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Zusammenfassung
Radaranwendungen für das tägliche Leben haben in den letzten Jahrzehnten immer mehr an
Bedeutung gewonnen. Radarsensoren werden in verschiedensten Bereichen eingesetzt, z.B. in
Autos, in der industriellen Automatisierung, in medizinischen Anwendungen usw. FMCW-
Radare sind hierbei populär. Ihre architektonische Einfachheit und die jüngsten Entwicklungen
im Bereich integrierter Schaltkreise erleichtern die System-on-Chip-Realisierung von FMCW-
Radaren. Darüber hinaus sind MIMO-Radare ein aufkommender Technologietrend zukünftiger
Radarsysteme. Solche Radare bieten neben der Entfernungs- oder Dopplerbestimmung eine
Vielzahl neuartiger Möglichkeiten. Kombiniert mit der Einfachheit der Hardware von FMCW-
Radaren werden somit neue Anwendungsfelder adressierbar.

Neben der Radar-Hardware ist die Signalverarbeitung ein elementarer Bestandteil einer je-
den Radaranwendung. Ein wesentlicher Teil der Radarsignalverarbeitung ist die Zielerfassung
und die Schätzung der zugehörigen Parameter aus den Radarbeobachtungen. Die geschätzten
Parameter dienen als Eingangsdaten für alle nachfolgenden Verarbeitungsschritte. Die Radarsi-
gnalverarbeitung ist hierbei untrennbar mit der Hardware und dem Anwendungszweck verbun-
den. Breitbandige Radare, d.h. Radare mit großer Signalbandbreite und räumlicher Apertur,
bieten eine hohe räumliche und zeitliche Auflösung. Klassische Methoden der Schätzung von
Zielparametern beruhen auf Annahmen bezüglich der Radararchitektur oder der Bandbreite.
Diese Annahmen sind bei breitbandigen Radaren nicht erfüllt. Daher sind neuartige Signal-
verarbeitungsmethoden notwendig um einerseits die Möglichkeiten des Radarsystems voll aus-
zuschöpfen, sowie Verarbeitungsproblemen, die durch das Radar selbst verursacht werden, zu
bewältigen.

In dieser Arbeit wird die Signalverarbeitung für ein breitbandiges FMCW-MIMO-Radar
dargestellt, welches im mm-Wellen-Frequenzbereich arbeitet. Die Entwicklung geeigneter
Signalverarbeitungsmethoden erfordert hierbei einen Paradigmenwechsel in der Betrachtung
der Radaranwendung. Im Gegensatz zu der klassischen Betrachtung von Radar, bei der Radar
hauptsächlich vor dem Hintergrund der hardwarebedingten Zielerkennung betrachtet wird, soll
hier ein anderer Gesichtspunkt herangezogen werden. Radar wird als eine Anwendung der
Systemidentifikation im Bereich der drahtlosen Wellenausbreitung betrachtet. Die Parameter
eines Modells beschreiben die Ausbreitung elektromagnetischer Wellen in Raum-, Frequenz-
und Zeitbereich. Diese Parameter können Radarzielen zugeordnet, und deren Auswertung zur
Zielortung ausgenutzt werden. Daher wird das Radar in Verbindung mit der Schätzung von
Modellparametern als ein Problem der modellbasierten Systemidentifikation betrachtet. Die
modellbasierte Systemidentifikation aus verrauschten Messungen ist ein stochastisch inverses
Problem. Aus der Literatur ist eine Vielzahl von Verfahren zur Lösung solcher Probleme
bekannt, welche hinsichtlich des Modells sehr flexibel sind. Diese Flexibilität ermöglicht die
Entwicklung von dediziertenMethoden der Signalverarbeitung, welche auf die Radar-Hardware
zugeschnitten, und nicht auf dedizierte Annahmen über z.B. die Signalbandbreite beschränkt
sind. Die Betrachtung von Radarsignalverarbeitung als modellbasierte Systemidentifikation
ermöglicht es somit, geeignete Signalverarbeitungsmethoden für das betrachtete Radar zu
entwickeln.
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Abstract
Radar has gained an increased popularity in daily life applications over the past decades. Radar
sensors are deployed for multiple sensing purposes in e.g. cars, industrial automation, medical
applications etc. Quite often, FMCW radars are utilised. Their architectural simplicity and
recent developments in microwave-integrated circuits makes FMCW radars easily realisable
as system-on-chip solution. Furthermore, MIMO radars are an emerging technology trend of
future radar systems. Such radars offer a variety of novel applications apart from pure distance
or Doppler determination. Combined with the hardware simplicity of FMCW radars, new
application fields become addressable.

Apart from sophisticated radar hardware, signal processing is an elementary component
of every radar application. An essential goal of radar signal processing is target detection
and estimation of related parameters from the radar observations. The gained parameters are
the input for all subsequent processing chains. The radar signal processing is inseparably
linked to the radar hardware and the application purpose. Broadband radars, i.e. radars with
a large bandwidth and huge spatial aperture, offer tremendous resolution capabilities, such
that classical methods to estimate target parameters are not applicable. Classical methods are
constrained by assumptions regarding e.g. the radar architecture or the bandwidth. However,
these assumptions are not fulfilled by broadband radars. Hence, novel signal processing
methods have to be developed, in order to exploit the full set of abilities provided by the radar
system, as well as to tackle processing issues due to the radar itself.

In this thesis, signal processing for a broadband FMCW MIMO radar operating in the mm-
Wave frequency range will be outlined. The development of appropriate signal processing
methods necessitates a paradigm change in treating radar. Apart from the classical perspective
to radar, where the radar application of e.g. target recognition is the driving point, a different
viewpoint will be considered here. Radar will be considered as a system identification
application in the area of wireless propagation. A parametric model describes the propagation
of electromagnetic waves in spatial, frequency and time domain. The respective parameters can
be assigned to radar targets, and their evaluation can be used for target localisation. Hence,
radar in conjunction with the estimation of target parameters will be treated as a model-based
system identification problem. Model-based system identification from noisy measurements
is a stochastic inverse problem. A variety of methods, which are highly flexible regarding the
model, are known from literature. This flexibility enables the development of dedicatedmethods
for radar signal processing, which are in accordance with the radar hardware and not inherently
limited to a certain radar architecture or assumptions on e.g. the signal bandwidth. Therefore,
the treatment of radar signal processing as model-based system identification is more suited to
develop appropriate signal processing methods for the considered broadband FMCW MIMO
radar.
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CHAPTER 1
Introduction

RADAR sensors are an emerging technology to ease live of the human society in the 21st
century. For example, radar sensors are considered as a key enabling technology for

autonomous mobility, advanced robotics in industry 4.0, automation in agriculture, medical
imaging, assistant robots or smart cities (trafficmonitoring and accident avoidance or pedestrian
recognition), see Fig. 1.1. Further development trends are towards the combination of radar and
communication system (RadCom [WS14]) or radar abilities piggyback to a communication
system, e.g. for the upcoming 5G mobile radio network [Tho+19].

Utilisation of radar, i.e. the exploitation of electromagnetic waves for surveillance or sensing
of objects, has a history of more than 100 years. First investigations date back to the beginning
of the 20th century. In 1904 the German inventor Christian Hülsmeyer applied for a patent
on a ”Telemobiloskop”, an apparatus for the detection of moving metallic bodies like ships
by using electromagnetic waves; and practically demonstrated its abilities [Goo19]. However,
the realised Telemobiloskop was capable to do detection only [Gua10]. In the mid 30s of
the 20th century the Scottish physicist Robert Alexander Watson-Watt received a patent for
the usage of the reflection of electromagnetic waves at objects like aircraft, in order to detect
them and determine their range. At this time, the term ”RADAR” (Radio Detection and
Ranging) was born. During the second World War, radar gained an increased popularity
for air and sea surveillance, and reconnaissance. Up to this point, radar technologies has
been pushed mainly due to military considerations and needs. In the recent years, civilian
applications of radar as e.g. automotive radar [WHM21] come more and more into play. It
is notable, that from the earliest beginning of radar by Hülsmeyer, to radar by Watson-Watt,
the first bistatic passive radar ”Klein Heidelberg” [GW10] to the recently idea of quantum
radar [Bal18] it took only a century! This indicates, that radar technology gains a tremendous
research attention. Accordingly, there is a huge variety of radar systems in terms of e.g. used
wave forms, receiver concepts, or mono- and bistatic radars [CB93, Sko90, Wil05]. Further
distinction has to be drawn between active and passive radar [GB17], i.e. is the transmitter
operated by the radar system or is ambient radiation as e.g. from radio networks exploited for
target illumination. Recently, the idea of MIMO radar gained much attention, as these radars
offer superior performance compared to standard phased-array radars in terms of resolution,
sensitivity and parameter identifiability [BF03, Fis+04a, Fis+04b, Fis+06, LS08]. In MIMO
radars it has to be distinguished between distributed [HBC08] or co-located [LS07] transmit
and receive arrays.

In order to properly detect targets in crowded environments as e.g. industrial halls, high
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1 INTRODUCTION

Figure 1.1: Exemplary areas for radar applications. Pictures taken from [Sil20]

bandwidths and large antenna apertures are required to ensure a good delay and angular
resolution. Due to the dense occupation of low frequency bands and the respective large
antenna size, the usage of higher frequency bands such as the millimetre wave spectrum (mm-
Wave) is anticipated. Utilisation of these frequencies is furthermore pushed by the progress in
semiconductor technology, which allows the low-cost realisation of complete radar frontends as
monolithic microwave integrated circuit (MMIC) with on-chip antennas [2, Hit+18, Hit+17].

Radar applications are driven by their signal processing capabilities. A major aim of radar
signal processing is the localisation of observed targets from the radar measurements. The target
location is uniquely determined by target parameters like the delay of the echo signal (related
to the target range) and the azimuth and elevation angle (observation angles of the radar with
respect to (w.r.t.) to the target) [Wil05]. MIMO radars do observations in space, slow-time
(time) and fast-time (delay) domain. These observations are gathered into the radar data cube.
For localisation purpose, the target parameters have to be estimated from the radar data cube.

The title of the thesis implies two research fields of electrical engineering, whose interrelation
will be outlined and exploited: system identification and radar. System identification, i.e.
the process of gaining knowledge of a physical system of interest from measurements by an
observer, arises in many scientific fields as e.g. control engineering, signal processing, biology
or econometrics [SS89]. In this thesis, its application to signal processing for mm-Wave
broadbandMIMO FMCW radar will be considered. A broadband radar, i.e., a radar with a large
array aperture and a huge signal bandwidth, is considered. The radar is the observer system to
gain measurements from the system under consideration, which is the wireless propagation
channel. A model of the physical system of interest will be exploited for signal processing,
i.e. estimation of the target parameters. However, the consideration of model-based system
identification for processing of radar observations is not limited to radars following the FMCW
concept. In fact, it is a quite general signal processing concept, applicable to a variety of radar
systems.
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1.1 MOTIVATION AND TOPIC UNDER CONSIDERATION

1.1 Motivation and Topic Under Consideration
1.1.1 Model-Based System Identification
System identification can be defined as the determination of the mathematical relation between
the input and the output of a system using measurements [SS89]. In practise, the system is
stimulated with a known signal (input) and the response of the system (output) to this stimulus
is captured. The instrument, which stimulates the system and captures the response, is denoted
as observer. From the known input and output conclusions on the system under identification
can be drawn. Depending on the available information priorly to the identification step, one may
distinguish between a black box and grey box system identification. In black box identification
no prior information is considered, whereas grey box assumes a model structure regarding the
system under identification priorly to the identification step. This mathematical model ℳ (𝛉)
describes the input-output relation by modelling the underlying physics of the system under
identification [SS89]. For a linear system the input-output relation is given by the impulse
response, hence, ℳ (𝛉) is a model of that. The model is characterised by parameter vector 𝛉,
which has to be estimated from the observations (the known input and output). The parameter
estimation step is therefore the system identification step. Hence, grey box modelling can be
considered as model-based system identification. Because the model is of parametric nature,
model-based system identification is also denoted as parametric system identification.

Why Model-Based System Identification?
Estimation of the parameters of the model of the system under identification is a problem of
(statistical) signal processing, whereas the observations are the signal to be processed. Hence,
model-based system identification belongs to the class of model-based or parametric signal
processing. Model-based signal processing has superior performance over standard signal
processing techniques [Can05]. Models improve the detection and estimation performance,
as they enable the signal processor to account for the underlying physical phenomena of the
problem under consideration, effects of the instrumentation and occurring noise sources. Two
main advantages of model-based signal processing will be pointed out in this thesis:

• De-Embedding of instrumentation disturbances

• Enhanced resolution.

Of course, model-based signal processing encounters drawbacks as well. The biggest
drawback is the applied model itself, because model-based processing encounters its superiority
only for a properly chosen model. If the applied model poorly describes the system under
identification, model errors are very severe and the quality of the estimated model parameters
breaks down, e.g. estimates have a huge variance or become even biased. Hence, one can say
that, if the model inputted to the signal processor is bad, the outputted parameter values from the
signal processor are bad too (‘garbage in, garbage out’). In order to circumvent improper models
one can go for complicated models. However, complicated models can become a problem too
under the view of processing effort. Roughly speaking, the parameter estimation effort scales
with the model accuracy. Therefore, if processing speed matters, one goes for more simple
models, which have a possibly higher inaccuracy. Summarised, a dualism between estimation
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Radio Channel

Propagation Channel
Transmitter Receiver

Figure 1.2: Distinction of radio channel and propagation channel according to [SMB01]. The radio
channel is the propagation channel embedded in the observer system. One wants to observe
the response of the propagation channel (i.e. the system under identification) but actually
the response of the radio channel has been observed.

effort and model accuracy is present, a problem every practitioner encounters. A proper trade-
off is necessary to tackle this dualism, however, a general trade-off is not given as it severely
depends on the observer system, the application scenario or the operator’s needs.

