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Abstract
We study spectral problems for two-dimensional integral system with two given non-
decreasing functions R, W on an interval [0, b) which is a generalization of the Krein
string. Associated to this system are the maximal linear relation Tmax and the minimal
linear relation Tmin in the space L2(dW ) which are connected by Tmax = T ∗

min. It is
shown that the limit point condition at b for this system is equivalent to the strong limit
point condition for the linear relation Tmax. In the limit circle case the Evans–Everitt
condition is proved to hold on a subspace T ∗

N of Tmax characterized by the Neumann
boundary condition at b. The notion of the principal Titchmarsh–Weyl coefficient of
this integral system is introduced. Boundary triple for the linear relation Tmax in the
limit point case (and for T ∗

N in the limit circle case) is constructed and it is shown
that the corresponding Weyl function coincides with the principal Titchmarsh–Weyl
coefficient of the integral system. The notion of the dual integral system is introduced
by reversing the order of R and W and the formula relating the principal Titchmarsh–
Weyl coefficients of the direct and the dual integral systems is proved. For every
integral system with the principal Titchmarsh–Weyl coefficients q a canonical system
is constructed so that its Titchmarsh–Weyl coefficient Q is the unwrapping transform
of q: Q(z) = zq(z2).
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1 Introduction

In this paper spectral problems for integral systems, associated dual systems and, in
particular, Krein strings are investigated. We consider an integral system of the form

u(x, λ) = u(0, λ) − J
∫ x

0

[
λdW (t) 0

0 d R(t)

]
u(t, λ), J =

[
0 −1
1 0

]
, (1.1)

where u = [u1 u2]T , with some spectral parameter λ ∈ C and measures dW and d R
associated with non-decreasing functions W (x) and R(x) on an interval [0, b), see
[5].

Integral systems (1.1) arise in the theory of diffusion processes with two measures
[35,38]. In the theory of stochastic processes the Eq. (1.3) describes generalized diffu-
sion processes which includes both diffusion processes and birth and death processes
[18,19,23,31]. The system (1.1) is reduced to a second order differential equation

− d

dW (x)

(
dy

d R(x)

)
= λy(x), x ∈ [0, b), λ ∈ C (y = u1), (1.2)

with measure coefficients studied recently in [12] under an extra assumption that
R(x) is strictly monotone. If, in addition, W (x) and R(x) are absolutely continuous
and w := W ′, p−1 := R′(> 0 a.e.) then the system (1.1) is reduced to the Sturm–
Liouville equation in the polar form

− (
py′)′ = λwy.

In a special case, when R(x) ≡ x one has u2 = u′
1 and system (1.1) can be rewritten

as the equation of a vibrating string in the sense of Krein [27]

y(x, λ) = y(0, λ) + xy′(0, λ) − λ

∫ x

0
(x − t)y(t, s) dW (t), x ∈ [0, b). (1.3)

Let c(·, λ) and s(·, λ) be the unique solutions of (1.3) satisfying the initial conditions

c(0, λ) = 1, c′(0, λ) = 0, and s(0, λ) = 0, s′(0, λ) = 1.

The function

qS(λ) := lim
x→b

s(x, λ)

c(x, λ)
(1.4)
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is called the principal Titchmarsh–Weyl coefficient of the string [30] or the dynamic
compliance coefficient in the terminology of Kac and Krein [27] and describes the
spectral properties of the string. The principal Titchmarsh–Weyl coefficient q(λ) is a
Stieltjes function and the measure dσ from its integral representation

qS(λ) = a +
∫ ∞

0

dσ(t)

t − λ
, a ≥ 0 (1.5)

is the spectral measure of the string (1.3), which in the limit point case at b is specified
by the boundary condition u′(0) = 0 at 0.

Denote the integral system (1.1) by S[R, W ]. In the present paper we define the
principal Titchmarsh–Weyl coefficient q of the integral system S[R, W ] by

q(λ) := lim
x→b

s1(x, λ)

c1(x, λ)
, (1.6)

where
[
c1(·, λ) c2(·, λ)

]T , and
[
s1(·, λ) s2(·, λ)

]T are solutions of (1.1) satisfying the
initial conditions

c1(0, λ) = 1, c2(0, λ) = 0, and s1(0, λ) = 0, s2(0, λ) = 1. (1.7)

Formula (1.6) requires justification. For this purpose we use the operator approach
to the integral system S[R, W ] developed in [41], the boundary triples technique
from [21,32] and the theory of associated Weyl functions as introduced in [10,11].
The maximal linear relation Tmax is defined (see Definition 2.7) as the set of pairs
u = [u1 f ]T such that u1, f ∈ L2(dW ) and the equation (2.17) is satisfied for some
function u2 ∈ BVloc[0, b), i.e. of bounded variation on [0, b′) for every b′ < b.
The closure of its restriction to the set of compactly supported functions is called the
minimal linear relation Tmin. In [41] it was shown that Tmin is symmetric in L2(dW ),
Tmax = T ∗

min and boundary triples for the linear relation Tmin were constructed both
in the limit point and in the limit circle case.

In Theorem 4.3 we show that the system S[R, W ] is in the limit point case at b if
and only if it satisfies the strong limit point condition at b, see [16], which in our case
is of the form

lim
x→b

u1(x)u2(x) = 0 for all u ∈ Tmax. (1.8)

As a consequence of (1.8) we conclude that in the limit point case the linear relation
Tmin and its von Neumann extension AN , characterized by the boundary condition
u2(0) = 0, are nonnegative, the corresponding Weyl function is a Stieltjes function
and coincides with the principal Titchmarsh–Weyl coefficient of the system S[R, W ].
The strong limit point condition for second order differential operators was introduced
by Everitt [16].

In the limit circle case the linear relation Tmin has defect numbers (2, 2), in this
case an intermediate symmetric extension TN with defect numbers (1, 1) of Tmin
is considered as the restriction of Tmax to the set of elements u ∈ Tmax such that
u1(0) = u2(0) = u2(b) = 0. In this case we show in Lemma 3.3 that the strong
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limit point condition (1.8) fails to hold, but still the limit in (1.8) is vanishing on the
subspace T ∗

N of Tmax, i.e. the following Evans–Everitt condition holds, cf. [17]:

lim
x→b

u1(x)u2(x) = 0 for all u ∈ T ∗
N . (1.9)

This result implies the nonnegativity of the linear relation TN .
In [33] another analytical object—the Neumann m-function of the system S[R, W ]

was introduced by the equality

m N (λ) := lim
x→b

s2(x, λ)

c2(x, λ)
, (1.10)

which is a special case of a more general definition of the Neumann m-function
presented in [5]. In Proposition 3.6 it is shown that the Neumann m-function m N (λ)

is a Stieltjes function and it coincides with the principal Titchmarsh–Weyl coefficient
of the integral system S[R, W ].

The system S[R, W ] is called regular if R(b)+W (b) < ∞ and singular otherwise.
In the regular caseweconstruct the canonical singular extension S[R̃, W̃ ]of the system
S[R, W ]with R, W extended to non-decreasing functions R̃, W̃ on the interval (0,∞),
so that the principal Titchmarsh–Weyl coefficients of both systems coincide.

The dual system Ŝ[R, W ] of the integral system S[R, W ] in the singular case
is obtained by changing the roles of R and W . In the regular case the dual sys-
tem of the integral system S[R, W ] is defined as the dual of the canonical singular
extension S[R̃, W̃ ] of the system S[R, W ]. In Theorem 5.2 it is shown that the prin-
cipal Titchmarsh–Weyl coefficient q̂ of the dual system is related to the principal
Titchmarsh–Weyl coefficient q of the system S[R, W ] by the equality

q̂(λ) = − 1

λq(λ)
. (1.11)

both in the regular and the singular case.
In Theorem 6.1 given a singular integral system S(R, W ) we construct a canonical

system
J y′(x) = −zHd(x)y(x), x ∈ [0, lH ), y1(0) = 0, (1.12)

with a diagonal Hamiltonian

Hd(x) =
[

h1(x) 0
0 h2(x)

]

such that the corresponding Titchmarsh–Weyl coefficient Qd (see [7]) is connected
with the principal Titchmarsh–Weyl coefficient q of the integral system S(R, W ) by
the formula

Qd(z) = zq(z2). (1.13)

In the case of a string (R(x) ≡ x) the notion of the dual string and formula (1.11)
connecting the principal Titchmarsh–Weyl coefficients of the direct and the dual string
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in the singular case were presented in [25,27]. Analogues of the relations (1.11)
and (1.13) between strings, dual strings and canonical systems of differential equations
were studied also in [30].

2 Preliminaries

2.1 Linear Relations

LetH be a Hilbert space. A linear relation T inH is a linear subspace ofH×H. Let us
recall some basic definitions and properties associated with linear relations, see [1,4].

The domain, the range, the kernel, and the multivalued part of a linear relation T
are defined as follows:

dom T :=
{

f :
[

f
g

]
∈ T

}
, ran T :=

{
g :

[
f
g

]
∈ T

}
, (2.1)

ker T :=
{

f :
[

f
0

]
∈ T

}
, mul T :=

{
g :

[
0
g

]
∈ T

}
. (2.2)

The adjoint linear relation T ∗ is defined by

T ∗ :=
{[

u
f

]
∈ H × H : 〈 f , v〉H = 〈u, g〉H for any

[
v

g

]
∈ T

}
. (2.3)

A linear relation T in H is called closed if T is closed as a subspace of H × H. The
set of all closed linear operators (relations) is denoted by C(H) (C̃(H)). Identifying a
linear operator T ∈ C(H) with its graph one can consider C(H) as a part of C̃(H).

Let T be a closed linear relation, λ ∈ C, then

T − λI :=
{[

f
g − λ f

]
:

[
f
g

]
∈ T

}
. (2.4)

A point λ ∈ C such that ker (T − λI ) = {0} and ran (T − λI ) = H is called a regular
point of the linear relation T . Let ρ(T ) be the set of regular points. The point spectrum
σp(T ) of the linear relation T is defined by

σp(T ) := {λ ∈ C : ker(T − λI ) �= {0}}, (2.5)

A linear relation T is called symmetric if T ⊆ T ∗. A point λ ∈ C is called a point
of regular type (and is written as λ ∈ ρ̂(T )) for a closed symmetric linear relation T ,
if λ /∈ σp(T ) and the subspace ran(T − λI ) is closed in H . For λ ∈ ρ̂(T ) let us set
Nλ(T ∗) := ker(T ∗ − λI ) and

N̂λ(T ∗) :=
{
uλ =

[
uλ

λuλ

]
: uλ ∈ Nλ(T ∗)

}
. (2.6)
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The deficiency indices of a symmetric linear relation T are defined as

n±(T ) := dim ker(T ∗ ∓ i I ). (2.7)

2.2 Boundary Triples andWeyl Functions

Let T be a symmetric linear relation with deficiency indices (1, 1). In the case of a
densely defined operator the notion of the boundary triple was introduced in [21,32].
Following the papers [11,37] we shall give a definition of a boundary triple for the
linear relation T ∗.

