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Summary 

One of the most classic and well-established phenomena in cognitive neuroscience is 

repetition suppression (RS), a significant reduction of neural activities for repeated 

presentations of a given stimulus compared to its first presentation (Desimone, 1996). 

Four models, relying on a primary role of bottom-up processing, have been put forward to 

explain the neural mechanism underlying RS (Fatigue model, Sharpening model, 

Facilitation model, Synchronization model). However, recent studies found that RS can be 

better explained by the influential and popular predictive coding (PC) model (Rao and 

Ballard, 1999). Summerfield and colleagues (2008) firstly provided empirical evidence 

for explaining RS from the perspective of PC. They found the magnitude of RS in the 

Fusiform Face Area is affected by the probability of repetitions of faces, known as P(rep) 

effect, revealing that perceptual expectations modulate repetition-related processes. 

Within the framework of PC, the brain constantly attempts to match the incoming sensory 

information to prior expectations, thereby minimizing their mismatch (prediction error) 

(Kok and de Lange, 2015). According to this theory, prior experiences about the sensory 

inputs in our brain is necessary to optimally achieve cognitive processes. However, it 

remains unclear how prior experiences modulate top-down predictive processes. To 

address this issue, the present thesis concentrates on the modulation of prior experiences 

on prediction-related neural effects (i.e., RS and P(rep) effects) associated with visual 

stimuli (i.e., faces, words, and objects). 

In Study I (Li and Kova cs, 2022), we asked the question of whether the P(rep) effect for 

words appears in the Visual Word Form Area (VWFA). Previous studies have observed 

this effect for various sensory stimulus categories, such as faces, objects and Roman 

letters (e.g., Grotheer and Kova cs, 2014; Mayrhauser et al., 2014; Summerfield et al., 

2008). Especially, Grotheer and Kova cs (2014) suggested that this P(rep) effect depends 

on prior experiences of participants with the stimuli. In our Study I, we tested the extent 



Summary 

ii 
 

to which prior experiences affect the P(rep) effect could be extended to more complex 

lexical stimuli (i.e. Chinese characters and German words) as well. We measured the 

blood oxygen level dependent (BOLD) signal in the VWFA of native Chinese and German 

participants and estimated the P(rep) effects for Chinese characters and German words. 

The results showed that the P(rep) effect is only manifest for words of a language with 

which participants had extensive prior experiences. This further supports the idea that 

predictive processes, measured by P(rep) effect, require extensive prior experiences with 

the stimuli. 

Study II focused on the modulation of short-term experience on the P(rep) effect for 

non-face objects. As mentioned above, the presence of the P(rep) effect depends on 

extensive experiences with the stimuli. However, it remains unknown whether a relatively 

shorter-term experience with the stimuli could also modulate the P(rep) effect. Study II 

addressed this question by performing fMRI measurements before and after a ten-day 

perceptual learning (PL) training for non-face objects (cars). The results replicated the 

P(rep) effect for faces as well as for cars. More interestingly, the P(rep) effect can be 

temporarily abolished by the short-term perceptual learning experience produced by the 

training, which suggests predictive processes can be modulated by short-term learning 

experience as well. 

While the first two studies mainly focused on the modulation of prior experiences on the 

P(rep) effect, the third study investigated how prior experiences modulate bottom-up 

sensory inputs in the brain. According to previous studies, two potential cognitive 

processes (short-term memory (STM) and attention) could contribute to such a 

modulation. To further test this hypothesis, Study 3a (Li, Kova cs, and Trapp, 2021) 

included a classic stimulus repetition paradigm to measure RS for faces, together with 

either concurrent STM load or a control condition. The results showed that RS is 

significantly attenuated when visual STM is loaded with other visual information, which 

suggests an important role of visual STM for predictive processes. In addition, Study 3b 

explicitly manipulates attention by introducing a face inversion detection task. In contrast 
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to the results in Study 3a, when participants attend to faces, the RS effect in the fusiform 

face area appears again in the STM loaded condition, which suggests that active attention 

can effectively counteract the reduction of RS effect due to increased visual STM load. 

Together, the results of Study III demonstrate that STM and attention play an active role in 

predictive processes as indexed by an expectation-related RS effect.  

These results lead to the following conclusions: i) predictive processes, as measured by 

the P(rep) effect, require extensive prior experiences with stimulus categories, but ii) 

these can also be modulated by short-term learning experience. Further, iii) STM and 

attention are two important modulators of prior experiences on predictive processes. 
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Zusammenfassung 

Repetition Suppression (RS; auf dt. etwa „Wiederholungsunterdru ckung“) ist ein 

etabliertes Pha nomen in den kognitiven Neurowissenschaften. Es beschreibt die 

signifikante Abnahme neuronaler Aktivita t nach wiederholter Pra sentation eines 

Stimulus im Vergleich zur Aktivita t wa hrend der erstmaligen Pra sentation (Desimone, 

1996). Bisher wurden vier Modelle, welche alle auf bottom-up (= reizgesteuert) 

Prozessen beruhen, zur Erkla rung der zugrundeliegenden neuronalen Mechanismen 

herangezogen (Fatigue-Modell, Sharpening-Modell, Facilitation-Modell, 

Synchronization-Modell). Neuere Studien deuten allerdings darauf hin, dass RS noch 

besser durch die einflussreiche „Predictive Coding“-Theorie (PC; Rao und Ballard, 1999) 

erkla rt werden kann. Summerfield und Kollegen konnten bereits 2008 erste empirische 

Beweise fu r die Bedeutsamkeit von PC fu r RS vorlegen. Sie fanden heraus, dass das 

Ausmaß von RS im Fusiformen Gesichtsareal durch die Auftretenswahrscheinlichkeit von 

sich wiederholenden Gesichtsstimuli beeinflusst wurde. Dieses Ergebnis ist heute als 

P(rep)-Effekt bekannt und zeigt eindeutig, dass wahrnehmungsbezogene Erwartungen 

einen Einfluss auf wiederholungsbasierte Prozesse haben. 

Eine Grundannahme der PC-Theorie ist, dass das Gehirn fortwa hrend ankommende 

Sinnesinformationen mit vorgefassten Erwartungen an diese vergleicht, und dabei 

versucht, die Differenz aus eingehender Information und Erwartung zu minimieren (Kok 

und de Lange, 2015). Diese Differenz wird auch Prediction Error (= Vorhersagefehler) 

genannt. Die Theorie besagt weiterhin, dass fru here Erfahrungen mit 

Sinnesinformationen fu r ein optimales Ablaufen dieser Prozesse notwendig sind. Es ist 

jedoch noch ungekla rt, wie genau sich fru here Erfahrungen auf top-down (= kognitiv 

gesteuert) Vorhersageprozesse auswirken. Die vorliegende Arbeit knu pft an diese 

Problematik an und untersucht die Beeinflussung von PC-bezogenen neuronalen 

Prozessen (RS und P(rep)) durch fru here Erfahrungen anhand bestimmter visueller 

Stimuli (Gesichter, Wo rter und Objekte). 
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In Studie 1 (Li und Kova cs, 2022) wurde untersucht, ob der P(rep)-Effekt fu r Wo rter im 

visuellen Wortformareal (VWFA, visual word form area) zu finden ist. In vorherigen 

Studien konnte den Effekt fu r verschiedene Stimuluskategorien beobachtet werden, u.a. 

Gesichter, Objekte und lateinische Buchstaben (Grotheer und Kova cs, 2014; Mayrhauser 

et al., 2014; Summerfield et al., 2008). Besonders Grotheer und Kova cs (2014) hoben 

hervor, dass der P(rep)-Effekt von vorangegangenen Erfahrungen der Proband:innen mit 

den entsprechenden Stimuli abha ngig ist. Studie 1 untersucht daher, ob die Beeinflussung 

des P(rep)-Effekts durch vorangegangene Erfahrungen auch auf komplexere Stimuli 

(chinesische Schriftzeichen und deutsche Wo rter) u bertragen werden kann. Dafu r haben 

wir den BOLD-Kontrast (BOLD = blood oxygen level dependent) im VWFA gemessen, 

wa hrend muttersprachlich chinesische oder deutsche Proband:innen sowohl chinesische 

Schriftzeichen als auch deutsche Wo rter sahen. Die Ergebnisse besta tigen, dass der 

P(rep)-Effekt nur auftritt, wenn umfangreiche Erfahrungen mit der jeweiligen Sprache 

vorhanden waren. Vorhersageprozesse, welche durch den P(rep)-Effekt sichtbar gemacht 

werden, sind demnach von vorherigen Erfahrungen mit den jeweiligen Stimuli abha ngig.  

Studie 2 stellte die Modulation des P(rep)-Effekts durch vergleichsweise kurze 

Lernerfahrungen in den Mittelpunkt. Wie bereits erwa hnt, ha ngt das Auftreten des 

P(rep)-Effekts von vorheriger, langfristiger Erfahrung mit den jeweiligen Stimuli ab. Es 

bleibt jedoch unklar, inwiefern auch relativ kurze Erfahrungen den Effekt beeinflussen 

ko nnen. In Studie 2 wurden fMRT-Messungen, bei welchen die Proband:innen Gesichter 

und Autos sahen, vor und nach einem 10-ta gigen Training durchgefu hrt. Gegenstand des 

Trainings waren Objektstimuli (Autos), fu r welche die Wahrnehmung geschult werden 

sollte. Der P(rep)-Effekt konnte sowohl fu r Gesichter als auch fu r Autos gefunden werden. 

Interessanterweise fu hrte das Training zu einer voru bergehenden Aufhebung des Effekts 

aufgrund der vera nderten Erfahrung mit den Stimuli, was darauf schließen la sst, dass 

auch kurzfristig gemachte Erfahrungen einen Einfluss auf Vorhersageprozesse haben 

ko nnen. 

Wa hrend sich die ersten beiden Studien mit dem Vorhandensein des Einflusses von 

fru heren Erfahrungen auf den P(rep)-Effekt auseinandersetzten, untersuchte die dritte 
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Studie die dafu r zugrundeliegenden Mechanismen. Zwei kognitive Prozesse 

(Kurzzeitgeda chtnis und Aufmerksamkeit) waren aufgrund fru herer Studien besonders 

im Fokus. Studie 3a (Li, Kova cs und Trapp, 2021) basiert auf einem klassischen 

Paradigma mit Stimulus-Wiederholung, um RS fu r Gesichter zu messen. Gleichzeitig 

wurde entweder das Kurzzeitgeda chtnis beansprucht oder eine 

nicht-geda chtnisbezogene Kontrollaufgabe durchgefu hrt. Die Ergebnisse zeigen eindeutig, 

dass RS signifikant abgeschwa cht wird, sobald im Kurzzeitgeda chtnis konkurrierende 

visuelle Informationen vorhanden sind. Daher kann davon ausgegangen werden, dass das 

Kurzzeitgeda chtnis ebenfalls fu r Vorhersageprozesse relevant ist. In Studie 3b wurden 

zusa tzlich Aufmerksamkeitsaspekte mithilfe einer Entdeckungsaufgabe (invertierte 

Gesichter erkennen) untersucht. Im Gegensatz zu den Ergebnissen von Studie 3a taucht 

RS auch wa hrend der Beanspruchung des Kurzzeitgeda chtnisses wieder auf, sobald die 

Aufmerksamkeit auf die Gesichter gerichtet wird. Aufmerksamkeit kann somit der 

Abschwa chung von RS, welche durch Beanspruchung des Kurzzeitgeda chtnisses zustande 

kommt, entgegenwirken. Insgesamt spielen sowohl Aufmerksamkeit als auch das 

Kurzzeitgeda chtnis eine wesentliche Rolle in Vorhersageprozessen, wie durch den 

RS-Effekt besta tigt werden konnte. 

Zusammengefasst lassen sich aus allen Ergebnissen nachstehende Schlussfolgerungen 

ableiten: 1) Vorhersageprozesse, die durch den P(rep)-Effekt gemessen werden, sind von 

umfangreichen vorangegangene Erfahrungen mit den betreffenden Stimuli abha ngig, 

welche 2) allerdings auch durch kurzfristige Lernerfahrungen beeinflusst werden ko nnen. 

3) Weiterhin wird der Zusammenhang zwischen Vorhersageprozessen und fru heren 

Erfahrungen durch Aufmerksamkeit und das Kurzzeitgeda chtnis moduliert. 
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1 Introduction 

The working mechanisms of the human brain are amongst the most magical, complex, 

and intriguing, but incompletely explored topics in Science. Vision is an important way for 

human beings to explore the world since vision often dominates over the other sensory 

modalities (Stokes and Biggs, 2004). The human brain rapidly and effortlessly processes a 

large variety of visual information in daily life that is important for survival. An 

increasingly popular hypothesis is that the brain does not merely receive inputs passively, 

but actively tries to model how future events might look like. Rao and Ballard (1999) first 

described the theory of predictive coding (PC) in the visual cortex, which contributed to a 

whole new understanding of brain activity in general. Their model states that the brain 

constantly attempts to predict the sensory inputs based on previous experience, and to 

minimize the prediction error (the mismatch between predictions and sensory inputs) 

(Kok and de Lange, 2015). According to this theory, prior experiences about the sensory 

inputs in our brain are necessary for optimal cognitive processes. However, it remains 

unclear how prior experiences modulates the top-down predictive processes in the 

ventral visual areas. To address this issue, the present thesis concentrates on the 

modulation of prior experiences on prediction-related effects associated with visual 

stimuli (i.e., faces, words, and objects).  

Therefore, the PC theories are presented in detail in chapter 1.1, including theoretical 

backgrounds and basic concepts (chapter 1.1.1). The chapter also integrates PC theories 

in the more general framework of cognitive neuroscience (chapter 1.1.2).  

Chapter 1.2 will provide both a general review about the well-known neuronal 

phenomena (Repetition suppression, repetition enhancement, expectation suppression 

and repetition probability effects in chapter 1.2.1) and a description of related models 

(bottom-up models in chapter 1.2.2 and top-down prediction model in chapter 1.2.3). 

In chapter 1.3, some important influencing factors on prediction-related neural responses 
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in perceptual studies are introduced. These include, for example, prior experiences with 

the stimuli (chapter 1.3.1), stimulus familiarity and expectation (chapter 1.3.2), attention 

(chapter 1.3.3) and short-term memory (chapter 1.3.4). 

Finally, chapter 1.4, closing the introduction section, states the objectives and questions of 

the present dissertation. 

1.1 Predictive coding theories 

Predictive coding (PC) is the central theory of the current thesis. This chapter will 

introduce theoretical backgrounds and basic concepts of predictive coding and 

will describe some prediction-related studies in cognitive neuroscience. Please 

note that predictive coding is also referred to as predictive processing and the two 

expressions will be used interchangeably in this thesis (Clark, 2015). 

1.1.1 The predictive coding framework 

The concept of predictive processing has a long tradition in Psychology and it is often 

associated with higher cognitive functions such as problem solving, decision making or 

language processing (e.g., Bendixen et al., 2012; Feuerriegel et al., 2021a; Huettig., 2015). 

Yet this notion is widespread in research on perception as a seemingly lower cognitive 

function as well (Helmholtz, 1867; Rock, 1983). Over a century ago, Helmholtz described 

perception as a knowledge-driven inference process based on probabilities (Helmholtz, 

1867). In other words, perception is determined not only by sensory inputs, but also by 

our previous experiences with the world. 

Compared to the traditional view of sensory processing, the PC theory describes the brain 

as an inference machine, which is trying to estimate the probability of future events based 

on priors, rather than passively processing the events themselves. Similarly, the idea that 

prior information is necessarily taken into account when computing the probability of an 

event, is well-known in Bayesian statistics. Bayes’ theorem, named after Thomas Bayes, 

defines how to calculate the conditional probability of an event (Bayes and Price, 1763). 
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Bayes’ theorem is mathematically expressed as follows: 

Equation 1 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴) × 𝑃(𝐴)

𝑃(𝐵)
 

In Equation 1, the P(A|B) indicates the conditional probability of event A occurring based 

on the given event B. Therefore, P(A|B) is also called the posterior probability of A given B, 

meaning the probability of A after considering the prior probability of B. Mathematically, 

P(A|B) is estimated by the prior probability P(A) and the standardized likelihood 
𝑃(𝐵|𝐴)

𝑃(𝐵)
. 

Bayesian inference refers to a process of probability computing, which estimates the 

posterior probability of a latent event based on given data. Bayes’ rule is considered to be 

the fundamental principle of predictive coding. Under this framework, perception could 

be explained as a combination of sensory inputs and prior experiences, which occurs 

based on the above-mentioned formula. 

Another important principle of perceptual prediction is optimization, which is related to 

the explanation of the free energy principle in neuroscience (Friston, 2009, 2010; Friston 

and Kiebel, 2009). The free energy principle claims that any adaptive change in the brain 

will minimize free energy (Friston, 2009). In the case of perception, this means that 

minimizing the difference between sensory inputs and prior knowledge is the best way to 

efficiently process sensory inputs. 

Predictive coding integrates the principles of Bayesian inference and that of free energy to 

describe how the human brain processes information. Although several algorithms 

implementing the principles of predictive coding have been proposed (for a review, see 

Spratling, 2017), I will mainly focus on Rao and Ballard’s algorithm (Rao and Ballard, 

1999) and the free energy principle (Friston, 2009, 2010; Friston and Kiebel, 2009) in the 

following section. 
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1.1.2 Predictive processing in cognitive neuroscience 

This subchapter will describe the predictive processing in cognitive neuroscience. The 

related evidence will mainly be summarized from the perspectives of Rao and Ballard’s 

model (chapter 1.1.2.1) and considering empirical evidence obtained with several 

methods (e.g., single-cell recordings, EEG, MEG, and fMRI; chapter 1.1.2.2). 

1.1.2.1 The predictive coding model of Rao and Ballard 

In cognitive neuroscience, the traditional view of perceptual processing considers the 

brain as a passive, stimulus-driven machine that does not actively create meaning by itself, 

but simply reacts to sensory inputs and unidirectionally transfers information from the 

lower-level cortex to the higher-level cortex. Accordingly, the brain is considered to be 

structured in hierarchically organized neural architectures, which processes information 

in a serial, ’bottom-up’ fashion (Biederman, 1987; Hubel and Wiesel, 1965; Marr, 1982; 

Thorpe et al., 1996). However, an increasing number of studies indicate that the brain 

should be considered as a more active, adaptive, and bidirectional system (Churchland et 

al., 1994; for a review see Engel et al., 2001).  

Rao and Ballard, whose work was deemed to become a cornerstone in this field, were the 

first describing how predictive coding occurs at the neural level. In their seminal paper 

(Rao and Ballard, 1999), they interpreted the underlying mechanism of an extra-classical 

receptive-field effect as an instance of predictive coding. They designed a bidirectional 

and hierarchical network performing natural scene processing, which implemented 

computational algorithms that would allow it to generate an internal model of its 

stimulus inputs. Importantly, compared to the previous Bayesian coding hypothesis (Knill 

and Pouget, 2004), this network displayed a hierarchical structure, which is an important 

feature of predictive coding. 
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Figure 1. Schematic illustration of the hierarchical network for predictive coding with 

feedback and feedforward information flow. At each hierarchical level, feedback pathways 

carry predictions of neural activity at the lower level, whereas feedforward pathways carry 

residual errors between the predictions and actual neural activity. These errors are used by 

the predictive estimator (PE) at each level to correct its current estimate of the input signal 

and generate the next prediction. From Rao and Ballard (1999) with permission. 

According to their predictive coding model (Figure 1 on page 5), perception is described 

as an iterative matching procedure of top-down predictions and bottom-up signal errors 

in a hierarchical system. This model is used to constantly predict sensory inputs and is 

continuously updated to match the inputs and their respective predictions. The sensory 

input itself represents the entry-level of the prediction system, then feedforward 

connections carry information about the actual input to the upper level in this 

hierarchical system. These bottom-up inputs are compared with top-down predictions 

(estimated in the predictive estimator). The prediction error resulting from this 

comparison signal is generated and used to compute updated predictions. Afterwards, the 

feedback connections transmit the new predictions from the higher- to the lower-order 

visual cortical areas, whereas the new prediction error is carried to the next upper level 

via feedforward connections. In other words, predictions and prediction errors are 

created in higher cortical areas when bottom-up inputs meet prior knowledge, then 

prediction and prediction error bidirectionally modulate perceptual processing. Optimally, 
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the sensory signal will be fully ‘explained away’, when it is exactly matched with the 

top-down prediction (Clark, 2013; Friston, 2005). 

According to this view, each level in the cortical hierarchy represents both predictions 

from the upper level and prediction error from the lower level (except the entry-level, 

which is the visual input itself). It is assumed that there are two categories of 

sub-neuronal populations: representation units and error units (Figure 2 on page 7). 

Representation units reflect the expected activities based on a hypothesis about 

forthcoming inputs and send the results to error units in the same level and the next 

lower level, while error units estimate the mismatch between the prediction and sensory 

inputs (prediction errors). In the meantime, the results are transmitted to representation 

units in the same level and the next upper level in this hierarchical prediction network. 

Several empirical studies support the separation of prediction and prediction error (e.g., 

Keller et al., 2018; Wacongne et al., 2012; for meta-analysis see Ficco et al., 2021; 

Siman-Tov et al., 2019). Linking to Helmholtz’s view, predictions would be mainly 

generated based on prior knowledge, while the size of prediction errors could depend on 

the precision of the prediction and the sensory inputs (e.g., Feldman and Friston, 2010).  

