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Abstract

We know from literature and direct experience that applying the notions of physics, mathematics
and astronomy to real and interesting astrophysical problems fascinates and particularly stimulates
many students. Even more if they are given the opportunity to work actively on the chosen
problem through experimental activities. Moreover, this approach is also known to stimulate a
more effective and lasting acquisition of knowledge related to the topic under investigation.
In this work, which is primarily aimed at teachers of physics, mathematics and astronomy, it is
illustrated how two important topics of cosmology can be introduced as valuable teaching aids:
the dark matter problem and gravitational lensing. These complex and articulated topics lend
themselves very well to appropriate elementarisation and the use of simplified models. This pro-
cess has made them suitable for introduction into the classroom in the form of exercises and/or
extracurricular projects for students in their final years of secondary school or first years of uni-
versity.
In the first part of this thesis, the concepts of radial and rotational velocity, together with those
of spider diagram and rotation curve, are introduced and applied to the solar system and a spiral
galaxy. The inclusion of the spider diagram in this educational context is, as far as we know,
innovative. The analysis of the dynamics of these astronomical systems provides important in-
formation on their mass and its distribution. And the profound differences between these two
systems are also highlighted. All this is discussed while working with real data and using the
dynamic mathematical software Geogebra. Finally, thanks to this analysis and the mass-luminosity
ratio of the spiral galaxy, we can estimate the amount of non-visible mass that apparently influ-
ences the motion of all matter in this galaxy. This provides evidence for the possible existence of
dark matter.
In the second part of this thesis, which is also the main part, we explore how a concentration of
mass can act like a lens, deflecting the path of light rays. We thus discuss the phenomenon of
strong gravitational lensing, which can produce optical illusions observable in the universe. This
effect is investigated for several examples of mass distributions acting as lenses. By examining
the geometry of the gravitational lens system, some important relationships that exist between the
various elements of the system are deduced, such as size, distances and alignment of the compo-
nents. Using this information and thanks to the software Geogebra, visualisations and interactive
simulations of the images resulting from the gravitational lensing effect are created. Finally, the
form to be given to lenses made of glass, so that they can recreate the same effects produced by
gravitational lenses, is studied. This leads to the illustration of the five models of plexiglass lenses
we have designed and produced. These add an experimental part to the teaching of this subject,
as they reproduce the gravitational lens effect directly in the classroom, allowing this phenomenon
to be observed, understood in depth and discussed. In addition, two of these models, Kuzmin disk
and Plummer sphere, are explored and realised in this framework for the first time.
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Zusammenfassung

Wir wissen aus der Literatur und aus direkter Erfahrung, dass die Anwendung von Begriffen der
Physik, Mathematik und Astronomie auf reale und interessante astrophysikalische Probleme viele
Schülerinnen und Schüler fasziniert und besonders motiviert. Dies gilt umso mehr, wenn sie
die Möglichkeit haben, auch experimentell an dem gewählten Problem zu arbeiten. Außerdem ist
bekannt, dass dieser Ansatz einen effektiveren und nachhaltigeren Wissenserwerb in Bezug auf das
untersuchte Thema fördert.
In dieser Arbeit, die sich in erster Linie an Physik-, Mathematik- und Astronomielehrer richtet, wird
aufgezeigt, wie zwei wichtige Themen der Kosmologie als wertvolle Unterrichtsmittel eingeführt
werden können: das Problem der dunklen Materie und der Gravitationslinseneffekt. Diese kom-
plexen Themen eignen sich sehr gut für eine angemessene Elementarisierung und die Verwendung
von vereinfachten Modellen. Dieser Prozess hat sie für die Einführung in den Unterricht in Form
von Übungen und/oder außerschulischen Projekten für Schülerinnen und Schüler in den letzten
Jahren der Sekundarstufe oder Studentinnen und Studenten in den ersten Jahren der Universität
geeignet gemacht.
Im ersten Teil dieser Dissertation werden die Konzepte der Radial- und Rotationsgeschwindigkeit
zusammen mit denen des “Spinnen”-Diagramms (spider diagram) und der Rotationskurve einge-
führt und auf das Sonnensystem und eine Spiralgalaxie angewendet. Die Einbeziehung des Spin-
nendiagramms in diesen Bildungskontext erfolgt nach unserer Kenntnis hier zum ersten Mal. Die
Analyse der Dynamik dieser beiden astronomischen Systeme liefert wichtige Informationen über
ihre Masse und deren Verteilung. Außerdem werden die tiefgreifenden Unterschiede zwischen
diesen beiden Systemen hervorgehoben. All dies wird diskutiert, während man mit realen Daten
arbeitet und die dynamische mathematische Software Geogebra verwendet. Dank dieser Analyse
und des Masse-Leuchtkraft-Verhältnisses der Spiralgalaxie können wir schließlich die Menge der
nicht sichtbaren Masse abschätzen, die scheinbar die Bewegung alle Materie dieser Galaxie beein-
flusst. Dies ist ein Hinweis auf die mögliche Existenz von dunkler Materie.
Im zweiten Teil dieser Doktorarbeit, der gleichzeitig der Hauptteil ist, untersuchen wir, wie eine
Massenkonzentration wie eine Linse wirken kann, die Lichtstrahlen ablenkt. Wir diskutieren also
das Phänomen des starken Gravitationslinseneffekts, der im Universum beobachtbare optische Illu-
sionen erzeugen kann. Dieser Effekt wird für mehrere Beispiele von Massenverteilungen analysiert,
die wie Linsen wirken. Durch die Untersuchung der Geometrie des Gravitationslinsensystems wer-
den einige wichtige Beziehungen zwischen den verschiedenen Elementen des Systems abgeleitet,
wie Größe, Abstände und Ausrichtung der Komponenten. Anhand dieser Informationen und dank
der Software Geogebra werden Visualisierungen und interaktive Simulationen der Bilder erstellt,
die durch den Gravitationslinseneffekt entstehen. Schließlich wird studiert, welche Form gläserne
Linsen haben müssen, damit sie die gleichen Effekte erzeugen können wie Gravitationslinsen. Dies
führt zu fünf Modellen von Plexiglaslinsen, die wir entworfen und hergestellt haben. Sie ergänzen
den Unterricht zu diesem Thema um einen experimentellen Teil, da sie den Effekt der Gravitation-
slinsen direkt im Klassenzimmer nachbilden und es ermöglichen, dieses Phänomen zu beobachten,
zu verstehen und zu diskutieren. Darüber hinaus werden zwei dieser Modelle, die Kuzmin-Scheibe
und die Plummer-Kugel, in diesem Rahmen zum ersten Mal erforscht und realisiert.
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Chapter 1

Introduction

Astronomy and physics have been my passion for many years now, as well as finding the most
effective, suitable and stimulating way to teach and disseminate these subjects. Over the years, I
have learnt about the interesting benefits for students that this brings. Besides fascinating and
motivating many of them, these themes lend themselves effectively to promoting the development
of skills and competences that are important not only in education, but also in life [49][43][40][99].
In this respect, astronomy is also regarded as one of the most suited subjects to achieve this
goal. Not only because it is particularly well equipped for inquiry-based learning and ideal for
interdisciplinary teaching, but also because it is extremely appealing to all levels of education [41].
These are the basic motivations that led to the formulation and development of this project at the
research group in physics and astronomy teaching at the Friedrich-Schiller University (Jena) and
ultimately to this thesis. The aim is to bring innovation by introducing topics of modern astro-
physics into the teaching of physics, mathematics1 and astronomy. The use of supportive teaching
tools, which facilitate learning and stimulate students to a greater extent, are also promoted. It is
also important for us to actively involve the students in the learning process so that they achieve
more long-lasting knowledge, but above all learn to use their minds and develop a way of thinking.

Basically, the idea is to introduce, when teaching physics, mathematics and astronomy,
examples based on known real problems that engage scientists. In this way it is possible to
motivate and inspire students [113] as well as increase their level of interest and ability in scientific
subjects [84]. Moreover, in this context, cosmology is considered particularly appropriate because
it offers a number of interesting and useful applications of physical and mathematical concepts
[113].
Another purpose of this work is to introduce a hands-on part in the developed teaching activities,
i.e. we want to give an experimental note. The intention is to give students, after an appropriate
theoretical basis, the possibility to carry out this part autonomously. They are therefore able to
apply their knowledge, analyse, experiment, understand and discuss the results and thus build up
their own knowledge.
Alongside these aspects, it is also important to introduce modern tools that make the teaching-
learning process more efficient [87]. For example, we have noticed that students are sometimes
overcome by boredom if the level of technological stimulation does not correspond to what they
are used to on a daily basis. Students are constantly immersed in technology, which is now an
integral part of our lives, so we believe it is useful to introduce resources from an area that is
familiar to them.

1Mathematics is the language of the laws of physics and astronomy, so it must be included. That is why it is
always included in this thesis when discussing the teaching of physics and astronomy, even in cases where it is not
explicitly mentioned.

1
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In the light of these guidelines and after extensive literature research, it was clear that our
main target audience was teachers. Actually, the educational materials and tools produced are
intended for a final use with students in the last years of secondary school and the first years of
university, including teacher students. However, it is important to involve above all those who must
then transmit this knowledge and actually guide and involve the students. Ultimately, educating
those who are responsible for educating students is the best way to reach as many students
as possible. Inspired teachers can inspire students and transfer knowledge more effectively and
promote the development of important skills [14].
It is precisely the teachers (in-service and future) that we are addressing first and foremost,
meaning that this text as well as the created material is specifically written and produced for
them. Essentially, the level held in this thesis takes into account an already solid background
in physics and mathematics and the topics presented, already elementarised, can be understood
without great effort. For those who want to teach and introduce these topics in the classroom
there is however one more step to take, which is to adapt the content to the level of the students
for whom it is intended. This extra step is left to teachers, but we are always willing to work to-
gether (and happy to do so) to find the most convenient and useful solution, should it be requested.

The teaching methodology to be adopted, on the other hand, is not examined in depth, as we
are convinced that we cannot identify with and limit ourselves to a single definition. However,
a special consideration for what stimulates the minds of students should be always present,
for example the so-called Socratic method or debate (a form of enquiry and discussion, based
on asking and answering questions to stimulate critical thinking and the development of ideas
[20][36][69]), regardless of which way we teach.
In addition, although we leave it up to the teacher to choose the teaching method he/she finds
most suitable, we think that direct lessons are necessary when dealing with new topics to give
students a background to work with. Then they can start to think independently, develop their
own ideas and solve problems by applying what they have learned. Practically, we recommend a
combined use of teacher- and student-centred approaches.
The teacher has a very special role in all this. In fact the teacher is the source of knowledge and
is also the guide of the investigation and learning processes. That is, the teacher can transfer
knowledge and help with skills and also guides and supervises the reasoning process and helps
students to develop new capabilities. Making hypotheses, refuting, experimenting and so on are
all part of this process. In this perspective, a clarifying thought is that of the Swiss developmental
psychologist Piaget, who states [52] that learning is characterised by the movement of know-how
towards knowledge, which occurs through reflexive abstraction, i.e. a process that leads the
individual to construct theories to justify results. Teaching is instead guiding, encouraging,
relating. Therefore, it is much more than informing since learning is an individual process that
takes place internally.

An important part of our work is the choice of topics. The school curricula that relate to
our target audience, especially for Italy and Germany, but not only,2 were obviously explored. It
is perfectly clear that cosmology is not part of the physics curriculum in secondary school, and
even at university level it is a separate course. However, as mentioned, our aim is to apply the
knowledge that is part of the school curriculum to topics taken from cosmology, possibly also
known from the media. Whether this is done by introducing specific exercises in the lessons or
by carrying out an entire extra-curricular school project on the subject, the goal is to stimulate
the interest of more students. We also like the idea of dispelling the myth of many that science is
boring.
Basically, before selecting the topics to be covered in this thesis, we formulated a questionnaire for

2For Italy and Germany we have direct experience, but in the literature there is much material on other countries.
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teachers for understanding their ideas, needs and preferences about possible teaching materials to
be produced and to get an indication of what most attracts their students. We managed to collect
50 questionnaires with a total of 123 suggestions on topics to be developed in student projects or
to be introduced in lessons. From the results of our questionnaire on preferred themes,3 which
we see summarised in the graph in fig. 1.1, the most sought-after trends are clear. These include
the use of experiments, astonishing phenomena, the introduction of unsolved problems, the use
of real data and the practice of computer skills, i.e. the guidelines we then adopted for our
projects. As can be seen from the graph, some of the suggested topics are very general, more of
an indication of how to develop the project. For example use of experiments, combining theory
and practice, historical or interdisciplinary themes. However, they are important indications of

Figure 1.1: Trends, in descending order of popularity, for topics that are most appealing to teachers
and their students. The pool is 50 teachers of physics and/or mathematics and/or astronomy (40
from secondary school and 10 future teachers).

teachers’ and students’ needs.
Furthermore, it is normal that students are more attracted to the information they receive in
everyday life (another result of the questionnaire), but do not fully understand it due to a lack
of knowledge. For example, there are often reports on television, in newspapers or online about
topics such as dark matter, black holes, extrasolar planets, gravitational lensing and gravitational
waves. These are all profoundly complex topics, but the students’ curiosity and interest are
stimulated. Thus, these subjects are well suited to our purpose. This is provided that it is possible
to deal with them through a simplified approach and an effective elementarisation, in order to
make them accessible in a clear and comprehensible way first to teachers and then to students.

Another important aspect is the use of the software Geogebra in our activities and exercises.
This is done with the scope of training and developing computer skills and maintaining the
appropriate level of technology, but always with the intention of simplifying and clarifying the
topics covered. Geogebra is an open-source dynamic mathematics software for all levels of

3Some of the results have also been confirmed recently by other doctoral projects in the field of physics and
astronomy education: use of original data in [112] and surprising phenomena, use of computers and unsolved problems
in [46].
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education that brings together geometry, algebra, spreadsheets, graphics, statistics and calculus. It
is also the winner of many awards in the education sector.4 Geogebra, besides being known by
many teachers and students, has great potential in teaching and learning STEM subjects (Science,
Technology, Engineering and Mathematics) and also supports their innovation [78]. Not only is it
simple and intuitive to use even for beginners, but it also comes with a rich manual, examples
and useful tutorials.
In our research group it has been used for some time, as can be seen from [112], and its use is
suggested to all future teachers, involving them in specific activities and raising awareness of the
advantages it brings. Amongst these, it has been proven that it increases student participation
and motivation, as well as interest in the content covered, stimulates knowledge building, exercises
interpretation and graphic presentation of the concepts dealt with, facilitating learning [78][106][52].
In our specific case and considering our educational purposes, it is valuable for students to learn
how to visualise data sets graphically. Indeed, this process not only teaches them which data
are meaningful for the exercise they have to perform and how they are related, but also gives
them the opportunity to become familiar with reading, analysing and extracting information from
graphs. Various specific computer programmes can be used for this purpose, but they are not
always easy to use. This is another reason why we decided to use Geogebra, which is perfectly
suited to support work with the chosen themes. Of course it is also possible to draw graphs
manually (some ’old school’ people still do it and it is a real art), this is fascinating. However,
it is also extremely time-consuming. Therefore, sometimes it is not really possible to produce
hand-drawn graphs, especially in the classroom, with large amounts of data and the need to
achieve high accuracy or to exploit interactivity. Not to mention the fact that it is almost always
attractive for students to work with computers.

At the end of this process of choosing the subjects and the means to be included, two
main topics that meet all the above criteria were isolated and they are also well suited to the
development of an experimental part: the dark matter problem and gravitational lensing.
In addition to the necessary elementarisation of these themes, one of our priorities is to introduce
new and original aspects for both developed projects. Innovations on which we are now shedding
light and which we are going to list by briefly explaining the approach adopted.
Basically, in the case of the first topic, evidence of the hypothetical presence of non-visible matter,
the so-called dark matter, is searched by considering the rotation curves of spiral galaxies. In this
context, the concept of the spider diagram is introduced, which is new to the field of education.
The spider diagram is a graphical display of constant radial velocity contours of the galaxy under
consideration and obtained through observations. As we shall see, it not only introduces several
important topics in physics, but also allows us to analyse and work with the corresponding
original data, also providing the rotation curve (or vice versa). This is an interesting approach
that enables students to use Geogebra in the processing and visualisation of original data and
to manipulate them in order to obtain realistic results, despite being simplified. For educational
purposes and to fully understand this new concept, it is initially applied to the solar system, an
application never before encountered in the literature.
The second subject, namely the gravitational lensing effect in its strong form, covers the main
part of this PhD project. Indeed, it has proved to be very fitting to and fruitful in the production
of new teaching material. In the educational sector, the basic idea is not new, but we provide
an original contribution by first of all deepening and exploring new models. Indeed, this process
has led to a widening of the range of models available as gravitational lenses. Furthermore, the
development of this new analysis inspired the creation of new and innovative teaching tools. In
essence, to understand and explore this wonderful phenomenon we start from the geometry of

4Definition taken from https://www.geogebra.org/about. Recent awards received include "Archimedes 2016: MNU
Award in category Mathematics", MNU – Verband zur Förderung des MINT-Unterrichts.
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the system and use mainly a graphical and experimental approach. To this end, we have devised,
designed and produced teaching tools which, alongside the theory, allow us to supplement the
explanation with a very useful practical part. In this respect, we are able to explore and discuss
in depth five different simplified models of gravitational lenses, two of which (the Plummer
sphere and the Kuzmin disk) are being addressed and developed in this context for the first time.
Also innovative is the fact that, for these five models, Geogebra allows students to produce real
simulations of effects resulting from the gravitational lensing phenomenon in the presence of
point-like and extended sources. Moreover, collaborating with our faculty’s laboratory, we could
build five different plexiglass lenses (included the totally new ones) that can reproduce live the
effects representative of the chosen gravitational lens.
These lenses in particular have interested and impressed many teachers, students and colleagues,
and have always received very positive feedback. They proved so popular that LIGO’s Exploration
Center at LIGO Hanford Observatory (Washington), with whom we hope to collaborate, requested
a set for their education and public outreach department.

The work performed with this project presented many challenges and involved many teachers,
teacher students and students, These are mainly from Italy and Germany, but on several occasions
also from other countries. The collaboration is extremely important because, in order to create
valid teaching support material, the contents and results has to be tested and revised several
times. All the feedback collected in this phase is valuable. This process helps to improve the
feasibility and simplicity of teaching and its effectiveness. Also the enthusiasm expressed by the
students as well as the final learning evaluations are taken into account.
The methodology adopted is inspired by the scientific method. In fact, the definition of the
problem to be treated considering the basic knowledge is the first step. Obviously followed
by a study of the literature and the consideration of related topics, elaborating the theoretical
framework of the project. Once the educational activity is created taking into account the needs of
our target audience, before disseminating it, we proceed with the frontal and formative evaluation.
In practice, the high quality of the resource, assessed in the field, is checked in order to allow its
improvement through revision phases. Finally, after several positive results from all points of view,
more general conclusions can be drawn on the success of the research project.
Another important and fundamental aspect was working in collaboration with the university
laboratory to produce the plexiglass lenses. This was a new type of workmanship for them to
explore. So together we started with trials and refinements and finally succeeded in producing
our own set of gravitational lens effect simulators.5

This entire process of revising and improving the material and building the lenses took a lot of
time and patience, but it also brought a lot of satisfaction and we can say that it was absolutely
worth it. In fact, the final results, the teaching materials and the educational tools produced have
proved to be an absolutely valuable teaching aid and are appreciated by teachers and students
alike. Obviously, it is not possible to go into detail and present all the phases and aspects of
this work, which we have carried out with great passion, in 100 pages, which is our limit for the
main body of doctoral theses. That is why we prefer to concentrate on introducing and providing
with this thesis the educational material in its final form and thus be of help and support to the
teaching world.
As already mentioned, topics are elementarised at an early stage and presented in a simplified
version cut out for teachers. However, they have to be differentiated and adapted to the level
of the target group. For this reason, when presenting at conferences, workshops and teacher
trainings, also further simplified material is used, which is very close to what could be used in the
classroom directly with the students. An example can be seen in appendix G. We also encourage

5Sincere thanks to Bernhard Klumbies, Martin Huber and Thomas Köhler for their invaluable collaboration and
help in creating our lenses.
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teachers to produce their own geometric files with Geogebra, in order to understand concepts and
mechanisms more deeply. However, our ready-made files, which are collected on the CD attached
to this thesis, are always provided.

Finally, a few words on the structure of this thesis. It is divided into two parts in accordance
with the two developed themes: the Dark Matter Problem (chapter 2) and Gravitational Lensing
(chapter 3). Practically, contextualising these two topics, the concept of movement under the
influence of gravity, first for matter and then for light, can be thought as the main narrative thread
of this thesis.
For each of these two chapters, developed as student projects, we begin by presenting the moti-
vations and objectives of the project (sections 2.1 and 3.1) and then providing the basic knowledge
of the subject (sections 2.2 and 3.2). The background knowledge is the necessary information and
explanations on the topic under consideration, which are essential to carry out the project. How-
ever, a deeper preparation is always recommended, although not necessary to use this material,
for those who want to teach these subjects.
We continue by developing the core of the project in both chapters, a process that is approached
in stages, slowly increasing the difficulty of the required tasks. In this sections not only the results
of the scientific work are discussed, but also a number of educational suggestions on how best to
use and present the material effectively. And so it is that in section 2.3 the acquired knowledge
on rotation curves and spider diagrams are applied to the Solar System first, understanding the
basic principles more thoroughly. Then the same approach is applied to spiral galaxies in general,
thus generalising the problem and making it applicable to any galaxy we choose to analyse. At
the end a concrete example is presented, that of the spiral galaxy NGC3198. In section 3.3 the
theme of visualising the effects generated by the phenomenon of gravitational lensing is instead
developed. After having introduced the concept of the deflection angle from General Relativity,
we see how it is possible to solve graphically and interactively, with the help of Geogebra, the
lensing equation for each discussed model. Then computer simulations are created, which make it
possible to observe and study the images that are produced by gravitational lensing. In addition,
it is offered the possibility of discovering what shape the special plexiglass lenses must have in
order to reproduce the same effects observed with the simulations. And finally, gravitational lens
effects can be created in the classroom with the lenses that we have designed and produced. At
this point it is possible to use these lenses, experiment, test different sources and, why not, play
with them, so that the phenomenon is understood as clearly and completely as possible. Practical
examples of how to use the lenses are illustrated and discussed. In conclusion both chapters have
a short section (sections 2.4 and 3.4) that comments on the results obtained with each project and
gathers final considerations on their success.
Finally, in the last chapter (chapter 4) the main points touched upon in the thesis are summarised
and general conclusions on the performed work are drawn.



Chapter 2

The Dark Matter Problem

With this project students learn how to calculate the mass of spiral galaxies starting from their
dynamics, therefore using radial and rotation velocity. The goal is to show evidence of the
hypothetical presence of non-visible matter, the so-called dark matter, while practising and applying
many physics and mathematical concepts typical of the last years of secondary school and first
years of the undergraduate studies.

2.1 Motivation and Purpose

The dark matter problem is still an unresolved and fascinating issue of modern physics and
cosmology. This problem has its origin explicitly in the 1930s, even though there were some ideas
already at the end of the nineteenth century, but it started to be prominent only in the 1970s [19].
This hypothetical exotic matter, transparent to any electromagnetic radiation and interacting only
gravitationally with the visible matter, is still at the moment not directly detectable. Most of
the evidence of its existence, if at all (despite the large acceptance of this theory, the debate is
still lively [8][59][21]), comes from the gravitational effects that dark matter has on the motion of
matter inside galaxies [89] and clusters of galaxies [119] and on the phenomenon of gravitational
lensing [81]. Although in these last decades many projects and experiments are trying to identify
(directly and indirectly) the famous dark matter, its nature and distribution remains a mystery
[9][7]. Entering into the details of these search programmes and their methodologies is rather
complicated. However, simply considering and relying on the first evidence of the "missing matter"
issue gives a clear idea of the dark matter problem.
The simplest choice falls on treating the rotation curves of spiral galaxies with the final purpose
of calculating their mass. Doing a step forward, we can introduce along with the rotation curves
also the diagram of constant radial velocities, the so-called spider diagram. The problem of dark
matter, as well as the rotation curves and spider diagrams, are quite complicated to deal with,
however, it is fortunately possible to analyse them through a simplified approach. Apart from its
intrinsic fascination, the reasons for the choice to address this subject lie in the fact that, in its
simplified approach, many subjects treated in physics and mathematics of the last two years of
secondary school (k11 and k12) are involved [108][38]. It is also suitable for an undergraduate level
thanks to a more advanced implementation concerning mathematical development. Moreover, we
should also not forget that this is a current and appealing theme and the fact that the dark matter
problem is still an ongoing conundrum renders everything more mysterious and exciting. Finally,
all this makes the topic a useful educational tool in physics, mathematics and astronomy teaching
with examples from cosmology, which engage and attract many students.
In performing this project, using simplified models, students will retrace the steps that led to the
hypothesis that around spiral galaxies a halo of non-visible matter is present. It is an interesting
process that will allow students to (hopefully) draw the same conclusions and the achieved results

7
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are comparable with those published in the literature. In addition, thanks to the computer
programme Geogebra, students will learn how to visually plot and analyse rotation curves and
spider diagrams. It is in fact known that students struggle to interpret graphs of kinematic
quantities [71]. However, using simplified representations (which lose the detailed information from
real data and the relation with their uncertainties and errors), we enable students to focus their
attention on the critical concepts we are trying to teach. Consequently, in this way we stimulate
students to reason about how the information given by a graph relates to aspects of the real
physical universe [113].
Finally, applying all these concepts to the Solar System first and to stars and gas in spiral galaxies
then, students will indeed learn how to extrapolate important information from data and plots and
isolate the fundamental elements in order to be able to understand the dark matter problem.

2.2 Background Knowledge

The topics covered, despite their basic form, are sufficient to understand the subject and to carry
out this project. However, scattered throughout the text are many references that allow, should
anyone wish to do so, for further study of the subject. This in-depth study is not necessary
to complete this project, but especially for those who wish to teach these themes, we highly
recommend it.

2.2.1 The Dark Matter Problem

The information in this section is elaborated mainly from [94], [59] and [88].

An interesting result arises studying spiral galaxies and galaxies clusters, in particular their
dynamics: the presence in the universe of invisible matter. In fact, these objects seem to be
composed not only of stars, gas and dust (between around 10% and 20%), but also of a huge
amount of hidden matter, the so-called dark matter. This matter reveals its presence only through
gravitational effects and its dominance over visible matter is constantly consolidated thanks to the
technological advancement of instruments used in radio, optical and X-ray observations. Although
there are many theories and possible candidates, what dark matter really is remains a mystery
and the unambiguous evidence for its existence is called the dark matter problem. To find a
solution to the dark matter problem is of central importance not only for astrophysics, but also
for fundamental and particle physics. In fact, among various possible candidates, the common
idea today is that dark matter consists of a new kind of elementary particle.

During the 1920s the scientific community started to be aware of the existence of our and
other galaxies in the universe. Considering a galaxy a compact, gravitationally bound system of
stars is a scenario that opens many horizons in studying the motion of these celestial objects.
Indeed, at the beginning of the 1930s, Lindblad [60] and Oort [79] compared observations with
predictions from Newtonian mechanics of the Milky Way’s rotation. This led to the result that,
given the visible amount of matter, our galaxy is rotating too fast. Therefore, there seemed to be
two to three times more mass than what we can observe. However, the first actual doubts about
the coincidence between the distribution of luminous matter and the real distribution of mass in
the universe arose in 1933 with Zwicky [119]. According to his theory, the amount of visible mass
in some galaxy clusters is not enough for preventing them from falling apart, due to the high
velocity of the individual galaxies. Once again we are facing the hypothesis of missing matter and
this dark matter, whose name was invented by Zwicky, accounts now for 90% of the total mass of
the cluster. Nowadays, thanks to modern observations in X-ray, it is actually possible to include
also the big amount of hot gas (more than the mass of stars) between the galaxies in the cluster.
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Nevertheless, the total mass exceeds that of the visible mass by a factor of five. Finally, it was
after 1970 that the problem of missing matter in the universe started to be largely considered. In
fact, in 1970 Rubin and Ford [89] reached the same result of hypothesising significantly hidden
matter, this time analysing the rotation curve of the Andromeda galaxy (M31). And after that also
for many other spiral galaxies the presence of a halo of dark matter was confirmed (there is also
around elliptical galaxies, but estimating its presence is far more complicated) which extends well
beyond the visible edge of the galaxy and accounts for between 80% and 90% of the total mass.

Besides its detection, the real challenge is to understand what the dark matter consists of. We
only know that it is a kind of matter that does not emit or absorb light and interact with the
visible mass only through gravity. Therefore, from an astrophysical perspective and starting with
ordinary baryonic matter, the prime candidates were MAssive Compact Halo Objects (MACHOs),
such as white dwarfs, brown dwarfs, rogue planets, black holes and similar objects. In the 1990s,
projects like MACHO, OGLE and others searched for these objects, but the result was that MACHOs
account only for a small fraction of the missing matter, therefore not enough to be the famous
dark matter. Then, from a particle physics perspective, it was the turn of non-baryonic matter
as candidate. The subatomic particles we are searching are electrically neutral, stable, have mass
and possibly interact only weakly (weak nuclear force). Neutrinos could be good candidates, but
they would constitute hot dark matter and according to simulations the large-scale structure of
the universe would be very different from ours. Indeed, studies about our large-scale structure are
strongly in favour of cold dark matter, namely heavy slow particles with smaller mean free path
than neutrinos. Since the physical nature of these particles is unknown, they are called Weakly
Interacting Massive Particles (WIMPs).
Now, if WIMPs exist, there are three methods for detecting them: direct, indirect or creating them.
Several projects are trying to detect WIMPs directly. Such detectors are deep in the underground,
shielded from cosmic rays, and use many different modern technologies (for instance solid state,
bubble chambers, scintillator and others) that should interact with WIMPs. The indirect approach
instead considers also the possibility of the existence of dark matter antiparticles. When these
encounter the dark matter particles, they should annihilate making them visible (gamma rays
or electron-positron pairs). Unfortunately, both these ways have disagreements between various
experiments. Therefore, the best option left is to create the dark matter particles in large particle
accelerators, but for the moment this is not the case.

Among all this evidence and methods, the simplest approach for students to understand this
topic is through the analysis of rotation curves of spiral galaxies. It is important to underline
the fact that the chain of reasoning is conceptually complex for students because they need to
understand the physics behind expected and observed rotation curves and the related implications.
However, studies in physics education reveal that accompanying explicit lecture-based instruction
with research-validated activities makes the way of teaching this chain of reasoning very efficient.
In particular, this method helps students to built knowledge by themselves, a process which
always gives the best result [113]. This project is therefore based on this approach and method,
it will moreover be performed under appropriate simplifications and approximations and with the
interesting and new implementation of the spider diagram.

2.2.2 Newton’s Shell Theorem

The real distribution of mass of a typical spiral galaxy is quite complex, however if we consider a
strongly simplified model, understanding this object and its properties becomes more simple and
accessible [94]. Therefore, for educational purposes we always use simplifying approximations and
we treat the galaxy as a spherically symmetric gravitating object. This is not what we normally see
on the celestial sphere, namely the visible, luminous mass, but this approximation is not totally far
from reality if we consider that galaxies are surrounded by a nearly spherical galactic halo which
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consists of globular clusters, old stars and gas (Fig. 2.1) [94]. This halo should not be confused

Globular Clusters

Figure 2.1: Structure of a spiral galaxy. The surface brightness of the galaxy (the measure of
brightness per area on the sky expressed in mag/arcsec2) is higher in the bulge, then comes the
disk. The galactic halo instead has a very low surface brightness due to the very small presence
of stars. Credit: courses.lumenlearning.com/astronomy.

with the dark matter halo component, which is an extra component and much more extended,
but at the actual state of the art we have no clue of it yet. Therefore, this approximation allows
the very useful Newton’s shell theorem to be applied for this analysis [50]. Although it is not
considered very relevant in schools today, this theorem is of great importance for understanding
gravitation and electrostatics [61]. Moreover, it can be used alone as an exercise in the context of
Newtonian gravitation.

In the prepositions 70 and 71 of his Principia (1687), Newton gave proof of the fact that an
external body of mass m is attracted by a spherically symmetric distribution of mass M as if all
the mass M were concentrated at the distribution’s centre C. Moreover, if it happens that there is

Figure 2.2: Representation of a point-mass m situated inside a spherical distribution of mass
M . According to Newton’s shell theorem, only the mass of the sphere with radius R ≤ ρ acts
gravitationally on the point-mass.

a shell of mass at a distance greater than that of the position of the body m with respect to this
centre, as illustrated in fig. 2.2, this external mass does not act gravitationally on m.
In the literature we can find many different approaches to this theorem. They are mainly based on
the geometry of the system, but the execution can involve different aspects and properties. Now
we only present the method that we consider the easiest and in appendix A another common
approach of slightly increased difficulty is introduced. Furthermore, in order to really understand
this theorem, it is necessary to divide the analysis in small parts and introduce new elements step
by step.
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2.2.2.1 Gravitational Potential Energy Analysis

This is one of those cases in which an energy analysis is simpler than others [54][10], nevertheless
it is common experience among teachers that students continues to prefer other methods, for
example the forces analysis [70][93] (see appendix A). The reason for this probably lies in the
fact that the concept of force is intuitively simpler and more verifiable in everyday experiences.
Nonetheless, we start with the simplest approach, then it will be the teacher’s task to direct the
student’s attention to the preferred method.
Following a step-by-step reasoning, the discussion starts considering a spherically symmetric
hollow shell of total mass M and a test point-like body of mass m. The point-mass m can be
positioned outside or inside the shell giving us the possibility of studying the implications of its
position. We imagine now that the hollow shell M is divided into many rings of very small angular
thickness ∆θi (not to be confused with the height of the ring). Our first goal is to calculate the
gravitational potential energy of the system composed of one such a ring, the ith ring (the one in
green in fig. 2.3), and the point-mass m at a distance ρ away from the centre of the sphere of
radius R.1 In fig. 2.3 we see the point-mass m positioned outside the spherical shell, however
the same reasoning is applied when it is inside. To calculate the gravitational potential energy, we

P

Figure 2.3: 2D-representation of the system composed of a spherically symmetric hollow shell of
total mass M and a test point-like body of mass m distant ρ from the centre C of the sphere
and ρi from the ith ring (shown in green).

consider the mass of the ith ring, Mi = Σ · 2πri · R ∆θi with Σ its constant surface mass density
([Σ] = kg

m2 ), and the mass m of the point-mass according to

Ui = −G
Mi · m

ρi

= −G
Σ · 2πR2 · sin θi ∆θi · m

ρi

, (2.1)

where R · sin θi is expression of the radius ri and G is, as usual, Newton’s gravitational constant.2

The next steps aim at simplifying eq. (2.1). This is achieved by eliminating the index i as much
as possible and introducing the distance ρ, which remains constant. In fact, applying now the law
of cosines3 to the triangle △CBP (Fig. 2.3) and considering the ring’s thickness, so that we have
ρi ± 1

2
∆ρi and θi ± 1

2
∆θi, after few simple steps we obtain

ρi ∆ρi = 2ρR · sin θi · sin
(

1

2
∆θi

)
. (2.2)

At this point, using the small angle approximation (since ∆θi is very small) and introducing the
result in eq. (2.1) we get

Ui = −G
Σ · 2πR · m

ρ
∆ρi . (2.3)

1Note also that this method is a good introduction to infinitesimal calculus.
2Gravitational constant G = 6.674 · 10−11 m3

kg·s2 .
3ρi

2 = ρ2 + R2 − 2ρR · cos θi, this is a generalisation of the Pythagorean theorem, for a detailed explanation see
[3] or search in any trigonometry textbook.
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For the total gravitational potential energy of the entire spherical shell, it is necessary to sum4

the contributions of all rings U =
∑
i

Ui. Thus, the solution to this problem focuses on solving

the summation
∑
i

∆ρi. Precisely at this point, the ease of this summation gives us the main

reason to choose energy analysis as the simplest approach, besides the fact that we don’t need to
consider angles, which we should have done in the case of vector algebra for force components.
In particular, solving this summation means to understand which of all the distances between
m and the various rings are the longest and the shortest, respectively in the two cases with the
point-mass outside and inside the spherical shell. The situation is shown in fig. 2.4. Since ∆ρi

Figure 2.4: Representation of how ρi varies, in relation to ρ and R, in its minimum ρi,min = BD
and maximum ρi,max = BA distance from the sphere’s rings. On the left m is in position B
outside the sphere, on the right inside the sphere.

is the difference between two consecutive ρi, adding up this difference for all ρi (namely
∑
i

∆ρi),

pairs of them cancel each other out leaving finally only the difference between the maximum and
the minimum ρi. Therefore, for the two cases we have:

•
∑
i

∆ρi = ρi,max − ρi,min = (ρ + R) − (ρ − R) = 2R with ρ ≥ R

•
∑
i

∆ρi = ρi,max − ρi,min = (ρ + R) − (R − ρ) = 2ρ with ρ < R.