Definition 2.1 A tuple � = (C, �0, �1), where �0 and �1 are linear mappings from
T ∗ to C, is called a boundary triple for the linear relation T ∗, if:

(i) for all u =
[

u
f

]
, v =

[
v

g

]
∈ T ∗ the following generalized Green’s identity holds

〈 f , v〉H − 〈u, g〉H = �1u�0v − �0u�1v; (2.8)

(ii) the mapping � =
[
�0
�1

]
: T ∗ → C

2 is surjective.

Notice, that in contrast to [37] the linear relation T is not supposed to be single-
valued. The following linear relations

A0 := ker �0, A1 := ker �1 (2.9)

are selfadjoint extensions of the symmetric linear relation T .

Definition 2.2 ([10,11]) Let � = (C, �0, �1) be a boundary triple for the linear
relation T ∗. The scalar function m(·) and the vector valued function γ (·) defined by

m(λ)�0uλ = �1uλ, γ (λ)�0uλ = uλ, uλ =
[

uλ

λuλ

]
∈ N̂λ(T ∗), λ ∈ ρ(A0)

(2.10)
are called the Weyl function and the γ -field of the symmetric linear relation T corre-
sponding to the boundary triple �.

The Weyl function and the γ -field are connected via the next identity (see [11])

m(λ) − m(ζ )∗ = (λ − ζ )γ (ζ )∗γ (λ), λ, ζ ∈ ρ(A0). (2.11)

Definition 2.3 ([26])A functionm : C\R → B(H) is said to be aHerglotz-Nevanlinna
function and is written as m ∈ N , if the following conditions hold:

(i) m is holomorphic in C\R;
(ii) Im m(λ) ≥ 0 for λ ∈ C+ := {λ ∈ C : Im λ > 0};
(iii) m(λ) = m(λ)∗ for λ ∈ C\R.
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It follows from (2.11) that theWeyl functionm(·) is aHerglotz-Nevanlinna function.
A Herglotz-Nevanlinna function m which admits a holomorphic continuation to R−
and takes nonnegative values for allλ ∈ R− is called a Stieltjes function. EveryStieltjes
function m admits an integral representation (1.5) with a non-decreasing function σ(t)
such that

∫
R+(1 + t)−1dσ(t) < ∞.

2.3 Minimal andMaximal Relations Associated with the Integral System S[R,W]

Let I = [0, b)be an intervalwithb ≤ ∞, letW (x)be a non-decreasing left-continuous
function on I such that W (0) = 0, let dW be the corresponding Lebesgue–Stieltjes
measure, and let L2(dW , I ) be an inner product space which consists of complex
valued functions f such that

∫
I
| f (t)|2 dW (t) < ∞

with inner product defined by

〈 f , g〉W =
∫

I
f (t)g(t)dW (t).

L2
comp(dW , I ) denotes the subspace consisting of those f ∈ L2(dW , I )with compact

support in I , BV [0, b) denotes the set of functions of bounded variation on [0, b) and
BVloc[0, b) is the set of functions f such that f ∈ BV [0, b′) for every b′ < b. Denote
by L2(dW , I ) the corresponding quotient space for L2(dW , I ), which consists of
equivalence classes w.r.t. dW and denote by π the corresponding quotient map, i.e.
π : L2(dW , I ) → L2(dW , I ). Often we write L2(dW ) instead of L2(dW , I ) if I
coincides with [0, b).

From now on the following convention is used for the integration limits for any
measure dW on an interval:

∫ x

a
f dW :=

∫
[a,x)

f dW . (2.12)

Thus, an integral as a function of its upper limit is always left-continuous. With
every function of bounded variation f we associate the left-continuous and the right-
continuous functions f− and f+ defined by

f−(x) := lim
t↑x

f (t), f+(x) := lim
t↓x

f (t). (2.13)

Let u and v be left-continuous functions of bounded variation, du and dv be the cor-
responding Lebesgue–Stieltjes measures. The following integration-by-parts formula
for the Lebesgue–Stieltjes integral (see e.g. [22]) is used throughout the paper

∫ x

a
u dv +

∫ x

a
v+ du = u(x)v(x) − u(a)v(a). (2.14)



103 Page 8 of 39 V. Derkach et al.

If u and u+ have no zeros then it follows with v = 1/u from (2.14)

d(1) = d
(u

u

)
= u d

(
1

u

)
+ 1

u+
du = 0.

This leads to the quotient-rule formula

d

(
1

u

)
= − du

uu+
. (2.15)

The following existence and uniqueness theorem for integral systems was proved in
[5, Theorem 1.1].

Theorem 2.4 Let d S be a complex n × n matrix-valued measure. For every left con-
tinuous (either n × n or n × 1 matrix valued) function A(x) in BVloc[0, b) there is a
unique function U such that the equality

U (x) = A(x) +
∫ x

0
d S · U (2.16)

holds for every point x ∈ [0, b).

Remark 2.5 Due to the properties of the Lebesgue–Stieltjes integral and the used
convention, any solution U to (2.16) is left continuous and belongs to BVloc[0, b),
componentwise.

Nowwe focus on integral systems S[R, W ] of the form (1.1), where R(x) and W (x)

are nondecreasing and left-continuous real-valued functions on the interval I = [0, b)

such that R(0) = W (0) = 0. We define the corresponding inhomogeneous system.

Definition 2.6 Let f ∈ L2(dW ) and [u1 u2]T be a vector-valued function such that
the following equation

[
u1
u2

]
(x) =

[
u1
u2

]
(0) +

∫ x

0

[
0 d R(t)

−dW (t) 0

] [
f

u2

]
(2.17)

holds for every point x ∈ [0, b). The triple (u1, u2, f ) is said to belong to the set T if
u1 ∈ L2(dW ).

Due to Remark 2.5 for every (u1, u2, f ) ∈ T both functions u1 and u2 belong to
BVloc[0, b). Theorem 2.4 implies that for every f ∈ L2(dW ) the vector-valued func-
tion [u1 u2]T satisfying (2.17) is uniquely determined by its initial values at zero,
however u1 ∈ L2(dW ) is not guaranteed for an arbitrary f ∈ L2(dW ).

Definition 2.7 We define the maximal and the pre-minimal relations Tmax, T ′ ⊂
L2(dW ) × L2(dW ) by

Tmax :=
{
u =

[
πu1
π f

]
: (u1, u2, f ) ∈ T

}
, (2.18)
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T ′ :=
{
u =

[
πu1
π f

]
∈ Tmax : (u1, u2, f ) ∈ T , u1, f ∈ L2

comp(W , I )

}
.

(2.19)

where π : L2(dW , I ) → L2(dW , I ) is the quotient map defined at the beginning
of Sect. 2.3.

DenoteNλ := Nλ(Tmax), λ ∈ C\R. Everywhere in the paper, except Remark 3.10,
we suppose that the following two natural assumptions hold.

Assumption 2.8 The functions R and W have no common points of discontinuity.

Assumption 2.9 There exists an interval [0, b0) ⊆ [0, b) such that

dim span{π1, π R} = 2 (2.20)

where π : L2(W , [0, b0)) → L2(W , [0, b0)) is the corresponding quotient map.

Assumption 2.8 has the important consequence that the first component of a solu-
tion has no discontinuity in common with the second component of any solution
(u1, u2, f ) ∈ T . Assumption 2.9 makes it possible to assign correctly the values
u1(x) and u2(x) for every u ∈ Tmax. In case of absolutely continuous functions R
and W the differential system equivalent to S[R, W ] is definite in the sense of [36,
Definition 2.14] if and only if Assumption 2.9 holds.

Definition 2.10 Let (u1, u2, f ) ∈ T and u ∈ Tmax be its image under the mapping

T � (u1, u2, f ) �→ u =
[
πu1
π f

]
∈ Tmax. (2.21)

The mappings φ1,2[x] : Tmax → C are defined by

φi [x]u := ui (x), i ∈ {1, 2}, x ∈ [0, b).

The following Proposition provides a partial analog of [36, Proposition 2.15] and [12,
Proposition 3.9] for the integral system S[R, W ].
Proposition 2.11 If Assumptions 2.8 and 2.9 hold then the mappings φ1,2[x] are well-
defined.

Proof Assume that (u1, u2, f ) ∈ T and πu1 = π f = 0. Let us show that under this
assumption

u1(x) = u2(x) = 0 for x ∈ [0, b). (2.22)

From the second line of (2.17) it follows immediately that

u2(x) ≡ u2(0). (2.23)

Now substituting (2.23) in the first line of (2.17) we obtain

u1(x) = u1(0) + u2(0)R(x) (2.24)
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The mapping π applied to (2.24) gives

0 = u1(0) · π1 + u2(0) · π R.

Now it follows from (2.20) that u1(0) = u2(0) = 0, which together with (2.23) and
(2.24) proves (2.22). ��

Further in the text we will simply write u1,2(x) instead of φ1,2[x]u unless this can

lead to confusion. For a pair of vector-valued functions u = [
u1 u2

]T , v = [
v1 v2

]T

we define the generalized Wronskian by

[u, v](x) := u1(x)v2(x) − u2(x)v1(x). (2.25)

Proposition 2.12 If (u1, u2, f ) and (v1, v2, g) belong to T then the following gener-
alized first and second Green’s identities hold

∫ x

0
f v1 dW =

∫ x

0
u2v2 d R − u2(x)v1(x) + u2(0)v1(0), (2.26)

∫ x

0
( f v1 − u1g) dW = [u, v](x) − [u, v](0). (2.27)

for an arbitrary interval [0, x) ⊂ [0, b).

Proof Werecall that due toAssumption2.8 the functions R andW donot have common
points of discontinuity, so neither do the functions v1 and u2. By virtue of (2.17) we
get

dv1 = v2 d R, du2 = − f dW .

and hence, using the integration-by-parts formula (2.14):

∫ x

0
v1 du2 +

∫ x

0
u2+ dv1 = u2(x)v1(x) − u2(0)v1(0) (2.28)

one obtains (2.26). Swapping the tuples (u1, u2, f ) and (v1, v2, g) in (2.28) and sub-
tracting the obtained expression from (2.26) proves (2.27). ��

Due to Theorem 2.4 the system S[R, W ] has a unique solution for every choice of
initial values. Let c(·, λ) = [c1(·, λ) c2(·, λ)]T and s(·, λ) = [s1(·, λ) s2(·, λ)]T be its
unique solutions satisfying the initial conditions (1.7).

