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Chapter 1 Introduction 

Biophotonics is an interdisciplinary field that aims to grasp and investigate the 

characteristics of biological samples based on their interaction with incident light (1,2). The 

light-matter interaction within biological samples is usually measured using optical tools, and 

the corresponding scientific field is termed biophotonics. Over the past few decades, numerous 

biophotonic technologies have been designed and innovated to extract various sorts of 

biological and chemical information from the studied samples. Such biological and chemical 

information is not directly acquired since all biophotonic techniques produce complex data in 

which the information is contained (3,4). Consequently, it is desirable to translate biophotonic-

associated data to high-level information like disease biomarkers or sample characteristics. In 

this context, computer and data science advances using data learning approaches have inspired 

researchers to automatically analyze the acquired biophotonic data. In this chapter, an overview 

of biophotonic technologies in addition to their applications is introduced. Then, a brief outline 

of data science for biophotonic-associated data is presented. 

1.1 Overview of Biophotonic Technologies  

Biophotonics has been implemented in medicine and life science to understand and probe 

various characteristics of different biological systems (1,2). Since the last century, a broad 

spectrum of biophotonic technologies has been developed, allowing investigations of 

biological systems on several levels and using different properties (1,2,5). The first established 

biophotonic technology is the (bright-field) light microscopy. This microscopic technique 

exploits the light absorption in biological samples to characterize the contained structures (6,7). 

Later, light microscopy has been further developed into different techniques such as phase-



   

 

2 

contrast microscopy and differential interference contract microscopy (8,9). These developed 

microscopic techniques have been widely utilized for biological and medical investigations, 

although the obtained information is limited to the morphological features of the studied 

samples. Such morphological features usually describe only a single aspect in biological 

investigations, while these features are barely detected due to the low contrast of light 

absorption in most biological samples. To enhance this contrast, sample staining has been 

introduced, and it became the gold standard procedure in histopathological investigations and 

biological imaging. Despite the wide applications of sample staining in biomedicine, staining 

procedures are time consuming and cause sample perturbation resulting in application 

restrictions regarding living systems. Moreover, several diseases affect the biomedical 

composition of the biological systems, and therefore it was desired to utilize not only the 

morphology but also the chemical contrast of biological samples. 

Another improvement of light microscopy is fluorescence microscopy. This enhanced 

microscopic technique can detect the chemical contrast of biomolecules based on the native 

weak single-photon excited auto-fluorescence of these molecules (10). The sensitivity of that 

molecular auto-fluorescence can be further improved if a fluorescence label is used (11,12). 

Nevertheless, staining process causes changes of the sample, while data acquisition is affected 

by fluorophore photobleaching. To overcome the previous constraints, other imaging 

technologies were developed (1,13). Prominent examples of such imaging systems include 

optical coherent tomography (OCT) (14), endoscopic methods and endomicroscopic 

techniques (15,16). These imaging technologies aim to improve the visualization of biological 

systems, and subsequently, improve the understanding of those systems. However, the 

aforementioned imaging technologies provide different sorts of information. For example, 

OCT utilizes low coherence light to capture two- to three-dimensional morphological images 

of tissues or body organs. This imaging technology offers label-free visualization of biological 

systems allowing for broad implementations in clinics. However, OCT doesn’t feature cellular 

resolution. In contrast to OCT, endoscopic and endomicroscopic techniques enable an 

meeasurment of organs within the body based on transmitting images and videos that can depict 

molecular or metabolic functions of the measured tissues in th organs. These techniques feature 

https://en.wikipedia.org/wiki/Contrast_(vision)
https://en.wikipedia.org/wiki/Coherence_(physics)
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the drawback that the measurement is uncomfortable for patients and can cause complications 

in the measured organs.   

The current developments of spectroscopic techniques have introduced non-invasive and 

label-free tools to biomedicine and biology, which can extract spatial and spectral information 

of biological samples (15–19). Prominent examples of spectroscopic techniques are infrared 

(IR) spectroscopy and Raman spectroscopy. These spectroscopies are able to capture a myriad 

of molcular information presented in the biological samples as unique spectral profiles of all 

biomolecules (18–22). IR spectroscopy can extract structural and chemical information based 

on light absorption within the infrared range of the electromagnetic spectrum. However, the 

molecular information and the spectral resolution provided by IR spectroscopy are constrained 

in aqueous environments due to the large background noise from water (21). Beside IR 

spectroscopy, Raman spectroscopy is a label-free and non-invasive biophotonic tool that has 

been widely applied to probe the molecular structures and composition of biological samples 

(17,23). This spectroscopic technology relies on the inelastic scattering of light measured in 

the studied samples serving a chemical fingerprint of biomolecules. The resulting Raman data 

can be utilized as a diagnostic marker, for instance, as a marker for abnormalities (17,22). In 

addition to the previous spectroscopic techniques, hyperspectral imaging systems that combine 

imaging and spectroscopic techniques also provide a non-invasive visualization of the spatial 

and spectral information in biological samples (24,25). Besides hyperspectral imaging systems, 

nonlinear multimodal imaging, combining coherent anti-Stokes Raman scattering (CARS), 

two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG), was newly 

introduced as a fast-imaging technique that can detect the molecular contrast in the biological 

samples (26–30). This nonlinear multimodal imaging is usually characterized as a label-free 

and non-invasive imaging technique allowing non-destructive investigations of cells and 

tissues. Consequently, it might be an appropriate tool for in-vivo investigations as an optical 

biopsy when engaged in fiber-based measurements.  
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Each of the above-mentioned technologies has its advantages and limitations with respect 

to the level of sample alterations and the type of extracted sample information, although several 

technologies have already found their way to application fields, as shown in the next section. 

1.2 Biophotonic Technology-Based Applications 

The capability of biophotonic technologies to capture several biological and chemical 

information in biological systems enables multiple applications in biology and medicine 

(1,2,13). For instance, biophotonic technologies have shown a great potential to analyze the 

basic functionalities of biological systems in fundamental biomedical research (17,31,32). 

Such analysis is essential in monitoring the health condition and intends to understand disease 

genesis for early detection or even prevention of various diseases (1,2). Beside the 

implementation of biophotonics technologies in fundamental biomedical research, different 

tools were integrated into clinical procedures for early cancer identification and treatment, 

dentistry, cardiology, disease diagnosis, ophthalmology, and vascular medicine (31,33–37). In 

addition to the technology utilized in medical and biological investigations, biophotonics 

technologies have also been established well in the pharmaceutical industry and drug 

development (5,38–41). Common examples in this case cover flow-cytometry and fluorescence 

detection-based techniques. The aim here is to perform rapid investigations and assessments of 

biological matter reactions toward drugs (42–45). Nevertheless, several possible application 

fields of biophotonic tools were also demonstrated, including environmental monitoring, 

process control, food safety, and the point of care tests (1,5,13,17). The last application refers 

to evaluation procedures of healthcare, product, and clinician services provided for patients at 

the care time in clinics.  

For any of the aforementioned disciplines, the utilized biophotonic technologies allow 

measuring different sorts of morphological and chemical information. This information is 

commonly contained in high-dimensional data like images or spectra. Furthermore, many of 

the biophotonic technologies are label-free, and subsequently the obtained data is untargeted 
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making the interpretation of such data difficult (46). Therefore, data science is needed to use 

biophotonic data to the full extent.  

1.3 Data Science for Biophotonics 

Biophotonic technologies need to be coupled to data science methods to translate the 

biophotonic-associated data to information and knowledge, e.g., disease biomarkers. This 

translation of biophotonic-associated data into interpretable information in the application 

context is challenging since biophotonic data show different levels of complexity (3,4,46). For 

instance, several biophotonic tools produce untargeted and high dimensional datasets that are 

difficult to be manually handled and subsequently difficult to extract any informative features 

from these datasets.  

Recently, the revolution in data science has inspired advanced implementations of data 

learning approaches to analyze biophotonic-associated data. These approaches combine 

statistical learning techniques and machine learning algorithms in the so-called data lifecycle. 

Figure 1 depicts a systematic diagram of the data lifecycle when considering biophotonic-

associated data. This lifecycle comprises experimental design, data acquisition, data cleaning 

and data preprocessing, data-driven modeling, and finally, model evaluation and deployment. 

In experimental design step, the aim of performing a certain study needs to be precisely 

determined. Therein, the experiment hypotheses and the required number of samples to test 

those formulated hypotheses are identified. Once an experiment is designed, data can be 

acquired from the planned sources according to the field of study, i.e., survey-based data or 

experiment-based data. After data acquisition, the data preprocessing step is usually performed. 

This step revolves around techniques of data noise elimination, handling of missing data and 

data normalization. The obtained preprocessed data is utilized thereafter for data modeling and 

validation. While techniques for data-driven modeling combine statistical learning and 

mathematical algorithms to investigate data insights and then explore any potential pattern 

within the considered data, the goal of data validation is to evaluate the capability of a 



   

 

6 

constructed model in predicting new datasets. In the last step of the data lifecycle, the evaluated 

models and the utilized data are stored to be deployed in future analyses. 

 

The data lifecycle for biophotonic technologies, including statistical techniques and data 

learning approaches, is not fully researched and needs further developments. Chapter 2 

introduces a systematic review of statistical techniques and data learning approaches for the 

Figure 1. A schematic diagram of data lifecycle in biophotonics. This cycle describes a 

workflow that can be utilized to accomplish data-driven research. It starts by planning the study 

and deciding the number of samples needed to be collected. Thereafter, the acquired data are 

preprocessed and prepared to be used for constructing data models. These models can be 

validated and evaluated using several validation strategies in order to be utilized for further 

studies or applications. 
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analysis of biophotonics-associated data. The applications of many established statistical and 

machine learning techniques are still limited in biophotonics. Consequently, selected own 

scientific contributions to biophotonic data science are briefly discussed in Chapter 3. These 

contributions aimed to improve the planning and the design of biophotonic experiments then 

verify machine learning pipelines on several biophotonic imaging modalities.
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Chapter 2 State-Of-The-Art 

This chapter provides an overview of the statistical tools and machine learning (ML) 

techniques implemented in biophotonic data science. The presented approaches aim to improve 

the design of the experiments, suppress disturbing distortions of biophotonic data, and assess 

and validate ML techniques. 

