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Abstract

In this thesis we study the spectral properties of singular Sturm–Liouville differential operators of
the form

𝐴𝑓 =
1
𝑟

(︁−(𝑝𝑓′) ′ + 𝑞𝑓)︁
with real-valued coefficients 𝑝, 𝑞 and 𝑟, where the weight function 𝑟 is indefinite. We present
criteria guaranteeing the stability of the essential spectrum under perturbation with respect to the
coefficients. Further, the accumulation of eigenvalues within gaps of the essential spectrum is
studied. We show criteria which imply the finiteness or the accumulation of the point spectrum
within a gap of the essential spectrum. The results are based on relative oscillation theory and the
Floquet theory for periodic Sturm–Liouville problems. Moreover, we focus on the non-real spectra
of indefinite Sturm–Liouville operators. We establish bounds on the absolute values and imaginary
parts of the non-real eigenvalues. The verification of these bounds bases on a careful analysis of the
corresponding eigenfunctions.

Zusammenfassung

In der vorliegenden Arbeit werden die spektralen Eigenschaften singulärer Sturm-Liouville-
Differentialoperatoren der Form

𝐴𝑓 =
1
𝑟

(︁−(𝑝𝑓′) ′ + 𝑞𝑓)︁
mit reellwertigen Koeffizienten 𝑝, 𝑞 and 𝑟 untersucht. Hierbei betrachten wir indefinite Gewichtsfunk-
tionen 𝑟. Basierend auf Erkenntnissen der relativen Oszillationstheorie sowie der Floquet-Theorie
für periodische Sturm-Liouville-Operatoren werden Kriterien nachgewiesen, welche die Stabilität
der essentiellen Spektren unter Störung der Koeffizienten sicherstellen. Außerdem wird die Häufung
von Eigenwerten in den Lücken des essentiellen Spektrums untersucht. Wir formulieren Bedin-
gungen, die eine Häufung der Eigenwerte innerhalb einer Lücke implizieren, bzw. eine Häufung
ausschließen. Weiterhin werden die nichtreellen Spektren indefiniter Sturm-Liouville-Operatoren
untersucht. Hierbei werden Schranken der nichtreellen Eigenwerte hinsichtlich ihres Absolutbetrages
and Imaginärteils bestimmt. Der Nachweis der Schranken beruht auf einer gewissenhaften Analyse
der zugehörigen Eigenfunktionen.
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Introduction

Second order differential equations of the form

ℓ𝑓 = �𝑓 with ℓ ≔
1
𝑟

(︃
− d

d𝑥
𝑝

d
d𝑥

+ 𝑞
)︃

and � ∈ C, (1)

which were initially studied in a series of articles [81, 82, 97] by Sturm and Liouville, have many
applications in mathematical physics. For instance, in the case 𝑝 = 𝑟 ≡ 1 the equation (1) corresponds
to the one-dimensional stationary Schrödinger equation, which plays an important role in quantum
mechanics. Hence, the problem (1) is intensively researched up to now and there is a quote by Zettl
(in [56]) stating that the equation (1) is “the world’s most popular differential equation”.

The differential equation (1) is considered on an open interval (𝑎 , 𝑏) ⊂ R, where suitable boundary
conditions are imposed at the endpoints 𝑎 and 𝑏. The coefficients 𝑝, 𝑞, 𝑟 are assumed to be real-valued
functions on (𝑎 , 𝑏) such that 1/𝑝, 𝑞, 𝑟 are locally integrable on (𝑎 , 𝑏) and 𝑝(𝑥) > 0 as well as
|𝑟(𝑥) | > 0 for almost all 𝑥 ∈ (𝑎 , 𝑏).

If the weight function 𝑟 is positive a. e. on (𝑎 , 𝑏), then the Sturm–Liouville differential expression
ℓ in (1) gives rise to a family of self-adjoint operators, where the underlying Hilbert space is the
weighted 𝐿2-space 𝐿2((𝑎 , 𝑏), 𝑟) equipped with the scalar product

⟨𝑓, 𝑔⟩𝑟 ≔
∫ 𝑏

𝑎
𝑓(𝑡)𝑔(𝑡) |𝑟(𝑡) | d𝑡, 𝑓, 𝑔 ∈ 𝐿2((𝑎 , 𝑏), 𝑟). (2)

The spectral properties of the associated operators in this so-called definite case are comprehensively
studied. For an overview we refer the reader to the monographs [11, 78, 86, 98, 100, 101, 102].

The main focus in this thesis is on the indefinite case, where the weight function 𝑟 has sign changes
in (𝑎 , 𝑏). More precisely it is assumed, in addition to |𝑟(𝑥) | > 0 for almost all 𝑥 ∈ (𝑎 , 𝑏), that the
sets {︁

𝑥 ∈ (𝑎 , 𝑏)
|︁|︁ 𝑟(𝑥) > 0

}︁
and

{︁
𝑥 ∈ (𝑎 , 𝑏)

|︁|︁ 𝑟(𝑥) < 0
}︁

(3)

have positive Lebesgue measure. Indefinite Sturm–Liouville differential equations arise in various
problems in mathematical physics and quantum mechanics. One prominent application is the
Camassa–Holm equation

𝑢𝑡 − 𝑢𝑡𝑥𝑥 = 2𝑢𝑥𝑢𝑥𝑥 − 3𝑢𝑢𝑥 + 𝑢𝑢𝑥𝑥𝑥, 𝑡 ∈ (0,∞), 𝑥 ∈ R, (4)

a non-linear partial differential equation which models the unidirectional wave propagation in shallow
water with 𝑢 representing the height of the water’s free surface. An intriguing property of the
Camassa–Holm equation is that it allows to describe the phenomenon of wave breaking. The
Camassa–Holm equation (4) leads to a one-parameter family of Sturm–Liouville problems

1
𝑢 − 𝑢𝑥𝑥

(︃
−𝑓′′ + 1

4
𝑓

)︃
= �𝑓 (5)

on R of the form (1), where 𝑝 ≡ 1, 𝑞 ≡ 1/4 and 𝑟 = 𝑟( · , 𝑡) = 𝑢( · , 𝑡) − 𝑢𝑥𝑥 ( · , 𝑡) for 𝑡 > 0, which
arises as the isospectral problem in the Lax pair associated with the Camassa–Holm equation, see

9



10 Introduction

[6, 29]. For more details see [33, 43, 44]. Other applications of indefinite Sturm–Liouville problems
include transport theory and statistical physics, see e. g. [4, 5, 52, 57].

In the early 20th century Haupt [55] and Richardson [92] noticed that indefinite equations of the
form (1), where self-adjoint boundary conditions are imposed at the endpoints, may have non-real
eigenvalues; for more historical details we refer to the survey paper [84]. In contrast to the definite
case, an operator associated with the indefinite differential expression ℓ in (1) subject to self-adjoint
boundary conditions is not self-adjoint in the Hilbert space 𝐿2((𝑎 , 𝑏), 𝑟). Therefore, its spectrum
may exceed the real line and it is even possible that the non-real spectrum accumulates, see e. g.
[12, 13, 62, 63, 79]. In [76, 85] there are examples of Sturm–Liouville operators with empty resolvent
set in the case where the coefficient 𝑝 is allowed to be indefinite as well.

Spectral problems which arise in connection with the indefinite differential expression ℓ can be
studied in a natural way in the context of self-adjoint operators in Krein spaces, cf. [36, 39]. Here
the space 𝐿2((𝑎 , 𝑏), 𝑟) equipped with the inner product

[𝑓, 𝑔]𝑟 ≔
∫ 𝑏

𝑎
𝑓(𝑡)𝑔(𝑡)𝑟(𝑡) d𝑡, 𝑓, 𝑔 ∈ 𝐿2((𝑎 , 𝑏), 𝑟), (6)

is a Krein space. The two inner products in (2) and (6) are connected via [·,·]𝑟 = ⟨𝐽·,·⟩𝑟, where 𝐽 is
the multiplication operator by the function 𝑥 ↦→ sgn(𝑟(𝑥)). Therefore, every self-adjoint realisation
𝐴 of ℓ in the Krein space (𝐿2((𝑎 , 𝑏), 𝑟), [·,·]𝑟),

𝐴𝑓 ≔ ℓ𝑓 =
1
𝑟

(︁−(𝑝𝑓′) ′ + 𝑞𝑓)︁
, (7)

induces a definite Sturm–Liouville operator 𝑇 ≔ 𝐽𝐴,

𝑇 𝑓 = 𝐽 (ℓ𝑓) = 1
|𝑟 |

(︁−(𝑝𝑓′) ′ + 𝑞𝑓)︁
, (8)

which is self-adjoint in the Hilbert space 𝐿2((𝑎 , 𝑏), 𝑟) and vice versa.
The major part of the existing literature concerning indefinite Sturm–Liouville operators focuses

on regular problems, i. e. the interval (𝑎 , 𝑏) is bounded and the coefficients 1/𝑝, 𝑞, 𝑟 are integrable
on (𝑎 , 𝑏). The qualitative spectral properties of operators associated with ℓ in the regular case are
well-understood. We emphasize the contribution of Ćurgus and Langer [36], where it is shown that
in the regular case the spectrum of every self-adjoint realisation of ℓ is discrete with at most finitely
many non-real eigenvalues, which appear in pairs symmetric with respect to the real line. For a more
detailed overview about regular indefinite Sturm–Liouville operators we refer to [36, 84, 102] and
the references therein.

For a singular, i. e. non-regular, indefinite Sturm–Liouville operator 𝐴 the situation is more
complicated, as its essential spectrum may be non-empty. In the following we consider an indefinite
singular Sturm–Liouville operator 𝐴 whose corresponding definite operator 𝑇 is semi-bounded
from below, cf. Figure 1. If the lower bound of the spectrum σ (𝑇 ) of 𝑇 is positive and, hence,
σ (𝑇 ) ⊂ (0,∞), then the spectrum σ (𝐴) of 𝐴 is real with a gap around 0, see e. g. [70]. These
so-called left-definite problems were intensively studied; we refer to [14, 22, 23, 24, 25, 68, 69, 70, 83]
and to [102].

If σ (𝑇 ) ⊂ [0,∞) and, additionally, the operator 𝐴 has non-empty resolvent set ρ(𝐴), then
σ (𝐴) is real, see [77]. In this situation the similarity of the indefinite operator 𝐴 to a self-
adjoint operator in a Hilbert space is of particular interest and is studied in many papers, see e. g.
[4, 35, 37, 38, 58, 59, 60, 61, 71, 72] and also the survey [47].
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In the case where the essential spectrum σess(𝑇 ) is contained in the interval (0,∞) it follows that
the essential spectrum σess(𝐴) of 𝐴 is real with a gap around 0 and σ (𝐴) \ R consists of finitely
many eigenvalues, see e. g. [36, 68].

The situation where inf σess(𝑇 ) ≤ 0 is more complicated and the non-real spectrum of 𝐴 may
accumulate at the real axis, see e. g. [12, 62, 79]. It is still an open question, under which conditions
accumulation occurs, see [7]. Also the non-emptiness of the resolvent set of singular indefinite
Sturm–Liouville operators is an open problem and was resolved only under certain restrictions on
the weight function 𝑟, see [16, 87].

0

0

Case (i)

0

0

Case (ii)

0

0

Case (iii)

0

0

Case (iv)

Figure 1: The pictures illustrate the generic structure of σ (𝐴) in the case where the corresponding definite
operator 𝑇 is semi-bounded from below. Here, the orange lines indicate the essential spectrum and dots stand
for eigenvalues of 𝐴. (i) If σ (𝑇 ) ⊂ (0,∞), then σ (𝐴) ⊂ R with a gap around zero. (ii) If σ (𝑇 ) ⊂ [0,∞)
together with ρ(𝐴) ≠ ∅, then σ (𝐴) ⊂ R. (iii) If σess (𝑇 ) ⊂ (0,∞), then σess (𝐴) ⊂ R with a gap around
zero and σ (𝐴) \R consists of at most finitely many eigenvalues. (iv) If inf σ (𝑇 ) ≤ 0, then accumulation of
σess (𝐴) \R is possible.

The aim of this thesis is to contribute to the quantitative spectral theory of singular indefinite
Sturm–Liouville operators. Here we consider certain classes of indefinite operators whose essential
spectra are contained in the real line. This includes the complicated case where inf σess(𝑇 ) ≤ 0. By
means of perturbation theory we study the structure of the essential spectrum and the accumulation
of eigenvalues in gaps of the essential spectrum. Furthermore, we establish bounds on the absolute
values and imaginary parts of the non-real eigenvalues.

One of the main contributions of this thesis are perturbation results for indefinite Sturm–Liouville
operators with respect to the essential spectra. Given two operators 𝐴 and �̃� of indefinite Sturm–
Liouville type we address the following problem:

(P1) Find criteria in terms of the coefficients of the indefinite Sturm–Liouville operators 𝐴 and �̃�
which guarantee σess(𝐴) = σess(�̃�).
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The results proved in Section 3.2 allow simultaneous perturbations of all three coefficients 𝑝, 𝑞, and
𝑟. As a direct implication of Theorem 3.3 and Theorem 3.4 presented in Section 3.2 we obtain the
following theorem.

Theorem 1. Consider the coefficients 𝑝, 𝑞, 𝑟 and �̃�, �̃�, �̃� on R corresponding to the operators 𝐴
and �̃�, respectively, where 𝑟 and �̃� both have definite sign near each endpoint. Assume that at least
one of the following conditions holds:

(α) �̃�, �̃�, 1/�̃� are bounded near the endpoints and the differences

1
�̃�
− 1
𝑝
, �̃� − 𝑞, �̃� − 𝑟 (9)

decay pointwise at both endpoints;

(β) �̃�, �̃� and �̃� are periodic near the endpoints with the same period at each endpoint and the
differences in (9) are integrable on R.

Then σess(𝐴) = σess(�̃�).
In general, a modification of the weight function 𝑟 causes a change of the underlying weighted

𝐿2-space. Therefore, usual stability criteria for the essential spectrum of an operator like compactness
of the resolvent difference or compactness in form sense cannot be applied directly. Here we develop
a solution to problem (P1) for definite operators in Chapter 2 and apply these results by means of
Glazman’s decomposition method to indefinite Sturm–Liouville operators. The criteria in the definite
case are based on the relative oscillation theory developed by Krüger and Teschl in [73, 74, 75] and
the Floquet theory for periodic Sturm–Liouville equations. For definite operators we extend results
by Stolz [96] and Brown et al. [28, Chapter 5] to a situation where different weight functions are
allowed.

If the essential spectrum of an indefinite Sturm–Liouville operator 𝐴 has a gap, then it is of
particular interest whether the eigenvalues of 𝐴 within the gap accumulate to the boundary points of
the gap. As a second main achievement in Section 3.3 we give a solution to the following problem:

(P2) Find criteria for an indefinite Sturm–Liouville operator in terms of its coefficients which imply
the finiteness or the accumulation of the real eigenvalues in a gap of the essential spectrum.

Based on finite-rank perturbation results in [15] for self-adjoint operators in Krein spaces, we present
in Theorem 3.7 a Kneser type criterion for indefinite Sturm–Liouville operators (see [67] and [98,
Theorem 9.42] for Kneser’s classical oscillation result). Furthermore, we show in the periodic case
(β) of Theorem 1 that each sufficient distant gap of σess(𝐴) contains at most finitely many eigenvalues
of 𝐴, if in addition to the integrability of the differences in (9) a finite first moment condition holds,
cf. Theorem 3.8. In that way, we generalize a seminal result by Rofe-Beketov [93] to periodic
Sturm–Liouville operators with general coefficients, where perturbations on all three coefficients are
allowed.

In Chapter 4 we solve a problem posed in [68, Remark 4.4] (see also [102, Remark 11.4.1]):

(P3) Find bounds for the the non-real eigenvalues of a singular indefinite Sturm–Liouville operator.

In the regular case related bounds were obtained in [8, 30, 53, 65, 91] and in [9, 31], where the latter
two articles contain the most general results in terms of the assumptions on the coefficients, although,
not necessarily the smallest bounds, cf. [65]. We also mention [80], where regular problems with
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non-locality are considered. In contrast, solutions to the problem (P3) in the more difficult case of
singular operators are hardly represented in the literature.

The third main result of this thesis, which is already published in the articles [19, 20], are the
bounds for the non-real eigenvalues of singular indefinite Sturm–Liouville operators presented in
Chapter 4. The assumptions on the coefficients (cf. Hypothesis 4.1) are rather weak and the results
are applicable to a large class of singular indefinite Sturm–Liouville operators. In more detail,
besides (𝑎 , 𝑏) = R it is assumed that 1/𝑝 ∈ 𝐿� (R), where 1 ≤ � ≤ ∞, and 𝑞 satisfies

∥𝑞∥u ≔ sup
𝑛∈Z

∫ 𝑛+1

𝑛
|𝑞(𝑡) | d𝑡 < ∞. (10)

The latter condition holds, for instance, if 𝑞 ∈ 𝐿𝑠 (R) with 1 ≤ 𝑠 ≤ ∞. Further, we assume that
1/𝑟 is bounded and definite in a neighbourhood of each endpoint ∞ and −∞. In particular, on a
compactum 𝑟 is allowed to change sign infinitely many times. The bounds established in Chapter 4
depend only on the norms of 1/𝑝, the negative part 𝑞− ≔ ( |𝑞 | − 𝑞)/2 of 𝑞, and in an implicit way on
the weight function 𝑟. For weight functions with at most finitely many sign changes explicit bounds
are calculated in Section 4.2. For instance, in the case 𝑝 ≡ 1, 𝑟 = sgn we find (cf. Corollary 4.16):

Theorem 2. If ∥𝑞∥u < ∞, then the non-real eigenvalues of 𝐴 = sgn · (−d2/d𝑥2 + 𝑞) are contained
in the set

𝛴u ≔

⎧⎪⎪⎨⎪⎪⎩� ∈ C
|︁|︁|︁|︁|︁|︁ |Im �| ≤ 12 ·

√
3
(︂
∥𝑞−∥u + 2∥𝑞−∥2

u

)︂
,

|�| ≤ (12 ·
√

3 + 9)
(︂
∥𝑞−∥u + 2∥𝑞−∥2

u

)︂⎫⎪⎪⎬⎪⎪⎭.

−200 −150 −100 −50 0 50 100 150 200
−150

−100

−50

0

50

100

150

𝛴u

Figure 2: The non-real spectrum of the operator 𝐴 = sgn · (−d2/d𝑥2 + 𝑞), where 𝑞 = −�(� + 1) sech2 and
� ∈ N, consists of 2� non-real eigenvalues, see [13]. The figure illustrates the shape of the set 𝛴u, which
contains the non-real spectrum of 𝐴, for the case � = 1.
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The results in Chapter 4 are based on a careful analysis of the eigenfunctions corresponding to
non-real eigenvalues, where we adapt techniques which were already employed for regular problems,
cf. [9, 30].

We emphasize that beyond the results in Chapter 4 (and [19, 20]), bounds for the non-real
eigenvalues of indefinite singular Sturm–Liouville operators were achieved only in the case 𝑝 ≡ 1,
𝑟 = sgn , where 𝑞 satisfies a certain integrability condition, see [17, 10, 18, 21, 34, 89], and for a
special class of operators with two limit-circle endpoints in [90]. In contrast, the results in [17, 34, 89],
which are better than our results at least when the potential 𝑞 is a negative function, the spectral
bounds obtained in Chapter 4 for the case 𝑝 ≡ 1, 𝑟 = sgn depend only on the negative part 𝑞− of 𝑞.
Therefore, in the genral case 𝑞 ≠ 𝑞− the findings in Chapter 4 may lead to smaller bounds for the
non-real eigenvalues.

Table 1 below summarizes the main results of this thesis and indicates which of them have already
been published.

Table 1: Main results in this thesis.

Section Problem addressed Main results published

2.1, 2.2 (P1) for definite operators Thm. 2.18, 2.26 none

3.2 (P1) Thm. 3.3, 3.4 none

3.3 (P2) Thm. 3.7, 3.8 none

4.1 (P3) for general weight func-
tions

Thm. 4.5–4.7 Behrndt, Schmitz, Trunk [20]

4.2 (P3) for weight functions with
finitely many sign changes

Thm. 4.13–4.15 Behrndt, Schmitz, Trunk [19, 20]



Chapter 1

Definite Sturm–Liouville operators

In this chapter we recall basic properties of definite Sturm–Liouville operators associated with the
differential expression

# =
1
𝑟

(︃
− d

d𝑥
𝑝

d
d𝑥

+ 𝑞
)︃

(1.1)

on an open interval (𝑎 , 𝑏), where −∞ ≤ 𝑎 < 𝑏 ≤ ∞. Throughout this chapter it is imposed that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝, 𝑞, 𝑟 are real-valued functions on (𝑎 , 𝑏),
𝑝(𝑥) > 0, 𝑟(𝑥) > 0 for almost all 𝑥 ∈ (𝑎 , 𝑏),
1/𝑝, 𝑞, 𝑟 ∈ 𝐿1

loc(𝑎 , 𝑏).
(1.2)

This chapter contains standard material, where we follow parts of [11, 42, 101, 102].
Depending on the integrability of the coefficients, the differential expression # is classified in the

following way. The differential expression # is said to be regular at 𝑏 if the endpoint 𝑏 is finite and
1/𝑝, 𝑞, 𝑟 are integrable on (𝑐, 𝑏) for some 𝑐 ∈ (𝑎 , 𝑏). Otherwise # is singular at 𝑏. Analogously,
# is called regular at 𝑎 if the endpoint 𝑎 is finite and 1/𝑝, 𝑞, 𝑟 are integrable on (𝑎 , 𝑐) for some
𝑐 ∈ (𝑎 , 𝑏); otherwise # is called singular at 𝑎 . If # is regular at both endpoints we call # regular,
otherwise singular. For a subinterval (𝑐,𝑑) ⊂ (𝑎 , 𝑏) we write # ↾ (𝑐,𝑑) for the differential expression
restricted to (𝑐,𝑑) corresponding to the coefficients 𝑝 ↾ (𝑐,𝑑), 𝑞 ↾ (𝑐,𝑑) and 𝑟 ↾ (𝑐,𝑑). Observe
that # ↾ (𝑎 , 𝑐) and # ↾ (𝑐, 𝑏) are always regular at 𝑐 for all 𝑐 ∈ (𝑎 , 𝑏).

For � ∈ C and a measurable function 𝑔 : (𝑎 , 𝑏) → C we call 𝑢 : (𝑎 , 𝑏) → C solution of the
differential equation

(# − �)𝑢 =
1
𝑟

(︁−(𝑝𝑢′) ′ + (𝑞 − �𝑟)𝑢)︁ = 𝑔 (1.3)

if 𝑢, 𝑝𝑢′ ∈ AC(𝑎 , 𝑏) and 𝑢 satisfies (1.3) a. e. on (𝑎 , 𝑏). Here, AC(𝑎 , 𝑏) denotes the set of locally
absolutely continuous functions defined on (𝑎 , 𝑏) with values in C; if (𝑎 , 𝑏) comprises the whole
real line we write AC(R). If 𝑟𝑔 ∈ 𝐿1

loc(𝑎 , 𝑏), then the differential equation (1.3) subject to the initial
condition

𝑢(𝑥0) = 𝑐1, (𝑝𝑢′) (𝑥0) = 𝑐2, where 𝑐1, 𝑐2 ∈ C, 𝑥0 ∈ (𝑎 , 𝑏), (1.4)

has a unique solution, see e. g. [11, Section 6.1]. Therefore, the solution space of the corresponding
homogeneous differential equation (# − �)𝑢 = 0 is two-dimensional. Provided regularity at 𝑏 and
𝑟𝑔 ↾ (𝑐, 𝑏) ∈ 𝐿1(𝑐, 𝑏) for some 𝑐 ∈ (𝑎 , 𝑏), any solution 𝑢 of (1.3) and 𝑝𝑢′ can be continuously
extended to the endpoint 𝑏. There is a similar statement for the endpoint 𝑎 .

15
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1.1 Self-adjoint realisations

Let 𝐿2((𝑎 , 𝑏), 𝑟) be the space of all (equivalence classes of) measurable functions 𝑓 : (𝑎 , 𝑏) → C

such that 𝑟𝑓2 is integrable on (𝑎 , 𝑏). Equipped with the scalar product

⟨𝑓, 𝑔⟩𝑟 ≔
∫ 𝑏

𝑎
𝑓(𝑡)𝑔(𝑡)𝑟(𝑡) d𝑡, 𝑓, 𝑔 ∈ 𝐿2((𝑎 , 𝑏), 𝑟), (1.5)

it is a Hilbert space. For a subinterval (𝑐,𝑑) ⊂ (𝑎 , 𝑏) we write 𝐿2((𝑐,𝑑), 𝑟) instead of 𝐿2((𝑐,𝑑), 𝑟 ↾
(𝑐,𝑑)). The natural domain for # acting as an operator in 𝐿2((𝑎 , 𝑏), 𝑟) is the linear subspace

𝒟(#) = {︁
𝑓 ∈ 𝐿2((𝑎 , 𝑏), 𝑟)

|︁|︁𝑓, 𝑝𝑓′ ∈ AC(𝑎 , 𝑏) and #𝑓 ∈ 𝐿2((𝑎 , 𝑏), 𝑟)}︁. (1.6)

Let 𝑓, 𝑔 ∈ 𝒟(#) and � ∈ C. Then for each compact subinterval [𝑦,𝑥] ⊂ (𝑎 , 𝑏) integration by parts
over [𝑦,𝑥] shows∫ 𝑥

𝑦

(︁(# − �)𝑓)︁ (𝑡)𝑔(𝑡)𝑟(𝑡) d𝑡 =
∫ 𝑥

𝑦

(︂
𝑝(𝑡)𝑓′(𝑡)𝑔′(𝑡) + (︁

𝑞(𝑡) − �𝑟(𝑡))︁𝑓(𝑡)𝑔(𝑡))︂ d𝑡

+ (𝑝𝑓′) (𝑦)𝑔(𝑦) − (𝑝𝑓′) (𝑥)𝑔(𝑥)
(1.7)

and the Green’s identity∫ 𝑥

𝑦

(︂
(#𝑓) (𝑡)𝑔(𝑡) − 𝑓(𝑡) (#𝑔) (𝑡)

)︂
𝑟(𝑡) d𝑡 = (𝑝𝑓′) (𝑦)𝑔(𝑦) − 𝑓(𝑦) (𝑝𝑔′) (𝑦)

− (𝑝𝑓′) (𝑥)𝑔(𝑥) + 𝑓(𝑥) (𝑝𝑔′) (𝑥).
(1.8)

Provided regularity at an endpoint, each function 𝑓 ∈ 𝒟(#) together with 𝑝𝑓′ can be continuously
extended to that endpoint. Indeed, assume that # is regular at 𝑏 and set 𝑔 ≔ #𝑓. By definition of
𝒟(#) we have 𝑔 ∈ 𝐿2((𝑎 , 𝑏), 𝑟) and the Cauchy–Schwarz inequality yields∫ 𝑏

𝑐
|𝑟(𝑡)𝑔(𝑡) | d𝑡 ≤

(︃∫ 𝑏

𝑐
𝑟(𝑡) d𝑡 ·

∫ 𝑏

𝑐
|𝑔(𝑡) |2𝑟(𝑡) d𝑡

)︃1/2
< ∞

for all 𝑐 ∈ (𝑎 , 𝑏). As a solution of the differential equation #𝑓 = 𝑔, where 𝑟𝑔 is integrable near 𝑏, the
function 𝑓 as well as 𝑝𝑓′ can be continuously extended to 𝑏. If # is regular at 𝑎 a similar argument
applies.

The domain, range and kernel of a linear operator 𝑇 will be denoted by D(𝑇 ), R(𝑇 ) and N(𝑇 ).
As usual, for the closure of 𝑇 and its Hilbert space adjoint we write 𝑇 and 𝑇 ∗. The maximal operator
𝑇max associated with # is defined by

𝑇max𝑓 ≔ #𝑓 =
1
𝑟

(︁−(𝑝𝑓′) ′ + 𝑞𝑓)︁
, D(𝑇max) = 𝒟(#). (1.9)

The restriction of the maximal operator

𝑇pmin𝑓 ≔ 𝑇max𝑓 = #𝑓, D(𝑇pmin) =
{︁
𝑓 ∈ 𝒟(#)

|︁|︁𝑓 has compact support
}︁
, (1.10)

is called the pre-minimal operator. The two operators 𝑇max and 𝑇pmin are densely defined in
𝐿2((𝑎 , 𝑏), 𝑟), cf. [11, Theorem 6.2.1]. From (1.8) one obtains immediately that the pre-minimal
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operator is symmetric. Moreover, one can show that (𝑇pmin)∗ = 𝑇max, cf. [11, Theorem 6.2.1]. The
closure of the pre-minimal operator

𝑇min ≔ 𝑇pmin = (𝑇pmin)∗∗ = (𝑇max)∗, (1.11)

is symmetric and is called the minimal operator. A self-adjoint extension 𝑇 of 𝑇min (or self-adjoint
restriction of 𝑇max),

𝑇min ⊂ 𝑇 = 𝑇 ∗ ⊂ 𝑇max, (1.12)

is called self-adjoint realisations of #. Here, for operators 𝑆 and 𝑇 we write 𝑆 ⊂ 𝑇 if D(𝑆) ⊂ D(𝑇 )
and 𝑆𝑥 = 𝑇 𝑥 for all 𝑥 ∈ D(𝑆). By the extension theory for symmetric operators, see e. g. [98,
Section 2.6], the definite Sturm–Liouville differential expression # admits always self-adjoint
realisations. This can be seen by verifying that the defect numbers of the minimal operator 𝑇min,

𝑑+(𝑇min) ≔ dimR(𝑇min − i)⊥ = dimN(𝑇max + i)
𝑑−(𝑇min) ≔ dimR(𝑇min + i)⊥ = dimN(𝑇max − i), (1.13)

are equal. Indeed, since the coefficients 𝑝, 𝑞, 𝑟 are real-valued, a function 𝑓 belongs to N(𝑇max − i)
if and only if 𝑓 is an element of N(𝑇max + i), which implies 𝑑+(𝑇min) = 𝑑−(𝑇min). Moreover, the fact
that the number of linearly independent solutions of the differential equation (# − �)𝑢 = 0 for � ∈ C
is limited by two yields 𝑑+(𝑇min) = 𝑑−(𝑇min) ≤ 2. Therefore, 𝑇max and all self-adjoint realisation of #
are finite-dimensional extensions of 𝑇min.

Beside regularity there is another classification of the endpoints. We say a solution 𝑢 of (#−�)𝑢 = 0
for � ∈ C lies right in 𝐿2((𝑎 , 𝑏), 𝑟) if there exists 𝑐 ∈ (𝑎 , 𝑏) such that 𝑢 ↾ (𝑐, 𝑏) ∈ 𝐿2((𝑐, 𝑏), 𝑟).
Similarly, 𝑢 lies left in 𝐿2((𝑎 , 𝑏), 𝑟) if 𝑢 ↾ (𝑎 , 𝑐) ∈ 𝐿2((𝑎 , 𝑐), 𝑟) for some 𝑐 ∈ (𝑎 , 𝑏). By Weyl’s
alternative (see e. g [42, Lemma 4.1]) precisely one of the following possibilities is valid:

(i) For each � ∈ C all solutions of (# − �)𝑢 = 0 lie right (resp. left) in 𝐿2((𝑎 , 𝑏), 𝑟).

(ii) For each � ∈ C there exists one solution of (# − �)𝑢 = 0 which does not lie right (resp. left) in
𝐿2((𝑎 , 𝑏), 𝑟).

Case (i) is called the limit-circle case at 𝑏 (at 𝑎) and (ii) is referred to as limit-point case at 𝑏 (resp. at
𝑎). One can show that in the limit-point case at 𝑏 there exists for all � ∈ C \R a unique (up to a
constant factor) solution of (# − �)𝑢 = 0 which lies right in 𝐿2((𝑎 , 𝑏), 𝑟); similarly for the limit-point
case at 𝑎 . Since for a regular endpoint the solutions of (# − �)𝑢 = 0 can be continuously extended to
this endpoint, each regular endpoint is a limit-circle endpoint. As a direct consequence of Weyl’s
alternative one has 𝑑+(𝑇min) = 𝑑−(𝑇min) = 2 if # is in the limit-circle case at both endpoints, and
𝑑+(𝑇min) = 𝑑−(𝑇min) = 1 if the limit-circle case prevails at exactly one endpoint. In the case of two
limit-point endpoints one has 𝑑+(𝑇min) = 𝑑−(𝑇min) = 0, cf. [42, Theorem 4.6].

In each of the above cases there are descriptions of all possible self-adjoint realisations of #
in terms of boundary conditions. This is well studied, see e. g. [11, 42, 100]. The self-adjoint
realisations of # can be described as 𝑑+(𝑇min)-dimensional restrictions of the maximal operator.
At each endpoint, where # is in the limit-circle case, one additional boundary condition has to be
imposed on the functions of D(𝑇max) = 𝒟(#). For instance, if # is in the limit-circle case at both
endpoints, then two boundary conditions are necessary. In this particular situation the self-adjoint
realisations of # may be divided into realisations, where the boundary conditions at the left and the
right endpoint are coupled, and those with separated boundary conditions, cf. [100, Chapter 4].
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In the the next proposition which follows from [100, Theorem 5.8]1 we give a description of the
self-adjoint realisations of #. We omit a characterisation of the realisations with coupled boundary
conditions, as they are not of particular interest in the following.

Proposition 1.1. Suppose that the coefficients of # satisfy (1.2).

(i) Let � ∈ R. If # is in the limit circle-case at 𝑎 and in the limit-point case at 𝑏 then 𝑇 is a
self-adjoint realisation of # if and only if

𝑇 𝑓 = #𝑓, D(𝑇 ) = {︁
𝑓 ∈ 𝒟(#)

|︁|︁ lim
𝑥→𝑎

(︁
𝑓(𝑥) (𝑝𝑢′

𝑎 ) (𝑥) − (𝑝𝑓′) (𝑥)𝑢𝑎 (𝑥)
)︁
= 0

}︁
,

where 𝑢𝑎 is a non-trivial real-valued solution of (# − �)𝑢 = 0. A similar result holds if # is in
the limit-point case at 𝑎 and in the limit-circle case at 𝑏.

(ii) Let � ∈ R. If # is in the limit-circle case at both endpoints then 𝑇 is a self-adjoint realisation
of # with separated boundary conditions if and only if

𝑇 𝑓 = #𝑓, D(𝑇 ) =
⎧⎪⎪⎨⎪⎪⎩𝑓 ∈ 𝒟(#)

|︁|︁|︁|︁|︁|︁ lim
𝑥→𝑎

(︁
𝑓(𝑥) (𝑝𝑢′

𝑎 ) (𝑥) − (𝑝𝑓′) (𝑥)𝑢𝑎 (𝑥)
)︁
= 0,

lim
𝑥→𝑏

(︁
𝑓(𝑥) (𝑝𝑢′

𝑏) (𝑥) − (𝑝𝑓′) (𝑥)𝑢𝑏 (𝑥)
)︁
= 0

⎫⎪⎪⎬⎪⎪⎭,
where 𝑢𝑎 and 𝑢𝑏 are non-trivial real-valued solutions of (# − �)𝑢 = 0.

(iii) If # is in the limit-point case at both endpoints then 𝑇min = 𝑇max. In this case 𝑇 = 𝑇max is the
only self-adjoint realisation of #.

If # is regular at the endpoint 𝑎 , then the boundary conditions in Proposition 1.1 (i) (similarly, in (ii))
may take the form of point evaluations at 𝑎 and the self-adjoint realisations of # can be parametrized
by the initial values ((𝑢𝑎 (𝑎), (𝑝𝑢′

𝑎 ) (𝑎))⊤ ∈ R2 of the real-valued solutions 𝑢𝑎 . Further, note that
replacing a solution 𝑢𝑎 with 𝑐 · 𝑢𝑎 , where 𝑐 is a non-zero real constant, does not change the operator
domain D(𝑇 ). Therefore, it suffices to consider, instead of allR2-tuples of initial values, only tuples
on the semicircle {(sin𝛼, cos𝛼)⊤ ∈ R2 | 𝛼 ∈ [0,�)}.
Corollary 1.2. Suppose that the coefficients of # satisfy (1.2) and let # be regular at 𝑎 .

(i) If # is in the limit-point case at 𝑏 then 𝑇 is a self-adjoint realisation of # if and only if

𝑇 𝑓 = #𝑓, D(𝑇 ) = {︁
𝑓 ∈ 𝒟(#)

|︁|︁ cos(𝛼)𝑓(𝑎) − sin(𝛼) (𝑝𝑓′) (𝑎) = 0
}︁
,

where 𝛼 ∈ [0,�).
(ii) Let � ∈ R. If # is in the limit-circle case at 𝑏 then 𝑇 is a self-adjoint realisation of # with

separated boundary conditions if and only if

𝑇 𝑓 = #𝑓, D(𝑇 ) =
{︄
𝑓 ∈ 𝒟(#)

|︁|︁|︁|︁|︁ cos(𝛼)𝑓(𝑎) − sin(𝛼) (𝑝𝑓′) (𝑎) = 0,
lim
𝑥→𝑏

(︁
𝑓(𝑥) (𝑝𝑢′

𝑏) (𝑥) − (𝑝𝑓′) (𝑥)𝑢𝑏 (𝑥)
)︁
= 0

}︄
,

where 𝛼 ∈ [0,�) and 𝑢𝑏 is a non-trivial real-valued solution of (# − �)𝑢 = 0.

Similar results hold if # is regular at 𝑏 or at both endpoints.
1 Note that all scalar products in [100] are defined as anti-linear in the first and linear in the second argument.
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1.2 The essential spectrum

For a closed operator 𝑇 in a Hilbert space H the resolvent set, the spectrum, the point spectrum and
the essential spectrum of 𝑇 are denoted by ρ(𝑇 ), σ (𝑇 ), σp(𝑇 ) and σess(𝑇 ). In the literature there are
various approaches to define the essential spectrum of a closed operator, cf. [64, 95]. Here, we follow
the definition in [50], where the essential spectrum is given as the complement of the Fredholm
domain, i. e.