Corollary 2.13 For every λ ∈ C and x ∈ [0, b) the following formulas hold:

[c(·, λ), s(·, λ)](x) = c1(x, λ)s2(x, λ) − c2(x, λ)s1(x, λ) = 1, (2.29)

c1+(x, λ)s2(x, λ) − c2(x, λ)s1+(x, λ) = 1, (2.30)

c1(x, λ)s2+(x, λ) − c2+(x, λ)s1(x, λ) = 1. (2.31)
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Proof Equality (2.29) follows immediately from (2.27). Further we subtract the left-
hand side of (2.29) from the left-hand side of (2.30):

(c1+(x, λ)s2(x, λ) − c2(x, λ)s1+(x, λ)) − (c1(x, λ)s2(x, λ) − c2(x, λ)s1(x, λ))

= (c1+(x, λ) − c1(x, λ))s2(x, λ) − c2(x, λ)(s1+(x, λ) − s1(x, λ)) (2.32)

One can immediately see that the expression (2.32) is equal to zero at every point of
continuity of R. Let x0 be a point of discontinuity of R. From (2.17) one can see that

c1+(x0, λ) − c1(x0, λ) = c2(x0, λ) d R({x0}),
s1+(x0, λ) − s1(x0, λ) = s2(x0, λ) d R({x0})

and hence

(c1+(x0, λ) − c1(x0, λ))s2(x0, λ) − c2(x0, λ)(s1+(x0, λ) − s1(x0, λ))

= c2(x0, λ)s2(x0, λ) d R({x0}) − s2(x0, λ)c2(x0, λ) d R({x0}) = 0.

The proof of (2.31) is similar. ��
It follows from (2.27) that the pre-minimal relation T ′ is symmetric in L2(dW ).

Definition 2.14 The minimal relation Tmin is defined as the closure of the pre-minimal
linear relation T ′: Tmin = clos T ′.

As was shown in [41] the linear relation Tmin is symmetric, T ∗
min = Tmax and

Tmin :=
{
u =

[
πu1
π f

]
∈ Tmax : u1(0) = 0,

u2(0) = 0,
[u, v]b = 0 ∀ v =

[
πv1
πg

]
∈ Tmax

}
.

Lemma 2.15 Let l < b, h ∈ closC+ ∪ {∞}, and let m(λ, l, h) be some coefficient
such that the function

ψ(t, λ) := s(t, λ) − m(λ, l, h) c(t, λ) (2.33)

satisfies the condition ψ1(l, λ) + hψ2(l, λ) = 0. Then:

(i) The coefficient m is well-defined and can be calculated as

m(λ, l, h) = s1(l, λ) + hs2(l, λ)

c1(l, λ) + hc2(l, λ)
. (2.34)

(ii) For every λ ∈ C+ the set Dl(λ) := {m(λ, l, h) : h ∈ closC+ ∪ {∞}} is a disk in
C+ such that ω ∈ Dl(λ) if and only if

∫ l

0
|s1(t, λ) − ωc1(t, λ)|2dW (t) ≤ Imω

Im λ
, (2.35)
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and its radius can be calculated as

rl(λ) =
(
2 Im λ

∫ l

0
|s1(t, λ)|2dW (t)

)−1

. (2.36)

(iii) The Weyl discs Dl(λ) are nested, i.e. Dl2 ⊆ Dl1 provided l1 < l2 < b, and the
function s1(·, λ) − ωc1(·, λ) belongs to L2(dW ) provided ω ∈ ∩l<b Dl(λ).

Proof (i) From (2.33) and the condition ψ1(l, λ) + hψ2(l, λ) = 0 we get

ψ1(l, λ) + hψ2(l, λ) = (s1(l, λ) + hs2(l, λ)) − m(λ, l, h)(c1(l, λ) + hc2(l, λ)) = 0

which yields (2.34).
(ii) It is clear from formula (2.34) that the function m(λ, l, ·) maps R+ ∪ {∞} into

a circle. Let h ∈ closC+ ∪ {∞} and ω := m(λ, l, h) ∈ Dl(λ). Applying the
second Green’s identity (2.27) to the tuples (ψ1(·, λ), ψ2(·, λ), λψ1(·, λ)) and
(ψ1(·, λ), ψ2(·, λ), λ ψ1(·, λ)) provides

(λ − λ)

∫ l

0
|ψ1(t, λ)|2d R2(t) = (ω − ω) − (h − h)|ψ2(l, λ)|2

and hence

∫ l

0
|s1(t, λ) − ωc1(t, λ)|2 d R2(t) = Imω

Im λ
− Im h

Im λ
|ψ2(l, λ)|2. (2.37)

Since Im h ≥ 0, (2.35) follows now from (2.37).
(iii) The proof of (2.36) and item (iii) is standard, see [3, Section 8.13] and is omitted.

��
Assume that the point b is singular for the system (1.1), i.e. R(b) + W (b) = ∞.

Then the following alternative holds, [5, Proposition 2.4]:

(i) either discs Dl(λ) shrink to a limit point as l → b for all λ ∈ C\R and then
dimNλ = 1 for all λ ∈ C\R,

(ii) or discs Dl(λ) converge to a limit disc as l → b for all λ ∈ C\R and then
dimNλ = 2 for all λ ∈ C\R.

Definition 2.16 In the case (i) the system S[R, W ] is called limit point at b, in the case
(ii) the system S[R, W ] is called limit circle at b.

Remark 2.17 1. A matrix version of an integral equation equivalent to the integral
system S[R, W ] with R(x) ≡ x and W (x) continuous was considered in [2] and
later in [39]. Such an equation can be reduced to a canonical differential system,
see [2, Section 2.2]. Condition of definiteness of general matrix canonical differ-
ential system was found in [36]. In the scalar case this condition coincides with
Assumption 2.9.
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2. Eckhardt and Teschl developed in [12] an operator approach to the Sturm–Liouville
equation

− d

dW (x)

(
dy

d R(x)
+

∫ x

y(t)d Q(t)

)
= λy(x), x ∈ (a, b), λ ∈ C, (2.38)

withmeasure coefficients dW , d R and d Q in the case when R is strictly increasing.
If in addition, R and W are continuous at a = 0 integral system (1.1) is reduced to
Eq. (2.38), where Q ≡ 0. However, in the case when R is not strictly increasing the
minimal relation Tmin in Definition 2.14 may have a nontrivial multivalued part,
which is not the case in [12]. For instance, if W (x) = x , R(x) = (x − 1)χ(1,2)(x),
x ∈ [0, 2), then (0, u2, f ) ∈ T iff

u2(x) = −
∫ x

0
f (t)dt, f ∈ L2(dW , [0, 1]) � {1}

and hence mul(Tmin) = L2(dW , [0, 1]) � {1}. Here χ(1,2)(x) is the indicator of
the interval (1, 2).
Differential systems with distributional coefficients were studied also recently in
[13,20].

3 Integral Systems in the Limit Circle Case

3.1 The Fundamental Matrix of the System S[R,W]

We will start with some general properties of the fundamental matrix of the system
S[R, W ].
Lemma 3.1 Let U (x, λ) be the fundamental matrix function of the system S[R, W ]

U (x, λ) :=
[

c1(x, λ) s1(x, λ)

c2(x, λ) s2(x, λ)

]
, λ ∈ C. (3.1)

Then:

(i) For every λ,μ ∈ C the following identity holds

J − U (x, μ)∗ JU (x, λ) = −(λ − μ)

∫ x

0

[
c1(t, μ)

s1(t, μ)

] [
c1(t, λ) s1(t, λ)

]
dW (t).

(3.2)
(ii) For every x ∈ [0, b), U (x, λ) is entire in λ.
(iii) The entries of U (x, λ) are nonnegative for x ∈ [0, b), λ ∈ R−. If, in addition, the

interval (0, x) contains growth points of R and W , and

a = inf supp dW , a1 = inf(supp d R ∩ (a, b)), (3.3)
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then

lim
λ→−∞ c1(x, λ) = +∞, x ∈ (a1, b); lim

λ→−∞ c2(x, λ) = +∞, x ∈ (a, b);
(3.4)

lim
λ→−∞ s1(x, λ) = +∞, x ∈ (a1, b); lim

λ→−∞ s2(x, λ) = +∞, x ∈ (a, b).

(3.5)

(iv) If λ ∈ R− then
s1(x, λ)

c1(x, λ)
<

s2(x, λ)

c2(x, λ)
, x ∈ (a, b), (3.6)

the function s1(x,λ)
c1(x,λ)

is increasing on [0, b) and the function s2(x,λ)
c2(x,λ)

is decreasing
on (a, b).

Proof 1. By (2.26) for the triples (c1(·, λ), c2(·, λ), λc1(·, λ)) ∈ T and
(c1(·, μ), c2(·, μ), μc1(·, μ)) ∈ T one obtains

(λ − μ)

∫ x

0
c1(t, λ)c1(t, μ) dW = c1(x, λ)c2(x, μ) − c2(x, λ)c1(x, μ). (3.7)

this proves (i) for the 1, 1-blocks of (3.2).
The proof for other blocks of (3.2) is similar.
2. It follows from (3.2) that

U (x, μ)∗ = JU (x, μ)−1 J T , μ ∈ C.

Therefore,

U (x, λ) − U (x, μ)

λ − μ
= U (x, μ)J T

∫ x

0

[
c1(t, μ)

s1(t, μ)

] [
c1(t, λ) s1(t, λ)

]
dW (t),

hence U (x, λ) is holomorphic on C which proves (ii).
3. To show (iii), expanding c1(x, λ) and c2(x, λ) in series in λ

c1(x, λ) = 1 − λϕ1(x) + λ2ϕ2(x) + · · · , c2(x, λ) = −λψ1(x) + λ2ψ2(x) + · · ·

one obtains from (1.1) that

ψ1(x) = W (x), ϕ1(x) =
∫ x

0
W (t) d R(t)

ψn(x) =
∫ x

0
ϕn−1(t) dW (t), ϕn(x) =

∫ x

0
d R(t)

∫ t

0
ϕn−1(s) dW (s), n ∈ N.

(3.8)
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This implies that ϕn(x) ≥ 0, ψn(x) ≥ 0 for n ∈ N and hence

c1(x, λ) ≥ 0, c2(x, λ) ≥ 0 for x ∈ [0, b), λ ∈ R−.

Moreover, it follows from (3.8) that

c1(x, λ) ≥ 1 + |λ|
∫ x

0
W (t) d R(t), c2(x, λ) ≥ |λ|W (x). (3.9)

Therefore, the relations (3.4) hold since

∫ x

0
W (t) d R(t) > 0 for x ∈ (a1, b) and W (x) > 0 for x ∈ (a, b).

The proof of (3.5) is similar.
4. The identity (2.29) yields

s2(x, λ)

c2(x, λ)
− s1(x, λ)

c1(x, λ)
= 1

c1(x, λ)c2(x, λ)
(3.10)

This proves the inequality (3.6).
It follows from (1.1), (2.14), (2.15), and (2.30) that

d

(
s1(x, λ)

c1(x, λ)

)
= c1+(x, λ)s2(x, λ) − c2(x, λ)s1+(x, λ)

c1(x, λ)c1+(x, λ)
d R(x)

= 1

c1(x, λ)c1+(x, λ)
d R(x)

and hence
s1(x, λ)

c1(x, λ)
=

∫ x

0

1

c1(t, λ)c1+(t, λ)
d R(t). (3.11)

Since c1(x, λ), c1+(x, λ) > 0 for λ ∈ R− and x ∈ [0, b), the function s1(x,λ)
c1(x,λ)

is
increasing on [0, b).

