MRT des Nervus opticus –
Referenzwerte bei Kindern und Jugendlichen
im Alter von 0 bis 18 Jahren

DISSERTATION

zur Erlangung des akademischen Grades
doctor medicinae
(Dr. med.)

vorgelegt dem Rat der Medizinischen Fakultät
der Friedrich-Schiller-Universität Jena

von Theresa Sophie Ahrens
geboren am 26.07.1994 in Saalfeld (Saale)
Gutachter:

1. Herr Prof. Dr. Hans-Joachim Mentzel, Jena
2. Herr Prof. Dr. Ulrich Brandl, Jena
3. Frau Prof. Dr. Diane M. Renz, Hannover

Tag der öffentlichen Verteidigung:

10. Oktober 2022
Inhaltsverzeichnis

Abkürzungsverzeichnis .. III
1 Zusammenfassung .. 1
2 Einleitung .. 3
 2.1 Anatomie des Nervus opticus .. 4
 2.2 Pathologien am Nervus opticus im Kindes- und Jugendalter ... 7
 2.2.1 Hypoplasie des Nervus opticus ... 7
 2.2.2 Kindliche Optikusatrophie ... 9
 4.3.3 Neuritis nervi optici ... 13
 2.3 Auswahl der geeigneten Bildgebung des Nervus opticus .. 13
 2.4 Literaturübersicht MR-tomographisch ermittelter Referenzwerte des Durchmessers des Nervus opticus .. 15
3 Ziele der Arbeit .. 17
4 Methodik .. 18
 4.1 Patientenauswahl .. 18
 4.1.1 Ausschlusskriterien ... 18
 4.1.2 Einschlusskriterien ... 19
 4.2 Verteilung des Studienkollektivs anhand klinischer und bildmorphologischer Merkmale 20
 4.3 MRT-Untersuchungen .. 23
 4.4 Durchführung der Messung .. 23
 4.5 Datenanalyse ... 26
5 Ergebnisse .. 27
 5.1 Einfluss der Hemisphäre auf den OND ... 28
 5.2 Einfluss des Geschlechts auf den OND ... 30
 5.3 Einfluss der Orientierung auf den OND .. 33
 5.4 Einfluss der Feldstärke auf den OND ... 36
 5.5 Ermittlung der Referenzwerte ... 37
 5.5.1 Ausschluss von Messpunkt (2) .. 37
 5.5.2 Ausschluss von Messpunkt (3) .. 38
 5.5.3 Referenzwerte für den Durchmessers des Nervus opticus an Messpunkt (1) 38
6 Diskussion ... 42
6.1 Beurteilung der Ergebnisse ... 42
6.2 Beurteilung der Methodik ... 51
 6.2.1 Limitationen des Studienkollektivs ... 51
 6.2.2 Limitationen der MRT-Untersuchungen .. 53
 6.2.3 Limitationen der Analysetechnik ... 55
7 Schlussfolgerungen ... 56
8 Literatur- und Quellenverzeichnis ... 58
9 Anhang ... 64
 Anhang A: Detaillierte Darstellung der jeweiligen Untergruppen der
 Kategorien Anamnese, Fragestellung und MR-Befund des
 Studienkollektivs .. 64
 Anhang B: Abbildungsverzeichnis .. 67
 Anhang C: Tabellenverzeichnis ... 68
 Anhang D: Danksagung ... 69
 Anhang E: Ehrenwörtliche Erklärung ... 70
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bzw.</td>
<td>Beziehungsweise</td>
</tr>
<tr>
<td>Ca.</td>
<td>Circa</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>DD</td>
<td>Differentialdiagnose</td>
</tr>
<tr>
<td>DOA</td>
<td>Dominant Optic Atrophy, Autosomal-dominante Optikusatrophie</td>
</tr>
<tr>
<td>HASTE</td>
<td>Half-Fourier Acquisition Single-Shot Turbo Spin Echo</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>J.</td>
<td>Jahre</td>
</tr>
<tr>
<td>LHON</td>
<td>Leber’s Hereditary Optic Neuropathy, Leber-Optikusatrophie</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MR-</td>
<td>Magnetresonanz-</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>NF1</td>
<td>Neurofibromatose Typ 1</td>
</tr>
<tr>
<td>NO</td>
<td>Nervus opticus</td>
</tr>
<tr>
<td>ON</td>
<td>Optikusneuritis</td>
</tr>
<tr>
<td>OND</td>
<td>Optic Nerve Diameter, Durchmesser des Nervus opticus</td>
</tr>
<tr>
<td>ONH</td>
<td>Optic Nerve Hypoplasia, Hypoplasie des Nervus opticus</td>
</tr>
<tr>
<td>ONS</td>
<td>Optic Nerve Sheath, Optikusnervenscheide</td>
</tr>
<tr>
<td>ONSD</td>
<td>Optic Nerve Sheath Diameter, Durchmesser der Optikusnervenscheide</td>
</tr>
<tr>
<td>p</td>
<td>lat. probabilitas = Wahrscheinlichkeit, p-Wert, Signifikanzwert</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Archiving and Communication System</td>
</tr>
<tr>
<td>RIS</td>
<td>Radiologie-Informations-System</td>
</tr>
<tr>
<td>SGA</td>
<td>Small for gestational age</td>
</tr>
<tr>
<td>SPACE</td>
<td>Sampling Perfection optimized Contrasts using different flip angle Evolutions</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>STIR</td>
<td>Short Tau Inversion Recovery</td>
</tr>
<tr>
<td>T</td>
<td>Tesla (Maßeinheit)</td>
</tr>
<tr>
<td>TSE</td>
<td>Turbo Spin Echo</td>
</tr>
<tr>
<td>Vs.</td>
<td>Versus</td>
</tr>
<tr>
<td>z.B.</td>
<td>Zum Beispiel</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentralnervensystem</td>
</tr>
</tbody>
</table>
1 Zusammenfassung

In dieser retrospektiven Studie wurden am Institut für Diagnostische und Interventionelle Radiologie des Universitätsklinikums Jena durchgeführte Routine-Schädel-MRT bei 1,5 T und 3,0 T von 164 Kindern und Jugendlichen (88 männlich, 76 weiblich) im Alter von 0-18 Jahren (Mittelwert 8,5 Jahre, Median 8,3 Jahre) analysiert. Dabei wurde der Durchmesser des Nervus opticus in der sagittalen und transversalen Orientierungsebene jeweils 3 mm und 10 mm posterior der Lamina cribrosa sclerae (Messpunkte 1 und 2) sowie unmittelbar vor Eintritt in das Chiasma opticum (Messpunkt 3) ermittelt. Der OND wurde ohne die umgebende Optikusnervenscheide vermessen. Genutzt wurde an entsprechend geeichten 2 K-Monitoren die Messfunktion des Picture Archiving and Communication Systems (PACS). Für die statistische Analyse der Messwerte im Programm IBM SPSS Statistics 25 fand eine Aufteilung der Patienten in fünf Altersgruppen statt (0-1 Jahr, 1-2 J., 2-6 J., 6-12 J., 12-18 J.). Für alle statistischen Tests wurde das Signifikanzniveau 1 % gewählt.
Initial wurde der Einfluss verschiedener Variablen (Hemisphäre, Geschlecht, Orientierungsebene, Feldstärke) auf die Maße des OND untersucht. Hierbei waren im Vergleich der medianen Durchmesser einzelne statistisch signifikante Unterschiede festzustellen. Bei der Analyse der Variable Hemisphäre wurde an Messpunkt 3 in der Altersgruppe 2-6 J. eine Differenz von 0,2 mm (p = 0,009) ermittelt. Im Vergleich beider Geschlechter ergab sich am Messpunkt 1 in der Altersgruppe 1-2 J. ein Unterschied von 0,4 mm (p = 0,008). Bei der Variable Orientierungsebene wurde an Messpunkt 3 in der Altersgruppe 2-6 J. eine Differenz von 0,5 mm (p = 0,000) und in der Altersgruppe 6-12 J. eine Differenz von 0,4 mm (p = 0,000) festgestellt. Diese Ergebnisse befanden sich im Größenbereich der Ungenauigkeit des Messmittels, welcher bei ≤ 0,5 mm liegt, und wurden daher als vernachlässigbar eingestuft. Eine Überschreitung dieses Größenbereichs wurde bei der Analyse der Orientierungsebenen an Messpunkt 3 in der Altersgruppe 12-18 J. mit einer Differenz von 0,9 mm (p = 0,000) errechnet.

2 Einleitung

2.1 Anatomie des Nervus opticus

Obwohl der NO paarig angelegt ist, wird er im Folgenden nur im Singular erwähnt. Gemeint sind immer beide NO.

