
TECHNISCHE UNIVERSITÄT ILMENAU

DOCTORAL THESIS

Multi-Task Near-Field Perception
for Autonomous Driving Using

Surround-View Fisheye Cameras

Reviewers:
Prof. Dr.-Ing. Patrick Mäder
Prof. Dr. John Mc Donald
Prof. Dr. rer. nat. Gunther Notni

Author:
Dr.-Ing. Varun Ravi Kumar

A dissertation submitted in partial fulfillment
of the requirement for the degree of

Doctor of Engineering

in the

Fakultät für Informatik und Automatisierung
Softwaretechnik für sicherheitskritische Systeme

DOI: 10.22032/dbt.50751
URN: urn:nbn:de:gbv:ilm1-2021000421

Scientific Debate Day:
December 21, 2021

https://www.tu-ilmenau.de/en/international/
https://scholar.google.com.ar/citations?user=LPzoSrsAAAAJ&hl=en
https://scholar.google.com.ar/citations?user=MrI1EV4AAAAJ&hl=en
https://www.researchgate.net/profile/Gunther-Notni
https://linkedin.com/in/rvarun7777
https://informatik.tu-ilmenau.de/
https://www.tu-ilmenau.de/secsy/


ii

Declaration of Authorship
I, Dr.-Ing. Varun Ravi Kumar, declare that this thesis titled, “Multi-Task Near-Field
Perception for Autonomous Driving Using Surround-View Fisheye Cameras” and
the work presented in it are my own. I confirm that:

I certify that I prepared the submitted thesis independently without undue assistance
of a third party and without the use of other than the indicated aids. Data and
concepts directly or indirectly taken over from other sources have been marked
stating the sources.

When selecting and evaluating the following materials, the persons listed below
helped me in the way described respectively for a charge/free of charge:

• Senthil Yogamani
• Prof. Dr. John McDonald
• Marvin Klinger

Further persons were not involved in the content-material-related preparation of the 
thesis submitted. In particular, I have not used the assistance against payment offered 
by consultancies or placing services (doctoral consultants or other persons). I did 
not pay any money to persons directly or indirectly for work or services which are 
related to the content of the thesis submitted.

So far, the thesis has not been submitted identically or similarly to an examination 
office in Germany or abroad.

I have been notified that any incorrectness in the submitted declaration as mentioned 
above is assessed as an attempt to deceive and, according to § 7 para. 10 of the PhD 
regulations, this leads to a discontinuation of the doctoral procedure.

Signed: 

City, Date: Kronach, 05/01/2022



iii

“You should not give up and we should not allow the problem to defeat us. To succeed in your
mission, you must have single-minded devotion to your goal.”

Dr. A.P.J. Abdul Kalam



iv

Dedicated to my parents Ravi Kumar and Vinutha, who have
worked hard and sacrificed their lives for a better future for me
and offered unconditional love support during my tough times.

Thank you so much for everything!



v

Abstract

Die Bildung der Augen führte zum Urknall der Evolution. Die Dynamik änderte
sich von einem primitiven Organismus, der auf den Kontakt mit der Nahrung
wartete, zu einem Organismus, der durch visuelle Sensoren gesucht wurde. Das
menschliche Auge ist eine der raffiniertesten Entwicklungen der Evolution, aber
es hat immer noch Mängel. Der Mensch hat über Millionen von Jahren einen bi-
ologischen Wahrnehmungsalgorithmus entwickelt, der in der Lage ist, Autos zu
fahren, Maschinen zu bedienen, Flugzeuge zu steuern und Schiffe zu navigieren. Die
Automatisierung dieser Fähigkeiten für Computer ist entscheidend für verschiedene
Anwendungen, darunter selbstfahrende Autos, Augmented Realität und architek-
tonische Vermessung.

Die visuelle Nahfeldwahrnehmung im Kontext von selbstfahrenden Autos kann
die Umgebung in einem Bereich von 0− 10 Metern und 360° Abdeckung um das
Fahrzeug herum wahrnehmen. Sie ist eine entscheidende Entscheidungskomponente
bei der Entwicklung eines sichereren automatisierten Fahrens. Jüngste Fortschritte
im Bereich Computer Vision und Deep Learning in Verbindung mit hochwertigen
Sensoren wie Kameras und LiDARs haben ausgereifte Lösungen für die visuelle
Wahrnehmung hervorgebracht. Bisher stand die Fernfeldwahrnehmung im Vorder-
grund. Ein weiteres wichtiges Problem ist die begrenzte Rechenleistung, die für die
Entwicklung von Echtzeit-Anwendungen zur Verfügung steht. Aufgrund dieses
Engpasses kommt es häufig zu einem Kompromiss zwischen Leistung und Laufzeit-
effizienz.

Wir konzentrieren uns auf die folgenden Themen, um diese anzugehen: 1) Entwick-
lung von Nahfeld-Wahrnehmungsalgorithmen mit hoher Leistung und geringer
Rechenkomplexität für verschiedene visuelle Wahrnehmungsaufgaben wie
geometrische und semantische Aufgaben unter Verwendung von faltbaren neu-
ronalen Netzen. 2) Verwendung von Multi-Task-Learning zur Überwindung von
Rechenengpässen durch die gemeinsame Nutzung von initialen Faltungsschichten
zwischen den Aufgaben und die Entwicklung von Optimierungsstrategien, die die
Aufgaben ausbalancieren.



vi

Abstract

The formation of eyes led to the big bang of evolution. The dynamics changed from a
primitive organism waiting for the food to come into contact for eating food being
sought after by visual sensors. The human eye is one of the most sophisticated
developments of evolution, but it still has defects. Humans have evolved a biological
perception algorithm capable of driving cars, operating machinery, piloting aircraft,
and navigating ships over millions of years. Automating these capabilities for com-
puters is critical for various applications, including self-driving cars, augmented
reality, and architectural surveying.

Near-field visual perception in the context of self-driving cars can perceive the en-
vironment in a range of 0− 10 meters and 360° coverage around the vehicle. It is
a critical decision-making component in the development of safer automated driv-
ing. Recent advances in computer vision and deep learning, in conjunction with
high-quality sensors such as cameras and LiDARs, have fueled mature visual percep-
tion solutions. Until now, far-field perception has been the primary focus. Another
significant issue is the limited processing power available for developing real-time
applications. Because of this bottleneck, there is frequently a trade-off between
performance and run-time efficiency.

We concentrate on the following issues in order to address them: 1) Developing
near-field perception algorithms with high performance and low computational
complexity for various visual perception tasks such as geometric and semantic tasks
using convolutional neural networks. 2) Using Multi-Task Learning to overcome
computational bottlenecks by sharing initial convolutional layers between tasks and
developing optimization strategies that balance tasks.



vii

Publications
The research work presented in this thesis appears in the following publications, and
the summarized contributions are solely from me. The following papers’ chronology
has been sorted on a top-down approach and descending order of the publication
year.

Primary Authorship

1. Varun Ravi Kumar, Senthil Yogmani, Hazem Rashed, Ganesh Sitsu, Christian
Witt, Isabelle Leang, Stefan Milz, Patrick Mäder. “OmniDet: Surround View
Cameras based Multi-task Visual Perception Network for Autonomous Driv-
ing.” In the IEEE Robotics and Automation Letters (RA-L) + IEEE International
Conference on Robotics and Automation (ICRA), 2021 [1].

Google Site: https://sites.google.com/view/omnidet/

Contribution:

• Architect and lead developer of the first real-time six-task model for
surround-view fisheye camera perception, out of which five were de-
veloped solely by me. For object detection, my contribution includes Open
Neural Network Exchange (ONNX) model creation, setting up the training
pipeline, and introducing a synergy between semantic segmentation and
object detection.

• Designed the multi-task learning framework in PyTorch with various state-
of-the-art multi-task loss functions. It potentially replaced the current MTL
framework in Tensorflow developed by many developers worldwide in
Valeo, and the new framework helped to win next-generation projects.

• Worked on creating the WoodScape dataset, including writing parsers and
data loaders for each task. The dataset and the corresponding parsers
will be released to the public on Github and will be part of the long-term
maintenance.

• To encourage further research in developing multi-task perception algo-
rithms, the code was made public on the Github, which proved to be quite
popular in the vision community and significantly helped the discernibility
of the approach.

• Integrated my novel approaches of distance estimation on fisheye camera
images which are discussed in papers [2, 3, 4, 5, 6].

• Modelled real-time capable, efficient network-architectures for semantic
segmentation, motion segmentation, and soiling segmentation.

• Performed embedded integration on NVIDIA’s Jetson AGX with models
exported to the ONNX format.

2. Varun Ravi Kumar, Ciarán Eising, , Christian Witt, Senthil Yogamani, Patrick
Mäder. “Surround-view Fisheye Camera Perception for Automated Driving:
Overview, Survey & Challenges” In-Review of the Journal of IEEE Transactions
on Intelligent Transportation Systems, 2021.

Contribution:

• Summarized the perception tasks carried out in the thesis.

https://arxiv.org/abs/2102.07448
https://arxiv.org/abs/2102.07448
https://arxiv.org/abs/2102.07448
https://sites.google.com/view/omnidet/
https://github.com/valeoai/WoodScape
https://github.com/valeoai/WoodScape


viii

• Worked on describing the most commonly used fisheye camera projection
models.

3. Varun Ravi Kumar, Marvin Klingner, Senthil Yogamani, Stefan Milz, Tim
Fingscheidt, Patrick Mäder. “SynDistnet: Self-Supervised Monocular Fish-
eye Camera Distance Estimation Synergized with Semantic Segmentation for
Autonomous Driving.” In the Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), 2021 [4].

Oral Talk: https://youtu.be/zL6zvtUy4cc
Google Site: https://sites.google.com/view/syndistnet/

Contribution:

• Solely developed a novel architecture to learn self-supervised distance
estimation synergized with semantic segmentation and self-attention mod-
ules.

• Research collaboration with Technische Universität Braunschweig to come
up with a novel dynamic object filtering technique. Had fruitful discus-
sions with Marvin Klinger (Ph.D. student) on depth estimation. The code
and integration were carried out solely by me as Valeo’s policy does not
allow code sharing.

• As a second contribution compared to PackNet [7], I came up with a one-
stage training approach to filter dynamic objects by introducing synergy
between distance estimation and semantic segmentation.

4. Varun Ravi Kumar, Marvin Klingner, Senthil Yogamani, Markus, Bach, Stefan
Milz, Tim Fingscheidt, Patrick Mäder. “SVDistNet: Self-Supervised Near-Field
Distance Estimation on Surround View Fisheye Cameras.” In the Journal of
IEEE Transactions on Intelligent Transportation Systems.

Google Site: https://sites.google.com/view/svdistnet/

Contribution:

• Designed and developed a novel camera geometry adaptive multi-scale
convolution for fisheye camera models to enable the training and deploy-
ment of distance estimation models on multiple surround-view cameras
mounted on different viewpoints.

• With this design, I proposed a solution for surround-view fisheye cameras
targeting large-scale industrial deployment. In other words, Valeo can
target the design of a model for production that can be deployed in millions
of vehicles having its own set of cameras.

• Demonstrated and showcased a single trained model for 12 fisheye cam-
eras, which achieves the equivalent result as an individual specialized
model that overfits to a particular camera model.

• Integrated and improved vector-based self-attention network module [8]
compared to my previous work [4] into the framework.

5. Varun Ravi Kumar, Senthil Yogamani, Stefan Milz, Patrick Mäder. “FisheyeDis-
tanceNet++: Self-Supervised Scale-Aware Distance Estimation with Improved
Training Speed and Accuracy through Loss Function Optimization.” In the
Electronic Imaging Autonomous Vehicles and Machines (EI-AVM), 2021 [6].

Contribution:

https://arxiv.org/abs/2008.04017
https://arxiv.org/abs/2008.04017
https://arxiv.org/abs/2008.04017
https://youtu.be/zL6zvtUy4cc
https://sites.google.com/view/syndistnet/
https://arxiv.org/abs/2104.04420
https://arxiv.org/abs/2104.04420
https://sites.google.com/view/svdistnet/
https://arxiv.org/abs/2008.04017
https://arxiv.org/abs/2008.04017
https://arxiv.org/abs/2008.04017


ix

• As an incremental paper to FisheyeDistanceNet [2] depicted the impor-
tance of using a general robust loss function instead of the L1 loss. I carried
out the development of code and experiments.

• Performed extensive ablation studies on the impact of using normalization
techniques on the results and designed optimal network architecture.

6. Varun Ravi Kumar, Sandesh Athni Hiremath, Markus Bach, Stefan Milz, Chris-
tian Witt, Clément Pinard, Senthil Yogamani, Patrick Mäder. “FisheyeDis-
tanceNet: Self-Supervised Scale-Aware Distance Estimation using Monocular
Fisheye Camera for Autonomous Driving.” In the IEEE International Confer-
ence on Robotics and Automation (ICRA), 2020 [2].

Oral Talk: https://youtu.be/qAsdpHP5e8c
Google Site: https://sites.google.com/view/fisheyedistancenet/

Contribution:

• Formulated the novel self-supervised training strategy to infer a distance
map from a sequence of distorted and unrectified raw fisheye camera
images.

• With the research guidance from Clément Pinard, I came up with a novel
solution to the scale factor uncertainty with the bolster from ego-motion
velocity that allows outputting metric distance maps. This facilitates the
map’s practical use for self-driving cars and validates the training of the
CNN. This contribution is considered the heart of the entire thesis, as this
is vital to enable the training of a CNN to estimate metric distance on raw
fisheye camera images. A significant idea that laid a foundation for the
following research in this domain.

• Created a subset of the Woodscape dataset for distance estimation task,
including recording the raw scenes and their post-processing. Wrote
parsers and transformation scripts to obtain the ground-truth LiDAR
samples to validate the network’s estimates.

• Incorporated my novel idea from [9, 10] to solve the problem of occlusion
due to different mounting positions of LiDAR and camera.

• Solely designed and developed novel ideas and network architecture to
obtain state-of-the-art results on the KITTI [11] and the WoodScape [12]
dataset.

7. Varun Ravi Kumar, Senthil Yogamani, Markus Bach, Christian Witt, Stefan Milz,
Patrick Mäder. “UnRectDepthnet: Self-supervised Monocular Depth Estima-
tion using a Generic Framework for Handling Common Camera Distortion
Models.” In the International Conference on Intelligent Robots and Systems
(IROS), 2020 [3].

Oral Talk: https://youtu.be/3Br2KSWZRrY
Google Site: https://sites.google.com/view/unrectdepthnet/

Contribution:

• Following upon the success of [2], created a novel generic end-to-end
self-supervised training pipeline to estimate monocular depth maps on
raw distorted images for various camera models.

https://arxiv.org/abs/1910.04076
https://arxiv.org/abs/1910.04076
https://arxiv.org/abs/1910.04076
https://youtu.be/qAsdpHP5e8c
https://sites.google.com/view/fisheyedistancenet/
https://arxiv.org/abs/2007.06676
https://arxiv.org/abs/2007.06676
https://arxiv.org/abs/2007.06676
https://youtu.be/3Br2KSWZRrY
https://sites.google.com/view/unrectdepthnet/


x

• Demonstrated the first results of depth estimation directly on unrectified
KITTI sequences and achieved state-of-the-art results on the KITTI depth
estimation dataset among self-supervised methods.

8. Varun Ravi Kumar, Stefan Milz, Christian Witt, Martin Simon, Karl Amende,
Johannes Petzold, Senthil Yogamani, Timo Pech. “Near-field Depth Estimation
using Monocular fisheye camera: A Semi-Supervised Learning Approach using
Sparse LiDAR Data.” In the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2018 [9].

Contribution:

• Built a joint fisheye camera and LiDAR dataset for supervised training of
distance estimation.

• Adapted the training data to handle occlusions due to differences between
camera and LiDAR viewpoint with a novel occlusion correction algorithm.

9. Varun Ravi Kumar, Stefan Milz, Christian Witt, Martin Simon, Karl Amende,
Johannes Petzold, Senthil Yogamani, Timo Pech. “Monocular Fisheye Camera
Depth Estimation using Sparse LiDAR Supervision.” In the 21st International
Conference on Intelligent Transportation Systems (ITSC), 2018 [10].

Google Site: https://sites.google.com/view/FisheyeLiDARDepth/

Contribution:

• Developed the first preliminary supervised approach work before the
self-supervised FisheyeDistanceNet [2], to demonstrate fisheye camera
distance estimation using CNN.

• Demonstrated a working prototype purely trained on sparse Velodyne
LiDAR data.

• Tailored the loss function and training algorithm to handle sparse-depth
data.

Secondary Authorship

1. Michal Uřičář, Ganesh Sistu, Hazem Rashed, Antonín Vobecký, Varun Ravi
Kumar, Pavel Křížek, Fabian Bürger, Senthil Yogamani. “Let’s Get Dirty: GAN
Based Data Augmentation for Camera Lens Soiling Detection in Autonomous
Driving.” In the Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), 2021 [13].

Contribution:

• Part of the research discussions and reviewed the code and oral presenta-
tion.

• Supported the dataset integration into the model.

2. Hazem Rashed, Eslam Mohamed, Ganesh Sistu, Varun Ravi Kumar, Ciarán
Eising, Ahmad El-Sallab, Senthil Yogamani. “Generalized Object Detection
on Fisheye Cameras for Autonomous Driving: Dataset, Representations and
Baseline.” In the Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), 2021 [14].

Google Site: https://sites.google.com/view/fisheyeyolo/

https://deepvision.data61.csiro.au/papers/5.pdf
https://deepvision.data61.csiro.au/papers/5.pdf
https://deepvision.data61.csiro.au/papers/5.pdf
https://arxiv.org/abs/1803.06192
https://arxiv.org/abs/1803.06192
https://sites.google.com/view/FisheyeLiDARDepth/
https://openaccess.thecvf.com/content/WACV2021/html/Uricar_Lets_Get_Dirty_GAN_Based_Data_Augmentation_for_Camera_Lens_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Uricar_Lets_Get_Dirty_GAN_Based_Data_Augmentation_for_Camera_Lens_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Uricar_Lets_Get_Dirty_GAN_Based_Data_Augmentation_for_Camera_Lens_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Rashed_Generalized_Object_Detection_on_Fisheye_Cameras_for_Autonomous_Driving_Dataset_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Rashed_Generalized_Object_Detection_on_Fisheye_Cameras_for_Autonomous_Driving_Dataset_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Rashed_Generalized_Object_Detection_on_Fisheye_Cameras_for_Autonomous_Driving_Dataset_WACV_2021_paper.html
https://sites.google.com/view/fisheyeyolo/


xi

Contribution:

• Major contribution in writing the research paper.
• Designed the encoder for object detection and was part of the development

of the YOLOv3 decoder.
• Integrated different representations of the bounding box to the framework

and trained the standard bounding box representation.
• Active member of the research discussions and converted the model to

ONNX to run it on an automotive embedded platform.

3. Ibrahim Sobh, Ahmed Hamed, Varun Ravi Kumar, and Senthil Yogamani. “Ad-
versarial Attacks on Multi-Task Visual Perception for Autonomous Driving”
Journal of Imaging Science and Technology (JIST), 2021 [15].

Contribution:

• Major contribution in writing the research paper and brainstorming the
adversarial attacks.

• Provided the inference and model boiler-plate code for white-box and
black-box attacks from the OmniDet framework.

4. Sebastian Houben, Stephanie Abrecht, Maram Akila, Andreas Bär, Felix Brock-
herde, Patrick Feifel, Tim Fingscheidt, Sujan Sai Gannamaneni, Seyed Eghbal
Ghobadi, Ahmed Hammam, Anselm Haselhoff, Felix Hauser, Christian Heinze-
mann, Marco Hoffmann, Nikhil Kapoor, Falk Kappel, Marvin Klingner, Jan
Kronenberger, Fabian Küppers, Jonas Löhdefink, Michael Mlynarski, Michael
Mock, Firas Mualla, Svetlana Pavlitskaya, Maximilian Poretschkin, Alexander
Pohl, Varun Ravi Kumar, Julia Rosenzweig, Matthias Rottmann, Stefan Rüping,
Timo Sämann, Jan David Schneider, Elena Schulz, Gesina Schwalbe, Joachim
Sicking, Toshika Srivastava, Serin Varghese, Michael Weber, Sebastian Wirkert,
Tim Wirtz and Matthias Woehrle. “Inspect, Understand, Overcome: A Survey
of Practical Methods for AI Safety” arXiv preprint arXiv:2104.14235 [16].

Contribution:

• Contributed the summary on Multi Task Learning.

5. Ashok Dahal, Varun Ravi Kumar, Senthil Yogamani and Ciarán Eising. “An On-
line Learning System for Wireless Charging Alignment using Surround-view
Fisheye Cameras.” In the IEEE Transactions on Intelligent Transportation Sys-
tems, 2021.

Contribution:

• Major contribution in writing the research paper and brainstorming the
idea.

• Provided the inference and model boiler-plate code from OmniDet frame-
work.

6. Mahesh M Dhananjaya, Varun Ravi Kumar and Senthil Yogamani. “Weather
and Light Level Classification for Autonomous Driving: Dataset, Baseline
and Active Learning” In-Review of the 24th International Conference on Intelli-
gent Transportation Systems (ITSC), 2021 [17].

Contribution:

https://www.overleaf.com/project/5ffa0d4afb4014f06c7d264a
https://www.overleaf.com/project/5ffa0d4afb4014f06c7d264a
https://arxiv.org/abs/2104.14235
https://arxiv.org/abs/2104.14235
https://arxiv.org/abs/1908.11789
https://arxiv.org/abs/1908.11789
https://arxiv.org/abs/1908.11789
https://arxiv.org/pdf/2104.14042
https://arxiv.org/pdf/2104.14042
https://arxiv.org/pdf/2104.14042


xii

• Major contribution in writing the research paper and mentored the intern
during his master thesis.

• Provided the training and model boiler-plate code for the weather classifi-
cation task from the OmniDet framework.

7. Ashok Dahal, Eric Golab, Rajender Garlapati, Varun Ravi Kumar, Senthil Yo-
gamani. “RoadEdgeNet: Road Edge Detection System Using Surround View
Camera Images.” In the Electronic Imaging Autonomous Vehicles and Ma-
chines (EI-AVM), 2021 [18].

Contribution:

• Part of the research discussions, reviewed the code and contribution in
writing the research paper.

8. Hazem Rashed, Eslam Mohamed, Ganesh Sistu, Varun Ravi Kumar, Ciarán
Eising, Ahmad El-Sallab, Senthil Yogamani. “FisheyeYOLO: Object Detection
on Fisheye Cameras for Autonomous Driving.” In the NeurIPS Workshop on
Machine Learning for Autonomous Driving, 2021 [19].

Contribution:

• Major contribution in writing the short research paper derived from [14].

9. Arindam Das, Pavel Křížek, Ganesh Sistu, Fabian Bürger, Sankaralingam
Madasamy, Michal Uřičář, Varun Ravi Kumar, Senthil Yogamani. “TiledSoil-
ingNet: Tile-level Soiling Detection on Automotive Surround-view Cameras
Using Coverage Metric.” In the IEEE 23rd International Conference on Intelli-
gent Transportation Systems (ITSC), 2020 [20].

Contribution:

• Part of the research discussions and reviewed the code and oral presenta-
tion.

10. Marie Yahiaoui, Hazem Rashed, Letizia Mariotti, Ganesh Sistu, Ian Clancy, Lu-
cie Yahiaoui, Varun Ravi Kumar, Senthil Yogamani. “FisheyeModNet: Moving
Object Detection on Surround-View Cameras for Autonomous Driving.” In
the International Conference on Computer Vision (ICCV) Workshop on 360°
Perception and Interaction, 2019 [21].

Contribution:

• Re-implemented the entire approach with novel improvements in Py-
Torch [22] and obtained better results than the former.

• Part of the original approach and discussions.

https://arxiv.org/abs/1908.11789
https://arxiv.org/abs/1908.11789
https://ml4ad.github.io/
https://ml4ad.github.io/
https://arxiv.org/abs/2007.00801
https://arxiv.org/abs/2007.00801
https://arxiv.org/abs/2007.00801
https://arxiv.org/abs/1908.11789
https://arxiv.org/abs/1908.11789


xiii

Publications

Primary Authorship

1. V. Ravi Kumar, S. Yogamani, H. Rashed, G. Sitsu, C. Witt, I. Leang, S. Milz,and P.
Mäder, “OmniDet: Surround View Cameras based Multi-task VisualPerception
Network for Autonomous Driving,” in IEEE Robotics and Automation Letters
(RA-L) + 2021 IEEE International Conference on Robotics and Automation (ICRA),
vol. 6, no. 2, 2021, pp. 2830–2837.

2. V. Ravi Kumar, C. Witt, S. Yogamani, and P. Mäder, “Surround-View Fisheye
Camera Perception for Automated Driving: Overview, Survey & Challenges,”
in Review of the Journal of IEEE Transactions on Intelligent Transportation Systems,
2021.

3. V. Ravi Kumar, M. Klingner, S. Yogamani, M. Bach, S. Milz, T. Fingscheidt,
and P. Mäder, “SVDistNet: Self-Supervised Near-Field Distance Estimation on
Surround View Fisheye Cameras,” IEEE Transactions on Intelligent Transportation
Systems, vol. abs/2104.04420, 2021.

4. V. Ravi Kumar, M. Klingner, S. Yogamani, S. Milz, T. Fingscheidt, and P. Mader,
“Syndistnet: Self-supervised monocular fisheye camera distance estimation
synergized with semantic segmentation for autonomous driving,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp.
61–71.

5. V. Ravi Kumar, S. Yogamani, S. Milz, and P. Mäder, “FisheyeDistanceNet++:
Self-Supervised Fisheye Distance Estimation with Self-Attention, Robust Loss
Function and Camera View Generalization,” in Electronic Imaging. Society for
Imaging Science and Technology, 2021.

6. V. Ravi Kumar, S. A. Hiremath, M. Bach, S. Milz, C. Witt, C. Pinard, S. Yogamani,
and P. Mäder, “Fisheyedistancenet: Self-supervised scale-aware distance esti-
mation using monocular fisheye camera for autonomous driving,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020, pp. 574–581

7. V. Ravi Kumar, S. Yogamani, M. Bach, C. Witt, S. Milz, and P. Mäder, “UnRect-
DepthNet: Self-Supervised Monocular Depth Estimation using a Generic Frame-
work for Handling Common Camera Distortion Models,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, (IROS) 2020, pp. 8177–8183.

8. V. Ravi Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold, S. Yogamani,
and T. Pech, “Monocular fisheye camera depth estimation using sparse lidar
supervision,” in 21st International Conference on Intelligent Transportation Systems
(ITSC), 2018, pp. 2853–2858.

9. V. Ravi Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold, S. Yogamani,
and T. Pech, “Near-field depth estimation using monocular fisheye camera
A semi-supervised learning approach using sparse LiDAR data,” in CVPR
Workshop, vol. 7, 2018.



xiv

Secondary Authorship

1. M. Uřičář, G. Sistu, H. Rashed, A. Vobecký, V. Ravi Kumar, P. Křížek, F. Bürger,
and S. Yogamani, “Let’s Get Dirty: GAN Based Data Augmentation for Camera
Lens Soiling Detection in Autonomous Driving,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2021, pp. 766–775.

2. Gallagher, Louis and Ravi Kumar, Varun and Yogamani, Senthil and McDonald,
John ,B “A Hybrid Sparse-Dense Monocular SLAM System for Autonomous
Driving,” in 2021 European Conference on Mobile Robots (ECMR), 2021, pp. 1–8.

3. H. Rashed, E. Mohamed, G. Sistu, V. Ravi Kumar, C. Eising, A. El-Sallab, and S.
Yogamani, “Generalized Object Detection on Fisheye Cameras for Autonomous
Driving: Dataset, Representations and Baseline,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2021, pp. 2272–2280.

4. I. Sobh, A. Hamed, V. Ravi Kumar, and S. Yogamani, “Adversarial Attacks on
Multi-task Visual Perception for Autonomous Driving,” in Review of the IEEE
24th International Conference on Intelligent Transportation Systems (ITSC).

5. A. Dahal, V. Ravi Kumar, S. Yogamani and C. Eising. “An Online Learning Sys-
tem for Wireless Charging Alignment using Surround-view Fisheye Cameras.”
In the IEEE Transactions on Intelligent Transportation Systems, 2021.

6. Sebastian Houben, Stephanie Abrecht, Maram Akila, Andreas Bär, Felix Brock-
herde, Patrick Feifel, Tim Fingscheidt, Sujan Sai Gannamaneni, Seyed Eghbal
Ghobadi, Ahmed Hammam, Anselm Haselhoff, Felix Hauser, Christian Heinze-
mann, Marco Hoffmann, Nikhil Kapoor, Falk Kappel, Marvin Klingner, Jan
Kronenberger, Fabian Küppers, Jonas Löhdefink, Michael Mlynarski, Michael
Mock, Firas Mualla, Svetlana Pavlitskaya, Maximilian Poretschkin, Alexander
Pohl, Varun Ravi Kumar, Julia Rosenzweig, Matthias Rottmann, Stefan Rüping,
Timo Sämann, Jan David Schneider, Elena Schulz, Gesina Schwalbe, Joachim
Sicking, Toshika Srivastava, Serin Varghese, Michael Weber, Sebastian Wirkert,
Tim Wirtz and Matthias Woehrle. “Inspect, Understand, Overcome: A Survey
of Practical Methods for AI Safety,” arXiv preprint arXiv:2104.14235, 2021.

7. M. M. Dhananjaya, V. R. Kumar, and S. Yogamani, “Weather and Light Level
Classification for Autonomous Driving: Dataset, Baseline and Active Learning,”
in Review of the IEEE 24th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2021.

8. A. Dahal, E. Golab, R. Garlapati, V. Ravi Kumar, and S. Yogamani, “RoadEd-
geNet: Road Edge Detection System Using Surround View Camera Images,” in
Electronic Imaging. Society for Imaging Science and Technology, 2021.

9. A. Das, P. Křížek, G. Sistu, F. Bürger, S. Madasamy, M. Uřičář, V. Ravi Kumar,
and S. Yogamani, “TiledSoilingNet: Tile-level Soiling Detection on Automotive
Surround-view Cameras Using Coverage Metric,” in IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp.1–6.

10. H. Rashed, E. Mohamed, G. Sistu, V. Ravi Kumar, C. Eising, A. El-Sallab,
and S. Yogamani, “FisheyeYOLO: Object Detection on Fisheye Cameras for
Autonomous Driving,” Machine Learning for Autonomous Driving NeurIPS 2020
Virtual Workshop, 2020.



xv

11. M. Yahiaoui, H. Rashed, L. Mariotti, G. Sistu, I. Clancy, L. Yahiaoui, V. Ravi Ku-
mar, and S. Yogamani, “FisheyeModNet: Moving object detection on Surround-
View Cameras for Autonomous Driving,” arXiv preprint arXiv:1908.11789, 2019.



xvi

Acknowledgements
First and foremost, I would like to express my sincere gratitude to my Ph.D. advisor
Prof. Dr.-Ing. Patrick Mäder for the continuous support of my Ph.D. study and research,
for his patience, motivation, enthusiasm, and immense knowledge.

I am very grateful to Senthil Yogamani from Valeo, Ireland, who ensured that all my
work became publications. I am so lucky to get to work with someone who inspires
me every day. My sincere thanks to him for his guidance and leadership. His advice
helped me in research, writing this thesis, and research papers. I could not have
imagined having a better mentor for my thesis study who believed in me during my
entire work. I thank him for his kindness and valuable comments and discussions to
complete work on time. Apart from the research talks, he lead me throughout the
thesis during my tough times and motivated me to reach my goal in the end. Finally,
thanks for being available 24/7 as a mentor and a friend.

There are many people from Valeo whom I would like to thank, whose contributions
have helped me make this thesis possible. I would like to express my gratitude
to my supervisor Dr. Stefan Milz from Valeo, for the useful comments, remarks,
and engagement throughout the Ph.D. thesis’s learning process. Johannes Petzold,
my manager, and all my colleagues at Valeo, Kronach, for providing me with a
wonderful environment to work in. Grateful to Clément Pinnard for the initial research
discussions on the SfM framework and the discussions about depth estimation.
Special thanks to Christian Witt for teaching me advanced python and not so joyful
rigorous code reviews and always being available for research discussions. Markus
Bach for all the math fun and research ideas, funny conversations about random
things, and always being willing to help me. Kai Fischer, for all the fun talks about
the work and food, arguments about Python vs. C++. Sandesh Hiremath for the
initial research discussions. Martin Simon, my team, lead for encouraging me at times
during my thesis. Ganesh Sitsu for all the awesome fun chats and the WoodScape
dataset creation. Hazem Rashed for all the hard work during MTL integration. Isabelle
Leang and Fabian Bürger for the research discussions on MTL. Michal Uřičář for the
discussions on GAN’s. Marvin Klinger from TU Braunschweig, for the research
collaboration, interminable paper corrections, and writing. To all the other people
who helped me during my Ph.D. time.

I would like to thank my friends and family. My parents, especially my mother, for
being present for me throughout the years. Their prayers, sacrifices for educating
me and preparing me for the future. They have been a constant support; as a result
of which, I could pursue a Master’s and a Ph.D. degree in Germany. I would like to
thank my close friends Bharath Krishnaiah and Jagadish Subramani, who were part of
my Master’s cohort, currently working in Germany, for being supportive throughout
my Ph.D. during my tough times and during the corona crisis. Thanks for all the
food and memorable, joyful moments in life. To Pratik Kamble for making sure I
didn’t sleep enough, for making me believe in myself, and for listening to all my
research ideas late at night. To my childhood friend Sriram, for being part of my entire
educational journey from high school to engineering and reviewing my literature.
Finally, I would like to express my thanks to those involved directly or indirectly in
completing my project.



xvii

Contents

Declaration of Authorship ii

Abstract Deutsch v

Abstract vi

Publications vii

Publications List xiii

Acknowledgements xvi

1 Introduction 2
1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8
2.1 Fisheye Camera and Geometry . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Fisheye Lens Projection Models . . . . . . . . . . . . . . . . . . . 11
2.1.2 Classical Geometric Models . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Algebraic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Geometric Models . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.6 Similarity between Models . . . . . . . . . . . . . . . . . . . . . 19

2.2 Single-Task Learning (STL) . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Motion Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 Soiling Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Multi-Task Learning (MTL) . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Two MTL approaches for Deep Learning . . . . . . . . . . . . . 34

2.4 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Datasets and Corresponding Benchmarks . . . . . . . . . . . . . . . . . 36

2.5.1 WoodScape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 KITTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.3 Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.1 Metrics for Depth Estimation . . . . . . . . . . . . . . . . . . . . 39
2.6.2 Metrics for Segmentation-Based Tasks . . . . . . . . . . . . . . . 40
2.6.3 Metrics for Object Detection . . . . . . . . . . . . . . . . . . . . . 41



xviii

3 Related Work 44
3.1 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Supervised Monocular Methods . . . . . . . . . . . . . . . . . . 45
3.1.2 Self-Supervised Monocular Methods . . . . . . . . . . . . . . . . 46
3.1.3 Depth Estimation on Fisheye Cameras . . . . . . . . . . . . . . . 48

3.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Object Detection on Pinhole Cameras . . . . . . . . . . . . . . . 49
3.2.2 Object Detection on Fisheye Cameras . . . . . . . . . . . . . . . 52

3.3 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Semantic Segmentation on Pinhole Cameras . . . . . . . . . . . 53
3.3.2 Semantic Segmentation on Fisheye Cameras . . . . . . . . . . . 55

3.4 Motion Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Soiling Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Encoder-focused Architectures . . . . . . . . . . . . . . . . . . . 60
3.6.2 Decoder-focused Architectures . . . . . . . . . . . . . . . . . . . 61
3.6.3 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.4 Previous MTL based Semantically-Guided Distance Estimation 62
3.6.5 Optimization in MTL . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Geometric Tasks 67
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Why is Predicting Depth so Difficult? . . . . . . . . . . . . . . . . . . . 68
4.3 Self-Supervised Scale-Aware Distance Estimation Framework . . . . . 72

4.3.1 Modeling of Fisheye Geometry . . . . . . . . . . . . . . . . . . . 73
4.3.2 Photometric Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Solving the Scale Factor Ambiguity . . . . . . . . . . . . . . . . 76
4.3.4 Masking Static Pixels and Ego Mask . . . . . . . . . . . . . . . . 76
4.3.5 Edge-Aware Smoothness Loss . . . . . . . . . . . . . . . . . . . 76
4.3.6 Cross-Sequence Distance Consistency Loss . . . . . . . . . . . . 77
4.3.7 Final Training Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.8 Handling Common Camera Distortion Models . . . . . . . . . . 78

4.4 Network Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.2 Fisheye Ablation Study . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.3 KITTI Distorted Ablation Study . . . . . . . . . . . . . . . . . . 84

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Geometry Meets Semantics 89
5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Multi-Task Learning Framework . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Semantic Segmentation Baseline . . . . . . . . . . . . . . . . . . 91
5.2.2 Robust Reconstruction Loss . . . . . . . . . . . . . . . . . . . . . 92
5.2.3 Dealing With Dynamic Objects . . . . . . . . . . . . . . . . . . . 93
5.2.4 Joint Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.5 Post-Processing Technique . . . . . . . . . . . . . . . . . . . . . 95

5.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Self-Attention Encoder . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Camera Geometry Tensor . . . . . . . . . . . . . . . . . . . . . . 100



xix

5.3.3 Semantically-Guided Distance Decoder . . . . . . . . . . . . . . 103
5.3.4 Comparison of Convolution vs. Self-Attention . . . . . . . . . . 104

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.1 Ablative Experiments on Woodscape . . . . . . . . . . . . . . . 104
5.4.2 Ablative Experiments on KITTI . . . . . . . . . . . . . . . . . . . 109

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Generalized Object Detection 124
6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Object Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Adaptation of Box Representations . . . . . . . . . . . . . . . . . 125
6.2.2 Distortion Aware Representation . . . . . . . . . . . . . . . . . . 126
6.2.3 Generic Polygon Representations . . . . . . . . . . . . . . . . . . 128

6.3 FisheyeYOLO Network Architecture . . . . . . . . . . . . . . . . . . . . 129
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Holistic 360° Scene Understanding 138
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 Perception Tasks and Losses in MTL . . . . . . . . . . . . . . . . . . . . 139

7.2.1 Geometric Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.2 Generalized Object Detection . . . . . . . . . . . . . . . . . . . . 142
7.2.3 Segmentation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 Network Details of the OmniDet MTL Framework . . . . . . . . . . . . 144
7.3.1 Joint Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5.1 Single-Task vs Multi-Task Learning . . . . . . . . . . . . . . . . 150
7.5.2 Ablation Study of the Contributions . . . . . . . . . . . . . . . . 150
7.5.3 State-of-the-Art Comparison on KITTI . . . . . . . . . . . . . . . 152
7.5.4 Analysis on Adversarial Attacks . . . . . . . . . . . . . . . . . . 154

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8 Discussion 164
8.1 Geometric Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.1.2 Contextual Depth Limitations . . . . . . . . . . . . . . . . . . . . 166
8.1.3 Shortcomings of Self-Supervised Distance Estimation . . . . . . 167
8.1.4 Implications of the Used Loss Functions . . . . . . . . . . . . . . 168
8.1.5 Are there Better Choices than the Photometric Loss? . . . . . . . 169
8.1.6 Impact on Chosen Distance Estimation Network . . . . . . . . . 170

8.2 Geometry Meets Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.2.2 Exploring Diverse Modalities . . . . . . . . . . . . . . . . . . . . 171

8.3 Generalized Object Detection . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3.1 Need for better 2D Object Representations . . . . . . . . . . . . 173
8.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3.3 Lack of Fisheye Object Detection Dataset . . . . . . . . . . . . . 174
8.3.4 Limitations of Generalized Object Detection . . . . . . . . . . . 174

8.4 Holistic 360° Scene Understanding . . . . . . . . . . . . . . . . . . . . . 174
8.4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



xx

8.4.2 Why Does MTL Work? . . . . . . . . . . . . . . . . . . . . . . . . 175
8.4.3 When MTL Works – And When It Does Not . . . . . . . . . . . 175
8.4.4 Key Components to Determine if MTL is better than STL . . . . 176

9 Conclusion 178
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



xxi

List of Figures

1.1 Major components of an autonomous driving system. . . . . . . . . . 3
1.2 Illustration of the near-field range and sensor suite of an exemplary

self-driving car. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Surround view system with four fisheye cameras. . . . . . . . . . . . 5
1.4 Illustration of a tight parking scenario. . . . . . . . . . . . . . . . . . . 5

2.1 An overview of an old church in Paris captured using a fisheye lens. 11
2.2 Relationship between a fisheye image point and a point on the unit

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Equidistant and Stereographic fisheye projection models. . . . . . . . 14
2.4 Othographic and Extended Othographic fisheye projection models. . 16
2.5 The general perspective mapping. . . . . . . . . . . . . . . . . . . . . . 20
2.6 The relationship between the various fisheye models and the gen-

eral perspective projections . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 A qualitative sample of distance/depth estimation on WoodScape. . 23
2.8 An overview of reconstructed scene in 3D. . . . . . . . . . . . . . . . . 23
2.9 Projecting onto the retina (left). Projecting onto the image plane

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Perspective Projection (Left). Orthographic Projection (Right) . . . . 24
2.11 A sample image from KITTI for the illustration of depth cues. . . . . 25
2.12 Illustration of motion parallax. . . . . . . . . . . . . . . . . . . . . . . . 26
2.13 Illustration of Retina disparity. . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 A qualitative input sample (left) and object detection prediction

(right) on WoodScape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.15 Computer Vision tasks in ascending order of complexity. . . . . . . . 28
2.16 A qualitative input sample (left) and semantic segmentation predic-

tion (right) on WoodScape. . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.17 A qualitative sample of motion segmentation on WoodScape. . . . . 30
2.18 Automotive surround-view cameras are exposed to harsh environ-

mental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.19 Example of semi-transparent soiling in the form of a water drop on

the camera lens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.20 Illustration of a multi-task architecture comprising of four tasks. . . 32
2.21 Sample Multi Task Learning perception output on raw fisheye images. 33
2.22 Multi-task learning employing neural networks has been divided

into soft and hard parameter sharing schemes. . . . . . . . . . . . . . 34
2.23 Adversarial attacks on the OmniDet MTL model. . . . . . . . . . . . . 35
2.24 Overview of the perception tasks in the WoodScape dataset. . . . . . 36
2.25 Occlusion Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.26 Distance-based segmentation technique with morphological filters. . 38
2.27 Depiction of the Intersection over Union (IoU) metric. . . . . . . . . . 41
2.28 Occlusion correction of ground-truth LiDAR distance maps. . . . . . 43



xxii

3.1 Illustration of the encoder and decoder-focused models depending
on where the task synergies take place. . . . . . . . . . . . . . . . . . . 60

4.1 An ill-posed problem in vision. . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Illustration of scale-ambiguity in depth estimation. . . . . . . . . . . 69
4.3 Projection of an object after a transformation maps it to the same

point in the plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Illustration of distortion correction in KITTI and WoodScape datasets. 72
4.5 Distance and depth derived from a single fisheye image. . . . . . . . 73
4.6 Overview of the FisheyeDistanceNet framework. . . . . . . . . . . . . 74
4.7 Overview of the UnRectDepthNet framework. . . . . . . . . . . . . . 79
4.8 Depth obtained from a single unrectified KITTI image. . . . . . . . . 79
4.9 Standard vs. Deformable convolution layer. . . . . . . . . . . . . . . . 80
4.10 Qualitative results of FisheyeDistanceNet on the WoodScape dataset. 86
4.11 Qualitative results comparison of UnRectDepthNet on KITTI and

WoodScape dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.12 Additional qualitative results comparison of UnRectDepthNet on

KITTI and WoodScape dataset. . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Overview of the SynDistNet framework and a comparison with FisheyeDis-
tanceNet baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Overview of the SynDistNet framework. . . . . . . . . . . . . . . . . . 92
5.3 Application of the semantic masking methods. . . . . . . . . . . . . . 94
5.4 Visualization of the SynDistNet network architecture. . . . . . . . . . 96
5.5 Visualization of the SVDistNet network architecture. . . . . . . . . . 98
5.6 Illustration of distance estimation on multiple cameras and multi-

ple viewpoints constituting SVDistNet. . . . . . . . . . . . . . . . . . 100
5.7 Overview of SVDistNet: A surround-view based self-supervised

distance estimation framework. . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Distance estimation results on a surround-view camera system. . . . 108
5.9 Qualitative results of SVDistNet on an unseen sequences. . . . . . . 114
5.10 Qualitative result comparison of SynDistNet with FisheyeDistanceNet

on the WoodScape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.11 Evaluation of the SVDistNet model on WoodScape. . . . . . . . . . . 116
5.12 Qualitative results of SynDistNet on the KITTI. . . . . . . . . . . . . 117
5.13 Qualitative results of SVDistNet on WoodScape. . . . . . . . . . . . . 118
5.14 Qualitative results of 360° bird’s eye view distance output on an

unseen sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.15 Additional qualitative results of 360° bird’s eye view distance out-

put on an unseen sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.16 Qualitative semantic results segmentation of 360° post-processed

top-view output on an unseen sequence. . . . . . . . . . . . . . . . . . 121
5.17 Additional qualitative semantic segmentation results of 360° post-

processed top-view outputs on an unseen sequence. . . . . . . . . . . 122
5.18 Qualitative results of SVDistNet on KITTI compared with state-of-

the-art algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1 Various 2D object detection representations on fisheye camera images.125
6.2 Approximation of the 4th order radial distortion model by the divi-

sion model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



xxiii

6.3 Illustration of fisheye distortion of projection of an Open Cube and
Proposal of Curved Bounding Box . . . . . . . . . . . . . . . . . . . . . 127

6.4 Generic Polygon Representations. . . . . . . . . . . . . . . . . . . . . . 128
6.5 FisheyeYOLO is an extension of YOLOv3. . . . . . . . . . . . . . . . . 130
6.6 Qualitative results of the proposed model for different output rep-

resentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.7 Further qualitative results of the proposed model for different out-

put representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1 Real-time capable network estimates from the OmniDet framework
on raw fisheye images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Qualitative results of 24-sided polygon-based objection detection
on the WoodScape dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Qualitative results of soiling segmentation on the WoodScape dataset.144
7.4 Qualitative results of motion segmentation on WoodScape. (t-6)

and (t) frames are showcased to visually spot dynamic objects seg-
mented in the motion estimate. . . . . . . . . . . . . . . . . . . . . . . . 145

7.5 Overview of the OmniDet framework. . . . . . . . . . . . . . . . . . . 146
7.6 Overview of the synergies established in OmniDet framework. . . . 147
7.7 Filtering of dynamic objects using semantic segmentation. . . . . . . 148
7.8 Filtering of dynamic objects using motion segmentation. . . . . . . . 148
7.9 Qualitative results of distance estimation and semantic segmenta-

tion on raw surround-view fisheye cameras on the WoodScape dataset.158
7.10 Qualitative results of raw fisheye images from the OmniDet frame-

work on the WoodScape dataset. . . . . . . . . . . . . . . . . . . . . . . 159
7.11 Qualitative results of cylindrical rectified images from the OmniDet

framework on the WoodScape dataset. . . . . . . . . . . . . . . . . . . 160
7.12 Performance comparison of White-box attacks across different tasks 161
7.13 Performance comparison of Black-box attacks across different tasks. 162
7.14 Qualitative illustration of White box Untargeted, White box Tar-

geted, Black box Untargeted, and Black box Targeted Attacks. . . . . 163

8.1 Ames room, a famous example of forced perspective, taken at Cité
des Sciences, Paris. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.2 Dakar 2019 photograph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.3 Illustration of depth estimation’s effect on change in position vs.

apparent size on a test image from KITTI. . . . . . . . . . . . . . . . . 167
8.4 Depiction of infinite distance due to dynamic objects on FisheyeDis-

tanceNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.5 Illustration of the SfM framework’s limitations. . . . . . . . . . . . . . 169
8.6 Failure cases of FisheyeDistanceNet on the WoodScape. . . . . . . . . 170
8.7 An illustration of random lens error on the KITTI. . . . . . . . . . . . 170
8.8 An illustration of reflective surface on the KITTI. . . . . . . . . . . . . 170
8.9 Illustration of bleeding edge effect. . . . . . . . . . . . . . . . . . . . . 171
8.10 Positive vs. Negative transfer is affected by the data. . . . . . . . . . . 176



xxiv

List of Tables

2.1 Analysis of Monoscopic Depth Cues on a sample from KITTI. . . . . 25
2.2 Performance indicators for depth evaluation. . . . . . . . . . . . . . . 39

3.1 An overview of the categorization of CNN-based object detection
methods for object detection on pinhole camera images. . . . . . . . . 50

3.2 Ablation of different task balancing techniques. . . . . . . . . . . . . 63
3.3 Summary of the characteristics of various attacking methods. . . . . 65

4.1 Quantitative results of leaderboard algorithms on KITTI and Wood-
Scape dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Quantitative performance comparison of depth estimation in Un-
RectDepthNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Ablation study on different variants of the FisheyeDistanceNet us-
ing the WoodScape dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Ablation study of UnrectdepthNet on the KITTI dataset. . . . . . . . 84

5.1 Effect of the multi-task training approaches SynDistNet and SVDis-
tNet compared with each other. . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Ablation study on the effect of the contributions up to our final
SVDistNet model on the Woodscape. . . . . . . . . . . . . . . . . . . . 105

5.3 Ablation study on multiple cameras concerning the usage of Cam-
era Geometry Tensor using the WoodScape. . . . . . . . . . . . . . . . 107

5.4 Ablation study of the robust loss function of SynDistNet and SVDis-
tNet on the WoodScape. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Ablation study on inference time using ONNX 16-bit float precision
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Online refinement of SVDistNet distance estimates. . . . . . . . . . . 109
5.7 Evaluation of the pose estimation in SVDistNet on the KITTI Odom-

etry benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.8 Quantitative performance comparison of distance estimates in Syn-

DistNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.9 Evaluation of SVDistNet on the KITTI dataset. . . . . . . . . . . . . . 112

6.1 Analysis of the number of polygon vertices for representing the ob-
jects contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Evaluation of the representation capacity of various representations. 133
6.3 Quantitative results of the proposed model using different bound-

ing box representations on the WoodScape dataset. . . . . . . . . . . . 134
6.4 Ablation study on the number of parameters in the oriented bound-

ing box and the 24-point polygon representation. . . . . . . . . . . . . 134

7.1 Comparison of task-weighting methods on the WoodScape dataset. . 149



xxv

7.2 Comparative study of SAN10-Patch MTL model and the equivalent
single task models on three datasets. . . . . . . . . . . . . . . . . . . . 150

7.3 Ablation study on the effect of our contributions up to the final Om-
niDet model on the Woodscape. . . . . . . . . . . . . . . . . . . . . . . 151

7.4 Ablation study of dynamic object filtering using semantic and mo-
tion segmentation masks. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5 Evaluation of depth estimation in OmniDet on the KITTI dataset. . . 152
7.6 Evaluation of the pose estimation in OmniDet on the KITTI Odom-

etry benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.7 Evaluation of various object detection representations. . . . . . . . . 153
7.8 Summary of attacking and defending results. . . . . . . . . . . . . . . 156
7.9 Input blurring effect on the tasks. . . . . . . . . . . . . . . . . . . . . . 156

8.1 Comparison of convolution vs self-attention. . . . . . . . . . . . . . . 173





2

Chapter 1

Introduction

Contents
1.1 Goal 4
1.2 Outline 6

Since the early 1960s, we have been pursuing the fantasy of commuting between
places while sitting in a driverless car with no manual intervention. Over the last
decade, autonomous driving (AD) has piqued the interest of vehicle manufacturers
more than ever before. The vast and ground-breaking advances in artificial intelli-
gence (AI) and computer vision made possible by machine learning are the primary
drivers of this developing trend.

Let us consider the case of an automobile. According to global statistics, approxi-
mately 3700 lives are lost due to road accidents every day (approximately 1.35 million
people per year) and 20 and 50 million people are left with non-fatal injuries [23].
Out of those accidents, more than 70% are caused due to human errors. Despite
robust safety standards developed by the manufacturers and technology evolving
massively, we have not reached an acceptable number of traffic accidents. What
could be the possible reason? Do we have a long-term solution for this? Indeed, AI
and autonomous systems could work as magic bullets in these situations. So, the
basic principle involves machines taking control over everything. This would mean
eradicating human interventions completely, which is the root cause of many of these
problems.

An autonomous vehicle drives itself without the assistance of a human operator, using
a collection of sensors, cameras, radar, and AI algorithms. Experts have identified
five stages in the growth of self-driving vehicles. Each level defines how much a car
may take over activities and obligations from its driver, as well as how the car and
driver interact: 1) Driver assistance, 2) Semi-automated driving, 3) Highly automated
driving, and 4) Fully automated driving 5) Complete automation [24]. The complete
AD system can be roughly encompassed in five primary components across all five
levels, as indicated in Figure 1.1.

Perception System in Action: Sensors collect data from the environment and send
it to the next ring of this chain, Environment Perception where it is processed for the
subsequent decision-making processes regarding the vehicle’s next action. As a result,
the extracted information at this point is critical for an autonomous vehicle. There
are different types of sensors available to collect data from the environment. Our
attention is drawn to image sensors, which convert light waves into signals that
transfer information to build an image. Each camera is made up primarily of lenses



Chapter 1. Introduction 3

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Post Processing of Point Cloud Distance Estimates

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Geometric 
Projection

Robust
Reconstruction Loss

Geometric Projection 
Motion or Semantic

DC Object Mask

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Distance 
Decoder 

Pose Decoder 

M

Semantic Decoder

𝑡C

𝑡C

𝑡C

DC Object Mask

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡C Supervised Training

Detection Decoder

Semantic Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

Regression

Classification

Asynchronous Training

𝓂ℴ𝓉
 

Semantic 
Decoder 

Argmax( )

Soiling Decoder

C

Learned 
Encoder 
Features

𝑡

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
Self-

Attention 
Encoder 

Distance Decoder 

Semantic 
Decoder 

𝐼t 𝐷𝑡

M

Semantic 
Guidance

𝑡

Infinite 
Distance

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Distance Decoder 

𝐼t 𝐷𝑡

M𝑡

Infinite 
Distance

Motion 
Decoder

Shared 
Self-

Attention 
Encoder 

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Sensors

Data Processing

Behavior
Planning

Environment
Perception

Vehicle
Control Actuators

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Geometric 
Projection

Robust
Reconstruction Loss

Geometric Projection 
Motion or Semantic

DC Object Mask

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Distance 
Decoder 

Pose Decoder 

M

Semantic Decoder

𝑡C

𝑡C

𝑡C

DC Object Mask

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡C Supervised Training

Detection Decoder

Semantic Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

Regression

Classification

𝓂ℴ𝓉
 

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Figure 1.1 Major components of an autonomous driving system [26].

and sensors. Most autonomous vehicle industry efforts are focused on advanced
driver assistance systems (ADAS) since that is the first step for fully self-driving cars.
The backbone of all ADAS applications is cameras, usually monocular or stereo vision
systems. Regardless of the method, cameras are the basis for safe autonomous cars
that can "see and drive" themselves. Features, such as adaptive cruise control, can be
implemented robustly as a fusion of radar or LiDAR data with cameras, usually for
non-curvy roads and higher speeds. At present, this method has guided autonomous
vehicles and ADAS to Level 2 autonomy. In these situations, vehicles can control
certain functions only — like emergency braking and advanced lane assist, and lane
change. Still, in the end, humans are behind the wheel of these vehicles [25].

The holistic scene understanding of the environment makes autonomous cars possible.
Without this ability to sense the near-field environment, the autonomous systems
would not have a way to know what speed to set, decide when to turn, when to
make a lane switch or when to apply brakes. The complex, intelligent systems should
have these abilities equipped to make split-second life-saving decisions. When an
autonomous vehicle travels from source to destination, a navigator such as Google
Maps or high-definition maps generates a high-level route. A series of connected
nodes at finite distances make up this route. The vehicle moves from one node to
another in a repetitive way until it reaches its destination. The sensing stage collects
information about the surroundings using one of three sensors or a combination
of these sensors such as cameras, radar, and LiDAR. Cameras are one of the most
traditional means since they can visually perceive the scene in the same way humans
do with vision. Radars are used in conjunction with cameras as an auxiliary method
to detect large objects. LiDAR uses an array of light pulses to measure distance. Some
use a combination of all three sensors. Perception involves the extraction of useful
information from the raw data like lane positions, pedestrians, and other vehicles [27],
moving objects detection [28] and recognition of drivable regions. Localization is
the vehicle’s ability to precisely know its position in the real world at decimeter
accuracy [29, 30]. In simple words, perception answers what is around the vehicle,
and localization answers precisely where the car is. Path planning algorithms [31]
make use of this related information to define a path to navigate from one node to
another.

Historically, most autonomous car companies (e.g., BMW, Audi, Toyota) have relied
heavily on LiDAR since, until recently, neural networks were not powerful enough
to handle multiple camera inputs. The laser sensors currently used to detect 3D
objects in autonomous cars’ paths are bulky, ugly, expensive, energy-inefficient –
and highly accurate [32]. These LiDAR sensors are affixed to cars’ roofs, increasing
wind drag, a particular disadvantage for electric cars. They can add around 10, 000$
to a car’s cost. However, despite their drawbacks, most experts have considered
LiDAR sensors the only plausible way for self-driving vehicles to safely perceive



4 Chapter 1. Introduction

Figure 1.2 Illustration of the near-field range and sensor suite of an exemplary
self-driving car.

pedestrians, cars, and other hazards on the road [32]. As with human eyes, cameras
capture the resolution, small details, and vividness of a scene with such detail that no
other sensors, including radar, ultrasonic, and lasers, can match [25]. Tesla is one of
the most notable companies that has placed a big bet on cameras, integrating eight
of them into each vehicle [33], along with a powerful deep neural network called
HydraNets [34]. With the primary factor of cost and the inspiration from humans
to mimic the way nature forged us to drive. This thesis will mainly focus on building a
unified perception system from one of the three primary sensors i.e. using cameras only.

1.1 Goal

Near Field perception for AD is a region from 0-10 meters and 360° coverage around
the vehicle as shown in Figure 1.2. Some of its use cases are automated parking, traffic
jam assist, and urban driving. The sensor suite includes ultrasonics, fisheye-cameras,
and radar (see 1.2). There are limited datasets and very little work on near-field
perception tasks as the main focus is on far-field perception. In contrast to far-field, it
is more challenging due to high precision object detection requirements of 10 cm. For
example, let us look at the parking scenario in Figure 1.4. The car needs to be parked
in a tight space with partial object visibility and no room for error, requiring high
precision. Four fisheye cameras are sufficient to cover the near-field perception as
shown in Figure 1.3.

Standard algorithms can not be extended easily on fisheye cameras due to their large
radial distortion. There is very little work on the perception algorithms on fisheye
cameras. Also, most of the current AD systems are Level 2. In this thesis, we focus on
building a holistic 360° scene understanding for a near-field perception system that
constitutes the necessary modules for a Level 3 AD stack using four fisheye cameras.



1.1. Goal 5

Figure 1.3 Surround view system with four
fisheye cameras.

Figure 1.4 Illustration of a tight parking
scenario. Figure reproduced from [35].

The developed framework will be called OmniDet for two reasons. Firstly, Omni can
be used for wide-angle omnidirectional cameras. Secondly, the word Omni means all,
and we are detecting all necessary objects for such a Level 3 AD system. Thus, it is a
framework that does a 360° Near-Field Detection.

The naive approach is rectifying the fisheye images and applying these algorithms.
The standard question which arises when we talk about distortion in fisheye cameras
is: Why do we not rectify the images?

• Most algorithms are usually designed to work on rectified pinhole camera
images.

• Removing distortion leads to a significant loss in the Field-of-View.
• For a horizontal Field-of-View (hFoV) greater than 180°, rays incident from

behind the camera make it theoretically impossible to establish a complete
mapping to a rectilinear viewport. Thus the rectification defeats the purpose of
using a wide-angle fisheye lens.

• Resampling distortion artifacts are particularly strong in the periphery as a
small region in the fisheye image is expanded to a larger region in the rectified
image. The texture is lost, and noise is introduced.

A few of the most important questions and challenges that arise for near field percep-
tion are answered by these perception tasks:

• What is the geometry of the scene? Furthermore, How far is an object at a pixel
level in an image? Monocular depth estimation

• What is around me? and What type of object at a pixel level in an image?
Semantic Segmentation

• How are different parts of the scene moving? or Is the object moving?
Motion Segmentation

• How to identify objects and locate them? 2D Object Detection
• Can we perceive the world around us clearly? Soiling Detection

What if a simple sensor modality can provide all the cues listed above? A single RGB
Fisheye Camera. One of the other primary goals of this thesis is to target large-scale
industrial deployment of these tasks in millions of cars; to achieve it, we need to
consider some critical practical factors. The model needs to be robust to intrinsic
camera variations arising due to manufacturing tolerances. Low-cost embedded
hardware is needed for commercial reasons. Henceforth, the performance of these
models needs to be real-time capable for driving scenarios. Model validation and
safety certifications are required for compliance. Considering all this into account,
we propose to use a single multi-task learning (MTL) (learn multiple tasks using



6 Chapter 1. Introduction

a single input) model in contrast to using multiple models for different tasks. The
MTL framework would be capable of learning geometry and semantics-related tasks
from monocular videos only. To further analyze the network’s vulnerability against
adversarial attacks, we plan to apply white and black box attacks for targeted and
untargeted cases while attacking a task and inspecting the effect on all the others. The
most challenging perception problem of all is the distance estimation on raw fisheye
cameras. We will explore this geometry task in detail and create novel methodologies
to obtain distance maps on the fisheye camera. We also perform the first detailed study
on object detection on fisheye cameras and explore various better representations of
bounding boxes to adapt the fisheye camera’s geometry. We also introduce synergy
between depth, semantics, and object detection afterward and complete the MTL
framework.

1.2 Outline

At first, we will look into the basics of the commonly used fisheye camera projection
models in Chapter 2 followed by the basics and definition of the perception tasks. In
Chapter 3 we will look into the background of all the perception tasks. In this thesis,
we will focus mainly on the distance estimation on raw fisheye monocular videos in
Chapter 4 and Chapter 5. Chapter 4 shows novel methodologies to obtain distance
maps on raw fisheye images using a CNN. We will tackle this task by setting up a
structure-from-motion (SfM) framework and use the concept of view synthesis. The
entire approach is self-supervised. The problem is more challenging than stereo-based
approaches as the network also needs to solve the relative poses between the source
images to reconstruct the target. This inherently contains the task of visual odometry,
which will be part of our perception stack. At last, in this chapter, we generalize the
approach to consider any camera geometry of choice described in Section 2.1.1 for the
projection operation involved in the view-synthesis process. With this framework, we
extend our work on public datasets such as KITTI [11], and achieve accurate depths,
and outperform all previously published self-supervised methods.

In Chapter 5, we focus on improving the geometry cues by leveraging semantics
guidance. We reason about the L1 loss function and solve the infinite depth issue,
which causes holes during inference, by incorporating the semantic information
during view synthesis. We modify the reconstruction loss and replace it with a
robust general loss function and obtain significant gains in accuracy. We examine
how to leverage more directly the semantic context of the scene to guide geometric
representation learning while remaining in the self-supervised regime. One of the
thesis’s main goals is to target a real-time distance estimation convolutional neural
network (CNN) design that can be deployed in millions of vehicles having its own
set of cameras. Later in this chapter, to do so, we develop a novel camera geometry
adaptive multi-scale convolution to incorporate the camera parameters into the
self-supervised SfM framework. We improve upon the previous work and obtain
state-of-the-art results on the KITTI and WoodScape datasets.

In Chapter 6, we look into the localization aspect of an autonomous car. We focus on
the 2D object detection task in fisheye cameras and perform the first detailed study
on object detection on fisheye cameras for AD scenarios. We present novel represen-
tations of bounding boxes on raw fisheye camera images i.e., oriented bounding box,
ellipse, and generic polygon for object detection. To encourage further research in



1.2. Outline 7

this direction, we will also make a public release of the dataset comprising 10, 000
images with annotations for all the object representations.

In Chapter 7, we develop a whole scene understanding MTL framework for surround-
view camera systems named Omnidet. It would comprise all the six tasks listed in
the thesis’s goal. The developed CNN model is real-time capable on an automotive
embedded platform. The entire perception system is using cameras only. It is a distinct
approach considering the immense challenge of AD: one which does not rely on
infrastructures such as high-definition maps or extremely costly sensor payloads,
yet can perform complex driving tasks using cameras only. It will be the first six-
task perception network on fisheye cameras evaluated on the WoodScape dataset.
We transfer the framework to a five-task network on the public datasets KITTI and
CityScapes and establish state-of-the-art results on the KITTI Eigen depth benchmark
and the KITTI odometry benchmark. We apply white and black box attacks on the
MTL framework to further analyze the system’s robustness on adversarial attacks,
considering both targeted and untargeted scenarios.

In Chapter 8 we will identify the limitations of the developed system and discuss the
challenges and shortcomings of the approach. Finally, in Chapter 9 we will draw up
a conclusion based on the discussion brought in the preceding chapters.