σess(𝑇 ) =
{︁
� ∈ C

|︁|︁ dimN(𝑇 − �) = ∞ or dim(H/R(𝑇 − �)) = ∞}︁
. (1.14)

Note that the essential spectrum is invariant under finite-dimensional or compact perturbations; for
details we refer to [64]. If 𝑇 is self-adjoint in H then, equivalently, � ∈ σess(𝑇 ) if and only if � is an
accumulation point of σ (𝑇 ) or dimN(𝑇 − �) = ∞, cf. [95].

Under the conditions in (1.2) the spectrum of a self-adjoint Sturm–Liouville operator 𝑇 corre-
sponding to the differential expression # in (1.1) is always unbounded above, see e. g. [102, p. 73].
Observe that for all � ∈ R one has dimN(𝑇 − �) ≤ 2 and, therefore, the essential spectrum of 𝑇
consists only of the accumulation points of σ (𝑇 ). If # is in the limit-circle case at both endpoints,
in particular if both endpoints are regular, then every self-adjoint realisation 𝑇 of # has compact
resolvent, cf. [100, Theorem 7.10], and, therefore, σess(𝑇 ) = ∅. The situation is different, however, if
the limit-point case prevails at one or both endpoints. Then the essential spectrum may be non-empty.
Since the defect numbers of the minimal operator are finite, all self-adjoint realisations of # are
finite-dimensional extensions of the minimal operator and share the same essential spectrum, cf. [98,
Theorem 6.20]. Moreover, if one self-adjoint realisation of # is semi-bounded from below, then all
self-adjoint realisations are semi-bounded from below, see e. g. [99, Corollary 2 to Theorem 8.19] or
[2, Section 107, Theorem 2].

The essential spectrum is determined only by the behaviour of the coefficients of # near the
(limit-point) endpoints, which can seen as follows by means of Glazman’s decomposition method,
cf. [49, Section 7]. For an interval (𝛼, 𝛽) ⊂ (𝑎 , 𝑏) let 𝑇min(𝛼, 𝛽), 𝑇max(𝛼, 𝛽) and 𝑇 (𝛼, 𝛽) denote the
minimal operator, the maximal operator and an arbitrary self-adjoint realisation associated with
# ↾ (𝛼, 𝛽) in 𝐿2((𝛼, 𝛽), 𝑟), respectively.

Lemma 1.3. Suppose that the coefficients of # satisfy (1.2) and assume that 𝑇 is any self-adjoint
realisation of #. Let 𝑎 < 𝑐 < 𝑑 < 𝑏 and consider

𝑇0 = ⎛⎜⎝
𝑇min(𝑎 , 𝑐) 0 0

0 𝑇min(𝑐,𝑑) 0
0 0 𝑇min(𝑑, 𝑏)

⎞⎟⎠ , 𝑇 = ⎛⎜⎝
𝑇 (𝑎 , 𝑐) 0 0

0 𝑇 (𝑐,𝑑) 0
0 0 𝑇 (𝑑, 𝑏)

⎞⎟⎠ , (1.15)

where the space 𝐿2((𝑎 , 𝑏), 𝑟) is identified with the orthogonal sum 𝐿2((𝑎 , 𝑐), 𝑟) ⊕ 𝐿2((𝑐,𝑑), 𝑟) ⊕
𝐿2((𝑑, 𝑏), 𝑟). Then both operators 𝑇 and 𝑇 are finite-dimensional self-adjoint extensions of 𝑇0, and

σess(𝑇 ) = σess(𝑇 ) = σess(𝑇 (𝑎 , 𝑐)) ∪ σess(𝑇 (𝑑, 𝑏)). (1.16)

Proof. Since the operators 𝑇min(𝑎 , 𝑐), 𝑇min(𝑐,𝑑), 𝑇min(𝑑, 𝑏) are densely defined, closed and
symmetric in the corresponding Hilbert spaces, the operator 𝑇0 is densely defined, closed and
symmetric in 𝐿2((𝑎 , 𝑏), 𝑟). It is not difficult to see that 𝑇0 ⊂ 𝑇min, where 𝑇min is the minimal operator
associated with # on the interval (𝑎 , 𝑏). The adjoint of 𝑇0 is given by

(𝑇0)∗ = ⎛⎜⎝
𝑇max(𝑎 , 𝑐) 0 0

0 𝑇max(𝑐,𝑑) 0
0 0 𝑇max(𝑑, 𝑏)

⎞⎟⎠ , (1.17)
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where 𝑇max = (𝑇min)∗ ⊂ (𝑇0)∗. The defect numbers 𝑑+(𝑇0), 𝑑−(𝑇0) of 𝑇0 satisfy

𝑑+(𝑇0) = 𝑑+(𝑇min(𝑎 , 𝑐)) + 𝑑+(𝑇min(𝑐,𝑑)) + 𝑑+(𝑇min(𝑑, 𝑏))

= 𝑑−(𝑇min(𝑎 , 𝑐)) + 𝑑−(𝑇min(𝑐,𝑑)) + 𝑑−(𝑇min(𝑑, 𝑏)) = 𝑑−(𝑇0) ≤ 6.
(1.18)

The operator 𝑇 is a self-adjoint extension of 𝑇0, as easily can be seen from the definition of 𝑇 .
By 𝑇0 ⊂ 𝑇min ⊂ 𝑇 ⊂ 𝑇max ⊂ (𝑇0)∗ also 𝑇 is a self-adjoint extension of 𝑇0. From the extension
theory for symmetric operators (see e. g. [98, Section 2.6]) and (1.18) we see that both operators are
finite-dimensional extensions of 𝑇0 and, therefore, their resolvent difference is a finite-rank operator,
i. e.

dimR
(︂
(𝑇 − �)−1 − (𝑇 − �)−1

)︂
≤ 6 for all � ∈ ρ(𝑇 ) ∩ ρ(𝑇 ). (1.19)

As a consequence the operators 𝑇 and 𝑇 share the same essential spectrum, see [98, Theorem 6.19],
and we have

σess(𝑇 ) = σess(𝑇 ) = σess(𝑇 (𝑎 , 𝑐)) ∪ σess(𝑇 (𝑐,𝑑)) ∪ σess(𝑇 (𝑑, 𝑏)), (1.20)

where σess(𝑇 (𝑐,𝑑)) = ∅ as # ↾ (𝑐,𝑑) is regular. □



Chapter 2

Perturbations of definite Sturm–Liouville
operators

In this chapter we study the spectra of definite Sturm–Liouville operators under perturbations.
The main objective is to find criteria for the invariance of the essential spectrum. Moreover, we
investigate how perturbations influence the accumulation of eigenvalues at the boundary of the
essential spectrum. The key ingredient is relative oscillation theory, where the zeros of the Wronskian
determinant corresponding to solutions of two different Sturm–Liouville eigenvalue problems are
counted.

As we compare different Sturm–Liouville operators it is convenient to introduce three differential
expressions

#𝑗 =
1
𝑟𝑗

(︃
− d

d𝑥
𝑝𝑗

d
d𝑥

+ 𝑞𝑗
)︃
, where 𝑗 = 0, 1, 2, (2.1)

on a common open interval (𝑎 , 𝑏) with finite left endpoint 𝑎 . Throughout this chapter the conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑝𝑗 , 𝑞𝑗 , 𝑟𝑗 are real-valued functions on (𝑎 , 𝑏),
𝑝𝑗 (𝑥) > 0, 𝑟𝑗 (𝑥) > 0 for almost all 𝑥 ∈ (𝑎 , 𝑏),
1/𝑝𝑗 , 𝑞𝑗 , 𝑟𝑗 ∈ 𝐿1

loc(𝑎 , 𝑏),
#𝑗 is regular at 𝑎

(2.2)

are imposed for 𝑗 = 0, 1, 2.

2.1 Relative oscillation

We recall well-known results in standard oscillation theory for definite Sturm–Liouville operators,
where we follow parts of [100]. Thereafter we introduce the concept of relative oscillation developed
by Krüger and Teschl [73, 74, 75].

An important tool in oscillation theory is the Prüfer transformation. Let 𝑢 be a non-trivial
real-valued solution of the differential equation (#0 − �)𝑢 = 0, where � ∈ R. Both functions 𝑢 and
𝑝𝑢′ do not vanish at the same point 𝑥 ∈ (𝑎 , 𝑏), otherwise uniqueness of the solution would imply
that 𝑢 is the trivial solution. Therefore, 𝑢 and 𝑝𝑢′ admit a representation in terms of the Prüfer
variables,

𝑢 =  𝑢 sin+𝑢, 𝑝𝑢′ =  𝑢 cos+𝑢. (2.3)

where the Prüfer radius  𝑢 is given by

 𝑢 =
√︂
𝑢2 + (𝑝𝑢′)2 (2.4)

21
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and the Prüfer angle +𝑢 satisfies

tan+𝑢 (𝑥) =
𝑢(𝑥)

(𝑝𝑢′) (𝑥) for (𝑝𝑢′) (𝑥) ≠ 0 (2.5)

or
cot+𝑢 (𝑥) =

(𝑝𝑢′) (𝑥)
𝑢(𝑥) for 𝑢(𝑥) ≠ 0, (2.6)

cf. [100, Chapter 13]. By (2.4) the Prüfer radius  𝑢 is positive and absolutely continuous on (𝑎 , 𝑏).
Observe that +𝑢 (𝑥) for 𝑥 ∈ (𝑎 , 𝑏) is determined only up to integer multiples of 2� by (2.5) and (2.6).
In order to remove this ambiguity we fix a value +𝑢 (𝑥0) for an arbitrary 𝑥0 ∈ (𝑎 , 𝑏) and require
continuity of the Prüfer angle +𝑢. This leads to a uniquely determined function +𝑢. A straightforward
calculation using (2.5) and (2.6) shows that the Prüfer angle +𝑢 is a locally absolutely continuous
function on (𝑎 , 𝑏) satisfying the differential equation

+′
𝑢 =

1
𝑝
(cos+𝑢)2 − (𝑞 − �𝑟) (sin+𝑢)2. (2.7)

In the same way as 𝑢 and 𝑝𝑢′ the Prüfer variables can be continuously extended to the regular
endpoint 𝑎 .

Observe that by (2.3) a point � ∈ (𝑎 , 𝑏) is a zero of 𝑢 if and only if +𝑢 (�) is a integer multiple of
�. At the zeros of the solution the Prüfer angle is strictly increasing. We present a short proof based
on an adaption of the proof of Theorem 13.1 in [100].

Lemma 2.1. Suppose that (2.2) holds for 𝑗 = 0 and let 𝑢 be a non-trivial real-valued solution of
(#0 − �)𝑢 = 0, where � ∈ R. Consider � ∈ [𝑎 , 𝑏) and 𝑘 ∈ Z. Then

(i) +𝑢 (�) ≤ 𝑘� implies +𝑢 (𝑥) < 𝑘� for all 𝑥 < �, 𝑥 ∈ (𝑎 , 𝑏), and

(ii) +𝑢 (�) ≥ 𝑘� implies +𝑢 (𝑥) > 𝑘� for all 𝑥 > �, 𝑥 ∈ (𝑎 , 𝑏).
Proof. Let 𝛿 ≔ +𝑢 − 𝑘�. Consider

𝑓 =
1
𝑝
(cos 𝛿)2 and ℎ = −(𝑞 − �𝑟) (sin 𝛿)

2

𝛿
. (2.8)

Then by (2.7) together with the �-periodicity of 𝑐𝑜𝑠2 and sin2 we have 𝛿′ = 𝑓 + ℎ𝛿. Here, the
functions 𝑓, ℎ are integrable on (𝑎 , 𝑐) for all 𝑐 ∈ (𝑎 , 𝑏) because 𝑓 ≤ 1/𝑝 and |ℎ| ≤ |𝑞−�𝑟 |. Consider
the positive function 𝑔 defined by

𝑔(𝑥) = exp
(︃
−

∫ 𝑥

𝑎
ℎ(𝑡) d𝑡

)︃
. (2.9)

Then (𝑔𝛿) ′ = −ℎ𝛿𝑔 + (𝑓 + ℎ𝛿)𝑔 = 𝑓𝑔 ≥ 0, that is 𝑔𝛿 is increasing. By the monotonicity of 𝑔𝛿 we
have for 𝑥 < �

𝑔(𝑥) (︁+𝑢 (𝑥) − 𝑘�
)︁
= (𝑔𝛿) (𝑥) ≤ (𝑔𝛿) (�) = 𝑔(�) (︁+𝑢 (�) − 𝑘�

)︁
, (2.10)

and for 𝑥 > �

𝑔(�) (︁+𝑢 (�) − 𝑘�
)︁
= (𝑔𝛿) (�) ≤ (𝑔𝛿) (𝑥) = 𝑔(𝑥) (︁+𝑢 (𝑥) − 𝑘�

)︁
. (2.11)

Observe that in the case +𝑢 (�) = 𝑘� the function (𝑔𝛿) ′ = 𝑓𝑔 is positive in a neighbourhood of �
because of 𝑝 > 0 a. e. and 𝛿(�) = 0. In this situation the inequalities in (2.10) and (2.11) are strict.
Now the positivity of 𝑔 together with (2.10), (2.11) implies (i) and (ii). □
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The growth behaviour of the Prüfer angle allows to count the zeros of the solution 𝑢. In the
following ⌊ ·⌋ and ⌈·⌉ denote the floor function and the ceiling function.

Lemma 2.2. Suppose that (2.2) holds for 𝑗 = 0 and let 𝑢 be a non-trivial real-valued solution of
(#0 − �)𝑢 = 0, where � ∈ R. Then for every 𝑥 ∈ (𝑎 , 𝑏) the solution 𝑢 has at most finitely many zeros
in (𝑎 ,𝑥) and

𝑁𝑢 (𝑥) ≔
⌈︃
+𝑢 (𝑥)
�

⌉︃
−

⌊︃
+𝑢 (𝑎)
�

⌋︃
− 1 (2.12)

equals the number of zeros of 𝑢 in (𝑎 ,𝑥). In particular, the function 𝑁𝑢 : (𝑎 , 𝑏) → Z is non-negative
and increasing.

Proof. Let 𝑥 ∈ (𝑎 , 𝑏) and choose 𝑘, 𝑚 ∈ Z such that +𝑢 (𝑎) ∈ [𝑘�, (𝑘 + 1)�) and +𝑢 (𝑥) ∈
(𝑚�, (𝑚 + 1)�]. Then 𝑁𝑢 (𝑥) = 𝑚 − 𝑘 by definition. According to Lemma 2.1 one has 𝑘� < +𝑢 (𝑦)
and +𝑢 (𝑦) < (𝑚 + 1)� for all 𝑦 ∈ (𝑎 ,𝑥). In particular, 𝑘 ≤ 𝑚. We consider the case 𝑘 = 𝑚. Then
we have +𝑢 (𝑦) ∈ (𝑘�, (𝑘 + 1)�) for all 𝑦 ∈ (𝑎 ,𝑥). Hence, 𝑢 has no zeros in (𝑎 ,𝑥) and 𝑁𝑢 (𝑥) = 0.
If 𝑘 < 𝑚, then +𝑢 (𝑦) ∈ (𝑘�, (𝑚 + 1)�) for all 𝑦 ∈ (𝑎 ,𝑥). Further, the continuity and the growth
behaviour of +𝑢, see Lemma 2.1, imply that every value 𝑛�, 𝑛 ∈ [𝑘 + 1,𝑚] ∩Z, is attained by +𝑢
exactly once in (𝑎 ,𝑥). Hence, +𝑢 has 𝑁𝑢 (𝑥) = 𝑚 − 𝑘 zeros in (𝑎 ,𝑥). □

In the following we extend the usual definition of the Wronskian determinant. Let 𝑢0 be a solution
of (#0 − �0)𝑢0 = 0 and 𝑢1 a solution of (#1 − �1)𝑢1, where �0, �1 ∈ R. The Wronskian determinant
of 𝑢0 and 𝑢1 is defined by

𝑊 [𝑢0,𝑢1] ≔ 𝑢0𝑝1𝑢
′
1 − 𝑢1𝑝0𝑢

′
0. (2.13)

The Wronskian 𝑊 [𝑢0,𝑢1] is locally absolutely continuous in (𝑎 , 𝑏) with

𝑊 [𝑢0,𝑢1] ′ =
(︁(𝑞1 − �1𝑟1) − (𝑞0 − �0𝑟0)

)︁
𝑢0𝑢1 +

(︃
1
𝑝0

− 1
𝑝1

)︃
𝑝0𝑢

′
0𝑝1𝑢

′
1. (2.14)

A point 𝑥 ∈ (𝑎 , 𝑏) is a zero of 𝑊 [𝑢0,𝑢1] if and only if the C2-vectors (𝑢0(𝑥), (𝑝0𝑢
′
0) (𝑥))⊤ and

(𝑢1(𝑥), (𝑝1𝑢
′
1) (𝑥))⊤ are linearly dependent. Provided that 𝑢0 and 𝑢1 are real-valued non-trivial

solutions, the Wronskian in (2.13) can be represented in terms of Prüfer variables,

𝑊 [𝑢0,𝑢1] (𝑥) = − 𝑢0
(𝑥) 𝑢1

(𝑥) sin
(︁
+𝑢1

(𝑥) − +𝑢0
(𝑥))︁ . (2.15)

In this case the zeros of 𝑊 [𝑢0,𝑢1] are exactly those points � ∈ (𝑎 , 𝑏), where

+𝑢1
(�) − +𝑢0

(�) = 𝑘� (2.16)

for some 𝑘 ∈ Z. Under certain conditions the difference of two Prüfer angles has at the zeros of the
Wronskian a similar growth behaviour as a single Prüfer angle at zeros of the corresponding solution.

Lemma 2.3. Suppose that (2.2) holds for 𝑗 = 0, 1. Let 𝑢0 and 𝑢1 be non-trivial real-valued
solutions of (#0 − �0)𝑢0 = 0 and (#1 − �1)𝑢1 = 0, respectively, for �0, �1 ∈ R. Consider � ∈ [𝑎 , 𝑏)
and 𝑘 ∈ Z. If

𝑝0 ≥ 𝑝1 and 𝑞0 − �0𝑟0 ≥ 𝑞1 − �1𝑟1 (2.17)

holds a. e. on (𝑎 , 𝑏), then

(i) +𝑢1
(�) − +𝑢0

(�) < 𝑘� implies +𝑢1
(𝑥) − +𝑢0

(𝑥) < 𝑘� for all 𝑥 < �, 𝑥 ∈ (𝑎 , 𝑏),
(ii) +𝑢1

(�) − +𝑢0
(�) > 𝑘� implies +𝑢1

(𝑥) − +𝑢0
(𝑥) > 𝑘� for all 𝑥 > �, 𝑥 ∈ (𝑎 , 𝑏), and
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(iii) +𝑢1
(�) − +𝑢0

(�) = 𝑘� implies +𝑢1
(𝑥) − +𝑢0

(𝑥) ≤ 𝑘� ≤ +𝑢1
(𝑦) − +𝑢0

(𝑦) for all 𝑥 < �,
𝑥 ∈ (𝑎 , 𝑏) and for all 𝑦 > �, 𝑦 ∈ (𝑎 , 𝑏).

If
𝑝0 ≥ 𝑝1 and 𝑞0 − �0𝑟0 > 𝑞1 − �1𝑟1 (2.18)

is valid a. e. on (𝑎 , 𝑏), then

(iv) +𝑢1
(�) − +𝑢0

(�) ≤ 𝑘� implies +𝑢1
(𝑥) − +𝑢0

(𝑥) < 𝑘� for all 𝑥 < �, 𝑥 ∈ (𝑎 , 𝑏), and

(v) +𝑢1
(�) − +𝑢0

(�) ≥ 𝑘� implies +𝑢1
(𝑥) − +𝑢0

(𝑥) > 𝑘� for all 𝑥 > �, 𝑥 ∈ (𝑎 , 𝑏).
Proof. The proof is similar to the proof of Lemma 2.1 and is an adaption of the proof of
Theorem 13.1 in [100] to the case 𝑘 ≠ 0. Let 𝛿 ≔ +𝑢1

− +𝑢0
− 𝑘�. Then by (2.7) (for 𝑢 = 𝑢0 and

𝑢 = 𝑢1, respectively) we obtain

𝛿′ =
1
𝑝1

(cos+𝑢1
)2 − (𝑞1 − �1𝑟1) (sin+𝑢1

)2 − 1
𝑝0

(cos+𝑢0
)2 + (𝑞0 − �0𝑟0) (sin+𝑢0

)2

=

(︃
1
𝑝1

− 1
𝑝0

)︃
(cos+𝑢1

)2 + (︁(𝑞0 − �0𝑟0) − (𝑞1 − �1𝑟1)
)︁ (sin+𝑢0

)2

− (𝑞1 − �1𝑟1)
(︂
(sin+𝑢1

)2 − (sin+𝑢0
)2

)︂
− 1
𝑝0

(︂
(cos+𝑢0

)2 − (cos+𝑢1
)2

)︂
.

The identity sin(+𝑢1
++𝑢0

) sin(+𝑢1
−+𝑢0

) = (cos+𝑢0
)2− (cos+𝑢1

)2 = (sin+𝑢1
)2− (sin+𝑢0

)2 together
with sin(+𝑢1

− +𝑢0
) = (−1)𝑘 sin 𝛿 yields

𝛿′ =
(︃

1
𝑝1

− 1
𝑝0

)︃
(cos+𝑢1

)2 + (︁(𝑞0 − �0𝑟0) − (𝑞1 − �1𝑟1)
)︁ (sin+𝑢0

)2

− (−1)𝑘
(︃

1
𝑝0

+ 𝑞1 − �1𝑟1

)︃
sin(+𝑢0

+ +𝑢1
) sin 𝛿.

(2.19)

We consider the functions

𝑓 =

(︃
1
𝑝1

− 1
𝑝0

)︃
(cos+𝑢1

)2 + (︁(𝑞0 − �0𝑟0) − (𝑞1 − �1𝑟1)
)︁ (sin+𝑢0

)2 (2.20)

and
ℎ = −(−1)𝑘

(︃
1
𝑝0

+ 𝑞1 − �1𝑟1

)︃
sin(+𝑢0

+ +𝑢1
) sin 𝛿

𝛿
. (2.21)

According to (2.19) we have
𝛿′ = 𝑓 + ℎ𝛿, (2.22)

where the functions 𝑓, ℎ are integrable on (𝑎 , 𝑐) for all 𝑐 ∈ (𝑎 , 𝑏) due to

|𝑓| ≤
|︁|︁|︁|︁ 1
𝑝1

− 1
𝑝0

|︁|︁|︁|︁ + |︁|︁(𝑞0 − �0𝑟0) − (𝑞1 − �1𝑟1)
|︁|︁, |ℎ| ≤

|︁|︁|︁|︁ 1
𝑝0

+ 𝑞1 − �1𝑟1

|︁|︁|︁|︁. (2.23)

Consider the positive function 𝑔 given by

𝑔(𝑥) = exp
(︃
−

∫ 𝑥

𝑎
ℎ(𝑡) d𝑡

)︃
. (2.24)
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Then
(𝑔𝛿) ′ = −𝛿ℎ𝑔 + (𝑓 + ℎ𝛿)𝑔 = 𝑓𝑔 ≥ 0 (2.25)

by (2.20) and (2.17). Hence, 𝑔𝛿 is an increasing function. For 𝑥 < � one has

𝑔(𝑥) (︁+𝑢1
(𝑥) − +𝑢0

(𝑥) − 𝑘�
)︁
= (𝑔𝛿) (𝑥) ≤ (𝑔𝛿) (�) = 𝑔(�) (︁+𝑢1

(�) − +𝑢0
(�) − 𝑘�

)︁
(2.26)

and for 𝑥 > � the estimate

𝑔(𝑥) (︁+𝑢1
(𝑥) − +𝑢0

(𝑥) − 𝑘�
)︁
= (𝑔𝛿) (𝑥) ≥ (𝑔𝛿) (�) = 𝑔(�) (︁+𝑢1

(�) − +𝑢0
(�) − 𝑘�

)︁
(2.27)

holds. Now the positivity of 𝑔 together with (2.26) and (2.27) implies (i)–(iii).
Suppose that (2.18) holds and let +𝑢1

(�) − +𝑢0
(�) = 𝑘�, that is 𝛿(�) = 0. To prove the remaining

assertions (iv) and (v) we only need to show that there is no𝑥 ∈ (𝑎 , 𝑏)\{�} such that+𝑢1
(𝑥)−+𝑢0

(𝑥) =
𝑘�. Assume the existence of 𝑥 > � such that, +𝑢1

(𝑥) − +𝑢0
(𝑥) = +𝑢1

(�) − +𝑢0
(�) = 𝑘�, that is

𝛿(𝑥) = 0. Then the monotonicity of 𝛿𝑔 implies that (𝑔𝛿) (𝑡) = 𝛿(𝑡) = 0 for all 𝑡 ∈ [�,𝑥]. With
(2.25) we see 𝑓 ≡ 0 on [�,𝑥]. Since (2.18) holds, by (2.20) there is 𝑚 ∈ Z such that +𝑢0

(𝑡) = 𝑚�
and, thus, +𝑢1

= +𝑢0
+ 𝑘� = (𝑚 + 𝑘)� for all 𝑡 ∈ [�,𝑥]. With (2.7) (for 𝑢 = 𝑢1) we conclude

0 = +′
𝑢1

= 1/𝑝1 on [�,𝑥]; a contradiction. This shows (v). A similar reasoning implies (iv). □

Corollary 2.4 (Sturm’s comparison theorem). Suppose that (2.2) holds for 𝑗 = 0, 1. Let 𝑢0 and
𝑢1 be non-trivial real-valued solutions of (#0 − �0)𝑢0 = 0 and (#1 − �1)𝑢1 = 0, respectively, for
�0, �1 ∈ R. Suppose that 𝑥0 and 𝑥1 are consecutive zeros of 𝑢0 in (𝑎 , 𝑏).
(i) If (2.18) holds a. e. on (𝑎 , 𝑏), then there is at least one zero 𝑦 ∈ (𝑥0,𝑥1) of 𝑢1.

(ii) If 𝑝0 = 𝑝1, 𝑞0 = 𝑞1, 𝑟0 = 𝑟1 a. e. on (𝑎 , 𝑏) and �0 = �1, then there is exactly one zero
𝑦 ∈ (𝑥0,𝑥1) of 𝑢1 unless 𝑢0 and 𝑢1 are linearly dependent.

Proof. Let +𝑢0
(𝑥0) = 𝑘�, +𝑢0

(𝑥1) = (𝑘 + 1)� and +𝑢1
(𝑥0) ∈ [𝑗�, (𝑗 + 1)�) with 𝑘, 𝑗 ∈ Z. Then

in the case (i) one has
(𝑗 − 𝑘)� ≤ +𝑢1

(𝑥0) − +𝑢0
(𝑥0) (2.28)

and Lemma 2.3 implies

(𝑗 − 𝑘)� < +𝑢1
(𝑥1) − +𝑢0

(𝑥1) = +𝑢1
(𝑥1) − (𝑘 + 1)�. (2.29)

Therefore, +𝑢1
(𝑥1) > (𝑗 + 1)� which yields the existence of 𝑦 ∈ (𝑥0,𝑥1) with +𝑢1

(𝑦) = (𝑗 + 1)�,
that is 𝑢1(𝑦) = 0.

We consider the case (ii). If 𝑢0 and 𝑢1 are linearly independent, the Wronskian 𝑊 [𝑢0,𝑢1] has
no zero at 𝑥0. Thus, the inequality in (2.28) is strict, cf. (2.16). By Lemma 2.3 one obtains again
(2.29) and the existence of a zero 𝑦 ∈ (𝑥0,𝑥1) of 𝑢1 follows by the same argument as before. The
uniqueness of this zero can be seen by reversing the roles of the solutions and applying the same
argument. Here, a second zero �̃� ∈ (𝑥0,𝑥1) of 𝑢1 would lead to another zero 𝑥2 of 𝑢0 between 𝑦 and
�̃�, that is 𝑥2 ∈ (𝑥0,𝑥1), which contradicts the assumption that 𝑥0 and 𝑥1 are consecutive zeros of
𝑢0. □

The differential expression #0 − �, where � ∈ R, is called non-oscillatory if there is a non-trivial
real-valued solution 𝑢 of (#0 − �)𝑢 = 0 with at most finitely many zeros in (𝑎 , 𝑏), that is the limit
lim𝑥→𝑏𝑁𝑢 (𝑥) (which always exists inZ∪ {∞}, see Lemma 2.2) is finite. Otherwise, #0 − � is called
oscillatory. Note that this definition does, in fact, not depend on the particular solution, as by the
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Sturm’s comparison theorem, Corollary 2.4 (ii), the zeros of two linearly independent solutions of
(#0 − �)𝑢 = 0 interlace.

The total number of zeros of a solution of (#0 − �)𝑢 = 0 is closely related to the spectra of
the self-adjoint realisations of #0. Proposition 2.5 below is an implication of the results in [100,
Chapter 14]. In what follows the spectral projector of a self-adjoint operator 𝑇 in a Hilbert space
corresponding to an interval 𝐼 is denoted by 𝑃𝑇 (𝐼).
Proposition 2.5. Suppose that (2.2) holds for 𝑗 = 0 and let 𝑇0 be any self-adjoint realisation of #0.
For −∞ < � < � < ∞ we consider non-trivial real-valued solutions 𝑢 and 𝑣 of (#0 − �)𝑢 = 0 and
(#0 − �)𝑣 = 0, respectively. Then

(i) dimR (︁
𝑃𝑇0

((−∞, �)))︁ is finite if and only if lim𝑥→𝑏𝑁𝑢 (𝑥) is finite or, equivalently, #0 − � is
non-oscillatory;

(ii) dimR (︁
𝑃𝑇0

((�,�)))︁ is finite if and only if lim inf𝑥→𝑏

(︁
𝑁𝑣 (𝑥) −𝑁𝑢 (𝑥)

)︁
is finite.

Moreover, 𝑇0 is semi-bounded from below if and only if there is � ∈ R such that #0 − � is non-
oscillatory. In this case #0 − � is non-oscillatory for all � < inf σess(𝑇0), and #0 − � is oscillatory
at � = inf σess(𝑇0) if and only if the set σ (𝑇0) ∩ (−∞, �) consists of an infinite sequence of isolated
eigenvalues of 𝑇0 which converge to �.

Proof. Provided that #0 is in the limit-circle case at 𝑏, all self-adjoint realisations of #0 have empty
essential spectrum, see Section 1.2. Further, either every self-adjoint realisation of #0 or neither of
them is semi-bounded from below, see Section 1.2. Hence, if the limit-circle case prevails at 𝑏 it
suffices to show the assertions (i) and (ii) for one particular self-adjoint realisation. We assume that
𝑇0 is a self-adjoint realisation of #0 with separated boundary, that is

cos(𝛼)𝑓(𝑎) − sin(𝛼) (𝑝𝑓′) (𝑎) = 0 for all 𝑓 ∈ D(𝑇0), (2.30)

for some 𝛼 ∈ [0,�), cf. Corollary 1.2 (ii). If #0 is in the limit-point case at 𝑏 then (2.30) holds as
well for some 𝛼 ∈ [0,�), see Corollary 1.2 (i).

By Sturm’s comparison theorem, Corollary 2.4 (ii), the zeros of two linearly independent solutions
𝑢 and �̃� of (#0 −�)𝑢 = 0 interlace and one has |𝑁𝑢 (𝑥) −𝑁�̃� (𝑥) | ≤ 1 for all 𝑥 ∈ (𝑎 , 𝑏) by Lemma 2.2;
similar for the solutions of (#0 − �)𝑣 = 0. Therefore, the convergence of the limits in (i) and (ii)
does not depend on the particular solutions. We can choose the solutions 𝑢, 𝑣 of (#0 − �)𝑢 = 0 and
(#0 − �)𝑣 = 0, respectively, such that +𝑢 (𝑎) = +𝑣 (𝑎) = 𝛼, where 𝛼 is the same as in (2.30). Now (i)
and (ii) follow from Theorem 14.1 and Theorem 14.2 in [100].

Let now 𝑇0 be an arbitrary self-adjoint realisation of #0. Recall that every eigenvalue � of 𝑇0
has finite multiplicity, since dimN(𝑇0 − �) ≤ 2. The remaining assertions follow from the fact
that for � ∈ R the set (−∞, �) ∩ σ (𝑇0) consists of finitely many isolated eigenvalues if and only if
dimR (︁

𝑃𝑇0
((−∞, �)))︁ < ∞, which is by (i) equivalent to property that #0 − � is non-oscillatory. □

In order to compare the spectra of operators corresponding to two different Sturm–Liouville
expressions #0 and #1 we employ techniques developed within the framework of relative oscillation in
[73, 74, 75]. Since the results in [73, 74, 75] are formulated only for the case where the corresponding
weight functions satisfy 𝑟0 = 𝑟1, we adapt these techniques to the general case, where 𝑟0 ≠ 𝑟1 is
allowed. In contrast to the classical oscillation theory, which is connected to the zeros of solutions,
the concept of relative oscillation focuses on the zeros of the Wronskian determinant in (2.13). This
approach was proposed in [48] to obtain exact eigenvalue counts for Sturm–Liouville operator in
cases where classical oscillation theory fails; see the discussion in [48].
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For two non-trivial, real-valued solutions 𝑢0 and 𝑢1 of (#0 − �0)𝑢0 = 0 and (#1 − �1)𝑢1 = 0,
respectively, with �0, �1 ∈ R we define for 𝑥 ∈ (𝑎 , 𝑏)

𝑁 [𝑢0,𝑢1] (𝑥) ≔
⌈︄
+𝑢1

(𝑥) − +𝑢0
(𝑥)

�

⌉︄
−

⌊︄
+𝑢1

(𝑎) − +𝑢0
(𝑎)

�

⌋︄
− 1. (2.31)

Under suitable assumptions 𝑁 [𝑢0,𝑢1] counts the zeros of the Wronskian 𝑊 [𝑢0,𝑢1].
Lemma 2.6. Suppose that (2.2) is satisfied for 𝑗 = 0, 1. Consider �0, �1 ∈ R and let 𝑢0, 𝑢1 be
non-trivial real-valued solutions of (#0 − �0)𝑢0 = 0 and (#1 − �1)𝑢1 = 0, respectively.

(i) Assume that the conditions in (2.17) hold a. e. on (𝑎 , 𝑏). Then the function 𝑁 [𝑢0,𝑢1] :
(𝑎 , 𝑏) → Z increasing with 𝑁 [𝑢0,𝑢1] (𝑥) ≥ −1 for all 𝑥 ∈ (𝑎 , 𝑏).

(ii) Assume that the conditions in (2.18) hold a. e. on (𝑎 , 𝑏). Then for every 𝑥 ∈ (𝑎 , 𝑏) the
Wronskian 𝑊 [𝑢0,𝑢1] has at most finitely many zeros in (𝑎 ,𝑥) and 𝑁 [𝑢0,𝑢1] (𝑥) equals the
number of zeros of 𝑊 [𝑢0,𝑢1] in (𝑎 ,𝑥).

Proof. We show part (i). Let 𝑎 ≤ � < 𝑥 < 𝑏 and assume that +𝑢1
(�) − +𝑢0

(�) ∈ (𝑘�, (𝑘 + 1)�]
for some 𝑘 ∈ Z. Then by Lemma 2.3 (ii) we have +𝑢1

(𝑥) − +𝑢0
(𝑥) > 𝑘� and, therefore,⌊︄

+𝑢1
(�) − +𝑢0

(�)
�

⌋︄
≤

⌈︄
+𝑢1

(�) − +𝑢0
(�)

�

⌉︄
= (𝑘 + 1)� ≤

⌈︄
+𝑢1

(𝑥) − +𝑢0
(𝑥)

�

⌉︄
. (2.32)

This shows that 𝑁 [𝑢0,𝑢1] (�) ≤ 𝑁 [𝑢0,𝑢1] (𝑥) and with � = 𝑎 we see 𝑁 [𝑢0,𝑢1] (𝑎) ≥ −1.
Under the condition (2.18) the difference of Prüfer angles +𝑢1

−+𝑢0
has a similar growth behaviour

compared to a single Prüfer angle, cf. Lemma 2.3 (iv), (v) and Lemma 2.1. Hence, assertion (ii)
can be proved in the same way as Lemma 2.2 by replacing in the proof the solution 𝑢, the single
Prüfer angle +𝑢 and 𝑁𝑢 with the Wronskian 𝑊 [𝑢0,𝑢1], the difference +𝑢1

− +𝑢0
and 𝑁 [𝑢0,𝑢1],

respectively. □

If the condition (2.18) is violated, then 𝑁 [𝑢0,𝑢1] does in general not reflect the number of zeros
of the Wronskian. In Lemma 2.7 below there is an example, where 𝑁 [𝑢0,𝑢1] (𝑥) and the numbers
of zeros of 𝑊 [𝑢0,𝑢1] in (𝑎 ,𝑥) do not coincide, even though condition (2.17) (but not (2.18)) is
satisfied.

