.11: Visual representation of program code. (a) ImageJ macro
code that opens an image with the name “kidney.png”, applies a local median
filter, a top-hat operation for background removal, Otsu-thresholding, and object
size filtering. The results are saved as table. (b) Visual representation of (a)
as flow chart. Nodes (gray boxes) correspond to the ImageJ operation. Arrows
indicate the order of operations and flow of data between two nodes.

and the TrackMate [130] plugin that adds advanced methods for tracking biologi-
cal objects in time series. As with commercial tools, there is open source software
that specializes to specific image analysis tasks. Cellprofiler [91], for example,
focuses on providing an intuitive workflow to set up and train machine learning
models. Cellpose [126] was designed for the segmentation and resolution of cell
clusters and other biological structures by the application of a DNN.

A GUI is not the only mode of interacting with a software. Various tools are
restricted to a command line interface (CLI), or an application programming in-
terface (API). Examples of such software libraries are OpenCV [20] and Scikit
Image [137] that provide a standardized software interface to develop image ana-
lysis scripts. Many tools offer multiple interfaces. This is the case for ImageJ
and Icy that each provide a GUI and a Java API that allows the development
custom pipelines and interfaces. Additionally, these tools include interpreters for
various script languages that enable the automated and reproducible execution of
GUI functions. These can also be executed via a CLI to enable the analysis in a
non-graphical environment.

A disadvantage of CLIs, APIs, and script languages is that they are only accessible
to researchers with programming knowledge, which is hard to acquire due to the
necessity of understanding program structures, solving of tasks via generation of
computer procedures, and the adaption of the required syntax [107]. Additionally,
researchers must learn strategies to resolve errors that require experience and a
deep understanding of the inner workings of a computer.

27 CHAPTER 1. INTRODUCTION

An alternative to text-based scripts is based on the concept of representing pro-
grams as flow chart. Tools make use of this relationship to provide an entire visual
mode of creating programs [75] (see Figure 1.11). These visual programming lan-
guages (VPLs) provide a GUI where users can freely arrange a predefined set of
nodes. These encapsulate functions of the underlying API and allow the intuitive
visualization of how data flows between their inputs and outputs. To execute a
program formed from such a pipeline, a computer can for example, execute the
node workloads in topological order, while ensuring that the required data transfer
operations are applied. VPLs suitable for image analysis tasks include the protocol
feature of Icy [35], image analysis plugins for the open source tool KNIME [14],
and the “CLIJ Assistant” feature of CLIJ [55]. The concept is also featured in
commercial tools, for example, Apeer (Carl Zeiss AG).
Due to the general applicability, VPLs are also utilized outside scientific data pro-
cessing. Examples include Godot (https://godotengine.org), Unity 3D (Unity
Software Inc.),Davinci Resolve (Blackmagic Design Pty. Ltd), and Blender (Blender
Foundation).

1.4 Web applications and services

The software listed in the previous section is installed on the local hardware, thus
requiring computers that have the necessary capabilities to execute the requested
operations. The requirements depend on the software and for example, include
a minimum in available random access memory (RAM), capabilities and speed
of the central processing unit (CPU), and the presence of a graphics processing
unit (GPU) with appropriate features and video random access memory (vRAM)
capacity.
An alternative mode of software distribution is based on the ongoing developments
in the world wide web that transitioned from static documents to a network of
interconnected remote services [9]. An example for such a service in the field of
bioimage analysis is the image data base OMERO [5] that provides standardized
open protocols and related implementations for the remote storage of microscopy
images and their metadata. Access to these machine-readable protocols is provided
via clients that can be integrated into ImageJ or accessed from a web browser.
This concept of a server that can be accessed via a web application has grown in
popularity and is for example, implemented in webKnossos [18], and ImJoy [104].
There are multiple available protocols that facilitate the data transfer between the
server and client. Due to the simplicity and efficiency, interfaces based on Rep-
resentational State Transfer (REST) and Javascript object notation (JSON) have
gained popularity and are already utilized in over 2000 websites [9]. The role of
REST is to transfer messages over the hypertext transfer protocol (HTTP) via a
set of basic operations for uploading, downloading, updating, and deleting remote
resources. While REST makes no assumptions on the type of these resources, it
is a common practice to send text in JSON format that is capable of encapsu-
lating complex objects into a portable form that is independent of the utilized
programming language. To implement the server or a non-web client, there are a

https://godotengine.org

CHAPTER 1. INTRODUCTION 28

variety of existing libraries for many programming languages, including the Spring
framework (VMware, Inc.), Flask [52], Django [37], or ASP.NET (Microsoft Cor-
poration). The implementation of REST-based web clients is supported by many
web application frameworks, including React (Meta Platforms, Inc.), and Angular
(Google LLC).

29 CHAPTER 2. OBJECTIVES OF THIS THESIS

Chapter 2

Objectives of this thesis

Characterizing the mechanisms behind the interactions between hosts and their
pathogens is useful for the treatment of life-threatening conditions, including sepsis
and hemolytic-uremic syndrome [11, 36]. Confocal microscopy, light sheet fluores-
cence microscopy (LSFM), multispectral optoacoustic tomography (MSOT), and
other modern imaging modalities capture the interaction dynamics of multiple
cells, or even whole organs. The resulting images allow the quantification of the
visible processes, followed by the inference of their functionality via computer mod-
els. Due to the increasing volume of image data [111] and biological limitations
on the achievable contrast [33], advanced computer programs must be developed
that are capable of applying a rapid quantitative analysis without the need for
manual intervention. With the ongoing adoption of digital data management, an
important aspect of software has become its relationship with the principles of
Findability, Accessibility, Interoperability, and Reusability (FAIR) [140]: first and
foremost, computer programs must be FAIR, meaning that algorithms, and gener-
ated data should be open and reusable; second, tools should help to propagate the
FAIR principles in the scientific community and especially interdisciplinary teams.
These are essential to the image-based systems biology (IbSB) [93] approach that
is based on a close collaboration between experimentalists and computer scien-
tists. Here, software can help to remove existing barriers [90] and thus improve
the adoption of new technologies and facilitate the generation of new knowledge.

The goal of this thesis is to contribute towards the propagation of the FAIR prin-
ciples in the field of IbSB by the development of standardized, reproducible, high-
performance, and accessible software for the quantification of interactions in bio-
logical systems.

In our first study, we focus on the extraction of pharmacokinetics via MSOT that
are commonly quantified by an interactive approach. Here, an expert is required
to manually determine the regions of interest (ROIs) that are the source for the
statistical calculations, making the analysis of MSOT data slow and prone to
researcher bias. Our study resolves following questions by the implementation of
the MSOT cluster analysis toolkit (Mcat) that is based on ImageJ:

CHAPTER 2. OBJECTIVES OF THIS THESIS 30

• Can the established manual approach successfully differentiate between
healthy and septic mice?

• How to implement a fully automated, reproducible, and easy accessible com-
puter software for the analysis of MSOT data?

Related to the utilization of ImageJ as platform to implement quantitative im-
age pipelines was our second study. It is based around the scripting feature of
ImageJ that is currently the common method to combine the features provided
by this platform into purpose-built quantitative image analysis pipelines. As the
requirement of programming knowledge introduces challenges in the collaboration
between experimentalists and computer scientists, our study aimed to provide an
alternative mode for creating pipelines via a visual programming language (VPL)
called Java image processing pipeline (JIPipe) and answer the following questions:

• How to design a software that facilitates the collaboration between experi-
mentalists and computer scientists?

• Can the functionality of ImageJ be encapsulated into a VPL?

• How to simplify the design of reproducible batch processing pipelines for the
quantification of images?

The third study of this thesis, we aimed to utilize methods of microbiology and
IbSB via JIPipe to further characterize the interactions between the soil-dwelling
fungus Mortierella verticillata, its endosymbiotic bacteria, and the fungivorous
nematode Aphelenchus avenae. The following questions were answered:

• Which toxin is produced by Mortierella verticillata to defend against Aphe-
lenchus avenae?

• Are the endosymbiotic bacteria responsible for the production of the toxin?

• How can the effectiveness of toxin be quantified from a time series?

The final subject focuses on the development of high-performance image quantifi-
cation pipelines that are necessary due to the big data volumes produced by various
microscopy technologies, including LSFM. This study will address the following
questions:

• Can the implementation of high-performance image quantification pipelines
capable of processing big volumes of data be simplified?

• How to facilitate the access of high-performance tools to non-programmers?

31 CHAPTER 3. OVERVIEW OF MANUSCRIPTS

Chapter 3

Overview of manuscripts

33 CHAPTER 3. OVERVIEW OF MANUSCRIPTS

Spatial quantification of clinical biomarker pharma-
cokinetics through deep learning-based segmenta-
tion and signal-oriented analysis of MSOT data

Authors Bianca Hoffmann, Ruman Gerst, Zoltán Cseresnyés, Wan-
Ling Foo, Oliver Sommerfeld, Adrian T. Press, Michael
Bauer, Marc Thilo Figge

Status Published in Photoacoustics Volume 26, June 2022, 100361

Summary In this publication we introduce our new machine learning-
based approach for the quantification of pharmacokinet-
ics via multispectral optoacoustic tomography (MSOT).
We showed that our software was capable of differenti-
ating healthy from septic mice by tracking indocyanine
green (ICG) dynamics, while the standard approach was
generally unsuccessful. To make our algorithm accessi-
ble to non-programmers, we developed a plugin for the
widely used ImageJ platform.

Author’s contribution ZC, OS, ATP, MB and MTF conceptualized the study.
WF, OS and ATP designed and performed animal ex-
periments. BH, RG, ZC and MTF developed image
analysis methodology. BH and RG developed the pre-
sented software. BH performed the quantitative image
analysis. BH, RG and ZC validated the image analysis
methodology and analyzed the data. BH and RG wrote
the original draft and prepared figures. ATP, MB and
MTF supervised the study. MB and MTF did project
administration and funding acquisition. All authors re-
vised the manuscript and approved it for submission.

CHAPTER 3. OVERVIEW OF MANUSCRIPTS 34

JIPipe: Visual batch processing for ImageJ

Authors Ruman Gerst, Zoltán Cseresnyés, Marc Thilo Figge

Status Submitted to Nature Methods (Preprint published to
Research Square)

Summary This publication introduces a new software that simpli-
fies the design of quantitative image analysis pipelines
with ImageJ by encapsulating its functionality into a vi-
sual programming language (VPL) termed Java image
processing pipeline (JIPipe), thus combining the repro-
ducibility of programming languages with the accessi-
bility of flow charts. Due to the standardized data and
algorithm model and its graphical user interface (GUI),
our tool facilitates both the implementation and propa-
gation of Findability, Accessibility, Interoperability, and
Reusability (FAIR).

Author’s contribution ZC and MTF conceptualized the study. RG developed
and tested the software. ZC tested the software and
designed the example workflows. RG and ZC wrote the
initial manuscript, which was critically revised by MTF.

35 CHAPTER 3. OVERVIEW OF MANUSCRIPTS

Bacterial endosymbionts protect beneficial soil fun-
gus from nematode attack

Authors Hannah Büttner, Sarah P. Niehs, Koen Vandelannoote,
Zoltán Cseresnyés, Benjamin Dose, Ingrid Richter, Ru-
man Gerst, Marc Thilo Figge, Timothy P. Stinear, Sacha
J. Pidot, and Christian Hertweck

Status Published in PNAS September 14, 2021 118 (37)

Summary This publication investigates the interaction between
the soil-dwelling fungus Mortierella verticillata, and the
mycophagous nematode Aphelenchus avenae. By a com-
bination of wet lab methods and our advanced quantita-
tive image analysis pipeline based on JIPipe, we could
show that the fungus is protected by cytotoxic metabo-
lites produced by its bacterial endosymbiont.

Author’s contribution HB, SPN, and CH designed research. HB, SPN, KV,
ZC, BD, IR, RG, and SJP performed research. HB,
SPN, KV, ZC, BD, IR, RG, MTF, TPS, and SJP ana-
lyzed data; and HB, SPN, SJP, and CH wrote the paper.

CHAPTER 3. OVERVIEW OF MANUSCRIPTS 36

MISA++: A standardized interface for automated
bioimage analysis

Authors Ruman Gerst, Anna Medyukhina, Marc Thilo Figge

Status Published in SoftwareX 11 (2020): 100405.

Summary In this publication we present a framework that simpli-
fies the development of high-performance image analy-
sis tools with the machine-oriented programming lan-
guage C++. The software provides highly standardized
components for exchanging parameters and storage of
data and metadata, thus facilitating the implementa-
tion of the FAIR guidelines. To improve the accessibil-
ity of high-performance quantification pipelines to non-
programmers, we developed a standardized GUI built
on ImageJ that automatically adapts to any software
developed with our framework.

Author’s contribution AM and MTF conceived and designed the study. RG
developed the C++ framework and high-performance
kidney analysis. AM provided the original Python im-
plementation and contributed the data, metadata, and
explanations. RG wrote the initial manuscript, which
was critically revised by AM and MTF.

37 CHAPTER 4. MANUSCRIPTS

Chapter 4

Manuscripts

Manuskript Nr. 1

Titel des Manuskriptes: Spatial quantification of clinical biomarker pharmacokinetics through
deep learning-based segmentation and signal-oriented analysis of MSOT data

Autoren: Bianca Hoffmann, Ruman Gerst, Zoltán Cseresnyés, WanLing Foo, Oliver Sommerfeld,
Adrian T. Press, Michael Bauer, Marc Thilo Figge

Bibliographische Informationen: Hoffmann, B., Gerst, R., Cseresnyés, Z., Foo, W., Sommerfeld,
O., Press, A. T., ... & Figge, M. T. (2022). Spatial quantification of clinical biomarker
pharmacokinetics through deep learning-based segmentation and signal-oriented analysis of
MSOT data. Photoacoustics, 100361.

Der Kandidat / Die Kandidatin ist (bitte ankreuzen)

☐ Erstautor/-in, ☒ Ko-Erstautor/-in, ☐ Korresp. Autor/-in, ☐ Koautor/-in.

Status: Veröffentlicht in Photoacoustics

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation

Autor/-in Konzeptionell Datenanalyse Experimentell Verfassen des

Manuskriptes
Bereitstellung
von Material

Bianca Hoffmann 30 % 25 % 25 % 30 % 0 %

Ruman Gerst 30 % 30 % 20 % 30 % 0 %

Zoltán
Cseresnyés

10 % 20 % 25 % 10 % 0 %

Marc Thilo Figge 10 % 15 % 0 % 10 % 50 %

Weitere 20 % 10 % 30 % 20 % 50 %

Summe: 100 % 100 % 100 % 100 % 100 %

_____________________ _______________________________________
Unterschrift Kandidat/-in Unterschrift Betreuer/-in (Mitglied der Fakultät)

39 CHAPTER 4. MANUSCRIPTS

4.1 Spatial quantification of clinical biomarker phar-
macokinetics through deep learning-based seg-
mentation and signal-oriented analysis of MSOT
data

CHAPTER 4. MANUSCRIPTS 40

41 CHAPTER 4. MANUSCRIPTS

CHAPTER 4. MANUSCRIPTS 42

43 CHAPTER 4. MANUSCRIPTS

CHAPTER 4. MANUSCRIPTS 44

45 CHAPTER 4. MANUSCRIPTS

CHAPTER 4. MANUSCRIPTS 46

47 CHAPTER 4. MANUSCRIPTS

CHAPTER 4. MANUSCRIPTS 48

49 CHAPTER 4. MANUSCRIPTS

CHAPTER 4. MANUSCRIPTS 50

51 CHAPTER 4. MANUSCRIPTS

Supplementary information

Spatial quantification of clinical biomarker pharmacokinetics
through deep learning-based segmentation and signal-oriented
analysis of MSOT data

Bianca Hoffmanna, °, Ruman Gersta,b, °, Zoltán Cseresnyésa, WanLing Fooc,d, Oliver Sommerfeldc,d,

Adrian T. Pressc,d,e, Michael Bauerc,d, Marc Thilo Figgea,d,f, *

a Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and

Infection Biology - Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
b Faculty of Biological Sciences, Friedrich Schiller University Jena, Bachstr. 18k, 07743 Jena,

Germany
c Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum

1, 07747 Jena, Germany
d Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
e Faculty of Medicine, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
f Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena,

Neugasse 25, 07743 Jena, Germany

° Authors contributed equally

* Correspondence: thilo.figge@leibniz-hki.de

CHAPTER 4. MANUSCRIPTS 52

2

Supplementary Figure A1: Schematic of training of deep learning-based segmentation.
Each of the 21 MSOT image stacks consisted of up to 163 time frames with a total of 2513 time

frames. For each animal, 15 time frames were selected randomly, excluding the first time frame (t =

0), and distributed among the three experimenters. These 315 time frames were used as ground truth

for the training of the Cellpose neural network and were divided into 80% for training, 10% for testing

and 10% for validation. The derived model was then used for the final segmentation of the first time

frame (t = 0) of each MSOT image stack.

53 CHAPTER 4. MANUSCRIPTS

3

Supplementary Table A2: Software and libraries used in Mcat.

Software Version URL

Apache Commons 2.6.0 https://commons.apache.org/

Apache Maven 3.6.3 http://maven.apache.org/

ImageJ 1.52r https://imagej.net/

ImageScience 3.0.0 https://imagescience.org/

Imglib2 5.1.0 https://imagej.net/

FeatureJ 2.0.0 https://imagescience.org/meijering/software/featurej/

Flexmark 0.18.5 https://github.com/vsch/flexmark-java

Jackson (JSON) 2.11.2 https://github.com/FasterXML/jackson

Java 1.8 https://java.com/

JFreeChart 1.5.0 http://jfree.org/

JFreeSVG 3.4 http://jfree.org/

JGraphT 1.3.1 https://jgrapht.org/

IJP-Toolkit 2.1.2 https://github.com/ij-plugins/ijp-toolkit

MorphoLibJ 1.4.1 https://github.com/ijpb/MorphoLibJ/

MTrackJ 1.5.4 https://imagescience.org/meijering/software/mtrackj/

MultiStackRegistration 1.46.2 https://github.com/miura/MultiStackRegistration

RandomJ 2.0.0 https://imagescience.org/meijering/software/randomj/

SciJava 27.0.1 https://scijava.org/

Slf4J 1.7.9 http://www.slf4j.org/

SwingX 1.6.5-1 https://mvnrepository.com/artifact/org.swinglabs/swingx

CHAPTER 4. MANUSCRIPTS 54

4

Supplementary Information A3: Descriptive statistics

Signal-oriented analysis

AUC values

μSham = 0.9; σSham = 0.19

μPCI = 1.46; σPCI = 0.35

Tissue-oriented analysis

AUC of mean signal intensity values

μSham = -0.3; σSham = 0.64

μPCI = 0.38; σPCI = 1.07

AUC of maximum signal intensity values

μSham = 46.73; σSham = 15.36

μPCI = 52.83; σPCI = 12.93

AUC of 95th-percentile signal intensity values

μSham = 16.15; σSham = 3.96

μPCI = 19.3; σPCI = 4.03

Robustness of signal-oriented analysis towards slight changes of ROIs

AUC values deep learning-based segmentation

μSham = 0.9; σSham = 0.18

μPCI = 1.45; σPCI = 0.34

AUC values experimenter 1

μSham = 0.86; σSham = 0.19

μPCI = 1.45; σPCI = 0.36

AUC values experimenter 2

μSham = 0.88; σSham = 0.2

μPCI = 1.46; σPCI = 0.36

AUC values experimenter 3

μSham = 0.85; σSham = 0.19

μPCI = 1.4; σPCI = 0.34

55 CHAPTER 4. MANUSCRIPTS

5

Supplementary Figure A4: Integrated signal of WACs from the signal-oriented analysis.
The time derivative values of the WACs were integrated to obtain the original kinetic shape of the

curves for the signal-oriented analysis. The curves of Sham and PCI animals can visually be well

distinguished. Seven of the twelve PCI animals show a delayed signal increase and lower plateau

values.

CHAPTER 4. MANUSCRIPTS 56

6

Supplementary Figure A5: Spatial distribution of kinetic clusters.
Colour-coded images reveal the biodistribution of ICG. The two top rows show all colour-coded

images for Sham animals, the two bottom rows for PCI animals. The biodistribution is visually not

different between Sham and PCI animals.

57 CHAPTER 4. MANUSCRIPTS

7

Supplementary Figure A6: Integrated signal of time derivative values from tissue-oriented
analysis.
The time derivative values were integrated for the three different intensity features of the tissue-

oriented analysis to obtain the original kinetic shape of the ICG signal uptake. The time curves of

Sham and PCI animals are strongly overlapping, making visual distinction impossible.

CHAPTER 4. MANUSCRIPTS 58

8

59 CHAPTER 4. MANUSCRIPTS

9

CHAPTER 4. MANUSCRIPTS 60

10

61 CHAPTER 4. MANUSCRIPTS

11

CHAPTER 4. MANUSCRIPTS 62

12

Supplementary Figure A7: Curves of kinetic clusters for Sham and PCI treatment with different
values of k-means k.
The curves of the kinetic clusters as found by pixel-wise clustering with varying values for k are shown

for the smoothing factor s ranging from 1 to 8 and k-means k ranging from 2 to 20. Low values of s

show strong breathing artefacts in the curves, while increasing s leads to decreasing temporal

resolution. Large values of k result in curves with apparent signal fluctuations also for larger values of

s, which are expected due to overfitting.

63 CHAPTER 4. MANUSCRIPTS

13

Supplementary Figure A8: Graphical user interface of Mcat software toolkit.
The main graphical user interface is divided into a Data (a) and a Parameters (b) view. In the Data

view, data can be imported manually or by a batch importer functionality, and imported sample data

can be edited. Analysis parameters can be adjusted in the Parameters view. A short description of

each parameter is shown in the bottom right part of the view when hovering over a parameter name.

CHAPTER 4. MANUSCRIPTS 64

14

Supplementary Information A9: Documentation of Mcat parameters

The MSOT clustering analysis toolkit (Mcat) comprises three main steps: (i) pre-processing of the

MSOT image stacks, (ii) pixel-wise clustering of kinetics and (iii) post-processing of the clustering

result. For these steps, the following parameters can be adjusted:

i) Pre-processing

anatomic channel

Defines which channel of the MSOT image stack contains the anatomic information (first channel

is indexed as 1). This channel is used for image registration to reduce motion artefacts. If no

anatomic channel is available, set this value to 0 to skip image registration.

signal channel

Defines which channel of the MSOT image stack contains the signal that should be analysed.

This parameter has to be set to a value between 1 and the number of image channels.

smoothing factor s

Defines how strongly image data is smoothed in the time domain. This parameter is used to

reduce breathing artefacts by performing downsampling and averaging over s consecutive time

frames. Set this value to 1 if the image data shall not be smoothed. Smaller values lead to

increased computation time and possibly strong fluctuations in the extracted kinetic curves, while

larger values decrease computation time while reducing the time resolution.

start time frame and end time frame

Define which time frames are taken into account. Start time frame and end time frame have to be

in the range of 0 and number of time frames. The stack will be cropped to the time range [start

time frame, end time frame].

save ROI and save raw image

Define if raw data is saved to the output folder. If save ROI is enabled, the original or derived ROI

file will be stored in the output folder. If save raw image is enabled, the original raw image will be

stored in the output folder.

custom Cellpose model

If a custom Cellpose model shall be used for the segmentation, specify the path to the model file

here. Don’t rename Cellpose model files as the name encodes important model information.

ii) Clustering

k-means k

Defines how many kinetic clusters are extracted. This parameter controls how many clusters are

used when performing k-means clustering. Smaller values can lead to bad approximation of the

65 CHAPTER 4. MANUSCRIPTS

15

true kinetics present in the image, while larger values can lead to overfitting to confined regions

with possibly strongly fluctuating signal intensities.

clustering hierarchy

Defines how samples are grouped when performing k-means clustering. This parameter can be

set to one of the three options: per subject, per treatment or all in one.

If per subject is used, clustering is performed for each subject individually, resulting in individual

kinetic clusters for each subject. This setting can be used to see if subjects show different

kinetics. If per treatment is used, all subjects from one treatment are grouped together and

clustering is performed per treatment. This setting can be used to compare treatments against

each other. If all in one is used, all subjects are grouped together for clustering. This setting can

be used to obtain main kinetic clusters for the whole dataset and examine how the clusters are

distributed across samples.

iii) Post-processing

cutoff value

Defines which part of the kinetic curves is used for calculation of area under the curve (AUC)

statistics. This parameter can be set to a floating point number between 0 and 1 and controls

which portion at the beginning of the curves is excluded from AUC calculation. If this parameter

is set to 0, the whole curve is taken into account. If it is set to 0.5, the first half of the curve is

omitted. This option can for example be useful to analyse initial dye uptake and dye excretion

separately or to limit a study to certain phases of signal development.

analyse max decrease

Defines if the kinetic cluster with the maximum signal decrease should be used for AUC

calculation. If it is enabled, a weighted curve is calculated for each subject with the weight being

the corresponding pixel abundance value for the kinetic cluster with the maximum signal

decrease. These curves are then normalised by the total number of pixels of the respective

subjects and the AUC is calculated, taking into account the cutoff value.

analyse net decrease

Defines if all kinetic clusters with a signal net decrease should be used for AUC calculation. If it is

enabled, a weighted curve is calculated for each subject with the weights being the

corresponding pixel abundance values for all kinetic clusters with a signal net decrease. These

curves are then normalised by the total number of pixels of the respective subjects and the AUC

is calculated, taking into account the cutoff value.

analyse max increase

Defines if the kinetic cluster with the maximum signal increase should be used for AUC

calculation. If it is enabled, a weighted curve is calculated for each subject with the weight being

the corresponding pixel abundance value for the kinetic cluster with the maximum signal

CHAPTER 4. MANUSCRIPTS 66

16

increase. These curves are then normalised by the total number of pixels of the respective

subjects and the AUC is calculated, taking into account the cutoff value.

analyse net increase

Defines if all kinetic clusters with a signal net increase should be used for AUC calculation. If it is

enabled, a weighted curve is calculated for each subject with the weights being the

corresponding pixel abundance values for all kinetic clusters with a signal net increase. These

curves are then normalised by the total number of pixels of the respective subjects and the AUC

is calculated, taking into account the cutoff value.

67 CHAPTER 4. MANUSCRIPTS

17

Supplementary Information A10: Application of DL-based segmentation and
signal-oriented analysis to different MSOT data and photoabsorber

To evaluate the applicability of our DL-based segmentation for other MSOT data and our signal-

oriented analysis for a photoabsorber other than ICG, we used Mcat to analyse MSOT data that we

derived from another study.

In brief, eleven FVB/N mice of mixed gender and aged older than eight weeks were anesthetised and

shaved thoroughly for the whole abdomen area using shaver and commercial hair removal cream.

After insertion of a tail-vein catheter, mice were placed in a Multispectral Optoacoustic Tomography

inVision 256-TF machine (iTheraMedical, Germany) equipped with laser wavelength from 680-980

nm. Mice were anaesthetised with 1.5 to 2 % of isoflurane vaporised in oxygen throughout the

preparation and imaging process. After 2 min of baseline image acquisition, 30 µg polyplex micelles

loaded with BHQ3 labelled siRNA were injected intravenously through the tail vein catheter. Imaging

was continued for 45 min at 6 wavelengths (680 nm, 700 nm, 720 nm, 760 nm, 800 nm, 900 nm) and

captured two cross-sectional frames, i.e. liver and kidney. The acquired raw MSOT images were

reconstructed by model-based backprojection (filter range: 50kHz to 6.5MHz) using the proprietary

software ViewMSOT v3.8.1.04 (iTheraMedical, Munich, Germany), and spectrally unmixed into 4

channels (water, BHQ3, deoxygenated blood, oxygenated blood) by linear regression.

As a proof of principle, we performed the automated segmentation of the liver in the water channel

with the inbuilt DL model and compared it to manual segmentation. We then applied the signal-

oriented analysis to extract five kinetic clusters for the channel representing oxygenated blood for both

DL-based and manual segmentation. Except for the channel of interest, all other settings were kept at

their default values.

The comparison of DL-based segmentation and manual segmentation was carried out as described in

the main manuscript in section 3.1. The resulting Dice scores for all animals are shown in Fig. A10a.

The Dice score for nine out of the eleven animals was comparable to the concordance found between

experimenters 2 and 3 in the main manuscript (see Fig. 2 in main manuscript). Two animals reached

clearly lower Dice scores. While large parts of the animal outlines were identified correctly in these

cases, the upper left region was not segmented properly. This area typically has low resolution of the

animal outline because it spatially corresponds to the 90-degree “dead space”, where no ultrasonic

detectors are placed due to the need to provide physical access to the sample. Representative

examples of manual and DL-based segmentation are shown in Fig. A10b, including one of the cases

with a lower Dice score at the very right.

The results of the signal-oriented analysis for DL-based and manual segmentation are shown in

Supplementary Figs. A10c and A10d. The extracted kinetic clusters were virtually identical for both

DL-based and manual segmentation. Also the AUC values that were calculated for the kinetic clusters

reflecting a signal net increase (see section 3.2 of main manuscript for details on calculation) were

found to be very similar (Wilcoxon rank sum test p = 0.89, Hedges' g = 0.018).

CHAPTER 4. MANUSCRIPTS 68

18

These findings demonstrate the general applicability of our inbuilt DL-based segmentation for similar

MSOT images and highlight that our signal-oriented analysis does not rely on exact ROI definition but

provides results that are robust against the various ways of determining the mouse ROI.

Figure A10: Application of DL-based segmentation and signal-oriented analysis to other MSOT
data.
(a) The Dice score between manual and DL-based segmentation shows a high concordance for nine

out of the eleven animals. (b) This is also supported by the visual comparison of representative

example segmentations. In two cases, the upper left animal outline was not segmented properly with

the inbuilt DL model (one example shown at the very right). (c) The comparison of extracted kinetic

clusters and (d) corresponding AUC values of curves reflecting a net increase shows similar results

for DL-based and manual segmentation (statistical comparison of AUC values: p = 0.89, g = 0.018).

69 CHAPTER 4. MANUSCRIPTS

Manuskript Nr. 2

Titel des Manuskriptes: JIPipe: Visual batch processing for ImageJ

Autoren: Ruman Gerst, Zoltán Cseresnyés, Marc Thilo Figge

Bibliographische Informationen: Gerst, R., Cseresnyes, Z. & Figge, M. T. (2022). JIPipe: Visual
batch processing for ImageJ. Research Square (Preprint)

Der Kandidat / Die Kandidatin ist (bitte ankreuzen)

☐ Erstautor/-in, ☒ Ko-Erstautor/-in, ☐ Korresp. Autor/-in, ☐ Koautor/-in.

Status: zur Publikation in Nature Methods eingereicht

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation

Autor/-in Konzeptionell Datenanalyse Experimentell Verfassen des

Manuskriptes
Bereitstellung
von Material

Ruman Gerst 70 % 35 % 30 % 40 % 0 %

Zoltán
Cseresnyés

20 % 55 % 60 % 40 % 0 %

Marc Thilo Figge 10 % 10 % 10 % 20 % 100 %

Summe: 100 % 100 % 100 % 100 % 100 %

_____________________ _______________________________________
Unterschrift Kandidat/-in Unterschrift Betreuer/-in (Mitglied der Fakultät)

71 CHAPTER 4. MANUSCRIPTS

4.2 JIPipe: Visual batch processing for ImageJ

JIPipe: Visual batch processing for ImageJJIPipe: Visual batch processing for ImageJ
Marc Figge Marc Figge (( Thilo.Figge@leibniz-hki.de Thilo.Figge@leibniz-hki.de))

Leibniz Institute for Natural Product Research and Infection Biology https://orcid.org/0000-0002-4044-
9166
Ruman Gerst Ruman Gerst

Leibniz Institute for Natural Product Research and Infection Biology https://orcid.org/0000-0002-0723-
6038
Zoltan Cseresnyes Zoltan Cseresnyes

Leibniz Institute for Natural Product Research and Infection Biology

ArticleArticle

Keywords:Keywords:

Posted Date:Posted Date: May 11th, 2022

DOI:DOI: https://doi.org/10.21203/rs.3.rs-1641739/v1

License:License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

CHAPTER 4. MANUSCRIPTS 72

JIPipe: Visual batch processing for ImageJ 1

Ruman Gerst1,2,#, Zoltán Cseresnyés1,#, Marc Thilo Figge1,3,* 2

 3

1 Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans 4

Knöll Institute (HKI) 5

2 Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany 6

3 Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany 7

These authors contributed equally 8

* Correspondence should be addressed to thilo.figge@leibniz-hki.de 9

Abstract 10

The continuous development of new microscopy techniques requires the parallel evolution of image 11

analysis workflows. ImageJ provides a high level of accessibility to bioimage processing, which is still 12

impeded by the necessity of developing scripts to achieve reproducibility, and to comply to the FAIR 13

principles. We provide a visual language termed JIPipe that allows the construction of an ImageJ workflow 14

purely by designing a flowchart. We already included over 1000 functions from ImageJ and its plugins. In 15

return, ImageJ is extended with custom-designed algorithms, thus forming a symbiotic relationship with 16

JIPipe. Our software includes a fully reproduceable and standardized project format, zero-cost scalability 17

of pipelines, as well as automated data saving into an open format. JIPipe was already utilized to solve 18

numerous demanding image analysis tasks, showcasing its wide applicability and adaptability. JIPipe 19

contributes towards making bioimage analysis more accessible, thereby fostering collaborations between 20

experimentalists and computer scientists. 21

Introduction 22

ImageJ1 is a widely used tool for bioimage analysis2 due to its interactive analysis workflow and high 23

extensibility via plugins. Its intuitive graphical user interface (GUI) makes functions easily accessible, even 24

to unexperienced users, while still providing more advanced operations for experts. However, the 25

interactive approach of ImageJ has currently two major shortcomings: (1) ImageJ does not provide means 26

to ensure analysis in accordance with the FAIR (Findability – Accessibility – Interoperability – Reusability) 27

principles3, where all processing steps and parameters would be tracked automatically rather than relying 28

on researchers’ manual notes on all executed steps and their parameters. (2) ImageJ does not provide 29

batch processing via the GUI making the analysis of larger projects with hundreds or thousands of datasets 30

time-consuming and error-prone, as every step needs to be executed manually via the GUI. To solve these 31

issues, ImageJ includes a macro language that can be used to write fully automated and reproducible 32

pipelines of all functions available inside the GUI. A major disadvantage of such a scripting language is that 33

the development of custom pipelines requires programming experience. Additionally, to comply with the 34

FAIR principles, there is a significant amount of code required to be implemented that reads and manages 35

images and metadata, keeps track of these during the analysis, and exports the results in the desired 36

73 CHAPTER 4. MANUSCRIPTS

format. Especially in comparison with the ImageJ GUI, writing macros is excessively complex and non-37

accessible for researchers without programming experience. 38

In recent years, visual programming languages have been developed in various scientific fields to 39

conveniently solve the aforementioned shortcomings of scripting languages. A well-known example is 40

KNIME4 that is an open source, visual data analysis environment focusing on general data processing, while 41

community-developed functions handle images. Another example of a visual programming language is 42

available in Icy5, which provides functionality similar to KNIME, whilst focusing exclusively on image 43

analysis and providing methods that allow the application of ImageJ commands. Furthermore, CLIJ6 is a 44

visual language that enables interactive utilization of GPU-based pipelines. Visual languages are as well 45

implemented in commercial languages, for example Apeer7, applying the concept of customizing machine 46

learning algorithms for image processing. Outside image analysis applications, Galaxy8 provides a cloud-47

based visual language for genome sequencing analysis, where web-based image analysis functionality is 48

currently being implemented. In the area of education, Scratch9 became popular as a graphical software 49

for children to learn programming in an accessible way. 50

All visual programming languages have in common that they provide a GUI for creating a pipeline of nodes 51

that have one or multiple inputs and outputs. These allow for the integration of a node into the pipeline 52

that eventually realizes the automated analysis by the execution of functions in the right order. Such 53

graphical platform is not yet available in ImageJ. Therefore, we developed the Java Image Processing 54

Pipeline (JIPipe) as a visual programming language that is specifically designed for the ImageJ software 55

ecosystem. All functionality that is familiar to ImageJ users is as well available in JIPipe in form of nodes, 56

including operations on images, regions of interest and tables. JIPipe also extends to adapted 57

functionalities that would not be easily achievable in native ImageJ methods, including batch visualization, 58

advanced plotting, table processing and automated data export. In other words, JIPipe integrates visual 59

programming into the existing ImageJ software ecosystem providing a user-friendly way to create 60

reproducible and fully automated pipelines based on ImageJ. In addition, ImageJ can utilize algorithms 61

and pipelines made for JIPipe via the GUI or via macros in analogy to any other plugin. The simplicity of 62

scaling, pipeline building, compartmentalization and automated saving features make JIPipe a well-suited 63

environment for ImageJ users to create reproducible and scalable workflows. JIPipe fills a niche by bridging 64

the gap between researchers10 with limited programming experience and the advancing development of 65

modern methods of automated image processing. In particular, popular ImageJ plugins including 66

MorphoLibJ11, FeatureJ12, CLIJ6, Multi-Template-Matching13, OMERO14, and Bio-Formats15 can be accessed 67

via JIPipe, as well as Cellpose16 to perform deep learning by visual programming. Furthermore, JIPipe comes 68

with nodes for Python17, Jython18, R19, and ImageJ macro scripts, thus extending the flexibility of workflow 69

development for experienced users with programming skills. JIPipe has already been successfully applied 70

to solve numerous image analysis tasks, including recently published works on nematode activity analysis20 71

and the quantification of multispectral optoacoustic tomography (MSOT) images21, thus underlining its 72

flexibility and wide applicability. 73

Results 74

Symbiosis of ImageJ and JIPipe. The relationship between ImageJ and JIPipe is symbiotic in that the two 75

platforms share their functionality (see Fig. 1). JIPipe incorporates a growing set of already more than 1000 76

functions from ImageJ and encapsulates them into features that are suitable for the visual batch 77

processing environment. GUI elements, including manager windows for images, tables, and regions of 78

interest (ROI), are transformed into data objects to lift limitations on the number of instances and to 79

CHAPTER 4. MANUSCRIPTS 74

improve the processing speed. Operations on these data, available as menu commands in ImageJ are 80

encapsulated into nodes with standardized interfaces for data transfer and parameters. This comprises 81

common image processing utilities, including thresholding, extraction of measurements and ROI, as well 82

as functions provided by popular plugins, including MorphoLibJ11, FeatureJ12, Multi-Template-Matching13, 83

OMERO14, and Bio-Formats15. We also added support for CLIJ6 to allow processing of images on graphics 84

cards with the benefit of significantly increasing the performance. Our visual programming approach 85

comes with an easy-to-learn interface, and automated and standardized (meta-)data management, 86

allowing even non-programmers to connect all these familiar functions in batch processing pipelines. 87

JIPipe introduces functionality currently not present in ImageJ, including extended visualization methods 88

designed for batch processing, table processing algorithms, nodes for data and metadata management, 89

plotting with the widely used JFreeChart22 library, and support for deep learning via Cellpose. To extend 90

the flexibility of workflow development, our software also allows users to embed Python, Jython, R, and 91

ImageJ macro scripts. Any functionality designed for JIPipe is not exclusive to our software, as any 92

compatible node is automatically made available to be utilized as an ImageJ command. Consequently, 93

ImageJ benefits from JIPipe-exclusive operations that include improved visualization functions, table 94

processing algorithms, plotting, access to Python and R, as well as Cellpose-based segmentation. This 95

symbiotic relationship additionally simplifies the development of ImageJ plugins, as developers can target 96

the JIPipe API to develop a library usable in both ImageJ and JIPipe. 97

 98

Figure 1 | JIPipe and ImageJ have a symbiotic relationship where both tools gain access features from each other. JIPipe 99
encapsulates ImageJ features, including the manual management of images, tables, and regions of interest into a visual 100
programming language with automated data management and export. Operations on these data types are available as nodes and 101
include basic image processing algorithms, and methods from popular plugins, e.g., CLIJ for utilizing GPU. ImageJ can utilize JIPipe 102
functionalities and has access to extended algorithms for visualization and plotting, and integration of Cellpose. JIPipe can execute 103
ImageJ macros and Jython scripts, while JIPipe provides support for R and Python scripts. 104

JIPipe is an easy-to-use alternative to programming ImageJ macros, allowing to develop analysis pipelines 105

within a GUI that are the visual counterpart of macros (see Fig. 2). JIPipe features include automated batch 106

processing, parallelization, and result export. The current set of over 1000 available operations can be 107

extended via plugins that are either provided as Java library or can be created by simply exporting a 108

75 CHAPTER 4. MANUSCRIPTS




           








 


 




           

           

–––

CHAPTER 4. MANUSCRIPTS 76

(Supplementary Figures 2.1–2.5, Supplementary information 3, Supplementary Figures 3.1-3.6). 130

Typically, the preprocessing compartment is responsible for file loading and image quality enhancement, 131

as well as channel separation of multichannel images. The analysis compartment carries out the 132

segmentation, masking, and ROI correlation tasks in a channel-specific or conditional way. The outcome is 133

passed on to the postprocessing and visualization compartments (Supplementary information 2.1-2.5). 134

We exemplified the hallmarks of developing image analysis workflows on a set of representative and 135

diverse biological systems that are summarized in Figure 3. For instance, the analysis of microfluidic 136

droplets succeeded at characterizing the extent of bacterial growth under various environmental 137

conditions set up inside these picoliter bioreactors (Fig. 3 row 1)23. Determining the organ-wide 138

distribution of nanocarrier-delivered drugs into the liver of the mouse was the goal in the next example 139

(Fig. 3 row 2)24. The motility ratio of nematodes characterized the survival of earth worms that consumed 140

soil-beneficial fungi either with or without endosymbiotic bacteria (Fig. 3 row 3)20. 3D analysis of big 141

volume data was applied to characterize the morphology and spatial distribution of glomeruli in mouse 142

kidneys (see Fig. 3 row 4)25. Confrontation assays between immune cells and pathogens were quantified 143

by calculating phagocytic measures (Fig. 3 row 5)26. The various types of image data generated for all these 144

representative biological systems were analyzed in JIPipe by exploiting the following features: 145

Deep learning–based image segmentation. The identification of cell-like objects in both transmitted light 146

(TL) and fluorescence-based images was simplified with the advent of the Cellpose framework16. JIPipe 147

adopted this technique by encapsulating both the training and application of Cellpose into nodes, as well 148

as Python environment management tools that allow its fully automated setup. The node extracts the 149

gradient flows (Fig. 3 A-1 top left, Fig. 3 A5), the probability map (Fig. 3 A-1 bottom right) and the 150

segmented ROIs (Fig. 3 D-1, D-5). These outcomes of the analysis indicate that the JIPipe integration 151

worked well for TL images of microfluidic droplets (see Fig. 3 row 1; Supplementary information 2.1) as 152

well as for images of confrontation assays (see Fig. 3 row 5; Supplementary information 2.3). 153

Multidimensional image analysis and object tracking. Nodes dedicated to handling multidimensional 154

datasets were utilized when analyzing nanocarrier-based drug delivery kinetics in intravital microscopy of 155

the liver (see Fig. 3 B-2; Supplementary information 2.2), time series TL data of live nematodes (see Fig. 3 156

B-3; Supplementary information 2.4), and the analysis of big volume 3D image stacks as shown in the 157

example of analyzing light-sheet microscopy data of the kidney (Figure 3 B-4; Supplementary information 158

2.5). To this end, these include operations for automated splitting and merging of multi-dimensional data, 159

as well as functionality provided by existing ImageJ plugins. 160

Label-free and fluorescence-based image analysis. JIPipe supplies a complete set of tools to analyze TL and 161

fluorescence-based microscopy data. Hessian filtering was utilized to identify the outline of microfluidic 162

droplets (Figure 3 C-1, Supplementary information 2.1), nematodes (Figure 3 C-3, Supplementary 163

information 2.4), and unlabeled macrophages in confrontation assays (Figure 3 C-5, Supplementary 164

information 2.3). JIPipe provides all basic analysis nodes, including blurring, global and local thresholding, 165

morphological operations, watershed algorithms, image normalization and illumination correction, as well 166

as ROI-handling. These tools were applied during the analysis of bacterial growth in microfluidic droplets 167

(Figure 3 C-1, Supplementary information 2.1), liver-targeted drug delivery by nanoparticles (Figure 3 C-168

2, Supplementary information 2.2), glomeruli identification and quantification in kidney light-sheet 169

microscopy images (Figure 3 C-4, Supplementary information 2.5), as well as labelled fungal spore 170

segmentation (Figure 3 C-5, Supplementary information 2.3). 171

77 CHAPTER 4. MANUSCRIPTS

ROI tracking and manipulation. More complex segmentation tasks are also supported by nodes designed 172

for ROI operations including functions provided by ImageJ and additional nodes that make use of JIPipe's 173

exclusive functionality. These features are utilized in examining i) the extent of bacterial growth inside 174

microfluidic droplets (see Figs. 3 D-1, Supplementary information 2.1), where the growth area search had 175

to be limited to within the droplet region; ii) the number of dye-loaded liver sinusoidal endothelial cells 176

(LSECs; see Fig. 3 D-2, Supplementary information 2.2), where masking operations limited the search to 177

be carried out only in the immediate vicinity of the sinusoids; iii) the total area touched by migrating 178

nematodes (see Fig. 3 D-3, Supplementary information 2.4) where the individual nematode ROIs were 179

merged into the footprint that characterized the motility of the worms; iv) the kidney light-sheet images 180

where ROI-merging via a 3D-connected-components algorithm allowed the volumetric characterization of 181

kidney status under physiological and pathological conditions (see Fig. 3 D-4, Supplementary information 182

2.5); v) the distribution of phagocytosed fungal conidia where the ROIs describing the fungal spores were 183

examined for their overlap with those of the macrophages to identify phagocytosed and adherent fungi 184

(see Fig. 3 D-5, Supplementary information 2.3). 185

Advanced statistical operations. JIPipe extends the functionality of ImageJ with operations for filtering, 186

merging, and manipulating tabular data via user-friendly nodes as well as Python and R scripts. These were 187

used to calculate percentage growth area of bacteria in microfluidic droplets to identify growth and no-188

growth classes of the samples (see Fig. 3 E-1, Supplementary information 2.1). The total footprint covered 189

by a worm divided by the area of the worm at each time point characterized the viability of the nematodes, 190

here showing an example of a low-motility and a high-motility nematode (ratio = 1.3 and 9.0, respectively) 191

(see Fig. 3 E-3, Supplementary information 2.4). The volumes of individual glomeruli were calculated from 192

the axially merged ROIs in the kidney and plotted in the vicinity of the object (see Fig. 3 E-4, Supplementary 193

information 2.5). Finally, the calculation of various phagocytic measures from the number of overlapping 194

ROIs was made easy by per-row table manipulations, as demonstrated for the phagocytosis ratio (see Fig. 3 195

D-5, Supplementary information 2.3). 196

Automated plotting. Analysis results of a fully or partially executed workflow can be plotted automatically 197

as supported by a set of dedicated nodes. These provide many graph formats that can be further 198

manipulated in a GUI or via the node parameters. The delivery of nanoparticle-linked drugs to the 199

hepatocytes was described by the kinetic curve of the cargo-linked average fluorescence value (see Fig. 3 200

F-2, Supplementary information 2.2). The instantaneous motility of individual worms was calculated and 201

plotted for the duration of the observation (see Fig. 3 F-3, Supplementary information 2.4), whereas a 202

histogram plot of the glomeruli volume distribution characterized the health status of the kidney sample 203

based on its glomeruli number and size (see Fig. 3 F-4, Supplementary information 2.5). 204

These examples demonstrate that JIPipe greatly complements ImageJ by simplifying the management of 205

a multitude of complex image analysis and management tasks. 206

CHAPTER 4. MANUSCRIPTS 78

 207

Figure 3 | Examples of biological applications and hallmarks of JIPipe. The rows are arranged according to the biological samples, 208
whereas the columns correspond to sets of main features of the JIPipe platform. The highlighted techniques include deep learning 209
(column A), the handling of multidimensional images (column B), the analysis of label-free and fluorescence microscopy data 210
(column C), the flexible tools of region of interest (ROI) tracking and manipulations (column D), mathematical and statistical 211
operations (column E), and data plotting via automatable nodes (column F). The rows show examples from the analysis of 212
microfluidic droplets (row 1), intravital microscopy of the liver (row 2), time-tracking of live nematodes (row 3), the segmentation 213
and quantification of kidney glomeruli (row 4), and the analysis of confrontation assays between macrophages and fungal spores 214
(row 5). (A-1) The gradient flow (top left) and probability map (bottom right) of microfluidic droplets, provided by the Cellpose 215
algorithm. (A-5) The gradient flow of unlabeled macrophages provided by the Cellpose node output. (B-2) Representative images 216
from a time series of fluorescence images recorded from live liver. (B3) Earth worms in transmitted light microscopy images during 217
a time series microscopy experiment. (B-4) Selected z slices of a 3D light-sheet microscopy image of mouse kidney. (C-1) 218
Microfluidic droplets in a TL image (top left), as well as after segmentation of the droplet inner area (bottom right, yellow line) 219
and of the bacteria (bottom right, white speckles). (C-2) Images of autofluorescence (top left, blue) and cargo-linked fluorescence 220
labeling (bottom right, red) of a liver sample during intravital microscopy. (C-3) Nematodes in a live time-series TL microscopy 221
experiment before processing (top left, “BuPu” look-up table27) and after Hessian filtering (bottom right). (C-4) One z slice of a 3D 222
fluorescence microscopy image of mouse kidney (light green), overlaid with a maximum intensity z projection of the segmented 223
glomeruli ROIs (bright green speckles). (C-5) TL images of a confrontation assay (top left) with the macrophages shown in grey, 224
the phagocytosed spores shown in green, and the external conidia presented in blue. The macrophages were identified without 225
fluorescence labeling by applying a Hessian filter (bottom right). (D-1) A microfluidic droplet imaged via TL microscopy, with the 226
segmented inner line of the droplet shown in yellow, and the bacterial growth indicated by red. (D-2) Mouse liver as revealed by 227

