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ARTICLE

A pre-registered short-term forecasting study of
COVID-19 in Germany and Poland during the
second wave
J. Bracher 1,2✉, D. Wolffram 1,2, J. Deuschel 1, K. Görgen 1, J. L. Ketterer 1, A. Ullrich 3, S. Abbott4,

M. V. Barbarossa5, D. Bertsimas6, S. Bhatia 7, M. Bodych 8, N. I. Bosse 4, J. P. Burgard 9, L. Castro 10,

G. Fairchild 10, J. Fuhrmann5,11, S. Funk 4, K. Gogolewski 12, Q. Gu 13, S. Heyder 14, T. Hotz14,

Y. Kheifetz15, H. Kirsten 15, T. Krueger8, E. Krymova 16, M. L. Li 17, J. H. Meinke 11, I. J. Michaud 18,

K. Niedzielewski 19, T. Ożański 8, F. Rakowski19, M. Scholz 15, S. Soni 6, A. Srivastava 20,

J. Zieliński 19, D. Zou13, T. Gneiting2,21, M. Schienle 1✉ & List of Contributors by Team*

Disease modelling has had considerable policy impact during the ongoing COVID-19 pan-

demic, and it is increasingly acknowledged that combining multiple models can improve the

reliability of outputs. Here we report insights from ten weeks of collaborative short-term

forecasting of COVID-19 in Germany and Poland (12 October–19 December 2020). The study

period covers the onset of the second wave in both countries, with tightening non-

pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and

renewed increase (Germany) in reported cases. Thirteen independent teams provided prob-

abilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times

of one to four weeks, with evaluation focused on one- and two-week horizons, which are less

affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms

of point predictions and forecast spread. Ensemble forecasts showed good relative perfor-

mance, in particular in terms of coverage, but did not clearly dominate single-model predic-

tions. The study was preregistered and will be followed up in future phases of the pandemic.
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Forecasting is one of the key purposes of epidemic modelling,
and despite being related to the understanding of underlying
mechanisms, it is a conceptually distinct task1,2. Explanatory

models are often strongly idealised and tailored to specific set-
tings, aiming to shed light on latent biological or social
mechanisms. Forecast models, on the other hand, have a strong
focus on observable quantities, aiming for quantitatively accurate
predictions in a wide range of situations. While understanding of
mechanisms can provide guidance to this end, forecast models
may also be purely data-driven. Accurate disease forecasts can
improve situational awareness of decision makers and facilitate
tasks such as resource allocation or planning of vaccine trials3.
During the COVID-19 pandemic, there has been a surge in
research activity on epidemic forecasting. Contributions vary
greatly in terms of purpose, forecast targets, methods, and eva-
luation criteria. An important distinction is between longer-term
scenario or what-if projections and short-term forecasts4. The
former attempt to discern the consequences of hypothetical sce-
narios (e.g., intervention strategies), a task closely linked to causal
statements as made by explanatory models. Scenarios typically
remain counterfactuals and thus cannot be evaluated directly
using subsequently observed data. Short-term forecasts, on the
other hand, refer to brief time horizons, at which the predicted
quantities are expected to be largely unaffected by yet unknown
changes in public health interventions. This makes them parti-
cularly suitable to assess the predictive power of computational
models, a need repeatedly expressed during the pandemic5.

Rigorous assessment of forecasting methods should follow
several key principles. Firstly, forecasts should be made in real
time, as retrospective forecasting often leads to overly optimistic
conclusions about performance. Real-time forecasting poses
many challenges6, including noisy or delayed data, incomplete
knowledge on testing and interventions as well as time pressure.
Even if these are mimicked in retrospective studies, some benefit
of hindsight remains. Secondly, in a pandemic situation with low
predictability, forecast uncertainty needs to be quantified
explicitly7,8. Lastly, forecast studies are most informative if they
involve comparisons between multiple independently run
methods9. Such collaborative efforts have led to important
advances in short-term disease forecasting prior to the
pandemic10–13. Notably, they have provided evidence that
ensemble forecasts combining various independent predictions
can lead to improved performance, similar to what has been
observed in weather prediction14.

The German and Polish COVID-19 Forecast Hub is a colla-
borative project which, guided by the above principles, aims to
collect, evaluate and combine forecasts of weekly COVID-19
cases and deaths in the two countries. It is run in close exchange
with the US COVID-19 Forecast Hub15,16 and aims for com-
patibility with the forecasts assembled there. Close links moreover
exist to a similar effort in the United Kingdom17. Other con-
ceptually related works on short-term forecasting or baseline
projections include those by consortia from Austria18 and
Australia19 as well as the European Centre for Disease Prevention
and Control20,21 (ECDC). In a German context, various now-
casting efforts exist22. All forecasts assembled in the German and
Polish COVID-19 Forecast Hub are publicly available (https://
github.com/KITmetricslab/covid19-forecast-hub-de23) and can
be explored interactively in a dashboard (https://
kitmetricslab.github.io/forecasthub). The Forecast Hub project
moreover aims to foster exchange between research teams from
Germany, Poland and beyond. To this end, regular video con-
ferences with presentations on forecast methodologies, discus-
sions and feedback on performance were organised.
In this work, we present results from a prospective evaluation