2.1 Experimental Design  

The term “experimental design” refers to the protocols that formulate the statistical 

hypotheses needed to investigate the effect of specific treatments (variables) on a selected 

dataset (47,48). Three primary types of experimental design can be utilized for experimental 

research: pre-experimental design, true-experimental design, and quasi-experimental design 

(49–51). In pre-experimental design, the behavior of either one or multiple groups is observed 

to identify a potential effect of a studied treatment, which is characterized by “experimental 

factors”. This exploratory, experimental approach aims to understand if a further investigation 

of the studied groups and treatments is required or not. Besides pre-experimental design, true-

experimental design is often performed to checks how significant the experimental factors 

affect the considered dataset. Thereby, the response of samples selected from that dataset 

exposed to specific treatments is observed, and then this response is compared to other selected 

control samples, i.e., the samples without any treatment. Regardless of the random sample 

assignment required in true-experimental designs, quasi-experimental designs can be 

performed similarly to true-experimental design (50). This quasi-experimental design is 

beneficial when the random assignment of control and treated groups is either irrelevant or not 

required.  
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To analyze any of the previous designs, the experimental factors in addition to the number 

of samples required to conduct such experimental studies need to be precisely defined. In the 

following, an overview of statistical techniques developed for the analysis of multifactorial 

experimental designs is presented. Thereafter, the established algorithms for determining the 

sample size required to achieve significant statistical results are briefly reviewed.  

2.1.1  The Analysis of Multifactorial Experimental Designs 

In order to investigate the effect of one factor or a number of factors on a conducted 

experiment, the analysis of factorial design can be utilized (52). This group of statistical 

techniques has been implemented in biomedical and biological research to explore 

hypothesized effects in a particular design. Herein, an experiment can be conducted using a 

specific dataset of different samples, then the effect of each experimental factor can be 

investigated according to its influence on the sampled data (53). The previous group of analyses 

has been established well when using one response variable to describe the selected samples, 

i.e., univariate datasets, and it is known as analysis of variance (ANOVA) tests (54–56). In a 

classical ANOVA test, termed as a one-way ANOVA test, the influence of one factor on 

selected samples is evaluated based on studying the mean differences between factor levels. 

These factor levels usually indicate the possible values of the studied factor, e.g., drug 

concentration. Besides the one-way ANOVA test, multi-way ANOVA tests search in a 

multifactorial design for any significant effect of the experimental factors and their interactions.  

The above-mentioned tests were established for univariate data; however, only a few 

techniques for multifactorial designs were developed when multiple variables for the response 

data, i.e., multivariate data, are utilized. Moreover, these analyses suffer from several 

limitations, which restrict their applications. For example, multivariate-ANOVA (MANOVA) 

tests analyze multivariate data in multifactorial experimental designs by performing an 

ANOVA test for each response variable (57,58). Although MANOVA tests allow determining 

the effect of one or more than one factor on these response variables, they are constrained to 

response datasets containing a much larger number of samples than the number of variables. 

Such datasets are rarely available for modern technologies which produce high dimensional 
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measurements, like spectra or images. Therefore, combining principal component analysis 

(PCA) models with ANOVA tests offered an alternative to MANOVA tests for high 

dimensional multifactorial designs (59). In the PC-ANOVA test, the response matrix is fitted 

with a PCA model, and then the obtained principal components (PCs) are analyzed using 

ANOVA tests. Despite the wide applications of PC-ANOVA tests in small-sized datasets, 

several aspects related to factor contributions may be lost during the PCA projection. To 

overcome this drawback, ANOVA-simultaneous component analysis (ASCA) was introduced 

as a powerful tool to deal with multivariate data in multifactorial designs (60–62). Thereby, the 

response matrix can be decomposed into different effect matrices characterizing the 

contribution of each factor and each factor interaction in the designed model. These 

contributions are then measured based on the amount of variance explained by each possible 

effect, i.e., each factor and each interaction. Finally, the ASCA test searches for significant 

effects in the designed model, and the dimensions of each effect matrix are reduced using a 

PCA model for better interpretation of the effect contributions (63).  

The application of almost all previously described tests for multivariate data is constrained 

to balanced designs in which equal numbers of samples are needed for each factor level. As a 

result, the applications of these tests are limited. Alternatively, the ASCA+, an extension of 

ASCA, was introduced to analyze multivariate data in unbalanced designs (64). It utilizes a 

specific version of general linear models (GLMs) to decompose the response matrix into two 

main terms: The estimated response matrix and the estimation error (56,64). Even though the 

proposed ASCA+ provides a unique solution to estimate the contributions of experimental 

factors, it seems that this analysis underestimates these contributions in unbalanced designs 

(65). Therefore, an own scientific study was performed in [PII] as a new adjustment of the 

ASCA algorithm for unbalanced multifactorial designs.  

2.1.2 Sample Size Planning 

Sample size planning (SSP) represents strategies intended to determine a sufficient number 

of samples needed to perform robust and accurate statistical analysis (66,67). This SSP 

determination becomes more important in biomedical experiments due to the high costs and 
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the ethical restrictions that may inhibit recruiting samples from patients and animals. 

Consequently, the aim of SSP in such experiments is to determine the minimal number of 

samples required to prove that group differences are significant. Initially, SSP techniques were 

established based on hypothesis testing (68). Thereby, the required sample size is estimated 

using a priori knowledge of the statistical distributions of these groups (69,70). However, these 

group distributions are mostly unavailable in the case of data acquired by modern biophotonic 

tools, and thus, modified SSP algorithms are needed. 

So far, a few SSP algorithms for multivariate data were developed, while most of them 

were designed for classification tasks (71–73). In most of these algorithms, the learning curves 

were prominently implemented as an exploratory tool to describe the classification 

performance when increasing the training set sizes of that classification model. Thereafter, the 

sample size required to train this classifier can be predicted based on the inverse power law 

models (74). Nevertheless, the previously described learning curve-based SSP was established 

and checked for specific datasets like microarray datasets or resampling datasets. Moreover, 

the implementation of such algorithms was not clear for diagnostics tasks, e.g., the estimate of 

the required number of patients. Therefore, a general SSP algorithm was presented in the 

scientific contribution [PI] to cover the mentioned challenges. Thereby, the sample sizes for a 

successful group differentiation can be determined for different levels within the data 

hierarchy, i.e., spectra, biological replicates, patients, etc. 

2.2 Data Preprocessing 

Biophotonic tools usually deliver high-dimensional datasets containing various sorts of 

data variations. These variations are mainly categorized into informative variations and 

disturbing variations. While informative variations represent the differences between different 

states such as sample properties or disease states, disturbing variations may be assigned to 

systematic perturbations within experiments, i.e., conducting an experiment using many 

devices or by several individuals (75,76). The later variation is very complicated and difficult 

to be controlled; hence, it might negatively influence the results of further statistical analyses.  
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Data preprocessing have shown a profound effect on reducing, or even eliminating, such 

disturbing variations. For biophotonic data, several preprocessing techniques have been 

established to eliminate these data variations according to the delivered data, e.g., spectra or 

images. For instance, spectra collected from Raman spectroscopy are usually contaminated by 

cosmic spikes and fluorescence baseline in addition to several types of noise (see Figure 2-A). 

To deal with these corrupting effects in raw Raman spectra, a proper preprocessing pipeline 

was presented in (3,77–82). It starts by eliminating cosmic spikes within the acquired spectra 

and then calibrating the utilized spectrometer. Thereafter, the background effect is excluded 

Figure 2. Examples of biophotonic data before and after data preprocessing. Most 

disturbing variations have been removed when proper preprocessing techniques are applied.  
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from the aligned spectra. Lastly, the corrected spectra are smoothed and normalized. This 

preprocessing workflow was successfully implemented in the own scientific contributions [PI] 

and [III] when considering Raman spectral datasets. Nevertheless, other preprocessing 

techniques have been developed to remove the corrupting effects produced when using 

biophotonic imaging tools. According to the acquired raw data, the image preprocessing 

techniques aim to improve the quality of the obtained image data. These preprocessing 

techniques include different algorithms for image background removal, image smoothing, 

image stitching, contrast adjustment, image registration, etc. (83–88).  

In this thesis, an individual image processing pipeline was presented for each scientific 

contribution dealing with imaging data. Figure 2 presents three examples of spectral and 

imaging data before and after applying preprocessing techniques. It is obvious in this figure 

that the preprocessed data disposed of their disturbing variations if they are compared to the 

raw image and spectra. Consequently, the obtained preprocessed image and spectra seem to be 

more informative for further investigations. 

2.3 Machine Learning-Based Data Modeling  

Data-driven modeling has been commonly implemented to extract high-level information 

and informative features from the preprocessed data. Techniques for data-driven modeling 

combine statistical learning and mathematical algorithms to infer data insights and then explore 

any potential pattern presented within the collected datasets (89,90). Recently, ML algorithms 

have gained growing attention for data-driven modeling due to their remarkable capability in 

automating and assessing most phases of data-based learning (4,91). Concerning the goal of 

data-based learning, the utilized ML algorithms can be roughly categorized into unsupervised 

ML and supervised ML techniques (4,90,91). The later ML techniques are quite crucial, and 

they aim to map the acquired data via a predefined mathematical algorithm to predictor 

variables, which represent, for example, image labels or drug concentrations. Based on the 

supervised ML techniques, it is possible to build self-supervised models and systems that can 

automatically learn data patterns and retain the learned knowledge into model structures 
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(92,93). Moreover, several novel ML models have currently exposed a further capability to 

improve their prediction performance over time with minimal human intervention and without 

being explicitly designed for such tasks. 