Lemma 2.7. Suppose that (2.2) holds for 𝑗 = 0. Let 𝑢 and 𝑣 be non-trivial real-valued solutions of
(#0 − �)𝑢 = 0 for � ∈ R. If 𝑢 and 𝑣 are linearly dependent solutions then 𝑁 [𝑢, 𝑣] (𝑥) = −1 for all
𝑥 ∈ (𝑎 , 𝑏). Otherwise 𝑁 [𝑢, 𝑣] (𝑥) = 0 for all 𝑥 ∈ (𝑎 , 𝑏).
Proof. Since 𝑢 and 𝑣 are solutions of the same differential equation the Wronskian 𝑊 [𝑢, 𝑣]
is constant on [𝑎 , 𝑏), cf. (2.14). If 𝑢 and 𝑣 are linearly dependent, then the Wronskian vanishes
everywhere and due to the representation by means of Prüfer variables in (2.15) we see+𝑣 (𝑥)−+𝑢 (𝑥) =
𝑘� for all 𝑥 ∈ [𝑎 , 𝑏) and a suitable 𝑘 ∈ Z. This implies 𝑁 [𝑢, 𝑣] (𝑥) = −1 for all 𝑥 ∈ (𝑎 , 𝑏).
Otherwise, if both functions are linearly independent then the Wronskian has no zeros in [𝑎 , 𝑏).
Hence, the difference of Prüfer angles +𝑣 − +𝑢 does not attain any integer multiple of �. By
continuity we have +𝑣 (𝑥) − +𝑢 (𝑥) ∈ (𝑘�, (𝑘 + 1)�) for all 𝑥 ∈ [𝑎 , 𝑏) and some 𝑘 ∈ Z, which shows
𝑁 [𝑢, 𝑣] (𝑥) = 0 for all 𝑥 ∈ (𝑎 , 𝑏). □

The difference between the number of zeros of the involved solutions provides an estimate on
𝑁 [𝑢0,𝑢1].
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Lemma 2.8. Suppose that (2.2) holds for 𝑗 = 0, 1, 2 and let 𝑢𝑗 be a non-trivial real-valued solution
of (#𝑗 − �𝑗)𝑢𝑗 = 0, where �𝑗 ∈ R. Then

𝑁𝑢1
(𝑥) −𝑁𝑢0

(𝑥) − 3 ≤ 𝑁 [𝑢0,𝑢1] (𝑥) ≤ 𝑁𝑢1
(𝑥) −𝑁𝑢0

(𝑥) + 1 (2.33)

for all 𝑥 ∈ (𝑎 , 𝑏). Further,

−𝑁 [𝑢1,𝑢0] (𝑥) − 2 ≤ 𝑁 [𝑢0,𝑢1] (𝑥) ≤ −𝑁 [𝑢1,𝑢0] (𝑥) (2.34)

and

𝑁 [𝑢0,𝑢1] (𝑥) +𝑁 [𝑢1,𝑢2] (𝑥) − 1 ≤ 𝑁 [𝑢0,𝑢2] (𝑥) ≤ 𝑁 [𝑢0,𝑢1] (𝑥) +𝑁 [𝑢1,𝑢2] (𝑥) + 1 (2.35)

for all 𝑥 ∈ (𝑎 , 𝑏).
Proof. Observe that for all 𝑡, 𝑠 ∈ R we have −⌊𝑡⌋ = ⌈−𝑡⌉ and

⌈𝑡⌉ + ⌈𝑠⌉ − 1 ≤ ⌈𝑡 + 𝑠⌉ ≤ ⌈𝑡⌉ + ⌈𝑠⌉, −⌈𝑡⌉ ≤ ⌈−𝑡⌉ ≤ −⌈𝑡⌉ + 1. (2.36)

Let 𝑡𝑗 = +𝑢𝑗 (𝑥)/� and 𝑠𝑗 = +𝑢𝑗 (𝑎)/�. Then one has

𝑁𝑢𝑗
(𝑥) = ⌈𝑡𝑗⌉ − ⌊𝑠𝑗⌋ − 1

= ⌈𝑡𝑗⌉ + ⌈−𝑠𝑗⌉ − 1,

𝑁 [𝑢𝑗 ,𝑢𝑘] = ⌈𝑡𝑘 − 𝑡𝑗⌉ − ⌊𝑠𝑘 − 𝑠𝑗⌋ − 1

= ⌈𝑡𝑘 − 𝑡𝑗⌉ + ⌈𝑠𝑗 − 𝑠𝑘⌉ − 1.
(2.37)

We show (2.33). According to (2.36) we see

𝑁 [𝑢0,𝑢1] (𝑥) = ⌈𝑡1 − 𝑡0⌉ + ⌈𝑠0 − 𝑠1⌉ − 1

≤ ⌈𝑡1⌉ + ⌈−𝑡0⌉ + ⌈𝑠0⌉ + ⌈−𝑠1⌉ − 1 ≤ ⌈𝑡1⌉ − ⌈𝑡0⌉ − ⌈−𝑠0⌉ + ⌈−𝑠1⌉ + 1

= 𝑁𝑢1
(𝑥) −𝑁𝑢0

(𝑥) + 1

and
𝑁 [𝑢0,𝑢1] (𝑥) ≥ ⌈𝑡1⌉ + ⌈−𝑡0⌉ + ⌈𝑠0⌉ + ⌈−𝑠1⌉ − 3 ≥ ⌈𝑡1⌉ − ⌈𝑡0⌉ − ⌈−𝑠0⌉ + ⌈−𝑠1⌉ − 3

= 𝑁𝑢1
(𝑥) −𝑁𝑢0

(𝑥) − 3.

Moreover, by (2.36) and (2.37)

𝑁 [𝑢0,𝑢1] ≤ −⌈𝑡0 − 𝑡1⌉ − ⌈𝑠1 − 𝑠0⌉ + 1 = −𝑁 [𝑢1,𝑢0] (𝑥)
and

𝑁 [𝑢0,𝑢1] ≥ −⌈𝑡0 − 𝑡1⌉ − ⌈𝑠1 − 𝑠0⌉ − 1 = −𝑁 [𝑢1,𝑢0] (𝑥) − 2,
which shows (2.34). The estimates in (2.35) can be seen in a similar way. Again by (2.36) and (2.37)
we find that

𝑁 [𝑢0,𝑢2] (𝑥) = ⌈𝑡2 − 𝑡0⌉ + ⌈𝑠0 − 𝑠2⌉ − 1 = ⌈𝑡2 − 𝑡1 + 𝑡1 − 𝑡0⌉ + ⌈𝑠0 − 𝑠1 + 𝑠1 − 𝑠2⌉ − 1

≤ ⌈𝑡2 − 𝑡1⌉ + ⌈𝑡1 − 𝑡0⌉ + ⌈𝑠0 − 𝑠1⌉ + ⌈𝑠1 − 𝑠2⌉ − 1

= 𝑁 [𝑢0,𝑢1] (𝑥) +𝑁 [𝑢1,𝑢2] (𝑥) + 1

and
𝑁 [𝑢0,𝑢2] (𝑥) ≥ ⌈𝑡2 − 𝑡1⌉ + ⌈𝑡1 − 𝑡0⌉ + ⌈𝑠0 − 𝑠1⌉ + ⌈𝑠1 − 𝑠2⌉ − 3

= 𝑁 [𝑢0,𝑢1] (𝑥) +𝑁 [𝑢1,𝑢2] (𝑥) − 1. □
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Lemma 2.9. Suppose that (2.2) holds for 𝑗 = 0, 1, 2 and let 𝑢𝑗 be a non-trivial real-valued solution
of (#𝑗 − �𝑗)𝑢𝑗 = 0, where �𝑗 ∈ R. If

𝑞0 − �0𝑟0 ≥ 𝑞1 − �1𝑟1 ≥ 𝑞2 − �2𝑟2 and 𝑝0 ≥ 𝑝1 ≥ 𝑝2 (2.38)

a. e. on (𝑎 , 𝑏), then

− 1 ≤ 𝑁 [𝑢0,𝑢1] (𝑥) ≤ 𝑁 [𝑢0,𝑢2] (𝑥) + 2, −1 ≤ 𝑁 [𝑢1,𝑢2] (𝑥) ≤ 𝑁 [𝑢0,𝑢2] (𝑥) + 2 (2.39)

for all 𝑥 ∈ (𝑎 , 𝑏).
Proof. By (2.35) in Lemma 2.8 we see

𝑁 [𝑢0,𝑢1] (𝑥) +𝑁 [𝑢1,𝑢2] (𝑥) − 1 ≤ 𝑁 [𝑢0,𝑢2] (𝑥).

Since 𝑁 [𝑢0,𝑢1] (𝑥) ≥ −1 and 𝑁 [𝑢1,𝑢2] (𝑥) ≥ −1 by Lemma 2.6, we obtain (2.39). □

We introduce the concept of relative oscillation. The following definition is due to Krüger and
Teschl [73, 74, 75].

Definition 2.10. Suppose that (2.2) is satisfied for 𝑗 = 0, 1 and let 𝑢𝑗 be a non-trivial real-valued
solution of (#𝑗 − �𝑗)𝑢𝑗 = 0, where �𝑗 ∈ R. We say #0 − �0 is relatively non-oscillatory with respect
to #1 − �1 if both limits

𝑁 [𝑢0,𝑢1] ≔ lim inf
𝑥→𝑏

𝑁 [𝑢0,𝑢1] (𝑥), 𝑁 [𝑢0,𝑢1] ≔ lim sup
𝑥→𝑏

𝑁 [𝑢0,𝑢1] (𝑥), (2.40)

are finite. In this case we write
(#0 − �0) ∼ (#1 − �1). (2.41)

Otherwise, #0 − �0 is called relatively oscillatory with respect to #1 − �1. ⋄
Note that this definition is independent of the choice of the solutions. In fact, for another pair of
non-trivial real-valued solutions 𝑣0, 𝑣1 of of (#0 − �0)𝑢0 = 0 and (#1 − �1)𝑢1 = 0, respectively, the
inequality (2.35) in Lemma 2.8 applied twice together with Lemma 2.7 implies

𝑁 [𝑣0, 𝑣1] (𝑥) ≤ 𝑁 [𝑣0,𝑢0] (𝑥) +𝑁 [𝑢0, 𝑣1] (𝑥) + 1

≤ 𝑁 [𝑣0,𝑢0] (𝑥) +𝑁 [𝑢0,𝑢1] (𝑥) +𝑁 [𝑢1, 𝑣1] (𝑥) + 2 ≤ 𝑁 [𝑢0,𝑢1] (𝑥) + 2

and

𝑁 [𝑣0, 𝑣1] (𝑥) ≥ 𝑁 [𝑣0,𝑢0] (𝑥) +𝑁 [𝑢0, 𝑣1] (𝑥) − 1

≥ 𝑁 [𝑣0,𝑢0] (𝑥) +𝑁 [𝑢0,𝑢1] (𝑥) +𝑁 [𝑢1, 𝑣1] (𝑥) − 2 ≥ 𝑁 [𝑢0,𝑢1] (𝑥) − 4

for all 𝑥 ∈ (𝑎 , 𝑏). Hence, the limits 𝑁 [𝑢0,𝑢1] and 𝑁 [𝑢0,𝑢1] are finite if and only if 𝑁 [𝑣0, 𝑣1] and
𝑁 [𝑣0, 𝑣1] are finite. Further, the relation ∼ established in Definition 2.10 is reflexive (cf. Lemma 2.7),
symmetric as well as transitive (cf. (2.35), (2.34) in Lemma 2.8), and, therefore, it is an equivalence
relation. Moreover, any two non-oscillatory differential expressions (which satisfy (2.2)) are in the
same equivalence class, see Lemma 2.11 below.

Lemma 2.11. Suppose that (2.2) is satisfied for 𝑗 = 0, 1 and let �0, �1 ∈ R. Further, assume that
#0 − �0 is non-oscillatory. Then (#0 − �0) ∼ (#1 − �1) if and only if #1 − �1 is non-oscillatory.
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Proof. Let 𝑢0 and 𝑢1 be non-trivial real-valued solutions of (#0 − �0)𝑢0 = 0 and (#1 − �1)𝑢1 = 0,
respectively. The functions 𝑁𝑢0

and 𝑁𝑢1
are non-negative and increasing by Lemma 2.2. Since

#0 − �0 is non-oscillatory the solution 𝑢0 has at most finitely many zeros in (𝑎 , 𝑏) and, thus, there
exists 𝑛 ∈ N such that 0 ≤ 𝑁𝑢0

(𝑥) ≤ 𝑛 for all 𝑥 ∈ (𝑎 , 𝑏). From (2.33) in Lemma 2.8 we obtain

𝑁𝑢1
(𝑥) − (𝑛 + 3) ≤ 𝑁𝑢1

(𝑥) −𝑁𝑢0
(𝑥) − 3 ≤ 𝑁 [𝑢0,𝑢1] (𝑥)

≤ 𝑁𝑢1
(𝑥) −𝑁𝑢0

(𝑥) + 1 ≤ 𝑁𝑢1
(𝑥) + 1

for all 𝑥 ∈ (𝑎 , 𝑏). This shows that lim𝑥→𝑏𝑁𝑢1
(𝑥) is finite if and only if (#0 − �0) ∼ (#1 − �1). □

Observe that in the case where (2.17) holds, the monotonicity of the function 𝑁 [𝑢0,𝑢1] (see
Lemma 2.6) yields

− 1 ≤ 𝑁 [𝑢0,𝑢1] = lim
𝑥→𝑏

𝑁 [𝑢0,𝑢1] (𝑥) = 𝑁 [𝑢0,𝑢1] ≤ ∞. (2.42)

Since the quantity 𝑁 [𝑢0,𝑢1] (𝑥) counts the zeros of the Wronskian 𝑊 [𝑢0,𝑢1] if (2.18) holds (see
Lemma 2.6), we obtain the the following.

Lemma 2.12. Suppose that (2.2) is satisfied for 𝑗 = 0, 1 and let 𝑢𝑗 be a non-trivial real-valued
solution of (#𝑗 − �𝑗)𝑢𝑗 = 0, where �𝑗 ∈ R. Provided that the conditions in (2.18) hold a. e. on (𝑎 , 𝑏),
the number of zeros of the Wronskian 𝑊 [𝑢0,𝑢1] in (𝑎 , 𝑏) is finite if and only if (#0 − �0) ∼ (#1 − �1).
The next lemma is a consequence of Lemma 2.9.

Lemma 2.13. Suppose that (2.2) is satisfied for 𝑗 = 0, 1, 2 and let �0, �1, �2 ∈ R. Further, assume
that (#0 − �0) ∼ (#2 − �2) and that condition (2.38) holds on (𝑐, 𝑏) for some 𝑐 ∈ [𝑎 , 𝑏). Then
(#0 − �0) ∼ (#1 − �1) and (#1 − �1) ∼ (#2 − �2).
Proof. Let 𝑢𝑗 , 𝑗 = 0, 1, 2, be a non-trivial real-valued solution of (#𝑗 − �𝑗)𝑢𝑗 = 0, respectively. It
suffices to show that the limits 𝑁 [𝑢𝑗 ,𝑢𝑗+1] and 𝑁 [𝑢𝑗 ,𝑢𝑗+1], 𝑗 = 0, 1 are finite. Observe that due to
the regularity of the endpoint 𝑎 the finiteness of the limits 𝑁 [𝑢𝑗 ,𝑢𝑘] and 𝑁 [𝑢𝑗 ,𝑢𝑘], 𝑗 ≠ 𝑘, is not
affected by the behaviour of the solutions 𝑢𝑗 , 𝑢𝑘 on the interval (𝑎 , 𝑐]. Therefore, it is no restriction
to assume that (2.38) holds in the whole interval (𝑎 , 𝑏). Passing to the limit 𝑥 → 𝑏 in (2.39) of
Lemma 2.9 yields

−1 ≤ 𝑁 [𝑢𝑗 ,𝑢𝑗+1] ≤ 𝑁 [𝑢𝑗 ,𝑢𝑗+1] ≤ 𝑁 [𝑢0,𝑢2] + 2

for 𝑗 = 0, 1, where 𝑁 [𝑢0,𝑢2] is finite by assumption. □

Finally, we establish the relationship between the concept of relative oscillation and the spectra of
Sturm–Liouville operators. The following corollary is an immediate consequence of Lemma 2.11
and Proposition 2.5.

Corollary 2.14. Suppose that (2.2) holds for 𝑗 = 0, 1 and let 𝑇𝑗 be a self-adjoint realisation of
#𝑗 . If the operator 𝑇0 is semi-bounded from below and (#0 − �) ∼ (#1 − �) for some � < inf σess(𝑇0),
then 𝑇1 is semi-bounded from below.

The next theorem can be found in [75, Theorem 3.8] for the case of equal weight functions 𝑟0 = 𝑟1.

Theorem 2.15. Suppose (2.2) is satisfied for 𝑗 = 0, 1 and let 𝑇𝑗 be a self-adjoint realisation of #𝑗 .
Further, let �0, �1 ∈ R with �0 < �1.

(i) Then dimR(𝑃𝑇0
((�0, �1))) < ∞ if and only if (#0 − �0) ∼ (#0 − �1).
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(ii) Suppose that dimR 𝑃𝑇0
((�0, �1)) < ∞ and (#0 − �) ∼ (#1 − �) for some � ∈ [�0, �1]. Then

dimR(𝑃𝑇1
((�0, �1))) < ∞ if and only if (#0 − �) ∼ (#1 − �) for all � ∈ [�0, �1].

Proof. We show (i). Let 𝑢0 and 𝑢1 be non-trivial real-valued solutions of (#0 − �0)𝑢0 = 0 and
(#0 − �1)𝑢1 = 0, respectively. Then with (2.33) in Lemma 2.8 together with (2.42) one sees

lim inf
𝑥→∞

(︁
𝑁𝑢1

(𝑥) −𝑁𝑢0
(𝑥))︁ − 3 ≤ 𝑁 [𝑢0,𝑢1] = 𝑁 [𝑢0,𝑢1] ≤ lim inf

𝑥→∞
(︁
𝑁𝑢1

(𝑥) −𝑁𝑢0
(𝑥))︁ + 1.

Thus, Proposition 2.5 (ii) implies (i).
We show (ii). For every � ∈ (�0, �1] we have dimR 𝑃𝑇0

((�0,�)) < ∞ and, thus, by part (i) we
see (#0 − �0) ∼ (#0 − �) for all � ∈ [�0, �1]. If dimR 𝑃𝑇1

((�0, �1)) < ∞, then following the same
argument we see (#1 − �0) ∼ (#1 − �) for all � ∈ [�0, �1]. We have

(#0 − �) ∼ (#0 − �0) ∼ (#0 − �) ∼ (#1 − �) ∼ (#1 − �0) ∼ (#1 − �).

On the other hand if (#0 − �) ∼ (#1 − �) for all � ∈ [�0, �1] we obtain by transitivity and part (i)

(#1 − �0) ∼ (#0 − �0) ∼ (#0 − �1) ∼ (#1 − �1).

By applying (i) once again we see dimR 𝑃𝑇1
((�0, �1)) < ∞. □

Corollary 2.16. Suppose that (2.2) holds for 𝑗 = 0, 1 and let 𝑇𝑗 be a self-adjoint realisation of #𝑗 .
If (#0 − �) ∼ (#1 − �) for all � ∈ R \ σess(𝑇0), then σess(𝑇1) ⊂ σess(𝑇0).
Proof. Let � ∈ R \ σess(𝑇0). Since R \ σess(𝑇0) is open there exists � > 0 such that [� − �, � + �] ⊂
R \ σess(𝑇0), in particular dimR 𝑃𝑇0

((� − �, � + �)) < ∞. By assumption (#0 − �) ∼ (#1 − �) for all
� ∈ [� − �, � + �]. Hence, from Theorem 2.15 follows dimR 𝑃𝑇1

((� − �, � + �)) < ∞ which shows
� ∈ R \ σess(𝑇1). □

In what follows we state criteria for relative non-oscillation in terms of the coefficients of Sturm–
Liouville expressions.

Lemma 2.17. Suppose that (2.2) holds for 𝑗 = 0, 1. Further, assume that 𝑝0 = 𝑝1 a. e. on (𝑎 , 𝑏).
Let 𝑇0 be any self-adjoint realisation of #0 and consider � ∈ R \ σess(𝑇0). If

� ≔ ess sup
𝑥∈(𝑐,𝑏)

|︁|︁|︁|︁𝑞1(𝑥) − 𝑞0(𝑥)
𝑟0(𝑥)

− �
𝑟1(𝑥) − 𝑟0(𝑥)

𝑟0(𝑥)

|︁|︁|︁|︁ < dist(�, σess(𝑇0)) (2.43)

for some 𝑐 ∈ [𝑎 , 𝑏), then (#0 − �) ∼ (#1 − �).
Proof. Condition (2.43) implies [� − �, � + �] ⊂ R \ σess(𝑇0) and

𝑞0 − (� + �)𝑟0 ≤ 𝑞1 − �𝑟1 ≤ 𝑞0 − (� − �)𝑟0 (2.44)

a. e. on (𝑐, 𝑏). Theorem 2.15 (i) implies (#0 − �) ∼ (#0 − (� + �)) and (#0 − (�− �)) ∼ (#0 − (� + �)).
Since (2.44) holds near 𝑏 we obtain from Lemma 2.13 that (#1 − �) ∼ (#0 − (� + �)). Hence, by
transitivity (#0 − �) ∼ (#1 − �). □

The next theorem is the main result of this section and extends Lemma 4.7 in [74] to the case 𝑟0 ≠ 𝑟1.

Theorem 2.18. Suppose that (2.2) holds for 𝑗 = 0, 1, and let 𝑇𝑗 be a self-adjoint realisation of #𝑗 .
Further, assume the following conditions at the endpoint 𝑏:
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(α) lim
𝑥→𝑏

𝑟1(𝑥)
𝑟0(𝑥)

= 1, lim
𝑥→𝑏

𝑝1(𝑥)
𝑝0(𝑥)

= 1, lim
𝑥→𝑏

𝑞1(𝑥) − 𝑞0(𝑥)
𝑟0(𝑥)

= 0;

(β) 𝑞0/𝑟0 is bounded near 𝑏, or 𝑝0 = 𝑝1 a. e. near 𝑏.

Then the following assertions hold:

(i) σess(𝑇0) = σess(𝑇1);
(ii) 𝑇0 is semi-bounded from below if and only if 𝑇1 is semi-bounded from below;

(iii) (#0 − �) ∼ (#1 − �) for every � ∈ R \ σess(𝑇0).
Remark 2.19. Observe that the conditions (α) and (β) in Theorem 2.18 are equivalent to the
conditions

(α’) lim
𝑥→𝑏

𝑟0(𝑥)
𝑟1(𝑥)

= 1, lim
𝑥→𝑏

𝑝0(𝑥)
𝑝1(𝑥)

= 1, lim
𝑥→𝑏

𝑞0(𝑥) − 𝑞1(𝑥)
𝑟1(𝑥)

= 0;

(β’) 𝑞1/𝑟1 is bounded near 𝑏, or 𝑝1 = 𝑝0 a. e. near 𝑏.

In fact, this follows immediately from

𝑞0 − 𝑞1
𝑟1

= −𝑞1 − 𝑞0
𝑟0

·
(︃
𝑟0
𝑟1

− 1 + 1
)︃
,

𝑞1
𝑟1

=

(︃
𝑞1 − 𝑞0
𝑟0

+ 𝑞0
𝑟0

)︃
·
(︃
𝑟0
𝑟1

− 1 + 1
)︃
. ⋄

Remark 2.20. If 𝑞0/𝑟0 is bounded near 𝑏 then there exists 𝑐 ∈ (𝑎 , 𝑏) such that

� ≔ ess inf
𝑥∈(𝑐,𝑏)

𝑞0(𝑥)
𝑟0(𝑥)

> −∞

and, thus, 𝑞0 − �𝑟0 ≥ 0 a. e. on (𝑐, 𝑏). This already implies that #0 − � is non-oscillatory, see e. g.
Lemma 7.4.1 in [102], and 𝑇0 is semi-bounded from below by Proposition 2.5. ⋄
Proof of Theorem 2.18. We show (iii). Let � ∈ R \ σess(𝑇0) and define

�(𝑦) ≔ ess sup
𝑥∈[𝑦,𝑏)

|︁|︁|︁|︁𝑝1(𝑥)
𝑝0(𝑥)

− 1
|︁|︁|︁|︁, 𝑦 ∈ (𝑎 , 𝑏).

Choose 𝑦 ∈ (𝑎 , 𝑏) such that �(𝑦) < 1. This is possible due to (α). Then we have

0 <
(︁
1 − �(𝑦))︁𝑝0 ≤ 𝑝1 ≤ (︁

1 + �(𝑦))︁𝑝0 (2.45)

a. e. on (𝑦, 𝑏). We consider the differential expressions

#+ =
1
𝑟1

(︃
− d

d𝑥
(︁
1 + �(𝑦))︁𝑝0

d
d𝑥

+ 𝑞1

)︃
, #− =

1
𝑟1

(︃
− d

d𝑥
(︁
1 − �(𝑦))︁𝑝0

d
d𝑥

+ 𝑞1

)︃
and

#̃+ =
1
𝑟1

(︃
− d

d𝑥
𝑝0

d
d𝑥

+ 𝑞1 − �𝑟1
1 + �(𝑦) + �𝑟1

)︃
, #̃− =

1
𝑟1

(︃
− d

d𝑥
𝑝0

d
d𝑥

+ 𝑞1 − �𝑟1
1 − �(𝑦) + �𝑟1

)︃
.

The two differential equations (#+ − �)𝑢 = 0 and (#̃+ − �)𝑢 = 0 share the same solutions, as well as
the two equations (#− − �)𝑢 = 0 and (#̃− − �)𝑢 = 0. This, of course, implies

(#+ − �) ∼ (#̃+ − �) and (#− − �) ∼ (#̃− − �), (2.46)
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cf. proof of Lemma 2.7. A straightforward calculation shows

1
𝑟0

(︃
𝑞1 − �𝑟1
1 ± �(𝑦) + �𝑟1 − 𝑞0 − �(𝑟1 − 𝑟0)

)︃
=

𝑞1 − 𝑞0
𝑟0(1 ± �(𝑦)) − �

𝑟1 − 𝑟0
𝑟0(1 ± �(𝑦))

∓ �(𝑦)
1 ± �(𝑦)

(︃
𝑞0
𝑟0

− �

)︃
.

Observe that by conditions (α), (β) and the definition of �(𝑦) the 𝐿∞-norm of the term on the right
hand side with respect to the interval (𝑦, 𝑏) can be made arbitrarily small by increasing 𝑦. Hence we
obtain (by possible increasing 𝑦)|︁|︁|︁|︁ 1

𝑟0

(︃
𝑞1 − �𝑟1
1 ± �(𝑦) + �𝑟1 − 𝑞0 − �(𝑟1 − 𝑟0)

)︃|︁|︁|︁|︁ < dist(�, σess(𝑇0))

a. e. on (𝑦, 𝑏). Lemma 2.17 yields (#0 − �) ∼ (#̃± − �) and, thus, by transitivity (#̃+ − �) ∼ (#̃− − �).
Moreover, by transitivity we obtain (#0 −�) ∼ (#± −�) and (#+ −�) ∼ (#− −�). Hence, Lemma 2.13
and (2.45) yield (#+ − �) ∼ (#1 − �) and, finally, by transitivity

(#0 − �) ∼ (#1 − �). (2.47)

With Remark 2.19 we see that (2.47) holds also for all � ∈ R \ σess(𝑇1). The remaining assertions (i)
and (ii) follow from Corollary 2.16 and Corollary 2.14. □

Lemma 2.21. Suppose that (2.2) holds for 𝑗 = 0, 1. If the conditions (α) and (β) in Theorem 2.18
are satisfied, then #0 is in the limit-point case at 𝑏 if and only if #1 is in the limit-point case at 𝑏.

Proof. By Corollary 7.4.1 in [102] a sufficient and necessary condition for #𝑗 , where 𝑗 = 0, 1, to
be in the limit-point case at 𝑏 is that the differential expression

#̃𝑗 =
1
𝑟𝑗

(︃
− d

d𝑥
𝑝𝑗

d
d𝑥

+ 𝑞𝑗 + �̃�𝑗
)︃

(2.48)

is in the limit-point case at 𝑏, provided that �̃�𝑗 is a real-valued locally integrable function on (𝑎 , 𝑏)
such that �̃�𝑗/𝑟𝑗 is bounded near 𝑏.

Assume that #0 is in the limit-point case at 𝑏. We show that the same holds true for #1. Fix
� ∈ (0, 1). By condition (α) in Theorem 2.18 there is 𝑐 ∈ (𝑎 , 𝑏) such that

(1 − �)𝑝0 < 𝑝1 < (1 + �)𝑝0, (1 − �)𝑟0 < 𝑟1 < (1 + �)𝑟0 (2.49)

a. e. on (𝑐, 𝑏). As a consequence for every complex-valued measurable function 𝑓 on (𝑐, 𝑏) one has

(1 − �)
∫ 𝑏

𝑐
|𝑓(𝑡) |2𝑟0(𝑡) d𝑡 ≤

∫ 𝑏

𝑐
|𝑓(𝑡) |2𝑟1(𝑡) d𝑡 ≤ (1 + �)

∫ 𝑏

𝑐
|𝑓(𝑡) |2𝑟0(𝑡) d𝑡. (2.50)

Therefore, 𝑓 lies right in 𝐿2((𝑎 , 𝑏), 𝑟0) if and only if 𝑓 lies right in 𝐿2((𝑎 , 𝑏), 𝑟1).
Assume that 𝑞0/𝑟0 is bounded near 𝑏. Then by Remark 2.19 the same is true for 𝑞1/𝑟1. For 𝑗 = 0,

1 set �̃�𝑗 = −𝑞𝑗 , where (2.48) reads as

#̃𝑗 =
1
𝑟𝑗

(︃
− d

d𝑥
𝑝𝑗

d
d𝑥

)︃
. (2.51)



34 Chapter 2 Perturbations of definite Sturm–Liouville operators

By the above observation #̃0 is in the limit-point case at 𝑏 and it suffices to show that #̃1 is in the
limit-point case at 𝑏. For 𝑗 = 0, 1 the differential equation #̃𝑗𝑢 = 0 is explicitly solvable with a
fundamental system given by functions 𝑢𝑗 and 𝑣𝑗 , where

𝑢𝑗 (𝑥) =
∫ 𝑥

𝑐

1
𝑝𝑗 (𝑡)

d𝑡, 𝑣𝑗 (𝑥) = 1. (2.52)

We have 𝑣0 = 𝑣1 and (1 − �)𝑢1 ≤ 𝑢0 ≤ (1 + �)𝑢1 a. e. on (𝑐, 𝑏) as a consequence of (2.49). Since,
the differential expression #̃0 is in the limit-point case at 𝑏, at least one of the solutions 𝑢0 and 𝑣0
does not lie right in 𝐿2((𝑎 , 𝑏), 𝑟0). Therefore, the same holds true for 𝑢1 and 𝑣1 with respect to
𝐿2((𝑎 , 𝑏), 𝑟1) by (2.50) and #̃1 is in the limit-point case at 𝑏.

Suppose that 𝑝0 = 𝑝1 a. e. (and 𝑞0/𝑟0 is unbounded) on (𝑐, 𝑏). We set �̃�0 = 𝑞1 − 𝑞0, where �̃�0/𝑟0 is
bounded near 𝑏 by condition (α) in Theorem 2.18. With the choice of �̃�0 and 𝑝0 = 𝑝1 the differential
expression #̃0 in (2.48) satisfies

#̃0 =
1
𝑟0

(︃
− d

d𝑥
𝑝1

d
d𝑥

+ 𝑞1

)︃
(2.53)

on (𝑐, 𝑏). Furthermore, #̃0 as well as #0 is in the limit-point case at 𝑏. There is a non-trivial solution
𝑢 of #̃0𝑢 = 0 which does not lie right in 𝐿2((𝑎 , 𝑏), 𝑟0) and, hence, by (2.50) does not lie right in
𝐿2((𝑎 , 𝑏), 𝑟1). Observe that 0 = 𝑟0/𝑟1(#̃0𝑢) = #1𝑢 a. e. on (𝑐, 𝑏). This implies that #1 is in the
limit-point case at 𝑏.

The reverse implication follows by Remark 2.19 and a similar argument. □

Note that the implication (#0 − �) ∼ (#1 − �) in Theorem 2.18 does not apply to boundary points �
of the essential spectrum. Therefore, the above result does not help when studying the accumulation
of eigenvalues at the boundary of the essential spectrum. The next lemma is a variant of Kneser’s
classical result [67] (see also [98, Theorem 9.42, Corollary 9.43]) and addresses this question.

Lemma 2.22. Consider a Sturm–Liouville differential expression #1 on (𝑎 ,∞), where (2.2) for
𝑗 = 1 is satisfied. Assume that the limits of the coefficients

𝑞∞ ≔ lim
𝑥→∞ 𝑞1(𝑥), 𝑝∞ ≔ lim

𝑥→∞𝑝1(𝑥), 𝑟∞ ≔ lim
𝑥→∞ 𝑟1(𝑥) (2.54)

exist inR such that 𝑝∞ > 0 and 𝑟∞ > 0. Then #1 is in the limit-point case at ∞ and every self-adjoint
realisation 𝑇1 of #1 is semi-bounded from below with

σess(𝑇1) = [𝑞∞/𝑟∞,∞). (2.55)

(i) If

lim sup
𝑥→∞

𝑥2
(︃
𝑞1(𝑥) −

𝑞∞
𝑟∞

𝑟1(𝑥)
)︃
< −𝑝∞

4
, (2.56)

then σ (𝑇1) ∩ (−∞, 𝑞∞/𝑟∞) consists of an infinite sequence of isolated eigenvalues of 𝑇1
converging to 𝑞∞/𝑟∞.

(ii) If

lim inf
𝑥→∞ 𝑥2

(︃
𝑞1(𝑥) −

𝑞∞
𝑟∞

𝑟1(𝑥)
)︃
> −𝑝∞

4
, (2.57)

the set σ (𝑇1) ∩ (−∞, 𝑞∞/𝑟∞) is finite.
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Proof. We compare #1 with the simple differential expression with constant coefficients

#0 =
1
𝑟0

(︃
− d

d𝑥
𝑝0

d
d𝑥

+ 𝑞0

)︃
, 𝑝0 ≡ 𝑝∞, 𝑞0 ≡ 𝑞∞, 𝑟0 ≡ 𝑟∞, (2.58)

on (𝑎 ,∞). It is well-known that the differential expression #0 is in the limit-point case at ∞ (and
regular at 𝑎) and every self-adjoint realisation 𝑇0 of #0 is semi-bounded from below with essential
spectrum σess(𝑇0) = [𝑞∞/𝑟∞,∞), cf. [41, Chapter XIII, Section 7, Theorem 16 (b)]. The conditions
of Theorem 2.18 are satisfied and we obtain that 𝑇1 is semi-bounded from below with

σess(𝑇1) = σess(𝑇0) = [𝑞∞/𝑟∞,∞). (2.59)

Further, by Lemma 2.21 #1 is in the limit-point case at ∞.
Let (2.56) hold. Then there are � > 0, � ∈ R and 𝑐 ∈ (𝑎 ,∞), 𝑐 > 0, such that

𝑥2
(︃
𝑞1(𝑥) −

𝑞∞
𝑟∞

𝑟1(𝑥)
)︃
< � < −𝑝∞ + �

4
, 𝑝1(𝑥) < 𝑝∞ + � (2.60)

for all 𝑥 ∈ (𝑐,∞). For

#+ = − d
d𝑥

(𝑝∞ + �) d
d𝑥

+ �̃�, where �̃�(𝑥) = �

𝑥2 , (2.61)

consider the differential equation #+𝑢 = 0 on (𝑐,∞). A straight forward calculation shows that the
function 𝑢 given by

𝑢(𝑥) = 𝑥
1
2 cos ⎛⎜⎝

√︄
−

(︃
�

𝑝∞ + � +
1
4

)︃
ln(𝑥)⎞⎟⎠ (2.62)

is a non-trivial solution of #+𝑢 = 0. Since �/(𝑝∞ + �) + 1/4 < 0, the solution 𝑢 is real-valued and has
infinitely many zeros in (𝑐,∞). We have �̃� > 𝑞1 − (𝑞∞/𝑟∞)𝑟1 and 𝑝∞ + � > 𝑝1 on (𝑐,∞) by (2.60).
Therefore, Sturm’s comparison theorem, Corollary 2.4 (i), implies that every non-trivial real-valued
solution of (#1 − 𝑞∞/𝑟∞)𝑢 = 0 has infinitely many zeros in (𝑐,∞). This shows that #1 − 𝑞∞/𝑟∞ is
oscillatory. Since 𝑇1 is semi-bounded from below with inf σess(𝑇1) = 𝑞∞/𝑟∞, the assertion in (i)
follows from Proposition 2.5.

Let (2.57) hold. Then there are � > 0, � ∈ R and 𝑐 ∈ (𝑎 ,∞), 𝑐 > 0, such that

𝑥2
(︃
𝑞1(𝑥) −

𝑞∞
𝑟∞

𝑟1(𝑥)
)︃
> � > −𝑝∞ − �

4
, 𝑝1(𝑥) > 𝑝∞ − � (2.63)

for all 𝑥 ∈ (𝑐,∞). For

#− = − d
d𝑥

(𝑝∞ − �) d
d𝑥

+ �̃�, �̃�(𝑥) = �

𝑥2 , (2.64)

the function 𝑢, given by

𝑢(𝑥) = 𝑥
1
2+

√︂
�

𝑝∞−� + 1
4 > 0, (2.65)

is a solution of the differential equation #−𝑢 = 0 on (𝑐,∞). This shows that #− − 0 is non-oscillatory.
Assume that #1 − 𝑞∞/𝑟∞ is oscillatory. Since 𝑞1 − (𝑞∞/𝑟∞)𝑟1 > �̃� and 𝑝1 > 𝑝∞ − � on (𝑐,∞) by
(2.63), Sturm’s comparison theorem, Corollary 2.4 (i), would imply that #− − 0 is oscillatory; a
contradiction. Therefore, #1 − 𝑞∞/𝑟∞ is non-oscillatory and Proposition 2.5 yields (ii). □
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2.2 Perturbations of periodic Sturm–Liouville operators

In this section we consider differential expressions #𝑗 for 𝑗 = 0, 1 of the form (2.1) on a common
open interval (𝑎 ,∞), where 𝑎 ∈ R. In addition to the conditions in (2.2) we assume that

𝑝0, 𝑞0, 𝑟0 are (-periodic on (𝑎 ,∞) with ( > 0 (2.66)

and ∫ ∞

𝑎

(︃|︁|︁|︁|︁ 1
𝑝1(𝑡)

− 1
𝑝0(𝑡)

|︁|︁|︁|︁ + |︁|︁𝑞1(𝑡) − 𝑞0(𝑡)
|︁|︁ + |︁|︁𝑟1(𝑡) − 𝑟0(𝑡)

|︁|︁)︃ d𝑡 < ∞ (2.67)

We recall the Floquet theory for periodic Sturm–Liouville equations and collect spectral properties
of Sturm–Liouville operators associated with the periodic differential expression #0 following
[28, 100, 101]. Let � ∈ R and denote by L the two-dimensional complex vector space of solutions
of (#0 − �)𝑢 = 0. By (2.66) for every 𝑓 ∈ L the function 𝑓( · + () is again in L. The map

M : L → L, 𝑓 ↦→ 𝑓( · + () (2.68)

is linear and admits a matrix representation. We consider the two real-valued solutions �̂� and �̂�
of (#0 − �)𝑢 = 0 which satisfy �̂�(𝑎) = 1, (𝑝0�̂�

′) (𝑎) = 0 and �̂�(𝑎) = 0, (𝑝0�̂�
′) (𝑎) = 1. Since

𝑊 [�̂�, �̂�] (𝑎) = 1, these two solutions form a basis of L and the map M can be identified with the
monodromy matrix

𝑀 =

(︃
�̂�(𝑎 + () �̂�(𝑎 + ()

(𝑝0�̂�
′) (𝑎 + () (𝑝0�̂�

′) (𝑎 + ()
)︃
.

