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Abstract

The numerical range and the quadratic numerical range is used to study the
spectrum of a class of block operator matrices. We show that the approximate
point spectrum is contained in the closure of the quadratic numerical range. In
particular, the spectral enclosures yield a spectral gap. It is shown that these
spectral bounds are tighter than classical numerical range bounds.
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1 Introduction

Block operator matrices play an important role in system theory and theoretical physics (e.g.
see [13]). The spectral enclosure and the spectral properties of a block operator matrices are
of major interest and have received a great deal of attention in recent years.

In the present paper, we consider the following framework. Let H1, H2 be complex Hilbert
spaces and let

A±D =

[
0 B

−B∗ ±D

]
: D(−B∗)⊕D(B) ⊂ H1 ⊕H2 → H1 ⊕H2, (1.1)

be an off-diagonally dominant operator of the form where B is a densely defined closed op-
erator, D is accretive in H2, i.e. Re(Dz, z) ≥ 0, z ∈ D(B). We use A+D or A−D to denote
the case that the element ±D in (1.1) is +D or −D, respectively. In particular, the operator
A−D is dissipative, and generates a C0-semigroup of contractions if there exists a λ0 > 0 such
that λ0I−A−D is surjective. Moreover, if D is a self-adjoint operator, then the operator A±D

is J -symmetric with J =

[
I 0
0 −I

]
. Furthermore, if D is self-adjoint and B-bound< 1, the

operator A±D is J -self-adjoint, i.e. (JA±D)
∗ = JA±D [4].

The aim of this paper is to establish a new enclosure for the spectrum of the operator
A±D in (1.1) by using the numerical range and the quadratic numerical range. In 1918, the
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numerical range of a linear operator in a Hilbert space was first studied by O. Teoplitz in
[12]. Under some mild assumptions, it gives a localization of the spectrum. However, it
generally does not capture finer structures of the spectrum. To circumvent the limitedness, a
new concept, the quadratic numerical range, was introduced in 1998 in [7], which came with
subsequent development in [5] and [6]. Unlike the numerical range, the quadratic numerical
range consists of at most two connected components which need not be convex. In addition,
since the quadratic numerical range is always contained in the numerical range, it potentially
gives a tighter spectral enclosure.

C. Tretter proved in [14] that the quadratic numerical range of the unbounded block

operator matrix

[
A B
C D

]
has the spectral inclusion property if A is diagonally dominant or

off-diagonally dominant of order 0. We show in this article that the spectral inclusion property
of off-diagonally dominant matrices of arbitrary order under the assumption that they have
the special form given in (1.1).

In 2017, M. Langer and M. Strauss studied certain upper dominant and certain diagonally
dominant unbounded J -self-adjoint block operator matrices. They used the Schur comple-
ment and the quadratic numerical range to obtain enclosures for the spectrum and to derive
variational principles for real eigenvalues even in the presence of non-real spectrum in [8].

B. Jacob, C. Tretter, C. Trunk and H. Vogt used the quadratic numerical range to establish
a new method for obtaining non-convex spectral enclosures for operator matrices as the form

A =

[
0 I

−A0 −D

]
, associated with second order differential equations in a Hilbert space in

[3]. For unbounded Hamiltonian operator matrices (B = B∗, C = C∗, and D = −A∗),
the quadratic numerical range is shown to be symmetric with respect to the imaginary axis
and has the spectral inclusion property under certain assumptions [2]. Further studies about
the enclosures of spectrum, the numerical range and the quadratic numerical range of linear
operators can be found in [15, 10, 11, 9].

The present paper is organized as follows. In Section 2 and Section 3, we introduce the
fundamental definitions and properties of A±D. Section 4 is devoted to the spectral properties
of bounded block operator matrices A±D. We prove that the spectral enclosures of A±D yield
a vertical strip free of spectrum under rather weak assumptions. The precise statement is
summarized in Theorem 4.2. In Section 5, we show that the approximate point spectrum
of the unbounded A±D is contained in the closure of the quadratic numerical range and
investigate the location of spectrum of A±D by using the quadratic numerical range.

