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We show the existence of virtual polarization states during the interaction of modes in metasurface
stacks. In support of our findings we experimentally realize a metasurface stack, consisting of an
isotropic layer of nano-patches and an anisotropic layer of nano-wires. Utilizing an analogy to the
interaction of electrons at junctions in mesoscopic electron transport via Feynman paths, we present
a semi-analytical description of the modal interaction inside this stack. We then derive a series of
all possible reflection paths light can take inside the metasurface stack.

I. INTRODUCTION

The concept of metasurfaces has permeated many
aspects of technological advancement in photonics [1–
7]. Commonly, metasurfaces comprise artificial two-
dimensional arrangements of sub-wavelength structures
or particles [8, 9]. They promise arbitrary control of light
[10–12] and the creation of precisely engineered photon
states [13–16]. Recent examples of metasurface appli-
cations, ranging from hyperspectral imaging [17, 18] to
holography [19–21], lensing [22–24] and quantum photon-
ics [15, 16], substantiated that promise.

Moreover, metasurfaces can explore links between dif-
ferent disciplines of physics, with recent advances on so
called bound states in the continuum as prominent ex-
amples [25–28]. Similarly, metasurfaces can facilitate the
combination of different physical processes in order to
gain highly complex optical functionality [29, 30].

Many studies suggest it to be beneficial to combine dif-
ferent metasurfaces in multi-layered stacks [31–34]. A re-
cent example enabled multi-wavelength meta-lensing by
combining geometrically independent dielectric metasur-
faces [22]. Another work proposed cascading multiple
layers of graphene with dielectric spacer layers to create
a broadband optical absorber [35].

When light propagates through a stack, metasurfaces
interact through inter-layer coupling. Adjacent metasur-
faces couple either dominantly in the near-field [22, 32]
or in the far-field [31, 34, 36]. The coupling of near-fields
depends on the structures of the metasurface and their lo-
cal wavelength dependent resonances [5, 14, 29]. Far-field
coupling, on the other hand, does not depend on any local
resonance of the metasurfaces. Here, the only interaction
mechanism between the metasurfaces is of a Fabry-Perot
type [31, 34, 36, 37]. Due to the resonant characteristic
of this mechanism it modifies the far-field coupling of the
modes to adjacent metasurfaces [31, 36]. Hence, we call
this type of coupling modal coupling. Both numerical
[34] and semi-analytic [36] simulations of far-field cou-
pled metasurfaces reveal this phenomenon as part of the
overall stack response. However, the actual interaction
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process during propagation through a stack is irretriev-
able from the overall response and, thus, remains hidden.

We aim to derive an interaction picture of stacked
metasurfaces by expanding the modal interaction into
a series of interfering reflected modes. In particular, we
explore the interaction of modes inside a stack consist-
ing of both an isotropic layer of gold nano-patches and
an anisotropic layer of gold nano-wires. We analyze how
isotropic and anisotropic modes contribute to the inter-
action and how they influence the total response. Finally,
we reveal the existence of virtual polarization states dur-
ing the modal interaction of the stack.

This work was motivated by the concept of electron
scattering paths in mesoscopic solid state physics [38, 39].
Here, we attempt to compare and partially transfer this
concept to the physics of nano-optics in the specific case
of metasurface stacks.

The study of conduction in mesoscopic systems uses
descriptive concepts equivalent to the aforementioned
modal coupling in metasurface stacks [40–42]. Specifi-
cally, the process of electron scattering at junctions in
mesoscopic structures can be considered analogously to
the scattering of light at nano-structures [42–44].

Scattering processes can be described by a set of con-
nected ports in or out of which particles or waves can
be transmitted or reflected [40, 45]. In the case of meso-
scopic electron transport this is the interaction of elec-
trons from different leads at a given junction. Whether
an electron is transmitted or reflected into a specific port
or not is given by a probability [40, 46, 47]. Thus, for
each combination of ports and whether the interaction
results in transmission or reflection there exists a certain
combined probability. When a scattering process is com-
plete the final path an electron took can be described as
a sum of all its possible paths, weighted by their proba-
bility for a given initial port [39]. Therefore, these paths
give a picture of the interaction during the scattering pro-
cess. In electron scattering theory they represent what
is sometimes called the ’Feynman paths’ of the system
[38, 39].

