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Zusammenfassung
In der Betrachtung von Modellen, in welchen nichtrelativistische quantenmechanische Teil-
chen mit einem Feld relativistischer masseloser Bosonen wechselwirken, begegnet man
einem Infrarot-Problem. Anschaulich geht dies darauf zurück, dass bereits kleine Energie-
Schwankungen zur Erzeugung unendlich vieler niederenergetischer Bosonen führen kön-
nen. Dies führt zur Infrarot-Divergenz des Systems. Aus mathematischer Sicht erwartet
man für solche Systeme, dass kein Grundzustand, also kein stationärer Zustand niedrigster
Energie, existieren kann. In dieser Dissertation behandeln wir zwei Arten von infrarot-
kritischen Modellen.

Das translationsinvariante Nelson-Modell beschreibt ein nichtrelativistisches spinloses
quantenmechanisches Teilchen, welches linear an das Bosonenfeld gekoppelt ist. Wir be-
trachten das System bei festgehaltenem Gesamtimpuls und verallgemeinern vorangegan-
gene Beweise für die Abwesenheit von Grundzuständen auf das ultraviolett-renormierte
Modell. Hierbei behandeln wir die Abhängigkeit des renormierten Operators vom Gesam-
timpuls und zeigen insbesondere, dass die Definitionsbereiche von renormierten Opera-
toren für unterschiedliche Gesamtimpulse im physikalischen Fall lediglich den trivialen
Vektorraum gemein haben.

Als zweites Modell behandeln wir das Spin-Boson-Modell. Dieses beschreibt ein quan-
tenmechanisches System mit zwei Zuständen – Spin genannt – welches ebenfalls linear
an das Bosonenfeld gekoppelt ist. In der Vergangenheit wurde mit Hilfe störungstheoreti-
scher Methoden gezeigt, dass selbst im physikalischen infrarot-kritischen Fall ein Grund-
zustand existiert. Dies wird darauf zurückgeführt, dass Symmetrien des Modells zur ge-
genseitigen Aufhebung von Divergenzen führen. Wir führen in dieser Arbeit einen neuen
nicht-störungstheoretischen Beweis für die Existenz von Grundzuständen, der es uns er-
laubt das Resultat auf singulärere Fälle auszuweiten. Weiterhin können wir eine explizite
Kopplungskonstante angeben, bis zu welcher der Grundzustand existiert. Es wird die Ver-
mutung aufgestellt, dass es eine kritische Kopplung gibt, oberhalb welcher die Existenz
des Grundzustands endet.

Abstract
When considering models of nonrelativistic quantum mechanical particles interacting with
a field of massless relativistic bosons, one encounters an infrared problem. Heuristically,
this is due to the fact that small energy fluctuations can create an infinite number of low-
energy bosons, which causes infrared-divergences. From a mathematical perspective, this
leads to the expectation that such systems cannot have a ground state, i.e., a stationary
state at the lowest possible energy. In this thesis, we study two types of infrared-critical
models.

In case of the translation-invariant Nelson model, which describes the interaction of a
nonrelativistic spinless quantum mechanical particle linearly coupled to the boson field,
we extend previous proofs for the absence of ground states at fixed total momentum
to the ultraviolet-renormalized model. Along the way, we study the dependence of the
renormalized operators on the total momentum. Especially, we prove that in the physical
case the domains of the renormalized operators with different total momentum have only
the trivial vector space as intersection.

The second model we study is the spin boson model. It describes a two-state quantum
mechanical system, called spin, again linearly coupled to a boson field. It was previously
proven by perturbative methods that the model has a ground state even in the physical
infrared-critical case. This is attributed to a cancellation of divergences due to an un-
derlying symmetry of the model. We provide a new non-perturbative proof for this fact,
which allows us to extend the result to more singular models. Further, we can give an
explicit coupling constant, below which the ground state exists. It is conjectured that
there exists a critical coupling constant, above which the ground state ceases to exist.
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1. Introduction

The key developments in theoretical physics of the twentieth century can be summarized
in two categories: the theory of relativity describing large-scale physics and quantum
theories describing physics at small scales. Our interest is focused on the latter. One way
to formulate the mathematical description of such a quantum theory goes back to von
Neumann [Neu32] and uses the methods of functional analysis. The state of the physical
system is described by an element of a Hilbert space H and the energy of this system
is given by a selfadjoint operator H acting on this space and which, for simplicity, we
assume to be time-independent. The time-evolution ψ : R → H is then described by a
Schrödinger equation, which (setting ℏ = c = 1) is the initial value problem

iψ̇ = Hψ, ψ(0) = ψ0.

An essential ingredient to the investigation of above equation is the spectral analysis of
the so-called Hamilton operator (or Hamiltonian) H. Especially, it is important to ask
for the existence of eigenvalues, which in view of the Schrödinger equation correspond to
the stationary states of the system.

In this thesis, we treat quantum systems for which the possible energy – or mathe-
matically speaking the spectrum of H – is bounded from below. Our main object of
investigation is the question whether there exists a stationary state corresponding to the
lowest possible energy – the infimum of the spectrum. We call such a state a ground
state. The systems we investigate are models describing the interaction of a rather simple
quantum-mechanical system, from now on referred to as particle, with a field of bosons
(cf. Fig. 1). If such a system has a ground state, it is expected that the particle is
“dressed” by a cloud of bosons. This state of the system is also called a quasi-particle. If
one assumes the bosons to be massless, this causes infrared-divergences. The physical in-
terpretation of this phenomenon is sometimes referred to as the soft photon catastrophe:
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Figure 1: Heuristic concept of the considered models: a quantum mechanical particle
(blue), which can absorb (left) or emit (right) bosons (red).
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1. Introduction

even an infinite number of low-energy (“soft”) bosons can have finite combined energy.
Since the uncertainty principle allows for small energy fluctuations even in the vacuum
state of the boson field, this leads to the creation of infinitely many soft bosons, which
causes an infrared-divergence of the system. For a first treatment of this problem in the
physics literature, we refer to [BN37].

Let us discuss the setup a little further:
The central information for our setting are the dispersion relation ω : Rd → [0,∞),

describing the free energy of a boson, and the form factor v ∈ L2(Rd), describing the
interaction of particle and field. Here and throughout the thesis, d ∈ N denotes the
dimension of the underlying space. The usual physical example, which we have in mind,
is given by

d = 3, ω(k) =
√︁
µ2 + |k|2 and v(k) = λη(k)|k|−1/2, (1.1)

where the parameter µ ≥ 0 is the mass of the bosons, λ ∈ R is a coupling constant,
describing the strength of the particle field interaction, and η : Rd → [0, 1] is an ultraviolet
cutoff function chosen such that v ∈ L2(Rd). One typical choice, which we will use for this
introductory discussion, is the characteristic function χK of some compact set K ⊂ Rd.
Often, one chooses K to be a closed ball centered at zero with a large but finite radius.

In the case µ > 0 or in presence of an infrared cutoff, i.e., in case 0 /∈ K, there is a lower
bound on the energy of bosons which can interact with the particle and one expects that
there exists a ground state, being a quasi-particle with a cloud of bosons, which is square-
integrable. This phenomenon has been extensively studied in the mathematical literature
and, apart from discussing results more thoroughly for the models explicitly studied below,
we refer to the exemplary results in [Gro72, Frö74, AH97, BFS98a, BFS98b, Gér00]. In
fact, it turns out that a usually sufficient infrared regularity condition is obtained if one
replaces the exponent −1/2 of v in (1.1) by −1/2 + ε for some ε > 0, independent of any
further cutoff assumptions.

We are, on the contrary, studying the infrared-critical case, which in the situation
(1.1) with η = χK means that both µ = 0 and K contains some ball centered at 0. In
the translation-invariant Nelson model, we will prove that the infrared-divergence indeed
causes absence of ground states. Especially, our proof includes the case in which the
ultraviolet cutoff η has been removed. Then, we study the spin boson model and prove
that a ground state still exists in the infrared-critical case. This can be interpreted as
a cancellation of divergences due to an underlying symmetry of the model, since the
expectation of the interaction of soft bosons with respect to the free ground state of the
particle vanishes, cf. [LMS02] for a more detailed discussion. Results of this type in
the model of non-relativistic quantum electrodynamics can be found in [BFS99, GLL01,
HH11a, HH11c, BCFS07, HS20].

Before we come to a more rigorous introduction of the considered models and our results
on infrared-criticality, let us fix the following objects throughout the thesis:

• the dimension d ∈ N,

• a measurable function ω : Rd → [0,∞),

• a locally square-integrable function v : Rd → C.
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We will later on strengthen the assumptions from above appropriately in the places where
it is necessary. Especially, the infrared-criticality assumption then translates into∫︂

|k|≤K

|v(k)|2

ω(k)2
dk = ∞ for any K > 0.

Organization of the Thesis

This thesis is organized as follows. In the next two introductory sections, we give rigorous
definitions of the models considered in this thesis and state the main results on infrared-
criticality in the sense introduced above. We further compare our results to the literature.
The two models studied are the translation-invariant Nelson model in Section 1.1 and the
spin boson model in Section 1.2, respectively.

The subsequent chapters are then devoted to the proofs of the statements. In Chapter 2,
we study the ultraviolet renormalization procedure for the Nelson model and prove new
regularity results for the renormalized fiber operators. In Chapter 3, we then prove absence
of ground states in the Nelson model. Chapter 4 takes an intermediate role between the
study of the two quantum field theoretic models. Therein, we prove correlation bounds
for one-dimensional Ising models, which are interesting by themselves, as we motivate in
the beginning of that chapter. Our motivation to study Ising models becomes apparent
in Chapter 5, where we derive a Feynman-Kac-Nelson (FKN) type formula for the spin
boson model with external magnetic field. This provides a direct connection between the
studied Ising correlation functions and the derivative of the ground state energy in the
spin boson model with respect to the strength of the external magnetic field. Finally,
in Chapter 6, we prove the existence of ground states in the spin boson model even in
the infrared-critical case. The correlation bound from Chapter 4 and its analogue for the
derivatives of the ground state energy obtained using the FKN formula from Chapter 5
will provide a key ingredient of the proof.

The results presented are contained in [DH21, HHS22a, HHS22b, HHS21]. However, this
thesis is written with an aim to be as self-contained as possible. Hence, proofs of results
which are not contained in the corresponding articles are added. For the convenience
of the reader, Sections 1.1.3 and 1.2.3 contain a comparison of the articles with the
corresponding chapters in this thesis.

Also with the purpose to be self-contained, the thesis is complemented by a collection
of appendices. These contain basic definitions and statements which can be found in
the usual textbooks, but go beyond the knowledge of standard functional analysis and
measure theory courses. In Appendix A, we give an overview of the theory of operators
on Hilbert spaces, while we study the notions of Fock space analysis in Appendix B.

We will assume basic definitions from the appendices in the following, which especially
include: selfadjointness (Definition A.32), semiboundedness (Definition A.39), and Fock
space basics such as the second quantization operators dΓ(·) and Γ(·) (Definitions B.11
and B.14), the field operators φ(·) (Definition B.21) and the Weyl operators W (·) (Defi-
nition B.24).

Furthermore, we fix some notation. We will work under the convention N = {1, 2, . . .}
and N0 = N∪{0}. The characteristic function of a set M ⊂ Rd is denoted by χM and, for
R > 0, we denote the open ball of radius R centered at k ∈ Rd by BR(k). The identity
operator on a Hilbert space H is denoted by 1H. If the Hilbert space is clear from the
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1. Introduction

context, we drop the index H. Further, we also sometimes denote the operator α1 with
some α ∈ C only by the symbol α. Inner products and sesquilinear forms are assumed
to be anti-linear in the first and linear in the second argument. If the Hilbert space is
apparent from the context, then we will not use it as an index for inner products or norms.

Throughout the thesis, F = F(L2(Rd)) denotes the Fock space over the one-particle
space L2(Rd). Similarly, we denote by F (n) = F (n)(L2(Rd)) ∼= L2

s (Rnd) the corresponding
n-particle subspaces, which are unitarily equivalent to the space of L2-functions in n d-
dimensional variables and symmetric under permutation of these variables. We will use
this equivalence without further mention, cf. Remark B.3 for more details.

A more extensive list of the standard symbols used in this thesis can be found in the
Nomenclature.

Next, we want to introduce our models explicitly and before that fix the notion of a
ground state.

Definition 1.1. Let H be a Hilbert space and let H be a selfadjoint lower-semibounded
operator on H and let E = inf σ(H). We say ψ ∈ D(H) is a ground state ofH ifHψ = Eψ.
We say that the ground state is unique or nondegenerate if dimker(H − E) = 1.

1.1. The Translation-Invariant Nelson Model

The Nelson model was originally treated by Edward Nelson [Nel64]. It describes a particle
minimally coupled to a boson field. Here, the particle is spinless and uncharged and is
described by the Schrödinger operator −∆+ V acting on L2(Rd), where −∆ denotes the
positive Laplacian in Rd and V : Rd → R∪{∞} is an appropriately chosen potential. The
Nelson model has been extensively studied throughout the literature, since it exhibits two
characteristic behaviors: First, although directly only being well-defined in the presence
of an ultraviolet cutoff similar to the one in (1.1), there exists an explicit procedure to
remove the cutoff and obtain a selfadjoint lower-semibounded operator [Nel64]. Second,
the model displays a serious infrared criticality and serves as an important platform for
the study of scattering theory in presence of infrared criticalities. This was first studied by
Fröhlich [Frö73, Frö74] and has inspired a variety of subsequent papers, cf. the discussion
in Section 1.1.2.

In the case V = 0 the model is translation-invariant, which means the Hamiltonian
strongly commutes with the total momentum operator P = −i∇ + dΓ(m), where m is
the momentum operator on L2(Rd), see (1.3). Hence, it decomposes with respect to the
spectrum of P, i.e., it is unitarily equivalent to the direct integral over so-called fiber
operators describing the system at fixed total momentum. In case of the Nelson model,
the fiber operators can explicitly be defined as operators on Fock space [LLP53], which is
the starting point of our investigation.

1.1.1. Definition and Results

Our study of the translation-invariant Nelson model is concerned with the fiber operators
at fixed total momentum P ∈ Rd, which are defined on the Fock space F .

For the form factor v, we define the ultraviolet cutoff version

vΛ = vχ{|·|≤Λ} for Λ ≥ 0. (1.2)

4



1.1. The Translation-Invariant Nelson Model

For well-definedness, we introduce the following assumptions.

Hypothesis N0.

(i) ω > 0 almost everywhere.

(ii) vΛ ∈ D(ω−1/2) for all Λ ≥ 0.

Remark 1.2. In (ii) and from now on, we understand ω as selfadjoint multiplication oper-
ator. Note that, in this sense, Hypothesis N0 (i) implies that ω is positive and injective.

For the definition of the operators we are investigating, we define the vector of multi-
plication operators m = (m1, . . . ,md) on L2(Rd) given by

mi(k) = ki for k = (k1, . . . , kd) ∈ Rd. (1.3)

Definition 1.3 (Fiber Operators of the Translation-Invariant Nelson Model).
For P ∈ Rd and Λ ≥ 0, we define

HN,Λ(P ) = |P − dΓ(m)|2 + dΓ(ω) + φ(vΛ)

as operator on F .

Remark 1.4. Since m is a vector of selfadjoint multiplication operators, dΓ(m) is a vector
of strongly commuting selfadjoint operators, by Lemma B.15 (ii). Hence, the operator
|P − dΓ(m)|2 is well-defined by the functional calculus, cf. Definition A.73.

Lemma 1.5. Assume Hypothesis N0. Then, for all Λ ≥ 0 and P ∈ Rd, the operator
HN,Λ(P ) is selfadjoint on the domain D(HN,Λ(P )) = D(|dΓ(m)|2) ∩ D(dΓ(ω)) and has
form domain Q(HN,Λ(P )) = D(|dΓ(m)|)∩D(dΓ(ω)1/2). Further, it is lower-semibounded
uniformly in P .

Proof. As a sum of strongly commuting and positive selfadjoint operators, HN,0(P ) is
positive and selfadjoint, cf. Lemmas A.61, A.69 and B.15. Further, φ(vΛ) is infinitesimally
dΓ(ω)-bounded, cf. Lemma B.22. Hence, the Kato-Rellich theorem (Theorem A.45)
proves selfadjointness and semiboundedness. The uniform lower bound can be seen from
the standard bounds in Lemma B.20 (vii). The explicit calculation of domain and form
domain follows from Lemmas B.17 and A.87, respectively.

Now and henceforth, we denote the domain and form domain of the ultraviolet regular
Nelson operators HN,Λ(P ) as

DN = D(|dΓ(m)|2) ∩ D(dΓ(ω)) and QN = D(|dΓ(m)|) ∩ D(dΓ(ω)1/2). (1.4)

Using the ideas of Nelson, one can renormalize the fiber operators. To give a precise
statement, we need the following assumptions.

Hypothesis NR. We assume Hypothesis N0 and the following:

(i) There exists σ > 0 such that inf{ω(k) : |k|≥ σ} > 0,∫︂
|k|>σ

|v(k)|2

ω(k)1/2(1 + |k|2)
dk <∞, and

∫︂
|k|>σ

|v(k)|2ω(k)
(1 + |k|2)2

dk <∞.

5



1. Introduction

(ii) v(k) = v(−k) and ω(k) = ω(−k) for all k ∈ Rd.

(iii) k ↦→ ω(k)(1 + |k|2)−1 is bounded.

We define the self-energy of the Nelson model as

EΛ =

∫︂
|k|≤Λ

|v(k)|2

ω(k) + |k|2
dk, (1.5)

which is finite by assumption Hypothesis N0 (ii).
Now, we can state the self-energy renormalization of the Nelson model.

Lemma 1.6. Assume Hypothesis NR holds. Then, for all P ∈ Rd, there exists a unique
selfadjoint lower-semibounded operator HN,∞(P ) such that HN,Λ(P ) + EΛ converges to
HN,∞(P ) in the norm resolvent sense as Λ → ∞.

Proof. The statement is contained in that of Theorem 2.1.

Our main theorem now contains the infrared criticality statement both for the ultraviolet-
regular as well as the renormalized Nelson model. We need the following assumptions.

Hypothesis NA.

(i) d ≥ 2.

(ii) ω is continuous and |k1| > |k2| implies ω(k1) > ω(k2).

(iii) ω and v are rotation invariant.

(iv) vΛ /∈ D(ω−1) for one and hence all Λ > 0.

(v) The limit Cω = lim
k→0

|k|
ω(k)

∈ (0,∞) exists.

Theorem 1.7. Assume Λ ∈ (0,∞) and Hypothesis N0 or Λ = ∞ and Hypothesis NR
hold. Further, assume Hypothesis NA holds. Then HN,Λ(P ) does not have a ground state
for any choice of P ∈ Rd.

Our emphasis lies on the proof for the renormalized case. Therein, it will be especially
important to treat differences of fiber operators at different total momentum. For the
case Λ < ∞ and for P1, P2 ∈ Rd, a straightforward calculation from Definition 1.3 leads
to the transformation law

HN,Λ(P2) = HN,Λ(P1)− 2dΓ((P2 − P1) ·m) + 2(P2 − P1) · P1 + |P2 − P1|2. (1.6)

However, in the case Λ = ∞, this statement heavily depends on the domains of the
involved operators. Explicitly, we prove the following statement in Chapter 2, which
holds independent of any infrared-regularity conditions. For the definitions of the Weyl
operators W (·) used therein, we again refer to Appendix B.

Theorem 1.8. Assume Hypothesis NR holds and let σ be as in Hypothesis NR (i).
For K ≥ σ, we define BK ∈ L2(Rd) as

BK(k) = χ{K≤|k|}(k)
v(k)

ω(k) + |k|2
.

The following domain and transformation statements hold:
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1.1. The Translation-Invariant Nelson Model

(i) The form domain of HN,∞(P ) is independent of P ∈ Rd. Explicitly,

Q(HN,∞(P )) = W (BK)
∗QN for any K ≥ σ.

Further, Q(HN,∞(P )) ⊂ D(dΓ(ω)1/2) ∩ D(|dΓ(m)|2/3) and the transformation rule
(1.6) with Λ = ∞ holds in the sense of sesquilinear forms for all P1, P2 ∈ Rd.

(ii) For P1, P2 ∈ Rd, the operator domains satisfy D(HN,∞(P1)) = D(HN,∞(P2)) if and
only if k ↦→ (P2−P1) · kBK(k) is square-integrable. In this case, the transformation
rule (1.6) with Λ = ∞ holds. Otherwise, D(HN,∞(P1)) ∩ D(HN,∞(P2)) = {0}.

Let us finish with a discussion of the physical example.

Example 1.9. Similar to (1.1), we discuss

d = 3, ω(k) =
√︁
µ2 + k2 and v = λω−1/2

with boson mass µ ≥ 0 and coupling constant λ ̸= 0.
First, note that Hypothesis NR is satisfied for any choice of these constants. By

integration in polar coordinates, we observe that (P2 − P1) · kBK(k) is not square-
integrable for any choice of P1 ̸= P2 and K > 0. Hence, Theorem 1.8 gives us that
D(HN,∞(P1)) ∩ D(HN,∞(P2)) = {0} if P1 ̸= P2.

As we already discussed, the physical model is infrared divergent in the massless case
µ = 0, i.e., it then satisfies Hypothesis NA. For any choice of Λ ∈ (0,∞] and P ∈ Rd,
Theorem 1.7 now implies that there is no ground state.

1.1.2. Relation to the Literature

In [Nel64], Nelson introduced the full Nelson operator HN,Λ, which is unitarily equivalent
to the direct integral

∫︁ ⊕
Rd HN,Λ(P )dP [LLP53]. In fact, Nelson considered several non-

relativistic particles interacting with a bosonic field. He proved that HN,Λ+EΛ converges
to a selfadjoint lower-semibounded operator HN,∞ in the strong resolvent sense. The first
proof for norm resolvent convergence of the full operator is due to Ammari [Amm00]. A
similar proof to that in [Nel64] for the fiber operators investigated here was first given
by Cannon in [Can71]. Further constructions of the norm resolvent limit of the fiber
operators can be found in [MM18, Lam21]

The domain of the full renormalized operator has independently been studied in [GW18,
LS19, Sch21]. Whereas Griesemer and Wünsch in [GW18] use the original renormalization
procedure due to Nelson [Nel64] and its later improvement by Ammari [Amm00], Lampart
and Schmidt in [LS19, Sch21] use a novel direct description of the renormalized Nelson
Hamiltonian by interior boundary conditions. Our approach in Chapter 2 is closely related
to that of [GW18].

The infrared behavior of the Nelson model has been intensively investigated. Different
types of infrared regularity conditions, such as massive bosons and infrared cutoffs, were
introduced and existence of ground states proven. Results of this type for the full Nelson
Hamiltonian and different types of potentials can be found in [Spo98, Gér00, BHL+02,
HHS05] for the ultraviolet regular case and in [HM21] for the ultraviolet renormalized
model. Similar results for the fiber operators were proven in [Can71, Frö74]. Vice versa,
the infrared-critical case has also been topic of ongoing research. In [Frö73], Fröhlich
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1. Introduction

considered a non-equivalent representation of the fiber operators and constructed ground
states therein. This approach was continued in [Piz03, BDP12]. As far as rigorous proofs
for absence of ground states are concerned, the full operator in the ultraviolet regular case
was treated in [LMS02, DG04], while a proof for the full ultraviolet renormalized operator
was only recently given in [HM21]. The ultraviolet regular part of Theorem 1.7 is contained
in the result of Dam [Dam20]. He used a technique developed by Hasler and Herbst in
[HH08] for the Pauli-Fierz model. In case of the Pauli-Fierz model absence of ground
states is proven for all total momenta at which the derivative of the ground state energy
does not vanish. This result is optimal, since a ground state exists at total momentum
P = 0 [BCFS07, HS20], where the derivative vanishes due to the global energy minimum.
In case of the Nelson model, differentiability is only proven for small total momentum
[AH12]. Furthermore, our results imply that no ground state exists even if the derivative
of the ground state energy vanishes. In the proof of Dam, the differentiability condition is
replaced by rotation invariance and a non-degeneracy assumption for the potential ground
state. A major novelty of the proof presented in Chapter 3 is that this non-degeneracy
condition is removed from the proof. Whereas it is well-known for the operators with
cutoff [Gro72, Frö73, Møl05] and also recently proven for the renormalized fiber operators
[Miy21, Lam21], our adaptions come with two major advantages: First, proofs for the
non-degeneracy of ground states usually employ a Perron-Frobenius-Faris argument (cf.
[Far72] or Theorem A.112) and hence employ an additional technical approach. Second,
there are cases in which one expects the degeneracy of the ground state if it exists, e.g.,
in models involving spin. Therefore, we expect our extended method to have further
applications in the future.

1.1.3. Relation to [DH21]

Chapters 2 and 3 are based on Sections 3 and 4 in [DH21], respectively. The proof
technique in Chapter 2, however, differs from the one in the article, since we use a different
approach to the renormalized fiber operators HN,∞(P ). In the article, for simplicity
reasons, we rely on the results in [GW18] and the direct integral decomposition of the
full Nelson operator to derive properties of the fibers. In this thesis, we elaborate those
arguments in more detail and provide a self-contained construction of the renormalized
fiber operators, which is independent of the full operator. The proof in Chapter 3 is
mostly the same as in the article, but arguments which were deferred to the literature
are presented more rigorously. This especially includes the full proofs of Lemmas 3.1,
3.4 and 3.12 and more details on the proof of Proposition 3.2. Further, material which
has been presented in the appendices of [DH21] is now included in the main body. This
concerns Sections 2.1.1, 2.2.1 and 3.4.

1.2. The Spin Boson Model

In case of the spin boson model, the “particle” interacting with a boson field is a two-level
quantum mechanical system, shortly referred to as spin. This can, for example, be seen
as a coarse aproximation of an atom. Although it is one of the simplest models for the
interaction of matter with radiation, it has been extensively studied both in the physics
and the mathematics literature. Here, we just refer to [LCD+87] for a review from the
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physics perspective and to [HS95a] for one from the mathematical side. More detailed
references will be given in Section 1.2.2.

The main interest for our study of the spin boson model is that the absence of diagonal
entries in the interaction causes infrared divergences to cancel. This was first observed in
[HH11b] and we aim for an extension of the results therein.

1.2.1. Definition and Results

As described in the introduction, the spin is a quantum mechanical system with two
degrees of freedom. We represent this on the state space C2, choose the standard basis
as the eigenvectors of the free energy of the system and set the energy eigenvalues to ±1.
In our formulation, we need the usual 2× 2 Pauli matrices

σx =

(︃
0 1
1 0

)︃
, σy =

(︃
0 −i
i 0

)︃
and σz =

(︃
1 0
0 −1

)︃
. (1.7)

For well-definedness of the spin boson Hamiltonian, we introduce the following assump-
tions.

Hypothesis SB0.

(i) ω > 0 almost everywhere.

(ii) v ∈ D(ω−1/2).

Remark 1.10. Note that Hypothesis SB0 is stronger than Hypothesis N0. This represents
that we do not strive for a renormalization of the ultraviolet divergence in the spin boson
model. In fact, it was proven in [DM20a] that a physically non-trivial, i.e., with non-
vanishing interaction between spin and boson field, self-energy renormalization of the
spin boson Hamiltonian does not exist.

We now define the considered operators.

Definition 1.11 (Spin Boson Hamiltonian). For λ ∈ R, we define

HSB(λ) = σz ⊗ 1+ 1⊗ dΓ(ω) + λσx ⊗ φ(v).

Remark 1.12. The constant λ describes the coupling strength between spin and field.
As our main result below depends on the coupling strength, we introduce it here as a
parameter of the model, whereas it was hidden in the form factor v in our definition of
the Nelson model (Definition 1.3).

Lemma 1.13. For all λ ∈ R, the operator HSB(λ) is selfadjoint and lower-semibounded
on the domain D(HSB(λ)) = D(1⊗ dΓ(ω)).

Proof. Since σx and σz are bounded, this follows directly from dΓ(ω) being positive and
selfadjoint (Lemma B.15), φ(v) being infinitesimally dΓ(ω)-bounded (Lemma B.22) and
the Kato-Rellich theorem (Theorem A.45).

Our main result on the spin boson Hamiltonian is the existence of ground states for the
spin boson model, even if the form factor is infrared-critical – under some mild integrability
conditions and the assumption that the coupling constant is below a critical value. Let
us first state the necessary assumptions.
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Hypothesis SBE. We assume Hypothesis SB0 and the following:

(i) There exists α1 > 0 such that ω is locally α1-Hölder continuous.

(ii) ω(k) = ω(−k) for all k ∈ Rd.

(iii) ω(k)
|k|→∞−−−−→ ∞.

(iv) There exists ϵ > 0 such that ω−1/2v ∈ L2+ϵ(Rd).

(v) v has real Fourier transform, i.e., v(k) = v(−k) for all k ∈ Rd.

(vi) There exists α2 > 0 such that sup
|p|≤1

∫︂
Rd

|v(k + p)− v(k)|√︁
ω(k)|p|α2

dk <∞.

(vii) sup
|p|≤1

∫︂
Rd

|v(k)|√︁
ω(k)ω(k + p)

dk <∞.

Theorem 1.14. Assume Hypothesis SBE holds. Then HSB(λ) has a unique ground state
for all λ ∈ R with |λ| < ∥ω−1/2v∥/

√
5.

Let us again discuss the physical example.

Example 1.15. We consider the choice

ω(k) = |k|α and v(k) = η(k)|k|β,

where η is a suitably chosen cutoff function, e.g., η = χBΛ(0) for some Λ ∈ (0,∞) or
η(k) = e−ck

2 for some c > 0. Then Hypothesis SBE holds if

d > max

{︃
α− 2β,

3

2
α− β,

1

2
α− 2β

}︃
.

Especially, in the case d = 3 and α = 1 this translates to β > −1 which includes the
physical case (1.1) with vanishing boson mass and even more infrared-singular couplings.

Remark 1.16. For the case α = 1 in the previous example our result is optimal in the
sense that the interaction is not bounded with respect to the free energy anymore when
β ≤ −1, i.e., Hypothesis SB0 ceases to hold.

We believe our result is close to optimal in another sense. Let us state this as a
conjecture for now, which we will illustrate below.

Conjecture 1.17. As before, we assume ω > 0 almost everywhere. Further, we assume
v ∈ D(ω−1/2) \ D(ω−1). Then there exists a critical coupling constant λc ∈ (0,∞) such
that HSB(λ) has no ground state for λ ∈ R with |λ| > λc.

Our proof for Theorem 1.14 in Chapter 6 uses a compactness argument. Explicitly, we
replace ω by an infrared-regularized dispersion relation, e.g., ωm(k) =

√︁
m2 + |k|2 with

m > 0 in the case (1.1). The parameter m can physically be interpreted as an artificial
boson mass, which is why we will refer to the infrared regularized model as massive spin
boson model in the following. In this case there is no infrared-singularity and the existence
of ground states for the corresponding spin boson Hamiltonian can be inferred by well-
known arguments. We prove that the ground states of the massive spin boson model
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lie in a compact set independent of the parameter m. Hence, there exists a sequence
(mn)n∈N ⊂ R+ of parameters such that mn

n→∞−−−→ 0 and the sequence of corresponding
ground states converges strongly. We identify the limit of this sequence as the ground
state of HSB(λ).

The key argument is the construction of the compact set. Therein, we use a resolvent
bound. To prove this bound, we need to investigate the spin boson model in presence of
an external magnetic field.

Definition 1.18 (Spin Boson Model with External Magnetic Field). For λ, µ ∈ R, we
define

H
(m)
SB (λ, µ) = σz ⊗ 1+ 1⊗ dΓ(ω) + σx ⊗ (λφ(v) + µ1)

as an operator on C2 ⊗F .

Lemma 1.19. For all λ, µ ∈ R, the operator H(m)
SB (λ, µ) is selfadjoint and lower-semi-

bounded on the domain D(1⊗ dΓ(ω)).

Proof. Since H(m)
SB (λ, µ) = HSB(λ) + µσx ⊗ 1 and σx is bounded, this again follows from

the Kato-Rellich theorem (Theorem A.45).

Using second order analytic perturbation theory in µ, we can show that a sufficient con-
dition for the resolvent bound to hold is a bound on the magnetic susceptibility of the
massive spin boson model with external magnetic field, which is proportional to the second
derivative of the ground state energy of H(m)

SB (λ, µ) with respect to µ.
We investigate this bound through a functional integration point of view. To that

end, let X be a jump process taking values in {±1} with independent increments and
jump times being Poisson distributed with parameter 1, for a rigorous definition see
Definition 4.16 in the beginning of Chapter 4. Expectation values w.r.t. the probability
measure associated to X are denoted by EX . In Chapter 5, we prove that the semigroup
of the spin boson model with external magnetic field can be treated in terms of this
stochastic process through a Feynman-Kac-Nelson (FKN) formula.

For a precise statement, we define

Ω↓ =

(︃
0
1

)︃
⊗ Ω, (1.8)

where Ω denotes the Fock space vacuum (cf. Definition B.7) and

W (t) =
1

2

∫︂
Rd

|v(k)|2e−|t|ω(k)dk. (1.9)

For the FKN formula to hold, we need the following assumptions.

Hypothesis SBF. We assume Hypothesis SB0 and

(i) ω(k) = ω(−k) for all k ∈ Rd,

(ii) v(k) = v(−k) for all k ∈ Rd.

Theorem 1.20. Assume Hypothesis SBF holds. Then, for all λ, µ ∈ R and T > 0,

e−T
⟨︂
Ω↓, e

−TH(m)
SB (λ,µ)Ω↓

⟩︂
= EX

[︃
exp

(︃
λ2
∫︂ T

0

∫︂ T

0

W (t− s)XtXsdtds−µ
∫︂ T

0

Xtdt

)︃]︃
.
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Remark 1.21. The integrals on the right hand side are Riemann integrals. Assume X is
realized as a random variable on a probability space Ω. Then, for almost every ν ∈ Ω,
the function t ↦→ Xt(ν) has only finitely many discontinuities in the interval [0, T ], cf.
Lemma 4.15 (ii). Since W can easily be seen to be continuous by definition, this implies
that the functions t ↦→ W (t − s)Xt(ν)Xs(ν) and t ↦→ Xt(ν) are Riemann-integrable for
almost every ν ∈ Ω and the right hand side is well-defined.

Remark 1.22. The formula in the above theorem is in fact not the FKN formula, but a
corollary of it obtained by integrating out the degrees of freedom of the boson field in the
vacuum state. The full FKN formula is the statement of Theorem 5.3.

Remark 1.23. The right hand side of the formula in Theorem 1.20 is the partition function
of an Ising model on R with pair interaction function W and external magnetic field µ.
In our study of Ising models in Chapter 4, we prove that this model can be seen as the
limit δ → 0 of a discrete Ising model on a lattice with Ising spin distance δ.

Originating from the previous remark, let us define the partition function of the Ising
model given by W as

ZT (λ, µ) = EX

[︃
exp

(︃
λ2
∫︂ T

0

∫︂ T

0

W (t− s)XtXsdtds− µ

∫︂ T

0

Xtdt

)︃]︃
for T > 0. (1.10)

It is a well-known result that the expectation values of the semigroup can be used to
calculate the ground state energy. In our case, this amounts to the following.

Corollary 1.24. Assume Hypothesis SBF holds. Then, for all λ, µ ∈ R,

inf σ(H
(m)
SB (λ, µ)) = − lim

T→∞

(︃
1

T
logZT (λ, µ) + 1

)︃
.

We want to generalize this to the derivatives of the ground state energy. To that end, we
define expectation values in the above continuous Ising model. For a real-valued random
variable Y defined on the same probability space as X, we set

jY oT,λ,µ =
1

ZT (λ, µ)
EX

[︃
Y exp

(︃
λ2
∫︂ T

0

∫︂ T

0

W (t− s)XtXsdtds− µ

∫︂ T

0

Xtdt

)︃]︃
. (1.11)

To give a connection between correlation functions in our continuous Ising model and the
derivative of the ground state energy, we say a selfadjoint lower-semibounded operator A
has a spectral gap if dist({inf σ(A)}, σ(A) \ {inf σ(A)}) > 0, where dist denotes the usual
distance of sets in metric spaces (cf. (A.2)). Further, we denote by Πn the set of all
partitions of the set {1, . . . , n} and by |M | the cardinality of a finite set M .

Theorem 1.25. Assume Hypothesis SBF holds. Let λ, µ ∈ R and suppose H(m)
SB (λ, µ) has

a spectral gap. Then, for all n ∈ N, the following derivatives exist and satisfy

∂nµ inf σ(H
(m)
SB (λ, µ)) = lim

T→∞

1

T

∑︂
P∈Πn

(−1)|P|+n(|P| − 1)!
∏︂
B∈P

n
(︃∫︂ T

0

Xtdt

)︃|B|

s
T,λ,µ

.

Especially, in the case of the massive spin boson model the spectral gap assumption is
satisfied. Hence, we can calculate the desired second derivative by means of the pair
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correlation functions of the continuous Ising model. We prove an upper bound on these
in Chapter 4, by taking the continuum limit of a discrete Ising model.

The analogy to the continuous Ising model also gives an argument towards Conjec-
ture 1.17, which we here only discuss for the physical case ω(k) = |k| and v(k) =
κ(k)|k|−1/2. In this situation, the interaction function of the Ising model satisfies W (t) ∼
t−2 for t → ∞. One-dimensional long-range Ising models decaying quadratically are
known to have a phase transition [AN86, IN88]. Hence, we expect that at large coupling
the correlation functions of the Ising model cease to be uniformly bounded and a ground
state ceases to exist. In fact, a proof for absence of ground states in the spin boson model
at large coupling would provide a new proof for this phase transition in the Ising model.

1.2.2. Relation to the Literature

Spectral aspects of the spin boson model have been intensively studied in the past, see
for example [FNV88, Ama91, HS95b] and references therein, and are still an active area
of research up to now, e.g., [BDH19, Rek20, DM20b] and references therein.

Especially, existence of ground states in presence of an infrared regularity assumption
is well-known [Spo89, AH95, Gér00] and the analytic dependence of the ground state and
the ground state energy on the coupling constants has been proven [GH09]. As far as the
infrared singular case goes, Arai, Hirokawa and Hiroshima [AHH99] proved a vanishing
expectation value condition in their study of generalized spin boson models. However, in
our case this amounts to ⟨ψ, (σx ⊗ 1)ψ⟩ = 0 for a ground state ψ of HSB(λ), which can
be seen to hold in any case due to a simple symmetry argument.

Hasler and Herbst [HH11b] gave the first proof for existence of ground states even in
the infrared singular case if the coupling constant is sufficiently small. Their assumptions
especially include the physical situation (1.1). The result was obtained using operator
theoretic renormalization and especially includes analyticity of the ground state and the
ground state energy in the coupling constant. A further proof using iterated perturbation
theory was recently given by Bach et al. [BBKM17]. Our result goes beyond these results
in two ways. First, we use a non-perturbative method and in this sense the upper bound
for the coupling constant in Theorem 1.20 is not of perturbative nature, but necessary
for the resolvent bound to hold. In fact, as discussed above, we believe that the ground
states cease to exist for large coupling constants. Second, our result holds for more severe
divergences than the ones covered in [HH11b, BBKM17], see also Example 1.15. The
method employed in our proof is built upon that used in [GLL01, HS20] for the Pauli-
Fierz model.

We note that finite temperature KMS states of the spin boson Hamiltonian for the
case W (t) ∼ t−2 for large t were investigated in [Spo89]. Using results about the one-
dimensional continuous Ising model, it was established that the weak limit of the KMS
states exists as the temperature tends to zero. In particular, it was shown that there
exists a critical coupling such that the expectation of the number of bosons is finite below
and infinite at and above the critical coupling strength, which is somewhat analogous to
our Conjecture 1.17.

The duality between the spin boson model and a one-dimensional Ising model has been
first discussed by Emery and Luther [EL74] and was further used for the study of the spin
boson model in [SD85, FN88, Abd11], see also references therein. Especially, in [Abd11],
the formula from Corollary 1.24 for the case µ = 0 was used to prove analyticity of the
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ground state energy in the parameter λ. Note that the infimum of the spectrum can be
analytic although there does not exist a ground state, cf. [AH12] for the case of the Nelson
model. Also see [HHL14] for a recent article on the spin boson model using functional
integration methods. For more references on correlation bounds in the Ising model and
FKN type formulas in quantum field theory, we refer to the introductions of Chapters 4
and 5, respectively.

1.2.3. Relation to [HHS21, HHS22a, HHS22b]

Chapters 4, 5 and 6 are based on [HHS22a], [HHS22b] and [HHS21], respectively. The
structure of Chapter 4 has been slightly altered, to separate the discussions of the discrete
and the continuous Ising model. In the proof of the correlation bound for the discrete
Ising model, the proofs for the well-known Griffiths’ inequalities in Section 4.1.1 have
been added. In the discussion of the continuous Ising model, the definition of the jump
process in the article is similar to Remark 4.18, whereas in this thesis the construction of
X is done as a continuous-time Markov process. Further, weak convergence of measures
and the Skorokhod topology are more extensively discussed in Sections 4.2.1 and 4.2.2,
respectively. Also, a proof for Lemma 4.40 has been added. Since [HHS22b] is fairly self-
contained by itself, the alterations in Chapter 5 are only of notational nature. Finally, in
Chapter 6 the proof for the existence of a ground state in the massive spin boson model
(Section 6.2) has been added. It is an adaption of a part of an earlier draft of [HHS21].
Further, the concluding Section 6.4 is partly based on the last section in [HHS22b].
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2. Renormalization of the
Translation-Invariant
Nelson Hamiltonian

In this chapter, we discuss the renormalization procedure of the translation-invariant
Nelson operators, which leads to Lemma 1.6. From there, we extract a variety of regularity
properties of the renormalized fibers, which we then use to prove Theorem 1.8. The results
obtained in this chapter are further an essential ingredient in the proof of Theorem 1.7 in
the next chapter.

The main result of this chapter is Theorem 2.1. For the statement, we need to introduce
some notation. First of all, for P ∈ Rd, Λ ∈ [0,∞) and z /∈ σ(HN,Λ(P ) + EΛ), we write

RP,Λ(z) = (HN,Λ(P ) + EΛ − z)−1 . (2.1)

We will extend this definition to the case Λ = ∞, by setting E∞ = 0. Further, for
0 ≤ K ≤ Λ ≤ ∞, we define

BK,Λ(k) = χ{K≤|·|≤Λ}(k)
v(k)

ω(k) + |k|2
. (2.2)

Finally, we introduce the operators

As := 1 + dΓ(ω)1/2 + |dΓ(m)|s for s ∈ [0, 1]. (2.3)

As a sum of positive and strongly commuting selfadjoint operators, they are positive and
selfadjoint on D(As) = D(|dΓ(m)|s) ∩ D(dΓ(ω)1/2), cf. Lemmas A.69 and B.17.

Theorem 2.1. Assume Hypothesis NR holds.
Let s ∈ [0, 1] and let σ > 0 as in Hypothesis NR (i).

(i) HN,Λ(P ) +EΛ is uniformly bounded below in P ∈ Rd and Λ ∈ [0,∞) and converges
to a selfadjoint lower-semibounded operator HN,∞(P ) in the norm resolvent sense
as Λ → ∞.

(ii) Q(HN,∞(P )) = W (BK,∞)∗QN for all P ∈ Rd, K ≥ σ.

(iii) If BK,∞ ∈ D(|m|s) for some K ≥ σ, then D(HN,∞(P )) ⊂ Q(HN,∞(P )) ⊂ D(As)
and

s-lim
Λ→∞

AsRP,Λ(λ)
1/2 = AsRP,∞(λ)1/2 =: Cλ(P ) for any λ < inf σ(HN,∞(P )).

For λ sufficiently small, the maps P ↦→ Cλ(P )Cλ(P )
∗ and P ↦→ ∥Cλ(P )∥ are con-

tinuous.
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Remark 2.2. In Lemma 2.5, we discuss regularity properties of BK,∞ similar to the condi-
tion in Theorem 2.1 (iii). Especially, the assumption BK,∞ ∈ D(|m|s) for all s ≤ 2

3
follows

directly from Hypothesis NR.
For the remainder of this chapter, we drop the lower index N of HN,Λ, assume Hypoth-

esis NR holds and fix σ > 0 as in Hypothesis NR (i).
This chapter is structured as follows. In Section 2.1, we will introduce the Gross

transformed Nelson operators and prove they converge in the norm resolvent sense. This
approach was already used in [Nel64, Can71]. We further derive similar regularity proper-
ties to the above ones for the Gross transformed operators, utilizing methods close to the
ones recently applied to the full model in [HM21]. In Section 2.2, we then use convergence
considerations similar to [GW18] to prove Theorem 2.1 as well as Theorem 1.8.

2.1. The Gross-Transformed Operators

The central idea of Nelson [Nel64] was to apply a dressing transformation introduced
by Gross [Gro62] to improve the ultraviolet properties of the operator. Explicitly, the
transformed operators are defined as˜︁HK,Λ(P ) = W (BK,Λ)HΛ(P )W (BK,Λ)

∗ + EΛ for σ ≤ K ≤ Λ <∞ and P ∈ Rd. (2.4)

Note that BK,Λ ∈ L2(Rd) by Hypothesis N0 for any choice of K and Λ, so the definition
makes sense.

2.1.1. Mapping Properties of Weyl Operators I

To explicitly study the transformed operators, we need to discuss some mapping properties
of Weyl operators. This is done in the next two abstract lemmas.

This first statement, in a slightly less general setting, can be found in [GW18].

Lemma 2.3. Assume ν : Rd → R is measurable, satisfies ν > 0 almost everywhere and,
for some p ∈ N, h : Rd → Rp is measurable. Let D = D(dΓ(ν)1/2) ∩ D(|dΓ(h)|). If
g ∈ D(|h|) ∩ D(ν−1/2|h|), then W (f)D = D and for all i ∈ {1, . . . , p}

W (f)dΓ(hi)W (f)∗ = dΓ(hi)− φ(hif) + ⟨f, hif⟩ holds on D . (2.5)

Proof. Similar to (2.3), we define the selfadjoint operator A = 1 + dΓ(ν)1/2 + |dΓ(h)| on
the domain D .

Now, let E = span E(D(ν + |h|)). By Lemma B.10, E is dense in F(h). Further, by
Lemmas A.64 and B.15, it is left invariant by Γ(eit(ν+|h|)) = eitdΓ(ν+|h|). Hence, using
Lemma A.65, E is a core for dΓ(ν + |h|). Since A strongly commutes with dΓ(ν + |h|)
(Lemma B.15) and is dΓ(ν+ |h|)-bounded (Lemma A.44), this implies E is also a core for
A, cf. Lemma A.70. Now, the left hand side of (2.5) is a closed operator and the right
hand side is A-bounded, so it suffices to show (2.5) holds on E (cf. Lemma A.33).

Let g1, g2 ∈ D(ν+ |h|). Using Definitions B.8 and B.24 and Lemmas B.15 (iv), B.20 (iii)
and B.26 (i), we have

⟨ϵ(g2),W (f)dΓ(hi)W (f)∗ϵ(g1)⟩ = e−∥f∥2+⟨f,g1⟩+⟨g2,f⟩ ⟨ϵ(g2 − f), dΓ(hi)ϵ(g1 − f)⟩
= ⟨g2 − f, hi(g1 − f)⟩ e⟨g2,g1⟩

= ⟨ϵ(g2), (dΓ(hi)− φ(hif) + ⟨f, hif⟩)ϵ(g1)⟩ .
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As E(D(ν + |h|)) is total (Lemma B.10), this proves (2.5) holds on E .

The next lemma is standard and can, e.g., be found in [BR97].

Lemma 2.4. For all f, g ∈ L2(Rd), we have W (f)D(φ(g)) = D(φ(g)) and

W (f)φ(g)W (f)∗ = φ(g)− 2Re ⟨f, g⟩ holds on D(φ(g)).