2 Preliminaries

Let H be a complex Hilbert space with scalar product (·, ·). The domain and range of a
densely defined closable linear operator T in H are denoted by D(T ) and R(T ), respectively.
We use T ∗ to denote the adjoint of T . The resolvent set of T is defined by

ρ(T ) := {λ ∈ C| T − λ is bijection and (T − λ)−1 is bounded in H},

and the set
σ(T ) := C \ ρ(T )

is called the spectrum of T . The point spectrum is denoted by σp(T ) and the approximate
point spectrum of T is defined as

σap(T ) := {λ ∈ C| there exists (xn) in D(T ), ∥xn∥ = 1, such that (T − λ)xn → 0, n → ∞}.
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Definition 2.1 ([4]). Let T, S be operators in H, S is called relatively bounded with respect
to T or T -bounded if D(T ) ⊂ D(S) and there exist constants aS , bS ≥ 0 such that

∥Sx∥ ≤ aS∥x∥+ bS∥Tx∥, x ∈ D(T ).

The infimum δS of all bS so that the above equality holds for some aS ≥ 0 is called relative
bound of S with respect to T or T -bound of S.

Definition 2.2 ([13]). Let H1, H2 be Hilbert spaces. The block operator matrix

A =

[
A B
C D

]
, D(A) := (D(A) ∩ D(C))⊕ (D(B) ∩ D(D)) ⊂ H1 ⊕H2 → H1 ⊕H2, (2.1)

is called off-diagonally dominant if A is C-bounded and D is B-bounded, and

A : D(A) → H1 B : D(B) → H1

C : D(C) → H2 D : D(D) → H2

are closable operators with dense domains D(A),D(C) ⊂ H1 and D(B),D(D) ⊂ H2. In
particular, this implies that the operator A in (2.1) is densely defined.

Definition 2.3 ([12]). Let T be a linear operator in Hilbert space H. The numerical range
W (T ) of T is defined by

W (T ) := {(Tx, x)| x ∈ D(T ), ∥x∥ = 1}.

Definition 2.4 ([7]). Let A be a block operator matrix of the form in (2.1), (f, g)⊤ ∈ D(A)
such that ∥f∥ = ∥g∥ = 1 and let

Af,g :=

[
(Af, f) (Bg, f)
(Cf, g) (Dg, g)

]
∈ M2(C)

be a 2× 2 matrix associated to f, g and the operator A. Then, the set

W 2(A) :=
⋃

{σp(Af,g)| (f, g)T ∈ D(A), ∥f∥ = ∥g∥ = 1}

is called the quadratic numerical range of A.

3 Fundamental properties

In this section, we introduce some fundamental properties of an off-diagonally dominant op-
erator matrix

A±D =

[
0 B

−B∗ ±D

]
: D(−B∗)⊕D(B) ⊂ H1 ⊕H2 → H1 ⊕H2 (3.1)

where H1, H2 are Hilbert spaces, B is a densely defined closed operator, D is B-bounded and
accretive in H2, i.e. Re(Dz, z) ≥ 0, z ∈ D(B). Then, by [13, Corollary 2.2.9 (ii)], A±D is a
closed operator. Moreover, from [13, Theorems 2.5.3, 2.5.4, and 2.5.9] we obtain the following.

Proposition 3.1. For the block operator matrix A±D in (3.1) we have

σp(A±D) ⊂ W 2(A±D) ⊂ W (A±D).

If, in addition, dimH1, dimH2 > 1, then

W (±D) ∪ {0} ⊂ W 2(A±D). (3.2)

3



For the block operator matrix A±D in (3.1) define β and γ as

β := inf
z∈D(B)\{0}

Re(Dz, z)

∥z∥2
∈ [0,∞) γ := sup

z∈D(B)\{0}

Re(Dz, z)

∥z∥2
∈ [0,∞]. (3.3)

Note that β > 0 means that γ > 0 and the operator D is uniformly accretive. We have the
following equivalent formulation.

Remark 3.2. We have λ ∈ W (A±D) if and only if there is (f, g)⊤ ∈ D(A±D), ∥f∥2+∥g∥2 = 1,
with

λ =

([
0 B

−B∗ ±D

] [
f
g

]
,

[
f
g

])
=

([
Bg

−B∗f ±Dg

] [
f
g

])
= (Bg, f)− (B∗f, g)± (Dg, g) = −2i Im(f,Bg)± (Dg, g).

