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Zusammenfassung 

 

Mit der Verbesserung der optischen Fertigungsmöglichkeiten werden heute Freiformflächen 

in verschiedenen optischen Systemen eingesetzt, um die Bildqualität zu verbessern, das 

Sichtfeld zu vergrößern, und die Systemgröße zu verringern. Eine der wesentlichen 

Eigenschaften der Freiformflächen ist, dass ihr asymmetrisches und lokal abweichendes 

Oberflächenprofil die Symmetrie eines optischen Systems bricht und damit neuartige 

Probleme aufwirft, die bei rotationssymmetrischen optischen Systemen noch nie 

berücksichtigt wurden. Diese Arbeit konzentriert sich auf die Entwicklung eines 

Optimierungsalgorithmus, der automatisch die Mittenabschattung in einem nicht-

rotationssymmetrischen reflektierenden optischen System beseitigt, sowie auf die Definition 

und Berechnung der verallgemeinerten chromatischen Aberrationen in einem nicht-

rotationssymmetrischen refraktiven optischen System. Darüber hinaus wird ein umfassendes 

Modell für die Tolerierung von Freiformflächen vorgestellt. 

Bei der Optimierung eines dreidimensionalen (3D) reflektierenden optischen Systems durch 

Kippen der Spiegel können die Spiegel den Strahlengang teilweise blockieren und 

infolgedessen die Bildhelligkeit und den Kontrast verringern. Um den Grad der Abschattung 

zu berücksichtigen, wird eine Fehlerfunktion vorgeschlagen, die alle geometrisch 

auftretenden Fälle in reflektierenden 3D-Systemen mathematisch beschreibt. Die 

Fehlerfunktion kann mit der Bildqualitätsfehlerfunktion kombiniert werden, um gleichzeitig 

die Aberrationen zu kontrollieren und die Vignettierung während des 

Optimierungsprozesses zu beseitigen. 

Um die verallgemeinerten chromatischen Aberrationen in refraktiven 3D-Systemen zu 

analysieren, werden die Referenzachse und die Referenzebene geklärt, um die genaue 

Definition der verallgemeinerten chromatischen Aberrationen herauszufinden. Es werden 

sowohl strahlenbasierte als auch wellenfrontbasierte Methoden vorgeschlagen, um die 

verallgemeinerten chromatischen Aberrationen flächenaufgelöst in einem System zu 

berechnen. Darüber hinaus wird der Einfluss der Pupillenaberration erörtert, um die 

Berechnungsgenauigkeit zu verbessern. Die flächenaufgelösten verallgemeinerten 

chromatischen Aberrationen werden in einer zweidimensionalen feldabhängigen Form 

graphisch dargestellt.  

Der Fertigungsfehler von Freiformflächen kann durch Fourier-Transformation in den 

Frequenzbereich übertragen werden. Die PSD-Kurve steht in direktem Zusammenhang mit 



Zusammenfassung 

ii 

 

der RMS-Rauheit. Die Autokorrelationsfunktion (ACF) des Phasenmusters wird in 

verschiedenen Frequenzbereichen berechnet. Durch die Charakterisierung der Breite der 

ACF kann die Grenzfrequenz und den Übergang zwischen den deterministischen und 

statistischen Fehlern gefunden werden. Es wird ein umfassendes Modell vorgeschlagen, das 

verschiedene Arten von Oberflächenfehlern darstellt, um eine synthetische Freiformfläche 

zu konstruieren. Durch die Durchführung der Monte-Carlo-Simulation kann damit die 

Tolerierung des Freiformsystems realisiert werden.
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Abstract 

 

Nowadays, with the improvement of optical manufacturing capability, freeform surfaces are 

widely used in different kinds of optical systems to enhance the image quality, enlarge the 

field of view, reduce the system size, and so on. One of the essential properties of the 

freeform surface is that its asymmetric and locally variant surface profile breaks the 

symmetry of an optical system, thus provoking unique issues that have never been 

considered in rotationally symmetric optical systems. This thesis focuses on developing an 

optimization algorithm that automatically eliminates the obscuration in the non-rotationally 

symmetric reflective optical system, as well as defining and computing the generalized 

chromatic aberrations in the non-rotationally symmetric refractive optical system. 

Furthermore, a comprehensive model for the tolerancing of freeform surface is put forward. 

When optimizing a three-dimensional (3D) reflective optical system by tilting the mirrors, 

the mirrors can block the ray path and, in consequence, reduce the image brightness and 

contrast. To take the degree of obscuration into consideration, an error function that 

mathematically describes all the obscuration cases in 3D reflective systems is proposed. The 

obscuration error function can be combined with the image quality error function to 

simultaneously control the aberrations and eliminate the obscuration during the optimization 

process. 

In order to analyze the generalized chromatic aberrations in 3D refractive systems, the 

reference axis and reference plane are clarified to figure out the precise definition of the 

generalized chromatic aberrations. Both ray-based and wavefront-based methods are 

proposed to calculate the generalized chromatic aberrations surface-by-surface. In addition, 

the influence of pupil aberration is discussed to improve calculation accuracy. The surface-

resolved generalized chromatic aberrations are presented in the full-field display.  

The manufacturing error of the freeform surface can be transferred into the frequency 

domain by Fourier transform. The power spectrum density curve directly relates to the root-

mean-square roughness. The autocorrelation function (ACF) of the phase pattern is 

computed in different frequency ranges. By characterizing the width of ACF, the boundary 

frequency between the deterministic and statistic errors can be found. A comprehensive 

model representing different types of surface errors is proposed to construct a synthetic 

freeform surface. By performing the Monte-Carlo simulation, tolerancing of the freeform 

system can be realized. 
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1 Motivation 

 

Nowadays, modern optical systems play an important role in our life. Scientists use high 

precision telescopes to detect the deep universe; people use cameras to record the beautiful 

moments; augmented reality (AR) and virtual reality (VR) devices break the gap between 

the virtual and real worlds. Looking back through the history, the first optical system, which 

was a two-element microscope, was invented by the father and son team of Hans and 

Zacharias Janssen in 1590 [1-1]. Then, with the collaboration among Zeiss, Schott and Abbe, 

the optical industry became successful in the late of the 19th century [1-1]. Starting from the 

characteristic function of Hamilton [1-2] and eikonal function [1-3], the aberration theory 

has been developed, which helps optical designers understand the optical system and turns 

imaging optics into a science. 

In the early years before 1950s, optical systems were designed with surfaces aligned on the 

same axis. The light propagation though optical systems is described by the geometrical 

model, in which finite rays are traced through the whole system and forms the geometrical 

wavefront in the image space. The difference between the real wavefront and ideal wavefront 

is the aberration in an optical system. The aberrations are expanded mathematically into 

polynomials of different orders[1-4]. The aberration coefficients of the primary aberrations 

in the rotationally symmetric system were derived analytically by Seidel [1-5]. The so-called 

Seidel aberrations show the surface contributions to each type of aberration, and the 

formulae contain the physical quantities of the paraxial marginal ray (MR) and paraxial chief 

ray (CR) only. Therefore, it reduced the workload of the optical designers especially before 

the invention of computer, and becomes a powerful tool in analyzing what happens in optical 

systems. The development of materials in this period cannot be neglected as well. The newly 

glasses with different refractive indices and Abbe numbers were invented [1-6], which gave 

optical designers more choices. As a result, optical systems were developed with more 

elements to get better image quality. Correction strategies are more oriented under the 

instruction of aberration theory. However, the structure of the system is still limited to 

rotational symmetry. The drawback is seen in telescopes, in which the central obscuration is 

unavoidable [1-7, 1-8]. 

From the mid of the 20th century, technology develops rapidly that provides more 

possibilities in design of optical systems. With the improvement of the manufacturability of 

the optical elements, more types of optical surfaces are applied to optical design. For 
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example, cylindrical and toroidal surface are helpful in designing anamorphic systems [1-9, 

1-10], aspherical and freeform surfaces are broadly used to enhance the system performance 

for the reason that they are superior in controlling the ray path locally [1-11, 1-12]. In 

addition, tilting and decentering of the optical elements provide more degrees of freedom in 

optimization to achieve special requirements. For example, mirrors are tilted in off-axis 

reflective systems to overcome obscuration, Alvarez plates are decentered to get dynamic 

focal lengths [1-13, 1-14], the objective lens in the stereomicroscope is decentered to reach 

double-channel stereo imaging. Both the actions of adopting asymmetric surfaces and 

moving optical elements apart from the common axis break the symmetry of optical systems, 

and thus bring challenges to the traditional aberration theory, optical design and tolerancing. 

When optimizing the off-axis telescope systems, it is not trivial to find out the proper tilting 

angles of the mirrors. On the one hand, the tilting angles are related to the image quality; one 

the other hand, the mirrors should not block the ray path. Xu et al. has introduced an error 

function to describe all the obscuration cases in plane-symmetric optical systems and 

embedded the error function into optimization algorithm to search for the obscuration-free 

structure automatically [1-15]. However, his method is not applicable to non-rotationally 

symmetric optical systems, in which no symmetric plane exists.  

Nodal aberration theory was developed by Thompson in 1980 to describe the aberrations in 

off-axis optical systems [1-16]. Unlike the rotationally symmetric case, the fields and pupil 

coordinates are represented in the vectorial form. The theory expands the wavefront 

analytically to the 6th order and gives insights into the field-dependent aberrations by 

introducing the Nodal points. But his theory is working monochromatically. Cao et al. 

attempted to consider the chromatic aberrations in plane-symmetric optical systems [1-17]. 

Nevertheless, the total chromatic aberrations are calculated only for the fields in the 

symmetry plane. The surface contributions cannot be resolved neither. 

Tolerancing of freeform surface is a practical topic. The surface errors can be classified into 

low spatial frequency (LSF) errors, mid spatial frequency (MSF) errors, and high spatial 

frequency (HSF) errors. Although there are many papers discussing about how to model the 

errors in a specific frequency range [1-18]-[1-22], none of them connects all the errors 

together to establish a real freeform surface, which is ready for tolerancing. 

The purpose of this thesis is to propose a generalized method to eliminate obscuration 

automatically and a generalized theory to describe, calculate and analyze chromatic 

aberrations in non-symmetrical optical systems. With this work, the method and the theory 
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are consistent and can be applied in arbitrary optical systems regardless of surface type and 

system structure. In addition, a comprehensive model to simulate freeform surface errors in 

all the spatial frequency ranges is presented. Based on this model, many synthetic surfaces 

can be generated to predict the real freeform surfaces. 

Chapter 2 gives a short overview of the state-of-the-art freeform optical systems and 

aberration theory. It starts with the development of the optical surfaces, especially the 

representations of the aspherical and freeform surfaces are introduced. Then, the optical 

systems are classified according to their geometry. Several reflective and refractive optical 

systems are given as examples. The evolution of the surface imaging equations and 

aberration theories are introduced with the lack of symmetry step-by-step. The obscuration 

issue in the reflective optical system is discussed and the current existing obscuration 

elimination method is reviewed. In the last section, the models to describe the freeform 

surface errors in different frequency ranges are discussed, which are the foundation of the 

comprehensive model. 

In chapter 3, the automatic obscuration elimination algorithm used in non-rotationally 

symmetric reflective optical systems is developed. An error function, which contains four 

parts to fully represent all kinds of obscurations, is described in detail. Then the workflow 

to remove obscuration by global optimization is proposed. Two examples are given to show 

the feasibility of the algorithm. Especially in the second example, the obscuration is 

eliminated together with astigmatism to obtain an initial system for further optimization. 

Chapter 4 focuses on the generalized chromatic aberrations in non-rotationally symmetric 

refractive optical systems. The generalized chromatic aberrations are defined and compared 

with the traditional definitions in the rotationally symmetric systems after figuring out the 

reference plane and reference axis. The surface-by-surface summation of the generalized 

chromatic aberrations for a single field are calculated by both ray-based and wavefront-based 

methods in an analytical-numerical hybrid manner. The aberration distribution for the whole 

field of view (FOV) can be seen by the full-field-display. The impact of chromatic pupil 

aberration on the calculation accuracy is discussed, and the calculation methods are modified 

accordingly. The first example of double Gauss system demonstrates the consistency of the 

new methods with the Seidel aberrations in the first order approximation. The second 

example shows the consistency between the ray-based and wavefront-based methods. The 

influence of freeform on the generalized chromatic aberrations is discussed in the third 

example. The fourth example evaluates the behavior of the intrinsic and induced chromatic 

aberrations in a non-rotationally symmetric optical system. 
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Chapter 5 is about the tolerancing of freeform surface. Both the unwrapped phase pattern 

and the power spectral density (PSD) of the surface errors in the frequency domain are 

computed. The difference between the deterministic and statistic errors is compared by 

characterizing the autocorrelation function of the unwrapped phase pattern to find out the 

boundary frequency between the two kinds of errors. After determining the boundary 

frequency, the LSF errors are generated by tolerancing the Zernike coefficients with the 

given root-mean-square (RMS) surface error. The PSD of the LSF errors is plotted in the 

log-log scale. The linear curve is fitted and extended to the HSF region. The statistic HSF 

errors are generated according to the area under the PSD in the HSF region. The MSF errors 

are added to the surface map as the cosine waves. In the above approach, a synthetic freeform 

surface is simulated and imported back into the optical design software for analysis. 

Finally, chapter 6 addresses the conclusion of this thesis and outlook of further work. 
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2 Theoretical Introduction 

 

As shown in Fig. 2-1, the geometry of optical surfaces and systems can be classified into 

rotational symmetry, double-plane symmetry, plane symmetry, and non-symmetry. The first 

half of this chapter reviews the development of optical surfaces and systems, surface imaging 

equations, and aberrations theories regarding the reduction of symmetry over the last decades. 

Then, the practical issues are introduced, for example, the obscuration in mirror systems and 

its solution of the auto-optimization algorithm, the modelling of a real freeform surface with 

a general profile which is manufactured by the diamond turning machine because of its 

robustness, low cost and efficiency. The last section discusses the some important questions 

in the development of freeform optical systems from design to production. 

Rotational symmetry

Double-plane symmetry

Plane symmetry

No symmetry

 
Fig. 2-1 Geometry of optical surfaces and systems. The surface shape and the bending of the 

optical axis together determine the geometry of an optical system. 

 

2.1 Optical surfaces 

2.1.1 Basic shapes 

The basic shape of an optical surface is described by the second order mathematical function. 

The formula in Cartesian coordinates is written as 

𝑧basic(𝑥, 𝑦) =
𝑐𝑥𝑥

2 + 𝑐𝑦𝑦
2

1 + √1 − (1 + 𝑥)𝑐𝑥2𝑥2 − (1 + 𝑦)𝑐𝑦2𝑦2

 (2.1)
 

where x and y are the coordinates on the surface, z is the surface sag, the radii of curvature 

cx and cy and the conic constants x and y are specified in the two perpendicular cross 

sections, respectively. The relations between the value of conic constant and the surface 

shape in the corresponding cross section are summarized in Table 2-1. If cx = cy and x = y 
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are fulfilled at the same time, the surface is rotationally symmetric and can be written in the 

polar coordinates as 

𝑧basic(𝑟) =
𝑐𝑟2

1 + √1 − (1 + )𝑐2𝑟2
. (2.2) 

Especially, the surface is called spherical surface when =0. If the radius of curvature and 

the conic constant in one cross section are both zero, the surface is called cylindrical surface. 

A biconic surface is obtained if the non-zero radii of curvature and conic constants in both 

cross sections are different. Both cylindrical and biconic surfaces are double-plane 

symmetric. 

Conic constant Surface shape 

<-1 Hyperbola 

=-1 Parabola 

-1<<0 Prolate ellipse 

=0 Sphere 

>0 Oblate ellipse 

Table 2-1 Conic constant and surface shape. 

2.1.2 Aspheres 

The second order basic shape functions describe the dominant sag change on the optical 

surface, and it is possible to add higher order polynomial terms as the deviation to the basic 

shape to describe the local change on the surface profile, which is helpful to correct 

aberrations with its local curvature to bend the rays locally.  

The simplest surface with polynomial deformation is the aspherical surface, which keeps the 

geometry of rotational symmetry. Traditionally, the aspherical deviation can be represented 

by a Taylor expansion of even powers as 

𝑧(𝑟) =
𝑐𝑟2

1 + √1 − (1 + )𝑐2𝑟2
+ ∑ 𝑎2𝑚+2𝑟

2𝑚+2

𝑀

𝑚=1

 (2.3) 

where a2m+2 are the expansion coefficients, m starting from 1 shows that the Taylor expansion 

starts from the 4th order, M is the maximum term number of the expansions. In practice, up 

to seven expansion terms are used. More than 10 terms will cause cancelling effect among 

the orders and strong oscillation of the surface profile at the edge [2-1, 2-2]. 

In order to overcome the above drawback of Taylor expansion, two kinds of orthogonal 

polynomial sets were introduced by Forbes [2-2] to describe aspherical surfaces. According 
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to different orthogonal conditions, the Forbes aspheres can be classified into strong aspheres 

and mild aspheres.  

The analytical equation of the strong asphere is written as 

𝑧(𝑟) =
𝑐𝑟2

1 + √1 − (1 + )𝑐2𝑟2
+ 𝑟̅4 ∑ 𝑎𝑚𝑄𝑚

con(𝑟̅2)

𝑀

𝑚=0

 (2.4) 

where 𝑟̅ =
𝑟

𝑟norm
 is normalized by the radius rnorm. Let 𝑥 = 𝑟̅2 , then 𝑥2𝑄𝑚

con(𝑥)  is a 

polynomial set in which the polynomial terms are orthogonal along the z-axis.  

The analytical equation of the mild asphere is written as 

𝑧(𝑟) =
𝑐bfs𝑟

2

1 + √1 − 𝑐bfs
2 𝑟2

+
𝑟̅2(1 − 𝑟̅2)

√1 − 𝑐bfs
2 𝑟2

∑ 𝑎𝑚𝑄𝑚
bfs(𝑟̅2)

𝑀

𝑚=0

 (2.5) 

in which the basic shape is the best fitted sphere with the radius of curvature as cbfs. The 

polynomial set 𝑥2(1 − 𝑥2)𝑄𝑚
bfs(𝑥2) is slope orthogonal. The polynomial terms are divided 

by a projection factor of  

cos 
pr

= √1 − 𝑐bfs
2 𝑟2 (2.6) 

to project the polynomials to the direction along the z-axis. 

For the polynomial set 𝑥2𝑄𝑚
con(𝑥), all the terms equal 0 at the center and 1 on the boundary. 

Therefore, the deviation of an asphere to the conic basic shape cannot be controlled at the 

edge. That is the reason why it is called strong asphere. For the polynomial set 

𝑥2(1 − 𝑥2)𝑄𝑚
bfs(𝑥2), all the terms equal 0 at both center and edge to suppress the aspherical 

deviation. Therefore, such an asphere described by 𝑄𝑚
bfs(𝑥2) is called mild asphere. The 

differences between strong and mild aspheres are graphically illustrated in Fig. 2-2. 

r

z

Basic shape

(conic)

Strong 

asphere

r

z

Basic shape 

(best-fit sphere)

Mild 

asphere

pr

(a) (b)

zpoly

zpoly

zpoly 

after 

projection

 
Fig. 2-2 Comparison between (a) strong and (b) mild aspheres regarding basic shape and 

orthogonality. 
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2.1.3 Freeforms 

If the restriction of rotational symmetry is removed, general freeform surfaces can be 

obtained by the combination of varying basic shapes and polynomial sets. The basic shape 

can be either rotationally symmetric, which is described in polar coordinates, or double-

plane symmetric, which is described in Cartesian coordinates. The commonly used 

polynomial sets are monomials, Chebyshev polynomials [2-3], Zernike polynomials, Q-

polynomials [2-4], and newly invented A-polynomials [2-5].   

The freeform surfaces investigated in this thesis are described by the Zernike Fringe 

polynomials, which are directly related to aberration types and can be sorted in 1D or 2D 

indices, as  

𝑧(𝑟, 𝜑) = 𝑧basic +

{
 
 

 
 ∑ ∑ 𝑎𝑛,𝑚𝑍𝑚

𝑛 (𝑟̅, 𝜑),  2D numbering

𝑛

𝑚=−n

𝑁

𝑛=0

∑ 𝑎𝑘𝑍𝑘

𝐾

𝑘=1

(𝑟̅, 𝜑),           1D numbering

 . (2.7) 

sinj cosj

m=
n=

1

23

4 56

78

9

1011

1213

1415
16

1718

1920

2122
2324

25

2627

2829

3031

3233

3738

3940

4142

5051

5253 6566

 

Fig. 2-3 Zernike Fringe polynomials in 2D sorting (m and n numbering on the edge) and 1D 

sorting (numbering on the pattern). 

The patterns of Zernike Fringe polynomials normalized on the unit circle are plotted in Fig. 

2-3 with two numbering ways. By selecting proper polynomial terms with double-plane 

symmetry or plane symmetry to describe a freeform surface, one can get the freeform surface 

with the corresponding symmetry. 

 

2.2 Classification of optical systems 

In the long history, even nowadays, rotationally symmetric optical systems are dominant 

because they are sufficient in most applications and relatively easy to produce. Nevertheless, 
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non-rotationally symmetric optical systems are more and more popular to achieve better 

system performance and special requirements of compactness or application adapted 

geometries. In this section, modern optical systems are classified into different groups 

according to their geometry. 

The family of rotationally symmetric optical systems is broad. Some of them are listed in 

Table 2-2. Traditional refractive optical systems, such as photographic lenses, microscope 

objective lenses, endoscopes, etc., belong to this family. The complexity of the system 

depends on the requirements of the system’s performance. Cell phone camera systems are 

also rotationally symmetric. However, restricted by size and weight, the number of surfaces 

in these systems is limited, and plastic components with strong dispersion are used. 

Therefore, aspherical surfaces are introduced for better correction. The reflecting telescope 

systems designed in the early years of the 20’s century were rotationally symmetric as well. 