The De-Embedding and Mitigation Aspect
First it has to be clarified, what should has been observed and what actually has been observed.
As an example for clarification, lets consider system identification for the wireless propagation
channel, which will be termed as channel sounding [Mol12]. Determination of the input-output
relation of the wireless propagation channel requires the utilisation of appropriate observer
systems, so called channel sounders [TLS+04]. In general, channel sounders consist of a
transmitter (Tx) and a receiver (Rx), each featuring transmitting/receiving chains and being
equipped with antennas. A response of the propagation channel is measured by exciting the
channel with an appropriate sounding signal at the Tx, and gathering the respective response
at the Rx. Due to the characteristics of e.g. the utilised antennas or transceiver chains, the
observations are influenced by the channel sounder. To separate the influence of the observer
and the propagation channel itself, it is commonly distinguished between the radio channel
and the propagation channel [SMB01], see Fig. 1.2. The radio channel can be assumed as the
multidimensional embedding of the propagation channel (the system under identification) in the
response of the observer system. As the operator is interested in the response of the propagation
channel only, it is of interest to de-embed effects of the observer system from the observations.
By developing amodel of the gathered data, called datamodel, themultidimensional embedding
of the propagation channel in the response of the observer system is described. To do so, amodel
of the propagation channel (i.e. the system under identification) and a model of the response
of the observer system is required. Exploitation of the data model for the estimation of the
model parameters of the system under identification inherently accomplishes the mitigation or
de-embedding of the observer system.

Summarised, model-based signal processing allows for de-embedding and mitigation of
instrumentation related effects on the observations. A proper model of the instrumentation
system is required for this.
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Enhanced Resolution – The High-Resolution Aspect
Sometimes, the term resolution is mixed up with the term accuracy regarding the assignment
of capabilities to a radar system. Resolution will defined as the capability of separating events
like e.g. radar targets or propagation paths in a certain observation dimension. Accuracy will
be defined as how well a single event like a target or propagation path can be estimated.

A lower bound for resolution 𝛥 is given by the inverse aperture size 𝐴 of the observation
system in the respective dimension [DEH19].

𝛥 ∝ 1𝐴 (1.1)

This limit is denoted as Rayleigh resolution limit. For example, the delay resolution of an
observer is determined by the bandwidth (𝐴 = 𝑊), the Doppler resolution by the observation
time (𝐴 = 𝑇), and the angular resolution by the array aperture size an impinging wave is facing
(𝐴 = 𝑀 for ULA in broadside direction). According to relation (1.1), one may want to enhance
the aperture, if the resolution in the respective dimension is not appropriate for the operator.
Enhancing the aperture requires hardware changes or increases the hardware effort, which can
become quite fast very expensive or complicated. By taking into account high-resolution signal
processing the resolution can be enhanced without additional hardware. Hence, ”hardware
effort” to gain a higher resolution can be swapped to ”software effort”, which is typically less
costly.

In the ”IEEE Standard Radar Definitions 686-2017” [Pan17] high- or super-resolution is
defined as:

An algorithmic technique for achieving higher resolution than system parameters
would imply, by exploiting prior knowledge.

Hence, high-resolution is the improvement of the Rayleigh resolution limit, using model-based
(prior knowledge-based) processing. High-resolution has been already considered for channel
sounding [HTR03, Ric05] and radar [DEH19, HMS15] applications. From amodelling point of
view, high-resolution deals with the recovery of a sequence of superimposing spikes or Dirac
pulses (i.e. signals of infinite resolution) from aperture-limited observations [BE19, CF13,
CF14, Fer16]. The aperture-limitation of the observer does a pulse-shaping, such that the
resolution of the spikes inside of the measurements is decreased. Figure 1.3 shows a signal
of four superimposed spikes, which are gathered by a aperture-limited observer. Due to his
aperture limitation the observer acts like a low-pass filter. The filtering causes the observed
signal to become a blurred version of the spike signal. As a result, the observations feature a
much lower resolution. In Fig. 1.3 only three peaks can be recognised in the observed signal,
because the presence of the spike at approx. 0 is hard to detect. High-resolution attempts to
recover the four spikes from the observation, such that their original resolution is regained and
even spikes close to each other become detectable. However, high-resolution also encounters
its limits, which are determined by the signal-to-noise ratio (SNR) of the observations and the
model accuracy.

Summarised, high-resolution is a promising approach to enhance the resolution limits of
an observer, without increasing the hardware effort. In order to enable high-resolution in
all sensing dimensions, the model of the system under identification must be represented as
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Figure 1.3: Spike signal of four superimposing Dirac pulses, which are observed by a aperture-limited
observer. The observed signal is a blurred version of the spike signal, having a reduced
resolution. High-resolution attempts to recover the four spikes from the observation.

a sequence of superimposed (multidimensional) Dirac pulses, which is known as spreading
function [DEH19].

1.1.2 Radar Feats System Identification – The Close
Relationship to Channel Sounding

A radar will be considered as a sensor, which radiates electromagnetic energy and receives
the echo return from an scattering object, termed as target [Sko90]. From the received echo
signal information on the target (location, velocity, signature) can be gained. According to this
(quite rough) definition of a radar functionality it becomes already clear, that radar is a kind of
a system identification application. In radar, the system under identification is termed as the
radar channel, which is the wireless propagation channel from a top-level viewpoint.

Previously, channel sounding has been introduced as system identification application, where
the wireless propagation channel is the system under identification. Channel sounding is an
important field in wireless communication engineering [Mol12], as it is required to develop
proper channel models, which are used to specify and test wireless communication systems.
The propagation channel is sometimes denoted as wireless communication channel in this field
of research.

In channel sounding as well as radar, a observer is employed to sense the system
under identification. Besides this, model parameters are inferred in radar or channel
sounding to describe the radar or communication channel, respectively. Hence, the idea of
model-based system identification can be assigned to both applications. As the radar and
communication channel undergo similar propagation phenomena, they are describable by the
same mathematical model ℳ (𝛉) [Tre01]. Hence, from a pure system identification viewpoint,
radar and channel sounding can be considered as similar applications, both facing the model-
based identification of the wireless propagation channel. However, in radar, the estimated
parameters are later on used for e.g. localisation or classification of targets, whereas in channel
sounding the estimated parameters are used for e.g. statistical modelling of the propagation.
Figure 1.4 summarises the information capturing and processing flow in radar and channel
sounding, their commons in terms of model-based system identification, and their differences
in terms of interpretation and post-processing of the identification results.
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Figure 1.4: Flow of information capturing and processing in radar and channel sounding application.
Both applications have identification measurements and parameter estimation in common,
i.e., feature model-based system identification.

Furthermore, in radar applications, propagation due to reflections/scattering at targets is of
interest only. Other echoes, which are contributions from the surrounding environment or which
cannot be assigned to a target, are classified as disturbances or clutter. In channel sounding, it
is not distinguished between valuable contributions and disturbances or clutter, because each
energy transfer from Tx to Rx is considered as valuable. Roughly speaking, a specific kind of
transmission (i.e. scattering at a target) is of interest in radar, whereas the transmission itself
is of interest in channel sounding. Summarised, radar has a very specific interpretation of the
propagation, whereas channel sounding is more general to this.

As a conclusion, radar applications can be considered as system identification applications,
especially as a subset of channel sounding from the viewpoint of how the results of the system
identification step are later on interpreted. By treating radar as system identification or model-
based signal processing problem, the advantages of model-based system identification can be
transferred to radar applications.

1.2 Major Contributions and Thesis Outline
1.2.1 Major Contributions
The major contributions of this thesis are in the field of modelling a broadband MIMO radar
device, modelling of noise sources in FMCW radars and statistical signal processing of noisy
radar observations.

• Noisy measurements require the application of statistical signal processing methods to
estimate the intended parameters. The thesis gives an introduction for the non-familiar
reader to the theory of inverse problems and statistical signal processing in system
identification. The required information to solve the inverse problem and its solution
by a Bayesian inversion framework will be explained. The mathematical background of

7



1 INTRODUCTION

Bayesian inversion will be reviewed, and the maximum a posteriori (MAP) and minimum
mean-square error (MMSE) parameter estimator will be presented. Own contributions
in the area of statistical signal processing for radar and localisation purposes are [22, 27,
28].

• State-of-the-art signal processing methods for MIMO radars assume narrowband condi-
tions, especially for array signal processing. Broadband radars require new approaches,
because the narrowband assumption is not ensured. Therefore, a wideband array model
will be developed for direction estimation, and compared to a classical narrowband array
model. Own contributions in the area of modelling and calibration of antenna arrays for
direction of arrival (DoA) estimation are [23, 7, 24, 26]. Own publications in the are of
array signal processing under wideband conditions are [7, 25, 8].

• A novel device response model for an FMCW radar is developed, in order to mitigate
disturbances of the receive signal due to the hardware impairments. As this model is
non-linear, the parameter estimation and the disturbance mitigation have to be jointly
accomplished by the model-based signal processing. The contributions in the field of
modelling the response of FMCW radars are [21, 5, 9].

• Radars with closely located Tx and Rx channel typically suffer from leakage, the leak of
signal energy from the Tx channel into the Rx channel. A novel method to cope with
leakage will be presented, which employs background subtraction and a noise model for
remaining signal parts. This has been published in [6].

• MIMO systems with time-division multiplexing (TDM) cause disturbances of angle and
Doppler estimates (causes angle-Doppler coupling). A method to cope with angle-
Doppler coupling in the parameter estimation framework will be presented in this thesis.
It has been published in [10].

• A novel model to take phase noise of the radar hardware into account in processing of
observations of an FMCW radar. To the best of the authors knowledge, this is done for
the first time in radar signal processing. It is shown, that consideration of phase noise
improves the detection performance of weak paths/targets. Furthermore, uncertainties of
the data model are suppressed by the phase noise model.

• Model-based signal processing requires the proper selection of the model. Here, selection
of themodel refers to the determination of themodel order, i.e. the number of point targets
or propagation paths. A novel framework to determine the model order using stepwise
regression search in conjunction with improved hypothesis tests is proposed.

1.2.2 Outline of the Thesis
The outline of the thesis is as follows:
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Chapter 2: Model-Based System Identification – A Stochastic
Inverse Problem
This chapter deals with the general description of the problem of identifying model parameters
from noisy observations and under model misspecification. Treating noise and model errors as
random disturbances, the parameter estimation problem becomes a stochastic inverse problem,
whose solution by Bayesian inversion will be pointed out.

Chapter 3: Physical Model – Modelling of the Propagation
A physical model of the propagation channel, which is the considered system under identi-
fication, will be derived in this chapter. Description of the propagation of electromagnetic
wave (EMW) will be briefly reviewed, and modelling by geometric ray optics will be described.
The parameters of the geometric optical model and their relation to radar targets will be clari-
fied. Last, the multidimensional path function and the multipath propagation channel model is
introduced. The developed model is suitable to exploit high-resolution capability of the model-
based signal processing.

Chapter 4: Device Model – Modelling of the Radar System
This chapter comprises the development of the device model of the broadband FMCW MIMO
radar, which will be considered in this thesis. First, the basic theory of FMCW radars will be
briefly reviewed, including signal theory and the stretch processing or homodyning receiver
architecture. Afterwards, a model of the response of the transceiver chain is developed, which
is suitable for de-embedding and mitigation of signal disturbances by the radar hardware.
Because a MIMO radar is considered, the radar model also confounds a model of the antenna
array. First, the description of antennas and modelling of the antenna output in terms of
the antenna response is reviewed. Afterwards, the wideband and narrowband model of the
direction- and polarisation dependent response of an antenna array is introduced, and respective
conditions on the displacement of array elements are discussed. The joint calibration of the
transceiver model and the narrowband or wideband array model from calibration measurements
is discussed thereafter. Afterwards, the calibrated narrowband and wideband array model
are compared regarding their usability to describe the array response for direction estimation
purpose. Sampling of the baseband signal by the ADC of the radar, and interference free
gathering of all MIMO channels by multiplexing will be discussed. Due to the time-division
multiplexing of the considered radar, angle-Doppler coupling is present, whose compensation
will be discussed too. In the last section, the coping with leakage, and the considered noise
sources and their modelling as random processes is presented.

Chapter 5: Parameter Estimation from Observations by an FMCW
MIMO Radar
The developed parameter estimator will be presented in this chapter. First, the statistical model
of the observed data will be derived. This model bases on the derived propagation and device
model from the previous two chapters. Afterwards, a parameter estimator is derived fromBayes’
principle. This estimator is a ML estimator with bound constraints. Theoretical properties
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of this estimator will be briefly summarised. As the estimator requires the optimisation of a
non-convex objective function, a two-stage iterative and gradient-based optimisation method is
presented.

Chapter 6: Model Order Estimation – Determination of the Number
of Propagation Paths
In this chapter, the decision of the model order by parametric hypothesis testing will be outlined,
and the developed methods to estimate the model order will be presented. The performance of
the proposed model order estimators are verified and compared by simulations.