Until a few years ago, ML-based data modeling relied only on a manual feature design and 

extraction for exploring data patterns (94,95). This type of data modeling is known as classical 

ML algorithms. In Figure 3-A, a common pipeline of data-driven modeling based on classical 

ML algorithms is presented. It starts with manually designing and extracting data features that 

well represent the data (91,96). This new data representation is often described using too many 

features; hence, a feature extraction step is followed by a dimension reduction step. Therein, a 

small subset of uncorrelated features can be extracted, resulting in an adequate new 

representation of the original dataset (96–98). The subsequent features are finally mapped to 

the data predictors using a specific ML model regarding the task of interest, e.g., regression or 

classification. The aforementioned group of ML techniques was successfully applied to 

evaluate several tasks in biophotonics. Prominent examples in this field include disease 

investigation, cancer detection, and bacteria identification (99–104).  

 

 

Figure 3. Data-driven pipeline for classical ML and DL. While data-driven modeling based 

on classical ML models comprises feature extraction and dimension reduction in order to 

construct ML models, data-driven modeling based on DL models combine features extraction 

and model construction in one model. 

 

https://en.wikipedia.org/wiki/Dimensionality_reduction
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In recent years, deep learning (DL), a subset of ML, has revolutionized the future of ML 

applications. With these DL techniques, it is possible to build ML models that can 

automatically learn data patterns using minimal human involvement (105,106). As depicted in 

Figure 3-B, data-driven modeling based on DL internally compresses all modeling stages of 

classical ML, starting from feature extraction and reaching decision-making. Nonetheless, one 

of the essential architectures of DL models was inspired by human brains, namely deep 

convolutional neural networks (CNNs) (106). These networks can be trained by passing a 

dataset of labeled images (or one-dimensional data) through multiple convolutional layers 

consisting of simple units called filters. These convolutional layers can detect a local 

combination of the data features from the previous layer, then they pass the resulted feature 

map into the next layer through a static nonlinearity, e.g., replacing negative values with zeros. 

This layer is usually named the activation layer, and it is followed by some pooling layers that 

intend to reduce the number of image features. Later, CNNs process the input data as a 

sequence of visual representations in which each filter in a certain convolutional layer identifies 

a specific local region of the feature map obtained by the previous layer, while similar feature 

detectors exist across the locations in the feature map (106,107). The described training 

procedure of CNNs is commonly known as end-to-end CNN training (108). Based on this 

training procedure, the potential of DL models has been checked for several applications, 

including speech recognition, natural language processing, and healthcare. For the last 

application, DL models exhibited impressive performance, particularly in cell detection and 

cell counting (109–111), image segmentation (110,112–114), and tissue classification (115–

118).  

Unfortunately, the above-mentioned training procedure for DL models exhibits specific 

limitations in biophotonic-associated data due to the large sample size required to learn and 

optimize such models. Consequently, transfer learning of DL models was introduced as an 

alternative learning strategy to overcome the limitations of end-to-end CNN training. Thereby, 

the knowledge gained via training CNNs on a large-annotated dataset can be transferred to 

solve another task within a new small-sized dataset (46,119). In this context, DL-based transfer 

learning has shown a great performance in the diagnostic classifications of biomedical images 
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using relatively small sample sizes (120,121). Therefore, transfer learning of several publicly 

available pre-trained CNNs was evaluated within three scientific contributions presented in 

Chapter 3, i.e., [PIII], [PIV] and [PV]. The goal of two implementations was to automatically 

detect bladder and breast cancer using biophotonic imaging tools, namely: blue light 

cystoscopy and nonlinear multimodal imaging, respectively.  

Apart from the training procedures of ML models, over-fitting has been addressed as 

another challenge in data-driven modeling. The term “Model over-fitting” describes ML 

models that are trained perfectly on specific training datasets, but they lack the prediction 

performance on new similar datasets. To avoid such over-fitting, the model performance needs 

to be evaluated on a new independent dataset named validation data. Thereafter, the optimized 

model is again checked on another dataset described as a test dataset. In the following section, 

common validation strategies that can be utilized to verify the performance of ML models are 

presented. 

2.4 Model Validation 

One of the main goals of data-driven modeling is to exploit the previously trained models 

in predicting new datasets. These models need to be carefully optimized and validated to rely 

on the new predictions of a trained model (122). In this context, the term “model validation” 

depicts data splitting strategies used to validate the performance of a model trained on a specific 

dataset for predicting new datasets. Model validation is usually based on two datasets: a dataset 

used for the model construction, i.e., the training set, and a dataset not being used for the model 

construction, i.e., the validation set. While the validation on the training set usually revolves 

around parameter optimization and tuning, model validation using the validation set checks the 

prediction performance of the trained model. Therefore, both training and validation datasets 

contribute significantly to test the quality and reproducibility of ML models (123,124).  

Two classical validation strategies can be implemented to split data into training and 

validation sets: training-test validation and cross-validation (CV). In the training-test 
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validation, the acquired labeled data is portioned randomly into two subsets: the training set 

and the test set. Subsequently, an ML model is trained on the first subset and checked on the 

later subset. In contrast to the training-test validation, the dataset is randomly split into k subsets 

when using CV. Subsequently, the considered ML model is trained on all data subsets except 

one subset, while the set-aside subset is utilized to test the prediction performance of the trained 

model. The previous procedure is iterated until all samples within all subsets are tested and 

predicted once.  

In both validation strategies, the division of the considered dataset should not only be 

performed randomly but it is preferred to be also performed on the highest level of the data 

hierarchy, i.e., patient level or replicate level (124). When using biophotonic tools, the later 

constrain becomes quite crucial for data modeling and validation. Thereby, multiple 

measurements can be acquired from the same patient (biological replicate), manifesting high 

internal correlation. Nevertheless, to avoid the previous correlation effect, the considered 

validation strategies for all ML models in all their own contributions were performed on the 

highest level of the data hierarchy, i.e., patient level or replicate level. Therein, the model 

performance was evaluated using one of the following validation versions: training-test data 

validation on the patient level, leave-one-replicate-out CV, and leave-k-individuals-out CV; 

where k∈ {1, 10}. 

As a summary, this chapter presented an overview of several data science techniques in 

biophotonics to improve the experimental design and then automatically translate 

biophotonics-associated data to beneficial markers. These markers can be utilized to 

understand and investigate further many biological systems. In the next chapter, scientific 

studies of own research are presented to verify and adjust several statistical and ML algorithms 

on biophotonics-associated data. 
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Chapter 3 Scientific Contribution 

As previously described, the implementation of statistical approaches combined with ML 

techniques can improve data investigations and help reducing human intervention. In the case 

of data produced using biophotonics technologies, such implementations require further study 

and adjustments. Therefore, the goal of the scientific contributions included in this chapter is 

to fill specific gaps related to the design and the evaluation of the biomedical experiments that 

use biophotonic technologies.  

In Figure 4, the selected studies are allocated according to their contribution to the data 

lifecycle. On the side of experimental design, a general algorithm for estimating the required 

training set size for classification models was developed. Subsequently, the statistical analysis 

of experimental designs was improved for unbalanced multifactorial designs. Moving to data-

driven modeling and validation, the performance of several ML techniques and validation 

strategies was evaluated for the automatic identification of three medical diagnostic studies. 

The scientific publications based on the above-mentioned studies are listed in the following 

with respect to their order in this chapter: 

[PI] N. Ali, S. Girnus, P. Rösch, J. Popp, and T. Bocklitz 

Sample-Size Planning for Multivariate Data: A Raman-Spectroscopy-Based 

Example 

Analytical Chemistry, 2018, 90 (21), 12485-12492. 

[PII] N. Ali, J. Jansen, A. Doel, G. H. Tinnevelt, and T. Bocklitz 

WE-ASCA: The Weighted-Effect ASCA for Analyzing 3 Unbalanced 

Multifactorial Designs – A Raman Spectra Based-Example 

Molecules, 2020, 26 (1), 66 

https://www.mdpi.com/journal/molecules
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[PIII] N. Ali, J. Kirchhoff, P. I. Onoja, A. Tannert, U. Neugebauer, J. Popp, T. Bocklitz 

Predictive modeling of antibiotic susceptibility in E. coli strains based on the U-

Net network and one-class classification 

IEEE Access, 2020, 8, 167711-167720 

[PIV] N. Ali, C. Bolenz, T. Todenhöfer, A. Stenzel, P Deetmar, M. Kriegmair, T. Knoll, S. 

Porubsky, A. Hartmann, J. Popp, M. C. Kriegmair, and T. Bocklitz 

Deep learning-based classification of blue light cystoscopy imaging during 

transurethral resection of bladder tumors 

Scientific reports, 2021, 11, 1169  

[PV] N. Ali, E. Quansah, K. Köhler, T. Meyer, M. Schmitt, J. Popp, A. Niendorf, and T. 

Bocklitz 

Automatic label‐free detection of breast cancer using nonlinear multimodal 

imaging and the convolutional neural network ResNet50. 

