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LOWER BOUNDS FOR SELF-ADJOINT STURM–LIOUVILLE

OPERATORS

Abstract. In this note we provide estimates for the lower bound of the self-

adjoint operator associated with the three-coefficient Sturm–Liouville differ-
ential expression
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)
in the weighted L2-Hilbert space L2(R; rdx).

1. Introduction

One-dimensional Schrödinger operators of the form

H = − d2

dx2
+ q (1.1)

a with real-valued potential q have been studied in the mathematical and physical
literature intensively in the last century due to their particular importance in quan-
tum mechanics. Typically one is interested in a suitable self-adjoint realization in
L2(R) and its spectral properties, among them estimates for lower bounds, numbers
of negative eigenvalues, and Lieb–Thirring inequalities are particularly important,
see, for instance, the recent survey [9].

The main objective of this note is to derive estimates on the lower bound of more
general Sturm-Liouville operators of the type

T =
1

r

(
− d

dx
p

d

dx
+ q

)
(1.2)

with real-valued coefficients under the standard assumptions r, 1/p, q ∈ L1
loc(R)

and r, p positive almost everywhere. We refer the reader to the textbooks [6], [11],
[13], [15], [18], [21], [22], and [23] for an overview and detailed study of Sturm-
Liouville (resp., Schrödinger) operators. The natural Hilbert space in this context
is the weighted L2-space L2

r(R) := L2(R; rdx) and under some mild additional
assumptions on the coefficients one concludes that T is a semibounded self-adjoint
operator in L2

r(R). As mentioned above, lower bounds for the spectrum of T are
known for the special case r = p = 1, that is, T = H, and for completeness we
provide a straightforward estimate as a warm up in Section 2.

In the general setting it seems that a systematic study is missing and it is the aim
of this note to initiate and contribute to this circle of problems. It is clear that the
coefficients r and p have an essential influence on the lower bound. If, for instance,
the weight function r = r0 is constant and p = 1 then formally T = (1/r0)H and
the lower bound min σ(T ) of T is simply given by (1/r0) minσ(H). This already
indicates that for a nonconstant weight function r the L∞-norm of 1/r will appear
in the lower bounds, and the situation becomes much more difficult if 1/r 6∈ L∞(R),
in which case we require the existence of a function g that neutralizes the behaviour
of the weight function r on subsets of R where r is small. Furthermore, the norm of
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the coefficient p will enter in lower bound estimates and very roughly speaking 1/p
has to be considered in conjunction with the potential q. The methods and proofs
in this paper are strongly inspired by [2], where bounds on nonreal eigenvalues of
indefinite Sturm-Liouville operators are obtained.

2. One-dimensional Schrödinger operators

As a warm up we discuss in this short section the special case p = r = 1 and
q ∈ Ls(R) real-valued a.e., s ∈ [1,∞], and derive a lower bound for the self-adjoint
Schrödinger operator H in (1.1) using the argument presented in [20, (3.5.30),
p. 155–156].

We start by recalling that q ∈ Ls(R), s ∈ [1,∞), implies that q is relatively form
compact with respect to the free Hamiltonian H0 in L2(R), where

H0f = −f ′′, f ∈ D(H0) = H2(R), (2.1)

with H`(R), ` ∈ [0,∞), the standard scale of Sobolev spaces. This follows from the
stronger statement that |q|1/2(H0 + I)−1/2 satisfies (see, e.g., [16, Theorem XI.20])

|q|1/2(H0 + I)−1/2 ∈ B2s

(
L2(R)

)
if q ∈ Ls(R), s ∈ [1,∞), (2.2)

where Bt(H) represent the `t(N)-based trace ideals of compact operators in the
complex, separable Hilbert space H. In particular,

|q|1/2(H0 + I)−1/2 is compact, (2.3)

and hence the form sum H of H0 and q is self-adjoint in L2(R) and bounded from
below. By a result of Hartman [12] and Rellich [17] (see also [11, Theorem 8.5.2]),
the boundedness from below of the minimal operator associated with the differential
expression −(d2/dx2) + q implies that the latter is in the limit point case at ±∞
and hence the maximal operator associated with −(d2/dx2) + q is self-adjoint in
L2(R), and thus necessarily coincides with H. It is clear that for s = ∞ the same
is true as q ∈ L∞(R) is a bounded perturbation of H0. Consequently, H is given
by

