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Chapter 1 Introduction

Biophotonics is an interdisciplinary field that aims to grasp and investigate the
characteristics of biological samples based on their interaction with incident light (1,2). The
light-matter interaction within biological samples is usually measured using optical tools, and
the corresponding scientific field is termed biophotonics. Over the past few decades, numerous
biophotonic technologies have been designed and innovated to extract various sorts of
biological and chemical information from the studied samples. Such biological and chemical
information is not directly acquired since all biophotonic techniques produce complex data in
which the information is contained (3.,4). Consequently, it is desirable to translate biophotonic-
associated data to high-level information like disease biomarkers or sample characteristics. In
this context, computer and data science advances using data learning approaches have inspired
researchers to automatically analyze the acquired biophotonic data. In this chapter, an overview
of biophotonic technologies in addition to their applications is introduced. Then, a brief outline

of data science for biophotonic-associated data is presented.

1.1 Overview of Biophotonic Technologies

Biophotonics has been implemented in medicine and life science to understand and probe
various characteristics of different biological systems (1,2). Since the last century, a broad
spectrum of biophotonic technologies has been developed, allowing investigations of
biological systems on several levels and using different properties (1,2,5). The first established
biophotonic technology is the (bright-field) light microscopy. This microscopic technique
exploits the light absorption in biological samples to characterize the contained structures (6,7).

Later, light microscopy has been further developed into different techniques such as phase-
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contrast microscopy and differential interference contract microscopy (8,9). These developed
microscopic techniques have been widely utilized for biological and medical investigations,
although the obtained information is limited to the morphological features of the studied
samples. Such morphological features usually describe only a single aspect in biological
investigations, while these features are barely detected due to the low contrast of light
absorption in most biological samples. To enhance this contrast, sample staining has been
introduced, and it became the gold standard procedure in histopathological investigations and
biological imaging. Despite the wide applications of sample staining in biomedicine, staining
procedures are time consuming and cause sample perturbation resulting in application
restrictions regarding living systems. Moreover, several diseases affect the biomedical
composition of the biological systems, and therefore it was desired to utilize not only the

morphology but also the chemical contrast of biological samples.

Another improvement of light microscopy is fluorescence microscopy. This enhanced
microscopic technique can detect the chemical contrast of biomolecules based on the native
weak single-photon excited auto-fluorescence of these molecules (10). The sensitivity of that
molecular auto-fluorescence can be further improved if a fluorescence label is used (11,12).
Nevertheless, staining process causes changes of the sample, while data acquisition is affected
by fluorophore photobleaching. To overcome the previous constraints, other imaging
technologies were developed (1,13). Prominent examples of such imaging systems include
optical coherent tomography (OCT) (14), endoscopic methods and endomicroscopic
techniques (15,16). These imaging technologies aim to improve the visualization of biological
systems, and subsequently, improve the understanding of those systems. However, the
aforementioned imaging technologies provide different sorts of information. For example,
OCT utilizes low coherence light to capture two- to three-dimensional morphological images
of tissues or body organs. This imaging technology offers label-free visualization of biological
systems allowing for broad implementations in clinics. However, OCT doesn’t feature cellular
resolution. In contrast to OCT, endoscopic and endomicroscopic techniques enable an
meeasurment of organs within the body based on transmitting images and videos that can depict

molecular or metabolic functions of the measured tissues in th organs. These techniques feature
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Introduction

the drawback that the measurement is uncomfortable for patients and can cause complications

in the measured organs.

The current developments of spectroscopic techniques have introduced non-invasive and
label-free tools to biomedicine and biology, which can extract spatial and spectral information
of biological samples (15-19). Prominent examples of spectroscopic techniques are infrared
(IR) spectroscopy and Raman spectroscopy. These spectroscopies are able to capture a myriad
of molcular information presented in the biological samples as unique spectral profiles of all
biomolecules (18-22). IR spectroscopy can extract structural and chemical information based
on light absorption within the infrared range of the electromagnetic spectrum. However, the
molecular information and the spectral resolution provided by IR spectroscopy are constrained
in aqueous environments due to the large background noise from water (21). Beside IR
spectroscopy, Raman spectroscopy is a label-free and non-invasive biophotonic tool that has
been widely applied to probe the molecular structures and composition of biological samples
(17,23). This spectroscopic technology relies on the inelastic scattering of light measured in
the studied samples serving a chemical fingerprint of biomolecules. The resulting Raman data
can be utilized as a diagnostic marker, for instance, as a marker for abnormalities (17,22). In
addition to the previous spectroscopic techniques, hyperspectral imaging systems that combine
imaging and spectroscopic techniques also provide a non-invasive visualization of the spatial
and spectral information in biological samples (24,25). Besides hyperspectral imaging systems,
nonlinear multimodal imaging, combining coherent anti-Stokes Raman scattering (CARS),
two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG), was newly
introduced as a fast-imaging technique that can detect the molecular contrast in the biological
samples (26-30). This nonlinear multimodal imaging is usually characterized as a label-free
and non-invasive imaging technique allowing non-destructive investigations of cells and
tissues. Consequently, it might be an appropriate tool for in-vivo investigations as an optical

biopsy when engaged in fiber-based measurements.



Each of the above-mentioned technologies has its advantages and limitations with respect
to the level of sample alterations and the type of extracted sample information, although several

technologies have already found their way to application fields, as shown in the next section.

1.2 Biophotonic Technology-Based Applications

The capability of biophotonic technologies to capture several biological and chemical
information in biological systems enables multiple applications in biology and medicine
(1,2,13). For instance, biophotonic technologies have shown a great potential to analyze the
basic functionalities of biological systems in fundamental biomedical research (17,31,32).
Such analysis is essential in monitoring the health condition and intends to understand disease
genesis for early detection or even prevention of various diseases (1,2). Beside the
implementation of biophotonics technologies in fundamental biomedical research, different
tools were integrated into clinical procedures for early cancer identification and treatment,
dentistry, cardiology, disease diagnosis, ophthalmology, and vascular medicine (31,33-37). In
addition to the technology utilized in medical and biological investigations, biophotonics
technologies have also been established well in the pharmaceutical industry and drug
development (5,38—41). Common examples in this case cover flow-cytometry and fluorescence
detection-based techniques. The aim here is to perform rapid investigations and assessments of
biological matter reactions toward drugs (42—45). Nevertheless, several possible application
fields of biophotonic tools were also demonstrated, including environmental monitoring,
process control, food safety, and the point of care tests (1,5,13,17). The last application refers
to evaluation procedures of healthcare, product, and clinician services provided for patients at

the care time in clinics.

For any of the aforementioned disciplines, the utilized biophotonic technologies allow
measuring different sorts of morphological and chemical information. This information is
commonly contained in high-dimensional data like images or spectra. Furthermore, many of

the biophotonic technologies are label-free, and subsequently the obtained data is untargeted
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making the interpretation of such data difficult (46). Therefore, data science is needed to use

biophotonic data to the full extent.

1.3 Data Science for Biophotonics

Biophotonic technologies need to be coupled to data science methods to translate the
biophotonic-associated data to information and knowledge, e.g., disease biomarkers. This
translation of biophotonic-associated data into interpretable information in the application
context is challenging since biophotonic data show different levels of complexity (3,4,46). For
instance, several biophotonic tools produce untargeted and high dimensional datasets that are
difficult to be manually handled and subsequently difficult to extract any informative features

from these datasets.

Recently, the revolution in data science has inspired advanced implementations of data
learning approaches to analyze biophotonic-associated data. These approaches combine
statistical learning techniques and machine learning algorithms in the so-called data lifecycle.
Figure 1 depicts a systematic diagram of the data lifecycle when considering biophotonic-
associated data. This lifecycle comprises experimental design, data acquisition, data cleaning
and data preprocessing, data-driven modeling, and finally, model evaluation and deployment.
In experimental design step, the aim of performing a certain study needs to be precisely
determined. Therein, the experiment hypotheses and the required number of samples to test
those formulated hypotheses are identified. Once an experiment is designed, data can be
acquired from the planned sources according to the field of study, i.e., survey-based data or
experiment-based data. After data acquisition, the data preprocessing step is usually performed.
This step revolves around techniques of data noise elimination, handling of missing data and
data normalization. The obtained preprocessed data is utilized thereafter for data modeling and
validation. While techniques for data-driven modeling combine statistical learning and
mathematical algorithms to investigate data insights and then explore any potential pattern

within the considered data, the goal of data validation is to evaluate the capability of a



constructed model in predicting new datasets. In the last step of the data lifecycle, the evaluated

models and the utilized data are stored to be deployed in future analyses.
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Figure 1. A schematic diagram of data lifecycle in biophotonics. This cycle describes a
workflow that can be utilized to accomplish data-driven research. It starts by planning the study
and deciding the number of samples needed to be collected. Thereafter, the acquired data are
preprocessed and prepared to be used for constructing data models. These models can be
validated and evaluated using several validation strategies in order to be utilized for further

studies or applications.

The data lifecycle for biophotonic technologies, including statistical techniques and data
learning approaches, is not fully researched and needs further developments. Chapter 2

introduces a systematic review of statistical techniques and data learning approaches for the
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analysis of biophotonics-associated data. The applications of many established statistical and
machine learning techniques are still limited in biophotonics. Consequently, selected own
scientific contributions to biophotonic data science are briefly discussed in Chapter 3. These
contributions aimed to improve the planning and the design of biophotonic experiments then

verify machine learning pipelines on several biophotonic imaging modalities.






Chapter 2  State-Of-The-Art

This chapter provides an overview of the statistical tools and machine learning (ML)
techniques implemented in biophotonic data science. The presented approaches aim to improve
the design of the experiments, suppress disturbing distortions of biophotonic data, and assess

and validate ML techniques.

2.1 Experimental Design

The term “experimental design” refers to the protocols that formulate the statistical
hypotheses needed to investigate the effect of specific treatments (variables) on a selected
dataset (47,48). Three primary types of experimental design can be utilized for experimental
research: pre-experimental design, true-experimental design, and quasi-experimental design
(49-51). In pre-experimental design, the behavior of either one or multiple groups is observed
to identify a potential effect of a studied treatment, which is characterized by “experimental
factors”. This exploratory, experimental approach aims to understand if a further investigation
of the studied groups and treatments is required or not. Besides pre-experimental design, true-
experimental design is often performed to checks how significant the experimental factors
affect the considered dataset. Thereby, the response of samples selected from that dataset
exposed to specific treatments is observed, and then this response is compared to other selected
control samples, i.e., the samples without any treatment. Regardless of the random sample
assignment required in true-experimental designs, quasi-experimental designs can be
performed similarly to true-experimental design (50). This quasi-experimental design is
beneficial when the random assignment of control and treated groups is either irrelevant or not

required.



To analyze any of the previous designs, the experimental factors in addition to the number
of samples required to conduct such experimental studies need to be precisely defined. In the
following, an overview of statistical techniques developed for the analysis of multifactorial
experimental designs is presented. Thereafter, the established algorithms for determining the

sample size required to achieve significant statistical results are briefly reviewed.
2.1.1 The Analysis of Multifactorial Experimental Designs

In order to investigate the effect of one factor or a number of factors on a conducted
experiment, the analysis of factorial design can be utilized (52). This group of statistical
techniques has been implemented in biomedical and biological research to explore
hypothesized effects in a particular design. Herein, an experiment can be conducted using a
specific dataset of different samples, then the effect of each experimental factor can be
investigated according to its influence on the sampled data (53). The previous group of analyses
has been established well when using one response variable to describe the selected samples,
i.e., univariate datasets, and it is known as analysis of variance (ANOVA) tests (54-56). In a
classical ANOVA test, termed as a one-way ANOVA test, the influence of one factor on
selected samples is evaluated based on studying the mean differences between factor levels.
These factor levels usually indicate the possible values of the studied factor, e.g., drug
concentration. Besides the one-way ANOVA test, multi-way ANOVA tests search in a

multifactorial design for any significant effect of the experimental factors and their interactions.

The above-mentioned tests were established for univariate data; however, only a few
techniques for multifactorial designs were developed when multiple variables for the response
data, ie., multivariate data, are utilized. Moreover, these analyses suffer from several
limitations, which restrict their applications. For example, multivariate-ANOVA (MANOVA)
tests analyze multivariate data in multifactorial experimental designs by performing an
ANOVA test for each response variable (57,58). Although MANOVA tests allow determining
the effect of one or more than one factor on these response variables, they are constrained to
response datasets containing a much larger number of samples than the number of variables.

Such datasets are rarely available for modern technologies which produce high dimensional
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measurements, like spectra or images. Therefore, combining principal component analysis
(PCA) models with ANOVA tests offered an alternative to MANOVA tests for high
dimensional multifactorial designs (59). In the PC-ANOVA test, the response matrix is fitted
with a PCA model, and then the obtained principal components (PCs) are analyzed using
ANOVA tests. Despite the wide applications of PC-ANOVA tests in small-sized datasets,
several aspects related to factor contributions may be lost during the PCA projection. To
overcome this drawback, ANOV A-simultaneous component analysis (ASCA) was introduced
as a powerful tool to deal with multivariate data in multifactorial designs (60—62). Thereby, the
response matrix can be decomposed into different effect matrices characterizing the
contribution of each factor and each factor interaction in the designed model. These
contributions are then measured based on the amount of variance explained by each possible
effect, i.e., each factor and each interaction. Finally, the ASCA test searches for significant
effects in the designed model, and the dimensions of each effect matrix are reduced using a

PCA model for better interpretation of the effect contributions (63).

The application of almost all previously described tests for multivariate data is constrained
to balanced designs in which equal numbers of samples are needed for each factor level. As a
result, the applications of these tests are limited. Alternatively, the ASCA+, an extension of
ASCA, was introduced to analyze multivariate data in unbalanced designs (64). It utilizes a
specific version of general linear models (GLMs) to decompose the response matrix into two
main terms: The estimated response matrix and the estimation error (56,64). Even though the
proposed ASCA+ provides a unique solution to estimate the contributions of experimental
factors, it seems that this analysis underestimates these contributions in unbalanced designs
(65). Therefore, an own scientific study was performed in [PII] as a new adjustment of the

ASCA algorithm for unbalanced multifactorial designs.
2.1.2 Sample Size Planning

Sample size planning (SSP) represents strategies intended to determine a sufficient number
of samples needed to perform robust and accurate statistical analysis (66,67). This SSP

determination becomes more important in biomedical experiments due to the high costs and
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the ethical restrictions that may inhibit recruiting samples from patients and animals.
Consequently, the aim of SSP in such experiments is to determine the minimal number of
samples required to prove that group differences are significant. Initially, SSP techniques were
established based on hypothesis testing (68). Thereby, the required sample size is estimated
using a priori knowledge of the statistical distributions of these groups (69,70). However, these
group distributions are mostly unavailable in the case of data acquired by modern biophotonic

tools, and thus, modified SSP algorithms are needed.

So far, a few SSP algorithms for multivariate data were developed, while most of them
were designed for classification tasks (71-73). In most of these algorithms, the learning curves
were prominently implemented as an exploratory tool to describe the classification
performance when increasing the training set sizes of that classification model. Thereafter, the
sample size required to train this classifier can be predicted based on the inverse power law
models (74). Nevertheless, the previously described learning curve-based SSP was established
and checked for specific datasets like microarray datasets or resampling datasets. Moreover,
the implementation of such algorithms was not clear for diagnostics tasks, e.g., the estimate of
the required number of patients. Therefore, a general SSP algorithm was presented in the
scientific contribution [PI] to cover the mentioned challenges. Thereby, the sample sizes for a
successful group differentiation can be determined for different levels within the data

hierarchy, i.e., spectra, biological replicates, patients, etc.

2.2 Data Preprocessing

Biophotonic tools usually deliver high-dimensional datasets containing various sorts of
data variations. These variations are mainly categorized into informative variations and
disturbing variations. While informative variations represent the differences between different
states such as sample properties or disease states, disturbing variations may be assigned to
systematic perturbations within experiments, i.e., conducting an experiment using many
devices or by several individuals (75,76). The later variation is very complicated and difficult

to be controlled; hence, it might negatively influence the results of further statistical analyses.
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Data preprocessing have shown a profound effect on reducing, or even eliminating, such

disturbing variations. For biophotonic data, several preprocessing techniques have been

established to eliminate these data variations according to the delivered data, e.g., spectra or

images. For instance, spectra collected from Raman spectroscopy are usually contaminated by

cosmic spikes and fluorescence baseline in addition to several types of noise (see Figure 2-A).

To deal with these corrupting effects in raw Raman spectra, a proper preprocessing pipeline

was presented in (3,77-82). It starts by eliminating cosmic spikes within the acquired spectra

and then calibrating the utilized spectrometer. Thereafter, the background effect is excluded
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Figure 2. Examples of biophotonic data before and after data preprocessing. Most

disturbing variations have been removed when proper preprocessing techniques are applied.
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from the aligned spectra. Lastly, the corrected spectra are smoothed and normalized. This
preprocessing workflow was successfully implemented in the own scientific contributions [PI]
and [III] when considering Raman spectral datasets. Nevertheless, other preprocessing
techniques have been developed to remove the corrupting effects produced when using
biophotonic imaging tools. According to the acquired raw data, the image preprocessing
techniques aim to improve the quality of the obtained image data. These preprocessing
techniques include different algorithms for image background removal, image smoothing,

image stitching, contrast adjustment, image registration, etc. (83—88).

In this thesis, an individual image processing pipeline was presented for each scientific
contribution dealing with imaging data. Figure 2 presents three examples of spectral and
imaging data before and after applying preprocessing techniques. It is obvious in this figure
that the preprocessed data disposed of their disturbing variations if they are compared to the
raw image and spectra. Consequently, the obtained preprocessed image and spectra seem to be

more informative for further investigations.

2.3 Machine Learning-Based Data Modeling

Data-driven modeling has been commonly implemented to extract high-level information
and informative features from the preprocessed data. Techniques for data-driven modeling
combine statistical learning and mathematical algorithms to infer data insights and then explore
any potential pattern presented within the collected datasets (89,90). Recently, ML algorithms
have gained growing attention for data-driven modeling due to their remarkable capability in
automating and assessing most phases of data-based learning (4,91). Concerning the goal of
data-based learning, the utilized ML algorithms can be roughly categorized into unsupervised
ML and supervised ML techniques (4,90,91). The later ML techniques are quite crucial, and
they aim to map the acquired data via a predefined mathematical algorithm to predictor
variables, which represent, for example, image labels or drug concentrations. Based on the
supervised ML techniques, it is possible to build self-supervised models and systems that can

automatically learn data patterns and retain the learned knowledge into model structures
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(92,93). Moreover, several novel ML models have currently exposed a further capability to
improve their prediction performance over time with minimal human intervention and without

being explicitly designed for such tasks.

Until a few years ago, ML-based data modeling relied only on a manual feature design and
extraction for exploring data patterns (94,95). This type of data modeling is known as classical
ML algorithms. In Figure 3-A, a common pipeline of data-driven modeling based on classical
ML algorithms is presented. It starts with manually designing and extracting data features that
well represent the data (91,96). This new data representation is often described using too many
features; hence, a feature extraction step is followed by a dimension reduction step. Therein, a
small subset of uncorrelated features can be extracted, resulting in an adequate new
representation of the original dataset (96-98). The subsequent features are finally mapped to
the data predictors using a specific ML model regarding the task of interest, e.g., regression or
classification. The aforementioned group of ML techniques was successfully applied to
evaluate several tasks in biophotonics. Prominent examples in this field include disease

investigation, cancer detection, and bacteria identification (99-104).

(A) Data driven-modeling using classical machine learning

Dimension Classical

reduction ML model

(B) Data driven-modeling using deep learning

Deep learning model

(extract features + reduce dimensions + construct model)

Figure 3. Data-driven pipeline for classical ML and DL. While data-driven modeling based
on classical ML models comprises feature extraction and dimension reduction in order to
construct ML models, data-driven modeling based on DL models combine features extraction

and model construction in one model.
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In recent years, deep learning (DL), a subset of ML, has revolutionized the future of ML
applications. With these DL techniques, it is possible to build ML models that can
automatically learn data patterns using minimal human involvement (105,106). As depicted in
Figure 3-B, data-driven modeling based on DL internally compresses all modeling stages of
classical ML, starting from feature extraction and reaching decision-making. Nonetheless, one
of the essential architectures of DL models was inspired by human brains, namely deep
convolutional neural networks (CNNs) (106). These networks can be trained by passing a
dataset of labeled images (or one-dimensional data) through multiple convolutional layers
consisting of simple units called filters. These convolutional layers can detect a local
combination of the data features from the previous layer, then they pass the resulted feature
map into the next layer through a static nonlinearity, e.g., replacing negative values with zeros.
This layer is usually named the activation layer, and it is followed by some pooling layers that
intend to reduce the number of image features. Later, CNNs process the input data as a
sequence of visual representations in which each filter in a certain convolutional layer identifies
a specific local region of the feature map obtained by the previous layer, while similar feature
detectors exist across the locations in the feature map (106,107). The described training
procedure of CNNs is commonly known as end-to-end CNN training (108). Based on this
training procedure, the potential of DL models has been checked for several applications,
including speech recognition, natural language processing, and healthcare. For the last
application, DL models exhibited impressive performance, particularly in cell detection and
cell counting (109-111), image segmentation (110,112-114), and tissue classification (115—
118).

Unfortunately, the above-mentioned training procedure for DL models exhibits specific
limitations in biophotonic-associated data due to the large sample size required to learn and
optimize such models. Consequently, transfer learning of DL models was introduced as an
alternative learning strategy to overcome the limitations of end-to-end CNN training. Thereby,
the knowledge gained via training CNNs on a large-annotated dataset can be transferred to
solve another task within a new small-sized dataset (46,119). In this context, DL-based transfer

learning has shown a great performance in the diagnostic classifications of biomedical images
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using relatively small sample sizes (120,121). Therefore, transfer learning of several publicly
available pre-trained CNNs was evaluated within three scientific contributions presented in
Chapter 3, i.e., [PIII], [PIV] and [PV]. The goal of two implementations was to automatically
detect bladder and breast cancer using biophotonic imaging tools, namely: blue light

cystoscopy and nonlinear multimodal imaging, respectively.

Apart from the training procedures of ML models, over-fitting has been addressed as
another challenge in data-driven modeling. The term “Model over-fitting” describes ML
models that are trained perfectly on specific training datasets, but they lack the prediction
performance on new similar datasets. To avoid such over-fitting, the model performance needs
to be evaluated on a new independent dataset named validation data. Thereafter, the optimized
model is again checked on another dataset described as a test dataset. In the following section,
common validation strategies that can be utilized to verify the performance of ML models are

presented.

2.4 Model Validation

One of the main goals of data-driven modeling is to exploit the previously trained models
in predicting new datasets. These models need to be carefully optimized and validated to rely
on the new predictions of a trained model (122). In this context, the term “model validation”
depicts data splitting strategies used to validate the performance of a model trained on a specific
dataset for predicting new datasets. Model validation is usually based on two datasets: a dataset
used for the model construction, i.e., the training set, and a dataset not being used for the model
construction, i.e., the validation set. While the validation on the training set usually revolves
around parameter optimization and tuning, model validation using the validation set checks the
prediction performance of the trained model. Therefore, both training and validation datasets

contribute significantly to test the quality and reproducibility of ML models (123,124).

Two classical validation strategies can be implemented to split data into training and

validation sets: training-test validation and cross-validation (CV). In the training-test
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validation, the acquired labeled data is portioned randomly into two subsets: the training set
and the test set. Subsequently, an ML model is trained on the first subset and checked on the
later subset. In contrast to the training-test validation, the dataset is randomly split into k subsets
when using CV. Subsequently, the considered ML model is trained on all data subsets except
one subset, while the set-aside subset is utilized to test the prediction performance of the trained
model. The previous procedure is iterated until all samples within all subsets are tested and

predicted once.

In both validation strategies, the division of the considered dataset should not only be
performed randomly but it is preferred to be also performed on the highest level of the data
hierarchy, i.e., patient level or replicate level (124). When using biophotonic tools, the later
constrain becomes quite crucial for data modeling and validation. Thereby, multiple
measurements can be acquired from the same patient (biological replicate), manifesting high
internal correlation. Nevertheless, to avoid the previous correlation effect, the considered
validation strategies for all ML models in all their own contributions were performed on the
highest level of the data hierarchy, i.e., patient level or replicate level. Therein, the model
performance was evaluated using one of the following validation versions: training-test data
validation on the patient level, leave-one-replicate-out CV, and leave-k-individuals-out CV;

where ke {1, 10}.

As a summary, this chapter presented an overview of several data science techniques in
biophotonics to improve the experimental design and then automatically translate
biophotonics-associated data to beneficial markers. These markers can be utilized to
understand and investigate further many biological systems. In the next chapter, scientific
studies of own research are presented to verify and adjust several statistical and ML algorithms

on biophotonics-associated data.
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Chapter 3  Scientific Contribution

As previously described, the implementation of statistical approaches combined with ML
techniques can improve data investigations and help reducing human intervention. In the case
of data produced using biophotonics technologies, such implementations require further study
and adjustments. Therefore, the goal of the scientific contributions included in this chapter is
to fill specific gaps related to the design and the evaluation of the biomedical experiments that

use biophotonic technologies.

In Figure 4, the selected studies are allocated according to their contribution to the data
lifecycle. On the side of experimental design, a general algorithm for estimating the required
training set size for classification models was developed. Subsequently, the statistical analysis
of experimental designs was improved for unbalanced multifactorial designs. Moving to data-
driven modeling and validation, the performance of several ML techniques and validation
strategies was evaluated for the automatic identification of three medical diagnostic studies.
The scientific publications based on the above-mentioned studies are listed in the following

with respect to their order in this chapter:

[P1] N. Ali, S. Girnus, P. Résch, J. Popp, and T. Bocklitz
Sample-Size Planning for Multivariate Data: A Raman-Spectroscopy-Based
Example

Analytical Chemistry, 2018, 90 (21), 12485-12492.

[PII]  N. Ali, J. Jansen, A. Doel, G. H. Tinnevelt, and T. Bocklitz
WE-ASCA: The Weighted-Effect ASCA for Analyzing 3 Unbalanced
Multifactorial Designs — A Raman Spectra Based-Example
Molecules, 2020, 26 (1), 66
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N. Alj, J. Kirchhoff, P. I. Onoja, A. Tannert, U. Neugebauer, J. Popp, T. Bocklitz
Predictive modeling of antibiotic susceptibility in E. coli strains based on the U-
Net network and one-class classification

IEEE Access, 2020, 8, 167711-167720

N. Ali, C. Bolenz, T. Todenhofer, A. Stenzel, P Deetmar, M. Kriegmair, T. Knoll, S.
Porubsky, A. Hartmann, J. Popp, M. C. Kriegmair, and T. Bocklitz

Deep learning-based classification of blue light cystoscopy imaging during
transurethral resection of bladder tumors

Scientific reports, 2021, 11, 1169

N. Ali, E. Quansah, K. K&hler, T. Meyer, M. Schmitt, J. Popp, A. Niendorf, and T.
Bocklitz
Automatic label-free detection of breast cancer using nonlinear multimodal

imaging and the convolutional neural network ResNet50.

Translational Biophotonics, 2019, 1, €201900003
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Figure 4. Overview of studies contributed to data lifecycle in biophotonics. The SSP
and the WE-ASCA studies were performed to improve the experimental planning and the
analysis of experimental designs, respectively. In contrast, the automated identification of
antibiotic susceptibility in bacteria and the automatic classification of bladder cancer were
demonstrated based on image-driven modeling. Finally, the performance of the presented

validation strategies was evaluated for the automatic detection of breast cancer.
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3.1 Experimental Design

The scientific contributions in this section were established to deal with specific issues
related to the experimental design presented in section 2.1. These contributions focus on
estimating the sample size required for group differentiation and on evaluating the influence of
experimental factors on unbalanced multifactorial designs. Both methods were designed for

multivariate data and were checked on biomedical Raman spectral datasets.
3.1.1 Sample Size Planning for Multivariate Data

The SSP aims to estimate the minimal number of measurements needed to achieve robust
and significant statistical results. SSP has become more important for biophotonics-associated
data because the generation of such data is time-consuming and features several limitations
regarding the high costs and the ethical restrictions. Furthermore, the methods proposed for
multivariate data-based SSP are still limited to specific applications (72,73,125). Therefore, the
scientific contribution published in [PI] presented a developed SPP algorithm to estimate the
training set size required for constructing a specific classification model in the case of

multivariate data.

The suggested SSP algorithm was built based on learning curves and a specific version
of inverse power law (IPL) models. Figure 5 shows a systematic pipeline of the proposed SSP
algorithm. It starts by generating the learning curve of a specific classifier by quantifying the
performance of this classifier when increasing the sizes of its training set. Thereafter, the
generated learning curve is fitted using the nonlinear least-squares algorithm by the IPL

(74,126). In [PI], the considered formula of the IPL model is:
IP(n) =axn?+c,

where n denotes the training set size, whereas IP(n) estimates the quantified performance when
training the classifier on n samples, and a, b, and ¢ represent the parameters of the IPL model.
Here, a refers to the learning rate, b is the decay rate, and c represents the final performance

of the considered classifier if it is trained on an infinite number of samples. The later parameter
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is usually known as the Bayes error. It is utilized in the presented SSP algorithm to predict the
training set size required to achieve 95% of Bayes error, named: ngse,. After predicting the
Ngso,, a new IPL model is fitted using only the training set sizes < ngsq,, while the performance
of this fitted model is extrapolated for the training set sizes > ngso, named the extrapolated
region. Finally, the performance of the fitted IPL model is evaluated based on the root mean
square error (RMSE) of the IPL performance and the classification performance in the

extrapolated region.
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Figure 5. Visualization of sample size planning for multivariate data. The learning curve
i1s generated using an increasing number of biological replicates. Thereafter, the obtained
learning curve is fitted by the inverse power law, and the acquired fit is utilized to predict the
training set size required to achieve 95% of Bayes error, i.e., ngsy,. Finally, the predicted
training set size is implemented to extrapolate the performance of inverse power law built upon

training set sizes < Ngso,.

The established SSP algorithm was demonstrated on a Raman-spectral dataset consisting
of six bacterial species cultivated in nine independent biological replicates. Thereby, the
sample sizes needed to train a classification model that combines a PCA model with a linear-
discriminant analysis (LDA) model were estimated for different data hierarchy levels, i.e.,
spectral level and replicate level. The obtained results showed that 142 Raman spectra per
bacterial species and seven biological replicates are required to achieve 95% of the final

performance of the PCA-LDA model, i.e., 95% of Bayes error.
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3.1.2 WE-ASCA for Analyzing the Unbalanced Multifactorial Designs

The analysis of multifactorial designs is a group of statistical methods that are typically
utilized to study the effect of multiple treatments on selected samples. Unlike univariate data,
this group of exploratory tools is limited in unbalanced multifactorial designs when considering
multivariate data (59,60). Consequently, the weighted-effect ASCA (WE-ASCA) presented in
the scientific contribution [PII] was developed as an updated version of the classical ANOVA-
simultaneous component analysis (ASCA) to deal with the unbalanced multifactorial designs

of multivariate data.

The proposed WE-ASCA suggests characterizing the experimental design based on the
general linear models (GLM) and the weighted-effect (WE) coding. Thereby, the response
matrix can be decomposed into two terms: the estimated response and the error in this
estimation. While this estimated response matrix usually consists of two matrices, i.e., the
design matrix and the parameter matrix, the error matrix is obtained by the difference between
the response and its estimation. Nevertheless, the main improvement of the WE-ASCA is the
implementation of the WE-coding, which forms a specific version of the dummy coding, to
facilitate the inclusion of categorical variables in the GLM formula (127,128). This WE-coding
offers a unique solution to solve the GLM equations in which the effect of each factor level
represents the level deviation from the weighted mean. Therefore, the WE-coding was
promoted to update the coding scheme of the design matrix in GLM equations when
considering an unbalanced multifactorial experimental design. After that, the parameter matrix
in GLM equations can be estimated easily based on the ordinary least square method (129,130).
In the last step of WE-ASCA, the obtained estimated response based on the design matrix and
the parameter matrix can be decomposed linearly as different effect matrices representing the
experimental factors and their interactions. Besides, the significant effects in a particular design
are determined using permutation tests, while the dimensions of the effect matrices are reduced

using PCA models (63).

Using a Raman spectral dataset consisting of four colorectal tissue types collected from

47 mice in 387 scans, two applications of WE-ASCA were evaluated. This dataset was acquired
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with respect to four factors describing the experimental design: The individuals with 47 levels
referring to the mice, the activity of the P53 gene, the mouse gender, and the location of samples
(colon or rectum) (131). The first application intended to understand and analyze the design of
that experiment and then determine which of the experimental factors contributed significantly
to the considered design. The previous analysis was achieved by applying ASCA, ASCA+ and
WE-ASCA and comparing their results based on the percentage of explained variances by all
effects. It tuned out that the classical ASCA overestimated the effect contributions, while the
ASCA+ underestimated these contributions. In contrast to ASCA and ASCA+, the presented
WE-ASCA performed the best in estimating these effect contributions. Nevertheless, the three
versions of ASCA showed that the individual factor has the largest significant effect in the
considered design. Therefore, the influence of excluding such variations on the classification
of colorectal tissues was checked in the second task using two classifiers, namely: the PCA-
LDA and the combination of partial least square regression with LDA (PLS-DA). In this
context, four different classification tasks were evaluated based on the leave-one-mouse-out
cross-validation. Figure 6 visualizes the obtained results of the considered tasks. It is observed
that excluding the contribution of the individual factor from the training set introduced more
robust classification results, and it improved the mean sensitivity in most classification tasks.
Moreover, training an LDA model on spectra, in which their individual effect was excluded,
required a smaller number of principal components (or latent variables) and improved the

reproducibility of CV results.
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Figure 6. The classification results of PCA-LDA and PLS-DA models based on leave-one-
mouse-out cross-validation. Each classifier was trained twice with and without applying WE-
ASCA-based preprocessing. It turned out that removing the individual variations based on WE-
ASCA improved the classification performance, and it significantly reduced the variance

within the cross-validation results.
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3.2 Data-Driven Modeling and Validation

This section briefly discusses the ML-based automatic detection and identification
performed for three diagnostic tasks. In the first task, an improved ML pipeline to predict the
antibiotic susceptibilities of E. coli bacteria was presented and evaluated based on images
acquired by bright-field microscopy. Thereafter, transfer learning-based classification of
bladder cancer was demonstrated in the second task using blue light cystoscopic images.
Finally, different ML techniques and validation strategies were combined and checked in the
third task. That task aimed to perform a label-free automatic detection of breast cancer based

on a small-sized dataset of nonlinear multimodal images.