Similar to the scattering of electrons at junctions the
interaction of light with metasurfaces can be formu-
lated as a scattering problem and described by a set
of connected ports [45]. Using scattering matrices (S-
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matrices) these ports describe the transmitted and re-
flected modes in different diffraction orders and polar-
ization states [33, 45]. Additionally, the scattering ports
encode whether a mode propagates from front to back of
a metasurface or vice versa. Here, we focus on the inter-
action in modally coupled stacks and establish our model
based on the fundamental mode approximation (FMA)
[48, 49]. The FMA is valid if the constituent metasurfaces
of the stack are homogeneous [50] and their separation is
large enough such that adjacent metasurfaces only couple
via fundamental modes [33].

II. THEORY OF STACKED METASURFACES
IN THE FUNDAMENTAL MODE

APPROXIMATION

Homogeneity implies that both the structures of a
metasurface and their lateral separation are smaller than
the wavelength of incident light. Furthermore, in the case
of a metasurface with periodically arranged structures
a fundamental mode is given by the zeroth diffraction
order for perpendicularly incident light. If coupling is
dominated by fundamental modes, higher diffraction or-
ders have decayed evanescently, which is what the FMA
implies [33].

In the FMA regime, the metasurfaces of a stack can
each be described by four ports, representing transmis-
sion and reflection in two directions. An S-matrix Si rep-
resenting the ith layer then takes the form of a 2×2 block
matrix of 2×2 Jones matrices for reflection and transmis-
sion [33, 45]. The amplitudes of its complex coefficients
are the optical equivalents of the scattering probabilities
of electrons from different leads at a junction[38, 40]. For
light the scattering coefficients additionally distinguish
polarization states in a given basis [51].

In order to denote an S-matrix to a complete stack
of N layers we can employ Redheffer’s star product . ∗ .
[52] to combine the S-matrices Si of each layer such that
[33, 45]

Sstack = SN ∗ · · · ∗ Si ∗ · · · ∗ S1. (1)

In this notation light propagates along the z-axis from
metasurface 1 to N . Each occurrence of the star product
gives an overlap of the transmission functions of adjacent
metasurfaces and includes all contributions of reflections
between them. Mathematically, these contributions are
represented by a reflection kernel of the form

(Î− R̂b
i R̂

f
i+1)−1, (2)

marking 2× 2 matrices with a hat and defining the two-
dimensional identity as Î. Here, R̂b

i is the Jones-matrix
for reflection of layer i when propagating back to front,
as referred to by superscript b, and R̂f

i+1 of layer i + 1
when propagating from front to back, as referred to by
superscript f. The reflection kernels contain exactly the
Fabry-Perot type interactions of modally coupled meta-
surfaces. For a detailed picture of this interaction process

it is therefore necessary to decompose it into its individ-
ual reflection paths.

III. REFLECTION PATHS IN STACKED
METASURFACES

A. Geometric expansion of stacked S-matrices

In the following we will introduce the mathematical
approach we employ to find individual reflection paths
during the modal interaction between metasurfaces.

We can expand the reflection kernel of the star product
of two S-matrices (N = 2) into a geometric matrix series
[53], such that(

Î− R̂b
1R̂

f
2

)−1

= Î +

∞∑
α=1

(
R̂b

1R̂
f
2

)α
. (3)

Then, each block matrix Ŝij of a stacked S-matrix can
be written as a matrix series

Ŝij = Ŝij0 + Ŝij1 + Ŝij2 + . . . , (4)

where i, j ∈ {1, 2} are the S-matrix’s block indices.
In optics of stratified media such an expansion is gen-

erally known as a Bremmer series [44, 54]. It leads to
the optical WKB (Wentzel, Kramers, Brillouin) approx-
imation of the Helmholtz equation for one-dimensionally
inhomogeneous media [54]. For the much more involved
case of stacked metasurfaces we separate the response of
the stack into a leading order term (i.e. the WKB term)
and a series of consecutive interferometric terms. For two
adjacent layers and front to back propagation this takes
the form of

T̂ f = T̂ f
2T̂

f
1︸︷︷︸

leading transmissive term

+ T̂ f
2

( ∞∑
α=1

(
R̂b

1R̂
f
2

)α)
T̂ f

1︸ ︷︷ ︸
interferometric term

(5)
for transmission and

R̂f = R̂f
1 + T̂ b

1 R̂
f
2T̂

f
1 + T̂ b

1 R̂
f
2

( ∞∑
α=1

(
R̂b

1R̂
f
2

)α)
T̂ f

1. (6)

for reflection. The infinite power series of reflection ma-
trices contains all possible paths light can take between
layers after consecutive reflections. For coherent exci-
tation these paths will interfere, including the leading
transmissive term. However, separating the pure trans-
mission from inter-layer reflections allows us to analyze
how these reflection paths influence the final result.