8

Chapter 2

Background

Contents
2.1 Fisheye Camera and Geometry 10

2.1.1 Fisheye Lens Projection Models 11
2.1.2 Classical Geometric Models 13

Pinhole Camera Model 13
Equidistant Projection 13
Stereographic Projection 14
Orthographic Projection 15
Extended Orthographic Model 15

2.1.3 Algebraic Models 15
Polynomial Models 16
Division Model 16

2.1.4 Geometric Models 17
Field-of-View Model 17
Unified Camera Model 18
Enhanced Unified Camera Model 18
Double-Sphere Model 18
Summary of Radial Distortion Models 18

2.1.5 Other Models 19
2.1.6 Similarity between Models 19

2.2 Single-Task Learning (STL) 22
2.2.1 Depth Estimation 22

How do we Perceive our World? 23
How to destroy depth from perspectives for human/computer

vision? 25
Inferring Depth Using Cues 25
Depth Cues from Motion (Motion Parallax) 25
Depth Cues from Stereo Vision (Binocular Parallax) 26
Depth Estimation in Computer Vision 26

2.2.2 Object Detection 27
2.2.3 Semantic Segmentation 28
2.2.4 Motion Segmentation 29
2.2.5 Soiling Segmentation 30

2.3 Multi-Task Learning (MTL) 32
2.3.1 Motivation 33



Chapter 2. Background 9

2.3.2 Two MTL approaches for Deep Learning 34
2.4 Adversarial Attacks 34
2.5 Datasets and Corresponding Benchmarks 36

2.5.1 WoodScape 36
WoodScape – Bamberg Dataset 37
Occlusion Correction 37

2.5.2 KITTI 38
2.5.3 Cityscapes 38

2.6 Evaluation 38
2.6.1 Metrics for Depth Estimation 39
2.6.2 Metrics for Segmentation-Based Tasks 40
2.6.3 Metrics for Object Detection 41

This thesis aims to build a perception system that constitutes a Level 3 AD stack using
a multi-task CNN model, covering the necessary modules for near-field sensing use
cases like parking or traffic jam assistance. We propose to design a multi-task model
of six primary tasks necessary for an autonomous driving system: depth/distance
estimation, visual odometry, semantic segmentation, motion segmentation, object de-
tection, and lens soiling detection. This chapter will provide in-depth basic intuitions
of the tasks and the terminologies used in the further chapters of the thesis. The latter
part will focus on the datasets and the evaluation metrics. This specific background
will determine our strategy on which quality measure is more meaningful regarding
safety and path planning for automated parking.

Perception, localization and mapping, sensor fusion, path planning, and decision
control are vital components of automated driving. Various perception tasks are
required to provide a robust system covering a wide variety of scenarios. In general,
a perception system comprises geometric and semantic scene understanding of
the environment. Cameras are a dominant sensor for perception since roadway
infrastructure is traditionally designed for human visual perception. Semantic tasks
such as object detection [36, 37, 38, 39] (detecting pedestrians, vehicles, and cyclists,
etc. with bounding boxes), semantic segmentation [40, 41, 42] (pixel-wise labeling
of road, lanes, and curbs, etc.) and soiling segmentation [43] (pixel-wise labeling of
opaque and transparent) usually falls under the semantic branch, wherein fisheye
cameras mounted low on a vehicle are susceptible to lens’s soiling due to the splash
of mud or water from the street. These are some of the significant tasks that help
build a visual perception system.

The semantic tasks typically require a large annotated dataset covering various
objects. However, it is practically infeasible to cover every possible object. Thus,
generic object detection using geometric cues like motion or depth for rare objects is
added to the perception system. Due to the multi-task training, these tasks will not
only complement the detection of standard objects but also provide the final model
with higher robustness.

Motion is a dominant cue in automotive scenes, and it requires at least two frames
or the use of dense optical flow [44, 45, 46, 47, 48, 49] (detect motion and estimate
velocities of moving objects). In the case of geometric task i.e. depth estimation [50, 51,
52, 53, 54, 55] (distance in a real-world from ego vehicle). Finally, the visual odometry
task is required to place the detected objects in a temporally consistent map.



10 Chapter 2. Background

In general, all the tasks mentioned earlier are mainly demonstrated on pinhole
images in current research approaches. There is minimal work in the area of fisheye
perception. In the following sections, we look into these tasks’ background and
ground principles and the difficulties in applying these tasks onto the fisheye cameras.

2.1 Fisheye Camera and Geometry

The development of fisheye cameras has a long history. Wood initially coined the term
fisheye in 1908 and constructed a simple fisheye camera [56], a fact that is acknowl-
edged in the naming of the recently released WoodScape dataset of automotive fisheye
camera videos [12]. This water-based lens was replaced with a hemispherical lens by
Bond [57], and thus began the optical development of fisheye cameras. Miyamoto [58]
provided early insight into the modeling of geometric distortion in fisheye cameras,
suggesting the use of equidistant, stereographic, and equisolid models. These models
were already known in the field of cartography (e.g. [59] and many others).

Rise of Fisheye Cameras: There has been a significant rise in the usage of fish-
eye cameras in various automotive applications [60, 61, 62], surveillance [63] and
useful applications in robotics [64], including robotic localization [65], simultane-
ous localization and mapping [29, 66, 67, 68], visual odometry [69], due to their
large field-of-view (FoV). Recently, several computer vision tasks on fisheye cameras
have been explored including object detection [70, 71], semantic segmentation [72],
soiling detection [43], motion estimation [21], image restoration [73], underwater
robotics [74], aerial robotics [75] and many other related fields. Depth estimation
is an essential task in autonomous driving as it is used to avoid obstacles and plan
trajectories. While depth estimation has been substantially studied for narrow FoV
cameras, it has barely been explored for fisheye cameras [10, 76]. Fisheye cameras
offer a significantly wider FoV than standard cameras, often with 180° FoV or even
greater. This can offer several advantages, in particular, that fewer cameras can be
used to achieve complete surround-view coverage.

Need for Application of Perception Tasks on Fisheye Cameras

Surround-view fisheye cameras have been deployed in premium cars for over ten
years, starting from visualization application on dashboard display units to provide
near-field perception for automated parking. Fisheye cameras have a strong radial
distortion that cannot be corrected without disadvantages, including reduced FoV
and resampling distortion artifacts at the periphery [3]. Appearance variations of
objects are larger due to the spatially variant distortion, particularly for close-by
objects. Thus fisheye perception is a challenging task, and despite its prevalence, it is
comparably less explored than pinhole cameras.

Different cameras with different FoV’s are used to handle a wide variety of automotive
use cases. The most common ones are around 100° hFoV cameras used for front
camera sensing and 190° hFoV fisheye lens cameras for surround-view sensing.
Due to their moderate to large FoV, these cameras suffer from lens distortion (see
Figure 2.1), whose main component is typically radial distortion and minor tangential
distortion.



2.1. Fisheye Camera and Geometry 11

Figure 2.1 An overview of an old church in Paris captured using a fisheye lens. Figure
reproduced from [77].

2.1.1 Fisheye Lens Projection Models

Several models have been developed to describe fisheye lenses. We can consider
them in several classes. For example, we could consider a class of on-image models,
in which the fisheye projection is measured as a deviation from pinhole projection,
e.g. [78, 79]. Alternatively, we could consider a model in which the ray projection
angle is manipulated at the projection center (e.g. [12, 80]). We may refer to these
models as ray deviation models. Others still propose the use of a series of projections
onto different surfaces to model fisheye distortion, for example [81, 82, 83], which we
can refer to as geometric models.

In the case of cameras with a more standard FoV, there is a very common geometry
associated with them, the pinhole model. One may first consider the intersection of
a ray with a single planar surface at some fixed distance from the projection center.
All models of the distortion due to the lens for such cameras are designed to shift
the intersection point radially from the projection center on the plane (if one ignores
tangential distortion). There are some varying proposals on what a model for this may
look like, as discussed in the likes of [84]. However, the geometry for such standard
FoV cameras is fixed as a ray-plane intersection. The role of geometric distortion
correction is to find the deviation between the real camera and the hypothesized
pinhole camera.

In a way, fisheye camera development in vision has been complicated by the lack of a
single unifying geometry. There is a large set of models with different properties to
describe fisheye projection and its radial distortion. This section aims at explaining
some of these models, group them logically, and even highlight a couple of the more
recently proposed models. They are almost re-derivations of existing models or
describe projections that have already been known in different fields of science.

Notation and Terminology

Matrices are denoted by A ∈ Rm×n. The usual notation for ordinary vectors v ∈ Rn

will be used, represented as n-tuples. Specifically, points in R3 will be denoted as



12 Chapter 2. Background

Figure 2.2 Relationship between fisheye image point and point on the unit sphere. p and
u are equivalent points on the fisheye image and unit sphere, respectively, with u laying on
the same ray as X

.

X = (X, Y, Z)T. We will use the same notation for points/vectors in Pn, where neces-
sary making it clear in the text that they should be interpreted as (n+1)-homogeneous
vectors. Unit vectors are represented by the usual carat v̂ = (v̂1, v̂2, v̂3)T.

We will rely heavily on points defined on the unit sphere embedded in Euclidean 3-
space (itself embedded in R3). More formally, the unit sphere is S2 =

{
u ∈ R3 | ‖u‖ = 1

}
,

and thus represented as a 3-vector u = (u1, u2, u3)T of unit length. However, for
clarity we forego the unit vector notation as it is implicit for points on the unit sphere.

In fisheye cameras, the lens views with FoVs >180°, and observed rays cannot all
pass through a single flat image plane. Therefore, we cannot consider points on a
projective plane, as they cannot encompass the entire FoV of a fisheye camera. We
can define a mapping from defining a mapping from R3 to the fisheye image as

π : R3 → I2

A true inverse is naturally not possible. However, we can define an unprojection
mapping from the image domain to the unit central projective sphere

π−1 : I2 → S2

Here, I2 ⊂ R2 and S2 ⊂ R3. Figure 2.2 demonstrates the relationship between the
image plane and the unit sphere.

For the pinhole and the fisheye models that will follow, to simplify the math, note that
we do not consider a separate f parameter for each image direction (i.e., fx and fy,
we assume that the pixel aspect ratio is unit). However, it is easy to adapt the fisheye
equations to include a non-unit aspect ratio, but that would not serve the purpose of
this thesis. In addition, we do not consider the distortion center c = (cx, cy)T, as this
is just a translation on the image plane and does not affect the model performance.



2.1. Fisheye Camera and Geometry 13

2.1.2 Classical Geometric Models

We refer to the models discussed in this section as classical, as they have been re-
searched for at least six decades [58]. One could also include the equisolid-angle
model. However, we do not employ it for the scope of this work, and the readers are
instead referred to [85, 86].

Pinhole Camera Model

For lenses with a moderate FoV (< 120°), the Brown–Conrady model [87] is com-
monly used as it models both radial and tangential distortion. For larger FoV, this
distortion model typically breaks down or requires very high polynomial orders. The
KITTI dataset’s calibration uses this model based on OpenCV’s [88] implementation.
Assuming a point X = (X, Y, Z)T in the camera coordinate system, the pinhole model
is

p =

(
f X
Z

,
f Y
Z

)T

(2.1)

or, if we consider it as a radial function

ru = fp tan θ (2.2)

where θ is the field angle of the projected ray, note that the parameter fp is sometimes
referred to as the focal length. However, it has little to do with the optical focal length
of the physical lens system (which can often be made up of many lens elements). fp
is a scaling factor that converts from a projection surface at a unit distance from the
project center to the pixel coordinates of the camera.

In this model, the projection function Xc 7→ Π(Xc) = p maps a 3D point X =
(X, Y, Z)T in the camera coordinate system to a pixel p = (i, j)T in the image coordi-
nates. It is calculated in the following way:

x = X/Z, y = Y/Z

x′ = x(1 + k1r2 + k2r4 + k3r6) + 2p1xy + p2(r2 + 2x2)

y′ = y(1 + k1r2 + k2r4 + k3r6) + p1(r2 + 2y2) + 2p2xy
i = fx · x′ + cx, j = fy · y′ + cy

where k1, k2, and k3 are radial distortion coefficients, p1 and p2 are tangential distor-
tion coefficients of the lens, r2 = x2 + y2, fx, fy are the focal lengths and cx, cy are the
coordinates of the principal point.

Equidistant Projection

In the equidistant fisheye model, the projected radius rd is related to the field angle θ
through the simple scaling by the equidistant parameter fe (see Figure 2.3). i.e.

rd = feθ (2.3)



14 Chapter 2. Background

C
X

Z

X

θ

rd
pu

fe

pdrd

ru

C
X

Z

X

θ

pu

C′

fs

pdrd

ru

Figure 2.3 Equidistant and Stereographic fisheye projection models.

and thus

π(X) =
feθ

d

[
X
Y

]
d =

√
X2 + Y2

θ = acos
(

Z√
X2 + Y2 + Z2

)
(2.4)

Stereographic Projection

As with the equidistant model, in stereographic projection, the center of the projection
of X to the projection sphere is C (Figure 2.3). Consider that the image plane has a
tangential point along the Z-axis (optical axis). There is a second central projection
to the image plane in stereographic, with the antipodal point of the tangential point
forming the center of projection. It is essentially a pinhole projection with a focal
length of 2 fs. The stereographic projection is therefore described by

rd = 2 fs tan
(

θ

2

)
(2.5)



2.1. Fisheye Camera and Geometry 15

π(X) =
rd√

X2 + Y2

[
X
Y

]
=

2 fs tan θ
2√

X2 + Y2

[
X
Y

]

=
2 fs tan

(
1
2 atan

(√
X2+Y2

Z

))
√

X2 + Y2

[
X
Y

]
(2.6)

=
2 fs

√
X2+Y2√

X2+Y2+Z2+Z√
X2 + Y2

[
X
Y

]

π(X) =
2 fs

Z + ||X||

[
X
Y

]
(2.7)

where d and θ are equally defined as in (2.4). The inverse of (2.5), which we shall
need later, is derived as

θ = 2atan
(

rd

2 fs

)
(2.8)

Orthographic Projection

Similar to the previous projections models, the orthographic projection begins with a
projection to the sphere (Figure 2.4). An orthogonal projection to the plane follows
this. The orthographic projection is therefore described by

rd = fo sin θ (2.9)

and thus

π(X) =
fo

||X||

[
X
Y

]
(2.10)

Extended Orthographic Model

The Extended Orthographic Model [89], as demonstrated by Figure 2.4, extends the
classical orthographic model by freeing the projection plane from being tangential to
the projection sphere, allowing an offset λ. The distorted projection remains the same
as equations (2.9) and (2.10). However, the relationship between the distorted and
undistorted radial distances is given by

rd =
fo√

(λ + fo)2 + r2
u

(2.11)

and thus is an on-image mapping given by[
xd
yd

]
=

fo

ru
√
(λ + fo)2 + r2

u

[
xu
yu

]
(2.12)

2.1.3 Algebraic Models

We provide a short discussion on algebraic models of fisheye cameras, specifically
polynomial models and the division model. We provide the polynomial model



16 Chapter 2. Background

C
X

Z

X

θ

pu

pdrd

fo

ru

C
X

Z X

θ

pu

pdrd

fo

λ

ru

Figure 2.4 Othographic and Extended Othographic fisheye projection models.

discussion for completeness, though we concentrate on the geometric models for the
remainder of the chapter.

Polynomial Models

The classical Brown–Conrady model of distortion for non-fisheye cameras [87, 90]
uses an odd-termed polynomial, rd = Pn(ru), to describe the radial distortion on
the image (i.e. mapping ru to rd), where Pn represents some arbitrary n-th order
polynomial. Despite its age, the Brown-Conrady model is the standard distortion
model in software implementations for non-fisheye cameras [88, 91]. To account for
fisheye distortion, an on-image polynomial model known as the Polynomial Fisheye
Transform (PFET) was proposed in [78]. The difference between the PFET and the
Brown-Conrady model is that the PFET allows both odd and even exponents to
account for the added distortion encountered in fisheye cameras.

A class of polynomial fisheye models exists, in which the mapping of the field angle to
the image plane is via a polynomial, i.e. rd = Pn(θ). For example, Kannala-Brandt [80]
(and as implemented in the popular OpenCV software [88]) propose an polynomial
model of order n = 5, or more, with odd exponents only. In [12], an n = 4 polynomial
containing both even and odd exponents is proposed. Neither model used a constant
coefficient term in the polynomial. In [92] a fifth-order polynomial is proposed,
but they reduce it to four independent parameters if the fisheye radius and the
FoV are known. All of the above could be interpreted as a generalization of the
equidistant model, which is a first-order polynomial. In this case, the projection
sphere is replaced by some surface defined by the given polynomial. However, this is
forcing a geometric interpretation with little utility.

Division Model

The division model [84] of radial distortion gained some popularity due to the excellent
property that, at least for the single parameter variant, straight lines project to circles



2.1. Fisheye Camera and Geometry 17

in the image [93, 94, 95]. For many lenses, the single parameter variant performs very
well [96]. It is given by

ru =
rd

1− ar2
d

(2.13)

rd =
ru

1 + ar2
u

(2.14)

where a is the division model parameter. This was extended in [97] by adding an
additional scaling parameter, which improved the modeling performance for certain
types of the fisheye lenses. Note that the division model was presented as an on-image
mapping, though it can be expressed as the projection function

π(X) =

 f r′dX
r′u

f r′dY
r′u


r′u =

√
X2 + Y2

r′d =
r′u

1 + ar′u
(2.15)

2.1.4 Geometric Models

A set of more recent (at least, from the last couple of decades) fisheye camera models
is also considered. Further reading on some of these models can be found, e.g., in [83],
which also gives valuable information on the set of valid points for each projection.

Field-of-View Model

The FoV model [79] is defined by

ru =
tan(rdω)

2 tan ω
2

(2.16)

where ru is the distance of the undistorted image point (pinhole image point) to the
distortion center, rd is the corresponding distorted image point distance, and ω is the
model parameter. The parameter ω approximates the camera field of view, though
not exactly [79].

This is an on-image model, like the Division Model, where ru and rd define undistorted
and distorted radii on the image plane. Alternatively, it can be expressed as a
projection function [83]

π(X) =

 f r′dX
r′u

f r′dY
r′u


r′u =

√
X2 + Y2

r′d =
atan2(2r′u tan(ω/2), z)

ω
(2.17)

Note that r′u and r′d are related to the undistorted ru and distorted rd image plane
radial distances, but are not quite the same, due to the scaling by f .



18 Chapter 2. Background

Unified Camera Model

The UCM was initially used to model catadioptric cameras [81]. Later it was shown to
be helpful when modeling fisheye cameras [98, 99]. It has been shown to perform well
across a range of lenses [100]. The geometry of the projection is two-step. First, the
point X is projected to a unit sphere, followed by a projection to a modeled pinhole
camera. The UCM projection is given by

π(X) =
γ

Z + ξ||X||

[
X
Y

]
(2.18)

though [83] propose a more numerically stable formulation. ξ is the distance from
the center of the unit sphere to the center of the pinhole projection, and γ is the focal
length of the secondary pinhole projection. If ξ = 0, this model degrades to the
pinhole model.

Enhanced Unified Camera Model

The UCM was extended by the Enhanced UCM [82], which replaced the spherical
projection with a projection to an ellipsoid (or, in fact, a general quadratic surface),
and was able to demonstrate some accuracy gain. The E-UCM is given by [83]

π(X) =
f

αd + (1− α)Z

[
X
Y

]
(2.19)

where d =
√

β(x2 + y2) + z2.

Double-Sphere Model

Later still, the UCM was extended again by the double-sphere (DS) model [83], which
added a second spherical projection to enable more complex modeling

π(X) =
f

αd2 + (1− α)(ξd1 + Z)

[
X
Y

]
(2.20)

d1 =
√

x2 + y2 + z2

d2 =
√

x2 + y2 + (ξd1 + Z)2

Convincing results are presented in [83] to demonstrate the effectiveness of the
double-sphere model.

Summary of Radial Distortion Models

The radial distortion models are summarized below:

• Polynomial: r(θ) = a1θ + a2θ2 + a3θ3 + a4θ4

• UCM: r(θ) = f · sin θ/(cos θ + ξ)

• eUCM: r(θ) = f · sin θ

cos θ+α
(√

β·sin2 θ+cos2 θ−cos θ
)

• Rectilinear: r(θ) = f · tan θ

• Stereographic: r(θ) = 2 f · tan(θ/2)



2.1. Fisheye Camera and Geometry 19

• Double Sphere: r(θ) = f · sin θ

α
√

sin2 θ+(ξ+cos θ)2+(1−α)(ξ+cos θ)

2.1.5 Other Models

While we have discussed many of the more popular fisheye projection models, the
list is still incomplete. We have omitted some models are only rarely used. For
example, Bakstein and Pajdla [101] proposed two extensions to the classical models.
Firstly, they allowed a second parameter in the stereographic model. Then by trying
various combinations of classical models for a given fisheye camera, they propose
what is essentially a weighted average of the stereographic and the equisolid angle
projection. A logarithm-based Fisheye Transform (FET) was also proposed in [78],
though the accuracy was low compared to other models. The hyperbolic sin-based
model proposed in [102], and later used for wide-angle cameras [103], is not discussed
here. The cascaded one-parameter division model [104] is also not mentioned.

2.1.6 Similarity between Models

With the proliferation of fisheye models, it is natural to wonder if there is a com-
monality between some of the models or even if there has been repetition in the
development of the models.

General Perspective Projection and Fisheye Models

The unified camera model is in a class of general vertical perspective projections of
a sphere, which is known in the fields of geodesy and cartography [105, 106], with
the addition of the trivial step of central projection to the spherical surface. The
stereographic and the orthographic projections belong to this class as well. The stere-
ographic projection has the pinhole projection center on the sphere’s surface, while
the orthographic projection has an infinite focal length (hence the term orthographic).
The link between the stereographic projection and the UCM is described in [81].

Let us begin by examining the general vertical perspective projection, described by
Figure 2.5. The pinhole camera is offset along the Z-axis by a distance of d. The
projection to the sphere is given by

u′ = fs
X
||X|| (2.21)

Here we use u′ = (u′x, u′y, u′z)T for the point on the sphere of radius fs, to distinguish
it from u used previously to denote a point on the unit sphere. The point pd is the
pinhole projection of u′

π(X) =
fp

u′z + d

[
u′x
u′y

]
=

fp

Z + d
fs
||X||

[
X
Y

]
(2.22)

The +d translates the point u′ from the sphere to the pinhole coordinate system.
Thus, with the two parameters γ = fp and the ξ = d/ fs, we have (2.18), the UCM.
Additionally, if we constrain the pinhole camera plane to be on the surface of the
sphere (i.e. d = fs), and make fp = 2 fs, we get the stereographic equation (2.7).

The Enhanced UCM [82] extended the UCM by projecting to an ellipsoid instead of a
sphere. Again, this type of projection is known in geodesy and cartography for a long
time [105, 106] as ellipsoidal general perspective projections. We will not re-derive the



20 Chapter 2. Background

C
X

Z

X

θ

u′

fs

fp

d

pd

Figure 2.5 The general perspective mapping.

equations here but would refer the reader to the source material. As mentioned, the
DS model [83] extends the UCM by adding a second projection sphere to model more
complex optics.

Thus the UCM, the E-UCM, and the DS models of fisheye lenses can be considered
as generalizations of the stereographic camera model. It may be even more correct
to say that they all (UCM, E-UCM, DS, division, and stereographic models) are part
of a class of general perspective models. If we allow fs to approach infinity, then
(2.22) becomes the pinhole projection model. If we allow fp (and thus also d) to go to
infinity, then we get the orthographic projection.

Figure 2.6 graphically shows the relationships between the various fisheye models
and the general perspective projection. The Division Model stands out, as it was
not initially designed as a geometric projection model, though its equivalence to the
Stereographic Model is demonstrated in the next section. It should also be noted
that the E-UCM is not restricted to ellipsoids but, depending on the parameters,
may also be represented by hyperboloid or paraboloid projection surfaces. However,
this is such a minor differentiation that we consider this still to be equivalent to the
Ellipsoidal General Perspective Projection.

In Figure 2.6, we have attempted to provide a map of geometric fisheye models that



2.1. Fisheye Camera and Geometry 21

Equivalent

Generalises

G
en

er
al

S
pe

ci
fi

c

Extended 
Orthographic 

Model
Pinhole Model Bakstein-Pajdla 

Model 

Single 
Parameter 

Division Model 

General 
Perspective 

Model

Enhanced 
Unified 

Camera Model

Ellipsoidal 
General 

Perspective

Unified 
Camera Model

Double Sphere 
Model

Orthographic 
Model

Stereographic 
Model 

Figure 2.6 The relationship between the various fisheye models and the general
perspective projections. Double line indicates that two models are equivalent, and single
line indicates a generalization/specialization.

are related to the General Perspective Projection. For a developer, this could be seen
as a tool to guide the choice of model for a given application. One could attempt to
use the simpler, more specialized models and, depending on the specific application,
extend the development to one of the more general models in the case that errors
remain high for a given camera model following calibration.

Stereographic and Division Models

We can combine the pinhole projection (2.2) with the inverse of the stereographic
model (2.8) to give

ru(rd) = fp tan
(

2atan
(

rd

2 fs

))
(2.23)

Elementary trigonometry yields

ru =
fs

fp

rd

1− r2
d

4 f 2
p

(2.24)

Let us compare this with the single parameter division model. If we allow a = 1/4 f 2
p ,

this is the same as the division model, (2.13), up to a scaling factor fs/ fp, which is
discussed in [86].

Equidistant and Field-of-View Models

Consider the radial pinhole projection given by (2.2), and the equidistant fisheye
projection model (2.3). Combining the two to a similar form as the FoV model (2.16)

ru = fp tan
rd

fe
(2.25)

As fp and fe are free parameters, determined through calibration, we can set them to

fp =
1

2 tan ω
2

and fe =
1
ω

(2.26)



22 Chapter 2. Background

Thus we see that (2.16) and (2.25) are equivalent mapping functions. i.e., the equidis-
tant and the field-of-view model are fundamentally the same model.

Mapping of 3D to 2D for Fisheye Lenses

For fisheye lenses, the mapping of 3D points to pixels universally requires a radial
component r (θ) [107]. The projection is a complex multi-stage process compared to
regular lenses and thus we list the detailed steps:

1. The point Xc in camera coordinates is mapped to a unit vector as S = (sx, sy, sz)T =
Xc/‖Xc‖.

2. The incident angle against the optical axis (coincident with the Z-axis) θ =
π
2 − arcsin (sz) is computed.

3. The radial function r(θ) to get the radius on the image plane (typically in pixels)
is computed.

4. Given the pixel distortion centre (cx, cy), the pixel location is given by i =

r · sx/ρ + cx and j = r · sy/ρ + cy with ρ =
√

s2
x + s2

y.

5. (optional) Depending on the model used in Step 3, an additional distortion
correction may needs to be applied.

There is a great number of potential models for application with fisheye cameras. We
have mentioned twenty models, though this is not yet exhaustive. We have shown
that there exists a strong relationship among many of the geometric models—at
least seven of the models being related to or directly equivalent to the General
Perspective Projection. In addition, we have shown that some of the more recently
developed fisheye camera models are mathematically equivalent to the classical
fisheye projection functions, being the stereographic and the equidistant models
proposed decades ago. One could further theorize the existence of as yet undiscovered
fisheye models. For example, from Figure 2.6, you could foresee the unification of the
Ellipsoidal General Perspective model and the double sphere by developing a model
that consists of sequential projections onto two quadratic surfaces.

The aim of this background is not to diminish the importance of any work in this
space. At no point do we make any claim about the accuracy of any of the models.
The accuracy of any model depends not just on the model itself, but on the application,
on the lens and image sensor types, and the calibration procedure deployed. Instead,
we would hope to provide a guide for further development (and perhaps unification)
in fisheye projection models. Furthermore, perhaps it can be a valuable source of
discussion for a developer considering which model is most appropriate for their
camera and application.

2.2 Single-Task Learning (STL)

2.2.1 Depth Estimation

Depth estimation involves estimating the distance to an object (or any plane) at a
pixel level as shown in Figure 2.7. For depth estimation, it is very useful to estimate
the norm (

√
x2 + y2 + z2) instead of z, because for fisheye images, the z value can

be (close to) zero for FoV > 180°, which leads to mathematical problems, because
all models have some direct or indirect division by Z. Instead, the norm is always



2.2. Single-Task Learning (STL) 23

Figure 2.7 A qualitative sample of distance/depth estimation on WoodScape [12].

Figure 2.8 An overview of reconstructed scene in 3D. Figure reproduced from [110].

zero (except for x, y, z = 0) and allows a more numerical stable implementation.
Calculating distance relative to a camera plane is still very challenging, but it is
critical to unlocking exciting technologies such as autonomous driving, 3D scene
reconstruction, and augmented reality. Distance estimation is a crucial requirement
in robotics for performing various tasks such as perception, navigation, and planning.
Another interesting application would be creating a 3D map that finds its application
in Simultaneous Localisation and Mapping [108, 109]; computing depth helps us
back-project images from different views into 3D as shown in Figure 2.8. The scene
can then be restructured by registering and matching all of the points.

How do we Perceive our World?

Let us begin by discussing how humans view distance in general. Since many of
these approaches were derived from our human vision system, this will provide us
valuable insights into depth estimation. The formation of an image is similar in both
computer and human vision, as shown in Figure 2.9. In theory, as light rays from a
source strike objects, they bounce off and move towards the back of our retina, where
they are projected and processed in 2D [111], similar to how an image is projected on
an image plane. So, how do we calculate distance and comprehend our surroundings
in 3D when the predicted scene is in 2D? For example, assume someone is about to
punch; we would instinctively know when we are about to be hit and dodge it when



24 Chapter 2. Background

Figure 2.9 Projecting onto the retina (left). Projecting onto the image plane (right) [112].

Figure 2.10 Perspective Projection (Left). Orthographic Projection (Right). Figure
reproduced from [113].

his/her fist gets too close. Alternatively, when driving a car, we might somehow
gauge when to step on the accelerator or hit the brakes to maintain a safe distance
from so many other drivers and pedestrians [112]. The mechanism at work here
is that our brain begins to reason about the incoming visual signals by identifying
patterns such as scale, texture, and motion in the scene referred to as Depth Cues.
There is no distance information in the image, but we can easily interpret and recover
depth information. We can tell which parts of the scene are closer to us and which
are farther away. Furthermore, these cues allow us to view objects and surfaces that
are ostensibly flat on 2D images as 3D [111].



2.2. Single-Task Learning (STL) 25

Figure 2.11 A sample image from KITTI [116] for the illustration of depth cues.

Monoscopic
Depth Cues Examples Appear

Nearer
Appear
Farther

Size of objects Tree Larger Smaller
Texture Grass patch High Quality Low Quality & Blurry
Linear Perspective Curb 7 Converge to Horizon

Table 2.1 Analysis of Monoscopic Depth Cues on a sample from KITTI.

How to destroy depth from perspectives for human/computer vision?

Depth ambiguity: Understanding depth cues starts with understanding how scenes
are projected to perspective view in human and camera vision. An orthographic
projection to front view or side view, on the other hand, loses all depth details. Let us
consider Figure 2.10, where an observer can tell which side of the house is closer to
him/her, as seen in the left image. However, from the right image, it is impossible
to discern relative distances. The background may also be on the same plane as the
home.

Inferring Depth Using Cues

Basically, there are four types of depth hints: static monocular, motion depth, binoc-
ular and physiological hints [114]. We use these signals subconsciously to perceive
depth remarkably well. Our perception of depth from a single image mainly depends
on the spatial arrangement of a scene. In Table 2.1, we summarize some cues that
enable us to understand the distance between various objects. From our every day,
it can already feel normal to us. Jonathan et al. [115] experimentally illustrates that
when the horizon is visible, there is an overwhelming tendency for humans to exploit
this cue to perceive depth quickly. By looking at the image in Figure 2.11, we can
summarize the following cues depicted in Table 2.1.

Depth Cues from Motion (Motion Parallax)

Motion parallax is a type of depth perception cue in which closer objects appear
to move faster than further away objects. It is a type of monocular cue, a depth
perception cue that can only be perceived with one eye. This is in contrast to binocular
cues, which are depth perception cues that can only be perceived with both eyes
open.



26 Chapter 2. Background

Figure 2.12 Illustration of motion parallax. Figure reproduced from [117].

Figure 2.13 Illustration of Retina disparity [118].

Motion parallax occurs when objects at different distances from us appear to move at
different rates while we are moving (see Figure 2.12). The speed with which an object
moves is used to determine its distance. The closer an object is to us, the faster it
appears to move. The further an object is from us, the slower it appears to move [117]

Depth Cues from Stereo Vision (Binocular Parallax)

Retina Disparity: Let us look into another fascinating phenomenon that enables us
to understand the depth that can intuitively be grasped by demonstrating a simple
experiment. If we place our index finger close to our face with one eye closed. Now,
repeatedly if we close one and open the other. We can observe that our finger is
moving! Retina disparity refers to the disparity in vision between our left and right
eyes. If we stick out our finger at arm’s length and repeat the process, we should
note that the shift in finger position becomes less noticeable as shown in 2.13. This
experiment provides us with some insight into how stereo vision works. Stereopsis
is the ability to perceive depth due to two different views of the world. The brain
computes distance by comparing images from the retinas of the two eyes. The greater
the disparity, the closer things are to us [112].

Depth Estimation in Computer Vision

Depth estimation aims to recover the three-dimensional structure and appearance of
objects in imagery by obtaining a representation of the spatial structure of a scene.
This is also known as the inverse problem [119], in which we attempt to recover



2.2. Single-Task Learning (STL) 27

certain unknowns despite the fact that there is insufficient knowledge to define the
solution completely, i.e., the mapping between the 2D and 3D views is not unique. We
discuss this issue in detail in the following sections. So, how do machines perceive
depth? Can any of the ideas discussed above be transferred in some way? Back in the
1990s, the first algorithm with promising results was depth estimation using stereo
vision. Since then, Dense stereo correspondence algorithms have made significant
progress [120, 121, 122]. The approaches involved using geometry to constrain and
reproduce the concept of stereopsis mathematically and in real-time. Scharstein et
al. [123] summarizes most of these ideas in his survey.

Most research either exploits geometrical cues such as multi-view geometry or epipo-
lar geometry [124] to learn depth. Monocular depth estimation has recently gained
popularity due to the use of neural networks to learn a representation that distills
depth directly [50]. Accordingly, gradient-based approaches are used to learn depth
cues implicitly. Aside from that, there has been significant progress in self-supervised
depth estimation [52, 53, 55], which is particularly exciting and revolutionary due to
its wide trainability on arbitrary videos. In this approach, we train a model to predict
depth by means of optimizing a proxy signal. In the training phase, we do not require
any ground truth label and applicability on single images during inference.

2.2.2 Object Detection

Before we get started on creating a cutting-edge model, let us first define object
detection. Let us pretend we are building a vehicle detection system for a self-driving
car. Assume our car captures an image similar to the one in Figure 2.14. The image
from the rear camera essentially conveys that it is a one-way street, and there is a car
right next to our rear-end, and quick maneuvers to the right must be prohibited. We
should slow down and allow the car to pass through if we need to steer right.

So, what will the car’s system do to ensure that this maneuver can occur safely?

It can draw a bounding box around the cars so that the algorithm can determine
where the cars are in the image and then decide which direction to proceed to prevent
any mishaps.

We aim to perform object detection mainly:

• To detect where the objects are present in the image and locate them.
• To filter out the objects of interest.

Object detection is therefore defined as a model that entails categorizing and localizing
various objects in an input image based on their location (see Figure 2.14). It detects
the presence of an object in an image and draws a box around it. This typically entails
two processes: classifying an object’s form and then drawing a box around that
object. Object detection tasks are efficiently solved using fully convolutional neural
networks. CNN-based bounding box detection can be divided into two categories:
single-stage and two-stage approaches. Single-stage methods regress box coordinates
and class categories in a single pass. YOLO [38] and SSD [125] are early adopters
of single-stage approaches. On the other hand, two-stage networks use explicit loss
functions for class-agnostic area proposals accompanied by accurate box coordinates
regression. This group includes the R-CNN family of algorithms [126].



28 Chapter 2. Background

Figure 2.14 A qualitative input sample (left) and object detection prediction (right) on
WoodScape [12].

Figure 2.15 Computer Vision tasks in ascending order of complexity. Figure reproduced
from [128].

2.2.3 Semantic Segmentation

Deep learning has been very effective when working with images as data, and it is
now at the point that it outperforms humans in a variety of use-cases. In descending
order of complexity, the fundamental problems humans have been involved in solving
with computer vision are image classification, object detection, and segmentation, as
shown in Figure 2.15. In the task of image classification, we are simply interested
in obtaining the labels of all the objects present in an image. Object detection, as
discussed in Section 2.2.2 takes it a step further by attempting to detect all objects
that are present in an image and the position at which the objects are present using
bounding boxes. Image segmentation is even more complex as a task, thus attempting
to determine the exact boundary of the objects in the image [127].

Semantic segmentation is the process of assigning a class label to each pixel in an
image. These labels could refer to a person, road, curb, pole, and so on, as shown
in Figure 2.16. It does not differ across different instances of the same object. For
example, if an image contains two cars, semantic segmentation assigns the same label
to all of the pixels in both cars. It provides dense pixel-by-pixel labeling of the image,
resulting in scene comprehension. Semantic segmentation was once thought to be
a difficult task. The development of accurate and efficient approaches was made
possible with the help of fully convolutional neural networks (FCNs) [41]. The level of
sophistication of semantic segmentation has recently increased rapidly, and so has the
computational power of embedded systems, allowing for commercial deployment.
Segmentation models are highly useful for autonomous cars as we need to provide



2.2. Single-Task Learning (STL) 29

Figure 2.16 A qualitative input sample (left) and semantic segmentation prediction (right)
on WoodScape [12].

cars a detailed perception to enable them to understand their surroundings so that
they can safely transition on our existing roads.

2.2.4 Motion Segmentation

Motion Segmentation is defined as the task of identifying the independently moving
objects (pixels) such as vehicles and persons etc., in a pair of sequences and separating
them from the static background as shown in Figure 2.17. It involves assigning a
class label to each pixel in an image to segment static and dynamic objects. This
task is treated as a binary segmentation problem. There are two types of motion
in an autonomous driving scene. The first one is the motion of the surrounding
obstacles and the second is the motion of the ego-vehicle. The ego-motion might cause
difficulties to successfully detect the moving objects because even static objects will
be perceived as moving. Motion segmentation implies two tasks that are performed
jointly. The first one is object detection. We highlight the interesting objects only of
specific classes, i.e., pedestrians and vehicles, and discard any motion perceived from
the background due to ego-motion. The second is motion classification, in which a
binary classifier predicts whether the object is moving or static.

Because of the cameras’ ego-motion on the moving vehicle, motion is a powerful
cue in automotive driving, and detecting dynamic objects around the car is vital.
Furthermore, it aids in detecting generic objects based on motion cues rather than
appearance cues since there would still be unusual objects such as kangaroos or
construction vehicles. The autonomous driving scenes are highly dynamic, where
there are many moving objects interacting with each other forming a very complex
environment to deal with. The detection and localization of moving obstacles are
crucial for ADAS and autonomous vehicles. They are essential for emergency braking,
support decision-making for its next step navigation, and for avoiding possible
collisions [60]. An autonomous vehicle has to estimate collision risk with other
interacting objects in the environment and calculate an optional trajectory. Collision
risk is typically higher for moving objects than static ones due to the need to estimate
the future states and poses of the objects for decision making. This is particularly
important for near-range objects around the vehicle, which are typically detected by
a fisheye surround-view system that captures a 360° view of the scene.

From a static observation point, the detection of moving obstacles is almost trivial
as any non-zero optical flow will be due to motion in the scene or noise in the



30 Chapter 2. Background

(a) Rear Cam (t-6) (b) Rear Cam (t)

(c) Motion Estimate

Figure 2.17 A qualitative sample of motion segmentation on WoodScape. (t-6) and (t)
frames are showcased to visually spot dynamic objects segmented in the motion
estimate.

image. For a moving observer, the problem is challenging as the entire scene relative
to the camera moves. It is also complicated when considering fisheye cameras,
which exhibit complex motion patterns due to the non-linear projection and strong
lens distortion. Fewer classes are movable, and this can be leveraged to improve
classification accuracy. For example, object classes such as buildings or poles are
static and will not have dominant motion vectors after ego-motion compensation.

2.2.5 Soiling Segmentation

Level 3 autonomous driving [24] stands out as a challenging goal of a large part of the
computer vision and machine learning community. Due to this problem’s difficulty,
a combination of various sensors is necessary to build a safe and robust system.
However, apart from the geometric and semantic tasks, there are other less "popular"
problems slowly getting into attention, which have to be solved for the ultimate goal
of the full Level 5 autonomy. Cameras are an essential part of the sensor suite to
achieve Level 3 autonomous driving. Surround-view cameras are, however, directly
exposed to the external environment and are vulnerable to get soiled as a consequence
of bad weather conditions such as rain, fog, or snow [43, 73]. Furthermore, dust
and mud have a significant impact on vision tasks’ performance. Cameras have a
much higher degradation in performance due to soiling compared to other sensors.
Thus it is critical to accurately detect soiling on the cameras, particularly for higher
autonomous driving levels. As the visual perception modules for autonomous driving



2.2. Single-Task Learning (STL) 31

Figure 2.18 Automotive surround-view cameras are exposed to harsh environmental
setup. Left: camera lens covered by mud. Middle: image produced by the soiled camera
from the left picture. Right: camera lens soiled during heavy rain.

Figure 2.19 Example of semi-transparent soiling in the form of a water drop on the
camera lens. The detection of the bus behind the water drop works still well, while the road
segmentation (green) is highly degraded in the soiled region. In this scenario, a soiling
detection algorithm is used to trigger a camera cleaning system that restores the lens
hardware.

are becoming more mature, there is much recent effort to make them more robust to
adverse weather conditions. It can be seen by the popular CVPR workshop "Vision
for all seasons”1, which focuses on the performance of computer vision algorithms
during adverse weather conditions for autonomous driving.

One of these problems is the reliability of the sensory signal, which in the case of
surround-view cameras means, inter alia, the ability to detect soiling on the camera
lens. Failure to recognize severe weather conditions leading to a deterioration of the
image quality to such a level that any further image processing is unreliable [13]. Fig-
ure 2.18 shows how the surround-view camera can get soiled and the corresponding
image output, as well as an example of images taken during a heavy rain. It usually
happens when the tire splashes mud or water from the road or wind, depositing dust
on the lens. Figure 2.19 shows an example of the strong impact of a significant water
drop on the camera lens for object detection and semantic segmentation tasks.

1https://vision4allseasons.net/

https://vision4allseasons.net/


32 Chapter 2. Background

Adverserial 
Attacks

White Box 
Attacks

Black Box 
Attacks

Iterative
Optimization

Decision 
Boundary 

Approximation

Heuristic
Search

x + dL/dx

Distance Semantic Motion Detection

Supervised Training

Semantic 
Decoder 

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

𝐼𝑡'

𝐼t' 

𝐼t

Semantic Decoder

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

( )

𝐼𝑡( )

𝐼𝑡( )

Semantic 
Decoder 

Motion Decoder

𝐼𝑡( )

Supervised Training

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

𝐼( )𝑡−1
Concat
Output

Distance Estimate 

Semantic Segmentation

Motion Estimation

Detection Estimate

Concat
Output

Distance Decoder 

Pose 
Decoder 

Self-Supervised Training

Supervised Training

Figure 2.20 Illustration of a multi-task architecture comprising of four tasks [1].

2.3 Multi-Task Learning (MTL)

We usually care about optimizing a specific metric in deep learning, such as a score
on a specific benchmark or a business key performance indicator. To accomplish this,
we usually train a single model or a group of models to perform our desired task. The
models are then fine-tuned and tweaked until their output no longer improves. While
we can typically produce satisfactory results, we neglect details that might help us do
even better on the metric we care about by being highly focused on a single task. We
can derive knowledge explicitly from the training signals of related tasks. We may
improve our model’s generalization on our original task by sharing representations
between similar tasks. This method is known as Multi-Task Learning (MTL) [129]. It is
a sub-field of machine learning in which a shared model concurrently learns multiple
tasks at once, as shown in Figure 2.20. The Figure 2.21 illustrates the output from
OmniDet [1] MTL framework.

In general, when we find ourselves optimizing more than one loss function, we are
engaging in MTL (in contrast to single-task learning). In such cases, it is beneficial
to think about what we are attempting to do clearly in MTL and gain conclusions
from it. Even if we are just optimizing one loss, as is usually the case, there is likely
to be an auxiliary task that will assist us in improving our main task. MTL’s target is



2.3. Multi-Task Learning (MTL) 33

(a) (b)

(c) (d)

(e) (f)

Figure 2.21 Sample Multi Task Learning perception output on raw fisheye images. (a)
Rear-Camera Input Image, (b) Distance Estimate, (c) Semantic Segmentation, (d) Motion
Estimation, (e) Standard Object Detection and (f) Soiling Segmentation.

succinctly stated by Rich Caruana [130]: "MTL enhances generalization by exploit-
ing the domain-specific knowledge found in the training signals of similar tasks."
MTL aims to solve computational bottlenecks in CNNs and increase computational
performance by sharing the costly layers across all tasks.

2.3.1 Motivation

We may motivate MTL in various ways: It can be seen as biologically inspired by
human learning. We often apply information gained from learning similar tasks while
learning new tasks. An infant, for example, learns to recognize faces first and then
applies this information to recognize other objects. From the standpoint of machine
learning, we can inspire MTL by seeing it as a type of inductive transfer. Inductive
transfer can help develop a model by adding an inductive bias that causes the model
to favor some hypotheses over others. L1 regularization, for example, is a common
type of inductive bias that results in a preference for sparse solutions. In MTL, the
auxiliary tasks provide the inductive bias, causing the model to favor hypotheses that
describe more than one task [129].

From the automotive perspective in this thesis, our goal is to build a perception
system that constitutes a Level 3 autonomous stack. Deploying an efficient multi-
task model has several advantages over all the earlier discussed single-task models.
We could attain significant gain in embedded performance, certification, validation,



34 Chapter 2. Background

TASK A TASK B TASK C

Cross Talk

TASK A TASK B TASK C

TASK A TASK B TASK C

Shared Encoder
Soft/Hard

TASK A TASK B TASK C

Shared Encoder
Soft/Hard

Task 
Specific

Shared

(a) Hard parameter sharing

TASK A TASK B TASK C

Cross Talk

TASK A TASK B TASK C

TASK A TASK B TASK C

Shared Encoder
Soft/Hard

TASK A TASK B TASK C

Shared Encoder
Soft/Hard

Task 
Specific

Shared

(b) Soft parameter sharing

Figure 2.22 Multi-task learning employing neural networks has been divided into soft
and hard parameter sharing schemes.

testing. Also, the deployment of a single MTL model is easier than several single-task
learning (STL) models.

2.3.2 Two MTL approaches for Deep Learning

So far, we have concentrated on theoretical motives for MTL. To put MTL concepts
into context, we consider the two most popular approaches for performing MTL
in Deep Neural Networks (DNNs). Initially, MTL architectures were classified into
hard or soft parameter sharing methods. We illustrate the hard parameter sharing
in Figure 2.22 on the left, wherein the parameter set is divided into shared and
task-specific parameters. The most popular approach to MTL in neural networks
is hard parameter sharing, which goes back to [131]. MTL networks employing
hard parameter sharing usually comprise a shared encoder that branches out into
task-specific heads [132, 133, 134, 135, 136]. Overfitting is significantly reduced by
hard parameter sharing. Baxter et al. [137] demonstrated that the risk of overfitting
the shared parameters is an order N smaller than the risk of overfitting the task-
specific parameters, i.e., the output layers. This makes intuitive sense: the more
tasks we learn simultaneously, the more work the model, has to put into finding a
representation that captures all of the tasks, and the less risk we have of overfitting
on our original task [129]. The first hard parameter sharing model was introduced by
UberNet [138] wherein they tried to jointly tackle a large number of low, mid, and
high-level perception tasks.

On the other hand, in soft parameter sharing, each task has its own model with its own
set of parameters, and a feature sharing mechanism handles the cross-task talk (see
Figure 2.22 (right)). The distance between the model’s parameters is then regularized
to allow the parameters to be similar. For example, Duong et al. [139] employs the L2
norm for regularization, whereas Yang et al. [140] employs the trace norm. Cross-stitch
networks [141] proposed soft-parameter sharing in MTL architectures [129].

2.4 Adversarial Attacks

Autonomous Vehicles are expected to significantly reduce accidents [142], where
visual perception systems are in the heart of these vehicles. Despite the notable



2.4. Adversarial Attacks 35

Adversarial 
Attacks

White Box Black Box

Un-Targeted Targeted Un-TargetedTargeted

Distance Semantic Motion Detection

Supervised Training

Semantic 
Decoder 

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

𝐼𝑡'

𝐼t' 

𝐼t

Semantic Decoder

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

( )

𝐼𝑡( )

𝐼𝑡( )

Semantic 
Decoder 

Motion Decoder

𝐼𝑡( )

Supervised Training

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

𝐼( )𝑡−1
Concat
Output

Distance Estimate 

Semantic Segmentation

Motion Estimation

Detection Estimate

Concat
Output

Distance Decoder 

Pose 
Decoder 

Self-Supervised Training

Supervised Training

What is the true 
scale of the world?

Figure 2.23 Adversarial attacks on the OmniDet [1] MTL model. Distance, segmentation,
motion and detection perception tasks are attacked by white and black box methods with
targeted and un-targeted objectives, resulting in incorrect model predictions.

achievements of DNNs in visual perception, we can easily fool the networks by
adversarial examples that are imperceptible to the human eye but cause the network
to fail. Hence, it is important to understand the robustness of MTL models over
these attacks. Adversarial examples are usually created by deliberately employing
imperceptibly small perturbations to the clean inputs, resulting in incorrect model
outputs. This small perturbation is progressively amplified by a deep neural network
(DNN) and usually yields wrong predictions. Generally speaking, attacks can be a
white box or black box (see Figure 2.23) depending on the adversary’s knowledge
(the agent who creates an adversarial example). White box attacks presume full
knowledge of the targeted model’s design, parameters, and, in some cases, training
data. Gradients can thus be calculated efficiently in white box attacks using the back-
propagation algorithm. In contrast, in Black box attacks, the adversary is unaware of
the model parameters and has no access to the gradients. Furthermore, attacks can
be targeted or untargeted based on the intention of the adversary. Targeted attacks
try to fool the model into a specific predicted output. In contrast, untargeted attacks
consider the predicted output irrelevant, and the main goal is to fool the model into
any incorrect output.



36 Chapter 2. Background

Figure 2.24 Overview of the perception tasks in the WoodScape dataset.

2.5 Datasets and Corresponding Benchmarks

In this section, we briefly discuss the datasets employed in this thesis for the experi-
ments and the metrics used for the tasks.

2.5.1 WoodScape

The dataset consists of 46,000 images sampled roughly equally from the four views
and split into training, validation, and test in a 6:1:3 ratio. This dataset is used for
OmniDet [1] as explained in Chapter 6. A sub-set of 10,000 images from the dataset
will be made public on Github2. A baseline code is released along with the dataset
on GitHub to encourage further research to the community in developing unified
perception models for autonomous driving. It contains several perception tasks listed
in Figure 2.24. 2D box detection contains the five most essential categories of objects
— pedestrians, vehicles, riders, traffic signs, and traffic lights. Vehicles further have sub-
classes, namely cars and large vehicles (trucks/buses). The polygon prediction task
on raw fisheye is limited to only two classes — pedestrians and vehicles. Unlike traffic
lights and traffic signs, these categories are non-rigid in nature and quite diverse in
appearance, making them suitable for polygon regression. We sample 24 points with
high curvature values from each object instance contour for the polygon regression
task. Learning these points helps to regress better polygon shapes, as these points
at high curvature define the shape of the object contours. Semantic segmentation
comprises of 6 classes on road, lanes, curbs, two-wheeled vehicles, vehicles, and persons.
The images are in RGB format with 1MPx resolution and 190° horizontal FoV. The
dataset is captured in several European countries and the USA. For the experiments,
we used only the vehicles’ class. Further details about the dataset usage and demo
code can be found on the WoodScape website https://woodscape.valeo.com.

2https://github.com/valeoai/WoodScape

https://woodscape.valeo.com
https://github.com/valeoai/WoodScape


2.5. Datasets and Corresponding Benchmarks 37

Lidar

fisheye

objectobject

laser beam

projection

Figure 2.25 The LiDAR’s viewpoint lies higher than the fisheye camera’s viewpoint. 3D
points from the object (person) will be mapped, even though – from the camera’s point of
view – the point is occluded.

WoodScape – Bamberg Dataset

The distance estimation dataset used in Chapter 3 and Chapter 4 for the work
FisheyeDistanceNet [2], UnRectDepthNet [3], SynDistNet [4] and SVDistNet [5]
contains roughly 40, 000 raw images obtained with multiple fisheye cameras consti-
tuting a surround-view system and point clouds from a sparse Velodyne HDL-64E
rotating 3D laser scanner as ground truth for the test set. The training set contains
39, 038 images collected by driving around various parts of Bavaria, Germany. The
validation and the test split contain 1, 214 and 697 images, respectively. The dataset
distribution is similar to the KITTI Eigen split used in [53, 55] for the pinhole model
and explained in detail in Section 2.5.2. The training set comprises three scene cate-
gories: city, residential and sub-urban. While training, these categories are randomly
shuffled and fed to the network. We filter static scenes based on the vehicle’s speed
with a threshold of 2 km/h to remove image frames that only observe minimal camera
ego-motion since distance cannot be learned under these circumstances. Comparable
to previous experiments on pinhole SfM [53, 55], we set the length of the training
sequence to 3.

Occlusion Correction

The data’s sensor fusion will be correct if both camera and the Velodyne LiDAR
scanner observe the world from the same viewpoint. However, in our vehicle, the
fisheye cameras are in the front, and LiDAR is placed at the top, as seen in Figure 2.25.
LiDAR perceives the environment behind objects that occlude the view of the camera.
This problem of occlusion results in a wrong mapping of depth points that are
not visible to the camera. It is harder to solve since occluded points are projected
adjacently to disoccluded points.

To solve this problem, we adapted a distance-based segmentation technique from [10]
with morphological filters as shown in the Figure 2.26. The depth image is denoted
by dimg. Instead of directly mapping depth values on a single depth image dimg, we
first split this image in I sub-windows dimg

i , i = 1, . . . , I of size 1280× 800 (W × H)
in the image plane, based on the lasers’ distance projected from the LiDAR. Each
dimg

i is mapped with depth-points in the form of intensity on the image plane in the
increasing order of distance from the LiDAR’s lasers. We apply a morphological
filter that is dilation on each dimg

i to fill the sparse regions. The occluded points are

removed with a thresholding technique i.e. Ilaser > Idimg
i regarded as occlusion, where

Ilaser is the LiDAR’s laser intensity based on distance and Idimg
i is intensity of dilated

sub-windows dimg
i based on distance. The results are shown in Figure 2.28.



38 Chapter 2. Background

d1
img d2

img

d3
img

d4
img

Depth

I

d3
img

I
laser

I
laser d3

img

I> = Occlusion

Dilation

Lidar

Figure 2.26 Distance-based segmentation technique with morphological filters. The sliced
sub-windows of the single depth image dimg, contains intensity values in ascending order.

2.5.2 KITTI

The KITTI dataset consists of 42, 382 stereo sequences with corresponding raw LiDAR
scans, 7, 481 images with bounding box annotations, and 200 training images with
semantic annotations with a resolution of 1242× 375. The unrectified dataset has a
resolution of 1392× 512. Geometric understanding tasks such as depth, flow, and
pose estimation are widely benchmarked using KITTI. We use the data split according
to Eigen et al. [51] for self-supervised depth estimation and filter the static frames
as proposed by Zhou et al. [53]. The resulting training and validation set contains
39, 810 and 4, 424 monocular triplets. We use the standard test set of 697 images,
which covers a total of 29 scenes. We use a single camera intrinsic matrix for the
entire training and validation set. The camera’s principal point is centered, and the
focal length is set as the average of all the focal lengths in KITTI. The length of the
training sequence is set to 3. We also use the 652 test frames from the Eigen split with
improved ground truth provided by [143]. We utilize the KITTI split [54], whose test
set includes the 200 training images from the KITTI 2015 Stereo dataset [144]. This
test set’s advantage is that it contains labels for depth and semantic segmentation,
suitable to ablate the benefits of MTL.

2.5.3 Cityscapes

Cityscapes dataset has 2, 975 training and 500 validation images, with a resolution of
2048× 1024 captured in 50 different cities. It features higher resolution street images
of higher quality compared to KITTI. It has a similar setting compared to KITTI but
contains more dynamics scenes. The validation set in principle provides ground-truth
labels for depth estimation and semantic segmentation tasks; the depth labels are
obtained by a classical Semi-Global Matching [145] algorithm. The KITTI dataset’s
depth labels are physical measurements from a LiDAR sensor and thereby better
suited for evaluating a depth estimation model. For pixel-wise semantic segmentation,
the dataset contains 19 classes. We extracted the 2D boxes from the instance polygons
for the entire training and validation split.

2.6 Evaluation

This section explains the metrics used for all the visual perception tasks in this thesis.



2.6. Evaluation 39

2.6.1 Metrics for Depth Estimation

Abs Rel : 1
|N| ∑i∈N

|di−d∗i |
d∗i

RMSE :
√

1
|N| ∑i∈N ‖ di − d∗i ‖2

Sq Rel : 1
|N| ∑i∈N

‖di−d∗i ‖2

d∗i
RMSE log :

√
1
|N| ∑i∈N ‖ log(di)− log(d∗i ) ‖2

Accuracies δt : 1
|N| |{d ∈ N| max( di

d∗i
, d∗i

di
) < 1.25t}| × 100%

Table 2.2 Performance indicators for depth evaluation. where di and d∗i denotes the ground
truth and predicted depth value of pixel i, respectively. N denotes the set of pixels with
real-depth/distance values in an image, |.| returns the number of the input set elements.

Table 2.2 indicates the performance indicators for depth evaluation. Saxena et al. [146,
147] proposed the first set of criteria defined to assess the quality of an estimated
depth map. It consists of computing the percentage of pixels having a relative error
δ lower than a certain threshold. A larger set of metrics were proposed by Eigen et
al. [50] for depth prediction given by:

• Absolute Relative error (Abs Rel): Normalizes per-pixel errors according to
real depth, reducing the effect of large errors with the distance. It ignores the
difference’s sign, preventing positive and negative errors from canceling each
other out. The error averaged over the entire test set is the score given in the
literature. The metric is not specified for null measurements, which is irrelevant
since depth is never zero.

• Squared Relative error (Sq Rel): The squared term penalizes larger depth
errors (e.g., near discontinuities). It is expressed likewise to the absolute relative
error, except it has the effect of penalizing particularly bad predictions. In the
case of Abs Rel, the symbol of the difference is ignored. Differences larger
than one have a greater impact on Sq Rel than on Abs Rel, while differences
smaller than one have a greater impact on Abs Rel than on Sq Rel. As a result,
comparing the two tests should aid in determining whether the errors are
caused by outliers or by several small offsets in the forecast. Sq Rel should
not be used in isolation because the existence of outliers can lead to incorrect
conclusions about a model’s results. It is measured in the same units as the
data.

• Root Mean Squared Error (RMSE): A traditional metric for measuring regres-
sion errors. It measures the standard deviation of the error; a higher value im-
plies widely varying prediction accuracy. The RMSE is defined as the squared
root of the mean quadratic difference between the prediction and the ground
truth. The RMSE, like Sq Rel, is susceptible to outliers. The squared root is used
to ensure that the RMSE is expressed in the same unit as the data.

• Root Mean Squared logarithmic error (RMSE log): The logarithm makes this
error relative, reducing the effect of large errors with the distance. It is more
invariant to the scale of the error and is meriting to note that it penalizes
underestimates more than overestimates, which makes it less valuable of a
metric for some applications of depth estimation, like autonomous navigation.

• Three inlier thresholds are used to determine the quality of the depth pre-
dictions. These are the percentage of predictions within some factor δ of
the ground truth. The standard measures, used in these experiments, are
δ < 1.25t, t = {1, 2, 3}. In other words, a value of 0.9 for δ1 means that 90% of



40 Chapter 2. Background

the pixels are such that the difference between the ground truth di and the pre-
diction d∗i is less than 25% of the smallest of the two (i.e., 25% of the prediction
if di < d∗i and conversely). Contrary to previous metrics, the model performs
better when the accuracy is higher.

2.6.2 Metrics for Segmentation-Based Tasks

Some basic concepts used by the metrics:

• True Positives (TP): A true positive is an outcome where the model correctly
predicts the positive class i.e., a correct Segmentation. Segmentation with IOU ≥
threshold.

• False Positives (FP): A false positive is an outcome where the model incorrectly
predicts the positive class i.e., a wrong Segmentation. Segmentation with IOU <
threshold.

• False Negatives (FN): A false negative is an outcome where the model incor-
rectly predicts the negative class i.e., a ground truth not segmented.

• True Negative (TN): A true negative is an outcome where the model correctly
predicts the negative class.

Pixel Accuracy (PA): Also known as global accuracy [42] is a straightforward metric
that measures the ratio between the number of correctly classified pixels and the total
number of pixels. The mean pixel accuracy (mPA) metric computes the proportion
of right pixels on a per-class basis. mPA is also known as class average accuracy [42].
Accuracy is obtained by taking the ratio of correctly classified pixels with respect
to the total pixels. The key drawback of employing this metric is that the outcome
may appear favorable if one class outnumbers the other. If, for example, the back-
ground class covers 90% of the input image, we can achieve 90% accuracy by simply
classifying every pixel as background.

PA =
∑k

j=1 njj

∑k
j=1 tj

, mPA =
1
k

k

∑
j=1

njj

tj
(2.27)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.28)

where njj represents the total number of pixels classified and labeled as class j. In
other terms, njj is the total number of True Positives for class j. The total number of
pixels labeled as class j is tj [148].

Intersection over Union (IoU): Also known as the Jaccard Index, the IoU statistic
compares the similarity and diversity of sample sets. It is the ratio of the intersection
of the pixel-wise classification results with the ground truth to their union as shown
in Figure 2.27.

IoU =
∑k

j=1 njj

∑k
j=1(nij + nji + njj)

, i 6= j (2.29)

where nij denotes the number of pixels labeled as class i but listed as class j. They are,
in other terms, False Positives (false alarms) for class j. Similarly, nji, the total number
of pixels labeled as class j but listed as class i, represents the False Negatives (misses)
for class j [148]. An extended version of IoU is widely in use. It is given by:



2.6. Evaluation 41

Figure 2.27 Depiction of Intersection over Union (IoU) metric. Figure reproduced
from [149].

Mean Intersection over Union (mIoU): mIoU is the class-averaged IoU, i.e.

mIoU =
1
k

k

∑
j=1

njj

nij + nji + njj
, i 6= j (2.30)

2.6.3 Metrics for Object Detection

Evaluation in object detection is difficult since there are two distinct tasks to measure:

• Determining the presence or absence of an object in the scene (classification).
• Determining the object’s position (localization, a regression task).

Furthermore, there will be several classes in a standard data set, and their distribution
will be non-uniform (e.g., there might be many more vehicles than traffic signals). As
a result, biases would be introduced by a simplistic accuracy-based metric. It is also
essential to determine the possibility of misclassifications. As a result, a "confidence
score" or model score must be assigned to each bounding box observed, and the
model must be evaluated at different levels of confidence. The Average Precision
(AP) was created to meet these requirements. To comprehend the AP, one must first
understand the Precision and Recall of a classifier [150].

Precision is defined as the "False Positive Rate," or the ratio of true object detections to
the total number of objects predicted by the classifier. If the precision score is close to
1, there is a good chance that whatever the classifier predicts as a positive detection is
accurate. In other terms, Precision is a model’s ability to identify only relevant objects.
It is calculated as a percentage of correct positive predictions i.e.,

Precision =
TP

TP + FP
=

TP
all detections

(2.31)

The "False Negative Rate," or the ratio of true object detections to the total number
of items in the data collection, is measured by Recall. If the recall score is close to 1,
the model can correctly detect almost all the objects in the dataset. In other terms,
the ability of a model to identify all relevant cases is referred to as Recall (all ground
truth bounding boxes). It is given as the percentage of true positives detected among
all related ground truths and is calculated as follows:

Recall =
TP

TP + FN
=

TP
all ground truths

(2.32)



42 Chapter 2. Background

Finally, it is essential to remember that Precision and Recall have an inverse rela-
tionship. These metrics are affected by the model score threshold being set and the
quality of the model. To compute the Average Precision (AP), the precision-recall
curve for a specific class (e.g., car) is calculated from the model’s detection output by
varying the model score threshold that defines what is counted as a model-predicted
positive detection of the class [150].

Average Precision (AP): The method of computing AP by the PASCAL VOC chal-
lenge has improved since 2010. Currently, the PASCAL VOC challenge interpolation
uses all data points, rather than interpolating just 11 equally spaced points (11-point
interpolation method) as described in [151], and they propose to interpolate all data
points.

11-point interpolation: The 11-point interpolation tries to summarize the shape of
the Precision × Recall curve by averaging the precision at a set of eleven equally
spaced recall levels [0, 0.1, 0.2, . . . , 1] :

AP =
1
11 ∑

r∈{0,0.1,...,1}
ρinterp(r) (2.33)

with
ρinterp = max

r̄:r̄≥r
ρ(r̃) (2.34)

where ρ(r̃) is the measured precision at recall r̃. Instead of using the precision
observed at each point, the AP is calculated by interpolating the precision only at the
11 levels r taking the maximum precision whose recall value is greater than r [152].

Interpolating all points: Instead of just interpolating between the 11 equally spaced
points, we might interpolate between all n points in such a way that:

∑
n=0

(rn+1 − rn) ρinterp (rn+1) (2.35)

with
ρinterp (rn+1) = max

r̃:r̃≥rn+1
ρ(r̃) (2.36)

where ρ(r̃) represents the calculated precision at recall r̃. Instead of using the precision
observed at just a few points, the AP is now calculated by interpolating the precision at
each step, with r taking the maximum precision whose recall value is greater or equal
to r + 1. We measure the approximate region under the curve in this manner [152].

Localization and Intersection over Union: To assess the model’s performance on
the task of object localization, we must first determine how well the model predicted
the object’s position. Typically, this is accomplished by drawing a bounding box
around the object of interest, but in some situations, an N-sided polygon or even
pixel by pixel segmentation is used. The localization task is usually evaluated on
the Intersection over Union threshold in both of these situations (IoU). In this thesis,
for fisheye images, the object representation is mainly carried out using N-sided
polygons. Therefore, we widely use (mIoU) as shown in Eq. 2.30.