3.2.1 One-class Model-Based Antibiotics Susceptibility Prediction in

Bacteria

The extensive and unwarranted application of antibiotics allowed many bacterial
pathogens to developed new resistance mechanisms towards the existing drugs in the latest
decades (45,132,133). As a result, the selection of an effective antibiotic to treat a specific
bacterial species has become very complicated. Typically, the susceptibility determinations of
bacterial pathogens are accomplished via antibiotic susceptibility testing (AST) (134). These
ASTs need to be ideally rapid, accurate, and quantitative. Different technologies were recently
developed to identify antibiotic susceptibility in bacteria; however, each of them features

specific advantages and limitations in clinical application scenarios (135-137).

In the scientific contribution [PIII], an improved images-based automatic identification
of bacterial susceptibilities toward antibiotics was presented using one-class classification
models. Therein, a one-class support vector machine (OCSVM) was trained on images
acquired from untreated controls of a specific bacterial strain, while the image labels of treated
bacteria are predicted into control or non-control images. If a bacterial stain resists a specific
antibiotic, it is expected that an image of these treated bacteria is predicted as control. In
contrast, the bacterial strains sensitive to antibiotics show different morphology than the control
untreated ones; and therefore, images collected after treating such bacteria with the antibiotics
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Figure 7. The automatic pipeline for predicting antibiotic resistances. (A) Images of

(B) Segmentation of bacteria

(C) Patch selection

cultivated bacteria, untreated control and treated bacteria with three antibiotics, are acquired
using bright field microscopy. (B) The bacteria images are segmented using the U-Net
network into high density bacteria regions and background. (C) The segmented bacteria
images are sliced into patches of the size 265%256 pixels, and the patches that have 90% of
their area covered by bacteria are considered for the statistical analysis. (D) The selected
image patches of control bacteria are utilized to build one-class SVM (OCSVM) models.
Lastly, the constructed OCSVM models are implemented to predict bacteria susceptibility
towards the antibiotics using the extracted features from the selected patches of treated
bacteria.

are expected to be identified as non-control. Under these assumptions, a complete pipeline for
predicting the antibiotic susceptibility is presented as depicted in Figure 7. It starts by acquiring

bright-field microscopic images of cultivated bacteria, untreated control, and treated bacteria

with antibiotics. Subsequently, the collected bacteria images are segmented using the U-Net
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network into high-density bacteria regions and background (110). This U-Net network is a
popular encoder-decoder CNN that has been constantly utilized for the semantic segmentation
of biomedical tasks. After the image segmentation, the obtained images are sliced into patches,
and patches with 90% of their area covered by bacteria are considered for further statistical
modeling. In this case of study, the encoder part of the trained U-Net network is implemented
as a feature extractor, then the extracted U-Net bottleneck features are utilized to predict the

antibiotic susceptibility.

Using the proposed pipeline, the susceptibility detection of 12 E. coli strains towards
three antibiotics, namely: ciprofloxacin, cefotaxime, and piperacillin, was performed based on
the collected bright-field microscopic images. The results showed 83% area under the receiver
operating characteristic (ROC) curve when OCSVM models were built on the U-Net bottleneck
features of control bacteria images only. Moreover, the mean sensitivities of these one-class
models are 91.67% and 86.61% for cefotaxime and piperacillin, respectively. In contrast, the
classification means the sensitivity of ciprofloxacin is only 59.72% as the bacteria morphology

was not fully detected based on the proposed method.
3.2.2 Deep Learning-Based Bladder Tumor Classification

Bladder cancer is one of the top 10 most frequently occurring cancers and one of the
leading causes of death in Europe (138). To diagnose this cancer type, endoscopic techniques
are commonly utilized (139,140). Recently, photodynamic diagnosis (PDD) based on blue light
(BL) cystoscopy was introduced as a modern imaging technique for the detection of bladder
cancer, especially for flat cancerous lesions (141-143). It offers characteristic information
about tumor morphology based on the fluorescence properties of an extrinsic metabolic
substrate, which metabolizes differently in cancerous tissues compared to healthy tissues (144).
However, the main drawback of PDD is related to its low specificity in the differentiation
between flat cancerous lesions and inflammable alterations after transurethral resection or
instillation (141-143). Furthermore, due to the lack of experienced endoscopists, PDD-based
image interpretation is quite subjective, leading to a high rate of false positives (145). Besides,

PDD does not provide diagnostic information about cancer invasiveness or cancer grading. As
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a result, the applications of PDD are constrained to malignancy identification. Therefore, the
aim of scientific work presented in [PIV] was to check the potential of deep learning models
in automating the diagnosis of bladder cancer invasiveness and grading in addition to

malignancy using the BL images only.

The outline of deep learning-based BL image classification is depicted in Figure 8. It
starts by collecting images using BL cystoscopy, then preprocessing the acquired BL images
according to a common image preprocessing pipeline. Therein, the illumination of the red and
blue channels of all PDD images are corrected using the contrast limited adaptive histogram
equalization (CLAHE) algorithm (85). Thereafter, the background area of each image is
removed. Finally, the region of interest (ROI) of an image is acquired as an inscribed square
region within the extracted image disk. The preprocessed images have the size of 384x384
pixels, and they refer to the image area containing the bladder tissue regions only. After image
preprocessing, the obtained images are downsampled to the size of 224x224 pixels to fit the
input size of the considered CNN architectures. In the presented analysis, four freely available
pre-trained CNNs were fine-tuned by appending additional layers on top of each network, as
shown in Figure 8-B. These CNNs are InceptionV3 network (146), MobileNetV2 network
(147), ResNet50 network (148) and VGG16 network (149), and they were pre-trained on the
ImageNet dataset (150). Nevertheless, the last additional layer of each fine-tuned CNN is the
SoftMax layer, which offers label probabilities for each input image with respect to the

considered classification task, i.e., malignancy, cancer invasiveness and cancer grading.

The above-described outline was performed on a clinical dataset consisting of 216 BL
images. These BL images were acquired prior to resection of the respective lesions from four
urological departments retrospectively. Then, the collected biopsies were pathologically
identified according to cancer malignancy, invasiveness, and grading. Meanwhile, two
experienced urologists assessed the BL images only. The pre-trained fine-tuned CNNs were
utilized subsequently to predict image labels using a leave-10-patients-out cross-validation
(L10PO-CV). After predicting the BL image labels, the evaluation of each CNN performance
was accomplished based on the classification mean sensitivity and mean specificity. Finally,

the obtained metrics were compared to the urologist ratings.
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the blue light mode are collected. These images are preprocessed, and then the background area
of each image is excluded in order to get the image area, including bladder tissue only. (B) The
obtained preprocessed images are resized and fed to the fine-tuned CNN. Here, the last
additional layer of each CNNs, known as the SoftMax layer, provides label probabilities for
each input image according to the considered classification task, namely: malignancy
identification, the classification of cancer grading, and the identification of cancer

invasiveness.

31



For the identification of malignant lesions, the fine-tuned MobileNetV2 showed the
maximal sensitivity and specificity among the models. Thereby, the observed values of these
statistics are 95.77% and 87.84%, respectively. Moving to the classification of tumor
invasiveness, the fine-tuned MobileNetV?2 also featured the best identification results. The
mean sensitivity here is around 88%, and the mean specificity has a value of 96.56%.
Furthermore, the detection of cancer stages Ta, T1 and T2 using the previous CNN has a class
sensitivity of 93%, 100%, and 90.91%, respectively. For the identification of cancer grading,
the maximum mean sensitivity is 92.07%, while the maximum mean specificity is 96.04%.
These results were achieved when considering the fine-tuned ResNet50 network based on the
L10PO-CV. In this case, the classification sensitivity of benign lesions is 95.95%, while the
sensitivity of low-grade and high-grade cancer is 90.41% and 89.86%, respectively.
Nevertheless, the identification ratings of both urologists were always much lower compared

to classification performances of any of the previous CNNs.

3.2.3 Model Validation Strategies-Based Automatic Detection of Breast

Cancer

Breast cancer is the most diagnosed cancer in women worldwide and the first cause of
all female cancer deaths (151,152). According to the world health organization, breast cancer
affects 2.1 million women yearly (153). The survival among patients of this cancer type largely
depends on early detection, which is usually performed using imaging technologies in regular
preventive checks (154). The challenge here is that breast cancer lacks early symptoms, while
the current gold standard for definitive diagnosis is still the visual assessment of
histopathological stained tissue sections after a biopsy of tissue material is taken. Therefore,
new imaging technologies to enhance the low sensitivity of breast cancer screening and to
supplement imaging technologies are highly appreciated. Ideally, these new tools permit a fast
cancer diagnosis with a high potential for in-vivo investigations (155-157). Recently, the
combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited

fluorescence (TPEF), and second harmonic generation (SHG) was introduced as a promising
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imaging tool. This combination provides a powerful label-free tool that can capture the

biomolecular alterations of cancerous and noncancerous tissues.

To exploit the above-mentioned biomolecular alterations, the obtained multimodal
images need to be translated into high-level diagnostic information. In the scientific
contribution presented in [PV], the potential of computer-aided diagnosis was implemented to
extract breast cancer-related information based on multimodal nonlinear images. Therein,
several image preprocessing techniques were combined with ML algorithms to automatically
detect breast cancer regions of 15 multimodal images acquired from 15 patients. The analysis
pipeline started by preprocessing the multimodal images as described in Figure 2-B, then
comparing them to the annotated Haematoxylin and Eosin (H&E) stain images. Subsequently,
two classification models were trained using the deep convolutional neural network ResNet50
[99]. Here, the ResNet50 was utilized either to identify the labels of the image patches directly
or to extract image features that can be used afterwards by classical machine learning
classifiers. For evaluating the performance of the utilized classifiers, two data validation
strategies were additionally investigated. These strategies refer to the leave-one-patient-out
cross-validation (LOPO-CV) and the training-test validation. In Figure 9, an overview of the
utilized classification techniques and the validation strategies is presented. For all presented
strategies, the statistical independence between the training, the validation, and the test sets
was secured based on the following rule: The patient images utilized to train a classifier are
totally different from images acquired from the patients considered to validate or test the
learned classifier. The results of the presented classification and validation strategies were
assessed based on the classification mean sensitivity for the binary cancer diagnostic model,
i.e., cancer and non-cancer, and for a three-class model, i.e., carcinoma, fat and normal. This
diagnostic model evaluates the model quality in identifying the cancerous tissues. It turned out
that the best detection of cancerous tissues was achieved by the fine-tuned ResNet50 network
and the LOPO-CV. Thereby, the mean sensitivity of LOPO-CV using the fine-tuned ResNet50
network is 86.23%, which decreased to 75.31% if the PCA-LDA model was implemented. For
the training-test validation, the images split into a training set, a validation set, and a test set.

Then, this split was iterated three different times to check the effect of the data division on the
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classification results (see Figure 4-D). The obtained mean sensitivity, in this case, varied
between 43.80% and 69.21%. Hence, the classification was strongly influenced by the chosen

data subsets, i.e., training set, validation set, and test set.
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Figure 9. Overview of the ML algorithms and the validation strategies utilized to evaluate
the automatic detection of breast cancer. The pre-trained ResNet50 network is either used
as a feature extractor or fine-tuned to be used as a classification model. Besides, the leave-one-
patient-out cross-validation and the training-test validation were implemented to evaluate the

performance of the considered classifiers

All previous results were presented for the multimodal images that have corresponding
annotated H&E images. However, introducing the presented nonlinear imaging technology into
clinical routine needs to prove the diagnosis efficiency based on multimodal images of new
patients without using the H&E annotation. To do so, the best performing ML models were
deployed to predict the breast cancer patches of six multimodal images that missed their
annotated H&E images. The fine-tuned ResNet50 network based on the LOPO-CV showed the

best diagnostic performance among the presented ML models and validation strategies.
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Therein, the best ResNet50 model was saved, and the patch labels of test patients were
predicted for each iteration of the CV loop. It turned out that three models showed 100%
prediction performance; therefore, these ResNet50 models were considered to identify breast
cancer patches of six multimodal images. Despite the small-sized training set of ResNet50 and
the overlapping of patch annotations, the results of patch prediction were very close to each
other. Nevertheless, the obtained predictions still need to be verified, which was not available

for the presented case of study.
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Additional Work

Besides the scientific contributions being presented in Chapter 3, several publications

from other studies conducted over the duration of the Ph.D. time are listed below:

[1]

[11]

[111]

[IV]
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Summary

The overall goal of data science in biophotonics is to improve the investigations of
biological systems based on data collected using biophotonic technologies. In this context,
several statistical tools can be combined with ML algorithems to enhance the experimental
planning and then assess computer-aided identifications. Such statistical methods still need
further investigations and adjustments in the case of life science and biomedicine-based studies.
Therefore, the scientific contributions in Chapter 3 covered two main aspects within the data
lifecycle for biophotonics: the design of statistical experiments and the implementation of data-

driven modeling and validation.
Experimental design

The statistical techniques involved in designing the experiments deal with the planning
and the analysis of controlled tests to evaluate the influence of experimental factors on selected
data samples. In this thesis, the presented improvements related to experimental design were
conducted to cover the sample size planning and the analysis of unbalanced multifactorial

designs for multivariate data.

1- The designed algorithm of SSP aimed to estimate the number of samples required to train
classification models. The presented algorithm started by generating LCs based on
evaluating the classification performance as a function of an increasing set of training set
sizes. Thereafter, the obtained LCs were fitted with the inverse power-law model, while its
parameters were utilized to predict the training set size. Hither, the predicted size was
calculated to describe 95% of the final classification performance. The last part of the SSP
algorithm was designed to check the prediction performance based on comparing the

behavior of the inverse power law model in the training region and the extrapolated region.
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To evaluate the performance of the proposed SSP algorithm, a Raman-spectral dataset
consisting of six bacterial species cultivated in nine independent biological replicates was
considered. Thereby, the SSP for two levels of the data hierarchy was performed, while the
focus was on the highest level of the data hierarchy, i.e., biological replicates. Applying the
proposed SSP algorithm showed that seven biological replicates are required to reach 95%
of the final performance of the PCA-LDA model, which was introduced by the Bayes error
rate. Moving to SSP for the required number of spectra, it turned out that 142 spectra per
bacterial species are needed to achieve 95% of the final performance of the PCA-LDA
model. The evaluation of both SSP tasks was carried out by calculating the RMSE of the
extrapolated region and the training region. Nevertheless, the proposed SSP algorithm
exhibited promising results for the prediction of the training set sizes required for both SSP
tasks, i.e., spectra and biological replicates. These predicted sizes were necessary to build
a reliable and accurate PCA-LDA model. Although the SSP algorithm was performed on a
Raman spectral dataset, the methodology can be utilized for any multivariate data,
specifically in the case of biophotonic data. However, the estimations of sample size are
strongly influenced by the experimental protocol, the considered data preprocessing
techniques, and the utilized algorithm of statistical modeling. Subsequently, the estimated
sample size is valid only for the same conditions, even though another analysis pipeline
could require fewer or more measurements. The previous issue reflects the importance of
the considered data-analysis pipeline for the sample size estimation. Therefore, the relation
between these analytical pipelines and sample size estimation should be further

investigated.

The weighted-effect ASCA (WE-ASCA) was presented as an extension of the classical
(ASCA to analyze unbalanced multifactorial designs in the case of multivariate data. The
main update of this ASCA version was to substitute the coding schemes of the design
matrix in ASCA (or ASCA+) with the weighted-effect (WE) coding. This WE-coding is
beneficial in such unbalanced designs as it uniquely estimates the effects of all factors
considered in the designed model. Furthermore, it offers a zero value for the sum of all

level effects in the design matrix, which is not the case when using other coding schemes.
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Thus, the WE-coding was utilized instead of the deviation scheme implemented in the
ASCA+ pipeline. In WE-ASCA, the response matrix is estimated based on a general linear
model using the WE-coding-based design matrix and the calculated parameter matrix.
Thereafter, the estimated response can be decomposed linearly as different effect matrices
referring to the experimental factors and their interactions. Finally, the significant effects
in the studied design are determined using a permutation test, while the dimensions of the
effect matrices are reduced by applying PCA for each effect matrix. To infer the potential
of the presented method, two possible applications were checked based on a Raman spectral
dataset collected from colorectal tissues of 47 mice. The aims of the first application were
to analyze the design of the studied experiment then to evaluate the performance of that
analysis compared to the ASCA and the ASCA+. It tuned out that the classical ASCA
overestimated the effect contributions, while the ASCA+ underestimated these
contributions. In contrast to both, the proposed WE-ASCA showed the best performance
with respect to the summation of the percentage of explained variances by effect
contributions. Moving to the second application, the WE-ASCA was implemented as a
preprocessing technique to exclude the disturbing variation presented in the Raman dataset.
This was demonstrated for four different classification tasks using two classifiers and the
leave-one-mouse-out cross-validation. The obtained results showed that excluding such
variations from the training set introduced more robust classification results, and it
improved the mean sensitivity in most classification tasks. In conclusion, the WE-ASCA
was introduced as a powerful tool to analyze a complex unbalanced multifactorial design
then to improve the classification performance and its reproducibility. Nonetheless, the
WE-ASCA were checked only for Raman spectra for tissue classification tasks, but its
applications are not limited. It can be expanded to cover the analysis of variance of any

type of multivariate data and any statistical modeling task.
Data-driven modeling and validation

Recently, data-driven modeling based on ML algorithms has been implemented to extract
high-level information by automating the extraction of data insights and inferring potential
patterns within the acquired data. Therefore, the scientific contributions presented in this thesis
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were established to verify the capability of several ML models for three types of biophotonic

data, i.e., bright field microscopic images, fluorescence images, and nonlinear multimodal

images.

1-
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Based on combining different image preprocessing techniques and ML algorithms, the
automatic identification of antibiotics susceptibilities was presented for bacterial images
collected from bright field microscopy. The proposed pipeline was designed to capture any
morphological changes caused by applying antibiotics. It started by segmenting the
bacterial regions using an autoencoder CNN, named the U-Net network. After that, the
encoder part of the trained U-Net network was utilized as a feature extractor of the bacterial
images. In the last step, a one-class classification model, specifically an OCSVM model,
was implemented for the first time to detect the antibiotic effects on the bacterial strains.
Thereby, the OCSVM was trained only on images acquired from control untreated bacteria,
and then the trained model was utilized to predict the antibiotic resistance of treated bacteria
cultivated within the same replicate. It turned out that the local OCSVM models introduced
quite promising results in identifying the susceptibility of E. coli; hence, these models are
self-correcting for the biological variations between different replicates or patients.
Besides, such local-one-class classification is easy to apply for identifying any other
antibiotic susceptibilities and for any image-based antibiotic susceptibility test (AST).
Finally, this image-based method can be used as a fast-phenotypic AST as the
morphological changes appear after short incubation times of antibiotics with bacteria.
However, combining the image-based AST with other readout methods could improve the

results of this detection.

The BL cystoscopy-based photodynamic diagnosis was introduced as a promising
technology to improve the detection of bladder cancer. In the proposed scientific
contribution, a BL image-based deep learning diagnostic platform was presented in order
to predict the bladder cancer malignancy, invasiveness, and grading based on the BL
images only. The potential of that platform in automating the classification of the
endoscopic lesions and predicting histopathological results was checked using a small-

sized dataset of BL images acquired from four different urological departments. Therein,
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the performance of four DL models was compared with the identification results provided
by two experienced urologists for the three considered tasks. Despite the small sample size
and the class imbalance in the BL dataset, the obtained results of these comparisons
exhibited a high identification performance of DL-based transfer learning. For all tasks, the
fine-tuned CNNs provided much better classification performance than both urologists.
Moreover, the misclassification of BL images was expected due to the high variations
between the images and other systematic errors. These errors were assigned mostly to
specific fluorescence issues like the very low image fluorescence or the spotty fluorescence
in other images. Besides, some images depicted flat lesions, while others were not close
enough to capture the suspicious lesions; and consequently, such images were also
misclassified. Overall, the presented study showed the promising potential of DL-based
classification models for the diagnostics of bladder cancer when using the BL cystoscopic
images only. However, further research needs to be performed in order to establish a fully
automatic BL cystoscopic platform. The aim, in this case, should be to assist surgeons and
aid the cancer diagnoses by offering a faster and lower-cost alternative of the classical

biopsy-based pathological analysis.

The nonlinear multimodal imaging technologies provide a label-free tool that can offer a
non-invasive characterization of the biomolecular alternations between cancerous and
noncancerous tissues. The advantage of these technologies was used to detect breast cancer
tissues based on the multimodal images only. To do so, 16 multimodal images of breast
tissue acquired from 16 patients were considered. The challenge in that study was to
translate the biomolecular information introduced by these images into an ML model that
can be deployed in further identifications. Therefore, an image preprocessing pipeline was
designed to enhance image quality, then three combinations of ML models and validation
methods were checked. The best classification performance was achieved when using the
pre-trained ResNet50 network as a classification model and the leave-one-patient-out
cross-validation. Therefore, the best performing models within the CV loop were
considered to detect cancerous and noncancerous tissues of not annotated multimodal

images. In most cases, these classification models provided the same predictions of the
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multimodal image patches. Although these results were not validated and the training set
was quite small, it was still possible to deploy ML models for the automatic diagnosis of
breast cancer. Nevertheless, the non-invasive nature of the nonlinear imaging modalities

allows for in-vivo examinations offering a low-risk diagnostic tool to supplement others.



Zusammenfassung

Das tibergeordnete Ziel biophotonischer Datenwissenschaft ist die Verbesserung von
Untersuchungen biologischer Systeme auf Grundlage von Daten, die mit biophotonischen
Technologien gemessen wurden. In diesem Zusammenhang koénnen verschiedene statistische
Werkzeuge mit maschinellen Lern-Algorithmen (ML) kombiniert werden, um so die
Versuchsplanung zu verbessern und anschlieBend eine computergestiitzte Identifikation
durchzufiihren. Diese statistischen Methoden bediirfen noch weiterer Erforschung und
Anpassungen fiir biowissenschaftliche und biomedizinische Studien. Daher befassen sich die
wissenschaftlichen Beitrige in Kapitel 3 mit zwei Hauptaspekten innerhalb des
Datenlebenszyklus biophotonischer Daten: der statistischen Versuchsplanung und der

Umsetzung datengetriebener Modellbildung sowie der Modellvalidierung.
Versuchsplanung

Die statistischen Techniken, die bei der Versuchsplanung zum Einsatz kommen, werden
genutzt, um die Planung und Analyse von kontrollierten Versuchen zum Einfluss
experimenteller Faktoren durchzufiihren. In dieser Arbeit wurden Verbesserungen im
Zusammenhang mit der Versuchsplanung erforscht, um die Planung des Stichprobenumfangs
multivariater Studien durchzufiihren und die Analyse von nicht balancierten multifaktoriellen

Versuchspldnen fiir multivariate Daten zu erlauben.

1- Der entworfene Algorithmus zur Stichproben-Planung (SSP-Algorithmus) zielte darauf
ab, den erforderlichen Stichprobeumfang fiir das Training von Klassifikationsmodellen zu
schitzen. Der vorgestellte Algorithmus beginnt mit der Generierung der Lernkurve (LC),
welche die Klassifizierungsleistung in Abhéngigkeit von einer zunehmenden Anzahl von
Trainingsdatensétzen quantifiziert. AnschlieBend werden die erhaltenen LCs mit dem

inversen Potenzgesetzmodell gefittet, und die Fit-Parameter werden zur Vorhersage der
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Trainingsdatensatzgrole verwendet. Dabei wurde die Trainingsdatensatzgrofle so
berechnet, dass sie zu 95 % der endgiiltigen Klassifizierungsleistung fiihrt. Um die
Vorhersageleistung zu tberpriifen, wurde im letzten Teil des SSP-Algorithmus das
Verhalten des inversen Potenzgesetzmodells in der Trainingsregion und in der
extrapolierten Region verglichen. Um die Leistung des vorgeschlagenen SSP-Algorithmus
zu bewerten, wurde ein Raman-Spektraldatensatz bestehende aus sechs Bakterienarten und
neun unabhéngigen biologischen Replikaten betrachtet. Dabei wurde die Fahlzahlplanung
fiir zwei Ebenen der Datenhierarchie durchgefiihrt, wobei der Schwerpunkt auf der
hochsten Ebene der Datenhierarchie, das heift den biologischen Replikaten, lag. Die
Anwendung des vorgeschlagenen SSP-Algorithmus zeigte, dass sieben biologische
Replikate erforderlich sind, um 95 % der endgiiltigen Leistung des PCA-LDA-Modells
(Hauptkomponenten-Analyse in Kombination mit einer Linearen Diskriminanz-Analyse)
zu erreichen. Die finale Leistung des Modells kann durch die Bayes-Fehlerrate
charakterisiert werden. Bei der Anwendung des Algorithmus zur Bestimmung der
erforderlichen Spektren-Anzahl zeigte sich, dass 142 Spektren pro Bakterienart
erforderlich sind, um 95 % der endgiiltigen Leistung des PCA-LDA-Modells zu erreichen.
Die Bewertung der beiden SSP-Aufgaben erfolgte durch Berechnung des RMSE in der
extrapolierten Region und der Trainingsregion. Es zeigte sich, dass der vorgeschlagene
SSP-Algorithmus beide erforderlicher Trainingsmengen vorhersagen konnte. Diese
vorhergesagten Fallzahlen waren notwendig, um ein zuverldssiges und genaues PCA-
LDA-Modell zu erstellen. Obwohl der SSP-Algorithmus an einem Raman-
Spektraldatensatz erstellt und getestet wurde, kann die Methodik fiir jeden multivariaten
Datensatz verwendet werden, insbesondere im Fall von biophotonischen Daten. Die
Schitzung des Stichprobenumfangs wird jedoch stark durch das Versuchsprotokoll, die
verwendeten Datenvorverarbeitungstechniken und das verwendete statistische Modell
beeinflusst. Folglich gilt der geschitzte Stichprobenumfang nur fiir dieselben
Bedingungen, auch wenn eine andere Analysepipeline weniger oder mehr Messungen
erfordern konnte. Das vorstehende Problem spiegelt die Bedeutung der betrachteten

Datenanalyse-Pipeline fiir die Schiatzung des Stichprobenumfangs wider. Daher sollte die



Zusammenfassung

Beziehung zwischen der Analysepipeline und der Schitzung des Stichprobenumfangs

weiter untersucht werden.

Die ANOVA simultaneous component analysis (ASCA) mit gewichteten Effekten (WE-
ASCA) wurde als Erweiterung der klassischen ASCA entwickelt, um unausgewogene
multifaktorielle Designs im Falle multivariater Daten analysieren zu konnen. Die
wichtigste Neuerung dieser ASCA-Version besteht darin, das Kodierungsschema der
Designmatrix durch die Kodierung mit gewichteten Effekten (WE) zu ersetzen. Diese WE-
Kodierung ist in nicht-balancierten Designs vorteilhaft, da sie die Effekte aller im
entworfenen Modell beriicksichtigten Faktoren eindeutig schitzt. Dariiber hinaus bietet sie
einen Nullwert fiir die Summe aller Niveaueffekte in der Designmatrix, was bei der
Verwendung anderer Kodierungsschemata nicht der Fall ist. Daher wurde die WE-
Kodierung anstelle des in der ASCA+ Pipeline implementierten Abweichungsschemas
verwendet. In WE-ASCA wird die Antwortmatrix auf der Grundlage eines allgemeinen
lincaren Modells (GLM) sowie unter Verwendung der WE-Kodierungsbasierenden
Designmatrix und der berechneten Parametermatrix geschétzt. Danach kann die geschétzte
Antwortmatrix linear in verschiedene Effektmatrizen zerlegt werden, die sich auf die
experimentellen Faktoren und ihre Interaktionen beziehen. SchlieBlich werden die
signifikanten Effekte im untersuchten Design mit Hilfe eines Permutationstests bestimmt,
wihrend die Dimension der Effektmatrizen durch Anwendung einer Hauptkomponenten-
Analysis (PCA) fiir jede Effektmatrix reduziert wird. Um das Potenzial der vorgestellten
Methode zu ermitteln, wurden zwei mogliche Anwendungen anhand eines Raman-
Spektraldatensatzes von Mausdarmgewebe gepriift. Das Ziel der ersten Anwendung war
es, das Design des untersuchten Experiments zu analysieren und dann die Leistung dieser
Analyse im Vergleich zu ASCA und ASCA+ zu bewerten. Es stellte sich heraus, dass die
klassische ASCA die Effektbeitrige iiberschitzte, wihrend die ASCA+ diese Beitrige
unterschitzte. Im Gegensatz zu beiden existierenden ASCA Versionen zeigte die
vorgeschlagene Methode (WE-ASCA) die beste Leistung in Bezug auf die Summierung
der erklarten Varianzen der Effektbeitrdge. In der zweiten Anwendung wurde die WE-

ASCA Methode als Vorverarbeitungstechnik implementiert, um stérende Variationen im

47



Raman-Datensatz ~ auszuschlieBen. = Dies  wurde  fliir  vier  verschiedene
Klassifikationsaufgaben unter Verwendung von zwei Klassifikatoren und einer
Kreuzvalidierung (auf Individuen-Ebene) demonstriert. Die erzielten Ergebnisse zeigten,
dass die Entfernung solcher Variationen aus dem Trainingssatz zu robusteren
Klassifizierungsergebnissen flihrt, und die gemittelte Sensitivitdt der Modelle bei den
meisten Klassifizierungsaufgaben etwas verbessert wurde. Zusammenfassend ldsst sich
sagen, dass die WE-ASCA Methode als leistungsfahiges Instrument zur Analyse eines
komplexen unausgewogenen multifaktoriellen Designs generiert wurde, um die
Klassifizierungsleistung und ihre Reproduzierbarkeit zu verbessern. Die WE-ASCA
wurde nur anhand Raman-Spektren zur Gewebeklassifizierung getestet, aber ihre
Anwendung ist nicht auf diese Aufgaben beschriankt. Sie kann auf jede Varianzanalyse

multivariater Daten und jede statistische Modellierungsaufgabe erweitert werden.

Datengestiitzte Modellierung und Validierung

In den letzten Jahren wurde die Daten-basierende Modellierung auf Grundlage von ML-

Algorithmen eingefiihrt, um hohere Informationen aus Daten zu extrahieren. Diese ML-

Verfahren extrahieren Datenerkenntnissen durch die Bestimmung von Mustern in den erfassten

Daten. Die in dieser Arbeit vorgestellten wissenschaftlichen Beitrdge wurden daher erstellt, um

die Fdhigkeit verschiedener ML-Modelle fiir drei Arten von biophotonischen Daten zu

iiberpriifen, das heif3t fiir mikroskopische Hellfeldbilder, Fluoreszenzbilder und nichtlineare

multimodale Bilder.

1-
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Basierend auf der Kombination verschiedener Bildvorverarbeitungstechniken und ML-
Algorithmen wurde eine automatische Bestimmung von bakteriellen Antibiotika-
Resistenzen mittels Hellfeldmikroskopie-Bildern vorgestellt. Die vorgeschlagene
Datenanalyse-Pipeline wurde entwickelt, um morphologischen Verdnderungen der
Bakterien durch die Anwendung von Antibiotika zu erfassen. Die Pipeline beginnt mit der
Segmentierung von Bildregionen, die von Bakterien dominiert werden, unter Verwendung
eines auf Convolutional Neural Networks (CNNs) basieren Autoencoders, dem
sogenannten U-Net-Modell. Danach wurde der Kodierungsteil des trainierten U-Netzes als

Merkmalsextraktor fiir die Bilder verwendet. Im letzten Schritt wurde zum ersten Mal ein
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Einklassen-Klassifikationsmodell, genauer gesagt ein OCSVM-Modell (One-Class-
Support-Vector-Machine-Modell), implementiert, um die Wirkungen von Antibiotika auf
Bakterien zu erkennen. Dabei wurde das OCSVM-Modell nur mit Bildern von
unbehandelten Kontrollbakterien trainiert, und dann wurde das trainierte Modell zur
Vorhersage der Antibiotikaresistenz von behandelten Bakterien verwendet, welche im
selben Replikat wie die Kontroll-Bakterien kultiviert wurden. Es stellte sich heraus, dass
die lokalen OCSVM-Modelle vielversprechende Ergebnisse bei der Bestimmung der
Antibiotika-Sensitivititen von E. coli lieferten, da diese Modelle automatisch fiir die
biologischen Variationen zwischen verschiedenen Replikaten oder Patienten korrigieren.
AuBlerdem ist eine solche lokale Einklassen-Klassifizierung leicht fiir die Detektion
anderer  Antibiotika-Sensitivititen und fiir jeden bildbasierten Antibiotika-
Empfindlichkeitstest (AST) anwendbar. SchlieBlich kann diese bildbasierte Methode als
schneller phanotypischer AST verwendet werden, da die morphologischen Verdnderungen
der Bakterien nach kurzen Inkubationszeiten mit den Antibiotika auftreten. Die
Kombination des bildbasierten AST mit anderen Auslesemethoden konnte die Ergebnisse

dieses Nachweises noch verbessern.