79 CHAPTER 4. MANUSCRIPTS

intravital microscopy, showing the sinusoids as a time series maximum projection (dark yellow) superimposed with the time-series 228
projection of LSECs (red speckles). (D-3) The time superposition of nematode outlines during a TL microscopy experiment (blue: 229
nematode outlines at consecutive time points, white: binary image of segmented worms). (D-4) A selection of detected 3D ROIs 230
representing individual glomeruli from a light-sheet microscopy experiment displayed in the JIPipe cache GUI. (D-5) The outline 231
of segmented macrophages (yellow) superimposed with phagocytosed conidia (green) and adherent spores (blue). (E-1) Bacterial 232
growth levels about 0.5% area/area were classified as positive growth (green hue), whereas lower values than 0.5% were 233
considered as negative growth (red hue). The superimposed numbers indicate the per-droplet growth percentage values. (E-3) 234
Nematodes imaged with TL microscopy, recorded as part of a time series. The red and green outlines are the footprints of two 235
individual worms, one each with low and high motility values (red, motility ratio at 1.3; green, motility ratio at 9.0). (E-4) The 236
volume values of individual glomeruli are calculated from light-sheet microscopy images of the mouse kidney. The original image 237
appears as a greyscale background, the ROIs of the segmented glomeruli are shown in perspective view as generated by a special 238
JIPipe node, where the individual 2D ROIs are colored according to their z position, and the volume values are printed in white. 239
(E-5) Representation of the principle behind calculating the phagocytosis ratio from confrontation assay images. The segmented 240
macrophages (yellow outline) were matched against the green and blue-labelled conidia in order to find the phagocytosed (green) 241
and adherent (blue) spores. Using the JIPipe table calculator node, the ratio of the phagocytosed conidia over the total number 242
of spores (phagocytosed plus adherent) was determined (Φp). (F-2) Using JIPipe’s automated plotting nodes, the mean 243
fluorescence value of the cargo-linked dye measured in the hepatocytes was presented for a time series experiment (red curve). 244
(F-3) The motility ratio of an individual worm was plotted over the course of a time series experiment (red curve). The ratio was 245
defined as the total footprint of the worm covered during the video divided by the area of the worm at each time point. (F-4) 246
Histogram representation of the glomeruli volume for a light-sheet microscopy image set measured in a mouse kidney. 247
Scalebars represent 200 µm in column B, 100 µm elsewhere. 248

JIPipe user interface and data model. Here we will provide a brief overview of some of the technical details 249

of JIPipe, whereas the full organization of our software can be retrieved from the Supplementary Material 250

(3: “JIPipe user interface and data model”), as well as from the JIPipe website (http://www.JIPipe.org/). 251

Whilst JIPipe builds upon ImageJ functionality, it also contributes its own solution for handling (meta-)data 252

and encapsulating it into a GUI. JIPipe’s backbone is a directed acyclic graph (DAG) that organizes all 253

functional units, the so-called nodes. A pipeline is formed by connecting nodes through their input and 254

output slots, thus modelling the flow of data. We simplified this concept by the introduction of 255

compartmentalization, which clearly separates projects with a large number of nodes into functional units. 256

JIPipe provides over 1000 nodes that cover every core aspect of image analysis and data management, 257

and can be easily searched by name, functionality, and compatibility to the preceding node. To simplify 258

the creation of workflows, many nodes were manually provided with integrated documentation and 259

customization options, for example to test multiple parameter sets, or to apply calculations via user-260

defined mathematical expressions. These features are made possible by the table-based data 261

management that enforces constraints, for example on data types, presence of a primary data column, or 262

type of annotations. The consequence of a simplified table is zero-cost scaling, meaning that JIPipe 263

workflows can be adapted to batch processing without any changes to the pipeline structure. At the same 264

time, a table allows for great flexibility and can be utilized to track biological conditions, dataset identifiers, 265

or image properties, thus providing an easy way to find and reproduce data and analysis details according 266

to the FAIR principles3. According to the symbiotic relationship detailed earlier, all nodes and JIPipe 267

algorithms can also be directly accessed from ImageJ. Pipelines can be executed in their entirety or up to 268

a user-specified node, with the option of saving the results into a memory cache or on the hard-drive in a 269

standardized format, including all parameters and the complete project file. This allows JIPipe to open 270

existing results, making further processing and plotting at a later timepoint possible. 271

In conclusion, JIPipe is a user-friendly and powerful tool that introduces visual programming into ImageJ. 272

Users who are already familiar with the ImageJ software find equivalent functionalities and can continue 273

to use their existing scripts, in both JIPipe and ImageJ. Batch analyses can be designed efficiently by laying 274

out the steps for a single analysis and then increasing the set of input files – all required functionality to 275

CHAPTER 4. MANUSCRIPTS 80

track datasets during the analysis are handled by the powerful table-based data architecture. We showed 276

by the examples presented in Fig. 3 that JIPipe, like ImageJ, can be applied to virtually all kind of biological 277

data. JIPipe is fully open-source and licensed under BSD-2. Detailed user guides, tutorials, videos, 278

examples, and instructions for developers are available on https://www.JIPipe.org/. We are working with 279

the image analysis community (https://forum.image.sc/) to further improve JIPipe and establish the 280

software as meaningful contribution to collaborative environments. 281

Discussion 282

With the advent of visual programming in many application fields, the need for a visual language for ImageJ 283

programming has become apparent. This motivated us to develop JIPipe and by that fill a niche that bridges 284

the gap between researchers with limited programming experience and the advancing development of 285

modern methods of automated image processing, including deep learning approaches, parallel- and cloud 286

computing. ImageJ1 gained immense popularity2 amongst biologists and bioimage informaticians due to 287

its very wide applicability, ease of use and of expansion, and open-source nature. When it comes to 288

analyzing large amounts of images, especially in a complex structure due, e.g., to a wide set of biological 289

conditions, pipelines in ImageJ become complex, making it difficult to record the individual steps and their 290

parameters according to the FAIR principles3. The necessity to have certain programming knowledge to 291

turn single-image analysis workflows into complex batch analysis via macro or plugin programming 292

discourages many less experienced users from developing automated pipelines in ImageJ. Here we 293

identified the niche, where our contribution to visual programming can be meaningful for the image 294

analysis community. With JIPipe, we established such a visual programming environment, where current 295

ImageJ users can utilize their existing knowledge of ImageJ to convert existing pipelines into fully 296

automated batch-processing workflows that generate exactly the same results as the ImageJ equivalents. 297

At this stage, JIPipe focuses on implementing the first version of the ImageJ API (ImageJ1)28, because the 298

majority of functions in the ImageJ GUI still rely on ImageJ1, where only one non-standardized string is 299

available for transferring algorithm parameters. In addition, there is a concept of a single “active image”, 300

a single table of results and ROI manager — restrictions that are not compatible with visual programming. 301

In addition, custom GUI components are not suitable for GUI-free and parallel-execution environments. 302

For this reason, we manually curated these functionalities into JIPipe nodes, instead of applying an 303

automated algorithm for the conversion. Functions were added, merged, or split into multiple nodes, 304

whereas the concepts of image windows, result tables and ROI manager were adapted into data types 305

compatible with visual programming. As a result, JIPipe functions cover the same or very similar tasks as 306

the corresponding commands in ImageJ. Due to this conversion process, it was not always sensible to keep 307

the same function names as in ImageJ, adding a small learning curve to JIPipe. To ease this transition phase, 308

we provide integrated search options, numerous application examples with complete code and data, as 309

well as a thorough online training material (see Supplementary Information 4, 310

https://www.JIPipe.org/tutorials/). 311

ImageJ incorporates a second, more modern API, ImageJ2, which is richer in features. For example, there 312

are standardized interfaces for data and parameters, flexible service-based architecture, as well as 313

individually addressable parameters. We adapted our approach of curating the integration via ImageJ2 by 314

incorporating the Multi-Template-Matching plugin13. An automated integration of all compatible 315

operations was achieved by interfacing with the ImageJ Ops API2 and applying on-demand conversion 316

between JIPipe and Image2 data. 317

81 CHAPTER 4. MANUSCRIPTS

In terms of documentations, JIPipe adopts the principle of immediate access to all functionality 318

descriptions, greatly simplifying visual programming. The automated documentation tool was built from 319

manually recovered online ImageJ documentation and source code, and it is available directly from the 320

nodes. 321

Two of the most established and best-known visual applications in image analysis are Icy and KNIME. These 322

tools integrate certain aspects of ImageJ into their own framework, while ImageJ cannot use functions 323

designed for these tools, thus lacking the symbiotic relationship with ImageJ. This means that ImageJ itself 324

is not the main focus of operation for these visual applications. Consequently, a niche was open for an 325

application that would provide (i) a GUI for ImageJ operations with easy batch processing, automated 326

saving, maintained full compatibility with ImageJ, (ii) a learning curve that makes this new language 327

accessible for non-programmers, and (iii) a standardized project format that saves all information about 328

the progress and implementation of the project according to the FAIR principles. This niche is filled by 329

JIPipe. 330

 331

Methods 332

Software development. JIPipe was developed in Java version 8 and utilizes software libraries provided by 333

ImageJ and other developers. A full list of all dependency libraries is given in Supplementary Table 5.1, 334

whereas the system requirements are listed in Supplementary Information 5.2. 335

Software availability. The version of JIPipe, and its source code used in this paper is available as 336

supplement. The newest version of JIPipe and the current version of the source code are available on our 337

website https://www.JIPipe.org/ and on https://www.github.com/applied-systems-biology/JIPipe/ 338

(https://doi.org/10.5281/zenodo.6532719). JIPipe is also available from within the ImageJ update service. 339

Instructions are available on our website. 340

Data availability. The data that supports our findings are available as supplements. This is also the case 341

for the project files and example data used to demonstrate the usage of JIPipe. The example pipelines are 342

available at https://doi.org/10.6084/m9.figshare.19733320.v1. 343

 344

Acknowledgements 345

This work was financially supported by the International Leibniz Research School for Microbial and 346

Biomolecular Interactions Jena – ILRS Jena. Furthermore, the German Research Foundation (DFG) funded 347

this project through the Collaborative Research Center PolyTarget 1278 – project number 316213987, 348

subproject Z01. This work was also supported by the Collaborative Research Center Funginet 124 – project 349

number 210879364, subproject B4 – and by the Cluster of Excellence “Balance of the Microverse” under 350

Germany´s Excellence Strategy – EXC 2051 – Project-ID 390713860, as well as by the Leibniz 351

ScienceCampus InfectoOptics Jena, which is financed by the funding line Strategic Networking of the 352

Leibniz Association. Furthermore, we received support from the Federal Ministry of Education and 353

Research, Germany (grant number 13GW0456B) in the context of the InfectoGnostics Research Campus 354

Jena. We are particularly thankful to Dr. Martin Roth (microfluidic droplets data), Prof. Christian Hertweck 355

(nematode imaging), Drs. Kerstin Voigt and Mohamed Hassan (confrontation assay images), Dr. Adrian 356

CHAPTER 4. MANUSCRIPTS 82

Press (intravital liver microscopy data), and Prof. Matthias Gunzer (kidney light-sheet images) for kindly 357

providing image data. 358

Author contributions 359

R.G. developed the software. Z.C. designed the bioimage analysis pipelines and tested the software. M.T.F. 360

and Z.C. conceived the idea. M.T.F. directed and supervised the project. All authors wrote the initial draft, 361

read and contributed to the paper and approved the content. 362

References 363

1. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC 364

Bioinformatics 18, 529 (2017). 365

2. Schroeder, A. B. et al. The ImageJ ecosystem: Open-source software for image visualization, 366

processing, and analysis. Protein Sci. 30, 234–249 (2021). 367

3. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. 368

Sci. Data 2016 31 3, 1–9 (2016). 369

4. Berthold, M. R. et al. KNIME: The Konstanz Information Miner. in Studies in Classification, Data 370

Analysis, and Knowledge Organization (GfKL 2007) (Springer, 2007). 371

5. de Chaumont, F. et al. Icy: an open bioimage informatics platform for extended reproducible 372

research. Nat. Methods 9, 690–696 (2012). 373

6. Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5–6 (2020). 374

7. APEER. https://www.apeer.com/. 375

8. Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical 376

analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018). 377

9. Maloney, J., Resnick, M., Rusk, N., Silverman, B. & Eastmond, E. The Scratch Programming Language 378

and Environment. ACM Trans. Comput. Educ. 10, 16:1-16:15 (2010). 379

10. Martins, G. G. et al. Highlights from the 2016-2020 NEUBIAS training schools for Bioimage 380

Analysts: a success story and key asset for analysts and life scientists. F1000Research 10, (2021). 381

11. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: Integrated library and plugins for 382

mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016). 383

83 CHAPTER 4. MANUSCRIPTS

12. Meijering, E. FeatureJ. https://imagescience.org/meijering/software/featurej/. 384

13. Thomas, L. S. V. & Gehrig, J. Multi-template matching: a versatile tool for object-localization in 385

microscopy images. BMC Bioinformatics 21, 44 (2020). 386

14. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. 387

Methods 9, 245–253 (2012). 388

15. Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–389

782 (2010). 390

16. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular 391

segmentation. Nat. Methods 18, 100–106 (2021). 392

17. Python. https://www.python.org/. 393

18. Jython. https://www.jython.org/. 394

19. R Core Team & others. R: A language and environment for statistical computing. (2013). 395

20. Büttner, H. et al. Bacterial endosymbionts protect beneficial soil fungus from nematode attack. 396

Proc. Natl. Acad. Sci. U. S. A. 118, 2110669118 (2021). 397

21. Hoffmann, B. et al. Spatial quantification of clinical biomarker pharmacokinetics through deep 398

learning-based segmentation and signal-oriented analysis of MSOT data. Photoacoustics 26, 100361 399

(2022). 400

22. JFreeChart. https://jfree.org/jfreechart/. 401

23. Svensson, C. M. et al. Coding of Experimental Conditions in Microfluidic Droplet Assays Using 402

Colored Beads and Machine Learning Supported Image Analysis. Small 15, 1802384 (2019). 403

24. Muljajew, I. et al. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of 404

Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 15, 12298–12313 (2021). 405

25. Klingberg, A. et al. Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft 406

Size in Nephritic Kidneys Using Lightsheet Microscopy. J. Am. Soc. Nephrol. JASN 28, 452–459 (2017). 407

CHAPTER 4. MANUSCRIPTS 84

26. Cseresnyes, Z., Kraibooj, K. & Figge, M. T. Hessian-based quantitative image analysis of host-408

pathogen confrontation assays. Cytometry A 93, 346–356 (2018). 409

27. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). 410

28. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. 411

Nat. Methods 9, 671–675 (2012). 412

 413

85 CHAPTER 4. MANUSCRIPTS

Supplementary FilesSupplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

IPipeNatureMethodsSupplements�nal.pdf

CHAPTER 4. MANUSCRIPTS 86

Supplementary information

JIPipe: Visual batch processing for ImageJ
Ruman Gerst1,2,#, Zoltán Cseresnyés1,#, Marc Thilo Figge1,3,*

1 Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans

Knöll Institute (HKI)

2 Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany

3 Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany

These authors contributed equally

* Correspondence should be addressed to thilo.figge@leibniz-hki.de

Contents

1 Symbiosis of ImageJ and JIPipe ... 2

1.1 Standardized output format .. 2

1.2 Overview of JIPipe operations ... 3

1.3 Extension API ... 4

2 Hallmarks of JIPipe by representative applications ... 5

2.1 Bacterial growth measured in fluid droplets ... 5

2.2 Nanoparticle delivery analysis in liver ... 7

2.3 Confrontation assays ... 9

2.4 Track analysis of unlabeled nematodes .. 12

2.5 Kidney status check via glomeruli counting .. 13

3 JIPipe user interface and data model .. 15

4 Online training and documentation resources ... 20

4.1 User guide and tutorials .. 20

4.2 Java API documentation .. 22

4.3 Data and JSON API documentation ... 23

5 Methods .. 23

5.1 JIPipe dependencies .. 23

5.2 JIPipe system requirements .. 24

6 References ... 24

87 CHAPTER 4. MANUSCRIPTS

1 Symbiosis of ImageJ and JIPipe
1.1 Standardized output format
JIPipe writes results in a standardized format that allows results and annotations to be imported back
into JIPipe. (see Supplementary Figure 1.1). The user only must provide the output folder. Here, JIPipe
creates a sub-folder “analysis” that contains directories that correspond to the nodes in the graph. The
name of these node folders is generated automatically and with de-duplication based on the user-
customizable name of the node. This ensures that no data is overwritten, while users are still able to
navigate through the results manually. Each node folder contains sub-directories that correspond to
the output slots. JIPipe automatically ensures during the creation of these slots that they are
compatible to filesystems and unique. Each of those slot folders contains metadata in a file “data-
table.json”. This file stores information about the data stored within the slot, annotations, expected

data types, and true data types. Each row is also indexed with a unique identifier. Data is stored in
sum-directories of the slot folder that correspond to this unique row ID. The format is defined by the
stored data type and allows import back into JIPipe, as the metadata table provides all necessary info
to direct JIPipe to the correct import routine. To improve the user experience, the metadata table is
also present in CSV format that can be opened in standard software.

JIPipe makes use of this powerful result model by offering nodes that can import such results back into
another analysis. The user only must provide the slot folder to allow JIPipe to import all data and
metadata. This allows for postprocessing analyses that combine and structure results from multiple
analyses.

To improve the usability of JIPipe, the standardized output format can be exported into a more
commonly used where file names contain metadata. This feature is available within the cache browser,
result viewer, and as dedicated node. This metadata-based export cannot be directly imported back
into JIPipe.

Supplementary Figure 1.1 | Standardized result export format. JIPipe writes outputs in a standardized format. The user
only must define the output directory (blue folder). JIPipe automatically generates a filesystem hierarchy based on the
unique node Ids, output slot names, and row number in the output table (red folders).

CHAPTER 4. MANUSCRIPTS 88

1.2 Overview of JIPipe operations
JIPipe comes with a set of standard libraries that contain extensions for image analysis and other

functions. It currently includes over 1000 nodes and over 120 data types. The function of the library

components is briefly described here:

Filesystem library. A library of nodes that allow querying and manipulating file systems. It allows, for

example, to search for files in a specified directory.

Annotation library. This library contains nodes that allow manipulation of data annotations.

Multi-parameter library. The core library provides the functions to execute a node on multiple

parameter sets but lacks nodes to define such parameter sets. This library adds this functionality.

String library. A library that provides string data types (e.g., XML or JSON data).

ImageJ data type library. This library integrates commonly used ImageJ functions, such as images,

tables, and ROI management. Image data types are available in variants that restrict the bit depth or

the dimensionality. Automated conversion is applied to ensure that the constraints are satisfied, for

example, 8-bit grayscale images are converted into RGB images automatically. As each of these modes

are available as separate data type, node developers and users can exactly control and review the

inputs and outputs of a node, which improves usability and reduces the number of errors. This library

also includes support for Bio-Formats3.

ImageJ1 algorithm library. Commonly used commands from ImageJ1 are integrated via this library. It

provides functions to process images and ROI. The library also includes a macro node that can execute

ImageJ macro code inside a JIPipe node.

ImageJ2 algorithm library. ImageJ2 operations are automatically included via a translation layer.

CLIJ integration library. This library integrates functions from CLIJ21 into JIPipe. To improve

performance, it provides a separate data type that encapsulates a GPU image and provides conversion

from and to ImageJ images for ease of use. The functions were generated in an automated fashion via

a Python script.

Table library. A library containing nodes that apply commonly used table operations (e.g., merging

rows, or sorting). This library also adds data types that encapsulate only one table column for more

advanced operations.

Forms library. Users can create interactive nodes that prompt the user to provide an input to the

current data processing. There is an expandable set of such predefined input types available: Numeric

inputs, check boxes, text fields, a choice of predefined values, and selecting a file system path. Multiple

of these inputs can be connected into a form that is displayed for each processed data item. The

standard forms library then writes user inputs into the annotations of the provided data. The library is

modularized, which allows more complex form types, such as letting users draw or modify a mask

interactively.

OMERO integration. JIPipe provides an integration into OMERO2 that allows to query the database and

download or upload images.

Python integration. ImageJ provides support for Python scripts via Jython (https://www.jython.org/)

and a standard Python setup. The difference between Jython and Python is that Jython has access to

all Java data types, including ones from ImageJ and JIPipe – while it is currently not possible to integrate

C-based packages, such as Numpy or Tensorflow. To allow the integration of such powerful tools, JIPipe

provides an environment system to integrate any existing Python environment. To increase usability

89 CHAPTER 4. MANUSCRIPTS

of this approach, JIPipe also comes with one-click installers to setup new Python environments via

Conda.

Python scripts communicate with JIPipe via a file-based API. JIPipe automatically includes a Python

library into Python scripts to make use of any node-specific functionality, such as accessing inputs and

writing outputs.

R integration. JIPipe utilizes an environment system similar to Python environments to integrate R

scripts. Similar to Python, users will find nodes to integrate custom R scripts into the pipeline. Again,

JIPipe provides a file-based API to communicate data and metadata with the R script.

Cellpose integration. We included the ability to run Cellpose into JIPipe. As Cellpose is a Python-based

tool, we make use of the Python integration functionality. JIPipe supports segmentation with Cellpose

on the provided pretrained cytoplasm/nuclei models or a custom model. We also included the ability

to train new models – either from scratch or by retraining a custom or pretrained model.

Utility library. Miscellaneous functions, like interaction with JIPipe outputs, manual data conversion,

and data table sorting.

1.3 Extension API
All non-core functionality is split into dedicated Java libraries that are usually distributed with the core

library but can be left out for specialized distributions of JIPipe that focus on other usages like non-

image-analysis workflows. If only the core library is loaded, JIPipe will contain no usable data types and

nodes. Image analysis functions are provided in dedicated libraries as extensions. Extensions for JIPipe

are SciJava plugins that provide the necessary metadata for JIPipe, for example the name, authors, and

dependencies, and a register() function that executes all necessary steps to add additional

functionalities. Following functions can be added via this function:

Data types. Java developers can add new data types into JIPipe. Data is organized into tables and

annotated with additional string columns. To allow for automated reading and saving, data types must

provide functions to export itself into a folder and be imported from an exported directory.

Additionally, data types must be able to be displayed in the GUI, via a display() function and an

optional preview method. Each data type has a unique identifier string that allows safe serialization of

user-customizable slot configurations.

Node types. Node types are Java classes that contain the workload function. Slots are either added via

Java annotations or created in the object constructor. Like data types, they have a unique identifier.

Data type conversions. JIPipe automatically applies trivial conversions (e.g., from a child class to one

of its parent classes). Other conversions (e.g., converting a plot to an image) must be handled by a

dedicated converter object that can be registered into JIPipe. The converter creates an edge within the

conversion graph, which allows higher-order conversions with multiple steps.

Data type display operation. Each data object comes with a default function to display the data in the

GUI (e.g., displaying an image in ImageJ). Additional display operations can be registered via an

extension.

Data type import operation. An import operation imports data from a JIPipe result folder and displays

it to the user. An example is the import and display of ROI.

Parameter type. Developers can register custom parameter types. Each parameter type requires a

unique identifier, required for serialization of user-defined parameters, and a user interface.

Expression function. The set of functions available in expression parameters can be further expanded.

CHAPTER 4. MANUSCRIPTS 90

Table column operation. Independent of expression functions, there exist functions that apply one-

to-one or integrating operations on table columns. This set can be expanded. Such operations are

automatically available inside expressions.

Menu extensions. Developers can create custom menu entries for various uses. They can choose

between multiple locations (e.g., “Project” menu or “Tools” menu).

An alternative to Java extensions is extensions provided as JSON files. They can be created via a user-

friendly GUI from existing pipelines or sets of nodes and allows non-developers to create custom

node types, akin to ImageJ2 scripts or macros. Such extensions are loaded via a “JSON Extension

Loader” Java extension that automatically scans the ImageJ plugins directory for valid extensions.

2 Hallmarks of JIPipe by representative applications
Here we describe the details of the JIPipe application that were utilized to illustrate the wide

applicability of JIPipe in the Results. The examples are the following:

a) Bacterial growth inside fluid droplets

b) Nanoparticle delivery in liver

c) Host-pathogen interactions

d) Nematode viability test

e) Kidney status check via glomeruli counting

2.1 Bacterial growth measured in fluid droplets
Picoliter droplets are miniature bioreactors used in microfluidic experiments to test various growth

conditions on bacteria3–5. Due to the extremely large number of droplet images, the native batch-

processing and parallelization features made JIPipe an ideal candidate to quantify the bacterial growth

in potentially millions of droplets3 (Supplementary Figure 2.1). The workflow was successful in finding

the targeted droplet, identify its inner zone and detect bacterial growth (Figure 3 Row 1). In this case,

microfluidic droplets of approximately 100 micrometer diameter were filled with a solution containing

E. coli bacteria and the bacterial growth was observed via brightfield transmitted light microscopy3.

The following JIPipe workflow determines the droplets that show bacterial growth. When compared

with a set of 1500 images with manual annotations (growth vs. no growth), the JIPipe workflow

produced 100% agreement with the ground truth.

The processing workflow starts with scanning the input file folder(s) and annotating the internal JIPipe

table with the folder names and the image identifiers. It is sufficient to drop only the top folder into

the flow (node “Folder list”) because the subsequent nodes will automatically extract the rest of the

information, e.-g. the subfolders (here we use the Recursive list option in the Parameters setting to

handle multiple layers of subfolders automatically). In the “List files” node we search for files that are

of the CZI type by introducing a filter for the absolute path. After adding the image names to the

annotation table, we provide another filtering opportunity by the “Filter paths” node, which can be

useful when limiting the analysis to a subset of images during testing the analysis workflow.

91 CHAPTER 4. MANUSCRIPTS

Supplementary Figure 2.1 | Compartment graph of the classical and Cellpose-based image analysis approach to identify
microfluidic droplets that show bacterial growth inside. For the node arrangement within individual compartments, see the
supplied JIP project file "Droplets.jip" and the detailed nodes map “compartments-figure-droplets.png” in Supplementary
Materials.

In detail:

(i) Preprocessing:

o Read the images into memory and annotate the data table as described in

Supplementary Information 2.1

o Pass the results to the Segmentation and Cellpose compartments

(ii) Segmentation:

o Hessian segmentation(parameters 2, “Largest”, 2)

o Gaussian blur (2 px)

o Auto threshold (Triangle algorithm)

o Morphological hole filling

o Distance transform watershed

o Morphological opening (10 px)

o Morphological erosion (7 px)

o Create ROI and split multiple droplets to create the outer line

o Morphological erosion (5 px)

o Create ROI and split multiple droplets to create the inner line

o Pass the results to the Quantification compartment

(iii) Quantification:

o Filter ROI by statistics (Area above 1000)

o Calculate variance (1 px)

o Auto threshold (Otsu algorithm)

o Extract ROI measurements (Area, Area fraction, Integrated density)

o Create Growth column (percentage Area above 0.5 is classified as growth = 1)

o Pass the results to the Visualization compartment

(iv) Visualization:

o Convert growth areas into ROIs

o Merge raw image with growth area ROIs

o Convert inner line of droplets into ROIs

o Merge raw image with inner line ROIs

(v) Cellpose:

CHAPTER 4. MANUSCRIPTS 92

o Access the TL images from Preprocessing

o Run Cellpose segmentation

o Object diameter 120 px

o Use pretrained Cellpose model “Cytoplasm”

o Thresholds: 2 (probability), 0.8 (flow)

o Filter ROIs by Roundness > 0.7

o Morphological opening (10 px)

o Morphological erosion (1 px for outer line, 7 px for inner line of droplets)

o Turn masks to ROIs and split them

(vi) Quantification Cellpose: see Quantification

(vii) Visualization Cellpose: see Visualization

2.2 Nanoparticle delivery analysis in liver
JIPipe’s native batch processing ability and built-in time series algorithms were of particular advantage

in a project using nanoparticles (NPs) to counteract liver fibrosis caused by non-alcoholic fatty liver

disease. NPs are utilized to deliver precisely targeted agents to the liver tissue6. The analysis of such

microscopy data requires the identification of various liver components including hepatocytes, liver

sinusoidal endothelial cells (LSECs), sinusoids, and canaliculi. The segmentation was carried out

without the help of specific labeling, and the extraction of time series information about the uptake

and extrusion of the NP-delivered agents. The extensive set of morphological filters available in JIPipe

were invaluable in identifying the various components of the liver without specific labelling, based

solely upon the autofluorescence signal (Supplementary Figure 2.2). The resulting high-fidelity

segmentation of the LSECs, canaliculi and sinusoids (Figure 3 D-2) indicate the precision and utility of

the JIPipe processing framework.

The live-animal microscopy experiments were described in Muljajew et. al., 20217. Micelle

nanocarriers were injected into the circulatory system of the mouse vie the tail veins. Two-photon

microscopy was utilized to image the cargo delivered by the micelles to the hepatocytes, sinusoids,

canaliculi and liver-sinusoidal endothelial cells the time-series images were analyzed by the JIP

protocol “LiverAnalysis.jip” (see Supplementary Materials)

93 CHAPTER 4. MANUSCRIPTS

Supplementary Figure 2.2 | Compartment graph of the analysis protocol for liver drug delivery assay, designed to quantify
the spatio-temporal distribution of nanoparticle-delivered cargo to various parts of the murine liver. For the node
arrangement within individual compartments, see the supplied JIP project file " LiverAnalysis.jip" and the detailed nodes map
“compartments-figure-liver.png” in Supplementary Materials.

The workflow was based on principles similar to those shown in the previous chapter. The processing

consisted of six compartments: i) file handling, ii) blood vessel analysis, iii) hepatocyte analysis,

iv) canaliculi analysis, v) the analysis of liver sinusoidal endothelial cells (LSECs), and vi) postprocessing.

In detail:

(i) Images were read into memory and the data table was annotated as described in

Supplementary Information 2.1

(ii) Vessel analysis:

o Median blur (radius=5 pixels)

o Illumination correction (20 px)

o Auto threshold (Yen algorithm)

o Despeckle

o Morphological erosion (7 px)

o Particle finder (circularity range 0.0-0.4)

o Multi-node algorithm to arrange the time series based on slice numbers

o Calculate the intensity time series for the segmented vessel region

o Calculate the number of segmented objects per time point to check the segmentation

o Pass the results to the LSEC analysis compartment

(iii) Hepatocyte analysis:

o Median blur (radius=5 pixels)

o Illumination correction (20 px)

o Auto threshold (Li algorithm)

o Despeckle

CHAPTER 4. MANUSCRIPTS 94

o Morphological erosion (1 px)

o Morphological skeletonize

o Particle finder (size range 102-106)

o Multi-node algorithm to arrange the time series based on slice numbers

o Calculate the intensity time series for the segmented vessel region

o Calculate the number of segmented objects per time point to check the segmentation

(iv) Canaliculi analysis

o Median blur (radius=5 pixels)

o Illumination correction (20 px)

o Auto threshold (Li algorithm)

o Despeckle

o Morphological erosion (1 px)

o Skeletonize

o Particle finder (no filtering)

o Multi-node algorithm to arrange the time series based on slice numbers

o Calculate the intensity time series for the segmented vessel region

o Calculate the number of segmented objects per time point to check the segmentation

(v) LSEC analysis:

o Take inputs from vessel analysis and file handler (fluorescence image)

o Illumination correction of fluorescence image (20 px)

o Create mask from segmented vessel image

o Morphological dilation (7 px)

o Mask fluorescence image with segmented vessel image

o Auto threshold (RenyiEntropy algorithm)

o Particle finder (no filtering)

o Multi-node algorithm to arrange the time series based on slice numbers

o Calculate the intensity time series for the segmented vessel region

o Calculate the number of segmented objects per time point to check the segmentation

2.3 Confrontation assays
The interaction between alveolar macrophages and fungal spores was examined as described in earlier

research6,8,9. The macrophages and fungal spores were identified by label-free segmentation

algorithms, whereas counterstained fungi were identified by fluorescence labeling8–10. The workflow

was parallelized to segment labeled and unlabeled cells and spores separately. In addition, classical

and deep learning—based approaches of the macrophage segmentation algorithms were also

organized into separate parallel compartment groups (Supplementary Figure 2.3). The essential nodes

consisted of Hessian filtering to identify unlabeled macrophages and fungal spores, background

correction with appropriate parameters, thresholding steps, and fine-tuned morphological operators.

Here the "Define multiple parameters" node was of high importance by allowing to test many

parameters in one run. This special node allows the definition of one or more parameters that will be

chosen to fit a processing node, with each parameter allowed to be given any number of values to be

tested, and then connected to the corresponding processing node. For example, when testing various

thresholding methods, a “Define multiple parameters” node was set up to contain the parameter

"Method" with values set to the seventeen methods provided by ImageJ. The node was then plugged

into an "Auto threshold 2D " node to provide an overview of the effectiveness of all seventeen methods

on the test images in just one process. The outcome of the analysis consists of phagocytic measures

95 CHAPTER 4. MANUSCRIPTS

and of segmented images of all participants (host cells, phagocytosed, adherent, and free pathogens,

phagocytosing, and passive macrophages), see Figure 3 D-5. For the classification of the segmented

objects, ROI-analysis nodes were developed; these enable the quantification of ROI overlap, e.g.,

between host cells and fungi to identify phagocytosed spores. A set of the ROI comparison nodes were

arranged into a separate compartment "Analyze ROI", followed by a set of nodes to calculate the

various phagocytosis measures arranged in the compartment "Summarize ROIs". For the deep

learning—based segmentation of the macrophages, the recently published Cellpose9 method was fully

integrated into JIPipe. The Cellpose-related nodes include "Cellpose" (to apply the Cellpose model

either in its original form, or after transfer learning, or following training from scratch); "Cellpose

training" (for transfer learning and training a model from the beginning); "Import Cellpose model" and

"Import Cellpose size model" to read in an already trained model for predefined size or for trained

object size, respectively. Using Cellpose via these JIPipe nodes vastly simplifies the workflow building

process, which is of great advantage for those with little experience in applying Deep Learning methods

in image analysis.

Supplementary Figure 2.3 | Compartment graph of the confrontation assay analysis protocol, designed to quantify host-
pathogen interactions. For the node arrangement within individual compartments, see the supplied JIP project file "
ConfrontationAssay.jip" and the detailed nodes map “compartments-figure-confrontation.png” in Supplementary Materials.

In the example provided here, we limited the analysis to the “LabeledHosts_LabeledPathogens”

dataset, which contained images where both the immune cells (hosts) and the fungal spores

(pathogens) were imaged not only in transmitted light modality, but also with fluorescence microscopy

using specific labeling of the assay components. The images are then read into memory with the

“Import image” node, and the channels are separated before passing the data into the output node.

As shown in Supplementary Figure 2.3, the output node is connected to the subsequent five

segmentation compartments: i) antibody-labeled hosts (“Red”), ii) FITC-labeled pathogens (“Green”),

iii) calcofluor white (CFW)-labeled pathogens (“Blue”), iv) transmitted light images (“TL”), and v) the

deep-learning based segmentation workflow (“CellPose”).

In detail:

(i) Images of the labeled host cells are processed as follows:

o Gaussian blur (radius=3 pixels)

o Internal gradient (25 px)

o Contrast enhancement

o Background subtraction (Rolling Ball, 50 px)

o Auto threshold (Triangle algorithm)

o Morphological closing (2 px)

o Morphological hole filling

CHAPTER 4. MANUSCRIPTS 96

o Watershed transformation

o Morphological erosion (5 px)

o Particle finder to identify macrophages by size (3000-30000) and circularity (0.1-1.0)

“Define multiple parameters” nodes were used originally to test a range of rolling ball radii, and a

series of automated thresholding algorithms, respectively.

(ii) Images of the FITC-labeled fungi are processed as follows:

o Remove outliers (radius=20 pixels, threshold=5)

o Background subtraction (Rolling Ball, 22 px)

o Auto threshold (Triangle algorithm)

o Watershed transformation

o Particle finder to identify fungal spores by size (100-3000) and circularity (0.4-1.0)

Two “Define multiple parameters” nodes were used originally to test a range of rolling ball radii,

and a series of automated thresholding algorithms, respectively.

(iii) Images of the CFW-labeled fungal cells are processed as follows:

o Remove outliers (radius=20 pixels, threshold=5)

o Contrast enhancement

o Background subtraction (Rolling Ball, 22 px)

o Auto threshold (Li algorithm)

o Watershed transformation

o Particle finder to identify fungal spores by size (100-3000) and circularity (0.4-1.0)

Two “Define multiple parameters” nodes were used originally to test a range of rolling ball radii,

and a series of automated thresholding algorithms, respectively.

(iv) Images of the TL images of hosts and pathogens are processed as follows:

o Laplacian sharpening with a 3x3 kernel

o Hessian filtering using the smallest eigenvalues with smoothing of 3 pixels

o Gaussian blur (radius=5 px)

o Auto threshold (Huang algorithm)

o Annotating with maximum and minimum threshold values

o Morphological closing (2 px)

o Morphological hole filling

o Remove outliers (radius=10 pixels, threshold=20)

o Remove outliers (radius=20 pixels, threshold=20)

o Watershed transformation

o Morphological erosion (2 px)

o Particle finder to identify macrophages by size (3000-30000) and circularity (0.1-1.0)

(v) The TL and fluorescence images of hosts and pathogens were also segmented using the

default trained networks of the Cellpose environment15. Here no pre- or post-processing

steps were applied. Rather, the outcome from the Cellpose node provided the ROI lists of

the hosts and pathogens, and the lists were passed on to the output node, from where

they were directed to the “AnalyseROICellpose” compartment (see below).

The segmented images are used to generate lists of regions of interest (ROIs) that describe the

locations of the host cells, as well as the green-labeled and blue-labeled pathogens. These ROIs are

further examined in the “AnalyseROI” and “AnalyseROICellpose” compartments (the latter one applied

for the Cellpose-based analysis) via testing the overlap between pairs of the three object groups to

identify associated fungal spores (i.e., fungi that are interacting with a host cell based on their

97 CHAPTER 4. MANUSCRIPTS

overlapping ROIs), adherent fungi (associated pathogens that are CFW-positive) and phagocytosed

fungi (associated fungi that are not adherent, i.e. CFW-negative). In addition, phagocytosing host cells

are identified as objects that contain at least one phagocytosed pathogen. In the last step, the

“SummarizeROI” or “SummarizeROICellpose” compartments calculate the four phagocytic measures12,

using the “Modify tables” node that contain the calculations in a Python script.

2.4 Track analysis of unlabeled nematodes
When beneficial soil fungi are consumed by nematodes (earth worms), a way to protect the soil quality

is to provide the fungi with symbiotic bacteria that produce agents that are toxic for the worms but

not for the fungi, thus protecting the soil-enhancing fungi from the nematodes11. JIPipe was used to

segment and track the nematodes, and to calculate a viability ratio (the total footprint area covered

by a worm divided by the area of the worm averaged over time) that characterized the efficiency of

various symbiotic bacteria to protect the fungi (Supplementary Figure 2.4). JIPipe was extended for

this project with a node to find connected components that allowed the analysis of time series

experiments. The outcome produced by the project included the merged outlines of every worm

(Figure 3 D-3), the binarized nematodes and the outline of one animal at a selected number of time

points, as well as the footprint of a single worm superimposed onto the original images (Figure 3 E-3).

The postprocessing steps included the calculation of the worm areas and footprints (i.e., the collection

of pixels that were touched by the worm during the course of the time series), and measuring the ratio

between the footprint and the individual worm area, which measures the motility of the animal; the

higher the ratio, the more motile the worm. The time-series images were analyzed by the JIP protocol

“Nematodes.jip” (see Supplementary Materials).

Supplementary Figure 2.4 | Compartment graph of the kinetic analysis workflow designed to characterize nematodes
according to their motility. For the node arrangement within individual compartments, see the supplied JIP project file
"Nematodes.jip" and the detailed nodes map “compartments-figure-nematodes.png” in Supplementary Materials.

The workflow was based on principles similar to those shown in the previous chapters. The processing

consisted of three compartments: i) file handling, ii) worm segmentation, iii) quantification and

visualization.

CHAPTER 4. MANUSCRIPTS 98

In detail:

(i) Images were read into memory and the data table was annotated as described in

Supplementary Information 2.1

(ii) Worm segmentation:

o Splitting stacks to reduce data size for easier testing (optional)

o Gaussian blur (3 px)

o Auto threshold (Triangle algorithm)

o Morphological closing (7 px, diamond)

o Morphological hole filling

o Particle finder (minimum size 4000 px)

o Pass the results to the Quantification and visualization compartment

(iii) Quantification and visualization:

o Time tracking individual worms based on the “#Component” annotation

o Create and measure worm area with logical OR

o Create total area per worm using the “Total” annotation

o Calculate total area over individual worm area

o Recreate time series using the “Slice” annotation in ascending order

o Calculate average, standard deviation and count of area ratios

2.5 Kidney status check via glomeruli counting
Kidney diseases, e.g. nephrotoxic nephritis lead to a diminished function of the kidney tissue, indicated

by the reduced number of glomeruli12. Light sheet microscopy can be utilized to image whole kidneys

in 3D. These images were generated by staining the glomeruli, the functional units of the kidney. Due

to the high dimensionality of the data and the number of glomeruli that can range up to 16000, manual

counting is highly time-consuming and impractical. Therefore, our group already developed fully

automated solutions in Python and C++13. The disadvantage of these tools is that they require

programming to be adapted and improved. Here, we exemplify how JIPipe can be used to apply an

equivalent analysis, but without the need for programming (Supplementary Figure 2.5). For this

example, we reduced the size of the image stack from 700 to 20, which even non-workstation

computers can process without computing and memory capacity problems. The outcome of the JIPipe

analysis included the identification of individual glomeruli (Figure 3 E-4) and the outline of the entire

kidney tissue. We provide the JIPipe protocol file, as well as the input data in the Supplementary

Materials. Here we also demonstrate the use of a single-compartment configuration of a JIPipe

workflow, combing all processing and visualization steps into a single space.

Supplementary Figure 2.5 | Compartment graph of the glomeruli analysis workflow designed kidney light sheet microscopy
images. For the node arrangement within individual compartments, see the supplied JIP project file
"kidney_example_pipeline.jip" and the detailed nodes map “compartments-figure-glomeruli.png” in Supplementary
Materials.

The processing workflow is organized into three logical steps: i) file handling: these are nodes for

reading and organizing the input images, which are then passed on to the processing nodes

99 CHAPTER 4. MANUSCRIPTS

ii) glomeruli segmentation nodes; iii) tissue segmentation and quantification nodes; iv) quantification

of glomeruli; v) visualization nodes: the segmented ROIs are quantified and plots are generated. These

plots include glomerular number bar diagrams and a histogram of the glomerular volumes per kidney.

The final plots of the tissue and glomeruli outlines can also be directly accessed via bookmarks. To

execute or visit the bookmarked nodes, go to Project → Project overview and find the bookmarks on

the right side in the “Bookmarks” tab. Click on any bookmark and choose either “Run” (to execute the

pipeline up to that node, inclusive), or “Go to bookmark” to visit the node directly.

In detail:

(i) File handling:

o Images are provided as list of folders, containing the slices of an image stack. JIPipe

converts these user-provided folders into a managed path data structure.

o Folders are annotated with their name that will be used in the pipeline to distinguish

images from each other

o An “Import image stack” node is used to load the slices contained inside each folder

into a 3D image. Annotations are preserved.

o The imported images are passed to the segmentation nodes.

(ii) Glomeruli segmentation:

o Input images are received from the output of the file handling nodes

o White Top Hat (radius = 5, disk shape) is applied

o Auto threshold (Otsu method)

o Morphological opening (radius = 2, disk shape)

o “Find Particles 2D” (default settings)

o “Split into connected components” is applied to the set of 2D ROIs generated by the

particle finder. This node applies a 3D connected components algorithm and groups

2D ROIs of the same component into dedicated ROI lists. Each output ROI list is

annotated with an identifier and corresponds to one glomerulus.

o The glomeruli are passed to the quantification and visualization nodes

(iii) Tissue segmentation and quantification:

o Input images are received from the output of the file handling nodes

o Median blur (radius = 1) is applied

o Auto threshold (Default method)

o Morphological closing (radius = 20, disk shape)

o Morphological hole filling

o Find particles (default settings)

(iv) Quantification of glomeruli:

o “Extract ROI statistics” (Extracted measurements = “Area”) creates a table with one

row per 2D ROI containing its area

o “Integrate table columns” (Input column = Area, Function = Sum, Output column =

Volume) calculates the volume in px³ for each glomerulus. Its output is a table with

one row

o “Add annotations as columns” (Annotation name filter: value == "#Component") adds

the glomerulus identifier into each table

o “Merge table rows” (Data batches/Grouping method = “Custom”, Data

batches/Custom grouping columns = “#Dataset”) merges all quantified results of the

same kidney into one table

o “Filter table” (Volume >= 28 AND Volume <= 2300) removes glomeruli outside the

expected volume range

(v) Visualization

CHAPTER 4. MANUSCRIPTS 100

o The distribution of glomerular volumes is plotted via “Plot tables” (Plot type =

Histogram, Value = Volume) plots the “Volume” column as histogram

o The tissue is visualized via a “Convert ROI to RGB” node that consumes the extracted

tissue ROI and the raw input image enhanced via a “Histogram-based contrast
enhancer”. A “Change ROI properties” node modifies the ROI to be drawn in green

o A combined visualization is generated as follows:
o The glomerular ROIs are modified via “Change ROI properties” to be drawn as yellow

lines
o “Merge ROI lists” combines the glomerular ROIs and the tissue ROI into a single list

o A “Convert ROI to RGB” node overlays the glomeruli and tissue ROIs on top of the
tissue

3 JIPipe user interface and data model
Here we focus on key features of the JIPipe user interface and explain how our software implements a
scalable data model. The full organization of our software can be retrieved from the Supplementary
Material as well as from the JIPipe website (http://www.JIPipe.org/). Familiarizing with the user
interface is assisted by numerous training videos that can be accessed at the website as well. The
central component of the JIPipe GUI is a graph that contains all functional units in form of nodes (see
Supplementary Figure 3.1). Each of these nodes has one or multiple input and output slots that
represent the data entered and produced by this functional unit (see Supplementary Figure 3.2). To
create a pipeline, these slots are connected via edges to indicate a transfer of data from one node’s

output to another node’s input. Outputs can be connected to multiple inputs, e.g., for creating

branches to apply different methods or to generate visualizations of intermediate steps.

Supplementary Figure 3.1 | JIPipe graph editor UI. ① The central graph area where operational nodes can be placed by the
user. ② Graphical representation of a node in JIPipe. Nodes have one or multiple input and output slots (grey areas within
each node). ③ Output slots can be connected to inputs via edges (gray line).

101 CHAPTER 4. MANUSCRIPTS

Supplementary Figure 3.2 | Graphical representation of a node with two inputs and one output slot. Only one input is
connected (grey line). ① Inputs of the node are in the top row. ② The bottom row contains the node’s outputs. ③ Users
can customize the label names. These are displayed in an italic style. ④ Each slot displays its supported data type as icon.
⑤ The middle row contains the customizable node name, its icon representation, and a button to run the node and its
predecessors. ⑥ Various nodes allow the creation of custom slots by clicking the “+” button.

Users are able to freely compartmentalize their pipelines (see Supplementary Figure 3.3), for example
into preprocessing, segmentation, and postprocessing (see Fig. 2a). Within compartments, users can
add additional nodes via a menu and arrange them freely.

Supplementary Figure 3.3 | Compartmentalization of pipelines. Users can use a compartment graph to organize a pipeline.
Compartments are created and connected via a dedicated compartment graph (left). Each node in this structure contains a
space where functional nodes can be placed (right).

CHAPTER 4. MANUSCRIPTS 102

JIPipe provides over 1000 nodes that include tools for data management and generation; mapping the
file and folder structure of the data; annotation tools to keep track of file origins and experimental
conditions; image processing nodes; ROI management; table processing and filtering; nodes to export
the results in various formats and structures; and a group of additional miscellaneous nodes to add
utilities to the system. Multiple ways are provided to search for specific nodes (see Supplementary
Figure 3.4), e.g., by name, functionality, and compatibility to the preceding node. According to the
symbiotic principle outlined earlier, these nodes can also be directly accessed from ImageJ.

Supplementary Figure 3.4 | GUI functions to add nodes into a pipeline. ① Nodes are organized into a menu. ② New and
existing nodes can be searched via a search bar. ③ Users who are familiar with other visual programming languages find a
toolbox where nodes can be dragged into the graph. ④ Each input and output provide an “Algorithm finder” feature that

lists all compatible sources or targets based on their data type.

Nodes can be intuitively connected into a pipeline by creating edges between them via using the
mouse. Alternatively, an algorithm finder can be used to locate nodes that match the data. Unique to
JIPipe, all nodes are self-documenting, meaning that users can infer the functionality of the nodes and
their slots without referencing a manual (see Supplementary Figure 3.2). The nodes are fully
customizable by the user, thus simplifying the execution of multi-parameter sets.

A comprehensive context-sensitive documentation of all nodes and their parameters can be accessed
any time. Alternatively, JIPipe includes complete documentations for nodes and data types that can be
exported to HTML, PDF, or text files (see Supplementary Figure 3.5). To provide users of more complex
nodes with a starting point, we implemented minimal examples that also reveal syntax details.
Additionally, JIPipe nodes are capable of automated parameter validation to warn users about possibly
invalid inputs.