Translational Biophotonics, 2019, 1, e201900003 
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Figure 4. Overview of studies contributed to data lifecycle in biophotonics. The SSP 

and the WE-ASCA studies were performed to improve the experimental planning and the 

analysis of experimental designs, respectively. In contrast, the automated identification of 

antibiotic susceptibility in bacteria and the automatic classification of bladder cancer were 

demonstrated based on image-driven modeling. Finally, the performance of the presented 

validation strategies was evaluated for the automatic detection of breast cancer. 
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3.1 Experimental Design  

The scientific contributions in this section were established to deal with specific issues 

related to the experimental design presented in section 2.1. These contributions focus on 

estimating the sample size required for group differentiation and on evaluating the influence of 

experimental factors on unbalanced multifactorial designs. Both methods were designed for 

multivariate data and were checked on biomedical Raman spectral datasets. 

3.1.1 Sample Size Planning for Multivariate Data 

The SSP aims to estimate the minimal number of measurements needed to achieve robust 

and significant statistical results. SSP has become more important for biophotonics-associated 

data because the generation of such data is time-consuming and features several limitations 

regarding the high costs and the ethical restrictions. Furthermore, the methods proposed for 

multivariate data-based SSP are still limited to specific applications (72,73,125). Therefore, the 

scientific contribution published in [PI] presented a developed SPP algorithm to estimate the 

training set size required for constructing a specific classification model in the case of 

multivariate data. 

The suggested SSP algorithm was built based on learning curves and a specific version 

of inverse power law (IPL) models. Figure 5 shows a systematic pipeline of the proposed SSP 

algorithm. It starts by generating the learning curve of a specific classifier by quantifying the 

performance of this classifier when increasing the sizes of its training set. Thereafter, the 

generated learning curve is fitted using the nonlinear least-squares algorithm by the IPL 

(74,126). In [PI], the considered formula of the IPL model is: 

IP(𝑛) = 𝑎 × 𝑛−𝑏 + 𝑐, 

where 𝑛 denotes the training set size, whereas IP(𝑛) estimates the quantified performance when 

training the classifier on 𝑛 samples, and 𝑎, 𝑏, and 𝑐 represent the parameters of the IPL model. 

Here, 𝑎 refers to the learning rate, 𝑏 is the decay rate, and 𝑐 represents the final performance 

of the considered classifier if it is trained on an infinite number of samples. The later parameter 
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is usually known as the Bayes error. It is utilized in the presented SSP algorithm to predict the 

training set size required to achieve 95% of Bayes error, named: 𝑛95%. After predicting the 

𝑛95%, a new IPL model is fitted using only the training set sizes ≤ 𝑛95%, while the performance 

of this fitted model is extrapolated for the training set sizes > 𝑛95% named the extrapolated 

region. Finally, the performance of the fitted IPL model is evaluated based on the root mean 

square error (RMSE) of the IPL performance and the classification performance in the 

extrapolated region. 

 

Figure 5. Visualization of sample size planning for multivariate data. The learning curve 

is generated using an increasing number of biological replicates. Thereafter, the obtained 

learning curve is fitted by the inverse power law, and the acquired fit is utilized to predict the 

training set size required to achieve 95% of Bayes error, i.e., 𝑛95%. Finally, the predicted 

training set size is implemented to extrapolate the performance of inverse power law built upon 

training set sizes ≤ 𝑛95%. 

The established SSP algorithm was demonstrated on a Raman-spectral dataset consisting 

of six bacterial species cultivated in nine independent biological replicates. Thereby, the 

sample sizes needed to train a classification model that combines a PCA model with a linear-

discriminant analysis (LDA) model were estimated for different data hierarchy levels, i.e., 

spectral level and replicate level. The obtained results showed that 142 Raman spectra per 

bacterial species and seven biological replicates are required to achieve 95% of the final 

performance of the PCA-LDA model, i.e., 95% of Bayes error. 
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3.1.2 WE-ASCA for Analyzing the Unbalanced Multifactorial Designs 

The analysis of multifactorial designs is a group of statistical methods that are typically 

utilized to study the effect of multiple treatments on selected samples. Unlike univariate data, 

this group of exploratory tools is limited in unbalanced multifactorial designs when considering 

multivariate data (59,60). Consequently, the weighted-effect ASCA (WE-ASCA) presented in 

the scientific contribution [PII] was developed as an updated version of the classical ANOVA-

simultaneous component analysis (ASCA) to deal with the unbalanced multifactorial designs 

of multivariate data.  

The proposed WE-ASCA suggests characterizing the experimental design based on the 

general linear models (GLM) and the weighted-effect (WE) coding. Thereby, the response 

matrix can be decomposed into two terms: the estimated response and the error in this 

estimation. While this estimated response matrix usually consists of two matrices, i.e., the 

design matrix and the parameter matrix, the error matrix is obtained by the difference between 

the response and its estimation. Nevertheless, the main improvement of the WE-ASCA is the 

implementation of the WE-coding, which forms a specific version of the dummy coding, to 

facilitate the inclusion of categorical variables in the GLM formula (127,128). This WE-coding 

offers a unique solution to solve the GLM equations in which the effect of each factor level 

represents the level deviation from the weighted mean. Therefore, the WE-coding was 

promoted to update the coding scheme of the design matrix in GLM equations when 

considering an unbalanced multifactorial experimental design. After that, the parameter matrix 

in GLM equations can be estimated easily based on the ordinary least square method (129,130). 

In the last step of WE-ASCA, the obtained estimated response based on the design matrix and 

the parameter matrix can be decomposed linearly as different effect matrices representing the 

experimental factors and their interactions. Besides, the significant effects in a particular design 

are determined using permutation tests, while the dimensions of the effect matrices are reduced 

using PCA models (63).  

Using a Raman spectral dataset consisting of four colorectal tissue types collected from 

47 mice in 387 scans, two applications of WE-ASCA were evaluated. This dataset was acquired 
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with respect to four factors describing the experimental design: The individuals with 47 levels 

referring to the mice, the activity of the P53 gene, the mouse gender, and the location of samples 

(colon or rectum) (131). The first application intended to understand and analyze the design of 

that experiment and then determine which of the experimental factors contributed significantly 

to the considered design. The previous analysis was achieved by applying ASCA, ASCA+ and 

WE-ASCA and comparing their results based on the percentage of explained variances by all 

effects. It tuned out that the classical ASCA overestimated the effect contributions, while the 

ASCA+ underestimated these contributions. In contrast to ASCA and ASCA+, the presented 

WE-ASCA performed the best in estimating these effect contributions. Nevertheless, the three 

versions of ASCA showed that the individual factor has the largest significant effect in the 

considered design. Therefore, the influence of excluding such variations on the classification 

of colorectal tissues was checked in the second task using two classifiers, namely: the PCA-

LDA and the combination of partial least square regression with LDA (PLS-DA). In this 

context, four different classification tasks were evaluated based on the leave-one-mouse-out 

cross-validation. Figure 6 visualizes the obtained results of the considered tasks. It is observed 

that excluding the contribution of the individual factor from the training set introduced more 

robust classification results, and it improved the mean sensitivity in most classification tasks. 

Moreover, training an LDA model on spectra, in which their individual effect was excluded, 

required a smaller number of principal components (or latent variables) and improved the 

reproducibility of CV results. 
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Figure 6. The classification results of PCA-LDA and PLS-DA models based on leave-one-

mouse-out cross-validation. Each classifier was trained twice with and without applying WE-

ASCA-based preprocessing. It turned out that removing the individual variations based on WE-

ASCA improved the classification performance, and it significantly reduced the variance 

within the cross-validation results. 
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3.2 Data-Driven Modeling and Validation  

This section briefly discusses the ML-based automatic detection and identification 

performed for three diagnostic tasks. In the first task, an improved ML pipeline to predict the 

antibiotic susceptibilities of E. coli bacteria was presented and evaluated based on images 

acquired by bright-field microscopy. Thereafter, transfer learning-based classification of 

bladder cancer was demonstrated in the second task using blue light cystoscopic images. 

Finally, different ML techniques and validation strategies were combined and checked in the 

third task. That task aimed to perform a label-free automatic detection of breast cancer based 

on a small-sized dataset of nonlinear multimodal images. 

3.2.1 One-class Model-Based Antibiotics Susceptibility Prediction in 

Bacteria  

The extensive and unwarranted application of antibiotics allowed many bacterial 

pathogens to developed new resistance mechanisms towards the existing drugs in the latest 

decades (45,132,133). As a result, the selection of an effective antibiotic to treat a specific 

bacterial species has become very complicated. Typically, the susceptibility determinations of 

bacterial pathogens are accomplished via antibiotic susceptibility testing (AST) (134). These 

ASTs need to be ideally rapid, accurate, and quantitative. Different technologies were recently 

developed to identify antibiotic susceptibility in bacteria; however, each of them features 

specific advantages and limitations in clinical application scenarios (135–137).  

In the scientific contribution [PIII], an improved images-based automatic identification 

of bacterial susceptibilities toward antibiotics was presented using one-class classification 

models. Therein, a one-class support vector machine (OCSVM) was trained on images 

acquired from untreated controls of a specific bacterial strain, while the image labels of treated 

bacteria are predicted into control or non-control images. If a bacterial stain resists a specific 

antibiotic, it is expected that an image of these treated bacteria is predicted as control. In 

contrast, the bacterial strains sensitive to antibiotics show different morphology than the control 

untreated ones; and therefore, images collected after treating such bacteria with the antibiotics 
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are expected to be identified as non-control. Under these assumptions, a complete pipeline for 

predicting the antibiotic susceptibility is presented as depicted in Figure 7. It starts by acquiring 

bright-field microscopic images of cultivated bacteria, untreated control, and treated bacteria 

with antibiotics. Subsequently, the collected bacteria images are segmented using the U-Net 

Figure 7. The automatic pipeline for predicting antibiotic resistances. (A) Images of 

cultivated bacteria, untreated control and treated bacteria with three antibiotics, are acquired 

using bright field microscopy. (B) The bacteria images are segmented using the U-Net 

network into high density bacteria regions and background. (C) The segmented bacteria 

images are sliced into patches of the size 265×256 pixels, and the patches that have 90% of 

their area covered by bacteria are considered for the statistical analysis. (D) The selected 

image patches of control bacteria are utilized to build one-class SVM (OCSVM) models. 

