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Abstract

We study spectral problems for two-dimensional integral system with two given non-
decreasing functions R, W on an interval [0, b) which is a generalization of the Krein
string. Associated to this system are the maximal linear relation Ty, and the minimal
linear relation Ty, in the space L2(d W) which are connected by Tiax = T . Itis
shown that the limit point condition at b for this system is equivalent to the strong limit
point condition for the linear relation Tp,«. In the limit circle case the Evans—Everitt
condition is proved to hold on a subspace T;f, of Tiax characterized by the Neumann
boundary condition at b. The notion of the principal Titchmarsh—Weyl coefficient of
this integral system is introduced. Boundary triple for the linear relation Tinax in the
limit point case (and for Ty in the limit circle case) is constructed and it is shown
that the corresponding Weyl function coincides with the principal Titchmarsh—Weyl
coefficient of the integral system. The notion of the dual integral system is introduced
by reversing the order of R and W and the formula relating the principal Titchmarsh—
Weyl coefficients of the direct and the dual integral systems is proved. For every
integral system with the principal Titchmarsh—Weyl coefficients ¢ a canonical system
is constructed so that its Titchmarsh—Weyl coefficient Q is the unwrapping transform

of g: 0(z) = zq(Z?).
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1 Introduction

In this paper spectral problems for integral systems, associated dual systems and, in
particular, Krein strings are investigated. We consider an integral system of the form

B *TadW(@) 0 o -1
u(x,k)_u(O,k)—J/O[ 0 dR(t):|u(t,A), J_[l 0] (1.1)

where u = [u; u2]7, with some spectral parameter A € C and measures d W and d R
associated with non-decreasing functions W(x) and R(x) on an interval [0, b), see
[5].

Integral systems (1.1) arise in the theory of diffusion processes with two measures
[35,38]. In the theory of stochastic processes the Eq. (1.3) describes generalized diffu-
sion processes which includes both diffusion processes and birth and death processes
[18,19,23,31]. The system (1.1) is reduced to a second order differential equation

d dy \ )
AW (x) (dR(x)>_”(x)’ x€l0,b), »eC (y=un, (12

with measure coefficients studied recently in [12] under an extra assumption that
R(x) is strictly monotone. If, in addition, W (x) and R(x) are absolutely continuous

and w := W/, p~! := R/(> 0 a.e.) then the system (1.1) is reduced to the Sturm—
Liouville equation in the polar form

—(py') = rwy.

In a special case, when R(x) = x one has uy = u/ and system (1.1) can be rewritten
as the equation of a vibrating string in the sense of Krein [27]

y(x, ) = y(0,1) +xy'(0, A) — k/x(x —0y(,s)dW(@), xe[0,b). (1.3)
0

Let c(-, 1) and s(-, 1) be the unique solutions of (1.3) satisfying the initial conditions
c0,0) =1, (0,0) =0, and s(0,1) =0, s'(0,1) =1.

The function

g5 1= lim &

x—b c(x, A) (1.4)
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is called the principal Titchmarsh—Weyl coefficient of the string [30] or the dynamic
compliance coefficient in the terminology of Kac and Krein [27] and describes the
spectral properties of the string. The principal Titchmarsh—Weyl coefficient g (1) is a
Stieltjes function and the measure do from its integral representation

gs() = a +/O° o) 50 (15)
0o t—A

is the spectral measure of the string (1.3), which in the limit point case at b is specified
by the boundary condition u'(0) = 0 at 0.

Denote the integral system (1.1) by S[R, W]. In the present paper we define the
principal Titchmarsh—Weyl coefficient q of the integral system S[R, W] by

. os1(x, A)
g(A) = lim ,
x—bcr(x, A)

(1.6)

where [c1(-, 2) e2(-, 1)]", and [s1(-, 1) s2(, 1)]" are solutions of (1.1) satisfying the
initial conditions

c1(0,2) =1, c2(0,A) =0, and s1(0,1) =0, 52(0,A) = 1. 1.7)

Formula (1.6) requires justification. For this purpose we use the operator approach
to the integral system S[R, W] developed in [41], the boundary triples technique
from [21,32] and the theory of associated Weyl functions as introduced in [10,11].
The maximal linear relation Tpax is defined (see Definition 2.7) as the set of pairs
u = [uy 17 suchthatui, f € L2(dW) and the equation (2.17) is satisfied for some
function up € BVie[0, b), i.e. of bounded variation on [0, b") for every b’ < b.
The closure of its restriction to the set of compactly supported functions is called the
minimal linear relation Tin. In [41] it was shown that Tpi, is symmetric in L2(d W),
Trax = Tnﬁin and boundary triples for the linear relation Ty, were constructed both
in the limit point and in the limit circle case.

In Theorem 4.3 we show that the system S[R, W] is in the limit point case at b if
and only if it satisfies the strong limit point condition at b, see [16], which in our case
is of the form

lim uy(x)ua(x) =0 forall u € Tiux. (1.8)
x—b

As a consequence of (1.8) we conclude that in the limit point case the linear relation
Tmin and its von Neumann extension Ay, characterized by the boundary condition
u3(0) = 0, are nonnegative, the corresponding Weyl function is a Stieltjes function
and coincides with the principal Titchmarsh—Weyl coefficient of the system S[R, W].
The strong limit point condition for second order differential operators was introduced
by Everitt [16].

In the limit circle case the linear relation T, has defect numbers (2, 2), in this
case an intermediate symmetric extension Ty with defect numbers (1, 1) of Ty
is considered as the restriction of Tj,,x to the set of elements u € Ty such that
u1(0) = u2(0) = uz(b) = 0. In this case we show in Lemma 3.3 that the strong
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limit point condition (1.8) fails to hold, but still the limit in (1.8) is vanishing on the
subspace Tg‘, of Thax, 1.€. the following Evans—Everitt condition holds, cf. [17]:

lim uy (uz(x) =0 forall u e Ty, (1.9)
X—>

This result implies the nonnegativity of the linear relation 7.
In [33] another analytical object—the Neumann m-function of the system S[R, W]
was introduced by the equality

_ s2(x, A)
my ()= lim

(1.10)

which is a special case of a more general definition of the Neumann m-function
presented in [5]. In Proposition 3.6 it is shown that the Neumann m-function m y (1)
is a Stieltjes function and it coincides with the principal Titchmarsh—Weyl coefficient
of the integral system S[R, W].

The system S[R, W]is called regular if R(b)+ W (b) < oo and smgular otherwise.
In the regular case we construct the canonical singular extension S [R, W]of the system
S[R, W] with R, W extended to non-decreasing functions R W on the interval (0, 00),
so that the principal Titchmarsh—Weyl coefficients of both systems coincide.

The dual system §[R, W] of the integral system S[R, W] in the singular case
is obtained by changing the roles of R and W. In the regular case the dual sys-
tem of the integral system S[R, W] is defined as the dual of the canonical singular
extension S[ﬁ , VT/] of the system S[R, W]. In Theorem 5.2 it is shown that the prin-
cipal Titchmarsh-Weyl coefficient ¢ of the dual system is related to the principal
Titchmarsh—Wey]1 coefficient g of the system S[R, W] by the equality

1
q(x )_—m (1.11)

both in the regular and the singular case.
In Theorem 6.1 given a singular integral system S(R, W) we construct a canonical
system
JY'(x) = —zHa(x)y(x), x €[0,1x), y1(0) =0, (1.12)

with a diagonal Hamiltonian

| hix) 0

such that the corresponding Titchmarsh—Weyl coefficient Q; (see [7]) is connected
with the principal Titchmarsh—Weyl coefficient g of the integral system S(R, W) by
the formula

04(2) = zq(z%). (1.13)

In the case of a string (R(x) = x) the notion of the dual string and formula (1.11)
connecting the principal Titchmarsh—Weyl coefficients of the direct and the dual string
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in the singular case were presented in [25,27]. Analogues of the relations (1.11)
and (1.13) between strings, dual strings and canonical systems of differential equations
were studied also in [30].

2 Preliminaries
2.1 Linear Relations

Let $ be a Hilbert space. A linear relation 7 in §) is a linear subspace of §) x §. Let us
recall some basic definitions and properties associated with linear relations, see [1,4].

The domain, the range, the kernel, and the multivalued part of a linear relation T
are defined as follows:

dom 7T := {f: |:§:| € T}, ran7T := {g: |:(ch] € T}, 2.1

Ker T = {f: m GT}, mul T = {g: [E]GT}. 2.2)

The adjoint linear relation T* is defined by

— ”ﬂ €Hx9: (f,v)s = (u, g)s, for any m c T}. 2.3)

A linear relation T in $) is called closed if T is closed as a subsRace of  x $. The

set of all closed linear operators (relations) is denoted by C () (C(£)). Identifying a

linear operator T € C($)) with its graph one can consider C($)) as a part of C(9).
Let T be a closed linear relation, A € C, then

O 111

A point A € Csuch thatker (T — AI) = {0} and ran (T — Al) = 9 is called a regular
point of the linear relation T'. Let p (T') be the set of regular points. The point spectrum
0p(T) of the linear relation 7T is defined by

0p(T):={k € C: ker(T —AI) # {0}}, (2.5)
A linear relation T is called symmetric if T € T*. A point A € C is called a point
of regular type (and is written as A € p(T)) for a closed symmetric linear relation T,

if A ¢ 0,(T) and the subspace ran(7 — A1) is closed in H. For 1 € p(T) let us set
M, (T*) := ker(T* — AI) and

N, (T*) := {u,\ = [;‘uﬁ] Cuy € ‘.TKA(T*)} ) (2.6)
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The deficiency indices of a symmetric linear relation 7' are defined as

n+(T):= dimker(T* Fil). 2.7)

2.2 Boundary Triples and Weyl Functions

Let T be a symmetric linear relation with deficiency indices (1, 1). In the case of a
densely defined operator the notion of the boundary triple was introduced in [21,32].
Following the papers [11,37] we shall give a definition of a boundary triple for the
linear relation 7.