Hf = −f ′′ + qf,

f ∈ D(H) =
{
g ∈ L2(R)

∣∣ g, g′ ∈ ACloc(R); (−g′′ + qg) ∈ L2(R)
}
.

Property (2.3) then implies

σess(H) = σess(H0) = [0,∞), (2.4)

and hence it suffices to consider negative eigenvalues, which turn out to be simple
as −(d2/dx2)+ q is in the limit point case at ±∞. We consider an eigenvalue λ < 0
of H and denote the corresponding eigenfunction by fλ. From −f ′′λ + qfλ = λfλ
one concludes

fλ = −
(
− d2

dx2
− λ

)−1

qfλ

and using the corresponding Green’s function we obtain

‖fλ‖2 =
1

2
√
−λ
∥∥e−√−λ| · | ∗ qfλ∥∥2

≤ 1

2
√
−λ
∥∥e−√−λ| · |∥∥

t
‖qfλ‖t′ , (2.5)
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where Young’s inequality,1 with 1/t + 1/t′ = 1 + 1/2 was applied in the last step.
Hölder’s inequality then yields ‖qfλ‖t′ ≤ ‖q‖s‖fλ‖2 for 1/t′ = 1/s+1/2 and hence,

√
−λ ≤ 1

2

∥∥e−√−λ| · |∥∥
t
‖q‖s =

1

2

(
2

t
√
−λ

) 1
t

‖q‖s (2.6)

if t ∈ (1,∞), that is, s ∈ (1,∞). As 1/t = 1− 1/s it follows for s ∈ (1,∞) that

(−λ)
2s−1
2s ≤ 2−

1
s

(
s− 1

s

) s−1
s

‖q‖s

and hence

minσ(H) ≥ −2−
2

2s−1

(
s− 1

s

) 2(s−1)
2s−1

‖q‖
2s

2s−1
s for s ∈ (1,∞). (2.7)

It is easy to see that the lower bound (2.7) also remains valid for s = 1 (indeed,
inequality (2.5) and the first inequality in (2.6) apply with s = 1, t =∞, 1/t′ = 3/2)
in which case one obtains

minσ(H) ≥ −(1/4)‖q‖21, (2.8)

and obviously applies to s =∞, implying

minσ(H) ≥ −‖q‖∞. (2.9)

We mention that the bound (2.7) and (2.8) coincide with [5, Corollary 14.3.11 and
Corollary 14.3.12] and that the above argument also leads to bounds for Schrödinger
operators with complex potentials q ∈ Ls(R), s ∈ [1,∞) (see, in particular, [1] for
the case s = 1). In the context of Schrödinger operators with complex-valued
potentials we also refer, for instance, to [4], [7], [8], and [10].

Remark 2.1. We mention that Lieb–Thirring inequalities (see, e.g., [9], [14] and
the extensive literature cited therein) also lead to lower bounds of H. More

specifically, for s = 3/2 one can compare with the one-particle constant L
(1)
1 =

4
/[

33/2π
]

= 0.24503 in [9, Section 3.2]: The corresponding constant in (2.7) equals

2−13−1/2 = 0.28867. Historically, we note that Barnes, Brascamp, and Lieb [3] de-
rived a lower bound for the ground state energy of (multi-dimensional) Schrödinger
operators already in 1976.