study based on the collected forecasts. The evaluation procedure

was prespecified in a study protocol24, which we deposited at the
registry of the Open Science Foundation (OSF) on 8 October
2020. The evaluation period extends from 12 October 2020 (first
forecasts issued) to 19 December 2020 (last observations made).
This corresponds to the onset of the second wave of the pandemic
in both countries. It is marked by strong virus circulation and
changes in intervention measures and testing strategies, see Fig. 1
for an overview. This makes for a situation in which reliable
short-term forecasting is both particularly useful and particularly
challenging. Thirteen modelling teams from Germany, Poland,
Switzerland, the United Kingdom and the United States con-
tributed forecasts of weekly confirmed cases and deaths. Both
targets are addressed on the incidence and cumulative scales and
one through 4 weeks ahead, with evaluation focused on 1 and
2 weeks ahead. We find considerable heterogeneity between
forecasts from different models and an overall tendency to
overconfident forecasting, i.e., lower than nominal coverage of
prediction intervals. While for deaths, a number of models were
able to outperform a simple baseline forecast up to 4 weeks into
the future, such improvements were limited to shorter horizons
for cases. Combined ensemble predictions show good relative
performance in particular in terms of interval coverage, but do
not clearly dominate single-model predictions. Conclusions from
10 weeks of real-time forecasting are necessarily preliminary, but
we hope to contribute to an ongoing exchange on best practices in
the field. Note that the considered period is the last one to be
unaffected by vaccination and caused exclusively by the "original”
wild type variant of the virus. Early January marked both the start
of vaccination campaigns and the likely introduction of the
B.1.1.7 (alpha) variant of concern in both countries. Our study
will be followed up until at least March 2021 and may be
extended beyond.

Results
In the following we provide specific observations made during the
evaluation period as well as a formal statistical assessment of
performance. Particular attention is given to combined ensemble
forecasts. Forecasts refer to data from the European Centre for
Disease Prevention and Control25 (ECDC) or Johns Hopkins
University Centre for Systems Science and Engineering26 (JHU
CSSE); see the Methods section for the exact definition of targets
and ensemble methods. Visualisations of 1- and 2-week-ahead
forecasts on the incidence scale are displayed in Figs. 2 and 3,
respectively, and will be discussed in the following. These figures
are restricted to models submitted over (almost) the entire eva-
luation period and providing complete forecasts with 23 pre-
dictive quantiles. Forecasts from the remaining models are
illustrated in Supplementary Note 7. Forecasts at prediction
horizons of 3 and 4 weeks are shown in Supplementary Note 8.
All analyses of forecast performance were conducted using the R
language for statistical computing27.

Heterogeneity between forecasts. A recurring theme during the
evaluation period was pronounced variability between model
forecasts. Figure 4 illustrates this aspect for point forecasts of
incident cases in Germany. The left panel shows the spread of
point forecasts issued on 19 October 2020 and valid 1 to 4 weeks
ahead. The models present very different outlooks, ranging from
a return to the lower incidence of previous weeks to exponential
growth. The graph also illustrates the difficulty of forecasting
cases >2 weeks ahead. Several models had correctly picked up the
upwards trend, but presumably a combination of the new testing
regime and the semi-lockdown (marked as (a) and (b)) led to a
flattening of the curve. The right panel shows forecasts from 9
November 2020, immediately following the aforementioned
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events. Again, the forecasts are quite heterogeneous. The week
ending on Saturday 7 November had seen a slower increase in
reported cases than anticipated by almost all models (see Fig. 2),
but there was general uncertainty about the role of saturating
testing capacities and evolving testing strategies. Indeed, on 18
November it was argued in a situation report from Robert Koch
Institute (RKI) that comparability of data from calendar week 46
(9–15 November) to previous weeks is limited28. This illustrates
that confirmed cases can be a moving target, and that different
modelling decisions can lead to very different forecasts.
Forecasts are not only heterogeneous with respect to their

central tendency, but also the implied uncertainty. As can be seen
from Figs. 2 and 3, certain models issue very confident forecasts
with narrow forecast intervals barely visible in the plot. Others—
in particular LANL-GrowthRate and the exponential smooth-
ing time series model KIT-time_series_baseline— show
rather large uncertainty. For almost all forecast dates there are
pairs of models with no or minimal overlap in 95% prediction
intervals, another indicator of limited agreement between
forecasts. As can be seen from the right column of Figs. 2 and
3 as well as Tables 1 and 2, most contributed models were
overconfident, i.e., their prediction intervals did not reach
nominal coverage.

Adaptation to changing trends and truth data issues. Far from
all forecast models explicitly account for interventions and testing
strategies (Table 3). Many forecasters instead prefer to let their
models pick up trends from the data once they become apparent.
This can lead to delayed adaptation to changes and explains why
numerous models—including the ensemble—showed overshoot
in the first half of November when cases started to plateau in
Germany (visible from Fig. 2 and even more pronounced in
Fig. 3). Interestingly, some models adapted more quickly to the
flatter curve. This includes the human judgement approach

EpiExpert, which, due to its reliance on human input, can take
information on interventions into account before they become
apparent in epidemiological data, but interestingly also Epi1Ger
and EpiNow2 which do not account for interventions. In
Poland, overshoot could be observed following the peak week in
cases (ending on 15 November), with the 1-week-ahead median
ensemble only barely covering the next observed value. However,
most models adapted quickly and were back on track in the
following week.
A noteworthy difficulty for death forecasts in Germany was

under-prediction in consecutive weeks in late November and
December. In November, several models predicted that death
numbers would level off, likely as a consequence of the plateau in
case numbers starting several weeks before. In the last week of our
study (ending on 19 December) most models considerably under-
estimated the increase in weekly deaths. A difficulty may have
been that despite the overall plateau observed until early
December, cases continued to increase in the oldest age groups,
for which the mortality risk is highest (Supplementary Fig. 1).
Models that ignore the age structure of cases— which includes
most available models (Table 3)— may then have been led astray.