The conic mirrors are confocal to form a perfect image for one field point. Since the field 

angles are normally small in a telescope, this kind of design can serve as a good starting 

point for further correction. However, the incoming beam is partly blocked by the mirrors 

(only the yellow shaded part can go through the example system in Table 2-2), the systems 

are unavoidably suffering from central obscuration. Another type of rotationally symmetric 

system is called catadioptric system, which contains both lenses and mirrors. Usually, a 

simple achromat with small focal power is inserted in front of the reflecting telescope to co- 

Types Systems 

Refractive 

Microscope objective lens

Cell phone camera lens

Three aspheres  

Reflective 
Cassegrain telescope

M2 hyperbola M1 parabola
 

Catadioptric 

Stop

N-F2 N-BK7

M1 

Catadioptric telescope

 

Table 2-2 Some rotationally symmetric optical systems [2-6, 2-7]. 
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rrect spherical aberration. The refractive surfaces can also be made aspherical. 

The optical elements in double-plane symmetric optical systems are still aligned; only at 

least one spherical surface is substituted by a cylindrical surface, biconic surface, or freeform 

surface represented by double-plane symmetric polynomial terms. In principle, double-plane 

symmetric systems have different focal power in the two perpendicular cross sections. Three 

double-plane symmetric systems are shown in Fig. 2-4. The laser shaping system shown in 

Fig. 2-4 (a) transforms the anastigmatic output laser beam into a collimated astigmatic ray 

bundle by combining a spherical lens and a cylindrical Galilean telescope. The example in 

Fig. 2-4 (b) is an anamorphic photographic lens, which captures an image or projects the 

cinemascope film of a large aspect ratio. Two cemented cylindrical lens groups are put in 

front of spherical lenses to realize different magnifications in the two cross sections. In scan 

systems, the scan mirror locates at the front focal point to achieve a telecentric chief ray in 

the image space, if this is required. However, it works for one dimension only. With the help 

of the two cylindrical lenses in Fig. 2-4 (c), the focal points in the two cross sections are 

separated. Two mirrors are located at the split focal points and rotate independently in two 

directions to fulfill the telecentric conditions in two dimensions. 

NA = 0.1

z

z

NA = 0.5

Cylindrical lens group Cylindrical lens group

Chief ray in x

Chief ray in y

1st cylindrical lens 2nd cylindrical lens

Original 

deflecting 

2nd mirror in x

Shifted 

deflecting 

1st mirror in y

Principle 

plane Px

Shifted 

principle 

plane Py
Image plane

x

y

(a)

z

zx

y

(b)

(c)
 

Fig. 2-4 Three examples of double-plane symmetric systems: (a) laser shaping system [2-8], (b) 

anamorphic photographic lens [2-9], (c) 2D telecentric scan system [1-11]. 
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Plane-symmetric optical systems have only one symmetric plane, which is conventionally 

defined as the tangential plane. The optical elements can either be aligned on the same axis 

with the application of a plane-symmetric freeform surface to break the symmetry, or tilt or 

decenter around a common axis. The optical axis ray (OAR), which is the central ray of the 

central field, is folded in the tangential plane. The layouts of some typical plane-symmetric  

Types Systems 

Refractive 

Tilted 

object plane
Tilted 

image plane
Scheimpflug system

Freeform Freeform

OAR

Traditional 

spectrometer
Prism

Object 

plane

Image 

plane

 

Reflective 

M1

Image 

plane

M3

M2
Three mirror anastigmat 

(TMA) system

OAR

 

Cata-

dioptric 

OAR

Object 

plane

Image 

plane

Offner spectrometer

Prism 1

Prism 2

M1

M3

M2 

(stop)

HMD

Eye 

pupil

Total internal 

reflection

Image 

plane
Freeform

Freeform

OAR

 

Table 2-3 Layouts of some plane symmetric optical systems in the tangential plane [2-6, 2-10, 

2-11]. The bended OAR is drawn in each layout.  
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systems are shown in Table 2-3. Scheimpflug system is a special refractive plane-symmetric 

system, which images a tilted object plane sharply to a tilted image plane. The lenses can be 

purely spherical, but the whole geometry of the system usually is plane-symmetric. In 

general, the surfaces can be tilted or substituted by plane-symmetric freeform surfaces for 

better correction. The structure of a spectrometer is also plane-symmetric, which separates 

the spectral components of the incoming light in the lateral direction. The system can be 

purely refractive or folded as an Offner setup with the help of mirrors. The benefit of the 

Offner setup is that the ray path is doubled so that the separation between the wavelengths 

is more significant. Another refractive-reflective plane symmetric system is called head-

mounted-display (HMD). The folded structure reduces the size of the wearable device, and 

the freeform surface ensures high image quality in the case of small F-numbers and large 

FOV. A plane symmetric mirror system, in which the mirrors are tilted around one common 

axis, is preferred in the design of the telescope system because the central obscuration in the 

reflective telescope can be fully removed to improve the contrast. 

A Yolo telescope is a kind of optical system without any symmetry, as shown in Fig. 2-5. 

The mirrors rotate around both x- and y-axes. The original design has two mirrors. An 

extended Yolo telescope with three mirrors is also existing [2-12].  

M1

M2

OAR

Image 

plane  
Fig. 2-5 Yolo telescope with two mirrors. The OAR is folded in three-dimensional (3D) space 

with three segments. Two pairs of the neighboring segments construct two planes in blue and 

orange to indicate the 3D folding more clearly.  

 

2.3 Single surface imaging equations 

In the paraxial region of a spherical surface, the imaging equation of a single field point is 

governed by 

𝑛′

𝑙′
−

𝑛

𝑙
=

𝑛′ − 𝑛

𝑅
=

1

𝑓
 (2.8) 

where l and l’ are the object and image distances, n and n’ are the refractive indices in the 

object and image spaces, R is the radius of curvature of the spherical surface, f is the focal 

length. 
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For an off-axis field away from the paraxial region, astigmatism cannot be neglected. The 

effective radius of curvature of a spherical surface depends on the azimuthal angle of the ray 

fan, which means that the tangential and sagittal rays focus on different points on the chief 

ray as shown in Fig. 2-6. At the tangential focal point, the sagittal rays form the tangential 

line in the sagittal plane, and verse versa. The image distances along the chief ray in the 

tangential and sagittal cross sections can be reached by the Coddington equations as 

𝑛′cos2𝐼′

𝑡′
−

𝑛cos2𝐼

𝑡
=

𝑛′cos𝐼′ − 𝑛 cos 𝐼

𝑅
 (2.9) 

𝑛′

𝑠′
−

𝑛

𝑠
=

𝑛′cos𝐼′ − 𝑛 cos 𝐼

𝑅
 (2.10) 

where t, t’ and s, s’ are the distances along the chief ray in the corresponding cross sections 

in the object and image spaces, I and I’ are the incidence and refraction angle of the chief 

ray. When the incidence angle I=0, the equations are degraded to Eq. (2.8). 

t´

s´

I

 
Fig. 2-6 Separation of tangential and sagittal focal points due to the inclined incidence angle I. 

𝐿𝑇
′  and 𝐿𝑆

′  denote the tangential and sagittal focal lines. 

The imaging equation of a freeform surface is more complicated because the radii of 

curvature are locally variant. Considering an astigmatic ray bundle going through a freeform 

surface with an infinite small numerical aperture (NA) as shown in Fig. 2-7, the local 

incidence plane (yellow) on the surface is determined by the incident and refracted chief 

rays. The local surface coordinate system (xs, ys, zs) is constructed with the principle that the 

ys-zs plane coincides with the incidence plane and the zs-axis is along the surface normal at 

the chief ray intersection point on the surface. The surface illuminated by the light can be 

described locally around the chief ray by the XY polynomials. Since the light cone aperture 

is considerably small, it is sufficient to approximate the surface segment until the second 

order expansion as 

𝑧𝑠 =
1

2
(𝑐02𝑥𝑠

2 + 𝑐20𝑦𝑠
2 + 𝑐11𝑥𝑠𝑦𝑠) =

1

2
[(𝑐maxcos2 + 𝑐minsin

2
)𝑥𝑠

2 + 

(𝑐maxsin
2
 + 𝑐mincos2)𝑦𝑠

2 + (𝑐max − 𝑐min)𝑥𝑠𝑦𝑠 sin 2  (2.11) 
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where c02, c20, c11 are the polynomial coefficients. In this way, the local surface segment is 

approximated by a toroidal surface with the maximum and minimum principal curvatures 

cmax and cmin (not drawn), which are perpendicular to each other. The azimuthal angle 

between the xs-axis and the direction of the maximum principal curvature is . 

Incidence
plane

Chief
ray

Local surface
coordinates

Circle of least 
confusion

Surface

𝑦𝑠

𝑧𝑠

𝑦

Local ray-

incidence 

coordinates Local ray-caustic 

coordinates 

 
Fig. 2-7 An astigmatic ray bundle going through a freeform surface with an infinite small 

numerical aperture. The surface segment illuminated by the ray bundle is approximated by a 

toroidal surface. 

Two types of local coordinate systems, which consider the azimuth of the ray bundle, have 

to be introduced. The first is the local ray-incidence coordinate system (x, y, z) in the object 

space, and accordingly, (x’, y’, z’) in the image space. They all have the y-z plane coinciding 

with the incidence plane and the z-axis along the chief ray. The second type is called the 

local ray-caustic coordinate system, which indicates the azimuth of the focal lines. It is 

denoted by (xc, yc, zc) in the object space. The xc- and yc-axes are in the direction of the 

tangential and sagittal focal lines, respectively. The zc-axis is also along the chief ray. The 

local ray-caustic coordinates (𝑥𝑐
′ , 𝑦𝑐

′, 𝑧𝑐
′) in the image space are constructed in the same way 

with the focal lines in the image space. Now, both the surface segment and the ray bundle 

are anisotropic, and it may happen that the tangential cross section of the ray bundle does 

not coincide with the incidence plane. The azimuthal angles between the ray-incidence and 

ray-caustic coordinate systems in the object and image space are  and ’. The image 

distances t’ and s’ along the chief ray and ’ can be calculated by the generalized Coddington 

equations [2-13] 
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(𝑛 cos 𝐼 − 𝑛′ cos 𝐼′)(𝑐maxcos2 + 𝑐minsin
2
) =  

𝑛 (
cos2𝜃

𝑠
+

sin
2𝜃

𝑡
) − 𝑛 (

cos2𝜃

𝑠
+

sin
2𝜃

𝑡
) (2.12) 

(𝑛 cos 𝐼 − 𝑛′ cos 𝐼′)(𝑐max − 𝑐min) sin 2 = 

𝑛 cos 𝐼 (
1

𝑠
−

1

𝑡
) sin 2𝜃 − 𝑛′ cos 𝐼′ (

1

𝑠′
−

1

𝑡′
) sin 2𝜃′ (2.13) 

(𝑛 cos 𝐼 − 𝑛′ cos 𝐼′)(𝑐maxsin
2
 + 𝑐mincos2) = 

𝑛cos2𝐼 (
sin

2𝜃

𝑠
+

cos2𝜃

𝑡
) − 𝑛'cos

2𝐼′ (
sin

2𝜃′

𝑠′
+

cos2𝜃′

𝑡′
) (2.14) 

 

2.4 Aberration theories 

Aberrations are unavoidable in real optical systems as a result of nonlinearities for large ray-

incidence angles, except for some systems under special imaging conditions, for example, 

the confocal conic mirror telescope introduced in section 2.2. In order to evaluate and 

improve the system performance more systematically with guidance, it is important to 

describe the aberrations quantitatively.  

In general, aberrations can be represented as wave aberrations and geometrical aberrations 

within the scope of geometrical optics. Moreover, the geometrical aberrations can be further 

specified into transverse aberrations and longitudinal aberrations. The real and ideal ray 

paths from the exit pupil to the Gaussian image plane can be seen in Fig. 2-8. The ideal and 

real ray fans construct the reference sphere with radius Rref and the real wavefront, 

respectively, in the exit pupil. The wave aberration W is the difference between the reference 

sphere and real wavefront, which is calculated by the optical path difference (OPD) between 

the ideal and real rays as 

𝑊 =
𝑛′ ∙ OPD


 (2.15) 

where n’ is the refractive index in the image space,  is the wavelength under consideration. 

The transverse aberrations x’ and y’ in x- and y-directions represent the difference 

between the ideal and real ray intersection points in the image plane. The longitudinal 

aberration s’ measures the difference between the ideal and real ray intersection points with 

the optical axis.  

The relations among the three aberration representations in the small angle approximation 

are  
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∆𝑥′ = −
𝑅ref

𝑛′

𝜕𝑊(𝑥𝑝, 𝑦𝑝)

𝜕𝑥𝑝
 (2.16) 

∆𝑦′ = −
𝑅ref

𝑛′

𝜕𝑊(𝑥𝑝, 𝑦𝑝)

𝜕𝑦𝑝
 (2.17) 

∆𝑠′ =
𝑅ref

𝑦𝑝
∆𝑦′ (2.18) 

where xp, yp are coordinates on the exit pupil. Considering the sign convention, the wave 

aberrations have the opposite sign to both transverse and longitudinal aberrations. 

Reference 

sphere

Ideal ray

Real ray

Real 

wavefront

W > 0

 s´< 0
 y´< 0

z

Exit pupil
Gaussian 

image plane

Rref

 
Fig. 2-8 Relations between wave aberration, transverse aberration, and longitudinal aberration. 

2.4.1 Aberration theories in rotationally symmetric optical systems 

Both wave aberrations and geometrical aberrations can be described by polynomial 

expansions. It can be seen from Eq. (2.16) to (2.18) that the wave aberrations are one order 

higher than the transverse aberrations, and the transverse aberrations are one order higher 

than the longitudinal aberrations. In general, wave aberrations can be expanded by Taylor 

expansion as 

𝑊(𝐻, 𝜌, 𝜑) = ∑ 𝑊𝑘𝑙𝑚𝐻𝑘𝜌𝑙cos𝑚𝜑

𝑘,𝑙,𝑚

 (2.19) 

where H is the field height in the image plane,  and j are the radial height and azimuthal 

angle of the ray intersection point in the exit pupil. For a single field, the 2D wavefront 

deviation in the exit pupil is calculated by tracing the rays sampled in the pupil or measured 

by interferometry. It is more meaningful to select the exit pupil, but it is also possible to use 

the entrance pupil as Zemax does. The 2D wavefront map can be fitted by the Zernike 

polynomials as 

𝑊(, 𝜑) = ∑𝑎𝑘𝑍𝑘(, 𝜑)

𝑘

 (2.20) 

which includes all orders of monochromatic aberrations. 
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The transverse aberration expressed by Taylor expansion is written as 

∆𝑦′(𝐻, 𝜌, 𝜑) = ∑ 𝑊𝑘𝑙𝑚𝐻𝑘𝜌𝑙cos𝑚𝜑.

𝑘,𝑙,𝑚

 (2.21) 

There are five monochromatic primary aberrations: spherical aberration, coma, astigmatism, 

field curvature, and distortion. The primary aberrations represented as wave aberrations and 

transverse aberrations are of 4th and 3rd order respectively. The two primary chromatic 

aberrations are called longitudinal chromatic aberration, which is the dispersion of marginal 

ray along the optical axis, and transverse chromatic aberration, which is the dispersion of 

chief ray along the transverse direction in the Gaussian image plane, as illustrated in Fig. 

2-9. Seidel derived the expression of the seven primary aberrations in the rotationally 

symmetric systems analytically. The formulae contain only the physical quantities of the 

paraxial marginal ray and paraxial chief ray and the derivative of the refractive index in case 

of the two chromatic aberrations. In addition, the Seidel aberrations can be written as the 

sum of surface contributions. 

Object plane
Lens

CR

MR

Gaussian 

image plane

 s´ 

 y´ 

 
Fig. 2-9 Longitudinal chromatic aberration ∆𝑠

′  and transverse chromatic aberration ∆𝑦
′  

between two wavelengths (blue and red). 

The properties of the Seidel aberrations and the wave aberrations represented by Zernike 

polynomials are compared in Table 2-4 to summarize the above discussion.  

 Seidel aberrations Zernike polynomials 

Pros 

Surface contributions, 

Monochromatic and chromatic aberrations, 

The field dependence is included, 

Only two paraxial rays are required 

Can be measured by interferometry 

directly, 

Higher order aberrations can be seen 

Cons 
Only primary aberrations, 

Only rotationally symmetric systems 

May have sampling problems, 

Only one field point, 

Restricted to circular pupils, 

Only monochromatic aberrations 

Table 2-4 Comparison between Seidel aberrations and wave aberrations represented by Zernike 

polynomials. 
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2.4.2 Aberration theories in non-rotationally symmetric optical systems 

To tackle the aberrations in non-rotationally symmetric optical systems, Thompson et al. [1-

16, 2-14, 2-15] have extended the wave aberration function into the vectorial form as 

𝑊(𝐻⃗⃗ , 𝜌 ) = ∑ 𝑊𝑘𝑙𝑚(𝐻⃗⃗ ∙ 𝐻⃗⃗ )
𝑘
(𝜌 ∙ 𝜌 )𝑙(𝐻⃗⃗ ∙ 𝜌 )

𝑚

𝑘,𝑙,𝑚

 (2.22) 

in which the scalar field and pupil height in Eq. (2.19) are substituted by vectors. The 

reference axis is defined as the folded OAR, and the intersection of OAR in the image plane 

is chosen to be the image center. Moreover, analogous to the concept of the paraxial region, 

the neighborhood region around the OAR is called the parabasal region and serves as a 

reference, although the OAR suffers from ray aberrations. 

As demonstrated [1-16], both tilt and decenter of the surface can be viewed as tilt and 

introduce a field shift vector 𝜎 𝑖, which results in the displacement of the field center in the 

image plane as shown in Fig. 2-10. The effective field vector 𝐻⃗⃗ 𝐴𝑖  for the surface i after 

considering the tilt effect is then written as 

𝐻⃗⃗ 𝐴𝑖 = 𝐻⃗⃗ − 𝜎 𝑖 . (2.23) 

z along OAR

Hy

Hx

 
Fig. 2-10 Displacement of the effective field center of the surface i in the image plane [1-16]. 

The advantage of the vectorial wave aberration expansion with the tilt term is that the nodal 

points at which the primary aberrations have zero values can be derived. Therefore, it is also 

called Nodal aberration theory (NAT). This approach initially requires circular symmetric 

surfaces, later a more complicated extension to freeforms was proposed [2-16]. It is also a 

great advantage to plot the aberration coefficients for each type of aberrations as the full-

field display to analyze the system behavior across the whole image plane. Nevertheless, the 

chromatic aberrations are of no concern in the NAT.  

Cao et al. presented analytical solutions to the chromatic aberrations in the tangential plane 

of plane-symmetric optical systems [1-17]. The analytical formulae were derived by 

differentiating the Coddington equations and Snell’s law against wavelength. The limitation 

of the method is that the chromatic aberrations of the fields outside the symmetric plane 
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cannot be solved. However, they are of great interest for analyzing the asymmetric effects 

introduced by breaking the symmetry and the local influence of freeform surfaces on the 

chromatic aberrations. 

 

2.5 Obscuration in off-axis mirror systems 

The design of off-axis mirror systems are popular because it overcomes the central 

obscuration. Utilizing the correction ability of freeform with high degree-of-freedom, it is 

able to achieve diffraction limited image for a large clear aperture and small F-number [2-

17]. It is shown in section 2.4.2 that, on the one hand, the tilting angle of the mirror influences 

the aberrations; on the other hand, the tilting angle cannot be too small to block the ray path. 

In order to embed obscuration constraint in optimization, an error function, which describes 

the truncation between mirrors and ray bundles, has to be introduced. There are plenty of 

ways to establish the error function. As early as 1987, Rodgers has put forward one method 

to design unobscured plane symmetric reflective systems by solving the linear inequalities 

between boundary rays and mirror edges [2-18]. However, this method is only valid for the 

off-axis mirror systems with a zigzag structure. In the folded structure, comparing the y-

height between the mirror and the boundary ray is meaningless. In recent years, many more 

attempts have been done to minimize aberrations as well as remove obscuration in plane 

symmetric mirror systems automatically during optimization [1-15, 2-19, 2-20]. 

Dummy 

surface

M1

Image 

plane

Ray-quadrangle 1

Ray-quadrangle 2

Ray-quadrangle 3

Ray-quadrangle 4

M3

M2 Clearance

Extension

 
Fig. 2-11 Construction of ray-quadrangles in a three-mirror telescope. 

One of the interesting methods is developed by Xu et al., which considers the overlap 

between the ray-quadrangles. A three-mirror off-axis system is shown in Fig. 2-11 for 

illustration. The ray-quadrangles are built by connecting the upper and lower boundary ray 

intersection points on the two neighboring mirrors in the tangential plane. A dummy surface 

in front of the first mirror and the image plane help build the first and the last ray-quadrangles, 

respectively. In this way, the whole ray path in the system is divided into four ray-
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quadrangles. The two sides that contain the mirrors are called “hard side”. The two ray-sides 

are called “soft side”. In order to cover the vertices of concave mirrors, which are outside of 

the ray-quadrangles (e.g., M1 and M3), and leave some space for mechanical mounting, each 

side of the ray-quadrangles is extended outwards by certain clearance. The four extended 

sides and the two diagonals of the original ray-quadrangle cut the extended area into four 

triangles. There are three types of error functions to describe the overlap between the ray-

quadrangles. 

The first two error functions consider the position relations between the two non-neighboring 

ray-quadrangles a and b in Fig. 2-12. If a vertex P of the ray-quadrangle b is located inside 

the extended area of a, the squared distance from P to the corresponding extended side is 

calculated. Therefore, the first error function is written as 

𝐸𝑟𝑓2𝐷1(𝑎, 𝑏) = ∑{
|𝑃𝑗𝐸|

2
+ Bias, if 𝑃𝑗

0, if 𝑃𝑗

4

𝑗=1

 (2.24) 

where 𝑗 = 1 to 4 is the sequence of vertices of the ray-quadrangle 𝑏,  is the extended area 

of the ray-quadrangle 𝑎, E is the cross point between the vertical line and the corresponding 

extended side. The positive bias ensures the clear separation between the zero and non-zero 

parts. 

