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A B S T R A C T

The filamentous pathogenic fungus Aspergillus fumigatus may cause severe in-
fections in the form of invasive pulmonary aspergillosis. These infections are
characterized by high mortality rates and have shown a rising incidence over
the last decades. These tendencies created a strong need for research to under-
stand the fungi’s opportunistic nature, to develop efficient treatment strategies
and ultimately save lives. Since the lung as primary target of A. fumigatus in-
fections provides only limited accessibility for experimental studies in vivo, re-
search has to incorporate alternative strategies. The field of systems biology has
established a broad variety of modeling strategies to overcome the experimental
limitations. Such computer models in silico capture essential aspects of systems
including A. fumigatus infections, thus allowing to simulate infection dynamics
in special regard of relevant parameters. Consequently, key mechanisms of in-
fections may be detected and quantified to identify new targets for diagnostics
or treatment.

The fundament of this thesis builds upon an established hybrid agent-based
model of A. fumigatus infections. The applied model captures the scaled spatial
properties of the pulmonary alveolus and allows to simulate the early phase
of such infections after inhalation of the fungal conidia. The model comprises
the alveolus, its epithelial surface cell layer, macrophages as migrating immune
cells, a molecular diffusion model and a signal receptor differential equation
model of macrophage chemotactic migration. Thus, the hybrid agent-based
alveolus model enables to simulate the arms race between the invading fun-
gus and the chasing immune cells to investigate the impact of parameters and
mechanisms. The presented studies in this thesis have extended and developed
this model further to focus on open questions in the understanding of A. fumi-

gatus infections.
Animal models provide a valuable tool for the investigation of infections. The

most widely used animal model to study aspergillosis is the murine model. Al-
though the evolutionary link between human and murine systems is close, their
pulmonary morphology and the applicable infection dosages differ. To investi-
gate these differences and evaluate their implications for the transferability of
results from experimental mice models to human infections, the hybrid agent-
based alveolus model was extended to resemble the alveolar morphology of
mice. The infection dynamics of both organisms were simulated and compared
from a single alveolus perspective to assess how efficiently conidia can be de-
tected depending on the morphology. Various dosages ranging from natural to
experimental levels were incorporated as well as the differing number of alveoli
per lung to compare the clearance efficiency in the whole lung. The simulations
revealed a faster clearance of conidia in the murine alveolus. Furthermore, the
clearance efficiency for both organisms decreases with increasing fungal bur-
den of the lung. For high fungal burdens, as locally observable in the murine
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model, the smaller murine alveolus is confronted with so many conidia that ef-
ficient signaling is no longer possible and clearance efficiency declines quickly,
whereas the human morphology allows to clear such a fungal burden.

Immune cell migration is crucial for host defense. For a quantitative under-
standing of cellular migration, descriptors are needed that efficiently distin-
guish relevant shape changes during migration of various cells or experimental
settings from random variations. In the SPHARM study, spherical harmonics
(SPHARM), a 2D and 3D shape descriptor were extended by including time-
resolved dynamics. The descriptive power of dynamic SPHARM for murine T
cell images from various tissues acquired by 3D two-photon microscopy, as well
as for synthetically generated 3D cell images was tested. A support vector ma-
chine was used to classify the T cells of different origins based on the dynamic
SPHARM descriptor. An improved distinction of cellular origins by extending
temporal dynamics to the SPHARM analysis could be demonstrated. This al-
lows for a more detailed analysis of 3D images of migrating cells as well as
refined in silico modeling of such migration processes in future.

Pores of Kohn (PoK) are a morphological feature of the mammalian lung
which interconnect neighboring alveoli. Although known for a long time, their
impact on immune dynamics has not yet been investigated extensively. There-
fore, the hybrid agent-based alveolus model was adapted to test opposing hy-
potheses on immune cell trafficking and molecular diffusion through PoK dur-
ing early aspergillosis. The study showed that passaging of alveolar macrophages
though PoK results in a lower migration distance to the conidium and thus
enables alveolar macrophages to clear infections faster. This impact, however,
is small compared to other parameters, e.g. macrophage speed, and an effi-
cient infection clearance is also possible without PoK passaging. The simula-
tions revealed that PoK passaging ensures a uniform spatial distribution of
macrophages on the alveolar surface and thus helps maintaining immune home-
ostasis.

The limited experimental accessibility of alveolar tissue limits investigations
of pulmonary aspergillosis. Novel aspergillus-on-chip devices enable experimen-
tal investigation of alveolar tissue under enhanced precision. Confrontation
assays with A. fumigatus conidia and macrophages under different conditions
were developed to live-image cellular dynamics with confocal laser scanning mi-
croscopy. This allowed to quantitatively analyse spatial dynamics, e.g. hyphal
growth. It was observeable that the hyphae successfully penetrated the chip
membrane’s pores, similar to the invasive penetration during infection. The
analysis reveals an increase in invasive growth during presence of macrophages.
This may suggest a signal-driven growth process but also a possible evasion
strategy. In addition, the analysis allows for an parameter dependent model-
ing of hyphal growth in silico under the condition of caspofungin treatment,
amongst others.



Z U S A M M E N FA S S U N G

Der filamentöse pathogene Pilz Aspergillus fumigatus kann schwere Infektio-
nen wie die invasive pulmonale Aspergillose in immungeschwächten Patienten
verursachen. Verbunden mit einer hohen Mortalität und einer steigenden Inzi-
denz der letzten Jahrzehnte bezeugt dies die Notwendigkeit zur Erforschung
seines opportunistischen Verhaltens sowie zur Entwicklung effizienter Behand-
lungsstrategien, um Menschenleben zu retten. Da die Lunge, als primäres Ziel
von A. fumigatus Infektionen, nur begrenzt experimentell in vivo studiert wer-
den kann, müssen alternative Strategien angewandt werden. Das Feld der Sys-
tembiologie hat ein breites Spektrum an Modellierungsstrategien etabliert, die
solche Begrenzungen überwinden können. Computermodelle können in silico

essenzielle Aspekte eines Systems, wie A. fumigatus Infektionen, erfassen und er-
lauben eine Simulation der Infektionsdynamiken unter Betrachtung der relevan-
ten Parameter. Folglich können Schlüsselmechanismen der Infektion erkannt
und quantifiziert werden, um neue Ziele für Diagnose oder Behandlung zu
identifizieren.

Grundlage dieser Doktorarbeit bildet ein etabliertes agentenbasiertes Mod-
ell von A. fumigatus Infektionen. Das genutzte Modell erfasst die räumlichen
Eigenschaften der pulmonalen Alveolen maßstabsgetreu und erlaubt, die frühe
Phase der Infektion ab Inhalation der Konidien zu simulieren. Das Modell en-
thält die Alveole, deren Oberflächenepithel, Makrophagen als mobile Immun-
zellen, ein molekulares Diffusionsmodell sowie ein Signal-Rezeptor Differen-
zialgleichungsmodell der alveolaren chemotaktischen Bewegung. Folglich er-
laubt das Modell, das Wettrennen zwischen invasivem Pilz und jagenden Im-
munzellen zu simulieren, um den Einfluss von Parametern und Mechanismen
zu untersuchen. Die präsentierten Studien dieser Arbeit haben das agenten-
basierte Alveolenmodell erweitert und weiterentwickelt, um offene Fragen im
Verständnis von A. fumigatus Infektionen zu beantworten.

Tiermodelle sind ein wertvolles Werkzeug für die Erforschung von Infektio-
nen, wobei die Maus das etablierteste Aspergillosemodell darstellt. Trotz der na-
hen evolutionären Verwandtschaft unterscheiden sich sowohl die Morphologie
von Mäusen und Menschen als auch die aufgenommene Infektionsdosis. Zur
Untersuchung dieser Unterschiede und deren Implikationen für die Transferier-
barkeit von Ergebnissen aus experimentellen Mausmodellen zu humanen Infek-
tionen wurde das agentenbasierte Alveolenmodell erweitert und die alveolare
Morphologie von Mäusen abgebildet. Die Infektionsdynamik zwischen beiden
Organismen wurde auf der Ebene einzelner Alveolen simuliert und verglichen,
um festzustellen, wie effizient die Konidien in Abhängigkeit von der Morpholo-
gie detektiert werden können. Weiterhin wurden die unterschiedlichen, natür-
lichen bis experimentellen, Infektionsdosen und die unterschiedliche Zahl von
Alveolen pro Lunge mit den Ergebnissen kombiniert, um die Effizienz auf der
Ebene der Lunge zu vergleichen. Die Simulationen zeigen eine schnellere Besei-
tigung von Konidien in der Mausalveole. Ebenso sinkt die Effizienz in beiden
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Organismen mit steigender Infektionsdosis. Bei besonders hohen Dosen, wie
sie lokal im experimentellen Mausmodell zu beobachten sind, ist die Mausalve-
ole mit so vielen Konidien konfrontiert, dass eine effiziente Beseitigung nicht
länger möglich ist. Die menschliche Morphologie hingegen erlaubt eine Beseit-
igung solcher Pilzbelastungen.

Die Bewegung von Immunzellen ist zentral für die Verteidigung des Or-
ganismus. Für ein quantitatives Verständnis von zellulärer Bewegung braucht
es Marker, die zwischen relevanten Formänderungen und zufälligen Variatio-
nen unterscheiden. Die SPHARM Studie erweiterte die Kugelflächenfunktionen
(SPHARM), eine Beschreibung von 3D-Oberflächenformen, durch Einbeziehung
zeitlicher Dynamiken. Bilder von 3D T-Zellen aus diversen Geweben sowie syn-
thetisch generierte Zellen dienten als Testdaten für die dynamische SPHARM
Beschreibung. Eine Support Vector Machine wurde genutzt, um die T-Zellen
je nach Herkunft anhand der dynamischen SPHARM Marker zu klassifizieren.
Eine verbesserte Unterscheidung der T-Zellen durch Erweiterung von SPHARM
um zeitliche Dynamiken ließ sich beobachten. Dies erlaubt zukünftig eine de-
tailliertere Unterscheidung von 3D Bildern sich bewegender Zellen sowie eine
verbesserte Modellierung solcher Bewegungsprozesse.

Kohnsche Poren (PoK) verbinden benachbarte Alveolen und sind morphol-
ogischs Merkmale der Lung aller. Obwohl PoK lange bekannt sind, ist ihr
Einfluss auf Immundynamiken noch nicht umfassend untersucht. Aus diesem
Grund wurde das agentenbasierte Alveolenmodell angepasst, um gegenüber-
stehende Hypothesen der Passage von Immunzellen und molekularer Diffusion
durch PoK während der frühen Aspergillose zu untersuchen. Die Studie zeigte,
dass die Migration von Makrophagen durch PoK zu einer kürzeren Migrations-
distanz zum Konidium führt und daher deren Beseitigung schneller möglich
ist also ohne Migration durch PoK. Allerdings ist dieser Einfluss gering im
Vergleich zu anderen Parametern wie beispielsweise der Geschwindigkeit der
Makrophagen und eine effiziente Beseitigung der Konidien ist auch ohne Migra-
tion durch PoK möglich. Die Simulationen haben darüber hinaus gezeigt, dass
Migration durch PoK eine gleichmäßige räumliche Verteilung der Makropha-
gen erlaubt und damit einen Beitrag zur Immunhomöostase leistet.

Die begrenzte Erreichbarkeit alveolaren Gewebes begrenzt die experimentelle
Erforschung von Aspergillose. Neuartige aspergillosis-on-chip Geräte erlauben
die experimentelle Untersuchung alveolaren Gewebes mit gesteigerter Real-
itätstreue. Ein Konfrontationstest mit A. fumigatus Konidien und Makropha-
gen unter unterschiedlichen Bedingungen wurde entwickelt, um die zellulären
Dynamiken mithilfe eines Konfokalmikroskops aufzunehmen. Dies erlaubte,
die Dynamiken des Hyphenwachstumes quantitativ zu analysieren. Es konnte
beobachtet werden, dass die Hyphen erfolgreich die Poren des Chips penetri-
eren, ähnlich der invasiven Penetration während einer Infektion. Die Analyse
enthüllt einen verstärkt invasiven Wachstumsprozess bei Präsenz von Makropha-
gen Dies suggeriert ein signalgetriebenes Hyphenwachstum aber auch eine
mögliche Evasionsstrategie. Des Weiteren erlaubt die Analyse eine bedingungsab-
hängige Modellierung des Hyphenwachstums, beispielsweise der Präsenz von
Caspofungin.
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P R E FA C E

When I started to write the first lines of this thesis, it cooccured with the lock-
down of the global corona pandemic caused by the SARS-CoV-2. Suddenly,
writing about infectious disease has gained a new relevance. Although right
now, no one knows how this pandemic will influence the future of humanity’s
society, economy and research, it is a harsh reminder of something vital. In-
fectious diseases are a constant and global threat to each and everybody of us.
It requires manifold efforts from the world’s scientific community to evaluate
these threats: from the understanding of mechanisms of pathogenicity, genet-
ics and host-immune interactions to the development of efficient medication,
treatment, epidemic action plans and scientific communication to the public.
This is a thesis about infections of the pathogenic fungus Aspergillus fumigatus,
not SARS-CoV-2. But as both pathogens infilitrate the lung, co-infections can-
not be avoided and an increased necessity in efficient treatment of A. fumigatus

infections can be expected. In this present these, I want to share my thoughts
and research results on the deciphering of infections caused by A. fumigatus to
contribute to a healthier future.

Jena, June 2020
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I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 the pathogenic mold Aspergillus fumigatus

With an estimated age of more than one billion years since their first en-

counter on land, long before plants and animals, the fungal kingdom has reached

remarkable diversity [1–3]. Although fungal taxonomy is a fluid field under con-

stant changes, up to 120 000 fungal species have been described until today and

estimates about the total number of fungal species range up to a few millions

[4–6]. The hitherto-undescribed species are difficult to reveal due to the diverse

habitats of fungi: arctic regions [7], desert sands [8] or as commensals, e.g. in the

human gastrointestinal tract [9], which makes it more difficult to discover and

distinguish novel fungal species. Consequently, this rich taxonomy allows for

diverse metabolic activity of fungi, which can be seen as fungi serve as a source

of food and antibiotics or other bioactive compounds. The downside of this

diversity is fungal infections. Around one-seventh of the world’s population

is assumed to suffer from fungal infection, with 150 million patients develop-

ing severe diseases, including more than 1.6 million fatal cases each year [10].

The variety of infections ranges from superficial infections of the nails, hair or

skin to allergic, chronic or even invasive infections mostly caused by the genera

Candida, Cryptococcus, Pneumocystis, Histoplasma and Aspergillus [10]. The latter

may cause various severe infections and will be introduced to the reader in this

chapter.

1.1.1 Morphology and Life Cycle

The diverse genus of Aspergillus comprises more than 300 species [11]. One

of its most relevant representatives, Aspergillus fumigatus, was first described by

Georg W. Fresenius more than 150 years ago [12]. This worldwide abundant

filamentous fungus is typically detected in soil but also found in hot deserts,

deep seas and even ancient Egyptian mummies [13, 14]. Its ability for the aero-

bic decomposition of organic molecules implicates an important ecological role

as a carbon and nitrogen recycler [15].

5
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The morphology of A. fumigatus is heterogeneous. Conidia, the spores of A. fu-

migatus, are spherical, dark green-blue, have a diameter ranging from 2.5− 3 µm

and a smooth to indiscernibly echinulate surface structure [16]. The high toler-

ance to temperature, pH and nutrient or oxygen availability allows the conidia

to rest for years until moisture allows for sporulation. This induction is con-

trolled by several pathways and regulatory genes like Cph1 and Efg1, which

induce activation of downstream genes and functions such as Ume6 (hyphal

growth), Eed1 (endocytosis escape) or Hgc1 (cell separation suppression). The

conidial volume increases due to a swelling of the cell wall caused by an accu-

mulation of important polysaccharides such as galactomannan and galactofura-

nose, pathogen-associated molecular pattern (PAMP), which allow for detection

by host phagocytes [17]. The next phase of morphogenesis is characterized by

the formation of hyphae, elongated, filamentous, branching structures that con-

stitute the fungal mycelium. These hyphae, 2µm in diameter, are the only way

in which the fungus can actively translocate itself and possibly acquire new

nutrient sources. Although our understanding of hyphal growth modulators is

not yet complete, it has been shown that hyphae have high adhesive capacities

and can penetrate various tissues and blood vessels [18]. The life cycle ends

when the hyphae build a conidiophore, which generates a new generation of

conidia. The conidiophores are also name-giving for the genus since their shape

reminds one of the aspergillum in Christian liturgy. The species name fumigatus

is derived from the Latin word for smoke ’fumus’ and refers to the dark blue

to green colonies of A. fumigatus (see Figure 1.1).

1.1.2 A. fumigatus Pathogenicity

Although prevalence for healthy, immunocompetent persons is low, serious

diseases may be caused by A. fumigatus [20]. These share in common the fact

that they are caused by the inhalation of A. fumigatus conidia, which are dis-

tributed in each part of the human lung due to their small size. The worldwide

abundance of A. fumigatus implies that conidia are present all of the time around

us and thousands are inhaled every day [21].

The allergic bronchopulmonary aspergillosis (ABPA) is a disease caused by A.

fumigatus, typically in immunocompetent patients with preconditions, mostly

asthma or cystic fibrosis [22]. The allergic overreaction of the immune system

causes damage to pulmonary tissue, which, if untreated, may cause irreversible

bronchiectasis or fibrosis [23]. The worldwide prevalence is estimated at up

to 4 800 000 active cases per year [24]. Like ABPA, allergic aspergillus sinusitis

(AAS) manifests with lower prevalence in the paranasal sinuses [25].
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Figure 1.1: A. fumigatus colony. The dark blue to green color of the A. fumigatus colonies
is eponymous [19].

A more severe infection, with several sub-types and 240 000 active cases per

year in Europe, represents the chronic pulmonary aspergillosis (CPA) [26]. Like

ABPA, it is typically diagnosed in immunocompetent patients with pre-existing

conditions, mostly those with ABPA or tuberculosis. In contrast to patients with

ABPA, CPA patients exhibit an A. fumigatus manifestation e.g. an aspergilloma,

a fungal ball comprising of mostly hyphae, in their lung, which often has to be

surgically resected [26].

The most severe type of A. fumigatus infection is invasive pulmonary as-

pergillosis (IPA). Typically found in (severely) immunocompromised patients,

the fungus becomes invasive and is able to penetrate the bloodstream, followed

up by sporulation and dissemination of conidia to other organs [27].

Although Arthur T. Henrici wrote in 1939 that “...Aspergillus infections are

so rare as to be of little practical importance”, we are witnessing an emerging

threat by IPA [28]. Since then there has been enormous progress in medicine,

which has saved millions of lives and yielded an increasing group of immuno-

compromised patients, including the elderly, patients after organ transplanta-

tion or patients with preconditions as neutropenia, cancer, HIV or other chronic

diseases. Consequently, Groll et al. could demonstrate an increase in hospital-

related prevalence of invasive fungal infection from 2.2 % (1978-1982) to 5.1 %

(1988-1992), mostly caused by A. fumigatus [29]. In 1996, the US was confronted

with an estimated 10 190 hospitalizations related to Aspergillosis, 1 970 deaths
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Figure 1.2: Life cycle of A. fumigatus. Conidiophores releasing new conidia into the en-
vironment followed up by inhalation into lung and alveoli. Conidia develop
hyphae, disseminate and cause invasive aspergillosis. Adapted from [33].

and health care costs of $ 633 million [30]. The reported annual 75 000 cases

with costs of $ 1.2 billion in 2014 show the increasing incidence and reveal, in

combination with the high mortality rates of IPA between 45 % and 90 %, the

need for better diagnostics and therapeutics [31, 32].

1.1.3 Host-Pathogen Interactions

Upon inhalation into the human lung, a race between the host and A. fumi-

gatus is triggered (see Figure 1.2). The fungus aims to invade the host, whereas

the host immune system attempts to eliminate the fungal spores. Due to the fast

dynamics of A. fumigatus infections, from hours up to a few days, the adaptive

immune system is unable to interfere in sufficient time. Therefore, the innate

immune system plays a pivotal role in the A. fumigatus defense.

Upon contact with the alveolar epithelium, conidia trigger activation of the

complement system, a system of roughly 30 proteins, which support the cellular

immune response. A. fumigatus may activate the classical, alternative and lactin

pathway, all leading to cleavage of C3, a central molecule of the complement

system, whose fragments opsonize pathogens and thus allow for more efficient

cellular defense [34]. However, A. fumigatus has developed evasive mechanisms

that limit the impact of the complement system. Masking of surface antigens by

cell wall DHN-melanin inhibits C3 opsonization and the acquisition of e.g. the

inhibiting factor H consequently downregulate the complement system [35].

The first line of cellular defense is constituted by macrophages, patrolling

leukocytes, occuring in high number in each human tissue. The macrophages
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in the human lung can phagocytose A. fumigatus spores [36]. Recognition of

PAMP is realized either by surface-bound pattern recognition receptor (PRR) as

Dectin-1 or via soluble PRR such as the long pentraxin PTX3 [37, 38]. The most

prominent PAMP are the glucans on the fungal surface. The aforementioned al-

terations on the fungal surface during morphogenesis change the recognizabil-

ity of A. fumigatus. The exposed β-1-3-Glucan content on the cell wall surface,

as detected by macrophage surface PRR Dectin-1, is increasing from the resting

to the swollen morphotype, and finally, for mature hyphae, it is masked again

by exopolysaccharides, causing a peak of recognizability around the swelling

phase [39]. By contrast, the α-Mannans fraction, as recognized by macrophage

surface PRR Dectin-2, is smaller in the hyphal form [40]. Although the gen-

eral recognition of A. fumigatus is essential for phagocytosis, the activation of

macrophages induces different host responses. The activation of the Dectin-1

pathway, and others such as TLR2, triggers the regulation of more than 1 800

genes including many pathways for chemo- and cytokines including TNF-α or

the macrophage inflammatory protein 1 (MIP-1), which is an important pro-

inflammatory regulator [41, 42].