Definition 2.1 A tuple IT = (C, I'g, I'1), where I'g and I'; are linear mappings from
T* to C, is called a boundary triple for the linear relation 7*, if:

(i) forallu = |:jj:|, V= [;} € T* the following generalized Green’s identity holds
(f )5 — (u, &)y = T1ulov — Toul'yv; (2.8)

(ii) the mapping I' = [£0:| : T* — C? is surjective.
1

Notice, that in contrast to [37] the linear relation 7 is not supposed to be single-
valued. The following linear relations

Ag:= ker I, Ap:=ker"; 2.9)

are selfadjoint extensions of the symmetric linear relation 7.

Definition 2.2 ([10,11]) Let IT = (C, 'y, I'1) be a boundary triple for the linear
relation 7*. The scalar function m(-) and the vector valued function y (-) defined by

up o *

m] € MT™), 1 € p(Ao)
(2.10)

are called the Weyl function and the y-field of the symmetric linear relation T corre-

sponding to the boundary triple IT.

mM)Touy, =Ty, yM)louy =uy, u) = |:

The Weyl function and the y-field are connected via the next identity (see [11])

m) —m@)* = 0. =y yM), *,¢ € p(Ao). (2.11)

Definition 2.3 ([26]) A functionm : C\R — B(H) is said to be a Herglotz-Nevanlinna
function and is written as m € N, if the following conditions hold:

(i) m is holomorphic in C\R;
@) Imm@) >0forA e CL:={AeC:Imx > 0};
(iii) m(x) = m()* for A € C\R.
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It follows from (2.11) that the Weyl function m (-) is a Herglotz-Nevanlinna function.
A Herglotz-Nevanlinna function m which admits a holomorphic continuation to R_
and takes nonnegative values forall A € R_ is called a Stieltjes function. Every Stieltjes
function m admits an integral representation (1.5) with a non-decreasing function o (¢)
such that fR+(1 +0)7 Yo @t) < 0.

2.3 Minimal and Maximal Relations Associated with the Integral System S[R, W]

Let/ = [0, b) be aninterval withb < oo, let W (x) be anon-decreasing left-continuous
function on [ such that W(0) = 0, let dW be the corresponding Lebesgue—Stieltjes
measure, and let £2(dW, I) be an inner product space which consists of complex
valued functions f such that

/ IF (> dW (1) < oo
1

with inner product defined by
(oo = [ Fog@aw .
1

Kgomp (dW, I) denotes the subspace consisting of those f € £2(dW, I) with compact
support in I, BV [0, b) denotes the set of functions of bounded variation on [0, b) and
BVioc[0, b) is the set of functions f such that f € BV[0, b’) for every b’ < b. Denote
by L>(dW, I) the corresponding quotient space for £>(dW, I), which consists of
equivalence classes w.r.t. d W and denote by 7 the corresponding quotient map, i.e.
71 L2dW, 1) — L2(dW, I). Often we write L2(dW) instead of L2(dW, 1) if 1
coincides with [0, b).

From now on the following convention is used for the integration limits for any
measure d W on an interval:

/ fdw:= fdaw. (2.12)
a [a,x)

Thus, an integral as a function of its upper limit is always left-continuous. With
every function of bounded variation f we associate the left-continuous and the right-
continuous functions f_ and f defined by

S = lim f@), fr ()= lim £0). 2.13)

Let u and v be left-continuous functions of bounded variation, du and dv be the cor-
responding Lebesgue—Stieltjes measures. The following integration-by-parts formula
for the Lebesgue—Stieltjes integral (see e.g. [22]) is used throughout the paper

/x udv + /x v+ du = u(x)v(x) —u(a)v(a). (2.14)
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If u and u4 have no zeros then it follows with v = 1/u from (2.14)

d(l):d(%) =ud(l>+Ldu=o.

u u4

This leads to the quotient-rule formula

d (1) __duw (2.15)

u uuy

The following existence and uniqueness theorem for integral systems was proved in
[5, Theorem 1.1].

Theorem 2.4 Let dS be a complex n x n matrix-valued measure. For every left con-
tinuous (either n x n or n x 1 matrix valued) function A(x) in BVio[0, b) there is a
unique function U such that the equality

X

Ux)=A(x) +/ ds-u (2.16)
0

holds for every point x € [0, b).

Remark 2.5 Due to the properties of the Lebesgue—Stieltjes integral and the used
convention, any solution U to (2.16) is left continuous and belongs to B Vi[O, b),
componentwise.

Now we focus on integral systems S[R, W] of the form (1.1), where R(x) and W (x)
are nondecreasing and left-continuous real-valued functions on the interval / = [0, b)
such that R(0) = W(0) = 0. We define the corresponding inhomogeneous system.

Definition 2.6 Let f € L2 (dW) and [u; u2]T be a vector-valued function such that
the following equation

up [ * 0 dR@) || f
o=[a]o [ Lo SVl en

holds for every point x € [0, b). The triple (11, ua, f) is said to belong to the set 7 if
uy € L2@AW).

Due to Remark 2.5 for every (uy, up, f) € 7 both functions u; and u, belong to
BVioc[0, b). Theorem 2.4 implies that for every f € L2 (dW) the vector-valued func-
tion [u; u]” satisfying (2.17) is uniquely determined by its initial values at zero,
however u; € £2(dW) is not guaranteed for an arbitrary [ € L2dW).

Definition 2.7 We define the maximal and the pre-minimal relations Tiax, 7' C
L>(dW) x L>(dW) by

yI— {u — [’;“}j} C(uy, un, f) € T}, (2.18)
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T = {u = |:7;_L}1:| € Tmax: (i, uz, f) €T, uy, f € ﬁgomp(W, I)}

(2.19)

where w: L2(dW, 1) — L*(dW, I) is the quotient map defined at the beginning
of Sect. 2.3.

Denote M, := My (Tax), + € C\R. Everywhere in the paper, except Remark 3.10,
we suppose that the following two natural assumptions hold.

Assumption 2.8 The functions R and W have no common points of discontinuity.

Assumption 2.9 There exists an interval [0, by) C [0, b) such that
dimspan{rml, 7R} =2 (2.20)

where 77 : L2(W, [0, bg)) — L%(W, [0, bp)) is the corresponding quotient map.

Assumption 2.8 has the important consequence that the first component of a solu-
tion has no discontinuity in common with the second component of any solution
(ui,up, f) € 7. Assumption 2.9 makes it possible to assign correctly the values
u1(x) and uz(x) for every u € Thyax. In case of absolutely continuous functions R
and W the differential system equivalent to S[R, W] is definite in the sense of [36,
Definition 2.14] if and only if Assumption 2.9 holds.

Definition 2.10 Let (uy, un, f) € 7 and u € Tyyx be its image under the mapping

Tuq

Ta(ul,uz,f)|—>u=|:nf

:| € Tiax. (2.21)

The mappings ¢ 2[x]: Tmax — C are defined by
¢ilxlu:=u;(x), ie€{l,2}, xe€]l0,0b).

The following Proposition provides a partial analog of [36, Proposition 2.15] and [12,
Proposition 3.9] for the integral system S[R, W].

Proposition 2.11 [f Assumptions 2.8 and 2.9 hold then the mappings ¢1 2[x] are well-
defined.

Proof Assume that (u1, u2, f) € 7 and ru; = 7w f = 0. Let us show that under this
assumption
u1(x) =ur(x) =0 forx €[0,b). (2.22)

From the second line of (2.17) it follows immediately that
uz(x) = uz(0). (2.23)
Now substituting (2.23) in the first line of (2.17) we obtain

ui(x) = u1(0) + uz2(0)R(x) (2.24)
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The mapping  applied to (2.24) gives
0=u1(0)- 71 +ur0)-mR.

Now it follows from (2.20) that ©1(0) = u2(0) = 0, which together with (2.23) and
(2.24) proves (2.22). O

Further in the text we will simply write #1 2 (x) instead of ¢; 2[x]u unless this can

. . . T T
lead to confusion. For a pair of vector-valued functions u = [u1 uz]", v = [v1 v2]
we define the generalized Wronskian by

[u, v](x) ;== up(x)v2(x) — ua(x)vy(x). (2.25)

Proposition 2.12 If (uy, uy, f) and (v, vz, g) belong to T then the following gener-
alized first and second Green’s identities hold

/fvulW:/ uava dR — uzy(x)v1(x) + u2(0)v1(0), (2.26)
0 0

/0 (fo1 — urg) dW = [, v1(x) — [, v](0). (227)

for an arbitrary interval [0, x) C [0, b).