A major question in epidemic modelling is how closely
surveillance data reflect the underlying dynamics. Like in
Germany, testing criteria were repeatedly adapted in Poland. In
early September they were tightened, requiring the simultaneous
presence of four symptoms for the administration of a test. This
was changed to less restrictive criteria in late October (presence of
a single symptom). These changes limit comparability of numbers
across time. Very high test positivity rates in Poland (Supple-
mentary Fig. 2) suggest that there was substantial under-
ascertainment, which is assumed to have aggravated over time.
Comparisons between overall excess mortality and reported
COVID deaths suggest that there is also relevant under-
ascertainment of deaths, again likely changing over time29. These
aspects make predictions challenging, and limitations of ground
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Fig. 1 Forecast evaluation period.Weekly incident (a, b) confirmed cases and (c, d) deaths from COVID-19 in Germany and Poland according to data sets
from the European Centre for Disease Prevention and Control (ECDC) and the Centre for Systems Science and Engineering at Johns Hopkins University
(JHU). The study period covered in this paper is highlighted in grey. Important changes in interventions and testing are marked by letters/numbers and
dashed vertical lines. Sources containing details on the listed interventions are provided in Supplementary Note 5.
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truth data sources are inherited by the forecasts which refer to
them. A striking example of this was the belated addition of
22,000 cases from previous weeks to the Polish record on 24
November 2020. The Poland-based teams MOCOS and MIMUW
explicitly took this shift into account while other teams did not.

Findings for median, mean and inverse-WIS ensembles. We
assessed the performance of forecast ensembles based on various
aggregation rules, more specifically a median, a mean and an
inverse-WIS (weighted interval score) ensemble; see the Methods
section for the respective definitions.
A key advantage of the median ensemble is that it is more

robust to single extreme forecasts than the mean ensemble. As an
example of the behaviour when one forecast differs considerably
from the others we show forecasts of incident deaths in Poland
from 30 November 2020 in Fig. 5. The first panel shows the six
member forecasts, the second the resulting median and mean
ensembles. The predictive median of the latter is noticeably
higher as it is more strongly impacted by one model which
predicted a resurge in deaths.
A downside of the median ensemble is that its forecasts are not

always well-shaped, in particular when a small to medium
number of heterogeneous member forecasts is combined. A
pronounced example is shown in the third and fourth panel of
Fig. 5. For the 1-week-ahead forecast of incident cases in Poland
from 2 November 2020, the predictive 25% quantile and median
were almost identical. For the 2-week-ahead median ensemble
forecast, the 50% and 75% quantile were almost identical. Both
distributions are thus rather oddly shaped, with a quarter of the
probability mass concentrated in a short interval. The mean
ensemble, on the other hand, produces a more symmetric and
thus more realistic representation of the associated uncertainty.
We briefly address the inverse-WIS ensemble, which is a

pragmatic approach to giving more weight to forecasts with good
recent performance. Figure 6 shows the weights of the various
member models for incident deaths in Germany and Poland.
Note that some models were not included in the ensemble in
certain weeks, either because of delayed or missing submissions
or due to concerns about their plausibility. While certain models
on average receive larger weights than others, weights change
considerably over time. These fluctuations make it challenging to
improve ensemble forecasts by taking past performance into
account, and indeed Tables 1 and 2 do not indicate any
systematic benefits from inverse-WIS weighting. A possible
reason is that models get updated continuously by their
maintainers, including major revisions of methodology.

Formal forecast evaluation. Forecasts were evaluated using the
mean-weighted interval score (WIS), mean absolute error (AE)
and interval coverage rates. The WIS is a generalisation of the
absolute error to probabilistic forecasts and negatively oriented,
meaning that smaller values are better (see the Methods section).
Tables 1 and 2 provide a detailed overview of results by country,
target and forecast horizon, based on data from the European
Centre for Disease Prevention and Control25 (ECDC). We
repeated all evaluations using data from the Centre for Systems
Science and Engineering at Johns Hopkins University26

(JHU CSSE) as ground truth (Supplementary Note 7), and the
overall results seem robust to this choice. We also report on 3-
and 4-week-ahead forecasts in Supplementary Note 8, though for
reasons discussed in the Methods section, we consider their
usability limited. To put the results of the submitted and
ensemble forecasts into perspective we created forecasts from
three baseline methods of varying complexity, see Methods
section.