The second line of cellular defense, polymorphonuclear neutrophils (PMN),

is recruited to the site of infection. PMN are blood-circulating, highly efficient

phagocyting cells, which are recruited to sites of infection. Their phagolyso-

somes, highly reactive cell compartments, allow for an unspecific phagocytosis

of many pathogens [43, 44]. Although they aim for phagocytosis of A. fumigatus

like macrophages, PMNs play an intricate role in the immune response. They

are faster and more efficient phagocytes than macrophages but only available

after recruitment to the site of infection [45]. Their pro-inflammatory potential

is higher than that of macrophages but may also become deleterious to lung

tissue [46]. It has been shown in vitro, that PMN produce neutrophil extracellu-

lar traps (NET), burst fibers with fungicidal proteins that engulf pathogens, to

battle A. fumigatus infections [47].

The third prominent cell type for understanding the host response are the ep-

ithelial cells of the human lung, since they are first to come into contact with the

conidium [48]. They have been shown to internalize conidia followed by either

phagocytosis or, in some cases, a continuation of germination [49, 50]. Upon

contact with the conidium, pro-inflammatory cytokines and chemokines are

up-regulated within epithelial cells and contribute to inflammation [51]. Nev-

ertheless, A. fumigatus benefits from the interaction with epithelial cells as they

provide a source of iron, known to be a crucial virulence factor [52, 53]. A. fumi-

gatus releases a variety of toxins, proteases, and enzymes damaging epithelial

cells [48].
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1.2 virtual infection modeling & systems biology

While the previous section introduced A. fumigatus and its pathogenicity, this

chapter presents the concepts of systems biology and modeling applied in this

thesis. The term systems biology has undoubtedly gained an enormous popu-

larity since its introduction into biology around 2000 [54]. Depending on the

perspective, it comprises a methodological extension of biology, an interdisci-

plinary mix of biology, mathematics, and physics, or even an essential shift

of paradigm in biology [55, 56]. Although the truth might be somewhere in

between, it definitely offers a new perspective, leaving the traditional reduc-

tionism of subsetting biology in smaller, easy-to-capture entities towards a com-

prehensive and systematic contemplation [57]. While the traditional approach

aims to find and describe puzzle parts, systems biology aims to solve the puzzle

by integrating knowledge into theoretical systems.

A definition of systems biology that does not include the interplay of sys-

tems theory and validation by experiments remains incomplete. The core and

undoubted strength of systems biology lies within this constant and frequent

exchange between the theoretical perspective and the validating feedback from

experiments. Thus, a relation between the traditional wet lab experiments and

the systems biology dry lab experiments has emerged, which is nowadays of-

ten referred to as the cycle of systems biology. This cycle involves generating

new hypotheses in the dry lab, which in return can be tested in the wet lab.

This approach generates new data, allowing refinements of the dry lab analysis,

starting a new cycle [58].

Three key factors can be identified as the basis for success of systems biol-

ogy: data, computation and theory [59]. The traditionally low amount of data

in biology has been replaced by a vast heap of data derived from genomics,

proteomics, metabolomics, and other -omics during recent decades. The Euro-

pean Bioinformatics Institute stored around 20 petabytes in 2015 while expect-

ing a more exponential than linear increase [60]. In parallel, technical advances

have enabled increase in computational power over magnitudes during recent

decades. The third factor refers to the broad theoretical fundamentals of func-

tional systems, which originate long before 2000 [61]. In this way, established

and well-examined concepts originating from mathematics, physics and sys-

tems theory have found new applications within biology.
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1.2.1 Systems, Models and Simulations

Despite being extensively used, the term system is abstract and evades a clear

definition [62]. One way to describe it, is as a set of entities connected by rela-

tions imposing a complexity exceeding the summed-up complexity of its parts.

Intuitively, it is often rephrased as: the whole is more than the sum of its parts.

In practice, an abstract picture of the term system, which we call model, is

depicted, including its essential entities and relations. Models are the tools of

systems biology and aim to capture significant aspects of a system. Models and

their respective designers precisely define which entities of a system are consid-

ered necessary, how they behave and interact with each other and thereby de-

fine a system’s simplified abstraction. This abstraction is essential globally and

locally for the model because internal and surrounding entities at some point

must be simplified. This observation demonstrates the two directions that are

typically applied in systems biology: top-down and bottom-up. A top-down ap-

proach tries to understand a system by starting with a general model followed

by a constant increase of the level of detail. Bottom-up approaches start with

a detailed model, at e.g. the molecular level, and aim for a constant increase

of generality [63]. Determining a proper degree of abstraction is the critical

process in model design.

A model is applied in the form of a simulation, i.e. an execution of the afore-

mentioned definitions and relations. In this process, the input is applied to a

model yielding the output: Input 7→ Model 7→ Output [64]. Different aspects

of systems can be investigated by different perspectives of this simple model-

ing scheme. A system’s robustness can be analyzed by varying the input and

comparing its variance to the output variance [65]. Redundant parts of models

can be identified if an alteration or removal of a part does not affect the output.

Similarly, a redundant input parameter can be identified if its variation does

not change the output [54], whereas input parameters that strongly correlate

to the output identify crucial parts of systems and possible therapeutic targets

[66]. Biological parameters not accessible by wet lab experiments can be fitted

by varying the model’s input until yielding the desired output [67]. All of these

examples show that models can be very powerful as they assist inspectingt a

wide variety of system properties.

Since the aim of a model is to elucidate specific questions, identical systems

can be represented by different models depending on the question of inter-

est. The practical differences in the resulting system-to-model relation must be

considered during the design process and can be characterized by several view-

points, which will be explained in the following.
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entity quantity and quality Systems, especially in biology, easily exceed

thousands of entities such as cells or molecules. Hence, a computationally

feasible size of the entity population quickly approaches as their possible

interactions grow exponentially or the necessary memory grows with the

level of detail applied for each individual entity. This may demand a quan-

titative or qualitative simplification of the model [68]. It can be achieved

by a reduction of the individual entities properties, inducing a loss of dis-

tinguishability but a gain in memory [69]. Generally, a trade-off must be

made between the level of detail used to describe a model (position, speed,

state, interaction ...) and the costs for e.g. computation or implementation

with respect to the investigatied question.

model scale As each living organism is composed of cells, each biological

system covers multiple scales from nanometers (molecules) to microme-

ters (cells) to centimeters (organs) or kilometers (habitats). Consequently,

a comprehensive model must also cover multiple scales to obtain a general

perspective of a biological system. Such so-called multiscale models re-

quire higher implementation efforts as they are composed of sub-models

covering knowledge from different scales and therefore they must typi-

cally integrate data from different experimental origins [54, 70]. Despite

the higher effort, only multiscale models allow for a comprehensive un-

derstanding of biological systems.

stochasticity The traditional reductionism in biology originates from René

Descartes, who captured systems as compositions of parts that can be

investigated, understood and reassembled to the whole [71]. Although

Descartes’ ideas were a huge success in science for a long time, they are

increasingly debatable in terms of solving questions of today’s biology

[72]. Non-deterministic processes such as fluctuation and noise are con-

sidered to be crucial for the understanding of biological systems and must

be included into the theories of biology [73, 74]. Given that the result of a

stochastic process may only be interpreted in the context of repetitions, the

simulation effort is much higher compared to a deterministic model. Ad-

ditional difficulties arise when including stochasticity into a model. First,

specifying stochastic processes is not necessarily trivial and, second, the

stochastic law of huge numbers only applies to many entities that are not

given for each problem.

boundary condition Compulsory, every model contains some entities and

their relations and excludes entities outside of the model boundary. Inde-

pendently of the question of where the model boundary is placed best,

it has to be defined how the model entities interact with it. The most
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sparse way of including boundary conditions would be to include a fixed

exchange rate of entities and or to describe an isolated system with no

exchange [75]. By contrast, most biological systems of interest are not

equilibrated and cannot be described as isolated, and thus require more

complex model boundaries. Generally, boundary interactions should be

kept restrained or, if dynamically complex, included into the model [75].

Although established boundary conditions like the Dirichlet boundary

condition [76] or periodic boundary conditions [77] are typically used,

their impact on the models within systems biology is rarely investigated

although possibly significant [78].

generality Research in biology used to search for general laws, as could be

found in e.g. physics. Although such laws would be beneficial, it is doubt-

ful that this can ever be reached [79]. Although theoretically a perfect

model can be generalized to investigate different questions, practically

a trade-off with the realism, precision and implementation effort of the

model must be made and a weighting of these constraints depends on the

research focus [80].

In practice, two limiting factors must additionally be considered for the model

design. First, despite today’s computational resources, a simulation has to finish

in a reasonable time. Although this may reach weeks or months in extreme

cases, a practical limit exists and induces a limit of granularity. The second

important factor to consider is the availability of data. Each parameter and

mechanism included in the model originates from prior knowledge typically

derived from a time- and cost-expensive wet lab experiment representing the

most limiting factor in model design.

1.2.2 The Cycle of Modeling

Within the aforementioned cycle of systems biology the modeling process it-

self is often considered as a cyclic process. Independent of the specific modeling

technique, certain steps in the model life cycle apply to most models and will

be presented in the following. The answers that a model can give to a question

strongly depend on the decisions made during each step of design and specific

steps are better suited for model improvement than others.

model design The modeling process starts with a precise definition of the

problem and the open questions that are addressed. Analyzing the prob-
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lem structure reveals fundamental mechanisms that should be included

in the model. This identification allows for an abstraction from the sys-

tem to the model resulting in a clear mathematic definition. Essential for

this step is a complete overview of available data that can be used for

the model [81]. Similarly, a clear definition of the model output should be

made. Since a computational model can be captured as a whole, a com-

plete output of all variables during the simulation time course is possible

but not desired in most cases. Adequate model output comprises data

that is relevant for the addressed problem but also critical model check-

points that allow capturing the plausibility of the model mechanisms and

detecting errors.

model implementation Advances in computer science have created a wide

range of programming languages and software that can be applied for

modeling. Therefore, the question of a proper implementation choice is

not easy to answer [82]. Many software tools have been created in re-

cent decades and allow for easy access for researchers with minimal pro-

gramming experience. However, programming of self-implemented mod-

els yields the most freedom for the developer and allows for most control

during the modeling process and simulation [83]. Modern programming

languages have made immense advances and a proper choice is predomi-

nantly a question of the developer’s preferences.

parameter definition Parameters of a model may be distinguished into

several types. Fixed parameters do not change their value during the simu-

lation and typically originate from prior experiments, as e.g. body tem-

perature [84]. For variable parameters, a specific value cannot be given,

due to either variability of the parameter itself, as is the case for e.g.

cell speeds, heterogeneous experimental results or no experimental ac-

cessibility at all. The variability of such data can be adequately modeled

by sampling the observed heterogeneity [85]. Where this is not possible,

unknown parameters can be scanned over reasonable ranges. However,

this is time-consuming because the model results must be interpreted in

the context of the complete scanning range. Besides, the parameter space

grows exponentially and thus quickly exceeds a scannable size. In paral-

lel, the parameter space can be reduced by combining highly correlated

parameters into derived parameters. Although they may not directly reflect

a biological entity, it allows for model simplification. Some parameters

of a model must be calibrated before simulation of a model. This calibra-

tion may involve derived parameters or parameters that originate from

the model design, e.g. the influx of an external resource at model bound-
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aries. In practice, the parameter is varied over multiple simulations until

an error function is minimized [86, 87].

validation & simulation Validation of the model with test input data

against a ground truth will ensure the model plausibility and quality [88].

If this is not given and a model fails to reproduce e.g. experimental re-

sults, the modeling cycle needs to be restarted at previous steps. Moreover,

the model can by validated by assessing the sensitivity, i.e. investigating

the dependence of the output on input perturbations [89]. Depending on

the impact of one parameter’s perturbation, key parameters of the model

can be identified. In parallel, a variation of the model, e.g. exclusion of a

mechanism, will reveal the dependencies of the model to this mechanism

[64]. This approach allows identifying the importance of mechanisms and

might allow excluding mechanisms with a weak influence on the outcome

for simplification and a reduction of computation needs. In the same way,

indispensable mechanisms might be identified to increase the understand-

ing of the underlying biological system. Biological systems typically ex-

hibit a homeostatic state that must be reached again after perturbations.

A model’s stability can be assessed by determining how efficiently this

state can be reached again after perturbations [90]. All of these methods

allow validating a model and ensure its quality for application but also

reveal valuable insights into the modeled system itself.

When simulation results are analyzed, new hypotheses can be formulated and

validated in experiments contributing to the cycle of systems biology (see Fig-

ure 1.3). In the following, the modeling cycle restarts, and the model can be

refined by including new knowledge. Decisions from the first cycle must be

inspected critically, resulting in either a new model design, alterations in the

model structure or a higher degree of detail.

Figure 1.3: Wet lab experiments yield knowledge that can be used to design computer
models in the dry lab. The circular process of modeling enables a repetitive
increase in quality. Hypotheses derived from models will be validated in
wet lab experiments resulting in an iteration of the whole cycle.
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1.2.3 Virtual infection modeling of A. fumigatus

Many different models have been published in recent decades, from sim-

ple mathematical models to huge modeling frameworks [91]. Whereas certain

model types show advantages and disadvantages over other types, it is difficult

to make a comprehensive characterization between all design concepts. Since

this thesis builds on publications where so-called agent-based models are the

model type of choice, a focus is set on this type of model. Selected publications

of different model designs in the context of Aspergillus fumigatus infections are

presented first, to reflect the agent-based model’s advantages and disadvan-

tages.

1.2.3.1 Existing models of A. fumigatus infections

In 2015, Tanaka et al. presented an ordinary differential equation (ODE) model

of A. fumigatus infections [92]. It comprises four equations of cellular and molec-

ular entities, including thirteen parameters, of which eight were derived from

literature and five were calibrated by fitting the model to experimental data.

This ODE model allowed evaluating infection courses depending on the uptake

dose of fungal spores or the state of PMN depletion. As a result, the relative con-

tribution of parameters and cells on the infection outcome can be quantitatively

described. This example shows the benefits of ODE models. ODEs can be explic-

itly defined by a clear and mathematical definition and solved by established

explicit and implicit methods such as from Euler or Runge and Kutta. They can

be simulated quickly by many reliable tools with little effort. ODE systems are

well understood and a broad theoretical background on e.g. steady state, stabil-

ity, or bifurcation analysis, eases application [93]. On the drawback side, ODEs

assume a well-mixed system of entities without spatial confines and have no

spatial dimension at all, which prohibits the investigation of spatial processes.

Although this may be partly overcome by partial differential equations or the

introduction of compartments into the model, it remains a significant limitation

[94]. Entities of the same type cannot be distinguished and therefore do not

allow for individual-based behavior within the model. Although deterministic,

stochastic processes may be included with drawbacks such as higher computa-

tion needs [95]. In practice, additional disadvantages often appear as additional

assumptions must be made, e.g. Tanaka et al. assume the number of available

PMN to be constant.

A way of modeling that does allow for individuality is based on game theory,

a mathematical concept originating from social science that has been widely

applied in biology [96]. It focuses on the decision-making of model entities and
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therefore allows evaluating strategies. Model mechanisms are reduced from a

result-oriented perspective allowing for a low number of parameters without

losing the entities’ individuality. Pollmächer et al. [97] published a paper ap-

plying evolutionary game theory models on A. fumigatus infections in which

the infection outcome is modeled from a conidium perspective. Each conidium

follows a different strategy of e.g. resting or swelling, and as a result of this it

triggers different responses from the immune system in a three-staged setup.

Finally, the infection outcome can be compared under different strategies and

parameters.

In contrast to ODE models, game theory models can capture individuality

by assigning different states to entities of the same type without the need for

many or mixed entities. Besides, it is much easier to incorporate spatial aspects

as Pollmächer et al. did by extending the model by a graph-based neighborhood

relation. A disadvantage of game theory models is a set of assumptions that are

made on the entities’ individuality. In the classical game theory, each model en-

tity is assumed to follow logical decisions based on information that represents

a general rationality in behavior [98]. Although this assumption can be made

for whole organisms, it can only be made limited for cells such as the conidia

of A. fumigatus as their behavior depends on molecular responses but not ac-

tive decision-making after information evaluation. Evolutionary game theory,

as used by Pollmächer et al., drops the assumption of rationality in behavior

and replaces it with an evolutionary fit of behavior by trial and error [99].

1.2.3.2 Agent-based Models

Models requiring a considerable level of detail can be designed as an agent-

based model (ABM). This modeling concept captures each model entity – named

agents – at a high individuality, which allows distinguishing between agents

of the same type [100]. Thus, each aspect of a model, such as movement and

interaction between agents, can be modeled at an application-dependent detail

level. Consequently, the design may require much more effort as more details

must be incorporated into the model and, potentially, more data is needed.

On the other hand, the description of complex systems by simulating individ-

ual agent behavior allows for a new level of model validation, which e.g. ODE

models cannot provide. Although tools for the development of ABMs, such as

Netlogo [101] and Repast [102], are available, the high level of individuality typ-

ically enforces custom code creation and requires programming skills. As this

may be seen as a drawback, it promted the publication of a diverse set of ABM

in biology with a high degree of detail [103]. These custom models are even

combined with models of other types where an individual agent perspective is
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not needed [104]. Such hybrid models are expensive to construct in terms of

time, data and money but combine the power of different modeling techniques

while leaving a maximum of freedom in design choices.

The basis of this thesis is a hybrid agent-based alveolus model capturing the

spatio-temporal aspects of A. fumigatus infections. Although the conidia of A. fu-

migatus, after inhalation, may settle in various parts of the human lung, the alve-

oli represent the majority of lung surface and the spot with highest incidents for

lethal infections and therefore are considered to be the most prominent space

of infection [105]. These alveoli are polyhedral to spherical with a diameter of

approximately 120 µm and interconnected by Pores of Kohn [106, 107]. Their

surface is covered by alveolar epithelial cells (AEC) of type I and II, which se-

cret a layer of surfactant covering the cellular surface [108]. Single alveoli are

connected to the alveolar sac by an alveolar entrance ring. Upon inhalation of

a conidium and its arrival in the alveolar surfactant layer, a run against time is

triggered between the fungus and the host immune system, which is lost by the

host if the conidium cannot be phagocytosed by an alveolar macrophage (AM),

PMN or AEC before dissemination [109–111]. The implications for model design

are apparent. First, the complex polyhedral to spherical shape of alveoli must

be considered in which immune cells chase to detect the conidium. Second,

the low number of cells participating in this arms race does not allow e.g. for

assumptions of well-mixed cell populations and only one successful phagocyto-

sis would clear the threat. Consequently, cells have to be captured on a detailed

and individual basis. As a result, agent-based modeling is a practical choice to

simulate the complex dynamics during A. fumigatus infections.
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Understanding the dynamics of host interactions during A. fumigatus infections

is crucial to assess factors of pathogenicity and potentially develop new ther-

apeutic targets. Understanding key factors of the immune system in a disease

with rising worldwide incidence and high mortality would allow developing

new strategies, improving diagnostics, allowing for purposeful treatment and

ultimately saving lives.

The innate immune response as a first line of cellular defense represents a key

factor in infection clearance at an early stage. Although many wet lab experi-

ments have been conducted, a complete picture of the infection dynamics in-

vivo remains unavailable. This thesis aims to fill the picture by applying a hy-

brid agent-based alveolus model of A. fumigatus infections in the human lung.

In this way, wet lab limitations can be overcome and detailed mechanisms can

be analyzed quantitatively.

In wet lab experiments, animal models are often used to gather in vivo data of

A. fumigatus infections. However, new findings originating from mouse models

can only be transfered to humans in a limited way. The existing hybrid agent-

based model was therfore adapted from humans to mice to assess differences

in the infection dynamics and answer the following questions:

• Which differences in the lung morphology between human and mice are

important in the context of A. fumigatus infection?

• How do differences on the lung morphology alter the infection dynamics?

• How comparable are typically-used infection doses in murine models to

natural infections of humans?

Pores of Kohn are a morphological feature of the mammalian lung and they are

assumed to have an impact on cellular dynamics in the alveoli [112]. However,

partly contradicting theories exist and a comprehensive understanding of the

role of Pores of Kohn is lacking [113, 114]. Especially the function as possible

passageways for cells is not understood. To evaluate this role, the hybrid agent-

based alveolus model was adapted to assess how different theories on Pores of

Kohn would alter the infection dynamics of infections of A. fumigatus to answer

the following questions:

19
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• How do Pores of Kohn influence the infection clearance of A. fumigatus

conidia?

• How do Pores of Kohn change the migration of alveolar macrophages?

