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Zusammenfassung

Die Ergebnisse dieser Arbeit sind in vier Kapitel unterteilt. Im ersten Kapitel wird die

Chemische Organisationstheorie (COT) erweitert auf Reaktionsdiffussionssysteme

(RDS). Das heißt, die Menge der persistenten Spezies eines RDS wird beschrieben

auf der Ebene des zugrundeliegenden Reaktionsnetzwerks. Es wird bewiesen, dass

die Menge der persistenten Spezies einer jeden beschränkten Lösung eines RDS

eine Verteilte Organisation (englisch: distributed organization (DO)) ist. Dabei wird

auch die innere Struktur solcher DOs offengelegt und bewiesen, dass die Menge aller

DOs eines gegebenen RDS immer einen Verband bildet. Es wird gezeigt, dass die

genannten Resultate verschiedene Informationen zur Beschreibung des gesamten

potenziellen Langzeitverhaltens aller beschränkten Lösungen des RDS liefern. Im

zweiten Ergebniskapitel wird beispielhaft skizziert, wie Informationen über Diffu-

sion und verschiedene Randbedingungen für die Spezies als zusätzliche Reaktionen

in das Reaktionsnetzwerk integriert werden können, um aus diesem alle DOs zu

bestimmen, die als Mengen persistenter Spezies in Frage kommen. Im dritten Kapi-

tel werden verschiedene In-Host-Influenza A Virusinfektionsmodelle gewöhnlicher

Differenzialgleichungen analysiert, indem jeweils all ihre Organisationen bzw. DOs

bestimmt werden. Im letzten Kapitel wird diese Technik bei der Anwendung auf

SARS-Cov-19 Virusinfektionsmodelle dahingehend erweitert, dass auch Modelle

partieller Differenzialgleichungen einschließlich Host-to-host-Modellen analysiert

werden. Schließlich werden alle Modelle beider Viren in eine Hierarchie integriert.

Die Informationen, die dadurch generiert werden, werden bezüglich der theoretis-

chen Resultate über Persistenz aus dem ersten Kapitel analysiert und diskutiert.
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Abstract

The results of this work comprise four sections. In the first section, Chemical Or-

ganization Theory (COT) is extended toward reaction-diffusion systems (RDS). That

is, the set of persistent species in RDS is described by linking their dynamics with

the underlying network structure using an extension of COT. More precisely, it is

proven that for every bounded solution of an RDS the set of persistent species is a

distributed organization (DO). Also, the inner structure of such DOs is revealed as

well as the fact that the set of DOs always forms a lattice. It is shown that these results

provide various information about the potential dynamical behavior of the RDS. In

the second section of the Results it is exemplified how knowledge about diffusion

and different boundary conditions can be integrated as further reactions into the

reaction network to compute all DOs from it, which are possibly persistent. In the

third section, several in-host Influenza A virus infection dynamics ODE models are

analyzed by computing the set of their organizations resp. DOs. In the last section,

this technique is extended by analyzing ODE and PDE models of Cov-SARS-19 virus

infection dynamics within and between hosts. Finally, all models of both viruses

are put together into one hierarchy. The information gained from the structures and

the hierarchy of the models is discussed with regard to the results about persistence

from the first section.
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Chapter 1

Introduction

Reaction systems are widely used to describe and to study phenomena in various
areas such as biochemistry [88] and evolutionary biology [46, 93]. Those systems
often base on ODEs or PDEs and are usually very complex. To understand them
it is a common approach to analyze the reaction networks they rely on. Reaction
network theory provides various approaches to deal with such complexity, for exam-
ple, deficiency [27, 47], RAF theory (Reflexively Autocatalytic and Food-generated)
[88], hemical organization theory (COT) [19], subnetwork analysis [17], elementary
modes [81], graph theory [33, 82], and Lyapunov functions [63]. Among others, these
approaches allow for analyzing the behavior of dynamical reaction systems basing
on ODEs or PDEs like for example reaction-diffusion systems (RDS). Such analyses
include the question of which species can persist in the long-run [78, 72].

Persistence is the main topic of the first section of the results chapter in which
COT is applied to RDS. Therefore, COT is extended appropriately by generalizing
organizations towards distributed organizations (DOs). Then two main results are
obtained:

1. The set of persistent species of a bounded solution of a reaction-diffusion system
is always a DO.

2. The set of DOs of a reaction network is always a lattice.

This means, that for a given RDS we know all the possibly persistent subsets of
species by computing the DOs of the underlying reaction network. Which of these
DOs is approached in a concrete simulation depends on the initial conditions and
the reaction constants which were chosen. Finally we provide simulation examples.
The relation between the RDS, their underlying reaction networks, simulations and
COT is depicted in Figure 1.1.

In the second section of the results chapter the effects of diffusion and different
boundary conditions on the DOs are discussed by providing three examples. The
main idea is to modify the reaction network appropriately to incorporate boundary
conditions.

In the third section of the results chapter COT is applied to the analysis of virus
infection dynamics models of Influenza A, that is, in-host ODE models. Influenza is
an infectious respiratory disease, annually infecting 5 – 15 % of the human population
and causing epidemics that result in 3 – 5 million severe cases with 300,000 – 500,000
deaths each year [89]. The annual recurrence of epidemics is caused by the continuous
alteration of seasonal influenza viruses, which enables them to efficiently escape the
immune system even due to previous infections or vaccinations [77]. The major
burden of disease in humans is caused by seasonal influenza A (IAV) and influenza
B viruses, causing symptoms varying from mild respiratory disease characterized
by fever, sore throat, headache and muscle pain to severe and in some cases lethal
pneumonia and secondary bacterial infections [54].
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Lattice of DOs
(Theorem 3.1.1)

Species & Reactions System of ODEs or PDEs
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Figure 1.1: [76] Illustration of the relation between a dynamical sys-
tem (upper right), its solutions (lower right), its underlying reaction
network (upper left), and the lattice of DOs (lower left) of the reaction
network for Example 1 presented in Section 3.1.8. Systems of ODEs or
PDEs are built from reaction networks by fixing the derivatives of the
species concentrations according to the reaction rules. Integrating all
the solutions of a dynamical system leads back to the reaction network
and reveals the lattice of DOs. Also notated in the figure, the main
results of this paper: The set of persistent species of every bounded
solution of a RDS is a DO (theorem 3.1.2) and the set of DOs of every
reaction network forms a lattice (theorem 3.1.1). It is shown how the
fact that every potentially persistent set of species is part of the lattice
of DOs allows for studying the interplay of different subsets of species

with regard to their persistence.

The long-term spread of influenza viruses in the human population and the
acute nature of influenza virus epidemics is driven by the global movement of these
viruses. Differences in seasonal epidemics caused by influenza viruses are mainly
driven by differences in the rates of virus evolution. The single-stranded RNA
segments of influenza viruses, which are located inside the virus particle (or virion),
evolve rapidly and thus can escape the host’s immune response very efficiently.

Several ordinary differential equations (ODEs) models have been developed to
provide insight into within-host dynamics of influenza A virus infections (for reviews
see [84, 9, 21, 11, 35]). These models work in a time scale of days and describe the
concentration dynamics of target cells, immune system components, viral load, and
sometimes co-infecting pathogens. The models differ in terms of complexity and state
space dimensions, which are between 3 and 15 for the models examined here. While
the low-dimensional models can be analyzed completely and in a straightforward
way (e.g. by calculating their fixed points and stability analysis), the characterization
of the entire behavioral spectrum of complex models is more difficult (see for example



Chapter 1. Introduction 3

Figure 1.2: [75] Relation between measured data, ordinary differential
equations (ODE) model, and hierarchy of organizations.

[58]).

We present an approach to understand the overall structure of these models
that allows them to be related to each other in a simple way. To this end, we
apply chemical organization theory [19, 59] to obtain a hierarchical decomposition
of each model into chemical organizations. A chemical organization is a sub-set
of species (i.e. dimensions or model components, like for example uninfected cells
or viruses) that cannot generate any other species (property of closure) and that
can self-maintain its own species, i.e., any species consumed by a process within
the organization can be regenerated by a process within the organization. The
organizations of an ODE model are rigorously related to its long-term dynamics in
the following way: Given a stationary state of the ODE model, the set of species with
strictly positive concentrations must be an organization [19]. The same is true for all
practically relevant periodic and chaotic attractors [72]. Note that the advantage of
this approach is that decomposition into organizations is based solely on the model
structure (i.e., reaction rules) and thus is independent of kinetic details, like rate
constants. The relation between measured data, ODE model, and organizations is
depicted in Figure 1.2.

By applying the method to twelve models of influenza A virus infection we
found different types of model structures ranging from two to eight organizations.
Furthermore the models’ organizations imply a partial order among models. The
resulting hierarchy of models can help to select a suitable model for certain data or
serve as a framework for further model development.

We provide reaction network files for all models and a software tool for computing
their organizations (https://github.com/stephanpeter/orgsflu).

In the fourth section of the results chapter the analysis of infection dynamics
models is extended to models of SARS-Cov-2 infection dynamics. The current
SARS-CoV-2 pandemic has required huge efforts from global society and the sci-
entific community to track, understand, and combat its proliferation. Models of
the infection dynamics can help understanding SARS-CoV-2 pathogenesis, develop
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optimal treatments, and introduce appropriate measures to prevent the spread of
the virus. There are a multitude of modeling approaches with different properties,
applications and aims that can be classed into categories of in-host models (e.g., [3,
11, 42, 22, 94, 91, 1, 90]) versus host-to-host models (such as [68, 100, 30, 57]), dis-
crete versus continuous models and ODE versus PDE models (for an overview we
refer to [25, 24, 49, 96]). There is an accumulating body of literature on SARS-CoV-2
infection dynamics that make use of these various tools and provide datasets that
can be analyzed retrospectively once consensus modeling strategies have been de-
rived [48, 50]. The aforementioned models have in common that they rely on an
identifiable reaction network, for instance, a set of species and a set of reactions that
describe the possible interactions of these species. In Section 3.3, we have shown
that for Influenza A virus infection dynamics, reaction network analysis (especially
COT [28]) provides metrics to understand, analyze, and categorize different in-host
ODE models. In this section, we apply reaction network analysis, especially COT,
to SARS-CoV-2 infection dynamics. Thereby we extend our previous approach pre-
sented in Section 3.3 into several directions: We incorporate in-host, host-to-host, and
linked models consisting either of ODEs or PDEs. Finally, we combine the models
of SARS-CoV-2 with Influenza A in order to compare the dynamics for both viruses.
Therefore we describe the structure of a set of representative models of SARS-Cov-2
infection dynamics. For each of these models, we then derive the signature. The sig-
nature of a model gives a brief overview of its potential dynamical behavior, which
allows for relating several models to each other and combining them in a hierarchy.
We link the respective hierarchy of SARS-CoV-2 with that of Influenza A virus from
Section 3.3. This novel method can be used as an instrument for a deeper under-
standing of infection dynamics models and further for an appropriate construction
of future virus infection models.

All models, as well as the software tools used to do the analysis, can be found on
Github (https://github.com/stephanpeter/orgs-covid).

In the Conclusions, the results of this work are discussed and summarized. Also,
open questions remaining for future studies are listed.
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Chapter 2

Methods

2.1 Reaction Networks and Dynamical Systems

Given a finite set S = {s1, . . . , sn} of n species (or molecules), together with a finite
set R = {r1, . . . , rm} of m reactions, we call (S,R) a (chemical) reaction network. Each
reaction r j ∈ R, j = 1, . . . , m, can be depicted by a so-called reaction equation using
a right arrow,

n
∑

i=1

ai jsi →

n
∑

i=1

bi jsi (2.1)

where ai j, bi j ∈ N0 ≡ N ∪ {0}, i = 1, . . . , n, j = 1, . . . , m. The difference between the
matrices A = (ai j) ∈ N

n×m and B = (bi j) ∈ N
nxm is called the stoichiometric matrix

N = B−A ∈ Z
nxm. For a reaction r j ∈ R, j ∈ {1, . . . , m}, the set of species si (reactants)

with ai j > 0 is called support of r j and denote it by support(r j) or supp(r j). Note that if
a species si ∈ S is reduced by a reaction r j ∈ R, that is ni j < 0, then si ∈ supp(r j), that
is, ai j > 0. For a reaction r j ∈ R, j ∈ {1, . . . , m}, the species si with bi j > 0 are called
products of r j.

A dynamical system can be derived from a reaction network by assigning to each
species si ∈ S, i = 1, . . . , n and every time t ∈ R+ ≡ {u ∈ R : u ≥ 0}, a nonnegative
concentration value ci(t). A map φ mapping a concentration vector back to a subset
of species from the power set P(S) of the set of species, that is,

φ : R
n
≥0 → P(S), c 7→ φ(c), (2.2)

is called abstraction, if

φ(c) ≡ {si ∈ S : ci > 0 for any i ∈ {1, . . . , n}}. (2.3)

Thus, φ(c) is the subset of species that contains exactly those species that have a
strictly positive concentration value. Species with concentration equal zero do not
belong to φ(c). The abstraction φ plays an important role in this work, since it allows
for linking the concentration vectors of a solution of a dynamical system with its
underlying reaction network.

Now the question is considered of how the reactions rule the concentration values
of the species in a dynamical system. For a given subset S ⊆ S of species, a vector
v ∈ R

n
+ is called a feasible flux with respect to S if for all r j ∈ R, j = 1, . . . , m, it holds

that

v j















> 0, iff support(r j) ⊆ S,

= 0, otherwise.
(2.4)
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A function

v : R
n
+ → R

m
+, c 7→ v(c), (2.5)

that is Lipschitz continuous on every bounded subset of R
n
+, is called flux vector

function, if for every c ∈ R
n
+ the vector v(c) is a feasible flux with respect to φ(c).

Thus the flux vector function maps any vector of concentrations to a vector of reaction

rates. If, for example, mass-action kinetics is applied (v j(c) = k j · c
a1 j

1
· . . . · · · c

anj

n with
real reaction constants k j > 0, j = 1, . . . , m) to constructing v, then v is a flux vector
function, because then it holds true that v j(c) is strictly positive if and only if the
concentrations of all the species from the support of r j ∈ R are strictly positive. This
represents the common assumption that a reaction is active if and only if all of its
reactants are present at the same time and place [27].

By defining the derivatives of the concentrations with respect to time we obtain
a dynamical system as a system of ordinary differential equations (ODEs),

d

dt
c(t) = ċ(t) = N · v(c(t)), (2.6)

which describes how the change of the concentrations of the species from S results
from the concentrations via the set of reactions R. In this case, the reaction network
underlies the dynamical system. By adding initial conditions c(0) = c0 ∈ R

n
+, an

initial value problem is obtained.
If, besides the time variable t, we add a space variable x ∈ Ω from a connected

domain Ω ⊂ R
p, p ∈ N, with 0 <

∫

Ω
dx < ∞ and a C2 smooth boundary ∂Ω, we can

model effects like diffusion by differentiating twice with respect to x. Thus we arrive
at describing the dynamics of the concentrations ci(x, t), i = 1, . . . , n, of the species
for each location x ∈ Ω by a system of partial differential equations (PDEs),

∂

∂t
ci(x, t) = N · v(c(x, t))

reactions

+ di
∂2

∂x2
ci(x, t)

di f f usion

, i = 1, . . . , n, (2.7)

where di ≥ 0, i = 1, . . . , n, are the diffusion coefficients of the species. By adding
twice-continuously differentiable nonnegative initial conditions

ci(x, 0) = c0
i (x) ≥ 0, x ∈ Ω, i = 1, . . . , n, (2.8)

and homogeneous Neumann boundary conditions (BCs),

∂

∂ν
ci(x, t) = 0, x ∈ ∂Ω, i = 1, . . . , n, (2.9)

where ν ∈ R
n is the external normal vector to the boundary δΩ, we get a boundary

value problem (BVP), a so-called reaction-diffusion system (RDS) with a solution

c : Ω ×R+ → R
n, (x, t) 7→ c(x, t). (2.10)

We assume that each its derivatives
∂c

∂t
and

∂2c

∂x2
is continuous with respect to x and

t (for t = 0, continuity with respect to t holds from above only). Thus the solution
c itself is continuous with respect to x and t too. We furthermore assume that it is
bounded, that is, there exists a real K ∈ R such that |c(x, t)| < K for all x ∈ Ω, t ≥ 0.
Under certain conditions the existence and uniqueness of a solution to an RDS as
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defined above results from standard theorems [32].
We call a monotonously increasing sequence (t j)

∞
j=1

of nonnegative real numbers

tending towards infinity with

1 ≤ t j+1 − t j ≤ Z, j ∈N,

for some Z ∈ R+ a sequence of points in time. We call a vector

v̂ = v̂(c, (tl)
∞
l=1) ≡ lim

j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

x∈Ω

v(c(x, t)) dx dt ∈ R
m
+ (2.11)

constructed from a single solution c of an RDS by using the sequence (t j)
∞
j=1

of points

in time a total flux with respect to c and (t j)
∞
j=1

if

Nv̂ = 0. (2.12)

Thus double-integration of a solution of an RDS connects the dynamics to a property
of the underlying reaction network, namely the stoichiometric matrix. Note that the
total flux is not necessarily a feasible flux for any subset of species. In the first part of
this work we focus on the question of which of the components v̂ j, j = 1, . . . , m, of the
vector v̂ are strictly positive and which are equal to zero. Each of the components that
is strictly positive represents a reaction that is active in the long-run of the solution
c of the RDS. Thus, the components of v̂ with v̂ j > 0 determine, which species must
persist in the long-run to support the respective reactions r j.

In [19] it was shown that if an ODE system approaches a fixed point, then the
set of persistent species is an organization in the sense of COT. An organization is a
subset S ⊆ S of species that is

1. closed, that is, none of the reactions supported by this subset of species produces
a species that is not contained in this subset

2. and self-maintaining, that is, there is a feasible flux v̂ ∈ R
m
+ such that N · v̂ ≥ 0.

We will introduce COT in more detail in the preliminaries section. Since we regard
bounded solutions only, all the results of this work concerning the dynamics of RDSs
hold for Nv̂ = 0. Only in Section 2.5 and in Section 3.1.3 the inequality Nv̂ ≥ 0 is
used.

In [72] we have generalized the fixed points result from [19] mentioned above. We
have shown that whenever the solution of an ODE system approaches an arbitrary
attractor that exhibits only one single subset of persistent species, this subset is an
organization [72]. Such attractors might include periodic or even chaotic behavior.
But we have also cited solutions of RDSs with other types of attractors, for example,
heteroclinic orbits, that exhibit more than one subset of persistent species, which
are distributed with respect to time [69]. We had proven that for such solutions the
minimal subsets of persistent species are organizations, but we could not prove that
statement for all subsets of persistent species or for their union [72].

In the first part of this work we generalize the techniques developed for ODE
systems in [72] to RDSs with solutions exhibiting more than one subset of persis-
tent species, especially systems with spatial extension and diffusion effects, that is,
involving PDEs. We provide simulation results of RDSs exhibiting solutions c with
total fluxes v̂ that are not feasible fluxes. Instead, reactions that would be active for
a feasible flux are inactive. This is due to a temporal or spatial separation of the
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persistent species among several subsets. We show that neither these subsets nor
their union is necessarily an organization in the sense of classical COT. We therefore
generalize the definition of organization towards distributed organizations (DOs) to
capture the newly identified phenomenon of the persistent species being distributed.
Note that, like organizations, DOs solely depend on the reaction network underlying
the dynamical system. We finally arrive at two main results. First, given a reaction
network, the set of DOs forms a lattice which hierarchically relates the DOs to one
another. Second, for every solution of an RDS the set of persistent species is always
a DO of the underlying reaction network. Whereas the first result provides informa-
tion about the overall structure of a reaction network the second one characterizes
the inner structure of the set of persistent species with regard to a single solution of
an RDS. We show how connecting these two perspectives supports reaction network
analysis. The overall situation is illustrated in Figure 1.1.

2.2 Coloring scheme for species involved in virus infection

dynamics

The following coloring scheme for particular classes of species is introduced. It is
used for the analysis of the virus infection dynamics models in the second part of the
results.

• Uninfected (target) cells or those resistant/refractory to infection are marked in
blue, e.g., T.

• Infected cells, partially or latently infected cells, and viruses are marked in
magenta, e.g., I and V.

• Species belonging to the active immune response are marked in green. It is
worth noting that the first two models analyzed in this paper [61, 5] do not
explicitly have immune system components.

• Bacterial co-infection species are marked in orange. These species are only
occurring in Smith’s model [85].

• Text referring to any other species is marked in black, for example, transient
target cell states, passive immune system, or dead cells.

2.3 Deriving the underlying reaction network from a dynam-

ical system

The method presented here is in accordance with literature dealing with the rela-
tionship between reaction systems and differential equations [87, 26]. The in-host
ODE model from Almocera [3] (see Figure 2.1) is used as a showcase to describe how
from the ODEs or PDEs of a dynamical system the underlying reaction network is
derived:

Each summand of each ODE (or PDE) is translated into a reaction as illustrated
by the transition from Subfigures (a) to (b) in Figure 2.1. On the left-hand side of
each reaction formula, there is a set of species, the so-called support of a reaction.
The support of a reaction is the unique set of species that are needed to run the
reaction. If only one of the species of the support of the reaction is missing then that
reaction is not active. The term (of the ODE (or PDE)) that belongs to that reaction
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must be zero if and only if the concentration of at least one of the species in the
support of that reaction is zero. The number of the appearance of each species of a
reaction on the right-hand side of a reaction is bigger or less than the number on the
left-hand side depending on whether the regarding term has a positive or negative
sign in the ODE (or PDE)) of the regarding species.

As an example we consider the reaction R3. The corresponding summand is
cVEV. It is zero if and only if the concentration of at least one of E or V is zero. Thus
the support of R3 contains exactly the species E and V. On the left-hand side of the
reaction equation of R3 the species E resp. V appear only to the power of one because
of the power of E resp. V is one in cVEV. Since the summand cVEV appears only
in the ODE of V, namely with a negative sign, the right-hand side of the reaction
equation of R3 contains one less of V than the left-hand side. The number of E is
equal on both sides of the reaction equation since the amount of E is not affected by
the reaction R3.