Proof We recall that due to Assumption 2.8 the functions R and W do not have common
points of discontinuity, so neither do the functions vy and u5. By virtue of (2.17) we
get

dvi =vydR, dup=—fdw.

and hence, using the integration-by-parts formula (2.14):

/0 vidus +/0 uz4 dvy = uz(x)vi(x) — u2(0)v1(0) (2.28)

one obtains (2.26). Swapping the tuples (u1, u2, f) and (v, vz, g) in (2.28) and sub-
tracting the obtained expression from (2.26) proves (2.27). O

Due to Theorem 2.4 the system S[R, W] has a unique solution for every choice of
initial values. Let ¢(-, A) = [c1(-, A) c2(-, M7 and s(-, &) = [s1(, &) s2(-, V)17 be its
unique solutions satisfying the initial conditions (1.7).

Corollary 2.13 For every ) € C and x € [0, b) the following formulas hold:
[e(-,A), s, MD](x) = c1(x, A)sa(x, A) —ca(x, A)s1(x, 1) =1, (2.29)

c1+(x, A)sa(x, X)) —ca(x, M)s14(x, 1) =1, (2.30)
c1(x, M)sop(x, X)) —cop(x, A)sp(x, 1) = 1. (2.31)
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Proof Equality (2.29) follows immediately from (2.27). Further we subtract the left-
hand side of (2.29) from the left-hand side of (2.30):

(c14-(x, A)s2(x, 1) — c2(x, A)s14.(x, A) = (c1(x, A)s2(x, &) — calx, A)s1(x, 4))
= (c1+(x, 2) —c1(x, M))sa(x, &) — c2(x, M) (s14.(x, ) = s1(x, 1)) (2.32)

One can immediately see that the expression (2.32) is equal to zero at every point of
continuity of R. Let xo be a point of discontinuity of R. From (2.17) one can see that

c14+(x0, A) — c1(xp, A) = c2(x0, A) dR({x0}),
s14(x0, A) — s1(x0, A) = s2(x0, A) dR({x0})

and hence

(c14(x0, M) — c1(x0, A))s2(x0, 1) — c2(x0, A) (514 (X0, ) — 51(x0, A))
= c2(x0, A)s2(x0, A) dR({x0}) — s2(x0, A)c2(x0, 1) dR({x0}) = 0.

The proof of (2.31) is similar. O

It follows from (2.27) that the pre-minimal relation 7’ is symmetric in L2(dW).

Definition 2.14 The minimal relation Ty, is defined as the closure of the pre-minimal
linear relation T”: Typi, = clos T”.

As was shown in [41] the linear relation Ty, is symmetric, Ty, = Tiax and

0) =0,
Tinin = {u = [’;ﬂ € Thnax : Z;EO; o el =0V = [’;’;] c Tmax}.

Lemma2.15 Letl < b, h € closCy U {o0}, and let m(X, 1, h) be some coefficient
such that the function

Wt A)i=s(t, A) —mh, 1, h) c(t, )) (2.33)

satisfies the condition Y1 (I, A) + hyo (I, L) = 0. Then:

(1) The coefficient m is well-defined and can be calculated as

s1(l, ) + hsa(l, L)
ci1(l, ) + hea(l, )\).

mA, 1, h) = (2.34)

(ii) For every A € Cy the set Di(\) :={m(A,l, h): h € closCy U {oo}} is a disk in
Cy such that w € D;(X) if and only if

)
J§
/ I51(£, 3) — wey (6, WPAW (1) < — (2.35)
0 Im)\.
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and its radius can be calculated as

-1

1
1) = <21mk/ |s1(t,x)|2dW(t)) . (2.36)
0

(iii) The Weyl discs Di(A) are nested, i.e. D;, € Dy, provided I} < I < b, and the
function s1(-, A) — wcy (-, L) belongs to L2 dW) provided w € Ni<p Di(1).

Proof (i) From (2.33) and the condition ¥r{ (I, ) + Ay (I, 1) = 0 we get

Vi, 2) +hina(, 1) = (1, A) + hsa (L 2) —m(h, L ) (e (L 2) + hea (1, 4) =0

which yields (2.34).

(ii) It is clear from formula (2.34) that the function m(A, [, -) maps Ry U {oo} into
a circle. Let & € closC4 U {oo} and @ := m(X\,[,h) € D;(A). Applying the
second Green’s identity (2.27) to the tuples (Y1(-, A), ¥2(-, A), A¥1(-, A)) and
(Y1 C, 2), Y2 (-, A), A Y1 (-, 1)) provides

!
(* —X)/O W1t WPARy (1) = (0 — @) — (h — B) |y (1, W)

and hence

Imw Imh

l
/0|s1(r,x>—wc1<t,x>|2dRz<r>=m mnvz(l,m? (2.37)

Since Im A4 > 0, (2.35) follows now from (2.37).
(iii) The proof of (2.36) and item (iii) is standard, see [3, Section 8.13] and is omitted.
m}

Assume that the point b is singular for the system (1.1), i.e. R(b) + W (b) = oo.
Then the following alternative holds, [5, Proposition 2.4]:

(i) either discs D;(X) shrink to a limit point as [ — b for all A € C\R and then
dim O, = 1 forall A € C\R,

(ii) or discs Dj(A) converge to a limit disc as [ — b for all A € C\R and then
dim 91, = 2 for all . € C\R.

Definition 2.16 In the case (i) the system S[R, W] is called limit point at b, in the case
(i) the system S[R, W] is called limit circle at b.

Remark 2.17 1. A matrix version of an integral equation equivalent to the integral
system S[R, W] with R(x) = x and W (x) continuous was considered in [2] and
later in [39]. Such an equation can be reduced to a canonical differential system,
see [2, Section 2.2]. Condition of definiteness of general matrix canonical differ-
ential system was found in [36]. In the scalar case this condition coincides with
Assumption 2.9.
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2. Eckhardt and Teschl developed in [12] an operator approach to the Sturm-Liouville
equation

d dy * B
- W) <dR(x) +/ y(t)dQ(t)) =Ay(x), x€(a,b), reC, (2.38)

with measure coefficients d W, d R and d Q in the case when R is strictly increasing.
If in addition, R and W are continuous at ¢ = 0 integral system (1.1) is reduced to
Eq.(2.38), where O = 0. However, in the case when R is not strictly increasing the
minimal relation Tpn in Definition 2.14 may have a nontrivial multivalued part,
which is not the case in [12]. For instance, if W (x) = x, R(x) = (x — 1) x(1,2)(x),
x € [0, 2), then (0, up, f) € 7 iff

ur(x) = —/ fdt, feL*dW,[0,1]) e {1}
0

and hence mul(Tpin) = L2(dW, [0, 1]) © {1}. Here X(1,2)(x) is the indicator of
the interval (1, 2).

Differential systems with distributional coefficients were studied also recently in
[13,20].

3 Integral Systems in the Limit Circle Case
3.1 The Fundamental Matrix of the System S[R, W]

We will start with some general properties of the fundamental matrix of the system
S[R, W].

Lemma 3.1 Let U(x, A) be the fundamental matrix function of the system S[R, W]

cr(x, A) sp(x, A)

Ux,2) = |:C2(X, 1) s2(x, )

] 1 eC. @3.1)

Then:

(1) Forevery A, u € C the following identity holds

* — * L)
J— UG, W JUGx, L) = —(h — M)/o [ggt gﬂ [e1(6,2) 511, )] dW ().
(3.2)

(i) Forevery x € [0, b), U(x, X) is entire in A.

(iii) The entries of U (x, \) are nonnegative for x € [0, b), . € R_. If, in addition, the
interval (0, x) contains growth points of R and W, and

a = infsuppdW, a; =inf(suppdR N (a, b)), 3.3)
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then

lim c¢j(x, ) =400, x € (ay, b); Iim cy(x,A) = +o00, x € (a, b);
A——00 A—>—00

3.4
Iim si(x,A) = +o00, x € (ay, b); lim sy(x,A) =400, x € (a, b).
A——00 A——00
3.5)
@iv) If A € R_ then
, A , A
S n b b, (3.6)

< b
cr(x,2)  cax, A)

s1(x,0) s2(x,1)

the function e is increasing on [0, b) and the function EYC) is decreasing

on (a, b).

Proof 1. By (2.26) for the triples (c1(-,A),c2(-, 1), Ac1(-,2)) € 7T and
(c1(, ), ca(-, ), per (-, ) € 7 one obtains

()»—ﬁ)/o ci(t, Mei1@t, W) dW = ci(x, Mea(x, @) — e2(x, Mer(x, @) (3.7)

this proves (i) for the 1, 1-blocks of (3.2).
The proof for other blocks of (3.2) is similar.
2. It follows from (3.2) that

U, )*=JU@x,m T, necC.

Therefore,

U(-xa)")_U(-x7ﬁ) _ — T/x |:C1(t,ﬁ):|
7 =U(x,m)J s [cl(t,k) sl(t,k)]dW(t),

hence U (x, 1) is holomorphic on C which proves (ii).
3. To show (iii), expanding ¢ (x, ) and c2(x, A) in series in A

cr(x, A) =1 =201 (x) + A2 () + -+, ca(x, 1) = —a (x) + A2 (x) + - -
one obtains from (1.1) that
Ui = W), @(x) = /O W (1) dR(1)

X X t
Yn (x) :/0 Pn—1(1) dW (1), wn(X)Z/O dR(t)/0 Pn-1(s)dW(s), neN.
(3.8)
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This implies that ¢, (x) > 0, ¥, (x) > 0 for n € N and hence
ci(x,A) >0, cp(x,A)>0 for x€[0,b), LeR_.