103 CHAPTER 4. MANUSCRIPTS

Supplementary Figure 3.5. | Integrated documentation. ① The node parameter editor provides access to a brief
description of the selected node. Parameter documentations are context sensitive and displayed after hovering the
parameter control. ② The “Help” menu allows access to full documentations for nodes and data types.

A pipeline is executed by clicking the “Run” button, which will automatically validate the project, and

offer options for optimization and multi-threading. The user only has to set an output directory and
confirm the settings. JIPipe will automatically execute the project and store all results in a standardized
format, together with the parameters, as a full project file (see Supplementary Figure 1.1. Afterwards,
the results are displayed in a separate interface that allows to review and export the data (see
Supplementary Figure 3.6). Due to the standardized output format, JIPipe can open existing results in
this viewer, even if the analysis was not applied on the same machine. To work on data interactively,
JIPipe allows the execution of a selected node where results are cached inside the random-access
memory (RAM) to be accessed later from within the GUI and displayed in the appropriate tool, e.g.,
images are displayed by ImageJ or other tools, or re-used by another JIPipe run. To improve the
usability of caching, JIPipe comes with cache-aware viewers for common ImageJ data that
automatically update themselves to the newest cached versions, display metadata, and allow to
browse through all results efficiently.

CHAPTER 4. MANUSCRIPTS 104

Supplementary Figure 3.6 | Result analysis GUI. ① The interface is opened after a successful pipeline run. Alternatively,
JIPipe can open existing directories. ② Results are organized by their compartment, node, and output slot. On selecting an
entry, the corresponding data is displayed. ③ Data is displayed as table, containing information about the compartment,
node, slot, index within the data table. Text and data annotations are displayed as well. The main data item is previewed.

JIPipe organizes data into tables that are associated to each slot (see Supplementary Figure 3.7a). Each
table has one column containing binary data of a type defined by the slot, and an arbitrary number of
metadata columns containing strings or other data. There are various nodes available that generate or
modify the set of metadata. For example, it can be used to track biological conditions, dataset
identifiers, or image properties. The flexibility of this approach allows the easy management of
research data and assists users in finding and reproducing data and analysis details according to the
FAIR principles3. Generally, nodes iterate over the rows of the table and generate one result per row;
this strategy also provides the opportunity to parallelize computationally expensive workloads.
Another benefit of this design is zero-cost up- and downscaling: Users only need to modify the set of
input files or folders to change the scale of the analysis without the need for updating the pipeline
structure. During the processing, metadata is conserved. These annotations are helpful for the
postprocessing and review steps but are also actively used by various algorithms that iterate through
multiple inputs or merge data (see Supplementary Figure 3.7b).

105 CHAPTER 4. MANUSCRIPTS

Supplementary Figure 3.7 | JIPipe data model. (a) Each node in a pipeline (right) has multiple inputs and output slots (gray
box). Each slot contains a table of binary data (left), annotated with additional string columns (e.g., “Experiment”,
“Threshold”). A connection between two slots (black lines) leads to the data being passed to the input and processed row-
wise (green arrows). The annotations are preserved. (b) A node with multiple inputs (Figure 4a, “Create RGB image”) groups
data (left) by testing for the equivalence of annotation sets (green highlight). The resulting grouped table (right) is processed
row-wise.

4 Online training and documentation resources
We already provide a substantial amount of online documentation that simplify the process of
adapting JIPipe into a bioimage analysis workflow, develop plugins and extensions, and to connect our
software to third-party tools.

4.1 User guide and tutorials
To provide resources for new users of JIPipe, we created both step-by-step tutorials in text and video
form, as well as documentations that guide users through the features of the user interface. As users
of ImageJ might be new to the concept of visual programming and are possibly unaware of the benefits
gained by utilizing our software, we created a video abstract that explains these aspects within three
minutes (see https://www.youtube.com/watch?v=Zyl52bluWYI). All tutorials are listed on
https://www.jipipe.org/tutorials/ and already include the following items:

• A step-by-step tutorial guiding through a basic image analysis task with batch processing
o Text (25 steps): https://www.jipipe.org/tutorials/analysis/
o Video (9:25 minutes): https://www.jipipe.org/tutorials/analysis_video/)

• A comprehensive tutorial that compares the analysis workflow between ImageJ and JIPipe
o Video (22:36 minutes): https://www.jipipe.org/tutorials/jipipe-for-imagej-users/

• A short overview of the JIPipe user interface
o Video (4:35 minutes): https://www.jipipe.org/tutorials/guide-user-interface/

• A brief explanation of JIPipe’s data caching feature

o Video (4:16 minutes): https://www.jipipe.org/tutorials/guide-data-caches/
• An explanation of the graph editor features

o Video (3:48 minutes): https://www.jipipe.org/tutorials/guide-graph-editor/
• A tutorial that explains the setup of a batch analysis and the backgrounds of JIPipe’s data

management
o Video (7:47 minutes): https://www.jipipe.org/tutorials/guide-batch-processing/

• A guide through the design of a custom node via the JIPipe GUI:
o Text (10 steps): https://www.jipipe.org/tutorials/extension/

CHAPTER 4. MANUSCRIPTS 106

Information that is not covered by our tutorials is made available in the text documentation (see

https://www.jipipe.org/documentation/) that covers the following topics:

• The basic concepts behind JIPipe

o The basic concepts of visual programming with focus on users familiar to ImageJ:

https://www.jipipe.org/documentation/basic-concepts/visual-programming/

o An overview of the batch processing functionality with illustrations to explain the

concepts behind it:

https://www.jipipe.org/documentation/basic-concepts/batch-processing/

• Information about important GUI and JIPipe features related to designing pipelines

o An overview of the graph editor user interface:

https://www.jipipe.org/documentation/create-pipelines/pipeline-editor/

o A detailed explanation of JIPipe’s expression system with illustrations, examples, and

a list of operators and their precedence:

https://www.jipipe.org/documentation/create-pipelines/expressions/

o An explanation of the purpose of graph compartments:

https://www.jipipe.org/documentation/create-pipelines/compartments/

o A guide through the node grouping functionality:

https://www.jipipe.org/documentation/create-pipelines/groups/

o An explanation on the usage of loop nodes:

https://www.jipipe.org/documentation/create-pipelines/loops/

• Guides relating to running pipelines and reviewing results

o A brief guide on how to run a pipeline:

https://www.jipipe.org/documentation/run-pipelines/run/

o A guide through the result viewing component:

https://www.jipipe.org/documentation/run-pipelines/result-analysis/

o An overview of JIPipe’s data storage format:

https://www.jipipe.org/documentation/run-pipelines/connect-external-software/

o Information on how users can cache data:

https://www.jipipe.org/documentation/run-pipelines/quick-run/ and

https://www.jipipe.org/documentation/run-pipelines/cache/

• Information about the ImageJ integration and how to run JIPipe nodes inside ImageJ:

https://www.jipipe.org/documentation/imagej-integration/

• An overview of JIPipe’s plugin list GUI:

https://www.jipipe.org/documentation/plugins/

• An overview of all functionalities included in the standard JIPipe distribution

o The ImageJ integration library:

https://www.jipipe.org/documentation/standard-library/imagej-integration/

o A guide on how to utilize macro nodes:

https://www.jipipe.org/documentation/standard-library/macro-node/

o Important remarks regarding the file system nodes:

https://www.jipipe.org/documentation/standard-library/filesystem/

o A guide through the multi-parameter feature supported by many nodes:

https://www.jipipe.org/documentation/standard-library/multi-parameter/

o Remarks about the usage of data annotations:

https://www.jipipe.org/documentation/standard-library/annotations/

o A guide through the plotting features included in JIPipe:

https://www.jipipe.org/documentation/standard-library/plots-tables/

107 CHAPTER 4. MANUSCRIPTS

o An overview of the integrated Jython and Python wrappers:

https://www.jipipe.org/documentation/standard-library/jython/,

https://www.jipipe.org/documentation/standard-library/python/,

https://www.jipipe.org/documentation/standard-library/python/api/

o Information about the R integration:

https://www.jipipe.org/documentation/standard-library/r-integration/

o An overview of the Cellpose nodes and information about how they are utilized:

https://www.jipipe.org/documentation/standard-library/cellpose/

• Information about the creation custom JIPipe extensions via a graphical interface:

https://www.jipipe.org/documentation/create-json-extensions/

• The usage of JIPipe within a command line interface:

https://www.jipipe.org/documentation/cli/

4.2 Java API documentation
To aid with the continued development of JIPipe and to facilitate the creation of new extensions, we

published documentation about JIPipe’s Java API. This includes the automatically generated JavaDocs

that contain all classes, methods, and packages (see https://www.jipipe.org/apidocs/index.html), but

also detailed guides on how to setup an extension project, create nodes, data types, parameters, and

other features:

• The setup of a Java Maven project that provides features for JIPipe:

https://www.jipipe.org/documentation-java-api/create-extension/

• An overview of the node type classes, including an example node implementation:

https://www.jipipe.org/documentation-java-api/algorithm/

o Documentation on the development of iterative multi-input nodes:

https://www.jipipe.org/documentation-java-api/algorithm/iterating-algorithms/

o An alternative multi-input node type that merges multiple data items:

https://www.jipipe.org/documentation-java-api/algorithm/merging-algorithms/

o Remarks regarding the modification of node input and outputs:

https://www.jipipe.org/documentation-java-api/algorithm/slot-configuration/

o A basic guide to defining node parameters:

https://www.jipipe.org/documentation-java-api/algorithm/parameters/

o Guidelines for creating nodes that support parallelized workloads:

https://www.jipipe.org/documentation-java-api/algorithm/parallelization/

o Definition of node types that do not have a one-to-one relationship with a Java class:

https://www.jipipe.org/documentation-java-api/algorithm/custom-info/

o A guide on creating interactive buttons in parameter lists:

https://www.jipipe.org/documentation-java-api/algorithm/context-actions/

• An overview on how the Java API is used to create a new data type:

https://www.jipipe.org/documentation-java-api/data-type/

o Explanations on how to create user-selectable data importers:

https://www.jipipe.org/documentation-java-api/data-type/result-ui/

o Documentation on implementing result previews:

https://www.jipipe.org/documentation-java-api/data-type/result-preview/

• A guide through the creation of a new parameter type:

https://www.jipipe.org/documentation-java-api/parameter-type/

• Interfacing with JIPipe through its Java API to run nodes, pipelines, and projects:

https://www.jipipe.org/documentation-java-api/usage-in-java/

CHAPTER 4. MANUSCRIPTS 108

4.3 Data and JSON API documentation
To store data and projects, JIPipe utilizes JSON files that follow a standardized format. This includes

the format for projects (see https://www.jipipe.org/documentation-json-api/project/) and for non-

Java extensions (see https://www.jipipe.org/documentation-json-api/json-extension/). A similar

standardization is applied in the storage of output files to allow automated data reading and writing

operations. Its highest-order implementation is the standardized format for whole-pipeline and is

described in https://www.jipipe.org/documentation-data-api/pipeline-output/. The format makes use

of the “data table” standard (see https://www.jipipe.org/documentation-data-api/data-table/) that

makes the automated reading and writing of data and metadata possible, due to the presence of a

standardized metadata file (“data-table.json”, see https://www.jipipe.org/documentation-json-

api/data-table/). Within the a data table directory, data items are stored in various directories that

contain hierarchies of files and folders that follow a standard defined by the data type definition in

Java (see https://www.jipipe.org/documentation-data-api/row-folder/). A list of available data types,

associated standards and properties is given in https://www.jipipe.org/documentation-data-api/data-

types/.

5 Methods

5.1 JIPipe dependencies
JIPipe is written in Java version 8 and utilizes libraries provided by SciJava (https://scijava.org/) . The

full list of required libraries is shown in Supplementary Table 1. JIPipe is open source and licensed

under BSD-2-Clause license.

Dependency Version Author

Bio-Formats 6.5.1 Linkert et al.14

CLIJ2 2.0.0.14 Haase et al.1

Feature_Detection 2.0.2 Fiji.sc

FeatureJ 2.0.0 Erik Meijering15

Flexmark 0.62.2 Vladimir Schneider

Guava 26.0-jre Google Inc.

ImageJ 2.1.0 Rueden et al.16

ImageScience 3.0.0 Erik Meijering

ImgLib2 2.0.0-beta-46 Pietzsch et al.17

Jackson 2.11.0 FasterXML

Javaluator 3.0.3 Jean-Marc Astesana

JFreeChart 1.5.0 JFree.org

JFreeSVG 3.4 JFree.org

JGraphT 1.4.0 Barak Naveh

JUnit 5.7.0 JUnit Team

Jython 2.7.2 Jython Project

MorphoLibJ 1.4.1 Legland et al.18

MPICBG 1.3.0 Stephan Saalfeld

MSLinks 1.0.5 Dmitrii Shamrikov

MTrackJ 1.5.4 Erik Meijering

Multi-Template-Matching - Thomas, Gehrig19

OMERO 5.5.8 Allan et al.2

RandomJ 2.0.0 Erik Meijering

Reflections 0.9.12 ronmamo

Scijava 29.2.1 Rueden et al.20

SLF4J 1.7.9 QOS.ch

SwingX 1.6.1 SwingLabs

109 CHAPTER 4. MANUSCRIPTS

Trove4J 3.0.3 Rob Eden

Apache Commons Exec 1.3 The Apache Software
Foundation

Apache Commons Compress 1.9 The Apache Software
Foundation

JNA 4.5.2 Timothy Wall, Matthias
Bläsing

Supplementary Table 5.1 | List of libraries used by JIPipe.

5.2 JIPipe system requirements
JIPipe was designed to run on any operating system supported by ImageJ and tested on Linux (Ubuntu
22.04), Windows (Windows 10), and macOS (macOS Sierra 10.12.6). We must note that due to our
limited access to test MacOS, we can’t ensure that all features will work as expected on Apple
computers. We are open to contributions from the community. We recommend running our software
on hardware with at least 8 GB of system memory and on a 64-bit operating system. To execute all
example pipelines provided with this manuscript, at least 16 GB of memory are required. To utilize
GPU processing functionality provided by CLIJ2, a graphics card supporting OpenCL 1.2 or higher and
capacity to store the analyzed images must be available.

6 References
1. Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5–6

(2020).

2. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat.

Methods 9, 245–253 (2012).

3. Svensson, C. M. et al. Coding of Experimental Conditions in Microfluidic Droplet Assays Using

Colored Beads and Machine Learning Supported Image Analysis. Small 15, 1802384 (2019).

4. Mahler, L. et al. Enhanced and homogeneous oxygen availability during incubation of

microfluidic droplets. RSC Adv. 5, 101871–101878 (2015).

5. Zang, E. et al. Real-time image processing for label-free enrichment of Actinobacteria cultivated

in picolitre droplets. Lab. Chip 13, 3707–3713 (2013).

6. Cseresnyes, Z., Kraibooj, K. & Figge, M. T. Hessian-based quantitative image analysis of host-

pathogen confrontation assays. Cytometry A 93, 346–356 (2018).

7. Muljajew, I. et al. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of

Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 15, 12298–12313 (2021).

8. Hassan, M. I. A. et al. The geographical region of origin determines the phagocytic vulnerability

of Lichtheimia strains. Environ. Microbiol. 21, 4563–4581 (2019).

CHAPTER 4. MANUSCRIPTS 110

9. Cseresnyes, Z., Hassan, M. I. A., Dahse, H.-M., Voigt, K. & Figge, M. T. Quantitative Impact of Cell

Membrane Fluorescence Labeling on Phagocytosis Measurements in Confrontation Assays.

Front. Microbiol. 11, 1193 (2020).

10. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular

segmentation. Nat. Methods 18, 100–106 (2021).

11. Büttner, H. et al. Bacterial endosymbionts protect beneficial soil fungus from nematode attack.

Proc. Natl. Acad. Sci. U. S. A. 118, 2110669118 (2021).

12. Klingberg, A. et al. Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft

Size in Nephritic Kidneys Using Lightsheet Microscopy. J. Am. Soc. Nephrol. JASN 28, 452–459

(2017).

13. Gerst, R., Medyukhina, A. & Figge, M. T. MISA++: A standardized interface for automated

bioimage analysis. SoftwareX 11, (2020).

14. Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–

782 (2010).

15. Meijering, E. FeatureJ. https://imagescience.org/meijering/software/featurej/.

16. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC

Bioinformatics 18, 529 (2017).

17. Pietzsch, T., Preibisch, S., Tomančák, P. & Saalfeld, S. ImgLib2—generic image processing in Java.

Bioinformatics 28, 3009–3011 (2012).

18. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: Integrated library and plugins for

mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).

19. Thomas, L. S. V. & Gehrig, J. Multi-template matching: a versatile tool for object-localization in

microscopy images. BMC Bioinformatics 21, 44 (2020).

20. Rueden, C., Schindelin, J., Hiner, M. & Eliceiri, K. SciJava Common [Software]. (2016).

111 CHAPTER 4. MANUSCRIPTS

Manuskript Nr. 3

Titel des Manuskriptes: Bacterial endosymbionts protect beneficial soil fungus from nematode
attack

Autoren: Hannah Büttner, Sarah P. Niehls, Koen Vandelannoote, Zoltán Cseresnyés, Oliver
Sommerfeld, Benjamin Dose, Ingrid Richter, Ruman Gerst, Marc Thilo Figge, Timothy P. Stinear,
Sacha J. Pidot, Christian Hertweck

Bibliographische Informationen: Büttner, H., Niehs, S. P., Vandelannoote, K., Cseresnyés, Z.,
Dose, B., Richter, I., ... & Hertweck, C. (2021). Bacterial endosymbionts protect beneficial soil
fungus from nematode attack. Proceedings of the National Academy of Sciences, 118(37)

Der Kandidat / Die Kandidatin ist (bitte ankreuzen)

☐ Erstautor/-in, ☐ Ko-Erstautor/-in, ☐ Korresp. Autor/-in, ☒ Koautor/-in.

Status: Veröffentlicht in Proceedings of the National Academy of Sciences

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation

Autor/-in Konzeptionell Datenanalyse Experimentell Verfassen des

Manuskriptes
Bereitstellung
von Material

Hannah Büttner

Sarah P. Niehls

Koen
Vandelannoote

Zoltán
Cseresnyés

50 % 60 % 60 % 50 % 0 %

Oliver
Sommerfeld

Benjamin Dose

Ingrid Richter

Ruman Gerst 20 % 30 % 30 % 20 % 0 %

Marc Thilo Figge 30 % 10 % 10 % 30 % 100 %

Timothy P.
Stinear

Sacha J. Pidot

Christian
Hertweck

Weitere

Summe: 100 % 100 % 100 % 100 % 100 %

In der obigen Tabelle schätzen wir lediglich den bioinformatorischen Teil (= 100%) dieser
interdisziplinären Arbeit.

_____________________ _______________________________________
Unterschrift Kandidat/-in Unterschrift Betreuer/-in (Mitglied der Fakultät)

113 CHAPTER 4. MANUSCRIPTS

4.3 Bacterial endosymbionts protect beneficial soil
fungus from nematode attack

Bacterial endosymbionts protect beneficial soil fungus
from nematode attack
Hannah Büttnera,1, Sarah P. Niehsa,1, Koen Vandelannooteb, Zoltán Cseresnyésc, Benjamin Dosea,
Ingrid Richtera, Ruman Gerstc,d, Marc Thilo Figgec,d, Timothy P. Stinearb, Sacha J. Pidotb,2,
and Christian Hertwecka,d,2

aDepartment of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI), 07745 Jena,
Germany; bDepartment of Microbiology and Immunology, Doherty Institute, Melbourne, 3000, Australia; cApplied Systems Biology Research Group, Leibniz
Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI), 07745 Jena, Germany; and dInstitute of Microbiology, Faculty of
Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany

Edited by Nancy A. Moran, The University of Texas at Austin, Austin, TX, and approved August 5, 2021 (received for review June 9, 2021)

Fungi of the genus Mortierella occur ubiquitously in soils where
they play pivotal roles in carbon cycling, xenobiont degradation,
and promoting plant growth. These important fungi are, however,
threatened by micropredators such as fungivorous nematodes, and
yet little is known about their protective tactics. We report that Mor-
tierella verticillata NRRL 6337 harbors a bacterial endosymbiont that
efficiently shields its host from nematode attacks with anthelmintic
metabolites. Microscopic investigation and 16S ribosomal DNA analysis
revealed that a previously overlooked bacterial symbiont belong-
ing to the genusMycoavidus dwells in M. verticillata hyphae. Met-
abolic profiling of the wild-type fungus and a symbiont-free strain
obtained by antibiotic treatment as well as genome analyses
revealed that highly cytotoxic macrolactones (CJ-12,950 and CJ-
13,357, syn. necroxime C and D), initially thought to be metabolites
of the soil-inhabiting fungus, are actually biosynthesized by the endo-
symbiont. According to comparative genomics, the symbiont belongs
to a new species (CandidatusMycoavidus necroximicus) with 12%of its
2.2 Mb genome dedicated to natural product biosynthesis, including
the modular polyketide-nonribosomal peptide synthetase for necrox-
ime assembly. Using Caenorhabditis elegans and the fungivorous nem-
atode Aphelenchus avenae as test strains, we show that necroximes
exert highly potent anthelmintic activities. Effective host protection
was demonstrated in cocultures of nematodes with symbiotic and
chemically complemented aposymbiotic fungal strains. Image analysis
andmathematical quantification of nematodemovement enabled eval-
uation of the potency. Our work describes a relevant role for endofun-
gal bacteria in protecting fungi against mycophagous nematodes.

natural products | symbiosis | microbial interactions

Ahealthy soil nourishes plants and animals, purifies water and
air, and promotes sustainable agriculture. Characteristic for

highly complex and competitive soil ecosystems are the frequent
and direct interactions between all soil-dwelling microorganisms,
animals, and plants (1, 2), all of which need to be provided with
minerals and carbon sources. Thus, carbon cycling, mainly pro-
moted by fungal saprophytes and decomposers that release nu-
trients from decaying matter, plays a pivotal role for soil health
(3, 4). Fungi belonging to the genus Mortierella are the most
common soil-dwelling fungi, ubiquitously distributed in all parts of
the world, inhabiting highly diverse niches including the rhizo-
sphere and plant tissues (5–9). Owing to their ability to degrade
biopolymers as well as xenobiotics, they not only deliver energy-
rich carbon sources but also clear the environment from pollutants
(10, 11). Typically associated with healthy soils, Mortierella species
are recognized as valuable plant growth–promoting fungi in agri-
culture (9, 12).
Even so, all fungi, including Mortierella species, are threatened

by micropredators such as nematodes (13–15). In order to op-
pose these predators, fungi have developed a diverse set of de-
fense strategies. These include the production of toxic proteins
and nematocidal natural products, hyphal piercing, trapping, egg

parasitism, and endoparasitism (13, 16). Information on defense
strategies employed by Mortierella species against nematodes is,
however, scarce. It is known that Mortierella globalpina traps
nematodes by means of its hyphae and penetrates the nematode’s
cuticula. In this way,M. globalpinamay protect its host plants from
plant-parasitic nematodes (e.g., Meloidogyne chitwoodi) (17).
Antinematode activities have been implicated for someMortierella
species (18, 19), including Mortierella alpina [against Meloidogyne
javanica or Heterodera sp. (20, 21)], but it is not a general trait of
Mortierella (21, 22). Apart from the hyphal trapping strategy, in-
sight into the molecular basis of the antinematode activities of
Mortierella is missing. Furthermore, on a more general note, it is
remarkable that thus far noMortierella secondary metabolites have
been associated with potential protective roles against nematodes.
Here, we report a so far unknown strategy of a Mortierella

species to protect itself from nematode attack. We provide evi-
dence that cytotoxic benzolactones initially isolated from fungal
cultures are in fact produced by bacterial endosymbionts that
have been overlooked thus far. We also show that the bacteria
dwelling in the fungal hyphae protect their host from predatory
nematodes.

Significance

Soil is a complex and competitive environment, forcing its in-
habitants to develop strategies against competitors, predators,
and pathogens. Identifying and understanding the molecular
mechanisms has translational value for medicine, ecology, and
agriculture. In this study, we show that a member of important
soil-dwelling fungi (Mortierella) forms a tight alliance with
toxin-producing bacteria (Mycoavidus) that live within the
fungal hyphae and protect their host from nematode attack.
This discovery is relevant since Mortierella species correlate
with healthy soils and are used as plant growth–promoting
fungi in agriculture. Unraveling an ecological role for fungal
endosymbionts in Mortierella, our results contribute to the
understanding of a mainspring in fungal–endobacterial sym-
bioses and open the possibility for the development of new
biocontrol agents.

Author contributions: H.B., S.P.N., and C.H. designed research; H.B., S.P.N., K.V., Z.C., B.D.,
I.R., R.G., and S.J.P. performed research; H.B., S.P.N., K.V., Z.C., B.D., I.R., R.G., M.T.F., T.P.S.,
and S.J.P. analyzed data; and H.B., S.P.N., S.J.P., and C.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1H.B. and S.P.N. contributed equally to this work.
2To whom correspondence may be addressed. Email: christian.hertweck@leibniz-hki.de or
sacha.pidot@unimelb.edu.au.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2110669118/-/DCSupplemental.

Published September 9, 2021.

PNAS 2021 Vol. 118 No. 37 e2110669118 https://doi.org/10.1073/pnas.2110669118 | 1 of 8

M
IC
RO

BI
O
LO

G
Y

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Se
pt

em
be

r 1
0,

 2
02

1

CHAPTER 4. MANUSCRIPTS 114

Results and Discussion
Mortierella Fungus Harbors Bacterial Endosymbionts Producing Toxic
Macrolactones. We reasoned that benzolactones CJ-12,950 and
CJ-13,357 (Fig. 1A) (23) from cultures of Mortierella verticillata
[synonym Podila verticillata (24)] could play a role as nematode
defense metabolites. Although the initial report on CJ-12,950 and
CJ-13,357 only stated that these compounds enhance the expres-
sion of the low-density lipoprotein receptor in human hepatocytes
(23), they share the benzolactone enamide architecture with
structurally related vATPase inhibitors (25, 26). Moreover, the
architectures of CJ-12,950 and CJ-13,357 specifically resemble
those of Burkholderia sp. strain B8 produced necroximes A to D (1
to 4), which proved to be cytotoxic (27). Since only the two-
dimensional structures of CJ-12,950 and CJ-13,357 had been
reported (23), we assigned their absolute configurations by ex-
amining the structural relationships with necroximes C and D.
Optical rotation comparison, high-performance liquid chroma-
tography (HPLC)–based coelution experiments and comparison
of tandem mass spectrometry (MS/MS) fragmentation indicated
that necroxime D (4) is identical to CJ-12,950, and necroxime C
(3) is identical to CJ-13,357 (Fig. 1B and SI Appendix, Table S4).
These assignments were corroborated by comparison of the NMR
spectra of purified metabolites (SI Appendix, Table S9).
Given the bacterial origin of the necroximes (27) and related

benzolactones (25, 28–30), we questioned the biosynthetic capa-
bility of M. verticillata and sought to identify the true producer.
Since several Mortierella spp. have been reported to live in sym-
biosis with bacteria (31, 32), we suspected an endosymbiont to be
the true source of 3 and 4. Yet, a 2018 report investigating the
prevalence of Burkholderiaceae-related bacteria withinMortierella
spp. stated that strain NRRL 6337 was devoid of endosymbionts
(32). Nonetheless, we re-examined the same strain for endosym-
bionts by staining fungal hyphae with the chitin-binding Calcofluor
White dye, and tentative endobacteria with the nucleic acid dye
Syto9 Green (Fig. 1C). Fluorescence microscopy revealed the
presence of endosymbiotic organisms inM. verticillataNRRL 6337
(SI Appendix, Fig. S1).
To identify the observed bacterial endosymbionts, we cut a

small piece of fungal mycelium and extracted holobiont DNA,
followed by PCR amplification of the 16S ribosomal DNA
(rDNA) region using universal primers. Sequencing of the 16S
rDNA region (SI Appendix, Table S1) and BLAST analysis in-
dicated that the symbiont of M. verticillata NRRL 6337 is a
Mycoavidus species. Notably, members of this genus have been
reported as symbionts of soil-dwelling fungi (32). So far, the full
genomes of only three Mycoavidus cysteinexigens strains from
Mortierella elongata andMortierella parvispora have been sequenced
(31, 33–35). PCR-amplified bacterial 16S rDNA sequences from
other Mortierella fungi, however, revealed further Mycoavidus en-
dosymbionts with three phylogenetically distant clades (Mortierella-
associated Burkholderia-related endosymbiont [MorBRE] groups
A to C) (32). Through phylogenetic analysis, we found that the
Mycoavidus symbiont of M. verticillata NRRL 6337 falls into
MorBRE group A (Fig. 1D and SI Appendix, Fig. S3) comprising
symbionts of Mortierella humilis, Mortierella gamsii, Mortierella
basiparvispora, and M. elongata (M. cysteinexigens). To better un-
derstand the occurrence of Mycoavidus endosymbionts in M. ver-
ticillata strains, we investigated five additional M. verticillata strains
for the presence of endosymbionts. Amplification of the 16S rDNA
regions from gDNA of symbionts of these strains revealed a con-
served occurrence of Mycoavidus endosymbionts in M. verticillata
strains. Interestingly, these additional endosymbionts all fall into
another phylogenetic group together with Burkholderia sp. strain
B8. Furthermore, analysis of the metabolic profiles of the respec-
tive fungi did not show any production of necroximes (Fig. 1 D and
E). This finding shows that endosymbionts may frequently occur in

Mortierella and other species of the order Mucorales, but they can
be phylogenetically different.
To clarify whether bacterial endosymbionts are the true pro-

ducers of 3 and 4, we aimed at curing M. verticillata NRRL 6337
of its symbiont through the addition of antibiotics (36). Over the
course of several months, we subcultivated the fungal strain on
agar plates containing kanamycin, ciprofloxacin, or chloram-
phenicol. During treatment, changes of the fungal growth were
noticeable (Fig. 1F). Finally, we confirmed the absence of the
symbionts by fluorescence staining, microscopic inspection, and
PCR analysis (SI Appendix, Figs. S2 and S4). The metabolic
profiling of the symbiont-free fungal strain by liquid chroma-
tography (LC) combined with high-resolution electrospray ioni-
zation revealed the complete absence of 3 and 4 (Fig. 1B). These
findings indicate that CandidatusMycoavidus necroximicus is the
true producer of the benzolactones.

Ca. M. necroximicus Dedicates 12% of Its Genome to Secondary
Metabolism. To gain insight into the symbiont’s biosynthetic po-
tential, with particular focus on the molecular basis of necroxime
biosynthesis, we aimed at sequencing the genome of the endo-
symbiont. Attempts to isolate and cultivate the endosymbiont in
the absence of the fungal host, however, proved to be futile.
Methods previously used to axenically cultivate similar fungal
endobacteria did not enable growth of the endosymbionts (33,
37), indicating a strong dependence of the bacterial symbiont on
the host environment. Thus, we sought to enrich the symbiotic
bacteria for DNA isolation. Initially, physical disruption of the
host’s mycelium resulted in high levels of contamination with
fungal DNA, which complicated the assembly of the endosym-
biont’s genome. Eventually, we succeeded in retrieving a bacte-
rial cell pellet by filtration and centrifugation of the turbid
supernatant of shaking cultures in baffled flasks and isolated the
genomic DNA from resuspended bacteria.
The genome of the bacterial endosymbiont was sequenced

using a combination of Oxford Nanopore MinION and Illumina
NextSeq sequencing, and both data sets were used to generate a
hybrid genome assembly. Of the 118 contigs, a single 2.4 Mb
contig of putative bacterial origin was identified through ho-
mology searches using the Mycoavidus-like 16S rDNA sequence
previously amplified from M. verticillata NRRL 6337. Following
trimming of overlapping ends (suggesting a circular chromo-
some) the final 2.2 Mb contig was found to contain 1,768 CDS, 6
rRNAs, 42 tRNAs, and a GC content of 50.6% (genome ac-
cession number: PRJNA733818). The 16S rDNA sequence of
the new strain has 98.82% nucleotide identity toM. cysteinexigens
B1-EBT (33). Even so, genomic comparisons showed an average
nucleotide identity of only 81.85% across the two genomes. By
current standards for molecular species discrimination, the newly
identified Mortierella endosymbiont should be considered a new
species (Ca. M. necroximicus) (38, 39).
By comparative genomic analyses, we noted that the genomes

of the two endofungal strains AG77 and B1-EBT isolated from
M. elongata (33, 35) are 400 to 500 kb larger than the genome of
Ca. M. necroximicus. Only the genome of strain B2-EB isolated
from M. parvispora (34) is smaller (∼500 kb) than the genome of
Ca. M. necroximicus (2.2 Mb). When investigating shared protein
orthologs, we noted that a core genome encoding 1,164 proteins
exists among the four genomes at the 70% identity level (Fig. 2A).
However, a further all-versus-all comparison showed B1-EBT and
AG77 to be the most closely related as they share ∼75% of their
deduced proteome. The B2-EB and Ca. M. necroximicus strains
are more distantly related to B1-EBT and AG77, as well as each
other, with only a small number of proteins shared exclusively with
either B1-EBT (20 and 17 proteins, respectively) or AG77 (17 and
22 proteins, respectively) (Fig. 2B).
Whereas biosynthetic gene clusters (BGCs) are present in the

genomes of all four studied Mortierella symbionts, antiSMASH

2 of 8 | PNAS Büttner et al.
https://doi.org/10.1073/pnas.2110669118 Bacterial endosymbionts protect beneficial soil fungus from nematode attack

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Se
pt

em
be

r 1
0,

 2
02

1

115 CHAPTER 4. MANUSCRIPTS

analysis (40) revealed that the biosynthetic potential for sec-
ondary metabolites is by far the greatest in Ca. M. necroximicus
(Fig. 2C). Despite the relatively small genome for Mycoavidus
standards, ∼12% of its protein-encoding capacity is dedicated to
natural product biosynthesis. We identified nine nonribosomal
peptide synthetase (NRPS) gene clusters, two polyketide syn-
thase (PKS) gene clusters, two hybrid PKS/NRPS gene clusters,

and five other BGCs (Fig. 2D). Notably, several large PKS and
NRPS gene loci present in the Ca. M. necroximicus genome are
absent in the genomes of strains B1-EBT, B2-EB, and AG77
(Fig. 2B). This BGC list includes a cryptic BGC (Mcyst_0009–0017)
encoding a PKS/NRPS hybrid that shows high similarity to the
necroxime assembly line from Burkholderia sp. strain B8 (97%
coverage, ∼70% amino acid identity), which has been unequivocally

O

NH

20 21

N
O CH3

O

OH

O
HO

OOH Oximidine III (5)
Pseudomonas sp.

Lobatamide A (6)
Gynuella sunshinyii
Aplidium lobatum

C

1
ytisnetnI

×
01

8

NRRL 6337

4

CBS 346.66

CBS 220.58

CBS 225.35

NRRL 6369

10 11

CBS 315.52

M
E

B

A

F

M. verticillata
NRRL 6337

Cured fungus

1
ytisnetnI

×
01

8

t [min]

Strain B8 WT

M. verticillata

Cured M. vert.

1 43

8 10

t [min]

M. verticillata
NRRL 6337

5 μm

Burkholderia sp. strain B8
Endobacterium of R. microsporus

Necroxime A (1): R=L-lys
Necroxime B (2): R=L-lys
Necroxime C (3): R=H; 20E-Isomer
Necroxime D (4): R=H

CH3

O OH

O

NH

20 21

N
O CH3

O

OR

O
HO

OOH

CH3

O

O

NH
N
O

CH3

O

OOH

CH3
O

O

CH3

CJ-13,357 (3): 20E-Isomer
CJ-12,950 (4)
Mortierella verticillata
NRRL 6337

O

NH
N
O CH3

O

OOH

O

D
Ca. Glomeribacter gigasporum

Burkholderiacea bacteria

Mycetohabitans endofungorum
Ca. Vallotioa virida
Burkholderia spp. (free living)
Limnobacter spp.

Chitinimonas spp.
Polynucleobacter spp.

Cupriavidus spp.
Ralstonia spp.

Collimonas spp.
Janthinobacterium spp.

Wolbachia pipientis

MorBRE group B

MorBRE group C

BRE M. verticillata NRRL 6337
MorBRE group A

Mycetohabitans rhizoxinica
BRE M. verticillata (CBS 346.66/
CBS 315.52/CBS 225.35/CBS 220.58)
Burkholderia sp. strain B8

Fig. 1. Bacterial origin of cytotoxic benzolactones from M. verticillata cultures. (A) Cytotoxic lactone compounds assigned to endofungal symbionts from the
fungus R. microsporus (1–4), M. verticillata (3–4), Pseudomonas sp. (5), and a tunicate and the bacterium Gynuella sunshinyii (6). (B) Metabolic profiles of
extracts from Burkholderia sp. strain B8 and M. verticillata NRRL 6337 as symbiont or cured strain as total ion chromatograms in the negative mode. (C)
Fluorescence micrograph depicting endosymbionts living in the fungal hyphae; staining with Calcofluor White and Syto9 Green. (D) Phylogenetic relation-
ships ofMortierella symbionts, Burkholderia sp. strain B8, and other bacteria based on 16S rDNA. BRE, Burkholderia-related endosymbiont ofMortierella spp.
(E) Metabolic profiles of extracts from M. verticillata NRRL 6337 and other necroxime-negative M. verticillata strains analyzed for endosymbionts in this study
as total ion chromatograms in the negative mode. M, medium component. (F) Growth of symbiotic M. verticillata NRRL 6337 in comparison to the
cured strain.

Büttner et al. PNAS | 3 of 8
Bacterial endosymbionts protect beneficial soil fungus from nematode attack https://doi.org/10.1073/pnas.2110669118

M
IC
RO

BI
O
LO

G
Y

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Se
pt

em
be

r 1
0,

 2
02

1

CHAPTER 4. MANUSCRIPTS 116

C

A B

D

E

Fig. 2. Comparative genomic analyses ofMycoavidus spp. (A) Number of orthologous proteins among the fourMycoavidus strains at 70% identity. (B) Circos
plot of shared protein orthologs, and secondary metabolite loci (detected by antiSMASH v5) in Mycoavidus genomes. Outer blocks (orange, brown, yellow,
green) represent genome sizes, while the inner blocks represent genomic positions of secondary metabolite loci. Lines linking the three genomes show
position of genes whose proteins are orthologous at 70% identity. Depicted are the genome sequences of M. cysteinexigens strains AG77, B1-EB, B2-EB, and
Ca. M. necroximicus (Ca. M. nec.). (C) Number of gene clusters putatively coding for natural products in Mycoavidus spp. detected by antiSMASH and by
manual assignment. (D) BGCs and their encoded assembly lines identified from the endofungal Ca. M. necroximicus are displayed. A, adenylation; AT,
acyltransferase; C, condensation; DH, dehydratase; E, epimerization; Gnat, GCN5-related N-acetyltransferase; KR, ketoreductase; KS, ketosynthase; MT,
methyltransferase; OX, oxygenase; TE, thioesterase domains. Acyl carrier (light blue) and peptidyl carrier proteins (dark blue) are shown as circles without
designators. (E) Homologous benzolactone BGCs in the genome of Burkholderia strain B8 and Ca. M. necroximicus.

4 of 8 | PNAS Büttner et al.
https://doi.org/10.1073/pnas.2110669118 Bacterial endosymbionts protect beneficial soil fungus from nematode attack

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Se
pt

em
be

r 1
0,

 2
02

1

117 CHAPTER 4. MANUSCRIPTS

linked to necroxime biosynthesis by targeted gene knockouts
(Fig. 2E) (27). The only major difference between the two BGCs is
the NRPS gene necA, which is missing in the genome of Ca. M.
necroximicus. This finding is in full agreement with the current
biosynthetic model, since NecA is responsible for the attachment of
the peptide side chain in 1 (Fig. 1A) (27), which is absent in 3 and 4.
Furthermore, the architecture of the encoded PKS/NRPS modules
is perfectly in line with the biosynthesis of the benzolactone
enamide backbone of 3 and 4. Based on these in silico predictions,
we inferred that this PKS/NRPS hybrid gene cluster codes for the
biosynthesis of 3 and 4 (SI Appendix, Figs. S6 and S8). Together
with the metabolic profiling of the cured fungal strain, these data
indicate that the bacterial endosymbionts, not the fungus, are the
true producers of the benzolactones 3 and 4. CJ-12,950 and CJ-
13,357 are thus important additions to the small group of natural
products that were believed to be fungal metabolites but are actually
produced by bacterial endosymbionts; rhizoxins (41) and rhizonins
(42) from symbionts of Rhizopus microsporus (43), and endolides
from Stachylidium bicolor (44). From an ecological viewpoint, it is
remarkabe that endosymbiotic bacteria were identified as the true
producers of the virulence factor of the rice-seedling blight fungus
R. microsporus (36, 37, 45). Given the different ecological context of
Mortierella, however, we assumed that the necroximes may have
another function in microbial interactions.

Necroximes Protect the Fungal Host from Nematode Attacks. To
learn more about the potential role of necroximes (3 and 4) in
the ecological context of the Mortierella–Mycoavidus symbiosis,
we investigated whether these toxins could impair the growth of, or
even kill, competitors. Therefore, we considered that the common
natural habitat ofMortierella species, includingM. verticillata NRRL
6337, is soil, and that microbial survival in the soil environment is
not only determined by the capacity to grow under harsh conditions
but also by the ability to defend oneself from (micro)predators (46).
Among the most abundant fungal predators are nematodes, which
share the same soil habitat as Mortierella (47).
To determine if 3 and 4 or any other endobacteria-derived

substance have anthelmintic activity, we first performed a via-
bility assay against the model organism, Caenorhabditis elegans
(48). We cultivated both cured (Mycoavidus-free) and symbiotic
M. verticillata NRRL 6337 on potato dextrose agar (PDA agar).
Cultures were extracted, and each extract was fractionated by
preparative HPLC. The individual fractions (F1 to F9) were
subsequently tested against C. elegans. Anthelmintic activity in this
assay was determined by the ability of C. elegans to feed on a
supplied Escherichia coli food source in the presence of the dif-
ferent fractions. Consumption of bacteria indicates unimpeded
nematodes, whereas growth of E. coli indicates that the nematodes
are negatively affected by the added substances (Fig. 3A). Notably,
all fractions of the extract obtained from the cured strain culture
were found to be inactive in the C. elegans assay. In contrast, we
observed a marked nematocidal activity of fraction 6 from the
extract of the symbiotic fungus. By LC/MS measurements we
confirmed the presence of 3 and 4 in the active fraction. In order
to determine the anthelmintic potency of the major metabolite 4,
we performed the viability assay against C. elegans using increasing
concentrations of the pure substance and determined an inhibitory
concentration at 50% (IC50) value of 11.3 μg · mL−1 (24.66 μM)
(Fig. 3B). Interestingly, the amount of isolated necroximes from
fungal cultures grown on agar plates is ∼11 μg · mL−1. Assuming
that the actual concentration in fungal hyphae is slightly higher
due to an uneven diffusion into the agar and some loss during the
purification steps, we conclude that the concentrations inside and
around the fungal mycelium are sufficiently high to fully protect it
from mycophagous nematodes.
In order to corroborate a potential host-protective role of the

symbiont-derived toxin, we next focused on a fungivorous nem-
atode. Therefore, we selected Aphelenchus avenae, a predator

using a stylet to feed on fungi, which pierces the fungal cell wall
and allows the fungivore to ingest the fungal cytoplasm (49, 50).
Sharing the same soil habitat, A. avenae represents a realistic
predator of Mortierella spp. (51). To investigate the effects of sym-
biotic and cured M. verticillata strains on the feeding behavior and
survival of A. avenae, we determined the number of animals that
were harvested from fungal–nematodal cocultures. In addition, we
compared the mobility ratios of the nematodes in correlation to the
presence or absence of the bacterial symbiont. As a control, we
employed the symbiont-bearing, but necroxime-negative, M. verti-
cillata strain CSB 225.35 (Fig. 1E), thus ruling out an influence
solely based on the presence of bacterial symbionts.
To determine nematodal propagation rates, we inoculated

plate cultures of symbiotic and cured fungi with A. avenae and
cocultivated both organisms for 17 to 24 d (three biological trip-
licates). Subsequently, nematodes were isolated from the coculti-
vation plates by Baermann funneling (52), transferred onto water-
agar plates, and counted by stereomicroscopic visualization. We
found that significantly fewer nematodes are able to grow in the
presence of the necroxime-producing endosymbionts (Fig. 3C and
SI Appendix, Fig. S9 and Tables S5 and S6).
To scrutinize the effect of the toxin on the fitness of the fun-

givorous nematodes, we harvested the animals from cocultures
and determined their movement—and thus the mobility ratios—
by image analysis and mathematical quantification (Fig. 3D).
Using stereoscopic time series to track their movement, we com-
pared the area covered by each moving nematode during the time
series to the area covered solely by its body without movement,
allowing us to differentiate active (living) from inactive (dead or
paralyzed) animals. Analyzing a minimum of 176 nematodes from
three independent experiments, we observed a significant de-
crease in the mobility ratio of nematodes grown on symbiotic M.
verticillata NRRL 6337 compared to cured NRRL 6337 cultures
and to necroxime-negative CSB 225.35 cultures (Fig. 3E and
SI Appendix, Fig. S10 and Tables S7 and S8).
HPLC analyses of the plate extracts detected necroximes only

in symbiotic cultures of NRRL 6337 but not in cured strains or
CBS 225.35, correlating once again the toxins with reduced
numbers and lower fitness of the nematodes. To unambiguously
assign the nematocidal activity in the propagation assay to the
necroximes, we repeated the A. avenae assay with the cured
Mortierella strain and chemically complemented the major toxin.
Specifically, we overlaid the cured strain NRRL 6337 with so-
lutions of 4 in increasing concentrations (25 μM [IC50], 50 μM,
109 μM, and 219 μM). We then compared A. avenae propagation
in necroxime-complemented cultures to untreated cured as well
as symbiotic fungi by microscopic examination after two weeks of
coincubation. For cultures supplemented with 25 μM or 50 μM
of 4, we noted a moderate reduction of nematode propagation,
whereas in cultures supplemented with 109 μM or 219 μM of 4
the presence of nematodes in the fungus was abolished (Fig. 3F
and SI Appendix, Figs. S11 and S12). The elevated concentrations
compared to the IC50 value can be explained due to an uneven
distribution of 4 into deeper layers of the hydrophobic fungal
colony and the ongoing growth of fungal hyphae, which were not
wetted with toxin solution. Nonetheless, these experiments un-
ambiguously verified that the chemical complementation restores
the anthelmintic effect. Thus, we uncovered an important role of a
natural product in the complex tripartite interplay of symbiont,
host, and (micro)predator (Fig. 3G).

Conclusions
In this study, we uncovered a previously overlooked bacterial
endosymbiont that protects the important soil-dwelling fungus
M. verticillata from a fungivorous nematode. Comparative ge-
nomics indicate that the yet unculturable bacterial symbionts
belong to a new species that is endowed with a high biosynthetic
potential. Through metabolic profiling of the symbiotic wild type

Büttner et al. PNAS | 5 of 8
Bacterial endosymbionts protect beneficial soil fungus from nematode attack https://doi.org/10.1073/pnas.2110669118

M
IC
RO

BI
O
LO

G
Y

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Se
pt

em
be

r 1
0,

 2
02

1

CHAPTER 4. MANUSCRIPTS 118

A B

F

c (Necroxime D) [μg mL-1]
50

F1 F9F8F7F6F5F3F2 F4

0 10 20 30 40
0

50

100

150

%
 s

ta
rti

ng
 O

D
60

0
E.

 c
ol

i

M. vert.
symbiont

M. vert.
cured

*

NRRL 6337

%
 s

ta
rti

ng
 O

D
60

0
E.

 c
ol

i

t [min]
0.01 0.1 1 10 100 1000
0

50

100

150

NRRL 6
33

7 s
ym

.

NRRL 6
33

7 c
ur.

CBS 22
5.3

5 s
ym

.

CBS 22
5.3

5 c
ur.

0

100

200

300

re
la

tiv
e

ne
m

at
od

e
nu

m
be

r [
%

]

*
C D E

M. verticillata
NRRL 6337

Candidatus
M. necroximicus

A. avenae

Symbiosis

Predatory

G

NRRL 6337
cured

1.5 mm
NRRL 6337
cured + 4

NRRL 6337
symbiont

1.5 mm

0.0

paralyzed

0.5

1.0

1.5

liv
e/

de
ad

 ra
tio

 o
f n

em
at

od
es

NRRL 6
33

7 s
ym

.

NRRL 6
33

7 c
ur.

CBS 22
5.3

5 s
ym

.

CBS 22
5.3

5 c
ur.