Finally, now that we have defined AP and IoU thresholds, the mean Average Precision
(mAP) score is computed by averaging the AP across all classes and/or IoU thresholds.



2.6. Evaluation 43

(a)

(b)

(c)

(d)

Figure 2.28 Ground truth LiDAR values projected onto an image to obtain distance maps.
(a) and (c) Occluded LiDAR ground-truth maps, (b) and (d) Dis-Occluded LiDAR
ground-truth maps



44

Chapter 3

Related Work

Contents
3.1 Depth Estimation 45

3.1.1 Supervised Monocular Methods 45
3.1.2 Self-Supervised Monocular Methods 46
3.1.3 Depth Estimation on Fisheye Cameras 48

3.2 Object Detection 49
3.2.1 Object Detection on Pinhole Cameras 49

Two-Stage Detectors 49
Single-Stage Detectors 50
Multi-Stage Detectors 51
Deformable Part based Detectors 51
Keypoint based Detectors 52

3.2.2 Object Detection on Fisheye Cameras 52
3.3 Semantic Segmentation 53

3.3.1 Semantic Segmentation on Pinhole Cameras 53
3.3.2 Semantic Segmentation on Fisheye Cameras 55

Panoramic Images 55
Equirectangular Images 56
Spherical Representations 56

3.4 Motion Segmentation 56
3.5 Soiling Segmentation 58
3.6 Multi-Task Learning 58

3.6.1 Encoder-focused Architectures 60
3.6.2 Decoder-focused Architectures 61
3.6.3 Other Approaches 61
3.6.4 Previous MTL based Semantically-Guided Distance Estimation 62
3.6.5 Optimization in MTL 63

3.7 Adversarial Attacks 64
Attacks on Geometric and Semantic Tasks 64
Defenses Against Adversarial Attacks 66



3.1. Depth Estimation 45

3.1 Depth Estimation

Numerous deep learning models to infer scene depth from images have been pro-
posed in recent years. They differ in many ways, including architecture and layer
design, the required number of input images, training strategy, and datasets on which
they are trained and tested. Among the various points used to categorize models,
the number of images and the chosen training strategy have a strong influence on
the quality of estimated depth maps, while the architecture design may affect the
model’s ability to generalize on unseen data [153].

When the training technique is used as a criterion for classification, three distinct
classes emerge. To learn the task of depth prediction, supervised methods include
ground truth depth maps associated with RGB inputs. Then there are unsupervised
methods, which require only RGB images during training, and semi-supervised
methods, which combine the two approaches and depend on ground truth depth
maps when they are available in the training set. Models that are supervised are
known to produce better results, but they come at a cost. As discussed in [154],
collecting datasets containing both RGB images and depth maps associated with
them is difficult and error-prone. As a result, such models are often trained on a small
number of datasets, restricting both research and implementation possibilities [153].

Methods are classified into the same two groups as non-learning approaches for the
amount of RGB images retained, namely monocular and multi-view algorithms. The
former can only infer depth from a single image, whereas the latter requires at least
two. Monocular methods are less accurate. While some agree that the difference
between the two types of algorithms can be bridged, others claim that monocular
approaches can never catch up because there is no way to compensate for the lack
of detail when only one image is used. Furthermore, monocular depth estimation is
an ill-posed problem, meaning that any number of 3D structures will result in the
same 2D observation. Nonetheless, applying smoothness constraints always yields
acceptable results, often at the expense of fine details. Monocular algorithms produce
up-to-scale depth maps, while multi-view methods can produce metric depth by
depending on known real-world measurements such as the distance between two
cameras in the recording setup [153].

These two characteristics are used in the following subsections to distinguish and
present a broad range of state-of-the-art models.

3.1.1 Supervised Monocular Methods

Depth estimation is a crucial task for automated driving, and multi-view geomet-
ric approaches were traditionally used for computing depth. Some of the initial
prototypes of automated driving relied primarily on depth estimation [155], and to
enable accurate depth estimation, stereo cameras were used. As LiDAR-based depth
perception is sparse and costly, image-based methods are of significant interest in
perception systems regarding coverage density and redundancy. Eigen et al. [50] was
one of the first to successfully prove that CNN’s are capable of predicting depth from
single images. Following its success, Eigen et al. [51] proposed a general multi-scale
system that can handle tasks like depth map estimation, surface normal estimation,
and semantic label prediction from a single image. Demon [156] is a network de-
veloped by Ummenhofer et al. that can predict depth and egomotion, i.e., camera
motion, from a pair of images taken by a single camera, thus solving the two-view



46 Chapter 3. Related Work

SfM problem. Vijayanarasimhan et al. [157] proposed a different architecture called
SfM-Net to solve the same SfM problem. Their model can compute depth, egomotion,
3D rotations, and translations for the dynamic objects in the scene and motion masks
for these dynamic objects, given a pair of images and camera intrinsics. SfM-Net
is unique in that it can be used for a variety of training scenarios. It can be trained
supervised, using egomotion or depth, or self-supervised, by learning its tasks with-
out having access to ground truth data for the quantities it predicts. To infer depth
from a single image, Liu et al. [158, 159] combined a convolutional network and a
continuous conditional random field (CRF) [160]. Meanwhile, they suggested a super-
pixel pooling method to speed up the CNN, and it aids in the design of the deeper
network to increase depth estimation accuracy. Shelhamer et al. [161] proposes a fully
connected network (FCN) framework for monocular depth estimation, after which
the proposed framework jointly optimizes the intrinsic factorization to recover the
input image. Laina et al. [162], inspired by ResNet’s [163] outstanding performance,
used residual learning to learn the mapping relation between depth maps and single
images, resulting in a network that is deeper and more accurate than previous works
in depth estimation. Furthermore, up-sampling blocks replace fully connected layers
in ResNet to increase the resolution of the projected depth map. Chen et al. [164]
investigated a novel algorithm to tackle the problem of perceiving single-image depth
estimation in the wild and also learn the camera intrinsics. Rather than using the
supervised signal of depth as the ground truth, their networks are trained using
relative depth annotations.

Methods based on adversarial learning: In recent years, the adversarial learning pro-
posed in [165] has become a highly investigated research path due to its outstanding
output on data generation [166]. A broad range of algorithms, theories, and applica-
tions have been developed, as summarized in [167]. Stack GAN [168], Conditional
GAN [169], and Cycle GAN [170] all based on [165], are incorporated into depth
estimation tasks and have a positive effect on the depth estimation [171, 172, 173].
Jung et al.; incorporate adversarial learning into monocular depth estimation tasks
in [172]. Here, a Global Net and a Refinement Net make up the generator, and these
networks are designed to estimate global and local 3D structures from a single im-
age. The predicted depth maps are then distinguished from the real ones using a
discriminator, which is a typical type in supervised methods. For monocular depth
estimation, conditional GAN is also used in [173]. The difference from [172] is that a
secondary GAN is used to produce a more refined depth map based on the image
and a coarse approximate depth map.

The supervised methods can effectively learn a function to map 3D structures, and
their scale details since the ground truth supervises them. However, the labeled
training sets, which are difficult and costly to obtain, restrict the application of these
supervised methods [174].

3.1.2 Self-Supervised Monocular Methods

Although supervised methods learn their tasks efficiently using simple loss functions
and typically produce good results, they also place strict limits on the datasets that
can be used to train them. After all, they rely on ground truth depth maps that are
compatible with the corresponding RGB images, which is difficult to achieve without
errors. Furthermore, depending on the data acquisition system, the depth maps can
be extremely sparse and contain numerous gaps, making learning challenging, if not
impossible, in these areas. Self-Supervised approaches, on the other hand, are trained



3.1. Depth Estimation 47

solely on RGB images and do not require any depth data, enabling training on a
more significant number of datasets or making the recording of new ones easier [153].
Here, current state-of-the-art approaches rely on neural networks [175, 176], which
can even be trained in an entirely self-supervised fashion from sequential images [53],
giving a clear advantage over supervised approaches in terms of applicability to
arbitrary data domains.

The approaches of Garg et al. [52], and Zhou et al. [53] showed that it is possible to
train networks in a self-supervised fashion by modeling depth as part of a geometric
projection between stereo images and sequential images, respectively. A model based
on view synthesis from a pair of rectified stereo images has also been proposed
by Godard [54]. In two main ways, their solution, Monodepth, varies from that of
Garg [52]. To avoid the Taylor approximation, which makes optimization difficult,
they produce images using bilinear sampling, resulting in a fully sub-differentiable
training loss. Second, they enforce a left-right consistency check in the form of an
additional term in the training loss to resolve the ill-posed nature of monocular
depth estimation. Many stereo algorithms use this form of consistency check as
a post-processing stage. However, they were able to integrate it directly into the
network, allowing for end-to-end learning. Zhou et al. [53] suggested a paradigm that
overcomes the constraint on potentially accessible datasets. Instead of stereo images
for training, it employs consecutive frames captured by a moving camera. Aside
from disparity, the model must also estimate camera motion between frames. Camera
motion is required by the models of Garg, as well as Monodepth [54]. However, it is
constant and known ahead of time because the stereo cameras are calibrated before
recording the dataset. The only details needed are the camera’s intrinsic parameters.
The core concept remains that of view synthesis, as well as the same bilinear sampling
process used in Monodepth [54].

The model of Mahjourian et al. [154] is designed to be trained on a broad range of
datasets, similar to that of Zhou et al. [53]. Mahjourian et al. [154] predicts depth and
egomotion, but it also considers explicitly the assumed 3D structure of the entire scene,
rather than depending solely on a local photometric loss. Unlike the masks predicted
by a dedicated network by Zhou [53], those of Mahjourian [154] are computed
analytically, making the overall learning problem more straightforward. Wang et
al. [177] discovered that unsupervised monocular models trained on monocular
sequences, and constrained by the nature of the problem such as those used by Zhou et
al. [53], do not perform as well as unsupervised monocular models trained on rectified
stereo datasets, such as those used by Godard et al. [54]. To clarify the performance
gap, they established two significant differences between stereo and monocular
strategies: (i) unknown camera pose between frames and (ii) the uncertainty in scale
inherent in all monocular models trained on monocular sequences. Both are only
partly resolved by the pose network, and Wang et al. [177] demonstrated that scale
uncertainty induces divergence during training. This is due to the scale sensitivity of
the depth regularization terms (i.e., the smoothing terms) used in the loss function,
as shown empirically in their work. Furthermore, they argue that the pose network
is superfluous and that it can be replaced by a differentiable and deterministic goal
for pose prediction, as well as a simple normalization technique, both of which are
widely used in Direct Visual Odometry (DVO) [153].

Indeed, pose estimation from depth is a well-studied problem with geometric proper-
ties and efficient algorithms. There are three benefits to replacing the pose network
with one of them. It does not require any learning parameters, for starters, making the



48 Chapter 3. Related Work

model simpler than those that rely on a pose network. Second, it establishes a direct
relationship between the input dense depth map and the output pose prediction. In
contrast, pose network models, except for Mahjourian et al. [154], ignore scene ge-
ometry and produce camera pose estimates based solely on photometric appearance.
Third, given a depth estimate, DVO solves for camera pose by minimizing the same
view synthesis loss used to train the network, preventing an increase in computa-
tions. Wang et al. [177] used a differentiable DVO (DDVO) algorithm similar to the
inverse compositional spatial transformer network to enable backpropagation during
training. Since it is a second-order gradient descent process, a good initialization
point will lead to a better solution than one chosen at random. As a result, rather than
starting from the identity pose, relying on a first estimate provided by a pre-trained
pose network is likely to produce better results [153].

The initial concept has been extended by considering improved loss functions [54, 55,
178, 179, 180, 181], the application of generative adversarial networks (GANs) [178,
182, 183], generated proxy labels from traditional stereo algorithms [184], or synthetic
data [185]. Other approaches proposed to use specialized architectures for self-
supervised depth estimation [7, 177, 186], they apply teacher-student learning [187]
to use test-time refinement strategies [188, 189], to employ recurrent neural net-
works [190, 191], or to predict the camera parameters [192] to enable training across
images from different cameras.

3.1.3 Depth Estimation on Fisheye Cameras

Recent approaches also investigated the application of self-supervised depth estima-
tion to 360° images [193, 194]. Most of the works have solely focused on traditional
2D content captured with cameras following a typical pinhole projection model based
on rectified image sequences. Omnidirectional (360°) content is now more easily and
consistently produced thanks to the development of efficient spherical cameras and
rigs and is seeing increased adoption in robotics and autonomous vehicles. Many
real-world applications rely on more advanced camera geometries e.g., fisheye camera
images.

With the surge of efficient and cheap wide-angle fisheye cameras and their larger FoV
in contrast to pinhole cameras, there has been significant interest in the computer
vision community to perform depth estimation from omnidirectional content similar
to traditional 2D content via omnidirectional stereo [195, 196, 197]. There is also a
trend of integrating depth estimation tasks into multi-task models [198, 199]. Most of
the depth estimation methods were demonstrated in automated driving on rectified
KITTI video sequences where barrel distortion was removed. The same multi-view
geometry [200] principles apply to 360° images equivalently as they apply to pinhole
camera images. The underlying geometrical structure can be estimated by observing
the scene from multiple perspectives and establishing correspondences between them.
By taking into account the different projection models and defining the disparity as
angular displacements, the traditional binocular or multi-view stereo [201] problem
is reformulated to binocular or multi-view spherical stereo [202] for 360° cameras. It
was recently [203] demonstrated that using SfM, 360° videos captured with a moving
camera can be used to reconstruct a scene’s geometry.

Current CNN processing pipelines can be applied to spherical input in two simple
ways. Either directly on a projected (usually equirectangular) image or by projecting
spherical content to the faces of a cube (cube map) and running CNN predictions



3.2. Object Detection 49

on them, which are then merged by back-projecting them to the spherical domain.
New techniques for applying CNNs to omnidirectional input have recently been pre-
sented. Given the difficulty of directly modeling the projection’s distortion in typical
CNNs while also achieving invariance to the viewpoint’s rotation, [204] proposes a
graph-based deep learning approach. Su et al. [205] used a planar CNN to process
360° images in the equirectangular projection. They designed a novel approach by
transferring appropriate convolution weights from an existing network trained on
traditional 2D images to learn appropriate convolution weights for equirectangu-
lar projected spherical images. This conversion from the 2D to the 360° domain is
achieved by enforcing consistency between the predictions of the 2D projected views
and those in the 360° image. Recent work on convolutions [206, 207] that learn their
shape, as well as their weights, has been applied to fisheye lenses [208]. However,
apart from these works, applying self-supervised depth estimation to more advanced
geometries, such as fisheye camera images, has not been investigated extensively yet.

Compared to the state-of-the-art approaches, in this thesis, we explore the SfM
approach to developing a self-supervised training strategy that aims to infer a distance
map from a sequence of distorted and unrectified raw fisheye and pinhole images.
We aim to develop a generic end-to-end self-supervised training pipeline to estimate
monocular depth maps on raw distorted images for various camera models. We create
a training framework for self-supervised distance estimation, which jointly trains
and infers images from multiple fisheye cameras and viewpoints. Also, improve
the photometric loss by a general and robust loss function. Further, we explore
the avenues in introducing a novel architecture for the learning of self-supervised
distance estimation synergized with semantic segmentation. We look upon the issues
of the dynamic object impact on self-supervised distance estimation by using semantic
guidance.

3.2 Object Detection

We can broadly classify the state-of-the-art object detection methods based on deep
learning into two types: two-stage detectors and single-stage detectors. We provide
an overview of the categorization of CNN-based object detection methods for object
detection on pinhole camera images in Table 3.1. We categorize based on the number
of stages involved in the framework, deformable part-based detection methods, and
keypoint-based detectors.

3.2.1 Object Detection on Pinhole Cameras

Two-Stage Detectors

The object detection task is divided into two stages in this approach: (i) extraction of
Regions of Interest (ROIs) and (ii) classification and regression of the ROIs. Regions
with CNN features (R-CNN) by Girshick et al. [209] was the first to use a two-stage
approach. It generates ROIs through selective search and classifies ROIs using a DCN-
based classifier. It requires complex computations, which causes it to be slow and far
from real-time capable. By extracting ROIs from feature maps, Fast R-CNN [37] and
SPP-Net [223] improved R-CNN [209]. SPP-Net used a Spatial Pyramid Pooling (SPP)
layer to manage images of arbitrary sizes and aspect ratios. It applies an SPP layer
over the feature maps produced by convolution layers and produces the fixed-length
vectors required by fully connected layers. It removes the need for fixed-size inputs



50 Chapter 3. Related Work

CNN based Object Detection methods

Single stage
detectors

Two stage
detectors

Multi-stage
detectors

Deformable part
based detectors

Keypoint
based detectors

SSD [125] R-CNN [209] Cascade R-CNN [210] DPM-CNN [211] CornerNet [212]
Yolo9000 [38] Fast R-CNN [37] CRAFT [213] DeepIDNet [214] ExtremeNet [215]
Retinanet [216] Faster R-CNN [126] CC-Net [217] DP-FCN [218] CenterNet [219]
Squeezedet [220] R-FCN [221] Multipath Net [222] Deformable ConvNets [207]
SPP-Net [223] Multi-region CNN [224]
Overfeat [225] HyperNet [226]
DSSD [227] IoU-Net [228]
MDSSD [229] Hybrid task cascade [230]
DETR [231]
EfficientDet [232]

Table 3.1 An overview of the categorization of CNN-based object detection methods for
object detection on pinhole camera images.

and can be used in any CNN-based classification model. On the other hand, Fast
R-CNN and SPP-Net are not end-to-end trainable since they depend on a region
proposal approach. Faster R-CNN [126] overcame this constraint by implementing
the Region Proposal Network (RPN), which allowed end-to-end training. RPNs
produce ROIs by regressing a series of reference boxes known as anchor boxes. R-
FCN [221], which replaces fully connected layers with Fully Convolutional Network
(FCN), improves the efficiency of Faster R-CNN [126].

Single-Stage Detectors

In contrast to the two-stage method, single-stage detectors skip the RoI extraction
stage and go straight to anchor box classification and regression. Specifically, the
RoI pooling phase is omitted, and object detection is accomplished with a single
network. Using a multi-scale, sliding window technique, Overfeat [225] suggested
a standardized framework to perform three tasks: classification, localization, and
detection. "Overfeat," a feature extractor for vision applications, was introduced. You
Only Look Once (YOLOv1) [38] is a single-stage detector that divides the input image
into grids and predicts the BB directly using regression and classification. YOLO9000
(YOLOv2) [233] enhances efficiency by adding batch normalization and replacing
YOLOv1’s fully connected layers with anchor boxes for BB prediction. YOLOv3 [234],
which is quicker and more reliable than previous models, employs Darknet-53 as
its feature extraction backbone. YOLOv3 can detect small objects with multi-scale
predictions, which was a significant limitation in previous versions.

The Single Shot Multibox Detector (SSD) [125] overlays dense anchor boxes on the
input image and extracts feature maps at different scales. The anchor boxes are then
classified and regressed to predict BB. ResNet101 [163] replaces the VGG network of
SSD in DSSD [227]. It is then supplemented with a deconvolution module to merge
feature maps from the beginning with the deconvolution layers. In terms of detecting
small objects, it outperforms SSD. MDSSD [229] expands DSSD with fusion blocks to
handle feature maps at various scales. During training, RetinaNet [216] implemented
focal loss to resolve foreground and context class imbalance. It matches or exceeds
the accuracy of cutting-edge two-stage detectors while operating at a faster rate. The
design reuses RPN’s ’anchors’ and constructs an FCN with Feature Pyramid Network
(FPN) [39] on top of the ResNet backbone.



3.2. Object Detection 51

SqueezeDet [220] focuses on small model size, speed, and accuracy, making it ideal
for object detection in autonomous driving. It used the Yolov1 detection pipeline
and created a ConvDet layer to generate region proposals with fewer parameters
than YOLOv1. EfficientDet [232] is a one-stage detector that is powered by Efficient-
Net [235]. It proposed a weighted bi-directional FPN to fuse multi-scale features and
compound scaling, which jointly scales up all networks’ depth, width, and resolution.
Detection Transformer (DETR) [231] is a recent work on the direct set prediction
paradigm. To provide unique predictions, it employs a transformer-based encoder-
decoder architecture and a bi-partite matching loss function. On large objects, DETR
outperforms Faster-RCNN [126].

Multi-Stage Detectors

As the name suggests, detectors in this group use a series of CNNs at different levels
to detect objects. Cascade R-CNN [210] is a multi-stage R-CNN [209] extension. The
training data is sampled at each point, and the IoU threshold is increased. It uses
iterative BB regression to advance the hypotheses. CRAFT [213] used a cascaded
structure with RPN and two Fast R-CNNs [37] to introduce two functions, proposal
generator and classifier, to improve the efficiency of proposal generation and detec-
tion. The CC-Net [217] is made up of several cascade stages. It has two stages of
the cascade (i) early cascade and (ii) contextual cascade. Since shallow layers reject
easy ROIs, hard samples are easily managed by later stages. Fast R-CNN is also used
as the foundation for a Multipath Net [222] with a few modifications such as skip
connections, foveal regions, and improved loss functions. Information flows through
several paths in the network, allowing the classifier to operate at various scales. Fast
R-CNN suggested a multi-region CNN model with an iterative BB regression process
that switches between box scoring and coordinate refinement. HyperNet [226] is a
multi-stage architecture that uses hyper feature maps to perform region proposal
and object detection jointly. IoU-Net [228] achieves progressive BB regression using
a standalone IoU predictor that can then be combined with any FPN-based CNN
architecture for object detection.

Deformable Part based Detectors

Handling dynamic object deformation properties aids in improving detection effi-
ciency. In [236], a deformation layer is proposed for pedestrian detection. Deformable
Part Models (DPM) [211] is a single CNN that constructs a distance transform pooling
layer to map an input image pyramid to a detection score pyramid. DeepIDNet [214]
proposed a CNN for object detection based on a deformable part by designing a
def-pooling layer to learn the geometric deformations of all instances of a part. DP-
FCN [218] enhances it further by using a deformable part-based ROI pooling layer
and deformation-aware localization. The model is fully convolutional end-to-end
trainable. It focuses on discriminative elements. CNN’s can learn dense spatial
transformations with the aid of Deformable ConvNets [207], which can then be used
in object detection tasks. It introduced two modules: (i) deformable convolution and
(ii) deformable ROI pooling, which aid CNNs in modeling geometric transformations
efficiently.



52 Chapter 3. Related Work

Keypoint based Detectors

In single-stage detectors, key points take the place of anchor boxes. To predict BBs,
most one-stage detectors position dense anchor boxes over the image. RetinaNet [216]
and DSSD [227], for example, require nearly 100k and 40k anchor boxes, respectively,
thereby inducing hyperparameters. CornerNet [212] overcomes these limitations by
detecting objects as paired key points representing the object’s top left and bottom
right corners. It employs an hourglass network as its backbone and employs corner
pooling to locate corners. It uses associative embedding to group the key points.
CenterNet [219] extends CornerNet by representing each object as a triplet – two
corners and a central key point. It pioneered center pooling and cascade corner
pooling to allow corners to recognize visual patterns of objects. ExtremeNet [215],
on the other hand, detects BBs by looking at the topmost, leftmost, bottommost,
rightmost, and the center of all objects.

3.2.2 Object Detection on Fisheye Cameras

Typically, automotive systems are equipped with a multi-camera network to cover
the entire FoV around the vehicle [62]. The wide FoV of the fisheye image comes
with the side effect of strong radial distortion. Objects at different angles from the
optical axis look quite different, making the object detection task a larger challenge
than for pinhole cameras (see Figure 2.14). All CNN-based detectors are trained with
standard pinhole camera images that are free of any optical aberrations and closely
resemble objects’ primary form and appearance in the real world. There have not
been many attempts to specialize existing CNNs to detect deformed images produced
and affected by fisheye lenses. A common practice is to rectify distortions in the image
using a 4th order polynomial [12] model or unified camera model [82]. However,
undistortion comes with resampling distortion artifacts, especially at the periphery. In
particular, the negative impact on computer vision due to the introduction of spurious
frequency components is understood [237]. Other more minor impacts include a
reduced FoV and a non-rectangular image due to invalid pixels. Although semantic
segmentation is an easier solution on fisheye images, object detection annotation
costs are much lower [27].

Agarwal et al. [238] provides a detailed survey of current object detection methods and
their challenges. Presumably, fisheye camera object detection is a much more complex
problem. The rectangular bounding box (BB) fails to be a good representation due to
the massive distortion in the scene. The size of the standard BBs in a fisheye image
is almost double the size of the object of interest inside it. Instance segmentation
can help to obtain accurate object contours. However, it is a different task that is
computationally complex and more expensive to annotate. It also typically needs
a BB estimation step. There are few works on object detection for fisheye camera
images or closely related omnidirectional cameras. One of the main issues is the lack
of a useful datasets, particularly for autonomous driving scenarios. The recent fisheye
object detection paper FisheyeDet [239] emphasizes the lack of a useful datasets,
and they create a simulated fisheye camera dataset by applying distortions to the
Pascal VOC dataset [151]. FisheyeDet makes use of a 4-sided polygon representation
aided by distortion shape matching. SphereNet [240] and its variants [241, 242, 243]
formulate CNNs on spherical surfaces. However, fisheye images do not follow
spherical projection models, as seen by non-uniform distortion in horizontal and
vertical directions. Deng et al. [244] pioneered the use of deep learning to detect
multi-class objects in fisheye images. Yang et al. [245] compared the results of various



3.3. Semantic Segmentation 53

detection algorithms that take equirectangular projection (ERP) images directly as
inputs, demonstrating that the network produces only a certain accuracy without
projecting ERP images into conventional 2D images.

Compared to the state-of-the-art approaches, in this thesis, we explore different object
representations for fisheye object detection and design novel representations for
fisheye images. We also release a dataset of 10,000 images with annotations for all
the object representations. We perform an empirical study of our baseline, which can
output different representations.

3.3 Semantic Segmentation

Semantic segmentation is the task of assigning dense semantic labels to images. It is
of paramount significance in computer vision and has applications in autonomous
driving, augmented reality, and human-computer interaction.

3.3.1 Semantic Segmentation on Pinhole Cameras

A multiscale convolutional network by Farabet et al. [246] is fused with a segmentation
framework in parallel (either superpixel or CRF-based). Because of a CRF block,
computational efficiency is reduced. Pinheiro et al. [247] built a recurrent architecture
by using multiple instances of a CNN, each of which is fed with previous label
predictions (obtained from the previous instance). There is a significant computational
load when multiple instances (3 in their best-performing experiments) are fed. A
standard milestone approach for semantic segmentation is the introduction of fully
convolutional neural networks by Long et al. [40]. The network architecture is a fully
convolutional encoder structure (no fully connected layers) with skip connections
at the final decision layer that fuse multiscale activations. Due to the lack of fully
connected layers or a refinement block, it is comparably fast. DeepLabv1 [248] a CNN
with dilated convolutions is followed by a fully-connected (i.e., Dense) CRF. Near-
real-time performance is achieved through fast and optimized computation [148].

In parallel, layers of a pyramidal input are fed to separate FCNs for different scales
by Eigen et al. [51]. These multiscale FCNs are also linked in series to provide pixel-
by-pixel category, depth, and normal output simultaneously—lower computational
efficiency as a result of progressive processing of a sequence of different scales. The
UNet [249] architecture uses an encoder-decoder (ED) structure with skip connections,
connecting the same ED and final input-sized classification layer levels. Due to the
lack of fully connected layers or a refinement block, the computation load is efficient.
The SegNet [42] structure is similar to UNet, but with skip connections that only
transmit pooling indices (unlike U-Net, where skip connections concatenate the
same level activations). Due to the lack of fully connected layers or a refinement
block, the computation load is efficient. The DeconvNet [41] structure is comprised
of an ED (referred to as ‘the Conv./Deconv. Network’) with no skip connections.
The network’s (convolutional) encoder component is transferred from the VGG-
VD-16L [250]. Due to the lack of fully connected layers or a refinement block, the
computation load is efficient. To perform pixel-wise labeling MSCG [251], designed
multiscale context aggregation using only a rectangular prism of dilated convolutional
layers without pooling or subsampling layers. Due to the lack of fully connected
layers or a refinement block, the computation load is reduced. Zhen et al. [252]
formulated a CRF-as-RNN, i.e., an FCN is followed by a CRF-as-RNN layer, which



54 Chapter 3. Related Work

translates an iterative CRF algorithm into an RNN. Computational efficiency is limited
due to the RNN block [148].

FeatMap-Net [253] constitutes layers of a pyramidal input fed to parallel multiscale
feature maps (i.e., CNNS), which were then fused in an upsample/concatenation (i.e.,
pyramid pooling) layer to provide the final feature map to a Dense CRF Layer. A
well-thought-out but overburdened architecture results in moderate computational
efficiency. Graph Long Short-Term Memory (LSTM) [254] is a LSTM generalization
from sequential data to general graph-structured data for semantic segmentation,
primarily of people. DAG-RNN [255] is a CNN+RNN network with a DAG structure
that models long-term semantic dependencies among image units. The computa-
tional efficiency is significantly limited due to chain structured, sequential processing
of pixels with a recurrent model. DeepLabv1 has been improved by Chen et al. [256],
with the addition of a ’dilated (atrous) spatial pyramid pooling (ASPP) layer. PSP-
Net [257] consists of a CNN followed by a pyramid pooling layer similar to [223], but
it lacks a fully connected decision layer. As a result, computational performance is
closer to FCN [40]. DeepLabv2 has been improved, with ASPP layer hyperparameters
optimized and non-dense CRF layer, for faster operation by [258]. Luo et al. [259]
introduces dual learning for semantic image segmentation where one network pre-
dicts label maps/tags, while another uses these predictions to perform semantic
segmentation. ResNet101 [163] which is a larger backbone is used in both networks
for preliminary feature extraction [148].

GCN [260] uses large kernels to fuse high- and low-level features in a multiscale
manner, powered by an initial ResNet-based [163] encoder. Stacked deconvolutional
network [261] is a UNET architecture made up of multiple shallow deconvolutional
networks, known as SDN units, that are stacked one on top of each other to inte-
grate contextual information and to ensure fine recovery of localized information.
Discriminative Feature Network [262] is made up of two sub-networks: Smooth
Net (SN) and Border Net (BN). SN makes use of an attention module to handle
global context, whereas BN makes use of a refinement block to handle borders. Due
to an attention block, computational efficiency is limited. Multi-Scale Context In-
tertwining [263] connects LSTM chains to aggregate features from different scales.
Due to multiple RNN blocks, the computational efficiency is limited (i.e., LSTMs).
DeepLab.v3+ [264] is an improved version of DeepLab.v3 that employs a special
encoder-decoder structure with dilated convolutions (rather than using Dense CRF
for faster operation). Hierarchical Parsing Net [265] is a convolutional ’Appearance
Feature Encoder,’ while a ’Contextual Feature Encoder’ made up of LSTMs generates
superpixel features that are fed into a Softmax-based classification layer. Due to the
use of multiple LSTMs, computational efficiency is limited. EncNet [266] is a fully
connected structure fed by dense feature maps (obtained from ResNet) and followed
by a convolutional prediction layer to extract context. Fully connected layers limit
computational performance within their "Context Encoding Module" [148].

PSANet [267] is a convolutional point-wise spatial attention (PSA) module connected
to a pretrained convolutional encoder, allowing pixels to be interconnected via a
self-adaptively learned attention map to provide global context. When compared to
fully convolutional architectures (e.g., FCN), the addition of a PSA module reduces
computational efficiency. EMANet152 [268] is made up of a novel attention module
that converts input feature maps to output feature maps, providing global context.
When compared to other attention governing architectures, it is computationally
more efficient (e.g., PSANet). Kernel-Sharing Atrous Convolution [269] enables



3.3. Semantic Segmentation 55

branches from different receptive fields to use the same kernel, allowing for more
accessible branch communication and feature augmentation within the network. In
Co-occurrent features (CFNet) [270] a fine-grained spatial invariant representation is
learned. The CFNet is constructed using a distribution of co-occurrent features for a
given target in an image.

In this task, the right architectural design choice and multi-scale context modules are
vital for performance. The former depend upon spatial pyramid pooling [223, 257]
and atrous convolutions [256, 258, 264]. For the latter, the contemporary advance-
ments in the design [271, 272] have improved the popular backbones [163, 250, 273].
Despite their popularity, they require huge computational requirements and are
not real-time capable for inference. The most popular design choice has been the
encoder-decoder architecture [42, 249]. To obtain state-of-the-art accuracy, recent ap-
proaches have incorporated Auto Machine Learning (AutoML) [274, 275]. ENet [276]
is a compact real-time capable efficient network which follows an encoder-decoder
architecture design. Bisenet [277] is a two-path network designed to achieve fast
inferences while obtaining high-resolution details. DABNet [278] combines the depth-
wise separable filters and atrous-convolutions to obtain a decent trade-off between
accuracy and efficiency. DfaNet [279] employs cascaded sub-stages to refine the seg-
mentation predictions. To maximize larger networks’ performance during inference,
FCHardNet [280] leverages on a new harmonic densely connected pattern.

3.3.2 Semantic Segmentation on Fisheye Cameras

Most of the popular semantic segmentation studies listed above are based on images
taken by pinhole cameras. However, the urban traffic conditions are so complicated
that more knowledge of the surroundings is needed, while the pinhole camera only
has a narrow FoV. If a vehicle or pedestrian suddenly arrives from a blind spot, the
safe operation of autonomous driving is hard to ensure. One of the methods is to
enhance the significance of the information obtained for holistic scene comprehension.
An Overlapping Pyramid Pooling module (OPP-Net) was presented by Deng et
al. [281] by employing several focal lengths to simulate different fisheye images with
their corresponding annotations. In order to achieve real-time semantic segmentation,
Saez et al. [282] introduced an adaptation of Efficient Residual Factorized Network
(ERFNet) [283] to fisheye road images. The tests were performed on authentic fisheye
images, but only qualitative results were revealed. Deng et al. [208] used the identical
approach to obtain road scene semantic segmentation of fisheye surround-view
cameras using restricted deformable convolution. These models were trained on
Cityscapes [284] and SYNTHIA [285] datasets and tested on authentic fisheye images.
However, to perform the segmentation directly on the fisheye images, we would
require a large-scale finely-annotated fisheye image dataset to train the network.
Henceforth, as a contribution to the research community, we release the WoodScape [12]
dataset. Figure 2.16 depicts the semantic segmentation task on the WoodScape dataset.

Panoramic Images

Xu et al. [286] created a dataset of panoramic images by stitching images taken from
different directions using synthetic images captured from SYNTHIA. The authors
demonstrate that panoramic images improve segmentation results using these images.
Yang et al. [287] proposes a panoramic angular semantic segmentation framework
by creating a data augmentation method by adding distortion to perspective images



56 Chapter 3. Related Work

for the training set. After unfolding and partitioning the panoramic images, normal
CNNs were used.

Equirectangular Images

Because of the simple transformation from spherical coordinates to planar coordi-
nates, equirectangular representation is the most popular projection for 360° images.
Classical CNNs designed for perspective images can be applied to equirectangular
data. In polar regions, however, spherical input suffers from distortion. To address
this issue, various approaches were proposed. SalNet360 was proposed by Monroy et
al. [288], in which omnidirectional images were mapped to cube map by six faces
projection and trained using standard CNNs to predict visual attention. However,
artifacts are produced when the cube map faces are recombined to create an omnidi-
rectional image. Lai et al. [289] converted panoramic videos to normal perspective
images using semantic segmentation of equirectangular images. However, because
highly accurate semantic labels was not required for this task, a frame-based fully
convolutional network FCN [40] was used in this work. For the same task, they
proposed the kernel transformer network, which efficiently transfers convolution
kernels from perspective images to the equirectangular projection of 360° images.
Tateno et al. [290] proposed a learning method for equirectangular images that uses a
distortion-aware deformable convolution filter to estimate depth from a single image,
and this method was also demonstrated on 360° semantic segmentation.

Spherical Representations

Due to distortions caused by the equirectangular representation, the most recent
work on this topic has focused on the spherical presentation. Cohen et al. [291] cre-
ated spherical convolutions by substituting sphere rotations for plane translations.
Other works used the icosahedral spherical approximation, which is the most precise
sphere discretization. To represent the discretization of the sphere, a spherical mesh
is generated by dividing each face of a regular icosahedron into four equal triangles.
In the case of triangle faces, Lee et al. [292] proposed an orientation-dependent kernel
method, which was demonstrated through classification, detection, and semantic
segmentation. Zhang et al. [293] proposed an orientation-aware CNN framework
for semantic segmentation on omnidirectional images using icosahedron spheres.
UGSCNN was proposed by Jiang et al. [243] to train spherical data mapped to an icosa-
hedron mesh by replacing conventional convolution kernels with linear combinations
of learnable weighted operators.

3.4 Motion Segmentation

The classical approach to detecting moving objects is based on the scene’s geometrical
understanding, where the ego-vehicle motion and the displacement vectors of the
pixels between two frames are known. Classical methods for moving object detection
based on the geometrical understanding of the scene have been suggested, such
as [144], which was used to estimate object motion masks. To model the background
motion in terms of homography, Wehrwein et al. [294] introduced assumptions about
the camera motion model. Due to the errors caused by the restricted assumptions,
such as camera translations, this method cannot be used in autonomous driving
applications. Classical approaches have a lower performance than deep learning



3.4. Motion Segmentation 57

methods and a high level of difficulty due to the complicated pipelines used. The
method of Menze et al. [144], for example, has a running time of 50 minutes per
frame, making it unsuitable for use in a real-time application such as autonomous
driving [295].

Jain et al. [296] introduced a method for generic foreground segmentation that takes
advantage of optical flow. This work is intended for generic object segmentation
and does not concentrate on object classifications as Moving or Static. Drayer et
al. [297] proposed an R-CNN detection-based video segmentation algorithm. Due to
its sophistication, the technique is not feasible for autonomous driving applications,
where it takes 8 seconds to infer an image. Arguably the most famous constraint
used in motion detection is the epipolar constraint [298, 299], which can be combined
with additional geometrical constraints to detect multiple types of motion [300].
However, even if the moving objects’ geometry is well known, their detection still
presents challenges caused by intrinsic geometrical limitations. Many methods for
segmenting moving objects from stationary camera images have been suggested
in [301, 302]. However, they cannot be directly applied to moving camera images
because movement causes a dual motion appearance consisting of background motion
and object motion. Methods that detect motion from freely moving cameras, in
general, divide the image into coherent regions with homogeneous motion. The
image is divided into the background and moving clusters during this process.
These approaches can be divided into two types: optical flow-based and tracking-
based approaches. Optical flow-based techniques [303, 304] determine whether a
region’s motion speed and direction are compatible with its radially surrounding
pattern. Tracking-based methods, on the other hand [45, 46, 297, 305], tend to track
and localize target points in successive frames. Object tracking produces movement
trajectories, and by estimating the camera’s ego-motion, objects can be separated from
the background motion. Large processing pipelines are common in these methods,
resulting in long computation times and coarse segmentations.

Chen et al. [306] suggests a method for detecting object-level motion from a moving
camera using two consecutive image frames and outputs 2D BBs. They create a robust
context-aware motion descriptor that considers movement speed and object direction
and combines it with an object classifier. The descriptor calculates the discrepancy
between local optical flow histograms of objects and their surroundings, yielding a
state of motion measurement. Dinesh et al. [307] propose a method for generating
motion likelihoods based on depth and optical flow estimations while incorporating
semantic and geometric constraints within a dense CRF. Fan et al. [308] suggested a
multistep framework in which first sparse image features in two consecutive stereo
image pairs are extracted and matched. RANSAC is then used to classify the matched
feature points as inliers caused by the camera and outliers caused by moving ob-
jects. The outliers are then clustered in a U-disparity chart, which provides object
motion information. Finally, the motion information is combined with the semantic
segmentation given by an FCN using a dense CRF. Long run times, ranging from
a few seconds to minutes, are a major drawback of these methods, rendering them
unsuitable for applications that involve near-real-time efficiency, such as autonomous
driving. In the search to overcome the limitations of the classical approach, there has
been good work in using CNN to solve the moving object detection problem, such as
MODNet [28], FisheyeMODNet [21], MPNet [309], OmegaNet [304], SMSnet [49] and
Ranjan et al. [303]. Siam et al. [28, 310] investigated motion segmentation using deep
network architectures, but these networks depend solely on camera RGB images,



58 Chapter 3. Related Work

which can fail in low-light conditions.

Given the use of fisheye cameras in surround-view systems, it is of utmost importance
for research to explore this direction and provide a CNN architecture for moving
object detection on fisheye images. One of the main challenges of detecting moving
objects with a CNN is to make it scene agnostic so that the detection is based only on
motion cues & not on appearance cues. Figure 2.17 depicts the motion segmentation
task on the WoodScape dataset.

3.5 Soiling Segmentation

There is very little work on the related but distinct lens soiling problem. There are two
types of soiled areas: opaque (mud, dust, snow) and translucent (water). Transparent
soiling, in particular, can be challenging to detect due to the background’s partial
visibility. The two problems are similar in how they degrade image quality and
can severely affect visual perception performance. However, there are substantial
differences. The first significant difference is that soiling on the lens can be removed
by a camera cleaning system that either sprays water or uses a more sophisticated ul-
trasonic hardware [43]. Secondly, there is temporal consistency for soiling where mud
or water droplets remain static typically or sometimes have low-frequency dynamics
of moving water droplets compared to higher variability in adverse weather scenes.
Thus this temporal structure can be exploited further for soiling scenarios. Finally,
soiling can cause more severe degradation as opaque mud soiling can completely
block the camera. Porav et al. [311] discussed transparent soiling in a recent study
in which a stereo camera was used in combination with a dripping water supply
to simulate raindrops on the camera lens. The authors also suggest a CNN-based
de-raining algorithm. Sakaridis et al. [312] suggested a robust semantic segmentation
algorithm that can handle foggy scenes. However, dealing with opaque soiling in
this manner would be difficult. To boost the image quality, the third solution is to run
a separate image restoration algorithm. De-raining [311, 313, 314, 315, 316, 317] is a
recent example of restoration algorithms in automotive scenarios. This will primarily
help with partial soiling. Restoration algorithms may be single-image or video-based.
The latter is more computationally costly, but it can benefit from the visibility of
soiling occluded regions over time [73].

In this thesis, we focus on the generic soiling detection task. Even disregarding
camera cleaning, soiling detection is still needed to increase vision algorithms’ un-
certainty in the degraded areas. A more formal introduction to the soling detection
and categorization is provided in [43]. The problem is formalized as a multi-label
classification task and discusses soiling detection applications, including camera
cleaning. The authors present a proof of concept idea on how GANs [165] could
be applied for dealing with the insufficient data problem in terms of an advanced
data augmentation. The authors also outline another potential usage of GANs in the
AD area. Uřičář et al. [73] provided a desoiling dataset benchmark. SoildNet was
explored in [318] for embedded platform deployment.

3.6 Multi-Task Learning

Multi-task learning (MTL) is carried out by learning commonly shared representations
from multi-task supervisory signals. Many dense prediction tasks, i.e. tasks that



3.6. Multi-Task Learning 59

generate pixel-level predictions, have seen substantial performance improvements
since the introduction of deep learning. Typically, these tasks are learned one at a time,
with each task requiring its own neural network to be trained. However, by jointly
tackling multiple tasks via a learned shared representation, recent MTL techniques
have shown promising results regarding performance, computational complexity,
and memory footprint.

MTL [130] seeks to enhance generalization by incorporating domain-specific knowl-
edge found in similar task training signals. MTL refers to the design of networks
capable of learning mutual representations from multi-task supervisory signals. Com-
pared to the single-task example, where each network solves only one task, multi-task
networks provide several benefits. First, the resulting memory footprint is signif-
icantly reduced due to their intrinsic layer sharing. Second, since they explicitly
avoid calculating the features in the shared layers multiple times for each task, they
demonstrate faster inference speeds. Most significantly, whether the related tasks
exchange complementary knowledge or function as a regularizer for one another,
they have the potential to improve results [319].

Non-Deep Learning-Based Methods

Before the deep learning era, MTL works attempted to model the common informa-
tion among tasks to improve generalization performance through joint task learning.
To do so, they imposed constraints on the task parameter space, such as: task parame-
ters should be close to each other in terms of some distance metric [320, 321, 322, 323],
share a common probabilistic prior [324, 325, 326, 327, 328], or reside in a low-
dimensional subspace [329, 330, 331] or manifold [332]. These assumptions work
well when all tasks are related [320, 329, 333, 334] and regularly scheduled, but they
can degrade performance if the information is shared between unrelated tasks. The
latter is a well-known MTL issue known as "negative transfer." To address this issue,
some of these studies chose to group tasks based on prior assumptions about their
similarity or relatedness [319].

Distilling Task Predictions in Deep Learning

All of the works in Section 2.3.2: soft vs. hard have one thing in common: they directly
predict all task outputs from the same input in a single processing cycle. On the other
hand, several recent studies used a multi-task network to make initial task predictions.
They then used features from these initial predictions to improve each task output
in a one-off or recursive manner. PAD-Net [335] proposed using spatial attention
to distill information from initial task predictions of other tasks before adding it
as a residual to the task of interest. JTRL [336] chose to predict each task by using
information from previous predictions to refine the features of another task at each
iteration. PAP-Net [337] built on this concept by employing a recursive procedure to
propagate similar cross-talk and task-specific patterns discovered in the initial task
predictions. They did so by using the affinity matrices of the initial predictions rather
than the features themselves, as was the case previously [335, 336]. By separating
inter-and intra-task patterns from each other, Zhou et al. [338] refined the use of pixel
affinities to distill the information. To explicitly model the unique task interactions
that occur at each scale, MTI-Net [339] used a multi-scale multi-modal distillation
procedure [319].

Multi-task networks have traditionally been classified as using soft or hard parameter
sharing techniques, as explained in Section 2.3.2. However, several recent works drew



60 Chapter 3. Related Work

TASK A TASK B TASK C

Cross Talk

TASK A TASK B TASK C

TASK A TASK B TASK C

Shared Encoder
Soft/Hard

TASK A TASK B TASK C

Shared Encoder
Soft/Hard

Task 
Specific

Shared

(a) Encoder-focused model

TASK A TASK B TASK C

Cross Talk

TASK A TASK B TASK C

TASK A TASK B TASK C

Shared Encoder
Soft/Hard

TASK A TASK B TASK C

Shared Encoder
Soft/Hard

Task 
Specific

Shared

(b) Decoder-focused model

Figure 3.1 Illustration of the encoder and decoder-focused models depending on where
the task synergies take place.

inspiration from both groups of works to collaboratively solve multiple pixel-level
tasks. As a result, whether the soft vs. hard parameter sharing paradigm should still
be used as the primary framework for classifying MTL architectures is debatable.
An alternative taxonomy distinguishes between various architectures based on the
interactions between tasks, i.e., network locations where information and features are
shared or exchanged between tasks.

MTL is typically divided into two sections based on the proposed criterion: shared
parameters and task-specific parameters. We allow the shared parameters to learn
representing the commonalities between many tasks, while task-specific parameters
are learned to perform independent task-specific processing. Shared parameters
are commonly dubbed as encoders (see Figure 3.1) wherein they carry out the key
feature extraction. The task-specific parameters are called decoders (see Figure 3.1) as
they decode the vital information from the encoders. This method presents benefits
such as enhanced data efficiency, reduced overfitting through shared representations,
and fast learning by leveraging auxiliary information [340]. It is an efficient design
pattern commonly used where most of the computation can be shared across all
tasks [198, 319]. Besides, learning features for multiple tasks can act as a regularizer,
to improve generalization.

3.6.1 Encoder-focused Architectures

The information is shared only in the encoder by employing either hard or soft-
parameter sharing by the encoder-focused architectures before decoding each task
with an independent task-specific head. Conversely, the decoder-focused archi-
tectures further exchange information during the decoding stage. Most recent
works [132, 133, 134, 135, 136] followed an ad-hoc approach by sharing an off-the-
shelf backbone model in union with small task-specific heads. The activations were
shared amongst all single-task models in the encoder by, e.g., cross-stitch networks
proposed in [141]. Yuan et al. [341] developed neural discriminative dimensionality
reduction CNNs, a similar architecture as cross-stitch networks. It used a dimen-
sionality reduction mechanism rather than employing a linear combination to fuse
all single-task networks’ activations. In combination with task-specific attention



3.6. Multi-Task Learning 61

modules in the encoder, Liu et al. [342] introduced multi-task attention networks
which employed a shared backbone model.

3.6.2 Decoder-focused Architectures

Regarding decoder-focused architectures, PAD-Net [335] was one of the first ap-
proaches. It performs multi-modal distillation through a spatial attention mechanism.
Zhang et al. [337] introduced Pattern-Affinitive Propagation Networks (PAP-Net),
which incorporated a similar architecture as PAD-Net. PAP-Net involves leveraging
pixel affinities in order to perform multi-modal distillation. Joint Task-Recursive
Learning (JTRL) [336] recursively estimates two tasks at frequently higher scales to
slowly improve the decisions based on past states. The architecture is similar to
PAD-Net and PAP-Net; a multi-modal distillation mechanism is employed to couple
information from earlier task predictions, through which later estimates are improved.
Conversely, the JTRL model estimates two tasks sequentially rather than parallel and
in an intertwined manner. In the above-listed decoder-focused works, multi-modal
distillation was performed at a fixed scale, i.e., the backbone’s last layer features. Nev-
ertheless, Multi-Scale Task Interaction Networks (MTI-Net)[339] indicated that this is
somewhat a strict assumption. MTI-Net explicitly took into account task interactions
at multiple scales.

3.6.3 Other Approaches

To enable synergies in the decoding stage, Multilinear relationship networks [343]
employed tensor normal priors to the parameter set of the task-specific heads. Com-
pared to [141, 341] where layers are aligned and shared according to the standard
parallel ordering scheme, Elliot et al. [344] proposed soft layer ordering a flexible
sharing scheme across tasks and network depths. Yang et al. [345] generalized matrix
factorization methods to MTL to learn cross-task sharing structures in every layer
of the model. Clemens et al. [346] proposed routing networks as a principled way to
determine the connectivity of a model’s function blocks through routing. By learning
binary masks, Piggyback [347] demonstrated how to adapt a single, fixed neural
network to a multi-task network. Huang et al. [348] presented an approach rooted in
neural architecture search for the automated creation of a tree-based multi-attribute
learning model. Bragman et al. [349] re-formulated the convolution kernels in each
layer of the network with stochastic filter groups to support either shared or task-
specific behavior. In a similar style, Newell et al. [350] exhibited feature partitioning
approaches to designate the convolution kernels in each layer of the model into differ-
ent tasks. Overall, these works have a different scope within MTL, e.g., automate the
network architecture design. Furthermore, they focus on solving multiple (binary)
classification tasks rather than numerous dense prediction tasks. As a result, they fall
outside the scope of this thesis.

Maninis et al. [351] presented Attentive Single-Tasking of Multiple Tasks to take a single-
tasking route for the MTL problem. i.e. inside an MTL framework, they made separate
forward passes, one for each task, that initiate shared responses among all tasks,
complemented by residual responses that are task-specific. Moreover, adversarial
training on the gradient level was applied to be statistically identical across tasks
to overcome the negative transfer problem. A benefit of this method is that shared
and task-specific knowledge inside the model can be easily disentangled. On the



62 Chapter 3. Related Work

negative side, the tasks can not be estimated altogether, but only sequentially, which
significantly increases the inference speed and somehow defies the purpose of MTL.

Recently, Mao et al. [352] illustrated that multi-task learning improves adversarial
robustness, which is critical for safety applications. In the automotive multi-task
setting, MultiNet [136] was one of the first to demonstrate a three task network on
KITTI, and most further works have primarily worked on a three task setting. In
contrast to letting a network predict a single task, it is also possible to train a network
to predict several tasks at once (see Figure 2.21). It has shown to improve tasks such
as, e.g., semantic segmentation, [198, 199, 353, 354, 355], domain adaptation [356, 357,
358], instance segmentation: [359], and depth estimation [51, 132, 360, 361].

3.6.4 Previous MTL based Semantically-Guided Distance Estimation

As the distance predictions are still imperfect due to the monocular cues such as
occlusion, blur, haze, and different lighting conditions and the dynamic objects during
the self-supervised optimizations between consecutive frames. Many approaches
consider different scene understanding modalities, such as segmentation [7, 303, 362]
or optical flow [363, 364] within multi-task learning to guide and improve the distance
estimation. As optical flow is usually also predicted in a self-supervised fashion [365],
it is, therefore, subject to similar limitations as the self-supervised distance estimation,
which is why we focus on the joint learning of self-supervised distance estimation
and semantic segmentation.

To improve the distance estimation task in MTL, many recent approaches aim to
integrate optical flow into the self-supervised distance estimation training. This
additional task can also be trained in a self-supervised fashion [365, 366]. In these
approaches, both tasks are predicted simultaneously. Then losses are applied to
enforce cross-task consistency [363, 367, 368, 369], to enforce known geometric
constraints [303, 364], or to induce a modified reconstruction of the warped im-
age [364, 370]. Although the typical approach is to compensate using optical flow, in
this thesis we propose an alternative method to use semantic/motion segmentation
instead for two reasons. (i) Semantic segmentation is a mature and common task in
autonomous driving, which can be leveraged. (ii) Motion segmentation is an easier
problem to solve as it falls under segmentation tasks (similar to semantic segmen-
tation). It can be learned in a supervised fashion compared to optical flow, which
is computationally more complex and harder to validate because of difficulties in
obtaining ground truth.

Depth has no mathematical relationship with semantics. Several works [7, 303, 362],
however, follow this direction on the basis of the concept that semantic can guide
depth estimation by offering specific cues. Sky, for example, should be placed far
away and naturally with very high depth values. A shift in pixel mark will most
likely signify an object’s boundary, resulting in a noticeable change in depth. Several
recent approaches also used semantic or instance segmentation techniques to identify
moving objects and handle them accordingly inside the photometric loss [7, 157, 188,
189, 362]. To this end, the segmentation masks are either given as an additional input
to the network [7, 362] or used to predict poses for each object separately between two
consecutive frames [157, 188, 189] and apply a separate rigid transformation for each
object. Avoiding an unfavorable two-step (pre)training procedure, other approaches
in [371, 372, 373, 374] train both tasks in one multi-task network simultaneously,
improving the performance by cross-task guidance between these two facets of scene



3.6. Multi-Task Learning 63

Method
Balancing

Magnitudes
Balance

Learning Prioritize Gradients
Required

No Extra
Tuning Motivation

Uncertainty [132] 3 7 Low Noise 7 3 Homoscedastic uncertainty
GradNorm [133] 3 3 3 3 Balance learning & magnitudes
DWA [342] 7 3 7 7 Balance learning
DTP [375] 7 7 Difficult 7 7 Prioritize difficult tasks

Table 3.2 Ablation of different task balancing techniques [319]. Firstly, we contemplate if
an approach balances the loss magnitudes (Balance Magnitudes) and/or the speed at which
tasks are learned (Balance Learning). Also, we attest what tasks are prioritized during the
training stage (Prioritize) and followed by if the approach needs access to the task-specific
gradients (Gradients Required). Finally, we consider if the suggested approach needs
additional tuning, e.g. manually determining the weights, and KPIs (No Extra Tuning).

understanding. Moreover, the segmentation masks can be projected between frames
to enforce semantic consistency [371, 373], or the edges can be enforced to appear in
similar regions in both predictions [371, 374]. In this thesis, we propose to use this
warping to discover frames with moving objects and learn their depth from these
frames by applying a simple semantic masking technique.

3.6.5 Optimization in MTL

In the previous section, we reviewed literature modeling MTL architectures that can
learn multiple tasks together. However, a vital challenge in MTL arises from the
optimization method itself. In particular, we need to thoughtfully weigh the joint
learning of all tasks to circumvent a state where one or more tasks have an imperative
influence on the network weights. This section considers various techniques that
have studied this task weighing problem. While initial works did weigh losses [51]
or gradients [376] by an empirical factor, current approaches can estimate this scale
factor automatically [132, 133].

Homoscedastic uncertainty to was incorporated to weigh the single-task losses by
Kendall et al. [132]. The homoscedastic uncertainty or task-dependent uncertainty is not
an output of the network rather a quantity that remains constant for different input
samples of the corresponding task. Chen et al. [133] proposed Gradient normaliza-
tion (GradNorm) to command the training of multi-task networks by stimulating
the task-specific gradients to be of similar magnitude. This encourages the network to
learn all the assigned tasks at an equal pace. Similar to GradNorm, Liu et al. [342]
proposed Dynamic Weight Averaging (DWA) to weigh the pace at which different
tasks are learned. Compared to GradNorm, DWA requires only the task-specific
loss values during training and eliminates the need to obtain the task-specific gra-
dients separately by performing backward passes each time. The task weighting
techniques [132, 133, 342] chose to optimize the task-specific weights as part of a
Gaussian likelihood objective. In contrast, Dynamic Task Prioritization (DTP) [375]
chose to prioritize the learning of ’challenging’ tasks by designating them a higher
task-specific weight. The motive is that the network should pay more effort to learn
the ’challenging’ tasks. This approach is entirely opposite to Kendall’s uncertainty
weighting, where a higher weight is assigned to the ’easy’ tasks. Kendall’s approach
suits better when tasks have noisy labeled data, while DTP performs better when we
have the availability to clean ground-truth labels. Finally, the ablation of all the listed
approaches is shown in Table 3.2.



64 Chapter 3. Related Work

3.7 Adversarial Attacks

For the first time, Szegedy et al. [377] demonstrated box-constrained L-BFGS, i.e.,
small perturbations in the images so that perturbed imagery can fool deep learning
models. Fast gradient sign method (FGSM) [378] is an example of a simple yet
effective attack for generating adversarial instances. FGSM aims to fool the image
classification by adding a small vector obtained by taking the sign of the gradient of
the loss function. Moreover, it was shown that robust 3D adversarial objects could
fool deep network classifiers in the physical world [379], despite the combination
of viewpoint shifts, camera noise, and other natural transformations. The one-step
methods cause images to be perturbed by taking a single significant step towards the
classifier’s loss (i.e., one-step gradient descent). They are iteratively taking multiple
small steps while adjusting the direction after each step is an intuitive extension of
this idea. This is precisely what the Basic Iterative Method [380] does. Kurakin et
al. [380] also extended BIM to the Iterative Least-likely Class Method (ILCM).

Papernot et al. [381] also devised a jacobian-based saliency map attack (JSMA), an
adversarial attack by limiting the perturbation’s L0-norm. Physically, the goal is to
change only a few pixels in the image rather than disrupt the entire image to fool
the classifier. When only one pixel in an image is changed to fool the classifier, this
is an extreme case of an adversarial attack. Surprisingly, Su et al. [382] claimed that
by changing just one pixel per image, they were able to fool three different network
models on 70.97% of the images tested. Carlini and Wagner (C&W) [383] proposed a
set of three adversarial attacks in the aftermath of defensive distillation against ad-
versarial perturbations [384]. These attacks make perturbations almost imperceptible
by limiting their L0, L2, and L∞ norms. It is demonstrated that defensive distillation
for the targeted networks almost completely fails against these attacks. Moosavi-
Dezfooli et al. [385] proposed to iteratively compute a minimal norm adversarial
perturbation for a given image. DeepFool, their algorithm, starts with a clean image
assumed to be in a region bounded by the classifier’s decision boundaries. Whereas
methods like FGSM [378], ILCM [380], DeepFool [385], and others compute pertur-
bations to fool a network on a single image, Moosavi-Dezfooli et al. [386] compute
’universal’ adversarial perturbations that can fool a network on ’any’ image with high
probability [387].

Sarkar et al. [388] proposed two black-box attack algorithms for targeted fooling of
deep neural networks: UPSET: Universal Perturbations for Steering to Exact Targets
and ANGRI: Antagonistic Network for Generating Rogue Images. Cisse et al. [389]
proposed ’Houdini,’ a method for deceiving gradient-based learning machines by
generating adversarial examples that can be tailored to task losses. Houdini has also
been demonstrated to be capable of successfully attacking a popular deep Automatic
Speech Recognition system [390]. Feed-forward neural networks were trained by
Baluja and Fischer [391] to generate adversarial examples against other targeted
networks or sets of networks. Adversarial Transformation Networks were the name
given to the trained models (ATNs). Hayex and Danezis [392] also used an ATN
to learn adversarial examples for black-box attacks in the same direction [387]. The
summary of characteristics of various attacking methods are shown in Table 3.3.

Attacks on Geometric and Semantic Tasks

Inspired by Moosavi-Dezfooli et al. [386], Metzen et al. [393] demonstrated the exis-
tence of image-agnostic quasi-imperceptible perturbations that can fool a deep neural



3.7. Adversarial Attacks 65

Method
Black/

White box
Image/

Universal
Perturbation

Norm Learning Strength

L-BFGS [377] wb_target Image `∞ One shot ∗ ∗ ∗
FGSM [378] wb_target Image `∞ One shot ∗ ∗ ∗
BIM & ILCM [380] wb_untarget Image `∞ Iterative ∗ ∗ ∗∗
JSMA [381] bb_untarget Image `0 Iterative ∗ ∗ ∗
C&W attacks [383] wb_untarget Image `2, `∞ Iterative ∗ ∗ ∗∗
DeepFool [385] bb_target Universal `2, `∞ Iterative ∗ ∗ ∗ ∗ ∗
Universal
perturbations [386]

bb_target Image `∞ Iterative ∗ ∗ ∗∗

UPSET [388] bb_target Image `2, `∞ Iterative ∗ ∗ ∗∗
ANGRI [388] wb_target Image `∞ Iterative ∗ ∗ ∗∗

Table 3.3 A summary of the characteristics of various attacking methods: The ‘perturbation
norm’ denotes the perturbations’ restricted p-norm in order to make them imperceptible. The
strength (higher for more asterisks) is based on the review of the literature [387].

network into significantly corrupting the predicted image segmentation. Furthermore,
they demonstrated that it is possible to compute noise vectors that can remove a spe-
cific class from the segmented classes while leaving most of the image segmentation
intact (e.g., removing pedestrians from road scenes). Even though the "space of ad-
versarial perturbations for semantic image segmentation is presumably smaller than
image classification," the perturbations have been shown to generalize well for unseen
validation images with high probability. Arnab et al. [394] investigated FGSM [378]
based adversarial attacks for semantic segmentation and discovered that several find-
ings of these attacks for classification do not directly transfer to the segmentation task.
Xie et al. [395] computed adversarial examples for semantic segmentation and object
detection, observing that these tasks can be formulated as classifying multiple targets
in an image - the target in segmentation is a pixel or a receptive field, and the target
in detection is an object proposal. According to this viewpoint, their method, ’Dense
Adversary Generation,’ optimizes a loss function over a set of pixels/proposals to
generate adversarial examples. The generated examples are tested for their ability
to fool various deep learning-based segmentation and detection approaches. Their
experimental results show that the generated perturbations not only fool the targeted
networks but also generalize well across different network models [387]. In addition,
research on adversarial attacks for monocular depth estimation began in 2019. Van et
al. [396] developed some exceptional cases to investigate the internal mechanism of
how networks perceive depth from images by constructing prominent fake images
that can be identified at first glance. Yamanaka et al. [397] demonstrated that the
target area’s depth is incorrectly estimated by overwriting the local area of the input
image. Mopuri et al. [398] proposed a data-free method for creating universal adver-
sarial examples for a specific CNN. Although their method effectively uses depth
estimation and semantic segmentation, it is limited to a single network. It cannot
produce universal examples that attack both tasks from different structures at the
same time. Hu et al. [399] investigated white-box adversarial attacks (I-FGSM) on
depth estimation in an indoor setting and proposed a saliency map defense.

Fooling surveillance cameras was introduced in [400] where adversarial patches are
designed to attack person detection. DAG algorithm [395] is an example of gener-
ating adversarial attacks for semantic segmentation and object detection tasks. It
was discovered that the perturbations are exchangeable across different networks,
even though they were trained differently since they share some intrinsic structure
that makes them susceptible to a common source of perturbations. In addition to



66 Chapter 3. Related Work

camera sensors, potential vulnerabilities of LiDAR-based autonomous driving de-
tection systems are explored in [401]. Moreover, the 3D-printed adversarial objects
showed effective physical attacks on LiDAR equipped vehicles, raising concerns
about autonomous vehicles’ safety. Robust Physical Perturbations (RP2) [402] is an-
other example that generates robust visual adversarial perturbations under different
physical conditions on road sign classifications.

Defenses Against Adversarial Attacks

On the other hand, adversarial robustness and defense methods of neural networks
have been studied to improve these networks’ resistance to different adversarial
attacks. One method for defense is adversarial training, where adversarial examples
besides the clean examples are used to train the model. Adversarial training can
be seen as a sort of simple data augmentation. Despite being simple, it cannot
cover all attack cases. In [403], it is demonstrated that JPEG compression can undo
the small adversarial perturbations created by the FGSM. However, this method is
not adequate for large perturbations. Xu et al. [404] proposed Feature-squeezing for
detecting adversarial examples. The model is tested on both the original input and the
input after being pre-processed by feature squeezers such as spatial smoothing. If the
output difference exceeds a certain threshold, we identify the input as an adversarial
example. Defense-GAN [405] is another defense technique that employs generative
adversarial networks (GAN)s [165], in which it seeks a similar output to a given
picture while ignoring adversarial perturbations. It is shown to be a feasible defense
that relies on the GAN’s expressiveness and generative power. However, training
GANs is still a challenging task. Robust attacks and defenses are still challenging
tasks and an active area of research. Most previous works on adversarial attacks
focused on single task scenarios. However, in real-life situations, multi-task learning
is adopted to solve several tasks at once. Accordingly, multi-task networks leverage
the shared knowledge among tasks, leading to better performance, reduced storage,
and faster inference. Moreover, it is shown that when models are trained on multiple
tasks at once, they become more robust to adversarial attacks on individual tasks [352].
However, defense remains an open challenge.