V̇ = pV

R1

− p
V2

KV

R2

− cVEV

R3

Ė = NE

R4

− δEE

R5

+ r
EV

V + KE

R6

(a) ODEs model

Step1
⇒

R1 : V
p
→ 2V

R2 : 2V
p/KV
→ V

R3 : V + E
cV
→ E

R4 : ∅
NE
→ E

R5 : E
δE
→ ∅

R6 : V + E
r
→ 2E

(b) Reaction network

Step2
⇒

{V|E}

{V, E}

{E}

(c) Organi-
zations

Step3
⇒ X, XX

(d) Signa-
ture

Figure 2.1: [73] The in-host part of the Almocera Model

[3, 11] has two variables resp. ODEs (see Subfigure (A)): viruses (V) and T-cells (E).
This is the starting point of our method consisting of three steps briefly described
below. Step 1: We derive from the ODE system a set of six reactions (see Subfigure

(B)): R1, . . . , R6. Step 2: We compute from the set of reactions the set of organizations
(an organization is a subset of species with specific properties as described below in
this Chapter): {V, E} and {E}. We arrange the organizations in a Hasse diagram (see
Subfigure (C)), where organizations get bigger from bottom to top and are linked by
a line, if the lower organization is a subset of the upper one. Step 3: We derive from

the set of organizations the signature of the model (see Subfigure (D)). For our
example, the signature is X, XX, where X represents the organization {E} and XX

represents {V, E}.

2.4 Computing the organizations of a reaction network

COT is a branch of reaction network theory which deals with analyzing reaction
networks to understand the behavior of dynamical systems. In recent decades many
properties of reaction networks were proven to be useful for this purpose. The first
steps in that direction were taken by Feinberg, Horn, and Jackson [27, 47]. They
defined the terms deficiency, balance, and reversibility to draw conclusions about the
steady states, their stability, and the persistence of species in dynamical systems.

Inspired by Fontana and Buss [31], abstract models of autopoiesis [93], autocat-
alytic set evolution [23, 53, 79], and artificial chemistries [8, 51], Dittrich and Speroni
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di Fenizio [19] introduced COT in order to describe the time evolution of complex
chemical systems undergoing qualitative transitions in their species compositions.
Given a reaction network as a set of species and a set of reaction rules, COT identi-
fies a hierarchy of closed and self-maintaining subsets of species, which are called
organizations [19]. A chemical organization is derived from the rules of the reaction
network [19] and thus is independent of kinetic details, such as rate constants. The
COT approach allows for analyzing, understanding, and engineering complex, high-
dimensional systems by decomposing them into a Hasse diagrams of interrelated
organizations. This allows for tracking qualitative transitions as movements in the
hierarchy of organizations [60, 65, 75]. Furthermore, there is a proven link to the
long-term behavior, that is, all trajectories of a dynamical system converge to organi-
zations [72, 56]. The approach can be applied in various domains where models can
be formulated as reaction networks, such as atmospheric and combustion chemistry
[15], evolutionary biology [46], systems biology [52], ecology [95], complex systems
[44], computer science [67], and social sciences [20].

Now we state the basics of COT [29] by first introducing the closure of a subset
of species and then defining organizations.

Definition 2.4.1 (Closure of a subset of species). Given a reaction network (S,R) and a
subset S ⊆ S of species, we define the set operation

clos1(S) ≡ S∪ {si ∈ S : ∃r j ∈ R : supp(r j) ⊆ S, bi j > 0}, (2.13)

that is, the set of species from S, together with all species, that are produced by the reactions,
which are active on S. From this we define a monotonously increasing sequence of sets

clos0
1(S) = S,

clos1
1(S) = clos1(S),

clos2
1(S) = clos1(clos1(S)),

clos3
1(S) = clos1(clos1(clos1(S))),

. . .

closkmin+1
1

(S) = clos1(closkmin

1
(S)),

where kmin = min{k ∈ N0 : closk+1
1

(S) = closk
1
(S)}. Since the set of species and the set of

reactions are finite, kmin is finite and thus the closure of S is unique and finite. We call the set

clos(S) ≡ closkmin

1
(S) (2.14)

the closure of S.

For every subset S of species, the closure clos(S) of S does not contain the support
of any reaction that produces a species which is not already contained in S. We call
this property, to which the closure of any subset of species pertains, the closedness
property. This and self-maintenance are the properties of an organization. We assume
that the set S of all species of a reaction network (S,R) is closed.

Definition 2.4.2 (Closedness, self-maintenance and organizations). Given a reaction
network (S,R) and a subset S ⊆ S of species we then call S

1. self-maintaining if there is a feasible flux v with respect to S such that

Nv ≥ 0, (2.15)
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that is, all elements of N · v are zero;

2. closed if

clos(S) = S; (2.16)

3. an organization if it is self-maintaining and closed.

2.5 The signature of a reaction network

All organizations of a given reaction network can be arranged in a so-called Hasse
diagram. For the In-host Almocera example model the Hasse diagram is shown
in Figure 2.1 (C). From the bottom to the top the organizations have increasing
size, indicating an increasing number of species. A line is drawn between two
organizations if and only if one is a subset of the other and there is no organization
between them. Thus, there is a line between the organizations {E} and {V, E}.

We derive from the set of organizations the signature of the model (see Figure 2.1
(D)). For our example, the signature is X, XX, where X represents the organization
{E} and XX represents {V, E}.
The signature tells us via colored Xs (see Section 2.2), which of the types of species are
contained in the organizations of the model. We maintain this coloring throughout
this work. Note that we use underlining X to tag host-to-host species in contrast to
in-host species.
One should understand the following aspects concerning the method presented
above:
The long-term behavior of simulations of the dynamics of the model can be easily
estimated from the signature: We know from [72] that there is always an organiza-
tion representing the species persisting in the long-run. Thus species that are not
contained in any organization will go extinct for sure after a sufficiently long time
period. On the other hand, species that are contained in all organizations of a model,
will persist in the long-run for sure. If a species is contained in some organizations of
a model but not in all, it has the potential to persist but also to go extinct. It depends
on the applied kinetic laws, the initial conditions, and the reaction constants, which
case occurs.
A hierarchy of a set of models can be constructed relying on their signatures. Like
the set of organizations of one model, it can again be visualized as a Hasse diagram.
The more combinations of colors a signature contains, the higher is its position in
the Hasse diagram and the bigger is the variety of its potential dynamical behavior.
If all combinations of colors of one signature are present in a second signature, then
the models can be linked by a line. Kinetic laws: Note that except for reaction R6,
where Michaelis–Menten kinetics are applied, all the other reactions of this example
follow mass-action kinetics. The technique of computing and analyzing chemical
organizations used in this work applies to both these kinetic laws.
Distributed organizations: When the species V and E are separated (we say “dis-
tributed”), the reaction R3 is inactive. Then, due to the remaining for reactions, the
set {V, E} is still self-maintaining and closed and thus some kind of an organiza-
tion. We write {V|E} (instead of {V, E}) to denote this and call {V|E} a “distributed
organization.”
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2.6 Persistence

Persistence comprises various ideas from different fields, for example ecology, chem-
istry, and biology. It is applied to a huge multitude of different model types like for
example, discrete and continuous models, ODE and PDE models, deterministic or
stochastic models, models with and without a spatial dimension, and so on. As for
all these types of models, for the RDSs discussed in this work there are a number of
different terms related to persistence, such as permanence [45, 69, 18, 12], coexistence
[43, 69], extinction [2, 43], strong persistence [2], uniform persistence [43], etc. For an
overview of these concepts we refer the reader to [45, 2]. There are many aspects of
persistence regarding dynamical systems. For example, persistence can be analyzed
with regard to a single species or a whole system of species. Also, persistence con-
cerning a single solution and all possible solutions of an RDS arising from different
initial conditions or reaction constants can be distinguished. Furthermore, there are
different grades of persistence, e.g., weak or strong persistence. In this work we
are concerned with subsets of persistent species in regard to a single solution of an
RDS and link it with the persistence of all solutions of any RDS that has the same
underlying reaction network.



13

Chapter 3

Results

3.1 Linking network structure and dynamics to describe the

set of persistent species in reaction diffusion systems

This section is organized as follows. We first state the concept of persistence this
work relies on. Then we compare this concept to two other concepts of persistence,
one stronger and one weaker then ours. Then we define distributed organizations
(DOs) and prove that they always form a lattice as one of the two main results of this
work. We discuss the role of closed subsets of species in the dynamics. Subsequently,
as the second main result, we prove that the set of persistent species with respect to
a solution of a RDS is always a DO of the underlying reaction network. Then we
show how to apply the fore-mentioned results to analyze DO lattices and to draw
conclusions about the long-term behavior of RDS. Then we state some remarks on
how to compare several DO lattices and how to put them into hierarchies. Finally,
we present three example simulation results and discuss them with respect to our
theoretical results.

3.1.1 Persistence

In this subsection we present the concept of persistence on which this study relies. For
this purpose we first define two kinds of neighborhoods, which are special subsets
of the state space of concentration vectors. We also define a frequency of occurrence
for any subset of the state space and, based on that, we introduce persistent subsets
of species. From the persistence of a subset of species we derive the persistence
of a species, which we analyze further and compare to other grades of persistence
based on the limits superior and the limits inferior of the concentration values of that
species. In this subsection, we assume that the solution ci(x, t) of an RDS introduced
in Section 2.1 is nonnegative for all t > 0, x ∈ Ω, si ∈ S. We will prove this in
Section 3.1.4.

Definition 3.1.1 (Neighborhood of a subset of species in the space of concentrations).
Given a subset S ⊆ S of species and real numbers ε, δ > 0, we call the set

Sε,δ ≡ {c ∈ R
n
+ : cs















> ε iff s ∈ S

≤ δ iff s < S















} ⊆ R
n
≥0 (3.1)

of concentration vectors the (ε, δ)-neighborhood of S, and for δ = ∞ we call the set

Sε ≡ Sε,∞ ≡ {c ∈ R
n
+ : cs > ε iff s ∈ S} ⊆ R

n
≥0 (3.2)

of concentration vectors the ε-neighborhood of S.



14 Chapter 3. Results

There are lower and upper boundaries for the flux vector function values v(c)
depending on whether or not c is in some special ε-neighborhoods. The following
remark provides these boundaries, which we need to prove the results of this work.

Remark 3.1.1 (Boundaries of the fluxes). Given an RDS with underlying reaction network
(S,R), a reaction r j ∈ R for a j ∈ {1, . . . , m}, and a subset S ⊆ S of species, the following
hold:

• If supp(r j) ⊆ S then for all ε > 0 there is a lower boundary L(ε) > 0 for the flux
vectors v j(c) such that

0 < L(ε) < v j(c) (3.3)

for all c ∈ Sε.

• If supp(r j) " S then for all ε > 0 there is an upper boundary U(ε) > 0 for the flux
vectors v j(c) such that

0 ≤ v j(c) ≤ U(ε) ⇔ c < support(r j)
ε (3.4)

and limε→0 U(ε) = 0.

Proof. The proof follows from the definition of the flux vector function v() in the
introduction, that is, its continuity and feasibility property, and from the definitions
of neighborhoods in Definition 3.1.1. �

Remark 3.1.2 (Disjoint decomposition of ε-neighborhoods). Given a reaction network
(S,R), a subset S̃ ⊆ S of species, and real numbers ε, δ > 0. Then the ε-environment S̃ε of
S̃ is a disjoint union of (ε, δ)-environments Sε,δ of all subsets S ⊆ S of species with S̃ ⊆ S.
That is,

S̃ε =
⊎

S̃⊆S

Sε,δ. (3.5)

This holds true especially for ε = δ.

This is illustrated in Figure 3.1. Definition 3.1.2 is a pre-stage to persistence and
shows the strong relation to the construction of the vector v̂ sketched in Equation 2.11.

Definition 3.1.2 (Frequency of occurrence of concentration vectors). Given a solution
c of an RDS, a subset C ⊆ R

n
+ of the set of concentration vectors, and a sequence (t j)

∞
j=1

of

points in time, we call the nonnegative number

F(C; c, (t j)
∞
j=1) ≡ lim sup

l→∞

1

t j+1 − t j

∫ t j+1

t j

∫

{x∈Ω: c(x,t)∈C}

dx dt (3.6)

the frequency of occurrence of C (with respect to c and (t j)
∞
j=1

) and write for short F(C) if it

is clear to which solution c and which sequence (t j)
∞
j=1

it relates.

Now we state the main definition of persistence regarding a single solution c of
an RDS.

Definition 3.1.3 (Persistent subsets of species and persistent species). Given a solution
c of an RDS with an underlying reaction network (S,R), we call a subset S ⊆ S of species
persistent (with respect to c) if for all sequences (t j)

∞
j=1

of points in time there is an ε > 0
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c2

c1
0 ϵ

δ
F( {s1}

ϵ,δ )

F( {s1,s2}
ϵ,δ )

F( {s1}
ϵ )   =   F( {s1}

ϵ,δ )        F( {s1,s2}
ϵ,δ )

 
Figure 3.1: [76] Illustration of Remark 3.1.2 for an example with two
species s1 and s2. The ε-environment of {s1} is a disjoint union of the

(ε, δ)-environments of {s1} and {s1, s2}.

such that for all δ > 0 the frequency of occurrence F(Sε,δ) of Sε,δ with respect to c and (t j)
∞
j=1

is strictly positive, that is,

F(Sε,δ) = lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

{x∈Ω: c(x,t)∈Sε,δ}

dx dt > 0. (3.7)

We denote the set of persistent subsets of species P(c), i.e.,

P(c) ≡ {S ⊆ S : S is persistent with respect to c}. (3.8)

We call a single species s ∈ S persistent (with respect to c) if s is contained in at least one of
the persistent subsets of species, i.e.,

s ∈ ∪{S ⊆ S : S ∈ P(c)}. (3.9)

We say that a species s ∈ S goes extinct (with respect to c) if it is not persistent with respect
to c. We denote the set of persistent species Φ(c), i.e.,

Φ(c) ≡ {s ∈ S : s is persistent with respect to c} = ∪{S ⊆ S : S ∈ P(c)}. (3.10)

See Figure 3.2 for an illustration of the concept of persistence introduced above. It
is important to note that Definition 3.1.3 draws a clear distinction between the species
within a persistent set S and those outside of S. More precisely, a strictly positive
frequency of occurrence of S not only demands the co-occurrence of the species from
S but also the simultaneous disappearance of the species that are not elements of S.
Our second simulation example in Section 3.1.9 illustrates this clearly, since there we
have an RDS with solution c with a set P(c) = {{s1}, {s2}, {s3}, {s1, s2}, {s1, s3}, {s2, s3}} of
persistent subsets of species. But the set S = {s1, s2, s3} of all species is not persistent
even though it contains persistent species.

Whereas in Definition 3.1.3 we derived the persistence of a single species from the
persistence of subsets of species, in Lemma 3.1.1 we provide an immediate criterion
for the persistence of a single species.

Lemma 3.1.1 (ε-neighborhood criterion for persistent species). Given a solution c of a
RDS with an underlying reaction network (S,R), a species si ∈ S is persistent with respect
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S1
S3

S2

S1, S2, S3: persistent 
subsets of species

gray background: 
persistent species

set of all species

Figure 3.2: [76] Overview of the terms regarding persistence as de-
fined and used in this work.

to c, that is,

si ∈ Φ(c) = ∪S∈P(c)S (3.11)

if and only if for all sufficiently small ε > 0 and every sequence (t j)
∞
j=1

of points in time the

frequency F({si}
ε) of occurrence of {si}

ε is strictly positive, that is,

F({si}
ε) ≡ lim sup

l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: ci(x,t)>ε}
dx dt > 0. (3.12)

Proof. 1. First we prove that Equation 3.12 follows from si ∈ Φ(c). Thus, we
assume, that si is persistent, that is, there is a persistent subset S ∈ P(c) with
si ∈ S. Thenfor all sequences (t j)

∞
j=1

of points in time there is an ε > 0 such that

for all δ > 0,

F(Sε,δ) = lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

{x∈Ω: c(x,t)∈Sε,δ}

dx dt > 0, (3.13)

and so

0 < F(Sε,δ)

= lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

{x∈Ω: c(x,t)∈Sε,δ}

dx dt

≤ lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

{x∈Ω: c(x,t)∈Sε}

dx dt

≤ lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

{x∈Ω: c(x,t)∈{si}
ε}

dx dt

= lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

{x∈Ω: c(x,t)>ε}
dx dt. (3.14)
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From Definition 3.1.2 it follows that F({si}
ε) > 0 for all sufficiently small ε > 0.

2. Now we prove the other direction, that is, we assume that there is an ε > 0
such that for every sequence (t j)

∞
j=1

of points in time, Equation 3.12 holds true.

So for all δ > 0,

0 < F({si}
ε)

Remark 3.1.2
= F(

⊎

si∈S

Sε,δ)

=
∑

si∈S

F(Sε,δ). (3.15)

Since the sum is finite, there is a subset S ⊆ S of species with F(Sε,δ) > 0 and
si ∈ S. Thus S is persistent, and the proof is completed.

�

In the supplementary material we provide Lemma 3.1.3 and Lemma 3.1.2. The
latter is necessary to prove the former, and Lemma 3.1.1 is needed for the proofs
of both. Both Lemma 3.1.3 and Lemma 3.1.2 are not necessary to prove the main
results of this work. But Lemma 3.1.3 helps in assessing our concept of persistence
of a species as defined in Definition 3.1.3 by comparing it to two other types of
persistence which can be derived from the concentration values of a species as well.
Briefly, Lemma 3.1.3 states that for a given solution c of an RDS with an underlying
reaction network (S,R) and an arbitrary species si ∈ S, the following two conclusions
hold:

lim inf
t→∞

∫

x∈Ω

ci(x, t) dx > 0 ⇒ si is persistent w.r.t. c ⇒ lim sup
t→∞

∫

x∈Ω

ci(x, t) dx > 0.

(3.16)

This shows that our concept of persistence can be regarded as a refinement
of other definitions of persistence. Mincheva and Siegel [62], by using so-called
Volpert indices, proved for an RDS with mass-action kinetics the nonnegativity of all
concentrations of all species for all finite times. They also proved the positiveness of
the concentration of all reachable species. The set of reachable species is what is called
closure in COT. The Volpert indices correspond to the indices k in the notation of the
sets closk

1
(S), i ∈ N, that we used in Definition 2.4.1 of this work. In Section 3.1.4

of this study we prove for more general kinetics that the set of species existent
at a location of the domain at an arbitrary time immediately produces its closure.
Furthermore, we complement the results from [62] in Section 3.1.5 by identifying
those subsets of species, that persist for time approaching infinity. We show that
they are special substructures of the underlying reaction networks of the RDS which
we call DOs and define in Section 3.1.3. Note, that if the reaction network is not
given, one can derive it from the RDS or the ODE system. This is exemplified in
Section 2.3, Figure 2.1. More details about the relation between differential equations
and their underlying reaction networks can be found in [87, 26].

3.1.2 Comparison of different concepts of persistence

Here we present two lemmas mentioned in Section 2.6. Lemma 3.1.3, already
sketched in Equation 3.16, provides a comparison of our concept of persistence
to a stronger and a weaker one. Lemma 3.1.2 is used to prove Lemma 3.1.3.
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Lemma 3.1.2 (Equivalence criterion for the persistence of a species). Given a solution
c of a RDS with an underlying reaction network (S,R). A species si ∈ S with respect to c is
persistent if and only if for all sequences (t j)

∞
j=1

of points in time

lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

x∈Ω

ci(x, t) dx dt > 0. (3.17)

Proof. 1. First we assume that si is persistent with respect to c. From Lemma 3.1.1
follows that there is an ε > 0 such that F({si}

ε) > 0 with respect to c and to all
sequences (t j)

∞
j=1

of points in time. Thus,

lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

x∈Ω

ci(x, t) dx dt

≥ lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

x∈Ω: ci(x,t)>ε
ε dx dt

= ε · F({si}
ε)

> 0.

2. Now we prove the other direction by contradiction. We assume, that Equa-
tion 3.17 holds true for all sequences (t j)

∞
j=1

of points in time and that si is not

persistent with respect to c, that is (following Lema 3.1.1), F({si}
ε) = 0 for all

sufficiently small ε > 0 and all sequences (t j)
∞
j=1

of points in time. Thus, for all

sufficiently small ε > 0 holds

0 < lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

x∈Ω

ci(x, t) dx dt

= lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

[∫

x∈Ω: ci(x,t)≤ε
ci(x, t) dx

+

∫

x∈Ω: ci(x,t)>ε
ci(x, t) dx

]

dt

≤ lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

[

ε · |Ω|+ K

∫

x∈Ω: ci(x,t)>ε
dx

]

dt

= ε · |Ω|+ K · F({si}
ε)

= ε · |Ω|
ε→0
−−−→ 0,

where K ∈ R+ is an upper boundary for ci(x, t), x ∈ Ω, t ≥ 0. This is a contra-
diction and thus the proof is completed.

�

Next we state the promised lemma ranking different grades of persistence of a
species including the definition used in this work (see Definition 3.1.3).

Lemma 3.1.3 (Comparison of different grades of persistence). Given a solution c of a
RDS with an underlying reaction network (S,R) and an arbitrary species si ∈ S. Then the
following two conclusions hold true:

1. lim inft→∞

∫

x∈Ω
ci(x, t) dx > 0 ⇒ si is persistent with respect to c.
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2. si is persistent with respect to c, ⇒ lim supt→∞

∫

x∈Ω
ci(x, t) dx > 0.

Proof. 1. We assume

lim inf
t→∞

∫

x∈Ω

ci(x, t) dx > 0. (3.18)

So there is a time T > 0 such that
∫

x∈Ω

ci(x, t) dx > ε. (3.19)

for all t > T and all sufficiently small ε > 0. Thus, for every sequence (t j)
∞
j=1

of points in time there is a natural number j0 such that for all j > j0 and all
sufficiently small ε > 0

1

t j+1 − t j

∫ t j+1

t j

∫

x∈Ω

ci(x, t) dx dt >
t j+1 − t j

t j+1 − t j
ε = ε > 0. (3.20)

With Lemma 3.1.1 we deduce that si is persistent.