Together with (3.3), the real part ReW (A±D) satisfies

min(ReW (A+D)) = 0,

min(ReW (A−D)) = −γ,

sup(ReW (A+D)) = γ

sup(ReW (A−D)) = 0.
(3.4)

Remark 3.3. For (f, g)⊤ ∈ D(A±D), with ∥f∥ = ∥g∥ = 1, set

△±(f, g;λ) := λ2 ∓ λ(Dg, g) + |(f,Bg)|2,

then

W 2(A±D) =
{
λ ∈ C| there exists (f, g)⊤ ∈ D(A±D), ∥f∥ = ∥g∥ = 1 with △± (f, g;λ) = 0

}
and the real part Re

(
W 2(A±D)

)
satisfies the same relations as in (3.4), where one has to

replace W (A+D) by W 2(A+D).

4 Spectral inclusion. The case of bounded entries

In this section, we establish new spectral enclosures for bounded block operator matrices

A±D =

[
0 B

−B∗ ±D

]
: H1 ⊕H2 → H1 ⊕H2, (4.1)

where H1, H2 are Hilbert spaces, D is accretive , i.e. Re(Dz, z) ≥ 0. By Theorem 2.3 in [5],
for bounded operator matrices, we have

σ(A±D) ⊂ W 2(A±D) ⊂ W (A±D).

For bounded operator A±D we set

b := sup
f∈H1, g∈H2

∥f∥2+∥g∥2=1

| Im(f,Bg)|, c := sup
g∈H2

∥g∥=1

| Im(Dg, g)|. (4.2)

Suppose f ∈ H1 and g ∈ H2 such that ∥f∥2 + ∥g∥2 = 1. Then, we have |(f,Bg)|2 ≤
∥f∥2∥g∥2∥B∥2 = (1−∥g∥2)∥g∥2∥B∥2, which takes its maximum at ∥g∥2 = 1/2 and we obtain

b ∈ [0, ∥B∥/2] and c ∈ [0, ∥D∥].

The following proposition is an immediate consequence of Remark 3.2.
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Proposition 4.1. Suppose A±D in (4.1) is bounded. Then

σ(A±D) ⊂ W (A±D) ⊂ {λ ∈ C| 0 ≤ ±Reλ ≤ γ, | Imλ| ≤ 2b+ c}.

If, in addition, there exists k ≥ 0 such that | Im(Dz, z)| ≤ kRe(Dz, z), z ∈ H2 then

σ(A±D) ⊂ W (A±D) ⊂ {λ ∈ C| 0 ≤ ±Reλ ≤ γ, | Imλ| ≤ 2b+ k|Reλ|}.

The above propositions are proved by the numerical range of A±D. In the following, we
investigate the spectral enclosures of A±D in terms of the quadratic numerical range.

Theorem 4.2. Let A±D in (4.1) be bounded. Assume B ̸= 0 and β > 0. We define

t1 = β

1− 1

1 +
(
2b+c
∥B∥

)2
 , t2 =

β

2

(
1−

√
1− 4∥B∥2

β2

)
and t3 =

β

2

(
1 +

√
1− 4∥B∥2

β2

)
,

and for x ∈ [0, β)

g(x) := f2(x)− x2 and f(x) := ∥B∥
√

x

β − x
.

Then the following statements hold.

(I) If β < 2∥B∥, then

σ(A±D) \ {0} ⊂{λ ∈ C| ± Reλ ∈ (0, t1], | Imλ| ≤
√

g(|Reλ|)}

∪ {λ ∈ C| ± Reλ ∈ (t1, γ], | Imλ| ≤ 2b+ c}.

(II) If β ≥ 2∥B∥, and

(1) t1 < t2, then

σ(A±D) \ {0} ⊂{λ ∈ C| ± Reλ ∈ (0, t1], | Imλ| ≤
√

g(|Reλ|)}

∪ {λ ∈ C| ± Reλ ∈ (t1, γ] \ (t2, t3), | Imλ| ≤ 2b+ c};

(2) t2 ≤ t1 ≤ t3, then

σ(A±D) \ {0} ⊂{λ ∈ C| ± Reλ ∈ (0, t2], | Imλ| ≤
√

g(|Reλ|)}

∪ {λ ∈ C| ± Reλ ∈ (t3, γ], | Imλ| ≤ 2b+ c};

(3) t1 > t3, then

σ(A±D) \ {0} ⊂{λ ∈ C| ± Reλ ∈ (0, t1] \ (t2, t3), | Imλ| ≤
√

g(|Reλ|)}

∪ {λ ∈ C| ± Reλ ∈ (t1, γ], | Imλ| ≤ 2b+ c}.