At a more fine-grained level than the mere distinction between representation units and 

error units, it is thought that different neuronal populations perform different tasks in 

these loops (Bastos et al., 2012). For instance, deep pyramidal cells (representation units) 

sent the predictions out and superficial pyramidal cells (error units) signal the prediction 

error (Feldman and Friston, 2010; Grother and Kova cs, 2016). Similar feedforward and 

feedback loops continue throughout the sensory cortices to high-level areas, such as the 

FFA (Egner et al., 2010) or even the frontal cortex (Summerfield et al., 2006). The 

ultimate goal of these loops is to decrease the prediction error, in line with the 

optimization principle of free energy in Karl Friston’s unified brain theory (Friston, 2009, 

2010). 
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Figure 2. Illustration of the predictive coding model. The visual cortex is considered as a 

hierarchical structure (here consisting of three levels) containing feedback and feedforward 

loops. To optimize perception, deep pyramidal cells (representation units (R); blue circles and 

triangles) send out predictions about forthcoming perception, and superficial pyramidal cells 

(error units (E); gold circles and triangles) return the prediction error, the mismatch between 

the received predictions and the sensory input. Adapted from Grotheer and Kova cs (2016), 

with permission. 

What is the most important concept when we describe predictive coding under the 

free-energy principle (for a review see Friston, 2010)? It is optimization. The free-energy 

principle claims that “any self-organizing system that is at equilibrium with its 

environment must minimize its free energy” (Friston, 2010, p. 127). In other words, 

minimizing the prediction errors under the predictive framework can maximize the 

efficiency of cognitive processes. Friston and Kiebel (2009) demonstrated that predictive 

coding is in line with the free energy principle from a modelling computation perspective. 

In summary, the view of a more active, adaptive, and bidirectional brain is substantiated 

in Rao and Ballard’s PC model (Rao and Ballard, 1999), which suggests that the 

information transmission in the sensory cortex adhere to a hierarchical and bidirectional 

network and follow the free energy principle (Friston, 2009, 2010; Friston et al., 2006; 

Friston and Kiebel, 2009). 
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1.1.2.2 Empirical evidence for the predictive coding in cognitive neuroscience 

Perception has been modeled in a hierarchical and bidirectional network in Rao and 

Ballard’s PC model (Rao and Ballard, 1999). It is the result of matching the bottom-up 

sensory inputs to prior expectation and minimizing their mismatch. This subchapter will 

describe the empirical evidence that supports this PC model using single-cell recordings 

and functional magnetic resonance imaging (fMRI) in monkeys and in human fMRI, 

electroencephalographic (EEG), and magnetoencephalographic (MEG) studies (for a 

review see Egner and Summerfield, 2013).  

Early non-human primate studies revealed that the visual cortex is indeed hierarchically 

organized and highly interconnected, which is required for predictive coding (Felleman et 

al., 1991; Zeki and Shipp, 1988). Further, functional neuroimaging studies (e.g., Alink et al., 

2010; den Ouden et al., 2010; Egner et al., 2010) and single-cell recordings in monkeys 

(Meyer and Olson, 2011) found stronger neuronal responses in the occipital cortex 

induced by the surprising stimuli relative to expected stimuli. For instance, Meyer and 

Olson (2011) trained macaque monkeys to learn six pairs of images, in which the second 

image can be predicted based on the first image in each pair. The neuronal activity in the 

inferotemporal (IT) cortex was reduced when the second image of the paired stimuli was 

predicted, as compared to when it was unpredicted. This modulation of top-down prior 

expectation in the perceptual processing supports the idea that predictive processes exit 

in non-human primates. 

Furthermore, empirical evidence has also been reported in human studies in, which the 

probability of stimuli is manipulated. For instance, Wacongne and colleagues (2011) 

adopted a hierarchical auditory novelty paradigm and recorded human EEG and MEG 

responses to the fifth auditory stimulus in expected (xxxxx), mismatching (xxxxY) or 

omitted (xxxx) stimulus sequences. The probability of these three sequences was 

different in three types of blocks (expected (xxxxx), mismatching (xxxxY), and omitted 

(xxxx) blocks). Importantly, omitting the fifth tone should reflect the brain’s hierarchical 

predictions. The rationale here is that, when a deviant tone is expected, its omission 
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represents a violation of two predictions: a local prediction of a tone plus a hierarchically 

higher expectation of its deviancy. The results showed the strongest mismatching 

response in the ‘xxxxY’ block, which was larger than that in the ‘xxxxx’ block. In addition, 

an omission of the fifth tone induced a greater prediction error than when a standard 

tone is expected. This provided evidence for a predictive and hierarchical system 

underlying the brain’s response to auditory stimuli. Further fMRI studies support this 

idea. For instance, Egner et al. (2010) used three colored frames to cue participants to 

predict upcoming stimulus category (faces or houses). The maximal difference of brain 

activities for faces and houses was observed in the low expectation condition, and the 

response characteristics of the fusiform face area (FFA) could be explained by predictive 

coding, but not by feature detection models. Additional evidence supporting predictive 

coding in the visual cortex comes from a study by Kok and colleagues (2016). By using 

high-field (7T) fMRI, they found distinct laminar activation patterns for top-down 

(feedback) and bottom-up (feedforward) signals in the primary visual cortex (V1). In 

their study, participants were presented with two kinds of stimuli: (i) Kanizsa illusion 

figures, in which three out of four Pac-Man inducers were aligned, such that an illusory 

triangle could be perceived. (ii) No illusory figures, in which the same Pac-Man inducers 

were presented misaligned, thus not inducing any perceptual illusion. Kanizsa illusion 

figures allow the examination of neural responses to a shape that is not present but is 

induced by the surrounding shapes (i.e., the illusory triangle). The results showed that, 

whereas bottom-up stimulation activated all cortical layers, illusory figures led to 

stronger activity in deep layers of V1. This suggests that prediction units signal the 

presence of illusory figures, and these predictions originate from higher-level areas and 

terminate in deep layers of V1, where predictions are transferred via feedback 

connections. Instead, attenuated activity was found in middle and superficial layers, as 

compared to the deep layers, which could reflect the absence of bottom-up inputs (for a 

review about similar mechanisms in the auditory cortex, see Heilbron and Chait, 2018). 

Thereby different lines of empirical evidence offer converging support for the theory of 

PC, which suggests that the brain is constantly trying to predict the inputs it receives, and 

each region in the cortical sensory hierarchy represents both these predictions and the 
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mismatch between predictions and inputs (prediction error) (Kok and de Lange, 2015).  

So far, the theoretical background, basic concepts, underlying mechanisms of the 

predictive coding framework and some related studies in cognitive neuroscience have 

been described. The following chapters will describe some specific phenomena related to 

predictive coding that have been extensively investigated in the past. 

1.2 Fundamental mechanisms of neuronal phenomena in visual 

processing and related models 

Perception is the interface between us and the external world (Efron, 1969). It is based on 

all kinds of sensory inputs and modulated by prior experiences. Vision is one of the 

primary ways in which we perceive our world for humans at least. Many scientific 

investigations of cognitive processes in the brain exploit known effects in the visual 

modality. For instance, scientists were able to investigate the mechanisms of attention, 

perception, and even consciousness based on change blindness phenomena (for a review 

see Simons and Rensink, 2005). This chapter will introduce some well-known neuronal 

phenomena that are potentially explained by the PC theory (Repetition suppression, 

repetition enhancement, expectation suppression, and repetition probability effects in 

chapter 1.2.1) and their underlying mechanism in some related models (bottom-up 

models in chapter 1.2.2 and top-down prediction model in chapter 1.2.3). 

1.2.1 The neuronal phenomena of repetition and expectation 

Most of our daily lives seem full of repetitive processes, and in contrast to a novel and 

changeable living environment, human seems to feel more comfortable in a stable and 

repetitive environment. In addition, repetition is a common way to learn new things. In 

this subchapter, I will describe four repetition/expectation-related neuronal phenomena 

(Repetition suppression, repetition enhancement, expectation suppression, and 

repetition probability effects) in neuroscience. 
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The repetition suppression (RS) effect refers to the reduction of neural activities for 

repeated presentations of a given stimulus (Desimone, 1996). In other words, repeated 

stimuli induce smaller neural responses than novel stimuli. Please note that RS has also 

been called stimulus-specific adaptation (Sobotka and Ringo, 1994), or simply as 

adaptation (Grill-Spector and Malach, 2001). The RS effect has been widely observed in 

studies of monkey single-cell recordings (e.g., Baylis and Rolls, 1987; Gross et al., 1972), 

human EEG (e.g., Henson et al., 2004; Schendan and Kutas, 2003; Schweinberger et al., 

1995), MEG (e.g., Deffke et al., 2007; Schweinberger et al., 2007; Friese et al., 2012), and 

neuroimaging (e.g., Larsson et al., 2016; Vuilleumier et al., 2002; for a review see Weigelt 

et al., 2008). Experimental paradigms inducing this effect have been extensively used to 

characterize neuronal populations involved in visual processing (Andrews and Ewbank, 

2004; Grill-Spector and Malach, 2001; Schweinberger and Neumann, 2016). Especially, 

the fMRI-adaptation paradigm is regarded as a powerful tool to investigate the functional 

properties of human cortical neurons in a non-invasive way (Grill-Spector and Malach, 

2001). In fact, in several studies, RS effects have been found in response to visual stimulus 

categories, such as faces (e.g., Bentin et al., 1996; Eimer et al., 2010; Henson, 2016; Kova cs 

et al., 2006; Nemrodov and Itier, 2011; Schweinberger et al., 2002), words (e.g., Cao et al., 

2015; Li et al., 2019; Mercure et al., 2011; Strother et al., 2016), scenes (e.g., Epstein et al., 

2008) and objects (e.g., Buckner et al., 1998; Chouinard et al., 2008; Kaliukhovich and 

Vogels, 2011).  

However, the repeated presentations of stimuli do not always produce RS. In some cases, 

repetition of stimuli results in an effect in the opposite direction, termed repetition 

enhancement (RE), i.e. stronger neuronal responses for repeated stimuli relative to 

unrepeated stimuli (for a review see Segaert et al., 2013). Interestingly, most previous 

studies showed the neural RE effect with a behavioral priming effect (e.g., Grill-Spector et 

al., 2000; Henson et al., 2002a, but see Kouider et al., 2010). The exact mechanisms of the 

opposite direction of repetition effect still remain unclear, but few factors such as 

stimulus recognition, learning, attention, expectation, explicit memory and the number of 

repetitions affect the direction of the repetition effect (Mu ller et al., 2013; for a review see 
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Segaert et al., 2013). In addition, several studies have found RE for novel and RS for 

familiar stimuli (e.g., Gagnepain et al., 2008; Henson et al., 2000). And the direction of 

repetition effects may change over the course of an experiment reflecting that a neural 

representation of a stimulus is learned (for a review see Nordt et al., 2016). For example, 

an EEG study by Grossmann et al. (2009) presented 6-month-olds infants with repetitive 

visual category (birds or fish), the results showed a RE effect for repeated stimuli in the 

familiarization phase, but a RS effect for repeated stimuli in the later test phase. Thus, the 

RE effect could appear in the initial object encoding, instead, the RS effect reflected later 

recognition of the familiar stimuli (Nordt et al., 2016). In other words, one hypothesis is 

that the direction of these two repetition effects could change with the accumulation of 

learning experiences, which could be related to the PC model as well (for a review see 

Segaert et al., 2013). 

The expectation suppression (ES) effect was coined in reference to the term RS, and it 

describes the suppressed response to a stimulus that is more likely to occur than another 

stimulus (for a review see Feuerriegel et al., 2021b). In other words, ES refers to the 

reduction of neural activity for an excepted stimulus compared to an unexpected stimulus 

(Todorovic and de Lange, 2012), or to a neutral or surprising one. As with RS, ES has been 

widely reported in monkey single-cell recordings (e.g., Ramachandran et al., 2016) and 

human EEG, MEG, and neuroimaging studies (e.g., Egner et al., 2010; Kok et al., 2012; 

Summerfield et al., 2011; Todorovic et al., 2011). Previous studies investigated ES using a 

variety of paradigms (e.g., Cue-based design, Statistical learning design, Block-based 

probability design, and Oddball design; Figure 3 on page 14). For instance, the paradigm 

implemented by Egner et al. (2010) is an example of the cue-based design (Figure 3A). In 

this study, participants were presented with three colored cues, which were associated 

with either face or house images with different probabilities (high, medium, and low). 

The results showed that the lowest BOLD response was observed when faces are more 

expected, which is consistent with ES in the FFA. As an example of a statistical learning 

design (Figure 3B), Manahova and colleagues (2018) presented participants with two 

kinds of sequences: (i) expected sequences, with which participants were familiarized 
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during a training session, and (ii) unexpected/random sequences, in which the order of 

images is irregular and unfamiliar. Also in this case, the lowest amplitudes were observed 

for expected, as compared to unexpected sequences. The oddball design (Figure 3C) is 

mostly used in studies using high temporal resolution techniques, such as EEG. In these 

studies, it is usually observed that deviant stimuli elicit more negative waveforms, as 

compared to stimuli presented with regularity. The difference in evoked-related 

potentials (ERP) waveforms between standard and deviant stimuli is known as mismatch 

negativity (MMN; Na a ta nen, 1992), which emerges due to a difference in expectations for 

standard and deviant stimuli (Kremlacek et al., 2016; but see Feuerriegel et al., 2021c for 

a surprise enhancement explanation). Lastly, in block-based probability designs (Figure 

3D), stimulus repetition and alternation are manipulated in different block contexts 

(more details are provided in the paragraphs below). It is worth pointing out that the 

reason for describing RS and ES separately in this subsection is due to some previous 

studies finding a disassociation relationship between them (e.g., Grotheer and Kova cs, 

2015; Todorovic and de Lange, 2012). However, both the potential relationship and the 

underlying mechanism between ES and RS still remain unclear. 
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Figure 3. Examples for experimental designs investigating expectation suppression. A) 

Cue-based design (e.g., Egner et al., 2010). Participants were presented with three colored 

cues, which were associated with either face or house images with different probabilities 

(high (Green), medium (Yellow), and low (Blue)). B) Statistical learning design (e.g., 

Manahova et al., 2018). Participants are presented with expected sequences, whereby each 

image predicts the image that will appear next (familiarized during a training session), and 

random/unexpected sequences, whereby each image can follow each other image with equal 

probability. C) Oddball design (e.g., Kaliukhovich and Vogels., 2014). The sequence of stimuli 

is composed of standards (X) and deviants (Y). The deviant could randomly appear in each 

position in different sequences. D) Block-based probability design (e.g., Summerfield et al., 

2008). Stimulus repetition and alternation are manipulated in the different blocks by 

probability (alternation and repetition blocks). Target trials are included to ensure that 

participants attend to stimuli, but are not analyzed in the end. 
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The repetition probability (P(rep)) effect actually belongs to the ES effect, but it is 

associated with RS as well, which reflects the modulation of repetition probability on RS. 

The P(rep) effect was first reported in an influential study (Summerfield et al., 2008). 

Summerfield and colleagues (2008) adopted a block-based probability design to 

investigate ES effect for faces. As the block-based probability design of that study is 

central to the present dissertation, I will describe it in detail. Summerfield et al. presented 

participants with pairs of face images in which the first stimulus could be either identical 

to (repetition trials) or different from the second one (alternation trials). The size of the 

second image in each pair of faces could be reduced by either 15% (non-target trial) or 60% 

(target trial). Participants were asked to pay attention to the size change of the paired 

face images and press the button when they detected the target trial. Importantly, the 

arrangement of repetition and alternation trials is not random in each block; rather they 

are grouped into blocks with high (repetition block, 60% repetition trials, 20% 

alternation trials, and 20% target trials) or low (alternation block, 20% repetition trials, 

60% alternation trials, and 20% target trials) repetition probability (Figure 3D on Page 

14). The main result of this study was that the RS effect in BOLD responses was 

modulated by repetition probability, i.e., a stronger RS was observed for faces in 

repetition blocks than in alternation blocks. This modulation effect of repetition 

probability on RS was called P(rep) effect in later studies (e.g., Grotheer and Kova cs, 

2014). This finding can be explained by the fact that repetition trials are more expected in 

repetition blocks than in alternation blocks. It represents a key piece of evidence for 

explaining the mechanism of RS within the framework of predictive coding. Later, this 

P(rep) effect has been corroborated in several studies using faces (e.g., Kova cs et al., 2012; 

Larsson and Smith, 2012; Olkkonen et al., 2017).  

Interestingly, the P(rep) effect for non-face stimuli tends to be less consistent. For 

example, Mayrhauser et al. (2014) reported the P(rep) effect for line-drawn objects. 

However, the effect was not replicated with every-day objects, neither with human 

neuroimaging nor with non-human primate single-cell recordings (Kaliukhovich and 

Vogel, 2011; Kova cs et al., 2013). Later, Grotheer and Kova cs (2014) using the same 
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paradigm observed the P(rep) effect for familiar Roman letters, but not for unfamiliar 

false fonts. They suggested that an important factor in determining the emergence of the 

P(rep) effect is the prior experiences which participants had with the stimuli. This 

possibility is related to the main research question of my work and will be expanded 

upon further in chapter 1.3.1. There are several reasons for describing the P(rep) effect 

separately from the ES effect. Firstly, this P(rep) effect is the focus of Study I and II and is 

considered as the indicator of predictive processing in the present thesis. Secondly and 

more importantly, the present thesis will give an explanation for the inconsistent results 

of the P(rep) effect for non-face stimuli from the prior experiences perspective. 

1.2.2 Bottom-up models of repetition suppression 

Since Gross and colleagues reported the RS phenomenon from single-unit recordings in 

the monkey inferotemporal (IT) cortex (Gross et al., 1967), the neural mechanism 

underlying RS is still a huge matter of debate. In this subchapter, four models relying on a 

primary role of bottom-up processing for explaining RS will be introduced (Fatigue model, 

Sharpening model, Facilitation model, Synchronization model) (Figure 4 on page 19). 

The simplest mechanism underlying RS could be the Fatigue model (Figure 4A). According 

to this model, the reduced response to the repeated stimulus is due to the fatigue of 

neuronal populations (Miller and Desimone, 1994). In other words, a proportionally 

equivalent reduction of neural activity magnitude occurs in all neurons with repeated 

presentations of the same stimulus (for a review see Grill-Spector et al., 2006). 

Accordingly, this reduction in neuronal activity could result from firing rate adaptation, in 

which the reduction in a neuron’s firing rate is proportional to its initial response (Li et al., 

1993; Avidan et al., 2002; for a review see Grill-Spector et al., 2006). Within the model of 

neural fatigue, firing-rate dependent response fatigue could stem from mechanistically 

different sources: First, synaptic depression, a short-term synaptic plasticity 

phenomenon that is mainly presynaptic (for a review see Zucker and Regehr, 2002). 

Second, inherited adaptation effects, meaning that the RS in high-level visual regions 

could be inherited from adaptation in earlier visual regions (for a review see Vogels, 
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2016). However, the fatigue model fails to account for certain effects at behavioral level, 

for instance the improved behavioral performance which is seen in repetition priming 

(for a review see Grill-Spector et al., 2006). 

The second model proposed to explain the RS effect is the Sharpening model (Desimone, 

1996). According to this model, stimulus repetition results in reduced neurons numbers 

to respond to the same stimulus (Figure 4B). Thus, the “sharpening” of responses occurs 

by involving fewer neurons neural populations, which gradually respond more efficiently, 

by saving energy and increasing the speed of transmission. Therefore, the main difference 

between the Sharpening and Fatigue model is the different tuning of neurons. In the 

Sharpening model, most of the neurons that are optimally tuned to the repeated stimulus 

would show little even no response reductions, while in the Fatigue model a significant 

response reduction is encountered (for a review see Grill-Spector et al., 2006). This model 

has been used to explain priming (e.g., Wiggs and Martin, 1998; Zago et al., 2005). 

However, only limited evidence was found in other monkey single-cell recordings (e.g., De 

Baene and Vogel, 2010) and human neuroimaging (e.g., Alink et al., 2018) studies. 

The third model of the RS effect is the Facilitation model, which also better accounts for 

the improvements reported in behavioral experiments. This model also hypothesizes 

higher efficiency processing for repeated stimuli (Figure 4C), but which is instead 

achieved via shorter latencies or shorter durations of neural firing (Henson and Rugg, 

2003). That leads to time advanced neural activity showing a more rapid overall time 

course (for a review see Grill-Spector et al., 2006; Gotts et al., 2012). Empirical evidence 

supports the Facilitation model. Henson et al. (2002b) used a method for detecting 

differences in the latency of BOLD response and applied this method to an example 

dataset: initial versus repeated presentations of faces in a fame-judgment task. They 

found not only a reduced BOLD response to repeated stimuli but also a shorter latency to 

repeated stimuli. Another recent study supports this model using the precise spatial 

localization and high temporal resolution of electrocorticography (ECoG) to investigate 

RS in the human ventral temporal cortex (e.g., Rangarajan et al., 2020, but see Rodriguez 

et al., 2014). They presented participants with repeated and non-repeated images of faces 
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with long-lagged intervals and many intervening stimuli between repeated stimuli. The 

results revealed the RS of the high-frequency broadband signal is associated with earlier 

peak responses. However, evidence in support of this model is not always consistent, 

especially when collected from non-human primates (e.g., De Baene and Vogels, 2010; Kar 

and Krekelberg, 2016). These inconsistent results seem to indicate that the facilitation 

model is not the basic source of RS, although it might contribute under certain specific 

circumstances (Gotts et al., 2012; Henson, 2012). 