67

Chapter 4

Geometric Tasks

Contents
4.1 Problem Definition 67
4.2 Why is Predicting Depth so Difficult? 68

Depth Estimation is an Ill-Posed Problem 68
Motivation for Working on Raw Fisheye Images 71

4.3 Self-Supervised Scale-Aware Distance Estimation Framework 72
4.3.1 Modeling of Fisheye Geometry 73

Projection from Camera Coordinates to Image Coordinates 73
Unprojection from Image Coordinates to Camera Coordinates 75

4.3.2 Photometric Loss 75
4.3.3 Solving the Scale Factor Ambiguity 76
4.3.4 Masking Static Pixels and Ego Mask 76
4.3.5 Edge-Aware Smoothness Loss 76
4.3.6 Cross-Sequence Distance Consistency Loss 77

Backward Sequence 77
4.3.7 Final Training Loss 78
4.3.8 Handling Common Camera Distortion Models 78

4.4 Network Details 79
4.5 Experiments 81

4.5.1 Implementation Details 81
4.5.2 Fisheye Ablation Study 83
4.5.3 KITTI Distorted Ablation Study 84

4.6 Conclusion 84

4.1 Problem Definition

In this chapter, the focus is on solving one of the most challenging perception prob-
lems for an autonomous car: to predict distance of vehicles around it. With the knowledge
from Chapter 2 wherein we discussed the geometry of the camera models in detail,
we incorporate the camera model into the core of the CNN framework. We present
a novel self-supervised scale-aware framework for learning Euclidean distance and
ego-motion by exploiting geometrical constraints in a sequence of images extracted
from raw monocular fisheye videos without applying rectification. This work was
formally presented as FisheyeDistanceNet [2] as an oral at the ICRA conference in 2020.

https://arxiv.org/abs/1910.04076


68 Chapter 4. Geometric Tasks

Building upon the success of this paper, we generalize the training framework to work
with any camera model and propose a fully differentiable architecture that estimates
the distance directly from raw unrectified images (shown in Figure 4.7) without the
need for any pre-processing. This work was formally presented as UnRectDepthNet [3]
as an oral at the IROS conference in 2020.

The method at the time of publication of these papers was state-of-the-art on KITTI
and WoodScape datasets (refer Section 2.5) and showcased that it is possible to obtain
distance maps on raw fisheye images without the need for rectification. This opens
the door to rethink the need for rectification for fisheye images, and an in-detailed
discussion about the motivation and problems encountered due to rectifying images
is presented in Section 4.2.

4.2 Why is Predicting Depth so Difficult?

Before we dive deep into the depth estimation framework, we try to grasp some of
the primary depth estimation issues in this section. Some of the complex challenges
that must be solved include correspondence matching, which can be difficult due to
factors such as textureless regions, occlusion, non-Lambertian surfaces, and resolving
ambiguous solutions, in which several 3D scenes can give the same scene on the
image plane, implying that estimated depth is not unique. The key culprit is the loss
of depth information when 3D views are projected to 2D images. Another issue arises
when there are motion and dynamic objects. Lambertian surfaces are those that tend
to have the same brightness regardless of where they are viewed from. Owing to
non-ideal diffuse reflection, the resulting brightness intensity in pictures depicting
the same scene from two different perspectives may not be equal. Occlusion occurs
when an object is occluded in one view but not the other, and textureless region occurs
when several pixels have the same pixel intensity. The ability to retrieve distance
information from a camera is very appealing due to its low production cost and dense
representation. For the time being, the best alternative way to retrieve depth is to
use an active range sensor such as Light Detection and Ranging (LiDAR). They are
naturally high precision sensors that provide highly accurate depth information [112].

Depth Estimation is an Ill-Posed Problem

Many authors [52, 53, 55] would note that the problem of estimating depth from a
single RGB image is an ill-posed inverse problem when researching monocular depth
estimation. i.e., several 3D scenes observed in the world may also correspond to
the same 2D plane as shown in Figures 4.1 and 4.2. Figure 4.1 illustrates that (a) A
line drawing provides information only about the x, y coordinates of points lying
along the object contours. (b) The human visual system is usually able to reconstruct
an object in three dimensions given only a single 2D projection (c) Any planar line
drawing is geometrically consistent with infinitely many 3D structures.

Scale-Ambiguity for Monocular Depth Estimation: For any given camera model,
adjusting the focal length will proportionately scale the points on the image plane
(see Figure 4.2). Let us suppose we scale the entire scene points X, by a factor k and,
at the same time, scale the camera matrices P, by a factor of 1/k, the projections of

https://arxiv.org/abs/2007.06676


4.2. Why is Predicting Depth so Difficult? 69

Figure 4.1 An ill-posed problem in vision.
Figure reproduced from [407].

Adversarial 
Attacks

White Box Black Box

Un-Targeted Targeted Un-TargetedTargeted

Distance Semantic Motion Detection

Supervised Training

Semantic 
Decoder 

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

𝐼𝑡'

𝐼t' 

𝐼t

Semantic Decoder

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

( )

𝐼𝑡( )

𝐼𝑡( )

Semantic 
Decoder 

Motion Decoder

𝐼𝑡( )

Supervised Training

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

𝐼( )𝑡−1
Concat
Output

Distance Estimate 

Semantic Segmentation

Motion Estimation

Detection Estimate

Concat
Output

Distance Decoder 

Pose 
Decoder 

Self-Supervised Training

Supervised Training

What is the true 
scale of the world?

Figure 4.2 Illustration of scale-ambiguity in
depth estimation.

the scene points in the image remain exactly the same i.e.,

x = PX

=
1
k

P ∗ kX = x (4.1)

Eq. 4.1 depicts that we can never recover the exact scale of the actual scene from the
image alone with monocular approaches. This does not preclude us from making
specific predictions, but it does suggest that all depth values would be relative
to one another. As a result, an absolute value is needed to serve as an anchor
point, a measurement from another dedicated sensor, in order to obtain actual depth
estimation. The depth can then be calculated by dividing the approximate anchor
value by the measured one. Some of the possible solutions are:

• Using an external sensor, such as LiDAR, Time-of-Flight, or stereo cameras, to
measure the distance at least in one point. It is not a simple solution, and it
necessitates embedded integration and accurate calibration to associate this
calculation with the correct pixel in the image plane.

• If we assume depth consistency across training and testing dataset. It can be
handy in datasets with high pose variability, such as KITTI [116], where the
camera is still at the same height and looking at the ground from the same
perspective. This assumption will fail for drones and unmanned aerial vehicles.

• We can measure the movement magnitude employing dedicated sensors, such
as an IMU or GPS in a vehicle, or speed from the wheels in a car, and compare
it to apparent calculated movement, assuming that both depth and apparent
movement are consistently estimated. The scale factor would be the resulting
ratio.

The last option is preferred because movement estimation is a critical calculation in
navigation for autonomous vehicles, and it is thus almost always possible to obtain
the speed information from the odometry data from a car [406].

Ill-pose: Projection ambiguity If we perform a geometric transformation on the
scene as shown in Figure 4.3, these points would likely map to the same location
on the plane after the transformation. Once again, we are faced with the same
problem [112].



70 Chapter 4. Geometric Tasks

Figure 4.3 Projection of object after transformation maps to the same point in the plane.
Figure reproduced from [409].

Dynamic Objects Violate Static World Assumption: Dynamic objects in the scene
complicate the estimation process even more for the SfM framework. A moving
camera and a series of static scenes are used to estimate depth via structure from
motion. This assumption must hold true for pixel matching and alignment when
there are moving objects in the scene, this assumption fails [112].

Why is Predicting Distance on Fisheye Cameras Even More Difficult?

Most state-of-the-art depth estimation works [52, 53, 54, 55] have solely focused on
the moderate FoV/pinhole camera models as described in Section 2.1.2 wherein
the networks are limited to work only on rectified image sequences. As discussed
in Section 2.1 fisheye cameras undergo large distortions. The SfM framework and
its core view synthesis approach are believed to work only on undistorted image
pairs. For a pinhole projection model, depth ∝ 1/disparity. Henceforth, the network’s
sigmoid output σ can be converted to depth with D = 1/(aσ + b), where a and b
are chosen to constrain D between 0.1 and 100 units [55]. For a spherical image,
we can only obtain angular disparities [408] by rectification. To perform distance
estimation on raw fisheye images, we would require metric distance values to warp
the source image It′ onto the target frame It. Due to the limitations of the monocular
SfM objective, both the monocular distance predictor gd and ego-motion predictor
gx predict scale-ambiguous values as discussed in Section 4.2. This would make it
impossible to estimate distance maps on fisheye images.

Distance estimation, especially in the context of autonomous vehicles, has proven to
be difficult due to a variety of factors discussed earlier, such as occlusion, dynamic ob-
jects in the scene, and imperfect stereo correspondence. The biggest enemy for stereo
matching algorithms is a reflective, translucent, or mirror surface. For example, the
windshield of a car often degrades matching and thus results in erroneous estimation.
As a result, most companies continue to rely on LiDAR to extract distance reliably.
However, the latest trend in the autonomous vehicle perception stack goes towards
sensor fusion since each sensor has a distinct advantage in its feature extraction
methods. Nonetheless, since the emergence of Deep Learning, this field has gained
significant momentum and achieved impressive results. Many studies have been
conducted to address these problems [112].

In this thesis, we will solve some of the critical problems of the vision community
by proposing novel solutions to tackle the monocular Distance estimation’s scale
factor issues and overcome the community’s notion of employing SfM framework
only on rectified sequences. We showcase that the SfM approach can be extended to
raw distorted fisheye camera images.



4.2. Why is Predicting Depth so Difficult? 71

Motivation for Working on Raw Fisheye Images

Rectification is considered to be a fundamental step in dense depth estimation [200].
In stereo cameras, epipolar rectification is performed to enable matching only in
one direction along the horizontal scanline. This approach can also be extended to
monocular cameras using two consecutive frames giving rise to motion stereo. These
rectification steps also require the removal of non-linear distortion. Although it is
convenient to work with rectilinear projections, there are practical issues that arise due
to rectification. Rectification has also been transferred to CNN-based approaches as an
inductive bias to simplify the learning. Yadati et al. [410] demonstrate that CNN-based
two-view depth estimation is challenging without rectification and attempt to solve it
in a more specific setting. To the best of our knowledge, all the methods reported on
KITTI make use of barrel distortion corrected images. Automotive cameras such as
fisheye surround-view cameras exhibit a strong distortion, and it is not easy to rectify
their images. Recently, several tasks such as motion segmentation [21] and soiling
detection [43] were demonstrated on fisheye images without rectification.

Practical Problems Encountered: Real-world automotive cameras have lens distor-
tion, and the typical approach is to remove the distortion and then apply standard
camera projection models. However, in practice, this has several issues that are not
dealt with in literature. Figure 4.4 illustrates the rectification used in KITTI and
WoodScape datasets. The first row shows a raw KITTI image with barrel distortion
and the corresponding rectified image. The red box is used to crop out black pixels in
the periphery, causing a loss in FoV. The second row shows a raw WoodScape image
with strong fisheye lens distortion and the corresponding rectified image exhibiting
a drastic loss of FoV. In the KITTI dataset, due to the barrel1 distortion effect of the
camera, images have been rectified and cropped to 1242× 375 pixels. Cropping is
performed after rectification to get a rectangular grid without any black pixels in the
periphery. Thus, the rectified images’ size is smaller than that of the raw images with
1392× 512 pixels. Based on the number of the non-black, occupied pixels removed by
the cropping, roughly 10% of the image information is lost. This effect becomes more
drastic for the WoodScape images with a much larger radial distortion where more
than 30% of the image information is lost2. For a horizontal FoV greater than 180◦,
there are rays incident from behind the camera, making it theoretically impossible to
establish a complete mapping to a rectilinear viewport. Thus the rectification defeats
the purpose of using a wide-angle fisheye lens.

Reduced FoV is the most critical problem of undistortion, but there are further practi-
cal issues. The first one is resampling distortion, which is caused by interpolation
errors during the warping step. This effect can be partially mitigated by a more
advanced interpolation method [411]. However, it is extreme in the periphery of
fisheye lenses because a small region is expanded to a larger one in the warped image.
Besides, the warping step is needed at inference time, which consumes significant
computing power and memory bandwidth.

The other issue is related to calibration. In an industrial setup, millions of cameras are
deployed, and they have manufacturing variations. The camera parameters (mainly
focal length) can also vary due to high ambient temperatures when driving in a hot

1KITTI [116] refers to it as pincushion distortion because of an error in the OpenCV documentation,
which was fixed later.

2Other quasi-linear rectification methods like cylindrical rectification will preserve more information
at cost of additional distortion.



72 Chapter 4. Geometric Tasks

Figure 4.4 Illustration of distortion correction in KITTI and WoodScape datasets.

region. Thus a model that relies on rectification to correct the distortion could have
errors. For instance, dataset capture and training are typically performed on one
particular camera, and the model is deployed to work on millions of cameras in
commercial vehicles. Thus rectification and cropping to a standard resolution as per
the training camera are sub-optimal for a deployed camera. However, if CNN learns
the distortion as part of the transfer function, it is only weakly encoded and expected
to be more robust. To alleviate these issues, we are motivated to explore a distance
estimation model that can work directly on raw images without needing rectification.

4.3 Self-Supervised Scale-Aware Distance Estimation Frame-
work

Zhou et al.’s [53] self-supervised monocular SfM framework on which most self-
supervised monocular depth estimation models build on, aims at learning:

1. a monocular distance model gd : It → D predicting a scale-ambiguous distance
D̂ = gd(It(p)) per pixel p in the target image It; and

2. an ego-motion predictor gx : (It, It′) → It→t′ predicting a set of six degrees of
freedom of the rigid transformations Tt→t′ ∈ SE(3), between the target image It
and the set of reference images It′ . Typically, t′ ∈ {t + 1, t− 1}, i.e. the frames
It−1 and It+1 are used as reference images, although using a larger window is
possible.

This method is self-supervised because the ground truth is derived directly from
the input signal—the RGB images in this case. There is no need for external data
or signals to teach the network because the distance estimator gd is its teacher! A
limitation of this approach is that both distance and pose are estimated up to an
unknown scale factor in the monocular SfM pipeline. One downside to this method
is the scale ambiguity in both distance and pose estimation.

In this thesis, we recover scale-aware distance directly for distorted images (see
Figure 4.5). The distance, which acts as an intermediary variable, is obtained from the
network by constraining the model to perform image synthesis. As discussed earlier,



4.3. Self-Supervised Scale-Aware Distance Estimation Framework 73

WoodScape KITTI

Figure 4.5 Distance and depth derived from a single fisheye image (left) and single
pinhole image (right) respectively.

distance estimation is an ill-posed problem as there could exist a large number of
possible incorrect distances per pixel, which can also recreate the novel view, given
the relative pose between It and It′ .

View-synthesis is used as a self-supervising technique, and the network is trained
with the source images It−1 and It+1 to synthesize the appearance of a target image
It on raw fisheye images. For this, we need the projection function Π of the chosen
camera model, which maps a 3D point Xc in camera coordinates to a pixel p =
Π(Xc) in image coordinates. An overview of projection models for different lens
types can be found in Section 2.1.1, and we specifically incorporate the Polynomial
model. The corresponding unprojection function Π−1, which maps an image pixel
p and its distance estimate D̂ to the 3D point Xc = Π−1(p, D̂), is also required. If
Π−1 cannot be expressed in analytic form, a pre-calculated lookup table is used
to ensure computational efficiency. A naive approach would be correcting raw
fisheye images to piecewise or cylindrical projections and would essentially render
the problem equivalent to Zhou et al.’s work [53]. In contrast, there is a simple yet
efficient technique for obtaining scale-aware distance maps at the core of the approach.
Figure 4.6 illustrates an overview of the FisheyeDistanceNet method.

This section discusses the geometry of the problem and how it is used to obtain
differentiable losses. We describe the scale-aware FisheyeDistanceNet framework and
its effects on the output distance estimates. Additionally, we provide an in-depth
discussion of the various losses.

4.3.1 Modeling of Fisheye Geometry

Projection from Camera Coordinates to Image Coordinates

The projection function Xc 7→ Π(Xc) = p of a 3D point Xc = (xc, yc, zc)T in camera
coordinates to a pixel p = (u, v)T in the image coordinates is obtained via a 4th order



74 Chapter 4. Geometric Tasks

It

Concat Concat

DistanceNet DistanceNetPoseNet DistanceNet PoseNet

      

   

𝐷𝑡−1
 𝐷𝑡 𝐷𝑡+1

𝐼𝑡−1  𝐼𝑡+1  

 
𝐼𝑡−1 𝐼𝑡 𝑡+1

 

𝐼𝑡

V𝑡−1

𝑡−1

V𝑡
𝑡

V𝑡
𝑡

V𝑡+1

𝑡+1

𝑡→𝑡+1𝑡→𝑡 1−ℳ ℳ 

+ 𝐼𝑡 𝐼+

Figure 4.6 Overview of the FisheyeDistanceNet framework. The first row represents the
ego masks as described in Section 4.3.4,Mt→t−1,Mt→t+1 indicate which pixel coordinates
are valid when constructing Ît−1→t from It−1 and Ît+1→t from It+1 respectively. The second
row indicates the masking of static pixels computed after two epochs, where black pixels are
filtered from the photometric loss (i.e., ω = 0). It prevents dynamic objects at a similar speed
as the ego car and low texture regions from contaminating the loss. The masks are computed
for forward and backward sequences from the input sequence S and reconstructed images
using Eq. 4.11 as described in Section 4.3.4. The third row represents the distance estimates
corresponding to their input frames. The fourth row contains the encoder-decoder network
architecture for distance and pose estimation. Finally, the vehicle’s odometry data is used to
resolve the scale factor issue.

polynomial in the following way:

ϕ = arctan2(yc, xc) (4.2)

θ =
π

2
− arctan2(zc, rc) (4.3)

$(θ) = k1 · θ + k2 · θ2 + k3 · θ3 + k4 · θ4 (4.4)

p =

(
u
v

)
=

(
$(θ) · cos ϕ · ax + cx
$(θ) · sin ϕ · ay + cy

)
(4.5)

where rc =
√

x2
c + y2

c , θ is the angle of incidence, $(θ) is the mapping of incident
angle to image radius, (ax, ay) is the aspect ratio and (cx, cy) is the principal point.



4.3. Self-Supervised Scale-Aware Distance Estimation Framework 75

Unprojection from Image Coordinates to Camera Coordinates

The unprojection function (p, D̂) 7→ Π−1(p, D̂) = Xc of an image pixel p = (u, v)T

and it’s distance estimate D̂ to the 3D point Xc = (xc, yc, zc)T is obtained via the
following steps. Letting (xi, yi)

T =
(
(u− cx)/ax, (v− cy)/ay

)T, we obtain the angle of

incidence θ by numerically calculating the 4th order polynomial roots of $ =
√

x2
i + y2

i
using the distortion coefficients k1, k2, k3, k4 (see Eq. 4.4). For training efficiency, we
pre-calculate the roots and store them in a lookup table for all the pixel coordinates.
Now, θ is used to get

rc = D̂ · sin θ and zc = D̂ · cos θ (4.6)

where the distance estimate D̂ from the network represents the Euclidean distance
‖Xc‖ =

√
x2

c + y2
c + z2

c of a 3D point Xc. The polar angle ϕ and the xc, yc components
can be obtained as follows:

ϕ = arctan2(yi, xi), xc = rc · cos ϕ, yc = rc · sin ϕ.

4.3.2 Photometric Loss

Let us consider the image reconstruction error from a pair of images It′ and It, distance
estimate D̂t at time t, and the relative pose for It, with respect to the source image
It′ ’s pose, as Tt→t′ . Using the distance estimate D̂t of the network a point cloud Pt is
obtained via:

Pt = Π−1(pt, D̂t) (4.7)

where Π−1 represents the unprojection from image to camera coordinates as explained
in Section 4.3.1, pt the pixel set of image It. The pose estimate Tt→t′ from the pose
network is used to get an estimate P̂t′ = Tt→t′Pt for the point cloud of the image
It′ . P̂t′ is then projected onto the fisheye camera at time t′ using the projection
model Π described in Section 4.3.1. Combining transformation and projection with
Eq. 4.7 establishes a mapping from image coordinates pt = (u, v)T at time t to image
coordinates p̂t′ = (û, v̂)T at time t′. This mapping allows for the reconstruction Ît′→t
of the target frame It by backward warping the source frame It′ .

p̂t′ = Π
(
Tt→t′Π−1(pt, D̂t)

)
, Îuv

t′→t =
〈

I ûv̂
t′

〉
(4.8)

Since the warped coordinates û, v̂ are continuous, we apply the differentiable spatial
transformer network introduced by [412] to compute Ît′→t by performing bilinear
interpolation of the four pixels from It′ which lie close to p̂t′ . The symbol

〈
. . .
〉

denotes the corresponding sampling operator.

Following [54, 413] the image reconstruction error between the target image It and
the reconstructed target image Ît′→t is calculated using the L1 pixel-wise loss term
combined with Structural Similarity (SSIM) [414], as the photometric loss Lp given
by Eq. 4.9 below.

L̃p(It, Ît′→t) = α
1− SSIM(It, Ît′→t,Mt→t′)

2
+ (1− α)

∥∥(It − Ît′→t)�Mt→t′
∥∥

l1

Lp = min
t′∈{t+1,t−1}

L̃p(It, Ît′→t) (4.9)



76 Chapter 4. Geometric Tasks

where α = 0.85, Mt→t′ is the binary mask as discussed in Section 4.3.4 and the
symbol � denotes element-wise multiplication. Following [55] instead of averaging
the photometric error over all source images, we adopt per-pixel minimum. This
significantly sharpens the occlusion boundaries and reduces the artifacts resulting in
higher accuracy.

The self-supervised framework assumes a static scene, no occlusion, and change
of appearance (e.g., brightness constancy). A large photometric cost is incurred,
potentially worsening the performance if dynamic objects and occluded regions exist.
These areas are treated as outliers similar to [415] and clip the photometric loss values
to a 95th percentile. Zero gradients are obtained for errors larger than 95%. This
improves the optimization process and provides a way to strengthen the photometric
error.

4.3.3 Solving the Scale Factor Ambiguity

To overcome the limitations of this SfM framework as discussed in Section 4.2 and to
achieve scale-aware distance values, we normalize the pose network’s estimate Tt→t′

and scale it with ∆x, the displacement magnitude relative to target frame It which is
calculated using vehicle’s instantaneous velocity estimates vt′ at time t′ and vt at time
t. We also apply this technique on KITTI [116] to obtain metric depth maps.

Tt→t′ =
Tt→t′

‖Tt→t′‖
· ∆x (4.10)

4.3.4 Masking Static Pixels and Ego Mask

Following [55], we incorporate a masking approach to filter out static pixels that do
not change their appearance from one frame to the other in the training sequence.
The approach would filter out objects that move at the same speed as the ego-car
and ignore the static frame when the ego-car stops moving. Similar to other ap-
proaches [53, 55, 157, 363] the per-pixel mask ω is applied to the loss by weighting
the pixels selectively. Instead of being learned from the object motion [189], the mask
is computed in the forward pass of the network, yielding a binary mask output where
ω ∈ {0, 1}. Wherever the photometric error of the warped image Ît′→t is not lower
than that of the original unwarped source frame It′ in each case compared to the
target frame It, ω is set to ignore the loss of such pixels, i.e.

ω =
[

min
t′

pe(It, Ît′→t) < min
t′

pe(It, It′)
]

(4.11)

where [ ] is the Iverson bracket. Additionally, we add a binary ego mask Mt→t′

proposed in [154] that ignores computing the photometric loss on the pixels that do
not have a valid mapping i.e. some pixel coordinates of the target image It may not
be projected onto the source image It′ given the estimated distance D̂t.

4.3.5 Edge-Aware Smoothness Loss

In order to regularize distance and avoid divergent values in occluded or texture-
less low-image gradient areas, we add a geometric smoothing loss. We adopt the
edge-aware term similar to [54, 154, 416]. The regularization term is imposed on
the inverse distance map. Unlike previous works, the loss is not decayed for each



4.3. Self-Supervised Scale-Aware Distance Estimation Framework 77

pyramid level by a factor of 2 due to down-sampling, as we use a super resolution
network (see Section 4.4)

Ls(D̂t) = |∂uD̂∗t |e−|∂u It| + |∂vD̂∗t |e−|∂v It| (4.12)

To discourage shrinking of estimated distance [177], mean-normalized inverse dis-
tance of It is considered, i.e. D̂∗t = D̂−1

t /Dt, where Dt denotes the mean of D̂−1
t :=

1/D̂t.

4.3.6 Cross-Sequence Distance Consistency Loss

The SfM setting uses an N-frame training snippet S = {I1, I2, · · · , IN} from a video
as input. The FisheyeDistanceNet can estimate the distance of each image in the
training sequence. Another constraint can be enforced among the frames in S since
the distances of a 3D point estimated from different frames should be consistent.

Let us assume D̂t′ and D̂t are the estimates of the images It′ and It respectively. For
each pixel pt ∈ It, we can use Eq. 4.8 to obtain p̂t′ . Since it’s coordinates are real
valued, we apply the differentiable spatial transformer network introduced by [412]
and estimate the distance value of p̂t′ by performing bilinear interpolation of the four
pixel’s values in D̂t′ which lie close to p̂t′ . Let us denote the distance map obtained
through this as D̂t→t′ (pt). Next, we can transform the point cloud in frame It to
frame It′ by first obtaining Pt using Eq. 4.7. We transform the point cloud Pt using
the pose network’s estimate via P̂t′ = Tt→t′Pt. Now, Dt→t′ (pt) := ‖P̂t′‖ denotes the
distance generated from point cloud P̂t′ . Ideally, Dt→t′ (pt) and D̂t→t′ (pt) should be
equal. Therefore, we can define the following cross-sequence distance consistency
loss (CSDCL) for the training sequence S:

Ldc =
N−1

∑
t=1

N

∑
t′=t+1

(
∑
pt

Mt→t′
∣∣Dt→t′ (pt)− D̂t→t′ (pt)

∣∣
+∑

pt′

Mt′→t
∣∣Dt′→t (pt′)− D̂t′→t (pt′)

∣∣ ) (4.13)

Eq. 4.13 contains one term for which pixels and point clouds are warped forwards in
time (from t to t′) and one term for which they are warped backwards in time (from
t′ to t).

In prior works [157, 416], the consistency error is limited to only two frames, whereas
we apply it to the entire training sequence S. This induces more constraints and
enlarges the baseline, inherently improving the distance estimation [415].

Backward Sequence

In the forward sequence, we synthesize the target frame It with the source frames It−1
and It+1 (i.e. as per above discussion t′ ∈ {t + 1, t− 1}). Analogously, a backward
sequence is carried out using It−1 and It+1 as target frames and It as source frame.
We include warps Ît→t−1 and Ît→t+1, thereby inducing more constraints to avoid
overfitting and resolve unknown distances in the border areas at the test time, as also
observed in previous works [53, 55, 370]. We construct the loss for the additional
backward sequence similar to the forward sequence. This comes at the cost of
high computational effort and longer training time as we perform two forward and
backward warps, which yields superior results on the WoodScape and KITTI dataset



78 Chapter 4. Geometric Tasks

compared to the previous approaches [53, 55] which train only with one forward
sequence and one backward sequence.

Depicting the importance of additional warps

The reconstructed image Îuv
t′→t will result in a zoom-in operation where the border

distance values are useful and will get meaningful gradients to train with. However,
center values will have much noise due to the low displacement. On the other hand,
since Îuv

t→t′ will result in a zoom-out effect, the border distance values are insignificant
and should be filtered out from the photometric loss because the pixels that have
to be retrieved do not exist. Center distance, though, will have a warp that sample
values from the border of the frame, i.e., with large displacement and the gradient
will be less noisy than with Îuv

t′→t. Additional warps will induce more constraints to
avoid overfitting and resolve unknown distances at the borders at test time.

4.3.7 Final Training Loss

The overall self-supervised SfM objective consists of a photometric loss Lp imposed
between the reconstructed target image Ît′→t and the target image It, included once
for the forward and once for the backward sequence, and a distance regularization
term Ls ensuring edge-aware smoothing in the distance estimates. Finally, Ldc a
cross-sequence distance consistency loss derived from the chain of frames in the
training sequence S is also included. To prevent the training objective from getting
stuck in the local minima due to the gradient locality of the bilinear sampler [412],
we adopt four scales to train the network as followed in [53, 54]. The final objective
function is averaged per pixel, scale, and image batch.

L =
4

∑
n=1

Ln

2n−1 , (4.14)

Ln = nL f
p +

nLb
p + γ nLdc + β nLs

4.3.8 Handling Common Camera Distortion Models

Up to now, for the SfM framework to estimating depth, we employed a pinhole
camera model on KITTI and a polynomial model WoodScape. Following the training
regime’s success, we illustrate an in-detail overview of the UnRectDepthNet [3]: A
self-supervised generic training framework for handling common camera distortion
models discussed in Section 2.1.1, to estimate depth directly from raw unrectified
images is shown in Figure 4.7. The UnRectDepthNet training block on the right
enables the usage of various camera models generically listed in the black box.
The distortion is then handled internally in the unprojection and projection steps
of the transformation from It to It−1. We test the generic framework with barrel
distorted KITTI images and distorted WoodScape fisheye video sequences in this
regime. The block on the left indicates the entire workflow of the training pipeline
where the top row depicts the ego masks as explained in Section 4.3.4, Mt→t−1,
Mt→t+1 represents the valid pixel coordinates while synthesizing Ît−1→t from It−1
and Ît+1→t from It+1 respectively. The following row showcases the masks used
to filter static pixels obtained after training two epochs, and the black pixels are
removed from the reconstruction loss. Dynamic objects moving at speeds similar
to the ego car’s and homogeneous areas are filtered out to prevent the erroneous
signals in the reconstruction loss. The third row shows the depth predictions, where



4.4. Network Details 79

𝐼𝑡𝐼𝑡−1

Concat

PoseNet

 
𝐼𝑡 −1
 

𝑡−1

𝑡−1

V𝑡
𝑡

+ 𝐼𝑡

V

DepthNet

𝐷𝑡

Inference

𝑡→𝑡 1−T

Translation
Rotation

Camera Models

𝐷𝑡

Input streams

𝑡

UnRectDepthNet Training

Projection Unprojection

eUCM
UCM
Brown-Conrady

KITTI Barrel Distorted WoodScape Fisheye

OR

Rectilinear
Polynomial
Double Sphere

Concat Concat

DepthNet DepthNetPoseNet DepthNet PoseNet

   

𝐷𝑡−1
 𝐷𝑡 𝐷𝑡+1

𝐼𝑡−1  𝐼𝑡+1  

 
𝐼𝑡−1 𝐼𝑡 𝑡+1

 

𝐼𝑡

V𝑡−1

𝑡−1

V𝑡
𝑡

V𝑡
𝑡

V𝑡+1

𝑡+1

𝑡→𝑡+1𝑡→𝑡 1−
ℳ ℳ 

+ 𝐼𝑡 𝐼+

Figure 4.7 Overview of the UnRectDepthNet: A generic depth estimation training
framework that can handle various camera models.

Unrectified Rectified

Figure 4.8 Depth obtained from a single unrectified (left) and rectified KITTI image
(right).

the scale ambiguity is resolved using the ego vehicle’s odometry data as discussed
in Section 4.3.3. Finally, the top block illustrates the inference output. We compare
a sample output from the framework on the unrectified (left) KITTI image vs. the
standard rectified (right) KITTI image in Figure 4.8. We can see that our model
handles the barrel distortion and outputs sharp depth maps without losing any FoV.

4.4 Network Details

The distance estimation network is mainly based on the U-net architecture [249], an
encoder-decoder network with skip connections. After testing different ResNet family
variants, such as ResNet50 with 25M parameters, we chose a ResNet18 [163] as the
encoder. The key aspect here is replacing normal convolutions with deformable



80 Chapter 4. Geometric Tasks

Figure 4.9 Standard vs. Deformable convolution layer. Deformable convolution will pick
the values at different locations for convolutions conditioned on the input image.

convolutions since regular CNNs are inherently limited in modeling large, unknown
geometric distortions due to their fixed structures, such as fixed filter kernels, fixed
receptive field sizes, and fixed pooling kernels [207, 417].

In a deep CNN, the upper layers encode high-level scene information with weak
spatial information, including object- or category-level evidence. Features from the
middle layers are expected to describe middle-level representations of object parts
and retain spatial information. Features from the lower convolution layers encode
low-level spatial visual information like edges, corners, circles. That means that
the middle and lower layers are responsible for learning spatial structures. If the
deformable convolution is applied to the lower or middle layers, the spatial structures
are susceptible to fluctuation. The spatial correspondence between input images and
output distance maps is difficult to be preserved. This is the spatial correspondence
problem indicated in [418], which is critical in pixel-wise distance estimation. Hence,
deformable convolution is applied to the last few convolution layers as proposed
by [207].

To alleviate this problem, Zhu et al. [417] proposed a better, more Deformable ConvNet
(see Figure 4.9) with enhanced modeling power that can effectively model geometric
transformations. We incorporate the enhanced modulated deformable convolutions
to the FisheyeDistanceNet and PoseNet.

In previous works [53, 54, 55, 177, 370], the decoded features were upsampled via
a nearest-neighbor interpolation or with learnable transposed convolutions. This
process’s main drawback is that it may lead to large errors at object boundaries in the
upsampled distance map as the interpolation combines distance values of background
and foreground. For effective and detailed preservation of the decoded features, we
leverage the concept of sub-pixel convolutions [419] to the super-resolution network.
We use pixel shuffle convolutions and replace the convolutional feature upsampling,



4.5. Experiments 81

performed via a nearest-neighbor interpolation or with learnable transposed convo-
lutions. The resulting distance maps are super-resolved, have sharp boundaries, and
expose more details of the scene.

The pose estimation network’s backbone is based on [55] and predicts rotation using
Euler angle parameterization. Compared to previous works [53, 154, 177], which stack
the whole sequence as input and estimate the poses relative to the center image, we
consider two consecutive images as input to the network, where It is the target view,
and It−1, It+1 are the source views. The output is a set of six DOF transformations
between It−1 and It as well as It and It+1. We replace standard convolutions with
deformable convolutions for the encoder-decoder setting.

4.5 Experiments

4.5.1 Implementation Details

We use Pytorch [22] and employ the Ranger (RAdam [420] + LookAhead [421])
optimizer to minimize the training objective function (4.14). The model is trained
using Titan RTX with a batch size of 20 for 20 epochs, with an initial learning rate of
4× 10−4 with OneCycleScheduler [422]. The network’s sigmoid output σ is converted
to distance with D = 1/(m · σ + n) for pinhole model and D = m · σ + n for fisheye,
where m and n are chosen such that D is bounded between 0.1 and 100 units. The
fisheye image’s original input resolution is 1280× 800 pixels; we crop it to 1024× 512
to remove the vehicle’s bumper, shadow, and other artifacts of the vehicle. Finally,
the cropped image is downscaled to 512× 256 before feeding it to the network. For
the pinhole model on KITTI, we use 640 × 192 pixels as the network input. We
use 608× 224 pixels as the network input to maintain the original aspect ratio for
KITTI distorted images. The loss weighting factors β and γ of smoothness and cross-
sequence distance consistency loss are set to 0.001. To remove checkerboard artifacts
in the sub-pixel convolution [419], the final convolutional layers are initialized before
the pixel shuffle operation as described in [423].

We experimented with batch normalization [424] and group normalization [425]
layers in the encoder-decoder setting. We have found that group normalization with
G = 32 significantly improves the results [426]. The smoothness weight term β and
cross-sequence distance consistency weight term γ have been set to 0.001. We applied
deformable convolutions to the 3 x 3 Conv layers in stages conv3, conv4, and conv5
in ResNet18 and ResNet50, with 12 layers of deformable convolution in the encoder
part compared to 3 layers in [207], all in the conv5 stage for ResNet50. We replaced
the subsequent layers of the decoder with deformable convolutions for the distance
and pose network. For the pinhole model, on the KITTI Eigen split in Section 2.5.2,
we used regular convolutions instead of deformable convolutions.

We evaluate FisheyeDistanceNet and UnRectDepthNet distance and depth estimation
results using the metrics illustrated in Table 2.2 on KITTI and WoodScape datasets
as described in Section 2.5 and report the results for less than 80 m as indicated
in [50] for the pinhole model to facilitate a comparison. The quantitative results are
shown in Tables 4.1 and 4.2 illustrates that the scale-aware self-supervised approach
outperforms almost all the state-of-the-art monocular approaches. All the methods
listed in the table are self-supervised approaches on monocular camera sequences.
At inference time, all the approaches except FisheyeDistanceNet, UnRectDepthNet, and
PackNet-SfM scale the estimated depths using median ground-truth LiDAR depth.



82 Chapter 4. Geometric Tasks

Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Approach lower is better higher is better

KITTI

Zhou [53]† 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [427] 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Vid2depth [154] 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet [370]† 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [177] 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [416] 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Ranjan [303] 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [363] 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth ‘(M)’ [189] 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Zhou [415] 0.139 1.057 5.213 0.214 0.831 0.940 0.975
PackNet-SfM [7] 0.120 0.892 4.898 0.196 0.864 0.954 0.980
Monodepth2 [55] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
FisheyeDistanceNet 0.117 0.867 4.739 0.190 0.869 0.960 0.982
FisheyeDistanceNet (1024 × 320) 0.109 0.788 4.669 0.185 0.889 0.964 0.982

WoodScape

FisheyeDistanceNet cap 80 m 0.167 1.108 3.814 0.216 0.794 0.953 0.972
FisheyeDistanceNet cap 40 m 0.152 0.768 2.723 0.210 0.812 0.954 0.974
FisheyeDistanceNet cap 30 m 0.149 0.613 2.402 0.204 0.810 0.957 0.976

Table 4.1 Quantitative results of leaderboard algorithms on KITTI dataset [116] and
FisheyeDistanceNet on WoodScape [12]. † marks newer results reported on GitHub.

Method Resolution Dataset Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

O
ri

gi
na

l[
50

]

SfMLeaner [53] 416 x 128 K 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Vid2depth [154] 416 x 128 K 0.163 1.240 6.220 0.250 0.762 0.916 0.968
DDVO [177] 416 x 128 K 0.151 1.257 5.583 0.228 0.810 0.936 0.974
EPC++ [363] 640 x 192 K 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2Depth [189] 416 x 128 K 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 [55] 640 x 192 K 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [7] 640 x 192 K 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Monodepth2 [55] 1024 x 320 K 0.115 0.882 4.701 0.190 0.879 0.961 0.982

UnRectDepthNet 640 x 192 K 0.107 0.721 4.564 0.178 0.894 0.971 0.986
UnRectDepthNet 1024 x 320 K 0.103 0.705 4.386 0.164 0.897 0.980 0.989
UnRectDepthNet 608 x 224 KD 0.102 0.720 4.559 0.183 0.892 0.973 0.988
UnRectDepthNet 1216 x 448 KD 0.106 0.709 4.357 0.161 0.895 0.984 0.992
FisheyeDistanceNet [2] 512 x 256 WS 0.152 0.768 2.723 0.210 0.812 0.954 0.974
UnRectDepthNet 512 x 256 WS 0.148 0.702 2.530 0.212 0.826 0.960 0.980

Im
pr

ov
ed

[1
43

] SfMLeaner [53] 416 x 128 K 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth [154] 416 x 128 K 0.134 0.983 5.501 0.203 0.827 0.944 0.981
DDVO [177] 416 x 128 K 0.126 0.866 4.932 0.185 0.851 0.958 0.986
EPC++ [363] 640 x 192 K 0.120 0.789 4.755 0.177 0.856 0.961 0.987
Monodepth2 [55] 640 x 192 K 0.090 0.545 3.942 0.137 0.914 0.983 0.995
PackNet-SfM [7] 640 x 192 K 0.078 0.420 3.485 0.121 0.931 0.986 0.996

UnRectDepthNet 640 x 192 K 0.081 0.414 3.412 0.117 0.926 0.987 0.996
UnRectDepthNet 640 x 224 KD 0.092 0.458 3.503 0.132 0.906 0.971 0.990

Table 4.2 Quantitative performance comparison of UnRectDepthNet for depths up to 80 m
for KITTI and 40 m for WoodScape. In the Dataset column, K refers to KITTI [11], KD refers
to the KITTI distorted [116], and WS refers to WoodScape [12] dataset. Original refers to
depth maps defined in [50], and Improved refers to refined depth maps provided by [143].

We generalized our previous model FisheyeDistanceNet in our new training framework
and added additional features that improve results on WoodScape. For the fisheye
dataset, we estimate distance rather than depth. The qualitative results are illustrated
in Figures 4.10, 4.11 and 4.12 where the framework produces sharp distance maps on
raw fisheye and pinhole images, respectively. The KITTI distorted results are better
than most of the previous outcomes obtained with self-supervised approaches on the
corresponding rectified dataset. We could not leverage the Cityscapes dataset into



4.5. Experiments 83

Method FS BS SR CSDCL DCN Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Ours 3 3 3 3 3 0.152 0.768 2.723 0.210 0.812 0.954 0.974
Ours 3 7 3 3 3 0.172 0.829 2.925 0.243 0.802 0.952 0.970
Ours 3 7 7 3 3 0.181 0.913 3.180 0.250 0.823 0.938 0.963
Ours 3 7 7 7 3 0.190 0.997 3.266 0.258 0.796 0.930 0.963
Ours 3 7 7 7 7 0.201 1.282 3.589 0.276 0.590 0.898 0.949

Table 4.3 Ablation study on different variants of the FisheyeDistanceNet using the
WoodScape dataset. BS, SR, CSDCL, and DCN represent a backward sequence,
super-resolution network with PixelShuffle, or sub-pixel convolution initialized to
convolution NN resize (ICNR) [423], cross-sequence distance consistency loss, and
deformable convolutions respectively.

the training regime to benchmark the scale-aware framework due to the absence of
odometry data.

Since the projection operators are different, previous SfM approaches will not be
feasible on the Woodscape dataset without adapting the network and projection
model. It is important to note that due to the fisheye’s geometry, it would not be a
fair comparison to evaluate the distance estimates up to 80 m. The fisheye automotive
cameras also undergo high data compression, and the dataset contains images of
inferior quality compared with KITTI. The fisheye cameras can perform well up to
a range of 40 m. Therefore, we also report results on a 30 m, and a 40 m range (see
Table 4.1).

We generalized the training methodology of this model to incorporate any arbitrary
distortion model. We also tuned the network to the optimal hyperparameters using
grid search and removed batch normalization in the decoder as we observed ghosting
effects and holes in homogeneous areas. We calculated the minimum reconstruc-
tion error for the two warps of the backward sequence individually compared to a
combined minimization for forward sequences since here the target frames are It′

(t′ ∈ {t + 1, t− 1}).

4.5.2 Fisheye Ablation Study

We conduct an ablation study to evaluate the importance of different components.
We cap the distances at 40 m and the input resolution is 512× 256 pixels. We ablate
the following components and report their impact on the distance evaluation metrics
in Table 4.3:

• Remove Backward Sequence: The network is only trained for the forward sequence,
which consists of two warps as explained in Section 4.3.6. This has a critical
impact on the model’s performance as the induced baseline during training
decreases due to fewer warps. The only advantage of this is lesser training time.

• Additionally remove Super-Resolution using sub-pixel convolution: Removal of sub-
pixel convolution has a significant impact on Woodscape compared to KITTI.
This is mainly attributed to the fisheye model, as far-away objects are tiny and
cannot be resolved accurately with naive nearest-neighbor interpolation or
transposed convolution [428].

• Additionally remove cross-sequence distance consistency loss: Removing the CSDCL
mainly diminishes the baseline.



84 Chapter 4. Geometric Tasks

Method FS BS SR CSDCL Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Ours 3 3 3 3 0.102 0.720 4.559 0.183 0.892 0.973 0.988
Ours 3 7 3 3 0.131 0.856 4.933 0.198 0.853 0.954 0.968
Ours 3 7 7 3 0.141 0.971 5.183 0.206 0.831 0.941 0.953
Ours 3 7 7 7 0.144 1.011 5.204 0.225 0.822 0.945 0.949

Table 4.4 Ablation study of UnrectdepthNet on the KITTI dataset. Depths are capped at
80 m. FS, BS, SR, CSDCL indicate forward sequence, backward sequence, super-resolution
network with PixelShuffle [423] layers and cross-sequence depth consistency loss,
respectively. The input resolution is 608× 224 pixels.

• Additionally remove deformable convolutions: If we remove all the major com-
ponents, especially deformable convolution layers [417], the model will fail
miserably as the distortion introduced by the fisheye model will not be learned
correctly by normal convolutional layers.

4.5.3 KITTI Distorted Ablation Study

We perform an ablation study to understand the significance of different components
used and tabulate in Table 4.4:

• Remove Backward Sequence: The network is trained only for a forward sequence
consisting of two warps, as explained in [2]. The impact is significant in the
border areas as fewer constraints are induced. The model inherently fails to
resolve unknown depths in those areas at the test time, which was also observed
in previous works [53, 55, 370]. The only advantage of this is lesser training
time.

• Additionally remove Super-Resolution using sub-pixel convolution: It has a sig-
nificant effect as distant objects are small in fisheye cameras and cannot be
resolved correctly with simple nearest-neighbor interpolation or transposed
convolution [428].

• Additionally remove cross-sequence depth consistency loss: The removal of the
CSDCL diminishes the baseline, induces fewer constraints, and the model is
therefore not robust enough to yield accurate depth estimates.

4.6 Conclusion

This chapter presented two novel strategies in the field of self-supervised distance
estimation. Firstly, a novel self-supervised training strategy to obtain metric distance
maps on unrectified fisheye images. Secondly, a generic self-supervised training
method for depth estimation handling distorted images. We showed that it is possible
to support various commonly used automotive camera models in the framework
and indicate empirical results on KITTI and WoodScape datasets. We show that the
FisheyeDistanceNet and UnRectDepthNet establish a new state-of-the-art in the self-
supervised monocular distance and depth estimation through extensive experiments
on WoodScape and KITTI datasets, respectively. For KITTI, we show that depth
estimation on unrectified images can produce the same accuracy as on rectified images.
We obtain promising results, demonstrating the potential of using a CNN-based
approach deployable in commercial automotive systems, particularly for replacing
current classical depth estimation approaches.



4.6. Conclusion 85

In the following chapter, we will dig deeper into the choice of the self-supervised
distance estimation loss functions and improve the model’s robustness by incor-
porating semantic information. We will investigate how to leverage more directly
the 2nd class of perception algorithm: Semantic Segmentation to guide geometric
representation learning and induce a synergy between both the tasks for autonomous
driving. We will further extend this approach on surround-view cameras, and with
novel techniques, we aim for a large scale deployment of the model.



86 Chapter 4. Geometric Tasks

R
aw

In
pu

t
C

ro
pp

ed
In

pu
t

R
aw

In
pu

t
C

ro
pp

ed
In

pu
t

Figure 4.10 Qualitative results of FisheyeDistanceNet on the WoodScape dataset. For
more qualitative results, we refer to this video: https://youtu.be/Sgq1WzoOmXg.

https://youtu.be/Sgq1WzoOmXg


4.6. Conclusion 87

K
IT

TI
re

ct
ifi

ed
K

IT
TI

un
re

ct
ifi

ed
W

oo
dS

ca
pe

cr
op

pe
d

Figure 4.11 Qualitative results comparison of UnRectDepthNet on KITTI and
WoodScape dataset. The results on a distorted test video sequence indicate excellent
performance, see https://youtu.be/K6pbx3bU4Ss.

https://youtu.be/K6pbx3bU4Ss


88 Chapter 4. Geometric Tasks

K
IT

T
I

re
ct

ifi
ed

K
IT

T
I

un
re

ct
ifi

ed
W

oo
dS

ca
pe

cr
op

pe
d

Figure 4.12 Additional qualitative results comparison of UnRectDepthNet on KITTI and
WoodScape dataset.



89

Chapter 5

Geometry Meets Semantics

Contents
5.1 Problem Definition 90
5.2 Multi-Task Learning Framework 91

5.2.1 Semantic Segmentation Baseline 91
5.2.2 Robust Reconstruction Loss 92
5.2.3 Dealing With Dynamic Objects 93
5.2.4 Joint Optimization 94
5.2.5 Post-Processing Technique 95

5.3 Network Architecture 95
5.3.1 Self-Attention Encoder 96

Scalar based Self-Attention Encoder 96
Vector based Self-Attention Encoders 97
Pairwise Self-Attention 98
Patchwise Self-Attention 99

5.3.2 Camera Geometry Tensor 100
Motivation 100
Centered Coordinates (ccx, ccy) 102
Angle of Incidence Maps (ax, ay) 102
Normalized Coordinates (ncx, ncy) 103

5.3.3 Semantically-Guided Distance Decoder 103
5.3.4 Comparison of Convolution vs. Self-Attention 104

5.4 Experiments 104
5.4.1 Ablative Experiments on Woodscape 104

Effect of Multi-Task Learning 104
Generalization Across Different Cameras 107
Robust loss function strategy 108
Online Refinement and Run-Time Comparison 108

5.4.2 Ablative Experiments on KITTI 109
Pose Estimation Results 109
State-of-the-Art Comparison on KITTI 110

5.5 Conclusion 112



90 Chapter 5. Geometry Meets Semantics

5.1 Problem Definition

As in Chapter 4, where we set up a SfM framework for fisheye images to predict
distance maps by performing view-synthesis, in this chapter, we examine how to
leverage more directly the semantic context of the scene to guide geometric repre-
sentation learning while remaining in the self-supervised regime. Further, we dig
deep into the loss functions and the architecture aspects for distance estimation and
propose a near-field distance estimation solution on surround-view fisheye cameras
targeting large-scale industrial deployment.

The first contribution in that sense is the novel application of a general and robust loss
function proposed by [179] to the task of self-supervised distance estimation, which
replaces the de facto standard of an L1 loss function used in previous approaches [2,
3, 7, 55, 189]. The most important of all is a novel solution to filter out the dynamic
objects from contaminating the photometric loss during training and the infinite
distance issue during inference. This work was formally presented as SyndistNet [4]
as an oral at the WACV conference in 2021.

Typically, automotive perception systems use multiple cameras, with current systems
having at least four cameras. The number is likely to increase to more than ten cameras
for future generation systems. Such surround-view cameras are focused on near field
sensing, which is typically used for low-speed applications such as parking or traffic
jam assistance functions [60]. The surround-view distance estimation framework will
be facilitated by employing a single network on images from multiple cameras. A
surround-view coverage of geometric information can be obtained for an autonomous
vehicle by utilizing and post-processing the distance maps from all cameras.

Near-field distance estimation is a challenging problem because of distortion and
partial visibility of close-by objects. Also, centimeter-level accuracy is required to
enable precise low-speed maneuvers such as parking. Up to now, for the generation of
high-quality distance estimates, one network per camera has to be trained, inducing
unfeasible computational complexity with an increasing number of cameras. One
of the thesis’s main goals is to target the design of a model that can be deployed in
millions of vehicles having its own set of cameras. To do so, we present a novel camera
geometry adaptive multi-scale convolution to incorporate the camera parameters into
the self-supervised distance estimation framework. This work was very influential
from a product perspective to win next-generation projects and be influential in the
academic community. This work formally presented as SVDistNet [5] to a journal at
the T-ITS in 2021.

As depicted in Figure 5.1, dynamic objects induce a lot of unfavorable artifacts and
hinder the photometric loss during the training, which results in infinite distance
predictions, e.g., due to their violation of the static world assumption. Therefore, we
use the segmentation masks to apply a simple semantic masking technique, based
on the temporal consistency of consecutive frames, which delivers significantly im-
proved results, e.g., concerning the infinite distance problem of objects moving at
the same speed as the ego-camera. Compared to previous approaches, the seman-
tically guided distance estimation in Figure 5.1 produces sharper depth edges and
reasonable distance estimates for dynamic objects. Previous approaches [303, 363]
did predict these motion masks only implicitly as part of the projection model and
therefore were limited to the projection model’s fidelity.

https://arxiv.org/abs/2008.04017
https://arxiv.org/abs/2104.04420


5.2. Multi-Task Learning Framework 91

Self-Attention Blocks

ResNet Encoder Blocks

Semantic Decoder Blocks

Distance Decoder Blocks

Semantic Guided Distance Features
Conv Features
Skip Connection

Shared 
ResNet 
Encoder 

q(𝑥)  
1x1 Conv

Conv 
Feature Map

𝑥

1x1 Conv

1x1 Conv

1x1 Conv

(𝑥)v

(𝑥)k

Attention Map

Softmax Self-Attention Maps

Matrix Multiplication

Semantic Features

Geometric 
Projection

Cross Sequence
Consistency Loss

Reconstruction Loss

Smoothness Loss

Geometric 
Projection Semantic

MTL Loss

DC Object Mask

Cross Entropy Loss

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
ResNet 
Encoder 

Pose 
Encoder 

Pose 
Decoder 

Distance 
Decoder 

Semantic 
Decoder 

𝑡→T 𝑡'

 

𝐼t' 

𝐼t

𝐼t

𝑡→T 𝑡'

𝐼t'
 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'M

M
𝜇𝑡

𝑦𝑡𝑦𝑡

𝐼t

𝜎1

 

ℒ𝒹

ℒ𝓈𝜎2

+

Concat

Semantic 
Guidance

𝑡

Argmax( )

→M 𝑡'𝑡

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
ResNet 
Encoder 

Distance Decoder 

Semantic 
Decoder 

𝐼t 𝐷𝑡

M

Semantic 
Guidance

𝑡

SynDistNet

Baseline

Figure 5.1 Overview of the SynDistNet framework and a comparison with
FisheyeDistanceNet baseline. We jointly predict the distance D̂t and the semantic
segmentation Mt from a single input image It.

5.2 Multi-Task Learning Framework

This section describes the framework for the multi-task learning of distance estima-
tion and semantic segmentation as illustrated in Figure 5.2. The upper part (blue
blocks) describes the single steps required for distance estimation, while the green
blocks describe the single steps needed to predict semantic segmentation. Both tasks
are optimized inside a multi-task network by using the weighted total loss described
in Eq. 5.8. Following Section 4.3, we set up the self-supervised monocular structure-
from-motion (SfM) framework with extensions to enabling multiple cameras. View
synthesis is performed by incorporating the polynomial projection model from Sec-
tion 4.3.1. The same protocols are used to train the distance and pose estimation
networks simultaneously. Section 4.3.7 describes the total self-supervised objective
loss. In the following part, we will describe the different loss contributions in the
context of fisheye camera images.

5.2.1 Semantic Segmentation Baseline

We define semantic segmentation as the task of assigning a pixel-wise label mask Mt
to an input image It, i.e. the same input as for distance estimation from a single image.
Each pixel gets assigned a class label s ∈ S = {1, 2, ..., S} from the set of classes S . In
a supervised way, the network predicts a posterior probability Yt that a pixel belongs
to a class s ∈ S , which is then compared to the one-hot encoded ground truth labels



92 Chapter 5. Geometry Meets Semantics

Self-Attention Blocks

ResNet Encoder Blocks

Semantic Decoder Blocks

Distance Decoder Blocks

Semantic Guided Distance Features
Conv Features
Skip Connection

Shared 
ResNet 
Encoder 

q(𝑥)  
1x1 Conv

Conv 
Feature Map

𝑥

1x1 Conv

1x1 Conv

1x1 Conv

(𝑥)v

(𝑥)k

Attention Map

Softmax Self-Attention Maps

Matrix Multiplication

Semantic Features

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric 
Projection Semantic

MTL Loss

DC Object Mask

Cross Entropy Loss

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
ResNet 
Encoder 

Pose 
Encoder 

Pose 
Decoder 

Distance 
Decoder 

Semantic 
Decoder 

𝑡→T 𝑡'

 

𝐼t' 

𝐼t

𝐼t

𝑡→T 𝑡'

𝐼t'

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'M

M
𝜇𝑡

𝑦𝑡𝑦𝑡

𝐼t

𝜎1

 

ℒ𝒹

ℒ𝓈𝜎2

+

Concat

Semantic 
Guidance

𝑡

Argmax( )

→M 𝑡'𝑡

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
ResNet 
Encoder 

Distance Decoder 

Semantic 
Decoder 

𝐼t 𝐷𝑡

M

Semantic 
Guidance

𝑡

SynDistNet

Baseline

Figure 5.2 Overview of the SynDistNet framework for the joint prediction of distance and
semantic segmentation.

Yt inside the cross-entropy loss

Lce = − ∑
s∈S

Yt,s · log (Yt,s) (5.1)

the final segmentation mask Mt is then obtained by applying a pixel-wise argmax
operation on the posterior probabilities Yt,s. Note that we also use unrectified fisheye
camera images, for which the segmentation task can however still be applied as
shown in this work.

5.2.2 Robust Reconstruction Loss

Most state-of-the-art self-supervised depth estimation methods use heuristic loss func-
tions. However, the optimal choice of a loss function is not well defined theoretically.
In this section, we emphasize the need for the exploration of a better photometric loss
function described in Section 4.3.2 and explore a more generic robust loss function.

Towards developing a more robust loss function, we introduce the common notion of
a per-pixel regression ρ in the context of distance estimation, which is given by

ρ (ξ) = ρ
(

Ît′→t − It
)

(5.2)

while this general loss function can be implemented by a simple L1 loss as in the
second term of Eq. 4.9, recently, a general and more robust loss function has been
proposed by Barron [179], which we use to replace the L1 term in Eq. 4.9. This
function is a generalization of many common losses such as the L1, L2, Geman-
McClure, Welsch/Leclerc, Cauchy/Lorentzian and Charbonnier loss functions. In
this loss, robustness is introduced as a continuous parameter and it can be optimized
within the loss function to improve the performance of regression tasks. The general



5.2. Multi-Task Learning Framework 93

form of the loss function is:

frob (ζ, ρ, c) =
|ρ− 2|

ρ

( (ζ/c)2

|ρ− 2| + 1

)ρ/2

− 1

 (5.3)

The free parameters in this loss function can be automatically adapted to any par-
ticular problem via data-driven optimization. To induce ρ as a trainable parameter
Barron [179] encapsulates the loss into a probability density function given by:

p (ζ | µ, ρ, c) =
1

cZ (ρ)
exp (−ρ (ζ − µ, ρ, c)) (5.4)

Z (ρ) =
∫ ∞

−∞
exp (−ρ (ζ, ρ, 1)) (5.5)

where p (ζ | µ, ρ, c) is only defined if ρ ≥ 0, as Z (ρ) is divergent when ρ < 0. Then
the optimization function reduces to:

arg min
θ,ρ
−log(p(ζ|ρ) = ρ (ζ, ρ) + log(Z(ρ)) (5.6)

where log(Z(ρ)) is an analytical function which is approximated with a cubic spline
function. Z (ρ) is an important factor in the loss function as it reduces the cost of
outliers. The loss of outliers decreases with the reduction of ρ. Correspondingly, the
loss of inliers will increase. The main properties of the robust loss function are (i) It
is monotonic with respect to its inputs |ζ| and ρ which is useful for graduated non-
convexity. (ii) It is smooth respect to its inputs ζ and ρ (i.e., in C∞). (iii) It has bounded
first and second derivatives (no exploding gradients and easier pre-conditioning).

5.2.3 Dealing With Dynamic Objects

Typically, the assumed static world model for projections between image frames is
violated by dynamic objects’ appearance. Thereby, we use the segmentation masks to
exclude moving potentially dynamic objects while non-moving dynamic object should
still contribute.

In order to implement this, we aim at defining a pixel-wise mask µt, which contains a
0, if a pixel belongs to a dynamic object from the current frame It, or a wrongfully
projected dynamic object from the reconstructed frames Ît′→t, and a 1 otherwise. For
calculating the mask, we start by predicting a semantic segmentation mask Mt which
corresponds to image It and segmentation masks Mt′ for all images It′ . We then use
the same projections for the images and warp the segmentation masks (using nearest
neighbor instead of bilinear sampling), yielding projected segmentation masks Mt′→t.
Then, also defining the set of dynamic object classes SDC ⊂ S we can define µt by its
pixel-wise elements at pixel location uv:

µt,uv =

{
1, Mt,uv /∈ SDC ∧ Mt′→t,uv /∈ SDC
0, else

(5.7)

The mask is then applied pixel-wise on the reconstruction loss defined in Eq. 4.9
to mask out dynamic objects. However, as we only want to mask out moving DC-
objects, we detect them using the consistency of the target segmentation mask and the
projected segmentation mask to judge whether dynamic objects are moving between
consecutive frames (e.g., we intend to learn the distance of dynamic objects from



94 Chapter 5. Geometry Meets Semantics

(a) Image (b) Segmentation

(c) Projected image (d) Projected segmentation

(e) Photometric error (f) Dynamic object mask

(g) Distance Estimate (h) Mask (f) applied on (e)

Figure 5.3 Application of the semantic masking methods to handle potentially dynamic
objects. The dynamic objects inside the segmentation masks from consecutive frames in (b)
and (d) are accumulated to a dynamic object mask, which is used to mask the photometric
error (e), as shown in (h).

parking cars, but not from driving ones). With this measure, we apply the dynamic
object mask µt only to an imposed fraction ε of images, in which the objects are
detected as mostly moving.

5.2.4 Joint Optimization

We incorporate the task weighting approach by Kendall et al. [132]; we weigh the
distance estimation and semantic segmentation loss terms for multi-task learning,
which enforces homoscedastic (task) uncertainty. It is proven to be effective in



5.3. Network Architecture 95

weighing the losses from Eq. 4.14 and Eq. 5.1:

1
2σ2

1
Ltot +

1
2σ2

2
Lce + log(1 + σ1) + log(1 + σ2) (5.8)

Homoscedastic uncertainty does not change with varying input data and is task-
specific. We, therefore, learn this uncertainty and use it to downweigh each task.
Increasing the noise parameter σi reduces the weight for the respective task. Fur-
thermore, σ is a learnable parameter; the objective optimizes a more substantial
uncertainty that should lead to a smaller contribution of the task’s loss to the total
loss. In this case, the different scales from the distance and semantic segmentation
are weighed accordingly. The noise parameter σ1 tied to distance estimation is rel-
atively low compared to σ2 of semantic segmentation, and the convergence occurs
accordingly. Higher homoscedastic uncertainty leads to a lower impact on the task’s
network weight update. It is important to note that this technique is not limited to
the joint learning of distance estimation and semantic segmentation but can also be
applied to more tasks and arbitrary camera geometries.

5.2.5 Post-Processing Technique

This subsection provides a brief overview of how the distance maps get post-processed
and converted to a representation directly used by motion planning. The prime pur-
pose of surround-view cameras is to aid 360° near-field sensing around the car.
Low-speed maneuvering such as parking requires very high accuracy in the order
of 5 cm and the ability to detect small objects like curbs or potholes. We construct a
2D top-view heightmap grid at a 5 cm and 10 m range resolution by targeting these
requirements. We project the distance and semantic segmentation maps from each
image onto the top view and fill the height map cells with the height information.
Due to a small overlap in the image’s corners, we require a fusion scheme to combine
the distance values. The spatial consistency of the scene across cameras can be ex-
ploited. We use a spatial smoothing filter to smoothen the current observation, further
filtered using a temporal smoothing filter. The top-view post-processed distance and
semantic maps are utilized for our Level 3 planning module in the final step. The
filtered height maps are illustrated in Figure 5.7. Additional qualitative results are
illustrated in Figures 5.14, 5.15, 5.16 and 5.17.

5.3 Network Architecture

This section explains the novel architecture for semantically guided self-supervised
distance estimation utilizing Camera Geometry Tensor (CGT) to handle multiple
viewpoints and changes in the camera’s intrinsic. The baseline from [2] used de-
formable convolutions to model the fisheye geometry to incorporate the distortion
and improve the distance estimation accuracy. At first, we introduce a scalar-based
self-attention encoder to obtain locally-attentive maps and a semantically guided
decoder for the distance estimation using pixel-adaptive convolutions for the SynDis-
tNet network architecture as shown in Figure 5.4, which can be trained in a one-stage
fashion. Later, we incorporate improved vector-based self-attention modules from [8]
shown in Figure 5.5. The figure provides an overview of the proposed network ar-
chitecture used in the SVDistNet framework. The encoder is a self-attention network
with pairwise and patchwise variants as described in Section 5.3.1. At the same time,
the decoder uses pixel-adaptive convolutions, which are complemented by the novel



96 Chapter 5. Geometry Meets Semantics

Self-Attention Blocks

ResNet Encoder Blocks

Semantic Decoder Blocks

Distance Decoder Blocks

Semantic Guided Distance Features
Conv Features
Skip Connection

Shared 
ResNet 
Encoder 

q(𝑥)  
1x1 Conv

Conv 
Feature Map

𝑥

1x1 Conv

1x1 Conv

1x1 Conv

(𝑥)v

(𝑥)k

Attention Map

Softmax Self-Attention Maps

Matrix Multiplication

Semantic Features

Geometric 
Projection

Cross Sequence
Consistency Loss

Reconstruction Loss

Smoothness Loss

Geometric 
Projection Semantic

MTL Loss

DC Object Mask

Cross Entropy Loss

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
ResNet 
Encoder 

Pose 
Encoder 

Pose 
Decoder 

Distance 
Decoder 

Semantic 
Decoder 

𝑡→T 𝑡'

 

𝐼t' 

𝐼t

𝐼t

𝑡→T 𝑡'

𝐼t'
 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'M

M
𝜇𝑡

𝑦𝑡𝑦𝑡

𝐼t

𝜎1

 

ℒ𝒹

ℒ𝓈𝜎2

+

Concat

Semantic 
Guidance

𝑡

Argmax( )

→M 𝑡'𝑡

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
ResNet 
Encoder 

Distance Decoder 

Semantic 
Decoder 

𝐼t 𝐷𝑡

M

Semantic 
Guidance

𝑡

SynDistNet

Baseline

Figure 5.4 Visualization of the SynDistNet network architecture.