Similarly, by (1.1), (2.14), (2.15), and (2.31)

d

(
c2(x, λ)

s2(x, λ)

)
= −λ

s2(x, λ)s2+(x, λ)
dW (x), x ∈ [0, b) (3.12)

and hence the function c2(x,λ)
s2(x,λ)

is increasing on [0, b). This proves (iv). Notice, that the

function s2(x,λ)
c2(x,λ)

is not defined on [0, a]. ��

3.2 The Evans–Everitt Condition in the Limit Circle Case

Proposition 3.2 The system S[R, W ] is limit circle at b if and only if 1, R ∈ L2(dW ).
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Proof Using the well-known procedure from [3, Theorem 5.6.1] (see also [41, The-
orem 4.5]) one can show that S[R, W ] is limit circle at b if and only if c1(x, 0)
and s1(x, 0) belong to L2(dW ). Substitution of λ = 0 to (1.1) gives c2(x, 0) = 0,
s2(x, 0) = 1 and hence c1(x, 0) = 1, s1(x, 0) = R(x). ��

If the system S[R, W ] is regular at b, then the following limits exist:

c1(b, λ) = lim
t→b

c1(t, λ), s1(b, λ) = lim
t→b

s1(t, λ), (3.13)

c2(b, λ) = lim
t→b

c2(t, λ), s2(b, λ) = lim
t→b

s2(t, λ). (3.14)

Assume now that the system S[R, W ] is limit circle at b. One can check (see [27,

Section 10.7], [40, Theorem 3.8]) that for every u =
[
πu1
π f

]
∈ Tmax the limit

u2(b) = u2(0) −
∫ b

0
f dW (3.15)

exists and is well defined. Therefore, the limits (3.14) exist.
Consider a one-dimensional symmetric extension TN of the linear relation Tmin

defined by

TN =
{
u =

[
πu1
π f

]
: (u1, u2, f ) ∈ T , u1(0) = u2(0) = u2(b) = 0

}
. (3.16)

As follows from (2.27) the adjoint linear relation T ∗
N is of the form

T ∗
N =

{
u =

[
πu1
π f

]
: (u1, u2, f ) ∈ T : u2(b) = 0

}
. (3.17)

Lemma 3.3 Let the system S[R, W ] be limit circle at b. Then for every u =
[
πu1
π f

]
∈

T ∗
N one has u2 ∈ L2(R) and the following two equalities hold:

lim
x→b

u1(x) = u1(0) + 〈 f , R〉, (3.18)

lim
x→b

u1(x)u2(x) = 0. (3.19)

Conversely, if u ∈ Tmax, the endpoint b is singular and (3.19) holds, then u ∈ T ∗
N .

Proof Let u =
[
πu1
π f

]
∈ T ∗

N . Applying the integration-by-parts formula (2.14) to the

first line of (2.17) one gets

u1(x) = u1(0) + u2(x)R(x) +
∫ x

0
R(t) f (t) dW (t). (3.20)
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We recall that in the limit circle case 1, R ∈ L2(dW ) and f ∈ L2(dW ) by the
assumption of the lemma. The condition u2(b) = 0 implies that u2(x) = ∫ b

x f dW
and hence (3.20) can be rewritten as

u1(x) = u1(0) + 〈 f , R〉 −
∫ b

x
(R(t) − R(x)) f (t) dW (t). (3.21)

Note the following estimation:

∣∣∣∣
∫ b

x
(R(t) − R(x)) f (t) dW (t)

∣∣∣∣ ≤
∫ b

x
(R(t) − R(x))| f (t)| dW (t)

≤
∫ b

x
R| f | dW → 0 as x → b.

(3.22)

Now (3.18) follows from (3.21) and (3.22), and (3.19) finally follows from (3.18).

The claim u2 ∈ L2(R) for u =
[
πu1
π f

]
∈ T ∗

N follows from (3.18) and the first

Green’s identity (2.26)

∫ b

0
f (t)u1(t) dW (t)=

∫ b

0
|u2|2d R(t) − lim

x→b
u2(x)u1(x) + u2(0)u1(0)

=
∫ b

0
|u2|2d R(t) + u2(0)u1(0). (3.23)

Now assume that the endpoint b is singular and u =
[
πu1
π f

]
∈ Tmax. From (3.15)

we have u2(b) = a where a ∈ C. In the limit circle case the singular endpoint b
implies R(b) = ∞. If a �= 0 then from (2.17) we get u1(b) = ±∞ and hence (3.19)
does not hold. ��
Remark 3.4 The condition (3.19) for Sturm–Liouville operators in the limit circle case
was introduced and studied by Evans and Everitt in [17]. We will call it the Evans–
Everitt condition.

3.3 Boundary Triples for Integral Systems in the Limit Circle Case

Definition 3.5 (see [5,33]) The functionm(λ, b,∞) from (2.33) forwhich the solution

ψ N (t, λ) = s(t, λ) − m(λ, b,∞)c(t, λ), t ∈ I , (3.24)

satisfies the condition
ψ N
2 (b, λ) = 0, (3.25)

is called the Neumann m-function of the system S[R, W ] on I subject to the boundary
condition (3.25) and ψ N (t, λ) is called the Weyl solution of (1.1).
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It follows from (2.33) and the condition ψ N
2 (b, λ) = 0 that s2(b, λ) −

m(λ, b,∞)c2(b, λ) = 0 which proves the formula

m(λ, b,∞) = s2(b, λ)

c2(b, λ)
. (3.26)

We will show below that the function m(λ, b,∞) is the Weyl function of the linear
relation TN in the sense of Definition 2.2.

Proposition 3.6 Let the system S[R, W ] be singular and limit circle at b, let TN

be defined by (3.16), and let m(λ, b,∞) be the Neumann m-function of the system
S[R, W ] given by (3.26). Then:

(i) TN is a symmetric nonnegative linear relation in L2(dW ) with deficiency indices
(1, 1).

(ii) The triple �N = (C, �N
0 , �N

1 ), where

�N
0 u = u2(0), �N

1 u = −u1(0), u ∈ T ∗
N , (3.27)

is a boundary triple for T ∗
N .

(iii) The Weyl function m N (λ) of TN corresponding to the boundary triple �N coincides
with the Neumann m-function m(λ, b,∞).

(iv) The Weyl function m N (λ) of TN coincides with the principal Titchmarsh–Weyl
coefficient q(λ) of the system S[R, W ] defined in (1.6), belongs to the Stieltjes
class S, and

lim
λ→−∞ m N (λ) = R+(a), (3.28)

where a = inf supp dW .
(v) The Weyl function m N (λ) of TN admits the representation

m N (λ) = − 1

W (b) · λ
+ m̃(λ); (3.29)

where m̃ is a function from S such that limy→0 ym̃(iy) = 0.

Proof 1. To show (i), (ii), let the tuples (u1, u2, f ), (v1, v2, g) ∈ T satisfy u2(b) =
v2(b) = 0, i.e. u, v ∈ T ∗

N . Let μ ∈ R. By formula (2.29) at least one of the values
c2(b, μ) and s2(b, μ) is not equal to 0. Assume that c2(b, μ) �= 0. Due to the identity

[u, v](b) = c2(b, μ)−1
{
[u(·), c(·, μ)](b)v2(b) − u2(b)[v(·), c(·, μ)](b)

}

the second Green’s identity (2.27) is of the form

∫ b

0
( f v1 − u1g) dW (t) = [u, v](b)−[u, v](0) = u2(0)v1(0)− u1(0)v2(0). (3.30)

By Definition 2.1 the boundary triple for T ∗
N can be taken as �N = (C, �N

0 , �N
1 ),

with �N
0 , �N

1 given in (3.27).
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It follows from the first Green’s identity (3.23) and Lemma 3.3 that for every
(πu1, π f )T ∈ TN

∫ b

0
f (t)u1(t) dW (t) =

∫ b

0
|u2|2d R(t) ≥ 0. (3.31)

2. Let us prove (iii). The defect subspace Nλ(T ∗
N ) is spanned by the function

ψ N
1 (·, λ), where ψ N (t, λ) is the Weyl solution from (3.24). Denote uN (t, λ) =

(ψ N
1 (·, λ), λψ N

1 (·, λ))T ∈ N̂λ(T ∗
N ). Using (3.24), (3.27) one obtains

�N
1 uN (·, λ) = −ψ N

1 (0, λ) = m(λ, b,∞), �N
0 uN (·, λ) = ψ N

2 (0, λ) = 1

and hence by (2.10) the Weyl function m N (λ) is of the form

m N (λ) = �N
1 uN (·, λ)

�N
0 uN (·, λ)

= m(λ, b,∞). (3.32)

Therefore, the Weyl function m N (λ) coincides with the Neumann m-function
m(λ, b,∞).

3. The inclusion m N ∈ S follows from Lemma 3.1, since the functions s2(x, λ)

and c2(x, λ) are positive for λ < 0 and the function m N (λ) admits a holomorphic
nonnegative continuation on R−.

Let a = inf supp W and a1 = inf(supp R∩(a, b)). Then byAssumption 2.9 a1 < b
and due to (1.1) and Lemma 3.1 (iii)

c1(x, λ) ≡ 1 for x ≤ a1 and lim
λ→−∞ c1(x, λ) = +∞ for x > a1.

Now we must consider two cases:

(a) a1 > a and R has a jump at a1;
(b) either a1 = a or a1 > a and R has no jump at a1.

In case (a) c1(·, λ) has a jump at point a1 and we get

1

c1(x, λ)c1+(x, λ)
→ χ[0,a1)(x) as λ → −∞ (3.33)

and hence by the Lebesgue bounded convergence theorem one obtains from (3.11)

lim
λ→−∞

s1(x, λ)

c1(x, λ)
=

∫ x

0

d R(t)

c1(t, λ)c1+(t, λ)
=

∫
[0,a1)

d R = R(a1) = R+(a). (3.34)

The last equality in (3.34) follows from a1 > a and (3.3).
In case (b) c1(·, λ) has no jump at point a1 and we get

1

c1(x, λ)c1+(x, λ)
→ χ[0,a1](x) as λ → −∞. (3.35)
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Similarly to (3.34) one obtains

lim
λ→−∞

s1(x, λ)

c1(x, λ)
= R+(a1) = R+(a). (3.36)

Since R(b)+ W (b) = +∞ it follows from (3.9) that limx→b c1(x, λ)c2(x, λ) = +∞
for all λ ∈ R− and hence it follows from (3.10) that

q(λ) = lim
x→b

s1(x, λ)

c1(x, λ)
= lim

x→b

s2(x, λ)

c2(x, λ)
= m N (λ), λ ∈ R−.

Since q and mN are holomorphic on C\R+ this proves that q(λ) ≡ m N (λ), and (iv)
is shown.