Figure 7 depicts the mean WIS achieved by the different models
on the incidence scale. For models providing only point forecasts, the
mean AE is shown, which as detailed in the Methods section, can be
compared to meanWIS values. A simple model always predicting the
same number of new cases/deaths as in the past week (KIT-
baseline) serves as a reference. For deaths, the ensemble forecasts
and several submitted models outperform this baseline up to three or
even 4 weeks ahead. Deaths are a more strongly lagged indicator,
which favours predictability at somewhat longer horizons. Another
aspect may be that at least in Germany, death numbers have been
following a rather uniform upward trend over the study period,
making it relatively easy to beat the baseline model. For cases, which
are a more immediate measure, almost none of the compared
approaches meaningfully outperformed the naive baseline beyond a
horizon of 1 or 2 weeks. Especially in Germany this result is largely
due to the aforementioned overshoot of forecasts in early November.
The KIT-baseline forecast always predicts a plateau, which is
what was observed in Germany for roughly half of the evaluation
period. Good performance of the baseline is thus less surprising.
Nonetheless, these results underscore that in periods of evolving
intervention measures meaningful case forecasts are limited to a
rather short time window. In this context we also note that the
additional baselines KIT-extrapolation_baseline and
KIT-time_series_baseline do not systematically outper-
form the naive baseline and for most targets are neither among the
best nor the worst performing approaches.
In exploratory analyses (Supplementary Fig. 9) we did not find

any clear indication that certain modelling strategies (defined via
the five categories used in Table 3) performed better than others.
Following changes in trends, the human judgement model
epiforecasts-EpiExpert showed good average perfor-
mance, while growth rate approaches had a stronger tendency to
overshoot (Supplementary Figs. 5–8). Otherwise, variability of
performance within model categories was pronounced and no
apparent patterns emerged.
The median, mean and inverse-WIS ensembles showed overall

good, but not outstanding relative performance in terms of mean
WIS. At a 1-week lead time, the median ensemble outperformed
the baseline forecasts quite consistently for all considered targets,
showing less variable performance than most member models
(Supplementary Figs. 5–8). Differences between the ensemble
approaches are minor and do not indicate a clear ordering. We
re-ran the ensembles retrospectively using all available forecasts,
i.e., including those submitted late or excluded due to
implausibilities. As can be seen from Supplementary Tables 5
and 6, this led only to minor changes in performance. Unlike in
the US effort30,31, the ensemble forecast is not strictly better than
the single-model forecasts. Typically, performance is similar to
some of the better-performing contributed forecasts, and some-
times the latter have a slight edge (e.g., FIAS_FZJ-Epi1Ger
for cases in Germany and MOCOS-agent1 for deaths in
Poland). Interestingly, the expert forecast epiforecasts-
EpiExpert is often among the more successful methods,
indicating that an informed human assessment sets a high bar for
more formalised model-based approaches. In terms of point
forecasts, the extrapolation approach SDSC_ISG-TrendModel
shows good relative performance, but only covers 1-week-ahead
forecasts.
The 50% and 95% prediction intervals of most forecasts did not

achieve their respective nominal coverage levels (most apparent
for cases 2 weeks ahead). The statistical time series model KIT-
time_series_baseline features favourably here, though at
the expense of wide forecast intervals (Fig. 2). While its lack of
sharpness leads to mediocre overall performance in terms of the
WIS, the model seems to have been a helpful addition to the
ensemble by counterbalancing the overconfidence of other
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Fig. 2 One-week-ahead forecasts. One-week-ahead forecasts of incident cases and deaths in Germany (a, b) and Poland (c, d). Displayed are predictive
medians, 50% and 95% prediction intervals (PIs). Coverage plots (e–h) show the empirical coverage of 95% (light) and 50% (dark) prediction intervals.
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models. Indeed, coverage of the 95% intervals of the ensemble is
above average, despite not reaching nominal levels.
A last aspect worth mentioning concerns the discrepancies

between results for 1-week-ahead incident and cumulative

quantities. In principle these two should be identical, as forecasts
should only be shifted by an additive constant (the last observed
cumulative number). This, however, was not the case for all
submitted forecasts, and coherence was not enforced by our
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Fig. 3 Two-week-ahead forecasts. Two-week-ahead forecasts of incident cases and deaths in Germany (a, b) and Poland (c, d). Displayed are predictive
medians, 50% and 95% prediction intervals (PIs). Coverage plots (e–h) show the empirical coverage of 95% (light) and 50% (dark) prediction intervals.
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submission system. For the ensemble forecasts the discrepancies
are largely due to the fact that the included models are not always
the same.

Discussion
We presented results from a preregistered forecasting project in
Germany and Poland, covering 10 weeks during the second wave
of the COVID-19 pandemic. We believe that such an effort is
helpful to put the outputs from single models in context, and to
give a more complete picture of the associated uncertainties. For
modelling teams, short-term forecasts can provide a useful
feedback loop, via a set of comparable outputs from other models,
and regular independent evaluation. A substantial strength of our
study is that it took place in the framework of a prespecified
evaluation protocol. The criteria for evaluation were commu-
nicated in advance, and most considered models covered the
entire study period.
Similarly to Funk et al.17, we conclude that achieving good

predictive accuracy and calibration is challenging in a dynamic
epidemic situation. Epidemic forecasting is complicated by
numerous challenges absent in, e.g., weather forecasting32. Noisy
and delayed data are an obstacle, but the more fundamental
difficulty lies in the complex social (and political) dynamics
shaping an epidemic33. These are more relevant for major out-
breaks of emerging diseases than for seasonal diseases, and limit
predictability to rather short time horizons.
Not all included models were designed for the sole purpose of