Der NO ist der II. Hirnnerv und verbindet als Teil der Sehbahn die Retina mit dem Chiasma opticum. Von dort ausgehend gelangen optische Reize über den Tractus opticus, das Corpus geniculatum laterale und die Radiatio optica schließlich in den visuellen Kortex. So werden visuelle Informationen empfangen, weitergeleitet und letztendlich verarbeitet. Neuroanatomen schätzen, dass die Axone des NO 38% aller das zentralnervöse System ein- und austretender Axone ausmachen (Selhorst und Chen 2009). Während seines Verlaufs vom Augapfel (Bulbus oculi) zum Gehirn erreicht der NO bei Erwachsenen eine Länge von ca. 40 – 50 mm und lässt sich in vier anatomische Segmente einteilen: intraokulär (1 – 2 mm), intraorbital (25 mm), intraossär/intrakanalikulär (10 mm) und intrakranial (3 – 16 mm) (Rizzo 2005) (siehe Abbildung 1).
Abbildung 1: Die vier anatomischen Segmente und die arterielle Versorgung des Nervus opticus (Privat)

Der intraokuläre Anteil formt sich aus konvergierenden Axonen der retinalen Ganglienzellen, welche ca. 4 mm nasal der Fovea centralis die Papilla nervi optici bilden. Hier verlässt der NO den Bulbus oculi durch Passieren der Lamina cribrosa sclerae, ein siebförmiges Gewebeareal der Sklera am hinteren Pol des Augapfels. Von der Papille bis ca. 3 mm hinter dem Bulbus oculi verlaufen in der Mitte des NO die Arteria und Vena centralis retinae und verlassen ihn dort wieder (Selhorst und Chen 2009) (siehe Abbildung 2).
Abbildung 2: Austritt des Nervus opticus an der Papilla nervi optici (Privat)

Der gesamte intraorbitale und intraossäre NO wird von Oligodendrozyten myelinisiert und in Pia und Dura mater eingehüllt, die einen röhrenförmigen, mit Liquor cerebrospinalis ausgefüllten Subarachnoidalraum einschließen, welcher als Optikusscheide (Optic Nerve Sheath, ONS) bezeichnet wird (siehe Abbildung 2). Diese Hüllen und dieser Raum sind eine Erweiterung der entsprechenden intrakraniellen Strukturen und kommunizieren miteinander. Aufgrund dieser Kommunikation vergrößert sich bei steigendem Liquordruck auch der Durchmesser der ONS, was in experimentellen und klinischen Studien bewiesen werden konnte (Hansen und Helmke 1996, Körber et al. 2005, Geeraerts et al. 2007). Somit ist der
Einleitung

Nach Verlassen des Canalis opticus setzt sich der NO als intrakranielles Segment fort, bevor er sich mit dem gegenüberliegenden NO trifft und über dem Diaphragma sellae das flache, X-förmige Chiasma formt. Die gesamte Blutversorgung des NO wird von der Arteria ophthalmica, dem ersten Ast der Arteria carotis interna, gewährleistet (siehe Abbildung 1).

Der mittels MRT sichtbare Beginn des NO liegt somit posterior der Lamina cribrosa sclerae, das Ende unmittelbar vor Eintritt in das Chiasma opticum. Diese Landmarken waren Grundlage für die Festlegung der Messpunkte der vorliegenden Studie. Zusätzlich wurde ein Messpunkt im Verlauf des NO gewählt (siehe Kapitel 4.4).

2.2 Pathologien am Nervus opticus im Kindes- und Jugendalter

2.2.1 Hypoplasie des Nervus opticus

Die ONH ist eine nicht-progressive, kongenitale Anomalie, die mit einer verminderten Anzahl von Axonen im NO einhergeht (Mosier et al. 1978). Einst als seltener, isoliert angeborener Defekt geltend, ist sie heute in der westlichen Welt eine der Hauptursachen für Sehminderung im Kindesalter (Lambert et al. 1987,

2.2.2 Kindliche Optikusatrophie

2.2.2.1 Gehirntumoren

Tumoren des NO sind selten. Aufgrund der histologisch analogen Zusammensetzung des Nervs mit der von Hirngewebe ist auch das ihn betreffende Spektrum an Tumoren identisch (Wichmann und Müller-Forell 2004). So betreffen

Optikusgliom

Meningeom der Optikusnervenscheide

2.2.2.2 Hereditäre Optikusneuropathien

Autosomal-dominante Optikusatrophie

Leber-Optikusatrophie

Myokloni berichtet, was als LHON-plus-Syndrom bezeichnet wird (Yu-Wai-Man et al. 2011).

4.3.3 Neuritis nervi optici

2.3 Auswahl der geeigneten Bildgebung des Nervus opticus

Zur Darstellung des Sehnervs können verschiedene bildgebende Verfahren zum Einsatz kommen. Die transbulbare Sonographie hat sich mittels Ausmessen des ONSD zur Verifizierung eines erhöhten Hirndrucks etabliert, nachdem zahlreiche experimentelle und klinische Studien eine Zunahme des ONSD mit steigendem

Zwar ist die CT für die Darstellung der Orbita eine der am häufigsten genutzten bildgebenden Verfahren, jedoch lassen sich hiermit vor allem knöcherne Strukturen gut abbilden, was in der Traumadiagnostik eine große Rolle spielt (Smith und Strottmann 2001). Zudem kommt die CT wegen der ionisierenden Strahlung und damit verbundener Risiken stochastischer Strahlenschäden in der Kinderheilkunde nur bei Notfällen und bei speziellen Indikationen präoperativ zum Einsatz.

2 Einleitung

2015), was optimale Voraussetzungen für die Abgrenzung des Sehnervs von dessen Scheide bedeutet.

2.4 Literaturübersicht MR-tomographisch ermittelter Referenzwerte des Durchmessers des Nervus opticus

Die Ergebnisse vergleichbarer Messpunkte sind farbig hinterlegt (3 mm posterior der Lamina cribrosa sclerae, 7 mm bzw. 10 mm posterior der Lamina cribrosa sclerae sowie prächiasmal).

*Für diese Studien sind für eine übersichtliche Darstellung ausschließlich die Werte des rechten OND angegeben, da in den Studien kein Mittelwert beider Seiten ermittelt wurde.

<table>
<thead>
<tr>
<th>Anzahl Patienten</th>
<th>Sequenz</th>
<th>Schichtdicke (mm)</th>
<th>Feldstärke (Tesla)</th>
<th>Spule</th>
<th>Alter (Jahre)</th>
<th>MW (mm)</th>
<th>SD (mm)</th>
</tr>
</thead>
</table>
3 Ziele der Arbeit

Das Ziel der vorliegenden Arbeit war es, anhand von Standard-MRT-Untersuchungen Referenzwerte für den Durchmesser des Nervus opticus bei Kindern und Jugendlichen von 0 – 18 Jahren zu bestimmen. Dafür wurden folgende Hypothesen formuliert:

(1) Der OND nimmt bei Kindern und Jugendlichen mit dem Lebensalter zu.
(2) Die größte Zunahme findet in den ersten Lebensjahren statt, da sich das gesamte Gehirn in dieser Zeit aufgrund von Myelinisierung und Anstieg des Volumens am meisten verändert.
(3) Im Geschlechter- und Seitenvergleich existiert kein Unterschied des OND.

Als weiteres Ziel galt es, anhand von Routine-MRT-Untersuchungen des Neurokraniums eine standardisierte und reproduzierbare Messmethode für die Bestimmung des OND zu finden, die valide Ergebnisse liefert und deren Resultate mit der Literatur vergleichbar sind. Dabei wurde überprüft, ob bei der Vermessung des NO in den genannten Routine-Untersuchungen belastbare Ergebnisse erhoben werden können oder ob dafür spezielle Sequenzen erforderlich sind.

Bisher basiert die Beurteilung der Größe des NO auf der Erfahrung und Expertise des untersuchenden Radiologen, darum verfolgt diese Studie zusätzlich das Ziel, eine möglichst einfache, objektive, untersucherunabhängige Befundung zu ermöglichen.
4 Methodik

4.1 Patientenauswahl

4.1.1 Ausschlusskriterien

Zum Ausschluss führten maligne zerebrale Neoplasien aktuell oder in der Anamnese, Läsionen am NO sowie Ischämien, Hämorrhagien oder Atrophien entlang der optischen Leitungsbahnen. Um ausgeprägte globale zerebrale
Pathologien mit möglichen Einfluss auf die Struktur des NO zu vermeiden, wurden zusätzlich Patienten mit Mikro-/Makrozephalie und unreifer Myelinisierung ausgeschlossen. Bei vorliegenden benignen Tumoren des ZNS ohne räumlichen Bezug zum NO kam es nicht zum Ausschluss. MRT-Untersuchungen, bei denen die vorliegenden Sequenzen eine zuverlässige Messung aufgrund von Bewegungsartefakten oder unzureichender Darstellung des NO in seinem Verlauf unmöglich machten, wurden ebenfalls ausgeschlossen.

4.1.2 Einschlusskriterien

Abbildung 3 zu entnehmen.

609 Untersuchungen initial

156 Untersuchungen wurden nicht berücksichtigt, weil für das jeweilige Alter der Patienten bereits genügend Untersuchungen vorlagen.

60 Untersuchungen waren Verlaufsbildgebungen von identischen Patienten.

37 Untersuchungen wiesen maligne zerebrale Neoplasien oder Zustand nach Tumorexstirpation in der Anamnese auf.

24 Untersuchungen zeigten Affektionen des visuellen Systems.

10 Untersuchungen zeigten ausgeprägte globale zerebrale Pathologien.

115 Untersuchungen wiesen Artefakte und/oder unzureichende Erkennbarkeit des NO auf.

Bei 43 Untersuchungen lag keine 3 mm dicke Schicht oder T2-Sequenz vor.

164 Untersuchungen final

4.2 Verteilung des Studienkollektivs anhand klinischer und bildmorphologischer Merkmale

In Bezug auf die Anamnese bildeten neurologisch auffällige Patienten mit einem Anteil von 39 % die größte Gruppe. Darauf folgten Patienten mit Schädelhirntrauma (13 %), Patienten mit Psychischen- und Verhaltensstörungen (10 %), sowie Patienten mit Entwicklungsverzögerung und/oder Gedeihstörung (9 %).