2. We prove the equivalent statement that from

lim sup
t→∞

∫

x∈Ω

ci(x, t) dx = 0. (3.21)

follows that si is not persistent. Thus we assume that Equation 3.21 holds true.
Then for all δ1 > 0 there is a T(δ1) > 0 such that

∫

x∈Ω

cs(x, t) dx < δ1 (3.22)

for all t > T(δ1). Then for all ε > 0

∫

{x∈Ω: ci(x,t)>ε}
dx

t→∞
→ 0. (3.23)

We deduce that for all δ2, ε > 0 there is a T(δ2, ε) > 0 such that

∫

{x∈Ω: ci(x,t)>ε}
dx < δ2 (3.24)

for all t > T(δ2, ε). Thus for all sequences (t j)
∞
j=1

of points in time and all

δ2, ε > 0 there is a natural number j(δ2, ε) such that

∫ t j+1

t j

∫

{x∈Ω: ci(x,t)>ε}
dx dt < (t j+1 − t j)δ2 (3.25)

for all j > j(δ2, ε). Thus for all sequences (t j)
∞
j=1

of points in time

lim sup
j→∞

1

t j+1 − t j

∫ t j+1

t j

∫

{x∈Ω: ci(x,t)>ε}
dx dt <

t j+1 − t j

t j+1 − t j
δ2 (3.26)
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for all δ2, ε > 0. By letting δ2 → 0 we conclude

F({si}
ε) = 0 (3.27)

for all ε > 0, that is, si is not persistent.
�

3.1.3 Distributed Organizations

In this subsection we first define DOs as a generalization of organizations and then
compare these two terms. After proving that computing DOs is NP-hard, we prove
that the set of all DOs of a reaction network forms a lattice.

A DO consists of one or more subsets of species that are each closed and together
obey a generalized kind of self-maintenance. We now present a precise definition.

Definition 3.1.4 (Distributed organizations (DOs)). Given a reaction network (S,R), a
subset D ⊆ S is a DO if and only if there are k, k ∈N, different subsets S1, . . . , Sk ⊆ D with

D = ∪k
i=1Si (3.28)

such that

1. all Si, i = 1, . . . , k, are closed;

2. there is a vector v̂ ∈ R
m
+, v̂ ≥ 0, such that

Nv̂ ≥ 0; (3.29)

3. and there is a feasible flux v̂i ∈ R
m
+, v̂i ≥ 0, with respect to each subset Si, i = 1, . . . , k,

with

v̂ =
k
∑

i=1

v̂i. (3.30)

Collectively, we call the second and third items of the list above the self-maintenance property
of a DO. We say "D is distributed to the Si" or "the Si are a distribution of D". When listing
the elements of the subsets Si, i = 1, . . . , k, of species, we use a special notation, for example,
if D is distributed to S1 = {s1, s2} and S2 = {s1, s3}, we write

D = S1 ∪ S2 = {s1s2|s1s3}. (3.31)

Note that a species can be contained in several subsets Si, i = 1, . . . , k, of a DO, and
a DO can be empty. The next lemma elucidates the relation between organizations
and DOs. The situation is illustrated in Figure 3.3.

Lemma 3.1.4 (Relation of organizations and DOs).

1. Every organization of a reaction network (S,R) is a DO of that reaction network.

2. Every DO of a reaction network (S,R) that has a distribution to a single subset that
is k = 1 in Definition 3.1.4 is an organization.

3. There exist reaction networks that exhibit DOs that are not organizations.
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All subsets of species

Distributed 
Organizations

Organizations

Figure 3.3: [76] Illustration of the relation between organizations and
distributed organizations.

Proof. 1. Let O be an organization of a reaction network (S,R). Then O is a DO
that is distributed to a single subset S1 = O, since O is closed and, furthermore,
self-maintaining both, in the way organizations are self-maintaining and in the
way DOs are self-maintaining.

2. This follows from the previous item.

3. Let S ≡ {s1, s2} and R ≡ {r1 : s1 + s2 → ∅} be the set of species (resp., reactions)
of the reaction network (S,R). Then D ≡ {s1|s2} is a DO but not an organization.

�

Remark 3.1.3 (DOs not being organizations). Assume a DO D = {S1|S2| . . . |Sk} with

v̂ =
∑k

i=1 v̂i such that Nv̂ = 0 and v̂i, i = 1, . . . , k, are feasible fluxes with respect to the
subsets Si, i = 1, . . . , k.

If ∪k
i=1

Si is closed and self-maintaining, then D is an organization. This is especially

the case if there is no reaction r j ∈ R with supp(r j) ⊆ ∪
k
i=1

Si but supp(r j) " Si for all

i = 1, . . . , k, since in this case v̂ from above is a feasible flux with respect to∪k
i=1

Si and∪k
i=1

Si

is closed because all the Si, i = 1, . . . , k, are closed.
On the other hand, if there is a reaction r j ∈ R with supp(r j) ⊆ ∪

k
i=1

Si but supp(r j) " Si

for all i = 1, . . . , k, then v̂ is not a feasible flux with respect to ∪k
i=1

Si since v̂ j = 0. Such a
reaction can

1. produce new species that are not contained in ∪k
i=1

Si, and then ∪k
i=1

Si is not closed;

2. prevent ∪k
i=1

Si from being self-maintaining; or

3. do both.

In any of the cases 1–3 ∪k
i=1

Si is not an organization.

Corollary 3.1.1 (Complexity of the computation of DOs). The computation of DOs is
NP-hard.

Proof. In [15] it was proven that deciding whether a given reaction network contains
a reactive organization is NP-complete and thus that computing organizations is NP-
hard. This was done by constructing a reaction network containing an organization
such that finding that organization is equivalent to the 3-SAT problem. Since we
know from Lemma 3.1.4 that every organization is a DO, the proof from [15] works
for DOs too. �
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For more information about the complexity of relevant subsets of species in a
reaction network the reader is referred to [98]. The next lemma is the first part of a
sequence of statements culminating in a theorem about the lattice property of the set
of DOs of a given reaction network.

Lemma 3.1.5 (Existence of a unique smallest organization). For every reaction network
(S,R) there is a unique smallest DO Omin, which is an organization. That is, Omin is a
subset of any other DO of that reaction network. For any DO D = {S1| . . . |Sk}, Omin is even
a subset of all Si. Note, that Omin might be empty.

Proof. We define

Omin ≡ clos(∅); (3.32)

then Omin is closed. Furthermore, since Omin is produced from the empty set ∅, it is
a subset of all Si, i = 1, . . . , k, for any DO D = {S1| . . . |Sk}. Thus, to prove that Omin is
an organization, it remains to prove, that there is a feasible flux v̂ ∈ R

m
+ with respect

to Omin with Nv̂ ≥ 0. With kmin ∈ N0 from Definition 2.4.1, we define the vector
v̂kmin ∈ R

m
+ by

v̂kmin

j



































= 1, iff supp(r j) ∩ closkmin

1
(∅) , ∅,

= λkmin, j, iff supp(r j) ⊆ closkmin−1
1

(∅) and

ai j = 0, bi j > 0 for a species si ∈ closkmin

1
\ closkmin−1

1

= 0, otherwise,

(3.33)

for j = 1, . . . , m, and by strictly positive real numbers λkmin, j, such that

(Nv̂kmin)i ≥ 0∀ si ∈ closkmin

1
(∅) \ closkmin−1

1
(∅). (3.34)

Then for k from kmin − 1 stepwise decreasing by 1 to k = 1, we construct the vectors
v̂k ≡ v̂k+1 + ∆v̂k ∈ R

m
+ by adding to v̂k the vector ∆v̂k defined by

∆v̂k
j =















































1, iff supp(r j) ⊆ closk
1
(∅) and

ai j > 0 for all species si ∈ closk
1
\ closk−1

1

λk, j, iff supp(r j) ⊆ closk−1
1

(∅) and

ai j = 0, bi j > 0 for a species si ∈ closk
1
\ closk−1

1

0, otherwise,

(3.35)

for j = 1, . . . , m, and by strictly positive real numbers λk, j, such that

(Nv̂k)i ≥ 0∀ si ∈ closk
1(∅) \ closk−1

1 (∅) (3.36)

and so

(Nv̂k)i ≥ 0∀ si ∈ closkmin

1
(∅) \ closk−1

1 (∅). (3.37)

Finally, by defining v̂ ≡ v̂1 we obtain a feasible flux with respect to clos(∅) such that

(Nv̂k)i ≥ 0∀ si ∈ clos(∅), (3.38)

that is, Omin is self-maintaining and thus an organization. �



3.1. Linking network structure and dynamics to describe the set of persistent
species in reaction diffusion systems

23

Note that this subsection and Section 2.5 are the only parts of this section where
it is necessary to define self-maintenance of organizations and DOs by the inequality
Nv̂ ≥ 0 instead of the equation Nv̂ = 0. The rest of this section indeed still holds true
if the inequality Nv̂ ≥ 0 in the definitions of organizations and DOs is replaced by
the equation Nv̂ = 0. Thus, all results of this section dealing with organizations or
DOs with regard to the dynamics of RDSs are, strictly speaking, not formulated in
their strongest possible forms.

Lemma 3.1.6 (Union of DOs). Given a reaction network (S,R) and two DOs D1, D2 ∈ S,
the union D1 ∪D2 is also a DO.

Proof. Let D1 = {S1| . . . |Sk} and D2 = {T1| . . . |Tl} be DOs with closed subsets Si, T j ⊆

D1, i = 1, . . . , k, j = 1, . . . , l, of species and let their feasible fluxes be v̂i, ˆ̂v j, i =

1, . . . , k, j = 1, . . . , l, such that N
∑k

i=1 v̂i = 0 and N
∑l

j=1
ˆ̂v j = 0.

Then D ≡ D1 ∪D2 with the distribution D ≡ {S1| . . . |Sk|T1| . . . |Tl}, i = 1, . . . , k, j =

1, . . . , l, is a DO, since N(
∑k

i=1 v̂i +
∑l

j=1
ˆ̂v j) = N

∑k
i=1 v̂i + N

∑l
j=1

ˆ̂v j = 0. �

Note that the union of two DOs as constructed in Lemma 3.1.6 is always a DO
but not necessarily an organization. The next lemma complements Lemma 3.1.5.

Corollary 3.1.2 (Existence of a unique biggest DO). Given a reaction network (S,R)
and a subset S ⊆ S of species with Omin j S for Omin from Lemma 3.1.5, the union

Dmax(S) ≡ ∪{D ⊆ S : D is a DO} (3.39)

of all DOs contained in S is the unique biggest DO contained in S in the sense that all other
DOs contained in S are subsets of Dmax(S).

Proof. Let S j S be an arbitrary closed subset of species. It follows from Lemma 3.1.6
that Dmax(S) is a DO.From lemma 3.1.5 it follows that the union is never empty, since it
always contains the smallest organization Omin ≡ clos(∅) of the reaction network. �

Based on the previous results, the next theorem states the lattice property of the
set of DOs of a reaction network.

Theorem 3.1.1 (Lattice property of DOs). Given a reaction network (S,R) the set of its
DOs forms a lattice.

Proof. According to the subarea of mathematics called order theory, a lattice is a
partially ordered set in which every two elements have a unique supremum and a
unique infimum Therefore, the set of DOs is a lattice if the following three conditions
hold:

1. Partial order of the set of DOs: The subset relation for sets provides a partial
order.

2. Unique supremum: Given two DOs D1, D2 ⊆ S, following Lemma 3.1.6, a unique
supremum is given by the set union

Dsup ≡ D1 ∪D2. (3.40)

3. Unique infimum: Given two DOs D1, D2 ⊆ S of the reaction network we take
the union of all DOs in D1 ∩D2 as the infimum, that is,

Din f ≡ Dmax(D1 ∩D2) = ∪{D ⊆ D1 ∩D2 : D is a DO}. (3.41)
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The existence of Din f follows from Corollary 3.1.2.

�

Summarizing, we visualize the previous statements in Figure 3.4. Note that
besides the lattice of DOs, also the set of all subsets of species forms a lattice by
taking set union and set intersection as supremum and infimum, respectively. Thus
the lattice of DOs can be embedded as a subset into the lattice of all subsets of species.
In contrast, the set of organizations and the set of all closed subsets of species are not
lattices in general.

We derive Corollary 3.1.3 from Theorem 3.1.1.

Corollary 3.1.3 (Lattice criterion for DOs). Given a reaction network (S,R), if the Hasse
diagram of organizations is not a lattice, then there exists at least one DO that is not an
organization.

Proof. Since by Lemma 3.1.4 every organization is a DO, the set of organizations of
the Hasse diagram must be a proper subset of the set of DOs if the Hasse diagram of
organizations is not a lattice. �

Dmax

Dsup

. . .. . . D1 D2

Din f

Dmin

Figure 3.4: [76] Visualization of the lattice property of the set of DOs
(that were proven in Theorem 3.1.1) of a given reaction network.

We conclude this subsection by providing an example reaction network, which
is visualized in Figure 3.5 together with its lattice of DOs. The lattice contains five
DOs that are all organizations. Note that the biggest DO S = {s1, s2, s3} exhibits
different distributions, for example, one for which it is distributed to only one subset
S of species and another for which it is distributed to two subsets S1 = {s1, s2} and
S2 = {s2, s3} of species. But the two different distributions share the same total fluxes,
since no reaction is deactivated by distributing the species.

3.1.4 The role closedness plays in the dynamics

In this subsection we first derive some statements about the effects of the diffusion
term appearing in the RDS and prove the nonnegativity of any solution of a RDS.
Then we show that for any time and any location the closure of the species existing
there leads to the immediate production of the closure of these species. Finally we
prove the first part of the main result of this work, that it, that a subset of species that
is persistent with respect to a solution of an RDS is always closed.
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r1 : s1 → s2

r2 : s1 + s2 → 2s1

r3 : s2 + s3 → s2 + 2s3

r4 : s3 → ∅

(a) Reactions

s1s2|s2s3

s1s2s3

s2s3s1s2

s2

∅

(b) (Distributed) organizations

Figure 3.5: [76] An example reaction network pertaining to five dif-
ferent DOs. The vertical bar in the uppermost DO represents the fact
that this DO can be distributed to two different subsets of species such

that the species s1 and s3 are separated from each other.

Remark 3.1.4 (Nonnegative diffusion for concentration equal zero). Given the solution
c of an RDS with the underlying reaction network (S,R), a species si ∈ S, a time t0 ≥ 0,
and a location x0 ∈ Ω, the following conclusion holds:

ci(x0, t0) = 0 and ci(x, t0) ≥ 0∀x , x0 ⇒
∂2ci

∂x2
(x0, t0) ≥ 0. (3.42)

Proof. For readability we assume Ω ⊆ R, since the proof for Ω ⊆ R
p for p > 1 can be

deduced easily. Furthermore, we assume that x0 ∈ Ω is an element of the interior of
Ω, since in the case x0 ∈ δΩ, the proof holds for the one-sided derivatives too.

From ci(x0, t0) = 0 and ci(x, t0) ≥ 0 for all x , x0 it follows that

∂2ci

∂x2
(x0, t0) = lim

h→0

ci(x0 + h, t0) − 2ci(x0, t0) + ci(x0 − h, t0)

h2

= lim
h→0

ci(x0 + h, t0) + ci(x0 − h, t0)

h2
≥ 0. (3.43)

�

Now we prove the nonnegativity of the solutions of an RDS.

Lemma 3.1.7 (Nonnegativity of the solution of a RDS). Given the solution c of an RDS
with the underlying reaction network (S,R), c is nonnegative, that is,

ci(x, t) ≥ 0 ∀si ∈ S, t ≥ 0, x ∈ Ω. (3.44)

Proof. The proof is by contradiction. Therefore we assume that the supremum

t̃ ≡ sup{t ≥ 0 : ci(x, t) ≥ 0 ∀si ∈ S, x ∈ Ω} (3.45)

is finite, that is, 0 ≤ t̃ < ∞. Since c is continuous, there is a location x̃ ∈ Ω and an
i ∈ {1, . . . , n} such that for the concentration of the species si ∈ S it holds that

ci(x̃, t)























≥ 0 : t ≤ t̃,

= 0 : t = t̃,

< 0 : for all sufficiently small t > t̃.

(3.46)
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and ci(x, t̃) ≥ 0 for all x ∈ Ω. From Remark 3.1.4 it follows that
∂2ci

∂x2
(x̃, t̃) ≥ 0, and

thus

∂ci

∂t
(x̃, t̃) = N · v(c(x̃, t̃)) +

∂2ci

∂x2
(x̃, t̃)

≥ N · v(c(x̃, t̃))

ci(x̃,t̃)=0
≥ 0. (3.47)

The last inequality holds true, since when ci = 0 there is no reaction that can consume
the species si since v() is defined to be a flux vector function. The resulting inequality
∂ci

∂t
(x̃, t̃) ≥ 0 contradicts ci(x̃, t) < 0 for all sufficiently small t > t̃, that is, the third

case of 3.46. Thus the assumption is false and the solution of an RDS is nonnegative
for all t ≥ 0 and x ∈ Ω and all species. �

From Lemma 3.1.7 and Remark 3.1.4 we easily derive the following corollary.

Corollary 3.1.4 (Nonnegative diffusion for concentration equal zero). Given the solu-
tion c of an RDS with underlying reaction network (S,R), a species si ∈ S, a time t0 ≥ 0,
and a location x0 ∈ Ω, the following conclusion holds

ci(x0, t0) = 0⇒
∂2ci

∂x2
(x0, t0) ≥ 0. (3.48)

Next we state another result about diffusion we use in this work.

Remark 3.1.5 (Integral over the divergence equals zero). Given the solution c of an
RDS with the underlying reaction network (S,R) and a time t0 ≥ 0, for every species
si ∈ S, i = 1, . . . , n, it holds that

∫

Ω

∂2ci

∂x2
(x, t0) dx = 0. (3.49)

Proof. From the divergence theorem, also referred to as Gauss’s theorem we know
that

∫

Ω

∂2ci

∂x2
(x, t0) dx =

∫

δΩ

∂ci

∂ν
(x, t0) dx (3.50)

and the term on the right-hand side of this equation equals zero, since we apply
homogeneous Neumann boundary conditions (see Section 2.1). �

From Remark 3.1.5 it follows that the diffusion does not change the total integral
over the concentration values of the species, but, instead, the total concentration
value of each species is determined solely by its interactions with the other species
via the reactions. In Section 3.2 we outline exemplary, how the set of reactions is
to be modified according to the boundary conditions applied, to return the right
set of organizations and DOs of the reaction network. For homogeneous Neumann
boundary conditions we had seen, that the set of reactions needs not to be changed
and this result is confirmed by Remark 3.1.5.

Next we state a lemma necessary to prove the two main results of this subsection
about closedness.
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Lemma 3.1.8 (Production of the closure). Given a solution c of an RDS with underlying
reaction network (S,R), a subset S ⊆ S, a location x0 ∈ Ω, a time t0 > 0, and an ε > 0 such
that for all species si ∈ S it holds that

ci(x0, t0) > ε, (3.51)

then

c j(x0, t0) > 0 (3.52)

for all s j ∈ clos(S).

Proof. By assumption there is an ε > 0 with ci(x0, t0) > ε for every si ∈ S. We prove
this by contradiction. To this end we assume that there is a species s j ∈ clos(S) with
c j(x0, t0) = 0. For readability we assume s j ∈ clos1(S), since from this case the proof

can easily be transferred to the cases s j ∈ closk
1
, k > 1. From s j ∈ clos1(S) it follows

that there is a reaction rk ∈ R with supp(rk) ⊆ S, that produces s j, that is, a jk = 0 and
b jk > 0 and thus n jk > 0. Due to the continuity of the involved functions, there is a
δ > 0 such that

• f+(c(x0, t)) ≡
∑

k: n jk>0 n jk · vk(c(x0, t)) > ε/2,

• f−(c(x0, t)) ≡
∑

k: n jk<0 n jk · vk(c(x0, t)) < −ε/8, and

• d j

∂2c j

∂x2
(x0, t) > −ε/8

for all t ∈ (t0 − δ, t0 + δ). Thus, contrary to the assumption, we arrive at

c j(x0, t0) = c j(x0, t0 − δ) +

∫ t0

t0−δ
f+(c(x0, t)) + f−(c(x0, t)) + d j

∂2c j

∂x2
(x0, t) dt > δ

ε

4
> 0,

(3.53)

which finishes the proof. �

Lemma 3.1.8 allows for proving our first main result about closedness with regard
to the solutions c of an RDS. For ODEs, it was already proven in Lemma 4 in [72].

Lemma 3.1.9 (Instant appearance of the closure). Given the solution c of an RDS with
an underlying reaction network (S,R) and a location x ∈ Ω the following hold:

1. For all times t > 0, the set of species φ(c(x, t)) with strictly positive concentration is
closed.

2. For sufficiently small times t > 0, the set of speciesφ(c(x, t)) with strictly positive con-
centration contains the closure of the setφ(c(x, 0)) of species with initial concentration
strictly positive, that is,

φ(c(x, t)) k clos(φ(c(x, 0))). (3.54)

Proof. 1. The closedness ofφ(c(x, t)) for any t > 0 follows directly from lemma 3.1.8.

2. Because of the continuity of c with respect to t, we know that for sufficiently
small times t > 0,

φ(c(x, t)) k φ(c(x, 0)), (3.55)
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and thus with Lemma 3.1.8 it follows that

φ(c(x, t)) k clos(φ(c(x, 0))). (3.56)

�

We learn from Lemma 3.1.9 that the immediate production of the closure of
an initially present but not closed set of species is an intrinsic phenomenon of all
solutions of any RDS. In the following we focus on the dynamics in the long-run.
We prove that a persistent subset S ∈ P(c) of species is always closed. In the next
subsection, to complement this result, we prove that the set Φ(c) of persistent species
with respect to c always fulfills the self-maintenance property of a DO.

Lemma 3.1.10 (Persistent subsets of species are closed). Given a solution c of an RDS
with the underlying reaction network (S,R), every persistent subset S ∈ P(c) of species is
closed.