short-term forecasting, and could be tailored more specifically to
this task. Certain models were originally conceived for what-if
projections and retrospective assessments of longer-term
dynamics and interventions. This focus on a global fit may
limit their flexibility to align closely with the most recent data,
making them less successful at short forecast horizons compared
to simpler extrapolation approaches. We observed pronounced
heterogeneity between the different forecasts, with a general
tendency to overconfident forecasting. While over the course of
10 weeks, some models achieved better average scores than oth-
ers, relative performance has been fluctuating considerably.
Various works on multi-model disease forecasting discuss

performance differences between modelling approaches, most
commonly between mechanistic and statistical approaches. Reich
et al.13, McGowan et al.34 (both seasonal influenza) and
Johansson et al.12 (dengue) find slightly better performance of
statistical than mechanistic models. All these papers find
ensemble approaches to perform best. Forecasting of seasonal and
emerging diseases, however, differ in important ways, the latter
typically being subject to more variation in reporting procedures

and interventions. This, along with the limited amount of his-
torical data, may benefit mechanistic models. In our study we did
not find any striking patterns, but this may be due to the relatively
short study period. We expect that forecast performance is also
shaped by numerous other factors, including methods used for
model calibration, the thoroughness of manual tuning and input
on new intervention measures or population behaviour.
Different models may be particularly suitable for different

phases of an epidemic17, which is exemplified by the fact that
some models were quicker to adjust to slowing growth of cases in
Germany. In particular, we noticed that forecasts based on
human assessment performed favourably immediately after
changes in trends. These aspects highlight the importance of
considering several independently run models rather than
focusing attention on a single one, as is sometimes the case in
public discussions. Here, collaborative forecasting projects can
provide valuable insights and facilitate communication of results.
Overall, ensemble methods showed good, but not outstanding
relative performance, notably with clearly above-average coverage
rates and more stable performance over time. An important
question is whether ensemble forecasts could be improved by
sensible weighting of members or post-processing steps. Given
the limited amount of available forecast history and rapid changes
in the epidemic situation, this is a challenging encounter, and
indeed we did not find benefits in the inverse-WIS approach.
An obvious extension to both assess forecasts in more detail

and make them more relevant to decision makers is to issue them
at a finer geographical resolution. During the evaluation period
covered in this work, only three of the contributed forecast
models (ITWW-county_repro and USC-SIkJalpha,
LeipzigIMISE-SECIR for the state of Saxony) also provided
forecasts at the sub-national level (German states, Polish voivo-
deships). Extending this to a larger number of models is a priority
for the further course of the project.
In its present form, the platform covers only forecasts of

confirmed cases and deaths. These commonly addressed fore-
casting targets were already covered by a critical mass of teams
when the project was started. Given limited available time
resources of teams, a choice was made to focus efforts on this
narrow set of targets. The was also motivated by the strong focus
German legislators have put on seven-day incidences, which have
been the main criteria for the strengthening or alleviation of
control measures. However, there is an ongoing debate on the
usefulness of this indicator, with frequent claims to replace it by
hospital admissions35. An extension to this target was considered,
but in view of emerging parallel efforts and open questions on
data availability not prioritised. Given that in a post-vaccination
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setting the link between case counts and healthcare burden is
expected to change, however, this decision will need to be re-
assessed.
Estimation of total numbers of infected (including unreported)

and effective reproductive numbers are other areas where a multi-
model approach can be helpful (see ref. 36 for an example of the
latter). While due to the lack of appropriate truth data these do
not qualify as true prediction tasks, ensemble averages can again
give a better picture of the associated uncertainty.
The German and Polish Forecast Hub will continue to compile

short-term forecasts and process them into forecast ensembles.
With the start of vaccine rollout and the emergence of new
variants in early 2021, models face a new layer of complexity. We
aim to provide further systematic evaluations for future phases,
contributing to a growing body of evidence on the potential and
limits of pandemic short-term forecasting.

Methods
We now lay out the formal framework of our evaluation study. Unless stated
differently, the described approach is the same as in the study protocol24.

Submission system and rhythm. All submissions were collected in a standardised
format in a public repository to which teams could submit (https://github.com/
KITmetricslab/covid19-forecast-hub-de23). For teams running their own reposi-
tories, the Forecast Hub Team put in place software scripts to re-format forecasts
and transfer them into the Hub repository. Participating teams were asked to
update their forecasts on a weekly basis using data up to Monday. Submission was
possible until Tuesday 3 p.m. Berlin/Warsaw time. Delayed submission of forecasts
was possible until Wednesday, with exceptional further extensions possible in case
of technical issues. Delays of submissions were documented (Supplementary
Note 6).