Novel aspergillosis-on-a-chip devices allow for an in vitro accessibility of alveo-

lar tissue to examine the dynamics of A. fumigatus infections. Combining these

chips with 3D imaging technique allows quantifying and modeling growth

mechanisms of invasive hyphae. This enables exploring the following question:

• How do hyphae grow and manage to penetrate tissue during infections

of A. fumigatus?
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Aspergillus fumigatus is a ubiquitous opportunistic fungal pathogen that can cause

severe infections in immunocompromised patients. Conidia that reach the lower

respiratory tract are confronted with alveolar macrophages, which are the resident

phagocytic cells, constituting the first line of defense. If not efficiently removed in time, A.

fumigatus conidia can germinate causing severe infections associated with high mortality

rates. Mice are the most extensively used model organism in research on A. fumigatus

infections. However, in addition to structural differences in the lung physiology of mice

and the human host, applied infection doses in animal experiments are typically orders

of magnitude larger compared to the daily inhalation doses of humans. The influence

of these factors, which must be taken into account in a quantitative comparison and

knowledge transfer from mice to humans, is difficult to measure since in vivo live cell

imaging of the infection dynamics under physiological conditions is currently not possible.

In the present study, we compare A. fumigatus infection in mice and humans by virtual

infection modeling using a hybrid agent-based model that accounts for the respective

lung physiology and the impact of a wide range of infection doses on the spatial infection

dynamics. Our computer simulations enable comparative quantification of A. fumigatus

infection clearance in the two hosts to elucidate (i) the complex interplay between alveolar

morphometry and the fungal burden and (ii) the dynamics of infection clearance, which

for realistic fungal burdens is found to be more efficiently realized in mice compared to

humans.

Keywords: virtual infection modeling, Aspergillus fumigatus lung infection, mouse model, human model, hybrid

agent-based computer simulations

INTRODUCTION

The concept of systems biology constitutes a powerful approach to investigate biological
phenomena by combining wet-lab and dry-lab investigations that mutually support and
complement each other (1–3). However, systems biology of infection faces problems that can
interrupt the experiment-theory-cycle of systems biology (4–6). First, since in vivo experiments
are predominantly conducted in animals, the general transferability of findings in the context
of immunology to the human system is a matter of ongoing dispute (7, 8). Secondly, even in
animal experiments it may be impossible to capture the spatio-temporal dynamics of infection
processes. For example, in the case for lung infection in vivo time-lapse imaging is challenging due
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to animal breathing. In these cases, virtual infection modeling is
of particular importance, since it has the potential to advance
our knowledge despite the aforementioned limitations and to
generate hypotheses that direct future experiments in a targeted
manner (9, 10). In particular, building in silicomodels of infection
on the available experimental data basis, gives rise to realistic
to-scale models that can be used to compare the outcome of
computer simulations for animal and human systems.

In this study, we use virtual infection modeling to investigate
Aspergillus fumigatus lung infections. A. fumigatus is an
environmentally wide-spread fungus that is an opportunistic
pathogen causing severe infections in immunocompromised
patients (11–14). The fungal conidia are small in size of 2–3µm
(12, 13) and can reach the alveoli in the lower respiratory tract
of the lung. Because alveoli make up about 50% of the lung
volume and also make the largest contribution to lung surface
area, they are by far the most likely niche for infection (15).
If not efficiently removed by the innate immune system, A.
fumigatus can cause invasive pulmonary aspergillosis (IPA) with
high mortality rates of 30–90% (11). The resident immune cells
in the lung are alveolar macrophages (AM) that constitute the
first line of immune defense by phagocytosing the inhaled conidia
(11, 14, 16). Without efficient clearing by innate immunity, A.
fumigatus conidia can undergo morphological changes: Upon
contact to the surfactant layer, which covers the alveolar epithelial
cells (AEC) (15), resting conidia can swell and after ∼6 h start
forming hyphae. These hyphae are able to penetrate the epithelial
tissue of the alveolus and can thereby reach the bloodstream,
from where they may disseminate and cause severe systemic
infections (12, 13, 17). The first six hours after entrance of the
conidia in the lung are therefore considered as a critical time
frame, during which conidia need to be found in order to prevent
damage of host tissue. This implies that the role of adaptive
immunity can be neglected compared to a required rapid
response by innate immunity, e.g., involving the complement
system as well as phagocytic activity by AM and neutrophils.
The condition of neutropenia, i.e., the considerable reduction
in the absolute neutrophil count, poses a major risk factor
for IPA (14, 18). Therefore, the nowadays increasing number
of immunocompromised patients leads to a rising clinical
prevalence, making A. fumigatus a relevant target for fungal
infection research. Due to its complex interactions with the host
immune system and its ability to adopt different morphologies,
various levels of pathogenicity have to be considered in the
development of effective therapy (13, 19).

Various mammalian species have been used for experimental
research on A. fumigatus infection. Besides rats, rabbits, and
guinea pigs, mice models have been used most extensively (20).
It is important to note that—in order to provoke measurable
numbers of interactions between pathogens and host cells—the
experimentally applied infection doses typically are orders of
magnitude higher compared to the natural inhalation dose for
humans, which ranges between a few hundred and thousands of
conidia per day (21–25). Thus, in addition to studying animal
systems with host environments that are quite different from
the human system, the significant differences in the applied
infection doses need as well to be taken into consideration

in the knowledge transfer from animals to humans. However,
little is known about the comparability and transferability of
mouse infection models in wet-lab and natural A. fumigatus
infections in human. Therefore, in this study we compare A.
fumigatus infection in mice and humans using virtual infection
modeling to account for the respective lung morphologies and
study the impact of the infection doses. In passing we note
that, even though daily inhalation doses will be associated with
homeostatic clearance and will typically pass unnoticed, we
here use throughout the more general term infection clearance
involving inflammation, tissue damage and a multifactorial host
response in the case of high fungal doses.

In previous studies, we already implemented an infection
model for the simulation of A. fumigatus infection in humans.
The agent-based model (ABM) was built on an extensive
experimental data basis available from literature and represents
a typical human alveolus in three-dimensional continuous space
(26, 27). The human alveolus was composed of AEC of type I and
II, as well as of Pores of Kohn (PoK) representing connections
between neighboring alveoli (28, 29). Our computer simulations
revealed that AM performing random walk migration are not
able to reliably detect a conidium in the alveolus before the
onset of germination, i.e., before 6 h post infection (17, 26). This
led to the hypothesis that a not yet experimentally identified
chemotactic signal must exist that guides AM to the position of
the conidium in the alveolus (26). The virtual infection model
was then extended to explicitly incorporate chemokine secretion
and diffusion by solving partial differential equations in a hybrid
ABM (27). Scanning all unknown parameters within reasonable
ranges, we determined those relevant for efficient pathogen
clearance. For example, we found that a preferably high ratio
of chemokine secretion by AEC with rate sAEC over chemokine
diffusion with diffusion coefficient D is required to establish a
chemokine gradient that facilitates AM to detect a conidium
before the onset of germination.

While these studies considered the immune response in
human alveoli for daily inhalation doses of A. fumigatus conidia,
the focus of the present study is on comparing A. fumigatus
infections in mice and humans taking into account natural
as well as experimental infection doses. Thus, we significantly
adapted the agent-based virtual infection model to the to-
scale morphometry of mouse alveoli. This enables generating
comparative and quantitative predictions on the influence of
morphological factors as well as dose-dependent effects during
A. fumigatus infection in mice and humans.

RESULTS

Aspergillus fumigatus lung infection is commonly investigated
using mouse models (20), where the pathogens can be
administered in different ways (30): Intranasal deposition
and intra-tracheal/intra-bronchial instillation bring the conidia
directly in the nose or trachea/bronchia and are based on liquid
solutions, while a more natural administration is realized in
inhalation chambers with air-soluted conidia. All methods have
in common that relatively high doses of 106 − 108 conidia
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are applied; however, the amount of conidia which is actually
reaching the lower respiratory tract, i.e., the fungal burden in the
alveoli of the mouse lung is found to be in the range of 103 −

105 conidia (31, 32). On the other hand, it is reported that the
distribution of conidia is fairly uniform only for administration
by inhalation, whereas intranasal administration is accompanied
with the accumulation of conidia in specific lung sections,
i.e., inducing distributions with local variations in the fungal
burden (33). This implies that our in silico experiments need to
incorporate three major issues that differ from simulations of the
human infection scenario: (i) implementing the differences in the
morphometry of the lung for human andmouse, (ii) scanning for
a larger range of infection doses, and (iii) studying the limit of
high local fungal burdens due to the non-uniform distribution of
conidia for administration based on liquid solutions.

As a measure of fungal clearance, we introduced an infection
score ISs=H,M , where the superscript refers to the human (s = H)
or mouse (s = M) system and ISs=H,M = 0 (ISs=H,M = 1)
implies that infections were cleared in each (none) simulations
(for details see Materials and Methods section, Readout of
Simulations).

Putative Morphology-Related Impact on
Infection Clearance in Humans and Mice
As can be seen in Figure 1, the alveoli for human and mouse
have been implemented as to-scale models that are composed
of AEC of type I and II, as well as PoK. Given the differences
in the size and composition of alveoli for the two organisms
(see Table 1 and Supplementary Table 1), it can be expected
that infections may be cleared with different efficiency. For
example, the surface area of the human alveolus is about 20
times larger compared to that of the murine alveolus and the
number of AM per alveolus is about 6 times higher in the
human alveoli. This gives rise to a scanning area per AM, which

is about three times higher in humans suggesting that mice
could cope much better with the detection of alveolar pathogens.
However, the situation is complicated by the fact the number
of PoK per alveolar area is higher by a factor 5.7 in the mouse
alveolus, which together with the alveolar entrance ring gives
rise to an increase of the relative alveolus’ open boundary length
by a factor 3.4 compared to the human alveolus. On the one
hand, since AM can enter and leave the alveolus only across
these boundaries (28, 29), this may result in a faster infection
dynamics of the murine system. On the other hand, chemotactic
signaling molecules can as well flow out of the alveolus via these
boundaries implying that their increased length in the murine
alveolus may be of disadvantage with regard to establishing an
efficient chemokine gradient. Again, this argument may only
be valid for a low pathogen density in the alveolus, because
for high pathogen densities the induced chemokine profile may

TABLE 1 | Comparison of morphometric parameters and innate immune cells.

Parameter Human alveolus Mouse alveolus (references)

Radius of alveolus 116.5 µm 26.2 ± 7.2 µm (29, 34–41)

Number of type 1 AEC 48 4 (42)

Number of type 2 AEC 84 4 ± 2.4 (42–44)

Number of PoK 24 7 (45)

Type 1 AEC radius 27 µm 22 µm

Type 2 AEC edge length 9.34 µm 8.12 µm (42)

Number of alveoli per lung 4.8 × 108 3.3 ± 1.3× 106 (34, 41)

Number of AM 2.1 × 109 2.4 ± 0.7× 106 (42, 46)

Radius of AM 10.6 µm 9.5 µm (47)

The parameters of the human alveolus were taken from the literature search by Pollmächer

et al. (26) and those of the mouse alveolus have been retrieved from the indicated

references.

FIGURE 1 | Visualization of a to-scale alveolus in the hybrid agent-based model for mouse (A) and human (B). The alveolar entrance ring (left) and Pores of Kohn

(black) represent entry/exit points for AM (green) and chemokine flow (white isolines) induced by conidium (red). Alveolar surface is covered with epithelial cells of type

1 (yellow) and 2 (blue).
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provide an ambiguous signal for AM guidance. For the same
fungal burden inmice and humans, the pathogen density is much
higher in the murine alveolus, due to their much lower number
and smaller size. Therefore, A. fumigatus may be much more
efficiently cleared from the human lung. Taken together, these
considerations imply that the efficiency of the infection dynamics
will depend on the combination of the alveolarmorphometry and
the fungal burden that together impact on the chemokine profile
for AM migration in a way, which is impossible to quantitatively
predict without performing comparative computer simulations
of to-scale models.

Case of Low Fungal Burden: A. fumigatus

Infection More Efficiently Cleared in Mice
We first consider the case of low fungal burden, which we define
as the case where one A. fumigatus conidium per alveolus is the
highest alveolar occupation number (AON) that is statistically
expected to occur in the whole lung. The corresponding fungal
burden can be derived from the binomial distribution (see
Methods section for details) and is 2.5 × 103 in mice and
3 × 104 in humans (see Figure 2). This implies that the limit of
low fungal burden covers the dose of daily inhalation for humans,
but is relatively low for experimental conditions in typical mice
experiments. Examples of the infection dynamics can be seen for
humans and mice in Supplementary Videos 1, 2, respectively.

Our previous work on A. fumigatus infection in human
alveoli for low fungal burden revealed that a high secretion rate
sAEC of chemotactic molecules combined with a low diffusion
coefficient D of the chemokine is beneficial for a small infection

FIGURE 2 | Alveolar occupation number, the maximal expected number of

present conidia per alveolus, as a function of the fungal burden in mouse (blue)

and human (red). Black line represents the experimental range of fungal

burden, which is reached in typical mice model experiment.

score ISH in humans (27). In the present study, we screened
the diffusion coefficient and the secretion rate in the regimes,
respectively, D =

[

20, 6× 103
]

µm2/min and sAEC =
[

1.5 × 103, 5× 105
]

min−1 for alveoli of mice and humans.
The numerical results for the quantitative comparison between
human and mouse is shown by the infection scores ISH,M in
Figure 3A. It can be observed that, for all combinations of D
and sAEC, the infection score in mice is significantly smaller:
ISM < ISH . Furthermore, it can be seen that the relation of a high
secretion rate and a low diffusion coefficient also leads to a more
efficient infection clearance in mice. The relative difference in the
infection scores of the two organisms, 1IS = 1− ISM/ ISH , is in
the range 50− 90 %, indicating that the murine system performs
always better than the human system in the limit of a low fungal
burden.

Case of Low Fungal Burden: Size of
Alveolus Governs Infection Dynamics
To dissect whether the infection dynamics is governed by the
chemotaxis or the alveolar size, we compared the probability
of directed AM migration resulting from one conidium in the
alveolus ofmice and humans. The chemokine concentration itself
falls off with the distance from the source AEC, i.e., the AEC in
contact with the conidium. In order to avoid that AM perform
mostly random walk migration, the chemokine gradient (i) must
not exceed a certain value to avoid saturation of AM chemokine
receptors and (ii) must not fall below a certain value to provide a
detectable signal. As a qualitative measure of gradient efficiency
we calculated the probability that AM follow the gradient
depending on the distance to the source AEC. This probability
reflects the impact of the chemokine gradient on AM migration
and was computed as explained in Supplemantary Methods (see
section on AM Migration) for optimal chemokine parameters
(Ds

opt , s
s
AECopt

) in the human (s=H) and mouse (s=M) system.

The optimal parameters were computed from the 36 scanned
parameter combinations, {D1 . . .D6} × {sAEC1 . . . sAEC6}, for the
diffusion coefficient and the secretion rate as follows: Based on
the simulation results in terms of the infection score ISDi ,sAECi and
the limits of its respective 95%-confidence interval, we computed
the optimal diffusion coefficient as Dopt =

1
∑

i wi
·
∑

i wi·Di with

weights wi = 1− ISDi ,sAECi for all those parameter combinations
that had infection scores not exceeding the minimal upper
limit of all confidence intervals (see Supplementary Video 3).
The optimal secretion rate sAECopt was determined in the same

way yielding for the human host Dopt
H = 34µm2min−1 and

sHAECopt
= 1.5× 104min−1 and for the murine host Dopt

M =

61µm2min−1 and sMAECopt
= 4.9× 104 min−1 as the optimal

parameters in the limit of low fungal burden.
The probability of directed AM migration for both host

systems and for their respective optimal chemokine parameters
is plotted in Figure 3B. The two curves exhibit quantitative
similarity suggesting that the infection dynamics in the case
of a low fungal burden is mainly governed by the size of the
alveolus rather than the chemokine profile itself. Thus, in contrast
to the significantly larger human alveolus, AM in the murine
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FIGURE 3 | (A) Infection scores IS for random walk migration and selected examples of chemokine parameters in the limit of low fungal burden with AON = 1.

Dashed-dotted black line indicates the threshold infection score at ISt = 5%. Error bars represent 95%-confidence intervals received from bootstrapping. (B) Mean

probability for directed AM migration pdirected following the underlying chemokine gradient as a function of the distance from the source AEC. Chemokine parameters

are set to the corresponding optima Dopt and sAECopt in mice and men.

counterpart will typically perform directed migration across the
entire alveolus.

A. fumigatus More Efficiently Cleared in
Mice for Any Alveolar Occupation Number
Increasing the AON from one to higher conidia numbers, we
again performed computer simulations for various infection
scenarios that differ in the parameters for chemokine secretion
sAEC and diffusion coefficient D. However, multiple conidia
within the alveolus can lead to more complex chemokine
profiles derived from the various conidia-associated AEC that
are simultaneously serving as sources of chemokine secretion. In
Figure 4A the infection scores IS obtained from 103 simulations
are summarized for AON between one and six and for selected
secretion rates sAEC, while the numerical results for the full range
of studied parameter values is shown for human and mouse
in Supplementary Figure 1. Parameter regimes of efficient
infection clearance in these plots resemble those previously
found for one conidium in the human alveolus (27), indicating
that low ratios D/sAEC are as well preferred in the mouse
system.

Extending the computation of optimal chemokine parameters
for one conidium to larger AON enables computing
for both systems the average optimal parameter set (see
Supplementary Figure 2). We obtain for one to six conidia per

alveolus the averaged optimal valuesDopt
H = 26±6.6µm2min−1

and sHAECopt
= 1.1× 104 ± 6× 103 min−1 for the

human host and Dopt
M = 74 ± 22.4 µm2min−1 and

sMAECopt
= 8.0× 104 ± 4, 1× 104 min−1 for the murine

host. In Figure 4B, we show that the resulting infection score IS
as a function of the AON is always significantly lower in mice
compared to humans.

Case of High Fungal Burden: Chemokine
Profile Can Deteriorate Clearance
Efficiency
Due to morphometric differences between the lungs of mice and
humans, the AON is not directly related to the fungal burden.
This follows from our earlier statistical considerations on the
highest AON that is expected to occur in the whole lung for
a given fungal burden (see Figure 2) exhibiting a significant
quantitative difference between mice and humans. Since the
number of more than 108 alveoli in the human lung exceeds that
of mice by more than two orders of magnitude, even in the case
of an extremely high fungal burden with 106 conidia in the lung,
the maximal AON for humans does not exceed two. In contrast,
the same fungal burden in the lung of mice yields a maximal
AON between five and six conidia in one alveolus. It thus follows
that a comparison between mice and humans for the same fungal
burden requires contrasting infection scenarios with different
AON. Of note, our analysis focuses on the maximal AON for a
given fungal burden, because it is argued that this configuration
will be directly correlated with the estimated time needed to
clear all occupied alveoli from the pathogen. In Figures 4C,D

the numerical results for the infection score IS are shown for
mice and humans as a function of the fungal burden, respectively,
for identical chemokine parameters and for the respective
optimal chemokine parameters. Supplementary Figure 3 shows
the infection score IS as a function of the fungal burden for
all the scanned parameter combinations. It can be seen by the
smaller infection scores in the murine host that infections are
still more efficiently cleared for the entire experimentally relevant
range of 103−105 conidia in the lung. In Supplementary Video 3

we indicated all combinations of chemokine parameters for
which the infection score reaches values below the threshold of
ISt = 5%.
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FIGURE 4 | Infection scores IS as a function of the AON (A,B) and the fungal burden (C,D) for selected secretion parameters with diffusion coefficient

D = 200 µm2 min−1 (A,C) and for optimal chemokine parameters Dopt and sAECopt (B,D) in mice and men. Dashed-dotted black line indicates the threshold

infection score at ISt = 5%. Error bars represent 95% confidence intervals. Black line represents the experimental range of fungal burden, which is reached in typical

mice model experiment.

However, as we have mentioned before, administration of
conidia based on liquid solutions is reported to be associated
with higher local fungal burdens due to a more non-uniform
distribution of conidia (33). It can be seen in Figure 2 for a
uniform distribution of conidia that a high fungal burden in the
range 105 − 106 conidia per lung is associated with an AON
of two in the human system, whereas this value ranges between
three and six for the murine system. Consequently, for a non-
uniform distribution of conidia, such high AON can be reached
in the murine lung and these can result in infection scores that
are much higher than for the human system with AON of two,
even if the respective optimal chemokine parameters are applied
(see Figure 4B). Our spatio-temporal computer simulations of
the infection scenarios reveal that higher AON are associated
with chemokine profiles that deteriorate clearance efficiency.
Since the mouse alveolus contains more than 10 times fewer
AEC compared to the human alveolus (see Table 1), multiple
randomly positioned conidia will occupy most of the alveolus’
AEC associated with chemokine secretion from various source
AEC. First of all, this can lead to chemokine saturation that

will turn directed AM migration into random walk migration.
Secondly, if the number of conidia is increased further, this
will not alter the chemokine gradient anymore. Consequently,
AM will perform the inefficient random walk migration until a
sufficient number of conidia is detected, such that AMmigration
becomes again dominated by the chemokine gradient. Obviously,
this complex interplay between the morphometry of the alveolus
and the chemokine profile will be much less pronounced for
the larger human alveolus that consists of many more AEC. To
validate this hypothesis, we computed the mean values of the
chemokine concentration across all alveolar surface grid points
in the simulations and found that significant deviations arise
between the human and mouse alveolus starting at AON of
four. As can be seen in Figure 5, for AON above four the mean
concentration value in the murine alveolus does change only
slightly providing no additional chemotactic guidance to AM,
whereas it is still increasing in the human alveolus and can
provide chemotactic guidance associated with lower infection
scores IS in the human alveolus and in the limit of fungal burdens
well above the typical experimental range.
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FIGURE 5 | Mean of the normalized alveolar chemokine concentration as a

function of the AON in mice and men obtained from simulations. Error bars

represent the standard deviation of this measurement.