1.5 mm

Frame 1 Frame 26

Raw image

Hessian

Li threshold
w/o outliers

Filtered outlines

Active
nematode
MR: 2.04 ± 0.38

Inactive
nematode
MR: 1.24 ± 0.12

1 mm live

Fig. 3. Nematocidal activity of symbiont-derived toxins. (A) Viability assay of C. elegans in presence of extract fractions of symbiotic and cured M. verticillata
NRRL 6337. HPLC profiles of extracts are shown with corresponding effect on nematodes, measured as effect on the E. coli optical density (OD). When
nematode growth is impaired by the fraction, E. coli cells are not consumed, and thus the OD600 is not altered (error bars represent mean of three biological
replicates). The red asterisk represents 4. (B) Toxicity screening of 4 against C. elegans. The red line marks IC50 at 11.3 μg · mL−1 (24.66 μM; 95% CI, 21.45 to
28.37 μM; error bars as mean of five biological replicates). (C) Nematode counts from propagation assay of M. verticillata and A. avenae cocultures. Bars
represent relative nematode numbers compared to the mean of the nematode count from cured M. verticillata NRRL 6337 cultures. cur., cured; sym.,
symbiotic. *P < 0.02; ***P < 0.001; ****P < 0.0001. Data represent three biological replicates with three technical replicates each. (D) Workflow of image
analysis and mathematical evaluation of A. avenaemobility in fungal–nematodal coincubations. Processing of time series is demonstrated by one time frame.
Exemplary images of nematodes from two time frames (frame 1 and 26) are shown to illustrate differences in motility. Results of calculated mobility ratios
(MR) were used for live or paralyzed/dead categorization. (E) Results of image analysis and mathematical quantification of nematode movement. Bars show
ratio between moving/living nematodes and paralyzed/dead nematodes, which were harvested from cocultures of A. avenae with symbiotic M. verticillata
NRRL 6337 cultures, cured NRRL 6337 cultures, or CSB 225.35 cultures. Numbers and error bars were calculated from minimal 176 worms from three biological
replicates. (F) Stereomicroscopic images and schematic picture of chemical complementation assay with a magnitude of 25×. Sample of nematodes harvested
from plates containing symbiotic, cured, or cured and with 4 chemically complemented M. verticillata NRRL 6337 cultures. (G) Schematic summary of tripartite
interaction between fungal host, bacterial endosymbiont, and mycophagous nematodes.

6 of 8 | PNAS Büttner et al.
https://doi.org/10.1073/pnas.2110669118 Bacterial endosymbionts protect beneficial soil fungus from nematode attack

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Se
pt

em
be

r 1
0,

 2
02

1

119 CHAPTER 4. MANUSCRIPTS

and cured aposymbiotic fungi, we provide evidence that the
endofungal bacteria are the true producers of highly toxic macro-
lides that were previously believed to be fungal metabolites. Im-
portantly, these compounds (necroximes) efficiently protect the
host from nematode attack, as demonstrated by coculture experi-
ments, chemical complementation, and image analyses. Thus, this
work not only reveals an ecological role of endofungal bacteria but
also introduces a strategy to ward off micropredators. Conse-
quently, the bacterial biosynthesis of necroximes provides an ad-
vantage of the fungal–bacterial alliance over other aposymbiotic or
necroxime-negative symbioticM. verticillata strains in the soil niche.
Beyond inspiring the discovery of related tactics in symbioses, our
findings may set the basis for new biocontrol agents, with the
prospect of shielding plant hosts from plant-pathogenic nematodes.

Materials and Methods
Isolation of Natural Products. For 3 and 4 isolation, M. verticillata NRRL 6337
was cultivated on PDA plates (Bacto, BD) at 26 °C. The culture was extracted
twice with 1:1 volume of ethyl acetate overnight. The organic phase was
concentrated under reduced pressure and the residue was dissolved in
methanol. The extracts were prefractionated on an open Sephadex LH-20-
column with methanol as eluent. Necroxime-containing fractions were further
purified with a preparative HPLC under following conditions: A, H2O + 0.01%
TFA; B, methanol; and 15 to 100% B in 35 min, 15 mL · min−1 [Phenomenex,
Luna, 10 μm, C18(2), 100 Å, 250 × 21.2 mm]. NMR analysis was carried out on
a 600 MHz Avance III Ultra Shield (Bruker), and signals were referenced to
the residual solvent signal (DMSO-d6).

Identification of Endosymbionts inM. verticillata. For the preparation of cured
fungal strains, fungi were continuously subcultivated at 24 °C on PDA plates
containing 40 μg · mL−1 ciprofloxacin or 50 μg · mL−1 kanamycin for several
months. After phenotypic changes were observed by eye, an agar plate of
each fungal culture was extracted with 20 mL ethyl acetate and controlled
for the absence of 3 and 4 by LC/MS. Final verification of the cured fungal
strains was performed by fluorescence staining (Calcofluor White Stain
[Sigma] and SYTO 9 Green [Invitrogen]).

Genome Assembly for Ca. M. necroximicus. M. verticillata NRRL 6337 was
grown in MM9 medium (53) and orbitally shaken at 160 rpm and 26 °C. The
turbid supernatant, containing bacteria from disrupted hyphae, was twice
filtered through a membrane (pore diameter, 40 μm) and centrifuged
(12,000 × g, 25 °C, 10 min) until a stabile pellet occurred. The genomic DNA
was extracted with the MasterPure DNA Purification Kit (Epicentre). For
long-read sequencing on the MinION platform, DNA quality was evaluated
by pulsed-field gel electrophoresis and prepared for sequencing according
to the protocol of the Ligation Sequencing kit (Oxford Nanopore). DNA was
loaded onto a single MinION flow cell, and data were collected over a 72-h
period. DNA was prepared for sequencing on the Illumina NextSeq platform
using the Nextera XT DNA preparation kit (Illumina) with ×150 bp paired
end chemistry and with a targeted sequencing depth of >50×. Combined

MINion and Illumina sequencing data were assembled using the Unicycler
hybrid assembler (54) to form a single contig 2.2 Mb containing a 98.82%
match to the M. cysteinexigens rDNA gene. The evaluation of secondary
metabolite loci was performed with antiSMASH version 5 (55).

Nematode Assays. Liquid assays for active-fraction determination and po-
tency assessment against C. elegans were conducted as previously described
(48). For A. avenae coincubation assay, an aliquot of hyphae of each tested
Mortierella strain was transferred to a PDA plate and incubated at 24 °C
overnight. Nematodes were sterilized and starved. After one washing step
with K-medium, nematodes were resuspended in 300 μL K-medium and al-
iquots of 50 μL were distributed onto the fresh fungal cultures. Plates were
dried and controlled for living nematodes before they were incubated for 17
to 24 d at 20 °C. For the evaluation, nematodes were harvested via Baermann
funneling (56). Funneled A. avenae were transferred on 1.5% water-agar
plates containing 200 mM geneticin and 50 μg · mL−1 kanamycin overnight
and subsequently monitored with a Zeiss Axio Zoom.V16 Stereomicroscope for
worm count and bioinformatics (https://www.jipipe.org/). Remaining plates
were extracted with ethyl acetate to control the metabolite production and
processed as described before. For the A. avenae chemical complementation
assay, an aliquot of hyphae of the respective fungus was transferred into
12-well plates filled with 1 mL PDA and incubated overnight. The 4 dissolved in
200 μL 50% MeOH was applied and evaporated at room temperature.
Nematode suspensions of 50 μL were distributed onto the fungi, dried, and
coincubated for 14 d at 20 °C. For evaluation, the coculture was removed from
the well and washed in 5 mL K-medium overnight. The mixture was filtered
through miracloth (Merck) to avoid agar carryover and left at 4 °C for 1 h. The
remaining worms were transferred onto 6-well plates containing 5 mL 1.5%
water-agar with 200 mM geneticin and 50 μg · mL−1 kanamycin. After the
plates were dried, the worm count from each plate was assessed with a Zeiss
Axio Zoom.V16 Stereomicroscope.

Data Availability. Genome sequence data have been deposited in GenBank
(PRJNA733818). The 16S rDNA sequences of the Mortierella endosymbionts
were deposited at the NCBI database (BRE_MvertCBS_346.66: MZ330684;
BRE_MvertCBS_220.58: MZ330685; BRE_MvertCBS_225.35: MZ330686; BRE_
MvertCBS_315.52: MZ330687; BRE_MvertCBS_100561: MZ330688).

ACKNOWLEDGMENTS. Mortierella strains were supplied by ARS Culture Col-
lection (NRRL) and the Jena Microbial Resource Collection. C. elegans was
provided by the Caenorhabditis Genetics Center, which is funded by NIH
Office of Research Infrastructure Programs (P40 OD010440). A. avenae was
received as a kind gift from Prof. Dr. M. Künzler (ETH Zürich). We thank
E. Bratovanov (HKI) for helpful discussions. Assistance by K. Martin and S.
Linde (HKI) is gratefully acknowledged. H.B. and S.P.N. were funded by the
Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) Proj-
ect No. 239748522 SFB 1127, the Cluster of Excellence “Balance of the Micro-
verse,” and also the Leibniz Award (to C.H.). Z.C. and M.T.F. were funded by
the DFG Project No. 316213987 SFB 1278 (Z01). I.R. acknowledges financial
support from the European Union Horizon 2020 Research and Innovation
Program under the Marie Sklodowska-Curie grant agreement No. 794343.
R.G. was funded by the International Leibniz Research School for Microbial
and Biomolecular Interactions Jena.

1. N. Fierer, Embracing the unknown: Disentangling the complexities of the soil mi-
crobiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

2. R. D. Bardgett, W. H. van der Putten, Belowground biodiversity and ecosystem
functioning. Nature 515, 505–511 (2014).

3. L. Tedersoo et al., Fungal biogeography. Global diversity and geography of soil fungi.
Science 346, 1256688 (2014).

4. E. Ozimek et al., Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by
Mortierella strains promote winter wheat seedlings growth under different condi-
tions. Int. J. Mol. Sci. 19, 3218 (2018).

5. D. Zhou et al., Deciphering microbial diversity associated with Fusarium wilt-diseased
and disease-free banana rhizosphere soil. BMC Microbiol. 19, 161 (2019).

6. J. Yuan et al., Predicting disease occurrence with high accuracy based on soil mac-
roecological patterns of Fusarium wilt. ISME J. 14, 2936–2950 (2020).

7. D. Liu, H. Sun, H. Ma, Deciphering microbiome related to rusty roots of Panax ginseng
and evaluation of antagonists against pathogenic Ilyonectria. Front. Microbiol. 10,
1350 (2019).

8. S. Edgington, E. Thompson, D. Moore, K. A. Hughes, P. Bridge, Investigating the in-
secticidal potential of Geomyces (Myxotrichaceae: Helotiales) and Mortierella (Mor-
tierellacea: Mortierellales) isolated from Antarctica. Springerplus 3, 289 (2014).

9. E. Ozimek, A. Hanaka, Mortierella species as the plant growth-promoting fungi
present in the agricultural soils. Agriculture 11, 7 (2021).

10. L. Ellegaard-Jensen, J. Aamand, B. B. Kragelund, A. H. Johnsen, S. Rosendahl, Strains
of the soil fungus Mortierella show different degradation potentials for the phe-
nylurea herbicide diuron. Biodegradation 24, 765–774 (2013).

11. J. Zeng et al., Lignocellulosic biomass as a carbohydrate source for lipid production by

Mortierella isabellina. Bioresour. Technol. 128, 385–391 (2013).
12. F. Li et al., Mortierella elongata’s roles in organic agriculture and crop growth pro-

motion in a mineral soil. Land Degrad. Dev. 29, 1642–1651 (2018).
13. M. Künzler, How fungi defend themselves against microbial competitors and animal

predators. PLoS Pathog. 14, e1007184 (2018).
14. J. H. J. Leveau, G. M. Preston, Bacterial mycophagy: Definition and diagnosis of a

unique bacterial-fungal interaction. New Phytol. 177, 859–876 (2008).
15. S. Zhang, R. Mukherji, S. Chowdhury, L. Reimer, P. Stallforth, Lipopeptide-mediated

bacterial interaction enables cooperative predator defense. Proc. Natl. Acad. Sci.

U.S.A. 118, e2013759118 (2021).
16. T. Degenkolb, A. Vilcinskas, Metabolites from nematophagous fungi and nematicidal

natural products from fungi as an alternative for biological control. Part I: Metabo-

lites from nematophagous ascomycetes. Appl. Microbiol. Biotechnol. 100, 3799–3812

(2016).
17. M. J. DiLegge, D. K. Manter, J. M. Vivanco, A novel approach to determine generalist

nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent

against Meloidogyne spp. nematodes. Sci. Rep. 9, 7521 (2019).
18. O. Topalovi�c, M. Hussain, H. Heuer, Plants and associated soil microbiota coopera-

tively suppress plant-parasitic nematodes. Front. Microbiol. 11, 313 (2020).
19. W. Qiu et al., Organic fertilization assembles fungal communities of wheat rhizo-

sphere soil and suppresses the population growth of Heterodera avenae in the field.

Front. Plant Sci. 11, 1225 (2020).

Büttner et al. PNAS | 7 of 8
Bacterial endosymbionts protect beneficial soil fungus from nematode attack https://doi.org/10.1073/pnas.2110669118

M
IC
RO

BI
O
LO

G
Y

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Se
pt

em
be

r 1
0,

 2
02

1

CHAPTER 4. MANUSCRIPTS 120

20. T. A. Al-Shammari, A. H. Bahkali, A. M. Elgorban, M. T. El-Kahky, B. A. Al-Sum, The use
of Trichoderma longibrachiatum and Mortierella alpina against root-knot nematode,

Meloidogyne javanica on tomato. J. Pure Appl. Microbiol. 7, 199–207 (2013).
21. S. Meyer et al., Activity of fungal culture filtrates against soybean cyst nematode and

root-knot nematode egg hatch and juvenile motility. Nematology 6, 23–32 (2004).
22. M. K. Hasna, V. Insunza, J. Lagerlöf, B. Rämert, Food attraction and population growth

of fungivorous nematodes with different fungi. Ann. Appl. Biol. 151, 175–182 (2007).
23. K. A. Dekker et al., Novel lactone compounds from Mortierella verticillata that induce

the human low density lipoprotein receptor gene: Fermentation, isolation, structural

elucidation and biological activities. J. Antibiot. (Tokyo) 51, 14–20 (1998).
24. N. Vandepol et al., Resolving the Mortierellaceae phylogeny through synthesis of

multi-gene phylogenetics and phylogenomics. Fungal Divers. 104, 267–289 (2020).
25. M. R. Boyd et al., Discovery of a novel antitumor benzolactone enamide class that

selectively inhibits mammalian vacuolar-type (H+)-atpases. J. Pharmacol. Exp. Ther.

297, 114–120 (2001).
26. M. Pérez-Sayáns, J. M. Somoza-Martín, F. Barros-Angueira, J. M. Rey, A. García-García,

V-ATPase inhibitors and implication in cancer treatment. Cancer Treat. Rev. 35,

707–713 (2009).
27. S. P. Niehs et al., Mining symbionts of a spider-transmitted fungus illuminates un-

charted biosynthetic pathways to cytotoxic benzolactones. Angew. Chem. Int. Ed.
Engl. 59, 7766–7771 (2020).

28. Y. Hayakawa et al., Oximidine III, a new antitumor antibiotic against transformed

cells from Pseudomonas sp. II. Structure elucidation. J. Antibiot. (Tokyo) 56, 905–908
(2003).

29. D. L. Galinis, T. C. McKee, L. K. Pannell, J. H. Cardellina, M. R. Boyd, Lobatamides A and
B, novel cytotoxic macrolides from the tunicate Aplidium lobatum. J. Org. Chem. 62,
8968–8969 (1997).

30. R. Ueoka et al., Genome mining of oxidation modules in trans-acyltransferase poly-
ketide synthases reveals a culturable source for lobatamides. Angew. Chem. Int. Ed.
Engl. 59, 7761–7765 (2020).

31. Y. Sato et al., Detection of betaproteobacteria inside the mycelium of the fungus
Mortierella elongata. Microbes Environ. 25, 321–324 (2010).

32. Y. Takashima et al., Prevalence and intra-family phylogenetic divergence of
Burkholderiaceae-related endobacteria associated with species of Mortierella. Mi-
crobes Environ. 33, 417–427 (2018).

33. S. Ohshima et al., Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal
bacterium isolated from a soil isolate of the fungus Mortierella elongata. Int. J. Syst.
Evol. Microbiol. 66, 2052–2057 (2016).

34. Y. Guo et al., Mycoavidus sp. Strain B2-EB: Comparative genomics reveals minimal
genomic features required by a cultivable Burkholderiaceae-related endofungal

bacterium. Appl. Environ. Microbiol. 86, e01018-20 (2020).
35. J. Uehling et al., Comparative genomics of Mortierella elongata and its bacterial

endosymbiont Mycoavidus cysteinexigens. Environ. Microbiol. 19, 2964–2983 (2017).
36. L. P. Partida-Martinez, C. Hertweck, Pathogenic fungus harbours endosymbiotic

bacteria for toxin production. Nature 437, 884–888 (2005).
37. G. Lackner, N. Moebius, C. Hertweck, Endofungal bacterium controls its host by an

hrp type III secretion system. ISME J. 5, 252–261 (2011).

38. C. Jain, L. M. Rodriguez-R, A. M. Phillippy, K. T. Konstantinidis, S. Aluru, High
throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
Nat. Commun. 9, 5114 (2018).

39. P. Yarza et al., Uniting the classification of cultured and uncultured bacteria and
archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).

40. K. Blin et al., antiSMASH 5.0: Updates to the secondary metabolite genome mining
pipeline. Nucleic Acids Res. 47 (W1), W81–W87 (2019).

41. K. Scherlach, L. P. Partida-Martinez, H. M. Dahse, C. Hertweck, Antimitotic rhizoxin
derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus
Rhizopus microsporus. J. Am. Chem. Soc. 128, 11529–11536 (2006).

42. L. P. Partida-Martinez et al., Rhizonin, the first mycotoxin isolated from the zy-
gomycota, is not a fungal metabolite but is produced by bacterial endosymbionts.
Appl. Environ. Microbiol. 73, 793–797 (2007).

43. G. Lackner, L. P. Partida-Martinez, C. Hertweck, Endofungal bacteria as producers of
mycotoxins. Trends Microbiol. 17, 570–576 (2009).

44. C. Almeida et al., Unveiling concealed functions of endosymbiotic bacteria harbored
in the ascomycete stachylidium bicolor. Appl. Environ. Microbiol. 84, e00660-18
(2018).

45. K. Scherlach, B. Busch, G. Lackner, U. Paszkowski, C. Hertweck, Symbiotic cooperation
in the biosynthesis of a phytotoxin. Angew. Chem. Int. Ed. Engl. 51, 9615–9618 (2012).

46. S. Geisen et al., The soil food web revisited: Diverse and widespread mycophagous soil
protists. Soil Biol. Biochem. 94, 10–18 (2016).

47. J. van den Hoogen et al., A global database of soil nematode abundance and func-
tional group composition. Sci. Data 7, 103 (2020).

48. M. P. Smith et al., A liquid-based method for the assessment of bacterial pathoge-
nicity using the nematode Caenorhabditis elegans. FEMS Microbiol. Lett. 210,
181–185 (2002).

49. E. J. Ragsdale, J. Crum, M. H. Ellisman, J. G. Baldwin, Three-dimensional reconstruction
of the stomatostylet and anterior epidermis in the nematode Aphelenchus avenae
(Nematoda: Aphelenchidae) with implications for the evolution of plant parasitism.
J. Morphol. 269, 1181–1196 (2008).

50. S. S. Schmieder et al., Bidirectional propagation of signals and nutrients in fungal
networks via specialized hyphae. Curr. Biol. 29, 217–228.e4 (2019).

51. G. W. Yeates, T. Bongers, R. G. De Goede, D. W. Freckman, S. S. Georgieva, Feeding
habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol.
25, 315–331 (1993).

52. A. Tayyrov, S. S. Schmieder, S. Bleuler-Martinez, D. F. Plaza, M. Künzler, Toxicity of
potential fungal defense proteins towards the fungivorous nematodes Aphelenchus
avenae and Bursaphelenchus okinawaensis. Appl. Environ. Microbiol. 84, e02051-18
(2018).

53. R. Hermenau et al., Gramibactin is a bacterial siderophore with a diazeniumdiolate
ligand system. Nat. Chem. Biol. 14, 841–843 (2018).

54. R. R. Wick, L. M. Judd, C. L. Gorrie, K. E. Holt, Completing bacterial genome assemblies
with multiplex MinION sequencing. Microb. Genom. 3, e000132 (2017).

55. S. Blanton et al., A web-based carepartner-integrated rehabilitation program for
persons with stroke: Study protocol for a pilot randomized controlled trial. Pilot
Feasibility Stud. 5, 58 (2019).

56. S. Bleuler-Martínez et al., A lectin-mediated resistance of higher fungi against
predators and parasites. Mol. Ecol. 20, 3056–3070 (2011).

8 of 8 | PNAS Büttner et al.
https://doi.org/10.1073/pnas.2110669118 Bacterial endosymbionts protect beneficial soil fungus from nematode attack

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Se
pt

em
be

r 1
0,

 2
02

1

121 CHAPTER 4. MANUSCRIPTS

1

Supplementary Information for

Bacterial endosymbionts protect beneficial soil fungus from nematode attack

Hannah Büttner,†,1 Sarah P. Niehs,†,1 Koen Vandelannoote,2 Zoltán Cseresnyés,3 Benjamin
Dose,1 Ingrid Richter,1 Ruman Gerst,3,4 Marc Thilo Figge,3,5 Sacha J. Pidot,*,2 Christian
Hertweck*,1,4

Corresponding authors: Christian Hertweck, Sacha J. Pidot
* To whom correspondence may be addressed. Email: christian.hertweck@leibniz-hki.de;
sacha.pidot@unimelb.edu.au

This PDF file includes:

Supplementary text
Figures S1 to S22
Tables S1 to S9
Legends for Movies S1 to S2
SI References

Other supplementary materials for this manuscript include the following:

Movies S1 to S2

CHAPTER 4. MANUSCRIPTS 122

2

Experimental Procedures

Bacterial and fungal strains

Strains of this study are listed in Table S 1. All media used in this study are listed in Table S 2.
Sterilization of the media took place at 120 °C for 20 min.
Burkholderia sp. strain B8 (HKI-0404; syn. Mycetohabitans) (1) was isolated from
Rhizopus microsporus Tieghem var. microsporus CBS 308.87 by subsequent procedure: The
fungus was inoculated into MGY+M9 medium and grown at 30 °C and 110 rpm until increasing
turbidity of the medium was observed by eye. The culture was centrifuged (12,000 × g, 10 min,
25 °C). A small volume was separated from the upper surface of the culture and spread on NAG
agar. After growth at 30 °C for 3–4 days, bacterial colonies were inoculated into MGY+M9 medium
and slowly upscaled.
Fungal spores were stored in 50 % glycerol at –20 °C for long-term storage. For short-term storage
they were grown on PDA and kept at 4 °C or room temperature.

Table S 1. Strains used in this study.

Strain No. Original site of isolation

Burkholderia sp. HKI0404, strain B8 CBS 308.87 in this study

Rhizopus microsporus
Tieghem var. microsporus

CBS 308.87
(NRRL 28628)

Human necrotic tissue after a spider
bite, Australia

Candidatus Mycoavidus
necroximicus

- Mortierella verticillata NRRL 6337

Mortierella verticillata NRRL 6337 (CBS 131.66) Sandy forest soil, United Kingdom

Mortierella verticillata NRRL 6369 (CBS 100561) Soil of Great Bear Lake, Canada

Mortierella verticillata SF9852 (CBS 346.66) Tundra soil, Alaska

Mortierella verticillata SF9853 (CBS 220.58) Soil under Betula sp., France

Mortierella verticillata SF9854 (CBS 225.35) Former West Germany

Mortierella verticillata SF9856 (CBS 315.52) Forest soil, former West Germany

Escherichia coli OP50 -

Caenorhabditis elegans Wild-type N2 (var. Bristol) -

Aphelenchus avenae Bastian, 1865 -

123 CHAPTER 4. MANUSCRIPTS

3

Table S 2. Media used in this study.
Media Composition (L-1)

MGY+M9 medium 10 g Glycerol, 1.25 g yeast extract (autolyzed yeast cells, BD, Bacto), 960 mL
water, sterilization, add: 20 mL M9 salt A, 20 mL M9 salt B

MM9 medium 2 g Amino acid mix, 10 g glycerol, 900 mL water, sterilization, add: appropriate
antibiotics, 20 mL M9 salt A, 20 mL M9 salt B, 16.8 mL L-leucine solution
(100 mM), 5 mL L-histidine solution (60 mM), each 10 mL of L-lysine
(100 mM), L-tryptophan (40 mM), L-methionine solution (40 mM), 2 mL vitamin
solution, 1 mL trace element solution

PDB/PDA Potato dextrose broth or agar (BD, Bacto), sterilization

NAG agar Standard nutrient agar I (Merck), 10 g glycerol, sterilization

Modified medium 2 3 % Glycerol, 1 % glucose, 0.5 % peptone, 0.2 % NaCl, pH 6.0, sterilization

LB Lysogeny broth (BD, Bacto), sterilization

TSB Tryptone soy broth (BD, Bacto), sterilization

CYE Charcoal yeast extract medium; 10 g yeast extract (autolyzed yeast cells, BD,
Bacto), 10 g ACES, 1 g potassium oxoglutamate, 2 g active charcoal, pH 6.9,
sterilization, add: 0.25 g Fe-pyrophosphate (sterile filtered)

K-medium 3.1 g NaCl, 2.4 g KCl, sterilization

NGM 3 g NaCl, 2.5 g peptone (BD, Bacto), 17 g agar, sterilization, add (sterile): 5
mg cholesterol, 0.11 g CaCl2, 0.25 g MgSO4, 2.7 g KH2PO4, 0.89 g K2HPO4

M9 salts A 350 g K2HPO4, 100 g KH2PO4, sterilization

M9 salts B 29.4 g Sodium citrate, 50 g (NH4)2SO4, 5 g MgSO4, sterilization

Amino acid mix L-Amino acids in equal amounts: alanine, asparagine, cysteine, glutamate,
isoleucine, serine, arginine, aspartate, glutamine, glycine, proline, threonine,
valine

Vitamin solution 10 mg Folic acid, 6 mg biotin, 200 mg p-aminobenzoic acid, 1 g thiamine-HCl,
1.2 g pantothenic acid, 1 g riboflavin, 2.3 g nicotinic acid, 12 g pyridoxine HCl,
100 mg vitamin B12

Trace element solution 40 mg ZnCl2, 200 mg FeCl3 × 6 H2O, 10 mg CuCl2 × 2 H2O, 10 mg MnCl2 × 4
H2O, 10 mg Na2B4O7 × 10 H2O, 10 mg (NH4)6Mo7O24 × 4 H2O

CHAPTER 4. MANUSCRIPTS 124

4

Identification of endosymbionts in Mortierella verticillata

Amplification of bacterial 16S rDNA and phylogenetic analysis. Fungal strains were cultivated
in MM9 medium at 26 °C and orbital shaking at 110 rpm. The genomic DNA was isolated either
from the turbid supernatant or the disrupted fungus itself with the MasterPure DNA Purification Kit
(Epicentre). 16S rDNA was amplified using gDNA, the primers 8F (AGA GTT TGA TCC TGG CTC
AG) and 1492R (CGG TTA CCT TGT TAC GAC TT) with Phusion High-Fidelity PCR Master Mix
with HF Buffer (NEB). PCR program: 30 cycles of 95 °C for 15 s, 65 °C for 15 s, 72 °C for 1 min 40
s.

The 16S rDNA sequences of the Mortierella endosymbionts
were uploaded to the NCBI database:
BRE_MvertCBS_346.66 MZ330684;
BRE_MvertCBS_220.58 MZ330685;
BRE_MvertCBS_225.35 MZ330686;
BRE_MvertCBS_315.52 MZ330687;
BRE_MvertCBS_100561 MZ330688.

Phylogenetic analysis of 16S rDNA of Mortierella endosymbionts (and further representatives of
the Burkholderiaceae family) were performed as follows: The sequence alignment was performed
using Clustal Omega with default settings (2). Maximum likelihood phylogeny was constructed
using IQ-tree 2. Ultrafast bootstrapping (1,000 iterations) analysis was performed (3). Bootstrap
values >80 % are shown at nodes. Wolbachia pipientis (16S rDNA gene sequence accession
number: AY833061.1) was used as outgroup. Sequences where retrieved from the NCBI database,
grouping of sequences to clades was performed in accordance to (4) (Figure S 3).

Preparation of aposymbiotic fungal strains. Fungal strains were continuously cultivated at 24 °C
on PDA plates (Bacto, BD) containing 40 µg mL–1 ciprofloxacin or 50 µg mL–1 kanamycin for
4 months. After phenotypical changes were observed by eye, the M. verticillata NRRL 6337 fungal
cultures were extracted with 1:1 volume of ethyl acetate and checked for production of 3 and 4.
Amplification of bacterial 16S rDNA from cured fungi did not lead to any amplicon (Figure S 2).
Final examination of the cured fungal strains occurred by fluorescent staining.

Fluorescent staining. Fungal strains (wild type and aposymbiotic strains) were visualized by a
Zeiss LSM 710 confocal laser-scanning microscope. First, fungal hyphae were stained with
Calcofluor White Stain (Sigma) and SYTO 9 Green (Invitrogen) for 5 min, then washed in 0.85 %
NaCl solution, and checked for endosymbionts. Wavelengths were adjusted as specified by the
manufacturer (Figures S 1–S 2).

125 CHAPTER 4. MANUSCRIPTS

5

Figure S 1. Fluorescence microscopy image of M. verticillata NRRL 6337. Channel 1 Calcofluor
White staining (to stain the fungal cell wall, blue; top left), channel 2 bright field (top right), channel
3 SYTO 9 Green (to stain nucleic acids and visualize bacteria, green; bottom left), channel 4 overlay
(bottom right). Scale matches 20 µm.

Figure S 2. Fluorescence microscopy image of cured (aposymbiotic) M. verticillata NRRL 6337.
Channel 1 Calcofluor White staining (to stain the fungal cell wall, blue; top left), channel 2 bright

CHAPTER 4. MANUSCRIPTS 126

6

field (top right), channel 3 SYTO 9 Green (to stain nucleic acids and visualize bacteria, green;
bottom left) (overexposure), channel 4 overlay (bottom right). Scale matches 20 µm.

Figure S 3 Phylogenetic analysis of amplified 16S rDNA from Mortierella symbionts. Strains of this
study are marked with an arrow. Additional bacterial sequences labelled “Mortierella” were
extracted from a previous publication (4). Abbreviation: BRE Mortierella, Burkholderia-related
endosymbiont of Mortierella spp.

Mortierella verticillata CBS 346.66
Mortierella verticillata CBS 315.52
Mortierella verticillata CBS 225.35
Mycetohabitans rhizoxinica HKI 454
Mortierella verticillata CBS 220.58

Mycetohabitans endofungorum HKI 456
Candidatus Vallotia virida abi3KL
Candidatus Vallotia virida FGA2
Candidatus Vallotia tarda lari11KL

Candidatus Vallotia cooleyia G4
Burkholderia gladioli CIP105410

Burkholderia gladioli pv. agaricicola
Burkholderia cepacia

Chitinimonas koreensis R2A43-10
Chitinimonas taiwanensis cf

Limnobacter litoralis KP1-19
Limnobacter thiooxidans CS-K2

Polynucleobacter necessarius necessarius
Polynucleobacter cosmopolitanus MWH-MoIso2

Cupriavidus pinatubonensis 1245
Cupriavidus taiwanensis LMG 19424

Cupriavidus necator
Pseudomonas solanacearum ATCC 11696

Ralstonia pickettii ATCC 27511
Paucimonas lemoignei LMG 2207T

Collimonas arenae NCCB 100031
Collimonas pratensis CTO 91
Collimonas fungivorans Ter6

Janthinobacterium agaricidamnosum
Janthinobacterium lividum

Pandoraea thiooxydans ATSB16
Candidatus Pandoraea novymonadis

!"
!!

!#

!$

%&&
%&&

%&&

%&&

%&&
%&&

%&&!'
!(
!!

!#

%&&

!!

%&&

%&&
%&&

%&&

"$

!)

%&&

!#

"(

!$

Burkholderiaceae bacterium W44
Burkholderiaceae bacterium IAS%&&

!$

Mortierella sp. BRE YTM212
Mortierella verticillata BRE YTM181

Mortierella alpina BRE YTM173
Mortierella gamsii BRE YTM131

Mortierella sp BRE YTM104
Mortierella sp UBRE YTM53

Mortierella parvispora BRE_E2010s1
Mortierella sp. BRE YTM133

Mortierella sugadairana BRE YTM39
Mortierella sp. BRE YTM160
Mortierella elongata BRE YTM210

Mortierella mortierella BRE YTM170
Mortierella elongata BRE YTM138

"'
"#

%&&

%&&
!&

!!

!!
!%
!"

MorBRE group C

Nematode endosymbionts

Mortierella sp. BRE YTM184
Mortierella sp. BRE YTM185
Mortierella elongata FMR23-9
Mortierella elongata BRE YTM190

Mortierella ambigua YTM115
Mortierella sossauensis YTM223

Mortierella alpina YTM25
Mortierella alpina YTM40

Mortierella sp. zonata YTM23
Mortierella horticola YTM78

Mortierlla sp. 16 YTM179%&&

%&&

"$

!'

"&

"$

%&&

!'

!$

%&&

MorBRE group B

Candidatus Vallotia

M. rhizoxinica; M. endofungorum

Burkholderia sp.

Candidatus Glomeribacter gigasporarum
Candidatus Glomeribacter gigasporarum
Candidatus Glomeribacter gigasporarum
Candidatus Glomeribacter gigasporarum
Candidatus Glomeribacter gigasporarum
Candidatus Glomeribacter gigasporarum
Candidatus Glomeribacter gigasporarum
Uncultured bacterium clone 7B

Candidatus Glomeribacter gigasporarum

!*

%&&

%&&

%&&

!(

%&&

Ca. Glomeribacter gigasporarum

%&&

Mortierella verticillata CBS130 66
Mortierella verticillata NRRL6337
Candidatus Glomeribacter BSR 14.14
Mortierella gamsii YTM123
Mortierella verticillata YTM35
Mortierella gamsii YTM113
Mortierella humilis YTM225
Mortierella humilis YTM187
Mortierella humilis YTM36
Mortierella sp. 15 YTM171
Mortierella verticillata CBS 374.95

Candidatus Glomeribacter sp. AG67
Mortierella sp. 16 YTM110

Mortierella basiparvispora E1425
Mortierella elongata FMR23-1
Candidatus Glomeribacter AG77
Mortierella elongata FMR23-6
Mycoavidus cysteinexigens"&

"%
!"

%&&
!#

%&&

"*

!!

"*
MorBRE group A
[M. cysteinexigens]

Wolbachia pipientis

127 CHAPTER 4. MANUSCRIPTS

7

Figure S 4 Amplification of bacterial 16S rDNA from symbiotic and cured M. verticillata NRRL 6337
strains using the primers 8F (AGA GTT TGA TCC TGG CTC AG) and 1492R (CGG TTA CCT TGT
TAC GAC TT). Marker in Da. Undil, not diluted. Marker sizes in Da.

Endosymbiont isolation attempts (for M. verticillata spp.). In short, isolation attempts include
bacteria derived from turbid supernatant of fungal cultures or from disrupted hyphae (homogenizer
or bead mill). The bacterial mixture was filtered through a 40 µm sieve (Corning Cell Strainer) and
a 5 µm filter (Cameo, Roth) before inoculation. Tested media included: MGY+M9, MM9, PDB, NAG,
LB, TSB, CYE medium (5), as well as CYE medium containing autoclaved or sterile filtered M.
verticillata cultures grown in PDB. The same media were also tested with additional L-cysteine,
amino acid mix solution (Table S 2) and 3 % glycerol. Every assay was performed with liquid
medium and/or on an agar plate. If fungal growth occurred on plates, these parts were cut out with
a sterile scalpel. For liquid media also the addition of amphotericin in concentrations of 1 µM, 5 µM
or 10 µM was tested to inhibit fungal growth. Cultures were incubated at 20 °C, 26 °C, 30 °C and
37 °C for up to 30 days. Additionally, the infection of a cured fungal strain with bacterial filtrate did
not result in living endosymbionts.

NRRL 6337 Cured NRRL 6337

3,000

1,000
500

gDNA undiluted gDNA
undil.

gDNA
1: 10 dil.

M
ar

ke
r

CHAPTER 4. MANUSCRIPTS 128

8

Genome assembly for Candidatus Mycoavidus necroximicus

M. verticillata NRRL 6337 was grown in 3 L MM9 medium (Table S 2) with orbital shaking at
160 rpm and 26 °C. Mild physical sheering through shaking culture in baffled flasks led to
increasing turbidity of the culture supernatant over time. Microscopic analysis revealed a high
number of bacteria in comparison to mycelia in the turbid medium. The cultures were controlled for
turbidity by eye every day. If the supernatant turned significantly turbid, the culture was twice filtered
through a membrane (pore diameter 40 µm; Corning cell strainer) and centrifuged (12,000 × g,
25 °C, 10 min) until a stabile pellet occurred. The genomic DNA was extracted according to
manufacturer’s recommendations with the MasterPure DNA Purification Kit (Epicentre).
The extracted gDNA from M. verticillata was prepared for sequencing on both the Oxford Nanopore
MinION and Illumina NextSeq platforms. For long-read sequencing on the MinION platform, DNA
quality was evaluated by pulsed-field gel electrophoresis and prepared for sequencing according
to the protocol of the Ligation Sequencing kit (Oxford Nanopore). DNA was loaded onto a single
MinION flow cell and data was collected over a 72 hour period. DNA was prepared for sequencing
on the Illumina NextSeq platform using the Nextera XT DNA preparation kit (Illumina) with × 150 bp
paired end chemistry and with a targeted sequencing depth of >50 ×. Combined MINion and
Illumina sequencing data were assembled using the Unicycler hybrid assembler (6, 7), following
which a single contig 2.2 Mb containing a 98.82 % match to the Mycoavidus cysteinexigens 16S
rDNA gene was extracted and evaluated for secondary metabolite loci using antiSMASH version 5
(8).

129 CHAPTER 4. MANUSCRIPTS

9

Identification and annotation of secondary metabolite gene cluster

Candidatus Mycoavidus necroximicus differed from other so far characterized Mycoavidus species.
In contrast, we identified many similarities in the natural product arsenal between the Mortierella
symbiont Candidatus Mycoavidus necroximicus and symbionts of R. microsporus along with their
overall high potential for secondary metabolism. In addition to the necroximes (3 and 4), also the
lasso peptide mycetohabin-15 (8) (35), originally reported from the fungal endosymbiont
Mycetohabitans (previously Paraburkholderia) rhizoxinica, was detected from cultures of
Candidatus Mycoavidus necroximicus (Figure S 5). Furthermore, through intensified bioinformatics
analyses all genes necessary for F420 biosynthesis were identified, an important redox co-factor
(9-11) that has been described in endofungal Burkholderia sp. and other bacteria before. For the
detection of secondary metabolites antiSMASH (8) and PKS/NRPS analysis (12) were used for
annotation of the biosynthetic gene cluster and the necroxime cluster (Figure S 6). Available
genome assemblies of Mycoavidus cysteinexigens AG77 (13), B2-EB (14) and B1-EBT (15) were
processed in the same way. In addition, precursor sequences coding for lasso peptide assembly
were identified manually (putative core peptides are highlighted in bold; putative cyclization sites in
red):

a) Candidatus Mycoavidus necroximicus
MTKSKAINTQEIQLDDDALMEFCASESTM GAVGEKNEAGFGKYDDDAV
MIKNQELNSQAIQLDDEALTQFSASEATM GGSGQYREAGVGRFL* (Mycetohabin-15)
MTDSKKTTTQDTQLKDEALTEFCASESTM GGSGQYREAGVGRFL* (Mycetohabin-15)

b) M. cysteinexigens AG77
MIKNQELNQDIQLDDEALTQFCASEATM GGSGQYKEAGVGRFL*
MIKNQELNQDIQLDDEVLTQFCASEATM GGSGKYKEAGVGRFL*
MTNSKEIKIQETQLQDETLSEFCASKATM GGSGQYREAGVGRFL (Mycetohabin-15)
MTKSKELSQDIQLEETLMEFCASEATM GAVGEKNEAGFGKY

c) M. cysteinexigens B1-EBT
MIKNQELNQDIQLDDEVLTQICASEATM GGSGQYREAGVGRFL* (Mycetohabin-15)
MIKNQELNQDIQLDDEVLTQFCASEATM GGSGKYKEAGVGRFL
MTKSKELSQDIQLEETLMEFCASEATM GAVGEKNEAGFGKY
MTNSKENKIQEIQLQDETLSEFCASEATM GGSGQYREAGVGRFL* (Mycetohabin-15)

d) M. cysteinexigens B2-EBT
MTNSKETKTQETQLQDETLSEFCASEATM GGSGQYREAGVGRFL (Mycetohabin-15)

* 1–2 copies of the core peptide with different leader peptides detected in the genome (only
assigned as one lassopeptide)

CHAPTER 4. MANUSCRIPTS 130

10

Figure S 5. Mycetohabin-15. Extracted ion chromatograms of mycetohabin-15 (8) (m/z 768.3930
[M+2H]2+) observed in extracts of Candidatus Mycoavidus necroximicus (NRRL 6337) and
Burkholderia sp. strain B8. Structure of the lasso peptide 8 and isotopic pattern.

Figure S 6. Architectures of necroxime biosynthetic assembly lines in Burkholderia sp. strain B8
(top) and Candidatus Mycoavidus necroximicus (below).

768.3931
z=2

m/zm/m/

NRRL6337

8

B8

8
Time [min]

R
el

at
iv

e
ab

un
da

nc
e

9 L15

F14

A9

G10V11

G12

R13

G1G2
S3

Y6

R7
G4

E8

Q5

Mycetohabin-15 (8)

EIC m/z 768.3898 [M+2H]2+

Mcyst_00009!0017

A ACAT AT KS OX KSMT KS DHKR

DHKSKR KSDH DHKSKR KSKR KSDH TE

KSDHKR KS KR KSDH

B8 necroxime BGC

4 kb

AC TE

KSDHKR KSKR

A ACAT AT KS OX KSMT KS DHKR

DHKSKR KSDH DHKSKR KSKR KSDH TE

KSDHKR KS KR KSDHKSDHKR KSKR

DH

DH

131 CHAPTER 4. MANUSCRIPTS

11

Table S 3. Proteins encoded in the necroxime assembly line of Candidatus Mycoavidus
necroximicus and putative up- and downstream proteins. Id./Sim. – Identity/Similarity.

Locus
Mcyst_

00

[bp] Putative protein SwissProt/ PDB
entry

Acces-
sion #

Organism Id./
Sim.

024 1,191 Sodium/hydrogen
exchanger

UPF0391
membrane

protein
XCV1406

Q3BVS6.
1

Xanthomonas
campestris pv.

vesicatoria str. 85-
10

35%/
62%

023 1,116 Putative
glutamate-cysteine

ligase 2

Gamma-
glutamyl-
cysteine

synthetase 2

B2T7N6.1 Paraburk-
holderia

phytofirmans
PsJN

73%/
86%

022 447 Hypothetical
protein

Histone-lysine
N-methyltrans-

ferase 2A

Q03164.5 Homo sapiens 40%/
55%

021 603 Hypothetical
protein

Uncharacterized
protein y4rO

P55648.1 Sinorhizobium
fredii NGR234

33%/
58%

020 876 IS982 family
tranposase

Putative
transposase

Q08082.2 Brucella ovis
ATCC 25840

28%/
44%

019 219 Hypothetical
protein

- - - -

018 190 Hypothetical
protein

- - - -

017 1,899 Malonyl CoA-acyl
carrier protein
transacylase

AT A7Z4X8.1 Bacillus
velezensis FZB42

48%/
66%

016 5,541 PKS synthase/
NRPS synthetase

PKS P40806.3 Bacillus subtilis
subsp. subtilis str.

168

36%/
51%

015 3,177 Polyketide
synthase

PKS P40806.3 Bacillus subtilis
subsp. subtilis str.

168

33%/
52%

014 8,541 PKS/NRPS Polyketide
synthase PksN

O31782.3 Bacillus subtilis
subsp. subtilis str.

168

30%/
47%

013 18,807 Polyketide
synthase

PKS P40806.3 Bacillus subtilis
subsp. subtilis str.

168

31%/
49%

CHAPTER 4. MANUSCRIPTS 132

12

Table S 3 continued. Proteins encoded in the necroxime assembly line of Candidatus
Mycoavidus necroximicus and putative up- and downstream proteins. Id./Sim. –
Identity/Similarity.

Locus
Mcyst_

00

[bp] Putative protein SwissProt/ PDB
entry

Acces-
sion #

Organism Id./
Sim.

012 7,329 Polyketide
synthase

PKS P40806.3 Bacillus subtilis
subsp. subtilis

str. 168

43%/
57%

011 11,652 Polyketide
synthase

Polyketide
synthase PksN

O31782.3 Bacillus subtilis
subsp. subtilis

str. 168

47%/
63%

010 183 Hypothetical
protein

Rho guanine
nucleotide

exchange factor
11

Q9ES67.
1

Rattus
norvegicus

38%/
47%

009 1,416 Epi-isozizaene 5-
monooxygenase

Probable
cytochrome
P450 311a1

Q9VYQ7.
1

Drosophila
melanogaster

28%/
43%

008 237 Hypothetical
protein

Glutamyl-
tRNA(Gln)

amidotrans-
ferase subunit

B-1

C1MIE8.1 Micromonas
pusilla

CCMP1545

32%/
44%

007 1,665 Lanthionine
synthetase C
family protein

- - - -

006 132 Hypothetical
protein

- - - -

005 1,038 Hypothetical
protein

3-keto-5-
aminohex-

anoate cleavage
enzyme

B0VHH0.
1

Candidatus
Cloacimonas

acidaminovorans
str. Evry

25%/
43%

133 CHAPTER 4. MANUSCRIPTS

13

Comparative genomics

Genome sequences of M. cysteinexigens B1-EB (NCBI accession AP018150.1), B2-EB (NCBI
accession AP021872.1) and M. cysteinexigens AG77 (PATRIC accession 224135.3) were used for
comparative genome analyses. The M. cysteinexigens AG77 genome was reorientated to start with
dnaA (as for the other Mycoavidus genomes) and reannotated with Prokka 1.14.5.(16) Comparison
of the three Mycoavidus genomes was performed using Roary v3.12.0 (17) with an 70 % protein
identity cutoff. Genome synteny figures were constructed using Circos (18).

In general, evidence for the high dependence of these Mycoavidus symbionts on their hosts can
be observed in the genomes. M. cysteinexigens AG77 has previously been found to be missing the
biosynthetic pathway for the amino acid cysteine (19). Investigation of biosynthetic pathways in
strain Ca. Mycoavidus necroximicus showed the loss of further amino acid biosynthesis pathways,
including those for cysteine, histidine, isoleucine, leucine, methionine, threonine, tryptophan and
tyrosine (https://papers.genomics.lbl.gov/cgi-bin/gapView.cgi) (20). This suggests that Candidatus
Mycoavidus necroximicus relies very heavily on M. verticillata for the production of amino acid
building blocks and might also explain why the fungus grows more aerial hyphae in the absence of
endosymbionts. This is further reflected in the inability to grow Candidatus Mycoavidus
necroximicus in an aposymbiotic manner, while axenic growth of M. cysteinexigens B1-EBT, B2-
EB and AG77 can be achieved by supplementing growth media with cysteine (5).

CHAPTER 4. MANUSCRIPTS 134

14

General analytical methods

Analytical HR-ESI-LC/MS. Exactive Orbitrap High Performance Benchtop LC/MS (Thermo Fisher
Scientific) with an electron spray ion source and an Accela HPLC System, C18 column (Betasil
C18, 150 × 2.1 mm, Thermo Fisher Scientific), solvents: acetonitrile and water (both supplemented
with 0.1 % formic acid), flow rate: 0.2 mL min-1; program: hold 1 min at 5 % acetonitrile, 1–16 min
5–98 % acetonitrile, hold 3 min 98 % acetonitrile, 19–20 min 98 % to 5 % acetonitrile, hold 3 min
at 5 % acetonitrile.

MS/MS (tandem mass spectrometry). QExactive Orbitrap High Performance Benchtop LC/MS
(ThermoFisher) with an electron spray ion source and an Accela HPLC System, C18 column
(Accucore C18 2.6 µm, 100 × 2.1 mm, Thermo Fisher Scientific) and the following solvent system:
acetonitrile and water (both supplemented with 0.1 % formic acid) at a flow rate of 0.2 mL min-1;
gradient: 0–10 min 5–98 % acetonitrile, hold 4 min 98 % acetonitrile, 14–14.1 min 98 % to 5 %
acetonitrile, hold 6 min at 5 % acetonitrile.

NMR. 600 MHz Avance III Ultra Shield (Bruker) and signals were referenced to the residual solvent
signal. 1H 600 MHz, 13C 150 MHz; NMR solvent: DMSO-d6.

Optical rotation. Jasco P-1020 polarimeter, Na light (589 nm), at 25 °C, 50 mm cell length, c 2
w/v%, dissolved in 83% acetonitrile (83% MeCN).