There is a spectral gap in the case β > 2∥B∥ around β/2 of length t3 − t2 =
√
β2 − 4∥B∥2.
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Proof. By Proposition 4.1 we have

σ(A±D) ⊂ {λ ∈ C| 0 ≤ ±Reλ ≤ γ, | Imλ| ≤ 2b+ c}. (4.3)

If λ ∈ σ(A±D)\{0}, then λ ∈ W 2(A±D)\{0}. By Remark 3.3, there exists (f, g)⊤∈ D(A±D),
∥f∥ = ∥g∥ = 1 with

λ2 ∓ λ(Dg, g) + |(f,Bg)|2 = 0,

and hence

Re(Dg, g) = |Reλ|
(
1 +

|(f,Bg)|2

|λ|2

)
. (4.4)

If 0 ≤ ±Reλ < β and using |(f,Bg) |2≤ ∥B∥2, 0 < β ≤ Re(Dg, g) and equality (4.4), we
infer

|λ|2 ≤ |Reλ| ∥B∥2

β − |Reλ|
, (4.5)

which implies

|Reλ| ≤ ∥B∥

√
|Reλ|

β − |Reλ|
,

| Imλ| ≤ ∥B∥

√
|Reλ|

β − |Reλ|
= f(|Reλ|), (4.6)

and
| Imλ|2 ≤ f2(|Reλ|)− |Reλ|2 = g(|Reλ|),

while

g(|Reλ|) = |Reλ| |Reλ|
2 − β|Reλ|+ ∥B∥2

β − |Reλ|
= |Reλ|

(
|Reλ| − t2

)(
|Reλ| − t3

)
β − |Reλ|

.

By constructions, we have

(i) g(x) ≤ f2(x) for x ∈ (0, β);

(ii) if β < 2∥B∥, then g(x) has no zeros in (0, β) and is always positive;

(iii) if β ≥ 2∥B∥, then g(0) = g(t2) = g(t3) = 0 and g(x) < 0 for all x ∈ (t2, t3) ⊂ (0, β).

In what follows we compute when f(x) (and hence g(x)) is smaller than 2b+ c. In this case,
the estimate in (4.6) is better than (4.3). Note that f(x) is monotone increasing, and we have

f(x) = 2b+ c

if and only if x = t1. Now the statement in (I) follows from (i), (ii) and (4.6), the statements
in (II) follow from (i), (iii) and (4.6).

In the following figures, Theorem 4.2 and subsequent improvements in the quadratic nu-
merical range (red for colour online version) over the numerical range (light grey) are depicted.
In particular, if the interval I = (t2, t3) is non-empty, then there is a spectral free strip for
Reλ ∈ I. We suppose that

∥B∥ = 2, γ = 7 and b = 1/6. (4.7)
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7Βt1

- 4

3

Figure 1: Case I of
Theorem 4.2 for β =
3, b = 1

6 , c = 1 and t1 =
12
13 .

The following three figures illustrate Case II of Theorem 4.2. In addition to (4.7), we
assume β = 5, which implies t2 = 1 and t3 = 4. Consequently, there is a spectral gap in (1, 4).

0

2

3

- 2

3

t1 t2 t3 Β 7 0

4

3

- 4

3

t2 t1 t3 Β 7 0

13

3

- 13

3

t2
t3 t1 Β 7

Figure 2: c = 1
3 and t1 =

1
2 (left). c = 1 and t1 =

20
13 (center). c = 4 and t1 =

169
41 (right).

Corollary 4.3. Suppose A±D in (4.1) is bounded and D is self-adjoint. We define for x ∈
[0, ∥B∥]

t4 =
√

∥B∥2 − 4b2 and h(x) =
√
∥B∥2 − x2.