Bei ca. zwei Drittel der eingeschlossenen Patienten (65 %) wurden MRT mit der Frage nach einer Raumforderung oder Strukturstörung durchgeführt. Bei ca. einem Viertel der Patienten (24%) stand die Suche nach einer Vaskulopathie im Vordergrund. Kleinere Gruppen wiesen mit einem Anteil von 6 % die Fragestellung nach einer Pseudoatrophie vor, mit einem Anteil von 4 % eine Fokussuche und 1 % der Bildgebungen fanden praoperativ statt (vor jeweils einem orthopädischen Eingriff und vor einer Knochenmarkstransplantation).

Die Variabilität des Patientenguts anhand von Anamnese, Fragestellung und MR-Befund ist in Abbildung 4 – 6 dargestellt. Für eine detaillierte Übersicht zu den einzelnen Gruppen siehe Anhang A.

Abbildung 5: Aufteilung der Patienten anhand der Fragestellung an die Bildgebung. Die Gruppe „Präoperativ“ beinhaltet: vor Knochenmarktransplantation, vor orthopädischem Eingriff.

4.3 MRT-Untersuchungen

In dieser Studie eingeflossene MR-tomographische Untersuchungen wurden an sechs verschiedenen Geräten (Magnetom Vida, Sola, Prisma, Avanto, Skyra und Aera) der Firma Siemens Healthineers (Erlangen, Deutschland) bei 1,5 oder 3,0 Tesla mit dedizierter Schädelspule durchgeführt. Ausgewertet wurden sagittale und transversale T2-wichtende TSE Sequenzen des Neurokraniums mit folgenden Parametern: FOV 160 x 127 mm – 270 x 220 mm, Messmatrix 230 x 223 mm – 512 x 512 mm, TR (Repetitionszeit) 3100 – 9630 ms, TE (Echo-Zeit) 80 – 141 ms, Schichtdicke ≤ 3 mm, Schichtabstand 10 %, Messzeit ca. 3 Minuten.

4.4 Durchführung der Messung

Die Vermessung des Nervus opticus wurde von der Verfasserin in Zusammenarbeit mit einem erfahrenen Kinderradiologen im Konsens durchgeführt. Zur besseren Vergleichbarkeit der Ergebnisse fand eine Anlehnung an bereits durchgeführte Studien zum Thema (siehe Kapitel 2.4) statt und es wurden folgende Messpunkte festgelegt:
(1) 3 mm posterior der Lamina cribrosa sclerae
(2) 10 mm posterior der Lamina cribrosa sclerae
(3) 3 mm vor Eintritt in das Chiasma opticum.

Die Messungen wurden an einem hochauflösenden Befundungsmonitor unter Verwendung des PACS durchgeführt. Nachdem der Schnitt mit dem größten Durchmesser des NO aufgesucht wurde, erfolgte zuerst die Ermittlung der Messpunkte (1) und (2) mithilfe des in den PACS-Funktionen auswählbaren Werkzeugs “Lineal“. Die Bestimmung von Messpunkt (3) erfolgte individuell je nach Beschaffenheit der zerebralen Strukturen 3 mm vor dem Chiasma. Anschließend wurde mit demselben Werkzeug der Durchmesser des NO an den Punkten (1), (2) und (3) ohne umgebende Nervenscheide erfasst, welche sich durch ihren stark hyperintensen Liquorsaum von dem hypointensen NO abgrenzen ließ. Nach dorsal hin verschmälernt sich dieser Liquorsaum, so dass an Messpunkt (3) die Optikusscheide zumeist nicht mehr abgegrenzt werden konnte. Aufgrund des leicht gewundenen Verlaufs des NO wurde der komplette Nerv regelhaft nicht in einem einzigen Schnitt erfasst, so dass die Messungen an mehreren aufeinanderfolgenden Schnitten stattfinden mussten. Die Abbildung 7 – 9 zeigen beispielhaft die Durchführung der Messungen.

Abbildung 7: Ausschnitt einer sagittalen, T2-gewichteten MRT des Schädels einer 3,7-jährigen Patientin. Zu sehen sind Messpunkte (1) und (2) jeweils 3 und 10 mm posterior der Lamina cribrosa sclerae mit den zugehörigen Angaben des OND an dieser Stelle.
Abbildung 8: Ausschnitt einer sagittalen, T2-gewichteten MRT des Schädels eines 9-jährigen Patienten.
Zu sehen ist Messpunkt (3) 3 mm vor Eintritt des NO in das Chiasma opticum mit der Angabe des OND an dieser Stelle.

Abbildung 9: Ausschnitt einer transversalen, T2-gewichteten MRT des Schädels einer 6,5-jährigen Patientin.
Zu sehen sind Messpunkte (1), (2) und (3) jeweils 3 und 10 mm posterior der Lamina cribrosa sclerae sowie 3 mm vor Eintritt des NO in das Chiasma opticum. Die dazugehörigen Werte in cm sind die jeweiligen OND an den Messpunkten.
Die Messungen wurden jeweils für das rechte und linke Auge einzeln durchgeführt und erfolgten sowohl in der sagittalen als auch in der transversalen Orientierungsebene. Das führte zu insgesamt 1968 Messwerten, von denen 151 (7,6 %) aufgrund einer unzureichenden Erkennbarkeit des NO an der festgelegten Stelle nicht bestimmt werden konnten. Somit blieb eine Anzahl von 1817 (92,3 %) verwendbaren Messwerten.

4.5 Datenanalyse

5 Ergebnisse

Das Ziel dieser Studie war es, lokoregional Referenzwerte für den OND in der Altersgruppe 0 – 18 Jahre anhand von MRT-Datensätzen zu ermitteln. Dafür wurde das Studienkollektiv der vorliegenden MRT-Datensätze zunächst in Orientierung an bereits vorliegende Referenzwertstudien (siehe Kapitel 2.4) in verschiedene Altersgruppen aufgeteilt. In die Gruppen wurden die Kinder und Jugendlichen entsprechend des vollendeten Lebensjahres eingeschlossen (z.B. in Gruppe I alle Neugeborenen und Säuglinge bis zum vollendeten ersten Lebensjahr). Eine Übersicht zu dieser Einteilung zeigt Tabelle 2. Anschließend erfolgte eine Analyse auf statistisch signifikante Unterschiede mehrerer Variablen innerhalb einer Altersgruppe, wie der untersuchten Körpereite (rechte vs. linke Hemisphäre), dem Geschlecht (männlich vs. weiblich), der Orientierungsebene der Bildgebung (sagittal vs. transversal) und der Feldstärke (1,5 T vs. 3,0 T). Die Berechnung der gesuchten Referenzwerte fand schließlich an dem Messpunkt statt, der die geringsten Schwankungen innerhalb der Gruppen aufwies (Messpunkt (1)).

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Alter (Jahre)</th>
<th>Anzahl Patienten</th>
<th>Aufteilung nach Geschlecht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Männlich</td>
</tr>
<tr>
<td>I</td>
<td>0 – 1</td>
<td>11</td>
<td>8 (73 %)</td>
</tr>
<tr>
<td>II</td>
<td>1 – 2</td>
<td>12</td>
<td>8 (67 %)</td>
</tr>
<tr>
<td>III</td>
<td>2 – 6</td>
<td>37</td>
<td>19 (51 %)</td>
</tr>
<tr>
<td>IV</td>
<td>6 – 12</td>
<td>52</td>
<td>33 (64 %)</td>
</tr>
<tr>
<td>V</td>
<td>12 – 18</td>
<td>52</td>
<td>20 (39 %)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>0 – 18</td>
<td>164</td>
<td>88 (54 %)</td>
</tr>
</tbody>
</table>

Tabelle 2: Aufteilung der Patienten in fünf Altersgruppen
5.1 Einfluss der Hemisphäre auf den OND

Zunächst wurde mit Hilfe eines Wilcoxon-Tests für zwei verbundene Stichproben untersucht, ob an den drei Messpunkten ein Unterschied des OND zwischen der rechten und linken Hemisphäre zu verzeichnen war (siehe Tabelle 3 – 5).

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>H</th>
<th>Messpunkt (1)</th>
<th>N</th>
<th>MW (mm)</th>
<th>M (mm)</th>
<th>SD (mm)</th>
<th>IQ (mm)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>R</td>
<td>21</td>
<td>1,7</td>
<td>1,6</td>
<td>0,3</td>
<td>0,6</td>
<td>0,526</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>22</td>
<td>1,7</td>
<td>1,7</td>
<td>0,3</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>R</td>
<td>24</td>
<td>2,2</td>
<td>2,1</td>
<td>0,5</td>
<td>0,7</td>
<td>0,050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>24</td>
<td>2,3</td>
<td>2,2</td>
<td>0,4</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>R</td>
<td>66</td>
<td>2,5</td>
<td>2,5</td>
<td>0,4</td>
<td>0,4</td>
<td>0,110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>65</td>
<td>2,5</td>
<td>2,5</td>
<td>0,4</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>R</td>
<td>96</td>
<td>2,8</td>
<td>2,8</td>
<td>0,4</td>
<td>0,4</td>
<td>0,349</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>96</td>
<td>2,8</td>
<td>2,8</td>
<td>0,4</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>R</td>
<td>99</td>
<td>3,0</td>
<td>3,0</td>
<td>0,5</td>
<td>0,6</td>
<td>0,205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>99</td>
<td>3,0</td>
<td>3,0</td>
<td>0,5</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Vergleich der OND beider Hemisphären an Messpunkt (1) – 3 mm posterior der Lamina cribrosa sclerae.
H = Hemisphäre der Patienten, R = Rechts, L = Links, N = Anzahl Messwerte, MW = Mittelwert des OND, M = Median des OND, SD = Standardabweichung, IQ = Interquartilbereich, p = p-Wert.