Specifically, since the mass of the entire shell is M = Σ · 4πR2, the potential energy of a
point-mass in the gravitational field of this hollow sphere is given by

U(ρ) =





−G M ·m
ρ

if ρ ≥ R

−G M ·m
R

= const if ρ < R .

(2.4)

Interestingly, the potential energy depends only on the distance ρ for ρ ≥ R , exactly as if all
the mass of the sphere were concentrated at its centre. On the contrary, for ρ < R the potential
energy is constant, i.e. independent from the position and no force acts on the point-mass inside.
Notably, for the special case ρ = R both solution are actually equal and simultaneously valid.

Let’s do another step considering the sphere M full of mass and not empty anymore. The
next procedure consists in dividing the sphere in n shells of radius Rα (α goes from 1 to n)
one inside the other, like a spherical matryoshka doll. In addition, the surface mass density Σ,
constant in every single shell, is not necessarily the same for all of them. Basically, this approach
derives from the Cavalieri method [34], which is considered an introduction to integral calculus.
Now, if m is positioned outside the sphere M , namely for ρ ≥ R, we sum the contribution to the
potential energy of each of the n shells of mass Mα. Therefore, in the upper eq. (2.4) the term

4The symbol of summation
∑
i

should not to be confused with the surface mass density Σ.
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Mtot =
n∑

α=1
Mα should appear instead of simply M . This is nothing more than the total mass of

the full sphere and the potential energy results once more dependent exclusively on the distance
ρ as if all the mass of the sphere were concentrated at its centre.
However, if m is positioned inside the sphere M , with ρ < R, we consider the layer outside m as
a hollow sphere whose mass is given by the sum of the masses of the shells forming it. Therefore,
for this part the potential energy, as we know, is constant (lower eq. (2.4)). Instead, considering
the inner shells, the situation corresponds to the case just seen where m is external to a sphere
full of mass and so the same conclusions apply. This in fact brings us back to the basic idea that
only the mass inside the radius ρ acts gravitationally on the point-mass under consideration.
For an approach suitable for more advanced or undergraduate students see appendix B.

2.2.3 Projections on the Sky Plane and Radial Velocity

In this section, the key point is how much we can actually rely on what our eyes see of a spiral
galaxy. Regarding this, the geometry of projections plays an important role when speaking of
observations of extended objects in the universe. In fact, because of the large distances involved,
3-dimensional objects appear as 2-dimensional parallelly5 projected images on the plane tangential
to the celestial sphere, named sky plane. Everything that is observed or measured in the sky is
seen on this plane. Therefore, it is necessary to take this aspect into account together with all
the consequences, for example when measuring velocities. Luckily, there are clear and known
geometrical rules to understand these effects. In particular, the projection on the sky plane of a
spherical mass distribution is a disk, as in the case of planets, stars, galaxy bulges and so on. On
the other hand, when we consider the projection of mass distributed on a disk, such as the disk
of a spiral galaxy (assuming it is axially symmetrical), the final result depends on the inclination
angle i of the disk with respect to the plane of the sky. In fact, we will see a disk if i = 0°,
therefore observed face-on, an ellipse, the more eccentric the more the galaxy is inclined, if i > 0°,
arriving at the extreme case of a galaxy seen edge-on (i = 90°) of which we see only the edge. A
summary of these configurations is shown in fig. 2.5.

line of sight

on the sky plane

face-on edge-oninclined

M101
Pinwheel

UGC2885
Rubin

NGC4710

Figure 2.5: Different orientations of a spiral galaxy respect to the sky plane (i = 0°, 45°, 90°).
The observer sees the galaxy images projected on this plane. Pictures’ credit: ESA/NASA/STScI.

Since the galactic halo has a too low surface brightness to be observed in distant galaxies,
our attention when analysing and measuring the motion of stars and gas in spiral galaxies lies
in the disk. Therefore, the first concept to convey is that a disk or a circle, randomly inclined at
an angle i with respect to the sky plane, is seen as an ellipse whose semi-major axis is equal to
the unchanged radius of the circle a = r. Figure 2.6 illustrates this idea. This diagram is very

5Given the large distances involved, we can consider the projection not only parallel, but in particular orthogonal.
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useful in explaining this effect because, since it is produced with Geogebra in 3-dimensions, it is
possible to rotate it and look at the situation from literally every angle. Nevertheless, only this
image is sufficient to illustrate the problem. Essentially, the circle in green of radius r on the

Figure 2.6: A spiral galaxy, schematically represented by the circle on the galaxy plane (both in
green), inclined of an angle i with respect to the sky plane and its projections on this, represented
by the ellipse (both in red).

galaxy plane represents a spiral galaxy disk whose stars and gas lie on the same plane and rotate
circularly around the centre C . Far along the z′-axis the observer in O sees the sky plane, since it
is perpendicular to the line of sight, and the ellipse in red with semi-major axis a and semi-minor
axis b. Thanks to the large distance between observer and galaxy, it is moreover possible to
consider in good approximation the lines CO, B1B′

1O, B2B′
2O and PP ′O parallel to the line of

sight. Thus, from the figure it is easy to infer that

r · cos i = a · cos i = b . (2.5)

At this point, observing the two graphs in fig. 2.7, separate representations of the galaxy and sky
planes, we can see that on the galaxy plane the position of the point P on the circle of radius
r can be expressed through its polar coordinates x = r cos θ and y = r sin θ. On the sky plane,
instead, the position of its projection P ′ is described by x′ = r′ cos θ′ and y′ = r′ sin θ′. Given

Galaxy Plane Sky Plane

Figure 2.7: Diagrams showing the situation from figure 2.6 separately in the galaxy plane and in
the sky plane.

that with parallel projections all lines parallel to the plane of projection remain unchanged, like
for instance the semi-major axis a, we deduce that in our configuration this is true for all the
x-coordinates, thus x = x′. For the y-coordinates, being not parallel to the plane of projection,
this is not valid, so generalising eq. (2.5) we obtain y′ = y cos i. Expressing these properties in
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polar coordinates we get

r′ · cos θ′ = r · cos θ (2.6)

r′ · sin θ′ = r · sin θ · cos i . (2.7)

In other words, if we want to project the circle described by x2 +y2 = r2 according to the parallel
projection rules, we end up with

x′2 +
y′2

cos2 i
= r2 , (2.8)

which is obviously an ellipse.
In order to be able to convert measurements between sky plane and galaxy plane6 we need to
finally take the ratio of equations (2.7) and (2.6) which leads to

tan θ′ = tan θ · cos i . (2.9)

In the next part the orbital velocity is taken into account and the effect that the parallel
projection has on its measurement is analysed. Thus, keeping in mind now fig. 2.6, it is possible
to imagine that the point P is rotating anticlockwise around the circle centre C with a certain
orbital velocity v, constant in modulus. Since the distance galaxy-observer is very large, what can
be measured, i.e. the radial velocity vr , is actually the component of the rotation velocity parallel
to the line of sight. The component perpendicular to this is instead the tangential velocity vt. This
means that the observer in O measures the variation of the position of P with time (towards or
away from him/her) along the z′-axis. In particular, such measurements are performed mainly on
stars and gas in the galaxy with spectroscopic methods [94], involving the spectrum detected from
these objects.
We start discussing now two special cases with help from fig. 2.8. Actually, in the original diagram
file, it is possible to move the point P on the circle and observe how the components of the
rotation velocity vary with time, making it a successful tool for explaining this topic with the use
of a visualisation. Firstly, we direct our attention to when the inclination angle is i = 0°, namely
when the spiral galaxy is seen face-on. In this situation we cannot detect any radial velocity
because the motion of P never has a component parallel to the line of sight. Looking at fig.

Galaxy Plane

Figure 2.8: Diagram showing the orbital velocity vector v and its components v‖ and v⊥ for the
point P rotating on the circle of centre C and radius r.

2.8, in fact, the line of sight for this case is the z-axis, which comes out from the page. If the

6It is important to remember that all what is on the sky plane is measurable, but the inclination angle and what
is on the galaxy plane can be only calculated. Moreover, from an educational point of view, expressing r in terms of
measurable quantities is always a good exercise for understanding how these quantities are related. Thus, thanks to

equations (2.6), (2.9) and the trigonometric identity cos θ = (1 + tan2 θ)− 1

2 we obtain r = r′
√

cos2 θ′ + sin2 θ′

cos2 i
.
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galaxy is instead seen edge-on with i = 90°, we can decompose the rotation velocity v into its
components, one parallel to the y-axis (now the line of sight), v‖, which represents the measurable
radial velocity, and the other perpendicular to it, v⊥. From fig. 2.8, it is then easy for this specific
case to define the radial velocity as

vr = v‖ = v · cos θ . (2.10)

This equation describes the radial velocity of P for each of its positions on the circle. In fact, it is
clear that in B1 and B2 the entire rotation velocity is perpendicular to the y-axis, v = v⊥, and in
A1 and A2, on the contrary, the entire rotation velocity is parallel to the y-axis, v = v‖. However,
when the angle of inclination i is not one of these extreme cases, the situation is slightly more
complicated.
Basically, in these other configurations it is necessary to consider how the inclination affects our
measurements. This means that we don’t measure the total component of the rotation velocity
parallel to the y-axis, v‖, but its projection along the line of sight, as shown in fig. 2.9. The radial

line of sight

Galaxy PlaneSky Plane

Figure 2.9: Side view of the galaxy plane tilted at an angle i with respect to the plane of the sky.
The line of sight is here the z′-axis. Highlighted are the rotation velocity component parallel to
the y-axis, v‖ (blue), and for this latter its radial, vr , and tangential, vt, components (green).

velocity is therefore expressed by its general form

vr = v‖ · sin i = v · cos θ · sin i , (2.11)

which describes any possible situation, including the already-seen extreme cases.7

2.2.4 Rotation Curve

A rotation curve is the graphical visualisation of the orbital or rotational velocity v(r) of objects
in a gravitationally bound rotating system as function of the distances r from the system’s centre
or axis of rotation.
This is the case for instance of planetary systems and spiral galaxies. For the Solar System it is
possible to measure the orbital velocity of planets, for galaxies stars and gas are instead used as
tracers. Before starting to discuss these systems, it is important to say that we always use circular
orbits in our simplified models. In fact, we have already seen that this is a good approximation as
far as spiral galaxies are concerned. But it is also a good approximation for the Solar System, in
fact the eccentricity of its planets’ orbits is so small that we can consider them practically circular.
Moreover, in order to keep our model as simple as possible and to fit measurements taken on
the disk of spiral galaxies, all orbits are considered lying on the same plane. At this point, for

7As we did for r, we can now express v in terms of measurable quantities obtaining v = vr

√
cos2 i+tan2 θ′

cos i·sin i
.
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drawing the rotation curve of these systems, we derive the equation expressing the rotation velocity
of their components with respect to the radius of the various orbits r. In particular, equalling
the centripetal force of circular motion, Fc = mv2(r)/r, to the Newtonian gravitational force
Fg = GmM(r)/r2, which in the universe keeps rotating objects on their orbits, we get for the
rotational velocity

v(r) =

√
GM(r)

r
. (2.12)

Of course Newton’s shell theorem applies, therefore only the mass inside the radius of the rotating
object we observe acts gravitationally on it. The quantity of mass inside this radius depends on
how the mass is distributed inside the system and this defines also the shape of the curve. In this
regard, in fact, if we consider a spherical solid body of radius RB, total mass MB and constant
mass density σB, which, according to observations, is a good approximation for the bulge of a
spiral galaxy, we can calculate the mass at any intermediate radius r from M(r)

r3 = MB

R3
B
. Now, from

this equation and eq. (2.12) we easily see that the rotation velocity is expressed by

v(r) =

√
GMB

R3
B

· r2 . (2.13)

This represents a wheel-like rotation in which the velocity grows linearly with the radius v(r) ∼ r,
as shown in fig. 2.10. Analysing instead a different system in which most of the matter MB is

Wheel-like Rotation

Keplerian Rotation

Figure 2.10: Diagrams representing different cases of orbital velocity. Above: Solid-body-like
rotation, where v(r) linearly increases with the distance r. Below: Planet-like circular motion,
where v(r) decreases as r−1/2.

concentrated in its centre, we can say that outside the central area the mass remains constant
M(r) = MB = const. We can therefore calculate right away the orbital velocity to be

v(r) =

√
GMB

r
. (2.14)

This describes nothing more than the Keplerian planet-like or differential orbital motion (Fig.2.10),
where the bigger the orbit is the slower the objects rotate, in fact v(r) ∼ r−1/2. Regardless of
whether it is the Solar System or a spiral galaxy, this behaviour is exactly what we expect from the
rotation curve. In fact, as we know, the Solar System has 99.8% of the mass concentrated in the Sun.
However, the same can be said for a spiral galaxy if we consider the appearance of the distribution
of the visible, luminous mass, which is mostly concentrated in the central bulge. Contrary to our
expectations, though, this is not what is detected by observations of spiral galaxies’ rotation curves,
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Figure 2.11: Examples of rotation curves of spiral galaxies. Credit: [90].

as it is clear form the examples in fig. 2.11. Basically, from measurements on spiral galaxies for
r ≥ RB, namely outside the bulge, the rotation velocity remains approximately constant and equal

to v(r) =
√

GMB

RB
= vB, thus the rotation curve is flat. These measurements are performed till very

far away from the luminous, visible border of galaxies and even from the galactic halo edge, but
the rotation curves continue to appear flat. It is believed, according to results from simulations,
that eventually at a radius 10 times bigger than the galaxies’ visible radius, we could encounter
the so called keplerian decline [117]. However, we are not yet able to see so far away from the
galaxies’ centre because our spectroscopic measurements are mainly connected with observations
of the 21cm emission of HI, which gives us an inferior limit for the radius of the dark halo of
30 h−1 kpc [94].8

What is really interesting about the behaviour of the spiral galaxies rotation curve is the meaning
of this curve which remains flat till very large radii. As we will see in detail in section 2.3.3,
this phenomenon could mean that there is much more mass in this region than we can actually
see. Essentially, it is a huge halo of dark matter of still undetermined outer edge, which acts only
gravitationally on the visible mass. Additionally, in this system the mass cannot be considered
mainly concentrated in its centre anymore and we have to review our assumptions. Of course
this is not the only hypothesis approached to solve the discrepancy between the expected rotation
curve with Keplerian decline, suggested by the observed distribution of mass, and the actual
detected flat rotation curve. Other ways to explain it are explored, for example considering the
Newton’s laws of motion and gravity in need of a modification. However, at least for the moment,
the existence of a type of matter which is invisible remains the most accepted theory [59].

2.2.5 Spider Diagram

A spider diagram is a representation of the velocity field of gravitationally bound rotating systems.
Specifically, it is the graphical visualisation of contours of constant radial velocity vr of the
observed object. Its name spider diagram comes from the fact that this kind of diagrams resembles
the shape of a spider.
The radial velocities plotted in this graph are measured on the galaxy disk thanks to the Doppler
effect using spectroscopy and of course considering the eventual inclination of the disk [94]. The
luminous tracers are mainly stars and HI gas and especially this last, as we saw in the previous
section, permits to analyse the velocity field at larger radii than the stellar disk. There are methods
which enable to look even further, using for instance the motion of satellite galaxies, but to
analyse their motion is much more complicated and the associated uncertainties are bigger [94].
Therefore, for our educational purpose, treating such difficult approaches has no sense and we

8h is the scaled Hubble constant defined as H0 = h · 100 km s−1 Mpc−1. Note that 1 pc = 3.09 · 1016 m.
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limit our analysis to measurements of HI gas. At this point, we need to consider that the velocity
we measure can consist not only of pure rotation, but also of other kinds of motion. In this
regard, we add an extra term in the radial velocity equation, the so-called systemic velocity, vsys.
Consequently, eq. (2.11) is actually more complete if expressed by

vr = vsys + v(r) · cos θ · sin i . (2.15)

Basically, the systemic velocity includes the recessional velocity, vrec, due to the expansion of the
universe (Hubble flow) and eventually some peculiar velocities, vpec, produced by other gravita-
tionally bound galaxies. It is moreover important to remember that the measured radial velocity
obeys the rules of parallel projection seen in section 2.2.3. Thus, only the velocity’s components
parallel to the line of sight can be measured. Ultimately, the starting point of our project could
consist of measurements of the radial velocity field of a galaxy and its visualisation through a
spider diagram. This, together with the geometry of the system and eq. (2.15), permits to calculate
the orbital velocity and draw the corresponding rotation curve.
An example of a spider diagram is shown in fig. 2.12 for the galaxy NGC5033. As we can see from

Figure 2.12: Spider diagram of the galaxy NGC5033 superimposed on the distribution of HI (Left –
Credit: [107]) and on a black-white image of the galaxy (Right – Credit: [11]).

this figure, when working with galaxies it could be particularly useful to superimpose the plot on
an image of the galaxy’s distribution of HI or of the observed object. In fact, this enables us to
better understand where the iso-velocity lines are and how they are connected with other galaxy’s
components. Now, if we look carefully at the spider diagram, we can distinguish three different
concentric regions:

• the central part, which corresponds to the bulge area, is defined by almost-straight lines.
The central line lies along the ellipse’s minor axis and the corresponding radial velocity
expresses the pure systemic velocity, vsys, with respect to the observer.

• The next region, which corresponds to the region with constant rotation velocity
v(r) = vB = const, has lines distributed radially away from the center. As expected from
eq. (2.10), the more the angle θ decreases, i.e. the further away from the minor axis we go,
the higher the modulus of measured radial velocity is until it reaches its maximum value
along the major axis of the ellipse. In fact, along this axis we have the greatest deviations
of the radial velocity from the systemic velocity.

• There is another region that can be encountered. In this part, the lines, starting from the
extreme on the major axis, close on themselves. This is the case if it happens that the
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rotation velocity declines. Nevertheless, as we already know, the true Keplerian decline at
the edge of the galaxy’s dark matter halo has not yet been found by measurement.

Now that all the key elements for understanding these topics are presented, we can get to the
heart of the issue. In fact, we will retrace the path that leads to the hypothesis of the existence of
dark matter in the universe.

2.3 Inferring the Presence of a Dark Matter Halo in Spiral

Galaxies

This part of the project is performed step by step starting with the exploration of the notions
discussed so far, firstly in the framework of the Solar System, then applying them theoretically to
a spiral galaxy and finally to the example of the spiral galaxy NGC3198.
Every separated step can be used in class as exercise to practise specific topics of physics and
mathematics applied to a real problem. For instance, among others, plane trigonometry, the
Cavalieri approach to integration, forces, Kepler’s laws of motion, Newton’s laws of motion and
gravitation, orbital motion, together with notions of kinematics and dynamics. All together instead,
these steps create a student project that, through increasing degrees of difficulty, guides them
through the discovery of the evidence that led to the hypothesis of the existence of dark matter.
In this way, after a proper introduction, the process of conceptual building is valuably stimulated
and enhanced [113]. The project is based on complex cosmology and astrophysics principles and
examples, but in this simplified approach it uses and applies important basic concepts. It also
addresses an ongoing problem, something that fascinates students and may inspire them to be
part of the future generation of physicists engaged in solving it.

2.3.1 The Solar System’s Rotation Curve

This type of discussion involves the dynamical analysis of the gravitationally bound rotating system
we have chosen to study. The most appropriate and easy candidate to start with is the Solar System
whose Sun has mass M⊙ = 1.99 · 1030 kg. In this respect, it is possible to set the exercise in two
different ways according to what we want to achieve:

• The first approach uses the real data9 on the mass of the Solar System planets in table 2.1,
combined with the radius of the various orbits, to derive the orbital velocities and draw the
corresponding rotation curve.

• The second approach starts with the rotation curve of the Solar System, from which the
orbital velocities of its planets are derived. These, together with data on the radii of the
various orbits, provide important information on the amount and distribution of mass, which
will rightly be concentrated in the Sun.

Both of these methods require applying the relations of Newtonian dynamics that we have seen in
section 2.2.4, including the notions of Newton’s shell theorem from section 2.2.2. However, since
this is actually the same approach carried out in the second case in reverse, we only show the
first one here.

Considering eq. (2.12),10 it is easy to see that it describes the relation between velocities,
distances from the centre of the system and mass inside each orbit. Therefore, introducing the

9The data for the Solar System used in this project are available at https://solarsystem.nasa.

gov/solar-system/our-solar-system/overview/ and https://nssdc.gsfc.nasa.gov/planetary/

planetfact.html.
10Interestingly, if the orbital period P is introduced, this equation is nothing more than Kepler’s third law of motion

for circular orbits, P 2 = 4π
2

GM⊙
r3.
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MERCURY VENUS EARTH MARS JUPITER SATURN URANUS NEPTUNE PLUTO
Mass (1024kg) 0.33 4.87 5.97 0.64 1898.19 568.34 86.81 102.41 0.01
Distance from Sun (106km) 57.91 108.21 149.60 227.92 778.57 1433.53 2872.46 4495.06 5906.38
Orbital Velocity (km/s) 47.36 35.02 29.78 24.07 13.06 9.68 6.80 5.43 4.67
Orbital Period (days) 88.00 224.70 365.20 687.00 4331.00 10747.00 30589.00 59800.00 90560.00
Orbital Eccentricity 0.205 0.007 0.017 0.094 0.049 0.057 0.046 0.011 0.244

Table 2.1: Data for the Solar System planets including Pluto.

data about the radii of the orbits and the related enclosed mass in this equation, we derive the
orbital velocity for each planet and consequently the corresponding rotation curve. The results
are shown in table 2.2, calculated with the mass of the Sun alone in the first row, v1(r), and
including the planets’ mass gradually within the various orbits in the second, v2(r). This is

MERCURY VENUS EARTH MARS JUPITER SATURN URANUS NEPTUNE PLUTO
Orbital Velocity v1(r) (km/s) 47.87 35.02 29.78 24.13 13.06 9.62 6.80 5.43 4.74
Orbital Velocity v2(r) (km/s) 47.87 35.02 29.78 24.13 13.06 9.63 6.80 5.44 4.74

Table 2.2: In the first two rows the orbital velocity for each planet of the Solar System is shown.
v1(r) is calculated with the mass of the Sun only and v2(r) gradually including also the planets
within the various orbits.

to show that the mass of the various planets is negligible compared to that of the Sun, which
represents basically the totality of the mass of the Solar System. The results, without including any
kind of uncertainties are comparable with the values in table 2.1. Then, representing the obtained
velocities as points in a plot v1(r) vs. r with Geogebra, easily with the command "FitPow", we
draw the regression curve of the points in the form of a power law function, which in this case is
(provided by Geogebra)

v1(r) = K · r− 1
2 (2.16)

where K = 36.43 · 104 km
3
2 /s. We have just obtained the rotation curve in fig. 2.13. It is also

Figure 2.13: The rotation curve of the Solar System as from the data in tables 2.1 and 2.2.

possible to draw this simple graph by hand, but in this project (and in general) we are clearly in
favour of and warmly encourage the use of easy-to-use software. Software that has proved to be a
very good educational tool and that also manages to involve the students more.
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2.3.2 The Solar System’s Spider Diagram

The concept of spider diagrams is new in the panorama of physics and astronomy teaching at
secondary school level, but it allows basic physics topics to be approached in a more practical way
and above all by applying them to a real problem. The aim is to engage students more closely
with astronomical topics and at the same time promote longer-term learning and the development
of new skills.
In order to better understand this concept, i.e. the graphical visualisation of contours of constant
radial velocity vr , before seeing it applied to galaxies, we analyse and draw it for the Solar System.
It is now necessary to imagine an observer outside the Solar System without forgetting that in our
simplified system the planets have circular orbits which lie on the same plane. This hypothetical
observer has the possibility of moving easily around and inside the solar system, therefore he/she
can measure the radial velocity of every planet from different points of view, namely different
angles of inclination for the system, and draw the corresponding spider diagrams.
First of all, for drawing the spider diagram the question that needs an answer is: where does
the radial velocity remain constant in this system? The answer for the Solar System comes from
equations (2.15) and (2.16). This last equation is the numerical solution for the rotation curve of
the Solar System calculated from eq. (2.14) and shown in fig. 2.13.11 Now, establishing for simplicity
that for the Solar System vsys = 0 and introducing eq. (2.16) in eq. (2.15) we obtain

vr = K · r− 1
2 cos θ sin i . (2.17)

Basically, switching now eq. (2.17) to Cartesian coordinates (x = r · cos θ, y = r · sin θ) and, in

order to answer the above question, setting vr
!

= const, after few steps we have

y2 = K4/3 x4/3

(vr/ sin i)4/3
− x2 . (2.18)

For each measured value of radial velocity vr , this equation describes where this remains constant
throughout the entire observed system. This represents in general the contours of constant radial
velocity of the Solar System. Important to notice here is that, from eq. (2.11), the term (vr/ sin i)
is the same as (v(r) · cos θ), namely the component of the orbital velocity parallel to the y-axis,
v‖, in the system plane, as in fig. 2.8. This would be in fact the radial velocity measured by our
observer positioned in the Solar System plane far away along the y-axis (i = 90°, edge-on). This
is indeed the radial velocity that on the x-axis (θ = 0), at the extreme point of the orbital radius
of each planet, corresponds to the pure orbital velocity vr = v(r). Clearly, observing from this
orientation the observer will never draw a spider diagram, but it is possible to use this information
and the data obtained to better understand the velocity field on the system plane. In fact, although
unrealistic, since in any case we will never obtain the radial velocity of a rotating system observed
face-on, we can thus draw the spider diagram in the system plane. This is done for educational
purposes only, however, this visualisation is important for two reasons:

• this is the starting point for drawing the spider diagram of the system seen from every other
angle of inclination i,

• superimposing it to a schematic representation of the Solar System seen face-on, we have
a general overview of the situation and of which radial velocities our hypothetical observer
measures from his/her point of view.

Practically, all this means that with this procedure we define first the lines of constant radial
velocity as the lines of constant v‖ drawn on the system plane (Fig. 2.14). Then, we need to use

11Note that the orbital radius is measured in [r] = 108 km.
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again the theory of projections to be able to draw the diagram back on the observed sky plane,
inclined of a generic angle i with respect to the system plane.
Teachers and students can directly use the provided diagram of fig. 2.14 from the Geogebra file
or draw it easily by themselves using the values for the radial velocity corresponding to the pure
orbital velocities for each planet from table 2.2.
To better understand the concept of a constant radial velocity contour we can observe fig. 2.15.
This is a detail of fig. 2.14(a) in which, for five planets, the orbital velocities, v(r), and radial

(a) External Planets (b) Internal Planets

Figure 2.14: Spider diagram for the Solar System in the system plane. It is drawn for the values of
the radial velocities measured by the hypothetical observer along the y-axis and then superimposed
to the planets’ orbits. (a) shows the entire Solar System and (b) is an enlargement of the centre of
diagram (a) showing the most internal planets.

velocities, vr = v‖, are introduced as a vector together with the corresponding numerical value.
This shows that vr remains indeed constant along the chosen contour. In fact, starting from the
v(r) of each planet, the corresponding vr is calculated at different points along Pluto’s iso-velocity
line. This is another simple exercise that helps students understand how the components of
vectors change and can be applied to other elements of the graph. But even without involving

Figure 2.15: Detail from figure 2.14(a) which shows the orbital velocity vectors (blue) for 5 planets
and their components. The components in red represent the radial velocities and they are constant
along the chosen black line. The components in green are the tangential velocities.

students in these calculations, this visualisation is in itself an excellent teaching tool. In fact, it is
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useful just to show the diagram of the original file because by moving the vectors representing the
orbital velocity along the orbits, we observe in real time how the radial and tangential velocities
vary and can thus compare them.

Now we discover how it is possible for our hypothetical observer to draw the spider diagram
of the Solar System when observed under an inclination angle between 0° and 90°. This procedure
can be performed for any intermediate angle, we show it here for i = 60°. From eq. (2.17), we
know that the measured radial velocity vr in the case of i = 60° is given by

vr = K · r− 1
2 cos θ ·

√
3

2
. (2.19)

Now changing to Cartesian coordinates, namely using eq. (2.18), we have

y2 = K4/3 x4/3

( 2√
3

vr)4/3
− x2 . (2.20)

As we can easily predict at this point, the term vr/ sin i = 2√
3

vr in eq. (2.20) restores the

measured value for vr to v‖ = v(r) · cos θ on the system plane, so we obtain again the spider
diagram of fig. 2.14. We can now project on the sky plane the circular orbits of the planets and
the lines of constant radial velocity we have just obtained. This is easily done knowing that with
parallel projections x = x′ and y = y′/ cos i. The orbits are therefore now described by eq. (2.8)
and the spider diagram by

y′2

cos2 i
= K4/3 x′4/3

( 2√
3

vr)4/3
− x′2 . (2.21)

The resulting spider diagram is shown in fig. 2.16. In this way we modify the one in fig. 2.14 and
in the Geogebra file, using a cursor with values between 0° and 90° for the inclination angle i, we
are able to represent all possible spider diagrams, including the one in the system plane.

'

'

Figure 2.16: Spider diagram for the Solar System as seen in the sky plane inclined of i = 60° (see
slider above on the left) with respect to the system plane.

Alternatively, it is possible to reconstruct the exercise in reverse, i.e. as it is normally done in
science. This means that starting from a spider diagram like the one in fig. 2.16, we obtain the
radial velocities, vr , measured by the hypothetical observer and we can thus calculate the orbital
velocity, v(r), of each planet and draw the rotation curve of the Solar System. We will soon see
this kind of exercise in section 2.3.5, applying this procedure to the galaxy NGC3198.
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2.3.3 The Rotation Curve of a Spiral Galaxy

This section focuses on the theory of the rotation curve in relation to spiral galaxies. The outcomes
of this process can be used as exercises to deepen and broaden student knowledge, to apply and
practise basic concepts of physics and mathematics and stimulate the process of concept building.
So far we’ve encountered no evidence of dark matter. This happens because for detecting grav-
itational effects of dark matter on the dynamics of a rotating system, we need a much bigger
quantity of matter. Therefore, we are going now to analyse a bigger system: the spiral galaxy. The
results obtained with the work done about the Solar System can serve as comparison for a system
without (or negligible) presence of dark matter. In fact, the discrepancy that the students have to
analyse and understand, together with the consequences this brings, comes from comparing the
expected Keplerian rotation curve, like the one for the Solar System, with the flat one detected
for these galaxies. In order to do this and explain how this discrepancy could be interpreted as
evidence of dark matter, students must use the dynamics they already learned and be prepared for
the idea that probably we cannot trust our eyes alone. Practically, this means that the luminous
mass we see is perhaps not an expression of the real mass distribution of this system. So it may
be that this system doesn’t have most of its mass concentrated in the centre, as we believe when
we observe it. This is the information students have to infer while proving that there is evidence
here to hypothesize the existence of dark matter.

Let us remember once again that we use simplified models for our analysis and in our
simplified model of a rotation curve, we have sharp separation between different sections of the
curve and perfectly straight lines or regular functions, as can be seen from fig. 2.17. Naturally, in
reality this is not the case. In fact, the galaxy has a complex structure, therefore the transition
between sections is smooth (as in fig. 2.11) and the sections themselves reflect the mass distribution
gradient of the galaxy, i.e. the lines do not drastically change from one to another and are not so
regular [59]. Observing fig. 2.17, there are here three distinct areas: the bulge in red with r ≤ RB

O

?

Figure 2.17: Model of a spiral galaxy rotation curve. RB is the bulge radius, RD is the visible
disk radius and RH is the halo radius which includes galactic and dark halo. The position of the
various radii reflect typical proportions of a spiral galaxy as from the literature [94] [117] [6].

and velocity vB(r), the halo in green with RB ≤ r ≤ RH and velocity vH(r) and eventually
the Keplerian decline in purple with r ≥ RH and velocity vK(r). Let’s see more in detail the
characteristics of the bulge and halo areas and what is the important information that we can
extract from this plot. For the hypothetical Keplerian decline, we refer to the work done with the
Solar System, as it would fall in the same case, but for a detailed explanation see appendix C.
Also in this case the reasoning we are going to see now can be done in reverse, ending up with the
rotation curve as a result. However, we find more efficient, in terms of education, to analyse the
curve first, infer the important information from it and understand the related consequences for
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the analysed system. Moreover, this approach is very close to the true story of how the hypothesis
of the existence of dark matter arose and to retrace the steps of important scientific discoveries is
always educationally very interesting.

2.3.3.1 The Bulge

Since in the bulge section we are dealing with a wheel-like rotation described by eq. (2.13), we
already know that we are facing the rotation of a solid body with constant mass density. In order
to prove that we are really facing this kind of body and understand what such velocity behaviour
implies for its mass and mass distribution, the easiest approach we can use comes from the
Cavalieri method we saw in section 2.2.2. We apply the procedure to this section of the rotation
curve even though it would not really be necessary, because the properties of this type of rotation
have already been explored. However, for didactic reasons and to better understand the technique,
we start with this well-known case and then proceed with the halo.

Analysing the rotation curve for r ≤ RB, the only available information is that the rotation
velocity vB(r) is proportional to the radius r. Consequently, we can set

vB(r)2 = G
MB(r)

r
!