Lastly, the constructed OCSVM models are implemented to predict bacteria susceptibility 

towards the antibiotics using the extracted features from the selected patches of treated 

bacteria. 
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network into high-density bacteria regions and background (110). This U-Net network is a 

popular encoder-decoder CNN that has been constantly utilized for the semantic segmentation 

of biomedical tasks. After the image segmentation, the obtained images are sliced into patches, 

and patches with 90% of their area covered by bacteria are considered for further statistical 

modeling. In this case of study, the encoder part of the trained U-Net network is implemented 

as a feature extractor, then the extracted U-Net bottleneck features are utilized to predict the 

antibiotic susceptibility. 

Using the proposed pipeline, the susceptibility detection of 12 E. coli strains towards 

three antibiotics, namely: ciprofloxacin, cefotaxime, and piperacillin, was performed based on 

the collected bright-field microscopic images. The results showed 83% area under the receiver 

operating characteristic (ROC) curve when OCSVM models were built on the U-Net bottleneck 

features of control bacteria images only. Moreover, the mean sensitivities of these one-class 

models are 91.67% and 86.61% for cefotaxime and piperacillin, respectively. In contrast, the 

classification means the sensitivity of ciprofloxacin is only 59.72% as the bacteria morphology 

was not fully detected based on the proposed method.  

3.2.2 Deep Learning-Based Bladder Tumor Classification 

Bladder cancer is one of the top 10 most frequently occurring cancers and one of the 

leading causes of death in Europe (138). To diagnose this cancer type, endoscopic techniques 

are commonly utilized (139,140). Recently, photodynamic diagnosis (PDD) based on blue light 

(BL) cystoscopy was introduced as a modern imaging technique for the detection of bladder 

cancer, especially for flat cancerous lesions (141–143). It offers characteristic information 

about tumor morphology based on the fluorescence properties of an extrinsic metabolic 

substrate, which metabolizes differently in cancerous tissues compared to healthy tissues (144). 

However, the main drawback of PDD is related to its low specificity in the differentiation 

between flat cancerous lesions and inflammable alterations after transurethral resection or 

instillation (141–143). Furthermore, due to the lack of experienced endoscopists, PDD-based 

image interpretation is quite subjective, leading to a high rate of false positives (145). Besides, 

PDD does not provide diagnostic information about cancer invasiveness or cancer grading. As 
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a result, the applications of PDD are constrained to malignancy identification. Therefore, the 

aim of scientific work presented in [PIV] was to check the potential of deep learning models 

in automating the diagnosis of bladder cancer invasiveness and grading in addition to 

malignancy using the BL images only. 

The outline of deep learning-based BL image classification is depicted in Figure 8. It 

starts by collecting images using BL cystoscopy, then preprocessing the acquired BL images 

according to a common image preprocessing pipeline. Therein, the illumination of the red and 

blue channels of all PDD images are corrected using the contrast limited adaptive histogram 

equalization (CLAHE) algorithm (85). Thereafter, the background area of each image is 

removed. Finally, the region of interest (ROI) of an image is acquired as an inscribed square 

region within the extracted image disk. The preprocessed images have the size of 384×384 

pixels, and they refer to the image area containing the bladder tissue regions only. After image 

preprocessing, the obtained images are downsampled to the size of 224×224 pixels to fit the 

input size of the considered CNN architectures. In the presented analysis, four freely available 

pre-trained CNNs were fine-tuned by appending additional layers on top of each network, as 

shown in Figure 8-B. These CNNs are InceptionV3 network (146), MobileNetV2 network 

(147), ResNet50 network (148) and VGG16 network (149), and they were pre-trained on the 

ImageNet dataset (150). Nevertheless, the last additional layer of each fine-tuned CNN is the 

SoftMax layer, which offers label probabilities for each input image with respect to the 

considered classification task, i.e., malignancy, cancer invasiveness and cancer grading. 

The above-described outline was performed on a clinical dataset consisting of 216 BL 

images. These BL images were acquired prior to resection of the respective lesions from four 

urological departments retrospectively. Then, the collected biopsies were pathologically 

identified according to cancer malignancy, invasiveness, and grading. Meanwhile, two 

experienced urologists assessed the BL images only. The pre-trained fine-tuned CNNs were 

utilized subsequently to predict image labels using a leave-10-patients-out cross-validation 

(L10PO-CV). After predicting the BL image labels, the evaluation of each CNN performance 

was accomplished based on the classification mean sensitivity and mean specificity. Finally, 

the obtained metrics were compared to the urologist ratings.  
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Figure 8. DL-based automatic classification of bladder cancer. (A) Cystoscopic images in 

the blue light mode are collected. These images are preprocessed, and then the background area 

of each image is excluded in order to get the image area, including bladder tissue only. (B) The 

obtained preprocessed images are resized and fed to the fine-tuned CNN. Here, the last 

additional layer of each CNNs, known as the SoftMax layer, provides label probabilities for 

each input image according to the considered classification task, namely: malignancy 

identification, the classification of cancer grading, and the identification of cancer 

invasiveness. 
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For the identification of malignant lesions, the fine-tuned MobileNetV2 showed the 

maximal sensitivity and specificity among the models. Thereby, the observed values of these 

statistics are 95.77% and 87.84%, respectively. Moving to the classification of tumor 

invasiveness, the fine-tuned MobileNetV2 also featured the best identification results. The 

mean sensitivity here is around 88%, and the mean specificity has a value of 96.56%. 

Furthermore, the detection of cancer stages Ta, T1 and T2 using the previous CNN has a class 

sensitivity of 93%, 100%, and 90.91%, respectively. For the identification of cancer grading, 

the maximum mean sensitivity is 92.07%, while the maximum mean specificity is 96.04%. 

These results were achieved when considering the fine-tuned ResNet50 network based on the 

L10PO-CV. In this case, the classification sensitivity of benign lesions is 95.95%, while the 

sensitivity of low-grade and high-grade cancer is 90.41% and 89.86%, respectively. 

Nevertheless, the identification ratings of both urologists were always much lower compared 

to classification performances of any of the previous CNNs. 

3.2.3 Model Validation Strategies-Based Automatic Detection of Breast 

Cancer 

Breast cancer is the most diagnosed cancer in women worldwide and the first cause of 

all female cancer deaths (151,152). According to the world health organization, breast cancer 

affects 2.1 million women yearly (153). The survival among patients of this cancer type largely 

depends on early detection, which is usually performed using imaging technologies in regular 

preventive checks (154). The challenge here is that breast cancer lacks early symptoms, while 

the current gold standard for definitive diagnosis is still the visual assessment of 

histopathological stained tissue sections after a biopsy of tissue material is taken. Therefore, 

new imaging technologies to enhance the low sensitivity of breast cancer screening and to 

supplement imaging technologies are highly appreciated. Ideally, these new tools permit a fast 

cancer diagnosis with a high potential for in-vivo investigations (155–157). Recently, the 

combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited 

fluorescence (TPEF), and second harmonic generation (SHG) was introduced as a promising 
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imaging tool. This combination provides a powerful label-free tool that can capture the 

biomolecular alterations of cancerous and noncancerous tissues.  

To exploit the above-mentioned biomolecular alterations, the obtained multimodal 

images need to be translated into high-level diagnostic information. In the scientific 

contribution presented in [PV], the potential of computer-aided diagnosis was implemented to 

extract breast cancer-related information based on multimodal nonlinear images. Therein, 

several image preprocessing techniques were combined with ML algorithms to automatically 

detect breast cancer regions of 15 multimodal images acquired from 15 patients. The analysis 

pipeline started by preprocessing the multimodal images as described in Figure 2-B, then 

comparing them to the annotated Haematoxylin and Eosin (H&E) stain images. Subsequently, 

two classification models were trained using the deep convolutional neural network ResNet50 

[99]. Here, the ResNet50 was utilized either to identify the labels of the image patches directly 

or to extract image features that can be used afterwards by classical machine learning 

classifiers. For evaluating the performance of the utilized classifiers, two data validation 

strategies were additionally investigated. These strategies refer to the leave-one-patient-out 

cross-validation (LOPO-CV) and the training-test validation. In Figure 9, an overview of the 

utilized classification techniques and the validation strategies is presented. For all presented 

strategies, the statistical independence between the training, the validation, and the test sets 

was secured based on the following rule: The patient images utilized to train a classifier are 

totally different from images acquired from the patients considered to validate or test the 

learned classifier. The results of the presented classification and validation strategies were 

assessed based on the classification mean sensitivity for the binary cancer diagnostic model, 

i.e., cancer and non-cancer, and for a three-class model, i.e., carcinoma, fat and normal. This 

diagnostic model evaluates the model quality in identifying the cancerous tissues. It turned out 

that the best detection of cancerous tissues was achieved by the fine-tuned ResNet50 network 

and the LOPO-CV. Thereby, the mean sensitivity of LOPO-CV using the fine-tuned ResNet50 

network is 86.23%, which decreased to 75.31% if the PCA-LDA model was implemented. For 

the training-test validation, the images split into a training set, a validation set, and a test set. 

Then, this split was iterated three different times to check the effect of the data division on the 
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classification results (see Figure 4-D). The obtained mean sensitivity, in this case, varied 

between 43.80% and 69.21%. Hence, the classification was strongly influenced by the chosen 

data subsets, i.e., training set, validation set, and test set.  