XPE

A

B

 
Fig. 2-12 Two situations of obscuration between the ray-quadrangles a (red) and b (blue): (1) the 

vertex P is inside a, (2) one side of b cross the hard side of a at the point X. 

The second situation describes the cross between any side of the ray-quadrangle b and the 

two hard sides of the ray-quadrangle a. If the cross happens, the cross point X cuts the hard 

side AB into two parts |𝐴𝑋| and |𝐵𝑋|. The second error function takes the shorter part into 

account, which has the form 

𝐸𝑟𝑓2𝐷2(𝑎, 𝑏) = ∑∑{
min (|𝐴𝑘𝑋𝑗|

2
, |𝐵𝑘𝑋𝑗|

2
)+Bias ,  if crossed

0,       if uncrossed

4

𝑗=1

2

𝑘=1

 (2.25) 

where 𝑘 = 1 to 2 is the two hard sides of the ray-quadrangle a,  𝑗 = 1 to 4 is the sequence 

of four sides of the ray-quadrangle 𝑏. 
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After checking all the combinations of non-neighboring a and b, the only unconsidered case 

left is the position relation between the image plane and the (Nq-1)th ray-quadrangle 

(assuming a reflective system has Nq ray-quadrangles). The first error function can be used 

to detect this case if a and b are substituted to Nq -1 and Nq, respectively. Then, the third 

error function has the following form 

𝐸𝑟𝑓2𝐷3(𝑎, 𝑏) = 𝐸𝑟𝑓2𝐷1(𝑁𝑞 − 1,𝑁𝑞) = ∑{
|𝑃𝑗𝐸|

2
+ Bias, if 𝑃𝑗

0, if 𝑃𝑗

4

𝑗=3

 (2.26) 

where 𝑗 = 3 to 4 shows that only the two vertices belonging to the image plane are checked. 

The advantage of the error functions developed by Xu et al. is that it can be optimized 

together with the image quality constraints to obtain the initial system design. However, 

retrieving back to section 2.2, the algorithm can only deal with the reflective systems shown 

in Table 2-3. The auto-optimization of the more generalized reflective systems, such as Yolo 

telescope, cannot be realized. 

 

2.6 Modelling of real freeform surfaces 

Freeform surfaces are commonly manufactured by the ultra-precise diamond turning 

machine. Unlike the fabrication process of rotationally symmetric surface, which only 

generates concentric errors, the involvement of fast tool servo (FTS), slow tool servo (STS), 

and the thermal effect cause anisotropic errors and ripples in different directions [2-21, 2-

22]. Fig. 2-13 shows the manufacturing surface error ∆𝑧(𝑥, 𝑦)  

∆𝑧(𝑥, 𝑦) = 𝑧real(𝑥, 𝑦) − 𝑧ideal(𝑥, 𝑦) (2.27) 

of a diamond-turned surface, where 𝑧real(𝑥, 𝑦) is the topography of the manufactured surface 

measured by interferometry, 𝑧ideal(𝑥, 𝑦) is the designed surface described by the polynomial 

functions introduced in section 2.1.3. Then, by applying polishing techniques, such as 

computer-controlled polishing (CCP) or magnetorheological finishing (MRF), the accuracy 

of the manufactured surface can be further improved. 
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Fig. 2-13 Manufacturing surface error of a diamond-turned surface. 
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The manufacturing quality of a real surface can be represented by the peak-valley (PV) value, 

which is the difference between the largest and the smallest surface deformation values, and 

the RMS value of the surface errors. In order to quantify the composition of the surface 

errors, the power spectral density [2-23] is applied, which shows the power distribution of 

the surface errors in the frequency domain. Other techniques to specify the surface errors 

include area structure function [1-20, 2-24, 2-25] and polar RMS [1-21]. 

2.6.1 Power spectral density 

Before calculating the 2D discrete Fourier transform (2D-DFT) of the surface errors, zero 

padding with a proper window such as Butterworth filter is applied to ensure the smooth 

change of the data to zero at the boundary, if it is not rectangular. The 2D-DFT of a 𝑁𝑥 by 

𝑁𝑦 equal sampling data set is written as [2-22] 

𝑈(𝑥 , 𝑦) = ∑ ∑ ∆𝑧(𝑥, 𝑦)𝑒
𝑖2𝜋(

𝑥𝑥
𝑁𝑥

+
𝑦𝑦

𝑁𝑦
)

𝑁𝑦−1

𝑛𝑦=0

𝑁𝑥−1

𝑛𝑥=0

 (2.28) 

where 𝑥 and 𝑦 are the frequencies in the x- and y-directions. The 2D PSD [44] 

PSD2𝐷(𝑥,𝑦) =
1

𝐴
|𝑈(𝑥,𝑦)∆𝑥∆𝑦|

2
=

|𝑈(𝑥,𝑦)|
2
𝐷𝑥𝐷𝑦

𝑁𝑥
2𝑁𝑦

2
 (2.29) 

is the normalized energy distribution over the frequency range  

𝑥 = −
1

2∆𝑥
 to 

1

2∆𝑥
, 𝑦 = −

1

2∆𝑦
 to 

1

2∆𝑦
(2.30) 

with the spacing in the frequency domain 

∆𝑥 =
1

𝐷𝑥
, ∆𝑦 =

1

𝐷𝑦
 . (2.31) 

From Eq. (2.29), the 2D PSD has the unit of amplitude squared per unit frequency squared. 

∆𝑥 and ∆𝑦 are the sampling spacing in the spatial domain, 𝐷𝑥 and 𝐷𝑦 are the widths of the 

surface in the x- and y-directions, A is the area equaling to 𝐷𝑥 × 𝐷𝑦. 

It is possible to integrate the 2D PSD along any line going through the center of the frequency 

domain with arbitrary azimuthal angle to get the 1D PSD. For example, the integrated 1D 

PSD along the y-direction is written as [2-23] 

PSD() = ∑ PSD2𝐷(𝑥, 𝑦)∆𝑥

𝑁𝑥−1

𝑛𝑥=0

 , (2.32) 

which has the unit of amplitude squared per unit frequency. The RMS surface error rms is 

the square root of the area under the 1D PSD curve, and can be written as [2-23] 



2 Theoretical Introduction 

25 

 

rms = √∑ PSD()∆   . (2.33) 

The typical 1D PSD curve of the surface errors is sketched in Fig. 2-14 as a log-log diagram. 

The curve is mainly linear but with nonlinear deviation on the left end. The slope of the line 

depends on the fabrication machine. The whole spectral range is divided into LSF, MSF, and 

HSF ranges. 

LSF 

figure 

error

MSF HSF

micro roughness 

Deterministic spikes

Nonlinear deviation
Log PSD

Log 1=1/D 2 3 4=1/

Line with 

fixed slope

 
Fig. 2-14 1D integrated PSD in the log-log diagram [2-26, 2-27]. 

The LSF errors are figure errors, for example, radial and asymmetric irregularities, which 

act like classical aberrations. The LSF errors are fully deterministic and result in a decrease 

in resolution. The left boundary frequency depends on the size of the surface. 

The HSF errors are the micro roughness on the surface and purely statistical. They cause the 

drop of contrast of the system. Theoretically, the maximum frequency equals one over the 

measuring wavelength. However, the maximum frequency that can be resolved is limited by 

the spatial resolution shown in Eq. (2.30). 

The MSF errors consist of both random error, which is the reason for the linear decay of the 

PSD, and the deterministic spikes, which is due to the dynamics of the diamond turning 

machine and contributions of higher order Zernike deformations. Therefore, the influence of 

the MSF errors on the system performance comes from the mixture of both statistical and 

deterministic errors. 

2.6.2 Description of low spatial frequency errors 

As mentioned, the LSF errors provoke classical aberrations. Therefore, the polynomial 

functions have the capacity to describe this type of errors. Especially, Zernike polynomials 

and Q-polynomials are preferred because of their orthogonality. 
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The direct relation between the surface RMS value and the Zernike Fringe coefficients an,m 

in Eq. (2.7) is that 

rms = √∑
𝑎𝑛,0

2

𝑛 + 1
+

1

2
∑ ∑

𝑎𝑛,𝑚
2

𝑛 + 1

𝑛

𝑚=−𝑛

𝑁

𝑛=0

𝑁

𝑛=0

 . (2.34) 

Assuming a set of surfaces, each of them is described by a single Zernike Fringe term with 

a PV value of 1mm. If the PSD of each surface is plotted together, it is interesting to see 

from Fig. 2-15 that the PSDs are decreasing on the same envelope line in red. The peak 

intensities of the curves (see yellow dots and orange line) are located slightly different. 

 

Fig. 2-15 PSD of the Zernike fringe polynomial terms with radial orders n = 4, 8, 12, 16 and 20 

[2-26]. 

Alternatively, the LSF errors can be represented by the lateral shifted radial basis functions  

(RBFs) 

𝐺(𝑥, 𝑦) = ∑𝑎𝑚

𝑚

𝑒
−
(𝑥−𝑥𝑚)2+(𝑦−𝑦𝑚)2

𝑤2  (2.35) 

where (xm, ym) is the sampling grid for fitting the errors. Usually, the Cartesian, polar, 

hexagonal, Fibonacci, and statistical grids are used. w is the shape factor that decides the 

width of the Gaussian functions. Therefore, the number of sampling points, the choice of 

sampling grid and the width determine together the accuracy of the fitting. Fig. 2-16 shows 

the fitting of a given profile in one dimension. It is also possible to use an unequal sampling 

grid to improve the accuracy.  
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Fig. 2-16 1D profile fitting with equally sampled RBFs [2-26]. 

2.6.3 Description of deterministic ripples 

The MSF ripples have a periodic structure. Therefore, the frequencies of the ripples are fixed 

for a specific machine. According to the 1D description in [2-28] and extension into 2D, the 

mathematical functions of different types of the ripples are listed in Table 2-5.   

For all the groove functions, they have the PV height of h and period of T. The radius is 

given by 

𝑟 = √(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 (2.36) 

where (xc, yc) is the center of the groove structure, which shows that the center of the ripple 

is not necessarily coinciding with the center of the freeform surface. 

Types Functions Shapes 

Rectangular 
ℎ

2
{Sgn [sin (

2𝜋𝑟

𝑇
)] + 1} 

h

T  

Triangular 
ℎ

2
Sin−1 [Sin (

2𝜋𝑟

𝑇
)] 

h

T  

Sinusoidal 
ℎ

2
[Cos (

2𝜋𝑟

𝑇
) + 1] 

h

T  

Piecewise-parabolic ℎ {sin−1 [Sin (
𝜋𝑟

𝑇
)]}

2

 
h

T  

Table 2-5 Mathematical functions of different types of MSF ripples [2-28]. 

2.6.4 Description of random errors 

The random errors in MSF and HSF range follow the statistical random model with known 

amplitudes according to the linear PSD and unknown random phases in the frequency 
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domain. Assuming the random errors have the RMS value of 𝜎rms, rand. The 2D random 

phase  is generated by 

 = 2𝜋 ∙ Rand (2.37) 

where Rand is the Nx by Ny matrix with random numbers between 0 and 1 in the continuous 

uniform distribution. There are two ways to generate random errors [2-29]. 

The direct method is related to the slope factor k, which determines the linear PSD in the 

semi-logarithmic plot. The amplitudes in the 2D grid can be calculated by 

𝐴𝑚 = 10
𝑘
2√𝑥

2+𝑦
2

 . (2.38) 

The 2D Fourier components of the random errors can be written as 

𝑈 =
𝐴𝑚

√∑𝐴𝑚

𝑒𝑖 . (2.39) 

Then, applying the inverse fast Fourier transform (iFFT) and taking only the real part, the 

surface is reconstructed in the spatial domain as 

𝑧rand
′ = real(iFFT(𝑈)) (2.40) 

with the RMS value 𝜎rms, rand
′ . The random errors are scaled by the correct RMS value as 

𝑧rand =
𝜎rms, rand

𝜎rms, rand
′ 𝑧rand

′  . (2.41) 

The alternative way to generate random errors is based on convolution. Generating a random 

array scaled by 𝜎rms, rand as 

𝐴1 = 𝜎rms, rand(2 ∙ Rand − 1) . (2.42) 

Defining another array in the Gaussian form as 

𝐴2 =
1

𝐿𝑐√𝜋
𝑒
−
𝑥2+𝑦2

2𝐿𝑐
2

 (2.43) 

with the correlation length Lc, which is related to the slope of the PSD curve. Then, the 

random errors are the convolution between the two arrays as 

𝑧rand
′ = 𝐴1 ∗ 𝐴2 . (2.44) 

Again, the random errors have to be scaled by the correct RMS value according to Eq. (2.41). 

The PSD of the random error obtained by this method also has the Gaussian shape, which 

means that the left end of the curve is bended. The random errors generated by the above 

two methods are compared in Fig. 2-17. 
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Fig. 2-17 Random surface errors (a) and its 1D integrated PSD (b) generated by the direct method. 

Random surface errors (c) and its 1D integrated PSD (d) generated by the convolution method. 

2.6.5 System performance criteria 

Different types of surface errors have their own influence on the system resolution and 

contrast. It is demanding to evaluate the degradation of the system performance after 

manufacturing.  

The simplest way is to investigate the spot diagram. The shape of the spot is determined by 

the aberrations. For example, spherical aberration, coma, and astigmatism result in circular, 

water drop-like, elliptical spots, respectively. However, when the system is influenced under 

LSF errors with multiple lower order aberrations, it is nearly impossible to identify the 

specific aberration from the shape of the spot. A more feasible way is to consider the 

enlargement of the RMS spot radius, which computes the RMS value of the ray intersection 

distances to the chief ray or centroid ray intersection point in the image plane. Another 

difficulty is that the redistribution of the energy density in the image plane as the 

consequence of MSF ripples and HSF errors cannot be easily resolved from the spot diagram. 

The point spread function (PSF) shows the energy distribution in the image plane from a 

single point source. Precisely, the PSF is computed according to the Huygens principle that 

superimposes the Huygens wavelets in the image plane. If the far-field approximation is 
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fulfilled, the PSF can be computed by the Fourier transform of the complex function in the 

exit pupil, which is much faster.  

The influence of surface errors in different frequency regions on the PSF is sketched in Fig. 

2-18. The PSF of the nominal system is indicated by the dashed curve. The classical 

aberrations in LSF errors decrease the intensity and broadens the central peak. The MSF 

errors induce small-angle scatter, thus broadening the central core and reducing the 

resolution and create new side lobes far away. The HSF errors produce wide-angle scatter 

and reduce the contrast. [2-30] 

PSF

x

(a)

PSF

x

(b)

PSF

x

(c)  
Fig. 2-18 Change of the nominal PSF (dashed curve) due to (a) LSF, (b) MSF, and (c) HSF errors 

[2-30]. 

The PSF describes the image quality in the spatial domain. The modulation transfer function 

(MTF), which is the amplitude of the Fourier transform of the PSF, describes the response 

of the optical system in the frequency domain. The MSF ripples can be viewed as the overlay 

of a grating on the optical surface. It causes diffraction effects. As a result, the non-nominal 

diffractive orders have higher intensity in PSF, and the MTF curve shows the waviness [2-

31, 2-32]. The periodic MTF is analytically derived by Tamkin et al. as [2-31] 

MTFripple() = |tri (
𝑙′

𝐷ExP

) ∙ ∑ 𝐽𝑚
2 (

2𝜋


ℎ) ∙ cos (2𝜋

𝑚𝑙′

𝑇
)

∞

𝑚=−∞

|  (2.45) 

where l’ is the image distance, DExp is the diameter of the exit pupil, m is the diffractive order. 

It shows that the drop of MTF is related to h, which is the PV of the ripples. 

The drop of MTF due to the wide-angle scatter of the random errors was investigated by 

Harvey. The surface transfer function (STF) is defined as [2-30, 2-33] 

STF=𝑒−(4𝜋𝜎rms)
2 1 − ACV

𝜎rms
2

 (2.46) 

in the frequency domain, where ACV is the surface autocovariance function. The MTF 

effected by surface scatter is the product of STF and the ideal MTF [2-30] 

MTFrandom = STF ∙ MTFideal . (2.47) 
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2.7 Open questions 

The development of symmetry-free optical systems promotes the generalization of the 

system description, optimization constraints, and tolerancing. Many attempts have been 

made as introduced in this chapter, but the work has not been accomplished yet. Table 2-6 

lists the current status of each research direction concerning imaging equation, aberration 

theory, and obscuration with regard to the degradation of system symmetry. 

                     System types 

Issues  

Rotationally 

symmetric 

Double-plane 

symmetric 

Plane 

symmetric 

Non-

symmetric 

Surface imaging equation     

Aberration 

theory 

Monochromatic     

Chromatic     

Obscuration     

Tolerancing     

Table 2-6 Current status of the research for different system types. Green, yellow, and red 

indicate that the issue is fully, partly, or not solved. The issue of obscuration is unavoidable in 

rotational and double-plane symmetric optical systems with reflective surface. 

It can be clearly seen that the surface imaging equations and monochromatic aberrations are 

successfully described for all types of systems. The remaining issues are 

1.  Obscuration elimination in non-rotationally symmetric mirror systems 

Symmetry-free Yolo telescope could also suffer from obscuration during the 

design process. Nevertheless, no force focuses on this point at the moment. 

Chapter 3 extends Xu’s method and puts forward an automatic optimization 

algorithm, which is able to remove the obscuration in an off-axis mirror systems 

without symmetry. 

2. Systematical description of the generalized chromatic aberrations in non-

rotationally symmetric optical system 

Although the chromatic aberrations are analytically derived by Seidel for 

rotationally symmetric systems, and partly investigated by Cao et al. for the fields 

in the symmetric plane of double-plane and plane symmetric systems, the 

systematic description of the generalized chromatic aberrations for systems with 

arbitrary symmetry is still missing. Chapter 4 puts an insight on this topic, gives 

a clear definition of the chromatic aberrations in the general form, and proposes 

both ray- and wavefront-based methods to solve the chromatic aberrations 

surface-by-surface for the whole field of view and arbitrary surface shape. 
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Open questions also arise when moving from the design phase to the production (numbered 

following the above second point): 

3. The boundary frequencies between different surface error types 

In practice, the LSF errors are in the range between 
1

𝐷
 and 

10

𝐷
, MSF errors cover 

the region between 
10

𝐷
 and 

50

𝐷
, the higher frequency region belongs to HSF errors 

according to experience. This is dependent on the absolute size of the surface 

diameter. However, the method of finding out the concrete boundary frequencies 

for an individual machine is unclear. 

4. The comprehensive model for all types of surface errors 

There are several models to describe the manufacturing errors of freeform surfaces 

and several matrices to evaluate the impacts of each type of error on the system 

performance. However, tolerancing requires the overlay of all types of errors 

simultaneously. The investigation of the image quality with simulated freeform 

surface errors has not been seen in the literature. 

These two questions will be answered in chapter 5. 
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3 General Solution for Obscuration Constraints 

 

The method described in section 2.5 can only eliminate the obscuration in plane-symmetric 

optical systems. To deal with the more general systems in the outermost ring of Fig. 2-1, the 

method has to be extended by constructing the error function, which describes the degree of 

obscuration in 3D. Then, two examples are provided. In the first example, an unobscured 

three-mirror telescope layout is produced by optimizing the error function to be zero within 

the selected ranges of the variables. In the second example, the obscuration elimination is 

combined with astigmatism correction to obtain a proper initial Yolo telescope setup. 

 

3.1 Construction of error functions 

In off-axis plane-symmetric optical systems, the optical elements rotate around one axis. 

Therefore, the globally symmetric plane (tangential plane) is always used to cut the optical 

elements and find the upper and lower ray intersection points on the surfaces, which 

construct ray-quadrangles to detect the obscuration. The obscuration is not occurring in the 

sagittal plane. In the 3D case, the mirrors in the optical systems are freely rotated against 

local x- and y- axes. The advantages of the symmetry-free optical system are that, on the one 

hand, more degrees of freedom are introduced to minimize aberrations; on the other hand, a 

more compact system can be obtained. However, the tangential planes behind each surface 

are no longer lying on a common plane. This can be seen from the example of a simple 3D 

two-mirror Yolo telescope as shown in Fig. 3-1. The tangential and sagittal rays are plotted  

in red and green, respectively. Because of the 3D rotation of the mirrors, the neighboring  

ray-quadrangles shadowed in blue and yellow are now belonging to different planes, the  

algorithm introduced in section 2.5 that is limited to judging the position relation between  

M1

M2

Image 

plane
 

Fig. 3-1 3D Yolo telescope with M1 and M2 rotate freely in 3D space. The propagation of the 

tangential and sagittal ray bundles are drawn in red and green respectively. As a result, the two 

neighboring ray-quadrangles (blue and yellow) are no longer in the same plane. 
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the two ray-quadrangles in the 2D plane cannot be directly applied here. An extension of the 

obscuration elimination algorithm to 3D system is necessary. 

The goal is to establish an error function that describes all the possible truncation of light in 

a symmetry-free optical system. If the obscuration happens, at least a mirror blocks the ray 

bundle between two adjacent surfaces. It means that, although an optical system contains 

many surfaces, only three surfaces (two neighboring surfaces and an additional surface) are 

discussed at each time. The two adjacent surfaces and the outside boundary of the ray bundle 

in between form an irregular volume, which is unable to be described by a rigorous 

mathematical function. The easiest way is to derive the 3D issue to 2D. This can be realized 

by the following steps as shown in Fig. 3-2: 

1. The surfaces are simplified as circles by their circular boundaries. The semi-

diameter of the circle is determined by the boundary ray intersecting point on it. 