Die photodynamische Diagnose mittels der Blau-Licht-Zystoskopie (BL-Zystoskopie)
wurde als vielversprechende Technologie zur verbesserten Erkennung von Blasenkrebs
eingefiihrt. Im vorgeschlagenen wissenschaftlichen Beitrag wurde eine auf tiefen
Lernverfahren basierende Diagnoseplattform fiir BL-Bildern vorgestellt, um die
Bosartigkeit, Invasivitdt und Graduierung von Blasenkrebs vorherzusagen. Das Potenzial
dieser Plattform bei der automatischen Klassifizierung endoskopischer Lasionen und der
Vorhersage histopathologischer Ergebnisse wurde anhand eines kleinen Datensatzes von
BL-Bildern aus vier verschiedenen urologischen Abteilungen iiberpriift. Dabei wurde die
Leistung von vier tiefen Lernmodellen mit den Erkennungsergebnissen von zwei
erfahrenen Urologen fiir die oben genannten drei Aufgaben verglichen. Trotz der geringen
Stichprobengrofle und eines starken Klassenungleichgewichts im BL-Datensatz zeigten
die Ergebnisse eine hohe Identifikationsleistung der tiefen Lernverfahren durch die

Anwendung von Transferlernen. Bei allen Aufgaben lieferte das Fine-tunning der CNNs
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deutlich bessere Klassifikationsleistungen als die Vorhersagen der beiden Urologen.
Dariiber hinaus waren die Fehlklassifizierungen von BL-Bildern aufgrund der hohen
Variationen zwischen den Bildern und anderer systematischer Fehler zu erwarten. Es
traten  Fluoreszenzproblemen auf, wie zum Beispiel eine sehr geringe
Fluoreszenzintensitdt in manchen Bildern oder eine fragmentierte Fluoreszenz in anderen
Bildern. Auflerdem zeigten einige Bilder flache Lasionen, wéhrend andere nicht nah genug
an die verdichtigen Lésionen heranreichten, so dass auch diese Bilder falsch klassifiziert
wurden. Insgesamt zeigte die vorgestellte Studie das vielversprechende Potenzial tiefer
Lernmodelle fiir die Diagnose von Blasenkrebs basierend BL-Zystoskopie-Bildern. Es
besteht jedoch noch weiterer Forschungsbedarf, um eine vollautomatische BL-
Zystoskopie-Plattform zu etablieren. Ziel sollte es sein, Chirurgen zu unterstiitzen und die
Krebsdiagnose zu erleichtern, indem eine schnellere und kostengiinstigere Alternative zur

klassischen Biopsie-basierten pathologischen Analyse angeboten wird.

Die nichtlineare multimodale Bildgebung stellt ein markerfreies Werkzeug dar, welches
eine nicht-invasive Charakterisierung von biomolekularen Verdnderungen zwischen
krebsartigem und nicht krebsartigem Gewebe ermdglicht. Diese Technologien wurde
genutzt, um Brustkrebsgewebe allein auf der Grundlage der multimodalen Bilder zu
erkennen. Zu diesem Zweck wurden 16 multimodale Bilder von Brustgewebe von 16
Patientinnen untersucht. Die Herausforderung in dieser Studie bestand darin, die
biomolekularen Informationen, die diese Bilder liefern, in ein ML-Modell zu iibersetzen,
das fiir weitere Identifizierungen eingesetzt werden kann. Daher wurde eine
Bildvorverarbeitungspipeline entwickelt, um die Bildqualitét zu verbessern. AnschlieBend
wurden drei Kombinationen von ML-Modellen und Validierungsmethoden gepriift. Die
beste Klassifizierungsleistung wurde bei der Verwendung des vortrainierten ResNet50-
Netzwerks als Klassifizierungsmodell und der Kreuzvalidierung (Leave-one-patient-out)
erzielt. Die leistungsfdhigsten Modelle wurden genutzt, um innerhalb der CV-Schleife
nicht annotierte multimodale Bilder vorherzusagen. In den meisten Fillen lieferten diese
Klassifikationsmodelle (in der Schleife) stabile Vorhersagen fiir die nicht-annotierten

multimodalen Bilder. Obwohl diese Ergebnisse nicht validiert werden konnten und die



Zusammenfassung

Trainingsmenge recht klein war, war es dennoch moglich, ML-Modelle fiir die
automatische Diagnose von Brustkrebs zu erstellen. Die nicht-invasive Natur der nicht-
linearen Bildgebungsmodalititen ermdglicht es perspektivisch In-vivo-Untersuchungen
durchzufiihren, die ein risikoarmes Diagnoseinstrument zur Ergdnzung anderer Diagnose-

Methoden darstellen.
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ABSTRACT: The goal of sample-size planning (SSP) is to determine the

number of measurements needed for statistical analysis. This SSP is necessary >

to achieve robust and significant results with a minimal number of \
measurements that need to be collected. SSP is a common procedure for ":ﬂ;‘:""::"f
univariate measurements, whereas for multivariate measurements, like spectra

or time traces, no general sample-size-planning method exists. Sample-size 4
planning becomes more important for biospectroscopic data because the data 5 /
generation is time-consuming and costly. Additionally, ethical reasons do not
allow the use of unnecessary samples and the measurement of unnecessary
spectra. In this paper, a general sample-size-planning algorithm is presented
that is based on learning curves. The learning curve quantifies the
improvement of a cl for an increasing training-set size. These curves are fitted by the inverse-power law, and the
parameters of this fit can be utilized to predict the necessary training-set size. Sample-size planning is demonstrated for a
biospectroscopic task of differentiating six different bacterial species, including Escherichia coli, Klebsiella terrigena, Pseudomonas
stutzeri, Listeria innocua, Staphylococcus warneri, and Staphylococcus cohnii, on the basis of their Raman spectra. Thereby, we
estimate the required number of Raman spectra and biological replicates to train a classification model, which consists of
principal-component analysis (PCA) combined with linear-discriminant analysis (LDA). The presented algorithm revealed that
142 Raman spectra per species and seven biological replicates are needed for the above-mentioned biospectroscopic-
classification task. Even though it was not demonstrated, the learning-curve-based sample-size-planning algorithm can be

Learning curve _
generation

v

| Learning curve‘
\ fitting

applied to any multivariate data and in particular to biospectroscopic-classification tasks.

n almost all disciplines of science, statistics is utilized to

determine if a significant difference between different
groups exists. This determination is achieved by collecting
measurements from each group, and afterward statistical
methods are applied. To reach reliable and robust results, a
suitable number of measurements needs to be collected. The
number of necessary measurements for a certain significance
level is usually known as a sample size, and this sample size is
determined on the basis of already existing knowledge about
the samples or the e:iq:teriment."1 This information might be
deduced from pre-experiments or existing literature values.
The sample-size estimation becomes a critical issue for
biomedical studies, because high costs and ethical reasons
restrict the collection of unnecessary data. An example for
ethical reasons is that in a biomedical study involving patient
material, only a defined sample volume can be used for spectral
measurements. In this case the number of spectral measure-
ments is restricted by the approval of the ethics committee.
Therefore, sample-size planning (SSP) is necessary to decide
how many measurements are needed minimally to differentiate
between various groups in a significant manner. In the last few

A 4 ACS Publications — © 2018 American Chemical Society

decades, classical statistics was applied for sample-size
estimation for univariate measurements.”*

Sample-size planning for univariate data uses hypothesis
testing to predict a suitable sample size.””” This procedure is
usually called sample-size planning or power analysis. The
basic idea is to test whether the groups are significantly
different on the basis of the respective group means, and the
minimal number of measurements necessary to prove this
difference of means is calculated. A drawback of power analysis
is that previous knowledge of the statistical distribution of the
measurement values is required. The most prominent example
is the test of mean difference of two groups that are Gaussian
distributed. Maxwell et al.® introduced a formula for sample-
size planning based on the standardized difference of means
(or effect size). The effect size is a robust measure for
quantifying the significance of the mean difference. In this case,
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Figure 1. Raman-spectral data set. (a) Mean Raman spectra of bacteria. The preprocessed mean Raman spectra of six bacterial species were
calculated on the basis of the normalized and preprocessed Raman spectra of the bacterial species. (b) Hierarchy of the Raman-spectral data set.
The data set consists of six bacterial species: E. coli, K. terrigena, P. stutzeri, L. innocua, S. warneri, and S. cohnii. These species were cultivated in nine
independent biological replicates. In total, 2652 Raman spectra were measured. The biological replicates represent the independent measurements

in the Raman-spectral data set.

the sample size (1)) is defined for the significance level, a,
and the power of the test, 1 — f, as the following:

Wy Mgt Zian)
(@) = &
where d # 0 represents the effect size, and Z,_jand Z,_, are
the quantiles of the standard normal distribution.” This
formula provides a good approximation of the number of
measurements required to differentiate two groups in the case
of univariate data. Nevertheless, for multivariate data, this
formula is not applicable, as it is not clear how a univariate
standardized difference can be calculated. This mentioned
issue is in stark contrast with the intensive use of spectroscopic,
spectrometric, and other multivariate measurements for the
characterization and measurement of biomedical samples,
which have been commonly performed in the last few decades.
To mention a few, Raman spectroscopy has been used to
identify micmnrganisms,s*” predict cell ty'pes,'k” and detect
cancer areas.'*”"" Besides Raman spectroscopy, other multi-
variate measurement techniques have been used to characterize
biomedical samples. Among the techniques that are commonly
applied, mass spectmmetry,w nuclear-magnetic-resonance
(NMR) spectroscopy,”” and IR spectroscopy”’ are the most
utilized measurement techniques. Therefore, a different SSP
algorithm is needed that can deal with multivariate data sets.
There are only a few gublications that work on SSP algorithms
for multivariate data.””"** In all of them, the learning curve
(LC) is one of the cornerstones. The learning curve quantifies
the classification performance with respect to the training-set
size and characterizes the learning behavior of a classifier.
Mukherjee et al.** utilized learning curves to estimate the data-
set size required to classify microarray data sets. In their paper,
the inverse-power law was implemented to fit the learning
curves. Their procedure was demonstrated and tested for
several DNA-microarray data sets and binary-classification
tasks. A simulation-based study regarding SSP was performed
by Beleites et al.”* The necessary number of Raman spectra
was estimated for biomedical (multiclass)-classification tasks
on the basis of resampling.

In this paper, we introduce a general SSP algorithm for
multivariate data and in particular for biospectroscopic data.
This algorithm is constructed using mathematical methods that
are combined together to predict the minimum sample size
needed for successful group differentiation. Thereafter, the
classifier performance is extrapolated on the basis of this
predicted sample size. Although the methodology of the
presented algorithm is the same for all multivariate data,
different factors could influence the final sample-size
prediction. Examples of these influencing parameters are the
utilized experimental protocol or the selected parameters for
the data preprocessing. In biomedical studies, the data sets
additionally feature a hierarchical structure, which originates if
multiple measurements on samples from the same biological
replicate (e.g, samples from the same patient or cultivation
batch) are performed. This data structure leads to the fact that
spectral measurements within these replicates show a strong
connection that violates the statistical independence between
the measurements. Our algorithm incorporates this fact by
performing the statistical analysis on the highest level of the
data hierarchy. In this case, the statistical model is constructed
on the basis of a number of training replicates that are different
than the test replicates. This additionally ensures statistical
independence between the training and validation sets in the
applied cross-validation (CV).”*~>" Therefore, we imple-
mented a version of CV called leave-one-replicate-out cross-
validation (LORO-CV) for all classification tasks. This method
of CV represents a robust alternative to classical CV, where the
validation fold (or validation measurement) in classical CV is
replaced with all the measurements of a replicate. Nevertheless,
our SSP algorithm was designed on the basis of learning curves
to estimate the required number of measurements for different
hierarchical levels of the biological data (number of biological
replicates and number of single spectral measurements),
whereas the statistical independence was ensured by applying
LORO-CV. The test of this algorithm was carried out on the
basis of a biological Raman-spectral data set consisting of six
classes and nine biological replicates. This data set includes
classification problems of different difficulties because of the
similar and diverse bacterial species.
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Figure 2. Visualization of the SSP algorithm for the prediction of the required size of the training set of spectra. First, the LC is generated by
constructing a classifier on the basis of a training set of size n, where the maximum training-set size is N = 200. See the text for details on LC
generation. The obtained error rates are represented by red points, and the LC is fitted by the inverse-power law. This fit includes calculating and
optimizing the inverse-power-law parameters. These parameters are the learning rate, a; the decay rate, b; and the Bayes error, c. The last parameter
represents the final performance of a classifier, which is trained with an infinite training-set size. The model fitted by the inverse-power law is
plotted as a green line. Finally, the required training set is calculated on the basis of 95% of the Bayes error (nys,). Then, we fitted an inverse-power
law until nggy and checked the extrapolation performance by the root-mean-square error (RMSE) of the predicted area (blue line).

Bl MATERIAL AND METHODS

Raman-Spectra Data Set. In order to examine and
evaluate our sample-size-planning algorithm, Raman spectra of
bacterial species were utilized. This Raman-spectral data set
consisted of six bacterial species, Escherichia coli DSM 423,
Klebsiella terrigena DSM 2687, Pseudomonas stutzeri DSM
5190, Listeria innocua DSM 20649, Staphylococcus warneri
DSM 20316, and Staphylococcus cohnii DSM 20261, from
Deutsche Sammlung von Mikroorganismen and Zellkulturen
GmbH (DSMZ). All species were cultivated in nine
independent biological replicates. The species were cultivated
using Nutrition-Bouillon at 37 °C for 24 h. After cultivation,
the species were diluted with distilled water, washed three
times by centrifugation for 1 min at 10 844g (Hettich Rotina
380 R), and finally suspended in distilled water. The samples
were immediately prepared for the Raman measurements by
placing 1 uL of the suspension on nickel foil and air drying at
room temperature. For the measurements, a Raman micro-
scope (Bio Particle Explorer, rap.ID Particle Systems GmbH)
using a 532 nm solid-state frequency-doubled Nd:YAG laser
(LCM-s-111-NNP25, Laser-export Company Ltd.) was used.
The laser beam was focused through a 100X objective
(MPLFLN-BD, Olympus) on the nickel foil with a lateral
resolution below 1 gm, and the maximum laser power after the
objective was approximately 3 mW. A single-stage mono-
chromator (HES32, Horiba Jobin Yvon, grating of 920 lines)
dispersed the backscattered Raman light before its detection
with a thermoelectrically cooled CCD (DV 401_BV, Andor
Technology) resulting in a spectral resolution of approximately
8 cm™. In Figure 1a, the preprocessed mean spectra of the
bacterial species are shown, and the data hierarchy can be
found in Figure 1b. Within the considered Raman-spectral data
set, different classification difficulties were present, such as the

differentiation between S. warneri and S. cohnii species, which
belong to same genus (Staphylococcus), and the classification of
E. coli and L. innocua, which have similar genera. These
different difficulties together with the methods of data
preprocessing have an influence on final outcome of the
classification model (e.g, the classification accuracy).

Data Preprocessing. An essential part of the Raman-
spectral-data analysis is the spectral preprocessing. It aims to
reduce unwanted variations between different Raman spectra
and enhance the differences between different species. For the
Raman-spectral data set of bacteria, a common preprocessing
workflow was implemented. The bacterial spectra were
uploaded into the statistical programming language RA A
median filter was applied to remove cosmic spikes within the
data. Then, a wavenumber calibration was utilized to correct
the peak position.”” All Raman spectra were aligned between
240—3190 cm™". To exclude the background effects from the
raw spectra, we applied the iterative restricted least-squares
(IRLS) algorithm for baseline correction.’ The last two steps
of spectral preprocessing were spectral smoothing and
normalization. A Savitzky—Golay filter was utilized to smooth
the spectra.”’ The mean spectra after preprocessing can be
seen in Figure l1a. We can note that the differences between the
Raman spectra of the bacterial species are very tiny. In
particular, closely related bacteria show almost identical mean
Raman spectra. Therefore, the Raman spectra need to be
analyzed using advanced statistical methods. Here, we
implemented a simple classification model which suited the
high dimensionality of Raman spectra and did not have many
parameters to be optimized. This classification model is
described in the following sections.

Classification Model and Computations. In this paper,
a combination of principal-component analysis (PCA) and

12487 DOl 10.1021/acs.analchem.8b02167
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linear-discriminant analysis (LDA) was used for classifica-
tion.”” PCA is an unsupervised method aiming to reduce the
high dimensionality of the multivariate data by projecting the
data into a lower-dimensional subspace, whereas LDA is a
parametric classification method that can be easily applied. The
combination of PCA and LDA (PCA-LDA model) allows
choosing one free parameter (e.g, the number of principal
components, PCs). In our paper, we did the sample-size
planning for multiclass-classification tasks. Therefore, we
utilized the mean sensitivity to choose the optimal number
of PCs and predict the training-sample size. For validation,
leave-one-replicate-out cross-validation (LORO-CV) was
applied.” This validation method guarantees the independ-
ence of training and validation data within the evaluation of the
classification model. It can be explained easily by excluding one
replicate as a validation set, and the classification model is
constructed on the basis of the remaining replicates. Then, this
procedure is repeated for all replicates as a validation set. All
computational steps were carried out on the basis of in-house
written functions in RStudio version 3.4.2, and the R packages
baseline,”” mdatool,” oce,”* caret,”> and MASS***" were
utilized. These functions are available upon request.

B RESULTS AND DISCUSSION

In this section, we introduce our SSP algorithm and discuss the
obtained results for the Raman-spectral data set of bacteria.
Within biospectral data sets the number of independent
measurements is typically very small and represents the highest
level of the data hierarchy (Figure 1b). In our case the
independent measurements are the biological replicates or
cultivated batches of bacteria. In all the previous publications,
including our own,”*~”* SSP was done to estimate the required
number of single measurements, such as spectra or genes. In
this publication we present an SSP algorithm to estimate the
required number of independent measurements (biological
replicates) and single measurements (spectra or genes). The
proposed algorithm utilizes the learning curve to predict and
evaluate the performance of a classifier (Figure 2). The SSP
algorithm for the estimation of training-set size for both cases
(biological replicates and Raman spectra) works in three steps:
a learning curve (LC) is generated, the inverse-power law is
fitted to this curve, and the sample size is calculated on the
basis of this fit. These steps represent the mathematical
pipeline of our algorithm, which can be applied independently
of data source to predict the required training-set size for all
multivariate data. Qur SSP-algorithm workflow is shown in
detail in Figure 2 and described in the following section in
detail.

Sample-Size-Planning (S5P) Algorithm. The main part
of our SSP algorithm is the generation of the learning curve
(LC). Thereby, the LC describes the classification perform-
ance by quantifying how a classifier learns when the training-
set size increases. Here, the LC is implemented to represent
the empirical classification-error rate for different training-set
sizes, which can be accomplished by calculating the errors for
increasing the sequences of training-set sizes by progressive
sampling. In progressive sampling, one determines a maximum
size of the training set, N, and then the classifier is built for all
possible training sets whose sizes are smaller than the upper
limit, N. The obtained classifiers based on each training set are
tested on an independent data set. The independence between
the test set and training set is very important for retrieving
reliable and accurate classification results. In this paper we

implemented LORO-CV to ensure the independence between
the test and training sets. The classification quality is quantified
by the classification mean sensitivity, p,., in the multiclass
problems, whereas the sensitivity for a specific class represents
the true positive rate for that class.

In detail, the algorithm works as follows: First the number of
PCs is determined, which can be performed in multiple
ways.zg"‘ %39 Nevertheless, internal cross-validation is advisable
(Figure Sla). To generate a reliable LC, we applied the
following algorithm, which ensures the independence of the
training and testing data sets. We started by selecting a specific
replicate as a test set. Then, we sampled n spectra (or
replicates) from each of the six classes from the other replicates
and trained the classification model on the basis of that
sampling. We tested the model on the test data and calculated
the classification error on the basis of the mean sensitivity. This
sampling procedure was repeated 500 times, and the mean LC
for a given replicate as the test set was constructed. In Figure
Slc, the mean LC for a given replicate as a test set can be seen.
The classification error for a training sample of size n is defined
as

E(n) =1 - _usm(n)

The final estimate of the error rate (ER) is defined by the
median of the classification errors, E(n). By doing so, an
average LC is generated by calculating the median of all E(n)
for a given n. After generating the LC, we fit the LC by the
inverse-power law,”” which is defined as

IP(n) =axn’ +¢

In this formula, a, b, and ¢ are the inverse-power-law
parameters. Parameter a refers to the learning rate, whereas
b is the decay rate. Parameter ¢ represents the final
performance of a classifier, if it is trained with an infinite
training set. Parameter ¢ is also known as Bayes error. The fit of
the above-defined model is done by the nonlinear least-squares
algorithm. The model is approximating the inverse relation
between the classification-error rate, ER(n), and the training-
set size, n. This relation passes through three phases: First, a
small difference in training size improves the classification
performance strongly. Second, larger training sizes decrease the
classification-error rate, but the classification improvement is
smaller compared with that of the first phase. In the last phase,
the increase in training-set size is not significant anymore, and
the LC reaches its asymptotic behavior. The fitted IP model
and its parameters can be used to investigate the performance
of a model, so we can check the Bayes error and learning-
related parameters (e.g., learning rate and decay rate). Both of
these parameters are influenced by the standardization of the
experiment via a standard operating procedure (SOP), the data
preprocessing, the chosen model, and the difficulty of the
investigated classification task itself. In parameters a and b,
different effects are mixed, so we focus on the interpretation
and utilization of the Bayes error, c. In the framework of SSP,
we need to predict the required training-set size for a given
performance and check the extrapolation quality of the inverse-
power-law model. To do so, we estimate the training-set size of
Ngsy, which gives 95% of Bayes error.’’ This 95% of Bayes
error shows a 5% error range of the final performance of the
PCA-LDA model, which is given by parameter c. After
predicting training-set size of ngsy, we fit an LC with this
maximal training-set size of ngsy. The model obtained by the
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replicates to reach 95% of Bayes error. The fitted model based on seven replicates is very good, and the extrapolated region represents the LC

points nicely.

inverse-power law is implemented again to validate the
extrapolation performance. The evaluation of the fit within
the extrapolation region (e.g., sample size larger than ngg) is
achieved by comparing the root-mean-square errors (RMSEs)
in the extrapolation region and the training region (e.g., sample
size smaller than ng). This RMSE is given by

RMSE = \"‘I T [ER(n) — IP(n)’

m

where m is the number of points in the region of interest, and
ER(n) is the observed classification-error rate in the respective
region. In Figure 2, the red points represent the LC, whereas
the green and blue lines represent the model fitted by the
inverse-power law and the extrapolated inverse-power law on
the basis of the estimated training-set size of nygy, respectively.

Sample-Size Planning for Biological Replicates. In
order to study the influence of the utilized PCs on the training-
set-size prediction, we checked the SSP algorithm for three
ranges of PCs. Figure S1 illustrates the results of our algorithm
for 10, 20, and 30 PCs as maximal included PCs. Every column
of the plot represents 10, 20, and 30 PCs, respectively. Figure
S1a shows the classification results based on LORO-CV. Here,
we constructed and evaluated a classification model utilizing a
defined number of PCs. As an evaluation merit we utilized the
mean sensitivity over all species. On the basis of the maximal
sensitivity, the PC number was determined, which was utilized
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in further modeling. This method of PC determination
represents a fast and simple technique to select the number
of PCs, which is the only free parameter of our classification
model. Importantly this method secures the independence
between training and validation sets by utilizing LORO-CV.
Figure S1b shows the mean sensitivity for each replicate as test
set, and if these learning curves are averaged, Figure Sla
results. In Figure Slc, the generated LC by the PCA—LDA
model, was plotted together with the standard deviation.
Figure S1d shows the fit of the respective learning curves with
the inverse-power law. The prediction of training-set size can
be found in the last row of Figure SI. For 10 PCs, the
maximum mean sensitivity that can be reached by the PCA—
LDA model is 75.53%. In this case, the LC does not show
asymptotic behavior within the given number of replicates.
This can be observed in the fitted coefficients of the inverse-
power law. The coefficient b, which represents the learning, is
small. Therefore, the required number of replicates is very
large. Also, the Bayes error is small for this low-dimensional
model. Both of these facts indicate that the dimensionality of
this model is too low. Increasing the utilized number of PCs up
to 20, the highest mean sensitivity of PCA—LDA for the six
bacterial species is 81.4%. Here, the LC reaches its asymptotic
behavior, and the fitted inverse-power law reflects that. The
predicted number of replicates is seven biological replicates
which represents the training-size ngsy. If the number of PCs is
increased to 30 PCs, the maximum mean sensitivity is 81.89%,
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the inverse-power law. The evaluation of the training region and the extrapolated region leads to the assumption that the fitted model based on riggy,

= 142 suits the LC very well.

which is given for 30 PCs. On the basis of 30 PCs, the
generated LC is fitted well by the inverse-power law. It turns
out that 24 replicates are necessary for the PCA—LDA model
to reach 95% of its final performance. The error rate by using
24 replicates as a training set is around 12.61%.

To summarize the previous results, we compare the SSP
results for different ranges of PCs. If only 10 PCs are utilized,
the construction of a reliable model is not possible, because the
dimension is too small. That is why the learning is not finished
with 10 PCs. If the individual LCs for 20 PCs are compared,
some replicates with stationary behavior can be seen, whereas a
decrease in classification performance for some replicates can
be already seen if up to 30 PCs are incorporated. This might
originate from overfitting for these replicates. Also, the
improvement in classification results is not significant if we
increase the number of PCs up to 30. Therefore, the use of 20
PCs was considered to construct the PCA—LDA model for
both SSP tasks (biological replicates and spectra). However, in
the following, the proposed SSP algorithm is implemented
with some adjustment to fit SSP for biological replicates. This
adjustment involves two parameters: The first parameter is the
maximum training size, N, which is considered as N = 8
replicates. The reason behind that is that the bacterial data set
consists of nine biological replicates, and one of these
replicates should be the test set. The second adjusted
parameter is the maximum number of iterations. This number
is defined as the maximum number of combinations between
the training replicates, whereas the other parameters in the SSP
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algorithm are fixed as in the SSP description. The results of
SSP for the replicates are presented in Figure 3. The generated
LCs for different test replicates can be found in Figure 3a. In
most LCs, increasing the training-set size up to six replicates
improves the classification results, whereas this improvement
becomes smaller for seven and eight training replicates. In
Figure 3b, the boxplot of the previous LCs is shown. It is clear
that increasing the training size to more than six replicates does
not improve the classification results. In Figure 3c, the
generated LC and the inverse-power-law model can be seen.
In this figure, the averaged LC is represented by red points,
and the fitted inverse-power law is represented by the green
line.

It is observed that the fitted model suits the LC quite well,
and it converges very fast to Bayes error rate, c. As mentioned
earlier, Bayes error represents the final classification perform-
ance for an infinite replicate-training-set size, and in our
algorithm, Bayes error is employed for the prediction of
training-set size. This implementation leads to the assumption
that seven replicates are sufficient to construct a PCA—LDA
model. The error rate by using seven replicates is almost 19%,
which is 95% of the Bayes error rate. In Figure 3d, the
predicted training-set size is utilized to extrapolate the
performance of the PCA—LDA model. Here, the training
size fggy, = 7 replicates was considered as a maximum size to fit
the LC with the inverse-power law. The fitted models based on
ngse and the extrapolated inverse-power law are represented by
green and blue lines, respectively. These two regions were

DOI: 10.1021/acs.analchem.8b02167
Anal. Chem. 2018, 90, 1248512492

79



80

Analytical Chemistry

utilized to evaluate the extrapolation performance. This
evaluation was done on the basis of the RMSE for the training
and extrapolation regions. For the training region, the observed
RMSE is 0.2432%, which represents the RMSE of the fitted
model based on the training size ngsy = 7 replicates. For the
extrapolation region, the observed RMSE is 0.2453%. There-
fore, using seven replicates as a training set is enough to fit the
LC and to extrapolate the performance of the inverse-power
law well. Moreover, this number of replicates (ngsy = 7) is the
required training size to achieve 95% of the final performance
of a PCA—LDA model.

Sample-Size Planning for Raman Spectra. In the
following section, we present the results of our SSP algorithm
for the prediction of required spectrum-training-set size. In this
case, we used the same parameters of SSP for the replicates.
However, the PCA—LDA model was built on the basis of 20
PCs, and it was trained by training sets of the size n < 200
spectra per class and afterward tested by an independent test
replicate. Finally, this procedure was iterated 500 times and
repeated for all replicates as a test set. After that, the calculated
error rate for each training-set size of n < 200 were plotted in
Figure 4a. This figure shows the generated LC for each test
replicate, All LCs achieve their asymptotic behavior, which can
be observed as a decrease in the classification improvement for
training-set sizes of n > 100. Moving to Figure 4b, the averaged
LC is generated by the median of the individual LCs, whereas
the standard deviation of this LC is represented by the beige
area. In Figure 4c, the inverse-power law is implemented to fit
the averaged LC (Figure 4b). Here, the obtained fitted model
suits the LC very well, and it converges fast to Bayes error rate.
This Bayes error rate is used to predict the training-set size of
ngsy. In our case, 142 spectra per class are needed to train and
construct the PCA—LDA model, and the corresponding error
rate is 19.25%. Coming up to Figure 4d, the predicted training-
set size of nggy, is used as the maximum training size (N) to fit
the LC with the inverse-power law. On the basis of ngs = 142,
the training region of the fitted model fits the LC quite well
and extrapolates the performance of the inverse-power law
perfectly. However, to evaluate this performance, we compared
the RMSEs in the training and extrapolated regions. For the
training region, the RMSE is 0.0877%, which decreases to
0.0529% for the extrapolated region. Finally, the previous
results can be summarized as the following: the predicted size
fgsy = 142 spectra per class is required as a minimal training-
set size to construct a PCA—LDA model, and the classification-
error rate based on this training size represents 95% of the final
performance of the PCA—LDA model

B SUMMARY AND CONCLUSIONS

In our paper we provided a sample-size-planning (SSP)
algorithm for multivariate data and tested it for a Raman-
biospectroscopic data set. The core of this algorithm was
established on the basis of learning curves (LCs), which
describe the classification-error rate as a function of training-set
size. The proposed algorithm started by LC generation, and
then these LCs were fitted with the inverse-power law. The
parameters of this model were used afterward to predict the
training-set size of nysy. The final part of our algorithm was the
evaluation of training-set-size prediction, which was done on
the basis of the extrapolation of the inverse-power-law model,
and then we compared the observed RMSE in the training
region and the extrapolated region.

As mentioned above, the implementation of this algorithm
was tested on a standard Raman-spectral data set. This data set
consists of six bacterial species, which were cultivated in nine
independent biological replicates. Then, the collected Raman
spectra were uploaded into the statistical programming
language R and preprocessed in order to reduce unwanted
variations. After the preprocessing, we defined two SSP tasks
(SSP for biological replicates and SSP for spectra), and we
focused on presenting the SSP algorithm for biological
replicates. The main reason is that all previous studies
performed SSP for single measurements (spectra or genes),
and no SSP method for the prediction of training-set size for
biological replicates or patients exists. However, our algorithm
was designed to predict the training-set sizes for both tasks
(i.e., spectra and replicates).

The statistical part of the SSP algorithm is the following. A
combination of PCA—LDA and leave-one-replicate-out cross-
validation (LORO-CV) was implemented as the classification
model and evaluation method. This combination of PCA—
LDA and LORO-CV was used first to study the influence of
the number of principle components (PCs) on the prediction
of training-set size. Therefore, the SSP algorithm was checked
for three ranges of PCs ({1, 2, .., 10}, {1, 2, .., 20}, and {1, 2,
.y 30}); then, the selection of the number of PCs was made
according to the improvement in classification results for each
single test replicate and the mean sensitivity. We decided to
use 20 PCs to construct the PCA—LDA model for both SSP
tasks.

Applying the proposed algorithm determined that seven
biological replicates were required to achieve 95% of the final
performance of the PCA—LDA model. The final performance,
which was given by the Bayes error rate, was 18.67%, and the
classification-error rate by seven replicates was 19.01%. Finally,
we evaluated the performance of our prediction by fitting the
inverse-power law with ngg, = 7 replicates and then
extrapolating the performance of this fit. The obtained
extrapolation quality was very good, which is illustrated by
the RMSE values for the training and extrapolated regions.

After predicting the required number of biological replicates,
we implemented our SSP algorithm to estimate the required
number of spectra. Here, the parameters in the SSP description
were utilized. We generated the averaged LC and fitted this LC
with the inverse-power law. The obtained fitted model
approximated the LC quite well, and the final performance
of the PCA—LDA model was 19.13%. On the basis of this
performance, the predicted training-set size was 142 spectra
per class, and the classification mean sensitivity was 81.75%.
Again, the evaluation was carried out by comparing the RMSEs
of the extrapolated region and the training region. This
evaluation showed that the inverse-power-law model based on
sy = 142 was perfect for approximating the LC.

To conclude this work, the proposed SSP algorithm showed
very good performance in predicting the required training-set
sizes for both SSP tasks (spectra and biological replicates). By
our algorithm the sample size was predicted, which was
necessary for building a reliable and accurate PCA-LDA
model. The test of our SSP algorithm was performed for a
Raman-biospectroscopic data set, but the methodology can be
applied for any multivariate data set. The SSP method is
especially suitable for biomedical studies if the required
number of biological replicates and spectral measurements
need to be calculated. It should be noted here that the
methodology of our SSP algorithm is the same for both
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applications. The sample-size estimation must be dependent
on the experimental protocol, the whole preprocessing
pipeline, the analysis methods utilized, and the difficulty of
the classification task itself. Therefore, the sample-size estimate
is only valid for these conditions. Nevertheless, by our method,
it is possible to estimate a minimal required sample size for
these conditions, even though another data-analysis pipeline
would need fewer or more measurements. This complex
relationship between the whole data-analysis pipeline and the
sample-size estimation must be elucidated in further research.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.8b02167.