(I) If ∥D∥/2 ≤ ∥B∥, and

(i) ∥D∥/2 ≥ t4, then

σ(A±D) ⊂{λ ∈ C| 0 ≤ ±Reλ ≤ t4, | Imλ| ≤ 2b}

∪ {λ ∈ C| t4< ±Reλ ≤ ∥D∥/2, | Imλ| ≤ h(|Reλ|)}

∪ {λ ∈ R| ∥D∥/2 < ±λ ≤ ∥D∥} ;

(ii) ∥D∥/2 < t4, then

σ(A±D) ⊂ {λ ∈ C| 0 ≤ ±Reλ ≤ ∥D∥/2, | Imλ| ≤ 2b}∪{λ ∈ R| ∥D∥/2 < ±λ ≤ ∥D∥} .

(II) If ∥D∥/2 > ∥B∥, then

σ(A±D) ⊂{λ ∈ C| 0 ≤ ±Reλ ≤ t4, | Imλ| ≤ 2b}

∪ {λ ∈ C| t4 < ±Reλ ≤ ∥B∥, | Imλ| ≤ h(|Reλ|)}

∪ {λ ∈ C| ∥B∥ < ±Reλ ≤ ∥D∥/2, | Imλ| ≤ 2b}

∪ {λ ∈ R| ∥D∥/2 < ±λ ≤ ∥D∥} .
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Proof. Let λ ∈ W 2(A±D), Remark 3.3 implies that 0 ≤ ±Reλ ≤ ∥D∥ and there exists
(f, g)⊤ ∈ D(A±D) with ∥f∥ = ∥g∥ = 1, such that

λ2 ∓ λ(Dg, g) + |(f,Bg)|2 = 0. (4.8)

Since B is bounded, by Remark 3.2, we have

σ(A±D) ⊂ W (A±D) ⊂ {λ ∈ C| 0 ≤ ±Reλ ≤ ∥D∥, | Imλ| ≤ 2b}. (4.9)

In addition, from (4.8), it is easy to see that

± Im(Dg, g) = Imλ(1− |(f,Bg)|2|λ|−2) = 0 (4.10)

and
|λ|2 = |(f,Bg)|2 ≤ ∥B∥2. (4.11)

Hence
| Imλ| ≤

√
∥B∥2 − |Reλ|2 = h(|Reλ|), for |Reλ| ∈ [0, ∥B∥]. (4.12)

In the following, we will compute when h(x) is smaller than 2b. Note that h(x) =
√

∥B∥2 − x2

is monotone decreasing, and we have
h(x) = 2b

if and only if x = t4. Moreover, (4.8) implies Re(Dg, g) = |Reλ|(1 + |(f,Bg)|2|λ|−2). If

Imλ ̸= 0, then by (4.10) we have |(f,Bg)|2|λ|−2 = 1 and it follows that 0 ≤ ±Reλ ≤ ∥D∥
2 .

Thus, the statements in (I), (II) follow from (4.9) and (4.12).

The following figures illustrate an improvement for the quadratic numerical range (red for
coloured online version) over the numerical range (light grey) for ∥B∥ = 2 and b = 1/2.

0

1

-1

t4 °B°
Γ

2 7

1

-1

0 t4

Γ

2

19

5°B° 0

Γ

2 t4 ´B´
17

5

1

-1

Figure 3: ∥D∥ = 7, t4 =
√
3 and t4 ≤ ∥B∥ ≤ ∥D∥/2 (left). ∥D∥ = 19

5 , t4 =
√
3 and

t4 ≤ ∥D∥/2 ≤ ∥B∥ (center). ∥D∥ = 17
5 , t4 =

√
3 and ∥D∥/2 ≤ t4 ≤ ∥B∥ (right).

5 Spectral inclusion. The case of unbounded entries

In this section, we give some results of an off-diagonally dominant unbounded block operator
matrices

A±D =

[
0 B

−B∗ ±D

]
: D(−B∗)⊕D(B) ⊂ H1 ⊕H2 → H1 ⊕H2 (5.1)

where H1, H2 are Hilbert spaces, B is a densely defined closed operator, D is B-bounded and
accretive in H2, i.e. Re(Dz, z) ≥ 0, z ∈ D(B).
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Theorem 5.1. For the unbounded block operator A±D in (5.1), we have

σap(A±D) ⊂ W 2(A±D).