Chapter 7: Experimental Verification
The performance of the developed parameter estimator will be investigated in this chapter.
Monte Carlo simulations will be used to do so. The achievable root-mean-square error (RMSE)
of parameter estimates will be compared to theoretical findings. Also, the influence of model
errors on the estimation performance will be investigated. Furthermore, the estimator is applied
to measurements and selected results will be outlined and discussed. Last, the concept of a
binocular MIMO radar (BinoMimo radar) is presented. Estimation results from applying the
developed estimator to observations with the BinoMimo radar are presented, and the benefits
of a binocular radar are outlined.

Chapter 8: Summary and Outlook
This chapter concludes the thesis and briefly summarises the major findings. Also, an outlook
for further research and open issues will be given.
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CHAPTER 2
Model-Based System Identific-
ation – A Stochastic Inverse
Problem

AS stated in the introduction, radar in conjunction with target parameter estimation will
be treated as a model-based approach to identify a physical system. In this chapter,

model-based system identification will be introduced as an inverse stochastic problem. Inverse,
because the model parameters are mapped to the observations and shall be estimated from
them. Stochastic, because the measurements are subject to probabilistic errors like noise and
uncertainties. The chapter is intended to give an introduction to the topics of model-based or
parametric system identification from measured data, the occurring inverse stochastic problem,
and its solution by Bayes’ theorem and point estimators. In order to understand the necessity
of the subsequent chapters for the solution of the system identification problem, a profound
knowledge of these topics is necessary.

Related Work and Own Contributions
In radar, the physical system under identification is the propagation channel of an electromag-
netic wave. Empirical studies are conducted by special measurement systems, called radar ob-
server, in order to physically access the system under identification. The physical system under
identification is described by a mathematical model, which is driven by means of a set of para-
meters. These parameters aremapped to themeasurement by the observation or sensing process,
and will be subsequently estimated from the measurements using an estimator rule. This chain
of relationships is depicted in Fig. 2.1.

The utilised observer is far away from being ideal. Therefore, the observations are influenced
by the observer itself, such that properties of the physical system cannot be directly accessed
from the measurements. In order to describe the influence of the observer on the observations,
a model of the observer is necessary. Hence, a model of the sensing process (physical model
and observer model) has to be developed, rather than a model for the system of interest only.
The whole procedure of modelling, measuring and estimation will be wrapped up as model-
based system identification [SS89]. According to the relationship between observations and
the physical system of interest, there exists an inherent relationship between the parameters
of the model of the physical system and the observations. The parameters are inferred from
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Parameters

𝜛1𝜛2
𝜛𝑃

Samples

𝑜1 𝑜2
𝑜𝑁

Estimates

𝜛̂1𝜛̂2
𝜛̂𝑃

Sensing Estimation

Figure 2.1: Relationship of parameters 𝜛, observations 𝑜 and estimates 𝜛̂ in model-based system
identification [TB07, p. 97]. The model being calibrated/identified is driven by a set of
parameters from the parameter spaceΠ ⊂ ℝ𝑃. The sensing process maps these parameters
to the measurement or sampling space 𝛺 ⊂ ℝ𝑁. In the model calibration or parameter
estimation step, these parameters are inferred from the observations by an estimation rule.

the measurements to calibrate the model. Model calibration is the reverse of the observation
process and therefore represents an inverse problem.

Inverse problems are well known in practical applications [ABT13, Han17, KS05, MS12]
as e.g. communication engineering, control engineering, mathematics, econometrics, geophys-
ics [Tar04, Tar05], imaging [SW12], or sensing. Also, inverse problems occur in many radar
related applications [And03]. A bunch of methods and concepts to solve inverse problems are
available, which are either specific for the problem under consideration, e.g. only applicable for
linear problems, or which can be applied to a wide class of inverse problems. A very general
and hence widely applicable concept is the Bayesian approach [DS17], which will be considered
here.

First, the inverse problem and the parameter estimation procedure will be discussedmore gen-
erally in Section 2.1. The estimation of the model parameters is influenced by the underlying
uncertainties. Uncertainties are due to noise in themeasurements and because the usedmathem-
atical model is subject tomodelling errors. The quantification and classification of the occurring
uncertainties as well as their modelling is described in Section 2.2. Due to the random nature
of the measurements and uncertainties, the inverse problem cannot be tackled by deterministic
inversion methods. Consequently, statistical inversion methods have to be employed, where un-
certainties on the parameter estimates are assigned by probability density functions (PDFs) and
point estimates are gained from these PDFs. Many methods for statistical inversion base on the
Bayesian inversion approach, which exploits the Bayes theorem. The Bayesian inversion ap-
proach and derivation of parameter point estimates will be outlined in Section 2.3. Section 2.4
concludes the chapter.

The content of this chapter bases on own contributions in the area of statistical signal
processing for radar and localisation purposes, e.g. [22, 7, 42, 8, 27, 28]. Especially the
publication [28] deals with many aspects of this chapter, including the application of Bayesian
inversion and utilisation of MAP and MMSE point estimators for noisy radar observations.
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2.1 RELATION OF OBSERVATION AND TRUTH

2.1 Relation of Observation and Truth
Estimating the parameters of a model describing a physical system has been introduced as
model-based system identification. In order to properly introduce the system identification task,
a general view point will be given, whereas the relation to the problem under consideration will
be given thoroughly. Subsequently, the case of noiseless observations/measurements will be
assumed.

Consider a set of observations O as a collection of physical events, which are observed by
a sensing device. Also, the corresponding set of the truth T is introduced [Sha17]. The truth
represents the reality, i.e. what really happened. The set of observations O can be considered
as the set of the truth T, superimposed by uncertainties due to the operator’s modelling errors
and measurement errors due to the sensing device. In an ideal and perfect world, i.e. no errors
or uncertainties are present, both sets are equivalent: O ≡ T. Vice versa, the truth can never
be observed in practise and must be deduced from the observations. The set of the observation
and truth may emerge from 𝐾 physical events, with the 𝑘-th event denoted by vector 𝐨𝑘 ∈ O
and 𝐭𝑘 ∈ T.

O = {𝐨1, … , 𝐨𝐾} (2.1a)
T = {𝐭1, … , 𝐭𝐾} (2.1b)

Each event comprises 𝑁 quantities, which describe characteristics of the physical system
under identification in the 𝑁-dimensional sampling space 𝛺 ⊂ ℝ𝑁. Thus, the event vectors
represent a single point in the sampling space, and the sets of observations and truth are subsets:
O, T ⊆ 𝛺𝐾. The sampling space is spanned by the measurement dimensions, which are time,
frequency and spatial domain in MIMO radar.

2.1.1 Forward Problem – Prediction of the Truth
Suppose a mathematical model or a hypothesis w.r.t. T, which describes the physical quantities
and events in T perfectly. This model will be called system model ℳS. For the considered
problem, this model describes the radio channel. As stated in Section 1.1.1, the radio channel
is made up by the propagation channel and the observer, which are both described by their
respective model.

The model for the propagation channel is the model of the physical system under
identification. Hence, this model will be denoted as physical model ℳP (T, 𝛡). The
physical model may be deterministic and generally non-linear, and is driven by physical model
parameters 𝛡 ∈ Π ⊂ ℝ𝑃 and the truth set. Here, the set of physical parameters are the
parameters of the propagation channel model, see Chapter 3. The output of the physical model
is the set of predictions T″ of the truth, excluding the observer influence.

T″ = ℳP (T, 𝛡) (2.2)

The set of observations O is gathered by a sensing device or observer as e.g. a radar.
The observer is described by a set of features, conditions and properties: the physical
scenario [Sha17]. The physical scenario denotes the known experimental setup (device,
measurement setup etc.) and is represented by the set D ⊂ ℝ𝑁×𝐾. This set is generated by
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Device ModelℳD(𝛇)
Physical ModelℳP (T, 𝛡) System ModelℳS (T″, D)

D

T″ T′𝛡
T

𝛇

Figure 2.2: Forward problem, which describes the mapping of the truth set T and the physical scenario
set D on the set of predictions T′.

the device model ℳD, which is driven by the known parameters 𝛇 ∈ 𝑍 ⊂ ℝ𝐷. Chapter 4 deals
with the derivation of a device model for a FMCW MIMO radar.

D = ℳD (𝛇) (2.3)

In the simplest case the devicemodelℳD is independent of the truth. Also, it is not related to the
physical model ℳP, and the model parameters 𝛇 and 𝛡 are disjunct. For example a linear time-
invariant (LTI) model of the transceiver response of a radar fulfils this. However, if the device
model is non-linear or the physical scenario depends on the truth, the device model and physical
model become interrelated regarding their parameters (see e.g. Section 4.2.2 or Section 4.3).
For example, the response of the antenna array depends on the direction of impingement, which
is a parameter of 𝜛.

Knowing the physical model and the device model, the system model ℳS can be defined.
The system model describes a set of predictions T′ = {𝐭′1, … , 𝐭′𝐾} ⊆ 𝛺𝐾 about the truth.

T′ = ℳS (T″, D) = ℳS (ℳP (T, 𝛡) , ℳD (𝛇)) (2.4)

Model ℳS is also called the forward model or prediction model. Figure 2.2 sketches the
relationship in equation (2.4). In an ideal and perfect world, i.e. no uncertainties like errors
or noise are present, the set of predictions coincides with the sets of truth and observations
T = T′ = O.

2.1.2 The Inverse Problem – Inference of Parameters
The forward problem makes a prediction T′ of the truth T knowing the physical parameters 𝛡
according to the truth. These parameters are unknown (and the truth too) and have to be deduced
from the set of observations. Assume, that equation (2.4) holds for the forward problem. Than,
there exists a set of physical parameters 𝛡̂ ∈ Π , which fulfils in the noiseless case (T = O)

T − ℳS (ℳP (T, 𝛡̂) , D) = T − T′ = 𝟎 . (2.5)

The relationship described by equation (2.5) is pictured in Fig. 2.3. Solution of equation (2.5)
is an inverse problem [Sul15, p. 92]. The term inverse is stated, because problem (2.5) is
the inverse description of the forward problem (2.4). Inverse problems are always present,
if one wants to get information about a physical process, which is not directly observable.
Instead, another process is observed, which incorporates the physical process of interest. The
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T

Physical ModelℳP (T, 𝛡̂) System ModelℳS (T″, D) −T′ 0
𝛡̂ T″

D

Figure 2.3: Inverse problem, which generates the zero set according to the difference of the truth set and
the model prediction using parameters 𝛡̂.

physical process of interest is inferred from the observed process, which is the inversion of the
incorporation of the process of interest in the observed process.

The question arises, whether the inverse problem is solvable, i.e. the physical parameters can
be inferred. Basically, inverse problems are solvable, if they are well-posed. According to the
definition suggested by Jacques Hadamard [Had02], a well-posed problem fulfils the following
conditions:

1. existence: at least one solution exist

2. uniqueness: the solution is unique

3. stability: the solution is non-sensitive to the input data .

The third criterion states, that the inverse of the forward model is a continuous function. Hence,
a small change in the input data results in small changes on the solution. Especially in case of
erroneous input data this condition has a tremendous meaning, because even ”simple” inverse
problems can become quickly ill-posed. Typically, forward problems are well-posed, whereas
inverse problems are ill-posed [DS17, MS12, Tar05].

The inverse problem in equation (2.5) is a continuummodel on an infinite dimensional spaces.
However, their practical solution faces some limitations as e.g. numerical instability due to
finite computational precision, finite number of measurements or solution w.r.t. a finite number
of unknowns. Hence, even if the original problem is well-posed, the problem may become
ill-conditioned in the practise. Ill-conditioned is equivalent to the third Hadamard criterion,
meaning that a small error in the input data result in large errors in the solution.

2.2 Uncertainties – Model Errors and
Measurement Noise

Assuming an ideal and perfect world, the physical model fully describes the observations
without any imperfections or uncertainties. However, this assumption does not hold in reality,
because the presumed perfect world does not exist and the observations are always confounded
by uncertainties. Understanding the uncertainties, accounting for their sources and quantify-
ing the contributions of each individual uncertainty source is stated as uncertainty quantific-
ation [Cou+12, Owh+13]. Sources of uncertainties are e.g. limited accuracy of the physical
model or device model, modelling assumptions, measurement errors, calibration accuracy, nu-
merical limitations or approximations [Sul15, p. 2]. Uncertainties are divided into the category
of epistemic or systematic uncertainties, and aleatory or statistical uncertainties [KD09].
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Aleatory Uncertainties are a property of the physical system. They are presumed to
originate from unpredictable randomness in the observations or not-reproducible errors [KD09,
Sul15]. This uncertainties cannot be reduced in the estimation or observation process.

Epistemic Uncertainties are a property of the observer itself. They state any lack of know-
ledge or data about the problem under study or the experimental setup. This uncertainties are
assumed to be reducible by e.g. gathering more data, using better observers or refining the
model [KD09, Sul15]. They can be further divided in model and parametric uncertainties, de-
scribing doubts on the model itself or on the model parameters, respectively [Sul15, p. 4].

In model-based system identification both types of uncertainties are present, whereas it is dif-
ficult to determine from which category a certain uncertainty originates. The categorisation is
up to the operator during the modelling phase. The two major sources of uncertainties con-
sidered here are model errors and measurement noise (or model inadequacy and measurement
uncertainties according to [Sha17]). Measurement noise is assumed as epistemic uncertain-
ties [Sha17]), because the influence of measurement noise can be reduced by e.g. more accur-
ate measurement devices or averaging. Model errors cannot be easily assigned to one of these
groups [Sha17]. First, the sources of model errors have to be clarified in more detail. Quite
often, models are proposed, which base on measurements itself. However, the knowledge of
the measurement setup as well as the experiment’s input is always subject to incompleteness
(epistemic uncertainties), which leads to the development of inaccurate or incomplete mod-
els of the underlying physics. Furthermore, physical models are often subject to mathematical
idealisation due to a trade-off between accuracy and effort. Such models are inherently in-
adequate. On the other hand, model errors are quite often assumed as aleatory uncertainties,
because the improvement of the knowledge encounters its limits in reality and uncertainties
always remain. Summarised, model errors are assumed to contribute to both categories of un-
certainties. Depending on the type of uncertainty, being measurement noise or model errors,
different modelling approaches have to be chosen. Measurement noise and its modelling for
a FMCW radar will be discussed in Section 4.6. Model errors as epistemic uncertainties and
their reduction by developing better or improvement of existing models will be discussed in
Section 4.2, Section 4.5 and Section 4.4 for an broadband FMCW radar.