4. Now we prove (v). It follows from (1.1) and (3.1) that

s2(x, λ) = 1 − λ

∫ x

0
s1(t, λ) dW (t), c2(x, λ) = −λ

∫ x

0
c1(t, λ) dW (t)

and by (3.26) that

m N (λ) = 1 − λ
∫ b
0 s1(t, λ) dW (t)

−λ
∫ b
0 c1(t, λ) dW (t)

, λ ∈ C\R. (3.37)

Moreover, for λ < 0 the functions s1(x, λ) and c1(x, λ) are positive and increasing
on (0, b) and c2(0, λ) = 1, hence

∫ b

0
c1(t, λ) dW (t) > W (b),

∫ b

0
s1(t, λ) dW (t) > 0. (3.38)

Since c1(x, λ) → c1(x, 0) ≡ 1 and s1(x, λ) → s1(x, 0) = R(x) as λ → 0− and
these convergences are monotone and uniform on [0, b] one finds that

∫ b

0
c1(t, λ) dW (t) → W (b),

∫ b

0
s1(t, λ) dW (t) →

∫ b

0
R(t) dW (t),

as λ → 0−. Therefore,

λm N (λ) → − 1

W (b)
, as λ → 0− (3.39)

and thus m N (λ) admits the representation (3.29). ��
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3.4 Integral Systems in the Regular Case

Assume that the system S[R, W ] is regular at b, i.e. R(b) + W (b) < ∞. Then for
every tuple (u1, u2, f ) ∈ T it follows from (3.15) that the function u2 is bounded and
hence the limit

u1(b) = u1(0) +
∫ b

0
u2 d R (3.40)

exists and is well defined. Therefore, the limits (3.13) exist.

Definition 3.7 (see [5,33]) The function m(λ, b, 0) for which the solution

ψ N D(t, λ) = s(t, λ) − m(λ, b, 0)c(t, λ), t ∈ I , (3.41)

satisfies the condition
ψ N D
1 (b, λ) = 0 (3.42)

is called the Neumann m-function of the system S[R, W ] on I subject to the boundary
condition (3.42).

It follows from(2.33) and the conditionψ N D
1 (b, λ) = 0 that s1(b, λ)−m(λ, b, 0)c1(b, λ) =

0 which yields the formula

m(λ, b, 0) = s1(b, λ)

c1(b, λ)
(3.43)

andhence theNeumannm-functionm(λ, b, 0) coincideswith theprincipalTitchmarsh–
Weyl coefficient q(λ) of the system S[R, W ], defined in (1.6).

Let TD be a symmetric extension of the linear relation Tmin defined by

TD =
{
u =

[
πu1
π f

]
: (u1, u2, f ) ∈ T , u1(0) = u2(0) = u1(b) = 0

}
. (3.44)

As follows from (2.27) the adjoint linear relation T ∗
D is of the form

T ∗
D =

{
u =

[
πu1
π f

]
: (u1, u2, f ) ∈ T : u1(b) = 0

}
. (3.45)

Proposition 3.8 (cf. [40]) Let the system S[R, W ] be regular at b, and let TD be
defined by (3.44). Then:

(i) TD is a symmetric nonnegative linear relation in L2(dW ) with deficiency indices

(1, 1) and u2 ∈ L2(R) for all u =
[
πu1
π f

]
∈ T ∗

D;

(ii) the triple �N D = (C, �N D
0 , �N D

1 ), where

�N D
0 u = u2(0), �N D

1 u = −u1(0), u ∈ T ∗
D, (3.46)

is a boundary triple for T ∗
D.
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(iii) The Weyl function m N D(λ) of TD corresponding to the boundary triple �N D

coincides with m(λ, b, 0).
(iv) The Weyl function m N D(λ) of TD belongs to the Stieltjes class S and coincides

with the principal Titchmarsh–Weyl coefficient q(λ) of the system S[R, W ].
Proof 1. To show (i) and (ii), let the tuples (u1, u2, f ) and (v1, v2, g) satisfy the
system (2.17) and assume that u1(b) = v1(b) = 0, i.e. u, v ∈ T ∗

D . Let μ ∈ R. By
(2.29) at least one of the values c1(b, μ) and s1(b, μ) is not equal to 0. Assume that
c1(b, μ) �= 0. Due to the identity

[u, v](b) = c1(b, μ)−1
{
[u(·), c(·, μ)](b)v1(b) − u1(b)[v(·), c(·, μ)](b)

}
(3.47)

the Green’s identity (2.27) is of the form (3.30). By Definition 2.1 the boundary triple
for T ∗

D can be taken as �N D = (C, �N D
0 , �N D

1 ), with �N D
0 , �N D

1 given in (3.46).
It follows from the firstGreen’s identity (2.26) andLemma3.3 that for every u ∈ TD

the identity (3.31) holds and thus the linear relation TD is nonnegative.
2. Let us prove (iii). The defect subspace Nλ(TD) is spanned by the function

ψ N D
1 (·, λ) determined by (3.41). Denote

uN D(t, λ) = (ψ N D
1 (·, λ), λψ N D

1 (·, λ))T ∈ N̂λ(T ∗
D).

Using the formulae (3.41) and (1.7) one obtains

�N D
1 uN D(·, λ) = −ψ N D

1 (0, λ) = m(λ, b, 0), �N D
0 uN D(·, λ) = ψ N D

2 (0, λ) = 1

and hence the Weyl function mN D(λ) is of the form

m N D(λ) = �N D
1 uN D(·, λ)

�N D
0 uN D(·, λ)

= m(λ, b, 0).

Therefore, the Weyl function m N D(λ) coincides with the Neumann m-function
m(λ, b, 0).

3. Finally we prove (iv). The inclusion m N D ∈ S follows from Lemma 3.1. The
equality m N D(λ) ≡ q(λ), λ ∈ C\R, is implied by (3.43). ��
Remark 3.9 The functions R and W are not uniquely defined by the principal
Titchmarsh–Weyl coefficient of the system S[R, W ]. As was shown in [33, Lemma
2.12] if functions R̃(ξ) and W̃ (ξ) are connected by

R̃(ξ) = R(x(ξ)), W̃ (ξ) = W (x(ξ)), ξ ∈ [0, β].

where x(ξ) is an increasing function on the interval [0, β], such that x(0) = 0 and
x(β) = b, then the principal Titchmarsh–Weyl coefficient q̃ of the system

ũ(ξ, λ) = ũ(0, λ) − J
∫ ξ

0

[
λdW̃ (τ ) 0

0 d R̃(τ )

]
ũ(τ, λ), ξ ∈ [0, β]. (3.48)
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coincides with the principal Titchmarsh–Weyl coefficient q of the system S[R, W ].
Therefore we can always assume that for regular systems S[R, W ] the parameter

x ranges over a finite interval [0, b], b < ∞.

Remark 3.10 As is known, see [27, Section A13], a truncated moment problem can be
reduced to a regular integral system S[R, W ] with

R(x) = x, W (x) =
n−1∑
j=0

m j H(x − x j ), x ∈ [0, xn],

x j =
j∑

j=1

li , m j−1, l j > 0, 1 ≤ j ≤ n.

where H(x) is theHeaviside function.The correspondingmonodromymatrixU (xn, λ)

is of the form

U (xn, λ) =
n∏

j=1

Ux j−1(x j , λ), where Ux j−1(x j , λ) =
[
1 − λl j m j−1 l j

−λm j−1 1

]
.

The system S[R, W ] satisfies Assumption 2.9 if n > 1. If n = 1 then W (x) = H(x),
x ∈ [0, l1], L2(dW ) = C, the system S[R, W ] is of the form

u1(x) = u1(0) + xu2(x), u2(x) = u2(0) − λu1(0)m0, x ∈ (0, l1]

and does not satisfy the Assumption 2.9. However, in this case one can still introduce
a boundary triple (C, �0, �1) for Tmax = C × C by

�0u = u1(0), �1u = f (0), u =
[

u1
f

]
∈ Tmax (3.49)

and the corresponding Weyl function is m(λ) = m0λ.
The system S[R̃, W̃ ] with R̃(x) = l1H(x − 1), W̃ (x) = m0H(x), x ∈ [0, 2] is

equivalent to the system S[R, W ] in the sense that its Weyl function corresponding
to the boundary triple (3.49) coincides with m(λ) = m0λ and the monodromy matrix
Ũ (2, λ) of this system coincides with U (l1, λ). The advantage of system S[R̃, W̃ ] is
that the elementary factors of Ũ (2, λ) from its factorization

Ũ (2, λ) = U (1)(λ)U (0)(λ), U (1)(λ) =
(
1 l1
0 1

)
, U (0)(λ) =

(
1 0

−λm0 1

)

can be also treated as monodromy matrices of systems S[0, W̃ ] on the interval [0, 1]
and S[R̃, 0] on [1, 2], respectively.
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4 Integral Systems in the Limit Point Case

4.1 The Strong Limit Point Condition

The next lemma is an analog of a result in [16, Lemma] in the case of integral systems.

Lemma 4.1 Let f be a (not necessarily strictly) monotone function on [b0, b) such
that either f (x) → ±∞ or f (x) → 0 as x → b and let f (x) �= 0 on [b0, b). Then

lim
x→b

∫ x

b0
d f / f = ±∞. (4.1)

Proof We will prove the lemma in the case f > 0, f → 0. The proof in the other
cases is similar. Let D f be the set of the points of discontinuity of f on [b0, b). One
can write ∫

[b0,x)

d f

f
=

∫

[b0,x)\D f

d f

f
+

∫

[b0,x)∩D f

d f

f
. (4.2)

Notice that both the integrals on the right hand side of (4.2) are negative, therefore if
one of them diverges (as x → b) then the assertion of the lemma holds.

Let D f = {xn}∞n=0. Consider the following inequality

f+(xn) − f−(xn)

f (xn)
≤ f+(xn) − f−(xn)

f−(xn)
= f+(xn)

f−(xn)
− 1 < 0

and the associated series ∞∑
n=0

(
f+(xn)

f−(xn)
− 1

)
. (4.3)

If series (4.3) diverges then the following integral

∫

[b0,b)∩D f

d f

f
=

∑
xn∈D f

f+(xn) − f−(xn)

f (xn)
(4.4)

diverges as well, so the assertion of the lemma holds immediately.
Assume now that series (4.3) converges and denote an := 1 − f+(xn)/ f−(xn).

Notice that the measure d log( f ) is absolutely continuous with respect to d f and
therefore there exists the Radon–Nikodym derivative d log( f )/d f ∈ L1(d f ) which
has the representation (see [6, 5.3, formula (3.5)])

d log( f )

d f
=

{
1/ f (x), x ∈ [b0, b)\D f ,

(log f+(x) − log f−(x))/( f+(x) − f−(x)), x ∈ D f .
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Now we get by the Radon–Nikodym theorem

log
f−(x)

f+(b0)
=

∫

[b0,x)

d log( f )

d f
d f =

∫

[b0,x)\D f

d f

f
+

∫

D f

log f+(x) − log f−(x)

f+(x) − f−(x)
d f

and hence ∫

[b0,x)\D f

d f

f
= log

f−(x)

f+(b0)
+

∑
xn∈D f

log
f−(xn)

f+(xn)
. (4.5)

One can see from the following inequality

0 < log
f−(xn)

f+(xn)
≤ f−(xn) − f+(xn)

f+(xn)
= an

1 − an

that the series

∞∑
n=1

log
f−(xn)

f+(xn)

converges provided the series
∑∞

1 an converges. Therefore, the integral on the left
hand side of (4.5) diverges which completes the proof. ��

Definition 4.2 ([14–16]) Let the system S[R, W ] be singular at b. It is said to be in
the strong limit point case if

lim
x→b

u1(x)v2(x) = 0 for any (u1, u2, f ), (v1, v2, g) ∈ T ; (4.6)

and it is said to have the Dirichlet property if

∫ b

0
|u2(t)|2d R(t) < ∞ for any (u1, u2, f ) ∈ T . (4.7)

Theorem 4.3 Let the system S[R, W ] be singular at b. Then the following statements
are equivalent:

(LP) The system S[R, W ] is in the limit point case.
(D) The system S[R, W ] has the Dirichlet property.