Another model of RS is the Synchronization model, which claims that the higher efficiency 

in neuronal processing is achieved mainly through enhanced neural synchronization 

(Gotts et al., 2012; Figure 4D). All these models need to account for the counterintuitive 

observation that a reduced neuronal response is associated with the improvement of 

behavioral performance. The synchronization model gives a possible explanation: 

inherent mechanisms which integrate presynaptic input in order to determine the 

postsynaptic action potential frequency (Gotts, 2003). Hence, there are relatively few 

studies that could strongly support it based on empirical evidence (for a review see Gotts 

et al., 2012). 

In summary, the above-mentioned models have mainly explained the RS effect through 

the perspective of bottom-up processing, since they mainly focus on the RS effect from the 

local level, or concentrate on the activities of the neuronal or BOLD response of a few 

ROIs. Although it is necessary to explore brain functions at the local/micro level, the role 

of top-down modulation of prior knowledge in the brain cannot be neglected since our 

brain is considered as a more active, adaptive, and bidirectional system to process the 

sensory inputs. In other words, except for investigating and explaining the brain 

responses passively activated by the sensory inputs, researchers need to focus on how 

our brain dynamically processes the sensory inputs based on the prior expectations 

stored in the brain as well. Thus, more refined models, such as considering both 

bottom-up inputs and top-down expectations, should be structured to explain the RS 

effect (Bastos et al., 2012; Whitmire and Stanley, 2016). The following section will explain 

the underlying mechanism of RS from a predictive coding view. 
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Figure 4. Schematic illustration of four different neuronal models for repetition suppression. 

Hypothetical neuronal responses to novel and repeated presentation of a stimulus are 

depicted in black and red curves, respectively. Firing rates could reduce due to fatigue of 

neurons (A, Fatigue Model), due to fewer neurons responding (B, Sharpening Model), due to 

speeding up of neuronal responses (C, Facilitation Model), or due to the increased 

synchronization of neuronal responses (D, Synchronization Model). Adapted from Gotts et al. 

(2012), with permission.  

1.2.3 Repetition suppression as explained by the predictive coding model 

The above-mentioned models for underlying mechanisms behind RS to repeated stimuli 

cannot explain all observed RS effects under specific conditions. Importantly, the 

underlying mechanism of RS based on these four models can also be explained within the 

predictive coding framework (Auksztulewicz and Friston, 2016; Ewbank and Henson, 

2012; Grother and Kova cs, 2016). For example, in terms of predictive coding, 

synchronization between neuronal populations could represent the computation of 
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predictions in representation units. With stimulus repetition, the computation of 

predictions (in each level) become more precise, leading to sharper and more facilitated 

neuronal responses (Henson, 2012; Amado, 2018). Thus, the relationship between 

predictive coding and four bottom-up models could be that the predictive coding 

framework is a theory about what the brain is doing, and those models (synchronization, 

fatigue, facilitation and sharpening) are specific proposals about how the brain does it 

(Friston, 2012). 

The existence of the P(rep) effect (described in chapter 1.2.1) also supports the idea that 

RS can be explained by predictive coding. Summerfield and colleagues (2008) modulated 

the probability of different trials (repetition and alternation trials) in different context 

blocks (repetition and alternation blocks) and observed a stronger RS effect in repetition 

blocks. Therefore, the RS effect could be the product of perceptual inference and 

top-down modulations by expectation (i.e., higher expectation of encountering repetition 

trials in repetition blocks leads to a stronger RS than in the alternation blocks). In a 

following EEG study using the same paradigm, the same P(rep) effect was associated with 

a relatively late ERP component, around 300 ms after stimulus onset, in central (C3, C4, 

CP3, CP4, CPz, and Cz) electrodes (Summerfield et al., 2011). This effect was replicated 

and extended to other stimulus categories, such as Roman letters, words, objects (e.g., 

Grotheer and Kova cs, 2014; Li and Kova cs, 2022; Mayrhauser et al., 2014; but failed to be 

found in Kaliukhovich and Vogels (2011) and Kova cs et al. (2013)).  

Based on the available experimental evidence, Grotheer and Kova cs (2016) proposed a 

two-step model of response suppression (Figure 5 on Page 21). On one hand, this model 

proposed how to explain RS and ES under the predictive coding framework. It suggests 

that RS is the expression of ‘low-level’ prediction error (ε) calculations compared to ES, 

which ES likely represents “higher-level” ε computations with expectation signals from 

frontal regions (Summerfield et al., 2006).  
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Figure 5. Schematic illustration of the two-stage model of response suppression in the ventral 

visual stream. Higher-level expectations (depicted in blue) originate in frontal regions and are 

transmitted to the FFA, the OFA and the LOC. Lower-level predictions (depicted in gold) 

originate in the FFA and are transmitted, via the OFA, the LOC and the EVC, to the LGN. Visual 

areas compute and return the prediction/expectation error. A reduction in 

prediction/expectation error magnitude expresses as RS/ES, respectively. Please note that the 

anatomical location of neuronal regions is estimated roughly. FC: frontal cortex, FFA: fusiform 

face area, OFA: occipital face area, LOC: lateral occipital complex, EVC: early visual cortex, LGN: 

lateral geniculate nucleus. Adapted from Grotheer and Kova cs (2016), with permission. 

On the other hand, it posits the independence of RS and ES, which has been found in 

previous studies (e.g., Grotheer and Kova cs, 2015; Todorovic and de Lange, 2012). For 

instance, RS appears after stimulus onset, typically starting earlier than ES in EEG/MEG 

studies (e.g., Schweinberger et al., 2004; Summerfield et al., 2011, Todorovic and de Lange, 

2012). In addition, Auksztulewicz and Friston (2016) explained that RS can be 

understood in terms of ‘explaining away’ sensory prediction error (Gotts et al., 2012) 

from the predictive coding perspective (Figure 6 on page 22). According to the authors, 

PC supports optimal categorization and learning of sensory inputs. With stimulus 

repetition, its prediction error is gradually optimized. PC also can be mapped onto 
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canonical cortical microcircuits whose superficial pyramidal cells encode prediction 

errors about potential causes, transmit error estimation to hierarchically higher areas via 

ascending connections (Bastos et al., 2012). Similarly, deep pyramidal cells send 

predictions via descending connections to lower levels.  

Thus, both of the above-mentioned modeling and empirical evidence suggest that the RS 

effect could be explained by predictive coding, which more concentrates on the 

modulation of top-down expectations. 

Figure 6. Mapping the predictive coding scheme 

onto a canonical microcircuit. Prediction errors 

about hidden causes from hierarchically lower 

areas are received by spiny stellate cells in the 

granular layer. The spiny stellate cells also receive 

inputs from inhibitory interneurons, encoding the 

prediction errors about hidden states (i.e., 

describing the dynamics at a given hierarchical 

level). These prediction errors are reconciled with 

descending predictions from hierarchically higher 

areas received by the superficial pyramidal cells, which reciprocate the ensuing prediction 

errors. At the same time, predictions are reconciled in the deep pyramidal layers and relayed 

to hierarchically lower areas. Adapted from Auksztulewicz and Friston (2016), with 

permission. 

1.3 Critical moderators of the prediction-related neural responses 

PC has become an influential and popular theory in the domain of perception over the last 

two decades, mostly through the extensive empirical support it received. However, the 

factors modulating the behavioral and neural effects that are explained by the PC theory 

remain largely unexplored. This chapter will describe several factors which are important 

for predictive coding. For instance, prior experiences with the stimuli (Subchapter 1.3.1), 
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stimulus familiarity and expectation (Subchapter 1.3.2), attention (Subchapter 1.3.3), and 

short-term memory (Subchapter 1.3.4).  

1.3.1 Prior experiences with the stimuli 

‘Experience’ is an abstract and complicated concept and has been discussed in various 

disciplines, such as Epistemology, Phenomenology, Philosophy, and Psychology, to name a 

few. Examining this concept under all these perspectives is beyond the scope of this 

dissertation. In the context of the empirical studies, I conducted during my doctoral 

studies, the notion of experience is limited to perceptual and practical experience with 

the stimuli, as commonly described in Psychology (Silins, 2015). As described in Chapter 

1.1, the prior experiences of perceived objects are not only central in Helmholtz’s 

perception but also in the predictive coding framework (Helmholtz, 1867, Kok and de 

Lange, 2015; Rao and Ballard, 1999). Generally, several kinds of experience are described 

in Psychology. For example, visual experience is observed through repetitive visual 

exposure. After a short-term training, participants have short-term experiences with 

trained objects. In contrast, if the training sessions last for several months or even years, 

participants would obtain long-term/extensive experience with the trained objects. 

In addition to gaining experience through repeated visual exposure, perceptual learning 

(PL), is a popular and active practical approach, as it is considered to improve the 

perceptual experience for trained objects (For a review see Fahle, Poggio, T., and Poggio, T. 

A., 2002). With intensive training, participants can dramatically improve their 

performances in various perceptual tasks, ranging from visual features discrimination, to 

shape identification and object processing (e.g., Fiorentini and Berardi, 1980; Goldstone, 

1998; Op de Beeck and Baker, 2010). The behavioral improvements obtained through 

training tasks are associated with changes in brain activity in the related cortical area 

(Grill-Spector et al., 2000; Op de Beeck et al., 2006; for a review see Bi and Fang, 2013). 

For instance, previous fMRI studies have found that PL can lead to a reduced BOLD signal 

response for trained stimuli (Henson et al., 2000; Reber et al., 1998; Sigman et al., 2005; 

but see Grill-Spector et al., 2000). Importantly, compared to untrained (novel) stimuli, the 
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reduction of BOLD signal for trained stimuli can be regarded as a RS effect (Grill-Spector 

et al., 1999; Jiang et al., 2007). In other words, increased perceptual experience through 

PL or intensive training could lead to the appearance of the RS effect. 

Additionally, perceptual expertise is another way of acquiring perceptual experience. For 

instance, Gauthier et al. (1999) asked participants to complete a series of training tasks 

over several days for a novel stimulus category, created ad-hoc for studies on object 

expertise, named “Greeble”. Alongside the improved performance after the training, they 

found increased brain activation for Greebles in face-sensitive areas, and no significant 

difference between faces and Greebles. This result suggests that these face-sensitive areas 

are not specifically responding to faces but also to well-trained non-face objects (Gauthier 

et al., 2000). This would support the domain-general hypothesis of the sensitive 

responses for faces in the FFA (e.g., Gauthier et al., 2003; Busey and Vanderkolk,2005). 

Importantly, it has been suggested that the tight connection between predictions and 

perceptual expertise via analogies and associations (for a review see Cheung and Bar, 

2012). In other words, predictions might depend on extensive experience (e.g., perceptual 

expertise) with perceived objects. To test this hypothesis, Grotheer and Kova cs (2014) 

adopted a block-based probability design similar to that of Summerfield et al. 2008 

(Figure 3D on page 14) to investigate the P(rep) effect for familiar Roman letters and 

unfamiliar false fonts. Their findings showed that the significant P(rep) effect is only 

observed for Roman letters, which suggests that perceptual expertise with stimuli is an 

important factor in determining the emergence of the P(rep) effect. Hence, in a study 

described in this thesis the same paradigm was used for other stimuli for which strong 

expertise is already developed, namely, words (details see Study 1 in the present thesis). 

Together, these results support the idea that predictive processes, measured by P(rep) 

modulations of RS, require prior experiences with the stimuli. 

1.3.2 Stimulus familiarity and expectation 

Prior experiences can modify how a visual stimulus is processed in our brain (Friston, 

2005). Different from the previous subchapter, which emphasized the influence of prior 
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experiences with the stimulus category for prediction related neural effects, this 

subchapter focuses more on the effect of stimulus familiarity and expectation on 

prediction related effects during the experiment. Prior experience is a generalized 

concept, containing many aspects of the experience for perceived/experimental objects, 

e.g., the extensive, long-term experience for stimulus categories, including rich semantic 

information or just visual experience of repeated exposure. Whereas stimulus familiarity 

and expectation are two sub-forms of prior experience, mainly refer to the 

short-term/temporal experience with experimental stimuli. In other words, stimulus 

familiarity and expectation belong to two specific prior experiences: stimulus familiarity 

indicates whether a stimulus has been seen before, and stimulus expectation refers to 

whether a stimulus could be expected to occur (Manahova et al., 2018). In general, 

familiarity is the impression that something has been seen in the past (i.e. "it looks 

familiar"), and there are different degrees of familiarity (Kova cs, 2020). Prior experience 

is just a general, factual term to say that I was exposed to something. Familiarity is the 

subjective feeling that I was exposed to that thing. Expectations could be more related to 

experimental designs or tasks. For instance, in an old-new images of objects judgment 

task, participants could have prior experiences both for old and new objects, but they 

have learned the old images of objects only, therefore they are familiar with these 

specifically. Further, if participants were instructed to detect inverted stimuli in the test 

phase as well, the inverted images could be expected events regardless of they have been 

learned or not.  

Many studies suggest that familiarity with a stimulus effectively modulates neural 

processing in various ways (e.g., Freedman et al., 2006; Huang et al., 2018; Manahova et 

al., 2020). For example, viewing an image of an object repeatedly leads to decreased 

spiking activity in the intertemporal (IT) cortex in monkeys (Miller et al., 1991) and 

reduced BOLD responses in the lateral occipital cortex (LOC) for familiar stimuli 

compared to unfamiliar stimuli (for a review see Grill-Spector et al., 2006). Similarly, the 

ES effect (as described previously) which suggests suppressed responses for expected in 

comparison to unexpected stimuli, has been reported in monkey single-cell recordings 
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(e.g., Meyer and Olson, 2011; Ramachandran et al., 2016) and human EEG, MEG, and 

neuroimaging studies (e.g., Egner et al., 2010; Kok et al., 2012; Summerfield et al., 2011; 

Todorovic et al., 2011). A recent study suggests that stimulus familiarity and expectation 

jointly modulate object processing in the LOC (Manahova et al., 2018). Specifically, 

Manahova et al. separately manipulated stimulus familiarity (familiar vs. novel) and 

expectation (expected vs. unexpected) and measured the neural activity using MEG while 

participants viewed object images. The results replicated both familiarity and expectation 

effects, and importantly, suggest that the familiarity effect (starting at 200 ms after 

stimulus onset) appears earlier than the expectation effect (starting at 500 ms after 

stimulus onset). In addition, they found that familiarity leads to a higher dynamic range 

(i.e., peak-to-trough difference) of sensory response, but expectation does not. Thus, 

these results suggest that stimulus familiarity and expectation could jointly modulate 

perception but in distinct time courses. One potential explanation is that familiarity 

mainly results in local changes in the LOC, which occur within a relatively short time 

(Vogels, 2016; Kaliukhovich and Vogels, 2011). Instead, expectation suppression occurs 

when the LOC receives the prediction error from higher-order areas, therefore requiring a 

longer time (Friston, 2005).  

1.3.3 Attention 

We are continuously exposed to an extensive amount of sensory information; therefore, 

attention plays a crucial role in selectively processing a relevant fraction of it. Similarly, 

several hypotheses about the latent causes of this sensory input are continuously 

computed by the brain and only the most appropriate should be selected for top-down 

transmission from the abundant corpus of prior knowledge about a situation. This is 

achieved by weighting which predictions are the most relevant at any time point, and 

attention is thought to be the potential mechanism allowing this. Thus, it is important to 

investigate how attention modulates predictive processing.  

It has been well-established that attention increases the efficiency of information 

processing. Especially, attending to a stimulus, which is associated with increased 
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neuronal population selectivity (e.g., Maunsell, 2015; Murray and Wojciulik, 2004; 

Serences and Kastner, 2014; Treue, 2003). Summerfield and Egner (2009) have 

distinguished expectation and attention in visual cognition and discussed how their 

influences on visual perception overlap, differ and interact. Several empirical studies have 

attempted to manipulate either attention or expectation or to separate expectation from 

attention. The results of these studies suggest that attention is a prerequisite for 

perceptual expectations (e.g., Alink and Blank, 2021; Larsson and Smith, 2012; Richter 

and de Lange, 2019; but see Summerfield and Egner, 2009). For instance, Richter and de 

Lange (2019) manipulated attentional demands through two different tasks (attending 

either objects or distractors), while expectations were generated during a separate 

statistical learning session. Their results showed that the expectation suppression (ES) 

effect only appears when participants attend to objects and this effect is significantly 

attenuated when attention is drawn away from objects by distractors. Larsson and Smith 

(2012) found a similar pattern for the effect of attention on ES when using face stimuli, 

but interestingly their results also showed that the repetition suppression (RS) effect is 

attention-independent. However, it is still under debate how attention modulates 

expectation. In the classic predictive-coding based explanation, the significant ES effect in 

the attended condition is due to the reason that attention facilitates prediction error 

coding (Feldman and Friston, 2010; Friston, 2009), meaning that attention can enlarge 

the prediction error effect for unexpected relative to expected conditions. However, this 

explanation was challenged by attention theories (for a review see Alink and Blank, 2021), 

which propose that the ES effect in the attended condition is due to an enhanced stimulus 

saliency of unexpected stimuli. Therefore, the critical difference between these two 

explanations is that the former suggests that attention causally facilitates 

prediction-error coding, while the latter hints that attention effect of stimulus saliency 

leads to enhanced responses for unexpected stimuli. 

The biggest challenge in investigating how attention modulates ES is the difficulty of 

orthogonalizing the attention and expectation effects. As described above, experimental 

manipulations of attention through different tasks are only possible for endogenous 
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attention (Larsson and Smith, 2012; Richter and de Lange, 2019), while stimulus saliency 

normally belongs to exogenous attention. Therefore, future studies can further 

distinguish between endogenous and exogenous attention. For instance, expectation can 

be manipulated by introducing different stimulus probabilities, endogenous attention can 

be manipulated by varying task-relevance, and exogenous attention can be manipulated 

using different stimulus saliency levels. Of course, besides the suggested manipulations, 

future experiments can combine multiple techniques. For example, recording the eye 

movements with eye-tracking, or separating attention and expectation using high 

temporal resolution methods (e.g., EEG, MEG). Since previous studies have found the 

exogenous attention effect precedes those of endogenous attention (Hickey et al., 2010), 

testing these interactions with the proposed techniques can be a promising research 

avenue (for a review see Summerfield and Egner, 2009). 

1.3.4 Short-term memory 

The German psychologist Hermann Ebbinghaus is usually considered the first scientist to 

scientifically investigate memory. Memory plays an extremely important role in our daily 

lives and is related to most cognitive processes. For instance, when you are doing a 

mathematical calculation, you need to extract some calculation rules you have learned 

before from your memory; You need to remember where you parked your car (spatial 

memory); You need to remember how to drive (procedural memory). According to an 

influential model of memory, short-term memory (STM) can hold a limited amount of 

information in a very accessible state temporarily (Cowan, 2008), differently from 

long-term memory and working memory (Atkinson and Shiffrin, 1968). Instead, 

long-term memory refers to a vast and long-term store of knowledge and a record of prior 

events (Atkinson and Shiffrin, 1971). Working memory refers to memory as it is used to 

plan and carry out behavior (Miller et al., 1960; Ruchkin et al., 2003).  

According to the predictive coding framework, perception is the product of the brain’s 

attempts to constantly match sensory inputs to prior knowledge (Kok and de Lange, 

2015), involving the bidirectional streams of prediction error, transmitted from low level 
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to higher levels, and predictions, transmitted in the opposite direction (Clark, 2013; 

Friston, 2015). However, important questions about how the brain efficiently 

accomplishes these processes remain open. Especially, is predictive processing related to 

memory, and if so, how? Conventionally, we might assume the prediction-related priors 

are stored in our long-term memory and that when we have to perform relative cognitive 

processes, such prior expectation is retrieved from a long-term storage. However, given 

the high efficiency with which perception is accomplished, this hypothesis seems rather 

unlikely. Alternatively, Trapp and colleagues (2021) proposed that priors are retrieved 

from long-term memory and temporarily stored in short-term memory (STM). In this way, 

the matching process happens between sensory inputs and short-term memory. In most 

cognitive models, STM is regarded as a part of long-term memory that is engaged in the 

current task (e.g., Anderson et al., 2004; Cowan, 1998; Rochkin et al., 2003). Therefore, 

STM could be an optimal candidate to temporarily store priors that are then compared to 

sensory inputs, as it could hold relevant information in a highly accessible state for 

related cognitive processes (Cowan, 2008). Several studies provide evidence that STM is 

required for perceptual prediction processes. For instance, Travis and colleagues (2013) 

adopted a contextual cueing paradigm, in which participants searched a target in stimulus 

arrays, with some of these arrays being repeated several times during the experiment 

(participants are not explicitly informed), while others are new arrays. The results 

showed that participants tended to find the target in the repeated arrays faster than in 

the novel others. However, when participants had to maintain additional information in 

STM during the same search task, the performance facilitation performance was 

attenuated. This suggests that STM is required for storing repeated information and 

predicting the target. Furthermore, St John-Saaltink and colleagues (2015) demonstrated 

that the expectation suppression for predictable items is attenuated under STM load. 

They presented an auditory cue (a tone) prior to predicting the orientation of grating 

stimuli. The reduced BOLD response in V1 was found for predictable compared to 

non-predictable gratings, but this effect was attenuated when participants had to 

maintain additional, orientation-irrelevant information in their STM. Finally, Cashdollar et 

al. (2017) found that STM capacity is correlated with the neural correlates of prediction in 
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a task that required participants to attend to a series of images. Together, the presented 

empirical evidence suggests that STM plays an important role in predictive processing. 