3. Main results

Now we consider the general Sturm-Liouville differential expression

τ =
1

r

(
− d

dx
p

d

dx
+ q

)
(3.1)

on R with real-valued coefficients under the standard assumptions,

r, 1/p, q ∈ L1
loc(R), (3.2)

and we assume from now on that Hypothesis 3.1 below is satisfied. In the following
L1

u(R) denotes the normed space of uniformly locally integrable functions, that is,

L1
u(R) =

{
h ∈ L1

loc(R) : ‖h‖u <∞
}
, ‖h‖u = sup

n∈Z

∫ n+1

n

|h(t)| dt.

1Explicitly, ‖f ∗ g‖α ≤ ‖f‖β‖g‖γ , 1 ≤ α, β, γ ≤ ∞, 1 + α−1 = β−1 + γ−1.
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Hypothesis 3.1. The real coefficients p, q and r of τ satisfy the following:

(a) p(x) > 0 for a. a. x ∈ R and 1/p ∈ Lη(R) for some η ∈ [1,∞];
(b) q ∈ L1

u(R);
(c) r(x) > 0 for a. a. x ∈ R and there exist a, b ∈ R with a < b such that

ess inft∈R\[a,b] r(t) > 0. (3.3)

It is known that the differential expression τ is in the limit-point case at both
singular endpoints ±∞, and the corresponding maximal operator

Tf = τf =
1

r
(−(pf ′)′ + qf) ,

f ∈ D(T ) =
{
g ∈ L2

r(R)
∣∣ g, pg′ ∈ ACloc(R); τg ∈ L2

r(R)
}
,

is self-adjoint in the weighted L2-space L2
r(R) and semibounded from below; cf. [2,

Lemma A.2]. Our main goal is to derive estimates for the lower bound min σ(T ) of
T . For a nonnegative function g ∈ L∞(R) the set

Ωg := {x ∈ R | r(x)g(x) < 1}

and its Lebesgue measure µ(Ωg) will appear in the lower bound estimates in our
main results below. In the particular case 1/r ∈ L∞(R) one can choose g = 1/r and
hence Ωg becomes a Lebesgue null set, which leads to more explicit lower bound
estimates. We also mention that for any ε > 0 there exists a (constant) nonnegative
function gε ∈ L∞(R) such that µ(Ωgε) < ε; this follows from

lim
n→∞

µ({x ∈ R | r(x) < 1/n}) = µ

( ∞⋂
n=1

{x ∈ R | r(x) < 1/n}

)
= µ({x ∈ R | r(x) = 0}) = 0.

The first main result requires only minimal assumptions on the potential in
Hypothesis 3.1, that is, q ∈ L1

u(R), but we have to assume that 1/p ∈ L∞(R). We
shall denote the negative part of the potential q by q−.

Theorem 3.2. In addition to Hypothesis 3.1, assume that 1/p ∈ L∞(R), let

α = 2‖q−‖u + 4‖1/p‖∞‖q−‖2u and β = (4‖1/p‖∞α)
1/2

, (3.4)

and choose a nonnegative function g ∈ L∞(R) such that µ(Ωg)β < 1. Then

minσ(T ) ≥ −α‖g‖∞
1− µ(Ωg)β

and in the special case 1/r ∈ L∞(R) the choice g = 1/r implies µ(Ωg) = 0 and

minσ(T ) ≥ −
(
2‖q−‖u + 4‖1/p‖∞‖q−‖2u

)
‖1/r‖∞.

In the next result we consider the case q− ∈ Ls(R), s ∈ [1,∞], and 1/p ∈ L∞(R).

Theorem 3.3. In addition to Hypothesis 3.1, assume that 1/p ∈ L∞(R) and q− ∈
Ls(R) for some s ∈ [1,∞], let

α =

{
‖q−‖sβ

1
s if s ∈ [1,∞),

‖q−‖∞ if s =∞,
and β =

{
(4‖1/p‖∞‖q−‖s)

s
2s−1 if s ∈ [1,∞),

(4‖1/p‖∞‖q−‖∞)1/2 if s =∞,
(3.5)
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and choose a nonnegative function g ∈ L∞(R) such that µ(Ωg)β < 1. Then

minσ(T ) ≥ −α‖g‖∞
1− µ(Ωg)β

and in the special case 1/r ∈ L∞(R) the choice g = 1/r implies µ(Ωg) = 0 and

minσ(T ) ≥ −
(
4‖1/p‖∞

) 1
2s−1 ‖q−‖

2s
2s−1
s ‖1/r‖∞ if s ∈ [1,∞). (3.6)

If s =∞ we have

minσ(T ) ≥ −‖q−‖∞‖1/r‖∞.