2. It is well-known that three non-collinear points determine a plane. For the two 

adjacent circles (a, a+1) and another circle (b), a local common plane can be found 

which goes through the centers of the three circles. 

3. The local common plane cuts the circles into three lines. The two lines belonging 

to the two neighboring surfaces construct a quadrangle, which describes the range 

of the ray bundle. 

4. The four sides of the quadrangle are extended for certain clearance to include the 

vertices of the mirrors, which may fall outside of the quadrangle (for example, the 

case of circle a+1), and leave some space for mounting. The two mirror sides plot 

in solid lines are numbered as the first and the third sides. The two ray sides plot 

in dashed lines are numbered as the second and the forth sides. 

Circle b 

Circle a 

Circle a+1 

a
a+1

b

①

②

③

④
 

Fig. 3-2 Process of deriving the surface and ray bundle relation from 3D to 2D. The dashed black 

curves show the boundary of the mirrors. The numbers denote the sequence of the sides. 
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In this way, the position-relations between a ray bundle and a surface are deduced to be the 

position-relations between a quadrangle and a line in the same plane. All the possible cases 

are plotted in Fig. 3-3. For the cases (a) to (f), either the line intersects the quadrangle, or at 

least one endpoint of the line is located inside the quadrangle, which shows the overlap of 

the mirror to the ray bundle. To detect whether an endpoint P of the line is inside the 

quadrangle, the error function Eq. (2.24) introduced in section 2.5 can be used here. The two 

diagonals divide the quadrangle into four triangles. If P is inside any of the triangles, the 

distance |PE| from the point P to the corresponding side of the quadrangle is calculated. 

Similarly, the first error function in the 3D system is written as 

𝐸𝑟𝑓3𝐷1(𝑎, 𝑏) = ∑{
|𝑃𝑗𝐸|

2
+ Bias, if 𝑃𝑗

0, if 𝑃𝑗

2

𝑗=1

, (3.1) 

where a, b are the indices of the quadrangle and the additional surface,  j represents the 

endpoint on the line b,  is the area of the quadrangle. 

In Fig. 3-3 (a), (b), (d) - (f), the line crosses at least one side of the quadrangle. For example, 

the line crosses the side AB at the point and divides the side into two parts AX and BX. The 

case can be described by the error function Eq. (2.25). When discussing the relation between 

two ray-quadrangles in 2D, the cross between the object hard side and subject soft side is 

not considered to avoid redundancy because the object and the subject ray-quadrangles will 

exchange with each other. However, the crosses between the line and all the four sides of 

the quadrangle are considered in 3D. Then we get the second error function in the 3D system, 

which is the square of the shorter part length, as 

𝐸𝑟𝑓3𝐷2(𝑎, 𝑏) = ∑{
min (|𝐴𝑘𝑋|2, |𝐵𝑘𝑋|2)+Bias ,  if crossed

0,       if uncrossed

4

𝑘=1

, (3.2) 

where k denotes the number of sides of a quadrangle. 

(a) (c) (d)

(e) (f) (g)

(b)

A
B

P P

X E

 
Fig. 3-3 Enumeration of the position relation between a ray-quadrangle and a line. 



3 General Solution for Obscuration Constraints 

36 

 

Based on the above discussion, the situation that the line blocks the quadrangle in 2D is fully 

described. In the last case shown in Fig. 3-3 (g), the line is outside the quadrangle. However, 

it does not mean that there must be no truncation in 3D. The reason is that, in the process 

from 3D to 2D, information in one dimension is lost. The truncation in 2D proves the 

truncation in 3D. The reverse does not hold true. The possible situations in which the surface 

(/circle) b blocks the ray path in 3D but the line b is outside the quadrangle in 2D are drawn 

in Fig. 3-4. In Fig. 3-4 (a), the surface b intersects one of the surfaces which form the volume; 

in Fig. 3-4 (b), the surface b truncates the ray bundle only.  

(a) (b)
 

Fig. 3-4 The cases that the surface blocks the ray bundle in 3D but there is no truncation between 

line and quadrangle in 2D. The clearance is set to be zero in the drawing. 

In order to avoid tremendous calculation when the line is outside of the quadrangle, the 

concept of “absolute non-intersection region” where the single surface has absolutely no 

influence on the ray path is defined. When a circle rotates around its center, it is inside a 

sphere with the radius equal to the circle's radius plus the clearance. If the center distance 

between the two spheres is longer than the sum of their radii, the spheres are away from each 

other so that the intersection between the two circles is avoided. Therefore, the first condition 

that the circle b is located inside the “absolute non-intersection region” can be written as 

𝑟𝑎,𝑏 > 𝑟𝑎 + 𝑟𝑏 , 𝑟𝑎+1,𝑏 > 𝑟𝑎+1 + 𝑟𝑏 (3.3) 

where ra, ra+1, rb are the radii of spheres of the circles denoted by the subscript, ra,b, ra+1,b are 

the distances between the centers of spheres denoted by the subscript. The line outside of the 

quadrangle means that the center of the circle b is outside of the quadrangle. If the distances 

between the center of circle b and the two soft sides of the quadrangle respectively are longer 

than rb, the circle b cannot touch the ray bundle. Accordingly, the second condition can be 

written as 

𝑡𝑘,𝑏 > 𝑟𝑏 (3.4) 

where 𝑘 = 2,4 represent the two soft sides of the quadrangle. If both Eq. (3.3) and (3.4) are 

fulfilled at the same time, as shown in Fig. 3-5, the circle b is located inside the “absolute 
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non-intersection region” so that no further check about obscuration is needed. Otherwise, 

the two cases shown in Fig. 3-4 have to be discussed individually.  

Circle a

Circle b

Circle a+1

ra,b ra+1,b
t2,bt4,b

 
Fig. 3-5 Circle b is in the “absolute non-intersection region”. The clearance is set to be zero in 

the drawing. 

The third error function is used to describe the possible intersection between the two circles. 

In Fig. 3-6 (a), two circles are inside two non-parallel planes. The line of intersection 

between the two planes is calculated. If there is a common intersection part among the line 

of intersection and both circles, the length of the common part is calculated, and the 3rd error 

function is written as 

𝐸𝑟𝑓3𝐷3(𝑎, 𝑏) =  ∑ {|𝑃𝑖,1𝑃𝑖,2|
2
+ Bias,  if crossed

0,       if uncrossed
,

𝑎+1

𝑖=𝑎

(3.5) 

where Pi,1 and Pi,2 are two endpoints of the common intersection part. The possible 

intersections between the circle b and circle a / a+1 are checked respectively.  

The case in Fig. 3-4 (b) that the mirror only blocks the ray path is the most complicated one. 

The line divides the circle b into two parts. The half edge of the circle close to the ray bundle 

is sampled from an endpoint P1 to another point P2 according to the azimuthal angle to P1 as 

shown in Fig. 3-6 (b). Each point P constructs a local common plane with the centers of the 

two successive circles a and a+1. This new local common plane cuts the two successive 

circles into two new lines which form a new quadrangle. If the point P  is inside the new 

quadrangle with extended clearance, based on the principle introduced for Erf3D1(a, b), the 

squared distance from the point P to the corresponding side is calculated and then compared 

with the squared distance that computed with the next point on the edge of circle to find the 

maximum value. The 4th error function is written as 

𝐸𝑟𝑓3𝐷4(𝑎, 𝑏) = max𝜃 ({
|𝑃𝜃𝐸|2 + Bias, if 𝑃𝜃

0, if 𝑃𝜃
) (3.6) 

where 𝜃 = 0° to 180° is the azimuthal angle between the starting point P1 and P. 
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Fig. 3-6 Ways to check the intersection between mirrors in (a) and the intersection between a ray 

bundle and a mirror in (b).  

Above all, four error functions are described to determine the possible obscuration cases 

between the ray bundle and an arbitrary surface in 3D. They are added by multiplying their 

own weighting factors to obtain an overall obscuration error function as 

𝐸𝑟𝑓3𝐷(𝑎, 𝑏) = 𝜔1 ∙ 𝐸𝑟𝑓3𝐷1(𝑎, 𝑏) + 𝜔2 ∙ 𝐸𝑟𝑓3𝐷2(𝑎, 𝑏) +

                         𝜔3 ∙ 𝐸𝑟𝑓3𝐷3(𝑎, 𝑏) + 𝜔4 ∙ 𝐸𝑟𝑓3𝐷4(𝑎, 𝑏)  (3.7)
 

where 1 to 4 are weighting factors to adjust the ratio among the sub-error functions. They 

have to be not smaller than 1 to ensure a significant positive bias inside each sub-error 

function so that a clear gap between the obscured and unobscured cases is generated. The 

flowchart in Fig. 3-7 illustrates the steps to compute Erf3D(a, b). For the given values of a 

and b, three surfaces (a, a+1 and b) are selected. At first, the three surfaces are deduced to 

2D to compute Erf3D1(a, b) and Erf3D2(a, b). If the sum of the first two error functions is non-

zero, obscuration occurs, Erf3D3(a, b) and Erf3D4(a, b) are both zero. If the sum is zero, then 

the location of the surface b is checked. If it is inside the absolution non-intersection region, 

Erf3D(a, b) is directly zero. If not, Erf3D3(a, b) and Erf3D4(a, b) are further calculated to get 

Erf3D(a, b). 

 

3.2 Workflow for optimization 

This section discusses how the obscuration is computed in a complete optical system and 

how the optimization works to find the unobscured system structure. An optical system 

contains N optical surfaces. In addition, both object plane and image plane are used to 

construct the ray bundle in the object and image space. If the incoming beam is parallel, a 

dummy surface is inserted in the object space to build an artificial object plane. If there exists 

an intermediate image plane, the intermediate image plane is counted as surface as well. 

Therefore, there are in total S (SN+2) surfaces in an optical system. To evaluate the 

obscuration situation in an optical system, the error functions of all the combinations of the  
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Erf3D(a, b) = 3× Erf3D3(a, b) 

+ 4×Erf3D4(a, b)

Erf3D(a, b) = 1× Erf3D1(a, b) 

+ 2×Erf3D2(a, b)

Erf3D(a, b) = 0

No

No

Yes

Yes

 

Fig. 3-7 Steps to calculate Erf3D(a, b). 

ray bundle between surface a and a+1 and additional single surface b are calculated and 

summed up. The selection rule is  

1 ≤ 𝑎 ≤ 𝑆 − 1, 1 ≤ 𝑏 ≤ 𝑆, 𝑏 ≠ 𝑎 and 𝑎 + 1 (3.8) 

The automatic optimization to find out the unobscured system structure is performed in 

MATLAB. The workflow is shown in Fig. 3-8. Before starting optimization, the variables 

and their ranges, the bias, and the clearance are fixed. The variables are either tilt or decenter 

of the optical surfaces. The goal is to find out the system structure in which the obscuration 

error function goes to zero. Since the obscuration error function is not monotonically 

decreasing, global optimization algorithms such as annealing algorithm have to be chosen to 

go over local minimums and find the global minimum. In each iteration (orange module), 

MATLAB generates new variables and inputs these variables to OpticStudio. OpticStudio 

does the ray-trace and outputs the global coordinates, semi-diameters of the surfaces in the 

current system back to MATLAB. Then the obscuration error function Erf3D is calculated 

with the detailed steps shown in the green module. The selection rule runs to ensure that two 

adjacent surfaces and an additional surface are selected every time. Erf3D(a, b) is calculated 

according to Fig. 3-7 and added to the total Erf3D to get the overall obscuration in the whole 
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system. The value of Erf3D is checked whether it fulfills the requirement. If the error function 

goes to zero, the system under current circumstance is a good starting point for further 

optimization or fine-tuning. 

If an additional requirement on the image quality is asked for, the obscuration error function 

can be combined with the image quality error function (for example, RMS spot radius, MTF, 

specific Zernike coefficients, etc.). The surface shape parameters, like radius, conic constant, 

can also be set as variables if necessary. In this case, the optimization goal is to get minimal 

error function value within the defined number of iterations because the error function cannot 

go to zero exactly because the image cannot be perfect. This will be shown in the second 

example. 

Set variables, 

boundaries, 

clearance,bias

Generate new 

variables in 

MATLAB

Update 

system in 

OpticStudio

Ouput global 

coordinates to 

MATLAB

Calculate 

error function
EndStart Error function fulfills 

requirement?

Yes

No

a = 1, b = 1, Erf3D = 0

a ≤ S-1

b ≠ a or a+1

Calculate Erf3D(a, b)

a = a+1, b = 1 b ≤ S 

b = b+1

Output Erf3D 

Yes

Yes

Yes

No

No

No

Global optimization

Erf3D = Erf3D + Erf3D(a, b)

 
Fig. 3-8 Workflow of the automatic obscuration elimination process. 

 

3.3 Obscuration elimination of three-mirror Yolo telescope 

In the first example, the tilting angles of the mirrors in a three-mirror Yolo telescope are 

optimized to find out the unobscured structure. The on-axis layout of the original system is 

shown in Fig. 3-9 (a). The radii of curvature of the three mirrors and the image distance have 
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already been optimized locally to reach the best image quality for the requirements F-number 

2.25 and field of view 1° × 1°. It can be seen that both M1 and image plane are fallen inside 

the ray bundle, M2 blocks the incoming beam totally. The aim is to optimize the tilting 

angles of the mirrors by the obscuration elimination algorithm to get the unobscured 

structure in 3D. Image quality is of no concern in the optimization process. It is assumed that 

the tilt of the mirror does not influence the focal length of the system. 
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(stop)

M2

M3

M1

(stop)
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M3
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(b)

Dummy 

surface
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Fig. 3-9 (a) Original three-mirror telescope with all surfaces aligned on the common optical axis. 

(b) The unobscured 3D system structure after optimization.  

Firstly, the variables and their ranges are defined as listed in Table 3-1. The purpose of 

setting the ranges of the variables is to control the size of the system after optimization. The 

clearance is set to be 5mm, the bias is 5mm2, the weighting factors are all 1. The maximal 

iteration number is set as 100. The convergence criterion is that either the error function goes 

to zero or the total iteration runs out. A dummy surface is inserted in the object space to build 

the first quadrangle with M1 since the object is in infinity. Then the automatic optimization 

starts. In the first iteration when all the vertices of the mirrors are on the common axis, the 

plane to cut the mirrors is the tangential plane of the rotationally symmetric system. Fig. 

3-10 monitors the change of error function during optimization. It can be seen that the error 

function drops to zero after four iterations. The tilting angles of the mirrors after optimization 

can be checked in the last column of Table 3-1. The layout of the optimized system is shown 

in Fig. 3-9 (b). It can be seen that the obscuration is removed, and the mirrors are folded to 
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reduce the size of the system. The system can be utilized as an initial system for further 

optimization with freeform surfaces. 

Variables Initial values 
Lower 

boundaries 

Upper 

boundaries 
Final values 

M1 tilt X () 0 0 20 19.9331 

M1 tilt Y () 0 -15 0 -14.6976 

M2 tilt Y () 0 -30 0 -25.0453 

M3 tilt X () 0 0 25 16.0118 

M3 tilt Y () 0 -20 0 -1.7787 

Table 3-1 Initial values, optimization boundaries and final values after optimization of the 

variables for the three-mirror Yolo telescope. 
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Fig. 3-10 Evolution of Erf3D during optimization. 

 

3.4 Two-mirror Yolo telescope design without astigmatism 

The second example is the initial system design of a Yolo telescope with two concave 

mirrors. Both obscuration and astigmatism in the system are corrected by optimization to 

show the advantage of utilizing the 3D structure as well as the combination of the 

obscuration error function and the image quality error function.  

M1

(stop)

M2

Dummy 

surface

Image 

plane

50 mmy

z
 

Fig. 3-11 Original two-mirror telescope with all surfaces aligned on the common optical axis. 

The layout of the original system is shown in Fig. 3-11. It has only one on-axis field with 

the collimated incoming beam. The two mirrors M1 and M2 are aligned on the common 
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optical axis. The radii of curvature of both mirrors are optimized by local optimization in 

advance to correct the spherical aberration. Then, both mirrors have the radii R1=-197.53mm, 

R2 = -66.43mm. The negative values show that both surfaces are concave to the incoming 

beam according to sign convention. The F-number in the image space is 2.2. 

If both mirrors only rotate around the x-axis to avoid obscuration, the system is expanded in 

the y-z cross section. In this plane-symmetric system, the tangential cross sections of the two 

mirrors’ local ray-incidence and local ray-caustic coordinate systems are coinciding with 

each other. The chief ray is oblique to both mirrors and results in different focal points for 

the tangential and sagittal aperture rays, which can be solved by the Coddington equations 

(2.9) and (2.10). The mirrors are in the air, which means 

𝑛 = −𝑛′ = 1, 𝐼 = −𝐼′ (3.9) 

Inserting Eq. (3.9) to the Coddington equations, one gets 

{
 

 
1

𝑠′
+

1

𝑠
=

2𝑐𝑜𝑠𝐼

𝑅1

1

𝑡′
+

1

𝑡
=

2

𝑅1𝑐𝑜𝑠𝐼

 (3.10) 

Therefore, the focal lengths in the tangential and sagittal cross sections for the first mirror 

are 

{
𝑓𝑠 =

𝑅1

2
∙

1

𝑐𝑜𝑠𝐼

𝑓𝑡 =
𝑅1

2
∙ 𝑐𝑜𝑠𝐼

 (3.11) 

where 0 ≤ 𝐼 ≤ 90°, 𝑅1 < 0. The expressions of the focal lengths for the second mirror can 

be achieved easily by substituting the subscript from 1 to 2. It can be easily derived from Eq. 

(3.11) that, for both mirrors, 𝑓𝑠 must be smaller than 𝑓𝑡, which means that the contribution 

to astigmatism from both mirrors have the same sign. In other words, astigmatism cannot be 

compensated to zero no matter how the two concave mirrors tilt around the x-axis. 

In a 3D Yolo telescope, M1 rotates around the x-axis so that it still has 𝑓𝑠 < 𝑓𝑡 as before. 

However, the second mirror rotates around the yc-axis of the local ray-caustic coordinate 

system about I degree as shown in Fig. 3-12. Because the incident chief ray (along the zc-

axis) and the surface normal of M2 𝒆̂ are both perpendicular to the yc-axis, the incidence 

plane is located in the xc-zc plane. The azimuthal angle  between the local ray-incidence 

and local ray-caustic coordinate systems is 90°. By substituting  = 0 and 𝑐max = 𝑐min = 𝑅2 

for spherical surface into the generalized Coddington equations (2.12) to (2.14), the imaging 

equation for the second surface is  
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{
 

 
1

𝑠′
+

1

𝑠
=

2

𝑅2𝑐𝑜𝑠𝐼
1

𝑡′
+

1

𝑡
=

2𝑐𝑜𝑠𝐼

𝑅2

 (3.12) 

which is exactly the opposite of Eq. (3.10). Therefore, one gets 𝑓𝑠 > 𝑓𝑡 for the second mirror, 

which implies that the contribution of M2 to astigmatism has the opposite sign to M1. Then, 

by choosing proper tilting angles of both mirrors to adjust the incidence angles on the mirrors, 

the focal powers on both cross sections in the whole system can be the same, which is the 

condition that astigmatism vanishes.  
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Fig. 3-12 M2 is rotated around yc-axis. The azimuthal angles between the local ray-caustic 

coordinate system (xc, yc, zc) and local ray-incidence coordinate system (x, y, z) in both object 

and image space are 90°. 

After demonstrating the ability of the two-mirror Yolo telescope in correcting astigmatism, 

the next step is to eliminate both obscuration and astigmatism together by automatic 

optimization. In this example, the error function of the third order astigmatism is defined as 

𝐸𝑟𝑓𝑎𝑠𝑡𝑖 = √𝑍5
2 + 𝑍6

2 (3.13) 

where Z5 and Z6 are Zernike Fringe coefficients that represent the third order astigmatism. 

Then the total error function is rewritten as 

𝐸𝑟𝑓 = 𝐸𝑟𝑓3𝐷 + 𝐸𝑟𝑓𝑎𝑠𝑡𝑖  (3.14) 

which contains both obscuration and astigmatism parts. The tilt of M1 around the x-axis and 

the tilt of M2 around the y-axis are set as variables and they both have the range from −30° 

to 30°. Since there are two variables and one goal, Erf as a function of both variables are 

plotted in Fig. 3-13 by setting the clearance to be 0  and the bias to be 100mm2. The 

significant bias is to separate the obscured and unobscured optical structure with a 
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considerable gap. The part in the plot with a value larger than 100 is shown in yellow to 

represent that the system has obscuration when the mirrors move inside this area. The four 

corners with continuous change of the color bar show the unobscured areas with different 

astigmatism. Every corner has a dark blue valley where the primary astigmatism is 

minimized. It can also be noticed that the Erf plot is double-plane symmetric. There are two 

reasons: First, the geometry of the system is the same for the two opposite tilting angles; 

second, the cosI term is the same for the two opposite incidence angles in the Coddington 

equations. 
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Fig. 3-13 Erf as a function of M1 tilt around x-axis and M2 tilt around y-axis. The value of Erf  

between 0 and 100 are mapped with color bar, all values larger than 100 are shown in the same 

color to represent obscured area. The red lines mark the valleys of zero astigmatism. 

Again, the global optimization is utilized to search for the minimum. According to the 

symmetry property of the error function Erf, the range of the tilting angles of the two mirror 

are reduced to 0° to 30°. The bias is reduced to 5mm2 for better continuity of the error 

function. The clearance is 0mm. The maximal iteration number is 200. After 200 iterations, 

as shown in Fig. 3-14, the global minimal error function is found (marked with the red circle) 

with the tilting angles (7.67° for M1, 11.11° for M2). After reaching this global minimum, 

the optimization tries to jump out the valley to search for another possibility with lower 

astigmatism. Nevertheless, it is trapped inside the unobscured part, which shows the benefits 

of bias. It should be mentioned that the error function does not go to zero in the end. This 

can be explained from the difference between Taylor expansion and Zernike Fringe 

polynomials. In Coddington equations, the optical surface is described by the 2nd order 

Taylor expansion. However, for Zernike Fringe polynomials, the quadratic terms are not 

only distributed in Z5 and Z6, but also appear in higher order terms like Z11, Z12 and so on. 