The matrix 𝑀 is regular with det𝑀 = 𝑊 [�̂�, �̂�] (𝑎 +() = 𝑊 [�̂�, �̂�] (𝑎) = 1. Therefore, all eigenvalues
of 𝑀 are non-zero and, hence, the spectrum of M and 𝑀 can be represented in the form

σ (M) = σ (𝑀) = {︁
e𝑐, e−𝑐

}︁
, where 𝑐 ∈ C. (2.69)

The numbers e𝑐 and e−𝑐 are referred to as Floquet multipliers and 𝑐 is called the Floquet exponent.
Without loss of generality we assume that

Re 𝑐 ≥ 0. (2.70)

The eigenvalues e𝑐 and e−𝑐 are solutions of the quadratic equation

det(𝑀 − 𝑧) = 𝑧2 − 𝐷𝑧 + 1 = 0, (2.71)

where 𝐷, the so-called Hill discriminant, is given by

𝐷 = tr(𝑀) = �̂�(𝑎 + () + (𝑝0�̂�
′) (𝑎 + () ∈ R. (2.72)

Hence,

e±𝑐 =
𝐷

2
±

√︄
𝐷2

4
− 1 or e±𝑐 =

𝐷

2
∓

√︄
𝐷2

4
− 1. (2.73)

The Hill discriminant and the Floquet exponent are of particular importance for the following analysis.
Note that these quantities depend on the spectral parameter � of the differential equation (#0−�)𝑢 = 0.
When necessary we emphasize the �-dependency by writing 𝐷(�) for the Hill discriminant and 𝑐(�)
for the Floquet exponent in order to avoid confusion.

The next lemma is more or less a variant of standard working knowledge in periodic differential
operators and is essentially contained in [28, Chapter 1]. For the reader’s convenience we provide a
short proof.
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Lemma 2.23. Suppose that (2.2) for 𝑗 = 0 and (2.66) hold true. Consider � ∈ R and let 𝑐 = 𝑐(�)
be the Floquet exponent and 𝐷 = 𝐷(�) the Hill discriminant. Then there exists a pair of linearly
independent solutions 𝑢0 = 𝑢0( · , �) and 𝑣0 = 𝑣0( · , �) of (#0 − �)𝑢 = 0 such that the functions
𝑈0 = 𝑈0( · , �) and 𝑉0 = 𝑉0( · , �) given by

𝑈0(𝑥) = exp
(︂
𝑐
𝑥 − 𝑎

(

)︂
·
(︃

𝑢0(𝑥)
(𝑝0𝑢

′
0) (𝑥)

)︃
, 𝑉0(𝑥) = exp

(︂
−𝑐𝑥 − 𝑎

(

)︂
·
(︃

𝑣0(𝑥)
(𝑝0𝑣

′
0) (𝑥)

)︃
(2.74)

on (𝑎 ,∞) satisfy the following properties:

(i) If |𝐷 | > 2, then 𝑈0 and𝑉0 are both (-periodic and bounded on (𝑎 ,∞), where e𝑐, e−𝑐 ∈ R\ {0}
with Re 𝑐 > 0.

(ii) If |𝐷 | < 2, then 𝑈0 and 𝑉0 are both (-periodic and bounded on (𝑎 ,∞), where e𝑐, e−𝑐 ∈ C \R
with Re 𝑐 = 0. In particular, |𝑢0 | and |𝑣0 | are (-periodic bounded functions.

(iii) If |𝐷 | = 2, then 𝑈0 is (-periodic and bounded on (𝑎 ,∞), where e𝑐 = e−𝑐 ∈ {−1, 1}, that is
Re 𝑐 = 0, and, in particular |𝑢0 | is an (-periodic and bounded on (𝑎 ,∞). Furthermore, 𝑉0
satisfies

∥𝑉0(𝑥)∥C2 ≤ 𝐶
(︂
1 + 𝑥 − 𝑎

(

)︂
(2.75)

on (𝑎 ,∞) for some positive constant 𝐶.

In the cases (i) and (iii) the two solutions 𝑢0 and 𝑣0 can be chosen to be real-valued functions.
Moreover, the differential expression #0 is in the limit-point case at ∞. If � ∈ R such that

|𝐷(�) | < 2 , then for every non-trivial solution 𝑢 of (#0 − �)𝑢 = 0 there is a positive constant 𝐸 such
that ∫ 𝑎+(𝑛+1)(

𝑎+𝑛(
|𝑢(𝑡) |2𝑟0(𝑡) d𝑡 ≥ 𝐸 for all 𝑛 ∈ N. (2.76)

Proof. If 𝐷 = 2 or 𝐷 = −2 it follows from (2.73) that e𝑐 = e−𝑐 = 𝐷/2 ∈ {−1, 1} and Re 𝑐 = 0.
In the case where 𝐷 > 2 or 𝐷 < −2 we obtain e𝑐, e−𝑐 ∈ R \ {0} by (2.73), where e𝑐 ≠ e−𝑐.
Therefore, e2 Re 𝑐 = e2𝑐 ≠ 1 and (2.70) yields Re 𝑐 > 0. In the remaining case −2 < 𝐷 < 2 the
Floquet multipliers e𝑐, e−𝑐 are non-real and complex conjugates of each other by (2.73). This yields
1 = e𝑐e−𝑐 = |e𝑐 |2 = e2 Re 𝑐 and Re 𝑐 = 0.

For |𝐷 | ≠ 2 the spectrum of M in (2.68) consists of the two distinct eigenvalues e𝑐 and e−𝑐. Hence,
we find corresponding eigenfunctions 𝑢0 and 𝑣0 of M in L satisfying

𝑢0(𝑥 + () = (M𝑢0) (𝑥) = e−𝑐𝑢0(𝑥), 𝑣0(𝑥 + () = (M𝑣0) (𝑥) = e𝑐𝑣0(𝑥) (2.77)

and by the periodicity of 𝑝0

(𝑝0𝑢
′
0) (𝑥 + () = e−𝑐 (𝑝0𝑢

′
0) (𝑥), (𝑝0𝑣

′
0) (𝑥 + () = e𝑐 (𝑝0𝑣

′
0) (𝑥) (2.78)

on (𝑎 ,∞). By (2.77) and (2.78) the functions 𝑈0 and 𝑉0 given in (2.74) are (-periodic. This proves
(i) and (ii).

Assume that |𝐷 | = 2. Then the Floquet multipliers e𝑐 and e−𝑐 coincide. Consequently, the
eigenvalue e−𝑐 of M has algebraic multiplicity two. If the geometric multiplicity of e−𝑐 = e𝑐

is two, then the same argument as in the case |𝐷 | ≠ 2 yields solutions 𝑢0, 𝑣0 such that the
functions 𝑈0 and 𝑉0 given by (2.74) are (-periodic. In this situation (2.75) holds true on (𝑎 ,∞) for
𝐶 = sup𝑡∈(𝑎 ,𝑎+(] ∥𝑉0(𝑡)∥C2 which is finite by definition of 𝑉0 in (2.74) and the regularity of #0 at 𝑎 .
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Otherwise, if the geometric multiplicity of e−𝑐 is one, then there is Jordan chain of length two, i. e.
there are non-trivial solutions 𝑢0, 𝑣0 ∈ L such that M𝑢0 = e−𝑐𝑢0 and M𝑣0 = e−𝑐𝑣0 + 𝑢0. Therefore,

𝑢0(𝑥 + () = e−𝑐𝑢0(𝑥), 𝑣0(𝑥 + () = e−𝑐𝑣0(𝑥) + 𝑢0(𝑥) (2.79)

and together with the periodicity of 𝑝0

(𝑝0𝑢
′
0) (𝑥 + () = e−𝑐 (𝑝0𝑢

′
0) (𝑥), (𝑝0𝑣

′
0) (𝑥 + () = e−𝑐 (𝑝0𝑣

′
0) (𝑥) + (𝑝0𝑢

′
0) (𝑥) (2.80)

for all 𝑥 ∈ (𝑎 ,∞). Then again, 𝑈0 given in (2.74) is (-periodic. Since Re 𝑐 = 0, by (2.79) and (2.80)
we have for 𝑉0 given in (2.74)

∥𝑉0(𝑥 + ()∥
C

2 =

∥︁∥︁∥︁∥︁(︃ e−𝑐𝑣0(𝑥) + 𝑢0(𝑥)
e−𝑐 (𝑝0𝑣

′
0) (𝑥) + (𝑝0𝑢

′
0) (𝑥)

)︃∥︁∥︁∥︁∥︁
C

2
≤ ∥𝑉0(𝑥)∥C2 + ∥𝑈0(𝑥)∥C2 . (2.81)

Consider an arbitrary 𝑥 ∈ (𝑎 ,∞) and let 𝑘 ≤ (𝑥 − 𝑎)/( < 𝑘 + 1, where 𝑘 ∈ N. Inequality (2.81)
gives successively

∥𝑉0(𝑥)∥C2 ≤ ∥𝑉0(𝑥 − 𝑘()∥
C

2 + 𝑘∥𝑈0(𝑥 − 𝑘()∥
C

2

≤ ∥𝑉0(𝑥 − 𝑘()∥
C

2 + 𝑥 − 𝑎

(
∥𝑈0(𝑥 − 𝑘()∥

C
2

≤ sup
𝑡∈(𝑎 ,𝑎+(]

(︁∥𝑉0(𝑡)∥C2 + ∥𝑈0(𝑡)∥C2
)︁ · (︂1 + 𝑥 − 𝑎

(

)︂
,

(2.82)

where the supremum on the right-hand side is finite by the definition of 𝑈0, 𝑉0 in (2.74) and the fact
that 𝑎 is a regular endpoint. This shows (iii).

Since in the cases (i) and (iii) the spectrum of M is real, M in (2.68) can be regarded as a mapping
in the real vector space of real-valued solutions of (#0 − �)𝑢 = 0 instead of the complex vector space
L. Hence, 𝑢0 and 𝑣0 can be chosen as real-valued solutions.

Observe, that in the case |𝐷 | ≤ 2 the solution 𝑢0 does not lie right in 𝐿2((𝑎 ,∞), 𝑟0), and in the
case |𝐷 | > 2 the solution 𝑣0 does not lie right in 𝐿2((𝑎 ,∞), 𝑟0). Hence, #0 is in the limit-point case at
∞. Finally, to show (2.76) consider � ∈ R such that |𝐷 | < 2 and let 𝑢0, 𝑣0 as in (ii). Choose 𝑑 ∈ R
such that 𝑤0 ≔ 𝑢0 + 𝑑𝑣0 is orthogonal to 𝑣0 in 𝐿2((𝑎 , 𝑎 + (), 𝑟0). According to (2.77) we have

𝑤0(𝑥 + 𝑛() = e−𝑐𝑛𝑢0(𝑥) + e𝑐𝑛𝑑𝑣0(𝑥) = e−𝑐𝑛
(︁
𝑢0(𝑥) + 𝑑𝑣0(𝑥)

)︁ + (︁
e𝑐𝑛 − e−𝑐𝑛

)︁
𝑑𝑣0(𝑥)

= e−𝑐𝑛𝑤0(𝑥) +
(︁
e𝑐𝑛 − e−𝑐𝑛

)︁
𝑑𝑣0(𝑥)

(2.83)

for every 𝑛 ∈ N. Let 𝑢 = 𝛼𝑤0 + 𝛽𝑣0 be a non-trivial linear combination, where 𝛼, 𝛽 ∈ C. Recall
that Re 𝑐 = 0. Then (2.77) and (2.83) together with the orthogonality of 𝑤0 and 𝑣0 imply∫ 𝑎+(𝑛+1)(

𝑎+𝑛(
|𝑢(𝑡) |2𝑟0(𝑡) d𝑡

=
∫ 𝑎+(

𝑎

|︁|︁|︁𝛼 (︂
e−𝑐𝑛𝑤0(𝑡) +

(︁
e𝑐𝑛 − e−𝑐𝑛

)︁
𝑑𝑣0(𝑡)

)︂
+ 𝛽e𝑐𝑛𝑣0(𝑡)

|︁|︁|︁2𝑟0(𝑡) d𝑡

= |𝛼 |2
∫ 𝑎+(

𝑎
|𝑤0(𝑡) |2𝑟0(𝑡) d𝑡 +

|︁|︁𝛼 (︁
e𝑐𝑛 − e−𝑐𝑛

)︁
𝑑 + 𝛽e𝑐𝑛

|︁|︁2 ∫ 𝑎+(

𝑎
|𝑣(𝑡) |2𝑟0(𝑡) d𝑡.

Finally, one sees that (2.76) holds with 𝐸 = |𝛼 |2
∫ 𝑎+(
𝑎

|𝑤0(𝑡) |2𝑟0(𝑡) d𝑡 if 𝛼 ≠ 0 and otherwise with
𝐸 = |𝛽 |2

∫ 𝑎+(
𝑎

|𝑣(𝑡) |2𝑟0(𝑡) d𝑡. □
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By (2.76) in Lemma 2.23 in the case |𝐷(�) | < 2 no non-trivial solution of (#0 − �)𝑢 = 0 lies right
in 𝐿2((𝑎 ,∞), 𝑟0). Hence, {︁

� ∈ R
|︁|︁ |𝐷(�) | < 2

}︁ ⊂ σess(𝑇0)
for every self-adjoint realisation 𝑇0 of #0, cf. [100, Theorem 11.5] and [101, Satz 13.22]. The
relationship between the Hill discriminant and the structure of essential spectrum can be summarised
as follows, cf. [28, Section 1.6, Section 4.5] and [100, Section 12 and Appendix to Section 12], see
also [101, Sektion 16.1].

Proposition 2.24. Suppose that (2.2) for 𝑗 = 0 and (2.66) hold true. Then the essential spectrum
of any self-adjoint realisation 𝑇0 of #0 is given by

σess(𝑇0) =
{︁
� ∈ R

|︁|︁ |𝐷(�) | ≤ 2
}︁

(2.84)

with the boundary
) σess(𝑇0) =

{︁
� ∈ R

|︁|︁ |𝐷(�) | = 2
}︁
. (2.85)

Further, there are �0 < �1 ≤ �2 < �3 ≤ �4 < . . . with �𝑛 → ∞ as 𝑛 → ∞ such that

σess(𝑇0) =
⋃︂
𝑛∈N

[�2𝑛,�2𝑛+1]. (2.86)

In each gap of the essential spectrum (−∞,�0) and (�2𝑛+1,�2𝑛+2), where 𝑛 ∈ N and �2𝑛+1 < �2𝑛+2,
there is at most one eigenvalue of 𝑇0. In particular, 𝑇0 is semi-bounded from below and (the interior
of) the essential spectrum σess(𝑇0) is non-empty.

Note that σess(𝑇0) = [�0,∞) may happen in Proposition 2.24.
We turn to the differential expression #1. As before let 𝑢0 = 𝑢0( · , �) and 𝑣0 = 𝑣0( · , �) be the

linearly independent solutions of (#0 − �)𝑢 = 0 provided by Lemma 2.23, where � ∈ R.

Lemma 2.25. Suppose that (2.2) for 𝑗 = 0, 1 and (2.66), (2.67) hold true. Consider � ∈ R and
let 𝑐 = 𝑐(�) be the Floquet exponent and 𝐷 = 𝐷(�) the Hill discriminant corresponding to the
differential equation (#0 − �)𝑢 = 0. Then there exists a pair of linearly independent solutions
𝑢1 = 𝑢1( · , �) and 𝑣1 = 𝑣1( · , �) of (#1 − �)𝑢 = 0 such that the following properties hold:

(i) If |𝐷 | > 2, that is Re 𝑐 > 0, then

exp
(︂
Re 𝑐

𝑥 − 𝑎

(

)︂
·
∥︁∥︁∥︁∥︁(︃ 𝑢1(𝑥)
(𝑝1𝑢

′
1) (𝑥)

)︃
−

(︃
𝑢0(𝑥)

(𝑝0𝑢
′
0) (𝑥)

)︃∥︁∥︁∥︁∥︁
C

2
→ 0 as 𝑥 → ∞ (2.87)

and ∥︁∥︁∥︁∥︁(︃ 𝑢1(𝑥)
(𝑝1𝑢

′
1) (𝑥)

)︃∥︁∥︁∥︁∥︁
C

2
≤ 𝐶 exp

(︂
−Re 𝑐

𝑥 − 𝑎

(

)︂
, (2.88)∥︁∥︁∥︁∥︁(︃ 𝑣1(𝑥)

(𝑝1𝑣
′
1) (𝑥)

)︃∥︁∥︁∥︁∥︁
C

2
≤ 𝐶 exp

(︂
Re 𝑐

𝑥 − 𝑎

(

)︂
(2.89)

on (𝑎 ,∞), where 𝐶 = 𝐶 (�) is a positive constant. In particular, 𝑢1 is bounded on (𝑎 ,∞).
(ii) If |𝐷 | < 2, that is Re 𝑐 = 0, then (2.87), (2.88) and (2.89) hold, and∥︁∥︁∥︁∥︁(︃ 𝑣1(𝑥)

(𝑝1𝑣
′
1) (𝑥)

)︃
−

(︃
𝑣0(𝑥)

(𝑝0𝑣
′
0) (𝑥)

)︃∥︁∥︁∥︁∥︁
C

2
→ 0 as 𝑥 → ∞. (2.90)

In particular, 𝑢1 and 𝑣1 are bounded on (𝑎 ,∞).
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(iii) If |𝐷 | = 2, that is Re 𝑐 = 0, and∫ ∞

𝑎

(︃|︁|︁|︁|︁ 1
𝑝1(𝑡)

− 1
𝑝0(𝑡)

|︁|︁|︁|︁ + |︁|︁𝑞1(𝑡) − 𝑞0(𝑡)
|︁|︁ + |︁|︁𝑟1(𝑡) − 𝑟0(𝑡)

|︁|︁)︃ |𝑡 | d𝑡 < ∞ (2.91)

holds, then 𝑢1 satisfies (2.87) and (2.88) on (𝑎 ,∞). In particular, 𝑢1 is bounded on (𝑎 ,∞).
The solutions in (i) and (ii) can be chosen to be real-valued.

Proof. Let � ∈ R. We consider the differential equations %′ = 𝐴% and � ′ = (𝐴 + 𝐵)� in C2, where

𝐴 =

(︃
0 1

𝑝0
𝑞0 − �𝑟0 0

)︃
, 𝐵 =

(︃
0 1

𝑝1
− 1

𝑝0
(𝑞1 − 𝑞0) − �(𝑟1 − 𝑟0) 0

)︃
.

Via the identification % = (𝑢,𝑝0𝑢
′)⊤ and � = (𝑣,𝑝1𝑣

′)⊤ we see that the differential equations
(#0 − �)𝑢 = 0 and (#1 − �)𝑣 = 0 can be expressed equivalently in form of the first-order systems
%′ = 𝐴% and � ′ = (𝐴 + 𝐵)�, respectively. With 𝑢0 and 𝑣0 from Lemma 2.23 we consider the
fundamental solution 𝛷 of the system %′ = 𝐴% given by

𝛷(𝑥) =
(︃

𝑢0(𝑥) 𝑣0(𝑥)
(𝑝0𝑢

′
0) (𝑥) (𝑝0𝑣

′
0) (𝑥)

)︃
, 𝑥 ∈ (𝑎 ,∞), (2.92)

so that (︁
𝛷(𝑡))︁−1 =

1
𝑊 [𝑢0, 𝑣0]

(︃ (𝑝0𝑣
′
0) (𝑡) −𝑣0(𝑡)

−(𝑝0𝑢
′
0) (𝑡) 𝑢0(𝑡)

)︃
, 𝑡 ∈ (𝑎 ,∞).

According to (2.74) in Lemma 2.23 we find a suitable constant �̃� > 0 such that for all 𝑥, 𝑡 ∈ (𝑎 ,∞)∥︁∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1
∥︁∥︁∥︁
C

2×2 ≤ �̃�eRe 𝑐 𝑡−𝑥( ∥𝑈0(𝑥)∥C2 ∥𝑉0(𝑡)∥C2

+ �̃�eRe 𝑐 𝑥−𝑡( ∥𝑈0(𝑡)∥C2 ∥𝑉0(𝑥)∥C2 .

(2.93)

We show (i). Let |𝐷 | > 2. By Lemma 2.23 (i) one has Re 𝑐 > 0 and the functions 𝑈0, 𝑉0 are
bounded on (𝑎 ,∞). Together with (2.93) we arrive at the inequality∥︁∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1

∥︁∥︁∥︁
C

2×2 ≤ 𝐸

2

(︂
eRe 𝑐 𝑡−𝑥( + eRe 𝑐 𝑥−𝑡(

)︂
(2.94)

for all 𝑥, 𝑡 ∈ (𝑎 ,∞), where 𝐸 is a suitable positive constant. Observe that for all 𝑥, 𝑡 ∈ (𝑎 ,∞),
where 𝑥 ≤ 𝑡, we have ∥︁∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1

∥︁∥︁∥︁
C

2×2 ≤ 𝐸e−Re 𝑐 𝑥−𝑡( . (2.95)

We employ Theorem B.1 from Appendix B. Let C𝛽 (𝑎 ,∞) for 𝛽 ∈ R be the Banach space of
continuous C2-valued functions 𝑓 on (𝑎 ,∞) of exponential growth at the rate 𝛽, cf. (B.3) in
Appendix B, with the corresponding norm

∥𝑓∥∞,𝛽 = sup
𝑥∈(𝑎 ,∞)

e−𝛽 (𝑥−𝑎) ∥𝑓(𝑥)∥
C

2 . (2.96)

The solution (𝑢0,𝑝0𝑢
′
0)⊤ of %′ = 𝐴% is contained in C−Re 𝑐/( (𝑎 ,∞) by Lemma 2.23 (i) and

∥𝐵 ( · )∥
C

2×2 ∈ 𝐿1(𝑎 ,∞) by assumption. An application of Theorem B.1 (i), where we consider
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% = (𝑢0,𝑝0𝑢
′
0)⊤, 𝛽 = Re 𝑐/( and 𝑔 ≡ 𝐸, provides a solution � ∈ C−Re 𝑐/( (𝑎 ,∞) of � ′ = (𝐴 + 𝐵)�

satisfying
eRe 𝑐 𝑥−𝑎( ∥� (𝑥) − %(𝑥)∥

C
2 → 0 as 𝑥 → 0. (2.97)

By identifying (𝑢1,𝑝1𝑢
′
1)⊤ with � one immediately sees that 𝑢1 solves (#1 − �)𝑢 = 0 and satisfies

the assertions stated in (i).
Inequality (2.94), further, yields∥︁∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1

∥︁∥︁∥︁
C

2×2 ≤ 𝐸eRe 𝑐 𝑥−𝑡( (2.98)

for all 𝑥, 𝑡 ∈ (𝑎 ,∞) with 𝑡 ≤ 𝑥. Note that C−Re 𝑐/( (𝑎 ,∞) ⊂ CRe 𝑐/( (𝑎 ,∞). Therefore, both
functions (𝑢0,𝑝0𝑢

′
0)⊤, (𝑣0,𝑝0𝑣

′
0)⊤ and, consequently, all solutions of %′ = 𝐴% are contained in

CRe 𝑐/( (𝑎 ,∞) by Lemma 2.23 (i). With Theorem B.1 (ii), where 𝛽 = Re 𝑐/( and 𝑔(≡ 𝐸, we find
a solution � ∈ CRe 𝑐/( (𝑎 ,∞) of � ′ = (𝐴 + 𝐵)� which is linearly independent of (𝑢1,𝑝1𝑢

′
1)⊤. The

identification � = (𝑣1,𝑝1𝑣
′
1)⊤ yields the solution 𝑣1 of (#1 − �)𝑢 = 0 which does not linearly depend

on 𝑢1 and satisfies the inequality in (2.89).
We proceed showing (ii) in a similar manner. Suppose that |𝐷 | < 2. By Lemma 2.23 (ii) one has

Re 𝑐 = 0 and the solutions (𝑢0,𝑝0𝑢
′
0)⊤, (𝑣0,𝑝0𝑣

′
0)⊤ of %′ = 𝐴% are both contained in C0(𝑎 ,∞). The

same reasoning as before yields the estimate in (2.95) for 𝑎 < 𝑥 ≤ 𝑡 < ∞. We apply Theorem B.1 (i),
where 𝛽 = 0 and 𝑔 ≡ 𝐸, to both solutions (𝑢0,𝑝0𝑢

′
0)⊤ and (𝑣0,𝑝0𝑣

′
0)⊤ of %′ = 𝐴%. This yields a

suitable pair of linearly independent solutions of � ′ = (𝐴 + 𝐵)� which are contained in C0(𝑎 ,∞)
and can be identified with the solutions 𝑢1, 𝑣1 stated in (ii).

Finally, we prove (iii). Suppose that (2.91) holds and let |𝐷 | = 2. One has Re 𝑐 = 0 by
Lemma 2.23 (iii) and with (2.93) there exists a positive constant 𝐸 such that for all 𝑥, 𝑡 ∈ (𝑎 ,∞),
where 𝑥 ≤ 𝑡, ∥︁∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1

∥︁∥︁∥︁
C

2×2 ≤ 𝐸

2

(︃
2 + 𝑡 − 𝑎

(
+ 𝑥 − 𝑎

(

)︃
≤ 𝐸

(︃
1 + 𝑡 − 𝑎

(

)︃
. (2.99)

By Lemma 2.23 (iii) the solution (𝑢0,𝑝0𝑢
′
0)⊤ of %′ = 𝐴% is contained in C0(𝑎 ,∞). We ap-

ply Theorem B.1 (i) to (𝑢0,𝑝0𝑢
′
0)⊤, where 𝛽 = 0 and 𝑔(𝑡) = 𝐸 (1 + (𝑡 − 𝑎)/(). Note that

𝑔( · )∥𝐵 ( · )∥
C

2×2 ∈ 𝐿1(𝑎 ,∞) by the assumption (2.91). From Theorem B.1 (i) we obtain a solution �
of � ′ = (𝐴 + 𝐵)� corresponding to (𝑢0,𝑝0𝑢

′
0)⊤ which is contained in C0(𝑎 ,∞) and can be identified

with the solution 𝑢1 stated in (iii).
Note that in the cases (i) and (iii) the solutions 𝑢0 and 𝑣0 from Lemma 2.23 can be chosen to

be real-valued. Then 𝛷 in (2.92) has values only in R2×2 and the solutions 𝑢1, 𝑣1 constructed via
Theorem B.1 are also real-valued. □

Note that condition (2.91) implies (2.67).
Our main result in this section is the following theorem which allows to compare the essential

spectra of Sturm–Liouville operators associated with #0 and #1.

Theorem 2.26. Suppose that (2.2) for 𝑗 = 0, 1 and (2.66), (2.67) hold true. Then #1 is in the
limit-point case at ∞. Let 𝑇0 and 𝑇1 be self-adjoint realisation of #0 and #1, respectively. Then the
operator 𝑇1 is semi-bounded from below and its essential spectrum is given by

σess(𝑇1) = σess(𝑇0) =
⋃︂
𝑛∈N

[�2𝑛,�2𝑛+1],

where �0 < �1 ≤ �2 < �3 ≤ �4 < . . . and �𝑛 → ∞ as 𝑛 → ∞ in accordance with Proposition 2.24.
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If (2.91) holds, then each gap of the essential spectrum (−∞,�0) and (�2𝑛+1,�2𝑛+2), where 𝑛 ∈ N
and �2𝑛+1 < �2𝑛+2, contains at most finitely many eigenvalues of 𝑇1.

The above theorem extends a seminal result by Rofe-Beketov [93] (see also [66, Theorem 6.13])
for the special case 𝑝0 = 𝑝1 = 𝑟0 = 𝑟1 = 1. A similar stability result for the essential spectrum of
periodic Sturm–Liouville operators is shown in [96] for 𝑝0 = 𝑝1 = 𝑟0 = 𝑟1 = 1, where the assumption
(2.67) is replaced by a weaker condition. An extension of this result to more general coefficients,
where still 𝑟0 = 𝑟1, can be found in [28, Chapter 5].

Proof of Theorem 2.26. For real � let 𝐷 = 𝐷(�), 𝑐 = 𝑐(�) denote the Hill discriminant and
the Floquet exponent. Further, consider the solutions 𝑢𝑗 = 𝑢𝑗 ( · , �) and 𝑣𝑗 ( · , �), where 𝑗 = 0, 1,
provided by Lemma 2.23 and Lemma 2.25. The proof is divided into four steps.

Step 1. By Proposition 2.24 the interior of σess(𝑇0) is non-empty. Let � be an arbitrary element of
the interior of σess(𝑇0), that is |𝐷 | < 2. We show that no non-trivial solution 𝑤1 of (#1 − �)𝑢 = 0 lies
right in 𝐿2((𝑎 ,∞), 𝑟1). Let 𝑤1 = 𝛼𝑢1 + 𝛽𝑣1 be an arbitrary non-trivial linear combination, where
𝛼, 𝛽 ∈ C. For the same coefficients 𝛼 and 𝛽 let 𝑤0 = 𝛼𝑢0 + 𝛽𝑣0. Then|︁|︁|︁|︁|︁∫ 𝑎+(𝑛+1)(

𝑎+𝑛(
|𝑤1(𝑡) |2𝑟1(𝑡) − |𝑤0(𝑡) |2𝑟0(𝑡) d𝑡

|︁|︁|︁|︁|︁
≤

∫ 𝑎+(𝑛+1)(

𝑎+𝑛(
|𝑤1(𝑡) |2 |𝑟1(𝑡) − 𝑟0(𝑡) | +

|︁|︁|𝑤1(𝑡) |2 − |𝑤0(𝑡) |2
|︁|︁𝑟0(𝑡) d𝑡

≤
∫ 𝑎+(𝑛+1)(

𝑎+𝑛(
|𝑤1(𝑡) |2 |𝑟1(𝑡) − 𝑟0(𝑡) | + |𝑤1(𝑡) − 𝑤0(𝑡) | ·

(︁ |𝑤1(𝑡) | + |𝑤0(𝑡) |
)︁
𝑟0(𝑡) d𝑡

(2.100)

By Lemma 2.23 (ii) and Lemma 2.25 (ii) the solutions 𝑤0, 𝑤1 are bounded and |𝑤0(𝑡) −𝑤1(𝑡) | → 0
as 𝑡 → ∞. Together with (𝑟0 − 𝑟1) ∈ 𝐿1(𝑎 ,∞) and the periodicity of 𝑟0 one sees that the integral
on the right-hand side of (2.100) tends to zero as 𝑛 → ∞. By Lemma 2.23 there exists a positive
constant 𝐸 such that (2.76) holds (for 𝑢 = 𝑤0). There is 𝑛0 ∈ N such that the integral on the
right-hand side of (2.100) is bounded by 𝐸/2 for all natural numbers 𝑛 ≥ 𝑛0. Thus, (2.100) and
(2.76) yield

𝐸

2
≤

∫ 𝑎+(𝑛+1)(

𝑎+𝑛(
|𝑤0(𝑡) |2𝑟0(𝑡) d𝑡 − 𝐸

2
≤

∫ 𝑎+(𝑛+1)(

𝑎+𝑛(
|𝑤1(𝑡) |2𝑟1(𝑡) d𝑡 (2.101)

for all 𝑛 ∈ N, 𝑛 ≥ 𝑛0. This implies that 𝑤1 does not lie right in 𝐿2((𝑎 ,∞), 𝑟1).
Consequently, no non-trivial solution of (#1 − �)𝑢 = 0 lies right in 𝐿2((𝑎 ,∞), 𝑟1) and we see

� ∈ σess(𝑇1), cf. [100, Theorem 11.5] and [101, Satz 13.22]. Since the essential spectra are closed
sets we obtain

σess(𝑇0) ⊂ σess(𝑇1).
Step 2. We prove the converse inclusion σess(𝑇1) ⊂ σess(𝑇0). Suppose � ∈ R \ σess(𝑇0), that is

|𝐷 | > 2 and Re 𝑐 > 0 by Proposition 2.24 and Lemma 2.23 (i). Note that the solutions 𝑢1 and 𝑣1
provided by Lemma 2.25 (i) are real. For 𝑔 ∈ 𝐿2((𝑎 ,∞), 𝑟1) let

(𝑆𝑔) (𝑥) ≔
∫ ∞

𝑎

𝐺(𝑥, 𝑡)
𝑊 [𝑢1, 𝑣1]

𝑔(𝑡)𝑟1(𝑡) d𝑡, 𝐺(𝑥, 𝑡) ≔
{︄
𝑢1(𝑥)𝑣1(𝑡) if 𝑎 ≤ 𝑡 ≤ 𝑥,

𝑢1(𝑡)𝑣1(𝑥) if 𝑎 ≤ 𝑥 ≤ 𝑡,



2.2 Perturbations of periodic Sturm–Liouville operators 43

that is

(𝑆𝑔) (𝑥) = 1
𝑊 [𝑢1, 𝑣1]

(︃
𝑢1(𝑥)

∫ 𝑥

𝑎
𝑣1(𝑡)𝑔(𝑡)𝑟1(𝑡) d𝑡 + 𝑣1(𝑥)

∫ ∞

𝑥
𝑢1(𝑡)𝑔(𝑡)𝑟1(𝑡) d𝑡

)︃
. (2.102)

Define

𝐸 ≔ sup
𝑛∈N

∫ 𝑎+(𝑛+1)(

𝑎+𝑛(
𝑟1(𝑡) d𝑡,

which is finite since (𝑟0 − 𝑟1) ∈ 𝐿1(𝑎 ,∞) and 𝑟0 is periodic and locally integrable. Consider an
arbitrary 𝑥 ∈ [𝑎 ,∞). By (2.88) and (2.89) in Lemma 2.25 (i)∫ ∞

𝑎
|𝐺(𝑥, 𝑡) |𝑟1(𝑡) d𝑡 ≤ 𝐶2

(︃∫ 𝑥

𝑎
eRe 𝑐 (𝑡−𝑥)

( 𝑟1(𝑡) d𝑡 +
∫ ∞

𝑥
eRe 𝑐 (𝑥−𝑡)

( 𝑟1(𝑡) d𝑡
)︃
.

Let 𝑘 ∈ N with 𝑘( + 𝑎 ≤ 𝑥 < (𝑘 + 1)( + 𝑎 . We further estimate∫ ∞

𝑎
|𝐺(𝑥, 𝑡) |𝑟1(𝑡) d𝑡 ≤ 𝐶2

𝑘∑︂
𝑛=0

eRe 𝑐· (1−𝑛)
∫ 𝑎+(𝑘+1−𝑛)(

𝑎+(𝑘−𝑛)(
𝑟1(𝑡) d𝑡

+ 𝐶2
∞∑︂
𝑛=0

eRe 𝑐· (1−𝑛)
∫ 𝑎+(𝑛+1+𝑘)(

𝑎+(𝑛+𝑘)(
𝑟1(𝑡) d𝑡

≤ 2𝐶2𝐸
∞∑︂
𝑛=0

eRe 𝑐· (−𝑛+1) < ∞.

Due to the symmetry 𝐺(𝑥, 𝑡) = 𝐺(𝑡,𝑥) the same bound holds for
∫ ∞
𝑎

|𝐺(𝑥, 𝑡) |𝑟1(𝑥) d𝑥 evaluated
at 𝑡 ∈ [𝑎 ,∞). As a consequence of the Schur criterion (e. g. [98, Lemma 0.32]) one sees that 𝑆 is
a bounded operator in 𝐿2((𝑎 ,∞), 𝑟1). For 𝑔 ∈ 𝐿2((𝑎 ,∞), 𝑟1) a straight forward calculation using
(2.102) and (#1 − �)𝑢1 = (#1 − �)𝑣1 = 0 shows that 𝑆𝑔, 𝑝1(𝑆𝑔) ′ ∈ AC(𝑎 ,∞), and that 𝑆𝑔 solves the
inhomogeneous differential equation (#1 − �)𝑢 = 𝑔. Thus, #1(𝑆𝑔) = �𝑆𝑔 + 𝑔 ∈ 𝐿2((𝑎 ,∞), 𝑟1) and
hence 𝑆𝑔 is contained in the domain 𝒟(#1) (cf. (1.6)) of the maximal operator associated with #1,
and 𝑆 is injective. Moreover, since 𝑢1 and 𝑣1 are real-valued it follows that 𝑆 is self-adjoint, so that
𝑆−1 is a self-adjoint restriction of the maximal operator associated with #1 − �. In other words, 𝑆 is
the resolvent at � of some self-adjoint realisation of #1 and as all self-adjoint realisations of #1 have
the same essential spectrum (cf. Section 1.2), we obtain

� ∉ σess(𝑇1).

Thus σess(𝑇1) ⊂ σess(𝑇0) and together with the first step

σess(𝑇1) = σess(𝑇0).