Study III in the present thesis will further investigate the modulation of short-term 

memory on prediction-related effects in a high-level visual region. 

In this subchapter, I described some critical moderators of predictive processing, such as 

prior experiences, stimulus familiarity and expectation, attention, and short-term 

memory. These factors are related to the topic of the current thesis under the framework 

of predictive coding. The author believes that integrating the effect of these factors into 

the theory of PC, the mechanisms underlying human perception would be better 

described.  

1.4 Objectives and questions of the present thesis 

The studies in the present thesis mainly focus on whether and how prior experiences 

modulate neural correlates of predictive processing in the ventral visual areas. 

Prediction-related neural effects are measured with fMRI and are elicited by presenting 

participants with different visual stimuli (faces, words, and objects). The definition of 

“prior experiences” in my works specifically refers to both the long-term experience of 

language learning and to the short-term experience achieved by perceptual learning. Two 

well-established phenomena are measured as the index of predictive processing (see 

chapter 1.2.1): repetition suppression (RS) (e.g., Grill-Spector et al., 2006; Grotheer and 

Kova cs, 2016), and repetition probability (P(rep)) effects (e.g., Grotheer and Kova cs, 2014; 

Summerfield et al., 2008). Four representative areas in the ventral visual stream are 

examined in detail (fusiform face area (FFA; Kanwisher et al, 1997a); occipital face area 

(OFA; Gauthier et al., 2000); visual word form area (VWFA; Cohen et al., 2000); and lateral 

occipital complex (LOC; Malach et al., 1995)), also see chapter 2.2). In addition, other 

important potential modulators on PC, such as attention and short-term memory, were 

investigated in this thesis. In general, this work attempts to clarify the influence of prior 

experiences on predictive processing of multiple stimulus categories and within 

stimulus-selective areas. 
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The first empirical contribution (Study I, chapter 3.1) investigates repetition probability 

effects (P(rep)) for words. Previous studies have observed this effect for various sensory 

stimulus categories, such as faces, objects and Roman letters (e.g., Grotheer and Kova cs, 

2014; Mayrhauser et al., 2014; Summerfield et al., 2008). Especially, Grotheer and Kova cs 

(2014) adopted the paradigm of Summerfield et al., (2008), using two non-face stimulus 

categories with distinct levels of prior experiences: familiar Roman letters and novel false 

fonts. The results showed the P(rep) effect for familiar Roman letters, but not the novel 

false fonts, which suggests that this P(rep) effect depends on the prior experiences of the 

participants with the stimuli. This study was the first demonstration that prior 

experience is important for the P(rep) effect, which is related to PC. Here, in our Study I, 

we tested the extent to which prior experiences affect the P(rep) effect and if it could be 

extended to more complex lexical stimuli (i.e. Chinese characters and German words) as 

well. Observing that P(rep) effects can occur for complex lexical stimuli would 

demonstrate that prior experience is a universal prerequisite for predicting multiple 

stimulus categories. 

Study II (chapter 3.2) focuses on the modulation of short-term experience on the P(rep) 

effect for non-face objects. As mentioned above, the P(rep) effect was replicated for faces, 

but inconsistent findings were observed for non-face objects. For instance, Mayrhauser et 

al. (2014) reported the P(rep) effect for line-drawn objects, but such effects were not 

replicated for everyday objects or chairs in human neuroimaging studies (Kova cs et al., 

2013). Also, 3D artificial faces, fractal patterns and everyday objects in macaque 

single-cell recordings studies could not replicate the P(rep) effect (Kaliukhovich and 

Vogels, 2011; Vinken et al., 2018). This inconsistency could be due to differences in 

experimental species, and tasks, but also in prior experiences of the experimental stimuli 

in question. Importantly, the effect of prior experiences on the P(rep) modulation was 

investigated by Grotheer & Kova cs (2014). The results showed that the P(rep) effect was 

only observed for familiar letters, but not for novel false fonts. This hints that observing 

the P(rep) effect depends on extensive experience with stimuli. However, it remains 

unknown whether the short-term experience of stimuli could modulate the P(rep) effect 
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as well. Study II addresses this question by performing fMRI measurements before, and 

after ten-day perceptual learning (PL) sessions for non-face objects (cars). 

Whereas the first two studies mainly focus on the modulation of prior experiences on the 

P(rep) effect, the third study (Study III, chapter 3.3) investigates how prior experiences 

modulates bottom-up sensory input in the brain. Two potential cognitive processes 

(short-term memory (STM) and attention) could contribute to the modulation. The 

influence of these factors on PC have been described in chapters 1.3.3 and 1.3.4. To 

address this question, Study 3a includes a classic stimulus repetition paradigm to 

measure RS, together with either concurrent STM load or a control condition. Instead, in 

Study 3b we then further manipulated the attention by introducing an active task. In 

combination with previous studies, the results from Study III may help clarify and 

contextualize how prior experiences modulates on the top-down predictive processing. 

In sum, the central questions of the present dissertation are the following. 

1. Does the repetition probability effect for words depend on long-term experience with 

the stimuli? 

2. Does short-term experience affect the repetition probability effect for non-face objects? 

3. How and to which extent do top-down predictions induced by prior experience 

modulate the repetition suppression effect? 
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2 General methods 

The three studies presented in the present thesis are all based on the same technique 

(fMRI) with the stimulus repetition paradigm (Summerfield et al., 2008) used to 

investigate the RS and P(rep) effects of stimulus categories (faces, words, and objects) in 

the ventral visual stream. I will give a brief description of the fMRI technique in this 

section (Chapter 2.1). In addition, I will introduce some of the Regions-of-interest (ROIs) 

in the ventral visual system, on which the present studies are focused (Chapter 2.2). 

2.1 Functional magnetic resonance imaging 

Functional magnetic resonance imaging (fMRI) is a popular technique that has widely 

been used to investigate brain activity. Due to its non-invasiveness and its high spatial 

resolution, fMRI is considered to be an ideal technique to investigate brain function. The 

main principle of this technique is the coupled relationship between neuronal activation 

and cerebral blood flow (Buchbinder, 2016; Huettel et al., 2004). One important index in 

fMRI is the blood oxygen level-dependent (BOLD) signal. BOLD fMRI detects local 

increases in relative blood oxygenation that are assumed to be a direct consequence of 

neurotransmitter action, and thus reflect local neuronal activities (Matthews and Jezzard, 

2004). These activity patterns can be related to cognitive functions by testing which 

regions showed more or less activity during different task conditions. In other words, 

when a brain area is engaged in a relative cognitive process, the exchange between oxy- 

and deoxygenated blood would increase. This increase can be detected with fMRI and is 

then interpreted as related to the cognitive process that the task at hand required of the 

participant.  

In this thesis, image data were preprocessed using SPM12 (Welcome Department of 

Imaging Neuroscience, London, UK), which is a MATLAB-based software (The 

MathWorks). More details of this software and descriptions for the parameters in each 

preprocessing step are described in their manual (Ashburner et al., n.d.). All experiments 
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were performed with a 3-Tesla MR scanner (Siemens MAGNETOM Prisma, Erlangen, 

Germany), with 20-channel (Study I) and 64-channel (Studies II and III) head coils. 

High-resolution T1-weighted images (192 slices; TR = 2300 ms; TE = 3.03 ms; flip angle = 

90 deg; 1 mm isotropic voxel size) were acquired to obtain 3D structural scans. The 

parameters of T2-weighted images were different in the three studies based on some 

specific requirements (details see the imaging parameters in each study).  

In the following paragraph, each preprocessing step will be briefly described. 

1) DICOM conversion. The scanner produces data in Digital Imaging and Communications 

in Medicine (DICOM) format. The DICOM format is not directly compatible with SPM, 

therefore conversion to the 3D image format (.nii) is needed. Additionally, the converted 

image data can be visualized as a 3D volume as well, rather than slice form. 

2) Slice timing. The 3D volume is not acquired at the same time point but is composed of a 

sequence of 2D slices in a certain time span (repetition time, TR). Thus, differences in 

image acquisition time between slices should be corrected based on the number of slices, 

TR, slice order, and reference slice. After this step, these delays in different slices during 

acquisition can be corrected, and all slices of one volume can be interpolated to the same 

time point for which a reference slice is selected. 

3) Spatial realignment. After the temporal correction of the data, the following steps are 

concerned with spatial corrections. Participants will inevitably move their heads during 

data acquisition, within and between runs. Although the amplitude of these movements 

can be very small, it will nevertheless affect the precision of spatial positioning of related 

brain areas. Thus, during spatial realignment, the software calculates six parameters 

reflecting the head motion relative to the reference volume (i.e., the first image). These six 

parameters are saved and used as additional regressors when the general linear model is 

specified. In other words, the images can be resliced based on these parameters. 

4) Spatial co-registration. As the anatomical and functional images are different, 

especially in terms of spatial resolution and liability to noise in the form of distortions, 
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co-registration is necessary to match activity differences to anatomical locations. In this 

step, the preprocessed anatomical image is aligned to the mean functional volume to 

compare the difference of brain activities within a group of participants.  

5) Spatial normalization. To ensure that different brains are comparable, different 

participants’ brains are warped to a standard spatial system. This process happens in two 

steps. First, a deformation is estimated by deforming a template to match an individual 

scan; second, the spatially normalized images are then actually written, using the 

previously estimated deformation (Ashburner et al., n.d.). In our studies, we first 

normalized the individual anatomical images to the standard Montreal Neurological 

Institute (MNI) template, then we normalized all functional scans of the same participant. 

After the normalization, all participants’ results can be compared in the standard space 

(MNI template). In our studies, all images were normalized to the MNI template ICBM152, 

which is the result of averaging 152 normal MRI scans (Mazziotta et al., 1995). 

6) Smoothing. The final step of preprocessing is spatial smoothing to suppress noise and 

effect due to residual differences in functional and gyral anatomy during inter-subject 

averaging. This step will result in a loss of spatial resolution, but statistical power will 

instead be increased.  

After the six preprocessing steps, the image data need to be mapped to experimental 

conditions. This is achieved by computing a general linear model (GLM), in which a 

function reflecting the expected hemodynamic response (canonical hemodynamic 

response function) is fit to the time-series data. The BOLD signal estimation based on this 

model, which also includes regressors representing different task conditions, can then be 

used for further analyses (e.g. ROI analysis or whole-brain analysis). Canonical 

hemodynamic response functions were extracted using MarsBaR 0.44 toolbox for SPM 

(Brett et al., 2002). 
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2.2 Regions-of-interest in the ventral visual system 

Vision is one of the most important sensory channels enabling human to perceive the 

dynamic world. Visual information is captured by the eyes and received in the retina. 

Furthermore, it is transmitted by the optical nerves and processed through the lateral 

geniculate nucleus (LGN) before it enters to the primary visual cortex (e.g., V1, V2, etc.). 

Afterwards, the visual information is transferred to higher-level visual cortices (Tove e et 

al., 1996). Almost 40 years ago, Ungerleider and Mishkin (1982) proposed the two-visual 

pathway model of the primate visual cortex, assuming the presence of two visual streams 

(the ventral and the dorsal visual streams, Figure 7 on page 37). The ventral visual stream, 

also known as the ‘what’ pathway, is located in the occipital and temporal cortices and 

mainly computes the identity of all kinds of visual objects (e.g., characters, faces, scenes). 

Instead, the dorsal visual stream is known as the ‘where’ pathway, and it projects along 

the dorsal brain surface. It mainly processes the information about the location of visual 

objects in the field of view, and the actions related to these objects (e.g., reaching, 

throwing, grasping) (Milner and Goodale, 1995; Pitcher and Ungerleider, 2021). Recently, 

Pitcher and Ungerleider (2021) revised the two-visual pathway model and presented 

evidence for the existence of a third visual pathway on the lateral brain surface in both 

human and non-human primates (Pitcher and Ungerleider, 2021). The third pathway 

mainly processes dynamic information of visual objects, and it is responsive to social 

perception (e.g., Allison et al., 2000; Hein and Knight, 2008; Pitcher et al., 2014; Sliwinska 

et al., 2020).  
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Figure 7. Schematic illustration of the three-visual pathway model. The corticocortical 

connections of the third pathway (in red) are independent of the ventral pathway (in green) 

and the dorsal pathway (in blue). a/pSTS: anterior/posterior superior temporal sulcus. V1: 

primary visual cortex. V5: motion-selective area. MT: middle temporal visual area. Adapted 

from Pitcher and Ungerleider (2021), with permission. 

The present chapter will mainly introduce four sensitive areas in the ventral visual 

stream, namely the fusiform face area (FFA), the occipital face area (OFA), the visual word 

form area (VWFA), the lateral occipital cortex (LOC). All these areas are visualized in 

Figure 8 on page 38. There are several reasons why the focus is put on these areas. First, 

they are thought to play an important role in visual object processing; Second, they are 

especially responsive to types of stimuli used in our studies; Last but not least, previous 

studies have reported the RS effect I discussed in relation to predictive coding (PC) in 

these areas. 
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Figure 8. Relative spatial position of ROIs in a typical participant’s inflated brain. From the 

respective of the occipital lobe, the white lines indicate the boundaries of the retinotopic areas. 

LO: lateral occipital complex (named as LOC in the present thesis). AG: angular gyrus. hMT+: 

human motion-selective complex. OWA: occipital word sensitive area. OFA: occipital face area. 

VWFA: visual word form area. FFA: fusiform face area. V1: primary visual cortex. Left and right 

indicate left and right hemisphere. Adapted from Zhang et al. (2018), with permission. 

Faces are commonly experienced, but simultaneously special stimuli in our daily lives. 

Many previous studies have reported serial-specific behavioral markers of perceptual 

expertise for faces, including the inversion effect (e.g., Yin, 1969), the composite effect 

(e.g., Young et al., 1987), and the left-side bias effect (e.g., Gilbert and Bakan, 1973). At the 

neural level, different kinds of information derived from faces are thought to be processed 

in a face perception network, which has been divided into ‘core’ and ‘extended’ systems 

(Haxby et al., 2000; Schweinberger and Neumann, 2016).  

The fusiform face area (FFA) as one core region in the ‘core’ face system is located in the 
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fusiform gyrus and is extremely sensitive to faces (Figure 8 on Page 38; Kanwisher et al, 

1997a; Zhang et al., 2018; for a meta-analysis see Mu ller et al., 2018; for a review see 

Kanwisher and Yovel, 2006). In other words, the FFA always shows a stronger activation 

for faces than for other objects. Normally, it is defined with a functional localizer contrast 

of faces vs objects (Grill-Spector et al., 2004), or other contrasts, such as faces vs objects 

and Fourier randomized images of faces (Grotheer and Kova cs, 2015). With the 

development of neuroimaging techniques, researchers implemented some well-known 

criteria (precise anatomical location) to parcellate early visual areas (Felleman et al., 

1991). Within the FFA, Weiner and Grill-Spector (2012) used the same criteria to define 

two subsections: a middle and a posterior FFA (mFFA and pFFA). The mFFA overlaps with 

the middle fusiform sulcus and is adjacent to the anterior and middle part of a 

limb-selective region on the occipitotemporal sulcus. Conversely, pFFA overlaps the 

posterior part of the fusiform gyrus and is located posteriorly to the above-mentioned 

limb-selective occipitotemporal region (Weiner and Grill-Spector, 2012). Schwarz et al. 

(2019) found that the best contrast to identity the pFFA is contrasting face vs landscapes. 

In contrast, the mFFA is activated more stronger for faces than object, houses, or 

landscapes. Recently, a MEG study found that the pFFA is activated earlier than mFFA, 

which suggests different functional roles of these two regions in face processing (Fan et 

al., 2020). However, further studies are needed to investigate whether and how these two 

regions are engaged in different aspects of face processing. 

Besides mere face detection, the FFA is known to respond stronger to upright than 

inverted faces (Yovel and Kanwisher, 2005), which is closely associated with the 

behavioral face-inversion effect. These results relate to configural/holistic face processing 

(e.g., Maurer et al., 2007; Rossion, 2008; Rossion and Gauthier, 2002). Previous studies 

further reveal that the FFA plays an important role regarding face identification (for 

reviews see, e.g., Duchaine and Yovel, 2015; Gobbini and Haxby, 2007; Haxby et al., 2000). 

For example, a higher neuronal response was induced to the correctly identified faces 

than unfamiliar faces (Grill-Spector et al., 2004). Some neurological disorders can lead to 

reduced performance in face identity recognition, which is associated with impairments 
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of the anatomical and functional characteristics of the FFA. For example, prosopagnostic 

individuals, who cannot identify faces, often display lesions in this area (Barton et al., 

2002; Furl et al., 2011). Other lesions in the fusiform gyrus can generate poor abilities in 

tasks involving face individuation (Wada and Yamamoto, 2001) and detection (Xu et al., 

2014).  

However, another line of evidence suggests that the FFA is not specifically responsive to 

faces, but in general to stimulus categories for which people develop a high expertise 

(Gauthier et al., 2000). This was observed by Gauthier et al. (1999), who asked 

participants to finish a series of training tasks where they acquired high familiarity with a 

novel stimulus category, the “Greeble”. The idea of the Greeble is that of an artificially 

generated category of visual objects by slightly varying the configuration of features. They 

have two ’genders’ and five ‘families’. Each Greeble has its own ‘name’ like faces. These 

training tasks included gender inspection, gender categorization, individual inspection, 

naming, and verification. The training tasks aimed to train participants to identify 

Greebles at the individual level (identification), as fast and accurately as they categorized 

these stimuli at the more general ‘family’ level (categorization). After training, Gauthier et 

al. found increased brain activation for Greebles in the FFA, and no difference between 

faces and Greebles. This suggests that the FFA does not only respond to faces, but to any 

category we have expertise with. The hypothesis is that the FFA tends to respond to faces 

merely because expertise is an important factor that leads to specialization for faces in 

the face area. The same results were also found for other groups of objects for which 

expert professionals had extensive visual expertise, such as cars, birds, fingerprints (e.g., 

Gauthier et al., 2000). However, all findings combined leave the debate on the functional 

specialization of the FFA still open, while the role of this region in face perception is 

undisputed (e.g., Bukach et al., 2006; Kanwisher and Yovel, 2006; McKone et al., 2007; Xu, 

2005). 

The occipital face area (OFA; Gauthier et al., 2000) is also a core region of the face 

perception network and is located on the lateral surface of the occipital lobe and in the 
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vicinity of the inferior occipital gyrus (Figure 8 on page 38). It is more commonly defined 

with a functional localizer contrast of faces vs other non-face categories such as objects, 

or face vs objects and scrambled images (Kova cs et al., 2008; Large et al., 2008; Yovel and 

Kanwisher, 2005). Although the OFA has not been as extensively studied as the FFA, it has 

been shown to be functionally distinct from other face-sensitive areas. In the face 

perception network, the OFA is thought to be important during the first stage in face 

processing: it is involved in face detection, it receives facial and face feature information 

from the lateral occipital cortex (Pitcher et al., 2007), and it transmits related information 

to other face-sensitive areas (Calder and Young, 2005; Pitcher et al., 2011). In other words, 

the OFA is more sensitive to physical/structural components of face perception than the 

FFA (Rotshtein et al., 2005). However, it is still under debate whether/how this area could 

play a role in the processing of higher-order facial information. For instance, Rossion and 

Colleagues (2003) reported about a prosopagnostic patient with lesions in the right 

inferior occipital gyrus, which suggests the OFA is crucial to face identification. Other 

studies using transcranial magnetic stimulation (TMS) over the OFA, reported a 

disruption in the discrimination of facial expressions (Pitcher et al., 2008). Recently, 

Ambrus and Colleagues (2017a) adopted state-dependent TMS to stimulate over the rOFA 

during a face priming paradigm. The results suggest that the OFA is causally involved in 

the formation of identity-specific face representations (Ambrus et al., 2017b). More 

recently, the OFA was also related to process face-related semantic information in a TMS 

study (Eick et al., 2020). To summarize, the OFA is not limited to the processing of 

low-level physical features and instead has a crucial role in the encoding of other 

face-related information. 

The visual word form area (VWFA) is located in the left occipitotemporal sulcus and is 

thought to be involved in the visual and prelexical processing of written words (Figure 8 

on page 38; e.g., Cohen et al., 2000; Dehaene and Cohen,2011). It is commonly defined 

with a functional localizer contrast of words vs other non-words categories such as 

strings, line-drawings, fixation (e.g., Baker et al., 2007; Cohen et al., 2002; Glezer et al., 

2009). Generally, the response of VWFA reflects strictly visual and prelexical stages of 
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word recognition (Dehaene et al., 2002), independently of the case and font of the 

stimulus words (Dehaene et al., 2001; Zhou et al., 2019). Literate humans are considered 

experts in the recognition of words of their native language. The hemispheric 

lateralization of this area is consistent with language lateralization (Cai et al., 2008, 2010). 