Camera Geometry Tensors. These networks efficiently adapt the weights across both
spatial dimensions and channels. The complete training of both tasks is performed in
a one-stage manner.

5.3.1 Self-Attention Encoder

Scalar based Self-Attention Encoder

Previous depth estimation networks [53, 55] use normal convolutions for capturing
local information in an image, but the convolutions’ receptive field is comparably
small. One of the major drawbacks is that convolution lacks rotation invariance. The
kernel K’s footprint increases the number of parameters to be learned, and due to the
filter’s fixed nature, aggregation of neighborhood information can not adapt to its
contents. Hu et al. [429] and Ramachandran et al. [430] perceived that self-attention



5.3. Network Architecture 97

could be a feasible choice for developing models for image perception rather than
merely enhancing discrete convolutional operation layers. The authors present a
self-attention layer which may replace convolution while reducing the number of
parameters. Similar to a convolution, given a pixel xuv ∈ Rdin inside a feature map,
the local region of pixels defined by positions ab ∈ Nk(uv) with spatial extent k
centered around xuv are extracted initially which is referred to as a memory block.
For every memory block, the single-headed attention for computing the pixel output
zuv ∈ Rdout is then calculated:

zuv = ∑
ab∈Nk(uv)

softmaxab

(
q>ij kab

)
vab (5.9)

where quv = WQxuv are the queries, keys kab = WKxab, and values vab = WV xab are
linear transformations of the pixel in position uv and the neighborhood pixels. The
learned transformations are denoted by the matrices W. softmaxab defines a softmax
applied to all logits computed in the neighborhood of uv. WQ, WK, WV ∈ Rdout×din

are trainable transformation weights. There exists an issue in the above-discussed
approach, as there is no positional information encoded in the attention block. Thus
the Eq. 5.9 is invariant to permutations of the individual pixels. For perception tasks, it
is typically helpful to consider spatial information in the pixel domain. For example,
the detection of a pedestrian is composed of spotting faces and legs in a proper
relative localization. The main advantage of using self-attention layers in the encoder
illustrated in Figure 5.4 is that it induces a synergy between geometric and semantic
features for distance estimation and semantic segmentation tasks. In [431] sinusoidal
embeddings are used to produce the absolute positional information. Following [430],
instead of attention with 2D relative position embeddings, we incorporate relative
attention due to their better accuracy for computer vision tasks. The relative distances
of the position uv to every neighborhood pixel (a, b) is calculated to obtain the relative
embeddings. The calculated distances are split up into row and column distances
ra−i and rb−j and the embeddings are concatenated to form ra−i,b−j and multiplied by
the query quv:

zuv = ∑
ab∈Nk(ij)

softmaxab

(
q>ij kab + q>ij ra−i,b−j

)
vab (5.10)

It ensures the weights calculated by the softmax function are modulated by both the
key’s relative distance and content from the query. Instead of focusing on the whole
feature map, the attention layer only focuses on the memory block, which can be seen
in the bottom part of Figure 5.4.

Vector based Self-Attention Encoders

Inspired by [8], we incorporate the self-attention network (SAN) backbone to the
encoder and compare it with the standard ResNet18 [163] and ResNet50 [163] choice
of encoder networks. Compared to the scalar attention self-attention layers explained
earlier, which are only content-adaptive and not channel-adaptive. The vector at-
tention work of Zhao [8] has a smaller footprint than the ResNet family of standard
encoder heads, and the vector attention is both content and channel adaptive. The au-
thors showcase two convolution variants, namely pairwise and patchwise, which may
replace convolution while reducing the number of parameters and giving advantages
in terms of robustness and generalization.



98 Chapter 5. Geometry Meets Semantics

Self-Attention Blocks

Res Blocks

Semantic Decoder Blocks

Distance Decoder Blocks

Semantic Guided Distance Features
Conv Features
Skip Connection

Shared 
Self-
Attention 
Encoder 

Feature Tensor
With Channel 

Dimensionality 
(C)

:linear C/r

Self-Attention Block

Semantic Features

𝜑,𝜓
1

relation 𝛿,
mapping

:linear C/r2
Aggregation

linear, C

bn/
relu

Camera Convolutions

bn/relu

𝜒

𝜁

Figure 5.5 Visualization of the SVDistNet network architecture.

Pairwise Self-Attention

The pairwise self-attention module is given by:

zuv = ∑
ab∈Nr(uv)

η(xuv, xab)� χ(xab) (5.11)



5.3. Network Architecture 99

The location of the spatial index in the feature vector xuv is denoted by uv, � is the
Hadamard product, and the aggregation of the local footprint is Nr(uv). The new
feature zuv ∈ Rdout is constructed by aggregating the feature vectors specified by the
set of indices by the footprint Nr(uv). The adaptive weight vectors η(xuv, xab) aggre-
gate the feature vectors χ(xab) produced by the function χ. The weights η(xuv, xab)
required to combine the transformed features χ(xab) are computed by the function η.
η is decomposed to elucidate the different forms of self-attention and is given by:

η(xuv, xab) = ζ(δ(xuv, xab)) (5.12)

The features xuv and xab are expressed by a single vector outputted by the relation
function δ. This vector is used along with the function ζ to map a vector that can
be combined with χ(xab) as shown in Eq. 5.11. The ζ function allows us to explore
δ relationships that generate vectors of varying dimensionality that do not need to
match the χ(xab) dimensionality. In this work, we choose the relation function δ to be
described by the Hadamard product form from [8]:

δ(xuv, xab) = ϕ(xuv)� ψ(xab) (5.13)

where ϕ and ψ are transformations that can be trained, which suit the dimensionality
of the output. The dimensionality of δ(xuv, xab) is the same as that of the transforma-
tion functions with the Hadamard product.

Patchwise Self-Attention

The patchwise self-attention module is given by:

zuv = ∑
ab∈Nr(uv)

η(xNr(uv))ab � χ(xab) (5.14)

In the footprint Nr(uv), the patch of feature vectors given by xNr(uv). η(xNr(uv)) and
the patch xNr(uv) have the same spatial dimensionality. η(xNr(uv))ab is a vector located
at ab in that tensor, corresponding to the xab vector in xNr(uv) spatially. The patchwise
self-attention concerning the features xab is no longer a set operation compared to
its pairwise counterpart. It is not permutation-invariant or cardinality-invariant:
the η(xNr(uv)) weight calculation will index the xNr(uv) feature vectors separately, by
position, and can intermix information from feature vectors from various locations
within the footprint. Therefore patchwise self-attention is especially more effective
than standard convolution. η(xNr(uv)) is decomposed by:

η(xNr(uv)) = ζ(δ(xNr(uv))). (5.15)

The feature vector created by δ(xNr(uv)) is mapped by the function ζ to a tensor with
the suitable dimensionality and it is comprised of weight vectors for all locations
ab. Feature vectors xab from the patch xNr(uv) are combined by the function δ. We
specifically incorporate the Concatenation form from [8] for the relation function δ.

δ(xNr(uv)) = [ϕ(xuv), [ψ(xab)]∀ab∈Nr(uv)] (5.16)

The pairwise and patchwise self-attention operations can be used to build residual
blocks [163] for the encoder that performs both feature aggregation and transforma-
tion.



100 Chapter 5. Geometry Meets Semantics

Front Camera

Mirror View Left Camera Mirror View Right Camera

Rear Camera

Front 

Right Rear

Left 

Front Left

RearRight

Multiple 
Cameras

Multiple 
Viewpoints

SVDistNet

Figure 5.6 Illustration of distance estimation on multiple cameras and multiple
viewpoints constituting SVDistNet.

5.3.2 Camera Geometry Tensor

Motivation

We target the design of a model that can be deployed in millions of vehicles having its
own set of cameras. Although the underlying camera intrinsics model is the same for
a particular family of vehicles, there are variations due to manufacturing processes,
which require the calibration of each camera instance. Even after deployment, cal-
ibration can vary due to high environmental temperature or due to aging. Thus a
calibration adaptation mechanism in the model is essential.

This contrasts with public datasets, which have a single camera instance for both the
training and test dataset. In the Woodscape dataset, there are 12 different cameras
with slight intrinsic variations to evaluate this effect. There are four camera instances
around the vehicle with different intrinsics, even for a single instance of a surround-
view system. A single model for these four cameras instead of 4 individual models
would also have several practical advantages such as:

• An improved efficiency on the embedded system requiring less memory and
data rate to transmit.

• An improved training by access to a larger dataset and regularization through
different views.

• Maintenance and certification of a single model instead of four.



5.3. Network Architecture 101

Multi Camera 
Distance Estimates

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric 
Projection Semantic

MTL Loss

DC Object Mask

Cross Entropy Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡

𝑦𝑡

𝑦𝑡

𝜎1ℒ𝒹

ℒ𝓈𝜎2

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

 

M

Camera Model Representation

Semantic 
Decoder

Camera Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

Post Processing of Point Cloud Distance Estimates

𝑡C

Shared 
Self-

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Multi Camera 
Distance Estimates

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric 
Projection Semantic

MTL Loss

DC Object Mask

Cross Entropy Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡

𝑦𝑡

𝑦𝑡

𝜎1ℒ𝒹

ℒ𝓈𝜎2

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

 

M

Camera Model Representation

Semantic 
Decoder

Camera Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

Post Processing of 
Point Cloud 

Distance Estimates

𝑡C

Shared 
Self-

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Figure 5.7 Overview of SVDistNet: A surround-view based self-supervised distance
estimation framework making use of semantic guidance and camera-geometry adaptive
convolutions (orange block).

Automated driving systems have a wide variety of cameras, typically around 10,
placed in different car locations with different fields of view. Figure 5.6 shows
sample distance estimation images of four cameras mounted on a car covering the
entire 360° FoV surrounding the car. Instead of developing an individual model
for each camera, developing a single model for all cameras is highly desirable, as
discussed in the introduction. It is an unsolved problem, and we aim to solve this by
incorporating camera geometry into distance estimation. We intend to convert all the
camera geometry properties into a tensor called camera geometry tensor Ct (CGT),
which will then be passed to the CNN model at both training and inference. From
the view of distance estimation, camera intrinsics is the primary model adaptation
needed. However, the CGT notion is generic, and we plan to extend it to include
camera extrinsic and camera motion (visual odometry) for improving other tasks. The
closest work is CAM-Convs [432], which uses camera-aware convolutions for pinhole
cameras. We build upon this work and generalize to arbitrary camera geometries,
including fisheye cameras.

The camera geometry adaptive mechanism is fundamental in the training process
of the SVDistNet as the four different cameras mounted on the car have different
intrinsic parameters and viewpoints. The trained distance and pose estimation
networks need to generalize when deployed on a different car with a change in
multiple viewpoints and intrinsics. To achieve this, we introduce the CGT in the
mapping from RGB features to 3D information for distance estimation and semantic
segmentation, as shown in Figure 5.5. We also add Ct to the pose encoder, shown
in Figure 5.7. It is included in each stage and also applied to every skip connection.
The framework consists of processing units to train the self-supervised distance
estimation (blue blocks) and semantic segmentation (green blocks). The CGT (orange
block) helps SVDistNet to yield distance maps on multiple camera-viewpoints and
makes the network camera independent. Ct can also be adapted to the standard
camera models, as explained in Section 5.3.2. Both modalities are weighted and
optimized simultaneously by the multi-task loss from 5.8. The proposed framework
can obtain top-view geometric information by post-processing the predicted distance



102 Chapter 5. Geometry Meets Semantics

and semantic maps in 3D space.

The CGT is formulated in a three-step process: For efficient training, the pixel-
wise coordinates and angle of incidence maps are pre-computed. The normalized
coordinates per pixel are used for these channels by incorporating information from
the camera calibration. We concatenate these tensors and represent them by Ct and
pass it along with the input features to the SAN pairwise and patchwise operation
modules. It comprises six channels in addition to the existing decoder channel
inputs. The proposed approach can, in principle, be applied to any fisheye projection
model of choice. We briefly discuss standard projection models which the CGT
supports. For fisheye lenses, the mapping of 3D points to pixels universally requires
a radial component $ (θ) [107]. The polynomial model is the commonly used one,
and relatively recent projection models are UCM (Unified Camera Model) [433] and
eUCM (Enhanced UCM) [82]. Rectilinear (representation of pinhole model) and
Stereographic (mapping of a sphere to a plane) camera models are not suitable for
fisheye lenses but provided for comparison. Double Sphere [83] is a recently proposed
model with a closed-form inverse with low computational complexity. For further
information on radial distortion models we refer Section 2.1.1.

The different maps included in the shared self-attention encoder are computed using
the camera intrinsic parameters, where the distortion coefficients a1, a2, a3, a4 are used
to create the angle of incidence maps (ax, ay), cx, cy are used to compute the principal
point coordinate maps (ccx, ccy) and the camera’s sensor dimensions (width w and
height h) are utilized to formulate the normalized coordinate maps.

Centered Coordinates (ccx, ccy)

The information of the principal point position is fed to the SAN pairwise and patchwise
operation modules by including the ccx and ccy coordinate channels centered at (0, 0).
We formulate ccx and ccy channels as shown below:

ccx =


0− cx
1− cx...
w− cx

 ·


1
1...
1


ᵀ

(h+1)×1

=

 −cx · · · −cx
...

. . .
...

w− cx · · · w− cx

 (5.17)

ccy =


1
1...
1


(w+1)×1

·


0− cy
1− cy...
h− cy


ᵀ

=

−cy · · · h− cy
...

. . .
...

−cy · · · h− cy

 (5.18)

We concatenate ccx and ccy by resizing them using bilinear interpolation to match the
input feature size.

Angle of Incidence Maps (ax, ay)

For the pinhole (Rectilinear) camera model, the horizontal and vertical angle of
incidence maps are calculated from the cc maps using the camera’s focal length f

ach[i, j] = arctan
( ccch[i, j]

f

)
(5.19)



5.3. Network Architecture 103

where ch can be x or y (see Eq. 5.17 and 5.18). For the different fisheye camera models,
the angle of incidence maps can analogously be deduced by taking the inverse of
the radial distortion functions $(θ) listed above. Specifically, for the polynomial
model used in this work, the angle of incidence θ is formulated by calculating the

4th order polynomial roots of $ =
√

x2
I + y2

I = a1θ + a2θ2 + a3θ3 + a4θ4 through a
numerical method. We store the pre-calculated roots in a lookup table for all the pixel
coordinates to achieve training efficiency and create the ax and ay maps by setting
xI = ccx[i, j], yI = 0 and xI = 0, yI = ccy[i, j] respectively. As UCM, eUCM, and
Double Sphere projection models can be inverted analytically, there is no need for a
lookup table.

Normalized Coordinates (ncx, ncy)

Additionally, we add two channels of normalized coordinates [432, 434] whose values
vary between −1 and 1 linearly with respect to the image coordinates. The channels
are independent of the camera sensor properties and characterize the spatial extent
of the content in feature space in each direction (e.g., a value of the x̂ channel close to
1 indicates that the feature vector at this location is close to the right border).

5.3.3 Semantically-Guided Distance Decoder

To address the limitations of regular convolutions, we follow the approaches of
[7, 435] in using pixel-adaptive convolutions (PAC) for semantic guidance inside the
distance estimation branch of the multi-task network. This approach can break up the
translation invariance of convolutions and incorporate spatially specific information
of the semantic segmentation branch.

To this end, as shown in Figure 5.4 and Figure 5.5 we extract feature maps at different
levels from the semantic segmentation branch of the multi-task network. These
semantic feature maps are consequently used to guide the respective pixel-adaptive
convolutional layer, following the formulation proposed in [435] to process an input
signal x to be convolved:

x′uv = ∑
ab∈Nk(i,j)

K(Fuv, Fab)W[ra−i,b−j]xab + B (5.20)

where Nk(i, j) defines a k× k neighbourhood window around the pixel location uv
(distance ra−i,b−j between pixel locations), which is used as input to the convolution
with weights W (kernel size k), bias B ∈ R1 and kernel K, that is used in this case to
calculate the correlation between the semantic guidance features F ∈ RD from the
segmentation network. We follow [7] in using a Gaussian kernel:

K(Fuv, Fab) = exp
(
−1

2
(Fuv − Fab)

TΣ−1
uvab(Fuv − Fab)

)
(5.21)

with covariance matrix Σuvab between features Fuv and Fab, which is chosen as a diag-
onal matrix σ2 · 1D, where σ represents a learnable parameter for each convolutional
filter.

In this work, we use pixel-adaptive convolutions to produce semantic-aware distance
features. The fixed information encoded in the semantic network is used to disam-
biguate geometric representations for the generation of multi-level distance features.



104 Chapter 5. Geometry Meets Semantics

Method Seg Dist. MTL MTL
(Synergy)

Seg.
(mIoU)

Distance
(RMSE)

SynDistNet [4]

3 7 7 7 76.8 7

7 3 7 7 7 2.316
3 3 3 7 78.3 2.128
3 3 7 3 81.5 1.714

SVDistNet
(SAN10-patch)

3 7 7 7 77.1 7

7 3 7 7 7 2.153
3 3 3 7 78.6 1.861
3 3 7 3 82.3 1.532

Table 5.1 Effect of the multi-task training approaches SynDistNet and SVDistNet
compared with each other.

Compared to previous approaches [7, 189], we use features from the semantic seg-
mentation branch that is trained simultaneously with the distance estimation branch
introducing a more favorable one-stage training.

5.3.4 Comparison of Convolution vs. Self-Attention

The pairwise models match or outperform the convolutional baselines while requiring
similar or less parameters and FLOP budgets. The patchwise models perform even
better in terms of computational complexity. For example, the patchwise SAN10 with
11.8M params and 1.9G FLOPS outperforms ResNet50 with 25.6M params and 4.1G
FLOPS, a 54% lower parameter and 44% lower FLOP count. SAN10-patch models’
parameter count is almost nearly equivalent to ResNet18 with 11.7M params and
1.8G FLOPS, whereas SAN15-patch with 20.5M params and 3.3G FLOPS is equivalent
to ResNet50’s parameter count. The SAN10-pairwise with 10.5M params and 2.2G
FLOPS outperforms ResNet18 with a 9% lower parameter count and 22% higher
FLOP count. We could leverage the usage of a more robust loss function compared to
L1 to reduce training times on SAN10 by performing a single-scale image distance
prediction in contrast to the multi-scale prediction in the previous works [2, 3].

5.4 Experiments

5.4.1 Ablative Experiments on Woodscape

Effect of Multi-Task Learning

Table 5.1 captures the primary goal of this work, which is to develop a synergistic
multi-task network for semantic segmentation and distance estimation. ResNet-18
backbone was used for SynDistNet and SAN-10 for SVDistNet. We observe that both
outputs improve through the multi-task training, mainly the distance estimation
performance profits from the synergized semantic guidance. Firstly, we formulate
single-task baselines for these tasks and build an essential shared encoder multi-task
learning (MTL) baseline. The MTL results are slightly better than their respective
single-task benchmarks demonstrating that shared encoder features can be learned
for diverse tasks wherein segmentation captures semantic features and distance
estimation captures geometric features. The proposed synergized MTL network



5.4. Experiments 105

Network RL Self-Attn SEM Mask CGT Absrel Sqrel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

FisheyeDistanceNet [2] 7 7 7 7 7 0.152 0.768 2.723 0.210 0.812 0.954 0.974

SynDistNet (ResNet18) [4]

3 7 7 7 7 0.142 0.537 2.316 0.179 0.878 0.971 0.985
3 7 7 3 7 0.133 0.491 2.264 0.168 0.868 0.976 0.988
3 3 7 3 7 0.121 0.429 2.128 0.155 0.875 0.980 0.990
3 3 3 7 7 0.105 0.396 1.976 0.143 0.878 0.982 0.992
3 3 3 3 7 0.076 0.368 1.714 0.127 0.891 0.988 0.994

SynDistNet(ResNet50) [4]

3 7 7 7 7 0.138 0.540 2.279 0.177 0.880 0.973 0.986
3 7 7 3 7 0.127 0.485 2.204 0.166 0.881 0.975 0.989
3 3 7 3 7 0.115 0.413 2.028 0.148 0.876 0.983 0.992
3 3 3 7 7 0.102 0.387 1.856 0.135 0.884 0.985 0.994
3 3 3 3 7 0.068 0.352 1.668 0.121 0.895 0.990 0.996

SVDistNet (SAN10-patch)

3 3 7 7 7 0.128 0.469 2.153 0.164 0.875 0.974 0.986
3 3 7 3 7 0.114 0.413 2.022 0.149 0.878 0.982 0.990
3 3 7 3 3 0.101 0.378 1.861 0.133 0.884 0.984 0.991
3 3 3 7 7 0.094 0.345 1.789 0.128 0.887 0.985 0.992
3 3 3 7 3 0.082 0.316 1.682 0.119 0.890 0.987 0.993
3 3 3 3 7 0.074 0.343 1.641 0.112 0.892 0.985 0.994
3 3 3 3 3 0.057 0.315 1.532 0.108 0.896 0.986 0.996

SVDistNet (SAN10-pair) 3 3 7 3 3 0.121 0.457 2.115 0.152 0.879 0.979 0.985
3 3 3 7 3 0.103 0.385 1.882 0.141 0.882 0.983 0.990
3 3 3 3 3 0.081 0.365 1.710 0.128 0.890 0.985 0.994

SVDistNet (SAN19-patch)

3 3 7 7 7 0.121 0.437 2.127 0.153 0.878 0.976 0.989
3 3 7 3 7 0.109 0.408 2.006 0.145 0.880 0.982 0.992
3 3 7 3 3 0.098 0.372 1.849 0.138 0.884 0.983 0.991
3 3 3 7 7 0.091 0.351 1.773 0.129 0.886 0.986 0.993
3 3 3 7 3 0.070 0.305 1.669 0.108 0.893 0.986 0.994
3 3 3 3 7 0.067 0.296 1.578 0.106 0.895 0.985 0.994
3 3 3 3 3 0.048 0.277 1.486 0.086 0.901 0.991 0.996

SVDistNet (SAN19-pair) 3 3 7 3 3 0.116 0.461 2.097 0.154 0.881 0.982 0.988
3 3 3 7 3 0.096 0.371 1.846 0.147 0.884 0.985 0.991
3 3 3 3 3 0.074 0.331 1.624 0.101 0.891 0.986 0.994

Table 5.2 Ablation study on the effect of the contributions up to our final SVDistNet
model on the Woodscape. From our distance estimation baseline [2], we incrementally add
up the robust loss (RL), self-attention layers encoder heads (Self-Attn), semantic guidance in
the decoder (SEM), dynamic object masking (Mask), and camera geometry tensor (CGT).

SynDistNet reduces distance RMSE by 25% and improves segmentation accuracy
by 4% as shown in Table 5.1. We break down these results further using extensive
ablation experiments.

Later we compare the SVDistnet with SynDistNet on the Woodscape dataset. The
MTL results and the single-task benchmark for distance estimation are significantly
better than SynDistNet due to the usage of an improved self-attention encoder and
the CGT. However, we observe only minimal gain for the semantic segmentation
task. In the final experiment, we include the synergy between the distance and
segmentation decoders. We observe that the content and channel adaptive self-
attention encoder features can be learned jointly for these diverse tasks. The captured
semantic features, used along with pixel-adaptive convolutions, guide the distance
decoder to capture better geometric features. We break down these results further
using ablation experiments.

At first, for the ablation analysis, we consider two variants of ResNet encoder heads.
Distance estimation results of these variants are shown in Table 5.2. We showcase
our improvements for various network architectures and, in particular, show the
superiority of our SVDistNet model over the SynDistNet model as well as the positive
effect of using the camera geometry tensor Ct. The distance estimates are capped to



106 Chapter 5. Geometry Meets Semantics

40 m. We showcase the qualitative results of SynDistNet compared to the FisheyeDis-
tanceNet model from Chapter 4 in Figure 5.10. Significant improvements in accuracy
are obtained with the replacement of the L1 loss by a generic parameterized loss
function. The impact of the mask is incremental in the WoodScape dataset. Still, it
poses the potential to solve the infinite depth/distance issue and provides a way to
improve the photometric loss. With the proposed self-attention-based encoder cou-
pled with the semantically-guided decoder architecture, we can consistently improve
the performance. Finally, with all the additions, we outperform FisheyeDistanceNet
for all considered metrics.

Additionally, we consider two variants of the self-attention encoder, namely pairwise
and patchwise, as described in Section 5.3.1. We show the impact of specific contribu-
tions and their importance in the SVDistNet framework compared to the previous
work SynDistNet. At first, we replace the L1 loss with a generic parameterized loss
function and test it using the self-attention encoder’s patchwise variant, wherein we
gain notable improvements in accuracy. We use the dynamic object mask obtained
through projecting semantic segmentation predictions as described in Section 5.2.3 to
filter all dynamic objects which contaminate the reconstruction loss. Additionally, this
contribution possesses the potential to solve the infinite distance issue. We compare
the baseline work FisheyeDistanceNet trained only for distance estimation to SVDistNet,
which is trained in a multi-task fashion as shown in Figure 5.11 illustrate the semantic
mask’s impact on the estimates with additional results of SVDistNet in Figure 5.13.
When adding the CGT to this setting, we observe a significant increase in accuracy
since we train multiple cameras with different camera intrinsics and viewing angles.
The aforementioned training strategy makes the network camera-independent and
better generalizes images taken from a different camera.

To further improve the multi-task setup, we perform a synergy of distance and
segmentation decoders. We provide semantic features from the supervised task to
the distance decoder’s geometric features, where we still train the distance estimation
in a self-supervised fashion. In this setting, we drop the dynamic object mask and
still achieve improvements.

We improve the metric results further by adding the CGT to this setting, and we could
surpass the accuracy obtained by the best setting in SynDistNet. With the help of
these vital features, we create an experiment comparable to SynDistNet’s final setting,
which consolidates all the listed features, excluding the CGT. We could attain better
results than SynDistNet’s ResNet50 results. It is important to note that ResNet50 is
comparable to the SAN19-pair/patch encoder. However, we were able to outperform
ResNet50 with the SAN10-patch encoder in terms of computational complexity (cf.
Section 5.3.4).

We complete the SVDistNet model for the surround-view camera framework by
introducing the CGT. In Figure 8.6, we show a few qualitative results of the failure
cases having artifacts such as holes or merging of thin objects such as poles with the
background. We also perform a few vital evaluations using the pairwise self-attention
encoders. We were not able to obtain the same level of accuracy yielded by the
patchwise self-attention encoder. The patchwise self-attention module is stringently
more potent than the standard convolution, and the pairwise self-attention module
matches or outperforms the convolutional equivalents. We perform the same vital
ablation of the contributions with a higher-performing SAN19-patch encoder network.



5.4. Experiments 107

Cams CGT Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Front 7 0.074 0.343 1.641 0.112 0.892 0.985 0.994
3 0.057 0.315 1.532 0.108 0.896 0.987 0.996

Rear 7 0.089 0.358 1.657 0.131 0.888 0.981 0.988
3 0.065 0.337 1.579 0.123 0.891 0.983 0.992

Left 7 0.102 0.398 1.874 0.126 0.886 0.980 0.983
3 0.091 0.382 1.781 0.114 0.889 0.985 0.990

Right 7 0.105 0.406 1.889 0.135 0.882 0.980 0.981
3 0.093 0.391 1.796 0.120 0.887 0.983 0.986

Table 5.3 Ablation study on multiple cameras concerning the usage of Camera Geometry
Tensor using the WoodScape.

Method ρ
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

FisheyeDistanceNet [2] 7 0.152 0.768 2.723 0.210 0.812 0.954 0.974

SynDistNet

1 0.148 0.642 2.615 0.203 0.824 0.960 0.978
0 0.151 0.638 2.601 0.205 0.822 0.962 0.981
2 0.154 0.631 2.532 0.198 0.832 0.965 0.981

(0, 2) 0.142 0.537 2.316 0.179 0.878 0.971 0.985

SVDistNet 2 0.145 0.564 2.279 0.186 0.863 0.966 0.982
0, 2 0.128 0.469 2.153 0.164 0.875 0.974 0.986

Table 5.4 Ablation study of the robust loss function of SynDistNet and SVDistNet on the
WoodScape.

Finally, with all the additions, we outperform all previous works [2, 3, 4] for all
considered metrics on the Woodscape dataset.

Generalization Across Different Cameras

Table 5.3 depicts the generalization across different cameras from the surround-view
setup using the CGT as described in Section 5.3.2. The qualitative results of the model
are shown in Figure 5.8 where the same network is evaluated on four different fisheye
cameras of a surround-view camera system. One can see that the SVDistNet model
generalizes well across different viewing angles and consistently produces high-
quality distance outputs. The metrics of each camera significantly improve as during
the model’s training phase, sequences from different cameras help in generalization.
For example, the front camera’s distance estimates profit as the side cameras steer the
network to generalize close and overlapping objects. We test the SVDistNet model on
an unseen sequence from one of the test cars whose cameras have different camera
intrinsics than the ones used for training to examine the effect of the CGT as shown
in Figure 5.9. Due to its usage, the network does not overfit to a particular camera
intrinsic. It adapts to any changes from a family of unseen cameras deployed with
a pre-calibrated camera setup. It leads to improved estimates and generalization of
new cameras and allows training on images from different cameras.



108 Chapter 5. Geometry Meets Semantics

Front Cam

Left Cam

Right Cam

Rear Cam

Figure 5.8 Distance estimation results on a surround-view camera system.

Robust loss function strategy

Table 5.4 ablates the usage of the robust loss function strategy on the frameworks
SynDistNet and SVDistNet. We replace the L1 loss with several variants of the gen-
eral loss function varying the parameter α and observe a significant performance
improvement. The L1 loss is replaced with different variants of the robust general
loss [179], and we showcase that the usage of adaptive or annealed variants of the
loss can significantly improve the performance. The shape parameter ρ is varied,
keeping the scale fixed with a general distribution than a fixed Laplacian distribution.
Instead of an RGB representation, following [179], the YUV wavelet representations
are used for the images, and the loss is applied to a YUV wavelet decomposition. The
multi-scale training of the reconstruction loss described in Section 4.3.7 is dropped,
which induces the sum of the loss means imposed at each scale in a D-level pyramid
of side prediction since the robust loss function is a D level normalized wavelet
decomposition. Compared to Barron et al. [179], we retain the edge smoothness loss
described in Section 4.3.5 as it yielded better results. The fixed scale assumption is
matched by setting the loss’s scale c fixed to 0.01, which also roughly matches the
shape of its L1 loss. For the fixed scale models in Table 5.4, we used a constant value
for ρ. We observe an improvement in the performance, and there is no single value
of ρ, which is optimal. In the adaptive ρ ∈ (0, 2) variant, ρ is made a free parameter
and is allowed to be optimized along with the network weights during training.
The adaptive plan of action outperforms the fixed strategies, which showcases the
importance of allowing the model to regulate the robustness of its loss during training
adaptively. A comparison of the adaptive model’s performance with the fixed models
indicates that no single set of α is optimal for all wavelet coefficients.

Online Refinement and Run-Time Comparison

In Table 5.5, we report the frame rate of all previous approaches and SVDistNet using
different input resolutions and a 16-bit float precision ONNX model on NVIDIA’s
Jetson AGX platform, operating in full power mode. All the models, including the
one with the highest resolution, are real-time capable and can be deployed in a car.
The primary advantage of a single-frame distance estimator is its broad applicability.



5.4. Experiments 109

Method Dataset Network
Resolution

Encoder
head

Inference
(fps)

FisheyeDistanceNet [2]
K 640 x 192

ResNet-18
84

K 1024 x 320 34
WS 512 x 256 89

UnrectDepthNet [3]
K 640 x 192

ResNet-50

39
K 1024 x 320 16

WS 512 x 256 42
WS 1024 x 512 11

SynDistNet [4]

K 640 x 192
ResNet-18

82
K 1024 x 320 33

WS 512 x 256 91
WS 1024 x 512 23
WS 512 x 256 ResNet50 42

SVDistNet

K 640 x 192 SAN-10 80
K 1024 x 320 30

WS 512 x 256 87
WS 512 x 256 SAN-19 45

Table 5.5 Ablation study on inference time (frames per second) using ONNX 16-bit float
precision models on NVIDIA’s Jetson AGX on the KITTI (K) and the WoodScape (WS)
datasets.

Method Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

SAN10-patch 0.044 0.302 1.274 0.097 0.906 0.987 0.995
SAN10-pair 0.069 0.353 1.543 0.111 0.901 0.985 0.993
SAN19-patch 0.034 0.264 1.218 0.073 0.914 0.992 0.996
SAN19-pair 0.065 0.322 1.545 0.092 0.896 0.988 0.995

Table 5.6 Online refinement of the network’s distance estimates incorporating [189], where
the model is trained during inference on the WoodScape dataset.

Despite this, it comes at a cost when the continuous estimation of distances on image
frames is misaligned or discontinuous, which is often the case. To overcome this
issue, we follow the approach from [181, 189, 364], where we adapt the model in
an online manner, mainly for practical autonomous systems. We train the model
during inference by setting the batch size to 1. We feed in the inference image and
its two adjacent frames, where we carry out the refinement as described in [189]. We
do not implement any data augmentation techniques during this phase. With this
technique, using a minimal temporal chain of frames (i.e., three-frame snippets), the
distance estimates enhance significantly, qualitatively, and quantitatively, as shown
in Table 5.6. With a single frame’s negligible delay, the SVDistNet framework can
operate in real-time, even when using online refinement.

5.4.2 Ablative Experiments on KITTI

Pose Estimation Results

The PoseNet is an ego-motion predictor consisting of a SAN10-patch encoder. We
apply the Siamese (twin network) notion where we feed It and I′t individually to
a shared self-attention encoder and concatenate the output features from the twin



110 Chapter 5. Geometry Meets Semantics

Method
No. of
Frames GT Sequence 09 Sequence 10

ORB-SLAM [108] 5 3 0.014 ± 0.008 0.012 ± 0.011
DF-Net [416] 5 3 0.017 ± 0.007 0.015 ± 0.009
SfMLearner [53] 5 3 0.016 ± 0.009 0.013 ± 0.009
Klodt et al. [436] 5 3 0.014 ± 0.007 0.013 ± 0.009
GeoNet [370] 5 3 0.012 ± 0.007 0.012 ± 0.009
Struct2Depth [189] 5 3 0.011 ± 0.006 0.011 ± 0.010
Ranjan [303] 5 3 0.011 ± 0.006 0.011 ± 0.010
PackNet-SfM [7] 5 3 0.010 ± 0.005 0.009 ± 0.008
PackNet-SfM [7] 5 7 0.014 ± 0.007 0.012 ± 0.008
SVDistNet 5 3 0.009 ± 0.004 0.008 ± 0.005
SVDistNet 5 7 0.010 ± 0.005 0.010 ± 0.008

DDVO [177] 3 3 0.045 ± 0.108 0.033 ± 0.074
Vid2Depth [154] 3 3 0.013 ± 0.010 0.012 ± 0.011
EPC++ [363] 3 3 0.013 ± 0.007 0.012 ± 0.008
SVDistNet 3 3 0.011 ± 0.006 0.010 ± 0.007
SVDistNet 3 7 0.012 ± 0.007 0.011 ± 0.008

Monodepth2 [55] 2 3 0.017 ± 0.008 0.015 ± 0.010
SVDistNet 2 3 0.015 ± 0.007 0.013 ± 0.007
SVDistNet 2 7 0.016 ± 0.008 0.014 ± 0.009

Table 5.7 Evaluation of the pose estimation on the KITTI Odometry Benchmark [116].

network before feeding it to the pose decoder as shown in Figure 5.7 predicting a
relative pose between the images. Compared to the previous works [2, 3, 4], where
we used Euler angles, we chose quaternions to represent the 3D rotation. The design
choice is mainly due to its continuous and smooth representation of rotation and
smaller memory footprint than rotation matrices. Also, quaternions are much more
efficient than both matrix, and angle/axis representations used in [55, 181].

In Table 5.7, we report the average trajectory error (ATE) in meters, where we train
the method on sequences 00-08 and evaluate on Sequences 09 and 10, same as for the
baseline methods. For evaluation, we follow the evaluation protocol defined in [53].
Note that all the methods except the SVDistNet and PackNet-SfM utilize ground-truth
at test-time to scale the prediction for a scale consistent result. We predict independent
transformations for each of the four frame-to-frame transformations belonging to the
five-frames set to evaluate the two-frame ego-motion model on the five-frame test
sequences. We combine these different transformations to form local trajectories. We
outperform the previous methods listed in Table 5.7, mainly by applying the bundle
adjustment framework inflicted by the cross-sequence distance consistency loss [2].
It induces more constraints and simultaneously optimizes distances and camera
pose for an implicitly extended training input sequence. This provides additional
consistency constraints that are not induced by previous methods.

State-of-the-Art Comparison on KITTI

As there is little work on fisheye distance estimation, we evaluate the method on
the extensively used KITTI dataset using the metrics illustrated in Section 2.2 by
Eigen et al. [50]. The quantitative results are shown in the Table 5.8 illustrates that the



5.4. Experiments 111

Method Resolution Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

KITTI

O
ri

gi
na

l[
50

]

EPC++ [363] 640 x 192 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Monodepth2 [55] 640 x 192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [7] 640 x 192 0.111 0.829 4.788 0.199 0.864 0.954 0.980
FisheyeDistanceNet [2] 640 x 192 0.117 0.867 4.739 0.190 0.869 0.960 0.982
UnRectDepthNet [3] 640 x 192 0.107 0.721 4.564 0.178 0.894 0.971 0.986
SynDistNet 640 x 192 0.109 0.718 4.516 0.180 0.896 0.973 0.986

Monodepth2 [55] 1024 x 320 0.115 0.882 4.701 0.190 0.879 0.961 0.982
FisheyeDistanceNet [2] 1024 x 320 0.109 0.788 4.669 0.185 0.889 0.964 0.982
UnRectDepthNet [3] 1024 x 320 0.103 0.705 4.386 0.164 0.897 0.980 0.989
SynDistNet 1024 x 320 0.102 0.701 4.347 0.166 0.901 0.980 0.990

Im
pr

ov
ed

[1
43

]

SfMLeaner [53] 416 x 128 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth [154] 416 x 128 0.134 0.983 5.501 0.203 0.827 0.944 0.981
DDVO [177] 416 x 128 0.126 0.866 4.932 0.185 0.851 0.958 0.986

EPC++ [363] 640 x 192 0.120 0.789 4.755 0.177 0.856 0.961 0.987
Monodepth2 [55] 640 x 192 0.090 0.545 3.942 0.137 0.914 0.983 0.995
PackNet-SfM [7] 640 x 192 0.078 0.420 3.485 0.121 0.931 0.986 0.996
UnRectDepthNet [3] 640 x 192 0.081 0.414 3.412 0.117 0.926 0.987 0.996
SynDistNet 640 x 192 0.076 0.412 3.406 0.115 0.931 0.988 0.996

Table 5.8 Quantitative performance comparison of SynDistNet with other self-supervised
monocular methods for depths up to 80 m for the KITTI. Original uses raw depth maps as
proposed by [50] for evaluation, and Improved uses annotated depth maps from [143].

improved scale-aware self-supervised approach outperforms all the state-of-the-art
monocular approaches. Figure 5.12 provides qualitative results of SynDistNet on the
KITTI test dataset for the segmentation and distance estimation tasks. More specif-
ically, we improve the baseline FisheyeDistanceNet with the usage of a general and
adaptive loss function [179] which is showcased in Table 5.4 and better architecture.
Compared to PackNet-SfM [7], which presumably uses a superior architecture than
the ResNet18, where they estimate scale-aware depths with their velocity supervision
loss using the ground truth poses for supervision, we only rely on speed and time
data captured from the vehicle odometry, which is easier to obtain. The approach can
be easily transferred to the domain of aerial robotics as well. We could achieve higher
accuracy than PackNet, which can be seen in Table 5.8. At test-time, all methods ex-
cluding FisheyeDistanceNet, PackNet-SfM, and SynDistNet scale the estimated depths
using median ground-truth LiDAR depth.

For an extensive overview of the previous monocular methods’ results, including the
surround-view approach CGT tensor, we create Table 5.9. First, we train and evaluate
the depth maps generated from the LiDAR point clouds, where Table 5.9 shows that
with the use of the contributions, we outperform all previous methods. Using the online
refinement method from [189], we obtain a significant improvement, while the results
are still superior to previous methods. When training and evaluating the improved
KITTI labels for depth estimation, we can show a significant improvement compared
to previous approaches. For SVDistNet, we use the general camera tensor Ct as
described in Section 5.3.2 in the model, wherein instead of the angle of incidence maps,
we employ the maps generated using Eq. 5.19 for pinhole cameras. We showcase a
comparison of SVDistNet’s estimates with leader-board algorithms in Figure 5.18.



112 Chapter 5. Geometry Meets Semantics

Method Train Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better
O

ri
gi

na
l[

50
]

SfMLearner [53] M 0.208 1.768 6.958 0.283 0.678 0.885 0.957
DNC [427] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Vid2Depth [154] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
LEGO [437] M 0.162 1.352 6.276 0.252 0.783 0.921 0.969
Kumar [182] M 0.211 1.979 6.154 0.263 0.731 0.897 0.959
Wang et al. [438] M 0.158 1.277 5.858 0.233 0.785 0.929 0.973
GeoNet [370] M 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Cycle-SfM [439] M 0.162 1.349 5.847 0.239 0.784 0.925 0.969
Li et al. [440] M 0.150 1.127 5.564 0.229 0.823 0.936 0.974
DDVO [177] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [416] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
GANVO [441] M 0.150 1.141 5.448 0.216 0.808 0.939 0.975
Bian [442] M 0.137 1.089 5.439 0.217 0.830 0.942 0.975
EPC++ [369] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
CC [303] M 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Struct2Depth [189] M 0.141 1.036 5.291 0.215 0.816 0.945 0.979
LearnK [192] M 0.128 0.959 5.230 0.212 0.845 0.947 0.976
SIGNet [362] M 0.133 0.905 5.181 0.208 0.825 0.947 0.981
DualNet [186] M 0.121 0.837 4.945 0.197 0.853 0.955 0.982
OmegaNet [304] M 0.126 0.835 4.937 0.199 0.844 0.953 0.982
SuperDepth [443] M 0.116 1.055 - 0.209 0.853 0.948 0.977
Monodepth2 [55] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [7] M 0.111 0.829 4.788 0.199 0.864 0.954 0.980
FisheyeDistanceNet [2] M 0.117 0.867 4.739 0.190 0.869 0.960 0.982
SGDepth [354] M 0.113 0.880 4.695 0.192 0.884 0.961 0.981
Patil et al. [444] M 0.111 0.821 4.650 0.187 0.883 0.961 0.982
UnRectDepthNet [3] M 0.107 0.721 4.564 0.178 0.894 0.971 0.986
SynDistNet [4] M 0.109 0.718 4.516 0.180 0.896 0.973 0.986
Shu et al. [181] M 0.104 0.729 4.481 0.179 0.893 0.965 0.984
SVDistNet M 0.102 0.706 4.459 0.172 0.908 0.974 0.986

Struct2Depth [189] M∗ 0.109 0.825 4.750 0.187 0.874 0.958 0.983
GLNet [364] M∗ 0.099 0.796 4.743 0.186 0.884 0.955 0.979
Shu et al. [181] M∗ 0.088 0.712 4.137 0.169 0.915 0.965 0.982
SVDistNet M∗ 0.086 0.701 4.118 0.170 0.919 0.976 0.985

Im
pr

ov
ed

[1
43

]

SfMLearner [53] M 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth [154] M 0.134 0.983 5.501 0.203 0.827 0.944 0.981
GeoNet [370] M 0.132 0.994 5.240 0.193 0.883 0.953 0.985
DDVO [177] M 0.126 0.866 4.932 0.185 0.851 0.958 0.986
EPC++ [369] M 0.120 0.789 4.755 0.177 0.856 0.961 0.987
Monodepth2 [55] M 0.090 0.545 3.942 0.137 0.914 0.983 0.995
PackNet-SfM [7] M 0.078 0.420 3.485 0.121 0.931 0.986 0.996
UnRectDepthNet [3] M 0.081 0.414 3.412 0.117 0.926 0.987 0.996
SynDistNet [4] M 0.076 0.412 3.406 0.115 0.931 0.988 0.996
SVDistNet M 0.071 0.405 3.345 0.106 0.934 0.988 0.996
SVDistNet M∗ 0.059 0.392 3.206 0.097 0.935 0.989 0.995

Table 5.9 Evaluation of the KITTI Eigen split compared to most of the previous
self-supervised monocular depth estimation methods. Following best practices, we cap
depths at 80 m. We also evaluate using the Original depth maps generated from raw point
clouds as proposed by [50] as well as Improved annotated depth maps as introduced by [143].
M indicates that the model is trained on monocular image sequences. M∗ indicates the online
refinement technique [189], where the model is trained during inference. Note that while
most approaches use median scaling w.r.t. the ground truth at test-time for a scale-consistent
prediction, we do not need to use this scaling method.

5.5 Conclusion

Geometry and appearance are two crucial cues of scene understanding, e.g., in au-
tomotive scenes. This chapter developed a multi-task learning model to estimate
metric distance and semantic segmentation in a synergized manner. Specifically, we
leverage the semantic segmentation of potentially moving objects to remove wrongful
projected objects inside the view synthesis step. We also proposed a novel architecture



5.5. Conclusion 113

to semantically guide the distance estimation trainable in a one-stage fashion and
introduce the application of a robust loss function application. The primary focus
was to develop the proposed model for less explored fisheye cameras based on the
WoodScape dataset.

This chapter discussed distance estimation in detail, which is a challenging and vital
problem for autonomous driving. We have solved it successfully by developing novel
methodologies and synergized multi-task learning approach, which is crucial for
scene understanding. We advanced the problem of multi-camera distance estimation
for surround-view fisheye cameras. We introduced a novel camera model adaptation
mechanism wherein camera parameters are transformed into a tensor and used within
the CNN model. The specific camera model parameters are used during training
and inference. Using this technique, we demonstrate training of a single distance
estimation model for twelve different cameras with different extrinsic and intrinsic
parameters and achieve strongly improved results than training a specialized model
for each camera variant. We demonstrated the effect of each proposed contribution
individually and obtained state-of-the-art results on both WoodScape and KITTI
datasets for self-supervised distance estimation. In the next chapter, we look into
localization using perception algorithms. i.e., 2D object detection.



114 Chapter 5. Geometry Meets Semantics

Figure 5.9 Qualitative results of SVDistNet on an unseen sequences from one of the test
cars with a different camera intrinsic. The 1st and 4th row indicates the raw input images
from the front and left camera. The 2nd, 5th, 3rd and 6th row indicate the distance estimates of
the network trained with and without CGT respectively. Despite the notable variation in the
camera parameters, the network with CGT outputs sharp distance maps on which edges are
visible.



5.5. Conclusion 115

R
aw

In
pu

t
Fi

sh
ey

eD
is

ta
nc

eN
et

Sy
nD

is
tN

et
R

aw
In

pu
t

Fi
sh

ey
eD

is
ta

nc
eN

et
Sy

nD
is

tN
et

Figure 5.10 Qualitative result comparison on the WoodScape between the
FisheyeDistanceNet and SynDistNet. SynDistNet can recover the distance of dynamic objects
(left images), which eventually solves the infinite distance issue. In the 3rd and 4th rows, we
can see that semantic guidance helps us to recover thin structures and resolves the distance
of homogeneous areas, thereby outputting sharp distance maps on raw fisheye images.



116 Chapter 5. Geometry Meets Semantics

R
aw

In
pu

t
Fi

sh
ey

eD
is

ta
nc

eN
et

SV
D

is
tN

et
SV

D
is

tN
et

Figure 5.11 Evaluation of the SVDistNet model on WoodScape. We observe that using
semantic guidance inside the SVDistNet model helps to recover thin structures inside the
distance map (left images). We also solve the infinite distance issue for dynamic objects by
incorporating the mask described in Section 5.2.3 (right images).



5.5. Conclusion 117

R
aw

In
pu

t
Sy

nD
is

tN
et

Sy
nD

is
tN

et
R

aw
In

pu
t

Sy
nD

is
tN

et
Sy

nD
is

tN
et

R
aw

In
pu

t
Sy

nD
is

tN
et

Sy
nD

is
tN

et
R

aw
In

pu
t

Sy
nD

is
tN

et
Sy

nD
is

tN
et

Figure 5.12 Qualitative results of SynDistNet on the KITTI. We showcase depth estimation
as well as semantic segmentation outputs.



118 Chapter 5. Geometry Meets Semantics

Figure 5.13 Qualitative results of SVDistNet on WoodScape. In the 4th row, we can see
sharp curbs on the street, and in the 3rd row, we can see that the model adapts to the extreme
distortion induced by the fisheye camera and produces sharp distance maps. Finally, the
model adapts to the most complex scenes in the last few rows and produces very sharp
scale-aware distance maps. For more qualitative results, we refer to this video:
https://youtu.be/bmX0UcU9wtA.

https://youtu.be/bmX0UcU9wtA


5.5. Conclusion 119

Figure 5.14 Qualitative results of 360° bird’s eye view distance output on an unseen
sequence. Two snapshots from a sequence illustrating color-coded heights and its
corresponding surround-view images are shown. The distance maps are converted to
color-coded height maps (i.e., green is ground surface, yellow is an object at 1 m, red is an
object at a distance of 1.5 m and blue indicates curb). Spatial and temporal smoothing
operators were applied as discussed in subsection 5.2.5.



120 Chapter 5. Geometry Meets Semantics

Figure 5.15 Additional qualitative results of 360° bird’s eye view distance output on an
unseen sequence. Two snapshots from a sequence illustrating color-coded heights and its
corresponding surround-view images are shown. The distance maps are converted to
color-coded height maps (i.e., green is ground surface, yellow is an object at 1 m, red is an
object at a distance of 1.5 m and blue indicates curb). Spatial and temporal smoothing
operators were applied as discussed in subsection 5.2.5.



5.5. Conclusion 121

Figure 5.16 Qualitative semantic segmentation results of 360° post-processed top-view
output on an unseen sequence. The semantic maps are converted to color-coded height
maps (i.e., green is the road surface, pink are the lane markings, dark green are the curbs).
The top-view maps aid to detect free space for the autonomous vehicle to navigate.



122 Chapter 5. Geometry Meets Semantics

Figure 5.17 Additional qualitative semantic segmentation results of 360° post-processed
top-view outputs on an unseen sequence. The semantic maps are converted to color-coded
height maps (i.e., green is road surface, pink is the lane marking, dark green is the curb). The
top-view maps aid to detect free space for the autonomous vehicle to navigate.



5.5. Conclusion 123

In
pu

t
G

od
ar

d
[5

4]
Z

ho
u

[5
3]

D
D

V
O

[1
77

]
G

eo
N

et
[3

70
]

Z
ha

n
[4

45
]

R
an

ja
n

[3
03

]
3N

et
-R

50
[3

63
]

EP
C

++
[3

63
]

M
on

od
ep

th
2

[5
5]

SV
D

is
tN

et

Figure 5.18 Qualitative results of SVDistNet on KITTI compared with state-of-the-art
algorithms.



124

Chapter 6

Generalized Object Detection

Contents
6.1 Problem Definition 124
6.2 Object Representations 125

6.2.1 Adaptation of Box Representations 125
Standard Box Representation 125
Oriented Box Representation 125
Ellipse Representation 125

6.2.2 Distortion Aware Representation 126
6.2.3 Generic Polygon Representations 128

Uniform Angular Sampling 128
Uniform Perimeter Sampling 129
Curvature-adaptive Perimeter Sampling 129

6.3 FisheyeYOLO Network Architecture 129
6.4 Experimental Results 132

Number of Polygon Points 132
Evaluation of Representation Capacity 133
Quantitative Results 134

6.5 Conclusion 135

6.1 Problem Definition

Object detection is a comprehensively studied problem in autonomous driving. How-
ever, it has been relatively less explored in the case of fisheye cameras. The standard
bounding box fails in fisheye cameras due to the strong radial distortion, particularly
in the image’s periphery. We explore better representations such as oriented bounding
box, ellipse, and generic polygon for object detection in fisheye images. We use the
IoU metric to compare these representations using accurate instance segmentation
ground truth. We design a novel curved bounding box model that has optimal prop-
erties for fisheye distortion models. In this thesis, to the best of our knowledge, we
perform the first detailed study on object detection based on fisheye camera images
for autonomous driving scenarios. To encourage further research, we also made a
public release of a dataset of 10,000 images with annotations for all considered object
representations. This work was formally presented as Generalized Object Detection [4]
as an oral at the WACV conference in 2021. My contribution to this work as a secondary

https://openaccess.thecvf.com/content/WACV2021/html/Rashed_Generalized_Object_Detection_on_Fisheye_Cameras_for_Autonomous_Driving_Dataset_WACV_2021_paper.html


6.2. Object Representations 125

(a) (b)

(c) (d)

(e) (f)

Figure 6.1 Various 2D object detection representations on fisheye camera images. (a)
Standard Box, (b) Oriented Box, (c) Curved Box, (d) Ellipse, (e) 4-sided Polygon and (f)
24-sided Polygon.

author involved research idea discussion, writing code for (standard box model and training),
code-reviews, generating a qualitative results video, and writing the research paper.

6.2 Object Representations

6.2.1 Adaptation of Box Representations

Standard Box Representation

The rectangular bounding box is the most common representation for object detection.
They are aligned to the pixel grid axes, making them efficient to be regressed using
a machine learning model. They are represented by four parameters (x̂, ŷ, ŵ, ĥ),
namely the box center, as well as width and height. It has the advantage of simplified,
low-cost annotation. It also works in most cases, but it may capture a large non-object
area within the box for complex shapes. This is particularly the case for distorted
fisheye images, as shown in Figure 6.1 (a).

Oriented Box Representation

The oriented box is a simple extension of the standard box with an additional param-
eter θ̂ to capture the box’s rotation angle. It is also referred to as a tilted or rotated box.
Lienhart et al. [446] adapted the Viola-Jones object detection framework to output
rotated boxes. It is also commonly used in LiDAR top-view object detection meth-
ods [116]. The orientation of the ground-truth range spans the range of (-90°to +90°),
where this rotation angle is defined with respect to the x-axis. For this study, we used
instance segmentation contours to estimate the optimally oriented box as a minimum
enclosing rectangle.

Ellipse Representation

The ellipse representation is closely related to an oriented box and can be represented
using the same parameter set. Width and height parameters represent the major and



126 Chapter 6. Generalized Object Detection

minor axis of the ellipse. In contrast to an oriented box, the ellipse has a smaller area
at the edge, and thus it is better for representing overlapping objects, as shown for
the objects at the very left in Figure 6.1. It may also help to fit some objects such
as vehicles better than a box. We created the ground truth by fitting a minimum
enclosing ellipse to the ground truth instance segmentation contours. In parallel
work, Ellipse R-CNN [447] used ellipse representation for objects instead of boxes.

6.2.2 Distortion Aware Representation

This subsection aims to derive an optimal representation of objects undergoing
radial distortion in fisheye images assuming a rectangular box is optimal for pinhole
cameras. In the pinhole camera with no distortion, a straight line in the scene
is imaged as a straight line in the image. However, a straight line in the scene
is imaged as a curved segment in a fisheye image. The specific type of fisheye
distortion determines the nature of the curved segment. The fisheye cameras from
the Woodscape dataset we used are well represented and calibrated using a 4th

order polynomial model for the fisheye distortion [12]. We are aware that there
have been many developments in fisheye camera models over the past few decades,
e.g. [80, 82, 448]. In this section, we consider the 4th order polynomial model and the
division model only. The reason is that the 4th order polynomial model is provided
by the dataset that we use, and we examine the division model to understand if the
use of circular arcs is valid under such fisheye projections.

In this case, the projection of a line on to the image can be described parametrically
with higher order polynomial curves. Let us consider a much simpler model for the
moment - a first-order polynomial (or equidistant) model of a fisheye camera. i.e.
r′ = aθ, where r′ is the radius on the image plane, and θ is the angle of the incident
ray against the optical axis. If we consider the parametric equation P(t) of a line in
3D Euclidean space:

P(t) = Dt + Q (6.1)

where D = [Dx, Dy, Dz] is the direction vector of the line and Q = [Qx, Qy, Qz] is
a point through which the line passes. Hughes et al. [449] have shown that the
projection on to a fisheye camera that adheres to equidistant distortion is described
by:

p′(t) =
[

Dxt + Qx
Dyt + Qy

]
|p′(t)|
|p(t)| (6.2)

where

|p′(t)|
|p(t)| =

a arctan
(

dxy(t)
Dzt+Qz

)
dxy(t)

(6.3)

dxy(t) =
√
(Dxt + Qx)2 + (Dyt + Qy)2 (6.4)

p(t) is the projected line in a pinhole camera, and p′(t) is the distorted image of the
line in a fisheye camera. This is a complex description of a straight line’s projection,
especially considering that we have ignored all but the first-order polynomial term.
Therefore, it is highly desirable to describe straight lines’ projection using a more
straightforward geometric shape. Bräuer-Burchardt and Voss [448] show that if the
first-order division model can accurately describe the fisheye distortion, then we may
use circles in the image to model the projected straight lines. As a note, the division



6.2. Object Representations 127

(a) Division model fit to the 4th order polynomial
model. Note that the two are almost indistinguish-
able and looks overlayed.

(b) Residual error per field angle

Figure 6.2 Approximation of the 4th order radial distortion model by the division model.

(a) A 4th-degree polynomial model for radial dis-
tortion. We can visually notice that a box matures
to a curved box, and it is justified theoretically in
Section 6.2.2.

(b) A Curved Bounding Box captures the ra-
dial distortion and obtains a better footpoint.
The center of the circle can be equivalently re-
parameterized using the object center (x̂, ŷ).

Figure 6.3 Illustration of fisheye distortion of projection of an Open Cube and Proposal
of Curved Bounding Box using a circle with an arbitrary center and radius.

model is generalized in [450], though it loses the property of straight line to circular
arc projection. We should then consider how well the division model fits with the 4th

order polynomial model. In [449], the authors adapt the division model slightly to
include an additional scaling factor and prove that this does not impact the projection
of a line to a circle. They show that the division model is a correct replacement for the
equidistant fisheye model. Here we repeat this test but compare the division model
to the 4th order polynomial. The results are shown in Figure 6.2. As can be seen, the
division model can map to the 4th order polynomial with a maximum of < 1 pixel
error. While this may not be accurate enough for applications in which sub-pixel
error accuracy is desirable, it is sufficient for bounding box accuracy.

Therefore, we propose a novel curved bounding box representation using circular
arcs. Figure 6.3 (left) provides a visual justification of circular arcs. We illustrate an
open cube projection with grid lines where the straight lines become circular arcs



128 Chapter 6. Generalized Object Detection

r
𝜭 r

𝜶 = 0

(x,y)
𝜶 = 2

𝜶 = 1

Figure 6.4 Generic Polygon Representations. Left: Uniform angular sampling where the
intersection of the polygon with the radial line is represented by one parameter per point (r).
Middle: Uniform contour sampling using L2 distance. It can be parameterized in polar
co-ordinates using 3 parameters (r, θ, α). α denotes the number of polygon vertices within the
sector, and it may be used to simplify the training. Alternatively, two parameters (x,y) can be
used, as shown in the figure on the right. Right: Variable step contour sampling. It is shown
that the straight line in the bottom has fewer points than curved points, such as the wheel.
This representation allows to maximize the utilization of vertices according to local curvature.

after projection. Figure 6.3 (right) illustrates the details of the curved bounding box.
The blue line represents the axis, and the white lines intersect with the circles creating
starting and ending points of the polygon. This representation allows two sides of the
box to be curved, giving the flexibility to adapt to image distortion in fisheye cameras.
It can also specialize in an oriented bounding box when there is no distortion for the
objects near the principal point.

We create an automatic process to generate the representation that takes an object
contour as an input. First, we generate an oriented box from the output contour. We
choose a point that lies on the oriented box’s axis line to represent a circle center.
From the center, we create two circles intersecting with the corner points of the
bounding box. We construct the polygon based on the two circles and the intersection
points. To find the best circle center, we iterate over the axis line and choose the
circle center, which forms a polygon with the minimum IoU with the instance mask.
The output polygon can be represented by 6 parameters, namely, (c1, c2, r1, r2, θ1, θ2)
representing the circle center, two radii and angles of the start and end points of the
polygon relative to the horizontal x-axis. By simple algebraic manipulation, we can
re-parameterize the curved box using the object center (x̂, ŷ) following a typical box
representation instead of the center of the circle.

6.2.3 Generic Polygon Representations

The polygon is a generic representation for an arbitrary shape and is typically used
even, for instance segmentation annotation. Thus a polygon output can be seen as
a coarse segmentation. We discuss two standard representations of a polygon and
propose a novel extension that improves accuracy.

Uniform Angular Sampling

The polar representation is quite similar to the PolarMask [451], and PolyYOLO [452]
approaches. As illustrated in Figure 6.4 (left), the full angle range of 360° is split into
N equal parts where N is the number of polygon vertices. Each polygon vertex is
represented by the radial distance r from the centroid of the object. Uniform angular



6.3. FisheyeYOLO Network Architecture 129

sampling removes the need for encoding the θ parameter. The polygon is finally
represented by its object center (x̂, ŷ) and radius {ri}.

Uniform Perimeter Sampling

In this representation, we divide the perimeter of the object contour equally to create
N vertices. Thus the polygon is represented by a set of vertices {(xi, yi)} using the
centroid of the object as the origin. PolyYOLO [452] showed that it is better to learn
polar representation of the vertices {(ri, θi)} instead. They define a parameter α to
denote the presence or absence of a vertex in a sector, as shown in Figure 6.4 (middle).
We extend this parameter to be the count of vertices in the sector.

Curvature-adaptive Perimeter Sampling

The original curve in the object contour between two vertices is approximated by
a straight line in the polygon. For regions of high curvature, this is not a good
approximation. Thus, we propose an adaptive sampling based on the curvature of
the local contour. We distribute the vertices non-uniformly in order to represent the
object contour best. Figure 6.4 (right) shows the effectiveness of this approach, where
a larger number of vertices is used for higher curvature regions than straight lines,
which can be represented by less vertices. We adopt the algorithm in [453] to detect
the dominant points in a given curved shape, which best represents the object. Then
we reduce the set of points using the algorithm in [454] to get the most representative
simplified curves. This way, the polygon has dense points on the curved parts and
sparse points on the straight parts, which maximize the utilization of the predefined
number of points per contour.

6.3 FisheyeYOLO Network Architecture

We adapt the YOLOv3 [234] model to output different representations as discussed
in Section 6.2. We call this model FisheyeYOLO, as illustrated in Figure 6.5. The
baseline bounding box model is the same as YOLOv3 [234], except that we replace
the Darknet53 encoder with a ResNet18 encoder. Similar to YOLOv3, object detection
is performed at multiple scales. For each grid in each scale, object width (ŵ), height
(ĥ), object center coordinates (x̂, ŷ) and the object class is inferred. Finally, a non-
maximum suppression is used to filter out the low confidence detections. Instead of
using L2 loss for categorical and objectness classification, we used standard categorical
cross-entropy and binary entropy losses, respectively. The final loss is a combination



130 Chapter 6. Generalized Object Detection

Figure 6.5 FisheyeYOLO is an extension of YOLOv3 which can output different output
representations discussed in Section 6.2.

of sub-losses:

Lxy = λcoord

S2

∑
i=0

B

∑
j=0

lobj
ij [(xi − x̂i)

2 + (yi − ŷi)
2] (6.5)

Lwh = λcoord

S2

∑
i=0

B

∑
j=0

lobj
ij [(
√

wi −
√

ŵi)
2 + (

√
hi −

√
ĥi)

2] + (
√

hi −
√

ĥi)
2] (6.6)

Lobj = −
S2

∑
i=0

B

∑
j=0

[Cilog(Ĉi)] (6.7)

Lclass = −
S2

∑
i=0

lobj
ij ∑

c=classes
[ci,jlog(p(ĉi,j))] (6.8)

Ltotal = Lxy + Lwh + Lobj + Lclass (6.9)



6.3. FisheyeYOLO Network Architecture 131

where height and width are predicted as offsets from pre-computed anchor boxes.

ŵ = aw ∗ e fw (6.10)

ĥ = ah ∗ e fh (6.11)
x̂ = gx + fx (6.12)

ĥ = gy ∗ fy (6.13)

where aw, ah anchor box width and height. fw, fh, fx, fy are the outputs from last
layer of the network at grid location gx, gy.

In the case of oriented box or ellipse prediction, we define an additional loss function
based on ellipse angle or orientation of the box. The loss function for oriented box
and ellipse is:

Lorn =
S2

∑
i=0

B

∑
j=0

lobj
ij [θi − θ̂i ]

2 (6.14)

Ltotal = Lxy + Lwh + Lobj + Lclass + Lorn (6.15)

where Ltotal , is the total loss minimized for oriented box regression. In case of curved
box, Lwh is replaced by Lcods in Eq. (6.17).

We also explored methods of learning orientation as a classification problem instead
of a regression problem. One motivation is due to the discontinuity of angles at 90°
due to wrapping around of angles. In this scenario, we discretized the orientation
into 18 bins, where each bin represents a range of 10°with a tolerance of +-5°. To
further improve the prediction, we design an IoU loss function that guides the model
to minimize the difference in the area of the predicted box and the ground truth
box. We compute the area of the predicted and ground truth rectangles and apply
regression loss on those values. This loss maximizes the overlapping area between
the prediction and the ground truth by improving the overall results. The IoU loss is,

LIoU = λcoord

S2

∑
i=0

B

∑
j=0

lobj
ij [(ai − âi)

2] (6.16)

where a represents the area of the representation at hand. We report all the results
related to these experiments in Table 6.4.