Proof. By Lemma B.22, E(L2(Rd)) spans a core for φ(g), so it suffices to prove the state-
ment on E(L2(Rd)). To that end, let h1, h2 ∈ L2(Rd). Then, again using Definition B.24
and Lemmas B.20 (iii) and B.26 (i), it follows that

⟨ϵ(h2),W (f)φ(g)W (f)∗ϵ(h1)⟩ = e−∥f∥2+⟨f,h1⟩+⟨h2,f⟩ ⟨ϵ(h2 − f), φ(g)ϵ(h1 − f)⟩
= e⟨h2,h1⟩ (⟨h2 − f, g⟩+ ⟨g, h1 − f⟩)
= ⟨ϵ(h2), (φ(g)− 2Re ⟨f, g⟩)ϵ(h1)⟩ .

Since E(L2(Rd)) is total (Lemma B.10), this proves the statement.

2.1.2. Explicit Calculation of the Transformed Operators

To obtain an explicit formula for the transformed operators defined in (2.4), we need
to study the regularity properties of the functions BK,Λ with respect to ω and m, as
Lemma 2.3 and the definition (2.4) show. We include the case Λ = ∞ for later reference.

Lemma 2.5. Let σ ≤ K < Λ <∞. Then the following holds:

(i) BK,Λ ∈ D(ωa) ∩ D(|m|b) ∩ D(ωa|m|b) for all a, b ∈ R,

(ii) BK,∞ ∈ D(ω1/2) ∩ D(ω−r|m|) ∩ D(|m|s) for all s ≤ 2
3

and r ≥ 1
4
.

Proof. (i) holds, since BK,Λ is compactly supported and ω ∈ L∞
loc(Rd) by Hypothe-

sis NR (iii). Now, (ii) follows due to the inequality

|m|2/3 ≤ ω1/2χ{|m|2/3≤ω1/2} + |m|ω−1/4χ{|m|2/3>ω1/2},

the integrability conditions in Hypothesis NR (i) and Hypothesis NR (iii).

We now apply above lemmas to explicitly calculate the transformed Nelson operators.

Lemma 2.6. Let P ∈ Rd.

(i) The operator ˜︁HK,Λ(P ) is selfadjoint on DN.

(ii) On DN, we have

˜︁HK,Λ(P ) = HK(P ) + EK

+ a†(mBK,Λ)
2 + a(mBK,Λ)

2 + 2a†(mBK,Λ)a(mBK,Λ)

− 2a†(mBK,Λ) · (P − dΓ(m))− 2(P − dΓ(m)) · a(mBK,Λ).

Remark 2.7. In the formula above, we use vector notation for arguments of the creation
and annihilation operators, similar to Definition B.16.
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Proof. By the definition (2.4), we have D( ˜︁HK,Λ(P )) = W (BK,Λ)D(HΛ(P )). Hence, the
domain statement (i) follows by combining Lemmas 1.5, 2.4 and 2.5. Now, by Lemmas 2.3,
2.4 and 2.5 and using that ⟨vΛ, BK,Λ⟩ = EΛ − EK ∈ R by (1.5) and (2.2), we have

W (BK,Λ)dΓ(ω)W (BK,Λ)
∗ = dΓ(ω)− φ(ωBK,Λ) + ⟨BK,Λ, ωBK,Λ⟩ on DN (2.6)

W (BK,Λ)φ(vΛ)W (BK,Λ)
∗ = φ(vΛ)− 2(EΛ − EK). (2.7)

Further, by Lemmas 2.5 and B.20 (viii), φ(miBK,Λ)DN ⊂ QN. Hence, we can twice apply
Lemma 2.3 and, on DN, obtain

W (BK,Λ)(P − dΓ(m))2W (BK,Λ)
∗ = (P − dΓ(m)− φ(mBK,Λ) + ⟨BK,Λ,mBK,Λ⟩)2.

A simple symmetry argument yields ⟨BK,Λ,miBK,Λ⟩ = 0 for i = 1, . . . , d. Then, applying
the commutation relations from Lemmas B.20 (iv) and (viii), we obtain the formula

W (BK,Λ)(P − dΓ(m))2W (BK,Λ)
∗

= (P − dΓ(m))2 − φ(|m|2BK,Λ)

+ 2a(mBK,Λ) · (P − dΓ(m)) + 2(P − dΓ(m)) · a†(mBK,Λ)

+ a†(mBK,Λ)
2 + a(mBK,Λ)

2 + 2a†(mBK,Λ) · a(mBK,Λ)
2

− ∥|m|2BK,Λ∥2 holds on DN.

(2.8)

Now, we observe vΛ − (ω + |m|2)BK,Λ = vK , by the definition (2.2). Hence, using the
additivity of the field operator, the φ(·) terms in (2.6) – (2.8) sum op to φ(vK). By the
same argument

⟨BK,Λ, ωBK,Λ⟩+ ∥|m|2BK,Λ∥ = ⟨vΛ − vK , BK,Λ⟩ = EΛ − EK .

Therefore, summing up (2.6), (2.7) and (2.8) proves the statement.

2.1.3. Continuity Properties at Finite Cutoff

Before we renormalize the transformed Nelson operators, let us discuss some continuity
properties of the Nelson fibers – both in the usual representation as well as the Gross
transformed version.

Since we will need to treat fiber operators with different total momentum throughout
our considerations on the Nelson model, we introduce the operators

DP (k) = 2k · (P − dΓ(m)) + |k|2 = −2dΓ(k ·m) + 2k · P + |k|2, (2.9)

which by (1.6) satisfy

HΛ(P + k) = HΛ(P ) +DP (k) for all Λ ∈ [0,∞), P, k ∈ Rd. (2.10)

The next lemma collects some statements on the regularity ofDP (k). Here and henceforth,
we denote

BP = (H0(P ) + 1)1/2 for P ∈ Rd. (2.11)

We note that D(BP ) = QN for all P ∈ Rd.
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Lemma 2.8. Let a ≥ 0 and c ∈ R. The operator |DP (k) − c|a is Ba
P -bounded for all

P, k ∈ Rd. Further, ∥DP (k)B
−1
P ∥ ≤ 4|k| holds for all k, P ∈ Rd with |k| ≤ 1 and

B−a
P+k = B−a

P (1 +DP (k)B
−2
P )−a/2 for |k| < 1

4
, (2.12)

lim
k→0

(1 +DP (k)B
−2
P )−a/2 = 1. (2.13)

Proof. We observe that the operator |DP (k) − c|aB−a
P acts on F (n) as multiplication by

the function

fn(k1, . . . , kn) =

⃓⃓
2k · (P − k1 − · · · − kn) + |k|2 − c

⃓⃓a
(1 + ω(k1) + · · ·+ ω(kn) + |P − k1 − · · · − kn|2)a

.

Since |fn| ≤ 2a(|k|a + ||k|2 − c|a), the operator |DP (k) − c|aBa
P is bounded. Hence,

|DP (k) − c|a is Ba
P -bounded and the bound ∥DP (k)B

−1
P ∥ ≤ 4|k| holds for |k| ≤ 1. For

|k| < 1
4

we have ∥DP (k)B
−2
P ∥ < 4|k| < 1 as ∥BP∥ ≤ 1 and hence 1 + DP (k)B

−2
P is

invertible. (2.12) follows using (2.10) and the fact that H0(P ) and DP (k) commute. We
now see ⃦⃦

(1 +DP (k)B
−2
P )−a/2 − 1

⃦⃦
≤ sup

|x|≤|k|
((1 + 4x)−a/2 − 1)

k→0−−→ 0.

Similar to (2.1), we define the resolvents of the Gross transformed operators

˜︁RP,K,Λ(z) = ( ˜︁HK,Λ(P )− z)−1 for σ ≤ K ≤ Λ <∞ and P ∈ Rd. (2.14)

Further, we denote the infima of the respective spectra by

ΣΛ(P ) = inf σ(HΛ(P )) and ˜︁ΣK,Λ(P ) = inf σ( ˜︁HK,Λ(P )). (2.15)

In the next lemma, we now give a variety of continuity statements.

Lemma 2.9. Let k, P ∈ Rd.

(i) Fix Λ ∈ [0,∞). Then HΛ(P ) is uniformly bounded below in P and for arbitrary
λ < inf

P∈Rd
(ΣΛ(P ) + EΛ) the map P ↦→ RP,Λ(λ) is continuous.

(ii) Fix σ ≤ K < Λ < ∞. Then ˜︁HK,Λ(P ) is uniformly bounded below in P and QN ⊂
Q( ˜︁HK,Λ(P )). If λ < inf

P∈Rd

˜︁ΣK,Λ(P ) and a ∈ [0, 1], then the map

ra,λ : P ↦→ Ba
P
˜︁RP,K,Λ(λ)

1/2(Ba
P
˜︁RP,K,Λ(λ)

1/2)∗

is continuous in norm.

Proof. To prove (i), we first note that the uniform lower bound was already proved in
Lemma 1.5. Now, we fix Λ, λ as stated in (i) and P ∈ Rd. From Lemmas 1.5, 2.8 and A.87,
we know QN = Q(HΛ(P )) = D(BP ) ⊂ D(DP (k)) and

∥DP (k)RP,Λ(λ)
1/2∥ ≤ ∥DP (k)B

−1
P ∥∥BPRP,Λ(λ)

1/2∥ k→0−−→ 0.

Recalling (2.10) and Lemma 2.8 and using the resolvent identity (Lemma A.29), we obtain

RP+k,Λ(λ) = RP,Λ(λ)(1 +DP (k)RP,Λ(λ))
−1 for |k| sufficiently small.
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2. Renormalization of the Translation-Invariant Nelson Hamiltonian

Taking the limit k → 0 proves the claim.
The uniform lower bound in (ii) follows directly from Lemma 2.9 (i) and (2.4), while

QN ⊂ Q( ˜︁HK,Λ(P )) follows from Lemmas 2.6 (i) and A.87. Fix K,Λ, λ as stated in (ii)
and P ∈ Rd. We define ˜︁DP (k) = W (BK,Λ)DP (k)W (BK,Λ)

∗ and note that

˜︁DP (k) ˜︁RP,K,Λ(λ)
1/2 = W (BK,Λ)DP (k)RP,Λ(λ+ EΛ)

1/2W (BK,Λ)
∗ k→0−−→ 0 in norm.

In particular, the operator

Z(k) = ˜︁RP,K,Λ(λ)
1/2 ˜︁DP (k) ˜︁RP,K,Λ(λ)

1/2

is bounded and goes to 0 for k → 0. We easily deduce ˜︁HK,Λ(P + h) = ˜︁HK,Λ(P ) + ˜︁DP (h)
from (2.10) an, therefore obtain

˜︁RP+k,K,Λ(λ) = ˜︁RP,K,Λ(λ)
1/2(1 + Z(k))−1 ˜︁RP,K,Λ(λ)

1/2 for |k| sufficiently small.

Setting C = Ba
P
˜︁RP,K,Λ(λ)

1/2, this yields

ra,λ(P + k) = (1 +DP (k)B
−2
P )a/2C(1 + Z(k))−1C∗(1 +DP (k)B

−2
P )a/2,

so ra,λ(P + k) converges to CC∗ = ra(P ) in norm as k → 0, by Lemma 2.8.

2.1.4. Form Bounds

To derive the convergence of the transformed operators, Nelson studied the quadratic form
associated to ˜︁HK,Λ −H0. Similar derivations are used, e.g., in [Can71, Amm00, GW18].
Following an idea from [HM21], we use a slightly different approach, fix P ∈ Rd, K ≥ σ

and some sufficiently large L ≥ K and study ˜︁HK,Λ(P )− ˜︁HK,L(P ) in the limit Λ → ∞.
Explictly, we define the quadratic form

Q
(P )
K,L,Λ(ψ) = q ˜︁HK,Λ(P )(ψ)−q ˜︁HK,L(P )(ψ) for σ ≤ K ≤ L ≤ Λ, P ∈ Rd, ψ ∈ QN. (2.16)

We now obtain the following theorem, by an appropriate adaption of the ideas of Nelson
[Nel64], see also [Amm00, GW18, HM21] for later refinements.

Theorem 2.10. Fix some K ≥ σ.

(i) For all ε > 0, there is b > 0 such that, for all P ∈ Rd, there exists LP ≥ K with

|Q(P )
K,L,Λ(ψ)| ≤ εq ˜︁HK,L(P )(ψ) + b∥ψ∥2 for all ψ ∈ QN, Λ ≥ L ≥ LP .

(ii) For all L ≥ K and ε > 0, there exist Λ0 ≥ L and c ≥ 0 such that, for all P ∈ Rd,
we have

|Q(P )
K,L,Λ(ψ)−Q

(P )
K,L,Λ′(ψ)| ≤ ε(q ˜︁HK,L(P )(ψ) + c∥ψ∥2) for all ψ ∈ QN, Λ,Λ′ ≥ Λ0.

Except for the standard estimates from Lemma B.20 (vii), the key ingredient to the proof
of the above theorem is the following lemma.
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Lemma 2.11. For all f, g ∈ D(ω−1/4) ∩ D(ω−1/2) and ψ ∈ Q(dΓ(ω)), we have

| ⟨a†(f)ψ, a(g)ψ⟩ |
≤ 3∥max(ω−1/4, ω−1/2)f∥∥max(ω−1/4, ω−1/2)g∥∥(1 + dΓ(ω))1/2ψ∥∥dΓ(ω)1/2ψ∥.

Proof. Similar proofs are presented in [Nel64, Lemma 5] or [HM21, Lemma C.2].
Let Ω = {ω ≥ 1} and set f> = fχΩ, f< = f − f>, g> = gχΩ, and g< = g − g>. From

the standard estimates in Lemma B.20 (vii), we have

| ⟨a†(f<)ψ, a(g)ψ⟩ | ≤ ∥ω−1/2f<∥∥ω−1/2g∥∥(1 + dΓ(ω))1/2ψ∥∥dΓ(ω)1/2ψ∥. (2.17)

Similarly, by combining Lemma B.20 (vii) with the canonical commutation relations
(Lemma B.20 (iv)), we obtain

| ⟨a†(f>)ψ, a(g<)ψ⟩ | = | ⟨a†(g<)ψ, a(f>)ψ⟩ |
≤ ∥ω−1/2g<∥∥ω−1/2f∥∥(1 + dΓ(ω))1/2ψ∥∥dΓ(ω)1/2ψ∥.

(2.18)

By the Cauchy-Schwarz inequality, we observe that, for any ε > 0,⃓⃓⃓∫︁
R2d f>(k)g>(k′)ψ

(n+2)(k, k′, k1, . . . , kn)d(k, k
′)
⃓⃓⃓2

1 + ε+ 1
2

n∑︁
j=1

χΩ(kj)

≤ ∥ω−1/4f>∥2∥ω−1/4g>∥2
∫︂
Ω2

ω(k)1/2ω(k′)1/2|ψ(n+2)(k, k′, k1, . . . , kn)|2d(k, k′)

ε+ 1
2

(︂
χΩ(k) + χΩ(k′) +

n∑︁
j=1

χΩ(kj)
)︂ .

By the definition of the Fock space norm, the creation and annihilation operators, the
permutation symmetry of ψ(n+2) and the inequality

√︁
ω(k)ω(k′) ≤ 1

2
(ω(k) + ω(k′)), this

yields⃦⃦
(1 + dΓ(χΩ/2))

−1/2a(f>)a(g>)ψ
⃦⃦

≤ ∥ω−1/4f>∥∥ω−1/4g>∥ sup
ε>0

⃦⃦
(ε+ dΓ(χΩ))

−1/2dΓ(ω1/2χΩ)ψ
⃦⃦
.

Now, we observe

n∑︂
j=1

χΩ(kj)ω
1/2(kj) ≤

(︄
n∑︂
j=1

χΩ(kj)

)︄1/2(︄ n∑︂
j=1

ω(kj)

)︄1/2

,

so
⃦⃦
(ε+ dΓ(χΩ))

−1/2dΓ(ω1/2χΩ)ψ
⃦⃦
≤ ∥dΓ(ω)1/2ψ∥ for all ε > 0. Combined, we obtain

| ⟨a†(f>)ψ, a(g>)ψ⟩ | ≤
⃦⃦
(1 + dΓ(χΩ))

1/2ψ
⃦⃦ ⃦⃦

(1 + dΓ(χΩ/2))
−1/2a(f>)a(g>)ψ

⃦⃦
≤ ∥ω−1/4f>∥∥ω−1/4g>∥∥(1 + dΓ(ω))1/2ψ∥∥dΓ(ω)1/2ψ∥.

(2.19)

Putting together (2.17), (2.18) and (2.19) proves the statement.

We use the above lemma to prove Theorem 2.10.
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Proof of Theorem 2.10 (i). Throughout this proof, if we have two vectors of operators

A = (A1, . . . , Ad) and B = (B1, . . . , Bd), we will write ⟨Aϕ,Bψ⟩ =
d∑︁
i=1

⟨Aiϕ,Biψ⟩ and

similar for the norm. Further, we assume ψ ∈ QN and fix P ∈ Rd without further mention.
First, observe that BK,L and BL,Λ have disjoint support (up to a set of measure zero).

Hence, a†(mBK,L) and a(mBL,Λ) weakly commute, by Lemma B.20 (iv). Now, using
Lemma 2.6 and the additivity of creators and annihilators, we obtain

Q
(P )
K,L,Λ(ψ) = Re

[︂
4
⟨︁
a(mBL,Λ)ψ, (dΓ(m)− P + φ(mBK,L))ψ

⟩︁
+ 2
⟨︁
a†(mBL,Λ)ψ, a(mBL,Λ)ψ

⟩︁]︂
+ 2
⃦⃦
a(mBL,Λ)ψ

⃦⃦2
.

(2.20)

We estimate the terms one by another. To begin with, we observe that Lemma B.20 (vii)
and the Cauchy-Schwarz inequality imply that, for all ε > 0,⃓⃓⟨︁

a(mBL,Λ)ψ, (dΓ(m)− P + φ(mBK,L))ψ
⟩︁⃓⃓

≤ ∥ω−1/2|m|BL,Λ∥∥dΓ(ω)1/2ψ∥∥(dΓ(m)− P + φ(mBK,L))ψ∥

≤ ε∥(dΓ(m)− P + φ(mBK,L))ψ∥2 +
4

ε
∥ω−1/2|m|BL,∞∥2∥dΓ(ω)1/2ψ∥2.

(2.21)

Similarly, we have⃦⃦
a(mBL,Λ)ψ

⃦⃦2 ≤ ∥ω−1/2|m|BL,∞ψ∥2∥dΓ(ω)1/2ψ∥2. (2.22)

Using Lemma 2.11, we further have⃓⃓⟨︁
a†(mBL,Λ)ψ, a(mBL,Λ)ψ

⟩︁⃓⃓
≤ 3∥max(ω−1/4, ω−1/2)|m|BL,∞∥2∥(1 + dΓ(ω))1/2ψ∥∥dΓ(ω)1/2ψ∥

(2.23)

From Lemma 2.6, we recall there exists a constant CK,L > 0 (independent of P ) such that

q ˜︁HK,L(P )(ψ) = ∥dΓ(ω)1/2ψ∥2 + ∥(dΓ(m)− P + φ(mBK,L))ψ∥2

+ ⟨ψ, φ(vK + |m|2BK,L)ψ⟩+ CK,L∥ψ∥2.

Hence, again applying Lemmas 2.5 and B.20 (vii), we find there is a constant DK,L > 0
such that

∥(dΓ(m)− P + φ(mBK,L))ψ∥2 + ∥dΓ(ω)1/2ψ∥2 ≤ q ˜︁HK,L(P )(ψ) +DK,L∥ψ∥2. (2.24)

Combining (2.21) – (2.24) and inserting them into (2.20) proves the statement.

Proof of Theorem 2.10 (ii). This proof is very similar to the previous one and we use
the same notation. From (2.20), we directly obtain

Q
(P )
K,L,Λ(ψ)−Q

(P )
K,L,Λ′(ψ) = Re

[︂
4
⟨︁
a(mBΛ,Λ′)ψ, (dΓ(m)− P + φ(mBK,L))ψ

⟩︁
+ 2
⟨︁
a†(mBΛ,Λ′)ψ, a(mBL,Λ)ψ

⟩︁
+ 2
⟨︁
a†(mBL,Λ′)ψ, a(mBΛ,Λ′)ψ

⟩︁]︂
+ 2 ⟨a(mBΛ,Λ′)ψ, a(mBL,Λ)ψ⟩ − 2 ⟨a(mBL,Λ′)ψ, a(mBΛ,Λ′)ψ⟩ .
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Applying the same bounds as before, this results in⃓⃓⃓
Q

(P )
K,L,Λ(ψ)−Q

(P )
K,L,Λ′(ψ)

⃓⃓⃓
≤ 4∥ω−1/2|m|BΛ,Λ′∥∥dΓ(ω)1/2ψ∥∥(dΓ(m)− P + φ(mBK,L))ψ∥

+ 4∥ω−1/2|m|BL,∞∥∥ω−1/2|m|BΛ,Λ′∥∥dΓ(ω)1/2ψ∥2

+ 12∥max(ω−1/4, ω−1/2)|m|BL,∞∥∥max(ω−1/4, ω−1/2)|m|BΛ,Λ′∥
× ∥(1 + dΓ(ω))1/2ψ∥∥dΓ(ω)1/2ψ∥.

Using (2.24) again proves the statement.

The following statement now is a direct consequence of Theorem 2.10.

Corollary 2.12. For all L ≥ K ≥ σ and P ∈ Rd, there exists a symmetric sesquilinear
form Q

(P )
K,L,∞ with form domain QN such that

Q
(P )
K,L,∞(ψ, ϕ) = lim

Λ→∞
Q

(P )
K,L,Λ(ψ, ϕ) for all ψ, ϕ ∈ QN.

Further, the bounds in Theorem 2.10 (i) and (ii) are also satisfied for Λ = ∞.

Since this implies that Q
(P )
K,L,∞ is a small form perturbation of ˜︁HK,L(P ) for L sufficiently

large, we can now obtain the renormalized Nelson operators in the Gross regime by the
KLMN theorem (Theorem A.90). In the next section, we prove that these operators are
in fact the norm resolvent limit of the Gross transformed Nelson operators.

2.1.5. The Renormalized Operators in the Gross Regime

In the next theorem, we construct the norm resolvent limit of the Gross transformed fiber
operators and collect similar regularity results to the ones stated in Theorem 2.1. Therein,
we extend the definition (2.14) to the case Λ = ∞.

Theorem 2.13. Fix some K ≥ σ.

(i) The operators ˜︁HK,Λ(P ) are bounded below uniformly in Λ ≥ K and P ∈ Rd.

(ii) For all P ∈ Rd, the operators ˜︁HK,Λ(P ) converge to a selfadjoint lower-semibounded
operator ˜︁HK,∞(P ) in the norm resolvent sense as Λ → ∞. They have that form
domain Q( ˜︁HK,∞(P )) = QN.

(iii) For P ∈ Rd and λ < inf σ( ˜︁HK,Λ(P )), we write ˜︁CP,K,Λ(λ) = BP
˜︁RP,K,Λ(λ)

1/2. Then,
for all P ∈ Rd and λ < inf σ( ˜︁HK,∞(P )),

lim
Λ→∞

˜︁CP,K,Λ(λ) ˜︁CP,K,Λ(λ)∗ = ˜︁CP,K,∞(λ) ˜︁CP,K,∞(λ)∗,

s-lim
Λ→∞

˜︁CP,K,Λ(λ) = ˜︁CP,K,∞(λ).

Further, for λ sufficiently small, the map P ↦→ ˜︁CP,K,∞(λ) ˜︁CP,K,∞(λ)∗ is continuous.
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2. Renormalization of the Translation-Invariant Nelson Hamiltonian

Proof. The uniform lower bound in (i) directly follows from the uniform lower bound in
Lemma 2.9 (ii), Theorem 2.10 (i) and the KLMN theorem (Theorem A.90).

Now, fix P ∈ Rd and choose LP corresponding to ε = 1
2

in Theorem 2.10 (i). Then, by
Corollary 2.12, the symmetric form Q

(P )
K,LP ,∞ = lim

Λ→∞
Q

(P )
K,LP ,Λ

is q ˜︁HK,LP
(P )-form bounded

with relative bound 1
2
. Let ˜︁HK,∞(P ) be the selfadjoint lower-semibounded operator cor-

responding to q ˜︁HK,LP
(P )+Q

(P )
K,LP ,∞ by the KLMN theorem (Theorem A.90). We note that

the domain statement in (ii) directly follows from the KLMN theorem.
Since Theorem 2.10 (i) also holds for Λ = ∞, by Corollary 2.12, we can choose the

spectral parameter λ < inf
Λ∈[0,∞]

inf σ( ˜︁HK,Λ(P )). Put Z = ∥H0(P )
1/2 ˜︁RP,K,∞(λ)1/2∥. For

any ε > 0, we can choose δε such that

Z2δε < 1 and ∥ ˜︁CP,K,∞(λ)∥2 Z2δε
1− Z2δε

< ε.

Further, by Theorem 2.10 (ii) and Corollary 2.12 and the observation H0(P ) = ˜︁HK,K(P ),
there exists Λε such that the form vK,Λ := q ˜︁HK,Λ(P ) − q ˜︁HK,∞(P ) satisfies

|vK,Λ(ψ)| = |Q(P )
K,K,Λ(ψ)−Q

(P )
K,K,∞(ψ)| ≤ δεqH0(P )+cδε∥ψ∥2 for all ψ ∈ QN and Λ ≥ Λε.

Hence, by Lemma A.91, there exists a bounded operator Dε with ∥Dε∥ ≤ Z2δε corre-
sponding to the form vK,Λ( ˜︁RP,K,∞(λ)1/2·). Further,

˜︁RP,K,Λ(λ)
1/2 = ˜︁RP,K,∞(λ)1/2(1 +Dε)

−1 ˜︁RP,K,∞(λ)1/2

and hence by Lemma A.14

∥ ˜︁CP,K,Λ(λ) ˜︁CP,K,Λ(λ)∗ − ˜︁CP,K,∞(λ) ˜︁CP,K,∞(λ)∗∥ = ∥ ˜︁CP,K,∞(λ)((1 +Dε)
−1 − 1) ˜︁CP,K,∞(λ)∗∥

≤ ∥ ˜︁CP,K,∞(λ)∥2 Z2δε
1− Z2δε

< ε.

This proves the convergence statements in (iii) for λ sufficiently small, by Lemma A.78.
Now, since ˜︁RP,K,Λ(λ) = B−1

P
˜︁CP,K,Λ(λ) ˜︁CP,K,Λ(λ)∗B−1

P

this implies (ii), by Lemma A.76 (i). The norm resolvent convergence in turn yields that
for any λ < inf σ( ˜︁HK,∞(P )) also λ < inf σ( ˜︁HK,Λ(P )) for Λ sufficiently large, so above
argument still holds.

To conclude, we note that δε and Λε are independent of P . Hence, the convergence in
(iii) is in fact uniform in P and the continuity statement follows, by Lemma 2.9.

2.2. Construction of the Renormalized Operators

After having renormalized the Gross transformed operator, we move back to the usual
operators HΛ(P ). It is a direct consequence of the strong continuity of Weyl operators
(Lemma B.26 (iii)) and Theorem 2.13 that, for any P ∈ Rd, the operator HΛ(P ) converges
to

H∞(P ) = W (BK,∞)∗ ˜︁HK,∞(P )W (BK,∞) (2.25)
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in the strong resolvent sense for an arbitrary choice of K ≥ σ. This was the implication
used in [Nel64, Can71]. However, using further properties of the Weyl operators, it is
possible to improve the convergence statement to norm resolvent convergence and deduce
further regularity properties of the operators H∞(P ).

2.2.1. Mapping Properties of Weyl Operators II

Before we can give proofs of Theorems 1.8 and 2.1, we need to further study mapping
properties of Weyl operators.

In this section, we assume ν : Rd → [0,∞) is measurable and ν > 0 almost everywhere
and h : Rd → Rp for some p ∈ N is measurable. For ε > 0 and s ∈ [0, 1], we define

Tε = (1+εdΓ(ν))1/2, Ss = 1+dΓ(ν)1/2+|dΓ(h)|s and Ds = D(dΓ(ν)1/2)∩D(|dΓ(h)|s).

Note that D(Tε) = D0 and D(Ss) = Ds.
We prove the following statement.

Theorem 2.14. Let f ∈ D(ν1/2), s ∈ [0, 1] and i ∈ {1, . . . , p}.

(i) W (f)D0 = D0 and ∥(dΓ(ν) + 1)1/2W (f)(dΓ(ν) + 1)−1/2∥ ≤ 1 + ∥ν1/2f∥.

(ii) If f ∈ D(|h|1/2) ∩ D(|h|ν−1/2) \ D(hi), then D(dΓ(hi)) ∩W (f)∗D1 = {0}.

(iii) If f ∈ D(|h|s) ∩ D(ν−1/2|h|s), then W (f)Ds = Ds.
Furthermore, if (fn)n∈N ⊂ D(|h|s) ∩ D(ν−1/2|h|s) converges to f simultaneously in
ν1/2-, |h|s- and ν−1/2|h|s-norm, then

s-lim
n→∞

SsW (fn)S
−1
s = SsW (fn)S

−1
s . (2.26)

Remark 2.15. This theorem is an extension of [GW18, Lemmas C.3, C.4 & Cor. C.5] and
[HM21, Lemma A.4].

We prove the theorem in several lemmas. To that end, for f ∈ L2(Rd) satisfying
W (f)D0 ⊂ D0 and ε > 0, we write

Qf,ε = TεW (f)T−1
ε .

Lemma 2.16. Let ε > 0 and (fn)n∈N ⊂ L2(Rd) and assume lim
n→∞

fn = f in the L2-sense.
If W (fn)D0 ⊂ D0 for all n ∈ N and both Q∗

fn,ε
Qfn,ε and Q∗

−fn,εQ−fn,ε converge strongly,
then W (f)D0 ⊂ D0 and s-lim

n→∞
Qfn,ε = Qf,ε, s-lim

n→∞
Q∗
fn,ε

= Q∗
f,ε.

Proof. Since ∥Q∗
±fn,εQ±fn,ε∥ = ∥Q∗

±fn,ε∥
2 (cf. Lemma A.14), we see Q∗

±fn,ε is uniformly
bounded. As s-lim

n→∞
T−1
ε W (fn) = T−1

ε W (f) by Lemma B.26 (iii), Lemma A.18 implies
W (f)D0 ⊂ D0 and s-lim

n→∞
Q∗

±fn,ε = Q∗
±f,ε. Taking adjoints, this yields w-lim

n→∞
Qfn,ε = Qf,ε.

Now, the equality Qfn,ε = Q∗
−fn,ε(Q

∗
fn,ε

Qfn,ε) shows the convergence is actually strong.

Lemma 2.17. Let f, g : Rd → C satisfy ν−1/2f, ν−1/2g ∈ L2(Rd) and assume ε > 0.

(i) There is (fn)n∈N ⊂ D(ν−1/2) such that lim
n→∞

ν−1/2fn = ν−1/2f in L2(Rd).
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2. Renormalization of the Translation-Invariant Nelson Hamiltonian

(ii) If (fn)n∈N is a sequence as in (i), then there is a bounded operator ˜︁φε(f) independent
of the sequence such that ˜︁φε(f) = lim

n→∞
T−1
ε φ(fn)T

−1
ε .

(iii) ∥˜︁φε(f)∥ ≤ 2ε−1/2∥ν−1/2f∥ and ˜︁φε(f)− ˜︁φε(g) = ˜︁φε(f − g).

Proof. A possible choice in (i) is

fn(k) = f(k)χ{|f |<n,n−1<ν,|k|<n}(k).

Lemma B.20 (vii) yields ∥a(h)T−1
ε ∥ ≤ ε−1/2∥ν−1/2h∥ for h ∈ D(ν−1/2). Hence, using

∥T−1
ε a†(h)∥ = ∥(a(h)T−1

ε )∗∥ (Lemmas A.14 and B.20 (i)) and Tε ≥ 1, we find

∥T−1
ε φ(h)T−1

ε ∥ ≤ 2ε−1/2∥ν−1/2h∥.

This inequality, closedness of the bounded operators and the fact that

T−1
ε φ(h1)T

−1
ε − T−1

ε φ(h2)T
−1
ε = T−1

ε φ(h1 − h2)T
−1
ε for h1, h2 ∈ D(ν−1/2)

then finish the proof.

Lemma 2.18. Let ε > 0 and f ∈ D(ν1/2). Then W (f)D0 ⊂ D0.
Further, if (fn)n∈N ⊂ D(ν1/2) converges to f in ν1/2-norm, then s-lim

n→∞
Qfn,ε = Qf,ε,

s-lim
n→∞

Q∗
fn,ε

= Q∗
f,ε and ∥Qf∥ ≤ 1 + ∥ν1/2f∥.

Proof. We set gn = fχ{ν<n} ∈ D(ν). We apply Lemma 2.3 with p = 1 and h = ν.
This yields W (gn)D(dΓ(ν)) ⊂ D(dΓ(ν)), which implies W (gn)D0 ⊂ D0 by Lemma A.87.
Further, on D0,

Q∗
gn,εQgn,ε = T−1

ε W (gn)
∗T 2

εW (gn)T
−1
ε = 1− T−1

ε φ(νfn)T
−1
ε + ∥ν1/2gn∥2T−2

ε .

By Lemma 2.17, the right hand side converges in norm as n→ ∞, so Lemma 2.16 shows
W (f)D0 ⊂ D0 and, for any f ∈ D(ν1/2),

Q∗
f,εQf,ε = 1− ˜︁φ1(νf) + ∥ν1/2f∥2T−2

ε . (2.27)

Another application of Lemma 2.17 shows Q∗
fn,ε

Qfn,ε is convergent if (fn)n∈N ⊂ D(ν1/2)

converges to f in ν1/2-norm. Hence, Lemma 2.16 shows that s-lim
n→∞

Qfn,ε = Qf,ε and
s-lim
n→∞

Q∗
fn,ε

= Q∗
f,ε. Lemma 2.17 and (2.27) now imply

∥Qf,1∥2= ∥Q∗
f,1Qf,1∥≤ 1 + 2∥ν1/2f∥+∥ν1/2f∥2.

Lemma 2.19. Let i ∈ {1, .., p} and f ∈ D(|hi|1/2) ∩ D(ν1/2) ∩ D(|hi|ν−1/2).
Set fΛ = fχ{|h|<Λ,ν<Λ}. If ψ ∈ D0 ∩ D(dΓ(hi)) and W (f)ψ ∈ D(dΓ(hi)), then

lim sup
ε→0

lim sup
Λ→∞

∥T−1
ε a†(hifΛ)ψ∥<∞.

Proof. By Lemma 2.3, we have

T−1
ε W (fΛ)dΓ(hi)

−1W (fΛ)
∗ψ = dΓ(hi)T

−1
ε ψ − ˜︁φ(hifΛ)Tεψ + ⟨fΛ, hifΛ⟩T−1

ε ψ. (2.28)
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Setting C = ∥dΓ(hi)ψ∥ + ∥|hi|ν1/2f∥∥dΓ(ν)1/2ψ∥ + ∥|hi|1/2f∥2∥ψ∥, Lemma B.20 (vii)
and (2.28) imply

∥T−1
ε a†(hifΛ)ψ∥ ≤ ∥T−1

ε W (fΛ)dΓ(hi)W (fΛ)ψ∥+ C.

Note that Lemma 2.17 implies the right hand side of (2.28) converges as Λ → ∞. Hence,

T−1
ε dΓ(hi)W (fΛ)

∗ψ = Q∗
fΛ,ε

T−1
ε W (fΛ)dΓ(hi)

−1W (fΛ)
∗ψ

also converges, by Lemma 2.18. As T−1
ε dΓ(hi) is closed, the limit is T−1

ε dΓ(hi)W (f)∗ψ.
Hence, we obtain

T−1
ε W (fΛ)dΓ(hi)

−1W (fΛ)
∗ψ = Q∗

−fΛ,εT
−1
ε dΓ(hi)W (fΛ)

∗ψ

converges to T−1
ε W (f)dΓ(hi)

−1W (f)∗ψ as Λ → ∞. We obtain

lim sup
ε→0

lim sup
Λ→∞

∥T−1
ε W (fΛ)dΓ(hi)W (fΛ)ψ∥= ∥dΓ(hi)W (fΛ)ψ∥<∞.

Lemma 2.20. Let i ∈ {1, .., p} and f ∈ D(hiν
−1/2) \ D(hi). Set fΛ = fχ{|h|<Λ,ν<Λ}. If

ψ ∈ D0 and lim sup
ε→0

lim sup
Λ→∞

∥T−1
ε a†(hifΛ)ψ∥<∞, then ψ = 0.

Proof. We use Definitions B.11 and B.18 and obtain

(a(hifΛ)T
−2
ε a†(hifΛ)ψ

(n))(k1, ..., kn) =

∫︂
Rd

|hi(k)fΛ(k)|2ψ(k1, ..., kn)
1 + ε (ν(k) + ν(k1) + · · ·+ ν(kn))

dk

+
n∑︂
j=1

hi(kj)f(kj)

∫︂
Rd

hi(k)f(k)ψ
(n)(k, k1, ..., k̂i, ..., kn)

1 + ε (ν(k) + ν(k1) + · · ·+ ν(kn))
dk.

The second term is bounded by a†(|hifΛ|)a(|hifΛ|)|ψ(n)|(k1, . . . , kn), since ν ≥ 0. Hence,
we obtain

∥T−1
ε a†(hifΛ)ψ

(n)∥2

≥
∫︂
Rd

|hi(k)fΛ(k)|2∥(1 + ε(ν(k) + dΓ(ν)))1/2ψ(n)∥2dk − ∥a(|hifΛ|)|ψ(n)|∥2.

By Lemma B.20 (vii), ∥a(|hifΛ|)|ψ(n)|∥2≤ ∥hiν−1/2f∥∥T1ψ(n)∥, so summing over n and
using monotone convergence in the limits Λ → ∞ and ε→ ∞ we get

∞ > lim sup
Λ→∞

∫︂
k

|hi(k)fΛ(k)|2dk∥ψ∥2−∥hiν−1/2f∥2∥T1ψ∥2.

Since hif is not square-integrable, this implies ∥ψ∥ = 0.

Lemma 2.21. Let s ∈ [0, 1] and f ∈ D(ν1/2) ∩ D(|h|s) ∩ (ν−1/2|h|s).
Then there is a unique bounded operator Df,s such that (cf. Definition A.92)

c|dΓ(h)|s,φ(f)(ψ, T
−1
1 ψ) = ⟨ψ,Df,sψ⟩ for ψ ∈ Ds.

Further, ∥Df,s∥≤ 2∥(1 + ν−1/2)|h|sf∥.
If fn converges to f in ν−1/2, ν−1/2|h|s and |h|s norm then lim

n→∞
Dfn,s = Df,s.
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Proof. Let g ∈ D(|dΓ(n)(h)|s) (cf. Definition B.11). We use ||x + y|s−|x|s|≤ |y|s for all
x, y ∈ Rν and the definition of the annihilation operator (cf. Definition B.18) and see the
inequality ⃓⃓

a(f)|dΓ(n)(h)|sg − |dΓ(n−1)(h)|sa(f)g
⃓⃓
≤ a(|h|s|f |)|g|

holds pointwise. Now let ϕ, ψ ∈ Ds and define |ψ|= {|ψ(n)|}, |ϕ|= {|ϕ(n)|} ∈ Ds. We now
write qf,s = c|dΓ(h)|s,φ(f) and use the above inequality to obtain

|qf,s(ψ, ϕ)|≤ ⟨|ψ|, a(|h|s|f |)|ϕ|⟩+ ⟨a(|h|s|f |)|ψ|, |ϕ|⟩ = ⟨|ψ|, φ(|h|s|f |)|ϕ|⟩.

Since ν ≥ 0, we have |T−1
1 ψ|= T−1

1 |ψ|. Inserting ϕ = T−1
1 ψ and combining with

Lemma B.20 (vii) and the Cauchy-Schwarz inequality, then yield

|qf,s(ψ, T−1
1 ψ)|≤ 2∥(1 + ν−1/2)|h|sf∥∥ψ∥2.

This proves existence and upper bound of Df,s.
We observe qf,s − qfn,s = qf−fn,s, which yields Df,s − Dfn,s = Df−fn,s by the bound

above. The convergence statement directly follows.

Proof of Theorem 2.14. Recalling W (f)∗ = W (−f) from Lemma B.26, the statement
of (i) follows from Lemma 2.18. Further, Lemmas 2.19 and 2.20 yield (ii).

Hence, it remains to prove (iii). Therefore, let fΛ(k) = χ{|k|≤Λ}f(k) and recall that, by
Lemma 2.3, W (tfΛ) maps D1 onto itself for all t ∈ R. Now, we assume ψ, ϕ ∈ D1 and
define

gΛ,ψ,ϕ(t) = ⟨W (tfΛ)ψ, |dΓ(h)|sW (tfΛ)ϕ⟩ for t ∈ R. (2.29)

For all i ∈ {1, . . . , p}, the map

t ↦→ dΓ(hi)W (tfΛ)ψ = W (tfΛ)(dΓ(hi)ψ − tφ(fΛ)ψ + t2⟨hifΛ, fΛ⟩ψ)

is continuous by Lemmas B.20 (vii) and B.26 (iii), so W (tfΛ)ψ is continuous in dΓ(hi)-
norm. Since

∥|dΓ(h)|sη∥≤ ∥η∥+
n∑︂
i=1

∥dΓ(hi)η∥ for all η ∈ D(dΓ(h))

by the spectral theorem (cf. Lemma A.61 (i)), t ↦→ |dΓ(h)|sW (tfΛ)ψ is continuous, so
we can apply Lemma A.93 to (2.29). Hence, gΛ,ψ,ϕ is continuously differentiable with
derivative

g′Λ,ψ,ϕ(t) = −ic|dΓ(h)|s,φ(fΛ)(W (tfΛ)ψ,W (tfΛ)ϕ).

By Lemma 2.21, the form c|dΓ(h)|s,φ(fΛ)(ψ, T
−1
1 ψ) corresponds to an operator DΛ ∈ B(F)

bounded uniformly in Λ and satisfying lim
Λ→∞

DΛ = D∞. Therefore, we have

⟨ψ, |dΓ(h)|sW (fΛ)ϕ⟩ = gΛ,W (−fΛ)ψ,ϕ(1)

= gΛ,W (−fΛ)ψ,ϕ(0) +

∫︂ 1

0

g′Λ,W (−fΛ)ψ,ϕ(t)dt

= ⟨ψ,W (fΛ)|dΓ(h)|sϕ⟩ − i

∫︂ 1

0

⟨ψ,W ((1− t)fΛ)DΛT1W (tfΛ)ϕ⟩ dt.
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Since ψ ∈ D1 was arbitrary and D1 is dense, this yields

|dΓ(h)|sW (fΛ)ϕ = W (fΛ)|dΓ(h)|sϕ− i

∫︂ 1

0

W ((1− t)fΛ)DΛT1W (tfΛ)ϕ dt,

where we use the Bochner integral on the right hand side. By the dominated convergence
theorem and Lemmas 2.18 and B.26 (iii), we can take the limit Λ → ∞ and obtain
W (f)ϕ ∈ D(|dΓ(h)|s) as well as

|dΓ(h)|sW (f)ϕ = W (f)|dΓ(h)|sϕ− i

∫︂ 1

0

W ((1− t)f)D∞T1W (tf)ϕ dt. (2.30)

Again W (−f) = W (f)∗ directly yields W (f)Ds = Ds. Finally, we deduce (2.26) from
Lemma 2.18 and a dominated convergence type argument applied to (2.30), as we did for
finite Λ above.

2.2.2. Regularity and Domain of the Renormalized Operators

After having provided all technical ingredients, we can now move to the renormalization
of the fiber operators. To that end, we recall the definition of H∞(P ) in (2.25).

Proof of Theorem 2.1. First, we observe that the uniform lower bound directly follows
from Theorem 2.13 (i) and (2.2). Further, we observe that for λ sufficiently small

RP,Λ(λ)−RP,∞(λ) = W (BK,Λ)
∗(BP

˜︁RP,K,Λ(λ))
∗B−1

P (W (BK,Λ)−W (BK,∞))

+W (BK,Λ)
∗
(︂ ˜︁RP,K,Λ(λ)− ˜︁RP,K,∞(λ)

)︂
W (BK,∞)

+ (W (BK,Λ)
∗ −W (BK,∞)∗)B−1

P B ˜︁RP,K,Λ(λ)W (BK,∞).

This converges to zero in norm by Theorems 2.1 and 2.14, so we have proven (i)
Now, (ii) follows directly from (2.25).
To prove (iii), we first notice the domain statement follows directly from (ii), Lemma 2.5

and Theorem 2.14 (iii). For Λ large enough that λ < ΣΛ(ξ) + EΛ (cf. Lemma A.76), we
can calculate similar to above and obtain

AsRP,Λ(λ)
1/2 = AsW (BK,Λ)

∗B−1
P BP

˜︁RP,K,Λ(λ)
1/2W (BK,Λ).

Convergence now follows from Theorems 2.13 (iii) and 2.14. To prove the continuity
statements, we first observe ∥gλ(P )gλ(P )∗∥= ∥gλ(P )∥2 (Lemma A.14), so it is enough to
see that P ↦→ gλ(P )gλ(P )

∗ is continuous in norm. Writing ˜︁C as in Theorem 2.13 (iii), we
have

gλ(P )gλ(P )
∗ = AsW (BK,∞)∗B−1

P
˜︁CP,K,Λ(λ)CP,K,Λ(λ)∗B−1

P W (BK,∞)As.

By Lemma 2.8, the map P ↦→ AsW (BK,∞)∗B−1
P is continuous, so the statement follows

from Theorem 2.13 (iii).

The next lemma shows that we can replace A 2
3

by B1/2
P in the convergence statements of

Theorem 2.1 (iii). It especially provides a key ingredient in the proof of Theorem 1.8.

Lemma 2.22. Let P ∈ Rd. Then B
1/2
P is infinitesimally A 2

3
bounded.
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2. Renormalization of the Translation-Invariant Nelson Hamiltonian

Proof. Let ε > 0. Pick C such that

x1/4 ≤ 1

2
εx1/2 + C and x1/2 ≤ 1

25/4
εx2/3 + C for all x ≥ 0.

Then the sub-additivity of x ↦→ x1/4 and |P − k1 − ...− kn|2≤ 2|P |2+2|k1 + ...+ kn|2 lead
to

(1 + ω(k1) + · · ·+ ω(kn) + |P − k1 − ...− kn|2)1/4

1 + (ω(k1) + · · ·+ ω(kn))1/2 + |P − k1 − ...− kn|2/3

≤ ε+ (1 + 21/4|P |1/2+3C)(1 + (ω(k1) + · · ·+ ω(kn))
1/2 + |k1 + ...+ kn|2/3)−1.

As this holds uniformly for all n ∈ N, we obtain D(A 2
3
) ⊂ D(BP ). To finish the proof we

observe

∥BPψ∥≤ ε∥A 2
3
ψ∥+(1 + 21/4|P |1/2+3C)∥ψ∥ for all ψ ∈ D(A 2

3
).

We conclude this chapter with the proof of Theorem 1.8. To that end, we recall the
definition of DP (k) in (2.9).

Proof of Theorem 1.8 (i). Fix P, k ∈ Rd. We note that by Theorem 2.1 (ii) and Lem-
mas 2.8 and 2.22, we already know qDP (k) is infinitesimally qH∞(P ) bounded. Hence, let Hk

denote the selfadjoint operator corresponding to qH∞(P ) + qDP (k) by the KLMN theorem
(Theorem A.90). It only remains to prove that Hk = H∞(P + k). To do this, it suffices
to prove

(Hk − λ)−1 = RP+k,∞(λ) for some (and hence all) λ ∈ σ(H∞(P + k))c.

Therefore, we pick λ0 and Λ0 such that λ0 < min{inf σ(Hk),ΣΛ(P )+EΛ} for Λ > Λ0. By
the uniform boundedness principle, Theorem 2.1 (iii) and Lemma 2.5, we can set

a := sup
Λ∈[Λ0,∞]

∥A 2
3
RP,Λ(λ0)

1/2∥.