(SLP∗) For any (u1, u2, f ) ∈ T the following equality holds

lim
x→b

u1(x)u2(x) = 0. (4.8)

(SLP) The system S[R, W ] is in the strong limit point case.
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Proof Without loss of generality we assume here that the functions u1, u2, and f are
real-valued. By the first Green’s identity (2.26) one obtains

∫ x

0
u2
2 d R =

∫ x

0
f u1 dW + u1u2|x0,

and hence

lim
x→b

u1(x)u2(x) = d,

where d ∈ R if the Dirichlet property holds and d = +∞ otherwise.
Let us start with the implication (LP) ⇒ (D). For this purpose we assume the

contrary i.e. the system S[R, W ] is in the limit point case but d = +∞. Notice, that
according to Assumption 2.8 the functions R and W do not have common points of
discontinuity, therefore neither do the functions u1 and u2. It implies that both u1
and u2 preserve their signs on some interval [b0, b) (otherwise they would have to
share a jump from a positive to a negative value or vice versa). It follows from (2.17)
that the function u1 is either positive and increasing or negative and decreasing. If
1 /∈ L2(dW ) then it immediately results as u1 /∈ L2(dW ).

In the case if 1 ∈ L2(dW ) (and hence R /∈ L2(dW )) the implication f ∈
L2(dW ) ⇒ f ∈ L1(W ) is valid and hence (see (3.15)) there exists a finite limit
u2(b) := limx→b u2(x). The limit u2(b) must be zero, otherwise from

|u1(x) − u1(b0)| =
∣∣∣∣
∫ x

b0
u2 d R

∣∣∣∣ ≥ |u2(b)|
2

(R(x) − R(b0))

one gets u1 /∈ L2(dW ). One can see that 1/u2 /∈ L2(dW ). Indeed, if 1/u2 ∈ L2(dW )

then the integral

∫ x

0

f

u2
dW = −

∫ x

0

du2

u2

converges as x → b, which contradicts to Lemma 4.1. Since d = +∞, the estimate
|u1| > 1/|u2| hold on some interval [b0, b) and provides again u1 /∈ L2(dW ). This
completes the proof of the implication (LP) ⇒ (D).

Now let us prove the implication (D) ⇒ (SLP*). We first will show that d = 0. In
the case 1 ∈ L2(dW ) the reasoning of the previous paragraph can be used to show
that u1 /∈ L2(dW ) for every non-zero d . In the case 1 /∈ L2(dW ) the reasoning above
shows again that u1 /∈ L2(dW ) for every d > 0. Therefore we assume d < 0 and get
that u1 is either positive and decreasing or negative and increasing on some interval
[b0, b), namely u1 → 0 as x → b. From |u1u2| > |d|/2 on [b0, b) (with a possible
change of point b0) we obtain the following inequality

∫ b

b0
u2
2 d R =

∫ b

b0
u2 d f1 >

d

2

∫ b

b0

du1

u1
= +∞.
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The left hand side converges by the assumption (D) but the right hand side diverges
due to Lemma 4.1. This contradiction proves that d = 0. Thus, implication (D) ⇒
(SLP) is valid.

As is known (see [41, Theorem 4.3]), the system S[R, W ] is in the limit point case
if and only if for every (u1, u2, f ) and (v1, v2, g) from T

lim
x→b

[u, v]x = lim
x→b

(u1(x)v2(x) − u2(x)v1(x)) = 0. (4.9)

In order to prove the implication (SLP*)⇒ (SLP) we notice first that by Lemma 3.3
the system S[R, W ] cannot be in the limit circle case since (4.8) holds for every
(u1, u2, f ) ∈ T . The condition (4.6) follows from (4.8), (4.9) and the following
equality (cf. [16])

2u1(x)v2(x) = (u1 + v1)(u2 + v2) + [u, v]x = 0.

Assume that the statement (SLP) holds, i.e. condition (4.6) is satisfied for every
(u1, u2, f ) and (v1, v2, g) from T . Then, clearly, (4.9) holds for every (u1, u2, f )

and (v1, v2, g) from T and hence the system S[R, W ] is in the limit point case. This
proves the implication (SLP) ⇒ (LP). ��
Remark 4.4 In the case of absolutely continuous R andW the implication (LP)⇒(SLP)
for the system S[R, W ] was proved in [28], see also [16].

4.2 Boundary Triples for Integral Systems in the Limit Point Case

Definition 4.5 Let the system S[R, W ] be in the limit point case at b. Then for each
λ ∈ C\R there is a unique coefficient m N (λ), such that

ψ1(·, λ) = s1(·, λ) − m N (λ)c1(·, λ) ∈ L2(dW ). (4.10)

The function m N is called the Neumann m-function of the system (1.1) on I and the
function ψ(t, λ) is called the Weyl solution of the system S[R, W ] on I .

Let us collect some statements concerning boundary triples for S∗, which were
partially formulated in [40,41].

Proposition 4.6 Let the system S[R, W ] be in the limit point case at b, and let T =
Tmin. Then:

(i) T is a symmetric nonnegative operator in L2(dW ) with deficiency indices (1, 1).
(ii) The triple � = (C, �0, �1), where

�0u = u2(0), �1u = −u1(0), u ∈ T ∗, (4.11)

is a boundary triple for T ∗.
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(iii) The defect subspace Nλ is spanned by the Weyl solution ψ1(t, λ), and the Weyl
function m(λ) of T corresponding to the boundary triple � coincides with the
Neumann m-function of the system S[R, W ] on I :

m(λ) = −ψ1(0, λ)

ψ2(0, λ)
= m N (λ). (4.12)

(iv) The Weyl function m(λ) of T corresponding to the boundary triple � coincides
with the principal Titchmarsh–Weyl coefficient q(λ) of the system S[R, W ] on I
and belongs to the Stieltjes class S.

(v) If W (b) < ∞ then the Weyl function m N of TN admits the representation

m N (λ) = − 1

W (b) · λ
+ m̃(λ); (4.13)

where m̃ is a function from S such that limy↓0 ym̃(iy) = 0.

Proof 1. At first we show (i)–(ii). Since (1.1) is in the limit point case at b,

lim
x→b

[u, v]x = 0 for u =
[
πu1
π f

]
, v =

[
πv1
πg

]
∈ Tmax

and hence the generalized Green’s identity (2.27) is of the form

∫ b

0
( f v1 − u1g) dW (t) = −[u, v]0 = u2(0)v1(0) − u1(0)v2(0). (4.14)

Therefore, the triple � in (4.11) is a boundary triple for T ∗.
It follows from the first Green’s identity (2.26) and Lemma 3.3 that for every u ∈ T

the identity (3.31) holds and thus the linear relation T is nonnegative.
2. Now (iii) is shown. In the limit point case there is only one linearly independent

solution ψ(·, λ) of the system S[R, W ] such that ψ1(·, λ) ∈ L2(dW ), see (4.10), and
hence the defect subspaceNλ := Nλ(T ∗) is spanned by the functionψ1(·, λ). Denote
u(t, λ) = (ψ1(·, λ), λψ1(·, λ))T ∈ N̂λ(T ∗). It follows from (4.11) that

�0u(·, λ) = ψ2(0, λ) = 1, �1u(·, λ) = −ψ1(0, λ) = m N (λ),

This yields formula (4.12).
3. Now we show (iv). If λ ∈ R− then it follows from Lemma 3.1 that the function

s1(x,λ)
c1(x,λ)

is increasing and bounded from above. Therefore, the following limit

q(λ) := lim
x→b

s1(x, λ)

c1(x, λ)
(4.15)

exists and is nonnegative for every λ ∈ R−. By Stieltjes-Vitaly theorem the function
q is holomorphic on C\[0,∞). The function q belongs to the Stieltjes class S, since
it is nonnegative for every λ ∈ R−. Since s1(x,λ)

c1(x,λ)
belongs to the Weyl disc Dx (λ) and
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the system S[R, W ] is limit point at b, for every λ ∈ C+ ∪C− the following equality
holds

q(λ) = lim
x→b

s1(x, λ)

c1(x, λ)
= m N (λ). (4.16)

4. Assume that W (b) < +∞. Let us consider the family of von Neumann m-
functions mx

N (λ) = s2(x,λ)
c2(x,λ)

converging to m N (λ) as x → b−. Due to equality (3.12)

1

mx
N (λ)

= c2(x, λ)

s2(x, λ)
=

∫ x

0

−λ

s2(x, λ)s2+(x, λ)
dW (x). (4.17)

Since s2(x, λ) ≥ 1 for x ∈ [0, b) and λ ∈ R− there exists the limit

−1

λm N (λ)
= lim

x→b

−c2(x, λ)

λs2(x, λ)
=

∫ b

0

1

s2(x, λ)s2+(x, λ)
dW (x).

Due to Lemma 3.1

lim
λ↓0

1

s2(x, λ)s2+(x, λ)
= 1, and

∣∣∣∣ 1

s2(x, λ)s2+(x, λ)

∣∣∣∣ ≤ 1 for x ∈ [a, b).

Hence one obtains by the Lebesgue bounded convergence Theorem

lim
λ→0

1

−λm N (λ)
=

∫
[0,b)

dW = W (b).

This implies (v). ��

4.3 The Canonical Singular Continuation of a Regular Integral System

If the integral system S[R, W ] is regular at b then due to Remark 3.9 we can assume
without loss of generality that b < ∞.

Definition 4.7 For a regular system S[R, W ] with b < ∞ we define the extended
functions

R̃(x) :=
{

R(x) : x ∈ [0, b],
R(b) : x ∈ (b,∞),

W̃ (x) :=
{

W (x) : x ∈ [0, b],
W (b) + x − b : x ∈ (b,∞).

(4.18)

The integral system S[R̃, W̃ ] corresponding to

ũ(x, λ) = ũ(0, λ) +
∫ x

0

[
0 d R̃(t)

−λdW̃ (t) 0

]
ũ(t, λ), x ∈ [0,∞) (4.19)

will be called the canonical singular continuation of a regular integral system S[R, W ].
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Proposition 4.8 Let the integral system S[R, W ], see (1.1), be regular at b < ∞. Then
the principal Titchmarsh–Weyl coefficient q̃ of its canonical singular continuation
S[R̃, W̃ ] coincides with the principal Titchmarsh–Weyl coefficient q of the system
S[R, W ]:

q̃(λ) = q(λ), λ ∈ C\R. (4.20)

Proof Let the pair u1, u2 satisfy the integral system S[R, W ] for some λ ∈ C\R and
let ũ1, ũ2 be the continuations of u1, u2 to the interval [0,+∞) given by

{
ũ1(x, λ) = u1(b, λ), x ∈ (b,∞),

ũ2(x, λ) = u2(b, λ) − λu1(b, λ)(x − b), x ∈ (b,∞).
(4.21)

Then the pair ũ1, ũ2 satisfies the integral system (4.19). If c1, c2 and s1, s2 are solutions
of (1.1) according to the initial conditions (1.7) then the continuations c̃1, c̃2 and s̃1, s̃2
are solutions of the integral system (4.19) with the same initial conditions (1.7).