SSP for biological replicates (PDF)

Bl AUTHOR INFORMATION

Corresponding Author

*E-mail: thomas.bocklitz@uni-jena.de.

ORCID ©

Jurgen Popp: 0000-0003-4257-593%

Thomas Bocklitz: 0000-0003-2778-6624

Notes

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The financial support of the Leibniz association for the
LungMicrobiom project (SAW-2016-FZB-2) and funding from
the ScienceCampus “InfectoOptics” for the BLOODi project
are greatly acknowledged. Financial support by the BMBF and
the EU via the PhotoSkin project (FKZ 13N131243), funding
by the EU for HemoSpec (FP 7, CN 611682), and the support
of the BMBF for Intersept (FKZ 13N13852) are highly
acknowledged.

B REFERENCES

(1) Kadam, P.; Bhalerao, S. Int. J. Ayurveda Res. 2010, 1, 55—57.

(2) Suresh, K; Chandrashekara, S. J. Hum Reprod Sci. 2012, §, 7—13.

(3) Ott, L.; Longnecker, M. An introduction to statistical methods and
data analysis; Brooks/Cole: Belmont, 2010.

(4) Cochran, W. G. Sampling techniques; Wiley: New York, 1977.

(5) Hajian-Tilaki, K. J. Biomed. Inf. 2014, 48, 193—204.

(6) Maxwell, S. E.; Kelley, K; Rausch, J. R. Annu. Rev. Psychol. 2008,
59, 537—-563.

(7) Kelley, K.; Rausch, J. R. Psychol Methods 2006, 11, 363—385.

(8) Stdckel, S.; Kirchhoff, J.; Neugebauer, U.; Rosch, P.; Popp, J. J.
Raman Spectrosc. 2016, 47, 89—109.

(9) Read, D. S.; Whiteley, A. S. J. Microbiol. Methods 2015, 109, 79—
83.

(10) Walter, A.; Schumacher, W.; Bocklitz, T.; Reinicke, M.; Rosch,
P.; Kothe, E.; Popp, J. Appl. Spectrosc. 2011, 65, 1116—1125.

(11) Meisel, S.; Stockel, S.; Rosch, P.; Popp, J. Food Microbiol. 2014,
38, 36—43.

(12) Bocklitz, T. W.; Guo, S.; Ryabchykov, O.; Vogler, N.; Popp, J.
Anal. Chem. 2016, 88, 133—151.

(13) Hobro, A. J.; Kumagai, Y.; Akira, S.; Smith, N. 1. Analyst 2016,
141, 3756—3764.

(14) Neugebauer, U.; Bocklitz, T.; Clement, J. H.; Krafft, C.; Popp,
J. Analyst 2010, 135, 3178—3182.

(15) Chen, M,; McReynolds, N.; Campbell, E. C; Mazilu, M;
Barbosa, ].; Dholakia, K; Powis, S. J. PLoS One 2015, 10,
No. e0125158.

12492

(16) Desroches, J.; Jermyn, M.; Pinto, M,; Picot, F.; Tremblay, M.
A; Obaid, S.; Marple, E;; Urmey, K.; Trudel, D.; Soulez, G.; Guiot,
M. C,; Wilson, B. C,; Petrecca, K.; Leblond, F. Sci. Rep. 2018, 8, 1792.

(17) Zhao, J.; Lui, H.; Kalia, S.; Zeng, H. Anal. Bioanal. Chem. 2015,
407, 8373—8379.

(18) Vogler, N.; Bocklitz, T.; Subhi Salah, F.; Schmidt, C.; Brauer,
R.; Cui, T,; Mireskandari, M.; Greten, F. R.; Schmitt, M.; Stallmach,
A.; Petersen, 1; Popp, J. J. Biophotonics 2016, 9, 533—541.

(19) Kumar, R; Sripriya, R; Balaji, S.; Senthil Kumar, M.; Sehgal, P.
K. J. Mol. Struct. 2011, 994, 117—124.

(20) Castro, C. M.; Ghazani, A. A;; Chung, J.; Shao, H,; Issadore, D.;
Yoon, T. ].; Weissleder, R.; Lee, H. Lab Chip 2014, 14, 14-23.

(21) Orphanou, C. M. Forensic Sci. Int. 2015, 252, el0—el6.

(22) Mukherjee, S.; Tamayo, P.; Rogers, S; Rifkin, R; Engle, A
Campbell, C.; Golub, T. R.; Mesirov, J. P. J. Comput. Biol. 2003, 10,
119-142.

(23) Figueroa, R. L.; Zeng-Treitler, Q.; Kandula, S.; Ngo, L. H. BMC
Med. Inf. Decis. Making 2012, 12, 8—8.

(24) Beleites, C.; Neugebauer, U.; Bocklitz, T.; Krafft, C.; Popp, J.
Anal. Chim. Acta 2013, 760, 25—33.

(25) Guo, S.; Bocklitz, T.; Neugebauer, U.; Popp, J. Anal. Methods
2017, 9, 4410—4417.

(26) Soneson, C.; Gerster, S.; Delorenzi, M. PLoS One 2014, 9,
No. el00335.

(27) de Boves Harrington, P. TrAC, Trends Anal. Chem. 2006, 25,
1112—-1124.

(28) R Core Team. R: A Language and Environment for Statistical
Computing; R Foundation for Statistical Computing: Vienna, 2017.

(29) Bocklitz, T. W.; Dorfer, T.; Heinke, R.; Schmitt, M.; Popp, J.
Spectrochim. Acta, Part A 2015, 149, 544—549.

(30) Liland, K. H.; Almoy, T.; Mevik, B. H. Appl. Spectrosc. 2010, 64,
1007—-1016.

(31) Savitzky, A.; Golay, M. J. E. Anal. Chem. 1964, 36, 1627—1639.

(32) Liland, K. H; Mevik, B-H. R Package ‘baseline’: Baseline
Correction of Spectra; CRAN, 2015.

(33) Kucheryavskiy, S. R Package ‘mdatools’: Multivariate Data
Analysis for Chemometrics; CRAN, 2017.

(34) Kelley, D.; Richards, C. R Package ‘oce’:
Oceanographic Data; CRAN, 2017.

(35) Kuhn, M. R Package ‘caret’: Classification and Regression
Training; CRAN, 2017.

(36) Ripley, B. R Package ‘"MASS’: Support Functions and Datasets for
Venables and Ripley's MASS; CRAN, 2017.

(37) Venables, W. N.; Ripley, B. D. Modern Applied Statistics with S;
Springer: New York, 2002.

(38) Pavillon, N.; Hobro, A. J.; Akira, S.; Smith, N. L Proc. Natl.
Acad. Sci. U. 8. A. 2018, 115, E2676—e2685.

(39) Lloyd, G. R;; Orr, L. E; Christie-Brown, ].; McCarthy, K.; Rose,
S.; Thomas, M.; Stone, N. Analyst 2013, 138, 3900—3908.

(40) Heberger, K.; Kemény, S.; Vidoczy, T, Int. J. Chem. Kinet. 1987,
19, 171—-18.

Analysis of

DOV 10.1021/acs.analchem.8b02167
Anal. Chem. 2018, 90, 12485-12492

81



82

Supporting Information for:

Sample size planning for multivariate data: a Raman
spectroscopy based example

Nairveen Ali*¥, Sophie Girnus®, Petra Rosch®, Jiirgen Popp®* *£, and Thomas Bocklitz* ¥

¥ Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University, Helmholtzweg
4, D-07743 Jena, Germany

¥ Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Stra3e 9, D-07745 Jena, Germany
" Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, D-07747 Jena, Germany
* InfectoGnostics, Forschungscampus Jena, Philosophenweg 7, D-07743 Jena, Germany

" Corresponding Author: thomas.bocklitz@uni-jena.de



List of Publications

Max PCs | 10 PCs [ 20 PCs 30 PCs
P o o
a @ |
3 L @ — —oees.
s e - PUDUUEE S @4 USRSt s —eess
ot z o -
5 (52 P o Pel s
8 H ya g S, £ 57/
€ g / b / g /
3 < | b4 / 3
a > 5 < % 4 5 e
c
H H
o o o | o
< Sensitivity=0.7553 ° Sensitivity=0.814 ° Sensitiity=0.8189
+ Number of PCs=10 Number of PCs=20 Number of PCs=30
k3 o - )
2 T T T T 3 T T T 3 T T T T T
8 2 4 6 8 10 5 10 15 20 0 5 10 15 20 25 30
6 Nurmber of principal components Number of principal components
3 E o |
S u o | 3
© o c | ©
g i
Ea |z 54 FIN z o
£ £ 5+ E o~
sS4 |2 Ei £ s
£t 9 E o £ o ©
o = 3 g 3 - 5 =
Q= g g A :
b = i3 g s o
o3 - | < | « |
=g 3 3 S
T £ . o o
= 'E ° T T T T ° T T S T T T T T T
w
a o 2 4 6 8 10 5 10 15 20 o 5 10 B 20 2
= Number of principal components Number of principal components Number of principal components
w
/] 8 i
2 ° 3
S 3 8 3
:D 2 s e B | s 4"
. g
£ S8 . S [ .
= g o . g g . 5 g
@® B . ° .- .
9] 8 ] 0
°
% @ e | =
S S
a T T T T T T T T T T T T T T T T T T T
c 2 3 4 5 8 7 8 2 3 a4 s & T 8 2 3 a4 5 8 7 8
@
(L) Number of training replicates Number of training replicates Number of training replicates
= ~f
[ B Learning curve & |9\ ™ Leaming curve - ® Leaming curve
2 9 | Fitted mode! s B Fitted model 34 B Fited model
8_ o B Bayes error @ Bayes error ° @ Bayes error
o 4
o s
2] g 84 i 0428 | |8 8 =0.3214
[ 5 ° 5 5
dzz 5. 5 8 £ .1
— (O i | -
= = ° 9 | S
-'§ ° s S
o | ~~—— a
S @
=] T T T T T T T T T T T T = 5 T T T T T
S 2 3 4 5 & T 8 z 3 4 s & T 8 2 3 4 5 & T 8
£
Hreg Number of replicates Number of replicates. Number of replicates
| 31758 replicates 7 replicates 24 replicates
1Z 95
% ER=9.81% ER=19.06% ER=12.61%

Figure SI. SSP for biological replicates and determination of PCs. a) The SSP algorithm was checked for different ranges of PCs
{1,2,...,10}{1,2,...,20} and {1,2, ...,30}). The choice of the number of PCs was done due to the highest classification mean sensitivity,
which was the maximal number of PC in the respective range. This number of PCs was utilized to build a PCA-LDA model with different
numbers of training replicates. b) Here, the LCs for different test replicates are shown. All biological replicates show improvement in the
classification results by increasing the number of PCs to 20. After that the classification improvement becomes less significant and
sometimes decreases for instance for replicate 8. ¢) The generated average LC with standard deviation using 10, 20, and 30 PCs. d) The
fitted models by inverse power law. For 10 PCs we can note that the classification performance still improves by increasing the number of
training replicates. This explains the reason behind the non-convergence between the LC and Bayes error. In this case, the required
number of training replicates is too high. At least 31758 biological replicates are needed to obtain classification mean sensitivity
of 90.19%. This large estimate means that dimensionality of the model is too small for the given task. By using 20 or 30 PCs, the LCs
converge faster to its asymptotes (Bayes error ¢). Only 7 biological replicates were required to build a PCA-LDA model with 20 PCs and
classification mean sensitivity around 81%. This number increased to 24 biological replicates when we utilized 30 PCs.
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Abstract: Analyses of multifactorial experimental designs are used as an explorative technique
describing hypothesized multifactorial effects based on their variation. The procedure of analyzing
multifactorial designs is well established for univariate data, and it is known as analysis of variance
(ANOVA) tests, whereas only a few methods have been developed for multivariate data. In this
work, we present the weighted-effect ASCA, named WE-ASCA, as an enhanced version of ANOVA-
simultaneous component analysis (ASCA) to deal with multivariate data in unbalanced multifactorial
designs. The core of our work is to use general linear models (GLMs) in decomposing the response
matrix into a design matrix and a parameter matrix, while the main improvement in WE-ASCA is
to implement the weighted-effect (WE) coding in the design matrix. This WE-coding introduces
a unique solution to solve GLMs and satisfies a constrain in which the sum of all level effects
of a categorical variable equal to zero. To assess the WE-ASCA performance, two applications
were demonstrated using a biomedical Raman spectral data set consisting of mice colorectal tissue.
The results revealed that WE-ASCA is ideally suitable for analyzing unbalanced designs. Furthermore,
if WE-ASCA is applied as a preprocessing tool, the classification performance and its reproducibility
can significantly improve.

Keywords: ASCA; unbalanced experimental design; general linear model; weighted-effect coding;
biomedical Raman spectra

1. Introduction

An essential part of statistical analysis is the extraction of informative features that
describe a specific phenomenon based on a limited number of samples. These samples
are mostly collected by conducting either experiments or surveys [1,2]. In survey studies,
a large number of individuals are involved to collect information without changing the
existing conditions of the studied phenomenon. The other type of sampling is to conduct an
experiment that tests the effect of one, or more than one, treatment on selected individuals.
This experimental approach is widely applied in the fields of the physical and life sciences.
In such studies, an experiment is carefully designed so that the obtained results are objective
and valid [3,4]. Here, the term “design of experiment” (DoE) refers to statistical techniques
that deal with planning and analyzing controlled tests, which investigate the effect of the
studied treatments on selected individuals. There are several techniques for designing
the experiments and one of the most common designs is the factorial design [5]. Therein,
experiments are planned to extract information based on investigating the effect of at least
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two treatments in one experiment [6]. These treatments are termed the experimental factors,
and the combinations of these factors define their interactions.

Within biomedical studies, e.g., testing the efficiency of a new drug or checking a new
technique for disease detection, the effect of experimental factors and their interactions
are translated into different types of variations that can be categorized into two main
groups: informative (or interesting) variations and disturbing (or unwanted) variations.
The informative variations highlight the differences between different states like sample
properties or disease states. In contrast, disturbing variations may be assigned to systematic
perturbations within the experiment, which might negatively affect the results of further
analyses. The later variation is very difficult to be controlled, and it mostly arises when
many devices or different individuals are considered to perform an experiment. In this
discourse, multifactorial analysis methods were introduced as powerful techniques to
understand and analyze the variations within the factorial experimental design. The basic
idea here is built upon hypothesis testing of more than two groups referring to factor
levels. These factorial analysis tests were established quite well for univariate data, and
they are known as analysis of variance (ANOVA) tests [1,7,8]. In one of their classical
versions, namely the one-way ANOVA test, the effect of one factor on selected observations
is studied based on testing the mean differences between the factor levels. The multi-way
ANOVA tests search in a multifactorial design for significant effects based on checking the
differences between the levels of each factor and each factor interaction. However, if the
response data set is described by multiple features, only a few methods of multifactorial
design were developed, which typically feature some limitations. For instance, in the
basic form of multivariate-ANOVA (MANOVA) tests, an ANOVA test is performed for
several response variables, which allows for studying the effect of one or more than one
factor on these response variables [9,10]. The main restriction here is that performing
MANOVA tests require a large number of measurements, e.g., sample size, compared
to the number of variables (features). Such data are often not available, especially in
modern technologies which introduce high dimensional measurements like spectra or
images. Therefore, combining principal component analysis (PCA) models with ANOVA
tests provided a solution to deal with the high dimensionality of response matrices in
multifactorial designs [11]. The PC-ANOVA starts by fitting the response matrix with a
PCA model, then the obtained principal components (PCs) are analyzed using ANOVA
tests. Although the PC-ANOVA does not have the limitation respecting the sample size
and number of response variables, some information related to factor contributions might
be missed during the PCA projection. Besides, ANOVA simultaneous component analysis
(ASCA) was presented as a powerful tool to deal with multivariate data in multifactorial
designs [12,13]. In brief, ASCA methods decompose the response matrix into different
effect matrices, which characterize the contribution of each effect in the designed model.
These contributions are measured by the amount of variance explained by each effect.
Thereafter, ASCA checks which effect contributes significantly to the considered model,
and finally, the dimensions of each effect matrix are reduced based on a PCA model or a
SCA model [14,15]. Later improvements of ASCA were introduced based on scaling the
response matrix first, then applying the classical ASCA pipeline [16]. In this reference, it
was shown how the considered scaling approach can affect the interpretation of the ASCA
results. However, the proposed design of ASCA and its improvements are valid only for
balanced designs, in which the levels of each factor have equal numbers of measurements.
This constraint creates an additional limitation to the application area of ASCA. Thus, the
ASCA+ was introduced later as an extension of ASCA to deal with unbalanced designs [17].
It utilizes general linear models (GLMs) to decompose the response matrix into two main
terms: The estimated response matrix and the residual matrix, which refers to the estimation
error [8,17]. Within ASCA+, the levels of each effect are coded using the deviation coding
that has a main advantage concerning the variance maximization produced if the classical
ASCA is applied on unbalanced designs [18].
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In the paper, we review the implementation of ASCA and ASCA+ in unbalanced
designs, and we introduce an updated extension of ASCA based on weighted-effect (WE)
coding as a powerful tool to deal with these unbalanced designs. This WE-coding is a
type of dummy coding that offers an attractive feature in which the sum of all level effects
of a categorical variable is equal to zero [19,20]. Additionally, the results of WE-coding
are identical to those obtained by deviation coding in balanced designs. The new ASCA
extension, named WE-ASCA, substitutes the deviation coding of the design matrix in the
ASCA+ method by the WE-coding in order to estimate the contributions of experiment
effects. The performance of WE-ASCA was evaluated based on a Raman spectral data
set of 47 individual mice for two different applications. In the first task, we analyzed the
complex multifactorial design presented within the Raman data set using WE-ASCA, and
we compared its results with the obtained ones by ASCA and ASCA+. Thereafter, the WE-
ASCA was implemented as a preprocessing technique to improve the tissue classification.
This was accomplished by applying the WE-ASCA to exclude disturbing variations from
the training set. Later, a classification model was constructed using the new training
set only, i.e., without disturbing variations, while the classification results based on WE-
ASCA were compared with those obtained by the same classifier trained without using
WE-ASCA-based preprocessing.

2. Results

Two applications of WE-ASCA are demonstrated in this section based on an unbal-
anced multifactorial design of a Raman spectral data set comprising 387 colorectal tissue
scans that were collected from 47 mice. Within this study, the activity of the P53 gene (active
+, inactive -} and the mice gender (male, female) were recoded while the Raman spectra of
each scan were annotated as different tissue “types” representing normal, hyperplasia (HP),
adenoma, and carcinoma tissue. Later, the biological variations of these colorectal tissues
extracted from mice rectum or colon were evaluated based on the acquired Raman spectral
scans [21]. In the presented work, a mean spectrum per tissue type was calculated resulting
in 485 Raman spectra acquired from 387 scans. The number of mean spectra and number
of scans differ because in one scan multiple tissue types can be present, yielding a higher
number of mean spectra per scan. For example, a scan may contain cancer tissue and
normal tissue, leading to two mean spectra for this scan. Figure 1 depicts the mean spectra
of the tissue types beside the design of our experiment. Therein, the factors exhibit the
sample location, the mouse gender, and the activity of the P53 gene. Notably, the number
of spectra within the levels of each factor is different; thus, the introduced WE-ASCA is
ideal for analyzing this unbalanced design.

In the following, the contributions of experimental factors in addition to their interac-
tions are estimated based on the classical ASCA and its extensions ASCA+ and WE-ASCA.
Then, an evaluation for the variance explained by each effect was performed. In the second
subsection, the WE-ASCA is applied as a preprocessing technique to assess its performance
in improving the classification of colorectal tissues.

2.1. A Comparison between Analyses of Multifactorial Design Using ASCA, ASCA+
and WE-ASCA

Since 47 mice were included to perform this study, an additional variation connected to
the biological differences between mice might be produced. We added therefore another fac-
tor featuring the individuals (mice) contribution to the experimental design. Consequently,
the multifactorial model that describes the considered experiment was built upon the
individual factor with 47 levels indicating the mice, the activity of the P53 gene, the mouse
gender, and the sample location (colon or rectum) in addition to interactions between the
last three factors. This mathematical model can be formulated as:

X = My + Conlndividual + Con[.ocation + CO“PSS + CO“Gender + CO“Loction:PS.’: + ConLocation:Gender + CCmPS3:(_“,ende|- +E, (1)
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where X € R#85%6% ig the Raman spectral matrix, My denotes a matrix in which mean
Raman spectra with respect to the wavenumbers are oriented in rows, and Con/ represents
the matrix of an effect f. Based on this model, we evaluated the results of classical ASCA
and its extensions ASCA+ and WE-ASCA using the obtained percentages of variances.
As it is displayed in Table 1, the residual matrix of all analyses introduced the largest
percentage of variance while the individual factor produced the largest factor contribution
among all other effects. Here, the percentages of variance explained by the individuals are
37.97%, 33%, and 33.94% when ASCA, ASCA+, and WE-ASCA are applied, respectively.
In contrast, the remaining factors and their interactions showed quite small contribu-
tions to the overall variance if any of the three multifactorial analyses were implemented.
Nevertheless, the sum of percentages of variances by ASCA, ASCA+, and WE-ASCA is
108.62%, 93.3%, and 96.01%, respectively. This means that the classical ASCA maximized
the effect contributions while the ASCA+ analysis minimized these contributions; however,
the WE-ASCA analysis introduced the best estimations of effect contributions among the
other analyses.

Normal (219)
HP (63)
* Tissue type -
Raman spectral data set of colorectal tissues Adenoma (150)
(47 mice, 387 scans) P—
é W Adenoma M Hp ]
@ Carcinoma @ Normal
5 \ Colon (170)
5 8 i * Sample location -[
] ° H Rectum (315)
£z
§ s -(234)
* ﬁ The P53 gene ~[
g . +(251)
s T T :
400 600 800 1000 1200 1400 1600 1800
Wavenumbers/cm ' Female (284)
* Mouse gender
I — Male (201)

Figure 1. An overview of the experimental design of the Raman spectral data set. The studied data set consists of 47 mice

and 387 scans that were collected from four different tissue types. The means spectra of these tissue types are shown in the
left side. In this experiment, three factors were investigated: the activity of the P53 gene (active and inactive), the mouse
gender, and the sample location (colon and rectum). It is observed that the number of scans of factor levels is different.

Table 1. The variance explained by the experimental effects in percentage (%) using ANOVA-simultaneous component
analysis (ASCA), ASCA+ and WE-ASCA. A value of zero represents a percentage smaller than 1079,

Location:  Location: P53:

Effect Individual Location P53 Gene Gender P53 Gender Gender Residuals Sum (%)
ASCA 37.96 147 1.07 1.03 0.25 0.28 0.94 65.06 108.62
ASCA+ 33.00 0.53 0 0 0.19 0.18 0 59.38 93.3
WE-ASCA 33.94 0.61 0 0 0.20 0.19 0 61.07 96.01

The obtained results in Table 1 show that only the individual factor and the sample
location in addjition to its interactions with the P53 gene and the mouse gender contributed
to explain the variance in the considered design. To interpret the inner variance of these
effects, a sperate PCA model was fitted to each of previous effect matrices, then the obtained
PCA results were summarized in Table 2 and Figure 2. The column named “all data” in
Table 2 shows the percentages of variance explained by the first two PCs if the spectral
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matrix X was mean centered and projected by a PCA model. These two PCs explained
around 57.72% of the overall variance. For the PCA sub-model of the individual effect and
the sample location, the three multifactorial analyses estimated approximately the same
percentage of variance by the first two PCs. Therein, the first two PCs of the individual sub-
models explained between 53.68% and 55.57% of the variance presented in the individual
effect matrix, while the first PC estimated almost the whole variance of the sample location
effect. Moving to the interaction effects, the first PC could describe almost 100% of the
effect’s variance if ASCA+ and WE-ASCA were applied. But this variance estimation was
different in the case of classical ASCA, where the first PC explained around 3% variance
less of this interaction effect. In Figure 2, the score plots of the PCA sub-models extracted
from the effect matrix of the sample location and its interaction with the P53 gene and
mouse gender are presented. The points in this figure depict the sum of the contribution of
each effect and the projection of the residual matrix on the loadings obtained by the PCA
sub-models (see [22] for more details). The bold points represent the group means and the
ellipses are a representation of the covariance matrix. The WE-ASCA here shows slightly
better separation between the group means in comparison to the results obtained by the
ASCA and ASCA+.

After calculating the effect contributions and the PCA sub-models, we determined
which effects contributed significantly to the experimental design using both ASCA exten-
sions, i.e., ASCA+ and WE-ASCA, based on the described permutation test with N = 1000
iterations. The obtained p-values p(f) by these tests were combined and presented in
Table 3. Whether ASCA+ or WE-ASCA are applied, the individual factor and the sample lo-
cation factor caused a significant effect in the design of our experiment. Here, the obtained
p(f) of the individual factor is almost zero by both analyses, while the p(f) of the sample
location is 0.021% and 0.034% when WE-ASCA and ASCA+ are applied, respectively.

: =
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31 £ 9 5 0.00025
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- o~ ~ ~ Sola AR
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Figure 2. The score plots of first two principal components (PCs) of principal component analysis (PCA) sub-models using
ASCA, ASCA+ and WE-ASCA. The WE-ASCA analysis provides better separation between the group means in comparison
to the results obtained by the classical ASCA or its extension ASCA+.
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Table 2. The percentage (%) of variance explained by the first two principal components of the PCA
models. The mice data set and effect matrices obtained by ASCA, ASCA+, and WE-ASCA are fitted
with a PCA model.

Effect All Data  Individuals Location Lo«;)ast;on: Lg;igz::
ACA bt ma a0 2w a7
R
o f9E 83 Ep B w W

Table 3. The obtained p-values p(f) based on applying the permutation test on the results of ASCA+
and WE-ASCA analyses.

Effect Individuals Location Location: P53 Location: Gender
(f) ASCA+ 0.000 0.034 0.399 0.453
p WE-ASCA 0.000 0.021 0.383 0.424

To conclude, the WE-ASCA improved the analysis of unbalanced multifactorial design
within the considered Raman data set. This improvement was detected by comparing the
sum of explained variance obtained by the classical ASCA and its extension ASCA+ with
the results of the presented WE-ASCA. The analysis of this experiment yielded that the
effect of the individual factor produced the highest variation and the most significant effect
within the studied data set.

2.2. A WE-ASCA as Preprocessing Technique in Classification Models

The goal of this subsection is to assess the performance of the ASCA analyses as
a preprocessing technique. Therein, the WE-ASCA was implemented within the cross-
validation as a preprocessing tool in order to exclude disturbing variations. In our work,
a leave-one-mouse-out cross-validation was performed to check the results of two classi-
fiers, namely the combination of a principal component analysis with a linear discriminant
analysis (PCA-LDA) and the combination of a partial least square regression with a linear
discriminant analysis (PLS-DA). The classification and validation procedure starts by fixing
spectra of a specific mouse T; : i = 1, 2, ..., 47 as a test set and training the classifiers
using the Raman spectra of the remaining mice, e.g., X(—T;). This procedure is iterated
until spectra of all mice are predicted once while the WE-ASCA is always applied on the
training set of each cross-validation iteration (see Figure 3). It was shown in Section 2.1 that
the individual factor produced the highest percentage of variance, which might negatively
affect the classification results. Therefore, a new training set Xasca(—T;) is estimated
by excluding the variation of these individuals, then the training set Xasca (—T;) can be
defined as:

Xasca(—T;) = X(~T;)—Conngividuat (—T1); (i =1,2,...,47), 2

where Conpygividual (—7T;) denotes to the individual effect matrix obtained by applying
the WE-ASCA on X(—T;). Using Xasca (—T;) and X(—T;), the PCA-LDA model and PLS-
DA model are constructed. Then the tissue labels of each scan are predicted by both
classifiers.
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Figure 3. Overview of classification pipelines using WE-ASCA as a preprocessing step. Herein,
a leave-one-mouse-out cross-validation (LOMO-CV) is implemented, while WE-ASCA is performed
for each iteration within the CV loop. We can see that the variation of mean spectra after applying
the WE-ASCA is smaller than the variation of mean spectra of the tissue types without preprocessing
the spectral data. Based on training sets with or without applying WE-ASCA as preprocessing step,
a PCA-LDA and PLS-DA are constructed, and their performance was determined.

The previous procedure was tested on four classification tasks, and the results are
presented in Figure 4. The columns of this figure describe the results of PCA-LDA and
PLS-DA models while the rows show the cross-validation results of each task for a different
number of PCs or latent variables. If an LDA was trained on Xasca (—T;), the standard
deviation and the mean sensitivity were presented by the yellow regions and the yellow
lines. In the other case, the blue regions and blue lines indicate the standard deviation
and the mean sensitivity of LDA models constructed by X(—T;) without preprocessing by
WE-ASCA. In Figure 4A, the classification means sensitivities of PCA-LDA and PLS-DA
are presented in order to differentiate between the scans of normal, HP, adenoma, and
carcinoma tissues. It is observed that both classifiers produced better results when they
were trained by the Xagca (—T;). Here, the maximum mean sensitivity of the PCA-LDA
model trained on Xasca (—T;) is 50.67%. If the same classifier was built on the training
set X(—T;), the mean sensitivity decreased to 42.93%. Constructing a PLS-DA model on
a Xasca(—Ti) or on X(—T;) presented almost the same mean sensitivity, but it showed
narrower standard deviation regions. For classifying adenoma and carcinoma tissues, it is
clear in Figure 4B that using the WE-ASCA in preprocessing Raman spectra improved the
LDA performance. While the maximum mean sensitivity of PCA-LDA and PLS-DA with-
out implementing the WE-ASCA was 62.56% and 66%, respectively, the maximum mean
sensitivity of PCA-LDA and PLS-LDA based on the training sets Xasca (—7T;) increased to
67.98% and 68.47%, respectively. Moving to Figure 4C, which represents the classification
results of the three suspicious tissues, WE-ASCA significantly improved the classification
results, which can be observed as an increase in the mean sensitivity and a decrease of the
standard deviation of PCA-LDA and PLS-DA models if they are trained by Xasca(—T;).
In this case, the maximum mean sensitivity of PCA-LDA and PLS-LDA models increased
at least 5% if they are constructed on the training sets Xasca (—7;). The last classification
task aimed to differentiate between normal tissues and tumor tissues combining carcinoma
and adenoma spectra in one class. The obtained results are presented in Figure 4D. Both
classifiers provided almost the same maximum mean sensitivity based on the training
sets Xasca (—T;) and X(—T;). However, training the classification models on Xasca (—T;)
decreased the standard deviation and required less latent variables for constructing PLS-
LDA models. Nonetheless, utilizing WE-ASCA in preprocessing Raman spectra enhanced
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the results reproducibility of classification models. This reproducibility improvement is
clearly seen in Figure 4 as narrower variation regions when the LDA models were trained
by the Xasca (—T;). Here, the standard deviations of both classifiers built on Xasca (—T;)
decreased significantly compared to the standard deviations of the same models trained by
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Figure 4. A comparison between the classification results of principal component analysis with a linear discriminant
analysis (PCA-LDA) and partial least square regression with a linear discriminant analysis (PLS-DA) models based on
leave-one-mouse-out cross-validation. Each classifier was trained twice with and without applying WE-ASCA-based
preprocessing. The blue lines and the blue regions show the mean sensitivity and the standard deviation of a classifier
constructed on the spectra without applying WE-ASCA on the training set. The yellow lines and the yellow regions depict
the mean sensitivity and the standard deviation of a classification model trained on training sets that were preprocessed
using WE-ASCA. The elimination of individual variations based on WE-ASCA improved the classification performance,
and it significantly reduced the variance within the cross-validation results: (A) The maximum mean sensitivity for the
differentiation between the scans of normal, HF, adenoma, and carcinoma tissues is 50.67%, and it was reached when
training a PCA-LDA model on spectra processed by WE-ASCA. (B) For the classification of adenoma and carcinoma tissues,
the maximum mean sensitivity of PCA-LDA (PLS-DA) is 67.98% (68.47%). These results were also achieved if the training
sets were processed based on the WE-ASCA. (C) WE-ASCA-based preprocessing improved the differentiation between
the three suspicious tissues. The maximum mean sensitivity of PCA-LDA model and PLS-DA are 49. 85% and 51.09%,
respectively. (D) The results of differentiating the normal and tumor tissue. While, training an PCA-LDA model with
or without spectra processed by WE-ASCA provided almost the same classification results, training a PLS-DA model on
spectra processed by WE-ASCA improved the mean sensitivity and decreased thestandard deviation.
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Overall, the WE-ASCA-based spectra al preprocessing allowed us to exclude the dis-
turbing variation from the training data set, and it significantly improved the classification
performance. This improvement can be detected as an increase in the classification mean
sensitivities and a reduction of the variance in the cross-validation results. Furthermore,
the WE-ASCA-based spectral preprocessing required a smaller number of principal com-
ponents (or latent variables) to build the classification models since the data distortion in
the training data set was eliminated.

3. Discussion

The weighted-effect ASCA (WE-ASCA) was introduced as a new extension of the
classical ASCA to analyze multivariate data in unbalanced multifactorial designs. The core
of this WE-ASCA is to use the weighted-effect (WE) coding in designing model matrices of
GLMs instead of dummy coding and deviation coding considered in designing schemes of
classical ASCA and its extension ASCA+, respectively. The main advantage of implement-
ing the WE-coding is that the sum of all level effects of a categorical variable in the design
matrix is equal to zero for unbalanced designs, which is not the case by the other coding
schemes. Also, the WE-coding offers a unique estimation of the effect of a specific variable
because it always codes a variable with « levels by & — 1 columns within the design matrix.
The described advantages convinced us to update the coding scheme utilized in the design
matrix of ASCA+ with the WE-coding. The response matrix then can be estimated easily
by a general linear model and using the new balanced design matrix and the parameter
matrix. This estimated response can be decomposed linearly as different effect matrices
representing the experimental factors and their interactions. Besides, the significant effects
in a particular design are determined based on permutation tests while the dimensions of
the effect matrices are reduced using PCA.