= b · r2 (2.22)

and b is a constant. We make then the assumption that the mass density profile should be in the
power-law form σB(r) = a · rk , where a and k are also constants. Such an assumption comes as
result of observations in particular of our galaxy and of the Solar System [94], therefore we suppose
that a power law can fit also the mass density of every other spiral galaxy. Now the bulge can be
approximated with a sphere full of mass and we can apply our analysis at any intermediate generic
radius r till the border of the bulge where r = RB. Thus, applying the Cavalieri approach, we
divide the sphere in n very thin concentric shells of constant mass density. Figure 2.18 illustrates
the case and definitely we see that n = r

∆r
. For each shell we can define its radius and mass in

terms of the maximum radius r we choose for the considered sphere as

rα = r − 1

2
(2α − 1)∆r = r

(
1 − 2α − 1

2n

)
(2.23)

Mα = σB(rα) · 4πr2
α · ∆r = σB(rα) · 4πr2

α

r

n
. (2.24)

In order to obtain the mass of the entire sphere, it is necessary to introduce eq. (2.23) and the

r1

r4

r3

r2

{ {ΔrΔr

r

Figure 2.18: Schematic representation of the Cavalieri approach applied to a full-of-mass sphere of
radius r. The radii rα reach the middle point of each shell of thickness ∆r.

mass density σB(rα) in eq. (2.24) and then sum the contribution of all shells obtaining

MB(r) =
n∑

α=1

Mα = 4πa · r(k+3)
n∑

α=1

1

n

(
1 − 2α − 1

2n

)(k+2)

. (2.25)
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With r = RB the mass of the entire bulge is calculated. At this point we match eq. (2.25) and the
mass MB(r) expressed from eq. (2.22) obtaining

MB(r) = r3 · b

G
= r(k+3) · 4πa

n∑

α=1

1

n

(
1 − 2α − 1

2n

)(k+2)

. (2.26)

Here we achieve an important result: in fact, observing the exponents of r it is evident that k = 0
and all other terms can be traced back to constants. This confirms, as expected, that the mass
density is constant σB(r) = a = σB. Therefore, for deriving the mass of the bulge at a radius r,
we need to consider this first result and solve eq. (2.25). This involves a few basic summations, as
it is evident from

MB(r) = r3 · 4πσB · 1

n

n∑

α=1

(
1 +

1

2n
− α

n

)2

= r3 · 4πσB · 1

n



(

1 +
1

2n

)2 n∑

α=1

1 − 2

n

(
1 +

1

2n

) n∑

α=1

α +
1

n2

n∑

α=1

α2




= r3 · 4πσB · 1

n



(

1 +
1

2n

)2

n − 2

n

(
1 +

1

2n

) 1

2
n(n + 1) +

1

n2

1

6
n(n + 1)(2n + 1)




= r3 · 4πσB
1

3

(
1 − 1

4n2

)
.

(2.27)
The three highlighted summations have a certain importance in mathematics and are found in all
lists of mathematical series, an example of which is [39]. In particular, the first summation defines
the n-sum of the number 1, the second is known as the Gauss sum of the first n positive integers,
who first realised it, and finally the third is the sum of the first n squares, usually used for the
proof by induction. As we can see, in this case the dark matter problem, albeit in this simplified
approach, provides an opportunity to engage our students in putting this knowledge into practice
by applying it to a concrete example, promoting longer lasting learning.
Now, if we take the limit of eq. (2.27) for n → ∞ (∆r → 0), which means doing a step more
towards the continuum and approaching the idea of integration, we derive the usual formula for
the mass of a homogeneous sphere of radius r

MB(r) =
4

3
πσB · r3 . (2.28)

For an approach suitable for more advanced or undergraduate students see appendix B.

In conclusion, comparing and combining together the results for equations (2.28) and (2.22)
estimated at a generic radius r < RB and at the bulge edge r = RB, we are able to express
important quantities in terms of the total mass MB(RB) and radius RB. Hence, we get

vB(r) =
vB(RB)

RB
r (2.29)

MB(r) =
MB(RB)

R3
B

r3 (2.30)

σB =
3

4π

MB(RB)

R3
B

. (2.31)

In summary, we can say that the bulge of a spiral galaxy behaves like a rotating solid body. As a
matter of fact, we have constant mass density σB, velocity v(r)B that grows proportionally with r
and mass MB(r) with r3.
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2.3.3.2 The Halo

We follow now exactly the same reasoning for the rotation curve of the halo. We would have
expected here a decline as for the Solar System, but in this case the rotation curve tells us that
the velocity remains constant from the border of the bulge till very large radii. Because of this
unexpected behaviour, we need to extrapolate for this part any information useful to explain what
can cause this discrepancy between expectations and observations. Therefore, the information we
can deduce from the rotation curve is

vH(r)2 = G
MG(r)

r
= G

MB(RB)

RB
= vB(RB)

2 = vH(RB)
2 = const , (2.32)

where MG(r) represents the mass of the galaxy, which includes the contributions from bulge and
halo, till the maximum radius r ≤ RH. This is assuming that this limit exists, a hypothesis not
yet proven, but for our exercise we consider it valid. As we did for Newton’s shell theorem and on
the same assumptions, we approximate the galaxy with a full-of-mass sphere [50][94]. Assuming
again that the mass density profile is in the form of a power law, σH(r) = d · rk , with d and k
constant, we apply the Cavalieri method exactly as for the bulge. Equations (2.23), (2.24) and (2.25)
are still valid, but used with σH(rα) instead. Considering eq. (2.32), the total mass of the galaxy
for a radius in the halo region is determined by

MG(r) =
MB(RB)

RB
r = MB(RB) + MH(r) (2.33)

and we need to isolate the halo section for deducing the related information. This means that
from the mass of a sphere of radius r, with RB ≤ r ≤ RH, we have to subtract the mass of a
sphere of radius RB. The latter, in calculating MG(r) then, will be replaced by the results obtained
for the bulge. Equation (2.25) under these new conditions and for RB ≤ r ≤ RH becomes

MH(r) = (r(k+3) − R
(k+3)
B ) · 4πd

n∑

α=1

1

n

(
1 − 2α − 1

2n

)(k+2)

. (2.34)

Equalling now eq. (2.34) and the mass MH(r) expressed from eq. (2.33), in the same way as we
did for the bulge, we deduce from the exponents of r that in this section k = −2 and the mass
density is then σH(r) = d · r−2. Thus, for calculating the mass of the halo alone from eq. (2.34),
we get

MH(r) = (r − RB) · 4πd · 1

n

n∑

α=1

1

= (r − RB) · 4πd .

(2.35)

Although the reasoning is a little more complex here, the calculation is simpler than in the bulge
section. In fact we again encounter the easy n-sum of the number 1 and do not need to calculate
the limit because n is no longer present in the equation at this point.
For an approach suitable for more advanced or undergraduate students see appendix B.

Finally, it is possible to compare and combine together the results for equations (2.32), (2.33)
and (2.35) estimated at a generic radius, RB < r < RH, and at the halo edges, r = RB and
r = RH. In this way we are able to express important quantities in terms of the total mass of the
bulge MB(RB) and radius RB, parameters that we can measure. It is also possible to express them
in other terms, such as the total mass of the halo alone, MH(RH), or the total mass of the galaxy
(bulge + halo), MG(RH), and the radius RH. Interesting relations between the various components
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of the galaxy are indeed highlighted, obtaining

vH(r) = vB(RB) = vH(RB) = vH(RH) (2.36)

MH(r) = MB(RB)
(

r − RB

RB

)
= MH(RH)

(
r − RB

RH − RB

)
= MG(RH)

(
r − RB

RH

)
(2.37)

MG(r) =
MB(RB)

RB
r =

MH(RH)

RH − RB
r =

MG(RH)

RH
r . (2.38)

One last step is here missing. Since the mass density profile is not constant in this part of
the galaxy, we want to determine the value of the constant d in relation to σB. Basically, from
the combination of equations (2.32), (2.33) and (2.35), together with eq. (2.31), we end up with
d = 1

3
σBR

2
B , which gives

σH(r) = d · r−2 =
1

3
σB

(
RB

r

)2

=
vB(RB)

2

4πG

1

r2
. (2.39)

Summarising, we can say that the halo of a spiral galaxy behaves not only differently from
the core, but also differently from the assumptions. In fact, we would have expected a Keplerian
decline in velocity, typical of a system with almost all the mass concentrated in its center, the
bulge. We have here instead a mass density σH(r) that declines proportionally to r−2, velocity
vH(r) that remains constant and mass MG(r) that grows directly proportional to r. Moreover, all
this extends well beyond the visible limit of the galaxy disk, RD.

To understand the meaning of these results we now plot the radial profile of mass and mass
density with Geogebra, i.e. we plot the equations (2.30) and (2.38) in the former and (2.31) and
(2.39) in the latter. At this stage, in order to visualize the trend of these physical quantities, it is
sufficient to use random values for the various constants included, while in section 2.3.5 we will
see a real example. The resulting graphs are in fig. 2.19.

(a) Mass Profile (b) Mass Density Profile

Figure 2.19: Mass and mass density radial profile for a spiral galaxy, deduced from the rotation
curve in fig. 2.17. The functions in red correspond to the bulge of radius RB and the ones in green
to the halo. The radius of the halo, RH, is not visible here as we do not know if it exists and if
so, not even its size. The only certain information is that it extends much further than the visible
radius of the galaxy disk, RD.

The conclusion we can draw from looking at these diagrams in relation to the light curve in fig.
2.17 is that there must be much more matter than we actually see. In fact, what we record is the
gravitational interaction of this matter with the visible mass of the galaxy. We expected a drastic
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decrease of the mass in the halo, according to the visual distribution of stars and gas, but instead
we have a continuous increase. Given that there is no direct confirmation of the presence of
this hidden mass, the theory of exotic dark matter completely transparent to all electromagnetic
radiation has thus been formulated. For precisely these reasons, the rotation curves of spiral
galaxies are considered to be one of the strongest pieces of evidence for the existence of dark
matter.

2.3.4 The Spider Diagram of a Spiral Galaxy

The theory of the spider diagram of spiral galaxies is introduced here and, as for the solar system,
represents an innovative topic in the field of physics and astronomy education. Moreover, it lends
itself very well to the teaching of mathematics and physics with examples from astronomy.
We already explored how this diagram appears for the Solar System, but applying it to spiral
galaxies, we have new elements to take into account. In addition, it is important to understand
how these elements are related to the rotation curve. The purpose of this section is to represent,
and draw with Geogebra, the constant radial velocity contours corresponding to the rotation curve
in fig. 2.17. The analysis is again divided into bulge and halo areas. For the Keplerian decline
instead we refer again to the work on the Solar System and appendix C.
Moreover, in this case we have to consider that due to the huge distances involved in the obser-
vation of spiral galaxies, even if the bulge was perfectly spherical, it would be very difficult to
distinguish its shape as it is small compared to the size of the galaxy disk and embedded in it.
Therefore, for simplicity we consider all the visible mass of the galaxy, bulge included, distributed
on a disk.
We already know from section 2.2.5 that the connection between radial velocity and rotational
velocity is expressed by eq. (2.15). Thus, this is our starting point and from here we develop our
analysis.

2.3.4.1 The Bulge

According to the definition of a spider diagram, in this region, characterized by r ≤ RB and a
rotational velocity vB(r), expressed by eq. (2.29), we set the pure radial velocity due to rotation,
(vr − vsys), constant and eq. (2.15) becomes

vr − vsys = v(r) · cos θ · sin i =
vB(RB)

RB
r · cos θ · sin i

!
= B . (2.40)

Here B is a constant that can adopt different values. vB(RB)
RB

is also a constant and sin i as well,
since the inclination angle i in our model remains the same for the entire galaxy. Grouping now
the constants together we derive

r · cos θ =
B · RB

sin i · vB(RB)
. (2.41)

Remembering that in Cartesian coordinates r · cos θ = x, we find out that the radial velocity
remains constant for every constant x, namely for all vertical lines parallel to the y-axis as in
fig. 2.20. Specifically, these lines are limited inside an ellipse positioned at the centre of the
galaxy, which is the projection on the sky plane of the disk representing the bulge on the galaxy
plane. As we did before in section 2.3.2, the projection in the sky plane is achieved setting
x′ = x and y′ = y cos i for the spider diagram lines and the circles representing different areas.12

As we already know, the semi-major axis of the ellipse corresponds to the actual radius of the bulge.

12Also in this diagram for i = 0° we are on the galaxy plane.
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Figure 2.20: Spider diagram of the spiral galaxy bulge with its typical vertical lines. The galaxy is
inclined of i = 60°. RB is the bulge radius and RD is the radius of the visible, luminous disk.

2.3.4.2 The Halo

We draw now the spider diagram for the halo region where we have RB ≤ r ≤ RH and the
velocity is constant, vB(RB) = vH(RH). From the definition of the spider diagram and eq. (2.15)
we derive

vr − vsys = v(r) · cos θ · sin i = vB(RB) · cos θ · sin i
!

= B . (2.42)

Grouping again all constants and defining them all under the letter A, we obtain then

cos θ =
B

sin i · vB(RB)
= A . (2.43)

We express then this result in Cartesian coordinates and obtain after a few steps

cos θ =
x

r
=

x√
x2 + y2

= A . (2.44)

As it was already perceivable from eq. (2.43), the result is in this case a radial-lines bundle through
the centre expressed by the equation

y = ±(A−2 − 1)1/2 x . (2.45)

This is shown in fig. 2.21 for a spiral galaxy inclined by i = 60°. This figure is actually a
completion of fig. 2.20, to which the halo part is added. Again, the lines are restricted inside an

'

'

'

'

Figure 2.21: Spider diagram of the spiral galaxy bulge and halo with both types of lines. Besides the
bulge lines in red, we can see in green the lines of the halo. RH is the radius of the hypothetical
edge of the halo. In the right box an enlargement of the visible disk part.

ellipse representing the projection of the halo onto the sky plane in the usual way, considering the
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halo finite in size.
A useful task, not only for understanding, but also for drawing the spider diagram, is to identify
free and not-free parameters and among all of them which are in common between the two
equations. In fact, according to the definition of A in eq. (2.43), we can express eq. (2.41) as

x = r · cos θ = A · RB . (2.46)

We notice that free parameters are the radius r from the centre of the galaxy at which we choose
to analyse the system and the angle θ between this radius and the x-axis. The constant A is
the same in both cases and for the bulge we have its radius RB as an extra constant. The var-
ious radii defining the different sections are the same used for the rotation curve of a spiral galaxy.

When a spiral galaxy is observed and its radial velocities are measured, on the basis of what we
have just seen, the corresponding spider diagram can be drawn. Then doing the process presented
here in reverse order, the rotation curve is extrapolated and analysed for important information
that it can provide us with, as we have seen in the previous section. Among other information,
the most interesting is that the dynamics of these galaxies seems to suggest the presence of much
more matter than we can actually see. According to simulation and motion of stars through the
galaxy disk, it seems that this large amount of unseen gravitating matter, the so-called dark matter,
is distributed in a huge almost spherical halo around the galaxy [94][15]. This is exactly the type of
exercise that we are going to do in the next section, applying this method to a real example, the
spiral galaxy NGC3198.

2.3.5 The Spiral Galaxy NGC3198

Considering spiral galaxies, we have seen so far the practical application to a real astronomical
problem of basic concepts of mathematics and physics, albeit treated at a theoretical level, i.e.
without real data. As interesting and stimulating as it may be, using a specific astronomical
object with real data always provides the most engaging alternative and ultimately gives a deeper
understanding of the subject discussed. In fact, for this reason, it is often advisable in didactic
research in physics and astronomy to support the theory with exercises applied to real examples
[49][84][113].
Therefore, we apply now this method to the spiral galaxy NGC3198 (Fig. 2.22), a barred spiral
galaxy in the constellation Ursa Major, in order to calculate its amount of mass and see if there
actually is hidden matter. It is possible to choose any galaxy for which a spider diagram or at

Figure 2.22: The galaxy NGC3198 in optical passband from the NASA/IPAC Extragalactic Database.
Credit: ned.ipac.caltech.edu.

least a rotation curve is of public domain.13 Our choice for this galaxy lies in several factors:

13It is not so easy to find spider diagrams on-line, for a non-complete list of them see [11] and [114].
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• it is in fact an excellent representative for studying the flat rotation curve up to large radii
and has a good orientation (i = 71°),

• it has been extensively observed and studied, so there are many articles about it in the
literature,

• it is one of the few galaxies for which the spider diagram is available,

• it has observations of Cepheid variable stars, therefore, it is suitable for another interesting
student project on autonomously determining the distance of nearby galaxies with real data
[101] and this gives the chance to understand how elaborate the distance determination
problem in cosmology is.

In fact, the idea of connecting various projects using the same celestial objects gives continuity and
self-consistency to our work and stimulate students to achieve always new conclusions. Moreover,
this enables students to perform independently many tasks and achieve multiple results, building
in this way new interconnected knowledge at every step.

For this galaxy, as mentioned, there is a lot of data and information in the literature,14 although
not always in agreement with each other, and at least three spider diagrams [6][11][114]. Nevertheless,
we base our analysis on the spider diagram from [6] because this is very clear and not superim-
posed to any pictures of the galaxy NGC3198, as shown in fig. 2.23. In addition, table 2.3,15 is a
short collection of data about the galaxy, chosen among the many obtainable from the mentioned
literature and on-line on https://ned.ipac.caltech.edu/cgi-bin/objsearch?objname=

NGC+3198.
The first thing to be noticed is that the spider diagram in fig. 2.23 is not really shaped like the
one we already studied. This is because a real galaxy is a complex object and we instead use

Redshift
z

Mean Dist.
r

Dist. Modulus
(m − M)

Bulge Radius
RB

Disk Radius
RD = a

Inclination
i

Abs. Mag.
MV

Luminosity
LV

NGC3198 0.0022 12.8 Mpc 30.49 4 kpc 14 kpc 71° -19.8 7.3 · 109 LV⊙

Table 2.3: Spiral galaxy NGC3198 data. The subscript V for absolute magnitude and luminosity
stand for visual V (wavelength range 480-650 nm) passband.

a simplified model. For achieving a more realistic diagram, we should analyse more complex
functions representing specific distribution of mass for the galaxy. However, for our purpose of
making this project a useful teaching tool, it is not essential to consider the real nature of a galaxy
in all details, on the contrary it would keep our attention away from the important concepts and
outcomes. For the same reason, we do not even consider the presence of any distortions, warps
and uncertainties. Our focus is only the pure problem of finding evidence of the existence of dark
matter and we need to keep it as simple as possible.
At this point, since measurements of galaxy dimensions are taken as angular sizes (in arcminutes
– ′ and arcseconds – ′′), we need to work out how much 1′ = 60′′ is in kpc, i.e. how big is
the length we see as 1′ from our distance. In fig. 2.24, we notice that the semi-major (a) and
semi-minor (b) axes correspond respectively to the angles α and β. If we now consider the triangle
△COA′

2 and the fact that a ≪ CO, we can apply the small angle approximation and calculate

a = CO · tan α ∼= CO · α̂ = CO
2π · α

360 · 60′ . (2.47)

14Non-complete list of publications:[6][11][12][114][53][33][13][110][67][55][18] etc.
15The mean distance is the mean values among the many measurements performed with various methods, taken

from the NASA/IPAC Extragalactic Database – NED https://ned.ipac.caltech.edu/.
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Figure 2.23: Spider diagram for the galaxy NGC3198 from [6].

Figure 2.24: Lengths on the sky plane for a spiral galaxy. The semi-major axis a seen under the
angle α and the minor, b, under the angle β. O is the observer.

Knowing that CO = 12.8 Mpc and for example setting α = 1′, we get a = 3.72 kpc. For galaxies
at different distances, this conversion factor will be another one. This rule can be applied to
convert any angular measurement of this galaxy into a linear length and vice-versa, depending on
the available information. In this specific case, however, using neither an image of the galaxy nor
angular measurements, but knowing from the literature that RB ≃ 4 kpc and RD ≃ 14 kpc, we
can convert these values into angular measures. Indeed, due to eq. (2.47) we get RB =̂ 1′.07 and
RD =̂ 3′.76.
It is possible to start the project using a scaled printed copy of the provided diagram as in fig.
2.25 or the corresponding Geogebra file. In fact, we have imported the spider diagram taken from
[6] into Geogebra and drawn on it few helpful elements. As we can see from fig. 2.25, first we
introduce the axes x′ and y′ passing through the centre of the galaxy, with the y′-axis parallel as
much as possible to the central vertical line of the diagram with 660 written next to it. Using the
data at our disposal we now need to draw ellipses corresponding to the areas of the bulge and
the visible disk. Thus, by measuring the length in cm of the arrow in green on the left side, we
derive how many cm correspond to 4′. With this information, we calculate the length in cm of
the semi-major axes, RB and RD. In addition, knowing from section 2.2.3 that all lengths parallel
to the y-axis in the galaxy plane are seen in the sky plane as y′ = y cos i, we calculate the value
of the semi-minor axes. Now having the length of the axes, we can draw the respective ellipses
which are in red (bulge) and blue (visible disk) in the figure. Besides, there are in the literature
different definitions of the visible radius of a galaxy, while measurements arrive actually at 12′
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Figure 2.25: Spider diagram for the galaxy NGC3198 from [6] elaborated with Geogebra. The
coordinate system axes are introduced together with the ellipses for the bulge (red) and three
different sizes for the visible radius (blue). The arrow in green is representative of 4′.

from the centre (almost 50 kpc). In particular, the innermost ellipse in blue corresponds to the
visible radius of 14 kpc. The intermediate ellipse corresponds to the de Vaucouleurs visible radius
(5′) and the last one to the Holmberg radius (5.95′) [110].16 It is a free choice which radius to use
as the visible border of the galaxy disk. In this project we decided to work with the visible radius
of 14 kpc.
The next step consists of verifying the components of the systemic velocity of this spiral galaxy.
As we know from section 2.2.5, this includes the recessional velocity vrec, eventually some peculiar
velocities vpec and it is expressed by vsys = vrec + vpec. In our spider diagram vsys is given by the
value of the central line and it is vsys = 660 km/s = c · z.17 Since the redshift z in this case is
small, we can consider this galaxy to be in our cosmic neighbourhood and thanks to the Hubble
law, we can calculate the recessional velocity as vrec = H0 · r = 896 km/s, where H0 is the
Hubble constant18 and r the distance galaxy-observer (CO in fig. 2.24),19. This leads us to

vpec = (660 − 896) km/s = −236 km/s .

As we can see from this rough estimate, most probably this galaxy has a small peculiar velocity
directed towards the Sun. However, we do not have any official confirmation of this motion.
Analysing the spider diagram in fig. 2.25, we notice that the iso-velocity contours are separated
by equal steps of 15 km/s and of course they are not regular, straight and perfectly symmetric.
This, together with the fact that some estimates should be done by eye inspection, can lead to less
accuracy, but the principles of measurement are more important for our educational goals and in
the end the results are almost always comparable with the literature. Now, for extrapolating the

16The de Vaucouleurs radius is reached when the surface brightness in band V attains the value of 25 mag

arcsec2 , the
Holmberg radius is reached when the surface brightness in band B attains the value of 26.5 mag

arcsec2 .
17z is the measured redshift for this galaxy, for a definition of redshift see [100]. Speed of light c = 2.99 · 108 m/s.
18We adopt the value H0 = 70 km

Mpc·s for the Hubble constant.
19Of course this result is dependent on which values we adopt for H0 and the distance r, therefore it can lead in

other cases to a very different estimate.
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rotation curve corresponding to this spider diagram we only need to focus our attention on the
first quadrant of the coordinate system because, for simplicity, we consider the system symmetric
in any case. Moreover, for this analysis we use only the lines where the velocity is indicated, but
students can work with others or all of them.
The very first thing to do with the radial velocity values from the spider diagram is calculating
the radial velocity due to rotation alone,20 from now on called simply vr , for each of them and its
value when re-projected back on the galaxy plane by virtue of vr/ sin i = v(r) cos θ = v‖. In the
first three lines of table 2.4 the values we derived are shown.
Let us consider now the bulge section, as we already know, here all vertical lines of constant radial
velocity tell us that we are facing a rotating solid body. The difference now is that in our simplified

Measured vr (including vsys) 660 km/s 705 km/s 750 km/s 795 km/s
vr − vsys (from now only vr) 0 km/s 45 km/s 90 km/s 135 km/s
vr/ sin i = v(r) · cos θ 0 km/s 47.60 km/s 95.19 km/s 142.79 km/s
Observed Angle θ′ – Halo 90° 44.5° 22° 5.5°
Re-projected Angle θ – Halo 90° 71.67° 51.14° 16.48°
Rotation Velocity vH(r) – Halo 0 km/s 151.34 km/s 151.71 km/s 148.90 km/s

Table 2.4: Results for the rotation velocities of the spiral galaxy NGC3198, whose inclination angle
is i = 71° (table 2.3). θ and θ′ are defined as in fig. 2.7.

model all vertical lines are included in the bulge area and here some do not fall inside it. We don’t
need to worry about this, it is just an indication of the smooth change in velocity when moving
from one area to another. So, we analyse the lines within the bulge zone and, to overcome the
problem, we finally adjust the maximum velocity21 with the same value obtained from the halo
analysis at the distance RB from the centre. At this point, we obtain the corresponding rotation
velocity for each vertical line considered using eq. (2.15). In particular, considering eq. (2.11),
we infer that along the x′-axis, where θ′ = θ = 0, the rotation velocity corresponds exactly to
vr/ sin i. The last element we need is the distance r from the centre of the system of each line
considered and we easily measure it from the diagram in fig. 2.25.
And again eq. (2.15) allows us to calculate the rotation velocity in the halo area, but now we
have to take into account the angle θ as well. Therefore, moving now our interest on the halo
part, we have to extract from the diagram of fig. 2.25 the approximate measure of the angle
θ′ between the x′-axis and the considered contours. Since the contours are not straight lines,
this operation is slightly difficult, but by eye inspection we try to approximate the contours with
radial lines from the centre to the ellipse in blue, as shown in fig. 2.26. At this point, thanks
to eq. (2.9), we calculate the corresponding angle θ in the galaxy plane and with this finally the
rotation velocity. The values we find reliable and all these results are collected in table 2.4. It is
interesting to notice that, as expected, all values are distributed around a mean value, which in
our simplified model remains constant. The mean value of the rotation velocities of the halo is
vH(r) = 150.54 km/s ≈ 150 km/s.
Next, we put all information together in order to draw the rotation curve of the galaxy NGC3198
and, as anticipated before, we set the maximum rotation velocity of vB(RB) = vH(RB) = 150 km/s.
The resulting rotation curve is shown in fig. 2.27. Summarising the results for every section we
get

vB(r) =
vB(RB)

RB
r = 37.50

(
r

kpc

)
km/s (with vB(RB) = 150 km/s) (2.48)

vH(r) = vB(RB) = vH(RH) = 150 km/s . (2.49)

20(vr − vsys)
21In our simplified model the maximum velocity should be reached at the border of the bulge (4 kpc).



CHAPTER 2. THE DARK MATTER PROBLEM 37

'

'

Figure 2.26: Example of fitting by eye inspection the angles θ′ for three iso-velocity contours on
the spider diagram for the galaxy NGC3198 from [6].

=

max kpc

Figure 2.27: Rotation curve of NGC3198 deduced from the spider diagram in fig. 2.25. The dash-dot
black line corresponds to the bulge rotation velocity profile calculated from the spider diagram
(where the maximum velocity is actually reached outside the bulge edge). The red line instead
represents the velocity profile corrected for vB(RB) = 150 km/s. As we can see, the difference
between the two lines is negligibly small. Rmax = 50 kpc is the maximum measurement available.

In order to have an idea about how in reality the spider diagram in its actual complex structure
is translated into a rotation curve, in fig. 2.28 we can see the rotation curve from real data for
NGC3198.
It is also possible to create our own spider diagram from the rotation curve in fig. 2.27 using

the data we have, the equations (2.46) for the bulge, (2.45) for the halo and setting y′ = y cos i to
project everything on the sky plane. The resulting simplified spider diagram is an approximation
of the real one and is shown in fig. 2.29. From experience, we can say that if we introduce the
difference between the real and simplified spider diagram in advance, and use the simplified spider
diagram with the procedure just described, the students perform the exercise with less difficulty.
Another possibility is to start the exercise directly from the rotation curve in its simplified version
(which will be very similar to fig. 2.27) and continue as we are going to see now, thus simplifying
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Figure 2.28: The real rotation curve for the galaxy NGC3198 from [6]. In the small plot the rotation
curve from [110] with also the curves expected from the different components: disk and dark
matter halo.

the practice even more.

'
max

'

Figure 2.29: Spider diagram for the galaxy NGC3198 calculated from the simplified rotation curve in
fig. 2.27. The diagram reaches the distance corresponding to the maximum measurement available
at around Rmax = 50 kpc.

The next analysis regards the mass density and mass profiles for the chosen galaxy. Thus, we
calculate the mass density for the bulge and the halo from equations (2.31) and (2.39)

σB =
3

4πG

vB(RB)
2

R2
B

= 1.55 · 1038 kg

kpc3 = 0.78 · 108 M⊙

kpc3 (2.50)

σH =
vB(RB)

2

4πG

1

r2
= 8.28 · 1038

(
kpc

r

)2
kg

kpc3 = 4.16 · 108

(
kpc

r

)2
M⊙

kpc3 . (2.51)

For the mass profile, applying equations (2.30) and (2.38) we have

MB(r) =
vB(RB)

2

G R2
B

· r3 = 6.50 · 1038

(
r

kpc

)3

kg = 3.27 · 108

(
r

kpc

)3

M⊙ (2.52)

MG(r) =
vB(RB)

2

G
r = 104.03 · 1038

(
r

kpc

)
kg = 52.28 · 108

(
r

kpc

)
M⊙ . (2.53)
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Results calculated from these equations for radii of special interest are collected in table 2.5 and
the mass and density profiles are shown in fig. 2.30.
Analysing the results obtained so far and the graphs produced, we obtain important information.
Basically, from the dynamics of the galaxy we deduce that its mass increases steadily with the

max

max

max

max

Figure 2.30: Mass and mass density profiles for the galaxy NGC3198 drawn till Rmax = 50 kpc.

radius well beyond its visible limit and it is not yet known if and where this behaviour changes.
Therefore, it becomes evident that the galaxy is composed of much more mass than we can
actually see, which is considered to be well-founded evidence of missing matter and therefore the
basis for the hypothesis of the existence of dark matter.

Our last analysis aims to give a rough estimate of the amount of visible and dark matter for
NGC3198, we will now follow a simple reasoning that will lead us to this information. For a more

NGC3198 σH(r) in kg/kpc3 σH(r) in M⊙/kpc3 MG(r) in kg MG(r) in M⊙
RB 5.18 · 1037 2.60 · 107 4.16 · 1040 2.09 · 1010

RD 4.23 · 1036 2.12 · 106 14.56 · 1040 7.32 · 1010

Rmax 3.31 · 1035 1.66 · 105 52.02 · 1040 2.61 · 1011

Table 2.5: Results for mass density and mass at different radii of the spiral galaxy NGC3198.
Rmax = 50 kpc is the maximum radius reached for measurements.

detailed, complete and rigorous discussion and a comparison of the results with those found in
the literature, see appendix D instead.
The mass-to-luminosity ratio M

L
(see appendix D), an indicator of how efficient a certain amount

of visible luminous mass is in producing photons, comes to our aid in this task. In fact, since
the luminosity of the celestial object we observe is given by its entire visible mass, for radii larger
than the visible limit of the galaxy, fixed as RD, this value obviously remains constant.
From the literature we know that for spiral galaxies the average M

L
ratio in solar units, considering

their visible mass, is Mvis

L
= 3M⊙

L⊙ [94].22 Now we calculate the same ratio by entering the total mass
of the galaxy, obtained from eq. (2.53) (whose results are collected in table 2.5), and the luminosity
of NGC3198 in the visual band, LV, from table 2.3. We concentrate on analysing the situation
at the distance of the visible radius, RD, and the maximum radius reached by the observations,
Rmax, obtaining

MG(RD)
L

= 10 M⊙

L⊙
and MG(Rmax)

L
= 35.8 M⊙

L⊙
. At this point we can easily achieve

the results for Mvis

MG(r)
, Mdark

MG(r)
and consequently Mdark

Mvis
which are collected in table 2.6. Particularly

22The luminosity of the Sun is L⊙ = 3.9 · 1026 W.
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NGC3198 Mvis/MG(r) Mdark(r)/MG(r) Mdark(r)/Mvis

RD 0.30 0.70 2.33
Rmax 0.08 0.92 11.50

Table 2.6: Results for the ratio between the amounts of total, visible and dark matter at different
radii of the spiral galaxy NGC3198.

evident from table 2.6 is the presence of a large amount of matter that is not directly visible in
the galaxy halo, the famous dark matter that is only detected by the gravitational effects it exerts
on the matter we see. Therefore, in conclusion, we can describe this part of the galaxy NGC3198
as consisting of the visible disk and the dark matter halo.

2.4 Conclusions

In conclusion, we can declare ourselves satisfied with the outcomes of this project because we
have been able to successfully retrace the process and principles of measurement that led to one
of the first clues to assume the existence of dark matter. Moreover, we provide various theoretical
exercises even without the final numerical case. These can be directly used and introduced
in physics and mathematics lessons as an application to a real example from astronomy of the
notions that students learn in class. This not only permits to practice the taught concepts, but also
serves as a stimulus to engage and fascinate students. In fact, it has been shown [49][75][84] that
teaching with help of practical and real examples, which actively involve students to experience
scientific concepts, enhances their level of interest and their ability with regard to science subjects.
This is due to their role as active learners and not just passive listeners, often called student-
centred learning. Additionally, not only learning outcomes (physics, mathematics, astronomy and
computational competencies) are positively influenced, but also the development of important
skills such as problem solving, creative and critical thinking, researching, questioning, decision
making and adaptability [99][49].
From direct experience and feedback from teachers who have used the project material, this project
has proved to be feasible and can be implemented in the final years of secondary school and at
a college level. This is especially true for the real example of the spiral galaxy NGC3198. In fact,
after a few hours of introductory teaching of the background knowledge, it represents a valuable
experience for the students who demonstrated to be involved with great interest in the topic
and eventually showed a deeper understanding of the subject. The students’ interest was driven
mainly by the idea of understanding what the exotic dark-matter is and, secondly, because it is
an unresolved conundrum. Furthermore, the application to the solar system in the first instance
was very much appreciated by teachers, as it represents a simpler and clarifying example before
moving on to the case of spiral galaxies.
Finally, we can say that this student project is a valid teaching tool to support physics, mathematics
and also astronomy lectures with interesting and simple exercises that, with adequate guidance
from the teacher, stimulates students’ inquiry-based learning. As a whole, the project involves the
story of how dark matter was hypothesised and brings students, thanks to suitable simplifications
and approximations, on the same path that Vera Rubin and other scientists followed in the
1970s and then came to this hypothesis. All this is passing through important concepts such
as Newton’s shell theorem, Cavalieri’s approach to integration, the theory of parallel projections,
orbital and rotational velocity and radial velocity, the rotation curve and the innovative aspect of
the introduction of the spider diagram concept.



Chapter 3

Gravitational Lensing

With this project students learn about the phenomenon of light deflection and in particular the
strong gravitational lens effect in weak gravitational fields. Starting from the geometry of the
system, step by step, they will understand how different models of mass distribution, which act as
lenses in the universe, influence the images resulting from the gravitational lensing process. All
this once again exercises the mathematical and physical knowledge of the last years of secondary
school and the first years of university.