Remark 3.4. The bounds in Theorem 3.3 above are not optimal. In fact, in the
special case p = r = 1 and q− ∈ Ls(R) for some s ∈ [1,∞) the bound in (3.6)
becomes

minσ(T ) ≥

−4‖q−‖21 if s = 1,

−2
2

2s−1 ‖q−‖
2s

2s−1
s if s ∈ (1,∞),

while (2.7) (or [5, Corollary 14.3.11 and Corollary 14.3.12]) show that

minσ(T ) ≥

−‖q‖
2
1

/
4 if s = 1,

−2−
2

2s−1
(
s−1
s

) 2(s−1)
2s−1 ‖q‖

2s
2s−1
s if s ∈ (1,∞).

(3.7)

�

In the following theorem we deal with q− ∈ Ls(R), s ∈ [1,∞], and 1/p ∈ Lη(R),
η ∈ [1,∞).

Theorem 3.5. In addition to Hypothesis 3.1, assume that 1/p ∈ Lη(R) for some
η ∈ [1,∞) and q− ∈ Ls(R) for some s ∈ [1,∞] such that η + s > 2 if s 6= ∞. Let
α be as in (3.5) and

β =


((

2η−1
η

)2

‖1/p‖η‖q−‖s
) ηs

2ηs−η−s
if s ∈ [1,∞),((

2η−1
η

)2

‖1/p‖η‖q−‖∞
) η

2η−1

if s =∞,
(3.8)

and choose a nonnegative function g ∈ L∞(R) such that µ(Ωg)β < 1. Then

minσ(T ) ≥ −α‖g‖∞
1− µ(Ωg)β

and in the special case 1/r ∈ L∞(R) the choice g = 1/r implies µ(Ωg) = 0 and

minσ(T ) ≥ −
((2η − 1

η

)2

‖1/p‖η
) η

2ηs−η−s ‖q−‖
2ηs−s

2ηs−η−s
s ‖1/r‖∞ if s ∈ [1,∞).

If s =∞ we have

minσ(T ) ≥ −‖q−‖∞‖1/r‖∞.

The following proposition provides a simple condition for nonnegativity of T .

Proposition 3.6. Suppose that Hypothesis 3.1 holds and assume that 1/p, q− ∈
L1(R). If ‖1/p‖1‖q−‖1 < 1 then minσ(T ) ≥ 0.
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Remark 3.7. If the coefficients p, q and r in Hypothesis 3.1 are restricted to
the half line (0,∞) and T+ denotes the self-adjoint realization of the (restricted)
differential expression τ in L2((0,∞)) with Dirichlet boundary conditions at the
regular endpoint 0, then the lower bound estimates above remain valid for T+. In
fact, the Dirichlet boundary condition at 0 ensures that the boundary term in the
integration by parts formula for f ∈ D(T+) vanishes and hence the proofs in the
next section (see, e.g. (4.4)) extend directly to the half line case.

4. Proofs

In this section we prove our main results. It will always be assumed that the
coefficients p, q, r satisfy Hypothesis 3.1. The first three items of the following useful
statement can be found, for instance, in [2, Lemma A.2]. The last item follows from
[2, Lemma A.1] and the first item.

Lemma 4.1. Assume Hypothesis 3.1, then the following assertions hold for all
f , g ∈ D(T ):

(i) f ,
√
pf ′ ∈ L2(R) and qf2 ∈ L1(R);

(ii) there exists a sequence (xn)n∈Z in R satisfying limn→∞ xn = ∞ and
limn→−∞ xn = −∞ such that lim|n|→∞ f(xn) = 0;

(iii) lim|x|→∞(pf ′)(x)g(x) = 0.
(iv) f ∈ L∞(R).