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>H</th>
<th>Messpunkt (2)</th>
<th>N</th>
<th>MW (mm)</th>
<th>M (mm)</th>
<th>SD (mm)</th>
<th>IQ (mm)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>R</td>
<td>18</td>
<td>1,7</td>
<td>1,7</td>
<td>0,4</td>
<td>0,7</td>
<td>0,437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>18</td>
<td>1,6</td>
<td>1,7</td>
<td>0,4</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>R</td>
<td>22</td>
<td>2,1</td>
<td>2,0</td>
<td>0,4</td>
<td>0,5</td>
<td>0,223</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>22</td>
<td>2,2</td>
<td>2,2</td>
<td>0,4</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>R</td>
<td>64</td>
<td>2,3</td>
<td>2,3</td>
<td>0,3</td>
<td>0,5</td>
<td>0,060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>64</td>
<td>2,4</td>
<td>2,4</td>
<td>0,4</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>R</td>
<td>92</td>
<td>2,7</td>
<td>2,7</td>
<td>0,4</td>
<td>0,6</td>
<td>0,049</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>92</td>
<td>2,7</td>
<td>2,7</td>
<td>0,4</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>R</td>
<td>98</td>
<td>2,9</td>
<td>3,0</td>
<td>0,5</td>
<td>0,6</td>
<td>0,677</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>98</td>
<td>2,9</td>
<td>3,0</td>
<td>0,5</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4: Vergleich der OND beider Hemisphären an Messpunkt (2) – 10 mm posterior der Lamina cribrosa sclerae.
H = Hemisphäre der Patienten, R = Rechts, L = Links, N = Anzahl Messwerte, MW = Mittelwert des OND, M = Median des OND, SD = Standardabweichung, IQ = Interquartilbereich, p = p-Wert.
<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>H</th>
<th>Messpunkt (3)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>MW (mm)</td>
<td>M (mm)</td>
<td>SD (mm)</td>
<td>IQ (mm)</td>
<td>p</td>
</tr>
<tr>
<td>I</td>
<td>R</td>
<td>22</td>
<td>2,1</td>
<td>2,1</td>
<td>0,3</td>
<td>0,4</td>
<td>0,199</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>22</td>
<td>2,2</td>
<td>2,1</td>
<td>0,3</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>R</td>
<td>24</td>
<td>2,5</td>
<td>2,4</td>
<td>0,4</td>
<td>0,6</td>
<td>0,439</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>24</td>
<td>2,5</td>
<td>2,5</td>
<td>0,4</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>R</td>
<td>65</td>
<td>2,7</td>
<td>2,6</td>
<td>0,4</td>
<td>0,5</td>
<td>0,009</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>65</td>
<td>2,8</td>
<td>2,8</td>
<td>0,4</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>R</td>
<td>95</td>
<td>3,0</td>
<td>3,0</td>
<td>0,4</td>
<td>0,6</td>
<td>0,074</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>95</td>
<td>3,1</td>
<td>3,0</td>
<td>0,5</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>R</td>
<td>99</td>
<td>3,2</td>
<td>3,1</td>
<td>0,5</td>
<td>0,7</td>
<td>0,246</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>99</td>
<td>3,2</td>
<td>3,2</td>
<td>0,6</td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5: Vergleich der OND beider Hemisphären an Messpunkt (3) – 3 mm vor Eintritt in das Chiasma opticum.

H = Hemisphäre der Patienten, R = Rechts, L = Links, N = Anzahl Messwerte, MW = Mittelwert des OND, M = Median des OND, SD = Standardabweichung, IQ = Interquartilbereich, p = p-Wert (fett markiert ist der statistisch signifikante Unterschied).

An einer Position (Messpunkt (3), Altersgruppe III) wurde ein statistisch signifikanter Unterschied des OND im Vergleich der rechten und linken Hemisphäre ermittelt. Bei Analyse der absoluten Zahlen der Mediane fiel auf, dass die Messwertdifferenz mit 0,2 mm sehr gering ist und damit im Bereich der zu erwartenden Messungenaugkeit liegt. Abweichungen in dieser Größenordnung sind vernachlässigbar, da die nominelle MRT-Auflösung der in dieser Studie ausgewerteten Bilddaten ca. 0,5 mm beträgt, was bedeutet, dass eine Genauigkeit im Submillimeterbereich physikalisch nicht gegeben ist. Da eine auf ganze Zahlen beschränkte Angabe bei einer derart geringen Bandbreite der Messwerte (minimal 0,7 mm bis maximal 5,0 mm) zu ungenau wäre, wurden die Angaben trotz der vorliegenden Messungenaugkeit auf eine Dezimalstelle hinter dem Komma gerundet. Diese Skalierung verhält sich analog zu dem im PACS genutzten Werkzeug „Lineal“ (siehe Kapitel 4.4) und ist somit praktikabler für die klinische Anwendung.

Da die p-Werte an den restlichen Messpunkten (außer an dem zuvor genannten Messpunkt (3) in Altersgruppe III) > 0,01 und somit statistisch nicht signifikant sind, wurde unter Einbeziehung der zuvor genannten Begründung von einer Seitengleichheit des Durchmessers des NO ausgegangen. Der Boxplot in Abbildung 10 bestätigt diese Tatsache. Sowohl die Mediane als auch die dem Interquartilsabstand entsprechenden Längen der Boxen stellen sich nahezu identisch dar.
Abbildung 10: Verteilung der Messwerte an den drei Messpunkten jeweils nach Hemisphäre (Altersgruppen-unabhängig)

Aufgrund der Seitengleichheit wurden die nachfolgenden Berechnungen und die Referenzwertermittlung mit dem Mittelwert des Durchmessers von rechtem und linkem NO fortgeführt.

5.2 Einfluss des Geschlechts auf den OND

Mittels eines Mann-Whitney-U-Tests für zwei unabhängige Stichproben wurde im nächsten Schritt auf Unterschiede des OND zwischen beiden Geschlechtern geprüft (siehe Tabelle 6 – 8).
Tabelle 6: Vergleich des OND zwischen beiden Geschlechtern an Messpunkt (1) – 3 mm posterior der Lamina cribrosa sclerae.

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>G</th>
<th>MW (mm)</th>
<th>M (mm)</th>
<th>SD (mm)</th>
<th>IQ (mm)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>M</td>
<td>1,7</td>
<td>1,6</td>
<td>0,3</td>
<td>0,6</td>
<td>0,618</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1,9</td>
<td>1,9</td>
<td>0,2</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>M</td>
<td>2,4</td>
<td>2,3</td>
<td>0,4</td>
<td>0,6</td>
<td>0,008</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1,9</td>
<td>1,9</td>
<td>0,3</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>M</td>
<td>2,5</td>
<td>2,5</td>
<td>0,3</td>
<td>0,4</td>
<td>0,783</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>2,5</td>
<td>2,6</td>
<td>0,3</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>M</td>
<td>2,8</td>
<td>2,8</td>
<td>0,4</td>
<td>0,5</td>
<td>0,852</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>2,8</td>
<td>2,9</td>
<td>0,4</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>M</td>
<td>2,9</td>
<td>3,0</td>
<td>0,4</td>
<td>0,6</td>
<td>0,122</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>3,0</td>
<td>3,0</td>
<td>0,5</td>
<td>0,7</td>
<td></td>
</tr>
</tbody>
</table>

G = Geschlecht der Patienten, M = männlich, W = weiblich, N = Anzahl Messwerte, MW = Mittelwert des Durchmessers, M = Median des Durchmessers, SD = Standardabweichung, IQ = Interquartilbereich, p = p-Wert (fett markiert ist der statistisch signifikante Unterschied).

Tabelle 7: Vergleich des OND zwischen beiden Geschlechtern an Messpunkt (2) – 10 mm posterior der Lamina cribrosa sclerae.