Forecast targets and format. We focus on short-term forecasting of confirmed
cases and deaths from COVID-19 in Germany and Poland 1 and 2 weeks ahead.
Here, weeks refer to Morbidity and Mortality Weekly Report (MMWR) weeks,
which start on Sunday and end on Saturday, meaning that 1-week-ahead forecasts
were actually 5 days ahead, 2-week ahead forecasts were twelve days ahead, etc. All
targets were defined by the date of reporting to the national authorities. This means
that modellers have to take reporting delays into account, but has the advantage
that data points are usually not revised over the following days and weeks. From a
public health perspective there may be advantages in using data by symptom onset;
however, for Germany, the symptom onset date is only available for a subset of all
cases (50–70%), while for Poland no such data were publicly available during our
study period. All targets were addressed both on cumulative and weekly incident
scales. Forecasts could refer to both data from the European Centre for Disease
Prevention and Control25 (ECDC) and Johns Hopkins University Centre for
Systems Science and Engineering26 (JHU CSSE). In this article, we focus on the
preregistered period of 12 October 2020 to 19 December 2020 (see Fig. 1). Note
that on 14 December 2020, the ECDC data set on COVID-19 cases and deaths in
daily resolution was discontinued. For the last weekly data point we therefore used
data streams from Robert Koch Institute and the Polish Ministry of Health that we
had previously used to obtain regional data and which up to this time had been in
agreement with the ECDC data.

Most forecasters also produced and submitted 3- and 4-week-ahead forecasts
(which were specified as targets in the study protocol). These horizons, also used in
the US COVID-19 Forecast Hub15, were originally defined for deaths. Owing to
their lagged nature, these were considered predictable independently of future
policy or behavioural changes up to 4 weeks ahead; see37 for a similar argument.
During the summer months, when incidence was low and intervention measures
largely constant, the same horizons were introduced for cases. As the epidemic
situation and intervention measures became more dynamic in autumn, it became
clear that case forecasts further than 2 weeks (12 days) ahead were too dependent
on yet unknown interventions and the consequent changes in transmission rates. It
was therefore decided to restrict the default view in the online dashboard to 1- and
2-week-ahead forecasts only. At the same time we continued to collect 3- and 4-
week-ahead outputs. Most models (with the exception of epiforecasts-
EpiExpert, COVIDAnalytics-Delphi and in some exceptional cases
MOCOS-agent1) do not anticipate policy changes, so that their outputs can be
seen as “baseline projections”, i.e., projections for a scenario with constant
interventions. In accordance with the study protocol we also report on 3- and 4-
week-ahead predictions, but these results have been deferred to Supplementary
Note 8.

Teams were asked to report a total of 23 predictive quantiles (1%, 2.5%, 5%,
10%, …, 90%, 95%, 97.5%, 99%) in addition to their point forecasts. This motivates
considering both forecasts of cumulative and incident quantities, as predictive
quantiles for these generally cannot be translated from one scale to the other. NotT

ab
le

3
(c
on

ti
nu

ed
)

C
at
eg

or
y

M
od

el
D
es
cr
ip
ti
on

N
P
I

T
es
t

A
ge

D
E

P
L

T
ru
th

P
r

H
um

an
ju
dg

em
en

t
e
p
i
f
o
r
e
c
a
s
t
s
-

E
p
i
E
x
p
e
r
t

A
m
ea
n
en

se
m
bl
e
of

pr
ed

ic
tio

ns
fr
om

ex
pe

rt
s
an
d

no
n-
ex
pe

rt
s.
Pr
ed

ic
tio

ns
ar
e
m
ad
e
vi
a
a
w
eb

ap
p6

(r
ef
.
54
)
by

ch
oo

si
ng

a
ty
pe

of
di
st
ri
bu

tio
n
an
d

sp
ec
ify
in
g
its

m
ed

ia
n
an
d
w
id
th
.

(✓
)

(✓
)

(✓
)

✓
✓

EC
D
C

✓

Fo
re
ca
st

en
se
m
bl
e

I
m
p
e
r
i
a
l
-
e
n
s
e
m
b
l
e
2
7

U
nw

ei
gh

te
d
av
er
ag
e
of

th
re
e
fo
re
ca
st
s
fo
r
de

at
h

co
un

ts
(s
ee

re
fe
re
nc
e
in

fo
ot
no

te
).

✓
✓

EC
D
C

✓

N
PI
:D

oe
s
th
e
fo
re
ca
st

m
od

el
ex
pl
ic
itl
y
ac
co
un

t
fo
r
no

n-
ph

ar
m
ac
eu

tic
al
in
te
rv
en

tio
ns
?
Te
st
:D

oe
s
th
e
m
od

el
ac
co
un

t
fo
r
ch
an
gi
ng

te
st
in
g
st
ra
te
gi
es
?
A
ge
:I
s
th
e
m
od

el
ag
e-
st
ru
ct
ur
ed

?
D
E,
PL
:A

re
fo
re
ca
st
s
is
su
ed

fo
r
G
er
m
an
y
an
d
Po

la
nd

,r
es
pe

ct
iv
el
y?

Tr
ut
h:
W

hi
ch

tr
ut
h
da
ta

so
ur
ce

do
es

th
e
m
od

el
us
e?

Pr
:A

re
fo
re
ca
st
s
pr
ob

ab
ili
st
ic

(2
3
qu

an
til
es
)?