For our estimates of the lower bound of T it is convenient to reduce the consid-
erations to the set

D−(T ) := {f ∈ D(T ) | (Tf, f)r ≤ 0}, (4.1)

where (·, ·)r stands for the weighted inner product corresponding to L2
r(R). The

potential q is decomposed in its positive part q+ and negative part q−, i. e.

q = q+ − q−, where q+ :=
|q|+ q

2
and q− :=

|q| − q
2

. (4.2)

Lemma 4.2. Assuming Hypothesis 3.1, every function f ∈ D−(T ) satisfies

‖√pf ′‖22 ≤ ‖q−f2‖1 and ‖qf2‖1 ≤ 2‖q−f2‖1. (4.3)

Moreover, the inequality ‖q−f2‖1≤ ‖q+f
2‖1 implies ‖√pf ′‖2 = 0.

Proof. For f ∈ D−(T ) integration by parts together with Lemma 4.1 (i) and (iii)
yields

0 ≥ (Tf, f)r =

∫
R
p(t)|f ′(t)|2 dt+

∫
R
q(t)|f(t)|2 dt

= ‖√pf ′‖22 + ‖q+f
2‖1 − ‖q−f2‖1.

(4.4)

This implies ‖√pf ′‖22 ≤ ‖q−f2‖1 and ‖q+f
2‖1 ≤ ‖q−f2‖1. Therefore, with |q| =

q+ + q− we have

‖qf2‖1 = ‖q+f
2‖1 + ‖q−f2‖1 ≤ 2‖q−f2‖1.

If ‖q−f2‖1 ≤ ‖q+f
2‖1 holds, then (4.4) implies ‖√pf ′‖2 = 0. �

Lemma 4.3. In addition to Hypothesis 3.1, assume that there are constants α ≥ 0,
β ≥ 0 and a nonnegative function g ∈ L∞(R) such that

(i) ‖q−f2‖1 ≤ α‖f‖22 and ‖f‖2∞ ≤ β‖f‖22 for all f ∈ D−(T );
(ii) µ(Ωg)β < 1.
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Then one has

minσ(T ) ≥ −α‖g‖∞
1− µ(Ωg)β

. (4.5)

Proof. Let f ∈ D−(T ). Then one has

‖g‖∞(f, f)r = ‖g‖∞
∫
R
|f(t)|2r(t) dt ≥

∫
R
|f(t)|2r(t)g(t) dt

≥
∫
R\Ωg
|f(t)|2r(t)g(t) dt ≥ ‖f‖22 −

∫
Ωg

|f(t)|2 dt

≥ ‖f‖22 − µ(Ωg)‖f‖2∞ ≥
(
1− µ(Ωg)β

)
‖f‖22.

(4.6)

Further, we have by (4.4)

(Tf, f)r = ‖√pf ′‖22 + ‖q+f
2‖1 − ‖q−f2‖1 ≥ −‖q−f2‖1 ≥ −α‖f‖22.

This together with (4.6) yields

(Tf, f)r ≥ −
α‖g‖∞

1− µ(Ωg)β
(f, f)r. (4.7)

Obviously, the inequality in (4.7) holds also for f ∈ D(T ) \ D−(T ) and, thus, for
all f ∈ D(T ). This implies (4.5) �

Next we recall estimates on the L∞-norm of functions in D(T ) from [2].

Lemma 4.4. Assume Hypothesis 3.1. Then the following assertions hold for all
f ∈ D(T ).