Proof. We prove this by contradiction. Therefore we assume that there is a persistent
subset S ∈ P(c) of species that is not closed. From Lemma 3.1.8 it follows that for
every ε > 0 there is a δ0 > 0 such that for all concentration vectors c ∈ R

n
+ and all

δ ∈ (0, δ0), x ∈ Ω, t ≥ 0, it holds that

c(x, t) ∈ Sε ⇒ c(x, t) < Sε,δ. (3.57)

Thus the set {(x, t) ∈ Ω× (0,∞) : c(x, t) ∈ Sε,δ} is empty for all ε > 0 and all sufficiently
small δ > 0, so the frequency F(Sε,δ) is zero and S is not persistent in contradiction
to the assumptions of this lemma. �

3.1.5 DOs and persistence

In this subsection we state the second main result of this work, that is, that the set
Φ(c) of persistent species with respect to a solution c is always a DO. After having
shown the closedness of each element of P(c) in the previous subsection, it remains
to prove self-maintenance. We do this in two steps:

• First, in Lemma 3.1.11 we construct from the solution c of the RDS a total flux
v̂ ∈ R

m
≥0

with respect to c with N · v̂ ≥ 0.

• Then, in Lemma 3.1.12 we show that there is a feasible flux with respect to each
of the persistent subsets S ∈ P(c) of species and that the sum of these feasible
fluxes equals the total flux v̂ constructed in Lemma 3.1.11.

Thereafter we transfer the result to initial value problems based on ODEs. Further-
more, given an organization, we present a way to construct an RDS with a (constant
with respect to x) solution c such that the set Φ(c) of persistent species equals that
organization.

Lemma 3.1.11 (Construction of a vector proving self-maintenance). Given a solution
c of an RDS with underlying reaction network (S,R), there is a sequence (tl)

∞
l=1

of points in
time such that the total flux

v̂ ≡ lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

x∈Ω

v(c(x, t)) dx dt ∈ R
m
≥0 (3.58)
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with respect to c and (tl)
∞
l=1

fulfills

N · v̂ ≥ 0. (3.59)

Proof. Since

cΩ(t) ≡

∫

x∈Ω

c(x, t) dx (3.60)

is bounded by assumption, it has at least one accumulation point c̃ ∈ R
n
+. Thus there

is a sequence (t j)
∞
j=1

of points in time such that

lim
j→∞

cΩ(t j) = c̃ (3.61)

and so

0
(3.61)
= lim

j→∞
(cΩ(t j+1) − cΩ(t j))

(3.60)
= lim

j→∞
(

∫

x∈Ω

c(x, t j+1) dx−

∫

x∈Ω

c(x, t j) dx)

= lim
j→∞

∫

x∈Ω

c(x, t j+1) − c(x, t j) dx

= lim
j→∞

∫

x∈Ω

∫ t j+1

t j

ċ(x, t) dt dx

≥ lim
j→∞

1

t j+1 − t j

∫

x∈Ω

∫ t j+1

t j

ċ(x, t) dt dx

(2.7)
= lim

j→∞

1

t j+1 − t j

∫

x∈Ω

∫ t j+1

t j

Nv(c(x, t)) +
∂2c(x, t)

∂x2
· (d1, . . . , dn)

T dt dx

= lim
j→∞

1

t j+1 − t j

[∫

x∈Ω

∫ t j+1

t j

Nv(c(x, t)) dt dx

+

∫

x∈Ω

∫ t j+1

t j

D
∂2c(x, t)

∂x2
dt dx

]

= lim
j→∞

1

t j+1 − t j

[∫ t j+1

t j

∫

x∈Ω

Nv(c(x, t)) dt dx

+

∫ t j+1

t j

∫

x∈Ω

∂2c(x, t)

∂x2
· (d1, . . . , dn)

T dx

=0 (remark 3.1.5)

dt

]

= lim
j→∞

1

t j+1 − t j

[∫ t j+1

t j

∫

x∈Ω

Nv(c(x, t)) dt dx

]

= lim
j→∞

N ·
1

t j+1 − t j

[∫ t j+1

t j

∫

x∈Ω

v(c(x, t)) dt dx

]

= N · lim
l→∞

1

tl+1 − tl

∫ t j+1

t j

∫

x∈Ω

v(c(x, t)) dt dx

≡v̂, v̂≥0

,

where D ∈ R
n×n denotes the Fickian diffusivity matrix, which in this work is assumed
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to be a diagonal matrix containing the diffusion rates di, i = 1, . . . , n, on its diagonal.
Thus there is a subsequence (tl)

∞
l=1

of (t j)
∞
j=1

such that the total flux

v̂ ≡ lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

x∈Ω

v(c(x, t)) dt dx (3.62)

with respect to c and (tl)
∞
l=1

exists, because the flux vector function v() is by as-
sumption Lipschitz continuous on every bounded subset of R

n
+, and c is bounded

by assumption too, and thus v() is bounded for all x ∈ Ω, t ≥ 0. �

Next we prove that the vector v̂ obtained in Lemma 3.1.11 can be written as a
sum of feasible fluxes with respect to the persistent subsets of species.

Lemma 3.1.12 (Construction of a feasible flux (with respect to every persistent subset
of species) summing up to v̂). Given the solution c of an RDS with underlying reaction
network (S,R) and a vector v̂ ∈ R

m
+ constructed as in Lemma 3.1.11, then there is a feasible

flux v̂i with respect to each Si ∈ P(c), i = 1, . . . , k, such that

v̂ = lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

x∈Ω

v(c(x, t)) dt dx =
k
∑

i=1

v̂i. (3.63)

Proof. Let r j ∈ R be an arbitrarily chosen reaction, and let n(r j) be the number of
persistent subsets S ∈ P(c) of species with support(r j) ⊆ S. We can distinguish the
following two alternative cases:

• n(r j) > 0, and

• n(r j) = 0.

We will prove that

n(r j) > 0⇔ v̂ j > 0 (3.64)

by proving the following two conclusions

1. n(r j) > 0⇒ v̂ j > 0, and

2. n(r j) = 0⇒ v̂ j = 0.

Then, for each persistent subset Si ∈ P(c), i = 1, . . . , k, of species we construct the
vector v̂i by defining

v̂i
j ≡















v̂ j/n(r j), if n(r j) > 0 and supp(r j) j Si

0, otherwise
(3.65)

for all reactions r j ∈ R. Then each vector v̂i ∈ R
m
≥0

is a feasible flux with respect to the

corresponding persistent subset Si ∈ P(c), i = 1, . . . , k, of species and v̂ =
∑k

i=1 v̂i as
desired.

Now it only remains to prove the following two conclusions mentioned above:

1. n(r j) > 0⇒ v̂ j > 0.

If for a reaction r j ∈ R it holds that n(r j) > 0, then there is a persistent subset
S̃ ∈ P(c) of species with support(r j) ⊆ S̃. Thus for all sufficiently small ε > 0 it
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holds that F(S̃ε) > 0, and according to Remark 3.1.1 there is a lower boundary
L(ε) > 0 for v j such that

v̂ j
(3.62)
= lim

l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

x∈Ω

v j(c(x, t)) dt dx

≥ lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)∈S̃ǫ}

v j(c(x, t)) dt dx

Remark 3.1.1
≥ lim

l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)∈S̃ǫ}

L(ǫ) dt dx

Remark 3.1.1
≥ L(ǫ) · lim

l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)∈S̃ǫ}

dt dx

= L(ǫ) · F(S̃ǫ)

> 0, (3.66)

where (tl)
∞
l=1

is a sequence of points in time from Lemma 3.1.11.

2. n(r j) = 0⇒ v̂ j = 0.

We prove this by contradiction, that is, by showing that from v̂ j > 0 it follows
that n(r j) > 0. Thus we assume v̂ j > 0. For

K ≡ sup{v j(c(x, t)) : t ≥ 0, x ∈ Ω}, (3.67)

0 ≤ K < ∞holds. Let (tl)
∞
l=1

be the sequence of points in time from Lemma 3.1.11.
Then for all sufficiently small ε > 0, from Remark 3.1.1 it follows that there is
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an upper boundary U(ε) > 0 such that for every δ > 0,

0 < v̂ j

(3.62)
= lim

l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

x∈Ω

v j(c(x, t)) dx dt

= lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

[∫

{x∈Ω: c(x,t)∈support(r j)ε}
v j(c(x, t)) dx

+

∫

{x∈Ω: c(x,t)<support(r j)ε}
v j(c(x, t)) dx

]

dt

(3.67),Remark 3.1.1
≤ lim

l→∞

1

tl+1 − tl

[∫ tl+1

tl

∫

{x∈Ω: c(x,t)∈support(r j)ε}
K dx dt

+

∫ tl+1

tl

∫

{x∈Ω: c(x,t)<support(r j)ε}
U(ε) dx dt

]

= K · lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)∈support(r j)ε}
dx dt

+U(ε) · lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)<support(r j)ε}
dx dt

Remark 3.1.2
= K lim

l→∞

1

tl+1 − tl

∫ tl+1

tl

∑

S⊇support(r j)

∫

{x∈Ω: c(x,t)∈Sε,δ}

dx dt

+U(ε) lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)<support(r j)ε}
dx dt

= K ·
∑

S⊇support(r j)

lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)∈Sε,δ}

dx dt

+U(ε) · lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)<support(r j)ǫ}
dx dt

= K ·
∑

S⊇support(r j)

F(Sε,δ)

+U(ε) · lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)<support(r j)ε}
dx dt.(3.68)

By letting ε→ 0 we get

0 < lim
ε→0

[

K ·
∑

S⊇support(r j)

F(Sε,δ)

+U(ǫ) · lim
l→∞

1

tl+1 − tl

∫ tl+1

tl

∫

{x∈Ω: c(x,t)<support(r j)ε}
dx dt

]

Remark 3.1.1
= lim

ǫ→0

[

K ·
∑

S⊇support(r j)

F(Sε,δ)

]

= K ·
∑

S⊇support(r j)

lim
ǫ→0

F(Sε,δ) (3.69)



3.1. Linking network structure and dynamics to describe the set of persistent
species in reaction diffusion systems

33

for every δ > 0. Thus from Definition 3.1.3 it follows that at least one subset S
of species with S ⊇ support(r j) is persistent with respect to c, that is, S ∈ P(c).
This means n(r j) ≥ 1 > 0 in contradiction to the assumption.

This completes the proof of Lemma 3.1.12. �

Note that in Equation 3.65 we did not construct the vectors v̂i such that they neces-
sarily represent the frequency of their appearance in the solution c of the RDS. Rather
we only considered whether or not their components are zero. Putting Lemma 3.1.10,
Lemma 3.1.11, and Lemma 3.1.12 together, we are able to state the second main result
of this paper.

Theorem 3.1.2 (The set of persistent species is a DO). Given the solution c of an RDS
with an underlying reaction network, the set Φ(c) of persistent species is a DO.

Remark 3.1.6 (Unbounded solutions). Note that this work does not examine unbounded
solutions c to RDSs. A simple example might shed some light onto the consequences of this.
Let (S,R) ≡ ({s1}, {r1 : ∅ → s1}) be a reaction network. It exhibits only one DO, that is, the
organization O ≡ {s1}. For every solution c 0f any RDS with the same underlying reaction
network (S,R) it holds that limt→∞ c1(x, t) = ∞ for all x ∈ Ω. Even though this long-term
behavior seems to be captured by the organization O, strictly speaking, the theory developed
in this work does not apply to this case, and even the usage of the term "persistence" as
defined here is not allowed in this case unless a thorough study for the case of unbounded
solutions is made.

The next corollary is some kind of counterpart to Theorem 3.1.2.

Corollary 3.1.5 (Equivalence of organizations and persistent subsets). Given a reaction
network (S,R) and a subset S ⊆ S of species, then the following two statements are
equivalent:

1. There is an RDS with an underlying reaction network (S,R) with a constant solution
c(x, t) = c ∈ R

n
+ for all x ∈ Ω, t ≥ 0, and P(c) = {S}.

2. S is an organization and there is a feasible flux v̂ with respect to S such that Nv̂ = 0.

Proof. We prove the two directions of the equivalence separately.

• 1.⇒ 2.
From statement 1 it follows that by Theorem 3.1.2 that S is a DO. Since S is
distributed to only one subset of species, that is, to S itself, from the second
part of Lemma 3.1.4 it follows that S is an organization. Since statement 1
provides a fixed-point solution, for every sequence of points in time the total
flux v̂ constructed as in Equation 3.62 fulfills Nv̂ = 0.

• 2.⇒ 1.
Let S be an organization with v̂ ∈ R

m
+ a feasible flux with respect to S fulfilling

N · v̂ = 0. We construct an RDS with the underlying reaction network (S,R)
such that for its solution c it holds that P(c) = {S}, that is, S is the only persistent
subset with respect to c. We set the diffusion rates of all species to zero and
choose the domain Ω = [0, 1] ⊆ R. We set the initial conditions

c0
i (x) =















1, iff si ∈ S,

0, otherwise.
(3.70)
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for all species si ∈ S, i = 1, . . . , n, and all x ∈ Ω. For the flux vector function v()
we choose mass-action kinetics. For all reactions r j ∈ R, j = 1, . . . , m, we set
the reaction constants

k j ≡ v̂ j. (3.71)

Then for all times t ≥ 0 and all x ∈ Ω,

v(c(x, t)) = v̂ (3.72)

holds, and thus

ċ(x, t) = Nv̂ = 0. (3.73)

�

It might be possible (but it is more difficult) to prove that Corollary 3.1.5 holds
also for DOs and not just for organizations. There are dynamical systems with a
spatial domain for which the proof of Corollary 3.1.5 for DOs should be easier, for
example, the patch models defined in [2], which are systems of ODEs with a discrete
spatial domain. Given a DO distributed to subsets Si, i = 1, . . . , k, of species, such a
system could be designed containing k patches such that in each patch exactly one
of the Si, i = 1, . . . , k, is present as a fixed point, and the exchange of species between
different patches is adjusted properly.

As a special case, Theorem 3.1.2 is applicable to ODE systems which do not have
any space dimension and thus no diffusion.

Remark 3.1.7 (ODE systems as a special case). Given an initial value problem

ċ(t) = N · v(c(t)), c(0) = c0 (3.74)

with an underlying reaction network as outlined in the introduction, one can transfer the
whole of this work to that problem by neglecting all aspects concerning the space variable x,
for example, integration with respect to x.

3.1.6 Analysis of a DO lattices

In this subsection we bring together the two main results of this work, Theorem 3.1.1
(the set of DOs of a given reaction network forms a lattice) and Theorem 3.1.2 (the
set of persistent species with respect to every bounded solution being a DO). That is,
we show how to interpret a single DO lattice with regard to persistence. As for the
Hasse diagram of organizations, analyzing a single lattice of DOs of a given reaction
network can reveal much information about the behavior of the solutions of RDSs
with that underlying reaction network.

For example, the smallest DO of a lattice, which following Lemma 3.1.5 is a
unique organization, tells us which species persist in every solution. Furthermore,
if a subset of species does not appear in the lattice of DOs, following Theorem 3.1.2
it cannot appear as a set of persistent species with respect to any solution, since if it
could, it would be a DO. So it is easy to check from the lattice of DOs whether, for
example, the whole set of species S can persist in any solution, because if so, then it
appears as a DO at the top of the lattice.

Given two DOs D1 and D2, it is interesting, for example for interpretation of
ecological systems, to study the DOs that contain both these DOs. Doing so reveals,
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under which circumstances both DOs can coexist. The question of whether or not
D1∪D2 is an organization tells us something about the possible modes of coexistence
of D1 and D2. If D1 ∪ D2 is an organization, all species can persist when mixed
together. If not, they can only coexist when separated properly. Also it is interesting
to analyze those DOs that contain more species than D1 ∪D2, because these species
allow for the coexistence of D1 and D2 distributed either to different subsets of species
or to the same.

Now, instead of subsets of species, let us consider a single species. If a species
does not appear in any of the DOs of a lattice, it will not persist with respect to any
solution of any RDS with the underlying reaction network, which the lattice of DOs
was derived from. On the other hand, if a species appears in all DOs of a lattice,
then it will persist with respect to every solution of every RDS with the respective
reaction network.

Using the lattice of DOs one can distinguish different degrees of persistence of
a subset or a single species with regard to the reaction network (not with respect to
a single solution of an RDS). In this sense, for example, a species is more persistent
the further down it appears in the lattice and thus is an element of more DOs. Of
all DOs that contain a given species, the one occupying the lowest position in the
lattice determines which of the considered species definitely needs to persist. By
discussing our third example model in Section 3.1.10 below we will learn more about
such dependencies of species with regard to their persistence.

Contrary to dependency, if two species are elements of two different DOs that
are not linked by a vertical chain of interlaced DOs in the lattice, then these species
exhibit some sort of independence with regard to their persistence. Generally, the
more vertical levels a lattice pertains to between its lowest and its highest DO, the
more complex it is with regard to persistence.

For a solution c of an RDS, the dynamical changes of the set of species existent at
any time t can be visualized within the lattice by arrows between different subsets
of species indicating, which species are newly created (according to Lemma 3.1.9)
or which go extinct due to missing self-maintenance. In Figure 3.6 we have exem-
plified this. Note that, as in Figure 3.6, it might be advantageous to augment the
lattice of DOs by further sets of relevance, for example, important transient sets of
species, which following Lemma 3.1.9 are initial sets of species and their closures.
In Section 3.3 we provide an example simulation for an Influenza A virus infection
dynamics model from [37] where we juxtaposed the diagram with the courses of
the concentrations of the species from an ODE simulation (Figure 3.27) and the re-
spective movement in the Hasse diagram of organizations of the underlying reaction
network (Figure 3.26b).

3.1.7 Comparisons and hierarchies of several models using their signature

Above we have shown that computing the lattice of DOs allows for some sort of over-
all steady-state analysis of the whole set of possible solutions on the level of species.
In Section 3.3 we use the lattices of organizations of different in-host Influenza A
virus infection dynamics models based on ODEs to compare these models and to put
them into a hierarchy revealing different degrees of complexity and different types
of overall dynamic behavior.

In Section 3.4 we compute the lattices of DOs of different SARS-CoV-2 infection
dynamics models including not only in-host but also host-to-host models and one
mixed model. Furthermore we did not restrict that work to ODE models but included
PDE models as well proving the universality of our approach that is due to the fact



36 Chapter 3. Results

r1 : s1 → s2

r2 : s1 + s2 → 2s1

r3 : s2 + s3 → s2 + 2s3

r4 : s3 → ∅

(a) Reactions

s1s2|s2s3

s1s2s3

s2s3{s1s3}s1s2

s2{s1} {s3}

∅

(b) Distributed organizations

Figure 3.6: [76] An example reaction network (left) with the lattice
of all subsets of species (right). Those subsets in the boxes are DOs.
From each subset that is not a DO, a solid arrow points towards the
DO that will be approached initially by any solution starting with
that subset of species. More precisely, {s3} goes extinct since it is not
self-maintaining, and both {s1} and {s1, s3} will produce their closures
{s1, s2} (resp., {s1, s2, s2}). Further possible movements from the DOs
downward leading to one of their subsets are depicted by dotted

arrows.

that it relies solely on the underlying reaction network of the models. We found
DOs that were not organizations proving the purpose of this work from another
perspective. Besides some similarities, the DO lattices showed significant differences
which resulted in contradictory conclusions about their long-term behavior. Even
though those models are mostly intended to capture only the quantitative aspect
of a special subset of solutions, such conflicts regarding their overall qualitative
dynamics can be interpreted as showing a weak point in such modeling. Finally, in
Section 3.4, by using the lattice of DOs we also put the Influenza A and SARS-CoV-2
infection dynamics models into one common hierarchy, revealing not only some of
their similarities but also their differences, for example, the lower complexity of the
SARS-CoV-2 infection dynamics models.

3.1.8 Example I

Figure 3.7a exhibits the PDEs of an RDS that pertains to a solution for which a
simulation result is shown in Figure 3.8. In Figure 3.7b the reactions of the underlying
reaction network are shown. Note that these reactions can be derived easily from
the PDEs by writing the part related to the reactions in the form N · v(c) and obeying
the fact that v is a flux vector function. In Section 2.3 an example of this procedure is
described. Figure 3.7c shows the lattice of DOs of the reaction network of Example
I. Now, we want to retrace the simulation results illustrated in Figure 3.8. Since the
species s2 and s3 do not diffuse we can take a fixed location x ∈ Ω and analyze for it
the ODE system

∂c2(t)

∂t
= −c2(t)c3(t) (3.75)

∂c3(t)

∂t
= −c2(t)c3(t) (3.76)

governing the concentrations c2(t) = c2(x, t) (resp., c3(t) = c3(x, t)) of s2 and s3 at
this location x. Then one of the following three cases occurs.
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∂c1

∂t
= c1c2 − c2

1c3 + d1
∂2c1

∂x2

∂c2

∂t
= −c2c3

∂c3

∂t
= −c2c3

(a) PDEs

r1 : s1 + s2 → 2s1 + s2

r2 : 2s1 + s3 → s3

r3 : s2 + s3 → ∅

(b) Reactions

s1s2|s1|s1s3

s1s2|s1s3

s2|s3s1s2

s3s2s1

∅

s1|s3

s1

(c) Distributed organizations

Figure 3.7: [76] PDEs, reactions and lattice of DOs of Example I. Un-
shaded boxes indicate organizations. Shaded boxes indicate DOs that
are not organizations. Note that the Hasse diagram of organizations
in this case is not a lattice. From Corollary 3.1.3 we know that there
must be at least one DO (which is not an organization) containing the
union of {s1, s2}, {s2} and {s3}. For this example we have three DOs that
are not organizations, one of which contains all species. For that DO
we depicted two different distributions one upon the other. The lower
one represents to the two subsets {s1, s2} and {s1, s3} which appear as
persistent subsets of species in the simulation shown in Figure 3.8.
There are feasible fluxes v̂1 = (2, 0, 0)T for {s1, s2} and v̂2 = (0, 1, 0)T

for {s1, s3} for example proving the self-maintenance for the DOS. It is
also possible to calculate a total flux from the simulation numerically.
The horizontal arrow symbolizes the necessary flow of the species s1

from the subset {s1, s2}, where it is overproduced, to the subset {s1, s3},
where it is reduced. That flow is enabled by diffusion which does not

have any preferred direction.