For instance, previous studies found that the word-sensitive N170, which is assumed to 

originate in the VWFA, was already left-lateralized in children after about one year of 

formal school education (e.g., Cao et al., 2011; Maurer et al., 2006). Accordingly, the 

processing of written words of the native language shows similarities to that of other 

stimulus categories in which humans are experts in, for example, familiar human faces 

(Davies-Thompson et al., 2016; for a review, see Moret-Tatay et al., 2020; Young and 

Burton, 2017). Anatomically, the VWFA is in the close neighborhood of the left FFA 

(Matsuo et al., 2015). In fact, it has been proposed that the VWFA emerges as a result of 

“cultural recycling” due to the potential re-use of neural structures previously related to 

face and object processing (Dehaene and Cohen, 2007, 2011). It has also been proposed 

that many structural, connecting and functional properties of the VWFA are inherited 

from evolutionarily older brain circuits, such as the face-processing network (Hannagan 

et al., 2021). 

The lateral occipital complex (LO; named as LOC in the present thesis) is one key region 

of the object processing network in the ventral visual stream (Figure 8 on page 38; for a 

review see Grill-Spector et al., 2001). Malach et al. (1995) was the first to show a stronger 

activation of the LOC to images of everyday objects compared to texture stimuli. Since 

then, most studies consistently found that the object representations in LOC are 

independent of low-level visual properties and physical features (e.g., Silvanto et al., 2010; 

Vuilleumier et al., 2002). LOC is also known to be selective to all visual objects (for a 

review see Grill-Spector, 2003). Additionally, the LOC is sensitive to the attributes of an 

object, such as shape (Kanwisher et al., 1997b), and position (Cichy et al., 2011). However, 

it is currently under debate how the LOC contributes to higher-level object perception 

(Chouinard et al., 2017; Roth and Zohary, 2015; Wang et al., 2016). Specifically, 

inconsistent results were reported regarding object individuation (Bona et al., 2018; Eger 
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et al., 2004, 2008; Vuilleumier et al., 2002) and categorization (Cichy et al., 2011; 

Grill-Spector et al., 1999; Sayres and Grill-Spector. 2008). For example, an fMRI study by 

Vuilleumier et al. (2002) reported repetition suppression in the LOC when objects with 

different shapes were presented repeatedly, but not when objects with the same name 

were shown. This result suggests that shape information is processed in the LOC while 

the semantic information about categorization not. In contrast, by using multivariate 

pattern analysis (MVPA), Eger et al. (2008) found that the fMRI activation pattern of the 

LOC could be discriminated at a category-dependent level, but this region can also 

distinguish between different exemplars of a category of artificial objects. Recently, 

transcranial magnetic stimulation (TMS) of the right LOC (rLOC) led to reduced 

individuation of different exemplars of the same object category (Bona et al., 2018). Taken 

together, these findings suggest a dominant role of LOC in object identity encoding. 

As described above, these four areas are located in the ventral visual system and play an 

important role in visual object processing. Some areas show category-selectivity, such as 

the FFA (especially sensitive to faces) and the VWFA (especially sensitive to words). 

Importantly, previous studies have already shown significant RS effect in the FFA 

(Gauthier et al., 2000; for a review see Henson, 2016), OFA (e.g., Fox et al., 2009; Kova cs et 

al., 2008), VWFA (e.g., Barton et al., 2010; Glezer et al., 2015), and LOC (e.g., Grill-Spector 

and Malach, 2001). Even the P(rep) effect was reported in the FFA, OFA and LOC (e.g., 

Grotheer et al., 2014; Mayrhauser et al., 2014; Summerfield et al., 2008). Thus, these four 

areas are the best candidates to investigate how prior experiences modulate the 

top-down prediction processing in the ventral visual system. 
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3 Empirical contributions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Empirical contributions 

46 
 

 



Empirical contributions 

47 
 

3.1 study I: Repetition probability effects for Chinese characters and 

German words in the visual word form area 

 

 

 

This section corresponds to the manuscript that has been published in Brain 

Research:  

 

 

Li, C., & Kova cs, G. (2022). Repetition Probability Effects for Chinese Characters 

and German Words in the Visual Word Form Area. Brain Research, 147812. 

https://doi.org/10.1016/j.brainres.2022.147812 

 

 

 

 

 

 

 

Main research question： 

Does the repetition probability effect for words depend on long-term experience 

with the stimuli? 
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Supplementary Table 1. Individual­participant VWFA and LO coordinates in German 

and Chinese participants 
 
Participants  Number  VWFA  Left LO  Right LO 

German   S01  ­42, ­64, ­10  ­44, ­76, ­10  42, ­62, ­16 
  S02  ­40, ­58, ­4  ­38, ­78, ­4  40, ­70, ­10 
  S03  ­48, ­60, ­18  ­40, ­82, 4  46, ­80, 2 
  S04  ­38, ­48, ­14  ­44, ­76, ­2  42, ­78, ­2 
  S05  ­46, ­52, ­12  ­36, ­86, 10  38, ­72, ­8 
  S06  ­38, ­68, ­2  ­50, ­78, ­4  44, ­84, 4 
  S07  ­56, ­66, ­10  ­34, ­84, ­18  38, ­84, ­2 
  S08  ­54, ­46, ­10  ­42, ­70, ­8  54, ­72, 0 
  S09  ­44, ­86, ­6  ­46, ­84, ­6  40, ­82, ­2 
  S10  ­42, ­70, ­10  ­48, ­78, ­2  38, ­88, ­4 
  S11  ­44, ­76, ­14  ­54, ­78, 4  52, ­76, 2 
  S12  ­56, ­66, ­10  ­36, ­86, ­14  36, ­70, ­12 
  S13  ­42, ­76, ­10  ­38, ­66, ­12  46, ­78, 4 
  S14  ­42, ­58, ­20  ­44, ­90, ­2  40, ­86, ­2 
  S15  ­44, ­68, ­12  ­36, ­66, ­10  40, ­70, ­8 
  S16  ­38, ­82, ­4  ­40, ­80, ­6  38, ­78, ­4 
  S17  ­42, ­48, ­18  ­36, ­82, ­14  30, ­86, ­2 
  S18  ­50, ­76, ­10  ­42, ­78, ­8  44, ­80, ­12 
  S19  ­44, ­76, ­14  ­38, ­84, ­6  48, ­82, 8 
  S20  ­40, ­56, ­12  ­48, ­76, 2  46, ­82, 4 
Chinese  S01  ­42, ­54, ­18  ­40, ­82, ­12  42, ­76, ­12 
  S02  ­44, ­50, ­20  ­40, ­80, ­2  42, ­78, ­6 
  S03  ­42, ­52, ­12  ­44, ­76, 2  52, ­82, ­2 
  S04  ­46, ­56, ­22  ­52, ­72, 0  44, ­74, ­14 
  S05  ­46, ­68, ­12  ­40, ­84, 0  44, ­84, ­2 
  S06  ­42, ­64, ­14  ­30, ­88, 4  46, ­76, ­16 
  S07  ­42, ­74, ­16  ­42, ­84, ­12  42, ­82, ­6 
  S08  ­46, ­68, ­8  ­48, ­78, ­12  44, ­78, ­4 
  S09  ­38, ­83, ­13  ­42, ­80, ­10  40, ­84, 8 
  S10  ­46, ­58, ­10  ­40, ­80, ­2  42, ­78, ­6 
  S11  ­42, ­78, ­6  ­44, ­76, ­2  34, ­76, 6 
  S12  ­48, ­78, ­10  ­50, ­76, ­10  42, ­66, ­2 
  S13  ­46, ­54, ­14  ­40, ­74, 6  44, ­76, 6 
  S14  ­38, ­78, ­16  ­42, ­72, ­4  40, ­74, ­4 
  S15  ­46, ­76, ­12  ­38, ­74, ­4  40, ­86, ­4 
  S16  ­36, ­82, ­16  ­36, ­80, ­16  30, ­92, 0 
  S17  ­54, ­72, ­8  ­44, ­80, ­4  48, ­76, ­10 
  S18  ­40, ­50, ­18  ­40, ­80, ­6  42, ­82, 2 
  S19  ­44, ­54, ­18  ­48, ­76, 2  32, ­76, ­16 
  S20  ­48, ­66, ­14  ­46, ­82, ­12  46, ­84, ­4 



 

Supplementary Table 2. Summary of significant activations identified from the group level 

whole­brain analysis 

Contrast  Region  Hemisphere  German Participants  Chinese Participants  Threshold 

MNI 

Coordinates 

Cluster size 

(Voxels) 

MNI 

Coordinates 

Cluster size 

(Voxels) 

Chinese 

Character

s > 

German 

words 

Middle 

occipital 

gyrus 

R  28, ­88, 12  2519  26, ­90, 8  1152  P < 0.05, 

FWE 

  Middle 

occipital 

gyrus 

L  ­16, ­98, 6  1533  ­18, ­94, 6  555  P < 0.05, 

FWE 

  Inferior 

occipital 

gyrus 

L  ­  ­  ­44, ­78, ­8  273  P < 0.05, 

FWE 

At > Rt  Middle 

tempora

l gyrus 

L  ­  ­  ­58, ­48, 8  10  P < 0.001 

uncorrect

ed 
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3.2 study II: Short-term training attenuates the repetition probability 

effect for non-face objects 

 

 

 

 

The version of the manuscript has been submitted to Neuropsychologia:  

 

 

Li, C., & Kova cs, G. Short-term experience reduces the repetition probability effect 

for non-face objects. (submitted) 

 

 

 

 

 

 

 

Main research question： 

Does short-term experience affect the repetition probability effect for 

non-face objects? 
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Short­term training attenuates the repetition probability effect 1 

for non­face objects 2 

Chenglin Li, Gyula Kovács 3 

Department of Biological Psychology and Cognitive Neuroscience, 4 

Friedrich­Schiller­Universität Jena, Germany 5 

Corresponding author: Gyula Kovács 6 

Email: gyula.kovacs@uni­jena.de  7 

Abstract 8 

The magnitude of repetition suppression (RS), measured by fMRI, is 9 

modulated by the probability of stimulus repetitions, which is called repetition 10 

probability [P(rep)] effect. The P(rep) effect refers a stronger RS effect in in 11 

blocks, where the probability of repetition trials was higher when compared to 12 

blocks with less frequent repetition. Previous studies have suggested that this 13 

P(rep) effect depends on the extensive long­term experience of participants 14 

with the stimuli. Conversely, the modulation of short­term learning experience 15 

on the P(rep) effect remains largely unknown. To address this issue, we used 16 

fMRI and measured the P(rep) effect for unfamiliar faces and non­face objects 17 

before and after a 10­day perceptual learning (PL) session and the PL 18 

sessions were performed only for non­face objects (cars). The results showed 19 

a significant P(rep) effect for faces within the Fusiform Face Area (FFA) and for 20 

cars within the Lateral Occipital Complex (LO) in the pre­training fMRI 21 

measurement session. Following a 10­day PL session, participants exhibited 22 

huge behavioral improvements for the trained stimuli (cars). Surprisingly, the 23 

P(rep) effect was absent both for faces and cars in the post­training fMRI 24 

measurement session. These results support the idea that the predictive 25 

processes, measured by P(rep) modulation of RS, can be modulated by the 26 

short­term perceptual learning experience. 27 

Key words: Expectation suppression; Repetition suppression; Perceptual 28 

learning; Face perception; Object perception  29 



 

 
 

1. Introduction 1 

How the brain efficiently encodes sensory information is always a hot topic 2 

in the field of cognitive psychology. Recently, the theory of predictive coding 3 

posits that the brain constantly attempts to match incoming sensory inputs to 4 

top­down predictions. Each region in the cortical sensory hierarchy represents 5 

both these predictions and the mismatch between predictions and inputs 6 

(prediction error) (de Lange et al., 2018; Friston, 2005; Kok and de Lange, 7 

2015; Rao & Ballard, 1999).  8 

This theory is one of the explanatory accounts of a well­established 9 

phenomenon, which is the repetition suppression (RS) effect (Desimone, 10 

1996). RS refers to the reduction of neural responses for repeated stimuli 11 

compared to their first presentation (Henson and Rugg, 2003). This reduction 12 

is seen as an instance of predictive processing because stimulus repetition 13 

may enhance expectation or reduce prediction error (for a review see Grotheer 14 

and Kovács, 2016). Summerfield and colleagues (2008) first developed a 15 

paradigm to investigate the relationship between RS and predictive coding by 16 

manipulating the probability of stimulus repetition and alternation, and 17 

measured RS using functional magnetic resonance imaging (fMRI). They 18 

presented participants with pairs of face images in which the first stimulus 19 

could be either identical to (repetition trials) or different from the second one 20 

(alternation trials) in two different contexts, which the probability of repetition 21 

and alternation trials was differently distributed in two kinds of blocks. The 22 

results showed a stronger RS effect in blocks, where the probability of 23 

repetition trials was higher when compared to blocks with less frequent 24 

repetition. This finding can be explained by the fact that repetition trials are 25 

more expected in repetition contexts than in alternation contexts. Later, this 26 

modulation of repetition probability [P(rep)] on RS has been replicated in 27 

further studies using faces (Kovács et al., 2012, 2013; Larsson and Smith, 28 

2012). 29 



 

 
 

However, this P(rep) modulation on RS for non­face stimuli led to less 1 

consistent results. For instance, in human neuroimaging studies, it was 2 

obtained with Roman letters, line­drawing objects and words (Grotheer and 3 

Kovács, 2014; Li and Kovács, 2022; Mayrhauser et al., 2014), but not with 4 

every­day objects, chairs, novel false fonts (Grotheer and Kovács, 2014; 5 

Kovács et al., 2013). In macaque single­cell recordings studies, this effect was 6 

not replicated both with fractal patterns, everyday objects (Kaliukhovich & 7 

Vogels, 2011) and with 3D artificial face images (Vinken et al., 2018). One 8 

possible explanation for these inconsistent results is that participants have 9 

different prior experiences with these different stimulus categories. Previous 10 

studies have suggested that prior experience with stimuli is a prerequisite for 11 

observing the P(rep) effect on RS (Grotheer and Kovács, 2014; Li and Kovács, 12 

2022). In particular, the P(rep) effect could be robustly replicated for faces, 13 

words, and Roman letters, with which participants had extensive experiences 14 

with the stimuli, but not for other stimulus categories, with which participants 15 

had no experience (i.e., novel false fonts, Chinese characters for German 16 

participants, every­day objects for monkey), or insufficient experience (i.e., 17 

chairs). Therefore, it is necessary to test this hypothesis using a more familiar 18 

general object category for human participants. 19 

The above­mentioned studies suggest that the P(rep) effect depends on 20 

the extensive long­term experience of participants with the stimuli (Grotheer 21 

and Kovács, 2014; Li and Kovács, 2022). However, it remains largely unknown 22 

the extent to which the P(rep) effect could be modulated by the short­term 23 

learning experience with the stimuli. As for as we know, with intensive training, 24 

perceptual abilities of participants such as discriminating visual features 25 

(contrast, orientation, shape and so on) can be dramatically improved and 26 

perceptual training allows to systematically provide participants with 27 

experience about a particular stimulus category (for review see Bi and Fang, 28 

2013). This learning process is referred to as perceptual learning (PL), which is 29 



 

 
 

an approach to gain experience with certain stimuli (Fiorentini and Berardi, 1 

1980; Goldstone, 1998; Op de Beeck and Baker, 2010). The behavioral 2 

improvements on training tasks have been shown to be closely related to the 3 

changes of brain activity (Grill­Spector et al., 2000; Op de Beeck et al., 2006; 4 

for a review see Bi and Fang, 2013). For instance, previous fMRI studies have 5 

found that PL can lead to decreased BOLD signal responses for trained stimuli 6 

(e.g., Henson et al., 2000; Reber et al., 1998; Sigman et al., 2005; but see 7 

Grill­Spector et al., 2000). Importantly, the reduction of BOLD signal for trained 8 

stimuli, as compared to untrained (novel) stimuli, can be regarded as a RS 9 

effect (Grill­Spector et al., 1999; Jiang et al., 2007). In other words, increased 10 

experience through PL training could lead to the appearance of the RS effect. 11 

Thus, the P(rep) modulation on RS could be modulated by the short­term 12 

experience through PL as well. 13 

To address this question, we used fMRI and measured the P(rep) effect 14 

for two familiar stimulus categories (faces and cars) both in the pre­ and 15 

post­training fMRI measurement sessions. The training session was consisted 16 

of ten­day PL sessions, which participants gained perceptual experience for 17 

non­face objects (cars). The fMRI session adopted the same fMRI paradigm 18 

as previous studies (Summerfield et al., 2008). Briefly, we observed P(rep) 19 

effects for faces in the Fusiform Face Area (FFA; Kanwisher et al., 1997) and 20 

for cars in the Lateral Occipital Cortex (LO; Malach et al., 1995) in the 21 

pre­training session. Interestingly, the results in the post­training session 22 

showed that P(rep) effects were absent both for the trained (cars) and 23 

untrained stimuli (faces). We discuss these findings in the framework of the 24 

predictive coding theory. 25 

2. Methods 26 

2.1 Participants  27 

A total of 19 healthy participants took part in this study in exchange for 28 

their own 3D­printed brain­model, partial course credits, or monetary 29 



 

 
 

compensations. Participants were informed about the experimental 1 

procedures and gave written informed consent before joining the study. Three 2 

participants were excluded from the final analysis due to the interruption of 3 

training sessions caused by the COVID­19 pandemic. The remaining 16 4 

participants (9 females; mean age, 23.2 years; SD, 3.4 years; one left­handed) 5 

had normal or corrected­to­normal vision. The experiment was approved by 6 

the ethics committee of the Friedrich­Schiller­Universität Jena and conducted 7 

in accordance with the guidelines of the Declaration of Helsinki.  8 

2.2 Stimuli  9 

Three­hundred and ninety­six grey­scale, digital images of unfamiliar 10 

Caucasian faces (198 female faces) were selected from a pool, used in 11 

previous studies of our laboratory (Kovács et al., 2012, 2013; Rostalski et al., 12 

2019). All images were cropped into a circular grey­scale shape to remove 13 

external facial features (e.g., hair, ears, and jawline) and displayed a neutral 14 

expression. Images were resized to 480 × 480 pixels with a grey background.  15 

One thousand one hundred and forty colored images of cars (Chrysler, 16 

Ford, Peugeot and Volkswagen, 285 different exemplar images for each brand) 17 

were selected from the public domain of the worldwide web. The background 18 

of these images was removed by the remove.bg software (remove.bg for 19 

Windows 1.4.2). Brand logos and names were removed from the front faces of 20 

the cars and their locations were filled out by using the content­aware fill 21 

function of GIMP 2.8.6. All images were resized to 480 × 480 pixels. 22 

  23 

2.3 Experiment design and procedure  24 

 The experimental design is presented in Figure 1A. To investigate the 25 

effect of short­term perceptual training on RS and P(rep), perceptual learning 26 

(PL) sessions were performed for the car stimuli between a pre­ and 27 

post­training fMRI recording session. Our training task included 10 sessions (2 28 

weeks, 5 days per week with 40 minutes per day). During the training sessions 29 



 

 
 

participants sat in a comfortable chair in a dimly lit room, in front of a 27­inch 1 

LED display (2560 x 1440 pixels resolution; 60 Hz refresh rate, viewing 2 

distance ~60 cm). Stimulus presentation and behavioral response collection 3 

were performed by Psychtoolbox (Version 3.0.15) in Matlab R2017a (The 4 

MathWorks). 5 

Every training day, 120 car images (30 images per brand) were presented. 6 

Half of these images (60; 15 images per brand) were always previously 7 

unseen exemplars. Participants were asked to complete three runs of a 8 

four­way category discrimination task, which they had to classify a car by 9 

brand and press the corresponding buttons. Each run (240 trials) was 10 

composed of 6 blocks which were separated by a 5­s­long break. Each trial 11 

started with a black fixation cross (exposition time ranging from 500 ms to 700 12 

ms), followed by the car images for 500 ms (Figure 1C). Next, a black fixation 13 

point (maximum 2,000 ms) was presented until the participant issued a 14 

response. The participant’s task was to indicate the car brand as quickly and 15 

accurately as possible. After pressing the corresponding buttons, participants 16 

would get visual feedback (‘Correct’ or ‘Incorrect’) on the screen for 100 ms. 17 

The mean performance of each car brand was presented at the end of each 18 

run. To familiarize the participants with the training task, the logo of the car 19 

images was not removed from the images during the very first run of the first 20 

day, and the results of this run were excluded in the final data analysis.  21 

The experimental paradigm during neuroimaging data acquisition (Figure 22 

1B) was identical to what has previously been used to investigate P(rep) 23 

modulations (Kovács et al., 2012, 2013; Larsson and Smith, 2012; 24 

Summerfield et al., 2008). Stimuli were presented centrally on a gray 25 

background, back­projected via an LCD video projector onto a translucent 26 

circular screen. Psychtoolbox (Version 3.0.15) was used for stimulus 27 

presentation and behavioral response collection, controlled by Matlab R2013a 28 

(The MathWorks). 29 



 

 
 

 1 

Figure 1. Schematic illustration of the experimental design and task procedures. A, A 2 

ten­day training session with a four­way car­brand discrimination task separated the pre­ and 3 

post­training fMRI measurements. B, Each neuroimaging run was composed of four 4 

alternation (ABs) and four repetition blocks (RBs), which were presented randomly (taken car 5 

run as an example). A repetition (Rt) trial, an alternation (At) trial and target trial (detection of 6 

smaller stimuli) are illustrated. C, The trial structure during the training period. D, the exemplar 7 

images of face stimuli. 8 

 During the fMRI session, the participants completed four experimental 9 

runs, two with face and two with car stimuli, in a counterbalanced order. In 10 

each trial (Figure 1B, taken car run as an example), a stimulus­pair was 11 

presented (duration: 250 ms each), separated by an inter­stimulus­interval (ISI) 12 

of 400­600 ms (randomized across trials), and randomly followed by an 13 

Inter­trial­interval (ITI) of 1,000 ms or 3,000 ms. The first stimulus (S1) was 14 

either identical to (Repetition trials, Rt) or different from the second stimulus 15 