Simulation Results Are Qualitatively
Robust Against Variations of Model
Parameters
In the quantitative comparison of infection scenarios in mice
and humans, we so far assumed the same values for the
model parameters. For example, we assumed that the chemokine
secretion rates from human and murine alveolar epithelial cells
are similar. However, it may be argued that this does not
reflect the physiological reality correctly, since murine AEC are
effectively about 33% smaller in area and may thus exhibit a
reduced potential of chemokine secretion. Similarly, it is an
open question today whether the postulated chemotactic signals
in human and mice are transmitted by chemokines that are
structural homologs and can therefore be expected to have similar
diffusion coefficients in the surfactants of mice and humans.
While these uncertainties cannot be avoided, we estimated the
impact of variations in these parameters on the infection score in
humans andmice. To this end, we calculated the relative infection
score between the human andmurinemodel1IS = 1−ISM/ ISH ,
over all simulated parameter combinations in the experimental
range of fungal burdens. Setting both diffusion parameters in
humans and mice to identical values, the mouse shows lower
relative infection scores with a median value of 1IS = 0.49.

Next, we analyzed the robustness of the infection outcome
with regard to the diffusion coefficient and the secretion rate.
To this end, we compared the infection scores for humans and
mice for those simulated parameter combinations that obey the
scaling factors fD = DH/DM for the diffusion coefficient
and fsAEC = sHAEC/sMAEC for the chemokine secretion rate.
For example, comparing diffusion coefficients with scaling factor
fD = 3−1 (i.e., DH = (20, 200, 2000) µm2/min, DM =

(60, 600, 6000) µm2/min) revealed a reduction in the median

FIGURE 6 | Median of the relative infection score between human and mouse,

1IS = 1− ISM/ISH, depending on the scaling factor for chemotaxis

parameters: fD = DH/DM for the diffusion coefficient (purple) and

fsAEC = sH
AEC

/sM
AEC

for the secretion rate (orange). Error bars represent the

standard errors.

value of the relative infection score to 1IS = 0.27 over the
scanned fungal burdens. This indicates that the infection score in
mice is higher in > 50% of all selected parameter combinations,
even if the diffusion coefficient is three times higher in the
murine alveolus (see Figure 6). The scaling factor of the secretion
rate fsAEC has a reversed impact on the relative infection score
reflecting that a high ratio sAEC/D induces low infection scores
(see Figure 6).

Taken together, our simulation results imply that our main
conclusions are qualitative robust against variations in the
chemotaxis parameters. As long as the associated scaling factors
have values fD > 10−1 or fsAEC < 10, the murine system
still shows better infection scores in more than half of all
screened fungal burdens, even if chemotactic signaling becomes
deteriorated. We therefore conclude that within these limits our
simulation results are qualitatively robust against variations in
the chemotaxis parameters.

DISCUSSION

In this study, we investigated clearance of Aspergillus
fumigatus infection from the lung of mice and humans by
computer simulation of the complex interplay between alveolar
morphometry and fungal burden in the dynamics of infection
clearance. Since in vivo live cell imaging of these processes in
the whole lung is still not possible today, we here extended a
previously developed model of IPA in humans (25, 26) to the
murine alveolus. The virtual infectionmodel represents a realistic
to-scale representation that was built on detailed experimental
data available on the morphometry of the alveolus in the two
hosts. Furthermore, alveolar macrophages as well as chemokine
secretion and diffusion were incorporated into the model and
we screened the physiologically relevant parameter ranges for
as small as possible infection scores IS, which represent the
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percentage of simulations for which clearance of all A. fumigatus
conidia from the lung took longer than 6 h.

One important finding of this study is that, for realistic fungal
burdens comprising daily inhalation doses in humans as well as
typical doses in mice experiments, infection clearance is more
efficiently realized in mice compared to humans. This result
holds true in the limit of low fungal burden, where at most
one conidium is present in the alveolus, as well as for larger
fungal burdens with a maximal number of two and three conidia,
respectively, in the alveolus of humans and mice. As we observed
before for the human system (27), a low ratio of chemokine
diffusion over secretion, D/sAEC, leads to more efficient infection
clearance in the murine system. However, our simulations
revealed that in the limit of low fungal burden the dominating
factor of efficient infection clearance in mice is the relatively
short distances between AM and conidia in the relatively small
murine alveolus. On the other hand, the chemokine profile played
a dominant role in the limit of high fungal burden, because for
four and more conidia in the relatively small murine alveolus
this is associated with a featureless chemokine profile that cannot
provide sufficient guidance to AM.

A quantitative comparison revealed that distinct optimal
chemokine parameters exist that ensure minimal infection scores
IS in the different alveoli of the two hosts. We therefore
performed simulations comparing the infection results for both
identical and optimal chemokine parameters. It should be noted
that, even for the same chemotactic molecule in mice and
humans, differences between optimal chemokine parameters can
be induced by various factors that are different in the two hosts,
such as the secretion competence of AEC and the viscosity
of the alveolar surfactant. In any case, the importance of a
well-established chemokine gradient as well as the functional
sensing by AM is reflected by the fact that conidia, which
are not detected within 6 h post infection, pose the risk of
germination, invasion, and systemic infection. We also studied
the case of non-uniform conidia distribution in the lung leading
to locally high AON in alveoli. In this limit, which is more
likely realized by the administration of conidia based on liquid
solutions, our calculations predict that four and more conidia
per alveolus can occur, leading to infection scores that are
clearly higher in mice than in humans. However, in general,
clearance of uniformly distributed conidia in the lung seems
to be more efficiently realized in mice than in humans and we
have demonstrated that this results are qualitatively robust over
a broad range of variations in the chemokine parameters. These
considerations are important with regard to the comparability
and transferability of mouse infection models to the human
system, e.g., with regard to estimating the efficiency of new
therapeutics. Virtual infection modeling in the scope of systems
biology has been applied to a broad range of biological systems
and pathogens, such as bacteria (48) and fungi (9, 10, 49–53),
since it provides a valuable tool to investigate infection processes
that are not directly accessible in experiment. Moreover, this
approach can direct future experiments by identifying key factors
that govern the counterplay of infection and inflammation and
require most attention. It should be mentioned that our results,
indicating that AM are not able to clear the infection in the
limit of a high fungal burden, are in line with previous findings

based on a more phenomenological modeling approach. We
applied evolutionary game theory on graphs to simulate several
aspects of the immune response against A. fumigatus lung
infection, including the complement system, phagocytosis by
AM as well as recruitment and phagocytosis by neutrophils in
one comprehensive model framework (54). This enabled us to
reconcile the contradictory view on AM in the literature (55,
56) and predicted an infection dose-dependent switch in their
function: While under low infection doses AM manage infection
clearance, their role switches to a regulatory function under high
infection doses by recruiting neutrophils (54).

In the future, validation of theoretical predictions needs to
be addressed in experimental investigations. To date, one of the
main limiting factors in understanding host response during
A. fumigatus infections is the poor experimental accessibility
and stable cultivation of alveolar tissue. However, new research
approaches including organ-on-a-chip systems, which reduce
the physiological complexity and bring nature closer to the
simplifying virtual infection models, are promising for a better
validation of e.g., alveolar epithelium properties or chemokine
parameters (57–59). A lung-on-a-chip model will enable testing
chemokine candidates for AM guidance, such as IL-8 that
binds to the AM surface receptor CXCR2 (60). Similarly, the
chemoattractant C5a is known to be activated by A. fumigatus
conidia along the alternative pathway of the complement system
(61, 62) and is able to trigger the secretion of macrophage
inflammatory protein-2 and neutrophil chemoattractant-1 by
AEC (63). Once chemokine parameters will have been identified
and inflammatory conditions in terms of cytokine profiles will be
accessible, the next step will be to extend the hybrid ABM toward
neutrophil recruitment and an explicit phagocytosis model along
the lines of our previous investigations based on evolutionary
game theory (54). This will allow for the investigation of
migration and phagocytic dynamics of AM, neutrophils and
AEC in the alveolar environment during the interaction with
pathogens. Furthermore, morphological changes of A. fumigatus
including swelling and hyphae formation have a strong impact
on phagocytosis of the fungus (17, 64) and can be included in
such a virtual infection model. A further advancement will be in
the scale-up of the alveolus to the higher organizational units of
alveolar sacs for a more comprehensive simulation of infection
scenarios.

MATERIALS AND METHODS

In this study, we extended our previously developed ABM
of in silico infections by Aspergillus fumigatus in the human
alveolus (26, 27) to the mouse alveolus in order to perform
comparative analyses. The ABM is a spatio-temporal multi-scale
model that simulates host-pathogen interactions on the cellular
and molecular level. Thus, cells like the fungal conidia and AM
are simulated as individual agents that migrate and interact in a
rule-based fashion, while the chemokine secretion by AEC and
the molecular diffusion of chemokines is simulated using partial
differential equations. Chemokines are uniformly secreted with
rate sAEC at the surface of each AEC, which is associated with at
least one conidium. The implementation of the ABM is described
in more detail in the Supplementary Material, while here the
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focus is on the main aspects associated with the extension to the
mouse alveolus.

Morphometry of the Mouse Alveolus and
Implementation
A comprehensive literature research was performed to design
the virtual infection model of the mouse alveolus as realistic
as possible. The most important morphology parameters are
summarized and compared with the human alveolus in Table 1,
from which other characteristics can be derived (see for examples
Supplementary Table 1). For example, it can be seen that the
radius (surface area) of a typical human alveolus is about 4.5 (20)-
fold larger compared to a murine alveolus. The numbers of AEC
of type 1 and 2 differ significantly in both organisms, i.e., a human
alveolus contains about 12.0-fold more type 1 and 21-fold more
type 2 AEC. Furthermore, the number of PoK is about 3.4 times
higher in the human alveolus. A video of both model alveoli is
provided in the (Supplementary Videos 1, 2).

Implementation of Mouse Alveolus in
Virtual Infection Model
The ABM was adjusted for the implementation of the mouse
alveolus with parameters as summarized in Table 1 and
Supplementary Table 1. This also required changes in the
algorithm for cell positioning on the alveolar surface. Type 1
AEC were placed as described before around the three-quarter
sphere (see Supplementary Material for details). Previously, type
2 AEC and PoK were placed at the borders between type 1
AEC. However, due to the larger ratio of type 2 AEC and PoK
with respect to type 1 AEC in mice, the positioning of PoK
and type 2 AEC had to be changed. We adjusted the position
of type 2 AEC and PoK uniformly across the whole border of
the type 1 AEC. While these changes in the cell positioning
were required for realistic configurations of mouse alveolus
morphometries, quantitative results of the ABM for the human
alveolus remained within the 95%-confidence interval. Moreover,
the smaller size of the mouse compared to the human alveolus
required adjustment of the Delaunay-triangulated grid, on which
the diffusion equation is solved (27). The number of grid points
could be reduced from 104 in the human alveolus to only
5.1 × 102, keeping the spatial resolution in the mouse alveolus
the same as in the human system (see Supplementary Table 1).

Readout of the Simulations
As a measure of fungal clearance we compute for various
infection scenarios the first-passage-time (FPT) of AM, i.e., the
time required for migrating AM to find all conidia in a particular
alveolus (26, 27). The relation between the FPT and the time
point of conidia germination, which corresponds to about 6 h
post conidia arrival, is obtained from repeating the simulation
of each infection scenario 103 times. From the corresponding
FPT distribution, we then compute an infection score, IS, as the
percentage p of simulations with FPT above 6 h: ISs=H,M =

p(FPT > 6 h), where the superscript refers to the human (s = H)
or mouse (s = M) system and ISs=H,M = 0 (ISs=H,M = 1) implies
that conidia were cleared in each (none) of the 103 simulations.
The various infection scenarios correspond to scanning the
parameter space in terms of AMmigration, chemokine secretion,

and diffusion, as well as conidia infection doses in alveoli of mice
and humans.

Comparison of Fungal Burden
For a given fungal burden δ, the conidia are distributed across
all alveoli nalv of the host’s lung. Assuming an independent
and uniform distribution of these conidia, we can describe the
probability of having ncon conidia present in one alveolus by
the Binomial distribution Bcon

(

δ, p, ncon
)

with probability of

p = 1
nalv

for δ repeats. To estimate the maximal AON that

is associated with a specific fungal burden, we computed ncon
from the 1 − 1

nalv
-quantile of the distribution Bcon

(

δ, p, ncon
)

.

The resulting number corresponds to the maximal AON that
can be expected to occur in the whole lung for a specific fungal
burden (see Figure 2). The corresponding IS was determined
by linear interpolation of the results from our simulations for
various AON.
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The healthy state of an organism is constantly threatened by external cues. Due to the

daily inhalation of hundreds of particles and pathogens, the immune system needs to

constantly accomplish the task of pathogen clearance in order to maintain this healthy

state. However, infection dynamics are highly influenced by the peculiar anatomy of the

human lung. Lung alveoli that are packed in alveolar sacs are interconnected by so

called Pores of Kohn. Mainly due to the lack of in vivo methods, the role of Pores of

Kohn in the mammalian lung is still under debate and partly contradicting hypotheses

remain to be investigated. Although it was shown by electron microscopy that Pores

of Kohn may serve as passageways for immune cells, their impact on the infection

dynamics in the lung is still unknown under in vivo conditions. In the present study,

we apply a hybrid agent-based infection model to quantitatively compare three different

scenarios and discuss the importance of Pores of Kohn during infections of Aspergillus

fumigatus. A. fumigatus is an airborne opportunistic fungus with rising incidences

causing severe infections in immunocompromised patients that are associated with high

mortality rates. Our hybrid agent-based model incorporates immune cell dynamics of

alveolar macrophages – the resident phagocytes in the lung – as well as molecular

dynamics of diffusing chemokines that attract alveolar macrophages to the site of

infection. Consequently, this model allows a quantitative comparison of three different

scenarios and to study the importance of Pores of Kohn. This enables us to demonstrate

how passaging of alveolar macrophages and chemokine diffusion affect A. fumigatus

infection dynamics. We show that Pores of Kohn alter important infection clearance

mechanisms, such as the spatial distribution of macrophages and the effect of

chemokine signaling. However, despite these differences, a lack of passageways

for alveolar macrophages does impede infection clearance only to a minor extend.

Furthermore, we quantify the importance of recruited macrophages in comparison to

resident macrophages.

Keywords: virtual infection modeling, Aspergillus fumigatus lung infection, Pores of Kohn, human model, hybrid

agent-based computer simulations

Frontiers in Microbiology | www.frontiersin.org 1 August 2020 | Volume 11 | Article 1951

36 pores of kohn in human alveoli



Blickensdorf et al. Pores of Kohn and Infection Clearance

INTRODUCTION

External cues constantly threaten the healthy state of organisms.
Due to the daily inhalation of hundreds of particles and
pathogens the immune system needs to constantly accomplish
the task of pathogen clearance in the lung in order to maintain
and restore a healthy state. However, infection dynamics are
highly influenced by the peculiar anatomy of the human lung.
In 1893, Kohn described inter-alveolar pores in a pneumonia
patient for the first time (Kohn, 1893). In the following years,
Oertel was the first to point out that these pores, nowadays
known as Pores of Kohn (PoK), may open and close due to
pressure changes during respiration (Oertel, 1919). Although
PoKwere considered to possibly contribute to infection processes
(Adams and Livingstone, 1931), the scientific community lacked
evidence for this until Cordingley (1972) characterized PoK using
electron microscopy. In this work, alveolar macrophages (AM) –
i.e., resident phagocytes in the lung – were observed inside a
PoK supporting the postulated role of PoK as inter-alveolar
cellular communication channels. Furthermore, a low number
of PoK, as occurs in infants, increases the risk of atelectasis,
whereas an increase in the number or size of PoK, as seen in
older individuals or as caused by smoking, is associated with a
higher risk of emphysema (Wright, 2001; Rennard et al., 2006;
Guillerman, 2010; Yoshikawa et al., 2016). Today, the important
role of PoK for ventilation is widely accepted (Namati et al.,
2008), although the exact function of PoK in the lung is still not
fully understood and experimental evidence supports partially
contradicting hypotheses. If PoK are regulators of air pressure
and thus open and close at a typical human respiration rate of
approximately 3–5 s (Barrett et al., 2012), how can they serve as
entry/exit points for immune cells, such as AM, which migrate at
a much lower pace? How do PoK allow for collateral ventilation
when covered with surfactant (Oldham and Moss, 1989)? In case
AM are indeed routinely migrating between neighboring alveoli
through PoK, how does this affect the dynamics of infection
processes?

In this study, we want to investigate the function of PoK
during Aspergillus fumigatus infection in the human lung.
A. fumigatus is a human pathogenic mold, which can cause
severe infections in immunocompromised patients (Latgé, 1999,
2001; Brakhage et al., 2010). The small conidia of A. fumigatus,
which are 2–3 µm in size, are able to overcome the various filter
mechanisms, such as the cilia and the mucous layer (Bustamante-
Marin and Ostrowski, 2017), of the respiratory tract and most
probable reach the alveoli, which constitute the majority of the
lung surface (Weibel, 1963; Latgé, 1999; Brakhage et al., 2010).
Once the conidia are embedded in the surfactant, which covers
the alveolar epithelial cells (AEC), they begin to swell and a
complex host-pathogen response is initiated (Behnsen et al., 2008;
Margalit and Kavanagh, 2015). It can be assumed that shortly
after arrival of a conidium in the alveolus, the complement system
within the surfactant layer will be activated. This will be sensed
by the AEC on which the conidium is located and will lead
to their secretion of chemokines. Thus, complement activation
and AEC chemokine secretion provide a first line of defense
recruiting AM for conidia uptake (Pollmächer and Figge, 2014;

Margalit and Kavanagh, 2015). If not cleared within the first
6 h (Baltussen et al., 2018), A. fumigatus conidia develop
hyphae, which in turn may invade the bloodstream, causing
dissemination and severe infections (Van De Veerdonk et al.,
2017). Therefore, A. fumigatus represents an interesting target
to study the role of PoK during infection. Although methods
for studying pulmonary tissue, such as electron microscopy,
confocal laser endomicroscopy (Danilevskaya et al., 2015), ex vivo
techniques (Hocke et al., 2017) or the emerging lung-on-chip
models (Mosig, 2017) do exist, it is not yet possible to capture
the full cellular and molecular dynamics during infection in
alveoli in living organisms. A systems biology approach allows
to address questions that cannot be answered by traditional
wet-lab experiments (Horn et al., 2012; Medyukhina et al.,
2015; Deinhardt-Emmer et al., 2020; Schicke et al., 2020).
Especially for complex infection processes, where cellular and
molecular as well as temporal and spatial dynamics may be
of importance for in-depth understanding of host-pathogen
interactions, virtual modeling provides a valuable tool. This has
been demonstrated by established models based on ordinary
differential equations (ODE) (Hancioglu et al., 2007; Voit, 2014)
or partial differential equations (PDE) (Hao et al., 2015; Sharp
et al., 2015) as well as state based models (Lehnert et al.,
2015; Prauße et al., 2018; Sreekantapuram et al., 2020). In
processes where resolution of individual cells is of importance,
as in the case of A. fumigatus infection, agent-based models are
most promising to fully capture the spatio-temporal infection
dynamics (Tokarski et al., 2012; Lehnert et al., 2015; Timme
et al., 2018). Therefore, we here applied a previously developed
hybrid agent-based virtual infection model (Pollmächer and
Figge, 2014, 2015; Blickensdorf et al., 2019), which incorporates
the immune cell dynamics of alveolar macrophages as well as the
molecular dynamics of diffusing chemokines that are secreted by
AEC and attract alveolar macrophages to the site of infection.
In this way, it enables the comparison and quantification of
possible functions of PoK. Therefore, we setup three different
model scenarios where PoK serve as passage points for (i) AM
and chemokines referring to the hypothesis of AM passaging
through PoK from Oertel (1919) and Cordingley (1972) (ii)
chemokines but not AM and (iii) neither AM nor chemokines
as postulated by Namati et al. (2008).

MATERIALS AND METHODS

Existing Modeling Framework
In order to investigate the role of PoK in human alveoli and,
in particular, their impact on the migration and detection
dynamics of AM during A. fumigatus infections, we performed
simulations with a previously developed hybrid agent-based
modeling framework (Pollmächer and Figge, 2014, 2015). This
model approximates the shape of an alveolus by a sphere (see
Figure 1) that is cut at 3/4 of its diameter forming an alveolar
entrance ring, which represents its connection within an alveolar
sac of the human lung. The alveolus is composed of AEC of type
1, which are placed equidistant over the surface using a Voronoi
tessellation, and of type 2, placed along the edges of type 1 AEC.
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FIGURE 1 | Visualization of a to-scale human alveolus in the hybrid agent-based model. The alveolar entrance ring (left) and Pores of Kohn (black) represent

entry/exit points for alveolar macrophages (green) and chemokine flow (white isolines) induced by the alveolar epithelial cell where the conidium (red) is located.

Alveolar surface is covered with epithelial cells of type 1 (yellow) and type 2 (blue). The pole of the alveolus is indicated by the arrow.

PoK that represent connections between neighboring alveoli are
positioned in the same way. Parameters of e.g. cell size and
numbers were obtained from an in-depth literature search and
can be found in Table 1.

Our previous studies used an agent-based framework showing
that a passive movement of conidia by respiration does not
delimit infection clearance, whereas a higher speed and/or
persistence time of AM improves detection of A. fumigatus
conidia. However, for reasonable parameter ranges the infection
was not cleared in more than 20% of the simulations
(Pollmächer and Figge, 2014). Therefore the model was extended
by chemokine secretion in a hybrid agent-based model. An
investigation of the chemokine parameters revealed, that a high

ratio of secretion rate to diffusion coefficient facilitates AM to
detect the conidium much faster (Pollmächer and Figge, 2015).