Since ∥RP,Λ(λ0)
−1/2RP,Λ(λ)

1/2∥< 1 by the spectral theorem, this yields

∥A 2
3
RP,Λ(λ)

1/2∥≤ a for all λ < λ0, Λ > Λ0.

By Lemmas 2.8 and 2.22, we can choose C > 0 such that

∥B1/2
P ψ∥≤ 1⃦⃦

|DP (k)|1/2B−1/2
P

⃦⃦ (︃ 1

4a
∥A 2

3
ψ∥+C∥ψ∥

)︃
for all ψ ∈ D(A 2

3
).

We now fix λ < λ0 small enough that C∥RP,Λ(λ)
1/2∥≤ 1

4
. For ψ ∈ F this leads to

∥|DP (k)|1/2RP,Λ(λ)
1/2ψ∥ ≤

⃦⃦
|DP (k)|1/2B−1/2

P

⃦⃦
∥B1/2

P RP,Λ(λ)
1/2∥

≤ 1

4a
∥A 2

3
RP,Λ(λ)

1/2ψ∥+1

4
∥ψ∥≤ 1

2
∥ψ∥.

The operator corresponding to the form qDP (k)(R
1/2
P,Λ·) is

ZΛ,λ(k) = (|DP (k)|1/2RP,Λ(λ)
1/2)∗ sign(DP (k))|DP (k)|1/2RP,Λ(λ)

1/2,

30



2.2. Construction of the Renormalized Operators

which satisfies ∥ZΛ,λ(k)∥ < 1
4

for all Λ ≥ Λ0 by above considerations.
Using (2.10), we now have

RP+k,Λ(λ) =
∞∑︂
n=0

RP,Λ(λ)
1/2ZΛ,λ(k)

nRP,Λ(λ)
1/2 for Λ ∈ [Λ0,∞],

while by Lemma A.91

(Hk − λ)−1 =
∞∑︂
n=0

RP,∞(λ)1/2Z∞,λ(k)
nRP,∞(λ)1/2.

As RP+k,Λ(λ) converges strongly to RP+k,∞(λ) and ∥ZΛ,λ(k)∥< 1
4

uniformly in Λ, it only
remains to prove

s-lim
Λ→∞

ZΛ,λ(k) = Z∞,λ(k)

However, this directly follows from Theorem 2.1 (ii) and Lemma 2.22 and the proof is
complete.

Proof of Theorem 1.8 (ii). We set Ds = D(As) = D(dΓ(ω)1/2) ∩ D(|dΓ(m)|s) and
note that QN = D1 ⊂ D(DP1(P2−P1)) = D(dΓ(2(P2−P1) ·m), by (2.9) and Lemmas 2.8
and B.17. Further, recall Q(H∞(P1)) = Q(H∞(P2)) = W (BK,∞)∗D1 from Theorem 2.1.

First, assume (P2 − P1) ·mBK,∞ ∈ L2(Rd). Then, by Theorem 2.14,

W (BK,∞)∗D1 ⊂ D(DP1(P2 − P1)).

Hence, Theorem 1.8 (i) yields

qH∞(P2)(ψ, ϕ) = qH∞(P1)(ψ, ϕ) + ⟨DP1(P2 − P1)ψ, ϕ⟩ for all ψ, ϕ ∈ W (BK,∞)∗D1.

If we fix ψ ∈ W (BK,∞)∗D1, the map ϕ ↦→ qH∞(P1)(ψ, ϕ) is continuous if and only if the map
ϕ ↦→ qH∞(P2)(ψ, ϕ) is continuous. Hence, Lemma A.86 yields D(H∞(P1)) = D(H∞(P2))
and H∞(P2) = H∞(P1) +DP1(P2 − P1).

We move to the case (P2−P1)·mBK,∞ /∈ L2(Rd). Assume ψ ∈ D(H∞(P1))∩D(H∞(P2)).
Then it follows from Theorem 1.8 (i) and Lemma A.86 that the map

W (BK,∞)∗D1 ∋ ϕ ↦→ qDP1
(P2−P1)(ψ, ϕ)

is continuous. If we can prove W (BK,∞)∗D1 is a form core for dΓ((P2 − P1)m), we can
deduce ψ ∈ D(DP1(P2 − P1), by Lemma A.86. From Theorem 2.14, we then find

ψ ∈ D(dΓ((P2 − P1)m)) ∩W (BK,∞)∗D1 = {0},

which proves the statement.
As A 2

3
dominates |DP1(P2 − P1)|1/2 by Lemma 2.22 and as A 2

3
strongly commutes

with |DP1(P2 − P1)|1/2, we see that any core for A 2
3

is a core for |DP1(P2 − P1)|1/2 by
Lemma A.70. Now, we note A 2

3
commutes with A1 and is A1-bounded, since D1 ⊂ D 2

3
, so

D1 is a core for A 2
3

by Lemma A.70. Further, by Theorem 2.14 and Lemma 2.5, we know
W (BK,∞)∗ maps D 2

3
continuously onto D 2

3
, so W (B∗

K,∞)D1 is a core for A 2
3

and hence for
|DP1(P2 − P1)|1/2. This finishes the proof.
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3. Absence of Ground States
in the Nelson Model

In this chapter, we prove Theorem 1.7. Throughout, we will assume that either Λ ∈ [0,∞)
and Hypothesis N0 or Λ = ∞ and Hypothesis NR hold, without further mention. In the
proofs, we will usually distinguish these two cases, when necessary. Further, we will
assume Hypothesis NA holds. To simplify notation, we drop the lower index N of HN in
this chapter.

Let us give a walkthrough of this chapter. We will start out by proving an energy
inequality for the ground state energies at different total momentum. To that end, as in
(2.15), we denote

ΣΛ(P ) = inf σ(HΛ(P )).

The energy inequality is the following lemma.

Lemma 3.1. For all P ∈ Rd and k ∈ Rd with k ∦ P

ΣΛ(P − k) + ω(k) > ΣΛ(P ).

This allows us to define the bounded operator

QΛ(k, P ) = ω(k)(HΛ(P + k)− ΣΛ(P ) + ω(k))−1 for k ∈ Rd \ RP. (3.1)

The proof of Theorem 1.7 is obtained in two propositions.
The first one is a so-called pull-through formula. Similar statements can, e.g., be found

in [Frö73, BFS98a, Gér00]. Therefore, we denote by ak the so-called pointwise annihilation
operator ak : F (n+1) → F (n) acting as

akf(k1, . . . , kn) =
√
n+ 1f(k, k1, . . . , kn). (3.2)

By the Fubini-Tonelli theorem, this prescription is well-defined for almost every k ∈ Rd.
For ψ ∈ F , we will write akψ = (akψ

(n))n∈N ∈×n∈N0
F (n). For more details, we refer to

Appendix B.6 and note that akψ = Aψ(k) in the notation used therein.

Proposition 3.2. Let P ∈ Rd and assume ψ is a ground state for HΛ(P ). Then akψ ∈ F
for almost every k ∈ Rd and

akψ = −vΛ(k)QΛ(k, P )ψ for almost every k ∈ Rd \ RP.

The second proposition describes the behavior of QΛ(k, P ) for small k. To that end, we
introduce some more notation. First of all, as in (2.11), let BP be defined as

BP = (H0(P ) + 1)1/2.
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3. Absence of Ground States in the Nelson Model

Further, we define the ground state projection

PΛ(P ) = PHΛ(P )({ΣΛ(P )}), (3.3)

where PHΛ(P ) denotes the spectral measure associated to HΛ(P ) as defined in Defini-
tion A.55, cf. also Lemma A.56 (iii).

By Theorem 2.1 and Lemmas 2.5 and 2.22, BPPΛ(P ) is bounded. Further, for any
i = 1, . . . , d, the operator (Pi− dΓ(mi))B

−1
P is bounded by Lemma 2.8 and selfadjoint (as

they act on F (n) as a real multiplication operator), so we can define

VΛ(P ) = 2Cω(B
1/2
P PΛ(P ))

∗(P − dΓ(m))B−1
P (B

1/2
P PΛ(P )) (3.4)

as a vector of bounded and selfadjoint operators. Here, Cω is the constant defined in
Hypothesis NA (v).

For k ∈ Rd \ {0}, we introduce the notation k̂ = k/|k|. Further, for P ∈ Rd and
ε ∈ (0, 1), we define

Sε(P ) =
{︁
k ∈ Rd \ {0} : 2|k̂ · P |< (1− ε)|P |

}︁
. (3.5)

Then, we need the following characterization of QΛ(k, P ) for small k.

Proposition 3.3. Let P ∈ Rd and ε ∈ (0, 1). For k ∈ Sε(P ), the operator 1− k̂ ·VΛ(P )
is invertible. Further,

w-lim
k→0

k∈Sε(P )∩Sε(−P )

(︂
QΛ(k, P )−

(︁
1− k̂ ·VΛ(P )

)︁−1
PΛ(P )

)︂
= 0.

A similar proof for the absence of ground states was developed in [HH08] for the Pauli-
Fierz model. Therein, the construction of VΛ(P ) used the (non-vanishing) gradient of the
ground state energy. As differentiability is not available for arbitrary momentum in the
Nelson model, Dam [Dam20] provided a different construction for the case Λ <∞, where
he used the rotation invariance and the non-degeneracy of the ground state, i.e., that
dim ranPΛ(P ) = 1. Our proof omits the latter assumption from the method and extends
the result to the case Λ = ∞, by using the regularity results from the previous chapter.

This chapter is structured as follows. We start out by proving well-known statements,
which lead to Lemma 3.1. Explicitly, these statements are that the ground state energy
of the operators HΛ(P ) attains a minimum at total momentum P = 0, which we prove
in Section 3.1, and an Hunziker-van Winter-Zhislin (HVZ) theorem in Section 3.2. Com-
bined with the rotation invariance from Hypothesis NA, we can then prove Lemma 3.1
and Proposition 3.3 in Section 3.3. In Section 3.4, we prove the pull-through formula
Proposition 3.2. Combining these results, we can prove the absence of ground states in
Section 3.5.

3.1. Energy Minimum at P = 0

The next lemma and its proof are essentially due to Gross [Gro72].

Lemma 3.4. For all P ∈ Rd, we have ΣΛ(P ) ≥ ΣΛ(0).
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3.2. An HVZ Theorem

Proof. First, we note that it suffices to prove the statement for Λ < ∞, since the case
Λ = ∞ then follows due to the norm resolvent convergence and Lemma A.76 (iv). Hence,
we will now work under the assumption Λ <∞.

By Lemma A.67, it suffices to prove

∥e−tHΛ(P )∥ ≤ ∥e−tHΛ(0)∥ for some t ∈ R. (3.6)

Let L2
R(Rd) be the set of real-valued L2-functions and note L2(Rd) = L2

R(Rd) ⊕ iL2
R(Rd).

Let Q and Θ denote the probability space and isomorphism between F and L2(Q) cor-
responding to this decomposition, by Lemma B.30. Then, by Lemmas A.110 and B.32,
the operator Θe−t(dΓ(ω)+φ(vΛ))Θ∗ is positivitiy preserving on L2(Q) for all t ≥ 0. Now, for
t ∈ Rd, let ft : Rd → [0,∞) be chosen such that

e−tx
2

=

∫︂
Rd

ft(y)e
−ix·ydy.

Then the spectral theorem combined with Fubini’s theorem yield

e−t(P−dΓ(m))2 =

∫︂
Rd

ft(y)e
−iP ·yeiy·dΓ(m)dy, (3.7)

where we have a B(F)-valued Bochner integral on the right hand side. Combining above
observations with Lemma A.109 and the fact that Θeiy·dΓ(m)Θ∗ is positivity preserving
(cf. Lemma B.32), we hence obtain that, for any t > 0 and ψ ∈ L2(Q),⃓⃓⃓

Θe−t((P−dΓ(m))2)e−t(dΓ(ω)+φ(vΛ))Θ∗ψ
⃓⃓⃓
=

⃓⃓⃓⃓∫︂
Rd

ft(y)e
−iP ·yΘeiy·dΓ(m)e−t(dΓ(ω)+φ(vΛ))Θ∗ψdy

⃓⃓⃓⃓
≤ Θ

∫︂
Rd

ft(y)e
iydΓ(m)e−t(dΓ(ω)+φ(vΛ))Θ∗|ψ|dy

= Θe−t|dΓ(m)|2e−t(dΓ(ω)+φ(vΛ))Θ∗|ψ|.

We note that (3.7) especially implies e−t|dΓ(m)|2 is positivity preserving. Hence, we can
use induction and, for any k ∈ N and t > 0, obtain⃓⃓⃓⃓

Θ
(︂
e−

t
k
((P−dΓ(m))2)e−

t
k
(dΓ(ω)+φ(vΛ))

)︂k
Θ∗ψ

⃓⃓⃓⃓
≤ Θ

(︂
e−

t
k
((dΓ(m))2)e−

t
k
(dΓ(ω)+φ(vΛ))

)︂k
Θ∗|ψ|.

By the Trotter product formula (Theorem A.66), this yields⃓⃓
Θe−tHΛ(P )Θ∗ψ

⃓⃓
≤ Θe−tHΛ(0)Θ ∗ |ψ| for t > 0.

Taking the L2-norm and using that Θ is unitary, we have proved (3.6), which completes
the proof.

3.2. An HVZ Theorem

In this section, we prove an HVZ theorem for the Nelson model. Similar statements are
proven, e.g., in [DG99, Amm00, Møl05, Dam20]

Proposition 3.5. For all P, k ∈ Rd, we have ΣΛ(P − k) + ω(k) ∈ σess(HΛ(P )).
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3. Absence of Ground States in the Nelson Model

Our proof follows the lines of [Dam20, Appendix A] and is split into several lemmas.
For a measurable set A ⊂ Rd and Λ <∞, we define the operators

T
(A)
Λ,0 (P ) = (P −dΓ(m↾L2(A)))

2+dΓ(ω ↾L2(A))+φ(vΛχA) on F(L2(A)) for P ∈ Rd. (3.8)

Lemma 3.6. For all measurable sets A, Λ < ∞ and P ∈ Rd, the operator T (A)
Λ,0 (P ) is

selfadjoint and bounded from below uniformly in P . Further, P ↦→ T
(A)
Λ,0 (P ) is continuous

in the norm resolvent sense.

Proof. The first statement follows similar to Lemma 1.5, while the second is similar to
Lemma 2.9.

Now, by Lemma A.116, we can define

T
(A)
Λ,n (P ) =

∫︂ ⊕

(Ac)n

(︂
T

(A)
Λ,0 (P − k1 − · · · − kn) + ω(k1) + · · ·+ ω(kn)

)︂
d(k1, . . . , kn)

as selfadjoint lower-semibounded operators on L2((Ac)n;F(L2(A))) for n ∈ N, P ∈ Rd.
The next lemma shows that the operators T (A)

Λ,n for n ∈ N0 describe the behavior of the
Nelson Hamiltonian away from the interaction.

Lemma 3.7. Assume that A ⊂ Rd is measurable, Λ <∞ and vΛ = 0 almost everywhere

on Ac. Then there exists a unitary U : F → F(L2(A)) ⊕
∞⨁︁
n=1

L2((Ac)×n;F(L2(A))) such

that

UHΛ(P )U
∗ =

∞⨁︂
n=0

T
(A)
Λ,n (P ). (3.9)

Proof. We explicitly define the unitary on coherent states (cf. Definition B.8) as

Uϵ(f) =
∞⨁︂
n=0

1√
n!
(χAcf)⊗snϵ(χAf) for f ∈ L2(Rd),

where we use the natural identification L2((Ac)×n;F(L2(A))) ∼= (L2((Ac)))⊗sn⊗F(L2(A)))
(cf. Lemma A.103 and Remark B.3). By Definition B.8 and Lemmas B.9 and B.10, we
can easily verify that this definition extends to a unitary U .

Now, let f, g ∈ L2(Rd) be compactly supported. One easily verifies that Uϵ(f) is in the
domain of the right hand side in (3.9) and, by a direct calculation using Lemmas B.15 (iv)
and B.20 (iii) and that ⟨χAf, vΛχAg⟩ = ⟨f, vΛg⟩ due to the assumptions, we obtain

⟨ϵ(f), HΛ(P )ϵ(g)⟩ =

⟨︄
Uϵ(f),

∞⨁︂
n=0

T
(A)
Λ,n (P )Uϵ(g)

⟩︄
.

Since the compactly supported functions are dense in L2(Rd), the set of coherent states
generated from compactly supported functions, from now denoted as E , is total (cf.
Lemma B.10). Hence, if we can prove E spans a core for HΛ(P ), the proof is complete
by Lemma A.33, since the right hand side in (3.9) is selfadjoint by Lemma A.116. By the
Kato-Rellich theorem (Theorem A.45), it suffices to prove E spans a core for H0(P ).
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3.2. An HVZ Theorem

To that end, let f ∈ L2(Rd) be compactly supported and choose R > 0 such that
supp f ⊂ BR(0). From Definitions B.11 and B.18, for all ℓ ∈ N0, we find

∥H0(P )
ℓf⊗sn∥ ≤

(︁
(|P |+ nR)2 + nC

)︁ℓ ∥f⊗sn∥ ≤
(︁
(|P |+ nR) +

√
nC
)︁2ℓ ∥f⊗sn∥,

where C = sup{ω(k) : k ∈ BR(0)} exists by Hypothesis NA (ii). By Definition B.8, this
implies ϵ(f) ∈ D(H0(P )

ℓ) and

∞∑︂
ℓ=0

∥H0(P )
ℓϵ(f)∥

(2ℓ)!
≤

∞∑︂
ℓ=0

1

(2ℓ)!

∞∑︂
n=0

∥H0(P )
ℓf⊗sn∥√
n!

≤
∞∑︂
n=0

e(|P |+nR)+
√
nC∥f∥n√

n!
<∞.

Hence, ϵ(f) is semianalytic forH0(P ) and the statement now follows by Theorem A.42.

In the next lemma, we denote by C(A) ⊂ L2(Rd) the set of compactly supported functions
with support inside of the measurable set A.

Lemma 3.8. Fix Λ <∞ and P, k ∈ Rd. Then there exists a sequence (εℓ)ℓ∈N ⊂ R+ with
εℓ

ℓ→∞−−−→ 0 and a sequence of normed vectors (ψℓ)ℓ∈N ⊂ DN with ψℓ ∈ Ffin(C(Bεℓ(k))
c) such

that

∥(HΛ(P − k)− ΣΛ(P − k))ψℓ∥ ≤ 1

ℓ
, (3.10)

sup
p∈Bεℓ

(k)c
∥(HΛ(P − p)−HΛ(P − k))ψℓ∥ ≤ 1

ℓ
. (3.11)

Proof. First, we observe that the set B :=
⋃︁
ε∈R+ C(Bε(k)

c) is dense in L2(Rd). This
implies that the set Ffin(B) is a core for HΛ(P − k), by an argument similar to the one
presented in the end of the previous proof. Hence, for all ℓ ∈ N, there exists ψℓ ∈ Ffin(B)
such that (3.10) holds. By construction, it is further easy to check that there exists
δℓ > 0 such that ψℓ ∈ Ffin(C(Bδℓ(k)

c)). Now, for any ϕ ∈ DN ⊂ QN = D(BP ), (2.10)
and Lemma 2.8 yield

∥HΛ(P + h)ϕ−HΛ(P )ϕ∥ ≤ ∥DP (h)B
−1
P ∥∥BPϕ∥ ≤ 4|h|∥BPϕ∥ for |h| ≤ 1,

so h ↦→ HΛ(P −k+h)ϕ is continuous in a neighborhood of h = 0. This implies that there
exists an εℓ ∈ (0, δℓ) such that (3.11) is satisfied and the proof is complete.

Proof of Proposition 3.5. The proof goes in three steps.

Step 1. We prove the statement for Λ < ∞ and under the additional assumption that
there exists an ε0 > 0 such that vΛ = 0 almost everywhere on Bε0(k).

Let (ψℓ)ℓ∈N and (εℓ)ℓ∈N be sequences as in Lemma 3.8 and w.l.o.g. assume εℓ < ε0 for
all ℓ ∈ N. Further, let Uℓ be the unitary from Lemma 3.7 corresponding to A = Bεℓ(k)

c

and let Pℓ = Γ(χBεℓ
(k)c) as operator from F to F(L2(Bεℓ(k)

c)). We now define

ϕℓ = U∗
ℓ

(︁
g⊗sℓ
ℓ Pℓψℓ

)︁
with gℓ =

χBεℓ
(k)\Bεℓ+1

(k)√︁
vol(Bεℓ(k) \Bεℓ+1

(k))
.

It is easy to check that ∥ϕℓ∥ = 1 for all ℓ ∈ N and ⟨ϕℓ, ϕp⟩ = 0 for ℓ ̸= p, by construction.
Further, we can easily verify ϕℓ ∈ Ffin(C(Rd)) ⊂ DN, since ψℓ ∈ Ffin(C(Rd)), gℓ ∈ C(Rd).
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3. Absence of Ground States in the Nelson Model

Now, we use Lemma 3.7, (3.8) and ∥Pℓψℓ∥ = 1 to obtain

∥ (HΛ(P )− ΣΛ(P − k)− ω(k))ϕℓ∥2

=

∫︂
Bεℓ

(k)

⃦⃦⃦(︂
T

(Bεℓ
(k))c

Λ,0 (P − p) + ω(p)− ΣΛ(P − p)− ω(k)
)︂

Pℓψℓ

⃦⃦⃦2
|gℓ(p)|2dp

≤
∫︂
Bεℓ

(k)

∥ (HΛ(P − p)−HΛ(P − k))ψℓ∥2|gℓ(p)|2dp (3.12)

+

∫︂
Bεℓ

(k)

∥ (HΛ(P − k)− ΣΛ(P − k))ψℓ∥2|gℓ(p)|2dp (3.13)

+

∫︂
Bεℓ

(k)

|ω(p)− ω(k)|2 |gℓ(p)|2dp. (3.14)

By the definition of gℓ and Lemma 3.8, we find (3.12) ≤ 1/ℓ and (3.13) ≤ 1/ℓ. Further,
(3.14) converges to zero as ℓ → ∞ by the continuity of ω (Hypothesis NA (ii)). This
finishes the first step. ♢

Step 2. We now prove the statement for arbitrary v at fixed Λ <∞.
To that end, let vℓ = χB1/ℓ(k)

cvΛ, denote by Ĥℓ(P ) the Nelson operator as defined in
Definition 1.3 with vΛ replaced by vℓ and write Σ̂ℓ(P ) = inf σ(Ĥℓ(P )). Using the resolvent
identity (Lemma A.29) and the standard bound Lemma A.63, we have

∥(HΛ(P ) + i)−1 − (Ĥℓ(P ) + i)−1∥ ≤ ∥φ(vΛ − vℓ)(HΛ(P ) + i)−1∥.

Hence, by the bounds in Lemma B.20 (vii) and noting ∥(vΛ − vℓ)ω
−1/2∥ ℓ→∞−−−→ 0, the

operator Ĥℓ(P ) converges to HΛ(P ) in the norm resolvent sense as ℓ → ∞. Now,
by Lemma A.76 (iv), Σ̂ℓ(P ) converges to ΣΛ(P ) and hence the statement follows, by
Lemma A.76 (vi). ♢

Step 3. It remains to treat the case Λ = ∞. However, due to the norm resolvent conver-
gence of HΛ(P ) to H∞(P ) (Lemma 1.6) the statement follows similar to the argument in
Step 2. ♢

3.3. Rotation Invariance and Resolvent Bounds

In this section, we now utilize the rotation invariance assumption. We will work with the
vector valued form

qdΓ(m)(ϕ, ψ) = (qdΓ(m1)(ϕ, ψ), ..., qdΓ(mn)(ϕ, ψ)) (3.15)

defined for ϕ, ψ ∈ Q(dΓ(m)) = Q(|dΓ(m)|) =
d⋂︁
i=1

Q(dΓ(mi)), by Lemmas A.87 and B.17.

The following holds.

Lemma 3.9. Let k ∈ Rd and ψ, ϕ ∈ Q(B0) ⊂ Q(dΓ(k ·m)). Then, we have

k · qdΓ(m)(ϕ, ψ) = qdΓ(k·m)(ϕ, ψ).
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3.3. Rotation Invariance and Resolvent Bounds

Proof. This follows directly from

qdΓ(m)(ϕ, ψ) =
∞∑︂
n=1

∫︂
Rnd

(k1 + ...+ kn)ϕ(n)(k1, ..., kn)ψ
(n)(k1, ..., kn)d(k1, . . . , kn).

The first statement is a simple implication of the rotation invariance assumption in Hy-
pothesis NA (iii).

Lemma 3.10. Let O ∈ Rd×d be orthogonal and UO be the associated rotation operator
acting on f ∈ H as UOf(k) = f(Ok).

(i) Γ(UO)Q(B0) = Q(B0) and

P · qdΓ(m)(Γ(UO)ψ,Γ(UO)ϕ) = OP · qdΓ(m)(ψ, ϕ) for ϕ, ψ ∈ Q(B0), P ∈ Rd.

(ii) Γ(UO)
∗HΛ(P )Γ(UO) = HΛ(OP ) holds for all Λ ∈ [0,∞] and P ∈ Rd.

Further, Γ(UO)Q(HΛ(P )) = Q(HΛ(P )).

Proof. Let Λ <∞. By Hypothesis NA (iii) and Lemmas B.15 (x) and B.20, we find

Γ(UO)
∗dΓ(ω)Γ(UO) = dΓ(U∗

OωUO) = dΓ(ω),

Γ(UO)
∗dΓ(P ·m)Γ(UO) = dΓ(U∗

O(P ·m)UO) = dΓ(OP ·m),

Γ(UO)
∗φ(vΛ)Γ(UO) = φ(U∗

OvΛ) = φ(vΛ).

Furthermore, we see

(U⊗n
O )∗|k1 + ...+ kn|2U⊗n

O = |Ok1 + ...+Okn|2= |k1 + ...+ kn|2 for all n ∈ N,

which proves Γ(UO)
∗|dΓ(m)|2Γ(UO) = |dΓ(m)|2. Hence, by Definition 1.3, we have

Γ(UO)
∗HΛ(P )Γ(UO) = HΛ(OP ).

Taking limits yields the case Λ = ∞. This now implies

Γ(UO)Q(HΛ(P )) = Q(HΛ(OP )) = Q(HΛ(P ))

by Lemma 1.5 and Theorem 1.8 (i). Further, we note that B1/2
0 = f(H0(0)) for a real

function f (cf. (2.11)), so in particular Γ(UO)Q(B0) = Q(B0). Using Lemma 3.9, we now
have

P · qdΓ(m)(Γ(UO)ψ,Γ(UO)ϕ) = qdΓ(P ·m)(Γ(UO)ψ,Γ(UO)ϕ) = OP · qdΓ(m)(ψ, ϕ).

Although it is obvious from above lemma, we denote the rotation invariance of the ground
state energy as a separate Corollary, as we will heavily use it in the proof of Lemma 3.1.

Corollary 3.11. The function P ↦→ ΣΛ(P ) is rotation invariant.

The next two proofs are from [Dam20].
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3. Absence of Ground States in the Nelson Model

k

P − k

P

Figure 2: The role of rotation invariance in the proofs of Lemmas 3.1 and 3.12.

Proof of Lemma 3.1. We remark that this proof works for any choice of Λ ∈ [0,∞].
Observe that ω(k) > 0 for all k ̸= 0, by Hypotheses N0 (i) and NA (ii). Hence, using

Lemma 3.4, we find

ΣΛ(0− k)− ΣΛ(0) ≥ 0 > −ω(k) for all k ̸= 0,

which proves the case P = 0.
Now, we assume P ≥ 0 and k ∈ Rd \ RP . The philosophy of our proof is sketched in

Fig. 2. We rotate P onto P − k and use the inverse triangle inequality as well as the
strict monotonicity of ω.

By Corollary 3.11 and Proposition 3.5, we have

ΣΛ(P − k)− ΣΛ(P ) = ΣΛ(P − k)− ΣΛ

(︃
|P |

|P − k|
(P − k)

)︃
≥ −ω

(︃
(|P − k| − |P |) P − k

|P − k|

)︃
.

(3.16)

Now, by the inverse triangle inequality ||P − k| − |P || < |k| under our assumptions and
hence using the strict monotonicity of ω (Hypothesis NA (ii)) and its rotation invariance
(Hypothesis NA (iii)), we obtain

ΣΛ(P − k)− ΣΛ(P ) > −ω(k).

We further elaborate on the rotation-invariance arguments to obtain the following lemma.

Lemma 3.12. For all P ∈ Rd and ε ∈ (0, 1) there exist constants D = D(P, ε) < 1 and
r = r(P, ε) > 0 (independent of Λ) such that, for all k ∈ Br(0) ∩ Sε(P ), we have

ΣΛ(P − k)− ΣΛ(P ) ≥ −Dω(k).

Proof. We observe

|P − k| − |P | = |P − k|2 − |P |2

|P − k|+ |P |
=

|k| − 2k̂ · P
|P − k|+ |P |

|k|.

Hence, for ε ∈ (0, 1) and k ∈ Sε(P ), we find⃓⃓
|P − k| − |P |

⃓⃓
≤ |k|

(︁
1− ε+ |k|

|P |

)︁
.
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3.3. Rotation Invariance and Resolvent Bounds

Let δ ∈ (0, C−1
ω ) be arbitrary and choose rδ such that (cf. Hypothesis NA (v))⃓⃓⃓⃓

ω(k)

|k|
− C−1

ω

⃓⃓⃓⃓
< δ for all k ∈ Brδ(0).

Let e ∈ Rd be an arbitrary vector of length 1. Using rotation invariance and monotonicity
of ω again, we find for |k| < min{rδ, |P |ε/2}

ω((|P − k| − |P |)e) ≤ ω(|k|(1− ε+ |k|
|P |)e) ≤ (1− ε

2
)(C−1

ω + δ)|k| ≤ (1− ε
2
)
C−1
ω + δ

C−1
ω − δ⏞ ⏟⏟ ⏞

=:Dε,δ

ω(k).

We observe that δ can be chosen sufficiently small for Dε,δ < 1. Combined with (3.16),
this proves the statement.

We can now use these observations to further study VΛ(P ), as defined in (3.4).

Lemma 3.13. Let P ∈ Rd, ε ∈ (0, 1) and k ∈ Sε(P ). Then, we have ∥k̂·VΛ(P )∥ ≤ 1
2
(1−ε)

and hence the operator 1− k̂ ·VΛ(P ) is invertible.

Proof. For ψ ∈ PΛ(P )F , we define vψ(P ) = 2(P−qdΓ(m)(ψ, ψ)). As k̂·VΛ(P ) is selfadjoint,
we have

∥k̂ ·VΛ(P )∥ = sup
ψ∈F
∥ψ∥=1

|⟨ψ, k̂ ·VΛ(P )ψ⟩ |.

Let ψ ∈ F and assume ∥ψ∥= 1. Note that

⟨ψ, k̂ ·VΛ(P )ψ⟩ = ⟨PΛ(P )ψ, k̂ ·VΛ(P )PΛ(P )ψ⟩ ,

so we may assume PΛ(P )ψ = ψ. Now, setting vψ(P ) = 2(P − qdΓ(m)(ψ)), we have

⟨ψ, k̂ ·VΛ(P )ψ⟩ = 2Cωk̂ · (∥ψ∥2P − qdΓ(m)(ψ, ψ)) = Cωk̂ · vψ(P ).

Hence, it suffices to prove

|k̂ · vψ(P )| ≤
1− ε

2Cω
. (3.17)

By (2.10) (or in the case Λ = ∞ Theorem 1.8 (i)) and Lemma 3.9, for all h, ξ ∈ Rd and
ϕ ∈ QN, we have

qHΛ(ξ+h)(ϕ) = qHΛ(ξ)(ϕ) + 2h · (ξ − qdΓ(m)(ϕ)) + |h|2∥ϕ∥2. (3.18)

In the case ξ = P , ϕ = ψ and using qHΛ(P+h)(ψ) ≥ ΣΛ(P + h) as well as qHΛ(P )(ψ) =
ΣΛ(P ), this yields

ΣΛ(P + h)− ΣΛ(P ) ≤ h · vψ(P ) + |h|2 for all h ∈ Rd. (3.19)

If P = 0, the left hand side is non-negative by Lemma 3.4, so taking the limit |h| → 0 we
obtain ĥ · vψ(0) ≥ 0 for all h ∈ Rd. This directly implies vψ(0) = 0 and hence (3.17).

From now, we can assume P ̸= 0. By Proposition 3.5, we know that

ΣΛ(P + h)− ΣΛ(P ) ≥ −ω(h).
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3. Absence of Ground States in the Nelson Model

Inserted into (3.19), this leads to

h · vψ(P ) ≥ −ω(h)− |h|2 for all h ∈ Rd.

For h ∈ Rd \{0}, we divide by |h| and take |h| → 0 to obtain ĥ ·vψ(P ) ≥ −C−1
ω and hence

|vψ(P )| ≤ C−1
ω . Let O ∈ Rd×d be orthogonal. We insert ξ = 0, h = P and ϕ = Γ(UO)ψ

as well as ξ = P , h = −P and ϕ = ψ into (3.18). Using Lemma 3.10, this yields

qHΛ(OP )(ψ) + 2OP · qdΓ(m)(ψ)− |P |2 = qHΛ(0) = ΣΛ(P ) + 2P · qdΓ(m)(ψ)− |P |2.

Since qHΛ(OP )(ψ) ≥ ΣΛ(OP ) = ΣΛ(P ), by Corollary 3.11, we obtain

P · qdΓ(m)(ψ) ≥ OP · qdΓ(m)(ψ) for all orthogonal O ∈ Rd×d.

Hence, there is a constant Rψ ∈ R such that qdΓ(m)(ψ) = RψP . For all k ∈ Sε(P ), this
implies

|k̂ · vψ(P )| = |(1−Rψ)k̂ · P | ≤
1− ε

2
|k̂||(1−Rψ)P | =

1− ε

2
|vψ(P )| ≤

1− ε

2Cω
.

We will also need that (1− k̂ ·VΛ(P ))−1 weakly converges to 0.

Lemma 3.14. Let P ∈ Rd, R > 0 and ε ∈ (0, 1).
Further, let {o(k) | k ∈ BR(0) ∩ Sε(P )} ⊂ B(F) satisfy w-lim

k→0
o(k) = 0. Then

w-lim
k→0

(1− k̂ ·VΛ(P ))−1o(k) = 0.

Proof. Let ϕ, ψ ∈ F . By Lemma 3.13, we know ∥k̂ ·VΛ(P )∥< 1
2
(1− ε) so

⟨ψ, (1− k̂ ·VΛ(P ))−1o(k)ϕ⟩ =
∞∑︂
n=0

⟨(k̂ ·VΛ(P ))nψ, o(k)ϕ⟩.

By dominated convergence, it is enough to see each term in the sum converges to 0 as
k → 0. This follows from |k̂| = 1 and

⟨(k̂ ·VΛ(P ))nψ, o(k)ϕ⟩ =
d∑︂

i1=1

...
d∑︂

in=1

k̂i1 ...k̂in⟨(VΛ(P ))i1 ...(VΛ(P ))inψ, o(k)ϕ⟩.

Apart from the operator QΛ(k, P ) as defined in (3.1), we also introduce the bounded
operator

Q
(0)
Λ (k, P ) = ω(k)(HΛ(P )− ΣΛ(P ) + ω(k))−1 for k ∈ Rd \ {0}. (3.20)

The next lemmas collect some simple statements about these operators. Therein, we will
use

D(HΛ(P1)) ⊂ Q(HΛ(P1)) ⊂ D(B
1/2
P2

) ⊂ Q(dΓ(P3 ·m)) for P1, P2, P3 ∈ Rd, (3.21)

which (especially in the case Λ = ∞) follows from Theorem 1.8 (i) and Lemmas 2.8
and 2.22. We first consider Q(0)

Λ .
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3.3. Rotation Invariance and Resolvent Bounds

Lemma 3.15. Let P ∈ Rd and R > 0. Then the operator B1/2
P Q

(0)
Λ (k, P ) is bounded

uniformly in k ∈ BR(0) \ {0} and

s-lim
k→0

B
1/2
P Q

(0)
Λ (k, P )(1− P0(P )) = 0.

Proof. The statement follows from (3.21) and Lemma A.62.

We move to investigating QΛ.

Lemma 3.16. Let ε ∈ (0, 1) and r > 0 as in Lemma 3.12. Then the operators QΛ(k, P )

and B1/2
P QΛ(k, P ) are bounded uniformly for all k ∈ Br(0) ∩ Sε(P ).

Proof. For all k ∈ Br(0) ∩ Sε(P ), Lemma 3.12 yields ∥QΛ(k, P )∥≤ (1 − D)−1 for some
D ∈ (0, 1), which proves the first uniform upper bound.

Now, note B1/2
P QΛ(k, P ) is again bounded by (3.21). By Theorem 2.1 and Lemma 2.22,

we can pick λ small enough such that k ↦→ ∥BP (HΛ(P + k) − λ)−1∥ is continuous and
hence uniformly bounded by some constant C on Br(0). This leads to

∥B1/2
P QΛ(k, P )∥ ≤ C∥(HΛ(P − k)− λ)QΛ(k, P )∥.

The uniform bound on B1/2
P QΛ(k, P ) now follows from the one on QΛ(k, P ), since

(HΛ(P − k)− λ)QΛ(k, P ) = ω(k) + (λ+ ΣΛ(P )− ω(k))QΛ(k, P ).

We now give an explicit connection between QΛ and Q(0)
Λ . To that end, recall the definition

(2.9) of DP (k).

Lemma 3.17. For P ∈ Rd and k ∈ Rd \ RP , we have

QΛ(k, P ) = Q
(0)
Λ (k, P ) +

1

ω(k)
(B

1/2
P Q

(0)
Λ (k, P ))∗DP (k)B

−1
P (B

1/2
P QΛ(k, P )).

Proof. The statement for Λ <∞ follows from the resolvent identity (Lemma A.29), (2.10)
and the fact that BP and DP (k) commute strongly. It remains to show we can take strong
limits on both sides. To that end, for a ∈ {0, 1}, it suffices to prove

s-lim
Λ→∞

B
a/2
P Q

(0)
Λ (k, P ) = B

a/2
P Q

(0)
Λ (k, P ) and s-lim

Λ→∞
B
a/2
P QΛ(k, P ) = B

a/2
P QΛ(k, P ) (3.22)

By Lemma A.76 and Theorem 2.1, we have lim
Λ→∞

ΣΛ(P ) + EΛ = Σ∞(P ), so using

exp(−t(HΛ(P + h)− ΣΛ(P ))) = exp(−t(ΣΛ(P ) + EΛ)) exp(−t(HΛ(P + h) + EΛ))

Λ→∞−−−→ exp(−t(H∞(P + h)− Σ∞(P )))

so the case a = 0 in (3.22) follows due to Lemma A.76.
Further, for (ZΛ, h) ∈ {(Q(0)

Λ (k, P ), P ), (QΛ(k, P ), P + k)} and λ < ΣΛ(P ) + EΛ, the
resolvent identity yields

B
1/2
P ZΛ = B

1/2
P (HΛ(h) + EΛ − λ)−1

(︃
1− 1

ω(k)
(ΣΛ(P ) + EΛ − λ)

)︃
ZΛ.

Hence, the case a = 1 of (3.22) follows by Theorem 2.1 and Lemma 2.22.

43



3. Absence of Ground States in the Nelson Model

In Proposition 3.3, we are interested in the weak limit of QΛ. An important ingredient in
the proof is the following.

Lemma 3.18. Let P ∈ Rd and ε ∈ (0, 1). Then

w-lim
k→0

k∈Sε(P )

QΛ(k, P )(1− PΛ(P )) = w-lim
k→0

k∈Sε(P )

(1− PΛ(P ))QΛ(k, P ) = 0.

Proof. By taking adjoints, it suffices to prove one of the statements. Taking the adjoint
in Lemma 3.17, we notice

QΛ(k, P )(1− PΛ(P )) = (QΛ(k, P ))
∗(1− PΛ(P ))

= Q
(0)
Λ (k, P )(1− PΛ(P )) +

|k|
ω(k)

(B
1/2
P QΛ(k, P ))

∗DP (k)B
−1
P

|k|
B

1/2
P Q

(0)
Λ (k, P )(1− PΛ(P )).

This goes to 0 strongly as k → 0, by Lemmas 2.8, 3.15 and 3.16 and Hypothesis NA (v).

We can now give the

Proof of Proposition 3.3. Throughout this proof, we assume k ∈ Sε(P ) ∩ Sε(−P ).
First, we note

w-lim
k→0

(︁
QΛ(k, P )− PΛ(P )QΛ(k, P )PΛ(P )

)︁
= 0,

by Lemma 3.18. Using that

Q
(0)
Λ (k, P )PΛ(P ) = PΛ(P ) and PΛ(P )(B

1/2
P Q

(0)
Λ (k, P ))∗ = (B

1/2
P PΛ(P ))

∗

as well as Lemma 3.17, we get

PΛ(P )QΛ(k, P )PΛ(P ) = PΛ(P ) +
1

ω(k)
(B

1
2
PPΛ(P ))

∗DP (k)B
− 1

2
P QΛ(k, P )PΛ(P )

= PΛ(P ) +
1

ω(k)
(B

1
2
PPΛ(P ))

∗DP (k)B
− 1

2
P PΛ(P )QΛ(k, P )PΛ(P ) + o1(k),

= PΛ(P ) + k̂ ·VΛ(P )PΛ(P )QΛ(k, P )PΛ(P ) + o1(k) + o2(k), where

o1(k) :=
1

ω(k)
(B

1
2
PPΛ(P ))

∗DP (k)B
− 1

2
P (1− PΛ(P ))QΛ(k, P )PΛ(P ),

o2(k) :=
(︂ 1

ω(k)
(B

1
2
PPΛ(P ))

∗DP (k)B
− 1

2
P PΛ(P )− k̂ ·VΛ(P )

)︂
PΛ(P )QΛ(k, P )PΛ(P ).

This leads to

PΛ(P )QΛ(k, P )PΛ(P )− (1− k̂ ·VΛ(P ))−1PΛ(P ) = (1− k̂ ·VΛ(P ))−1(o1(k) + o2(k)).

By Lemma 3.14, it suffices to prove w-lim
k→0

o1(k) = w-lim
k→0

o2(k) = 0. Let ϕ, ψ ∈ F . By the
definition (2.9), we have

(B
1
2
PPΛ(P ))

∗DP (k)B
− 1

2
P (1− PΛ(P ))ψ =

ν∑︂
i=1

ki(B
1
2
PPΛ(P ))

∗dΓ(mi)B
− 1

2
P (1− PΛ(P ))ψ
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and hence

⟨ϕ, o1(k)ψ⟩ =
|k|
ω(k)

ν∑︂
i=1

k̂i⟨B
1
2
PPΛ(P )ϕ, dΓ(mi)B

−1
P B

1
2
P (1− PΛ(P ))QΛ(k, P )PΛ(P )ψ⟩.

Using Lemmas 3.16, 3.18 and A.18, we see ⟨ϕ, o1(k)ψ⟩
k→0−−→ 0. We note that the uniform

boundedness of B1/2
P (1 − PΛ(P ))QΛ(k, P ) necessary to apply Lemma A.18 follows from

Lemmas 2.5, 2.22 and 3.16 and Theorem 2.1
Further, definition (3.4) yields

k̂ ·VΛ(P ) = Cω|k|−1(B
1
2
PPΛ(P ))

∗DP (k)B
− 1

2
P PΛ(P )− |k|PΛ(P ),

so we have

o2(k) =

(︃
|k|
ω(k)

− Cω

)︃
(B

1
2
PPΛ(P ))

∗DP (k)B
−1
P

|k|
B

1
2
PPΛ(P )QΛ(k, P )PΛ(P )−

|k|2

ω(k)
PΛ(P ).

This converges to 0 in norm, due to Lemma 3.16 and Hypothesis NA (v).

3.4. Pull-Through Formula

One ingredient described in the introduction of this chapter is still missing.
For Λ <∞, we in fact prove a stronger pull-through formula than Proposition 3.2.

Lemma 3.19. Let Λ < ∞, let P ∈ Rd and let ψ ∈ DN. Then, for almost every k ∈ Rd,
both akψ and ak(HΛ(P )− ΣΛ(P ))ψ are F-valued and

akψ = QΛ(k, P )ak(HΛ(P )− ΣΛ(P ))ψ − vΛ(k)QΛ(k, P )ψ for almost every k ∈ Rd \ RP.

Proof. In this proof, which is from [Dam20], we use the notation from Appendix B.6.
Further, we fix Λ <∞, P ∈ Rd and ψ ∈ DN.

We define the operators

H+ = |P −m− dΓ+(m)|2 + dΓ+(ω) + φ+(vΛ) on F+(L
2(Rd)),

H⊕ = |P −m− dΓ⊕(m)|2 + dΓ⊕(ω) + ω + φ⊕(vΛ) on C (Rd).

Using Lemmas B.37, B.39 and B.49, we see

(H⊕ − ΣΛ(P ))Aψ = A(HΛ(P )− ΣΛ(P ))ψ −Mvψ.

Especially, there exists a zero-set N ⊂ Rd such that

(H⊕ − ΣΛ(P ))Aψ(k) = (H+ − ΣΛ(P ))Aψ(k) ∈ F for all k ∈ N c.

Now, let M = RP and let C ⊂ L2(Rd) denote the compactly supported functions. Since
Ffin(C) is a core for HΛ(P ) (cf. the proof of Lemma 3.8), the set

Dk = {ϕ ∈ Ffin(L
2(Rd)) : QΛ(k, P )ϕ ∈ Ffin(L

2(Rd))}

is dense in F for any k ∈M c.
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3. Absence of Ground States in the Nelson Model

For k ∈M c ∩N c and ϕ ∈ Dk, using Lemma B.40, we obtain

⟨ϕ,Aψ(k)⟩+ = ⟨(HΛ(P )− ΣΛ(P ) + ω(k))QΛ(k, P )ϕ,Aψ(k)⟩+
= ⟨QΛ(k, P )ϕ, (H+ − ΣΛ(P ))Aψ(k)⟩+
= ⟨QΛ(k, P )ϕ,A(HΛ(P )− ΣΛ(P ))ψ(k)− v(k)ψ⟩+
= ⟨ϕ,QΛ(k, P )A(HΛ(P )− ΣΛ(P ))ψ(k)− v(k)ψ⟩+ .

Combining this with Lemmas B.43 and B.48 finishes the proof.

We can now give the

Proof of Proposition 3.2. Note that the case Λ <∞ is a special case of Lemma 3.19.
Hence, it remains to treat the case Λ = ∞. To that end, fix P ∈ Rd and assume ψ is a
ground state of H∞(P ).

We set E∞ = 0 and, for Λ ∈ [0,∞], we define the operator

ĤΛ(P, k) = HΛ(P − k)− ΣΛ(P ) = HΛ(P − k) + EΛ − (ΣΛ(P ) + EΛ).

Using Lemmas 1.6 and A.76, we see ΣΛ(P ) + EΛ converges to Σ∞(P ), so

lim
Λ→∞

e−tĤΛ(P,k) = lim
Λ→∞

e−t(HΛ(P−k)+EΛ)et(ΣΛ(P )+EΛ) = e−tĤ∞(P,k) for all t > 0,

which implies ĤΛ(P, k) converges to Ĥ∞(P, k) in the norm resolvent sense (Lemma A.76).
We pick η to be smooth and compactly supported such that η(0) = 1 and Λ0 such that
ΣΛ(P ) + EΛ − Σ∞(P ) + 1 > 0 for all Λ > Λ0. Then, for a ∈ {0, 1} and Λ ∈ (Λ0,∞), we
define

ψΛ = η(ĤΛ(P, 0))ψ,

Ca,Λ = ĤΛ(P, 0)
a(ĤΛ(P, 0) + EΛ + ΣΛ(P )− Σ∞(P ) + 1)η(ĤΛ(P, 0)),

B = (dΓ(ω) + 1)1/2,

DΛ = B(HΛ(P ) + EΛ − Σ∞(P ) + 1)−1.