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>G</th>
<th>MW (mm)</th>
<th>M (mm)</th>
<th>SD (mm)</th>
<th>IQ (mm)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>M</td>
<td>1,6</td>
<td>1,6</td>
<td>0,4</td>
<td>0,6</td>
<td>0,791</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1,8</td>
<td>1,8</td>
<td>0,4</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>M</td>
<td>2,3</td>
<td>2,2</td>
<td>0,4</td>
<td>0,7</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>2,0</td>
<td>2,0</td>
<td>0,3</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>M</td>
<td>2,4</td>
<td>2,4</td>
<td>0,3</td>
<td>0,3</td>
<td>0,845</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>2,4</td>
<td>2,4</td>
<td>0,3</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>M</td>
<td>2,7</td>
<td>2,7</td>
<td>0,4</td>
<td>0,5</td>
<td>0,834</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>2,7</td>
<td>2,7</td>
<td>0,4</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>M</td>
<td>2,8</td>
<td>2,8</td>
<td>0,4</td>
<td>0,6</td>
<td>0,041</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>3,0</td>
<td>3,0</td>
<td>0,4</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

G = Geschlecht der Patienten, M = männlich, W = weiblich, N = Anzahl Messwerte, MW = Mittelwert des Durchmessers, M = Median des Durchmessers, SD = Standardabweichung, IQ = Interquartilbereich, p = p-Wert.
<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>G</th>
<th>N</th>
<th>MW (mm)</th>
<th>M (mm)</th>
<th>SD (mm)</th>
<th>IQ (mm)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>M</td>
<td>16</td>
<td>2,1</td>
<td>2,1</td>
<td>0,4</td>
<td>0,5</td>
<td>0,267</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>6</td>
<td>2,3</td>
<td>2,2</td>
<td>0,3</td>
<td>0,3</td>
<td>0,025</td>
</tr>
<tr>
<td>II</td>
<td>M</td>
<td>16</td>
<td>2,6</td>
<td>2,6</td>
<td>0,4</td>
<td>0,5</td>
<td>0,859</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>8</td>
<td>2,3</td>
<td>2,2</td>
<td>0,3</td>
<td>0,3</td>
<td>0,744</td>
</tr>
<tr>
<td>III</td>
<td>M</td>
<td>33</td>
<td>2,7</td>
<td>2,7</td>
<td>0,3</td>
<td>0,4</td>
<td>0,641</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>32</td>
<td>2,7</td>
<td>2,7</td>
<td>0,4</td>
<td>0,5</td>
<td>0,641</td>
</tr>
<tr>
<td>IV</td>
<td>M</td>
<td>61</td>
<td>3,1</td>
<td>3,1</td>
<td>0,4</td>
<td>0,6</td>
<td>0,641</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>34</td>
<td>3,0</td>
<td>3,0</td>
<td>0,4</td>
<td>0,6</td>
<td>0,641</td>
</tr>
<tr>
<td>V</td>
<td>M</td>
<td>39</td>
<td>3,2</td>
<td>3,2</td>
<td>0,6</td>
<td>1,0</td>
<td>0,641</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>60</td>
<td>3,2</td>
<td>3,1</td>
<td>0,5</td>
<td>0,8</td>
<td>0,641</td>
</tr>
</tbody>
</table>

Tabelle 8: Vergleich des OND zwischen beiden Geschlechtern an Messpunkt (3) – 3 mm vor Eintritt in das Chiasma opticum.

Aus diesen Gründen wurde der ermittelte statistisch signifikante Unterschied als klinisch nicht relevant eingeschätzt und nachfolgend nicht weiter berücksichtigt. Analog zur Untersuchung des Einflusses der Hemisphäre sind bei der Analyse des Einflusses des Geschlechts die Boxen des Boxplots in Abbildung 11 nahezu identisch konfiguriert.
5.3 Einfluss der Orientierung auf den OND

Anschließend wurde mittels eines Mann-Whitney-U-Tests für zwei unabhängige Stichproben untersucht, ob zwischen Messungen in der Transversal- und Sagittalebene Unterschiede im OND bestehen (siehe Tabelle 9 – 11).
Ergebnisse

Tabelle 9: Vergleich des OND in Abhängigkeit der Orientierung an Messpunkt (1) – 3 mm posterior der Lamina cribrosa sclerae.

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>E</th>
<th>N</th>
<th>MW (mm)</th>
<th>M (mm)</th>
<th>SD (mm)</th>
<th>IQ (mm)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>S</td>
<td>11</td>
<td>1,7</td>
<td>1,9</td>
<td>0,2</td>
<td>0,3</td>
<td>0,457</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>10</td>
<td>1,7</td>
<td>1,5</td>
<td>0,4</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>S</td>
<td>12</td>
<td>2,3</td>
<td>2,2</td>
<td>0,4</td>
<td>0,5</td>
<td>0,817</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>12</td>
<td>2,2</td>
<td>2,2</td>
<td>0,5</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>S</td>
<td>37</td>
<td>2,5</td>
<td>2,6</td>
<td>0,4</td>
<td>0,5</td>
<td>0,528</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>28</td>
<td>2,5</td>
<td>2,5</td>
<td>0,3</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>S</td>
<td>51</td>
<td>2,9</td>
<td>2,8</td>
<td>0,4</td>
<td>0,5</td>
<td>0,659</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>45</td>
<td>2,8</td>
<td>2,8</td>
<td>0,3</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>S</td>
<td>51</td>
<td>2,9</td>
<td>2,8</td>
<td>0,5</td>
<td>0,7</td>
<td>0,026</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>48</td>
<td>3,1</td>
<td>3,1</td>
<td>0,4</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10: Vergleich des OND in Abhängigkeit der Orientierung an Messpunkt (2) – 10 mm posterior der Lamina cribrosa sclerae.

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>E</th>
<th>N</th>
<th>MW (mm)</th>
<th>M (mm)</th>
<th>SD (mm)</th>
<th>IQ (mm)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>S</td>
<td>9</td>
<td>1,6</td>
<td>1,4</td>
<td>0,4</td>
<td>0,7</td>
<td>0,267</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>8</td>
<td>1,7</td>
<td>1,8</td>
<td>0,3</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>S</td>
<td>10</td>
<td>2,2</td>
<td>2,1</td>
<td>0,3</td>
<td>0,2</td>
<td>0,817</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>12</td>
<td>2,2</td>
<td>2,0</td>
<td>0,5</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>S</td>
<td>37</td>
<td>2,3</td>
<td>2,4</td>
<td>0,3</td>
<td>0,4</td>
<td>0,897</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>27</td>
<td>2,4</td>
<td>2,4</td>
<td>0,3</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>S</td>
<td>48</td>
<td>2,7</td>
<td>2,7</td>
<td>0,4</td>
<td>0,6</td>
<td>0,218</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>44</td>
<td>2,6</td>
<td>2,6</td>
<td>0,4</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>S</td>
<td>50</td>
<td>2,9</td>
<td>2,8</td>
<td>0,4</td>
<td>0,6</td>
<td>0,165</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>48</td>
<td>3,0</td>
<td>3,0</td>
<td>0,4</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

An Messpunkt (3) finden sich in den Altersgruppen III, IV und V signifikante Unterschiede mit p-Werten p < 0,01. Dabei liegen die Differenzen der Mediane in zwei von drei Fällen der Größenordnung der Messgenauigkeit des Messmittels (Altersgruppe III: 3,0 mm – 2,5 mm = 0,5 mm, Altersgruppe IV: 3,3 mm – 1,9 mm = 0,4 mm) analog zu Kapitel 5.1 und 5.2. In Altersgruppe V errechnet sich jedoch bei Analyse der Mediane eine Differenz von 0,9 mm (3,7 mm – 2,8 mm), bisher die größte Abweichung zweier verglichen veränderlicher Variablen, welche zudem den Bereich der Ungenauigkeit des Messmittels überschreitet. Zur graphischen Darstellung dieses Sachverhalts dient der Boxplot in Abbildung 12, in dem die Variabilität des Messpunktes (3) anhand der verschiedenen hohen Boxen sowie dem deutlich höheren Median in transversalen Messungen verdeutlicht wird.
5.4 Einfluss der Feldstärke auf den OND

In der vorliegenden Arbeit wurden an sechs verschiedenen MRT-Geräten erzeugte Schnittbilder untersucht, welche jeweils bei einer Feldstärke 1,5 T oder 3,0 T aufgenommen wurden und in ungleichmäßiger Aufteilung im Studienkollektiv zur Anwendung kamen (56 x 1,5 T; 108 x 3,0 T). Aus diesem Grund ist die Frage nach einem Unterschied zwischen beiden Größen interessant. Dieser wurde Altersgruppen-unabhängig mittels Mann-Whitney-U-Test am Messpunkt 3 mm posterior der Lamina cribrosa sclerae geprüft und führte zu einem p-Wert von 0,162, welcher für einen statistisch nicht signifikanten Unterschied spricht. Dabei beträgt der Median bei 1,5 T Geräten 2,8 mm mit einem Interquartilbereich von 0,5 mm. Bei 3,0 T Geräten beträgt der Median 2,7 mm mit einem Interquartilbereich von 0,6 mm.
5.5 Ermittlung der Referenzwerte

5.5.1 Ausschluss von Messpunkt (2)

<table>
<thead>
<tr>
<th>Messpunkt (1)</th>
<th>Messpunkt (2)</th>
<th>Messpunkt (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>61</td>
<td>46</td>
</tr>
</tbody>
</table>

Tabelle 12: Anzahl fehlender Messwerte (N = 151).

Insgesamt sollten 1968 Messwerte in die Analyse einfließen. 151 konnten aufgrund unzureichender Erkennbarkeit des NO an der festgelegten Stelle nicht erhoben werden. Es blieb eine Anzahl von 1817 verwendbaren Messpunkten.