Moreover, it follows from (3.8) that

X
cr(x,A) =1+ IAI/ W) dR(t), ca(x,2) =AW (x). (3.9)
0
Therefore, the relations (3.4) hold since
X
/ W(@)dR(t) > 0forx € (a;,b) and W(x) > O forx € (a, b).
0

The proof of (3.5) is similar.
4. The identity (2.29) yields

A A 1
20, 4) s A) (3.10)
co(x,A)  c1(x, ) c1(x, A)eca(x, A)
This proves the inequality (3.6).
It follows from (1.1), (2.14), (2.15), and (2.30) that
s1(x, ) c14(x, A)s2(x, A) — ca(x, A)si4(x, A)
= dR(x)
ci(x, A) c1(x, A)cp+(x, A)
1
=—+—————dR(x)
cr(x, Aer(x, 2)
and hence N . |
5106, 2) )=/ R (3.11)
c1(x, ) o c1(t, A)cr(r, )
Since ¢1(x, 1), c1+(x,A) > 0 for A € R_ and x € [0, b), the function zig;‘»; is
increasing on [0, b).
Similarly, by (1.1), (2.14), (2.15), and (2.31)
S A —A
d (CZ(X )> - AW (x), x €[0,b) (3.12)
s2(x, L) 82(x, A)sa+(x, A)
and hence the function 381)\\; is increasing on [0, b). This proves (iv). Notice, that the
function Zgi; is not defined on [0, a]. O

3.2 The Evans-Everitt Condition in the Limit Circle Case

Proposition 3.2 The system S[R, W1 is limit circle at b if and only if 1, R € L>(dW).
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Proof Using the well-known procedure from [3, Theorem 5.6.1] (see also [41, The-
orem 4.5]) one can show that S[R, W] is limit circle at b if and only if c;(x, 0)
and s1(x, 0) belong to L2(dW). Substitution of 1 = 0 to (1.1) gives c2(x,0) = 0,
s2(x,0) = 1 and hence c1(x,0) = 1, s1(x,0) = R(x). O

If the system S[R, W] is regular at b, then the following limits exist:

c1(b,A) = liHil) c1t,n), sib,r) = linlljsl(t, A), (3.13)
— —

ca(b, A) = limcy(t, L), s2(b, A) = lim sp(¢, A). (3.14)
t—b t—b

Assume now that the system S[R, W] is limit circle at b. One can check (see [27,

Section 10.7], [40, Theorem 3.8]) that for every u = |:77Truf1j| € Tiax the limit
b
ur(b) = up(0) — / fdw (3.15)
0

exists and is well defined. Therefore, the limits (3.14) exist.
Consider a one-dimensional symmetric extension Ty of the linear relation Tinip
defined by

Ty = {u - [’;’;}] S, ua, £) €T, ur(0) = uz(0) = ur(b) = o}. (3.16)

As follows from (2.27) the adjoint linear relation T;‘, is of the form

T} = {u = [Zﬂ C(uy, s f) €T us(b) = 0}. (3.17)

Lemma 3.3 Let the system S[R, W] be limit circle at b. Then for every u = I:J:}I} €

Ty one has up € L2(R) and the following two equalities hold:

li_I)I})ul(X)=M1(0)+<f, R), (3.18)
lirr}bul(x)ug(x) =0. (3.19)

Conversely, if u € Tmax, the endpoint b is singular and (3.19) holds, then u € T;\k,.
Tuq

nf

first line of (2.17) one gets

Proof Letu = € Ty . Applying the integration-by-parts formula (2.14) to the

up(x) =u1(0) +ur(x)R(x) + /0 R@) f(t)dW(t). (3.20)
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We recall that in the limit circle case 1, R € L>(dW) and f € L>(dW) by the

assumption of the lemma. The condition u>(b) = 0 implies that u;(x) = f xb faw
and hence (3.20) can be rewritten as

b
ur(x) =ur(0) +(f, R) —/ (R(t) — R(x)) f (1) dW(2). (3.21)

Note the following estimation:

b
< / (R(t) = R(x)|f ()| dW (1)

b
/ (R(t) — R()) £ (1) dW (1)

b (3.22)
S/ R|f|dW — 0 as x — b.
X

Now (3.18) follows from (3.21) and (3.22), and (3.19) finally follows from (3.18).
The claim uy € L3(R) for u = 7;}1} € T; follows from (3.18) and the first
Green’s identity (2.26)

b b
/Of(t)ul(t)dW(t)=/0 qulzdR(t)—)}i_ljlbuz(X)M(X)+M2(0)M1(0)

b
2/ lu2PdR (1) + 12 (0)u1 (0). (3.23)
0

TUuq
nf
we have u(b) = a where a € C. In the limit circle case the singular endpoint b
implies R(b) = oo. If a # 0 then from (2.17) we get u1(b) = *oo and hence (3.19)
does not hold. O

Now assume that the endpoint b is singular and u = [ € Tmax. From (3.15)

Remark 3.4 The condition (3.19) for Sturm-Liouville operators in the limit circle case
was introduced and studied by Evans and Everitt in [17]. We will call it the Evans—
Everitt condition.

3.3 Boundary Triples for Integral Systems in the Limit Circle Case
Definition 3.5 (see[5,33]) The functionm (X, b, 0o) from (2.33) for which the solution
YN, ) = s, 1) —m(h, b, 00)e(t,A), tel, (3.24)

satisfies the condition
(b, 1) =0, (3.25)

is called the Neumann m-function of the system S[R, W] on I subject to the boundary
condition (3.25) and wN(t, A) is called the Weyl solution of (1.1).
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It follows from (2.33) and the condition gﬁév (b,)) = 0 that sp(b,A) —
m(A, b, 00)ca (b, A) = 0 which proves the formula

s2(b, L)

m(\, b, 00) = b h)

(3.26)

We will show below that the function m (X, b, 00) is the Weyl function of the linear
relation Ty in the sense of Definition 2.2.

Proposition 3.6 Let the system S[R, W] be singular and limit circle at b, let Ty
be defined by (3.16), and let m(A, b, 00) be the Neumann m-function of the system
S[R, W] given by (3.26). Then:

() Ty is a symmetric nonnegative linear relation in L>(dW) with deficiency indices
(1, D.
(i) The triple IV = (C, T}, T'N), where

Tu =ux0), TVu=—ui(0), uerty, (3.27)

is a boundary triple for Ty;.

(iii) The Weyl function my (1) of Ty corresponding to the boundary triple TIV coincides
with the Neumann m-function m(A, b, 00).

@iv) The Weyl function my (L) of Ty coincides with the principal Titchmarsh—Weyl
coefficient q(\) of the system S[R, W] defined in (1.6), belongs to the Stieltjes
class S, and

lim my) = Ry(a), (3.28)
A——00

where a = inf suppd W.
(v) The Weyl function my (L) of Ty admits the representation

my () = + i (1); (3:29)

W) -4
where m is a function from S such that limy_,o ym(iy) = 0.

Proof 1. To show (i), (ii), let the tuples (u1, uz, f), (vi, v2, g) € 7T satisfy us(b) =
vn(b) =0,1e. u,v e Tﬁ. Let u € R. By formula (2.29) at least one of the values
c2(b, ) and s2(b, w) is not equal to 0. Assume that ¢z (b, i) # 0. Due to the identity

[, v1B) = e2(b, 10~ { ), e, 101B)02B) = wa T, e, 1)

the second Green’s identity (2.27) is of the form

b
/0 (for —u18) dW (1) = [u, v](b) — [u, ](0) = u2(0)v1(0) —u1(0)v2(0). (3.30)

By Definition 2.1 the boundary triple for Ty can be taken as ny =, rY, F{V ),
with F(l)v, F{V given in (3.27).
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It follows from the first Green’s identity (3.23) and Lemma 3.3 that for every
(rur, )T € Ty

b b
/ F@Oui)dW (@) = / uz|*d R (1) > 0. (3.31)
0 0

2. Let us prove (iii). The defect subspace 9, (Ty) is spanned by the function
wfv(~, 1), where ¥V (r, 1) is the Weyl solution from (3.24). Denote u(r,1) =
N, Co)T e MUTR). Using (3.24), (3.27) one obtains

IYa (0 ==y 0.0 =mO.b,oo), TyuV(. 1) =y 0.1)=1
and hence by (2.10) the Weyl function m y (1) is of the form

NG — m(h, b, 00). (3.32)

Therefore, the Weyl function my()) coincides with the Neumann m-function
m(A, b, 00).

3. The inclusion my € S follows from Lemma 3.1, since the functions s> (x, 1)
and c2(x, A) are positive for A < 0 and the function m (1) admits a holomorphic
nonnegative continuation on R_.