The polar polygon regression loss is,

Lcods =
S2

∑
i=0

N

∑
j=0

α̂ij[(ri,j − r̂i,j)
2 + (θi,j − θ̂i,j)

2] (6.17)

Lmask = −
S2

∑
i=0

N

∑
j=0

αijlog(α̂ij) (6.18)

Ltotal = Lxy + Lobj + Lclass + Lcods + Lmask (6.19)

where N corresponds to the number of sampling points, each point is sampled with a
step size of 360/N angle in polar coordinates, as shown in Figure 6.4. The polar loss is
similar to PolyYOLO [452], where each polygon point is (in red) is represented using



132 Chapter 6. Generalized Object Detection

# Vertices 4 12 24 36 60 120
mIoU 85 85.3 86.6 91.8 94.2 98.4

Table 6.1 Analysis of the number of polygon vertices for representing the objects contour.

three parameters r, θ, and α. Hence the total required parameters for N sampling
points are 3× N. The same is presented in Figure 6.4 (middle).

In Cartesian representation, we regress over two parameters (x̂, ŷ) for each polygon
point. We further improve the predictions by adding the IoU loss function, which
minimizes the area between the prediction and ground truth. We refer to both loss
functions as localization loss LLocalization. The combined loss for Cartesian polygon
predictions is:

Ltotal = LClass + LObj + LLocalization (6.20)

where LObj and LClass are inherited from Yolov3 loss functions. According to the rep-
resentation at hand, we perform the non-maximum suppression. We generate the pre-
dictions for all the representations; filter out the low confidence objects—computation
of IoU of the output polygon with the list of outputs where high-IoU objects are
filtered out.

6.4 Experimental Results

The objective of this work is to study various representations for the output of fisheye
object detection. Conventional object detection algorithms evaluate their predictions
against their ground truth, which is usually a bounding box. Unlike conventional
evaluation, the first objective is to provide a better representation than a conventional
bounding box. Therefore, we first evaluate the representations against the most
accurate representation of the object, the ground-truth instance segmentation mask.
We report the mIoU between a representation and the ground-truth instance mask.

Additionally, we qualitatively evaluate the representations in obtaining object inter-
section with the ground (footpoint). This is critical as it helps to localize the object in
the map and provides more accurate vehicle trajectory planning. Finally, we report
model speed in terms of frames-per-second (fps) as we focus on real-time perfor-
mance. The distortion is higher in side cameras compared to front and rear cameras.
Thus, we provide the evaluation on each camera separately. To simplify the baseline,
we only evaluate the vehicle’s class, although four classes are available in the dataset.

Number of Polygon Points

The polygon is a more generic representation of complex object shapes that arise in
fisheye images. We perform a study to understand the effect of the number of vertices
parameter in a polygon. We use a uniform perimeter sampling method to vary the
number of vertices and compare the IoU using instance segmentation as ground
truth. The results are tabulated in Table 6.1 and the mIoU is calculated between the
approximated polygon and the ground truth instance segmentation mask. A 24-sided
polygon seems to provide a reasonable trade-off between the number of parameters
and model accuracy. Although a 120-sided polygon provides a better ground truth
with far too many points, it will be challenging to learn this representation, and it
might even produce noisy overfitting. For the quantitative experiments, we fix the



6.4. Experimental Results 133

Representation mIoU mIoU
No. of
params

Front Rear Left Right

Standard Box 53.7 47.9 60.6 43.2 51.35 4
Curved Box 53.7 48.6 63.5 44.2 52.5 6
Oriented Box 55.0 50.2 64.8 45.9 53.9 5
Ellipse 56.5 51.7 66.5 47.5 55.5 5
4-sided Polygon (uniform) 70.7 70.6 70.2 69.6 70.2 8
24-sided Polygon (uniform) 85.0 84.9 83.9 83.8 84.4 48
24-sided Polygon (adaptive) 87.2 87 86.2 86.1 86.6 48

Table 6.2 Evaluation of the representation capacity of various representations.

number of vertices to 24 for each object. We observe no significant difference in fps
due to increasing the number of vertices where the models run at 56 fps on a standard
NVIDIA TitanX GPU. It is due to the utilization of the YoloV3 [234] architecture,
which performs the prediction at each grid cell in a parallel manner.

Evaluation of Representation Capacity

Table 6.2 compares the performance of different representations using its ground truth
fit relative to the instance segmentation ground truth. We estimate the best fit for each
representation using ground truth instance segmentation masks and then compute
the mIoU to evaluate capacity. We also list the number of parameters used for each
representation to provide a comparison w.r.t. complexity. This empirical metric
demonstrates the maximum performance a representation can achieve regardless of
the model complexity. As expected, a 24-sided polygon achieves the highest mIoU
showing that it has the best representation capacity. The proposed curvature-adaptive
polygon achieves a 2.2% improvement over the uniform sampling polygon with the
same vertices. Polygon annotation is more expensive to collect, and it increases
model complexity. Thus it is still interesting to also consider simple bounding box
representations.

Compared to the standard box representation, oriented box representation is approxi-
mately 2.5-4% efficient for the side cameras and 1.3-2.3% for front cameras. The ellipse
representation improves the efficiency further by an additional 2% for side cameras
and 1-2% for front cameras. The curved box achieves a 1.15% improvement over the
standard box. However, it is slightly less than for the oriented box representation due
to the constraint that two circular sides of the box share the same circle center, which
adds some area inside the polygon, decreasing the IoU. In addition, the curvature is
not modeled for the horizontal edges of the box. We plan to explore these extensions
in future work to obtain a more optimal curved bounding box and leverage circular
arcs’ convergence at vanishing points.

The curved box’s current version has the advantage of getting a tight bottom edge,
capturing the footpoint for estimating the object’s 3D location. The object’s footpoint
is captured almost entirely, as observed in qualitative results, especially for the side
cameras where distortion is higher. This is important from an application perspective
for vehicle navigation, as the footpoint is used for the projection of the object to the
3D world. Compared to polygon representation, curved-box representation has low
annotation cost due to fewer representation points, which saves annotation effort.



134 Chapter 6. Generalized Object Detection

Representation IoU mIoU
Front Rear Left Right

YoloV3 32.5 32.1 34.2 27.8 31.6
Curved Box 33.0 32.7 35.4 28.0 32.3
Oriented Box 33.9 33.5 37.2 30.1 33.6
Ellipse 35.4 35.4 40.4 30.5 35.4
24-sided Polygon 44.4 46.8 44.7 42.7 44.65

Table 6.3 Quantitative results of the proposed model using different bounding box
representations on the WoodScape dataset.

Representation mAP

Oriented Box

Orientation regression 39.0
Orientation classification 40.6
Orientation classification + IoU loss 41.9

24-sided Polygon

Uniform Angular 55.6
Uniform Perimeter 55.4
Adaptive Perimeter 58.1

Table 6.4 Ablation study on the number of parameters in the oriented bounding box and
the 24-point polygon representation.

Quantitative Results

Table 6.4 shows our studies on methods predicting the orientation of the box or the
ellipse efficiently. Angle classification and the added IoU loss significantly improved
the mAP score relative to a standard baseline. The proposed variable step polygon
representation provides a significant improvement of 2.7%. At first, we train a model
to regress over the box and its orientation, as specified in Eq. (6.15). In the second
experiment, orientation prediction is addressed as a classification problem instead
of regression as a possible solution to the discontinuity problem. We divide the
orientation range of 180° into 18 bins, where each bin represents 10°, making this an
18 class classification problem. During inference, an acceptable error of +-5 degrees
for each box is considered. Using this classification strategy, we improve performance
by 1.6%. We are formulating orientation of box or ellipse prediction as a classification
model where the IoU loss is found to be superior in performance compared to a direct
regression. It yields a 2.9% improvement in accuracy. Hence we use this model as
a standard representation for oriented box and ellipse prediction when comparing
with other representations.

Table 6.3 demonstrates the prediction results on the proposed representations. The
experiments are performed on the best performing model according to Table 6.2
and Table 6.4. Compared to the standard bounding box approach, the proposed
oriented box and ellipse models improve the mIoU score on the test set by 2%, 1.8%
respectively. Ellipse prediction provides slightly better accuracy than the oriented
box as it is not as sensitive to occlusions with other objects in the scene due to the
absence of corners, which is demonstrated in Figure 6.7.



6.5. Conclusion 135

Figure 6.6 Qualitative results of the proposed model for different output representations.
The 1st row shows the Standard box, Oriented box and Ellipse representations. The 2nd row
shows the Curved box, 4-point polygon and 24-point polygon representation.

Figure 6.6 and Figure 6.7 shows a visual evaluation of the proposed representations.
Results show that the ellipse provides a decent easy-to-learn representation with
a minimum number of parameters and minimum occlusion with the background
objects compared to the oriented box representation. Unlike boxes, it allows a minimal
representation for the object due to the absence of corners, which for instance, avoids
incorrect occlusion with free parking slots, as shown in Figure 6.6 (Bottom). Polygon
representation provides higher accuracy in terms of IoU with the instance mask. A
four-point model provides high accuracy predictions with small objects as 4 points
are sufficient to represent them. As the dataset contains a lot of small objects this
representation demonstrates a good accuracy, which is shown in Tables 6.2 and
6.4. Visually, large objects cannot be represented by a quadrilateral, as illustrated in
Figure 6.7. A higher number of sampling points on the polygon results in higher
performance. However, the predicted masks are still prone to deformation due to
minor errors in each point’s localization.

6.5 Conclusion

In this chapter, we studied various representations for fisheye object detection. At
a high level, we can split them into bounding box extensions and generic polygon
representations. We explored the oriented bounding box and ellipse representations.
Additionally, we designed a curved bounding box with optimal fisheye distortion
properties. We proposed a curvature adaptive sampling method for polygon represen-
tations, which improves significantly over uniform sampling methods. Overall, the
proposed model improves the relative mIoU accuracy significantly by 40% compared
to a YOLOv3 baseline. We consider our method to be a baseline for further research
into this area and will make the dataset with ground truth annotation for various
representations publicly available. We hope this encourages further research in this
area leading to a more mature object detection on raw fisheye imagery.

The final chapter will look into a holistic scene understanding of an autonomous



136 Chapter 6. Generalized Object Detection

car’s environment using monocular fisheye camera videos. All the previous sensory
sub-systems’ perception algorithms will be integrated into a single fully functional
real-time capable system. We will develop a framework that can reason jointly about
geometry, motion, and semantics in order to estimate depth accurately, semantic
segmentation and motion segmentation and localize in the real world with 2D object
detection.



6.5. Conclusion 137

Figure 6.7 Further qualitative results of the proposed model for different output
representations. The 1st, 3rd and 5th rows show outputs for the Standard box, Oriented box
and Ellipse representations. The 2nd, 4th and 6th rows indicate Curved box and 4-point
polygon. 24-point polygon representations. For more qualitative results, we refer to this
video: https://youtu.be/iLkOzvJpL-A.

https://youtu.be/iLkOzvJpL-A


138

Chapter 7

Holistic 360° Scene Understanding

Contents
7.1 Introduction 138
7.2 Perception Tasks and Losses in MTL 139

7.2.1 Geometric Tasks 140
Self-Supervised Distance and Pose Estimation Networks 140
Discriminative loss 141
Convergent loss 142

7.2.2 Generalized Object Detection 142
7.2.3 Segmentation Tasks 142

Soiling Segmentation 142
Motion Segmentation 143

7.3 Network Details of the OmniDet MTL Framework 144
Dealing With Dynamic Objects and Solving Infinite Depth

Issue 146
Linking Self-Attention and Semantic features to Distance

and Detection decoders 147
7.3.1 Joint Optimization 148

7.4 Implementation Details 149
7.5 Experiments 150

7.5.1 Single-Task vs Multi-Task Learning 150
7.5.2 Ablation Study of the Contributions 150
7.5.3 State-of-the-Art Comparison on KITTI 152
7.5.4 Analysis on Adversarial Attacks 154

Adversarial attacks results 155
7.6 Conclusion 156

7.1 Introduction

Surround-view fisheye cameras have been deployed in premium cars for over ten
years, starting from visualization applications on dashboard display units to pro-
viding near-field perception for automated parking. Fisheye cameras have a strong
radial distortion that cannot be corrected without disadvantages, including reduced
FoV and re-sampling distortion artifacts at the periphery [3]. Appearance variations
of objects are larger due to the spatially variant distortion, particularly for close-by



7.2. Perception Tasks and Losses in MTL 139

objects. It has been paramount to autonomous systems to comprehensively under-
stand the surrounding environment using fisheye cameras. This chapter presents
a multi-task visual perception network on unrectified fisheye images to enable the
vehicle to sense its surrounding environment. It consists of six primary tasks neces-
sary for an autonomous driving system: depth estimation, visual odometry, semantic
segmentation, motion segmentation, object detection, and lens soiling detection.

In recent years DNNs have accomplished impressive success in various applications,
including autonomous driving perception tasks. On the other hand, current deep
neural networks are easily fooled by adversarial attacks. This vulnerability raises
significant concerns, particularly in safety-critical applications. As a result, research
into attacking and defending DNNs has gained much coverage. This chapter presents
a detailed adversarial attack applied to the diverse multi-task visual perception. In
the experiments, we consider both white and black box attacks for targeted and
untargeted cases while attacking a task and inspecting the effect on all the others, in
addition to inspecting the effect of applying a simple defense method.

This work was very influential from a product perspective to win next-generation
projects and be influential in the academic community. This work was formally
presented as OmniDet [1] in a journal and a conference at the RA-L + ICRA in
2021. The ablation on Adversarial Attacks [15] was presented at the ITSC in 2021.
To encourage further research in developing multi-task perception algorithms, the
code was made public on the Github, which proved to be quite popular in the vision
community and significantly helped the discernibility of the approach. Further details
about the dataset usage and demo code can be found on the WoodScape website
https://woodscape.valeo.com.

Autonomous Driving applications require various perception tasks to provide a
robust system covering a wide variety of scenarios. Alternate ways to detect objects
in parallel are necessary to achieve a high level of accuracy. For example, objects
can be detected based on appearance, motion, and depth cues. Despite increasing
computation power in automotive embedded systems, efficient design is always
needed due to the increasing number of cameras and perception tasks. MTL is an
efficient design pattern commonly used where most of the computation is shared
across all the tasks [198, 319]. Besides, learning features for multiple tasks can act
as a regularizer, improving generalization. Recently, Mao et al. [352] illustrated
that multi-task learning improves adversarial robustness, which is critical for safety
applications. In the automotive multi-task setting, MultiNet [136] was one of the
first to demonstrate a three task network on the KITTI, and most further works have
primarily worked on a three task setting.

7.2 Perception Tasks and Losses in MTL

This thesis’s final goal is to build a multi-task model covering the necessary mod-
ules in a Level 3 autonomous driving system for near-field sensing use cases such
as Parking or Traffic Jam assist. This chapter builds upon the previous chapters
focused on individual tasks. In general, there is minimal work in the area of fish-
eye perception. Specifically, there is only a research work on multi-task learning:
FisheyeMultiNet [455] which discusses a simple three task network.

The perception system comprises semantic tasks, geometric tasks, and lens soiling
detection (shown in Figure 7.1). The standard semantic tasks are object detection

https://arxiv.org/abs/2008.04017
https://arxiv.org/abs/2008.04017
https://github.com/valeoai/WoodScape
https://woodscape.valeo.com


140 Chapter 7. Holistic 360° Scene Understanding

(a) (b)

(c) (d)

(e) (f)

Figure 7.1 Real-time capable network estimates from the OmniDet framework on raw
fisheye images. (a) Rear-Camera Input Image, (b) Distance Estimate, (c) Semantic
Segmentation, (d) Motion Estimation, (e) 24-sided Polygon Object Detection and (f) Soiling
Segmentation.

(pedestrians, vehicles, and cyclists) and semantic segmentation (road, lanes, and
curbs). Fisheye cameras are mounted low on a vehicle and are susceptible to lens
soiling due to splashing of mud or water from the road. Thus, it is vital to detect
soiling on the camera lens and trigger a cleaning system [43]. The semantic tasks
typically require a large annotated dataset covering various objects. It is practically
infeasible practically to cover every possible object. Thus, generic object detection
using geometric cues such as motion or depth for rare objects is typically used. They
will also complement the detection of standard objects and provide more robustness.
Thus we propose to include motion segmentation and depth estimation tasks. Motion
is a dominant cue in automotive scenes, and it requires at least two frames or the
use of dense optical flow [28]. Self-supervised methods have recently dominated
depth estimation, which has also been demonstrated on fisheye images [2]. Finally,
the visual odometry task is required to place the detected objects in a temporally
consistent map.

7.2.1 Geometric Tasks

Self-Supervised Distance and Pose Estimation Networks

We set up the self-supervised monocular SfM framework following Section 4.3 for
distance estimation and pose estimation. View synthesis is performed by incorporat-
ing the polynomial projection model from Section 4.3.1. Section 4.3.7 describes the



7.2. Perception Tasks and Losses in MTL 141

total self-supervised objective loss. Additionally, we include two more loss functions
following [181]. To prevent the training objective from getting stuck at multiple
local minima for homogeneous areas, we incorporate feature-metric losses computed
on It’s feature representations, where we learn the features using a self-attention
autoencoder. The self-supervised loss landscapes are constrained to form proper
convergence basins using the first-order Ldis and second-order derivatives Lcvt to
regularize the target features. The total objective loss for distance estimation Ldist is
calculated by averaging per pixel, scale, and image batch:

Ldist = Lr(It, Ît′→t) + β Ls(D̂t) + γ Ldc(D̂t, D̂t′) (7.1)

+ Lr(F̂t, F̂t′→t) + ω Ldis(It, F̂t) + µ Lcvt(It, F̂t)

where β, γ, ω and µ weigh the distance regularization Ls, cross-sequence distance
consistency Ldc, discriminative Ldis and convergent Lcvt losses respectively. We cal-
culate the image and feature reconstruction loss using the target It, estimated feature
F̂t frames, reconstructed target Ît′→t and feature F̂t′→t frames. It is a linear combi-
nation of the general robust pixel-wise loss term [179] and the Structural Similarity
(SSIM) [414] as described in [4].

Discriminative loss

Following [181], we define the feature representation by ϕ f (uv) with gradients ∂ϕ(ûv)
∂ûv

by ensuring that the learned features have relatively large slopes and gradients. For
simplicity, the first-order derivative and second-order derivative with respect to image
coordinates are denoted by ∇1 and ∇2, which equals ∂x + ∂y and ∂xx + 2∂xy + ∂yy
respectively. To do so, we constrain the first-order gradients of learned features
and formulate it as −∑p |∇1ϕ(uv)|1. As fisheye images have considerably larger
homogeneous areas than rectilinear counterparts, this is an essential loss function
that penalizes small slopes and emphasizes the low-texture regions using the image
gradients. A higher penalty is imposed when similar prominent color areas are
encountered.

Ldis = −∑
uv

e−|∇
1 I(uv)|1 |∇1ϕ(uv)|1 (7.2)

Ldis forces ϕ to be learned to satisfy the condition that |∇1ϕ|1 should be relatively
large at homogeneous areas, making gradient descent feasible at these regions as
these regions receive larger weights. However, merely imposing the discriminative
loss cannot guarantee that we move to the optimal solution during the gradient
descent.

Merely replacing photometric values with features does not grasp the essence; we
wish to have a landscape well-suited for optimization. For deep learning-based
methods, whose optimization is mainly based on gradient descent approaches, two
main factors of loss functions influence gradient descent’s performance. Firstly, the
right first-order gradients (slope) to ensure the right optimization direction and
the small enough second-order gradients (curvature) to ensure a large convergence
radius. However, the commonly used photometric loss cannot fully meet the above
two requirements. Due to the raw image intensity limitations, photometric loss
tends to have near-zero first-order gradients at low-texture regions. And due to the
non-convex property of the image, the convergence radius of the photometric loss is
very small (usually 1-2 pixels).



142 Chapter 7. Holistic 360° Scene Understanding

Convergent loss

Since inconsistency exists among first-order gradients, i.e., spatially adjacent gradients
point in opposite directions. Shu et al. [181] proposed a convergent loss Lcvt to have a
relatively large convergence radius to enable gradient descent from a remote distance.
This is achieved by formulating the loss to have consistent gradients during the
optimization step by encouraging the smoothness of feature gradients and large
convergence radii accordingly. Curvature is opposite to convergence radius, i.e.;
a large curvature corresponds with a small convergence radius, vice versa. This
property is of great importance for deep learning based methods; since their learning
rates are pre-defined, large learning rates may step over a small convergence radius.
Lcvt forces φ to have small curvatures, meanwhile encouraging the smoothness of
learned feature gradients. Lcvt is formulated to penalize the second-order gradients,
i.e.,

Lcvt = ∑
uv
|∇2ϕ(uv)|1 (7.3)

7.2.2 Generalized Object Detection

As discussed in the previous chapter 6, the standard bounding box representation
fails in fisheye cameras due to heavy radial distortion, particularly in the periphery.
We explored different output representations for fisheye images, including oriented
bounding boxes, curved boxes, ellipses, and polygons. We have integrated this
model in our MTL framework, where we use a 24-sided polygon representation for
object detection. We briefly summarize the details here and refer to the previous
chapter 6 for more details on generalized object detection for fisheye camera images.
We adapted the YOLOv3 [234] decoder to output polygons as shown in Figure 7.2
and other representations listed above for a uniform comparison.

7.2.3 Segmentation Tasks

Three of the tasks are modeled as segmentation problems. Semantic and soiling
segmentation having seven and four output classes, respectively, on the WoodScape
dataset. In the following subsections, we briefly look into soiling and motion segmen-
tation tasks.

Soiling Segmentation

As discussed in Section 3.5, in this thesis, we focus on soiling caused by various
unwanted particles reposing on the camera lens. These particles’ source is mostly
mud, dirt, water, or foam created by a detergent. Based on the state of aggregation,
such soiling can be either static (e.g., highly viscous mud tends to dry up very quickly,
so it does not change its position on the output image over time) or dynamic (mostly
water and foam). We want to emphasize that the soiling detection task is necessary for
an autonomous driving system as it is used to trigger a camera cleaning system that
restores the visibility through the lens [43]. It complements building segmentation
or object detection models robust to soiling without an explicit soiling detection
step. Coming to the loss function employed, soiling segmentation falls under the
supervised learning category and is trained using the Lovasz-Softmax [456] loss. The
qualitative results of the soiling segmentation are illustrated in Figure 7.3.



7.3. Network Details of the OmniDet MTL Framework 143

Fr
on

tC
am

er
a

Le
ft

C
am

er
a

R
ig

ht
C

am
er

a
R

ea
r

C
am

er
a

Figure 7.2 Qualitative results of 24-sided polygon-based objection detection on the
WoodScape dataset.

Motion Segmentation

As discussed in Section 3.4, in this thesis, we propose a CNN architecture for moving
object detection using fisheye images that were captured in an autonomous driving
environment. Motion segmentation uses two frames and outputs a binary moving or
static mask. During training, the network predicts the posterior probability Yt, which
is optimized in a supervised fashion by Lovasz-Softmax [456] loss, and Focal [216] loss
for handling class imbalance instead of the cross-entropy loss. We obtain the final
segmentation mask Mt by applying a pixel-wise argmax operation on the posterior
probabilities. The qualitative results of the motion segmentation are illustrated in
Figure 7.4.



144 Chapter 7. Holistic 360° Scene Understanding

Figure 7.3 Qualitative results of soiling segmentation on the WoodScape dataset. The 1st

and 3rd rows indicate input images from front, rear, left and right cameras. The 2nd and
4th rows indicate the corresponding estimates.

7.3 Network Details of the OmniDet MTL Framework

Encoder-decoder architectures are commonly used for dense prediction tasks. We
use this type of architecture as it easily extends to a shared encoder for multiple
tasks. Figure 7.5 provides an overview of the surround-view cameras based multi-
task visual perception framework. We design the encoder by incorporating vector
attention-based pairwise and patchwise self-attention encoders from [8] as described
in Section 5.3.1. These networks efficiently adapt the weights across both spatial
dimensions and channels. We adapt the Siamese (twin network) approach for the mo-
tion prediction network, where we concatenate the source and target frame features
and pass them to the super-resolution motion decoder. As the weights are shared in
the Siamese encoder, the previous frame’s encoder can be saved and re-used instead
of re-computing the features. Inspired by [181], we develop an auxiliary self-attention
auto-encoder for single-view reconstruction. We employ the novel CGT described
in Section 5.3.2 to handle multiple viewpoints and changes in the camera’s intrin-
sic distance estimation. Secondly, we employ synergized decoders via cross-task
connections to improve each other’s performance.

Most previous works employed hard parameter sharing techniques, i.e., a shared en-
coder that branches out into task-specific heads without any synergy. In addition, our
goal is to induce synergies across the tasks in the form of loose coupling, maintaining
the tasks to be independent. We achieve this by passing some decoder features from
one task to another. The decoder features from the guiding task are combined with
the intended task’s decoder features using pixel-adaptive convolutions that contain
an adaptive kernel to mix both feature types. For example, semantic segmentation



7.3. Network Details of the OmniDet MTL Framework 145

(a) Front Cam (t-6) (b) Rear Cam (t-6)

(c) Front Cam (t) (d) Rear Cam (t)

(e) Motion Estimate (f) Motion Estimate

(g) Left Cam (t-6) (h) Right Cam (t-6)

(i) Left Cam (t) (j) Right Cam (t)

(k) Motion Estimate (l) Motion Estimate

Figure 7.4 Qualitative results of motion segmentation on WoodScape. (t-6) and (t) frames
are showcased to visually spot dynamic objects segmented in the motion estimate.



146 Chapter 7. Holistic 360° Scene Understanding

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Post Processing of Point Cloud Distance Estimates

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Geometric 
Projection

Robust
Reconstruction Loss

Geometric Projection 
Motion or Semantic

DC Object Mask

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Distance 
Decoder 

Pose Decoder 

M

Semantic Decoder

𝑡C

𝑡C

𝑡C

DC Object Mask

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡C Supervised Training

Detection Decoder

Semantic Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

Regression

Classification

Asynchronous Training

𝓂ℴ𝓉
 

Semantic 
Decoder 

Argmax( )

Soiling Decoder

C

Learned 
Encoder 
Features

𝑡

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
Self-

Attention 
Encoder 

Distance Decoder 

Semantic 
Decoder 

𝐼t 𝐷𝑡

M

Semantic 
Guidance

𝑡

Infinite 
Distance

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Distance Decoder 

𝐼t 𝐷𝑡

M𝑡

Infinite 
Distance

Motion 
Decoder

Shared 
Self-

Attention 
Encoder 

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Figure 7.5 Overview of OmniDet: A surround-view cameras based multi-task visual
perception framework. The distance estimation task (blue block) makes use of semantic
guidance and dynamic object masking from semantic/motion estimation (green and blue
haze block) and camera-geometry adaptive convolutions (orange block). Additionally, we
guide the detection decoder features (gray block) with the semantic features. The encoder
block (shown in the same color) is common for all the tasks. The framework consists of
processing blocks to train the self-supervised distance estimation (blue blocks) and semantic
segmentation (green blocks), motion segmentation (blue haze blocks), polygon-based fisheye
object detection (gray blocks), and the asynchronous task of soiling segmentation (rose fog
block). We obtain top view geometric information by post-processing the predicted distance
and semantic maps in 3D space. The camera geometry tensor Ct (orange block) helps
OmniDet to yield distance maps on multiple camera-viewpoints and makes the network
camera independent. Ct can also be adapted to the standard camera models, as explained in
Section 5.3.2.

produces holes in the road surface due to irregular textures, and depth maps cor-
responding to the road surface may help regularize the segmentation. There are
multiple instances of synergy where semantic segmentation is guiding depth estima-
tion, and object detection features and motion is guiding depth during the training
phase. Figure 7.6 illustrates the synergies established in our OmniDet framework.

Dealing With Dynamic Objects and Solving Infinite Depth Issue

This section discusses how we solved one of the concrete challenges using synergy,
namely the dynamic object issue for depth estimation, which contaminates the photo-
metric loss and causes infinite depth during inference. As dynamic objects violate
the static world assumption, information about their depth/distance is essential in
autonomous driving; else, we would encounter the infinite depth issue during the
inference stage and not accurately reconstruct the scene and possibly even oversee



7.3. Network Details of the OmniDet MTL Framework 147

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Post Processing of Point Cloud Distance Estimates

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Geometric 
Projection

Robust
Reconstruction Loss

Geometric Projection 
Motion or Semantic

DC Object Mask

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Distance 
Decoder 

Pose Decoder 

M

Semantic Decoder

𝑡C

𝑡C

𝑡C

DC Object Mask

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡C Supervised Training

Detection Decoder

Semantic Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

Regression

Classification

Asynchronous Training

𝓂ℴ𝓉
 

Semantic 
Decoder 

Argmax( )

Soiling Decoder

C

Learned 
Encoder 
Features

𝑡

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
Self-

Attention 
Encoder 

Distance Decoder 

Semantic 
Decoder 

𝐼t 𝐷𝑡

M

Semantic 
Guidance

𝑡

Infinite 
Distance

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Distance Decoder 

𝐼t 𝐷𝑡

M𝑡

Infinite 
Distance

Motion 
Decoder

Shared 
Self-

Attention 
Encoder 

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Sensors

Data Processing

Behavior
Planning

Environment
Perception

Vehicle
Control Actuators

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Geometric 
Projection

Robust
Reconstruction Loss

Geometric Projection 
Motion or Semantic

DC Object Mask

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Distance 
Decoder 

Pose Decoder 

M

Semantic Decoder

𝑡C

𝑡C

𝑡C

DC Object Mask

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡C Supervised Training

Detection Decoder

Semantic Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

Regression

Classification

𝓂ℴ𝓉
 

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Figure 7.6 Overview of the synergies established in OmniDet framework.

other traffic participants. Compared to the previous Section 5.2.3, wherein we use
the semantic segmentation task to obtain masks and filter dynamic objects as shown
in Figure 7.7. The major drawback of using semantics is that it might not cover
all the dynamic object classes in the semantic ground truth (e.g., cows). Therefore,
we propose a robust alternative to enable the filtering of dynamic objects using the
motion segmentation task as shown in Figure 7.8, which yields either a static or a
dynamic mask. However, the user can leverage either one of the tasks to solve this
issue. We use the motion segmentation information to exclude potentially moving
dynamic objects, while the distance is learned from non-moving dynamic objects.
For this purpose, we define the pixel-wise mask µt, which contains a 1 if a pixel
does not belong to a dynamic object from the current frame It and also not to a
wrongfully projected dynamic object from the reconstructed frames Ît′→t and a 0
otherwise. Accordingly, we predict a motion segmentation mask Mmot

t belonging to
the target frame It, as well as motion masks Mt′ for the source frames It′ . Dynamic
objects inside the source frame are canonically detected inside Mt. However, to
obtain the wrongfully projected dynamic objects, we need to warp the motion masks
by nearest-neighbor sampling to the target frame, yielding projected motion masks
Mt′→t. Dynamic objects can be masked through a pixel-wise multiplication of the
mask with the reconstruction loss for images and features.

Linking Self-Attention and Semantic features to Distance and Detection decoders

To better incorporate the semantic knowledge extracted from the multi-task networks
segmentation branch into the distance estimation, we incorporate it using pixel
adaptive convolutions (PAC) described in Section 5.3.3 to distill the knowledge from
the semantic features into the distance decoder. This, in particular, breaks up the
spatial invariance of the convolutions and allows the incorporation of location-specific
semantic knowledge into the multi-level distance features. As shown in Figure 7.5
(green block), the features are extracted at different levels of the segmentation decoder.



148 Chapter 7. Holistic 360° Scene Understanding

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Post Processing of Point Cloud Distance Estimates

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Geometric 
Projection

Robust
Reconstruction Loss

Geometric Projection 
Motion or Semantic

DC Object Mask

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Distance 
Decoder 

Pose Decoder 

M

Semantic Decoder

𝑡C

𝑡C

𝑡C

DC Object Mask

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡C Supervised Training

Detection Decoder

Semantic Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

Regression

Classification

Asynchronous Training

𝓂ℴ𝓉
 

Semantic 
Decoder 

Argmax( )

Soiling Decoder

C

Learned 
Encoder 
Features

𝑡

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
Self-

Attention 
Encoder 

Distance Decoder 

Semantic 
Decoder 

𝐼t 𝐷𝑡

M

Semantic 
Guidance

𝑡

Infinite 
Distance

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Distance Decoder 

𝐼t 𝐷𝑡

M𝑡

Infinite 
Distance

Motion 
Decoder

Shared 
Self-

Attention 
Encoder 

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Sensors

Data Processing

Behavior
Planning

Environment
Perception

Vehicle
Control Actuators

Figure 7.7 Filtering of dynamic objects
using semantic segmentation.

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Post Processing of Point Cloud Distance Estimates

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Geometric 
Projection

Robust
Reconstruction Loss

Geometric Projection 
Motion or Semantic

DC Object Mask

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Distance 
Decoder 

Pose Decoder 

M

Semantic Decoder

𝑡C

𝑡C

𝑡C

DC Object Mask

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡C Supervised Training

Detection Decoder

Semantic Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

Regression

Classification

Asynchronous Training

𝓂ℴ𝓉
 

Semantic 
Decoder 

Argmax( )

Soiling Decoder

C

Learned 
Encoder 
Features

𝑡

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Shared 
Self-

Attention 
Encoder 

Distance Decoder 

Semantic 
Decoder 

𝐼t 𝐷𝑡

M

Semantic 
Guidance

𝑡

Infinite 
Distance

WoodScape Fisheye

Self-Supervised Training

Supervised Training

Distance Decoder 

𝐼t 𝐷𝑡

M𝑡

Infinite 
Distance

Motion 
Decoder

Shared 
Self-

Attention 
Encoder 

Geometric 
Projection

Cross Sequence
Consistency Loss

Robust
Reconstruction Loss

Smoothness Loss

Geometric Projection 
Motion or Semantic

MTL Loss

DC Object Mask

Lovasz Softmax 
Loss

Self-Supervised Training

Supervised Training

Semantic 
Decoder 

𝑡→T 𝑡'

𝐼𝑡

𝑡→T 𝑡'

𝐼𝑡'

 

𝐷𝑡

𝑡'→𝐼 𝑡

𝑡'

𝜇𝑡Y𝑡

Concat
Output

Semantic 
Guidance

Argmax( )

→M 𝑡'𝑡

Front Camera

Mirror View Left Camera

Mirror View Right Camera

Rear Camera

Multi Camera Input

Distance 
Decoder 

𝐼𝑡'

Pose 
Decoder 

𝐼t' 

𝐼t

M

Camera Model 
Representation

Semantic Decoder

Camera Geometry
Tensor C    

𝑡C

𝑡C

Camera
Parameters

Polynomial
eUCM & UCM

Rectilinear
Stereographic
Double Sphere

𝑡

𝑡C

Shared 
Self- 

Attention 
Encoder 

for 𝐼 𝑡

𝑡C( ),

𝐼𝑡 𝑡C( ),

𝐼𝑡 𝑡C( ),

Self-Attention Auto-Encoder

𝐼𝑡

Clip Loss

Feature loss

𝑡'→F 𝑡

Discriminative +
Convergent Loss

Geometric 
Feature Projection

𝑡F 𝑡F

𝐼𝑡

DC Object Mask

Focal Loss with 
Lovasz Softmax

Semantic 
Decoder 

𝜇𝑡M𝑡 Argmax( )

→M 𝑡'𝑡

Motion Decoder

𝑡

𝐼𝑡 𝑡C( ),

C Supervised Training

Confidence Loss

Classification Loss

Localization Loss

Detection Decoder

Semantic 
Guidance 
Features

FisheyeYOLOv3
 Embeddings

Supervised Training

ℒ𝓈ℯ𝓂

ℒ𝒹𝒾𝓈𝓉

ℒ𝓂ℴ𝓉

ℒ𝒹ℯ𝓉

Regression

Classification

Y𝑡

𝐼 𝑡C( ),𝑡−1
Concat
Output

Asynchronous Training

𝓂ℴ𝓉
 

M𝑡
𝓂ℴ𝓉

Semantic 
Decoder 

Argmax( )

Soiling Decoder

𝑡

𝐼𝑡 𝑡C( ),

C

Lovasz Softmax 
Loss

Learned 
Encoder 
Features

Distance Estimate Semantic Segmentation

Motion Estimation Detection Estimate

Soiling Segmentation

Sensors

Data Processing

Behavior
Planning

Environment
Perception

Vehicle
Control Actuators

Figure 7.8 Filtering of dynamic objects
using motion segmentation.

To leverage the multi-task learning setup, at first, we extract the SAN encoder features
and feed it as an input signal to the Eq. 5.21 and bypass the spatial information from
the SAN encoder to the semantic decoder and fuse these features (skip-connections).
Finally, we fuse these features and the detection decoder embeddings by applying
PAC and obtaining content-agnostic features. This novel fusion technique in the
OmniDet framework significantly improves the detection decoder’s accuracy, which
can be seen in Table 7.3.

7.3.1 Joint Optimization

We provided a brief overview on MTL optimization strategies in Section 3.6.5. Bal-
ancing the task losses is of significant importance in training a multi-task model.
We evaluate various task weighting strategies for five tasks compared to the two
task experiments in chapter 3 and chapter 4. We evaluate the uncertainty loss from
Kendall [132], the gradient magnitude normalization GradNorm [133], the dynamic
task prioritization DTP [375], the dynamic weight average DWA [342] and the geo-
metric loss [355].

Secondly, we propose a novel method called VarNorm for variance normalization.
It consists of normalizing each loss by its variance over the last n epochs. The loss
weight of task i at epoch t is formulated as below:

wi(t) =
1

σi(t− 1)
, σi(t) =

1
n− 1

n−1

∑
k=0

(Li(t− k)− Li)
2 (7.4)

where Li is the average of task loss i over the last n epochs. We chose n = 5. This
method is motivated by the simple idea that the task loss values can be seen as a
distribution whose dispersion is its variance. Variance normalization re-scales the
dispersion between the different task loss distributions based on the previous n
epochs. A large dispersion leads to a lower task weight, whereas a small dispersion
to a higher one. Its final effect tends to homogenize the learning speed of tasks.
As shown in Table 7.1, equal weighting is the worst, and the multi-task network
performs better than the single task networks by using any dynamic task weighting
method presented above. We employ the proposed VarNorm method for all the
further experiments as it achieved the best results.



7.4. Implementation Details 149

Task
Weighting

Distance
Estimation

Semantic
Segmentation

Motion
Segmentation

Object
Detection

Sq. Rel ↓ Abs Rel ↓ mIoU ↑ PA ↑ mIoU ↑ PA ↑ mAP ↑
Single Task 0.060 0.304 72.5 94.8 68.1 94.1 63.5

Equal 0.058 0.302 70.3 92.7 67.3 93.3 64.6
DTP [375] 0.047 0.281 75.8 95.6 75.3 95.3 67.9
DWA [342] 0.054 0.293 75.4 95.2 74.7 95.1 67.5
Geometric [355] 0.061 0.297 74.2 94.1 73.2 94.3 66.7
GradNorm [133] 0.050 0.283 75.9 95.7 74.9 96.0 67.7
Uncertainity [132] 0.044 0.279 76.1 96.2 75.1 95.8 68.0
VarNorm 0.046 0.276 76.6 96.4 75.3 96.1 68.4

Table 7.1 Comparison of task-weighting methods on the WoodScape dataset. PA denotes
pixel accuracy.

7.4 Implementation Details

We systematically train and test all single and multi-task models on the Woodscape
and the pinhole camera datasets KITTI and Cityscapes described in the datasets
Section 2.5. We use Pytorch [22] and employ a single-stage learning process for
the OmniDet framework to facilitate network optimization. We incorporate the
recently proposed SAN in the encoder. Zhao et al. [8] proposed two convolution
variants, namely pairwise and patchwise. We mainly use patchwise but perform an
ablation study using pairwise self-attention convolutions. We employ the Ranger
(RAdam [420] + LookAhead [421]) optimizer to minimize the training objective
function. We train the model for 20 epochs, with a batch size of 24 on a 24GB Titan
RTX with an initial learning rate of 4× 10−4 for the first 15 epochs, which is reduced
to 10−5 for the last five epochs. The sigmoid output σ from the distance decoder is
converted to distance with D = m · σ + n, where m and n are chosen to constrain
D between 0.1 and 100 units. Finally, we set β, γ, ω and µ to 10−3. Images are
resized to 544× 288 px from the native 1MP resolution for WoodScape. In the case
of Cityscapes, images are resized to 640× 384 px for training and validation, and
for KITTI, we resize it to input size of 640× 192 px for all the tasks. For the motion
segmentation, we use the annotations provided by DeepMotion [49] for Cityscapes
and KITTI MoSeg [28], where labels are available only for the cars category.

All images from the surround-view cameras with multiple viewpoints are shuffled
thoroughly and fed to the distance and pose networks along with their respective
intrinsic to create the camera geometry tensor Ct, as shown in Figure 7.5, and de-
scribed in Section 5.3.2. The soiling dataset is independently built, and thus it cannot
be trained jointly in a traditional manner. Thus we freeze the shared encoder trained
using five other tasks and train only the decoder for soiling. This demonstrates the
addition of new tasks reusing the encoder features. We also trained soiling jointly
using asynchronous backpropagation [138], but it achieved the same accuracy as
using the frozen encoder. Compared to the previous work SoilingNet [43], we moved
from the tiled output to a pixel-level segmentation.



150 Chapter 7. Holistic 360° Scene Understanding

Dist. &
Pose Est.

Sem.
Seg.

Mot.
Seg.

Obj.
Det.

Soil.
Seg. RMSE mIoU

Seg.
mIoU
Mot.

mAP
Det.

mIoU
Soil.

Infer.
(fps)

WoodScape

3 7 7 7 7 1.681 7 7 7 7 210
7 3 7 7 7 7 72.5 7 7 7 190
7 7 3 7 7 7 7 68.1 7 7 105
7 7 7 3 7 7 7 7 63.5 7 190
7 7 7 7 3 7 7 7 7 80.8 190
3 3 7 7 7 1.442 74.8 7 7 7 143
7 3 7 3 7 7 77.1 7 67.9 7 143
3 3 3 7 7 1.352 75.5 74.8 7 7 69
3 3 3 3 7 1.332 76.6 75.3 68.4 7 60

KITTI

3 7 7 7 NA 4.126 7 7 7 NA 160
7 3 7 7 NA 7 67.7 7 7 NA 148
7 7 3 7 NA 7 7 68.3 7 NA 78
7 7 7 3 NA 7 7 7 80.1 NA 182
3 3 7 7 NA 3.984 72.1 7 7 NA 103
3 3 3 7 NA 3.892 71.9 71.7 7 NA 47
3 3 3 3 NA 3.859 72.4 72.2 82.3 NA 43

CityScapes

3 7 7 7 NA 4.906 7 7 7 NA 156
7 3 7 7 NA 7 78.7 7 7 NA 132
7 7 3 7 NA 7 7 70.4 7 NA 64
7 7 7 3 NA 7 7 7 51.7 NA 167
3 3 7 7 NA 4.741 79.4 7 7 NA 91
3 3 3 7 NA 4.725 79.1 72.0 7 NA 36
3 3 3 3 NA 4.691 81.2 72.7 53.0 NA 31

Table 7.2 Comparative study of SAN10-Patch MTL model and the equivalent single-task
models on three datasets. The checkmark legends indicate 3if the task is activated during
training, 7 deactivated, 7 no evaluation performed, and NA task not being part of the MTL
training.

7.5 Experiments

7.5.1 Single-Task vs Multi-Task Learning

In Table 7.2, we perform an extensive ablation of the proposed framework on all
considered datasets. The soiling Segmentation task is indicated NA (Not Applicable)
as it is not included in the MTL training regime. Quantitative results from the
experiments indicate that a multi-task network with six tasks, five diverse tasks
performs better than the single task models along with the proposed synergies.
The qualitative results on the raw fisheye streams from the surround-view camera
system on the perception tasks are shown in Figure 7.10. For KITTI and CityScapes,
we employ the novel VarNorm task weighting technique. With this synergy of
perception tasks, we obtain state-of-the-art depth and pose estimation results on the
KITTI dataset, as shown in Table 7.5 and Table 7.6 respectively. We infer the models
using the TensorRT (FP16bit) on NVIDIA’s Jetson AGX platform and report processed
frames per second for all the tasks.

7.5.2 Ablation Study of the Contributions

For the ablation analysis of the main features shown in Table 7.3, we consider two
variants of the self-attention encoder, namely pairwise and patchwise, as described in
Section 5.3.1. First, we replace the L1 loss with a generic parameterized loss function
and test it using the self-attention encoder’s patchwise variant. We cap the distance



7.5. Experiments 151

Network Robust
loss

Feature
loss

Semantic
Guide Dist.

Semantic
Mask

Motion
Mask

Semantic
Guide Det. CGT Cyl

Rect. RMSE ↓ δ < 1.25↑ mIoU
Seg

mIoU
Mot.

mAP
Det

OmniDet
(SAN10-patch)

3 7 7 7 7 7 7 7 2.153 0.875 73.2 71.8 63.3
3 3 7 7 7 7 7 7 1.764 0.897 73.6 72.3 63.5
3 3 7 7 7 7 3 7 1.681 0.902 74.2 73.5 63.8
3 3 3 3 7 7 7 7 1.512 0.905 74.5 73.4 63.6
3 3 3 3 7 7 3 7 1.442 0.908 74.8 74.0 64.1
3 3 3 7 3 7 7 7 1.397 0.915 75.2 74.3 64.0
3 3 3 7 3 7 3 7 1.352 0.916 75.5 74.8 64.3
3 3 3 7 3 3 7 7 1.348 0.915 75.9 74.9 67.8
3 3 3 7 3 3 3 7 1.332 0.918 76.6 75.3 68.4
3 3 3 7 3 3 3 3 1.210 0.929 78.9 79.2 74.1

OmniDet
(SAN10-pair)

3 3 3 3 7 7 3 7 1.492 0.904 74.1 73.1 63.3
3 3 3 7 3 3 3 7 1.321 0.911 75.4 74.6 67.6
3 3 3 7 3 3 3 3 1.272 0.919 77.1 77.4 72.6

OmniDet
(SAN19-patch)

3 7 7 7 7 7 7 7 2.138 0.880 73.9 72.4 64.7
3 3 7 7 7 7 7 7 1.749 0.903 74.3 73.0 64.8
3 3 7 7 7 7 3 7 1.662 0.906 74.6 74.1 65.2
3 3 3 3 7 7 7 7 1.495 0.910 74.9 73.8 64.9
3 3 3 3 7 7 3 7 1.427 0.916 75.4 74.7 65.5
3 3 3 7 3 7 7 7 1.378 0.918 75.7 75.1 65.3
3 3 3 7 3 7 3 7 1.331 0.922 76.2 75.6 65.9
3 3 3 7 3 3 7 7 1.320 0.927 76.8 76.2 69.6
3 3 3 7 3 3 3 7 1.304 0.931 77.4 77.0 71.5
3 3 3 7 3 3 3 3 1.177 0.938 80.2 80.5 76.3

Table 7.3 Ablation study on the effect of our contributions up to the final OmniDet model
on the Woodscape.

Semantic
Mask

Motion
Mask CGT RMSE ↓ mIoU

Seg
mIoU
Mot.

mAP
Det

3 7 7 1.512 74.5 73.4 63.6
3 7 3 1.442 74.8 74.0 64.1
7 3 7 1.397 75.2 74.3 64.0
7 3 3 1.352 75.5 74.8 64.3

Table 7.4 Ablation study of dynamic object filtering using semantic and motion
segmentation masks.

estimates to 40m. We achieve significant gains in this setting by attributing better-
supervised signal provided by using discriminative features Ldis as described in
Section 7.2.1 where incorrect distance values are appropriately penalized with more
considerable losses along with the combination of Lcvt in Section 7.2.1 wherein a
correct optimization direction is provided. These losses help the gradient descent ap-
proaches to transit smoothly towards optimal solutions. When adding the CGT to this
setting, we observe a significant increase in accuracy since we train multiple cameras
with different camera intrinsics and viewing angles. For the OmniDet framework
to be operational in the first place, this an important feature. The aforementioned
training strategy makes the network camera-independent and generalizes better to
images taken from a different camera.

To achieve synergy between geometry and semantic features, we add semantic
guidance to the distance decoder. It helps to reason about geometry and content
within the same shared features and to disambiguate photometric ambiguities. To
establish a robust reconstruction loss free from the dynamic objects’ contamination,
we introduce semantic and motion masks as described in Section 7.3, to filter all the
dynamic objects. Motion mask-based filtering yields superior gains along with CGT
compared to using semantic masks, which is also shown in Table 7.4 as semantics
might not contain all the dynamic objects in its set of classes as indicated in Eq. 5.7.



152 Chapter 7. Holistic 360° Scene Understanding

Method Absrel Sqrel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better
O

ri
gi

na
l[

50
]

Monodepth2 [55] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [7] 0.111 0.829 4.788 0.199 0.864 0.954 0.980
FisheyeDistanceNet [2] 0.117 0.867 4.739 0.190 0.869 0.960 0.982
UnRectDepthNet [3] 0.107 0.721 4.564 0.178 0.894 0.971 0.986
SynDistNet [4] 0.109 0.718 4.516 0.180 0.896 0.973 0.986
Shu et al. [181] 0.104 0.729 4.481 0.179 0.893 0.965 0.984
OmniDet 0.092 0.657 3.984 0.168 0.914 0.975 0.986

Struct2Depth∗ [189] 0.109 0.825 4.750 0.187 0.874 0.958 0.983
GLNet∗ [364] 0.099 0.796 4.743 0.186 0.884 0.955 0.979
Shu∗ et al. [181] 0.088 0.712 4.137 0.169 0.915 0.965 0.982
OmniDet∗ 0.077 0.641 3.859 0.152 0.931 0.979 0.989

Im
pr

ov
ed

[1
43

] Monodepth2 [55] 0.090 0.545 3.942 0.137 0.914 0.983 0.995
PackNet-SfM [7] 0.078 0.420 3.485 0.121 0.931 0.986 0.996
UnRectDepthNet [3] 0.081 0.414 3.412 0.117 0.926 0.987 0.996
SynDistNet [4] 0.076 0.412 3.406 0.115 0.931 0.988 0.996
OmniDet 0.067 0.306 3.098 0.101 0.944 0.991 0.997
OmniDet∗ 0.048 0.287 2.913 0.081 0.948 0.991 0.998

Table 7.5 Evaluation of depth estimation on the KITTI Eigen [50] split.

Figure 7.9. presents the qualitative results of the distance estimation and semantic
segmentation tasks. Finally, to complete the synergy, we use semantically guided
features to the detection decoder described in Section 5.3.3, which yields significant
gains in mAP, and overall results for all the tasks are inherently improved with better-
shared features. All the contributed features and the synergy between tasks help the
OmniDet framework to achieve a good scene understanding with high accuracy in
each task’s predictions. To enable a single model to handle the different intrinsics,
we re-projected all input images to the same central cylindrical projection in the first
step. In vertical direction, it resembles a rectilinear projection yI = f · tan(θ′), where
θ′ = arctan

(
y/
√

x2 + z2
)

. In horizontal direction it resembles a equirectangular
projection xI = f · θ′′, where θ′′ = arctan (x/z). Cylindrical rectification (Cyl Rect.)
provides a good trade-off between loss of field-of-view and reducing distortion [12].
The qualitative results of the Cylindrical rectified image predictions on the perception
tasks are shown in Figure 7.11.

7.5.3 State-of-the-Art Comparison on KITTI

To facilitate comparison to previous methods, we also train the distance estimation
method in the classical depth estimation setting on the KITTI Eigen split [116] whose
results are shown in Table 7.5. With the synergy between depth, semantic, motion,
and detection tasks along with the features ablated in Table 7.3 and their importance
explained in Section 7.5.2, we outperform all previous monocular methods. Following best
practices, we cap depths at 80 m. We also evaluate using the Original [50] as well as
Improved [143] ground truth depth maps. Method∗ indicates the online refinement
technique [189], where the model is also trained during inference. Using the online
refinement method from [189], we obtain a significant improvement.

In Table 7.6, we report the average trajectory error of the pose estimation network in
meters by following the same protocols as Zhou [53] on the official KITTI odometry



7.5. Experiments 153

Method
No. of
Frames GT Sequence 09 Sequence 10

ORB-SLAM [108] 5 3 0.014 ± 0.008 0.012 ± 0.011
DF-Net [416] 5 3 0.017 ± 0.007 0.015 ± 0.009
SfMLearner [53] 5 3 0.016 ± 0.009 0.013 ± 0.009
Klodt et al. [436] 5 3 0.014 ± 0.007 0.013 ± 0.009
GeoNet [370] 5 3 0.012 ± 0.007 0.012 ± 0.009
Struct2Depth [189] 5 3 0.011 ± 0.006 0.011 ± 0.010
Ranjan [303] 5 3 0.011 ± 0.006 0.011 ± 0.010
PackNet-SfM [7] 5 3 0.010 ± 0.005 0.009 ± 0.008
PackNet-SfM [7] 5 7 0.014 ± 0.007 0.012 ± 0.008
OmniDet 5 3 0.009 ± 0.004 0.008 ± 0.005
OmniDet 5 7 0.010 ± 0.005 0.010 ± 0.008

DDVO [177] 3 3 0.045 ± 0.108 0.033 ± 0.074
Vid2Depth [154] 3 3 0.013 ± 0.010 0.012 ± 0.011
EPC++ [363] 3 3 0.013 ± 0.007 0.012 ± 0.008
OmniDet 3 3 0.011 ± 0.006 0.010 ± 0.007
OmniDet 3 7 0.012 ± 0.007 0.011 ± 0.008

Monodepth2 [55] 2 3 0.017 ± 0.008 0.015 ± 0.010
OmniDet 2 3 0.015 ± 0.007 0.013 ± 0.007
OmniDet 2 7 0.016 ± 0.008 0.014 ± 0.009

Table 7.6 Evaluation of the pose estimation on the KITTI Odometry Benchmark [116].

Representation mIoU
GT mIOU No. of

params

Standard Box 51.3 31.6 4
Curved Box 52.5 32.3 6
Oriented Box 53.9 33.6 5
Ellipse 55.5 35.4 5
24-sided Polygon 86.6 44.6 48

Table 7.7 Evaluation of various object detection representations.

split (containing 11 sequences with ground-truth (GT) odometry acquired with the
IMU/GPS measurements, which is used for evaluation purpose only), and use
sequences 00-08 for training and 09-10 for testing. We outperform the previous
methods listed in Table 7.6, mainly by applying the bundle adjustment framework
inflicted by the cross-sequence distance consistency loss [2] which induces more
constraints and simultaneously optimizes distances and camera poses for an implicitly
extended training input sequence. This provides additional consistency constraints
that are not induced by previous methods.

For object detection on native fisheye images, in addition to the standard 2D box
representation, we benchmark oriented boxes, ellipse, curved boxes, and 24-sided
polygon representations in Table 7.7. Here mIoU GT represents the maximum perfor-
mance we can achieve in terms of instance segmentation by using each representation.
It is computed between the ground truth instance segmentation and the ground
truth of the corresponding representation. Whereas mIoU represents the evaluation
of the performance achieved on the network estimates. We also list the number of
parameters involved in the model for each representation to provide a complexity
comparison.



154 Chapter 7. Holistic 360° Scene Understanding

7.5.4 Analysis on Adversarial Attacks

We conduct the experiments across four visual perception tasks, excluding the pose
estimation and soiling segmentation tasks, on a test set of 100 images, i.e., randomly
sampled from the original test set of the target network. We generate adversarial ex-
amples for each image in the test set while attacking one task at a time. For white-box
attacks, given the available gradients, we perform an iterative optimization process
to add perturbation in the input image in a direction to harm the original predictions.
For the black box attacks, we set up similar protocols as established for white box
attacks; however, the gradients are not given but estimated. As a generic black-box
optimization algorithm, we show that Evolution Strategies (ES) can be adopted as a
black-box optimization method for generating adversarial examples. Precisely, the
ES algorithm is used to update the adversarial example over the attacking steps. At
each step, we take the adversarial example vector, i.e., the adversarial example is
the perturbed image, and generate a population of 25 slightly different vectors by
adding noise sampled from a normal distribution. Then, we evaluate each of the
individuals by feeding it through the network. Finally, the newly updated vector
is the weighted sum of the population vectors. Each weight is proportional to the
task’s desired performance, and the process continues till convergence defined by a
stopping criterion.

In the untargeted case, the aim is to inflict maximum harm to the predictions without
considering a certain target prediction: f (xadv) 6= ytrue, however in the targeted case,
the aim is to harm the predictions in a desired specific way towards a certain target:
f (xadv) = ytarget. The attack loss is based on the task. Mean square error (MSE) is
used for the distance task, while cross-entropy loss is used for motion and semantic
segmentation tasks. For the object detection task, only object confidence is attacked;
hence the cross-entropy loss is adopted. Regarding untargeted attacks across all the
tasks, the goal is to maximize the distance between the original output of the network
and the adversarial example’s output. Accordingly, we add the perturbations to
achieve this simple goal where the output can be anything but the correct one. This
can be formulated as θ = θ + αdJ/dθ where θ is the image parameters i.e. pixels, J
the loss functions and α is the learning rate. However, for the targeted attacks, the
target output is defined. The aim is to minimize the distance between the original
output and the target output according to θ = θ − αdJ/dθ.

For each perception task, the targets are as follows: The Targeted Depth attack tries
to convert the predicted near pixels to be predicted as far. The Targeted Segmentation
attack tries to convert the predicted vehicle pixels as void for randomly 50% of the
test set. For the other 50%, the attack tries to convert the predicted road pixels to
void. The Targeted Motion attack tries to convert the predicted dynamic object pixels
as static. Finally, similar to semantic segmentation, the Targeted Object Detection attack
tries to increase or decrease the predicted confidence randomly. In addition to attacks,
we apply a simple blurring defense approach across all attacks. Similar to [403], the
intuition is to try to remove the adversarial perturbations and restore the original
output as much as possible. The hyperparameters of the attacks are empirically
defined based on a minimal validation set of three samples. All white-box attacks are
conducted with a learning rate of α = 0.00015. In black-box attacks, hyperparameters
are chosen to balance the attack effect and the severity of the perturbations. The
learning rates range from 0.0001 to 0.001, and µ = 0, σ = 0.05 for ES population
generation.



7.5. Experiments 155

Adversarial attacks results

In this subsection, we present and discuss the results of w.r.t. adversarial attacks.
As expected, white-box attacks, where the gradients are accessible, were easier to
optimize than the black box case. White box attacks can generate adversarial examples
with minimal and localized perturbations across all tasks. On the other hand, ES black-
box attacks have more significant perturbations and require more hyperparameters
to optimize.

The attacking curves for white and black box attacks are shown in Figures 7.12
and 7.13 respectively. Each plot shows each perception task’s performance over the 50
attacking steps where the first step at index 0 represents the actual performance of the
target network without applying any attack. Each curve shows the mean performance
of a task over the test set, where the shaded area is the mean ± standard deviation.
Generally, motion and detection tasks have a performance with a large standard
deviation indicating the test set’s diversity containing easy and hard examples. Across
all curves, it is clear that the performance is decreasing along with the attacking steps.

Moreover, attacking one task by generating an adversarial example affects the other
tasks’ performance in different ways along the attacking curve. These curves enable
the adversary to decide at which step the adversarial example is generated according
to the required effect on the target task and the other tasks. As shown in Figures 7.12
and 7.13, in most cases, attacking other tasks has a marginal negative effect on the
motion task. The main reason is that the motion task takes two frames as input, and
only one of them is attacked. Moreover, it is shown that attacking the distance task
affects both segmentation and detection tasks. Attacking segmentation or detection
showed to affect all other tasks. As mentioned, the attack effect depends on the
parameters selected for the attack. Moreover, targeted attacks try to optimize the
adversarial example to produce the required target prediction. In contrast, the
untargeted attack continues to apply perturbations to produce as different as possible
predictions.

To understand the effect of applying a defense method on the attacks, Gaussian
blurring with a radius = 1 is applied to the final adversarial examples, which are
then fed into the target network. As shown in Table 7.8, this simple defense method
has a positive effect for both segmentation and motion tasks in most cases compared
to depth and detection tasks. Furthermore, the effect of blurring on the network’s
performance is inspected without applying any attacks, as shown in Table 7.9. Both
detection and distance tasks are affected the most. This explains why this defense
method is more effective for segmentation and motion tasks. Figure 7.14 shows
different visual samples of the attacks organized into four groups. Each group has
three images: the original output, the adversarial perturbations magnified to 10X,
and the impacted results are overplayed on the adversarial examples. As expected,
perturbations for the white box attacks are much more minor and more localized than
the black box case. Moreover, the performance is harmed for the untargeted attacks
without having a specific goal leading to arbitrary predictions. On the other hand,
vehicles or roads are removed for the semantic segmentation task for targeted attacks.
We add false objects or remove true objects for the detection task. Near pixels are
converted as far for the distance task. Finally, we convert dynamic objects to static for
the motion task.



156 Chapter 7. Holistic 360° Scene Understanding

Task Distance
RMSE

Segmentation
mIoU

Motion
mIoU

Detection
mAP

A D A(%) D(%) A(%) D(%) A(%) D(%)

Distance

wb_untarget 0.126 0.047 -14 -7.3 -3.1 -3.0 -13.4 -25.5
wb_target 0.288 0.031 -40 -7.5 -4.4 -2.7 -38.9 -33.2
bb_untarget 0.036 0.033 -3.0 -6.5 -1.5 -3.7 -4.6 -25.8
bb_target 0.035 0.036 -14.8 -13.4 -3.9 -2.9 -27.1 -37.6

Segmentation

wb_untarget 0.032 0.028 -86.8 -14.2 -5.0 -3.5 -37.6 -30.1
wb_target 0.017 0.027 -32.0 -5.5 -4.0 -2.6 -21.3 -27.5
bb_untarget 0.015 0.031 -26.1 -11.4 -2.3 -4.9 -6.7 -27.3
bb_target 0.020 0.034 -16.1 -9.2 -2.2 -2.5 9.2 -28.8

Motion

wb_untarget 0.018 0.027 -11.1 -7.3 -25.9 -9.2 -18.9 -23.1
wb_target 0.010 0.027 -2.4 -6.0 -14.7 -9.2 -7.1 -30.0
bb_untarget 0.030 0.039 -17.1 -15.8 -24.3 -17.6 -22.2 -38.6
bb_target 0.033 0.040 -24.6 -22.5 -13.9 -11.7 -34.7 -47.9

Detection

wb_untarget 0.012 0.027 -5.1 -5.9 -2.1 -2.5 -39.8 -31.4
wb_target 0.018 0.027 -15.0 -6.2 -3.0 -4.0 -71.9 -30.6
bb_untarget 0.021 0.033 -12.5 -10.4 -4.2 -5.8 -39.4 -35.3
bb_target 0.022 0.034 -11.6 -10.6 -2.7 -3.7 -34.4 -37.9

Table 7.8 Summary of attacking and defending results across the test data where A and D
columns are for Attack and Defense respectively.

Task Metric Original Blurred Effect (%)

Distance RMSE 0.0 0.026 NA
Segmentation mIoU 0.499 0.477 -4.4
Motion mIoU 0.711 0.693 -2.6
Detection mAP 0.633 0.416 -34.3

Table 7.9 Input blurring effect on the tasks.

7.6 Conclusion

This chapter successfully demonstrated a six-task network with a shared encoder and
synergized decoders on fisheye surround-view images in this thesis. The majority
of the automated driving community’s research continues to focus on individual
tasks, and there is much progress to be made in designing and training optimal
multi-task models. We introduced several novel contributions, including the camera
geometry tensor usage for encoding radial distortion, variance-based normalization
task weighting, and generalized object detection representations. To enable a com-
parison, we evaluate the network on five tasks on KITTI and Cityscapes, achieving
competitive results. There are still many practical challenges in scaling to a higher
number of tasks: building a diverse and balanced dataset, corner case mining, stable
training mechanisms, and designing an optimal map representation that combines
all tasks, thereby reducing the post-processing. We hope that this thesis encourages
further research in building a unified perception model for autonomous driving.

This chapter also applied various adversarial attacks to understand the vulnerabilities
of the perception network. For each perception task, white and black box attacks



7.6. Conclusion 157

are conducted for targeted and untargeted scenarios. Moreover, the attacking curves
show the interactions between attacks on different tasks. It is shown how attacking a
task affects not only that task but also the others. Moreover, by applying blurring on
the adversarial examples as a defense method, it is found to positively affect segmen-
tation and motion tasks in contrast to the object detection and distance estimation
tasks for the considered network model.



158 Chapter 7. Holistic 360° Scene Understanding

Figure 7.9 Qualitative results of distance estimation and semantic segmentation on raw
surround-view fisheye cameras on the WoodScape dataset. The 1st column contains two
rows of input images from each of the Front, Left, Right, and Rear cameras.



7.6. Conclusion 159

Figure 7.10 Qualitative results of raw fisheye images from the OmniDet framework on
the WoodScape dataset. The 1st and 6th rows indicates the input images from Front, Left,
Right and Rear cameras. 2nd and 7th rows indicate distance estimates, 3rd and 8th rows
indicate semantic segmentation maps, 4th and 9th rows indicate generalized object detection
predictions and finally 5th and 10th rows indicate the motion segmentation. For more
qualitative results at a higher resolution, we refer to this video:
https://youtu.be/xbSjZ5OfPes

https://youtu.be/xbSjZ5OfPes


160 Chapter 7. Holistic 360° Scene Understanding

Figure 7.11 Qualitative results of cylindrical rectified images from the OmniDet
framework on the WoodScape dataset. The 1st and 7th rows indicates the input images from
Front, Left, Right and Rear cameras. 2nd and 8th rows indicate distance estimates, 3rd and 9th

rows indicate semantic segmentation maps, 4th and 10th rows indicate object detection of
standard boxes representations, and finally 5th and 11th rows show input frames at (t-6) for
reference to compare the motion segmentation in 6th and 12th rows at time (t). For more
qualitative results at a higher resolution, we refer to this video:
https://youtu.be/xbSjZ5OfPes

https://youtu.be/xbSjZ5OfPes


7.6. Conclusion 161

Figure 7.12 Performance comparison of White-box attacks across different tasks. The 1st and
2nd rows show untargeted attacks, 3rd and 4th rows show targeted attacks, and columns
represent the tasks.