Unterteilt man die Anzahl fehlender Messwerte (Positionen, an denen keine Messung vorgenommen werden konnte) je nach Messpunkt, wird deutlich, dass die Bestimmung des OND vor allem an Messpunkt (2) Schwierigkeiten bereitete. Hier konnten 61 Messwerte nicht ermittelt werden. Messpunkt (2) befindet sich 10 mm posterior der Lamina cribrosa sclerae und ist aufgrund des leicht gewundenen Verlaufs des NO sowohl in sagittalen als auch in transversalen Schnitten besonders schwierig zu vermessen, da in den in dieser Studie untersuchten zweidimensionalen Schnittbildverfahren eine orthograde Messung einer schräg verlaufenden Struktur nicht ausreichend möglich war. Somit wurde der NO an Messpunkt (2) nicht parallel, sondern in nicht definierten Winkeln und stets variabel getroffen. Dies mindert die Reliabilität dieses Messpunktes, so dass er als ungeeignet eingeschätzt und für die Angabe von Referenzwerten ausgeschlossen wurde.
5.5.2 Ausschluss von Messpunkt (3)

5.5.3 Referenzwerte für den Durchmessers des Nervus opticus an Messpunkt (1)

Da sich Messpunkt (1) nach den vorliegenden Untersuchungen als am verlässlichsten zu ermittelnder Messpunkt herausstellte, wurde diese Position für die Erhebung der gesuchten Referenzwerte gewählt. Dort fand sich nur in der Analyse der Variable Geschlecht ein statistisch signifikanter Unterschied in einer Altersgruppe, welcher als klinisch nicht relevant eingeschätzt wurde (siehe Kapitel 5.2). Zudem gelang während der Durchführung der Messungen die beste Differenzierung von Nerv und Nervenscheide 3 mm posterior der Lamina cribrosa sclerae.

Die folgenden Abbildungen 13 und 14 stellen die Korrelationen zwischen dem Alter der Patienten und der Größe des OND dar. Die statistische Berechnung des Korrelationskoeffizienten nach Pearson ergab mit 0,466 (p-Wert = 0,000) in sagittaler und 0,685 (p-Wert = 0,000) in transversaler Orientierungsebene einen stark positiven Zusammenhang. Dabei sind die steilsten Anstiege der mittels Kernregression ermittelten Graphen bis zum sechsten Lebensjahr zu verzeichnen, was für die stärkste Größenzunahme des OND im Alter von 0 – 6 Jahren spricht. Danach stellt sich in sagittalen Messungen ein Plateau ein, während in transversalen Messungen eine weitere steile Zunahme des OND ab dem 13./14. Lebensjahr zu beobachten ist.
5 Ergebnisse

Abbildung 13: Korrelation von Alter und OND 3 mm posterior der Lamina cribrosa sclerae in sagittaler Orientierungsebene.

Abbildung 14: Korrelation von Alter und OND 3 mm posterior der Lamina cribrosa sclerae in transversaler Orientierungsebene.

Zusätzlich wurden mittels linearer Regression Gleichungen ermittelt, die die Bestimmung des OND abhängig vom Patientenalter ermöglichen sollen (siehe Abbildung 15 und Abbildung 16). Für die sagittale Orientierungsebene lautet diese Formel \(y = 2,28 + (0,05 \times \text{Alter in Jahren}) \), für die transversale Orientierungsebene \(y = 2,1 + (0,07 \times \text{Alter in Jahren}) \). Dabei betrug das Gütemaß \(R^2 \) der linearen Regression für die sagittale Orientierungsebene 0,217 und für die transversale...
0,469. Dies sprach in beiden Fällen gegen einen linearen Zusammenhang von Patientenalter und OND und bestätigte, dass die ermittelten Formeln nicht geeignet sind, den OND vorauszusagen.

Abbildung 15: Lineare Regressionsanalyse für den in sagittaler Orientierungsebene bestimmten OND. Die Gleichung ermöglicht die Berechnung des OND abhängig vom Alter (= x).

Abbildung 16: Lineare Regressionsanalyse für den in transversaler Orientierungsebene bestimmten OND. Die Gleichung ermöglicht die Berechnung des OND abhängig vom Alter (= x).
6 Diskussion

In der vorliegenden Studie konnte eine positive Korrelation des Durchmessers des Nervus opticus mit dem Patientenalter dargestellt werden. Der OND zeigte die stärkste Zunahme bis zu einem Alter von sechs Jahren. Im Geschlechter- und Seitenvergleich sowie im Vergleich der beiden Orientierungsebenen sagittal und transversal fanden sich teilweise statistisch signifikante Unterschiede. Als verlässlichster Messpunkt erwies sich die Position 3 mm posterior der Lamina cribrosa sclerae.

6.1 Beurteilung der Ergebnisse

Die Retina und die Papilla nervi optici sind mittels Ophthalmoskopie und Optischer Kohärenztomographie beim Lebenden nicht-invasiv gut beurteilbar, gleichwohl bleiben große Teile des NO unzugänglich (Hoch et al. 2017). Dennoch reicht allein das Wissen über die Größe der Papille für einige Erkrankungen am Sehnerv diagnostisch aus, so zum Beispiel bei der ONH, einer der häufigsten Gründe für angeborene Sehschwäche von Kindern der westlichen Welt (siehe Kapitel 2.2.1).
Hierfür wird ein horizontaler und vertikaler Papillendurchmesser von jeweils 1,4 – 1,5 mm angegeben (Beuchat und Safran 1985).

der Hemisphäre auf den OND berichtete, welcher eine seitentrennte Anwendung von Referenzwerten notwendig machen würde. Die klinische Relevanz der in der vorliegenden Studie ermittelten statistischen Signifikanz ist zudem sehr kritisch zu hinterfragen, da die Differenz von 0,2 mm in der Größenordnung der Ungenauigkeit des Messmittels liegt (siehe Kapitel 5.1). Aus diesem Grund wurde die ermittelte Abweichung vernachlässigt und analog zu den zuvor genannten Studien von einer Seitengleichheit des OND ausgegangen.

Für die Analyse des Einflusses der in der vorliegenden Arbeit untersuchten Orientierungsebenen der MRT-Sequenz (transversal und sagittal) konnte kein exakter Vergleich mit bereits publizierten Referenzwerten durchgeführt werden. Obwohl der Sehnerv in beiden Ebenen schräg verläuft (siehe Kapitel 2.1), wurde in den bisher herangezogenen Vergleichsstudien am häufigsten in der transversalen Orientierungsebene gemessen. Diese kristallisierte sich während der
Literaturrecherche für die Beurteilung des Nervus opticus als am häufigsten verwendete Ebene heraus.

In der vorliegenden Studie wies die transversale Ebene Limitationen an Messpunkt (3) auf. Bereits während der Messungen ließ sich vermuten, dass die OND in transversalen Schnitten an Messpunkt (3) höhere Werte annehmen, da eine Abgrenzung von Axonen des NO und der Optikusscheide oft nicht möglich war. Eine exakte Differenzierung der Nervenscheide vom Nerv ist in der T2-wichtenden Sequenz nur möglich, wenn sich dazwischen etwas Liquorflüssigkeit befindet, die aufgrund ihres hohen Signals im Vergleich zu Nerv und Scheide einfach zu diagnostizieren ist. In der statistischen Analyse wurde der höhere Wert bei transversaler Messung mit signifikanten Unterschieden (p = 0,000) in drei Altersgruppen bestätigt. Dabei betrugen die Differenzen der Medianen 0,5 mm, 0,4 mm und 0,9 mm, wobei zumindest der letzte Wert nicht mehr innerhalb der Größenordnung der Ungenauigkeit des Messmittels liegt. Damit konnte an Messpunkt (3) ein Einfluss der gewählten Orientierungsebene auf den Durchmesser des Nervus opticus bewiesen werden. Um den Störfaktor dieser Variable zu reduzieren, wurde Messpunkt (3) schließlich für die Bestimmung der Referenzwerte ausgeschlossen.

Fiegler (2009) bestimmte einen OND von 2,62 mm in der Altersgruppe 0 – 2 Jahre, während wir jeweils 1,9 mm (sagittal) und 1,5 mm (transversal) für 0- bis 1-Jährige sowie 2,2 mm (sagittal und transversal) für 1- bis 2-jährige Kinder ermittelten, was deutlich darunter liegt. Auch in der Altersgruppe 2 – 6 Jahre zeigte sich dieser Trend. Bei Fiegler (2009) lag der Wert bei 2,87 mm, in der vorliegenden Studie wurden am selben Messort Werte von 2,6 mm (sagittal) und 2,5 mm (transversal) ermittelt. In der Altersgruppe 6 – 12 Jahre hingegen war ein größerer OND in unseren Messungen zu verzeichnen (Fiegler (2009) – 2,46 mm, vorliegende Studie – 2,8 mm

Bei dem Vergleich unserer Studienergebnisse mit denen von Al-Haddad et al. (2018) fanden sich in unserer Arbeit durchweg höhere Messwerte. Der Mittelwert für den OND der Gruppen 0 – 0,5 Jahre und 0,5 – 2 Jahre aus der Studie von Al-Haddad et al. (2018) betrug 1,69 mm, für die vorliegenden Studie errechnete sich für die beiden Gruppen 0 – 1 Jahr sowie 1 – 2 Jahre ein durchschnittlicher Wert von 2,1 mm (sagittal) und 1,9 mm (transversal). Für die Gruppe 2 – 6 Jahre waren es bei Al-Haddad et al. (2018) 2,2 mm, in der vorliegenden Studie 2,6 mm (sagittal) und 2,5 mm (transversal). Unterschiede fanden sich ebenso für die Gruppe 6 – 12 Jahre (Al-Haddad et al. (2018) – 2,26 mm, vorliegende Studie – 2,8 mm (sagittal und transversal)) und die Altersgruppe 12 – 18 Jahre (Al-Haddad et al. (2018) = 2,35 mm, vorliegende Studie = 2,8 mm (sagittal) und 3,1 mm (transversal)). Die Methodik beider Studien war hingegen ähnlich. Bei Al-Haddad et al. (2018) wurden 2 mm dicke Schichten zweidimensionaler STIR-Sequenzen des Schädels und der Orbita von 211 Patienten ausgewertet, in der vorliegenden Studie waren es 2 – 3 mm dicke Schichten zweidimensionaler, T2-wichtender TSE-Sequenzen des
Schädel von 164 Patienten. Auch die Ein- und Ausschlusskriterien beider Studien stimmten überein. Somit bleibt eine Erklärung für die durchweg höheren Werte unserer Messungen offen. Bei Inkludierung der Standardabweichungen überschneiden sich in allen genannten Fällen die Messwerte, was jedoch für die präzise Beurteilung einer so kleinen Struktur wie dem NO als nicht exakt genug eingeschätzt wurde.