By the functional calculus, Lemma 1.5 and Theorem 2.1, for a ∈ {0, 1} and Λ ∈ (0,∞),
we see ĤΛ(P, 0)

aψΛ ∈ DN ⊂ D(B) and that

B(ĤΛ(P, 0))
aψΛ = DΛCa,Λψ.

From now, we abuse notation by setting 00 = 1. Again using functional calculus, we see
Ca,Λψ converges to 0aψ as Λ → ∞, so using Theorem 2.1 we find DΛCa,Λψ converges to
0aψ. Hence, (ĤΛ(P, 0))

aψΛ converges to 0aψ in B-norm.
By Lemma B.50, we see that AĤΛ(P, 0)ψΛ is F -valued. Therefore, we may apply

Lemma 3.19 and find

(AψΛ)(k) =(HΛ(P − k)− ΣΛ(P ) + ω(k))−1(AĤΛ(P, 0)ψΛ)(k)

− vΛ(k)(HΛ(P − k)− ΣΛ(P ) + ω(k))−1ψΛ.
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3.5. Proof of Absence of Ground States

Again using Lemma B.50, it follows that ω1/2AψΛ converges to Aψ in L2(Rd,F). Addi-
tionally, AĤΛ(P, 0)ψΛ converges to 0 in L2(Rd,F). As ω > 0 almost everywhere, we may
pick elements Λ0 < Λ1 < Λ2 < · · · such that, for almost every k,

lim
n→∞

(AψΛn)(k) = (Aψ)(k),

lim
n→∞

(AĤΛ(P, 0)ψΛn)(k) = 0.

Now since, for all k ∈ Rd \ RP ,

lim
Λ→∞

(HΛ(P − k)− ΣΛ(P ) + ω(k))−1 = (H∞(P − k)− Σ∞(P ) + ω(k))−1,

this finishes the proof.

3.5. Proof of Absence of Ground States

We can now prove Theorem 1.7. The proof is an adaption of the one in [Dam20], which
avoids any use of the non-degeneracy of the ground state energy.

Proof of Theorem 1.7.
The proof goes by contradiction. We fix Λ ∈ (0,∞], P ∈ Rd and assume there exists a
ψgs ∈ F such that ∥ψgs∥ = 1 and HΛ(P )ψgs = Σ∞(P )ψgs.

Pick ε = 1
2

and let k ∈ Sε(P ). Then ∥k̂ · VΛ(P )∥≤ 1
4

by Lemma 3.13, so a power
expansion shows

∥1− (1− k̂ ·VΛ(P ))−1∥≤ ∥k̂ ·VΛ(P )∥
1− ∥k̂ ·VΛ(P )∥

≤ 1

3
. (3.23)

We denote the number operator N = dΓ(1) and choose a normalized element η ∈ D(N1/2)
such that |⟨η, ψ⟩|> 1

2
. Then the pull-through formula Proposition 3.2 shows

⟨η, akψgs⟩ = −vΛ(k)
ω(k)

⟨η,QΛ(k, P )ψgs⟩ for almost every k ∈ Rd.

Further, for k ∈ Sε(P ) ∩ Sε(−P ), Proposition 3.3 yields

⟨η,QΛ(k, P )ψgs⟩ − ⟨η, (1− k̂ ·VΛ(P ))−1ψgs⟩
k→0−−→ 0.

By (3.23), we now see
⃓⃓
⟨η, (1− k̂ ·VΛ(P ))−1ψgs⟩

⃓⃓
> 1

2
− 1

3
= 1

6
. Hence, there is R ∈ (0,Λ)

such that

| ⟨η, akψgs⟩ | ≥
|v(k)|
6ω(k)

for almost all k ∈ Sε(P ) ∩ Sε(−P ) ∩BR(0) =: B̃ε,R(ξ).

Further, since Sε(P ) ∩ Sε(−P ) is open, non-empty (due to d ≥ 2) and invariant under
positive scalings, by rotation invariance of v and ω and the infrared-criticality assumption
(Hypothesis NA), we obtain that∫︂

B̃ε,R(P )

|v(k)|2

ω(k)2
dk =

vol(B̃ε,1(P ))

vol(B1(0))

∫︂
BR(0)

|v(k)|2

ω(k)2
dk = ∞.
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3. Absence of Ground States in the Nelson Model

This proves that ⟨η, akψgs⟩ is not square-integrable.
On the other hand, using the Cauchy-Schwarz inequality, Definition B.11 and (3.2), we

find

| ⟨η, akψgs⟩ |2 ≤ ∥(N + 1)1/2η∥2∥(N + 1)−1/2akψgs∥2

= ∥(N + 1)1/2η∥2
∞∑︂
n=1

∫︂
R(n−1)ν

|ψ(n)
gs (k, k1, . . . , kn−1)|2dk1 · · · dkn,

which is integrable by definition of the Fock space norm. Hence, we have arrived at a
contradiction and the ground state ψgs cannot exist.
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4. Correlation Bounds in
1D Ising Models

In this intermediate chapter, we investigate correlation functions of one-dimensional Ising
models. In the next chapter, we will then prove a Feyman-Kac-Nelson formula, which
relates the continuous Ising model treated in Section 4.2 to the spin boson model. Espe-
cially, the correlation bound provided in Theorem 4.21 is an essential ingredient for our
proof of Theorem 1.14. Nevertheless, the investigation of Ising models is justified by its
own right, as we discuss as an introduction to this chapter.

The Ising model is a mathematical model of ferromagnetism and has been intensively
investigated. The main concept is that the magnetic dipole moments are approximated by
the values {+1,−1}, often referred to as Ising spins. It was originally proposed by Wilhelm
Lenz [Len20] and treated by Ernst Ising in his PhD thesis [Isi25]. In his investigation, he
treated a one-dimensional chain of Ising spins interacting with their nearest neighbors.
The model has afterwards been generalized, for example positioning the Ising spins on
different types of lattices or including more long-range interactions. We will restrict our
attention to one-dimensional models, i.e., Ising spins positioned on the real axis.

In the first section, we will discuss Ising models defined on the lattice Z with long-range
interactions. We will prove a correlation bound under the assumption that the interaction
function is dominated by the nearest neighbor contribution. We will then introduce a
continuous Ising model in Section 4.2. By proving that it can be understood as a scaling
limit of the lattice model, where the nearest neighbor coupling becomes arbitrarily large,
we obtain a correlation bound for the continuous setting, which is similar to the one proved
for the discrete model. The bound holds for all interaction functions with L1-norm smaller
than a threshold.

4.1. The Ising Model on Z
In this section, we introduce the discrete Ising model and prove an upper bound on
correlation functions, which will be stated in Theorem 4.1. The novel aspect of this
bound is that it can accomodate arbitrarily large nearest neighbor couplings.

Bounds on correlation functions of the Ising model have been studied throughout the
literature, cf. [Gri67a, KS68, Gin70, Tho71, RT81] and references therein. They are, for
example, used to prove the existence of the thermodynamic limit and of phase transitions
in the Ising model, cf. [Gri67b, GMS67, Rue68, Dys69, KT69, FILS78, AN86].

We begin with a definition of the considered Ising model.
For L ∈ N, let ΛL = Z ∩ [−L,+L] be the spin lattice and let SL = {−1, 1}ΛL be the

spin configuration space. For σ = (σi)i∈ΛL
∈ SL and A ⊂ ΛL, we write

σA =
∏︂
i∈A

σi, (4.1)
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4. Correlation Bounds in 1D Ising Models

where we use the convention that σ∅ = 1. For J : P(Z) → R, we define the corresponding
Ising energy

EJ,L(σ) = −
∑︂
A⊂ΛL

J(A)σA (4.2)

and the partition function
ZJ,L =

∑︂
σ∈SL

exp(−EJ,L(σ)). (4.3)

In contrast to the standard definitions in statistical mechanics, we absorb the thermo-
dynamic parameter β in the interaction function J . We remark that the case J ≥ 0 is
called ferromagnetic, while the case J ≤ 0 is called anti-ferromagnetic. We will restrict
our attention to the ferromagnetic case.

The expectation value of a function f : SL → R is now defined as

⟨f⟩(L)J =
1

ZJ,L

∑︂
σ∈SL

f(σ) exp(−EJ,L(σ)). (4.4)

For given f : SL → R and ˜︁L ≥ L, we denote the function ˜︁f : S˜︁L → R with ˜︁f(σ) = f(σ|ΛL
)

again by the same symbol f . Then, if the thermodynamic limit L → ∞ exists, we will
drop the superscript (L) and write

⟨f⟩J = lim
L→∞

⟨f⟩(L)J . (4.5)

Especially, we note that the existence of the thermodynamic limit of correlation functions
⟨σA⟩J for J ≥ 0 and A ⊂ Z is well-known (cf. Corollary 4.7).

For a sequence w = (wk)k∈N ⊂ R, we define the associated pair interaction

Jw : P(Z) → R with

{︄
{i, j} ↦→ w|i−j| for i, j ∈ Z, i ̸= j,

A ↦→ 0 for any other A ⊂ Z.
(4.6)

In this section we prove the following theorem.

Theorem 4.1. For every ε ∈ (0, 1
10
), there exists a constant Cε > 0 such that for any

w = (wk)k∈N ∈ ℓ1(N) with w ≥ 0 and

∞∑︂
k=2

tanhwk ≤ ε(1− tanhw1), (4.7)

we have ∑︂
i∈Z

⟨σiσj⟩Jw ≤ Cε
1− tanhw1

for all j ∈ Z. (4.8)

Remark 4.2. We note that for v ∈ ℓ1(N) the sequence w = βv satisfies the relation (4.7)
for sufficiently small β > 0. Hence, our bound describes absence of long range order in the
Ising model for any summable pair interaction provided the temperature is large enough.

Remark 4.3. We note that correlation estimates have already been shown a long time ago
in [Dys69, RT81]. We generalize the result of [Dys69], in the sense that we can accomodate
arbitrary large nearest neighbor couplings and obtain an analogous correlation bound. On
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4.1. The Ising Model on Z

the other hand the assumptions in [RT81] are weaker but their assertion is weaker as well.
Explicitly, Rogers and Thompson prove the estimate

lim
N→∞

1

N2

N∑︂
i,j=1

⟨σiσj⟩Jw = 0 under the assumption
N∑︂
k=1

kwk = o((lnN)1/2),

which shows the absence of long-range order. Note that under the stronger assumption
(4.7), Theorem 4.1 implies the stronger correlation estimate

lim sup
N→∞

1

N

N∑︂
i,j=1

⟨σiσj⟩Jw <∞.

Remark 4.4. Correlation bounds as above can be understood as bounds on the magnetic
susceptibility of the Ising model. Explicitly, the above model in presence of an external
magnetic field with strength µ ∈ R is given by the interaction function

Jw,µ = Jw + Iµ, with Iµ({i}) = µ and Iµ(A) = 0 in all other cases.

Then, the magnetization of the model is given as

Mµ(Jw, L) =
1

L
∂µ lnZJw,µ,L

and its magnetic susceptibility is its derivative

Xµ(Jw, L) = ∂µMµ(Jw, L) =
1

L
∂2µ lnZJw,µ,L.

From the definition (4.3), we directly obtain

Xµ(Jw, L) =
1

L

L∑︂
i,j=1

⟨σiσj⟩(L)Jw
.

Hence, the bound in Theorem 4.1 is a bound on the magnetic susceptibility, which is
uniform in the length of the spin lattice.

The most of the remainder of this section is devoted to the proof of Theorem 4.1. In
Section 4.1.1, we will recall the Griffiths’ inequalities and prove some simple implications
of these. We then use them to prove a correlation bound on finite lattices in Section 4.1.2.
In Section 4.1.3, we give our proof of Theorem 4.1. In the last section, we recall the
explicit calculations of the partition function and the correlation function for the Ising
model only with nearest neighbor coupling, which we will utilize in Section 4.2.

4.1.1. Griffiths’ Inequalities

Let us begin with recalling some well-known inequalities on correlation functions in the
Ising model, which go back to Griffiths [Gri67a, Gri67c]. They were later generalized by
Kelly and Sherman [KS68] and Ginibre [Gin70] and also referred to as the GKS (Griffiths-
Kelly-Sherman) inequalities.
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4. Correlation Bounds in 1D Ising Models

Lemma 4.5 (Griffiths’ first inequality). Let J : P(Z) → [0,∞), L ∈ N and A ⊂ ΛL.
Then

⟨σA⟩(L)J ≥ 0.

Proof. This proof is essentially from [GJ87].
Let n ∈ NΛL

0 and denote
I(n) =

∑︂
σ∈SL

∏︂
i∈Λ

σni
i .

Since for any j ∈ ΛL, we have

I(n) =
∑︂
σ∈SL
σj=1

∏︂
i∈Λ

σni
i +

∑︂
σ∈SL
σj=−1

∏︂
i∈Λ

σni
i =

1 + (−1)nj

2
I(n)

and hence I(n) = 0 if nj is odd for any j ∈ ΛL. Otherwise, the definition directly yields
I(n) = |SL| > 0.

Now, we observe that the series expansion of the exponential in (4.3) yields

e−EJ,L(σ) =
∏︂
B⊂ΛL

∞∑︂
k=0

J(B)kσkB
k!

=
∑︂

K∈NP(ΛL)
0

∏︂
B⊂ΛL

J(B)kBσkB
kB!

.

For A ⊂ ΛK , we define the map sA : ΛL → {0, 1} with sA(i) = 1 if i ∈ A and sA(i) = 0
else. Thus, by inserting into (4.4), we obtain

⟨σA⟩(L)J = Z−1
J,L

∑︂
σ∈SL

∑︂
K∈NP(ΛL)

0

∏︂
B⊂ΛL

J(B)kBσAσ
k
B

kB!

= Z−1
J,L

∑︂
K∈NP(ΛL)

0

∏︂
B⊂ΛL

J(B)kB

kB!

∑︂
σ∈SL

∏︂
i∈Λ

σ
sA(i)+kBsB(i)
i

= Z−1
J,L

∑︂
K∈NP(ΛL)

0

∏︂
B⊂ΛL

J(B)kB

kB!
I(sA(i) + kBsB(i)).

By our initial consideration and the assumption J ≥ 0, every summand is nonnegative
and the statement follows.

The first Griffiths’ inequality can be used to prove the second one.

Lemma 4.6 (Griffiths’ second inequality). Let J : P(Z) → [0,∞), L ∈ N and A,B ⊂ ΛL.
Then

⟨σAσB⟩(L)J ≥ ⟨σA⟩(L)J ⟨σB⟩(L)J .

Proof. The argument presented here can be found in [FV17].
For a fixed spin configuration τ ∈ SL, we define the interaction Jτ : P(Z) → [0,∞) as

Jτ = J(C)(1 + τC) for all C ⊂ ΛL. By the definition (4.4), we have

⟨σAσB⟩(L)J − ⟨σA⟩(L)J ⟨σB⟩(L)J =
1

Z2
J,L

∑︂
σ,σ′∈ΛL

σA(σB − σ′
B)e

−EJ,L(σ)−EJ,L(σ
′).
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4.1. The Ising Model on Z

Using the change of variables τi = σiσ
′
i for i ∈ Λ and observing

EJ,L(σ) + EJ,L(σ
′) = −

∑︂
C⊂ΛL

J(C)(σC + σ′
C) =

∑︂
C⊂ΛL

J(C)σC(1 + τC) = EJτ ,L(σ),

we obtain

⟨σAσB⟩(L)J − ⟨σA⟩(L)J ⟨σB⟩(L)J =
1

Z2
J,L

∑︂
τ∈ΛL

(1− τB)
∑︂
σ∈ΛL

σAσBe
−EJτ ,L(σ)

=
1

Z2
J,L

∑︂
τ∈ΛL

(1− τB) ⟨σAσB⟩(L)Jτ
.

Hence, the statement follows from Lemma 4.5.

The second Griffiths’ inequality directly yields that correlation functions are increasing in
the coupling function and that the thermodynamic limit exists, see [Gri67a] for the first
use of this argument.

Corollary 4.7. Let J : P(Z) → [0,∞) and A ⊂ Z.

(i) If ˜︁J : P(Z) → [0,∞) satisfies ˜︁J ≤ J , then ⟨σA⟩(L)˜︁J ≤ ⟨σA⟩(L)J for all L ∈ N.

(ii) The thermodynamic limit ⟨σA⟩J exists.

Proof. By the definition (4.4), we have

∂

∂J(B)
⟨σA⟩(L)J = ⟨σAσB⟩(L)J − ⟨σA⟩(L)J ⟨σB⟩(L)J for any B ⊂ ΛL.

Hence, (i) follows from Lemma 4.6 since ⟨σA⟩(L)J is increasing in J . This further implies
that the expectation ⟨σA⟩(L)J is nonnegative (Lemma 4.5), increasing in L (Part (i)), and
bounded above by 1. Thus, (ii) follows by monotone convergence.

Vice versa, it is possible to decrease the interaction and bound the difference by a cor-
rection term. This was first done in [Gri67c] to calculate the critical temperature of
an Ising lattice. For the precise statement, we write the symmetric set difference as
AB = A ∪B \ (A ∩B) for A,B ⊂ Z. We note that this implies σAσB = σAB. Further, if
A ⊂ P(Z), we define

⟨·⟩(L)J ;A := ⟨·⟩(L)IA
and ⟨·⟩J ;A := ⟨·⟩IA , where IA(A) =

{︄
J(A) for A /∈ A,
0 for A ∈ A.

(4.9)

By Corollary 4.7, it follows that

⟨σA⟩(L)J ;{B} ≤ ⟨σA⟩(L)J . (4.10)

Lemma 4.8 (Griffiths’ third inequality). Let J : P(Z) → [0,∞) and assume A,B ⊂ Z,
L ∈ N. Then

⟨σA⟩(L)J ≤ ⟨σA⟩(L)J ;{B} + tanh(J(B)) ⟨σAB⟩(L)J ;{B} .

Before we prove above lemma, we state a related inequality due to Thompson [Tho71].
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4. Correlation Bounds in 1D Ising Models

Lemma 4.9. Let J : P(Z) → [0,∞) and assume A,B ⊂ Z, L ∈ N. Then

⟨σA⟩(L)J ≤ tanh(J(B)) ⟨σAB⟩(L)J + (1− tanh2(J(B))) ⟨σA⟩(L)J ;{B} .

Proof of Lemmas 4.8 and 4.9. This proof is from [Tho71].
First observe that for y ∈ {±1} the series expansion of the exponential yields

exy = coshx+ y sinhx = coshx (1 + y tanhx) for any x ∈ C.

Then, the definition (4.2) implies

e−EJ,L(σ) = e−J(A)σAe−EJ;{A},L(σ) = cosh J(A) (1 + tanh J(A)σA) e
−EJ;{A},L(σ).

Inserting this into (4.3) and (4.4) now yields

⟨σA⟩(L)J =
⟨σA⟩(L)J ;{B} + tanh J(B) ⟨σAσB⟩(L)J ;{B}

1 + tanh J(B) ⟨σB⟩(L)J ;{B}

. (4.11)

Since J ≥ 0, we can apply Lemma 4.5 and tanh J(B) ≥ 0, which proves Lemma 4.8.
Further, using σ2

B = 1, (4.11) applied for AB yields

⟨σAB⟩(L)J =
⟨σAB⟩(L)J ;{B} + tanh J(B) ⟨σA⟩(L)J ;{B}

1 + tanh J(B) ⟨σB⟩(L)J ;{B}

.

Rearranging and inserting ⟨σAB⟩(L)J ;{B} into (4.11), we obtain

⟨σA⟩(L)J = tanh(J(B)) ⟨σAB⟩(L)J + (1− tanh2(J(B)))
⟨σA⟩(L)J ;{B}

1 + tanh J(B) ⟨σB⟩(L)J ;{B}

.

Again using Lemma 4.5 and tanh J(B) ≥ 0 finishes the proof.

We will also utilize the simple fact that expectations involving uncoupled Ising spins
always vanish. This is the content of the next lemma.

Lemma 4.10. Let L ∈ N, i ∈ ΛL and assume J : P(Z) → R satisfies J(A) = 0 for all
A ⊂ ΛL with i ∈ A. Then ⟨σB⟩(L)J = 0 for any B ⊂ ΛL with i ∈ B.

Proof. We define ϕi : SL → SL as (ϕi(σ))k = −σk, if k = i, and (ϕi(σ))k = σk, if k ̸= i.
By the assumptions, it follows that EJ,L(ϕi(σ)) = EJ,L(σ) for all σ ∈ SL. Further, if
i ∈ B, we have σB ◦ ϕi = −σB. Together, we obtain

⟨σB⟩(L)J = ⟨σB ◦ ϕi⟩(L)J = ⟨−σB⟩(L)J = −⟨σB⟩(L)J .

This implies the claim.
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i j

EL
i j

EL \Oj .

i j

EL \ (Oj ∪ {S−
j }).

i j

EL \ (Oj ∪ {S−
j , S

+
j })

Figure 3: Illustration of the set EL, consisting of all edges with vertices in ΛL, without the
edges of the indicated sets.

4.1.2. Correlation Bound for Finite Chains

The major ingredient of the proof of Theorem 4.1 is the following correlation bound for
finite Ising spin chains. Therein, we use the convention that ⟨σlσk⟩(L)J = 0 if l or k is not
an element of ΛL.

Lemma 4.11. Let L ∈ N and w = (wk)k∈N ⊂ [0,∞). We set τk = tanh(wk).
If i, j ∈ ΛL with i < j, we have

⟨σiσj⟩(L)Jw
≤ τ1 ⟨σiσj−1⟩(L)Jw

+
∞∑︂
l=2

∑︂
s=±1

τl ⟨σiσj+sl⟩(L)Jw
+(1−τ 21 )

∞∑︂
b=1

τ b1

∞∑︂
l=2

∑︂
s=±1

τl ⟨σiσj+b+sl⟩(L)Jw
.

If i, j ∈ ΛL with i > j, we have

⟨σiσj⟩(L)Jw
≤ τ1 ⟨σiσj+1⟩(L)Jw

+
∞∑︂
l=2

∑︂
s=±1

τl ⟨σiσj+sl⟩(L)Jw
+(1−τ 21 )

∞∑︂
b=1

τ b1

∞∑︂
l=2

∑︂
s=±1

τl ⟨σiσj−b+sl⟩(L)Jw
.

Proof. The philosophy of our proof is sketched in Fig. 3. We use the estimates from the
previous section to reduce the number of interaction edges, in which j contributes. To
that end, for j ∈ ΛL, we define the sets

S±
j = {j, j ± 1} and Oj = {{j, k} : k ∈ Z \ {j, j − 1, j + 1}}.

Note that S±
j contain the nearest neighbors of j, while Oj are all long-range pairs involving

j. Throughout this proof, we drop the superscript (L) and the subscript Jw of expectation
values. Moreover we assume i < j. The statement in the case i > j can be obtained
completely analogous.

By twice applying Lemma 4.8, we obtain

⟨σiσj⟩ ≤ ⟨σiσj⟩;{{j,j−2}} + τ2 ⟨σiσj−2⟩;{{j,j−2}}

≤ ⟨σiσj⟩;{{j,j−2},{j,j+2}} + τ2 ⟨σiσj+2⟩;{{j,j−2},{j,j+2}} + τ2 ⟨σiσj−2⟩;{{j,j−2}} .

Combined with (4.10), this implies

⟨σiσj⟩ ≤ τ2 (⟨σiσj−2⟩+ ⟨σiσj+2⟩) + ⟨σiσj⟩;{{j,j−2},{j,j+2)}} .
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Iterating this argument, we arrive at

⟨σiσj⟩ ≤
∞∑︂
l=2

τl
∑︂
s=±

⟨σiσj+sl⟩+ ⟨σiσj⟩;Oj
. (4.12)

Then, Lemma 4.9 yields

⟨σiσj⟩;Oj
≤ τ1 ⟨σiσj−1⟩;Oj

+ (1− τ 21 ) ⟨σiσj⟩;Oj∪{S−
j } . (4.13)

The second term on the right hand side can be estimated by Lemmas 4.8 and 4.10

⟨σiσj⟩;Oj∪{S−
j } ≤ ⟨σiσj⟩;Oj∪{S−

j ,S
+
j }⏞ ⏟⏟ ⏞

=0

+τ1 ⟨σiσj+1⟩;Oj∪{S−
j ,S

+
j } . (4.14)

Now applying (4.12) with j replaced by j + 1 and again using (4.10), we obtain

⟨σiσj+1⟩;Oj∪{S−
j ,S

+
j } ≤

∞∑︂
l=2

∑︂
s=±1

τl ⟨σiσj+1+sl⟩+ ⟨σiσj+1⟩;Oj∪Oj+1∪{S−
j ,S

+
j } . (4.15)

As in (4.14), we use Lemmas 4.8 and 4.10, which yield

⟨σiσj+1⟩;Oj∪Oj+1∪{S−
j ,S

+
j } ≤

=0⏟ ⏞⏞ ⏟
⟨σiσj+1⟩;Oj∪Oj+1∪{S−

j ,S
+
j ,S

+
j+1}

+ τ1 ⟨σiσj+1⟩;Oj∪Oj+1∪{S−
j ,S

+
j ,S

+
j+1}

.

(4.16)

Note that we hereby used S+
j = S−

j+1. We now insert (4.16) into (4.15) and iterate the
same arguments. As a result

⟨σiσj+1⟩;Oj∪{S−
j ,S

+
j } ≤

∞∑︂
b=1

∞∑︂
l=2

∑︂
s=±1

τ b−1
1 τl ⟨σiσj+b+sl⟩ . (4.17)

The statement now follows by combining (4.12), (4.13), (4.14) and (4.17).

4.1.3. Proof of the Correlation Bound on Z
We use the result from the previous section for the

Proof of Theorem 4.1. For the proof of the statement, we will use the estimate from
Lemma 4.11. We need to take the limit L → ∞ and sum over all i ∈ Z . To show
finiteness, we will make use of the translation-invariance of the model. Let us first assume
that w ∈ ℓ1(N) with w ≥ 0 has compact support and let K > 0 be such that

wk = 0, k ≥ K. (4.18)

As in Lemma 4.11, we shall use the notation τk = tanh(wk). We introduce a regularization
parameter η > 0 and define

τk,η = eηkτk and ⟨σiσj⟩(L,η)Jw
= e−η|i−j| ⟨σiσj⟩(L)Jw

. (4.19)
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Further, we define

M−
j,L(η) =

j−1∑︂
i=−L

⟨σiσj⟩(L,η)Jw
, M+

j,L(η) =
L∑︂

i=j+1

⟨σiσj⟩(L,η)Jw
,

Mj,L(η) =
L∑︂

i=−L

⟨σiσj⟩(L,η)Jw
= 1 +M+

j,L(η) +M−
j,L(η).

By the regularization (4.19) and Corollary 4.7 (ii), for any η > 0, the limits

M±
j (η) = lim

L→∞
M±

j,L(η) and Mj(η) = lim
L→∞

Mj,L(η)

exist. By translation-invariance of Jw, i.e., ⟨σiσj⟩Jw = ⟨σi+kσj+k⟩Jw for any k ∈ Z, it
follows that Mj(η) and M±

j (η) are independent of j and we shall write M(η) for Mj(η).
For L ∈ N, we now multiply the inequalities in Lemma 4.11 with e−η|i−j| and use the

triangle inequality, to obtain for i ≶ j

⟨σiσj⟩(L,η)Jw
≤τ1 ⟨σiσj∓1⟩(L,η)Jw

+
∞∑︂
l=2

∑︂
s=±1

τl,η ⟨σiσj+sl⟩(L,η)Jw

+ (1− τ 21 )
∞∑︂
b=1

τ b1,η

∞∑︂
l=2

∑︂
s=±1

τl,η ⟨σiσj±b+sl⟩(L,η)Jw
.

Adding the above expression for the cases i > j and j > i, summing over all i ∈ ΛL, using
σ2
r = 1 for any r ∈ Z as well as Lemma 4.5, we find

Mj,L(η) ≤1 + τ1
(︁
M−

j−1,L(η) + 2 +M+
j+1,L(η)

)︁
+

K∑︂
l=2

τl,η
∑︂
s=±1

Mj+sl,L(η)

+
∞∑︂
b=1

τ b1,η(1− τ 21 )
K∑︂
l=2

τl,η
∑︂
s=±1

(Mj+b+sl,L(η) +Mj−b+sl,L(η)) .

(4.20)

Now we can take the limit L → ∞. Since τ has compact support and η > 0, the
expressions on the right hand side stay finite. Then, using the translation-invariance of
Jw, we can drop the index j, and summing the geometric series

∑︁
b∈N

τ b1,η, for sufficiently

small η > 0, we obtain

M(η) ≤ 1 + τ1 +M(η)

(︄
τ1 + 2

K∑︂
l=2

τl,η

(︃
1 + 2

1− τ 21
1− τ1,η

)︃)︄
. (4.21)

We fix a parameter D > 1 such that ε ∈ (0, (10D)−1). Since

1 <
1− τ 21
1− τ1

= 1 + τ1 < 2, (4.22)

we can choose η0 > 0 such that 1−τ21
1−τ1,η0

< 2 and eKη0 < D. Then, for any η ∈ (0, η0), we
obtain

K∑︂
l=2

τl,η ≤ D

K∑︂
l=2

τl (4.23)
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and

τ1 + 2
K∑︂
l=2

τl,η

(︃
1 + 2

1− τ 21
1− τ1,η

)︃
< τ1 + 10D

∞∑︂
l=2

τl. (4.24)

If
∞∑︂
l=2

τl ≤ ε(1− τ1), (4.25)

the right hand side of (4.24) is smaller than 1, and we can take M(η) in (4.21) to the left
hand side. Thus, using (4.22) and (4.24), we find

M(η) ≤ 1 + τ1

1− τ1 − 2
K∑︂
l=2

τl,η

(︃
1 + 2

1− τ 21
1− τ1,η

)︃ ≤ 2

1− τ1 − 10D
∞∑︂
l=2

τl

≤ 2

1− 10Dε

1

1− τ1
.

By monotone convergence, the limit η ↓ 0 exists and∑︂
i∈Z

⟨σiσj⟩Jw = lim
η↓0

M(η) ≤ 2

1− 10Dε

1

1− τ1
. (4.26)

Thus, we have proven (4.26) for all nonnegative w ∈ ℓ1(N) satisfying (4.18) and (4.25).
Finally, let us consider general w ∈ ℓ1(N) with w ≥ 0 satisfying only (4.25). If i, j ∈ ΛL,

then as an immediate consequence of the definition (4.4)

⟨σiσj⟩(L)Jw
= ⟨σiσj⟩(L)Jw1[0,2L+1]

.

Since wχ[0,2L+1] trivially satisfies (4.25) because w does, we find from (4.26) and mono-
tonicity (Lemma 4.8) that, for all N ∈ N, the estimate

N∑︂
i=−N

⟨σiσj⟩(L)Jw
≤ 2

1− 10Dε

1

1− τ1

holds. Thus, the bound (4.8) of the proposition follows from the above inequality, by first
taking the limit L→ ∞ and then the limit N → ∞.

4.1.4. Ising Model with Nearest Neighbor Coupling

In this section, we consider the Ising model with nearest neighbor coupling and calculate
the known partition function and correlation functions. These calculations are well-known,
go back to Ising’s PhD thesis [Isi25] and can be found in most textbooks covering the
Ising model. We will make use of these results in our treatment of the continuous Ising
model as scaling limit of discrete Ising models, in the next section.

For any constant j ∈ R, we define the sequence (w
(j)
k )k∈N = (j, 0, · · · ) and consider the

interaction function Jwj
as defined in (4.6).

Lemma 4.12. Let j ∈ R and L ∈ N.

(i) For σ ∈ SL we write nσ =
⃓⃓
{i = −L, . . . , L− 1 : σiσi+1 = −1}

⃓⃓
. Then

EJ
w(j) ,L(σ) = 2j(nσ − L).
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(ii) ZJ
w(j) ,L = 2 (ej + e−j)

2L.

(iii) For n ∈ N and −L ≤ i1 ≤ · · · ≤ in ≤ L, we have

⟨σi1 · · ·σin⟩
(L)
J
w(j)

=

⎧⎨⎩tanh(j)

N∑︁
k=1

(i2k−i2k−1)
if n = 2N,

0 else.

Proof. (i) follows directly from the definition. For the proof of (ii) and (iii), we use the
change of variables

σ′
i = σiσi+1 for i = −L, . . . , L− 1, σ′

L = σL.

Then, we have E(σ)J
w(j) ,L = −j

L−1∑︂
i=−L

σ′
i and hence

ZJ
w(j) ,L =

∑︂
σ′∈S

L−1∏︂
i=−L

ejσ
′
i = 2

L−1∏︂
i=−L

∑︂
σ′
i=±1

ejσ
′
i = 2

(︁
ej + e−j

)︁2L
,

so (ii) is proved. Now, if −L ≤ i < j ≤ L, we observe

σiσj = (σiσi+1)(σi+1σi+2) · · · (σj−1σj) = σ′
iσ

′
i+1 · · · σ′

j−1.

Assume n = 2N . Then, we have

ZJ
w(j) ,L ⟨σi1 · · ·σi2N ⟩

(L)
J
w(j)

=
∑︂
σ∈S

σi1 · · ·σi2N e−E(σ)

=
∑︂
σ∈S

e−E(σ)

N∏︂
a=1

(σi2a−1σi2a−1+1) · · · (σi2a−1σi2a)

=
∑︂
σ′∈S

N∏︂
a=1

σ′
i2a−1

· · ·σ′
i2a−1

L−1∏︂
i=−L

ejσ
′
i .

Now, for ℓ ∈ ΛL, we set

sℓ =

{︄
1 if there is some a ∈ N with i2a−1 ≤ ℓ < i2a,

0 else.

and S =
⃓⃓
{ℓ ∈ ΛL : sℓ = 1}

⃓⃓
= |i2 − i1|+ · · ·+ |i2N − i2N−1|. Inserting above, we obtain

ZJ
w(j) ,L ⟨σi1 · · ·σi2N ⟩

(L)
J
w(j)

= 2
L−1∏︂
ℓ=−L

∑︂
σ′
ℓ=±1

(σ′
ℓ)
sℓejσ

′
ℓ

= 2(ej − e−j)S(ej + e−j)2L−S.

Combined with (ii), we obtain the identity (iii) for even n. It remains to consider the case
that n is odd. The statement then, however, follows similar to the proof of Lemma 4.10
by the change of variables σ ↦→ −σ.
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4.2. The Ising Model on R
In this section, we consider a one-dimensional continuous Ising model, which is described
in terms of a jump process and a long range interaction given by a nonnegative inte-
grable function. As in Section 4.1, we prove a correlation bound, which has the physical
interpretation of a bound on the magnetic susceptibility.

The configuration space for the discrete Ising model is replaced by a jump process in the
continuous case. For its definition, let us recall the notion of a continuous-time Markov
process. Introductory literature on the topic includes [Res92, Ros07, Lig10].

Definition 4.13. Let (Ω,Σ,P) be a probability space, and let S be an arbitary finite
set. A family X = (Xt)t≥0 of S-valued random variables is called continuous-time Markov
process with state space S if for all 0 ≤ s ≤ t and x : [0, s) → S

P[Xt = i|Xs = j,Xu = x(u), u ∈ [0, s)] = P[Xt = i|Xs = j] for all i, j ∈ S.

Further, if P[Xt+h = i|Xt = j] = P[Xh = i|X0 = j] for all i, j ∈ S and t, h ≥ 0, we call
X homogeneous. In this case, we call pt : S2 → [0, 1] with pt(i, j) = P[Xt = j|X0 = i]
for t ∈ [0,∞) the transition probability functions of X. Further, q0 : S → [0, 1] with
q0(i) = P[X0 = i] is called initial distribution. The functions t ↦→ Xt(ω) for fixed ω ∈ Ω
are called sample paths.

Remark 4.14. We have intentionally restricted our attention to a finite state space here,
to avoid any technical issues of more general settings.

Let us summarize some well-known statements.

Lemma 4.15. Let S be a finite set.

(i) Let pt : S2 → [0, 1] for t ∈ [0,∞) be a collection of functions. Then pt are the
transition probability functions of a homogeneous continuous-time Markov process if
and only if they satisfy∑︂

j∈S

pt(i, j) = 1 for all t ∈ [0,∞), lim
t↓0

pt(i, i) = p0(i, i) = 1 (4.27)

and the Chapman-Kolmogorov equations

pt+s(i, j) =
∑︂
k∈S

pt(i, k)ps(k, j). (4.28)

In this case, given a function q0 : S → [0, 1] with∑︂
i∈S

q0(i) = 1, (4.29)

then there exists a homogeneous continuous-time Markov process with initial dis-
tribution q0 and transition probability functions pt such that the sample paths are
almost surely right-continuous.

(ii) The sample paths of a continuous-time Markov process with finite state space have
only finitely many jumps in any compact interval almost surely .
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Proof. An explicit construction for the existence statement in (i) can, for example, be
found in [Lig10, Section 2.5]. Further, Lemma 4.15 (ii) is included in the statement of
[Res92, Proposition 5.2.1]

Our model treats the following jump process. In the definition δx,y denotes the usual
Kronecker delta for x, y ∈ {±1}.

Definition 4.16 (The jump process X on [−T, T ]). Fix some T > 0.
Let (Yt)t≥0 be a homogeneous continuous-time Markov process with state space {±1},
initial distribution q0(1) = q0(−1) = 1

2
, transition probability

pt(x, y) =
1

2

(︁
1 + e−2tδx,y − e−2tδx,−y

)︁
for x, y ∈ {±1}, t ≥ 0

and right-continuous sample paths. Then, we define the jump process

X
(T )
t = Yt+T for all t ∈ [−T, T ].

We denote expectation values with respect to the probability distribution of X(T ) as E(T )
X

and drop the upper index (T ) of Xt inside of such expectation values.

Remark 4.17. It is easily checked that the transition probability satisfies the conditions
(4.27), (4.28) and (4.29) and hence the definition makes sense by Lemma 4.15 (i).
Remark 4.18. In the literature, see for example [Abd11, HHL14], the process Y is usually
explicitly constructed from a Poisson process as follows. Let (Nt)t≥0 be a Poisson processes
with intensity 1, i.e.,

P[Nt = n] =
tn

n!
e−t for n ∈ N, t ≥ 0. (4.30)

Further, let B be a Bernoulli random variable with P[B = 1] = P[B = −1] = 1
2
. Then,

we define
Yt = (−1)NtB.

Now, P[Y0 = x] = P[B = x] = 1
2

for x = ±1 and

P[Yt = x|Ys = x] = P[N|t−s| is even] =
∞∑︂
k=0

(|t− s|)2k

(2k)!
e−|t−s| =

1 + e−2|t−s|

2
,

which reproduces the transition probability of Y . Since the Poisson process itself is
a continuous-time Markov process, this also implies the Markov property. Similar to
Lemma 4.15 (i), the Poisson process can be chosen right-continuous.
Remark 4.19. Vice versa to the previous remark, we can use Y to construct a Poisson
process. Explicitly, if Nt denotes the number of jumps Xs has in the interval s ∈ [0, t],
then it follows easily from the assumptions that N has piecewise constant sample paths,
jumps of size 1, and stationary as well as independent increments. This defines a Poisson
process. See, for example, [Lig10] for more details.

To state the main result of this section, assume I : R → R is continuous. We then
define the partition function

ZI,T = E
(T )
X

[︃
exp

(︃∫︂ T

−T

∫︂ T

−T
I(t− s)XtXsdtds

)︃]︃
for T > 0. (4.31)
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Remark 4.20. The integrals in (4.31) are Riemann integrals. By Lemma 4.15 (ii), the
paths of X almost surely have only finitely many discontinuities on compact intervals.
Hence, since I is continuous, the right hand side of (4.31) is well-defined.

Now assume O is a real-valued random variable defined on the same probability space
as X(T ). Then, we define the expectation values of the continuous Ising model as

⟦O⟧I,T =
1

ZI,T

E
(T )
X

[︃
O exp

(︃∫︂ T

−T

∫︂ T

−T
I(t− s)XtXsdtds

)︃]︃
. (4.32)

Our correlation bound for the continuous Ising model is the following theorem.

Theorem 4.21. For all ε ∈ (0, 1
5
), there exists Cε > 0 such that for all continuous and

even I ∈ L1(R) with I ≥ 0 and ∥I∥1 < ε, we have

lim sup
T→∞

1

T

LPPPPN

(︃∫︂ T

−T
Xtdt

)︃2MQQQQOI,T
≤ Cε.

Remark 4.22. This result can easily be extended to an arbitrary intensity λ > 0 of the
Poisson-distribution of the jump times, i.e., if (4.30) is replaced by

P(Nt = n) =
(λt)n

n!
e−λt for n ∈ N, t ≥ 0.

Note that the constant C, however, is not independent of λ. This can be seen by a simple
scaling argument.

Remark 4.23. Similar to Remark 4.4, the bound in Theorem 4.21 is a bound on the
magnetic susceptibility of the Ising model. In presence of a constant magnetic field with
strength µ ∈ R, the partition function is then given by

Z(mag)
I,T (µ) = E

(T )
X

[︃
exp

(︃∫︂ T

−T

∫︂ T

−T
I(t− s)XtXsdtds+ µ

∫︂ T

−T
Xtdt

)︃]︃
.

The magnetization and magnetic susceptibility again are

MI,T (µ) =
1

T
∂µ lnZ(mag)

I,T (µ) and XI,T (µ) = ∂µMI,T (µ).

Hence, we find

XI,T (0) =
1

T

LPPPPN

(︃∫︂ T

−T
Xtdt

)︃2MQQQQOI,T
,

which is the expression estimated uniformly in T in Theorem 4.21.

Remark 4.24. In the special case, where the integrable I ≥ 0 satisfies the additional con-
dition I(t) ∼ t−2 as t→ ∞, a bound as in Theorem 4.21 follows from [Spo89, Proposition
8.1] for the conditioned process with boundary conditions XT = X−T . The proof given in
[Spo89] is based on results from percolation theory [AN86].
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Remark 4.25. The bound in Theorem 4.21 is in general not expected to hold for arbitrary
large ε > 0, as the following results indicate. The one-dimensional long-range Ising model
with spins σi = ±1, i ∈ Z and interaction energy

∑︁
i,j J(i − j)σiσj with J(n) = n−α

has a phase transition if 1 < α ≤ 2. In that case the magnetic susceptibility diverges
for sufficiently small temperatures. This was shown in [Dys69] for 1 < α < 2 and in
[ACCN88] for α = 2. It is reasonable to believe that such a divergence carries over to the
continuous model, since the continuous model can be obtained by a scaling limit of the
discrete model if an additional nearest neighbor coupling is imposed, cf. [SD85, Spo89]
and Section 4.2.3.

In the remainder of this section, we will prove Theorem 4.21. In Section 4.2.1, we
will recall the notion of weak convergence for measures and the Portmanteau theorem.
Although these results are fairly standard in probability theory, we will give proofs for
the aspects of interest for us, here. In Section 4.2.2, we will then define the path space of
the stochastic process X and equip it with a suitable topology – the so-called Skorokhod
topology. Then, we can give a characterization of weak convergence of a measure on this
space. In Section 4.2.3, we will then use this formalism to prove that the continuous Ising
model can in fact be obtained as the limit of a discrete one. This allows us to derive
Theorem 4.21 from Theorem 4.1 in Section 4.2.4.

4.2.1. Weak Convergence of Probability Measures

In this section, we define the notion of weak convergence for measures and prove a part
of the famous Portmanteau theorem. It is standard throughout the probability theory
literature, see for example [Bil99, Kle20].

Definition 4.26. Let E be a metric space and let (µn)n∈N be a sequence of probability
measures on E (with respect to the Borel sigma algebra on E). We say µn weakly converges
to a probability measure µ on E and write µ = w-lim

n→∞
µn if∫︂

E

fdµ = lim
n→∞

∫︂
E

fdµn for all bounded and continuous functions f : E → R.

The Portmanteau theorem contains a variety of equivalent statements for weak conver-
gence, cf. [Kle20, Theorem 13.16]. We restrict ourselves to the equivalence, which we will
employ. To that end, if f : E → R is measurable, we denote by Df the set of points at
which f is discontinuous.

Theorem 4.27. Let E be a metric space and let (µn)n∈N, µ be probability measures on E.
Then the following are equivalent:

(i) µ = w-lim
n→∞

µn.

(ii)
∫︁
fdµ = lim

n→∞

∫︁
fdµn for all measurable and bounded functions f with µ(Df ) = 0.

Proof. First, we note that the direction (ii)⇒(i) is trivial.
The proof of (i)⇒(ii) is divided into two steps.

Step 1. We show lim
n→∞

µn(A) = µ(A) for any Borel set A with µ(∂A) = 0.
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Let A be a Borel set satisfying µ(∂A) = 0. By the Urysohn lemma, for all ε > 0, we
can pick a continuous function ηε : E → [0, 1] such that

ηε(x) =

{︄
1 if x ∈ A,

0 if dist(A, {x}) > ε.

Since ηε is continuous, the weak convergence of µn to µ and µ(∂A) = 0 imply

lim sup
n→∞

µn(A) ≤ inf
ε>0

lim
n→∞

∫︂
ηεdµn = inf

ε>0

∫︂
ηεdµ ≤ inf

ε>0
µ

(︄⋃︂
x∈A

Bε(x)

)︄
= µ

(︁
A
)︁
= µ(A).

Replacing A by E \ A, we also find

lim inf
n→∞

µn(A) = 1− lim sup
n→∞

µn(E \ A) ≥ 1− µ(E \ A) = µ(A).

This finishes the first step. ♢

Step 2. We now prove (ii).
Let f : E → R be measurable and bounded and assume µ(Df ) = 0. W.l.o.g., we assume

f ≥ 0. Then, by the layer cake representation (cf. [LL01, Theorem 1.13], we have∫︂
E

fdν =

∫︂ ∞

0

ν
(︁
f−1((t,∞))

)︁
dt for any probability measure ν.

We note that ∂f−1((t,∞)) ⊂ {f−1({t}) ∪ Df . Since there are at most countably many
t ∈ [0,∞) such that µ(f−1({t})) > 0, this implies µ(∂f−1((t,∞))) = 0 for almost every
t ∈ R. Hence, applying Fatou’s lemma and using Step 1, we find

lim inf
n→∞

∫︂
E

fdµn = lim inf
n→∞

∫︂ ∞

0

µn(f
−1((t,∞)))dt

≥
∫︂ ∞

0

lim
n→∞

µn(f
−1((t,∞)))dt =

∫︂ ∞

0

µ(f−1((t,∞))dt =

∫︂
E

fdµ.

Replacing f by −f in above inequality finishes the proof. ♢

4.2.2. The Skorokhod Space

We now discuss the path space DT of the stochastic process X and equip it with the
Skorokhod metric. Then, we give a characterization of the weak convergence of probability
measures on DT . This will be the key technical observation to use in the next section.
Throughout this section, we fix a positive number T > 0.

Definition 4.28. We define DT to be the set of all right-continuous ω : [−T, T ] → {±1}
with finitely many jumps. Further, let ΦT denot the set of all continuous strictly increasing
bijections φ : [−T, T ] → [−T, T ]. Then, we define the Skorokhod metric

d(ω, ν) = inf
φ∈ΦT

(∥φ− 1∥∞ + ∥ω − ν ◦ φ∥∞) for ω, ν ∈ DT .

The topology induced on DT by d is called Skorokhod topology. Further, we equip DT

with the Borel σ-algebra.
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4.2. The Ising Model on R

We want to give a sufficient condition for a sequence of probability measures on DT to
converge weakly. To that end, for k ∈ N and t ∈ [−T, T ]k, we define the projections

πt : DT → {±1}k, πt(ω) = (ω(t1), . . . , ω(tk)) for all ω ∈ DT . (4.33)

Further, let Jω be the set of jumps of ω ∈ DT . For ε > 0, we define the set

Ωε = {ω ∈ DT : ∃t1, t2 ∈ (−T, T ) : |t2 − t1| < ε, t1, t2 ∈ Jω} . (4.34)

Also, if µ is a probability measure on DT , we define the set of all times for which the
projection πt is µ-almost everywhere continuous

Tµ = {t ∈ [−T, T ] : µ{ω ∈ DT : t ∈ Jω} = 0}. (4.35)

We prove the following statement.