Using a Raman spectral data set consisting of four colorectal tissue types that were
collected from 47 mice in 387 scans, two possible applications of WE-ASCA were checked.
Here, the data set was acquired with respect to four factors describing the experimental
design. These factors are the different individuals with 47 levels referring to the mice, the
activity of the P53 gene, the mouse gender, and the location of samples (colon or rectum).
In the first application, we aimed to understand and analyze the design of our experiment
in addition to determining which of experimental factors contributed significantly to the
considered experiment. This was achieved by applying ASCA, ASCA+, and WE-ASCA and
comparing their results based on the explained variances by all effects. It tuned out that the
classical ASCA overestimated the effect contributions, while the ASCA+ underestimated
these contributions. In contrast, the presented WE-ASCA performed the best in estimating
these effect contributions in term of the summation of percentage of explained variances.
Nevertheless, the three versions of ASCA proved that the individual factor has the largest
effect in our design. Therefore, we studied the influence of excluding such variations on the
classification of colorectal tissues. This was demonstrated for four different classification
tasks using two classifiers, i.e., PCA-LDA and PLS-DA, and leave-one-mouse-out cross-
validation as a validation method. Our results showed that excluding the contribution of
the individual factor from the training set introduced more robust classification results, and
it improved the mean sensitivity in most classification tasks. Additionally, the training of
an LDA model on spectra, when their individual effects were excluded, required a smaller
number of principal components (or latent variables) and improved the reproducibility of
the results.

4. Methods
4.1. ASCA for Crossed Balanced Design

The typical way of depicting the ASCA starts by introducing the ANOVA decomposi-
tion for the response of a single measurement described by a single variable [23]. Therein,
the variation of each cell in a response matrix X € R"*™, which has n measurements
described by m variables (features), can be defined for a two-factor crossed design as:
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Xijpg = Wit ajp +bjg+abpy + &g, i =12, .., m j=1,2,...,mp=12 ..., 049=12 ...,8 3)

where x;;,, is the observed response of a measurement, i, on the variable, j, that has the
level p of factor A and the level q of factor B. The parameter ; indicates the global mean
with respect to the variable j, and ¢, refers to the error term which is supposed to be a
Gaussian distributed random variable with a mean of 0. Under additional constrains of
ANOVA described in [13,17,23], a unique estimation of the previous statistical model is:

Xijpg = X (ejp. = x) + (Xjig = 2) + (Xjpg = Xjp. = g+ 2) + (Xijpg — Xjpg) . (@)

The dot-notation in the previous equation’s subscripts describes over which index
the mean is calculated. Moving to multivariate data, the classical ASCA provides a direct
generalization of the ANOVA tests in balanced designs. It calculates the effect contributions
to the response matrix X:

A

X =My + Cony + Cong + Conyp + E, (5)

where My € R"*"™ represents the global mean matrix (its rows are the means over the vari-
ables), Cony € R"*" refers to the estimated effect contribution of f where f € {4, B, AB},
A

and E € R"*™ estimates the residual matrix. When the experimental design is balanced,
each estimated effect matrix in Equation (5) is orthogonal, and the summation of percentage
of variances of these matrices equals to 100%. Consequently, the contributions of individual
effects in the overall variance can be measured by the partitions of the following sums of
squares:

A
I X (1% =] Mo || 2+ || Comy || *+ || Cong || *+ || Congg || >+ || E || %, (®)
where || . || 2 indicates the squared Frobenius norm.

4.2. General Linear Models and ASCA+

The general linear models (GLMs) usually refer to a multiple linear regression where
a continuous response variable is given continuous and (or) categorical predictors. These
GLMs are fundamentals for several statistical tests such as ANOVA and ANCOVA (analysis
of covariance) [24]. In its multivariate version, GLMs aim to decompose a response
matrix X € R"*™" linearly into different contributions based on a design matrix D € R"*?
and a parameter matrix B € RP*". These contributions are related to the experimental
factors and their interactions while the linear decomposition can be formulated as the
following equation:
X =Dp +E, )

where E € R"*™ denotes to the residual matrix. In formula (7), the matrix B relies only
on the data features like intensity or pixel values while the method of coding the design
(model) matrix D performs a critical part in GLMs decomposition. In principle, the matrix
D can be designed using different coding techniques; however, a unique estimation of
effect contributions can be obtained only if a factor with « levels is coded by « — 1 columns
in the design matrix [17]. By ASCA+, the deviation coding was utilized to design the
matrix D, where a factor with « levels is coded by a — 1 columns with values of 0 and
1 for the first & — 1 levels and with the value of —1 for the last level of this factor [17].
Then the parameter matrix B is estimated using the ordinary least square method as

B = (D'D) “'DTX, and the data matrix X is approximated as X = D B. The error of this

estimation is determined by the residual matrix E which can be written mathematically as:

E—X_Dp. ®)
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Nevertheless, the main advantage of the previous coding is that the sub-design matrix
of each effect is orthogonal for a balanced design. For instance, suppose a balanced two-
factor crossed design is considered in which six measurements are affected by the factors
A (a1, az) and B: (by, by, b3). A response matrix X € RO of this balanced design can
be described with respect to these factor levels as:

] T

©)

X = [thh X2,a1by X3,a105 Xdaphy X500, Xe,a505

Xiap, € R indicates a measurement of level a, : p € {1, 2} and level b; : g € {1, 2, 3},
which is oriented in the row i € {1, 2,..., 6}. Based on the ASCA+ and the deviation
coding, the design matrix D and the sub-design matrix of factor B can be visualized by:

MO A b] bz A bl A: bz Mg A hl bz A: bl A: bz

1 1 1 0 1 0 0o 0 1 o0 0 0

1 1 0 1 0 1 0o 0 0 1 0 0
D= 1 1 -1 -1 -1 -1 ;D= 0 0 -1 -1 0 0

1 -1 1 0 -1 0 0o 0 1 0 0 0

1 -1 0 1 0 -1 0 0 1 0 0

1 -1 -1 -1 1 1 0o 0 -1 -1 0 0

Then, the effect matrix of factor B, namely Cong, is simply estimated by multiplying

the matrix D /g and the parameter matrix 8. Likewise, all sub-design matrices and effect
matrices can be calculated, and the response matrix X is subsequently decomposed accord-
ing to formula (3) while the contribution of each effect into overall variance is estimated
using a squared Frobenius norm (see Equation (6)).

4.3. Weighted-Effect ASCA (WE-ASCA)

The deviation coding introduced by ASCA+ provides an orthogonal design matrix
only if an experimental design is balanced. In this case, the traditional constrains of analysis
of variance models are perfectly satisfied, and the summation of percentage of variance
equals to 100%. For unbalanced multifactorial designs, the design matrices introduced
by any of ASCA or ASCA+ are non-orthogonal, and the estimated experiment effects
are biased; therefore, it is desirable to remove, or at least reduce, these estimation biases.
Another coding scheme, which can be considered to design the model matrix of GLMs
in unbalanced data, is the weighted-effect (WE) coding. This WE-coding is a type of
dummy coding which can be used to facilitate the inclusion of categorical variables in
GLMs [19,20]. Thereby, the effect of each level of a categorical variable represents the level
deviation from the weighted mean instead of using the grand mean in deviation coding.
The WE-coding offers an attractive property related to the constrain in which the sum of all
level effects of a categorical variable is equal to zero, which is not fulfilled by other coding
schemes in unbalanced designs [19]. Moreover, the results of WE-coding are identical with
those obtained by deviation coding if an experiment’s design is balanced. Beside this, the
estimated effect of a specific variable provided by the WE-coding are unique because a
variable of « levels is coded by & — 1 columns within the model matrix, and the interaction
between two variables of a and B levels is coded by (« —1) x (B — 1) columns in this
model matrix. Using the previous advantages, the WE-coding can be used to improve the
performance of ASCA models in unbalanced multifactorial designs. In the following, the
implementation of WE-coding in unbalanced multifactorial designs will be described in
detail for a two-factor crossed design. However, this coding scheme is still valid for higher
multifactorial designs. Let X € R7*" be a response matrix collected from an unbalanced
two-factor crossed design and presented as:

}T

X= [Xl,al by Xz,ﬂlbz X3,H]b3 X4,azb1 XS,azbz X(),ﬂzbf. X7,n2b3 ’ (10)
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where X; ;5 € R"™ indicates a measurement of level a, : p € {1, 2} and level b; : g €
{1, 2, 3}, which is oriented in rows i € {1, 2,..., 7}. According to ASCA+, the design
matrix D and the sub-design matrix with respect to factor B can be depicted by:

-MO A bl bz Afbl Asz- -MO A bl bz A:bl A:bz-
1 1 1 0 1 0 0 0 1 0 0 0
1 1 1 0 1 0 0 0 1 0 0
1 1 -1 -1 -1 -1 D 0o 0 -1 -1 0 0
1 -1 1 0 -1 o |[|'7/P 00 1 0 0 0
1 -1 0 1 0 -1 0o 0 0 1 0 0
1 -1 -1 -1 1 1 0 0 -1 -1 0 0
1 -1 -1 -1 1 1 Lo 0 -1 -1 0 0 |

We can note that the design matrix D is non-orthogonal and that the sum of level
effects of the factors and their interaction does not equal to zero, which introduces biased
estimators of experimental effects. The previous design matrix can be converted into a
balanced design matrix if the WE-coding described by the coding matrix in Table 4 is
applied. Based on this table, the obtained balanced design matrix BD and the balanced
sub-design matrix BD , are determined as the following;:

-MQ A bl bz Albl A!bz-
1 1 1 0 1 0
1 1 0 1 0 1
1 1 -2/3 -2/3 -1/1 -1/1
BP=1 1 54 1 0o 11 o0 [
1 -3/4 0 1 0 -1/1
1 -3/4 -2/3 =2/3 1/2 1/2
L 1 -3/4 -2/3 -2/3 1/2 1/2
—Mg A b] bz Aibl A:bz_
0 0 1 0 0 0
0 0 0 1 0 0
0 0 -2/3 -2/3 0 0
BDs=1109 o 1 0 0 0
0 0 0 1 0 0
0o 0 -2/3 -2/3 0 0
L 0 0 -2/3 -2/3 0 0

Here, each effect A, B, and ABis estimatedinBDbyp—1=1,d—1=2,and (p—1) x
(g9 — 1) = 2 columns, respectively. Clearly, the considered WE-coding estimates the levels
of effects A, B, and AB in a way that the sum is always equal to zero.

Table 4. The coding matrix of a two-factor crossed design based on the weighted-effect coding.
In this design, the effects of factors A : (a1, a2), B : (b1, by, bs) and their interaction AB are presented.

Possible Factors Interaction

Combinations A by by Aib, Aty

a1 &by 1 1 0 1 0

a,1&by 1 0 1 0 1

a1&b3 1 —hp, /1y, —Mp, /1, “Hay, by Pay by My, b/ My, b

ay &by —1g, [ Mg, gy, by /gy, by

&by —11g, /Mg, 0 1 —May, by /My, by

ay6hs —Hay /Na, — My /an _nbz/nbs Nay, by /nﬂz, by Mgy, hz/nﬁz, b

In this paper, we update the ASCA+ by replacing the deviation coding of the design
matrix in GLMs by the WE-coding. This updated version, namely weighted-effect ASCA
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(WE-ASCA), provides a new extension of ASCA in unbalanced multifactorial designs.
Thereby, a balanced design matrix BD is estimated using the WE-coding [19,20], then the
parameter matrix {3 is estimated based on the ordinary least square method:

B — (BD"BD) “BDTX (11)

N n
The response matrix X can be thereafter approximated as X = BD f, while the error
of this estimation is given by:

E—X-BD§. 12)

Because the WE-coding estimates each factor of « levels by @ — 1 columns in the design
matrix BD, the presented WE-ASCA analysis provides a unique solution to solve the
statistical models of any multifactorial design. Additionally, it reduces the bias introduced
by unbalanced designs. Consequently, the effect matrix of any factor or interaction in
multifactorial designs can be uniquely estimated by:

Conf == BD/}( ﬁ, (13)

where BD; and Cony denotes the balanced sub-design matrix and the effect matrix of
factor (or interaction) f, respectively. In case of a two-factor crossed design, the response
matrix X is decomposed linearly into different effects of the factors A and B and their
interaction:

X =Mj + Cony + Cong + Con,p + E. (14)

The previous estimated effect matrices have the same size of matrix X. Thus, it is
useful to reduce the dimensions of these matrices using PCA models in order to highlight
the variations between different effect levels. In the presented two-factor crossed design,
the statistical model based on the PCA sub-models can be presented by the decomposition:

X = My + TP + TP} + TPl 5 +E, (15)

where the matrix T represents the score matrix, which highlights the variations between
the levels of effect f. The matrix Py denotes the loadings matrix of the same effect.

4.4. The Percentage of Variance

One of the main goals of multifactorial design analysis is to study how different factors
influence a particular experiment based on estimating their contributions to the overall
variance. In balanced designs, a factor contribution is approximated simply using the type
I sum squares. This method of sum squares sequentially computes the factor contributions
with respect to their order in the designed model [25]. For the unbalanced multifactorial
design, the factor levels have different numbers of measurements, which provides overesti-
mation of some factor contributions. It is recommended according to [8,25,26] to calculate
these contributions based on the type III sum squares. Thereby, the effect of one factor
is evaluated after all other factors have been considered. This type of sum squares offers
identical estimations of factor contributions with those obtained by type I sum squares
when the considered design is balanced. In Table 5, the type III sum squares of each
effect contribution in a two-factor crossed design is presented. Herein, the mean model
decomposes the response matrix X based on the global mean matrix My and the overall

N

variance, named E;. Then, the response matrix X is decomposed by a reduced model that

does not consider the contribution of a specific effect f. Subsequently, the residual matrix
A

Ey of this reduced model is estimated, and the sum squares of the effect f is calculated by

the difference between || Ef || # and || E || 2. The explained variance by each effect can be
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approximated finally as a percentage of the sum squares of that effect to the sum squares
of the residual matrix of the mean model, i.e., SS (El) . Mathematically, the percentage of
variance explained by an effect f € {A, B, AB} and the percentage of variance explained

by the residual E of a two-factor crossed model can be formulated as:

A A A
%Vars = VEAZ= B2 0 and %var, = —IEL® 100 (16)
IX—M, 2 P TX-Mo2
Table 5. Type III sum squares for a two-factor crossed design.
Model Type III Sum Squares
Mean model X =M;+E 55<E1) = X=M, Hz
Two-fact desi X = E) = &2
wo-factor cross design A —
8 My + Cony + Cong + Conyp +E SS(E) =lE]

Without the effect of A X = My + Cong + Conp + E_A 55(Con,) :HZEA Il 2 [E

Without the effectof B x — M, + Cony + Congp +Es  SS(Cong) =|| Eg | 2— | E | 2

Without the effect of AB X = M + Cony + Cong ‘HA“:AB (Conyp) =|| ];:AB I 2 [ El

In our study, we compare the results of the WE-ASCA with the classical ASCA and its
extension ASCA+ based on the summation of percentage of variances in an unbalanced
design.

4.5. Permutation Tests

The basic idea of permutation tests is to check whether a specific effect f in ANOVA
models contributes significantly to the variation of an experiment or it has a random
influence [14,17]. For a two-factor crossed design, the procedure of permutation test starts
by calculating the Frobenius sum squares of the first [ principal components of the score
matrix Ty for each effect f € {A, B, AB}:

ssi) =y (1) 17)

where n denotes the number of measurements in a response matrix X € R”*™. Then, we
generate N random permutations of the rows of X, and the Frobenius norm SS,(f) of each
effect is computed for each permutation r = 1, 2,..., N with respect to the considered
ASCA extension, i.e.,, ASCA+ and WE-ASCA. The last step of this test is to calculate the
p-value p(f) as:

p() = HESAZ SN (19)

This p-value determines whether an effect, f, explains a random variation or shows a
significant contribution within a considered experiment.

4.6. Data and Software

All computational parts were carried out based on in-house written functions in R
version 3.4.2. The utilized Raman spectral data and R functions are freely available via
Zenodo through the following links:

e  Raman spectra of colon cancer in a mice model: https:/ /zenodo.org/deposit/3975464
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o Weighted-effect ASCA (WE-ASCA) codes: https://zenodo.org/deposit/3975471

5. Conclusions

The presented WE-ASCA provides an updated version of the ASCA and ASCA+ that
suits the analysis of variance in unbalanced multifactorial designs. WE-ASCA proved
its potential in understanding and analyzing the influence of experimental factors in a
complex multifactorial design. Furthermore, the WE-ASCA was presented as a powerful
preprocessing tool that can improve the classification performance and increase the clas-
sification reproducibility. The current implementations of WE-ASCA were checked only
for Raman spectra and for tissue classification tasks; however, the application field is not
limited to these previous applications. It can be extended to cover the analysis of variance
of any type of multivariate data and any statistical modeling task.
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ABSTRACT The antibiotic resistance of bacterial pathogens has become one of the most serious global
health issues due to misusing and overusing of antibiotics. Recently, different technologies were developed to
determine bacteria susceptibility towards antibiotics; however, each of these technologies has its advantages
and limitations in clinical applications. In this contribution, we aim to assess and automate the detection
of bacterial susceptibilities towards three antibiotics; i.e. ciprofloxacin, cefotaxime and piperacillin using
a combination of image processing and machine learning algorithms. Therein, microscopic images were
collected from different E. coli strains, then the convolutional neural network U-Net was implemented to
segment the areas showing bacteria. Subsequently, the encoder part of the trained U-Net was utilized as
a feature extractor, and the U-Net bottleneck features were utilized to predict the antibiotic susceptibility
of E. coli strains using a one-class support vector machine (OCSVM). This one-class model was always
trained on images of untreated controls of each bacterial strain while the image labels of treated bacteria were
predicted as control or non-control images. If an image of treated bacteria is predicted as control, we assume
that these bacteria resist this antibiotic. In contrast, the sensitive bacteria show different morphology of the
control bacteria; therefore, images collected from these treated bacteria are expected to be classified as non-
control. Our results showed 83% area under the receiver operating characteristic (ROC) curve when OCSVM
models were built using the U-Net bottleneck features of control bacteria images only. Additionally, the mean
sensitivities of these one-class models are 91.67% and 86.61% for cefotaxime and piperacillin; respectively.
The mean sensitivity for the prediction of ciprofloxacin is only 59.72% as the bacteria morphology was not
fully detected by the proposed method.

INDEX TERMS Antibiotic resistance, E. coli strains, U-Net convolutional neural network, one-class SVM.

1. INTRODUCTION
Escherichia coli (E. coli) is a large and diverse bacterial
species that can be found almost everywhere. This bacterial

The associate editor coordinating the review of this manuscript and

approving it for publication was Haluk Eren

species shows a high degree of biological variance, where
many of E. colistrains are essential in the digestive tract while
other strains exhibit pathogenic properties and can cause
many complications in the urinary tract or in the intestinal
tract. On order to cure such infections, antibiotics are utilized.
Their selection is becoming increasingly complicated due

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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to the overuse and misuse of these drugs yielding resistant
bacteria [1]. The extensive and often unnecessary application
of antibiotics both in health care as well as in agriculture
increases the evolutionary pressure on these bacteria and
leads to the development of new mechanisms to resist the
existing antibiotics, and subsequently the antibiotics lose
their ability to treat bacterial infections [2]. Consequently, the
impact of antibiotic resistance is increasing dangerously to
extreme levels all over the world.

To select an effective antibiotic for treating severe infec-
tions, the determination of the susceptibility profile of the
causing pathogen is required. This can be achieved via antibi-
otic susceptibility testing (AST) which should in an ideal
case be rapid, accurate and quantitative. In this context, most
AST in clinical praxis relies on culturing the pathogen in the
presence of antibiotics and therefore are slow, demanding an
initial therapy of a patient with broad-spectrum (and some-
times ineffective) drugs, which might later be changed to a
narrow spectrum antibiotic featuring the appropriate mecha-
nism of action to cover the bacterial sensitivity profile. Tradi-
tionally, AST was performed by disk diffusion (Kirby-Bauer)
methods, where the size of the growth-free zone determines
the susceptibility reaction of bacterial pathogens towards a
particular antibiotic [3]. Later studies recommended deter-
mining the minimal inhibitory concentration (MIC) of an
antimicrobial drug. This MIC offers a precise determina-
tion of the lowest concentration (in pg/mL) of a drug that
inhibits visible growth of bacteria. The classical method to
identify the MIC of a specific antibiotic is still the broth
micro dilution (BMD) test. Thereby, a defined volume of
liquid medium is mixed with a defined concentration of the
antibiotic drug and incubated for 16 to 20 h with the bacteria.
Then, the MIC is read as the lowest concentration that pre-
vents the visible bacterial growth [4]. Recently, many novel
techniques for fast estimation and prediction of antibiotic sus-
ceptibility have arisen. These are mainly so-called genotypic
methods including polymerase chain reaction (PCR)-based
techniques [5] matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) [6]
and whole-genome sequencing [7]. Here, the existence of
genes or gene products that induce resistance against certain
antibiotics 1s detected, requiring knowledge of the resistance
mechanism and the underlying gene product. Though these
genotypic methods are quite fast, not all resistances will be
detected, especially when they are caused by new sponta-
neous mutations. Innovative approaches to accelerate pheno-
typic AST rely on a reduced culturing period in the presence
of antibiotics and a subsequent appropriate readout of pheno-
typic changes caused by antibiotics to susceptible bacteria.
These approaches often use microfluidics [8] or microar-
rays [9] in addition to more sensitive detection methods like
Raman spectroscopy [4], [10], [11] or real-time imaging of
single cells, where in addition to the detection of the cell
count, often an altered cellular morphology upon interaction
with antibiotics can be detected in sensitive strains [12].
A number of morphological changes induced by antibiotics
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in sensitive strains have been described including -among
others- filamentation, spheroplast formation, ovoid cell for-
mation, swelling of cells and blebbing (see [13] for a review
on this topic). Filamentation can be caused by several mech-
anisms including an inhibition of DNA synthesis, of protein
synthesis and an inhibited peptidoglycan synthesis. The latter
can further lead to spheroplast formation or cell lysis [13].
Each of the previously described methods for antimicrobial
susceptibility detection feature its advantages and limitations
regarding the type of resistance, costs and time requirements
to analyze.

Nowadays, machine learning (ML) algorithms are widely
implemented in several biomedical studies including the
detection of the antibiotic susceptibility of bacteria. Therein,
ML algorithms are designed to automate the resistance anal-
ysis for a certain AST. In this context, many applications
were established to predict antimicrobial MICs [14] or to
identify the bacterial resistance towards a specific antibi-
otic [15], [16] based on whole genome sequence (WGS) data.
Also, image-based identification was often utilized to detect
the morphological changes in treated bacteria using ML algo-
rithms [12], [17], [18]. Likewise, ML approaches showed
quite promising results in automating bacteria susceptibility
detection based on their Raman spectra [4], [19].

In this contribution, we present an image-based approach
to identify the susceptibility of E. coli strains with dif-
ferent susceptibility patterns towards the following antibi-
otics: ciprofloxacin, cefotaxime, piperacillin (see figure S1).
Hereby, microscopic images of one E. coli laboratory strain
and 11 clinical E. coli isolates were acquired, where a part
was untreated and used as control bacteria while other parts
were treated with different antibiotics for a short period of
time (90 min). Then a combination of image processing
and ML algorithms were applied to detect the morpholog-
ical changes caused by these antibiotics. In our analysis,
an anomaly detection approach was implemented to find
the morphological changes in treated bacteria based on their
images. In terms of machine learning, the task is to detect
anomalous objects of a certain class, which can be performed
by a one-class classifier after training it on normal objects
of the same class. Using the previous property, we could
train a one-class support vector machine (OCSVM) model
on images of only untreated bacteria, which were utilized
as control. Then image labels of treated bacteria with antibi-
otics were predicted as control or non-control. The detection
results of E. coli susceptibility were presented for two types
of image features and for two training methods to construct
OCSVM models.

Il. SAMPLE PREPARATION AND COLLECTION

Bacteria were obtained from the strain collection of the Insti-
tute of Medical Microbiology at the Jena University Hospital.
AGI100 is a laboratory strain derived from E. coli K12 and
the other strains (E. coli 407, E. coli 416, E. coli 422, E. coli
455, E. coli 500, E. coli 544, E. coli 545, E. coli 554, E. coli
579, E. coli 673, E. coli 683) are clinical isolates from sepsis
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FIGURE 1. Sample preparation and image collection methods. (A) The bacteria are inoculated with three antibiotics; namely ciprofloxacin, cefotaxime
and piperacillin. After inoculating, the bacteria were incubated for 90 min at 37°C, then the bacteria are washed twice in water to remove the antibiotic.
Five ul of these washed bacteria are pipetted onto a slide and left to dry at room temperature (RT) over night. Finally, images of these dried bacteria
are collected using a bright field microscope. (B) An example of piperacillin (PIP) interaction with E. coli bacteria of strains E. coli AG100 and E. coli 579.
Treating bacteria of strain E. coli AG100 with PIP prevents bacterial growth and causes the observed morphological changes. Treating bacteria of strain

E. coli 579 with the same antibiotic does not affect the bacterial growth.

patients at Jena University Hospital. Quantitative MIC val-
ues were determined using VITEK-2 system (bioMeirieux)
or E-Test (Liofilchem MIC Test stripes) and susceptibility
categorization in sensitive (S) or resistant (R) is based on
the EUCAST clinical breakpoints [20]. The upper EUCAST
clinical breakpoint (R>) which categorizes resistance if the
corresponding MIC is higher, was selected as test concentra-
tion (see table S1). More detailed information on the strains,
their reference MIC values, and categorization are given in
Kirchhoff et al. [4].

For each experiment, a fresh overnight culture was pre-
pared from a —80°C bacterial cryo stock. Four culture flasks
were prepared with 30 ml CASO broth (Roth GmbH); in three
flasks antibiotic was added to give a final antibiotic concen-
tration of 0.5 mg/l ciprofloxacin (ciprofloxacin hydrochlo-
ride, AppliChem), 2 mg/l cefotaxime (cefotaxime sodium,
Sigma-Aldrich) or 16 mg/l piperacillin (piperacillin sodium,
Sigma-Aldrich); respectively. The fourth flask served as a
control without antibiotic treatment. Flasks were pre-warmed
until inoculation. The overnight cultures were diluted for
measuring the optical density with a spectrophotometer
(Spark, Tecan) and inoculated into the pre-warmed flasks
to adjust a final inoculum of 5 x 107 bacteria/ml. The cul-
tures with and without antibiotic treatment were incubated
for 90 min at 37°C while shaking at 160 rpm in an incu-
bator (Infors HT Ecotron). After 90 min the bacterial sus-
pensions were transferred into a tube and centrifuged for
5 min with a relative centrifugal force of 4,000 g (Universal
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320R, Hettich). The bacterial pellet was re-suspended in
1 mL deionized water and washed twice by centrifuging them
for 1.5 min with a relative centrifugal force of 11,500 g
(MiniSpin®), Eppendorf AG). Finally, the washed pellet was
suspended in 20 pl of deionized water. 1 ul and 5 wul
of this suspension were pipetted onto a glass slide and
allowed to dry at room temperature until the microscopic
analysis. Microscopic images were acquired within 5 days
after sample preparation. For each sample, a tile scan of
5 x 5 bright field images was recorded using an Axiob-
server.Z1 (Carl Zeiss AG, Oberkochen, Germany) equipped
with an LD Plan Neofluar 63x/0.75 Korr objective (Zeiss)
and an Orca Flash 4.0 camera (Hamamatsu). The total imaged
area per sample was 972 x 972 pum. On order to com-
pensate for focal variations within the sample, 5 differ-
ent focal planes with a distance of 1 um were collected.
Overall, the collected number of replicates for the strains
E. coli 579, E. coli AG100 and E. coli 673 is four, three
and two independent biological replicates; respectively, while
the remaining strains were cultivated in a single biological
replicate.

In this experiment, the considered centrifugation protocol
is a standard technique in microbiology, and it was applied on
order to concentrate the samples and wash the bacteria. These
centrifugation protocols are well established and applied in
numerous studies [4], [21], [22]. Nevertheless, viable bacteria
have been obtained after centrifugation without any observed
alteration in the bacteria behavior or in the cell morphology if
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process of the bacteria area using the U-Net network. Each bacteria image is enhanced and sliced

into patches of the size 512 x 512 pixels.:mhich are down-sampled and fed into the U-Net network. The up-sampled binary patches are stitched
together to create a mask, that can be overlaid with the enhanced image on order to get the segmented image.

they were compared to samples without prior centrifugation
steps (see [23]).

Ill. IMAGE PROCESSING AND MACHINE LEARNING

A. COMPUTATIONAL ANALYSIS

All computations were carried out based on in-house writ-
ten functions in the programming language Python version
3.6.5 and the statistical programing language R version 3.4.2.
The utilized packages are Scikit-learn 0.22 [24], Numpy
1.17.4 [25], OpenCV 4.1.3 [26], Pandas 0.25.3 [27], Tensor-
Flow 2.00, Imager 0.41.2 [28] and Radiomics 0.1.3 [29]. All
these functions are available upon request.

B. SEGMENTATION OF BACTERIA AREA

On order to improve the prediction of the antibiotic suscep-
tibility and to exclude artefacts due to the drying process,
only image areas with a high bacterial density were included
in the analysis. Therefore, each image was segmented into
a region with a high density of bacteria and a background
region based on the convolutional neural network U-Net [30].
This network showed exceptional performances in semantic

167714

segmentation tasks in biomedical applications. The utilized
U-Net network consists of an encoder and a decoder with
four blocks in each (see Figure 2). The encoder blocks are
composed of two convolutional layers, a dropout layer and
a max pooling layer, while each decoder block contains an
up-convolutional layer, a concatenation layer, two convolu-
tional layers and a dropout layer. The input of the first layer
of the encoder is a grayscale-image of the size 128 x 128
pixels and the output of the decoder is a binary image of the
same size.

In our work, the collected bacterial images were resized
into 9216 x 9216 pixels, and the image contrast was adjusted
based on the contrast limited adaptive histogram equalization
algorithm (CLAHE) [31]. Thereafter, the enhanced images
were sliced into patches of the size 512x x512 pixels, and
the bacterial areas of the obtained patches were predicted
using the presented U-Net network. This area predication was
performed for all image patches, whether they were acquired
from untreated control bacteria or treated bacteria, after
down-sampling the patches with a factor of four. The obtained
binary patches from the U-Net were up-sampled again by
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FIGURE 3. Overview of the considered patch selection method and the utilized machine learning techniques. (A) Only image patches that have 90%
of their area covered by bacteria are selected to predict the antibiotic susceptibility. (B) Two types of features (SF, DF) are extracted from all selected
image patches. Then the predication of the antibiotic susceptibility is performed using a once-class SYM model constructed based on features of the
control patches. The obtained classifier is utilized afterwards to predict patch labels of treated bacteria.

a factor of four, and the up-sampled patches were stitched
together to reconstruct a binary image with the original size of
9216 % 9216 pixels. This binary image separates the enhanced
image into two regions; e.g. a bacteria containing area and a
background region. Nevertheless, the training procedure of
the presented U-Net network was accomplished based only
on images of the strains E. coli AG100 and E. coli 579 while
the bacteria area of the remaining image was not used for
training the U-Net network. The selection of training set
was done due to a pre-experiment, in which the antibiotic
susceptibilities of stains E. coli AG100 and E. coli 579 were
checked. In this per-experiment, the enhanced images of
both strains were manually converted into binary images
using the Java-based image processing program ImagelJ [32].
Thereafter, these enhanced images and binary images were
portioned with the ratio 2:1 into a training set and a validation
set; respectively. Lastly, the U-Net network was trained based
on the binary and the enhanced images for 50 epochs using
a mini-batch of 50 patches and the Adam optimizer with a
learning rate of 0.001 to minimize the binary-cross entropy
loss function on the validation set. After training the U-Net,
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the best model was saved and utilized to segment the bacteria
containing area of all remaining images. Here, the default
value of learning rate for Adam optimizer was considered
while the other hyperparameters; i.e. batch size and number
of epochs, were manually selected due to the complexity of
the presented segmentation task.

C. PATCH SELECTION AND FEATURE EXTRACTION

The segmented images based on the U-Net network were cut
into patches of the size 256 x 256 pixels. Then, image patches
that have at least 90% of their area covered by bacteria were
selected. The previous selection of the bacteria threshold
was considered to ensure approximately the same foreground
areas in all selected patches (see Figure 3-A). Thereafter,
the texture of the selected patches was quantified based on
two types of image features. These image features are the
first-order statistics-based features (SFs) of the intensity and
the bottleneck features of the trained U-Net network. The
latter features are indicated later as DFs. The SFs characterize
texture properties of the area of interest of an image, and
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they measure the spatial distribution of intensity values for
image pixels [33], [34]. In our work, the energy, entropy,
skewness, uniformity, kurtosis, variance, mean deviation, root
mean square, mean, median, minimum and maximum were
calculated for each selected patch. In table S2, the utilized sta-
tistical features were presented. Here, each feature describes
a specific property of the gray level distribution of a selected
patch I(x, y) that has the size 256 x 256 pixels [34]. The other
type of features; i.e. the DFs, can be simply extracted from
the trained U-Net model after removing the decoder layers.
The encoder in this case represents an image feature extractor
where 256 features per patch can be extracted as it is shown
in Figure 2.

D. MACHINE LEARNING FOR SUSCEPTIBILITY DETECTION
Based on the extracted features, the anomaly detection was
performed to identify the susceptibility of E. coli strains
towards the considered antibiotics. This anomaly detection
is usually implemented to identify anomalous objects of a
specific class [35]. The basic idea is to let a classification
model learn on an available dataset in which all objects
belong to a same class. Then, this learnt model is utilized to
identify normal and anomalous objects of a new dataset with
respect to that considered class.