When the astigmatism is corrected, it means that the collection of all the Zernike Fringe 

terms that containing quadratic terms go to zero, but 𝐸𝑟𝑓𝑎𝑠𝑡𝑖, which contains only Z5 and 

Z6, cannot reach zero alone. In addition, although the range of the variables is broad, the 
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optimization result indicates that the optimization attempts to find the minimal rotating 

angles, which eliminate obscuration and astigmatism at the same time. The system layout 

after optimization is plotted in Fig. 3-15 (a) with no obscuration. The corresponding spot 

diagram is shown in Fig. 3-15 (b). It is obvious that the astigmatism is well corrected, and 

the residual aberration is dominated by coma. 
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Fig. 3-14 Change of the error function Erf during optimization for 200 iterations. The best result 

region is marked with red circle. 
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Fig. 3-15(a) Layout of unobscured two-mirror Yolo telescope after optimization. (b) The 

corresponding spot diagram. 

Until now, the initial Yolo telescope, which is ready for further image quality optimization 

for a larger FOV, is found without human involvement. Then the FOV is set as 1°1°. Both 

mirrors are substituted by freeform surface – Zernike Fringe sag in OpticStudio. The conic 

parameters of both mirrors, the Zernike coefficients Z5 to Z9 of M1 and Z5 to Z16 of M2 are 

set as variables. The two radii of curvature are fixed, otherwise, they are changing the system 

structure and may cause obscuration. The optimization criterion is the resolution of the 

whole FOV. The RMS spot radius map of the whole FOV before and after local optimization 

are drawn in Fig. 3-16. The averaged RMS spot radius is improved by 72.21 times, which 

shows the excellent correction capability of the freeform surface. The global tangential and 

sagittal view of the final Yolo telescope can be seen in Fig. 3-17.  
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Fig. 3-16 The RMS spot radius map of the whole FOV before (a) and after (b) local optimization. 
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Fig. 3-17 The global tangential (a) and sagittal (b) view of the final Yolo telescope. 
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4 Quality Assessment of Chromatic Aberrations in Refractive 

Freeform Systems 

 

4.1 Reference plane and reference axis 

As mentioned in section 2.2, the design of non-rotationally symmetric refractive optical 

systems becomes popular in recent years. The propagation of the on-axis field in these 

systems has two main differences from the axisymmetric case. First, in general, the surfaces 

of non-rotationally symmetric optical systems can have different powers in the two 

perpendicular cross sections. It means that the parabasal ray bundle of the on-axis fields 

suffers from astigmatism and has a similar behavior as any other off-axis field. The 

generalized Coddington equations, which consider the propagation of parabasal astigmatic 

ray bundle around the chief ray through a single surface, should be applied to determine the 

tangential and sagittal image distances t’ and s’. As a result, there is no unique Gaussian 

image plane in the intermediate image space. Also, from Eq. (2.12) to (2.14), it can be seen 

that s’ and t’ are wavelength-dependent, which means that the chromatic aberrations are 

coupled with monochromatic aberrations in the longitudinal direction. Secondly, if the 

refractive surfaces are allowed to rotate freely in free space, the OAR is no longer 

perpendicular to at least one of the optical surfaces. From the law of refraction, the deflection 

angle of the OAR is also wavelength-dependent. The OAR of varying wavelengths are 

separated after the first non-normal incidence surface. Consequently, there is no unique OAR. 

Based on the above two reasons, the chromatic aberrations in these optical systems cannot 

be treated by the Seidel aberrations, which does not take the astigmatic parabasal ray bundle 

into account, nor by Nodal aberration theory, which only considers monochromatic 

aberrations in off-axis optical systems. In order to evaluate the chromatic aberrations in 

general refractive optical systems, it is important to define the reference plane to calculate 

the chromatic aberration in the transverse direction and reference axis to calculate the 

chromatic aberration in the longitudinal direction. 

No perfect image is obtained for a single field and a single wavelength due to the non-

vanishing astigmatism. In Fig. 4-1, both image-sided tangential and sagittal parabasal coma 

ray paths are plotted on the same plane. The image location is defined at the circle of least 

confusion where the ray bundles in both cross sections have the same width hc. According 

to the relation  

ℎ𝑐 = (𝑙′ − 𝑡′)𝑁𝐴′
𝑡 = (𝑙′ − 𝑠′)𝑁𝐴′

𝑠 (4.1) 
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The image distance of the circle of least confusion is obtained by 

𝑙′ =
𝑠′𝑁𝐴′𝑠 + 𝑡′𝑁𝐴′𝑡
𝑁𝐴′

𝑠 + 𝑁𝐴′
𝑡

 (4.2) 

which is depending on the individual values of s’, t’, and the image-sided numerical 

apertures NA’s and NA’t in the sagittal and tangential planes. By this approach, the widths of 

the ray bundle in the two cross sections are forced to be equal at the circle of least confusion; 

the ray fans in other transverse directions are not considered. In the case of macroscopic 

astigmatism, NA’s and NA’t are significantly different from each other, the real circle of least 

confusion becomes an “ellipse of smallest area”. Nevertheless, there is always a circle 

somewhere between the focal lines in our parabasal approach. 
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Fig. 4-1 Astigmatic imaging of a single field and a single wavelength. 

If the tangential and sagittal focal lines, the circles of least confusion are calculated by the 

generalized Coddington equations and Eq. (4.2) for the whole FOV, then the tangential, 

sagittal and medial image shells in the image space for a single wavelength can be seen in 

Fig. 4-2. The parabasal image plane is defined at the circle of least confusion of the OAR 

and is tangent to the medial image shell in the parabasal region. The distance between the 

tangential and sagittal image shells is the astigmatism, which is now already finite on the 

OAR. The distance between the medial image shell and the parabasal image plane is the field 

curvature.  

The central wavelength is usually selected as the reference wavelength for an optical system 

working in a broad-spectrum range. Accordingly, in the non-rotationally symmetric case, 

the parabasal image plane of the central wavelength is defined as the reference plane. Both 

OAR and CR of the central wavelength are defined as the reference axes for each object field 

individually because the change of astigmatism in the whole FOV is not symmetric around 

the on-axis field. 
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Fig. 4-2 Astigmatic imaging of the whole FOV for a single wavelength. 

 

4.2 Definition of the generalized chromatic aberrations 

In this section, the generalized chromatic aberrations are defined with regard to the reference 

plane and axis. Fig. 4-3 shows the optical paths of the chromatic OAR and CR in a refractive 

optical system of arbitrary symmetry. The OARs of the two outer wavelengths (1 and 2) 

are separated after refraction at the first surface and thus induce decentered intersection 

points on the following surfaces as well as decentered image points, which are the effects 

that are different from the traditional situation.  

Decenter on 

surface

Surface 1

Surface 2

Object 

plane CR
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y
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Fig. 4-3 The generalized chromatic aberrations in a non-rotationally symmetric refractive optical 

system. 

For each field point, the image distance is measured from the ray intersection point on the 

surface to the circle of least confusion, for example 𝑙1

′  and 𝑙2

′  for the two outer wavelengths. 

The location of the circle of least confusion depends on the astigmatism of the corresponding 

field. Therefore, the chromatic aberration in the longitudinal direction is influenced by the 
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monochromatic aberrations. To distinguish from the longitudinal chromatic aberration in the 

traditional case, the generalized longitudinal chromatic aberration is called “chromatic image 

variation”. The aberrations along the longitudinal direction for different types of optical 

systems are compared in Table 4-1. The coupling between chromatic and monochromatic 

aberrations can also be seen for the off-axis fields in the rotationally symmetric optical 

system when the CRs are oblique to the optical surfaces. The chromatic image variation is 

defined as the distance between the medial image shells of the two out wavelengths along 

the chief ray path of the central wavelength 0. The medial image shells are calculated by 

OAR or CR and parabasal coma rays. Therefore, the chromatic image variation is written as 

𝑙′ = 𝑙2

′ − 𝑙1

′  (4.3) 

which is a scalar value that computed individually for each field. Although 𝑙1

′  and 𝑙2

′  are 

not exactly along the chief ray path of the central wavelength, the slight tilting angle can be 

neglected. 

 Monochromatic aberrations Chromatic aberrations 

Axial field in rotationally 

symmetric system 
None 

Longitudinal 

chromatic aberration 

(analogous to defocus) 

Off-axis field in rotationally 

symmetric system 
Field curvature, astigmatism 

Chromatic image 

variation 

Fields in symmetry-free system Field curvature, astigmatism 
Chromatic image 

variation 

Table 4-1 Aberrations in the longitudinal direction for different types of optical systems. 

The generalized transverse chromatic aberration is defined with regard to the parabasal 

image plane of the on-axis field with central wavelength 0. One thing that should be noticed 

is that due to the possibility that the incidence plane rotates during ray propagation from 

surface to surface, the intersection points of the two outer wavelengths (1 and 2) and the 

central wavelength 0 may not lie on one line in the image plane. The transverse chromatic 

aberration has to be calculated between 1 and 0, 2 and 0, respectively. As shown in Fig. 

4-3, the transverse chromatic aberrations 𝑇⃗ 01 and 𝑇⃗ 02 are the vectorial difference of image 

intersection points between the two outer wavelengths and the central wavelength in the 

parabasal image plane of the central reference wavelength. Again, the difference between 

the generalized chromatic aberrations definitions in this thesis and the traditional definitions 

are compared in Table 4-2. 
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Traditional 

 
Generalized 

Longitudinal Transverse Longitudinal Transverse 

Ray Paraxial MR Paraxial CR  

CR, OAR & 

parabasal coma 

rays 

CR & OAR 

Intermediate 

image 

Paraxial image 

point 

Image plane 

perpendicular to 

OAR 

 

Medial image 

shell constituted 

by circle of least 

confusion for 

individual field 

points 

Parabasal image 

plane tilt to 

OAR 

Decenter of 

OAR 
No No  

Decenter on 

surface 

Decenter in 

image plane 

Table 4-2 Comparison between traditional and generalized chromatic aberrations. 

 

4.3 Ray-based calculation method 

After defining the concepts of the generalized chromatic aberrations, it is essential to 

compute them quantitatively. The ray-based calculation method introduced in this section is 

a numerical-analytical hybrid method, in which the physical quantities of the OAR or CR 

are obtained by ray-tracing, the image shells and the angular displacements between different 

wavelengths are calculated and transferred to the image space analytically. 

4.3.1 Chromatic image variation 

In general, the parabasal tangential and sagittal focal line differences are considered 

separately between the two outer wavelengths behind each surface. The differences at each 

intermediate image space are transported to the final image space and accumulated to get the 

total contribution in both cross sections. Then, the difference of the circles of least confusion 

between the two wavelengths is computed to get the chromatic image variation. 

Fig. 4-4 shows the propagation of the central ray (OAR or CR) starting from the object point 

O through the whole system to the image space. The locations of the sagittal focal lines are 

marked. The tangential focal lines are neglected in the plot because the principle in the 

tangential cross section is the same, only the focal distances are different.  

For an arbitrary field and the two outer wavelengths (1 and 2), the central ray is traced to 

get the object distance, incident and refracted angle, the local coordinate systems at each 

surface, respectively. The object distances for the two wavelengths before surface 1 are both 
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Surface 1

Surface 2
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(a)

(b)

 

 

l1
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Fig. 4-4 Propagation of the chromatic intermediate image points of OAR or CR (a) from surface 

to surface and (b) in the final image space in the sagittal cross section. Blue and red indicate the 

physical quantities of λ1 and λ2 respectively. The purple points show the virtual image points and 

their transformation to the image space. 

l1, the object-sided azimuthal angles are both 0. The image distances of the sagittal and 

tangential focal lines (𝑠′1,1
, 𝑡′1,1

, 𝑠′1,2
, 𝑡′1,2

) and the image-sided azimuthal angles ( 𝜃′1,1
, 

𝜃′1,2
) are computed by the generalized Coddington equations (2.12) to (2.14). In the 

following, only the sagittal cross section is discussed, the formulae for the tangential cross 

section are the same and can be obtained by substituting “s” to “t”. The blue and red points 

𝑠𝑂1,1

′  and 𝑠𝑂1,2

′  in Fig. 4-4 indicate the real sagittal foci. Another virtual sagittal image 

point 𝑠𝑉1(1)
′  is then found on the refracted ray of 2 which has the same sagittal focal distance 

as 1. The sagittal focal line difference generated by the first surface is  

∆𝑠′
1(1) = 𝑠′

1,2
− 𝑠′

1,1
= 𝑠𝑂1,2

′ 𝑠𝑉1(1)
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4.4) 

in which the subscript a(b) means that the value of the physical quantity is generated by 

surface a and propagated to surface b. The superscript s on the left side denotes that the 

corresponding physical quantity belongs to the sagittal cross section. 

After refraction at surface 1, the central rays are propagated to surface 2 to calculate the 

sagittal focal line difference generated by the second surface. The ray paths of the two 

wavelengths are separated now and intersect the following surfaces at different points, which 

cause an induced effect. In order to calculate intrinsic chromatic image variation of surface 

2, the object points of both wavelengths should be 𝑠𝑂1,1

′  and have the same object path as 

1. In order to take the induced effect under consideration, the object points of both 

wavelengths should be 𝑠𝑂1,1

′  and 𝑠𝑉1(1)
′ , respectively, which have the same sagittal image 
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distance to surface 1 but different distances between the two surfaces (𝑑1,1
, 𝑑1,2

) for the 

two rays. Therefore, the object distances for the two wavelengths are  

𝑠𝑖,1
= 𝑠′

𝑖−1,1
− 𝑑𝑖−1,1

, 𝑠𝑖,2
= 𝑠′

𝑖−1,2
− 𝑑𝑖−1,2

 (4.5) 

where 𝑖 = 2, 3,  , 𝑁 means that the relation is valid for the surfaces starting from the surface 

2. The azimuthal rotation of the focal lines from the image space of surface i-1 to the object 

space of surface i are computed by 

𝜃𝑖,1
= 𝜃′

𝑖−1,1
− 

𝑖,1
, 𝜃𝑖,2

= 𝜃′
𝑖−1,2

− 
𝑖,2

 (4.6) 

where i is the azimuthal angle between the incidence planes of surface i-1 and i. Then, the 

object point 𝑠𝑂𝑖−1,1

′  and 𝑠𝑉𝑖−1(𝑖−1)
′  are imaged to 𝑠𝑂𝑖,1

′  and 𝑠𝑉𝑖−1(𝑖)
′  by solving the 

generalized Coddington equations. Another virtual image point 𝑠𝑉𝑖(𝑖)
′  is constructed by the 

same principle of 𝑠𝑉1(1)
′ . Then the sagittal focal line difference generated by surface 𝑖(𝑖 ≠

1) is 

∆𝑠′
𝑖(𝑖) = 𝑠𝑉i−1(i)

′ 𝑠𝑉i(i)
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (4.7) 

which contains both intrinsic contribution from the current surface and induced contribution 

from the former surfaces. In this way, the sagittal focal line differences generated by each 

surface are obtained. In the next step, the sagittal focal line differences are transferred to the 

image space. The simplest way is to differentiate the generalized Coddington equations to 

find the connection between the focal line difference in the object and image space. Then we 

can magnify all ∆𝑠′
𝑖(𝑖) and ∆𝑡′𝑖(𝑖) to ∆𝑠′

𝑖(𝑁) and ∆𝑡′𝑖(𝑁). However this method is only valid 

when s’ and t’ are both small comparing to s’ and t’ due to the natural discrepancy 

between derivative and finite difference. For an accurate calculation, all the virtual and real 

intermediate sagittal foci are transferred into the image space by solving the generalized 

Coddington equations. Accordingly, the sagittal focal line differences coming from all the 

surfaces in the image space are 

∆𝑠′
𝑖(𝑁) = {

𝑂𝑁,2

𝑠 𝑉1(𝑁)
𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,

𝑉i−1(𝑁)
𝑠 𝑉i(𝑁)

𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,
  

if 𝑖 = 1
if 𝑖 = 2,3, , 𝑁

 (4.8) 

The total sagittal and tangential focal line differences are the summation of the surface 

contributions as 

∆𝑠′ = ∑∆𝑠𝑖(𝑁)
′

𝑁

𝑖=1

, ∆𝑡′ = ∑∆𝑡𝑖(𝑁)
′

𝑁

𝑖=1

 (4.9) 

In the end, by differentiating Eq. (4.2), the relation among the total chromatic image variation 

and total sagittal and tangential focal line differences can be achieved as 
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∆𝑙′ = ∑∆𝑙′𝑖 = ∑
𝑁𝐴′

𝑠 ∙ ∆𝑠𝑖(𝑁)
′ + 𝑁𝐴′

𝑡 ∙ ∆𝑡𝑖(𝑁)
′

𝑁𝐴′
𝑠 + 𝑁𝐴′

𝑡

𝑁

𝑖=1

𝑁

𝑖=1

 (4.10) 

which can also be written in the form of a surface summation. 

4.3.2 Transverse chromatic aberration 

After refraction at a single surface, the angular deflection of the chromatic refracted chief 

rays result in the transverse chromatic aberration in the image plane. Because of the rotation 

of incidence plane in the non-rotationally refractive optical systems, the transverse chromatic 

aberration is computed between the central wavelength 0 and the two outer wavelengths 1 

and 2, respectively. Fig. 4-5 shows the transformation of the transverse chromatic aberration 

between 0 and 2 generated at each surface to the image plane for an arbitrary field. 

Object 

plane

Surface 1

Surface 2

Surface N Image 

 

𝑦′

𝑥′
𝑥 

𝑦 

𝑧 

 

Surface 3 plane

 
Fig. 4-5 Propagation of ray vectors which are generated at each surface to the final image plane 

to get the transverse chromatic aberration. ∆𝐻⃗⃗  and 𝑇⃗  are in the local ray-incidence coordinate 

system of the last surface and coordinate system in the image plane, respectively. The image 

plane is defined with respect to the central wavelength λ0. 

Both wavelengths have the same direction cosine 𝑠̂ in the object space and are incident at 

the same point on surface 1. The surface normal at the incidence point is 𝑒̂1. Using the law 

of refraction in the vectorial form  

𝑛′𝑠̂′ = 𝑛𝑠̂ + 𝑒̂ [√𝑛′2 − 𝑛2 + (𝑛𝑒̂ ∙ 𝑠̂)2 − 𝑛𝑒̂ ∙ 𝑠̂]  (4.11) 

the direction cosines 𝑠̂1,0
 and 𝑠̂1,2

of both wavelengths behind the first surface are obtained. 

The angular difference between 𝑠̂1,0
 and 𝑠̂1,2

 is the contribution from the first surface.  

Then, green and red chief rays intersect surface 2 and the following surfaces at different 

points. The angular dispersion at the green chief ray intersection point is the intrinsic 

contribution from the current surface. The angular dispersion at the red chief ray intersection 

point includes both intrinsic and induced contributions. In the following, the steps to 

compute the total contribution of a surface are introduced. The calculation principle of the 

intrinsic aberration is the same, only the incident ray is different. Starting from surface 2, the 
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dispersion at the outer wavelength intersection point is calculated by using 𝑠̂𝑖−1,2
 as the 

object-sided direction cosine and substituting n and n’ of 0 and 2 respectively to Eq. (4.11). 

𝑠̂𝑖 shows the virtual ray path of 0 refracted at the red chief ray intersection point on the 

surface. Then the angular difference between 𝑠̂𝑖,2
 and 𝑠̂𝑖  is the overall contribution from 

surface i. 

Next, the surface contributions are transported to the final image space by linear 

transformation. The ray path described by the direction cosine  𝑠̂𝑖 = (𝛼𝑖, 𝛽𝑖, 𝛾𝑖) behind the 

surface i is governed by the ray vector ∆𝑟 𝑖 as [2-1] 

∆𝑟 𝑖 = [

𝑥𝑖
𝑦𝑖

𝑈𝑖

𝑉𝑖

] =

[
 
 
 
 
 

𝑥𝑖
𝑦𝑖

𝛼𝑖

𝛾𝑖
𝑛𝑖,0

′

𝛽𝑖

𝛾𝑖
𝑛𝑖,0

′

]
 
 
 
 
 

 (4.12) 

where xi and yi are the ray intersection point components on surface i in the local ray-

incidence coordinate system (x’, y’, z’), Ui and Vi are the numerical aperture of the ray in the 

x’z’- and y’z’- planes, 𝑛𝑖,0

′  is the refractive index of 0 behind the surface. The ray vectors 

∆𝑟 2, ∆𝑟 3, …, ∆𝑟 𝑁−1 are transferred to the final image space by the multiplication of the 44 

transformation matrix Mi at the following surfaces. The details of the transformation matrix 

are explained in Appendix A. Therefore, the ray vectors behind the last surface are 

∆𝑟′⃗⃗  ⃗
𝑖 =

[
 
 
 
 
𝑥𝑖

′

𝑦𝑖
′

𝑈𝑖
′

𝑉𝑖
′]
 
 
 
 

=

[
 
 
 
 
 
 

𝑥𝑖
′

𝑦𝑖
′

𝛼𝑖
′

𝛾𝑖
′ 𝑛𝑁,0

′

𝛽𝑖
′

𝛾𝑖
′ 𝑛𝑁,0

′

]
 
 
 
 
 
 

= {
MN ∙ MN-1 ∙  ∙ M𝒊+𝟏 ∙ ∆𝑟 𝑖, if 𝑖 = 2, 3, … ,𝑁 − 1

∆𝑟 𝑖, if 𝑖 = N
 (4.13) 

which is formulated in the local ray-incidence coordinate system of the last surface.  