(S2; Alternation trials, At). In addition, two different types of blocks were given 16 

to participants, each repeated four times within a single run (160 trials). In the 17 

Repetition Blocks (RB), 75% of the trials were Repetition trials while 25% were 18 



 

 
 

Alternation trials. In contrast, the Alternation Blocks (AB) were composed of 75% 1 

Alternation trials and 25% Repetition trials (Summerfield et al, 2008). 2 

Therefore, each run included 160 trials of the four different conditions (ABAt, 3 

ABRt, RBAt, and RBRt) in randomized order. To avoid local feature 4 

adaptations, the size of either S1 or S2 (chosen randomly) was reduced by 18% 5 

during each trial. To maintain participants’ attention, the participants had to 6 

press a button in target trials (20% per run), when the size difference between 7 

S1 and S2 was 60%. The fMRI procedures were identical in the pre­ and 8 

post­training sessions, but had different stimuli. The design and parameters of 9 

the pre­ and post­training face sessions were the same as the car runs, with 10 

the replacement of car stimuli by the face stimuli (Figure 1D). 11 

2.4 Imaging parameters and data analysis 12 

Scanning was performed by a 3­Tesla MRI scanner (Siemens 13 

MAGNETOM Prisma, Erlangen, Germany). During the functional runs, 14 

multi­band EPI sequences (MB acceleration factors = 4) were used with a 15 

64­channel head coil. T2­weighted images were collected with the following 16 

parameters: FOV = 224 × 224 mm2; 100 slices; TR = 2000 ms; TE = 33.6 ms; 17 

flip angle = 90 deg; 1.4 mm isotropic voxel size. High­resolution T1­weighted 18 

images (192 slices; TR = 2300 ms; TE = 3.03 ms; flip angle = 90 deg; 1 mm 19 

isotropic voxel size) were acquired to obtain 3D structural scans with the same 20 

64­channel head coil. Data were preprocessed using SPM12 (Welcome 21 

Department of Imaging Neuroscience, London, UK). Briefly, the functional 22 

images were slice­timed, realigned, and co­registered to structural scans. The 23 

functional images were normalized to the MNI­152 space, resampled to 1 x 1 x 24 

1 mm resolution and spatially smoothed using a 3­mm Gaussian kernel. 25 

Regions of interests (ROIs) were defined by an additional functional 26 

localizer run (Rostalski et al, 2020). Faces, cars, objects, and 27 

Fourier­randomized noise patterns were presented (230 ms exposure time; 20 28 

ms inter­stimulus­interval) in blocks of 10 s, interrupted by breaks of 10 s and 29 



 

 
 

repeated four times. Each block included 40 images, which the size of 600x 1 

600 pixels with a grey background. To ensure the successful definition of all 2 

ROIs, the localizer run was performed both in pre­ and post­ fMRI sessions for 3 

every participant, but the area locations were similar across sessions.  4 

As previous studies, applying probabilistic repetition (P(rep)) paradigms 5 

found the largest P(rep) effect for faces in the FFA and for objects in the LO 6 

(Grotheer et al., 2014; Kovács et al., 2012, 2013; Mayrhauser et al., 2014), we 7 

concentrated on these two areas here. The FFA was localized by contrasting 8 

faces with object and noise images individually and the location was 9 

established as the local maximum from the t­maps with a threshold of pFWE < 10 

0.05 on the single­subject level. The average MNI coordinates (±SE) for the 11 

FFA were as follows：i) pre­training: left hemisphere, ­40.8 (1.39), ­56.2 (2.10), 12 

­18.4 (0.86), right hemisphere, 42.3 (1.27), ­58.8 (2.36), ­19.1 (0.82); ii) 13 

post­training: left hemisphere, ­40.3 (1.37), ­57.2 (2.39), ­17.9 (0.93), right 14 

hemisphere, 41.3 (1.29), ­59.4 (2.15), ­18.4 (0.85). The location of LO was 15 

determined individually by contrasting object with noise blocks. The average 16 

MNI coordinates (±SE) for the LO were as follows： i) pre­training: left 17 

hemisphere, ­45.1 (0.70), ­79.9 (1.22), ­4 (1.02), right hemisphere, 45.3 (1.11), 18 

­79.4 (1.38), ­5.4 (1.12); ii) post­training: left hemisphere, ­44.8 (0.96), ­78.9 19 

(1.26), ­5.4 (1.55), right hemisphere, 43.9 (0.90), ­81.1 (1.33), ­5.8 (0.94). 20 

Canonical hemodynamic response functions were extracted using MarsBaR 21 

0.44 toolbox for SPM 12 (Brett et al., 2002).  22 

The peak BOLD values were extracted from the event­related runs and 23 

analyzed by repeated­measures ANOVAs with session (pre­ vs. post­training), 24 

block type (AB vs. RB) and trial type (At vs. Rt) as within­subject factors. 25 

Additionally, we analyzed the mean performance for the detection of target 26 

trials using the same 2 x 2 x 2 repeated­measures ANOVA. To examine the 27 

effect of learning during training, a one­way repeated­measures ANOVA was 28 

performed for accuracies and reaction times with session number as a factor. 29 



 

 
 

All multiple comparisons of post­hoc tests were corrected with the Fisher’s 1 

method.  2 

3. Results 3 

3.1 Behavioral results 4 

3.1.1 Training session  5 

The training results are presented in Figure 2. The Greehouse­Geisser 6 

corrected results are reported because the Mauchly’s test of sphericity 7 

revealed unequal variances of differences both in accuracy (χ2(44) = 142.545, 8 

p < .001) and reaction time (χ2(44) = 119.919, p < .001). A significant main 9 

effect of training session was found both for accuracy (F(2.02, 30.30) = 48.684, 10 

p < 0.001. ηp
² = 0.764) and reaction time (F(3.08, 46.17) = 33.571, p < 0.001. 11 

ηp
² = 0.691). A post­hoc test revealed that there were significant improvements 12 

both in accuracy (from day 2, p = 0.006) and reaction time (from day 3, p = 13 

0.007).  14 

Additionally, one­sample t tests were performed to compare the accuracy 15 

of each day against chance level (0.25) (every day: p < 0.001). These results 16 

suggest that participants got more accurate and faster in the brand 17 

discrimination task over time.  18 

 19 

Figure 2. The accuracies (black line) and reaction times (grey line) of the four­way 20 

category discrimination task during the ten­day training session. Error bars represent 21 



 

 
 

standard errors of means. 1 

3.1.2 fMRI session  2 

During the face runs participants detected the target stimuli on average 3 

with 85.35 and 86.62% (±SE: 4.53 and 4.54%) accuracy in the pre­ and 4 

post­training sessions, respectively.  The mean performance was 84.67 and 5 

84.08% (±SE: 4.27 and 4.24%) in the pre­ and post­training sessions in car 6 

runs, respectively. The four­way repeated measure ANOVA on behavioral data 7 

showed neither any significant main effect, nor any interaction effect (all p ≥ 8 

0.103). In addition, an informal survey after the post­training fMRI 9 

measurement revealed that none of the participants was aware of the 10 

manipulation of P(rep) across the different blocks. 11 

3.2 Neuroimaging results  12 

3.2.1 FFA responses to faces 13 

We found a significant main effect of trial type (F(1, 15) = 25.090, p < 14 

0.001, ηp
² = 0.626), with lower BOLD signals in Rt trials (0.617 ± 0.068) than in 15 

Alt trials (0.805 ± 0.076) in the right FFA (Figure 3A and B). The three­way 16 

interaction between session, block type and trial type was significant (F(1, 15) 17 

= 5.789, p = 0.029, ηp
² = 0.278). A post­hoc test revealed that the two­way 18 

interaction between block type and trial type was marginally significant (F(1, 15) 19 

= 4.304, p = 0.055, ηp
² = 0.223) in the pre­training fMRI measurement session, 20 

where a stronger RS effect in the RB block (Fisher LSD post hoc test: p = 21 

0.00003) than in the AB block was shown (Fisher LSD post hoc test: p = 22 

0.0298). In the post­training fMRI session only a significant RS effect was 23 

observed in the AB block (Fisher LSD post hoc test: p = 0.0046) whereas, this 24 

interaction between block type and trial type was no longer significant in the 25 

post­training fMRI measurement session (F(1, 15) = 0.527, p = 0.479, ηp
² = 26 

0.034). No other main or interaction effects were significant. Altogether, these 27 

results suggested that P(rep) affects the magnitude of RS for faces in the right 28 

FFA only in the pre­training fMRI measurement session, which has been 29 



 

 
 

similarly reported in previous studies (Kovács et al., 2012; Lasson & Smith 1 

2012; Summerfield et al., 2008).  2 

 3 

Figure 3. Average peak activation profiles (panels A and C) of the right and left FFA 4 

for At and Rt trials, and the time course (panels B and D) of fMRI activity in the right and 5 

left FFA for face runs. The HRF curves were derived from an FIR model with 2 s time bins. 6 

Error bars represent standard errors of means. *p < .05, **p < .01, ***p < .001 (Fisher’s post 7 

hoc comparisons). 8 

We found a significant main effect of trial type (F(1, 15) = 11.080, p = 9 

0.005, ηp
² = 0.425), with lower BOLD signals in Rt trials (0.404 ± 0.047) 10 

compared to those in At trials (0.543 ± 0.062) in the left FFA (Figure 3C and D). 11 

No other main or interaction effects were significant.  12 

3.2.2 LO responses to cars 13 

We found a significant main effect of trial type (F(1, 15) = 26.267, p < 14 

0.001, ηp
² = 0.637), with lower BOLD signals in the Rt trials (0.724 ± 0.099) 15 

than in the At trials (0.892 ± 0.117) in the right LO (Figure 4A and B). 16 

Importantly, there was a significant main effect of session (F(1, 15) = 5.171, p = 17 

0.038, ηp
² = 0.256), with the reduction of BOLD signals in the post­training 18 

fMRI measurement session (0.647 ± 0.088) compared to those in the 19 

pre­training fMRI measurement session (0.969 ± 0.158). A three­way 20 

interaction between session, block type and trial type was significant (F(1, 15) 21 

= 7.737, p = 0.014, ηp
² = 0.340). Post­hoc tests revealed that the two­way 22 



 

 
 

interaction between block type and trial type was significant (F(1, 15) = 13.788, 1 

p = 0.002, ηp
² = 0.479) in the pre­training fMRI measurement session, and that 2 

the RS effect was stronger in the RB block (Fisher LSD post hoc test: p = 3 

0.000004) than that of in the AB block (Fisher LSD post hoc test: p = 0.031); 4 

but this interaction could not be found in the post­training fMRI measurement 5 

session (F(1, 15) = 0.130, p = 0.723, ηp
² = 0.009), where only a significant RS 6 

effect was observed in the AB block (Fisher LSD post hoc test: p = 0.0156). No 7 

other main or interaction effects were significant. Altogether, these results 8 

suggest that P(rep) affects the magnitude of RS for cars in the right LO only in 9 

the pre­training fMRI measurement session, which was similar to the results of 10 

the face runs in the right FFA. However, the absence of the P(rep) effect for 11 

cars in the post­training fMRI measurement session was mainly caused by the 12 

reduction of the BOLD signals from short­term perceptual learning.  13 

 14 

Figure 4. Average peak activation profiles (A, C) of the right and left LO for At and 15 

Rt trials, and the time course (B, D) of fMRI activity in the right and left LO for car runs. 16 

The HRF curves were derived from an FIR model with 2 s time bins. Error bars represent 17 

standard errors of means. *p < .05, **p < .01, ***p < .001 (Fisher’s post hoc comparisons). 18 

There was a significant main effect of trial type (F(1, 15) = 14.558, p = 19 

0.002, ηp
² = 0.493) in the left LO (Figure 4C and D), with lower BOLD signals in 20 



 

 
 

Rt trials (0.636 ± 0.102) than in At trials (0.778 ± 0.115). No other main or 1 

interaction effects were significant.  2 

4. Discussion 3 

 We aimed to investigate the influence of short­term experience on neural 4 

effects reflecting expectation, as measured by P(rep) on the RS effect in 5 

category­responsive regions. The main results are summarized as follows: 6 

First, significant modulations of P(rep) on RS were found for faces in the right 7 

FFA and for cars in the right LO before the training sessions. Second, 8 

participants showed huge behavioral improvements during the training task 9 

over time. Third, the P(rep) effects were attenuated in opposite directions for 10 

faces and cars after the training sessions. 11 

The modulation of P(rep) on RS has been found for various stimulus 12 

categories, such as faces, words, and Roman letters (e.g., Grotheer and 13 

Kovács, 2014; Larsson and Smith, 2012; Li and Kovács, 2022; Summerfield et 14 

al., 2008). Consistent with the results of previous studies, we replicated this 15 

effect for faces. However, there has been little agreement on P(rep) effects for 16 

objects using an identical paradigm with line­drawing of objects as stimuli 17 

(Mayrhauser et al., 2014), but not with chairs or everyday objects in human 18 

neuroimaging study (Kovács et al., 2013) and for fractal patterns and everyday 19 

objects in macaque single­cell recording experiments (Kaliukhovich and 20 

Vogels, 2011). These inconsistent results in object processing could be due to 21 

lots of factors related to between­study heterogeneity, such as different 22 

experimental species, stimulus categories, experimental tasks (a passive task 23 

was performed in macaques, unlike the active tasks in human neuroimaging 24 

studies) and so on. However, the results of Kovács et al. (2013) have excluded 25 

the factors of species and tasks as they adopt the identical paradigm and task 26 

with Summerfield et al. (2008) in human participants. Then, another possible 27 

factor causing this inconsistency could be the difference in the experience of 28 

stimulus categories: participants had different levels of prior experience with 29 



 

 
 

experimental stimulus categories. Previous studies have demonstrated that 1 

the P(rep) effect is experience­dependent (Grotheer and Kovács, 2014; Li and 2 

Kovács, 2022). Thus, it is possible that the significant P(rep) effect for objects 3 

in general was not present because participants had no experience with the 4 

related stimulus categories (i.e., novel false fonts, Chinese characters for 5 

German participants, every­day objects for monkey), or because existing 6 

experience is not enough (i.e., chairs).  7 

In the present study, we presented participants with another familiar 8 

stimulus category (cars) to test this hypothesis (note that, more than other 9 

objects, cars are a category with which some participants show extensive 10 

expertise (Gauthier et al., 2000; McGigin et al., 2016)). Although we did not 11 

test the participants’ experience with cars before the experiment (i.e., 12 

Vanderbilt Expertise Test; McGugin et al., 2012), the accuracy levels were 13 

significantly higher than the chance level in the category discrimination task on 14 

day 1, which indicates that participants had extensive experience with cars. 15 

This finding supports further the idea that the observation of the P(rep) effect 16 

depends on extensive prior experience with this stimulus category. 17 

Another potential reason why we observed significant P(rep) effects is 18 

suggested by the results of Mayrhauser et al. (2014). They observed a 19 

significant P(rep) effect for line­drawing objects, which require the extraction of 20 

semantic information as they are abstract and stylized stimuli. Therefore, one 21 

hypothesis is that the occurrence of the P(rep) effect requires lots of semantic 22 

information from the higher­order cortex as well. Indeed, as compared to other 23 

objects, car exemplars can individually be identified and abundant semantic 24 

information are related to an individual identity information, like other expertise 25 

stimuli (e.g., faces and words). Each car has its own color, shape, model, 26 

brand, and other specific information, which helps us to identify it and 27 

discriminate it from similar ones. More importantly, a car can be systematically 28 

classified based on this information, especially by brand and model. The 29 



 

 
 

hypothesis that retrieval of semantic information favors the emergence of 1 

P(rep) effects should be tested in future studies. 2 

While cumulating evidence suggests the essential role of PL for 3 

perceptual processing (Brants et al., 2016; for a review see Bi and Fang, 2013), 4 

its effect in P(rep) modulations on RS remains sparsely investigated. In the 5 

present study, we investigated the extent to which the P (rep) effect is 6 

modulated by the short­term experience from PL. Consistent with previous 7 

studies on various perceptual tasks, such as orientation­, contrast­, motion 8 

direction­, texture­discriminations, and object or face recognition (Furmanski 9 

and Engel, 2000; Schoups et al., 1995; Yu et al., 2004; for reviews see Bi and 10 

Fang, 2013), the present results confirm strong training effects of the car­brand 11 

discrimination task, suggesting that PL is an effective method to obtain 12 

perceptual experience, ranging from low­level feature detection to high­level 13 

object recognition. 14 

Last and importantly, the P(rep) effects were attenuated in opposite 15 

directions for faces and cars after the training sessions. The reduction of 16 

BOLD signal responses has also been observed in previous studies on other 17 

object training studies, in which the BOLD signal responses for trained stimuli 18 

were decreased (Henson et al., 2000; Reber et al., 1998; Sigman et al., 2005; 19 

but see Grill­Spector et al., 2000). However, in these studies the attenuation 20 

caused by the perceptual trainings was specific to the trained stimuli (Baeck 21 

and Op de Beeck, 2010), but did not affect the untrained stimuli, which were 22 

the same in both pre­ and post­training sessions. Therefore, the absence of 23 

P(rep) effect for trained stimuli (cars) may be due to the overall reduction of 24 

neural response for the trained stimulus category. In other words, this overall 25 

reduction of the BOLD signal responses for trained stimuli results in a P(rep) 26 

effect that could not be detected in the post­training session, because the 27 

P(rep) effect reflects the small difference between repetition and alternation 28 

trials in different blocks.  29 



 

 
 

Additionally, this rather intriguing result could be explained by the different 1 

contributions of surprise and fulfilled expectations on expectation suppression 2 

(ES) (Amado et al., 2016; Egner et al., 2010; Grotheer and Kovács, 2015; for a 3 

review see Feuerriegel et al., 2021). Amado et al. (2016) modified the 4 

paradigm of Summerfield et al (2008) to present pairs of faces (adult female, 5 

adult male, or baby) that were repeated or alternated. Orthogonally to this, the 6 

P(rep) was manipulated by the gender of the first face within each pair, thus, 7 

the face repetition or alternation trials could either be expected (75% 8 

probability), neutral (50% probability), or surprising (25% probability). The 9 

BOLD signals results in FFA showed a larger response for surprising 10 

compared to neutral face pairs in the alternation trials, suggesting the critical 11 

role of surprise enhancement in P(rep) effects.  12 

In the current study, we hypothesize that our results can be explained as 13 

an instance of expectation suppression for trained stimuli (cars) and surprise 14 

enhancement for untrained stimuli (faces). In the pre­training sessions, the 15 

face and car runs are equally predicted for the participants as there was no 16 

cue that induced more expectations for either face or car runs. However, the 17 

expectations for the car runs would increase after the training sessions as the 18 

training task was only related to cars. In other words, participants would more 19 

expect the task in the post­training session to be more related to trained stimuli 20 

(cars), while the face runs are surprising events in the post­training session. 21 

Compared with the results of pre­training sessions, the overall BOLD signals of 22 

the car runs were significantly decreased (expectation suppression) in the 23 

post­training sessions, however, the overall BOLD signals of the face runs 24 

were increased (surprise enhancement) in three conditions. As discussed 25 

above, the P(rep) effect reflects the small difference between repetition and 26 

alternation trials in different blocks, but these overall reductions or 27 

enhancements of BOLD signals might result in the fact that the P(rep) effect 28 

could not be detected. The attenuation of the P(rep) effects for face and 29 



 

 
 

non­face stimuli was caused by this change of BOLD signals in the opposite 1 

direction. This therefore suggests that the effect of the short­term training on 2 

the P(rep) effects for cross­category stimuli can be explained by the predictive 3 

coding theory. 4 

This attenuation of P(rep) effect hints towards the fact that the influence of 5 

prior experience with stimuli for the P(rep) effect might not be linear. Previous 6 

studies showed that the P(rep) effect was only observed for stimuli with 7 

extensive experience (faces, words, letters), but not for unfamiliar stimulus 8 

categories (i.e., novel false fonts). We assume that the accumulation of 9 

experience would prompt the emergence of the P(pre) effect that would not 10 

change over time. However, based on the present findings, we speculate that 11 

the P(rep) effect might have temporarily changed after a short­term training, 12 

even for faces. In other words, it is likely that the P(rep) effect for faces could 13 

have temporarily disappeared in our experiments, because faces might have 14 

become unexpected stimuli for participants after the training session. Although 15 

our findings could be explained under the framework of predictive coding, the 16 

hypothesis that expectation effects could temporarily vary, remains only 17 

speculatory at present, and it should be systematically tested in future studies. 18 

In conclusion, the current study reveals for the first time that the P(rep) 19 

effect for non­face objects was abolished after a short­term training session. 20 

This suggests that perceptual experiences from a short­term training modulate 21 

the P(rep) effect on RS. 22 
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3.3 study III: 3a: Visual short-term memory load modulates repetition 

related fMRI signal adaptation 

3b: Active attention counteracts the effects of increased load on 

visual short-term memory on repetition suppression 

 

 

This section is composed of 3a and 3b. Section 3a corresponds to the manuscript 

that has been published in Biological Psychology. The section 3b is an unpublished 

experiment:  

 

 

Li, C., Kova cs, G., & Trapp, S. (2021). Visual short-term memory load modulates 

repetition related fMRI signal adaptation. Biological Psychology, 166, 108199. 

https://doi.org/10.1016/j.biopsycho.2021.108199 

 

 

 

 

 

 

Main research question： 

How and to which extent do top-down predictions induced by prior 

experience modulate the repetition suppression effect? 
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Supplementary 

Results 

A two­by­two repeated measures ANOVA with factors VSTM load (VSTM, Control) 

and  trial  type  (alternated vs.  repeated) was performed on peak BOLD signals  in  the 

lFFA (n = 18), rOFA (n = 19), lOFA (n = 17), rLO (n = 19), and lLO (n = 19). The mean 

MNI  coordinates  (±SD)  for  those  ROIs  were  lFFA:  ­41.0  (3.83),  ­55.8  (10.76),  ­15.2 

(4.71),  rOFA: 39.3  (5.17),  ­65.9  (8.58),  ­13.2  (5.05),  lOFA:  ­39.2  (5.00),  ­69.4  (9.87), 

­14.2  (4.74),  rLO:  44.0  (4.32),  ­77.2  (6.64),  ­4.0  (5.37),  and  lLO:  ­42.7  (4.53),  ­78.8 

(4.96),  ­2.1  (5.68),  respectively.  Bayesian  repeated  measures  ANOVAs  were  also 

performed for all ROIs. 