Theorem 4.29. Let (µn)n∈N, µ be probability measures on DT . Assume the following
conditions hold:

(i) µ ◦ π−1
t = w-lim

n→∞
µn ◦ π−1

t for any t ∈ T k
µ , k ∈ N.

(ii) lim
ε↓0

lim sup
n→∞

µn(Ωε) = 0.

Then µ = w-lim
n→∞

µn.

The criterion (i), which describes the weak convergence of probability measures on the
discrete set {±1}k, is called the convergence of moments or finite dimensional distribu-
tions. For the proof of the above statement, we need to observe that (ii) is a translation
of the notion of tightness for our space DT .

Definition 4.30. A family Π of probability measures on a topological space equipped
with its Borel σ-algebra is called tight if for any ε > 0 there exists a compact set K such
that

µ(K) > 1− ε for all µ ∈ Π.

Further, it is called relatively compact if any sequence (µn)n∈N ⊂ Π has a weakly convergent
subsequence.

The following statement is the famous Prohorov theorem. Proofs can be found in [Bil99,
Theorem 5.1] or [Kle20, Theorem 13.29].

Proposition 4.31 (Prohorov’s theorem). A tight family Π of probability measures on a
metric space equipped with its Borel σ-algebra is relatively compact.

Remark 4.32. Prohorov’s theorem in the literature also contains a reverse statement. If the
metric space is separable and complete, then any relatively compact family of probability
measures is tight, cf. [Bil99, Theorem 5.2].

We want to characterize tightness on DT . To that end, we first give a characterization of
compact sets.

Lemma 4.33. If there exists δ > 0 such that K ⊂ Ωc
δ, then K is relatively compact,

i.e., its closure is compact. Especially, the sets Ωc
ε for any ε > 0 are compact.
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4. Correlation Bounds in 1D Ising Models

Remark 4.34. In fact, the above characterization of relatively compact sets is necessary
and sufficient, cf. [Bil99, Theorem 12.3].

Proof. It suffices to prove the especially part of the statement. To that end, fix ε > 0
and let (ωn)n∈N ⊂ Ωc

ε. Since any ω ∈ Ωc
ε can have at most ⌊T/ε⌋ discontinuities, we can

w.l.o.g assume that all ωn have the same number N ∈ N of discontinuities and the same
value at −T (otherwise restrict to a subsequence). For ω = ωn for some n ∈ N, we write
Jω = {t(1)ω , . . . , t

(N)
ω } and assume t(1)ω ≤ · · · ≤ t

(N)
ω . By the Bolzano-Weierstrass theorem,

we can pick a subsequence (ωnk
)k∈N such that ((t

(1)
ωnk

, . . . , t
(N)
ωnk

))k ⊂ [−T, T ]N converges
to some vector (t(1), . . . , t(N)) ∈ [−T, T ]N . Further, by construction t(k) − t(k−1) ≥ ε for
all k = 2, . . . , N . Hence, it is straightforward to check that ωnk

converges to the element
ω∞ ∈ Ωc

ε with the same starting value ω∞(−T ) and discontinuities exactly at the positions
t(1), . . . , t(N). This finishes the proof.

This gives us the following characterization of tightness for probability measures on DT .

Lemma 4.35. A sequence (µn)n∈N of probability measures on DT is tight if

lim
ε↓0

lim sup
n→∞

µn(Ωε) = 0.

Remark 4.36. As above, this characterization is necessary and sufficient, cf. [Bil99, The-
orem 13.2].

Proof. The statement directly follows by combining Definition 4.30 and Lemma 4.33.

To conclude the proof of Theorem 4.29, we need to show that convergence of the finite
dimensional distributions µn ◦ π−1

t to µ ◦ π−1
t for t ∈ T k

µ combined with tightness of the
sequence (µn)n∈N yields weak convergence of µn to µ. In the proof, we will need the
following characterization of Tµ.

Lemma 4.37. Let µ be a probability measure on DT . Then the set Tµ is cocountable and
{0, 1} ⊂ Tµ.

Proof. First, we observe that Tµ is the set of t ∈ [0, 1] such that πt is µ-almost everywhere
continuous. Since π0 and π1 are everywhere continuous, 0, 1 ∈ Tµ follows. Further, we
note that t ∈ (0, 1) \ Tµ if and only if the set Jt = {ω ∈ DT : t ∈ Jω} has positive
measure µ(Jt) > 0. If δ > 0, there are only finitely many t ∈ (0, 1) with µ(Jt) > 0.
Otherwise, µ

(︁⋂︁
t:µ(Jt)>0 Jt

)︁
≥ δ > 0 would yield the existence of a path ω ∈ DT with

infinitely many jumps, which is a contradiction to the definition of DT . Hence, there can
be only countably many elements in T c

µ .

We can now deduce the following.

Lemma 4.38. Let (µn)n∈N be a tight sequence of probability measures on DT and let µ
also be a probability measure on DT . Further, assume µn ◦π−1

t weakly converges to µ◦π−1
t

for any t ∈ T k
µ , k ∈ N. Then µn weakly converges to µ.

Proof. This proof follows the lines of [Bil99, Theorem 13.1].
First, assume we have a weakly convergent subsequence (µnm)m∈N. We denote its limit

by ˜︁µ. Since πt is ˜︁µ-almost everywhere continuous for t ∈ T k˜︁µ , k ∈ N, it follows from
Theorem 4.27 that µnm ◦ π−1

t weakly converges to ˜︁µ ◦ π−1
t for all t ∈ T k˜︁µ , k ∈ N. By
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4.2. The Ising Model on R

the assumptions, this directly implies ˜︁µ ◦ π−1
t = µ ◦ π−1

t for all t ∈ (Tµ ∩ T˜︁µ)k, k ∈ N.
Now, observe that {πt : t ∈ T k} separates points in DT whenever T is dense in [−T, T ],
i.e., πt(ω) = πt(˜︁ω) for all t ∈ T k implies ω = ˜︁ω. Further, by Lemma 4.37, Tµ ∩ T˜︁µ is
cocountable and hence dense in [−T, T ]. This implies µ = ˜︁µ.

Now, by Prohorov’s theorem (Proposition 4.31), any subsequence of (µn) has a weakly
convergent subsequence. Hence, by the above considerations, it weakly converges to µ.
This proves the statement.

Proof of Theorem 4.29. The statement follows from Lemmas 4.35 and 4.38.

4.2.3. The Continuum Limit of the Discrete Ising Model

In this section, we prove that the jump process X as defined in Definition 4.16 is the
continuum limit of a discrete Ising model. The approach we use is based on the description
in [SD85, Spo89]. To that end, we fix a T > 0 throughout this section and use a parameter
δ ∈ (0,∞) as lattice spacing of the discrete Ising model. We define the map

iδ : R → N, t ↦→
⌊︃
t

δ
+

1

2

⌋︃
, (4.36)

where ⌊·⌋ as usually denotes the integer part. We note that the interval [−T, T ] is mapped
to the lattice ΛLδ(T ) with length Lδ(T ) = iδ(T ). We set the nearest neighbor interaction
on this lattice to be

jδ = −1

2
ln(δ). (4.37)

For a given even and continuous function I : R → R, we define the corresponding pair
interaction (cf. (4.6)) on the lattice as w(δ) = (w

(δ)
k )k∈N with

w
(δ)
k = δ

∫︂ δk

δ(k−1)

I(t)dt. (4.38)

We write the expectation values in the discrete Ising model given with these interactions
as

⟪·⟫(n)δ,T := ⟨·⟩(Lδ(T ))
J(jδ,0,...)

and ⟪·⟫δ,T := ⟨·⟩(Lδ(T ))
J
(jδ,0,...)+w(δ)

. (4.39)

In this section we prove the following theorem.

Theorem 4.39. Let I : R → R be even and continuous and let T > 0. Then, for
−T ≤ t1 ≤ · · · ≤ tN ≤ T , we have

lim
δ↓0
⟪σiδ(t1) · · ·σiδ(tN )⟫δ,T = ⟦Xt1 · · ·XtN ⟧I,T .

As a first step of our proof, we need the following lemma.

Lemma 4.40. Let N ∈ N and assume −T ≤ t1 ≤ · · · ≤ tN ≤ T . Then

E
(T )
X [Xt1 · · ·XtN ] = e−2(|t2−t1|+···+|tN−tN−1|) if N is even

and E(T )
X [Xt1 · · ·XtN ] = 0 if N is odd.
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Proof. This proof is analogous to [Abd11, Lemma 1], where the construction from Re-
mark 4.18 is used.

First, we observe that by construction the random variables X−T , XtXs and XuXv are
independent if −T ≤ t ≤ s ≤ u ≤ v ≤ T and that

E
(T )
X [XtXs] = e−2(s−t).

This yields

E
(T )
X [Xt1 · · ·XtN ] = E

(T )
X

[︁
(X0)

N
]︁
E

(T )
X

[︁
(XX0Xt1

)N
]︁N−1∏︂
k=1

E
(T )
X

[︁
(XtkXtk+1

)N−k]︁ .
By Definition 4.16, we have E(T )

X [(X−T )
N ] = 0 if N is odd. Further, in the case that N is

even, we obtain

E
(T )
X [Xt1 · · ·XtN ] =

N/2∏︂
k=1

E
(T )
X

[︁
Xt2kXt2k−1

]︁
=

N/2∏︂
k=1

e−2(t2k−t2k−1) = e
−2

N/2∑︁
k=1

(t2k−t2k−1)
.

We now use our explicit calculations on expectation values of discrete Ising models only
with nearest neighbor interaction from Section 4.1.4 to prove the case I = 0 in Theo-
rem 4.39.

Lemma 4.41. Let N ∈ N and assume −T ≤ t1 ≤ · · · ≤ tN ≤ T . Then

lim
δ↓0
⟪σiδ(t1) · · · σiδ(tN )⟫(n)δ,T = E

(T )
X [Xt1 · · ·XtN ].

Proof. If N is odd both sides vanish (Lemmas 4.12 and 4.41), so we assume N is even.
Then, the definition (4.36) and Lemma 4.12 (iii) yield

⟪σiδ(t1) · · ·σiδ(tN )⟫(n)δ,T = (tanh jδ)
|iδ(t2)−iδ(t1)|+···+|iδ(tN )−iδ(tN−1)|.

Since (4.36) also yields |u−v|
δ

− 1 ≤ |iδ(u)− iδ(v)| ≤ |u−v|
δ

+ 1 for all u, v ∈ R, we obtain[︂
(tanh jδ)

δ−1
]︂|t2−t1|+···+|tN−tN−1|−δN

≤ ⟪σiδ(t1) · · ·σiδ(tN )⟫(n)δ,T

≤
[︂
(tanh jδ)

δ−1
]︂|t2−t1|+···+|tN−tN−1|+δN

.

Using lim
δ↓0

(tanh jδ)
δ−1

= e−2, the statement follows by Lemma 4.40.

To show Theorem 4.39 for nonzero I, we will use the notion of weak convergence of
measures on the Skorokhod space as outlined in Sections 4.2.1 and 4.2.2. Explicitly, we
will make use of the Portmanteau theorem (Theorem 4.27) and the sufficient condition
for weak convergence from Theorem 4.29.

For the statement, we define sδ : SLδ(T ) → DT by sδ(σ) =
[︁
t ↦→ σiδ(t)

]︁
.

Lemma 4.42. Let f : DT → R be bounded and continuous, let N ∈ N0 and assume
−T ≤ t1 ≤ · · · ≤ tN ≤ T . Then

lim
δ↓0
⟪σiδ(t1) · · ·σiδ(tN )f(sδ(σ))⟫(n)δ,T

= E[X(t1) · · ·X(tN)f(X)].
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Proof. First, we note that there exists a probability measure PX on DT such that for
ω ∈ DT the jump process is given by Xt(ω) = ω(t) for t ∈ [−T, T ] and for any measurable
function f : DT → R

E
(T )
X [f(X)] =

∫︂
DT

f(ω)dPX(ω).

Further, for δ > 0, let Pδ be the pushforward measure on DT obtained from the Ising
probability measure on SLδ(T ) through the (obviously measurable) map sδ, i.e.,

Pδ(A) =
∑︂

σ∈sδ−1(A)

e
−EJjδ

,Lδ(T )(σ)

ZJjδ ,Lδ(T )

for all measurable sets A ⊂ DT . (4.40)

This implies

⟪σiδ(t1) · · · σiδ(tN )f(sδ(σ))⟫(n)δ,T
=

∫︂
ω(t1) · · ·ω(tN)f(ω)dPδ(ω).

We want to prove that Pδ weakly converges to PX as δ ↓ 0 using Theorem 4.29.
First, we note that for any k ∈ N and t ∈ [−T, T ]k, the expectation values in Lemma 4.41

uniquely determine the probability measures Pδ◦π−1
t and PX◦π−1

t (cf. (4.33)), respectively,
since every function on the set {±1} is given as a linear combination of the constant
function one and the identity function. Hence, Lemma 4.41 implies the weak convergence
of Pδ ◦ π−1

t to PX ◦ π−1
t as δ ↓ 0, so the condition (i) from Theorem 4.29 is satisfied.

Hence, it remains to prove

lim
ε↓0

lim sup
δ↓0

Pδ(Ωε) = 0., (4.41)

To prove (4.41), we will assume

0 < δ < ε < min{1, T}. (4.42)

For σ ∈ SLδ(T ), we denote by nσ the number of sign changes (cf. Lemma 4.12 (i)). We
observe that sδ(σ) ∈ Ωε if nσ > 2T/ε. Otherwise, sδ(σ) /∈ Ωε if and only if all sign changes
have a distance of at least ε/δ. If nσ = k for some fixed k ∈ N, then simple combinatorics
yield that there are

(︁
2Lδ(T )−(k−1)⌊ε/δ⌋

k

)︁
possibilities to position the sign changes such that

all distances are larger than ε/δ.1 Taking into account that an element σ ∈ SLδ(T ) is
uniquely determined by the choice of the value σLδ(T ) ∈ {±1} and the position of its sign
changes, we obtain⃓⃓{︁

σ ∈ sδ
−1(Ωε) : nσ = k

}︁⃓⃓
=

⎧⎪⎪⎨⎪⎪⎩
2

(︃
2Lδ(T )

k

)︃
for k > 2T

ε
,

2

(︃
2Lδ(T )

k

)︃
− 2

(︃
2Lδ(T )− (k − 1)⌊ε/δ⌋

k

)︃
for 2 ≤ k ≤ 2T

ε
.

(4.43)

1Explicitly, the combinatorial argument is as follows: In a chain of N + 1 Ising spins, there are
(︁
N
k

)︁
possibilities to position k sign changes. This is equal to the number of possibilities to choose k + 1
positive integers x1, . . . , xk+1 such that x1 + · · · + xk+1 = N + 1. Now, if the distance between any
two sign changes shall be larger than m, this is equivalent to requiring x2, . . . , xk > m. By the change
of variables y1 = x1, yi = xi − m for i = 2, . . . , k, yk+1 = xk+1, we find the number of possibilities
to be equal to the number of possibilities to choose y1, . . . , yk+1 ∈ N, such that y1 + . . . + yk+1 =

N+1−(k−1)m. Recalling the initial argument, this is
(︁
N−(k−1)m

k

)︁
. In our case, we have N = 2Lδ(T )

and m = ⌊ε/δ⌋.
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From the definition of nearest neighbor coupling, it easily follows that (cf. Lemma 4.12 (i))

EJjδ ,Lδ(T )(σ) = 2jδ(nσ − Lδ(T )) for all σ ∈ SLδ(T ).

Hence, combining (4.40) and (4.43) and summing over all possible numbers of spin
changes, we obtain

Pδ(Ωε) =

⌊ 2T
ε
⌋∑︂

k=2

(︃(︃
2Lδ(T )

k

)︃
−
(︃
2Lδ(T )− (k − 1)⌊ε/δ⌋

k

)︃)︃
2e2jδ(Lδ(T )−k)

ZJjδ ,Lδ(T )

+

2Lδ(T )∑︂
k=⌊ 2T

ε
⌋+1

(︃
2Lδ(T )

k

)︃
2e2jδ(Lδ(T )−k)

ZJjδ ,Lδ(T )

.

(4.44)

Since it is also possible to explicitly calculate the partition function for nearest neighbor
coupling (cf. Lemma 4.12 (ii)), we have

2e2jδLδ(T )

ZJjδ ,Lδ(T )

=

(︃
ejδ

ejδ + e−jδ

)︃2Lδ(T )

< 1. (4.45)

Moreover, inserting the definition (4.37), we have e−2jδk = δk and hence(︃
2Lδ(T )

k

)︃
e−2jδk ≤ (2Lδ(T ))

k

k!
δk ≤ (2T + δ)k

k!
for all k ≤ 2Lδ(T ), (4.46)

where we used Lδ(T ) = ⌊T
δ
+ 1

2
⌋ ≤ T

δ
+ 1

2
in the last step. Now, from (4.42) it follows that

0 ≤ k

2Lδ(T )
(ε/δ + 1) < 1 if k ∈ N satisfies k ≤ T

2ε
.

Hence, along the same lines as the proof of (4.46), we can use Bernoulli’s inequality for
k ≤ T/(2ε) and obtain(︃(︃

2Lδ(T )

k

)︃
−
(︃
2Lδ(T )− (k − 1)⌊ε/δ⌋

k

)︃)︃
e−2jδk

≤ (2Lδ(T ))
k − (2Lδ(T )− k(ε/δ + 1))k

k!
δk

≤ (2Lδ(T ))
k

k!

k2(ε/δ + 1)

2Lδ(T )
δk

≤ (2T + δ)k−1

(k − 1)!
k(ε+ δ).

(4.47)

We can now insert (4.45), (4.46) and (4.47) into (4.44). Hence, for any sε ∈ [0, 1
2ε
], we

have

Pδ(Ωε) ≤
⌊Tsε⌋∑︂
k=2

(2T + δ)k−1

(k − 1)!
k(ε+ δ) +

2Lδ(T )∑︂
k=⌊Tsε⌋+1

(2T + δ)k

k!

≤ Tsε(ε+ δ)e2T+δ +
∞∑︂

k=⌊Tsε⌋+1

(2T + δ)k

k!
,
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where we estimated the first half of the first sum in (4.44) by (4.47) and the second half
using (4.46). Taking the limit δ ↓ 0, we observe

lim sup
δ↓0

Pδ(Ωε) ≤ Tsεεe
2T +

∞∑︂
k=⌊Tsε⌋+1

(2T )k

k!
.

We choose sε such that both limε↓0 sε = ∞ and limε↓0 εsε = 0 hold, e.g., sε = 1
2
ε−1/2.

Then the summability of the second term proves (4.41) and hence Theorem 4.29 implies
that Pδ weakly converges to PX .

Since f is bounded and continuous, the statement for N = 0 directly follows from the
definition of weak convergence. Further, observe that for any fixed N ∈ N and t ∈ RN

the function ω → πt(ω)f(ω) is only discontinuous at those ω having jumps exactly at the
points given by the N -tuple t. Hence, the set of discontinuities has PX-measure zero and
the statement follows from Theorem 4.27.

We apply above lemma to prove the expectation value in Theorem 4.39 is a limit of
expectation values in the nearest neighbor Ising model.

Lemma 4.43. Assume I : [−T, T ] → R is even and continuous and w(δ) is as defined in
(4.38). For N ∈ N0, let −T ≤ t1 ≤ · · · ≤ tN ≤ T . Then

lim
δ↓0
⟪σiδ(t1) · · ·σiδ(tN ) exp

⎛⎝ ∑︂
i,j∈ΛLδ(T )

w
(δ)
|i−j|σiσj

⎞⎠⟫(n)

δ,T

= E
(T )
X

[︃
Xt1 · · ·XtN exp

(︃∫︂ T

−T

∫︂ T

−T
I(t− s)XsXtdsdt

)︃]︃
.

Proof. We define f0 : DT → R by

f0(ω) = ω(t1) · · ·ω(tN)eI0(ω), where I0(ω) =

∫︂ T

−T

∫︂ T

−T
I(t− s)ω(t)ω(s)dsdt.

It is straightforward to verify that I0 : DT → R is bounded and continuous. Hence, we
can apply Lemma 4.42 and obtain

lim
δ↓0
⟪f0(sδ(σ))⟫(n)δ,T = E

(T )
X [f0(X)] . (4.48)

It remains to consider the left hand side and to analyze f0(sδ(σ)). Further, for σ ∈ SLδ(T ),
we define

gδ(σ) = σiδ(t1) · · · σiδ(tN )e
Jδ(σ), where Jδ(σ) =

∑︂
i,j∈ΛLδ(T )

w
(δ)
|i−j|σiσj.

Since continuous functions on compact intervals are uniformly continuous, there exists a
δε > 0 for any ε > 0 such that

|I(t)− I(s)| < ε for any t, s ∈ [−T, T ] with |t− s| < δε. (4.49)

Further, for any fixed δ > 0, there exist (η
(δ)
i,j )i,j∈ΛLδ(T )

⊂ [0, 1] such that

w
(δ)
|i−j| = δ2I(δ(|i− j| − η

(δ)
i,j )),
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by the mean value theorem for integrals and the definition (4.38). Hence, for any δ > 0
and σ ∈ SLδ(T ), we find

|Jδ(σ)− I0(sδ(σ))| =

⃓⃓⃓⃓
⃓⃓ ∑︂
i,j∈ΛLδ(T )

[︄
w

(δ)
|i−j|σiσj −

∫︂ (i+ 1
2
)δ

(i− 1
2
)δ

∫︂ (j+ 1
2
)δ

(j− 1
2
)δ

I(t− s)σiσjdsdt

]︄⃓⃓⃓⃓
⃓⃓

≤
∑︂

i,j∈ΛLδ(T )

δ2 sup
{︁
|I(δt)− I(δ(|i− j| − η

(δ)
i,j ))| : t ∈ [|i− j| − 1, |i− j|+ 1]

}︁
(4.50)

Combining (4.49) and (4.50) as well as Lδ(T ) ≤ T
δ
+ 1

2
, for all δ ∈ (0, δε) and σ ∈ SLδ(T ),

we have
|Jδ(σ)− I0(sδ(σ))| ≤ (2Lδ(T ) + 1)2δ2ε ≤ 4(T + δ)2ε. (4.51)

Now, for all σ ∈ SLδ(T ), we have the algebraic identity

gδ(σ)− f0(sδ(σ)) = f0(sδ(σ))
(︁
eJδ(σ)−I0(sδ(σ)) − 1

)︁
.

Using this identity and (4.51), it follows that there exist constants C1 and C2 such that,
for ε > 0 sufficiently small, δ ∈ (0, δε) and all σ ∈ SLδ(T ),

|gδ(σ)− f0(sδ(σ))| ≤ |f0(sδ(σ))|C1 |Jδ(σ)− I0(sδ(σ))| ≤ C2e
4T 2∥I∥∞(T + δ)2ε.

Since σ ∈ SLδ(T ) was arbitrary, this estimate also holds for the expectation value, i.e.,⃓⃓⃓
⟪gδ(σ)⟫(n)δ,T − ⟪f0(sδ(σ))⟫(n)δ,T

⃓⃓⃓
≤ C2e

4T 2∥I∥∞(T + δ)2ε. (4.52)

Combining (4.48) and (4.52), the statement follows.

It now remains to rewrite the Ising expectation value in above lemma as a correlation
function.

Proof of Theorem 4.39. By the definition (4.4), we observe

⟪σiδ(t1) · · ·σiδ(tN )⟫δ,T =

⟪σiδ(t1) · · ·σiδ(tN ) exp

(︄ ∑︁
i,j∈ΛLδ(T )

w
(δ)
|i−j|σiσj

)︄
⟫

(n)

δ,T

⟪exp
(︄ ∑︁
i,j∈ΛLδ(T )

w
(δ)
|i−j|σiσj

)︄
⟫

(n)

δ,T

.

Hence, the statement follows from Lemma 4.43 and the definition (4.31), (4.32).

4.2.4. Proof of the Correlation Bound

We conclude this chapter, by combining Theorems 4.1 and 4.39 to the proof of Theo-
rem 4.21. In the following, we use the definitions and notation from the previous section.
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Proof of Theorem 4.21. Fix T > 0. Then using Fubini’s theorem in the first equality
and Theorem 4.39 in the second equality, we find

1

Z(I, T )
E

(T )
X

[︄
1

T

(︃∫︂ T

−T
Xtdt

)︃2

exp

(︃∫︂ T

−T

∫︂ T

−T
XtXsI(t− s)dtds

)︃]︄

=
1

TZ(I, T )

∫︂ T

−T

∫︂ T

−T
E

[︃
XuXv exp

(︃∫︂ T

−T

∫︂ T

−T
XtXsI(t− s)dtds

)︃]︃
dudv

=
1

T
lim
δ↓0

∫︂ T

−T

∫︂ T

−T
⟪σiδ(u)σiδ(v)⟫δ,Tdudv

= lim
δ↓0

1

T

∑︂
i,j∈ΛLδ(T )

δ2⟪σiσj⟫δ,T , (4.53)

where we calculated the integral in the last step using that the integrand is a step function.
To estimate (4.53), we want to use Theorem 4.1. First, we observe that by the definition
(4.37)

1

1− tanh jδ
=
e2jδ + 1

2
<

1

δ
for any δ ∈ (0, 1). (4.54)

Further, using the definition (4.38), the fact that I ∈ L1(R) and that I is even, we have

w(δ) ∈ ℓ1 and
2

δ
∥w(δ)∥1 = ∥I∥1 for all δ > 0.

Combining the above two relations, we find that for any constant D > 1 there exists
δD > 0 such that

∥w(δ)∥1
1− tanh jδ

≤ D

2
∥I∥1 for all δ ∈ (0, δD). (4.55)

Now let ε ∈ (0, 1
10
) and Cε be as in Theorem 4.1 and assume ∥I∥1 < 2ε. We can obviously

fix D > 1 such that ∥I∥1 ≤ 2ε/D. For δ ∈ (0, δD), it then follows from (4.55) that
the assumption (4.7) holds, since tanhx ≤ x for x ∈ [0,∞). Hence, it follows from
Theorem 4.1 that∑︂

i∈Z

⟪σiσj⟫δ,T ≤ Cε
1− tanh(jδ)

<
Cε
δ

for δ sufficiently small,

where we used (4.54) in the second inequality. The last displayed inequality now implies∑︂
i,j∈ΛLδ(T )

⟪σiσj⟫δ,T < Cε
δ
Lδ(T ).

Inserting this into (4.53) and using Lδ(T ) ≤ T
δ
+ 1

2
finishes the proof.
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5. FKN Formula for the
Spin Boson Model with
External Magnetic Field

In this chapter, we derive a Feynman-Kac-Nelson (FKN) formula for the spin boson model
with external magnetic field. It expresses expectation values of the semigroup generated by
the Hamiltonian as the expectation value of a Poisson-driven jump process and a Gaussian
random process indexed by a real Hilbert space, obtained by an Euclidean extension of
the dispersion relation of the bosons. Especially, when calculating expectation values with
respect to the ground state of the free Hamiltonian, we can explicitly integrate out the
boson field to prove Theorem 1.20 and Corollary 1.24. Adding a gap assumption, we can
then express derivatives of the ground state energy in terms of correlation functions of
a continuous Ising model in the proof of Theorem 1.25. In view of Theorem 4.21, this
implies the second derivative of the ground state energy is bounded for sufficiently small
coupling constants. This bound on the second derivative will be a key ingredient to our
proof of Theorem 1.14.

The history of FKN-type theorems dates back to the work of Feynman and Kac
[Fey05, Kac51]. Such functional integral respresentations were used to study the spectral
properties of models in quantum field theory by Nelson [Nel73]. Since then, many authors
have used this approach to study models of non-relativistic quantum field theory, see for
example [GJ85, GJ87, Spo87, FFG97, Hir97, BHL+02, BS05, HL08, BH09] and references
therein. The spin boson model without an external magnetic field has been investigated
using this approach in [SD85, FN88, Abd11] and recently in [HHL14]. In [Spo89] path
measures for the spin boson model with magnetic field were studied by means of Gibbs
measures.

This chapter is structured as follows. In Section 5.1, we derive the FKN formula
Theorem 5.3 for H(m)

SB (λ, µ) (cf. Definition 1.18). To our knowledge, the case µ ̸= 0 has
not been treated in the literature yet. We then obtain Theorem 1.20, by integrating out
the field degrees of freedom. This allows us to calculate expectation values with respect
to the ground state Ω↓ (cf. (1.8)) of the free operator H(m)

SB (0, 0) as the expectation value
of a continuous Ising model. In Section 5.2, we then use the well-known connection
between expectation values of the semigroup and the ground state energy to express
the derivatives of the ground state energy with respect to the magnetic field strength as
correlation functions of this continuous Ising model, under the assumption of a positive
boson mass m > 0, i.e., ω(k) ≥ m for almost all k ∈ Rd.

Throughout this chapter, we assume Hypothesis SBF holds and drop the lower index
SB as well as the upper index (m) and write H(m)

SB (λ, µ) = H(λ, µ).
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5. FKN Formula for the Spin Boson Model with External Magnetic Field

5.1. The FKN Formula

In this section, we derive the FKN formula for the spin boson model interacting with an
external magnetic field. The case without an external magnetic field has been treated
in [HHL14] using results from [HL08]. The approach we use is closely related to the
descriptions in the standard literature [Sim74, LHB11] and similar to [HHL14].

We recall that in Lemma 1.19, we proved H(λ, µ) is a selfadjoint lower-semibounded
operator for any choice of λ, µ ∈ R. However, instead of considering H(λ, µ) directly, we
apply the unitary

U = ei
π
4
σy =

1√
2

(︃
1 1
−1 1

)︃
(5.1)

and define the transformed Hamilton operator

˜︁H(λ, µ) = 1+(U⊗1)H(λ, µ)(U⊗1)∗ = (1−σx)⊗1+1⊗dΓ(ω)+σz⊗(λφ(v)+µ1), (5.2)

where we used UσzU∗ = −σx and UσxU∗ = σz.
Further, we define the Euclidean dispersion relation

ωE : Rd+1 → [0,∞), ωE(k, t) = ω2(k) + t2 (5.3)

and the Hilbert space of the Euclidean field as

E = L2(Rd+1, ω−1
E (k, t)d(k, t)). (5.4)

Let ϕE be the Gaussian random variable indexed by the real Hilbert space

R = {f ∈ E : f(k, t) = f(−k,−t)} (5.5)

on the probability space (QE,ΣE, µE) (cf. Lemma B.29) and denote expectation values
w.r.t. µE as EE. For details on the definitions, we refer the reader to Appendix B.5. We
note E = R ⊕ iR in the sense of Remark B.31.

For t ∈ R, we define

jtf(k, s) =
e−its

√
π
ω1/2(k)f(k). (5.6)

Lemma 5.1.

(i) (5.6) defines an isometry jt : L2(Rd) → E for any t ∈ R.

(ii) If f ∈ L2(Rd) satisfies f(k) = f(−k), then jtf ∈ R.

(iii) j∗s jt = e−|t−s|ω for all s, t ∈ R.

Proof. The statements follow by the direct calculation

⟨jsf, jtg⟩E =

∫︂
Rd

f(k)g(k)

∫︂
R
e−i(t−s)τ ω(k)

ω2(k) + τ 2
dτ

π
dk =

∫︂
Rd

f(k)e−|t−s|ω(k)g(k)dk.

Remark 5.2. In the literature (5.6) is often defined via the Fourier transform jtf| = δt⊗fq.
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We set ˜︁It : F → L2(QE), ψ ↦→ ΘRΓ(jt)ψ, (5.7)

where ΘR denotes the Wiener-Itô-Segal isomorphism introduced in Lemma B.30 and Γ(jt)
is the second quantization of the contraction operator jt, as defined in Definition B.14.
Further, we define the isometry ι : C2 → L2({±1}, µ1/2), with µ1/2({s}) = 1

2
for s ∈ {±1},

by
(ιv)(+1) =

√
2v1 and (ιv)(−1) =

√
2v2.

We define the map It := ι⊗ ˜︁It, where (cf. Lemma A.103)

It : C2 ⊗F → L2({±1}, µ1/2)⊗ L2(QE) ∼= L2({±1}, µ1/2;L
2(QE)).

The FKN formula for the spin boson model with external magnetic field is now stated in
the following theorem, where we use the jump process X as defined in Definition 4.16.
Here, we drop the upper index (T ) for expectation values, since for our purposes we only
need X to be defined on the interval [0, T ].

Theorem 5.3. For all Φ,Ψ ∈ C2 ⊗F and λ, µ ∈ R, we have

⟨︂
Φ, e−T

˜︁H(λ,µ)Ψ
⟩︂
= EXEE

[︃
I0Φ(X0) exp

(︃
−λ
∫︂ T

0

ϕE (jtv)Xtdt−µ
∫︂ T

0

Xtdt

)︃
ITΨ(XT )

]︃
.

We note that the integrability of the right hand side in above theorem follows from the
identity

E [exp(Z)] = exp

(︃
1

2
E[Z2]

)︃
, (5.8)

which holds for any Gaussian random variable Z (see for example [Sim74, (I.17)]). We
outline the argument in the remark below.

Remark 5.4. Let Df denote the set of right-continuous functions x : [0, T ] → {±1} with
finitely many jumps and let µX be the measure induced on Df by X, cf. Lemma 4.15 (ii)
and Definition 4.28. By (5.6), the map [0, T ] → E , t ↦→ jtv is strongly continuous.
Hence, by Definition B.27, the map R → L2(QE), t ↦→ ϕE(jtv) is continuous. Thus,
for (xt)t∈[0,T ] ∈ Df , the function t ↦→ ϕE(jtv)xt is a piecewise continuous L2(QE)-valued
function on compact intervals of [0,∞). This implies that the integral over t exists as an
L2(QE)-valued Riemann integral µX-almost surely. Since Riemann integrals are given as
limits of sums, the measurability with respect to the product measure µX ⊗ µE follows.
In fact, again fixing x ∈ Df and using Fubini’s theorem as well as Hölder’s inequality,
one can prove that the integral

∫︁ T
0
ϕE(jtv)xtdt can also be calculated as Lebesgue-integral

evaluated µE-almost everywhere pointwise in QE with the same result. This is outlined
in Lemma 5.5 below. Furthermore,

∫︁ T
0
ϕE(jtv)xtdt is a Gaussian random variable, since

L2-limits of linear combinations of Gaussians are Gaussian. We conclude that the right
hand side of the FKN formula is finite, since exponentials of Gaussian random variables
are integrable, cf. (5.8).

In the above remark, we use the following lemma with f(t) = ϕE(jtv)xt. Although the
proof is simple, we give it here for completeness.
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Lemma 5.5. Let (Q,Σ, µ) be a probability space and assume t ↦→ ft ∈ L2(Q) is piecewise
continuous on the interval [0, T ]. Then [t ↦→ ft(q)] ∈ L1([0, T ]) for almost every q ∈ Q
and ∫︂ T

0

ft(q)dt =

(︃∫︂ T

0

ftdt

)︃
(q) for almost every q ∈ Q, (5.9)

where the integral on the right hand side is the L2(Q)-valued Riemann integral.

Proof. Using Fubini’s theorem and Hölder’s inequality, we find∫︂
Q

∫︂ T

0

|ft(q)|dtdµ(q) =
∫︂ T

0

∫︂
Q
|ft(q)|dµ(q)dt ≤

∫︂ T

0

∥ft∥L2(Q)dt <∞.

Hence, for µ-almost all q ∈ Q, the map t ↦→ ft(q) is Lebesgue-integrable. Let fs,t be an
L2(Q)–valued step function. Then, using the triangle inequality, Fubini’s theorem and
Hölder’s inequality, we find∫︂
Q

⃓⃓⃓⃓∫︂ T

0

ft(q)dt−
(︃∫︂ T

0

ftdt

)︃
(q)

⃓⃓⃓⃓
dµ(q)

≤
∫︂
Q

⃓⃓⃓⃓∫︂ T

0

ft(q)dt−
∫︂ T

0

fs,t(q)dt

⃓⃓⃓⃓
dµ(q) +

∫︂
Q

⃓⃓⃓⃓(︃∫︂ T

0

fs,t

)︃
(q)dt−

(︃∫︂ T

0

ftdt

)︃
(q)

⃓⃓⃓⃓
dµ(q)

≤
∫︂
Q

∫︂ T

0

|ft(q)− fs,t(q)| dtdµ(q) +
⃦⃦⃦⃦∫︂ T

0

ftdt−
∫︂ T

0

fs,tdt

⃦⃦⃦⃦
L1(Q)

≤
∫︂ T

0

∫︂
Q
|ft(q)− fs,t(q)| dµ(q)dt+

⃦⃦⃦⃦∫︂ T

0

ftdt−
∫︂ T

0

fs,tdt

⃦⃦⃦⃦
L2(Q)

≤ 2

∫︂ T

0

∥ft − fs,t∥L2(Q)dt.

By the piecewise L2(Q)-continuity of t ↦→ ft, the right hand side can be made arbitraritly
small by making the mesh of the Riemann sum arbitrarily small. This implies (5.9).

We now prove Theorem 5.3. To that end, we first derive a FKN formula for the spin part,
which is described by the jump process.

Lemma 5.6. Let n ∈ N and t1, . . . , tn ≥ 0. We set sk =
k∑︁
i=1

tk for k = 1, . . . , n.

Then, for all v, w ∈ C2 and f0, f1, . . . , fn : {±1} → C, we have

e−sn
⟨︁
w, f0(σz)e

t1σxf1(σz)e
t2σx · · · etnσxfn(σz)v

⟩︁
= EX

[︂
ιw(X0)f0(X0)f1(Xs1) · · · fn(Xsn)ιv(Xsn)

]︂
.

Proof. Since any function f : {±1} → C is a linear combination of the identity and the
constant function 1, it suffices to consider the case f0 = f1 = · · · = fn = id. Further, due
to bilinearity, it suffices to choose w and v to be arbitrary basis vectors. We here use the
basis consisting of eigenvectors of σx, i.e., e1 = 1√

2
(1, 1) and e2 = 1√

2
(1,−1). Then

σxe1 = e1, σxe2 = −e2, σze1 = e2, and σze2 = e1
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and hence

⟨︁
e1, σze

t1σx · · · etnσxσze1
⟩︁
=

⎧⎨⎩0 if n is even,

exp
(︂ n∑︁
j=1

(−1)jtj

)︂
if n is odd,

⟨︁
e2, σze

t1σx · · · etnσxσze1
⟩︁
=

⎧⎨⎩exp
(︂
−

n∑︁
j=1

(−1)jtj

)︂
if n is even,

0 if n is odd,

⟨︁
e2, σze

t1σx · · · etnσxσze2
⟩︁
=

⎧⎨⎩0 if n is even,

exp
(︂
−

n∑︁
j=1

(−1)jtj

)︂
if n is odd.

From Lemma 4.41, we recall that, for 0 ≤ j ≤ k ≤ n and setting s0 = 0,

EX
[︁
Xsj · · ·Xsk

]︁
=

{︄
0 if k − j is even,
e−2(tj+1+tj+3+···+tk−2+tk) if k − j is odd.

Combined, this yields

e−sn ⟨e1, σzet1σx · · · etnσxσze1⟩ = EX [X0Xs1 · · ·Xsn ] ,

e−sn ⟨e2, σzet1σx · · · etnσxσze1⟩ = EX [Xs1 · · ·Xsn ] ,

e−sn ⟨e2, σzet1σx · · · etnσxσze2⟩ = EX
[︁
Xs1 · · ·Xsn−1

]︁
.

Observing that ιe1(x) = 1 and ιe2(x) = x for x = ±1 finishes the proof.

We now move to proving the FKN formula for the field part. For I ⊂ R, let eI denote
the projection onto span{f ∈ E : f ∈ ran(jt) for some t ∈ I}. Further, set et = e{t}.

Lemma 5.7. Assume a ≤ b ≤ t ≤ c ≤ d. Then

(i) et = jtj
∗
t ,

(ii) eaebec = eaec,

(iii) e[a,b]ete[c,d] = e[a,b]e[c,d].

Proof. Lemma 5.1 (i) and the definition of e{t} directly imply (i). Further, (ii) follows
from Lemma 5.1 (iii), by

eaebec = jaj
∗
ajbj

∗
b jcj

∗
c = jae

−(b−a)ωe−(c−b)ωj∗c = jae
−(c−a)ωj∗c = jaj

∗
ajcj

∗
c = eaec.

To prove (iii), let f, g ∈ E . By the definition, there exist sequences of times (tk)k∈N ⊂ [a, b]
and (sm)m∈N ⊂ [c, d] and functions fk ∈ ran(jtk) = ran(etk), gm ∈ ran(jsm) = ran(esm)
such that

e[a,b]f =
∞∑︂
k=1

fk and e[c,d]g =
∞∑︂
m=1

gm.

Hence, we can apply (ii) and obtain

⟨e[a,b]ete[c,d]g, f⟩ =
∞∑︂

k,m=1

⟨etgm, fk⟩ =
∞∑︂

k,m=1

⟨gm, fk⟩ = ⟨e[a,b]e[c,d]g, f⟩ .

Since f and g were arbitrary, this proves the statement.

79



5. FKN Formula for the Spin Boson Model with External Magnetic Field

Now, for t ∈ R and I ⊂ R, let

Jt = Γ(jt), Et = Γ(et) and EI = Γ(eI). (5.10)

Then the next statement in large parts follows directly from Lemmas 5.1 and 5.7 and
standard Fock space properties.

Lemma 5.8. Assume a ≤ b ≤ t ≤ c ≤ d and I ⊂ R.

(i) EI is the orthogonal projection onto span{f ∈ F(E ) : f ∈ ran(Jt) for some t ∈ I}.

(ii) Et = JtJ
∗
t

(iii) EaEbEc = EaEc

(iv) E[a,b]EtE[c,d] = E[a,b]E[c,d]

(v) For all F ∈ ran(E[a,b]) and G ∈ ran(E[c,d]), we have ⟨F,EtG⟩ = ⟨F,G⟩.

(vi) J∗
sJt = e−|t−s|dΓ(ω) for all s ∈ R.

(vii) Jtφ(f)J∗
t = Etφ(jtf)Et = φ(jtf)Et for all f ∈ L2(Rd).

(viii) JtG(φ(f))J∗
t = EtG(φ(jtf))Et = G(φ(jtf))Et for all f ∈ L2(Rd) and bounded

measurable functions G on R.

Proof. All statements except for (v)–(viii) follow trivially from Lemmas 5.7, B.15 and the
definitions. (v) follows from (iv), by the simple calculation

⟨F,EtG⟩ = ⟨E[a,b]F,EtE[c,d]G⟩ = ⟨F,E[a,b]EtE[c,d]G⟩
= ⟨F,E[a,b]E[c,d]G⟩ = ⟨E[a,b]F,E[c,d]G⟩
= ⟨F,G⟩ .

(vi) and (vii) follow by combining Lemmas 5.1 (iii) and B.20 (v) and (vi). Repeated
application of (vii) shows that (viii) holds for G a polynomial. That it holds for arbitrary
bounded measurable G follows from the measurable functional calculus [RS72].

We can now give the

Proof of Theorem 5.3. Throughout this proof, we drop tensor products with the iden-
tity in our notation. Further, for the convenience of the reader, we explicitly state in
which Hilbert space the inner product is taken.

Let

ηK(x) =

{︄
min{x,K} if x ≥ 0,

max{x,−K} if x < 0.

Further, let φK(v) = ηK(φ(v)), ϕE,K(jtv) = ηK(ϕE(jtv)) and ˜︁HK(λ, µ) as in (5.2) with φ

replaced by φK . Since ˜︁HK(λ, µ) is lower-semibounded and φK is bounded, we can use
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the Trotter product formula (cf. Theorem A.66) and Lemma 5.8 (vi) and (vii) (where the
exponential is considered on the eigenspaces of σx) to obtain

eT
⟨︂
Φ, e−T

˜︁HK(λ,µ)Ψ
⟩︂
H
= lim

N→∞

⟨︂
Φ,
(︂
e−

T
N
dΓ(ω)e−

T
N
σze−

T
N
σx⊗(λφK(v)+µ)

)︂n
Ψ
⟩︂
H

= lim
N→∞

⟨︄
Φ,

N∏︂
k=1

(︂
J∗
(k−1) T

N
Jk T

N
e−

T
N
σze−

T
N
σx⊗(λφK(v)+µ)

)︂
Ψ

⟩︄
H

= lim
N→∞

⟨︄
J0Φ,

N∏︂
k=1

(︂
Jk T

N
e−

T
N
σze−

T
N
σx⊗(λφK(v)+µ)J∗

k T
N

)︂
JTΨ

⟩︄
C2⊗F(E )

= lim
N→∞

⟨︄
J0Φ,

N∏︂
k=1

(︃
Ek T

N
e−

T
N
σze

− T
N
σx⊗(λφK(j

k T
N
v)+µ)

Ek T
N

)︃
JTΨ

⟩︄
C2⊗F(E )

.

Now we make iterated use of Lemma 5.8 (v). Explicitly, by Lemma 5.8 (viii), the vector
to the left of any Ek T

N
, i.e.,

k−1∏︂
j=0

(︃
Ej T

N
e−

T
N
σze

− T
N
σx⊗(λφK(j

k T
N
v)+µ)

Ej T
N

)︃
J0Φ ∈ ran(E(k−1) T

N
),

e−
T
N
σze

− T
N
σx⊗(λφK(j

k T
N
v)+µ)

k−1∏︂
j=0

(︃
Ej T

N
e−

T
N
σze

− T
N
σx⊗(λφK(j

k T
N
v)+µ)

Ej T
N

)︃
J0Φ ∈ ran(Ek T

N
)

is an element of ran(E[0,k T
N
]). Equivalently, the vector to the right is an element of

ran(E[k T
N
,T ]). Hence, we can drop all the factors Ek T

N
. Then, using Lemma B.30 and (5.7),

we derive

eT
⟨︂
Φ, e−T

˜︁HK(λ,µ)Ψ
⟩︂
H
= lim

N→∞

⟨︄
J0Φ,

N∏︂
k=1

(︃
e−

T
N
σze

− T
N
σx⊗(λφK(j

k T
N
v)+µ)

)︃
JTΨ

⟩︄
C2⊗F(E )

= lim
N→∞

⟨︄
I0Φ,

N∏︂
k=1

(︃
e−

T
N
σze

− T
N
σx⊗(λϕE,K(j

k T
N
v)+µ)

)︃
ITΨ

⟩︄
C2⊗L2(QE)

.

Hence, we can apply Lemma 5.6 to obtain

⟨︂
Φ, e−T

˜︁HK(λ,µ)Ψ
⟩︂
H
= lim

N→∞
EXEE

[︄
I0Φ(X0)e

− T
N

N∑︁
k=1

(︃
λϕE,K(j

k T
N
v)+µ

)︃
X

k T
N ITΨ(XT )

]︄
. (5.11)

Since ηK is Lipschitz continuous, it follows that t ↦→ ϕE,K(jtv) is an L2(QE)-valued contin-
uous function. Thus, the sum in the exponential in (5.11) converges to an L2(QE)-valued
Riemann integral. By possibly going over to a subsequence the Riemann sum converges
µX ⊗ µE-almost everywhere. Thus, it follows by dominated convergence that⟨︂

Φ, e−T
˜︁HK(λ,µ)Ψ

⟩︂
H
= EXEE

[︂
I0Φ(X0)e

−λ
∫︁ T
0 ϕE,K(jtv)Xtdt−µ

∫︁ T
0 XtdtITΨ(XT )

]︂
. (5.12)

(Alternatively, the convergence could also be deduced by estimating the expectation.)
Since φ(v) is bounded with respect to dΓ(ω) (cf. Lemma B.22), the spectral theorem
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implies that ˜︁HK(λ, µ) converges to ˜︁H(λ, µ) in the strong resolvent sense and hence the
left hand side of above equation converges to

⟨︂
Φ, e−T

˜︁H(λ,µ)Ψ
⟩︂

as K → ∞. On the
other hand, using that for µX ⊗ µE-almost every (x, q) ∈ Df × QE the function t ↦→
(ϕE,K(jtv))(q)xt is Lebesgue integrable, see Remark 5.4, it follows that

∫︁ T
0
ϕE,K(jtv)xtdt

converges to
∫︁ T
0
ϕE(jtv)xtdt almost everywhere. Hence, the right hand side of (5.12)

converges to
EXEE

[︂
I0Φ(X0)e

−λ
∫︁ T
0 ϕE(jtv)Xtdt−µ

∫︁ T
0 XtdtITΨ(XT )

]︂
as K → ∞, by the dominated convergence theorem. For the majorant, we use that by
Jensen’s inequality

exp(−λ
∫︂ T

0

ϕE,K (jtv)Xtdt) ≤
1

T

∫︂ T

0

exp(−λTϕE,K (jtv)Xt)dt

≤ 1

T

∫︂ T

0

[exp(−λTϕE (jtv)) + exp(λTϕE (jtv))]dt,

where in the second line we used max{ex, 1} ≤ ex + e−x. Now the right hand side is
integrable over QE-space by (5.8). This proves the statement.