1. Case I: If c2(0) < c3(0), then c2 will tend towards zero and c3(t) towards the
strictly positive value c3(0) − c2(0) in the long-run, with both converging from
above.

2. Case II: If, conversely, c2(0) > c3(0), then c3(t) tends towards zero and c2(t)
towards the strictly positive value c2(0) − c3(0).

3. Case III: If c0
2
= c0

3
, then c2 and c3 equally tend towards zero in the long-run.

The previously analyzed dynamics of the concentrations of s2 and s3 is independent
of that of the concentration of c1. With the initial conditions used in this example (see
the caption of Figure 3.8) the system finally reaches a steady state with

• species s2 only existing in the interval [−2; 0) ⊆ Ω,

• species s3 only existing in the interval (0; 2] ⊆ Ω, and

• species s1 existing in the whole domain, keeping the balance between its over-
production catalyzed by s2 and its consumption catalyzed by s3.

Thus the observed coexistence of all three species, which is impossible at any single
location, is reached by the spatial separation of the two persistent subsets {s1, s2} and
{s1, s3}, which keep the overall concentration of s1 in balance by their complementary
action on it. Note that even though the subset {s1} exists in the long-run at the singular
location x = 0, it is not persistent with regard to Definition 3.1.3 since the frequency
of occurrence of its respective (ε, δ)-neighborhoods tends towards zero as δ → 0.
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In the next subsection we present a simulation where the persistent subsets are not
separated spatially but with respect to time, that is, they disappear and reappear
forever.

In Section 3.2 we will modify Example I to show how knowledge about the
diffusion of the species and their boundary conditions can be used to modify the
underlying reaction network such that all persistent subsets of species are captured
by DOs.

3.1.9 Example II

Our second example is adapted from an initial value problem based on a ODE system
from Neumann and Schuster [69] which we extended towards an RDS by adding a
spatial dimension x and using constant concentration values with regard to x for each
species. It resembles many situations from game theory (for example, the rock-paper-
scissors game or the prisoner’s dilemma with three participants) and biology (for
example, the coexistence of different strains of bacteria, such as E. coli, competing
for nutrition, intoxicating, invading, and resisting one another). The underlying
reaction network of Example II has three species s1, s2, and s3 and 12 reactions:

r1 : s1 → 2s1, r5 : s2 → 2s2, r9 : s3 → 2s3,

r2 : 2s1 → s1, r6 : 2s2 → s2, r10 : 2s3 → s3,

r3 : s1 + s2 → s2, r7 : s2 + s1 → s1, r11 : s3 + s1 → s1,

r4 : s1 + s3 → s3, r8 : s2 + s3 → s3, r12 : s3 + s2 → s2. (3.77)

Each species self-replicates (r1, r5, r9). So every subset of species is an organization.
Every species decays spontaneously (r2, r6, r10). Furthermore each species can reduce
any other (r3, r4, r7, r8, r11, r12). The dynamics of the species’ concentration values in
the domain Ω = [0; 2] is described by the PDEs

ċ1 = αc1 − κ1c2
1 − µc1c2 − µc1c3 + d1

∂2c1

∂x2
,

ċ2 = βc2 − κ2c2
2 − (µ+ γ)c2c1 − µc2c3 + d2

∂2c2

∂x2
,

ċ3 = εc3 − κ3c2
3 − µc3c1 − µc3c2 + d3

∂2c3

∂x2
. (3.78)

Figure 3.9 shows the results of a simulation for the reaction constantsα = 1.156, β = 2,
ǫ = 1, κ1 = 2, κ2 = 1.75, κ3 = 0.844, and µ = 1, γ = 4.6, with the diffusion rates
d1 = d3 = 0.1 and d2 = 0.2 and the initial conditions c1(0, x) = 0.1, c2(0, x) = 0.64,
c3(0, x) = 0.31, x ∈ Ω. Figure 3.10 shows the lattice of all subsets of species of
the reaction network. All of them are organizations. From [69] we know that the
instances of the subsets of species with exactly one species are fixed points and thus
their retention time gets longer and longer towards infinity with every passage of
the trajectory. Thus they are persistent of course. The retention times of the subsets
of species containing exactly two species converge towards strictly positive but finite
values and so are persistent too. Nevertheless, the set S containing all species is not
persistent. Thus for this example all species are persistent and the limit superior of
them is strictly positive, but the limit inferior equals zero. This is consistent with
lemma 3.1.3 in the supplementary material, which states that a strictly positive limit
inferior of the concentration values of a species is sufficient for its persistence and
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this, in turn, is sufficient for a strictly positive limit superior of the concentration
values.

3.1.10 Example III

Here we augment Example II by adding three further species s4, s5 and s6. Each of
these species is involved in two reactions, an outflow reaction reducing the species
and a reaction producing the species out of a subset of the set {s1, s2, s3},

r13 : s4
k13
−−→ ∅,

r14 : s1
k14
−−→ s1 + s4

r15 : s5
k15
−−→ ∅,

r16 : s1 + s2
k16
−−→ s1 + s2 + s5,

r17 : s6
k17
−−→ ∅,

r18 : s1 + s2 + s3
k18
−−→ s1 + s2 + s3 + s6.

None of these reactions affects the concentrations of any of the species s1, s2, and
s3. Also there is no mutual influence among s4, s5 and s6. Contrary to Example II,
the lattice of DOs does not contain all subsets of species since some of them are not
closed, for example, the subset {s1}. Other subsets are no longer organizations but
are still DOs, for example, {s1, s2}.

The dynamics of the concentration values of s4 to s6 is determined by the PDEs

ċ4 = k14c1 − k13c4 + d4
∂2c4

∂x2
,

ċ5 = k16c1c2 − k15c5 + d5
∂2c5

∂x2
.

ċ6 = k18c1c2c3 − k17c6 + d5
∂2c6

∂x2
. (3.79)

In this example we choose for s1 to s3 the same PDEs, reaction constants and initial
conditions as in Example II. So we get the same simulation results (see Figure 3.9),
that is, a periodic alternate appearing, disappearing, and reappearing of the species
s1 – s3, where each is persistent even though together they do not form a persistent
subset.

With the reaction constants k13 = . . . = k18 = 0.05, the homogeneous initial
conditions c4(x, 0) = c5(x, 0) = c6(x, 0) = 0.1, x ∈ Ω, and some arbitrary diffusion
constant,s we arrive at the simulation result for c4 – c6 shown in Figure 3.11. The
courses of the concentrations c1 – c3 are the same as in Example II. All species s4

– s6 are reduced by outflow reactions (r13, r15, r17). For s4 and s5 this reduction is
compensated by the reactions r14 (resp., r16) in the sense that s4 and s5 are persistent.
For s6 the reduction by its outflow reaction r17 cannot be compensated by reaction
r18, that is, s6 is not persistent but goes extinct in the long-run. The reason for this
is that, contrary to r14 and r16, the support of r18 is not a subset of any persistent
subset of species. Figure 3.12 shows for Example II and Example III the sequences of
persistent subsets of species traversed repeatedly in the long-run.
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Figure 3.8: [76] Simulation result of Example I (see PDEs in Fig-
ure 3.7a) performed with MATLAB R2019a function pdepe. Note that
we applied a logarithmic scale for the diagrams the upper left and
in the lower right. The initial conditions are as follows: c0

1
(x) = 1

for x ∈ Ω; c0
2
(x) = 0.3x4 for x < 0 and c0

2
(x) = 0 for x ≥ 0; and

c0
3
(x) = 0.3x4 for x ≥ 0 and c0

3
(x) = 0 for x < 0. The diffusion rates

are d1 = 5, d2 = d3 = 0, that is, only species s1 diffuses. By the
initial conditions, the domain Ω = [−2; 2] is divided into left and
right regions which initially overlap, but the overlap is deleted by the
reaction between the two competing species s2 and s3 in distinct parts
of the domain. Thus, as time approaches infinity, only the species s1

mediates between the left and right parts of the domain, where each
of the two persistent subsets of species persists. In the left part [−2; 0)
the species s1 is overproduced whereas in the right part (0; 2] it is con-
sumed. Altogether diffusion is responsible for the shift of s1 from the
left to the right part of the domain thus maintains the balance of the
total concentration of s1. Only species s1 as an intermediary exists in
both parts of the domain. The simulation of the solution c of this RDS
shows that all three species are persistent and there are two persistent
subsets {s1, s2} and {s1, s3}. From the results of this paper it follows
that the set Φ(c) = {s1, s2, s3} of persistent species is a DO an,d we find
from the simulation that it is distributed spatially to the two subsets

{s1, s2} and {s1, s3}.
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Figure 3.9: [76] Simulation result of Example II (see PDEs (3.78))
performed with MATLAB R2019a function pdepe. The periodicity
(with increasing period) of the dynamic behavior is visible. From
the lower right diagram it can be seen how the concentration values
periodically approach different subsets of species depicted at the top.
Those are the persistent subsets of species, that is, {s1}, {s1, s3}, {s3},
{s3, s2}, {s2}, and {s2, s1}. The periodic behavior continues infinitely

beyond the time span captured in the diagrams.

s1s2s3

s3s2s2s1s1s3

s2s3s1

∅

Figure 3.10: [76] All subsets of species of the reaction network of
Example II are organizations. The arrows indicate the movement that

is approached by the trajectory in the long-run.
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Figure 3.11: [76] Simulation result for species s4, s5, and s6 of Example
III (see PDEs (3.79)) performed with MATLAB R2019a function pdepe.
s4 and s5 are persistent, whereas s6 does not persist. The reaction
constant values are k13 = . . . = k18 = 0.05, and the homogeneous

initial conditions are c4(x, 0) = c5(x, 0) = c6(x, 0) = 0.1, x ∈ Ω.

Example II

(s1s2s3) s1 s1s3 s3 s3s2 s2 s2s1

Example III

(s1s2s3s4s5s6) s1s4s5 s1 s1s3s4 s3s4 s3 s3s2 s2 s2s1s4s5

Figure 3.12: [76] The sequences of persistent subsets of species in
the order they are periodically approached in the long-run. Shown
in brackets are subsets of species referring to the initial conditions.
Printed in bold are subsets of species with retention times approaching
infinity as t → ∞. The retention times of the other subsets converge
towards finite values. Dotted lines indicate how the infinitely growing
time periods of Example II each split into two time periods in Example
III. Note that for Example III the transition from {s1, s4, s5} to {s1}might
pass either the subset {s1, s4} or {s1, s5} depending on which of the
species s4 and s5 vanishes more rapidly. Note that, consistent with the
results of this paper, for both examples either of the persistent subsets
of species of the illustrated sequences is closed and, together as DOs,

they are self-maintaining.
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3.2 Organizations in Reaction-Diffusion Systems: Effects of

Diffusion and Boundary Conditions

We exemplify how diffusion and especially boundary conditions (BCs) influence the
long-term behaviour of reaction-diffusion systems and how the reaction network
can be changed accordingly to still exhibit the DOs representing all the possibly
persistent sets of species. In Section 3.1 we only applied homogeneous Neumann
BCs. Now we incorporate further types of BCs. See Figure 3.13 for an overview of
some frequently used BCs, namely Neumann BCs and Dirichlet BCs.

0

c

x
2

c(t,2)

c(t,x)

Two types of BCs

DirichletNeumann

left border right border

interior of

Figure 3.13: [74] Illustration of the two main types of BCs for an
example domain Ω = [0; 2]: Neumann BC shown at the left boundary

x = 0 and Dirichlet BC at the right boundary x = 2.

For Neumann BCs the derivative
∂c

∂ν
(x, t) of the concentration with respect to

the outward normal vector ν is fixed and for Dirichlet BCs the concentration values
c(x, t) are fixed for every x ∈ ∂Ω, t ≥ 0.

The following three Examples Ia, Ib, and Ic are modifications of Example I from
Section 3.1.8. See Figure 3.14 to recapitulate the reactions and the lattice of DOs of
Example I.

3.2.1 Example Ia

Here we modify Example I by deleting species s2 completely from the initial state
and compensate the lost production of s1 by changing its BC at the left border of
the domain to positive Dirichlet BC. See Figure 3.15 for simulation results. The
simulations reveal the DO {s1|s1, s3} as the set of persistent species on hand. The DO
{s1|s1, s3} was not a DO of the reaction network from Example I. But the modified
reaction network, which is augmented by an inflow reaction ∅ → s1, exhibits this DO
(see Figure 3.16).
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r1 : s1 + s2 → 2s1 + s2

r2 : 2s1 + s3 → s3

r3 : s2 + s3 → ∅

(a) Reactions

s1s2|s1|s1s3

s1s2|s1s3

s2|s3s1s2

s3s2s1

∅

s1|s3

s1

(b) Distributed organizations

Figure 3.14: [76] Reactions and lattice of DOs of Example I. Subfigure
(B): Unshaded boxes indicate organizations. Shaded boxes indicate
DOs that are not organizations. The horizontal arrow on the top
symbolizes the flow of the species s1 from the subset {s1, s2}, where it
is overproduced, to the subset {s1, s3}, where it is reduced. That flow

is enabled by diffusion.

3.2.2 Example Ib

Here we modify Example I by allowing all species to diffuse and applying positive
Dirichlet BC to s2 at the left border of the domain and to s3 at the right border of
the domain. See Figure 3.17 for simulation results and Figure 3.18 for the modified
reaction network and the respective lattice of DOs.

3.2.3 Example Ic

Here we modify Example I such that all species diffuse, s2 is deleted from the initial
state completely, and a positive Dirichlet BC for s1 compensates for the missing
replication of s1 by s2. See Figure 3.19 for simulation results. The modified reaction
network as well as the according lattice of DOs for Example Ic is shown in Figure 3.20.

3.2.4 Summary

In this section we have exemplified how the theory about DOs from Section 3.1 can
be extended towards incorporating different boundary conditions. When ignoring
BCs or applying homogeneous Neumann BCs solely, the four Examples I, Ia, Ib and
Ic all have the same underlying reaction network and thus the same lattice of DOs,
namely the one from Example I (see Figure 3.14a). But since the reaction network
from Example I does not contain all the different sets of persistent species for the
Examples Ia, Ib, and Ic, it is clear, that it is not appropriate to use it to study persistence
when different BCs are applied. Nevertheless, for each of the three Examples Ia, Ib
and Ic we have shown, that the reaction network can be modified such that it exhibits
the right DOs, that is, all the possibly persistent subsets of species. The modifications
consisted in adding new inflow reactions to the reaction networks.

We expect that finding appropriate modifications of the reaction network is not
so straightforward and unambiguous for all BC as it might seem. Especially when
having non-diffusing species it could be helpful to include "virtual" species to incor-
porate BCs. Such species do not change their own concentration values. But they
represent compartments of the domain where the BCs influence the concentrations of
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Figure 3.15: Simulation result of Example Ia (see PDEs (3.78) from
Example I) performed with Matlab R2019a method ’pdepe’. Com-
pared to Example I we made three changes: First, we raised the initial
concentration of species s1 from 1 to 100, that is, c1(x, 0) = 100, x ∈ Ω.
Second, we applied positive Dirichlet BCs to s1 at the left border, that
is, c1(−2, t) = 100, t ≥ 0. Third, we deleted s2 from the initial state,
that is, c2(x, 0) = 0, x ∈ Ω. Since s2 is not present at any point of the
domain for all times, s1 can not be produced with the help of s2 any-
more. But we see that this is compensated by the positive Dirichlet BC
of s1 resulting in almost the same concentration of s1 in the long-run
as it was the case for Example I in Section 3.1.8. As the set of persistent
species we find {s1|s1, s3} in this simulation, which is a DO of the DO
lattice derived from the reaction network of this example, which in
turn was modified appropriately to incorporate the positive Dirichlet
BC for s1 (see Figure 3.16). Through diffusion the species s1 is trans-
ferred from the left border of the domain, where it is produced, to the
right half of the domain, where it is consumed to due its interaction

with s3.

the "non-virtual" species. And via "virtual" reactions those "virtual" species influence
the "non-virtual" species according to the BCs at hand. A systematic analysis of this
topic is still pending.
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r1 : s1 + s2 → 2s1 + s2

r2 : 2s1 + s3 → s3

r3 : s2 + s3 → ∅

r4 : ∅ → s1

(a) Reactions

s1s2|s1|s1s3

s1s2|s1s3

s1|s1s3

s1s3
s1s2

s1

s1

(b) Distributed organizations

Figure 3.16: Modified reaction network (r4 is added to incorporate the
positive Dirichlet BC for s1) and lattice of DOs of Example Ia. Those
boxes with gray background mark DOs that are not organizations.
The set of persistent species of the simulation of Example Ia is {s1|s1s3},
which is marked by an ellipse on the right side of the lattice of DOs.
The set {s1s3}was not a DO for Example I. Its appearance is due to the
changed BC of the species s1. Note that we did not illustrate all of the
possible distributions of the DOs but only those we are interested in
for now. For example we did not visualize {s1|s2} in the lattice of DOs.

Figure 3.17: Simulation result of Example Ib (see PDEs (3.78) from Ex-
ample I) performed with Matlab R2019a method ’pdepe’. Compared
to Example I from Section 3.1.8 we made the following changes: First,
as for Example Ia, we raised the initial concentration of species s1 from
1 to 100, that is, c1(x, 0) = 100, x ∈ Ω. Second, we applied positive
Dirichlet BCs to s2 at the left border, that is, c2(−2, t) = 4.8, t ≥ 0, and
to s3 at the right border, that is, c3(2, t) = 4.8, t ≥ 0. Third, we applied
positive diffusion to all species, that is, d1 = d2 = d3 = 5. The set
of persistent species contains all three species. It is an organization
of the modified reaction network shown in Figure 3.18. The mutual
destruction of the diffusing species s2 and s3 is compensated by their
inflows due to their positive Dirichlet BCs. Due to the diffusion there

is not any distribution of the species.
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r1 : s1 + s2 → 2s1 + s2

r2 : 2s1 + s3 → s3

r3 : s2 + s3 → ∅

r5 : ∅ → s2

r6 : ∅ → s3

(a) Reactions

s1s2s3

s2s3

(b) Distributed organizations

Figure 3.18: Modified reaction network (r5 and r6 are added to in-
corporate the positive Dirichlet BC for s2 resp. s3) and lattice of DOs
of Example Ib. Note, that all depicted DOs are organizations here.
Marked by an ellipse: the set {s1, s2, s3} of persistent species exhibited
by the simulations of Example Ib. This set is an organization of the
modified reaction network, but for the reaction network of Example I

it existed only as a DO.

Figure 3.19: Simulation result of Example Ic (see PDEs (3.78)) per-
formed with Matlab R2019a method ’pdepe’. Compared to Example
I in Section 3.1.8 we only made the following changes: First, as in
Example Ia and Ib, we raised the initial concentration of species s1

from 1 to 100, that is, c1(x, 0) = 100, x ∈ Ω. Second, as in Example
Ib, all species diffuse, that is, d1 = d2 = d3 = 5. Third, as in Example
Ia, we deleted s2 from the initial state, that is, c2(x, 0) = 0, x ∈ Ω.
Fourth, as in Example Ia, we applied positive Dirichlet BC to s1 at the
left border, that is, c1(−2, t) = 100, t ≥ 0. This compensates for the
missing replication of s1 catalyzed by s2. The set of persistent species

is the organization {s1, s3}.
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r1 : s1 + s2 → 2s1 + s2

r2 : 2s1 + s3 → s3

r3 : s2 + s3 → ∅

r4 : ∅ → s1

(a) Reactions

s1s2|s1|s1s3

s1s2|s1s3

s1|s1s3

s1s3
s1s2

s1

s1

(b) Distributed organizations

Figure 3.20: Modified reaction network (r4 is added to incorporate the
positive Dirichlet BC for s1) and lattice of DOs of Example Ic. Boxes
with white background mark DOs which exist as organizations too.
Those boxes with gray background mark DOs that are not organiza-
tions. Since the reaction network equals that from Example Ia the
lattices of DOs is the same. But here the simulation results exhibited
the organization {s1, s3} as the set of persistent species (marked by an
ellipse) and not {s1|s1, s3} which was the set of persistent species in

Example Ia.
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3.3 Structure and Hierarchy of Influenza A Virus Infection

Models

In the literature, there exist several mathematical models of IAV dynamics that are
derived from experimental data, reviewed in Refs. [84, 9, 21, 11]. These models differ
in their complexity, e.g., the number of reactions and the number of species, depend-
ing on the available experimental data used for parameter fitting and questions to
be answered. For example, models can include eclipse phases, an innate immune
response, or an adaptive immune response. We now present the full analysis of
twelve influenza models of IAV dynamics, with up to 15 variables (species) and 45
reactions (cf. Table 3.1 for an overview at the end). Note that we refer to a model by
the first author’s name of the respective publication. Furthermore, note that for our
analysis we abstract from kinetic details, that is, the organizations are independent
of particular settings of parameter values.

Models

To illustrate our method, we follow a basic ODE model of influenza dynamics,
namely the target cell limited model by Baccam et al. [5], called Baccam Model in
the following. The Baccam Model is based on in vivo experimental data and contains
three variables: the number of susceptible and uninfected target (epithelial) cells
T, the number of infected cells I, and the number of infectious-viral titer V. The
dynamical behavior of the variables is given by the ODEs shown in Figure 3.21a.
That is, target cells become infected and thus converted to infected cells at a rate
βTV, infected cells die spontaneously at rate δI, virus proliferates at a rate pI and dies
at a rate cV. The parameters β, δ, p and c are, as usual, positive real numbers (cf. [5]
for actual values).

Ṫ = −βTV

İ = βTV− δI

V̇ = pI− cV

(a) ODEs model

R1 : T + V→ I + V

R2 : I→ ∅

R3 : I→ I + V

R4 : V→ ∅

(b) Reaction network (c) Network picture

OBa1
2

= {T}

OBa1
1

= {}

(d) Organizations

Figure 3.21: [75] The Baccam Model [5] with 3 variables: uninfected
(susceptible) target cells (T), infected cells (I) and infectious-viral titer

(V).

The models by Miao et al. [61] are designed to fit experimental in vivo data from
mice [21, 11]. The first one ([61], Equation (1)) depends on measured time-series.
The second one ([61], Equation (2)) is a simplified version of the first one, neglecting
the terms depending on those time-series and still leading to a good fit within the
first 5 days after infection [61]. Thus, we analyze this second model (Miao Model).