6.2 Beurteilung der Methodik

Zwar lässt sich im Vergleich mit anderen Studien eine gute Übereinstimmung der Ergebnisse finden, jedoch ist die Aussagekraft der ermittelten Referenzwerte kritisch zu hinterfragen. Grund dafür sind die Limitationen, die die vorliegende Studie aufweist und die im Folgenden diskutiert werden sollen.

6.2.1 Limitationen des Studienkollektivs

6.2.2 Limitationen der MRT-Untersuchungen

Im Untersuchungszeitraum der vorliegenden Studie fanden wenige explizite Orbita-MRT statt (n = 15), von denen ein Großteil der Befunde komplexe Pathologien des NO aufwies (n = 14), so dass nur eine in die Analyse eingeschlossen werden konnte.

Aufgrund des retrospektiven Designs der vorliegenden Studie konnten lediglich zweidimensionale Routine-Schädel-MRT zur Ausmessung des OND herangezogen werden. Diese sind für exakte Messungen des in der Augenhöhle schräg
Diskussion

verlaufenden Nervus opticus nicht ausreichend gut geeignet, stellen aber einen Kompromiss dar. 2D-Datensätze bieten mit geringerem Zeitaufwand zumindest eine Abschätzung des OND und wären bei entsprechender Fragestellung und Auffälligkeit um 3D-Sequenzen zu ergänzen. Diese können nach der Aufnahme so verarbeitet und angepasst werden, dass die Abbildungsebene schräg und damit parallel zum NO verläuft.

Die genannte Studie von Lenhart et al. (2014) lieferte eine lineare Formel für den unteren Cut-Off-Wert hypoplastischer Nervi optici: 2,24 mm + (0,0523 x Alter in Jahren). Diese Formel ist nahezu identisch der errechneten linearen Gleichungen des Zusammenhangs von Alter und OND im Studienkollektiv der vorliegenden Arbeit (sagittal: 2,28 + (0,05 x Alter in Jahren), transversal: y = 2,1 + (0,07 x Alter in Jahren)). Die Validität aller genannten Gleichungen ist jedoch kritisch zu hinterfragen, da die altersabhängige Dickenzunahme des NO nicht-linear erfolgt. Dieser Sachverhalt ist in Abbildung 15 und Abbildung 16 (siehe Kapitel 5.5.3) graphisch dargestellt. Das Gütemaß R² der linearen Regression bestätigte, dass die aus den Messwerten der vorliegenden Studie ermittelten Gleichungen nicht geeignet sind, den OND altersabhängig vorauszusagen. Dasselbe ist theoretisch für die Messungen von Lenhart et al. (2014) zu erwarten. Auch bei beispielhaftem Einsetzen verschiedener Patientenalter wird dies bestätigt. Für 1-Jährige ergibt sich anhand der Formel von Lenhart et al. (2014) ein OND von 2,3 mm als unterer Cut-off-Wert. Dies entspricht nicht den in der vorliegenden Studie ermittelten
Referenzwerten, nach denen bei gesunden 1-Jährigen ein OND von 1,9 mm (sagittal) bzw. 1,5 mm (transversal) zu erwarten wäre. Für den unteren Cut-Off-Wert hypoplastischer Nervi optici (= 3. Perzentile) dieser Altersgruppe wurden in unserer Studie 1,4 mm (sagittal) bzw. 1,3 mm (transversal) berechnet. Auch bei älteren Patienten lässt sich die Formel nicht anwenden, da sich für 10-Jährige ein unterer Cut-off-Wert von 2,8 mm errechnet, was dem in der vorliegenden Studie ermittelten Referenzwert gesunder Patienten dieses Alters in sagittaler und transversaler Orientierungsebene entspricht. Anhand unserer Messungen wäre in dieser Altersgruppe ein hypoplastischer OND bereits bei 2,1 mm (sagittal) bzw. 2,4 mm (transversal) zu erwarten.

6.2.3 Limitationen der Analysentechnik

Da die nominelle Auflösung in der vorliegenden Studie ausgewerteter MRT ca. 0,5 mm beträgt, wurden bei der Bewertung der Ergebnisse statistische Signifikanz teilweise als nicht klinisch relevant eingeschätzt und vernachlässigt. Dies betraf Vergleiche mit Differenzen der absoluten Zahlen im Größenbereich 0,0 mm bis 0,5 mm („Größenbereich der Ungenauigkeit des Messmittels“) (siehe Kapitel 5). Diese Ungenauigkeit veranlasste außerdem, die ermittelten Referenzwerte nicht wie in Vergleichsstudien mit zwei, sondern mit nur einer Dezimalstelle anzugeben. Nach Anwendung der Rechnung für die nominelle Auflösung (FOV-Dimensionen geteilt durch entsprechende Matrixgrößen) für die Parameter der Vergleichsstudien wies diejenige von Maresky et al. (2018) lediglich eine Auflösung von maximal 1 mm auf. Deren publizierten Referenzwerte im Submillimeterbereich erfordern somit ein kritisches Infrage stellen.

7 Schlussfolgerungen

Zur Bestimmung exakter MR-tomographischer Referenzwerte für den OND bei Kindern und Jugendlichen ist die Durchführung einer weiteren Studie denkbar. Hierfür ergeben sich nach Analyse der Limitationen der vorliegenden Arbeit folgende Empfehlungen:

1. Dreidimensionalität, um eine orthogonale Vermessung des NO zu ermöglichen.
2. Anwendung einer Orbitaspule, um eine hohe Ortsauflösung zu erreichen.
3. Optimaler Kontrast für die Differenzierung von NO und ONS (z.B. T2-Wichtung).
am NO zu erwarten sind (negative Anamnese für Konditionen mit potenzieller Erhöhung des intrakraniellen Drucks; keine Einschränkungen des Sehvermögens; keine Läsionen, Neoplasien, Ischämien, Hämorrhagien oder Atrophien entlang der optischen Leitungsbahnen; keine global zerebralen Pathologien).
(7) Großzügiger Ausschluss von Schnittbildern, die keine exakte Messung des NO an der festgelegten Position ermöglichen.

8 Literatur- und Quellenverzeichnis

Anhang A: Detaillierte Darstellung der jeweiligen Untergruppen der Kategorien Anamnese, Fragestellung und MR-Befund des Studienkollektivs

<table>
<thead>
<tr>
<th>Anamnese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurologisch auffällig (n = 64)</td>
</tr>
<tr>
<td>Epilepsie, einmaliges fokales/ generalisiertes Krampfereignis, EEG-Auffälligkeit, vermehrtes Schlaufbedürfnis, Wesensveränderung, Konzentrationsschwäche, Kopfschmerz, Nausea, Nüchternerbrechen, Anosmie, Augenmotilitätsstörungen, verschwommenes Sehen, Doppelbilder, Nystagmus, hochgradige Schwerhörigkeit, generalisierte muskuläre Hypertonie, periphere Sensibilitätsstörungen, Störung der Grob- und Feinmotorik, Tremor, Gangataxie, stärkste Schmerzen in HWS/BWS</td>
</tr>
<tr>
<td>Schädel-Hirn-Trauma (n = 21)</td>
</tr>
<tr>
<td>Häusliche Kindeswohlgefährdung, Verkehrsunfälle, Fensterstürze</td>
</tr>
<tr>
<td>Psychische und Verhaltensstörungen (n = 17)</td>
</tr>
<tr>
<td>Anorexia nervosa, Verhaltensauffälligkeiten im Sinne eines ADHS, Depression, Akute Psychose, Angststörung</td>
</tr>
<tr>
<td>Entwicklungsverzögerung und/oder Gedeihstörung (n = 15)</td>
</tr>
<tr>
<td>Andere (n = 11)</td>
</tr>
<tr>
<td>Anhang 65</td>
</tr>
<tr>
<td>-----------</td>
</tr>
</tbody>
</table>
| **Vaskulopathie (n = 8)** | Sinusvenenthrombose, Kavernome, Hämorrhagie, Vena-Galeni-Malformation, hochgradige ACI-Stenose, zarter Sinus transversus mit Umgehungskreisläufen
| **Neurokutane Syndrome (n = 8)** | Tuberöse Sklerose, Neurofibromatose Typ I
| **Infektionserkrankung (n = 7)** | Meningitis, Enzephalitis, septischer Schock mit Fokus im Sinus maxillaris, Fieber ohne Fokus
| **Zustand nach Asphyxie (n = 7)** | perinatal, Ertrinkungsunfall, St.n. Reanimation
| **Ossäre Pathologien (n = 6)** | Kraniosynostosen, entzündlich bedingte ossäre Läsionen, Schädeldeformität bei Dauertransfusionsprogramm