In the current study we applied this model to infections of
A. fumigatus, whose conidia can reach an alveolus and, if not
phagocytosed, swell and develop hyphae that can invade the
bloodstream leading to severe infections with high mortalities of
up to 90% (Dagenais and Keller, 2009). To simulate this infection
scenario, we placed a single conidium into the virtual alveolus
at a random position. This is justified by the large number
of alveoli per human lung, making the case of one conidium
per alveolus the most probable infection scenario (Pollmächer
and Figge, 2014). The number of AM inside one alveolus is
binomially distributed according to the number of alveoli nAlv
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TABLE 1 | Default model parameters.

Parameter Description Value

nAM Number of AM per human lung 2.1 × 109 (Wallace et al., 1992)

nAlv Number of alveoli per human lung 4.8 × 108 (Ochs et al., 2004)

rAM Radius of AM 10.6 µm (Krombach et al., 1997)

nAEC1 Number of alveolar epithelial cells type 1 per alveolus 39–45 (estimation)

nAEC2 Number of alveolar epithelial cells type 2 per alveolus 74–84 (estimation)

nPoK Number of pores of Kohn per alveolus 24 (Kawakami and Takizawa, 1987) (estimation)

rPoK Radius of pores of Kohn 2.00 µm (Kawakami and Takizawa, 1987)

rAlveolus Radius of an alveolus 116.5 µm (Balásházy et al., 2008)

and the number of AM in the human lung nAM and yield a
mean number of 4.38 AM (Wallace et al., 1992). We infer from

this distribution BAM =
(

nAM, p, k
)

=

(

nAM
k

)

pk(1 − p)nAM−k

the initial number of AM inside the alveolus at simulation start
with p = 1

nAlv
. AM perform a biased persistent random walk with

persistence time of tP = 1 min and a speed of v = 4µm/min.
AM may leave the system if they, by chance, cross the border of
the alveolus at either the alveolar entrance ring or at a PoK. To
maintain a constant average number of AM in the alveolus, new
AM are inserted at the model boundary after an exponentially
distributed waiting time of t = 1/λin ln

( 1
u

)

with u uniformly
distributed in [0, 1) and input rate λin, which has to be calibrated
for each AM speed, persistence time and model boundary in the
healthy state i.e., without present pathogens.

The hybrid agent-based model also comprises chemokine
signaling released by the AEC where the conidium is located. The
chemokine diffuses at the inner alveolar surface forming
a chemokine gradient that guides the AM toward the
chemokine-secreting AEC on which the conidium is located. To
simulate chemokine signaling we included a reaction-diffusion
model based on PDE in the agent-based framework of the

alveolus. The equation δc(Er,t)
δt = Dδc (Er, t) + S (Er, t) − Q(Er, t)

incorporates chemokine secretion by the source term S and
chemokine diffusion with diffusion coefficient D for chemokine
concentration c (Er, t) at point Er and time point t. Chemokines
are secreted over the whole surface of the pathogen-associated
AEC with constant secretion rate sAEC. The chemokine uptake
by AM with term Q is realized with a spherical adaption of
the receptor ligand-model of Guo et al. and Guo and Tay
(Riedemann et al., 2002; Guo et al., 2008), in which chemokine
may be bound to AM surface receptors. This allows AM to
sense the chemokine gradient, during a persistence time tP,
to obtain a weighted cumulative gradient. AM change their
direction biased with a probability to follow the gradient,
which is proportional to the receptor differences along the
weighted cumulative gradient after tp. Hence, AM are able
to sense the chemokine gradient and adapt their migration
behavior accordingly after expiration of the persistence time.
The boundaries of this system, i.e., the alveolar entrance ring
and the PoK, form sinks allowing for chemokine outflow.
Furthermore, the presence of chemokines in the system affects
the probability of an AM to enter the alveolus at a certain
boundary position. The higher the chemokine concentration

at this position is, the higher is the probability that a new
AM enters the alveolus at this site. The diffusion equation is
solved by an implementation of the finite difference method
for unstructured grids (Sukumar, 2003). As grid a near–
equidistant Voronoi tessellation was created as a solution of the
Thomson Problem (Thomson, 1904) by use of an algorithm
implemented by MacWilliam and Cecka (2013).

Finally, in order to evaluate the infection outcome of a
simulation we compute the infection score IS, which we define
as the fraction of 1000 simulations, in which the conidium was
not detected by AM within the first 6 h, i.e., the typical time
needed for A. fumigatus to swell and start developing hyphae
(Pollmächer et al., 2016).

Study Setup to Investigate the Role of
PoK
In this study we want to investigate the impact of PoK on
the infection dynamics in human alveoli. In order to do so,
we setup three types of infection scenarios (see Supplementary

Videos 1–3). The first setup represents the situation, in which
PoK serve as entrance and exit points for AM and for the
flow of chemokines through PoK. This setup corresponds to the
standard model used in our earlier studies and we here refer
to it as PoK+/+ model. It reflects the hypothesis that immune
cells use PoK as migration channels between neighboring alveoli.
However, since it is not experimentally verified in vivo that AM
do indeed migrate through PoK, we setup a second model, which
we refer to as PoK+/− model. In this scenario chemokines can
still flow through PoK, while AM do not enter or exit through
PoK. Furthermore, in the third setup neither AM can migrate
through the PoK nor chemokine can flow out at PoK. Thus, we
refer to this scenario as PoK−/− model. However, since conidia
do not migrate actively and it is rather unlikely that they are
located directly on a PoK when entering the alveoli, we do not
consider passing of conidia through PoK in our model. In our
study, we will quantitatively compare these three scenarios by
computer simulations.

The models PoK+/− and PoK−/− have system boundaries
that are decreased relative to the PoK+/+ model. This is
associated with a decreased probability of AM leaving the alveolus
during the course of the infection scenario. Thus, we adapted the
respective AM input rate λin for the three different scenarios. As
found previously, timely A. fumigatus clearance in the human
alveolus is determined mostly by the chemokine parameters
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(Pollmächer and Figge, 2015). In particular, we showed that the
most important chemokine parameters are the secretion rate sAEC
and the diffusion coefficient D (Pollmächer and Figge, 2015).
Since the physiological values for these parameters could not
yet be measured in experiment, we scan for a broad range of
physiologically reasonable values in our computer simulations. It
is generally observed that the combination of a high value of sAEC
and a low value of D is beneficial for the fast conidium detection
by AM. In contrast, if the ratio of sAEC/D is too low, chemotactic
signaling loses its unique function of guidance andAM are unable
to find the conidium within 6 h, as is the case for a search by
random walk (Pollmächer and Figge, 2014, 2015).

RESULTS

In the present study we investigated the impact of PoK on the
infection dynamics during A. fumigatus lung infection. In order
to do this, we constructed three different models that account
for different properties of PoK, such as entry and exit points for
AM as well as chemokine outflow. These three models are (i) the
PoK+/+ model, where AM can enter and exit through PoK and
chemokines can flow out at PoK, (ii) the PoK+/− model, where
AM cannot enter and exit through PoK but chemokines can
flow out at PoK, and (iii) the PoK−/− model, where PoK serve
neither as migration channels for AM nor as sinks for chemokine
outflow (see Supplementary Videos 1–3). However, we assume
that, if AM are able to migrate though PoK, also the much smaller
chemokinemolecules can diffuse through them. Therefore, we do
not consider a scenario, where PoK serve as migration channels
for AM while chemokine outflow is not possible.

It may be expected that, since the recruitment of AM through
the homogeneously distributed PoK everywhere in an alveolus
allows for shorter AMmigration distances in the PoK+/+model,
this model yields significantly lower infection scores compared
to the models PoK+/− and PoK−/−. In the latter models,
AM enter the alveolus exclusively via its entrance ring, which
may be associated with longer migration distances toward the
conidium and thus extended search times. In addition, in the
PoK−/− model chemokine diffusion might be affected in two
different ways: First, the overall chemokine concentration in the
alveolus will be higher compared to the PoK+/+ and PoK+/−
model, because chemokines cannot flow out at PoK. As shown
previously, a high secretion is beneficial for infection clearance by
AM (Pollmächer and Figge, 2015), thus less chemokine outflow
and therefore a higher chemokine concentration might also be
beneficial for AM searching a conidium. Secondly, PoK provide
a sink for the chemokine and thus locally distort the chemokine
profile around the PoK, which may guide AM away from PoK
following the locally distorted gradient. Once the distance to the
PoK has increased, AM get re-directed toward the conidium.
Thus, it may be expected that the absence of distortions in the
chemokine profile, as in the PoK−/− model where chemokines
do not flow out of PoK, could have an additional positive effect
on infection clearance.

The Results section is structured as follows: In Section
“Reduced Length of Alveolar Boundary Alters Spatial

Equilibrium Distribution of AM,” we analyze the calibration of
the AM input parameter for each model scenario and the spatial
redistribution of AM resulting from the different conditions in
the three scenarios. Next, in Section “PoK+/+ Shows Highest
Infection Clearance Compared to PoK+/− and PoK−/−” we
investigate the infection clearance in the three scenarios for
various chemokine parameters and how this depends on the
position of the conidium in the alveolus. Moreover, we analyze
the contribution of AM recruitment to infection clearance in
comparison with resident AM that are present in the alveolus
from the start of the simulation. In Section “Presence of PoK
Prevents Chemokine Accumulation,” we first compare the
optimal chemokine parameters that we identify for each of the
three scenarios. Secondly, we study the effect of chemokine
accumulation that is observed for the PoK−/− model. Thirdly,
we assess the impact of the different chemokine profiles of
the three scenarios on the migration pattern of AM. Finally,
in Section “Accumulation of AM Limited in Presence of PoK
Passageways” we investigate the effect of AM accumulation
that is observed during the simulations and is caused by the
chemokine secretion by AEC. We analyze this accumulation
under comparable conditions for all three model scenarios with
the conidium being placed at the pole of the alveolus.

Reduced Length of Alveolar Boundary
Alters Spatial Equilibrium Distribution of
AM
In the PoK+/− and PoK−/− model, where AM only enter/exit
the alveolus at the alveolar entrance ring but not at PoK,
the length of the system boundary is effectively shorter in
comparison to the PoK+/+ model, the re-calibration of the
AM input rate λin in the absence of infection (for details see
“Materials and Methods” section) was found to be associated
with an altered spatial equilibrium redistribution of AM at the
inner surface of the alveolus. To be more specific, the initial
random spatial distribution of AM over the alveolar surface
in the PoK+/+ model was altered into a spatial equilibrium
distribution for the PoK+/− and the PoK−/− model, where AM
appear accumulated at the alveolar entrance ring (see Figure 2).
Interestingly, due to the absence of any conidia in the human
alveolus during the calibration of λin (see section “Existing
Modeling Framework”), this is a direct consequence of excluding
PoK as part of the system boundary, where AM can leave
and enter the alveolus; thus, turning the alveolus into a spatial
dead end for randomly migrating AM in the PoK+/− and
the PoK−/− model.

PoK+/+ Shows Highest Infection
Clearance Compared to PoK+/− and
PoK−/−
As measure for infection clearance we determine for each
simulation the time point of first contact between an AM
and the randomly positioned conidium in the alveolus; this
defines the so-called first passage time (FPT). The infection
score IS is given by the fraction simulations with FPT > 6 h,
i.e., the number of 1000 simulations, where AM were unable
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FIGURE 2 | Spatial AM distribution. Mean AM count after equilibration of

system dynamics along the main axis of the alveolus from the entrance ring (at

59 µm) to the pole (at -116.5 µm). Each data point refers to an average over

ring segments with equal area of 25,583 µm2.

to clear the conidium within 6 h after entrance in the alveolus.
This time duration corresponds to the typical time frame
until germination of the conidium starts and the fungus
becomes invasive; i.e., IS = 0 corresponds to infection clearance
in all and IS = 1 corresponds to an infection clearance in
no simulation within the first 6 h of infection duration.
For comparison of the three different infection models we
performed simulations of A. fumigatus infections by placing
one conidium at a random position in the alveolus and
by repeating this scenario for various sets of chemokine
parameters. In particular, we screened the secretion rate for
values sAEC = {1500, 5000, 15,000, 50,000, 150,000, 500,000}
min−1 and the diffusion coefficient over the range of values
D = {20, 60, 200, 600, 2000, 6000} µm2min−1. This range
of values is motivated by estimations for chemokine diffusion
in lung surfactant and in water (see Supplementary Material

Section 1.2).
An analysis of the infection score over all scanned parameters

of chemokine signaling revealed that low values with IS ∼
0.01 equivalent to clearance of the infection can be achieved
for all three models, albeit for different optimal chemokine
parameters. For a deeper understanding of the differences
between the models, we compared the FPT distributions of
the three models by a survival analysis using a log-rank
test for each combination of chemokine parameters (see
Supplementary Material Section 1.1). This analysis revealed
that for 17 out of 36 parameter combinations significant
differences between the models exist (see Figure 3) showing
that infection clearance is affected by the function of PoK. In
addition, the absolute value of the relative difference between the
respective infection scores are above 0.5 for 28% of all scanned
chemokine parameters showing that the function of PoK induces
a substantial difference for infection clearance.

To understand how PoK may influence the infection score,
we studied in retrospect those AM that successfully detected
a conidium (AMsuccess) in relation with their starting point
in the alveolus. An AM may either be present in the alveolus
from the start of the simulation (AMresident) or may have
entered the alveolus during the simulation (AMrecruited), either
through a PoK or via the alveolar entrance ring depending
on the considered PoK model. We calculated the resident
ratio of AM, rresident = AMresident/AMsuccess, yielding that
the mean value for rresident over all simulated chemokine
parameters shows only small differences between the models
(rresident (PoK + /+) = 0.61 ± 0.04, rresident (PoK + /−) =
0.58 ± 0.03, rresident (PoK − /−) = 0.56 ± 0.06) indicating that
the slight majority of conidia are found by AM, which were
not recruited to the alveolus but were initially present in the
alveolus. In approximately 40% of the infection scenarios the
conidium was found by an AM that was recruited during the
infection duration of 6 h. In the PoK+/+ model recruitment
of (AMsuccess) is realized by 54% through a PoK and by 46% via
the alveolar entrance ring (see Supplementary Figures S1–S3).
Since recruitment through a PoK is not possible in the PoK+/−
and PoK−/− model, the small differences in the infection score
compared to the PoK+/+ model suggest, that recruitment
through the alveolar entrance ring is adequately replacing
the missing passaging though PoK. We expect this effect to
be dependent on the precise position of the conidium in the
alveolus, i.e., the larger the distance of the conidium from the
alveolar entrance ring is, the more beneficial the presence of
PoK will be in the PoK+/+ model. To test this hypothesis we
split the alveolar surface into five ring segments of equal area
from the entrance ring to the pole of the alveolus and computed
the IS individually for each of these segments. This analysis
revealed that the infection score in the PoK+/− model and
the PoK−/− model is smallest when the conidium is located
in the proximity of the alveolar entrance ring and increases
for locations with higher distances from the entrance ring,
whereas for the PoK+/+model the infection score remains fairly
independent of the location of the conidium in the alveolus (see
Figure 4).

Presence of PoK Prevents Chemokine
Accumulation
Our in-depth screening of the chemokine parameters for
the lowest infection scores reveals that these are achieved
for diffusion coefficient D = 60 µm2min−1 and secretion rate
sAEC = 50,000 min−1 in the case of the PoK+/+ and the
PoK+/− model whereas for the PoK−/− model the optimal
chemokine parameters are shifted toward D = 20 µm2min−1

and sAEC = 5000 min−1. These findings reflect that in the
PoK−/− model the chemokine dynamics is affected in two
ways: First, in this model chemokine outflow is, in contrast
to the PoK+/+ and PoK+/− models, prohibited and this
leads to a higher accumulation of chemokines in the alveolus.
Second, compared to the PoK+/+ and the PoK+/− models
with PoK forming a sink for chemokines associated with a
distortion of the chemokine gradient, in the PoK−/− model the
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FIGURE 3 | The infection score represented in a color-coded fashion as a function of all scanned combinations of chemokine parameters. Numbers represent the

respective infection scores. A black circle around the point indicates significant differences between the three models as tested with a log-rank test.

FIGURE 4 | Infection scores along the main axis of the alveolus from the entrance ring (at 59 µm) to the pole (at -116.5 µm) for various diffusion coefficients and

secretion rate sAEC = 15,000 min−1. Each data point refers to an average over ring segments with equal area of 25,583 µm2.

chemokine gradient is more homogeneous and this may alter
the migration patterns of AM into a migration behavior that is
more directed. We analyzed the mean chemokine concentration
across the whole alveolar surface after a simulation time of t =
200 min. The difference in the mean chemokine concentration
between the PoK+/+ model and the PoK−/− model yields
on average a factor 4.4 for all secretion rates. This indicates
that chemokines do indeed accumulate (see Figure 5A). It also
explains the shift of the minimal infection score in the chemokine
parameter space toward a lower secretion rate for the PoK−/−
model compared to the other models, since the chemokine

accumulation partly supersedes the secretion. Interestingly, also
the PoK+/− model shows a slightly increased amount of
chemokine in the alveolus compared to the PoK+/+ model,
although the chemokine outflow of the models through PoK is
identical. However, we find that this is caused by the chemokine
uptake of AM with their distinguished spatial distribution in
the PoK+/− and PoK+/+ models. Since in the PoK+/− model
AM are initially distributed closer to the entrance ring (see
Figure 2), where chemokine concentration is low, the chemokine
uptake by AM is reduced compared to the PoK+/+ model (see
Supplementary Figure S4).
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FIGURE 5 | (A) Boxplot of mean chemokine concentration across the whole alveolar surface in the simulations at t = 200 min for various secretion rates sAEC and a

fixed diffusion coefficient of D = 600 µm2min−1 for all three models. N = 1000. Each box represents to 25–75% quantile and central line represents the mean. (B)

Boxplot of total sum of alveolar macrophages in the simulations at t = 360 min for various secretion rates sAEC and a fixed diffusion coefficient of D = 20 µm2min−1

for all three models. N = 1000. Each box represents to 25–75% quantile and central line represents the mean.

Next, we investigated the question if changes in the chemokine
profile affect the migration behavior of AM in a measurable way.
To this end, we analyzed the cell tracks of all successful AMsuccess

using established cell track analysis methods by computing the
asphericity ratio A and the confinement ratio C of cell tracks
(Mokhtari et al., 2013). The asphericity ratio is computed by the
ratio of the longest and shortest axes of the enclosing ellipse for a

track of N time points. The confinement ratio C = 1
N2

∑

m,n

l(m,n)
d(m,n)

for a track of time-ordered points t1 . . . tN is computed by

the mean ratio of track length l (m, n) =
n−1
∑

i=m
d(i, i + 1) to the

Euclidian distance d (m, n) of track points m and n with m, n ∈
[1,N]. These two measures quantify the straightness of a track
on a continuous scale with A,C ∈ [0, 1], where values of 1 are
indicative for perfectly straight tracks, while spatially confined
tracks are scored with values close to 0. Since these measures are
affected by the track length, we calculated the A and C for each
track as a function of the track length (see Figure 6). To test for
differences we applied a local regression (LOESS) analysis, which
revealed that all three models show highly similar asphericity
and confinement ratios with each fit being within the others fits’
standard error (see Figure 6). Thus, this analysis predicts no
differences in the migration patterns of successful AM for the
three PoK models.

Accumulation of AM Limited in Presence
of PoK Passageways
The chemokine-mediated recruitment of AM is naturally
associated with their accumulation in the alveolus, because it is

unlikely that AM following the chemokine gradient will leave
the alveolus before the infection is cleared. Our simulations
allow for a comparative analysis of the time-dependent increase
in the AM number for the three PoK models. This analysis
confirmed that AM accumulate in a way that depends on
the exact chemokine parameters. In Figure 5B it can be seen
that a higher secretion rate sAEC is associated with higher
accumulation of AM. For e.g., optimal chemokine parameters
(D = 60 µm2min−1, sAEC = 50,000 min−1) the mean number
of AM in the PoK+/+ model increases up to 177% compared
to random walk migration of AM; this increase is even higher
with up to 254% and 413%, respectively, for the PoK+/− and
PoK−/− model. This accumulation is due to AM recruitment by
the chemokine gradient, which depends on the model scenarios.
Since AM are attracted toward the conidium, they tend to stay in
the alveolus instead of leaving the alveolus by migrating against
the gradient. Interestingly within the range of AM numbers
observed in our simulations, accumulation of AM is only weakly
correlated with lowering the infection score, i.e., we found a
Pearson correlation coefficient of −0.41 (see Supplementary

Figure S5A). A massive recruitment of AM toward a single
alveolus within the pulmonary tissue might increase the risk for
unresolved infections in other alveoli keeping in mind that the
lung is constantly exposed to various pathogens simultaneously.
Therefore, high levels of AM accumulation in a specific alveolus
should be generally avoided to keep the immune system in a state
of flexible responsiveness.