We can now prove Theorem 1.20. Especially, recall how the interaction function W was
defined from ω and v in (1.9).

Proof of Theorem 1.20. First, observe that with U as in (5.1) we have (cf. Defini-
tion B.14 and Lemma B.30)

(It(U
∗ ⊗ 1)Ω↓)(x) = 1 for x = ±1 and t ∈ R.

Hence, Theorem 5.3 implies

e−T
⟨︁
Ω↓, e

−TH(λ,µ)Ω↓
⟩︁
= EX

[︃
EE

[︃
exp

(︃
−λ
∫︂ T

0

ϕE (jtv)Xtdt

)︃]︃
exp

(︃
−µ
∫︂ T

0

Xtdt

)︃]︃
.

(5.13)
Now, assume x is some path of X. By (5.8), we have

EE

[︃
exp

(︃
−λ
∫︂ T

0

ϕE (jtv)xtdt

)︃]︃
=
λ2

2
EE

[︄(︃∫︂ T

0

ϕE (jtv)xtdt

)︃2
]︄
. (5.14)

Then Fubini’s theorem and the definition of the R-indexed Gaussian process (cf. Defini-
tion B.27 (v)) yield

EE

[︄(︃∫︂ T

0

ϕE (jtv)xtdt

)︃2
]︄
=

∫︂ T

0

∫︂ T

0

EE [ϕE(jtv)ϕE(jsv)]xtxsdtds

=

∫︂ T

0

∫︂ T

0

⟨jtv, jsv⟩xtxsdtds

= 2

∫︂ T

0

∫︂ T

0

W (t− s)xtxsdtds,

(5.15)

where we used j∗s jt = e−|t−s|ω (cf. Lemma 5.1). Combining (5.13), (5.14) and (5.15) proves
the statement.

82



5.2. Ground State Energy of the Spin Boson Model

5.2. Ground State Energy of the Spin Boson Model

In this section, we study the ground state energy of the spin boson model

E(λ, µ) = inf σ(H(λ, µ)). (5.16)

In particular, we study the derivatives of the ground state energy with respect to the
magnetic coupling strength µ. We remark that these derivatives can be used to obtain
asymptotic expansions with respect to the magnetic coupling. Our arguments are inspired
by [Dim74, Sim79].

For the investigation, we use the formula

E(λ, µ) = − lim
T→∞

1

T
ln
⟨︁
Ω↓, e

−TH(λ,µ)Ω↓
⟩︁
, (5.17)

which we justify below using positivity arguments. If the ground state energy is isolated
from the rest of the spectrum, we can show that differentiation can be interchanged with
the limit T → ∞, by using spectral analysis. Then, using the formula from Theorem 1.20,
we can express the derivatives of the ground state energy in terms of the correlation
functions from Section 4.2. The corresponding formulas are collected in Theorem 1.25
and Corollary 5.12.

Lemma 5.9. Equation (5.17) holds for all λ, µ ∈ R.

Proof. By Definition 1.18 and (5.2), we have

e−T
⟨︁
Ω↓, e

−TH(λ,µ)Ω↓
⟩︁
=
⟨︂
(U ⊗ 1)∗Ω↓, e

−T ˜︁H(λ,µ)(U ⊗ 1)∗Ω↓

⟩︂
.

Now let Θ be the natural isomorphism C2 ⊗ F → L2({1, 2} × Q) corresponding to the
decomposition L2(Rd) = L2

R(Rd)⊕ iL2
R(Rd), cf. Lemma B.30, i.e.,

Θ(α⊗ ψ) =
(︁
(i, q) ↦→ αiΘL2

R(Rd)(ψ)(q)
)︁
. (5.18)

Then Θ(U⊗1)∗Ω↓ = 1/
√
2 is strictly positive. Hence, if Θe−T ˜︁H(λ,µ)Θ∗ is positivity preserv-

ing, the statement follows by Lemma A.113. That statement is contained in Lemma 6.2
and we present a proof there.

From here, we easily obtain the

Proof of Corollary 1.24. By the definition (1.10) and Theorem 1.20, we have

ZT (λ, µ) = e−T
⟨︁
Ω↓, e

−TH(λ,µ)Ω↓
⟩︁
. (5.19)

Hence, the statement follows from Lemma 5.9.

The central statement of this section is that (5.17) carries over to the derivatives with re-
spect to µ if H(λ, µ) has a spectral gap, i.e., E(λ, µ) is separated from the set σ(H(λ, µ))\
{E(λ, µ)}. It is known this especially holds for H(λ, 0) if ess infk∈Rd ω(k) > 0 [AH95], see
also Section 6.2.
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Theorem 5.10. Let λ, µ0 ∈ R and suppose H(λ, µ0) has a spectral gap. Then, for all
n ∈ N, the following derivatives exist and satisfy

∂nµE(λ, µ)
⃓⃓
µ=µ0

= lim
T→∞

− 1

T
∂nµ ln

⟨︁
Ω↓, e

−TH(λ,µ)Ω↓
⟩︁⃓⃓⃓⃓
µ=µ0

.

In the proof of Theorem 5.10, we will utilize the following lemma. The main argument of
the proof further elaborates on above positivity argument and is deferred to Section 6.1.

Lemma 5.11. Let λ, µ ∈ R. If E(λ, µ) is an eigenvalue of H(λ, µ), then the corresponding
eigenspace is non-degenerate. In this case, if ψλ,µ is a ground state of H(λ, µ), then
⟨ψλ,µ,Ω↓⟩ ≠ 0.

Proof. By the Perron-Frobenius-Faris theorem (Theorem A.112) as well as Lemma 6.2, if
E(λ, µ) is an eigenvalue of H(λ, µ), then there exists a strictly positive ϕλ,µ ∈ L2({1, 2}×
QL2

R(Rd)) such that the eigenspace corresponding to E(λ, µ) is spanned by Θ(U ⊗ 1)∗ϕλ,µ,
where Θ again is the defined as in (5.18). Since Θ(U ⊗ 1)∗Ω↓ is (strictly) positive, this
proves the statement.

We now give the

Proof of Theorem 5.10. As in Theorem 1.25, we denote by Πn the set of all partitions
of the set {1, . . . , n} for the remainder of this section.

Throughout this proof, we fix λ, µ0 as in the statement of the theorem. Further, for
compact notation, we write

h(µ) = H(λ, µ), e(µ) = E(λ, µ) and eT (µ) = − 1

T
ln
⟨︁
Ω↓, e

−Th(µ)Ω↓
⟩︁
.

Hence, we want to prove

e(n)(µ0) = lim
T→∞

e
(n)
T (µ0) for all n ∈ N,

where (·)(n) as usually denotes the n-th derivative.
We denote the spectral gap of h(µ) by δ > 0, i.e., dist({e(µ)}, σ(h(µ))\{e(µ)}) = δ. By

standard perturbation theory (cf. Theorem A.46), the spectral gap implies that µ ↦→ e(µ)
is analytic in a neighborhood of µ0. Hence, we can choose an ε > 0 such that

|e(µ)− e(µ0)| ≤
δ

4
and inf(σ(h(µ))\e(µ)) ≥ e(µ0)+

3

4
δ for µ ∈ (µ0−ε, µ0+ε), (5.20)

where the second inequality can be obtained using a Neumann series, cf. (5.22), or alter-
natively it can be obtained from the lower boundedness of Lemma 1.13 and a compactness
argument involving that the set of (µ, z), for which h(µ)−z is invertible, is open, see [RS78,
Theorem XII.7]. Henceforth, let µ ∈ (µ0 − ε, µ0 + ε). Then, by (5.20) and Lemma A.58,
we can write the ground state projection P (µ) of h(µ) as

P (µ) =
1

2πi

∫︂
Γ0

1

z − h(µ)
dz,
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Γ0

R

iR

Γ1

0

Figure 4: Illustration of the curves Γ0 and Γ1 (blue). The spectrum of h(µ) is displayed
in red.

where Γ0 is a curve encircling the point e(µ0) counterclockwise at a distance δ/2. Further,
let

γ0 : [−1,+1] → C, t ↦→ e(µ0) +
δ

2
− it,

γ± : [0,∞) → C, t ↦→ e(µ0) +
δ

2
± i+ t

and define the curve Γ1 = −γ+ + γ0 + γ− surrounding the set σ(h(µ0)) \ {e(µ0)} (see
Fig. 4). In view of (5.20), we can define

QT (µ) :=
1

2πi

∫︂
Γ1

eT (e(µ)−z)

z − h(µ)
dz,

where the integral is understood as a Riemann integral with respect to the operator
topology. The spectral theorem for the self-adjoint operator h(µ) and Cauchy’s integral
formula yield

e−T (h(µ)−e(µ)) = P (µ) +QT (µ). (5.21)

For z ∈ ρ(h(µ0)) and µ in a neighborhood of µ0 we have

1

z − h(µ)
=

1

z − h(µ0)

∞∑︂
k=0

(︃
(µ− µ0)(σx ⊗ 1)

1

z − h(µ0)

)︃k
. (5.22)

Using this expansion and the following bounds obtained from (5.20)

∥(z − h(µ0))
−1∥ ≤ 2

δ
for z ∈ ran Γ0 ∪ ran Γ1,

|eT (e(µ)−z)| ≤

{︄
e−

δ
4
T for z ∈ ran γ0,

e−
δ
4
T e−Tt for z = γ±(t), t ∈ [0,∞),

(5.23)

we see that P (µ) and QT (µ) are real analytic for µ in a neighborhood of µ0 and, moreover,
that the integrals and derivatives with respect to µ can be interchanged due to the uniform
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convergence of the integrand on the curves Γ0 and Γ1. Hence, by virtue of (5.21), we see
that the function µ ↦→

⟨︁
Ω↓, e

−h(µ)Ω↓
⟩︁

is real analytic on (µ0−˜︁ε, µ0+˜︁ε) for ˜︁ε ∈ (0, ε) small
enough.

Let ψµ be a normalized ground state of h(µ). Then, by Lemma 5.11, we find

⟨Ω↓, P (µ)Ω↓⟩ = | ⟨ψµ|Ω↓⟩ |2 > 0. (5.24)

Further, by the spectral theorem and (5.20)

0 ≤ ⟨Ω↓, QT (µ)Ω↓⟩ = e−
Tδ
2

∫︂ ∞

e(µ)+ 1
2
δ

eT (e(µ)+
1
2
δ−λ)d⟨Ω↓,Ph(µ)(λ)Ω↓⟩ ≤ e−

Tδ
2 ∥Ω↓∥2. (5.25)

By (5.21) and the definition of eT (µ), we have

e(µ)− eT (µ) =
1

T
ln (⟨Ω↓, P (µ)Ω↓⟩+ ⟨Ω↓, QT (µ)Ω↓⟩) for µ ∈ (µ0 − ˜︁ε, µ0 + ˜︁ε).

Hence, we can calculate the n-th derivative of the expression on the left hand side at
µ = µ0, by taking the n-th derivative on the right hand side. Using the Faà di Bruno
formula,1 we find

e(n)(µ)− e
(n)
T (µ)

=
−1

T

∑︂
P∈Πn

(−1)|P|(|P| − 1)!

⟨Ω↓, (P (µ) +QT (µ))Ω↓⟩|P|

∏︂
B∈P

⟨︂
Ω↓, (P

(|B|)(µ) +Q
(|B|)
T (µ))Ω↓

⟩︂
.

By (5.24) and (5.25), the first factor is uniformly bounded in T . Hence, it remains to
prove that

⟨︂
Ω↓, Q

(k)
T (µ0)Ω↓

⟩︂
is uniformly bounded in T for all k = 1, . . . , n. Therefore, we

explicitly calculate the derivative of QT (µ) at µ = µ0. This is done by interchanging the
integral with the derivative, which we justified above. Note that, by the series expansion
(5.22), we have

∂kµ(z − h(µ))−1 =
k!

z − h(µ)

(︃
σx

1

z − h(µ)

)︃k
for k ∈ N0.

Again using Faà di Bruno’s formula (5.26) and the Leibniz rule, this yields

Q
(k)
T (µ0) =

1

2πi

k∑︂
ℓ=0

(︃
k

ℓ

)︃∫︂
Γ1

∂ℓµ(e
T (e(µ)−z))∂k−ℓµ (z − h(µ))−1dz

⃓⃓⃓⃓
µ=µ0

=
1

2πi

k∑︂
ℓ=0

(︃
k

ℓ

)︃
(k − ℓ)!

×

(︄∑︂
P∈Πℓ

∏︂
B∈P

(Te(|B|)(µ0))

)︄
⏞ ⏟⏟ ⏞

=:Pk,ℓ(T )

∫︂
Γ1

eT (e(µ0)−z)
1

z − h(µ0)

(︃
σx

1

z − h(µ0)

)︃k−ℓ
dz⏞ ⏟⏟ ⏞

=:Ik,ℓ(T )

.

1We use the following version of the Faà di Bruno formula, which can be found in [Har06].
Let I ⊂ R and Ω ⊂ Rm be open and let f : J → R and g : Ω → J be n-times continuously
differentiable functions. Then f ◦ g : Ω → R is n-times continuously differentiable and for any choice
of k1, . . . , kn ∈ {1, . . . ,m}

∂n

∂xk1
· · · ∂xkn

(f ◦ g) =
∑︂

P∈Πn

(f (|P|) ◦ g)
∏︂
B∈P

∂|B|g∏︁
j∈B ∂xkj

. (5.26)
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Applying the bounds (5.23), we find

∥Ik,ℓ(T )∥ ≤
(︃
2

δ

)︃k−ℓ
e−

δ
4
T

[︃∫︂ 1

−1

1dt+ 2

∫︂ ∞

0

e−Ttdt

]︃
.

Since Pk,ℓ(T ) only grows polynomially in T , this implies ∥Q(k)
T (µ0)∥

T→∞−−−→ 0 and especially
proves

⟨︂
Ω↓, Q

(k)
T (µ0)Ω↓

⟩︂
is uniformly bounded in T .

We can now give the

Proof of Theorem 1.25. First, we recall the definition of ZT (λ, µ) in (1.10) and the no-
tation j·oT,λ,µ from (1.11). By the dominated convergence theorem, one sees that ZT (λ, µ)
is infinitely often differentiable in µ and has the derivatives

∂nµZT (λ, µ) = (−1)nEX

[︃(︃∫︂ T

0

Xtdt

)︃n
exp

(︃
λ2
∫︂ T

0

∫︂ T

0

W (t− s)XtXsdsdt−µ
∫︂ T

0

Xtdt

)︃]︃
= (−1)nZT (λ, µ) n

(︃∫︂ T

0

Xtdt

)︃n
s
T,λ,µ

. (5.27)

Further, first using Theorem 5.10 and the Faà di Bruno formula (5.26) to calculate the
derivatives of the logarithm yields

∂nµE(λ, µ) = − lim
T→∞

1

T

∑︂
P∈Πn

(−1)|P|−1(|P| − 1)!

(⟨Ω↓, e−TH(λ,µ)Ω↓⟩)|P|

∏︂
B∈P

∂|B|
µ

⟨︁
Ω↓, e

−TH(λ,µ)Ω↓
⟩︁

= − lim
T→∞

1

T

∑︂
P∈Πn

(−1)|P|−1(|P| − 1)!

(ZT (λ, µ))|P|

∏︂
B∈P

∂|B|
µ ZT (λ, µ),

(5.28)

where we inserted the identity (5.19) in the last line (which in turn follows from Theo-
rem 1.20). Combining (5.27) and (5.28) proves the statement.

To conclude this chapter, we express derivatives of the ground state energy in terms of
the so-called Ursell functions [Per75] or cumulants. This allows us to use correlation
inequalities to prove bounds on derivatives. In fact, we will use this in the next Chapter 6
to estimate the second derivative with respect to the magnetic field at zero. Given random
variables Y1, . . . , Yn on the measure space of the jump process Xt, we define the Ursell
function

un(Y1, . . . , Yn) =
∂n

∂h1 · · · ∂hn
ln nexp

(︄
n∑︂
j=1

hiYi

)︄
s
T,λ,µ

⃓⃓⃓⃓
⃓⃓
hi=0

, (5.29)

where the expectation value j·oT,λ,µ is defined as in (1.11).

Corollary 5.12. Let λ, µ ∈ R and suppose H(λ, µ) has a spectral gap. Then, for all
n ∈ N, the following derivatives exist and satisfy

∂nµE(λ, µ) = − lim
T→∞

1

T

∫︂
[0,T ]n

un(Xs1 , . . . , Xsn)d(s1, . . . , sn).

87



5. FKN Formula for the Spin Boson Model with External Magnetic Field

Proof. Using the multivariate Faà die Bruno formula (5.26) and the definition of the Ursell
functions (5.29), we find

un

(︃∫︂ T

0

Xs1ds1, . . . ,

∫︂ T

0

Xsndsn

)︃
=
∑︂
P∈Πn

(−1)|P|+n(|P| − 1)!
∏︂
B∈P

n
(︃∫︂ T

0

Xtdt

)︃|B|

s
T,λ,µ

.

Now, the Ursell functions are multilinear, cf. [Per75, Section 11], and by the dominated
convergence theorem we can hence exchange the integrals with the expectation value, i.e.,

un

(︃∫︂ T

0

Xs1ds1, . . . ,

∫︂ T

0

Xsndsn

)︃
=

∫︂ T

0

· · ·
∫︂ T

0

un (Xs1 , . . . , Xsn) ds1 · · · dsn.

Inserting this into Theorem 1.25 finishes the proof.
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6. Existence of Ground States
in the Spin Boson Model

In this chapter, we prove Theorem 1.14. The proof essentially consists of three ingredients.
First, we prove the existence of a ground state under the assumption that the bosons are
massive. Second, assuming a resolvent bound holds, we prove these ground states are
embedded into a compact subset of C2⊗F , which is independent of the boson mass. This
allows us to take the mass to zero and obtain a ground state for the massless spin boson
Hamiltonian in the limit. Third, we then use the results from Chapters 4 and 5 to prove
the resolvent bound and hence conclude the proof of Theorem 1.14.

The chapter is structured as follows. In the preliminary Section 6.1, we will prove
that a ground state of the spin boson Hamiltonian is unique if it exists, independent of
a hypothetical boson mass. Then, in Section 6.2, we will prove that the ground state
energy of the massive spin boson Hamiltonian is isolated from the essential spectrum and
hence a unique ground state exists. Assuming the aforementioned resolvent bound holds,
we derive infrared properties of these ground states in Section 6.3. We can then use
these infrared bounds to construct a compact set containing ground states of the massive
model for all boson masses. This allows us to prove existence of ground sates under this
assumption in Section 6.4. We then combine the results from the previous chapters to
prove that the resolvent bound holds under Hypothesis SBE and hence conclude the proof
of Theorem 1.14.

Throughout this chapter, we assume Hypothesis SB0 holds and drop the lower index
SB of the operators HSB(λ) and H(m)

SB (λ, µ).

6.1. Uniqueness of Ground States

In this section, we prove that ground states of the spin boson model with external magnetic
field are unique.

Theorem 6.1. Let λ, µ ∈ R. If H(m)(λ, µ) has a ground state, then it is unique.

Proofs of this statement for the case µ = 0 can, for example, be found in [HH11b, DM20b].
We extend them to the case µ ̸= 0.

Our proof uses the Perron-Frobenius-Faris theorem (Theorem A.112) and the positivity
of the operator ˜︁H(m)(λ, µ) as defined in (5.2). Theorem 6.1 is a corollary of the following
statement.

Lemma 6.2. Let Θ be the natural unitary C2 ⊗ F → L2({1, 2} × Q) corresponding to
the decomposition L2(Rd) = L2

R(Rd)⊕ iL2
R(Rd), cf. Lemma B.30 and (5.18). Then, for all

t > 0 and λ, µ ∈ R, the operator Θe−t
˜︁H(m)(λ,µ)Θ∗ is positivity improving.
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6. Existence of Ground States in the Spin Boson Model

Proof. We want to apply the perturbative argument from Lemma A.111.
Let us first consider

e−TΘ
˜︁H(m)(0,µ)Θ∗

= e−T ((1−σx)+µσz)e
−T (Θ

L2
R(Rd)dΓ(ω)Θ

∗
L2
R(Rd)

)
. (6.1)

Note that the first factor in (6.1) only acts on the variables {1, 2}, and the second factor
only acts on the variables in QL2

R(Rd). The first factor on the right hand side of (6.1) can
be calculated as

exp (−T ((1− σx) + µσz)) =

(︃
e−(µ+1)T eT

e(µ+1)T e−T

)︃
and hence is positivity improving on L2({1, 2}), since all matrix elements are strictly
positive. Further, the second factor on the right hand side of (6.1) is positivity improving
by Lemmas B.30 and B.32 and Theorem A.112, since it has the unique strictly positive
ground state eigenvector ΘL2

R(Rd)Ω = 1. Hence, the operator e−TΘ ˜︁H(m)(0,µ)Θ∗ is positivity
improving for all T > 0.

Now, we consider the operator

V = Θ(σx ⊗ φ(v))Θ∗.

As a multiplication operator, it is obvious that setting VΛ = χ{|·|≤Λ}(V )V for Λ > 0 the
operator e−tVΛ is positivity preserving and satisfies ⟨f, e−tVΛg⟩ = 0 for all f, g ∈ L2

+(Rd)
with ⟨f, g⟩ = 0.

Since V is also infinitesimally ˜︁H(m)(0, µ)-bounded, by Lemma B.22, the statement now
follows from Lemma A.111.

We now easily obtain the

Proof of Theorem 6.1. Let U be defined as in (5.1). Then, by the construction (5.2),
E(λ, µ) = inf σ(H(m)(λ, µ)) is an eigenvalue of H(m)(λ, µ) with eigenvector ψ if and only if
1+E(λ, µ) is an eigenvalue of ˜︁H(m)(λ, µ) with eigenvector (U⊗1)ψ. Hence, the statement
follows from Theorem A.112 and Lemma 6.2.

6.2. Ground States in the Massive Spin Boson Model

In this section, we consider the massive spin boson model. We prove that there exists a
ground state isolated from the essential spectrum for all values of the magnetic field. This
is, in fact, stronger than the statement we need for our proof, since we therein only need
the case µ = 0.

We will from now write

E(m)(λ, µ) = inf σ(H(m)(λ, µ)) and mω = ess inf
k∈Rd

ω(k). (6.2)

Here, mω can be understood to be the boson mass.
The central statement of this section is the following theorem.

Theorem 6.3. If mω > 0, then E(m)(λ, µ) is a simple eigenvalue of H(m)(λ, µ) isolated
from the essential spectrum for any values of λ, µ ∈ R.
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6.2. Ground States in the Massive Spin Boson Model

Remark 6.4. The statement for the case µ = 0 can, for example, be obtained by combining
the result in [AH95] with Theorem 6.1.

We obtain the above theorem as a corollary of the following.

Theorem 6.5. For all λ, µ ∈ R, we have

inf σess(H
(m)(λ, µ)) ≥ E(m)(λ, µ) +mω.

Remark 6.6. The statement can be seen as one half of the HVZ theorem for the spin boson
model. Combined with a similar statement to the one in Proposition 3.5, it is possible to
prove

σess(H
(m)(λ, µ)) = [E(m)(λ, µ) +mω,∞).

Here, we restrict our attention to the proof of the lower bound.

A prominently found proof of HVZ theorems in the literature uses localization estimates.
Heuristically, the argument therein can be seen as follows: One first confines the bosons
to a ball of radius L in position space. As in the typical intuition of quantum mechanics,
confined particles have discrete spectrum and to observe the essential spectrum one needs
the presence of an unconfined particle. In the limit L→ ∞, the confined system behaves
like the full Hamiltonian and hence the essential spectrum starts, when one free boson
(which has at least the energy mω) is added to the system.

Applications of such localization techniques for the proof of HVZ theorems and hence
for the existence of a ground state in the case of massive bosons can, for example, be
found in [DG99, GLL01, Møl05, LMS07, HS20].

However, the use of localization estimates comes with a small downside. Explicitly,
to bound the error terms obtained by confining the system to a ball of radius L, one
needs to estimate the commutator of the multiplication operator ω and the Fourier mul-
tiplier η(−i∇/L), where η is a smooth and compactly supported function. Bounds on the
commutator can be easily obtained, when ω is Lipschitz-continuous (cf. [HS20, Proof of
Lemma 24]). However, for less regular choices of the dispersion relation, a generalization
of the standard localization approach does not seem obvious.

Hence, we here use a related but slightly different approach, which we learned from
[DM20b], allowing us to work directly in momentum space and without any regularity
assumptions on ω going beyond Hypothesis SB0. The proof needs several approximation
steps, so we start out with a convergence lemma.

Lemma 6.7. Let (ωk)k∈N and (vk)k∈N be chosen such that Hypothesis SB0 with ω = ωk
and v = vk is satisfied and define H(m)

k (λ, µ) to be the operator defined in Definition 1.18
with ω = ωk and v = vk. Further, assume

lim
k→∞

⃦⃦⃦ωk
ω

− 1
⃦⃦⃦
∞

= lim
k→∞

⃦⃦⃦⃦
ω

ωk
− 1

⃦⃦⃦⃦
∞

= lim
k→∞

⃦⃦
v − vk

⃦⃦
2
= lim

k→∞

⃦⃦
ω−1/2v − ω

−1/2
k vk

⃦⃦
2
= 0.

Then, for all λ, µ ∈ R, the operators H(m)
k (λ, µ) are uniformly bounded below and converge

to H(m)(λ, µ) in the norm resolvent sense.

Remark 6.8. If ω and ωk are uniformly bounded above and below by some positive con-
stants, then the uniform convergence assumptions are easily seen to be equivalent to
∥ωk − ω∥∞

k→∞−−−→ 0.

91



6. Existence of Ground States in the Spin Boson Model

Proof. Since the lower bound on H(m) is obtained from Lemma B.20 (vii) and the Kato-
Rellich theorem (Theorem A.45), the uniform lower bound follows easily from the L2-
convergence assumptions.

Writing ω∞ = ω and assuming f ∈ F (n) ∼= L2
s (Rn·d), we easily observe⃦⃦

dΓ(n)(ωk)f
⃦⃦
≤
⃦⃦⃦⃦
ωk
ωk′

⃦⃦⃦⃦
∞

⃦⃦
dΓ(n)(ωk′)f

⃦⃦
for k, k′ ∈ N ∪ {∞}

from Definition B.11 and Remark B.13. Hence, we find D(dΓ(ωk)) = D(dΓ(ω)) for all
k ∈ N, by Lemma B.15 (iii). Similarly, for ψ ∈ D(ω), we have

∥(dΓ(ωk)− dΓ(ω))ψ∥ ≤
⃦⃦⃦ωk
ω

− 1
⃦⃦⃦
∞
∥dΓ(ω)ψ∥ .

Further, observe that the assumptions easily imply⃦⃦
ω−1/2(v − vk)

⃦⃦
2

k→∞−−−→ 0.

Now, by Lemmas 1.19 and A.44,
⃦⃦
(B ⊗ dΓ(ω))(H(m) + i)−1

⃦⃦
is bounded for any choice of

the matrix B. Hence, using the resolvent identity (Lemma A.29) as well as the standard
bounds Lemmas A.63 and B.20 (vii), we find⃦⃦⃦⃦(︂

H
(m)
k + i

)︂−1

−
(︁
H(m) + i

)︁−1
⃦⃦⃦⃦
≤
⃦⃦⃦ωk
ω

− 1
⃦⃦⃦
∞

⃦⃦⃦
(1⊗ dΓ(ω))

(︁
H(m) + i

)︁−1
⃦⃦⃦

+ |λ|
⃦⃦
ω−1/2(vk − v)

⃦⃦
2
∥(σx ⊗ dΓ(ω))

(︁
H(m) + i

)︁−1 ∥

+ |λ|
⃦⃦
vk − v

⃦⃦
2

⃦⃦⃦
(σx ⊗ 1)

(︁
H(m) + i

)︁−1
⃦⃦⃦

k→∞−−−→ 0.

Proof of Theorem 6.5. It suffices to treat the case mω > 0, since the statement is
trivial otherwise. The proof has three steps and we fix λ, µ ∈ R throughout.

Step 1. We first prove the statement in a very simplified case: Assume M ⊂ Rd is a
bounded and measurable set, ωχM and vχM are simple functions on M and v = 0 almost
everywhere on M c.

Let Mk for k = 1, . . . , N be a disjoint partition of M into measurable sets such that
ω ↾Mk

and v ↾Mk
are constant for each k = 1, . . . , N . We define

V = span{χMk
: k = 1, . . . , N} ⊂ L2(Rd).

Since V is finite-dimensional, it is closed and we have the decomposition L2(Rd) = V⊕V⊥.
Observing that by the assumptions v ∈ V , we can define

T = σz ⊗ 1+ 1⊗ dΓ(ω) + σx ⊗ (λφ(v) + µ1) as operator on C2 ⊗F(V).

Combining the unitary map F = F(V ⊕ V⊥) → F(V) ⊗ F(V⊥) from Lemma B.23 with
the natural identification (see also Lemma 3.7)

F(V)⊗F(V⊥) ∼= F(V)⊕
∞⨁︂
n=1

F(V)⊗
(︁
V⊥)︁⊗sn

,
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6.2. Ground States in the Massive Spin Boson Model

we obtain a unitary U : C2 ⊗F → (C2 ⊗F(V))⊕
∞⨁︁
n=1

(C2 ⊗F(V))⊗
(︁
V⊥)︁⊗sn. An explicit

calculation then gives

UH(m)(λ, µ)U∗ = T ⊕
∞⨁︂
n=1

(︁
T ⊗ 1+ 1⊗ dΓ(n)(ω)

)︁
. (6.3)

Thus inf σ(T ) ≥ E(m)(λ, µ).
Now, assume γ ∈ σess(H

(m)(λ, µ)). Then, by Weyl’s criterion (Lemma A.37), there
exists a normalized sequence (ψn)n∈N weakly converging to zero such that

lim
n→∞

⃦⃦(︁
H(m)(λ, µ)− γ

)︁
ψn
⃦⃦
= 0. (6.4)

Inserting (6.4) into (6.3) and using ω ≥ mω almost everywhere, we find

γ ≥ E(m)(λ, µ) +mω +
⟨︁
S(U∗ψn)

(0), S−1T (U∗ψn)
(0)
⟩︁

for all n ∈ N, (6.5)

where S = (1⊗ dΓ(ω)). By (6.4), ∥S(U∗ψn)
(0)∥ is uniformly bounded in n.

We write

F (≤N)(V) =
N⨁︂
n=0

F (n)(V).

The assumption ω1 ≥ mω > 0 implies that

lim
N→∞

S−1T ↾F(≤N)(V)= S−1T.

Since F (≤N)(V) is finite-dimensional by construction S−1T ↾F(≤N)(V) has finite rank for any
N ∈ N and it follows that S−1T is compact, cf. Lemmas A.20 and A.21. Hence, applying
Lemma A.22, the last term on the right hand side of (6.5) converges to zero as n→ ∞.

This finishes the first step. ♢

Step 2. We now relax the condition that ω and v must be simple: Assume M ⊂ R is a
bounded measurable set, ωχM is bounded and v = 0 almost everywhere on M c.

By the simple function approximation lemma, we can pick a sequence (ωk)k∈N of simple
functions on M uniformly converging to ω. Outside of M , we set ωk equal to ω. Further,
w.l.o.g., we can assume that there exist constants a, b > 0 such that a ≤ ω, ωk ≤ b holds
on M , by the assumptions that mω > 0 and ω is bounded on M .

For given k ∈ N, let Mk,i, i = 1, . . . , Nk be a disjoint partition of M into measurable
sets such that ωk ↾Mk,i

is constant for all i = 1, . . . , Nk. Further, w.l.o.g, we can assume
that

min
i=1,...,Nk

diam(Mk,i)
k→∞−−−→ 0, (6.6)

where diam denotes the usual diameter of a bounded set. Then, we define a projection P
onto the simple functions with support in M by

Pkf =

Nk∑︂
i=1

χMk,i

vol(Mk,i)

∫︂
Mk,i

f(x)dx,

which can be easily verified to be well-defined for any f ∈ L2(Rd). If f is continuous and
compactly supported on M , then it is straightforward to verify Pkf

k→∞−−−→ f in L2-sense.
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6. Existence of Ground States in the Spin Boson Model

Since the continuous, compactly supported functions are dense in L2(M), this implies
s-lim
k→∞

Pk = 1L2(M) as operators on L2(M).
We now define

vk = ω
1/2
k Pk(ω

−1/2v)

and observe this directly implies ω−1/2
k v goes to ω−1/2v in L2-sense. Further, a simple

calculation yields

∥vk − v∥22 ≤
∫︂
M

|vk − ω
1/2
k ω−1/2v|2 +

∫︂
M

|ω1/2
k ω−1/2v − v|2

≤ b∥Pk(ω−1/2v)− ω−1/2v∥22 +
1

a
∥ω1/2

k − ω1/2∥∞∥v∥22.

By construction the right hand side goes to zero as k → ∞.
Hence, all assumptions of Lemma 6.7 are satisfied and the operatorsH(m)

k (λ, µ) obtained
by inserting ωk and vk into Definition 1.18 are uniformly bounded below and converge
to H(m)(λ, µ) in the norm resolvent sense. Further, ωk and vk by construction satisfy
the assumptions of Step 1. The statement now follows, since the uniform convergence of
ωk to ω implies mωk

converges to mω and the norm resolvent convergence and uniform
lower boundedness imply convergence of the ground state energy and the infimum of the
essential spectrum (cf. Lemma A.76). ♢

Step 3. We now move to the general case.
Let R > 0 and define

MR =
(︁
{k ∈ Rd : v(k) ̸= 0} ∩ {k ∈ Rd : ω(k) < R} ∩BR(0)

)︁
∪ {k ∈ Rd : v(k) = 0}.

Set vR = χMR
v. Then it is straightforward to verify that both vR and ω−1/2vR converge to

v and ω−1/2v in L2-sense, respectively. Hence, we can once more apply Lemma 6.7 to see
that H(m)

R (λ, µ) obtained by inserting ω and vR in Definition 1.18 is uniformly bounded
below and converges to H(m)(λ, µ) in the norm resolvent sense. Since, ω and vR also
satisfy the assumptions of Step 2, the statement follows due to Lemma A.76. ♢

We conclude this section with the

Proof of Theorem 6.3. By Theorem 6.5, we find E(m)(λ, µ) ∈ σd(H
(m)(λ, µ)). Hence,

the statement follows from the definition of the discrete spectrum (Definition A.36) and
Theorem 6.1.

6.3. Ground State Properties

We now want to consider massless bosons without an external magnetic field. In this
case, we want to approximate ω by an infrared-regular version.

We will work under the following hypothesis, which is dependent of the coupling con-
stant λ ∈ R. To that end, if (ωn)n∈N is a sequence of dispersion relations satisfying
Hypothesis SB0 with ω = ωn, we denote by Hn(λ) the spin boson Hamiltonian as defined
in Definition 1.11 with ω replaced by ωn.

Hypothesis SBR(λ). We assume Hypothesis SB0 and the following:
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6.3. Ground State Properties

(i) There exists α1 > 0 such that ω is locally α1-Hölder continuous.

(ii) ω(k)
|k|→∞−−−−→ ∞.

(iii) There exists ϵ > 0 such that ω−1/2v ∈ L2+ϵ(Rd).

(iv) There exists α2 > 0 such that sup
|p|≤1

∫︂
Rd

|v(k + p)− v(k)|√︁
ω(k)|p|α2

dk <∞.

(v) sup
|p|≤1

∫︂
Rd

|v(k)|√︁
ω(k)ω(k + p)

dk <∞.

(vi) There exists a decreasing sequence (ωn)n∈N of nonnegative measurable functions
ωn : Rd → R converging uniformly to ω and satisfying

– ωn is locally α1-Hölder continuous for all n ∈ N, where α1 is chosen as in (i),

– infk∈Rd ωn(k) > 0.

– We can choose normalized ground states ψλ,n of Hn(λ) such that there exists
a constant CR > 0 with

(Hn(λ)−En(λ)+ωn(k))−1ψλ,n ≤ CRω
−1/2
n (k) for all n ∈ N, k ∈ Rd. (6.7)

Remark 6.9. We note that the first two parts of (vi) are satisfied for the typical choice of
a massive boson dispersion relation

ωn =
√︁
m2
n + ω2, (6.8)

or also ωn = ω + mn, where (mn)n∈N is any sequence of positive numbers decreasing
monotonically to zero. The constantmn can be understood to be a boson mass. The result
we prove is, however, independent of the specific choice of ωn. Further, we emphasize that
we have already proved the existence of the ground states ψλ,n in Theorem 6.3. Hence,
the restricting assumption in (vi) is the resolvent bound (6.7).

Remark 6.10. The assumptions from Hypothesis SBE are contained in those of Hypoth-
esis SBR(λ), except for the parts Hypothesis SBE (ii) and (v), which are in turn easily
recognized to be the assumptions in Hypothesis SBF. In fact, we will use the FKN for-
mula, or more explicitly its implications for the derivative of the ground state energy
given in Theorem 1.25 and Section 5.2, to prove the resolvent bound (6.7) for all values
of λ smaller than the critical coupling constant in Theorem 1.14.

Throghout Section 6.3, we assume λ ∈ R is chosen such that Hypothesis SBR(λ) holds
without further mention. Further, from now on, we write

E(λ) = inf σ(H(λ)) and En(λ) = inf σ(Hn(λ)) for n ∈ N, λ ∈ R. (6.9)

In the next section, we prove the vectors ψλ,n are a minimizing sequence for the operator
Hn(λ). Then, in Section 6.3.2, we prove infrared bounds on expectation values w.r.t. ψλ,n,
which will be essential in the construction of a complex set containing ψλ,n for all n ∈ N.
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6. Existence of Ground States in the Spin Boson Model

6.3.1. Minimizing Sequence

In this section, we prove that (ψλ,n)n∈N is a minimizing sequence for H(λ). To that end,
we first note the following simple lemma.

Lemma 6.11. We have

(i) H(λ) ≤ Hn′(λ) ≤ Hn(λ) for n ≤ n′,

(ii) lim
n→∞

En(λ) = E(λ).

Proof. (i) follows from the monotonicity of the sequence (ωn) (cf. Hypothesis SBR(λ) (vi))
and Lemma B.15 (i). We set N = 1 ⊗ dΓ(1). Then, due to the uniform convergence of
(ωn), there is a sequence (Cn) ⊂ R+ satisfying Cn

n→∞−−−→ 0 and ωn ≤ ω + Cn. Hence,

dΓ(ωn) ≤ dΓ(ω) + CndΓ(1), which implies Hn(λ) ≤ H(λ) + CnN.

On the other hand, let ε > 0 and fix φε ∈ D(N) ∩ D(H0) with ∥φε∥ = 1 such that

⟨φε, H(λ)φε⟩ ≤ E + ε.

This is possible, since D(N) ∩ D(H0) is a core for 1 ⊗ dΓ(ω) and hence for H, by Lem-
mas B.15 (iii), B.22 and the Kato-Rellich theorem (Theorem A.45). Together with (i),
we obtain

E(λ) ≤ En(λ) ≤ ⟨φε, Hn(λ)φε⟩
≤ ⟨φε, H(λ)φε⟩+ Cn ⟨φε, Nφε⟩
≤ E(λ) + ε+ Cn ⟨φε, Nφε⟩

n→∞−−−→ E(λ) + ε.

Now, (ii) follows in the limit ε→ 0.

A main ingredient of our proof for existence of ground states is the following lemma.

Lemma 6.12. The sequence (ψλ,n)n∈N is minimizing for H(λ), i.e.,

0 ≤ ⟨ψλ,n, (H(λ)− E(λ))ψλ,n⟩
n→∞−−−→ 0.

Proof. We use Lemma 6.11 and find

0 ≤ ⟨ψλ,n, (H(λ)− E(λ))ψλ,n⟩ ≤ ⟨ψλ,n, (Hn(λ)− E(λ))ψλ,n⟩ = En(λ)−E(λ)
n→∞−−−→ 0.

6.3.2. Infrared Bounds

In this section, we derive essential bounds on the ground states ψλ,n which are uniform
in n ∈ N.

The first step is to connect the infrared behavior of ψλ,n to the resolvent bound (6.7).
This is done by a so-called pull-through formula, similar to the one stated in Proposi-
tion 3.2 and proved in Section 3.4. From (3.2), recall the definition of ak. Further, for
n ∈ N, we define the operator

Rλ,n(k) = (Hn(λ)− En(λ) + ωn(k))
−1 for k ∈ Rd, (6.10)
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which is bounded by Hypothesis SBR(λ) (vi), and the spectral theorem (or more precisely
Lemma A.63) directly yields

∥Rλ,n(k)∥ ≤ 1

ωn(k)
. (6.11)

In the statement of the pull-through formula, which is similar to [BFS98a, Gér00, DM20b],
we write ψλ,n = (ψλ,n,1, ψλ,n,2) in the sense of the natural isomorphism C2 ⊗ F ∼= F ⊕ F
and denote

akψλ,n = (akψλ,n,1, akψλ,n,2) and σxψλ,n = (σx ⊗ 1)ψλ,n = (ψλ,n,2, ψλ,n,1) . (6.12)

The pull-through formula for the spin boson model is the next lemma.

Lemma 6.13. Let n ∈ N. Then, for almost every k ∈ Rd, the vector akψn ∈ C2 ⊗F and

akψλ,n = −v(k)Rλ,n(k)σxψλ,n.

Proof. We again use the notation from Appendix B.6 and define the operators

H+ = σz + dΓ+(ω) + λσxφ+(v) on F+ ×F+,

H⊕ = σz + dΓ⊕(ω) + λσxφ⊕(v) on C (Rd)× C (Rd),

where in our notation the operators dΓ and φ act componentwise and the Pauli-matrices
act as usually on vectors. Using Lemmas B.37, B.39 and B.49 and that ψλ,n is a ground
state of Hn(λ), we find

(H⊕ − En(λ))Aψλ,n = A(Hn(λ)− En(λ))ψλ,n −Mvσxψλ,n = −Mvσxψλ,n.

Especially, there exists a zero-set N ⊂ Rd such that

(H⊕ − En(λ))Aψλ,n(k) = (H+ − En(λ))Aψλ,n(k) ∈ F for all k ∈ N c.

Since C2 ⊙Ffin(L
2(Rd)) (where ⊙ denotes the algebraic tensor product, Definition A.99)

is a core for 1 ⊗ dΓ(ω) (cf. Lemma B.15 (iii)), it is a core for H(λ) by the Kato-Rellich
theorem (Theorem A.45) and the set

Dk = {ϕ ∈ C2 ⊙Ffin(L
2(Rd)) : Rλ,n(k)ϕ ∈ Ffin(L

2(Rd))}

is dense in C2⊗F for any k ∈ N c. For k ∈ N c and ϕ ∈ Dk, using Lemma B.40, we obtain

⟨ϕ,Aψλ,n(k)⟩+ = ⟨(Hn(λ)− En(λ) + ωn(k))Rλ,n(k)ϕ,Aψλ,n(k)⟩+
= ⟨Rλ,n(k)ϕ, (H+ − En(λ) + ωn(k))Aψλ,n(k)⟩+
= ⟨Rλ,n(k)ϕ,−v(k)σxψλ,n(k)⟩+
= ⟨ϕ,−v(k)Rλ,n(k)σxψλ,n(k)⟩+ .

Combining this with Lemmas B.43 and B.48 finishes the proof.

We combine the pull-through formula with the resolvent bound (6.7).

Lemma 6.14. Let B1 = {x ∈ Rd : |x| ≤ 1}.
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6. Existence of Ground States in the Spin Boson Model

(i) For all n ∈ N and almost all k ∈ Rd, we have ∥akψλ,n∥ ≤ CR
|v(k)|√︁
ω(k)

.

(ii) There exist an α > 0 and a measurable function h : B1 × Rd → [0,∞) with

sup
p∈B1

∥h(p, ·)∥1 <∞

such that for all n ∈ N and almost all p ∈ B1 and k ∈ Rd

∥ak+pψλ,n − akψλ,n∥ ≤ |p|αh(p, k).

Proof. (i) follows from Lemma 6.13 and (6.7) as well as the monotonicity of (ωn)n∈N.
Let α1, α2 as in Hypothesis SBR(λ). Then, we set α = min{α1, α2} and

h̃(p, k) = max

{︄
|v(k + p)− v(k)|

|p|α
√︁
ω(k)

,
|v(k + p)|

ω(k)
√︁
ω(k + p)

}︄
.

By Hypothesis SBR(λ) (iv) and (v), h̃ satisfies the above statements on h. Further, using
the resolvent identity (Lemma A.29) and Lemma 6.13, we obtain

ak+pψλ,n − akψλ,n = v(k)Rλ,n(k)σxψλ,n − v(k + p)Rλ,n(k + p)σxψλ,n

= (v(k)− v(k + p))Rλ,n(k)σxψλ,n

+ v(k + p)(Rλ,n(k)−Rλ,n(k + p))σxψλ,n

= (v(k)− v(k + p))Rλ,n(k)σxψλ,n (6.13)
+ v(k + p)Rλ,n(k)(ωn(k + p)− ωn(k))Rλ,n(k + p)σxψλ,n. (6.14)

By (6.7) and Hypothesis SBR(λ) (iv), we find

|(6.13)| ≤ CR
|v(k + p)− v(k)|√︁

ω(k)
≤ CR|p|αh̃(p, k).

Further, the local α1-Hölder continuity of ωn yields there is C > 0 such that

|(6.14)| ≤ C|p|αh̃(p, k).

This proves the statement for the function h = (CR + C)h̃.

We use the above infrared bounds to derive an upper bound for the expectation values of
the boson number operator and the free field energy

N = 1⊗ dΓ(1) and Hf = 1⊗ dΓ(ω) (6.15)

with respect to the ground state ψλ,n.

Lemma 6.15. For all n ∈ N, we have ψλ,n ∈ D(N1/2) ∩ D(Hf) and the inequalities
⟨N1/2ψn, N

1/2ψn⟩ ≤ C2
R∥ω−1/2f∥2 and ⟨ψn, Hfψn⟩ ≤ C2

R∥f∥2.