Developing an advanced model to account for these uncertainties will change the nature of
the model for the predictions. So far, the systemmodel ℳS (T″, D) as a physical, deterministic
model has been considered for prediction. By taking into account the uncertainties the model
becomes a stochastic model, because of the stochastic modelling of the uncertainties. However,
this advanced model no longer describes the physics of the system, rather it describes the
processes of observation and modelling. Hence, the advanced model is commonly denoted
as observation model or data model.

2.2.1 Modelling the Presence of Measurement Noise
Experimental observations are affected by measurement noise like e.g. thermal noise,
quantisation noise or flicker noise [SSR06]. Measurement noise is a non-reproducible error,
hence, despite the same experimental settings different values are observed. The unavoidable
presence of noise implies that the truth about an event can never be gathered by an observer
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and a subsequent compensation is impossible. Furthermore, the influence of the noise on the
observation is not known in a deterministic fashion. Consequently, the effects of noise are
treated as being of stochastic or probabilistic nature. Therefore, the only valuable statement
about the noisy observation in terms of the truth is, that the observation is the output of a
stochastic process, driven by the truth as input [Sha17].

Assume the set of observations O is superimposed by noise. Under a well-known
experimental setup and procedure, the noise-caused effects 𝐧𝑘 in the 𝑘-th observed event 𝐨𝑘
may be quantised by the model ℳN𝑘 (𝐭𝑘, 𝛔𝑘), which approximates the influence of all noise
sources on the observations [Sha17].

𝐨𝑘 ∼ ℳN𝑘 (𝐭𝑘, 𝛔𝑘) (2.6)

In Section 4.6 noise processes and their models for an FMCW MIMO radar will be discussed.
The set of known parameters 𝛔𝑘 ∈ Σ ⊂ ℝ𝑊 and the 𝑘-th event of the truth 𝐭𝑘 ∈ T are the
inputs. The model relates to the 𝑘-th event only, because the model itself or its parameters
may change from event to event, e.g. the parameters are time-variant. Here, the noise model
and the respective parameters are assumed as time-invariant: ℳN𝑘 ⇒ ℳN and 𝛔𝑘 ⇒ 𝛔. Using
model (2.6) the probability of observing 𝐨𝑘 under the truth 𝐭𝑘 can be assigned. Because the truth
is unknown, this cannot be easily accomplished under practical considerations, see Section 2.3.

Due to the noise the observations become a random process too. Thus, model (2.6) is a
stochasticmodel, rather than a deterministic one-to-onemapping between truth and observation.
Hence, the model does not predict the observations, the model predicts the statistics of the
observations. Commonly, such models are given in terms of a PDF. For a brief recap of the
theory of the description of random processes and PDFs see APPENDIX B.2. A model, which
describes the noise process itself and not the noisy observations, will be introduced. Define the
set of 𝐾 events emerging from the noise process 𝐧𝑘 ∈ N.

N = {𝐧1, … , 𝐧𝐾} (2.7)

The model, precisely the distribution, for the random noise process is

𝐧𝑘 ∼ ℳN (𝟎, 𝛔) . (2.8)

Again, the model does not predict the noise process, rather than describes its statistics by a PDF.
Assume the noise as additive [Sul15] the following model for the observations can be stated.

𝐨𝑘 = 𝐭𝑘 + 𝐧𝑘 . (2.9)

This model for the noisy observations is depicted in Fig. 2.4.

The noise model ℳN and its parameters 𝛔 have to be known for the inference procedure.
Commonly, the structure of the noisemodel is known only, whereas the parameters are unknown
in advance. Hence, they are subject to the inference process, but they are not of immediate
interest. Parameters, which are not of interest but have to be account for in the estimation
process are denoted as nuisance parameters.
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+
Noise ModelℳN (𝟎, 𝛔)

𝐭𝑘
𝐧𝑘

𝐨𝑘

𝛔
Figure 2.4: Model of measurement noise and its incorporation in the noisy observation.

2.2.2 Modelling the Presence of Model Errors
There is a quote from George E. P. Box in his publication [Box76], which slightly describes
the subsequent problem under consideration: ‘all models are wrong’. According to this phrase,
there seems to be no physical model to properly predict the truth in a general sense, aren’t
they? However, this phrase states that no reasonable model, reasonable in the sense of a finite
parameter set of the model, provides a perfect prediction of the truth. Hence, the model is
subject to imperfections or incompleteness, which are commonly stated as model discrepancy
or model inadequacy [Sha17]. Quantification of this inadequateness bymodelling approaches is
discussed in the following. Dealing with this uncertainties allows to apply models, which ‘are
false but which we believe may be useful nonetheless’ [Box76] for the parameter estimation
problem.

The set E will be introduced, which represents any unpredicted or unknown variability,
prediction errors and uncertainties of ℳS in predicting T.

E = {𝐞1, … , 𝐞𝐾} (2.10)

Each event 𝐞𝑘 ∈ E corresponds to one event 𝐭𝑘 of the truth. Consider observations without noise.
If the physical model does not match the observations, the forward problem (2.4) is subject to
uncertainties. Hence, the inverse problem (2.5) cannot be equal to the zero set. Considering the
set of model errors E, the inverse problem can be stated as [Sha17]

T − ℳS (ℳP (T, 𝛡) , D) = T − T′ = E . (2.11)

The model errors have to be described under statistical as well as physical considerations,
because the errors are generally assumed of mixed deterministic and stochastic nature. For
example, the deterministic part introduces e.g. a bias and the stochastic part may result in
increased variance of the solution of the inverse problem. Introducing the model ℳE, which
features the above stated dependencies and reflects the set of model errors, the set E is given by
this model as

E ≃ ℳE (T, T′, 𝛜) , (2.12)

where 𝛜 ∈ 𝐸 ⊂ ℝ𝐸 denotes the set of parameters of the error model. Because the errors
are assumed as deterministic and stochastic, the symbol ≃ is used in equation (2.12). Just as
with measurement noise, the model describes the statistics of the errors rather than predicting
them. Hence, the error model is a statistical model. On the other hand, deterministic errors,
e.g. errors due to simplifications, are predicted by the model as well. Hence, the error model
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System ModelℳS (T″, D) Error ModelℳE (T, T′, 𝛜)T′ ET″
D

T
𝛜

Figure 2.5: Model for the errors of the predictions T′ w.r.t. the truth T

is a deterministic model too. The error generation and the relations of the error model w.r.t.
the other sets is depicted in Fig. 2.5. Note, that the error model depends on the truth, which is
unknown in the inference process. Hence, the model for the prediction errors has to be re-stated
under practical considerations, see Section 2.3.

Choosing a certain structure for the model of the errors is quite complicated. The prediction
errors depend on the truth, such that a model cannot be easily found in advance. This is a
fundamental difference to measurement noise, because noise and truth are independent. Hence,
a model for the noise can be found easily in advance, e.g. approximation as a Gaussian random
process. Design of a proper error model is subject to empirical studies. There, observations of
sets of known truths and their description by the system model are employed. By analysing
the discrepancy of the known and predicted truth an ”average” model of prediction errors
can be derived, averaged over the set of considered truths. An example is the estimation of
a global calibration matrix for direction estimation with arrays [7]. The error model and its
parameters have to be known in order to solve the inverse problem. If the model is given only
and the parameters are not known in advance, the parameters become subject to the parameter
estimation process as nuisance parameters.

Quite often and for reasons of simplification, model errors are assumed as small, such that
they are hidden by the measurement noise [7, 8, 26]. Hence, a specific error model is not taken
into account by the estimator rule. Also, model errors are sometimes assumed as part of the
noise process, which is not completely accurate, because both processes emerge from different
and independent sources. Also, model errors are not purely random in their nature [26], because
they are reproducible under stationary measurement circumstances contrarily to measurement
noise. Here it will be assumed, that the model errors are hidden by the noise process, see
Section 4.6 for a discussion on that. As a consequence, the systemmodel has to be very accurate,
in order to presume this assumption.

2.2.3 Forward Problem – Forward Uncertainty
Propagation

The joint influence of all sources of uncertainties is considered now. An overall description
is derived, quantifying the influence of uncertainties on the predictions. This is called
forward uncertainty quantification. On the contrary to most forward uncertainty quantification
procedures, uncertainties of the model parameters 𝛡 are not considered here.

The previously described uncertainties account for the deviation between predicted and
observed set. Assume the model errors as negligible or hidden by the noise process, the
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following model for the observations can be stated.

O = T + N = T′ + E + N ≈ T′ + N (2.13)

Prediction of observations becomes a prediction in a statistical sense, i.e. the distribution of the
observations is predicted.

O ∼ ℳN (T′, 𝛔) = ℳN (ℳS (ℳP (T, 𝛡) , D) , 𝛔) (2.14)

For short hand notation the operator 𝒢 ∶ 𝛡 ↦ O is introduced, which denotes the above a
probabilistic mapping. The truth T is unknown under practical considerations, such that the
above mapping cannot be easily given. Instead, it has to be described according to a hypothesis
of the truth, see Section 2.3.

2.2.4 Inverse Problem – Inverse Uncertainty
Quantification

So far, uncertainties w.r.t. the measurements and the mathematical model of the system were
stated. In the inference process, which is considered in this thesis, the parameters of the model
have to be deduced from the observations. Hence, the stochastic inverse problem

𝒢-1 ∶ O ↦ 𝛡̂ (2.15)

has to be solved. Because 𝒢 is a probabilistic mapping to account for uncertainties, the estimates𝛡̂ are subject to uncertainties too. Hence, a simple inversion of 𝒢 on the observations O is not
meaningful [DS17]. The question arises: ”How to propagate uncertainties on observations and
model to uncertainties on the parameter estimates?”. Uncertainties on the estimates 𝛡̂ can be
assigned by a respective distribution of them. This is inverse uncertainty quantification. The
uncertainties in the sampling space (model errors and measurement noise) are back propagated
to the parameter space by solving the inverse stochastic problem. Contrarily to the forward
uncertainty quantification, uncertainties on themodel parameters are not propagated through the
model, rather than deduced by analysing the measurements. A method for inverse uncertainty
quantification is the Bayesian approach, where the distribution of the parameter estimates (the
so called posterior distribution) is assigned, see Section 2.3.

Quantification of the uncertainties on the estimates is divided into bias correction and
model calibration [Sul15]. Bias correction is the attempt to describe (and also minimise) the
discrepancy between observation and the model. This part of the quantification can be seen as
choosing the correct model or improving the model according to the bias. Model calibration
denotes the estimation of the parameters of the model, see Chapter 5. Basically, bias correction
and model calibration are both present in model-based system identification. In many cases,
the correct or best suited model to describe the system under identification is unknown and has
to be chosen from a family of candidate models. A famous example is the deduction of the
number of propagation paths 𝑃, which sufficiently describes the observed propagation channel.
This number is commonly not known in advance, and is therefore subject to the estimation task
too, see Chapter 6. However, the model selection problem is not covered by the discussion on
the inverse problem, because the model is assumed as fully specified their.
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2.3 Bayesian Inversion – Statistical Inversion
by Bayes Theorem

Due to the presence of random uncertainties the inverse problem, i.e. estimating the unobserved
model parameters (the unknowns) from the observations, cannot be solved deterministically.
Instead, methods of statistical inversion have to be applied. A common method therefore is
Bayesian inversion, where the statistical inverse problem is recast as a problem of Bayesian
inference. There, the inverse probability is assigned using Bayes’ theorem. The inverse
probability is in fact the inverse uncertainty quantification, i.e. the assignment of the
uncertainties on the unknown parameters after the observation. On the contrary to frequentist
procedures, where the model parameters are assumed as fix and deterministic, the observations
as well as the unknowns are assumed as random in the Bayesian setting. Hence, uncertainties
on the system parameters can be taken into account as well.

However, the goal of parameter estimation is to find the ”best estimate” 𝛡̂ ∈ Π of the
unknown parameters in a statistical sense, rather than assigning uncertainties. This casts the
statistical inverse problem into a point estimation problem [BS94].

2.3.1 Bayes’ Theorem – Assigning the Posterior
Distribution

Solution of the statistical inverse problem in Bayesian sense is the assignment of the inverse
probability or the probability of the parameters after the observation. Three key components
are used therefore

• the observations

• a model of the observation process

• a-priori information on e.g. the unknowns.

According to Bayes theorem [ABT13] the inverse probability or posterior distribution can be
calculated from the marginal distribution, the likelihood function and the prior distribution.

• 𝑝 (𝛡| O) posterior distribution of the parameters

• 𝑝 (𝛡| 𝛊): prior distribution of the parameters

• 𝑝 (O| 𝛡): observation distribution or likelihood

• 𝑝 (O| 𝛊): marginal distribution or marginal likelihood.