To understand why AM accumulation occurs, it is important
to put the chemokine secretion induced at the conidium
site into perspective. Since the evolving chemokine profile is
strongly influenced by the random position of the conidium
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FIGURE 6 | Asphericity (A) and confinement (B) ratio as a measurement of track straightness of each AMsuccess in relation to the track length for each of the three

models for diffusion coefficient D = 20 µm2min−1 and secretion rate sAEC = 1500 min−1. Regression line represents LOESS fit and the shaded area represents the

estimations standard error.

in the alveolus, we decided to make the three different models
comparable by locating the conidium at a fixed position in
each simulation. This position was chosen to be at the pole
of the alveolus, i.e., at the symmetry point of the alveolus
with largest distance to the entrance ring (see Figure 1).
The induced chemokine profile attains highest concentration
values at the pole and lowest values at the alveolar entrance
ring; thus, the concentration gradient has its steepest slope in
between depending on the applied chemokine parameters, i.e.,
the diffusion coefficient and the secretion rate. While at the
point of steepest slope AM follow the chemokine gradient with
highest probability, they tend to switch to predominantly random
walk migration close to the pole and the entrance ring (see
Figure 7A). We observed in our simulations that the higher
the chemokine secretion rate, the closer is the point of steepest
slope shifted to the entrance ring. As a result, AM entering
the alveolus quickly migrate to this region and will most likely
remain there. As a consequence, AM are less likely to leave
the alveolus or detect the conidium at the pole position (see
Figure 7B). This effect due to the chemokine accumulation
is observed in all three models, but is most pronounced in
the PoK−/− model and explains the increased AM numbers
(see Supplementary Figure S6). While increased AM numbers
may be thought to be associated with a lower infection
score, the quantitative evaluation of our computer simulations
revealed this correlation to be only weak, independent whether
the conidium was positioned randomly or at the pole (see
Supplementary Figures S5, S7). For a more detailed comparison
between the random conidium positioning model and the setup
with a conidium fixed at the alveolus pole we refer to the
Supplementary Material Section 1.3.

DISCUSSION

In the present study, we investigated the impact of Pores of
Kohn (PoK) on the clearance of Aspergillus fumigatus infections
in the human lung. To this end, we performed computer
simulations based on an established hybrid agent-based virtual
infection model (Pollmächer and Figge, 2014, 2015; Blickensdorf
et al., 2019). This framework represents a realistic, spatio-
temporal three-dimensional model that was carefully designed
based on available experimental data from literature on the
human alveolus. It incorporates alveolar macrophages (AM)
and chemokine signaling released by AEC to allow screening
for physiologically relevant signaling parameters as well as to
quantitatively investigate infection clearance.We developed three
model setups to investigate how infection clearance would be
affected by passaging of AM or chemokines through PoK: the
PoK+/+ model, which allows for chemokine and AM exchange,
the PoK+/− model, which does allow only for chemokine
exchange, and the PoK−/− model, which does not allow for
chemokine and AM exchange.

We could show that, over the scanned range of chemokine
parameters significant differences in the infection clearance
between the models exist. However, the impact of PoK on
the spatio-temporal infection dynamics has only a small effect
size: The absolute differences in the infection scores that were
computed from our simulations are smaller than 0.05 for 72%
of all comparisons. This suggests that infection clearance can
be comparably well achieved within the PoK+/+ model as well
as the PoK−/− and PoK+/− models. We conclude that AM
recruitment through PoK plays only a minor role with regard to
infection clearance. However, we found that the PoK+/+ model
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FIGURE 7 | (A) Probability of an alveolar macrophage to migrate biased toward the chemokine gradient and (B) accumulation of alveolar macrophages along the

main axis of the alveolus from entrance ring (59 µm) to pole (-116.5 µm) for the PoK+/+ model and the PoK−/− model for selected secretion rates and diffusion

coefficient D = 20 µm2 min−1. Each data point refers to an average over ring segments with equal area of 25,583 µm2.

suggests that infection clearance is independent of the position
of the conidium, whereas in the PoK+/− and the PoK−/−
model conidia detection was more efficiently realized close to the
alveolar entrance ring than at the alveolus pole (see Figure 4).
Thus, a conidium at the pole would impose a higher infection risk
for the host if AM could not migrate through PoK. Although the
assumption of a uniform random distribution of the conidium
position after inhalation is reasonable, a spatial distribution of
conidium positions that is biased in some way may affect the
infection score in favor of one model. For example, Xi and
Talaat (2019) suggest that conidia reside in close proximity to
the alveolar entrance ring, where the PoK+/− and PoK−/−
models have a detection advantage, since all AM enter through
the alveolar entrance ring leading to a higher density of AM in
this region (see Figure 4). Our simulations also showed that,
without pathogens present in the alveolus, AM migration trough
PoK allowed for a uniform distribution of AM on the alveolar
surface, whereas prohibited AM migration through PoK leads to
an accumulation of AM in the proximity of the entrance ring.

Besides differences in the infection score between the three
models, our simulations revealed that other dynamics are
affected by different properties of PoK. In the PoK−/− model
the prohibited outflow of chemokine through PoK causes an
accumulation of chemokines. As a consequence, the lowest
infection score is achieved at a different chemokine parameter
regime with a lower secretion rate sAEC compared to the PoK+/+
and PoK+/− models. Since the true secretion rate still needs to
be determined experimentally, it could indeed be possible that the
PoK−/− model outperforms the other two models in terms of
infection clearance. Furthermore, our simulations demonstrate
the effect of AM accumulation caused by chemokine signaling
and show its dependency on the properties of PoK. Although this

effect is dependent on the secretion rate sAEC and the diffusion
coefficient D and can be observed in all three models, relatively
high AM accumulation was present in the PoK+/− and even
stronger in the PoK−/− model. This AM accumulation effect
imposes a higher risk for undetected pathogens. AM that are
recruited to a site of infection may be effectively missing in other
alveoli of the lung. The lung is an organ, which is constantly
confronted with various pathogens simultaneously, implying that
the AM availability is a crucial factor for a fast response of
the immune defense. An unnecessarily excessive recruitment
of AM, therefore, may be disadvantageous for the host and
PoK that allow for AM passage can play an important role in
this regulation.

One of the most recent and detailed studies on the function
of PoK in the human lung discusses the behavior of alveoli
during inflation (Namati et al., 2008). Namati et al. (2008) further
developed a hypothesis according to which alveoli are changing
their shape in reaction to air pressure changes and combined it
with the hypothesis that alveoli are consecutively inflated and
thus regulate the air pressure. A key role in this mechanism
would be played by PoK, which might open and close due to
these pressure changes. As a result, AM would have to squeeze
though closing and opening PoK. The latter processes would
happen fast according to the typical human breathing frequency
of 12 − 18 min−1 (Barrett et al., 2012). A typical AM speed of
4 µm min−1 suggests that for migrating through a PoK of a few
micrometers in length, AM would need in the order of 1 min for
PoK passage (Glasgow et al., 1989). Thus, AM passage through
PoK would be interrupted by frequent closing and opening of
PoK. One option to combine both hypotheses of AM passaging
through PoK and frequent PoK opening would be that AM
migration is air-flow assisted due to the associated high changes
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in the air pressure in PoK, as suggested by Namati et al. (2008) A
similar argumentation can be found by Oldham andMoss (1989)
arguing that the opening of a PoK due to inhalation may result
in bursting of the surfactant layer. An AM residing at such a spot
may thus be accelerated and “pushed” through a PoK.While Peão
et al. (1993) as well as Bastacky and Goerke (1992) present images
of AM within PoK, the quantitative analysis of the infection
clearance in the three different virtual infection scenarios allows
for the statement that AM passaging is not necessary for low
infection scores but imposes the positive effect of homogeneous
AM distributions in the alveolus.

In the future, our understanding of the role of PoK
may be deepened by systems biology approaches that take
into account aspects of the mechanics of alveolar ventilation
as well as other immune cell types involved in the host-
pathogen interaction between humans and A. fumigatus. In
particular, Bozza et al. (2002) observed that dendritic cells
(DCs) are as well involved in the immune response against
A. fumigatus during the first hours post-infection: DCs were
shown to (i) internalize conidia and hyphae (ii) discriminate
between the different forms regarding cytokine production,
(iii) undergo functional maturation upon migration to draining
lymph nodes and spleens, and (iv) instruct local and peripheral
T-helper cell reactivity against A. fumigatus. Furthermore, it
is known that polymorphonuclear neutrophils, which may
be recruited by AM from the blood stream (Pollmächer
et al., 2016), are involved in the immune response during
pulmonary aspergillosis and provide an arsenal of immune
effector mechanisms against A. fumigatus (Brakhage et al.,
2010). In this context, it will be important to investigate the
system dynamics as a function of the number of immune
cells that are estimated to be resident in or recruited to
the alveolus. Additionally it has been demonstrated that
AEC are able to ingest and phagocytose conidia (Osherov,
2012). Furthermore, the hybrid agent-based framework can
be applied to also simulate hyphal growth of the fungus
at later time points and invasion into the blood vessels.
However, modeling such complex mechanisms requires a firm
experimental data basis, which might be provided by imaging

experiments that can nowadays be realized using lung-on-
chip models (Mosig, 2017; Deinhardt-Emmer et al., 2020;
Schicke et al., 2020).
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Dynamic spherical harmonics 
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A cell’s migration behavior depends on the state of the cell, extracellular environment, and signals from other 
cells1. We can study the mechanisms of cell migration by, e.g., knocking out a certain gene or altering the struc-
ture of the extracellular matrix (ECM) and testing whether these changes affect cell migration patterns, such as 
cell trajectory, shape, or shape dynamics (Fig. 1). To compare migration patterns in an objective and statistically 
sound way, they have to be automatically analyzed and quantified2. Whereas both cell trajectories3,4 and cell 
shape5,6 can be quantified with a multitude of available methods, the analysis of shape dynamics – especially in 
3D – received considerably less attention.

When analyzing cell shape in a static fashion, we look at just one snapshot of the cell’s migration history. 
Depending on how we choose this snapshot, we may either miss important differences in cell shape – e.g., if cells 
transiently appear similar but have different migration patterns – or detect spurious differences – e.g., if cells 
occur in different phases of the same migration pattern. Even averaging cell shape descriptors over time7 may 
not always be sufficient to distinguish some migration patterns, for example when all cells evolve through similar 
phases of cell shape but different cells do this with different frequencies (Fig. S1)8. To distinguish such details of 
migration behavior we need dynamic shape analysis that takes into account relative changes in cell shape between 
consecutive time points.

While such dynamic shape analysis has been done in 2D8–11, 3D shape descriptors have not been applied to 
characterize and compare the full dynamic migration patterns of cells. �e ultimate goal, however, is to under-
stand how cells migrate in living organisms12. Due to advances in intravital microscopy13–15, we have increasingly 
more 3D + time data of cells migrating in vivo and we should exploit the potential of 3D methods to analyze these 
data16.

Although there are many simple shape descriptors that can be applied in 3D (e.g., solidity, ellipticity, prolate-
ness), only relatively complex ones can reveal the fine details of the cell shape and classify between relevant spa-
tial patterns while ignoring random shape variations7. One especially popular and promising approach involves 
spherical harmonics (SPHARM)17–19. SPHARM is a 3D extension of a Fourier analysis, where an arbitrary shape 
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function is expanded on a sphere using a set of orthogonal spherical functions as a basis. �is approach was 
shown to be effective for characterizing the shape of proteins20,21, red blood cells22,23, brain structures19,24,25, as well 
as migrating cells7,26–28. In the contexts of cell migration analysis, SPHARM have been applied to identify phases 
of amoeboid cell motion26–28 and to classify shapes of migrating cells based on SPHARM spectra averaged over 
time7. �erefore, SPHARM descriptors represent an ideal first candidate to be extended for dynamic 3D shape 
analysis.

In this proof-of-principle study, we investigate, whether the use of dynamic shape descriptors can improve 
classification between migration patterns of cells. We extend the SPHARM analysis by computing dynamic 
SPHARM descriptors, combine both descriptors with a support-vector-machine classifier, and compare their 
ability to distinguish between migration patterns of cells in synthetic and experimental data.

To study the use of dynamic SPHARM for classifying migrating cells, we analyzed two types of input data: syn-
thetic cells generated with an in-house developed cell migration simulator (CMS), and T cells visualized with 
intravital microscopy. For each cell, we extracted cell surfaces at various time points and transformed them into a 
static or dynamic SPHARM feature vector. We then used the computed feature vectors to classify cells according 
to their migration behavior.

To generate synthetic migrating cells, we used our previously developed cell 
migration simulator (CMS)29. In CMS, each cell consists of a set of grid-based spatial units (SU), and the cell 
migration in 3D is simulated by iteratively moving SU from the rear of the cell to the front (Fig. 2a).

�e simulation starts with a spherical cell with the center of mass at position p
init

 and a randomly chosen 
migration direction →vD  (Fig. 2a). Each SU of the cell receives a position vector →vP , which is used to compute the 
relative SU position P as the dot product between the normal vectors →vP  and →vD : = → ⋅ → ∈ −P v v [ 1, 1]D P . �e 
value of P defines whether the corresponding SU belongs to the cell’s rear or front: for all front SU, P must be 
greater than a pre-defined front-rear threshold FR, whereas all SU with ≤P FR belong to the cell’s rear. �e 
parameter FR defines the fraction of the cell volume considered as the front. �us, for =FR 0 the front and the 
back have equal weights; for a negative FR the front is wider than the back, and for a positive FR the front is nar-
rower than the back (Fig. S2a).

In addition to FR, the model has three further parameters: neighbor weight (NW), position weight (PW), and 
distance weight (DW), which define the probability of moving a specific SU from the rear to the front surface. In 
each iteration, an SU from the rear surface and a free position at the cell’s front are chosen randomly using Monte 
Carlo acceptance-rejection sampling. �e acceptance probability for each SU depends on the number of neigh-
bors N, position P, and the distance to the center of mass D (Fig. S2b–d) and is computed based on the rear and 
front scores Sr and Sf: = ⋅ − ⋅S P N D(6 )r

PW NW DW, = ⋅S P Nf
PW NW. �us, those rear SU and free front 

positions have a higher probability of being selected that are closer to the cell’s migration axis (large P). 
Additionally, those SU are more likely to be removed that are further away from the cells’ center of mass (large D) 
and have fewer neighbors (small N), whereas the free positions at the front are preferred when they have more 
neighbors (large N).

Figure 1. Analysis and quantification of migration patterns can help to study cell migration mechanisms. 
First, a migration experiment is performed, which involves altering the migrating cells (genetic or chemical 
modification, choosing cells of a different type), altering the extracellular matrix (ECM), or adding chemical 
signal to the extracellular environment. Next, cell migration patterns are analyzed and quantified. Finally, one or 
more quantitative measures derived from these patterns are statistically compared between conditions to detect 
significant differences.
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In each iteration of the model, only one SU moves from the cell’s rear to the front. Thus, the cell shape 
changes only slightly even a�er 1000 iterations, and the cell moves a fraction of its diameter (Fig. 2b, Supplement 
Video S1). �is means that our cell migration simulator allows us to study the changes in cell shape with high 
spatio-temporal resolution. �erefore, we focused on resolving the changes in cell shape rather than on following 
the cells for extended time intervals. We simulated each cell for 100 000 iterations and saved the coordinates of all 
SU every 500 iterations. We analyzed the cells starting at iteration 60 000 when the cell shape appeared sufficiently 
different from its initial spherical shape; this resulted in 80 time points per cell. To investigate diverse patterns of 
cell migration, we generated four sets of cells – one for each parameter of the model. Each set consisted of three 
classes corresponding to three different values of the examined parameter, and each class contained 70 cells (see 
section 3.1).

Besides synthetic cells, we applied our analysis to intravital two-photon microscopy 
images of T cells migrating in the popliteal lymph node (LN), submandibular salivary gland (SMG), and skin 
(Fig. 2c, Supplementary Videos S2–S4). We isolated T cells from the spleen and the peripheral lymph nodes of 

Figure 2. Synthetic and real migrating cells analyzed in this study. (a) Schematic overview of a 2D version of 
the cell migration simulator; the simulation starts with a spherical cell consisting of the pixel-based spatial units 
(SU); for each SU, we compute a position vector →vP  relative to the center of mass of the cell; we randomly 
choose the migration direction →vD  and define the cell’s front and rear perpendicularly to →vD ; at each iteration, 
we take one SU from the rear surface and move it to the front, which causes the cell to shi� its center of mass; 
pale yellow SU indicate the candidates for removal, whereas pale purple SU indicate the free positions at the cell 
front. (b) Example of a cell generated with the 3D version of the cell migration simulator; gray shades designate 
the cell positions at previous time points. (c) Upper row: Deconvolved images of CD8+ T cells migrating in a 
lymph node (LN), submandibular salivary gland (SMG) and skin shown in Maximum Intensity Projection 
(MIP) mode; Lower row: individual representative cells in higher magnification zoom-in from the same groups 
as in the upper row in 3D Surface Rendering mode in Imaris.
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GFP+ or dsRed+ donor mice and transferred them to recipient mice, which were subsequently infected with a 
virus to generate memory T cells in various organs (see Supplementary Methods for details). We visualized the 
T cells migrating in the LN, SMG, and skin with two-photon microscopy, and acquired six time series for each 
condition. All experiments were approved by the Cantonal Committee for Animal Experimentation (License 
2018_22_FR) and performed in accordance with federal guidelines.

To obtain cell surfaces for SPHARM analysis, we reconstructed the surface of each cell 
as a triangular mesh and extracted the x, y, z coordinates of the mesh vertices. For synthetic cells, we converted 
the SU coordinates of each cell into a binary mask and reconstructed the cell surface using the marching cube 
algorithm implemented in the scikit-image library of Python30. To reconstruct the surfaces of T cells, we first 
deconvolved the microscopy images using HuygensPro 19.04 (SVI, Hilversum, Netherlands) and then segmented 
and tracked them using Imaris 9.3.1 (Bitplane, Zürich, Switzerland; see Supplementary Methods for details). �e 
resulting cell shapes were saved as VRML files for further analysis. To unify the different time intervals between 
frames (20 seconds for LN and SMG vs. 60 seconds for the skin), we analyzed only every third time point in the 
tracks from LN and SMG.

To analyze the cell shape and its dynamics, we decom-
posed the cell surface at each time point into rotation-invariant spherical harmonics. �e SPHARM transform 
was calculated using the Python library SHTools31, which requires a regular N x N spherical grid as input. Such 
grid was obtained by converting the surface coordinates from the Cartesian to the spherical coordinate system 
and then interpolating them onto a 120 ×120 grid of the polar angle θ and azimuthal angle ϕ (Fig. 3, le�). �e 
spherical grid was expanded into complex spherical harmonics using Driscoll and Healy’s sampling theorem32 
implemented within SHTools. In order to obtain a rotation-invariant shape feature F l( ), the power A l m( , )2 of 
each complex harmonic was computed and summed up for all orders m of each degree l (Fig. 3, middle)33. �e 
first lmax degrees of each rotation-invariant spectrum were used to represent the shape of an individual cell at a 
single time point.

�e rotation-invariant spectra F l( ) were either used to characterize the static cell shape or combined with 
spectra from other time points to characterize the shape dynamics (Fig. 3, middle). For both static and dynamic 
analysis, individual migrating cells – rather than individual time points of the same cell – served as independent 
observations. �us, to obtain static shape features, we used F l( ) from the first time point of each cell and discarded 
the remaining time points. Information from different time points was combined by computing two types of 
dynamic features in the time and the frequency domain. To compute the features in the time domain (dynamic 
time features), we combined F l( ) from the first T time points of each cell into a time map F l t( , ). Being concate-
nated one a�er another, the time-ordered spectra served as an extended feature vector of size ⋅l Tmax . �e fea-
tures in the frequency domain (dynamic frequency features) were revealed by a Fourier transform of F l t( , ) 
calculated for each l. �is transform resulted in a frequency map F l f( , ) of the same size, whose values constituted 
another dynamic feature vector. �e sizes of the three feature vectors were defined by the parameters lmax and T, 
which we adjusted to maximize the classification accuracy (Supplementary Methods, Fig. S3, S4).

A�er extracting static and dynamic shape features, we classified the cells using the 
linear-kernel support vector machine (SVM) classifier implemented in the scikit-learn library of Python34 (Fig. 3, 
right). In order to compare the shape between different classes of cells and to identify significant shape differ-
ences, we computed the classifier accuracy between each pair of classes and compared it to the accuracy of a 
control classifier.

�e classifier accuracy was evaluated for each pair of classes by performing 150 rounds of cross-validation 
with stratified shuffle split for synthetic cells and stratified group shuffle split for T cells. For synthetic data, 50 
cells from each class were randomly chosen in each cross-validation round to serve as the training dataset, while 
the remaining cells (20 cells per class) were used to test the classifier performance (Fig. 4). For experimental data, 
we had to combine the cells into groups according to time series (six groups per class). In each cross-validation 
round, one time series from each class was le� out for testing, while the cells from the remaining time series 
served to train the classifier (Fig. 5). In this way, T cells from the same time series were either in the training or 
testing dataset, but not in both.

A�er evaluating the classifier accuracy, we compared it to a naive control classifier, which was chosen depend-
ing on whether the classified dataset was balanced or unbalanced. We considered a dataset to be balanced if none 
of the classes contained more than 60% of all cells. In this case, we used a random classifier as the best naive 
classifier. As a control for unbalanced data – where more than 60% of cells belonged to one class – we used the 
majority classifier. �is classifier assigns all cells to the class with the most observation and thus performs better 
than a random classifier.

Since the dataset of synthetic cells was balanced (70 cells per class), we used a random classifier as control 
(Fig. 4). To compute the accuracy of the random classifier, we randomly shuffled class labels and carried out 
ten rounds of cross-validation with stratified-shuffle-split with 20 cells from each class serving as test data. We 
repeated the shuffling of class labels five times for each pair of classes, which produced 50 control accuracy values 
for each pair. We combined the accuracy values from all three pairs into a single control set with 150 values.