Proof. The property ψλ,n ∈ D(Hf) is contained in the domain statement in Lemma 1.13.
The remaining statements follow from combining Lemmas 6.14 (i) and B.50.
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6.3. Ground State Properties

6.3.3. The Compactness Argument

In this section, we construct a compact set K ⊂ C2 ⊗F such that (ψλ,n)n∈N ⊂ K.
Let us begin with the definition of K. To that end, assume yi for i = 1, . . . , ℓ is the

position operator acting on ψ(ℓ) ∈ F (ℓ) as

ˆ︁yiψ(ℓ)(x1, . . . , xℓ) = xi
ˆ︃ψ(ℓ)(x1, . . . , xℓ), (6.16)

where ˆ︁· denotes the Fourier transform. For δ > 0, we now define a closed quadratic form
qδ acting on ϕ = (ϕ1, ϕ2) ∈ Q(qδ) ⊂ H with natural domain as

qδ(ϕ) = ⟨N1/2ϕ,N1/2ϕ⟩+
∑︂
ℓ∈N

s∈{1,2}

1

ℓ2

ℓ∑︂
i=1

⟨︁
ϕ(ℓ)
s , |yi|δϕ(ℓ)

s

⟩︁
+ ⟨H1/2

f ϕ,H
1/2
f ϕ⟩ , (6.17)

where N and Hf are defined as in (6.15). Further, we define

Kδ,C := {ϕ ∈ Q(qδ) : ∥ϕ∥ ≤ 1, qδ(ϕ) ≤ C} for C > 0. (6.18)

We first verify that the set Kδ,C is compact.

Lemma 6.16. For all δ, C > 0 the set Kδ,C is compact.

Proof. By definition, qδ is nonnegative. Hence, there exists a self-adjoint positive operator
T associated to qδ, cf. Theorem A.85. By Lemma A.95, KC is compact if and only if the
i-th eigenvalues of T obtained by the min-max principle ηi(T ) (cf. Definition A.94) tend
to infinity as i→ ∞.

To that end, we observe T preserves the ℓ-boson sectors C2 ⊗ F (ℓ) and define the
restriction Tℓ = T ↾C2⊗F(ℓ) . Now, since (ω + 1)(ℓ)(K) → ∞ as K → ∞ by Hypoth-
esis SBR(λ) (ii), we can apply Rellich’s criterion (Lemma A.96) and, combined with
Lemma A.95, lim

i→∞
ηi(Tℓ) = ∞ for all ℓ ∈ N0. Further, since Tℓ ≥ ℓ, we have ηi(Tℓ) ≥ ℓ by

definition and therefore lim
i→∞

ηi(T ) = ∞. This finishes the proof.

We need the following proposition to prove existence of ground states of H(λ).

Proposition 6.17. There are δ, C > 0, such that ψλ,n ∈ Kδ,C for all n ∈ N.

For the proof the following lemma is essential. To that end, for n ∈ N, s ∈ {1, 2} and
y, k ∈ Rd, we introduce the notation

ˆ︁
ψ

(ℓ)
λ,n,s(y) : (y1, . . . , yℓ−1) ↦→ ψ

(ℓ)
λ,n,s(y, y1, . . . , yℓ−1),

ψ
(ℓ)
λ,n,s(k) : (k1, . . . , kℓ−1) ↦→ ψ

(ℓ)
λ,n,s(k, k1, . . . , kℓ−1).

(6.19)

Due to the Fubini-Tonelli theorem, we have ˆ︁
ψ

(ℓ)
λ,n,s(y), ψ

(ℓ)
λ,n,s(k) ∈ L2(R(ℓ−1)d) for almost

every k, y ∈ Rd. Further, comparing with the definition (3.2), we observe

ψ
(ℓ)
λ,n,s(k) =

1√
ℓ+ 1

(akψλ,n,s)
(ℓ). (6.20)
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6. Existence of Ground States in the Spin Boson Model

Lemma 6.18. There exist δ > 0 and C > 0 such that for all p ∈ Rd and n, ℓ ∈ N,
s ∈ {1, 2} ∫︂

Rd

|1− e−ipy|2
⃦⃦⃦⃦
ˆ︁
ψ

(ℓ)
λ,n,s(y)

⃦⃦⃦⃦2
L2(R(ℓ−1)d)

dy ≤ C

ℓ+ 1
min

{︁
1, |p|δ

}︁
. (6.21)

We note that δ can be chosen as δ =
ϵα

1 + ϵ
, where the values α > 0 and ϵ > 0 are those

from Lemma 6.14 (ii) and Hypothesis SBR(λ) (iii), respectively.

Proof. That the left hand side of (6.21) is bounded by a constant C uniformly in p follows
easily due to the Fock space definition, since the Fourier transform preserves the L2-norm.
Hence, we can restrict our attention to the case |p| ≤ 1. We note that∫︂

Rd

|1− e−ipy|2
⃦⃦⃦⃦
ˆ︁
ψ

(ℓ)
λ,n,s(y)

⃦⃦⃦⃦2
L2(R(ℓ−1)d)

dy =

∫︂
Rd

∥ψ(ℓ)
λ,n,s(k + p)− ψ

(ℓ)
λ,n,s(k)∥

2dk

=
1

ℓ+ 1

∫︂
Rd

∥(ak+pψλ,n,s)(ℓ) − (akψλ,n,s)
(ℓ)∥2dk,

where we used (6.20). Let θ ∈ (0, 1) and write

w(p, k) = max

{︃
|v(k)|
ω(k)1/2

,
|v(k + p)|
ω(k + p)1/2

}︃
.

By Lemma 6.14, we have some C > 0 such that⃦⃦
(ak+pψλ,n,s)

(ℓ) − (akψλ,n,s)
(ℓ)
⃦⃦
≤ C|p|θαh(p, k)θw(p, k)1−θ.

For r, r′ > 1 with 1
r
+ 1

r′
= 1, we now use Young’s inequality bc ≤ br/r + cr

′
/r′ to obtain

a constant Cr > 0 with⃦⃦
(ak+pψλ,n,s)

(ℓ) − (akψλ,n,s)
(ℓ)
⃦⃦2 ≤ Cr|p|2θα

(︂
h(p, k)2θr + w(p, k)2(1−θ)r

′
)︂
. (6.22)

Set r = 1
2θ

. Then the first summand in (6.22) is integrable in k due to Lemma 6.14.
Further, the exponent of the second summand equals

2(1− θ)r′ = 2(1− θ)

(︃
1− 1

r

)︃−1

=
2(1− θ)

1− 2θ
.

Hence, we can choose θ > 0 such that
2(1− θ)

1− 2θ
= 2 + ϵ. By Hypothesis SBR(λ) (iii), it

follows that (6.22) is integrable in k and the proof is complete.

From here, we can prove an upper bound for the Fourier term in (6.17).

Lemma 6.19. Let δ > 0 be as in Lemma 6.18. Then there exists C > 0 such that for all
n, ℓ ∈ N and s ∈ {1, 2}∫︂

Rd·ℓ

ℓ∑︂
i=1

|xi|δ/2
⃓⃓⃓⃓
ˆ︁
ψ

(ℓ)
λ,n,s(x1, . . . , xℓ)

⃓⃓⃓⃓2
d(x1, . . . , xℓ) ≤ C.
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Proof. From Lemma 6.18, we know that there exists a finite constant C such that

∫︂
Rd

∫︂
Rd

|1− e−ipy|2∥ˆ︁ψ(ℓ)
λ,n,s(y)∥2

|p|δ/2
dy

dp

|p|d
≤ C

ℓ+ 1
.

After interchanging the order of integration and a change of integration variables q = |y|p,
we find

C

ℓ+ 1
≥
∫︂
Rd

∥ˆ︁ψ(ℓ)
λ,n,s(y)∥

2

∫︂
Rd

|1− e−ipy|2

|p|δ/2
dp

|p|d
dy

=

∫︂
Rd

∥ˆ︁ψ(ℓ)
λ,n,s(y)∥

2|y|δ/2
∫︂
Rd

|1− e−iqy/|y||2

|q|δ/2
dq

|q|d⏞ ⏟⏟ ⏞
=: c

dy ,

where c is nonzero and does not depend on y.

We can now conclude.

Proof of Proposition 6.17. Combine Lemmas 6.15 and 6.19.

6.4. Proof of Existence

We can now state and prove our existence result for the massless spin boson model.

Theorem 6.20. Assume λ ∈ R is chosen such that Hypothesis SBR(λ) holds. Then E(λ)
is a simple eigenvalue of H(λ).

Proof. Choose δ, C > 0 as in Proposition 6.17. Then, combining Lemma 6.16 and Proposi-
tion 6.17, we know there exists a subsequence (ψλ,nk

)k∈N, which converges to a normalized
vector ψλ,∞ ∈ Kδ,C . By construction and Lemma 1.13, we have

Kδ,C ⊂ D(H
1/2
f ) = D((H(λ)− E(λ))1/2).

Since any closed quadratic form is lower-semicontinuous, cf. Lemma A.81, Lemma 6.12
now yields

∥(H(λ)− E(λ))1/2ψλ,∞∥2 =
⟨︁
(H(λ)− E(λ))1/2ψλ,∞, (H(λ)− E(λ))1/2ψλ,∞

⟩︁
≤ lim inf

k→∞
⟨ψλ,nk

, (H(λ)− E(λ))ψλ,nk
⟩ = 0.

Hence, (H(λ)− E(λ))1/2ψλ,∞ = 0. This especially implies

(H(λ)− E(λ))1/2ψλ,∞ ∈ D((H(λ)− E(λ))1/2),

which in turn gives ψλ,∞ ∈ D(H(λ)), by Lemma A.61 (iii), and yields

H(λ)ψλ,∞ = E(λ)ψλ,∞.

The uniqueness now follows from Theorem 6.1 and the proof is complete.
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6. Existence of Ground States in the Spin Boson Model

To prove Theorem 1.14, we now need to verify that the assumptions of Hypothesis SBR(λ)
are fulfilled for all λ sufficiently small. To that end, we from now assume Hypothesis SBE
holds. Especially, we note that this implies all assumptions from Hypothesis SBF and
Hypothesis SBR(λ) are fulfilled, except for Hypothesis SBR(λ) (vi). As described in Re-
mark 6.9, we can now choose a sequence (ωn)n∈N such that Hypothesis SBF is satisfied
with ω = ωn and all assumptions excluding (6.7) from Hypothesis SBR(λ) (vi) are satis-
fied. Hence, if we can prove (6.7) holds under these assumptions for λ as in Theorem 1.14,
we are done.

The first step into this direction is the following implication of Theorem 1.25. We
denote

E(m)
n (λ, µ) = inf σ(H(m)

n (λ, µ)) for λ, µ ∈ R, n ∈ N. (6.23)

Further, we define Wn similar to (1.9), with ω replaced by ωn. In the same way as (1.10)
and (1.11), we hence define

__Y __n,T,λ =
EX

[︃
Y exp

(︃
λ2
∫︂ T

0

∫︂ T

0

Wn(t− s)XtXsdtds

)︃]︃
EX

[︃
exp

(︃
λ2
∫︂ T

0

∫︂ T

0

Wn(t− s)XtXsdtds

)︃]︃ , (6.24)

where we only consider the case µ = 0.

Lemma 6.21. For all λ ∈ R and n ∈ N, the function µ ↦→ E
(m)
n (λ, µ) is twice differen-

tiable in a neighborhood of zero and has derivatives

∂µE
(m)
n (λ, 0) = 0 and ∂2µE

(m)
n (λ, 0) = − lim

T→∞

1

T

______

(︃∫︂ T

0

Xtdt

)︃2______n,T,λ
.

Proof. Due to the definition, we have infk∈Rd ωn(k) > 0 for all n ∈ N and hence H(λ, 0)
has a spectral gap by Theorem 6.3. Thus, Theorem 1.25 is applicable. Now, observe
that due to the so-called spin-flip-symmetry of the model, i.e., X and −X being equiva-
lent stochastic processes, which follows directly from the Definition 4.16 and µ = 0, the
expectation value

_____

∫︂ T

0

Xtdt
_____n,T,λ

= 0 for any value of T > 0,

which implies the first derivative ∂µE
(m)
n (λ, 0) vanishes. Further, by Theorem 1.25, we

conclude

∂2µE(λ, 0) = − lim
T→∞

1

T

______

(︃∫︂ T

0

Xtdt

)︃2______n,T,λ
.

Remark 6.22. The vanishing first derivative can also directly be proven from the spin-flip
symmetry of the spin boson Hamiltonian with zero external magnetic field. For example,
in [HHS21, Lemma 4.1], we used E(m)

n (λ, µ) = E
(m)
n (λ,−µ) to obtain ∂µE

(m)
n (λ, µ) = 0.

We now want to show that the second derivative in Lemma 6.21 is directly connected
to the resolvent in (6.7). This is done in the next two lemmas.
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Lemma 6.23. For all n ∈ N and λ ∈ R, we have ⟨σxψλ,n, ψλ,n⟩ = 0 and

0 ≤ ⟨σxψλ,n, (Hn(λ)− En(λ))
−1σxψλ,n⟩ = −1

2
∂2µE

(m)
n (λ, 0).

Proof. The proof uses second order analytic perturbation theory, as described in Theo-
rem A.46. To that end, we fix λ ∈ R and n ∈ N.

The assumptions of Theorem A.46 are satisfied by H0 = Hn(λ) and V = σx ⊗ 1, since
En(λ) ∈ σd(Hn(λ)) by Theorem 6.3. Hence, in some ball around η = 0, there exists
a unique analytic function e(·) and a D(Hn(λ))-valued analytic function ϕ(·) such that
ϕ(0) = ψλ,n and

(H0 + ηV )ϕ(η) = e(η)ϕ(η). (6.25)

Thus, e(0) = En(λ). The first derivative of (6.25) and the previous considerations yield

σxψλ,n +Hn(λ)ϕ
′(0) = e′(0)ψλ,n + En(λ)ϕ

′(0).

Multiplying ψλ,n from the left and using ∥ψλ,n∥ = 1 yields

e′(0) = ⟨ψn, σxψn⟩ .

Since e′(0) = ∂µE
(m)
n (λ, 0), Lemma 6.21 implies ⟨ψλ,n, σxψλ,n⟩ = 0. Using that e′(0) = 0,

we can solve for the first derivative of the eigenvector and obtain that there exists α ∈ C
such that

ϕ′(0) = −(Hn(λ)− En(λ))
−1σxψλ,n + αψλ,n,

since ker(Hn(λ)−En(λ)) = span{ψλ,n} by Theorem 6.3. Now, taking the second derivative
of (6.25) and using that there is no perturbation of quadratic order in η, we similarly obtain

e′′(0) = 2 ⟨ψλ,n, σxϕ′(0)⟩ .

Inserting the first derivative of the eigenvector, we obtain the statement.

We can now state the desired connection.

Lemma 6.24. For all n ∈ N, λ ∈ R and k ∈ Rd,

∥Rλ,n(k)σxψλ,n∥ ≤
√︂
−∂2µE

(m)
n (λ, 0) ω−1/2

n (k).

Proof. By the product inequality, we have

∥Rλ,n(k)σxψλ,n∥ ≤ ∥Rλ,n(k)(Hn(λ)− En(λ))
1/2∥∥(Hn(λ)− En(λ))

−1/2σxψλ,n∥. (6.26)

By Lemma 6.23, the second factor on the right hand side can be estimated using

∥(Hn(λ)− En(λ))
−1/2σxψn∥ ≤

√︂
−∂2µE

(m)
n (λ, 0) .

It remains to estimate the first factor in (6.26). Using ∥Rλ,n(k)
1/2(Hn(λ)− En(λ))

1/2∥ ≤ 1
and the trivial bound (6.11), we obtain

∥Rλ,n(k)(Hn(λ)− En(λ))
1/2∥ ≤ ∥Rλ,n(k)

1/2∥ ≤ ω−1/2
n (k).
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6. Existence of Ground States in the Spin Boson Model

Recalling the formula for the second derivative in Lemma 6.21, we can obtain the resolvent
bound (6.7) from Lemma 6.24 if we can bound the correlation functions of the continuous
Ising model. This is our final lemma, before we can give the proof of Theorem 1.14.

Lemma 6.25. If λ ∈ R with |λ| < 1√
5
∥ω−1/2v∥−1, then there exists a constant Cχ > 0

such that
0 ≥ ∂2µE

(m)
n (λ, 0) ≥ −Cχ.

Proof. Comparing (1.10) and (4.31), we see

______

(︃∫︂ 2T

0

Xtdt

)︃2______n,2T,λ
=

LPPPPN

(︃∫︂ T

−T
Xtdt

)︃2MQQQQOλ2Wn,T

. (6.27)

Further, by the definition (1.9), the interaction function Wn is an element of L1(R) and
satisfies

∥Wn∥1 = ∥ω−1/2
n v∥22 ≤ ∥ω−1/2v∥22.

Assume |λ| < 5−1/2∥ω−1/2v∥−1. Then there exists an ε ∈ (0, 1
5
) such that λ2∥W∥1 < ε.

Hence, by Theorem 4.21, there exists a Cχ > 0 such that

lim sup
T→∞

1

T

LPPPPN

(︃∫︂ T

−T
Xtdt

)︃2MQQQQOλ2Wn,T

≤ Cχ.

Combined with Lemma 6.21, this proves the statement.

We can hence conclude with the

Proof of Theorem 1.14. This now easily follows by combining Theorems 6.1 and 6.20
and Lemmas 6.24 and 6.25.
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A. Operators on Hilbert Spaces

In this appendix, we recall definitions and theorems from the theory of Hilbert space
operators. Most of them are contained in standard textbooks, e.g., [RS72, Wei80, Sch12,
Tes14], so we state them here without proofs. Further, for well-known statements, we
refrain from giving a special reference. Statements which are non-standard are either
proven or explicitly referenced from the literature.

Throughout this appendix, we assume H and V to be (complex) Hilbert spaces.

Direct Sums of Hilbert Spaces

For technical reasons, we start out with the definition of the direct sum of a family of
Hilbert spaces.

Definition A.1. Let I be an arbitrary index set. The direct sum of a family (Hi)i∈I of
Hilbert spaces is the Hilbert space given by

⨁︂
i∈I

Hi =

{︄
(xi)i∈I ∈×

i∈I

Hi

⃓⃓⃓⃓
⃓∑︂
i∈I

∥xi∥2Hi
<∞

}︄
,⟨︂

(xi)i∈I , (yi)i∈I

⟩︂
=
∑︂
i∈I

⟨xi, yi⟩Hi
.

Hilbert Space Operators

We can now move to the basic notions for operators from H to V .

Definition A.2. We say T is an operator from H to V with domain D(T ) if D(T ) is a
subspace of H and T : D(T ) → V is linear. If H = V , we say T is an operator on H.
It has range ranT = {Tx ∈ V : x ∈ D(T )} and kernel kerT = {x ∈ H : Tx = 0}.
If D is a subspace of D(T ), we define the restriction of T to D as the operator T ↾D
satisfying D(T ↾D) = D and T ↾D x = Tx for all x ∈ D.
The operator T is called densely defined if D(T ) is dense in H.
T is closed if its graph GT = {(x, Tx) : x ∈ D(T )} is a closed subspace of the Hilbert space
H⊕ V .
The operator T is called invertible if kerT = {0}. In this case the operator T−1 with
D(T−1) = ranT and T−1Tx = x for all x ∈ D(T ) is called inverse of T .
The operator T is called bounded if there exists a constant C > 0 such that ∥Tx∥V ≤
C∥x∥H for all x ∈ D(T ).
A set D ⊂ D(T ) is called a core for T if it is dense in D(T ) equipped with the T -norm
∥x∥T = ∥x∥H + ∥Tx∥V .

To perform calculations with operators, we make the following definition.
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Definition A.3. If S and T are operators from H to V and α ∈ C \ {0}, we define the
operator S + αT by

D(S + αT ) = D(S) ∩ D(T ), (S + αT )x = Sx+ αTx.

If S is an operator from H to V and T is an operator from V to a Hilbert space Y , then
we define the operator TS from H to Y by

D(ST ) = {x ∈ D(T ) | Tx ∈ D(S)} , (ST )x = S(Tx).

If S and T are operators on H, then we define their commutator [S, T ] by

D([S, T ]) = D(ST ) ∩ D(TS), [S, T ]x = STx− TSx.

Often it is necessary to compare operators.

Definition A.4. If S and T are operators from H to V , then S = T if D(S) = D(T ) and
Sx = Tx for all x ∈ D(T ). We say S is a restriction of T and write S ⊂ T if D(S) ⊂ D(T )
and S = T ↾D(S). In this case, we call T an extension of S. An operator is called closable
if it has a closed extension.
If D ⊂ D(S) ∩ D(T ) and Sx = Tx for all x ∈ D, then we say S = T holds on D.

We now want to define the minimal closed extension of a closable operator.

Lemma A.5. If T is a closable operator, then there exists a unique closed operator T
such that GT = GT .

Definition A.6. If T is a closable operator from H to V , the operator T from Lemma A.5
is called closure of T .

This gives us a new characterization of the core of a closed operator.

Lemma A.7. If T is a closed operator and D ⊂ D(T ), then D is a core for T if and only
if T = T ↾D.

We move to the definition of the adjoint operator.

Lemma A.8. If T is a densely defined operator from H to V, there exists a unique
operator T ∗ from V to H with graph GT ∗ = {(Tx,−x) : x ∈ D(T )}⊥. Further, T ∗ is
closed and ⟨T ∗y, x⟩H = ⟨y, Tx⟩V for all x ∈ D(T ) and y ∈ D(T ∗).

Definition A.9. If T is a densely defined operator from H to V , we call the unique
operator T ∗ from Lemma A.8 the adjoint operator of T .

The adjoint provides a characterization of closable operators.

Lemma A.10. A densely defined operator T from H to V is closable if and only if T ∗ is
densely defined. In this case T = (T ∗)∗.
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Bounded Operators

Before studying more properties of unbounded operators, we treat bounded operators.
We will usually assume them to be defined on all of H, which is justified by the following
lemma.

Lemma A.11. A bounded operator T from H to V is closed if and only if D(T ) is closed.
Especially, a densely defined closed and bounded operator satisfies D(T ) = H. Vice versa,
if D(T ) = H then T is bounded.

We now define the space of bounded operators.

Definition A.12. The set of everywhere defined bounded operators from H to V is
denoted as B(H,V). Further, we write B(H) = B(H,H). For T ∈ B(H,V), we define

∥T∥B(H,V) = sup{∥Tx∥V : x ∈ H, ∥x∥H = 1}.

Lemma A.13. The pair (B(H,V), ∥ · ∥B(H,V)) is a Banach space.

The adjoints of bounded operators are also bounded.

Lemma A.14. If B ∈ B(H,V), then B∗ ∈ B(V ,H) and ∥B∥B(H,V) = ∥B∗∥B(V,H).
Further, ∥B∥2B(H,V) = ∥B∗B∥B(H) = ∥BB∗∥B(V).

Apart from the canonical notion of convergence in B(H,V), we will also use weaker forms
of convergence.

Definition A.15. Let (Tn)n∈N ⊂ B(H,V) and let T ∈ B(H,V).
If ∥T − Tn∥B(H,V)

n→∞−−−→ 0, we say Tn converges to T in norm and write lim
n→∞

Tn = T .

If Tnx
n→∞−−−→

V
Tx for every x ∈ H, we say Tn strongly converges to T and write s-lim

n→∞
Tn = T .

If ⟨y, Tnx⟩V
n→∞−−−→ ⟨y, Tx⟩V for all x ∈ H, y ∈ V , we say Tn weakly converges to T and

write w-lim
n→∞

Tn = T .

Remark A.16. Note that norm convergence is the natural notion of convergence in the
Banach space B(H,V).

It is simple to verify a hierarchy of these notions of convergence.

Lemma A.17. Let (Tn)n∈N ⊂ B(H,V) and let T ∈ B(H,V).

(i) If lim
n→∞

Tn = T , then s-lim
n→∞

Tn = T .

(ii) If s-lim
n→∞

Tn = T , then w-lim
n→∞

Tn = T .

We will need some further properties of strong and weak convergence, which we summarize
in the following.

Lemma A.18. Let (Tn) ⊂ B(H) and let T ∈ B(H). Further assume A is a closed
operator such that D(A) ⊃ ranTn for all n ∈ N and ∥ATn∥B(H) is uniformly bounded.

(i) If w-limTn = T , then ranT ⊂ D(A) and w-limATn = AT .

(ii) If s-limT ∗
n = T ∗, then ranT ⊂ D(A) and s-lim(ATn)

∗ = (ATn)
∗.
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A. Operators on Hilbert Spaces

We briefly discuss compact operators.

Definition A.19. An operator T ∈ B(H,V) is called compact if the set TM is relatively
compact in Y for any bounded M ⊂ X. Further, it is called finite-rank if dim ranT <∞.

Lemma A.20. If T ∈ B(H,V) has finite rank, then T is compact.

Sequences of compact operators converging in norm have a compact operator as their
limit.

Lemma A.21. If (Tn)n∈N ⊂ B(H,V) is a sequence of compact operators and lim
n→∞

Tn =

T ∈ B(H,V), then T is compact.

We will use the following statement about weakly convergent sequences. To that end, we
recall the definition of the weak limit of a sequence on Hilbert spaces:

w-lim
n→∞

xn = x ⇐⇒ ∀y ∈ H : lim
n→∞

⟨y, xn⟩ = ⟨y, x⟩ . (A.1)

Lemma A.22. If T ∈ B(H,V) is compact and (xn)n∈N ⊂ H is weakly congergent to
x ∈ H, then Tx = lim

n→∞
Txn.

For later reference, we collect some simple properties and notions for bounded operators.
To that end, recall that a function f : H → V is called an isometry if ∥f(x)∥V = ∥x∥H for
all x ∈ H and a contraction if ∥f(x)∥V ≤ ∥x∥H for all x ∈ H.

Lemma A.23. Let T ∈ B(H,V).Then T is an isometry if and only if T ∗T = 1H. Further,
T is a contraction if and only if ∥T∥B(H,V) ≤ 1.

The isometric isomorphisms between Hilbert spaces are called unitaries.

Definition A.24. An operator U ∈ B(H,V) is unitary if U∗U = 1H and UU∗ = 1V .

The Spectrum of an Operator

We move to defining the spectrum and the resolvent set of a closed operator.

Definition A.25. Let T be a closed operator on H. The set

ϱ(T ) = {λ ∈ C : ker(T − λ) = {0}, ran(T − λ) = H}

is called resolvent set of T . Its complement σ(T ) = ϱ(T )c is called spectrum of T .
For λ ∈ ϱ(T ) the operator (T − λ)−1 ∈ B(H) is called resolvent of T .

By definition, the spectrum decomposes into three different parts.

Lemma A.26. For any closed operator T on H, we have σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T )
with

σp(T ) = {λ ∈ C : ker(T − λ) ⊋ {0}},
σc(T ) = {λ ∈ C : ran(T − λ) is not closed},
σr(T ) = {λ ∈ C : ran(T − λ) is not dense}.
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Definition A.27. The sets from the previous lemma are called point spectrum σp, con-
tinuous spectrum σc and residual spectrum σr. Further, the values λ ∈ σp(T ) are called
eigenvalues of the operator T with multiplicity dimker(T −λ). The vectors v ∈ ker(T −λ)
are called eigenvectors of T corresponding to λ. If the multiplicity of an eigenvalue is one,
then we call it nondegenerate and the corresponding eigenvector unique.

Remark A.28. The notion of uniqueness of an eigenvalue agrees with Definition 1.1.

When explicitly calculating resolvents, the following identity is often useful.

Lemma A.29 (Resolvent Identity). Let T and S be closed operators on H satisfying
D(S) ⊂ D(T ) and let λ ∈ ϱ(T ) ∩ ϱ(S). Then

(T − λ)−1 − (S − λ)−1 = (T − λ)−1(S − T )(S − λ)−1.

Selfadjoint Operators

Apart from bounded operators, we will mostly be concerned with symmetric and selfad-
joint operators. From now on, we will drop the index H in scalar products and norms.

Definition A.30. An operator A on H is symmetric if ⟨Ax, x⟩ = ⟨x,Ax⟩ for all x ∈ D(A).

Symmetric operators can always be closed.

Lemma A.31. A densely defined symmetric operator A is closable.

Definition A.32. A densely defined symmetric operator A is called essentially selfadjoint
if A = A∗ and selfadjoint if A = A∗.

Two selfadjoint operators are equal if their restrictions to a core are.

Lemma A.33. Assume A and B are selfadjoint operators. If D ⊂ D(A) ∩ D(B) is a
core for A and Ax = Bx for all x ∈ D, then A = B.

Let us collect some properties of the spectrum of selfadjoint operators.

Lemma A.34. If A is a selfadjoint operator on H, then σr(A) = ∅.

Lemma A.35. A closed symmetric operator A on H is selfadjoint if and only if σ(A) ⊂ R.

Apart from Lemma A.26, the following decomposition of the spectrum of a selfadjoint
operator is useful. Here, we denote the distance of two sets by

dist(M1,M2) = inf {|x− y| : x ∈M1, y ∈M2} for M1,M2 ⊂ C. (A.2)

Definition A.36. If A is a selfadjoint operator the set σd(A) of all eigenvalues λ of finite
multiplicity which are isolated from the rest of the spectrum, i.e., dist({λ}, σ(A)\{λ}) > 0,
is called discrete spectrum of A. Its complement is called essential spectrum σess(A).

We need an equivalent characterization of the essential spectrum, which is known as
Weyl’s Criterion.
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Lemma A.37 (Weyl’s Criterion). Let A be a selfadjoint operator on H and let λ ∈ R.
Then λ ∈ σess(A) if and only if there exists a sequence (xn)n∈N such that

w-lim
n→∞

xn = 0, lim inf
n→∞

∥xn∥ > 0, lim
n→∞

∥(A− λ)xn∥ = 0.

Further, this sequence can be chosen to be orthonormal, i.e., ⟨xn, xm⟩ = 0 if n ̸= m and
∥xn∥ = 1 for all n ∈ N.

Remark A.38. A sequence as in the previous lemma is often called Weyl sequence in the
literature. We also note that any orthonormal sequence weakly converges to zero, by
Bessel’s inequality.

When we consider ground states, the operators need to be bounded from below.

Definition A.39. We call a selfadjoint operator A on H lower-semibounded by c ∈ R
and write A ≥ c if ⟨x,Ax⟩ ≥ c for all x ∈ D(A). Especially, we call A positive if A ≥ 0.
If A and B are selfadjoint operators and D(A) ⊂ D(B), we write A ≥ B if A−B ≥ 0.

Lemma A.40. If A is a selfadjoint operator on H with A ≥ c ∈ R, then σ(A) ≥ c.

One way to prove a dense set is a core for a selfadjoint operator is the following.

Definition A.41. Let A be an operator on H. We call a vector x ∈ H semianalytic for
A if x ∈

⋂︁
n∈ND(An) and

∞∑︂
n=0

∥Anx∥tn

(2n)!
<∞ for some t > 0.

Theorem A.42 (Nussbaum-Masson-McClary Criterion [RS75, Theorem X.40]).
Let A be a lower-semibounded selfadjoint operator and D ⊂ D(A) a total set of semiana-
lytic vectors. Then spanD is a core for A.

Relative Operator Bounds

In many of our applications it is important to have a notion of smallness for one operator
against the other.

Definition A.43. Let A and B be operators on H. B is called A-bounded with relative
bound (or A-bound) a ≥ 0 if D(A) ⊂ D(B) and there exists b ≥ 0 such that

∥Bψ∥ ≤ a∥Aψ∥+ b∥ψ∥ for all ψ ∈ D(A). (A.3)

Especially, B is called infinitesimally A-bounded if it is A-bounded with relative bound ε
for any choice of ε > 0.

We collect a variety of equivalent statements for relative boundedness of operators.

Lemma A.44 ([Tes14, Lemma 6.2]). Let A be a closed operator and B a closable operator
on H. Then the following are equivalent:

(i) B is A-bounded.
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(ii) D(A) ⊂ D(B).

(iii) B(A− λ)−1 is bounded for one (and hence all) λ ∈ ϱ(A).

In this case, any value larger than inf
λ∈ϱ(A)

∥B(A− λ)−1∥ is an A-bound of B.

For us, the most important application of relative boundedness is the following selfad-
jointness criterion.

Theorem A.45 (Kato-Rellich, [RS75, Theorem X.12]).
Let A be a selfadjoint operator and B a symmetric operator on H. Further, assume B is
A-bounded with relative bound a < 1. Then A + B is a selfadjoint operator with domain
D(A) and any core for A is a core for A+B. Further, if A ≥ c ∈ R and (A.3) holds with
a ∈ [0, 1) and b ≥ 0, then A+B ≥ c−max{b(1− a)−1, a|C|+ b}.

Analytic Perturbation Theory

Although the essentials of our proofs are non-perturbative, we do utilize a few results from
perturbation theory in our treatment of the spin boson model with external magnetic field.
Hence, we recall some facts from analytic perturbation theory. More details can be found
in [Kat80, RS78]. Here, we restrict ourselves to the cases relevant for our application.

Theorem A.46. Assume H0 is a closed operator and V is an H0-bounded operator. Let
H(η) = H0 + ηV for η ∈ C. If λ0 is an isolated nondegenerate eigenvalue of H0 with
eigenvector ψ0, then there exists R > 0, a unique analytic function λ(η), and a D(H0)-
valued analytic function ψ(η) for η ∈ C with |η| < R such that ψ(0) = ψ0 and

H(η)ψ(η) = λ(η)ψ(η).

Proof. By [Kat80, §VII Theorem 2.6] and the Kato-Rellich theorem (Theorem A.45), H(η)
defines an analytic family of type (A) for |η| sufficiently small. Therefore, the statement
follows directly from [RS78, Theorem XII.8].

The Spectral Theorem

We now state the important spectral theorem. To that end, we first need to define the
notion of a projection-valued measure.

Definition A.47. A non-zero operator P ∈ B(H) is called projection if P 2 = P . It is
called orthogonal projection if it is selfadjoint.

We relate our definition to the classical notion of a projection, where we as usual denote

M⊥ = {x ∈ H | ∀y ∈M : ⟨x, y⟩ = 0} for M ⊂ H. (A.4)

Lemma A.48. For any closed subspace V ⊂ H, there exists a unique orthogonal projec-
tion P satisfying ranP = V and kerP = V ⊥. In this case Px = x for all x ∈ V .

Now, we can define projection-valued measures.
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Definition A.49. Let (Ω,Σ) be a measurable space. A mapping P from Σ to the orthog-
onal projections on H is called projection-valued measure if P(Ω) = 1 and P is countably
additive, i.e., for any sequence (Mn)n∈N ⊂ Σ of pairwise disjoint sets

P

(︄⋃︂
n∈N

Mn

)︄
= s-lim

k→∞

k∑︂
n=1

P(Mn).

We call suppP =
⋂︂
M∈Σ

P(M)=1

M the support of P.

Projection valued measures give rise to complex measures by taking inner products.

Lemma A.50. Let (Ω,Σ) be a measurable space and P a mapping from Σ to the orthogonal
projections on H. Then P is a projection-valued measure if and only if P(Ω) = 1 and for
all x ∈ H the map ⟨x,P(·)x⟩ : Σ → R is a measure. In this case, for all x, y ∈ H, the
map ⟨y,P(·)x⟩ : Σ → C defines a complex measure.

The spectral theorem holds for so-called normal operators.

Definition A.51. A densely defined operator T on H is called normal if D(T ) = D(T ∗)
and ∥Tx∥ = ∥T ∗x∥ for all x ∈ D(T ).

For the statement, we need to define an integral with respect to projection-valued
measures.

Lemma A.52. Let P be a projection-valued measure on H defined on the measurable
space (Ω,Σ) and let f : Ω → C ∪ {∞} be a measurable function which is P-a.e. finite,
i.e., P(f−1({∞})) = 0. Then there exists a unique normal operator IP(f) on H such that

D(IP(f)) = {x ∈ H : f ∈ L2(Ω, d ⟨x,P(·)x⟩)},

⟨y, IP(f)x⟩ =
∫︂
Ω

f(t)d ⟨y,P(t)x⟩ for all x ∈ D(IP(f)), y ∈ H.

Definition A.53. In the situation of Lemma A.52, we write
∫︂
Ω

f(t)dP(t) for IP(f).

In Lemma A.52, we have already seen that projection-valued measures generate normal
operators from measurable functions. Vice versa, any normal operator gives rise to a
projection-valued measure.

Theorem A.54 (Spectral Theorem). Let A be a normal operator on H. Then there exists
a unique projection-valued measure PA on the Borel σ-algebra B(C) such that

A =

∫︂
C
tdPA(t).

Definition A.55. If A is a normal operator on H, we call the projection-valued measure
PA from Theorem A.54 the spectral measure associated with A.

We collect some properties of spectral measures.
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Lemma A.56. Let A be a normal operator on H.

(i) suppPA = σ(A).

(ii) ranPA(M) ⊂ D(A) for any M ∈ B(C).

(iii) PA({λ}) is the unique orthogonal projection onto ker(A− λ) (cf. Lemma A.48).

The spectral theorem provides a variety of possibilities to recover projections onto eigen-
spaces of an operator from its resolvents. We use two versions of these.

Lemma A.57. Let A be a selfadjoint operator and λ ∈ σ(A). Further let (λn)n∈N ⊂ ϱ(A)
be such that lim

n→∞
λn = λ. Then

PA({λ}) = s-lim
n→∞

λn(A− λn)
−1.

Lemma A.58. Let A be a selfadjoint operator and Γ ⊂ ϱ(A) be a positively oriented
Jordan curve with interior I. Then

PA(I ∩ σ(A)) =
∫︂
Γ

(A− z)−1dz,

where the integral is understood to be a Riemann integral on B(H) in norm.

Functional Calculus

The spectral theorem allows us to define a functional calculus.

Definition A.59 (Functional Calculus). Let A be a normal operator on H and let f :
C → C ∪ {∞} be measurable and finite PA-a.e. Then, we define

f(A) =

∫︂
C
f(t)dPA(t).

Remark A.60. Clearly, it suffices to define f on suppPA in the above definition, since
we can set our function to infinity everywhere else. Especially, for selfadjoint operators
A, we will usually use functions defined on R or in the case A ≥ c ∈ R on [c,∞), cf.
Lemmas A.35, A.40 and A.56 (i).

We collect some properties of the functional calculus.

Lemma A.61. Let A be a selfadjoint operator on H and let f, g : R → C ∪ {∞} be
measurable and finite PA-a.e.

(i) f(A) is bounded if and only if f ∈ L∞(R,PA). In this case ∥f(A)∥ = ∥f∥L∞(R,PA).

(ii) We have PA(M) = χM(A) for any Borel set M ⊂ R.

(iii) fg(A) is the closure of f(A)g(A).

(iv) If f is real-valued, then f(A) is selfadjoint. Further, if f ≥ 0 PA-a.e., then f(A) ≥ 0.
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Lemma A.62. Let A,B be selfadjoint operators on H and let ω : Rd → R. Assume A
is bounded below, B is A-bounded, ω is continuous, ω(0) = 0 and ω(k) > 0 for k ̸= 0.
We define λ = inf(σ(A)) and f(k) = ω(k)B(A − λ + ω(k))−1 ∈ B(H) for k ̸= 0. Then
k ↦→ f(k) is locally bounded and s-lim

k→0
f(k) = BPA({λ}).

Proof. By the assumptions and Lemma A.44, the operator C = B(A−λ+1)−1 is bounded.
Then the resolvent identity (Lemma A.29) yields

f(k) = ω(k)C + Cω(k)(A− λ+ ω(k))−1 − ω(k)Cω(k)(A− λ+ ω(k))−1.

The first term converges to 0 in norm, since C is bounded. Further, by Lemma A.57, the
last term converges to 0 strongly. Again using Lemma A.57, the middle term strongly
converges to CPA({λ}) = BPA({λ}) by the definition of C, which proves the statement.

The following upper bound is also a corollary of the functional calculus.

Lemma A.63. If T is a normal operator and λ ∈ ϱ(T ), then

∥(T − λ)−1∥B(H) ≤ (dist({λ}, σ(T )))−1.

Strongly Continuous Groups and Semigroups

Selfadjoint operators give rise to strongly continuous (semi-)groups of bounded operators,
which we only briefly discuss here.

We start out with the simple observation that the unitary group leaves the domain of
its generator invariant.

Lemma A.64 ([Sch12, Proposition 6.1]). Let A be a selfadjoint operator on H. Then
eitAD(A) ⊂ D(A) for all t ∈ R.

Vice versa, a dense subspace which is invariant under the unitary group is a core.

Lemma A.65 ([RS72, Theorem VIII.11]). Let A be a selfadjoint operator on H and
D ⊂ D(A) be a dense subspace of H. If eitA leaves D invariant for all t ∈ R, then D is a
core for A.

The next statement is useful to calculate the unitary group and the semigroup, respec-
tively.

Theorem A.66 (Trotter Product Formula, [RS72, Thm. VIII.30], [Sch12, Thm. 6.4]).
Let A and B be selfadjoint operators on H and assume A+B is also selfadjoint. Then

eit(A+B) = s-lim
n→∞

(︁
eitA/neitB/n

)︁n
for all t ∈ R.

Further, if A and B are lower-semibounded, then

e−t(A+B) = s-lim
n→∞

(︁
e−tA/ne−tB/n

)︁n
for all t ≥ 0.

Finally, we state an application which helps us retrieve information on the ground state
energy of a lower-semibounded operator.

Lemma A.67 ([Ara18, Lemma 1.5]). Let A be a selfadjoint lower-semibounded operator.
Then, for all t ∈ R, e−tH is a bounded positive selfadjoint operator and

∥e−tA∥B(H) = e−t inf σ(A).
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Strongly Commuting Operators

The commutator as defined in Definition A.3 does not contain enough information in the
case of unbounded operators. Hence, we need the notion of strongly commuting operators.

Definition A.68. Let A and B be normal operators. Then, we say that A and B strongly
commute if their spectral measures commute, i.e., [PA(M),PB(N)] = 0 for all Borel sets
M,N ∈ B(C)

The next two statements are simple applications for selfadjoint operators.

Lemma A.69 ([Ara18, Corollary 1.6]). Let A,B be selfadjoint operators with A ≥ a ∈ R
and B ≥ b ∈ R. If A and B strongly commute, then A+B is selfadjoint and A+B ≥ a+b.

Lemma A.70. Let A and B be strongly commuting selfadjoint operators on H. If A is
B-bounded and D ⊂ H is a core for B, then D is a core for A.

Proof. Clearly any element in D(B) can be approximated in A-norm by elements in D,
so it is enough to see D(B) is a core for A. Now, for any ψ ∈ D(A), we can choose the
approximating sequence χ{|·|≤n}(B)ψ, which converges in A-norm since

Aχ{|·|≤n}(B)ψ = χ{|·|≤n}(B)Aψ

by the assumptions.

We also want to write functions of a family of pairwise strongly commuting normal opera-
tors. To that end, we first need to define product measures of projection-valued measures.

Lemma A.71 ([Sch12, Theorem 4.10]). Let k ∈ N and let P1, . . . ,Pk be pairwise commut-
ing projection-valued measures on C, i.e., [Pi(M),Pj(N)] = 0 for all Borel sets M,N ⊂ C
and i, j ∈ {1, . . . , k}. Then there exists a unique projection-valued measure P on Cn such
that

P(M1 × · · · ×Mk) = P1(M1) · · ·Pk(Mk) for all Borel sets M1, . . . ,Mk ⊂ C.

Definition A.72. In the situation of above theorem, we call P the product of the projec-
tion-valued measures P1, . . . ,Pk and denote it by P1 ⊗ · · · ⊗ Pk.

We can finally give the desired generalization of the functional calculus from Defini-
tion A.59.

Definition A.73. Let k ∈ N and let A = (A1, . . . , Ak) be a family of pairwise strongly
commuting normal operators. We then write D(A) =

⋂︁k
i=1D(Ai).

Further, for measurable f : Ck → C, we define

f(A) =

∫︂
Ck

f(λ)dPA1 ⊗ · · · ⊗ PAk
(λ).

Remark A.74. The properties of the functional calculus from Lemma A.61 carry over to
the above definition. We refrain from restating them here.
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Convergence of Selfadjoint Operators

We introduced different notions of convergence for bounded operators, in Definition A.15.
We will also need to treat the convergence of selfadjoint operators.

Definition A.75. Let (An)n∈N, A be selfadjoint operators.
We say An converges to A in the norm resolvent sense if (A+ i)−1 = lim

n→∞
(An + i)−1.

We say An converges to A in the strong resolvent sense if (A+ i)−1 = s-lim
n→∞

(An + i)−1.

We collect some implications of norm resolvent convergence.

Lemma A.76.
Let (An)n∈N be selfadjoint operators and let A be a selfadjoint operator.

(i) [RS72, Theorem VIII.19] If (A − λ)−1 = lim
n→∞

(An − λ)−1 for some λ ∈ C \ R, then
An converges to A in the norm resolvent sense. Further, if there is c ∈ R such that
A ≥ c and An ≥ c for all n ∈ N, then we can also choose λ < c.

(ii) [RS72, Theorem VIII.23] Assume An converges to A in the norm resolvent sense. If
λ /∈ σ(A) then λ /∈ σ(An) for n large enough and (An−λ)−1 converges to (A−λ)−1

in norm.

(iii) [RS72, Theorem VIII.20] If An converges to A in the norm resolvent sense and
f : R → R is continuous and bounded, then f(An) converges strongly to f(A). If f
is vanishing at ±∞ then convergence is in norm.

(iv) [DM20a, Lemma 5.5] Assume An ≥ λ ∈ R for all n ∈ N. Then An converges to A
in the norm resolvent sense if and only if e−tAn converges to e−tA in norm for all
t ≥ 0. In this case, inf σ(An) converges to inf σ(A).

(v) [Tes14, Theorem 6.38] Assume An converges to A in the norm resolvent sense. Then
σ(A) = lim

n→∞
σ(An).

(vi) [Oli09, Proposition 11.4.31] Assume An converges to A in the norm resolvent sense.
If (a, b) ∩ σess(An) = ∅ for all n ∈ N, then (a, b) ∩ σess(A) = ∅. If (λn)n∈N ⊂ R is a
convergent sequence and λn ∈ σess(An) for all n ∈ N, then lim

n→∞
λn ∈ σess(A).

Remark A.77. The second part of (i) is not contained in the reference. It, however, follows
by a similar proof.

Lemma A.78. Let (An)n∈N be a family of selfadjoint operators on H and assume there
is λ ∈ R such that An ≥ λ for all n ∈ N. Let A and B be selfadjoint operators on H
and assume that D(|An|1/2) ⊂ D(|B|1/2) for all n ∈ N, that An converges to A in the
norm resolvent sense and that |B|1/2 has a bounded inverse. For z < inf σ(An), we define
the bounded operator Cn,z = |B|1/2(An − z)−1/2. If Cn,zC∗

n,z converges strongly for some
z0 < λ, then D(|A|1/2) ⊂ D(|B|1/2) and s-lim

n→∞
Cn,z = |B|1/2(A − z)−1/2 =: C∞,z for all

z < inf σ(A). Further, s-lim
n→∞

Cn,zC
∗
n,z = C∞,zC

∗
∞,z
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Proof. Note that A ≥ λ, by Lemma A.76 (iv). Pick z0 < λ such that Cn,z0C∗
n,z0

strongly
converges to a selfadjoint operator C ∈ B(H). For ϕ ∈ D(|B|1/2) and ψ ∈ H, we see

⟨|B|1/2ϕ, (A− z0)
−1/2ψ⟩ ≤ lim

n→∞
⟨ϕ,Cn,z0C∗

n,z0
ϕ⟩1/2∥ψ∥≤ ∥C∥1/2∥ψ∥∥ϕ∥,

showing (A− z0)
−1/2ψ ∈ D(|B|1/2) and hence D(|A|1/2) ⊂ D(|B|1/2).

For ϕ, ψ ∈ D(|B|1/2), the norm resolvent convergence of (An) also yields

⟨ϕ,C∞,z0C
∗
∞,z0

ψ⟩ = lim
n→∞

⟨(An − z0)
−1/2|B|1/2ϕ, (An − z0)

−1/2|B|1/2ψ⟩

= lim
n→∞

⟨ϕ,Cn,z0C∗
n,z0

ψ⟩ = ⟨ϕ,Cψ⟩

so C∞,z0C
∗
∞,z0

= C.
Note that ∥Cn,z0∥2= ∥Cn,z0C∗

n,z0
∥ (Lemma A.14) is bounded uniformly in n by the

uniform boundedness principle. Since D(|A|1/2) is dense, it is now enough to show
lim
n→∞

Cn,z0ψ = C∞,z0ψ for all ψ ∈ D(|A|1/2). Hence, using

Cn,z0ψ =Cn,z0C
∗
n,z0

|B|−1/2(A− z0)
1/2ψ

+ Cn,z0((A− z0)
−1/2 − (An − z0)

−1/2)(A− z0)
1/2ψ,

we see that Cn,z0ψ converges to C|B|−1/2(A − z0)
1/2ψ = C∞,z0ψ for all ψ ∈ D(|A|1/2) by

Lemma A.76 (iii). For any other z < inf σ(A), we conclude that z < inf σ(An) for n large
enough by Lemma A.76 (iv). Then, by Lemma A.76 (iii)

Cn,z = Cn,z0

(︃
An − z0
An − z

)︃1/2
n→∞−−−→

s
C∞,z0

(︃
A− z0
A− z

)︃1/2

= C∞,z.