(i) If 1/p ∈ Lη(R), where η ∈ [1,∞), then

‖f‖∞ ≤
(

2η − 1

η

√
‖1/p‖η‖

√
pf ′‖2

) η
2η−1

‖f‖
η−1
2η−1

2 . (4.8)

(ii) If 1/p ∈ L∞(R) then

‖f‖∞ ≤
(

2
√
‖1/p‖∞‖

√
pf ′‖2‖f‖2

)1/2

. (4.9)

Moreover, for every ε > 0 and all n ∈ Z one has

sup
t∈[n,n+1]

|f(t)|2 ≤ ε‖1/p‖∞
∫ n+1

n

p(t)|f ′(t)|2 dt+
(

1 +
1

ε

)∫ n+1

n

|f(t)|2 dt. (4.10)

Proof. The estimates (4.8) and (4.9) are proved in [2, Lemma 4.1]. For the con-
venience of the reader we verify the estimate (4.10), which is a variant of [19,
Lemma 9.32]. Let ε > 0 and n ∈ Z. Then for f ∈ D(T ) and x, y ∈ [n, n+ 1]

|f(x)|2 = |f(y)|2 + 2 Re

∫ x

y

f ′(t)f(t) dt.

By the mean value theorem we can choose y such that |f(y)|2 =
∫ n+1

n
|f(t)|2 dt.

Thus, by the Cauchy–Schwarz inequality and 2αβ ≤ α2 + β2 for α, β ∈ R we
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obtain

|f(x)|2 ≤
∫ n+1

n

|f(t)|2 dt

+ 2

(
1

ε

∫ n+1

n

|f(t)|2 dt

)1/2

·
(
‖1/p‖∞ε

∫ n+1

n

p(t)|f ′(t)|2 dt

)1/2

≤ ε‖1/p‖∞
∫ n+1

n

p(t)|f ′(t)|2 dt+
(

1 +
1

ε

)∫ n+1

n

|f(t)|2 dt,

which leads to (4.10). �

For the proofs of Theorems 3.2 – 3.5 it is no restriction to consider f ∈ D−(T ) \
{0} and to assume that q− is positive on a set of positive Lebesgue measure.

Proof of Theorem 3.2. Let 1/p ∈ L∞(R) and consider α, β as in (3.4). Choose
ε = (2‖q−‖u‖1/p‖∞)−1 > 0. The estimate in (4.10) of Lemma 4.4 yields

‖q−f2‖1 =

∫
R
q−(t)|f(t)|2 dt

≤ ‖q−‖u
∑
n∈Z

sup
t∈[n,n+1]

|f(t)|2

≤ ‖q−‖u
(
ε‖1/p‖∞‖

√
pf ′‖22 +

(
1 +

1

ε

)
‖f‖22

)

=
1

2
‖√pf ′‖22 +

(
‖q−‖u + 2‖1/p‖∞‖q−‖2u

)
‖f‖22

=
1

2
‖√pf ′‖22 +

α

2
‖f‖22.

(4.11)

Together with Lemma 4.2 we obtain

‖√pf ′‖22 = 2‖√pf ′‖22 − ‖
√
pf ′‖22 ≤ 2‖q−f2‖1 − ‖

√
pf ′‖22 ≤ α‖f‖22.

With (4.9) in Lemma 4.4 and (4.11) we see

‖f‖2∞ ≤ 2
√
‖1/p‖∞α‖f‖22 = β‖f‖22 and ‖q−f2‖1 ≤ α‖f‖22

and hence Lemma 4.3 leads to the statements in Theorem 3.2. �

Proof of Theorem 3.5. Suppose that 1/p ∈ Lη(R) and q− ∈ Ls(R), where η, s ∈
[1,∞) with η + s > 2. Since η + s > 2 we obtain

2ηs− η − s = η(s− 1) + s(η − 1) ≥ s− 1 + η − 1 > 0.
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Let α and β as in (3.5) and (3.8), respectively. From Hölder’s inequality we obtain

‖q−f2‖1 ≤ ‖f‖
2
s∞

∫
R
|q−(t)||f(t)|

2(s−1)
s dt

≤ ‖f‖
2
s∞

(∫
R
|q−(t)|s dt

) 1
s
(∫

R
|f(t)|2 dt

) s−1
s

= ‖q−‖s‖f‖
2
s∞‖f‖

2(s−1)
s

2 .