Leta = inf supp W and a; = inf(supp RN (a, b)). Then by Assumption2.9a; < b
and due to (1.1) and Lemma 3.1 (iii)

ci(x,A) =1forx <a; and Alim c1(x,A) = +ooforx > aj.
——00

Now we must consider two cases:

(a) a1 > a and R has a jump at ay;
(b) either a; = a or a; > a and R has no jump at a;.

In case (a) ¢1 (-, A) has a jump at point a; and we get

1

c10x Aers (v, 2) A o 3.33
cr(x, Mer+(x, A) - X[O,m)()() as - —00 ( )

and hence by the Lebesgue bounded convergence theorem one obtains from (3.11)

si(x,2) /X dR(t)
0

- N dR =R =R . (334
r——o0 c1(x, A) c(t, )\-)C1+(l‘, ) /[‘O,al) (ar) +(a). ( )

The last equality in (3.34) follows from a; > a and (3.3).
In case (b) c1 (-, A) has no jump at point a; and we get

1

_— A —00. 3.35
C](X,K)C1+(x,)\)_)X[O’al](X) as A — —o0 (3.35)
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Similarly to (3.34) one obtains

s1(x, L)

im T Ry(a1) = R(a). (3.36)

Since R(b) + W (b) = +o0 it follows from (3.9) that lim,_.; c1 (x, A)ca(x, A) = 400
for all A € R_ and hence it follows from (3.10) that

) A . , A
g(A) = lim s1 4) = lim $2(x, 1) =
x—=bci(x,A) x—=bcy(x, )

my((A), AeR_.

Since ¢ and my are holomorphic on C\R this proves that ¢g(A) = my (1), and (iv)
is shown.
4. Now we prove (v). It follows from (1.1) and (3.1) that

X

s2(x,0) =1-— k/x si(t, M) dW (), cx,A) = —)»/ ci1(t, 2) dW (1)
0 0
and by (3.26) that

L= [ 5101, 1) dW (1)
—hfLeit, W dW (@)

my(A) = A € C\R. (3.37)

Moreover, for A < 0 the functions s1(x, A) and c1(x, A) are positive and increasing
on (0, b) and ¢(0, X) = 1, hence

b b
/ c1(t, ) dW(t) > W(b), / si(t, A)dW(t) > 0. (3.38)
0 0

Since ¢1(x,A) — ¢1(x,0) = 1 and s;(x, X)) — s1(x,0) = R(x) as A — 0— and
these convergences are monotone and uniform on [0, b] one finds that

b

b b
/ c1(t, ) dW(@) — W(b), / si(t, M) dW () — / R(@)dW (1),
0 0 0

as A — 0—. Therefore,

ramy(L) = — as A — 0— (3.39)

1
W)’

and thus m y (1) admits the representation (3.29). O
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3.4 Integral Systems in the Regular Case

Assume that the system S[R, W] is regular at b, i.e. R(b) + W(b) < oo. Then for
every tuple (u1, uz, f) € 7 it follows from (3.15) that the function u; is bounded and
hence the limit

b
u1(b) = u1(0) +/ urdR (3.40)
0
exists and is well defined. Therefore, the limits (3.13) exist.

Definition 3.7 (see [5,33]) The function m (A, b, 0) for which the solution
UNP (1) = s, 0) —m(h, b, 0)e(t, 1), tel, (3.41)

satisfies the condition
Yl b2 =0 (3.42)

is called the Neumann m-function of the system S[R, W] on I subject to the boundary
condition (3.42).

It follows from (2.33) and the condition WIND(b, X) = Othats{ (b, A)—m (A, b, 0)c1(b, L) =
0 which yields the formula
s1(b, A)

c1(b, 1)
and hence the Neumann m-function m (X, b, 0) coincides with the principal Titchmarsh—

Weyl coefficient g (1) of the system S[R, W], defined in (1.6).
Let Tp be a symmetric extension of the linear relation Ty, defined by

m(A,b,0) =

(3.43)

Tp = {u - [Zﬂ (i uz, f) €T, ur(0) = uz(0) = uy (b) = 0}. (3.44)

As follows from (2.27) the adjoint linear relation Tg is of the form

Uy

Tg:{uz[nf]:(ul,uz,f)eT: ul(b)=0}. (3.45)

Proposition 3.8 (cf. [40]) Let the system S[R, W] be regular at b, and let Tp be
defined by (3.44). Then:

() Tp is a symmetric nonnegative linear relation in L>(d W) with deficiency indices
TUuq

2 .
(1,1) and uy € L*(R) forallu = |:”fi| e T},
(ii) the triple nvpP = (C, l"évD, F{VD), where
TYPu =uy0), TVPu=—ui(0), ueT}, (3.46)

is a boundary triple for T},.
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(iii) The Weyl function myp (L) of Tp corresponding to the boundary triple TINP
coincides with m(\, b, 0).

(iv) The Weyl function myp(A) of Tp belongs to the Stieltjes class S and coincides
with the principal Titchmarsh—Weyl coefficient q(A) of the system S[R, W].

Proof 1. To show (i) and (ii), let the tuples (u1, u2, f) and (vi, vo, g) satisfy the
system (2.17) and assume that u1(b) = vi(b) = 0,1ie. u,v € Tj. Let u € R. By
(2.29) at least one of the values ¢ (b, i) and s1(b, ) is not equal to 0. Assume that
c1(b, ) # 0. Due to the identity

[0, 01(0) = 1610~ {1, IOV B) = w1 DRE. e IB) | (3:47)

the Green'’s identity (2.27) is of the form (3.30). By Definition 2.1 the boundary triple
for T} can be taken as TIV? = (C, IY?, TNP), with T)Y?, VP given in (3.46).

It follows from the first Green’s identity (2.26) and Lemma 3. 3 thatforeveryu € Tp
the identity (3.31) holds and thus the linear relation 7p is nonnegative.

2. Let us prove (iii). The defect subspace 1, (Tp) is spanned by the function
Y NP (., 1) determined by (3.41). Denote

u"P(t, 1) = WP (0, AP T e Mu(T).
Using the formulae (3.41) and (1.7) one obtains
IYPuNP (e 2) = =y 'P(0.2) =m(, b,0), TP uP(.2) =P 0.2 =1

and hence the Weyl function m y p (1) is of the form
FND ND ( )»)

—_—_ b,
myPuv( gy O

mypA) =

Therefore, the Weyl function myp(A) coincides with the Neumann m-function
m(A, b, 0).

3. Finally we prove (iv). The inclusion myp € S follows from Lemma 3.1. The
equality myp(A) = g(1), A € C\R, is implied by (3.43). O

Remark 3.9 The functions R and W are not uniquely defined by the principal
Titchmarsh—Weyl coefﬁ01ent of the system S[R, W]. As was shown in [33, Lemma
2.12] if functions R(E) and W(é ) are connected by

R(E) = R(x(§)), W(E) =Wx(E), &elo,pl.

where x (&) is an increasing function on the interval [0, 8], such that x(0) = 0 and
x(B) = b, then the principal Titchmarsh-Weyl coefficient g of the system

- - §TAdW (z) 0 T~
u(g,x)zu(o,x)—Jfo[ 0 dﬁ(r)]u(‘t,l), £ecl0,B]. (3.48)
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coincides with the principal Titchmarsh—Weyl coefficient g of the system S[R, W].
Therefore we can always assume that for regular systems S[R, W] the parameter
x ranges over a finite interval [0, b], b < oo.

Remark 3.10 As is known, see [27, Section A13], a truncated moment problem can be
reduced to a regular integral system S[R, W] with

n—1
Rx)=x, W)=Y mjH(x—x), x€[0,x,].
j=0

where H (x) is the Heaviside function. The corresponding monodromy matrix U (x,, 1)
is of the form

n
1—Mmj_y 1
Un2) =[] Us;i(xj. ), where ijl(x.,',)»):[ . ! 1]}
j=1 B

The system S[R, W] satisfies Assumption 2.9 if n > 1. If n = 1 then W (x) = H(x),
x €[0,11], L>(dW) = C, the system S[R, W] is of the form

ur(x) = ur(0) +xuz(x), uz(x) =u2(0) — Au1(0ymo, x € (0,11]

and does not satisfy the Assumption 2.9. However, in this case one can still introduce
a boundary triple (C, I'g, I'y) for Tipax = C x C by

ui

Tou = u1(0), Tiu= fO), u= [f

] € Tmax (3.49)

and the corresponding Weyl function is m (1) = moA.

The system S[R, W] with R(x) = [{H(x — 1), W(x) = moH (x), x € [0,2] is
equivalent to the system S[R, W] in the sense that its Weyl function corresponding
to the boundary triple (3.49) coincides with m(1) = moA and the monodromy matrix
U(2 A) of this system 001n01des with U (I1, A). The advantage of system S[R W] is
that the elementary factors of U (2, 1) from its factorization

U2, xn) =UPonuOn), U“Rx):(é 111) U(O)(A)=<_1 ?)

Amg

can be also treated as monodromy matrices of systems S[0, W] on the interval [0, 1]
and S[R, 0] on [1, 2], respectively.
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4 Integral Systems in the Limit Point Case
4.1 The Strong Limit Point Condition

The next lemma is an analog of a result in [ 16, Lemma] in the case of integral systems.