3.1 Motivation and Purpose

Light deflection, in particular the gravitational lens effect in its strong form, is an interesting and
fascinating subject of astrophysics. The idea of this phenomenon already occupied the minds of
great physicists of the 18th century. However, its correct formulation was presented by Einstein in
his General Relativity. Nevertheless, the real interest in gravitational lensing actually began in the
1960s and received a major boost after the first detection of a gravitational lensing system in 1979
[96].
The reasons that have led us to deal with this topic are many. First of all, it is a captivating modern
subject that we often hear about and that can inspire and motivate students. It is also stimulating
that this phenomenon leads us to think that what we see in the universe with our own eyes does
not necessarily reflect the real situation. Although it is conceptually articulated and complex, it
is fortunately possible to approach this topic through a simplified method and analysis, involving
different concepts of physics and mathematics typical of the last years of secondary school and first
years of the undergraduate studies. All this makes gravitational lensing an excellent educational
tool for teaching physics, mathematics and astronomy using examples from cosmology.
The basic idea is the visualisation of light on curved paths under the influence of gravity. In
fact, by combining optics and general relativity, it is possible to design plexiglass lenses in order
to reproduce the images of any source, whose light is deflected by different types of celestial
objects. The work with these lenses is moreover supported by interactive simulations performed
with the software Geogebra and the help of astonishing images from the best telescopes. An added
value that this project has, together with the teaching tools that have been specifically designed
during its development, is to enable students to combine an experimental part with a topic that
is frequently treated in a purely theoretical way. Furthermore, it has the power to bring to a more
accessible level a phenomenon that is normally considered out of reach and abstract, especially
when treated in the educational context.
Therefore, by adopting mainly a graphical and experimental approach, we aim to highlight how
this allows us to achieve the same results as those obtained analytically and in addition provides
a powerful visualisation of the phenomenon we are exploring and investigating. In this way
we actively involve students and free them from being mere passive listeners, promoting longer
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lasting learning and the development of important skills. As we know from the previous chapter,
these include problem solving, critical and creative thinking, application of the scientific method,
adaptability and many more [99].

3.2 Background Knowledge

As we always do in our student projects, we now provide some essential background information
for the execution of the project itself. These concepts are expressed in a basic form, but sufficient
to understand the topics we deal with and will then be applied and deepened through specific
examples. If teachers or students are interested in learning more about them, there are various
references in the text. Obviously a deeper knowledge of the covered subjects always brings
advantages and we recommend it, especially if the aim is to teach these topics, but it is not
necessary for the implementation of this project.

3.2.1 Deflection of Light and The Gravitational Lens Effect

When light coming from one or more distant sources passes by a mass distribution positioned
between the source and the observer, the light path is bent by the gravitational potential of the
mass distribution, from now on called lens. This effect is known as gravitational lensing and the
amount of bending was predicted by Albert Einstein’s General Theory of Relativity.
Why do we call this effect gravitational lens effect? The name comes from the analogy with "real"
lenses we know from optics. In fact, just as lenses deflect light rays due to their refractive power,
in the universe a massive object, thanks to its gravitational attraction, deflects the rays of light
that pass near it in a straight line [65].

The idea arose, however, well before Einstein and obviously starting from totally different
conceptual assumptions, namely assuming that light consists of material particles, using Newtonian
gravity and the Sun as lens. In fact, already Newton hypothesised this effect in his book Opticks
(1704) [77]. Afterwards, Henry Cavendish, in an unpublished note (1783/84) [109][66],1 and Johann
Georg von Soldner, in a published work from 1801 [102], predicted the amount of the bending of
light which was only half of the real value [17][65][95]. The amount of bending is expressed by
an angle, namely the angular change of the rectilinear trajectory of the ray, that in the case of
Cavendish and Soldner we call Newtonian deflection angle2

δN = 2
GM

R c2
=

RS

R
, (3.1)

where G is Newton’s gravitational constant, M the mass of the deflecting body (lens), R the radius
of the lens and obviously the smallest possible distance of the light ray from its centre, c the
velocity of light and RS the Schwarzschild radius3 of the lens. This result (and all the following)
is valid only if GM

Rc2 ≪ 1, which is the case of weak gravitational fields,4 where the value of the
gravitational potential is |Φ| = |GM

R
| ≪ c2, and true for all the cases we are going to analyse

[65][76][94][115]. Actually, in his first attempt also Einstein obtained one half of the correct value.
This was in 1911 using the equivalence principle and assuming that the spatial metric is Euclidean.
Then in 1915, elaborating and completing his General Theory of Relativity, he corrected this result

1It is thought that this note may have been written in 1783/84, inspired by a letter from Reverend John Michell
(1724-1793) dated 26 May 1783 [118]. However, there are some authors who argue that it was written no earlier than
1804 because of the watermarks on the piece of paper [51].

2The Newtonian deflection angle is derived in books of classical mechanics or see also [17][65].
3In General Relativity, the Schwarzschild radius is the smallest radius of a celestial object of a given mass for

which a light ray can escape.
4Not to be confused with weak gravitational lens effect.
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and for the first time the real amount of light bending was known [76]. The correct value is in
fact twice his previous estimate, because the curvature of space has to be taken into account. In
addition, General Relativity allows another interesting interpretation that leads to the same correct
result and makes the analogy with geometric optics clear. Basically, the space in which the light
propagates can be considered locally flat and the lensing effect the result of a weak perturbation
due to the Newtonian gravitational potential of the lens, expressed by an effective refractive index
n(r) = 1 + RS

r
= 1 − 2 Φ

c2 dependent on the distance r from the lens itself (as if the space were
hypothetically pervaded by a medium with this characteristic). At this point, applying Fermat’s
principle,5 it is possible to derive the deflection angle [65][73][76][95]. This approach is very similar
to the idea of the "fata morgana" (mirage) phenomenon on Earth caused by the temperature and
density gradient of the lower atmosphere [65][85]. Ultimately, the correct deflection angle6 is
expressed by

δ = 4
GM

b c2
= 2

RS

b
, (3.2)

where b represents the distance of the light ray from the lens centre which is called impact
parameter. This gives an estimate for the deflection of a light ray passing at the solar limb
(b = R⊙) of δ = 2δN = 1.75′′. Einstein’s prediction about the deflection of light was proven
during the solar eclipse of 29 May 1919 and this was also the first observation of the gravitational
lens effect which made Einstein and his theory famous in the entire world [17][65][95].
Einstein was also the first to consider the fact that other stars besides the Sun could act as
gravitational lenses and deflect light of distant sources from its original path. But he gave no hope
to such observations for basically two reasons. In fact, he considered the necessary alignments
between the stars and the observer highly unlikely and, moreover, the order of magnitude of
such effects was too small to be actually observed with the instruments of that time [24]. In this
respect, it was the astronomer Fritz Zwicky who, in 1937, suggested to consider galaxies, called
at that time nebulae, instead of stars. Basically, these newly (from 1923) defined extragalactic
objects had two advantages in the theoretical framework of gravitational lensing: they are much
more massive than single stars and they are extended, therefore the necessary alignment is not
so improbable anymore [120]. However, the real interest in gravitational lensing began in the early
1960s with independent research by S. Refsdal, S. Liebes and Yu. G. Klimov and the contemporary
discovery of quasars [96].
Nevertheless, it still took more than a decade before the first gravitational lens system was
observed in 1979. Indeed, Walsh, Carswell and Weymann discovered the first gravitational lensing,
the quasar QSO 0957+561A,B, nowadays known as the Twin Quasar [96]. Hence a long history of
observations and discoveries began.

The optical illusions of gravitational lensing in the universe can be created by different celestial
objects. In fact, not only stars, but also quasars, galaxies and clusters of galaxies are involved in
the process as sources and lenses. Basically, it is possible to distinguish three types of gravitational
lensing [17][65]:

• Strong lensing, with resolved multiple images of distant sources. Among the various images
are arcs as well as Einstein rings and crosses. In this case quasars, galaxies or clusters of
galaxies are counted among the typical light sources, while the lenses responsible for this
effect are galaxies or clusters of galaxies. Moreover, a high degree of source-lens-observer
alignment is required for this type of effect to occur. The strong gravitational lensing permits
to explore the distribution of matter within the lenses, including luminous and dark matter,
and to determine cosmological parameters, like for instance the Hubble constant.

5"The light path between two points is the one that takes the least time" is a common formulation of Fermat’s
principle which is correct in most cases.

6The Einsteinian deflection angle is derived in many books on gravitational lensing, for example [17][73][76].
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• Weak lensing, with alteration of shape and orientation of the sources, but without the
production of multiple images. For detecting this effect, statistical analysis of many sources
is required, in fact on a single object it cannot be inferred. In this case galaxy clusters are
the lenses that distort background galaxies giving rise to cosmic shear that describes how
the large-scale structure affects the shape of galaxies. Thanks to this effect it is possible to
explore the mass concentration of celestial objects involved and also the large scale structure
of the universe between observer and source.

• Micro lensing, with multiple images that cannot be resolved. It is possible to infer this
effect from measuring the total brightness amplification of all the lensed images produced
when source, lens and observer are in relative motion. Typical sources are stars and typical
lenses are other stars, (exo)planets and other faint objects. An example is given by stars in
the Large Magellanic Cloud as sources and MACHOs7 in the Milky Way’s halo as lenses. Of
course the alignment source-lens-observer plays here a fundamental role and since it is a
rare event, many stars have to be regularly monitored. This effect is used in searching for
extrasolar planets and was also used for determining if MACHOs are components of dark
matter.

In this project we take into consideration only the strong gravitational lensing in weak fields.
This is because in nature it offers stunning images able to fascinate students and raise their
motivation in understanding such a phenomenon and also because it better suits our educational
goals, especially when it comes to the analogy and combination with classical optics. Once more,
with this work, we have the opportunity to introduce research-validated activities to enhance
the knowledge-building process of students [113]. In addition, by engaging students with in-
class demonstrations, their interest increases and they can better appreciate this topic. Without
underestimating the fact that with the introduction of other already-covered subjects, such as
optics, the learning process is facilitated [47].
We aim for approaching gravitational lensing in the simplest way possible, in order to give the
chance to our students to understand the key mechanism and the consequences of this process.
The theme is theoretically quite complex, but it is possible, thanks to simplified models and
appropriate approximations, to give students an insight into the subject. The simplest models for
gravitational lenses are axially symmetric8 [94], therefore we restrict our reasoning to such lenses.
Furthermore, in our simplified models the expressions involved in describing this gravitational lens
effect can be derived and discussed even in upper high school.

3.2.2 The Gravitational Lensing Geometry and The Deflection Angle

At this point we have a basic idea of how gravitational lensing works (fig. 3.1), however, before
analysing this theme more deeply, we need to understand the geometry of the lens system
and clarify some concepts, approximations and simplifications used as the basis of this project.
Moreover, considering our target audience, we do not follow the more general approach based on
General Relativity (see for example [4] or [5]), but limit ourselves to a more elementary one.
First of all, for simplicity and to reach our educational goals without distracting the attention of
our students with intricate calculations, as said, all models of gravitational lenses we consider are
axially symmetric. This fact brings the advantage that we can replace vectors by appropriate scalar
quantities because in this case light deflection is independent of the azimuthal angle [17]. Thanks
to the lens symmetry, additionally, the light rays from the source can be considered as confined

7MAssive Compact Halo Objects, e.g. brown dwarfs, Jupiter-like planets and other stellar remnants.
8The axisymmetric lens is when its mass distribution has spherical or cylindrical symmetry in three dimensions,

corresponding to circular symmetry in two dimensions [17].
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Figure 3.1: Representation of the gravitational lens effect (not to scale and exaggerated) of the
system consisting of a distant star, the Sun and the Earth. We can see the indicated deflection
angle δ, the actual position of the star S and its apparent position I as seen from Earth. Credit:
(Sun) NASA/SDO/Seán Doran – (Earth) NASA Earth Observatory images by Robert Simmon.

in the plane defined by source, lens and observer. This plane cannot be defined in case of their
perfect alignment [95], an important detail for this special case that we will recall later. Thanks to
this simplification, many of the most important lensing concepts can be derived without problems.
Focusing our attention now on the geometry of the gravitational lens system, whose general,
schematic representation9 produced with the software Geogebra is in fig. 3.2, we define the line
connecting observer and lens OL and its extension as the "optical axis" of the system. The optical
axis is perpendicular to the source and lens plane which are respectively at the source and lens
distance from the observer [94]. Basically, in absence of the lens L, the observer O would directly

Figure 3.2: Geometry of the general situation of the gravitational lens effect (in this diagram the
angles are intentionally highly exaggerated). The line starting from the observer O and passing
through the lens L (that we call "optical axis" [95]) is the starting point for defining the angles that
correspond to the position of the source, θS, and the position of the images, θ1 and θ2. It is to
be noticed that the image I1 appears on the same side as the source with respect to the optical
axis and the second image I2 on the opposite side (and so it will always be in what follows). The
angular separation of the images is ∆θ = |θ1| + |θ2|, δ is the angle of deflection and b the impact
parameter in the lens plane.

look at the source S in its true position. But the presence of L deflects the light from S by the
angle δ, so that O cannot look directly at S anymore and sees instead two images,10 I1 and I2, of

9Also in this case, when teaching, explanatory diagrams are important to understand the topic and they can be
used as printed copy or as file.

10Although only one image is also possible, in general, multiple images are produced, even more than two.
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the source in different positions. As we can infer from the figure, what we are able to measure
are the angular distances with respect to the lens of the various elements of the system, normally
expressed in arcseconds11 (′′). Thus, θ is in general defined as the angular separation of an image
and θS that of the source in its actual position, both with respect to the lens. It is in this way
that for instance the image I1 is characterised by the angular distance θ1 from the lens and
this type of notation will henceforth be maintained and used interchangeably. In addition, unless
stated otherwise, we always consider θS ≥ 0 and in the same way any distance on the same side.
Then DL is the distance of the lens and DS of the source from the observer, DLS is instead the
distance of the source from the lens. These distances are normally very large, hence cosmologically
important, and in cosmology the concept of distance is not unique and can be quite complex.
In the context of gravitational lensing we actually use angular-diameter distances which require a
cosmological model and in general DLS 6= (DS − DL) [17][95]. Only when we consider redshifts
z ≪ 1, like in the Local Group, we recover the additivity of distances (DLS = (DS − DL)) [94].
This brings us to the next simplifications. In fact, since the distances involved between source,
lens and observer are much larger than the spatial extent of the lens, we can apply two more
approximations:

• the small angle approximation,

• the thin lens approximation.

As we already know, the strong lensing effect that we consider occurs in the weak gravitational
field regime and Φ ∼ −1/r. This means that in our models the distance b, which describes
the position of the light ray with respect to the lens centre, is always much larger than the
Schwarzschild radius RS of the lens, consequently the deflection angle is small, δ ≪ 1. This
is true also if we choose b shorter than the actual border of the lens, for example when a ray
passes through the transparent parts of a galaxy. In this case, according to Newton’s shell theorem
treated in section 2.2.2, RS does not include the entire mass of the lens, but only the fraction of
mass enclosed inside b. Again, thanks to Newton’s shell theorem, the mass of the celestial object
(or part of it) acting as deflector can be considered concentrated at its centre and in this way we
draw it in our graphs and simulations.
Specifically, in the cases of gravitational lensing that we are going to study, the angles involved
are always small. And this is true for all observed lensing effects in the universe, the angular
separation between images is in fact always below 30′′ [95]. This fact allows us to use the first
approximation, which brings the advantage that it is possible to interchangeably replace lines by
arcs, as well as surface elements of the celestial sphere by corresponding tangential planes. In
the second approximation, we can assume that all the lens mass is confined in a plane, the lens
plane. If the lens is a galaxy, but even if it is a cluster of galaxies, this condition is fulfilled to very
good extent if we remember that the size of a galaxy is typically ∼ 100 kpc while the distances
of lens and source are typically of the order of Gpc [94], which is about three orders of magnitude
larger than the diameter of a typical galaxy cluster [76]. This also means that we can consider the
gravitational lensing to occur at a point close to the lens instead of being a continuous process
and therefore the light path is approximated by two consecutive straight lines (the asymptotes of
the the real ray trajectory [95]). Thanks to these approximations, we can consider to a good extent
the distance b from the lens centre as the impact parameter in the lens plane and it can be read
off from fig. 3.2 that b ≈ θDL.
At this point we express the deflection angle δ, namely the amount of bending of the light path
which was predicted by Einstein’s General Relativity, in a more general form, suitable for all
possible mass distributions describing the lens and different impact parameters:

δ(θ) =
4G

c2

M(|θ|)
θDL

. (3.3)

11An arcsecond is 1/3600 of an angular degree.



CHAPTER 3. GRAVITATIONAL LENSING 47

The modulus is here included because θ is not always a positive quantity because we describe also
images that form on the other side of the optical axis of the lens system. In particular if θ > 0,
then δ > 0 and, vice-versa, if θ < 0, then δ < 0 [17]. It is interesting to note that in eq. (3.3) the
ratio M(|θ|)/θDL expresses the strong dependence of the angle of deflection on the mass of the
lens and on the impact parameter. In fact, M(|θ|), according to Newton’s shell theorem, is the
mass within the impact parameter b ≈ θDL, the only mass that acts gravitationally on the light
ray, bending it [94]. From now on this equation is used in this project when working with the
deflection angle δ.

3.2.3 The Lens Equation

The fact that the observer does not see the original source due to gravitational lensing, but rather
images of it in different positions on the sky is now established. These images are deformed in
various ways and deformations include, among other effects, also multiple images of the same
source, arcs and rings. In this regard, we have to consider the fact that size and shape of the
source, different mass distributions for the lens and the relative positions of source, lens and
observer affect number, position, size and shape of the resulting images. All this and the geometry
of the lens system is taken into account by the lens equation

θ − θS − δ
DLS

DS
= 0 , (3.4)

whose solution gives us the information about the resulting images. To derive the lens equation
is quite simple and a nice exercise. In fact, considering fig. 3.3, which without loss of generality

Figure 3.3: Detail from fig. 3.2 regarding only one side of the optical axis and thus one produced
image I. Taking into account the approximations explained in section 3.2.2, the distance L′I is first
defined as a whole distance and then also as the sum of the smaller distances that constitute it. As
we saw in the previous section, under the same approximations we define the impact parameter
(b = DL · tan θ ≈ θDL).

focuses only on one of the produced images and includes θS ≥ 0, we deduce that

DS · tan θ = DS · tan θS + DLS · tan(δ − θ) + DLS · tan θ (3.5)

and
θ = θS + α . (3.6)

If we now apply the small angle approximation to eq. (3.5) and rearrange the terms more
conveniently, we get exactly eq. (3.4). In addition, according to eq. (3.6), eq. (3.4) defines also
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α(θ) = (DLS/DS) δ(θ), sometimes called the reduced deflection angle [17]. Introducing now the
deflection angle δ from eq. 3.3) in eq. (3.4), we obtain the lens equation

θ − θS − 4G

c2

M(|θ|)
θ

DLS

DLDS
= 0 . (3.7)

At this point it is indeed possible to study many different mass distributions M(|θ|) for the lens
and observe the corresponding outcomes, obtaining clear information about what the observer
sees. In particular, since we are adopting the thin lens approximation, when we solve the lens
equation for a specific deflecting object, M(|θ|) represents the projection on the lens plane of the
chosen mass distribution (see appendix F). Moreover, at first glance eq. (3.7) looks like a simple
quadratic equation, but we have to be careful because, once a function for the mass distribution
is introduced, it could totally change the situation and turn the equation into a much more
complicated one. We will later explore few cases in section 3.3.1.1. Basically, thanks to the lens
equation, we are able to describe every possible configuration for the lens system and deduce
important information on the images resulting from the gravitational lensing process.
A special case is represented by the perfect alignment of observer, lens and source which occurs
when θS = 0. As we know, in this situation there is no plane defined by source, lens and observer.
Therefore, due to full symmetry, in most cases the image of the source is seen as a ring around
the lens, the so-called Einstein ring. This ring remains constant for each individual configuration
and its radius is expressed from eq. (3.7) by

θE =
4G

c2

M(|θE|)
θE

DLS

DLDS
or θE

2 =
4GM(|θE|)

c2

DLS

DLDS
. (3.8)

Specifically, we observe also in this case the dependence on the lens mass enclosed inside the
ring and the distances involved. This leads to the fact that in case of detection of an Einstein
ring, knowing all other elements, we are able to calculate exactly this mass. In addition, since the
Einstein ring radius is constant for a specific considered configuration, if the ring exists, we can
express the lens equation (eq. (3.7)) in terms of its radius θE as

θ − θS − M(|θ|)
M(|θE|)

θE
2

θ
= 0 . (3.9)

The solutions of the lens equation tell us how many images are produced as well as their position
with respect to the lens centre on both sides of the optical axis. It can be applied also to extended
sources, as we will discuss later in section 3.3.1.2, describing in addition the distorted shape of the
images.

3.2.4 Magnification

The images created by gravitational lensing are not only in different positions with respect to the
original source, but also their shape and brightness are affected by this process. This happens
because light rays are normally deflected by different amounts depending on their distance from
the lens centre in the lens plane (expressed by the impact parameter b) and the considered model
for the lens. This phenomenon is known as differential deflection [94]. This gives rise to a pure
geometrical effect called magnification which involves the solid angles subtended by the images,
dΩI = dAI/D2

S , at the position of the observer, magnifying or demagnifying them in comparison
with the solid angle subtended by the source, dΩS = dAS/D2

S [94]. Consequently, as seen from
the observer, in the source plane the area that the source would span in absence of the lens, dAS,
and the area actually spanned by the lensed image, dAI, as well as their shapes, are in general
different. This is schematically shown in fig. 3.4 and the discussion is as always confined to our
simplified model and the explained approximations.
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In particular, the gravitational lensing does not involve emission or absorption of radiation, there-
fore the number of photons is conserved and the surface brightness ([dI] = W

m2·sr) remains
constant [95]. However, the flux density ([dF ] = W

m2 ), given by the product of surface brightness
and solid angle, changes due to the (de-)magnification of the solid angle and the resulting image
appears brighter (or dimmer) [95]. At this point, the simplest way to derive the magnification,

Figure 3.4: Geometry of magnification.

namely this change in flux density or spanned area or solid angle, is described by

µ =
dFI

dFS
=

dΩI

dΩS
=

dAI

dAS
. (3.10)

In fact, if we consider an infinitesimal source, as illustrated in fig. 3.4 (remember that all approx-
imations hold), the corresponding spanned area,12 dAS, is given by multiplying the arc lengths
corresponding to the radial and tangential dimensions of the source area. The result is

dAS = DS
2 · θS dφS dθS . (3.11)

In the same way the area spanned by the image is

dAI = DS
2 · θ dφI dθ . (3.12)

Since our models are axially symmetric, it is true that dφS = dφI = dφ (the deflection is purely
radial) [17], hence the magnification is expressed by

µ(θ) =
dAI

dAS
=

θ

θS

dθ

dθS
. (3.13)

We can identify in the first factor µt = θ
θS
the tangential magnification and in the second µr = dθ

dθS
the radial magnification, obtaining µ = µt · µr [17].
By definition, for the real source µ = 1, namely it is not magnified. In this perspective, an

12This result comes from the surface element of a sphere with radius R, dA = R2 · sin θ dφ dθ, applying also the
approximation sin θ ≈ θ.



CHAPTER 3. GRAVITATIONAL LENSING 50

image with |µ| > 1 is brighter than the source and with |µ| < 1 dimmer. The sign of µ instead
determines the orientation of the image with respect to the source. This is called image parity
and we can see an example of this effect in fig. 3.5. Basically, and this is valid for every θS, for
images on the source side with respect to the lens with µ > 0, the parity is positive and they are
oriented like the source. On the other side of the lens, if µ < 0, the parity is negative and the
images are upside-down with respect to the source, flipped around the horizontal axis. However,
if on this side µ > 0, the parity is positive and this means that we have a double-flip on both
the horizontal and vertical axis [22], as we will see later exploring various models. It is moreover

Figure 3.5: Example of parity for images from a lensed source. Left: Original un-lensed source
(disk of 6 cm diameter). Right: Images produced when the source is seen through a plexiglass lens
that reproduces the lensing effects of a point mass lens. Thanks to the different colours, we can
observe that the image on the right (same side as the source) is oriented exactly as the source, thus
it has positive parity. The image on the left instead is upside-down, inverted about the horizontal
axis, hence the parity is negative. (Picture taken with our own equipment, see section 3.3.2.3)

interesting to note from eq. (3.13) that when θS → 0 then µ → ∞, this is the case of perfect
alignment source-lens-observer. With this configuration we normally expect a ring, therefore a
high brightness, but still finite. In fact, this result is not real, images cannot be infinitely bright,
and real sources, however small, always have a finite extent [95].
Finally, since the magnification can be calculated for each image of the source, the sum of the
absolute values of the individual magnifications µtot =

∑ |µI| gives the total magnification, which
is purely an expression of the change in brightness of the source due to lensing [17].
It is clear that this topic involves a basic knowledge of infinitesimal calculus and the concept of
solid angle, thus it is considered for a slightly more advanced audience. However, according to
[108] and [38], we expect students at the end of secondary school to have such basic knowledge,
at least as far as infinitesimal calculus is concerned. Instead, speaking of solid angle, it is possible
to find nice explanations at the level of knowledge of secondary-school students in textbooks or
on-line, for instance [2][56][116].
This reasoning can also easily be generalised when considering extended sources with homo-
geneous surface brightness. In that case for the magnification we get µ = FI

FS
= ΩI

ΩS
= AI

AS
.

Conversely, if the surface brightness is not homogeneous, the calculations are too complex and
bring us out of our educational purposes, thus we do not treat this case. Nevertheless, if interested
in learning more about this subject, see [17], [95] and [96].

3.2.5 General Relativity Meets Optics

We have already mentioned the analogy between gravitational lensing and "real" lenses in optics
and we now want to explore this aspect. The goal is to effectively combine General Relativity and
optics in order to understand the properties of the lensing effect in the framework of the optical
properties of a weak gravitational field characterized by the law of light deflection [92].
If we imagine that in the universe instead of a mass distribution there is a huge lens made of
glass of refraction index n that deflects light rays exactly as the mass distribution would, it is
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possible to study the characteristics of this hypothetical glass lens. Obviously the glass lens must
have a special shape that depends on the mass distribution we want to represent. So how can we
understand which profile the glass lens must have in order to represent and simulate the effects
of a mass distribution of our choice? It is precisely for answering this question that we need to
combine what we know from General Relativity and optics [85]. This procedure is not so complex
as it seems, especially in our simplified approach. In fact, from experience, it is feasible to perform
it with students of the last years of secondary school, especially if they are particularly interested
in the subject.
Referring to fig. 3.6, we apply now this method and see how to extrapolate the general profile for
the glass lens. First of all, one side of our glass lens is taken to be flat for simplicity, perpendicular

P

Figure 3.6: Deflection in P of a light ray travelling through two media with different index of
refraction n > n1 (n1 = 1 is air) according to Snell’s law and introduction of the deflection angle
δ.

to the incoming-from-infinity light rays13 and lies on the y-axis of the coordinate system we have
introduced in fig. 3.6, the origin of which is in the center of the lens just on the flat side. We must
therefore deduce the shape for the other side. Secondly, our lens models are, as always, axially
symmetric and consequently the glass lens will be rotationally symmetric, hence it is enough to
calculate the profile in two dimensions and then rotating it around a central axis in order to get
the entire lens. Indeed, this simplifies our work considerably. The inclined black line in fig. 3.6
represents the tangent line to the surface of the glass lens in the point P. If we can understand
how the tangent line changes for all points of the lens, it is possible to find the corresponding
function which describes the shape of the lens. Basically, what we need is the deflection angle δ
from General Relativity and Snell’s law from optics. Let’s introduce these concepts analysing fig.
3.6. We know that, when passing near a massive object, at a distance b = yP, the path of a light
ray from a distant source is deflected. This path is represented by the red arrows in the diagram.
The amount of deflection at any point of the lens, as we know, is represented by the deflection
angle δ, expressed by eq. (3.3). If we now apply Snell’s law14 to this configuration and make use
of the trigonometric angle sum and difference identities,15 we obtain

n =
sin(α + δ)

sin α
= cos δ + cot α sin δ . (3.14)

From eq. (3.14), inserting eq. (3.3) for the angle δ, and from the diagram, we see that

dy

dx
= − cot α = − n − cos δ

sin δ
≈ − n − 1

δ
= − (n − 1) c2

4 G M(|y|) · y , (3.15)

13Since the distances involved are very large, when the light rays reach the lens plane they are practically perpen-
dicular to it and parallel to each other, like if they were coming from infinity.

14From fig. 3.6 Snell’s law is n · sin α = n1 · sin β.
15sin(α ± β) = sin α cos β ± sin β cos α
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where the deflection angle and the mass are expressed as functions of the y coordinate of point
P and the small angle approximation is certainly used. At this point, substituting in the place
of M(|y|) the chosen mass distribution (the mass enclosed inside y and projected onto the
lens plane) and solving this differential equation, the profile of the corresponding glass lens is
obtained. Indeed, for mass distributions not too complicated, this differential equation is easily
solved separating the variables and integrating and offers a nice mathematics practice applied to
a real example, as we will later see in section 3.3.2.
We are aware that solving differential equations for secondary school students is not common
practice. However, according to our direct experience and as written in [108] and [38], as long
as elementary functions are concerned it should be taught and above all it is totally feasible.16

Therefore, we think it is stimulating to involve even younger students in this type of reasoning
and exercise. So that they can, stimulated also by curiosity, discover the shape of simple glass
lenses that simulate the effects of gravitational lensing. Thanks to this connection between General
Relativity and optics, a subject such as gravitational lensing, which can be abstract to most people,
can be brought back to a more everyday level.

3.3 Exploring and Visualising Gravitational Lensing

Everything we have seen so far derives from the theory of light deflection and the real gravitational
lens effect that we observe in the universe, obviously restricted to our simplified models and
with all the approximations of the case. Nevertheless, under the same conditions, it is totally
applicable also to the effect resulting from computer simulations of gravitational lensing produced
with Geogebra or when the effect is reproduced using special plexiglass lenses. These alternatives
give us the possibility to approach the topic from a different point of view and to apply the
just-explored notions, which is in fact the focus of this new section and of the following ones. In
addition, an example of activity which makes use of these educational tools, tested several times
also with students at the end of secondary school, is presented in appendix G.
The basic idea is to be able to visualize the light on curved paths and analyse the characteristics
of this process. As for the teaching aspect, the inspiration for the development of such teaching
tools came from the work of scientists such as the Norwegian astrophysicist Refsdal, who tried
to reproduce what the gravitational lens effect should look like, combining different knowledge,
techniques and tools. Indeed, gravitational lensing, as we know, comes from a theoretical
prediction made by Einstein decades before it could actually be detected. These are the reasons
why it is a topic that is very often addressed from a purely theoretical point of view and it is
obviously not possible to experiment with this kind of lensing. The question we want to answer
from a teaching point of view is therefore how we can reproduce this effect on a small scale so
that we can study it more closely and perhaps deal with it by adding an experimental note to
the theoretical explanation. This is a way to attract students’ attention and involve them in an
active understanding of these concepts and not just as passive listeners. An approach that, as we
know from the previous chapter, stimulates and promotes a deeper and more lasting acquisition
of knowledge, as well as interest in scientific topics and the development and strengthening of
important skills.
Our primary interest falls on galaxies as gravitational lenses. This is because galaxies offer a
variety of shapes and internal morphologies and these objects can also be used to trace the
distribution of dark matter.17 This last aspect in particular comes from the fact that gravitational
lensing is independent of the nature and state of the deflecting matter, therefore equally sensitive

16We do not expect students to solve differential equations, but by giving them the solution they are able to insert
it into the differential equation and prove its correctness.

17Thus providing a second independent method for estimating the possible amount of dark matter, comparable
with the results obtained with the rotation curves in Chapter 2.
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to dark and visible matter [94]. The idea is that a galaxy, being made of stars, has "transparent"
space between them, therefore it makes sense to choose an impact parameter inside the galaxy
and study the result of the lens equation at different radii, always keeping in mind Newton’s shell
theorem (section 2.2.2).
As in the students project on dark matter, the content of this chapter can be divided and used
to practice specific physics and mathematics topics through individual exercises applied to a real
problem. This includes, among others, geometric optics and the concept of refraction, as well as
the solution of equations of various degrees, geometry and differential calculus.18 However, when
considered in a single piece, this work represents a student project on the discovery of this effect
due to gravity and on the understanding and visualization of this phenomenon bringing it back to
a more accessible dimension. And now we are going to explore these teaching tools for visualising
the gravitational lensing effect: computer simulations with Geogebra and special plexiglass lenses.

3.3.1 Computer Simulations of Gravitational Lensing Using Geogebra

Wanting to be able to visualise the gravitational lens effect, one tool that can accomplish this
task is the use of computer simulations. In this regard we wanted to use the familiar Geogebra
software for the educational and practical reasons we already know. The goal is to create such
simulations for different lens models whose mass distribution is representative of galaxies. In this
perspective, eight mass distributions were chosen and analysed as gravitational lenses: Point mass
lens, Plummer sphere lens, Uniform disk lens, Singular isothermal sphere (SIS) lens, Kuzmin disk
lens, SIS with a core lens, Spiral galaxy lens, Navarro-Frenk-White (NFW) lens.
Among these models we have focused mainly on the first five because, as we will see later, from
an accurate comparison the other three give results very similar to one or another lens, thus we
have chosen to deepen the easiest with regard to the equations involved. Furthermore, at the
beginning the source is considered to be point-like for simplicity, however we will see later cases
of extended sources and thus rise to a slightly higher degree of difficulty.
We would also like to point out that the use of such simulations in the classroom offers a very high
degree of interactivity and provides many insights that are usually deduced by other approaches,
e.g. the ray-tracing diagram method [85]. And in addition to the use of our files, after having
understood the concepts that we will now see, it is also possible for anyone with a basic knowledge
of Geogebra software to reproduce such simulations or create new ones. The students themselves
appreciate the use of such educational means at first hand, which among the various benefits (we
will discover them during the next sections) include the consolidation of computer skills. However,
it is always possible to use frames from such simulations for teaching purposes, perhaps enlarged
and printed clearly visible or as static illustrations, as we for obvious reasons use for the examples
given in this thesis.