The likelihood is the conditional distribution of the observations given the parameters. This is
the model of the measurement process itself, i.e. the distribution of gathering the observations
under a certain realisation of the model parameters. The prior distribution states a-priori
information on the unknowns as e.g. their uncertainties or constraints like parameter bounds,
and is parametrised by 𝛊 ∈ ℝH. These parameters are termed as hyperparameters. Sometimes,
these hyperparameters are unknown in advance, and hence become additional unknowns in
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Bayesian inference. The posterior distribution is the conditional probability distribution of
the unknowns after the observation, i.e. propagates the uncertainties on the observations
to uncertainties on the estimated unknowns. The posterior distribution is given by Bayes’
theorem [BS94].

𝑝 (𝛡| O) = 𝑝 (O| 𝛡) ⋅ 𝑝 (𝛡|𝛊)𝑝 (O|𝛊) (2.16)

For sake of notational convenience, hyperparameters will be neglected in the following.

𝑝 (𝛡| O) = 𝑝 (O| 𝛡) ⋅ 𝑝 (𝛡)𝑝 (O) (2.17)

The marginal likelihood can be calculated by integrating the product of prior and observation
distribution over the parameter space.

𝑝 (O) = ∫
Π

𝑝 (O| 𝛡) ⋅ 𝑝 (𝛡) 𝑑𝛡 (2.18)

The marginal likelihood is independent on the unknown parameters, and just a normalisation
constant in order to have a proper PDF. Thus, the marginal likelihood becomes negligible in the
parameter estimation step [28].

2.3.2 Probability Distribution Under Measurement Noise
The experimentally collected observations O are subject to measurement noise and the physical
model is inadequate, turning the observations into a random process. Hence, the noisy
observations cannot be predicted in a deterministic fashion, only their statistics can be predicted.
This is accomplished by assigning the distribution of the observations. As stated in Section 2.2,
errors due to model inadequacy will be neglected or assumed as being hidden by the noise.
Hence, the distribution of the observations under measurement noise will be taken into
account only. Model (2.6) describes the distribution of the noisy observations. According to
model (2.6), the 𝑘-th event 𝐭𝑘 of the unknown truth is a model input. However, the truth is never
known and subject to the inference process itself. Hence, the problem has to be re-stated.

Lets state the hypothesis, that the observations O are gathered under the truth T∗ ⊆ 𝛺∗𝐾. This
hypothesis on the truth is drawn by the operator, and it is a candidate solution of the inverse
problem. May the superset 𝛺∗𝐾 contain all candidate events or hypothetical truths 𝐭∗𝑘 ∈ T∗,
which itself fulfils the inverse problem (2.5).

T∗ − ℳS (ℳP (T∗, 𝛡̂) , D) = 𝟎 (2.19)

Hence, the truly predictable statistic of the observation is always given under a certain
hypothesis on the truth.

O ∼ ℳN (T∗′, 𝛔) = ℳN (ℳS (ℳP (T∗, 𝛡) , D) , 𝛔) (2.20)

The probability density 𝑝 (𝐭∗𝑘| 𝐨𝑘, 𝛔, ℳN) of each candidate solution or hypothesis 𝐭∗𝑘 being the
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truth while observing 𝐨𝑘 ∈ O can be assigned using Bayes’ theorem [Sha17].

𝑝 (𝐭∗𝑘| 𝐨𝑘, 𝛔, ℳN) = 𝑝 (𝐨𝑘| 𝐭∗𝑘 , 𝛔, ℳN) ⋅ 𝑝 (𝐭∗𝑘)𝑝 (𝐨𝑘| 𝛔, ℳN) (2.21)

Density 𝑝 (𝐭∗𝑘) assigns the prior probability of stating hypothesis 𝐭∗𝑘 of the truth.
Next, consider equation (2.4) and equation (2.19) and take into account, that model errors are

neglected. Thus, the hypothesis 𝐭∗𝑘 is equal to the output of the system model 𝐭∗′𝑘 ∈ T∗′ under
this hypothesis.

𝐭∗𝑘 = 𝐭∗′𝑘 = ℳS (ℳP (𝐭∗𝑘 , 𝛡) , D) (2.22)

The likelihood of the model parameters being the true parameters can be assigned by integrating
over the entire set of hypothetical truths 𝛺∗.

𝑝 (𝐨𝑘, 𝛔, ℳN| 𝛡, ℳS) = ∫𝛺∗ 𝑝 (𝐭∗𝑘|𝐨𝑘, 𝛔, ℳN) ⋅ 𝑝 (𝐭∗𝑘| 𝛡, ℳS) 𝑑𝐭∗𝑘 (2.23)

Now the distribution of the physicalmodel parameters, while observing 𝐨𝑘, can be given [Sha17].

𝑝 (𝛡| 𝐨𝑘, ℳS, 𝛔, ℳN) = 𝑝 (𝐨𝑘, 𝛔, ℳN| 𝛡, ℳS) ⋅ 𝑝 (𝛡| ℳS)𝑝 (𝐨𝑘, 𝛔, ℳN| ℳS) (2.24)

Note, that relation (2.24) describes the solution of the statistical inverse problem. Hence,
having defined a statistical model of the observations 𝑝 (𝐨𝑘, 𝛔, ℳN| 𝛡, ℳS) and a priori
information about the unknowns 𝑝 (𝛡|ℳS), the inverse distribution 𝑝 (𝛡| 𝐨𝑘, ℳS, 𝛔, ℳN)
can be assigned. Taking into account all events 𝐾 and assuming them as independent, the
complete solution of the statistical inverse problem is

𝑝 (𝛡| O, ℳS, 𝛔, ℳN) = 𝐾
∏𝑘=1 𝑝 (𝛡| 𝐨𝑘, ℳS, 𝛔, ℳN) . (2.25)

2.3.3 Prior Distribution
The prior distribution or shortly prior represents any information regarding the unknown
parameters, which is available before the observation. The prior assigns additional information
to the estimation problem, which can be helpful to narrow the uncertainty on the parameters
after the observation or to account for additional uncertainties before the observation. In case
of an ill-posed problem, priors may assign some constraints, which result in regularisations and
the problem becomes well-posed. Prior information has to be assigned by the operator, but there
is no practical guidance to do so. It can be chosen by deductive reasoning as e.g. experiences of
the operator, inspection of recent experimental results, exploitation of postulates on the physical
system under consideration, or using physical axioms excluding certainmodel parameter values.
Selection of the prior is purely subjective, such that Bayesian inversion gets a strong subjective
nature. The somewhat arbitrariness in the selection of the prior is a major criticism of Bayesian
analysis [KS05].
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likelihood prior posterior

(a) (b)

Figure 2.6: Resulting posterior for (a) informative and (b) non-informative prior and equal likelihood.

The prior must be properly selected, because he influences the posterior and hence the
estimation result. In Fig. 2.6 a posterior distribution is shown for two different priors but the
same likelihood. Obviously, the choice of the prior highly influences the posterior and hence
the inference result.

Priors are divided into two classes: informative and non-informative priors. A prior is
assigned to one of this classes according to his influence on the posterior. A prior is denoted
as informative, if he has a significant impact on the posterior. Such priors are also denoted as
subjective priors, because they are chosen from e.g. other data or the operator’s experiences.
Figure 2.6(a) shows an example for an informative prior. Priors are non-informative, if they
minimally influence the posterior and are dominated by the likelihood. Such priors are denoted
as objective priors, because they are constructed from some formal rules [KW96]. Figure 2.6(b)
shows an example for a non-informative prior. A discussion on objectivist versus subjectivist
Bayesianism is given in [Ber06, Gol06]. Because a proper prior is quite difficult to select the
question arises, why priors should be taken into account. For example, a-priori information is
not taken into account in frequentist inference, because this information was not observed and
therefore cannot be verified in the inference step. However, as stated, a prior can be useful to
improve the estimation quality or to make the estimation problem tractable.
Summarised, the prior is a major concern in Bayesian inference. In order to lower this concern,
non-informative or objective priors are common choices. Such prior distributions play a
minimal role in the posterior distribution and hence on the inversion result.

Uninformative Priors

Considering an uninformative prior means, that the ”data speaks for itself”. The prior shall have
a minor influence on the posterior, such that the likelihood (i.e. the data) dominates. Here, two
uninformative priors will be briefly outlined.

Principle of Indifference Under the principle of indifference no certain realisation of
parameter values is preferred over the other [ABT13, p. 255], because no prior information
is available to do so. Hence, the parameters are assumed as uniformly distributed 𝒰 in their
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space Π .

𝑝 (𝛡| ℳS) = 𝒰 (𝛡) (2.26)

Jeffrey’s Principle Another method to derive an uninformative prior is given by the so called
Jeffrey’s principle of re-parametrisation [Jay68]. Jeffrey argued, that an uninformative prior
should be invariant w.r.t. any re-parametrisation of the model, i.e., remains uninformative under
the re-parametrisation. The respective prior is

𝑝 (𝛡| ℳS) ∝ √|𝐅 (𝛡)| , (2.27)

with 𝐅 the Fisher information matrix (FIM). The FIM is a measure of the amount of information
that an observation O carries about the model parameters [BS94, p. 361].

2.3.4 Point Estimates from the Posterior Distribution
So far, the stochastic inverse problem has been solved by assigning the posterior. However,
parameter estimates 𝛡̂, hence values of the parameters itself, shall be inferred; rather than
just assigning their distribution after observation. Parameter estimates 𝛡̂ are given as point
estimates from the posterior [28]. Point estimates from the posterior can be calculated by a
Bayes risk estimator, where an average loss function is used to justify the goodness of the
point estimates [SD91]. Point estimates are inferred from the posterior by minimisation of this
average loss function.

Loss Function and Risk

Defining a general loss function 𝒞 (𝛡, 𝛡̂) ∶ Π × Π ↦ ℝ, which is a general margin to
denote an estimation error or estimate goodness. Despite knowing the true parameters 𝛡
some randomness in the loss function still remains, described by the observation distribution𝑝 (O| 𝛡). In order to overcome this remaining randomness the expected loss function, which is
the averaged loss function over the observation’s distribution, is considered as margin [BS94,
SD91]

ℛ (𝛡, 𝛡̂) = ∫𝛺 𝒞 (𝛡, 𝛡̂) ⋅ 𝑝 (O| 𝛡) 𝑑O . (2.28)

This average loss function is denoted as the risk, which coincides with the frequentist definition
of the average loss function [BS94]. Having the risk function defined the point estimate is given
by minimising the risk subject to the parameters.

𝛡̂ = arg min𝛡̂ ℛ (𝛡, 𝛡̂) (2.29)
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Bayes Rule – Minimising the Bayes Risk

The Bayes risk function is given by averaging the risk function (2.28) over the prior distribution.

ℛ (𝛡̂) = ∫
Π

ℛ (𝛡, 𝛡̂) 𝑝 (𝛡) 𝑑𝛡 = ∫
Π

𝑝 (𝛡) ⋅ ∫𝛺 𝒞 (𝛡, 𝛡̂) ⋅ 𝑝 (O| 𝛡) 𝑑O 𝑑𝛡 (2.30)

The product of prior and observation distribution is the joint distribution. According to Bayes
theorem, this joint distribution is equal to

𝑝 (O| 𝛡) ⋅ 𝑝 (𝛡) = 𝑝 (𝛡| O) ⋅ 𝑝 (O) . (2.31)

Plugging into the Bayes risk function and having in mind, that the marginal likelihood 𝑝(O)
is a constant w.r.t. estimates and hence can be neglected under the minimisation, one gets the
Bayesian conditional risk estimator [SD91].

𝛡̂ = arg min𝛡̂ ∫
Π

𝒞 (𝛡, 𝛡̂) ⋅ 𝑝 (𝛡| O) 𝑑𝛡 (2.32)

So far, a general loss function has been considered for the derivations, without any specification.
Considering a uniform and a quadratic loss function the Bayes risk estimator becomes the well
known maximum a posteriori (MAP) and minimum mean-square error (MMSE) estimator,
respectively [28, SD91].

Minimum-Mean-Square Error Estimator A quadratic loss function is the Mahalanobis
distance between the vectors of true parameters and the estimated ones [SD91].

𝒞 (𝛡, 𝛡̂) = (𝛡 − 𝛡̂)T ⋅ 𝐇 ⋅ (𝛡 − 𝛡̂) (2.33)

Plugging in to the conditional risk estimator (2.32) yields

𝛡̂MMSE = arg min𝛡̂ ∫
Π

(𝛡 − 𝛡̂)T ⋅ 𝐇 ⋅ (𝛡 − 𝛡̂) ⋅ 𝑝(𝛡| O) 𝑑𝛡 (2.34)

Calculating the risk function’s gradient w.r.t. the estimator 𝛡̂
𝜕𝜕𝛡̂ ∫

Π

(𝛡 − 𝛡̂)T ⋅ 𝐇 ⋅ (𝛡 − 𝛡̂) ⋅ 𝑝 (𝛡| O) 𝑑𝛡 = −2 ⋅ 𝐇 ⋅ ∫
Π

(𝛡 − 𝛡̂) ⋅ 𝑝 (𝛡| O) 𝑑𝛡
(2.35)

and setting the gradient to zero yields

𝐇 ⋅ 𝛡̂ = 𝐇 ⋅ ∫
Π

𝛡 ⋅ 𝑝 (𝛡| O) 𝑑𝛡 . (2.36)
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𝜛̂MAP = 𝜛̂MMSE
𝜛̂MAP 𝜛̂MMSE

𝜛̂MMSE𝜛̂MAP?
(a) (b) (c)

Figure 2.7: Exemplary posterior distributions and the MAP and MMSE estimate 𝜛̂MAP and 𝜛̂MMSE,
respectively. The MAP and MMSE estimate are the mode and the first central moment of the
distribution, respectively, and therefore depend on the shape of the distribution.