For more than two layers, we need to expand this con-
cept to an arbitrary number of layers. Using the asso-
ciativity of the star product [52] eqs. (5) and (6) can
be generalized to N layers by applying each new layer
to all the previous ones combined. For this, we intro-

duce the multi-index Mk
def
= 1, . . . , (N − k), denoting
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all modal contributions from the 1st to the (N − k)th
layer. A transmission or reflection matrix equipped with
Mk includes all paths and recurring reflections up to the
(N − k)th layer, excluding those from following layers,
N − k + 1, N − k + 2, . . . and so forth. Imagining the
propagation through a stack iteratively this is equivalent
to successively connecting the scattering ports of each
following layer to the input and output ports of all pre-
vious layers combined. Obeying the correct propagation
directions (forward and backward) we thereby cascade all
possible paths through a stack until the final output port
to its substrate.

Then, the transmission through an N -layer stack can
be written as

T̂ f
Mk

= T̂ f
N−k

N−k−1∏
p=1

(
Î +

∞∑
α=1

(
R̂b
Mp
R̂f
np−1

)α)
T̂ f
np
, (7)

using the compact index notation np
def
= N − k − p. The

occurring reflection matrices can be found recursively.
Given the meaning of the multi-index Mk we also have
to obey the order of products in eq. (7). In the context
of forward propagation, each backward reflection matrix
R̂b
Mp

has its own frame of reference within the layer sys-

tem of the stack. This allows us to comprehend where
certain bundles of reflection paths originate from, both
mathematically and physically.

Generally, a recursive multi-index reflection matrix is
determined as follows,

R̂f
Mk

= R̂f
Mk+1

+ T̂ b
Mk+1

R̂f
N−kT̂

f
Mk+1

+ T̂ b
Mk+1

R̂f
N−k

∞∑
α=1

(
R̂b
Mk+1

R̂f
N−k

)α
T̂ f
Mk+1

.

(8)

Changing from forward to backward direction simply re-
sults in interchanging the superscripts f and b as well as
reversing the index order. If Mk = 1, only the first layer
matrices are applied. The case k = 0 gives the transmis-
sion or reflection of the complete system. Note that the
order of indices results from applying the matrices right
to left.

B. Interpreting reflection path coefficients

To gain insight on each single reflection path we can
subtract series that are truncated at different orders Ψ
[55]. For brevity, we choose an arbitrary, scalar trans-
mission coefficient T of a stack described by eq. (7).
Introducing the subscript notation {Ψ} for a series up to
order Ψ, we define

T{Ψ}
def
=

Ψ∑
α=0

Tα. (9)

With this, the Ψth order contribution is given by

TΨ = T{Ψ} − T{Ψ−1}. (10)

2 µm

(a)

(c)

100 nm

(b)

100 nm

v

v v

v v

v v
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dw

lw

(d)

FIG. 1. (a) SEM image of the fabricated patch-wire stack
revealed by focused ion beam milling. The particles are col-
ored golden for better visibility. (b) Single layer field of the
upper metasurface with nano-patches. (c) Single layer field of
the lower metasurface with nano-wires. (d) Sketch of super-
imposed unit cells of the metasurfaces, forming a super-cell
of period 600 nm. Black lines map unit cells and particles of
the upper metasurface and red dashed lines those of the lower
metasurface.

We call these coefficients virtual as they influence the
final response of the stack indirectly through interfer-
ence. Deriving the transmittance of a truncated coeffi-
cient T{Ψ} yields

|T{Ψ}|2 =

Ψ∑
α=0

|Tα|2 + 2

Ψ∑
α=1

Ψ−α∑
β=0

|Tβ ||Tβ+α| cos (δαβ) ,

(11)
where the paths of higher order contributions interfere,
depending on the phase differences δαβ = φβ − φβ+α of
their respective phases φα.

IV. REFLECTION PATHS OF A PATCH-WIRE
METASURFACE STACK

A. Design and fabrication

Having established a theoretical framework we now
have to ascertain how reflection paths of certain order
contribute to an actual physical system.