Lemma4.1 Let f be a (not necessarily strictly) monotone function on [bgy, b) such
that either f(x) — oo or f(x) = 0asx — b and let f(x) # 0 on [by, b). Then

lim de/f::l:oo. @.1)

x—=>b Jp,

Proof We will prove the lemma in the case f > 0, f — 0. The proof in the other
cases is similar. Let D be the set of the points of discontinuity of f on [bg, b). One
can write df df df
[bo,x) [bo,Xx)\D ¢ [bo,x)ND
Notice that both the integrals on the right hand side of (4.2) are negative, therefore if
one of them diverges (as x — b) then the assertion of the lemma holds.
Let Dy = {x,};2. Consider the following inequality

S+ () — f-(xn) < S+ () — f-(xp) _ S+ (xn)

= = —1<0
S (xn) S=(xn) S=(xn)
and the associated series
o (S ()
Z(* " —1). 4.3)
2\ o)
If series (4.3) diverges then the following integral
f Z f+(xn}(_ ) —(xn) 4.4
X
[bo,b)ND s n€Dg "

diverges as well, so the assertion of the lemma holds immediately.

Assume now that series (4.3) converges and denote a, :=1 — fi(x,)/ f-(xn)-
Notice that the measure d log(f) is absolutely continuous with respect to df and
therefore there exists the Radon-Nikodym derivative d log(f)/df € L'(df) which
has the representation (see [6, 5.3, formula (3.5)])

dlog(f) { 1/f(x), x € [bo, b)\Dy,
df | (og f+(x) —log f—(x))/(f+(x) — f=(x)), x € Dy.
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Now we get by the Radon—Nikodym theorem

g L0 [ o) U [ttt
f+(bo) df Sr(x) — f-(x)
[bo,x) [bo,x)\Dy
and hence df )
Xn
= . 4.5
/ Fo + Z & ) @
[bo.x)\Dy Dy

One can see from the following inequality

f-Co) _ foCn) = fr ) an

0 < log =
f+(xn) S+ (xn) I —ay

that the series

o~ fo(xn)
Z f+ (xn)

n=1

converges provided the series Y |° a, converges. Therefore, the integral on the left
hand side of (4.5) diverges which completes the proof. O

Definition 4.2 ([14-16]) Let the system S[R, W] be singular at b. It is said to be in
the strong limit point case if

lirrzul(x)vz(x) =0 forany (uy,us, f), (vi,v,8) €7; 4.6)
xX—

and it is said to have the Dirichlet property if
b
/ lus(1)|?dR(t) < oo forany (uy,us, f) € T. 4.7
0

Theorem 4.3 Let the system S[R, W] be singular at b. Then the following statements
are equivalent:

(LP) The system S[R, W1 is in the limit point case.
(D) The system S[R, W] has the Dirichlet property.
(SLP*) For any (u1,uz, ) € 7T the following equality holds

lirr}bul(x)ug(x) =0. (4.8)

(SLP) The system S[R, W] is in the strong limit point case.
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Proof Without loss of generality we assume here that the functions uy, us, and f are
real-valued. By the first Green’s identity (2.26) one obtains

X X
/u%dR:/ furdW +ujuzlg,
0 0
and hence

Iim u;(xX)ur(x) =d,
x—b

where d € R if the Dirichlet property holds and d = 400 otherwise.

Let us start with the implication (LP) = (D). For this purpose we assume the
contrary i.e. the system S[R, W] is in the limit point case but d = +o0. Notice, that
according to Assumption 2.8 the functions R and W do not have common points of
discontinuity, therefore neither do the functions #; and u;. It implies that both u
and uy preserve their signs on some interval [bg, b) (otherwise they would have to
share a jump from a positive to a negative value or vice versa). It follows from (2.17)
that the function u; is either positive and increasing or negative and decreasing. If
1¢ L2(dW) then it immediately results as u| ¢ L2AdW).

In the case if 1 € £2(dW) (and hence R ¢ L*(dW)) the implication f €
L2(dW) = f € LY(W) is valid and hence (see (3.15)) there exists a finite limit
ur(b) := limy_, 5 us(x). The limit u, (b) must be zero, otherwise from

X
/ urdR
bo

one gets uy ¢ L£2(dW). One can see that 1 /us ¢ £2(dW). Indeed, if 1 /ur € L>(dW)

then the integral
X X d
/ Law—_ / duz
0 U2 0 Uz

converges as x — b, which contradicts to Lemma 4.1. Since d = 400, the estimate
lug| > 1/|uz| hold on some interval [bg, b) and provides again u;| ¢ L2(dW). This
completes the proof of the implication (LP) = (D).

Now let us prove the implication (D) = (SLP*). We first will show that d = 0. In
the case 1 € £2(dW) the reasoning of the previous paragraph can be used to show
that u; ¢ L£>(dW) for every non-zero d. In the case 1 ¢ L£>(d W) the reasoning above
shows again that u; ¢ £2(dW) for every d > 0. Therefore we assume d < 0 and get
that u is either positive and decreasing or negative and increasing on some interval
[bo, b), namely u; — 0 as x — b. From |ujuz| > |d|/2 on [bg, b) (with a possible
change of point by) we obtain the following inequality

b b d bd
/ M%dRZf uzdf1>§ ﬂZ-i-OO
bo bo by Ul

|luz(b)|

lur(x) —ur(bo)| = > T(R(X)—R(bo))
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The left hand side converges by the assumption (D) but the right hand side diverges
due to Lemma 4.1. This contradiction proves that d = 0. Thus, implication (D) =
(SLP) is valid.

As is known (see [41, Theorem 4.3]), the system S[R, W] is in the limit point case
if and only if for every (uy, us, f) and (vy, v2, g) from 7

lin})[u, v]y = lin}j(ul(X)vz(x) —uz(x)v1(x)) = 0. 4.9

In order to prove the implication (SLP*) = (SLP) we notice first that by Lemma 3.3
the system S[R, W] cannot be in the limit circle case since (4.8) holds for every
(uy,up, f) € 7. The condition (4.6) follows from (4.8), (4.9) and the following
equality (cf. [16])

2u1(x)va(x) = (u1 +v)(u2 +v2) + [u, vly =0.

Assume that the statement (SLP) holds, i.e. condition (4.6) is satisfied for every
(uy, uz, f) and (vy, vy, g) from 7. Then, clearly, (4.9) holds for every (uy, uz, f)
and (vy, vz, g) from 7 and hence the system S[R, W] is in the limit point case. This
proves the implication (SLP) = (LP). O

Remark 4.4 Inthe case of absolutely continuous R and W the implication (LP)=(SLP)
for the system S[R, W] was proved in [28], see also [16].

4.2 Boundary Triples for Integral Systems in the Limit Point Case

Definition 4.5 Let the system S[R, W] be in the limit point case at b. Then for each
A € C\R there is a unique coefficient m y (1), such that

Y1(, ) =510, 2) —my(ei (-, h) € L2dW). (4.10)

The function m y is called the Neumann m-function of the system (1.1) on I and the
function (¢, 1) is called the Weyl solution of the system S[R, W] on I.

Let us collect some statements concerning boundary triples for S*, which were
partially formulated in [40,41].

Proposition 4.6 Let the system S[R, W] be in the limit point case at b, and let T =
Tin. Then:

() T is a symmetric nonnegative operator in L*(dW) with deficiency indices (1, 1).
(ii) The triple T1 = (C, T'g, I'y), where

Tou = u>(0), Tyu=—u1(0), ueT* A.11)

is a boundary triple for T*.
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(iii) The defect subspace N, is spanned by the Weyl solution V| (t, A), and the Weyl
function m(A) of T corresponding to the boundary triple T1 coincides with the
Neumann m-function of the system S[R, W] on I:

10,2 _
¥2(0.2)

@iv) The Weyl function m(L) of T corresponding to the boundary triple T1 coincides
with the principal Titchmarsh—Weyl coefficient q()\) of the system S[R, W] on I
and belongs to the Stieltjes class S.

V) If W(b) < oo then the Weyl function my of Tn admits the representation

mA) = —

NV, (4.12)

1 ~
my(A) = —m +m(d); (4.13)

where m is a function from S such that limy, o ym(iy) = 0.

Proof 1. At first we show (i)—(ii). Since (1.1) is in the limit point case at b,

. _ T T
)}I_I)I})[u, v]ly =0 for u= |:;;}i|, v = |:7rijgl] € Thmax

and hence the generalized Green’s identity (2.27) is of the form

b
/0 (for —u18) dW (1) = —[u, vlo = u2(0)v1(0) — u1(0)v2(0). (4.14)

Therefore, the triple IT in (4.11) is a boundary triple for 7*.

It follows from the first Green’s identity (2.26) and Lemma 3.3 that foreveryu € T
the identity (3.31) holds and thus the linear relation 7" is nonnegative.

2. Now (iii) is shown. In the limit point case there is only one linearly independent
solution ¥ (-, 1) of the system S[R, W] such that ¢ (-, A) € L2(dW), see (4.10), and
hence the defect subspace M, := ‘ﬁ;\ (T*) is spanned by the function ¥ (-, ). Denote
u(t,A) = Wi, A, M (., T e ‘JIA(T*) It follows from (4.11) that

Pou(-, 1) =v20,.4) =1, T, 2) =—y1(0,1) =my(2),

This yields formula (4.12).