Compared to the basic Baccam Model, the Miao Model (Figure 3.22a) has the
same three variables (named differently) and one additional reaction, EP → 2EP.
This reaction represents the self-replication of target cells EP taking place at a rate
ρEEP. The full set of reactions can be found in the Appendix (Figure A.2).

In the lattice of organizations (Figure 3.22b) a new "full" organization OM
3

appears,

which contains all three species. Thus organization OM
3

reflects the slight difference
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between the two models: in the Baccam Model uninfected target cells T are only the
susceptible ones and can not increase in number, but in the Miao Model uninfected
cells EP are reproduced repeatedly by the organism. Thus, in the Baccam Model
infection is limited inherently by the limited number of uninfected target cells, while
in the Miao Model the limitation of an infection in time and number of infected cells
and viruses depends on other mechanisms.

ĖP = ρEEP − βαEPV

Ė∗
P
= βαEPV− δE∗E

∗
P

V̇ = παE∗P − cVV

(a) ODE model

OM
3
= {all species} = {EP, E∗

P
, V}

OM
2
= {EP}

OM
1
= {}

(b) Diagram of organizations

Figure 3.22: [75] The Miao Model [61] with 4 variables: uninfected
target cells (EP), productively infected cells (E∗

P
) and free infectious

influenza viruses (V).

The Baccam II Model [5, 86] contains one more species than the Baccam Model
presented in the methods section above. That is, there are now two types of infected
cells: those which do not yet produce viruses I1 and those which actively produce
viruses I2. In addition, there is only one new reaction, which transforms infected
cells of type I1 into type I2 at rate kI1 (Figure 3.23a). But the lattice of organizations
remains the same when compared with the basic Baccam Model [5].

Ṫ = −βTV

İ1 = βTV− kI1

İ2 = kI1 − δI2

V̇ = pI2 − cV

(a) ODE model

OBa2
2

= {T}

OBa2
1

= {}

(b) Lattice of organizations

Figure 3.23: [75] The Baccam II Model [5] with delayed virus produc-
tion and 4 variables: uninfected (susceptible) target cells (T), infected
cells not yet producing virus (I1), infected cells actively producing

virus (I2) and infectious-viral titer (V).

The Pawelek Model [70] contains 11 parameters and was designed to fit in vivo
experimental data of horses [21, 11]. The model has 5 variables and 9 reactions. Like
the basic Baccam Model it contains uninfected target cells (T), infected cells (I), and
viruses (V). Furthermore there are two new species: interferon (F) and uninfected
cells that are refractory to infections (R), because of the antiviral effect induced by
interferon.

Investigating the reaction network (Figure A.4 in the Appendix) derived from the
differential equations (Figure 3.24a) we can see that like in the basic Baccam Model
self-replication of uninfected cells T is missing. But due to the two new species R and
F we have five new reactions, which are neither included in the Baccam Model nor
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in the Miao Model. One of these five reactions is the spontaneous decay of interferon
F at a rate dF. The other four new reactions describe interactions between different
species:

• The rate term φFT represents the transformation of uninfected target cells to
refractory cells catalysed by interferon.

• The reverse shift back from refractory to simple uninfected cells is represented
by the term ρR.

• Furthermore infected cells are deleted by the action of interferon at a rate κIF.

• Interferon is produced in presence of infected cells at a rate qI.

Even though we have more species and more reactions we get the same small
pattern of organizations as in the basic Baccam Model (Figure 3.24b). Both models
have in common that there is no self-replication of target cells. This might be one
reason for the missing of other and bigger organizations which could contain species
related to infection and/or immune response. This in turn means that like the Baccam
Model this model implicitly treats infections and immune responses as phenomena
that can only appear in a limited (transient) time span. The lattice of organizations
(Figure 3.24b) tells us that the system necessarily tends towards a state of healthiness,
which is represented by the organizations OP

1
= {} and OP

2
= {T}, showing absence

of infection and immune response.

Ṫ = −βVT−φFT + ρR

İ = βVT− δI− κIF

Ṙ = φFT− ρR

V̇ = pI− cV

Ḟ = qI− dF

(a) ODE model

OP
2
= {T}

OP
1
= {}

(b) lattice of organizations

Figure 3.24: [75] The Pawelek Model [70] with 5 variables: (unin-
fected) target cells (T), productively infected cells (I), uninfected cells

refractory to infections (R), free viruses (V) and interferon (F).

The Smith Model [85] contains 15 parameters and compared to experimental in
vivo data from mice. It has 5 variables and 12 reactions. Like in the previous models
we have susceptible target cells (T) and viruses (V). Note that T is only consumed
in this model but not produced. Contrarily to previous models we have two kinds
of infected cells (I1 and I2) here as well as bacteria (P). Bacteria P represent bacterial
co-infection during or after virus infection. Infection is modeled as a transformation of
susceptible target cells T into infected cells I1 catalyzed by viruses V (see underlined
terms in Figure 3.25a). Infected cells I1 in turn spontaneously transform into I2 at
rate kI1. Only infected cells I2 produce viruses V at a rate pI2. Furthermore, infected
cells I2 produce viruses V together with bacteria P. Bacteria P are self-replicating
(rate term rP). Viruses V are the only species influencing bacteria P.

Figure 3.25b shows the lattice of organizations. The smallest one is the empty
set. The biggest one is OSm

4
, which contains susceptible target cells T and bacteria P.
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It represents an organism without viral but with bacterial infection. Between those
two extreme organizations we find OSm

2
= {T} and OSm

3
= {P}. Thus OSm

2
represents

the healthy organism without any infection. OSm
3

= {P} could mark the state after a
viral-bacterial co-infection: After viral infection and because of the death of all target
cells as well as all viruses only bacteria remain.

Ṫ = −βTV

İ1 = βTV− kI1 − µPI1

İ2 = kI1 − δI2 − µPI2

V̇ = pI2(1 + PZ) − cV

Ṗ = rP(1−
P

KP(1 +ψV)
)

− γMA
n2 MA

P2 + n2MA

M∗AP(1−
φV

KPV + V
)

(a) ODE model

OSm
4

= {T, P}

OSm
3

= {P}OSm
2

= {T}

OSm
1

= {}

(b) lattice of organizations

Figure 3.25: [75] The Smith Model [85] with 5 variables: susceptible
target cells (T), two classes of infected cells (I1 and I2), free viruses

(V), and bacteria (P).

The Handel Model [37] contains 8 parameters and was designed to fit experi-
mental in vivo data from mice [21, 11, 36]. It has 7 variables (see Figure 3.26) only 12
reactions (see Figure 3.26a):

• Infection is catalyzed by viruses V and transforms uninfected cells U to latently
infected cells E and viruses V are consumed thereby. Latently infected cells
E transform into infected cells I autonomously, which in turn transform into
dead cells D autonomously too. Finally, the transformation of dead cells D into
non-infected cells U closes the circle.

• The remaining three species V, F and X form an almost totally separate subsystem
since the only interaction with the four species from the "circle" mentioned
above is the catalysis of the infection by viruses V.

• The interactions within the subsystem {V, F, X} consisting of viruses V and im-
mune responses F and X are as follows:

– viruses V catalyze the proliferation of F and X. In the Hernandez model
proliferation of interferon F is catalyzed by infected cells instead of viruses.

– There is no direct interaction between innate immune response F and
adaptive immune response X.

– The adaptive immune response X deletes viruses directly. Innate immune
response F inhibits the self-replication of the viruses which is represented

by the denominator of the fraction
pI

1 + κF
. We ignore the inhibition,

because whether the rate is zero or not is independent of F.

The lattice in Figure 3.26b shows five organizations. For the first time it contains the
empty set as well as the set of all species at the same time. Between these extremes we
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find OHa
2

= {U} representing the healthy organism. The Baccam, Miao, and Pawelek
models exhibit the same organization. Structurally the lattice of the Handel Model is
very similar to that of the Smith Model (Figure 3.25b). The first reveals an autonomy
of the adaptive immune response X whereas the latter does this same for bacteria P.

U̇ = λD− bUV

Ė = bUV− gE

İ = gE− dI

Ḋ = dI− λD

V̇ =
pI

1 + κF
− cV− γbUV− kVX

Ḟ = wV− δF

Ẋ = f V + rX

(a) ODE model

OHa
5 =

{all species} =
{U,E, I, D,V, F,X}

OHa
4 = {U,X}

OHa
2 = {U} OHa

3 = {X}

OHa
1 = {}

a
d
d
in

g
 v

ir
u
s

(b) lattice of organizations

Figure 3.26: [75] The Handel model [37] with 7 variables: uninfected
cells (U), latently infected cells (E), productively infected cells (I), dead
cells (D), free viruses (V), innate immune response (F) and adaptive
immune response (X). The dotted arrows denote the projection of the

dynamics shown in Figure 3.27

For the Handel Model we perform dynamical simulation in order to show how
the organizational hierarchy helps also to understand transient short-term behavior.
We start at t = −20d with an uninfected state, i.e., 7 · 109 uninfected cells. After 20
days, at t = 0, we add 104 virus particles. The resulting seven-dimensional trajectory
in state space is shown in Figure 3.27. Projecting this trajectory to organizations
results in a more abstract view of the dynamics, shown as dashed curved arrow in
Figure 3.26b. The system starts in organization OHa

2
(uninfected organization), moves

after adding virus particles at t = 0 into organization OHa
5

(infected organization with

immune response), and drops after 37 days into organization OHa
4

(immune response
active, virus absent).

The projection of a state x to an organization O follows the procedure suggested
by Dittrich and Speroni d.F. [19]: First, we generate a set S of those species whose
concentration is greater than a particular threshold (here: 100 = 1). Then we generate
the closure of this set by adding all species that can be produced from the set. Finally,
we take the largest organization O that is a subset of that closure. For example: At
t = 0 by adding viruses to the system we have S = {U, V}, whose closure is the set
of all species, which is also an organization, here; thus the state at t = 0 is projected
to organization OHa

5
. At t = 60d, we have S = {U, X, D}, whose closure is again

{U, X, D} and the largest organization contained is OHa
4

= {U, X}. So, as can be seen

in Figure 3.27, the system state is projected to organization OHa
4

, in which it stays for
t > 37d.
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Figure 3.27: [75] Temporal dynamics of the Handel model. By pro-
jecting the 7-dimensional trajectory to organizations (dotted arrows in
Figure 3.26b) we find three phases: (Phase 1) Until day number 0 there
are solely 7 · 109 uninfected cells U in the system represented by the
organization OHa

2
= {U}. (Phase 2) At day 0 infection is simulated by

adding V(0) = 104 virus particles to the system. The resulting state
{U, V} is projected to organization OHa

5
(all species). (Phase 3) Lastly,

at day t=37d past infection the system settles in the final organiza-
tion, namely OHa

4
= {U, X}, which is generated by the set {U, X, D} (see

text). The values of the model parameters are (from [37]): λ = 0.25,
b = 2.1 · 10−7, g = 4, d = 2, p = 5 · 10−2, κ = 1.8 · 10−2, c = 10,
γ = 7.5 · 10−4, k = 1.8, w = 1, δ = 0.4, f = 2.7 · 10−6, and r = 0.3. Note
that the number of uninfected cells U is not constant after infection
as it may seem from the figure. In fact, after infection the number of

uninfected cells first decreases and than rises again [37].

The 13 parameters of the Hernandez Model [40] were fitted to data from many
different sources. The model contains 7 variables and 16 reactions (see Figure 3.28).
The species refer to viruses (V), interferon (F) and natural killer cells (K) as well
as four types of respiratory tract epithelial cells: healthy/uninfected (UH), partially
infected (UE), infected (UI) and resistant to infection (UR). Compared to the Pawelek
Model there are two qualitatively new species: partially infected cells UE and killers
K.

Next we state some remarks about the reactions:

• There is an infection reaction catalyzed by viruses like in all previous models
but with one difference: during infection, healthy cells UH first transform to
partially infected cells UE and only after that they transform spontaneously to
infected cells UI at a rate keUE.

• Interferon catalyzes the transformation of healthy cells to resistant cells UR, like
in the Pawelek Model. But in the Pawelek Model interferon removes infected



3.3. Structure and Hierarchy of Influenza A Virus Infection Models 55

cells. Here, interferon’s production is catalyzed by infected cells UI at a rate
aIUI. There is no further influence of interferon on any other species.

• Infected cells are removed by natural killers K, which also delete partially
infected cells in this model. The production of killers K is catalyzed by infected
cells UI at a rate ΦKUI.

• Note that here we have an constant inflow of healthy cells UH at a rate SH (first
differential equation). Thus healthy cells cannot converge to zero.

The lattice of organizations consists only of two organization (Figure 3.28b). For the
first time the empty set is not an organization, because the empty set is not closed
due to a constant inflow of healthy cells UH and killers K, represented by the reaction
∅ → UH and ∅ → K, respectively. The smallest organization OHe

1
= {UH, K} can be

regarded as a state of healthiness. Contrarily the second organization OHe
2

contains
all species (as in the Miao Model) and therefore can be interpreted as the infected
organism exhibiting immune response to infection.

U̇H = SH − kIUHV− kRUHF− δHUH

U̇E = kIUHV− kEUE − qKUEK

U̇I = kEUE − δIUI − qKUIK

U̇R = kRUHF− δRUR

V̇ = ρVUI − δVV

Ḟ = aIUI − δFF

K̇ = SK + ΦKUI − δKK

(a) ODE model

OHe
2

=
{all species} =
{UH, UE, UI, UR, V, F, K}

OHe
1

= {UH, K}

(b) lattice of organizations

Figure 3.28: [75] The Hernandez Model [40] with 7 variables: healthy
cells (UH), partially infected cell (UE), infected cells (UI), cells resistant
to infection (UR), virus particles (V), interferon (F) and natural killers

(K).

The Cao Model [13] consists of 20 parameters and has been derived by referring
to experimental data from ferrets. The model has 7 variables and 26 reactions. Like
in most of the previous models we have (uninfected) target cells (T), infected cells
(I), viruses (V), resistant cells (R), and interferon (F). Furthermore there are B cells B
and antibodies A.

According to the ODE shown in Figure 3.29a B cells are only influenced by viruses:
viruses support the production of B cells (rate term m1V) but the more B cells are
present the more of them are destroyed by viruses again (term: m1VB). B cells
influence only one other species namely antibodies B, which they produce. Antibodies
A influence only one other species, namely viruses, which are destroyed by this
reaction at rate µVA. Antibodies in turn are influenced by B cells positively and by
viruses negatively.

There are three organizations in this model (Figure 3.29b): the empty set, the
healthy organism without any infection and without any immune response (OC

2
=

{T}) and the organization OC
3

containing all species.
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Ṫ = g(T + R)(1−
T + R + I

Ct
) − β′VT + ρR−φFT

İ = β′VT− δI− κIF

V̇ =
pI

1 + sF
− cV− µVA− βVT

Ṙ = φFT− ρR− ξR

Ḟ = qI− dF

Ḃ = m1V(1−B) −m2B

Ȧ = m3B− rA− µ′VA

(a) ODE model

OC
3

=
{all species} =
{T, I, V, R, F, B, A}

OC
2
= {T}

OC
1
= {}

(b) Lattice of organizations

Figure 3.29: [75] The Cao Model [13] with 7 variables: target cells (T),
infected cells (I), viruses (V), resistant cells (R), interferon (F), B cells

(B), and antibodies (A).

The Saenz Model [80] requires 12 parameters and was designed to fit experimental
in vivo data from horses [21, 11]. The model contains 8 variables and 12 reactions
(Figure 3.30a). There are no adaptive immune response, no dead cells, and no
natural killer cells. However, the model contains viruses V and interferon F. There
is an eclipse phase (E1 and E2) here as well as prerefractory and refractory cells.
In particular, epithelial cells are represented by six species: susceptible (T), eclipse
phases (E1 and E2), infectious (I), prerefractory (W), and refractory (R). Thus the new
features are the inclusion of two eclipse phases and three steps for the transformation
of uninfected cells to refractory cells.

The lattice of organizations is composed by four organizations: OSa
1

= {}: the

empty set; OSa
2

= {T}: representing a healthy organism; OSa
3

= {R}: there is no

consuming reaction for refractory cells R; OSa
4

= {T, R}: also representing a healthy
organism that contains refractory cells maybe as remains of a previous infection.

The lattice is very similar to that from of the Handel Model. There are only two
differences:

• The "full" organization is missing here. For sure, one of the reasons is that there
is no reaction producing susceptible cells T. Thus, when viruses V or interferon
F are present susceptible cells T can not survive and the "full" organization
neither.

• Adaptive immune response is replaced by refractory cells in the organizations
here.
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Ṫ = −βVT−φFT

Ė1 = βVT− k1E1

Ẇ = φFT−mβVW − aW

Ė2 = mβVW − k2E2

Ṙ = aW

İ = k1E1 + k2E2 − δI

V̇ = pI− cV

Ḟ = nqE2 + qI− dF

(a) ODE model

OSa
4

= {T, R}

OSa
3

= {R}OSa
2

= {T}

OSa
1

= {}

(b) Lattice of organizations

Figure 3.30: [75] The Saenz Model [80] with 8 variables: Epithe-
lial cells in one of the states: susceptible (T), eclipse phase (E1, and
E2), prerefractory (W), refractory (R) and infectious (I). The further

variables are: virus cells (V) and interferon (F).

The Hancioglu Model [34] contains 11 variables and 35 reactions. It has not been
mathematically fitted to data, but has been designed to meet specific general criteria
[21, 11]. The ODEs (Figure 3.31a) describe the dynamics of the following 10 species:
viruses (V), healthy cells (H), infected cells (I), interferon (F) and resistant cells (R).
The remaining species are new: antigen presenting cells (M), effector cells (E), plasma
cells (P) antibodies (A) and antigenic distance (S). There are no species for an eclipse
phase in this model.

Looking at the reaction network (Figure A.8) we can see again a reaction for
infection, i.e., the transformation of healthy cells H into infected cells I catalyzed
by viruses V at a rate γHVVH (single underlined in Figure 3.31a). Furthermore,
interferon F is produced catalytically by antigen presenting M and infected cells I,
decays spontaneously at a rate aFF, and is additionally removed when converting
healthy cells H into resistant cells R by the reaction H + F→ R at rate bHFFH (double
underlined in Figure 3.31a).

The Hancioglu Model has four organizations (Figure 3.31b):

• O
Hcg

1
and O

Hcg

3
contain only species responsible for the immune response and

neither healthy cells nor species representing infection. Thus, these two orga-
nizations are practically not realistic.

• O
Hcg

2
represents the healthy state of the organism.

• O
Hcg

4
, which contains all species, represents the infected organism with immune

response.
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Ḣ = bHDD(H + R) + aRR− γHVVH− bHFFH

İ = γHVVH− bIEEI− aII

V̇ = γVI− γVASAV− γVHHV− αVV−
aV1V

1 + aV2V

Ṙ = bHFFH− aRR

Ṁ = (bMDD + bMVV)(1−M) − aMM

Ḟ = bFM + cFI− bFHHF− aFF

Ė = bEMME− bEIIE + aE(1− E)

Ṗ = bPMMP + aP(1− P)

Ȧ = bAP− γAVSAV− aAA

Ṡ = rP(1− S)

Ḋ = −bHDDH− bHDDR + bIEEI + aII

(a) ODE model

O
Hcg

4
=

{all species} =
{H, I, V, R, M, F, E, P, A, S, D}

O
Hcg

3
= {M, F, E, P, A, S, D}O

Hcg

2
= {H, E, P, A, S}

O
Hcg

1
= {E, P, A, S}

(b) Lattice of organizations

Figure 3.31: [75] The Hancioglu Model [34] with 11 variables: viral
load (V), healthy cells (H), infected cells (I), antigen presenting cells
(M), interferon (F), resistant cells (R), effector cells (E), plasma cells

(P), antibodies (A), antigenic distance (S) and dead cells (D).

The Bocharov Model [10] contains 49 parameters and was designed to fit exper-
imental in vivo data from humans [21, 11]. It includes 11 variables and 35 reactions
(Figure A.9). Only here and in the Lee Model (below) we have differential equations
with delay, i.e., some rates depend on variable values from the past (Figure 3.32a).
Because the delay does not matter in a steady-state, we can also neglect the delay
when analyzing the chemical organizations of a delay differential equation model.

Note that this is by far the oldest model analyzed here. The names of the variables
are a bit particular when compared to those of the previously analyzed models. As
in all the other models we have viruses V f and infected cells C. Furthermore, there
are destroyed epithelial cells m as in the Handel Model. All other species belong
to the immune response. Note that only in this model there is no state variable for
uninfected, healthy cells. Bocharov et al. represent these healthy cells implicitly by
subtracting the amounts of infected-cells C and destroyed epithelial cells m from the
initial total amount of target epithelial cells C∗. Since all the other models analyzed
here have a related variable, we inserted the variable U = C∗ −C−m for uninfected
cells together with its ODE to make the model comparable to the others.

Due to the fact that the majority of the species belongs to the immune response
this is the case for most of the reactions too. These species of the immune response
form exactly the organization OBo

1
, only macrophages MV are missing.