In contrast to synthetic data, each class of T cells contained different cell numbers (though the number of time 
series was the same). Hence, for each pair of classes, we determined whether the data was balanced or unbalanced 
and computed the control accuracy with either a random or a majority classifier (Fig. 5). For balanced data, we 
randomly shuffled class labels (repeated 15 times) and carried out cross-validation with stratified group shuf-
fle split (10 rounds). For unbalanced data, we randomly selected one time series from each class (repeated 150 
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times), assigned all selected cells to the majority class, and computed the resulting accuracy. �us, for each pair of 
classes, we used an individual control group with 150 accuracy values.

We used the described cross-validation scheme to classify migration patterns in both synthetic cells and T cells. 
We examined how the applied feature vector (static, dynamic time-domain, or dynamic frequency-domain fea-
tures) affected the accuracy of the classifier. �e classifier accuracy was further compared to that of a control clas-
sifier (random or majority) to identify experimental conditions and model parameters that significantly change 
the cell migration patterns.

Figure 3. Schematic overview of the surface analysis and classification. We convert surface coordinates to a 
regular spherical grid, transform them with SPHARM, and compute a rotation-invariant spectrum. We use the 
spectrum of a single time point either as a feature vector by its own (static features) or combine it with other 
time points into a time map (dynamic time features). We can further convert the time map into a frequency map 
by Fourier transform of each degree l (dynamic frequency features). We then use one of the three feature vectors 
to classify cells according to their shape.
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By detecting significant differences in 
migration patterns, our approach can be used to study how various parameters of the cell migration simulator 
(CMS) affect the shape of generated cells. To illustrate this use, we applied static and dynamic SPHARM-based 
classification to examine the behavior of the four parameters of the CMS. For each parameter, we examined three 
different values, while setting the other parameters to their default values. �us, we tested the neighbor-weight 
parameter NW, which determines the cell surface roughness (default value NW = 4), the parameter for position 
weight PW, which affects the cell elongation (default value PW = 4), the distance weight parameter DW, which 
governs the size of cell protrusions (default value DW = 6), and the front-rear threshold FR, which is associated 
with the cell volume fraction considered as the front (default value FR = 0). We then quantified the classification 
accuracy between each pair of classes and compared it to a random control classifier to identify significant dif-
ferences (Fig. 4).

Interestingly, different parameters affected cell shape to a different extent (Fig. 6). �us, changing the value of 
the PW parameter from 1 to 2 to 4 resulted in visually distinct cells (Figs. 6a, S5a) and large quantitative differ-
ences between the cell shapes (Fig. 6b). Changing the value of NW from 1 to 2 to 4 resulted in a similarly large 
quantitative difference (Fig. 6d), but the cells’ 3D surface reconstructions were hard to distinguish visually 
(Fig. 6c). Only looking at the cells’ maximum projections revealed that – indeed – lower NW values resulted in a 
more structured cell surface (Fig. S5b). For the DW parameter, both 3D surfaces and maximum projections were 
similar (Figs. 6e, S5c) for different parameter values (2, 4, and 6), and no significant differences in cell shape could 
be identified by the static classifier (Fig. 6f). In contrast, when shape dynamics was included, the classifier accu-
racy was significantly higher than random, indicating that the visually similar cells might evolve their shape in 
different ways. Interestingly, different value ranges of the FR parameter had different effects on the cell shape, even 
though the parameter values were equally spaced. �us, cell shape did not change when the value of FR increased 
from 0 to 0.3, which was both observed visually (Figs. 6g, S5d) and reflected by the close-to-random classifier 
accuracy (Fig. 6h). In contrast, cell shape for = .FR 0 6 was significantly different from both other classes, which 
was confirmed by visual inspection and by the classifier accuracy for all three feature vectors (Fig. 6g,h).

Although we examined only three values for each parameter, our approach should bring the most benefit 
when many parameter values and their combinations have to be scanned and it is hard to visually control the out-
come of every combinations. Adjusting parameter values of a model can be a daunting task, and our approach can 
facilitate this endeavor by quantifying the shape differences that result from different parameter values and thus 
support the identification of meaningful parameter ranges. For instance, for our CMS, it would probably make 
little sense to further examine FR values between 0 and 0.3, since these values result in very similar cell shape, and 
one should rather focus on the FR values between 0.3 and 0.6.

Figure 4. Schematic of the cross-validation scheme for synthetic data. We compute the classifier accuracy for 
each pair of classes using two-class classification with stratified shuffle split cross-validation. For the control 
group, we apply stratified shuffle split cross-validation a�er randomly shuffling class labels.
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When comparing the accuracy of the static and dynamic classifiers, dynamic features outperformed static 
features in nearly all comparisons (Fig. 6). No improvement was achieved only in those cases, where the static 
classifier accuracy was close to 100% (Fig. 6b,d), or the dynamic classifier detected no significant shape differences 
(Fig. 6h, =FR 0.0 vs. = .FR 0 3). �e use of dynamic frequency domain did not further improve classifier perfor-
mance and resulted in similar accuracy values as for dynamic time domain (Fig. 6).

Importantly, the higher accuracy of the dynamic classifiers was not due to the larger dataset used to train 
them. As described in Materials and Methods, we used only the first time point for extracting static SPHARM 
features in order to keep the number of independent observations equal between the static and dynamic classifi-
ers. Effectively, this resulted in a much larger feature vector for the dynamic classifiers while most of the informa-
tion for the static classifier was discarded. Using all time points as independent observations, however, does not 
improve the performance of the static classifier because these data points are highly correlated. In fact, a static 
classifier based on all time points was inferior to the one based on just the first time point (Fig. S6). It also detected 
significant differences in cell shape where the actual classifier accuracy was only marginally higher than random 
(Fig. S6, =FR 0 vs. = .FR 0 3). �us, simply gathering cell shapes from all time points into a static classifier not 
only doesn’t help to improve the classifier accuracy, but also can result in overfitting and misleading conclusions. 
Only a truly dynamic way to handle time information can boost the classifier performance by including the 
shapes at different time points into feature vectors of individual cells.

We further examined whether our approach can 
also be used to classify migration patterns in experimental data. We analyzed the three groups of T cells migrating 
in various tissues (LN, skin, and SMG). As in synthetic data, we quantified the classification accuracy between 
each pair of tissues and compared it to a control classifier (Fig. 5).

The classifier accuracy significantly differed from control for each comparison and each feature vector 
(Fig. 7a–c). �is difference was most apparent for the comparison of environments LN versus skin (Fig. 7b) 

Figure 5. Schematic of the cross-validation scheme for experimental data. We compute the classifier accuracy 
for each pair of classes using two-class classification with stratified group shuffle split cross-validation. If the 
data is balanced (none of the classes contains more than 60% of cells), the control accuracy is computed by 
randomly shuffling the class labels and performing cross-validation with stratified group shuffle split. For 
unbalanced data, the majority classifier serves as a control.
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because these tissues induce two extremes in the shape of T cells (Figs. 2c, 7d). �e T cells migrating in LN had a 
more regular close-to-spherical shape, whereas the T cells from skin were irregular and made many protrusions. 
T cells migrating in SMG had an intermediate shape, which also strongly varied from time series to time series.

�e relative accuracy of the static and dynamic classifiers differed for each comparison, but the dynamic classi-
fiers generally performed better (Fig. 7a–c). �us, the dynamic classifiers both in the time- and frequency-domain 
were superior when comparing LN to the other two environments, whereby in the LN vs. skin comparison, the 
accuracy further increased with the use of dynamic frequency features. When comparing SMG and skin, the use 

Figure 6. Classification of synthetic cells. Surfaces of representative cells generated with three different values 
of the position weight (PW) (a), neighbor weight (NW) (c), distance weight (DW) (e), and front-rear (FR) (g) 
parameters. Classifier accuracy for different pairs of classes relative to control for different values of the PW 
(b), NW (d), DW (f), and FR (h) parameters. Unless indicated, the default parameter values were used: FR = 0, 
NW = 4, PW = 4, DW = 6. Significantly higher than control: *p < 0.05, **p < 0.01, ***p < 0.001; significantly 
higher than static features: $$$p < 0.001; one-sided Mann-Whitney test, n=150 per group.
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of dynamic time features did not bring any benefit, whereas the dynamic frequency features outperformed both 
dynamic time and static features. As a common trend for all comparisons, the classifier accuracy with dynamic 
frequency features was always significantly higher than the accuracy of the static classifier. �is trend confirms 
our hypothesis that not only static shape features but also the dynamic shape patterns play an essential role in 
defining unique modes of cell migration in different environments.

We evaluated how 
SPHARM-based descriptors perform in comparison to 2D shape descriptors. As SPHARM is a 3D extension of a 
Fourier analysis, we applied a method that is based on the classification of a set of Fourier components produced 
by Discrete Fourier Transform (DFT) a�er carrying out a 3D-to-2D projection of surface-rendered cells35. �e 
advantage of the latter approach is two-fold: (i) the more complex 3D shape characterization by SPHARM is 
reduced to 2D DFT and (ii) the combination of various random 3D-to-2D projections allows a seamless transi-
tion from a pure 2D shape descriptor to a quasi-3D description of cell shapes. We combined these 2D descriptors 
obtained from various numbers of projections with the same classification scheme that we used for SPHARM and 
compared the classification accuracy to a static SPHARM classifier.

The results of this comparison for synthetic cells are summarized in Figs. S7–S10 and reveal that the 
SPHARM-based approach always outcompetes the 2D shape descriptors, except for variations in the DW param-
eter (see Fig. S9) and for a specific comparison of FR parameters (see Fig. S10a). �is does not come as a surprise, 
because we noted before that for these parameters the SPHARM-based classifier does not perform better than 

Figure 7. Classification of T cells for various pairs of classes relative to control. (a) LN vs SMG. (b) LN vs 
Skin. (c) SMG vs Skin. (d) Surfaces and SPHARM reconstructions of representative cells from the three 
analyzed classes. Significantly higher than control: **p < 0.01, ***p < 0.001; significantly higher than static 
features: $$$p < 0.001; significantly higher than dynamic time features: ###p < 0.001; one-sided Mann-Whitney 
test, n = 150 per group. Numbers below the box plots indicate the number (ratio) of cells in each class for the 
corresponding class pair. For ratios between 0.4 and 0.6, the random classifier was used as control. In all other 
cases, the majority classifier was used, whose accuracy is defined by the ratio of cells. In the dynamic classifiers, 
fewer cells were analyzed because not all cell tracks were sufficiently long (20 time points) to be included. 
�is resulted in different ratios between cell numbers and hence different control accuracies for the static and 
dynamic classifiers.
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the random classifier in the static case (see Fig. 6f,h). �ese observations suggest that the DFT-based approach is 
more sensitive to details in the outline of the shape projections than the SPHARM-based approach. On the other 
hand, increasing the number of projections gives rise to a quasi-3D description of cell shapes that is approaching 
but not superseding the accuracy of the SPHARM-based classification for variations in the model parameters 
PW, NW and FR. For T cells, the performance of the static SPHARM-based classification compared with the 
DFT-based revealed that the accuracy of the former is always significantly higher, even if the latter approach 
includes numerous projections for a quasi-3D representation of the cell shapes. In fact, as can be seen in Fig. 8, 
the classification accuracy of the DFT-based approach is comparable to that of a random classifier. We conclude 
that the complexity of the T cell shape determines the minimum number of projections for which the DFT-based 
approach of T cell representation performs as well as the SPHARM-based approach does by 3D reconstruction.

We conclude from this comparison that the SPHARM-based approach is generally superior to using 2D shape 
descriptors.

Discussion
In our proof-of-principle study, we confirmed that adding dynamics to shape analysis can improve the classi-
fication of migration patterns of cells. We illustrated this improvement by combining the dynamic SPHARM 
approach with an SVM classifier to identify conditions with significantly different cell shapes. �is approach, 
however, is not restricted to SPHARM and SVM. We believe that adding dynamics to other shape descriptors, 
such as Fourier-based descriptors35 or wavelets36,37, could also improve their classification accuracy. �e perfor-
mance of other classifiers – such as random forest or neural networks – should also be studied in the future.

Other implementations of the SPHARM analysis should also be tested, e.g. the SPHARM-MAT toolbox avail-
able in MATLAB. Here we focused on an open-source Python alternative SHTools31 making this analysis freely 
available to the community. �e problem of the SHTools implementation, however, is that it is based on convert-
ing the cell shape to spherical coordinates and is therefore accurate only for cells with the center of mass inside the 
cell body. While this requirement was always met for synthetic cells, some T cells – especially those migrating in 
the skin – had a complex shape with the center of mass temporarily appearing outside the cell body. Such shape 
could not be accurately represented in spherical coordinates, which resulted in erroneous shape reconstructions 
a�er SPHARM transform (Fig. S11, bottom row). Since such complex-shaped cells constituted only a fraction of 
the total T cell number (9% LN, 7% in SMG, and 28% in the skin), we neglected this inaccuracy in the current 
study, but this problem will have to be addressed in the future. One solution to this could be to create open-source 
implementations of other SPHARM variants (like SPHARM-MAT) that calculate the SPHARM transform 
directly from the Cartesian coordinates of the surface and thus do not suffer from the center-of-mass problem.

Despite the limitations of our approach for cells with highly irregular shape, most of the cells analyzed in our 
study (all synthetic cells, as well as> 90% of LN and SMG T cells) had their center of mass inside the cell and thus 
could be accurately analyzed by our method. In all comparisons that involved these accurately represented cells 
(Figs. 6, 7a), dynamic SPHARM outperformed its static counterpart and – in one case – could even reveal shape 
differences not detected by the static SPHARM analysis (Fig. 6f). �is suggests that including dynamic shape 
features is especially relevant when shape differences between the analyzed groups are small, whereas for visually 
distinct shapes, static analysis – or even simpler shape descriptors – may be sufficient.

When looking at dynamic SPHARM in the frequency domain, in most cases it did not bring any improve-
ment relative to the time domain. Interestingly, the only comparisons where the dynamic frequency features were 
superior involved the T cells migrating in skin (Fig. 7b,c), which included a relatively high fraction (28%) of cells 
with center of mass transiently appearing outside the cell body. �is event resulted in a dramatic change in shape 
representation for some of the time points (Fig. S11, bottom row) and apparently created a unique frequency pat-
tern that was picked up by the dynamic frequency classifier and used as a feature to distinguish skin T cells from 
other T cells. �is observation confirms that the use of frequency domain can indeed help to detect interesting 
frequency patterns8, either relevant for cell migration, or irrelevant artifacts as in our case.

Figure 8. Static SPHARM-based classifier accuracy for T cells of different pairs of environments in comparison 
to the DFT-based with projection numbers between 1 and 12. �e environments. (a) SMG versus Skin, (b) LN 
versus Skin, and (c) LN versus SMG are compared.
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By recognizing differences in dynamic cell shape, dynamic shape analysis methods like ours can be used 
to study how cell migration patterns change under various experimental conditions. Here we showed that the 
extracellular environment affects the dynamic shape of migrating T cells: even though we looked at the same 
type of cells, their migratory behavior dramatically changed depending on the surrounding tissue. In the future, 
a similar approach can be used to study other factors that affect cell migration1 (Fig. 1), which could involve var-
ious cell types migrating in different intact or altered extracellular environments both in vivo and in 3D artificial 
matrices38.

Dynamic SPHARM analysis can also be applied to study cell migration in silico. Classifying between cells 
generated with different parameters of migration models will help to better understand the meaning of these 
parameters both in our CMS and other models of cell migration. Furthermore, comparing the shape of synthetic 
migrating cells to that of real cells will enable the use of the image-based systems biology approach39,40 to create 
cell migration models that are realistic and data-driven. With these models, we can identify and interpret the 
meaning of the model parameters that induce cell shapes observed in a particular experiment41.

Taken together, dynamic SPHARM-based classification can contribute to our understanding of cell migration 
in two ways. On the one hand, it can help to investigate various experimental settings and their effect on cell 
migration patterns. On the other hand, it should enable identifying parameters of realistic migration models that 
produce specific experimentally observed cell shapes. Both of these applications can help to pinpoint the factors 
that affect the shape of migrating cells and thus bring us closer to understanding the mechanisms underlying cell 
migration.

�e authors declare that all relevant data supporting the findings of this study are available within the paper 
(and its Supplementary Information file). Any raw data can be downloaded from https://asbdata.hki-jena.
de/publidata/MedyukhinaEtAL_SPHARM/. �e source code for the dynamic SPHARM analysis is available 
at https://github.com/applied-systems-biology/Dynamic_SPHARM. �e source code for the cell migration 
simulator is available at https://github.com/applied-systems-biology/cell-migration-simulator.
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7
D I S C U S S I O N

Fungal infections impose a serious threat to mankind’s health as the world-

wide incidence has constantly increased over recent decades. This is caused by

a larger share of immunocompromised patients like the elderly or chronically

ill, promted by improved medical care. The most important representative, As-

pergillus fumigatus, is an airborne ubiquitous mould with worldwide abundance,

which, upon inhalation, may manifest severe infections in the human lung with

high mortality rates [32]. The constant exposure to conidia of A. fumigatus in

combination with a manifestation in the human lung make it extremely diffi-

cult to capture the early dynamics of infection. Although experimental methods

as mice models or in vitro methods exist, the infection dynamics cannot be ex-

amined in vivo, imposing a need for new methods of research. Hence, simulated

computer models, as used in the manuscripts presented in this thesis, provide a

valuable addition to the research methodology since they overcome ethical and

methodical limitations in a controllable and flexible way.

In the following, the results of the publications presented in the previous

chapter are summarized and critically discussed. The second section discusses

possible steps for further development of the used hybrid agent-based alveolus

model of research on A. fumigatus infections and presents new targets for in

silico experiments.

7.1 discussion of main results

7.1.1 Modeling reveals infection dynamics in murine alveoli

Although many mammalian wet lab models for investigating of A. fumigatus in-

fections exist, the murine model represents the most common and established

animal model [115]. Despite the close evolutionary link, various alterations arise

comparing the human and murine lung. These differences must be taken into

account and evaluated to understand how a direct transfer of findings from the

murine model to human infections can be achieved. Therefore, the established

hybrid agent-based alveolus model of human A. fumigatus infections [116, 117]

was adapted to a murine alveolus infection model, making it possible to quan-

tify differences and evaluate their impact on the infection dynamics.
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The simulations with the murine alveolus infection model revealed three mor-

phological key aspects that influence the infection dynamics. First, the overall

alveolar diameter is smaller in the mouse compared to the human by a factor

of four, resulting in a larger surface area by a factor of 20. Consequently, the

number of more than 100 AEC in the human alveolus is reduced to only eight

in the murine alveolus, imposing alterations in the cellular signaling dynamics.

Second, the relation of lung surface area to AMs available in the lung shows

that the mean AM number to expect per alveolus is 4.38 in the human alveolus

but 0.74 in the murine alveolus. Considering the aforementioned surface area

differences, a human AM has to scan a six-times larger area compared to the

murine AM. The third important difference of alveolar morphology concerns

the interconnection of alveoli. Immune cells like AM can enter or leave the alve-

olus through either the alveolar entrance ring or through a pore of Kohn (PoK),

which function as passageways between neighboring alveoli. An increased num-

ber of PoK in the murine alveolus results in a smaller surface-to-boundary ratio,

allowing for smaller migration distances of macrophages entering the murine

alveolus. In parallel, the increased number of PoK allows for more outflow of

chemokines, which might distort the signaling, resulting in a loss of chemokine

efficiency.

Our simulation results show that for a typical A. fumigatus daily exposition

dosage, AM detect conidia with higher efficiency in the murine alveolus, re-

sulting in a faster infection clearance compared to humans. This is predomi-

nantly governed by the smaller migration distance for AM, causing a fast detec-

tion of the conidium. We could demonstrate that quantitative differences in the

chemokine signaling induced by the altered alveolar morphology are majorly

outperformed by the smaller scanning area per AM. These results hold true as

long as parameters like AM speed or chemokine secretion rate are assumed to

be fairly similar in humans and mice. We could demonstrate that our results are

robust in the way that a single conidium in the murine alveolus is cleared with

higher efficiency as long as the chemokine parameters do not differ between

the organisms by at least a factor of three.

7.1.2 Fungal burden governs infections in murine model

Besides assessing the impact of altered morphologies, a second important issue

must be considered when comparing natural A. fumigatus infections in humans

to experimental infections in murine models, namely different conidia exposi-

tions. Infections in humans are caused by air-soluted conidia, which are nat-

urally inhaled during respiration. Studies show that humans typically inhale
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thousands of conidia per day [21], whereas the number of administered coni-

dia in experimental mice models is in the range of 106
− 108 [118–120]. Water-

soluted conidia are most commonly administered to the lung either intranasally

or intratracheally to an anesthetized, immunocompromised mouse [121]. Al-

ready in 2004, Steinbach et al. demonstrated that this way of infection causes a

highly heterogeneous conidia distribution in the lung, which could be resolved

by the use of respiration chambers in which air-soluted conidia are naturally

inhaled by the mouse [122]. Despite the obvious benefits of a naturally-inhaled

infection, the intranasal or intraperitoneal administration of conidia remains

widely in use [123–125]. An additional drawback of intranasal administration

is that only an estimated fraction of 103
− 105 of the administered conidia actu-

ally reach the lung, whereas the majority of conidia flow back out of the nose or

into the gastrointestinal tract, limiting the exact quantification of fungal burden

in the lung [126, 127]. Considering the smaller number of alveoli in the murine

lung, the fungal burden per murine alveolus is much higher than in humans

and must be taken into consideration.