The ray vectors give the information of the relative ray height and direction in the image 

space. Because the parabasal image plane is tilted to the reference chief ray, the ray 

intersection point on the image plane has to be calculated for each ray vector with their own 

propagation distance 𝑑𝑖
′ as 

(𝑥𝑖
′′, 𝑦𝑖

′′, 𝑧𝑖
′′) = (𝑥𝑖

′ + 𝑑𝑖
′ ∙ 𝛼𝑖

′, 𝑦𝑖
′ + 𝑑𝑖

′ ∙ 𝛽𝑖
′, 𝑧𝑖

′ + 𝑑𝑖
′ ∙ 𝛾𝑖

′) (4.14) 

Combining the real chief ray intersection points of both wavelengths 𝑂′0
= (𝑥1

′′, 𝑦1
′′,  𝑧1

′′) 

and 𝑂′2
= (𝑥𝑁+1

′′ , 𝑦𝑁+1
′′ ,  𝑧𝑁+1

′′ )  in the image plane, the surface-by-surface transverse 

chromatic aberration in the local ray-incidence coordinate system of the last surface can be 

written as 
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∆𝐻⃗⃗ 𝑖 = [𝑥𝑖+1
′′ − 𝑥𝑖

′′, 𝑦𝑖+1
′′ − 𝑦𝑖

′′, 𝑧𝑖+1
′′ − 𝑧𝑖

′′], 𝑖 = 1,2, … ,𝑁 (4.15) 

The transverse chromatic aberrations are transformed to the coordinate system of the image 

plane (xI, yI, zI) by 

𝑇⃗ 𝑖 = 𝐆 ∙ ∆𝐻⃗⃗ 𝑖
T

(4.16) 

 in which G is the rotational matrix between the coordinate systems (x’, y’, z’) and (xI, yI, zI). 

Now, the z component in 𝑇⃗ 𝑖 is exactly zero. The total transverse chromatic aberration is  

𝑇⃗ 02 = ∑𝑇⃗ 𝑖

𝑁

𝑖=1

 (4.17) 

 

4.4 Wavefront-based calculation method 

In this section, the generalized chromatic aberrations are calculated from the viewpoint of 

wavefront expansion. As introduced in section 2.4, the wavefront aberration is deduced from 

the optical path difference between the real rays and the ideal rays. Considering the 

chromatic effect for a single field, the ideal ray can be defined as the chief ray of the reference 

wavelength; the real rays can be defined as the chief ray and parabasal comas rays of another 

wavelength. By this approach, the chromatic image variation and the transverse chromatic 

aberration can be viewed as the defocus between the circles of least confusion of the two 

wavelengths and angular tilt between the chief rays of the two wavelengths. The real and 

ideal wavefronts are constructed in section 4.4.1. The additivity of the wavefront is 

demonstrated in section 4.4.2. The wavefront is fitted to obtain the chromatic aberrations in 

the last section.  

4.4.1 Real wavefront and reference sphere 

The parabasal ray bundle starting from an object point O is propagated to surface N as shown 

in Fig. 4-6. The chromatic ray paths are separated during propagation. As a result, the chief 

rays of the reference wavelength and the other wavelength intersect the surface at the points 

𝑃̅0 and 𝑃̅, respectively. The circles of least confusion of the two wavelengths are calculated 

by the generalized Coddington equations with the locations at 𝑂0
′  and 𝑂′. The tangential ray 

bundle is drawn and focused at the point 𝑂𝑡
′ . The sagittal ray bundle is omitted, but the 

sagittal focal point 𝑂𝑠
′ is shown.  

Typically, the reference sphere is constructed relative to the reference chief ray at the exit 

pupil. In order to simplify the calculation process, the reference sphere here is built with the 

vertex on the surface. The reason to do so is that each field is considered individually. There 

is no need to consider the common stop for the whole FOV. For each field, it can be assumed 
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that the stop is located at the intersection of the reference and real chief ray, which is close 

to the surface. Since the influence of varying radii of the reference sphere is of higher order 

[4-1], the small shift between the stop and the surface can be neglected. Otherwise, huge 

calculation is necessary and time-consuming, especially when the number of surfaces is large.  

Surface N

Surface N

Reference 

sphere

Real 

wavefront

𝑂0
′

𝑂𝑠
′

𝑂𝑡
′

𝑂′

𝜑

Real 

wavefront

Reference 

sphere

Reference 

IMA

𝑂′′𝑄0
𝑄𝑁(a)

(b)

𝑂0
′

𝑂𝑠
′

𝑂𝑡
′

𝑂′𝑄0 𝑄𝑁

 
Fig. 4-6 Construction of reference sphere for (a) tilt and (b) defocus. 

Two types of the generalized chromatic aberrations have to be discussed separately because 

the reference spheres in both cases are constructed differently due to the displacement of the 

chromatic chief rays on the surface. For the transverse chromatic aberration shown in Fig. 

4-6 (a), the reference sphere is drawn as green dashed curve with vertex at the point 𝑃̅ and 

radius equal to 𝑃̅𝑂0
′ . The real chief ray intersects the reference image plane at the point 𝑂′′. 

According to the definition, the total transverse chromatic aberration behind surface N is 

|𝑇⃗ | = 𝑂0
′𝑂′′, and the tilt angle is j. Under this configuration, the defocus is the difference 

between 𝑃̅𝑂′ and 𝑃̅𝑂0
′ . However, the chromatic image variation according to the definition 

should be the difference between 𝑃̅𝑂′ and 𝑃̅0𝑂0
′ . Since 𝑃̅𝑂0

′  and  𝑃̅0𝑂0
′  are not exactly equal, 

another configuration as shown in Fig. 4-6 (b) is established to calculate the chromatic image 

variation. In this setup, a point 𝑉0
′ is found on the real chief ray to fulfill the requirement that 

the radius of the reference sphere 𝑃̅𝑉0
′ equals 𝑃̅0𝑂0

′ . Finally, s’ and t’ are the sagittal and 

tangential defocus, and l’ is exactly the chromatic image variation. 

The wavefront aberration consists of the optical path differences between the real and ideal 

rays. For an arbitrary real ray, for example, the real tangential coma ray with the optical path 

[𝑂𝑄𝑁𝑂𝑡
′] is considered, its optical path from O to the real wavefront is [𝑂𝑄]. 𝑄𝑁 is the ray 
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intersection point on the surface. The ideal ray path to the reference sphere is [𝑂𝑄0]. 𝑄0 is 

the intersection point between the refracted ray 𝑄𝑁𝑂𝑡
′ and the reference sphere. The optical 

path difference for the real tangential coma ray is computed as 

OPD = [𝑂𝑄] − [𝑂𝑄0] = [𝑂𝑃] − [𝑂𝑄0] (4.18) 

which can be input into Eq. (2.15) to calculate the wavefront aberration WN. [..] represents 

the optical path length. [𝑂𝑄] is substituted to [𝑂𝑃] because all the points on the same 

wavefront have the same optical path length. 

4.4.2 Additivity of phase 

Using the method introduced in the former section, the chromatic wavefront aberration Wi  

behind every surface can be achieved as shown in Fig. 4-7, which is the accumulated 

wavefront deviation contributed from the first surface until surface i. The total chromatic 

wavefront aberration of the system is WN. The chromatic wavefront aberration Wi generated 

by a single surface i has the following relation 

∆𝑊𝑖 = {
𝑊1, if 𝑖 = 1

𝑊𝑖 − 𝑊𝑖−1, if 𝑖 = 2,3, … ,𝑁
 (4.19) 

Accordingly, the total chromatic wavefront aberration can be rewritten as  

𝑊𝑁 = 𝑊1 + (𝑊2 − 𝑊1) +  + (𝑊𝑁 − 𝑊𝑁−1) = ∑∆𝑊𝑖

𝑁

𝑖=1

 (4.20) 

It shows that the total chromatic wavefront aberration is the summation of single surface 

contribution. It proves mathematically that the generalized chromatic aberrations are 

additive. 

Surface N

Surface 1

Surface 2

 
Fig. 4-7 Total chromatic wavefront aberration behind each surface. 

4.4.3 Fitting of the chromatic aberrations 

Next step is to expand the wavefront aberration into defocus and tilt and to derive the 

chromatic image variation in the longitudinal direction and transverse chromatic aberration 

in the lateral directions from the mathematical relation between the wave and ray aberrations. 

The optical path of a ray can be obtained by finite raytracing. The circle of least confusion, 

tangential and sagittal focal lines are computed analytically. Since the aberrations in the 
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tangential and sagittal cross sections are different, and both defocus and tilt are of the 2nd 

order,  the wavefront aberration behind surface i is expanded up to the second order in both 

x- and y-pupil coordinates as follow 

𝑊𝑖(𝑥𝑝, 𝑦𝑝) = 𝜀1𝑥𝑝 + 𝜀2𝑦𝑝 + 𝜀3𝑥𝑝
2 + 𝜀4𝑦𝑝

2 + 𝜀5𝑥𝑝𝑦𝑝 (4.21) 

where 1 to 5 are the coefficients that need to be fitted, xp and yp are tilt terms, 𝑥𝑝
2 and 𝑥𝑝

2 

are defocus terms, xpyp shows the rotation of focal lines during propagation. There are in 

total five terms. Therefore, the information of five rays is demanded to get the unique fitting 

result. The five rays are chosen as the chief ray, upper and lower sagittal and tangential 

parabasal coma rays of the wavelength under consideration. If the pupil coordinates are the 

same as the local ray-caustic coordinate system at each surface, the normalized xp and yp for 

these five rays on each surface are always (0, 0), (1, 0), (-1, 0), (0, 1), (0, -1). The term xpyp 

is therefore zero. If the pupil coordinates coincide the local ray-incidence coordinate system 

at each surface, the xpyp indicates the azimuthal rotation of astigmatism. After fitting, the 

five terms in Eq. (4.21) are decoupled. 

The relation between the wave aberration and transverse aberration for the tilt term is 

{
 
 

 
 𝑊𝑡𝑖𝑙𝑡𝑥 = 𝜀1𝑥𝑝 = −

𝑛′𝑥𝑝

𝑅ref
∆𝑥′ = −𝑁𝐴𝑠

′∆𝑥′

𝑊𝑡𝑖𝑙𝑡𝑦 = 𝜀2𝑦𝑝 = −
𝑛′𝑦𝑝

𝑅ref
∆𝑦′ = −𝑁𝐴𝑡

′∆𝑦′

 (4.22) 

where Rref is the radius of the reference sphere, x’ and y’ are the x- and y-components of 

transverse chromatic aberration on the local image plane with reference to the chief ray of 

individual field. The final transverse chromatic aberrations have to be projected onto the 

common image plane, which is the parabasal image plane of the OAR for the central 

wavelength. 

The relation between the wave aberration and longitudinal aberration for the defocus term is 

{
 
 

 
 𝑊𝑑𝑒𝑓𝑜𝑐𝑢𝑠𝑥 = 𝜀3𝑥𝑝

2 = −
𝑛′

2
(

𝑥𝑝

𝑅ref
)
2

∆𝑠′ = −
1

2𝑛′
𝑁𝐴𝑠

′ 2
∆𝑠′

𝑊𝑑𝑒𝑓𝑜𝑐𝑢𝑠𝑦 = 𝜀4𝑦𝑝
2 = −

𝑛′

2
(

𝑦𝑝

𝑅ref
)
2

∆𝑡′ = −
1

2𝑛′
𝑁𝐴𝑡

′ 2∆𝑡′
 (4.23) 

After obtaining s’ and t’, the chromatic image variation l’ can be obtained by Eq. (4.10). 

 

4.5 Influence of chromatic pupil aberration 

The pupil discussed in this section is not the local stop on the individual chief ray to construct 

the reference sphere as mentioned in section 4.4.1, but the stop of the whole system. In an 
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optical system suffering from chromatic aberrations, the chromatic pupil aberrations also 

exist because the object and the pupil imaging conditions can change from the one to the 

other by the exchange of MR and CR. In the former discussion, the chief rays of different 

colors have the same ray path in the object space when they are starting from the same object 

point. This is true only if the stop is in the object space, such as scanning systems or some 

cell phone camera systems. In most optical systems, the stop is located somewhere inside 

the system. Due to the chromatic pupil aberration, the entrance and exit pupils (EnP and ExP) 

of different wavelengths are displaced along the axis as shown in Fig. 4-8, which is similar 

to the “pupil walking” effect in the monochromatic aberrations [4-1]. But the reason for the 

pupil shifting effect is different between chromatic and monochromatic aberrations. In the 

chromatic case, the pupil shifts because of the dispersion of material. However, in the 

monochromatic case, the pupil shifts due to the aberration of chief ray. As a consequence of 

the entrance pupil displacement, the ray paths of the chromatic chief rays from the same 

object point are different, and should be taken into consideration during calculation. 

Object plane Image plane

StopEnP1 EnP2 ExP1ExP2

y

 
Fig. 4-8 Displacement of pupils between two wavelengths due to the chromatic pupil aberration. 

Fig. 4-9 shows the separated chief ray paths in the object space for two wavelengths. Now 

the two wavelengths have their own object distances, incidence angles, direction cosines and 

surface normals, but the azimuthal angles are still both zero because the tangential plane of 

the ray bundle coincides with the incidence plane in the object space. When calculating the  

generalized Coddington equations and the vectorial refraction equation, the corresponding  

physical quantities must be substituted for the two wavelengths individually. In the wave- 

Surface 1
 

Fig. 4-9 Separated chief ray paths for two wavelengths and their own physical quantities. 
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front-based method, the modified ray paths are traced due to the chromatic pupil aberration, 

the chief ray displacement on the first surface is then automatically included. 

 

4.6 Examples 

In the remaining part of this chapter, four examples are given to verify the ray-based and 

wavefront-based calculation methods and the unification of the definition of the generalized 

chromatic aberrations for the optical systems with arbitrary symmetry. In order to present 

and evaluate the generalized chromatic aberrations in a meaningful way, the chromatic 

image variation is normalized by the diffraction limit criterion in the longitudinal direction, 

which is the Rayleigh unit (RL) or also called as the depth of focus of the central wavelength. 

Correspondingly, the Airy diameter (DAiry) of the central wavelength, which shows the 

diffraction limit condition in the transverse direction, is used to normalize the transverse 

chromatic aberration. 

4.6.1 Double Gauss system 

Double Gauss system is a group of photographic systems with two quasi-symmetric lens 

groups and a stop in the middle. The quasi-symmetric structure of the systems ensures the 

excellent suppression of the odd order aberrations, such as coma, distortion and lateral color. 

The layout of a double Gauss example system provided by OpticStudio [4-2] is shown in 

Fig. 4-10. Dark and bright orange indicate different flint glasses, and yellow shows the crown 

glass. Table 4-3 lists the basic data. The double Gauss system is rotationally symmetric. 

Thus, the second order longitudinal and transverse chromatic aberrations are well described 

by the Seidel aberrations. Since the generalized chromatic aberrations are of full orders and 

generated for systems with arbitrary symmetry, they are also compatible with the rotationally 

symmetric system and should give the same results as the Seidel aberrations in the paraxial 

region where the influence of higher order chromatic aberrations can be neglected. Therefore, 

the object field to calculate transverse chromatic aberration is set as 0.5°.  

100mm

6 (Stop)

1 2

3
4 5

7 8 9 10 11

IMA

 
Fig. 4-10 Layout of the double Gauss system. 
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Parameters Values 

Focal length 101.6mm 

F-number 1 

Wavelengths F’eC’-lines 

Table 4-3 Basic data of the double Gauss system. 

The surface-by-surface longitudinal and transverse chromatic aberrations of the double 

Gauss system are shown in Fig. 4-11. Ray-based and wavefront-based results are calculated 

from the methods introduced in sections 4.3 and 4.4. The results of Seidel aberrations are 

read from OpticStudio. From the bar graph, the good consistency among the three methods 

can be clearly seen despite some minor differences. The results prove the convergence of the 

definitions given in this thesis for the special case of circular symmetry. The reason for the 

slight difference is the nonlinearity of the material dispersion. The ray- and wavefront-based 

methods use the exact values of the refractive indices to calculate the chromatic aberrations.  

However, referring back to section 2.4.1, Seidel derived the chromatic aberrations by 

differentiating the refractive index as a function of wavelength, in which the non-linear 

dispersion curve of the material is approximated to be linear. In addition, the bar graph 

proves that the transverse chromatic aberrations can be compensated by the quasi-symmetric 

 
Fig. 4-11 Surface-by-surface comparison of (a) the longitudinal chromatic aberration and (b) the 

transverse chromatic aberration generated by the three methods. 
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structure of the double Gauss system because the surface contributions are nearly symmetric 

around the stop (surface 6) with the opposite sign and the total transverse chromatic 

aberration is diffraction limited. However, the residual longitudinal chromatic aberration is 

still dramatic.  

4.6.2 Stereomicroscope 

The second example is a simple setup of a stereomicroscope system, which can be seen from 

Fig. 4-12. It contains three lens groups - an objective lens for imaging, a Galilean telescope 

for change of magnification, and a tube lens for refocusing. The objective lens with a rear 

freeform surface is decentered to allow for two channels for binocular vision. The basic data 

is listed in Table 4-4.  

100mm

11 (Freeform) 

Tube 

lens

Galilean 

telescope

Objective 

lens

IMA

1 2 3 4 56 7 8 9 10

 
Fig. 4-12 Layout of the stereomicroscope for one eye channel. 

Parameters Values 

Focal length 60mm 

FOV (xy) 14mm14mm 

Object-sided NA 0.03 

Wavelengths F’eC’-lines 

Table 4-4 Basic data of the stereomicroscope. 

First, the surface contributions to the chromatic image variations in this system are calculated 

by both ray- and wavefront-based methods and plotted in Fig. 4-13 for the maximum field 

corner x, y=7mm. It can be seen that the results obtained by both methods are nearly identical. 

The slight differences are due to the higher order effects caused by changing the radii of the 

reference spheres behind each surface in the wavefront-based method. The line chart shows 

the accumulated chromatic image variation behind each surface. Apparently, the chromatic 

image variations are well corrected in the first two lens groups because of the utilization of 

the achromats. The major chromatic image variation is caused by the single objective lens. 

The surface contributions to the transverse chromatic aberrations between the eF’-lines are 

also calculated by the two methods for the same field corner and compared in Fig. 4-14. 

Because the transverse chromatic aberrations are vectors, the x- and y-components are 
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Fig. 4-13 Surface-by-surface chromatic image variations calculated by ray- and wavefront-based 

methods. 

plotted, respectively. The quantitative values for both components can be found in Appendix 

B. In the rotationally symmetric optical system, the transverse chromatic aberration of the 

field point with equal x- and y-heights has the same amplitude in x- and y-components. It is 

also true in this stereomicroscope for the transverse chromatic aberrations at the first 9 

spherical surfaces, which are aligned on the same optical axis. Therefore, only the x-

components are plotted for these surfaces. The minor difference between the x- and y- 

directions is due to the asymmetric lateral magnification coming from the decentered 

objective lens. From the accumulated line chart, the transverse chromatic aberrations are also 

well corrected in the first two lens groups. The decentered objective lens results in unequal 

values and opposite signs between the two components. 

  
Fig. 4-14 Surface-by-surface transverse chromatic aberrations between the eF’-lines calculated 

by ray- and wavefront-based methods. 

Since the distribution of the generalized chromatic aberrations is no longer symmetric 

around the on-axis field for the whole FOV, the full-field display is helpful to analyze the 



4 Quality Assessment of Chromatic Aberrations in Refractive Freeform Systems 

66 

 

chromatic performance among different field points. In Fig. 4-15, the surface-by-surface 

chromatic image variations of the OAR are chosen as the nominal values. The full-field 

displays of the chromatic image variations in surfaces 8, 11, and image plane are plotted as 

the difference to the nominal values. Surface 8 is inside the rotationally symmetric 

configuration, and the CR paths are rotationally symmetric around the OAR. However, due 

to the asymmetric axial magnification introduced by the off-axis objective lens and the 

freeform surface, the full-field contribution from surface 8 is no longer rotationally 

symmetric. The fields, which have the same contribution as the on-axis field, are located on 

the dashed curve. The fields above (or below) the curve have smaller (or larger) contributions 

than the on-axis field. The full-field distribution on surface 11 behaves different. Because of 

the positive and negative compensation among the surfaces, the full-field distribution in the 

image plane is nearly rotationally symmetric. 

 
Fig. 4-15 (a) Surface-by-surface chromatic image variations of the on-axis field. The full-field 

display of surfaces (b) 8, (c) 11 and (d) image plane are shown as the difference between the on-

axis field and other fields. The dashed curves mark the fields, which have the same contribution 

as the on-axis field. 
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Fig. 4-16 Full-field display of the transverse chromatic aberration between the (a) eF’-lines and 

(b) eC’-lines. 

IMA in X [mm]
-2 -1 0 1 2

-2

-1

0

1

2

IM
A

 i
n

 Y
 [

m
m

]

(a) Surf 1-9

IMA in X [mm]
-2 -1 0 1 2

-2

-1

0

1

2

IM
A

 i
n

 Y
 [

m
m

]

(b) Surf 10

IMA in X [mm]
-2 -1 0 1 2

-2

-1

0

1

2

IM
A

 i
n

 Y
 [

m
m

]

(c) Surf 11

IMA in X [mm]
-2 -1 0 1 2

-2

-1

0

1

2

IM
A

 i
n

 Y
 [

m
m

]

(d) IMA

 
Fig. 4-17 Full-field display of the transverse chromatic aberration between the eF’-lines after 

removing the decentering effect for (a) the summation of surfaces from 1-9, (b) surface 10, (c) 

surface 11 and (d) the image plane. 

The full-field display of the transverse chromatic aberrations is plotted for eF’-lines and eC’-

lines separately in Fig. 4-16 because the two arrows indicating the contribution from the 

same surface in the two spectral ranges are not aligned in the non-rotationally symmetric 

systems, although it is not evident in this example. Also, for a single field point, the arrows 

of different surface contributions are not on the same line, which shows the asymmetric 

property of the system. The accumulated contribution of the first nine surfaces can barely be 
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seen. The reason has already been mentioned before. The on-axis field also suffers from 

transverse chromatic aberration because the OARs of varying wavelengths are decentered in 

the image plane. In order to reveal the real transverse chromatic aberration, the contribution 

of OAR is removed in Fig. 4-17 using the eF’-lines as an example. It can be seen that the 

full-field displays are nearly symmetric now. The contribution from surface 11 is also tiny. 