Similarly to the Hancioglus model the smallest organization OBo
1

is an organiza-
tion with immune response but without infection (C, V f ). There is only one further

organization that contains only one more species than OBo
1

namely uninfected cells
U. This organization we already found in three of the previous models. However,
for the first time there is no bigger organization in this model. Thus, virus infection
is necessarily transient.
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V̇f = νC + nbCECE− γVFVfF− γVMVf − γVCVfU

Ċ = σVfU− bCECE− bmC

ṁ = bCECE + bmC− αmm

ṀV = γMVM∗Vf − αMMV

ḢE = bE
H[(1−

m

C∗
)ρE

HMV(t− τ
E
H)HE(t− τ

E
H) −MVHE] − bHE

P
MVHEE + αE

H(H
∗
E −HE)

ḢB = bB
H[(1−

m

C∗
)ρB

HMV(t− τ
B
H)HB(t− τ

B
H) −MVHB] − bHB

P
MHBB + αB

H(H
∗
B −HB)

Ė = bE
P[(1−

m

C∗
)ρEMV((t− τE))HE(t− τE)E(t− τE) −MVHEE] − bECCVE + αE(E

∗ − E)

Ḃ = bB
P[(1−

m

C∗
)ρBMV(t− τB)HB(t− τB)B(t− τB) −MVHBB] + αE(B

∗ −B)

Ṗ = bP
P(1−

m

C∗
)ρPMV(t− τ

P)HB(t− τP)B(t− τP) + αP(P
∗ − P)

Ḟ = ρFP− γFVFVf − αFF

U̇ =
d

dt
(C∗ −C−m) = −σVfU + αmm

(a) ODE model

OBo
2

= {U, HE, HB, E, B, P, F}

OBo
1

= {HE, HB, E, B, P, F}

(b) Hasse diagram of organizations

Figure 3.32: [75] The Bocharov Model [10] with 10 variables: infec-
tive IAV particles (Vf), IAV-infected cells (C), destroyed epithelial cells
(m), stimulated macrophages (MV), activated helper T cells providing
proliferation of cytotoxic T cells (HE), activated helper T cells provid-
ing proliferation and differentiation of B cells B (HB), activated CTL
(E), B cells (B), plasma cells (P), antibodies to IAV (F), and uninfected
epithelial cells (U). Note that, for clarity, we have added U as a state
variable, which is only implicitly represented as U = C∗ − C −m in

the original model by Bocharov et al.

The Lee Model [58] is the most complex model considered here. It contains 48
parameters and was designed with respect to experimental in vivo data from mice
[21, 11]. It has 15 variables and 37 reactions (Figure A.10). Like in the Bocharov
Model, Lee et al. apply delay differential equations.

Note that this model is the only one analyzed here that distinguishes between lung
compartment and lymphatic compartment. There is one species representing uninfected
(healthy) cells Ep and three species for modelling infection: E∗

P
, D∗ and viruses V.

The remaining species belong to the immune response, colored black when naive to
infection, while colored green when activated for infection.

Note that we write a species in the organizations in Figure 3.34 in bold text, if it is
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"new", that is, not contained in neither of its subset organizations. The Hasse diagram
contains 8 organizations. The smallest one is OL

1
= {EP, D, HN, TN, BN} and contains

exactly the uninfected cells as well as the naive part of the immune response. The
biggest organization contains all species. Between these two "extreme" organizations
are 6 further organizations containing different parts of the activated part of the
immune response.

ĖP = δE(E0 − EP) − βEEPV

Ė∗
P
= βEEPV− kEE∗PγTE(t− τT) − δE∗E

∗
P

V̇ = πVE∗P − cVV− kVVA(t)

Ḋ = δD(D0 −D) − βDDV

Ḋ∗ = βDDV− δD∗D
∗

ḊM = kDD∗(t− τD) − δDMDM

ḢN = δHN(HN0 −HN) −πH1
DM

DM + πH2
HN

ḢE = πH1
DM

DM + πH2
HN + ρH1

DM

DM + ρH2
HE − δH1

DM

DM + δH2
HE

ṪN = δTN(TN0 − TN) −πT1
DM

DM + πT2
TN

ṪE = πT1
DM

DM + πT2
HN + ρT1

DM

DM + ρT2
TE − δT1

DM

DM + δT2
TE

ḂN = δB(BN0 − BN) −πB1
DM

DM + πB2
BN

ḂA = πB1
DM

DM + πB2
BN + ρB1

DM + hHE

DM + hHE + ρB2
BA − δBA

BA −πSBA −πLHEBA

ṖS = πSBA − δSPS

ṖL = πLHEBA − δLPL

Ȧ = πASPS + π−ALPL − δAA

Figure 3.33: [75] ODEs of the Lee model [58] which contains 15 vari-
ables: uninfected epithelial cells (EP), infected epithelial cells (E∗

P
),

virus titer (EID50/ml) (V), immature dendritic cells (D), virus-loaded
dendritic cells (D∗), mature dendritic cells (DM), naive CD4+ T cells
(HN), effector CD4+ T cells (HE), naive CD8+ T cells (TN), effector
CD8+ T cells (TE), naive B cells (BN), activated B cells (BA), short-lived
plasma (antibody-secreting) B cells (PS), long-lived plasma (antibody-
secreting) B cells (PL) and antiviral antibody titer (A). Note that here
we have colored green only those species representing the immune

system when activated.
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OL
8
= {all species}={EP, E∗

P
, V, D, D∗, DM, HN, HE, TN, TE, BN, BA, PS, PL, A}

OL
7
= {EP, D, D∗, DM, HN, HE, TN, TE, BN, BA, PS, PL, A}

OL
6
= {EP, D, HN, HE, TN, TE, BN, BA, PS, PL, A}

OL
5
= {EP, D, HN, HE, TN, BN, BA, PS, PL, A}

OL
4
= {EP, D, HN, HE, TN, TE, BN}

OL
3
= {EP, D, HN, TN, TE, BN}OL

2
= {EP, D, HN, HE, TN, BN}

OL
1
= {EP, D, HN, TN, BN}

Figure 3.34: [75] Hasse diagram of organizations of the Lee model
[58].

Hierarchy of influenza A virus models

In order to construct a hierarchical map of all investigated models, we characterize a
model by a signature of organizations, which is a set of organization types. For exam-
ple, the signature of the Handel Model (Figure 3.26b) is the set {∅, X, X, XX, XXX}.
An organization type like XX means that there is at least one organization that con-
tains uninfected (target) cells (X) and species of the active immune response (X). The
signatures of all are models is shown in Table 3.1.
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Model
Number of

variables

Number of

reactions

Number of

organizations
Organizations & Signature

Baccam [5]
2006

3 4 2 OBa1
1

= ∅

OBa1
2

X

Miao [61]
2010

3 5 3 OM
1
= ∅

OM
2

OM
3

X

X X

Baccam II [5]

2006

4 5 2 OBa2
1

= ∅

OBa2
2

X

Pawelek [70]

2012

5 9 2 OP
1
= ∅

OP
2

X

Smith [85]
2016

5 12 4 OSm
1

= ∅

OSm
2

OSm
3

OSm
4

X

X

X X

Handel [37]
2010

7 12 5 OHa
1

= ∅

OHa
2

OHa
3

OHa
4

OHa
5

= {all}

X

X

X

X

X

X X

Hernandez
[40] 2012

7 16 2 OHe
1

OHe
2

= {all}

X

X

X

X X

Cao [13]
2015

7 26 3 OC
1
= ∅

OC
2

OC
3
= {all}

X

X X X

Saenz [80]
2010

8 12 4 OSa
1

= ∅

OSa
2

, OSa
3

, OSa
4

X

Bocharov
[10]
1994

10 45 2 OBo
1

OBo
2

X

X X

Hancioglu
[34]
2007

11 35 4 O
Hcg

1
, O

Hcg

3

O
Hcg

2

O
Hcg

4
= {all}

X

X

X

X

X X

Lee [58]
2009

15 37 8 OL
1

OL
2
, OL

3
, OL

4
, OL

5
, OL

6

OL
7
, OL

8
= {all}

X

X

X

X

X X

Table 3.1: [75] Overview of all models and organization types con-
tained. An organization type like XX denotes the type of species
contained in an organization, according to our coloring scheme. The

set of organization types of a model is called its signature.

Note that we ignore species colored black. We include the empty set ∅, because
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this distinguishes models without any inflow from those that possess an inflow of
some species. Now we can obtain a partial order among models by defining that a
model A is smaller or equal to another model B (A≤B), if the signature of A is a subset
of the signature of model B. For example, the Hernandez Model is smaller than the
Lee Model, because {XX, XXX} ⊆ {X, XX, XXX}. This partial order among models
leads to a hierarchical map of models, which is visualized by a Hasse-diagram in
Figure 3.35. Note that a model A that is smaller than a model B according to this
partial order can possess more species and reactions than B.

In Figure 3.35 we can see that all models have organizations with uninfected,
healthy cells (X). There are models that furthermore have infection (X) and/or im-
mune response (X) in their organizations. There are exactly two models (Hancioglu
and Hernandez Model) with immune response in all their organizations which
means that these models implicitly assume immune response to be active all the
time. Among the models neglecting immune response are those which have infec-
tion (Miao Model) or bacteria (X) (Smith Model) in their organizations and also those
that do not (Baccam and Baccam II Model). For models involving immune response
the situation is more complex. There are those that only have healthy cells in their
organizations (Pawelek and Saenz Models). This means that these models implicitly
exclude infection and immune response from the long run and thus treat them as
transient phenomena a priori. The Bocharov Model is the only one that exhibits
only healthy cells and immune response in its organizations but no infection. The
remaining five models include all kinds of species (except for bacteria of course) in
their organizations.

By looking at the hierarchy of models it becomes evident that there is space for
more models. Above the Smith and Handel Model there could be one in which virus
infection as well as bacterial coinfection can be simultaneously persistent ("fully per-
sistent models" denotes such hypothetical models in Figure 3.35). Another extreme
case would be a "fully-transient model" in which we have only transient dynamics
and all species would finally tend to zero. Such a model would be the smallest one
in our partial order of models (Figure 3.35).

The derived hierarchical map of models might be used to choose the most appro-
priate model for a particular domain and data set: The model should contain at least
one organization for each set of species that were experimentally observed to survive
in the long run. If there are several models with such organizations the one with the
smallest organizations might be chosen to provide maximum efficiency in modeling.
Table 3.1 as well as Figure 3.35 might guide the selection process, complementing
established quantitative selection methods, such as those using the area under the
viral load curve [14].
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"Fully-persistent mod-
els" ∅, . . . , XXXX

Handel(7)
∅, X, X, XX, XXX

Smith(5)
∅, X, X, XX

Hancioglu(11)
X, XX, XXX

Lee(15)
X, XX, XXX

Cao(7)
∅, X, XXX

Miao(3)
∅, X, XX

Hernandez(7)
XX, XXX

Bocharov(10)
X, XX

Baccam(3) Pawelek(5)
Baccam(4) Saenz(8)

∅, X

"Fully-transient
models" ∅

Models without
immune response

Models including immune response

Figure 3.35: [75] Hasse-diagram of the hierarchy of IAV models with
respect to their long-term behaviour. In brackets () we added the
number of species of each model. Underneath (marked by colors)
the kinds of species contained in the organizations belonging to each
model. The meaning of the 4 colors is as follows: Species belonging to
the healthy state of the organism are colored blue, those belonging to
the immune response are colored green, those belonging to infection
like infected cells and viruses are colored magenta, and bacteria from
bacterial co-infection are colored orange. Horizontally the diagram
consists of four lines. The models in the lowest line contain organi-
zations with exactly two different kinds of species (colors) (including
the empty set). In the second line above there are three different com-
binations of species (colors) to be found in each model. There is only
one model in each of the highest two lines: The Smith model [84] is
the only one with bacteria and contains four different combinations of
colors. In the Handel Model there are even five different combinations

of colors out of 24 = 16 possible combinations.
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3.4 Structure and Hierarchy of SARS-Cov-2 Virus Infection

Models

We provide a list of the models analyzed in this section in Table 3.2.

Model Type ODE PDE

In
-h

o
st

[94] CoVVargas-I : Vg, Vd [91] Bocharov-I: v

[94] CoVVargas-II : V, T [91] Bocharov-II: v, c

[1] CoVAbuin : U, I, V

[90] CoVSu : H, Vb, m, P, S, In, V

H
o

st
-t

o
-h

o
st

[68] CoVNesteruk : S, I, R [30] Fitzgibbon-I: ρ

[100] CoVWu : S, E, I, R [30] Fitzgibbon-II: S, I

[6] CoVBai : S, E, I, R, D

L
in

k
ed

[3] Almocera:
In-Host: V, E; Linked: V, E, S, I −

Table 3.2: [73] Overview of all models analyzed in this work each
named by its first author and followed by the names of the variables
used in the models. By clicking on the model names or the model
types (left) you are directed to the part of this work where the respec-

tive model is analyzed. The model names tagged with CoV() in the

beginning are explicitly for SARS-CoV-2 infection whereas the others
are designed for viral infections in general. All models except for the
two models from Bocharov and Almocera (both published in 2018)

were published in 2020.

In the following we present the respective ODEs and PDEs and the lattices of
organizations of the models from Table 3.2. The reactions that we derive from the
models are listed in Appendix B. We will start with the models basing on ODEs.
These models, be they in-host or host-to-host models, were constructed especially
for modeling the SARS-CoV-2 infection dynamics. After having analyzed the ODE
models, we did the same for the PDE models. Note, that the latter were not solely
built to model SARS-CoV-2 infection but rather viral infection dynamics in general.
Finally, we analyze one ODE model (the Almocera model [3, 11]) linking an in-host
scenario (the example model from the Introduction) with a host-to-host scenario of
virus infection dynamics. In four organizations (contained in the Vargas-II, Su and
Almocera Models) species can be distinguished marked by a bar | in the lattice of
DOs. This property can only be captured by DOs but not by organizations.

In-Host Models

Here we firstly present four in-host ODE models with increasing numbers of species
(see Figures 3.36 to 3.39). These models describe the spread of the infection within a
host, in this case humans. All models contain a virus species but the models differ
in terms of the identity of the species.
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V̇g = ρVg

V̇d = −νVd

(a) ODE model

{Vg}

{}

(b) Organizations

Figure 3.36: [73] The Vargas-I Model [94, 99] with two variables:
Exponential growth viruses (Vg) and decay of viruses (Vd). There
are two organizations: the empty set and the single species set {Vg}.
The set of all species is not an organization since Vd decays but is not

produced by any reaction. The signature of this model is: ∅, X.

V̇ = pV(1−
V

K
) − cTVT− cV

Ṫ = sT + rT(
Vm

Vm + km
T

) − δTT

(a) ODE model

{V|T}

{V, T}

{T}

(b) Organizations

Figure 3.37: [73] The Vargas-II Model [94, 11, 3] with two variables:
viruses V and T-cells T, and two organizations: {V, T} and {T}. The
empty set is not an organization for this model since T has an inflow
reaction with reaction constant sT and thus does not go extinct. The
organization {V, T} exists also as distributed organization {V|T}. So,
if V and T are separated the two reactions with reaction constants cT

and r are inactive, but this does neither destroy the self-maintenance
nor the closedness. The signature of this model is: X, XX. Note that,
by replacing T by E in this model, we get almost the same reactions
and the same stoichiometric matrix as for the in-host Almocera Model

we introduced in the Materials and Methods Section ??.

U̇ = −βUV

İ = βUV− δI

V̇ = pI− cV

(a) ODE model

{U}

{}

(b) Organizations (all non-reactive)

Figure 3.38: [73] The Abuin Model [1, 94, 41, 71, 16] with three vari-
ables: susceptible host cells U, infected host cells I, and viral particles
V. There are two organizations: the empty set {} and {U}. None of
them includes an active reaction; thus we say, that they are “non-
reactive”. Note that for this model, a principal part of the infection
dynamics, concerning I and V, does not take place within an orga-
nization. Thus, from the role organizations play in the long-run of
dynamical systems [72, 55] we know that this model induces a van-
ishing of I and V in the long run. The signature of this model is:

∅, X.
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Ḣ = rH −
kbHV

SV + V

V̇b =
kbHV

SH + H
− krVb

ṁ = krVb− kPm

Ṗ = kPm− kaP

Ṡ =
sSm

m + Km
− dSS

˙In =
kbHV

SV + V
−

dIIn · S

In + KI

V̇ = kaP−
kbHV

SH + H
−

dvV · S

KV + V

(a) ODE model

{H, m, S|In}

{H, m, S}

{H, In}

{H}

(b) Organizations

Figure 3.39: [73] The Su Model [90] with 7 variables: healthy cells
H, bound virus Vb, RNA genome m, proteins and replicated RNA
packaged together in cytoplasm P, cytokines stimulating inflamma-
tory responses S, infected cells In, coronavirus V. Here we have three
organizations and one distributed organization {H, m, S|In} that is not
an organization. So, the species H, m, S, and In can only survive
together, if S and In are separated. This deactivates the reaction with
the reaction constant dI and thus In is able to persist. The signature of

this model is: X, XX.

Now we analyze two in-host PDE models (see Figures 3.40, 3.41). Contrary to
ODE models they are able to deal with spatial inhomogeneities of viral infection
processes in the host. They were designed for general viral infections. Thus it is
recommended for future SARS-CoV-2 infection dynamics modeling to adapt these
models to capture the specifics of this new virus.

v̇ = kv(1− v) − f (v)v + D
∂2v

∂x2

(a) PDE model

{v}

{}

(b) Organizations

Figure 3.40: [73] The Bocharov-I Model [91] with one variable: the
virus concentration v. There are no boundary conditions specified.
Thus, we assume Neumann boundary conditions for simplicity and
in the style of the other PDE models analyzed in this work. There
is the maximum number of two organizations for a model with one
species here. This represents all possible long-term dynamics of the
infection, i.e., its persistence as well as its extinction. The signature of

this model is: ∅, X.



68 Chapter 3. Results

v̇ = kv(1− v) − cv + D1
∂2v

∂x2

ċ = φ(v)c(1− c) −ψ(v)c + D2
∂2c

∂x2

(a) PDE model

{v, c}

{v}

{}

(b) Organizations

Figure 3.41: [73] The Bocharov-II Model [94] from the year 2018 with
two variables: the virus concentration v and immune cell concentra-
tion c. The functionsφ(v) andψ(v) are assumed to be strictly positive
if and only if v > 0. As for the Bocharov-I Model (see Figure 3.40)
we assume Neumann boundary conditions. There are three organi-
zations. Only one subset of species is not an organization, i.e., the
set {c}. Thus the model provides a relatively big variety of possible

long-term behaviors. The signature of this model is: ∅, X, XX.

Within the set of in-host models we observe a principal difference between the
Abuin Model and the other models: The Abuin model does not have an organization
with regard to the viral species causing the infection. Thus the Abuin model implicitly
assumes the vanishing of the infection over time. The other models do not share this
property and thus contain no assumptions regarding viral persistence, which may
confer an advantage to these models since it is unclear what the extent of SARS-CoV-2
persistence is. The Su Model exhibits the most complex lattice of organizations. This
is the model with the biggest number of species and the only model that explicitly
focuses on the genetic aspects of SARS-CoV-2 infection dynamics. Interestingly the
Su Model has a distributed organization that is not an organization. This emphasizes
the role of the distribution of the species in space or time. Since the Su Model only has
ODEs that do not allow for modeling spatial inhomogeneities this is an indication
that adapting this model to PDEs may improve the model quality.

Host-To-Host Models

In this section we first analyze three different host-to-host ODE models describing
SARS-CoV-2 infection as it spreads in a human population from one individual to the
next (see Figure 3.42to 3.44). Thus these models have three host species in common:
susceptible, uninfected individuals (S) and infected individuals (I).
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Ṡ = −αSI

İ = αSI− ρI

Ṙ = ρI

(a) ODE model

{S, R}

{R}{S}

{}

(b) Organizations (all non-reactive)

Figure 3.42: [73] The Nesteruk Model [68, 66, 7] with 3 variables (SIR):
the number of susceptible persons S, infected (sick and infection-
spreading) persons I, and removed (sum of isolated, recovered,
and dead) persons R. There are four organizations that only contain
healthy individuals. None of them contains infected individuals and
all are non-reactive, i.e., no reaction is active for these organizations.
Thus, as for the in-host Abuin Model from the previous section, the
whole infection dynamics takes place outside the organizations. This
model inherently assumes that all infected individuals I will vanish

finally. The signature of this model is: ∅, X.

Ṡ = −
S

N
(

R0

DI
I + z(t)) + LI,W + LC,W(t) − (

LW,I

N
+

LW,C(t)

N
)S

Ė =
S

N
(

R0

DI
I + z(t)) −

E

DE
− (

LW,I

N
+

LW,C(t)

N
)E

İ =
E

DE
−

I

DI
− (

LW,I

N
+

LW,C(t)

N
)I

Ṙ = γI

(a) ODE model

{S, E, I, R}

(b) Organizations

Figure 3.43: [73] The Wu Model [100](a SEIR model) with 4 variables:
the number of susceptible S, latent E, infectious I, and removed R
individuals, and only one organization: {S, E, I.R}, that contains all
species. Thus this model implicitly assumes the infection to persist
forever once it occurs which is a totally contrary assumption compared
to the models assuming the vanishing of infection in the like the
previously analyzed Nesteruk model. The signature of this model is:

XX.
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Ṡ = −
rβIS

N
−

r2β2ES

N

Ė =
rβIS

N
− αE +

r2β2ES

N

İ = αE− γI

Ṙ = (1− v)γI

Ḋ = vγI

N = S + E + I + R + D = const.

(a) ODE model

{S, R, D}

{S, R} {S, D} {R, D}

{S} {R} {D}

{}

(b) Organizations (all non-reactive)

Figure 3.44: [73] The Bai Model [6, 97, 83] with 5 variables (SEIRD):
the number of susceptible S, exposed E, infected I, recovered R, and
dead D individuals. This model has a similar structure in terms of
organizations to the Nesteruk model: there is no organization con-
taining species representing the infection. Thus infection is implicitly
assumed to vanish in the long-term. The remaining multitude of or-
ganizations exists simply due to the fact that recovered individuals R
and dead individuals D can be combined arbitrarily with each other
and with susceptible individuals S to form organizations. The signa-

ture of this model is: ∅, X.

The host-to-host PDE models we subsequently analyzed (see Figures 3.45 and
3.46) have thus far only been applied to general viral infections. Because of the impor-
tance of the spatial dimension in SARS-CoV-2 transmissions, through interventions
such as social distancing, it is pertinent to apply this approach to the current outbreak.