T
ea
m
s
m
ar
ke
d
w
ith

fo
ot
no

te
s
ru
n
th
ei
r
ow

n
da
sh
bo

ar
ds
:
1 h
tt
ps
:/
/w

w
w
.c
ov
id
an
al
yt
ic
s.
io
,2
ht
tp
s:
//

co
vi
d1
9
.u
cl
am

l.o
rg
,3
ht
tp
s:
//

sc
c-
us
c.
gi
th
ub

.io
/R

eC
O
V
ER

-C
O
V
ID
-1
9
,4

ht
tp
s:
//

re
nk
ul
ab
.s
hi
ny
ap
ps
.io
/C

O
V
ID
-1
9
-E
pi
de

m
ic
-F
or
ec
as
tin

g,
5 h
tt
ps
:/
/c
ov
id
-1
9
.b
sv
ga
te
w
ay
.o
rg
,

6
ap
p.
cr
ow

df
or
ec
as
tr
.o
rg
,7
ht
tp
s:
//

m
rc
-i
de

.g
ith

ub
.io
/c
ov
id
19
-s
ho

rt
-t
er
m
-f
or
ec
as
ts

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25207-0 ARTICLE

NATURE COMMUNICATIONS | (2021)12:5173 | https://doi.org/10.1038/s41467-021-25207-0 | www.nature.com/naturecommunications 11

https://github.com/KITmetricslab/covid19-forecast-hub-de
https://github.com/KITmetricslab/covid19-forecast-hub-de
https://www.covidanalytics.io
https://covid19.uclaml.org
https://scc-usc.github.io/ReCOVER-COVID-19
https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting
https://covid-19.bsvgateway.org
http://app.crowdforecastr.org
https://mrc-ide.github.io/covid19-short-term-forecasts
www.nature.com/naturecommunications
www.nature.com/naturecommunications


all teams provided such probabilistic forecasts, though, and we also accepted pure
point forecasts.

Evaluation measures. The submitted quantiles of a predictive distribution F define
11 central prediction intervals with nominal coverage level 1− α where
α= 0.02, 0.05, 0.10, 0.20,…, 0.90. Each of these can be evaluated using the interval
score38:

ISαðF; yÞ ¼ ðu� lÞ þ 2
α
´ ðl � yÞ ´ χðy < lÞ þ 2

α
´ ðy � uÞ´ χðy > uÞ: ð1Þ

Here u and l are the lower and upper ends of the respective interval, χ is the
indicator function and y is the eventually observed value. The three summands can
be interpreted as a measure of sharpness and penalties for under- and over-
prediction, respectively. The primary evaluation measure used in this study is the
weighted interval score39 (WIS), which combines the absolute error (AE) of the
predictive median m and the interval scores achieved for the eleven nominal levels.
The WIS is a well-known quantile-based approximation of the continuous ranked
probability score38 (CRPS) and, in the case of our 11 intervals, defined as

WIS ðF; yÞ ¼ 1
11:5

´
1
2
´ jy �mj þ ∑

11

k¼1

αk
2

´ ISαk ðF; yÞ
� �� �

; ð2Þ

where α1= 0.02, α2= 0.05, α3= 0.10, α4= 0.20,…, α11= 0.90. Both the IS and

WIS are proper scoring rules38, meaning that they encourage honest reporting of
forecasts. The WIS is a generalisation of the absolute error to probabilistic fore-
casts. It reflects the distance between the predictive distribution F and the even-
tually observed outcome y on the natural scale of the data, meaning that smaller
values are better. As secondary measures of forecast performance we considered the
absolute error (AE) of point forecasts and the empirical coverage of 50% and 95%
prediction intervals. In this context we note that WIS and AE are equivalent for
deterministic forecasts (i.e., forecasts concentrating all probability mass on a single
value). This enables a principled comparison between probabilistic and determi-
nistic forecasts, both of which appear in the present study. Applying the absolute
error implies that forecasters should report predictive medians, as pointed out in
the paper describing the employed evaluation framework39.

In the evaluation we needed to account for the fact that forecasts can refer to
either the ECDC or JHU data sets. We performed all forecast evaluations once
using ECDC data and once using JHU data, with ECDC being our prespecified
primary data source. For cumulative targets we shifted forecasts that refer to the
other truth data source additively by the last observed difference. This is a
pragmatic strategy to align forecasts with the last state of the respective time series.

A difficulty in comparative forecast evaluation lies in the handling of missing
forecasts. For this case (which occurred for several teams) we prespecified that the
missing score would be imputed with the worst (i.e., largest) score obtained by any
other forecaster for the same target. The rationale for this was to avoid strategic
omission of forecasts in weeks with low perceived predictability. In the respective
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Fig. 5 Examples of median and mean ensembles. One- and 2-week-ahead forecasts of incident deaths in Poland issued on 30 November, and of incident
cases in Poland issued on 2 November 2020. Panels (a and c) show the respective member forecasts, panels (b and d) the resulting ensembles. Both
predictive medians and 95% (light) and 50% (dark) prediction intervals are shown. The dashed vertical line indicates the date at which the forecasts were
issued.
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Fig. 6 Examples of inverse WIS weights. Inverse-WIS (weighted interval score) weights for forecasts of incident deaths in (a) Germany and (b) Poland.
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summary tables any such instances are marked. All values reported are mean scores
over the evaluation period, though if more than a third of the forecasts were
missing we refrain from reporting.

Baseline forecasts. In order to put evaluation results into perspective we use three
simple reference models. Note that only the first was prespecified. The two others
were added later as the need for comparisons to simple, but not completely naive,
approaches was recognised. More detailed descriptions are provided in Supple-
mentary Note 2.