Identification, extraction and isolation of secondary metabolites

Extraction of necroxime D (CJ-12,290) (4) and necroxime C (CJ-13,357) (3). M. verticillata
NRRL 6337 was either cultivated in modified medium 2 (21) for 7 days, at 160 rpm and 26 °C or
on PDA plates at 26 °C for 28 days (Table S 2). The cultures were extracted with 1:1 volume of
ethyl acetate overnight. Following, the organic phase was concentrated under reduced pressure
and the residue was dissolved in a small volume of methanol. The extracts were measured via
LC/MS.
Measured m/z 459.1833 and 459.1758 [M+H]+, calculated 459.1762, C23H27N2O8 (CJ-12,290/CJ-
13,357; 4/3)

Extraction of lassopeptide mycetohabin-15 (8). M. verticillata NRRL 6337 or Burkholderia sp.
HKI-404 (strain B8) were cultivated in MM9 medium for 7 days, with orbital shaking at 160 rpm and
26 °C. The absorber resin XAD-2 was added for 30 min to the culture, followed by separation of
the resin and extraction with 100 % methanol overnight. The organic phase was concentrated
under reduced pressure and the residue was dissolved in a small volume of methanol. The extracts
were measured via LC/MS.
Measured m/z 768.3931 [M+2H]2+ (Mycetohabin-15; 8)

Production of necroxime A (1). Burkholderia sp. strain B8 wild type or ΔnecA mutant were
cultivated in MGY+M9 medium for 4–5 days with orbital shaking at 110 rpm and 30 °C. Absorber
resin XAD-2 was added to the bacterial culture for 30 min, separated from the culture and extracted
in 100 % methanol for 4 hours. The organic phase was concentrated under reduced pressure and
the residue was dissolved in a small volume of methanol. The extracts were measured via LC/MS.
Measured m/z 673.3088 [M+H]+, calculated 673.3079, C33H45N4O11 (necroxime A; 1)

135 CHAPTER 4. MANUSCRIPTS

15

Isolation of necroxime D (4) from M. verticillata NRRL 6337. Necroxime D (4) was the main
metabolite detected in fresh extracts of the Mycoavidus endosymbionts with no prior light-exposure;
as 4 then easily isomerizes into 3 under long-term light exposure (21), we isolated only species 4
(Figure S 7). The fungal host M. verticillata NRRL 6337 was cultivated on PDA plates at 26 °C for
28 days. The culture was extracted twice with 1:1 volume of ethyl acetate overnight. Following, the
organic phase was concentrated under reduced pressure and the residue was dissolved in a small
volume of methanol. The extract was pre-fractionated on an open Sephadex LH-20-column with
methanol and the necroxime-containing fraction was further purified with a preparative HPLC under
following conditions: A: H2O + 0.01 % TFA, B: Methanol; 15–100 % B in 35 min, 15 mL min–1

(Phenomenex, Luna, 10 µm, C18(2), 100 Å, 250 × 21.2 mm).

Figure S 7. Metabolic profiles of necroxime-containing extracts from Burkholderia sp. strain B8
and M. verticillata (cultivated and extracted under normal and light-reduced conditions).

Comparison of necroxime C and D (3 and 4) from Burkholderia sp. strain B8 and
M. verticillata NRRL 6337. For the identification of the necroximes C and D from M. verticillata
NRRL 6337 the previously described and isolated substances from Burkholderia sp. strain B8 were
used as authentic standards (22). Co-injection revealed the same retention times of the substances
isolated from the two producers. MS/MS fragmentation showed identical fragmentation patterns of
the substances (Figure S 13–16). Comparison of the chemical shifts in NMR measurements of
necroximes C and D (3 and 4) from Burkholderia sp. strain B8 and necroxime D (4) from M.
verticillata revealed the identical configuration within the respective molecules (Table S 9). To
unambiguously verify that the isolated necroximes from Burkholderia sp. strain B8 and
M. verticillata NRRL 6337 are identical molecules and no enantiomers, we determined the optical
rotation of necroxime C and D (3 and 4) isolated from Burkholderia sp. strain B8. The comparison
of the measured values with the published values for necroxime C (CJ-13,357) (3) and necroxime
D (CJ-12,290) (4) (21) identified the molecules to be the same, as a similar rotation can be
measured (Table S 4). Additionally, we performed genome mining with the two BGCs from
necroximes and CJ-compounds, extracted the ketoreductase domain sequences that determine
the absolute configurations of the incorporated OH residues, and compared the specificity codes
using Mega7 (23) and ClustalW (24). HXXXXXXD codes for D-β-OH as shown by Caffrey (25).
That way we could determine the absolute configuration of the OH groups and, consequently, show
that necroximes C–D are stereochemically identical to CJ-13,357 and CJ-12,950 (Figure S 8).

Table S 4. Comparison of optical rotation of necroxime C and D (3 and 4) isolated from
Burkholderia sp. strain B8 and M. verticillata NRRL 6337.

necroxime C (CJ-13,357) (3) necroxime D (CJ-12,290) (4)

M. verticillata NRRL 6337
[α]D (25 °C, MeOH)

+ 107.8° (c 0.23) + 99.5° (c 0.22)

Burkholderia sp. strain B8
[α]D (25 °C, MeOH)

+ 89.9° (c 0.12) + 74.4° (c 0.25)

CHAPTER 4. MANUSCRIPTS 136

16

Figure S 8. Multiple Sequence Alignment using KR domain sequences encoded in the necroxime
BGCs of Mycetohabitans sp. strain B8 and Ca. Mycoavidus necroximicus unveils predicted
configurations of OH groups in the natural products. A) Part of the alignment showing specificity
code HXXXXXXD/X. B) Extracted specificity codes according to module architecture. Comparison
of KR domain specificities extracted from strain B8 and Ca. Mycoavius necroximicus reveals
identical L/D distibution.

A

B Organism Module nr. KR specificity code Prediction

Mycetohabitans sp. strain B8 3 H CAGAMA N L

Ca. M. necroximicus 3 H CAGAMA N L

Mycetohabitans sp. strain B8 4 H AAGGIR D D

Ca. M. necroximicus 4 H AAGTLR D D

Mycetohabitans sp. strain B8 5 H AAGVEE G L

Ca. M. necroximicus 5 H AAGVEE G L

Mycetohabitans sp. strain B8 6 H AAGVIE D D

Ca. M. necroximicus 6 H AAGLIA D D

Mycetohabitans sp. strain B8 7 H CAGLTS A L

Ca. M. necroximicus 7 H CAGLTS A L

Mycetohabitans sp. strain B8 9 H CAGVGD A L

Ca. M. necroximicus 9 H CAGVGD T L

Mycetohabitans sp. strain B8 12 H LAGVTT D D

Ca. M. necroximicus 12 H LAGITT D D

H XXXXXX D/X

137 CHAPTER 4. MANUSCRIPTS

17

Nematodal strains and cultivation conditions

The model organism Caenorhabditis elegans (C. elegans Genetics Centre (CGC, University of
Minnesota, USA)) was maintained on Escherichia coli OP50 seeded on NGM agar (26). For culture
maintenance a small, nematode-containing agar-piece of NGM was transferred onto fresh E. coli-
covered NGM plates. Plates were kept at 20 °C for 4–7 days. E. coli OP50 was cultured in LB
medium. If prepared for an assay, nematodes were washed from the plates with K-medium and left
for settling at 4 °C for 30 min. Supernatant was discarded and resuspended in 8 mL K-medium for
usage in experiments.

The nematode Aphelenchus avenae was obtained as a kind gift from Prof. Dr. Markus Künzler
(ETH Zürich) and kept on a sporulation-deficient Botrytis cinerea strain (BC-3), grown on malt
extract agar (MEA) containing 100 µg mL–1 chloramphenicol at 21 °C. Harvest of nematodes was
performed via Baermann funneling as described earlier, with small variations (27). Nematode-
containing plates were cut into small pieces and left upside-down overnight in a funnel lined with
miracloth (Merck) and filled with K-medium. After release of the funnel, nematodes were sterilized
for two hours in K-medium containing 100 mM geneticin (G418) and 25 µg mL–1 kanamycin, washed
once with K-medium and plated onto 1.5 % agar plates containing 200 mM geneticin and 50 µg
mL–1 kanamycin. After 24–40 h of sterilization and starvation, A. aphelenchus were washed from
plates with K-medium and transferred onto fungi.

Nematode bioassays

C. elegans liquid assay. Liquid assays for active-fraction determination and potency assessment
were conducted as previously described (28). In short, E. coli was grown in 50 mL LB medium
overnight, with orbital shaking at 150 rpm. Cells were pelleted and resuspended in K-medium.
OD600 was measured and cells diluted to OD600 1.2. An E. coli suspension (1.76 mL) was transferred
to each well, supplemented with 200 µL nematode suspension and 40 µL test substance
resuspended in MeOH. For fraction-testing cured and symbiotic M. verticillata NRRL6337 cultures,
grown for 16 days on 400 mL PDA, were extracted with ethyl acetate as described above. The
extract was fractionated using a preparative HPLC under following conditions: A: H2O + 0.01 %
TFA, B: methanol; 15 % B for 5 min, 15–100 % B in 35 min, 100 % B for 10 min, 15 mL min–1
(Phenomenex, Luna, 10 µm, C18(2), 100 Å, 250 × 21.2 mm). Eight fractions were collected (every
5 min one fraction) with an additional fraction at 100 % B for 10 min. The fractions were dried in
vacuum and resuspended in 1 mL MeOH. For potency assessment pure 4, dissolved in MeOH was
tested in following concentrations: 0.1 µg mL–1, 0.3 µg mL–1, 1 µg mL–1, 3 µg mL–1, 10 µg mL–1, 30
µg mL–1, 100 µg mL–1 and 300 µg mL–1. The nematode suspension was prepared as described
above. The OD600 of each well was measured at the start of the experiment and compared to the
OD600 after 4 days of incubation at 20 °C and orbital shaking at 50 rpm. Methanol, 18 mM boric
acid (dissolved in H2O) and K-medium were used as controls for substance activity and a well
without nematodes was used as a control for natural degradation-control of the bacteria. All steps
were carried out under sterile conditions. For IC50 calculation GraphPad Prism 8 was used. The
OD600 after 4 days of incubation with pure Methanol was used as an infinite small concentration of
necroxime, whereas an infinite high concentration was set to 100 % starting OD600 E. coli
(comparable with E. coli control).
The results of three biological replicates with each three technical replicates were analyzed for
fraction assessment, whereas five biological replicates with three technical replicates each were
used for potency determination of necroxime D (4).

CHAPTER 4. MANUSCRIPTS 138

18

A. avenae co-incubation assay. A small amount of hyphae of each tested Mortierella strain was
transferred to a PDA plate and incubated at 24 °C overnight. Nematodes from one plate were
sterilized and starved as described above. After one washing step, nematodes were resuspended
in 300 µL K-medium and aliquots of 50 µL were distributed onto the fresh fungal cultures. Plates
were dried and controlled for living nematodes, before they were incubated for 17–24 days at
20 °C. For the evaluation, nematodes were harvested via Baermann funneling as described above.
Funneled A. avenae were recovered on 1.5 % agar plates containing 200 mM geneticin and
50 µg mL–1 kanamycin overnight and subsequently investigated with a Zeiss Axio Zoom.V16
Stereomicroscope (Zeiss, Oberkochen, Germany) and a magnitude of 25 (Figure S 9). For plates
with expected high nematode numbers, only a quarter was transferred onto the agar plates and the
actual nematode number recalculated. The number of nematodes on the first frame of each video
was counted manually. The mean of the cured M. verticillata NRRL 6337 cultures was set to 100 %
for each biological replicate and the numbers of the other co-cultivations were calculated in relation
to these 100 % (Table S 5). For statistical evaluation and significance evaluation a two-way analysis
of variance followed by Tukey’s multiple comparisons test with GraphPad Prism 8 was performed
(Table S 6). Time series were bioinformatically analyzed as described later. Remaining plates were
extracted with ethyl acetate to control the metabolite production. All steps were carried out under
sterile conditions. The results of three biological replicates with each three technical replicates were
used for analysis.

Figure S 9. Exemplary images of harvested nematodes from diverse co-cultivations with a
magnification of 25 ×. A) Nematodes grown on symbiotic M. verticillata NRRL 6337. Sample of
nematodes was undiluted. B) Nematodes of co-culture with a cured M. verticillata NRRL 6337.
Sample of nematodes represent one quarter of the total nematode count, harvested from the co-
incubation. C) Nematodes of co-culture with a symbiotic M. verticillata CBS 225.35. Sample of
nematodes represent one quarter of the total nematode count, harvested from the co-incubation.
D) Nematodes of co-culture with a cured M. verticillata CBS 225.35. Sample of nematodes
represent one quarter of the total nematode count, harvested from the co-incubation.

139 CHAPTER 4. MANUSCRIPTS

19

Table S 5. Relative numbers of nematodes washed out of Mortierella and A. avenae co-cultures.
Numbers correspond to nematode-counts for each technical replicate from a stereomicroscopic
frame with a magnitude of 25. Mean of absolute nematode counts from NRRL 6337 cured were
set to 100 % for each biological replicate and relative numbers were calculated based on
corresponding 100 %.

Fungal
strain

Biological replicate 1
Relative nematode

numbers [%]

Biological replicate 2
Relative nematode

numbers [%]

Biological replicate 3
Relative nematode

numbers [%]
NRRL 6337

symbiont
17.500 5.000 7.500 0.329 0.658 0.329 1.148 1.913 0.765

NRRL 6337
cured

107.500 120.000 72.500 69.737 152.632 77.632 122.449 113.265 64.286

CBS 225.35
symbiont

155.000 117.500 207.500 128.947 119.737 110.526 52.041 56.633 58.163

CBS 225.35
cured

250.000 187.500 77.500 31.579 26.316 121.053 45.918 73.469 75.000

Table S 6. Results of the statistical analysis (two-way analysis of variance and Turkey’s multiple
comparison test) representing the significant differences in nematode-counts of the tested co-
cultures.

Turkey’s multiple
comparison test

Mean
difference

95 % Confidence
interval of difference

Adjusted p
value

Significance

NRRL 6337 symbiont vs.
NRRL 6337 cured

–96.10 –128.1 to –63.5 <0.0001 ****

NRRL 6337 symbiont vs.
CBS 225.35 symbiont

–107.90 –159.3 to –56.5 0.0007 ***

NRRL 6337 symbiont vs.
CBS 225.35 cured

–94.80 –170.5 to –19.1 0.0164 *

NRRL 6337 cured vs.
CBS 225.35 symbiont

–11.78 –80.5 to 56.9 0.9441 ns

NRRL 6337 cured vs.
CBS 225.35 cured

1.30 –84.5 to 87.1 >0.9999 ns

CBS 225.35 symbiont vs.
CBS 225.35 cured

13.08 –69.8 to 95.9 0.9555 ns

CHAPTER 4. MANUSCRIPTS 140

20

Image analysis and mathematical modeling of A. avenae viability in fungal-nematodal co-
incubations. Time series from A. avenae co-incubation assay were further analyzed regarding the
mobility ratios of the nematodes, which could be harvested from the co-incubation assays. The
native Zeiss format CZI files of the nematode samples were analyzed using the 25 ´ magnification
subset of images. This magnification provided a suitable number of observed nematodes per field
of view to assure that proper statistical analysis of the kinetic studies could be carried out, whilst
maintaining an optical resolution that allowed for precise analysis of the individual nematodes’
morphology. The image analysis was carried out using a Fiji (29) macro (ImageJ 1.52s and 1.53c,
(30)), modified from our previously established ACAQ-v3 platform (31) to suit the current study.
The tracking of the nematodes and further analyses were carried out by our newly developed JIPipe
platform (https://www.jipipe.org/). Briefly: the raw CZI images were imported into memory; they
were then sharpened, followed by Hessian filtering using the FeatureJ plugin from ImageJ
(https://imagescience.org/meijering/software/featurej), where the smallest Hessian eigenvalue
images were blurred with a Gaussian filter of 2 pixel radius using a disk element. These images
were then thresholded according to the Li algorithm in ImageJ, followed by a closing morphological
operator using 2 pixel radius disk elements, as provided by the MorphoLibJ plugin of ImageJ (32).
The non-nematode elements of the images were eliminated by applying the Remove Outliers
command of ImageJ, first with a radius of 5 pixels, then with 10 pixels; the threshold value was
always 50. The clustered objects were separated by applying the watershed algorithm, followed by
2-pixel erosion. The segmented time-series images of nematodes were then loaded into a JIPipe
workflow, where the individual nematodes were tracked in time using the “Split into connected
components” node. The workflow was then forked; one branch was used to extract the track
elements per time point per nematode, whereas the parallel branch summed up the total area
covered by each individual nematode during the complete observation time. The ratio between a
nematode’s area and the total area covered by the same nematode during the entire time series
was then used for further analysis. Here, when a nematode was motionless during the entire time
series, this ratio would equal one, whereas a fast-moving nematode would be characterized by a
high value of this ratio. The faster the nematode’s movement, the higher the ratio. The time series
of values was further processed to calculate its mean and standard deviation in order to
characterize each track in terms of the underlying nematode’s health status. We defined that a
“dead or paralyzed” nematode would result in a ratio between 1.0 and 1.39 for its track, whereas a
“live” nematode would have a ratio above 1.4 (Figure S 10). All results were saved in CSV file
formats for further analysis.
When comparing the mobility ratios of the nematodes based on the method described above, the
effect sizes using Hedges’ g and Cohen’s d were calculated for each pair of conditions, using the
Effect Size Calculator from Social Science Statistics (www.socscistatistics.com) (Table S 7 and S
8). Typically, effect sizes below 0.2 are considered to indicate a trivial difference, whereas values
above 0.8 indicate a real difference between the compared distributions.

141 CHAPTER 4. MANUSCRIPTS

21

Figure S 10. Exemplified steps during image analysis and mathematical modeling of experiments
regarding A. avenae viability in fungal-nematodal co-incubations.

CHAPTER 4. MANUSCRIPTS 142

22

Table S 7. Overview of analyzed of the different fungal-nematodal co-cultivations with mean
numbers in percent of live nematodes and corresponding standard deviation.

Fungal strain Analyzed Mean value alive
[%]

Standard deviation of mean
value [%]

NRRL 6337 symbiont 238 33.7 28.0
NRRL 6337 cured 487 61.9 9.7

CBS 225.35 symbiont 176 63.2 3.2
CBS 225.35 cured 568 73.9 17.2

Table S 8. Effect size calculations for the mobility ratios of the different fungal-nematodal co-
cultivations.

Compared populations Hedges’ g Cohen’s d Strength of effect

NRRL 6337 symbiont vs. NRRL 6337 cured 1.58 1.35 Very large

NRRL 6337 symbiont vs. CBS 225.35 symbiont 1.38 1.48 Very large

NRRL 6337 symbiont vs. CBS 225.35 cured 1.92 1.73 Very large

NRRL 6337 cured vs. CBS 225.35 symbiont 0.15 0.18 Very small

NRRL 6337 cured vs. CBS 225.35 cured 0.84 0.86 Moderate

CBS 225.35 symbiont vs. CBS 225.35 cured 0.71 0.86 Moderate

A. avenae chemical complementation assay. A small amount of hyphae of cured or symbiotic
M. verticillata NRRL 6337 strains was transferred onto 1 mL PDA filled into 12-well plates and
incubated overnight at 26 °C. On cultures inoculated for chemical complementation 11.4 µg (25
µM), 22.8 µg (50 µM), 50 µg (109 µM) or 100 µg (219 µM) necroxime D (4) dissolved in 200 µL
50 % MeOH were applied and dried under sterile conditions. Control cultures were overlaid with
200 µL 50 % MeOH and dried. Aliquots of 50 µL nematode suspension, prepared as described
above, were distributed onto fungi, dried and co-incubated for 14 days at 20 °C. For evaluation, co-
culture was removed from the wells and washed in 5 mL K-medium overnight. Medium including
the washed nematodes was filtered through miracloth (Merck) to avoid agar carry-over and left at
4 °C for 1 h to let nematode settle. Supernatant was discarded and remaining nematodes
transferred onto 6-well plates containing 5 mL 1.5 % agar plates with 200 mM geneticin and 50 µg
mL–1 kanamycin. After plates were dried under sterile conditions, the amount of harvested
nematodes from each plate was assessed with a Zeiss Axio Zoom V16 Stereomicroscope (Zeiss,
Oberkochen, Germany) (three biological replicates with each three technical replicates) (Figure S
11 and S 12).

143 CHAPTER 4. MANUSCRIPTS

23

Figure S 11. Stereomicroscopy images in various magnifications of A. avenae harvested from
symbiotic M. verticillata NRRL 6337 cultures, cured M. verticillata NRRL 6337 cultures and cured
M. verticillata NRRL 6337 cultures complemented with 219 µM necroxime D (4).

CHAPTER 4. MANUSCRIPTS 144

24

Figure S 12. Stereomicroscopy images in two magnifications of A. avenae harvested from
symbiotic M. verticillata NRRL 6337 cultures, cured M. verticillata NRRL 6337 cultures and cured
M. verticillata NRRL 6337 cultures complemented with 25 µM, 50 µM and 109 µM necroxime D (4).
White arrows indicate nematodes beside same-sized agar pieces.

145 CHAPTER 4. MANUSCRIPTS

25

MS/MS and NMR data

Figure S 13. MS/MS fragmentation pattern of m/z 459.1756 [M+H]+ (necroxime C, 3) in
Burkholderia sp. strain B8 cultures.

Figure S 14. MS/MS fragmentation pattern of m/z 459.1756 [M+H]+ (CJ-13,357, 3) in M.
verticillata NRRL 6337 cultures.

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480
m/z

0
5

10

15

20

25

30
35

40
45

50

55

60

65

70

75
80

85
90

95

100

R
el

at
iv

e
Ab

un
da

nc
e

112.0395

295.0961

277.0855

313.1067
253.1179

441.1651129.0659 330.133295.0496
459.1756237.1230

223.1074
405.1442267.1010201.0544142.0862 423.154471.0499 373.1175

348.1438

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
Ab

un
da

nc
e

112.0396

295.0964

277.0858

313.1070

253.1182
129.0660 459.1761412.1389

441.1656237.1234

223.107795.0497 330.1336267.1014 405.1446201.0547
142.0863

173.0598 423.1550
373.1180348.1441

CHAPTER 4. MANUSCRIPTS 146

26

Figure S 15. MS/MS fragmentation pattern of m/z 459.1760 [M+H]+ (necroxime D, 4) in
Burkholderia sp. strain B8 cultures.

Figure S 16. MS/MS fragmentation pattern of m/z 459.1756 [M+H]+ (CJ-12,950, 4) in
M. verticillata NRRL 6337 cultures.

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480
m/z

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
112.0396

129.0660

295.0963
313.1069 459.1760

394.1284
95.0496 441.1654

412.1390
201.0546

223.1076 277.0858
253.1180 330.1330 376.1177189.0546

267.1014149.0234
348.144271.0499

423.1555

R
el

at
iv

e
Ab

un
da

nc
e

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
Ab

un
da

nc
e

112.0396

129.0660

295.0963
313.1069 459.1760

394.1284
95.0496 441.1654

412.1390
201.0546

223.1076
277.0858

253.1180 330.1330 376.1177
189.0546 267.1014149.0234

348.1442

147 CHAPTER 4. MANUSCRIPTS

27

Figure S 17. 1H-NMR of necroxime D (4) isolated from M. verticillata NRRL 6337 cultures.

Figure S 18. 13C-NMR of necroxime D (4) isolated from M. verticillata NRRL 6337 cultures.

CHAPTER 4. MANUSCRIPTS 148

28

Figure S 19. 1H-1H-COSY-NMR of necroxime D (4) isolated from M. verticillata NRRL 6337
cultures.

Figure S 20. 1H-13C-HMBC-NMR of necroxime D (4) isolated from M. verticillata NRRL 6337
cultures.

149 CHAPTER 4. MANUSCRIPTS

29

Figure S 21. 1H-13C-HSQC-NMR of necroxime D (4) isolated from M. verticillata NRRL 6337
cultures.

Figure S 22. Comparison of 1H-NMR of necroxime D (4) isolated from M. verticillata NRRL 6337
cultures and 1H-NMR of necroxime D (4) isolated from Burkholderia sp. strain B8 cultures.

CHAPTER 4. MANUSCRIPTS 150

30

Table S 9. Comparison of the chemical shifts from the NMR data of necroxime D (CJ-12,950, 4)
isolated from M. verticillata NRRL 6337 cultures and NMR data of necroxime C and D (3 and 4)
isolated from Burkholderia sp. strain B8 cultures. Main differences between E/Z isomers are
marked in red.

 Necroxime C (3) Necroxime D (4) CJ-12,950 (4)
Pos. δC

[ppm]
δH [ppm]; Signal (J
[Hz])

δC

[ppm]
δH [ppm]; Signal (J
[Hz])

δC

[ppm]
δH [ppm]; Signal (J
[Hz])

1 167.0 - 166.8 - 166.9 -
2 120.3 - 120.2 - 120.2 -
3 154.9 - 154.8 - 154.7 -
4 119.5 6.81; 1 H d (8.0) 114.8 6.80; 1 H d (8.2) 114.9 6.82; 1 H d (8.6)
5 130.0 7.20; 1 H t (7.8) 130.0 7.18; 1 H t (8.0) 130.0 7.21; 1 H t (7.9)
6 120.2 6.69; 1 H d (7.4) 119.5 6.68; 1 H d (7.5) 119.6 6.69; 1 H d (7.6)
7 135.8 - 135.8 - 135.8 -
8 131.1 6.51; 1 H d (16.5) 131.1 6.49; 1 H d (16.2) 131.1 6.51; 1 H d (16.6)
9 133.7 5.69; 1 H dd (9.2;

16.4)
133.6 5.67; 1 H dd (9.2;

16.9)
133.8 5.70; 1 H dd (9.2;

16.2)
10 69.5 4.49; 1 H dd (4.2;

9.2)
69.5 4.47; 1 H dd (4.7;

9.1)
69.5 4.49; 1 H d (9.0)

11 58.6 3.07; 1 H d (4.3) 58.5 3.05; 1 H d (4.3) 58.5 3.07; 1 H d (4.2)
12 58.3 2.76; 1 H dd (4.2;

8.7)
58.3 2.74; 1 H dd (4.2;

8.5)
58.2 2.77; 1 H dd (4.1;

8.7)
13 59.9 3.97; 1 H m 59.8 3.96; 1 H m 59.8 3.98; 1 H m
14 40.3 1.87; 1 H m

1.77; 1 H m
40.3 1.86; 1 H m

1.74; 1 H m
40.3 1.88; 1 H m

1.76; 1 H m
15 71.5 5.15; 1 H m 71.5 5.14; 1 H m 71.5 5.16; 1 H m
16 34.7 2.35; 2 H t (6.8) 34.9 2.34; 2 H t (7.1) 34.9 2.36; 2 H t (6.7)
17 107.3 5.24; 1 H dt (8.0;

14.5)
107.8 5.20; 1 H dt (7.0;

14.2)
107.9 5.22; 1 H dt (14.2;

7.2)
18 125.5 6.76; 1 H dd (10.3;

14.5)
125.5 6.72; 1 H dd (10.4;

14.4)
125.5 6.75; 1 H dd (10.2;

14.5)
NH - 10.23; 1 H d (10.2) - 10.23; 1 H d (10.3) - 10.25 1 H d (10.1)

19 161.3 - 161.6 - 161.6 -
20 130.5 6.39; 1 H d (15.3) 126.2 6.10; 1 H d (11.6) 126.2 6.12; 1 H d (11.5)
21 132.8 7.00; 1 H dd (10.2;

15.5)
133.3 6.52; 1 H dd (10.2;

11.3)
133.3 6.53; 1 H m

22 148.9 8.05; 1 H d (10.6) 147.5 8.97; 1 H d (10.5) 147.5 8.99 1 H d (10.3)
23 62.0 3.88; 3 H s 61.9 3.85; 3 H s 61.9 3.87; 3 H s

3-OH - 9.86; 1 H br - 9.88; 1 H br 9.87 1 H br
10-
OH

- 5.46; 1 H br - 5.44; 1 H d (5.3) -

Legends for Movies
Movie S 1. A. avenae harvested from a co-culture with symbiotic M. verticillata NRRL 6337.

Movie S 2. A. avenae harvested from a co-culture with cured M. verticillata NRRL 6337.

151 CHAPTER 4. MANUSCRIPTS

31

SI References

1. P. Estrada-de los Santos et al., Whole genome analyses suggests that Burkholderia

sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia
gen. nov.): implications for the evolution of diazotrophy and nodulation in the
Burkholderiaceae. Genes 9, 389 (2018).

2. F. Madeira et al., The EMBL-EBI search and sequence analysis tools APIs in 2019.
Nucleic Acids Res. 47, W636-W641 (2019).

3. J. Trifinopoulos, L. T. Nguyen, A. von Haeseler, B. Q. Minh, W-IQ-TREE: a fast online
phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232-235
(2016).

4. Y. Takashima et al., Prevalence and intra-family phylogenetic divergence of
Burkholderiaceae-related endobacteria associated with species of Mortierella. Microbes
Environ. 33, 417-427 (2018).

5. S. Ohshima et al., Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal
bacterium isolated from a soil isolate of the fungus Mortierella elongata. Int. J. Syst. Evol.
Microbiol. 66, 2052-2057 (2016).

6. R. R. Wick, L. M. Judd, C. L. Gorrie, K. E. Holt, Unicycler: resolving bacterial genome
assemblies from short and long sequencing reads. PLoS Comput. Bio. 13, e1005595
(2017).

7. R. R. Wick, L. M. Judd, C. L. Gorrie, K. E. Holt, Completing bacterial genome assemblies
with multiplex MinION sequencing. Microb. Genom. 3, e000132 (2017).

8. K. Blin et al., antiSMASH 5.0: updates to the secondary metabolite genome mining
pipeline. Nucleic Acids Res. (2019).

9. G. Bashiri, A. M. Rehan, D. R. Greenwood, J. M. Dickson, E. N. Baker, Metabolic
engineering of cofactor F420 production in Mycobacterium smegmatis. PLoS One 5,
e15803 (2010).

10. D. Braga et al., Metabolic pathway rerouting in Paraburkholderia rhizoxinica evolved
long-overlooked derivatives of coenzyme F420. ACS Chem. Biol. 14, 2088-2094 (2019).

11. L. D. Eirich, G. D. Vogels, R. S. Wolfe, Proposed structure for coenzyme F420 from
Methanobacterium. Biochemistry 17, 4583-4593 (1978).

12. B. O. Bachmann, J. Ravel, Methods for in silico prediction of microbial polyketide and
nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods
Enzymol. 458, 181-217 (2009).

13. J. Uehling et al., Comparative genomics of Mortierella elongata and its bacterial
endosymbiont Mycoavidus cysteinexigens. Environ. Microbiol. 19, 2964-2983 (2017).

14. Y. Guo et al., Mycoavidus sp. Strain B2-EB: comparative genomics reveals minimal
genomic features required by a cultivable Burkholderiaceae-related endofungal
bacterium. Appl. Environ. Microbiol. 86, e01018-01020 (2020).

15. D. Sharmin et al., Comparative genomic insights into endofungal lifestyles of two
bacterial endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica.
Microbes Environ., ME17138 (2018).

16. T. Seemann, Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068-2069
(2014).

17. A. J. Page et al., Roary: rapid large-scale prokaryote pan genome analysis.
Bioinformatics 31, 3691-3693 (2015).

18. M. Krzywinski et al., Circos: an information aesthetic for comparative genomics. Genome
Res. 19, 1639-1645 (2009).

19. J. Uehling et al., Comparative genomics of Mortierella elongata and its bacterial
endosymbiont Mycoavidus cysteinexigens. Environ. Microbiol. 19, 2964-2983 (2017).

20. M. N. Price, A. M. Deutschbauer, A. P. Arkin, GapMind: Automated Annotation of Amino
Acid Biosynthesis. mSystems 5, e00291-00220 (2020).

21. K. A. Dekker et al., Novel lactone compounds from Mortierella verticillata that induce the
human low density lipoprotein receptor gene: Fermentation, isolation, structural
elucidation and biological activities. J. Antibiot. 51, 14-20 (1998).

CHAPTER 4. MANUSCRIPTS 152

32

22. S. P. Niehs et al., Mining symbionts of a spider-transmitted fungus illuminates uncharted
biosynthetic pathways to cytotoxic benzolactones. Angew. Chem. Int. Ed. 59, 7766-7771
(2020).

23. S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis
Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870-1874 (2016).

24. J. D. Thompson, D. G. Higgins, T. J. Gibson, CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 (1994).

25. P. Caffrey, Conserved amino acid residues correlating with ketoreductase
stereospecificity in modular polyketide synthases. ChemBioChem 4, 654-657 (2003).

26. J. H. Sulston, J., The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory
17, 988 (1988).

27. S. Bleuler-Martínez et al., A lectin-mediated resistance of higher fungi against predators
and parasites. Mol. Ecol. 20, 3056-3070 (2011).

28. M. P. Smith et al., A liquid-based method for the assessment of bacterial pathogenicity
using the nematode Caenorhabditis elegans. FEMS Microbiol. Lett. 210, 181-185 (2002).

29. J. Schindelin et al., Fiji: an open-source platform for biological-image analysis. Nat.
Methods 9, 676-682 (2012).

30. C. T. Rueden et al., ImageJ2: ImageJ for the next generation of scientific image data.
BMC Bioinform. 18, 529 (2017).

31. Z. Cseresnyes, K. Kraibooj, M. T. Figge, Hessian-based quantitative image analysis of
host-pathogen confrontation assays. Cytometry A 93, 346-356 (2018).

32. D. Legland, I. Arganda-Carreras, P. Andrey, MorphoLibJ: integrated library and plugins
for mathematical morphology with Image J. Bioinformatics 32, 3532-3534 (2016).

153 CHAPTER 4. MANUSCRIPTS

Manuskript Nr. 4

Titel des Manuskriptes: MISA++: A standardized interface for automated bioimage analysis

Autoren: Ruman Gerst, Anna Medyukhina, Marc Thilo Figge

Bibliographische Informationen: Gerst, R., Medyukhina, A., & Figge, M. T. (2020). MISA++: A
standardized interface for automated bioimage analysis. SoftwareX, 11, 100405.

Der Kandidat / Die Kandidatin ist (bitte ankreuzen)

☒ Erstautor/-in, ☐ Ko-Erstautor/-in, ☐ Korresp. Autor/-in, ☐ Koautor/-in.

Status: Veröffentlicht in SoftwareX

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation

Autor/-in Konzeptionell Datenanalyse Experimentell Verfassen des

Manuskriptes
Bereitstellung
von Material

Ruman Gerst 70 % 70 % 70 % 35 % 0 %

Anna
Medyukhina

15 % 15 % 15 % 35 % 0 %

Marc Thilo Figge 15 % 15 % 15 % 30 % 100 %

Summe: 100 % 100 % 100 % 100 % 100 %

_____________________ _______________________________________
Unterschrift Kandidat/-in Unterschrift Betreuer/-in (Mitglied der Fakultät)

155 CHAPTER 4. MANUSCRIPTS

4.4 MISA++: A standardized interface for auto-
mated bioimage analysis

SoftwareX 11 (2020) 100405

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

MISA++: A standardized interface for automated bioimage analysis
Ruman Gerst a,b, Anna Medyukhina a, Marc Thilo Figge a,c,∗

a Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany
b Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany
c Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany

a r t i c l e i n f o

Article history:
Received 4 September 2019
Received in revised form 16 January 2020
Accepted 19 January 2020

Keywords:
Image processing
Parallelization
Application integration
Light-sheet fluorescence microscopy
Big volume image data

a b s t r a c t

Modern imaging techniques, such as lightsheet fluorescence microscopy (LSFM), allow the capture of
whole organs in three spatial dimensions. The analysis of these big volume image data requires a
combination of user-friendly and highly efficient tools. We here present MISA++, an image analysis
framework that allows easy integration of custom high-performance C++ tools into third-party
applications via standardized components for parallelization, data and parameter handling, command
line interface, and communication with third-party applications. We demonstrate its capabilities by
implementing a plugin for ImageJ that provides a graphical user interface for any application built
with our framework, and a high-performance re-implementation of our Python-based algorithm to
segment glomeruli in LSFM images of whole murine kidneys.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.0.0.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_276
Code Ocean compute capsule
Legal Code License BSD-3-Clause
Code versioning system used Git
Software code languages, tools, and services used C++, OpenMP, CMake, Java, Python, ImageJ
Compilation requirements, operating environments & dependencies C++ framework: CMake, Boost, SQLite, OME files, OpenCV, JSON for Modern

C++; ImageJ plugin: Maven; Java implementations: Maven, imglib2,
DeconvolutionLab2, ImageJ; Python implementations: Snakemake, NumPy,
Scikit-image, Mahotas

If available Link to developer documentation/manual https://applied-systems-biology.github.io/misa-framework/
Support email for questions thilo.figge@leibniz-hki.de

Software metadata

Current software version 1.0.0.1
Permanent link to executables of this version https://github.com/applied-systems-biology/misa-

framework/releases/download/1.0.0/misaxx-1.0.0.1-sources-bin-aio.zip
Legal Software License BSD-3-Clause
Computing platforms/Operating Systems Windows, Linux
Installation requirements & dependencies
If available, link to user manual https://applied-systems-biology.github.io/misa-framework/
Support email for questions thilo.figge@leibniz-hki.de

∗ Corresponding author at: Applied Systems Biology, Leibniz Institute for
Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena,
Germany.

E-mail address: thilo.figge@leibniz-hki.de (M.T. Figge).

1. Motivation and significance

Modern imaging techniques, such as light sheet fluorescence
microscopy (LSFM), enable quantitative three-dimensional analy-
sis of targeted structures in whole organs. A typical LSFM exper-
iment produces hundreds of gigabytes of 3D image data, making

https://doi.org/10.1016/j.softx.2020.100405
2352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

CHAPTER 4. MANUSCRIPTS 156

2 R. Gerst, A. Medyukhina and M.T. Figge / SoftwareX 11 (2020) 100405

a manual analysis virtually impossible. The analysis of these big
data volumes requires automated and efficient tools that uti-
lize multiple processing cores while managing limited system
memory. Such highly efficient tools can be developed with pro-
gramming languages such as C++, C or Julia. Each language has
its own pros and cons: Julia supports modern high-level concepts
such as functional programming or modularization, but lacks a
large software ecosystem of third-party libraries. The opposite
is true for C: It features a wide range of existing third-party li-
braries, but lacks modern programming concepts. C++ fulfills both
requirements. It features a large set of third-party software such
as OpenCV [1], Insight Toolkit (ITK) [2], Halide [3], and – due to a
compatibility feature – any library developed in C . Additionally,
it includes machine-oriented memory management, and high-
level concepts like object orientation, functional programming,
and modularization. However, development of novel algorithms
and pipelines in C++ is difficult due to a complex syntax, the
need of compilation, limited debugging capabilities, and the static
program flow. For example, there is no easy way to change
algorithm parameters without re-calculating all previous steps.

Tools like ImageJ [4], Icy [5], Knime [6], Ilastic [7], CellPro-
filer [8], Python (https://python.org/), and Microscopy Image
Browser (MIB) [9] allow easy development of novel algorithms
and pipelines by providing a graphical user interface or a simple
programming language syntax. Such features on the other hand
can make high-performance analysis impractical: Simple script-
ing languages are not compiled into machine code and can there-
fore only be optimized to a limited degree. This makes imple-
mentations of custom algorithms extremely slow. Graphical user
interfaces are not supported by most high-performance servers
and come with additional overhead to render the interface.

Analysis of large-volume data often requires the development
of novel algorithms and pipelines. This can often be more effi-
ciently done on a small subset of data via a user-friendly tool
that, however, may be less optimized. To obtain the results for
the full data set within reasonable computation time or by an
algorithm adapted for real-time processing, a high-performance
re-implementation becomes essential. There are already exist-
ing tools like CLIJ [10] or Cython (http://cython.org) that allow
such an optimized implementation. Yet, novel algorithms might
require highly customized implementations and usage of high-
performance third-party libraries. Features like these are only
available in machine-oriented languages such as C++.

The disadvantage of such custom high-performance C++ tools
is that they cannot be easily integrated into third-party appli-
cations, which not only allow easy statistical analysis of the
algorithm results, but often provide proprietary methods for data
preprocessing. Today, there are no standards on how to com-
municate input data, output data, and algorithm parameters.
Without such standards, additional development time would be
needed for creating a custom-built integration. This causes dou-
bling of similar codes across multiple projects due to incompat-
ibilities and additional effort in documentation and maintenance
of the software.

To address the challenge of combining the efficiency of C++
with user-friendly tools, we developed a framework termed Mod-
ular Image Stack Analysis for C++ (MISA++): A platform-
independent open source framework that provides a standard
for developing efficient, highly parallelized, and modular im-
age analysis tools using established libraries. It allows to create
custom software tools with standardized data and parameter
handling, parallelization, command line interface, and documen-
tation. Any tool developed with MISA++ can be easily integrated
into user-friendly software.

Fig. 1. MISA++ consists of two core components: A C++ framework and
a standardized JSON interface. The high-performance C++ framework allows
integration of third-party libraries like OpenCV or OME Files. The interface
allows easy integration of applications developed with the C++ framework by
standardizing parameters, data handling, and documentation.

2. Software architecture

MISA++ consists of two parts: (i) A C++ framework for develop-
ing high-performance image analysis tools – MISA++ applications
– with established libraries like OpenCV , and (ii) a standardized
interface to communicate between any MISA++ application and
any other software like ImageJ (see Fig. 1).

2.1. C++ framework

Our C++ framework provides ready-to-use components for
parallelization, data organization and integration of third-party
data types, memory management, parameter handling, creating a
command line interface, and interacting with other applications
and pipelines.MISA++ is written in C++ version 17 and depends on
various libraries developed by third-party contributors (see Table
S1).

2.1.1. Parallelization
The framework organizes workloads in a directed acyclic

graph (DAG) where nodes represent processing steps and edges
represent dependencies. Each node contains a workload function
and tracks if it already has been executed. A node can only exe-
cute its workload if no dependency has an unfinished workload.
The framework then iteratively executes unfinished workloads in
parallel until all nodes are finished.

MISA++ differentiates between two types of nodes: Tasks and
dispatchers. Tasks are workers that contain any atomic and par-
allelizable workload. Dispatchers are not parallelizable and re-
sponsible for creating the DAG structure. To make it possible for
developers to easily split the DAG into individual, re-usable appli-
cations and software-libraries, the DAG is constructed iteratively
during the runtime: Dispatcher nodes only instantiate its direct
dependencies — either tasks or other dispatchers. An example of
such a graph construction is presented in Fig. S1.

2.1.2. Data management
Input and output data is organized in data structures termed

caches. They fulfill four roles (see Fig. S2): (i) Integration of third-
party data types into MISA++, (ii) automated memory-

157 CHAPTER 4. MANUSCRIPTS

R. Gerst, A. Medyukhina and M.T. Figge / SoftwareX 11 (2020) 100405 3

Fig. 2. MISA++ applications organize files in a virtual file system (VFS). Its structure is defined in C++ code. Entries in the VFS can be linked to any entry in the hard
disk file system (red dashed lines).

management by storing unused data on hard drive, (iii) thread-
safe data reading, writing and modification, and (iv) managing
quantification results.

Caches encapsulate the process of reading and writing data
from an automatically assigned location on the hard disk. Hard
drive locations are managed in a virtual file system (VFS; see
Fig. 2). The framework then maps VFS paths to locations on the
hard drive, based on information provided via the application
parameters. This makes it easy to adapt a MISA++ application
to different computers and third-party programs. Another ben-
efit is that the framework can automatically de-allocate unused
data from memory and store it on hard disk to lower system
requirements.

In a multi-threaded environment, it is essential to prevent
behavior like parallel writing into the same memory location.
Breaking this thread-safety would cause wrong calculation results
or crashes. Caches handle data access from multiple threads by
blocking data writing until all reading threads have finished their
work.

Caches allow attachment of custom metadata objects for
thread-safe intermediate results storage, or to export quantifi-
cation data. All attached results are automatically stored in a
standardized format (see Section 2.2.2).

2.1.3. Parameter handling
All parameters are provided via a parameter file in JSON for-

mat (http://json.org/) and accessible via thread-safe functions.
These methods also automatically assign a location in the JSON
file and de-serialize JSON data, allow developers to document pa-
rameters, and set constraints. There are three types of parameters
that can be defined in code: (i) DAG-node specific parameters,
termed algorithm parameters, (ii) sample-specific parameters,
and (iii) global parameters. Global parameters are used for gen-
eral settings like the number of threads, while sample parame-
ters contain sample metadata. Algorithm parameters are specific
to one DAG node and allow users to modify the behavior of
workloads.

2.1.4. Command line interface
MISA++ comes with components that allow encapsulation of

any DAG root into a ready-to-use command line interface (CLI).
The CLI handles tasks like reading the parameter file, building
the VFS, and executing DAG node workloads. Additionally, it is
able to query information provided in C++ code to generate a
documentation of the MISA++ application (see Section 2.2.3).

2.2. Standardized JSON interface

The components described in the previous section are stan-
dardized, so that developers, users, and other software can eas-
ily interact with MISA++ applications. Components of this in-
terface are the standardized CLI (see Section 2.1.4), the stan-
dardized VFS (see Section 2.1.2), and multiple standards on how
to communicate information like metadata or parameters via
the JSON format. The full interface documentation can be ac-
cessed online at https://applied-systems-biology.github.io/misa-
framework/cpp-framework/standards/. The components of the
JSON interface are briefly described here:

2.2.1. Application information
General information about a MISA++ application can be ei-

ther generated by the CLI or accessed from any MISA++ pro-
cessing output folder. It contains information like the application
name, authors, version, description, license, organization, citation,
and website. The standard also allows developers to easily cite
dependency software packages.

2.2.2. Custom metadata
Metadata like quantification results that are attached to caches

(see Section 2.1.2) are stored in a standardized location within the
output directory. MISA++ automatically documents the metadata
in JSON Schema (http://json-schema.org/) format. Additionally,
exported files contain information about the VFS location and
data cache. This makes it possible to fully automatically extract
quantification results from MISA++ application output and link
them to the data.

2.2.3. Parameters
Parameters are provided via a JSON file (see Section 2.1.3).

Based on its name, type, and DAG node, each parameter is au-
tomatically assigned a unique location within the parameter file.
It additionally contains information on how to link the VFS to
locations on the hard disk (see Section 2.1.2). Users can either
provide just the input and output directory, or have detailed
control over each individual VFS entry.

Any MISA++ application can automatically generate a human-
and machine-readable documentation in JSON Schema format that
outlines all possible properties of the parameter file. This includes
name, description, data type, and default values of parameters de-
fined in C++ code. The documentation also contains a full descrip-
tion of the VFS and its caches, including information about its data

CHAPTER 4. MANUSCRIPTS 158

4 R. Gerst, A. Medyukhina and M.T. Figge / SoftwareX 11 (2020) 100405

type, a description, and information about required metadata. The
documentation therefore contains all necessary instructions on
how to construct a valid parameter file, and information on which
input data is required, and which output is generated.

3. Illustrative examples

In the following section, we briefly showcase applications of
the MISA++ framework. This includes integration of data types
from third-party C++ libraries, utilizing the JSON interface (see
Section 2.2) for integration into third-party applications, and
examples on optimizing algorithms via a re-implementation in
MISA++.

3.1. OpenCV and OME TIFF integration

We developed a cache (see Section 2.1.2) that integrates the
widely used image processing library OpenCV into MISA++. We
also developed an extension that allows loading OME TIFF [11,12]
image files into OpenCV data types.

To integrate OpenCV images, we developed a cache that au-
tomatically locates a compatible image file in its VFS directory.
On accessing the image data, the file is de-serialized via OpenCV
functions.

To integrate support for OME TIFF files, we use the OME Files li-
brary (https://www.openmicroscopy.org/ome-files/). Again, com-
patible files are detected if available and loaded via the OME Files
library. Due to the structure of OME TIFF files, we implemented
two cache types: (i) a cache that manages a single 2D plane, and
(ii) a cache that represents the whole image file and provides
access to each individual image plane cache. This allows to pass
only a specific set of image planes to an algorithm. For example,
a set of 2D planes can be distributed across multiple task nodes
to parallelize processing (see Section 2.1.1).

3.2. ImageJ plugin

To showcase the capabilities of theMISA++ interface, we devel-
oped a plugin for ImageJ that provides a graphical user interface
for any MISA++ application. It utilizes the human- and machine-
readable documentation that can be generated by any MISA++
application (see Section 2.2.3) to setup the user interface. The
plugin depends on various libraries developed by third-party
contributors (see Table S2).

The plugin maintains a customizable list of known MISA++ ap-
plications and can automatically detect installed applications. By
utilizing the standardized CLI, the plugin then queries the general
application information, and the parameter schema. Based on this
data, the plugin automatically derives information about input
and output data, their VFS location, and which parameters are
available — information necessary to execute an analysis.

On starting the ImageJ plugin, users are presented with a
list of available applications. From within the application list,
users have access to features that allow analyzing data with a
single MISA++ application, connect multiple applications into one
pipeline, and analyze the output of an application. Step-by-step
tutorials on how to use the plugin are available online at https://
applied-systems-biology.github.io/misa-framework/imagej/step-
by-step/. An in-depth feature showcase is given in the supple-
mentary material.

3.3. Image analysis

To showcase the MISA++ performance improvements, we de-
veloped three MISA++ applications that combine common image
analysis operations to process biological data as well as a single-
operation benchmark. Our applications for biological image anal-
ysis are: (i) segmentation of glomeruli in 3D kidney data [13,14],
(ii) segmentation of cells in phagocytosis assays [15], and (iii)
application of deconvolution.

We compared our MISA++ applications against equivalent
Python and Java tools that use a DAG parallelization provided
by Snakemake [16] and Dexecutor (https://dexecutor.github.io).
Our MISA++ implementations use OpenCV as image processing
library, while the Python applications use scikit-image [17] and
NumPy (https://numpy.org/). Our Java implementations are based
on ImgLib2 [18] and ImageJ . We enabled all available optimization
functionalities, but also discuss the impact on disabling them in
the supplementary material. All C++ programs were compiled in
Release configuration. All analyses were executed on a server with
an Intel® Xeon® E7-8894 CPU, 1 TB of memory, and 30 threads.

To test if the different implementations produce the same re-
sults, we compared the distribution of characteristic readouts via
a pairwise Bootstrap Kolmogorov–Smirnov test (nboots = 1000).
We consider two distributions to be significantly equal if their
p-value p ≫ 0.05.