In view of (4.21) the principal Titchmarsh–Weyl coefficient q̃ of the canonical
singular continuation S[R̃, W̃ ] is of the form

q̃(λ) = lim
x→∞

s̃1(x, λ)

c̃1(x, λ)
= lim

x→∞
s1(x, λ)

c1(x, λ)
= q(λ).

��

5 Dual Integral Systems

Definition 5.1 The dual system Ŝ[R, W ] to a singular system S[R, W ] is defined by
changing the roles of R and W in (1.1), that is Ŝ[R, W ] = S[W , R] and

û(x, λ) = û(0, λ) +
∫ x

0

[
0 dW (t)

−λd R(t) 0

]
û(t, λ), x ∈ [0, b). (5.1)

In case the system S[R, W ] is regular, we will denote by Ŝ[R, W ] the dual to its
canonical singular continuation: Ŝ[R, W ] = S[W̃ , R̃].

Let ŝ(·, λ) and ĉ(·, λ) be the unique solutions of (5.1) satisfying the initial conditions

ĉ1(0, λ) = 1, ĉ2(0, λ) = 0, and ŝ1(0, λ) = 0, ŝ2(0, λ) = 1. (5.2)

Theorem 5.2 Let U (x, λ) and Û (x, λ) be the fundamental matrices of the system
S[R, W ] and its dual system Ŝ[R, W ] respectively. Let m N and m̂ N be the Neumann
m-functions of the systems S[R, W ] and Ŝ[R, W ] in the sense of Definitions 3.5, 4.5.
Then:

(i) The matrices U (x, λ) and Û (x, λ) are related by

Û (x, λ) = D(λ)−1U (x, λ)D(λ), where D(λ) =
(
0 −λ−1

1 0

)
. (5.3)
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(ii) If the system S[R, W ] is singular at b, then

m̂ N (λ) = − 1

λm N (λ)
. (5.4)

(iii) If S[R, W ] is regular at b, then

m̂ N (λ) = ŝ2(b, λ)

ĉ2(b, λ)
= − c1(b, λ)

λs1(b, λ)
= − 1

λm N D(λ)
, (5.5)

where m N D(λ) is the Neumann m-function of system S[R, W ], subject to the
boundary condition u1(b) = 0, see Definition 3.7.

(iv) The principal Titchmarsh–Weyl coefficients q and q̂ of S[R, W ] and Ŝ[R, W ] are
connected by the equality

q̂(λ) = − 1

λq(λ)
, λ ∈ C\R+. (5.6)

Proof 1. At first (i) is shown. A straightforward calculation shows that the solutions
ŝ(·, λ) and ĉ(·, λ) of (5.1) are related to the solutions s(·, λ) and c(·, λ) of (1.1) by the
equalities

[̂
c1(·, λ)

ĉ2(·, λ)

]
=

[
s2(·, λ)

−λs1(·, λ)

]
,

[̂
s1(·, λ)

ŝ2(·, λ)

]
=

[−λ−1c2(·, λ)

c1(·, λ)

]
. (5.7)

The equality (5.3) follows from (5.7) and (3.1).
System S[R, W ] is regular at b if and only if both S[R, W ] and Ŝ[R, W ] are in the

limit circle case at b. Therefore the proof of (ii) can be splitted into the following three
cases 2–4.

2. Both S[R, W ] and Ŝ[R, W ] are in the limit point case at b :
Let m N be the Neumann m-function of the systems S[R, W ], see Definition 4.5, and
letψ1(·, λ) be the correspondingWeyl solution of the system S[R, W ]. Then the vector
function

ψ̂(·, λ) :=
[̂

s1(·, λ)

ŝ2(·, λ)

]
+ 1

λm N (λ)

[̂
c1(·, λ)

ĉ2(·, λ)

]
=

[
− 1

λ
c2(·, λ) + 1

λm N (λ)
s2(·, λ)

c1(·, λ) − 1
m N (λ)

s1(·, λ)

]

is a solution of the system (5.1). Moreover, due to Lemma 4.3 ψ̂1(·, λ) =
1

λm N (λ)
ψ2(·, λ) belongs to L2(R). Therefore, ψ̂1(·, λ) is the Weyl solution of the

system Ŝ[R, W ] and the function − 1
λm N (λ)

is the Neumann m-function of the sys-

tem Ŝ[R, W ].
3. S[R, W ] is in the limit circle case and Ŝ[R, W ] is in the limit point case at b :

Let the function ψ N be defined by (3.24). Since (1.1) is in the limit circle case it
follows from Lemma 3.3 that ψ N

2 ∈ L2(R). Hence, ψ̂(·, λ) is a solution of the system
Ŝ[R, W ], such that ψ̂1(·, λ) = 1

λm N (λ)
ψ N
2 (·, λ) ∈ L2(R). Therefore, ψ̂1 is the Weyl
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solution of the system Ŝ[R, W ] and the function − 1
λm N (λ)

is the Neumann m-function

of the systems Ŝ[R, W ].
4. S[R, W ] is in the limit point case and Ŝ[R, W ] is in the limit circle case at b :

As was shown on Step 3 the Neumann m-function m̂ N (λ) of the systems Ŝ[R, W ]
subject to the boundary condition ψ̂2(b, λ) = 0 is connected with the Neumann m-
function m N (λ) of the system S[R, W ] by the equality

m N (λ) = − 1

λm̂ N (λ)

which is equivalent to (5.4).
5. Now (iii) is shown. Let m N D(λ) be the Neumann m-function of the system

S[R, W ], subject to the boundary condition (3.42) and let ψ N D
1 (·, λ) be the cor-

responding Weyl solution of the system S[R, W ] defined by (3.41). By definition
ψ N D
1 (b, λ) = 0. Then the vector function

ψ̂(·, λ) :=
[̂

s1(·, λ)

ŝ2(·, λ)

]
+ 1

λm N D(λ)

[̂
c1(·, λ)

ĉ2(·, λ)

]

= − 1

m N D(λ)

[− 1
λ

(s2(·, λ) − m N D(λ)c2(·, λ))

s1(·, λ) − m N D(λ)c1(·, λ)

]

is a solution of the system (5.1) such that ψ̂2(b, λ) = ψ N D
1 (b, λ) = 0. Therefore, the

function −1
λm N D(λ)

is the Neumann m-function of the systems Ŝ[R, W ], subject to the

boundary condition ψ̂2(b, λ) = 0.
6. Finally (iv) is shown. If the integral system S[R, W ] is singular at b then the

Neumann m-function m N (resp. m̂ N ) coincides with the principal Titchmarsh–Weyl
coefficient q of the system S[R, W ] (resp. q̂ of the system Ŝ[R, W ]), see Proposi-
tions 3.6, 4.6. Therefore, (5.6) is implied by (5.4).

If the system S[R, W ] is regular at b then by Propositions 4.8 q coincides with
the principal Titchmarsh–Weyl coefficient q̃ of the canonical singular continuation
S[R̃, W̃ ] of the system S[R, W ] to [0,+∞), see (4.18). By the statement of the above
paragraph the principal Titchmarsh–Weyl coefficient q̂ of the dual system S[W̃ , R̃] is
of the form

q̂(λ) = − 1

λq̃(λ)
= − 1

λq(λ)
,

and (5.6) is shown. ��
Since the relation of duality for integral systems is reflexive one derives from the

proof of Theorem 5.2 the following statement.

Corollary 5.3 Let the system S[R, W ] be in the limit point case and let Ŝ[R, W ] be in
the limit circle case at b. Let ψ1(·, λ) be the corresponding Weyl solution of the system
S[R, W ]. Then

lim
x→b

ψ1(x, λ) = 0. (5.8)
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Proof As it was mentioned in the proof of Theorem 5.2 (Step 3), the Weyl solution
ψ(·, λ) of the system S[R, W ] is connected with the Weyl solution ψ̂ N (·, λ) of the
dual system (1.1) by the equality ψ1(·, λ) = 1

λm̂ N (λ)
ψ̂ N
2 (·, λ). Since ψ̂ N

2 (b, λ) = 0
one obtains (5.8). ��
Remark 5.4 Formula (5.4) was proved in [29] for Krein strings and in [33] for integral
systems. However, in [33] it was overlooked that formula (5.4) fails to hold in the
regular case and should be replaced by (5.5).

6 The Connection Between Integral and Canonical Systems

Let H be a real, symmetric and non-negative locally integrable 2× 2–matrix function
on the interval [0, lH ) for some lH ∈ (0,∞]. In this section we consider initial value
problems of the form

J y′(x) = −zH(x)y(x), x ∈ [0, lH ), y1(0) = 0, J =
[
0 −1
1 0

]
, (6.1)

with y(x) = (y1(x) y2(x))T and a complex parameter z. Here the differential equation
in (6.1) is considered to hold almost everywhere on [0, lH ). The fundamental matrix
function

W (x, z) =
[
w11(x, z) w12(x, z)
w21(x, z) w22(x, z)

]

of a canonical system (6.1) with Hamiltonian H is defined as the transpose of the
fundamental solution of (6.1), i.e. solution of the integral equation

W (x, z)J − J = z
∫ x

0
W (s, z)H(s)ds. (6.2)

This corresponds to the notation used in [34].
Note that W (0, z) = I . At lH for the canonical system (6.1) Weyl’s limit point case
prevails if and only if ∫ lH

0
trace H(x)dx = ∞, (6.3)

and from now on we assume that for each Hamiltonian H the relation (6.3) holds, and
that H is not identically equal to diag (1 0) on the interval [0,∞). Then the limit
point case prevails at lH , and it follows that for each ω ∈ Ñ := N ∪ {∞} and z ∈ C

+
the limit

Q(z) := lim
x→lH

w11(x, z)ω(z) + w12(x, z)

w21(x, z)ω(z) + w22(x, z)
(6.4)

exists, is independent of ω, and, as a function of z, belongs to the set of Herglotz-
Nevanlinna functionsN (see, e.g., [7]). The function Q is called the Titchmarsh–Weyl
coefficient of the canonical system (6.1) or of the Hamiltonian H .
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The following intervals play a special role in the sequel (see [9,24]). Let ξφ :=
(cosφ, sin φ)T for some φ ∈ [0, π). The open interval Iφ ⊂ [0, lH ) is called H -
indivisible of type φ if the relation

ξ T
φ J H = 0, a.e. on Iφ, (6.5)

holds. In particular, det H = 0 a.e. on Iφ . An H -indivisible interval is called maximal
if it is not a proper subset of another H -indivisible interval.