In order to explore the effect of reflection paths in a
real sample we designed and fabricated a metasurface
stack consisting of two metasurfaces separated by a glass
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spacer. The upper or front facing metasurface is com-
prised of a 2D-array of gold nano-patches with period
Λp = 200 nm, average diameter dp = 70 nm, and height
hp = 55 nm. The lower metasurface comprises a 2D-array
of gold nano-wires with period Λw = 300 nm, average
lateral dimensions dw = 108 nm and lw = 176 nm, and
height hw = 45 nm. Both metasurfaces were embedded
in a glass matrix. Fig. 1 (a) shows a scanning electron
beam (SEM) image of the sample.

Our fabrication technique employed structuring of a
two layer resist via electron beam lithography, gold evap-
oration, and chemical lift-off. To obtain reference fields
of each metasurface layer in the stack, we fabricated each
on two separate fields: the stack itself (fig. 1 (a)) and a
single layer of the respective metasurface (figs. 1 (b),
(c)), resulting in a total of three samples. After fabricat-
ing the first metasurface with this technique, we added a
spacer layer using spin-on glass (Futurrex IC1-200) and
etched it to the desired thickness of hsp = 450 nm. We
then fabricated the upper layer metasurface using the
same approach as for the lower one. Finally, we added
a fused silica cladding layer of thickness hc = 585 nm by
chemical vapor deposition.

B. Semi-analytic modeling

We specifically chose patches and wires for their dif-
ferent symmetry, i.e. C4 and C2, respectively. This gave
us the opportunity to analyze the effect of each reflection
path on the anisotropic response of the stack, being itself
anisotropic with an overall C2 symmetry. Furthermore,
the periods of the arrays have a ratio of Λw/Λp = 3/2,
creating a super-period of the stacked unit cells, as shown
in fig. 1 (d). Modelling such super-periodic systems usu-
ally demands rigorous simulations with high computa-
tional effort [33]. In our case, however, the spacer thick-
ness of hsp = 450 nm permits applying the FMA, en-
abling a more efficient semi-analytic approach [33, 36].

We developed a model of the stack utilizing the
semi-analytic-stacking algorithm (SASA) presented in
[33, 36], which separates the problem into an analytic
and a numeric part using S-matrices as described above.
Berkhout and Koenderink [31] recently published a com-
parable approach using transfer matrices. Since we deal
with S-matrices and aim to analyze the properties of each
scattering channel, SASA is the more suitable choice.

First, using the Fourier modal method (FMM) [45, 56],
we computed the two metasurfaces’ S-matrices (Sp for
the patches and Sw for the wires) separately for wave-
lengths ranging from 470 nm to 1200 nm, while assuming
symmetric embedding. Ellipsometric measurements of
the materials produced by our fabrication processes sup-
plied refractive index data [57]. Next, all homogeneous
dielectric layers, i.e. the spacer, Ssp, and the cladding
covering the stack, Sc, were calculated analytically as
propagators of phases [36]. Furthermore, we applied
Fresnel equations for the interface S-matrix St at the top
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FIG. 2. Comparison of measurement and SASA model. The
left column of plots shows transmittance and the right col-
umn phase. From top to bottom the plots show the results
for the single layer control fields of the upper and lower meta-
surface, and of the full stack at the bottom. Dashed lines
refer to SASA results and solid lines to the measurement.
Blue and green differentiate between x- and y-polarization,
respectively. Note that only x-polarization is plotted for the
patch-metasurface as it is isotropic.

of the stack, representing the glass-air interface of the
cladding [33]. In terms of S-matrices the stack is then
given by the cascaded star product

Sstack = Sw ∗ Ssp ∗ Sp ∗ Sc ∗ St. (12)

The glass wafer at the base of the sample can be consid-
ered as a glass half-space with respect to the stack and
needs no representation by an S-matrix.

C. Experimental validation

To ensure the validity of our SASA model we compared
it against experimental results. Using a custom-built in-
house characterization setup [58, 59], we performed inter-
ferometric measurements of both the single layer fields
and the full stack, simultaneously measuring transmit-
tance and phase in x- and y-polarization. Fig. 2 shows
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1 T
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FIG. 3. Illustration of zeroth and first order reflection paths.
At zeroth order light simply propagates through the stack
without reflection. Starting at first order, paths include re-
flection kernels shown as pairs of curved arrows in the sketch.
These are representations of reflection matrix pairs from eq.
(13) with Ψ = 1.

very good agreement between the SASA model and the
measurement, both for transmittance and phase.