Proof. Let λ ∈ σap(A±D), if λ = 0, then λ ∈ W 2(A±D) by Proposition 3.1. Thus, in the
following, we only have to show the case for λ ̸= 0. By the definition of σap(A±D), here exists
a sequence (fn, gn)

⊤ ∈ D(A±D), ∥fn∥2 + ∥gn∥2 = 1, with

lim
n→∞

(A±D − λ)

[
fn
gn

]
= 0.

i.e.

lim
n→∞

(Bgn − λfn) = 0, (5.2)

lim
n→∞

(±Dgn −B∗fn − λgn) = 0. (5.3)

By taking inner products on both sides of (5.2) and (5.3), we obtain

lim
n→∞

(Bgn − λfn, fn) = 0 = lim
n→∞

(±Dgn −B∗fn − λgn, gn). (5.4)

Since ∥fn∥ and ∥gn∥ are bounded, there exist a convergent subsequence (∥fnk
∥)k of (∥fn∥)n

and a convergent subsequence (∥gnk
∥)k of (∥gn∥)n with

lim
k→∞

∥fnk
∥ =: µ and lim

k→∞
∥gnk

∥ =: ν (5.5)

for some µ, ν ∈ [0, 1]. Hence, (5.4) implies

lim
k→∞

(Bgnk
, fnk

) = λµ2 and lim
k→∞

(B∗fnk
, gnk

) = lim
k→∞

(fnk
, Bgnk

) = λµ2, (5.6)

Similarly, now (5.4) and (5.6) imply

lim
k→∞

(±Dgnk
, gnk

) = lim
n→∞

((±Dgnk
−B∗fnk

− λgnk
) + (B∗fnk

+ λgnk
), gnk

)

= λµ2 + λν2.
(5.7)

If µ = 0, then λ ∈ W (±D) ⊂ W 2(A±D) due to equality (5.7) and Proposition 3.1. If
µ > 0, we consider the sequence of polynomials

△(fnk
, gnk

; z) := det

[
−z(fnk

, fnk
) (Bgnk

, fnk
)

−(B∗fnk
, gnk

) ±(Dgnk
, gnk

)− z(gnk
, gnk

)

]
.

By (5.5), (5.6) and (5.7), this sequence of polynomials converges locally uniformly to the
polynomial △(z) where △(z) is given by

△(z) := det

[
−zµ2 λµ2

−λµ2 λµ2 + λν2 − zν2

]
.

It is easy to see that △(λ) = 0 and △ ̸≡ 0. Hence, by Hurwitz’s theorem [1, Theorem
VII.2.5] for every ε > 0 there exists K ∈ N such that, for k ≥ K, the quadratic polynomial
△(fnk

, gnk
; ·) has a null point znk

∈ C with |znk
− λ| < ε. Since znk

∈ W 2(A±D), it follows
that λ ∈ W 2(A±D).
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Theorem 5.2. Let A±D be as in (5.1). If a component Ω of C \W 2(A±D) contains a point
µ ∈ ρ(A±D), then Ω ⊂ ρ(A±D); in particular if every component of C \W 2(A±D) contains a
point µ ∈ ρ(A±D), then

σ(A±D) ⊂ W 2(A±D).

Proof. See the proof of [4, Theorem V.3.2].

Theorem 5.3. Let A±D be as in (5.1). Assume there exists k ≥ 0 such that

| Im(Dg, g)| ≤ kRe(Dg, g), g ∈ D(B)

and β > 0, γ < ∞. If there are ±λ1,±λ2 ∈ ρ(A±D) with ±λ1 < 0 and ±λ2 > γ, then

σ(A±D) ⊂

λ ∈ C| 0 ≤ ±Reλ ≤ γ, | Imλ| ≤


k|Reλ|

1− 2
β
|Reλ| , ±Reλ ∈ [0, β2 )

∞, ±Reλ ∈ [β2 ,
γ
2 ]

k|Reλ|
2
γ
|Reλ|−1

, ±Reλ ∈ (γ2 , γ].