3.3.1.1 Graphical Solution of the Lens Equation and Image Magnification

We all know that using natural curiosity to stimulate the students’ interest in these and other
incredible phenomena helps the learning process. Allowing indeed in this way the development
of deeper and longer term knowledge that can be then applied to more and more complex
examples. And so, stimulated by curiosity, while teaching the concept of light deflection some
useful questions that may for example arise are: How many images of a distant source could we

see if its light, during the journey, passes near a black hole or a galaxy? Where would we see these

images? How bright would they be? As said in sections 3.2.3 and 3.2.4, the answers arrive solving
the lens and the magnification equations. This is the reason for investigating these equations and

18As stated in [108] and [38], secondary school students (K12) are able to perform differential and integral calculus
applied to elementary functions, such as the exponential function.
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for this reason we are going to study now these several examples of gravitational lenses. For these
examples we have chosen that they contain inside the Einstein radius the same amount of mass,
so that, when present, the size of the Einstein ring is always the same.
First of all, let us consider the Einstein ring defined by eq. (3.8) and lens equation eq. (3.7) for each
lens model of our interest. Once it has been proven that the ring exists, let us insert the Einstein
ring radius θE in eq. (3.7), together with the chosen mass distribution and then we solve it. In
particular, the usefulness of the graphical solution of this equation, performed with Geogebra, is
emphasised. This is because it actually provides a simulation of gravitational lensing that permits
us to visually study the effect for different positions of the source, as seen in projection, with
respect to the system’s optical axis. Since in the case of point-like sources we obtain point-like
images, in order to obtain information about their brightness, we calculate then the magnification
of the observed images, thanks to eq. (3.13). In this respect we will see once again that Geogebra
will be a valuable aid.
Having various examples available, it is not only possible to explore and discover different cases of
gravitational lenses and related optical illusions, but also choose the levels of difficulty, especially
in the mathematical part, that we want our students to face during this process. In this regard, the
simplest models to deal with, among those chosen, are point mass, SIS and uniform disk, while
for the others a more advanced mathematical background is required. However, we support the
idea that, thanks to the use of Geogebra software, a considerable simplification of the resolution
takes place, which allows even less advanced students to understand even the most mathematically
complicated cases through visualisation. Let’s investigate our lens models.

Point Mass Lens This case represents the lensing effects produced by gravitational lenses as
black holes (at such a distance from them in the lens plane that we remain in the weak gravitational
field regime),19 massive compact objects and even stars. In our view, this model represents galaxies
as lenses when viewed from far away so that within the impact parameter b the total mass of the
galaxy is contained. In this case we can consider them as points and are therefore able, around
them, to study the effects on light from background sources. The main characteristic of this lens is
that its mass is independent of the distance from its centre, expressed by the angle θ, it is totally
concentrated in this precise central point (zero-dimension) and the mass density is represented by
a Dirac delta function, i.e. this is a point mass.
Firstly, we introduce M(|θ|) = M(|θE|) = Mtot in equations (3.8), obtaining

θE
2 =

4G Mtot

c2

DLS

DLDS
= 2 RS

DLS

DLDS
. (3.16)

The same is done with eq. (3.7), expressing then the result in terms of the Einstein ring radius
θE (or in alternative using directly eq. (3.9)). The resulting form of the lens equation for this lens
model is

θ − θS =
θE

2

θ
. (3.17)

Solving eq. (3.17), number and position of produced images from a background point-like source
are obtained.

As we see, this equation is still a quadratic equation and easy to work with, but as said
before this won’t be always the case. Since for a point mass lens it is so easy, we start solving
this quadratic equation analytically and discussing its outcomes. This is actually an easy maths

19In the strong gravitational field regime, as far as light deflection is concerned, absolutely extreme and very
fascinating effects originate [26]. As motivating as it may be, the equations involved and the treatment of this case are
highly complex and much more difficult to understand and therefore not suited to the level of our audience and the
educational objectives we want to achieve.
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practice for our students which involves one of the most-mentioned equations at school. The
solution of eq. (3.17) is in fact given by

θ1,2 =
θS ±

√
θS

2 + 4 · θE
2

2
, (3.18)

which defines the distance of the two images from the lens centre θL = 0. We underline the fact
that for these solutions it is always true that θ1 > 0 and θ2 < 0, in particular it is easily proven
that |θ1| ≥ θE and |θ2| ≤ θE. This means that we have an image on the right side of the lens and
its distance from it is equal to or greater than the Einstein radius. And we have a second image on
the left side of the lens with a distance from it equal to or less than the Einstein radius. Thanks
to Vieta’s theorem,20 using the solutions (3.18), we can also deduce two special characteristics of
this system, namely |θ1| · |θ2| = θE

2 and |θ1| − |θ2| = θS. From the latter we obtain the distance
to the lens of the real source.
The angular distance of the images from the lens, as well as their angular separation and its
middle point are quantities directly measurable. However, when it is possible to understand
their dependencies and relationships with other involved quantities, this provides extra useful
information. In fact, calculating now the images’ angular separation ∆θ, given by

∆θ = |θ1| + |θ2| = θ1 − θ2 =
√

θS
2 + 4θE

2 , (3.19)

eq. (3.18) becomes

θ1,2 =
1

2
(θS ± ∆θ) . (3.20)

Also from this results, it is actually possible to infer the true position of the source even if we do
not see it. The next step consists in calculating the angular distance from the lens of the middle
point θ of the images separation. In fact, starting from the position of one image, for simplicity
we choose θ1, we see that

θ = θ1 − ∆θ

2
=

1

2
θS . (3.21)

It is clear that for this lens model this point is always halfway between lens and source.

Let’s now consider few special cases, whose results from equations (3.18) (or (3.20)), (3.19) and
(3.21) are collected in table 3.1.
The first case, defined by θS = 0, represents the perfect source-lens-observer alignment. The

θS = 0 θS = θE θS ≫ θE

θ1,2 ±θE
1±

√
5

2
θE ≈ 1

2
(θS ± θS)

∆θ 2 θE
√

5 θE ≈ θS

θ 0 1
2

θE ≈ 1
2

θS

Table 3.1: Results from equations (3.18) (or (3.20)), (3.19) and (3.21) in the cases of interest. θE refers
to the Einstein radius.

related solutions mean that the two images form at the same distance of value |θE| from the
lens centre and we know that for reasons of full symmetry the observer actually sees a ring of
radius θE. The angular separation corresponds in fact to the ring diameter and the centre of the
diameter is correctly the position of the lens.

20Vièta’s theorem gives formulas that relate the roots and the coefficients of a polynomial of degree n, but for
positive roots only [111]. The general form of Vièta’s theorem was established by A. Girard [35].
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The next case of interest for this lens model is when θS = θE. Considering this configuration, the
images are clearly positioned at well defined and fixed distances, fractions of the Einstein radius
θE. In fact, I1 is outside the Einstein ring, on the same side of the source, and at an angular
distance from the lens of |θ1| = 1.62 |θE|. I2 is instead inside the Einstein ring, on the other side
with respect to the lens, and at an angular distance of |θ2| = 0.62 |θE|. Note that, as expected, if
the angular distances are multiplied it gives θ2

E , confirming in this way the first special feature we
saw. Also for this configuration the angular separation of the images is also a specific fraction of
θE and its midpoint is now positioned at the distance of half Einstein radius from the lens centre.
The last treated case is θS ≫ θE. Basically, in all our equations now θE is negligible as compared
to θS. These results tell us that the image on the source side is at practically the same real
position as the source and the other is approximately at the origin, where the lens is located. We
can deduce that the observer basically sees only one image at the real position of the source,
so we are faced with a case of little relevance for gravitational lensing, at least as far as the
production of images is concerned. Indeed, we are essentially almost observing the real source as
we can also infer from the fact that the deflection angle δ → 0 for θ → ∞.

The analytical approach clearly provides interesting information on the effect produced by a
point mass lens. But, as we shall soon see, it is not always possible to reach such conclusions
so effortlessly, especially when the lens equation is not in such accessible form. To achieve our
educational goals, we therefore need an alternative and simpler method of resolution. And this
is where the graphical solution of eq. (3.17) comes into play, in particular through the use of
Geogebra. In fact, besides giving the possibility to visualise the solutions, this method allows to
conduct a deep qualitative analysis on the effects of gravitational lensing. This kind of analysis is
in our opinion the most important and stimulating part of the learning process concerning this
topic. However, although not in such a detailed way, it is also possible to quantitatively analyse
the results, which are mainly numerical, and obtain all the fundamental information derived
analytically. This is why we consider such an approach the simplest and most useful way to solve
the lens equation, especially in the case of more complex equations, as we shall soon see.
In essence, thanks to Geogebra, it is possible to produce the graphic solution as a convenient
diagram that provides the ability to follow and analyse variations in the gravitational lens effect
using sliders to change the values θS and θE. In addition, by defining when the function
f(θ) = θ2 − θSθ − θE

2 (derived from eq. (3.17)) intersects the θ-axis, operation that gives us the
coordinates of all intersection points (namely the images positions), it is also possible to combine
the diagram with a simulation of what the observer sees in the various configurations. These
tools are in fact designed to be used together while teaching these concepts in order to facilitate
students’ understanding through observation. We are now going to discuss examples taken from
these diagrams, in particular the special cases seen above which are also shown in figures 3.7 and
3.8.21

For the graphic solution, the two equations f1(θ) = θ − θS and f2(θ) = θE
2/θ are matched and,

although the result is the same as that obtained analytically, in this case a simple but powerful
visualisation is also produced. As we see represented in figures 3.7 and 3.8, the diagram of the
graphical solution (above) is combined with the simulation of the resulting lensing effect (below).
The files from which these images are taken are dynamic and once we set a value for the Einstein
radius θE, moving the slider for the θS value, which, as already indicated, is always considered
positive, we can follow the evolution of the lensing effect corresponding to different positions
of the source. Specifically, we observe in fig. 3.7 the perfect source-lens-observer alignment, i.e.
when θS = 0. In this case, as expected, there are two solutions and they are on opposite sides
of the lens, both at an angular distance |θE| from it, which is the radius of the Einstein ring

21We use here a plot θ vs. f(θ), but it is also possible to reproduce the same reasoning using u ≡ θ/θE and plot
u vs. f(u).
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that actually forms. Clearly, the separation between the two images is the ring diameter and the

Figure 3.7: Graphical Geogebra solution of eq. (3.17) for the point mass lens in the special case of
θS = 0, namely with perfect source-lens-observer alignment. Due to full symmetry, the observer
sees a ring of radius θE, the famous Einstein ring, which is shown in the bottom panel (the image
in the panel is here enlarged for permitting a better view).

middle point the lens position.
In fig. 3.8 we then continue analysing what happens with θS > 0, where we consider that the
source moves further and further away, sideways, from the line joining the observer and the
lens. We see indeed represented the last two analytically analysed special cases. In this situation,
again two images of the source are visible, one is always positioned on the left side of the lens,
internal to the Einstein ring, and the other on the right side (in our model the source side), but
external to the ring. Moreover, the further the source moves laterally away from the lens, as seen
in projection, the closer the internal image gets to the lens itself, eventually merging visually with
it. Meanwhile, the external image moves away from the lens on the same side as the source and
approaches the source’s real position. This is when θS ≫ θE and we already saw why it is of little
interest for us.
The aim of this approach is to demonstrate that, starting from the graph, we can also conduct a
quantitative discussion, confirming many of the results obtained analytically. This is done also
thanks to some features of Geogebra, observing the plots and their evolution, considering the
algebraic section and by setting a random value for θE.

22 In particular, relying only on what
Geogebra has to offer, we note that the value of θ is always half the value of θS, as we expected
from eq. (3.21). Moreover, we can monitor how the length of the segment connecting θ1 to θ2

varies, as well as the individual distances of the images from the centre of the lens. Another
important observation to make concerns the relationship that exists between these quantities,
considering also u ≡ θ/θE (see footnote 21).
The advantage of this educational tool lies mainly in the fact that one can directly observe and
analyse the simulation of the effect of gravitational lensing. At this point, exploiting this advantage,
we can then decide on the type of approach best suited to our students. For example, we can

22It is also alternatively possible to choose a realistic value and simulate as much as possible a real gravitational
lens example.
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Figure 3.8: Graphical Geogebra solutions of eq. (3.17) for the point mass lens in case of θS > 0
(in the left part is shown the special case θS = θE). The observer sees two images, one inside the
Einstein ring (gray dotted lines above and dashed circle below) positioned at θ2 and one outside
at θ1, as shown enlarged in the bottom panel. The further away the source is from the lens, as
seen in projection, the closer the external image will be to the source itself and the other to the
lens, the latter two arrive in extreme cases to merge visually so that they cannot be distinguished.

adopt a qualitative approach starting with the observation and discussion of the phenomenon,
stimulating and guiding students to analyse what they see, ask questions and hypothesize the
answers, based on the background knowledge they have developed. Then, eventually, we can
proceed with the quantitative part and, if the students are at a proper mathematical level, also
with the deepening of the equations that provide such results. Or, on the other hand, it is possible
to approach the subject starting with the study of these equations and then continue with the
analysis of the graphs obtained and the numerical results, investigating the various solutions. This
latter approach is well suited to students of a slightly more advanced level, who are therefore
already able to understand and make the connection between analytical and geometric results
without problems.
For all these reasons and the fact that it is possible to visually reproduce the solution of the
lens equation and the effects of gravitational lensing, we consider the graphic one the best
approach, especially when the equation is in more complicated forms. Furthermore, this will be
the approach we will adopt for all other lenses in this thesis.

The question that at this point naturally arises is "what about brightness?". In fact, since all
elements are point-like, we have no clue on the brightness of the images. Therefore, to answer
this question we have to calculate it using eq. (3.13) together with eq. (3.18). The magnification of
the two images is then given by

µ1,2 =
θ1,2

θS

dθ1,2

dθS
=

1

2


1 ± θS

2 + 2θE
2

θS

√
θS

2 + 4θE
2


 =

1

4

(
2 ±

(
∆θ

θS
+

θS
∆θ

))
, (3.22)
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θS = θE θS ≫ θE

µ1 1.17 ≈ 1
µ2 −0.17 ≈ 0
µtot 1.34 ≈ 1

Table 3.2: Results from equations (3.22) and (3.23) for the magnification in the cases of interest. θE
refers to the Einstein radius.

where in the last step we have also introduced eq. (3.19), expressing it with measurable quantities.
According to section 3.2.4, the sign of µ determines the parity of the image, meaning its orientation
with respect to the source, and for this lens model we see that µ1 > 0, positive parity, and µ2 < 0,
negative parity. We can now calculate the total magnification which is

µtot = |µ1| + |µ2| =
θS

2 + 2θE
2

θS

√
θS

2 + 4θE
2

=
1

2

(
∆θ

θS
+

θS
∆θ

)
. (3.23)

Finally, we analyse the image brightness in the special cases named before. We already know that
for θS = 0 the magnification diverges and it is only a geometrical problem, so not real. In this
case we have in fact a ring and it is very bright. The numerical value resulting in the other cases
are instead collected in tab.3.2.
Referring to this table, we note that when θS = θE, the image I1 is already at this point only
slightly brighter than the source, whose magnification is by definition set as µS = 1, and the
image I2 is quite dimmer. However, the total brightness of the images is ultimately higher.
Considering the case with θS ≫ θE, where θE becomes negligible, we can take these results as
a further confirmation that, even in terms of brightness, this situation is of little interest in the
context of gravitational lensing.

Sometimes, however, it is very complex to achieve these results when the solution of the lens
equation is not easy to calculate analytically. So we find ourselves struggling to untangle between
functions and calculations that are absolutely elaborate and this is not useful for our educational
purposes. So let’s now explore an alternative solution for calculating the magnification with the
help of Geogebra.
Unfortunately, with complicated equations even Geogebra is in difficulty and it cannot give us the
solutions in the form of eq. (3.18), which we need to insert in eq. (3.13). Looking for an easier way
to solve this problem, the idea arises by observing eq. (3.13).23 In fact, we can say that

µ =

(
θS
θ

dθS
dθ

)−1

, (3.24)

which simplifies our calculations a lot because in the lens equation θS appears as a single term
and we can easily make it explicit and replace it in this equation. Basically, it is solving eq. (3.24)
with Geogebra that we reach our goal.
For the point mass lens, the first step consists of calculating µt

−1 = θS/θ using θS = f(θ) =
θ − θE

2/θ, which is derived from eq. (3.17). Then, since calculating the derivative is very easy in
this case, we can solve it by hand. Alternatively, we can use the Geogebra command "Derivative
(f(θ))" and obtain the first derivative µr

−1 = f ′(θ) = dθS/dθ. At this point, multiplying these
outcomes, µt

−1 · µr
−1, and inverting the final result the searched magnification, µ(θ), is reached.

Naturally, Geogebra produces also the graph of this function, which allows to instantly visualise
the trend of the magnification along the entire θ-axis, understanding in this way how the parity

23Inspired by the literature, see [17] and [76].
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of the images changes at every image position, as shown in fig. 3.9 restricted to the areas of
our interest. As expected, even for this solution the magnification diverges with full alignment.
However, already moving slightly out of alignment, we can see that both images have very high
magnification values, but they drop down very quickly as the source moves laterally with respect
to the lens. The last step consists of inserting into µ(θ) the numerical value of the position θ for

Figure 3.9: Magnification, plotted with Geogebra, for the point mass lens model. Specifically, this
is the situation θS = θE, but we can follow the behaviour of the magnification along the θ-axis.

the images, taken from the simulation. In this way we obtain the numerical value of each image
magnification when θS varies. We can also calculate easily the total magnification and analyse the
results.
As expected, for every case, the outcomes are exactly the same obtained analytically and give us
information about the brightness of the images. This method of obtaining the image magnification
will therefore be applied to the next lenses we study.

Plummer Sphere Lens This case represents the lensing effects produced by galaxies or clusters
of stars. The model for this lens, invented in 1911 [82], approximates a spherical halo. In fact the
mass is distributed in an infinite sphere with a finite density core and it falls off as r−5 at large
radii, as we can see from the first part of eq. (3.25). Actually it falls steeper than in a real galaxy,
nevertheless this model is widely used in N-body simulations of stellar systems [97][16]. Typical of
this lens is the fact that the total mass is reached at infinity and there is a scale radius aP which
roughly represents the radius of the galaxy halo. In fact, beyond this radius, as we consider ever
greater values for r, the gravitational potential24 approaches quite fast that of a point mass. Since,
as said, we need to project the lens mass on the lens plane (see appendix F). We consider the
mass density and mass radial profiles in three dimensions first and projected in two dimensions
afterwards. Therefore, starting with the mass density radial profiles, which are shown in fig. 3.10,
we have that

σ(r) =
3 aP

2Mtot

4π (r2 + aP
2)

5
2

projected onto the lens plane becomes Σ(ρ) =
aP

2Mtot

π (ρ2 + aP
2)2

,

(3.25)
where r in the mass density profile σ(r) represents the distance from the lens centre in 3-space
and ρ in the surface mass density profile Σ(ρ) represents this distance in the lens plane instead.
Moreover, Mtot is the total mass of the lens reached at infinity. Consequently, deriving the mass
radial profiles, which are shown in fig. 3.11, we obtain that

M(r) =
r3Mtot

(r2 + aP
2)

3
2

projected onto the lens plane becomes M(ρ) =
ρ2Mtot

ρ2 + aP
2

. (3.26)

24Φ = −G Mtot/
√

r2 + aP
2
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Figure 3.10: Mass density radial profiles of the Plummer sphere, on the left in 3-space and on the
right projected onto the lens plane. σ0 and Σ0 represent, respectively in the two cases, the value
that the mass density has at the centre of the object under consideration.

Figure 3.11: Mass radial profiles of the Plummer sphere, on the left in 3-space and on the right
projected onto the lens plane.

Note that in the lens plane the mass enclosed within r = a is M(a) = 1
2
Mtot. Now M(|ρ|),

expressed in the form M(|θ|),25 is the searched projected mass that we have to substitute in the
lens equation.
As said, teachers are free to approach the subject in the way they consider more convenient, but
we prefer to start our discussion from the equations and end up analysing the graphical solution.
Indeed, applying the same procedure as for the point mass lens and setting aP > 0, we introduce
now the projected mass from eq. (3.26) in equations (3.8), obtaining

θE
2 =

4G Mtot

c2

DLS

DLDS
− θaP

2 = 2 RS
DLS

DLDS
− θaP

2 . (3.27)

RS is the Schwarzschild radius belonging to Mtot. From this equation we straightforwardly see
that the size of the Einstein ring depends now not only on the mass of the lens and the distances
involved, but also on the size of the Plummer scale radius aP. This leads to some restrictions
on the existence of the ring. However, for simplicity, we consider only configurations where the
Einstein ring exists. This is done, after having introduced the projected mass in eq. (3.7), expressing
the lens equation in terms of the Einstein radius θE (or in alternative using directly eq. (3.9)). For
the Plummer sphere model the resulting form of the lens equation is

θ − θS = θ
θE

2 + θaP
2

θ2 + θaP
2 . (3.28)

Also in this case, solving eq. (3.28), number and position of produced images from a background
point-like source are obtained. Clearly, the analytical solution consists in solving a cubic equation,
which involves students in an interesting, but long and complex practice on this topic, something
beyond our educational goal at the moment. Therefore, as we suggested before, we focus on the

25We have ρ = θDL and aP = θaPDL.
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Geogebra graphical solution of the lens equation and the discussion of its visual and numerical26

results.
Basically, also for this lens model, we produce the Geogebra diagram of the graphic solution for
various values of θS, combined with the simulation of the resulting gravitational lens effect. Now,
with regard to the graphical solution, the two equations that must be matched are f1(θ) = θ − θS

and f2(θ) = θ
θE

2+θaP
2

θ2+θaP
2 . For the simulation instead, defining when the cubic eq. (3.28) intersects

the θ-axis, we obtain directly the image points and their position, i.e. the coordinates of the
intersection points. With these graphs, we can then observe and discuss the evolution of the
gravitational lens effect when the source is considered moving laterally with respect to the lens,
as seen in projection and investigate particular configurations, like the ones shown in figures 3.12
and 3.13. We again recommend, whenever possible, to use during the lectures the dynamic files
from which our images are extracted. This is because they offer a better visualisation and are
interactive. Also for this model, such diagrams and simulations are created following exactly the
same procedure as for the point mass model.
Our first focus is again the perfect source-lens-observer alignment, θS = 0, which is shown in fig.
3.12 (left). Observing this figure we see that, for the Plummer sphere model, we not only have

Figure 3.12: Graphical Geogebra solution of eq. (3.28) for the Plummer sphere lens. Left: The
special case θS = 0 where, due to full symmetry, the observer sees an Einstein ring of radius θE
and a central point-like image, which are shown enlarged in the left bottom panel. Right: The
case of θS > 0 and in particular θS = θE. The observer sees at first three images, two inside the
Einstein radius θE, positioned at θ2 and θ3, and one outside, positioned at θ1, as shown enlarged
in the right bottom panel.

two solutions, each on opposite sides of the lens at a distance |θE| from it, but also a central
point-like image at θ3 = 0 = θL, merged visually with the lens. We note that, also in this case, the
angular separation between the two images equidistant from the lens corresponds to the Einstein
ring diameter and its central point is the position of the lens and third image. Consequently, the
third image is one Einstein radius away from each of the other two. And the midpoint of these
distances is obviously half a radius. All these results can easily be verified also with the numerical

26From the algebraic section of Geogebra.
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solutions of the algebraic part of Geogebra.
The analysis continues with θS > 0 in figures 3.12 (right) and 3.13, where again the source is
considered moving further away, sideways, from the line joining observer and lens. With the
Plummer lens model, depending on how far away the source is from the lens, we will see
respectively three, two or one image of the source. In this configuration, as soon as the system
deviates from the perfect alignment (right side of fig. 3.12), three images of the source are visible,
two are positioned on the left side of the lens, internal to the Einstein ring, and the other on
the right side (the source side), but external to the ring. We can easily observe that θ1 > 0 and
instead θ2 < 0 and θ3 ≤ 0. In particular, in our case it is true that |θ1| ≥ |θE|, |θ2| ≤ |θE|
and |θ3| ≤ |θ2|. In fact, the further the source moves laterally away from the lens, as seen in
projection, the closer the internal-to-the-ring images get to each other, visually merging in a single
image (the two superimposed) and then disappearing, as we can see in the plots in fig. 3.13.
Meanwhile, also for this model the external image moves away from the lens, on the same side as
the source, and approaches the source’s real position. Reaching again in this manner the case of
little interest for us, namely when θS ≫ θE.
Observing and studying the evolution of the graph and the relative numerical results, it is possible
to monitor now how the length of the segments connecting the images varies (for us these are
angular distances), as well as the individual distances of the images from the centre of the lens.
Moreover, it is possible to extrapolate possible relationships that exist between these quantities,
checking their validity also for different configurations changing the values for θE, θS and θaP .
Monitoring this system, we could actually identify some general features which are valid as long
as we see at least two images. The first one is that the multiplication of the angular distances
of each image from the lens always gives |θ1| · |θ2| · |θ3| = θ2

aPθS. The other two concern

Figure 3.13: Graphical Geogebra solutions of eq. (3.28) for the Plummer sphere lens in case of
θS > 0. Now, the further away from the lens the source is, as seen in projection, the closer the
external image will be to the real position of the source. The other two instead move towards each
other, always remaining inside the ring radius, until they merge together into a single image (left
panel), then disappear (right panel).

the actual position of the source, in fact θS = |θ1| − |θ2| − |θ3|, and the Einstein ring with
θE

2 = |θ1||θ2| − |θ2||θ3| + |θ1||θ3|. We can also definitely infer the dependences for the midpoint,
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θ, of the various image separations. In this regard we respectively obtain

θ12 = θ1 − ∆θ12

2
=

1

2
(θS − θ3) =

1

2
(θS + |θ3|)

θ13 = θ1 − ∆θ13

2
=

1

2
(θS − θ2) =

1

2
(θS + |θ2|)

θ23 = θ2 +
∆θ23

2
=

1

2
(θS − θ1) =

1

2
(θS − |θ1|) .

(3.29)

All these characteristics, which clearly involve directly measurable quantities, give us information
about the system under examination and the real position of the source, which as always with
gravitational lensing is not directly visible.
In this context, leaving aside when θS ≫ θE, we continue our investigation analysing the special
cases we saw illustrated in figures 3.12 and 3.13. For the Plummer sphere model the case θS = θE
does not bring any interesting insights. Much more particular is the case θ2 = θ3, where images
are reduced to two. In this case we get |θ1| − θS = 2 · |θ2|. These data, used in calculating the
angular distance between the two images and the position of its midpoint, give

∆θ12 = θS + 3 · |θ2| =
1

2
(3 · |θ1| − θS)

θ12 =
1

4
(θS + |θ1|) =

1

2
(|θ1| − |θ2|) .

(3.30)

Certainly, we are able to support all these findings with the numerical results in the algebraic
section of Geogebra. From the case θ2 = θ3, a further lateral shifting of the source will make the
second image disappear, leaving only the image on the right side of the lens that from now on
will increasingly approach the true position of the lens.

We believe it is important to emphasise the fact that being able to see the typical relationships
and features of the gravitational lens system from these types of graphs is not a trivial task
and therefore such an activity requires some training. We may be trained enough in this type
of analysis, however, students are generally not (with a few exceptions). Thus, we educators are
asked to guide them in discovering these connections and results. In our opinion, which, as stated
earlier, is supported by the literature in science education, the best way to achieve this goal is by
actively stimulating students’ capacity to discover them and not by simply revealing them. This
type of exercise will not only help our students to extrapolate important information from graphs
and diagrams, but will also stimulate their ability to observe, reason and investigate that could
lead to the development of important competencies.

Finally, thanks to Geogebra, we can investigate the brightness of the images produced by the
Plummer lens following the same reasoning as for the point mass lens. For this purpose we

apply eq. (3.24) and solve it for θS = θ − θ
θE

2+θaP
2

θ2+θaP
2 (derived from eq. (3.28)). In this way, we can

draw the graph of how the magnification changes along the θ-axis, and with it the images parity,
obtaining the desired information.
As is shown in fig. 3.14 and as expected, in case of θS = 0 for the two images at a distance |θE|
from the lens the magnification diverges. As we know from section 3.2.4, this effect of diverging
is not real, in fact the observer sees a very bright ring. The brightness of the central image I3, on
the other hand, is very dim and therefore it should not be distinguishable from the central lens
or entirely fused with it anyway. Moving out of alignment we observe that the two images I1 and
I2 have at first high magnification that drops down very quickly as the source moves further to
the side relative to the lens. As it is clear from the graph, the further the source moves laterally
away from the lens, the more the brightness of I1 tends to match that of the source. I2 instead,
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Figure 3.14: Magnification, plotted with Geogebra, for the Plummer sphere lens model. Specifically,
this is the situation θS = θE, but we can follow the behaviour of the magnification along the
θ-axis.

as it approaches I3, becomes at first dimmer and dimmer and then, when the two images are
close to each other, its brightness begins to increase very slowly. As for I3, it remains very faint,
although its magnification increases slightly but constantly. However, precisely when I2 and I3

merge together, the observer sees a very bright resulting image, in fact the magnification diverges
again at this point. It is indeed confirmed from the plot that, just before this fusion, both images
start to become very bright and we know that right after that they disappear.

Recalling section 3.2.4 on the topic of image parity, we observe that µ1 > 0 and µ3 > 0,
hence I1 and I3 have positive parity despite being on different sides of the lens, and µ2 < 0, so
I2 has negative parity. Even if these details don’t seem particularly relevant now, they will gain
importance later on when we will treat extended sources in section 3.3.1.2.

At this stage, the procedure to be followed and the type of discussions that these observations
bring should not only be straightforward and understood, but should also be part of our own
knowledge. For this reason, in the analysis of other lenses we will only provide the results and
highlight important features, leaving out the methodology.

Singular Isothermal Sphere (SIS) Lens The SIS lens is among the simplest models for describing
galaxies and thus widely used [17]. In fact, it approximates again a spherical halo and is represented
by an extended infinite sphere, whose mass behaves like an ideal gas. The sphere describes a
self-gravitating system, a galaxy, with constant velocity distribution of its stars. This model is
also considered a good approximation for explaining the flat rotation curves of spiral galaxies and
therefore for investigating the hypothetical presence of dark matter [94]. Indeed, in such a system
the velocity of the stars in circular orbits does not depend on the radius of the orbit. Typical for
this model is that the total mass diverges when the radius goes to infinity and there is a singularity
at zero radius. Since also in this case we need to project the lens mass on the lens plane, as we
did for the Plummer sphere lens, we consider the mass density and mass radial profiles in three
dimensions first and in two dimensions afterwards, which are shown in figures 3.15 and 3.16.
Therefore we get that

σ(r) =
σv

2

2 π G r2
projected onto the lens plane becomes Σ(ρ) =

σv
2

2G ρ
, (3.31)
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Figure 3.15: Mass density radial profiles of the singular isothermal sphere, on the left in 3-space
and on the right projected onto the lens plane.

Figure 3.16: Mass radial profiles of the singular isothermal sphere, on the left in 3-space and on
the right projected onto the lens plane.

where r and ρ are defined as in the Plummer-sphere case and σv is the velocity dispersion.27

Thus, calculating the mass profile we obtain that

M(r) =
2 σv

2

G
· r projected onto the lens plane becomes M(ρ) =

π σv
2

G
· ρ . (3.32)

The projected mass M(ρ), again in the form M(|θ|), should be then inserted in the lens equation
in order to obtain information about number and position of the resulting images from a point-like
source.
Proceeding exactly as we did for the previous lenses we calculate the Einstein radius θE

θE =
4 π σv

2

c2

DLS

DS
. (3.33)

And the lens equation is then

θ − θS = θE
|θ|
θ

= sgn(θ) · θE , (3.34)

which should be treated cautiously because for θ > 0, on the right side of this equation, it is +θE
and for θ < 0 it is −θE.
By looking at eq. (3.34) we realise that we are dealing with a quite simple lens equation, which
can therefore be approached analytically without difficulty, as done for the point mass model.
However, as already mentioned, we focus on solving it graphically with Geogebra. In fact, in
figures 3.17 and 3.18 we see the graphic solution obtained matching the equations f1(θ) = θ − θS
and f2(θ) = θE

|θ|
θ
, together with the corresponding simulation. These diagrams, together with

the algebraic part, allow us to infer all the useful information about this gravitational lens effect.
Essentially, in case of source-lens-observer perfect alignment, θS = 0, two solution are present,

27The velocity dispersion σv is the statistical dispersion of velocities about the mean value v for a group of objects.
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Figure 3.17: Graphical Geogebra solution for the SIS lens. In the special case of θS = 0 the observer
sees the Einstein ring of radius θE (left). In case of θS > 0, the observer sees at first two images,
one inside and one outside the Einstein radius θE (right). The further the source moves away
from the lens, as seen in projection, the closer the internal image gets to the lens itself, until it
disappears for θS > θE, and the further the external image moves away.

each on opposite sides of the lens and at a distance |θE| from it. Actually, due to full symmetry,
this is when the observer sees the Einstein ring, as it is for the previously seen models. Once again,
the source gradually moves sideways from the lens, so that θS > 0. In this process, depending on
whether the source is at a distance shorter or longer than the length of the Einstein radius, the
observer will first see two and then only one image. This means that if θS < θE, we will observe
two images, I1 and I2, with |θ1| > |θE| and |θ2| < |θE|, where I2 approaches the lens and I1

moves away from it whereas if θS > θE, only I1 will remain moving further and further away from
the lens. As long as we have two images, characteristic of this lens is that |θ1| · |θ2| = θE

2 − θS
2

and |θ1| − |θ2| = 2θS. In addition, the distance ∆θ12 = 2 θE between the two images always
remains constant, namely the Einstein ring diameter, and the images remain equally distant also
from the true position of the source. We can therefore deduce that the midpoint of this distance
is always positioned where the source is located. Consequently

θ1,2 = θS ± 1

2
∆θ12 = θS ± θE . (3.35)

Moreover, from the moment on when we have only one image, its distance from the source still
remains always equal to the Einstein radius θE, thus it will never approach its real position and we
have θ1 = θS + θE. In table 3.3 we have summarised all the principal results obtained observing
and investigating the diagrams and the numerical values, which, as said, we do not need to report
and discuss again, and the case of little astrophysical importance θS ≫ θE is excluded.

The last outcome for this lens model concerns the magnification µ(θ), whose behaviour for
each image we can observe in fig. 3.19, which is produced with Geogebra following the usual
procedure. As we noted for the previous models, also here the magnification diverges for the two
images at a distance |θE| from the lens and produced with θS = 0. This is when a bright Einstein
ring is actually visible. And also here we see from the plot how the magnification for both images
drops down quickly. The external image, I1, tends indeed again to match the brightness of the
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Figure 3.18: Graphical Geogebra solution for the SIS lens. In the special case of θS = θE the
observer should see two images for the last time. However, as we will understand analysing the
magnification of this gravitational lens effect, the image that should be overlapped with the lens
(drawn here as a circle) has actually zero brightness and thus is not visible, although formally it is
a solution of the lens equation [22] (left). In case of θS > θE the observer sees only the external
image which moves away from the lens (right).

θS = 0 θS < θE θS = θE θS > θE

θ1,2 ±θE θS ± θE θE ± θE θS + θE

∆θ12 2 θE 2 θE 2 θE ∆θ1 = θS + θE > 2 θE

θ 0 θS θE θ1 = 1
2

∆θ1 = 1
2

(θS + θE)

Table 3.3: The main results of the SIS lens related to different source positions with respect to the
lens, L, and Einstein radius, θE.

Figure 3.19: Magnification with Geogebra for the SIS lens model.

source for θS → ∞, while the brightness of the internal one, I2, progressively decreases until it is
zero, therefore not visible, for θS = θE. As a result, the image that should appear superimposed
on the lens, which would probably be so faint that it would not be visible anyway, is not present
at all. Consequently, I1 has always positive parity, µ1 > 0, and I2 negative or zero, µ2 ≤ 0, which
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defines the orientation of the images.