162 Chapter 7. Holistic 360° Scene Understanding

Figure 7.13 Performance comparison of Black-box attacks across different tasks. The 1st and
2nd rows show untargeted attacks, 3rd and 4th rows show the targeted attacks, and columns
represent the attacked tasks.



7.6. Conclusion 163

Figure 7.14 From Top to Bottom: White box Untargeted, White box Targeted, Black box
Untargeted, and Black box Targeted Attacks. Within each group from top to bottom:
Original results, adversarial perturbations, and the impacted results. For intuitive
visualizations of the attacks, see https://youtu.be/R3JUV41aiPY.

https://youtu.be/R3JUV41aiPY


164

Chapter 8

Discussion

Contents
8.1 Geometric Tasks 164

8.1.1 Contributions 165
8.1.2 Contextual Depth Limitations 166
8.1.3 Shortcomings of Self-Supervised Distance Estimation 167
8.1.4 Implications of the Used Loss Functions 168
8.1.5 Are there Better Choices than the Photometric Loss? 169
8.1.6 Impact on Chosen Distance Estimation Network 170

8.2 Geometry Meets Semantics 170
8.2.1 Contributions 171
8.2.2 Exploring Diverse Modalities 171

Rethinking the Heuristic Loss Function 171
Leveraging Semantic Segmentation 172
Model Advances 172
Comparison between Convolution and Self-Attention 172

8.3 Generalized Object Detection 173
8.3.1 Need for better 2D Object Representations 173
8.3.2 Contributions 173
8.3.3 Lack of Fisheye Object Detection Dataset 174
8.3.4 Limitations of Generalized Object Detection 174

8.4 Holistic 360° Scene Understanding 174
8.4.1 Contributions 174
8.4.2 Why Does MTL Work? 175
8.4.3 When MTL Works – And When It Does Not 175
8.4.4 Key Components to Determine if MTL is better than STL 176

This chapter discusses the contributions and the limitations of the approaches pre-
sented in this thesis.

8.1 Geometric Tasks

Depth estimation models may be learned in a supervised fashion on LiDAR distance
measurements, such as KITTI [116]. In previous work, we followed this approach and
demonstrated the possibility to estimate high-quality distance maps using LiDAR
ground truth on fisheye images [10]. However, the limitation of this approach is



8.1. Geometric Tasks 165

that setting up the entire rig for such recordings is expensive and time-consuming,
limiting the amount of data on which a model can be trained. Supervised learning
remains a bottleneck for creating more intelligent generalized models which can do
multiple tasks and acquire new skills without massive amounts of labeled data. To
overcome this problem, we proposed FisheyeDistanceNet in Chapter 4, the first end-to-
end self-supervised monocular scale-aware training framework. FisheyeDistanceNet
uses CNNs on raw fisheye image sequences to regress a Euclidean distance map and
provides a baseline for single frame Euclidean distance estimation.

Practically speaking, if we consider the supervised learning approach, it is improbable
to label everything in the world. Suppose AI systems can gather a more profound,
more nuanced knowledge of reality beyond what is specified in the training data set.
In that case, they will be more valuable and eventually bring AI closer to human-
level intelligence. We think that self-supervised learning is one of the most assuring
means to develop such background knowledge and approximate common sense
in AI systems. Self-supervised learning allows AI systems to learn from orders of
magnitude more data, which is vital to identify and interpret patterns of more subtle,
less common representations of the world.

8.1.1 Contributions

• A self-supervised training strategy that aims to infer a distance map from a
sequence of distorted and unrectified raw fisheye images.

• A solution to the scale factor uncertainty with the bolster from ego-motion
velocity allows outputting metric distance maps. This facilitates the map’s
practical use for self-driving cars.

• A novel combination of super-resolution networks and deformable convolution
layers [417] to output high-resolution distance maps with sharp boundaries
from a low-resolution input. Inspired by the super-resolution approach [419],
we accurately resolve distances by replacing the deconvolution [428] and a naive
nearest neighbor or bilinear upsampling. (see Figure 4.5: the self-supervised
model, FisheyeDistanceNet, produces sharp, high quality distance and depth
maps).

• We depict the importance of using backward sequences for training and con-
struct a loss for these sequences. Moreover, a combination of filtering static
pixels and an ego mask is employed. The incorporated bundle-adjustment
framework [415] jointly optimizes distances and camera poses within a se-
quence by increasing the baseline and providing additional consistency con-
straints.

• A novel generic end-to-end self-supervised training pipeline to estimate monoc-
ular depth maps on raw distorted images for various camera models.

• Empirical evaluation of the approach on two diverse automotive datasets,
namely KITTI and WoodScape.

• First demonstration of depth estimation results directly on unrectified KITTI se-
quences (see Figure 4.8: the scale-aware model, UnRectDepthNet, yields precise
boundaries and fine-grained depth maps).

• State-of-the-art results on KITTI depth estimation among self-supervised meth-
ods.



166 Chapter 8. Discussion

Figure 8.1 Ames room, a famous example of
forced perspective, taken at Cité des Sciences,
Paris [459].

Figure 8.2 Dakar 2019 photograph by Frank
Fife [460].

8.1.2 Contextual Depth Limitations

It has been demonstrated that depth inference networks can estimate depth solely
based on perspective and context. They were able to obtain reasonable scale-invariant
quality measures with only one image [50, 53, 175, 457]. It has been deemed popular
and convincing enough to prompt the development of a dedicated large-scale chal-
lenge [143]. Without a way to link the estimation to the real world, scale-invariant
quality is not particularly interesting in the context of autonomous driving. Using
human perception as a reference, it was demonstrated by McManus et al. [458] that
forcing perspective on humans was well-known and studied, especially in the art
for dramatic effect. Ames room is one of these methods. The apparent viewpoint is
disputed by the person’s height, as seen in Figure 8.1; the depth is thus different
on the left and right, although it appears to be the same. This demonstrates that
the projection of a point P is independent of its distance from the camera and the
human eye’s lack of robustness in determining depth from context while viewing
a single image. We can infer that a single frame depth network will face the same
constraints [406].

One could argue that these forced perspective counter-examples are not really realistic:
if they were discovered unintentionally, the human would have been resistant to
it. Figure 8.2 depicts a Dakar 2019 competitor. At first glance, an illusory cliff
can be seen before realizing the image is a high-angle shot (that the human eye
is not familiar with). This demonstrates that even realistic imagery can lead to a
perplexing perspective. CNN’s can learn depth from single images by focusing their
attention on specific features, similar to how humans see. Because this process is
entirely data-driven (no geometry is involved in deployment), biases in the training
data significantly impact the accuracy of a monocular network. Van Dijk and de
Croon [396] investigate this by taking a set of cues (relative position, apparent size,
and others) and examine how they affect the depth maps estimated by CNNs trained
on KITTI [11] as shown in Figure 8.3. In summary, the position vs. apparent size is as
follows:

• Varying position and size affects depth estimation (the higher and smaller, the
farther) as seen in the 1st row in Figure 8.3.

• Varying position only affects depth as well (the higher, the farther) as seen in
the 2nd row.

• Varying size only does not affect estimated depth as seen in the 3rd row.



8.1. Geometric Tasks 167

Figure 8.3 Illustration pf depth estimation’s effect on change in position vs. apparent size
on a test image from KITTI. The white car on the left is inserted into the image at 1.0 (left
column), 1.5 (middle column), and 3.0 (right column), where 1.0 corresponds to the same
scale and position at which the car was cropped from its original image. The position and
scale of the car vary with distance in the top row; in the middle row, only the position
changes while the scale remains constant, and in the bottom row, the scale varies while the
position remains constant. A white outline indicates the measurement region from which the
estimated distance is obtained in the disparity maps. Figure and part of the caption
reproduced from [396].

These examples show that depth from context is not robust to new environments
and that the depth error (even when scale-invariant) is not continuous with respect
to appearance. It is also prone to changes in apparent camera mounting and object
positions vs. apparent change in the size of the objects and if the image is cropped at
a different aspect ratio for inference than the one used during training. Significant
errors can even be found in the training set due to multi-stable perception [461]. As a
result, a training set must be comprehensive because a minor change in appearances,
such as a change in lighting or orientation, can completely change the outcome.

Furthermore, a depth estimator trained on this hypothetically may be required to
remember the most probable perspective layout in a given image, implying that heavy
memory tasks may be required. We can assume that a neural network dedicated
to this task will have to be large and thus complex to be embedded on a mobile
system [406].

8.1.3 Shortcomings of Self-Supervised Distance Estimation

SfM pipelines have a varying degree of artifacts. Still, there exist several problems
that need to be addressed. In this section, we will discuss some of the limitations.

In Chapter 4, SfM relies on the assumption of a static world. A real-world scene
typically includes both static objects such as walls, structures, and buildings, as well



168 Chapter 8. Discussion

Figure 8.4 Depiction of infinite distance due to dynamic objects on FisheyeDistanceNet
inducing holes during inference.

as moving objects such as persons and vehicles. We are assuming a static world
hypothesis employing SfM, and it can only fulfill the static part.

What exactly does the static world assumption mean for the SfM framework?
Camera motion and depth structure are solely responsible for the movement of static
objects in a frame. The depth structure and camera motion will thoroughly evaluate
the projected 2D image motion between frames.
On the other hand, dynamic objects possess the characteristics of large displacement
(e.g., optical flow). They are caused by camera motion as well as actual object motion.
This is not modeled in SfM frameworks.

8.1.4 Implications of the Used Loss Functions

Aside from violating the static world assumption, the system introduced a slew of
new considerations.

• Omission of object motion: The object motion is ignored; when projecting
the target pixels into the other camera view using the estimated pose, the
reconstructed scene ignores motion in the source scene and is solely dependent
on the estimated ego-motion. As a result, there is a mismatch between the target
and predicted frames for pixels with motion. This means that even though the
model correctly predicts the depth, it will still be penalized.

• Depth efficiency is inextricably linked to the pose network performance:
Since the pose network is in charge of calculating the relative change in view,
the performance of depth will suffer if the pose network underperforms.

• The inevitable issue of predicting ’infinite depth’ or holes: It is mainly due
to dynamic objects and a very particular case in which the object moves at
the same speed as the camera (see Figure 8.4). The object will appear to be
stationary relative to the camera. It can also occur when things are infinitely
far away. Any movement of the object is deemed unobservable and appears
stationary. Since the object is not moving, it can cause the depth network to
predict an infinite depth, manifesting as holes.
To reduce the impact of stationary pixels on the loss, we incorporated an auto
masking strategy that ignores these pixels when calculating the loss between
the source and target frames [55]. To further eliminate its impact on the loss,
we tackled this issue in Chapter 5 with the help of semantic segmentation by
employing the MTL approach.



8.1. Geometric Tasks 169

Figure 8.5 Illustration of SfM framework’s limitations. It is observed that the model
struggles near boundaries and thin elongated structures, as illustrated by the pixel-wise
absolute difference between prediction and target image. A higher intensity in the L1 error
map indicates a higher absolute difference. Figure reproduced from [462].

8.1.5 Are there Better Choices than the Photometric Loss?

Appearance-based loss has been a reliable alternative to depth loss. However, there
are several drawbacks to using image intensity as a performance indicator (see
Figure 8.5).

• We cannot tell how big the world is from a 2D RGBD image. We lose scale
information after the bilinear sampling stage since we compute the loss in 2D
image space. In other words, several reconstructed images from the source view
will result in the same correct target image. As a result, in 3D metric space, the
learned depth will be scale uncertain but consistent in image space. To tackle
this issue, we introduced scale awareness into the SfM framework 4.3.3 and
computed direct depth/distance. In terms of KITTI Benchmark [11] results,
several works [53, 55, 154, 363] depend on determining the median depth based
on the ground truth to overcome the scale ambiguity.

• Another risk of scale ambiguity is the probability of depth collapsing. Wang et
al. [177] demonstrated that as scale decreases, the same scene could be built
with a smaller depth map until it degenerates to zero. Based on these findings,
we introduced a normalization stage to prevent the mean depth from collapsing
in Section 4.3.5.

• Even if the reconstructed image is not geometrically consistent, the loss can be
satisfied. When depth is incorrectly predicted but pose is correct, or vice versa,
the reconstructed image can still be well predicted in certain scenes. It is more
common in texture-less regions such as the wall and the sky. The depth and
pose networks are not penalized or compensated for incorrect predictions in
this scenario.

• The value of the loss may be significant for differing views, such as when pixels
are visible in the target frame but occluded or out of view in the source frames.
There would be a mismatch in these regions when the points are re-projected.
As a result, even though the depth is correctly estimated, the model will still be
penalized.



170 Chapter 8. Discussion

Figure 8.6 Failure cases of FisheyeDistanceNet on the WoodScape. The photometric loss
fails to learn good distances for reflective regions which can be seen in the 1st figure. In the
following figures shown above, the model fails to accurately delineate objects where
boundaries are ambiguous.

Figure 8.7 An illustration of random lens
error on the KITTI. Figure reproduced
from [462].

Figure 8.8 An illustration of reflective
surface on the KITTI. Figure reproduced
from [462].

• Reflective surfaces that violate the Lambertian assumption between views (see
Figures 8.6, 8.7 and 8.8), and color-saturated images can cause mismatch and
degrade the loss computation.

8.1.6 Impact on Chosen Distance Estimation Network

• Instead of preserving edges, networks often predict smooth depths along occlu-
sion boundaries and depth discontinuities. A probable cause could be the lack
of edge awareness explicitly defined and smooth surfaces dominating the loss.
As a result, the bleeding edge effect [463] occurs, and the back-projected points
are poorly defined, as shown in Figure 8.9.

• The distance map over consecutive frames, especially at the boundaries and
thin structures in the video https://youtu.be/Sgq1WzoOmXg?t=27, causes a
flickering effect since it is not geometrically consistent over time.

8.2 Geometry Meets Semantics

As heavily discussed in Chapter 4, today’s state-of-the-art regarding self-supervision
for depth sensing mostly relies on heuristics, themselves based on validation re-
sults on the KITTI dataset. A clear understanding of the theoretical aspect of self-
supervision is needed to perform a truly robust training workflow. To overcome the
shortcomings of the SfM framework for distance estimation, we analyzed the issues
of the photometric loss function and the impact caused by the dynamic objects on
the distance predictions, as discussed in the previous section. In Chapter 5, we dug
deeper and took up the challenges posed by the SfM approach and the photometric
losses.

https://youtu.be/Sgq1WzoOmXg?t=27


8.2. Geometry Meets Semantics 171

Figure 8.9 Illustration of bleeding edge effect. Figure reproduced from [463].

8.2.1 Contributions

• We introduce a novel architecture for the learning of self-supervised distance
estimation synergized with semantic segmentation.

• We improve the self-supervised distance estimation by a general and robust
loss function.

• We propose a solution for the dynamic object impact on self-supervised distance
estimation by using semantic guidance. We show the approach’s effectiveness
on pinhole and fisheye camera datasets and present state-of-the-art results for
both image types.

• We present a novel camera geometry adaptive multi-scale convolution to in-
corporate the camera parameters into the self-supervised distance estimation
framework. We feed this camera geometry tensor (CGT) representation to the
model as a generic way to adapt to new camera intrinsics.

• We create a training framework for self-supervised distance estimation, which
jointly trains and infers images from multiple fisheye cameras and viewpoints.

• We demonstrate a single trained model for 23 fisheye cameras, which achieves
the equivalent result as an individual specialized model that overfits a particular
camera model.

• We present an improved version of the network architecture for multi-task
learning of self-supervised distance estimation and semantic segmentation.
We significantly improve upon the previous works explained in the previous
chapters FisheyeDistanceNet [2] and UnrectDepthNet [3].

• We achieve state-of-the-art results on the WoodScape and KITTI datasets among
monocular self-supervised depth estimation methods.

8.2.2 Exploring Diverse Modalities

Rethinking the Heuristic Loss Function

The difference between images is determined as the absolute difference between RGB
values. At first, we aimed to improve the photometric loss by replacing the L1 loss
with a more robust loss function from [179] in the MTL framework of SynDistNet [4].
We replaced the loss with various types of general loss functions and achieved
improved efficiency. The absolute loss is the same as maximizing the probability of
a Laplacian distribution on RGB pixel values with a fixed scale. We substitute the
general distribution for the fixed Laplacian distribution, keeping our scale constant
but allowing the shape parameter α to vary.

Perspectives: Finally, as indicated by the SSIM [414] loss, a photometric loss that takes
neighboring pixels into account may be advantageous to obtain more information



172 Chapter 8. Discussion

than just color to determine whether two points match or not. Brox et al. [464]
had already researched this and considered several features and descriptors to be
matched in this work and concluded that including descriptor matching within the
energy minimization process was beneficial, particularly for large displacement. The
issue at the time was descriptors’ lack of differentiability and sub-pixel accuracy.
This problem could be easily adapted for photometric loss with convolution kernel
descriptors, resulting in a feature matching loss as employed in Chapter 7.

In general, self-supervision should rely more on techniques developed for optical
flow using the variational approach because occlusion issues and efficient smoothing
and illumination robustness are not novel [406].

Leveraging Semantic Segmentation

In terms of representing structure in images, surface normal, disparity, and optical
flow is very close to depth. The direction of the depth gradient can be interpreted
as the surface normal. Ego-motion and object motion can naturally relate optical
flow to depth. Depth has an inverse relationship with disparity. Although semantics
does not have any direct relation, many use segmentation maps to learn finer depth
maps. There have been many studies that have explored these mutually beneficial
properties [462]. Our MTL network employed pixel-adaptive convolutions [242] to
learn semantic-dependent representations that can better capture the aforementioned
equivariance property compared to normal convolutions. We reduced the impact
of dynamic objects on the photometric loss and inherently minimized the influence
of ’infinite depth’ or holes during inference. Our approach still lacked a complete
solution i.e., if a dynamic object did not belong to the semantic class labels, this would
still have a negative impact on the SfM framework during training.

Model Advances

Recent work has shown that self-attention can assist as an essential building block
for image recognition models. We adopted the self-attention modules from [8] and
assessed their effectiveness for estimating distance/depth. Initially, we used a scalar-
based self-attention module [430]. Later, we employed two types of self-attention.
The first is pairwise self-attention, which is essentially a set operator and generalizes
standard dot-product attention. The other choice is patchwise self-attention, which is
more efficient than the standard convolution. Pairwise self-attention networks match
or outperform their convolutional counterparts, and patchwise models outperform
the convolutional baselines significantly. We investigate the robustness of learned
representations and conclude that when used in conjunction with our Camera Geom-
etry Tensor, self-attention networks can provide significant benefits in terms of model
robustness and depth generalization.

Comparison between Convolution and Self-Attention

For the convolution operator, the fixed kernel weights are independent of the image’s
content. It does not adapt to the input content and can vary across channels, as shown
in Table 8.1. Scalar attention when compared to convolution, the aggregated weights
can vary across different locations depending on the image’s content. The main draw-
back in the formulation is that it does not adapt the attention weights at the different
channels. We can alleviate this to a certain extent by introducing multiple heads [431];
the number of heads is a small constant, and all channels within a head share scalar



8.3. Generalized Object Detection 173

Operation
Content
Adaptive

Channel
Adaptive

Convolution [465] 7 3

Scalar attention [429, 430, 431, 466] 3 7

Vector attention [8] 3 3

Table 8.1 Comparison of convolution vs self-attention. The content of the image is not
adapted by the convolution. Scalar attention yields scalar weights that are constant along the
channel dimension. Zhao et al.’s [8] self-attention modules compute attention weights that
adapt across spatial dimensions and channels in an efficient manner.

weights. Zhao et al.’s [8] pairwise and patchwise modules can produce vector output.
The vector can be processed and mapped to the appropriate dimensionality, which
can also accept input from position encoding channels. Convolution is generalized by
the patchwise family of operators while preserving parameter and FLOP efficiency.

8.3 Generalized Object Detection

8.3.1 Need for better 2D Object Representations

As discussed in Chapter 6, surround-view coverage is critical for low-speed maneu-
vering autonomous driving applications such as automated parking [60, 62]. Four
surround-view fisheye cameras are typically part of this sensor suite, enabling a dense
360° near field perception. The wide field of view of the fisheye image comes with
the side effect of strong radial distortion. A common practice is to rectify distortions
in the image using a 4th order polynomial model or a unified camera model [433].
However, undistortion comes with re-sampling distortion artifacts, especially at the
periphery, a reduced FoV, and a non-rectangular image due to invalid pixels. Thus,
we aimed to perform object detection on distorted fisheye images. Although semantic
segmentation is an easier solution on fisheye images, object detection annotation
costs are much lower [27].

8.3.2 Contributions

Chapter 6 aims to present a more detailed study of various techniques for fisheye
object detection in autonomous driving scenes. The main contributions include:

• Exploration of seven different object representations for object detection on
fisheye images.

• Design of novel representations for fisheye images, including the curved box
and adaptive step polygon.

• Release of a dataset of 10,000 images with annotations for all the object repre-
sentations.

• Implementation and empirical study of FisheyeYOLO baseline, which can
output different representations.



174 Chapter 8. Discussion

8.3.3 Lack of Fisheye Object Detection Dataset

Our core objective was to present a more detailed study of various techniques for
fisheye object detection in autonomous driving scenes. However, one of the main
issues we faced in this research was the lack of a public dataset, particularly for
autonomous driving scenarios. Henceforth, we compiled a 2D object detection
dataset on fisheye images and released 10,000 images. We hope this encourages
further research in this area leading to a mature object detection on undistorted
fisheye images.

8.3.4 Limitations of Generalized Object Detection

Polygon representation is a better way to represent objects, but it does not improve the
CNN ability to detect objects on fisheye. Since we use the YOLOv3 decoder, an area of
improvement could be its average precision for medium and large objects. Compared
to YOLOv2, mean average precision increased, and localization errors decreased.
When comparing YOLO to RetinaNet [216], the YOLOv3’s average precision does
show a trade-off between speed and accuracy. By having a larger dataset, the accuracy
of detecting objects with YOLOv3 can be made equal to the accuracy of RetinaNet,
making it an excellent choice for models that can be trained with large datasets.
YOLOv3 may not be suitable for use with niche models where large datasets are
difficult to access [467].

8.4 Holistic 360° Scene Understanding

8.4.1 Contributions

This chapter demonstrates a multi-task perception model for the six essential per-
ception tasks on unrectified fisheye images (shown in Figure 7.1). We discuss a full
perception system building upon the tasks explained in the previous chapters, includ-
ing depth estimation, pose estimation, semantic segmentation, and object detection.
The contributions are as follows:

• We demonstrate the first real-time six-task model for surround-view fisheye
camera perception.

• We propose novel design techniques, including the VarNorm task weighting.

• We design synergized decoders where various tasks help each other in addition
to a shared encoder.

• We showcase a 6-task model on WoodScape and a 5-task model on KITTI and
Cityscapes performing better than the single task baselines.

• We obtain state-of-the-art results for depth and pose estimation tasks on KITTI
among monocular methods.

In the following sections, we briefly discuss some significant aspects of MTL as to
why and when it works, when it does not, and what are the vital things to note when
training an MTL framework.

Discussion on MTL: Though MTL is becoming more common, the 20-year-old hard
parameter sharing paradigm remains prevalent in CNN-based MTL. Recent advance-
ments in learning what to share, on the other hand, are encouraging. At the same



8.4. Holistic 360° Scene Understanding 175

time, our understanding of tasks – their similarity, relationship, hierarchy, and benefit
for MTL – is minimal. We need to learn more about them better to understand MTL’s
generalization capabilities in DNNs.

8.4.2 Why Does MTL Work?

Even though an inductive bias acquired through multi-task learning seems intuitively
possible, in order to better understand MTL, we must look at the processes that shape
it. For all examples, we will assume that we have two related tasks, A and B, which
rely on a common hidden layer representation F.

• Implicit data augmentation: MTL effectively improves the sample size for
which we are training our model. Since all tasks are at least somewhat noisy,
our goal when training a model on some task A is to learn a good representation
for task A that ignores the data-dependent noise and generalizes well. Since
different tasks produce different noise patterns, a model that learns two tasks
simultaneously may learn a more general representation. Learning only task A
risks overfitting to task A, while learning A and B together allows the model to
achieve a better representation F by averaging the noise patterns [129].

• Attention focusing: It may be difficult for a model to distinguish between
essential and irrelevant features when the task is very noisy or the data is limited
and high-dimensional. MTL will assist the model in focusing its attention on
the significant features, as other tasks will provide additional evidence for the
importance or irrelevance of those features [129].

• Eavesdropping: The certain features G are simple to learn for one task B but
challenging to learn for another. This could be due to A interacting with the
features in a more nuanced way, or it could be due to other features impeding
the model’s ability to learn G. We can allow the model to eavesdrop through
MTL, allowing it to learn G via task B. The simplest method is to use hints [468],
which involves explicitly training the model to predict the most relevant fea-
tures [129].

• Regularization: Finally, by adding an inductive bias, MTL serves as a regular-
izer. As a result, it reduces the chance of overfitting and the model’s Rademacher
complexity i.e., its ability to fit random noise [129].

8.4.3 When MTL Works – And When It Does Not

Multi-task learning aims to use data from related tasks to improve the generalization
performance of all tasks simultaneously. Shared hidden layers can transfer knowl-
edge between related tasks in a neural network, reducing overfitting and improving
learned latent representations, especially when task-specific training data is scarce.
On the other hand, MTL can be detrimental to performance when the tasks being con-
sidered are not sufficiently related. Although multi-task performance may improve
on average across all tasks, multi-task performance for some specific tasks may be
worse than a single-task model. This drop in performance is referred to as negative
transfer. Negative transfer is especially problematic when a subset of tasks is of pri-
mary interest, and the others are only used to improve representation learning. Liu et
al. [469] proposes two hypotheses for why negative transfer might occur. (1) Because
all tasks are diverse and unrelated to one another, and there is no suitable common
latent representation, multi-task learning produces poor representations. (2) The



176 Chapter 8. Discussion

More Points Fewer points

Figure 8.10 Positive vs. Negative transfer is affected by the data – not just the model. See
lower right-vs-mid. Task 2 and 3 have the same model (dotted lines) but different data
distributions. Notice the difference of data in circled areas. Figure and caption reproduced
from [470].

training process is dominated by a single group of related tasks. The performance of
those tasks improves as more related tasks are added, but tasks outside the dominant
group suffer [469].

Wu et al. [470] showed that MTL, when applied to heterogeneous task data, can
frequently produce suboptimal models. They investigate an architecture with a
shared module for all tasks (i.e., encoder) and a separate output module for each task
(i.e., decoder) to determine whether two tasks interfere constructively or destructively.
The motivating observation is that, in addition to model similarity, which impacts the
type of interference, task data similarity has a second-order effect after controlling
model similarity. They consider three tasks with the same number of data samples,
where tasks 2 and 3 have the same decision boundary but different data distributions
(see Figure 8.10 for an illustration). They discover that training task 1 with task 2 or
task 3 can either improve or degrade task 1’s performance, depending on the amount
of data contributing along the decision boundary! This finding demonstrates that by
analyzing task interference and attributing the cause more precisely, we can measure
the similarities of task data and models separately.

8.4.4 Key Components to Determine if MTL is better than STL

The three significant factors that can result in negative transfer and help us to deter-
mine if MTL is better than Single Task Learning (STL) are:

Model capacity: The shared module’s capacity, i.e., its output dimension, is critical
because if the shared module is too large, there can be no interference (or transfer
of knowledge) between tasks because each of them can be memorized in the shared
module, resulting in zero training loss. There may be destructive interference if it
is too small. As a general rule, according to [470] the shared module performs best
when its capacity is less than the total capacity of the single-task models.

Task covariance: To determine the interference between different tasks, Wu et al. [470]
uses a fine-grained concept called task covariance to measure how similar two tasks
are. Task covariance quantifies the alignment of two task input data points along their



8.4. Holistic 360° Scene Understanding 177

primary axes. According to intuition, if the principal directions of two task input data
are not well-aligned, feeding them into the shared module can result in suboptimal
models. Wu et al. [470] proposed a covariance alignment algorithm that adds an
alignment module between the task and the shared module to improve multi-task
training to address this issue.

Optimization scheme: The order in which we optimize a multi-task learning neural
network can also affect the interference between tasks. A common training strategy
is to mix mini-batches of different task data at random. We can increase the task
weight for an important task by duplicating its data. For further discussions on the
optimization strategies employed in MTL refer Section 3.6.5.



178

Chapter 9

Conclusion

In this thesis, we explored geometric and segmentation tasks for a holistic real-
time scene understanding of the environment using cameras only. The tremendous
improvement in computer vision technology using deep learning-based models is
the core reason why it is possible to drive on the road with camera-only perception.
We build a near-field perception system that constitutes a Level 3 autonomous stack.
We develop a single real-time multi-task CNN capable of running on embedded
NVIDIA’s Jetson AGX platform, covering the necessary modules for near-field sensing
use cases such as parking or traffic jam assistance. The model’s scope is not just
limited to near-field sensing use cases. We can deploy it for navigation on highways
and urban scenarios. The final model encodes the input raw fisheye stream into a
single, high-dimensional tensor representing geometry, semantics, motion, and object
detection. This tensor can be used to make driving decisions for an autonomous car.

In Chapter 2 and Chapter 3 we provided an in-detail basic intuition on the fisheye
camera models and geometry, perception tasks and related works. We reasoned why
depth estimation is a challenging task compared to the other semantic tasks and
provided the reader the fundamental background in vision. In Chapter 4, we initially
focused on solving one of the most challenging geometric problems i.e., distance
estimation on raw fisheye cameras using image-based reconstruction techniques,
which is a challenging task, as the mapping between 2D images to 3D surfaces is an
under-constrained problem. Depth/distance estimation is also an ill-posed problem
as there could exist many possible incorrect depths per pixel, which can also recreate
the novel view. We also trained an additional model to predict the relative rigid
transformation between the video frames to achieve the visual odometry required to
place the detected objects in a temporally consistent map.

We took up a more challenging problem of obtaining distance on fisheye cameras
which undergoes large distortion compared to pinhole cameras. Most of the previous
works worked on rectified pinhole cameras and obtained inverse-depth estimates in
the SfM framework. The legacy continued to rely on the principle of rectification as
the fundamental first step to get the view synthesis working in the first place. We
broke this premise and showed that it is possible to obtain scale-aware direct distance
estimates without rectifying fisheye and pinhole cameras on two diverse automotive
datasets.

Following up on FisheyeDistanceNet and UnRectDepthNet we focused on improving the
distance estimation further in Chapter 5 by using semantic segmentation in a multi-
task learning set up. Our network in the Syndistnet MTL framework learned semantic-
aware geometric representations that could disambiguate photometric ambiguities
in a self-supervised learning SfM context. We integrated a generalized robust loss



Chapter 9. Conclusion 179

function, which improved performance significantly while removing the need for
hyperparameter tuning with the reprojection loss. Finally, we reduced the artifacts
caused by dynamic objects, violating static world assumptions, by using a semantic
masking strategy. We significantly improved upon the RMSE of previous works on
fisheye images in Chapter 4 by a 25% reduction in RMSE. As there is little work on
fisheye cameras, we also evaluated the proposed method on KITTI using a pinhole
model. We achieved state-of-the-art performance among self-supervised methods
without requiring an external scale estimation.

We later extended this MTL framework from Syndistnet to multiple cameras and
viewpoints. A 360◦ perception of scene geometry is essential for automated driving,
notably for parking and urban driving scenarios. Typically, it is achieved using
surround-view fisheye cameras, focusing on the near-field area around the vehicle.
Most of the current depth estimation approaches focused on employing just a single
camera, which cannot be straightforwardly generalized to multiple cameras. Besides,
the depth estimation model needs to be deployed across different-sized car lines with
varying camera geometries. Even in a single-car line, there are variations in intrinsics
due to manufacturing tolerances. Deep learning models are sensitive to these changes,
and it is practically infeasible to train and test on each camera variant. Thus, we
introduced novel camera-geometry adaptive multi-scale convolutions, which utilize
the camera parameters as a conditional input, enabling the model to generalize to
unseen fisheye cameras. We incorporated this into our previous work Syndistnet.

Additionally, we improved the distance estimation by pairwise and patchwise vector-
based self-attention encoder networks, further increasing the distance estimation’s
performance. We evaluated our approach on the Fisheye WoodScape surround-view
dataset, significantly improving over previous approaches, i.e., FisheyeDistanceNet,
UnRectDepthNet, and SynDistNet. We also showed a generalization of our approach
across different camera viewing angles and performed extensive experiments to sup-
port our contributions. To enable comparison with other approaches, we evaluated
the front camera data on the KITTI dataset (pinhole camera images) and achieved
state-of-the-art performance among self-supervised monocular methods. The fol-
lowing work series carried out on distance estimation was very influential from a
product perspective to win next-generation projects and was influential in the aca-
demic community. It encouraged the researchers in the robotics community to deploy
fisheye cameras to obtain point clouds from depth maps for SLAM by eliminating
the need for rectification on the camera streams.

In Chapter 6, we focused on the localization aspect of an autonomous car using
2D object detection. The standard bounding box fails in fisheye cameras due to
the strong radial distortion, particularly in the image’s periphery. We explored
better representations such as oriented bounding box, ellipse, and generic polygon
representations for object detection on fisheye images. One of the primary use cases
is to find a free parking slot for the autonomous car with these representations on
fisheye cameras.

In Chapter 7, we achieved the goal of the thesis, i.e., a holistic real-time scene un-
derstanding for the near-field perception of the environment using cameras only by
creating OmniDet: A surround-view camera-based multi-task visual perception net-
work for autonomous driving. This thesis shows that a distinct approach can be
considered to the immense challenge of autonomous driving: one that does not rely
on infrastructures such as high-definition-maps or extremely costly sensor payloads



180 Chapter 9. Conclusion

yet can perform complex driving tasks using cameras. To achieve real-world driving
efficiency, these learned vision representations are very crucial. With this framework’s
help, we can jointly understand and reason about geometry, semantics, motion, lo-
calization, and soiling from a single deep learning model at 60 frames/second on
embedded systems. The accuracy, robustness, and performance of these models
are much higher than before. These models were deployed in real-time on an au-
tonomous vehicle using NVIDIA’ Jetson AGX, and we were able to demonstrate
these models performing robustly. We evaluated the network on five tasks on KITTI
and Cityscapes, achieving competitive results. We set a benchmark of these tasks
on the fisheye WoodScape dataset. We also applied various adversarial attacks to
understand the vulnerabilities of the perception network. For each perception task,
white and black box attacks were performed for targeted and un-targeted scenarios.

Finally, in Chapter 8, we discussed the contributions and the shortcomings of the
perception tasks solved in this thesis. We reasoned about the design choices and
their impact employed in this work. For the task of depth estimation, we discussed
the fundamental limitations of depth from context and structure. However, after
conducting a thorough investigation into the potential drawbacks of depth from
vision algorithms, we were able to identify several issues with depth networks
that would need to be addressed before they could be used as a reliable source
of information for parking scenarios for autonomous cars. We dug deep into the
core of the SfM approach and its implication on the loss. We reasoned about the
apparent failures due to the heuristic design of the photometric loss function and
its impact on the network. To overcome the shortcomings of the SfM framework,
we analyzed the issues put forth during our initial research and explored diverse
modalities, including re-looking the heuristic loss function, leveraging semantic
segmentation, model advances, and compared the standard convolution with self–
attention modules. Coming to the task of 2D object detection, we discussed the need
for better 2D representations on fisheye images and the limitations of our model.
Finally, we discussed the critical aspects of an MTL approach to determine if there is
any negative transfer.

9.1 Future Work

We have showcased state-of-the-art methods for distance and depth estimation tasks.
There are many more avenues left unexplored, and we outline some of them here.
The distance estimates are applied independently on each frame, indicating that
adding temporal consistency [471] would likely improve results with the usage of
recurrent [444] or a transformer model [472]. Additionally, assisting the model with
depth hints [180] would improve the results and also improve the reconstruction
loss function. It could also guide the network to learn better weights. Hu et al. [473]
claimed that only a portion of the image is relevant for a network to estimate depth,
in analogy with human vision. Further research in this direction is required to
understand how a CNN can infer depth from single images. For collision avoidance,
it is intriguing to understand how confident the model is about a particular inference.
Learning the uncertainty [474] of the predicted distance maps would be of significant
importance for practical applications such as autonomous driving. More generally,
the distribution of possible values can be very beneficial in decision-making. Instance
aware projection consistency [475] can be introduced to the view synthesis process to
improve the training.



9.1. Future Work 181

Learning dense semantic representations in an unsupervised fashion is a significant
problem in computer vision. As of now, most of the semantic and motion segmenta-
tion tasks are supervised. However, we can not rely on having a supervised label for
every possible image type we encounter in the real world. One of the most prominent
challenges for a real-world computer vision system is learning a representation from
limited data that generalizes to novel situations. It is especially true for autonomous
driving – the variety of road scenes that exist is tremendously wide. There are many
promising methods to learning robust representations. Self-supervision would be a
better option as obtaining accurate, pixel-wise semantic and motion labels for every
sample in a dataset is a labor-intensive process that costs significant amounts of
money and time [476]. Gansbeke et al. [477] tries to perform unsupervised seman-
tic segmentation by contrasting object mask proposals. Tosi et al. [304] employs a
self-supervised optical flow to segment the dynamic objects and obtain a motion
mask.

For vision to become truly ubiquitous with intelligent robotic decision making [478],
with all the perception algorithms using cameras, the key takeaway would be online
learning. An intriguing viewpoint developed throughout this thesis is the concept
of a robust and evolving geometric and semantic sensing system based on vision.
In other words, such a system does not require any active sensors and can improve
while in use. For example, Casser et al. [189] discussed this, where it was used to
overfit each example of the test set (with a reset of the network between examples).
This technique has the potential to be extremely useful in the context of stealth off-
road autonomous vehicles. Because of their stealthiness, no active depth sensors
can be used, and depth must be calculated using cameras. Furthermore, off-road
environments are typically more heterogeneous than on-road environments, and
our robustness-oriented solution may be superior to a traditional SfM analytical
algorithm or an evolutive single frame depth solution. We find it engaging to examine
whether and how it would be possible to self-adapt the OmniDet framework online. A
perception system would require determining a complex, plausibly high-dimensional
state and needs to represent the geometry, semantics, motion, and localization. It
would be intriguing to use this framework as a baseline and achieve end-to-end
driving by combining the perception and decision-making algorithms.

To deploy the perception systems on an autonomous car would still involve several
safety challenges. Development and validation of algorithms through mere brute
force testing is not possible. We would need to quantify uncertainty, interpret saliency
for decisions, understand intermediate representations, and reason with multiple
sensors in real-time. Robustness is of higher priority than precision, e.g., we do not
need to know other cars’ position to the nearest millimeter to enable safe driving. We
solely care if we can detect the car or not and its rough spatial layout within the scene.
The same is true for the algorithms we build; we care about robustness rather than
millimeter-level accurate geometry from a LiDAR laser scanner [478]. It would also
be of significant interest to improve the robustness by strengthening or equipping the
MTL system to resist adversarial attacks [479]. In the future, it would be necessary
to conduct physical attacks on mature systems to assess the vulnerabilities of these
networks and attack multiple tasks jointly. Adversarial attacks and defenses are still
challenging tasks and an active area of research, especially for autonomous driving
applications with multi-task deep networks.



182 Chapter 9. Conclusion

To conclude, over the past few years, computer vision technology has evolved to a point where
it operates robustly in the wild. We are backing that camera-only perception will drive the
smart autonomous cars and robots of the future. We hope that this thesis encourages further
research in building a unified perception model for autonomous driving.



183

Bibliography

[1] V. Ravi Kumar, S. Yogamani, H. Rashed, G. Sitsu, C. Witt, I. Leang, S. Milz,
and P. Mäder, “OmniDet: Surround View Cameras based Multi-task Visual
Perception Network for Autonomous Driving,” in IEEE Robotics and Automation
Letters (RA-L) + 2021 IEEE International Conference on Robotics and Automation
(ICRA), vol. 6, no. 2, 2021, pp. 2830–2837. vii, 32, 35, 36, 139

[2] V. Ravi Kumar, S. A. Hiremath, M. Bach, S. Milz, C. Witt, C. Pinard, S. Yogamani,
and P. Mäder, “Fisheyedistancenet: Self-supervised scale-aware distance esti-
mation using monocular fisheye camera for autonomous driving,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020, pp. 574–581.
vii, ix, x, 37, 67, 82, 84, 90, 95, 104, 105, 107, 109, 110, 111, 112, 140, 152, 153, 171

[3] V. Ravi Kumar, S. Yogamani, M. Bach, C. Witt, S. Milz, and P. Mäder, “Un-
RectDepthNet: Self-Supervised Monocular Depth Estimation using a Generic
Framework for Handling Common Camera Distortion Models,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, IROS, 2020, pp. 8177–8183.
vii, ix, 10, 37, 68, 78, 90, 104, 107, 109, 110, 111, 112, 138, 152, 171

[4] V. Ravi Kumar, M. Klingner, S. Yogamani, S. Milz, T. Fingscheidt, and P. Mader,
“Syndistnet: Self-supervised monocular fisheye camera distance estimation syn-
ergized with semantic segmentation for autonomous driving,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp.
61–71. vii, viii, 37, 90, 104, 105, 107, 109, 110, 112, 124, 141, 152, 171

[5] V. Ravi Kumar, M. Klingner, S. Yogamani, M. Bach, S. Milz, T. Fingscheidt,
and P. Mäder, “SVDistNet: Self-Supervised Near-Field Distance Estimation on
Surround View Fisheye Cameras,” IEEE Transactions on Intelligent Transportation
Systems, vol. abs/2104.04420, 2021. vii, 37, 90

[6] V. Ravi Kumar, S. Yogamani, S. Milz, and P. Mäder, “FisheyeDistanceNet++:
Self-Supervised Fisheye Distance Estimation with Self-Attention, Robust Loss
Function and Camera View Generalization,” in Electronic Imaging. Society for
Imaging Science and Technology, 2021. vii, viii

[7] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, “3d packing for
self-supervised monocular depth estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2485–
2494. viii, 48, 62, 82, 90, 103, 104, 110, 111, 112, 152, 153

[8] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image recogni-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 10 076–10 085. viii, 95, 97, 99, 144, 149, 172, 173

[9] V. Ravi Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold, S. Yogamani,
and T. Pech, “Near-field depth estimation using monocular fisheye camera:



184 BIBLIOGRAPHY

A semi-supervised learning approach using sparse LiDAR data,” in CVPR
Workshop, vol. 7, 2018. ix, x

[10] V. Ravi Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold, S. Yogamani,
and T. Pech, “Monocular fisheye camera depth estimation using sparse lidar
supervision,” in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), 2018, pp. 2853–2858. ix, x, 10, 37, 164

[11] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
kitti vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2012, pp. 3354–3361. ix, 6, 82, 166, 169

[12] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, P. Varley, D. O’Dea, M. Uricár,
S. Milz, M. Simon, K. Amende et al., “Woodscape: A multi-task, multi-camera
fisheye dataset for autonomous driving,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (CVPR), 2019, pp. 9308–9318. ix, 10, 11, 16,
23, 28, 29, 52, 55, 82, 126, 152

[13] M. Uricar, G. Sistu, H. Rashed, V. R. K. Vobecky, Antonin and, P. Krizek,
F. Burger, and S. Yogamani, “Let’s Get Dirty: GAN Based Data Augmenta-
tion for Camera Lens Soiling Detection in Autonomous Driving,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp.
766–775. x, 31

[14] H. Rashed, E. Mohamed, G. Sistu, V. Ravi Kumar, C. Eising, A. El-Sallab,
and S. Yogamani, “Generalized Object Detection on Fisheye Cameras for Au-
tonomous Driving: Dataset, Representations and Baseline,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp.
2272–2280. x, xii

[15] I. Sobh, A. Hamed, V. Ravi Kumar, and S. Yogamani, “Adversarial Attacks on
Multi-task Visual Perception for Autonomous Driving,” in In-Review of the IEEE
24th International Conference on Intelligent Transportation Systems (ITSC). IEEE,
2021. xi, 139

[16] S. Houben, S. Abrecht, M. Akila, A. Bär, F. Brockherde, P. Feifel, T. Fingscheidt,
S. S. Gannamaneni, S. E. Ghobadi, A. Hammam, A. Haselhoff, F. Hauser,
C. Heinzemann, M. Hoffmann, N. Kapoor, F. Kappel, M. Klingner,
J. Kronenberger, F. Küppers, J. Löhdefink, M. Mlynarski, M. Mock, F. Mualla,
S. Pavlitskaya, M. Poretschkin, A. Pohl, V. R. Kumar, J. Rosenzweig,
M. Rottmann, S. Rüping, T. Sämann, J. D. Schneider, E. Schulz, G. Schwalbe,
J. Sicking, T. Srivastava, S. Varghese, M. Weber, S. Wirkert, T. Wirtz,
and M. Woehrle, “Inspect, Understand, Overcome: A Survey of Practical
Methods for AI Safety,” CoRR, vol. abs/2104.14235, 2021. [Online]. Available:
https://arxiv.org/abs/2104.14235 xi

[17] M. M. Dhananjaya, V. R. Kumar, and S. Yogamani, “Weather and Light Level
Classification for Autonomous Driving: Dataset, Baseline and Active Learning,”
in IEEE 24th International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2021. xi

[18] A. Dahal, E. Golab, R. Garlapati, V. Ravi Kumar, and S. Yogamani, “RoadEd-
geNet: Road Edge Detection System Using Surround View Camera Images,” in
Electronic Imaging. Society for Imaging Science and Technology, 2021. xii

https://arxiv.org/abs/2104.14235


BIBLIOGRAPHY 185

[19] H. Rashed, E. Mohamed, V. R. K. Sistu, Ganesh and, C. Eising, A. El-Sallab,
and S. Yogamani, “FisheyeYOLO: Object Detection on Fisheye Cameras for
Autonomous Driving,” Machine Learning for Autonomous Driving NeurIPS 2020
Virtual Workshop, 2020. xii

[20] A. Das, P. Křížek, G. Sistu, F. Bürger, S. Madasamy, M. Uřičář, V. Ravi Kumar,
and S. Yogamani, “TiledSoilingNet: Tile-level Soiling Detection on Automotive
Surround-view Cameras Using Coverage Metric,” in 2020 IEEE 23rd Interna-
tional Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp.
1–6. xii

[21] M. Yahiaoui, H. Rashed, L. Mariotti, G. Sistu, I. Clancy, L. Yahiaoui, V. Ravi Ku-
mar, and S. Yogamani, “FisheyeModNet: Moving object detection on Surround-
View Cameras for Autonomous Driving,” arXiv preprint arXiv:1908.11789, 2019.
xii, 10, 57, 71

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic Differentiation in PyTorch,” in
NIPS Autodiff Workshop, 2017. xii, 81, 149

[23] “Road traffic injuries,” Apr. 2021. [Online]. Available: https://www.who.int/
news-room/fact-sheets/detail/road-traffic-injuries 2

[24] S. O.-R. A. V. S. Committee et al., “Taxonomy and definitions for terms related
to on-road motor vehicle automated driving systems,” SAE Standard J, vol. 3016,
pp. 1–16, 2014. 2, 30

[25] “IF HUMANS HAVE TWO EYES SHOULDN’T CARS AS WELL?” Apr. 2021.
[Online]. Available: https://www.foresightauto.com/if-humans-have-two-
eyes-shouldnt-cars-as-well/ 3, 4

[26] M. Raaijmakers, “Towards environment perception for highly automated driv-
ing: with a case study on roundabouts,” article, 2017. 3

[27] M. Siam, S. Elkerdawy, M. Jagersand, and S. Yogamani, “Deep semantic seg-
mentation for automated driving: Taxonomy, roadmap and challenges,” in
2017 IEEE 20th international conference on intelligent transportation systems (ITSC).
IEEE, 2017, pp. 1–8. 3, 52, 173

[28] M. Siam, H. Mahgoub, M. Zahran, S. Yogamani, M. Jagersand, and A. El-Sallab,
“Modnet: Motion and appearance based moving object detection network
for autonomous driving,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018, pp. 2859–2864. 3, 57, 140, 149

[29] N. Tripathi, G. Sistu, and S. Yogamani, “Trained Trajectory based Automated
Parking System using Visual SLAM,” arXiv preprint arXiv:2001.02161, 2020. 3,
10

[30] S. Milz, G. Arbeiter, C. Witt, B. Abdallah, and S. Yogamani, “Visual slam for
automated driving: Exploring the applications of deep learning,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2018, pp. 247–257. 3

[31] S. M. LaValle, Planning algorithms. Cambridge university press, 2006. 3

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.foresightauto.com/if-humans-have-two-eyes-shouldnt-cars-as-well/
https://www.foresightauto.com/if-humans-have-two-eyes-shouldnt-cars-as-well/


186 BIBLIOGRAPHY

[32] “New way for self-driving cars to ‘see’ objects,” Apr. 2021. [Online].
Available: https://www.expresscomputer.in/news/new-way-for-self-driving-
cars-to-see-objects/35451/ 3, 4

[33] “Computer Vision at Tesla,” Apr. 2021. [Online]. Available: https:
//heartbeat.fritz.ai/computer-vision-at-tesla-cd5e88074376 4

[34] R. T. Mullapudi, W. R. Mark, N. Shazeer, and K. Fatahalian, “Hydranets: Spe-
cialized dynamic architectures for efficient inference,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 8080–8089. 4

[35] “Parking Scenario,” May 2021. [Online]. Available: https://www.car-
engineer.com/ 5

[36] P. Viola, M. Jones et al., “Robust real-time object detection,” International journal
of computer vision, vol. 4, no. 34-47, p. 4, 2001. 9

[37] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 1440–1448. 9, 49, 50, 51

[38] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. 9, 27, 50

[39] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2117–2125. 9, 50

[40] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 3431–3440. 9, 53, 54, 56

[41] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic
segmentation,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1520–1528. 9, 28, 53

[42] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. 9,
40, 53, 55

[43] M. Uřičář, P. Křížek, G. Sistu, and S. Yogamani, “Soilingnet: Soiling detection
on automotive surround-view cameras,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE, 2019, pp. 67–72. 9, 10, 30, 58, 71, 140, 142, 149

[44] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,”
in Scandinavian conference on Image analysis. Springer, 2003, pp. 363–370. 9

[45] A. Kundu, K. M. Krishna, and J. Sivaswamy, “Moving object detection by multi-
view geometric techniques from a single camera mounted robot,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2009, pp.
4306–4312. 9, 57

[46] T.-H. Lin and C.-C. Wang, “Deep learning of spatio-temporal features with
geometric-based moving point detection for motion segmentation,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2014, pp.
3058–3065. 9, 57

https://www.expresscomputer.in/news/new-way-for-self-driving-cars-to-see-objects/35451/
https://www.expresscomputer.in/news/new-way-for-self-driving-cars-to-see-objects/35451/
https://heartbeat.fritz.ai/computer-vision-at-tesla-cd5e88074376
https://heartbeat.fritz.ai/computer-vision-at-tesla-cd5e88074376
https://www.car-engineer.com/
https://www.car-engineer.com/


BIBLIOGRAPHY 187

[47] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with
convolutional networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 2758–2766. 9

[48] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet
2.0: Evolution of optical flow estimation with deep networks,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
2462–2470. 9

[49] J. Vertens, A. Valada, and W. Burgard, “Smsnet: Semantic motion segmentation
using deep convolutional neural networks,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 582–589. 9,
57, 149

[50] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single
image using a multi-scale deep network,” in Advances in neural information
processing systems, 2014, pp. 2366–2374. 9, 27, 39, 45, 81, 82, 110, 111, 112, 152,
166

[51] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2650–2658. 9,
38, 45, 53, 62, 63

[52] R. Garg, V. K. Bg, G. Carneiro, and I. Reid, “Unsupervised cnn for single
view depth estimation: Geometry to the rescue,” in Proceedings of the European
Conference on Computer Vision (ECCV). Springer, 2016, pp. 740–756. 9, 27, 47,
68, 70

[53] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of
depth and ego-motion from video,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1851–1858. 9, 27, 37,
38, 47, 68, 70, 72, 73, 76, 77, 78, 80, 81, 82, 84, 96, 110, 111, 112, 123, 152, 153, 166,
169

[54] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth
estimation with left-right consistency,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 270–279. 9, 38, 47, 48,
70, 75, 76, 78, 80, 123

[55] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging into self-
supervised monocular depth estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3828–3838. 9, 27,
37, 48, 68, 70, 76, 77, 78, 80, 81, 82, 84, 90, 96, 110, 111, 112, 123, 152, 153, 168, 169

[56] R. Wood, “Fish-eye views, and vision under water,” Philosophical Magazine,
vol. 12, no. 6, pp. 159—-162, 1908. 10

[57] W. N. Bond, “A wide angle lens for cloud recording,” Philosophical Magazine,
vol. 44, no. 263, pp. 999—-1001, 1922. 10

[58] K. Miyamoto, “Fish eye lens,” Journal of the Optical Society of America, vol. 54,
no. 8, pp. 1060—-1061, 1964. 10, 13



188 BIBLIOGRAPHY

[59] P. D. Thomas, Conformal Projections in Geodesy and Cartography. Washington:
U.S. Government Printing Office, 1952. 10

[60] M. Heimberger, J. Horgan, C. Hughes, J. McDonald, and S. Yogamani, “Com-
puter vision in automated parking systems: Design, implementation and chal-
lenges,” Image and Vision Computing, vol. 68, pp. 88–101, 2017. 10, 29, 90, 173

[61] A. Dahal, J. Hossen, C. Sumanth, G. Sistu, K. Malhan, M. Amasha, and S. Yoga-
mani, “DeepTrailerAssist: Deep Learning based trailer detection, tracking and
articulation angle estimation on automotive rear-view camera,” in IEEE/CVF
International Conference on Computer Vision Workshops, ICCV Workshops 2019,
2019, pp. 2339–2346. 10

[62] J. Horgan, C. Hughes, J. McDonald, and S. Yogamani, “Vision-based driver
assistance systems: Survey, taxonomy and advances,” in 2015 IEEE 18th Interna-
tional Conference on Intelligent Transportation Systems. IEEE, 2015, pp. 2032–2039.
10, 52, 173

[63] M. Drulea, I. Szakats, A. Vatavu, and S. Nedevschi, “Omnidirectional stereo
vision using fisheye lenses,” in 2014 IEEE 10th International Conference on Intelli-
gent Computer Communication and Processing (ICCP). IEEE, 2014, pp. 251–258.
10

[64] D. Caruso, J. Engel, and D. Cremers, “Large-scale direct slam for omnidirec-
tional cameras,” in 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2015, pp. 141–148. 10

[65] Z. Gu, H. Liu, and G. Zhang, “Real-time indoor localization of service robots
using fisheye camera and laser pointers,” in Proceedings of the International
Conference on Robotics and Biomimetics (ROBIO), 2014. 10

[66] L. Gallagher, V. R. Kumar, S. Yogamani, and J. B. McDonald, “A hybrid sparse-
dense monocular slam system for autonomous driving,” in 2021 European
Conference on Mobile Robots (ECMR). IEEE, 2021, pp. 1–8. 10

[67] S. Liu, P. Guo, L. Feng, and A. Yang, “Accurate and Robust Monocular SLAM
with Omnidirectional Cameras,” Sensors, vol. 19, no. 4494, 2019. 10

[68] S. Ji, Z. Qin, J. Shan, and M. Lu, “Panoramic SLAM from a multiple fisheye
camera rig,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 159, pp.
169–183, 2020. 10

[69] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler, and D. Cremers, “Om-
nidirectional DSO: Direct Sparse Odometry With Fisheye Cameras,” in IEEE
International Conference on Robotics and Automation (ICRA), vol. 3, no. 4. IEEE,
2018, pp. 3693–3700. 10

[70] G. Sistu, I. Leang, and S. Yogamani, “Real-time joint object detection
and semantic segmentation network for automated driving,” arXiv preprint
arXiv:1901.03912, 2019. 10

[71] J. Zhu, J. Zhu, X. Wan, and C. Xu, “Downside Hemisphere Object Detection
and Localization of MAV by Fisheye Camera,” in Proceedings of the International
Conference on Control, Automation, Robotics and Vision (ICARCV), 2018. 10



BIBLIOGRAPHY 189

[72] Y. Ye, K. Yang, K. Xiang, J. Wang, and K. Wang, “Universal Semantic Segmenta-
tion for Fisheye Urban Driving Images,” in 2020 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). IEEE, 2020, pp. 648–655. 10

[73] M. Uricár, J. Ulicny, G. Sistu, H. Rashed, P. Krizek, D. Hurych, A. Vobecky, and
S. Yogamani, “Desoiling dataset: Restoring soiled areas on automotive fisheye
cameras,” in IEEE/CVF International Conference on Computer Vision Workshops,
ICCV Workshops 2019. IEEE, 2019, pp. 4273–4279. 10, 30, 58

[74] L. Meng, T. Hirayama, and S. Oyanagi, “Underwater-drone with panoramic
camera for automatic fish recognition based on deep learning,” Ieee Access,
vol. 6, pp. 17 880–17 886, 2018. 10

[75] K. Qiu, T. Liu, and S. Shen, “Model-based global localization for aerial robots us-
ing edge alignment,” in IEEE International Conference on Robotics and Automation
(ICRA), vol. 2, no. 3. IEEE, 2017, pp. 1256–1263. 10

[76] N. Zioulis, A. Karakottas, D. Zarpalas, and P. Daras, “Omnidepth: Dense depth
estimation for indoors spherical panoramas,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 448–465. 10

[77] “Old church, taken using a fisheye lens in Paris,” Mar. 2021. [Online].
Available: https://depositphotos.com/38262039/stock-photo-old-church-
taken-fisheye-lens.html 11

[78] A. Basu and S. Licardie, “Alternative models for fish-eye lenses,” Pattern Recog-
nition Letters, vol. 16, no. 4, pp. 433–441, 1995. 11, 16, 19

[79] F. Devernay and O. Faugeras, “Straight lines have to be straight: automatic
calibration and removal of distortion from scenes of structured enviroments,”
Machine Vision and Applications, vol. 13, pp. 14—-24, 2001. 11, 17

[80] J. Kannala and S. Brandt, “A generic camera model and calibration method
for conventional, wide-angle, and fish-eye lenses,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), vol. 28, no. 8, pp. 1335–1340, 2006. 11,
16, 126

[81] C. Geyer and K. Daniilidis, “A unifying theory for central panoramic systems
and practical applications,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2000. 11, 18, 19

[82] B. Khomutenko, G. Garcia, and P. Martinet, “An enhanced unified camera
model,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 137–144, 2015.
11, 18, 19, 52, 102, 126

[83] V. Usenko, N. Demmel, and D. Cremers, “The double sphere camera model,”
in 2018 International Conference on 3D Vision (3DV). IEEE, 2018, pp. 552–560.
11, 17, 18, 20, 102

[84] A. W. Fitzgibbon, “Simultaneous linear estimation of multiple view geometry
and lens distortion,” in Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 1. IEEE Computer Society, 2001, pp. 125–132.
11, 16

[85] D. Schneider, E. Schwalbe, and H.-G. Maas, “Validation of geometric models
for fisheye lenses,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 64,
no. 3, pp. 259–266, 2009. 13

https://depositphotos.com/38262039/stock-photo-old-church-taken-fisheye-lens.html
https://depositphotos.com/38262039/stock-photo-old-church-taken-fisheye-lens.html


190 BIBLIOGRAPHY

[86] C. Hughes, P. Denny, E. Jones, and M. Glavin, “Accuracy of fish-eye lens
models,” Applied Optics, vol. 49, no. 17, pp. 3338–3347, 2010. 13, 21

[87] A. E. Conrady, “Decentred lens-systems,” Monthly notices of the royal astronomical
society, vol. 79, no. 5, pp. 384–390, 1919. 13, 16

[88] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000. 13,
16

[89] D. Kim, J. Park, and J. Paik, “Extended fisheye lens model for practical geo-
metric correction and image enhancement,” Optics Letters, vol. 39, no. 21, pp.
6261–6264, 2014. 15

[90] D. C. Brown, “Alternative models for fish-eye lenses,” Photogrammetric Engi-
neering, vol. 32, no. 2, pp. 444–462, 1966. 16

[91] MATLAB, (R2021a). Natick, Massachusetts: The MathWorks Inc., 2021. 16

[92] X. Ying, Z. Hu, and H. Zha, “Fisheye Lenses Calibration Using Straight-Line
Spherical Perspective Projection Constraint,” in Proceedings of the Asian Confer-
ence on Computer Vision (ACCV), 2006. 16

[93] H. Wildenauer and B. Micusík, “Closed form solution for radial distortion
estimation from a single vanishing point,” in Proceedings of the British Machine
Vision Conference (BMVC), vol. 1, 2013, p. 2. 17

[94] M. Antunes, J. P. Barreto, D. Aouada, and B. Ottersten, “Unsupervised vanish-
ing point detection and camera calibration from a single manhattan image with
radial distortion,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 4288–4296. 17

[95] F. Bukhari and M. N. Dailey, “Automatic radial distortion estimation from a
single image,” Journal of mathematical imaging and vision, vol. 45, no. 1, pp. 31–45,
2013. 17

[96] J. Courbon, Y. Mezouar, and P. Martinet, “Evaluation of the unified model of the
sphere for fisheye cameras in robotic applications,” Advanced Robotics, vol. 26,
no. 8-9, pp. 947–967, 2012. 17

[97] C. Hughes, P. Denny, M. Glavin, and E. Jones, “Equidistant fish-eye calibration
and rectification by vanishing point extraction,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), vol. 32, no. 12, pp. 2289–2296, 2010. 17

[98] X. Ying and Z. Hu, “Can We Consider Central Catadioptric Cameras and Fish-
eye Cameras within a Unified Imaging Model,” in Proceedings of the European
Conference on Computer Vision (ECCV). Springer, 2004, pp. 442–455. 18

[99] J. Courbon, Y. Mezouar, L. Eckt, and P. Martinet, “A generic fisheye camera
model for robotic applications,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE, 2007, pp. 1683–1688. 18

[100] J. Courbon, Y. Mezouar, and P. Martinet, “Evaluation of the Unified Model of
the Sphere for Fisheye Cameras in Robotic Applications,” Advanced Robotics,
vol. 26, no. 8-9, pp. 947–967, 2012. 18

[101] H. Bakstein and T. Pajdla, “Panoramic mosaicing with a 180/spl deg/field of
view lens,” in Proceedings of the IEEE Workshop on Omnidirectional Vision 2002.
Held in conjunction with ECCV’02. IEEE, 2002, pp. 60–67. 19



BIBLIOGRAPHY 191

[102] J. Perš and S. Kovacic, “Nonparametric, model-based radial lens distortion
correction using tilted camera assumption,” in Proceedings of the Computer Vision
Winter Workshop, vol. 1, 2002, pp. pp–286. 19

[103] G. Klančar, M. Kristan, and R. Karba, “Wide-angle camera distortions and
non-uniform illumination in mobile robot tracking,” Robotics and Autonomous
Systems, vol. 46, no. 2, pp. 125–133, 2004. 19

[104] X. Mei, S. Yang, J. Rong, X. Ying, S. Huang, and H. Zha, “Radial lens distor-
tion correction using cascaded one-parameter division model,” in 2015 IEEE
International Conference on Image Processing (ICIP). IEEE, 2015, pp. 3615–3619.
19

[105] A. L. Laubscher, “A basic investigation of perspective map projections,” Thesis,
The Ohio State University, 1965. 19

[106] J. P. Snyder, “Map Projections: A Working Manual,” US Geological Survey
Professional Paper, vol. 1395, 1987. 19

[107] C. Hughes, P. Denny, E. Jones, and M. Glavin, “Accuracy of fish-eye lens
models,” Applied optics, vol. 49, no. 17, pp. 3338–3347, 2010. 22, 102

[108] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and
accurate monocular SLAM system,” IEEE transactions on robotics, vol. 31, no. 5,
pp. 1147–1163, 2015. 23, 110, 153

[109] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular
SLAM,” in Proceedings of the European Conference on Computer Vision (ECCV).
Springer, 2014, pp. 834–849. 23

[110] “What Are 3D Reconstruction Models?” May 2021. [Online]. Available:
https://moneyinc.com/3d-reconstruction-models/ 23

[111] “The Science of Vision: An Introduction,” May 2021. [Online]. Avail-
able: https://mind.ilstu.edu/curriculum/vision%5Fscience%5Fintro/vision%
5Fscience%5Fintro.html 23, 24

[112] “Depth Estimation: Basics and Intuition,” Apr. 2021. [Online].
Available: https://towardsdatascience.com/depth-estimation-1-basics-and-
intuition-86f2c9538cd1 24, 26, 68, 69, 70

[113] “How do people with depth perception issues drive a car and stop in traffic
by providing adequate space and not crashing the car in front of theirs?”
May 2021. [Online]. Available: https://www.quora.com/How-do-people-
with-depth-perception-issues-drive-a-car-and-stop-in-traffic-by-providing-
adequate-space-and-not-crashing-the-car-in-front-of-theirs 24

[114] F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays,
vol. 25, no. 2-3, pp. 99–108, 2004. 25

[115] J. S. Gardner, J. L. Austerweil, and S. E. Palmer, “Vertical position as a cue to
pictorial depth: Height in the picture plane versus distance to the horizon,”
Attention, Perception, & Psychophysics, vol. 72, no. 2, pp. 445–453, 2010. 25