 

Figure 9. Overview of the ML algorithms and the validation strategies utilized to evaluate 

the automatic detection of breast cancer. The pre-trained ResNet50 network is either used 

as a feature extractor or fine-tuned to be used as a classification model. Besides, the leave-one-

patient-out cross-validation and the training-test validation were implemented to evaluate the 

performance of the considered classifiers 

All previous results were presented for the multimodal images that have corresponding 

annotated H&E images. However, introducing the presented nonlinear imaging technology into 

clinical routine needs to prove the diagnosis efficiency based on multimodal images of new 

patients without using the H&E annotation. To do so, the best performing ML models were 

deployed to predict the breast cancer patches of six multimodal images that missed their 

annotated H&E images. The fine-tuned ResNet50 network based on the LOPO-CV showed the 

best diagnostic performance among the presented ML models and validation strategies. 
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Therein, the best ResNet50 model was saved, and the patch labels of test patients were 

predicted for each iteration of the CV loop. It turned out that three models showed 100% 

prediction performance; therefore, these ResNet50 models were considered to identify breast 

cancer patches of six multimodal images. Despite the small-sized training set of ResNet50 and 

the overlapping of patch annotations, the results of patch prediction were very close to each 

other. Nevertheless, the obtained predictions still need to be verified, which was not available 

for the presented case of study. 
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Additional Work 

Besides the scientific contributions being presented in Chapter 3, several publications 

from other studies conducted over the duration of the Ph.D. time are listed below:  

[I] M.C. Kriegmair, A. Hartmann, T. Todenhöfer, N. Ali, G. Hipp, T. Knoll, P. Honeck, 

R. Oberneder, A. Stenzl, J. Popp, T. Bocklitz 

Computer-assisted diagnosis during blue light cystoscopy using image analysis 

methods: Ahead of pathology? 

European Urology Supplements, 2018, 17 (2), e1241 

[II] S. Guo, O. Ryabchykov, N. Ali, R. Houhou, T. Bocklitz 

Comprehensive Chemometrics. In Comprehensive Chemometrics: Chemical 

and Biochemical Data Analysis 

Elsevier: Oxford, United Kingdom, 2020 

[III] B. Lorenz, N. Ali, T. Bocklitz, P. Rösch, J. Popp 

Discrimination between pathogenic and non-pathogenic E. coli strains by 

means of Raman microspectroscopy 

Analytical and Bioanalytical Chemistry, 2020, 412, 8241–8247 

[IV] J. Huang, N. Ali, E. Quansah, S. Guo, M. Noutsias, T. Meyer-Zedler, T. Bocklitz, J. 

Popp, U. Neugebauer, A. Ramoji 

Vibrational Spectroscopic Investigation of Blood Plasma and Serum by Drop 

Coating Deposition for Clinical Application 

International Journal of Molecular Sciences, 2021, 22 (4), 2191 

http://scholar.google.com/scholar?cluster=47369255750698521&hl=en&oi=scholarr
http://scholar.google.com/scholar?cluster=47369255750698521&hl=en&oi=scholarr
http://scholar.google.com/scholar?cluster=11299566236779221882&hl=en&oi=scholarr
javascript:void(0)
javascript:void(0)
https://www.mdpi.com/1422-0067/22/4/2191/htm
https://www.mdpi.com/1422-0067/22/4/2191/htm
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Summary 

The overall goal of data science in biophotonics is to improve the investigations of 

biological systems based on data collected using biophotonic technologies. In this context, 

several statistical tools can be combined with ML algorithems to enhance the experimental 

planning and then assess computer-aided identifications. Such statistical methods still need 

further investigations and adjustments in the case of life science and biomedicine-based studies. 

Therefore, the scientific contributions in Chapter 3 covered two main aspects within the data 

lifecycle for biophotonics: the design of statistical experiments and the implementation of data-

driven modeling and validation.  

Experimental design  

The statistical techniques involved in designing the experiments deal with the planning 

and the analysis of controlled tests to evaluate the influence of experimental factors on selected 

data samples. In this thesis, the presented improvements related to experimental design were 

conducted to cover the sample size planning and the analysis of unbalanced multifactorial 

designs for multivariate data.  

1- The designed algorithm of SSP aimed to estimate the number of samples required to train 

classification models. The presented algorithm started by generating LCs based on 

evaluating the classification performance as a function of an increasing set of training set 

sizes. Thereafter, the obtained LCs were fitted with the inverse power-law model, while its 

parameters were utilized to predict the training set size. Hither, the predicted size was 

calculated to describe 95% of the final classification performance. The last part of the SSP 

algorithm was designed to check the prediction performance based on comparing the 

behavior of the inverse power law model in the training region and the extrapolated region. 
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To evaluate the performance of the proposed SSP algorithm, a Raman-spectral dataset 

consisting of six bacterial species cultivated in nine independent biological replicates was 

considered. Thereby, the SSP for two levels of the data hierarchy was performed, while the 

focus was on the highest level of the data hierarchy, i.e., biological replicates. Applying the 

proposed SSP algorithm showed that seven biological replicates are required to reach 95% 

of the final performance of the PCA-LDA model, which was introduced by the Bayes error 

rate. Moving to SSP for the required number of spectra, it turned out that 142 spectra per 

bacterial species are needed to achieve 95% of the final performance of the PCA-LDA 

model. The evaluation of both SSP tasks was carried out by calculating the RMSE of the 

extrapolated region and the training region. Nevertheless, the proposed SSP algorithm 

exhibited promising results for the prediction of the training set sizes required for both SSP 

tasks, i.e., spectra and biological replicates. These predicted sizes were necessary to build 

a reliable and accurate PCA-LDA model. Although the SSP algorithm was performed on a 

Raman spectral dataset, the methodology can be utilized for any multivariate data, 

specifically in the case of biophotonic data. However, the estimations of sample size are 

strongly influenced by the experimental protocol, the considered data preprocessing 

techniques, and the utilized algorithm of statistical modeling. Subsequently, the estimated 

sample size is valid only for the same conditions, even though another analysis pipeline 

could require fewer or more measurements. The previous issue reflects the importance of 

the considered data-analysis pipeline for the sample size estimation. Therefore, the relation 

between these analytical pipelines and sample size estimation should be further 

investigated.  

2- The weighted-effect ASCA (WE-ASCA) was presented as an extension of the classical 

(ASCA to analyze unbalanced multifactorial designs in the case of multivariate data. The 

main update of this ASCA version was to substitute the coding schemes of the design 

matrix in ASCA (or ASCA+) with the weighted-effect (WE) coding. This WE-coding is 

beneficial in such unbalanced designs as it uniquely estimates the effects of all factors 

considered in the designed model. Furthermore, it offers a zero value for the sum of all 

level effects in the design matrix, which is not the case when using other coding schemes. 
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Thus, the WE-coding was utilized instead of the deviation scheme implemented in the 

ASCA+ pipeline. In WE-ASCA, the response matrix is estimated based on a general linear 

model using the WE-coding-based design matrix and the calculated parameter matrix. 

Thereafter, the estimated response can be decomposed linearly as different effect matrices 

referring to the experimental factors and their interactions. Finally, the significant effects 

in the studied design are determined using a permutation test, while the dimensions of the 

effect matrices are reduced by applying PCA for each effect matrix. To infer the potential 

of the presented method, two possible applications were checked based on a Raman spectral 

dataset collected from colorectal tissues of 47 mice. The aims of the first application were 

to analyze the design of the studied experiment then to evaluate the performance of that 

analysis compared to the ASCA and the ASCA+. It tuned out that the classical ASCA 

overestimated the effect contributions, while the ASCA+ underestimated these 

contributions. In contrast to both, the proposed WE-ASCA showed the best performance 

with respect to the summation of the percentage of explained variances by effect 

contributions. Moving to the second application, the WE-ASCA was implemented as a 

preprocessing technique to exclude the disturbing variation presented in the Raman dataset. 

This was demonstrated for four different classification tasks using two classifiers and the 

leave-one-mouse-out cross-validation. The obtained results showed that excluding such 

variations from the training set introduced more robust classification results, and it 

improved the mean sensitivity in most classification tasks. In conclusion, the WE-ASCA 

was introduced as a powerful tool to analyze a complex unbalanced multifactorial design 

then to improve the classification performance and its reproducibility. Nonetheless, the 

WE-ASCA were checked only for Raman spectra for tissue classification tasks, but its 

applications are not limited. It can be expanded to cover the analysis of variance of any 

type of multivariate data and any statistical modeling task. 

Data-driven modeling and validation  

Recently, data-driven modeling based on ML algorithms has been implemented to extract 

high-level information by automating the extraction of data insights and inferring potential 

patterns within the acquired data. Therefore, the scientific contributions presented in this thesis 
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were established to verify the capability of several ML models for three types of biophotonic 

data, i.e., bright field microscopic images, fluorescence images, and nonlinear multimodal 

images. 

1- Based on combining different image preprocessing techniques and ML algorithms, the 

automatic identification of antibiotics susceptibilities was presented for bacterial images 

collected from bright field microscopy. The proposed pipeline was designed to capture any 

morphological changes caused by applying antibiotics. It started by segmenting the 

bacterial regions using an autoencoder CNN, named the U-Net network. After that, the 

encoder part of the trained U-Net network was utilized as a feature extractor of the bacterial 

images. In the last step, a one-class classification model, specifically an OCSVM model, 

was implemented for the first time to detect the antibiotic effects on the bacterial strains. 

Thereby, the OCSVM was trained only on images acquired from control untreated bacteria, 

and then the trained model was utilized to predict the antibiotic resistance of treated bacteria 

cultivated within the same replicate. It turned out that the local OCSVM models introduced 

quite promising results in identifying the susceptibility of E. coli; hence, these models are 

self-correcting for the biological variations between different replicates or patients. 

Besides, such local-one-class classification is easy to apply for identifying any other 

antibiotic susceptibilities and for any image-based antibiotic susceptibility test (AST). 