Step 3. Recall that the periodic Sturm–Liouville operator 𝑇0 is semi-bounded from below. Let
� < inf σess(𝑇0), that is |𝐷 | > 2 and Re 𝑐 > 0 by Proposition 2.24 and Lemma 2.23 (i). The solution
𝑢0 and 𝑢1 provided by Lemma 2.23 (i) and Lemma 2.25 (i) are real-valued. By Proposition 2.5
the solution 𝑢0 has at most finitely many zeros in (𝑎 ,∞). Further, Lemma 2.23 (i) implies that the
function �̃�0 given by

�̃�0(𝑥) = e𝑐
𝑥−𝑎
( 𝑢0(𝑥) (2.103)
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is (-periodic. Therefore, the solution 𝑢0 has no zeros and

𝛾 ≔ inf
𝑡∈(𝑎 ,∞)

|︁|︁�̃�0(𝑡)
|︁|︁ = min

𝑡∈[𝑎 ,𝑎+(]

|︁|︁�̃�0(𝑡)
|︁|︁ > 0. (2.104)

Assume that 𝑇1 is not semi-bounded from below. Then the differential expression #1 − � is oscillatory
by Proposition 2.5 and the solution 𝑢1 of (#1 − �)𝑢 = 0 has infinitely many zeros 𝑥0 < 𝑥1 < 𝑥2 < . . .
accumulating at ∞, cf. Lemma 2.2. With (2.87) we obtain

0 < 𝛾 ≤
|︁|︁�̃�0(𝑥𝑘)

|︁|︁ = |︁|︁|︁e𝑐 𝑥𝑛−𝑎( 𝑢0(𝑥)
|︁|︁|︁ = eRe 𝑐

𝑥𝑛−𝑎
(

|︁|︁𝑢0(𝑥𝑛) − 𝑢1(𝑥𝑛)
|︁|︁ → 0 as 𝑛 → ∞; (2.105)

a contradiction. This shows the semi-boundedness of 𝑇1.
Step 4. Suppose that (2.91) holds. We show that every gap of the essential spectrum of 𝑇1 contains

at most finitely many eigenvalues of 𝑇1. The proof follows a similar scheme as in the third step, but
instead of counting the zeros of solutions we count the zeros of Wronskians. Let �, � ∈ R such that
� < � with σess(𝑇0) ∩ (�, �) = σess(𝑇1) ∩ (�, �) = ∅. We have

�, � ∈ ) σess(𝑇0) ∪
(︁
R \ σess(𝑇0)

)︁
. (2.106)

Let 𝑐(�), 𝑐(�) be the Floquet exponents and 𝐷(�), 𝐷(�) be the Hill discriminants associated with
(#0 − �)𝑢 = 0 and (#0 − �)𝑢 = 0, respectively. Then |𝐷(�) | ≥ 2 and |𝐷(�) | ≥ 2 by Proposition 2.24.
For the real-valued solutions 𝑢𝑗 ( · , �) and 𝑢𝑗 ( · ,�), where 𝑗 = 0, 1, provided by Lemma 2.23 (i), (iii)
and Lemma 2.25 (i), (iii) we consider the Wronskian

𝑊𝑗 (𝑥) ≔ 𝑊 [𝑢𝑗 ( · ,�),𝑢𝑗 ( · , �)] (𝑥) =
(︃

𝑢𝑗 (𝑥, �)
𝑝𝑗 (𝑥)𝑢′

𝑗 (𝑥, �)
)︃⊤ (︃

0 −1
1 0

)︃ (︃
𝑢𝑗 (𝑥,�)

𝑝𝑗 (𝑥)𝑢′
𝑗 (𝑥,�)

)︃
(2.107)

Observe that

�̃�0(𝑥) ≔ exp
(︂ (︁
𝑐(�) + 𝑐(�))︁ 𝑥 − 𝑎

(

)︂
𝑊0(𝑥) =

(︁
𝑈0(𝑥, �)

)︁⊤ (︃
0 −1
1 0

)︃
𝑈0(𝑥,�), (2.108)

where 𝑈0( · , �) and 𝑈0( · ,�) are (-periodic functions given by (2.74) in Lemma 2.23. Therefore,
the function �̃�0 is (-periodic. Since dimR(𝑃𝑇0

((�, �))) ≤ 1 by Proposition 2.24, the differential
expression #0 − � is relatively non-oscillatory with respect to #0 − � by Theorem 2.15 (i). This
implies that the Wronskian 𝑊0 has at most finitely many zeros in (𝑎 ,∞), cf. Lemma 2.12. According
to the periodicity of �̃�0 together with (2.108), the Wronskian 𝑊0 has no zeros and

𝛾 ≔ inf
𝑡∈(𝑎 ,∞)

|︁|︁�̃�0(𝑡)
|︁|︁ = min

𝑡∈[𝑎 ,𝑎+(]

|︁|︁�̃�0(𝑡)
|︁|︁ > 0. (2.109)

The difference of the Wronskians 𝑊0 and 𝑊1 can written as

𝑊0(𝑥) −𝑊1(𝑥)

=

(︃(︃
𝑢0(𝑥, �)

(𝑝0(𝑥)𝑢′
0(𝑥, �)

)︃
−

(︃
𝑢1(𝑥, �)

𝑝1(𝑥)𝑢′
1(𝑥, �)

)︃)︃⊤ (︃
0 −1
1 0

)︃ (︃
𝑢0(𝑥,�)

𝑝0(𝑥)𝑢′
0(𝑥,�)

)︃
+

(︃
𝑢1(𝑥, �)

𝑝1(𝑥)𝑢′
1(𝑥, �)

)︃⊤ (︃
0 −1
1 0

)︃ (︃(︃
𝑢0(𝑥,�)

𝑝0(𝑥)𝑢′
0(𝑥,�)

)︃
−

(︃
𝑢1(𝑥,�)

𝑝1(𝑥)𝑢′
1(𝑥,�)

)︃)︃
.
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Combining this with Lemma 2.23 (i), (iii) and Lemma 2.25 (i), (iii) we conclude

exp
(︂ (︁
𝑐(�) + 𝑐(�))︁ 𝑥 − 𝑎

(

)︂
· (︁𝑊0(𝑥) −𝑊1(𝑥)

)︁ → 0 as 𝑥 → ∞. (2.110)

We assume that dimR(𝑃𝑇1
((�, �))) = ∞, that is 𝑇1 has infinitely many eigenvalues in (�, �). Then

by Theorem 2.15 (i) and Lemma 2.12 the Wronskian𝑊1 has infinitely many zeros 𝑥0 < 𝑥1 < 𝑥2 < . . .
which necessarily accumulate at ∞, cf. Lemma 2.6 (ii). Then (2.109) and (2.110) imply

0 < 𝛾 ≤
|︁|︁�̃�0(𝑥𝑛)

|︁|︁
=

|︁|︁|︁exp
(︂ (︁
𝑐(�) + 𝑐(�))︁ 𝑥𝑛 − 𝑎

(

)︂
𝑊0(𝑥𝑛)

|︁|︁|︁
=

|︁|︁|︁exp
(︂ (︁
𝑐(�) + 𝑐(�))︁ 𝑥𝑛 − 𝑎

(

)︂ (︁
𝑊0(𝑥𝑛) −𝑊1(𝑥𝑛)

)︁ |︁|︁|︁ → 0 as 𝑛 → ∞;

a contradiction. Hence, dimR(𝑃𝑇1
((�, �))) < ∞. □





Chapter 3

Indefinite Sturm–Liouville operators

In this chapter we study the spectral properties of Sturm–Liouville operators associated with the
differential expression

ℓ =
1
𝑟

(︃
− d

d𝑥
𝑝

d
d𝑥

+ 𝑞
)︃

(3.1)

on an open interval (𝑎 , 𝑏), where −∞ ≤ 𝑎 < 𝑏 ≤ ∞. For the coefficients of ℓ we assume that⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝, 𝑞, 𝑟 are real-valued functions on (𝑎 , 𝑏),
𝑝(𝑥) > 0, 𝑟(𝑥) ≠ 0 for almost all 𝑥 ∈ (𝑎 , 𝑏),
1/𝑝, 𝑞, 𝑟 ∈ 𝐿1

loc(𝑎 , 𝑏)
(3.2)

with
µ
(︁{𝑥 ∈ (𝑎 , 𝑏) | 𝑟(𝑥) > 0})︁ > 0 and µ

(︁{𝑥 ∈ (𝑎 , 𝑏) | 𝑟(𝑥) < 0})︁ > 0, (3.3)

where µ denotes the Lebesgue measure. Sturm–Liouville differential expressions of this type and
associated operators are referred to as indefinite.

3.1 Self-adjoint realisations in Krein spaces

As in Chapter 1 we denote by 𝐿2((𝑎 , 𝑏), 𝑟) the Hilbert space (of equivalence classes) of measurable
functions 𝑓 : (𝑎 , 𝑏) → C such that 𝑟𝑓2 is integrable on (𝑎 , 𝑏), with the scalar product ⟨·,·⟩𝑟,

⟨𝑓, 𝑔⟩𝑟 :=
∫ 𝑏

𝑎
𝑓(𝑡)𝑔(𝑡) |𝑟(𝑡) | d𝑡, 𝑓, 𝑔 ∈ 𝐿2((𝑎 , 𝑏), 𝑟).

The weight function 𝑟 induces a Krein space. Let

𝐽 : 𝐿2((𝑎 , 𝑏), 𝑟) → 𝐿2((𝑎 , 𝑏), 𝑟), (𝐽𝑓) (𝑥) = sgn(𝑟(𝑥))𝑓(𝑥). (3.4)

Then 𝐽 = 𝐽−1 = 𝐽∗ and the space 𝐿2((𝑎 , 𝑏), 𝑟) equipped with the (indefinite) inner product [·,·]𝑟,

[𝑓, 𝑔]𝑟 := ⟨𝐽𝑓, 𝑔⟩𝑟 =
∫ 𝑏

𝑎
𝑓(𝑡)𝑔(𝑡)𝑟(𝑡) d𝑡, 𝑓, 𝑔 ∈ 𝐿2((𝑎 , 𝑏), 𝑟), (3.5)

is a Krein space with fundamental symmetry 𝐽. For the geometrical structure of Krein spaces we
refer to the monographs [3, 27]. All topological notations in the Krein space (𝐿2((𝑎 , 𝑏), 𝑟), [·,·]𝑟)
are understood with respect to the topology induced by the norm corresponding to the scalar product
⟨·,·⟩𝑟. Note that any two Banach space norms on 𝐿2((𝑎 , 𝑏), 𝑟) such that the inner product [·,·]𝑟 is
continuous (in one, or equivalently, in both arguments) with respect to each of these norms, are
equivalent, see [77, Proposition 1.2].

47
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For a densely defined operator 𝐴 in 𝐿2((𝑎 , 𝑏),∞) the adjoint operator with respect to the inner
product [·,·]𝑟 is given by

𝐴+ ≔ 𝐽𝐴∗𝐽 (3.6)

and one has
[𝐴𝑓, 𝑔]𝑟 = [𝑓,𝐴+𝑔]𝑟 for all 𝑓 ∈ D(𝐴), 𝑔 ∈ D(𝐴+). (3.7)

If 𝐴 = 𝐴+ then 𝐴 is called self-adjoint in the Krein space (𝐿2(𝑎 , 𝑏), 𝑟), [·,·]𝑟). The fundamental
symmetry 𝐽 in (3.4) establishes a one-to-one correspondence between the self-adjoint operators in
the Krein space (𝐿2(𝑎 , 𝑏), 𝑟), [·,·]𝑟) and the self-adjoint operators in the Hilbert space 𝐿2((𝑎 , 𝑏), 𝑟).
An operator 𝐴,

𝐴𝑓 ≔ ℓ𝑓 =
1
𝑟

(︁−(𝑝𝑓′) ′ + 𝑞𝑓)︁
, D(𝐴) ⊂ 𝐿2((𝑎 , 𝑏), 𝑟), (3.8)

is a self-adjoint realisation of ℓ in the Krein space (𝐿2(𝑎 , 𝑏), 𝑟), [·,·]𝑟) if and only if

𝑇 = 𝐽𝐴, D(𝑇 ) = D(𝐴), (3.9)

is a self-adjoint realisation of the definite differential expression

# =
1
|𝑟 |

(︃
− d

d𝑥
𝑝

d
d𝑥

+ 𝑞
)︃

(3.10)

in the Hilbert space 𝐿2((𝑎 , 𝑏), 𝑟). If # is in the limit-point case at both endpoints, then the only
self-adjoint realisation 𝐴 of ℓ in the Krein space (𝐿2(𝑎 , 𝑏), 𝑟), [·,·]𝑟) is given by 𝐴 = 𝐽𝑇max, where
𝑇max is the maximal operator associated with #, cf. (1.9) and Proposition 1.1 (iii).

In contrast to definite Sturm–Liouville operators the self-adjoint realisations of ℓ in the Krein
space (𝐿2(𝑎 , 𝑏), 𝑟), [·,·]𝑟) may have non-real spectral points which may accumulate, see e. g.
[12, 13, 79, 92]. In general, for a self-adjoint operator in a Krein space the spectrum, the resolvent set
and the set of eigenvalues with finite algebraic multiplicity are symmetric with respect to the real axis,
see [27, Chapter XI]. If the corresponding definite differential expression # is regular at both endpoints,
then the spectrum of any self-adjoint realisation of ℓ in the Krein space (𝐿2(𝑎 , 𝑏), 𝑟), [·,·]𝑟) consists
only of isolated eigenvalues of finite algebraic multiplicity, where the non-real spectrum is finite, and
the real eigenvalues accumulate at ∞ and −∞, cf. [36].

In the case of at least one singular endpoint the situation is more complicated as there may occur
non-empty essential spectrum. If the weight function 𝑟 has constant definite sign near the endpoints,
the essential spectrum can be calculated in terms of definite operators. For an interval (𝛼, 𝛽) ⊂ (𝑎 , 𝑏)
let 𝑇min(𝛼, 𝛽) and 𝑇 (𝛼, 𝛽) denote the minimal operator (see (1.11)) and an arbitrary self-adjoint
realisation associated with definite expression # ↾ (𝛼, 𝛽) in the Hilbert space 𝐿2((𝛼, 𝛽), 𝑟).
Proposition 3.1. Suppose that the coefficients of ℓ satisfy (3.2), (3.3) and let 𝐴 be a self-adjoint
realisation of ℓ in the Krein space (𝐿2(𝑎 , 𝑏), 𝑟), [·,·]𝑟). Assume that there are 𝑐, 𝑑 ∈ (𝑎 , 𝑏), 𝑐 < 𝑑,
such that 𝑟 ↾ (𝑎 , 𝑐) has a. e. constant sign 𝑠𝑎 ∈ {−1, 1} and 𝑟 ↾ (𝑑, 𝑏) has a. e. constant sign
𝑠𝑏 ∈ {−1, 1}. Then

σess(𝐴) = σess
(︁
𝑠𝑎𝑇 (𝑎 , 𝑐)

)︁ ∪ σess
(︁
𝑠𝑏𝑇 (𝑑, 𝑏)

)︁
. (3.11)

In particular, the essential spectrum of 𝐴 is real.

Proof. We identify the space 𝐿2((𝑎 , 𝑏), 𝑟) with the orthogonal sum

𝐿2((𝑎 , 𝑐), 𝑟) ⊕ 𝐿2((𝑐,𝑑), 𝑟) ⊕ 𝐿2((𝑑, 𝑏), 𝑟). (3.12)
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Let 𝐽 (𝑐,𝑑) = 𝐽 ↾ 𝐿2((𝑐,𝑑), 𝑟) and consider

�̃� ≔ 𝐽
⎛⎜⎝
𝑇 (𝑎 , 𝑐) 0 0

0 𝑇 (𝑐,𝑑) 0
0 0 𝑇 (𝑑, 𝑏)

⎞⎟⎠ = ⎛⎜⎝
𝑠𝑎𝑇 (𝑎 , 𝑐) 0 0

0 𝐽 (𝑐,𝑑)𝑇 (𝑐,𝑑) 0
0 0 𝑠𝑏𝑇 (𝑑, 𝑏)

⎞⎟⎠ . (3.13)

Then by Lemma 1.3 the operators 𝑇 = 𝐽𝐴 and 𝑇 = 𝐽�̃� are both self-adjoint finite-dimensional
extensions of

𝑇0 =
⎛⎜⎝
𝑇min(𝑎 , 𝑐) 0 0

0 𝑇min(𝑐,𝑑) 0
0 0 𝑇min(𝑑, 𝑏)

⎞⎟⎠ (3.14)

in the Hilbert space 𝐿2((𝑎 , 𝑏), 𝑟). Hence, the closed operators 𝐴 and �̃� are finite-dimensional
extensions of 𝐽𝑇0 and share the same essential spectrum, see e. g. [40, Lemma 11.3.2]. Together with
(3.13) this shows

σess(𝐴) = σess(�̃�) = σess(𝑠𝑎𝑇 (𝑎 , 𝑐)) ∪ σess(𝐽 (𝑐,𝑑)𝑇 (𝑐,𝑑)) ∪ σess(𝑠𝑏𝑇 (𝑑, 𝑏)). (3.15)

Since the operator 𝐽 (𝑐,𝑑)𝑇 (𝑐,𝑑) is a regular (possibly indefinite) Sturm–Liouville operator it has
empty essential spectrum, cf. [36]. □

Remark 3.2. If in addition to σess(𝐴) ⊂ R the resolvent set of 𝐴 is non-empty, then the set
σ (𝐴) \ σess(𝐴) is countable, with no accumulation points in C \ σess(𝐴), and consists of isolated
eigenvalues of 𝐴 with finite algebraic multiplicity, cf. [50, Chapter XVII, Theorem 2.1]. Sufficient
conditions implying ρ(𝐴) ≠ ∅ are discussed in [16, 87]. In the situation where # is, for instance, in
the limit-point case at both endpoints, the semi-boundedness of the maximal operator 𝑇max, or of at
least one of the operators 𝑇 (𝑎 , 𝑐) and 𝑇 (𝑑, 𝑏) guarantees ρ(𝐴) ≠ ∅, cf. [16, Theorem 4.5] and [87,
Satz 2.14]. ⋄

3.2 Stability of the essential spectrum under perturbation

In this section we study the stability of the essential spectra of indefinite Sturm–Liouville operators
under perturbations. Let

ℓ𝑗 =
1
𝑟𝑗

(︃
− d

d𝑥
𝑝𝑗

d
d𝑥

+ 𝑞𝑗
)︃

(3.16)

for 𝑗 = 0, 1 be indefinite Sturm–Liouville differential expressions on a joint open interval (𝑎 , 𝑏),
where −∞ ≤ 𝑎 < 𝑏 ≤ ∞, such that the coefficients satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝𝑗 , 𝑞𝑗 , 𝑟𝑗 are real-valued functions on (𝑎 , 𝑏),
𝑝𝑗 (𝑥) > 0, 𝑟𝑗 (𝑥) ≠ 0 for almost all 𝑥 ∈ (𝑎 , 𝑏),
1/𝑝𝑗 , 𝑞𝑗 , 𝑟𝑗 ∈ 𝐿1

loc(𝑎 , 𝑏)
(3.17)

and
µ
(︁{𝑥 ∈ (𝑎 , 𝑏) | 𝑟𝑗 (𝑥) > 0})︁ > 0 and µ

(︁{𝑥 ∈ (𝑎 , 𝑏) | 𝑟𝑗 (𝑥) < 0})︁ > 0. (3.18)

The corresponding definite expressions are denoted by #0 and #1.
Given a self-adjoint realisation 𝐴0 of ℓ0 in (𝐿2((𝑎 , 𝑏), 𝑟0), [·,·]𝑟0) and a self-adjoint realisation

𝐴1 of ℓ1 in (𝐿2((𝑎 , 𝑏), 𝑟1), [·,·]𝑟1) we provide conditions in terms of the coefficients of ℓ0 and ℓ1
such that

σess(𝐴0) = σess(𝐴1).
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We are particularly interested in the case 𝑟0 ≠ 𝑟1. The main problem in this situation is, of course,
the fact that both operators act in different Hilbert spaces. Therefore, standard perturbation results
(see e. g. [64]) are not directly applicable.

In what follows let 𝑇𝑗 (𝛼, 𝛽), 𝑗 = 0, 1, for (𝛼, 𝛽) ⊂ (𝑎 , 𝑏) be an arbitrary self-adjoint realisation of
the definite expression #𝑗 ↾ (𝛼, 𝛽) in 𝐿2((𝛼, 𝛽), 𝑟𝑗).
Theorem 3.3. Suppose that (3.17), (3.18) hold for 𝑗 = 0, 1 and let𝐴𝑗 be any self-adjoint realisation
of ℓ𝑗 in the Krein space

(︁
𝐿2((𝑎 , 𝑏), 𝑟𝑗), [·,·]𝑟𝑗

)︁
. For each endpoint 𝑒 ∈ {𝑎 , 𝑏} suppose that the

coefficients of ℓ0 and ℓ1 satisfy

(α) lim
𝑥→𝑒

𝑟1(𝑥)
𝑟0(𝑥)

= 1, lim
𝑥→𝑒

𝑝1(𝑥)
𝑝0(𝑥)

= 1, lim
𝑥→𝑒

𝑞1(𝑥) − 𝑞0(𝑥)
𝑟0(𝑥)

= 0;

(β) 𝑞0/𝑟0 is bounded near 𝑒, or 𝑝0 = 𝑝1 in a neighbourhood of 𝑒;

(γ) 𝑟0 has constant definite sign near 𝑒.

Then
σess(𝐴1) = σess(𝐴0) ⊂ R. (3.19)

Proof. By condition (γ) we find 𝑎 < 𝑐 < 𝑑 < 𝑏 such that 𝑟0 ↾ (𝑎 , 𝑐) has definite sign 𝑠𝑎 ∈ {−1, 1},
and 𝑟 ↾ (𝑑, 𝑏) has definite sign 𝑠𝑏 ∈ {−1, 1}. Then by condition (α) we have |𝑟1/𝑟0 − 1| < 1/2 and,
thus,

0 <
𝑠𝑎𝑟0

2
< 𝑠𝑎𝑟1

near 𝑎 . This shows that the sign of 𝑟1 is constant in a neighbourhood of 𝑎 and coincides there with
𝑠𝑎 ; without loss of generality we assume that this neighbourhood equals (𝑎 , 𝑐). A similar argument
shows that the sign of 𝑟1 equals 𝑠𝑏 (without loss of generality) on (𝑑, 𝑏). Theorem 2.18 implies
σess(𝑇0(𝑑, 𝑏)) = σess(𝑇1(𝑑, 𝑏)). Similarly, σess(𝑇0(𝑎 , 𝑐)) = σess(𝑇1(𝑎 , 𝑐)). From Proposition 3.1 we
obtain

σess(𝐴1) = σess(𝑠𝑎𝑇1(𝑎 , 𝑐)) ∪ σess(𝑠𝑏𝑇1(𝑑, 𝑏))

= σess(𝑠𝑎𝑇0(𝑎 , 𝑐)) ∪ σess(𝑠𝑏𝑇0(𝑑, 𝑏)) = σess(𝐴0) ⊂ R. □

We proceed with a perturbation result for indefinite periodic Sturm–Liouville operators. The
spectral properties of indefinite Sturm–Liouville operators with periodic coefficients are studied in
[88]. In the next theorem the coefficients of the unperturbed operator are required to be periodic at
least near the endpoints.

Theorem 3.4. Suppose that (3.17), (3.18) hold for 𝑗 = 0, 1, where (𝑎 , 𝑏) = R, and let 𝐴𝑗 be
self-adjoint realisations of ℓ𝑗 in the Krein space (𝐿2(R, 𝑟𝑗), [·,·]𝑟𝑗 ). Assume that the following
conditions hold:

(α) there exist 𝑐,𝑑 ∈ R, 𝑐 < 𝑑, such that 𝑝0, 𝑞0, 𝑟0 are (-periodic, ( > 0, on (𝑑,∞) and
�-periodic, � > 0, on (−∞, 𝑐);

(β) both functions 𝑟0 and 𝑟1 have constant definite sign a. e. on (−∞, 𝑐) and constant definite sign
a. e. on (𝑑,∞);
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(γ) the coefficients 𝑝1, 𝑞1, 𝑟1 satisfy∫
R

(︃|︁|︁|︁|︁ 1
𝑝0(𝑡)

− 1
𝑝1(𝑡)

|︁|︁|︁|︁ + |︁|︁𝑞0(𝑡) − 𝑞1(𝑡)
|︁|︁ + |︁|︁𝑟0(𝑡) − 𝑟1(𝑡)

|︁|︁)︃ d𝑡 < ∞. (3.20)

Then
σess(𝐴1) = σess(𝐴0) ⊂ R and ρ(𝐴1) ≠ ∅. (3.21)

Proof. Observe that (3.20) implies that 𝑟0 and 𝑟1 have the same signs near ∞ and near −∞. In fact,
if the signs would differ for instance near ∞ then∫ ∞

𝑑
|𝑟1(𝑡) − 𝑟0(𝑡) | d𝑡 ≥

∫ ∞

𝑑
|𝑟0(𝑡) |d𝑡, (3.22)

where the left integral exists and the right integral diverges because 𝑟0 is periodic on (𝑑,∞); a
contradiction. Let 𝑠−∞ and 𝑠∞ denote the joint sign of 𝑟0 and 𝑟1 near −∞ and ∞, respectively. Since
#0 ↾ (𝑑,∞) is periodic, Theorem 2.26 yields σess(𝑇0(𝑑,∞)) = σess(𝑇1(𝑑,∞)). Similarly one has
σess(𝑇0(−∞, 𝑐)) = σess 𝑇1(−∞, 𝑐). Finally, Proposition 3.1 implies

σess(𝐴1) = σess(𝑠−∞𝑇1(−∞, 𝑐)) ∪ σess(𝑠∞𝑇1(−∞, 𝑐))

= σess(𝑠−∞𝑇0(−∞, 𝑐)) ∪ σess(𝑠∞𝑇0(𝑑,∞)) = σess(𝐴0) ⊂ R.
(3.23)

A further consequence of Theorem 2.26 is that the corresponding definite differential expression #1
is in the limit-point case at the endpoint ∞ and 𝑇1(𝑑,∞) is semi-bounded from below. Similarly
one has that #1 is in the limit-point case at −∞. Hence, by Remark 3.2 the resolvent set of 𝐴1 is
non-empty. □

Recall that the essential spectra of the periodic definite operators 𝑇0(−∞, 𝑐) and 𝑇0(𝑑,∞) in the
previous proof have a special band structure,

σess(𝑇0(−∞, 𝑐)) =
⋃︂
𝑛∈N

[�−
2𝑛,�

−
2𝑛+1], σess(𝑇0(𝑑,∞)) =

⋃︂
𝑛∈N

[�+
2𝑛,�

+
2𝑛+1], (3.24)

where �±
0 < �±

1 ≤ �±
2 < �±

3 ≤ �±
4 < . . . with �±

𝑛 → ∞ as 𝑛 → ∞, cf. Proposition 2.24.

Corollary 3.5. Let the conditions of Theorem 3.4 hold. If 𝑟1 has negative sign near −∞ and positive
sign near ∞ then

σess(𝐴1) = σess(𝐴0) =
⋃︂
𝑛∈N

(︁[�+
2𝑛,�

+
2𝑛+1] ∪ [−�−

2𝑛+1,−�−
2𝑛]

)︁
. (3.25)

3.3 Eigenvalues in the gap of the essential spectrum

If an indefinite self-adjoint Stum–Liouville operator 𝐴 has real essential spectrum and non-empty
resolvent set, then for any gap 𝐺 of the essential spectrum the set σ (𝐴) ∩ 𝐺 consists of countably
many isolated eigenvalues of 𝐴 with finite algebraic multiplicity, cf. Remark 3.2. In this section we
analyse the accumulation of the point spectrum at the boundaries of gaps.

Let ℓ0, ℓ1 be indefinite Sturm–Liouville expressions as in (3.16) on R with coefficients satisfying
(3.17) and (3.18) for 𝑗 = 0, 1. Unless stated otherwise it is assumed that the corresponding definite
differential expressions #0 and #1 are in the limit-point case at both endpoints. Therefore, there are
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unique self-adjoint realisations 𝐴0 and 𝐴1 of ℓ0 and ℓ1, respectively, in the corresponding Krein
spaces. As before let 𝑇0(𝛼, 𝛽), 𝑇1(𝛼, 𝛽) for −∞ ≤ 𝛼 < 𝛽 ≤ ∞ denote arbitrary self-adjoint operators
associated with #0 ↾ (𝛼, 𝛽), #1 ↾ (𝛼, 𝛽), respectively.

Our analysis is based on the next proposition.

Proposition 3.6 ([15, Theorem 5.1]). Consider an indefinite Sturm–Liouville differential expression
ℓ1 on R and suppose that (3.17), (3.18) are satisfied for 𝑗 = 1. Further, assume that the following
conditions hold:

(α) the corresponding definite differential expression #1 is in the limit-point case at both endpoints;

(α) there are 𝑐,𝑑 ∈ R, 𝑐 < 𝑑, such that 𝑟1 is negative a. e. on (−∞, 𝑐) and positive a. e. on (𝑑,∞);

(γ) the operators 𝑇1(−∞, 𝑐) and 𝑇1(𝑑,∞) are semi-bounded from below, where

𝑚−∞ ≔ inf σess(𝑇1(−∞, 𝑐)) and 𝑚∞ ≔ inf σess(𝑇1(𝑑,∞)). (3.26)

Let 𝐴1 be the unique self-adjoint realisation of ℓ1 in the Krein space (𝐿2(R, 𝑟1), [·,·]𝑟1).

(i) Provided that −𝑚−∞ < 𝑚∞, the set σ (𝐴1) ∩ (−𝑚−∞,𝑚∞) accumulates at 𝑚∞ if and only
if σ (𝑇1(𝑑,∞)) ∩ (−∞,𝑚∞) accumulates at 𝑚∞, and σ (𝐴1) ∩ (−𝑚−∞,𝑚∞) accumulates at
−𝑚−∞ if and only if σ (𝑇1(−∞, 𝑐)) ∩ (−∞,𝑚−∞) accumulates at 𝑚−∞.

Let 𝐺 be an open interval with 𝐺 ∩ σess(𝐴1) = ∅.

(ii) If 𝐺 ⊂ (−𝑚−∞,∞) and σ (𝑇1(𝑑,∞)) ∩ 𝐺 is finite, then σ (𝐴1) ∩ 𝐺 is finite.

(iii) If 𝐺 ⊂ (−∞,𝑚∞) and σ (−𝑇1(−∞, 𝑐)) ∩ 𝐺 is finite, then σ (𝐴1) ∩ 𝐺 is finite.

We prove a variant of Kneser’s result [67] for indefinite Sturm–Liouville operators.

Theorem 3.7. Consider an indefinite Sturm–Liouville differential expression ℓ1 on R and suppose
that (3.17), (3.18) hold for 𝑗 = 1, where the limits

𝑟∞ ≔ lim
𝑥→∞ 𝑟1(𝑥), 𝑝∞ ≔ lim

𝑥→∞𝑝1(𝑥), 𝑞∞ ≔ lim
𝑥→∞ 𝑞1(𝑥),

𝑟−∞ ≔ lim
𝑥→−∞ 𝑟1(𝑥), 𝑝−∞ ≔ lim

𝑥→−∞𝑝1(𝑥), 𝑞−∞ ≔ lim
𝑥→−∞ 𝑞1(𝑥)

(3.27)

exist in R such that 𝑟∞ > 0, 𝑝∞ > 0, 𝑟−∞ < 0, 𝑝−∞ > 0. Then the corresponding definite differential
expression #1 is in the limit-point case at both endpoints and the uniquely determined self-adjoint
realisation 𝐴1 of ℓ1 in (𝐿2(R, 𝑟1), [·,·]𝑟1) satisfies

σess(𝐴1) = (−∞, 𝑞−∞/𝑟−∞] ∪ [𝑞∞/𝑟∞,∞) and ρ(𝐴1) ≠ ∅. (3.28)

Provided that 𝑞−∞/𝑟−∞ < 𝑞∞/𝑟∞, the essential spectrum has a gap 𝐺 = (𝑞−∞/𝑟−∞, 𝑞∞/𝑟∞) and the
set σ (𝐴1) ∩ 𝐺 consists of isolated eigenvalues of 𝐴1 with finite algebraic multiplicity.

(i) The set σ (𝐴1) ∩ 𝐺 accumulates at 𝑞∞/𝑟∞ if

lim sup
𝑥→∞

𝑥2
(︃
𝑞1(𝑥) −

𝑞∞
𝑟∞

𝑟1(𝑥)
)︃
< −𝑝∞

4
. (3.29)



3.3 Eigenvalues in the gap of the essential spectrum 53

(ii) The set σ (𝐴1) ∩ 𝐺 does not accumulate at 𝑞∞/𝑟∞ if

lim inf
𝑥→∞ 𝑥2

(︃
𝑞1(𝑥) −

𝑞∞
𝑟∞

𝑟1(𝑥)
)︃
> −𝑝∞

4
. (3.30)

(iii) The set σ (𝐴1) ∩ 𝐺 accumulates at 𝑞−∞/𝑟−∞ if

lim sup
𝑥→−∞

𝑥2
(︃
𝑞1(𝑥) −

𝑞−∞
𝑟−∞

𝑟1(𝑥)
)︃
< −𝑝−∞

4
. (3.31)

(iv) The set σ (𝐴1) ∩ 𝐺 does not accumulate at 𝑞−∞/𝑟−∞ if

lim inf
𝑥→−∞ 𝑥2

(︃
𝑞1(𝑥) −

𝑞−∞
𝑟−∞

𝑟1(𝑥)
)︃
> −𝑝−∞

4
. (3.32)

Proof. By (3.27) there are 𝑐,𝑑 ∈ R, 𝑐 < 𝑑 such that 𝑟 ↾ (−∞, 𝑐) is negative and 𝑟 ↾ (𝑑,∞) is positive.
Lemma 2.22 yields that #1 is in the limit-point case at∞ and that the operator 𝑇1(𝑑,∞) is semi-bounded
from below with σess(𝑇1(𝑑,∞)) = [𝑞∞/𝑟∞,∞), where 𝑚∞ ≔ inf σess(𝑇1(𝑑,∞)) = 𝑞∞/𝑟∞. Similarly
one has that #1 is in the limit-point case at −∞ and that the operator 𝑇1(−∞, 𝑐) is semi-bounded from
below, where σess(𝑇1(−∞, 𝑐)) = [−𝑞−∞/𝑟−∞,∞) with 𝑚−∞ ≔ inf σess(𝑇1(−∞, 𝑐)) = −𝑞−∞/𝑟−∞.
Combining these results with Proposition 3.1 one arrives at

σess(𝐴1) = σess(−𝑇1(−∞, 𝑐)) ∪ σess(𝑇1(𝑑,∞)) = (−∞, 𝑞−∞/𝑟−∞] ∪ [𝑞∞/𝑟∞,∞). (3.33)

Further, ρ(𝐴1) ≠ ∅ by Remark 3.2.
Suppose that 𝑞−∞/𝑟−∞ < 𝑞∞/𝑟∞ and let 𝐺 = (𝑞−∞/𝑟−∞, 𝑞∞/𝑟∞) = (−𝑚−∞,𝑚∞). We analyse the

accumulation of σ (𝐴1) ∩ 𝐺 at 𝑞∞/𝑟∞. By means of Proposition 3.6 (i) this task reduces the to the
investigation of whether σ (𝑇1(𝑑,∞)) ∩ 𝐺 accumulates at 𝑚∞ = 𝑞∞/𝑟∞. By Lemma 2.22 the set
σ (𝑇1(𝑑,∞)) ∩ 𝐺 accumulates at 𝑚∞ if (3.29) holds, and it does not accumulate at 𝑚∞ if (3.30) is
valid. This shows (i) and (ii). Similarly, considering σ (−𝑇1(−∞, 𝑐)) ∩ 𝐺 one has (iii) and (iv). □

Recall the band structure of the essential spectra in the case of perturbed periodic operators treated
in Theorem 3.4 and Corollary 3.5. We next determine certain gaps of the essential spectrum which
contain at most finitely many eigenvalues.

Theorem 3.8. Suppose that the conditions of Theorem 3.4 and Corollary 3.5 hold, then the essential
spectrum of 𝐴1 is given by

σess(𝐴1) =
⋃︂
𝑛∈N

(︁[�+
2𝑛,�

+
2𝑛+1] ∪ [−�−

2𝑛+1,−�−
2𝑛]

)︁
.

If the condition ∫
R

(︃|︁|︁|︁|︁ 1
𝑝0(𝑡)

− 1
𝑝1(𝑡)

|︁|︁|︁|︁ + |︁|︁𝑞0(𝑡) − 𝑞1(𝑡)
|︁|︁ + |︁|︁𝑟0(𝑡) − 𝑟1(𝑡)

|︁|︁)︃ |𝑡 | d𝑡 < ∞ (3.34)

is satisfied, then each of the gaps of the essential spectrum

(�+
2𝑛+1,�

+
2𝑛+2), where − �−

0 < �+
2𝑛+1 < �+

2𝑛+2, and

(−�−
2𝑘+2,−�−

2𝑘+1), where − �−
2𝑘+2 < −�−

2𝑘+1 < �+
0 ,

(3.35)

contains each at most finitely many eigenvalues of 𝐴1.
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Proof. The corresponding definite differential expression #1 is in the limit-point case at both end-
points, cf. Theorem 2.26. We have 𝑚∞ ≔ inf σess(𝑇1(𝑑,∞)) = �+

0 and 𝑚−∞ ≔ inf σess(𝑇1(−∞, 𝑐)) =
�−

0 , cf. (3.24). Theorem 2.26 implies that each set σ (𝑇1(𝑑,∞) ∩ (�+
2𝑛+1,�

+
2𝑛+2), 𝑛 ∈ N, is finite. For

�+
2𝑘+1 > −𝑚−∞ = −�−

0 Proposition 3.6 (ii) implies that the set σ (𝐴1) ∩ (�+
2𝑛+1,�

+
2𝑛+2) is finite. In a

similar way one can treat the gap (−�−
2𝑘+2,−�−

2𝑘+1). □



Chapter 4

The non-real spectra of indefinite
Sturm–Liouville operators

In this chapter we focus on the non-real spectra of indefinite Sturm–Liouville operators. The main
objective is to provide bounds for the non-real eigenvalues of an indefinite Sturm–Liouville operator.
These bounds are described in terms of the coefficients of the corresponding differential expression.
Parts of this chapter are adapted from the article [20].