Glomeruli analysis. Glomeruli are functional structures in kid-
neys. Their count and morphology are affected by various dis-
eases and are therefore important factors to study. We analyzed
LSFM images of whole murine kidneys (Fig. 3a) to quantify the
glomeruli and extract information like their diameter and volume.
The algorithm works as follows: After initial preprocessing, the
kidney tissue is segmented. The resulting mask and preprocessed
image are then used to segment glomeruli for each 2D image
plane. Finally, the segmented 2D objects are reconstructed into
3D glomeruli, quantified and filtered (see supplementary material
for details). The algorithm was initially developed in the Python
programming language [13,14]. This implementation required
approximately three days to analyze 23 murine kidneys with a
total file size of 110 GB.

Our MISA++ implementation supports OME TIFF files (see Sec-
tion 3.1) that allow metadata like the voxel size to be stored
within the image. We separated our implementation into two
applications: (i) An application that segments kidney tissue, and
(ii) an application that segments the glomeruli. The glomeruli
segmentation tool re-uses the tissue segmentation code via its
public API (see Fig. 3b). This design prevents code duplication,
as tissue segmentation is a common part of any LSFM image
analysis.

Input and output data are declared within the DAG root (see
Section 2.1.2). The tissue segmentation tool expects an input
OME TIFF file containing the input fluorescence image. It gener-
ates an OME TIFF image containing segmented tissue mask. We
converted the Python algorithm into C++ code and split into fol-
lowing tasks: (i) 2D tissue segmentation, (ii) tissue quantification,
(iii) 2D glomeruli segmentation, (iv) 3D glomeruli reconstruction,
(v) glomeruli quantification, and (vi) a task to filter false-positive
glomeruli.

The DAG dependencies are set up so, that the tasks are exe-
cuted in the listed order. Instead of running only one task at a
time, the set of image planes is split across multiple instances of
2D tissue segmentation that run in parallel. The same applies to
the 2D glomeruli segmentation.

The MISA++ implementation was 95 times faster than the
Python script and reduced the runtime from about 3 days to
approximately 41 minutes (see Fig. 4a). See Listing S11 for the

159 CHAPTER 4. MANUSCRIPTS

R. Gerst, A. Medyukhina and M.T. Figge / SoftwareX 11 (2020) 100405 5

Fig. 3. The full kidney LSFM data set consists of hundreds of 2D image planes (a). Fluorescently labeled glomeruli are visible in the zoomed-in image. The image
contrast was enhanced for visualization. (b) DAG structure of the MISA++ glomeruli analysis tool. It consists of two applications, one responsible for segmenting the
kindey tissue and another application solely responsible for segmenting the glomeruli. The tissue segmentation code is separated into its own MISA++ application.

Fig. 4. Comparison between MISA++, Python (Py), and Java implementations. (a) The MISA++ implementation is the fastest in all three test cases. Snakemake optimization
of the original Python-based glomeruli segmentation (Py*) still did not achieve the speed of the MISA++ implementation. (b) Pairwise testing for difference in
distributions of the observed readouts lead to p-values well above the critical value of 5%.

parameter file. We updated the original Python-based implemen-
tation to use Snakemake. This reduced the runtime to about 14 h,
which is still about 21 times slower than for MISA++.

Distributions of characteristic readouts were significantly
equal between all implementations (see Fig. 4b and Table S3).
We revealed differences in the glomeruli diameters of at most
0.42 µm±0.27 µm (see Figs. S4 and S5), which is well below the
image resolution with voxel size of 4.063 µm×4.063 µm×5 µm.

Cell segmentation and deconvolution. We describe the algorithms
in more detail in the supplementary material. Our MISA++ im-
plementation was the fastest in both tasks. The cell count dis-
tribution as well as distributions in Wasserstein distance between
standardized deconvolved and original image were significantly
equal.

Single-operation benchmarks. MISA++ was faster in five out of
eight tested common image processing operations, which are
explained in detail in the supplementary material, section 3.4
(see Fig. S8). Applying the Bootstrap Kolmogorov–Smirnov test,
the Wasserstein distance between input and output images (see
Table S4 and Fig. S9) are not significantly different, except in three
operations where equivalent computations yield differences that
can be explained by minor implementation details (see supple-
mentary material).

4. Impact and conclusions

Our framework could be used to greatly improve the perfor-
mance of existing methods. For example, the performance of the
ImageJ implementation of our Algorithm for Confrontation Assay
Quantification (ACAQ) to quantify host–pathogen interactions in
images of endpoint experiments can be strongly increased [19].

Furthermore, the feature to integrate custom and third-party data
types also allows applications beyond image segmentation, such
as the implementation of our Algorithm for Migration and Inter-
action Tracking (AMIT) that monitors the dynamics of interacting
cell systems by live cell imaging [20–22].

The MISA++ framework combines the high performance of
C++ with easy-to-use applications by standardizing the develop-
ment and interaction with C++ programs. Developers can uti-
lize our standardized components for parallelization, handling
of third-party data types and quantification results, sample and
algorithm parameters, creating a command line interface, and
modularization into multiple applications and software libraries.
Our standardized and powerful JSON interface allows any third-
party program to easily interact with any MISA++ application. We
showcase our framework capabilities in our OpenCV and OME
TIFF integration, our ImageJ plugin that automatically generates
a graphical user interface for any MISA++ application, and our
high-performance re-implementation of the algorithm to seg-
ment glomeruli in LSFM data. By using our framework, the time to
analyze a data set can be greatly reduced: Algorithms developed
in user-friendly – but low-performance – software can be easily
re-implemented as high-performance MISA++ application. The
advanced JSON interface then allows fully automatized interac-
tion between those easy-to-use tools and the C++ application for
further data evaluation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CHAPTER 4. MANUSCRIPTS 160

6 R. Gerst, A. Medyukhina and M.T. Figge / SoftwareX 11 (2020) 100405

Acknowledgments

Funding

This work was supported by the International Leibniz Research
School for Microbial and Biomolecular Interactions Jena — ILRS
Jena.

The authors would like to thank Sina Coldewey (Septomics
Research Center, Jena University Hospital, Jena, Germany), and
Matthias Gunzer (Institute for Experimental Immunology and
Imaging, University Hospital Essen, Germany) for providing the
LSFM images.

The authors would also like to thank Hanno Schoeler and
Axel A. Brakhage (Leibniz Institute for Natural Product Research
and Infection Biology — Hans Knöll Institute, Jena,Germany) for
providing the images on phagocytosis assays.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.softx.2020.100405.

References

[1] Bradski G. The openCV library. Dr Dobb’s J Softw Tools 2000.
[2] Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S,

et al. Engineering and algorithm design for an image processing API: a
technical report on ITK-the insight toolkit. Stud Health Technol Inform
2002;586–92.

[3] Ragan-Kelley J, Barnes C, Adams A, Paris S, Durand F, Amarasinghe S.
Halide: a language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In: ACM sigplan notices, vol.
48, no. 6. ACM; 2013, p. 519–30.

[4] Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et
al. ImageJ2: ImageJ for the next generation of scientific image data. BMC
Bioinform 2017;18(1):529.

[5] De Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T,
et al. Icy: an open bioimage informatics platform for extended reproducible
research. Nat Methods 2012;9(7):690.

[6] Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, et al. KNIME:
The konstanz information miner. In: Studies in classification, data analysis,
and knowledge organization. Springer; 2007.

[7] Sommer C, Straehle C, Koethe U, Hamprecht FA. Ilastik: Interactive learning
and segmentation toolkit. In: Biomedical imaging: from nano to macro,
2011 IEEE international symposium on. IEEE; 2011, p. 230–3.

[8] Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al.
CellProfiler: image analysis software for identifying and quantifying cell
phenotypes. Genome Biol 2006;7(10):R100.

[9] Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. Microscopy image
browser: a platform for segmentation and analysis of multidimensional
datasets. PLoS Biol 2016;14(1). e1002340.

[10] Haase R, Royer LA, Steinbach P, Schmidt D, Dibrov A, Schmidt U, et al. CLIJ:
GPU-accelerated image processing for everyone. Nat Methods 2019;1–2.

[11] Goldberg IG, Allan C, Burel J-M, Creager D, Falconi A, Hochheiser H, et
al. The Open Microscopy Environment (OME) Data Model and XML file:
open tools for informatics and quantitative analysis in biological imaging.
Genome Biol 2005;6(5):R47.

[12] Linkert M, Rueden CT, Allan C, Burel J-M, Moore W, Patterson A, et al.
Metadata matters: access to image data in the real world. J Cell Biol
2010;189(5):777–82.

[13] Klingberg A, Hasenberg A, Ludwig-Portugall I, Medyukhina A, Männ L,
Brenzel A, et al. Fully automated evaluation of total glomerular number
and capillary tuft size in nephritic kidneys using lightsheet microscopy. J
Am Soc Nephrol 2017;28(2):452–9.

[14] Dennhardt S, Pirschel W, Wissuwa B, Daniel C, Gunzer F, Lindig S, et
al. Modeling hemolytic-uremic syndrome: in-depth characterization of
distinct murine models reflecting different features of human disease.
Front Immunol 2018;9:1459.

[15] Kraibooj K, Schoeler H, Svensson C-M, Brakhage AA, Figge MT. Automated
quantification of the phagocytosis of Aspergillus fumigatus conidia by a
novel image analysis algorithm. Front Microbiol 2015;6:549.

[16] Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics 2012;28(19):2520–2.

[17] van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD,
Yager N, et al. the scikit-image contributors, scikit-image: image processing
in Python. PeerJ 2014;2. e453. http://dx.doi.org/10.7717/peerj.453.

[18] Pietzsch T, Preibisch S, Tomančák P, Saalfeld S. ImgLib2—generic image
processing in Java. Bioinformatics 2012;28(22):3009–11.

[19] Cseresnyes Z, Kraibooj K, Figge MT. Hessian-based quantitative im-
age analysis of host-pathogen confrontation assays. Cytometry Part A
2018;93(3):346–56.

[20] Brandes S, Mokhtari Z, Essig F, Hünniger K, Kurzai O, Figge MT. Au-
tomated segmentation and tracking of non-rigid objects in time-lapse
microscopy videos of polymorphonuclear neutrophils. Med Image Anal
2015;20(1):34–51.

[21] Brandes S, Dietrich S, Hünniger K, Kurzai O, Figge MT. Migration
and interaction tracking for quantitative analysis of phagocyte–pathogen
confrontation assays. Med Image Anal 2017;36:172–83.

[22] Al-Zaben N, Medyukhina A, Dietrich S, Marolda A, Hünniger K, Kurzai O,
et al. Automated tracking of label-free cells with enhanced recognition of
whole tracks. Sci Rep 2019;9(1):3317.

161 CHAPTER 4. MANUSCRIPTS

MISA++: a standardized interface for automated

bioimage analysis - Supplementary text

Ruman Gerst1,2, Anna Medyukhina1 and Marc Thilo Figge1,3,*

1Applied Systems Biology, Leibniz Institute for Natural Product Research and

Infection Biology � Hans-Knöll-Institute, Jena, Germany
2Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany

2Institute of Microbiology, Faculty of Biological Sciences,

Friedrich-Schiller-University Jena, Germany
*Corresponding author. Email address: thilo.figge@leibniz-hki.de

January 16, 2020

1 C++ framework

Library Version URL Author/Citation

OpenMP 4.5 https://www.openmp.org/ [1]

Boost Libraries 1.67 https://www.boost.org/ Beman Dawes, David Abra-
hams, Rene Rivera; Boost
Community

SQLite 3 https://www.sqlite.org/ SQLite Consortium

OME-Files 0.5.0 https://www.

openmicroscopy.org/

[2, 3]

OpenCV 3.2.0 https://opencv.org/ [4]

JSON for Modern C++ 3.5.0 https://github.com/

nlohmann/json

Niels Lohmann

CMake 3.12 https://cmake.org/ Kitware Inc.

Table S1: C++ framework dependencies.

1

CHAPTER 4. MANUSCRIPTS 162

Fig. S1: MISA++ organizes workloads in a DAG. It consists of two types of nodes: tasks
(blue) and dispatchers (red). Dispatchers are responsible for creating the graph structure by
iteratively instantiating direct neighbor nodes (white).

2

163 CHAPTER 4. MANUSCRIPTS

CHAPTER 4. MANUSCRIPTS 164

*

*

*

*

Fig. S3: Example project structure. We recommend a clear separation between API headers
(folder include), and implementation code (folder src). The CMakeLists.txt project �le
contains instructions for the CMake build system. Our MISA++ CMake helper functions
automatically generate �les marked with an asterisk if they do not exist. The folder names
(here my-module) correspond to the settings in the CMakeLists.txt �le.

4

165 CHAPTER 4. MANUSCRIPTS

Project �le The CMake con�guration (see Listing S1) includes the code �les into the build
process, and sets up the installation operation that copies the generated library, executable, API
headers, and additional metadata into the installation path. The CMake build system usually
requires developers to manually set up the project con�guration for API export. MISA++

includes script helpers that are automatically available within the CMakeList.txt that includes
the MISA++ core library. Developers only need to provide some metadata and organize the
project as shown in Fig. S3. The script then automatically introduces the necessary �les and
settings to allow proper installation and easy inclusion into other projects. This means that
any additional �les need to be initialized �rst, which is done by an integrated development

environment (IDE), or manually by running following command in the project folder: mkdir

build; cd build; cmake ...

1 cmake_minimum_required(VERSION 3.11) # Or higher if required

2 project(my-module VERSION 1.0.0 DESCRIPTION "")

3

4 find_package(misaxx -core REQUIRED)

5 find_package(misaxx -imaging REQUIRED)

6 # Add additional packages if necessary

7

8 add_library(my-module

9 include/my-module/module_interface.h

10 include/my-module/module.h

11 src/my -module/module_interface.cpp

12 src/my -module/module.cpp

13 src/my -module/module_info.cpp)

14

15 # Add additional link targets if necessary

16 target_link_libraries(my-module misaxx ::misaxx -core misaxx ::misaxx -imaging)

17

18 ##

19 # MISA++ helper script (automatically included by Core Library)

20 ##

21

22 set(MISAXX_LIBRARY my-module)

23 set(MISAXX_LIBRARY_NAMESPACE my_module ::)

24 set(MISAXX_API_NAME my_module)

25 set(MISAXX_API_INCLUDE_PATH my-module)

26 set(MISAXX_API_NAMESPACE my_module)

27

28 # Automatically generate module_info () function if not existing

29 misaxx_with_default_module_info ()

30

31 # Setup CMake for exporting the API (include files , etc.)

32 misaxx_with_default_api ()

33

34 # Generate an executable out of the DAG root

35 # An appropriate main.cpp is added if not existing

36 misaxx_with_default_executable ()

Listing S1: Example CMakeLists.txt project con�guration �le. It includes the source code
into the build process and sets variables for the MISA++ CMake helper script.

Package con�guration An example package con�guration can be found in Listing S2. An
automatically generated �le is the CMake package con�guration that contains information
about dependency libraries for the compiled MISA++ project. During the installation, it is
copied to a directory that can be read by CMake to allow the library to be found with the easy
to use find_package() function.

1 @PACKAGE_INIT@

2

3 # This should have the same find_package commands as

4 # the CMakeLists.txt file

5 find_package(misaxx -core REQUIRED)

6 find_package(misaxx -imaging REQUIRED)

7

8 # Automatically generated

9 if(NOT TARGET my -module)

5

CHAPTER 4. MANUSCRIPTS 166

10 include(${CMAKE_CURRENT_LIST_DIR }/my -module -targets.cmake)

11 endif()

Listing S2: Example CMake package con�guration �le. This �le is required to allow other
CMake projects to reuse the functions of the current project. It contains information about
which dependency libraries CMake has to import.

Global metadata function Each MISA++ should have a global function that returns in-
formation about the current software package (see Listing S3). To cite a third-party MISA++

library, developers just have to add its metadata, which is accessible via the dependency API, to
the current object. Non-MISA++ software and papers can also be cited by manually creating
a metadata object and setting its entries. An example for such advanced citing can be found
in Listing S4.

1 // Function declaration in .h file

2 #include <misaxx/core/module_info.h>

3 #include <misaxx/imaging/module_info.h>

4

5 namespace my_module {

6 misaxx :: misa_module_info my_module :: module_info ();

7 }

8

9 // Function implementation - usually in a separate .cpp file

10 misaxx :: misa_module_info my_module :: module_info () {

11 misaxx :: misa_module_info info;

12 info.set_id("my-module");

13 info.set_version("1.0.0");

14 info.set_name("my-module");

15 info.set_description("");

16 info.add_dependency(misaxx :: module_info ());

17 info.add_dependency(misaxx :: imaging :: module_info ());

18 return info;

19 }

Listing S3: Example module information. The code de�nes a API function that returns
metadata such as the name, version, or dependencies.

1 misaxx :: misa_module_info misaxx :: imaging :: module_info () {

2 misaxx :: misa_module_info info;

3 info.set_id("misaxx -imaging");

4 info.set_version("1.0.1.0");

5 info.set_name("MISA++ Imaging Support");

6 info.set_description("Support for OpenCV");

7 info.add_author("Ruman Gerst");

8 info.set_license("BSD -2-Clause");

9 info.set_organization("Leibniz Institute for Natural Product Research and Infection Biology

- Hans Knoell Institute (HKI), Jena , Germany");

10 info.set_url("https ://asb -git.hki -jena.de/RGerst/misaxx -imaging/");

11

12 // External dependency: OpenCV

13 misaxx :: misa_module_info opencv_info;

14 opencv_info.set_id("opencv");

15 opencv_info.set_name("OpenCV");

16 opencv_info.set_url("https :// opencv.org/");

17 opencv_info.set_organization("OpenCV team");

18 opencv_info.set_citation("Bradski , Gary , and Adrian Kaehler. \" OpenCV .\" Dr. Dobb's journal

of software tools 3 (2000).");

19 opencv_info.set_license("BSD -3-Clause");

20 opencv_info.set_is_external(true);

21

22 // External dependency: OpenCV

23 misaxx :: misa_module_info libtiff_info;

24 libtiff_info.set_id("libtiff");

25 libtiff_info.set_name("LibTiff");

26 libtiff_info.set_url("http ://www.libtiff.org/");

27 libtiff_info.set_authors ({"Sam Leffler", "Frank Warmerdam", "Andrey Kiselev", "Mike Welles",

"Dwight Kelly"});

28 libtiff_info.set_license("BSD");

29 libtiff_info.set_is_external(true);

6

167 CHAPTER 4. MANUSCRIPTS

30

31 info.add_dependency(misaxx :: module_info ());

32 info.add_dependency(std::move(opencv_info));

33 info.add_dependency(std::move(libtiff_info));

34

35 return info;

36 }

Listing S4: Example module information with citations. The metadata objects allows
developers to properly cite third-party software. The information can be later extracted via
MISA++ CLI commands. In this code example, we left out code already explained in Listing S3.

DAG nodes Each DAG node type corresponds to one C++ class. Task nodes (see Listing S6)
have a method work() that contains the workload that should be executed by the node. From
within a node, developers can access the data interface via the get_module_as<T>() function.
Alternatively, as they are shared pointers, data caches can also be class attributes and assigned
during node instancing.

Parameters are created by adding a class attribute of a MISA++ parameter type. The
object is then instantiated within a create_parameters(builder) function that connects the
parameter attribute to a speci�c location within the current parameter �le. This encapsulates
raw access to JSON data to prevent errors, and allows the framework to extract the list of
expected parameters via a simulated run.

Dispatcher nodes also have a create_parameters(builder) function, but specialized func-
tions designed for DAG node creation instead of a work() method. As the DAG root is also a
dispatcher node, see Listings S8 to S10 for examples how to assign workloads to dispatchers.

1 // Class declaration in .h file

2 #include <misaxx/core/misa_task.h>

3 #include <my-module/module_interface.h>

4 #include <opencv2/opencv.hpp >

5

6 namespace my_module {

7 struct my_task : public misaxx :: misa_task {

8 using misaxx :: misa_task :: misa_task;

9 void work() override;

10 };

11 }

12

13 // Class definition in .cpp file

14 void my_module :: my_task ::work() {

15 std::shared_ptr <my_module :: module_interface > module = get_module_as <my_module ::

module_interface >();

16

17 // RAII image data access

18 misaxx :: readonly_access <cv::Mat > input_img_access = module ->m_input_image.access_readonly ();

19

20 // Threshold without unnecessary copy

21 cv::Mat thresholded { };

22 cv:: threshold(input_img_access.get(), thresholded , 0, 255, cv:: THRESH_OTSU);

23

24 // RAII output cache access

25 misaxx :: write_access output_img_access = module ->m_output_image.access_write ();

26 output_img_access.set(std::move(thresholded));

27 }

Listing S5: Example task node. Data can be accessed through the module interface instance
of the currently assigned sample. Data access is encapsulated through memory-e�cient and
thread-safe proxy objects. In this example, the input image of the current sample is thresholded
with Otsu-thresholding. The resulting mask is written as output image.

1 // Class declaration in .h file

2 #include <misaxx/core/misa_task.h>

3 #include <my-module/module_interface.h>

4 #include <opencv2/opencv.hpp >

5

7

CHAPTER 4. MANUSCRIPTS 168

6 namespace my_module {

7 struct my_task2 : public misaxx :: misa_task {

8

9 parameter <int > threshold;

10

11 using misaxx :: misa_task :: misa_task;

12

13 void work() override;

14 void create_parameters(misaxx :: misa_parameter_builder ¶meters) override;

15 };

16 }

17

18 // Class definition in .cpp file

19

20 void my_module :: my_task2 :: create_parameters(misaxx :: misa_parameter_builder ¶meters) {

21 // Register the parameter "threshold" with default value 50

22 threshold = parameters.create_algorithm_parameter <int >("threshold", 50);

23 }

24

25 void my_module :: my_task2 ::work() {

26 std::shared_ptr <my_module :: module_interface > module = get_module_as <my_module ::

module_interface >();

27

28 // RAII image data access

29 misaxx :: readonly_access <cv::Mat > input_img_access = module ->m_input_image.access_readonly ();

30

31 // Threshold without unnecessary copy

32 // The parameter is queried using the threshold.query() function

33 cv::Mat thresholded { };

34 cv:: threshold(input_img_access.get(), thresholded , threshold.query(), 255, cv:: THRESH_BINARY

);

35

36 // RAII output cache access

37 misaxx :: write_access output_img_access = module ->m_output_image.access_write ();

38 output_img_access.set(std::move(thresholded));

39 }

Listing S6: Example task node with parameters. Parameters are class attributes that are
instantiated within the create_parameters() function. This allows MISA++ to extract
information about the parameters in a simulated run. The parameter value then can be queried
via a query() method.

Data interface class The data interface class manages the data of one sample (see List-
ing S7). Its attributes are MISA++ caches that either encapsulate input or output data of
a speci�c type. The setup() function is used to link the caches to a subfolder in the sample
input or output directory if no link has been already established by a potential parent data
interface. Any cache can generate a self-description of its properties (for example �le names or
XML metadata) that can be passed from an input to an output cache.

1 // Class declaration in .h file

2 #include <misaxx/core/misa_module_interface.h>

3 #include <misaxx/imaging/accessors/misa_image_file.h>

4

5 namespace my_module {

6 struct module_interface : public misaxx :: misa_module_interface {

7 // Example: Input and output image

8 misa_image_file m_input_image;

9 misa_image_file m_output_image;

10

11 void setup() override;

12 };

13 }

14

15 // Class definition in .cpp file

16 void my_module :: module_interface ::setup() {

17 // The input image is loaded directly from the sample directory

18 m_input_image.suggest_import_location(filesystem , "");

19

20 // Create the output image within a "output" subfolder.

21 // Copy metadata like filename from the input image

8

169 CHAPTER 4. MANUSCRIPTS

22 m_output_image.suggest_export_location(filesystem , "output", m_input_image.describe ());

23 }

Listing S7: Example module interface. The code de�nes the input and output caches and links
them to locations within the MISA++ �lesystem. In this example, an input image and one
output image are declared.

DAG root The DAG root, just like any dispatcher node, contains methods to instantiate
a part of the DAG (see Listing S8). To allow the framework to automatically document the
DAG without the need of data, the process is split into two parts: First, all possible tasks and
sub-dispatchers are declared and assigned a name. Those "blueprints" are then instantiated
in the second function. There can be as many instances of one blueprint as needed, allowing
developers to easily model a parallel mapping (see Listing S9).

Any dispatcher (including the DAG root) have additional high-level capabilities of control-
ling the order of executed tasks (see Listing S10). They encapsulate two concepts: (i) A group
of nodes, and (ii) a pipeline or chain of nodes. Developers can group together any set of nodes
and model that another task is only executed after all grouped nodes have �nished their work-
load. Chains allow easy creation of pipelines (N1, N2, . . . , Nk−1, Nk) where a node Ni is only
executed after Ni−1 has �nished its workload.

1 // Class declaration in .h file

2 #include <misaxx/core/misa_module.h>

3 #include <my-module/module_interface.h>

4

5 namespace my_module {

6 struct module : public misaxx :: misa_module <module_interface > {

7 using misaxx :: misa_module <module_interface >:: misa_module;

8

9 void create_blueprints(blueprint_list &blueprints , parameter_list ¶meters) override;

10 void build(const blueprint_builder &builder) override;

11 };

12 }

13

14 // Class definition in .cpp file

15 #include <my-module/my_task.h>

16

17 void my_module :: module :: create_blueprints(blueprint_list &blueprints , parameter_list &

parameters) {

18 // Register task "my-task" of type my_task

19 blueprints.add(create_blueprint <my_task >("my -task"));

20 }

21

22 void my_module :: module ::build(const blueprint_builder &builder) {

23 // Instantiate "my-task"

24 my_task &task = builder.build <my_task >("my-task");

25 }

Listing S8: Example module DAG root. Tasks, dispatchers and sub-modules are �rst registered
before their actual instantiation. In this example, a task my_task with the name my-task is
declared without actually instancing it. Instantiation happens in the build() function where
the task is instantiated based on its name. In more complex programs, multiple instances of
the same task type can be created for parallelization.

1 // We assume that m_input_image contains a dynamic amount of slices

2 // We assume that m_output_segmented contains the same amount of slices as m_input_image

3

4 void my_module :: module :: create_blueprints(blueprint_list &blueprints , parameter_list &

parameters) {

5 // Register task "segment -2d-layer" of type segment_2d_layer

6 blueprints.add(create_blueprint <segment_2d_layer >("segment -2d-layer"));

7 }

8

9 void my_module :: module ::build(const blueprint_builder &builder) {

10 for(size_t i = 0; i < m_input_image.num_slices; ++i) {

11 segment_2d_layer &task = builder.create <segment_2d_layer >("segment -2d-layer");

9

CHAPTER 4. MANUSCRIPTS 170

12 task.m_input = m_input_image.get_slice(i);

13 task.m_output = m_output_segmented.get_slice(i);

14 }

15

16 // The DAG contains now (m_input_image.num_slices) tasks of type segment_2d_layer

17 // Each task is responsible for segmenting one layer

18 }

Listing S9: Parallelization mapping example. Developers can instantiate any amount of nodes
of the same type. This blueprint-like feature allows dynamic parallelization. In this example,
we left out code that has already been explained in Listing S8.

1 // We assume that m_input_image contains a dynamic amount of slices

2 // We assume that m_output_preprocessed contains the same amount of slices as m_input_image

3 // We assume that m_output_segmented contains the same amount of slices as m_input_image

4 // We assume that preprocess_2d_layer has two cache attributes m_input_output

5 // We assume that segment_2d_layer has two cache attributes m_input and m_output

6

7 void my_module :: module :: create_blueprints(blueprint_list &blueprints , parameter_list &

parameters) {

8 // Register task "segment -2d-layer" of type segment_2d_layer

9 blueprints.add(create_blueprint <segment_2d_layer >("segment -2d-layer"));

10

11 // Register task "preprocess -2d-layer" of type preprocess_2d_layer

12 blueprints.add(create_blueprint <preprocess_2d_layer >("preprocess -2d-layer"));

13

14 // Register task "quantify" of type quantify_task

15 blueprints.add(create_blueprint <quantify_task >("quantify"));

16 }

17

18 void my_module :: module ::build(const blueprint_builder &builder) {

19

20 // This group collects all segment_2d_layer tasks

21 group segmented_2d;

22

23 for(size_t i = 0; i < m_input_image.num_slices; ++i) {

24

25 preprocess_2d_layer &task_preprocess = builder.create <preprocess_2d_layer >("preprocess -2d-

layer");

26 task_preprocess.m_input = m_input_image.get_slice(i);

27 task_preprocess.m_output = m_output_preprocessed.get_slice(i);

28

29 segment_2d_layer &task_segment = builder.create <segment_2d_layer >("segment -2d-layer");

30 task_segment.m_input = m_output_preprocessed.get_slice(i);

31 task_segment.m_output = m_output_segmented.get_slice(i);

32

33 // chain ensures that its entries are executed one after another

34 chain per_layer;

35 per_layer >> task_preprocess >> task_segment;

36

37 // add task_segment into the segmented_2d group

38 segmented_2d << task_segment;

39 }

40

41 // The >> operator ensures that the right operand is only executed when all tasks in the

group are finished

42 quantify_task quantification = builder.build <quantify_task >("quantify");

43 segmented_2d >> quantification;

44 }

Listing S10: Dependency management example. Any dispatcher comes with powerful tools to
further control DAG dependencies without the need of creating a separate dispatcher class. In
this example, we left out code that has already been explained in Listing S8.

10

171 CHAPTER 4. MANUSCRIPTS

Library Version URL Author/Citation

ImageJ, ImgLib2 2.0.0 http://imagej.net/ [5]

Gson 2.8.5 https://github.com/

google/gson

Google LLC

Guava 26.0-jre https://github.com/

google/guava

Google LLC

JFreeChart 1.5.0 http://www.jfree.org/

jfreechart/

Dave Gilbert

JFreeSVG 3.3 http://www.jfree.org/

jfreesvg/

Dave Gilbert

�exmark-java 0.40.18 https://github.com/

vsch/flexmark-java

Vladimir Schneider

Bioformats Plugin 6.0.0 http://www.

openmicroscopy.org/bio-

formats/

[2]

SQLite JDBC Driver 3.25.2 https://bitbucket.org/

xerial/sqlite-jdbc

Taro L. Saito

Apache POI 4.0.1 https://poi.apache.org/ Apache Software Foundation

ICEpdf 6.2.2 http://www.icesoft.org/ Icesoft Technologies Inc.

Apache Commons Exec 1.4.0 https://commons.apache.

org/proper/commons-

exec/

Apache Software Foundation

Breeze Icons - https://github.com/KDE/

breeze-icons

KDE e.V.

Font-Awesome-SVG-PNG - https://github.com/

encharm/Font-Awesome-

SVG-PNG

Damian Kaczmarek,
Dominykas Blyº
e

Table S2: ImageJ plugin dependencies.

11

CHAPTER 4. MANUSCRIPTS 172

2 ImageJ plugin

2.1 ImageJ plugin

To showcase the capabilities of the MISA++ interface, we developed a plugin for ImageJ that
provides a graphical user interface for any MISA++ application. It utilizes the human- and
machine-readable documentation that can be generated by any MISA++ application to setup
the user interface.

Step-by-step tutorials on how to use the plugin are available online in writing and video form
at https://applied-systems-biology.github.io/misa-framework/imagej/step-by-step/.

Starting the ImageJ plugin opens a list of available MISA++ applications along with a de-
scription. MISA++ applications are either detected automatically or can be added by selecting
the executable. From within the application list, users have access to features that allow ana-
lyzing data with a single MISA++ application, connect multiple applications into one pipeline,
and analyze the output of an application.

2.1.1 Data analysis

To analyze data, users must �rst setup the list of image samples. Samples are identi�ed by
their name and can be either imported from an existing folder that follows the VFS structure or
provided via manual input. Images can be imported directly from ImageJ and are automatically
converted into a format that is compatible with the cache. For non-image data types and
custom caches, users can select the �les from the �le system. The MISA++ ImageJ plugin
automatically creates the required input folder structure and warns users if data is missing.
After setting up the data, users can change sample-, algorithm- and application-wide parameters
via a graphical user interface. Documentation provided during the parameter declaration is
accessible from within the interface. The settings are automatically validated by the plugin.
Users can choose to either run the MISA++ application on the current computer or export a
data and parameter package for analysis on another computer or server. If the analysis is done
on the current computer, the tool will o�er to display and evaluate the results.

2.1.2 Pipeline creation

In addition to running a single MISA++ application, our plugin also includes a tool to create
pipelines. They are represented in a �owchart where processing steps are MISA++ applica-
tions and arrows are dependencies. To create a pipeline, users can add any known MISA++

application to the �owchart. Dependencies can be created by clicking a button that shows
possible connections to the selected processing step. With an established dependency, output
data can be passed from one step to the input of another step via the data import interface
(see section S2.1.1). Another similarity to a single-application analysis is that pipelines can be
either run directly from within ImageJ or exported for analysis on another computer.

2.1.3 Result analysis

We included a tool to simplify the further analysis of MISA++ application results. It allows
(i) importing result images back into ImageJ , (ii) browsing, summarizing, and plotting of
quanti�cation results, and (iii) analyzing the runtime. The graphical user interface displays
all available output and input data. Compatible data can be imported back into ImageJ . The
exact set of available actions depend on the cache data type and can be extended with custom
plugins.

MISA++ applications store quanti�cation results in a standardized format that can carry
large amounts of additional metadata like units or localization information about a segmented

12

173 CHAPTER 4. MANUSCRIPTS

Algorithm Tested value
MISA++

Java
MISA++
Python

Java
Python

Glomeruli
segmentation

Glomerular
number

> 0.999 0.976 >0.999

Glomeruli
segmentation

Tissue volume > 0.999 0.978 0.983

Cell
segmentation

Cell count >0.999 >0.999 >0.999

Deconvolution Distance 0.823 >0.999 0.912

Table S3: p-values calculated from pairwise comparing the characteristic algorithm readout
distributions via Bootstrap Kolmogorov-Smirnov test (nboots = 1000). All p-values are well
above the critical value of 5%.

object. To allow e�cient storage of the metadata, an external MISA++ application transforms
JSON into an SQLite (https://www.sqlite.org/) database. The user interface includes
functions to easily query this database. Users can browse, �lter, and export entries in table
format. Tables can either be exported into commonly used spreadsheet formats, or further
analyzed. We included features to extract of basic descriptive statistics, and plot the results
directly from within ImageJ .

Any MISA++ application is able to log its runtime with the option detailed per-task logs.
Our ImageJ plugin comes with a tool to plot the runtime and extract descriptive statistics like
the estimated multi-threaded speedup. Developers can use this information to spot performance
bottlenecks and further increase the application performance.

3 Image analysis

3.1 Glomeruli analysis

1 {

2 "filesystem": {

3 "input -directory": "/data/input",

4 "output -directory": "/data/output",

5 "source": "directories"

6 },

7 "runtime": {

8 "misaxx -ome": {

9 "disable -write -buffer -to-ome -tiff": true

10 },

11 "num -threads": 30,

12 "full -runtime -log": true

13 },

14 "samples": {

15 "Kontrolle_Bonn 1a zoom063 z5 647_12 -39-10": {},

16 "Kontrolle_Bonn 1b zoom063 z5 647_13 -22-21": {},

17 "Kontrolle_Bonn 2a zoom063 z5 647_11 -53-22": {},

18 "Kontrolle_Bonn 2b_10 -23-40": {},

19 "Kontrolle_Ly6G M11a zoom08 z5 al647_14 -26-05": {},

20 "Kontrolle_Ly6G M11b zoom08 z5 al647_13 -43-00": {},

21 "Kontrolle_Ly6G M1a zoom08 z5 al647_12 -38 -06": {},

22 "Kontrolle_Ly6G M1b zoom08 z5 al647_13 -05 -34": {},

23 "Kontrolle_Ly6G M9a zoom08 z5 al647_11 -36 -12": {},

24 "Kontrolle_Ly6G M9b zoom08 z5 al647_12 -10 -14": {},

25 "d15 NTN 2a zoom08_15 -33-00": {},

26 "d15 NTN1a zoom08_15 -19-34": {},

27 "d15 NTN1b zoom08_13 -43-09": {},

28 "d15 NTN2b zoom08_14 -23-01": {},

29 "d15 NTN3a zoom08_16 -04-45": {},

30 "d15 NTN3b zoom08_16 -29-01": {},

31 "d7 NTN 1a zoom063 z5 647_09 -40-46": {},

13

CHAPTER 4. MANUSCRIPTS 174

32 "d7 NTN 1b zoom063 z5 647_10 -51-03": {},

33 "d7 NTN 2a zoom063 z5 488 -647_15 -46-09": {},

34 "d7 NTN 2b zoom063 z5_13 -56-41": {},

35 "d7 NTN 3a zoom063 z5_17 -01-52": {},

36 "d7 NTN 3b zoom063 z5 488- 647_12 -11-22": {},

37 "d7 NTN2a neu_09 -51-56": {}

38 }

39 }

Listing S11: Parameter �le for MISA++ glomeruli segmentation. The �le sets up the VFS,
number of threads, samples, and disables OME TIFF writing for consistency with the Python
implementation.

Our glomeruli analysis algorithm [6, 7] applies the following steps: The initial preprocessing
consists of a median �lter that removes noise. Afterwards, the tissue is segmented via a per-
centile thresholding with subsequent morphological hole-closing operations. A �ltering step is
then applied to remove false-positive tissue regions via a mean intensity threshold. Glomeruli
segmentation requires the minimum and maximum object radius and begins with segmenting
the glomeruli in 2D. A morphological top-hat operation is applied to the preprocessed image to
segment objects larger than the minimum radius. The glomeruli are then segmented via Otsu
thresholding. Objects larger than the maximum size are removed via a morphological opening,
while false-positive objects outside the tissue region are erased.

3.2 Cell segmentation

Segmentation and quanti�cation of conidia � fungual spores � can be used to assess the behavior
of immune cells [8]. One di�culty in segmenting conidia in 2D microscopy images is that cells
might be merged during thresholding (see Fig. S6). A common method to separate merged
cells consists of initial smoothing and Otsu thresholding. To separate merged cells, distance
transformation is applied. The resulting image is used to �nd seed points via local maxima and
as input for a watershed-algorithm.

The DAG is similar to the tissue segmentation where all 2D planes are segmented �rst and
the resulting masks are accumulated afterwards.

Our MISA++ implementation was over 137 times faster than the Java application and
about 4.6 times faster than the Python implementation.

Our test for di�erence in distribution showed the results to be signi�cantly equal in all
tested cases (see Table S3).

3.3 Deconvolution

Deconvolution is a common image restoration technique (see Fig. S7). It is based on the idea
that a microscopy image is convolved by a point spread function (PSF). If the PSF is known,
an inverse �lter operation in fourier space then can be used to restore the original image. In
practice, naive inverse �ltering yields usually bad results. There are di�erent tools like Decon-
volutionLab2 [9] that implement alternative methods. For our example, we implemented the
Regularized inverse �ltering algorithm in MISA++ and Python, and used DeconvolutionLab2

for the Java implementation.
Given the fourier-transformation of the input image Y , the fourier-transformed deconvolved

image X can be calculated via the Regularized inverse �lter [9] method:

X = Y · H

H2 + L · λ · L (1)

, where λ is the regularization factor, and L is the fourier-transformation of the 3× 3 laplacian
kernel. For our analyses, we set the regularization factor λ = 0.001.

14

175 CHAPTER 4. MANUSCRIPTS

Fig. S4: Glomeruli segmentation result comparison. For the number of glomeruli, the maxi-
mum pairwise di�erence is 2344 (13.63%), and on average 168.58±412.86 (0.98%±2.4%). The
tissue volume is at most 7.79 · 109 µm3 (3.85%) and on average 5.67 · 108 µm3 ± 1.32 · 109 µm3

(0.28% ± 0.65%) di�erent. The mean glomerulus diameter is on average 0.42µm ± 0.27µm
(0.6%± 0.39%) and at most 1.39µm (2.01%) di�erent.

15

CHAPTER 4. MANUSCRIPTS 176

nboots = 100

4.063µm× 4.063µm× 5µm

(a) (b)

Conidia segmentation

Quantification

Exp. Exp.Exp.

DAG root

177 CHAPTER 4. MANUSCRIPTS

(a) (b)

Deconvolution

Deconvolution

Convolution

DAG root

-1

PSF
((

Fig. S7: (a) Convolution with a point spread function (PSF) can be theoretically undone with
deconvolution. (b) DAG structure of the MISA++ deconvolution test tool. An input image is
�rst convolved given a known PSF and then deconvolved.

The DAG consists of a convolution task with a known PSF, followed by a simulated decon-
volution with the same PSF.

Our MISA++ implementation was about 17 times faster than the Java application and
about 5.8 times faster than the Python implementation.

To allow comparison between di�erent implementations, we calculated the Wasserstein dis-

tance between each deconvolved and its original image. Before calculating the distance, we
�rst standardized the images to have a average value of zero, and a standard deviation of one.
Each 2D image was converted to an 1D vector. Our test for di�erence in distance distribution
showed the results to be signi�cantly equal in all tested cases (see Table S3).

3.4 Single-operation benchmarks

The single-operation benchmark applications runs following tests:

canny A canny edge detection algorithm Canny(σgaussian, T1, T2) with gaussian pre-
processing σgaussian = 1, and thresholds T1 = 0.1 and T2 = 0.2

�t-i�t The input image is transformed into its fourier-space representation and trans-
formed back into real space

io Loading the input image and saving 7 output images as LZW-compressed 32 bit
�oat TIFF �les

median Median-�ltering with a 21× 21 square mask

morphology Dilation with a circle mask of radius 15

otsu Otsu-thresholding

percentile 65th percentile thresholding

wiener2 Applying a Wiener deconvolution according to the Matlab implementation (see
https://de.mathworks.com/help/images/ref/wiener2.html)

17

CHAPTER 4. MANUSCRIPTS 178

0.807 > 0.999 0.957
> 0.999 > 0.999 > 0.999

> 0.999
> 0.999 > 0.999 > 0.999
> 0.999 > 0.999 > 0.999

> 0.999

nboots = 1000

179 CHAPTER 4. MANUSCRIPTS

CHAPTER 4. MANUSCRIPTS 180

In our single-operation benchmark, MISA++ was the fastest in 5 out of 8 cases. The cases
where C++ was not the fastest implementation were Fourier transformation, TIFF input and
output, and percentile thresholding. We cannot explain the di�erences in TIFF IO performance,
as both MISA++ and Python use libtiff (http://libtiff.org/) for TIFF reading and
writing with LZW compression enabled.

The Fourier transform performance can be explained by Java creating a di�erently sized
frequency space representation: ImgLib2 o�ers Fast Fourier Transform (FFT) and Inverse

Fast Fourier Transform (iFFT) algorithms, but does not allow developers to specify the size
of the resulting frequency image. In our tests, ImgLib2 produced FFT outputs with smaller
dimensions than the input image, while OpenCV and NumPy were instructed to generate
outputs of the same size as the original image.

Lastly, the low C++ in percentile thresholding performance can be explained by a naive
custom implementation that �rst extracts all pixels and then applies a sorting algorithm. The
performance can be optimized by applying partial sorting algorithms, as percentile extraction
only requires a subset of conditions that are created by sorting.

As an addition to a versus-language comparison, we also tested the in�uence of additional
optimization that is usually enabled by default for any image analysis library. Our results show
di�erences between optimized and unoptimized workloads. The speed impact depends on the
operation and the image library.

To allow testing if the results are equal across implementations, we calculated the Wasser-

stein distance between output and input image for each sample. We standardized the input
image, so it has a mean value of zero and standard variance of one. We standardized the
output images for non-thresholding algorithms (Dilation, FFT/iFFT, median �ltering, Wiener
deconvolution). For thresholding, we instead normalized the image by its maximum value. The
reason behind this is that standardization transforms from binary value space to real value
space, which distorts thresholded results.

We then compared the distributions via pairwise Bootstrap Kolgomorov-Smirnov test (nboots =
1000). Our results show that not all distributions were signi�cantly equal (p ≫ 0.05; see Ta-
ble S4). Visualizations of the di�erences via decile shift plots are consistent with the test results
(see Fig. S9). We address the observed di�erences below.

FFT/iFFT Evaluation of the result images revealed that the C++ results were shifted,
explaining the large di�erence between C++ and other implementations. While the results
are di�erent, the program still applied a proper inverse FFT (iFFT) on previously generated
frequency-space data. For real-world implementations (see Deconvolution example), the code
is modi�ed to extract the correct real image from periodic frequency space. We still see the
performance comparison as valid, as equivalent operations were applied � just shifted by period.

While the di�erence between Java and Python results are signi�cant (p < 2.22e-16), they
decile di�erences are at most 2.7 · 10−3. Considering implementation details like output sizing,
and value scaling,

Median �lter Our results indicate that the Java median �lter implementation produces
a di�erent output. Further investigation revealed that imglib2 converts the image to an 8-
bit representation, while C++ and Python implementations do not convert the �oating point
images. Although there are signi�cant di�erences, the algorithms still have to apply similar
operations for each neighborhood.

Wiener deconvolution The Wiener deconvolution results were signi�cantly di�erent be-
tween C++ and the other implementations. We implemented this operation manually and
re-con�rmed that the operations are equivalent. To prevent zero-division errors, we added

20

181 CHAPTER 4. MANUSCRIPTS

a constant to to local variance component. This constant is very small (around 10−6) and
therefore can cause �oating point errors depending on how the code is compiled into machine
code.

3.5 Impact of additional optimizations

Python and C++ image libraries allow developers to disable per-operation optimizations such
as parallelization, or GPU computing. To test the in�uence of those optimizations, we repeated
certain analyses without enabled optimizations. In case of Java image libraries, optimizations
are usually enabled by default without an easy way for disabling them, or provided in code as
explicit number of threads. Therefore, we did not compare the impact of optimization in Java

applications.
Testing the impact of optimization on our three composite algorithms (see Fig. S10) shows

that optimization can even have a negative impact if the workload is relatively small. For
larger workloads, such as the 3D glomeruli segmentation, optimization can reduce the runtime
by up to 38 minutes for the Python implementation. Optimization therefore is only reasonable
if the processing steps are slow. Additional parallelization overhead, such as thread creation
or uploading data to the graphics card, can negatively impact the performance for tasks that
already run very fast.

Single-operation benchmarks (see Fig. S8) reveal that additional optimization impacts each
operation in a di�erent way.

21

CHAPTER 4. MANUSCRIPTS 182

Fig. S10: Impact of additional optimization on composite algorithms. Results marked with
an asterisk are run with disabled optimizations. The impact depends on the workload.

22

183 CHAPTER 4. MANUSCRIPTS

References

[1] L. Dagum, R. Menon, Openmp: an industry standard api for shared-memory programming,
IEEE computational science and engineering 5 (1) (1998) 46�55.

[2] M. Linkert, C. T. Rueden, C. Allan, J.-M. Burel, W. Moore, A. Patterson, B. Loranger,
J. Moore, C. Neves, D. MacDonald, et al., Metadata matters: access to image data in the
real world, The Journal of cell biology 189 (5) (2010) 777�782.

[3] I. G. Goldberg, C. Allan, J.-M. Burel, D. Creager, A. Falconi, H. Hochheiser, J. Johnston,
J. Mellen, P. K. Sorger, J. R. Swedlow, The open microscopy environment (ome) data model
and xml �le: open tools for informatics and quantitative analysis in biological imaging,
Genome biology 6 (5) (2005) R47.

[4] G. Bradski, The opencv library, Dr. Dobb's Journal of Software Tools (2000).

[5] C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena,
K. W. Eliceiri, Imagej2: Imagej for the next generation of scienti�c image data, BMC
bioinformatics 18 (1) (2017) 529.

[6] A. Klingberg, A. Hasenberg, I. Ludwig-Portugall, A. Medyukhina, L. Männ, A. Brenzel,
D. R. Engel, M. T. Figge, C. Kurts, M. Gunzer, Fully automated evaluation of total glomeru-
lar number and capillary tuft size in nephritic kidneys using lightsheet microscopy, Journal
of the American Society of Nephrology 28 (2) (2017) 452�459.

[7] S. Dennhardt, W. Pirschel, B. Wissuwa, C. Daniel, F. Gunzer, S. Lindig, A. Medyukhina,
M. Kiehntopf, W. W. Rudolph, P. F. Zipfel, et al., Modeling hemolytic-uremic syndrome:
in-depth characterization of distinct murine models re�ecting di�erent features of human
disease, Frontiers in immunology 9 (2018) 1459.

[8] K. Kraibooj, H. Schoeler, C.-M. Svensson, A. A. Brakhage, M. T. Figge, Automated quan-
ti�cation of the phagocytosis of aspergillus fumigatus conidia by a novel image analysis
algorithm, Frontiers in microbiology 6 (2015) 549.

[9] D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch,
M. Unser, Deconvolutionlab2: An open-source software for deconvolution microscopy, Meth-
ods 115 (2017) 28�41.