Finally, this image-based method can be used as a fast-phenotypic AST as the 

morphological changes appear after short incubation times of antibiotics with bacteria. 

However, combining the image-based AST with other readout methods could improve the 

results of this detection. 

2- The BL cystoscopy-based photodynamic diagnosis was introduced as a promising 

technology to improve the detection of bladder cancer. In the proposed scientific 

contribution, a BL image-based deep learning diagnostic platform was presented in order 

to predict the bladder cancer malignancy, invasiveness, and grading based on the BL 

images only. The potential of that platform in automating the classification of the 

endoscopic lesions and predicting histopathological results was checked using a small-

sized dataset of BL images acquired from four different urological departments. Therein, 
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the performance of four DL models was compared with the identification results provided 

by two experienced urologists for the three considered tasks. Despite the small sample size 

and the class imbalance in the BL dataset, the obtained results of these comparisons 

exhibited a high identification performance of DL-based transfer learning. For all tasks, the 

fine-tuned CNNs provided much better classification performance than both urologists. 

Moreover, the misclassification of BL images was expected due to the high variations 

between the images and other systematic errors. These errors were assigned mostly to 

specific fluorescence issues like the very low image fluorescence or the spotty fluorescence 

in other images. Besides, some images depicted flat lesions, while others were not close 

enough to capture the suspicious lesions; and consequently, such images were also 

misclassified. Overall, the presented study showed the promising potential of DL-based 

classification models for the diagnostics of bladder cancer when using the BL cystoscopic 

images only. However, further research needs to be performed in order to establish a fully 

automatic BL cystoscopic platform. The aim, in this case, should be to assist surgeons and 

aid the cancer diagnoses by offering a faster and lower-cost alternative of the classical 

biopsy-based pathological analysis. 

3- The nonlinear multimodal imaging technologies provide a label-free tool that can offer a 

non-invasive characterization of the biomolecular alternations between cancerous and 

noncancerous tissues. The advantage of these technologies was used to detect breast cancer 

tissues based on the multimodal images only. To do so, 16 multimodal images of breast 

tissue acquired from 16 patients were considered. The challenge in that study was to 

translate the biomolecular information introduced by these images into an ML model that 

can be deployed in further identifications. Therefore, an image preprocessing pipeline was 

designed to enhance image quality, then three combinations of ML models and validation 

methods were checked. The best classification performance was achieved when using the 

pre-trained ResNet50 network as a classification model and the leave-one-patient-out 

cross-validation. Therefore, the best performing models within the CV loop were 

considered to detect cancerous and noncancerous tissues of not annotated multimodal 

images. In most cases, these classification models provided the same predictions of the 
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multimodal image patches. Although these results were not validated and the training set 

was quite small, it was still possible to deploy ML models for the automatic diagnosis of 

breast cancer. Nevertheless, the non-invasive nature of the nonlinear imaging modalities 

allows for in-vivo examinations offering a low-risk diagnostic tool to supplement others.  
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Zusammenfassung 

Das übergeordnete Ziel biophotonischer Datenwissenschaft ist die Verbesserung von 

Untersuchungen biologischer Systeme auf Grundlage von Daten, die mit biophotonischen 

Technologien gemessen wurden. In diesem Zusammenhang können verschiedene statistische 

Werkzeuge mit maschinellen Lern-Algorithmen (ML) kombiniert werden, um so die 

Versuchsplanung zu verbessern und anschließend eine computergestützte Identifikation 

durchzuführen. Diese statistischen Methoden bedürfen noch weiterer Erforschung und 

Anpassungen für biowissenschaftliche und biomedizinische Studien. Daher befassen sich die 

wissenschaftlichen Beiträge in Kapitel 3 mit zwei Hauptaspekten innerhalb des 

Datenlebenszyklus biophotonischer Daten: der statistischen Versuchsplanung und der 

Umsetzung datengetriebener Modellbildung sowie der Modellvalidierung.  

Versuchsplanung  

Die statistischen Techniken, die bei der Versuchsplanung zum Einsatz kommen, werden 

genutzt, um die Planung und Analyse von kontrollierten Versuchen zum Einfluss 

experimenteller Faktoren durchzuführen. In dieser Arbeit wurden Verbesserungen im 

Zusammenhang mit der Versuchsplanung erforscht, um die Planung des Stichprobenumfangs 

multivariater Studien durchzuführen und die Analyse von nicht balancierten multifaktoriellen 

Versuchsplänen für multivariate Daten zu erlauben.  

1- Der entworfene Algorithmus zur Stichproben-Planung (SSP-Algorithmus) zielte darauf 

ab, den erforderlichen Stichprobeumfang für das Training von Klassifikationsmodellen zu 

schätzen. Der vorgestellte Algorithmus beginnt mit der Generierung der Lernkurve (LC), 

welche die Klassifizierungsleistung in Abhängigkeit von einer zunehmenden Anzahl von 

Trainingsdatensätzen quantifiziert. Anschließend werden die erhaltenen LCs mit dem 

inversen Potenzgesetzmodell gefittet, und die Fit-Parameter werden zur Vorhersage der 
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Trainingsdatensatzgröße verwendet. Dabei wurde die Trainingsdatensatzgröße so 

berechnet, dass sie zu 95 % der endgültigen Klassifizierungsleistung führt. Um die 

Vorhersageleistung zu überprüfen, wurde im letzten Teil des SSP-Algorithmus das 

Verhalten des inversen Potenzgesetzmodells in der Trainingsregion und in der 

extrapolierten Region verglichen. Um die Leistung des vorgeschlagenen SSP-Algorithmus 

zu bewerten, wurde ein Raman-Spektraldatensatz bestehende aus sechs Bakterienarten und 

neun unabhängigen biologischen Replikaten betrachtet. Dabei wurde die Fahlzahlplanung 

für zwei Ebenen der Datenhierarchie durchgeführt, wobei der Schwerpunkt auf der 

höchsten Ebene der Datenhierarchie, das heißt den biologischen Replikaten, lag. Die 

Anwendung des vorgeschlagenen SSP-Algorithmus zeigte, dass sieben biologische 

Replikate erforderlich sind, um 95 % der endgültigen Leistung des PCA-LDA-Modells 

(Hauptkomponenten-Analyse in Kombination mit einer Linearen Diskriminanz-Analyse) 

zu erreichen. Die finale Leistung des Modells kann durch die Bayes-Fehlerrate 

charakterisiert werden. Bei der Anwendung des Algorithmus zur Bestimmung der 

erforderlichen Spektren-Anzahl zeigte sich, dass 142 Spektren pro Bakterienart 

erforderlich sind, um 95 % der endgültigen Leistung des PCA-LDA-Modells zu erreichen. 

Die Bewertung der beiden SSP-Aufgaben erfolgte durch Berechnung des RMSE in der 

extrapolierten Region und der Trainingsregion. Es zeigte sich, dass der vorgeschlagene 

SSP-Algorithmus beide erforderlicher Trainingsmengen vorhersagen konnte. Diese 

vorhergesagten Fallzahlen waren notwendig, um ein zuverlässiges und genaues PCA-

LDA-Modell zu erstellen. Obwohl der SSP-Algorithmus an einem Raman-

Spektraldatensatz erstellt und getestet wurde, kann die Methodik für jeden multivariaten 

Datensatz verwendet werden, insbesondere im Fall von biophotonischen Daten. Die 

Schätzung des Stichprobenumfangs wird jedoch stark durch das Versuchsprotokoll, die 

verwendeten Datenvorverarbeitungstechniken und das verwendete statistische Modell 

beeinflusst. Folglich gilt der geschätzte Stichprobenumfang nur für dieselben 

Bedingungen, auch wenn eine andere Analysepipeline weniger oder mehr Messungen 

erfordern könnte. Das vorstehende Problem spiegelt die Bedeutung der betrachteten 

Datenanalyse-Pipeline für die Schätzung des Stichprobenumfangs wider. Daher sollte die 
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Beziehung zwischen der Analysepipeline und der Schätzung des Stichprobenumfangs 

weiter untersucht werden. 

2- Die ANOVA simultaneous component analysis (ASCA) mit gewichteten Effekten (WE-

ASCA) wurde als Erweiterung der klassischen ASCA entwickelt, um unausgewogene 

multifaktorielle Designs im Falle multivariater Daten analysieren zu können. Die 

wichtigste Neuerung dieser ASCA-Version besteht darin, das Kodierungsschema der 

Designmatrix durch die Kodierung mit gewichteten Effekten (WE) zu ersetzen. Diese WE-

Kodierung ist in nicht-balancierten Designs vorteilhaft, da sie die Effekte aller im 

entworfenen Modell berücksichtigten Faktoren eindeutig schätzt. Darüber hinaus bietet sie 

einen Nullwert für die Summe aller Niveaueffekte in der Designmatrix, was bei der 

Verwendung anderer Kodierungsschemata nicht der Fall ist. Daher wurde die WE-

Kodierung anstelle des in der ASCA+ Pipeline implementierten Abweichungsschemas 

verwendet. In WE-ASCA wird die Antwortmatrix auf der Grundlage eines allgemeinen 

linearen Modells (GLM) sowie unter Verwendung der WE-Kodierungsbasierenden 

Designmatrix und der berechneten Parametermatrix geschätzt. Danach kann die geschätzte 

Antwortmatrix linear in verschiedene Effektmatrizen zerlegt werden, die sich auf die 

experimentellen Faktoren und ihre Interaktionen beziehen. Schließlich werden die 

signifikanten Effekte im untersuchten Design mit Hilfe eines Permutationstests bestimmt, 

während die Dimension der Effektmatrizen durch Anwendung einer Hauptkomponenten-

Analysis (PCA) für jede Effektmatrix reduziert wird. Um das Potenzial der vorgestellten 