A Hamiltonian H is called trace normed if trace H(x) = 1 a.e. on [0,∞). For
the class of trace normed Hamiltonians a basic inverse result in [8] can be formulated
as follows (see [42]): Each function Q ∈ N is the Titchmarsh–Weyl coefficient of a
canonical system with a trace normed Hamiltonian H on [0,∞) which is not equal to
diag(1, 0) a. e. on [0,∞); this correspondence is bijective if two Hamiltonians which
coincide almost everywhere are identified.

In this section we associate with the integral system S[R, W ] a canonical system
with diagonal Hamiltonian such that its Titchmarsh–Weyl coefficient Qd is related to
the principal Titchmarsh–Weyl coefficient q of S[R, W ] via the formula

Qd(z) = zq(z2). (6.6)

Assume that the integral system S[R, W ] is singular at d, i.e.

R(d) + W (d) = ∞. (6.7)

Let us set x(t) = R(t) + W (t). Denote by D(1) the set of points of discontinuity
of R and by D(2) the set of points of discontinuity of W . Recall that by assumption
D(1) ∩ D(2) = ∅. Let Ix be the range of the function x(t). Then Ix is a union of
at most countable set of semi-intervals (ξ, η], and R\Ix is a union of semi-intervals
(x(t), x(t+)], where either t ∈ D(1) or t ∈ D(2).

On every semi-interval (ξ, η] ⊂ Ix define the Hamiltonian Hd by

Hd(x) :=
[

h1(x) 0
0 h2(x)

]
, where h1(x) := d R

dx
, h2(x) := dW

dx
. (6.8)

On the semi-interval (x(t), x(t+)] with t ∈ D(1) define the Hamiltonian Hd by

Hd(x) :=
[
1 0
0 0

]
, (6.9)

and on the semi-interval (x(t), x(t+)] with t ∈ D(2) define the Hamiltonian Hd by

Hd(x) :=
[
0 0
0 1

]
. (6.10)

Then Hd is a trace normed Hamiltonian, i.e.

trace Hd(x) ≡ 1 for all x ∈ R+. (6.11)
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Let us consider the canonical system

J y′(x) = −zHd(x)y(x). (6.12)

The fundamental matrix Wd of the canonical system (6.12) is then according to (6.2)
the solution of the initial value problem

W ′
d(x, z)J = zWd(x, z)Hd(x), x ∈ R+, Wd(0, z) = I . (6.13)

Theorem 6.1 Let q be the principal Titchmarsh–Weyl coefficient of some integral sys-
tem S[R, W ] such that (6.7) holds, and let Qd denote the Titchmarsh–Weyl coefficient
corresponding to the Hamiltonian Hd. Then

(i) the fundamental matrix of the canonical system (6.12) takes the form

Wd(x(t), z) =
[

s2(t, z2) zs1(t, z2)
1
z c2(t, z2) c1(t, z2)

]
, x(t) ∈ Ix ; (6.14)

(ii) the following relation holds:

Qd(z) = zq(z2). (6.15)

Proof On every semi-interval (ξ, η] ⊂ Ix one obtains from (1.1)

ds1(t, z2) = s2(t, z2)d R(t), dc1(t, z2) = c2(t, z2)d R(t), (6.16)

ds2(t, z2) = −z2s1(t, z2)dW (t), dc2(t, z2) = −z2c1(t, z2)dW (t). (6.17)

Then it follows from (6.14) and (6.8) that

W ′
d(x, z) =

[
ds2(t,z2)

dx z ds1(t,z2)
dx

1
z

dc2(t,z2)
dx

dc1(t,z2)
dx

]
=

[
ds2(t,z2)

dW (t) h2(x) z ds1(t,z2)
d R(t) h1(x)

1
z

dc2(t,z2)
dW (t) h2(x)

dc1(t,z2)
d R(t) h1(x)

]
,

and hence in view of (6.16), (6.17)

W ′
d(x, z)J =

[
zs2(x, z2)h1(x) z2s1(x, z2)h2(x)

c2(x, z2)h1(x) zc1(x, z2)h2(x)

]
.

On the other hand by (6.14) and (6.8)

Wd(x, z)Hd(x) =
[

s2(x, z2)h1(x) zs1(x, z2)h2(x)
1
z c2(x, z2)h1(x) c1(x, z2)h2(x)

]
.

This proves that Wd(x, z) is the fundamental matrix of the canonical system (6.12) on
Ix .

Now let (x(t), x(t+)] be a semi-interval with t ∈ D(1) or t ∈ D(2). Note that then
(x(t), x(t+)) is an H -indivisible interval of type 0 if t ∈ D(1) and an H -indivisible
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interval of type π/2 if t ∈ D(2). The fundamental matrix for s ∈ [x(t), x(t+)) is then
of the form

Wd(s, z) = Wd(x(t), z)(I − z(s − x(t))Hd(s)J ),

so it remains to show that

Wd(x(t+), z) = Wd(x(t), z)(I − z(x(t+) − x(t))Hd(s)J ),

or, equivalently (since Hd(s)J Hd(s) = 0), that according to (6.2) in both cases the
integral equation

Wd(x(t+), z)J − Wd(x(t), z)J = z
∫ x(t+)

x(t)
Wd(s, z)Hd(s)ds (6.18)

holds. Let for i ∈ {1, 2}

�si (t, z2) = si (t+, z2) − si (t, z2), �ci (t, z2) = ci (t+, z2) − ci (t, z2). (6.19)

Assume that t ∈ D(1) with l1 = x(t+) − x(t) = R(t+) − R(t). Then it follows from
(6.19)with equation (1.1) that s2(s, z2) and c2(s, z2) are constant for s ∈ (x(t), x(t+)]
and

�s1(t, z2) = s2(t, z2)l1, �c1(t, z2) = c2(t, z2)l1.

it follows that

Wd(x(t+), z)J − Wd(x(t), z)J =
[

z�s1(x, z2) 0
�c1(x, z2) 0

]
= l1

[
zs2(s, z2) 0
c2(s, z2) 0

]
.

On the other hand, the relation

Wd(s, z)Hd(s) =
[

s2(s, z2) 0
1
z c2(s, z2) 0

]
(6.20)

holds and therefore

z
∫ x(t+)

x(t)
Wd(s, z)Hd(s)ds = l1

[
zs2(s, z2) 0
c2(s, z2) 0

]
, (6.21)

and so (6.18) is shown.
Assume now that t ∈ D(2) with l2 = x(t+) − x(t) = W (t+) − W (t). Then it

follows from (6.19) with equation (1.1) that s1(s, z2) and c1(s, z2) are constant for
s ∈ [x(t), x(t+)] and

�s2(t, z2) = −z2s1(t, z2)l2, �c2(t, z2) = −z2c1(t, z2)l2.
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It follows that

Wd(x(t+), z)J − Wd(x(t), z)J =
[
0 −�s2(x, z2)
0 − 1

z �c2(x, z2)

]
= l2z

[
0 zs1(s, z2)
0 c1(s, z2)

]
.

On the other hand, the relation

Wd(s, z)Hd(s) =
[
0 zs1(s, z2)
0 c1(s, z2)

]

holds and therefore

z
∫ x(t+)

x(t)
Wd(s, z)Hd(s)ds = l2z

[
0 zs1(s, z2)
0 c1(s, z2)

]

holds, and so (6.18) is shown in that case.
The relation (6.15) follows now from

Qd(z) = lim
x→∞

w11(x, z)

w21(x, z)
= lim

x→∞ z
s2(x, z2)

c2(x, z2)
= zq(z2).

��

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Arens, R.: Operational calculus of linear relations. Pac. J. Math. 11, 9–23 (1961)
2. Arov, D.Z., Dym, H.: Bitangential Direct and Inverse Problems for Systems of Integral and Differential

Equations. Cambridge Univ. Press, Cambridge (2012)
3. Atkinson, F.: Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering,

vol. 8. Academic Press, New York (1964)
4. Bennewitz, C.: Symmetric relations on a Hilbert space. Lect. Notes Math. 280, 212–218 (1972)
5. Bennewitz, C.: Spectral asymptotics for Sturm–Liouville equations. Proc. Lond. Math. Soc. 59, 294–

338 (1989)
6. Berezansky, Y.M., Sheftel, Z.G., Us, G.F.: Functional Analysis, vol. I. Operator Theory: Advances and

Applications, vol. 85. Birkhäuser, Basel (1996)
7. de Branges, L.: Some Hilbert spaces of entire functions II. Trans. Am. Math. Soc. 99, 118–152 (1961)
8. de Branges, L.: Some Hilbert spaces of entire functions IV. Trans. Am. Math. Soc. 105, 43–83 (1962)
9. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice Hall, Englewood Cliffs (1968)

10. Derkach, V.A., Malamud, M.M.: Generalized resolvents and the boundary value problems for Hermi-
tian operators with gaps. J. Funct. Anal. 95, 1–95 (1991)

http://creativecommons.org/licenses/by/4.0/


103 Page 38 of 39 V. Derkach et al.

11. Derkach,V.A.,Malamud,M.M.: The extension theory ofHermitian operators and themoment problem.
J. Math. Sci. 73, 141–242 (1995)

12. Eckhardt, J., Teschl, G.: Sturm–Liouville operators with measure-valued coefficients. J. Anal. Math.
120, 151–224 (2013)

13. Eckhardt, J., Gesztesy, F., Nichols, R., Teschl, G.: Weyl–Titchmarsh theory for Sturm–Liouville oper-
ators with distributional potentials. Opusc. Math. 33, 467–563 (2013)

14. Everitt, W.N.: On the limit point classification of second-order differential operators. J. Lond. Math.
Soc. 41, 531–544 (1966)

15. Everitt, W.N., Giertz, M.: A Dirichlet type result for ordinary differential operators. Math. Ann. 203,
119–128 (1973)

16. Everitt,W.N.: A note on the Dirichlet condition for second-order differential expressions. Can. J. Math.
28, 312–320 (1976)

17. Evans, W.D., Everitt, W.N.: A return to the Hardy–Littlewood integral inequality. Proc. R. Soc. Lond.
Ser A 380, 447–486 (1982)

18. Feller, W.: Generalized second order differential operators and their lateral conditions. Ill. J. Math. 1,
459–504 (1957)

19. Feller, W.: The birth and death processes as diffusion processes. J. Math. Pures Appl. 38, 301–345
(1959)

20. Ghatasheh, A., Weikard, R.: Spectral theory for systems of ordinary differential equations with distri-
butional coefficients. J. Differ. Equ. 268(6), 2752–2801 (2020)

21. Gorbachuk, V.I., Gorbachuk, M.L.: Boundary Value Problems for Operator Differential Equations.
Kluwer Academic Publishers Group, New York (1991)

22. Hewitt, E.: Integration by Parts for Stieltjes Integrals. Am. Math. Mon. 67(5), 419–423 (1960)
23. Ito, K., McKean, H.P.: Diffusion Processes and Their Sample Paths. Springer, Berlin (1965)
24. Kac, I.S.: Linear relations generated by a canonical differential equation of phase dimension 2 and

decomposability in eigenfunctions. Algebra i Analiz 14(3), 86–120 (2002)
25. Kac, I.S., Kreı̆n, M.G.: Criteria for the discreteness of the spectrum of a singular string, (Russian) Izv.
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