23

CHAPTER 4. MANUSCRIPTS 184

185 CHAPTER 5. DISCUSSION

Chapter 5

Discussion

Image-based systems biology (IbSB) enables the characterization of the interac-
tions between host cells and pathogenic microorganisms, yielding knowledge that
is useful for the treatment of life-threatening diseases, for example, sepsis [11],
or hemolytic-uremic syndrome [11, 36]. This is achieved by a close collaboration
between experimentalists and computer scientists: the characteristics of an exper-
iment are captured into images that are quantified via advanced algorithms. The
resulting measurements allow the estimation of invisible parameters and prelimi-
nary simulation of experiments in silico. Due to the complexity of interdisciplinary
collaborations, it is essential to organize the storage of all generated data, including
algorithms and their parameters, as well as the generated outputs. The basic prin-
ciples behind digital research data management (RDM) are formalized in the con-
cept of Findability, Accessibility, Interoperability, and Reusability (FAIR) [140].
Software can help to remove any existing barriers between experimentalists and
computer scientists [90] and thus improve the adoption of FAIR, as well as new
advanced technologies.
The goal of this thesis is to contribute towards the propagation of FAIR princi-
ples in the field of IbSB by the development of standardized, reproducible, high-
performance, and accessible software for the quantification of interactions in bio-
logical systems.
The first publication of this thesis [59] (see section 4.1) introduced a reproducible
and fully automated approach termed MSOT cluster analysis toolkit (Mcat) for
the quantification of pharmacokinetics via multispectral optoacoustic tomography
(MSOT). The algorithm was implemented as a plugin for ImageJ [115], thus mak-
ing it accessible to non-programmers. In section 5.1 it will be discussed, how the
software contributes towards the goal of this thesis, followed by perspectives on
future developments. ImageJ is also subject of the second publication [47] (see
section 4.2) that introduces a visual alternative to scripting termed Java image
processing pipeline (JIPipe) into the popular platform [122]. The new software
thus opens the development of advanced algorithms to non-programmers, facil-
itates the dialogue between computer scientists and experimental collaborators,
as well as propagates the adoption of FAIR principles. A discussion is given in
section 5.2 and will be about how the framework achieves these goals, as well
as how it will be utilized and developed further. JIPipe was successfully ap-

CHAPTER 5. DISCUSSION 186

plied in the characterization of the interactions between the soil-dwelling fungus
Mortierella verticillata, its endosymbiotic bacteria, and the fungivorous nematode
Aphelenchus avenae [24] (see section 4.3). Section 5.3 will discuss how automated
image quantification pipelines contributed to the study, and how the approach
can be enhanced for future publications. The final publication of this thesis [48]
(see section 4.4) addresses the challenges of the increasing data volumes [111] by
simplifying the development of high-performance and FAIR-compliant tools via
a framework termed modular image stack analysis for C++ (MISA++). The
software package additionally introduces solutions for making these accessible to
non-programmers. Section 5.4 will discuss the benefits of MISA++, how it attains
easy accessibility and standardized data management, as well as how its feature
set can be further enhanced.

5.1 Fully automated processing of MSOT data dif-
ferentiates healthy from septic mice

Methods for assessing tissue functionality in vivo are of great interest in (pre-)
clinical studies and ethical application of animal models. These allow to detect dis-
eases that are correlated with a lower or higher function of cells in various organs.
Examples are the reduction of kidney function in hemolytic-uremic syndrome [36],
or the impact of sepsis to the liver tissue [141]. The current standard approach
to obtain a quantification of organ function is by applying blood tests [145]. Yet,
due to their indirect nature, it is not always possible to obtain enough information
about the condition [23], leaving invasive biopsies as the only option. Another dis-
advantage is that no visualization of the whole organ is generated that would allow
to isolate specific regions of an organ that show abnormal behavior. Ideally, the
function of organ tissue is assessed non-invasively and in three spatial dimensions
to enable the quantification on a per-region basis. MSOT is a non-invasive tech-
nique that allows to capture the functionality of tissue in vivo as four-dimensional
(4D) data. Additionally, it supports multiple spectral channels that enable the
tracking of multiple photoabsorbers at the same time. There are various clinically
approved dyes available, including indocyanine green (ICG), Methylene blue, and
Omocyanine [97]. The choice of the photoabsorber influences the type of tissue
that is imaged. For example, the water-soluble molecule ICG is mainly eliminated
inside the liver [136]. By utilizing MSOT to track the abundance of ICG in liver
cells, the following pattern can be observed: at the point of injection, the signal in-
creases due to the influx of the fluorophore from the blood stream. This is followed
by a gradual decline in signal caused by degradation of ICG by liver cells. Conse-
quently, this allows the comparison between healthy and damaged liver tissue via
ICG kinetics.
In our publication [59] (see section 4.1), we compared the liver ICG uptake be-
tween healthy mice and animals that were injected with sepsis-inducing bacteria.
Sepsis has a known influence on ICG processing of hepatocytes, thus making it
an ideal candidate for evaluating our newly developed fully automated approach
for quantifying MSOT data. This is compared to the performance of the current

187 CHAPTER 5. DISCUSSION

standard approach that is based on the manual annotation of regions of interest
(ROIs) by an expert. We could show that the commonly applied approach is highly
sensitive to minor variances in the ROIs and does not yield the expected results,
i.e. it could not differentiate between healthy and infected animals. The lack of
an objective quantification method for MSOT data was the motivation behind our
advanced computer algorithm termed MSOT cluster analysis toolkit (Mcat) that
combines two machine-learning methods with the features of the ImageJ platform.
Our approach comprises the suppression of movement artifacts, a fully automated
segmentation of tissue regions via the deep neural network (DNN) Cellpose [126],
and the unsupervised detection of regions within the animal tissue that show sim-
ilar signal kinetics. These are quantified by the calculation of the per-cluster area
under the curve. The combination of different machine learning operations makes
use of their specific strengths. On the one hand, Cellpose can be easily adapted
to various MSOT data sets. This is enabled via the training on the input of an
expert, thus avoiding the introduction of abstract parameters that cannot be easily
inferred from the MSOT setup. On the other hand, the second machine learning
approach is entirely objective and considers only the pharmacokinetics as well as
the number of expected groups, thus reducing the influence of expectancy bias.
To make our algorithm accessible to non-programmers, Mcat is implemented as
plugin for ImageJ. We decided to base our implementation on the Java program-
ming language instead of utilizing the existing scripting capabilities of ImageJ.
While the benefit of these integrated programming languages include the simpli-
fied development and maintenance, scripts only have limited capabilities to create
graphical user interfaces (GUIs). This makes it difficult to develop a user-friendly
interface around the various parameters of our Mcat algorithm. Additionally, there
are various image analysis operations that cannot be easily implemented inside a
script, including K-means clustering, integration of Cellpose, custom statistics,
and the z-transform algorithm. Thus, we decided to develop a Java plugin that
comprises more code compared to a macro, but allowed us to develop a purpose-
built GUI with integrated project, parameter, and data management. As ImageJ
functions are available from within Java, we could combine these with our custom
implementations.
To summarize, our publication makes the quantitative analysis of MSOT data
more reproducible and accessible, thus facilitating the adoption of this technique
for future studies and application in clinical environments.

Perspectives

Extending the spatial analysis to all three dimensions. Although MSOT
setups are capable of generating images with three spatial dimensions, the current
implementation of our software can only analyze two-dimensional (2D) time series.
As researchers are required to select a depth, our software thus introduces an
additional manual review step that is subject to user bias and has the potential
of significantly impacting the quantification results. For example, it is possible
that the user selects a slice with relatively low or high activity. Due to the loss of
information, it is not possible to capture the pharmacokinetics of a whole organ.

CHAPTER 5. DISCUSSION 188

To enable the analysis of three-dimensional (3D) data, the algorithms utilized by
our software need to be adapted to the third spatial dimension. The first challenge
is the modification of the image registration and smoothing methods that internally
combine the frames of the 2D time series into a 3D image as expected by the
registration and smoothing algorithms. On analyzing a 3D time series, the result
is consequently a 4D image that cannot be processed by the current choice of
registration operators. A solution is to apply the preprocessing steps on a per-
slice basis, i.e. each depth of the 3D time series is processed individually. Another
option is to replace the preprocessing algorithms by alternative implementations
that are capable of handling three spatial dimensions, e.g., algorithms provided by
the 3D ImageJ Suite [102].
To adapt the segmentation of tissue to 3D images, the existing implementation
can be executed on a per-slice basis. The disadvantage of this strategy is that
image operations are not aware of the 3D-neighborhoods, which can result in
artifacts at the segmentation borders. These then would need to be corrected
with additional 3D-aware operations, for example, a 3D morphological operation.
Alternatively, all operations contained in the pipeline can be adapted to three
dimensions. Cellpose, which provides the initial probability map already supports
3D segmentation. Thresholding, morphological operations, and additional image
processing steps can be replaced by their 3D counterparts and are either already
available via native ImageJ functions, the MorphoLibJ [78] library, or the 3D
ImageJ Suite.
The clustering of 3D pixels can be trivially implemented by adapting the existing
feature vector generation method to add all voxels within a 3D image. Thus,
the clustering operations and all related statistical methods can be applied as-is.
Finally, Mcat generates a visualization of the cluster assignments that can be easily
adapted from 2D to 3D.

Open source web-based analysis tool for clinical use. To make Mcat suit-
able for a clinical environment, there are still two major points where improvements
must be made: first, our tool should allow manual intervention via semi-interactive
analysis; second, the access to the program must be simplified and adapted to as
many devices as possible, including low-end computers, phones, and tablets. Cur-
rently, Mcat executes all its steps automatically, which is sufficient for the analysis
of animal models. For clinical applications, medical doctors must be provided with
means to review the intermediate results and apply corrections if needed. There is
currently no option to generate one or multiple preliminary tissue ROIs that can
be revised in an interactive interface, and no mode to test and modify the behavior
of the clustering algorithm.
Due to the modular design of Mcat, interactive settings can be easily implemented
as optional GUI that is opened during the analysis. A disadvantage of this ap-
proach is the missing separation between computing and GUI components, which
makes it difficult to run our software on dedicated compute servers that do not
provide a graphical interface. The only option left is to upgrade office computers
to a level that is capable of running Mcat, which is expensive and limits the ease of
access. A solution to this accessibility issue is to separate the computational and

189 CHAPTER 5. DISCUSSION

GUI components of Mcat into dedicated software packages with different roles: one
program acts as server that runs workloads on high-performance hardware, while a
dedicated web application acts as GUI that runs on a phone, tablet, or computer.
The communication between the server and client is established via standardized
application programming interfaces (APIs) based on Representational State Trans-
fer (REST) and Javascript object notation (JSON). The server component can be
implemented in Java, thus allowing the re-use of existing Mcat functions. For
the development of the web application, existing frameworks can be utilized, for
example, React (Meta Platforms, Inc.), or Angular (Google LLC). The benefit of
web applications is that they can be utilized both in a remote and local environ-
ment in form of websites that can be packaged into applications via the Electron
framework (GitHub Inc).
A challenge with our web-based software is that five-dimensional images generated
by MSOT are large, thus making it difficult to visualize these on low-end devices
due to limited memory. A solution involves the implementation of an API that
enables the request of individual slices and low-resolution images. For example,
unless the user requests a high-resolution image, only a small preview is loaded
from the server. An alternative technique is the integration of the image database
OMERO [5], which already provides ready-to-use solutions for the transfer and
visualization of large data sets via web interfaces. An additional benefit of OMERO
is that the MSOT setup can upload data directly to the image database. Mcat
can be also integrated directly into the OMERO platform, due to its support for
plugins, thus removing the need for a custom web interface implementation and
providing users with a uniform interface for processing and integrating various
types of data.
A standardized web-based platform for data management and processing also
opens the possibility to an extension outside the field of MSOT via the integration
of additional patient-related data, for example, endoscopy or blood test results.
A centralized storage allows the collection of long-term comparisons and statistics
that enable the generation of predictions via computer models with the purpose of
assisting medical doctors in selecting an appropriate treatment. As the software
is open source, servers can be set up within local infrastructure, ensuring secure
data storage according to data protection laws.

Implementation of alternative image processing operators for future
projects. The current version of our Mcat implementation makes specific choices
on the algorithms that are responsible for the preprocessing, tissue analysis and
clustering steps. The consequence is that the tool cannot be easily adapted to sce-
narios where the current selection of operators yields unsatisfactory results. Thus,
alternative algorithms will be briefly discussed in the following paragraphs.
Images are first processed by the registration method MultiStackReg [129] to cor-
rect for the movement of the animal. While this method was successful for our
data set, other experiments might require the usage of alternative methods, for ex-
ample, bUnwarpJ [6], Fijiyama [44], or implementations of scale-invariant feature
transform [85]. Registration methods cannot fully correct for breathing artifacts.

CHAPTER 5. DISCUSSION 190

Mcat thus applies an arithmetic averaging over the time axis. The currently avail-
able parameter set only allows the selection of the filter size. To make our approach
adaptable to future experiments, it can be extended by a choice of various smooth-
ing functions, including median and Gaussian blurring, and the option to insert
custom mathematical expressions. Implementations of alternative registration and
smoothing methods are available for ImageJ or can be included by utilizing existing
Java libraries.
Another limitation with the current Mcat software is that the fully automated
tissue segmentation relies exclusively on the Cellpose [126] DNN architecture to
obtain the tissue probabilities. A challenge of MSOT data analysis is that the pa-
rameters of the tomography device greatly influence the image generation. Thus,
it is expected that our pre-trained model performs worse on data sets from other
experiments. To resolve this issue, researchers could be encouraged to share gen-
erated models in an online repository. This can be achieved by collaboration with
the BioImage Model Zoo (https://bioimage.io/) repository that is already suc-
cessfully utilized in the DeepImageJ plugin [89]. Mcat can be extended to make
use of the BioImage Model Zoo by generalizing the segmentation functions into
a standardized library with the option of multiple backends. This abstraction of
implementation details is required, as the Pytorch [106] models that are generated
by Cellpose are incompatible with Tensorflow [1] models utilized by DeepImageJ.
The general applicability opens the possibility to create new backends via the Im-
ageJ plugin interface, including algorithms based on classical image analysis and
alternative machine learning techniques.
Currently, our software exclusively utilizes a K-means clustering method, which
is known to not always yield optimal results depending on the properties of the
data [87, section 20.1, page 288]. Users should be provided with an extensible set
of alternative clustering methods, for example, clustering via a Gaussian mixture
model [87, section 22.2], a clustering based on DNNs, or an algorithm that makes
use of a support vector machine [99]. The disadvantage of K-means and the other
mentioned methods is that they find a predefined number of partitions, meaning
that assumptions are made on the number of clusters. An alternative is to imple-
ment a hierarchical clustering approach that does not create one partitioning, but
instead a tree of nested clusters [87, section 20, page 284]. This representation can
be used to generate outputs that visualize the detected regions interactively via
a generated website. This can aid medical doctors in clinical applications where
experts need to be provided with alternative solutions. As with the generation
of flat clusters, there are various algorithms available that generate a hierarchy
of clusters. For example, there are approaches that are based on the iterative
merging of clusters until a single tree is formed [96], including nearest-neighbor
clustering, complete linkage, and methods based on the calculation of weighted
and unweighted group averages.

Generalization into a software framework. Currently, Mcat provides a cus-
tom GUI, a command line interface (CLI) for execution in server environments, as
well as an API for executing Mcat algorithm and managing data and parameters.
The single purpose of our software to analyze MSOT data thus reveals a bottleneck

https://bioimage.io/

191 CHAPTER 5. DISCUSSION

with the development of related applications: a software that utilizes an entirely
different set of image processing operations will still require the implementation
of functions to manage data and parameters, as well as interfaces for users and
developers. To reduce the development time, a new analysis tool can be based on
the code of an existing application, which has the drawback of complicating its
maintenance: improvements must be communicated between multiple source code
repositories, which is difficult with the increasing number of projects and changes
that accumulate over time. Thus, it is reasonable to outsource shared functional-
ity into a dedicated framework library that provides a standardized API for other
programs. This simplifies the creation of software tools, reduces their code size,
and centralizes the maintenance of common features. A central component of the
framework can be a plugin system, as implemented in ImageJ, thus enabling the
dynamic addition of features by third-party software libraries.
Mcat already contains components that can be adapted to a framework, including
the data management and parameter system, the project format, and the interfac-
ing between processing steps that allows alternative algorithms. One major draw-
back of the developer-focused design is that only programmers are able to fully
customize the behavior of a tool. While there are already options to modify the be-
havior of specific algorithms via parameters, it is impossible for non-programmers
to add custom steps into the workflow or re-arrange the order of steps within Java
code. A more accessible alternative is to redesign Mcat as set of modules with
standardized inputs and outputs that can be freely connected into a pipeline via
a GUI. These modules would be provided by our software, but also automatically
include the set of functions provided by ImageJ. The implementation of such an
accessible framework is the subject of our second publication [47].

5.2 Visual programming opens the development of
fully automated pipelines to non-programmers

In our last manuscript [59] the implementation of our algorithm was based on
the widely popular [122] ImageJ platform. The hallmark of the latter is its user-
friendly GUI for the interactive execution of image analysis operations. Yet, ad-
vanced features that are required to design FAIR-compliant [140] software are only
accessible via a macro scripting language. This includes the design of advanced
and reproducible algorithms that are formed by the application of multiple image
processing operations, the implementation of scalable analysis pipelines, and the
adoption of standardized data storage modes. The required knowledge to under-
stand and develop macros is not widespread in the community of researchers with
a background in life sciences, thus contributing towards a gap between computer
scientists and experimentalists [90]. This circumstance is in particular detrimental
to the implementation of IbSB that relies on interdisciplinary collaborations and
mutual understanding of all involved computational and experimental methods.
Thus, it is paramount to present an easily accessible alternative to scripting that
provides access to the development of advanced, reproducible, and FAIR-compliant
image analysis workflows to any researcher.

CHAPTER 5. DISCUSSION 192

An alternative to macro programming that facilitates the communication of com-
puter algorithms can be found in a visual programming language (VPL) [75]. This
concept is based on a visual representation of an algorithmic pipeline as user-
modifiable flow chart, while technical details are automatically maintained by the
language itself, e.g., the correct order of operations and data management. VPLs
thus circumvent the necessity of mastering a multitude of abstract programming
concepts, including programming structures, pointers and references, function pa-
rameters, complex data types, error handling, and software libraries [107]. The
simplicity and general applicability of VPLs is highlighted in variety of open source
and commercial implementations that include Scratch [88], KNIME [14], Icy [35],
CLIJ [55], Galaxy [66], and Apeer (Carl Zeiss Microscopy GmbH). Specifically Icy
and KNIME are of interest for the design of image analysis pipelines, as these open
source tools allow the visual combination of image processing operations. Yet, an
equivalent functionality is absent in the widely popular [122] ImageJ platform.
In our publication [47], we introduced the Java image processing pipeline (JIPipe),
which is a plugin for ImageJ that encapsulates its existing functionality into a VPL
with the goal of providing an alternative to macro programming for beginners and
advanced users. Due to the visual nature of JIPipe workflows, it is straightfor-
ward to communicate the individual steps involved in an image analysis pipeline
to an experimentalist, thus promoting an understanding of the capabilities and
limitations of image processing approaches. A VPL also simplifies the adaption of
existing image analysis pipelines by a life scientist for the efficient applications of
preliminary analyses, thus closing the gap between computer scientists and exper-
imentalists.
JIPipe aims to provide a viable alternative to the writing of macro code. This goal
can only be achieved, if our tool fulfills four conditions: first, our software must
encompass the features of ImageJ; second, JIPipe must be more accessible com-
pared to macro programming; third, our software must be easy to learn for users
unfamiliar with macro programming; and fourth, our language must be capable of
applying batch processing. These points will be briefly discussed in the following
paragraphs.
The basis of achieving a feature parity between ImageJ and JIPipe is the adaption
of the GUI-focused ImageJ data handling concept into data objects that can be
handled by a VPL. These objects are built around the existing Java APIs provided
by ImageJ and thus allow the easy interfacing with existing ImageJ operations.
A challenge with ImageJ is that it comes with two APIs that manage image pro-
cessing commands: the older ImageJ1 API, and a modern and more standardized
implementation based on ImageJ2. For our publication, we decided to implement
algorithms of both APIs, although via of two different strategies. Due to the lack of
standards regarding parameters and data management, ImageJ1 commands were
encapsulated on an individual basis, meaning that each function corresponds to one
or multiple program code files in the JIPipe source code. This allowed us to utilize
our advanced parameter and documentation system to generate user-friendly vari-
ants of the existing algorithms. For example, we integrated documentation that
is otherwise only available within the original program code and thus inaccessible
to non-programmers. The integration of ImageJ2 was simplified by its high stan-

193 CHAPTER 5. DISCUSSION

dardization that allowed the development of a fully automated encapsulation of
most ImageJ2 functionality. A disadvantage of this automated approach is that
its success relies on the layout of the ImageJ2 algorithm. For example, various
commands cannot be adapted due to incomplete or conflicting parameter defini-
tions. Additionally, we developed JIPipe-exclusive functions that cover automated
file system operations, image reading, metadata generation and management, vi-
sualization, and plotting. As ImageJ is a well-established software with hundreds
of plugins, we were not able to encapsulate all their functionality into dedicated
nodes. To support these missing commands, we designed nodes for executing Im-
ageJ macros and Jython [67] scripts. As these languages have access to all features
of ImageJ and its plugins, JIPipe thus achieves full feature parity with ImageJ.
While programmable nodes rely on script languages and thus are less accessible,
the necessary code can be generated via the “macro recorder” feature of ImageJ
that converts GUI operations into an equivalent code.
As JIPipe aims to be an alternative mode to the writing of macros, our software
employs various strategies to avoid the challenges encountered while preparing
scripts. These include the memorization of the syntax, code organization, the ad-
ditional instructions required for creating a batch processing pipeline, handling of
error conditions, and the difficulty in accessing parameter documentation. The
necessity to learn a syntax is already resolved by the visual programming concept.
The only requirement is that users need to know the name and purpose of vari-
ous ImageJ operations. These can be formed into pipelines via our GUI without
explicit knowledge of program design. An issue with many VPLs is that with an
increasing number of nodes, the pipeline becomes less understandable. JIPipe mit-
igates this issue by allowing custom documentations and comments. Additionally,
we included a unique compartmentalization feature that separates a pipeline into
visually distinct subunits.
While JIPipe offers a more accessible alternative to macro programming, our soft-
ware must be approachable by users that are only familiar with the interactive
ImageJ GUI. One challenge is introduced by the change in paradigm from an in-
teractive workflow focused on concrete data representations to a more abstract
environment that is built around processing operations. The second problem is
that various ImageJ commands are based on GUI operations and thus cannot
be perfectly encapsulated into JIPipe nodes. For example, operations on ImageJ
ROIs rely on an interactive selection that cannot be trivially adapted to a batch
processing workflow.
As the basic components of a pipeline are nodes, users must be able to find and re-
cover the required operations within a set of over 1000 available functions, which is
simplified by various GUI functions. Nodes are organized into a manually curated
menu that is structured in a data-oriented way. For example, users will find image
thresholding operations in a menu “Images > Threshold”, while nodes that import
or generate data are sorted into the “Add data” category. We complemented our
manually curated menu by a search function that allows to find nodes by their
name, description, and functional category, thus aiding researchers that are al-
ready familiar with operations from ImageJ or other software. A disadvantage of
the menu and global search function is that they are not context-sensitive. Instead,

CHAPTER 5. DISCUSSION 194

users are presented with the list of all nodes, which makes it difficult for new users
to decide how to obtain specific input data or how to continue the processing of
an output. To guide users with the creation of workflows, we included a feature
termed “Algorithm finder” that targets a user-selected input or output and presents
them with a sorted list of compatible nodes. These can be easily recovered by an
additional a feature for saving a selection of nodes into a dedicated user-generated
list. A single node is usually not sufficient to apply any relevant image processing,
meaning that new users must familiarize themselves with the correct order of op-
erations. We designed the JIPipe GUI to provide a clear labeling of the expected
data types and role of inputs and outputs directly within the node. Our design
thus enables the full visual understanding of a node’s function without referring to
the documentation. Finally, the project-based format implemented in our software
allows the sharing of pipelines via publications and online communities. Similar
to the macros, this allows users to learn the appropriate order of operations on
examples.

A motivation behind the usage of ImageJ macros is their ability to create scalable
batch processing pipelines. The process of generating such workflows involves
additional code to capture multiple inputs, execute workloads per data set, and
export results in a standardized format. To remove this overhead, we designed
JIPipe to provide “zero-cost scalability”, meaning that single-data projects can be
designed to automatically scale to larger data sets without the need for changes in
the set of nodes. To simplify the scalability of pipelines, JIPipe always manages
tables of data and metadata, which is similar to the layout applied in KNIME [14].
These data tables allow the processing of multiple items per node by iterating
the table row-wise, thus mitigating the additional complexity introduced by loop
control structures. A disadvantage of table-based iteration is that it is only trivial
for nodes that comprise one input, as the correct order of multiple input table rows
cannot be ensured. A solution applied by KNIME is to only accept exactly one
table that is iterated over its rows. The inputs for the underlying operation are
extracted from a specific column that can be selected by the user, or automatically
determined by a heuristic. KNIME’s approach has multiple disadvantages that
include the reliance on existing data items to configure the inputs, the increased
complexity of merging multiple data tables via a dedicated node, and restrictions
on the display of multiple inputs in the GUI. The last point must be specifically
highlighted, as a consistency between displayed and effective inputs reduces the
necessity of reading documentation to understand the behavior of a node. To
simplify the concept of table-based iteration, JIPipe accepts multiple data tables
per node and joins corresponding data items internally. This is enabled by the
enforcement of constraints: our table model introduces the concept of a “primary
data column” that exists exactly once per table and stores data of a predefined
JIPipe data type. Any additional column can either contain text metadata or
generic metadata. Due to these restrictions, an automated algorithm is capable of
iterating through multiple inputs by grouping rows via their text annotations. Due
to the presence of a primary data column, it is clear which data should is passed
the node-encapsulated operation. Another benefit of our approach is the intuitive
relation between data iteration and metadata. For example, batch processing can

195 CHAPTER 5. DISCUSSION

be implemented based on experimental conditions and biological sample identifiers
that are already present in the raw data sets.
The final aspect of ImageJ macros is their use in achieving reproducibility, which
is an important aspect of the FAIR principles and RDM. JIPipe goes beyond the
capabilities of ImageJ by providing an advanced standardized project format that
additionally captures important information about the generating environment,
i.e., the version of JIPipe and all utilized plugins. Consequently, projects can
be fully reproduced in their entirety by selecting the software versions specified
in the pipeline metadata. Another unique feature of JIPipe is its standardized
result storage format that saves data together with all related metadata and type
information. Thus, JIPipe can both write and read data of this format, making it
easy to further process existing results. Due to the standardization and its simple
structure, third-party programs can easily implement our format to communicate
with JIPipe, or utilize the storage specifications as FAIR-compatible mode of data
exchange.
To summarize, our software tool JIPipe greatly contributes towards the ease of
access to advanced and reproducible image analysis pipelines, thus acting as a
bridge between experimentalists and computer scientists. This is achieved by its
visual mode of programming, in combination with careful design choices that guide
users through the variety of image analysis operations. Due to the automated RDM
features implemented in JIPipe, users can trivially implement the FAIR principles.

Perspectives

Platform for teaching image analysis. JIPipe is based around a visual work-
flow that simplifies data management, parameter validation, and branching to test
multiple analysis approaches. This makes our tool an ideal platform to teach image
analysis methods. In the following paragraphs, we will briefly discuss the current
features of our software that facilitate the setup of teaching environments and how
these can be further improved.
To allow the highlight of a node’s functionality, we included a feature that allows
the custom naming of nodes and its inputs and outputs. The labeling function
is complemented by a customizable description field that is capable of embedding
images, links, and formatted text. To highlight specific areas in a pipeline, JIPipe
supports the creation of comment nodes. These can be connected to any node
for highlighting purposes and customized to a high degree to differentiate between
different types of areas, for example, by changing the icon and background color.
A useful tool in the teaching of text programming languages is a focus on the
program structure prior to the involvement of program code [43]. The concept
of designing a program structure can be adapted to VPLs by providing students
with tools to clearly separate the general structure of a visual program from the
concrete implementation as sets of workloads. JIPipe, KNIME, Icy, and other
VPLs provide nodes that contain a sub-workflow. While such “group nodes” can
be utilized to outline the functionality of a pipeline, they are not clearly separated
from the set of functional nodes. JIPipe already features a mode of separating

CHAPTER 5. DISCUSSION 196

pipelines into structural units via the creation of “graph compartments”. These
manage the structure of a workflow via a dedicated hyper-pipeline that defines
the characteristics of the available structural components, as well as how they
exchange data. Our unique concept thus enables the purely structural modelling of
an analysis without the involvement of concrete algorithms. For example, teachers
can set up a project that consists of the common steps of image analysis [93]. The
resulting structural information then acts as guidelines for students to simplify the
choice of nodes.
JIPipe currently provides over 1000 different node types, which can overwhelm stu-
dents who are not familiar with our tool. To simplify the development of pipelines
for practical exercises, we included two features: the project overview page, and
node templates. To communicate information about a project, including authors,
contact information, citations, and instructions, JIPipe features a project-specific
information GUI. The interface can be freely filled with a custom description,
bookmarks to nodes of interest, and references to parameters. These features can
be utilized to provide instructions, illustrative figures, and references to literature.
To facilitate more advanced courses, where students are expected to select nodes
from a curated selection, we introduced a feature that allows the manual addition
of nodes and their parameters into a dedicated list. This function termed “node
templates” can be used to predefine the set of nodes that are utilized within an
exercise.

Expansion of 3D image analysis and visualization tools. JIPipe already
includes features provided by MorphoLibJ [78] and CLIJ [55] that allow 3D ob-
ject tracking, 3D noise filtering, and 3D morphological operations. Yet, there is
currently a variety of missing functions, for example, 3D thresholding, 3D edge
detection, or the extraction and management of 3D ROIs. The basis for including
the missing functionality is the 3D ImageJ Suite [102] library and its standard-
ized interface TAPAS [49]. As we already successfully employed the automated
encapsulation of functions of ImageJ2 [115] and CLIJ [55], it is attainable that the
algorithms provided by TAPAS can be easily included via a similar approach. An
exception to this procedure is the integration of the 3D ROI feature that requires
the implementation of a custom JIPipe data type.
Another weakness of JIPipe is the current lack of visualization for 3D data. Our
custom image viewer can only display 2D images and thus splits 3D data into
individual slices that make it difficult to see structures and evaluate results. To
display 3D data appropriately, our viewer needs to be extended with 3D render-
ing, which is a non-trivial task due to the high resolution of bioimage data. A
viewer must also support multiple rendering modes, including the presentation of
pixels as volumetric cloud, surfaces, and slices. Due to the challenges involved in
implementing such a software, it is more efficient to make use of already existing
Java-based 3D visualization libraries. Examples include the 3D ImageJ Suite [102],
the 3D Viewer plugin [120], and the SciView platform [54]. An alternative is the
integration of non-Java image viewers, for example, Napari [31], Imaris (Oxford
Instruments), or Arivis (Arivis AG). The data transfer between JIPipe and non-
Java software is facilitated by interfacing libraries, for example, pyimagej [46], or

197 CHAPTER 5. DISCUSSION

the imglib2-imaris-bridge (Oxford Instruments). If no such API is available or
developed, the only option left is to write image files to the hard drive prior to the
visualization, which is a time-consuming process.

Integration of state-of-the-art object tracking algorithms. A common
task in the analysis of time series is the tracking of organisms over time to quan-
tify their behavior [93]. To a limited degree, this is already possible in the current
version of JIPipe by utilizing a node designed for finding connected ROI compo-
nents in three dimensions. As a 2D time series is equivalent to a 3D image, our
ROI processing operation thus can be successfully applied. A disadvantage of our
existing tracking algorithm is that it was not designed to handle the difficulties
in tracking biological objects. There are two common issues that can occur in
such analyses: first, the segmentation process is not always capable of fully sep-
arating multiple objects due to their proximity, thus producing clusters and an
unwanted merge of multiple tracks; second, the segmentation can fail in specific
frames, meaning that our simple algorithm loses track of the object.
Methods that are capable of resolving the listed issues are implemented in dedi-
cated tracking software, for example, AMIT [3], the OpenCV [20] tracking mod-
ule, or TrackMate [130]. Specifically TrackMate is suitable for the integration into
JIPipe, as it is written in Java and already provides an interactive GUI for Im-
ageJ. Due to the flexibility of JIPipe, it is capable of encapsulating the TrackMate
features, including the setup of the tracking parameters, integration of alternative
segmentation methods, visualization of tracks, detection of branches, and gener-
ation of statistics. For example, users can be provided with a tracking node for
generating the track data in a standard format. These can be consumed by a set of
other nodes to split and filter tracks, generate visualizations, calculate statistics,
and convert the tracks into ROI.

Inclusion of advanced deconvolution operators. As established in section 1.3.3,
it is beneficial for the analysis to suppress image degradation processes via decon-
volution. Yet, JIPipe currently does not provide any node capable of applying such
an operation. Users are instead forced to execute this preprocessing step outside
JIPipe, for example, via Huygens (SVI), Imaris (Oxford Instruments), Deconvo-
lutionLab2 [116], or Iterative Deconvolve 3D [38]. While Huygens is a commercial
tool and thus cannot be easily integrated into JIPipe, both Iterative Deconvolve
3D and DeconvolutionLab2 are built on ImageJ and thus can be easily encapsu-
lated into our software. A benefit of integrating multiple deconvolution methods
into JIPipe is the simplified application of different deconvolution algorithms and
parameter sets across multiple images. The results can be compared with the pur-
pose of aiding researchers with the correct choice of parameters, for example, via
the DeconvTest [92] framework.

Visual design of deep neural networks. JIPipe already provides limited ca-
pabilities to utilize deep learning techniques via its Cellpose [126] integration that
will be expanded to encompass Omnipose [34]. Both Cellpose and Omnipose are

CHAPTER 5. DISCUSSION 198

based on Pytorch [106], which simplifies the creation, training, and application
of DNNs via an API. The disadvantage of Pytorch is that its functions are inac-
cessible to non-programmers. This is also the case for similar libraries, including
Tensorflow [1], and MXNet [28].
An important feature of deep learning frameworks is the creation of custom archi-
tectures by defining and connecting the layers (see Figure 1.10b). As this process
can be visually represented as flow chart, the pipeline described by a VPL can
serve as basis for the creation of a network architecture. The visual design of
DNNs is for example, implemented in the web-based learning platform Tensorflow
Playground (Google LLC), and the commercial VPL Deep Learning Studio (Deep
Cognition Inc.). JIPipe can be extended to provide an open source alternative
to these commercial tools that allows the creation of viable deep learning models.
The challenge of adapting JIPipe to the design of DNN architectures is that our
software was designed for data processing, while the generation of a model is based
on the structural information contained within the graph. Due to the flexible data
structure implemented in our software, it is feasible to base the build-up of the net-
work layers on a newly designed data type. Its purpose is to store a representation
of the graph of layers that are iteratively added via nodes. A dedicated operation
converts the model information into a DNN that can be utilized for training and
prediction.
Due to the ease of access to the functionality of DNN libraries, the DNN design
feature could also serve a purpose in teaching, as the effect of various architectures
can be interactively explored.

Remote data exchange and processing. We designed JIPipe for the creation
and execution of image analysis workflows on local computers, under the assump-
tion that the hardware has sufficient resources to execute the operations. For
example, we apply our custom algorithms on purpose-built workstation machines
with multiple central processing unit (CPU) cores, a modern graphics card with
24 gigabytes of video random access memory (vRAM), and 256 gigabytes of ran-
dom access memory (RAM). Such an environment is uncommon in standard office
computers, meaning that only small data sets can be processed on many machines.
A current trend is “cloud computing”, which offloads the computationally expen-
sive workloads to compute servers that are either hosted at the local institute, or
by commercial services, for example, AWS (Amazon.com, Inc.), Azure (Microsoft
Corporation), or Google Cloud Platform (Google LLC). It is not always possible to
run JIPipe on a remote server via a virtual desktop, due to missing GUI libraries,
administrator settings, or a slow internet connection.
A solution is the implementation of a dedicated server component that allows
remote access to JIPipe functionality without the need for a graphical interface.
This server provides a REST API that communicates data and pipelines via hyper-
text transfer protocol (HTTP). The protocol must be capable of managing server
connections, reporting the status of remote operations, scheduling workflows on
the server, exchanging settings, and securely communicating inputs and results
between the client and host. Additionally, extensive changes to the existing cache
and result display functions of JIPipe must be made to reduce wait times and the

199 CHAPTER 5. DISCUSSION

network load. For example, it should be avoided to download all results in their
entirety and only request the full data if absolutely needed. To support these oper-
ations, the REST API must be designed give access to specific rows in the output
table of a node. As the data format implemented in JIPipe already allows the se-
lection of data items, it is easy to adapt these principles to remote resources. For
example, a local path C:/data/auto-threshold/output/1/data.tif can be triv-
ially mapped into a uniform resource locator (URL) https://localhost/data/
auto-threshold/output/1/data.tif that provides the selected data via HTTP.
The server component can be implemented as part of the JIPipe core API, which
opens a use outside remote communication: due to the standardization, a local
server can act as standardized interface to exchange data between JIPipe and
external tools without the need for intermediate storage on the hard drive. For
example, the Python image viewer Napari [31] can be expanded to offload image
processing tasks to JIPipe by executing the appropriate REST API functions.

5.3 Visual programming pipelines quantify toxic-
ity of fungus endosymbionts to nematodes

Due to the number of species, and the complex multi-layered structure of the
environment, the interactions between soil-dwelling microorganisms are still largely
unknown [45]. While fungi of the species Mortierella verticillata are known to
play a role in the promotion of plant growth, the function of their endosymbiotic
bacteria is to this day not entirety deciphered. In our publication [24], we aimed
to characterize the relationship between Mortierella verticillata, its endosymbiotic
bacteria, and the fungivorous nematode species Aphelenchus avenae.
We discovered via genomic assembly that one of the four identified endosymbiotic
bacteria, Candidatus Mycoavidus necroximicus, produces cytotoxic macrolactones.
To quantify the effectiveness of the toxin, we established viability assays with
Caenorhabditis elegans that captured their movement. The quantification of this
mobility allowed the identification of the inhibitory concentration at 50% (IC50),
thus proving the cytotoxic effect of the identified macrolactone. Further experi-
ments with co-cultures of Aphelenchus avenae and Mortierella verticillata showed
that the toxin is solely produced by Candidatus Mycoavidus necroximicus and
inhibits the feeding behavior of the fungivorous nematode.
Our study was possible due to the precise quantification of the cytotoxic effects
that were visible in an impact on the mobility of the nematodes. As a result of
the high number of data sets, nematodes, and frames, the quantification of the
captured transmitted light (TL) microscopy time series could not be applied man-
ually. For example, to manually quantify the mobility of 100 nematodes in a movie
with 80 frames, a researcher must segment 8000 objects, which is time consuming
even without considering the necessary calculations to estimate the mobility of
each organism. Instead, we developed a fully automated image analysis workflow
that is capable of reproducibly quantifying the effect of toxins on hundreds of ne-
matodes in parallel. As this operation was applied by a computer, it only required

C:/data/auto-threshold/output/1/data.tif
https://localhost/data/auto-threshold/output/1/data.tif
https://localhost/data/auto-threshold/output/1/data.tif

CHAPTER 5. DISCUSSION 200

a fraction of the time of an equivalent manual analysis. Initially the pipeline was
developed as ImageJ macro, which resulted in hard-to-maintain code. For ex-
ample, tracking individual nematodes across the time series was challenging, as
ImageJ only supports one ROI list at the same time. Our macro thus resorted
to a complicated protocol that involved the storage of ROI lists into temporary
directories. To resolve these issues, we converted the set of image operations to our
newly developed VPL JIPipe [47]. This resulted in a greatly simplified pipeline,
due to the automated data management implemented in JIPipe.
The fully automated pipeline applies various image processing steps to enhance
the characteristic visual features of nematodes, followed by a step for segmentation
and morphological processing. The resulting 2D ROIs were tracked over time by a
purpose-built JIPipe node. As we captured each individual nematode as series of
ImageJ ROIs, the mobility could be easily calculated by dividing the total footprint
by the nematode area. A comparatively low number thus indicated a dead or
inhibited organism. Due to the number of experiments and individual nematodes,
statistical methods could be utilized to find significant differences between various
experimental conditions. At same time, the measurements allowed to estimate the
IC50 of the toxin, thus highlighting the versatility of quantitative approaches.

Perspectives

Improved nematode tracking. The current nematode tracking implementa-
tion relies on the overlap of ROIs from different time points. While our approach
was successful due to the high image quality, there were still events where multi-
ple nematodes were falsely merged into one ROI. Our image analysis pipeline is
based around intensity thresholding and thus does not incorporate the morpholog-
ical characteristics of nematodes. While our custom tracking algorithm can detect
merging events, these are resolved by the exclusion of the ROI. Consequently, the
affected track was interrupted, which has an impact on the distribution of mobility
ratios.
An alternative to our custom-built tracking algorithm is the utilization of an ex-
isting library, for example, wrMTrck [100] or TrackMate [130]. The benefit of
the purpose-built tools is that they utilize multiple information sources to resolve
clusters, wrong segmentation results, and other complex conditions. For example,
TrackMate is capable of handling the fusion and splitting of objects. Additionally,
tracking tools will generate detailed statistics that, for example, capture morpho-
logical changes over time.
The success of the tracking operator can be additionally enhanced by an improved
segmentation pipeline. Due to the directional lighting, all nematodes in the cap-
tured TL images show a visible line close to their medial axis. By enhancing and
extracting this shape, clusters can be resolved by the application of a Voronoi parti-
tioning, i.e. dividing the image into spaces that are defined by the medial axes. As
each partition contains only pixels of the same nematode, the erroneous segmen-
tation can be improved by splitting segmented regions according to the partition
borders. This improved segmentation then can be tracked via our custom-built
algorithm, or supplied to a more advanced object tracker.

201 CHAPTER 5. DISCUSSION

Extraction of advanced shape features. Currently, our image analysis pipeline
generates a mobility measurement that allowed us to find a significant impact of
the toxin level. This is achieved by comparing the area of each nematode with
its total footprint. Yet, as each object is fully tracked over the whole time series,
more detailed measurements can be extracted from the data. The mobility ratio
is a scalar measurement, as it condenses the information into one number. It is
also possible to capture multiple points into a “feature vector” or even “feature ma-
trix” that contain more data about the measured subject, and thus can be of use
for machine learning or modelling. For example, the K-means algorithm can be
applied to classify nematodes into multiple groups, which can give further insight
into their behavior. Another use of advanced measurements is in computer models
that can be calibrated to mirror the patterns described in the features. In the
following paragraphs, we will briefly describe various alternative measurements for
the analysis of nematode behavior.

The mobility of nematodes relies on the generation of the curving motions [105].
Consequently, it is of interest to measure the mean curvature of each tracked
organism and how it changes over time. To calculate the average curvature, an
algorithm first detects the local curvature around each contour point by fitting
a circle [39], followed by an averaging of the resulting values. A feature vector
then can be obtained by collecting the average curvatures for each time point. By
measuring the curvature of multiple key points, a feature matrix can be generated.
Nematodes have a distinct polar shape, thus making the anterior and posterior
ends suitable starting locations for sampling stable contour points from each ROI.
For example, the lines between the anterior and posterior points can be split into
segments of equal length that serve as basis for multiple key points.

An alternative to the direct measurement of curvature is the description of the
nematode outline via weighted standard shapes. One approach is to utilize Fourier-
based shape analysis methods [56] that decompose 2D shapes into sine and cosine
curves. Their coefficients then can be collected to form a feature matrix. The
benefit of sine and cosine features is in their use for computer simulations, where
the weights and frequencies can be replicated in computer models. Another benefit
of Fourier-based shape analysis is that high-frequency noise can be removed, thus
reducing the complexity of the feature matrix. Alternatively, there are purpose-
built approaches for the extraction of compact features from nematodes [53].

Specificity of the cytotoxic agent. We successfully identified that Candida-
tus Mycoavidus necroximicus produces macrolactones that are toxic against Aphe-
lenchus avenae and Caenorhabditis elegans. This raises the question on the speci-
ficity of the toxin, i.e., if it also targets bacteria, amoebae, or other fungi. The
existing approach based on image-based quantification can be adapted to cultures
with bacteria and fungi. While bacteria and amoebae are mobile, allowing to re-use
our existing pipeline, fungi are usually immobile. An alternative measurement can
be extracted by testing the toxicity to fungal spores by tracking their germination
behavior and comparing their areas between the first and last frames.

CHAPTER 5. DISCUSSION 202

Alternative to fertilizers and pesticides. The current standard approach
for improving the soil quality is by the utilization of fertilizers. These have a
multitude of side effects on the ecosystem [10], for example, the accumulation of
toxic heavy metals in groundwater and rivers [119]. Additionally, fertilizers play a
role in the eutrophication of bodies of water, which is characterized by increased
formation of algae, reduction in oxygen levels, and the subsequent death of fish
and other water organisms. Another type of contamination are pesticides [2] that
increase productivity of crops, but contaminate soil and water, damage plants,
and kill beneficial microorganisms, insects, as well as birds. These disadvantages
highlight the need for alternatives to fertilizers and pesticides that avoid unwanted
side effects.
The fungus Mortierella verticillata that was the focus of our study already dis-
plays characteristics of both fertilizers and pesticides. As soil-dwelling fungi play
a role in the extraction of nutrients from detritus, and removal of harmful agents
from soil, they contribute towards the improvement of the soil quality and con-
sequently to the yield of crops. At the same time, our study characterizes how
Mortierella verticillata defends against fungivorous nematodes. As the detected
cytotoxic agent also kills other nematode species, the toxin shares characteristics
with pesticides that target plant-pathogenic nematodes.
While it is clear that our publication does not allow the development of a concrete
strategy to replace fertilizers and pesticides, it contributes towards the understand-
ing of complex soil ecosystems. To facilitate the generation of knowledge and new
hypotheses, the known soil interactions can be integrated into computer models
that allow the inference of hidden parameters, and rapid simulation of multiple
experimental conditions in silico. Today, computer hardware has advanced to a
degree that agent-based models (ABMs) [19] with millions of agents and complex
interactions can be simulated in a reasonable time [29]. A soil model can be im-
plemented as ABM that represents microorganisms as spherical shapes [17] within
a non-discrete space. To represent elongated structures that represent worms or
fungal hyphae, multiple spheres can be linked into a chain [79]. Advanced algo-
rithms for 3D collision detection [142] alternatively allow the replacement of simple
shapes by realistic 3D models that can be generated with computer programs, or
from microscope data. To simplify the development of a computer model, existing
purpose-built simulation frameworks can be utilized, for example, Netlogo [131],
GAMA [127], or MASON [86].

5.4 Standardizing high-performance image analy-
sis software enables the rapid quantification of
big data volumes

In the previously discussed studies [59, 47, 24], we utilized the ImageJ platform
to manage and visualize images, apply spatial filters, and generate measurements.
The software is developed in Java, which is a programming language focused on
portability. This is achieved by compiling code into an intermediate language that

203 CHAPTER 5. DISCUSSION

can only be executed by a virtual machine (VM) [84]. By porting the VM to multi-
ple computer platforms, Java programs thus can be executed on different operating
systems without the need for recompilation. The drawback is that virtualization
limits the performance of operations [95], thus slowing the performance of image
processing operations based on Java.
One way of optimizing the performance of a Java-based image analysis pipeline
is the re-implementation into C++ [63], which is a programming language that
is compiled into machine instructions for a specific operating system. As the re-
sulting program is already in a machine-readable form, a VM is made obsolete,
thus removing its impact on the performance. Additional speedup is gained by
the ability of C++ compilers to optimize the machine code [50], for example, by
removing spurious calculation steps, or by introducing CPU instructions that pro-
cess multiple steps at once. Advanced compiler features for optimization purposes
are already utilized by existing image processing libraries, including OpenCV [20],
and VTK [123].
A major disadvantage of converting a Java software into a C++ application is the
required development time. For example, developers must find equivalent C++
algorithms, add functions for management of data and parameters, and imple-
ment a CLI. Due to these challenges, we will briefly discuss alternative options.
Generally, existing code can be optimized or replaced by algorithms with more
efficient implementations. An example is the “Fast Hough Transform” [81] that
greatly improves on the speed of an algorithm to find line-like structures inside
images. If code cannot be optimized, performance-critical algorithms can be out-
sourced into compiled libraries via the Java Native Interface (JNI) [82] (Java),
ctypes (Python), or Rcpp [40] (R). Alternatively, performance-critical segments
can be automatically converted into compiled code as implemented in Cython [12]
and Numba [76]. If the existing solutions for integrating performance-critical sec-
tions into Java code are insufficient, a re-implementation into C++ cannot be
avoided. Our publication [48] introduces a software framework termed MISA++
that greatly simplifies the development of high-performance image quantification
pipelines via C++. This is achieved by providing reusable components that stan-
dardize data and metadata management, parallelization, parameters, and user
interaction. By utilizing these functions, developers can focus on the implemen-
tation of their image analysis workflow, thus reducing the required development
time and complexity of the source code.
Due to the high standardization of the MISA++ framework, our software is ca-
pable of generating human- and machine-readable descriptions of their underlying
workflow. For example, users can query via a CLI the expected inputs, algorithm
parameters with default values and documentation, as well as the structure of
the results. As this information is provided in the JSON format and thus can
be parsed by a computer, software based on MISA++ can be easily integrated
into automated analysis scripts. The high standardization thus facilitates the im-
plementation and propagation of the FAIR principles [140]: first, as MISA++
automatically enforces that any software based on our framework adheres to strict
and open standards for parameter and data storage; second, algorithms are stan-
dardized and modular to facilitate their re-use in other projects.

CHAPTER 5. DISCUSSION 204

An alternative use of our standardized description protocol is in the automated
generation of a GUI that encapsulates the features of the C++ software into a
user-friendly environment. In our study, we presented an implementation of this
feature in form of a plugin for ImageJ that is capable of providing a GUI for any
MISA++–based software.
To summarize, our MISA++ framework simplifies the development of advanced,
high-performance, and FAIR-compatible image analysis pipelines, while providing
a user-friendly and standardized GUI around C++ applications.