Thus, a different number of conidia per alveolus and their respective clear-

ance efficiency, as simulated by the hybrid agent-based alveolus model, must be

considered when evaluating clearance efficiency for humans and mice for iden-

tical fungal burden of the whole lung. We could demonstrate that the human

and murine model can clear the infection in more than 95% of all simulations

given optimal parameters of chemokine signaling and a uniform distribution

of conidia in the lung up to a fungal burden of 105 conidia. For higher fungal

burden, as applied in the experimental murine model, the clearance efficiency

in mice quickly declines, whereas we only see a slight decrease of efficiency in

the human model. These differences in the dependence on fungal burden can

be explained by inspecting the respective situation in the alveolus. For a fungal

burden of 3 · 105, we consider a maximum of two conidia per alveolus in the

human but four conidia in the murine alveolus. However, since in the murine

alveolus four AEC of type I cover 95% of the surface, it becomes likely that all

of these cells are associated with a conidium and thus simultaneously induce

chemokine secretion. Consequently, almost the whole surface is covered by sig-

naling type I AEC, triggering AM to migrate in each direction with a similar

probability, resulting in a random walk and a loss of efficiency. This imposes

a natural limit of efficient conidia detection in the murine alveolus but not in

humans under the mentioned administration dosages.

Although the high fungal burden where this loss of efficiency occurs does

not cover the stated range of fungal burden in mice models, it becomes relevant

when assuming a heterogeneous conidia distribution and local accumulation of

conidia, as shown by Steinbach et al. for the intranasal administration [122]. We
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therefore conclude that the successful manifestation of A. fumigatus infections

in the murine experimental model relies on a locally high number of conidia

which cannot be cleared simultaneously rather than an inefficient clearance in

the whole lung, supporting the air-soluted murine with a homogeneous distri-

bution model as the more realistic infection model.

7.1.3 Pores of Kohn influence infection dynamics

Alveoli of the mammalian lung are interconnected by Pores of Kohn (PoK).

These small connections between neighboring alveoli with a diameter of roughly

4 µm were first described more than a century ago [128, 129]. Although a reg-

ulatory role within the cellular immune response was long postulated for PoK,

their impact on infection dynamics is not understood [130]. Although early mi-

croscopy of PoK suggested passaging of immune cells, it took until 2020 for

Neupane et al. to image AM migrating though PoK in vivo [131, 132]. Regard-

less, PoK are known to open and close during respiration, possibly contribut-

ing to collateral ventilation and an altered number of PoK is associated with a

higher risk of atalectasis or emphysema [114, 133, 134]. This raised the ques-

tion of how these two functions of ventilation and immune cell passaging can

be joined. How can PoK frequently open and close while AM passage through

them and how would this effect infection dynamics? To quantitatively assess

this problem, the hybrid agent-based alveolus model was extended to simulate

three different theories of AM passaging through PoK. A first model (POK+/+)

allows for AM and chemokine to enter and exit the model through PoK. The

second model (POK+/−) allows only for chemokine in/out flow. In the third

model (POK−/−), PoK do not allow passaging of cells nor molecules.

PoK as passageways for AM would allow these to enter the alveolus through

many positions instead of only through the alveolar entrance ring. This eases

the scanning of the complete alveolar surface by AM and a faster infection clear-

ance can be expected. Our simulations revealed that differences exist in the

clearance efficiency of infections between the three PoK models. However, this

effect is small and an efficient phagocytosis of conidia is possible without PoK

passaging.

The simulations showed that the spatial distribution of AM is altered de-

pending on the passaging through PoK. Where an entry to the alveolus is only

possible at the alveolar entrance ring, like in the POK−/− model, AM tend to

accumulate in proximity to the entrance ring due to the spatial dead-end con-

stitution of the alveolus. In such a model, the alteration of model boundaries

changes the spatial equilibrium of AM compared to the POK+/+ model. Conse-
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quently, conidia at the alveolar pole, the spot most distanced from the entrance

ring, are detected with a lower probability in the POK−/− model. In our simula-

tions, we assumed a spatially uniform distribution of the conidia. Nonetheless,

if conidia tend to arrive in the alveolus with a spatial bias e.g. towards the alveo-

lar entrance ring, as suggested by the particle deposition model of Xi and Talaat

[135], the POK−/− model might clear an infection faster and thus outperform

the POK+/+ model.

Attraction of AM towards the site of infection typically causes a local accu-

mulation of AM. This effect is increased in the POK+/− model due to a stronger

chemokine gradient, which is not distorted by outflow through PoK and even

larger in the POK−/− model due to the dead end constitution of the alveolus.

Such an accumulation of AM increases their overall number within an alveo-

lus up to a factor of 10. For the lung, an organ that is constantly exposed to

pathogens and a homogeneous AM distribution is beneficial for efficient infec-

tion clearance and an accumulation may impose an unnecessary threat. Similar

to the accumulation of AM, an accumulation of chemokines could be observed

due to the impaired outflow through PoK in the POK−/−model. This effect su-

persedes the chemokine secretion, and thus shifts the optimal parameters of

chemokine secretion.

We conclude that a passaging of AM through PoK would only influence A.

fumigatus infections to a minor extent but imposes positive alterations on the

cellular and molecular dynamics in the alveolus as a homogeneous spatial AM

distribution. The remaining question is how such a mechanism can be recon-

ciled with the theory of a regulation of collateral ventilation by PoK as argued

by Namati et al. [114]. With a typical respiration frequency of 12 − 18 min−1,

AM migration would be frequently interrupted as AM would need around one

minute to pass only a few micrometers considering a speed of 4 µm min−1 [136,

137]. Akei et al. showed that the surface tension of the alveolus influences AM’s

shape [138]. Therefore, it seems possible that AM migrate through a PoK by

flexible changes of their shape, despite frequent openings. Oldham and Moss

brought up the idea that the surfactant covering the alveolar surface might burst

during the opening of PoK [113]. In such a case, an AM within the surfactant

might be accelerated through the PoK. This would allow for a new perspective

on cellular migration in the alveolus.

7.1.4 Hyphal growth is affected by macrophage presence

The limited accessibility of alveolar tissue in vivo impedes research on A. fumi-

gatus infections. Nevertheless, emerging microfluidic alveolus-on-chip devices
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promise a new source for insights as they enable investigating alveolar tissues

under more realistic settings that could not be studied before [139–141]. Such a

device contains a centric porous membrane, which was equipped with alveolar

epithelial cells (H441) on one “lung side” and a perfused “blood side” made of

HUVECs to create an invasive aspergillosis-on-chip [142, 143]. This allows run-

ning confrontation assays with A. fumigatus conidia and macrophages (CD68+)

to mimic a more realistic infection environment. Infection dynamics were inves-

tigated by live-cell confocal laser scanning microscopy, which allowed capturing

spatial dynamics such as the hyphal growth. The images showed that A. fumi-

gatus hyphae, similar to the invasive growth in alveoli, are able to penetrate the

chip membrane’s pores but can also grow alongside the cell layer without de-

struction of epithelium. This raises the question of how these modes of growth

can be distinguished, considering that the invasive growth of hyphae is crucial

for A. fumigatus pathogenicity.

As the image data allows for a quantification of the hyphal growth, the con-

finement ratio, a method originating from cell track analysis, was applied, al-

lowing to localize and distinguish regions of straight hyphal growth [144]. The

results show that invasive hyphae do not attach to the membrane before pore

penetration but rather change direction within the epithelial cell layer before

migrating fairly straight into the pore. This behavior could be observed with

higher frequency when macrophages were present within the aspergillosis-on-

chip device. This suggests that the hyphal growth may be influences by a signal.

However, the nature of such a signal is not easy to determine as many poten-

tial molecules are present and tests for nutrients as glucose or lactate gradients

did not explain the observed growth. Similarly, aspergillosis-on-chip devices

with macrophages showed a higher number of pore-penetrating hyphae, sug-

gesting that such growth may be an evasion mechanism against macrophages

as similarly described in the presence of PMN [145]. Tissue invasion is an im-

portant mechanism for A. fumigatus virulence. Therefore, the use of invasive

aspergillosis-on-chip devices represents an ideal environment for understand-

ing hyphal growth, representing a valuable extension of the tool box against

invasive aspergillosis.

The applied growth analysis is exemplary for a common strategy in systems

biology: quantification. The transfer of a complex process as hyphal growth into

a numerical representation of e.g. a matrix allows for a clear and non-subjective

perspective on a problem. Moreover, distinct hyphae can be quantitatively com-

pared by numbers and reveal differences or similarities. The search of such

quantitative descriptors is a frequent problem in systems biology.
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7.1.5 Dynamic SPHARM captures cell migration dynamics

Efficient migration of immune cells is important for host defense. For some

immune cell types such as PMN or T cells, such migration is predominantly

achieved by fluid changes of the cellular shape. In this amoeboid movement

shape changes are caused by surface protrusions, leading to a shift of the cen-

ter of mass and ultimately locomotion [146]. For a quantitative understanding

of such a migration process, descriptors are needed that efficiently reflect and

distinguish shape changes of different cells or different experimental environ-

ments [147]. The better that such descriptors can indicate differences in amoe-

boid motion, the better that they can be used to study intrinsic processes driving

migration as well as the effects caused by migration. In the same way, cellular

migration can be included into models with more realism, the higher the dis-

tinctive power of such descriptors. Two difficulties arise when constructing such

descriptors. First, random alterations of the shape must be distinguished from

those relevant for migration. Second, the frequent changes of shape only allow

for a comprehensive assessment under a time-resolved and dynamic perspec-

tive.

In our study, we used dynamic spherical harmonics (SPHARM) as a descrip-

tor of shape changes during cellular migration. SPHARM bases upon Fourier

analysis and describes the surface of an object by a set of orthogonal spher-

ical functions F(l, m) of order l and degree m. It can be applied in two and

three dimensions and has been shown to be a promising shape descriptor for

cellular migration [148]. In our proof-of-principle study, we extend the static

SPHARM analysis of one cell at a given time point to a dynamic analysis by

computing SPHARM for consecutive time series of one cell. To test the descrip-

tive power of dynamic SPHARM, we used 3D images of murine T cells migrating

in the popliteal lymph node, the salivary gland and the skin as well as synthetic

cells generated from an agent-based migration model. T cell surface data was

acquired by two-photon microscopy with a time resolution of 20 to 60 s per

image over one hour. The synthetic cells were generated with an adaption of

a previously-developed agent-based migration model [149]. In this model, the

synthetic 3D cell body is considered as a set of thousands of small cubic sub-

units. Migration of the cell is realized by repetitive random movement of single

sub-units from the cell rear to the cell front. The shape of the migrating cell can

be controlled by parameters assigning different probabilities of sub-unit move-

ment depending on its relation to the migration axis, the local surface environ-

ment and distance to the center of cell. Such a model allows generating many

migrating cells with nearly arbitrary spatial and temporal resolution compared

to the cost-intensive imaging of cells originating from wet lab experiments, thus

representing a valuable extension of the data basis to test SPHARM.
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Each cell was described by a rotation-invariant feature vector V of size lmax · T

reflecting the time and shape domain, where T denotes the observed time

points t1 . . . tT and lmax the maximal order of the spherical basis function used.

Each entry Vt,l denotes the summed-up power over each degree m of order l at

time point t. We trained a support vector machine to classify the cells depend-

ing on their cellular origin based on this feature vector. The results show that

the accuracy of the dynamic SPHARM feature vector classifier outperforms a

naive control classifier. This holds true not only for classification of T cells from

different tissues but also for classification of synthetic cells generated by the

agent-based model with different migration parameters. We could also show

that the dynamic SPHARM classifier outperforms a classifier based on static cell

shapes and that the dynamic 3D SPHARM classifier outperforms a SPHARM

classifier based on multiple 2D projections of the cell shape of different angles.

Our workflow demonstrates how powerful models in systems biology can

support research. The migration model used allows for inexpensive generation

of data to test and evaluate methods under fast and controlled conditions. Fur-

thermore, the migration model can be used in the future for in silico modeling

of cell migration observed in wet lab experiments. This can be achieved by al-

tering the migration model parameters so that their dynamic SPHARM feature

vector fits those of the observed cells.

7.2 open issues , perspectives and future work

Research is an evolving process, that must constantly depict a far-sighted vision

of the next steps. In the following, I want to raise a perspective on how the

research presented in this thesis can be further developed and which next steps

might help in answering open questions regarding the understanding of A.

fumigatus infections. According to the presented cycle of systems biology, two

general routes are available (see Figure 7.1). The first goes back to the wet lab

and aims for validation as new experimental results may either allow critically

revising the hypotheses raised in the presented publications or narrowing down

the uncertainty in hitherto undetermined, and thus scanned, parameters. The

second route integrates knowledge originating from either published or newly-

performed experiments to achieve an extension of the hybrid alveolus model

to allow for a more generalized perspective of the model or a higher degree

of detail. Synergies are created when route one allows for a reduction of the

parameter scanning space and thus simulation effort to allow for computation-

intense refinement of model detail of route two.
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7.2.1 Perspectives on experimental validation

The most critical uncertainty in the mechanisms of the hybrid alveolus model

may be the chemokine signaling. This mechanism was predicted by Pollmächer

et al. after the observation that a random walk migration of AM would lack an

efficient conidia detection [116]. In the following, the hybrid alveolus model

was extended by a postulated chemokine, which guides AM towards the coni-

dium, allowing for an efficient conidia detection [117]. However, the molecular

identity of the chemokine is unknown including the secretion rate and the dif-

fusion coefficient. Thus, simulations of the hybrid alveolus model must scan

these parameters over a range of biologically reasonable values. This increases

not only the simulation effort but also the complexity of the analysis of the sim-

ulation result. Although a set of chemokines e.g. IL-6 is known to be induced by

the epithelial A549 cell line upon contact with A. fumigatus, a proper candidate

has not been identified [150, 151]. For Example, IL-6 is produced by AM itself,

limiting its efficiency to attract AM towards the conidium [152].

Of note, the recent publication of Neupane et al. might help to identify the

chemokine mechanism [132]. In their study, they achieve in vivo imaging of

alveolar dynamics in mice by spinning-disk confocal intravital microscopy. Al-

though focusing on bacterial pathogens, they observe randomly migrating AM

as well as directed migration towards the pathogen, which is in accordance

with the signaling mechanism in the hybrid alveolus model. Moreover, they

showed a dependency on the complement activation pathways, as C3 knock-

out mice show an impaired directed migration of AM. By blocking of C5a-

mediated chemotaxis, the bacterial clearance was limited, leading to the con-

clusion “...that AMs utilise rapidly generated C5a...”. Thus, activation of the

complement system, as induced by A. fumigatus [153], could cause rapid pro-

duction of the C5a chemokine, making it a promising candidate for AM attrac-

tion. Its diffusion coefficient could be calculated by the Stokes-Einstein equation

given the molecular radius of C5a and the lung surfactant layer viscosity. The

latter has been investigated in various studies but the stated numbers remain in

the range of multiple magnitudes which leaves a high uncertainty [154]. Addi-

tionally, these studies often relied on patients with pulmonary disease and the

non-Newtonian nature of the surfactant layer may require investigations under

realistic mechanical stress. Consequently, the diffusion coefficient of C5a in the

alveolus remains uncertain.

It is worth noting that the publication of Neupane et al. supports important

aspects of our model design as the important role of AM clearance in the early

infection phase. They are the first to show passaging of AM though PoK in vivo

and agreed with our hypothesis of a positive effect for spatial AM distribution

of such passaging.
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Regarding the study of murine A. fumigatus infection in the first manuscript

[155], an assessment of the true spatial conidia distribution in the experimental

murine lung would allow for a more detailed perspective. The first manuscript

of this thesis concludes that the murine infection model relies on a locally high

number of conidia which can not be cleared efficiently by AM due to a heteroge-

neous distribution of conidia after intranasal deposition. Although such a het-

erogeneous distribution of conidia in the murine lung has been demonstrated

by Steinbach et al. [122], a quantification of the real distribution would allow de-

termining the local increase of alveolar fungal burden compared to the uniform

distribution, which was assumed in the hybrid alveolus model. Ultimately, this

perspective would also hold value for human inhalation. Studies on the particle

deposition in the alveoli demonstrate that the complex dynamics of air flow

in the respiratory tract do not guarantee a uniform distribution of conidia on

the alveolar surface [135]. Thus, significant alterations to the assumed uniform

distribution seem possible also in humans.

7.2.2 Perspectives on model developments

The hybrid agent-based alveolus model used for the presented research com-

prises the most relevant actors in early A. fumigatus infections. However, it can

be further developed by either increasing the level of detail applied or extend-

ing the spatial or temporal dimension. Both ways will allow for new in silico

experiments but will also increase computational needs. Thus, promising ideas

of model development should be attempted with care. In the following, these

ideas are discussed regarding their relevance and the availability of data.

A spatial extension of the alveolus model would allow for more comprehen-

sive studies of A. fumigatus infections, but it would also increase the computa-

tional needs and induce a redefinition of the boundary dynamics. The logical

next organizational unit is the alveolar sac, which comprises on average 20 alve-

oli, interconnected by a shared alveolar duct leading to the bronchioles [156].

Such an alveolar sac could be simulated by a parallel simulation of 20 instances

of the hybrid agent-based alveolus model extended by a management of cells

and molecules shifting from one alveolus to another. This would allow inves-

tigating e.g. cellular dynamics such as the accumulation of AM or the impact

of boundary conditions for model dynamics as found in the PoK study of the

second manuscript [157]. Despite a small implementation effort and a broader

perspective on cellular dynamics, this strategy leaves focus from the conidium

towards distant alveoli, which may not influence infection dynamics eminently.

However, it would allow studying the clearance of multiple distributed coni-

dia. Considering a typical daily inhalation rate of a few thousand conidia, it
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is unlikely to have one single alveolus with two present conidia in the whole

lung (p = 0.04). When extending the model to an alveolar sac, it becomes likely

(p = 0.58) that two conidia are present in such a sac. This would allow study-

ing how AM have to detect and phagocytose two conidia in a complex spatial

environment of a sac.

The hybrid agent-based alveolus model includes the first 6 hr of infection

onset between inhalation of the conidium and the starting development of in-

vasive hyphae. As the arms race between host and fungus is yet not decided at

this time point, a temporal extension of the hybrid agent-based alveolus model

would hold strong benefit. For this purpose, the passive role of the conidium

must switch to an active role including swelling, development of hyphae or

even tissue penetration and dissemination. Thus, depending on the applied

level of detail, parameters for swelling, growth speed or direction and branch-

ing must be determined or scanned. The third manuscript on aspergillosis-on-

chip devices [158] would serve as an ideal starting point to assess these param-

eters.

Increasing the temporal space of the hybrid agent-based alveolus model be-

yond the first six hours would allow including PMN or dendritic cells, which

are recruited to the site of infection [159, 160]. For such an extension of the

model, it has to be defined where, when and how many PMN arrive within the

alveolus and how their migration is modeled. One difference to the fairly shape-

preserving AM is that the amoeboid movement of PMN involves frequent shape

alterations. This could be integrated by applying the migration model presented

in the fourth manuscript [161]. Another question that similarly can be asked

for AM is how phagocytosis of a conidium by PMN is modeled. The hybrid

agent-based alveolus model finishes simulation when a contact between the

macrophage and the conidium is established and assumes a successful phago-

cytosis within time. Although this is probable, phagocytosis may fail at all or

require multiple contacts and depends on the conidial surface, which changes

during morphological development of A. fumigatus. Thus, including a detailed

phagocytosis model would allow for new insights into the infection dynamics.

Another mechanism of relevance during the infection is the impact of gliotoxin.

This molecule is a known virulence factor of A. fumigatus and secreted by coni-

dia during the infection [162, 163]. It may cause apoptosis of AEC and therefore

might severely alter infection dynamics [164]. Consequently, gliotoxin might

impair AEC chemokine secretion or maintenance of lung surfactant, both with

unknown effects on the fungal clearance. Similarly, in 1986 Eichner et al. al-

ready showed that gliotoxin alters adhesion, metabolism and phagocytic activ-

ity of macrophages, again with unknown effects on the fungal clearance [165].

Although the exact role of gliotoxin has not yet been deciphered and exact pa-
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rameters like its secretion rate are not available, its effects could be studied by

e.g. including a time-dependent impairment of AEC secretion or AM phagocy-

tosis.

Another mechanism worth discussing is the ingestion of conidia by AEC, as

has been shown in vitro [166]. Up to 30 % of present conidia are internalized

by AEC [50]. This process might serve as an immune evasion mechanism by

the fungus given that most, but not all, conidia are trafficked to the phagolyso-

some but the remaining manage to germinate [48, 49]. It would be interesting

to investigate how infection clearance would be affected by this process. The

model could be easily extended in such a way, as conidia are taken up in a

time-dependent rate, and combined with the gliotoxin mechanism, revealing

interesting dynamics.

Besides applications of the hybrid agent-based alveolus model to A. fumigatus

infections, it is possible to adapt the model and investigate infections of differ-

ent pathogens. The opportunistic fungus Cryptococcus neoformans, similarly to A.

fumigatus, may be inhaled into the alveoli, infect immunosuppressed patients,

disseminate and cause a fungal meningoencephalitis [167]. Another possible

application is tuberculosis, caused by Mycobacterium tuberculosis. Although a

bacterial infection, a successful manifestation may occur after inhalation into

the alveoli and is tackled by phagocyting cells as AM and PMN, similar to A.

fumigatus infections [168].
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