The isotropic patch-metasurface of the upper layer ex-
hibits a single resonance at approximately 580 nm. On
the other hand, the C2 symmetric wire-metasurface of
the lower layer shows two distinct resonances for differ-
ent polarization at approximately 600 nm and 800 nm.
The isotropic resonance overlaps with polarization sen-
sitive resonances in the stacked configuration. For x-
polarization this results in a broader and more promi-
nent resonance at 600 nm. However, in y-polarization
the transmittance now shows two resonances. The phase
is mainly determined by the collective heights of spacer
and cladding. Phase jumps at the resonance positions of
the single layers combine in the stack.

D. Reflection path extraction

Having a valid model of the patch-wire stack we now
move on to the extraction and analysis of its reflection
paths. For brevity, we focus on forward transmission,
i.e. propagation from top to bottom of the stack. The
S-matrices of the homogeneous layers Ssp and Sc are diag-
onal matrices with exponential propagation phase terms
of the form ). Here, n is the refractive index of the ho-
mogeneous medium, h its thickness, and k0 the vacuum
wavenumber. With this we can write the geometric ex-
pansion of the patch-wire stack up to order Ψ as

T̂ f
M0

= T̂ f
w

(
Î +

Ψ∑
α=1

(
R̂b
M1
R̂f

w

)α)
PspT̂

f
p

×

Î +

Ψ∑
β=1

(
PcR̂

b
tPcR̂

f
p

)βPcT̂
f
t , (13)

where Psp and Pc denote the propagation coefficients of
spacer and cladding, respectively. Reflection and trans-
mission at the glass-air interface of the cladding are given
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FIG. 4. Amplitudes (blue) and phases (green) resulting from
a geometric expansion of the SASA model. The top row of
plots, (a) and (b), shows transmission T{Ψ} when truncating
at 0th to 2nd order. The lower row, (c) and (d), shows the
separate transmission terms TΨ contributing at each order Ψ.
Both cases are compared to the full SASA result without trun-
cation (solid line). The left column, (a) and (c), corresponds
to x-polarization. (b) and (d) show y-polarization.

by the Jones matrices R̂b
t and T̂ f

t of the interface S-matrix
St [36].

This can be interpreted as follows. The transmission
matrices T̂ f

t and T̂ f
w are the input and output ports of

the stack. Reading eq. (13) from right to left, the
first parenthesis gives all interactions between the patch-
metasurfaces and the top interface of the stack. The
second parenthesis includes all interactions between the
wire-metasurface and the patch-metasurface. The sum-
mations contribute all recurring reflections between those
layers. In this context, the multi-index reflection matrix
R̂b
M1

bundles all recurring reflections between the top and
the spacer of the stack in backward direction.

With the notation from eqs. (9) and (10) as well as
using eq. (8) to calculate the reflection matrices in (13),
we can formulate the explicit expressions of the physical
reflection paths in eq. (13). In x-polarization the trans-
mission coefficients of zeroth order and the first three
paths contained at first order (Ψ = 1) read as

T0 = T xwPspTpPcTt (14)

T
(1)
1 = T xwPSpTpRpRtP3

c Tt (15)

T
(2)
1 = T xwR

x
wRpP3

spTpPcTt (16)

T
(3)
1 = T xwR

x
wP3

spT
3
pRtP3

c Tt, (17)

where we omitted the superscripts f and b for the sake
of readability. Above, eqs. (15) through (17) show the
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coefficients of the paths emerging at first order, such that

T{1} = T0 + (T
(1)
1 + T

(2)
1 + T

(3)
1 + . . . ). The graphical

representation of these coefficients in fig. 3 shows the
paths in the context of the fabricated stack. Whereas
the leading transmissive term T0 expresses propagation
straight through the stack, the first order paths include
different combinations of recurring reflections.

The leading transmissive term T0 is composed of the
single layer transmission coefficients, with Pc and Psp

imposing an additional phase shift. Both the isotropic
patch-metasurface and the anisotropic wire-metasurface
contribute equally to the combined transmission coef-
ficient. At higher orders each reflection path shows
different compositions of the isotropic and anisotropic
contributions. Therefore, they add different degrees of
anisotropy to the interferometric part of the stack’s trans-
mission.