In the following the space 𝐿1
u (R) of locally uniformly integrable functions on R, i. e.

𝐿1
u (R) =

{︁
𝑓 ∈ 𝐿1

loc(R) : ∥𝑓∥u < ∞}︁
, ∥𝑓∥u := sup

𝑛∈Z

∫ 𝑛+1

𝑛
|𝑓(𝑡) | d𝑡,

is of particular importance. Note that 𝐿𝑠 (R) ⊂ 𝐿1
u (R) for every 𝑠 ∈ [1,∞] ≔ [1,∞) ∪ {∞}. This

follows from Hölder’s inequality which implies ∥𝑓∥u ≤ ∥𝑓∥𝑠 for 𝑓 ∈ 𝐿𝑠 (R), 𝑠 ∈ [1,∞], where ∥ · ∥𝑠
denotes the usual norm on 𝐿𝑠 (R).

Our standing assumptions on the indefinite differential expression ℓ are collected in the next
hypothesis.

Hypothesis 4.1. The differential expression ℓ on R of the form (3.1) satisfies (3.2), (3.3) and the
assumptions

(α) there exist 𝑐,𝑑 ∈ R, 𝑐 < 𝑑, such that

𝐶𝑟 ≔ ess inf
𝑥∈R\[𝑐,𝑑]

|𝑟(𝑥) | > 0

and 𝑟 has constant definite sign a. e. on (−∞, 𝑐) and constant definite sign a. e. on (𝑑,∞);
(β) 𝑞 ∈ 𝐿1

u (R);
(γ) 1/𝑝 ∈ 𝐿� (R) for some � ∈ [1,∞]. ⋄
Properties of the corresponding definite differential expression # and the domain 𝒟(#) of the
associated maximal operator 𝑇max (cf. (1.6) and (1.9)) are collected in Appendix A.

55
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We now turn to immediate consequences of the conditions in Hypothesis 4.1.

Theorem 4.2. Under Hypothesis 4.1 the operator 𝐴 = 𝐽𝑇max is the only self-adjoint realisation of
ℓ in the Krein space (𝐿2(R, 𝑟), [·,·]𝑟). The essential spectrum of 𝐴 is real and ρ(𝐴) ≠ ∅. The set
σ (𝐴) \R is countable, with no accumulation point in C \R, and consists of eigenvalues of 𝐴 with
finite algebraic multiplicity.

Proof. By Corollary A.5 the maximal operator 𝑇max associated with definite differential expression
# is the only self-adjoint realisation of the # in 𝐿2(R, 𝑟). Therefore, 𝐴 = 𝐽𝑇max is the only self-adjoint
realisation of ℓ in (𝐿2(R, 𝑟), [·,·]𝑟). Hypothesis 4.1 (α) together with Proposition 3.1 yields
σess(𝐴) ⊂ R. As another consequence of Corollary A.5 the operator 𝑇max is semi-bounded from
below. Thus, ρ(𝐴) ≠ ∅ and the assertion for the non-real spectrum of 𝐴 follows, cf. Remark 3.2. □

Hereinafter, we always consider the operator 𝐴 = 𝐽𝑇max, where D(𝐴) = D(𝑇max) = 𝒟(#).

4.1 Bounds on the non-real eigenvalues

Since the operator 𝐴 is self-adjoint with respect to the inner product [·,·]𝑟, the sesquilinear form
[𝐴·,·]𝑟 on D(𝐴) is symmetric and [𝐴𝑓,𝑓]𝑟 ∈ R for all 𝑓 ∈ D(𝐴). Given � ∈ C\R and 𝑓 ∈ D(𝐴)
with 𝐴𝑓 = �𝑓 one has Im(�[𝑓,𝑓]𝑟) = Im( [𝐴𝑓,𝑓]𝑟) = 0, which yields

0 = [𝑓,𝑓]𝑟 = [𝐴𝑓,𝑓]𝑟 = ⟨𝑇max𝑓,𝑓⟩𝑟 = ⟨#𝑓,𝑓⟩𝑟. (4.1)

In particular, one has for the kernel of 𝐴 − �

N(𝐴 − �) ⊂ 𝒟−(#) ≔ {𝑓 ∈ 𝒟(#) | ⟨#𝑓,𝑓⟩𝑟 ≤ 0} for all � ∈ C \R, (4.2)

cf. (A.9) in Appendix A. Based on this observation we derive bounds on the non-real spectrum.
In what follows, we consider the decomposition of the real-valued function 𝑞 into its positive part

𝑞+ and its negative part 𝑞−, i. e.

𝑞 = 𝑞+ − 𝑞−, where 𝑞+ ≔
|𝑞 | + 𝑞

2
and 𝑞− ≔

|𝑞 | − 𝑞

2
. (4.3)

Lemma 4.3. Suppose that Hypothesis 4.1 holds true and let at least one of the following conditions
holds:

(i) 𝑞−(𝑥) = 0 for almost all 𝑥 ∈ R;

(ii) 𝑞(𝑥) ≥ 𝑐 · 𝑟(𝑥) for almost all 𝑥 ∈ R and some real 𝑐 ≠ 0.

Then there are no non-real eigenvalues of 𝐴 and the spectrum of 𝐴 is real.

Proof. In the case (i) the assertion follows from (4.2) and Lemma A.9 (vii). If the condition in (ii)
holds, then for every � ∈ C \R and 𝑓 ∈ N (𝐴 − �)

0 = 𝑐 · [𝑓,𝑓]𝑟 = 𝑐 ·
∫
R

|𝑓(𝑡) |2𝑟(𝑡) d𝑡 ≤
∫
R

𝑞(𝑡) |𝑓(𝑡) |2 d𝑡

=
∫
R

(︁
𝑞+(𝑡) − 𝑞−(𝑡)

)︁ |𝑓(𝑡) |2 d𝑡 = ∥𝑞+𝑓2∥1 − ∥𝑞−𝑓2∥1.

(4.4)

The inclusion in (4.2) and Lemma A.6 imply ∥√𝑝𝑓′∥2 = 0, which together with Lemma A.10 yields
∥𝑓∥∞ = 0. Therefore, N(𝐴 − �) = {0}. □
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The next lemma states bounds on the non-real eigenvalues. These bounds are given in an implicit
way and depend on further parameters and a suitable function contained in the set

G𝑝 ≔

{︄
𝑔 ∈ AC(R) ∩ 𝐿∞(R)

|︁|︁|︁|︁|︁ 𝑔 is real-valued,

𝑔′ has compact support,
√
𝑝𝑔′ ∈ 𝐿2(R)

}︄
. (4.5)

In the following we use the short hand notations {𝑓 > 𝑐} ≔ {𝑥 ∈ R | 𝑓(𝑥) > 𝑐} and {𝑓 ≥ 𝑐},
{𝑓 < 𝑐}, etc. which are defined in a similar fashion. Recall that µ denotes the Lebesgue measure on
R.

Lemma 4.4. Suppose that Hypothesis 4.1 holds. Assume that there are constants 𝛼 ≥ 0, 𝛽 ≥ 0 and
a function 𝑔 ∈ G𝑝 such that for every function 𝑓 ∈ 𝒟−(#) the estimates

∥𝑞−𝑓2∥1 ≤ 𝛼∥𝑓∥2
2 and ∥𝑓∥2

∞ ≤ 𝛽∥𝑓∥2
2 (4.6)

hold and (𝑔𝛽 < 1, where

(𝑔 ≔

(︄
µ
(︁{𝑟𝑔 < 1})︁ + ∥𝑔∥∞

∫
{𝑟𝑔<0}

|𝑟(𝑡) | d𝑡
)︄
. (4.7)

If � is a non-real eigenvalue of 𝐴, then

|Im �| ≤
√︁
𝛼𝛽∥√𝑝𝑔′∥2(︂
1 − (𝑔𝛽

)︂ and |�| ≤
√︁
𝛼𝛽∥√𝑝𝑔′∥2 + 3∥𝑔∥∞𝛼(︂

1 − (𝑔𝛽
)︂ . (4.8)

Proof. Let � be a non-real eigenvalue of 𝐴 and 𝑓 a corresponding eigenfunction. Then 𝑓 ∈ 𝒟−(#)
by (4.2). Further, 𝑓, √𝑝𝑓′ ∈ 𝐿2(R) and 𝑞𝑓2 ∈ 𝐿1(R) with lim |𝑥 |→∞(𝑝𝑓′) (𝑥)𝑓(𝑥) = 0 by
Lemma A.4. We consider the real-valued, absolutely continuos functions 𝑈 and 𝑉 on R given by

𝑈 (𝑥) ≔
∫ ∞

𝑥
𝑟(𝑡) |𝑓(𝑡) |2 d𝑡 and 𝑉 (𝑥) ≔

∫ ∞

𝑥

(︂
𝑝(𝑡) |𝑓′(𝑡) |2 + 𝑞(𝑡) |𝑓(𝑡) |2

)︂
d𝑡. (4.9)

Obviously, lim𝑥→∞𝑈 (𝑥) = lim𝑥→∞ 𝑉 (𝑥) = 0. With the eigenvalue equation 𝐴𝑓 = �𝑓 and
integration by parts, cf. (1.7) we arrive at

�𝑈 (𝑥) =
∫ ∞

𝑥
(𝐴𝑓) (𝑡)𝑓(𝑡)𝑟(𝑡) d𝑡 =

∫ ∞

𝑥
(#𝑓) (𝑡)𝑓(𝑡) |𝑟(𝑡) | d𝑡 = 𝑉 (𝑥) + (𝑝𝑓′) (𝑥)𝑓(𝑥). (4.10)

Therefore, 0 = [𝑓,𝑓]𝑟 = lim𝑥→−∞𝑈 (𝑥) = lim𝑥→−∞ 𝑉 (𝑥) = 0. Multiplication of (4.10) by 𝑔′ and
integration lead to

�

∫
R

𝑔′(𝑥)𝑈 (𝑥)d𝑥 =
∫
R

𝑔′(𝑥) (𝑝𝑓′) (𝑥)𝑓(𝑥) d𝑥 +
∫
R

𝑔′(𝑥)𝑉 (𝑥) d𝑥. (4.11)

Here, the compact support of 𝑔′ guarantees the existence of the integrals. With the Cauchy–Schwarz
inequality we find for the first integral on the right-hand side of (4.11) that|︁|︁|︁|︁∫

R

𝑔′(𝑥)𝑓(𝑥) (𝑝𝑓′) (𝑥) d𝑥
|︁|︁|︁|︁ ≤ ∥𝑓∥∞∥√𝑝𝑔′∥2∥

√
𝑝𝑓′∥2 ≤

√︁
𝛼𝛽∥√𝑝𝑔′∥2∥𝑓∥2

2, (4.12)
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where we applied Lemma A.6 and (4.6). Integration by parts of the second term on the right-hand
side of (4.11) together with the fact that lim |𝑥 |→∞ 𝑔(𝑥)𝑉 (𝑥) = 0, Lemma A.6 and (4.6) yields|︁|︁|︁|︁∫

R

𝑔′(𝑥)𝑉 (𝑥) d𝑥
|︁|︁|︁|︁ = |︁|︁|︁|︁−∫

R

𝑔(𝑥)𝑉 ′(𝑥) d𝑥
|︁|︁|︁|︁

=

|︁|︁|︁|︁∫
R

𝑔(𝑥)
(︂
𝑝(𝑥) |𝑓′(𝑥) |2 + 𝑞(𝑥) |𝑓(𝑥) |2

)︂
d𝑥

|︁|︁|︁|︁
≤ ∥𝑔∥∞

(︁∥√𝑝𝑓∥2
2 + ∥𝑞𝑓2∥1

)︁
≤ 3∥𝑔∥∞𝛼∥𝑓∥2

2.

(4.13)

We want to find a lower bound for the left-hand side in (4.11). From integration by parts and
lim |𝑥 |→∞ 𝑔(𝑥)𝑈 (𝑥) = 0 we obtain∫

R

𝑔′(𝑥)𝑈 (𝑥) d𝑥 = −
∫
R

𝑔(𝑥)𝑈 ′(𝑥) d𝑥

=
∫
R

𝑔(𝑥)𝑟(𝑥) |𝑓(𝑥) |2 d𝑥

=
∫

{𝑟𝑔<0}
𝑔(𝑥)𝑟(𝑥) |𝑓(𝑥) |2 d𝑥 +

∫
{𝑟𝑔≥0}

𝑔(𝑥)𝑟(𝑥) |𝑓(𝑥) |2 d𝑥.

(4.14)

For the first term on the right-hand side we have with the second inequality in (4.6) that∫
{𝑟𝑔<0}

𝑔(𝑥)𝑟(𝑥) |𝑓(𝑥) |2 d𝑥 ≥ −∥𝑔∥∞
∫

{𝑟𝑔<0}
|𝑟(𝑥) | |𝑓(𝑥) |2 d𝑥

≥ −∥𝑔∥∞∥𝑓∥2
∞

∫
{𝑟𝑔<0}

|𝑟(𝑥) | d𝑥 ≥ −𝛽∥𝑔∥∞∥𝑓∥2
2

∫
{𝑟𝑔<0}

|𝑟(𝑥) | d𝑥.

Further, ∫
{𝑟𝑔≥0}

𝑔(𝑥)𝑟(𝑥) |𝑓(𝑥) |2 d𝑥 ≥
∫

{𝑟𝑔≥1}
𝑔(𝑥)𝑟(𝑥) |𝑓(𝑥) |2 d𝑥 ≥

∫
{𝑟𝑔≥1}

|𝑓(𝑥) |2 d𝑥

=

(︄
∥𝑓∥2

2 −
∫

{𝑟𝑔<1}
|𝑓(𝑥) |2 d𝑥

)︄

≥ (︁∥𝑓∥2
2 − µ({𝑟𝑔 < 1})∥𝑓∥2

∞
)︁

≥ (︁
1 − µ({𝑟𝑔 < 1})𝛽)︁ ∥𝑓∥2

2,

(4.15)

where we used again (4.6). From (4.14) and (4.15) follows∫
R

𝑔′(𝑥)𝑈 (𝑥) d𝑥 ≥ (1 − (𝑔𝛽)∥𝑓∥2
2 > 0. (4.16)
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We compare the imaginary parts in (4.11). As a consequence of (4.12), (4.16) together with the fact
that 𝑔 and 𝑉 are real-valued functions we see

|Im �| (︁1 − (𝑔𝛽
)︁ ∥𝑓∥2

2 ≤
|︁|︁|︁|︁|︁Im

(︄
�

∫
R

𝑔′(𝑥)𝑈 (𝑥) d𝑥

)︄|︁|︁|︁|︁|︁ =
|︁|︁|︁|︁|︁Im

(︄∫
R

𝑔′(𝑥) (𝑝𝑓′) (𝑥)𝑓(𝑥) d𝑥

)︄|︁|︁|︁|︁|︁
≤

√︁
𝛼𝛽∥√𝑝𝑔′∥2∥𝑓∥2

2,

which proves the first estimate in (4.8). We compare both sides in (4.11) with respect to the absolute
value. Then by (4.13), (4.12), (4.16), and the fact that 𝑔, 𝑉 are real-valued functions we obtain

|�| (︁1 − (𝛽
)︁ ∥𝑓∥2

2 ≤
|︁|︁|︁|︁|︁
(︄
�

∫
R

𝑔′(𝑥)𝑈 (𝑥)d𝑥
)︄|︁|︁|︁|︁|︁ = |︁|︁|︁|︁∫

R

𝑔′(𝑥)
(︂
(𝑝𝑓′) (𝑥)𝑓(𝑥) + 𝑉 (𝑥)

)︂
d𝑥

|︁|︁|︁|︁
≤

(︂√︁
𝛼𝛽∥√𝑝𝑔′∥2 + 3∥𝑔∥∞𝛼

)︂
∥𝑓∥2

2,

which shows the second inequality in (4.8). □

At this point it should be mentioned that an admissible function 𝑔 ∈ G𝑝 always exist, cf. Theorem 4.18.
In Section 4.2 we discuss the choice of the function 𝑔 in more detail. The parameters 𝛼 and 𝛽 are
specified in Lemma A.9.

As a consequence of Lemma 4.4 and Lemma A.9 we arrive at the main theorems of this section,
which are stated in a similar form in [20].

Theorem 4.5. Assume that Hypothesis 4.1 holds with 1/𝑝 ∈ 𝐿∞(R) and define

𝛼 ≔ 2∥𝑞−∥u + 4∥1/𝑝∥∞∥𝑞−∥2
u.

Choose 𝑔 ∈ G𝑝 such that

(𝑔

(︁
4∥1/𝑝∥∞𝛼

)︁ 1
2 < 1

holds for (𝑔 as in (4.7). Then every non-real eigenvalue � of 𝐴 satisfies

|Im �| ≤
√

2∥1/𝑝∥
1
4∞∥√𝑝𝑔′∥2𝛼

3
4(︂

1 − (𝑔

(︁
4∥1/𝑝∥∞𝛼

)︁ 1
2
)︂ and |�| ≤

√
2∥1/𝑝∥

1
4∞∥√𝑝𝑔′∥2𝛼

3
4 + 3∥𝑔∥∞𝛼(︂

1 − (𝑔

(︁
4∥1/𝑝∥∞𝛼

)︁ 1
2
)︂ .

Proof. By Lemma A.9 (i) the estimates in (4.6) hold for all 𝑓 ∈ 𝒟−(#) with

𝛼 = 2∥𝑞−∥u + 4∥1/𝑝∥∞∥𝑞−∥2
u, 𝛽 =

(︁
4∥1/𝑝∥∞𝛼

)︁ 1
2 , where

√︁
𝛼𝛽 =

√
2∥1/𝑝∥

1
4∞𝛼

3
4 .

An application of Lemma 4.4 finishes the proof. □

We next state bounds on the non-real spectrum in the cases, where 𝑞− ∈ 𝐿𝑠 (R) and 1/𝑝 ∈ 𝐿� (R)
with �, 𝑠 ∈ [1,∞), which can also be found in [20, Theorem 2.4]. In addition, Theorem 4.7 below
addresses the case where 𝑠 = ∞ and � ∈ [1,∞), which was not considered in [20], but can treated in
a similar way.
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Theorem 4.6. Assume that Hypothesis 4.1 holds with 1/𝑝 ∈ 𝐿� (R) for some � ∈ [1,∞], and let
𝑞− ∈ 𝐿𝑠 (R) for some 𝑠 ∈ [1,∞), where 2 < � + 𝑠. Define

𝛽 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃(︂

2�−1
�

)︂2
∥1/𝑝∥�∥𝑞−∥𝑠

)︃ �𝑠
2�𝑠−�−𝑠

if �, 𝑠 ∈ [1,∞),(︁
4∥1/𝑝∥∞∥𝑞−∥𝑠

)︁ 𝑠
2𝑠−1 if � = ∞, 𝑠 ∈ [1,∞).

(4.17)

Choose 𝑔 ∈ G𝑝 such that (𝑔𝛽 < 1 holds for (𝑔 as in (4.7). Then every non-real eigenvalue � of 𝐴
satisfies

|Im �| ≤ ∥𝑞−∥
1
2
𝑠 𝛽

𝑠+1
2𝑠 ∥√𝑝𝑔′∥2

(1 − (𝑔𝛽)
and |�| ≤ ∥𝑞−∥

1
2
𝑠 𝛽

𝑠+1
2𝑠 ∥√𝑝𝑔′∥2 + 3∥𝑔∥∞∥𝑞−∥𝑠𝛽

1
𝑠

(1 − (𝑔𝛽)
. (4.18)

Proof. As a consequence of Lemma A.9 (ii) and (iii) the estimates in (4.6) hold for all 𝑓 ∈ 𝒟−(#)
with 𝛽 defined as in (4.17) and

𝛼 = ∥𝑞−∥𝑠𝛽
1
𝑠 , where

√︁
𝛼𝛽 = ∥𝑞−∥

1
2
𝑠 𝛽

𝑠+1
2𝑠 .

An application of Lemma 4.4 shows the assertion. □

Theorem 4.7. Assume that Hypothesis 4.1 holds with 1/𝑝 ∈ 𝐿� (R) for some � ∈ [1,∞] and let
𝑞− ∈ 𝐿∞(R). Define

𝛽 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃(︂

2�−1
�

)︂2
∥1/𝑝∥�∥𝑞−∥∞

)︃ �
2�−1

if � ∈ [1,∞),(︁
4∥1/𝑝∥∞∥𝑞−∥∞

)︁ 1
2 if � = ∞.

(4.19)

Choose 𝑔 ∈ G𝑝 such that (𝑔𝛽 < 1 holds for (𝑔 as in (4.7). Then every non-real eigenvalue � of 𝐴
satisfies

|Im �| ≤
(︁∥𝑞−∥∞𝛽)︁ 1

2 ∥√𝑝𝑔′∥2
(1 − (𝑔𝛽)

and |�| ≤
(︁∥𝑞−∥∞𝛽)︁ 1

2 ∥√𝑝𝑔′∥2 + 3∥𝑔∥∞∥𝑞−∥∞
(1 − (𝑔𝛽)

. (4.20)

Proof. With Lemma A.9 (iv) and (v) we see that in (4.6) hold for all 𝑓 ∈ 𝒟−(#) with 𝛽 defined as
in (4.19) and

𝛼 = ∥𝑞−∥∞, where
√︁
𝛼𝛽 =

(︁∥𝑞−∥∞𝛽)︁ 1
2 .

Now Lemma 4.4 finishes the proof. □

Note that the bounds in Theorem 4.5, Theorem 4.6 and Theorem 4.14 do not depend the norm of 𝑞
but on the norm of the negative part 𝑞−.

The previous two theorems cover all combinations of 1/𝑝 ∈ 𝐿� (R) and 𝑞− ∈ 𝐿𝑠 (R) for
�, 𝑠 ∈ [1,∞], except the case � = 𝑠 = 1. In this situation, which is slightly different, we give a
sufficient condition for the non-real spectrum to be empty.

Theorem 4.8. Suppose that Hypothesis 4.1 holds with 1/𝑝, 𝑞− ∈ 𝐿1(R). If in addition
∥1/𝑝∥1∥𝑞−∥1 < 1, then there are no non-real eigenvalues of 𝐴 and the spectrum of 𝐴 is real.

Proof. Lemma A.9 (vi) together with (4.2) proves the assertion. □
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4.2 Weight functions with finitely many turning points

In this section we discuss the choice of the parameter 𝑔 appearing in Theorem 4.5, Theorem 4.6 and
Theorem 4.7. The aim is to find a function 𝑔 ∈ G𝑝 such that the quantity

(𝑔 ≔ µ
(︁{𝑟𝑔 < 1})︁ + ∥𝑔∥∞

∫
{𝑟𝑔<0}

|𝑟(𝑡) | d𝑡 (4.21)

is sufficiently small.
To formulate the results below we first discuss the notation of sign changes of 𝑟 or, more precisely,

the turning points of 𝑟. In [36] the turning points of the weigh function 𝑟 are collected in the set

{𝑟 > 0} ∩ {𝑟 < 0}. (4.22)

As this definition depends on the representative of the equivalence class of 𝑟 in 𝐿1
loc(R) we use a

slightly different approach. Here, the turning points of 𝑟 are defined as the elements of the set

T𝑟 ≔
{︄
𝑥 ∈ R

|︁|︁|︁|︁|︁µ({𝑟 > 0} ∩ 𝐼) > 0 and µ({𝑟 < 0} ∩ 𝐼) > 0
for all open intervals 𝐼 containing 𝑥

}︄
. (4.23)

Observe that T𝑟 is a closed subset of the set in (4.22). In particular, under Hypothesis 4.1 the set T𝑟 is
bounded and, thus, compact. Furthermore, the set T𝑟 does not depend on the representative of the
equivalence class of 𝑟 in 𝐿1

loc(R).
In preparation for the construction of the function 𝑔 we need to prove some rather technicals

results regarding the weight 𝑟.

Lemma 4.9. Suppose that Hypothesis 4.1 holds and assume that T𝑟 is finite. Then there exists a
function 𝑤 ∈ 𝐿1

loc(R) with 𝑤 = 𝑟 a. e. such that the disjoint sets {𝑤 > 0} and {𝑤 < 0} are finite
unions of disjoint open intervals and the boundaries ){𝑤 > 0} and ){𝑤 < 0} satisfy

){𝑤 > 0} = ){𝑤 > 0} = {𝑤 > 0} ∩ {𝑤 < 0} = {𝑤 = 0} = T𝑤 = T𝑟. (4.24)

Proof. Let F+ be the family of all non-empty open intervals 𝐼 such that µ(𝐼 ∩ {𝑟 < 0}) = 0, and let
F− be the family of all non-empty open intervals 𝐼 such that µ(𝐼 ∩ {𝑟 > 0}) = 0. Then the sets

𝛶+ =
⋃︂
𝐼∈F+

𝐼, 𝛶− =
⋃︂
𝐼∈F−

𝐼 (4.25)

are open. For the unions in (4.25) it suffices to consider only open intervals with rational endpoints.
Thus, 𝛶+ and 𝛶− can be represented as unions of countably many intervals. Together with the
"-subadditivity of the Lebesgue measure this implies

µ(𝛶+ ∩ {𝑟 < 0}) = 0, µ(𝛶− ∩ {𝑟 > 0}) = 0. (4.26)

Let 𝑥 ∈ R \ T𝑟. Then there exists an open interval 𝐼 containing 𝑥 with µ(𝐼 ∩ {𝑟 > 0}) = 0 or
µ(𝐼 ∩ {𝑟 < 0}) = 0, and 𝑥 ∈ 𝛶+ ∪ 𝛶−. This implies

R = 𝛶+ ∪ 𝛶− ∪ T𝑟. (4.27)

By (4.25) it is clear, that 𝛶+ ∩ T𝑟 = ∅ and 𝛶− ∩ T𝑟 = ∅. We want to show 𝛶+ ∩ 𝛶− = ∅. Assume that
𝑥 ∈ 𝛶+ ∩ 𝛶−. Then there are open intervals 𝐼+ ∈ F+ and 𝐼− ∈ F− both containing 𝑥. The intersection
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𝐼+∩𝐼− is a non-empty open interval with µ(𝐼+∩𝐼−) = µ(𝐼+∩𝐼−∩{𝑟 > 0}) +µ(𝐼+∩𝐼−∩{𝑟 < 0}) = 0;
a contradiction. Therefore, the union in (4.27) is disjoint.

Since 𝛶+ and 𝛶− are open and disjoint we have

)𝛶+ ∩ 𝛶+ = ∅, )𝛶− ∩ 𝛶− = ∅, )𝛶+ ∩ 𝛶− = ∅, )𝛶− ∩ 𝛶+ = ∅. (4.28)

Here, (4.27) implies )𝛶+ ⊂ T𝑟 and )𝛶− ⊂ T𝑟. Let 𝑥 ∈ T𝑟. Since T𝑟 is finite there exists an non-empty
open interval (𝑎 , 𝑏) with (𝑎 , 𝑏) ∩ T𝑟 = {𝑥}. Then the non-empty open interval (𝑎 ,𝑥) is a connected
set and can be represented as the disjoint union of the two open sets (𝑎 ,𝑥) ∩𝛶+ and (𝑎 ,𝑥) ∩𝛶−. Thus,
either (𝑎 ,𝑥) ⊂ 𝛶+ or (𝑎 ,𝑥) ⊂ 𝛶−. A similar argument shows (𝑥, 𝑏) ⊂ 𝛶+ or (𝑥, 𝑏) ⊂ 𝛶−. By (4.23)
and (4.26) we obtain (𝑎 ,𝑥) ⊂ 𝛶+ and (𝑥, 𝑏) ⊂ 𝛶− or, alternatively, (𝑎 ,𝑥) ⊂ 𝛶− and (𝑥, 𝑏) ⊂ 𝛶+.
This shows 𝑥 ∈ )𝛶+ ∩ )𝛶− and, therefore, T𝑟 ⊂ )𝛶+ ∩ )𝛶−. Together with )𝛶+ ⊂ T𝑟 and )𝛶− ⊂ T𝑟
one obtains T𝑟 = )𝛶+ = )𝛶−. Moreover, (4.28) yields 𝛶+ ∩ 𝛶− = T𝑟. As T𝑟 is finite the sets 𝛶+ and 𝛶−
consist of finitely many disjoint open intervals.

We define

𝑤(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 if 𝑥 ∈ 𝛶+ \ {𝑟 > 0},
−1 if 𝑥 ∈ 𝛶− \ {𝑟 < 0},
𝑟(𝑥) if 𝑥 ∈ (𝛶+ ∩ {𝑟 > 0}) ∪ (𝛶− ∩ {𝑟 < 0}),
0 if 𝑥 ∈ T𝑟.

Then {𝑤 > 0} = 𝛶+ and {𝑤 < 0} = 𝛶− consist of finitely many open disjoint intervals and we have
T𝑟 = {𝑤 = 0}. Since T𝑟 has Lebesgue measure zero as well as the sets

𝛶+ \ {𝑟 > 0} = 𝛶+ ∩ ({𝑟 < 0} ∪ {𝑟 = 0}) and 𝛶− \ {𝑟 < 0} = 𝛶− ∩ ({𝑟 > 0} ∪ {𝑟 = 0}),
see (4.26), we have 𝑤 = 𝑟 a. e. Finally, the properties in (4.24) hold by construction of the sets
{𝑤 > 0} and {𝑤 < 0}. □

Lemma 4.10. Suppose that Hypothesis 4.1 holds and assume that T𝑟 is finite. Then for

0 < 𝛿 <
1
2

min
{︁|𝑥 − 𝑦 |

|︁|︁𝑥, 𝑦 ∈ T𝑟, 𝑥 ≠ 𝑦
}︁

there exists 𝑔 ∈ G𝑝 with 𝑟𝑔 > 0 a. e. such that ∥𝑔∥∞ = 1,

∥√𝑝𝑔∥2
2 =

∑︂
𝑥∈T𝑟

(︄∫ 𝑥

𝑥−𝛿

1
𝑝(𝑡) d𝑡

)︄−1

+
∑︂
𝑥∈T𝑟

(︄∫ 𝑥+𝛿

𝑥

1
𝑝(𝑡) d𝑡

)︄−1

,

and
{|𝑔| < 1} =

⋃︂
𝑥∈T𝑟

(𝑥 − 𝛿,𝑥 + 𝛿). (4.29)

Proof. By Lemma 4.9 we can assume without loss of generality that the sets {𝑟 > 0} and {𝑟 < 0}
consist of finitely many disjoint open intervals, where ){𝑟 > 0} = ){𝑟 < 0} = {𝑟 = 0} = T𝑟. Then
the function 𝑥 ↦→ sgn(𝑟(𝑥)) is piecewise constant with finitely many discontinuities, namely the
points in T𝑟. Let

𝑔(𝑥) ≔ sgn(𝑟(𝑥))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(︂∫ 𝑥

𝑦
1

𝑝 (𝑡) d𝑡
)︂ (︂∫ 𝑦+𝛿

𝑦
1

𝑝 (𝑡) d𝑡
)︂−1

if 𝑥 ∈ [𝑦, 𝑦 + 𝛿), 𝑦 ∈ T𝑟,(︂∫ 𝑦

𝑥
1

𝑝 (𝑡) d𝑡
)︂ (︂∫ 𝑦

𝑦−𝛿
1

𝑝 (𝑡) d𝑡
)︂−1

if 𝑥 ∈ (𝑦 − 𝛿, 𝑦), 𝑦 ∈ T𝑟,
1 otherwise.
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Then 𝑔 ∈ AC(R), ∥𝑔∥∞ = 1, and (4.29) holds. Further,

∥√𝑝𝑔′∥2
2 =

∑︂
𝑦∈T𝑟

(︄∫ 𝑦

𝑦−𝛿
𝑝(𝑡) |𝑔′(𝑡) |2 d𝑡 +

∫ 𝑦+𝛿

𝑦
𝑝(𝑡) |𝑔′(𝑡) |2 d𝑡

)︄

=
∑︂
𝑦∈T𝑟

(︄∫ 𝑦

𝑦−𝛿

1
𝑝(𝑡) d𝑡

)︄−1

+
∑︂
𝑦∈T𝑟

(︄∫ 𝑦+𝛿

𝑦

1
𝑝(𝑡) d𝑡

)︄−1

< ∞,

since 1/𝑝 ∈ 𝐿1
loc(R) and 𝑝 > 0 a. e. As T𝑟 is finite the function 𝑔 is constant near ∞ and −∞. Hence,

𝑔′ has compact support. Moreover, since {𝑔 > 0} = {𝑟 > 0} and {𝑔 < 0} = {𝑟 < 0}, the product 𝑟𝑔
is positive. □

Besides the turning points also the points where the weight is close to zero are of special interest
for the construction process of the function 𝑔. We define the set

Z𝑟 ≔

{︃
𝑥 ∈ R

|︁|︁|︁|︁ ess inf
𝑦∈𝐼

|𝑟(𝑦) | = 0 for all open intervals 𝐼 with 𝑥 ∈ 𝐼

}︃
, (4.30)

which is again independent of the representative of the equivalence class of 𝑟 in 𝐿1
loc(R). Note that

in general neither Z𝑟 ⊂ {𝑟 = 0}, nor Z𝑟 ⊃ {𝑟 = 0}.
Lemma 4.11. If Hypothesis 4.1 holds, then for every 𝛿 > 0 and 𝛺 =

⋃︁
𝑥∈Z𝑟

(𝑥 − 𝛿,𝑥 + 𝛿) we have

ess inf
𝑥∈R\𝛺

|𝑟(𝑥) | > 0.

Proof. Let [𝑐,𝑑] ⊂ R with 𝐶𝑟 = ess inf𝑥∈R\[𝑐,𝑑] |𝑟(𝑥) | > 0 as in Hypothesis 4.1 (α), and consider
the open set 𝛺 =

⋃︁
𝑥∈Z𝑟

(𝑥 − 𝛿,𝑥 + 𝛿). By the definition of Z𝑟 in (4.30) there exists for every
𝑥 ∈ R \ Z𝑟 an open interval 𝐼𝑥 containing 𝑥 such that 𝑐𝑥 ≔ ess inf𝑦∈𝐼𝑥 |𝑟(𝑦) | > 0. Since [𝑐,𝑑] \ 𝛺
is compact and (︁[𝑐,𝑑] \ 𝛺)︁ ⊂ (︁

R \ Z𝑟

)︁ ⊂ ⋃︂
𝑥∉Z𝑟

𝐼𝑥,

we find 𝑥1, . . . ,𝑥𝑚 ∈ R \ Z𝑟, 𝑚 ∈ N, such that
(︁[𝑐,𝑑] \ 𝛺)︁ ⊂ ⋃︁𝑚

𝑘=1 𝐼𝑥𝑘 . Thus, by (R \ 𝛺) ⊂
(R \ [𝑐,𝑑]) ∪ ([𝑐,𝑑] \ 𝛺) we have

ess inf
𝑥∈R\𝛺

|𝑟(𝑥) | ≥ min
{︂
𝐶𝑟, 𝑐𝑥1

, . . . , 𝑐𝑥𝑚

}︂
> 0. □

The above results allow to construct a suitable function 𝑔 in the case of finite sets T𝑟 and Z𝑟.

Lemma 4.12. Suppose that Hypothesis 4.1 holds and assume that the set T𝑟 ∪ Z𝑟 has 𝑛 < ∞
elements. Let 𝛿 > 0 such that 𝛿 < |𝑥 − 𝑦 |/2 holds for each pair of distinct points 𝑥, 𝑦 ∈ T𝑟. Set
𝛺 ≔

⋃︁
𝑥∈Z𝑟

(𝑥 − 𝛿,𝑥 + 𝛿) and define

𝛾 ≔ ess inf
𝑥∈R\𝛺

|𝑟(𝑥) |, 𝑃 ≔ ⎛⎜⎝
∑︂
𝑥∈T𝑟

(︄∫ 𝑥

𝑥−𝛿

1
𝑝(𝑡) d𝑡

)︄−1

+
∑︂
𝑥∈T𝑟

(︄∫ 𝑥+𝛿

𝑥

1
𝑝(𝑡) d𝑡

)︄−1⎞⎟⎠
1
2

. (4.31)

Then there exists 𝑔 ∈ G𝑝 with 𝑟𝑔 > 0 a. e. such that ∥𝑔∥∞ = 1/𝛾, ∥√𝑝𝑔′∥2 = 𝑃/𝛾 and (𝑔 ≤ 2𝛿𝑛 for
(𝑔 as in (4.21).
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Proof. By Lemma 4.10 for sufficiently small 𝛿 > 0 there is �̃� ∈ G𝑝 with 𝑟�̃� > 0 a. e. such that
∥�̃�∥∞ = 1, ∥√𝑝�̃�′∥2 = 𝑃 and

{|�̃�| < 1} =
⋃︂
𝑥∈T𝑟

(𝑥 − 𝛿,𝑥 + 𝛿).

Lemma 4.11 guarantees that 𝛾 is positive and {|𝑟 | < 𝛾} ⊂ 𝛺. As 𝑟�̃� > 0 a. e. and {𝑟�̃� < 𝛾} ⊂ {|𝑟 | <
𝛾} ∪ {|�̃�| < 1} ∪ {𝑟�̃� < 0}, we have

(̃ ≔ µ({𝑟�̃� < 𝛾}) + 1
𝛾

∫
{𝑟�̃�<0}

𝑟(𝑡) d𝑡 = µ({𝑟�̃� < 𝛾})

≤ µ
⎛⎜⎝

⋃︂
𝑥∈T𝑟∪Z𝑟

(𝑥 − 𝛿,𝑥 + 𝛿)⎞⎟⎠ = 2𝛿𝑛.