(4.12)

Thus, together with Lemma 4.4 (i) and Lemma 4.2 we obtain

‖f‖2∞ =

‖f‖ 2(2η−1)
η

∞

‖f‖
2
s∞


ηs

2ηs−η−s

≤


(

2η−1
η

)2

‖1/p‖η‖
√
pf ′‖22‖f‖

2(η−1)
η

2

‖f‖
2
s∞


ηs

2ηs−η−s

≤

((
2η − 1

η

)2

‖1/p‖η‖q−‖s

) ηs
2ηs−η−s

‖f‖22 = β‖f‖22.

The estimate from (4.12) yields

‖q−f2‖1 ≤ ‖q−‖sβ
1
s ‖f‖22 = α‖f‖22.

Now consider the case q− ∈ L∞(R). Choose α and β as in (3.5) and (3.8),
respectively. Observe that

‖q−f2‖1 ≤ ‖q−‖∞‖f‖22 = α‖f‖22. (4.13)

Lemma 4.4 (i) in combination with Lemma 4.2 and (4.13) leads to

‖f‖2∞ ≤

((
2η − 1

η

)2

‖1/p‖η‖
√
pf ′‖22

) η
2η−1

‖f‖
2(η−1)
2η−1

2

≤

((
2η − 1

η

)2

‖1/p‖η‖q−‖∞

) η
2η−1

‖f‖22 = β‖f‖22.

Now Theorem 3.5 follows from Lemma 4.3. �

Proof of Theorem 3.3. Consider first the case 1/p ∈ L∞(R) and q− ∈ Ls(R), where
s ∈ [1,∞). Let α and β be as in (3.5). Again Hölder’s inequality yields (4.12).
Lemma 4.4 (ii), (4.12) and Lemma 4.2 imply

‖f‖2∞ =

(
‖f‖4∞
‖f‖

2
s∞

) s
2s−1

≤

(
4‖1/p‖∞‖

√
pf ′‖22‖f‖22

‖f‖
2
s∞

) s
2s−1

≤ (4‖1/p‖∞‖q−‖s)
s

2s−1 ‖f‖22 = β‖f‖22.

By applying this to the estimate in (4.12) we arrive at

‖q−f2‖1 ≤ ‖q−‖sβ
1
s ‖f‖22 = α‖f‖22,

and again the statements in Theorem 3.3 follow from Lemma 4.3.



10 LOWER BOUNDS FOR SELF-ADJOINT STURM–LIOUVILLE OPERATORS

The assertion for 1/p, q− ∈ L∞(R) follows in a similar way. Consider α, β in
(3.5). As before (4.13) holds. Lemma 4.4 (ii) in combination with Lemma 4.2 and
(4.13) implies

‖f‖2∞ ≤ 2
√
‖1/p‖∞‖

√
pf ′‖2‖f‖2 ≤ 2

√
‖1/p‖∞‖q−‖∞‖f‖22 = β‖f‖22. �

Proof of Proposition 3.6. Let f ∈ D−(T ). In the case 1/p, q− ∈ L1(R) Lemma 4.2
and Lemma 4.4 (i) yield

‖f‖2∞ ≤ ‖1/p‖1‖
√
pf ′‖22 ≤ ‖1/p‖1‖q−f2‖1 ≤ ‖1/p‖1‖q−‖1‖f‖2∞.

If ‖1/p‖1‖q−‖1 < 1, then ‖f‖∞ = 0 and hence D−(T ) = {0}. This implies
(Tf, f)r ≥ 0 for all f ∈ D(T ) and hence min σ(T ) ≥ 0. �
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Verlag, Berlin, 1976.

[14] A. Laptev, Spectral inequalities for partial differential equations and their applications.

AMS/IP Stud. Adv. Math 51 (2012), 629–643.
[15] D. B. Pearson, Quantum Scattering and Spectral Theory, Academic Press, London, 1988.

[16] M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory,
Academic Press, New York, 1979.
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