If the matrix inverse 𝐇-1 exists, the Bayes risk estimator under quadratic loss function is given
by

𝛡̂MMSE = ∫
Π

𝛡 ⋅ 𝑝 (𝛡| O) 𝑑𝛡 . (2.37)

Summarised, the Bayesian risk estimator under quadratic loss is given by the first central
moment of the posterior distribution.

Maximum A Posteriori Estimator A uniform loss function treats the errors equally over
the parameter space Π , except at the true parameter location [SD91].

𝒞 (𝛡, 𝛡̂) = 1 − 𝛿 (𝛡 − 𝛡̂) (2.38)

Plugging in the uniform loss function into the conditional risk estimator (2.32) yields

𝛡̂MAP = arg min𝛡̂ ∫
Π

[1 − 𝛿 (𝛡 − 𝛡̂)] ⋅ 𝑝 (𝛡| O) 𝑑𝛡 . (2.39)

Due to the negative sign, the minimisation becomes a maximisation, and the Bayes risk
estimator under uniform loss function is given by

𝛡̂MAP = arg max𝛡̂ ∫
Π

𝛿 (𝛡 − 𝛡̂) ⋅ 𝑝(𝛡| O) 𝑑𝛡 = arg max𝛡 𝑝 (𝛡| O) . (2.40)

Summarised, the Bayesian conditional risk estimator under uniform loss is given by the mode
of the posterior distribution, i.e., maximising the probability of the parameters to be included
in the observation.

Examples of MAP and MMSE Estimates The shape of the distribution, being e.g.
symmetric and/or unimodal, determines the MAP and MMSE estimate. Figure 2.7 shows three
exemplary distributions and the MAP and MMSE estimate 𝜛̂MAP and 𝜛̂MMSE, respectively. In
Fig. 2.7(a) the distribution is symmetric and unimodal, such that the MAP and MMSE estimate
equals. In Fig. 2.7(b) the distribution is nonsymmetric and unimodal, such that the MAP and
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MMSE estimate differs. Last, in Fig. 2.7(c), the distribution is symmetric but bimodal. The
MMSE estimator exist but the MAP estimator does not. The distribution has two modes, such
that the MAP is not unambiguously given. As a conclusion, existence of the MAP cannot be
ensured in general, because it depends on the shape of the distribution.

Calculation of MAP and MMSE Estimator The MAP estimator is the solution of an
optimisation problem [28, Lue+20]. If the parameters 𝛡 are non-linearly included in the model,
the optimisation problem may become a non-convex optimisation problem [25, 28]. Non-
convex optimisation is a NP-hard problem [BV04] and no general algorithm for its solution
exist. Only some heuristic methods [Wei11, Yan17] or problem specific solutions are given in
literature, see [25, Ric05] and Section 5.3.

The MMSE estimator is the solution of a high-dimensional integral [28, Lue+20]. This
can be non-trivial, especially if parameters are non-linearly included in the model. Therefore,
a numerical solution by Markov chain Monte Carlo (MCMC) or importance sampling [28,
Lue+20] like the Gibbs sampler, Metropolis-Hastings sampler or the slice sampler [GL06]
is commonly employed. In MCMC sampling random samples are drawn from a distribution
from which direct sampling is difficult. For calculation of the MMSE estimates the posterior is
selected as this distribution. Only the prior and the likelihood distribution is required, whereas
the marginal distribution is obsolete [28], because the marginal distribution is independent of
the parameters and only a normalisation to assure a proper posterior distribution. Hence, drawn
samples from an improper posterior properly represent the distribution, because the marginal
distribution does not alter the shape of the posterior, which is the requirement to get the MMSE
estimator. An estimate of the MMSE estimator is given by averaging the drawn samples [28].

2.4 Summary
In this chapter, model-based system identification from observed data has been discussed.
There, the parameters of a model, which approximates the system under identification, have
to be estimated from noisy observations.

In case of noiseless data, parameter estimation is an inverse problem, which can be described
by its respective forwardmodel. The forwardmodel describes the observations and themapping
of the parameters of the system model into them. As it has been pointed out, the forward model
cannot be the model of the system under identification only, rather than has to be a combined
model of the system under identification and the observer. This stems from the fact, that a real
observer is far from being ideal. Hence, the observer influences the observations, which has to
be account for in the forward model. The existence of a proper solution of the inverse problem
has been given by he known Hadamard criteria. Especially the uniqueness of a solution can be
critical, as it requires a proper setting of the observer system.

As pointed out, real measurements are subject to uncertainties as e.g. measurement noise and
model errors. Noise is treated as a random process, such that noisy observations are random
too. Therefore, the estimates will become random and deterministic inversion is not applicable.
As a consequence, the inverse problem turns into a stochastic inverse problem, which attempts
to account for the randomness of the estimates. A solution of the inverse problem has been
proposed by Bayes’ rule. There, the distribution of the parameter estimates after the observation
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can be addressed. Using a point estimator as e.g. the MAP estimates for the model parameters
can be derived from this distribution.

Three main components to solve the stochastic inverse problem are stated in this chapter.

• System model ℳS, composed of
– Physical model ℳP (see Chapter 3) and
– Device model ℳD (see Chapter 4)

• Model of the distribution of the noise sources (see Chapter 4)

• Parameter estimation rule (see Chapter 5)

These components will be addressed in the subsequent chapters for a considered broadband
FMCW MIMO radar.
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CHAPTER 3
Physical Model – Modelling of
the Propagation

MODEL-BASED identification of the physical system of interest requires the mathemat-
ical model ℳP of the physical system itself. Here, the wireless propagation channel is

the system under identification. Goal of this chapter is to derive a mathematical model ℳP for
the wireless propagation channel.

Related Work and Own Contributions
The physical system under identification is the wireless propagation channel. Therefore, modelℳP will be termed as channel model. The wireless propagation channel can be interpreted for
wireless communication or radar applications. In wireless communication every component of
the channel, which contributes to the energy transmission from Tx to Rx, is taken as valuable. In
radar applications, scattering from the target are considered as valuable, and unwanted scattering
from e.g. the surrounding is considered as distortion (termed as clutter). Hence, the radar
scattering channel is, in the sense of interpretation of valuable contributions, a subset of the
wireless communication channel. In the subsequent descriptions it will not be distinguished
between the wireless communication or radar scattering channel. The term propagation channel
is used to address both channel types.

The term channel model is possibly ambiguous, because the term may refer to

(i) Model as a transmission system

(ii) Model for simulation purpose, like the 3GPP [3GP] or WINNER [Kyö+08] model.

In this thesis, the first definition will be considered. The channel model describes the transfer
function of the propagation channel in terms of a parametric mathematical model. The set of
model parameters is unknown and subject to the estimation problem. In radar applications, these
parameters have to be related to the targets for e.g. localisation and identification purposes.

The content presented in this chapter is well known in literature, see for example [Bal97,
Hay94, Mau05, Mol12, Ric05, SMB01, TLS+04]. For sake of completeness and a holistic
presentation of the system identification problem, a brief review of themodelling of the propaga-
tion of EMWs and derivation of a respective model of the propagation channel will be given.
First, modelling of the propagation of EMW by ray optics will be described in Section 3.1.
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An explanation, why a Dirac model is a sufficient modelling approach for wave propagation
is intended to be given. Afterwards, a transmission model for the propagation channel is de-
rived. The propagation channel will be described as a linear time-variant (LTV) system [Hay94,
Mol12], whose impulse response is made up of the weighted superposition of multiple propaga-
tion paths. Section 3.3 concludes the chapter.

The described propagation model has been used in many own publications as e.g. [21, 22, 25,
42, 8, 27, 28].

3.1 Ray Optical Modelling of Electromagnetic
Waves

The propagation channel is a continuum, featuring propagation mechanisms like reflection,
diffraction or scattering [YI15]. It is widely accepted, that this continuum can be adequately
approximated by the superposition of a finite number of EMWs. Each wave emerges from a
transmitter and propagates to a receiver by the stated propagation mechanisms. The solution
of Maxwell’s equations form the basis to describe the propagation of . However, their solution
is practically intractable even for moderately complicated scenarios. Hence, asymptotic and
approximative approaches are employed for simplifications. Here, the ray-based modelling of
EMW propagation will be considered. An EMW can be adequately described by a ray, because
electromagnetic theory can be asymptotically described by geometric optics [Kli62, Mau05].

3.1.1 Theoretical Foundations of Propagating
Electromagnetic Waves

Coordinate Systems
Describing the propagation of an EMW necessitates a coordinate system. Figure 3.1 shows
two types of coordinate systems with a common origin: a Cartesian and a spherical coordinate
system. Both coordinate systems will be considered subsequently.

Homogeneous Helmholtz Equations
An electromagnetic wave is described in time domain by the electric and magnetic field vectors
E⃗ (𝐝, 𝑡) and H⃗ (𝐝, 𝑡), respectively, which depend on the location vector 𝐝 and time 𝑡 [Bal97,
Mau05]. Consider a source-free, isotropic, homogeneous, linear and losslessmedium as e.g. the
vacuum [Orf16]. Then, the wave equations according to the Maxwell’s equations are [Orf16]

▵ E⃗ (𝐝, 𝑡) = 𝜀0𝜇0
𝜕2
𝜕𝑡2 E⃗ (𝐝, 𝑡) (3.1a)

▵ H⃗ (𝐝, 𝑡) = 𝜀0𝜇0
𝜕2
𝜕𝑡2 H⃗ (𝐝, 𝑡) , (3.1b)
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𝛋x

𝛋y

𝛋z

𝑅
𝜑

𝜗

𝛋ϑ
𝛋φ

𝛋R

Figure 3.1: Spherical and Cartesian coordinate system featuring a common origin. Their respective
basis vectors are 𝛋x,𝛋y,𝛋z and 𝛋φ,𝛋ϑ,𝛋R. (Picture taken from [Hei09b].)

with electric permittivity in vacuum 𝜀0 and magnetic permeability in vacuum 𝜇0, and ▵ the
Laplace operator. By separation of variables, the time-space dependent vectors E⃗ (𝐝, 𝑡) and
H⃗ (𝐝, 𝑡) can be separated into vectors E⃗ (𝐝) and H⃗ (𝐝), which account for the spatial dependence,
and scalars 𝐸(𝑡) and 𝐻(𝑡), which account for the time dependence.

E⃗ (𝐝, 𝑡) = E⃗ (𝐝) ⋅ 𝐸(𝑡) (3.2a)
H⃗ (𝐝, 𝑡) = H⃗ (𝐝) ⋅ 𝐻(𝑡) (3.2b)

Harmonic signals with frequency 𝑓0 and initial phase 𝜙0 will be assumed, with 𝐸0 and 𝐻0 the
respective magnitudes.

𝐸 (𝑡) = 𝐸 (𝑡, 𝑓0) = 𝐸0 ⋅ ℜ {exp{𝚥2𝜋𝑓0𝑡 + 𝜙0}} (3.3a)𝐻 (𝑡) = 𝐻 (𝑡, 𝑓0) = 𝐻0 ⋅ ℜ {exp{𝚥2𝜋𝑓0𝑡 + 𝜙0}} (3.3b)

Now, the wave equations simplify to the homogeneous Helmholtz equations [Mau05].

[▵ +𝜅2 (𝑓0)] ⋅ E⃗ (𝐝) ⋅ 𝐸 (𝑡, 𝑓0) = 0 (3.4a)

[▵ +𝜅2 (𝑓0)] ⋅ H⃗ (𝐝) ⋅ 𝐻 (𝑡, 𝑓0) = 0 (3.4b)

The variable 𝜅 is thewave number, which depends on the propagation medium. For an isotropic
and lossless medium, the wave number is [Mau05]

𝜅 (𝑓) = 2𝜋 𝑓/𝑐0 = 2𝜋/𝜆 . (3.5)

Summarised, an EMW can be described by a time and location varying harmonic, whose
propagation can be described by the homogeneous Helmholtz equations. The electric and
magnetic field are perpendicular to each other and to the propagation direction 𝛋Px = 𝛋E × 𝛋H
of the wave, see Fig. 3.2.
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Figure 3.2: Electromagnetic wave given by the orthogonal electric E⃗ and magnetic H⃗ field, and Poynting
vector S⃗. (Picture taken from [Neu18].)

Poynting Vector
The Poynting vector S⃗ (𝐝, 𝑡) describes the direction of propagation of the power flux. The
Poynting vector is perpendicular to the electric and magnetic field vector (S⃗ ⟂ E⃗ ⟂ H⃗). Hence,
it can be calculated by (see also Fig. 3.2)

S⃗ (𝐝, 𝑡) = E⃗ (𝐝, 𝑡) × H⃗ (𝐝, 𝑡) = 𝑆0 (𝐝, 𝑡) 𝛋Px . (3.6)

Solution of the Helmholtz Equations
Solution in Cartesian Coordinates – Plane Waves Solution of the Helmholtz equations
in Cartesian coordinates 𝐝 = [𝑥, 𝑦, 𝑧]T results in plane waves (see Fig. 3.3). A plane wave is
an EMW, where each wave front (surface of constant phase) is an infinite plane orthogonal to
the direction of propagation [Orf16]. The fields may be represented in time domain as [Bal97,
Mau05]

E⃗ (𝐝, 𝑡) = 𝐸0 ⋅ ℜ {exp{−𝚥𝐝T𝐤0} ⋅ exp{𝚥2𝜋𝑓0𝑡 + 𝜙0}} 𝛋E (3.7a)
H⃗ (𝐝, 𝑡) = 𝐻0 ⋅ ℜ {exp{−𝚥𝐝T𝐤0} ⋅ exp{𝚥2𝜋𝑓0𝑡 + 𝜙0}} 𝛋H , (3.7b)

with 𝛋E and 𝛋H the normalized field vectors. The wave vector 𝐤0 = 𝜅0𝛋 is perpendicular to
the wave fronts and depends on the wave number 𝜅0 = 𝜅 (𝑓0) = 2𝜋 𝑓0/𝑐0 . For a lossless and
isotropic medium, the direction of wave propagation 𝛋Px and the direction of the normalised
wave vector 𝛋 are equal. The direction of propagation of an EMW in terms of a Cartesian
coordinate system is

𝛋Px = 1√𝑥2 + 𝑦2 + 𝑧2 [𝛋x, 𝛋y, 𝛋z] ⋅ ⎡⎢⎢⎣
𝑥𝑦𝑧

⎤⎥⎥⎦ . (3.8)

Plane waves are not physically, because the wave front is infinite large and thus requires
infinite energy. Therefore, the spherical wave will be introduced next.