[116] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp.
1231–1237, 2013. 25, 69, 71, 76, 82, 110, 125, 152, 153, 164

https://moneyinc.com/3d-reconstruction-models/
https://mind.ilstu.edu/curriculum/vision%5Fscience%5Fintro/vision%5Fscience%5Fintro.html
https://mind.ilstu.edu/curriculum/vision%5Fscience%5Fintro/vision%5Fscience%5Fintro.html
https://towardsdatascience.com/depth-estimation-1-basics-and-intuition-86f2c9538cd1
https://towardsdatascience.com/depth-estimation-1-basics-and-intuition-86f2c9538cd1
https://www.quora.com/How-do-people-with-depth-perception-issues-drive-a-car-and-stop-in-traffic-by-providing-adequate-space-and-not-crashing-the-car-in-front-of-theirs
https://www.quora.com/How-do-people-with-depth-perception-issues-drive-a-car-and-stop-in-traffic-by-providing-adequate-space-and-not-crashing-the-car-in-front-of-theirs
https://www.quora.com/How-do-people-with-depth-perception-issues-drive-a-car-and-stop-in-traffic-by-providing-adequate-space-and-not-crashing-the-car-in-front-of-theirs


192 BIBLIOGRAPHY

[117] “Motion Parallax in Psychology: Definition and Explanation,” May 2021.
[Online]. Available: https://study.com/academy/lesson/motion-parallax-in-
psychology-definition-lesson-quiz.html 26

[118] “Retinal Disparity,” May 2021. [Online]. Available: https://study.com/
cimages/multimages/16/retinal%5Fdisparity%5Fview.png 26

[119] R. Szeliski, Computer vision: algorithms and applications. Springer Science &
Business Media, 2010. 26

[120] M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 15, no. 4, pp. 353–363, 1993.
27

[121] Y. Boykov, O. Veksler, and R. Zabih, “A variable window approach to early
vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
vol. 20, no. 12, pp. 1283–1294, 1998. 27

[122] S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,”
International Journal of Computer Vision, vol. 35, no. 3, pp. 269–293, 1999. 27

[123] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,” International journal of computer vision,
vol. 47, no. 1, pp. 7–42, 2002. 27

[124] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, “A robust technique
for matching two uncalibrated images through the recovery of the unknown
epipolar geometry,” Artificial intelligence, vol. 78, no. 1-2, pp. 87–119, 1995. 27

[125] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in Proceedings of the European Conference on
Computer Vision (ECCV). Springer, 2016, pp. 21–37. 27, 50

[126] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), vol. 39, no. 6, pp. 1137–1149, 2017. 27, 50, 51

[127] “A 2021 guide to Semantic Segmentation,” May 2021. [Online]. Available:
https://nanonets.com/blog/semantic-image-segmentation-2020/ 28

[128] “CS224d: Deep Learning for Natural Language Processing,” May 2021.
[Online]. Available: http://cs224d.stanford.edu/index.html 28

[129] “An Overview of Multi-Task Learning in Deep Neural Networks,” May 2021.
[Online]. Available: https://ruder.io/multi-task/ 32, 33, 34, 175

[130] R. Caruana, “Multitask Learning. Autonomous Agents and Multi-Agent Sys-
tems,” Machine Learning, p. 41–75, 1998. 33, 59

[131] R. Caruana, “Multitask Learning: A Knowledge-Based Source of Inductive
Bias, ser,” Proceedings of the 10th International Conference on Machine Learning
(ICML), 1993. 34

[132] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7482–
7491. 34, 60, 62, 63, 94, 148, 149

https://study.com/academy/lesson/motion-parallax-in-psychology-definition-lesson-quiz.html
https://study.com/academy/lesson/motion-parallax-in-psychology-definition-lesson-quiz.html
https://study.com/cimages/multimages/16/retinal%5Fdisparity%5Fview.png
https://study.com/cimages/multimages/16/retinal%5Fdisparity%5Fview.png
https://nanonets.com/blog/semantic-image-segmentation-2020/
http://cs224d.stanford.edu/index.html
https://ruder.io/multi-task/


BIBLIOGRAPHY 193

[133] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm: Gradi-
ent normalization for adaptive loss balancing in deep multitask networks,” in
International Conference on Machine Learning. Pmlr, 2018, pp. 794–803. 34, 60,
63, 148, 149

[134] O. Sener and V. Koltun, “Multi-Task Learning as Multi-Objective Optimization,”
in Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems (NeurIPS), 2018, 2018, pp. 525–536. 34, 60

[135] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Fast scene understanding for autonomous driving,” arXiv preprint
arXiv:1708.02550, 2017. 34, 60

[136] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun, “Multinet:
Real-time joint semantic reasoning for autonomous driving,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1013–1020. 34, 60, 62, 139

[137] J. Baxter, “A Bayesian/information theoretic model of learning to learn via
multiple task sampling,” Machine learning, vol. 28, no. 1, pp. 7–39, 1997. 34

[138] I. Kokkinos, “Ubernet: Training a universal convolutional neural network for
low-, mid-, and high-level vision using diverse datasets and limited memory,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 6129–6138. 34, 149

[139] L. Duong, T. Cohn, S. Bird, and P. Cook, “Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network parser,” in Proceedings of
the 53rd annual meeting of the Association for Computational Linguistics and the 7th
international joint conference on natural language processing (volume 2: short papers),
2015, pp. 845–850. 34

[140] Y. Yang and T. M. Hospedales, “Trace norm regularised deep multi-task learn-
ing,” in 5th International Conference on Learning Representations, ICLR, Workshop
Track Proceedings. OpenReview.net, 2017. 34

[141] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks for
multi-task learning,” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 3994–4003. 34, 60, 61

[142] Who, “Global status report on road safety 2018, ”World Health
Organization,” https://apps.who.int/iris/bitstream/handle/10665/276462/
9789241565684-eng.pdf, [Accessed October-2020]. 34

[143] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger, “Sparsity
invariant cnns,” in 2017 international conference on 3D Vision (3DV). IEEE, 2017,
pp. 11–20. 38, 82, 111, 112, 152, 166

[144] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 3061–3070. 38, 56, 57

[145] H. Hirschmuller, “Accurate and efficient stereo processing by semi-global
matching and mutual information,” in 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), vol. 2. IEEE, 2005, pp.
807–814. 38

https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf


194 BIBLIOGRAPHY

[146] A. Saxena, S. H. Chung, A. Y. Ng et al., “Learning depth from single monocular
images,” in Nips, vol. 18, 2005, pp. 1–8. 39

[147] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d scene structure from a
single still image,” IEEE transactions on pattern analysis and machine intelligence,
vol. 31, no. 5, pp. 824–840, 2008. 39

[148] I. Ulku and E. Akagunduz, “A survey on deep learning-based architectures for
semantic segmentation on 2d images,” arXiv preprint arXiv:1912.10230, 2019. 40,
53, 54

[149] “Intersection over Union (IoU) for object detection,” May 2021. [Online].
Available: https://www.pyimagesearch.com/2016/11/07/intersection-over-
union-iou-for-object-detection 41

[150] “Understanding the mAP Evaluation Metric for Object Detection,” May 2021.
[Online]. Available: https://medium.com/\spacefactor\@m{}timothycarlen/
understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
41, 42

[151] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International journal of computer
vision, vol. 88, no. 2, pp. 303–338, 2010. 42, 52

[152] “Metrics for object detection,” May 2021. [Online]. Available: https:
//github.com/rafaelpadilla/Object-Detection-Metrics 42

[153] A. Moreau, M. Mancas, and T. Dutoit, “Depth prediction from 2D images: A
taxonomy and an evaluation study,” Image Vis. Comput., vol. 93, p. 103825, 2020.
45, 47, 48

[154] R. Mahjourian, M. Wicke, and A. Angelova, “Unsupervised learning of depth
and ego-motion from monocular video using 3d geometric constraints,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 5667–5675. 45, 47, 48, 76, 81, 82, 110, 111, 112, 153, 169

[155] U. Franke, D. Gavrila, S. Gorzig, F. Lindner, F. Puetzold, and C. Wohler, “Au-
tonomous driving goes downtown,” IEEE Intelligent Systems and Their Applica-
tions, vol. 13, no. 6, pp. 40–48, 1998. 45

[156] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox,
“DeMoN: Depth and Motion Network for Learning Monocular Stereo,” in IEEE
Conference on Computer Vision and Pattern Recognition, CVPR. IEEE Computer
Society, 2017, pp. 5622–5631. 45

[157] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and K. Fragki-
adaki, “SfM-Net: Learning of Structure and Motion from Video,” ArXiv, vol.
abs/1704.07804, 2017. 46, 62, 76, 77

[158] F. Liu, C. Shen, G. Lin, and I. Reid, “Learning depth from single monocular
images using deep convolutional neural fields,” IEEE transactions on pattern
analysis and machine intelligence, vol. 38, no. 10, pp. 2024–2039, 2015. 46

[159] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth esti-
mation from a single image,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 5162–5170. 46

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection
https://medium.com/\spacefactor \@m {}timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://medium.com/\spacefactor \@m {}timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://github.com/rafaelpadilla/Object-Detection-Metrics
https://github.com/rafaelpadilla/Object-Detection-Metrics


BIBLIOGRAPHY 195

[160] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data,” in Pro-
ceedings of the Eighteenth International Conference on Machine Learning (ICML.
Morgan Kaufmann, 2001, pp. 282–289. 46

[161] E. Shelhamer, J. T. Barron, and T. Darrell, “Scene intrinsics and depth from a
single image,” in Proceedings of the IEEE International Conference on Computer
Vision Workshops, 2015, pp. 37–44. 46

[162] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper
depth prediction with fully convolutional residual networks,” in 2016 Fourth
international conference on 3D vision (3DV). IEEE, 2016, pp. 239–248. 46

[163] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778. 46, 50, 54, 55, 79, 97, 99

[164] W. Chen, Z. Fu, D. Yang, and J. Deng, “Single-Image Depth Perception in the
Wild,” in Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems, 2016, pp. 730–738. 46

[165] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv preprint
arXiv:1406.2661, 2014. 46, 58, 66

[166] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas,
“Stackgan: Text to photo-realistic image synthesis with stacked generative
adversarial networks,” in Proceedings of the IEEE International Conference on
Computer Vision (CVPR), 2017, pp. 5907–5915. 46

[167] Y. Hong, U. Hwang, J. Yoo, and S. Yoon, “How Generative Adversarial Net-
works and Their Variants Work: An Overview,” ACM Comput. Survey, vol. 52,
no. 1, pp. 10:1–10:43, 2019. 46

[168] X. Huang, Y. Li, O. Poursaeed, J. E. Hopcroft, and S. J. Belongie, “Stacked
Generative Adversarial Networks,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR. IEEE Computer Society, 2017, pp. 1866–1875. 46

[169] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv
preprint arXiv:1411.1784, 2014. 46

[170] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
International Conference on Computer Vision (CVPR), 2017, pp. 2223–2232. 46

[171] T. Feng and D. Gu, “Sganvo: Unsupervised deep visual odometry and depth
estimation with stacked generative adversarial networks,” in IEEE International
Conference on Robotics and Automation (ICRA), vol. 4, no. 4. IEEE, 2019, pp.
4431–4437. 46

[172] H. Jung, Y. Kim, D. Min, C. Oh, and K. Sohn, “Depth prediction from a sin-
gle image with conditional adversarial networks,” in 2017 IEEE International
Conference on Image Processing (ICIP). IEEE, 2017, pp. 1717–1721. 46

[173] K. Gwn Lore, K. Reddy, M. Giering, and E. A. Bernal, “Generative adversarial
networks for depth map estimation from RGB video,” in Proceedings of the IEEE



196 BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018,
pp. 1177–1185. 46

[174] C. Zhao, Q. Sun, C. Zhang, Y. Tang, and F. Qian, “Monocular depth estimation
based on deep learning: An overview,” Science China Technological Sciences, pp.
1–16, 2020. 46

[175] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal re-
gression network for monocular depth estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2002–
2011. 47, 166

[176] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr, “Ga-net: Guided aggregation
net for end-to-end stereo matching,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 185–194. 47

[177] C. Wang, J. M. Buenaposada, R. Zhu, and S. Lucey, “Learning depth from
monocular videos using direct methods,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2022–2030. 47, 48,
77, 80, 81, 82, 110, 111, 112, 123, 153, 169

[178] F. Aleotti, F. Tosi, M. Poggi, and S. Mattoccia, “Generative adversarial networks
for unsupervised monocular depth prediction,” in Computer Vision - ECCV 2018
Workshops, 2018, Proceedings, Part I, vol. 11129. Springer, 2018, pp. 337–354. 48

[179] J. T. Barron, “A general and adaptive robust loss function,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 4331–4339. 48, 90, 92, 93, 108, 111, 141, 171

[180] J. Watson, M. Firman, G. J. Brostow, and D. Turmukhambetov, “Self-supervised
monocular depth hints,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 2162–2171. 48, 180

[181] C. Shu, K. Yu, Z. Duan, and K. Yang, “Feature-metric loss for self-supervised
learning of depth and egomotion,” in Proceedings of the European Conference on
Computer Vision (ECCV). Springer, 2020, pp. 572–588. 48, 109, 110, 112, 141,
142, 144, 152

[182] A. CS Kumar, S. M. Bhandarkar, and M. Prasad, “Monocular depth prediction
using generative adversarial networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2018, pp. 300–308.
48, 112

[183] A. Pilzer, D. Xu, M. Puscas, E. Ricci, and N. Sebe, “Unsupervised adversar-
ial depth estimation using cycled generative networks,” in 2018 International
Conference on 3D Vision (3DV). IEEE, 2018, pp. 587–595. 48

[184] F. Tosi, F. Aleotti, M. Poggi, and S. Mattoccia, “Learning monocular depth esti-
mation infusing traditional stereo knowledge,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 9799–
9809. 48

[185] B. Bozorgtabar, M. S. Rad, D. Mahapatra, and J.-P. Thiran, “Syndemo: Syner-
gistic deep feature alignment for joint learning of depth and ego-motion,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.
4210–4219. 48



BIBLIOGRAPHY 197

[186] J. Zhou, Y. Wang, K. Qin, and W. Zeng, “Unsupervised high-resolution depth
learning from videos with dual networks,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). IEEE, 2019, pp. 6872–6881.
48, 112

[187] A. Pilzer, S. Lathuiliere, N. Sebe, and E. Ricci, “Refine and distill: Exploiting
cycle-inconsistency and knowledge distillation for unsupervised monocular
depth estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 9768–9777. 48

[188] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Unsupervised monocular
depth and ego-motion learning with structure and semantics,” in IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
2019, 2019, pp. 381–388. 48, 62

[189] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Depth prediction without
the sensors: Leveraging structure for unsupervised learning from monocular
videos,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 8001–8008. 48, 62, 76, 82, 90, 104, 109, 110, 111, 112, 152, 153, 181

[190] R. Wang, S. M. Pizer, and J.-M. Frahm, “Recurrent neural network for (un-
) supervised learning of monocular video visual odometry and depth,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 5555–5564. 48

[191] H. Zhang, C. Shen, Y. Li, Y. Cao, Y. Liu, and Y. Yan, “Exploiting temporal
consistency for real-time video depth estimation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1725–1734. 48

[192] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova, “Depth from videos in
the wild: Unsupervised monocular depth learning from unknown cameras,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.
8977–8986. 48, 112

[193] F.-E. Wang, Y.-H. Yeh, M. Sun, W.-C. Chiu, and Y.-H. Tsai, “Bifuse: Monocular
360 depth estimation via bi-projection fusion,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 462–471.
48

[194] L. Jin, Y. Xu, J. Zheng, J. Zhang, R. Tang, S. Xu, J. Yu, and S. Gao, “Geometric
structure based and regularized depth estimation from 360 indoor imagery,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 889–898. 48

[195] C. Ma, L. Shi, H. Huang, and M. Yan, “3d reconstruction from full-view fisheye
camera,” arXiv preprint arXiv:1506.06273, 2015. 48

[196] S. Pathak, A. Moro, A. Yamashita, and H. Asama, “Dense 3D reconstruction
from two spherical images via optical flow-based equirectangular epipolar
rectification,” in 2016 IEEE International Conference on Imaging Systems and
Techniques (IST). IEEE, 2016, pp. 140–145. 48

[197] S. Li and K. Fukumori, “Spherical stereo for the construction of immersive
VR environment,” in IEEE Proceedings. VR 2005. Virtual Reality, 2005., 2005, pp.
217–222. 48



198 BIBLIOGRAPHY

[198] G. Sistu, I. Leang, S. Chennupati, S. Yogamani, C. Hughes, S. Milz, and
S. Rawashdeh, “Neurall: Towards a unified visual perception model for auto-
mated driving,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
IEEE, 2019, pp. 796–803. 48, 60, 62, 139

[199] S. Chennupati, G. Sistu, S. Yogamani, and S. Rawashdeh, “AuxNet: Auxiliary
Tasks Enhanced Semantic Segmentation for Automated Driving,” in Proceedings
of the 14th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISAPP), 2019, pp. 645–652. 48, 62

[200] R. Hartley and A. Zisserman, “Multiple view geometry in computer vision
(cambridge university, 2003),” C1 C3, vol. 2, 2003. 48, 71

[201] Y. Furukawa and C. Hernández, “Multi-view stereo: A tutorial,” Foundations
and Trends® in Computer Graphics and Vision, vol. 9, no. 1-2, pp. 1–148, 2015. 48

[202] S. Li, “Binocular spherical stereo,” IEEE Transactions on intelligent transportation
systems, vol. 9, no. 4, pp. 589–600, 2008. 48

[203] J. Huang, Z. Chen, D. Ceylan, and H. Jin, “6-DOF VR videos with a single
360-camera,” in 2017 IEEE Virtual Reality (VR). IEEE, 2017, pp. 37–44. 48

[204] R. Khasanova and P. Frossard, “Graph-based classification of omnidirectional
images,” in Proceedings of the IEEE International Conference on Computer Vision
Workshops (ICCVW), 2017, pp. 869–878. 49

[205] Y.-C. Su and K. Grauman, “Learning Spherical Convolution for Fast Features
from 360° Imagery.” in NIPS, vol. 2, no. 3, 2017, p. 5. 49

[206] Y. Jeon and J. Kim, “Active convolution: Learning the shape of convolution for
image classification,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 4201–4209. 49

[207] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 764–773. 49, 50, 51, 80, 81

[208] L. Deng, M. Yang, H. Li, T. Li, B. Hu, and C. Wang, “Restricted deformable
convolution-based road scene semantic segmentation using surround view
cameras,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 10,
pp. 4350–4362, 2019. 49, 55

[209] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580–587.
49, 50, 51

[210] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object
detection,” in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 6154–6162. 50, 51

[211] R. Girshick, F. Iandola, T. Darrell, and J. Malik, “Deformable part models are
convolutional neural networks,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 437–446. 50, 51



BIBLIOGRAPHY 199

[212] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp.
734–750. 50, 52

[213] B. Yang, J. Yan, Z. Lei, and S. Z. Li, “Craft objects from images,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 6043–6051. 50, 51

[214] W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang, Z. Wang,
C.-C. Loy et al., “Deepid-net: Deformable deep convolutional neural networks
for object detection,” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 2403–2412. 50, 51

[215] X. Zhou, J. Zhuo, and P. Krahenbuhl, “Bottom-up object detection by grouping
extreme and center points,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 850–859. 50, 52

[216] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 2980–2988. 50, 52, 143, 174

[217] W. Ouyang, K. Wang, X. Zhu, and X. Wang, “Chained cascade network for
object detection,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 1938–1946. 50, 51

[218] T. Mordan, N. Thome, M. Cord, and G. Henaff, “Deformable part-based fully
convolutional network for object detection,” in British Machine Vision Conference
2017, BMVC. BMVA Press, 2017. 50, 51

[219] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint
triplets for object detection,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 6569–6578. 50, 52

[220] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Unified, small, low
power fully convolutional neural networks for real-time object detection for
autonomous driving,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2017, pp. 129–137. 50, 51

[221] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object Detection via Region-based
Fully Convolutional Networks,” in Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems, 2016, pp.
379–387. 50

[222] S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chintala, and
P. Dollár, “A multipath network for object detection,” in Proceedings of the British
Machine Vision Conference 2016, BMVC. BMVA Press, 2016. 50, 51

[223] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolu-
tional networks for visual recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 37, no. 9, pp. 1904–1916, 2015. 49, 50, 54, 55

[224] S. Gidaris and N. Komodakis, “Object detection via a multi-region and se-
mantic segmentation-aware cnn model,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 1134–1142. 50

[225] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Over-
feat: Integrated recognition, localization and detection using convolutional



200 BIBLIOGRAPHY

networks,” in 2nd International Conference on Learning Representations, ICLR,
Conference Track Proceedings, 2014. 50

[226] T. Kong, A. Yao, Y. Chen, and F. Sun, “Hypernet: Towards accurate region pro-
posal generation and joint object detection,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 845–853. 50, 51

[227] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD: Deconvolutional
single shot detector,” arXiv preprint arXiv:1701.06659, 2017. 50, 52

[228] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang, “Acquisition of localization confi-
dence for accurate object detection,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 784–799. 50, 51

[229] L. Cui, “MDSSD: multi-scale deconvolutional single shot detector for small
objects,” Science China Information Sciences, vol. 63, 2020. 50

[230] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi,
W. Ouyang et al., “Hybrid task cascade for instance segmentation,” in Proceed-
ings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 4974–4983. 50

[231] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” in Proceedings of the European
Conference on Computer Vision (ECCV). Springer, 2020, pp. 213–229. 50, 51

[232] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 10 781–10 790. 50, 51

[233] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.
50

[234] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv
preprint arXiv:1804.02767, 2018. 50, 129, 133, 142

[235] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neu-
ral networks,” in International Conference on Machine Learning (ICML). PMLR,
2019, pp. 6105–6114. 51

[236] W. Ouyang and X. Wang, “Joint deep learning for pedestrian detection,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR),
2013, pp. 2056–2063. 51

[237] M. Lourenço, J. P. Barreto, and F. Vasconcelos, “sRD-SIFT: Keypoint detection
and matching in images with radial distortion,” IEEE Transactions on Robotics,
vol. 28, no. 3, pp. 752–760, 2012. 52

[238] S. Agarwal, J. O. D. Terrail, and F. Jurie, “Recent advances in object detection in
the age of deep convolutional neural networks,” arXiv preprint arXiv:1809.03193,
2018. 52

[239] T. Li, G. Tong, H. Tang, B. Li, and B. Chen, “Fisheyedet: A self-study and
contour-based object detector in fisheye images,” IEEE Access, vol. 8, pp. 71 739–
71 751, 2020. 52



BIBLIOGRAPHY 201

[240] B. Coors, A. P. Condurache, and A. Geiger, “Spherenet: Learning spherical
representations for detection and classification in omnidirectional images,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp.
518–533. 52

[241] N. Perraudin, M. Defferrard, T. Kacprzak, and R. Sgier, “DeepSphere: Efficient
spherical convolutional neural network with HEALPix sampling for cosmo-
logical applications,” Astronomy and Computing, vol. 27, pp. 130–146, 2019.
52

[242] Y.-C. Su and K. Grauman, “Kernel transformer networks for compact spherical
convolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 9442–9451. 52, 172

[243] C. Jiang, J. Huang, K. Kashinath, P. Marcus, M. Niessner et al., “Spherical CNNs
on unstructured grids,” in 7th International Conference on Learning Representations,
ICLR, 2019. OpenReview.net, 2019. 52, 56

[244] F. Deng, X. Zhu, and J. Ren, “Object detection on panoramic images based on
deep learning,” in 2017 3rd International Conference on Control, Automation and
Robotics (ICCAR). IEEE, 2017, pp. 375–380. 52

[245] W. Yang, Y. Qian, J.-K. Kämäräinen, F. Cricri, and L. Fan, “Object detection
in equirectangular panorama,” in 2018 24th International Conference on Pattern
Recognition (ICPR). IEEE, 2018, pp. 2190–2195. 52

[246] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical fea-
tures for scene labeling,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 35, no. 8, pp. 1915–1929, 2012. 53

[247] P. Pinheiro and R. Collobert, “Recurrent convolutional neural networks for
scene labeling,” in International conference on machine learning. PMLR, 2014, pp.
82–90. 53

[248] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected crfs,”
arXiv preprint arXiv:1412.7062, 2014. 53

[249] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention. Springer, 2015, pp. 234–241. 53,
55, 79

[250] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in 3rd International Conference on Learning Representa-
tions, ICLR, 2015. 53, 55

[251] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
in 4th International Conference on Learning Representations, ICLR, 2016. 53

[252] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. H. Torr, “Conditional random fields as recurrent neural networks,” in
Proceedings of the IEEE international conference on computer vision, 2015, pp. 1529–
1537. 53



202 BIBLIOGRAPHY

[253] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Efficient piecewise training of
deep structured models for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 3194–3203. 54

[254] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing with
graph lstm,” in European Conference on Computer Vision. Springer, 2016, pp.
125–143. 54

[255] B. Shuai, Z. Zuo, B. Wang, and G. Wang, “Dag-recurrent neural networks for
scene labeling,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 3620–3629. 54

[256] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 4, pp. 834–848, 2017. 54, 55

[257] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,”
in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2881–2890. 54, 55

[258] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587,
2017. 54, 55

[259] P. Luo, G. Wang, L. Lin, and X. Wang, “Deep dual learning for semantic image
segmentation,” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 2718–2726. 54

[260] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel matters–improve
semantic segmentation by global convolutional network,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
4353–4361. 54

[261] J. Fu, J. Liu, Y. Wang, J. Zhou, C. Wang, and H. Lu, “Stacked deconvolutional
network for semantic segmentation,” IEEE Transactions on Image Processing,
2019. 54

[262] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learning a discriminative
feature network for semantic segmentation,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1857–1866.
54

[263] D. Lin, Y. Ji, D. Lischinski, D. Cohen-Or, and H. Huang, “Multi-scale context in-
tertwining for semantic segmentation,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 603–619. 54

[264] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 801–818.
54, 55

[265] H. Shi, H. Li, F. Meng, Q. Wu, L. Xu, and K. N. Ngan, “Hierarchical parsing
net: Semantic scene parsing from global scene to objects,” IEEE Transactions on
Multimedia, vol. 20, no. 10, pp. 2670–2682, 2018. 54



BIBLIOGRAPHY 203

[266] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and A. Agrawal, “Con-
text encoding for semantic segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7151–7160. 54

[267] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia, “Psanet: Point-
wise spatial attention network for scene parsing,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 267–283. 54

[268] X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu, “Expectation-maximization
attention networks for semantic segmentation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2019, pp. 9167–9176. 54

[269] Y. Huang, Q. Wang, W. Jia, and X. He, “See More Than Once–Kernel-
Sharing Atrous Convolution for Semantic Segmentation,” arXiv preprint
arXiv:1908.09443, 2019. 54

[270] H. Zhang, H. Zhang, C. Wang, and J. Xie, “Co-occurrent features in semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 548–557. 55

[271] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 4700–4708. 55

[272] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”
in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 1251–1258. 55

[273] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information processing
systems, vol. 25, pp. 1097–1105, 2012. 55

[274] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-Fei,
“Auto-deeplab: Hierarchical neural architecture search for semantic image
segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 82–92. 55

[275] L.-C. Chen, M. Collins, and Y. Zhu, “George, Papandreou, Barret Zoph, Flo-
rian Schroff, Hartwig Adam, and Jon Shlens,” Searching for efficient multi-scale,
architectures for dense image prediction. In, NeurIPS, vol. 1, no. 2, 2018. 55

[276] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neu-
ral network architecture for real-time semantic segmentation,” arXiv preprint
arXiv:1606.02147, 2016. 55

[277] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilateral seg-
mentation network for real-time semantic segmentation,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 325–341. 55

[278] G. Li, I. Yun, J. Kim, and J. Kim, “Dabnet: Depth-wise asymmetric bottleneck
for real-time semantic segmentation,” in 30th British Machine Vision Conference,
BMVC 2019. BMVA Press, 2019, p. 259. 55

[279] H. Li, P. Xiong, H. Fan, and J. Sun, “Dfanet: Deep feature aggregation for
real-time semantic segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 9522–9531. 55



204 BIBLIOGRAPHY

[280] P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin, “Hardnet: A low
memory traffic network,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 3552–3561. 55

[281] L. Deng, M. Yang, Y. Qian, C. Wang, and B. Wang, “CNN based semantic
segmentation for urban traffic scenes using fisheye camera,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 231–236. 55

[282] Á. Sáez, L. M. Bergasa, E. López-Guillén, E. Romera, M. Tradacete, C. Gómez-
Huélamo, and J. Del Egido, “Real-time semantic segmentation for fisheye urban
driving images based on ERFNet,” Sensors, vol. 19, no. 3, p. 503, 2019. 55

[283] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet: Efficient resid-
ual factorized convnet for real-time semantic segmentation,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 1, pp. 263–272, 2017. 55

[284] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic ur-
ban scene understanding,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 3213–3223. 55

[285] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia
dataset: A large collection of synthetic images for semantic segmentation of
urban scenes,” in Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2016, pp. 3234–3243. 55

[286] Y. Xu, K. Wang, K. Yang, D. Sun, and J. Fu, “Semantic segmentation of
panoramic images using a synthetic dataset,” in Artificial Intelligence and Ma-
chine Learning in Defense Applications, vol. 11169. International Society for
Optics and Photonics, 2019, p. 111690B. 55

[287] K. Yang, X. Hu, L. M. Bergasa, E. Romera, X. Huang, D. Sun, and K. Wang,
“Can we pass beyond the field of view? panoramic annular semantic segmenta-
tion for real-world surrounding perception,” in 2019 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2019, pp. 446–453. 55

[288] R. Monroy, S. Lutz, T. Chalasani, and A. Smolic, “Salnet360: Saliency maps
for omni-directional images with cnn,” Signal Processing: Image Communication,
vol. 69, pp. 26–34, 2018. 56

[289] W.-S. Lai, Y. Huang, N. Joshi, C. Buehler, M.-H. Yang, and S. B. Kang, “Semantic-
driven generation of hyperlapse from 360 degree video,” IEEE transactions on
visualization and computer graphics, vol. 24, no. 9, pp. 2610–2621, 2017. 56

[290] K. Tateno, N. Navab, and F. Tombari, “Distortion-aware convolutional filters for
dense prediction in panoramic images,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 707–722. 56

[291] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical cnns,” in 6th
International Conference on Learning Representations, ICLR 2018, Conference Track
Proceedings. OpenReview.net, 2018. 56

[292] Y. Lee, J. Jeong, J. Yun, W. Cho, and K.-J. Yoon, “Spherephd: Applying cnns on
a spherical polyhedron representation of 360deg images,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 9181–9189. 56



BIBLIOGRAPHY 205

[293] C. Zhang, S. Liwicki, W. Smith, and R. Cipolla, “Orientation-aware semantic
segmentation on icosahedron spheres,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (CVPR), 2019, pp. 3533–3541. 56

[294] S. Wehrwein and R. Szeliski, “Video segmentation with background motion
models.” in BMVC, vol. 245, 2017, p. 246. 56

[295] H. Rashed, M. Ramzy, V. Vaquero, A. El Sallab, G. Sistu, and S. Yogamani,
“Fusemodnet: Real-time camera and lidar based moving object detection for
robust low-light autonomous driving,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision Workshops (ICCVW). IEEE, 2019, pp.
2393–2402. 57

[296] S. D. Jain, B. Xiong, and K. Grauman, “Fusionseg: Learning to combine motion
and appearance for fully automatic segmentation of generic objects in videos,”
in 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2017, pp. 2117–2126. 57

[297] B. Drayer and T. Brox, “Object detection, tracking, and motion segmentation
for object-level video segmentation,” arXiv preprint arXiv:1608.03066, 2016. 57

[298] S. Dey, V. Reilly, I. Saleemi, and M. Shah, “Detection of independently moving
objects in non-planar scenes via multi-frame monocular epipolar constraint,”
in Proceedings of the European Conference on Computer Vision (ECCV). Springer,
2012, pp. 860–873. 57

[299] J. C. Clarke and A. Zisserman, “Detection and tracking of independent motion,”
Image and Vision Computing, vol. 14, no. 8, pp. 565–572, 1996. 57

[300] J. Klappstein, F. Stein, and U. Franke, “Monocular motion detection using spa-
tial constraints in a unified manner,” in 2006 IEEE Intelligent Vehicles Symposium,
2006, pp. 261–267. 57

[301] P. Spagnolo, M. Leo, A. Distante et al., “Moving object segmentation by back-
ground subtraction and temporal analysis,” Image and Vision Computing, vol. 24,
no. 5, pp. 411–423, 2006. 57

[302] P. Gao, X. Sun, and W. Wang, “Moving object detection based on kirsch operator
combined with Optical Flow,” in 2010 International Conference on Image Analysis
and Signal Processing. IEEE, 2010, pp. 620–624. 57

[303] A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff, and M. J. Black,
“Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera
Motion, Optical Flow and Motion Segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 12 240–
12 249. 57, 62, 82, 90, 110, 112, 123, 153

[304] F. Tosi, F. Aleotti, P. Z. Ramirez, M. Poggi, S. Salti, L. D. Stefano, and S. Mattoccia,
“Distilled semantics for comprehensive scene understanding from videos,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 4654–4665. 57, 112, 181

[305] W. Choi, C. Pantofaru, and S. Savarese, “A general framework for tracking
multiple people from a moving camera,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), vol. 35, no. 7, pp. 1577–1591, 2012. 57



206 BIBLIOGRAPHY

[306] T. Chen and S. Lu, “Object-level motion detection from moving cameras,” in
IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 11.
IEEE, 2016, pp. 2333–2343. 57

[307] N. D. Reddy, P. Singhal, and K. M. Krishna, “Semantic motion segmentation
using dense CRF formulation,” in Proceedings of the 2014 Indian conference on
computer vision graphics and image processing, 2014, pp. 1–8. 57

[308] Q. Fan, Y. Yi, L. Hao, F. Mengyin, and W. Shunting, “Semantic motion seg-
mentation for urban dynamic scene understanding,” in 2016 IEEE International
Conference on Automation Science and Engineering (CASE). IEEE, 2016, pp.
497–502. 57

[309] H. Wang, P. Wang, and X. Qian, “MPNET: An end-to-end deep neural network
for object detection in surveillance video,” IEEE Access, vol. 6, pp. 30 296–30 308,
2018. 57

[310] M. Siam, S. Eikerdawy, M. Gamal, M. Abdel-Razek, M. Jagersand, and
H. Zhang, “Real-time segmentation with appearance, motion and geometry,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 5793–5800. 57

[311] H. Porav, T. Bruls, and P. Newman, “I can see clearly now: Image restoration via
de-raining,” in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 7087–7093. 58

[312] C. Sakaridis, D. Dai, and L. Van Gool, “Semantic foggy scene understanding
with synthetic data,” International Journal of Computer Vision, vol. 126, no. 9, pp.
973–992, 2018. 58

[313] S. Li, I. B. Araujo, W. Ren, Z. Wang, E. K. Tokuda, R. H. Junior, R. Cesar-Junior,
J. Zhang, X. Guo, and X. Cao, “Single image deraining: A comprehensive
benchmark analysis,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 3838–3847. 58

[314] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng, “Progressive image deraining net-
works: A better and simpler baseline,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3937–3946. 58

[315] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, and R. W. Lau, “Spatial attentive
single-image deraining with a high quality real rain dataset,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 12 270–12 279. 58

[316] W. Yang, J. Liu, and J. Feng, “Frame-consistent recurrent video deraining with
dual-level flow,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 1661–1670. 58

[317] W. Yang, J. Liu, S. Yang, and Z. Guo, “Scale-free single image deraining via
visibility-enhanced recurrent wavelet learning,” IEEE Transactions on Image
Processing, vol. 28, no. 6, pp. 2948–2961, 2019. 58

[318] A. Das, “Soildnet: Soiling degradation detection in autonomous driving,” arXiv
preprint arXiv:1911.01054, 2019. 58



BIBLIOGRAPHY 207

[319] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai, and
L. Van Gool, “Multi-Task Learning for Dense Prediction Tasks: A Survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021. 59, 60, 63, 139

[320] T. Evgeniou and M. Pontil, “Regularized multi–task learning,” in Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, 2004, pp. 109–117. 59

[321] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram, “Multi-Task Learning for
Classification with Dirichlet Process Priors.” Journal of Machine Learning Research,
vol. 8, no. 1, 2007. 59

[322] L. Jacob, F. Bach, and J.-P. Vert, “Clustered Multi-Task Learning: A Convex For-
mulation,” in Advances in Neural Information Processing Systems 21, Proceedings
of the Twenty-Second Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 8-11, 2008. Curran Associates,
Inc., 2008, pp. 745–752. 59

[323] J. Zhou, J. Chen, and J. Ye, “Clustered multi-task learning via alternating
structure optimization,” Advances in neural information processing systems, vol.
2011, p. 702, 2011. 59

[324] B. Bakker and T. Heskes, “Task clustering and gating for bayesian multitask
learning,” J. Mach. Learn. Res., vol. 4, pp. 83–99, 2003. 59

[325] K. Yu, V. Tresp, and A. Schwaighofer, “Learning Gaussian processes from
multiple tasks,” in Proceedings of the 22nd international conference on Machine
learning, 2005, pp. 1012–1019. 59

[326] S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller, “Learning a meta-level
prior for feature relevance from multiple related tasks,” in Proceedings of the
24th international conference on Machine learning, 2007, pp. 489–496. 59

[327] H. Daumé III, “Bayesian multitask learning with latent hierarchies,” in UAI
2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelli-
gence, Montreal, QC, Canada, June 18-21, 2009. AUAI Press, 2009, pp. 135–142.
59

[328] A. Kumar and H. Daume III, “Learning task grouping and overlap in multi-task
learning,” in Proceedings of the 29th International Conference on Machine Learning,
ICML. icml.cc / Omnipress, 2012. 59

[329] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task feature learning,”
Machine learning, vol. 73, no. 3, pp. 243–272, 2008. 59

[330] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient l2, 1-norm mini-
mization,” in UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009. AUAI Press,
2009, pp. 339–348. 59

[331] A. Jalali, S. Sanghavi, C. Ruan, and P. Ravikumar, “A dirty model for multi-task
learning,” Advances in neural information processing systems, vol. 23, pp. 964–972,
2010. 59

[332] A. Agarwal, S. Gerber, and H. Daume, “Learning multiple tasks using manifold
regularization,” in Advances in neural information processing systems, 2010, pp.
46–54. 59



208 BIBLIOGRAPHY

[333] R. K. Ando, T. Zhang, and P. Bartlett, “A framework for learning predictive
structures from multiple tasks and unlabeled data.” Journal of Machine Learning
Research, vol. 6, no. 11, 2005. 59

[334] P. Rai and H. Daumé III, “Infinite predictor subspace models for multitask
learning,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2010,
pp. 613–620. 59

[335] D. Xu, W. Ouyang, X. Wang, and N. Sebe, “Pad-net: Multi-tasks guided
prediction-and-distillation network for simultaneous depth estimation and
scene parsing,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 675–684. 59, 61

[336] Z. Zhang, Z. Cui, C. Xu, Z. Jie, X. Li, and J. Yang, “Joint task-recursive learning
for semantic segmentation and depth estimation,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 235–251. 59, 61

[337] Z. Zhang, Z. Cui, C. Xu, Y. Yan, N. Sebe, and J. Yang, “Pattern-affinitive propa-
gation across depth, surface normal and semantic segmentation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 4106–4115. 59, 61

[338] L. Zhou, Z. Cui, C. Xu, Z. Zhang, C. Wang, T. Zhang, and J. Yang, “Pattern-
structure diffusion for multi-task learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 4514–
4523. 59

[339] S. Vandenhende, S. Georgoulis, and L. Van Gool, “Mti-net: Multi-scale task
interaction networks for multi-task learning,” in Proceedings of the European
Conference on Computer Vision (ECCV). Springer, 2020, pp. 527–543. 59, 61

[340] M. Crawshaw, “Multi-Task Learning with Deep Neural Networks: A Survey,”
arXiv preprint arXiv:2009.09796, 2020. 60

[341] Y. Gao, J. Ma, M. Zhao, W. Liu, and A. L. Yuille, “Nddr-cnn: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 3205–3214. 60, 61

[342] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning with atten-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 1871–1880. 61, 63, 148, 149

[343] M. Long, Z. Cao, J. Wang, and P. S. Yu, “Learning multiple tasks with multilinear
relationship networks,” in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, 2017, pp.
1594–1603. 61

[344] E. Meyerson and R. Miikkulainen, “Beyond Shared Hierarchies: Deep Multi-
task Learning through Soft Layer Ordering,” in 6th International Conference on
Learning Representations, ICLR 2018. OpenReview.net, 2018. 61

[345] Y. Yang and T. M. Hospedales, “Deep Multi-task Representation Learning:
A Tensor Factorisation Approach,” in 5th International Conference on Learning
Representations, ICLR 2017. OpenReview.net, 2017. 61



BIBLIOGRAPHY 209

[346] C. Rosenbaum, T. Klinger, and M. Riemer, “Routing networks: Adaptive se-
lection of non-linear functions for multi-task learning,” in 6th International
Conference on Learning Representations, ICLR 2018. OpenReview.net, 2018. 61

[347] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single network
to multiple tasks by learning to mask weights,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 67–82. 61

[348] S. Huang, X. Li, Z.-Q. Cheng, Z. Zhang, and A. Hauptmann, “Gnas: A greedy
neural architecture search method for multi-attribute learning,” in Proceedings
of the 26th ACM international conference on Multimedia, 2018, pp. 2049–2057. 61

[349] F. J. Bragman, R. Tanno, S. Ourselin, D. C. Alexander, and J. Cardoso, “Stochastic
filter groups for multi-task cnns: Learning specialist and generalist convolution
kernels,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1385–1394. 61

[350] A. Newell, L. Jiang, C. Wang, L.-J. Li, and J. Deng, “Feature partitioning for
efficient multi-task architectures,” arXiv preprint arXiv:1908.04339, 2019. 61

[351] K.-K. Maninis, I. Radosavovic, and I. Kokkinos, “Attentive single-tasking of
multiple tasks,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 1851–1860. 61

[352] C. Mao, A. Gupta, V. Nitin, B. Ray, S. Song, J. Yang, and C. Vondrick, “Multitask
Learning Strengthens Adversarial Robustness,” in Computer Vision – ECCV
2020. Springer International Publishing, 2020, pp. 158–174. 62, 66, 139

[353] M. Klingner, A. Bar, and T. Fingscheidt, “Improved Noise and Attack Ro-
bustness for Semantic Segmentation by Using Multi-Task Training with Self-
Supervised Depth Estimation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2020, pp. 320–321. 62

[354] M. Klingner, J.-A. Termöhlen, J. Mikolajczyk, and T. Fingscheidt, “Self-
supervised monocular depth estimation: Solving the dynamic object problem
by semantic guidance,” in Proceedings of the European Conference on Computer
Vision (ECCV). Springer, 2020, pp. 582–600. 62, 112

[355] S. Chennupati, G. Sistu, S. Yogamani, and S. A Rawashdeh, “Multinet++: Multi-
stream feature aggregation and geometric loss strategy for multi-task learning,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops. Computer Vision Foundation / IEEE, 2019, pp. 1200–1210.
62, 148, 149

[356] J.-A. Bolte, M. Kamp, A. Breuer, S. Homoceanu, P. Schlicht, F. Huger, D. Lipin-
ski, and T. Fingscheidt, “Unsupervised domain adaptation to improve image
segmentation quality both in the source and target domain,” in IEEE Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019,
2019, pp. 1404–1413. 62

[357] M. Ochs, A. Kretz, and R. Mester, “SDNet: Semantically guided depth estima-
tion network,” in German Conference on Pattern Recognition (GCPR). Springer,
2019, pp. 288–302. 62

[358] S. Zhao, H. Fu, M. Gong, and D. Tao, “Geometry-aware symmetric domain
adaptation for monocular depth estimation,” in Proceedings of the IEEE/CVF



210 BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 9788–
9798. 62

[359] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid net-
works,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 6399–6408. 62

[360] L. Wang, J. Zhang, O. Wang, Z. Lin, and H. Lu, “SDC-depth: Semantic divide-
and-conquer network for monocular depth estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 541–550. 62

[361] Y. Lu, M. Sarkis, and G. Lu, “Multi-Task Learning for Single Image Depth
Estimation and Segmentation Based on Unsupervised Network,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020, pp. 10 788–
10 794. 62

[362] Y. Meng, Y. Lu, A. Raj, S. Sunarjo, R. Guo, T. Javidi, G. Bansal, and D. Bharadia,
“Signet: Semantic instance aided unsupervised 3d geometry perception,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 9810–9820. 62, 112

[363] C. Luo, Z. Yang, P. Wang, Y. Wang, W. Xu, R. Nevatia, and A. Yuille, “Every
pixel counts++: Joint learning of geometry and motion with 3d holistic under-
standing,” IEEE transactions on pattern analysis and machine intelligence, vol. 42,
no. 10, pp. 2624–2641, 2019. 62, 76, 82, 90, 110, 111, 123, 153, 169

[364] Y. Chen, C. Schmid, and C. Sminchisescu, “Self-supervised learning with geo-
metric constraints in monocular video: Connecting flow, depth, and camera,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 7063–7072. 62, 109, 112, 152

[365] P. Liu, M. Lyu, I. King, and J. Xu, “Selflow: Self-supervised learning of optical
flow,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 4571–4580. 62

[366] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha, “Unsupervised deep learning
for optical flow estimation,” in Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, 2017, pp. 1495–1501. 62

[367] L. Liu, G. Zhai, W. Ye, and Y. Liu, “Unsupervised Learning of Scene Flow
Estimation Fusing with Local Rigidity.” in Ijcai, 2019, pp. 876–882. 62

[368] Y. Wang, P. Wang, Z. Yang, C. Luo, Y. Yang, and W. Xu, “Unos: Unified un-
supervised optical-flow and stereo-depth estimation by watching videos,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 8071–8081. 62

[369] Z. Yang, P. Wang, Y. Wang, W. Xu, and R. Nevatia, “Every pixel counts: Unsuper-
vised geometry learning with holistic 3d motion understanding,” in Proceedings
of the European Conference on Computer Vision (ECCV) 2018 Workshops, vol. 11133.
Springer, 2018, pp. 691–709. 62, 112

[370] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth, optical flow
and camera pose,” in Proceedings of the IEEE Conference on Computer Vision and



BIBLIOGRAPHY 211

Pattern Recognition (CVPR), 2018, pp. 1983–1992. 62, 77, 80, 82, 84, 110, 112, 123,
153

[371] P.-Y. Chen, A. H. Liu, Y.-C. Liu, and Y.-C. F. Wang, “Towards scene under-
standing: Unsupervised monocular depth estimation with semantic-aware
representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 2624–2632. 62, 63

[372] J. Novosel, P. Viswanath, and B. Arsenali, “Boosting semantic segmentation
with multi-task self-supervised learning for autonomous driving applications,”
in Proceedings of NeurIPS-Workshops, vol. 3, 2019. 62

[373] G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia, “Segstereo: Exploiting semantic
information for disparity estimation,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 636–651. 62, 63

[374] S. Zhu, G. Brazil, and X. Liu, “The edge of depth: Explicit constraints between
segmentation and depth,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 13 116–13 125. 62, 63

[375] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, “Dynamic task
prioritization for multitask learning,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 270–287. 63, 148, 149

[376] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropaga-
tion,” in International conference on machine learning. Pmlr, 2015, pp. 1180–1189.
63

[377] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in 2nd International
Conference on Learning Representations, ICLR, 2014. 64, 65

[378] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” in 3rd International Conference on Learning Representations, ICLR
2015. OpenReview.net, 2015. 64, 65

[379] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversar-
ial examples,” in International conference on machine learning. Pmlr, 2018, pp.
284–293. 64

[380] A. Kurakin, I. Goodfellow, S. Bengio et al., “Adversarial examples in the phys-
ical world,” in 5th International Conference on Learning Representations, ICLR,
Workshop Track Proceedings. OpenReview.net, 2017. 64, 65

[381] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in 2016 IEEE European
symposium on security and privacy (EuroS&P). IEEE, 2016, pp. 372–387. 64, 65

[382] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural
networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp.
828–841, 2019. 64

[383] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural
Networks. arXiv e-prints, page,” in IEEE Symposium on Security and Privacy, SP.
IEEE Computer Society, 2016, pp. 39–57. 64, 65



212 BIBLIOGRAPHY

[384] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks,” in 2016
IEEE symposium on security and privacy (SP). IEEE, 2016, pp. 582–597. 64

[385] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and
accurate method to fool deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2574–
2582. 64, 65

[386] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adver-
sarial perturbations,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1765–1773. 64, 65

[387] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in
computer vision: A survey,” Ieee Access, vol. 6, pp. 14 410–14 430, 2018. 64, 65

[388] S. Sarkar, A. Bansal, U. Mahbub, and R. Chellappa, “UPSET and ANGRI:
Breaking high performance image classifiers,” arXiv preprint arXiv:1707.01159,
2017. 64, 65

[389] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep structured
prediction models,” arXiv preprint arXiv:1707.05373, 2017. 64

[390] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al., “Deep speech 2: End-to-end
speech recognition in english and mandarin,” in International conference on
machine learning. PMLR, 2016, pp. 173–182. 64

[391] S. Baluja and I. Fischer, “Adversarial transformation networks: Learning to
generate adversarial examples,” arXiv preprint arXiv:1703.09387, 2017. 64

[392] J. Hayes and G. Danezis, “Machine learning as an adversarial service: Learning
black-box adversarial examples,” arXiv preprint arXiv:1708.05207, vol. 2, 2017.
64

[393] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adver-
sarial examples robustly,” in Proceedings of the IEEE International Conference on
Computer Vision (CVPR), 2017, pp. 446–454. 64

[394] A. Arnab, O. Miksik, and P. H. Torr, “On the robustness of semantic segmen-
tation models to adversarial attacks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 888–897. 65

[395] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial examples
for semantic segmentation and object detection,” in Proceedings of the IEEE
International Conference on Computer Vision (CVPR), 2017, pp. 1369–1378. 65

[396] T. v. Dijk and G. d. Croon, “How do neural networks see depth in single
images?” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019, pp. 2183–2191. 65, 166, 167

[397] K. Yamanaka, R. Matsumoto, K. Takahashi, and T. Fujii, “Adversarial Patch
Attacks on Monocular Depth Estimation Networks,” IEEE Access, vol. 8, pp.
179 094–179 104, 2020. 65



BIBLIOGRAPHY 213

[398] K. R. Mopuri, U. Garg, and R. V. Babu, “Fast feature fool: A data independent
approach to universal adversarial perturbations,” in British Machine Vision
Conference BMVC. BMVA Press, 2017. 65

[399] J. Hu and T. Okatani, “Analysis of deep networks for monocular depth esti-
mation through adversarial attacks with proposal of a defense method,” arXiv
preprint arXiv:1911.08790, 2019. 65

[400] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling automated surveillance
cameras: adversarial patches to attack person detection,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2019, pp. 49–55. 65

[401] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, and B. Li, “Adversar-
ial objects against lidar-based autonomous driving systems,” arXiv preprint
arXiv:1907.05418, 2019. 66

[402] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 1625–1634. 66

[403] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of jpg
compression on adversarial images,” arXiv preprint arXiv:1608.00853, 2016. 66,
154

[404] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples
in deep neural networks,” in 25th Annual Network and Distributed System Security
Symposium, NDSS. The Internet Society, 2018. 66

[405] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Protecting Classi-
fiers Against Adversarial Attacks Using Generative Models,” in 6th International
Conference on Learning Representations, ICLR 2018. OpenReview.net, 2018. 66

[406] C. Pinard, “Robust Learning of a depth map for obstacle avoidance with a
monocular stabilized flying camera. (Apprentissage robuste d’une carte de
profondeur pour l’évitement d’obstacle dans le cas des cameras volantes,
monoculaires et stabilisées),” Ph.D. dissertation, University of Paris-Saclay,
France, 2019. [Online]. Available: https://tel.archives-ouvertes.fr/tel-02285215
69, 166, 167, 172

[407] “Computer Science Tripos Part II,” May 2021. [Online]. Available: https:
//www.cl.cam.ac.uk/teaching/1011/CompVision/Town 69

[408] Z. Arican and P. Frossard, “Dense disparity estimation from omnidirectional
images,” in 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.
IEEE, 2007, pp. 399–404. 70

[409] “Lecture on SfM approaches,” May 2021. [Online]. Available: https:
//www.cs.unc.edu/~lazebnik/spring11/lec17%5Fsfm.pdf 70

[410] P. Yadati and A. M. Namboodiri, “Multiscale two-view stereo using convolu-
tional neural networks for unrectified images,” in 2017 Fifteenth IAPR Interna-
tional Conference on Machine Vision Applications (MVA). IEEE, 2017, pp. 346–349.
71

https://tel.archives-ouvertes.fr/tel-02285215
https://www.cl.cam.ac.uk/teaching/1011/CompVision/Town
https://www.cl.cam.ac.uk/teaching/1011/CompVision/Town
https://www.cs.unc.edu/~lazebnik/spring11/lec17%5Fsfm.pdf
https://www.cs.unc.edu/~lazebnik/spring11/lec17%5Fsfm.pdf


214 BIBLIOGRAPHY

[411] E. Meijering, “A chronology of interpolation: from ancient astronomy to mod-
ern signal and image processing,” Proceedings of the IEEE, vol. 90, no. 3, pp.
319–342, 2002. 71

[412] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial trans-
former networks,” in Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, 2015, pp. 2017–
2025. 75, 77, 78

[413] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restoration
with neural networks,” IEEE Transactions on computational imaging, vol. 3, no. 1,
pp. 47–57, 2016. 75

[414] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE transactions on image
processing, vol. 13, no. 4, pp. 600–612, 2004. 75, 141, 171

[415] L. Zhou, J. Ye, M. Abello, S. Wang, and M. Kaess, “Unsupervised learning of
monocular depth estimation with bundle adjustment, super-resolution and clip
loss,” arXiv preprint arXiv:1812.03368, 2018. 76, 77, 82, 165

[416] Y. Zou, Z. Luo, and J.-B. Huang, “Df-net: Unsupervised joint learning of depth
and flow using cross-task consistency,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 36–53. 76, 77, 82, 110, 112, 153

[417] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2: More deformable,
better results,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 9308–9316. 80, 84, 165

[418] J. Li, Y. Chen, L. Cai, I. Davidson, and S. Ji, “Dense transformer networks,”
arXiv preprint arXiv:1705.08881, 2017. 80

[419] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and
Z. Wang, “Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1874–1883. 80, 81, 165

[420] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of
the adaptive learning rate and beyond,” in 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, 2020. OpenReview.net,
2020. 81, 149

[421] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, “Lookahead Optimizer: k steps
forward, 1 step back,” in Advances in Neural Information Processing Systems, 2019,
pp. 9593–9604. 81, 149

[422] L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural net-
works using large learning rates,” in Artificial Intelligence and Machine Learning
for Multi-Domain Operations Applications, vol. 11006. International Society for
Optics and Photonics, 2019. 81

[423] A. Aitken, C. Ledig, L. Theis, J. Caballero, Z. Wang, and W. Shi, “Checkerboard
artifact free sub-pixel convolution: A note on sub-pixel convolution, resize
convolution and convolution resize,” arXiv preprint arXiv:1707.02937, 2017. 81,
83, 84



BIBLIOGRAPHY 215

[424] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International conference on
machine learning. PMLR, 2015, pp. 448–456. 81

[425] Y. Wu and K. He, “Group normalization,” in Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 3–19. 81

[426] K. He, R. Girshick, and P. Dollár, “Rethinking imagenet pre-training,” in Proceed-
ings of the IEEE international conference on computer vision, 2019, pp. 4918–4927.
81

[427] Z. Yang, P. Wang, W. Xu, L. Zhao, and R. Nevatia, “Unsupervised learning
of geometry from videos with edge-aware depth-normal consistency,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018. 82,
112

[428] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard arti-
facts. Distill (2016),” 2016. 83, 84, 165

[429] H. Hu, Z. Zhang, Z. Xie, and S. Lin, “Local relation networks for image recogni-
tion,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 3464–3473. 96, 173

[430] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and J. Shlens,
“Stand-alone self-attention in vision models,” in Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
(NeurIPS) 2019, 2019, pp. 68–80. 96, 97, 172, 173

[431] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Proceedings of NIPS, Dec. 2017,
pp. 5998–6008. 97, 172, 173

[432] J. M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox, and J. Civera,
“CAM-Convs: camera-aware multi-scale convolutions for single-view depth,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019, pp. 11 826–11 835. 101, 103

[433] J. P. Barreto, “Unifying image plane liftings for central catadioptric and dioptric
cameras,” in Imaging Beyond the Pinhole Camera. Springer, 2006, pp. 21–38. 102,
173

[434] R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank, A. Sergeev, and J. Yosinski,
“An Intriguing Failing of Convolutional Neural Networks and the Coordconv
solution,” in Proceedings of NIPS, Montréal, QC, Canada, Dec. 2018, pp. 9605–
9616. 103

[435] H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and J. Kautz, “Pixel-
adaptive convolutional neural networks,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11 166–11 175.
103

[436] M. Klodt and A. Vedaldi, “Supervising the new with the old: learning SFM
from SFM,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 698–713. 110, 153



216 BIBLIOGRAPHY

[437] Z. Yang, P. Wang, Y. Wang, W. Xu, and R. Nevatia, “Lego: Learning edge with
geometry all at once by watching videos,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 225–234. 112

[438] G. Wang, H. Wang, Y. Liu, and W. Chen, “Unsupervised learning of monocular
depth and ego-motion using multiple masks,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 4724–4730. 112

[439] Q. Sun, Y. Tang, and C. Zhao, “Cycle-SfM: Joint self-supervised learning of
depth and camera motion from monocular image sequences,” Chaos: An Inter-
disciplinary Journal of Nonlinear Science, vol. 29, no. 12, p. 123102, 2019. 112

[440] S. Li, F. Xue, X. Wang, Z. Yan, and H. Zha, “Sequential adversarial learning
for self-supervised deep visual odometry,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 2851–2860. 112

[441] Y. Almalioglu, M. R. U. Saputra, P. P. de Gusmao, A. Markham, and N. Trigoni,
“GANVO: Unsupervised deep monocular visual odometry and depth estima-
tion with generative adversarial networks,” in 2019 International conference on
robotics and automation (ICRA). IEEE, 2019, pp. 5474–5480. 112

[442] J.-W. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid, “Un-
supervised scale-consistent depth and ego-motion learning from monocular
video,” in Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems (NeurIPS) 2019, 2019, pp. 35–45.
112

[443] S. Pillai, R. Ambruş, and A. Gaidon, “Superdepth: Self-supervised, super-
resolved monocular depth estimation,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 9250–9256. 112

[444] V. Patil, W. Van Gansbeke, D. Dai, and L. Van Gool, “Don’t forget the past: Re-
current depth estimation from monocular video,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 6813–6820, 2020. 112, 180

[445] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and I. Reid, “Unsuper-
vised learning of monocular depth estimation and visual odometry with deep
feature reconstruction,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 340–349. 123

[446] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object
detection,” in Proceedings. international conference on image processing, vol. 1, 2002,
pp. I–i. 125

[447] W. Dong, P. Roy, C. Peng, and V. Isler, “Ellipse r-cnn: Learning to infer elliptical
object from clustering and occlusion,” IEEE Transactions on Image Processing,
vol. 30, pp. 2193–2206, 2021. 126

[448] C. Brauer-Burchardt and K. Voss, “A new algorithm to correct fish-eye-and
strong wide-angle-lens-distortion from single images,” in Proceedings 2001
International Conference on Image Processing (Cat. No. 01CH37205), vol. 1. IEEE,
2001, pp. 225–228. 126

[449] C. Hughes, R. McFeely, P. Denny, M. Glavin, and E. Jones, “Equidistant fish-eye
perspective with application in distortion centre estimation,” Image and Vision
Computing, vol. 28, pp. 538–551, 2010. 126, 127



BIBLIOGRAPHY 217

[450] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A flexible technique for accu-
rate omnidirectional camera calibration and structure from motion,” in Fourth
IEEE International Conference on Computer Vision Systems (ICVS’06). IEEE, 2006,
pp. 45–45. 127

[451] E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and P. Luo, “Po-
larmask: Single shot instance segmentation with polar representation,” in
Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 12 193–12 202. 128

[452] P. Hurtik, V. Molek, J. Hula, M. Vajgl, P. Vlasanek, and T. Nejezchleba, “Poly-
YOLO: higher speed, more precise detection and instance segmentation for
YOLOv3,” arXiv preprint arXiv:2005.13243, 2020. 128, 129, 131

[453] C.-H. Teh and R. T. Chin, “On the detection of dominant points on digital
curves,” IEEE Transactions on pattern analysis and machine intelligence, vol. 11,
no. 8, pp. 859–872, 1989. 129

[454] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature,” Cartographica:
the international journal for geographic information and geovisualization, vol. 10,
no. 2, pp. 112–122, 1973. 129

[455] P. Maddu, W. Doherty, G. Sistu, I. Leang, M. Uricar, S. Chennupati, H. Rashed,
J. Horgan, C. Hughes, and S. Yogamani, “FisheyeMultiNet: Real-time Multi-
task Learning Architecture for Surround-view Automated Parking System,” in
Irish Machine Vision and Image Processing Conference, 2019. 139

[456] M. Berman, A. R. Triki, and M. B. Blaschko, “The lovász-softmax loss: A
tractable surrogate for the optimization of the intersection-over-union measure
in neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 4413–4421. 142, 143

[457] A. Saxena, S. H. Chung, and A. Y. Ng, “3-d depth reconstruction from a single
still image,” International journal of computer vision, vol. 76, no. 1, pp. 53–69, 2008.
166

[458] I. C. McManus, J. Buckman, and E. Woolley, “Is light in pictures presumed to
come from the left side?” Perception, vol. 33, no. 12, pp. 1421–1436, 2004. 166

[459] “Ames Room Photograph,” May 2021. [Online]. Available: https://
en.wikipedia.org/wiki/File:Ames%5Froom%5Fforced%5Fperspective.jpg 166

[460] “Dakar 2019 Photograph,” May 2021. [Online]. Avail-
able: https://www.straitstimes.com/multimedia/photos/leaving-his-rival-
bikers-in-the-dust 166

[461] D. M. Eagleman, “Visual illusions and neurobiology,” Nature Reviews Neuro-
science, vol. 2, no. 12, pp. 920–926, 2001. 167

[462] “SFM Self Supervised Depth Estimation: Breaking Down The Ideas,” Apr. 2021.
[Online]. Available: https://towardsdatascience.com/self-supervised-depth-
estimation-breaking-down-the-ideas-f212e4f05ffa 169, 170, 172

[463] X. Weng and K. Kitani, “Monocular 3d object detection with pseudo-lidar point
cloud,” in Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). IEEE, 2019, pp. 857–866. 170, 171

https://en.wikipedia.org/wiki/File:Ames%5Froom%5Fforced%5Fperspective.jpg
https://en.wikipedia.org/wiki/File:Ames%5Froom%5Fforced%5Fperspective.jpg
https://www.straitstimes.com/multimedia/photos/leaving-his-rival-bikers-in-the-dust
https://www.straitstimes.com/multimedia/photos/leaving-his-rival-bikers-in-the-dust
https://towardsdatascience.com/self-supervised-depth-estimation-breaking-down-the-ideas-f212e4f05ffa
https://towardsdatascience.com/self-supervised-depth-estimation-breaking-down-the-ideas-f212e4f05ffa


218 BIBLIOGRAPHY

[464] T. Brox and J. Malik, “Large displacement optical flow: descriptor matching
in variational motion estimation,” IEEE transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 33, no. 3, pp. 500–513, 2010. 172

[465] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural computation, vol. 1, no. 4, pp. 541–551, 1989. 173

[466] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7794–7803. 173

[467] “YOLOv3: Real-Time Object Detection Algorithm (What’s New?),” May 2021.
[Online]. Available: https://viso.ai/deep-learning/yolov3-overview/ 174

[468] Y. S. Abu-Mostafa, “Learning from hints in neural networks,” Journal of com-
plexity, vol. 6, no. 2, pp. 192–198, 1990. 175

[469] S. Liu, Y. Liang, and A. Gitter, “Loss-balanced task weighting to reduce negative
transfer in multi-task learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 9977–9978. 175, 176

[470] S. Wu, H. R. Zhang, and C. Ré, “Understanding and improving information
transfer in multi-task learning,” in 8th International Conference on Learning Repre-
sentations, ICLR. OpenReview.net, 2020. 176, 177

[471] K. Karsch, C. Liu, and S. B. Kang, “Depth transfer: Depth extraction from
video using non-parametric sampling,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 11, pp. 2144–2158, 2014. 180

[472] Z. Li, X. Liu, F. X. Creighton, R. H. Taylor, and M. Unberath, “Revisiting Stereo
Depth Estimation From a Sequence-to-Sequence Perspective with Transform-
ers,” arXiv preprint arXiv:2011.02910, 2020. 180

[473] J. Hu, Y. Zhang, and T. Okatani, “Visualization of convolutional neural net-
works for monocular depth estimation,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019, pp. 3869–3878. 180

[474] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, “On the uncertainty of self-
supervised monocular depth estimation,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 3227–3237.
180

[475] S. Lee, S. Im, S. Lin, and I. S. Kweon, “Learning Monocular Depth in
Dynamic Scenes via Instance-Aware Projection Consistency,” arXiv preprint
arXiv:2102.02629, 2021. 180

[476] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei, “What’s the point:
Semantic segmentation with point supervision,” in Proceedings of the European
Conference on Computer Vision (ECCV). Springer, 2016, pp. 549–565. 181

[477] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, and L. Van Gool, “Unsuper-
vised Semantic Segmentation by Contrasting Object Mask Proposals,” arXiv
preprint arXiv:2102.06191, 2021. 181

[478] “Driving Computer Vision with Deep Learning,” Feb. 2021. [Online]. Available:
https://wayve.ai/blog/driving-computer-vision-with-deep-learning/ 181

https://viso.ai/deep-learning/yolov3-overview/
https://wayve.ai/blog/driving-computer-vision-with-deep-learning/


BIBLIOGRAPHY 219

[479] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in 6th International Conference
on Learning Representations, ICLR 2018. OpenReview.net, 2018. 181