Fragestellung

| Raumforderung/Strukturstörung (n = 106) | Hydrozephalus, Verlaufskontrolle Arachnoidal- und Pinealiszysten/ Tuberöse Sklerose/ Schädeldeformität/ subdurales Empyem/ intrakranieller Abzess, Fokussuche Epilepsie, morphologisches Korrelat für klinische Beschwerden
| **Vaskulopathie (n = 40)** | Blutung, intrakranielle Traumafolgen, Ischämie, Sinusvenenthrombose, hypoxische Schäden
| **Pseudoatrophie (n = 10)** |
| **Fokussuche (n = 6)** | Bei Fieber, Auffälligkeiten bei Enzephalitis/ Meningitis
| **Präoperativ (n = 2)** | Vor Knochenmarktransplantation, vor orthopädischem Eingriff

MRT-Befund

| Ohne Auffälligkeit (n = 58) |
| **Marklagerauffälligkeiten (n = 39)** | Myelinisierungsdefizit, diffuse ödematöse Veränderung im Mesencephalon/ Hirnstamm/ Thalamus, Gliose, niedriggradiges Gliom ohne Hinweis auf Malignität, periventrikuläre

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterotopien, pathologischer Laktatpeak, multiple supratentorielle</td>
<td>Hamartome/Tubera bei tuberöser Sklerose, subependymale Riesenzellastrozytome, unspezifische Signalalteration frontales Marklager/ im Thalamus/ mesencephal/ in Basalganglien/ cerebellär, multiple rundliche T2w/FLAIR-Signalanhebungen, Regredienz der kortikalen und subkortikalen Veränderungen im Rahmen des PRES, bekannte FASI infra-und supratentoriell bei Neurofibromatose Typ 1</td>
</tr>
<tr>
<td>Vaskulopathie (n = 28)</td>
<td>Subduralhämatom, Kopfschwartenhämatom, (Pro-/Regredienz der) Kontusionsblutung, Sinusvenenthrombose (mit Thrombusresiduen), Vena-Galeni-Malformation, Kavernome, zarter Sinus transversus mit venösen Umgehungskreisläufen, Hämosiderinablagerung, frische punktförmige Ischämie, multiple disseminierte zerebrale und zerebelläre Hämorrhagien</td>
</tr>
<tr>
<td>Anderes (n = 17)</td>
<td>Lipome (am Conus, rostral des Mesencephalon), osteogene Defekte (Kalottendefekt, entzündliche ossäre Raumforderung, Trigonocephalus, knöcherner Defekt der dorsalen Lamina cribrosa sclerae rechts mit Prolaps von Hirnparenchymanteilen und Liquorleck, ungleichmäßige Verdickung der Kalotte DD Speicherkrankheit), Größenkonstanz der bekannten Raumforderung DD Epidermoid, subdurales Empyem, Kleinhirnatrophie, unklare Signalalteration Hypophyse DD Blutung DD Adenom DD Verkalkung, verdickt imponierender Nervus trigeminus und Nervus oculomotorius DD entzündlich, Bulbus-olfactorius-Aplasie</td>
</tr>
<tr>
<td>Zysten (n = 12)</td>
<td>Pinealiszysten, Arachnoidalzysten, infratentorielle zystische Malformationen</td>
</tr>
<tr>
<td>Auffälligkeiten der Liquorräume (n = 10)</td>
<td>Benigne erweiterte innere/äußere Liquorräume ohne Hinweis auf akute Liquorzirkulationsstörung, Megacisterna magna, auffällige zystoide Konfiguration des Plexus choroideus</td>
</tr>
</tbody>
</table>
Anhang B: Abbildungsverzeichnis

Abbildung 1: Die vier anatomischen Segmente und die arterielle Versorgung des Nervus opticus (Kristien Ahrens, 2021) ... 5
Abbildung 2: Austritt des Nervus opticus an der Papilla nervi optici (Kristien Ahrens, 2021) .. 6
Abbildung 3: Prozess der Patientenselektion ... 20
Abbildung 4: Aufteilung der Patienten anhand der Anamnese .. 22
Abbildung 5: Aufteilung der Patienten anhand der Fragestellung an die Bildgebung ... 22
Abbildung 6: Aufteilung der Patienten anhand des MR-Befundes ... 23
Abbildung 7: Ausschnitt einer sagittalen, T2-gewichteten MRT des Schädels einer 3,7-jährigen Patientin ... 24
Abbildung 8: Ausschnitt einer sagittalen, T2-gewichteten MRT des Schädels eines 9-jährigen Patienten ... 25
Abbildung 9: Ausschnitt einer transversalen, T2-gewichteten MRT des Schädels einer 6,5-jährigen Patientin ... 25
Abbildung 10: Verteilung der Messwerte an den drei Messpunkten jeweils nach Hemisphäre (Altersgruppen-unabhängig)... 30
Abbildung 11: Verteilung der Messwerte an den drei Messpunkten jeweils nach Geschlecht (Altersgruppen-unabhängig) ... 33
Abbildung 12: Verteilung der Messwerte an den drei Messpunkten jeweils nach der Orientierungsebene (Altersgruppen-unabhängig) ... 36
Abbildung 13: Korrelation von Alter und OND 3 mm post. der Lamina cribrosa sclerae in sagittaler Orientierungsebene ... 40
Abbildung 14: Korrelation von Alter und OND 3 mm post. der Lamina cribrosa sclerae in transversaler Orientierungsebene ... 40
Abbildung 15: Lineare Regressionsanalyse für den in sagittaler Orientierungsebene bestimmten OND ... 41
Abbildung 16: Lineare Regressionsanalyse für den in transversaler Orientierungsebene bestimmten OND ... 41
Anhang C: Tabellenverzeichnis

Tabelle 1: Literaturübersicht MR-tomographisch ermittelter Referenzwerte des Nervus opticus bei Kindern und Jugendlichen ... 16
Tabelle 2: Aufteilung der Patienten in fünf Altersgruppen .. 27
Tabelle 3: Vergleich der OND beider Hemisphären an Messpunkt (1) – 3 mm posterior der Lamina cribrosa sclerae ... 28
Tabelle 4: Vergleich der OND beider Hemisphären an Messpunkt (2) – 10 mm posterior der Lamina cribrosa sclerae ... 28
Tabelle 5: Vergleich der OND beider Hemisphären an Messpunkt (3) – 3 mm vor Eintritt in das Chiasma opticum ... 29
Tabelle 6: Vergleich des OND zwischen beiden Geschlechtern an Messpunkt (1) – 3 mm posterior der Lamina cribrosa sclerae ... 31
Tabelle 7: Vergleich des OND zwischen beiden Geschlechtern an Messpunkt (2) – 10 mm posterior der Lamina cribrosa sclerae ... 31
Tabelle 8: Vergleich des OND zwischen beiden Geschlechtern an Messpunkt (3) – 3 mm vor Eintritt in das Chiasma opticum ... 32
Tabelle 9: Vergleich des OND in Abhängigkeit der Orientierung an Messpunkt (1) – 3 mm posterior der Lamina cribrosa sclerae ... 34
Tabelle 10: Vergleich des OND in Abhängigkeit der Orientierung an Messpunkt (2) – 10 mm posterior der Lamina cribrosa sclerae ... 34
Tabelle 11: Vergleich des OND in Abhängigkeit der Orientierung an Messpunkt (3) – unmittelbar vor Eintritt in das Chiasma opticum ... 35
Tabelle 12: Anzahl fehlender Messwerte (N = 151) .. 37
Tabelle 13: Referenzwerte für den OND 3 mm posterior der Lamina cribrosa sclerae in sagittaler Orientierungsebene ... 39
Tabelle 14: Referenzwerte für den OND 3 mm posterior der Lamina cribrosa sclerae in transversaler Orientierungsebene ... 39
Anhang D: Danksagung

Allen, die mich in unterschiedlichster Weise bei der Erstellung meiner Dissertation unterstützt und während dieser Zeit begleitet haben, möchte ich meinen Dank aussprechen.

Ganz besonders danke ich Prof. Dr. med. Hans-Joachim Mentzel für die Bereitstellung des Themas und die Möglichkeit, in der Sektion Kinderradiologie im Institut für Diagnostische und Interventionelle Radiologie des Universitätsklinikums Jena promovieren zu dürfen. Ich danke ihm für seine konstruktive Kritik und zahlreiche Denkanstöße, für die Zeit, die er sich für mich genommen hat, für seine stetige Verfügbarkeit und für die Geduld während langer Phasen des Stillstands auf dem Weg zur Fertigstellung dieser Arbeit.

Weiterhin danke ich Prof. Dr. rer. nat. Klaus-Vitold Jenderka (Professur für Physik, Sensorik und Ultraschalltechnik sowie Prodekan des Fachbereichs der Ingenieur- und Naturwissenschaften, Hochschule Merseburg), Prof. Dr. med. Jost Jonas (Ordinarius für Augenheilkunde der Universität Heidelberg-Mannheim) und Prof. Dr. rer. nat. Jürgen R. Reichenbach (Medical Physics Group, Institut für Diagnostische und Interventionelle Radiologie Friedrich-Schiller-Universität Jena) für Ihre fachliche Beratung.

Anhang E: Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena bekannt ist,

ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben sind,

mich folgende Personen bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts unterstützt haben:
- Prof. Dr. rer. nat. Klaus-Vitold Jenderka,
- Prof. Dr. med. Jost Jonas,
- Prof. Dr. med. Hans-Joachim Mentzel,
- Prof. Dr. rer. nat. Jürgen R. Reichenbach,
- Dipl.-Math. oec. Lisa Wedekind,

die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen,

dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe und

dass ich die gleiche, in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Jena, den 03.05.2021

Theresa Ahrens