For the presented study, the images of untreated control
bacteria were always considered as normal objects while
the treated bacterial images were predicted as normal or
anomalous patches. This prediction was accomplished by
comparing the intrinsic and control-specific morphology of
bacterial strains with the morphological changes caused by
antibiotics. So, if a particular antibiotic affects the cultivated
bacteria, it changes their morphology and let these bacte-
ria look anomalous as compared to untreated control ones
(see Figure S2-A). In contrast, when the bacteria resist an
antibiotic, they keep growing as untreated bacteria doing (see
Figure S2-B) [36]. Under this assumption, an OCSVM model
is ideal to detect the sensitivity of treated bacteria to an antibi-
otic drug. This detection was performed based on a principal
component analysis (PCA) based dimension reduction of the
feature matrix. The PCA space is formed by new uncorrelated
features, i.e. the principal components, which maximize the
data variance and often increase the interpretability. Then
an OCSVM model was constructed using principal compo-
nents (PCs) that include 99% of the variation within the
untreated control bacteria patches. The obtained classifier
was finally utilized to predict labels of treated bacteria as
normal (control) or anomalous (non-control).

IV. RESULTS

The susceptibility identification of E. coli strains towards the
considered antibiotics was accomplished based on a dataset
comprising microscopic images collected from 12 E. coli
strains. Within this dataset, the strains E. coli 579, E. coli
AGI100 and E. coli 673 were cultivated in four, three and
two independent biological replicates; respectively, while
the other E. coli strains were grown in a single replicate.
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From each replicate, images of control and treated bacteria
were collected using a bright field microscope. After data
acquisition, the described image processing pipeline, a patch
extraction and a patch selection were applied. The selected
image patches were afterwards utilized to identify the antibi-
otic resistance based on an OCSVM model that was trained
on features extracted either from the first-order intensity
statistics or from the trained U-Net network, as it is described
in Figure S3.

A. THE IDENTIFICATION OF ANTIBIOTIC

RESISTANCE IN E. COLI STRAINS

We present in this subsection the obtained results for pre-
dicting the antibiotic susceptibility of E. coli strains within
each biological replicate. In Figure 3-B, a schematic view of
the utilized features extraction methods and machine learning
techniques is presented. For each biological replicate, the SFs
and DFs were extracted, then a feature mean centering was
applied with respect to the features of the control patch
of each replicate. Later, two PCA models were constructed
based on the extracted features from the selected untreated
control patches; i.e. the PCA model based on the SFs and
the PCA model based on DFs. Using the PCs that describes
99% of the variation within the control patch features, two
OCSVM models were built. These OCSVM models rep-
resent the OCSVM based on the statistical features (SFs)
named SF-OCSVM and the OCSVM based on the bottle-
neck features of the trained U-Net network (DFs) termed
DF-OCSVM. For both models, a radial kernel was optimized
for the regularization parameter #¢ {0.001, 0.01, 0.1, 0.25,
0.50, 0.75, 0.90, 0.99} and the kernel coefficient ye {0.001,
0.01, 0.1, 0.25, 0.50, 0.75, 0.90, 1}. This hyperparameters
optimization was accomplished via a grid search using the
previous noted values of ¢ and y . The hyperparameter values,
that performed the best identification results, were selected to
construct a final OCSVM model. This model was used later
to predict patch labels of treated bacteria cultivated within the
same replicate. As we mentioned earlier, if a specific bacterial
pathogen resists an antibiotic, image patches of this pathogen
are predicted as control. In contrast, if an antibiotic prevents
the growth of a specific bacterial pathogen, it can change
the bacteria’s morphology. Therefore, the images of bacteria
sensitive to this antibiotic are expected to be identified as non-
control; e.g. dissimilar to bacteria grown without antibiotics
that represent here the control bacteria. In the latest case,
the untreated control and treated bacteria were cultivated
in same experiment hence we are sure that any changes in
the bacteria’s morphology were caused only by the antibi-
otics. Based on these assumptions, we predicted labels for all
selected patches, and we calculated the percentage of patches
predicted as control for each treatment within each replicate.
This percentage was denoted in the following by CP.

After calculating the CP values for bacterial images,
the prediction performance of the SF-OCSVM and
DF-OCSVM models was evaluated and compared using
receiver operating characteristic (ROC) curves. In Figure 3-B,
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the ROC curves of SF-OCSVM and DF-OCSVM models
were depicted. It is clear that the OCSVM model trained
on the bottleneck features of U-Net network shows larger
area under the curve (AUC) than the AUC of the ROC
curve obtained by SF-OCSVM models. Here, the AUC of
SF-OCSVM and DF-OCSVM is 72% and 83%; respectively.
In Table S1, the susceptibility predictions of bacterial image
slides are presented based on two indicated thresholds of the
ROC curves in Figure 3-B. These thresholds are 78.46% and
99.07%, and they are corresponding to the highest sensitivity
and specificity introduced by classification models. One
can note that both selected thresholds describe high values
of the ROC curves, which can be interpreted that treated
bacteria are predicted as control if a large percentage of image
patches captured from these bacteria were classified as con-
trol patches; i.e. high percentages of CP. Nevertheless, within
Table S1, antibiotic MIC values are presented beside the pre-
dictions of the E. coli susceptibility of both SF-OCSVM and
DF-OCSVM models. Also, the antibiotic breakpoints and the
reference antibiotic susceptibilities are shown with respect to
each E. coli strain. It is observed that the OCSVM based on
DFs could predict the susceptibility of E. coli strains toward
piperacillin and cefotaxime quite well in comparison to
predictions provided by the SF-OCSVM models. In contrast,
neither the SF-OCSVM model nor the DF-OCSVM model
could predict the susceptibility of ciprofloxacin in good
manner based on the selected thresholds. In Table 1, a sum-
mary of the predicted susceptibility is presented as confusion
matrices with respect to each antibiotic and each OCSVM
model. For the susceptibility predictions of piperacillin, the
mean sensitivity of OCSVM model increased from 41.07%
to 86.61% when this classifier was trained on the bottleneck
features of the U-Net network instead of using the SFs.
Also, the mean sensitivity of cefotaxime improved around
4% when the DF-OCSVM was considered as the mean
sensitivity of SF-OCSVM and DF-OCSVM are 87.5% and
91.67%; respectively. The mean sensitivities of SF-OCSVM
and DF-OCSVM models for ciprofloxacin are only 70.14%
and 59.72%. These results exhibit that the changes in bacteria
morphology is not sufficient to predict the resistance towards
ciprofloxacin.

TABLE 1. The confusion matrices using local 0CSVM models. For each
antibiotic, the reference susceptibility, and the predicted susceptibilities
(S: sensitive, R: resistant) based on SF-OCSVM and DF-OCSVM models are
presented, then the mean sensitivities of each antibiotic and each
classifier are calculated.

SF-OCSVM SD-OCSVM

Antibiotic M. Sens. M. Sens.
R S R S
R 2 6 7 1

PIP 41.07% 86.61%
S 3 4 1 6
R 5 1 5 1

CTX 87.5% 91.67%
S 1 11 0 12
R 5 3 6 2

CIP 70.14% 59.72%
S 2 7 5 4
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Overall, the DF-OCSVM models have better identifica-
tion performance than the obtained predictions using the
SF-OCSVM. These prediction results are strongly influenced
by two main factors: the selected threshold by the ROC curve
and the changes in bacteria shape when a particular antibiotic
was applied. In case of ciprofloxacin, quite small changes
in bacteria morphology were detected after incubating the
bacteria while the selected threshold seems to be not suitable.

B. STUDYING THE PREDICTION PERFORMANCE

OF ANTIBIOTIC SUSCEPTIBILITY BASED ON
LOCAL-TRAINED/GLOBAL-TRAINED

OCSVM MODEL

The main goal of the following study is to check the pre-
diction quality of the OCSVM models based on two train-
ing techniques: the local-training and the global-training.
Here, we denote by local-trained OCSVM an OCSVM model
that is trained and tested on one individual replicate, while
global-trained models describe the OCSVM models that are
trained on a larger number of replicates and tested on other
independent replicates. For local-trained models, the control
bacteria images from a specific replicate are utilized to train
an OCSVM model. This model is implemented to predict
the resistance of treated bacteria cultivated in the same repli-
cate but were not used for model training. A global-trained
OCSVM model is built upon control images of a number
of replicates, then this classifier can be utilized to pre-
dict antibiotic susceptibilities of bacteria images acquired
from other replicates. In both cases, the prediction of newly
acquired test data is possible and linked to the estimated accu-
racy. To perform such comparison, the different replicates of
strain E. coli 579 and strain E. coli AG100 were considered.
Therein, the bottleneck features of the trained U-Net network
were extracted for all selected patches of both E. coli strains,
and a feature mean centering was applied as was explained
previously. Finally, a leave-one-replicate-out cross-validation
(LORO-CV) was performed based on the PCs extracted from
control patches. For model construction based on LORO-CYV,
we always exclude one replicate and optimize a radial kernel
for the regularization parameter ¢ and the kernel coefficient
y using patches extracted from the remaining replicates. This
procedure is iterated until the susceptibility of all patches
selected from all replicates are identified once.

Based on the ROC curves, a comparison between the
performance of local-trained OCSVM and global-trained
OCSVM was performed. First of all, we calculated the CP
values for each treatment and for all replicates. Figure 4-A
presents the ROC curves of the OCSVM models using both
training methods. Our results showed that the susceptibility
prediction using a local-trained OCSVM model is much bet-
ter than the predictions by global-trained models. Thereby,
around 31% increase in the AUC can be observed by local-
trained OCSVM models. In Table 2, the identification results
of E. coli susceptibility using local-trained and global-trained
models are presented based on selected thresholds of ROC
curves in Figure 4-A. It turned out that a local-training for the
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FIGURE 4. (A) The obtained ROC curves of local-OCSVM and global-0CSVM models. These models were constructed based on the bottleneck features
of the trained U-Net network. The antibiotic susceptibilities were determined for the percentage of predicted patches as control (CP) (B) Images
collected from the third replicate of strain E. coli 579. The reference susceptibility of E. coli 579 is resistant, but the image patches of the treated
bacteria are obviously different to the control image patches of the strain E. coli 579.

TABLE 2. A comparison of local-OCSVM and global-OCSVM models.

The predicted susceptibilities (S: sensitive, R: resistant) were determined
based on selected thresholds. It turns out that the identification of
antibiotic resistance using local-OCSVM models is much better than the
predictions by global-OCSVM models.

Local-OCSVM  Global-OCSVYM

Antibiotic . S <80.77% S <55.20%
&strain  Replicate g p>go77% & R>55.20%
CP(%) Pred. CP(%) Pred.
I 86.64 R 55.20 R
2 85.76 R 65.33 R
= 579
£ ® 3 19.53 s 11.39 S
§ 4 80.96 R 2,57 S
£ 1 12.35 S 783 R
AG100 7 33.39 S 45.06 S
) 3 8.15 s 401 s
I 9333 R 86.87 R
2 88.77 R 74.22 R
g I 3 11.03 s 845 s
E® : -
z 4 80.77 R 0.0 S
&
3 1 33.51 S 78.33 R
AG100 2 29.58 S 4272 S
) 3 41.01 s 20.59 s
1 97.50 R 97.5 R
- 2 90.96 R 924 R
=y 3 7.29 S 417 S
g ® - -
= 4 82.82 R 0.0 S
8 1 74.84 S 98.11 R
“  AGL00 2 85.90 R 88.83 R
) 3 64.59 s 2721 S

OCSVM models introduced a better identification of strain
sensitivity compared to the identification by global-trained
models. In detail, only the treated bacteria of strain E. coli
579 in the third replicate, and the bacteria of strain E. coli
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AGI100 treated with ciprofloxacin in second replicate were
misidentified when a local-trained OCSVM was considered.
However, 10 images of 21 images were misclassified when a
global-training for OCSVM models was applied.

The results presented above showed that the local-training
of OCSVM models provide, in most cases, more stable iden-
tification results of the E. coli susceptibility towards antibi-
otics in comparison to global-trained models. These results
were expected because of the high biological variations
between the replicates which can confuse classifiers in case
of global-trained models. Another reason for these results is
that some pathogens might change their growing behavior;
e.g. stop duplicating or interacting differently with a partic-
ular antibiotic drug. In our study, the control bacteria culti-
vated in the third replicate of E. coli 579 stopped duplicating
while the treated bacteria started elongating (see Figure 4-B).
Therefore, the treated patches within this replicate were
mostly misclassified and were predicted as sensitive bacte-
ria as compared to untreated control ones, even though the
EUCAST clinical breakpoints indicate a resistance.

V. SUMMARY

We presented in this article the results of an image-based
identification approach to detect the antibiotic susceptibili-
ties of E. coli strains. The chosen antibiotics cause a strong
morphological alteration in sensitive strains leading to a
cell elongation (filamentation) while resistant strains retain
their normal morphological properties upon treatment. In the
presented work, different image processing techniques were
combined with machine learning algorithms on order to auto-
mate the susceptibility detection. We started the analysis
by enhancing the image contrast, and we segmented the
high-bacterial density areas based on the U-Net network.
The segmented images were afterwards cut into patches, and
the patches that have at least 90% of their area covered
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by bacteria were selected for further analyses composed of
feature extraction and modeling. In our work, the first-order
statistics-based features of the intensity (SFs) and the bot-
tleneck features of the trained U-Net network (DFs) were
extracted and used to train a one-class classification model;
specifically, an OCSVM model. This type of classification
is designed to detect anomalous objects of a particular class
after training the model only on normal objects of this con-
sidered class.

Based on the described data analysis pipeline, we per-
formed two comparisons to identify the E. coli susceptibility
using OCSVM models. In the first comparison, the antibiotic
sensitivity of each bacterial replicate was predicted using a
local-OCSVM model that was built on both types of image
features. The second comparison was performed to check the
prediction quality of the OCSVM models using two training
methods and using the DFs only. The results of the first
comparison showed that using the DFs to train local-OCSVM
models introduced larger area under the ROC curve than
the SF-OCSVM models. Also, for selected thresholds of
ROCs, the classification mean sensitivities of piperacillin
and cefotaxime increased from 41.07% to 86.61% and from
87.5% to 91.67%; respectively, when OCSVM models were
constructed on the bottleneck features instead of using the
SFs. In contrast, both classifiers showed low identification
results based on the selected thresholds when the bacte-
rial pathogens were treated by ciprofloxacin. To investigate
this behavior, the DFs were utilized to perform the sec-
ond comparison. Therein, two training techniques; namely
local-training and global-training, were compared. While a
local-OCSVM model was trained and tested on untreated
control and treated bacteria patches of the same replicate,
different independent replicates were utilized to train and test
the global-OCSVM models. The evaluation of these models
proved that locally trained one-class models feature a great
potential in identifying the antibiotic sensitivity as compared
to global-trained OCSVM models.

VI. CONCLUSION

It was shown that the combination of bottleneck features of
the trained U-Net and the local trained OCSVM models intro-
duced quite promising results in identifying the susceptibility
of E. coli strains towards antibiotics. These local models
are correcting for the biological variations between differ-
ent replicates or patients and yielding better predictions of
individual patient’s susceptibility towards antibiotics. There-
fore, the presented local-one-class classification approach
can be easily implemented to predict other antibiotic sus-
ceptibilities, and an easy image-based antibiotic susceptibil-
ity tests (ASTs) can be generated. Since the morphological
changes appear already after short incubation times of antibi-
otics with bacteria (90 min), this image-based method might
be used for the development of fast phenotypic AST, maybe
in combination with statistical parameters from other readout
methods like Raman spectroscopy.
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ACKNOWLEDGMENT
Support information: Figure S1, S2, S3 and Table S1, S2.

REFERENCES

[11 (2020). Antibiotic Resistance. [Online]. Available: https://www.who.int/
topics/antimicrobial _resistance/en/

[2] C.L.Ventola, “The antibiotic resistance crisis: Part |: Causes and threats. P
& T: A peer-reviewed,” J. Formulary Manage., vol. 40, no. 4, pp. 277-283,
2015.

[3] C. Giuliano, “A guide to bacterial culture identification and results inter-
pretation. P & T : A Peer-Reviewed,” J. Formulary Manage., vol. 44, no. 4,
pp. 192-200, 2019.

[4] J. Kirchhoff, U. Glaser, J. A. Bohnert, M. W. Pletz, J. Popp, and
U. Neugebauer, *“Simple ciprofloxacin resistance test and determination of
minimal inhibitory concentration within 2 h using Raman spectroscopy,”
Anal. Chem., vol. 90, no. 3, pp. 1811-1818, Feb. 2018.

[S] M. R. Pulido, “Progress on the development of rapid methods for antimi-
crobial susceptibility testing,” J. Antimicrob Chemother, vol. 68, no. 12,
p- 2710, 2013.

[6] V. Belkum, “Matrix-assisted laser desorption ionization time-of-flight
mass spectrometry in clinical microbiology: What are the current issues,”
Ann. Lab. Med., vol. 37, no. 6, pp. 475-483, 2017.

[71 M. J. Ellington, “The role of whole genome sequencing in antimicrobial

susceptibility testing of bacteria: Report from the EUCAST subcommit-

tee,” Clin. Microbiol. Infection, vol. 23, no. 1, pp. 2-22, Jan. 2017.

J. Campbell, C. McBeth, M. Kalashnikov, A. K. Boardman, A. Sharon,

and A. F. Sauer-Budge, “Microfluidic advances in phenotypic antibi-

otic susceptibility testing,” Biomed. Microdevices, vol. 18, no. 6, p. 103,

Dec. 2016.

A. Srinivasan, G. C. Lee, N. S. Torres, K. Hernandez, S. D. Dallas,

J. Lopez-Ribot, C. R. Frei, and A. K. Ramasubramanian, ‘‘High-

throughput microarray for antimicrobial susceptibility testing,” Biotech-

nol. Rep., vol. 16, pp. 44-47, Dec. 2017.

[10] K. Chang, “Antibiotic susceptibility test with surface-enhanced Raman
scattering in a microfluidic system,” Anal. Chem., vol. 91, no. 17,
pp. 10988-10995, 2019.

[11] A. Tannert, R. Grohs, J. Popp, and U. Neugebauer, “‘Phenotypic antibi-
otic susceptibility testing of pathogenic bacteria using photonic readout
methods: Recent achievements and impact,” Appl. Microbiol. Biotechnol.,
vol. 103, no. 2, pp. 549-566, Jan. 2019.

[12] J. Choi, I. Yoo, M. Lee, E.-G. Kim, J. S. Lee, S. Lee, S. Joo, S. H. Song,
E.-C.Kim, J.C. Lee, H. C. Kim, Y.-G. Jung, and S. Kwon, A rapid antimi-
crobial susceptibility test based on single-cell morphological analysis,”
Sei. Transl. Med., vol. 6, no. 267, pp. 174-267, Dec. 2014.

[13] T. P. T. Cushnie, N. H. O’'Driscoll, and A. J. Lamb, “Morphological
and ultrastructural changes in bacterial cells as an indicator of antibac-
terial mechanism of action,” Cellular Mol. Life Sci., vol. 73, no. 23,
pp. 4471-4492, Dec. 2016.

[14] M. Nguyen, “Using machine learning to predict antimicrobial MICs and
associated genomic features for nontyphoidal salmonella,” J. Clin. Micro-
biol., vol. 67, no. 2, 2019, Art. no. e01260.

[15] E. S. Kavvas, E. Catoiu, N. Mih, J. T. Yurkovich, Y. Seif, N. Dillon,
D. Heckmann, A. Anand, L. Yang, V. Nizet, J. M. Monk, and B. O. Palsson,
“Machine learning and structural analysis of mycobacterium tuberculosis
pan-genome identifies genetic signatures of antibiotic resistance,” Nature
Commun., vol. 9, no. 1, p. 4306, Dec. 2018.

[16] M. W. Pesesky, T. Hussain, M. Wallace, S. Patel, S. Andleeb,
C.-A.-D. Burnham, and G. Dantas, “‘Evaluation of machine learning and
rules-based approaches for predicting antimicrobial resistance profiles
in gram-negative bacilli from whole genome sequence data,” Frontiers
Microbiol., vol. 7, p, 5, Nov. 2016.

[17] M. Marschal, “Evaluation of the accelerate pheno system for fast identifi-
cation and antimicrobial susceptibility testing from positive blood cultures
in bloodstream infections caused by gram-negative pathogens,” J. Clin.
Microbiol., vol. 55, no. 7, p. 2116, 2017.

[18] H. Yu, W. Jing, R. Iriya, Y. Yang, K. Syal, M. Mo, T. E. Grys, S. E.
Haydel, S. Wang, and N. Tao, “Phenotypic antimicrobial susceptibility
testing with deep learning video microscopy,” Anal. Chem., vol. 90, no. 10,
pp. 6314-6322, May 2018.

[19] C.-S.Ho, N. Jean, C. A. Hogan, L. Blackmon, S. S. Jeffrey, M. Holodniy,
N. Banaei, A. A. E. Saleh, S. Ermon, and J. Dionne, “Rapid identification
of pathogenic bacteria using Raman spectroscopy and deep learning,”
Nature Commun., vol. 10, no. 1, p. 4927, Dec. 2019.

8

[9

167719



List of Publications

IEEE Access

N. Ali et al.: Predictive Modeling of Antibiotic Susceptibility in E. Coli Strains

[20] D. Kusic, “Raman spectroscopic characterization of packaged
L. Pneumophila strains expelled by T. Thermophila,” Anal. Chem.,
vol. 88, no. 5, pp. 2533-2537, 2016.

[21] U. Schroder, “*On-chip spectroscopic assessment of microbial suscepti-
bility to antibiotics within 3.5 hours,” J. Biophoton., vol. 10, no. 11,
pp. 1547-1557, 2017.

[22] T. Ursell, T. K. Lee, D. Shiomi, H. Shi, C. Tropini, R. D. Monds,
A. Colavin, G. Billings, I. Bhaya-Grossman, M. Broxton, B. E. Huang,
H. Niki, and K. C. Huang, “Rapid, precise quantification of bacterial
cellular dimensions across a genomic-scale knockout library,” BMC Biol.,
vol. 15, no. 1, p. 17, Dec. 2017.

[23] J. Choi, H. Y. Jeong, G. Y. Lee, S. Han, S. Han, B. Jin, T. Lim, S. Kim,
D. Y. Kim, H. C. Kim, E.-C. Kim, S. H. Song, T. S. Kim, and S. Kwon,
*Direct, rapid antimicrobial susceptibility test from positive blood cultures
based on microscopic imaging analysis,” Sci, Rep., vol. 7, no. 1, Dec. 2017,
Art. no. 1148,

[24] F.Pedregosa, “Scikit-learn: Machine Learning in Python,” J. Mach. Learn.
Res., vol. 1, pp. 2825-2830, Nov. 2011.

[25] T. E. Oliphant, A Guide to NumPy, vol. 1. New York, NY, USA: Trelgol
Publishing, 2006.

[26] G. Bradski, “The OpenCV library,” Dr. Dobb’s I. Softw. Tools, 2000.

[27] W. McKinney, “Data structures for statistical computing in Python,” in
Proc. 9th Python Sci. Conf., 2010, pp. 1-5.

[28] S. Barthelmé and D. Tschumperlé, “Imager: An r package for image
processing based on Clmg,” J. Open Source Softw., vol. 4, no. 38, p. 1012,
Jun. 2019.

[29] J. Carlson, “Radiomics: ‘Radiomic’ image processing toolbox,” R Pack-
age Version 0.1, vol. 2, 2016,

[30] O. Ronneberger and P. T. F. Brox, U-Ner: Convolutional Networks for
Biomedical Image Se ion. Cham, Switzerland: Springer, 2015.

[31] A.Reza, “Realization of the contrast limited adaptive histogram equaliza-
tion (CLAHE) for real-time image enhancement,” J. VLSI Signal Process.
Syst. Signal, Image Video Technol., vol. 38, no. 1, pp. 35-44, 2004.

[32] I. Schindelin, “Fiji: An open-source platform for biological-image analy-
sis,” Nat. Methods, vol. 9, no. 7, pp. 676-682, 2012.

[33] R. M. Haralick and K. I. Shanmugam Dinstein, “Textural features for
image classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6,
pp. 610-621, Nov. 1973.

[34] C. Parmar, E. Rios Velazquez, R. Leijenaar, M. Jermoumi, S. Car-
valho, R. H. Mak, S. Mitra, B. U. Shankar, R. Kikinis, B. Haibe-Kains,
P. Lambin, and H. J. W. L. Aerts, “Robust radiomics feature quantification
using semiautomatic volumetric segmentation,” PLoS ONE, vol. 9, no. 7,
Jul. 2014, Art. no. e102107.

[35] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artif. Intell. Rev., vol. 22, no. 2, pp. §5-126, Oct. 2004.

[36] J. L. Martinez and F. Baquero, “Interactions among strategies associated
with bacterial infection: Pathogenicity, epidemicity, and antibiotic resis-
tance.” Clin. Microbiol. Rev., vol. 15, no. 4, p. 647, 2002.

NAIRVEEN ALl received the B.Sc. and M.Sc.
degrees in mathematical statistics from Damas-
cus University, in 2009 and 2014, respectively.
She is currently pursuing the Ph.D. degree with
the Research Group of Statistical Modeling and
Image Analysis, University of Jena, supervised by
PD. Dr. Bocklitz. Her research interests include
multivariate data analysis, image processing, and
machine learning for biomedical applications.

JOHANNA KIRCHHOFF received the Diploma
degree in biology and the Ph.D. degree in phys-
ical chemistry from Friedrich Schiller University
Jena, in 2012 and 2019, respectively. In 2014, she
started her Ph.D. research in the group of Prof.
Neugebauer with the Center for Sepsis Control and
Care (CSCC) and the Leibniz Institute of Photonic
Technology (IPHT), Jena. Her Ph.D. project was
focused on micro-Raman spectroscopic character-
ization of the interactions of antibiotics with sepsis
pathogens. Her research interests include new optical-spectroscopic proce-
dures for microbiological diagnosis and antimicrobial susceptibility testing
strategies.

167720

PATRICK IGOCHE ONOJA received the B.Sc.
degree in physics from Benue State Univer-
sity, Nigeria, in 2006, and the M.Sc. degree in
biomedical engineering from Heidelberg Univer-
sity, Germany, in 2014. He is currently pur-
suing the second M.Sc. degree in the research
group of Dr. Popp and under the supervision of
PD. Dr. Christoph Krafft. From 2015 to 2016,
he worked as a Student Research Assistant in
the group of Dr. G. Glatting with the Mannheim
University Hospital. In 2018, he joined with Dr. Ute Neugebauer, where
he studied microscopic characterization of antibiotic bacteria interaction.
His research interests include radiation therapy, biomedical imaging, spec-
troscopy, and microscopy of biological samples.

ASTRID TANNERT reccived the degree in
biochemistry  from  Martin-Luther-University
Halle-Wittenberg, the University of Wales, Cardiff
University, and the Free University of Berlin, and
the Ph.D. degree in biophysics from the Humboldt
University of Berlin, in 2003. She is currently
coordinating the Jena Biophotonic and Imaging
Laboratory. Her research interest includes micro-
scopic solutions for biomedical research and diag-
nosis especially in infectious diseases.

UTE NEUGEBAUER studied chemistry in Jena,
Germany, and Chapel Hill, NC, USA. After her
Ph.D. degree, she joined the Biomedical Diag-
nostics Institute, Dublin, Ireland. From 2011 to
2016, she was leading the Junior Research Group
Spectroscopic Pathogen Detection at the Center
for Sepsis Control and Care (CSCC), Jena Univer-
sity Hospital. Since 2016, she has been a Professor
with the University of Jena, the Department Leader
with the Leibniz Institute of Photonic Technology,
Jena, and the Head of the Core Unit Biophotonics, CSCC. Her research inter-
ests include novel spectroscopic tools and methods for medical diagnostics
and the characterization of physiological interactions with a special focus on

infection and sepsis.

“ been the Scientific Director of the Leibniz Insti-
tute of Photonic Technology, Jena, since 2006. His

research interest includes biophotonics, in particular with the development

and application of innovative Raman techniques for biomedical diagnosis.

JURGEN POPP received the degree in chemistry
from the Universities of Erlangen and Wiirzburg,
the Ph.D. degree in chemistry, and the Habilitation
degree from the University of Wiirzburg, in 2002.
After his Ph.D. degree in chemistry, he joined Yale
University for his postdoctoral studies. Since then,
he has held a Chair of physical chemistry with
Friedrich Schiller University Jena. He has also

THOMAS BOCKLITZ received the Diploma
degree in theoretical physics, in 2007, the Ph.D.
degree in chemometrics, in 2011, and the degree in
physics and mathematics from Friedrich Schiller
University Jena. He is currently the Junior
Research Group Leader of statistical modeling
and image analysis with the University of Jena.
His research interest includes the translation of
physical information, obtained by AFM, TERS,
Raman spectroscopy, CARS, SHG, or TPEF, into
medically or biologically relevant information.

VOLUME 8, 2020

111



IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Supporting Information for:

Predictive Modeling of Antibiotic Susceptibility
in E. coli Strains Using the U-Net Network and
One-Class Classification

Nairveen Ali ', Johanna Kirchhoff >4, Patrick Igoche Onoja '?, Astrid Tannert >, Ute
Neugebauer '**4, Jiirgen Popp '*** and Thomas Bocklitz '?

Institute of Physical Chemistry (IPC), Friedrich Schiller University. Jena, Germany
2Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Research alliance “Health technologies™, Jena, Germany
3Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany

4
InfectoGnostics, Forschungscampus Jena, Jena, Germany

Corresponding author: Thomas Bocklitz (e-mail: Thomas.bocklitz@uni-jena.de).

Financial support by the Bundesministerium fiir Bildung und Forschung for the project Uro-MDD (FKZ 03ZZ0444]) and via the
Integrated Research and Treatment Center “Center for Sepsis Control and Care" (CSCC, FKZ 01EO1502) is highly acknowledged.
Funding of the Deutsche Forschungsgemeinschaft via the Core Facility Jena Biophotonic and Imaging Laboratory (JBIL) and for the
project BO4700/4-1 is highly appreciated. Furthermore, the work was performed within the Research Campus InfectoGnostics (FKZ
13GWO0096F) and the Leibniz ScienceCampus InfectoOptics which is financed by the funding line Strategic Networking of the
Leibniz Association. This work received financial support by the Ministry for Economics, Sciences and Digital Society of Thuringia
(TMWWDG), under the framework of the Landesprogramm ProDigital (Digleben-5575/10-9) and by the Free State of Thuringia
under the number 2019 FGR 0083 which was co-financed by European Union funds within the framework of the European Social
Fund (ESF).

112



List of Publications

I E EE ACCESS N. Ali et al.: One-Class Classification for Identifying Antibiotic Susceptibility

PCA-OCSVM AL |,:// I
Lf A4
(o
| 5 —
il
(%]
SFs or DFs

FIGURE S1. A schematic diagram of the proposed image processing and statistical analysis for predicting the antibiotic resistances. (A) Images of
cultivated bacteria, untreated control and treated with three antibiotics, are acquired using bright field microscopy. (B) The bacteria images are
segmented using the U-Net network into high intensity bacteria regions and background. (C) The segmented bacteria images are sliced into patches
of the size 265x256 pixels, and patches that have 90% of their area covered by bacteria are considered further. (D) The selected image patches of
control bacteria are utilized to build one-class SVM (OCSVM) models based on two types of features; i.e. statistical features and the bottleneck
fi of the p ined U-Net rk. The d OCSVM dels are impl d to predict bacteria susceptibility towards the antibiotics
using the extracted features from the selected patches of treated bacteria.
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FIGURE S2. Image examples of sensitive and resistance E. coli strains. (A) Bacteria of E. coli AG100 strain interact sensitively with the selected
antibiotics. This i ion introd pecific morphological changes can be seen in this le by the b ial elongation. (B) The sel d
antibiotics do not affect E. coli 579; therefore, these treated bacteria look similar to the untreated control bacteria.
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FIGURE S3. An overview of the presented analyses and comparisons using OCSVM models. (A) The local-trained models are constructed either
based on the statistical features or based on the bottleneck features of the trained U-Net network. Here, OCSVM models are trained on untreated
control image of a specific replicate and tested on the treated images collected from the same repli (B) A pari: b the identification
performance of the local-trained and global-trained OCSVM models using the bottleneck features of the trained U-Net network.
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51. The prediction results of antibiotic resistance using local-OCSVM models. For esch replicate and for each antibiotic, the predicted
ies (S: sensitive, R: resistant) based on SF-OCSVM and DF-OCSVM models are presented then compared with the reference
susceptibility according to the MICs of each E. coli strain and the EUCAST breakpoints.