We would like to focus our attention for a moment on the fact that the SIS model, although
very useful in approximating real galaxies, has the problem that the density at its centre is infinite.
It is possible to get around this obstacle by introducing a central core of radius aS with finite
density. For this SIS with a core, which in the literature is often called Nonsingular Isothermal
Sphere (NIS) [17], the mass density in 3-space is therefore given by

σ(r) =
σv

2

2 π G
√

r2 + aS
2

. (3.36)

We are not going to enter into the details of this model, because, as already mentioned and as
we will see in section 3.3.2.2, the results it provides are very similar to those of other analysed
models.

Uniform Disk Lens The lens model we now consider is a disk extended to infinity (zero thick-
ness), which is seen face-on and is characterised by a uniform surface mass density Σ(ρ) = Σ0,
as shown in fig. 3.20. The fact that the entire mass of the disk, which of course diverges at
infinity, is already considered on the lens plane not only simplifies our work, but also makes us
straightforwardly understand that its mass profile is given by M(ρ) = Σ0πρ2. Here we only show
the results for this general case, but it is also possible to truncate the uniform disk at a certain
radius and then continue the model as if it were a point mass, thus simulating a finite object.
Once more the mass M(ρ), expressed in the form M(|θ|), should be then inserted in the lens

Figure 3.20: Mass density and mass radial profiles of the uniform disk. These are already on the
lens plane, there is no need to project them. The plots have different scales.

equation in order to obtain information about number and position of the resulting images.
Proceeding exactly as we did for the previous lenses, we calculate the Einstein radius θE using eq.
(3.8) and M(|θ|) = Σ0π(θDL)

2. Nonetheless, for this lens we get a surprise, as we can see from

θE
θE

= 1 =
4G

c2
Σ0π

DLDLS

DS
=

Σ0

Σc
= k . (3.37)

In fact, since the term θE cancels out, this means that for the uniform disk lens we never have
an Einstein ring with the perfect source-lens-observer alignment. In fact, in eq. (3.37), which
represents the case θS = 0, all the terms θE cancel out. Basically, excluding Σ0, all other
components of this equation have together the unit of measurement of a surface mass density.
This permits us to define a new quantity which is comparable to Σ0, namely the so-called critical
surface mass density, Σc [85]. Now, Σc clearly depends on the distances involved, therefore, in
this respect it is constant for a static configuration source-lens-observer. Moreover, comparing Σ0

to Σc, we also define the parameter k = Σ0

Σc
which actually gives us the information about the

images resulting from the gravitational lensing process for this lens model. In reality, already from
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eq. (3.37) we note that k = 1 for perfect source-lens-observer alignment and we can suppose the
existence of other conditions according to

k S 1 if Σ0 S Σc . (3.38)

In order to better understand the role played by k, let us now consider fixed the relative distance
between source and lens, DLS, instead the observer can hypothetically approach and move away
from the lens (i.e. DL can vary) with respect to the distance that defines k = 1, which we will call
D(k=1). Specifically, being Σc = c2DS

4Gπ DLDLS
, it clearly depends on the distances involved and, in

the specific case, on the position of the observer. Therefore, in the situation just described, we will
have Σc > Σ0 when DL < D(k=1) and Σc < Σ0 when DL > D(k=1). At this point, calculating
the lens equation and expressing it in terms of the parameter k we get

θ − θS = k θ . (3.39)

eq. (3.39) is very easy to solve, thus can be done also analytically, but we continue to emphasize
the graphical solution that gives us in addition to the results also the powerful visualisation of
the gravitational lens effect that we already know. This is shown in the Geogebra diagrams of
fig. 3.21, where the equations f1(θ) = θ − θS and f2(θ) = k θ are matched and, as always, this
is accompanied by pictures taken from the corresponding simulation. This lens model confronts

Figure 3.21: Graphical Geogebra solution for the uniform disk lens. For θS = 0 and k = 1 the
observer sees a fully illuminated infinite disk (left – imagine that the disk goes to infinity). In case
of θS > 0, we distinguish for k < 1, where the observer sees one image on the same side with
respect to the lens of the real source (centre), and k > 1, where the observer sees one image on
the opposite side of the lens instead (right).

us with a very simple, but interesting, gravitational lens effect and we now present some special
features and cases that can be observed and discussed with our students. All the peculiarities
that we are going to list now, as well as those already faced, are easily verifiable with Geogebra’s
interactive graphs and the relative algebraic results.28 As always we consider the best approach to
guide students to the discovery and understanding of these results through observation, investiga-
tion and discussion.

28Although we do not show this part for all lens models, we can follow the same procedure as seen for the point
mass lens and the Plummer sphere lens.
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First of all, in the case of θS = 0, as mentioned before, we do not see any Einstein ring. However
this configuration corresponds to k = 1 and as we can observe in fig. 3.21 the lines produced by
the two equations are perfectly superimposed, so a fully illuminated infinite disk is visible. In the
figure it is obviously not possible to draw an infinite disk, but let us imagine that it goes to infinity.
Interestingly, if k = 1 and θS > 0, we have no image. In fact, from eq. (3.39), we understand that
graphically we would get two parallel lines. Continuing instead to refer to fig. 3.21 and to focus
on θS > 0, we have images of the source only if k 6= 1 and never multiple images. In addition,
as anticipated above, the possible situations depend on the distance of the observer from the lens
and always Newton’s shell theorem applies. In substance, if k < 1, i.e. the observer is closer to
the lens than where he was with k = 1, the only produced image is visible on the same side with
respect to the lens where the real source is. Similarly, we can consider the circumstance k > 1,
i.e. when the observer is further away from the lens than he was with k = 1, and again always
only one image is produced, but this time it will be visible on the other side with respect to the
lens. In both cases, for a predetermined k, the value |θ1| increases as θS increases, as well as the
distance source-image, Sθ1. We can also notice that the ratio between the distance of the image
from the lens, ∆θ1, and θS is always constant for a fixed k.
On the other hand, if we analyse the results of the lensing effect produced by this model at
equal θS, but for different values of k, we can understand other typical characteristics, which are
collected in tab.3.4

k < 1 k > 1

k → 0 θ1 → θS k → 1 |θ1| → ∞
k S 1/2 θ1 S 2 θS k S 2 |θ1| T θS

k → 1 θ1 → ∞ k → ∞ |θ1| → 0

Table 3.4: Features of the positions of the image produced by the uniform disk lens with θS fixed
and k varying.

Finally, let’s consider the magnification and parity of the produced images having a uniform
disk as lens. The magnification also depends on the parameter k, in particular it is expressed by
µ(k) = (1 − k)−2 and in fig. 3.22 we see some examples. From the figure we observe that the
magnification is always positive, and so is the parity of the images, and remains constant with the
variation of θS for each single configuration, that is for a fixed k. In particular, if k → 0, then
µ → 1 and the brightness of the image will then tend to that of the source. As k increases, with
k < 1, the magnification will then continue to grow until it diverges for k = 1, where for θS = 0
we have a fully illuminated disk. We can thus guess that its magnification is very high here. For
k > 1, instead, the magnification will drop down, reaching the value of 1 for k = 2 and then
tending to zero with k → ∞.
In the context of strong gravitational lensing, the effects produced by this type of lens are not
impressive, but they take on a more interesting role when seen in the context of weak lensing.
However, we do not deal with this field of study. This is why after having introduced, explained and
shown this model, we basically do not consider it anymore for our experimental part. However, it
is up to the teachers to decide whether and how to deepen this model according to their teaching
needs.

Kuzmin Disk Lens Also this model is a disk, seen face-on and with the mass distributed on the
lens plane, thus also in this case we do not need to project the mass. It is called Kuzmin disk and
was invented in 1956 [57]. It consists of an axisymmetric infinitely thin disk and approximates the
disk of spiral galaxies. For this reason it is used in N-body simulations of spiral galaxies, especially
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Figure 3.22: Magnification with Geogebra for the uniform disk lens model. Left: The case k < 1,
where two different values are chosen for k with k1 > k2. Right: It is k > 1 and two other values
for k are used, also here k1 > k2. The grey dashed line is µ1(θ) = 1 and this corresponds to the
real brightness of the source.

integrated with other components, e.g. embedded in a Plummer sphere halo [91]. Typical for this
lens is the fact that the total mass is reached at infinity and there is a scale radius aK outside of
which the gravitational potential29 in the lens plane approaches quite fast that of a point mass.
The surface mass density is expressed for this model by

Σ(ρ) =
aK Mtot

2π (ρ2 + aK
2)

3
2

, (3.40)

Mtot is also here the total mass of the lens reached at infinity. Thus, calculating the mass profile
we obtain

M(ρ) =

(
(ρ2 + aK

2)
1
2 − aK

)
Mtot

(ρ2 + aK
2)

1
2

. (3.41)

In this case the mass quantity enclosed within r = aK is M(aK) = (1 − 1√
2
)Mtot. In fig. 3.23

the surface mass density and the mass profile of the Kuzmin disk are shown. As for the previous

Figure 3.23: .Mass density and mass radial profiles of the Kuzmin disk. These are already on the
lens plane, there is no need to project them. The plots have different scales.

models, the mass M(ρ), in the form M(|θ|),30 inserted in the lens equation gives information
about number and position of the resulting images in the case of a point-like source.

29Φ = −G Mtot/
√

r2 + (aK + |z|)2, where the scale radius aK is not and has not the same value of aP for the
Plummer sphere.

30We have ρ = θDL and aK = θaKDL.
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We calculate now the Einstein radius θE. It is implicitly given by

θE
2 =

4G Mtot

c2

DLS

DLDS

(θE
2 + θaK

2)
1
2 − θaK

(θE
2 + θaK

2)
1
2

= 2 RS
DLS

DLDS

(θE
2 + θaK

2)
1
2 − θaK

(θE
2 + θaK

2)
1
2

. (3.42)

And the lens equation is then

θ − θS =
θE

2

θ

(θE
2 + θaK

2)
1
2

(θ2 + θaK
2)

1
2

(θ2 + θaK
2)

1
2 − θaK

(θE
2 + θaK

2)
1
2 − θaK

. (3.43)

eq. 3.43 clearly has a high degree of complexity and this makes it much more difficult to conduct
our analysis. Nevertheless, thanks to Geogebra, we can still draw simulations of this gravitational
lens effect. However, identifying the patterns that connect the various elements (analytically, but
also graphically) with such convoluted equations is out of our possibilities and therefore we limit
our discussion to a qualitative level. Emphasising once again the importance of the Geogebra
graphics solution, it is precisely in cases like this that it is particularly effective and allows us to
visualise and understand the effect produced by this lens model. A result that would otherwise
be unlikely to be achieved.
For the Kuzmin disk lens the two equations considered for the graphical solution are f1(θ) = θ−θS

and f2(θ) = θE
2

θ

(θE
2+θaK

2)
1
2

(θ2+θaK
2)

1
2

(θ2+θaK
2)

1
2 −θaK

(θE
2+θaK

2)
1
2 −θaK

. The first situation we see in fig. 3.24 (left) is again

the perfect source-lens-observer alignment, θS = 0, where there are two solutions, each on
opposite sides of the lens and distant |θE| from it, and as we know, the observer actually sees
an Einstein ring of radius θE. Also a central point-like image is present for this model, like the
one we encountered for the Plummer sphere lens. Then we continue our analysis with θS > 0 in
figures 3.24 (right) and 3.25, where again the source is considered moving further away, sideways,
from the line joining observer and lens. Also with this model, depending on how far away the
source is from the lens, the observer will see respectively three, two or one image of the source.
Basically, as soon as the system deviates from the perfect alignment, three images of the source
are visible, two are positioned on the left side of the lens, internal to the Einstein ring and the
other on the right side (the source side), but external to the ring. In fact, as with the Plummer
sphere lens, we have θ1 > 0, θ2 < 0 and θ3 ≤ 0. In particular, it is also true that |θ1| ≥ |θE|,
|θ2| ≤ |θE| and |θ3| ≤ |θ2|. Moreover, the further the source moves sideways away from the lens,
the closer the internal images move towards each other, visually merging in a single image (the
two superimposed) and then disappearing, as we can see in the plots in fig. 3.25. Meanwhile,
also for this model the external image moves away from the lens on the same side as the source
and approaches the source’s real position, reaching again the case of little interest for us, namely
when θS ≫ θE.
Definitely, we can say that in general the resulting images for this lens and their behaviour are
very similar to those of the Plummer sphere lens. What changes is actually their position. In fact
the central image, I3, for this model moves away from the lens very little and the source must
move sideways much more than in the Plummer sphere example in order to see the images I2

and I3 superimposed.

We are ready to take into consideration now the behaviour of the magnification µ(θ) for the
images produced by the Kuzmin lens, which is displayed in fig. 3.26, created following the usual
procedure. The magnification behaves basically like the one observed for the Plummer sphere
model, therefore we will not go into detail about it. In short, in case of θS = 0, the magnification
for the two images at a distance |θE| from the lens diverges. The central image instead has a very,
very low brightness, so it will certainly not be visible nor distinguishable from the lens. Then,
coming out of the perfect alignment, where the magnification is high, for the two images I1 and
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Figure 3.24: Graphical Geogebra solution of the lens equation for the Kuzmin disk lens. Left: The
special case θS = 0 where, due to full symmetry, the observer sees an Einstein ring of radius θE
and a central point-like image, which are shown enlarged in the left bottom panel. Right: The
case of θS > 0 and in particular θS = θE. The observer sees at first three images, two inside the
Einstein radius θE, positioned at θ2 and θ3, and one outside, positioned at θ1, as shown enlarged
in the right bottom panel.

I2 it drops very rapidly. In addition, the more the source moves laterally with respect to the lens,
the more the brightness of I1 tends to coincide with that of the source itself. On the other hand,
the brightness of I2, as it approaches I3, decreases and becomes barely visible. I3 always remains
very dim. Only just before the superposition of I2 and I3, the brightness of these two images
suddenly increases and immediately after the merger they disappear. We furthermore observe
from the plot that µ1 > 0 and µ3 > 0, hence I1 and I3 have positive parity despite being on
different sides of the lens, and µ2 < 0, so I2 has negative parity.
We can indeed confirm that the behaviour of the magnification is very similar to that seen for the
Plummer sphere, but we must note that, in the case of the Kuzmin disk, the changes in brightness
are more abrupt and extreme.

3.3.1.2 Different Extended Sources

At this point it is natural to wonder what happens with extended, i.e. non-point-like sources. First
of all because in nature, no matter how small the sources are, they always have a finite size and
secondly because this curiosity is a logical consequence of what we have seen so far. We also ask
ourselves questions such as what shapes will the produced images have if the source is a disk? And
if it is a line? From here we can use our imagination for many more shapes, although from an
observational point of view and for simplicity we have limited ourselves to these simple figures.
In practice, in order to answer these questions using a simulation with Geogebra, we need to
solve the lens equation of the model we want to study ideally for all the points of the source.
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Figure 3.25: Graphical Geogebra solutions of the lens equation for the Kuzmin disk lens in case of
θS > 0. Now, the further away from the lens the source is, as seen in projection, the closer the
external image will be to the source’s real position. The other two images instead move towards
each other, always remaining inside the ring radius, until they merge into a single image (left
panel), then disappear (right panel).

Figure 3.26: Magnification with Geogebra for the Kuzmin disk lens model. In the box, an enlarge-
ment to better see the behaviour of µ2 and µ3 close to the θ-axis.

Since this is impossible with our means, we limit ourselves to a sufficient number of points
which are strategically placed so that the shape of the images is displayed. Thus, connecting
with our imagination the image dots properly, we obtain for such sources the images produced
by gravitational lensing of the mass distribution considered as the lens. Furthermore, we again
produce interactive graphs, simulations of how the lensing effects vary when θS (represented as a
slider) varies. Basically, all the chosen points are considered as single point-like sources. For these
we solve the lens equation (3.7) to obtain the position of the point-like images produced along the
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line passing through the point in question and the centre of the lens, as shown in fig. 3.27. This

Figure 3.27: Some of the points selected for graphically solving the lens equation for extended
sources. For the disk source S, the center C and a few other points along the periphery are shown.
In addition, the visualisation lines passing through the selected points and the lens L are also
displayed.

line will now be called the "visualisation line". In our case, the chosen source points are always
the central point and various other points on the disk periphery of the disk or various other points
along the line. Specifically, solving eq. (3.7) with Geogebra means finding where the corresponding
function touches the θ-axis, as we have already done to create the simulations present in section
3.3.1.1. Then the θ-coordinate of the obtained points should be plotted along the visualization line
they belong to so that the image is at the same distance from the lens. Fortunately, due to the
axial symmetry of the chosen models, it is sufficient to find the images for only the upper half
of the source and then derive the other half thanks to the reflection of the points with respect to
the θ-axis.31 For the simplest equations, such as those derived for the point mass or SIS model,
this procedure is simple and totally feasible even for students at the end of secondary school. As
we have seen in section 3.3.1.1, in such simple cases it is also easily possible to find the solution
analytically, but we prefer to continue suggesting the Geogebra graphical solutions, an approach
that further simplifies the procedure and also allows us to create the useful visualisations we
already know. This method is no more complicated than the ones we have seen so far, since the
functions and techniques for solving the problem are exactly the same. However, it is more time-
consuming because we work with many point-like sources and the images must also be placed
back on the corresponding visualisation line.32 Remember that diagrams and simulations can be
created using the preferred parameters, however all the material produced by us and used during
the creation and testing of this project is available and directly usable. Let us now consider some
examples taken from the simulations of the gravitational lensing effect with extended sources and
analyse their fundamental characteristics. We limit ourselves to two cases of lenses with increasing
difficulty, the point mass, which, as already mentioned, is among the simplest examples, and the
Plummer sphere, which, as we know, has a higher degree of difficulty. However, we underline once
again the idea that through the use of Geogebra it is possible even for non-advanced students to
understand the most mathematically complicated cases.

Point Mass Lens While we explore the results of gravitational lensing with extended sources,
we will take a closer look at the disk because it has a special interest for us in the context of
astrophysics. As far as the line as a source is concerned, we will present only the graphical
results, which however, besides satisfying the curiosity about this kind of source, will be useful
to understand geometrically the general idea of distortion for images produced by gravitational
lensing plexiglass simulators, as we will see in section 3.3.2.3.

31In Geogebra this function is easily performed thanks to the command "Reflect Object in Line".
32For this purpose, once the angular distance θ of the image from the lens has been obtained, create the point at

the same distance, but on the visualisation line with coordinates (θ cos α, θ sin α), where α is the angle between the
visualisation line and the θ-axis.
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In fig. 3.28 we see on the left the case of perfect source-lens-observer alignment, θS = 0,33 for
the point mass lens model with an extended disk-shaped source of radius θ0. First we observe
that the forming Einstein ring has a certain thickness and the image of the central point of the
source corresponds to the Einstein circle in grey (from now on called in this way to distinguish it
from the total Einstein ring and displayed as a dashed grey circle in the figure). Therefore, it is

Figure 3.28: Simulation with Geogebra of the solution of the lens equation for the point mass lens
in the case of an extended disk as source, S, of radius θ0. Left: The case θS = 0, where we observe
the Einstein ring. Right: The lens L is positioned now at the edge of the source S and we observe
two big arcs that touch each other on their extremities. The dots represent the produced images
of specific points of the sources and give us an idea of the total images shape. The images of
the source’s central point are always indicated along the θ-axis with the usual notation adopted in
section 3.3.1.1.

clear from these details that the larger the source disk, the thicker the Einstein ring. Due to the
simplicity of the point mass model, these results can also easily be obtained analytically.
As far as magnification in general is concerned, considering eq. (3.13) and what has been said
in section 3.2.4, we derived that for small sources its value is provided by the ratio between the
area of the image and the area of the source. For its sign, therefore the parity of the image,
we refer to what has been seen in the previous sections. Given that we are dealing with disks
in this configuration, the procedure is quite simple. We deduce, in the specific case represented
here, that if the source disk has area AS = π(θ0DS)

2, where θ0 is its angular radius, then for the
magnification of the Einstein ring we will have

µring =
AI

AS
=

(θEout
2 − θEin

2)

θ0
2 . (3.44)

Practically, this means that we compute the area of the bigger disk of angular radius θEout minus
the area of the smaller disk of angular radius θEin. Now introducing eq. (3.18) and considering that
for the points on the source edge θS = θ0, we get

µring =

√
θ2

0 + 4θE
2

θ0

. (3.45)

Moreover, following the same reasoning, the thickness of the Einstein ring can easily be obtained
to be

∆θE = θEout − θEin = θ0 , (3.46)

which, as we note, corresponds to the radius of the source. All these results, obviously in
numerical form, can also be easily obtained from the Geogebra graph, using the coordinates of
the corresponding points, and in this way the same information as above is obtained. It is in fact

33We consider the centre of the source.
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just a little bit of basic geometry.
In addition to all this, if we divide the source into coloured sectors, as in fig. 3.29, and keep
the same colours for the respective images, it is immediately observed that the outer part of the
Einstein ring, with respect to the Einstein circle, is oriented like the source, while the inner part
is reversed both vertically and horizontally. In fact, from what we know about magnification and

Figure 3.29: Simulation of the Einstein ring produced from an extended multicoloured disk source
(S) for the point mass lens (L), represented by the green dot at the centre. We can observe if
images are inverted with respect to the source and how.

parity and from the previous discussion about this model, we know that in order to understand if
and how an image is subject to inversion, we also have to take into account whether it appears
on the same side of the source or not and on which side, with respect to the lens, the source
is located. What we therefore observe with this coloured Einstein ring is a consequence of the
fact that half of the source is to the right of the lens and half to the left. Basically, considering
only the source part on the right of the lens, we have as images the external part of the Einstein
ring on the right, with positive parity, and the internal part of the Einstein ring on the left, with
negative parity and thus inverted with respect to the horizontal axis. Vice-versa, for the other half
source we will have as images the external part of Einstein ring on the left, with positive parity,
and the internal part of Einstein ring on the right, with negative parity and thus inverted with
respect to the horizontal axis. Putting all this information together we obtain the Einstein ring in
fig. 3.29. These are all outcomes that we can deduce just by looking at and studying this figure.
Continuing our discussion, referring now to the right-hand side of fig. 3.28, we see that the lens L
is now located on the edge of the source disk.34 In this case the image is no longer a ring and we
observe instead two large arcs joined by their extremities. It is interesting to note that the right
arc (source side) has its internal profile on the Einstein circle and then extends outwards, while
the left arc has its external profile on it and extends inwards.
If the source then continues to move sideways, as we see in fig. 3.30, the two arcs shrink and
separate, forming two images of the source that appear as two deformed ellipses. These images
respect the same cases and the same general rules seen in the previous section. In fact the image
on the left of the lens, inside the Einstein circle, gets closer and closer to the lens itself and gets
smaller and smaller according to what has been seen for the magnification. At the same time, the
right-hand image moves further and further away from the lens and shrinks towards the actual
size and position of the source.
In all these three last configurations, and certainly also in the intermediate ones, calculating the
images’ magnification analytically is complicated and exceeds our teaching objectives. However,
once again Geogebra comes to our aid. In fact, if we join the image points of each distorted
ellipse with segments thanks to the function "Polygon" (an example of such a polygon can be
seen in fig. 3.48), Geogebra immediately gives us the area of such a polygon, which is a rough

34The lens is positioned at a distance θ0 from the centre of the source.
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Figure 3.30: Simulation with Geogebra of the solution of the lens equation for the point mass lens
in the case of an extended disk as source, S, of radius θ0. As compared to fig. 3.29, the source S
moves further sideways from the lens L. Left: The case θS = θE. Right: The case θS > θE. Note
that the image I2 centred at θ2 becomes at a certain point so small that it is no longer possible to
distinguish the various points, thus we show an enlargement of them in the small boxes. However,
with the Geogebra files we can zoom the figures and observe them better. All images that form
follow the rules seen in the previous section 3.3.1.1 and again we use the same notation.

estimate of the area of the total image. We can then divide this estimate by the value of the area
of the source and obtain in good approximation the magnification of this image. As far as parity
is concerned, keeping in mind what we have already seen and simply using a source divided
into coloured sectors as done for the Einstein ring. If we appropriately change the colours of the
image points in relation to their position with respect to the lens, we obtain all the necessary
information about the possible inversion of the images. In the case of the point mass model we

Figure 3.31: Simulation of two images produced from an extended multicoloured disk source (S)
for the point mass lens (L) in the case 0 < θS < θE. The centre of the source is indicated with a
red dot. We clearly observe the the inversion with respect to the horizontal axis of the image I2

centred at θ2.

know that the image I1, centred at θ1, is oriented exactly like the source and I2, centred at θ2,
is instead inverted with respect to the horizontal axis. All these facts are proved observing fig. 3.31.

The graphical solutions for the line source can be now observed and examined. The case of
a line-shaped source divided in two equal pieces by the θ-axis is displayed in fig. 3.32. Starting
from the first picture on the left, we immediately notice that with perfect alignment the produced
images are a line, although longer than the source and superimposed on it, and an Einstein ring,
which is the image of the central point of the line due to reasons of symmetry. In this situation
and as shown in the other three pictures of fig. 3.32, when the source moves laterally relative to
the lens, the observer sees as images a curve similar to the letter "c" to the left of the lens and a
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Figure 3.32: Simulation with Geogebra of the solution of the lens equation for the point mass
lens in the case of a line as source, S. The sequence starts with the case θS = 0, then, to the
right, we see again the source S moving sideways away from the lens L. The dots represent the
produced images of specific points of the sources and give us an idea of the total shape of the
images (imagine to connect the dots with segments). The images of the source’s central point are
always indicated along the θ-axis with the usual notation adopted in section 3.3.1.1.

curved line to the right. The "c"-shaped image is positioned between the edge of the Einstein ring
and the lens itself, almost closing its shape on it. The curved line instead is positioned outside
the Einstein ring and in its central part follows the ring shape. As the source continues to move
laterally, the "c" becomes smaller, always remaining near and to the left of the lens, while the
curved line loses more and more of its deformation and approaches the source straight line.
Even if we do not treat this topic here, to get an idea of the magnification and parity of these
images, we can just follow the procedures we have seen for the disk source, remembering that
in this case we have to consider the length of the line source and of other curved or circular
images.35 The outcomes will naturally follow the rules seen so far and we can easily imagine what
they will be.

Plummer Sphere Lens For the Plummer sphere lens model we only explore the results of
gravitational lensing with an extended disk source, a type of source that, as we have just seen,
is particularly interesting for our purposes, astrophysically speaking and in connection with the
models we want to represent. As for the line source, we do not present this example because it
is very similar to what we have just seen for the point mass lens. For the line source, in fact,
the main differences, which are hardly noticeable anyway (apart from the last one), are three.
Basically, with perfect alignment we have the addition of a central image superimposed on the
lens, whereas in other configurations we see that what was previously a "c" shape is now a closed
loop, which again narrows, but a little faster and then at some point disappears. This is in full
agreement with the behaviour of this lens we have seen in section 3.3.1.1.
Focusing our attention on observing fig. 3.33, for the Plummer sphere lens model with the ex-
tended disk-shaped source of radius θ0, we see on the left the case of perfect source-lens-observer
alignment, θS = 0. Also in this case the forming Einstein ring has a certain thickness and the

35It is possible to give a thickness, however small, to the source line and consequently to the images and obtain in
this way their areas.
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image of the central point of the source corresponds once more to the Einstein circle (dashed
grey circle in the figure). In addition and as expected, there is also a central small image which
is superimposed to the centre of the lens. However, as we understood analysing this model in
the previous section, this central image should be dim and fused with the light from the lens.
Basically, it follows from these details that also for this lens model the larger the source disk, the

Figure 3.33: Simulation with Geogebra of the solution of the lens equation for the Plummer sphere
lens in the case of an extended disk as source, S, of radius θ0. Left: The case θS = 0, where
we observe the Einstein ring and the central image (orange disk positioned at the centre of the
source), which covers the lens L, indicated but not visible at all. Right: The lens L is positioned
now at the edge of the source S and we observe two big arcs touching at their extremities and
the third image is slightly shifted to the left side of the lens, as can be seen enlarged in the box.
Here we also note the position of the lens L. The dots represent the produced images of specific
points of the source and give us an idea of the total shape of the images. The images of the
source’s central point are always indicated along the θ-axis with the usual notation adopted in
section 3.3.1.1.

thicker the Einstein ring and the larger the central image.
Since the analytical approach is too complex for this example, we concentrate on the graphical
one with Geogebra, showing again its great potential. At this point, following in principle the
same reasoning as for the point mass lens, it is possible to deduce and numerically calculate
from the graph the magnification of the Einstein ring and of I3. In Geogebra, with the proper
command "Area", we can easily obtain the area of the bigger disk of radius θEout and of the
smaller disk of radius θEin. Subtracting the last from the first one and dividing the result by the
source area AS = π(θ0DS)

2, we obtain the magnification of the Einstein ring. Interestingly, at
the same conditions for the point mass lens, thus for an equal amount of mass for both lenses,
this ring is slightly brighter and this comes from the fact that it is a little thicker. We can indeed
prove this calculating its thickness on the plot thanks to ∆θE = θEout − θEin. We discover that
for the Plummer sphere lens ∆θE > θ0, albeit not by much. With regard to the central image I3

instead, also being a disk at this stage, we simply calculate its area and divide it by the area of the
source to obtain its magnification. As expected, also due to its small size and what has already
been discussed for the magnification of the images produced by this gravitational lens model, this
image will in any case be dim and probably completely fused with the light coming from the
lens. As for the point mass model, also for this example, if we divide the source into coloured
sectors (fig. 3.34), it is immediately observed that the outer part of the Einstein ring, with respect
to the Einstein circle, is oriented like the source, while the inner part is reversed both vertically
and horizontally. If we look at the central image, enlarged in the box, we see that it also appears
reversed both vertically and horizontally. The reasons for this behaviour are exactly the same as
explained for the point mass lens, namely that to understand if and how an image is subject to
inversion, we also have to take into account whether it is on the same side of the source or not
and on which side, with respect to the lens, the source is located. In this configuration we face



CHAPTER 3. GRAVITATIONAL LENSING 82

Figure 3.34: Simulation of the Einstein ring produced from an extended multicoloured disk source
(S) for the Plummer sphere lens (L). The lens is indicated at the centre, where it is positioned, but
it is not visible because covered by the the third image. In the box an enlargement of the central
region is shown.

once more the fact that half of the source is to the right of the lens and half to the left. In light
of these reasons, it is obvious that the central image is oriented in the same way as the inner part
of the Einstein ring, because it is subject to the same conditions and undergoes the same process.
Referring now to the right-hand side of fig. 3.33, we see again that the next configuration
considers the lens L now located on the edge of the source disk. Also in this case there is no
longer a ring, but we see instead two large arcs joined by their extremities and the additional
central image is now shifted to the left side of the lens, as we note from the box in fig. 3.33
(right). The position of the arcs and the direction in which they extend are exactly the same as
seen in the previous example of the point mass lens.
At first, if the source then continues to move sideways, as we see on the left of fig. 3.35, the two
arcs shrink and separate, forming two images of the source that appear as two deformed ellipses.
Moreover, the third image also starts to lose its circular shape and appears elongated. Obviously

Figure 3.35: Simulation with Geogebra of the solution of the lens equation for the Plummer sphere
lens in the case of an extended disk as source, S, of radius θ0. With respect to fig. 3.33, the source
S moves further sideways from the lens L. Left: The case θS < θE. Right: The case θS > θE with
the two images on the left still separated. These images become so small at a certain point that
it is no longer possible to distinguish the various points, we show an enlargement of them in the
box. However, with the Geogebra files we can zoom in on the figures.

following the same rules, what happens for point-like images as the source moves laterally away
from the lens, also happens in general for extended images. In fact, observing the sequence of
pictures in figures 3.35 and 3.36, we notice that as the source moves laterally away from the lens,
the two images to the left of the lens and inside the Einstein ring move closer together. In this
process they deform, becoming similar to each other, as can be seen in the box on the right-hand
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side of fig. 3.35. The two images then merge into a single image that gradually becomes smaller
as the various image points, one by one, merge and then disappear, as we saw when analysing the
various cases with a point-like source in the previous section. At the end of this process of course
the complete image will disappear. In fig. 3.36 we observe two pictures relating to this phase. On
the left we see a moment in which, although we already have a single image on the left of the
lens, the images of the central point at θ2 and θ3 have not yet merged and disappeared. On the
right this phase is complete for each image on the left of the lens and they have all disappeared.
At the same time, the image to the right of the lens moves away from the lens and will again

Figure 3.36: Simulation with Geogebra of the solution of the lens equation for the Plummer sphere
lens in the case of an extended disk as source, S, of radius θ0. With respect to fig. 3.35, the source
S continues to move further sideways from the lens L. We observe the merging of the two images
at θ2 and θ3 on the left and when they are already disappeared on the right. These are some of
the cases that arise together with the corresponding images as θS increases. The two small images
on the left are shown enlarged in the box.

tend to the actual size and position of the source.
At this point, using the same procedure as for the point mass model, Geogebra again helps
us with regard to the magnification of the produced images. In fact, joining the image points
for each distorted ellipse with segments thanks to the function "Polygon", Geogebra gives
us the approximate area of every image. Then dividing them by the area of the source,
we obtain a good approximation of their magnification. Once more, thanks to the source
divided into coloured sectors, we can observe the inversion of images when present and
obtain information about the parity. We can finally also better understand the meaning of
the results that we have seen in section 3.3.1.1 about the parity of the produced images. In
fact, what has been said about the Plummer sphere model is now observed, confirmed and
comprehended in a deeper way. Specifically, the image I1 positioned on the right side of the
lens has µ1 > 0 and we see that it is oriented like the source. On the other hand, I2 has
µ2 < 0 and it is on the left side of the lens, thus it is inverted with respect to the horizontal
axis, exactly as it is for the point mass lensed images. However, I3, which has µ3 > 0
but it is on the left side of the lens, undergoes a double inversion and is flipped with respect
to the horizontal and vertical axes. These outcomes are all visible in fig. 3.37, especially in the box.

From experience we can say that this graphical approach, combined together with the analytical
one if possible, and these simulations capture the students’ interest and involve them, at least
in part, in a practical activity that keeps their focus and stimulates their curiosity. The feedback
received regarding the effectiveness of teaching this subject through this approach and the response
of satisfaction with the activities carried out has always been very positive. However, this increases
considerably with the next educational tool we are now going to present. This is actually a teaching
tool intended for more experimental activities to accompany what we have seen so far and designed
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Figure 3.37: Simulation of three images produced from an extended multicoloured disk source (S)
for the Plummer sphere lens (L) in the case θS > θE. The centre of the source is indicated with
a red dot. In the box we clearly observe the inversion with respect to the horizontal axis of the
image I2 centred at θ2 and the double inversion, horizontal and vertical, of the image I3 centred
at θ3.

on the inspiration of research that has investigated the strong gravitational lensing effect before it
was actually possible to detect it.