ρ̇ = β(x)ρ−m(x)ρ2 + d
∂2ρ

∂x2

(a) PDE model

{ρ}

{}

(b) Organizations

Figure 3.45: [73] The Fitzgibbon-I Model [30] with one variable ρ
representing the current strength of the infection. ρ obeys Neumann
boundary conditions. The reaction network structure of this model
is almost equal to that of the in-host PDE Bocharov-I model (see Fig-
ure 3.40) from the previous section. Thus there is the maximum num-
ber of two organizations. All long-term dynamics of the infection, i.e.,
its persistence as well as its extinction, are possible. The signature of

this model is: ∅, X.
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Ṡ = −σ(x)
Ip

1 + κ(x)Ip S

İ = σ(x)
Ip

1 + κ(x)Ip S− λI + d
∂2I

∂x2

(a) PDE model

{S}

{}

(b) Organizations

Figure 3.46: [73] The Fitzgibbon-II Model [30] with two variables:
susceptible individuals S(t) and infected individuals I(x, t). Note that
only the infected individuals I are modeled dependent not only of time
but also of space. It follows Neumann boundary condition. As for
the Nesteruk Model and the Bai Model we here have no organization
with any species representing the infection. Thus this model implies

the infection to go extinct. The signature of this model is: ∅, X.

The Wu Model and the Fitzgibbon-I Model are the only ones that cover the
infection dynamics on the level of organizations. However the Nesteruk Model,
the Bai Model, and the Fitgibbon-II Model have solely organizations without species
representing infection. Thus these latter (three) models implicitly assume a vanishing
of the infection in the long-term. It is currently unclear whether this assumption is
justified for SARS-CoV-2.

A Linked In-Host/Host-To-Host Model

Here we analyze a model that we called “linked model” (see Figure 3.47) as it
includes in-host as well as host-to-host dynamics, both described by ODEs. This
model is designed for viral infections in general and its application to SARS-CoV-2
was deemed of interest because of its bigger focus compared to the previous models.
For the analysis of the in-host part of the model we refer the reader to Figure 2.1. In
the following we analyzed the linked model, where the in-host model is incorporated
into a host-to-host model.
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V̇ = pV− p
V2

KV
− cVEV

Ė = NE − δEE +
rV

V + KE
E

Ṡ = NS − δSS−
rWV

V + KW
SI

İ =
rWV

V + KW
SI− δII

(a) Linked ODE model

{V|E, S|I}

{V|E, S}

{E, S}

(b) Organizations

Figure 3.47: [73] The linked Almocera Model [3, 4] has the two vari-
ables of the in-host model above (see Figure 2.1), i.e., viruses (V) and
T-cells (E), plus two further variables: susceptible (S) and infected (I)
individuals. Note that viruses V as a part of the in-host model influ-
ence the host-to-host dynamics via the reaction with reaction constant
rW . There are three organizations: All of them contain E and S, since
they are produced by the two inflow reactions with the reaction con-
stants NE and NS, respectively. If V is added to {E, S}, we get the
organization {V, E, S} that can exist as a distributed organization by
separation of V and E in the same way as it was the case for the in-host
model (see Figure 2.1). If, furthermore, I is added, then we get the
full organization where still V and E can be separated, but I must
not be separated from V and S since then it could not regenerate vie
the reaction with the reaction constant rW . Interestingly, in all the
organizations of this model in-host species are mixed with host-to-
host species. We find that in the long-term the species representing
healthy, uninfected hosts, i.e., E and S always persist. Contrarily, V
and I might persist too, but might also go extinct. If this is the case for
the virus V than also the infected individuals I go extinct. This must
not be the case the other way around. Lastly, the COT analysis shows
that the model assumes that the T-cells E can exist independently of
the virus, but infected individuals can only exist persistently if in con-
tact with healthy individuals S and viruses V. The signature of this

model is: ∅, X. The signature of this model is: XX, XXX, XXXX.

Hierarchy of Models

In this section, we present the hierarchies of all models. First, we show the hierarchy
of SARS-CoV-2 models (see Figure 3.48) and then the merged hierarchy of SARS-
CoV-2 in addition to IAV models (see Figure 3.49).
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Almocera
XX, XXX, XXXX

Bocharov-
II
∅, X, XX

Level 3

CoVVargas-II

In-host-
Almocera
X, XX

Level 2
CoVSu

X, XX

CoVAbuin
∅, X
CoVNesteruk
CoVBai

Fitzgib.-II
∅, X

CoVVargas-I

Bocharov-I
∅, X

Fitzgibbon-I
∅, X

CoVWu
XX

Level 1

Infection goes extinct.T-cells persist.
Infection
persists.
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X = in-host species, X = host-to-host species

Figure 3.48: [73] Hierarchy of SARS-CoV-2 models (tagged with
CoV() ) and general virus models with respect to their long-term be-

havior identified by their signature. There are three different levels
of increasing signatures. The higher the position of a model in the
hierarchy the more diverse is its potential dynamical behavior. By
clicking on the model names you are directed to the respective part of
this work where the model is analyzed. PDE model names are written

in italic.
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IAVHandel[37]
∅, X, X, XX, XXX

IAVSmith[85]
∅, X, X, XX
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Bocharov-
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X = in-host species, X = host-to-host species

Figure 3.49: [73] Merged Hasse diagram of hierarchy of SARS-CoV-2

(tagged with CoV() ), IAV models (tagged with IAV()), and general

virus models. They are positioned at five different levels according to
the size of their signatures. The higher the level of a model, the bigger
is the number of components of its signature and thus the diversity of
its potential dynamical behavior. By clicking on the model names you
are directed to the respective part of this work where the models are
analyzed. PDE model names are written in italic. Note, that contrary
to many Influenza A infection models (third level and above) all SARS-
CoV-2 infection models are on the second level (counted from bottom
to top) and thus have a maximum number of two different species in
their signature. This means that they are less complex in terms of their
organizations than most of the Influenza A infection models. Note
that the Smith Influenza A model is the only one that considers co-
infection by bacteria X. For more information about the COT analysis

of the Influenza A infection models see [75].
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Chapter 4

Conclusions

In the first section of the Results, distributed organizations (DOs) were defined gen-
eralizing the concept of organizations from Chemical Organization Theory (COT). A
DO consists of one or more closed subsets of species which complement one another
to achieve self-maintenance as a whole. As one main result it was proven that the
set of persistent species of every bounded solution of a reaction-diffusion system is
always a DO. Here it is important to notice that DOs are computed solely from the
reaction network underlying the reaction-diffusion system and thus do not depend
on simulations of the dynamics of the system. The second main result was that the
set of DOs of a given reaction network always forms a lattice. Thus the loss of in-
formation by abstracting away from the concrete dynamical behavior of one special
RDS is accompanied by an increase of symmetry exhibited by the lattice of DOs.

The lattice of DOs does not depend on initial conditions or reaction constants but
only on the reaction network. In the second section of the Results we have shown how
to incorporate different boundary conditions into the reaction network. The lattice of
DOs of a reaction network provides an overview of all potentially persistent subsets
of species, which could persist by applying appropriate initial conditions and reaction
constants. This in turn allows for comparing different reaction-diffusion systems or
ODE systems in terms of persistence by comparing their lattices of DOs.

In the third and fourth section of the Results, this was done for several virus
infection dynamics models of Influenza A as well as SARS-Cov-2. It was shown
that our approach is able to combine not only models of different viruses but also
of different types like ODE models and PDE models as well as in-host and host-to-
host models (see Figure 3.48). In total, 24 models were analyzed by first identifying
their underlying reaction networks and computing their lattices of DOs. Then these
lattices were compressed to signatures by assigning a meaning (uninfected, infected,
immune response) to each species of the models. Finally comparing these signatures
by putting them into hierarchies allowed for comparing the models.

Thus, for each analyzed model a qualitative description of all possible long-term
dynamics was obtained. That is, sets of species that can persist (organizations) and
sets of species that can definitely not persist were distinguished. It stands out, that
the hierarchy maps of models contain various empty territories, suggesting space
for potential future models. For example there is no fully persistent and no fully
transient model in the hierarchy map of Influenza A models (see Figure 3.35) There
are a number of similarities among the models, for instance, the Abuin, Nesteruk,
and Bai model are all in the same group regarding their organizations. Nevertheless,
we also found a surprisingly high diversity of models with respect to their long-
term qualitative behavior (Figure 3.48). Interestingly, there is only a small overlap
between SARS-CoV-2 and Influenza A models. Compared to the Influenza A models
the SARS-CoV-2 models appear to be simpler (mostly level 2 in Figure 3.48) and thus
display a simpler hierarchy, that is, with only one inclusion relation between the Wu
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and the Su model (Figure 3.49). It turned out, that the number of species (variables)
of a model not necessarily correlates with the diversity of the potentially persistent
species of a model. To see this, one can compare two Influenza A models (see
Table 3.1), for example, the Handel Model has 7 species and the Saenz Model has
7 species and both models have 12 reactions each. But despite their similarity in
terms of their number of species their signatures are very different: whereas the
Handel Model exhibits five different types of organizations in its signature, the
Saenz Model has only two. A lot of further differences were found. For example,
among the SARS-Cov-2 models, there is only one, the Wu Model, which implies the
unconditional persistence of infected cells. In stark contrast with this, three host-to-
host (Nesteruk, Bai, Fitzgibbon-II) and one in-host model (Abuin) imply the definite
extinction of any infection in the long-term. Such observations indicate, that COT can
serve as a beneficial instrument supporting further development of virus infection
dynamics models. This holds true also for other areas where modeling bases on
reaction networks.

4.1 Future work

The first part of this work leaves several possibilities for extension: If nonnegativity
of the solutions of the RDS (see lemma 3.1.7) can be proven for non-diagonal Fickian
diffusivity matrices D, then our results hold true also in the case of cross-diffusion as
described by [92]. Other types of dynamical systems derived from reaction networks
can be considered, like the patch systems [2], which are connected ODE systems
existing on a discrete domain, or stochastic reaction systems [65, 38]. As shown
in section 3.2, our approach can also be extended to RDS with other boundary
conditions than the homogeneous Neumann BCs considered here, for example, by
modifying the reaction network (see also [74]). A systematic study of this area is
still pending. Furthermore, this work did not consider unbounded solutions. The
problem with unbounded solutions is that the concept of feasibility of flux vectors
breaks down since, for example, a reaction can be active even though one of its
reactants has a concentration value approaching zero. Summarizing, our work about
DOs establishes a new field of research to be further-developed, which lies in the
intersection of stability analyses, bifurcation theory, etc. An algorithm to compute
all DOs of a given reaction network and an implementation as an online tool are in
preparation.

The method of model structure analysis and comparison presented in the third
and fourth section of the Results can help to select the right model for a particular
situation, to relate other models to the present ones, to obtain an overview of the po-
tential long-term dynamics of complex models, and to support model development,
for example, by providing a rapid consistency check. Within the class of SARS-Cov-2
models there are three that exhibit organizations, for which the species can be dis-
tributed. It is an open question, whether this is represented by experimental data.
We propose to find out whether it would be appropriate to construct models with
such DOs. This would be the case, if several subsets of species do not always ap-
pear together at one location where there concentrations are measured. Besides the
long-term behavior transient behavior can also be explained with respect to organi-
zations, for example by defining a projection from a system state to an organization,
as demonstrated for the Handel model (Figures 3.26 and 3.27). It is a task for future
work to systematically analyze the transition dynamics between organizations [64,
39].
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Our approach is not limited to IAV or SARS-Cov-2 models, but can be directly
applied to other viruses in the same way since their dynamics are similarly modeled
by ODEs and PDEs [101]. Furthermore, the approach is open to include other
dynamically relevant components like treatment and vaccination strategies.
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Appendix A

Reactions of Influenza-A virus
infection dynamics models

R1 : T + V → I + V (βTV)

R2 : I→ ∅ (δI)

R3 : I→ I + V (pI)

R4 : V → ∅ (cV)

Figure A.1: Reactions
of Baccam model [5].

R1 : EP → 2EP (ρEEP)

R2 : EP + V → E∗P + V (βαEPV)

R3 : E∗P → ∅ (δE∗E
∗
P)

R4 : E∗P → E∗P + V (παE∗P)

R5 : V → ∅ (cVV)

Figure A.2: Reactions
of Miao model [61].

R1 : T + V → I1 + V (βTV)

R2 : I1 → I2 (kI1)

R3 : I2 → ∅ (δI2)

R4 : I2 → I2 + V (pI2)

R5 : V → ∅ (cV)

Figure A.3: Reactions
of Baccam II model
[5] with delayed virus

production.

R1 : T + V → I + V (βVT)

R2 : F + T→ F + R (φFT)

R3 : R→ T (ρR)

R4 : I→ ∅ (δI)

R5 : I + F→ F (κIF)

R6 : I→ I + V (pI)

R7 : V → ∅ (cV)

R8 : I→ I + F (qI)

R9 : F→ ∅ (dF)

Figure A.4: Reactions
of Pawelek model[70]
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R1 : D→ U (λD)

R2 : U + V → E + V (bUV)

R3 : E→ I (gE)

R4 : I→ D (dI)

R5 : I→ I + V (
pI

1 + κF
)

R6 : V → ∅ (cV)

R7 : U + V → U (γbUV)

R8 : V + X→ X (kVX)

R9 : V → V + F (wV)

R10 : F→ ∅ (δF)

R11 : V → V + X ( f V)

R12 : X→ 2X (rX)

Figure A.5: Reactions
of Handel model [37]

R1 : ∅ → UH (SH)

R2 : UH + V → UE + V (kIUHV)

R3 : UH + F→ UR + F (kRUHF)

R4 : UH → ∅ (δHUH)

R5 : UE → UI (kEUE)

R6 : UE + K→ K (qKUEK)

R7 : UI → ∅ (δIUI)

R8 : UI + K→ K (qKUIK)

R9 : UR → ∅ (δRUR)

R10 : UI → UI + V (ρVUI)

R11 : V → ∅ (δVV)

R12 : UI → UI + F (aIUI)

R13 : F→ ∅ (δFF)

R14 : ∅ → K (SK)

R15 : UI → UI + K (ΦKUI)

R16 : K→ ∅ (δKK)

Figure A.6: Reactions
of Hernandez model

[40]

R1 : V + T→ V + E1 (βVT)

R2 : F + T→ F + W (φFT)

R3 : E1 → I (k1E1)

R4 : V + W → V + E2 (mβVW)

R5 : W → R (aW)

R6 : E2 → I (k2E2)

R7 : I→ ∅ (δI)

R8 : I→ I + V (pI)

R9 : V → ∅ (cV)

R10 : E2 → E2 + F (nqE2)

R11 : I→ I + F (qI)

R12 : F→ ∅ (dF)

Figure A.7: Reactions
of Saenz model [80]
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R1 : I→ I + V

R2 : S + A + V → S + A

R3 : H + V → H

R4 : V → ∅

R5 : V → ∅

R6 : D + H→ 2H

R7 : D + R→ R + H

R8 : R→ H

R9 : H + V → V + I

R10 : F + H→ F + R

R11 : E + I→ D + E

R12 : I→ D

R13 : D→ D + M

R14 : V → V + M

R15 : D + M→ D

R16 : V + M→ V

R17 : M→ ∅

R18 : M→M + F

R19 : I→ I + F

R20 : H + F→ H

R21 : F→ ∅

R22 : F + H→ F + R

R23 : R→ H

R24 : M + E→M + 2E

R25 : I + E→ I

R26 : ∅ → E

R27 : E→ ∅

R28 : M + P→M + 2P

R29 : ∅ → P

R30 : P→ ∅

R31 : P→ P + A

R32 : S + A + V → S + V

R33 : A→ ∅

R34 : P→ P + S

R35 : P + S→ P

Figure A.8: Reactions
of Hancioglu model

[34]

R1 : C→ C + V f

R2 : C + E→ C + E + V f

R3 : V f + F→ F

R4 : V f → ∅

R5 : V f → ∅

R6 : V f + C→ 2V f + C

R7 : m + V f → m + 2V f

R8 : V f + U→ V f + C

R9 : V f + C→ V f + U

R10 : m + V f + C→ m + V f + U

R11 : C + E→ E + m

R12 : C→MV

R13 : m→ U∅

R14 : V f → V f + MV

R15 : MV → ∅

R16 : MV + HE →MV + 2HE

R17 : m + MV + HE → m + MV

R18 : MV + HE →MV

R19 : MV + HE + E→MV + E

R20 : ∅ → HE

R21 : HE → ∅

R22 : MV + HB →MV + 2HB

R23 : m + MV + HB → m + MV

R24 : MV + HB →MV

R25 : MV + HB + B→MV + B

R26 : ∅ → HB

R27 : HB → ∅

R28 : MV + HE + E→MV + HE + 2E

R29 : m + MV + HE + E→ m + MV + HE

R30 : MV + HE + E→MV + HE

R31 : C + E→ C

R32 : ∅ → E

R33 : E→ ∅

R34 : MV + HB + B→MV + HB + 2B

R35 : m + MV + HB + B→ m + MV + HB

R36 : MV + HB + B→MV + HB

R37 : ∅ → B

R38 : B→ ∅

R39 : MV + HB + B→MV + HB + B + P

R40 : m + MV + HB + B + P→ m + MV + HB + B

R41 : ∅ → P

R42 : P→ ∅

R43 : P→ P + F

R44 : V f + F→ V f

R45 : F→ ∅

Figure A.9: Reactions
of Bocharov model

[10]
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R1 : ∅ → E

R2 : E→ ∅

R3 : E + V → V + E∗p

R4 : E∗p + TE → TE

R5 : E∗p → ∅

R6 : E∗p → E∗p + V

R7 : V → ∅

R8 : V + A→ A

R9 : ∅ → D

R10 : D→ ∅

R11 : D + V → V + D∗

R12 : D∗ → D∗ + DM

R13 : D∗ + DM → D∗

R14 : DM → ∅

R15 : ∅ → HN

R16 : HN → ∅

R17 : DM + HN → DM + HE

R18 : DM + HE → DM + 2HE

R19 : DM + HE → DM

R20 : ∅ → TN

R21 : TN → ∅

R22 : DM + TN → DM + TE

R23 : DM + TE → DM + 2TE

R24 : DM + TE → DM

R25 : ∅ → BN

R26 : BN → ∅

R27 : DM + BN → DM + BA

R28 : DM + BA → DM + 2BA

R29 : HE + BA → HE + 2BA

R30 : BA → ∅

R31 : BA → PS

R32 : HE + BA → HE + PL

R33 : PS → ∅

R34 : PL → ∅

R35 : PS → PS + A

R36 : PL → PL + A

R37 : A→ ∅

Figure A.10: Reac-
tions of Lee model [58]
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Reactions of SARS-Cov-2 virus
infection dynamics models

R1 : Vg → 2Vg (ρ)

R2 : Vg → ∅ (ν)

(a) Vargas-I Model

R1 : V→ 2V (p)

R2 : 2V→ ∅ (
p

K
)

R3 : V + T→ T (cT)

R4 : ∅ → T (sT)

R5 : V + T→ V + 2T (r)

R6 : T→ ∅ (δT)

(b) Vargas-II Model

Figure B.1: Lists of re-
actions of the Vargas

Models .

R1 : U + V→ I + V (β)

R2 : I→ ∅ (δ)

R3 : I→ I + V (δ)

R4 : V→ ∅ (δ)

(a) Abuin Model

R1 : → H (rH)

R2 : H + V→ In + V (kb)

R3 : H + V→ H + Vb (kb)

R4 : Vb→ m (kr)

R5 : P→ V (ka)

R6 : m→ m + S (SS)

R7 : S→ ∅ (dS)

R8 : In + S→ S (dI)

R9 : V + S→ S (dv)

(b) Su Model

Figure B.2: Lists of re-
actions of the Abuin
Model and the Su

Model .
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R1 : S + I→ 2I (α)

R2 : I→ R (ρ)

(a) Nesteruk Model

R1 : S + I→ I + E (
R0

NDI
)

R2 : S→ E (. . .)

R3 : ∅ → S (. . .)

R4 : S→ ∅ (. . .)

R5 : E→ I (
1

DE
)

R6 : E→ ∅ (. . .)

R7 : I→ ∅ (
1

DI
)

R8 : I→ ∅ (. . .)

(b) Wu Model

R1 : S + I→ I + E (
rβ

N
)

R2 : S + E→ 2E (
r2β2

N
)

R3 : E→ I (α)

R4 : I→ ∅ (γ)

R5 : I→ R ((1− v)γ)

R6 : I→ I + D (vγ)

(c) Bai Model

Figure B.3: Lists
of reactions of the
Nesteruk Model , the
Wu Model , and the

Bai Model .

R1 : v→ 2v (k)

R2 : 2v→ v (k)

R3 : v→ ∅ ( f (v))

(a) Bocharov-I Model

R1 : v→ 2v (k)

R2 : 2v→ v (k)

R3 : v + c→ c (1)

R4 : v + c→ v + 2c (φ())

R5 : v + 2c→ v + c (φ())

R6 : c→ ∅ (ψ())

(b) Bocharov-II Model

Figure B.4: Lists
of reactions of the

Bocharov Models .
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R1 : V→ 2V (p)

R2 : 2V→ ∅ (
p

KV
)

R3 : E + V→ E (cV)

R4 : ∅ → E (NE)

R5 : E→ ∅ (δE)

R6 : V + E→ V + 2E (r)

(a) Fitzgibbon-I Model

R1 : V→ 2V (p)

R2 : 2V→ ∅ (
p

KV
)

R3 : E + V→ E (cV)

R4 : ∅ → E (NE)

R5 : E→ ∅ (δE)

R6 : V + E→ V + 2E (r)

R7 : ∅ → S (NS)

R8 : S→ ∅ (δS)

R9 : V + S + I→ V + 2I (rW)

R10 : I→ ∅ (δI)

(b) Fitzgibbon-II Model

Figure B.5: Lists of re-
actions of the Fitzgib-

bon Models .

R1 : V→ 2V (p)

R2 : 2V→ ∅ (
p

KV
)

R3 : E + V→ E (cV)

R4 : ∅ → E (NE)

R5 : E→ ∅ (δE)

R6 : V + E→ V + 2E (r)

(a) In-host model

R1 : V→ 2V (p)

R2 : 2V→ ∅ (
p

KV
)

R3 : E + V→ E (cV)

R4 : ∅ → E (NE)

R5 : E→ ∅ (δE)

R6 : V + E→ V + 2E (r)

R7 : ∅ → S (NS)

R8 : S→ ∅ (δS)

R9 : V + S + I→ V + 2I (rW)

R10 : I→ ∅ (δI)

(b) Linked model

Figure B.6: Lists of re-
actions of the Almo-

cera Model .
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