In the lFFA, there was a significant interaction between the factors VSTM load and 

trial  type  (F(1,  17)  =  8.754,  p  =  0.009.  ηp
²  =  0.340,  BF10  =  2.474).  A  post­hoc  tests 

revealed  that  there was a significant RS effect  in  the control  task (t(17) = 3.373, p = 

0.004, Cohen’s d = 0.48), but the RS effect was absent in the VSTM task (t(17) = 0.793, 

p = 0.439, Cohen’s d = 0.18). 

In the rOFA, there was a significant interaction between the factors VSTM load and 

trial  type  (F(1,  18)  =  6.084,  p  =  0.024.  ηp
²  =  0.253,  BF10  =  0.954).  A  post­hoc  tests 

revealed  that  there was a significant RS effect  in  the control  task (t(18) = 3.139, p = 

0.006, Cohen’s d =  0.43),  but  the RS effect was absent  in  the VSTM  tasks  (t(18) = 

0.686, p = 0.502, Cohen’s d = 0.10). 

There was no significant main effect or interaction (all Fs ≤ 1.535, all BF10 ≤ 0.580) 

in the lOFA. 



In the rLO, there was a significant main effect of VSTM load (F(1, 18) = 5.491, p = 

0.031. ηp
² = 0.234, BF10 = 35.168). the BOLD signal of VSTM task (M = 0.404, SD = 

0.292) was stronger than control task (M = 0.165, SD = 0.410). 

In the lLO, there was a significant main effect of VSTM load (F(1, 18) = 5.881, p = 

0.026. ηp
² = 0.246, BF10 = 71.875). The BOLD signal of VSTM task (M = 0.360, SD = 

0.344) was stronger than control task (M = 0.131, SD = 0.349). 
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Abstract 

The results of study 3a showed that repetition suppression (RS) within the 

fusiform face area is significantly attenuated when visual short-term memory 

(VSTM) is loaded with additional visual information. It suggests the important 

role of VSTM for predictive processes as indexed by expectation-related RS. 

However, it remains unclear whether this attenuated effect is related to attention. 

In this control experiment, we explicitly manipulated attention through an 

inverted-face detection task. In contrast with the results in study 3a, when 

participants attend to faces, the RS effect in the fusiform face area appears again 

despite the increased load on the VSTM. This suggests that active attention can 

effectively counteract the reduction of RS effect due to increased visual load.  
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Interim discussion 

In Study 3a, we aimed to test whether visual short-term memory (VSTM) 

would be required for implicit predictions, as assessed by a typical repetition 

suppression (RS) paradigm. The data in Study 3a showed a significant interaction 

between the magnitude of RS and VSTM load, in the sense that the response 

suppression within the right FFA was significantly attenuated when participants 

had to maintain additional, non-facial information in VSTM (Li et al., 2021). 

However, in that experiment, participants had no specific face-related task during 

the presentation of the repeated and alternating face images in either condition. 

Thus, as attention could be directed away from the face stimuli in the VSTM trials, 

it is possible that the observed modulatory effect of short-term memory load on 

RS effects is due to differentially allocated attentional resources. Indeed, several 

studies suggested a close link between attention and VSTM (for a review see Awh 

& Jonides, 2001; Awh et al., 2006). Importantly, Larsson and Smith (2012) showed 

that diverting attention away from the stimuli eliminates a large, 

expectation-related component of the response reductions in several cortical 

areas. This supports the idea that the absence of RS effects in our previous study 

could simply be due to participants not paying sufficient attention to faces during 

the high load condition. To test this potential explanation, we performed a second 

experiment where we explicitly controlled for attention across the previous VSTM 

and Control conditions equally, by instructing participants to attend to the faces 

and to signal the occurrence of inverted faces. 

Methods 

Participants.  

Twenty-three healthy participants took part in this experiment. All of them 

were informed about the experimental procedures and gave written informed 

consent beforehand. Importantly, none of them participated in Study 3a. They 

received their own printed 3D brain model, course credit or monetary 

compensation for their participation. Two participants were excluded from the 
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analysis due to excessive head movements during image acquisition. The 

remaining 21 participants (16 females; mean age, 23.8 years; SD, 2.9 years; two 

left-handed) had normal or corrected-to-normal vision. The same ethical 

guidelines were followed as in Study 3a.  

Stimuli. The stimuli were identical to those of Study 3a.  

Procedure and data analysis.  

The setup, imaging parameters and the experimental procedure of nontarget 

trials were identical to those of Study 3a. To control participants’ attention during 

the presentation of face pairs, we embedded 8 target trials (12 %) into each run 

(equally in the VSTM and Control conditions). For these target trials, the first or 

the second face of the pair was inverted, and participants were required to report 

which of the two faces was inverted by pressing one of two buttons directly after 

the presentation of the second face. In nontarget trials, the presentations and the 

tasks were identical to those of Study 3a. There were different buttons allocated to 

the attentional and to the memory and color discrimination tasks, two buttons for 

the attentional task, other two for the memory and color discrimination tasks. 

 We applied the same methods to analyze the behavioral results as in Study 

3a. The target trials were excluded from any further analysis of the BOLD signal 

(Summerfield et al, 2008). 

The peak BOLD signal of the right FFA (rFFA) was analyzed by a repeated 

measurements ANOVA with the factors of VSTM load (VSTM vs. Control) and trial 

type (alternated vs. repeated) for the nontarget trials, as in Study 3a.   

The rFFA was localized identically as in Study 3a (one participant was 

excluded from the final analysis because this area could not be identified reliably). 

The mean MNI coordinates (±SD) for the rFFA of this experiment were 42.2 (3.93), 

-54.8 (8.12), -16.5 (4.18). 

Results 

Behavioral results.  

The behavioral results are presented in Figure 1, separately for the 
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non-target (A, B) and target trials (C, D). In nontarget trials, a significant main 

effect of VSTM load was found for performance (F(1, 19) = 676.991, p < 0.001. ηp² 

= 0.973) and reaction times (F(1, 19) = 86.441, p < 0.001. ηp² = 0.820). On average, 

performance in the Control tasks was better (96.0  1.4 %) and reaction times 

were shorter (M = 823 44 ms) than in the VSTM tasks (performance: M = 57.8  

1.6%; reaction time: M = 1137  64 ms). 

However, there was no significant main effect or interaction in the target 

trials (all ps > 0.136). This suggests that, participants were allocating attention to 

the face stimuli equally in both conditions, when instructed to detect inverted 

faces. 

 

Figure 1. Performance (A, C) and reaction times (B, D) of Experiment 3b for 

different visual short-term memory conditions (VSTM and Control) separately for 

the non-target trials (A, B) and for the attentional target trials (C, D). Error bars 

represent standard errors of means. Blue and orange bars represent alternated 

and repeated trials, respectively. ***p < .001. 

 

Repetition suppression modulation in the rFFA. 

The results of the BOLD measurements of the rFFA are presented in Figure 2. 

We found a significant RS effect (main effect of trial-type: F(1, 19) = 7.992, p = 

0.011. ηp² = 0.296) in the sense that the BOLD response is stronger in the 
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alternation (0.454  0.065) than in the repetition trials (0.392  0.071). 

Conversely, both the main effect of VSTM-load (F(1, 19) = 0.091, p = 0.766. ηp² = 

0.005) and the VSTM-load x trial-type interaction (F(1, 19) = 0.952, p = 0.342. ηp² 

= 0.048) were not significant. This suggests that VSTM load has no effect on RS 

when participants’ attention is allocated to the stimuli.  

 

 

Figure 2. The BOLD signal of the right FFA for the VSTM and Control conditions, 

separately for alternating and repeated trials when attention is controlled. Dots 

represent individual data points; red dotted lines show the group median. Shaded 

areas depict the distributions of data for each condition.  

Discussion 

This control experiment was designed to shed more light on the mechanisms 
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of VSTM modulation of RS that we demonstrated in Study 3a. Specifically, we 

aimed at clarifying whether the attenuated RS is rather due to lower attentional 

resources to faces or to the heavily loaded VSTM mechanisms. The results of this 

control experiment demonstrated that the attenuated RS effect under VSTM load 

vanishes if participants had to attend to the face stimuli actively, indicating that 

the RS modulation, we found in Study 3a is likely due to the differential allocation 

of attentional resources between the two conditions.   

Previous studies showed that there is, indeed, a close link between attention 

and VSTM (for a review see Awh and Jonides, 2001; Awh et al., 2006). For instance, 

it has been suggested that attention plays an important role in the maintenance of 

internal information over a brief period of time (e.g., Awh et al., 1998; Trapp and 

Lepsien, 2012). It has even been proposed that attention and VSTM should no 

longer be considered as separate systems, or they rely on the same limited 

resources (Kiyonaga and Egner, 2013). Crucially, Larsson and Smith (2012) 

showed that attention is also important for observing expectation-related RS. 

When participants’ attention was diverted away from the stimuli, a large, 

expectation-related component of the response reduction disappeared. Thus, it is 

possible that the RS effect was no longer present because participants were not 

paying attention to faces when the load on VSTM was high. 

However, to further investigate the influence of attention and VSTM on 

expectation-related RS effect separately, a completely orthogonal design between 

these two factors should be tested. For instance, an additional control 

manipulation, participants are asked to divert their attention from face stimuli in 

both VSTM and Control conditions, should be conducted. If the RS effect 

diminishes in both conditions, it could mean that the attenuated RS in study 3a is 

completely due to attention. Conversely, if the interaction effect (i.e., as Study 3a, 

the RS attenuation only under VSTM load condition) is replicated, it could mean 

that it is due to the limitation of short-term memory capacity.  

Additionally, besides the suggested manipulations, future experiments can 
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combine multiple techniques. For example, recording the eye movements with 

eye-tracking, or separating attention and expectation using high temporal 

resolution methods (e.g., EEG, MEG). Since previous studies have found the 

exogenous attention effect precedes those of endogenous attention (Hickey et al., 

2010), testing these interactions with these techniques can be a promising 

research avenue. 
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4 Discussion  

4.1 Summary of the current studies 

The aim of the current dissertation is to elucidate whether and how prior experiences 

modulates neural correlates of predictive processing in the ventral visual areas in humans. 

The definition of “prior experiences” in my work specifically refers to both the long-term 

experience of language learning and to the short-term experience achieved by perceptual 

learning. Three studies were designed to address these issues. Two well-established 

neural effects (P(rep) and RS effects) are elicited by presenting participants with different 

visual stimuli (faces, words, and objects) and measured as an index of predictive 

processing with fMRI. The first two studies investigated the P(rep) effect to elucidate the 

importance of prior experiences on predictive processing, while the third one attempted 

to explain how this modulation could be conducted in the brain. As all studies have been 

discussed in the related manuscripts respectively, this subchapter will focus on the 

overarching results, their relations to each other and the conclusions we can draw from it. 

The first study (Study I, chapter 3.1) aimed to investigate the effect of prior experiences 

on predictive processing by testing the repetition probability (P(rep)) effects for words. 

Grotheer and Kova cs (2014) found this effect for familiar Roman letters in the Letter 

Form Area (LFA; Thesen et al., 2012), but not for novel false fonts. This suggests that this 

P(rep) effect depends on prior experiences of the participants with the stimuli. In study I, 

we further tested whether this conclusion can be extended to more complex lexical words. 

We adapted a block-based probability design (see figure 3D; Summerfield et al., 2008) to 

measure the BOLD signal in the VWFA of native Chinese and German participants and to 

estimate the P(rep) effects for Chinese characters and German words. The results showed 

a significant P(rep) effect for stimuli of the mother tongue in both Chinese and German 

participants, which suggests that the P(rep) effect can be extended to words in the VWFA. 

Interestingly, Chinese participants, learning German as a second language, also show a 
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significant P(rep) effect for German words while German participants who had no prior 

experiences with Chinese characters showed no such effect. This further suggests that the 

P(rep) effect only emerges for words of a language with which participants are highly 

familiar. Thus, this study demonstrates the idea that predictive processes require 

extensive prior experiences with perceived stimuli.  

In contrast to extensive, semantic prior experiences, Study II (chapter 3.2) aimed to 

investigate the modulation of short-term experience on predictive processing by testing 

the P(rep) effect for non-face objects. As mentioned above, the P(rep) effect was robustly 

replicated for faces, words, and Roman letters, which participants had extensive 

experiences with (e.g., Summerfield et al., 2008; Grotheer and Kova cs, 2014; Li and 

Kova cs, 2022), but not for novel false fonts and unfamiliar words (Grotheer and Kova cs, 

2014; Li and Kova cs, 2022). However, inconsistent findings were observed for objects. For 

instance, Mayrhauser et al. (2014) reported the P(rep) effect for line-drawn objects, but 

such effects were not replicated for everyday objects or chairs in human neuroimaging 

studies (Kova cs et al., 2013) and for 3D artificial faces, fractal patterns and everyday 

objects in macaque single-cell recording studies (Kaliukhovich and Vogels, 2011; Vinken 

et al., 2018). To explain this inconsistency from the point of view of prior experiences, we 

measured the P(pre) effects for cars (a familiar category of everyday objects) pre and post 

a ten-day perceptual learning (PL) session. The results showed that the P(rep) effect is 

significantly attenuated after short-term PL, which suggests that short-term experience 

could temporarily modulate the P(rep) effect as well. 

The results of the first two studies suggest that the predictive processes, measured via the 

P(rep) effect, are modulated by both long-term and short-term prior experiences. 

However, it remains largely unclear how exactly prior experiences modulate predictive 

processes. Especially, although feedback loops are thought to play a role at the level of 

single neuronal connections, it is still unclear which cognitive and psychological 

processes modulate the effect of prior experiences in predictive processing. To address 

this question, the third study (Study III, chapter 3.3) attempted to investigate the degree 
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to which two potential cognitive factors (short-term memory and attention) could be the 

modulators of this process. Study III used a classic stimulus repetition paradigm to 

measure RS, together with either concurrent VSTM load or a control condition. Attention 

was manipulated by an active detection task in Study 3b. The results of Study 3a showed 

that RS was significantly attenuated when VSTM is loaded with other non-face visual 

information. Study 3b further showed that this attenuated RS effect could be counteracted 

by active attention allocation. Therefore, these results suggest that the modulation of 

prior experiences on predictive processes is dependent on short-term memory and 

attention. 

In summary, the importance of prior experiences on predictive processing was 

demonstrated in Studies I and II: Long-term experience with the stimuli is the 

prerequisite of the appearance of the predictive process while short-term visual 

experience could temporarily modulate predictive processes as well. Study III further 

revealed that this modulation is related to two important cognitive processes: short-term 

memory and attention. These results will be discussed below in the relationship between 

RS, ES and experience (chapter 4.2), a potential model about the relationship between 

experience and P(rep) effect (chapter 4.3), and a framework of a preliminary, cognitive 

predictive coding (chapter 4.4). 

4.2 The role of experience in repetition and expectation suppression 

According to the theory of PC, the process of matching between top-down predictions and 

bottom-up sensory inputs is crucial (Friston, 2005; Kok and de Lange, 2015). Prior 

experiences about sensory inputs in our brain is necessary to form predictions. These 

prior experiences could include both implicit statistical regularities learnt during an 

experiment and the cumulative, long-term experience with the stimulus category itself. 

The present thesis focused more on the latter, and investigated the influence of prior 

experiences on predictive processes, estimated by P(rep) modulations of RS. Based on the 

results of previous studies and the current thesis, we propose the different influences of 
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experience in RS and ES: RS is experience-independent, but ES is experience-dependent. 

Conceptually, RS indicates the difference of the neural response between repeated and 

alternated or even the first presentation of a given stimulus (Desimone, 1996). Instead, ES 

identifies the difference between expected and unexpected or neutral stimuli (for a 

review see Feuerriegel et al., 2021b). There are various aspects reasons for supporting 

the differences between RS and ES. For instance, non-primates single-cell recording 

studies failed to find prediction-related effects for unfamiliar objects (Kaliuhovich and 

Vogels, 2011; Vinken et al., 2018), but RS was still found in these studies. In human 

studies, RS appears in an earlier time window, typically starting between 100 – 250 ms 

after stimulus onset in the visual modality (Henson et al., 2004; Schendan and Kutas, 

2003; Schweinberger et al., 2004; Schweinberger and Neumann, 2016) and between 40 - 

60 ms in the auditory modality (Todorovic and de Lange, 2012), whereas ES appears later 

(300ms after stimulus onset  and between 100-200 ms in the visual and auditory 

modalities, respectively)(Summerfield et al., 2011; Todorovic and de Lange, 2012). 

Grotheer and Kova cs (2015) confirmed the separation between RS and ES using fMRI, and 

speculated that the slight temporal delay of ES as compared to RS might reflect that ES 

require top-down expectations from the frontal cortex (Brodmann Area 7). Therefore, 

Grotheer and Kova cs (2016) proposed a two-stage model of response suppression, which 

suggests that RS is the expression of ‘low-level’ prediction error (ε) calculations 

compared to ES, which ES likely represents “higher-level” ε computations with 

expectation signals from frontal regions (Summerfield et al., 2006). In light of this 

separation, I will now examine the effects of prior experiences on RS and ES separately. 

When considering the influence of experience, the RS effect could appear regardless of 

experience with stimuli. For instance, a stronger RS effect in non-primate single-cell 

recordings studies when monkeys had no extensive experience with stimuli (e.g., 

Kaliukhovich and Vogels, 2011; Vinken et al., 2018), and in human neuroimaging studies, 

e.g., when participants view novel false fonts (Grotheer and Kova cs, 2014). However, the 

results of ES and P(rep) (a kind of ES effect as described in chapter 1.2.1) effects for 
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various stimulus categories suggest that ES is experience-dependent. For instance, Meyer 

and Olson (2011) trained macaque monkeys to learn six pairs of images, in which the 

second image can be predicted based on the first image in each pair. The ES effect for 

these trained stimuli was obtained in the IT cortex, where neuronal activity was reduced 

when the trailing image was predicted, as compared to when it was unpredicted. Grotheer 

and Kova cs (2014) observed the P(rep) effect for familiar Roman letters, but not for novel 

false fonts. The first study in the present thesis adopted the identical paradigm to 

compare this effect for two kinds of words (Chinese characters and German words) in two 

groups of participants (Chinese and German), the results showed that P(rep) effects were 

observed only for words of a language with which participants had extensive experiences. 

These results further suggest that prior experiences with stimuli is important for 

observing a prediction-related effect – the P(rep) effect. It is worth pointing out that this 

conclusion - ES is experience-dependent - is only demonstrated in the monkey training 

study (Meyer and Olson, 2011) by using block-based probability designs (Summerfield et 

al., 2008) in human studies (Grotheer and Kova cs, 2014; Li and Kova cs, 2022). For other 

designs, I would hypothesize that prior experience is also important for the occurrence of 

ES. In other designs, the content of this prior experience can also not be just the 

occurrence of the stimulus category itself, but rather other expectation-related 

experiences. For instance, in statistical learning designs, prior experiences might refer to 

the experience of sequence, because the expected sequence was actually learned during 

the training session (Manahova et al., 2018); In cue-based designs, prior experiences 

could be the relationship between cues and stimuli. The predictions of related cues for 

subsequent stimuli were actively learned during the stimulus presentation (Egner et al., 

2010), while the ES was dependent on these expectations. In addition, Vogels (2016) 

reviewed the results of response suppression in macaque IT and suggested that the RS 

effect could be the expression of synaptic depression or inherited adaptation effects, 

which implies that RS could be just a local change, independent of the participation of 

top-down experience. Overall, these experiments addressed the question of whether 

prior experiences modulate predictive processes. Taking their results together, it can be 
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concluded that prior experience is necessary for predictive processes, but not for the RS 

effect to occur. 

4.3 The relationship between experience and repetition probability 

effect 

The last subchapter discussed the different influences of experience on RS and ES, and 

suggested that ES is experience-dependent, but RS is experience-independent. This 

subchapter especially focuses on the relationship between experience and the repetition 

probability [P(rep)] effect. Several reasons prompted the discussion of their relationship 

in this section: First, the P(rep) effect is the main indicator of predictive processes in the 

present thesis; second, this effect was widely investigated for various stimulus categories 

in humans and non-primates. Third, inconsistent results regarding this effect could be 

explained from the perspective of prior experiences. Thus, this subchapter will review the 

studies of the P(rep) effect and attempt to explain the inconsistent results from the point 

of view of experience. Afterwards, I will attempt to fill in the gaps, connect the evidence at 

hand, and propose a preliminary model about the relationship between experience and 

the P(rep) effect. 