Antibiotic and MIC [mg/] SF-OCSVM DF-OCSVM
EUCAST Strain Replicate & Susceptibility Categorization §<99.07% & R 299.07% S< 78.46% & R=>78.46%
Breakpoint according to EUCAST CP(%) Pred. CP(%) Pred.
407 1 >256 R 98.91 S 81.52 R
416 1 > 128 R 98.19 S 78.46 R
S 422 1 <4 S 99.88 R 63.01 S
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= 544 1 2256 R 99.88 R 92.36 R
- 2 1 =256 R 701 S 86.64 R
= <79 2 =256 R 6130 S 85.76 R
3 o 3 >256 R 20.25 S 19.53 S
& 4 >256 R 32.61 S 80.96 R
= < I I S 100 R 13.77 B
ES 673
£ 2 1 S 64.27 S 22.67 S
© 633 1 2 S 100 R 87.50 R
» 1 4 S 4021 S 1235 S
AGI100 2 4 S 65.15 S 3339 S
3 4 S 88.13 S .15 S
407 1 3 R 99.07 R 3831 R
416 1 <1 S 94.30 S 4553 S
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Deep learning-based classification
of blue light cystoscopy imaging
during transurethral resection

of bladder tumors

Nairveen Ali*?, Christian Bolenz?, Tilman Todenhéfer*, Arnulf Stenzel*, Peer Deetmar®,
Martin Kriegmair®, Thomas Knoll’, Stefan Porubsky®, Arndt Hartmann®, Jurgen Popp'?,
Maximilian C. Kriegmair'®*! & Thomas Bocklitz***

Bladder cancer is one of the top 10 frequently occurring cancers and leads to most cancer deaths
worldwide. Recently, blue light (BL) cystoscopy-based photedynamic diagnosis was introduced as a
unique technology to enhance the detection of bladder cancer, particularly for the detection of flat
and small lesions. Here, we aim to demonstrate a BL image-based artificial intelligence (Al) diagnostic
platform using 216 BL images, that were acquired in four different urological departments and
pathologically identified with respect to cancer malignancy, invasiveness, and grading. Thereafter,
four pre-trained convolution neural networks were utilized to predict image malignancy, invasiveness,
and grading. The results indicated that the classification sensitivity and specificity of malignant lesions
are 95.77% and 87.84%, while the mean sensitivity and mean specificity of tumor invasiveness are
88% and 96.56%, respectively. This small multicenter clinical study clearly shows the potential of

Al based classification of BL images allowing for better treatment decisions and potentially higher
detection rates.

Bladder cancer is among the most common cancers and the leading cause of death in western countries’. The
primary diagnosis and treatment of bladder cancer is based on endoscopic procedures. Here, the standard of
health care is white light (WL) cystoscopy, which offers an excellent sensitivity and specificity to detect papil-
lary tumors, but it misses a significant fraction of small and flat lesions®*. To increase the detection rate of these
lesions, modern imaging technologies such as photodynamic diagnosis (PDD) are highly recommended. Accord-
ing to a couple of meta-analyses, 40% of flat cancerous lesions are only detected in BL cystoscopy*”. Consequently,
the implementation of PDD can result in a change of the respective bladder cancer risk classification, and thus a
more accurate therapy®. However, PDD harbors some significant drawbacks concerning its low specificity which
ranges from 35 to 60%"°, For instance, it is difficult to distinguish flat cancerous lesions from inflammable altera-
tions following transurethral resection or instillation®. Moreover, the interpretation of PDD findings is highly
subjective and may vary between observers. This accounts especially for less experienced endoscopists, where
the rate of false positives is particularly high’. Finally, PDD supports the distinction of malignant and benign
tissues but does not offer diagnostic information regarding tumor stage and grading.

Currently, brain-inspired deep neural networks (DNNs) have been revolutionizing artificial intelligence,
and they have shown their potential for computer-aided diagnostic systems in various fields such as radiology®,
histopathology® and computational neuroscience'’. In terms of image processing, deep neural networks (DNNs)
exhibit the best performing models for object recognition and yield human performance levels for object
categorization'’. Typically, these DNNs mimic the mechanism of human brains by letting DNNs learn specific
image features that improve the identification performance on new unlabeled data sets. In the basic architecture
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Histology n (%)
Benign 74 (34.26%)
CIS 17 (7.87%)
Ta, LG 72 (33.33%)
Ta, HG 28 (10.18%)
T1,LG 1 (0.46%)
T1,HG 13 (06.02%)
22, any grade 11 (05.09%)
Low-grade 73 (33.80%)
High-grade 69 (31.94%)
Malignant 142 (65.74%)

Table 1. Distribution of pathological staging after TUR-BT of the respective PDD positive lesions. The
separation into low-grad and high-grade was made according to the WHO 2004 classification and malignant
was defined as all samples diagnosed with any kind of bladder cancer.

of a DNN, the neural network is trained by passing a data set of labeled images through multiple layers that
consist of simple units called neurons. These neurons compute different linear combinations of specific image
features captured from the labeled data set and pass the results into the next layer through a static nonlinearity,
e.g., replacing negative values by zeros. The previous nonlinear layer is usually known as activation layer, and it
is followed by pooling layers that aim to reduce the spatial dimension of the image features. Then, DNNs pro-
cess the images as a sequence of visual representations in which each neuron detects a specific local region of
the feature map in the previous layer while similar feature detectors exist across locations in the feature map'®.
Nonetheless, the term “Deep” in deep neural networks indicates that multiple layers of neurons are utilized in
DNNs and improve their identification performance. Such training procedures are usually time consuming and
require a large sample size of labeled images, which is rarely available for biomedical applications. Therefore, the
concept of transfer learning of DNNs was introduced to deal with classification tasks on small data set. Thereby,
the identification knowledge gained via training DNNs on a large annotated data set can be transferred to solve
another classification task based on a new and small data set'>'>. These strategies have shown a great potential
for diagnostic classifications of biomedical images using relatively small sample sizes'*"”. Further, implementing
such deep learning models in biomedicine may increase sensitivity and specificity of diagnostic procedures and
reduce inter-observer variance'®'*. However, respective solutions in endoscopy are rare. Recently, Shkolyar and
colleagues introduced a deep learning automated image processing platform for cystoscopy. The software was
able to identify papillary lesions in videos from WL cystoscopy with a high sensitivity and specificity”. Similarly,
a recent study established a classification system based on 233 images of bladder wall lesions that was able to
identify cancerous formations with a very high sensitivity, but with a low specificity of 50%2". Although these
preliminary findings are promising, further developments in automated image processing are highly appreciated
in urological endoscopy. In this context, PDD was considered as an effective modern imaging technique that
offers characteristic information about tumor morphology. This technology utilizes the fluorescence properties
of an extrinsic metabolic substrate, which is differently metabolized in cancerous and healthy tissues?2. Conse-
quently, PDD images contain more comprehensive information as compared to WL images.

The aim of this study is to test the classification of a small BL image data set consisting of bladder tumor
and healthy urothelium images. This test was accomplished using an automated image processing pipelines and
deep convolutional neural networks (CNNs) as a first step to implement computer-aided diagnosis in urological
endoscopy. Our workflow started by preprocessing the BL images to include regions containing bladder tissue
only. Then, the identification performance of different pre-trained CNNs in predicting bladder cancer malig-
nancy, invasiveness and grading was investigated via a fine-tuning-based transfer learning strategy. Shortly, a
comparison between the implemented CNN models and bladder cancer ratings of two experienced urologists
was performed on the basis of the classification sensitivity.

Results

‘We present in this section the classification results of BL images using the previously explained fine-tuned
CNNs. Overall, images from 216 different lesions were included and three classification tasks based on these
BL images were established. In Table 1, the pathological results of the biopsied lesions are shown. We can see
that the numbers of collected images per class are different; thus, class weights were considered to correct the
unbalance within the data set while the CNNs were trained.

Identification of malignant bladder tumors lesions. The goal of this task is to evaluate the petfor-
mance of the fine-tuned CNNs in identifying malignant lesions within the BL images, which were collected in
multiple centers. Therein, the prediction results obtained by the proposed CNNs were compared with the physi-
cian ratings and summarized in Table S1 and Fig. 1. In Fig. 1A, the classification sensitivities of CNNs based on
the leave-10-patients-out cross-validation (L10PO-CV) and the physician ratings were visualized as bar charts.
For this binary task, the highest classification sensitivity for malignant lesions and for benign lesions are 95.77%
and 87.84%; respectively. Here, the fine-tuned MobileNetV2 network provided the best identification of malig-
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Figure 1. The identification results of the malignant tumor lesions in bladder. (A) The classification sensitivities
of benign and malignant images based on the considered fine-tuned CNNs and the physician ratings. All

CNN:s could predict the malignant images quit well with sensitivity of at least 91% and specificity larger than
77%. (B) Comparison between the mean sensitivities of the fine-tuned CNNs and the physician ratings. The
MobileNetV2 network followed by VGG16 network showed the best classification results with a mean sensitivity
of 91.81% and 90.75%; respectively. (C) The class distribution of the BL image data set with respect to the
percentage of malignant and benign images in the data set. Clearly, the number of malignant images is much
larger than the number of the images collected from benign legions.

nant lesions while both fine-tuned MobileNetV2 network and fine-tuned VGG16 network introduced the high-
est sensitivity for the prediction of benign images. Moving to Fig. 1B, the mean sensitivities of all fine-tuned
CNNs and both physicians are visualized. Clearly, the fine-tuned MobileNetV2 network features the highest
mean sensitivity with the value of 91.81% followed by the fine-tuned VGG16 network with a mean sensitivity of
90.75%. It is also obvious that the performance of any fine-tuned CNN is at least 15% superior in their classifica-
tion mean sensitivity as compared to the mean sensitivities obtained by both physician ratings. Nevertheless, the
detailed confusion matrices of the pervious binary task are presented in Table S1 while the percentage of class
sample sizes to all data set size is shown in Fig. 1C as pie chart.

The identification of bladder cancer invasiveness (T-stage). Because each stage of bladder cancer
required a specific medical treatment, we were interested in comparing the classification results of the bladder
cancer stages using the considered deep learning models with those obtained by the urologists. To do so, the
acquired BL images were categorized into five classes representing benign tissue, carcinoma in situ (CIS) and the
following three bladder cancer stages: Ta, T1 and >T2. Table S2 shows the classification results of the bladder
cancer invasiveness as a single confusion matrix reflecting all results of each model, i.e., results of CNNs and
physician ratings.

In Fig. 2A, the class sensitivities and specificities of each model were plotted as a two-direction bar chart
while in Fig. 2B the mean sensitivities and the mean specificities of the respective models were compared based
on a point chart. Figure 2C visualizes the proportion of sample size for each class to the whole data set size as a
pie chart. Clearly, the class sample sizes are quite different, and the sample size is quite small for the T1 and T2
cancer stages (< 15 images). Based on Fig. 2A, the best identification results of benign images were provided
by the fine-tuned InceptionV3 network. Thereby, the observed sensitivity and specificity of benign images is
83.78% and 94.37%, respectively. Regarding image classification of CIS and the bladder cancer stage T1, the
fine-tuned MobileNetV2 network introduced the best predictions with a class sensitivity of 76.47% for the CIS
images and 100% for the T1 images. While the fine-tuned ResNet50 network presented the best identification
of the T2 images with 100% classification sensitivity, the highest classification sensitivity for Ta images was
obtained again using fine-tuned MobileNetV2 network. Here, the observed sensitivity of bladder cancer stage
Ta is 93%. In contrast, both urologists misidentified almost all images of class CIS, T1 and T2, but they could
assess the first stage of bladder cancer, i.e., Ta cancer stage, well. Overall, the highest mean sensitivity and the
highest mean specificity were reached by the MobileNetV2 network based on the LI0PO-CV as it is shown in
Fig. 2B. The observed mean sensitivity and mean specificity of the previously mentioned CNN are 88% and
96.56%; respectively. However, the classification mean sensitivities dropped at least 50% when the BL images
were accessed by any of both urologists.
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Figure 2. The identification of bladder tumor stage using the fine-tuned CNNs and urologist ratings. (A) The
class sensitivities and specificities of the considered CNNs and both physician ratings as a two-directions bar
chart. While both urologists could not assess well the last two invasive stages of bladder cancer, the detection of
these tumor stages was quite good based on all CNNs (B) The obtained mean sensitivities and mean specificities
for all classification models. The best classification results were achieved by the MobileNetV2 network

with a mean sensitivity of 88% followed by the mean sensitivity obtained by the InceptionV3 network. The
classification mean sensitivity decreased at least 50% when the same images were assessed by the urologists. (C)

The class distribution of the BL image data set. The number of involved images for this task varies a lot from one
class to another class.
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Figure 3. The classification results of bladder cancer grading. (A) Overview of the individual class sensitivity
and specificity with respect to both physician ratings and the fine-tuned CNNs. (B) Summary plot of the

mean sensitivities and mean specificities obtained by the fine-tuned CNNs and both physician’s ratings. An
increase between 25 and 40% of the classification mean sensitivity can be observed if the fine-tuned CNNs were
considered to identify bladder cancer grading based on the collected BL images. (C) Image class distribution

with respect to the whole data size. Almost similar number of images were acquired from benign, low-grade,
and high-grade lesions.

The differentiation of the bladder cancer grading. We present in this subsection the results of deep
learning models and physician ratings in identifying the bladder cancer grading based on the BL image data
set that was collected from a study involving multiple centers. In Table S3 and Fig. 3, the classification results
obtained by the proposed fine-tuned CNNs and by the physician ratings are presented. Table S3 describes the
detailed confusion matrices of all previous models and ratings.

The results showed that the fine-tuned ResNet50 network based on L10PO-CV is the best in predicting cancer
grading followed by the fine-tuned MobileNetV2 network. Figure 3A depicts the sensitivities and specificities
of all models as a two-directions bar chart while Fig. 3B shows a summary plot of the mean sensitivities and

Scientific Reports |

(2021) 12:11629 | https://doi.org/10.1038/s41598-021-91081x natureportfolio



List of Publications

www.nature.com/scientificreports/

mean specificities of all previous models. We see in this figure that the ResNet50 network shows the highest-class
sensitivity for high-grade cancer and benign images among the other models, i.e., CNNs and physician ratings.
Thereby, the observed sensitivity of the high-grade images and the benign images has the values of 89.86%
and 95.95%; respectively. For the identification of low-grade images, the MobileNetV2 network introduced the
highest sensitivity in comparison to the other models. Here, the classification sensitivity of low-grade images
using the MobileNetV2 network is 91.78%. The overall results indicate that the best performing model is the
fine-tuned ResNet50 network while the lowest classification mean sensitivities were obtained by the urologist
ratings. Therein, the mean sensitivity and mean specificity of the fine-tuned ResNet50 networks is 92.07% and
96.04%; respectively. On the other side, the mean sensitivity of the first and the second urologist is 53.71% and
55.17%, respectively.

Discussion

In this contribution, we introduced the identification results of bladder cancer using BL endoscopic images
acquired from four different urological departments. The data set consists of 216 BL images, that were recorded
prior to resection of the respective lesions. The collected BL images were utilized to evaluate the ability of deep
learning models in automating the classification of the endoscopic lesions and predicting histopathological
results. The bladder cancer identification was demonstrated based on four deep CNNs, and the results were
compared with those obtained by two experienced urologists. This comparison was evaluated to predict cancer
malignancy, cancer invasiveness and cancer grading. For all these tasks, pre-trained versions of InceptionV3,
MobileNetV2, ReNet50, and VGG16 networks were fine-tuned, and then they were evaluated using a L1I0PO-CV.

The results of the previous named CNNs showed that the fine-tuned MobileNetV2 network has the best
performance in detecting images of malignant lesions with a sensitivity of 95.77% and a specificity of 87.84%.
The detection performance of this MobileNetV2 network exceeds the performance of other imaging technolo-
gies typically used for enhancing bladder cancer detection. For example, probe-based techniques such as CLE
or OCT provide sensitivity levels between 80 and 90% for the detection of malignant lesions?*?*, This underlines
the potential of automated image analysis systems in urological endoscopy. For such a classification task, i.e.,
malignancy identification, an increasing sensitivity should be the primary target. Therefore, the detection of all
cancerous lesions during TUR-BT is important for correct identification of bladder cancer staging and adjuvant
therapy stratification. Moreover, the failure to remove all tumor tissues is a main reason for high residual tumor
rates in patients with intermediate and high-risk NMIBC requiring a 2nd TUR-BT?*, Recently, an image analysis
platform, named: CystoNet, was constructed and evaluated resulting in a sensitivity of 90.9% in detecting papil-
lary bladder tumors®. However, unlike the fine-tuned MobileNetV2 network in this study, its specificity was
low. Accordingly, Gosnell and colleagues introduced an endoscopy image-based classification system with high
sensitivity, but it also suffered of the low specificity (~ 50%)'. Consequently, the image analysis technology used
in this study has not only shown promising results regarding sensitivity, but also for specificity levels.

Moving to the classification of the cancer invasiveness (T stage), the fine-tuned MobileNetV2 network per-
formed quite well for the presented multiclass task. Thereby, the classification sensitivity of each of the tumor
stage T1 and T2 is 100% and 90.91% even though the image sample size per class was quite small (< 15 images
per class). Overall, the mean sensitivity and the mean specificity of the fine-tuned MobileNetV2 based on the
cross-validation is 88.02% and 96.56%; respectively. For the identification of bladder cancer grading, the fine-
tuned ResNet50 network provided the best classification results compared to other CNNs. The observed mean
sensitivity and mean specificity of the ResNet50 using the considered cross-validation strategy is 92.07% and
96.04%, respectively. However, the identification performances of both urologists were much worse (mean sen-
sitivity between 35 and 37%) than the classification performance of any of the considered deep learning models.

Beside the challenges presented for identifying bladder cancer invasiveness and grading, flat malignant lesions
constitute a challenging situation for urologists. Due to its flat growth pattern, the carcinoma in-situ (CIS) of the
urinary bladder is hard to be detected in WL imaging®. In contrast to other organs, CIS of the urinary bladder has
high-grade characteristics and is potentially invasive. Therefore, it is important to correctly identify and hence
cure this cancer type. Although PDD can assist physicians and significantly increase the detection rate of CIS,
such flat lesions remain hard to be characterized for urologists. Furthermore, scar tissue and inflammation can
mimic CIS characteristics; especially in BL cystoscopy resulting in a high number of false negative biopsies®. In
this discourse, artificial intelligence-based cancer identification might be an effective tool for better classification
of the respective urothelial lesions. Consequently, we were interested in testing the prediction quality of deep
learning models in differentiating flat bladder lesions, that include images of benign and CIS lesions. This was
achieved using the proposed fine-tuned CNNs on the collected images of the respective bladder lesions, e.g.,
CIS, and benign tissue. Similar hyperparameters and similar network architectures were used for the aforemen-
tioned CNNs with the LIOPO-CV being the validation method. In Table S4, the results of the previous binary
classification obtained by all considered CNNs were summarized with respect to the class sensitivities, then
they were compared with the class sensitivities resulted from the classification of bladder tumor invasiveness,
i.e., multiclass models. It turned out that the fine-tuned MobileNetV3 network based on the multiclass training
performed the best in the differentiation between benign and CIS lesions with a mean sensitivity of 78.10%.
Remarkably, the specificity of CIS lesions in the binary model was high reaching 90% using the InceptionV3
and ReNet50 networks. To improve and verify these findings, further clinical research is needed to enhance the
low specificity, which introduces one of the major drawbacks of PDD imaging. Similar drawbacks exist in other
imaging techniques such as Optical Coherence Tomography?’. The advantage of improving the detection sensi-
tivity and specificity of flat lesions would be of particular interest when PDD is utilized in an outpatient setting,
where biopsies and resection are not possible?®. Indeed, a recent study revealed that refuting suspicious lesions
is one of the major motivations physicians to use adjunct imaging modalities?®. Thus, cancer diagnosis based
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on the combination of imaging technologies and artificial intelligence would be highly appreciated in clinics.
Nevertheless, our classification results of flat lesions were highly influenced by the sample size when the CNNs
were considered to perform the binary classification, i.e., CIS vs. benign lesions. Therein, the fine-tuned CNNs
were trained and validated on 91 BL images with unequal class sizes. However, we expect to achieve better clas-
sification performance if the previous mentioned challenges are addressed in future studies.

In summary, transfer learning based on pre-trained CNNs enabled us to identify bladder cancer despite the
small sample size and the unbalance in data set. For all tasks, the fine-tuned CNNs provided promising results.
Moreover, the misclassification of BL images in most cases was expected due to the high variations between the
images and due to other systematic errors. Figure 4 presents examples of correctly classified and misclassified
images related to two of the considered classification tasks, i.e., the classification of malignant lesions and the
classification of cancer grading, It is clear in this figure that the fluorescence of some images is very low while
it is very spotty in others. Additionally, the urine fluorescence within some images may drown out the red
fluorescence; therefore, these images were mostly incorrectly identified. Beside the fluorescence issues, some
images depicted flat lesions while others were not close enough to capture the suspicious lesions. As a result,
these images were also misclassified.

Nevertheless, the main limitations of the current study its retrospective design. Further, the image identifica-
tion results provided by both urologists are not the typical procedure considered for such cancer diagnosis in
clinical practice. Due to the low morbidity of additional biopsies, urologists tend to biopsy some to all suspicious
lesions, which results in a high sensitivity and low specificity. Another limitation is the low number of BL image
for all lesions, specifically for CIS lesions. These small sample sizes allowed for exploratory analyses on lesions.
However, only BL images with obvious histopathological correlates were included while all four centers used
equivalent clinical and technical set-ups.

Conclusion

The results in this study demonstrated the potential of artificial intelligence-based classification models for
the diagnostics of bladder cancer based on BL cystoscopic images. In this context, further studies need to be
performed in order to build an automatic BL cystoscopic platform that assists physicians in identifying and clas-
sifying potential lesions of interest. Applying such platforms into clinical routines aims to assist surgeons and
aids the cancer diagnoses. Potentially this technology could increase the detection rates of cancer and improve
the relative low specificity of BL imaging. However, the system will not be considered to substitute the opinion
of endo-urologists or pathologists for clinical decision making.

Material and methods

Image acquisition and pathological evaluation. A total of 216 BL images acquired during PDD-
guided transurethral resection of bladder tumor (TUR-BT) were collected from four urological departments
retrospectively and one image was taken for an individual patient. Therefore, every image represents a patient.
Routine pathological evaluation was performed, and all tumors were classified according to the world health
organization (WHO) classification 2004. Only endoscopic images recorded prior to the resection of the respec-
tive lesions were used while the distance from the endoscopy to the region of interest was not standardized.
For PDD, intravesical instillation of 85 mg Hexaminolevulinathydrochlorid (Hexvix®, IPSEn Pharma, Bou-
logne, France) was performed 60 min prior to PDD. Imaging was performed using the Tricam II° system and a
30-degree Hopkins II optic (Karl Storz, Tuttlingen, Germany) in all centers. Further, two experienced urologists
(CB and MCK, both>PDD 300 TUR-BTs) assessed the endoscopic images. Therein, the following distinctions
were requested from the urologists and subsequently performed by different deep CNNs based on the PDD
images only:

(i) Malignancy: malignant vs benign lesions

(ii) Tumor invasiveness (T-Stage): benign lesions vs carcinoma in situ (CIS) vs Ta vs T1 vs T2
(iii) Tumor grading: benign vs high-grade vs low-grade cancer
(iv) Flatlesions: benign vs CIS

For the previous classification tasks, the number of collected image per class is not equal; therefore, class
weights were considered to correct this unequal class sizes within the data set while the classification models
were trained.

Nevertheless, the data was collected retrospectively. Written informed consent was obtained, if possible. Data
was analyzed and forwarded anonymized from the respective clinical center to all other study participants. This
study was approved by the local ethical committee of the leading study side Mannheim (Ethics Committee IT of
the University of Heidelberg at the Medical Faculty Mannheim, Ref Number: 2015 549N MA) and in accordance
with the Declaration of Helsinki.

Image region of interest. To improve the identification results of bladder cancer, only the regions of inter-
est (ROI) in the PDD images were included in the data modeling (see Fig. 5). Here, the ROI of an image refers
to the image area containing the bladder tissue. This determination of ROIs was performed automatically based
on image processing techniques, and it started by enhancing the contrast of the red and blue channels of all PDD
images using the contrast limited adaptive histogram equalization algorithm®. Thereafter, the tissue area of each
image was extracted by fitting a disk in order to remove background areas. Finally, the ROI of an image was
acquired as an inscribed square region within the extracted image disk. Applying the previous image preprocess-
ing pipeline returns images of the size of 384 x 384 pixels.
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(A) Malignancy identifictaion
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malignant

Benign Benign

Malignant as Malignant
benign

(B) Cancer grade identification

Benign Benign

Low-grade as Low-grade Low-grade Low-grade as
benign high-grade

High-grade as High-grade as High-grade High-grade
benign low-gratle

Figure 4. Examples of correctly predicted images and misclassified images using the fine-tuned CNNs.

Transfer learning based on deep convolutional neural networks. The basic idea of transfer learn-
ing for deep learning models is to utilize knowledge gained by training a deep neural network on a large and
annotated data set to solve another classification task'*'>. In this contribution, we proposed a transfer learning
strategy in which an ensemble of different pre-trained deep CNNs were fine-tuned to improve the classifica-
tion of BL images. The respective CNNs are the InceptionV3 network®, MobileNetV2 network’®, ResNet50
network™ and VGG16 network®, and they represent common freely available fully connected CNNs that were
pre-trained on the ImageNet dataset. As we mentioned, the identification ability of the previous pre-trained
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Figure 5. Overview of image acquisition and image processing using the blue light cystoscope.

e
|
i
. HG
: ad

| ' s
; ™ T2
Dense layer i

Figure 6. Schematic diagram of the CNN fine-tuning considered for identifying bladder cancer. Each pre-
trained CNN was fine-tuned by appending two batch normalization layers, a global average pooling layer,
dropout layers with the probability of 50%, a dense layer to improve cancer identification, and Softmax
activation layer. The last layer delivers different label probabilities for each input image with respect to each
classification task.
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CNNs can be transferred via a fine-tuning approach, which was accomplished by appending additional layers on
top of each network. These additional layers are two batch normalization layers, a global average pooling layer,
dropout layers with the probability of 50%, and a dense layer to find the best combinations of the already learnt
features that improve bladder cancer identification. The last additional layer is a Softmax activation layer, which
provides label probabilities for each image with respect to the considered classification task (see Fig. 6 for more
details). The parameters of these layer were optimized by an Adam optimizer, which was trained for 100 epochs
based on a mini-batch of 5 patches. The optimization hyperparameters were a learning rate of 0.001 and the
categorical-cross entropy loss function. Class imbalance was tackled by the SckiKit Learn function class_weight.
compute_class_weight (‘balanced’).
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Image augmentation and cross validation. The input image size of all previous CNNs was fixed to be
224 x224 pixels; therefore, all endoscopic images were first down-sampled to that size. Then, class labels of all
down-sampled images were predicted four times based on the four fine-tuned CNNs. These CNN were evalu-
ated using the L10PO-CV as a validation strategy. Therein, we always fixed 10 images (from 10 patients) as test
set and 10 images as validation set while the remaining images were utilized to train the considered fine-tuned
CNN. The last procedure was repeated 22 times until labels of all images (and patients) were predicted by all
fine-tuned CNNs. Because the training set has a maximum size of 196 images per each cross-validation iteration,
the BL images utilized to train the CNNs within each iteration were augmented automatically using random
rotations by steps of 10° degrees within the range of 0° to 180°. Thereafter, each fine-tuned CNN was trained for
100 epochs based on a mini-batch of 5 patches and using the Adam optimizer with a learning rate of 0.001 to
minimize the categorical-cross entropy loss function.

Data modeling and models evaluation. For interpretation of the cross-validation results, we calculated
the confusion matrix and the classification sensitivity and specificity with respect to all tested classification tasks
and all fine-tuned CNNs. For ratings of the urologists, confusion matrices were also computed by comparing
these ratings with the image ground truth, e.g., the pathological annotation of the biopsied tissue sample. Lastly,
the resulting mean sensitivities and mean specificities were calculated for all CNNs results and for both urolo-
gists’ results.

All computations in this work were accomplished based on in-house written functions using the program-
ming language Python version 3.7* and the statistical programing language R version 3.6*".
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Table S1. The confusion tables of bladder cancer malignancy identification. The results here

were obtained by the fine-tuned CNNs based on the cross- validation and by physician ratings.

Model True
Benign
IncepctionV3
Malignant
Benign
MobileNetv2
Malignant
Benign
Physician 1
Malignant

Prediction
Benign Malignant

57 17
7 135
65 9

6 136
39 35
17 125

Sens.

77.03%
95.07%
87.84%
95.77%
52.70%

88.03%

Model True
Benign
ResNet50
Malignant
Benign
VGG16
Malignant
Benign
Physician 2
Malignant

Prediction
Benign Malignant

61 13
12 129
65 9

9 133
41 33
18 124

Sens.

82.43%
91.55%
87.84%
93.66%
56.41%

87.32%
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Table S2. The prediction results of cancer stage based on the fine-tuned CNNs and physician

ratings.
Prediction
Model True Sens. Spec.
Benign Ta m™ T2 Cis
Benign 62 5 3 4 0 83.78% 94.37%
Ta 4 91 2 2 1 91% 91.38%
IncepctionV3 T 1 3 10 0 0 71.43% 97.52%
T2 1 0 0 10 0 90.91% 96.10%
Cls 2 2 0 2 1 64.71% 99.50%
Benign 59 7 3 1 4 79.72% 98.59%
Ta 1 93 2 2 2 93% 92.24%
MobileNetV2 T o] 0 14 0 0 100% 97.52%
T2 0 1 0 10 0 90.91% 97.56%
CIS 1 1 0 2 13 76.47% 96.98%
Benign 58 13 0 2 1 78.38% 97.18%
Ta 3 92 2 3 0 92% 81.90%
ResNet50 m™ 0 4 10 0 0 71.43% 98.51%
T2 0 0 0 1 0 100% 96.58%
CIs 1 4 1 2 9 52.94% 99.50%
Benign 60 5 0 6 3 81.08% 95.77%
Ta 2 91 2 1 4 91% 91.37%
VGG16 T 1 2 o) 1 1 64.29% 99.01%
T2 [ 2 0 8 1 72.72% 95.61%
CIS 3 1 0 1 12 70.59% 95.48%
Benign 39 25 2 1 7 52.70% 88.03%
Ta 6 84 7 0 3 84.00% 61.21%
Physician 1 ™ 3 6 2 0 1 16.67% 93.63%
T2 1 9 3 0 0 0% 99.50%
CIs 7 5 1 0 4 23.53% 94.47%
Benign 41 21 2 2 8 55.41% 87.32%
Ta 7 82 7 0 4 82.00% 64.66%
Physician 2 T 3 6 3 0 0 25.00% 93.62%
T2 1 9 3 0 0 0% 99.01%
Cls 7 5 1 0 4 23.53% 93.96%
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Table S3. Confusion matrices obtained by the deep learning models and physician ratings.

Prediction
Model True Sens. Spec.
Benign Low-grade High-grade
Benign 57 7 10 77.03% 85.92%
IncepctionV3 Low-grade 8 57 8 78.08% 93.01%
High-grade 12 3 54 78.26% 87.76%
Benign 63 5 6 85.14% 95.07%
MobileNetV2 Low-grade 4 67 2 91.78% 93.01%
High-grade 3 5 61 88.44% 94.56%
Benign 7 2 1 95.95% 93.66%
ResNet50 Low-grade 4 66 4 90.41% 97.20%
High-grade 5 2 62 89.86% 97.27%
Benign 62 7 5 83.80% 89.43%
VGG16 Low-grade 7 61 5 83.56% 93.01%
High-grade 8 3 58 84.06% 93.20%
Benign 39 23 12 52.70% 88.02%
Physician 1 Low-grade 4 58 11 79.45% 58.74%
High-grade 13 36 20 28.99% 84.35%
Benign 41 19 14 56.40% 87.32%
Physician 2 Low-grade 3 55 15 75.34% 65.73%
High-grade 15 30 24 34.78% 80.27%
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Table S4. A comparison between binary CNN models and multiclass CNN models in image

identification of benign and carcinoma in situ (CIS) bladder lesions.

Binary model Multiclass model
Model Class Sens. M. Sens. Model True Sens. M. Sens.
Benign 90.78% Benign 83.78%
IncepctionV3 57.03% IncepctionV3 74.35%
CIs 23.52% Cis 64.71%
. Benign 56.75% ; Benign 79.72%
MobileNetv2 60.73% MobileNetv2 78.10%
CIs 64.70% CIs 76.47%
Benign 89.19% Benign 78.38%
ResNet50 56.35% ResNet50 65.66%
CIs 23.53% CIs 52.94%
Benign 97.29% Benign 81.08%
VGG16 51.59% VGG16 75.84%
cls 05.88% cls 70.59%
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Abstract

Breast cancer is the main cause of all
female cancer deaths worldwide.
Because of the lack of early symp-
toms, the early detection of breast
cancer becomes challenging. This
detection is performed by screening
techniques in organized preventive

ResNet50
network

examinations. A promising imaging technology that can detect biomolecular
alterations and can support the screening technologies by enhancing their low
sensitivity, is nonlinear multimodal imaging. To detect these biomolecular
alterations, machine-learning algorithms are utilized. Our analysis started by
preprocessing the images and comparing them to the pathological diagnosis.
We trained two classification models utilizing the deep convolutional neural
network ResNet50. This network was either used as feature extractor or to be
fine-tuned as a classification model. Beside these two classification approaches,
two data validation techniques were investigated: the leave-one-patient-out
cross-validation (LOPO-CV) and the training-test validation. The best reported
result of breast cancer detection was introduced by the fine-tuned ResNet50
network and LOPO-CV accounting to 86.23% mean-sensitivity.
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breast cancer imaging, coherent anti-stokes Raman scattering, computer aided diagnosis,
convolutional neural network, deep learning, image analysis, nonlinear multimodal imaging,
second-harmonic generation, two-photon excited fluorescence
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1 | INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in
women [1, 2]. According to estimates from the World
Health Organization (WHO) breast cancer affects 2.1 mil-
lion women each year and is the leading cause of female
cancer deaths [3]. In 2018, breast cancer accounted as the
second commonly diagnosed cancer with 11.6% of the
total cancer cases and 6.6% of the total female deaths [4].
Survival among breast cancer patients largely depends on
early detection. A late detection of this disease is often
due to lack of early symptoms which makes the treat-
ment challenging [2]. Fortunately, previous studies have
shown that early diagnosis and suitable treatment could
reduce significantly the death rate [5]. Consequently, the
most critical point for best prognosis of breast cancer
patients is an early identification of early cancer stages.
Nevertheless, the current gold-standard for definitive
diagnosis of breast cancer is visual inspection of histo-
pathological stained tissue sections after a biopsy of tissue
material is taken, which is time consuming and invasive.