KIT-baseline. A naive last-observation carried-forward approach (on the incidence
scale) with identical variability for all forecast horizons (estimated from the last five
observations). This is very similar to the null model used by Funk et al.17.

KIT-extrapolation baseline. A multiplicative extrapolation based on the last two
observations with uncertainty bands estimated from five preceding observations.

KIT-time series baseline. An exponential smoothing model with multiplicative error
terms and no seasonality as implemented in the R package forecast40 and used
for COVID-19 forecasting by Petropoulos and Makridakis41.

Contributed forecasts. During the evaluation period from October to December
2020, we assembled short-term predictions from a total of 14 forecast methods by
13 independent teams of researchers. Eight of these are run by teams collaborating
directly with the Hub, based on models these researchers were either already
running or set up specifically for the purpose of short-term forecasting. The
remaining short-term forecasts were made available via dedicated online dash-
boards by their respective authors, often along with forecasts for other countries.
With their permission, the Forecast Hub team assembled and integrated these
forecasts. Table 3 provides an overview of all included models with brief
descriptions and information on the handling of non-pharmaceutical interven-
tions, testing strategies, age strata and the source used for truth data. More detailed
verbal descriptions can be found in Supplementary Note 3. The models span a wide
range of approaches, from computationally expensive agent-based simulations to
human judgement forecasts. Not all models addressed all targets and forecast
horizons suggested in our project; which targets were addressed by which models
can be seen from Tables 1 and 2.

Ensemble forecasts. We assess the performance of three different forecast
aggregation approaches:

KITCOVIDhub-median ensemble. The α-quantile of the ensemble forecast for a
given quantity is given by the median of the respective α-quantiles of the member
forecasts. The associated point forecast is the quantile at level α= 0.50 of the
ensemble forecast (same for other ensemble approaches).

KITCOVIDhub-mean ensemble. The α-quantile of the ensemble forecast for a given
quantity is given by the mean of the respective α-quantiles of the member forecasts.

KITCOVIDhub-inverse WIS ensemble. The α-quantile of the ensemble forecast is a
weighted average of the α-quantiles of the member forecasts. The weights are
chosen inversely to the mean WIS value obtained by the member models over six
recently evaluated forecasts (last three 1-week-ahead, last two 2-week-ahead, last 3-
week-ahead; missing scores are again imputed by the worst score achieved by any
model for the respective target). This is done separately for incident and cumulative
forecasts. The inverse-WIS ensemble is a pragmatic strategy to base weights on past
performance, which is feasible with a limited amount of historical forecast/obser-
vation pairs (see42 for a similar approach).

Only models providing complete probabilistic forecasts with 23 quantiles for all
four forecast horizons were included into the ensemble for a given target. It was not
required that forecasts be submitted for both cumulative and incident targets, so
that ensembles for incident and cumulative cases were not necessarily based on
exactly the same set of models. The Forecast Hub Team reserved the right to screen
and exclude member models in case of implausibilities. Decisions on inclusion
were taken simultaneously for all three ensemble versions and were documented in
the Forecast Hub platform (file decisions_and_revisions.txt in the main folder of
the repository). The main reasons for the exclusion of forecasts from the ensemble
were forecasts in an implausible order of magnitude or forecasts with vanishingly
small or excessive uncertainty. As it showed comparable performance to submitted
forecasts, the KIT-time_series_baseline model was included in the
ensemble forecasts in most weeks.

Preliminary results from the US COVID-19 Forecast Hub indicate better
forecast performance of the median compared to the mean ensemble43, and the
median ensemble has served as the operational ensemble since 28 July 2020. Up to
date, trained ensembles yield only limited, if any, benefits30. We therefore
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Fig. 7 Forecast performance 1 through 4 weeks ahead. Mean-weighted interval score (WIS) by target and prediction horizon in Germany (a, b) and
Poland (c, d). We display submitted models and the preregistered median ensemble (logarithmic y-axis). For models providing only point forecasts, the
mean absolute error (AE) is shown (dashed lines). The lower boundary of the grey area represents the baseline model KIT-baseline. Line segments
within the grey area thus indicate that a model fails to outperform the baseline. The numbers underlying this figure can be found in Tables 1 and 2.
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prespecified the median ensemble as our main ensemble approach. Note that in
other works19,44, ensembles have been constructed by combining probability
densities rather than quantiles. These two approaches have somewhat different
behaviour, but no general statement can be made which one yields better
performance45. As in our setting member forecasts were reported in a quantile
format we resort to quantile-based methods for aggregation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The forecast data generated in this study have been deposited in a GitHub repository
(https://github.com/KITmetricslab/covid19-forecast-hub-de), with a stable Zenodo
release available under accession code 4752079 (https://doi.org/10.5281/
zenodo.4752079,23). This repository also contains all truth data used for evaluation.
Details on how truth data were obtained can be found in Supplementary Note 4.
Forecasts can be visualised interactively at https://kitmetricslab.github.io/forecasthub/.
Source data to reproduce Figs. 1–7 are provided with this paper.

Code availability
Codes to reproduce figures and tables are available at https://github.com/KITmetricslab/
analyses_de_pl, with a stable version at https://doi.org/10.5281/zenodo.508539846. The
results presented in this paper have been generated using the release “revision1” of the
repository https://github.com/KITmetricslab/covid19-forecast-hub-de, see above for the
link to the stable Zenodo release.
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