 . (5.8)

Proof. Let λ ∈ W 2(A±D) \ {0}, Remark 3.3 implies that 0 ≤ ±Reλ ≤ γ and there exists
(f, g)⊤ ∈ D(A±D) with ∥f∥ = ∥g∥ = 1, such that the equality

λ2 ∓ λ(Dg, g) + |(f,Bg)|2 = 0

holds and it follows that

Re(Dg, g) =

(
1 +

|(f,Bg)|2

|λ|2

)
|Reλ|, (5.9)

± Im(Dg, g) =

(
1− |(f,Bg)|2

|λ|2

)
Imλ. (5.10)

As β > 0 we have Re(Dg, g) > 0, thus (5.9) implies that |Reλ| ̸= 0. Moreover, by
Theorem 5.2 and Remark 3.3 one sees that the real part of the quadratic numerical range of
A+D (resp. A−D) lies in the interval [0, γ] (resp. [−γ, 0]). The interval [0, γ] (resp. [−γ, 0])
is a subset of the right hand side of (5.8). Hence, we assume that Im λ ̸= 0. By (5.9) and
(5.10), we infer that

Re(Dg, g)

|Reλ|
± Im(Dg, g)

Imλ
= 2.

Multiplying this identity by |Reλ| Imλ
Re(Dg,g) , we get

Imλ± Im(Dg, g)

Re(Dg, g)
|Reλ| = 2|Reλ| Imλ

Re(Dg, g)
. (5.11)

For 0 < ±Reλ < β
2 , we have

| Imλ| ≤ k|Reλ|
1− 2 |Reλ|

β

.

By Re(Dg, g) ≥ β, it follows that

W 2(A±D) ⊂

λ ∈ C| 0 < ±Reλ <
β

2
, | Imλ| ≤ k|Reλ|

1− 2 |Reλ|
β

 .
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For γ
2 < ±Reλ ≤ γ, by the definition of γ and (5.11), we deduce that

| Imλ| ≤ k|Reλ|
2 |Reλ|

γ − 1
.

i.e.

W 2(A±D) ⊂

λ ∈ C| γ
2
< ±Reλ ≤ γ, | Imλ| ≤ k|Reλ|

2 |Reλ|
γ − 1

 .

By Theorem 5.2 and the assumption that there exist ±λ1 < 0 and ±λ2 > γ such that
±λ1,±λ2 ∈ ρ(A±D), we have σ(A±D) ⊂ W 2(A±D) and the statement is proved.

Theorem 5.4. Let A±D be as in (5.1) and assume that D is a bounded and self-adjoint
operator. If there are ±λ1,±λ2 ∈ ρ(A±D) with ±λ1 < 0 and ±λ2 > ∥D∥, then

σ(A±D) ⊂ {λ ∈ C| 0 ≤ ±Reλ ≤ ∥D∥/2} ∪ [∥D∥/2, ∥D∥]. (5.12)

Proof. Let λ ∈ W 2(A±D), Remark 3.3 implies that 0 ≤ ±Reλ ≤ ∥D∥ and there exists
(f, g)⊤ ∈ D(A±D) with ∥f∥ = ∥g∥ = 1 such that

λ2 ∓ λ(Dg, g) + |(f,Bg)|2 = 0.

By Proposition 3.1, in the following we only need to consider λ ̸= 0, and we have

Re(Dg, g) = |Reλ|
(
1 +

|(f,Bg)|2

|λ|2

)
, (5.13)

± Im(Dg, g) = Imλ

(
1− |(f,Bg)|2

|λ|2

)
= 0. (5.14)

If Imλ ̸= 0, then |(f,Bg)|2
|λ|2 = 1. From (5.13) and (5.14), it follows that 0 ≤ ±Reλ ≤ ∥D∥

2 ,

therefore the set W 2(A±D) is contained in the right hand side of (5.12). By Theorem 5.2 and
the assumption that there exist ±λ1 < 0 and ±λ2 > ∥D∥ such that ±λ1,±λ2 ∈ ρ(A±D), we
have σ(A±D) ⊂ W 2(A±D).

The following figures illustrate improvements for the quadratic numerical range (red for
colour online version) over the numerical range (light grey).

0
Β

2

Γ

2 7

Γ

20

Figure 4: Theorem 5.3
for γ = 7, β = 5 and
k = 1

2 (left). Theorem
5.4 for γ = ∥D∥ = 7
(right).
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