Solution in Spherical Coordinates – Spherical Waves Solution of the Helmholtz
equations in spherical coordinates 𝜑, 𝜗, 𝑅 results in spherical waves (see Fig. 3.4), i.e. the
wave fronts become spheres. Assume a point source in the origin of the coordinate system. In
a spherical coordinate system the direction of propagation corresponds to the radial direction
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Figure 3.3: Equi phase surfaces or wave fronts of a plane EMW, propagating in 𝑧-direction.

z
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y

Figure 3.4: Equi phase surfaces or wave fronts of a spherical EMW, propagating in radial direction.
The spherical wave front becomes a locally plane wave front in the far field. Picture adapted
from [Sta15a].

of the basis vector 𝛋R. Therefore, the direction of propagation is uniquely described by the
elevation angle 𝜗 and azimuth angle 𝜑.

𝛋Px = 𝛋R ⋅ 1 = [𝛋x, 𝛋y, 𝛋z] ⋅ ⎡⎢⎢⎣
cos (𝜑) cos (𝜗)
sin (𝜑) cos (𝜗)

sin (𝜗)
⎤⎥⎥⎦ (3.9)

The solution of the Helmholtz equations in spherical coordinates yields [Orf16]

E⃗ (𝐝, 𝑡) = 𝐸0 ⋅ ℜ { 𝚥𝜅0𝑅 exp{−𝚥𝑅𝜅0} ⋅ exp{𝚥2𝜋𝑓0𝑡 + 𝜙0}} 𝛋E (3.10a)

H⃗ (𝐝, 𝑡) = 𝐻0 ⋅ ℜ { 𝚥𝜅0𝑅 exp{−𝚥𝑅𝜅0} ⋅ exp{𝚥2𝜋𝑓0𝑡 + 𝜙0}} 𝛋H . (3.10b)

Unlike a plane wave, a spherical wave decreases in amplitude as it propagates outwards, which
is indicated by the coefficient 1/𝑅 .

Because the spherical wave model is hard to be considered in a mathematical model
of the wave propagation (especially in ray optics, see next section), spherical waves are
typically approximated as locally plane waves. Therefore, the plane wave expansion is
considered [AS72], where a plane wave is described as the linear combination of spherical
waves.

exp{𝚥𝐝T𝐤0} = ∞
∑𝑛=0 𝚥𝑛 ⋅ 𝑗𝑛 (‖𝐝‖ ‖𝐤0‖) ⋅ (2𝑛 + 1) ⋅ P𝑛 (𝐝T𝐤0/ ‖𝐝‖ ‖𝐤0‖) (3.11)

Function 𝑗𝑛 is the spherical Bessel function of the first kind and 𝑛-th order, and P𝑛 is the
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𝐸0ϑ
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2𝜋𝑓0𝑡 + 𝜙0𝜓
E⃗

Figure 3.5: Polarisation ellipse of a plane electromagnetic wave. The ellipse is the trace of the electric
field vector E⃗ in the 𝜑-𝜗-plane over time [Bal97]. Angle 𝜓 is the slanting angle of the ellipse.
(Picture adapted from [Hei09a].)

Legendre polynomial of 𝑛-th degree. Under far field conditions (𝑅 = ‖𝐝‖ → ∞) and in a
local region (𝐝T𝐤0 ≈ ‖𝐝‖ ‖𝐤0‖) only the contribution for 𝑛 = 0 remains important. Hence, the
plane wave expansion can be approximated.

exp{𝚥𝐝T𝐤0} ≈ 𝚥‖𝐤0‖ ‖𝐝‖ exp{𝚥 ‖𝐤0‖ ‖𝐝‖} = 𝚥𝜅0𝑅 exp{𝚥𝜅0𝑅} (3.12)

Accordingly, a spherical wave can be approximated in a local region of the far field as a plane
wave. Hence, a plane wave may be described in the far field by spherical coordinates.

A widely accepted criterion to ensure far field conditions at a distance 𝑅 from the radiator
and for a region of size 𝐷2 is [SJ17]

𝑅 = 𝜅08 𝐷2𝜙 = 𝜋4 𝐷2𝜆𝜙 . (3.13)

Variable 𝜙 denotes the phase variation of the spherical wave over the far field region. For
example, a phase variation of 𝜋/8 or less requires a distance of 𝑅 ≫ 2𝐷2/𝜆 . The above
criterion is also important for array modelling, where the assumption of a plane wave across the
whole array is of importance, see Section 4.3.

Polarisation

For a (locally) plane EMW, polarisation is defined as the shape, orientation, and sense of the
ellipse, which is traced by the electric field vector E⃗ over time [Bal97, Com14], see Fig. 3.5.
The electrical field vector is decomposed according to the 𝜑-𝜗-plane, which is spanned by the
basis vectors 𝛋φ and 𝛋ϑ of the spherical coordinate system. Accordingly, the electrical field
vector of a plane wave can be expressed in terms of the polarisation components 𝑞φ and 𝑞ϑ as

E⃗ = 𝐸0 ⋅ ℜ {[𝛋φ, 𝛋ϑ] ⋅ [𝑞φ𝑞ϑ] ⋅ exp{−𝚥𝐝T𝐤0} ⋅ exp{𝚥 (2𝜋𝑓0𝑡 + 𝜙0)}} , (3.14)
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▿𝜙(𝐝)

Figure 3.6: Spherical wave front, approximated by multiple locally plane wave fronts. The propagation
direction of a plane wave is described by a ray, orthogonal to the wave front. The
propagation direction is given by the gradient of the phase or eikonal function 𝜙 (𝐝), which
is collinear to the Poynting vector. (Picture adapted from [Sta15b].)

with polarisation components given by

𝑞φ = cos (𝜓) ⋅ exp{𝚥𝛽φ} (3.15a)𝑞ϑ = sin (𝜓) ⋅ exp{𝚥𝛽ϑ} . (3.15b)

Angle 𝜓 is the slanting angle of the ellipse, and angle 𝛽φ and 𝛽ϑ is the phase of the field
components 𝐸0φ and 𝐸0ϑ, respectively.

𝐸0φ = 𝐸0 ⋅ cos (𝜓) (3.16a)
𝐸0ϑ = 𝐸0 ⋅ sin (𝜓) (3.16b)

3.1.2 Description of Wave Propagation by Ray Optics
Description of the propagation of EMWs is widely accomplished by geometrical optics, where
a wave is treated like an optical ray and wave effects are ignored [Arn86, Kel78, Kli62]. The
ray optical approach provides an asymptotic and approximative solution of Maxwell’s wave
equation for EMW at high frequencies [Arn86, Kel78, Mau05]. At higher frequencies, the
object size becomes comparable to the wavelength, such that objects act like mirrors and do not
cause additional sources when interacting with the wave. Also, the properties of the propagation
medium stay constant over multiple wave lengths [Mau05].

A Brief Derivation of Geometrical Optics from Electromagnetic
Theory

Subsequently, (locally) plane wave fronts are assumed. Spherical wave fronts are approximated
by multiple plane wave fronts, see Fig. 3.6. The assumption of plane waves is a key prerequisite
for the ray optical modelling [Kli62]. Consider the field components E⃗ (𝐝, 𝑓) and H⃗ (𝐝, 𝑓) of an
EMW in frequency domain. By expansion in a Laurent series and asymptotic consideration of𝑓 → ∞, the field components become the geometrical optics fields [Kli62, Mau05], which are
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the leading orders of the expansion.

E⃗ (𝐝) ∝ E⃗0 (𝐝) exp {−𝚥𝜅𝜙 (𝐝)} (3.17a)
H⃗ (𝐝) ∝ H⃗0 (𝐝) exp {−𝚥𝜅𝜙 (𝐝)} (3.17b)

Argument 𝜙 (𝐝) is the phase or eikonal function of the field, which describes the phase change of
the field w.r.t. 𝐝. The eikonal equation is well known in geometric optics, and hereby describes
the link between wave propagation and ray optics. Plugging the geometrical optics fields in the
Helmholtz equation (3.4) one can define the eikonal equation (▿ is the Nabla operator) [Arn86,
Kli62, Mau05].

‖▿𝜙 (𝐝)‖ = 1 (3.18)

A solution of the eikonal equation is given by 𝜙 (𝐝) = 𝑐𝑜𝑛𝑠𝑡 [Kli62]. Thus, the eikonal equation
describes a surface onwhich the phase changes are zero (equi phase surface). Hence, the eikonal
equation describes the phase fronts of the waves. The geometrical optics fields E⃗ (𝐝) and H⃗ (𝐝)
are parallel to this phase fronts [Arn86, Mau05]. The gradient ▿𝜙 (𝐝) of the eikonal function
is perpendicular to the wave front, and describes the direction of propagation, see Fig. 3.6. For
a lossless medium the direction coincides with the propagation direction of the power flux S⃗.
The direction of propagation can be described by a ray, such that the eikonal equation becomes
the ray equation [Arn86]. In general, rays propagate on curved lines for arbitrary propaga-
tion medium. If the propagation medium is homogeneous, the ray path simplifies to a straight
line [Arn86, Mau05].

Summarised, a ray can be used to model the propagation of a (locally) plane EMW. The
propagation direction of the ray coincides with the Poynting vector of the plane EMW.A ray can
be described by means of geometric rules [Arn86], and geometrical parameters can be assigned.
A ray is treated as an infinite thin quantity in space. Hence, its propagation in spatial domain
can be modelled in terms of Dirac impulses 𝛿. Remember, that the Dirac impulse model enables
high-resolution estimation in the respective domain (see Section 1.1.1).

3.2 Specular Propagation Path Model
From a system theoretic point of view the propagation channel is a system, which ”transmits”
electromagnetic waves from a source (transmitter) to a sink (receiver). This point-to-point
transmission is accomplished by various propagation mechanisms as e.g. scattering [Mol12].
These mechanisms are deterministic and assumed as linear. If the propagation channel varies
over time, due to movement of either the scatterers, the Tx or the Rx or combinations of them,
the channel appears as a linear time-variant (LTV) system. Description of the propagation
channel from a system theoretic viewpoint as a LTV system is a widely accepted modelling
approach for the wireless communication channel [Mol12] as well as the radar scattering
channel [JC17]. Putting together the concept of ray optical modelling from Section 3.1 and
the LTV system model results in a model of the propagation channel. The geometric- and ray-
based modelling of EMW propagation will be utilised to describes the LTV impulse response
of the propagation channel in terms of geometrical parameters. An elementary quantity/event
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𝑂2 𝑂1
Figure 3.7: Extended radar target, which consists of multiple individual scattering surfaces. Observer𝑂1 is close to the target and resolves the scattering surfaces as individual point targets.

Observer 𝑂2 is far apart from the target and cannot resolve the scattering surfaces.
Therefore, 𝑂1 views the target as extended target and 𝑂2 as point target.

of the propagation channel model is introduced therefore: the specular propagation path.

3.2.1 Propagation Path – Parameters and Modelling
Specular Propagation Path and Point Target
The ray optical approach describes the propagation channel in terms of rays, which feature an
infinite resolution in spatial domain. In order to properly resolve all rays, an infinite resolution
would be necessary. However, an infinite resolution is not attainable in practise, because the
resolution of the measurement system is limited by the system bandwidth and the resolution
enhancement by model-based system identification is limited by the available SNR and model
accuracy. Consider a bunch of multiple superimposed rays, which are so close in the spatial and
temporal domain, such that they cannot be resolved by neither the measurement system nor the
parameter estimation algorithm. Hence, the superimposed rays can be considered as a single
”average” ray. This average ray is denoted as a specular propagation path [Ric05]. Summarised,
a specular propagation path is defined as the smallest entity of a propagation channel, which
transfers from the Tx to the Rx and which can be resolved.