Methode zu ermitteln, wurden zwei mögliche Anwendungen anhand eines Raman-

Spektraldatensatzes von Mausdarmgewebe geprüft. Das Ziel der ersten Anwendung war 

es, das Design des untersuchten Experiments zu analysieren und dann die Leistung dieser 

Analyse im Vergleich zu ASCA und ASCA+ zu bewerten. Es stellte sich heraus, dass die 

klassische ASCA die Effektbeiträge überschätzte, während die ASCA+ diese Beiträge 

unterschätzte. Im Gegensatz zu beiden existierenden ASCA Versionen zeigte die 

vorgeschlagene Methode (WE-ASCA) die beste Leistung in Bezug auf die Summierung 

der erklärten Varianzen der Effektbeiträge. In der zweiten Anwendung wurde die WE-

ASCA Methode als Vorverarbeitungstechnik implementiert, um störende Variationen im 
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Raman-Datensatz auszuschließen. Dies wurde für vier verschiedene 

Klassifikationsaufgaben unter Verwendung von zwei Klassifikatoren und einer 

Kreuzvalidierung (auf Individuen-Ebene) demonstriert. Die erzielten Ergebnisse zeigten, 

dass die Entfernung solcher Variationen aus dem Trainingssatz zu robusteren 

Klassifizierungsergebnissen führt, und die gemittelte Sensitivität der Modelle bei den 

meisten Klassifizierungsaufgaben etwas verbessert wurde. Zusammenfassend lässt sich 

sagen, dass die WE-ASCA Methode als leistungsfähiges Instrument zur Analyse eines 

komplexen unausgewogenen multifaktoriellen Designs generiert wurde, um die 

Klassifizierungsleistung und ihre Reproduzierbarkeit zu verbessern. Die WE-ASCA 

wurde nur anhand Raman-Spektren zur Gewebeklassifizierung getestet, aber ihre 

Anwendung ist nicht auf diese Aufgaben beschränkt. Sie kann auf jede Varianzanalyse 

multivariater Daten und jede statistische Modellierungsaufgabe erweitert werden. 

Datengestützte Modellierung und Validierung 

In den letzten Jahren wurde die Daten-basierende Modellierung auf Grundlage von ML-

Algorithmen eingeführt, um höhere Informationen aus Daten zu extrahieren. Diese ML-

Verfahren extrahieren Datenerkenntnissen durch die Bestimmung von Mustern in den erfassten 

Daten. Die in dieser Arbeit vorgestellten wissenschaftlichen Beiträge wurden daher erstellt, um 

die Fähigkeit verschiedener ML-Modelle für drei Arten von biophotonischen Daten zu 

überprüfen, das heißt für mikroskopische Hellfeldbilder, Fluoreszenzbilder und nichtlineare 

multimodale Bilder. 

1- Basierend auf der Kombination verschiedener Bildvorverarbeitungstechniken und ML-

Algorithmen wurde eine automatische Bestimmung von bakteriellen Antibiotika-

Resistenzen mittels Hellfeldmikroskopie-Bildern vorgestellt. Die vorgeschlagene 

Datenanalyse-Pipeline wurde entwickelt, um morphologischen Veränderungen der 

Bakterien durch die Anwendung von Antibiotika zu erfassen. Die Pipeline beginnt mit der 

Segmentierung von Bildregionen, die von Bakterien dominiert werden, unter Verwendung 

eines auf Convolutional Neural Networks (CNNs) basieren Autoencoders, dem 

sogenannten U-Net-Modell. Danach wurde der Kodierungsteil des trainierten U-Netzes als 

Merkmalsextraktor für die Bilder verwendet. Im letzten Schritt wurde zum ersten Mal ein 
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Einklassen-Klassifikationsmodell, genauer gesagt ein OCSVM-Modell (One-Class-

Support-Vector-Machine-Modell), implementiert, um die Wirkungen von Antibiotika auf 

Bakterien zu erkennen. Dabei wurde das OCSVM-Modell nur mit Bildern von 

unbehandelten Kontrollbakterien trainiert, und dann wurde das trainierte Modell zur 

Vorhersage der Antibiotikaresistenz von behandelten Bakterien verwendet, welche im 

selben Replikat wie die Kontroll-Bakterien kultiviert wurden. Es stellte sich heraus, dass 

die lokalen OCSVM-Modelle vielversprechende Ergebnisse bei der Bestimmung der 

Antibiotika-Sensitivitäten von E. coli lieferten, da diese Modelle automatisch für die 

biologischen Variationen zwischen verschiedenen Replikaten oder Patienten korrigieren. 

Außerdem ist eine solche lokale Einklassen-Klassifizierung leicht für die Detektion 

anderer Antibiotika-Sensitivitäten und für jeden bildbasierten Antibiotika-

Empfindlichkeitstest (AST) anwendbar. Schließlich kann diese bildbasierte Methode als 

schneller phänotypischer AST verwendet werden, da die morphologischen Veränderungen 

der Bakterien nach kurzen Inkubationszeiten mit den Antibiotika auftreten. Die 

Kombination des bildbasierten AST mit anderen Auslesemethoden könnte die Ergebnisse 

dieses Nachweises noch verbessern. 

2- Die photodynamische Diagnose mittels der Blau-Licht-Zystoskopie (BL-Zystoskopie) 

wurde als vielversprechende Technologie zur verbesserten Erkennung von Blasenkrebs 

eingeführt. Im vorgeschlagenen wissenschaftlichen Beitrag wurde eine auf tiefen 

Lernverfahren basierende Diagnoseplattform für BL-Bildern vorgestellt, um die 

Bösartigkeit, Invasivität und Graduierung von Blasenkrebs vorherzusagen. Das Potenzial 

dieser Plattform bei der automatischen Klassifizierung endoskopischer Läsionen und der 

Vorhersage histopathologischer Ergebnisse wurde anhand eines kleinen Datensatzes von 

BL-Bildern aus vier verschiedenen urologischen Abteilungen überprüft. Dabei wurde die 

Leistung von vier tiefen Lernmodellen mit den Erkennungsergebnissen von zwei 

erfahrenen Urologen für die oben genannten drei Aufgaben verglichen. Trotz der geringen 

Stichprobengröße und eines starken Klassenungleichgewichts im BL-Datensatz zeigten 

die Ergebnisse eine hohe Identifikationsleistung der tiefen Lernverfahren durch die 

Anwendung von Transferlernen. Bei allen Aufgaben lieferte das Fine-tunning der CNNs 
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deutlich bessere Klassifikationsleistungen als die Vorhersagen der beiden Urologen. 

Darüber hinaus waren die Fehlklassifizierungen von BL-Bildern aufgrund der hohen 

Variationen zwischen den Bildern und anderer systematischer Fehler zu erwarten. Es 

traten Fluoreszenzproblemen auf, wie zum Beispiel eine sehr geringe 

Fluoreszenzintensität in manchen Bildern oder eine fragmentierte Fluoreszenz in anderen 

Bildern. Außerdem zeigten einige Bilder flache Läsionen, während andere nicht nah genug 

an die verdächtigen Läsionen heranreichten, so dass auch diese Bilder falsch klassifiziert 

wurden. Insgesamt zeigte die vorgestellte Studie das vielversprechende Potenzial tiefer 

Lernmodelle für die Diagnose von Blasenkrebs basierend BL-Zystoskopie-Bildern. Es 

besteht jedoch noch weiterer Forschungsbedarf, um eine vollautomatische BL-

Zystoskopie-Plattform zu etablieren. Ziel sollte es sein, Chirurgen zu unterstützen und die 

Krebsdiagnose zu erleichtern, indem eine schnellere und kostengünstigere Alternative zur 

klassischen Biopsie-basierten pathologischen Analyse angeboten wird. 

3- Die nichtlineare multimodale Bildgebung stellt ein markerfreies Werkzeug dar, welches 

eine nicht-invasive Charakterisierung von biomolekularen Veränderungen zwischen 

krebsartigem und nicht krebsartigem Gewebe ermöglicht. Diese Technologien wurde 

genutzt, um Brustkrebsgewebe allein auf der Grundlage der multimodalen Bilder zu 

erkennen. Zu diesem Zweck wurden 16 multimodale Bilder von Brustgewebe von 16 

Patientinnen untersucht. Die Herausforderung in dieser Studie bestand darin, die 

biomolekularen Informationen, die diese Bilder liefern, in ein ML-Modell zu übersetzen, 

das für weitere Identifizierungen eingesetzt werden kann. Daher wurde eine 

Bildvorverarbeitungspipeline entwickelt, um die Bildqualität zu verbessern. Anschließend 

wurden drei Kombinationen von ML-Modellen und Validierungsmethoden geprüft. Die 

beste Klassifizierungsleistung wurde bei der Verwendung des vortrainierten ResNet50-

Netzwerks als Klassifizierungsmodell und der Kreuzvalidierung (Leave-one-patient-out) 

erzielt. Die leistungsfähigsten Modelle wurden genutzt, um innerhalb der CV-Schleife 

nicht annotierte multimodale Bilder vorherzusagen. In den meisten Fällen lieferten diese 

Klassifikationsmodelle (in der Schleife) stabile Vorhersagen für die nicht-annotierten 

multimodalen Bilder. Obwohl diese Ergebnisse nicht validiert werden konnten und die 
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Trainingsmenge recht klein war, war es dennoch möglich, ML-Modelle für die 

automatische Diagnose von Brustkrebs zu erstellen. Die nicht-invasive Natur der nicht-

linearen Bildgebungsmodalitäten ermöglicht es perspektivisch In-vivo-Untersuchungen 

durchzuführen, die ein risikoarmes Diagnoseinstrument zur Ergänzung anderer Diagnose-

Methoden darstellen. 
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