3. Now we show (iv). If L € R_ then it follows from Lemma 3.1 that the function
2]1 g i; is increasing and bounded from above. Therefore, the following limit

Sl(x A)
x—)b cr(x, A)

q) = (4.15)

exists and is nonnegative for every A € R_. By Stieltjes-Vitaly theorem the function
g is holomorphic on C\[0, co). The function q belongs to the Stieltjes class S, since
it is nonnegative for every A € R_. Since S] (X belongs to the Weyl disc D, (1) and
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the system S[R, W] is limit point at b, for every 1 € C; U C_ the following equality
holds

g0y = lim S0

o) mpy (A). (4.16)

4. Assume that W(b) < —+oo. Let us consider the family of von Neumann m-

functions m);\, A) = ch i; converging to my (A) as x — b—. Due to equality (3.12)

1 cr(x, \) _

my (M) s2(x, ) _/0 s2(x, A)sap (x, A)

dW (x). 4.17)

Since s7(x, A) > 1 for x € [0, b) and A € R_ there exists the limit

-1 - A b 1
— Jim —2%0 Y =/ dW (x).
amy(A)  x—b Aso(x, L) 0o S2(x, M)say(x, )

Due to Lemma 3.1

1
m-—————=
10 82(x, A)s24(x, 1)

1

1, _
$2(x, A)saq(x, 1)

‘51 for x € [a,b).

Hence one obtains by the Lebesgue bounded convergence Theorem

1
lim ——— =/ AW = W(b).
r—0 —)\mN()\.) [0,b)

This implies (v). m]

4.3 The Canonical Singular Continuation of a Regular Integral System

If the integral system S[R, W] is regular at b then due to Remark 3.9 we can assume
without loss of generality that b < oo.

Definition 4.7 For a regular system S[R, W] with b < oo we define the extended
functions

R(x): x € [0, p], W(x) : x € [0, b],

R(x):= { R(b) :x € (b,ooy, "= { Wby +x—b:xeb o). *B

The integral system S [R, W] corresponding to

R T 0 dRD]~
u(x,r) =u(, )»)—i—/() I:_)de(t) 0 i|u(t,)\), x € [0, 00) (4.19)

will be called the canonical singular continuation of aregular integral system S[R, W1.
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Proposition 4.8 Let the integral system S[R, W1, see (1.1), be regular atb < co. Then
the principal Titchmarsh—Weyl coefficient q of its canonical singular continuation
S [R W] coincides with the principal Titchmarsh—Weyl coefficient q of the system

S[R, W]:
gy =q®), reC\R. (4.20)

Proof Let the pair uy, us satisfy the integral system S[R, W] for some . € C\R and
let i}, i3 be the continuations of uy, us to the interval [0, +00) given by

~ 4.21)
ur(x, A) =uz(b, A) — Aui1(b,A)(x —b), x e (b, o0).

{El(x, A =ui(b, 1), x € (b,o0),
Then the pair i1, i3 satisfies the integral system (4.19).If ¢, ¢ and s1, 57 are solutions
of (1.1) according to the initial conditions (1.7) then the continuations ¢, ¢ and 57, 53
are solutions of the integral system (4.19) with the same initial conditions (1.7).
In view of (4.21) the principal Titchmarsh-Weyl coefficient g of the canonical
singular continuation S [R W] is of the form

51(x, ) . sp(x, A)

A
G0 = M e A oG

=q).

5 Dual Integral Systems

Definition 5.1 The dual system §[R, W]toa si)\qgular system S[R, W] is defined by
changing the roles of R and W in (1.1), thatis S[R, W] = S[W, R] and

N L x 0 AW (t)
u(x,,\)_u(o,x)+/() [_MR(I) 0 ] ), xel0,b). 5.1

In case the system S[R, W] is regular we w111 denote by S| [R, W] the dual to its
canonical singular continuation: 3| [R,W]=S [W R]

LetS(-, 1) and ¢(-, A) be the unique solutions of (5.1) satisfying the initial conditions
c1(0,1) =1, ©2(0,2) =0, and 51(0,2) =0, 52(0,4) = 1. (5.2)

Theorem 5.2 Let U(x, )\) an,c'l\ U (x, X) be the fundamental matrices of the system
S[R, W] and its dual system S[R, W] res/lzectively. Let my and my be the Neumann
m-functions of the systems S[R, W] and S[R, W] in the sense of Definitions 3.5, 4.5.
Then:

(1) The matrices U(x, L) and ﬁ(x, A) are related by

- 11
Tx. 1) = DO~ Ux. DM, where D(A):(O » ) (5.3)
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(i) If the system S[R, W] is singular at b, then

1
my) = _AmN(k) 5.4)
(iii) If S[R, W1 is regular at b, then
AinG) = s2(b, A) _ c1(b, 1) _ 1 (5.5)

TGk, h) asi(b,A) amyp(h)

where myp(X) is the Neumann m-function of system S[R, W], subject to the
boundary condition uy(b) = 0, see Definition 3.7.

(iv) The principal Titchmarsh—-Weyl coefficients q and q of S[R, W] and §[R , W]are
connected by the equality

PO 1

Proof 1. At first (i) is shown. A straightforward calculation shows that the solutions
S(-, 1) and ¢(-, 1) of (5.1) are related to the solutions s(-, ) and ¢(-, 1) of (1.1) by the

equalities
[a(-,x)} :[ 52, 2) } [m-,x)} _ [—rlczo,x)] 57)
Q6] A n]" [$20.4) acn | '

The equality (5.3) follows from (5.7) and (3.1).

System S[R, W] is regular at b if and only if both S[R, W] and §[R, W1 are in the
limit circle case at b. Therefore the proof of (ii) can be splitted into the following three
cases 2—4.

2. Both S[R, W] and §[R, W1 are in the limit point case at b :

Let m y be the Neumann m-function of the systems S[R, W], see Definition 4.5, and
let ¥ (-, 1) be the corresponding Weyl solution of the system S[R, W]. Then the vector
function

P IIOPS! L[] [ —ret )+ pogst )
Vo= [@c, M} ) [?zh M] B [ €112 = 1)

is a solution of the system (5.1). MoreoverA due to Lemma 4.3 1’/71(~, A =
mwz(-, A) belongs to L2(R). Therefore, ¥1(-, A) is the Weyl solution of the
system §[R, W] and the function —m is the Neumann m-function of the sys-
tem S[R, W1]. R
3. S[R, W] is in the limit circle case and S[R, W1] is in the limit point case at b :

Let the function ¥ be defined by (3.24). Since (l.l) is in the limit circle case it
follows from Lemma 3.3 that wé\' € L2(R). Hence, ¥ (-, A) is a solution of the system
S[R, W1, such that ¥, (-, 1) = msz (-,A) € L2(R). Therefore, ¥, is the Weyl
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solution of the system §[R, W] and the function — m is the Neumann m-function

o~

of the systems S[R, W].

4. S[R, W] is in the limit point case and §[R, W1 is in the limit circle case at b :
As was shown on Step 3 the Neumann m-function 7y (1) of the systems §[R, W]
subject to the boundary condition 1///\2 (b, A) = 0 is connected with the Neumann m-
function m y (1) of the system S[R, W] by the equality

which is equivalent to (5.4).

5. Now (iii) is shown. Let myp(A) be the Neumann m-function of the system
S[R, W], subject to the boundary condition (3.42) and let %N D(.;)) be the cor-
responding Weyl solution of the system S[R, W] defined by (3.41). By definition
va D(p, 1) = 0. Then the vector function

- N GICPS) 1 c1(, )
vea)= [?z(-,/\)] LTy [?z(-, A)}
1 [—% (520, 1) = myp()ea(, x))]
myp(A) 51, A) —mypA)ci (-, A)

is a solution of the system (5.1) such that 1}2(1), A = w{v D(p, 1) = 0. Therefore, the
function m is the Neumann m-function of the systems §[R, W1, subject to the
boundary condition {52(19, A =0.

6. Finally (iv) is shown. If the integral system S[R, W] is singular at b then the
Neumann m-function my (resp. iny) coincides with the principal Titchmarsh-Weyl
coefficient g of the system S[R, W] (resp. g of the system S[R, W1), see Proposi-
tions 3.6, 4.6. Therefore, (5.6) is implied by (5.4).

If the system S[R, W] is regular at b then by Propositions 4.8 ¢ coincides with
the principal Titchmarsh—Weyl coefficient ¢ of the canonical singular continuation
S[ﬁ, W] of the system S[R, W] to [0, +00), see (4.18). By the statement of the above
paragraph the principal Titchmarsh-Weyl coefficient ¢ of the dual system S [W, R]is

of the form : |
g =——=—=———,
rq(X) rq ()

and (5.6) is shown. O

Since the relation of duality for integral systems is reflexive one derives from the
proof of Theorem 5.2 the following statement.

Corollary 5.3 Let the system S[R, W] be in the limit point case and let SIR, W] be in
the limit circle case at b. Let {1 (-, L) be the corresponding Weyl solution of the system
S[R, W]. Then
lim ¥ (x, A) = 0. (5.8)
x—b
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Proof As it was mentioned in the proof of Theorem 5.2 (Step 3), the Weyl solution
¥ (-, 1) of the system S[R, W] is connected with the Weyl solution t/flv(~, A) of the
dual system (1.1) by the equality /1 (-, 1) = mw (-, »). Since ¥4V (b, 1) = 0
one obtains (5.8). O

Remark 5.4 Formula (5.4) was proved in [29] for Krein strings and in [33] for integral
systems. However, in [33] it was overlooked that formula (5.4) fails to hold in the
regular case and should be replaced by (5.5).