3.3.2 The Plexiglass "Gravitational" Lensing Experiment

Another tool designed to perform the task of visualising the gravitational lens effect produced by
galaxies as lenses is the use of special plexiglass lenses that can recreate this effect. Also in this
case, the idea is to represent different lens models and specifically the same five models seen
for the Geogebra simulations (see appendix E). This is not only for practical reasons, in fact as
said the equations involved are simpler, but also to offer continuity and consistency in the path
of discovery of gravitational lensing. Of course, teachers are free to explore other models, indeed
we strongly recommend it if they wish to do so. In fact, one of the goals of these projects that
we have realised is to provide knowledge, tools, means and procedures so that it is also possible
to create one’s own personalised educational material.
This idea has been addressed before in the literature [85][105][27][58][48][1][44][45], but we are able
to add new results. As far as we know, among the five plexiglass lenses studied, designed and
built, we are the first to have produced the Plummer sphere and Kuzmin disk models. We stress
once again the fact that the three models of lenses excluded from production for this educational
tool have a high similarity with other considered models in terms of behaviour, resulting images
and shape of the plexiglass lens. Therefore, the choice to produce the lenses defined by simpler
functions was made, this for educational purposes, but also to facilitate their production by the
university laboratory.

3.3.2.1 Shaping a Plexiglass Lens

We are certainly not the first to ask ourselves the question of how it is possible to visualise the
gravitational lens effect. Refsdal wanted to answer the very same question in the 1960s, when still
no gravitational lens had been detected. Thus, the idea of combining optics and general relativity
with the aim of producing glass lenses capable of showing us the effects of gravitational lensing
was apparently born. The modern answer to this question is clear, it is just enough searching
through the stunning photos of the Hubble Space Telescope (HST) or other powerful telescopes
and observing the gravitational lenses that nature offers us. However, it is now clear that we have
some good alternatives that have proved to be useful educational tools in explaining this topic
with the addition of an experimental part. We are of course talking about the simulations seen
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with Geogebra and these special plexiglass lenses. Moreover, we can say that combining these
three different ways of visualizing the gravitational lens effect provides the best result in teaching
this topic.
Obviously, these plexiglass lenses must have a special profile to reproduce gravitational lensing in
a physically correct way. In particular, as said in section 3.2.5, we can understand the shape of the
lens solving the differential equation (3.15) after having introduced the desired mass distribution
in place of M(|y|).36 Naturally, the plexiglass lens must be scaled down to practicable dimension
for its use in the classroom, with the consequence that it will represent a much smaller amount
of mass, but the effects, although on a different scale, will remain the same. This procedure will
actually provide the function that describes the profile of the lens, moreover, thanks to the axial
symmetry of our models, we only need this profile for positive values of the x and y variables,
as can be seen in what follows for the five lens models we have chosen. In fact, as we know, by
rotating the obtained profile with respect to an axis of symmetry, which in our case corresponds
to the x-axis, we obtain the whole lens. Another detail to consider is that in a real gravitational
lens event, the very central part is physically occupied by the lens and therefore the incident light
in that area is naturally blocked. In our plexiglass lenses, the central part is free and the light rays
can pass through. At the moment we do not have an effective way to avoid this effect. In fact,
at least for us, a few too many rays of light is less annoying than the additional images produced
by any objects which are blocking the light in the middle. Finally, the nature of the images of a
background source that these plexiglass lenses should produce is the same we obtained analysing
the lens equation solution for different mass models in the previous section 3.3.1.
Without entering now in technical details, with Geogebra it is easily possible to draw the lens
profile just setting some of the parameters involved, for instance the size of the plexiglass lens. In
particular, all our lenses have a 1 cm high flat base that allows them to be mounted on specific
frames and this flat side receives perpendicularly the rays coming from the source. Furthermore,
the produced lenses have a diameter of 15 cm and the refractive index for the plexiglass used is
n ≃ 1.5. For technical reasons related to the manufacture of these lenses in the laboratory, which
was a priority for us, the thickness had to remain as close as possible to 2 cm due to the initial
size of the plexiglass plate used, thus limiting the choice of certain specifications, such as the
amount of mass that the plexiglass simulator represents. However, at least as far as the theoretical
part is concerned, it is possible to adopt different values.
As we believe that exploring the technical and practical details of creation of the lens does not
meet our educational objectives, we only present the general solutions for each lens produced,
which instead allow us to understand the analogy and the link between optical and gravitational
lenses. Besides, being able to find out what shape the plexiglass lenses should be given in order
to recreate the gravitational effects due to the different chosen mass distributions is a stimulating
exercise. Again, there are different levels of difficulty regarding the mathematical part, so this
kind of exercise can be adapted to students with different degrees of knowledge. In this respect,
among the five lens models we discuss, we again consider point mass, SIS and uniform disk as the
simplest to deal with, while the others require a slightly more advanced mathematical background.
Let us now see what our plexiglass "gravitational" lenses look like.

Point Mass Lens Knowing already that the point mass has the mass independent of the distance
from its centre and is expressed by M(|y|) = Mtot, eq. (3.15) becomes

dy

dx
= − (n − 1) c2

4G Mtot
· y . (3.47)

At this point, solving it for a generic lens, namely without fixed parameters, we obtain

y = A · e− (n−1) c
2

4G Mtot
·x , (3.48)

36In this case, since we want to calculate the lens profile, we need the mass expressed in terms of the y coordinate.
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whose exponential function defines the shape of the lens as in the left side of fig. 3.38 and A is a
constant. It is obvious that the lens must be cut at a certain distance from the y-axis and in the

Figure 3.38: Point mass plexiglass lens profile with Geogebra (left) and Autodesk (right – Credit: T.
Köhler).

right side of fig. 3.38 we see the particular shape of this lens, which has also the name "foot of
a wineglass" lens (and it is not necessary to explain why). Even though the shape of a real wine
glass foot is not an exponential function, it is still very similar and even the images it produces
are in strong resemblance with the ones produced by this type of lens. It is however important to
remember that we do not know what kind of mass distribution a real wine glass foot represents
and not even if what it represents has physical meaning. Anyway, from a qualitative point of view,
we can use the foot of a wine glass to have a rough, but accessible to everyone, simulation of this
kind of gravitational lens.

Plummer Sphere Lens For the Plummer sphere lens we insert the projected mass from eq.
(3.26), namely M(|y|) = |y|2 Mtot/(|y|2 + aP

2), in eq. (3.15) obtaining

dy

dx
= − (n − 1) c2

4G Mtot

y2 + aP
2

y
. (3.49)

Solving it again for a generic lens, we get

y =

√

A · e−2
(n−1)c2

4G Mtot
·x − aP

2 , (3.50)

whose profile is shown in the left side of fig. 3.39 and A is also in this case a constant. For this
model we do not need to cut the lens, it naturally has the shape of a little hill, as we can see in
the right side of fig. 3.39.

Singular Isothermal Sphere (SIS) Lens For the SIS lens we once again insert the projected
mass from eq. (3.32), M(|y|) = π σv

2

G
· |y|, in eq. (3.15), obtaining

dy

dx
= − (n − 1) c2

4

1

πσ2
v

. (3.51)

Solving it for a generic lens, we have then

y = A − (n − 1) c2

4 πσ2
v

· x , (3.52)



CHAPTER 3. GRAVITATIONAL LENSING 87

Figure 3.39: Plummer sphere plexiglass lens profile with Geogebra (left) and Autodesk (right –
Credit: T. Köhler).

Figure 3.40: SIS plexiglass lens profile with Geogebra (left) and Autodesk (right – Credit: T. Köhler).

which is clearly a straight line and the corresponding lens profile is shown in the left side of
fig. 3.40. A is again a constant. Rotating this line around a central axis, we get the entire
lens shown in the right side of fig. 3.40, which is evidently a cone. After having studied and
produced this lens model, we discovered that this kind of lens is part of a group of lenses with
similar characteristics called axicons [72]. These lenses are actually very well known and used in
various scientific researches and applications, including medicine, biology, astronomy, physics and
wave optics. For example, these lenses are typically utilised in corneal surgery, optical coherence
tomography, atomic traps, spherical aberration correction, acoustic testing, linear accelerator and
many other fields [68].
We recall that the SIS is the simplest model representing a galaxy, and being a good approximation
to explain the flat rotation curves observed at large radii of spiral galaxies, it is also considered
in the search for evidence on the presence of dark matter and its abundance. In fact, since σv is
an expression of the total mass of the galaxy, see previous chapter 2, by comparing the total mass
with the luminous mass we can get an idea of the abundance of dark matter [17].

Uniform Disk Lens Considering the projected mass of the uniform disk lens, M(|y|) = Σ0π|y|2,
eq. (3.15) becomes

dy

dx
= − (n − 1) c2

4G

1

Σ0π · y
. (3.53)
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For a generic lens, we solve it obtaining

y =

√

A − 2
(n − 1) c2

4G Σ0π
· x , (3.54)

which corresponds to a very wide half parabola. The lens profile is shown in the left side of fig.
3.41 and as usual A is a constant. We can then see this lens in the right side of fig. 3.41.

Figure 3.41: Uniform disk plexiglass lens profile with Geogebra (left) and Autodesk (right – Credit:
T. Köhler).

Kuzmin Disk Lens Last but not least, for the Kuzmin disk lens we insert the mass from eq.

(3.41), M(|y|) =

(
(|y|2+aK

2)
1
2 −aK

)
Mtot

(|y|2+aK
2)

1
2

, in eq. 3.15 and we obtain

dy

dx
= − (n − 1) c2

4G Mtot

y (y2 + a2
K)

1
2

(y2 + a2
K)

1
2 − aK

. (3.55)

Solving it again for a generic lens, we have

y =

√

A · e− (n−1) c2

4G Mtot
·x(A · e− (n−1) c2

4G Mtot
·x − 2aK) , (3.56)

whose profile is shown in the left side of fig. 3.42 and A is once more a constant. As shown
in the right side of fig. 3.42, also this lens has the shape of a little hill and we clearly see the
similarity with the Plummer sphere lens. However, it is important to note that the central part is
much steeper here, a fact that leads to a difference in position and size of the resulting images.

3.3.2.2 Lenses in Comparison

As already mentioned, of the eight examples of gravitational lenses considered, only five were
analysed in depth (and used for this student project) and produced as simulator lenses in
plexiglass (see fig. E.2). Behind this choice are several reasons, but mainly we have been careful
not to complicate too much the level of the functions to be studied, even if we limit ourselves to
graphical solutions and use Geogebra for visualisation. Furthermore, when building the plexiglass
lenses, we had to find compromises to solve technical problems due to the manufacturing
procedure and also in this case the functions used needed a certain simplicity. Therefore, in the
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Figure 3.42: Kuzmin disk plexiglass lens profile with Geogebra (left) and Autodesk (right – Credit:
T. Köhler).

light of these considerations, we compared all our models before deciding which ones to focus on.
For the sake of completeness and in support of our choices, we now present this comparison
without, however, touching on the mathematical part, but only considering the lenses’ profile.37

First of all, let us emphasize the fact that the three models we have not dealt with, i.e. the NIS,
spiral galaxy and NFW lenses, are the most complicated from a mathematical point of view.
Furthermore, as can be seen in fig. 3.43, where on the left we have the profile of our five
lenses and on the right the profile of all eight models together, these three lenses have such
similar profiles to one or another lens that they are hardly noticeable. To better understand the

Spiral Galaxy Lens

NFW Lens

NIS Lens

Point Mass Lens

Uniform Disk Lens

Plummer Sphere Lens

SIS Lens

Kuzmin Disk Lens

Figure 3.43: Comparison of the profile of the lens models we analysed (truncated before the outer
edge for space reasons, see fig. E.1). Left: The five lenses we produced, which correspond to point
mass, uniform disk, Plummer sphere, SIS and Kuzmin disk models (see the graph legend for the
colours). Right: All eight models we studied, thus including spiral galaxy, NIS and NFW models.

resemblance, on the left-hand side of fig. 3.44 we isolate the profiles of the three extra models
and then compare them with the two most similar models (on the right), namely the Plummer
sphere and SIS lenses. In particular, we notice that the spiral galaxy and NFW models are very
similar to each other and to the Plummer sphere lens. While the NIS lens is very similar to the
SIS model, as expected as a variation of it, except for the central part due to the addition of the

37Although not visible in the pictures, all lens models are considered to have the same diameter and edge thickness.
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Figure 3.44: Comparison of the profile of the lens models we did not produce (truncated before the
edge for space reasons). Left: The three lenses we excluded (spiral galaxy, NIS and NFW models).
Right: Their comparison with the most similar models, namely the SIS and Plummer sphere lenses.

finite-density core.
In the interest of exhaustiveness and correctness, we also compare the graphical solution of the
lens equation (3.7) for each lens model, including the three non-produced lenses. This is in
order to understand the imaging behaviour of these lenses and to make sure we do not miss a
significant example. In fig. 3.45, we represent the lens equation of each model seen in fig. 3.44,
separated on the left the SIS and NIS models and on the right the Plummer sphere, spiral galaxy
and NFW models. As we saw in section 3.3.1.1, where the straight line defined by f1(θ) = θ − θS
intersects the various other functions derived from eq. (3.7), we obtain the position of the images
that are produced. In fig. 3.45 we see this line for different random values of θS, thus being able

NIS Lens 
SIS Lens 

Spiral Galaxy Lens 
NFW Lens 
Plummer Sphere Lens 

Figure 3.45: Comparison of the lens equations for the models seen in fig. 3.44. Left: SIS and NIS
models. Right: Spiral galaxy and NFW models compared with Plummer sphere lens.

to study the evolution of the situation as the real source moves laterally away from the lens.38

Considering the SIS and NIS models (fig. 3.45 left), we see that there are no major discrepancies
in the position of the images. The real difference is that to the left side of the lens, the NIS model
produces two images, rather than just one as with the SIS model. Furthermore, these two images
will disappear before the one produced by the SIS lens does. As mentioned above, this similarity
is not surprising, as the NIS lens is a SIS lens with a variation in the central part.
Continuing the analysis of the remaining visual representation of the lens equations (fig. 3.45

38As always, the lens is positioned at the origin of the coordinate system.
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right), we see that also for these models the difference in the position of the images is minimal,
almost insignificant. In practice, only the moment when the two images to the left of the
lens merge and then disappear occurs first for the NFW, then for the spiral galaxy and finally
for the Plummer sphere model. Note how the functions representing the Plummer sphere and
spiral galaxy models are almost identical, while the one for the NFW model is only slightly different.

At this point we can conclude that the decision to exclude the NIS, spiral galaxy and NFW
lenses from production is fully justified from the point of view of the level of mathematical
complexity, the lens profile and the behaviour of the produced images. In practice, we are not
confronted with models having more peculiar characteristics or being extremely different from
the others. Moreover, the treatment of these examples is much more complicated and can easily
compromise our educational goals. Also the actual technical production of such plexiglass lenses
is intricate, if not possible at all with the means at our disposal. In the end, these are the lines
of reasoning and motivations that led us to consider only the five models of gravitational lenses
presented in this work.

3.3.2.3 Experimenting

We are ready now for some suggestions on how to use the lenses in the classroom and what possi-
bilities they can give us from an experimental point of view, alongside the theoretical explanation.
Ultimately, the plexiglass lenses that reproduce gravitational lens effects are suitable for use mainly
in two different configurations:

• It is in fact possible to shine light at the lens, preferably if the light rays from the source are
collimated so that they arrive perpendicular to the flat surface of the lens as if from infinity.
This is done to, at least partially, simulate the large distances involved in the process. The
resulting effects are then observed on a screen behind a shield with a pinhole representing
the observer.

• Alternatively, we can look at a source through the lens using simply our eyes or a
(video)camera. The source can be anything (a point, a disk, a grid, a word, a picture,
etc.), perhaps illuminated for a better view. In this case, the rays do not arrive perpendicu-
larly to the lens. However, considering the modest distances kept during the experiment in
class, this allows us to explore how they and gravitational lensing are related.

Figure 3.46: Experimental set-ups that can be used with the plexiglass lenses (here the Plummer
sphere lens produces an Einstein ring). Left: Light is shined at the lens through a collimator. The
last element, after the shield with a pinhole, is the screen where images form. Right: The observer
looks at a source (a black disk), which is illuminated with a lamp, through the lens.

These two set-ups are shown in fig. 3.46 and both of them are effective for working with the
gravitational lens simulators. However, we personally prefer the second one because it allows a
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great variety of configurations. Basically, any figure, shape or photograph can be used as a source
and we can easily produce pictures and videos. It also becomes a fun way to "play" with the
lenses and engage students without making them lose their attention.
Let us now take a look at some of the most interesting tasks and observations that can be carried
out with these plexiglass lenses. In addition, when exploring this topic in class, it is engaging to
compare and discuss the results of two or more lens models, i.e. different mass distributions.

• The Simplest Example of Extended Source First of all, after the theoretical introduction
of this topic, but before moving on to various examples of sources, it is advisable to observe
through the chosen lenses a grid of horizontal and vertical lines, which is the geometrically
simplest idea of an extended source (fig. 3.47). In this way, we can observe and learn what
the resulting image looks like. In fact, this exercise aims to create an initial connection

Figure 3.47: A grid seen through the point mass lens (left), where the very central part should not
be visible at all (see comment in section 3.3.2.1), and the Plummer sphere lens (right), which is
slightly blurred to allow all elements to be seen, otherwise this would not be possible. Credit: T.
Schott

between theory and observation. By guiding our students with appropriate questions, they
will be able to analyse and discuss how the grid lines are distorted and understand that the
gravity of the gravitational lens is responsible for this phenomenon.39

• A Small Disk as a Source While continuing to encourage our students to observe and
guide them in the discovery of the gravitational lensing phenomenon, we can now move on
to using different types of sources, starting with a small circular disk. In this phase, we start
by observing what happens when we have a perfect source-lens-observer alignment. We
then continue by looking at what changes and how the disk is distorted when the alignment
is broken. To break the alignment, depending on our convenience, we can move the source
or lens or observer sideways, keeping the distances DL, DLS and DS constant. In essence,
we will notice not only that indeed the plexiglass lenses reproduce the same visual effects
as we have already studied, but also the correspondence between the various cases. Keep
in mind that accompanying this phase with Geogebra simulations can be a help to facilitate
learning and understanding of what we are observing. In addition, whenever possible, we
suggest combining images of real events of similar gravitational lensing, as shown in fig.
3.48.

• Disks of Different Size as a Source The same experiment and reasoning can be performed
with disks of different sizes in order to observe how the images change. Above all it should
be noted that the greater the radius of the source, the thicker the Einstein ring (in case of
perfect alignment), as we have already seen with the simulations of extended sources and
now we see in fig. 3.49. In this regard we recall what we have seen with the simulations of

39If there are difficulties in understanding how the lines are distorted, it is possible to use the Geogebra simulation
with the line source and also observe through the chosen lens a separate set of vertical and/or horizontal lines and
then return to the grid with a clearer idea.
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Figure 3.48: Example of arcs. In the centre the lensed galaxy SDP.81, on the left side the point
mass lens in action with a disk source and on the right side a Geogebra simulation with a disk
source. Credit for the central image: ALMA

.

Figure 3.49: Example of Einstein rings. In the centre the lensed galaxy "Cosmic Horseshoe", the
outer images are taken with the Plummer sphere lens in action (for which we see the lens frame:
the big external ring) and, as a source, a disk of larger radius on the left side and a disk of smaller
radius on the right side. Credit for the central image: ESA/Hubble NASA.

the gravitational lensing effect done with Geogebra: the images coming from a hypothetical
point-like source, continue to be point-like (section 3.3.1.1), while in the case of extended
sources, extended images are produced (section 3.3.1.2).

• Dependences of the Einstein Ring Another important point to explore is the strong depen-
dence of the Einstein ring size on the amount of lens mass contained within the Einstein
radius, as is clear from eq. (3.8). In case of non-perfect alignment, the amount of mass
contained within the impact parameter plays the same role for the produced images, as
follows from eq. (3.7). We can easily verify these characteristics by using lenses representing
different amounts of mass.
Moreover, as already expressed several times, the size of the Einstein ring also depends on
the distances between source, lens and observer: DL, DLS and DS. Experimentally we can
verify this dependence, remembering however that with our simulators we are limited to
very small distances. In particular, the easiest case to deal with is the perfect alignment,
indeed, if we observe the chosen source directly through our lenses, we can verify and
measure what happens to the Einstein ring as these distances vary, engaging our students
in an interesting exercise.
The difference in the angular size of the Einstein radius, θE, is actually only a few degrees,
yet the results of the observations can easily be compared with the results analytically
obtained from (3.8).40

40This type of exercise requires knowledge of principles of angle measurement and conversion between angles and
lengths. These are topics that our students have already dealt with, however it is possible to find teaching material
that covers this topic, for example the first part of [62] and [23].
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• The Parity of Images If we also want to study the parity of the image, the simplest
technique is to use a disk divided into coloured sectors, as seen in the sections 3.2.4 and
3.3.1.2. Thanks to this simple but effective expedient, we can observe and verify with the
plexiglass lenses all that we have studied about image inversion. An example is shown in
fig. 3.50. In this regard, it is also possible to use non-symmetrical shapes as a source, for

Figure 3.50: Comparison between Geogebra simulation and real plexiglass lens of the parity of
images produced by the Plummer sphere model. Left: Simulation with three images produced
from an extended multicoloured disk source as in fig. 3.37 (with enlargement for details in the
box). Right: The Plummer sphere lens in action with an equal multicoloured disk source.

instance by looking at the word "GRAVITY" in fig. 3.52. However, for eyes unaccustomed to
this type of observation it may be more difficult to observe the parity of images in this way.

• Other Examples However, the beauty of this instrument is that we can unleash our imagi-
nation with the most unusual shapes for sources, even pictures of real astronomical objects.
Indeed, by taking an inverted-colour image of the Hubble Ultra Deep Field as a source and
sliding one of our lenses in front of it, we observe a succession of highly distorted galaxies,
arcs and Einstein rings. In fig. 3.51 we see one moment in time of this sequence compared
with an example of a real gravitational lens event called "Cheshire Cat" because of its funny
appearance. Here we see similar arcs and distorted images of galaxies in the background.
But we should not forget that these distortions are due to the group of galaxies in the

Figure 3.51: The Hubble Ultra Deep Field (Credit:ESA/Hubble NASA) seen through the point mass
lens on the left. The lensed group of galaxies "Cheshire Cat" on the right. Credit for the right
image: NASA/STScI.

foreground,41 while our lenses represent always only a single galaxy and specifically in fig.
3.51 the point mass lens was used.
From our experience, we can say that the students are very curious and appreciate this
experimental part, even going so far as to "play" with the lenses. This is something that we
personally encourage if it is backed up by a good theoretical basis, also because it keeps

41They are actually two groups of galaxies merging.
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their interest in the subject alive. And so it comes that the most varied pictures or scenes are
observed through the lenses, of which we see some examples in fig. 3.52. Nevertheless, we

Figure 3.52: Playing with the lenses. Above: Our faculty building through the Plummer sphere
lens (left), a portrait of Einstein through the point mass lens (right). Bottom: The word "GRAVITY"
through the point mass lens, inspired by [37]. This last picture shows how images seen through
the lenses can also be inverted.

always try to analyse with our students, at least qualitatively, the images we produce, even
those produced for fun. After all, we can see how the lines are bent and distorted, which
images previously analysed we find again, where the various elements of the original figure
are reproduced and how the images are inverted (when this is clearly visible). Ultimately,
especially if properly guided, students are able to perform these kinds of observations and
understand the connections with what has been studied and seen in theory.
To see a practical example of how the teaching material of this project can be used, see
appendix G and [47].

Finally, we would like to say a few words and make a few suggestions regarding the possible future
of this type of research, including a technical point of view.
In our case, some constraints have arisen due to the limited means at our disposal, both in
terms of tools, technology and money. Therefore, it would be interesting to investigate and test
the possibility of using other equipments (for instance 3D printers [104]) for the creation of such
lenses in a simpler and affordable way, in order to make them more accessible to schools and
teachers and to spread their use in the classroom (without having to break the home wine glass
service). All this without neglecting the quality of the manufacturing process and the precision
in respecting the functions that define the shape of the lenses. It can indeed happen that, as
a result of the polishing process, the lens is not uniformly polished over its entire surface and
this can lead to big changes in the behaviour of the lens. In this respect, there are companies
that are specialised in this area, but the costs unfortunately become prohibitive. A further field
of investigation, if the necessary means are available, would be to design and create the same
lens model in several specimens where each one represents a different amount of mass, in order
to show the differences in the effects produced by more or less massive gravitational lenses. Or,
alternatively, several models representing the same amount of mass, thus focusing on the different
mass distribution. Also, exploring the possibility of creating lenses that represent several celestial
objects or clusters in a single specimen would be a very useful and interesting field. As far as
the experimental part is concerned, if a professional optical laboratory is available, one could test
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the lenses with quality lasers and then perform measurements on the images produced with the
aim of creating, if feasible, data sets for the development of numerical exercises and subsequent
comparison with data from real gravitational lens events.
The future is obviously not limited to these points and there are many more possibilities to explore,
as can be seen from [98]. However, based on our experience, the first themes to be considered or
continued to be developed among the various ones could be precisely these.

3.4 Conclusions

We conclude this chapter by expressing our satisfaction with this project as well. In fact, we have
managed to create teaching tools that reproduce in the classroom, even if using simplified models,
some of the effects of strong gravitational lensing that we see in the universe. Innovative is the
fact that we are the first to have analysed lenses representing the Plummer sphere and Kuzmin
disk models in this educational context and produced them in plexiglass. Furthermore, all our
simulations are produced with an accessible software, familiar to many teachers, without having
to use complicated programming languages.
Not only these tools allow us to recreate such phenomena visually, but also to analyse and deeply
understand the mechanism that produces them. These instruments are accompanied by a series of
theoretical exercises that lead first of all to a deeper understanding of gravitational lensing, but at
the same time can be directly introduced to support physics, mathematics and astronomy lessons.
In fact, we are faced with the possibility to apply to a fascinating astrophysical phenomenon, as
well as a real example, some notions that are normally taught at the end of secondary school. We
have already seen the benefits that this technique brings, both in terms of fascination, motivation
and inspiration for students, encouraging their learning, and in terms of developing important
skills that will be useful later in life and in the world of work.
From personal experience, thanks to the presentation and use of the project material on many
occasions, from conferences to teacher training and also directly in the classroom, and from the
feedback from teachers who have tested this project with their students, we can say that it has
been a great success. In fact, not only are all the physical and mathematical concepts involved
absolutely understandable and practicable for students even in their final years of secondary
school, but also the level of interest has been very high on every occasion. As a matter of fact,
the topic stimulates, after a few teaching hours of introduction for the basic knowledge, a strong
curiosity and the will to know and understand more about this phenomenon. This then showed
its positive effects, as the basic principles of the phenomenon of gravitational lensing proved to
be effectively understood. The students appreciated mainly the possibility to recreate this effect
in the classroom and to use the simulator lenses with their own hands. Moreover, the idea of the
optical illusion created by this phenomenon made them wonder if they can really trust what their
eyes see and this stimulated the deepening of the topic. The combination of an experimental part
with a subject that is often only treated theoretically is considered by the teachers to be a strong
point, together with the interactivity of the simulations.
Finally, simulations with Geogebra and plexiglass lenses have proven to be powerful educational
tools in teaching the phenomenon of light deflection due to weak gravitational fields (in particular
strong gravitational lensing), especially when they are used in combination. In addition, all
this allows, but does not oblige, the practice of mathematical concepts such as the solution of
equations of various degrees, differential and integral calculus applied to elementary functions and
trigonometry. Consequently, these tools permit to integrate theory and experimentation very well,
touching on various important concepts such as the deflection angle, Snell’s law, trigonometry and
Newton’s shell theorem.



Chapter 4

Conclusions

Very rarely cosmology topics are included in physics and astronomy lessons in secondary schools
or in the first years of university. The main reason for this is surely the complexity of these
subjects and the teachers’ lack of time to go into them in depth and adequately elementarise
them for the students. The growing disaffection for science among students of all ages is
also a well-known fact. This is of course a problem and even more worrying since economic
development is strongly suppressed in a country where scientific education doesn’t occupy a
prominent role [40][80][28][43]. In this respect the issue is not the absence of science knowledge,
but lies more importantly in how science knowledge is transferred to learners [74].
The combination of these challenges is the driving force behind this PhD project.

By implementing the two student projects described in this work, we are providing concrete
support for the teaching of physics and astronomy by introducing fascinating examples of
cosmology. And we are contributing to making the learning of these subjects more attractive and
exciting for students thanks to new experimental tools and innovative technological aspects. As
it is clear at this point, underlying the produced material and the obtained results is a combined
research and design work where the aim is to expand old knowledge, develop new knowledge and
produce new processes, tools, artefacts and resources.
In the introduction (chapter 1) all the inspiring motivations and objectives behind the conception
and creation of this PhD project are explored. Where also the various stages of development of
the whole work are described, with particular attention to the definition of the target audience
and the choice of the most suitable themes, means and approaches. The project on the dark
matter problem and that on gravitational lensing are dealt with in detail in the two central
chapters. In particular, in addition to the theoretical foundations, they consist of exercises and
activities applied to practical, real examples. This is because, as shown by educational research in
physics and astronomy, by making students active, learning and development of important skills
are stimulated [49][84][113][75][31][99].
When teachers use the educational material exposed in this thesis in their lessons, they get
students to work as astronomers for a few hours. So besides learning new knowledge, applying it
and developing important skills, they experience a glimpse of how science is done. An experience
that can be stimulating for students and open up new horizons.

In chapter 2 we saw that the practical aim of the project on the dark matter problem
is to retrace the path that led to the formulation of the hypothesis of the presence of this
non-visible matter, starting from the dynamics of spiral galaxies. By introducing the concepts
of spider diagram and rotation curve, we focus students on understanding the difference and
relating radial and rotational velocities. Then, by putting Kepler’s laws and Newton’s laws of
motion and gravitation into practice, the mass of the galaxy is obtained. This mass has to
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be compared with the one obtained by considering the brightness of the galaxy in order to
study whether it corresponds or not. All this is done by training computer skills, visualising
graphically and interpreting data. Other supporting topics are important for this project, indeed
students need to familiarise themselves with Newton’s shell theorem and the theory of parallel
projections. In addition, plane trigonometry and the Cavalieri approach to integration are
also taken into account during the assignment. Another important aspect that will engage
students’ minds is to work with different gravitationally bound rotating systems, understanding
their differences and similarities and extracting useful information. This is what happens
when applying the concepts seen to the Solar System and spiral galaxies. Finally, a very stimu-
lating point for students is also the fact that the problem of dark matter is still an unsolved mystery.

With the project on gravitational lensing, discussed in chapter 3, students learn about the
phenomenon of light deflection due to weak gravitational fields, in particular strong gravitational
lensing is studied. Students will doubt that what they see in the universe is actually the reality
of things. This is because they will understand that gravitational lensing is the phenomenon that
leads to the formation of multiple, distorted images of distant light sources. Starting from the
geometry of the gravitational lens system, the concepts of deflection angle and lens equation
are introduced. With these concepts, students learn for different models of mass distributions
acting as lenses, how many images are produced and where they are positioned. Furthermore,
for extended sources, it is understood how the related images are distorted. It is also possible, as
mentioned in section 3.2.3, to calculate by means of gravitational lensing the mass of a galaxy
acting as a lens. Comparing then the result with the mass-to-luminosity ratio and with the
outcomes obtained thanks to the rotation curves (chapter 2), we obtain two independent methods
suggesting the possible presence of dark matter. The brightness of the images in comparison with
that of the source can also be analysed and discussed, i.e. their magnification. To carry out these
tasks, the solution of equations of various degrees, differential calculus applied to elementary
functions and trigonometry will be practised. Using Geogebra, however, students are particularly
encouraged to use a graphical approach, practising computer skills and even creating interactive
simulations of the gravitational lensing effect. In practice, they create a powerful visualisation
of the phenomenon they are examining, while much of the information they obtain can also
be demonstrated using other equally feasible methods, for instance by ray-tracing diagrams as
done in [85]. At this point, by combining the notions of general relativity learned so far with
geometric optics, we find out what shape plexiglass lenses should have in order to reproduce the
gravitational lensing effects obtained from the simulations. Lenses that we have designed and
produced so that students can continue the project by experimenting with gravitational lensing
in the classroom. Snell’s law and the concept of refraction are additional topics to support this
part. Integral calculus with elementary functions can also be introduced. Newton’s shell theorem,
on the other hand, remains a topic to be kept in mind throughout the project. The basic aim
of this project is to visualise light on curved paths under the influence of gravity, which is
achieved by means of the above-mentioned simulations and special plexiglass lenses. In practice,
these instruments represent the experimental part of this topic. The experimental part is more
technological in the case of the simulations and more hands-on in the case of the lenses.

These projects are the result of careful research work. They underwent a meticulous process
of creation, evaluation and revision. In this process, mainly teachers (in-service and future) were
involved, but also students, for completeness. This made it possible to evaluate many important
aspects, such as feasibility and effectiveness of teaching, knowledge and level of learning of
concepts, autonomy of students, acquisition of competences and also degree of inspiration and
involvement. All this with the purpose of highlighting project and product needs, necessary
changes and promoting possible modifications and improvements during their development. In
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this respect, the collaboration of the teachers was fundamental because it allowed us to test
the material from two points of view: that of the teacher and that of the student. Feedback,
advice and suggestions from both sides were always very helpful. This has led to a progressive
improvement of the resources produced. When the high level of quality we aimed for was
achieved, dissemination began. First in teacher training, then at conferences and in dedicated
journals and finally to the introduction of specific seminars in university courses for future
teachers.
This does not mean that the work is finished, there is always room for improvement. On the
contrary, we welcome constructive criticism and new suggestions. And we also sincerely hope to
inspire future ideas and developments in this area.

We can now present the results of the final summative evaluation stating, thanks to the
feedback received, that this work has been very successful in answering the research questions
posed and the challenges presented. Colleagues, teachers and students involved during the
implementation of this project consider the resources and tools produced innovative and of high
quality. Using this material in the training of teachers, who will then introduce it in their lessons
with students, brings concrete benefits in the effectiveness of teaching these subjects on all levels
considered. This is achieved by fruitfully combining theory and experimentation, by actively
involving and interesting, by transmitting knowledge and stimulating new competences. With the
final aim of giving students not only the possibility and the ability to understand, but hopefully
also planting in them the seed of curiosity and the desire to know. This is why these resources
represent a significant contribution to the field of physics, mathematics and astronomy education.
We know very well that not all students will become scientists, but encouraging and passing on
not only knowledge, but also a distinctive way of thinking and new capabilities plays an important
role in improving the quality of life of the individual and the long-term growth of society [80]. As
we have seen on several occasions, effective teaching of science subjects (although we focus on
physics, mathematics and astronomy) promotes the development of special skills (such as problem
solving, logical reasoning, creativity, critical and scientific thinking, research and questioning,
decision making, adaptability and many others) that can help students to take advantage of the
scientific knowledge they have acquired, improving all aspects of their lives [32][43].