Quadratic Forms

We also need some notions from the theory of quadratic forms.

Definition A.79. We say q is a (sesquilinear) form on H with form domain Q(q) if Q(q)
is a subspace of H and q : Q(q)×Q(q) → C is linear in the second and anti-linear in the
first argument. We also write q(x) = q(x, x) for x ∈ Q(q) and then call q quadratic form.
The form q is called symmetric if q(x, y) = q(y, x) for all x, y ∈ Q(q).
It is called lower-semibounded if there exists C ∈ R such that q(x, x) ≥ C∥x∥H for all
x ∈ Q(q). Especially, if C = 0 it is called positive.

Definition A.80. Let q be a lower-semibounded symmetric form with lower bound C.
We say q is closed if Q(q) with inner product ⟨x, y⟩q = q(x, y) + (1 − C) ⟨x, y⟩H is a
Hilbert space. In this case a subspace D ⊂ Q(q) is called a form core of q if it is dense in
(Q(q), ⟨·, ·⟩q).
We say q is closable if there exists a closed lower-semibounded symmetric form ˜︁q such
that Q(q) ⊂ Q(˜︁q) and q(x, y) = ˜︁q(x, y) for all x, y ∈ Q(q).

The following characterization of closed forms will be important for us.

Lemma A.81 ([Sch12, Proposition 10.1]). Let q be a lower-semibounded symmetric form.
Then the following are equivalent:
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A. Operators on Hilbert Spaces

(i) q is closed.

(ii) ˜︁q : H → R ∪ {∞} with ˜︁q(x) = q(x) for x ∈ Q(q) and ˜︁q(x) = ∞ if x /∈ Q(q) is
lower-semicontinuous, i.e.,

˜︁q(︂ lim
n→∞

xn

)︂
≤ lim inf

n→∞
˜︁q(xn) holds for any convergent sequence (xn)n∈N ⊂ H.

Remark A.82. From now on, we will speak of closed forms and mean closed lower-
semibounded symmetric forms.

We conclude with a simple additivity statement.

Lemma A.83 ([Sch12, Corollary 10.2]). Any finite sum of closed forms is closed.

Forms Associated to Operators

We are mainly interested in the forms, which are associated to a selfadjoint operator.

Definition A.84. If A is a selfadjoint operator on H, we call the form

qA(x, y) = ⟨|A|1/2x, sign(A)|A|1/2y⟩ with form domain Q(qA) = D(|A|1/2) =: Q(A)

the form associated with A. We call Q(A) the form domain of A.

Theorem A.85. The map A ↦→ qA is a bijection from the set of selfadjoint lower-
semibounded operators on H to the closed forms on H.

We will need some relations between operator and form domains.

Lemma A.86 ([Wei80, Theorem 5.37]). Let A be a selfadjoint operator on H and let
ψ ∈ Q(A). Then the following are equivalent:

(i) ψ ∈ D(A),

(ii) The map Q(A) ∋ ϕ ↦→ qA(ψ, ϕ) is continuous.

(iii) There is a form core D of A such that D ∋ ϕ ↦→ qA(ψ, ϕ) is continuous.

Lemma A.87. Let A and B be selfadjoint operators on H and let U ∈ B(H) be a unitary.
If UD(A) ⊂ D(B) then UQ(A) ⊂ Q(B).

Proof. The statement in the case U = 1 and A and B are positive can be found in [Wei80,
Theorem 9.4]. Now observe D(U |A|U∗) = D(UAU∗) = UD(A) ⊂ D(B) = D(|B|),
so we have D(U |A|1/2U∗) ⊂ D(|B|1/2) = Q(B). The claim now follows by observing
D(U |A|1/2U∗) = UQ(A).
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Relative Form Bounds

Similar to relative operator bounds, we discuss relative form bounds.

Definition A.88. Let q and v be symmetric forms and assume that q is lower-semi-
bounded. We say v is relatively form bounded with respect to q with q-bound a > 0 if
Q(v) ⊂ Q(q) and there exists b ≥ 0 such that

|v(x)| ≤ a|q(x)|+ b∥x∥2 for all x ∈ H.

Further, if A and B are selfadjoint operators and A is lower-semibounded, we say v
and B are A-form bounded if v and qB are relatively form bounded with respect to qA,
respectively.

Similar to Lemma A.44, we have the following lemma

Lemma A.89 ([Tes14, Lemma 6.28]). Let A and B be selfadjoint and assume A is lower-
semibounded. Then the following are equivalent:

(i) B is A-form bounded.

(ii) Q(A) ⊂ Q(B).

(iii) |B|1/2(A− λ)−1/2 is bounded for one (and hence all) λ ∈ ϱ(A).

Our main application is the following generalization of the Kato-Rellich theorem, named
after Kato, Lax, Lions, Milgram and Nelson.

Theorem A.90 (KLMN Theorem). Let A be a selfadjoint lower-semibounded operator
and let q be an A-bounded symmetric form with qA-bound smaller than one. Then qA+q is
a closed form on Q(A) and hence corresponds to a selfadjoint lower-semibounded operator
with the same form domain as A. Explicitly, if A ≥ c ∈ R and |q(ψ)| ≤ a|qA(ψ)|+ b∥ψ∥2
for all ψ ∈ Q(A) with a ∈ (0, 1) and b ∈ R, then qA + q ≥ (1− a)c− b.

Lemma A.91 ([Tes14, Theorem 6.25]). Let A be a selfadjoint operator with A ≥ λ, q
a symmetric form with Q(A) ⊂ Q(q) and assume a, b ∈ R. The symmetric sesquilinear
form q((A− z)−1/2x, (A− z)−1/2x) for ϕ, ψ ∈ H corresponds to a bounded operator C(z)
with ∥C(z)∥ ≤ a for z < −ba−1 − λ if and only of

q(ψ) ≤ aqA(ψ) + b∥ψ∥2 for all ψ ∈ Q(q).

Further, if a < 1, then

(B − z)−1 = (A− z)−1/2(1 + C(z))−1(A− z)−1/2,

where B denotes the selfadjoint and lower-semibounded operator corresponding to qA + q
by the KLMN theorem.
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Weak Commutators

We will also use the weak commutator of operators.

Definition A.92. Let A and B be operators on H. Then, we define the weak commutator
as the form

cA,B(ψ, ϕ) = ⟨Aψ,Bϕ⟩ − ⟨Bψ,Aϕ⟩ on the form domain Q(cA,B) = D(A) ∩ D(B).

Lemma A.93. Let A and B be selfadjoint operators and assume that there is a set
D ⊂ D(B) such that eitBD ⊂ D(A) for all t ∈ R and t ↦→ AeitBψ is continuous for all
ψ ∈ D. For fixed ψ, ϕ ∈ D, we define the map f : R → C as

f(t) = ⟨ψ, e−itBAeitBϕ⟩ .

Then f is continuously differentiable with derivative

f ′(t) = icA,B(e
itBψ, eitBϕ).

Proof. We easily calculate

f(t+ h)− f(t) = ⟨(eihB − 1)eitBψ,Aei(t+h)Bϕ⟩+ ⟨AeitBψ, (eihB − 1)eitBϕ⟩ .

The statement then directly follows using the continuity assumption.

The Min-Max Principle and Compactness

We construct compact sets from operators. To that end, we define the following sequence
for any lower-semibounded selfadjoint operator.

Definition A.94 (Min-Max Principle). Let A be a selfadjoint lower-semibounded oper-
ator. Then, for n ∈ N, we define

ηn(A) = sup
x1,...,xn∈H

inf
{︁
⟨x,Ax⟩

⃓⃓
x ∈ D(A) ∩ {x1, . . . , xn}⊥, ∥x∥ = 1

}︁
and call ηn(A) the n-th eigenvalue of A obtained by the min-max principle.

We will need the following statement characterizing compact sets.

Lemma A.95 ([RS78, Theorem XIII.64]). Let A be a selfadjoint lower-semibounded op-
erator. Then {ψ ∈ Q(A) : ∥ψ∥ ≤ 1, qA(ψ) ≤ b} is compact for all b > 0 if and only if
ηn(A)

n→∞−−−→ ∞.

Also, we note the following compactness criterion in L2-spaces.

Lemma A.96 (Rellich’s Criterion, [RS78, Theorem XIII.65]). Let F,G : Rn → [0,∞) be
measurable satisfying lim

x→∞
F (x) = lim

x→∞
G(x) = ∞. Then the set{︂

f ∈ L2(Rn)
⃓⃓⃓
∥f∥2 ≤ 1, ∥F 1/2f∥2 ≤ 1, ∥G1/2 ˆ︁f∥ ≤ 1

}︂
is a compact subset of L2(Rn).

Remark A.97. Here, we understand F,G as selfadjoint multiplication operators on L2(Rn)

and denote the usual unitary Fourier transform of f by ˆ︁f .
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Direct Sums of Operators

We return to the topic of direct sums and define direct sums of operators.

Definition A.98. Let I be an arbitrary index set, let (Hi)i∈I and (Vi)i∈I be families
of Hilbert spaces and assume that Ai is an operator from Hi to Vi for each i ∈ I . The
direct sum operator

⨁︁
i∈I Ai is defined as the operator from

⨁︁
i∈I Hi to

⨁︁
i∈I Vi with

D

(︄⨁︂
i∈I

Ai

)︄
=

{︄
(xi) ∈

⨁︂
i∈I

Hi

⃓⃓⃓⃓
⃓xi ∈ D(Ai),

∑︂
i∈I

∥Aixi∥2 <∞

}︄
,⨁︂

i∈I

Ai(xi)i∈I = (Aixi)i∈I .

Tensor Products

We now turn to the definition of tensor products. Throughout, we assume that N ∈ N
and H1, . . . ,HN are complex Hilbert spaces.

Definition A.99. For a family of vectors xi ∈ Hi for i = 1, . . . , N , we define the pure or
elementary tensor to be the multi-linear form

N⨂︂
i=1

xi :
N×
i=1

Hi → C with
N⨂︂
i=1

xi(y1, . . . , yN) =
N∏︂
i=1

⟨xi, yi⟩Hi
.

In the case H1 = · · · = HN and x1 = · · · = xN , we write x⊗N =
⨂︁N

i=1 x.
We call the subspace of the space of all C-valued functions on×N

i=1
Hi spanned by the

elementary tensors

N⨀︂
i=1

Hi = span

{︄
N⨂︂
i=1

xi

⃓⃓⃓⃓
⃓(x1, . . . , xN) ∈ N×

i=1

Hi

}︄
the algebraic tensor product of H1, . . . ,HN .

We can equip the algebraic tensor product with an inner product,

Lemma A.100. There exists a unique inner product, that is, positive definite symmetric

sesquilinear form, ⟨·, ·⟩⊗ on
N⨀︁
i=1

Hi such that

⟨︄
N⨂︂
i=1

xi,

N⨂︂
i=1

yi

⟩︄
⊗

=
N∏︂
i=1

⟨xi, yi⟩Hi
.

We can now define the full tensor product.

Definition A.101. We call the completion of
(︃

N⨀︁
i=1

Hi, ⟨·, ·⟩⊗
)︃

the tensor product of

H1, . . . ,HN and denote it by
N⨂︁
i=1

Hi. In the case H = H1 = · · · = HN , we write

H⊗N =
N⨂︁
i=1

H.
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We discuss the case of L2-spaces.

Lemma A.102. Let (Mi,Σi, µi) for i = 1, . . . , N be σ-finite measure spaces. Then the
map defined on pure tensors as f1⊗· · ·⊗fN ↦→ ((x1, . . . , xN) ↦→ f1(x1) · · · fN(xN)) extends
to a unitary

N⨂︂
i=1

L2(Mi, µi) ∼= L2

(︄
N×
i=1

Mi,
n⨂︂
i=1

µi

)︄
,

where
N⨂︁
i=1

µi denotes the product measure.

Lemma A.103. Let (M,Σ, µ) be a σ-finite measure space and assum H is separable.
Then the map defined on pure tensors as f ⊗ ψ ↦→ (x ↦→ f(x)ψ) for f ∈ L2(M, µ) and
ψ ∈ H extends to a unitary

L2(M, µ)⊗H ∼= L2(M, µ;H),

where the right hand side denotes the Hilbert space of H-valued L2-functions on M.

We now need to define operators on tensor products.

Definition A.104. Let Ai be an operator on Hi for each i = 1, . . . , N . Then, we define

the algebraic tensor product operator as the unique linear operator on
N⨂︁
i=1

Hi satisfying

D

(︄
N⨀︂
i=1

Ai

)︄
= span

{︄
N⨂︂
i=1

xi

⃓⃓⃓⃓
⃓xi ∈ D(Ai)

}︄
,

N⨀︂
i=1

Ai

N⨂︂
i=1

xi =
N⨂︂
i=1

Aixi.

Lemma A.105. Assume Ai is a densely defined closable operator on Hi for each i =
1, . . . , N . Then

⨀︁N
i=1Ai is densely defined and closable.

Definition A.106. In the situation of Lemma A.105, we define the tensor product oper-
ator as

N⨂︂
i=1

Ai =
N⨀︂
i=1

Ai.

In the case H1 = · · · = HN and A = A1 = · · · = AN , we write A⊗N =
N⨂︁
i=1

A.

Lemma A.107 ([Ara18, Theorem 3.9]). Assume Ai are selfadjoint operators on Hi for

each i = 1, . . . , N . Then
N⨂︁
i=1

Ai is selfadjoint. Further, if Di are cores for Ai for each

i = 1, . . . , N , then
N⨀︁
i=1

Di is a core for
N⨂︁
i=1

Ai.

Positivity on L2-Spaces

One main example, which is important in this thesis are operators on L2-spaces. Espe-
cially, we will use multiplication operators in several places, which we do not separately
define. Here, we introduce the concepts of positivity.

Throughout, we assume that (M,Σ, µ) is a σ-finite measure space.
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Definition A.108. We call f ∈ L2(M) (strictly) positive if (f > 0) f ≥ 0 µ-a.e. The
space of all (strictly) positive functions is denoted as (L2

++(M)) L2
+(M). An operator

A ∈ B(L2(M)) is called positivity preserving if AL2
+(M) ⊂ L2

+(M). Further, it is called
positivity improving if AL2

+(M) \ {0} ⊂ L2
++(M).

The following statement follows easily.

Lemma A.109 ([Sim74, Lemma I.14]). If A is a positivity preserving operator on L2(M),
then for any f ∈ L2(M) the inequality |Af | ≤ A|f | holds almost everywhere.

The next two lemmas give perturbative criteria for selfadjoint operators to have a posi-
tivity preserving and positivity improving semigroup, respectively.

Lemma A.110 ([RS78, Thm. XIII.45]). Let H0 and H be selfadjoint lower-semibounded
operators on L2(M). Further assume there is a sequence of bounded multiplication op-
erators (Vn)n∈N such that H0 + Vn converges to H in strong resolvent sense and H − Vn
converges to H0 in strong resolvent sense and H −Vn and H0+Vn are uniformly bounded
from below. Then e−tH is positivity preserving if and only if e−tH0 is positivity preserving.

Lemma A.111 ([Far72, Theorem 3],[RS78, Theorem XIII.44]). Let H0 and V be self-
adjoint operators on L2(M) such that H0 is lower-semibounded and V is H0-bounded
with relative bound smaller than 1. For Λ > 0, we write VΛ = V χ{|·|≤Λ}(V ). If e−tH0

is positivity improving for all t > 0, e−tVΛ is positivity preserving for all t,Λ > 0, and
⟨f, e−tVΛg⟩ = 0 for all t > 0 and f, g ∈ L2

+(M) with ⟨f, g⟩ = 0, then e−t(H0+V ) is positivity
improving for all t > 0.

The next famous theorem gives a connection between uniqueness of ground states and
positivity properties of operators.

Theorem A.112 (Perron-Frobenius-Faris, [Far72, Theorem 1],[RS78, Theorem XIII.44]).
Let H be a selfadjoint lower-semibounded operator on L2(M) and assume that e−tH is
positivity preserving and E = inf σ(H) is an eigenvalue. Then e−tH is positivity improving
for all t > 0 if and only if there is f ∈ L2

++(M) such that ker(H − E) = span{f}.

Finally, we state a lemma which allows us to obtain the ground state energy of an operator
acting on an L2-space with positivity preserving semigroup from any strictly positive
function.

Lemma A.113 ([MM18, Theorem C.1]). Let H be a self-adjoint operator on L2(M). If
e−TH is positivity preserving for all T ≥ 0 and f ∈ L2

++(M), then

inf σ(H) = − lim
T→∞

1

T
log
⟨︁
f, e−THf

⟩︁
.

Remark A.114. In fact, the referenced statement is stronger. It suffices to assume that
e−τHf ∈ L2

++(M) for any fixed choice of τ ≥ 0. We only need the case τ = 0.

Direct Integrals

As above assume (M,Σ, µ) is a σ-finite measure space. We want to define a class of
operators on the space of H-valued square integrable functions L2(M;H).
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A. Operators on Hilbert Spaces

Definition A.115. A family {A(x) | x ∈ M} of selfadjoint operators on H is called
measurable if x ↦→ (A(x)+i)−1 is measurable (in the sense of the Borel σ-algebra B(B(H))).
In this case, we define the operator A =

∫︁ ⊕
MA(x)dx on L2(M;H) as

D(A) = {ψ ∈ L2(M;H)|ψ(x) ∈ D(A(x)) a.e., x ↦→ ∥A(x)ψ(x)∥ ∈ L2(M)},
(Aψ)(x) = A(x)ψ(x).

Lemma A.116 ([RS78, Theorem XIII.85]). If {A(x)|x ∈ M} is a measurable family of
selfadjoint operators on H, then

∫︁ ⊕
MA(x)dx is selfadjoint.

Further, if A(x) ≥ c ∈ R for almost all x ∈ M, then
∫︁ ⊕
MA(x)dx ≥ c.
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B. Fock Space Analysis

In this appendix, we construct the bosonic Fock space and recall standard properties.
Introductory literature on the topic includes [RS72, Par92, Ara18]. Hence, most proofs
are deferred to those books.

Throughout this appendix, let h be a complex Hilbert space, which we also refer to as
one-particle space.

B.1. The Bosonic Fock Space

Bosons are indistinguishable particles. In this sense, our n-particle states need to be sym-
metric in the exchange of variables. To make this precise, we define the symmetrization
operator Sn ∈ B(h⊗n) as acting on pure tensors as

Sn(f1 ⊗ · · · ⊗ fn) =
1

n!

∑︂
π∈Sn

fπ(1) ⊗ · · · fπ(n),

where Sn denotes the symmetric group on {1, . . . , n}. It is easy to check that Sn extends
to an orthogonal projection. We denote its range as

h⊗sn = ranSn.

This now allows us to define the bosonic Fock space.

Definition B.1 (Fock Space). For n ∈ N0, we define the n-particle space (over h) as

F (n)(h) = h⊗sn for n ∈ N and F (0) = C.

Further, we define the bosonic Fock space over h as

F(h) =
∞⨁︂
n=0

F (n)(h).

We write an element ψ ∈ F(h) as vector ψ = (ψ(n))n∈N0 with ψ(n) ∈ F (n)(h) for all n ∈ N0.

Remark B.2. We will, throughout this thesis, slightly abuse notation and consider F (n)(h)
to be closed subspaces of F(h).
Remark B.3. Let us discuss the case h = L2(M) for some σ-finite measure space (M,Σ, µ).
We denote by L2

s (M×n) the space of all functions f ∈ L2(M×n) satisfying

∀π ∈ Sn : f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) for a.e. (x1, . . . , xn) ∈ M×n

with respect to the product measure on M×n. In the sense of Lemma A.102, we then
have the identification

F (n)(L2(M)) ∼= L2
s (M×n).
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B. Fock Space Analysis

An important subspace of the full Fock space is the following.

Definition B.4. Assume D is a subspace of h. Then, we define the finite particle subspace
generated by D

Ffin(D) = span {Sn(f1 ⊗ · · · ⊗ fn)|n ∈ N, f1, . . . , fn ∈ D} .

Remark B.5. We note that some authors also use the term finite particle subspace for the
set {︁

(ψ(n))n∈N0 ∈ F(h)
⃓⃓
∃N ∈ N ∀k ≥ N : ψ(k) = 0

}︁
.

This is related to our finite particle subspace by taking the closure inside of each subspace
F (n) and then taking the union over all n ∈ N0.

Lemma B.6 ([Ara18, Lemma 4.4]). If D is a dense subspace of h, then Ffin(D) is dense
in F .

We define some special types of vectors, starting with the vacuum.

Definition B.7. The Fock vacuum is the vector Ω = (1, 0, 0, . . .).

For us, an important class of vectors will also be the so-called coherent states.

Definition B.8. For f ∈ h, we define the exponential vector as

ϵ(f) = 1⊕
∞⨁︂
n=1

1√
n!
f⊗n.

For D ⊂ h, we write E(D) = {ϵ(f) : f ∈ D}.

The following is an easy calculation from the above definition.

Lemma B.9. For all f, g ∈ h, we have ⟨ϵ(f), ϵ(g)⟩ = e⟨f,g⟩.

As we will heavily use the exponential vectors by acting on them with operators, we will
need the following.

Lemma B.10 ([Par92, Corollary 19.5]). If D is dense in h, then E(D) is total in F(h).

B.2. Second Quantization Operators

In this appendix, we define a method to lift operators on the one-particle space h to
operators on F(h).

Definition B.11. Let T be a densely defined closable operator on h. Then, we define

dΓ(T ) =
∞⨁︂
n=0

dΓ(n)(T ) with dΓ(n)(T ) =

⎧⎪⎨⎪⎩
n∑︂
k=1

(1)⊗(k−1) ⊗ T ⊗ (1)⊗(n−k) for n ∈ N,

0 for n = 0

as operator on F(h).
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Remark B.12. The dΓ-operators are also called differential second quantization operators
in the literature.

Remark B.13. Let us again discuss the case of L2-spaces in the setting of Remark B.3.
If T : M → C is measurable, i.e., a normal multiplication operator on L2(M), then in
the sense of our previous considerations the n-particle operators are the multiplication
operators on F (n)(L2(M)) = L2

s (M×n) given by

dΓ(n)(T )(x1, . . . , xn) =
n∑︂
i=1

T (xi).

Let us define a second type of second quantization operator.

Definition B.14. Let S be a densely defined closable operator from h to v. Then, we
define

Γ(S) = 1⊕
∞⨁︂
n=1

S⊗n

as operator from F(h) to F(v).

We now collect some properties of the operators defined above.

Lemma B.15. Let h, v, w be complex Hilbert spaces, and let A, B, and C be densely
defined closed operators on h, from h to v, and from v to w, respectively.

(i) If A is selfadjoint, then dΓ(A) is selfadjoint. Further, if A ≥ 0, then dΓ(A) ≥ 0.

(ii) If A is selfadjoint and T is a selfadjoint operator on h strongly commuting with A,
then dΓ(A) and dΓ(T ) strongly commute.

(iii) If D is a core for A, then Ffin(D) is a core for dΓ(A).

(iv) If g ∈ D(A), then ϵ(g) ∈ D(dΓ(A)) and

⟨ϵ(f), dΓ(A)ϵ(g)⟩ = ⟨f, Ag⟩ e⟨f,g⟩ for all f ∈ h.

Further, if h ∈ D(B), then

⟨dΓ(A)ϵ(g), dΓ(B)ϵ(h)⟩ = (⟨Ag, h⟩ ⟨g,Bh⟩+ ⟨Ag,Bh⟩)e⟨g,h⟩.

(v) If B is a contraction, then Γ(B) is a contraction and Γ(B)∗ = Γ(B∗).

(vi) If B and C are contractions, then Γ(B)Γ(C) = Γ(BC).

(vii) If B is unitary, so is Γ(B).

(viii) If A is selfadjoint, then eitdΓ(A) = Γ(eitA) for all t ∈ R.

(ix) If A is selfadjoint and positive, then e−tdΓ(A) = Γ(e−tA) for all t ≥ 0.

(x) If U is unitary and A is selfadjoint, then Γ(U)dΓ(A)Γ(U)∗ = dΓ(UAU∗).

(xi) If g ∈ D(B), then ϵ(g) ∈ D(Γ(B)) and Γ(B)ϵ(g) = ϵ(Bg).
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B. Fock Space Analysis

References for proofs. (i) [Ara18, Theorem 5.2] (ii) [Ara18, Proposition 5.4] (iii) [Ara18,
Theorem 5.1] (iv) [Par92, Proposition 20.13] (v) [Ara18, Theorem 5.5] (vi),(vii) [Ara18,
Theorem 5.6] (viii),(ix) [Ara18, Theorem 5.7] (x) [Ara18, Theorem 5.8] (xi) [Par92,
(20.2),(20.4),(20.11)]

In some places, we will need vector notation for the dΓ-operators.

Definition B.16. If A = (A1, . . . , Ak) for k ∈ N is a family of pairwise strongly commut-
ing selfadjoint operators, we denote by dΓ(A) = (dΓ(A1), . . . , dΓ(Ak)) the corresponding
family of pairwise strongly commuting selfadjoint operators, cf. Definition A.73.

We use the following lemma when considering the fiber operators of the Nelson model.

Lemma B.17. Fix some k ∈ N and assume that A = (A1, . . . , Ak) is a family of pairwise
strongly commuting selfadjoint operators. Then, for all P ∈ Rk and s > 0, we have
D(|P − dΓ(A)|s) =

⋂︁k
i=1D(|dΓ(Ai)|s).

Proof. For all x, P1, P2 ∈ Rk we have the inequalities

|x− P1|2s ≤ 22s(|x− P2|2s + |P2 − P1|2s) and |xi|2s ≤ |x|2s ≤ k2s
k∑︂
i=1

|xi|2s.

Hence, the statement follows from Definition A.73 and Lemma A.52.

B.3. Creation, Annihilation and Field Operators

We now define the operators describing the particle-field interaction.

Definition B.18. Let f ∈ h.
We define a(f) as the unique closed operator on F(h) acting as

a(f)(Sng1 ⊗ · · · ⊗ gn) =
1√
n

n∑︂
k=1

⟨f, gk⟩Sn−1

(︁
g1 ⊗ · · · ⊗��gk ⊗ · · · ⊗ gn

)︁
and call a(f) annihilation operator (corresponding to f).
Further, let a†(f) be the unique closed operator acting as

a†(f)(Sng1 ⊗ · · · ⊗ gn) =
√
n+ 1Sn+1

(︁
f ⊗ g1 ⊗ · · · ⊗ gn

)︁
and call it creation operator (corresponding to f).

Remark B.19. The definitions above directly extend to the dense set Ffin(h) (Lemma B.6).
Further, by direct calculation on Ffin(h), the operators a(f) and a†(f) have densely defined
adjoints. Hence, they are closable by Lemma A.10. Taking the closure then finishes the
construction.

We collect some properties of these operators.

Lemma B.20. Let f, g ∈ h.

(i) D(a(f)) = D(a†(f)) and a(f)∗ = a†(f).
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B.3. Creation, Annihilation and Field Operators

(ii) If D is a dense subspace of h, then Ffin(D) is a core for a(f) and a†(f).

(iii) E(h) ⊂ D(a(f)) and a(f)ϵ(g) = ⟨f, g⟩ ϵ(g).

(iv) On Ffin(h) ∪ span E(h), the canonical commutation relations

[a(f), a(g)] = [a†(f), a†(g)] = 0, [a(f), a†(g)] = ⟨f, g⟩

hold. Further, they hold in the sense of weak commutators (cf. Definition A.92).

(v) If B is a contraction, then Γ(B)a†(f) = a†(Bf)Γ(B) and a(f)Γ(B)∗ = Γ(B)∗a(Bf).

(vi) If B is an isometry from h to v, i.e., B∗B = 1, then Γ(B)a(f) = a(Bf)Γ(B).

(vii) If A is a positive and injective selfadjoint operator on h and f ∈ D(A−1/2), then
D(dΓ(A)1/2) ⊂ D(a(f)) = D(a†(f)) and for all ψ ∈ D(dΓ(A)1/2)

∥a(f)ψ∥ ≤ ∥A−1/2f∥∥dΓ(A)1/2ψ∥,
∥a†(f)ψ∥ ≤ ∥A−1/2f∥∥dΓ(A)1/2ψ∥+ ∥f∥∥ψ∥.

(viii) If A is a positive and injective selfadjoint operator on h and f ∈ D(A−1/2) ∩ D(A),
then

a(f)D(dΓ(A)) ∪ a†(f)D(dΓ(A)) ⊂ D(dΓ(A)1/2).

Further, a(f)D(dΓ(A)3/2) ∪ a†(f)D(dΓ(A)3/2) ⊂ D(dΓ(A)) and

[dΓ(A), a†(f)] = a†(Af), [dΓ(A), a(f)] = −a(Af) hold on D(dΓ(A)3/2).

References for proofs. (i) [Ara18, Lemma 5.4, Corollary 5.6] (ii) This follows directly by
construction. (iii) [Par92, Proposition 20.12] (iv) The operator statement is [Ara18, The-
orem 5.13] and [Par92, Proposition 20.12]. The weak commutator can be directly calcu-
lated. (vii) [Ara18, Theorem 5.16] (viii) [Ara18, Thm. 5.17, Lemma 5.12]

Proof of (v), (vi). Let g1, . . . , gn ∈ h. The first statement follows from the calculation

Γ(B)a†(f)Sng1 ⊗ · · · ⊗ gn =
√
n+ 1Γ(B)Sn+1f ⊗ g1 ⊗ · · · ⊗ gn

=
√
n+ 1Sn+1Bf ⊗Bg1 ⊗ · · · ⊗Bgn

= a†(Bf)SnBg1 ⊗ · · · ⊗Bgn

= a†(Bf)Γ(B)Sng1 ⊗ · · · ⊗ gn

and using Lemmas B.15 (iii) and B.20 (ii).
Similarly, using the isometry property of B, (vi) follows from

Γ(B)a(f)Sng1 ⊗ · · · ⊗ gn =
1√
n

n∑︂
k=1

⟨f, gk⟩Γ(B)Sn−1g1 ⊗ · · · ⊗��gk ⊗ · · · ⊗ gn

=
1√
n

n∑︂
k=1

⟨Bf,Bgk⟩Sn−1Bg1 ⊗ · · · ⊗�
��Bgk ⊗ · · · ⊗Bgn

= a(Bf)SnBg1 ⊗ · · · ⊗Bgn

= a(Bf)Γ(B)Sng1 ⊗ · · · ⊗ gn.
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B. Fock Space Analysis

Definition B.21. For f ∈ h, we define the (Segal) field operator

φ(f) = a(f) + a†(f).

Lemma B.22. Let f ∈ h.

(i) The operator φ(f) is selfadjoint. Further, if D is a dense subspace of h, then both
Ffin(D) and span E(D) are cores for φ(f).

(ii) If A is a positive and injective selfadjoint operator and f ∈ D(A−1/2), then φ(f) is
dΓ(A)1/2-bounded. Especially, φ(f) is infinitesimally dΓ(A)-bounded.

References for proofs. (i) [Ara18, Theorem 5.22], [Par92, Corollary 20.5] (ii) Follows from
Lemma B.20 (vii).

We will also make use of the following lemma

Lemma B.23. Let h1 and h2 be separable Hilbert spaces. Then, there exists a unique
unitary U : F(h1 ⊕ h2) → F(h1)⊗F(h2) such that

UΩ = Ω⊗ Ω,

UFfin(h1 ⊕ h2) = Ffin(h1)⊙Ffin(h2), (cf. Definition A.99)

U(a#(f, g))U∗ = a#(f)⊗ 1+ 1⊗ a#(g) for all a# ∈ {a, a†}, (f, g) ∈ h1 ⊕ h2.

Further, for selfadjoint operators A and B on h1 and h2, we have

UdΓ(A⊕B)U∗ = dΓ(A)⊗ 1+ 1⊗ dΓ(B).

Similar, for contraction operators T and S on h1 and h2, we have

UΓ(T ⊕ S)U∗ = Γ(T )⊗ Γ(S).

Proof. Combine the statements from [Ara18, Theorems 5.38, 5.40, 5.41].

B.4. Weyl Operators

In our treatment of the Nelson model the Weyl operators have an important role. They
are defined through their action on exponential vectors.

Definition B.24. For f ∈ h, we define the Weyl operator W (f) as the unique closed
operator acting as

W (f)ϵ(g) = e−
1
2
∥f∥2−⟨f,g⟩ϵ(f + g) for all g ∈ h.

Remark B.25. The Weyl operators in above definition are well-defined, since it yields a
bounded operator on the total set E(h) (Lemma B.10), cf. Lemma A.11.

Lemma B.26 ([Par92, Proposition 20.1]).

(i) For all f ∈ h, W (f) is unitary, W (f)∗ = W (−f) and W (−if) = e−iφ(f).

(ii) For all f, g ∈ h, W (f)W (g) = e−i Im⟨f,g⟩W (f + g).

(iii) The map f ↦→ W (f) is continuous in the strong operator topology.
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B.5. Q-Space

In some places, we need a representation of F(h) as L2-space over a probability space
(Q,Σ, µ). To that end, we first define Hilbert space indexed Gaussian random processes.

Definition B.27. Let r be a real Hilbert space. A map ϕ from r to the random variables
on a probability space (Q,Σ, µ) is called Gaussian random process over r, if the following
holds:

(i) ϕ is R-linear,

(ii) Σ is the minimal σ-field generated by {ϕ(f) : f ∈ r},

(iii) ϕ(f) is a Gaussian random variable for any f ∈ r, i.e., µ ◦ ϕ(f)−1 is normally
distributed,

(iv) ϕ(f) has mean zero for any f ∈ r, i.e.,
∫︁
Ω
ϕ(f)dµ = 0,

(v) the Gaussians have covariance
∫︁
Ω
ϕ(f)ϕ(g)dµ = ⟨f, g⟩r for all f, g ∈ r.

Remark B.28. We fixed the mean of the random variables to zero and the covariance to
⟨v, w⟩r, to make the statement of Lemma B.30 as simple as possible.

Lemma B.29. For any real Hilbert space r there exist a unique (up to isomorphism)
probability space (Qr,Σr, µr) and a unique (again up to isomorphism) Gaussian random
process ϕr indexed by r on (Qr,Σr, µr).

Proof. See [Sim74, Theorems I.6 and I.9] or [LHB11, Prop. 5.6, Section 5.4].

The following isometry statement is also called Wiener-Itô-Segal isomorphism and can be
found in [Sim74, Theorem I.11] and [LHB11, Prop. 5.7].

Lemma B.30. There exists a unitary operator Θr : F(r⊕ ir) → L2(Qr) such that

(i) ΘrΩ = 1,

(ii) Θ∗
rϕr(v)Θr = φ(v) for all v ∈ r.

Remark B.31. By r ⊕ ir, we mean the complexification of r, i.e., the Hilbert space given
by {(x, y) : x, y ∈ r} with the usual addition, scalar multiplication

α(x, y) = (xReα− y Imα, x Imα + yReα)

and inner product

⟨(x1, y1), (x2, y2)⟩ = ⟨x1, x2⟩r + ⟨y1, y2⟩r + i(⟨x1, y2⟩r − ⟨y1, x2⟩r).

Further, in (ii), we understand ϕr(v) as selfadjoint multiplication operator acting on
L2(Qr).
We will need the following positivity statement.

Lemma B.32 ([Sim74, Theorem I.12]). If T is a contraction operator on r ⊕ ir, then
ΘrΓ(T )Θ

∗
r is positivity preserving on L2(Qr). Especially, if A is selfadjoint on r⊕ ir, then

Θre
itdΓ(A)Θ∗

r is positivity preserving for all t ∈ R. If A is also positive, then Θre
−tdΓ(A)Θ∗

r

is positivity preserving for all t ≥ 0.
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B.6. Pointwise Annihilation Operators

In this thesis, pull-through formulas are used for both the Nelson and the spin boson
model. To prove them, we need to define pointwise annihilation operators and appro-
priately calculate their commutators with the operators defined above. Here, we give an
overview of the approach in [DM20b, Appendix D]. All statements made here are proven
therein.

Throughout, let (M,Σ, µ) be a σ-finite measure space and h = L2(M).

Definition B.33. We define the extended Fock space

F+(h) =
∞×
n=0

F (n)(h)

and equip it with the metric

d+(ψ, ϕ) =
∞∑︂
n=0

∥ψ(n) − ϕ(n)∥
2n(1 + ∥ψ(n) − ϕ(n)∥)

.

Further, we define the coordinate projections Pnψ = ψ(n) ∈ F (n).

Although we cannot equip F+ with an appropriate inner product, we can pair elements
of F+ with elements of the finite particle subspace.

Definition B.34. For ϕ ∈ Ffin(h) and ψ ∈ F+(h), we define

⟨ϕ, ψ⟩+ =
∞∑︂
n=0

⟨ϕ(n), ψ(n)⟩ .

Remark B.35. Note that the infinite sum in the above definition has only finitely many
non-zero summands, due to the definition of the finite particle subspace, and is hence
well-defined.

We will need extended versions of the operators defined above. To that end, recall
that a(f) and a†(f) map F (n) to F (n−1) and F (n+1), respectively, and on this domain are
bounded (and hence continuous) by

√
n∥f∥ and

√
n+ 1∥f∥, respectively.

Definition B.36. For f ∈ h, we define the continuous operators

a+(f)ψ =
∞×
n=1

a(f)ψ(n) and a†+(f)ψ = 0×
∞×
n=0

a†(f)ψ(n).

Further, we define φ+(f) = a+(f) + a†+(f).

Although it is a trivial consequence of the definitions, we note the following lemma.

Lemma B.37. For f ∈ h and ψ ∈ D(a(f)) = D(a†(f)) ⊂ F(h) ⊂ F+(h), we have

a+(f)ψ = a(f)ψ a†+(f)ψ = a†(f)ψ.

Further, for ψ ∈ D(φ(f)), we have φ+(f)ψ = φ(f)ψ.
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We also need second quantization operators. Here, we restrict ourselves to the case of
selfadjoint multiplication operators, cf. Remark B.13.

Definition B.38. Let k ∈ N, A = (A1, . . . , Ak) : M → Rk be a strongly commuting
family of selfadjoint multiplication operators on h and f : Rk → C measurable. Then, we
define

f(dΓ(A))ψ =
∞×
n=0

dΓ(n)(A)ψ(n) on the domain D(f(dΓ(A))) =
∞×
n=0

D(f(dΓ(n)(A))).

Similar to Lemma B.37, we have the following.

Lemma B.39. In the situation of Definition B.38, we have

f(dΓ+(A))ψ = f(dΓ(A))ψ for all ψ ∈ D(f(dΓ(A))) ⊂ D(f(dΓ+(A))) ∩ F(h).

For the operators defined above, we can take adjoints w.r.t ⟨·, ·⟩+ similar to the adjoints
on F(h).

Lemma B.40. Let f ∈ h, A : M → Rk and g : Rk → C measurable. Then, we have

⟨φ(f)ψ, ϕ⟩+ = ⟨ψ, φ+(f)ϕ⟩+ for all ψ ∈ Ffin(h), ϕ ∈ F+,

⟨g(dΓ(A))ψ, ϕ⟩+ = ⟨ψ, g(dΓ+(A))ϕ⟩+
for all ψ ∈ Ffin(h) ∩ D(g(dΓ(A))), ϕ ∈ D(g(dΓ+(A))).

Apart from Fock space, we equip further subspaces of F+(h) with a norm.

Definition B.41. For a ∈ R, we define

F+,a = {ψ ∈ F+|∥ψ∥+,a <∞} with the norm ∥ψ∥2+,a =
∑︂
n∈N0

(1 + n)3a∥ψ(n)∥2.

Remark B.42. Obviously, we have F+,0(h) = F(h).

We will need the following lemma

Lemma B.43. Let a ≤ 0, ϕ ∈ F+,a(h) and D ⊂ Ffin(h) be dense in F(h). If ⟨ψ, ϕ⟩+ = 0
for all ψ ∈ D, then ϕ = 0.

To define pointwise annihilation operators, we need to consider the space of F+(h)-valued
square-integrable functions on M.

Definition B.44. Let

C (M) = {f : M → F+(h) | ∀n ∈ N0 : Pnf(·) ∈ L2(M;F (n)(h))}/ ∼,

where we write f ∼ g if and only if f = g almost everywhere.

Similar to the idea of a direct integral, we can take the operators φ+ and dΓ+(A) to
operators on C (M).
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Definition B.45. Let f ∈ h, A : M → Rk, g : Rk → C and h : M → Rk. Then, we
define

(φ⊕(f)ψ)(x) = φ+(f)ψ(x) for ψ ∈ C (M), x ∈ M,

D(g(dΓ⊕(A) + h)) =
{︂
ψ ∈ C (M)

⃓⃓⃓
ψ(·) ∈ D(g(dΓ+(A) + h(x))) a.e.,

∀n ∈ N :

∫︂
M

∥Png(dΓ+(A) + h(x))ψ(x)∥2dµ(x) <∞
}︂

(g(dΓ⊕(A) + h)ψ)(x) = g(dΓ+(A) + h(x))ψ(x) for ψ ∈ D(g(dΓ⊕(A) + h)).

We now define the pointwise annihilation operator.

Definition B.46. The pointwise annihilation operator is the operator A : F+(L
2(M)) →

C(M) with
Pn(Aψ)(k) =

√
n+ 1(Pn+1ψ)(k, ·, · · · , ·).

Remark B.47. For f ∈ F (n+1), the map k ↦→ f(k, ·, · · · , ·) is an element of L2(M;F (n)), by
the Fubini-Tonelli theorem. Hence, the above definition defines Pn(Aψ)(k) for almost ev-
ery k ∈ M. Since countable unions of zero sets are again zero sets, the above prescription
is well-defined.

The next lemma is a simple implication from the definitions.

Lemma B.48. The pointwise annihilation operator A is a continuous operator from
F+(h) to C (M) and if ψ ∈ F(h), then Aψ(k) ∈ F+,−1/2(h) holds for almost every k ∈ M.

We can now explicitly calculate commutators, which are the main ingredient for the proof
of our pull-through formulas.

Lemma B.49.

(i) For all f ∈ h
φ⊕(f)Aψ = Aφ+(f)−Mf .

(ii) Let ω : Rd → Rk and g : Rk → R be measurable. Then, for all ψ ∈ D(g(dΓ(ω))), we
have Aψ ∈ D(g(dΓ⊕(ω) + ω) and

g(dΓ⊕(ω) + ω)Aψ = Af(dΓ+(ω))ψ.

We will also need the following statement about second quantization operators on Fock
space.

Lemma B.50. Let B : M → R be measurable with B ≥ 0. Then

ψ ∈ D(dΓ(B)
1
2 ) ⇐⇒ B

1
2Aψ ∈ L2(M,F).

Furthermore, for ϕ, ψ ∈ D(dΓ(B)
1
2 ), we have

⟨dΓ(B)
1
2ϕ, dΓ(B)

1
2ψ⟩ =

∫︂
M
B(k)⟨Aϕ(k), Aψ(k)⟩dµ(k),

and Aψ(k) ∈ F almost everywhere on {k ∈ M : B(k) > 0}.
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Nomenclature

General Symbols

N Positive integers
N0 Non-negative integers
Z Integers
R Real numbers
R+ Positive real numbers
⌊·⌋ Integer part of a real number
ln / log Natural logarithm.
C Complex numbers
i Imaginary unit
z Complex conjugate of t ∈ C
Sn Symmetric group on {1, . . . , n}
Πn Set of partitions of {1, . . . , n}
P(M) Power set of a set M
χM Characteristic function of a set M
|M |, |k| Cardinality of a finite set M and Euclidean norm of a vector k ∈ Rd

BR(k) Open ball of radius R > 0 with center k ∈ Rd

Banach and Hilbert Spaces

∥·∥,⟨·, ·⟩ Norm and inner product (in given Banach / Hilbert spaces)
H⊕ V ,H⊗ V Direct sum and tensor product of Hilbert spaces
B(H),B(H,V) Bounded operators on the Hilbert space H and from the Hilbert space

H to the Hilbert space V , respectively (Definition A.12)
1 Identity operator
L2(M, µ) Hilbert space of square-integrable functions over a measure space

(M,Σ, µ), if clear from the context the measure µ is dropped
L2(M, µ;H) Hilbert space of H-valued square-integrable functions
L2
+(M, µ) Positive square-integrable functions (Definition A.108)

L2
++(M, µ) Strictly positive square-integrable functions (Definition A.108)

L2
R(M, µ) Real-valued square-integrable functionsˆ︁f Unitary Fourier transform of f ∈ L2(Rd)

Operators on Hilbert Spaces

D(T ) Domain of the operator T (Definition A.2)
T Closure of the operator T (Definition A.6)
T ∗ Adjoint of the operator T (Definition A.9)
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Nomenclature

[A,B] Commutator of the operators A and B (Definition A.3)
σ(T ) Spectrum of the operator T (Definition A.25)
σd(A) Discrete spectrum of the selfadjoint operator A (Definition A.36)
σess(A) Essential spectrum of the selfadjoint operator A (Definition A.36)
PA Projection-valued measure of the normal operator A (Definition A.55)
Q(T ) Form domain of the operator T (Definition A.84)
qA Quadratic form of the selfadjoint operator A (Definition A.84)
cA,B Weak commutator of the operators A and B (Definition A.92)

Fock Spaces

F(h) Fock space over the Hilbert space h (Definition B.1)
F (n)(h) n-particle space over the Hilbert space h (Definition B.1)
F , F (n) Fock space and n-particle space over L2(Rd)
Ffin(D) Finite particle subspace spanned by the subspace D of h (Definition B.4)
Ω Fock space vacuum ((1.8))
ϵ(f) Coherent state generated by f ∈ h (Definition B.8)
E(D) Set of coherent states spanned by D ⊂ h (Definition B.8)
dΓ(A),Γ(A) Second quantization operators of A (Definitions B.11 and B.14)
a(f), a†(f) Annihilation and creation operator for f ∈ h (Definition B.18)
φ(f) (Segal) field operator for f ∈ h (Definition B.21)
W (f) Weyl operator for f ∈ h (Definition B.24)
Qr,Θr, ϕr Q-space, Wiener-Itô-Segal isomorphism and Gaussian random variable

associated with the decomposition h = r⊕ ir (Lemma B.30)

Nelson Model

m Momentum operator ((1.3))
HN,Λ(P ) Translation-invariant Nelson Hamiltonian with sharp ultraviolet cutoff

Λ ∈ [0,∞) and total momentum P ∈ Rd (Definition 1.3)
EΛ Self-energy of the Nelson Hamiltonian ((1.5))
HN,∞(P ) Renormalized translation-invariant Nelson Hamiltonian at total momen-

tum P ∈ Rd (Lemma 1.6)
DN,QN Domain and Form Domain of HN,Λ(P ), Λ <∞ ((1.4))

Spin Boson Model

σx, σy, σz 2× 2 Pauli matrix ((1.7))
HSB(λ) Spin boson Hamiltonian with coupling constant λ ∈ R (Definition 1.11)
H

(m)
SB (λ, µ) Spin boson Hamiltonian with coupling constant λ ∈ R and external

magnetic field µ ∈ R (Definition 1.18)
Xt,EX Poisson-driven jump process (Definition 4.16)
W Interaction function of the continuous Ising model corresponding to the

spin boson model with external magnetic field ((1.9))
j·oT,λ,µ Expectation values in the continuous Ising model corresponding to the

spin boson model with external magnetic field ((1.11))
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