Now the assertion follows for 𝑔 ≔ �̃�/𝛾 ∈ G𝑝, where (𝑔 = (̃. □

Observe that the (𝑔 can by made arbitrarily small by decreasing 𝛿, even though this causes an
increase in the norm ∥√𝑝𝑔′∥2.

Finally, as a direct consequence of Lemma 4.12 we can reformulate Theorem 4.5, Theorem 4.6 and
Theorem 4.7 avoiding the function 𝑔. Theorem 4.13, Theorem 4.14, Theorem 4.15 and Corollary 4.16
below are the main results of this section. Except the case where 𝑞− ∈ 𝐿∞(R), 1/𝑝 ∈ 𝐿∞(R) in
Theorem 4.15, similar statements can be found also in [19, 20].

Theorem 4.13. Assume that Hypothesis 4.1 holds with 1/𝑝 ∈ 𝐿∞(R) such that T𝑟 ∪Z𝑟 has 𝑛 < ∞
elements and let

𝛼 ≔ 2∥𝑞−∥u + 4∥1/𝑝∥∞∥𝑞−∥2
u.

For 𝛿 > 0 with 2𝛿𝑛
(︁
4∥1/𝑝∥∞𝛼

)︁1/2
< 1 and 2𝛿 ≤ |𝑥 − 𝑦 | for each pair of distinct points 𝑥, 𝑦 ∈ T𝑟

define 𝛺 ≔
⋃︁

𝑥∈Z𝑟
(𝑥 − 𝛿,𝑥 + 𝛿) and let 𝛾, 𝑃 as in (4.31). Then every non-real eigenvalue � of 𝐴

satisfies

|Im �| ≤
√

2∥1/𝑝∥
1
4∞𝑃𝛼

3
4

𝛾

(︃
1 − 2𝛿𝑛

(︁
4∥1/𝑝∥∞𝛼

)︁ 1
2

)︃ and |�| ≤
√

2∥1/𝑝∥
1
4∞𝑃𝛼

3
4 + 3𝛼

𝛾

(︃
1 − 2𝛿𝑛

(︁
4∥1/𝑝∥∞𝛼

)︁ 1
2

)︃ .
Theorem 4.14. Suppose that Hypothesis 4.1 holds with 1/𝑝 ∈ 𝐿� (R) for some � ∈ [1,∞],
𝑞− ∈ 𝐿𝑠 (R) for some 𝑠 ∈ [1,∞), where 2 < � + 𝑠, and assume that T𝑟 ∪Z𝑟 has 𝑛 < ∞ elements. Let

𝛽 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃(︂

2�−1
�

)︂2
∥1/𝑝∥�∥𝑞−∥𝑠

)︃ �𝑠
2�𝑠−�−𝑠

if �, 𝑠 ∈ [1,∞),(︁
4∥1/𝑝∥∞∥𝑞−∥𝑠

)︁ 𝑠
2𝑠−1 if � = ∞, 𝑠 ∈ [1,∞).

For 𝛿 > 0 with 2𝛿𝑛𝛽 < 1 and 2𝛿 ≤ |𝑥 − 𝑦 | for each pair of distinct points 𝑥, 𝑦 ∈ T𝑟 define
𝛺 ≔

⋃︁
𝑥∈Z𝑟

(𝑥 − 𝛿,𝑥 + 𝛿) and let 𝛾, 𝑃 as in (4.31). Then every non-real eigenvalue � of 𝐴 satisfies

|Im �| ≤ ∥𝑞−∥
1
2
𝑠 𝛽

𝑠+1
2𝑠 𝑃

𝛾 (1 − 2𝛿𝑛𝛽) and |�| ≤ ∥𝑞−∥
1
2
𝑠 𝛽

𝑠+1
2𝑠 𝑃 + 3∥𝑞−∥𝑠𝛽

1
𝑠

𝛾 (1 − 2𝛿𝑛𝛽) .
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Theorem 4.15. Suppose that Hypothesis 4.1 holds with 1/𝑝 ∈ 𝐿� (R) for some � ∈ [1,∞],
𝑞− ∈ 𝐿∞(R), and assume that T𝑟 ∪Z𝑟 has 𝑛 < ∞ elements. Let

𝛽 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃(︂

2�−1
�

)︂2
∥1/𝑝∥�∥𝑞−∥∞

)︃ �
2�−1

if � ∈ [1,∞),(︁
4∥1/𝑝∥∞∥𝑞−∥∞

)︁ 1
2 if � = ∞.

For 𝛿 > 0 with 2𝛿𝑛𝛽 < 1 and 2𝛿 ≤ |𝑥 − 𝑦 | for each pair of distinct points 𝑥, 𝑦 ∈ T𝑟 define
𝛺 ≔

⋃︁
𝑥∈Z𝑟

(𝑥 − 𝛿,𝑥 + 𝛿) and let 𝛾, 𝑃 as in (4.31). Then every non-real eigenvalue � of 𝐴 satisfies

|Im �| ≤
(︁∥𝑞−∥∞𝛽)︁ 1

2𝑃

𝛾 (1 − 2𝛿𝑛𝛽) and |�| ≤
(︁∥𝑞−∥∞𝛽)︁ 1

2𝑃 + 3∥𝑞−∥∞
𝛾 (1 − 2𝛿𝑛𝛽) .

We apply the previous theorems to the case 𝑝 ≡ 1, 𝑟 = sgn .

Corollary 4.16. Let 𝑝 ≡ 1, 𝑟 = sgn and 𝑞 ∈ 𝐿1
u (R), that is 𝐴 = sgn · (−d2/d𝑥2 + 𝑞).

(i) Then σ (𝐴) \R is contained in

𝛴u ≔

⎧⎪⎪⎨⎪⎪⎩� ∈ C
|︁|︁|︁|︁|︁|︁ |Im �| ≤ 12 ·

√
3
(︂
∥𝑞−∥u + 2∥𝑞−∥2

u

)︂
,

|�| ≤ (12 ·
√

3 + 9)
(︂
∥𝑞−∥u + 2∥𝑞−∥2

u

)︂⎫⎪⎪⎬⎪⎪⎭.
(ii) If 𝑞− ∈ 𝐿𝑠 (R) for 𝑠 ∈ [1,∞), then σ (𝐴) \R is contained in

𝛴𝑠 ≔

⎧⎪⎪⎨⎪⎪⎩� ∈ C
|︁|︁|︁|︁|︁|︁ |Im �| ≤ 2

2𝑠+1
2𝑠−1 · 3 ·

√
3∥𝑞−∥

2𝑠
2𝑠−1
𝑠 ,

|�| ≤
(︂
2

2𝑠+1
2𝑠−1 · 3 ·

√
3 + 2

3−2𝑠
2𝑠−1 · 9

)︂
∥𝑞−∥

2𝑠
2𝑠−1
𝑠

⎫⎪⎪⎬⎪⎪⎭.
(iii) If 𝑞− ∈ 𝐿∞(R), then σ (𝐴) \R is contained in

𝛴∞ ≔

{︃
� ∈ C

|︁|︁|︁|︁ |Im �| ≤ 6 ·
√

3∥𝑞−∥∞, |�| ≤
(︃
6 ·

√
3 + 9

2

)︃
∥𝑞−∥∞

}︃
.

Proof. Since T𝑟 = {0} and Z𝑟 = ∅ we have 𝑛 = 1, 𝛾 = 1 and 𝑃 =
√︁

2/𝛿 for 𝛿 > 0 in the context of
Theorem 4.13–Theorem 4.15. Without loss of generality we assume 𝑞− ≠ 0. Then the estimates in (i)
follow from Theorem 4.13, where 𝛿 = 1/12 · (2∥𝑞−∥u + 4∥𝑞−∥2

u)−1/2, (ii) follows from Theorem 4.15
with 𝛿 = 1/6 · (4∥𝑞−∥𝑠)−𝑠/(2𝑠−1) , and Theorem 4.15 together with the choice 𝛿 = 1/12 · ∥𝑞−∥−1/2

∞
yields (iii). □

Example 4.17. We consider the operator 𝐴 = sgn · (−d2/d𝑥2 + 𝑞) with 𝑞 = −�(� + 1) sech2, where
� ∈ N. The operator 𝐴 has exactly 2� non-real eigenvalues, see [13]. We find

∥𝑞−∥u = �(� + 1) tanh(1), ∥𝑞−∥∞ = �(� + 1)
and for 𝑠 ∈ N, 𝑠 ≥ 1

∥𝑞−∥𝑠 = �(� + 1) ⎛⎜⎝2
𝑠−1∑︂
𝑗=0

(−1)𝑗
2𝑗 + 1

(︃
𝑠 − 1
𝑗

)︃⎞⎟⎠
1
𝑠

,

see e. g. [51, p. 115, equation 2.422 1]. Finally, together with Corollary 4.16 one obtains explicit
regions which contain the non-real eigenvalues of 𝐴, cf. Figure 4.1. ⋄
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Figure 4.1: The figure depicts the boundaries of sets 𝛴𝑠, 𝑠 ∈ [1,∞], for the operator 𝐴 = sgn · (−d2/d𝑥2 −
�(� + 1) sech2) considered in Example 4.17, where � = 1.

At the end of this section we prove the existence of an admissible function 𝑔 in the general case.

Theorem 4.18. Assume that Hypothesis 4.1 holds. Then for every 𝛽 > 0 there exists a function
𝑔 ∈ G𝑝 such that (𝑔𝛽 < 1 holds, where (𝑔 is defined as in (4.21).

Proof. Fix 𝛽 > 0 and let [𝑐,𝑑] ⊂ R be the the compact interval from Hypothesis 4.1 such that
𝐶𝑟 ≔ ess inf𝑡∈R\[𝑐,𝑑] |𝑟(𝑡) | > 0. Then µ({|𝑟 | < 𝐶𝑟}) ≤ 𝑑 − 𝑐 < ∞ and with

lim
𝑛→∞µ

(︃{︃
|𝑟 | < 1

𝑛

}︃)︃
= µ

(︄ ∞⋂︂
𝑛=1

{︃
|𝑟 | < 1

𝑛

}︃)︄
= µ({𝑟 = 0}) = 0

there exists 𝛾 > 0 such that

µ({|𝑟 | < 𝛾}) < 1
6𝛽

. (4.32)

Consider the compact set T𝑟 ⊂ [𝑐,𝑑] and let 𝑎0 ≔ minT𝑟, 𝑏0 ≔ maxT𝑟. The set

𝛺+ ≔ {𝑟 > 0} ∩ [𝑎0, 𝑏0] (4.33)

has finite Lebesgue measure and, thus, for every � > 0 there is a finite union 𝛺� of bounded open
intervals such that µ(𝛺+ ∆ 𝛺�) < �, where ∆ denotes the symmetric difference of two sets; see
e. g. [94, Part One, Chapter 3, Proposition 15]. Together with the fact that the measure, which is
defined via 𝛺 ↦→

∫
𝛺
|𝑟(𝑡) | d𝑡 on the "-algebra of Lebesgue measurable subsets 𝛺 ⊂ R, is absolutely

continuous with respect to the Lebesgue measure µ, we find 𝑁 ∈ N, 𝑁 ≥ 1, and open intervals
(𝑎1, 𝑏1) ,(𝑎2, 𝑏2), . . . , (𝑎𝑁 , 𝑏𝑁) such that for 𝛺 ≔

⋃︁𝑁
𝑘=1(𝑎𝑘, 𝑏𝑘)

µ
(︁
𝛺+ ∆ 𝛺

)︁
<

1
6𝛽

and
∫
𝛺+∆𝛺

|𝑟(𝑡) | d𝑡 < 𝛾

6𝛽
. (4.34)

Since 𝛺+ ⊂ [𝑎0, 𝑏0] the estimates in (4.34) are still true if 𝛺 is replaced by the set 𝛺 ∩ (𝑎0, 𝑏0).
Therefore, we may assume that 𝛺 ⊂ (𝑎0, 𝑏0) and that the (possibly empty) intervals (𝑎𝑘, 𝑏𝑘), 𝑘 =
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1, . . . ,𝑁, are disjoint, contained in (𝑎0, 𝑏0), and ordered in the way that 𝑏𝑘 < 𝑎𝑘+1, 𝑘 = 1, . . . ,𝑁 − 1.
Choose 𝑐0 ∈ (−∞, 𝑎0) sucht that

𝑎0 − 𝑐0 <
1

6𝛽
and

∫ 𝑎0

𝑐0

|𝑟(𝑡) | d𝑡 < 𝛾

6𝛽
. (4.35)

We define

𝑤(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 if 𝑥 ∈ 𝛺,

−1 if 𝑥 ∈ [𝑎0, 𝑏0] \ 𝛺,

− sgn(𝑟(𝑥)) if 𝑥 ∈ [𝑐0, 𝑎0),
sgn(𝑟(𝑥)) if 𝑥 ∈ (−∞, 𝑐0) ∪ (𝑏0,∞).

(4.36)

The function 𝑤 is real-valued, locally integrable on R and |𝑤(𝑥) | > 0 a. e. on R. Recall, that 𝑟
has constant sign a. e. on (−∞, 𝑎0) and on (𝑏0,∞). The definition of 𝑤 on [𝑐0, 𝑎0) and (−∞, 𝑐0)
guarantees that µ({𝑤 < 0}) > 0, µ({𝑤 < 0}) > 0. Moreover, 𝑤 has constant definit sign a. e.
on (−∞, 𝑐0) as well as (𝑏0,∞) and satisfies ess inf𝑡∈R |𝑤(𝑡) | ≥ 1. Since T𝑟 ⊂ [𝑎0, 𝑏0] ⊂ [𝑐0, 𝑏0]
and the signs of 𝑟 and 𝑤 coincide outside of [𝑐0, 𝑏0] we have T𝑤 ⊂ [𝑐0, 𝑏0]. More precisely,
T𝑤 ⊂ {𝑐0, 𝑎0, 𝑏0, 𝑎1, 𝑏1, . . . , 𝑎𝑁 , 𝑏𝑁}. Further, we have {𝑟𝑤 < 0} ⊂ [𝑐0, 𝑏0] and

{𝑟𝑤 < 0} ∩ [𝑎0, 𝑏0] ⊂
(︂ (︁{𝑟 > 0} ∩ {𝑤 = −1})︁ ∪ (︁{𝑟 < 0} ∩ {𝑤 = 1})︁ )︂∩[𝑎0, 𝑏0]

=
(︂ (︁{𝑟 > 0} ∩ [𝑎0, 𝑏0]

)︁ \ 𝛺)︂
∪

(︂
{𝑟 < 0} ∩ [𝑎0, 𝑏0] ∩ 𝛺

)︂
⊂ (︁

𝛺+ \ 𝛺
)︁ ∪ (︁{𝑟 ≤ 0} ∩ [𝑎0, 𝑏0] ∩ 𝛺

)︁
= 𝛺+ ∆ 𝛺.

(4.37)

Hence, (4.34) together with (4.37) and (4.35) implies

µ
(︁{𝑟𝑤 < 0})︁ < 2

6𝛽
and

∫
{𝑟𝑤<0}

|𝑟(𝑡) | d𝑡 < 2𝛾
6𝛽

. (4.38)

Observe that T𝑤 is finite and consists of at most 2𝑁 + 3 elements. Choose 𝛿 > 0 such that

𝛿 <
1
2

min
{︁ |𝑥 − 𝑦 | : 𝑥, 𝑦 ∈ T𝑤, 𝑥 ≠ 𝑦

}︁
, 2𝛿(2𝑁 + 3) < 1

6𝛽
.

We apply Lemma 4.10, where we exchange the weight 𝑟 with 𝑤. This yields �̃� ∈ G𝑝 such that
𝑤�̃� > 0 a. e., ∥�̃�∥∞ = 1 and µ({|�̃�| < 1}) = 2𝛿(2𝑁 + 3) < 1/(6𝛽). Since 𝑤�̃� > 0 a. e., the estimates
in (4.38) imply

µ ({𝑟�̃� < 0}) < 2
6𝛽

and
∫
{𝑟�̃�<0}

|𝑟(𝑡) | d𝑡 < 2𝛾
6𝛽

. (4.39)

Observe that {𝑟�̃� < 𝛾} ⊂ {|𝑟 | < 𝛾} ∪ {|�̃�| < 1} ∪ {𝑟�̃� < 0}. Together with (4.32) and (4.39) this
yields

(̃ ≔ µ({𝑟�̃� < 𝛾}) + 1
𝛾

∫
{𝑟�̃�<0}

|𝑟(𝑡) | d𝑡 < 1
𝛽
. (4.40)

Finally, the assertion follows for 𝑔 ≔ �̃�/𝛾, where (𝑔 = (̃. □
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4.3 Comparison with other eigenvalue bounds

For the operator

𝐴 = sgn ·
(︄
− d2

d𝑥2 + 𝑞
)︄

(4.41)

with a real-valued potential 𝑞 ∈ 𝐿𝑠 (R), where 𝑠 ∈ [1,∞], spectral bounds similar as in Corollary 4.16
have been obtained in [17] and recently in [34, 89]. In [17, 89] perturbation theory for 𝐽-non-negative
operators in Krein spaces is employed. For 𝑞 ∈ 𝐿∞(R) it is shown in [17] that σ (𝐴) \R is a subset of

𝛴BPT,∞ ≔
{︁
� ∈ C

|︁|︁ dist(�, (−𝑑,𝑑)) ≤ 5∥𝑞∥∞, |Im �| ≤ 2∥𝑞∥∞
}︁
, (4.42)

where 𝑑 = 5∥𝑞−∥∞. Note that, in contrast to the the set 𝛴∞ in Corollary 4.16 (iii), which depends
only on ∥𝑞−∥∞, the set 𝛴BPT,∞ depends on ∥𝑞−∥∞ and ∥𝑞∥∞. Further, in Corollary 4.16 it is assumed
that 𝑞 ∈ 𝐿1

u (R) and 𝑞− ∈ 𝐿∞(R), whereas in [16] the stronger condition 𝑞 ∈ 𝐿∞(R) is required. In
the case where 𝑞 = −𝑞− one has 𝛴BPT,∞ ⊂ 𝛴∞. For a small ratio 𝛼∞ = ∥𝑞−∥∞/∥𝑞∥∞, however, the
inclusion 𝛴∞ ⊂ 𝛴BPT,∞ holds, cf. Table 4.1. In Figure 4.2 the set 𝛴BPT,∞ and 𝛴∞ are compared for
different ratios 𝛼∞.

−12 · ∥𝑞∥∞ 0 12 · ∥𝑞∥∞
−10 · ∥𝑞∥∞

0

10 · ∥𝑞∥∞ 𝛴∞, 𝛼∞ = 1
𝛴BPT,∞, 𝛼∞ = 1
𝛴∞, 𝛼∞ = 0.1925
𝛴BPT,∞, 𝛼∞ = 0.1925
𝛴∞, 𝛼∞ = 0.0962
𝛴BPT,∞, 𝛼∞ = 0.0962

Figure 4.2: For a potential 𝑞 ∈ 𝐿∞ (R) the region 𝛴∞ is contained in the region 𝛴BPT,∞, provided that the
ratio 𝛼∞ = ∥𝑞−∥∞/∥𝑞∥∞ is less or equal than 3−3/2 ≈ 0.1925. The figure shows the boundaries of the regions
𝛴∞ and 𝛴BPT,∞ for different ratios 𝛼∞.

In [89] it is shown under the condition 𝑞 ∈ 𝐿2(R) for some 𝑠 ∈ [2,∞) that the non-real spectrum
of 𝐴 in eq. (4.41) is contained in the rectangle

𝛴P,𝑠 ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩� ∈ C

|︁|︁|︁|︁|︁|︁|︁
|Im �| ≤ 𝑐1(𝑠)𝑐2(𝑠)∥𝑞∥

2𝑠
2𝑠−1
𝑠 ,

|Re �| ≤ 𝑐1(𝑠)
(︂√︂

6 + 4
√

2 + 𝑐2(𝑠)
)︂
∥𝑞∥

2𝑠
2𝑠−1
𝑠

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (4.43)
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where

𝑐1(𝑠) = (1 +
√

2)
√︂

3 − 2
√

2
√︃

2𝑠
2𝑠 − 1

(︄
16
√

2(3 + 2
√

2)2

3�2𝑠

)︄ 1
4𝑠−2

,

𝑐2(𝑠) =
⌜⎷

2
(17 + 12

√
2)𝑐3(𝑠) + 4 + 3

√
2

(3 + 2
√

2)𝑐3(𝑠) − 1 −
√

2
,

𝑐3(𝑠) = 4 − 3
√

2 + (4
√

2 − 5)𝑠 +
√︂

44 − 31
√

2 + (62
√

2 − 88)𝑠 + (57 − 40
√

2)𝑠2.

(4.44)

The rectangle 𝛴P,𝑠 depends on ∥𝑞∥𝑠. In contrast, the set 𝛴𝑠 in Corollary 4.16 (ii) depends on ∥𝑞−∥𝑠,
where only 𝑞 ∈ 𝐿1

u (R) and 𝑞− ∈ 𝐿𝑠 (R) is required. For 𝑞 = −𝑞− the inclusion 𝛴P,𝑠 ⊂ 𝛴𝑠 holds.
Provided that the ratio 𝛼𝑠 = ∥𝑞−∥𝑠/∥𝑞∥𝑠 is small, one has 𝛴𝑠 ⊂ 𝛴P,𝑠, cf. Table 4.1. In Figure 4.3 the
sets 𝛴P,2 and 𝛴2 are compared for different ratios 𝛼2.

−20 · ∥𝑞∥4/3
2

0 20 · ∥𝑞∥4/3
2

−16 · ∥𝑞∥4/3
2

0

16 · ∥𝑞∥4/3
2

𝛴2, 𝛼2 = 1
𝛴2, 𝛼2 = 0.491
𝛴2, 𝛼2 = 0.4433
𝛴2, 𝛼2 = 0.2217
𝛴P, 2

Figure 4.3: For a potential 𝑞 ∈ 𝐿2 (R) the region 𝛴2 is contained in the rectangle 𝛴P, 2, provided that the ratio
𝛼2 = ∥𝑞−∥2/∥𝑞∥2 is less or equal than (𝑐1 (2)𝑐2 (2))3/4 · 2−5/4 · 3−9/8 ≈ 0.4433, where 𝑐1 and 𝑐2 are as in (4.44).
The figure shows the boundaries of 𝛴P, 2 and 𝛴2 for different ratios 𝛼2, where 𝛴P, 2 does not depend on 𝛼2.

In [34] it is shown for 𝑞 ∈ 𝐿𝑠 (R), where 𝑠 ∈ [1,∞), that every non-real eigenvalue (and every real
eigenvalue) of 𝐴 in (4.41) is contained in the region

𝛴CI,𝑠 ≔
{︂
� ∈ C

|︁|︁|︁ 2 3
2𝑠−1 |�| 1

𝑠 |Im �|1− 1
𝑠 ≤ (|�| + |Re �|) 1

2𝑠 ∥𝑞∥𝑠
}︂
. (4.45)

The results in [34] are based on an approach similar to the the Birman–Schwinger principle which
already lead to spectral bounds for Schrödinger operators with complex-valied potentials, see [1],
and eigenvalue estimates for the operator 𝐴 in the case where 𝑞 ∈ 𝐿1(R), see [19]. The result in [34]
for 𝑠 = 1 improves the eigenvalue estimate obtained in [19]. Unlike the set 𝛴𝑠 in Corollary 4.16 (ii)
the set 𝛴CI,𝑠 depends on ∥𝑞∥𝑠. For 𝑞 = −𝑞− one has 𝛴CI,𝑠 ⊂ 𝛴𝑠. If the ratio 𝛼𝑠 = ∥𝑞−∥𝑠/∥𝑞∥𝑠 is small,
then the inclusion 𝛴𝑠 ⊂ 𝛴CI,𝑠 holds, cf. Table 4.1. In Figure 4.4 and Figure 4.5 we compare the sets
𝛴CI,𝑠 and 𝛴𝑠 for different ratios 𝛼𝑠 in the cases 𝑠 = 1 and 𝑠 = 2. Note that the region 𝛴CI, 𝑠 for 𝑠 > 1 is
unbounded and comprises the whole real axis, cf. Figure 4.5.
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Table 4.1: A small ratio of ∥𝑞−∥𝑠 to ∥𝑞∥𝑠.
𝑞 ∈ 𝐿𝑠 (R) Ratio 𝛼𝑠 = ∥𝑞−∥𝑠/∥𝑞∥𝑠 less or equal than Inclusion

𝑠 ∈ [1,∞) 2−4/2𝑠 · 3−3(2𝑠−1)/4𝑠 𝛴𝑠 ⊂ 𝛴CI, 𝑠

𝑠 ∈ [2,∞) (𝑐1(𝑠)𝑐2(𝑠)) (2𝑠−1)/2𝑠 · 2−(2𝑠+1)/2𝑠 · 3−3(2𝑠−1)/4𝑠 𝛴𝑠 ⊂ 𝛴P, 𝑠

𝑠 = ∞ 3−3/2 𝛴∞ ⊂ 𝛴BPT,∞

−∥𝑞∥2
1

0 ∥𝑞∥2
1

−0.8 · ∥𝑞∥2
1

0

0.8 · ∥𝑞∥2
1 𝛴1, 𝛼1 = 0.1375

𝛴1, 𝛼1 = 0.125
𝛴1, 𝛼1 = 0.1097
𝛴1, 𝛼1 = 0.0548
𝛴CI, 1

Figure 4.4: For a potential 𝑞 ∈ 𝐿1 (R) the region 𝛴1 is contained in the region 𝛴CI, 1, provided that the ratio
𝛼1 = ∥𝑞−∥1/∥𝑞∥1 is less or equal than 3−3/4/4 ≈ 0.1097. The figure shows the boundaries of the regions 𝛴CI, 1
and 𝛴1 for different ratios 𝛼1, where 𝛴CI, 1 does not depend on 𝛼1

−4 · ∥𝑞∥4/3
2

0 4 · ∥𝑞∥4/3
2

−1.5 · ∥𝑞∥4/3
2

0

1.5 · ∥𝑞∥4/3
2

𝛴2, 𝛼2 = 0.1706 𝛴2, 𝛼2 = 0.1551 𝛴2, 𝛼2 = 0.1453
𝛴2, 𝛼2 = 0.0726 𝛴CI, 2

Figure 4.5: For a potential 𝑞 ∈ 𝐿2 (R) the region 𝛴2 is contained in the region 𝛴CI, 2, provided that the ratio
𝛼2 = ∥𝑞−∥2/∥𝑞∥2 is less or equal than 3−9/8/2 ≈ 0.1453. The figure shows the boundaries of the regions 𝛴CI, 2
and 𝛴2 for different ratios 𝛼2, where 𝛴CI, 2 does not depend on 𝛼2.



Appendix A

Sturm–Liouville operators with uniformly locally
integrable potentials

In this section we investigate the properties of a certain class of definite Sturm–Liouville expressions
onR and their associated operators. As in Chapter 4 let 𝐿1

u (R) denote the normed space of uniformly
locally integrable functions from R to C, i. e.

𝐿1
u (R) =

{︁
𝑓 ∈ 𝐿1

loc(R) : ∥𝑓∥u < ∞}︁
, ∥𝑓∥u = sup

𝑛∈Z

∫ 𝑛+1

𝑛
|𝑓(𝑡) | d𝑡.

The Sturm–Liouville differential expressions we are interested in are characterized by the following
properties.

Hypothesis A.1. The differential expression # on R of the form (1.1) satisfies (1.2) and the
assumptions

(α) there exist 𝑐,𝑑 ∈ R with 𝑐 < 𝑑 such that 𝑐𝑟 := ess inf𝑡∈R\[𝑐,𝑑] 𝑟(𝑡) > 0;

(β) 𝑞 ∈ 𝐿1
u (R);

(γ) 1/𝑝 ∈ 𝐿� (R) for some � ∈ [1,∞]. ⋄
Particularly, condition (γ) in Hypothesis A.1 implies the following.

Lemma A.2. If Hypothesis A.1 holds, then 𝑃 : R→ R, 𝑥 ↦→
∫ 𝑥

0 1/𝑝(𝑡) d𝑡 is uniformly continuous.

Proof. We show that 𝑃 is Hölder continuous in the cases where � ∈ (1,∞] which implies the
uniform continuity. Let 𝑥, 𝑦 ∈ R with 𝑥 ≥ 𝑦. For � ∈ (1,∞) by Hölder’s inequality we obtain

𝑃(𝑥) − 𝑃(𝑦) =
∫ 𝑥

𝑦

1
𝑝(𝑡) d𝑡 ≤ (𝑥 − 𝑦)

�−1
�

(︃∫ 𝑥

𝑦

(︃
1

𝑝(𝑡)

)︃�
d𝑡

)︃ 1
�

≤ (𝑥 − 𝑦)
�−1
� ∥1/𝑝∥�

and in the case � = ∞ we have

𝑃(𝑥) − 𝑃(𝑦) =
∫ 𝑥

𝑦

1
𝑝(𝑡) d𝑡 ≤ (𝑥 − 𝑦)∥1/𝑝∥∞.

In the case � = 1 we have

𝐼𝑛 ≔
∫
R\(−𝑛,𝑛)

1
𝑝(𝑡) d𝑡 → 0 as 𝑛 → ∞. (A.1)

Let � > 0 and choose 𝑛 ∈ N, 𝑛 ≥ 1, with 𝐼𝑛 < �. Since 𝑃 is continuous, it is uniformly continuous
on the compact intervall [−2𝑛, 2𝑛] and there is 𝛿 ∈ (0, 1) such that |𝑃(𝑥) − 𝑃(𝑦) | < � for all
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𝑥, 𝑦 ∈ [−2𝑛, 2𝑛] with |𝑥 − 𝑦 | < 𝛿. Let 𝑥, 𝑦 ∈ R with 𝑦 < 𝑥 and 𝑥 − 𝑦 < 𝛿. Then the interval
[𝑦,𝑥] is contained in at least one of the intervals [−2𝑛, 2𝑛], (−∞,−𝑛] and [𝑛,∞). Provided that
[𝑦,𝑥] ⊂ (−∞,𝑛] or [𝑦,𝑥] ⊂ [𝑛,∞), the choice of 𝑛 yields

𝑃(𝑥) − 𝑃(𝑦) =
∫ 𝑥

𝑦

1
𝑝(𝑡) d𝑡 ≤ 𝐼𝑛 < �. (A.2)

This shows the uniformly continuity of 𝑃. □

In the propositions below we collect properties of the domain 𝒟(#) and the maximal operator 𝑇max
associated with #, cf. (1.6) and (1.9). We employ standard techniques in Sturm–Liouville theory, see
[11, Chapter 6], [45, 46], [98, §9.7] and [100, Appendix to section 6].

Lemma A.3. Suppose that Hypothesis A.1 holds. Then for every � > 0 there exists 𝛾 > 0 such that
for all 𝑓 ∈ 𝒟(#) and every � ∈ R

sup
𝑡∈[�,�+1]

|𝑓(𝑡) |2 ≤ �

∫ �+1

�
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡 + 𝛾

∫ �+1

�
|𝑓(𝑡) |2𝑟(𝑡) d𝑡. (A.3)

Proof. Fix � > 0 and consider an arbitrary 𝑓 ∈ 𝒟(#). Since 𝑓 ∈ AC(R) we have 𝑓′ ∈ 𝐿1
loc(R).

Together with 𝑝𝑓′ ∈ AC(R) we see that 𝑝(𝑓′)2 ∈ 𝐿1
loc(R). For all 𝑥, 𝑦 ∈ R we obtain by

2𝛼𝛽 ≤ 𝛼2 + 𝛽2 for 𝛼, 𝛽 ∈ R and the Cauchy–Schwarz inequality

|𝑓(𝑥) |2 =

|︁|︁|︁|︁𝑓(𝑦) + ∫ 𝑥

𝑦
𝑓′(𝑡) d𝑡

|︁|︁|︁|︁2 ≤ 2|𝑓(𝑦) |2 + 2
(︃∫ 𝑥

𝑦
|𝑓′(𝑡) | d𝑡

)︃2

≤ 2|𝑓(𝑦) |2 + 2
∫ 𝑥

𝑦

1
𝑝(𝑡) d𝑡

∫ 𝑥

𝑦
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡.

(A.4)

Due to the uniform continuity of 𝑃 in Lemma A.2 there exists 𝛿 > 0 such that∫ 𝑥+𝛿

𝑥−𝛿

1
𝑝(𝑡) d𝑡 = 𝑃(𝑥 + 𝛿) − 𝑃(𝑥 − 𝛿) < �

2

for all 𝑥 ∈ R. It is no restriction to assume that 𝛿 < 1
2 . Further, by Hypothesis A.1 (α) we find �̃� > 0

such that ∫ 𝑥+ 𝛿
2

𝑥− 𝛿
2

𝑟(𝑡) d𝑡 > �̃�

for all 𝑥 ∈ R. Let 𝐼 (𝑥, �) ≔ (𝑥 − 𝛿,𝑥 + 𝛿) ∩ [�, � + 1] for � ∈ R and 𝑥 ∈ [�, � + 1]. Then the
length of the interval 𝐼 (𝑥, �) is bounded from below by 𝛿 but does not exceed 2𝛿. Thus, with (A.4)

|𝑓(𝑥) |2
∫

𝐼 (𝑥,�)

𝑟(𝑦) d𝑦 ≤ 2
∫

𝐼 (𝑥,�)

|𝑓(𝑦) |2𝑟(𝑦) d𝑦

+ 2
∫

𝐼 (𝑥,�)

𝑟(𝑦) d𝑦
∫

𝐼 (𝑥,�)

1
𝑝(𝑡) d𝑡

∫
𝐼 (𝑥,�)

𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡

≤ 2
∫ �+1

�
|𝑓(𝑡) |2𝑟(𝑡) d𝑡 + �

∫
𝐼 (𝑥,�)

𝑟(𝑦) d𝑡
∫ �+1

�
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡.

We divide by
∫
𝐼 (𝑥,�) 𝑟(𝑦) d𝑦 and define 𝛾 ≔ 2/�̃�. This finishes the proof. □
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Lemma A.4. Suppose that Hypothesis A.1 holds. Then # is in the limit point case at both endpoints
and for all 𝑓, 𝑔 ∈ 𝒟(#)

(i) 𝑓, √𝑝𝑓′ ∈ 𝐿2(R) and 𝑞𝑓2 ∈ 𝐿1(R),

(ii) there exists a sequence (𝑥𝑛)𝑛∈Z in R with lim𝑛→∞ 𝑥𝑛 = ∞ and lim𝑛→−∞ 𝑥𝑛 = −∞ such that
lim |𝑛 |→∞ 𝑓(𝑥𝑛) = 0,

(iii) lim |𝑥 |→∞(𝑝𝑓′) (𝑥)𝑔(𝑥) = 0.

Moreover, there exists � > 0 such that ⟨(# − �)𝑓,𝑓⟩𝑟 ≥ 0 for all 𝑓 ∈ 𝒟(#).
Proof. If suffices to prove (i)–(iii) only for real-valued functions. Assume that 𝑓, 𝑔 ∈ 𝒟(#) are
real-valued. Observe that for all � ∈ R∫ �+1

�
|𝑞(𝑡) | |𝑓(𝑡) |2 d𝑡 ≤

(︄∫ ⌈�⌉+1

⌊�⌋
|𝑞(𝑡) | d𝑡

)︄ (︄
sup

𝑡∈[�,�+1]
|𝑓(𝑡) |2

)︄

≤ 2∥𝑞∥u

(︄
sup

𝑡∈[�,�+1]
|𝑓(𝑡) |2

)︄
.

(A.5)

Let 𝑥, 𝑦 ∈ R with 1 < 𝑥 − 𝑦 and set 𝑛 = ⌊𝑥 − 𝑦⌋. Then by (A.5)∫ 𝑥

𝑦
|𝑞(𝑡) | |𝑓(𝑡) |2 d𝑡 ≤

∫ 𝑦+𝑛

𝑦
|𝑞(𝑡) | |𝑓(𝑡) |2 d𝑡 +

∫ 𝑥

𝑥−𝑛
|𝑞(𝑡) | |𝑓(𝑡) |2 d𝑡

≤ 2∥𝑞∥u

𝑛−1∑︂
𝑘=0

(︄
sup

𝑡∈[𝑦+𝑘,𝑦+𝑘+1]
|𝑓(𝑡) |2 + sup

𝑡∈[𝑥−𝑘−1,𝑥−𝑘]
|𝑓(𝑡) |2

)︄
.

By Lemma A.3 for � = 1/(8∥𝑞∥u + 1) we find 𝛾 > 0 such that (A.3) holds. This implies∫ 𝑥

𝑦
|𝑞(𝑡) | |𝑓(𝑡) |2 d𝑡 ≤ 4∥𝑞∥u

(︃
�

∫ 𝑥

𝑦
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡 + 𝛾

∫ 𝑥

𝑦
|𝑓(𝑡) |2𝑟(𝑡) d𝑡

)︃
≤ 1

2

∫ 𝑥

𝑦
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡 + 4𝛾∥𝑞∥u

∫ 𝑥

𝑦
|𝑓(𝑡) |2𝑟(𝑡) d𝑡.