Perspectives

Utilization of graphics hardware. While MISA++ is mainly designed for the
parallelization of CPU workloads, there is an ongoing trend in the development
of image processing algorithms that utilize graphics processing units (GPUs) [55,
42]. This is motivated by the highly parallel nature of GPUs that can significantly
improve the speed of various algorithms: for example, a GPU-accelerated circular
Hough transform can be up to 64 times faster than a CPU-based implementa-
tion [65].
OpenCV and VTK can already be configured to utilize a GPU. As MISA++ in-
tegrates OpenCV, users of our framework only need to apply minor configurations
to process images via the GPU.
To allow the development of custom GPU algorithms, developers can target the
C [64] and C++ [63] APIs of CUDA [101] (Nvidia Corporation) and OpenCL [60].
Directly utilizing CUDA and OpenCL in program code is challenging, due to the
necessity of manual memory management and compilation of GPU-specific code
via dedicated software. OpenAcc [103] resolves these disadvantages by extending
the C++ language with a feature that allows the definition of performance-critical
sections. Similar to Cython [12] and Numba [76], these regions are automatically
replaced by accelerated code. At the same time, OpenAcc fully automatically
handles the setup of computation devices and memory transfer. Performance-
critical sections are marked via a #pragma statement, meaning that code designed
for OpenAcc is always valid C++ code. Consequently, any OpenAcc-based project
can be built without a special compiler.
MISA++ thus does not need specific functions for the handling of GPU process-
ing, as such implementations are either provided by third-party image processing
libraries, or can be easily included by any developer via OpenAcc.

Mixed-resolution analysis via direct communication with a microscope.
The capture of images via confocal- or light sheet fluorescence microscopy (LSFM)
involves a balancing act between the resolution and photo damage: while low-
resolution images can be generated quickly and only produce minor photobleach-
ing, the details might be not sufficient to capture all processes of the experiment.
These are only contained in high-resolution images that are generated slowly and
thus limited due to the high damage. A mixed-resolution approach combines the
benefits of both high- and low-resolution imaging: the sample is first captured in

205 CHAPTER 5. DISCUSSION

a low resolution with the purpose of identifying ROIs. The following generation
of high-resolution data is then restricted to the ROIs. A major disadvantage of
mixed-resolution microscopy is that it currently relies on manual user inputs to
determine the ROIs, which is hard to reproduce, time consuming, and difficult to
achieve for 3D data.
Our MISA++ framework allows the development of image analysis pipelines that
automatically segment and quantify image data. Our tool can be combined with
the open source C++ library µManager [41] that can instruct the microscope to
capture a specific area. This allows the implementation of a fully automated mix-
resolution microscopy approach that is entirely controlled by a MISA++–based
software. This tool would instruct µManager to first produce a low-resolution
image of the whole specimen that is automatically segmented by an image ana-
lysis pipeline. The produced ROIs are used as basis for the capture of the high-
resolution images that are automatically processed and quantified.

Integration of MISA++ into JIPipe. MISA++ standardizes the communi-
cation of the parameters and data, which allowed us to develop an ImageJ-based
GUI for executing any software developed with the framework. Another feature
of the plugin is a VPL that allows non-programmers to form pipelines consisting
of MISA++ software modules. As JIPipe can be easily extended with plugins to
integrate the functionality of non-Java software, it is viable to embed the features
of the MISA++ plugin into JIPipe, thus unifying the integration of MISA++
software within ImageJ.
One point that needs to be considered before developing a MISA++ extension
for JIPipe is the modernization of the data and metadata storage implementation
that is already present in the MISA++ framework. MISA++ currently stores data
items in a hierarchy of directories that is based around a unique data set identifier
and the algorithm that generated the result. A weakness of the current MISA++
data model is that the location within the file system hierarchy is essential to
access information about a data item, i.e. its type and associated metadata. The
consequence is that results produced by MISA++ cannot be separated from its
output folder. The JIPipe data model organizes data into tables where each row
represents one data item. The columns can contain text annotations or any other
JIPipe-compatible data. Each data table is stored within its own standardized
directory that saves all characteristics in a JSON metadata file, meaning that the
directory can be freely moved without losing information. Replacing the MISA++
data format with a modernized implementation based on JIPipe would thus make
MISA++ more versatile. A data exchange between our Java tool and C++ can
then be trivially implemented via temporary file-based storage, or could utilize our
proposed web-based data exchange API.
Another alternative mode of data exchange is to compile MISA++ tools into soft-
ware libraries to be integrated into Java via the JNI [82], thus establishing a direct
communication without the involvement of protocols. One issue with a JNI-based
integration is that MISA++ is not designed for communicating via a C [64] API.
For example, there is no function that queries a software library for all available
MISA++ workflows and their characteristics. Adding this feature to MISA++

CHAPTER 5. DISCUSSION 206

opens a possibility to further simplify the development and deployment of C++
software: currently, developers must write C++ code to generate a standardized
CLI for their MISA++ project. The consequence is that even simple MISA++–
based tools consist of multiple code projects. By moving these features into a
dedicated C and C++ APIs, the per-project CLI is obsolete. Instead, their func-
tionality can be condensed into a single independent application responsible for
managing any library built on MISA++.

5.5 Concluding remarks

This thesis comprises the development and application of modern software frame-
works that allow the fully automated characterization of host-pathogen interac-
tions via the quantitative analysis of microscopy or tomography images. In par-
ticular, the goal of this thesis is to contribute towards the propagation of the
FAIR principles [140] in the field of IbSB by the development of standardized,
reproducible, high-performance, and accessible software for the quantification of
interactions in biological systems.
These goals were successfully realized by our reproducible algorithm Mcat for the
analysis of MSOT data, the introduction of the software JIPipe that opens the de-
velopment of advanced and FAIR-compatible ImageJ pipelines to non-programmers,
its application in the characterization of a three-species interaction by an inter-
disciplinary team, and the debut of the highly standardized and FAIR-compliant
MISA++ framework capable of processing big data volumes. These developments
are ideal starting points for future collaborations with life scientists and medical
doctors to develop improved experiments, imaging methods, advanced algorithms,
and computer models in the spirit of the image-based systems biology approach.

207 BIBLIOGRAPHY

Bibliography

[1] Martín Abadi et al. “Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[2] Md Wasim Aktar, Dwaipayan Sengupta, and Ashim Chowdhury. “Impact
of pesticides use in agriculture: their benefits and hazards”. In: Interdisci-
plinary toxicology 2.1 (2009), p. 1.

[3] Naim Al-Zaben et al. “Automated tracking of label-free cells with enhanced
recognition of whole tracks”. In: Scientific reports 9.1 (2019), 1–10.

[4] Javier Antonio Alfaro et al. “The emerging landscape of single-molecule
protein sequencing technologies”. In: Nature methods 18.6 (2021), pp. 604–
617.

[5] Chris Allan et al. “OMERO: flexible, model-driven data management for
experimental biology”. In: Nature methods 9.3 (2012), 245–253.

[6] Ignacio Arganda-Carreras et al. “Consistent and elastic registration of histo-
logical sections using vector-spline regularization”. In: International Work-
shop on Computer Vision Approaches to Medical Image Analysis. Springer.
2006, 85–95.

[7] Aristotle. Topics. English. Translated from ancient Greek by W. A. Pickard-
Cambridge. Accessed on May 16th, 2022. The Internet Classics Archive, 350
BCE. url: http://classics.mit.edu/Aristotle/topics.html.

[8] Judith M Bain et al. “Non-lytic expulsion/exocytosis of Candida albicans
from macrophages”. In: Fungal genetics and biology 49.9 (2012), 677–678.

[9] Guido Barbaglia, Simone Murzilli, and Stefano Cudini. “Definition of REST
web services with JSON schema”. In: Software: Practice and Experience 47.6
(2017), pp. 907–920.

[10] Riccardo Basosi et al. “Mineral nitrogen fertilizers: environmental impact
of production and use”. In: Fertil. Compon. Uses Agric. Environ. Impacts,
Nova science publishers. Lopez-Valdez, F and Fernandez-Luquenos, F, New
York (2014), 3–44.

[11] M Bauer et al. “Sepsis”. In: Der Anaesthesist 55.8 (2006), 835–845.

[12] Stefan Behnel et al. “Cython: The best of both worlds”. In: Computing in
Science & Engineering 13.2 (2011), 31–39.

http://classics.mit.edu/Aristotle/topics.html

BIBLIOGRAPHY 208

[13] Ilya Belevich et al. “Microscopy image browser: a platform for segmentation
and analysis of multidimensional datasets”. In: PLoS biology 14.1 (2016),
e1002340.

[14] Michael R Berthold et al. “KNIME-the Konstanz information miner: version
2.0 and beyond”. In: AcM SIGKDD explorations Newsletter 11.1 (2009),
26–31.

[15] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006. isbn: 978-0387-31073-2.

[16] Marco Blickensdorf, Sandra Timme, and Marc Thilo Figge. “Comparative
assessment of aspergillosis by virtual infection modeling in murine and hu-
man lung”. In: Frontiers in immunology 10 (2019), p. 142.

[17] Marco Blickensdorf, Sandra Timme, and Marc Thilo Figge. “Hybrid agent-
based modeling of Aspergillus fumigatus infection to quantitatively inves-
tigate the role of pores of Kohn in human alveoli”. In: Frontiers in micro-
biology (2020), p. 1951.

[18] Kevin M Boergens et al. “webKnossos: efficient online 3D data annotation
for connectomics”. In: nature methods 14.7 (2017), pp. 691–694.

[19] Eric Bonabeau. “Agent-based modeling: Methods and techniques for simu-
lating human systems”. In: Proceedings of the national academy of sciences
99.suppl 3 (2002), 7280–7287.

[20] Gary Bradski and Adrian Kaehler. “OpenCV”. In: Dr. Dobb’s journal of
software tools 3 (2000).

[21] Frank J Bruggeman and Hans V Westerhoff. “The nature of systems biol-
ogy”. In: TRENDS in Microbiology 15.1 (2007), pp. 45–50.

[22] Andreas Buehler et al. “High resolution tumor targeting in living mice by
means of multispectral optoacoustic tomography”. In: EJNMMI research
2.1 (2012), 1–6.

[23] P Burra and A Masier. “Dynamic tests to study liver function”. In: European
review for medical and pharmacological sciences 8 (2004), 19–22.

[24] Hannah Büttner et al. “Bacterial endosymbionts protect beneficial soil fun-
gus from nematode attack”. In: Proceedings of the National Academy of
Sciences 118.37 (2021).

[25] Arturo Casadevall and Liise-anne Pirofski. “Host-pathogen interactions: ba-
sic concepts of microbial commensalism, colonization, infection, and dis-
ease”. In: Infection and immunity 68.12 (2000), 6511–6518.

[26] Arturo Casadevall and Liise-anne Pirofski. “Host-pathogen interactions: re-
defining the basic concepts of virulence and pathogenicity”. In: Infection
and immunity 67.8 (1999), 3703–3713.

[27] Eugene Charniak. Introduction to Deep Learning. The MIT Press, 2018.
isbn: 978-0-262-03951-2.

209 BIBLIOGRAPHY

[28] Tianqi Chen et al. “Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems”. In: arXiv preprint arXiv:1512.01274
(2015).

[29] Wenan Chen et al. “Agent based modeling of blood coagulation system:
implementation using a GPU based high speed framework”. In: 2011 Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE. 2011, 145–148.

[30] Richard Coico. Immunology: a short course. Seventh edition. John Wiley &
Sons, 2015.

[31] napari contributors. napari: a multi-dimensional image viewer for python.
doi: 10.5281/zenodo.3555620.

[32] Zoltan Cseresnyes, Kaswara Kraibooj, and Marc Thilo Figge. “Hessian-
based quantitative image analysis of host-pathogen confrontation assays”.
In: Cytometry Part A 93.3 (2018), 346–356.

[33] Zoltan Cseresnyes et al. “Quantitative impact of cell membrane fluores-
cence labeling on phagocytosis measurements in confrontation assays”. In:
Frontiers in Microbiology 11 (2020), p. 1193.

[34] Kevin J Cutler et al. “Omnipose: a high-precision morphology-independent
solution for bacterial cell segmentation”. In: bioRxiv (2021).

[35] Fabrice De Chaumont et al. “Icy: an open bioimage informatics platform for
extended reproducible research”. In: Nature methods 9.7 (2012), 690–696.

[36] Sophie Dennhardt et al. “Modeling hemolytic-uremic syndrome: in-depth
characterization of distinct murine models reflecting different features of
human disease”. In: Frontiers in immunology 9 (2018), p. 1459.

[37] Django Software Foundation. Django. Version 2.2. May 5, 2019. url: https:
//djangoproject.com.

[38] Robert Dougherty. “Extensions of DAMAS and benefits and limitations of
deconvolution in beamforming”. In: 11th AIAA/CEAS aeroacoustics con-
ference. 2005, p. 2961.

[39] Meghan Driscoll et al. “Cell Shape Dynamics: From Waves to Migration”.
In: Bulletin of the American Physical Society 56 (2011).

[40] Dirk Eddelbuettel et al. “Rcpp: Seamless R and C++ integration”. In: Jour-
nal of statistical software 40.8 (2011), 1–18.

[41] Arthur D Edelstein et al. “Advanced methods of microscope control using
µManager software”. In: Journal of biological methods 1.2 (2014).

[42] Anders Eklund et al. “Medical image processing on the GPU–Past, present
and future”. In: Medical image analysis 17.8 (2013), pp. 1073–1094.

[43] Gregor Engels et al. “Teaching UML is teaching software engineering is
teaching abstraction”. In: International Conference on Model Driven Engi-
neering Languages and Systems. Springer. 2005, 306–319.

https://doi.org/10.5281/zenodo.3555620
https://djangoproject.com
https://djangoproject.com

BIBLIOGRAPHY 210

[44] Romain Fernandez and Cédric Moisy. “Fijiyama: a registration tool for 3D
multimodal time-lapse imaging”. In: Bioinformatics 37.10 (2021), 1482–1484.

[45] Noah Fierer. “Embracing the unknown: disentangling the complexities of
the soil microbiome”. In: Nature Reviews Microbiology 15.10 (2017), pp. 579–
590.

[46] Niklas A Gahm et al. “New Extensibility and Scripting Tools in the ImageJ
Ecosystem”. In: Current Protocols 1.8 (2021), e204.

[47] Ruman Gerst, Zoltan Cseresnyes, and Marc Thilo Figge. “JIPipe: Visual
batch processing for ImageJ”. In: ResearchSquare (2022). Preprint. doi:
10.21203/rs.3.rs-1641739/v1.

[48] Ruman Gerst, Anna Medyukhina, and Marc Thilo Figge. “MISA++: A
standardized interface for automated bioimage analysis”. In: SoftwareX 11
(2020), p. 100405.

[49] JF Gilles and T Boudier. “TAPAS: Towards Automated Processing and
Analysis of multi-dimensional bioimage data [version 2; peer review: 2 ap-
proved]”. In: F1000Research 9.1278 (2021). doi: 10.12688/f1000research.
26977.2.

[50] Matt Godbolt. “Optimizations in C++ compilers”. In: Communications of
the ACM 63.2 (2020), 41–49.

[51] Rafael C Gonzalez and Richard E Woods. Digital image processing. Pear-
son/Prentice Hall, 2008.

[52] Miguel Grinberg. Flask web development: developing web applications with
python. " O’Reilly Media, Inc.", 2018.

[53] Bertalan Gyenes and André EX Brown. “Deriving shape-based features for
C. elegans locomotion using dimensionality reduction methods”. In: Fron-
tiers in behavioral neuroscience 10 (2016), p. 159.

[54] Ulrik Günther and Kyle IS Harrington. “Tales from the Trenches: Develop-
ing sciview, a new 3D viewer for the ImageJ community”. In: arXiv preprint
arXiv:2004.11897 (2020).

[55] Robert Haase et al. “CLIJ: GPU-accelerated image processing for everyone”.
In: Nature methods 17.1 (2020), 5–6.

[56] A John Haines and James S Crampton. “Improvements to the method of
Fourier shape analysis as applied in morphometric studies”. In: Palaeontol-
ogy 43.4 (2000), 765–783.

[57] Thorsten Heinekamp et al. “Aspergillus fumigatus melanins: interference
with the host endocytosis pathway and impact on virulence”. In: Frontiers
in microbiology 3 (2013), p. 440.

[58] Stefan W Hell and Jan Wichmann. “Breaking the diffraction resolution
limit by stimulated emission: stimulated-emission-depletion fluorescence mi-
croscopy”. In: Optics letters 19.11 (1994), pp. 780–782.

https://doi.org/10.21203/rs.3.rs-1641739/v1
https://doi.org/10.12688/f1000research.26977.2
https://doi.org/10.12688/f1000research.26977.2

211 BIBLIOGRAPHY

[59] Bianca Hoffmann et al. “Spatial quantification of clinical biomarker phar-
macokinetics through deep learning-based segmentation and signal-oriented
analysis of MSOT data”. In: Photoacoustics (2022), p. 100361.

[60] Lee Howes and Aaftab Munshi. “The OpenCL specification, version 2.0”.
In: Khronos Group (2015).

[61] Liang-Kai Huang and Mao-Jiun J Wang. “Image thresholding by minimiz-
ing the measures of fuzziness”. In: Pattern recognition 28.1 (1995), 41–51.

[62] Kerstin Hünniger et al. “A virtual infection model quantifies innate effector
mechanisms and Candida albicans immune escape in human blood”. In:
PLoS computational biology 10.2 (2014), e1003479.

[63] ISO/IEC JTC 1/SC 22. ISO/IEC 14882:2020 Programming languages —
C++. 6th ed. International Organization for Standardization, International
Electrotechnical Commission, 2020.

[64] ISO/IEC JTC 1/SC 22. ISO/IEC 9899:2018 Information technology —
Programming languages — C. 4th ed. International Organization for Stan-
dardization, International Electrotechnical Commission, 2018.

[65] Yasuaki Ito, Kouhei Ogawa, and Koji Nakano. “Fast ellipse detection algo-
rithm using Hough transform on the GPU”. In: 2011 Second International
Conference on Networking and Computing. IEEE. 2011, 313–319.

[66] Vahid Jalili et al. “The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2020 update”. In: Nucleic acids research
48.W1 (2020), W395–W402.

[67] Josh Juneau et al. The definitive guide to Jython: Python for the Java
platform. Apress, 2010.

[68] R Kapoor, S Ladak, and V Gomase. “MALDI-TOF based metabolomic
approach”. In: Int J Genet 1 (2009), pp. 44–46.

[69] Jagat Narain Kapur, Prasanna K Sahoo, and Andrew KC Wong. “A new
method for gray-level picture thresholding using the entropy of the his-
togram”. In: Computer vision, graphics, and image processing 29.3 (1985),
273–285.

[70] Srdjan Kesić. “Systems biology, emergence and antireductionism”. In: Saudi
journal of biological sciences 23.5 (2016), pp. 584–591.

[71] Hiroaki Kitano. “Computational systems biology”. In: Nature 420.6912 (2002),
206–210.

[72] Hiroaki Kitano. “Perspectives on systems biology”. In: New Generation
Computing 18.3 (2000), 199–216.

[73] Anika Klingberg et al. “Fully automated evaluation of total glomerular num-
ber and capillary tuft size in nephritic kidneys using lightsheet microscopy”.
In: Journal of the American Society of Nephrology 28.2 (2017), 452–459.

[74] Kaswara Kraibooj et al. “Automated quantification of the phagocytosis
of Aspergillus fumigatus conidia by a novel image analysis algorithm”. In:
Frontiers in microbiology 6 (2015), p. 549.

BIBLIOGRAPHY 212

[75] Mohammad Amin Kuhail et al. “Characterizing Visual Programming Ap-
proaches for End-User Developers: A Systematic Review”. In: IEEE Access
(2021).

[76] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A llvm-based
python jit compiler”. In: Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC. 2015, 1–6.

[77] F. William Lawvere. “Metric spaces, generalized logic, and closed cate-
gories”. In: Reprints in Theory and Applications of Categories 1 (2002),
1–37.

[78] David Legland, Ignacio Arganda-Carreras, and Philippe Andrey. “Mor-
phoLibJ: integrated library and plugins for mathematical morphology with
ImageJ”. In: Bioinformatics 32.22 (2016), 3532–3534.

[79] Maolin Lei et al. “Real-Time Kinematics-Based Self-Collision Avoidance Al-
gorithm for Dual-Arm Robots”. In: Applied Sciences 10.17 (2020), p. 5893.

[80] Mitchell P Levesque and Philip N Benfey. “Systems biology”. In: Current
Biology 14.5 (2004), R179–R180.

[81] Hungwen Li, Mark A Lavin, and Ronald J Le Master. “Fast Hough trans-
form: A hierarchical approach”. In: Computer Vision, Graphics, and Image
Processing 36.2-3 (1986), 139–161.

[82] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specifica-
tion. Addison-Wesley Longman, Amsterdam, 1999. isbn: 978-0201325775.

[83] Ping-Sung Liao, Tse-Sheng Chen, Pau-Choo Chung, et al. “A fast algorithm
for multilevel thresholding”. In: J. Inf. Sci. Eng. 17.5 (2001), 713–727.

[84] Tim Lindholm et al. The Java® Virtual Machine Specification. Java SE
8 Edition. Feb. 2013. url: https://docs.oracle.com/javase/specs/
jvms/se8/jvms8.pdf.

[85] David G Lowe. “Distinctive image features from scale-invariant keypoints”.
In: International journal of computer vision 60.2 (2004), 91–110.

[86] Sean Luke et al. “Mason: A multiagent simulation environment”. In: Simu-
lation 81.7 (2005), pp. 517–527.

[87] David JC MacKay. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[88] John Maloney et al. “The scratch programming language and environment”.
In: ACM Transactions on Computing Education (TOCE) 10.4 (2010), 1–15.

[89] Estibaliz Gómez-de Mariscal et al. “DeepImageJ: A user-friendly environ-
ment to run deep learning models in ImageJ”. In: Nature Methods 18.10
(2021), 1192–1195.

[90] Gabriel G Martins et al. “Highlights from the 2016-2020 NEUBIAS training
schools for Bioimage Analysts: a success story and key asset for analysts
and life scientists”. In: F1000Research 10 (2021).

https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf

213 BIBLIOGRAPHY

[91] Claire McQuin et al. “CellProfiler 3.0: Next-generation image processing for
biology”. In: PLoS biology 16.7 (2018), e2005970.

[92] Anna Medyukhina and Marc Thilo Figge. “DeconvTest: Simulation frame-
work for quantifying errors and selecting optimal parameters of image de-
convolution”. In: Journal of Biophotonics 13.4 (2020), e201960079.

[93] Anna Medyukhina et al. “Image-based systems biology of infection”. In:
Cytometry Part A 87.6 (2015), 462–470.

[94] Mohammad H Mirhakkak et al. “Metabolic modeling predicts specific gut
bacteria as key determinants for Candida albicans colonization levels”. In:
The ISME journal 15.5 (2021), pp. 1257–1270.

[95] Jose E Moreira et al. “Java programming for high-performance numerical
computing”. In: IBM Systems Journal 39.1 (2000), 21–56.

[96] Fionn Murtagh and Pedro Contreras. “Algorithms for hierarchical cluster-
ing: an overview”. In: Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 2.1 (2012), 86–97.

[97] Juliette Mérian et al. “Fluorescent nanoprobes dedicated to in vivo imag-
ing: from preclinical validations to clinical translation”. In: Molecules 17.5
(2012), 5564–5591.

[98] Pauline C Ng and Ewen F Kirkness. “Whole genome sequencing”. In: Ge-
netic variation (2010), pp. 215–226.

[99] William S Noble. “What is a support vector machine?” In: Nature biotech-
nology 24.12 (2006), 1565–1567.

[100] Carmen I Nussbaum-Krammer et al. “Investigating the spreading and tox-
icity of prion-like proteins using the metazoan model organism C. elegans”.
In: JoVE (Journal of Visualized Experiments) 95 (2015), e52321.

[101] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89.
2020. url: https://developer.nvidia.com/cuda-toolkit.

[102] Jean Ollion et al. “TANGO: a generic tool for high-throughput 3D image
analysis for studying nuclear organization”. In: Bioinformatics 29.14 (2013),
1840–1841.

[103] OpenACC-Standard.org. The OpenACCR Application Programming Inter-
face. Version 3.1. 2020.

[104] Wei Ouyang et al. “ImJoy: an open-source computational platform for the
deep learning era”. In: Nature methods 16.12 (2019), pp. 1199–1200.

[105] Venkat Padmanabhan et al. “Locomotion of C. elegans: a piecewise-harmonic
curvature representation of nematode behavior”. In: PloS one 7.7 (2012),
e40121.

[106] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems 32
(2019), 8026–8037.

https://developer.nvidia.com/cuda-toolkit

BIBLIOGRAPHY 214

[107] Martinha Piteira and Carlos Costa. “Learning computer programming: study
of difficulties in learning programming”. In: Proceedings of the 2013 Interna-
tional Conference on Information Systems and Design of Communication.
2013, 75–80.

[108] Stephen M Pizer et al. “Adaptive histogram equalization and its variations”.
In: Computer vision, graphics, and image processing 39.3 (1987), 355–368.

[109] Johannes Pollmächer and Marc Thilo Figge. “Deciphering chemokine prop-
erties by a hybrid agent-based model of Aspergillus fumigatus infection in
human alveoli”. In: Frontiers in microbiology 6 (2015), p. 503.

[110] Johannes Pollmächer and Marc Thilo Figge. “Agent-based model of hu-
man alveoli predicts chemotactic signaling by epithelial cells during early
Aspergillus fumigatus infection”. In: PloS one 9.10 (2014), e111630.

[111] Rory M Power and Jan Huisken. “A guide to light-sheet fluorescence mi-
croscopy for multiscale imaging”. In: Nature methods 14.4 (2017), pp. 360–
373.

[112] Christophe J Queval, Roland Brosch, and Roxane Simeone. “The macrophage:
a disputed fortress in the battle against Mycobacterium tuberculosis”. In:
Frontiers in microbiology 8 (2017), p. 2284.

[113] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolu-
tional networks for biomedical image segmentation”. In: International Con-
ference on Medical image computing and computer-assisted intervention.
Springer. 2015, 234–241.

[114] Amir Rosenthal, Vasilis Ntziachristos, and Daniel Razansky. “Acoustic in-
version in optoacoustic tomography: A review”. In: Current Medical Imaging
9.4 (2013), 318–336.

[115] Curtis T Rueden et al. “ImageJ2: ImageJ for the next generation of scientific
image data”. In: BMC bioinformatics 18.1 (2017), 1–26.

[116] Daniel Sage et al. “DeconvolutionLab2: An open-source software for decon-
volution microscopy”. In: Methods 115 (2017), 28–41.

[117] Daniel Sage et al. “Quantitative evaluation of software packages for single-
molecule localization microscopy”. In: Nature methods 12.8 (2015), pp. 717–
724.

[118] Jeremy Sanderson. Understanding light microscopy. John Wiley & Sons,
2019.

[119] Serpil Savci. “Investigation of effect of chemical fertilizers on environment”.
In: Apcbee Procedia 1 (2012), 287–292.

[120] Benjamin Schmid et al. “A high-level 3D visualization API for Java and
ImageJ”. In: BMC bioinformatics 11.1 (2010), 1–7.

215 BIBLIOGRAPHY

[121] Uwe Schmidt et al. “Cell Detection with Star-Convex Polygons”. In: Medi-
cal Image Computing and Computer Assisted Intervention - MICCAI 2018
- 21st International Conference, Granada, Spain, September 16-20, 2018,
Proceedings, Part II. 2018, pp. 265–273. doi: 10.1007/978-3-030-00934-
2_30.

[122] Alexandra B Schroeder et al. “The ImageJ ecosystem: Open-source software
for image visualization, processing, and analysis”. In: Protein Science 30.1
(2021), 234–249.

[123] Will Schroeder, Kenneth M Martin, and William E Lorensen. The visu-
alization toolkit an object-oriented approach to 3D graphics. Prentice-Hall,
Inc., 1998.

[124] Bhumika Shokeen et al. “Omics and interspecies interaction”. In: Periodon-
tology 2000 85.1 (2021), pp. 101–111.

[125] Michael T Madigan; John M Martinko; Kelly S Bender; Daniel H Buckley;
David A Stahl. Brock biology of microorganisms. 14th ed. Pearson, 2014.
isbn: 978-0-321-89739-8.

[126] Carsen Stringer et al. “Cellpose: a generalist algorithm for cellular segmen-
tation”. In: Nature Methods 18.1 (2021), 100–106.

[127] Patrick Taillandier et al. “Building, composing and experimenting complex
spatial models with the GAMA platform”. In: GeoInformatica 23.2 (2019),
299–322.

[128] Adrian Taruttis and Vasilis Ntziachristos. “Advances in real-time multi-
spectral optoacoustic imaging and its applications”. In: Nature photonics
9.4 (2015), 219–227.

[129] Philippe Thevenaz, Urs E Ruttimann, and Michael Unser. “A pyramid ap-
proach to subpixel registration based on intensity”. In: IEEE transactions
on image processing 7.1 (1998), 27–41.

[130] Jean-Yves Tinevez et al. “TrackMate: An open and extensible platform for
single-particle tracking”. In: Methods 115 (2017), 80–90.

[131] Seth Tisue and Uri Wilensky. “Netlogo: A simple environment for model-
ing complexity”. In: International conference on complex systems. Vol. 21.
Boston, MA. 2004, 16–21.

[132] Wen-Hsiang Tsai. “Moment-preserving thresolding: A new approach”. In:
Computer vision, graphics, and image processing 29.3 (1985), 377–393.

[133] Stratis Tzoumas et al. “Unmixing molecular agents from absorbing tissue in
multispectral optoacoustic tomography”. In: IEEE transactions on medical
imaging 33.1 (2013), 48–60.

[134] Ryan S Udan et al. “Quantitative imaging of cell dynamics in mouse em-
bryos using light-sheet microscopy”. In: Development 141.22 (2014), 4406–4414.

[135] J Van Krugten, K-KH TARIS, and Erwin JG Peterman. “Imaging adult C.
elegans live using light-sheet microscopy”. In: Journal of microscopy 281.3
(2021), 214–223.

https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1007/978-3-030-00934-2_30

BIBLIOGRAPHY 216

[136] Jaap Jan Vos et al. “Green light for liver function monitoring using indocya-
nine green? An overview of current clinical applications”. In: Anaesthesia
69.12 (2014), 1364–1376.

[137] Stéfan van der Walt et al. “scikit-image: image processing in Python”. In:
PeerJ 2 (June 2014), e453. issn: 2167-8359. doi: 10.7717/peerj.453.
url: https://doi.org/10.7717/peerj.453.

[138] Martin Weigert et al. “Content-aware image restoration: pushing the limits
of fluorescence microscopy”. In: Nature methods 15.12 (2018), pp. 1090–
1097.

[139] Martin Weigert et al. “Star-convex Polyhedra for 3D Object Detection and
Segmentation in Microscopy”. In: The IEEE Winter Conference on Appli-
cations of Computer Vision (WACV). 2020. doi: 10.1109/WACV45572.
2020.9093435.

[140] Mark D Wilkinson et al. “The FAIR Guiding Principles for scientific data
management and stewardship”. In: Scientific data 3.1 (2016), 1–9.

[141] Ewa A Woznica et al. “Liver dysfunction in sepsis.” In: Advances in Clini-
cal and Experimental Medicine: Official Organ Wroclaw Medical University
27.4 (2018), 547–551.

[142] Mingxia Xie and Xinqiang Niu. “A 3D roaming and collision detection
algorithm applicable for massive spatial data”. In: PLoS one 15.2 (2020),
e0229038.

[143] Jui-Cheng Yen, Fu-Juay Chang, and Shyang Chang. “A new criterion for
automatic multilevel thresholding”. In: IEEE Transactions on Image Pro-
cessing 4.3 (1995), 370–378.

[144] Gregory W Zack, William E Rogers, and Samuel A Latt. “Automatic mea-
surement of sister chromatid exchange frequency.” In: Journal of Histo-
chemistry & Cytochemistry 25.7 (1977), 741–753.

[145] Yingjie Zhu et al. “Evaluation of organ function in patients with severe
COVID-19 infections”. In: Medicina Clinica 155.5 (2020), 191–196.

https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.1109/WACV45572.2020.9093435
https://doi.org/10.1109/WACV45572.2020.9093435

217 DANKSAGUNG

Danksagung

Mit der Fertigstellung dieser Doktorarbeit möchte ich bei allen bedanken, die auf
dem Weg hier hin unterstützend an meiner Seite gestanden sind.
Zuerst will ich mich bei meinem Doktorvater Prof. Dr. Marc Thilo Figge bedanken,
der in mir das Interesse an dem Forschungsfeld der bildbasierten Systembiologie
geweckt hat und mir später ermöglichte innerhalb der Arbeitsgruppe Angewand-
te Systembiologie zu promovieren. Seine exzellente Betreuung ermöglichte es mir
meine Fähigkeiten weiterzuentwickeln und war geprägt von Offenheit und dem
unkomplizierten Umgang bei etwaigen Schwierigkeiten oder Fragen. Dies erlaubte
mir eigene Ideen für Lösungen und Konzepte zu entwickeln, für die er immer ein
offenes Ohr hatte und, wenn nötig, auch kritisch hinterfragte. Insbesondere bin
ich dankbar für die Erfahrungen außerhalb des regulären Wissenschaftsbetriebs,
sei es bei der Organisation von Konferenzen, der Konzeption von Vorlesungen und
Übungen, oder der Einrichtung von Webseiten und Webanwendungen.
Ich möchte mich auch bei den aktuellen und ehemaligen Mitarbeitenden der Ar-
beitsgruppe Angewandte Systembiologie bedanken, die immer ein angenehmes und
offenes Arbeitsklima aufrechterhalten haben, wo jeder einem immer mit Rat, Tat
und Literatur weiterhelfen konnte. Zu Beginn meiner Promotion haben mir ins-
besondere Anna Medyukhina und Alexander Tille geholfen mich zurechtzufinden
und konnten mir hilfreiche Tipps zum Schreiben von Publikationen gegeben. Ich
möchte mich auch bei Sandra Timme bedanken, die mir mit Informationen bezüg-
lich des Aufbaus einer Dissertation sehr weitergeholfen hat. Insbesondere möchte
ich meinem Büronachbarn Zoltán Cseresnyés für die lehrreiche Zusammenarbeit
danken, bei der ich vieles über Mikroskopie, Bildanalyse, Halten von Vorlesungen,
und dem Schreiben von wissenschaftlichen Texten lernen konnte. Hierbei möchte
ich auch Mohamed I. Abdelwahab Hassan danken, welcher immer Antworten für
biologischen Fragen und passende Literatur dazu hatte.
Auch meiner ehemaligen Kommilitonin Marie Lataretu möchte ich meinen Dank
ausdrücken, da ich erst durch ihre Hilfe die Promotionsstelle gefunden habe. Auch
bei meinen ehemaligen Kommilitonen und jetzt Mitarbeitern Bastian Seelbinder
und Daniel Loos möchte ich für die interessanten Diskussionen und die Kinoabende
danken.
Bedanken will ich mich auch bei meinen Freunden Klaus, Angelika, Sebastian,
Danny, und allen anderen aus unserer kleinen Gruppe für die schönen Spieleabende
und Unterstützung bei kleinen und größeren Problemen. Und im Speziellen will
ich einer Person die nicht genannt werden will danken, die gerade in stressigen
Zeiten im Studium und der Promotion immer ein offenes Ohr hatte.

DANKSAGUNG 218

Nicht zuletzt möchte ich mich auch herzlichst bei meinen Eltern bedanken, die im-
mer an mich geglaubt und mir trotz Widerstand von anderen Leuten das Besuchen
einer guten Schule und das Studium ermöglicht haben. Dieser ganze Weg bis hier
hin war nur dank euch und eurer Liebe, eurem uneingeschränkten Rückhalt und
eurer Unterstützung möglich. Und ich bin für all dies und mehr zutiefst dankbar!

219 EHRENWÖRTLICHE ERKLÄRUNG

Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die geltende Promotionsordnung der Fakultät für
Biowissenschaften bekannt ist und ich mich mit bestem Wissen an diese Ordnung
gehalten habe.
Die vorliegende Dissertation habe ich selbständig und nur unter Verwendung der
angegebenen Hilfsmittel, Daten und Quellen angefertigt. Unterstützung während
meiner wissenschaftlichen Arbeit und zur Erstellung des vorliegenden Disserta-
tionstextes habe ich nur von den genannten Co-Autoren und in der Danksagung
genannten Personen erhalten. Ich habe keine Hilfe von externen Vermittlungs- oder
Beratungsdiensten in Anspruch genommen. Niemand hat mittelbare oder unmit-
telbare geldwerte Leistungen erhalten, für Arbeiten die im Zusammenhang mit
dem Inhalt der vorgelegten Dissertation stehen.
Die vorgelegte Dissertation wurde bisher nicht als Prüfungsarbeit für eine andere
wissenschaftliche Prüfung eingereicht. Im Speziellen habe ich sie an keiner anderen
Hochschule eingereicht, um einen akademischen Grad zu erhalten.

Ruman Gerst

Ruman Gerst
Curriculum Vitae

Education
since 2018 PhD Student, Applied Systems Biology research group, Leibniz

Institute for Natural Product Research and Infection Biology – Hans-
Knöll-Institute, Jena/Germany
Title: Accessible software frameworks for reproducible image analysis of
host-pathogen interactions
Supervisor: Prof. Dr. Marc Thilo Figge

2015 – 2017 Master of Science (M.Sc.) Bioinformatics, Friedrich-Schiller-
Universität Jena, Jena/Germany

2012 – 2015 Bachelor of Science (B.Sc.) Bioinformatics, Friedrich-Schiller-
Universität Jena, Jena/Germany

2003 – 2012 Abitur, Melanchthon-Schule Steinatal, Willingshausen/Germany

Theses
2017 Master thesis, Bioinformatics/High-Throughput Analysis, Faculty

of Mathematics and Computer Science, Friedrich Schiller University
Jena
Title: PCAGO: An interactive web service to analyze RNA-Seq data
with principal component analysis
Supervisor: Prof. Dr. Manja Marz

2015 Bachelor thesis, Bioinformatics/High-Throughput Analysis, Fac-
ulty of Mathematics and Computer Science, Friedrich Schiller Uni-
versity Jena
Title: Statistical analysis of relation between RNA coding sequence and
secondary structure
Supervisor: Prof. Dr. Manja Marz

Professional experience
11/2021 Co-organizer, 6th International Symposium on Systems Biology

of Microbial Infections, Jena/Germany
10/2020 Co-organizer, 5th International Symposium on Image-based Sys-

tems Biology, Jena/Germany
since 2018 Doctoral researcher, Applied Systems Biology research group,

Leibniz Institute for Natural Product Research and Infection Biology
– Hans-Knöll-Institute, Jena/Germany

221 TABELLARISCHER LEBENSLAUF

Tabellarischer Lebenslauf

Publications
Papers

[1] Gerst R, Cseresnyés Z, & Figge MT: JIPipe: Visual batch pro-
cessing for ImageJ. Preprint: ResearchSquare https://dx.doi.
org/10.21203/rs.3.rs-1641739/v1 [Submitted to Nature Meth-
ods, May 2022]

[2] Hoffmann B, Gerst R, Cseresnyés Z, Foo W, Sommerfeld O, Press
AT, Bauer M, & Figge MT: Spatial quantification of clinical
biomarker pharmacokinetics through deep learning-based
segmentation and signal-oriented analysis of MSOT data.
Photoacoustics 2022, 100361.

[3] Büttner H, Niehs SP, Vandelannoote K, Cseresnyés Z, Dose B,
Richter I, Gerst R, Figge MT, Stinear TP, Pidot SJ, & Hertweck
C: Bacterial endosymbionts protect beneficial soil fungus
from nematode attack. Proceedings of the National Academy of
Sciences 2021, 118(37).

[4] Gerst R, Medyukhina A, & Figge, MT: MISA++: A standard-
ized interface for automated bioimage analysis. SoftwareX
2020, 11, 100405.

Talks
[1] Gerst R, Cseresnyés Z, Figge MT: JIPipe: Building auto-

mated image analysis tools without programming. Inter-
national Joint Meeting Infection Biology and Antibiotics (2022),
Berlin/Germany

[2] Gerst R, Cseresnyés Z, Figge MT: Designing fully automated
bioimage processing pipelines without programming. In-
ternational Conference on Medical Imaging Science and Technology
(2021), Shenzen/China (Online)

[3] Gerst R, Praetorius JP, Cseresnyés Z, Figge MT: JIPipe: Visual
programming for ImageJ. BioImage Informatics 2021 (2021),
Paris/France (Online)

[4] Gerst R, Praetorius JP, Cseresnyés Z, Figge MT: Bioimage analy-
sis with deep learning for everyone: Visual programming
in JIPipe. German Conference on Bioinformatics 2021 (2021),
Frankfurt am Main/Germany (Online)

[5] Gerst R, Praetorius JP, Cseresnyés Z, Figge MT: JIPipe: De-
signing image analysis pipelines without programming. 8th
International Conference on Microbial Communication for Young
Scientists (2021), Jena/Germany (Online)

[6] Gerst R, Cseresnyés Z, Figge MT: JIPipe: a graphical batch-
processing language for ImageJ. 5th International Symposium
on Image-based Systems Biology (2020), Jena/Germany (Online)

TABELLARISCHER LEBENSLAUF 222

[7] Gerst R, Medyukhina A, Figge MT: MISA++: A high-
performance framework for automated analysis of big
volume image data. ILRS Joint Meeting 2019 (2019),
Wittenberg/Germany

[8] Gerst R, Medyukhina A, Figge MT: MISA++: A modular and
high-performance framework for the analysis of light sheet
microscopy data. Swiss Light-sheet Microscopy Workshop 2019
(2019), Zurich/Switzerland

[9] Gerst R, Medyukhina A, Figge MT: Towards an open high-
performance platform for fully-automated analysis of whole
organ lightsheet fluorescence microscopy data. 4th In-
ternational Symposium on Image-based Systems Biology (2018),
Jena/Germany

Posters
[1] Gerst R, Cseresnyés Z, Figge MT: JIPipe: Designing automated

image analysis pipelines without programming. elmi2021
(2021), Oxford/United Kingdom (Online)

[2] Gerst R, Cseresnyés Z, Figge MT: JIPipe: a graphical batch-
processing language for ImageJ. 5th International Symposium
on Image-based Systems Biology (2020), Jena/Germany (Online)

[3] Gerst R, Medyukhina A, Figge MT: MISA++: a modular and
high-performance framework for analysis of light sheet
microscopy images. 5th International Symposium on Image-based
Systems Biology (2020), Jena/Germany (Online)

[4] Gerst R, Medyukhina A, Figge MT: MISA++: a standard-
ized interface for automated high- performance big volume
image analysis. NEUBIAS 2020 (2020), Bordeaux/France

[5] Gerst R, Medyukhina A, Figge MT: Towards an open high-
performance platform for fully-automated analysis of whole
organ lightsheet fluorescence microscopy data. 4th In-
ternational Symposium on Image-based Systems Biology (2018),
Jena/Germany

[6] Gerst R, Medyukhina A, Figge MT: Fast and efficient fully auto-
mated processing of lightsheet microscopy data to evaluate
the glomerular number in kidneys. 11th ILRS Symposium
(2018), Jena/Germany

Ruman Gerst

223 TABELLARISCHER LEBENSLAUF

225 ANHANG

Anhang

FORMULAR 2

Manuskript Nr. 1

Kurzreferenz Hoffmann et al. (2022), Photoacoustics

Beitrag des Doktoranden / der Doktorandin

Beitrag des Doktoranden / der Doktorandin zu Abbildungen, die experimentelle Daten
wiedergeben (nur für Originalartikel):

Figures 1-7;
Supplementary
Figures A1, A4-A8,
A10

☐ 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgeführt hat)

 ☒ 0 % (die in dieser Abbildung wiedergegebenen Daten basieren

ausschließlich auf Arbeiten anderer Koautoren)

 ☐ Etwaiger Beitrag des Doktoranden / der Doktorandin zur
Abbildung: _____%
Kurzbeschreibung des Beitrages:
(z. B. „Abbildungsteile a, d und f“ oder „Auswertung der Daten“ etc)

Figure 8;
Supplementary Table
A2

☒ 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgeführt hat)

 ☐ 0 % (die in dieser Abbildung wiedergegebenen Daten basieren

ausschließlich auf Arbeiten anderer Koautoren)

 ☐ Etwaiger Beitrag des Doktoranden / der Doktorandin zur
Abbildung: _____%
Kurzbeschreibung des Beitrages:
(z. B. „Abbildungsteile a, d und f“ oder „Auswertung der Daten“ etc)

_____________________ _______________________________________
Unterschrift Kandidat/-in Unterschrift Betreuer/-in (Mitglied der Fakultät)

ANHANG 226

FORMULAR 2

Manuskript Nr. 2

Kurzreferenz Gerst et al. (2022), Research Square (Preprint)

Beitrag des Doktoranden / der Doktorandin

Beitrag des Doktoranden / der Doktorandin zu Abbildungen, die experimentelle Daten
wiedergeben (nur für Originalartikel):

Figure 1-2;
Supplementary
Figures 1.1, 3.1-3.7,
Supplementary Table
5.1

☒ 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgeführt hat)

 ☐ 0 % (die in dieser Abbildung wiedergegebenen Daten basieren

ausschließlich auf Arbeiten anderer Koautoren)

 ☐ Etwaiger Beitrag des Doktoranden / der Doktorandin zur
Abbildung: _____%
Kurzbeschreibung des Beitrages:
(z. B. „Abbildungsteile a, d und f“ oder „Auswertung der Daten“ etc)

Figure 3 ☐ 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgeführt hat)

 ☐ 0 % (die in dieser Abbildung wiedergegebenen Daten basieren

ausschließlich auf Arbeiten anderer Koautoren)

 ☒ Etwaiger Beitrag des Doktoranden / der Doktorandin zur
Abbildung: 50 %
Kurzbeschreibung des Beitrages:
Layout der Abbildung

Supplementary
Figures 2.1-2.5

☐ 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgeführt hat)

 ☒ 0 % (die in dieser Abbildung wiedergegebenen Daten basieren

ausschließlich auf Arbeiten anderer Koautoren)

 ☐ Etwaiger Beitrag des Doktoranden / der Doktorandin zur
Abbildung: _____%
Kurzbeschreibung des Beitrages:

_____________________ _______________________________________
Unterschrift Kandidat/-in Unterschrift Betreuer/-in (Mitglied der Fakultät)

227 ANHANG

FORMULAR 2

Manuskript Nr. 3

Kurzreferenz Büttner et al. (2021), PNAS

Beitrag des Doktoranden / der Doktorandin

Beitrag des Doktoranden / der Doktorandin zu Abbildungen, die experimentelle Daten
wiedergeben (nur für Originalartikel):

Figures 1-3; Tables S1-
S9; Figures S1-S22

☐ 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgeführt hat)

 ☒ 0 % (die in dieser Abbildung wiedergegebenen Daten basieren

ausschließlich auf Arbeiten anderer Koautoren)

 ☐ Etwaiger Beitrag des Doktoranden / der Doktorandin zur
Abbildung: _____%
Kurzbeschreibung des Beitrages:
(z. B. „Abbildungsteile a, d und f“ oder „Auswertung der Daten“ etc)

_____________________ _______________________________________
Unterschrift Kandidat/-in Unterschrift Betreuer/-in (Mitglied der Fakultät)

ANHANG 228

FORMULAR 2

Manuskript Nr. 4

Kurzreferenz Gerst et al. (2020), SoftwareX

Beitrag des Doktoranden / der Doktorandin

Beitrag des Doktoranden / der Doktorandin zu Abbildungen, die experimentelle Daten
wiedergeben (nur für Originalartikel):

Figures 1-2, Figure 4;
Table S1-S4; Figures
S3-S5; Figures S8-S10;
Listings S1-S11

☒ 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgeführt hat)

 ☐ 0 % (die in dieser Abbildung wiedergegebenen Daten basieren

ausschließlich auf Arbeiten anderer Koautoren)

 ☐ Etwaiger Beitrag des Doktoranden / der Doktorandin zur
Abbildung: _____%
Kurzbeschreibung des Beitrages:

Figure 3; Figures S6-S7 ☐ 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin
durchgeführt hat)

 ☐ 0 % (die in dieser Abbildung wiedergegebenen Daten basieren

ausschließlich auf Arbeiten anderer Koautoren)

 ☒ Etwaiger Beitrag des Doktoranden / der Doktorandin zur Abbildung:
75 %
Kurzbeschreibung des Beitrages:
Layout der Abbildung

_____________________ _______________________________________
Unterschrift Kandidat/-in Unterschrift Betreuer/-in (Mitglied der Fakultät)

229 ANHANG

	Summary
	Zusammenfassung
	Glossary
	Acronyms
	Introduction
	Host-pathogen interactions
	Endocytosis and phagocytosis

	Imaging techniques
	Transmitted light microscopy
	Confocal microscopy
	Light sheet microscopy
	Multispectral optoacoustic tomography

	Automated image analysis
	Image representation in computers
	Image transformations and spatial filtering
	Image enhancement
	Segmentation
	Morphological processing
	Classification
	Deep neural networks
	Image analysis tools

	Web applications and services

	Objectives of this thesis
	Overview of manuscripts
	Manuscripts
	Spatial quantification of clinical biomarker pharmacokinetics through deep learning-based segmentation and signal-oriented analysis of MSOT data
	JIPipe: Visual batch processing for ImageJ
	Bacterial endosymbionts protect beneficial soil fungus from nematode attack
	MISA++: A standardized interface for automated bioimage analysis

	Discussion
	Fully automated processing of MSOT data differentiates healthy from septic mice
	Visual programming opens the development of fully automated pipelines to non-programmers
	Visual programming pipelines quantify toxicity of fungus endosymbionts to nematodes
	Standardizing high-performance image analysis software enables the rapid quantification of big data volumes
	Concluding remarks

	Bibliography
	Danksagung
	Ehrenwörtliche Erklärung
	Tabellarischer Lebenslauf
	Anhang