The main contribution is coming from surface 10. 

4.6.3 Anamorphic photographic lens 

The anamorphic photographic lens [4-3] analyzed in this section has 28 surfaces including 

2 freeform surfaces, 1 aspherical surface, 7 cylindrical surfaces and 18 spherical surfaces. 

The 3D layout of the system is shown in Fig. 4-18. The basic data is given in Table 4-5. The 

stop is located in the rear part of the system and set as a circular shape. Therefore the exit 

pupil is nearly symmetric in the tangential and sagittal cross sections. The system transfers 

the rectangular object into a squared image. The ratio between the sagittal and tangential 

magnifications is 2. 
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10 11
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Fig. 4-18 3D layout of the anamorphic photographic lens. 

Parameters Values 

Wavelengths F’eC’-lines 

FOV xy (°) 48.421.4 

Tangential focal length (mm) 50 

Sagittal focal length (mm) 25 

Tangential F-number 1.48 

Sagittal F-number 1.31 

Effective F-number 1.39 

Table 4-5 Basic data of the anamorphic photographic lens. The effective F-number is the average 

of the tangential and sagittal F-numbers. 

In order to evaluate the chromatic pupil aberration in such a complex optical system, the 

total chromatic aberrations of the outermost field corner x=24.2°, y=10.7° are computed by 

both original and improved methods as shown in Table 4-6. The difference of 9.68% in the 

chromatic image variation and 4.55% in the y-component of transverse chromatic aberration 
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show that the chromatic pupil aberration in this system cannot be neglected. Therefore, the 

generalized chromatic aberrations in this system have to be calculated by the modified chief 

ray path. 

 Original Improved Error 

Chromatic image variation (F’C’-lines) 11.992RL 13.277RL 9.68% 

Transverse chromatic aberration 

x-component (eC’-lines) 
1.640DAiry 1.637DAiry 0.18% 

Transverse chromatic aberration 

y-component (eC’-lines) 
0.189DAiry 0.198DAiry 4.55% 

Table 4-6 Comparison between original and modified calculations for the outermost field corner. 

The full-field display of the chromatic image variation in the image plane is shown in Fig. 

4-19. The chromatic image variations of the fields in the central region are positive. The 

chromatic image variations are negative for the fields at the edge. In between, two nodal 

points with zero chromatic image variation can be found on the x-axis with the field angles 

x=±20.74°. The distribution of the full-field display is double plane-symmetric, which 

corresponds to the symmetry of the anamorphic system. 

 
Fig. 4-19 Full-field display of the chromatic image variation in the image plane. Green circles 

indicate the nodal points without chromatic image variation. Red means negative, blue means 

positive values. 

The full-field displays of the chromatic image variation contributed from the freeform 

surface 13 and the aspherical surface 19 are shown in Fig. 4-20. The bars indicate the 

difference between the on-axis field and other fields. It can be seen that the fields on the two 

axes have nearly the same contribution from the freeform surface. The irregular distribution 

for the off-axis fields in the four quadrants show the local slope change of the freeform. 

Compared with the freeform surface, the full-field distribution of the aspherical surface is 

much smoother because the aspherical surface is still rotationally symmetric. 
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Fig. 4-20 Full-field displays of chromatic image variation on (a) freeform surface 13 and (b) 

aspherical surface 19 shown as the difference between the on-axis field and other fields. 

The surface-by-surface chromatic image variations of the outermost field x=24.2°, y=10.7° 

are shown in Fig. 4-21. Different types of surfaces are filled with different colors. The 

compensation of the chromatic image variation among the surfaces can be seen from the 

accumulated curve. Accordingly, the system can be classified into three lens groups 

(surfaces 1-9, 10-18, 19-28) in which the chromatic image variation is compensated. This 

general lens groups classification based on the achromatization matches the change of ray 

bundle diameter in the system. 

 
Fig. 4-21 Surface contributions to the chromatic image variation for the outermost field. 

The full-field display of the transverse chromatic aberrations in the image plane is drawn in 

Fig. 4-22. The grid shows the intersection of the reference chief rays (e-line) in the image 

plane. The straight dashed lines demonstrate that the distortion in this system is well 

corrected for the whole FOV. The transverse chromatic aberrations between eF’-lines and 

eC’-lines are plotted individually as vectors pointing from the central wavelength to the 

boundary wavelengths. In rotationally symmetric systems, the two vectors are on the same 

line and point to the opposite direction because the incidence planes for all the fields do not 
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rotate from surface to surface. In non-rotationally symmetric systems, the two vectors are no 

longer on the same line and even pointing oppositely, which is demonstrated in this example.  
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Fig. 4-22 Full-field display of the transverse chromatic aberration in the image plane. 

It can also be observed that the fields in the central region have diffraction-limited size of 

transverse chromatic aberration and the transverse chromatic aberration of eF’-lines are 

smaller than eC’-lines. The situation in the edge region is more critical. 
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Fig. 4-23 Full-field displays of the transverse chromatic aberration on (a) freeform surface 13 

and (b) aspherical surface 19. 

Again, the full-field displays on the freeform surface 13 and aspherical surface 19 are plotted 

in Fig. 4-23. On the freeform surface, the extensions of the arrows never cross the center 

point (0, 0), which are different from the spherical surface because of the local slope change 
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on the freeform surface. The contributions on the two example surfaces are opposite to each 

other, but the magnitude on surface 19 is nearly three times larger than surface 13. 

The surface contributions of the transverse chromatic aberrations in x- and y-directions 

between the eF’-lines are shown in Fig. 4-24 for the outermost field. In this anamorphic lens, 

both freeform surfaces have smaller contributions than the aspherical surface. The difference 

between the x- and y-directions on the freeform surface 2 is larger than the aspherical surface 

because the x- and y-radius of curvatures are decoupled on the freeform surface. However, 

the effect is not significant because the freeform surfaces have spherical basic shape. The 

decoupling effect is more obvious for the cylindrical surfaces in which the x- and y-radii are 

fully decoupled. 

 
Fig. 4-24 Surface contributions to the transverse chromatic aberration between the eF’-lines for 

the outermost field corner in (a) x- and (b) y-direction. 
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4.6.4 HMD system 

The performance of the generalized chromatic aberrations in HMD systems is of interest 

because this kind of system contains both refractive and reflective surfaces. The HMD 

system designed by Chen et al. [4-4] is employed here for analysis. The system layout is 

shown in Fig. 4-25 with a front stop. The first refractive surface is an anamorphic freeform; 

the second surface is a planar mirror; the third surface is an anamorphic freeform mirror; the 

last refractive surface is spherical. The basic data are listed in Table 4-7. Although the system 

was designed for a single wavelength, F’eC’-lines are used here to show the chromatic 

properties of the system. 

Stop

IMA

Freeform

Plano 

mirror

Freeform mirror

Spherical

 
Fig. 4-25 Layout of the HMD system. 

Parameters Values 

FOV (xy) 50°30° 

Image-sided NA 0.05 

Wavelengths F’eC’-lines 

Table 4-7 Basic data of the HMD system. 

The surface-resolved chromatic image variations of the on-axis field are plotted in Fig. 4-26. 

It can be seen that only the first and the last refractive surfaces contribute to the total 

chromatic image variation. The contributions of the inner two mirrors are zero. Both 

refractive surfaces have positive contributions because they both have positive focal power 

and are made of the same material. Therefore, there is no chance to correct chromatic image 

variation in this system. 
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Fig. 4-26 Surface contributions to the chromatic image variation for the on-axis field. 

The full-field displays of the chromatic image variation from the first surface to the final 

image plane are shown as the difference to the on-axis field in Fig. 4-27. The distributions 

are all plane-symmetric correspond to the structure of the HMD system. It is worth noting 

that the contributions for the fields of the two mirror surfaces are non-zero except the on- 

axis field. However, in common sense, the mirrors should not have chromatic aberrations. 

The violation is due to the induced chromatic aberration coming from the first refractive 

surface. The OAR is perpendicular to the first freeform surface, which means that the 

chromatic OARs do not separate after the first surface, and the ray paths for all the chromatic 

OARs are the same in between the surfaces. When the OARs are reflected by the mirrors, 

they have the same input parameters such as object distance, incidence angle and refractive 

index. Therefore, they have the same image distance, and the contributions of the mirrors 

are zero. However, the chief rays are inclined to the first refractive surface for the other fields, 

and the chromatic CRs are separated after refraction. They have different object distances 

when they reach the mirrors, resulting in the chromatic image variation. It is important to 

clarify here that the chromatic image variations generated at the mirrors are the induced 

aberrations from the former surface but not the intrinsic contribution of the mirrors. 
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Fig. 4-27 Full-field display of the chromatic image variation plotted as the difference to the ona-

axis field on each surface (a)-(d) and in the image plane (e). 

In Fig. 4-28, the surface contributions to the chromatic image variation are classified into 

the intrinsic and induced aberrations for the on-axis field and the outermost corner field. It 

can be clearly seen that the on-axis field has no induced aberration, but the outermost field 

has induced aberration starting from the second surface. The intrinsic aberrations on the 

mirrors are zero. 
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Fig. 4-28 Intrinsic, induced and total contributions on each surface for the (a) on-axis field and 

(b) outermost field. 

The full-field transverse chromatic aberrations in the image plane are drawn in Fig. 4-29. 

The distorted grid of the central wavelength shows that distortion is not well corrected in the 

system. The Airy disk can hardly be seen in the plot, which shows that the extremely large 

transverse chromatic aberrations are remained for the whole FOV. 

5 100-5-10

IMA in X [mm]

IM
A

 i
n
 Y

 [
m

m
]

eF'-Lines eC'-Lines Airy Disk

IMA

-10

-5

0

5

10

-15
-20 -15 15

15

20

 
Fig. 4-29 Full-field display of transverse chromatic aberrations in the image plane. 

The surface contributions to the transverse chromatic aberrations are shown in Fig. 4-30 in 

the full-field display. Obviously, for all the fields, the major contribution are coming from 

the first refractive freeform surface. The two mirrors have exactly zero contribution, which 

is different from the case of chromatic image variation. This is because the angular 

displacement between the chromatic CRs does not change if there is no material dispersion. 

Therefore, the mirrors have neither intrinsic nor induced transverse chromatic aberrations. 
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Also, the last refractive freeform surface has nearly no contribution. The reason can be 

checked from the system layout in which the incidence angles of the CRs are nearly zero at 

the last surface, thus the angular displacement between the chromatic CRs is considerably 

small.  
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Fig. 4-30 Full-field transverse chromatic aberration drawn for each surface. 
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Inspired by Sekman et al. who reconstructed the manufacturing surface errors by fitting the 

unwrapped phase pattern with polynomial expansions [5-1], a method to identify the 

boundary frequency between deterministic and statistical errors is put forward by 

understanding the behavior of the autocorrelation function of the unwrapped phase pattern 

in different frequency ranges. Then, a comprehensive model, which describes all types of 

surface errors, is established with the workflow chart. A synthetic surface is generated 

accordingly and inserted back to OpticStudio to analyze the influence of the surface errors 

and predict the performance of the real optical system. 

 

5.1 Autocorrelation function of unwrapped phase pattern and its 

characterization 

When investigating the manufactured freeform surface errors, the surface errors are 

transformed into the frequency domain by DFT. It takes only the amplitude part to plot the 

PSD. The phase information is lost. However, the phase terms determine the locations of the 

signals in the spatial domain. Sekman et al. unwrapped the phase function gained from DFT, 

which is between , by the transport of intensity equation (TIE) [5-2] to obtain a continuous 

phase pattern. According to their findings, the behavior of the unwrapped phase pattern 

between the deterministic and statistic errors is significantly different. This section continues 

with their work to benchmark the difference of the behavior by characterizing the 

autocorrelation function (ACF) of the unwrapped phase patterns in different frequency 

ranges. The ACF can be calculated by the Wiener - Khinchin theorem [5-3] 

ACF = real (iFFT (FFT() ∙ conj(FFT()))) (5.1) 

for discrete points. The phase pattern  is normalized in advance. ACF shows the similarity 

between the data points. The values of ACF pattern are within 1. 1 represents perfect 

correlation, −1 represents perfect anti-correlation, and 0 represents no correlation. 

In the following, three examples – the first two belonging to deterministic errors and the last 

one belonging to statistical errors – are given to show the properties of their ACFs. Then, 

the difference between the ACFs is summarized. 

As a first example, assuming a local surface error described by the RBF with an amplitude 

of 1mm, a center at (0.5, 1.5) and w=0.5mm. The surface is shown in Fig. 5-1 (a). Its 2D 
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PSD and unwrapped phase pattern in the frequency domain are shown in Fig. 5-1 (b) and 

(c). The FT of a Gaussian function remains Gaussian shape, but with the shape factor 

𝑤′ =
1

𝜋𝑤
 (5.2) 

The logarithmic PSD shows a clear boundary at 4w’=2.55/mm. 99.9937% of the total energy 

is inside the circle with a radius of 4w’ [5-4]. It means that the phase inside this area is 

meaningful, but the phase outside is dominated by digital noise. This can also be seen in the 

phase pattern that the digital noise behaves smoothly with the same speed, and results in a 

tilted background plane. Therefore, it is important to distinguish between the meaningful 

and meaningless phase contributions.   
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Fig. 5-1 (a) Surface error described by a Gaussian function in the spatial domain, and its (b) PSD 

and (c) unwrapped phase in the frequency domain. 

Taking a square in the frequency domain with a half width of 4/mm so that the selected area 

is slightly larger than the meaningful area, then removing the background tilt in the 

unwrapped phase pattern, the PSD and unwrapped phase are plotted in Fig. 5-2. It can be 

noted in the phase pattern that the boundary between the meaningful and meaningless areas 

is sharp. The tilt of the meaningful pattern relates to the shift of the center of the Gaussian 

function in the spatial domain. 

 
Fig. 5-2 (a) 2D PSD with the half width of 4/mm, which is a little bit large than 4w’ and (b) the 

corresponding unwrapped phase pattern after removing tilt. 
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Then, applying several square windows with the half widths from 1 to 4/mm and equal 

spacing of 0.5/mm on the unwrapped phase pattern (hereafter, the background tilt in the 

unwrapped phase pattern is removed in default) to choose the sub-patterns in different 

frequency regions and calculate their ACFs. Fig. 5-3 shows the ACFs for seven different 

windows. In the first four frequency regions, the ACFs keep the same width. Then, for larger 

frequencies, the width of ACF shrinks. Therefore, the half width at half maximum (HWHM) 

of the central peak can be utilized to measure the weight of the deterministic error in a 

specific frequency region.  
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Fig. 5-3 ACF of the unwrapped phase pattern for seven frequency regions. 

Since the ACF patterns are anisotropic, the average of the HWHMs in both x- and y-

directions (hereafter denoted as HWHM) is computed and plotted in Fig. 5-4 (a) for each 

frequency region. The HWHM is linearly increasing within the meaningful region, which is 

shadowed. The dashed line shows the linear fit of the first four points. The last three points 

are clearly deviated to the dashed line, which reveal the influence of digital noise. In Fig. 

5-4 (b), the normalized HWHM in each frequency region, which is the ratio between the 

HWHM and the maximum frequency in the corresponding region, are drawn. The 

normalized HWHMs within the meaningful region are nearly the same, again indicating that 

the HMWHs have the same slope. The last three normalized HWHMs are decreasing that 

correspond to the decrease of the HMHM in the ACF pattern. 
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Fig. 5-4 (a) HWHM and (b) normalized HWHM in the ACF of unwrapped phase pattern. The 

frequency region in which the phase pattern contains meaningful signals is shadowed in grey. 

The second example shows the cosine ripples with a period of 0.5mm to verify the property 

of ACF for the deterministic errors. The periodic structure, the 2D PSD with a selected 

boundary at 4/mm that is slightly larger than the frequency of the ripples at 2/mm, and the 

corresponding unwrapped phase pattern are shown in Fig. 5-5. A specific local feature is 

shown in the area around 2/mm of the unwrapped phase pattern.  
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Fig. 5-5 (a) Cosine ripples with a period of 0.5mm in the spatial domain, and their (b) PSD and 

(c) unwrapped phase in the frequency domain. 

Again, seven equally sampling windows with the same sizes as the cases in the Gaussian 

function are applied to the unwrapped phase to calculate the ACFs. The change of HWHM 

of the ACFs is drawn in Fig. 5-6 (a). It is interesting to see that, although the deterministic 

frequency is at 2/mm, the linear growth of the HWHM curve extends to the frequency of 

2.5/mm. This is because the spike in the PSD has certain width as shown in Fig. 5-7 due to 

the finite number of rings in the region of interest. The normalized HWHMs are plotted in 

Fig. 5-6 (b), which has the same trend as the Gaussian function. The frequency region away 

from ripple frequency is dominated by digital noise. 
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Fig. 5-6 (a) HWHM and (b) normalized HWHM in the ACF of unwrapped phase pattern. The 

frequency region in which the phase pattern contains meaningful signals is shadowed in grey. 
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Fig. 5-7 1D PSD of the cosine ripples. The orange triangle shows the broadening of the spike at 

2/mm. 

In the third example, the statistical surface errors are generated with the direct method 

introduced in section 2.6.4 as shown in Fig. 5-8. The surface has a width of 1mm, which is 

smaller than the size of the surfaces described by the Gaussian function and cosine ripples. 

The maximum frequency for evaluation is selected as 40/mm, which covers the meaningful 

region in the center and the meaningless region near the edge. Since both the statistical 

surface errors and digital noise generate fluctuating unwrapped phase patterns, it is hard to 

distinguish a clear frequency boundary between them. However, it can be identified from 

Fig. 5-8 (c) that the local structure varies faster in the center for the statistical errors and 

slower in the edge for the digital noise. 

Seven equal sampling windows from 10/mm to 40/mm are selected to plot the change of 

HWHM in the ACF of the unwrapped phase with increasing frequency region. The seven 

points are nearly located on the same line. There is a small oscillation at the right side 

indicating the small influence of digital noise. Compared to the linear fitted line of the cosine 

ripples extending to the frequency range of the statistical errors, the slope of the statistical 
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errors is significantly smaller than the slope of the deterministic errors. This also corresponds 

to the significantly smaller normalized HWHMs for the statistical errors. 
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Fig. 5-8 (a) Statistical errors generated by the direct method in the spatial domain, and their (b) 

PSD and (c) unwrapped phase in the frequency domain. 
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Fig. 5-9 (a) HWHM and (b) normalized HWHM in the ACF of unwrapped phase pattern. 

It can be learned from the above examples that the deterministic errors cause specific 

continuous structures on the unwrapped phase pattern, the statistic errors arise strong local 

fluctuations. The widths of ACFs for these two kinds of errors are different. This can be 

viewed as a clear indicator to distinguish between deterministic and statistical frequency 

regions. However, the unwrapped phase pattern of the digital noise in the frequency range 

with extremely low amplitudes in the PSD should be excluded. The threshold of the 

meaningful and meaningless amplitudes is chosen to be about ten orders of magnitude 

smaller than the maximum amplitude. 
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5.2 Parametrization of real freeform surfaces 

In practice, the surface errors across a broad spectrum are measured with white light 

interferometry (WLI) at different magnifications. The manufactured surface data examined 

in this section are provided by Fraunhofer Institute for Applied Optics and Precision 

Engineering IOF, Jena. The surface measurements inspect different sizes of the surface 

segment at four magnifications (1x, 2x, 10x, and 50x) to cover the spectral range from 

somewhere between LSF and MSF to HSF. 

The manufactured surface errors of a diamond-turned surface are drawn in Fig. 5-10 with 

their 2D PSDs and unwrapped phase patterns. The maximum frequency selected for 

analyzing the phase spectrum at each magnification fulfills the principle discussed in the last 

section. It can be seen from the PSD patterns that the discrete deterministic areas in red are 

surrounded by the Fourier components of the statistical errors. Therefore, the unwrapped 

phase patterns look random because of the dominance of the statistical errors. The advantage 

of ACF computation is to reveal the difference between deterministic and random regions 

that is hidden in the noise-like pattern. Five equal sampling windows are applied on the 

unwrapped phase pattern at each magnification to calculate and show the trend of the ACFs 

in Fig. 5-11 (a). For the first three magnifications, the curves are linearly increasing in the 

beginning and then drop from the middle because the influence of statistical errors is getting 

stronger near the boundary frequencies. The curve is monotone increasing in the last 

magnification for the reason that the measured frequency range moves entirely to the HSF 

region, only the statistical errors can be seen. In Fig. 5-11 (b), the normalized HWHMs in 

the corresponding frequency windows are plotted. In addition, the averages of the 

normalized HWHMs at each magnification are connected in the black dashed curve. The 

average curve indicates that the influence of deterministic errors first increases and then 

decreases so that the boundary frequency between the deterministic and statistical errors lies 

between 40/mm and 60/mm. 
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Fig. 5-10 Diamond-turned surface errors measured by WLI under four magnifications and their 

PSDs and unwrapped phases in the frequency domain. 
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Fig. 5-11 (a) HWHM and (b) normalized HWHM in the ACF of unwrapped phase pattern for 

the diamond-turned surface measured at four magnifications. 
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The manufactured surface errors are measured again after polishing as shown in Fig. 5-12. 

Similarly, the ACFs of the unwrapped phase pattern with different window sizes are 

computed for each magnification. The HWHMs within different frequency regions are 

plotted in Fig. 5-13. It can be observed that the HWHMs at the magnification 10x are smaller 

than the corresponding values in the diamond-turned surface. In other words, the influence 

of the deterministic errors drops at this magnification. This can also be demonstrated from 

the average curve in the normalized HWHM diagram. Therefore, the polishing step removes 

the deterministic errors, which can be resolved under 10x magnification, and shifts the 

boundary frequency between the deterministic and statistical errors to the left, which is now 

between 20/mm and 40/mm. 