(A.6)

Let � = −4𝛾∥𝑞∥u. Then∫ 𝑥

𝑦

(︂
𝑝(𝑡) |𝑓′(𝑡) |2 + (︁

𝑞(𝑡) − �𝑟(𝑡))︁ |𝑓(𝑡) |2)︂ d𝑡 ≥ 1
2

∫ 𝑥

𝑦
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡

and integration by parts, cf. (1.7), yields∫ 𝑥

𝑦

(︁(# − �)𝑓)︁ (𝑡)𝑓(𝑡)𝑟(𝑡) d𝑡 ≥ 1
2

∫ 𝑥

𝑦
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡 + (𝑝𝑓′) (𝑦)𝑓(𝑦) − (𝑝𝑓′) (𝑥)𝑓(𝑥). (A.7)

Fix 𝑦 = 0 and let 𝑥 > 1. If 𝑝 |𝑓′ |2 is not integrable near ∞ then the integral on the right hand side of
(A.7) diverges monotone to infinity while the integral an the left hand side converges as 𝑥 tends ∞.
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Thus, there exists 𝑏 ∈ (0,∞) such that (𝑝𝑓′) (𝑥)𝑓(𝑥) > 0 for all 𝑥 ∈ [𝑏,∞) and we obtain∫ ∞

𝑏
|𝑓(𝑡) |2𝑟(𝑡) d𝑡 =

∫ ∞

𝑏

(︃
|𝑓(𝑏) |2 + 2

∫ 𝑡

𝑏

(𝑝𝑓′) (𝑠)𝑓(𝑠)
𝑝(𝑠) d𝑠

)︃
𝑟(𝑡) d𝑡

≥
∫ ∞

𝑏
|𝑓(𝑏) |2𝑟(𝑡) d𝑡 = ∞,

since 𝑟 is bounded from below near ∞ by Hypothesis A.1 (α). But this contradicts 𝑓 ∈ 𝐿2(R, 𝑟) and,
therefore, 𝑝 |𝑓′ |2 is integrable near ∞. In a similar way one shows that 𝑝 |𝑓′ |2 is integrable near −∞
and √

𝑝𝑓′ ∈ 𝐿2(R) follows. Passing to the limits 𝑥 → ∞ and 𝑦 → −∞ in (A.6) yields 𝑞𝑓2 ∈ 𝐿1(R).
Further, by Hypothesis A.1 (α) we obtain∫

R

|𝑓(𝑡) |2 d𝑡 ≤ (𝑑 − 𝑐) · sup
𝑡∈[𝑐,𝑑]

|𝑓(𝑡) |2 + 1
𝑐𝑟

∫
R\[𝑐,𝑑]

|𝑓(𝑡) |2𝑟(𝑡) d𝑡 < ∞,

which implies 𝑓 ∈ 𝐿2(R) and finishes the proof of assertion (i).
We construct the sequence in (ii). Since 𝑓 is continuous on R, by the mean value theorem we find

for every 𝑛 ∈ Z a point 𝑥𝑛 ∈ [𝑛,𝑛 + 1] such that∫ 𝑛+1

𝑛
|𝑓(𝑡) |2 d𝑡 = |𝑓(𝑥𝑛) |2.

As 𝑓 is square integrable onR the sequence (𝑓(𝑥𝑛))𝑛∈N converges to zero for 𝑛 → ∞ and 𝑛 → −∞.
We show (iii). By formula (1.7) together with (i) we see that lim𝑥→∞(𝑝𝑓′) (𝑥)𝑔(𝑥) exists and is

finite. Assume
lim
𝑥→∞| (𝑝𝑓

′(𝑥)𝑔(𝑥) | ≕ 𝛼 > 0.

Then there exists 𝑏 ∈ R such that

|𝑔(𝑥) | > 0 and 𝑝(𝑥) |𝑓′(𝑥) | ≥ 𝛼

2|𝑔(𝑥) |

for all 𝑥 ∈ [𝑏,∞). Multiplication by |𝑔′(𝑥) | and integration yield∫ 𝑥

𝑏
𝑝(𝑡) |𝑓′(𝑡)𝑔′(𝑡) | d𝑡 ≥ 𝛼

2

∫ 𝑥

𝑏

|𝑔′(𝑡) |
|𝑔(𝑡) | d𝑡 ≥ 𝛼

2

|︁|︁|︁|︁∫ 𝑥

𝑏

𝑔′(𝑡)
𝑔(𝑡) d𝑡

|︁|︁|︁|︁ = 𝛼

2

|︁|︁|︁|︁ln (︃ |𝑔(𝑥) |
|𝑔(𝑏) |

)︃|︁|︁|︁|︁. (A.8)

Let 𝑥 run through the sequence provided by (ii) for 𝑔. Then the right hand side in (A.8) diverges to ∞
while the left hand side is bounded as √𝑝𝑓′, √𝑝𝑔′ ∈ 𝐿2(R) by (i); a contradiction. Therefore, 𝛼 = 0
and lim𝑥→∞(𝑝𝑓′) (𝑥)𝑔(𝑥) = 0. Similarly one obtains lim𝑥→−∞(𝑝𝑓′) (𝑥)𝑔(𝑥) = 0 which finishes
the proof of (iii). As a consequence of (iii) the differential expression # is in the limit-point case at
both endpoints, cf. [46].

Let � be defined as before. Then from (A.7) together with (iii) we know that ⟨(# − �)𝑓,𝑓⟩𝑟 ≥ 0
for all real-valued 𝑓 ∈ 𝒟(#). An arbitrary 𝑓 ∈ 𝒟(#) can be decomposed as 𝑓 = 𝑔 + iℎ, where
𝑔, ℎ ∈ 𝒟(#) are real-valued, and a simple calculation employing (1.8) and (iii) shows

⟨(# − �)𝑓,𝑓⟩𝑟 = ⟨(# − �)𝑔, 𝑔⟩𝑟 + ⟨(# − �)ℎ,ℎ⟩𝑟 + i⟨(# − �)ℎ, 𝑔⟩𝑟 − i⟨(# − �)𝑔,ℎ⟩𝑟
= ⟨(# − �)𝑔, 𝑔⟩𝑟 + ⟨(# − �)ℎ,ℎ⟩𝑟 ≥ 0. □
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The following corollary is an immediate consequence of Lemma A.4 and Proposition 1.1 (iii).

Corollary A.5. If Hypothesis A.1 holds, then the maximal operator 𝑇max is the only self-adjoint
realisation of # in 𝐿2(R, 𝑟) and 𝑇max is semi-bounded from below.

We next investigate lower bounds for the spectrum of the maximal operator. In this context we
consider the set

𝒟−(#) ≔
{︁
𝑓 ∈ 𝒟(#)

|︁|︁ ⟨#𝑓,𝑓⟩𝑟 ≤ 0
}︁
. (A.9)

Further, the decomposition of the real-valued function 𝑞 into its positive part 𝑞+ and its negative part
𝑞−, i. e.

𝑞 = 𝑞+ − 𝑞−, where 𝑞+ ≔
|𝑞 | + 𝑞

2
and 𝑞− ≔

|𝑞 | − 𝑞

2
, (A.10)

is of particular importance.

Lemma A.6. Under Hypothesis A.1 every function 𝑓 ∈ 𝒟−(#) satisfies

∥√𝑝𝑓′∥2
2 ≤ ∥𝑞−𝑓2∥1 and ∥𝑞𝑓2∥1 ≤ 2∥𝑞−𝑓2∥1. (A.11)

Moreover, for 𝑓 ∈ 𝒟−(#) the inequality ∥𝑞−𝑓2∥1 ≤ ∥𝑞+𝑓2∥1 implies ∥√𝑝𝑓′∥2 = 0.

Proof. For 𝑓 ∈ 𝒟−(#) integration by parts, cf. (1.7), together with the decomposition 𝑞 = 𝑞+ − 𝑞−
and Lemma A.4 (i), (iii) yields

0 ≥ ⟨#𝑓,𝑓⟩𝑟 =
∫
R

𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡 +
∫
R

𝑞(𝑡) |𝑓(𝑡) |2 d𝑡 = ∥√𝑝𝑓′∥2
2 + ∥𝑞+𝑓2∥1 − ∥𝑞−𝑓2∥1. (A.12)

This implies ∥√𝑝𝑓′∥2
2 ≤ ∥𝑞−𝑓2∥1 and ∥𝑞+𝑓2∥1 ≤ ∥𝑞−𝑓2∥1. Therefore, with |𝑞 | = 𝑞+ + 𝑞− we have

∥𝑞𝑓2∥1 = ∥𝑞+𝑓2∥1 + ∥𝑞−𝑓2∥1 ≤ 2∥𝑞−𝑓2∥1.

If ∥𝑞−𝑓2∥1 ≤ ∥𝑞+𝑓2∥1 holds, then (A.12) implies ∥√𝑝𝑓′∥2 = 0. □

Lemma A.7. Suppose that Hypothesis A.1 holds and assume that there are constants 𝛼 ≥ 0, 𝛽 ≥ 0
and a non-negative function 𝑔 ∈ 𝐿∞(R) such that

(i) for all 𝑓 ∈ 𝒟−(#) the estimates

∥𝑞−𝑓2∥1 ≤ 𝛼∥𝑓∥2
2 and ∥𝑓∥2

∞ ≤ 𝛽∥𝑓∥2
2 (A.13)

hold, and

(ii) µ(𝛺)𝛽 < 1, where 𝛺 ≔ {𝑥 ∈ R | 𝑟(𝑥)𝑔(𝑥) < 1} and µ denotes the Lebesgue measure.

Then the spectrum of the maximal operator 𝑇max is bounded from below by

inf σ (𝑇max) ≥
−𝛼∥𝑔∥∞

1 − µ(𝛺)𝛽 . (A.14)

Proof. Let 𝑓 ∈ 𝒟−(#). Then one has

∥𝑔∥∞⟨𝑓,𝑓⟩𝑟 = ∥𝑔∥∞
∫
R

|𝑓(𝑡) |2𝑟(𝑡) d𝑡 ≥
∫
R

|𝑓(𝑡) |2 |𝑟(𝑡)𝑔(𝑡) | d𝑡

≥
∫
R\𝛺

|𝑓(𝑡) |2 |𝑔(𝑡)𝑟(𝑡) | d𝑡 ≥ ∥𝑓∥2
2 −

∫
𝛺
|𝑓(𝑡) |2 d𝑡

≥ ∥𝑓∥2
2 − µ(𝛺)∥𝑓∥2

∞ ≥ (︁
1 − µ(𝛺)𝛽)︁ ∥𝑓∥2

2.

(A.15)
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Further, we have by (A.12)

⟨#𝑓,𝑓⟩𝑟 = ∥√𝑝𝑓′∥2
2 + ∥𝑞+𝑓2∥1 − ∥𝑞−𝑓2∥1 ≥ −∥𝑞−𝑓2∥1 ≥ −𝛼∥𝑓∥2

2.

This together with (A.15) yields

⟨𝑇max𝑓,𝑓⟩𝑟 = ⟨#𝑓,𝑓⟩𝑟 ≥ − 𝛼∥𝑔∥∞
1 − µ(𝛺)𝛽 ⟨𝑓,𝑓⟩𝑟. (A.16)

Obviously, the inequality in (A.16) holds also for 𝑓 ∈ 𝒟(#) \𝒟−(#) and, thus, for all 𝑓 ∈ D(𝑇max) =
𝒟(#). This implies (A.14). □

Remark A.8. By Hypothesis A.1 one has µ({𝑥 ∈ R | 𝑟(𝑥) < 𝑐𝑟}) ≤ 𝑑 − 𝑐 < ∞ and

lim
𝑛→∞µ({𝑥 ∈ R | 𝑟(𝑥) < 1/𝑛}) = µ

(︄ ∞⋂︂
𝑛=1

{𝑥 ∈ R | 𝑟(𝑥) < 1/𝑛}
)︄

= µ({𝑥 ∈ R | 𝑟(𝑥) = 0}) = 0.

Therefore, given 𝛽 ≥ 0 there is always a constant function 𝑔 on R satisfying the conditions in
Lemma A.7. In the particular case where 1/𝑟 ∈ 𝐿∞(R) one can choose 𝑔 = 1/𝑟. Then the set 𝛺 in
Lemma A.7 is a Lebesgue null set and (A.14) reads as inf σ (𝑇max) ≥ −𝛼∥1/𝑟∥∞. ⋄
Suitable constants 𝛼 and 𝛽 are collected in the lemma below.

Lemma A.9. Suppose that Hypothesis A.1 holds.

(i) If 1/𝑝 ∈ 𝐿∞(R), then the estimates in (A.13) hold for all 𝑓 ∈ 𝒟−(#) with

𝛼 = 2∥𝑞−∥u + 4∥1/𝑝∥∞∥𝑞−∥2
u, 𝛽 =

(︁
4∥1/𝑝∥∞𝛼

)︁ 1
2 . (A.17)

(ii) If 1/𝑝 ∈ 𝐿� (R) and 𝑞− ∈ 𝐿𝑠 (R), where �, 𝑠 ∈ [1,∞) with � + 𝑠 > 2, then the estimates in
(A.13) hold for all 𝑓 ∈ 𝒟−(#) with

𝛼 = ∥𝑞−∥𝑠𝛽
1
𝑠 , 𝛽 =

(︄(︃
2� − 1
�

)︃2
∥1/𝑝∥�∥𝑞−∥𝑠

)︄ �𝑠
2�𝑠−�−𝑠

. (A.18)

(iii) If 1/𝑝 ∈ 𝐿∞(R) and 𝑞− ∈ 𝐿𝑠 (R), where 𝑠 ∈ [1,∞), then the estimates in (A.13) hold for all
𝑓 ∈ 𝒟−(#) with

𝛼 = ∥𝑞−∥𝑠𝛽
1
𝑠 , 𝛽 =

(︁
4∥1/𝑝∥∞∥𝑞−∥𝑠

)︁ 𝑠
2𝑠−1 . (A.19)

(iv) If 1/𝑝 ∈ 𝐿� (R), where � ∈ [1,∞), and 𝑞− ∈ 𝐿∞(R), then the estimates in (A.13) hold for all
𝑓 ∈ 𝒟−(#) with

𝛼 = ∥𝑞−∥∞, 𝛽 =

(︄(︃
2� − 1
�

)︃2
∥1/𝑝∥�∥𝑞−∥∞

)︄ �
2�−1

. (A.20)

(v) If 1/𝑝 ∈ 𝐿∞(R) and 𝑞− ∈ 𝐿∞(R), then the estimates in (A.13) hold for all 𝑓 ∈ 𝒟−(#) with

𝛼 = ∥𝑞−∥∞, 𝛽 = 2
√︁
∥1/𝑝∥∞∥𝑞−∥∞. (A.21)
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(vi) If 1/𝑝 ∈ 𝐿1(R) and 𝑞− ∈ 𝐿1(R) such that ∥1/𝑝∥1∥𝑞−∥1 < 1, then 𝒟−(#) = {0} and, in
particular, inf σ (𝑇max) ≥ 0.

(vii) If 𝑞−(𝑥) = 0 a. e. on R, then 𝒟−(#) = {0} and, in particular, inf σ (𝑇max) ≥ 0.

Before we prove Lemma A.9 we establish estimates on the 𝐿∞-norm of functions contained in 𝒟(#).
Lemma A.10. Suppose that Hypothesis A.1 holds.

(i) If 1/𝑝 ∈ 𝐿� (𝑅), where � ∈ [1,∞), then

∥𝑓∥∞ ≤
(︃
2� − 1
�

√︂
∥1/𝑝∥�∥

√
𝑝𝑓′∥2

)︃ �
2�−1

∥𝑓∥
�−1
2�−1
2 (A.22)

for all 𝑓 ∈ 𝒟(#).
(ii) If 1/𝑝 ∈ 𝐿∞(R) then

∥𝑓∥∞ ≤
(︂
2
√︁
∥1/𝑝∥∞∥√𝑝𝑓′∥2∥𝑓∥2

)︂ 1
2 (A.23)

for all 𝑓 ∈ 𝒟(#). Moreover, for every � > 0 and all 𝑛 ∈ Z the estimate

sup
𝑡∈[𝑛,𝑛+1]

|𝑓(𝑡) |2 ≤ �∥1/𝑝∥∞
∫ 𝑛+1

𝑛
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡 +

(︂
1 + 1

�

)︂ ∫ 𝑛+1

𝑛
|𝑓(𝑡) |2 d𝑡 (A.24)

holds for all 𝑓 ∈ 𝒟(#).
Proof. Let 𝑓 ∈ 𝒟(#) and (𝑥𝑛)𝑛∈Z the sequence in R provided by Lemma A.4 with 𝑓(𝑥𝑛) → 0
as |𝑛| → ∞. We consider the case 1/𝑝 ∈ 𝐿� (R) with � ∈ [1,∞). Define � ≔ 2�−1

� . For arbitrary
𝑥 ∈ R we obtain with (𝑓�) ′ = �𝑓�−1𝑓′

|𝑓(𝑥) |� ≤ |𝑓(𝑥𝑛) |� + �
∫ 𝑥

𝑥𝑛

|𝑓(𝑡) |�−1 |𝑓′(𝑡) | d𝑡

and, thus,
∥𝑓∥�∞ ≤ �

∫
R

|𝑓(𝑡) |�−1 |𝑓′(𝑡) | d𝑡. (A.25)

The integral in (A.25) can be further estimated by means of the Hölder’s inequality,∫
R

|𝑓(𝑡) |�−1 |𝑓′(𝑡) | d𝑡 ≤ ∥√𝑝𝑓′∥2

(︄∫
R

|𝑓(𝑡) |2(�−1)

𝑝(𝑡) d𝑡

)︄ 1
2

≤ ∥√𝑝𝑓′∥2

√︂
∥1/𝑝∥�

(︃∫
R

|𝑓(𝑡) |
2(�−1)�
�−1 d𝑡

)︃ �−1
2�

≤ ∥√𝑝𝑓′∥2

√︂
∥1/𝑝∥�∥𝑓∥

�−1
�

2 .

(A.26)

Combining (A.25) and (A.26) leads to (A.22).
If 1/𝑝 ∈ 𝐿∞(R), we obtain for arbitrary 𝑥 ∈ R

|𝑓(𝑥) |2 = |𝑓(𝑥𝑛) |2 + 2 Re
∫ 𝑥

𝑥𝑛

𝑓(𝑡)𝑓′(𝑡) d𝑡
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and, therefore,

∥𝑓∥2
∞ ≤ 2

(︄∫
R

𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡
∫
R

|𝑓(𝑡) |2
𝑝(𝑡) d𝑡

)︄ 1
2

≤ 2
√︁
∥1/𝑝∥∞∥√𝑝𝑓′∥2∥𝑓∥2.

This shows (A.23). Let � > 0 and 𝑛 ∈ Z. Then for 𝑥, 𝑦 ∈ [𝑛,𝑛 + 1]

|𝑓(𝑥) |2 = |𝑓(𝑦) |2 + 2 Re
∫ 𝑥

𝑦
𝑓′(𝑡)𝑓(𝑡) d𝑡.

By the mean value theorem we can choose 𝑦 in such a way that |𝑓(𝑦) |2 =
∫ 𝑛+1
𝑛

|𝑓(𝑡) |2 d𝑡. Thus, by
the Cauchy–Schwarz inequality and 2𝛼𝛽 ≤ 𝛼2 + 𝛽2 for 𝛼, 𝛽 ∈ R we obtain

|𝑓(𝑥) |2 ≤
∫ 𝑛+1

𝑛
|𝑓(𝑡) |2 d𝑡 + 2

(︃
1
�

∫ 𝑛+1

𝑛
|𝑓(𝑡) |2 d𝑡

)︃ 1
2

·
(︃
∥1/𝑝∥∞�

∫ 𝑛+1

𝑛
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡

)︃ 1
2

≤ �∥1/𝑝∥∞
∫ 𝑛+1

𝑛
𝑝(𝑡) |𝑓′(𝑡) |2 d𝑡 +

(︂
1 + 1

�

)︂ ∫ 𝑛+1

𝑛
|𝑓(𝑡) |2 d𝑡

which shows (A.24). □

Proof of Lemma A.9. Let 𝑓 ∈ 𝒟−(#). If 𝑞−(𝑥) = 0 a. e. on R, then by Lemma A.6 we
have ∥√𝑝𝑓′∥2 = 0 and Lemma A.10 implies ∥𝑓∥∞ = 0. This shows (vii). In the case where
1/𝑝, 𝑞− ∈ 𝐿1(R) Lemma A.6 and Lemma A.10 (i) yield

∥𝑓∥2
∞ ≤ ∥1/𝑝∥1∥

√
𝑝𝑓′∥2

2 ≤ ∥1/𝑝∥1∥𝑞−𝑓2∥1 ≤ ∥1/𝑝∥1∥𝑞−∥1∥𝑓∥2
∞.

If the condition ∥1/𝑝∥1∥𝑞−∥1 < 1 holds, then we have ∥𝑓∥∞ = 0. This shows the assertion (vi).
For the proofs of the remaining cases it is no restriction to assume that 𝑓 ∈ 𝒟−(#) \ {0} and that

𝑞− is positive on a set of positive Lebesgue measure. We show (i). Let 1/𝑝 ∈ 𝐿∞ and consider 𝛼, 𝛽
as in (A.17). Choose � = (2∥𝑞−∥u∥1/𝑝∥∞)−1 > 0. The estimate in (A.24) of Lemma A.10 yields

∥𝑞−𝑓2∥1 =
∫
R

𝑞−(𝑡) |𝑓(𝑡) |2 d𝑡 ≤ ∥𝑞−∥u

∑︂
𝑛∈Z

sup
𝑡∈[𝑛,𝑛+1]

|𝑓(𝑡) |2

≤ ∥𝑞−∥u

(︃
�∥1/𝑝∥∞∥√𝑝𝑓′∥2

2 +
(︃
1 + 1

�

)︃
∥𝑓∥2

2

)︃
=

1
2
∥√𝑝𝑓′∥2

2 +
(︁∥𝑞−∥u + 2∥1/𝑝∥∞∥𝑞−∥2

u
)︁ ∥𝑓∥2

2

=
1
2
∥√𝑝𝑓′∥2

2 +
𝛼

2
∥𝑓∥2

2.

(A.27)

Together with Lemma A.6 we obtain

∥√𝑝𝑓′∥2
2 = 2∥√𝑝𝑓′∥2

2 − ∥√𝑝𝑓′∥2
2 ≤ 2∥𝑞−𝑓2∥1 − ∥√𝑝𝑓′∥2

2 ≤ 𝛼∥𝑓∥2
2.

With (A.23) in Lemma A.10 and (A.27) we see

∥𝑓∥2
∞ ≤ 2

√︁
∥1/𝑝∥∞𝛼∥𝑓∥2

2 = 𝛽∥𝑓∥2
2 and ∥𝑞−𝑓2∥1 ≤ 𝛼∥𝑓∥2

2.
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We show (ii). Suppose that 1/𝑝 ∈ 𝐿� (R) and 𝑞− ∈ 𝐿𝑠 (R), where �, 𝑠 ∈ [1,∞) with � + 𝑠 > 2.
Since � + 𝑠 > 2 we obtain

2�𝑠 − � − 𝑠 = �(𝑠 − 1) + 𝑠(� − 1) ≥ 𝑠 − 1 + � − 1 > 0.

Let 𝛼 and 𝛽 as in (A.18). From Hölder’s inequality we obtain

∥𝑞−𝑓2∥1 ≤ ∥𝑓∥
2
𝑠∞

∫
R

|𝑞−(𝑡) | |𝑓(𝑡) |
2(𝑠−1)

𝑠 d𝑡 ≤ ∥𝑓∥
2
𝑠∞

(︃∫
R

|𝑞−(𝑡) |𝑠 d𝑡
)︃ 1
𝑠
(︃∫
R

|𝑓(𝑡) |2 d𝑡
)︃ 𝑠−1

𝑠

= ∥𝑞−∥𝑠∥𝑓∥
2
𝑠∞∥𝑓∥

2(𝑠−1)
𝑠

2 .

(A.28)

Thus, together with Lemma A.10 (i) and Lemma A.6 we obtain

∥𝑓∥2
∞ = ⎛⎜⎝ ∥𝑓∥

2(2�−1)
�

∞

∥𝑓∥
2
𝑠∞

⎞⎟⎠
�𝑠

2�𝑠−�−𝑠

≤
⎛⎜⎜⎜⎝
(︂

2�−1
�

)︂2
∥1/𝑝∥�∥

√
𝑝𝑓′∥2

2∥𝑓∥
2(�−1)

�

2

∥𝑓∥
2
𝑠∞

⎞⎟⎟⎟⎠
�𝑠

2�𝑠−�−𝑠

≤
(︄(︃

2� − 1
�

)︃2
∥1/𝑝∥�∥𝑞−∥𝑠

)︄ �𝑠
2�𝑠−�−𝑠

∥𝑓∥2
2 = 𝛽∥𝑓∥2

2.

The estimate from (A.28) yields

∥𝑞−𝑓2∥1 ≤ ∥𝑞−∥𝑠𝛽
1
𝑠 ∥𝑓∥2

2 = 𝛼∥𝑓∥2
2.

We show (iii). Suppose that 1/𝑝 ∈ 𝐿∞(R) and 𝑞− ∈ 𝐿𝑠 (R), where 𝑠 ∈ [1,∞). Let 𝛼 and 𝛽 as in
(A.19). Again Hölder’s inequality yields (A.28). Lemma A.10 (ii), (A.28) and Lemma A.6 imply

∥𝑓∥2
∞ =

⎛⎜⎝ ∥𝑓∥
4
∞

∥𝑓∥
2
𝑠∞

⎞⎟⎠
𝑠

2𝑠−1

≤ ⎛⎜⎝
4∥1/𝑝∥∞∥√𝑝𝑓′∥2

2∥𝑓∥2
2

∥𝑓∥
2
𝑠∞

⎞⎟⎠
𝑠

2𝑠−1

≤ (︁
4∥1/𝑝∥∞∥𝑞−∥𝑠

)︁ 𝑠
2𝑠−1 ∥𝑓∥2

2 = 𝛽∥𝑓∥2
2.

By applying this to the estimate in (A.28) we arrive at

∥𝑞−𝑓2∥1 ≤ ∥𝑞−∥𝑠𝛽
1
𝑠 ∥𝑓∥2

2 = 𝛼∥𝑓∥2
2.

We show (iv). Let 1/𝑝 ∈ 𝐿� (R), where � ∈ [1,∞), and 𝑞− ∈ 𝐿∞(R). Choose 𝛼 and 𝛽 as in
(A.20). Observe that

∥𝑞−𝑓2∥1 ≤ ∥𝑞−∥∞∥𝑓∥2
2 = 𝛼∥𝑓∥2

2. (A.29)

Lemma A.10 (i) in combination with Lemma A.6 and (A.29) leads to

∥𝑓∥2
∞ ≤

(︄(︃
2� − 1
�

)︃2
∥1/𝑝∥�∥

√
𝑝𝑓′∥2

2

)︄ �
2�−1

∥𝑓∥
2(�−1)
2�−1

2

≤
(︄(︃

2� − 1
�

)︃2
∥1/𝑝∥�∥𝑞−∥∞

)︄ �
2�−1

∥𝑓∥2
2 = 𝛽∥𝑓∥2

2.
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The assertion in (v) follows in a similar way. Let 1/𝑝, 𝑞− ∈ 𝐿� (R) and consider 𝛼, 𝛽 in (A.21).
As before (A.29) holds. Lemma A.10 (ii) in combination with Lemma A.6 and (A.29) implies

∥𝑓∥2
∞ ≤ 2

√︁
∥1/𝑝∥∞∥√𝑝𝑓′∥2∥𝑓∥2 ≤ 2

√︁
∥1/𝑝∥∞∥𝑞−∥∞∥𝑓∥2

2 = 𝛽∥𝑓∥2
2. □



Appendix B

Asymptotic integration for differential systems

We consider the linear system
%′ = 𝐴% (B.1)

in C2 on an open interval (𝑎 ,∞), where 𝑎 ∈ R, with a measurable function 𝐴 : (𝑎 ,∞) → C
2×2 such

that ∥𝐴(·)∥
C

2×2 ∈ 𝐿1
loc(𝑎 ,∞). We call % : (𝑎 ,∞) → C

2 a solution of (B.1) if each component of %
is locally absolutely continuous and % satisfies the equation (B.1) a. e. on (𝑎 ,∞). From the theory of
ordinary differential equations, see e. g. [32, 54], it is well-known that there is a unique solution of
the differential equation (B.1) subject to the initial condition %(𝑥0) = 𝑦0, where 𝑥0 ∈ (𝑎 ,∞) and
𝑦0 ∈ C2. In this section we compare the asymptotic behaviour of the solutions of (B.1) and those of
the perturbed system

� ′ = (𝐴 + 𝐵)�, (B.2)

where 𝐵 : (𝑎 ,∞) → C
2×2 is measurable such that ∥𝐵 (·)∥

C
2×2 ∈ 𝐿1

loc(𝑎 ,∞). The type of asymptotic
analysis we employ is based on a technique which is referred to as asymptotic integration, see [26].

For 𝛽 ∈ R let C𝛽 (𝑎 ,∞) denote the Banach space of continuous C2-valued functions on (𝑎 ,∞) of
exponential growth at the rate 𝛽, that is

C𝛽 (𝑎 ,∞) ≔
{︄
𝑓 : (𝑎 ,∞) → C

2 continuous

|︁|︁|︁|︁|︁ ∥𝑓(𝑥)∥C2 ≤ 𝛾e𝛽 (𝑥−𝑎)

for some 𝛾 ≥ 0 and all 𝑥 ∈ (𝑎 ,∞)

}︄
, (B.3)

with the corresponding norm

∥𝑓∥∞,𝛽 ≔ sup
𝑥∈(𝑎 ,∞)

e−𝛽 (𝑥−𝑎) ∥𝑓(𝑥)∥
C

2 . (B.4)

Theorem B.1. Let 𝛽 ∈ R and 𝐴, 𝐵 : (𝑎 ,∞) → C
2×2 be measurable such that ∥𝐴(·)∥

C
2×2 and

∥𝐵 (·)∥
C

2×2 are locally integrable on (𝑎 ,∞). Consider a fundamental solution 𝛷 : (𝑎 ,∞) → C
2×2

of the system (B.1).

(i) If there is a measurable non-negative function 𝑔 defined on (𝑎 ,∞) such that 𝑔(·)∥𝐵 (·)∥
C

2×2 ∈
𝐿1(𝑎 ,∞) and ∥︁∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1

∥︁∥︁∥︁
C

2×2 ≤ e−𝛽 (𝑥−𝑡)𝑔(𝑡) (B.5)

holds for all 𝑥, 𝑡 ∈ (𝑎 ,∞) with 𝑥 ≤ 𝑡, then there is a bijective linear operator 𝑇 from
C−𝛽 (𝑎 ,∞) onto C−𝛽 (𝑎 ,∞) such that for every solution % ∈ C−𝛽 (𝑎 ,∞) of (B.1) the function
� ≔ 𝑇 % ∈ C−𝛽 (𝑎 ,∞) solves (B.2) and

e𝛽 (𝑥−𝑎) ∥� (𝑥) − %(𝑥)∥
C

2 → 0 as 𝑥 → ∞. (B.6)
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(ii) If there is a measurable non-negative function 𝑔 defined on (𝑎 ,∞) such that 𝑔(·)∥𝐵 (·)∥
C

2×2 ∈
𝐿1(𝑎 ,∞) and ∥︁∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1

∥︁∥︁∥︁
C

2×2 ≤ e𝛽 (𝑥−𝑡)𝑔(𝑡) (B.7)

holds for all 𝑥, 𝑡 ∈ (𝑎 ,∞) with 𝑡 ≤ 𝑥, then there is a bijective linear operator 𝑆 from
C𝛽 (𝑎 ,∞) onto C𝛽 (𝑎 ,∞) such that for every solution % ∈ C𝛽 (𝑎 ,∞) of (B.1) the function
� ≔ 𝑆% ∈ C𝛽 (𝑎 ,∞) solves (B.2).

If 𝐴, 𝐵, 𝛷 are R2×2-valued and % is R2-valued then � is R2-valued.

Proof. We show (i). For � ∈ C−𝛽 (𝑎 ,∞) and 𝑥 ∈ (𝑎 ,∞) we define

(𝑇0�) (𝑥) = −𝛷(𝑥)
∫ ∞

𝑥

(︁
𝛷(𝑡))︁−1

𝐵 (𝑡)� (𝑡) d𝑡. (B.8)

Since (B.5) holds for all 𝑥, 𝑡 ∈ (𝑎 ,∞) with 𝑥 ≤ 𝑡, we have

∥(𝑇0�) (𝑥)∥C2 ≤
∫ ∞

𝑥

∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1∥︁∥︁
C

2×2 · ∥𝐵 (𝑡)∥C2×2 · ∥� (𝑡)∥
C

2 d𝑡

≤ e−𝛽 (𝑥−𝑎) ∥�∥∞,−𝛽

∫ ∞

𝑥
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2 d𝑡

(B.9)

for all 𝑥 ∈ (𝑎 ,∞). Multiplying the inequality (B.9) by e𝛽 (𝑥−𝑎) and taking the supremum we arrive at∥︁∥︁𝑇0�
∥︁∥︁
∞,−𝛽 ≤ ∥�∥∞,−𝛽

∫ ∞

𝑎
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2 d𝑡. (B.10)

Therefore, (B.8) defines a bounded operator 𝑇0 in C−𝛽 (𝑎 ,∞). We show inductively that for the 𝑘th
power of 𝑇0, where 𝑘 ∈ N with 𝑘 ≥ 1, one has∥︁∥︁(︁𝑇 𝑘

0 �
)︁ (𝑥)∥︁∥︁

C
2 ≤ e−𝛽 (𝑥−𝑎)

∥�∥∞,−𝛽
𝑘!

(︃∫ ∞

𝑥
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2 d𝑡

)︃𝑘
(B.11)

for all 𝑥 ∈ (𝑎 ,∞). This is true for 𝑘 = 1 by (B.9). By (B.5) we can estimate for 𝑘 > 1∥︁∥︁(︁𝑇 𝑘
0 �

)︁ (𝑥)∥︁∥︁
C

2 ≤
∫ ∞

𝑥

∥︁∥︁𝛷(𝑥) (︁𝛷(𝑡))︁−1∥︁∥︁
C

2×2 · ∥𝐵 (𝑡)∥C2×2 · ∥ (𝑇 𝑘−1
0 �) (𝑡)∥

C
2 d𝑡

≤ e−𝛽 (𝑥−𝑎)
∥�∥∞,−𝛽
(𝑘 − 1)!

∫ ∞

𝑥
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2

(︃∫ ∞

𝑡
𝑔(𝑠)∥𝐵 (𝑠)∥

C
2×2 d𝑠

)︃𝑘−1
d𝑡.

(B.12)

Consider the function 𝐺𝑘 defined by

𝐺𝑘 (𝑥) ≔
1
𝑘

(︃∫ ∞

𝑥
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2 d𝑡

)︃𝑘
. (B.13)

The function 𝐺𝑘 is locally absolutely continuos, where

𝐺′
𝑘 (𝑥) = −𝑔(𝑥)∥𝐵 (𝑥)∥

C
2×2

(︃∫ ∞

𝑥
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2 d𝑡

)︃𝑘−1
, (B.14)
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and we have by (B.12)∥︁∥︁(︁𝑇 𝑘
0 �

)︁ (𝑥)∥︁∥︁
C

2 ≤ e−𝛽 (𝑥−𝑎)
∥�∥∞,−𝛽
(𝑘 − 1)!

∫ ∞

𝑥

(︁−𝐺′
𝑘 (𝑡)

)︁
d𝑡 = e−𝛽 (𝑥−𝑎)

∥�∥∞,−𝛽
(𝑘 − 1)!𝐺𝑘 (𝑥) (B.15)

which shows (B.11).
By multiplying the inequality in (B.11) by e−𝛽 (𝑥−𝑎) and taking the supremum we obtain∥︁∥︁𝑇 𝑘

0 �
∥︁∥︁
∞,−𝛽 ≤ 1

𝑘!

(︃∫ ∞

𝑎
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2 d𝑡

)︃𝑘
∥�∥∞,−𝛽. (B.16)

Hence, the Neumann series (𝐼 − 𝑇0)−1 =
∑︁

𝑘∈N 𝑇 𝑘
0 converges absolutely with respect to the operator

norm induced by ∥ · ∥∞,−𝛽. We set
𝑇 ≔ (𝐼 − 𝑇0)−1. (B.17)

For a solution % of (B.1) in C−𝛽 (𝑎 ,∞) the function � ≔ 𝑇 % = (𝐼 − 𝑇0)−1% ∈ C−𝛽 (𝑎 ,∞) satisfies

� = % + 𝑇0�. (B.18)

Differentiation on both sides yields

� ′ = (% + 𝑇0�) ′ = 𝐴% + 𝐴𝑇0� + 𝐵� = 𝐴(% + 𝑇0�) + 𝐵� = (𝐴 + 𝐵)�,

which shows that � is a solution of (B.2). The asymptotic behaviour in (B.6) follows from (B.18)
and (B.9).

The assertion in (ii) can be shown analogously. One considers for � ∈ C𝛽 (𝑎 ,∞)

(𝑆0�) (𝑥) ≔ 𝛷(𝑥)
∫ 𝑥

𝑎

(︁
𝛷(𝑡))︁−1

𝐵 (𝑡)� (𝑡) d𝑡. (B.19)

In a similar way as in (i), using (B.7) one shows that (B.19) defines a bounded operator 𝑆0 in
C𝛽 (𝑎 ,∞), where the 𝑘th power of 𝑆0 for 𝑘 ∈ N with 𝑘 ≥ 1 satisfies

∥︁∥︁(︁𝑆𝑘0 �)︁ (𝑥)∥︁∥︁C2 ≤ e𝛽 (𝑥−𝑎)
∥�∥∞,𝛽

𝑘!

(︃∫ 𝑥

𝑎
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2 d𝑡

)︃𝑘
(B.20)

on (𝑎 ,∞) and ∥︁∥︁𝑆𝑘0 �∥︁∥︁∞,𝛽
≤

∥�∥∞,𝛽

𝑘!

(︃∫ ∞

𝑎
𝑔(𝑡)∥𝐵 (𝑡)∥

C
2×2 d𝑡

)︃𝑘
. (B.21)

Hence, the Neumann series (𝐼−𝑆0)−1 =
∑︁

𝑘∈N 𝑆𝑘0 is absolutely convergent with respect to the operator
norm induced by ∥ · ∥𝛽,∞. A straightforward calculation shows that the operator 𝑆 ≔ (𝐼 − 𝑆0)−1

establishes a one-to-one correspondence between the solutions contained in C𝛽 (𝑎 ,∞) of (B.1) and
of (B.2). □
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