Inputting the SASA results into eqs. (10) and (13)
we computed both the truncated series T{Ψ} and the
coefficients TΨ of the patch-wire stack numerically. To
see how the series converges we truncated this time at
second order (Ψ = 2). Fig. 4 shows amplitude and
phase of both sets of coefficients, {T{0}, T{1}, T{2}} and
{T0, T1, T2}, both for x- and y-polarized light. Looking
at the set of truncated coefficients T{Ψ} (figs. 4 (a), (b))
we see that the series already approximates the ampli-
tude of the full result well at 1st order. The phase, how-
ever, seems to be insensitive to the expansion. But this
is no surprise since the phase is mainly determined by
the propagation lengths in the stack and its resonances.
Any extra phase vanishes due to interference. In con-
trast, the set of coefficients contributing to each order
TΨ (figs. 4 (c), (d)) shows the accumulated phase of the
taken paths, albeit without interference. Here, we see
that the metasurfaces’ resonances manifest themselves in
the amplitude of the 1st order contribution.

E. Virtual polarization states

The discussion above showed how and to what degree
different orders of reflection paths contribute to the over-
all stack response. Now, we can pose the question: what
other physical insights can we deduce from the properties
of reflection paths? Indeed, with an anisotropic stack at
hand we can gauge the degree of anisotropy at different
expansion orders.

By calculating the ellipticity of the sets of coefficients
from fig. 4 we can compare the stack’s overall anisotropic
response to that of each expansion order. From the re-
sults shown in fig. 5 (a) we can conclude that for x-
polarization the stack’s response is mostly linearly polar-
ized with a slight deviation around the resonance wave-
length at 600 nm. In y-polarization (fig. 5 (b)) elliptical
polarization is produced around the stronger resonance
at 800 nm. As before, the geometric series converges al-
ready at 1st order.

The ellipticity of the individual reflection paths shows

−1.0

−0.5

0.0

0.5

1.0

el
li

p
ti

ci
ty
ε

0.6 0.8 1.0 1.2

wavelength λ (µm)

−1.0

−0.5

0.0

0.5

1.0

el
li

p
ti

ci
ty
ε

0.6 0.8 1.0 1.2

wavelength λ (µm)

0th order

1st order

2nd order

full SASA

(a) (b)

(c) (d)

FIG. 5. Ellipticity of transmission coefficients resulting from
the geometric expansion of the SASA model. The upper row
of plots, (a) and (b), shows the ellipticity ε of transmission
coefficients T{Ψ} when truncating at 0th to 2nd order. The
lower row, (c) and (d), shows the ellipticity of the separate
transmission terms TΨ contributing at each order Ψ. Both
cases are compared to the full SASA result without truncation
(solid line). The left column, (a) and (c), corresponds to x-
polarization. (b) and (d) show y-polarization.

more complex behavior (figs. 5 (c), (d)). For instance, at
first order in x-polarization a circular polarization state
emerges at a wavelength of 1000 nm (fig. 5 (c)). We term
such states virtual polarization states since they interfere
with other paths and produce only low amplitudes. This
demonstrates that the reflection paths of the patch-wire
stack are anisotropic to varying degree. Even though it is
small, they have a distinguishable influence on the stacks
overall anisotropic response.

V. CONCLUSIONS

In conclusion, we revealed the existence of virtual po-
larization states of a metasurface stack by analyzing the
reflection paths of its internal modal interactions. Our
approach was motivated by the treatment of electron
scattering in mesoscopic electron transport using a mul-
tiport formalism. This concept is mathematically equiv-
alent to the scattering matrix formalism we employed.
Based on this conceptual overlapp we could adopt the
analogy of Feynman paths and electron scattering paths
to the scattering problem in stacked metasurfaces.

In this work we applied a geometric expansion to the
S-matrix of an anisotropic patch-wire metasurface stack
under the necessary condition of the FMA. We demon-
strated that its transmission could be separated into a
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leading transmissive term and a series of interferometric
terms, representing the reflection paths of the stack. By
truncating the series and analyzing its constituent coef-
ficients, we revealed the properties of paths of different
order as well as their influence on the overall response.

The knowledge of reflection paths could prove useful
in understanding the interaction of more complex stacks
with multiple diffraction channels [32]. Furthermore, we
believe that the concept of Feynman paths could help in
developing semi-analytic models of near-field interactions
of complex nano-structures which can be challenging to
comprehend, even numerically [11, 19, 58].

Finally, we would like to emphasize the benefit of
adopting concepts from different fields of physics and
identifying their similarities in order to gain more insight
on certain physical phenomena.
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