 

Fig. 5-12 Polished surface errors measured by WLI under four magnifications and their PSDs 

and unwrapped phases in the frequency domain. 
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Fig. 5-13 (a) HWHM and (b) normalized HWHM in the ACF of unwrapped phase pattern for 

the polished surface measured at four magnifications. 

To verify the boundary frequencies obtained by the characterization of ACF, 1D integrated 

PSD of each magnification and the average curve of the normalized HWHMs are plotted 

together in Fig. 5-14 for both diamond-turned and polished surfaces. In Fig. 5-14 (a), when 

the spikes are clearly shown in the PSDs, the values of the normalized HWHM are also high. 

In Fig. 5-14 (b), the spikes above 30/mm in the PSD of 10x are removed, the normalized 

HWHM is also reduced at this point.  
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Fig. 5-14 Illustration of the relation between PSD and normalized HWHM for (a) the diamond-

turned surface and (b) the polished surface. 

 

5.3 Modelling a synthetic surface 

Until now, the boundary frequency between the deterministic and statistical errors has been 

obtained by characterizing the ACF of the unwrapped phase pattern. The next step is to 

model the synthetic surface errors. The composition of the manufactured surface errors in 

the full spectral range is introduced in section 2.6 and can be written as 
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∆𝑧(𝑥, 𝑦) = ∑ 𝑎𝑗𝑍𝑗(𝑥, 𝑦) +

(𝑍𝑒𝑟𝑛𝑖𝑘𝑒)

𝑗

∑ 𝑏𝑗𝐺𝑗(𝑥, 𝑦) +

(𝑅𝐵𝐹)

𝑗

 

∑ 𝑐𝑗𝑅𝑗(𝑥, 𝑦) + ∑ 𝑑𝑗𝑆𝑗(𝑥, 𝑦) 

(𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙)

𝑗

(𝑟𝑖𝑝𝑝𝑙𝑒𝑠)

𝑗

 (5.3) 

where the Zernike polynomials describe the smooth change of the figure errors, RBFs 

describe the locally variant surface errors, then, the deterministic ripples and statistical errors 

are added. 

The parameters that must be known before modelling are the RMS surface errors, boundary 

frequencies, and the frequencies and amplitudes of the ripples. In the beginning, the Zernike 

coefficients are tolerated according to the RMS value. Typically, up to 36 Zernike terms are 

chosen for tolerancing in order not to introduce strong local deviation [5-5]. Then, the 

sampling grid and the width of the RBF functions is determined, and the amplitudes of the 

RBF functions are generated randomly. The PSD of the LSF errors that are well described 

by summing up the Zernike polynomials and RBFs is calculated accordingly, and the slope 

of the linear part is fitted. The MSF errors can be divided into two parts. The PSD is extended 

into the MSF region to compute the MSF RMS error, which is the square root of the area 

under the PSD within this region. The MSF RMS error is used to generate statistical errors 

by the direct method. After identifying the envelope of the ripples, additional ripples are 

added using the functions listed in Table 2-5. The last step is to generate HSF statistical 

errors, which is identical to the process of generating MSF statistical errors. In this way, the 

full spectral surface errors are successfully modelled and then stored in the form of a “grid 

sag” surface required by OpticStudio. 

The synthetic surface is reimported to OpticStudio to analyze the performance of a real 

optical system after manufacturing through raytracing. The image quality can be evaluated 

by spot diagram, PSF, and/or MTF. By performing the Monte Carlo simulation, the whole 

process can be repeated many times to predict the range of system performance. The 

workflow of the freeform surface modeling and system tolerancing can be visualized in Fig. 

5-15. 
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Fig. 5-15 Workflow of the freeform surface modeling and system tolerancing. 

 

5.4 Example of tolerancing a freeform system 

In this section, the HMD system introduced in section 4.6.4, which contains two freeform 

surfaces, is utilized again to show the tolerancing of a freeform system. As shown in Fig. 

5-16, only the first refractive freeform surface is tolerated.  
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Fig. 5-16 The first freeform surface in the HMD system is tolerated as an example. 

In the following, several simplifications and assumptions are clarified: 

1. It is assumed to be a diamond-turned freeform surface with a total RMS surface 

error of 150nm, which is an empirical value given by practical experience [5-6]. 

2. The local deviations described by RBFs are of no concern here because the 

determination of the width of the Gaussian functions is not trivial and needs 

further study. 

3. The surface has a rectangular aperture with Dx=36mm and Dy=24mm. Considering 

the computation ability of the computer (Inter i7-4710MQ, 2.50 GHz, 16 GB 

memory), the sampling grid on the surface is fixed to be nxny=36002400. Then, 

the highest frequency is obtained as 

𝑥,max = 𝑦,max = 50/𝑚𝑚 . (5.4) 

     The resolution in the frequency domain for both directions are 

∆𝑥 = 0.028/𝑚𝑚, ∆𝑦 = 0.042/𝑚𝑚 , (5.5) 

4. It has been concluded that the boundary frequency between the MSF and HSF 

regions is between 40/mm and 60/mm for the diamond-turned surface in the last 

section. However, the maximum frequency that can be resolved in the example 

surface is at 50/mm. Looking back to the PSD of the diamond-turned surface in 

Fig. 5-14, the two highest spikes are at 0.9/mm and 3.7/mm, the amplitudes of 

other spikes in the higher frequency region are much smaller. For the purpose of 

taking the full spectral errors into account within 50/mm, the spikes with low 

amplitudes are neglected. Then, it can be assumed here that the LSF, MSF, HSF 

regions are 0-1/mm, 1-10/mm, and 10-50/mm, respectively. 
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5. The PVs of the ripples are assumed to be 150nm. The centers of the ripples are 

located at the center of the surface for simplification. 

The first 36 Zernike fringe polynomial terms except for the piston and tilt terms that can be 

removed by proper alignment are tolerated according to the total RMS surface error. The 

obtained figure errors are shown in Fig. 5-17 (a). The 1D integrated PSD of the figure errors 

are plotted in Fig. 5-17 (b). The linear part on the right is fitted by a line with a slope equal 

to -1.985. 
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Fig. 5-17 (a) Figure errors and (b) its 1D integrated PSD. 
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Fig. 5-18 Extension of the linearly fitted PSD into (a) MSF and (c) HSF regions. Statistical 

surface errors in (b) MSF and (d) HSF regions are generated accordingly by the direct method. 
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To simulate random errors in the MSF and HSF regions, the linearly fitted PSD is extended 

into both regions as shown in Fig. 5-18 (a) and (c). The area under the dashed line is the 

square of rms, rand. By choosing proper slope factor k in the direct method (for both MSF and 

HSF random errors here, k=0.3), the random errors can be generated. The blue curves show 

the PSDs of the simulated errors, which coincide with the fitted lines. In Fig. 5-18 (b) and 

(d), the MSF and HSF random errors are shown in the surface segment 11mm2 and 

0.10.1mm2, respectively. The MSF and HSF random errors in the whole surface are the 

repeat of the surface segments to fill the entire aperture. Fig. 5-19 shows the cosine ripples 

across the whole surface with the frequencies at 0.9/mm and 3.7/mm, amplitudes of 150nm. 
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Fig. 5-19 MSF ripples. 

Above all, three types of surface errors – LSF figure errors, ripples, and random errors – are 

fully defined. Their individual impacts on the system performance are investigated in the 

next step. The spot diagrams in the image plane of the central field (0°, 0°) and the maximum 

field on the x-axis (25°, 0°) are shown in Fig. 5-20 for the nominal system before tolerancing 

and the systems perturbed by individual surface errors. The changes of the RMS spot radius 

for these two fields from the nominal system to the system with LSF errors are 0.6% and 

4.4%, respectively. The small impact of LSF errors can be understood from the ray bundle 

distribution on the freeform surface. The system layout in Fig. 5-16 shows that HMD system 

has a front stop with a large distance, which strongly separates the ray bundles on the first 

freeform surface. Moreover, the original freeform surface is described by an anamorphic 

asphere function until the 4th order, which has no local variation. Comparing the slopes of 

the original surface and the slopes of LSF errors in Fig. 5-21, the slopes of the LSF errors is 

3 orders of magnitude smaller than the original surface. The circles indicate the ray bundle 

of each field on the surface. It can be seen that the change of surface slope due to LSF errors 

within a ray bundle can be neglected. For each field, the LSF errors can be viewed as an 

overlay of a tilted plane on the original surface and result in distortion. For example, for the 

central field (0°, 0°) after adding the LSF errors, the change of RMS spot radius is 0.03µm, 

but the change of chief ray intersection point in the y-direction is 1.4µm, which is more 
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significant. The ripples result in the broadening of spots with sharp boundaries. The random 

errors broaden the spots with irregular boundaries. 

 
Fig. 5-20 Spot diagrams of the fields (0°, 0°), (25°, 0°) in the nominal system and perturbed 

systems with individual surface errors. The width of each spot diagram is 400µm.  
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Fig. 5-21 Slope of (a) original surface and (b) LSF errors. The circles in (b) show the range of 

ray bundle from individual fields on the surface. The fields are sampled with the normalized 

coordinates 0, 0.7, 1 on both x- and y-axes. 

The PSFs of the nominal system and perturbed systems with individual errors are shown in 

Fig. 5-22. Compared to the spot diagram, PSF shows the energy distribution in the image 

plane. The influence of the LSF errors is hard to be seen. The periodic structure of the ripples 

causes the diffraction effect, and thus, the neighboring diffractive orders can be clearly seen. 

In addition, the location of the central peak of the field (25°, 0°) is shifted due to non-zero 

incidence. The scattering effect introduced by the random errors is isotropic. The cross 

sections of the PSFs along the x-axis for the central field are plotted in Fig. 5-23 to show the 

impact of surface errors on the energy distribution. The small-angle scattering effect of the 

MSF ripples and the wide-angle scattering effect of the random error can be seen clearly. 



5 Tolerancing of Freeform System 

94 

 

Nominal LSF Ripples Random

(0°, 0°)

(25°, 0°)

10-5

10-3

100

 
Fig. 5-22 PSFs of the fields (0°, 0°), (25°, 0°) in the nominal system and perturbed systems. 
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Fig. 5-23 Cross sections of PSFs along the x-axis for the central field in the nominal system and 

perturbed systems. 

The MTFs of the nominal system and perturbed systems with individual errors are shown in 

Fig. 5-24, which allows us to analyze the system response in the frequency domain. The 

highest frequency in the MTF is set according to the maximum resolved frequency of the 

synthetic surface at 50/mm. The drops of MTF due to LSF and random errors are small. The 

drop of MTF due to wide-angle scattering is depending on 
𝜎rms, rand


, in which  is the working 

wavelength of the system. For this system in the visible spectrum, the drop of MTF can be 
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neglected. The waviness structure on the MTF of ripple errors is associated with the periods 

of the ripples. It can be seen that the tangential and sagittal MTF curves of the central field 

are oscillating with nearly the same period. The slight difference is coming from the quasi-

circular exit pupil of the HMD system. For the field (25°, 0°) on the x-axis, only the sagittal 

MTF curve oscillates because the ripples are only in the sagittal direction within the aperture 

of this field. The peaks of the waviness on the MTF are not decreasing smoothly because of 

the modulation of the ripples with two frequencies. 

 
Fig. 5-24 MTFs of the fields (0°, 0°), (25°, 0°) in the nominal system and perturbed systems. T 

is the tangential cross section, S is the sagittal cross section.  

The synthetic surface error in the full spectral range is the summation of the above individual 

surface errors. Fig. 5-25 shows the whole surface errors and two surface segments with the 

width of 1mm and 0.1mm to inspect the MSF and HSF errors. The lower right side draws 

the PSDs of the three surface sizes. The connection of the three PSDs shows the linear 

behavior and two deterministic spikes. 
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Fig. 5-25 Total synthetic surface errors with zoom-in inspection. The PSD across the whole 

frequency range is shown in the lower right side. 

The spot diagram, PSF and its cross section, and MTF of the fields (0°, 0°) and (25°, 0°) are 

shown from Fig. 5-26 to Fig. 5-29. In all the plots, the impact of deterministic ripples is 

dominant. The effect of wide-angle scattering can be seen from the irregular boundary in the 

spot diagram and PSF.  

 
Fig. 5-26 Spot diagrams of the fields (0°, 0°), (25°, 0°) in the nominal system and the system 

with total surface errors. 
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Fig. 5-27 PSFs of the fields (0°, 0°), (25°, 0°) in the nominal system and the system with total 

surface errors. 
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Fig. 5-28 Cross sections of PSFs along the x-axis for the central field in the nominal system and 

the system with total surface errors. 

 

Fig. 5-29 MTFs of the fields (0°, 0°), (25°, 0°) in the nominal system and the system with total 

surface errors.
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6 Conclusions 

 

To improve the optical system development by introducing freeform surface and coordinate 

breaks, this thesis presents the generalization of obscuration elimination, chromatic 

aberration description, and tolerancing from rotationally symmetric optical systems to non-

rotationally symmetric optical systems.  

The obscuration issue that arises in reflective optical systems could be avoided by tilting the 

mirrors against the optical axis. In this work, four sub-error functions are proposed to 

describe all the obscuration situations in 3D reflective optical systems. Then, the four sub-

error functions are multiplied by individual weighting factors, and then summed up to 

constitute a total obscuration error function to indicate the degree of obscuration in the 

system. By setting tilting angles of the mirrors as variables and selecting a proper 

optimization algorithm, an obscuration-free structure can be obtained without human 

involvement as the first example shows. In the second example, the ability of the method for 

a Yolo telescope to correct astigmatism is demonstrated. An initial structure is reached by 

optimizing both the obscuration error function and the astigmatism error function to be 

minimal. Then, by introducing freeform surfaces without perturbing the mirror position, an 

unobscured Yolo telescope with large FOV and satisfactory image quality is achieved. 

The design of non-rotationally symmetric refractive systems gives rise to the demand on the 

evaluation of the chromatic aberrations. This thesis defines generalized chromatic 

aberrations by setting up clear reference axis and plane and distinguishing the difference of 

the ray performances and aberrations, especially in the longitudinal direction, between the 

rotationally and non-rotationally symmetric systems. Then, the calculation of the surface-

by-surface generalized chromatic aberrations is carried out in both ray- and wavefront-based 

models. In both methods, the fields are considered individually so that the surface 

contributions can be represented as a full-field display. The intrinsic and induced chromatic 

aberrations as well as the chromatic pupil aberration are discussed. Four examples are given 

to prove the theory. The example of double Gauss system shows the consistency of the 

generalized methods with Seidel aberrations in the lowest aberration order. The example of 

stereomicroscope further double-check the correctness of both ray- and wavefront-based 

methods. An anamorphic example proves the necessity of considering chromatic pupil 

aberration in some systems. The last example of a HMD system reveals the chromatic 
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aberrations of the mirror surfaces by dividing the surface contributions into intrinsic and 

induced components. 

Tolerancing is an essential final step in optical design towards a meaningful manufacturing. 

However, the tolerancing of freeform surfaces in non-rotationally symmetric systems has 

not been systematically studied in depth yet. The manufacturing surface errors can be 

decomposed into amplitudes and phases in the frequency domain. This work characterizes 

the ACFs of the unwrapped phase patterns in different frequency ranges. By investigating 

three examples, it has been found that the width of ACF of the statistical errors is 

significantly thinner than the deterministic errors, which could be used to search for the 

boundary frequency between the deterministic and statistical surface errors. The concept is 

applied in both diamond-turned and polished surfaces for demonstration. Then, the workflow 

of modelling a synthetic freeform surface is put forward by generating and overlaying the 

LSF, MSF and HSF surface errors. Using the HMD system as an example, the effects of the 

individual surface errors from LSF to HSF ranges and the total freeform surface error on the 

spot, PSF and MTF are studied. The small angle scattering of the MSF errors and the wide 

angle scattering of the HSF errors can be clearly distinguished. 

In general, the theories and methods put forward in this thesis can be applied to optical 

systems and surfaces with arbitrary symmetry. The obscuration elimination algorithm 

significantly reduces the human involvement and time cost in finding a suitable initial system 

structure, which could be coupled in sophisticated automatic optimization algorithm in the 

future. The definition and calculation methods of the generalized chromatic aberrations fill 

in the lack of a chromatic aberration theory in non-rotationally symmetric optical systems. 

It gives the optical designer a direct visualization about the distribution of the chromatic 

aberrations in a general optical system with refractive surfaces, which is helpful in analyzing 

and compensating the generalized chromatic aberrations. The tolerancing of freeform 

surface is additionally a powerful tool to predict the influence of manufactured freeform 

surface errors on real optical systems.
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Appendix A 

 

There are in total three steps to transfer ray vectors from one surface to another. First, the 

ray propagates behind a surface in the free space can be described by the matrix [A-1] 
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where di  is the chief ray path length of 0 between the surface i-1 and surface i, 𝑛𝑖,0
is the 

refractive index of the central wavelength before the surface i. 
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Last, the transfer matrix at surface is [ A-1] 
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and the expressions of c02, c11, c20 can be found in the Eq. (2.11). 

Therefore, for each surface i, the transformation matrix Mi is the multiplication of the above 

three matrices   

i f,i r,i t,i
M = M M M .                                                  (A.5)
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Appendix B 

 

Table B Comparison of the transverse chromatic aberration in the stereomicroscope between the 

ray- and wavefront-based method, the errors are relative to the ray-based method per surface. 

Surface 

X-direction Y-direction 

Ray-

based 

[DAiry] 

Wavefront-

based 

[DAiry] 

Error 

[%] 

Ray-

based 

[DAiry] 

Wavefront-

based 

[DAiry] 

Error 

[%] 

1 1.67 1.69 1.20 1.69 1.71 1.18 

2 -0.41 -0.42 2.44 -0.42 -0.43 2.38 

3 -1.24 -1.25 0.81 -1.26 -1.27 0.79 

4 1.38 1.39 0.72 1.40 1.41 0.71 

5 1.22 1.23 0.82 1.23 1.25 1.63 

6 -2.69 -2.72 1.12 -2.72 -2.76 1.47 

7 5.47 5.51 0.73 5.53 5.59 1.08 

8 -6.16 -6.19 0.49 -6.22 -6.28 0.96 

9 0.58 0.58 0.00 0.59 0.59 0.00 

10 2.76 2.77 0.36 -5.30 -5.36 1.13 

11 0.43 0.42 -2.33 -4.72 -4.72 0.00 

IMA 3.01 3.02 0.33 -10.19 -10.25 0.59 
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∆𝑠
′   Longitudinal chromatic aberration 

∆𝑦
′   Transverse chromatic aberration 

𝐻⃗⃗   Field vector in the image plane 

𝜌   Pupil vector 

𝜎 𝑖   Field shift vector for surface i 

𝐻⃗⃗ 𝐴𝑖  Effective field vector for surface i 

Erf  Error function 

𝑃𝑗  Vertex of a ray-quadrangle 

  Extended area of a ray-quadrangle 

X  Cross point between the sides of two ray-quadrangles 

Nq  Total number of ray-quadrangles in a system 

∆𝑧  Manufacturing surface error 

𝑧real  Sag of manufactured surface 

𝑧ideal  Sag of designed surface 

U  Fourier transform of surface error 

x, y  Frequencies 

A  Surface area 
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Dx, Dy  Surface width in x- and y-directions 

x, y  Sampling spacing in x- and y-directions in spatial domain 

x, y Sampling spacing in x- and y-directions in frequency domain 

rms  RMS surface error 

𝐺(𝑥, 𝑦) RBFs 

(xm, ym) Sampling grid of RBFs 

w  Shape factor of RBFs 

h  Amplitude of ripple functions 

T  Period of ripple functions 

(xc, yc)  Center of ripple functions 

 2D phase pattern 

Lc  Correlation length 

DExp  Diameter of exit pupil 

ra, ra+1, rb Radii of spheres which contain the mirrors 

𝜔  Weighting factor 

N  Number of optical surfaces in a system 

S  Number of surfaces including dummy surfaces, object and image planes, etc., 

in a system 

Zi  Zernike Fringe coefficients 

hc  Width of circle of least confusion 

NA’s, NA’t Image-sided numerical apertures in the sagittal and tangential planes 

∆𝑠′
i(j)  Sagittal focal line difference generated by surface i and propagated to surface 

j 

sO’  Real sagittal focal point 

sV’  Virtual sagittal focal point 



List of Symbols 

119 

 

d  Distance between two surfaces 

 Azimuthal angle between the incidence planes of the two neighboring 

surfaces 

l’  Chromatic image variation 

∆𝐻⃗⃗  Vectorial transverse chromatic aberration in the local ray-incidence 

coordinate system of the last surface 

𝑇⃗  Vectorial transverse chromatic aberration in the local coordinate system of 

the image plane 

𝑠̂, (𝛼𝑖, 𝛽𝑖, 𝛾𝑖) Direction cosine of CR 

𝑒̂  Surface normal 

Ui, Vi  Numerical apertures in the x’z’- and y’z’- planes 

∆𝑟 𝑖  Ray vector behind surface i 

Mi  Transformation matrix for surface i 

(𝑥𝑖
′′, 𝑦𝑖

′′, 𝑧𝑖
′′) Ray vector intersection point on the image plane from surface i 

G  Rotational matrix between the local ray-incidence coordinate system of the 

last surface and the local coordinate system of the image plane 

𝑃̅  Chief ray intersection point on the surface 

Q  Chief ray intersection point on the real wavefront 

Q0  Chief ray intersection point on the ideal wavefront 

QN  Chief ray intersection point on the surface 

∆𝑊𝑖  Wavefront aberration of surface i 

1 to 5  Wavefront aberration coefficients until 2nd order 

Wtilt, Wdefocus Tilt and Defocus wavefront aberration 

R(x,y)  Ripple function 

S(x,y)  Function of statistical errors 
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