To find suspicious lesions, which should be biopsied
and diagnosed breast cancer screening is necessary.
Mammography, which is a low-dose X-ray examination
of woman's breast, is the most commonly used method
for this purpose. Though popular, it is less effective for
imaging small localized and early tissue alterations (small
tumors <1 mm, about 100 000 cells). It is also less accu-
rate in patients with dense glandular breasts and for
those under 40 years old [6, 7]. Other imaging modalities
have emerged to supplement mammography and
improve the accuracy of breast cancer diagnosis without
the need of a biopsy. Ultrasound imaging has been
applied as an additional medical imaging tool for mam-
mography yielding significant cancer detection improve-
ment compared with mammography alone (sensitivity of
92%) [8-10]. However, on its own, ultrasound has a sensi-
tivity of 34% and fails to detect lesions accurately. Mag-
netic resonance imaging (MRI) has the ability to detect
small lesions with high sensitivity of 94.4% [11] and it
has a high spatial and temporal resolution. Additionally,
MRI exhibits a good signal to noise ratio [12]. It has
unfortunately a very low specificity of 26.4%, which can
lead to many false positives [13, 14]. It is therefore highly
recommended for screening breast cancer in high-risk
women, but not for all women [15]. The hybrid technique
of Positron emission tomography (PET) and computer
tomography (CT) is the most accurate method for visual-
izing the spread of tumors or detecting the tumor's
response to therapy, but the limitation of this method for
breast imaging is its poor detection rate for small breast
carcinomas [16-19]. Thus, an alternative imaging tech-
nology is needed that can measure small breast cancers.

This technique would need to provide fast image acquisi-
tion without losing molecular contrast and can be applied
in vivo to supplement the screening techniques described
above. Nonlinear multimodal imaging, the combination
of coherent anti-Stokes Raman scattering (CARS), two-
photon excited fluorescence (TPEF), and second-
harmonic generation (SHG), features these properties
and allows for noninvasive and label-free investigation of
cells and tissues. Hence, this method might be an appro-
priate method for in vivo analysis as optical biopsy, espe-
cially in combination with fiber-based measurements
[20]. Multimodal imaging has been successfully applied
in ex vivo tissue investigations of inflammatory bowel
disease (IBD) [21], brain tissue [22], larynx carcinoma
[23, 24], lung tissue [25], carcinomas in the colon and
nonmelanoma skin cancer [26-28].

The main advantage of the previous mentioned multi-
modal nonlinear imaging is the direct visualization not
only of tissue morphology but also of the molecular com-
position of the tissue. Particularly, CARS visualizes
mainly the lipid distribution of tissue, TPEF visualizes
autofluorophores including proteins like elastin and kera-
tin, pigments like melanin and enzymes like NADH and
flavines [29, 30] and SHG visualizes specific proteins
organized in quasi crystalline structures such as collagen,
the most frequent protein and a main constituent of the
extracellular matrix, actin-myosin, the motor proteins of
the muscle cells and tubulin [31]. A visualization of the
three nonlinear processes is depicted in Figure 1. How-
ever, it is required that the optical data obtained from
multimodal imaging is translated into diagnostic relevant
information. Recently, computer aided diagnosis using
machine learning (ML) algorithms is widely utilized for
this task [32].

The essential aim of computer aided diagnosis using
ML algorithms is to extract diagnostic relevant informa-
tion based on automatic analysis of the obtained images
in biomedical studies. This automatic analysis becomes a
necessity due to the fast-growing amounts of acquired
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FIGURE 1 Overview of nonlinear multimodal techniques.
CARS visualizes lipids and proteins, TPEF visualizes endogenous
fluorophores, such as elastin, keratin and SHG visualizes collagen
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spectroscopic and microscopic imaging data in biomedi-
cal studies [33, 34]. Thereby, the computational models
are integrated within the computer system in order to
understand and analyze the data by exploring patterns
within the collected datasets [35]. These patterns can be
unraveled by ML, which is considered as an important
discipline in artificial intelligence. The ML algorithms
can be categorized roughly into supervised ML and
unsupervised ML techniques [36]. In our work, we focus
on supervised learning, which aims to find a mathemati-
cal relation between the image data and the image labels.
Until few years ago, the efficiency of ML algorithms and
other pattern recognition applications relied on
extracting manually designed image features. After
extraction, these extracted features are mapped to the
decision variable with easy classification algorithms [32].
The previous type of ML is mostly known as classical ML
and it was successfully implemented, for example, in the
investigation of inflammatory bowel disease [21], the
detection of head and neck carcinoma [23], and in the
analysis of basal cell cancer of skin tissue [37]. Beside the
classical ML approach, deep learning (DL) is often used
for biomedical image analysis. This approach showed
great advantages in reducing the human effort by auto-
mating most data learning phases. DL algorithms are ide-
ally suitable for biomedical image analysis tasks
including cell detection and cell counting [38-40], image
segmentation [41, 42] and tissue classification [43, 44].

In this contribution, we present an automatic detec-
tion of breast cancer based on 21 multimodal images
(from 21 patients). This cancer investigation was per-
formed based on different combinations of ML algo-
rithms and data validation techniques. The main analysis
part, e.g, the deep learning method, was constructed
using the fully connected convolutional neural network
ResNet50 [45]. Hereby, the ResNet50 network was
employed either as a feature extractor for classical ML or
as a direct classification model. In the latter case, the
ResNet50 network was fine-tuned on our image dataset.

2 | PATIENT SAMPLES AND
METHODS

21 | Patient sample preparation

For this study, breast cancer samples were obtained from
21 patients undergoing routine biopsy at University hos-
pital, Hamburg. Immediately after excision, the sample
integrity was preserved by fast freezing in liquid nitrogen.
For sectioning, the samples were mounted with a drop of
water on the cryostat sample holder and cut into 20 pm
thick sections. The sections were then deposited on CaF,

slides to avoid nonresonant background from CARS. No
fixatives or embedding medium were used therefore pre-
serving the lipid distribution.

Nonlinear multimodal images were obtained from
these breast cancer tissue samples. After performing mul-
timodal imaging, the tissue samples were stored at —20°C
and later stained with hematoxylin and eosin (H&E)
stain and analyzed with transmission light microscopy.
Through 21 samples were measured, only 15 multimodal
images with their corresponding H&E stain images were
used for training and wvalidating our image analysis
approach. This was due to tissue disruption after the
staining process. Another challenge with the dataset was the
hand-annotated tissue images. The tissue was classified into
three classes; tumor, fat and normal, but this annotation
process remains difficult due to registration challenges and
introduced tissue alterations due to the staining process.

2.2 | Nonlinear multimodal microscopy

The schematic representation of the experimental setup
depicted in Figure 2, has previously been described in
detail [46]. Briefly, a continuous-wave Neodymium-
Vanadate laser at a wavelength of 532 nm with an aver-
age power of 18 W is used to pump a Coherent Mira HP
Titanium-Sapphire (Ti:Sa) laser (Coherent, Santa Clara,
California). The Ti:Sa-laser generates 2-3 ps pulses
(FWHM) with an average output power of 3.5 W and
operating at a repetition rate of 76 MHz. The Ti:Sa-laser
output of 830 nm is split into two parts with a beam split-
ter. The first fraction is directly used as the Stokes beam
while the second fraction is coupled into an optical para-
metric oscillator (OPO, APE, Berlin, Germany). The OPO
allows tunability of the pump wavelength from 500 to
800 nm (SHG of signal wavelength), 1000-1600 nm (sig-
nal wavelength) and 1600-3200 nm (idler). Here, the
OPO is tuned to 671 nm to match the CH, symmetrical
stretching vibration at 2850 cm™ for the CARS measure-
ments. Both the pump and Stokes beams are spatially
combined by a dichroic filter and temporally overlapped
by adjustment of a mechanic delay stage. The combined
laser beams are then coupled into a laser scanning micro-
scope (LSM 510 Meta; Zeiss, Jena, Germany) and focused
onto the sample with a 20x (NA 0.8) apochromatic objec-
tive (Zeiss). The nonlinear optical response of the sample
is filtered from residual laser light by means of various
dielectric filters and detected by photomultiplier tubes
(PMT, Hamamatsu Photonics, Hamamatsu, Japan) in for-
ward (CARS, SHG) and backward direction (TPEF).
Large area scans of the samples of up to 15 x 15 tile-
scans, each having a size of 450 pm X 450 pm, were
recorded. For the tile-scan, a resolution of 1024 x 1024
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Verdi V18 (Coherent)

‘ FIGURE 2 Schematic of
lase( ﬁca{\:\er Faradaﬂsolator Nd-Vandate laser experimental setup with the
= L) combination of three modalities;
coherent anti-Stokes Raman
- scattering (CARS), two-photon
Delay line . .
. % F“""- N excited fluorescence (TPEF) and
< : second-harmonic generation (SHG)
OPO (APE) Mira HP (Coherent) measurements
. Ti-Sapphire laser
TABLE 1 Overview of the experimental parameters
Central wavelength; Average power at Peak irradiance at
Configuration Excitation source FWHM, nm sample, mW sample, W/cm?
CARS @ OPO (Pump) + 671; 0:6 and 830; 0:5 ~50 + 50 #1.9%10%°
2850 cm ™! Ti-Sapphire (Stokes) ~2.5x10'°
TPEF @ OPO (Pump) + 671; 0:6 and 830; 0:5 ~50 + 50 ~1.9x10'°
435-485 nm Ti-Sapphire (Stokes) ~2.5x10"°
SHG @ Ti-Sapphire 830; 0:5 ~50 ~2.5x10"°
415 nm

Abbreviations: CARS, coherent anti-Stokes Raman scattering; FWHM, full width at half maximum; OPO, optical parametric oscillator; SHG, second-harmonic

generation; TPEF, two-photon excited fluorescence.

pixels and a pixel dwell time of 1.6 ps were set. With an
average of 4, the time per single tile does not exceed
16 seconds for CARS/TPEF/SHG. Therefore, the acquisi-
tion time for an image of 15 X 15 squares corresponding
to a size of 6.75 mm X 6.75 mm is about 1 hour. The aver-
age power at the sample was adjusted to 50 and 50 mW
for the pump and Stokes beam, respectively, in order to
avoid photodamage [47]. The experimentally relevant
parameters used in this study (see Table 1), are consid-
ered to cause negligible photodamage [46, 48].

2.3 | Software and computational
analysis

All computations were carried out based on in-house writ-
ten functions in the programing language Python version
3.6.5 and the statistical programing language R version 3.4.2.

2.4 | Image preprocessing and image
patch extraction

The image analysis pipeline starts with image preprocessing.
The aim of image preprocessing is to improve the image
quality by suppressing unwanted distortions and enhance
image features that improve the statistical analysis. In our

work, a common image preprocessing pipeline was
implemented for all parts of the multimodal images (see
Figure 3A). It starts by down-sampling the image by a factor
of two, followed by a median smoothing. The obtained
smoothed images were afterwards corrected for the mosaick-
ing artifacts produced by the uneven illumination of the
image tiles [49]. Then the image contrast was adjusted based
on the contrast limited adaptive histogram equalization algo-
rithm (CLAHE) [50].

After the image preprocessing, the obtained multimodal
images were compared with the corresponding annotated
H&E images that describe different tissue regions within the
patient tissues. The tissues considered were cancerous tissue,
fat and normal breast tissue. Thereafter, each multimodal
image was sliced into patches of size 512 x 512 pixels, and
the patches that have only one specific tissue label were
selected for further analysis. This procedure of patch extrac-
tion and selection is presented in Figure 3B, and it led to
1053 selected patches that were distributed as follows: 470 pat-
ches represented cancerous tissue, 143 patches showed fat tis-
sue and 440 patches represented normal tissue.

2.5 | Patch classification

The selected patches from the multimodal images were
utilized to check the quality of two ML algorithms for
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Patch extraction and selection

FIGURE 3 Multimodal image preprocessing and patch selection. A, The considered preprocessing pipeline starts by reducing the
image size of a factor of 2. Then the mosaic artifacts caused by the uneven illumination are corrected. Finally, the contrast of the corrected
images is adjusted using the CLAHE algorithm. B, The enhanced multimodal images are compared with the H&E annotated images and the
suspicious regions are determined. Thereafter, patches of the size 512 x 512 pixels are extracted from each image, and patches with one
label, that is, carcinoma, fat or normal, are selected to be used in detection of the breast carcinoma

detecting breast cancer tissue. These algorithms represent
examples of the main two ML approaches: the classical
machine learning approach and the deep learning
approach. For the classical machine learning, the patch
classification was accomplished using a linear discrimi-
nant analysis (LDA) model after extracting patch features
while the deep convolutional neural network ResNet50
was utilized as a representative of the deep learning
approach. The ResNet50 network is a publicly available
fully connected convolutional neural network (CNN) that
was trained on the ImageNet dataset [45]. In our contribu-
tion, the pretrained ResNet50 network was fine-tuned to
suit the mentioned multiclass classification task based on
the multimodal images. This tuning was accomplished on
the basis of additional layers on the top of the ResNet50
network (see Figure 4) [51]. These layers were batch nor-
malization layers, a global average pooling layer, dropout
layers with the probability of 50%, a dense layer with
32 neurons and a SoftMax activation layer, which provides
a label probability for each patch. The main advantages of
using batch normalization and dropout layers are to pre-
vent model over fitting and to let each layer of the network
learn more independently by itself [52, 53] while adding
an additional dense layer allows the network to find the
combinations of the already learnt features that improve
objects recognition in our new dataset [54].

In our work, the ResNet50 network was implemented
twice: as a feature extractor for the PCA-LDA model and
as a classification model. In the first case the pertained
model was kept stable and the shelf features were
extracted, which were used by the PCA-LDA model for
classification. In order to use the ResNet50 as classifica-
tion model we added some layers and fine-tuned the
model using the multimodal images (see Figure 4 for
details). If the ResNet50 model was only used as feature
extractor we call the model pretrained ResNet50 network
and characterize it as classical machine learning while it
was termed fine-tuned ResNet50 network and character-
ized as deep learning model, if the ResNet50 model was
fine-tuned and used as a classification model. As the fea-
ture extraction and learning are time and memory con-
suming for the large image size, we decided to resize the
selected patches again using down-sampling of a factor of
four. The ResNet50 network was fed with the obtained
resized patch for both implementations of the ResNet50
network.

3 | RESULTS

In this section, we present the results of an automatic
detection of breast cancer based on multimodal images of
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FIGURE 4 A schematic diagram of the utilized classification and validation strategies. The pretrained ResNet50 network is either
utilized as a feature extractor or finetuned to be utilized directly as a classification model. In the first implementation of the ResNet50, the
extracted features are projected using a PCA model, then an LDA model is utilized to classify the image patches. The validation of this PCA-
LDA model is accomplished by LOPO-CV which performs the first classification strategy. In the second implementation of the ResNet50
network, different layers are added on top of this network. Thereafter, the LOPO-CV and train-test validation are combined with this fine-

tuned network to perform the other two classification strategies

breast tissue. The studied dataset consists of 21 breast tis-
sue biopsies collected from 21 different patients. Due to
the mentioned issues in section 2.1 regarding the staining
and annotation, only 15 multimodal images with their
corresponding H&E stain images were involved to learn
and validate the utilized machine learning algorithms.
Although, the ground truth of the remaining five multi-
modal images is unknown, we utilized the best classifica-
tion model to predict the patches of these six images as

test set. Based on the 15 well annotated H&E images, the
selected patches of the corresponding multimodal images
were utilized to construct a classification model for breast
cancer detection. To do so, we checked different classifi-
cation and validation strategies. Figure 4 shows a sche-
matic overview of the considered classification and
validation techniques. For all presented strategies, the
statistical independence between the training, validation
and test sets was secured based on the following rule:
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The patient patches that are utilized to train a classifier
are completely different of the patients that are utilized
to validate or test the learned classifier. Nevertheless, we
compared two different validation methods in this work.
These validation methods are the leave-one-patient-out
cross-validation (LOPO-CV) and training-test validation.
The LOPO-CV can be described simply by fixing patches
of one patient as a test set, then building and validating
the classifier using the patches of the remaining patients

PHOTONICS

from the studied dataset. This procedure is repeated for
all patients to be a test set once, and the patch labels of
this test set are predicted within each iteration using the
learned classification model. In the second validation
method namely training-test validation, the dataset is
divided into three subsets: training set, validation set and
test set. Using the training set, we build the classification
model, then we optimize its parameters using the valida-
tion set. After that, we examine the constructed classifier

(A)  ResNet50 features & PCA-LDA + Leave-one-patient-out CV
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from other two patients. After that,
the labels of the remaining five
patients are predicted
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on the test set. Also in this validation method, the uti-
lized patient patches for training, validating, or even test-
ing a classifier are completely independent. In Figure 5B,
C, the applied data division techniques using LOPO-CV
and training-test validation are presented.

In addition to the validation methods, we compared
the classification results using an LDA model with the
results of a fine-tuned convolutional neural network
ResNet50. For the first classification model, the ResNet50
network was implemented as an image feature extractor
only. Then a combination of a principal component anal-
ysis model and a linear discriminant analysis (PCA-LDA)
was utilized to reduce the high dimensionality of the
obtained ResNet50 feature matrix and to differentiate
between the tissue patches. Moving to the second classifi-
cation model, the fully connected network ResNet50 was
fine-tuned as it was explained in subsection 2.5. Like
described earlier all models were evaluated using
training-test validation and LOPO-CV. For both valida-
tion methods, the ResNet50 network was trained for the
same hyperparameters while the network parameters
were optimized using a backpropagation algorithm. The
fine-tuned network was trained for 20 epochs using the
Adam optimizer with a learning rate of 0.001 and cate-
gorical cross entropy as loss function.

In the following, we present the results of the patch
classification by the previous introduced combinations of
classification and validation techniques, which are
sketched in Figure 4. In Subsection 3.1 we compared the
results of both classification models (pretrained ResNet50
in combination with PCA-LDA and fine-tuned ResNet50)
using the same evaluation method; namely a LOPO-CV.
In the subsection 3.2 the difference between the esti-
mated performance of a fine-tuned ResNet50 utilizing
the LOPO-CV and training-test validation was investi-
gated. The results of these classification and validation
strategies were compared based on the classification
mean sensitivity or the sensitivity of a cancer diagnostic
model.

31 | A comparison between the
classification techniques using LOPO-CV

In this subsection we compare the classification results of
two machine learning approaches, the LDA model and
the finetuned ResNet50 network, based on the LOPO-
CV. Using the first classification method, that is, PCA-
LDA, the ResNet50 features were extracted for all
reduced image patches. This extraction produced in total
16 384 features per patch. Since the number of these
extracted features is much larger than the number of
patients, a principle component analysis model was

combined with an LDA model to reduce the high dimen-
sionality and to optimize the classification results. In
Figure 5A, the selection method for the optimal number
of principal components (PCs) is shown. Beside this, the
scattering plot of the LDA decision values using 20 PCs is
plotted. The optimization of the utilized number of PCs
was done based on the highest mean sensitivity of the
PCA-LDA model and LOPO-CV. It turned out that using
20 PCs for constructing the LDA model provided the
highest mean sensitivity. Moving to the scattering plot in
Figure 5A, it is observed that the fat tissue group was well
separated from the normal and cancerous tissues while
this tissue separation decreased significantly for the dif-
ferentiation between normal and cancer tissue patches.
These results can be also seen in the obtained confusion
table of the PCA-LDA model (Table 2). In this table, the
PCA-LDA classification results in addition to the sensitiv-
ity and specificity for each class are presented. The
highest sensitivity and specificity were observed for the
fat tissue followed by the cancerous tissue. Nevertheless,
the mean sensitivity of the PCA-LDA model based on
LOPO-CV is around 75.31%, and the mean specificity
is 85.05%.

After evaluating the classification results using the
PCA-LDA, we checked the results using the fine-tuned
ResNet50 network when it was inserted within the
LOPO-CV loop. For each iteration, patches of one patient
were defined as test set while patches of four patients and
patches of 10 patients were utilized to train and validate
the considered network, respectively. Because the num-
ber of training set is quite small, the training patches
were augmented by using random rotations by steps of
10° degrees within the range of 0° to 180° (see Figure 6).
This strategy is a common technique to increase artifi-
cially the training dataset size and to prevent over fitting
caused by the huge number of parameters of the utilized
convolutional neural network. The next step after data

TABLE 2 The confusion table of the PCA-LDA model and the
leave-one-patient-out cross-validation®

True
Prediction Carcinoma Fat Normal
Carcinoma 342 5 105
Fat 9 116 18
Normal 119 22 317
Sensitivity 0.7277 0.8112 0.7205
Specificity 0.8113 0.9703 0.7700

“The PCA-LDA model was build using 20 PCs. The best separation was
provided for fat tissue followed by the cancer tissue.
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FIGURE 6 Image augmentation. All the patches of the training set are rotated in 10° steps within the range of 0° to 180°

augmentation was to train the ResNet50 network and to
predict the patch labels of the considered test set. The
obtained classification results by the fine-tuned ResNet50
network and LOPO-CV are presented in Table 3. It is
observed that the ResNet50 network was more sensitive
to the differences between the tissue labels within our
dataset. This can be seen in the obtained confusion table
of the ResNet50 network. From Table 3, the mean sensi-
tivity and mean specificity of the fine-tuned ResNet50
network and LOPO-CV is 86.23% and 91.31%,
respectively.

To compare the previous utilized machine learning
algorithms, we evaluated the model quality based on the
identification of cancerous tissues. This evaluation was
done after combining the patches of normal and fat tis-
sues in one category representing the noncancer tissues,
then calculating the mean sensitivity of the PCA-LDA
model and the ResNet50 network to be considered as

TABLE 3 The confusion table of a ResNet50 model and the
leave-one-patient-out cross-validation®

True
Prediction Carcinoma Fat Normal
Carcinoma 356 3 29
Fat 6 130 6
Normal 108 10 405
Sensitivity 0.7574 0.9091 0.9205
Specificity 0.9451 0.9868 0.8075

*The ResNet50 networks could predict the normal and fat tissue quite well
while this detection decreased for the cancerous tissue.

cancer diagnostic model. The obtained results of both
models with respect to patient patches are summarized
in Table 4. The second and the third columns of this table
represent the number of extracted patches from non-
cancerous and cancerous tissue per patient while the
forth and the fifth columns shows the mean sensitivity of
the binary classification results using the PCA-LDA and
the ResNet50 network, respectively. Form most individ-
ual patient results, the cancer identification based on the
finetuned ResNet50 network was much better compared
to the obtained results using the PCA-LDA model. This
improvement was detected as an increase in the mean
sensitivity of the ResNet50 network for most patients. In
this context, the mean sensitivity of the cancer diagnostic
model was larger than 11% if the ResNet50 network was
utilized as a classification model. Nevertheless, the
obtained mean sensitivity of the cancer diagnostic model
is 73.33% using the PCA-LDA model, and it is 84.50% for
the ResNet50 network.

3.2 | Studying the influence of the
validation method on the results of the
pretrained ResNet50

The aim of this part is to study the influence of the data
division and validation methods on the classification
results of the ResNet50 network. Therefore, we compared
the classification sensitivity using the two presented vali-
dation methods: The LOPO-CV and the training-test vali-
dation. By training-test validation, the studied dataset
was partitioned on the patient level with the ratio of 8:2:5
into training set, validation set and test set, respectively.
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TABLE 4 The cancer diagnostic model*

Patient ID Cancer Noncancer
1 58 14
2 16 38
3 22 48
4 6 34
5 58 20
6 44 28
7 43 36
8 26 63
9 14 62
10 14 12
11 15 25
12 21 34
13 71 71
14 33 54
15 29 54
Total 470 143

Mean Sens. PCA-LDA Mean Sens. ResNet50

0.7771 0.8485
0.7336 0.7237
0.6878 0.4737
0.9265 0.8578
0.7991 0.6578
0.5260 0.9432
0.7442 0.7513
0.8608 1.0000
0.7604 1.0000
0.9226 0.8929
0.5267 0.8267
0.5581 1.0000
0.7254 0.8803
0.8510 0.9907
0.6009 0.8292
Mean = 0.7333 Mean = 0.8450

*For each patient, the mean sensitivity of the binary classification (cancer vs noncancer) is calculated using the PCA-LDA model and the ResNet50 network.
For most patients, the ResNet50 network introduced better diagnostic results than the PCA-LDA model.

True

TABLE 5 The confusion matrices
of the ResNet50 network trained by

Division Prediction Carcinoma Fat Normal Sensitivity Specificity different patient subsets using the
1 Carcinoma 88 8 15 0.5500 0.8403 training-test data validation®
Fat 0 32 4 0.5517 0.9837
Normal 72 18 67 0.7791 0.5872
2 Carcinoma 40 0 23 0.2837 0.8856
Fat 2 14 8 0.2456 0.9649
Normal 99 43 113 0.7847 0.2828
3 Carcinoma 128 0 106 0.7574 0.5546
Fat 0 24 7 0.8571 0.9815
Normal 41 4 97 0.4619 0.7716

“The identification of the normal tissue based on the data division 1 and 2 was good while only the third

data division could detect cancer and fat tissue in good manner.

This data division was accomplished based on different
selections of the data subsets. Thus, we checked three dif-
ferent cases of the data division as described in
Figure 5C. Herein, the finetuned ResNet50 network was
trained on patches of eight patients and validated on pat-
ches of the other two patients. The tissue patches of the
remaining five patients were utilized as test set. Similar
to the previous validation method, that is, LOPO-CV, the
training patches were rotated randomly using multiples
of 10° rotation angles within the range from 0° to 180°
(see Figure 6). After training and validating the network,

the obtained classification results of the test sets were
summarized in Table 5. For normal tissue, the ResNet50
network based on the first and the second data divisions
could predict the tissues labels in a good manner with a
sensitivity of 77.91% and 78.47%, respectively. But the
prediction quality decreased into the sensitivity of 46.19%
when the considered network was trained and validated
using the third case of data division. Moving to the pre-
diction of fat tissue, we can see different results if the
fine-tuned network was trained on different training sets.
The ResNet50 network based on third data division
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provided the best identification results with a sensitivity
of 85.71%. For the diagnosis of cancerous tissue, when
the fine-tuned ResNet50 network was trained on the first
and second data division, poor cancer detection results
were introduced. However, using the third case of data
division to train and validate the ResNet50 network pro-
vided much better identification of breast cancer patches.
This improvement in breast cancer identification was
characterized by at least 20% increase in the classification
sensitivity if the ResNet50 network was trained and vali-
dated on third data division. Nonetheless, the classifica-
tion mean sensitivity of the pretrained ResNet50 network
using the first, the second and the third data division was
around 62.69%, 43.80% and 69.21%, respectively.

To summarize this part, the classification performance
of the fine-tuned ResNet50 network was influenced strongly
by the method of data division and validation. Moreover,
completely different results were obtained for each case of
the data division and the data validation. Reasons that may
produce this large variation in the obtained results of the
ResNet50 network are as follows. One of these reasons refer
to the problem of small training set size which represents
the number of patients included in our study. In this
training-test validation, patches of 15 patients were included,

TABLE 6 The predication results of multimodal images that
do not have corresponding H&E annotated images®

The ResNet50 model
Prediction 8 9 12
Cancer 123 103 153
Noncancer 691 711 661

“The best three ResNet50 models were utilized to detect patch labels of
unknown tissue regions.

Cancer

FIGURE 7 An example of
patch prediction for a not annotated
image. The best ResNet50 models
based on the LOPO-CV are utilized
to detect breast cancer patches. The
patches A and B are predicted the
same using the ResNet50 models
8,9 and 12 while different
prediction results are obtained for
patches C, E and D

and only the patches from eight patients were used to train
the ResNet50 network. Beside the small training size, we
expect that the biological variation of the training patches is
not always consistent with the variation within the valida-
tion or test sets which produces challenges to detect new
cases. Another reason can arise from the huge number of
hyperparameters utilized by the network. A solution, for the
previous mentioned issues caused by the training-test valida-
tion and small datasets size, can be the use of by cross-
validation, where more patients can be utilized for training
the classifier. In the Subsection 3.1, patches of 10 patients
were always utilized to train the ResNet50 network. Therein,
the obtained classification mean sensitivity based on the
LOPO-CV is 86.23% which dropped down, at least, 15%
when we applied training-test validation. Nevertheless, it
was observed that the results of training-test validation are
fluctuating a lot in comparison to LOPO-CV. This is due to
the utilized mean sensitivity in the LOPO-CV which intro-
duced more robust classification model to be utilized in the
prediction of new cases.

As we could see, the classification models and validation
methods were studied only for the multimodal images
which have corresponding annotated H&E images. How-
ever, to introduce the presented nonlinear imaging technol-
ogy into clinical daily routine, the efficiency of cancer
diagnosis based on the multimodal images needs to be
proven for new patients without using the H&E annotation.
In our study, the ground truth annotation of six multimodal
images was missing. Therefore, we decided to test the effi-
ciency of classification models for predicting the patch labels
using the six images even though the annotated H&E stain
images are not available yet. This prediction was done using
the best classification model constructed based on the 15 well
annotated images. Among all presented classification and
validation strategies, the best classification performance was

Noncancer

Model 08: Noncancer
Model 09: Noncancer
Model 12: Cancer

Model 08: Noncancer
Model 09: Cancer
Model 12: Noncancer

Model 08: Cancer
Model 09: Noncancer
Model 12: Noncancer
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achieved by the fine-tuned ResNet50 network and the
LOPO-CV. For each iteration of the CV loop, the best
ResNet50 model was saved and the patch labels of test
patients were predicted. Table 4 shows that cancer detection
results of the unannotated images. Here, the best cancer
identification was introduced by the ResNet50 network
model that was tested on patient 8, 9 and 12. The sensitivity
of cancer diagnostic model for all these test patients was
100%. Thus, we utilized these ResNet50 models to predict
the patch labels of the six test patients. To do so, around
814 patches were selected then their labels were predicted.
The obtained results of cancer patch prediction are pres-
ented in Table 6. The results differed between the ResNet50
models and these differences are mostly caused according to
main two expected reasons. The first one is produced by the
patches which have more than one label; for instance, some
patches may have cancer and noncancer tissue together
which confuses the classifier. In addition to the double patch
labeling, each ResNet50 model (the model 8, 9 and 12) was
trained and validated on 10 patients and validated on four
patients. This means, the model which learnt from
10 patients, might have different features in comparison to
the ResNet50 model that was trained on other 10 patients.
Nevertheless, with respect to the small training data size
and the two other mentioned issues, the results of patch pre-
diction using the three ReNet50 models are still close to each
other. Figure 7 displays an example of this patch prediction
using the three ResNet50 models. Therein, all ResNet50
models provided the same tissue prediction for patches A
and B, which was not the case for the patches C, D and
E. However, these results need to be validated again by the
annotated H&E stain images which are still not available for
this study.

4 | SUMMARY AND CONCLUSION

We presented in this paper the results of a label-free breast
cancer detection based on a small dataset size consisting of
21 images collected from 21 patients. These images were
obtained using a combination of three nonlinear imaging
modalities CARS, TPEF and SHG. This imaging combina-
tion provides diagnostic relevant information from breast
cancer tissues. The main challenge was to translate this bio-
molecular information into a ML model that can be used in
further studies. Thereby, an image preprocessing pipeline
was designed and two classification models were utilized to
detect breast cancer regions. Our preprocessing pipeline
started with resizing the multimodal images into the half
size followed by correcting the mosaic artifacts arising from
the uneven illumination. The last step was to enhance the
contrast which was accomplished using the contrast limited
adaptive histogram equalization algorithm. Thereafter, the

preprocessed images were compared with the corresponding
annotated H&E stain images. Using this comparison and
with respect to the 15 annotated H&E stain images, patches
from tissue regions that have only one label were extracted.
In total, 1053 patches of normal, fat and cancerous tissues
and 15 multimodal images were included to train and vali-
date the studied classifiers.

After the image preprocessing and patch selection, the
detection of the breast cancerous tissue was accomplished
using three strategies. These strategies represent different
combinations between two ML algorithms a fine-tuned
ResNet50 network and PCA-LDA model) and two data
validation methods (LOPO-CV and the training-test vali-
dation). For all implemented strategies, the deep con-
volutional neural network ResNet50 was utilized either to
extract image features from the patches or to detect
directly the cancerous regions. The utilized ResNet50 net-
work is a publicly available fully connected convolutional
neural network that was trained on the ImageNet dataset.
The results of the presented classification and validation
strategies were evaluated based on the classification mean
sensitivity for a three-class model and the binary cancer
diagnostic model. This cancer diagnostic model character-
izes the model quality of cancerous tissues. It turned out
that the best detection of cancerous tissues was achieved
by the fine-tuned ResNet50 network and the LOPO-CV.
Thereby, the mean sensitivity of LOPO-CV using the fine-
tuned ResNet50 network is 86.23% which decreased to
75.31% if a PCA-LDA model was implemented. Using the
training-test data validation, the mean sensitivity was
strongly influenced by the chosen data subsets, that is,
training set, validation set and test set. In this case, the
classification mean sensitivity varied between 43.80%
and 69.21%.

In the last part of our study, the best classification
model was tested for detecting cancerous and non-
cancerous tissue of the remaining six multimodal images.
The challenge of these images is that the H&E stain
images were not available. However, using the best classi-
fication models obtained by the fine-tuned ResNet50 net-
work and the LOPO-CV, around 814 patches were
selected then their labels were predicted. In most cases
the classification models provide the same predictions of
the patches.

To conclude, the combination of the three nonlinear
imaging modalities; namely CARS, TEPF and SHG, pro-
vided a label-free cancer detection tool which showed
its efficiency in diagnosing breast cancer tissue based
on a small sample size of patients. This efficiency was
demonstrated via a computer aided diagnosis using
machine learning, specifically the deep convolutional
neural network ResNet50. Nevertheless, the noninva-
sive nature of imaging technique enables for further
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in vivo measurements which offers a low-risk diagnos-
tic approach to supplement mammography in an opti-
cal biopsy approach.
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