6 The Connection Between Integral and Canonical Systems

Let H be a real, symmetric and non-negative locally integrable 2 x 2—matrix function
on the interval [0, /) for some Iy € (0, oo]. In this section we consider initial value
problems of the form

IY (@) = —H@yW), ¥ €0.1), n(©) =0, J= [? _01] SNCAY

with y(x) = (y1(x) y2(x))T and a complex parameter z. Here the differential equation
in (6.1) is considered to hold almost everywhere on [0, /7). The fundamental matrix
function
wi(x,z)  wia(x, 2)
Wx,z) =
(*.2) [wm(x, 7). wn(x,z)

of a canonical system (6.1) with Hamiltonian H is defined as the transpose of the
fundamental solution of (6.1), i.e. solution of the integral equation

Wkx,2)J —J = Z/'X Wi(s,z)H(s)ds. (6.2)
0

This corresponds to the notation used in [34].
Note that W(0, z) = I. At Iy for the canonical system (6.1) Weyl’s limit point case
prevails if and only if

Iy
/ trace H (x)dx = oo, (6.3)
0

and from now on we assume that for each Hamiltonian H the relation (6.3) holds, and
that H is not identically equal to diag (1 0) on the interval [0, 00). Then the limit
point case prevails at [, and it follows that for each w € N := N'U{oo}andz € C*

the limit

. wi(x, Do(z) + wia(x, 2)
Q@) = . 90@) + wnx, 2) 9

exists, is independent of w, and, as a function of z, belongs to the set of Herglotz-
Nevanlinna functions N (see, e.g., [7]). The function Q is called the Titchmarsh—Weyl
coefficient of the canonical system (6.1) or of the Hamiltonian H.
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The following intervals play a special role in the sequel (see [9,24]). Let &5 :=
(cos ¢, sing)T for some ¢ € [0, ). The open interval Iy C [0,/y) is called H-
indivisible of type ¢ if the relation

£jJH =0, ae.only, (6.5)

holds. In particular, det H = 0 a.e. on I. An H-indivisible interval is called maximal
if it is not a proper subset of another H -indivisible interval.

A Hamiltonian H is called trace normed if trace H(x) = 1 a.e. on [0, 00). For
the class of trace normed Hamiltonians a basic inverse result in [8] can be formulated
as follows (see [42]): Each function Q € N is the Titchmarsh-Weyl coefficient of a
canonical system with a trace normed Hamiltonian H on [0, o) which is not equal to
diag(1, 0) a. e. on [0, 00); this correspondence is bijective if two Hamiltonians which
coincide almost everywhere are identified.

In this section we associate with the integral system S[R, W] a canonical system
with diagonal Hamiltonian such that its Titchmarsh—Weyl coefficient Q is related to
the principal Titchmarsh—Weyl coefficient ¢ of S[R, W] via the formula

04() = 24(). (6.6)
Assume that the integral system S[R, W] is singular at d, i.e.
R(d) + W(d) = oc. 6.7)

Let us set x(1) = R(t) + W (). Denote by DV the set of points of discontinuity
of R and by D@ the set of points of discontinuity of W. Recall that by assumption
DD N DA = @ Let I, be the range of the function x(#). Then Iy is a union of
at most countable set of semi-intervals (£, n], and R\, is a union of semi-intervals
(x(1), x(t+)], where either t € DV ort € D).

On every semi-interval (§, n] C I, define the Hamiltonian H; by

h](x) 0

dR dw
H;(x) = [ 0 hz(x)i| , where hj(x):= I hy(x) := I (6.8)

On the semi-interval (x(¢), x(14)] with r € D define the Hamiltonian Hy by
1 0
Hy(x) == |:O 0} , (6.9)
and on the semi-interval (x(¢), x(t+)] with r € D® define the Hamiltonian H; by

Hy(x) = [8 (1)} . (6.10)

Then H; is a trace normed Hamiltonian, i.e.

trace Hy(x) =1 forall x € Ry. (6.11)
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Let us consider the canonical system
Jy'(x) = —zHg(x)y(x). (6.12)

The fundamental matrix W, of the canonical system (6.12) is then according to (6.2)
the solution of the initial value problem

Wi(x,2)J =zWa(x,2)Ha(x), x € Ry, Wq(0,2) = 1. (6.13)

Theorem 6.1 Let g be the principal Titchmarsh—Weyl coefficient of some integral sys-
tem S[R, W] such that (6.7) holds, and let Q 4 denote the Titchmarsh—Weyl coefficient
corresponding to the Hamiltonian Hy. Then

(1) the fundamental matrix of the canonical system (6.12) takes the form

s2(t,2%) 281, 2%)
Loy, 2?) a2

Wa(x(1), z) = [ } »ox(1) € Iy (6.14)

(i) the following relation holds:
04(2) = 2q(2%). 6.15)
Proof On every semi-interval (£, n] C I, one obtains from (1.1)

dsi(t,2%) = s2(t, 22)dR(1), dey(t, 72) = ea(t, 22)dR(1), (6.16)
dsy(t,72) = —=72%51(t, 22)dW (@),  dea(t, 22) = —z22c1(t, 22)dW (@),  (6.17)

Then it follows from (6.14) and (6.8) that

dsa(t.2%) L4510 %) ds(t.2%) dsy (.2)
Wé(x Z) = |:1 ddzc 2) d (d 2) :| = |: ;W((t) )h ()C) Zd d(R( )h ( ):|
’ c(t,z cy(t,z 1 dey(t,72 cy(t,z

7 dx dx z “awin h2(x) 1 hi(x)

TdR(t)

and hence in view of (6.16), (6.17)
, _[zsa(x, 22 (x)  2si(x, 22)ha(x)
Wax.2)J = [czoc,zz)hl(x) zq(x,zz)hz(X)]

On the other hand by (6.14) and (6.8)

5200, 2 (x)  zs1(x, 22)h2(x)
Wilx,20)Hy(x) =
¢, ) Ha (o) [;cxx, D) erx, Do (x)
This proves that W, (x, z) is the fundamental matrix of the canonical system (6.12) on
L.
Now let (x(t), x(t4)] be a semi-interval with t € DU orr € DD Note that then
(x(1), x(t+)) is an H-indivisible interval of type 0 if # € D and an H-indivisible
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interval of type /2 if 1 € D®. The fundamental matrix for s € [x(f), x(t+)) is then
of the form
Wals, z2) = Wa(x(@), 2)(I — z(s — x(#))Ha(s)J),

so it remains to show that
Wa(x(t+),2) = Wa(x (1), 2)(I — z(x(t+) — x())Ha(s)J]),

or, equivalently (since H;(s)J Hy(s) = 0), that according to (6.2) in both cases the
integral equation

x(t+)
Wa(x(t0). 2)J — Wa(x(t), 2)J = z/ Wo(s. 2) Hy(s)ds 6.18)
x(1)

holds. Let for i € {1, 2}
Asi(t,722) = si(t+, 25 — si(t, 2, Aci(t, 22) = ci(t+,22) — ¢i(t, 2. (6.19)

Assume that t € DV with [} = x(t+) — x(t) = R(t+) — R(¢). Then it follows from
(6.19) with equation (1.1) that s5 (s, z%) and 3 (s, z%) are constant for s € (x(¢), x(t+)]
and

Asi(t,2%) = s2(t, 22, Aci(t, 25 = ea(t, 2.

it follows that

_ ZAs1(x, 72 0 _ z52(s,2%) 0
Wax(@+),2)J — Wa(x(@),2)J = |:Ac1 (x, 22) 0} =1 [Cz(s’ 22) 0} .

On the other hand, the relation

52(s,2%) 0
Wy (s, z)H, = 6.20
a(s, 2)Hy(s) [%cz(s,zz) Oi| (6.20)

holds and therefore
x(t+) 2
z52(s8,2%) 0]

Wa(s, 2)H, ds =1 , 6.21
[ Wi s =0 [R50 621)

and so (6.18) is shown.

Assume now that + € D@ with [, = x(t+) — x(1) = W(t+) — W(r). Then it
follows from (6.19) with equation (1.1) that s (s, z2) and ¢ (s, z?) are constant for
s € [x(),x(+)] and

Asy(t, 25 = =2%s51(t, 2, Aca(t, 2%) = =221 (1, 22)la.
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It follows that

_[o —Asa(x,Z2) _ 0 zs1(s,2%)
Walx(t+),2)J — Wa(x(t),2)J = |:0 —%Acz(x,zz)] =z |:0 Cl(S,Zz)]‘

On the other hand, the relation

2

holds and therefore

x(t+)
Z/ Wa(s, 2)Hy(s)ds = lrz [
X

0 zs1(s, zz)]
)

0 ci(s,2)

holds, and so (6.18) is shown in that case.
The relation (6.15) follows now from

2
04(0) = fim WD _ gy 2002

2
= = zq(z7).
oo wai(x,2) | woesep(x, 22y | 2
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