In conclusion, this is essentially the message that should resonate in the minds of teachers
and why they should pay close attention to how they teach, the topics they choose to include,
the resources they use and find ever better and inspiring ways. This message also reflects the
great importance of research and projects such as those developed and discussed in this thesis.
These define a particular field, characterised by constant give and take in terms of knowledge,
satisfaction and fulfilment. A field of research that not only makes one grow and improve, but
also fuels the fire of passion that drives and pushes to contribute more and better.
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Appendix A

Newton Shell Theorem: Gravitational Force

Analysis

In spite of the fact that the gravitational force approach for the Newton shell theorem is more
complicated, it remains the most widely used method to explain it. This is reason enough to
consider it and to give an example suitable for secondary-school students. Unfortunately, using
the same methodology we have seen for the energy analysis is not advisable in this case because
without integration it becomes too difficult to solve for the students. However, we can fortunately
adopt an alternative procedure.

The starting point is again the spherically symmetric hollow shell of mass M and radius R
and a test point-mass m at a distance ρ from the centre of the sphere. As we can see in figure
A.1, the shell is cut in two sectors (the green rings) by two cones which have both vertex in B and
axis through C [63][86]. Moreover, thanks to the symmetry of the problem, everything in the upper
half of the sphere is mirrored in the lower half, permitting us to confine our work to one part
only.
The force of attraction that the closest ring (ring 1) of height ∆s and mass M1 = Σ · 2π · R ∆s
exerts on the point-mass in B is given by

F1 = G
m · M1

b2
cos α = G

m · Σ · 2π · R ∆s

b2
cos α . (A.1)

This becomes for the farthest ring (ring 2):

F2 = G
m · M2

b′2 cos α = G
m · Σ · 2π · R ∆s′

b′2 cos α . (A.2)

In particular, the factor cos α defines which components of the force has to be considered.
Indeed, because of the symmetry of the ring, it is clear that only the components parallel to the
line connecting B and C, in direction of C, contribute to the force attracting the point-mass. All
the perpendicular components compensate each other. Therefore, for both rings the force acts on
this line and in the same direction. At this point, it is possible and useful to express the ratio of
the forces obtaining

F2

F1

=
∆s′

∆s

(
b

b′

)2

. (A.3)

Considering now the geometry of the system from figure A.1, we can rearrange eq.(A.3) in a more
suitable form. In fact, from the triangles △CS1P1 and △S1BP1 and the Pythagoras’ theorem,
we easily calculate

R2 = s2
1 + [b2 − (ρ − s1)

2] . (A.4)

Using the same method, from the triangle △CBP2 we obtain

R2 = (s1 − ∆s)2 + [a2 − (ρ − s1 + ∆s)2] . (A.5)
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Figure A.1: 2D-representation of the system composed of a spherically symmetric hollow shell
of total mass M and radius R, cut into sectors by the two cones with vertex in B, and a test
point-like body of mass m at distance ρ from the centre of the sphere. The lower, smaller
version of the diagram is only to highlight a′ and b′. It is also useful to define some lengths:
P ′

1P2 = ∆b and P3P ′
4 = ∆b′, S1S2 = ∆s and S3S4 = ∆s′ and CS1 = s1, L1L = LL4 =

1
2
(b′ − b) = 1

2
l and L2L3 = l − ∆l.

Then equalling these last two equations and substituting a = b + ∆b the result is

(2b + ∆b) ∆b = 2ρ ∆s (A.6)

and considering the limit lim∆b→0(2b + ∆b) it becomes

∆s =
b

ρ
∆b . (A.7)

The same procedure is now applied to ring 2 and the triangles △CBP4 and △CBP3 resulting
in

∆s′ =
b′

ρ
∆b′ . (A.8)

Introducing these results in eq.(A.3), the ratio of the forces is thus expressed by

F2

F1

=
∆b′

∆b

b

b′ . (A.9)

Knowing that a = b + ∆b and a′ = b′ + ∆b′, the intersecting secants theorem1 then leads to

b′∆b − b∆b′ = 0 and
∆b′

∆b
=

b′

b
(A.10)

1a a′ = b b′ = const, one of the cases when treating the problem of two intersecting lines and a circle, for a
detailed explanation see [25] or search in any elementary plane-geometry textbook.
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and from eq.(A.9) consequently to the equality

F1 = F2 . (A.11)

This result is not unexpected, as the procedure works because the force is proportional to the
inverse of the square of the distance and the area is proportional to the square of the distance [29].
This means that, even if the surfaces of the rings are not the same, they exert the same attracting
force on the point-mass. It is thus enough to calculate only one of the two forces.
Thereafter, in order to simplify the calculation, it is useful to express cos α in terms of b and b′.
Basically, looking at the triangle △CLB and at the geometry (in particular the symmetry) of the
system in figure A.1, it is clear that BL = ρ · cos α = b + l

2
= b′ − l

2
. Consequently, this directly

gives

cos α =
b + b′

2ρ
. (A.12)

Furthermore, from the figure and thanks to eq.(A.10) we can define

L1L4 − L2L3 = ∆l = ∆b + ∆b′ =

(
b′

b
+ 1

)
∆b . (A.13)

Inserting equations (A.7), (A.12) and (A.13) in eq.(A.1), we obtain the force in the form

F1 = F2 = G
m · Σ · π · R

ρ2

(
b′

b
+ 1

)
∆b = G

m · Σ · π · R

ρ2
∆l . (A.14)

Since F1 = F2, in order to calculate the total gravitational force F exerted by the shell, we need
first to expand the two sectors so that they cover the entire sphere and then it is enough to
calculate the force for one of them and double it. The two sectors can cover the entire sphere
only at their maximum extension, namely when the larger cone is tangent to the sphere and the

smaller one reduced to a line through C, which means solving
2R∑
l=0

∆l. The result is

F = 2F1 = 2 · G
m · Σ · π · R

ρ2

2R∑

l=0

∆l = G
m · Σ · π · 4 · R2

ρ2
= G

m · M

ρ2
. (A.15)

Also from the force analysis, this theorem proves that for ρ ≥ R the gravitational force depends
only on the distance ρ, once again as if all the mass of the sphere were concentrated at its centre.
The same derivation can be performed for ρ < R, the geometry of the system is shown in figure
A.2. The result in this case is that F2 = −F1, therefore F = 0, namely the interior of the shell is
force free and additional calculations are not needed.

At this point, if we consider the sphere full of mass and apply the same procedure like for the
energy analysis, for ρ ≥ R we include the total mass of the sphere Mtot solving the summation

n∑
α=1

Mα. Therefore, the gravitational force depends exclusively on the distance ρ as if all the mass

of the sphere were concentrated at its centre. Then again, for ρ < R this remains true only for
the shells internal to the radius ρ and the force is instead zero for the shells external to it.

With the purpose of making the exercise more challenging, an advanced approach with in-
finitesimal calculus can be introduced. Even if we can apply the infinitesimal calculus to the
just-seen procedure, it is far more simple to adopt the method of dividing the shell in many
infinitesimal rings as we did for the energy analysis.
Therefore, we consider once more figure 2.3 and the force exerted from an infinitesimal ring on
the point-mass is then expressed by

dF = G
m · dM

ρ2
i

cos α = G
m · Σ · 2πR2 · sin θi dθi

ρ2
i

cos α . (A.16)
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Figure A.2: 2D-representation of the system composed of a spherical symmetric hollow shell of
total mass M and radius R, cut into sectors by the two double cones with vertex in B, and a
point-mass m positioned inside the sphere and at distance ρ from its centre.

Introducing now eq.(B.3) and the cosines law for cos α in eq.(A.16), we obtain

dF = G
m · Σ · πR

ρ2

ρ2 − R2 + ρ2
i

ρ2
i

dρi . (A.17)

According to figure 2.4, we perform a simple integration on the interval between the smallest and
the biggest value of ρi and we get

F (ρ) =





G m·Σ·πR
ρ2

∫ ρ+R

ρ−R

ρ2−R2+ρ2
i

ρ2
i

dρi = G m·Σ·4πR2

ρ2 if ρ ≥ R

G m·Σ·πR
ρ2

∫ ρ+R

R−ρ

ρ2−R2+ρ2
i

ρ2
i

dρi = 0 if ρ < R ,

(A.18)

where Σ · 4πR2 = M .

Finally, a last case is worthy to be named, this is the famous Poisson equation derived from
Gauss law of gravity, which expresses the relation between mass density and gravitational potential.
Solving the Poisson integral for a spherical distribution of mass, we achieve the same result seen
so far in an elegant and formal derivation. This method, given its difficulty, is mainly suitable for
undergraduate university students. We do not discuss this approach here because it is covered
in any physics course and many books (for example [42][103]), normally in its corresponding form
for electrostatics, hence it is not of interest for our educational purposes. In fact, the objective of
projects like this is to provide alternatives, simplified as much as possible and with different levels
of difficulty, to traditional methods of resolution.



Appendix B

Advanced Treatment of Some Explored

Concepts

We suggest here how to treat some of the topics seen in the previous sections with a more
advanced approach suitable for students with a deeper mathematical background.

• From section Newton Shell Theorem 2.2.2:

For more advanced students, it is possible to render the gravitational potential energy
approach more challenging introducing infinitesimal calculus which involves very basic dif-
ferentials and definite integrals. This is very similar to and inspired by Feynman’s simple
approach in [30]. The chain of reasoning remains the same, but the rings’ thickness is
considered infinitesimal ∆ρi → 0 and eq.(2.1) is now expressed in the form

dU = −G
m · dM

ρi

= −G
m · Σ · 2πR2 · sin θi dθi

ρi

. (B.1)

Simply calculating the first derivative on both sides of the equation seen in the law of
cosines we obtain ρi dρi = ρR sin θi dθi, which is then introduced in eq.(B.1). This result,
once introduced in eq.(B.1), leads to

dU = −G
m · Σ · 2πR

ρ
dρi . (B.2)

The next step consists of calculating a simple definite integral on the interval between the
smallest and the biggest value of ρi. As it is for the simpler approach we just saw, also here
the limits of integration play a fundamental role to define when the point-mass is inside or
outside the spherical shell and the diagram of figure 2.4 remains valid. Hence, solving the
equation

U(ρ) =





−G m·Σ·2πR
ρ

∫ ρ+R

ρ−R
dρi if ρ ≥ R

−G m·Σ·2πR
ρ

∫ ρ+R

R−ρ
dρi if ρ < R .

(B.3)

we achieve again eq.(2.4) with all the discussed results that it entails. Easily this reasoning
can also be extended and applied to the sphere full of mass.
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• From section The Rotation Curve of a Spiral Galaxy 2.3.3:

The Bulge – At a more challenging level, the problem of calculating the mass of the total
sphere can be performed using directly integration

MB(r) =
∫ r

0
ρ2σB(ρ) dρ

∫ π

0
sin θ dθ

∫ 2π

0
dφ = 4π

∫ r

0
ρ2σB(ρ) dρ . (B.4)

This integral, after introducing σB(ρ),1 is very easy to solve and gives

MB(r) = 4πa
∫ r

0
ρ(k+2) dρ =

4πa

k + 3
r(k+3) . (B.5)

This result corresponds to eq. (2.25). From now on, we can proceed as we did in
section 2.3.3.1 achieving the same results. In fact, deducing that k = 0 (which means
σB(r) = a = σB) we then derive equations (2.28) and (2.30).

The Halo – The advanced solution of the problem of calculating the mass of the halo follows
in a straightforward manner the reasoning for the bulge and the interval of integration is
in this case between RB and r. Therefore, the mass for the halo alone at a radius r is
calculated as

MH(r) = 4π
∫ r

RB

ρ2σH(ρ) dρ

= 4πd
∫ r

RB

ρ(k+2) dρ

=
4πd

k + 3

(
r(k+3) − R

(k+3)
B

)
.

(B.6)

Where σH(ρ) = d · ρk , as it is explained in section 2.3.3.2. Clearly, this result corresponds
to eq. (2.34) and leads us to the same solution as in section 2.3.3.2. We deduce, in fact, that
k = −2 obtaining equations (2.35) and (2.37).

1σB(ρ) = a · ρk , as explained in section 2.3.3.1.



Appendix C

Spiral Galaxy in the Section with Keplerian

Decline

In this appendix we analyse the rotation curve and the spider diagram of a spiral galaxy in the
hypothetical Keplerian decline area, starting therefore from a radius about ten times bigger than
the visible radius of the galaxy disk. As we already know, the situation represented in this case
resembles the one we have seen in the solar system, but for clarity the explanation is given here.

Rotation Curve

Considering figure 2.17, where the radius is r ≥ RH , we see that the rotation velocity follows the
Keplerian decline. The information we can extract from the curve is

v2
K(r) = G

MG(RH)

r
= G

MB(RB) · RH

RB · r
= v2

H(RH)
RH

r
= v2

B(RB)
RH

r
, (C.1)

where MG(RH) is the total mass of the galaxy at radius RH, expressed by eq.(2.38), and it is a
constant. In this case, according to Newton’s shell theorem, the mass of the entire galaxy would
act gravitationally on a test mass orbiting at r ≥ RH as if it were all concentrated in one point at
the centre of the system. Therefore, from RH on we are facing a planet-like rotation with most of
the mass concentrated in the centre, exactly like for the Solar System. This means that the further
away we could measure the orbital velocity the more this would decrease proportionally to r−1/2.
As shown in figure C.1, the first available measurement would be at the edge of the galaxy and
thus the rotation curve appears exactly as in figure 2.17.

Spider Diagram

The spider diagram drawn from this region of the rotation curve, namely for r ≥ RH , should
appear similar to the one for the Solar System, considering of course that it regards only radii
bigger than the maximum radius of the galaxy. From the definition of the spider diagram and the
fact that the rotation velocity is expressed by eq.(C.1) and the radial velocity by eq.(2.15), as we did
in section 2.3.4 we derive

vr − vsys = v(r) · cos θ · sin i = vB(RB)

√
RH

r
· cos θ · sin i

!
= B . (C.2)

Once more we group all constants and according to the definition of A in eq.(2.43), we obtain then

r−1/2 cos θ =
B ·

√
RH

sin i · vB(RB)
= A ·

√
RH . (C.3)
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O

Figure C.1: Representation of the entire Keplerian decline rotation curve (dashed dark gray line).
We could eventually measure and draw only the purple line because of the limit of measurements
at the border of the galaxy. It is also shown as the Keplerian decline would be in absence of a
halo (dashed light gray line).

After few steps, we present this result in Cartesian coordinates as

r cos θ

r3/2
=

x

(
√

x2 + y2)3/2
= A ·

√
RH . (C.4)

The solution of this equation, which represents the iso-velocity contours in the galaxy plane, is

y2 =

(
1

A ·
√

RH

)4/3

x4/3 − x2 . (C.5)

This corresponds to eq.(2.18), but for the spiral galaxy case instead. The result is very similar to
the Solar System spider diagram in figures 2.14 and 2.16, however we consider only the radii bigger
than the edge of the galaxy, as shown in figure C.2 (we have here already set y′ = y cos i for
the spider diagram lines and the circles of the different areas and i = 60°). Comparing eq.(C.3)
with equations (2.43) and (2.46), we see that free parameters are still only r and θ, A is also here
present and we have now as an extra constant the radius of the halo, RH.
The complete version of the spider diagram in figure 2.21 for a spiral galaxy inclined of i = 60°,
namely including the Keplerian decline part, is shown in figure C.3.



APPENDIX C. SPIRAL GALAXY IN THE SECTION WITH KEPLERIAN DECLINE 111

'

'

Figure C.2: Representation of the entire Keplerian decline spider diagram (dashed dark gray line)
for a spiral galaxy. Also here we could eventually measure and draw only the lines in purple. In
absence of the halo, we would not have the lines in green and the Keplerian decline lines should
be set anew according to the dashed light gray line of figure C.1.

'

'

Figure C.3: Spider diagram of a spiral galaxy with all sections represented: bulge – red, halo –
green and Keplerian decline – purple.



Appendix D

The Mass-to-Luminosity Ratio

Knowing the amount of visible mass inside a specific radius, it is possible to determine how much
is this in comparison with the quantity of dark matter at the same radius. This comes from
inferring the ratio between total mass (which includes dark matter), deduced from the rotation
curve, and visible mass inside that radius if this last information is known. In case this information
should not be directly available, we can achieve the same result calculating the mass-to-luminosity
ratio M

L
for the observed galaxy. The mass-to-luminosity ratio is an indicator of how efficient is

some quantity of visible, luminous mass in producing photons. In an ideal case, using solar units
of measurement, one solar mass should produce one solar luminosity M⊙

L⊙
= 1, but for many

reasons this is not the reality for all stars. In fact not only the presence of dark matter affects this
ratio, but for the visible mass also the properties of different stellar populations [94].
It is indeed known from observations that for spiral galaxies the average mass-to-luminosity ratio
for the visible mass, in solar units, is Mvis

L
= 3M⊙

L⊙ [94]. Considering instead the total mass of

the observed galaxy at any point outside the visible radius r ≥ RD, the ratio MG(r)
L

is given by
the quantity of total mass derived from the rotation curve, expressed by eq.(2.38), divided the
total luminosity of the galaxy, calculated from the absolute magnitude. This is actually possible
because the intrinsic luminosity of celestial objects is expressed by the absolute magnitude M, the
apparent brightness is instead expressed by the apparent magnitude m.1

The magnitude scale (the same for apparent and absolute one) is an inverse logarithmic scale
and expresses a measure of the brightness of a celestial object as seen from Earth. It is an inverse
measure because the brighter an object is, the smaller the numerical value of its magnitude is. This
scale has its modern roots on Pogson’s ratio [83]. Basically, the measured-on-Earth intensities from
two objects I1 and I2, in units of energy flux density ([I] = W

m2 ),2 correspond to two apparent
magnitudes m1 and m2. These intensities and magnitudes are related by

I1

I2

= 100
m2−m1

5 . (D.1)

Given that the intensity is expressed by I = L
4πd2 , where L is luminosity ([L] = W), it is clear that

the intensity of light received from a celestial object depends on its distance d (inverse-square law).
Now, if we consider two galaxies or stars at the same distance from the observer, the intensity
ratio (or the magnitude difference) is an expression of their luminosity ratio L1

L2
only. This leads us

to the concept of absolute magnitude, which corresponds to the apparent brightness of a celestial
object if it would be at the standard distance of d0 = 10pc. In this way, the absolute magnitude
is independent of the different-distance problem and an indication of the intrinsic luminosity of
the object.

1M and m are not in italics, they should not be confused with mass symbols.
2It is common use among astronomers to express it in erg

s · m2 , nevertheless we will not use these last units of
measurement. They are not well known among teachers and students, who as a rule use the International System of
Units.
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Therefore, from eq.(D.1) and using the absolute magnitude for avoiding the different-distance
problem, we derive

M2 − M1 = 2.5 log
L1

L2

. (D.2)

Introducing now the known values from the literature for the observed galaxy (index 1) and for the
Sun (index 2), we easily solve it for the galaxy luminosity

LG = L⊙10
2
5

(M⊙−MG) . (D.3)

Finally, since the total luminosity remains the same for the visible and for the total mass of the
galaxy, we are allowed to compare the respective mass-to-luminosity ratios. In this way we obtain
a rough estimate of the ratio of visible mass to total mass at a certain radius r ≤ RD, expressed
as Mvis

MG(r)
, which gives also the estimate of dark matter at the same radius.

The Mass-to-Luminosity Ratio for NGC3198

According to the previous section, if we do not have the total luminosity of the considered galaxy
LG, we can easily calculate it using its absolute magnitude M, the one of the Sun and the Sun’s
total luminosity as in eq.(D.3). Indeed, from the absolute magnitudes MV in table 2.3 and knowing
that for the Sun it is L⊙V = 4.83 and 1L⊙ = 3.9 · 1026 W, we have

LGV = L⊙V 10
2
5

(4.83+19.80) = 7.11 · 109 L⊙ = 2.77 · 1036 W .

As we can see, it is very similar to the value from the literature in table 2.3. Now, adopting this
value for the luminosity of the galaxy and the values in table D.1 for the mass, we derive the
ratio M

L
at different radii of interest in the form MG(r)

L
= nM⊙

L⊙
. Here n assumes different values

depending on what radius it is calculated at. The results significant for us are listed in table D.1.
The last step consists of comparing the results for this ratio with the mean value of M

L
for the

visible mass in a spiral galaxy, that is Mvis

L
= 3M⊙

L⊙ . This comparison gives us an estimate of the
quantity of visible mass in relation to the total dynamical mass of the galaxy, considering the fact
that for the entire visible mass of the galaxy we can set Lvis = LGV = L constant. Therefore, we
derive

Mvis =
3

n
MG(r) , (D.4)

calculated for each value of n and MG(r). Then with Mdark = (1 − 3/n) MG(r), we easily obtain
the same ratio for the non-visible matter. All these last results are also collected in table D.1.
It is indeed from the last three columns of table D.1 that we have the searched evidence of the

NGC3198 σH(r) in kg/kpc3 σH(r) in M⊙/kpc3 MG(r) in kg MG(r) in M⊙ n Mvis/MG(r) Mdark(r)/MG(r) Mdark(r)/Mvis

RB 5.18 · 1037 2.60 · 107 4.16 · 1040 2.09 · 1010 – – – –
RD 4.23 · 1036 2.12 · 106 14.56 · 1040 7.32 · 1010 10.30 0.29 0.71 2.45
R30 9.20 · 1035 4.62 · 105 31.20 · 1040 15.68 · 1010 22.05 0.14 0.86 6.14
Rmax 3.31 · 1035 1.66 · 105 52.02 · 1040 2.61 · 1011 36.71 0.08 0.92 11.50
RH 4.23 · 1034 2.12 · 104 145.64 · 1040 7.32 · 1011 102.95 0.03 0.97 32.33

Table D.1: Results for mass density, mass, M/L ratio and amount of visible and dark matter at
different radii of the spiral galaxy NGC3198. R30 = 30 kpc is a value fro the radius used later for
comparing these results to the ones from the literature, Rmax = 50 kpc is the maximum radius
reached for measurements, RH = 140 kpc is the hypothetical maximum radius of the halo.

presence of a huge amount of mass that we cannot see, the famous dark matter.
Despite the fact that this is not our primary objective, we try to assess the accuracy of our results
by comparing them with some values taken from the literature, which are summarised in table
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NGC3198 Luminosity 109 L⊙ Halo Mass Density M⊙/pc3 Visible Mass 109 M⊙ Total Mass 1010 M⊙
Begeman [6] LB = 9 LV = 7.3 – MGvis(Rmax) = (5 + 34) gas+stars –
van Albada [110] LB = 8.6 LV = 7 σH(R8) = 0.0042 MGvis(Rmax) = 5 gas –
Bosma [11] LB = 7.95 – MGvis(Rmax) = 5 gas –
Kostov [55] LV = 7 – – MG(RD) = 7.2 (or 6.5trunc)
Daod [18] – σH(RB) = 0.0187 σH(R30) = 0.00278 MGvis(RD) = 17 –

Total Mass 1010 M⊙ Mass-to Light Ratio M⊙/L⊙ Mass-to Light Ratio M⊙/L⊙ Mass Quantities Ratio

Begeman [6] MG(R30) = 15 M/L = 3.8 visible disk – –
van Albada [110] MG(R30) = 15 M/L = 3.6B (or 4.4V) visible disk M/L = 18R30 (or 25R50) Mdark(R30)/Mvis = 3.9
Bosma [11] MG(R26) = 9.2 – – –
Kostov [55] MG(R30) = 15 (or 11trunc) M/L = 9.3 total disk M/L = 21 total galaxy –
Daod [18] MG(R30) = 5.26 – – Mvis/MG(R30) = 0.324

Table D.2: Data about the spiral galaxy NGC3198 taken from the literature and used as comparison
for assessing the accuracy of our results.

D.2. Almost all the literature cited in this table states that at R30 the quantity of dark matter
should be at least four times that of visible mass. And all of them conclude that the spiral galaxy
NGC3198 can be essentially described by two components: the visible disk and the spherical halo
of dark matter. We achieve the same conclusion about the components of the galaxy, however,
using our simplified model and neglecting any kind of deviation from this model and uncertainty,
the amount of dark matter we derive is six times more than the visible mass. Thus, in comparison,
our result is overestimating the amount of dark matter. Since the calculated luminosity LGV and
the total mass MG(R30) are in very good agreement with [6], [110] and [55], we conclude that the
assumed values for the distance of the galaxy, the Hubble constant H0 and the mean mass-to-
luminosity ratio M

L
chosen for the visible mass play an important role for the final result and may

cause this overestimation.
Finally we can be satisfied with the results obtained for the galaxy NGC3198. They are mostly in
good agreement with what is reported in the literature and allow us to understand the process
that leads to the formulation of the concept of dark matter.



Appendix E

The Produced Lenses

For the sake of completeness, we now show the graph with the full profile (from the centre to the
outer edge) of the lenses we have produced in plexiglass and the photo of these lenses.
The Schwarzschild radius,1 RS, is given in the caption for each lens model whose total mass does
not diverge. This suggests that these three lenses (point mass, Plummer sphere and Kuzmin disk)
are representative of the gravitational lens effect that would be caused by objects whose total mass
is in the range of 10% to 25% of the mass of the Earth.2 As we have already mentioned in
section 3.3.2.1, for the production of such lenses, technical feasibility was more important than the
representation of real astronomical objects.

7.5 cm

1 cm

Point Mass Lens 
Uniform Disk Lens 
Plummer Sphere Lens 
SIS Lens 
Kuzmin Disk Lens 

Figure E.1: Comparison of the entire profile of the five lenses we produced, which correspond to
point mass (RS = 0.09 cm), uniform disk, Plummer sphere (RS = 0.25 cm), SIS and Kuzmin disk
(RS = 0.25 cm) models (see the graph legend for the colours).

1RS is defined in section 3.2.
2The Schwarzschild radius of the Earth is approximately 0.9 cm.
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Appendix F

Projecting the Lens Mass onto a Plane

In this appendix we will see the procedure to obtain the mass of a sphere projected onto a
plane as a function of the radius. This procedure, as we have seen in our simplified approach,
is used in cases where the lens models we consider are not disks, but actually spheres. We start
with the simple example of a homogeneous sphere of finite dimension, whose mass is uniformly
distributed. We then move on to an example taken from our lens models, namely the Singular
Isothermal Sphere – SIS seen in section 3.3.1.1.

Homogeneous Sphere Example

The sphere whose mass we want to project onto a plane, represented in figure F.1, has the following
characteristics:

• constant mass density σ(r) = σ0,

• 0 ≤ r ≤ R with R the radius of the entire sphere,

• the volume element in spherical coordinates is defined by dV = r2 sin θ dθ dφ dr.

Figure F.1: The finite homogeneous sphere. The disk in grey represents the plane onto which we
want to project the entire mass of the sphere. We define r as the radial distance from the centre
(and ρ its projection), R as the maximum radius of the sphere, θ as the polar angle and φ as the
azimuth angle.

We can easily calculate the total mass of this sphere by means of

M(R) =
∫

V
σ0 dV = σ0

∫ π

0
sin θ dθ

∫ 2π

0
dφ
∫ R

0
r2 dr = 4 π σ0

1

3
R3 . (F.1)
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If, on the other hand, we want to consider a generic intermediate radius r, the mass contained
within it is given by M(r) = 4 π σ0

1
3

r3. Switching now to Cartesian coordinates with r2 =
x2 + y2 + z2, we can introduce the projection on the xy-plane of the radius r in 3-space. This,
as can be seen from the figure, is represented by ρ = r sin θ, obtaining r2 = ρ2 + z2.
At this point we can project the mass density onto the xy-plane and calculate thus the surface
mass density

Σ(ρ) = σ0

∫ (R2−ρ2)
1
2

−(R2−ρ2)
1
2

dz = 2 σ0

√
R2 − ρ2 . (F.2)

The limits of integration are defined as shown in figure F.2, namely by the z-coordinates of pairs
of points of the sphere mirrored with respect to the xy-plane and expressed in terms of R and ρ.
In fact, from the figure we deduce that zP =

√
R2 − ρ2 and zP’ = −

√
R2 − ρ2. When ρ varies,

Figure F.2: The sphere observed in the ρz-plane in order to define the limits of integration along
the z-axis.

considering that 0 ≤ ρ ≤ R, we can thus describe these coordinates for each pair of points.
Thanks to Σ(ρ) and considering the surface element dS = ρ dφ dρ of the xy-plane, we derive
the projected mass

M(ρ) =
∫

S
Σ dS =

∫ 2π

0
dφ
∫ ρ

0
ρ Σ(ρ) dρ = 4 π σ0

1

3
(R3 − (R2 − ρ2)3/2) . (F.3)

Figures F.3 and F.4 show mass density and mass radial profiles of the finite homogeneous sphere

Figure F.3: Mass density radial profiles of the finite homogeneous sphere, on the left in 3-space
and on the right projected onto the xy-plane.

of radius R before and after the projection onto a plane.



APPENDIX F. PROJECTING THE LENS MASS ONTO A PLANE 119

If we consider the total projected mass, therefore for the case ρ = R, we obviously obtain
M(R) = 4 π σ0

1
3

R3. Indeed, as expected, the total mass does not change, but its distribution is
of course different.

Figure F.4: Mass radial profiles of the finite homogeneous sphere, on the left in 3-space and on
the right projected onto the xy-plane.

SIS Example

Now we apply the reasoning we just saw to the SIS model considering that for this sphere we have
0 ≤ r < ∞ and σ(r) = σv

2

2 π G r2 . Hence, for a general radius r, from eq.(F.1) we get

M(r) =
∫ π

0
sin θ dθ

∫ 2π

0
dφ
∫ r

0
r2 σ(r) dr =

2 σv
2

G
r . (F.4)

At this point applying eq.(F.2) with proper limits of integration1 and using r2 = ρ2 + z2, we can
calculate the surface mass density

Σ(ρ) =
∫ ∞

−∞
σ(ρ, z) dz =

σv
2

2 π G

∫ ∞

−∞

1

ρ2 + z2
dz =

σv
2

2 G

1

ρ
. (F.5)

Finally, we are able to derive the projected mass thanks to eq.(F.3), obtaining

M(ρ) =
∫ 2π

0
dφ
∫ ρ

0
ρ Σ(ρ) dρ =

π σv
2

G
ρ . (F.6)

In fact, we reach exactly equations (3.31) and (3.32) used in the case of the SIS lens, the represen-
tations of which are in figures 3.15 and 3.16.

1Remember that the sphere is infinite.



Appendix G

Example of a Problem Sheet about

Gravitational Lensing

Example of a problem sheet on how to calculate the shape of the profile to be given to a plexiglass
lens, so that it simulates the gravitational lens effects typical of the simplified models we have
analysed. This type of exercise guides students in the discovery of what we have seen in section
3.3.2.1. Prerequisite is to provide the students with the background information as seen in section
3.2 and the characteristics of the model we want to analyse (as in section 3.3.1.1). The extra step
the teacher has to consider is to adapt the background content to the level of the audience.
In these exercises only point mass, SIS and uniform disk models are considered, as we know that
these are the easiest to solve. It is also recommended that these exercises, when applied to the
Plummer sphere and Kuzmin disk models, should only be done by advanced students.
For further exercises we suggest considering the proceedings of the Jena 2019 Heraeus Summer
School "Astronomy from 4 Perspectives" [64]. Where there are practical examples on how to use
the teaching tools and material we have developed on gravitational lensing.

Understanding the Shape of the Plexiglass Lens Simulating

Gravitational Lens Effects

After the introduction of the phenomenon of the gravitational lens effect, we now want to derive
the shape of a plexiglass lens that is able to bend light like a gravitational lens. To accomplish this
task, as we have seen, we need to combine optics and general relativity.
For simplicity the surface where the light rays are incident is considered flat. The rays enter
perpendicularly to this surface. Instead, the shape of the other surface is currently unknown to us
and this is what we want to discover.
The goal of these exercises is to derive the profile of the plexiglass lens using the given deflection
angle δ(y) = 4G

c2
M(|y|)

y
and Snell’s law n · sin α = n1 · sin β.1 We apply the procedure to several

examples of mass distribution corresponding to the gravitational lenses we want to represent.

Exercise 1: General Differential Equation

We begin by deriving the general differential equation that will allow us to calculate the plexiglass
lens profile. This differential equation is the same for all gravitational lens models we want to
simulate.

1In our examples n1 = 1 is the refraction index of air and n = 1.5 of the plexiglass. Thus α is the angle of
incidence and β of refraction with respect to the normal to the lens surface in P (see figure G.1).
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P

Figure G.1: Deflection of a light ray passing from one medium to another with different index of
refraction.

a) First of all, let’s analyse the geometry of the system. Label the various components of the
diagram in figure G.1 according to the provided information.

b) Now consider Snell’s law and apply it to the system shown in the diagram. Rearrange the
terms and express n in terms of δ and α.

(Hint: sin(α ± β) = sin α cos β ± sin β cos α trigonometric angle sum and difference identities.)

c) Consider the tangent line to the lens surface in P . Calculate the slope of the tangent dy
dx

in
terms of α.

d) Now combine the results of parts b) and c) and introduce the expression giving the
deflection angle δ. Formulate a general differential equation in the form dy

dx
.

This differential equation allows us to calculate the lens profile once we have chosen the
mass distribution we wish to investigate as a gravitational lens.

(The resulting differential equation is dy
dx = − (n−1) c2

4 G M(|y|) · y .)

Exercise 2: Point Mass Lens

(As an alternative, this exercise can be done by the teacher as an initial example and then have the
students do the rest following the same procedure.)

Now that we have the general differential equation, we introduce into it the expression for the
desired mass distribution. By solving this equation we obtain a function that describes the profile
of the plexiglass lens.
At this point, we continue by dealing with the case of the point mass lens.

a) What is the characteristic of this lens model that primarily interests us?

b) Enter this characteristic of the mass distribution into the differential equation obtained from
Exercise 1. Collect all constants into a single constant called k. How is k defined in this
case? What units of measurement are characteristic of k? Discuss the result.
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c) Once the final differential equation for this case has been formulated, think about the
catalogue of functions you know. Is there any known function that satisfies this equation?
Discuss the result.

(Alternatively, we can provide students with a list of known functions.)

d) (Advanced – instead of part c) ) Solve the differential equation for y.

e) Taking into account the result of part c) (or d)), draw a sketch of the lens profile (Geogebra
software can be used).
Imagine and describe what the shape of the lens looks like in 3 dimensions. Discuss the
result.

(Hint: The 3-dimensional lens shape is a rotational solid that is obtained by rotating the lens profile

about the axis of rotation (x-axis).)

f) After describing the shape of the lens (cone, paraboloid of rotation, etc.), draw a sketch of
the plane cross-section containing the centre of symmetry.

Exercise 3: SIS Lens

We have already discussed what the characteristics of this gravitational lens model are. We also
know that the mass distribution to be considered is given by the projection of the mass in 3-space
onto a plane. In this case, as seen, it is M(|y|) = π σv

2

G
· |y|.

a) Enter M(|y|) into the differential equation obtained from Exercise 1. Collect all constants
into a single constant called k. Answer the same questions of Exercise 2 part b). Is k in
this case defined as for the point mass model?

b) Apply parts c) (or d)), e) and f) of Exercise 2 to this case and answer the same questions.

Exercise 4: Uniform Disk Lens

Perform all parts of Exercise 3 applied to the seen uniform disc model, whose mass we know to
be given by M(|y|) = Σ0π|y|2.
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