The modulation of P(rep) on RS effects has been described in the introduction part 

(chapter 1.2.1). This effect is considered as a robust and classical indicator to explain the 

RS effect by prediction coding. The corresponding paradigm is called block-based 

probability design (see figure 3D on page 14), which manipulates the probability of 

repetition and alternation trials in different blocks. A stronger RS effect observed in 

repetition blocks, the probability of repetition trials is higher when compared to 

alternation blocks, indicates the modulations of top-down expectation on RS, which is 

known as the P(rep) effect. This effect was firstly reported in a human fMRI study using 

human faces as stimuli. It was replicated for face stimuli in independent laboratories (e.g., 

Kova cs et al., 2012; Larsson and Smith, 2012). However, it failed to appear in 

non-primates single-cell recordings studies, neither using fractal patterns and natural 
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objects (including human and animal faces, human and animal bodies, animals, indoor 

and outdoor environments, natural landscapes, and manmade objects) as stimuli 

(Kaliuhovich and Vogels, 2011), nor using 3D artificial faces generated by FaceGEN 

Modeler as stimuli (Vinken et al., 2018). To exclude the difference of species and tasks, 

Kova cs and colleagues (2013) found no P(rep) effect for everyday objects and chairs in 

the LO in human fMRI studies as well. This suggested that P(rep) effects might change 

across the stimulus categories and this variance could be due to differences in selectivity 

for faces and objects in face and object regions respectively (Kova cs and Vogels, 2014). 

Subsequently, Grotheer and Kova cs (2014) used the Roman letters and novel false fonts 

as stimuli to investigate the P(rep) effect, their results excluded this difference between 

faces and objects areas. Because they found the P(rep) effect for Roman letters in the LFA 

and LO, but not for novel false fonts. their results suggest that the P(rep) effect depend on 

prior experiences with stimuli. This conclusion was confirmed in the first study of the 

present thesis. We only observed the P(rep) effect in the VWFA and LO for words of a 

language with which participants had extensive experience. For other objects, Study II in 

the present thesis found the P(rep) effect in the right LO for highly familiar objects (cars) 

as well, which could explain the fact that no P(rep) effect was found in Kova cs et al. (2013) 

study. A hypothesis could be that participants had various degrees of prior experiences 

with everyday objects. Alternatively, the prior experiences they had with stimuli (chairs) 

was not enough to induce the P(rep) effect. it is worth pointing out that there is a specific 

case, where Mayrhauser et al. (2014) found the P(rep) effect for line-drawing of objects in 

the left LO. On the one hand, we may need to receive more relevant experience from some 

higher-level regions when we recognize line drawing of objects compared to when we 

recognize objects based on the real images. Receiving more experience for line drawing of 

objects from higher-level regions still can be explained under the framework of the 

influence of prior experiences on predictive processes; on the other hand, based on their 

results that the P(rep) effect was only observed in the left LO, one possibility was that 

participants were verbalizing the abstract line drawing of objects from some language 

areas in the left hemisphere when they view the images (Kova cs and Vogels, 2014). If so, 
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language information/knowledge could be considered as prior experiences as well. Taken 

together, all findings of P(pre) effects could be explained from the perspective of prior 

experiences with stimulus categories. Thus, I attempt to propose a preliminary model of 

the relationship between experience and the P(rep) effect in the following. 

Figure 9. Schematic illustration of the preliminary model of the relationship between 

experience and P(rep) effect. The horizontal axis shows three kinds of experiences based on 

the length of training. The vertical axis indicates the magnitude of P (rep) effects. The blue 

dotted line indicates the magnitude of P(rep) effect for novel stimuli with different levels of 

experience. The orange line indicates the magnitude of P(rep) effect for familiar stimuli with 

different levels of experience. The letters of A - F indicate different conditions.  

To integrate the above-mentioned results of the current thesis in this model (Figure 9 on 

page 110) and relate them to the second study, I separate the perceived stimuli into two 

categories based on participants’ experience (Novel and Familiar stimuli). At the same 

time, I simply divide the prior experiences with stimuli into three levels based on how 
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long the perceptual training on these stimuli has been (No training, short-term training, 

long-term training/learning). Although not all points have been demonstrated by 

experiments, I would like to list the related evidence or potential proposals for each point. 

First, for novel stimuli, there seems to be no P(rep) effect when we have not had got any 

training (point A), this is supported by the results of novel false fonts in Grotheer and 

Kova cs’s (2014) study and the results of German participants for Chinese characters in 

Study I (Li and Kova cs, 2022), Second, when participants have extensive experience with 

a novel stimulus category (point C), the P(rep) effect would be present, which has been 

supported by the results of Roman letters (Grotheer and Kova cs, 2014), words of the 

mother tongue, and words of the second language (Study I; Li and Kova cs, 2022). 

However, the magnitude of P(rep) effects when participants just undergo a short-term 

training for a novel stimulus category remains unclear (point B). In this model, I assume 

that it will be between A and C. This hypothesis should be tested in future experiments.  

Furthermore, for familiar stimuli, with which participants had extensive experience, a 

strong P(rep) effect would be obtained (point D). This has been robustly demonstrated 

for faces, Roman letters, words, and cars (e.g., Grotheer and Kova cs, 2014; Li and Kova cs, 

2022; Summerfield et al., 2008; study II in the present thesis). This P(rep) effect 

temporarily disappears when participants perform short-term training for this familiar 

stimulus category (point E). The data of Study II in the present thesis could support this 

hypothesis. However, it has not been explored whether the P(rep) effect could be further 

enhanced for familiar stimuli. In this model, I assume it could be enhanced after 

long-term training (point F) which should be tested further. It is worth pointing out that 

this enhancement is not unlimited. For example, the P(rep) effect showed no difference 

between Chinese characters and German words in Chinese participants (Study I), which 

means that the P(rep) effect would not increase indefinitely when prior experiences with 

the stimuli accumulate to a certain extent. 

This preliminary model could summarize the outcome of all studies investigated the 

P(rep) effect and relate the magnitude of the P(rep) effect with the amount and kind of 
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prior. However, two key questions should be investigated to reveal the underlying 

mechanism between prior experiences and the P(rep) effect in future studies.  

First, why does the P(rep) effect for familiar objects disappear after a short-term training 

(Point E related to the results of Study II)? Since previous studies suggested the P(rep) 

effect depends on prior experiences with the stimuli (Grotheer and Kova cs, 2014; Li and 

Kova cs, 2022), we might assume that, with the accumulation of experience with 

experimental stimuli, a stronger P(rep) effect would appear, and remain stable after its 

emergence. However, the results of Study II showed that the P(rep) effect for familiar 

objects could be temporarily abolished after a short-term perceptual training, even for 

untrained stimuli (faces). Two potential reasons could explain this attenuation of P(rep) 

effects for familiar stimuli. i) for the trained stimuli, it may be due to the general training 

effect, which refers to the reduction of BOLD signal responses for the trained compared to 

novel/untrained stimuli demonstrated in perceptual training studies (e.g., Baeck and Op 

de Beeck, 2010; Henson et al., 2000; Reber et al., 1998; Sigman et al., 2005). Thus, the 

absence of P(rep) effect for trained familiar stimuli (cars) in Study II could be due to the 

overall reduction of neural response for the trained stimulus category. In other words, 

this overall reduction of the BOLD signal responses for trained stimuli results in the 

difference between repetition and alternation trials in different blocks being too small to 

be detected. ii) for the untrained stimuli, it could be due to the top-down expectations 

changed after the training session. Previous studies adopting cue-based designs showed 

that the expectation effect for familiar stimuli (faces and houses) could be changed under 

different conditions with different expectation probabilities (Egner et al., 2010). This 

result indirectly supports the absence of the P(rep) effect for untrained familiar stimuli. 

In Study II, in the pre-training sessions, the face and car runs are equally predictable for 

participants as there was no cue that can induce more expectations to either face or car 

runs. However, the expectations of the car runs would increase after the training sessions 

as the training task was only related to cars. Thus, according to the PC theory, the overall 

BOLD signals of the car runs would be decreased (expectation suppression) in the 

post-training sessions, as compared with the results of pre-training sessions. However, 
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the overall BOLD signals of the face runs would be increased (surprise enhancement). 

This hypothesis was confirmed by the results in Study II. Please note the increased BOLD 

signals of the face runs in the post-training sessions was only a trend, not statistically 

significant. Thus, future studies should attempt to replicate this result and investigate the 

effects of expectations that are mainly the product of task design.  

Second, the definition and classification of experience are rough. They should be refined 

in future studies. For instance, important questions are how much experience is enough 

to result in the emergence of the P(rep) effect, and which kinds of experience are more 

important for the P(rep) effect. For more details, please see the first point of subchapter 

4.6. 

Overall, this model could describe the relationship between experience and the P(rep) 

effect, but it still needs to be proved and improved. I will discuss it further in chapter 4.6. 

4.4 The modulation of top-down prediction for repetition suppression 

The previous sections have discussed the crucial role of prior experiences in predictive 

coding. However, it remains largely unknown how this modulation works in the brain. 

Study III attempted to answer this question based on the mechanism of short-term 

memory (STM) and attention. According to the results of study III, we tried to integrate 

the memory and attention processes into the framework of predictive coding (PC) (Figure 

10 on page114). We proposed that extensive prior experiences with upcoming events is 

stored in long-term memory. This information in long-term memory can be temporarily 

extracted to short-term memory, to then form prediction in a highly accessible state. This 

hypothesis is consistent with the idea that STM is regarded as a part of long-term memory 

that is engaged by the current task (e.g., Anderson et al., 2004; Cowan, 1998; Rochkin et 

al., 2003). In addition, Study 3a in the present thesis and several previous studies 

provided the empirical evidence that STM is required for perceptual prediction processes 

(e.g., Cashdollar et al., 2017; St John-Saaltink et al., 2015; Travis et al., 2013; details see 

chapter 1.3.4 on page 28). Under this assumption, on the one hand, it can explain why the 



Discussion 

114 
 

RS effect was significantly attenuated under VSTM load in Study 3a: the capacity of STM 

was loaded with additional information, which partially impaired the estimation of 

predictions. On the other hand, it can explain why extensive prior experiences is 

important for prediction: prior experiences in the long-term memory can provide 

sufficient information that is then temporarily store in STM to calculate predictions for 

the current predictive task (Trapp et al., 2021). 

 

Figure 10. Schematic illustration of a hierarchical network for predictive coding with memory 

and attention. The hierarchical network of predictive coding is identical to Rao and Ballard 

(1999). Deep experience is stored in long-term memory, and can be temporarily extracted to 

STM, to then form predictions in a highly accessible state. Attention as a modulator facilitates 

prediction error coding in the predictive estimator or affects a stimulus saliency during 

bottom-up processing.  

The results of Study 3b showed that, RS was restored in the VSTM condition when 

participants actively attended to stimuli. This result dovetails with a wealth of research 

findings suggesting the crucial role of attention in prediction. It has been well established 

that attention increases the efficiency of information processing. Especially, attending to a 

stimulus is associated with increased neuronal population selectivity (e.g., Maunsell, 

2015; Murray and Wojciulik, 2004; Serences and Kastner, 2014; Treue, 2003). Importantly, 

several studies have demonstrated the crucial role of attention in predictive processing 
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(e.g., Alink and Blank, 2021; Larsson and Smith, 2012; Richter and de Lange, 2019; more 

details have been described in chapter 1.3.3 on page 26). Three potential explanations 

about the modulation of attention in predictive processing were proposed: First, 

attention facilitates prediction error coding (Feldman and Friston, 2010; Friston, 2009), 

meaning that attention can enlarge the prediction error effect for unexpected relative to 

expected conditions. Second, the expectation effect in the attended condition is due to an 

enhanced stimulus saliency of unexpected stimuli (for a review see Alink and Blank, 

2021). Third, prediction might provide an anchor for attentional processing, meaning that 

the subsequent attention orientation could depend on the process of computing 

predictions (Hsu et al., 2014 cited in Ficco et al., 2021). Therefore, in our refined 

framework of PC, we assumed the main role of attention is that of a modulator, which 

means it both facilitates prediction error coding in the predictive estimator (top-down) or 

it produces an increased stimulus saliency effect (bottom-up). This can explain why the 

RS effect appeared in the VSTM condition when participants attended to the face stimuli 

in Study 3b. In other words, when STM is loaded with other information, attention still 

can be a potential driver for the expectation effects. After all, our brain can flexibly 

perform complex tasks through the cooperation of multiple networks. It is worth pointing 

out that there is a great consensus that attention is a necessary prerequisite for STM 

activity. Especially, it has been suggested that attention serves as a rehearsal mechanism 

in visuo-spatial working memory (Awh and Jonides, 2001). In other words, attention 

contributes to the maintenance of information over a short time (Awh et al., 1998; Awh et 

al., 2006). Some studies have even proposed that visual STM and attention should no 

longer be considered as separate systems (e.g., Kiyonaga and Egner, 2013). Therefore, the 

close link between attention and STM could be an important reason to integrate attention 

and STM into the PC theory. Of course, future studies should test the contribution of 

attention and STM on PC respectively. 

In summary, based on the findings of Study III and related studies, we proposed that STM 

and attention may be two important modulators of the effect of prior experiences on 

predictive processes. However, they play different roles: STM is mainly responsible for 
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forming predictions based on prior experiences; attention mainly facilitates prediction 

error coding or reflects the stimulus saliency effect.  

4.5 Limitations of the present thesis 

As the limitations of each study have been pointed out in the respective manuscripts, this 

subchapter will focus on the overarching limitations in the present thesis and how to 

avoid them in future studies. 

First, a general limitation is the presence of bias in the sampling process. Well-known 

concerns in experimental research are that of achieving sufficient power, and that to 

render a proper randomized selection process. If the sampling process is biased in some 

way, the conclusions will inevitably suffer from it. In all studies of the present thesis, we 

randomly sampled from undergraduate and graduate students, thus our results would 

mainly represent the performance of undergraduate and graduate students. If one plans 

to extend the present conclusions to other populations, it will be necessary to diversify 

the sampling process, and make it more inclusive. Another issue is that of sample size. 

The best approach to decide the needed sample size reliably in a power analysis is 

running a pilot experiment. Another option is to calculate it based on the effect size of 

previous studies, such as using G* Power (Faul et al., 2007). However, due to limited 

resources, this estimation is not always used for fMRI experiments. Especially, due to the 

COVID-19 pandemic situation, large sample sizes are more difficult to achieve. In our 

studies, we decided to take the sample size of published studies, that used the same 

paradigm and investigated the same phenomena, as a reference. Based on the effect size 

and statistical power of the results, our conclusions were built on the higher effect size. In 

addition, in Study 3a, we performed a Bayesian ANOVA, besides a traditional frequentist 

ANOVA. The results of the Bayes factor also support our conclusion. Of course, in future 

studies, we should recruit more participants to ensure the results are more 

representative. 

Second, my work also presents some methodological limitations. In all studies, we 
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measured the BOLD signal with fMRI because such technique has obvious advantages, 

especially, high spatial resolution and non-invasiveness. However, one disadvantage is the 

lower temporal resolution when compared to other techniques, such as EEG and MEG. 

Although the fMRI can be used to distinguish RS and ES (Grotheer and Kova cs, 2015) as 

well, it would improve these conclusions by using a high temporal resolution technique 

(Todorovic and de Lange, 2012). This would shed light on the temporal characteristics of 

RS and ES. With the technological development of the fMRI technique, its temporal 

resolution can be improved, meaning the timing parameters (i.e., TR) of fMRI can be 

reduced. For example, we use a shorter TR in Study 3a (TR = 1000 ms). In some studies, it 

can even be shortened to approximately 500 ms with multi-slice acquisition at the same 

timepoint (Xu et al., 2013). In addition, our studies mainly focus on the difference in brain 

activities in different conditions.  

Another potential limitation is that in our studies, we did not correlate the behavioral 

results with BOLD signal responses. For instance, the task in Studies I and II just ensured 

participants attended to stimuli, and the brain responses of these responded trials were 

not analyzed further. From the perspective of Psychological Science, it would be necessary 

to connect brain activity with participants’ behavior. Future studies may employ tasks 

that explicitly require participants to anticipate future stimuli. Finally, in regards to the 

data analysis, we only conducted ROI analysis for all studies, and the whole-brain analysis 

for Study I. Other methods should be considered as well, such as, multivariate pattern 

analysis (Haxby et al., 2001). Therefore, in the future studies, we should not only focus on 

the univariate changes of BOLD signals during the modulation of prior experiences on 

predictive processes, but also pay attention to its temporal dynamics, activity patterns, 

and attempt to connect these brain activities to behavioral results by using multiple 

analysis methods. 

Third, another limitation could be the limited range of paradigms we used. There are 

various designs to demonstrate that predictive processes exist in our brain (for a review 

see Feuerriegel et al., 2021b). However, for better comparison to previous studies, our 
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studies in the present thesis mainly adopted block-based probability designs. Although 

the results of these studies can address our research questions, which is whether prior 

experiences are important for the predictive process, we still have to further test this 

conclusion in other paradigms. In this way, it could be better understood how prior 

experiences modulate predictive processes in different paradigms. 

4.6 Open questions and future directions 

The aim of the present thesis is to investigate whether and how prior experiences 

modulate predictive processing in the ventral visual areas. Although the conclusion 

supports the idea that prior experience is a prerequisite for predictive processing, and 

this process could be achieved through the modulation of short-term memory and 

attention, I will propose some ideas for follow-up studies based on the findings of the 

present thesis. 

First, the minimum amount of experience necessary to observe these effects should be 

quantified. According to the introduction in chapter 1.3.1, we know that ‘experience’ is a 

complicated concept. The main reason is that it is simply not easy to quantify experience, 

and there is no standard quantifiable measurement of experience. In previous and 

present studies only a simple and rough classification of experience is made, such as no 

experience, short-term experience, and long-term experience. In our preliminary model 

in chapter 4.3, we only can classify experience into three levels. If we will be able to 

quantify experience in a more fine-grained manner, this model will be refined 

correspondingly. Another important issue related to experience is that the quality of 

experience matters too. For instance, participants being exposed to several examples of 

cars might experience the stimulus ‘car’ differently in the end, depending on task 

instructions, e.g. identification of car brand, categorization by color, inferences about the 

car owner, typicality ratings, etc. Accordingly, expectation effects might vary depending on 

qualitative aspects. Therefore, future studies can comprehensively consider various 

qualitative factors affecting experience acquisition, especially task instructions and 
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subjective reports of participants. 

Second, a promising avenue for future research is offered by longitudinal training. 

Training is a dependable method to obtain experience. According to the conclusion of the 

present thesis, prior experiences with the stimuli are necessary for predictive processing. 

Especially, Study I provided empirical evidence to support that the words could be a 

reliable exemplar in the training experiments. For instance, one could manipulate how a 

new language is learnt. Xue et al. (2006) designed a logographic artificial language for 

Korean characters to conduct visual form, phonological, and semantic training in Chinese 

participants, who have no experience with Korean characters. The results showed a 

U-shaped change of the brain responses in the VWFA. The modulation of prior 

experiences on predictive processes will be further clarified if future studies will conduct 

a long-term longitudinal training using words as stimuli. This would be especially 

important to investigate how different experiences modulate top-down predictive 

processes. 

Last but not least, future studies could investigate the presence of a dynamic prediction 

network. The brain is a dynamic, hierarchical predictive machine (for a review see 

Badcock et al., 2019). When our eyes catch an object, its processing will rapidly involve 

many brain areas. However, this thesis and previous studies mainly focused on a few 

areas and ignored the connection between each area. Future studies should integrate 

various high-resolution technologies to record brain activity and behavioral responses 

during task performance. In particular, when using faces as stimuli, researchers should 

not only focus on face-sensitive areas，but also consider the role of other networks such 

as attentional network and memory networks.  

 

 

 



Discussion 

120 
 

 

 



Conclusion 

121 
 

5. Conclusion 

The current dissertation is aimed to elucidate whether and how prior experiences 

modulates neural correlates of predictive processing in the ventral visual areas in humans. 

We specifically focus on prediction-related neural effects (P(rep) and RS effects) for 

different visual stimulus categories (faces, words, and objects) measured with fMRI. Here 

we mainly investigated the influence of two kinds of experiences (long-term experience 

from language learning and short-term experience from perceptual learning) on the 

P(rep) effect (Studies I and II). Furthermore, we investigated the crucial role of STM and 

attention on prediction-related effects to explain how prior experiences modulates neural 

effects of predictive processing (Study III). 

The main findings of the three studies presented in this dissertation are the followings. 

First, the P(rep) effect is only manifest for words of a language with which participants 

had extensive prior experiences (Study I). Second, the P(rep) effect for familiar objects 

can be temporarily abolished by short-term perceptual learning (Study II). Finally, the 

attenuation/emergence of RS could be modulated by STM and attention (Study III). 

Summarizing these results leads to the following conclusion: the predictive processes, as 

measured by the P(rep) effect, require extensive prior experience with stimulus 

categories, but these can also be modulated by the short-term learning experience. More 

importantly, STM and attention are considered are two important modulators of prior 

experiences on predictive processes. 
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