In order to model the propagation channel for a radar application (i.e. the radar scattering
channel), specular propagation paths have to be assigned to target scattering. A radar target is
an extended physical structure, which comprises of several scattering surfaces with different
reflectivity [HBC08, Tre01]. Electing each scattering surface by the Tx causes a contribution
to the propagation channel as e.g. a path, which can be resolved. If the distance of the target
from the radar is large, such that individual contributions are closer than the radar’s resolution
capability, the contributions of each scattering surface are not resolvable, see Fig. 3.7. As a
consequence, an average scatterer with average reflectivity is observed. Thus, the target acts like
a point in space from the viewpoint of the radar and is therefore termed as point target [HBC08,
Sko90, Wil05]. Roughly speaking, a point target is a target which scatterers only a single wave
to the Rx, if it is excited with a single wave by the Tx. However, if the target is close to the radar,
such that several contributions become resolvable, the target is no longer viewed as a point, see
Fig. 3.7. Indeed, the target becomes a spatially enlarged objected or extended target w.r.t. the
radar. A commonmodelling approach for an extended target is the representation as a ”cloud” of
point sources [Gil+05, Sko90]. This cloud of point sources/targets can be assumed as a cluster,
known from channel modelling [Czi07, Koc08, SC10]. Summarised, a single propagation path
is assumed to emerge from scattering at a point target. A single propagation path (or point
target, respectively) is assumed to coincide with the smallest resolvable scattering contribution
of an extended target.

39



3 PHYSICAL MODEL – MODELLING OF THE PROPAGATION

xTx

yTx

zTx

𝜑Tx

𝜗Tx xRx

yRx

zRx

𝜑Rx 𝜗Rx

𝜏

Figure 3.8: Geometrical parameters of a specular propagation path in the double-directional channel
model [Ric05, SMB01, TLS+04]. Picture adapted from [43].

Table 3.1: Geometrical parameters of a single propagation path, emerging from e.g. a target reflection
or scattering, according to the double-directional channel model [Ric05, SMB01, TLS+04].

Parameter Symbol
Time of arrival or delay 𝜏
Azimuth of arrival 𝜑Rx
Azimuth of departure 𝜑Tx
Elevation of arrival 𝜗Rx
Elevation of departure 𝜗Tx

Geometrical Parameters

According to the ray optical approach, a specular propagation path is described in terms of
geometrical parameters at Tx and Rx side. The respective model is quite often stated as double-
directional channel model [Ric05, SMB01, TLS+04]. The geometrical parameters describe the
propagation path in the spatial domain in terms of the angles at Tx and Rx side, i.e. the angles
of arrival and departure, see in Fig. 3.8. The propagation duration in the temporal domain is
assigned by a delay. Table 3.1 summarises the geometrical parameters per propagation path.
Assuming a stationary propagation channel, the parameters of a propagation path are time-
invariant.

Direction of Arrival and Direction of Departure The spatial domain is described by
the azimuth and elevation angle of a single wave impinging at Rx or being radiated by Tx, as
depicted in Fig. 3.8. Because angles are assigned, the spatial domain is often stated as angular
domain. Here, the direction of departure (DoD) comprises azimuth of departure (AoD) and the
elevation of departure (EoD), and DoA comprises azimuth of arrival (AoA) and elevation of
arrival (EoA).

Time of Arrival The time of arrival (ToA) is defined as the waves travelling time from the
coordinate system origin at Tx to the coordinate system origin at the Rx, see Fig. 3.8.
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Table 3.2: Mappings of polarisation at Tx and Rx, and corresponding entries of the scattering matrix 𝚪
of a propagation path [Ric05, TLS+04].

Polarisation Mapping Matrix Entry𝑞φ,Tx → 𝑞φ,Rx 𝛾φφ(𝜏)𝑞ϑ,Tx → 𝑞φ,Rx 𝛾φϑ(𝜏)𝑞φ,Tx → 𝑞ϑ,Rx 𝛾ϑφ(𝜏)𝑞ϑ,Tx → 𝑞ϑ,Rx 𝛾ϑϑ(𝜏)
Polarimetric Scattering Matrix

A polarimetric scattering matrix 𝚪 is assigned to each path, confounding the propagation
effects. The polarimetric scattering matrix describes two effects. First, it describes the
mapping of the transmitted polarisation vector to the received polarisation vector. These 4
mappings are defined in Tab. 3.2. Second, variations of the complex signal envelope and shift
of the carrier frequency due to the propagation are described. Generally, the magnitude of
the matrix entries correspondence to the transmission attenuation by scattering, diffraction or
penetration [HTK06]. Assuming the propagation effects as linear, the scattering matrix entries
can be modelled as LTI systems [Mor94, Tre01]. The polarimetric scattering matrix 𝚪 (𝑡) is
given by

𝚪 (𝑡) = [𝛾φφ (𝑡) 𝛾φϑ (𝑡)𝛾ϑφ (𝑡) 𝛾ϑϑ (𝑡)] . (3.19)

Model for the Spatial Domain

According to the ray-based modelling, propagation paths can be modelled as infinite small and
discrete events in the spatial/angular domain. Hence, the DoA 𝛋Rx𝑝 and the DoD 𝛋Tx𝑝 of the𝑝-th propagation path can be modelled in terms of shifted Dirac impulses 𝛿. The joint model
for the spatial propagation at Tx and Rx side is

ℎ (𝛋Tx, 𝛋Rx) = 𝛿 (𝛋Tx − 𝛋Tx𝑝) ⋅ 𝛿 (𝛋Rx − 𝛋Rx𝑝) . (3.20)

The normalised direction vectors 𝛋Tx (𝜑Tx, 𝜗Tx) and 𝛋Rx (𝜑Rx, 𝜗Rx) are the wave vectors at Tx
and Rx side, respectively.

Model for the Delay

The delay 𝜏𝑝 of the 𝑝-th specular propagation path is modelled by a shifted Dirac impulse in the
time domain [Hay94, Mol12].

ℎ (𝜏) = 𝛿 (𝜏 − 𝜏𝑝) (3.21)
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Model of the Polarimetric Scattering Matrix
Lets neglect polarisation for the moment and consider the passband signal 𝑠(𝑡) and baseband
signal ̃𝑠(𝑡) [Hay94].

𝑠(𝑡) = ℜ { ̃𝑠(𝑡) ⋅ exp{𝚥2𝜋𝑓c𝑡}} (3.22)

The signal is transmitted over the propagation channel ℎ(𝑡).
ℎ(𝑡) = 𝑎(𝑡)∗𝛿 (𝑡 − 𝜏) (3.23)

Response 𝑎(𝑡) is an LTI system and represents the combined impulse response of multiple
propagation effects. As the propagation channel is assumed as linear, the output signal at
passband is [Hay94, p. 99]

𝑠(𝑡)∗ℎ(𝑡) = ℜ { ̃𝑎(𝑡)∗ [ ̃𝑠(𝑡)∗𝛿(𝑡 − 𝜏)] ⋅ exp{𝚥2𝜋𝑓c𝑡} ⋅ exp{−𝚥2𝜋𝑓c𝜏}}= ℜ {[𝛾(𝑡)∗ ̃𝑠(𝑡 − 𝜏)] ⋅ exp{𝚥2𝜋𝑓c𝑡}} . (3.24)

Accordingly, the delayed baseband signal ̃𝑠(𝑡 − 𝜏) is convolved with the complex-valued path
weight function 𝛾(𝑡) = ̃𝑎(𝑡) ⋅ exp{−𝚥2𝜋𝑓c𝜏}. Each entry of the scattering matrix is made up by
such a path weight function.

Line-of-Sight If a propagation path emerges from line of sight (LOS) connection
between Tx and Rx, the scattering matrix and its respective entries are given by the Friis
formula [Kil15].

𝚪(𝑓) = √ 𝑐02
(4𝜋)2 ⋅ 𝑓2 ⋅ 𝑅2 ⋅ [1 00 −1] ⋅ exp{−𝚥2𝜋𝑓c 𝑅/𝑐0} (3.25)

Because no scattering occurs, the polarisation vector is not varied and the scattering matrix
becomes a diagonal matrix.

Single-Bounce Scattering Single-bounce scattering are the majorly considered
propagation effect in the radar scattering channel. For a single bounce scattering as depicted in
Fig. 3.8, the bistatic radar equation can be utilised to calculate ̃𝑎(𝑡) [Sko90, Wil05]

̃𝑎(𝑡) ❞ t ̃𝐴(𝑓) = √ 𝑐02
(4𝜋)3 ⋅ 𝑓2 ⋅ 𝑅Ix2 ⋅ 𝑅Sx2 ⋅ 𝜉(𝑓) , (3.26)

with 𝜉(𝑓) the reflectivity of the scatterer. In general, the reflectivity depends on the frequency,
polarisation, and angles of incident (Ix) and scattering (Sx) [39, 43]. Figure 3.9 shows the
respective geometry of single bounce scattering. Hence, the reflectivity 𝜉(𝑓) of the scatterer
is additional a function of 𝜑Ix, 𝜗Ix, 𝜑Sx, 𝜗Sx, 𝑞Ix, 𝑞Sx. For sake of convenience, the dependency
on the angles of incidence (𝜑Ix, 𝜗Ix) and the angles of scattering (𝜑Sx, 𝜗Sx) will be dropped
subsequently. Considering all polarisation combinations of 𝑞Ix and 𝑞Sx, and concatenating them
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Figure 3.9: Basic geometry of single-bounce scattering and the respective geometrical parameters.
Picture taken from [43].

in the matrix 𝚵(𝑓), the polarimetric scattering matrix becomes

𝚪(𝑓) = √ 𝑐02
(4𝜋)3 ⋅ 𝑓2 ⋅ 𝑅Ix2 ⋅ 𝑅Sx2 ⋅ 𝚵(𝑓) ⋅ exp{−𝚥2𝜋𝑓 (𝑅Ix + 𝑅Sx)/𝑐0} . (3.27)

Frequency Independence So far, the matrix entries, i.e. the path weight functions 𝛾 (𝑡),
are described as LTI systems. Assuming the path weight functions as a LTI system is slightly
difficult, especially in the parameter estimation scheme. The path weight functions cannot be
easily assumed as varying over the whole frequency band, because this may result in ambiguous
or degraded estimation of the other parameters, or the parameter estimation problem will
become under determined (more unknowns than measurement samples). Therefore, a model,
which describes the path weight functions or their respective LTI system model in terms of a
few parameters, is necessary. To the best of the authors knowledge, a general model for the path
weight functions is not known from literature. Therefore, simplifications have to be stated.

Under narrowband assumption (𝑊 ≪ 𝑓c) the reflectivity and the free space attenuation can
be assumed as frequency independent. The frequency independent reflectivity 𝜉 = 𝜉 (𝑓c) will
be denoted as radar cross section (RCS) [Sko90], which is a magnitude value here and not a
power value. Accordingly, the scattering matrix can be approximated.

𝚪(𝑓) ≈ 𝚪 (𝑓c) = 𝚪 = √ 𝑐02
(4𝜋)3 ⋅ 𝑓c2 ⋅ 𝑅Ix2 ⋅ 𝑅Sx2 ⋅ 𝚵 (𝑓c) ⋅ exp{−𝚥2𝜋𝑓c (𝑅Ix + 𝑅Sx)/𝑐0}

(3.28)
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3 PHYSICAL MODEL – MODELLING OF THE PROPAGATION

Because the scattering matrix becomes a constant, the convolution in equation (3.24) simplifies
to a product. Hence, the complex envelope of the transmit signal is not varied and undergoes
amplitude and phase variations only [Tre01, p. 235]. The entries of the scattering matrix will
be subsequently denoted as path weight.

Doppler Shift – Derivation and Modelling

So far, a time-invariant propagation channel has been assumed. However, if the observer or a
scatterer is moving, the geometrical path parameters and the polarimetric scattering matrix may
vary over time. In the simplest case, the scattering matrix entries and the angles stay fix and
the delay (respectively the propagation path length) varies. This path length variation due to
relative movements of the scatterer and the observer system can be approximately described as
a frequency shift: the Doppler shift.

First, consider a static (non-moving) observation system, which transmits the signal 𝑠(𝑡).
Furthermore, a static scatterer is considered and single bounce scattering at him is assumed.
In case of a single interaction of the signal with the scatterer, a delayed version of the transmit
signal is captured at the receiver: 𝑠 (𝑡 − 𝜏0). The delay 𝜏0 is related to the length 𝑅0 of the
propagation path.

𝑅0 = 𝑐0 ⋅ 𝜏0 (3.29)

Next, consider a scatterer, which is relatively moving w.r.t. the Tx and/or Rx of the observer
system. Furthermore, it is assumed, that the respective relative velocity is much smaller than
the propagation velocity of the EMW, such that relativistic effects are negligible. Then, the path
length becomes a function of time 𝑡.

𝑟(𝑡) = 𝑐0 ⋅ 𝜏(𝑡) = 𝑅Ix(𝑡) + 𝑅Sx(𝑡) (3.30)

The path length is determined by the position 𝐝Tx(𝑡) and 𝐝Rx(𝑡) of the scatterer w.r.t. the Tx and
Rx, respectively: 𝑅Ix(𝑡) = ‖𝐝Tx(𝑡)‖ and 𝑅Sx(𝑡) = ‖𝐝Rx(𝑡)‖. Variations of the path length can
be expressed by the time derivative [Sko90].

𝑑𝑟(𝑡)𝑑𝑡 = 𝑐0𝑑𝜏(𝑡)𝑑𝑡 = 𝑑𝑅Ix(𝑡)𝑑𝑡 + 𝑑𝑅Sx(𝑡)𝑑𝑡 (3.31)

Now assume a monostatic observer system: 𝐝Tx(𝑡) ≡ 𝐝Rx(𝑡) and 𝑅Ix = 𝑅Sx. Furthermore, a
non-moving observer and a homogeneously moving scatterer will be assumed. Therefore, the
path length variation is constant, i.e. no acceleration is present.

𝑣0 = 𝑑𝑟(𝑡)𝑑𝑡 (3.32)

Variable 𝑣0 denotes the rate of change of the path length over time, i.e. twice the relative velocity
of the scatterer w.r.t. the monostatic observer. A negative 𝑣0 accounts for an approaching
scatterer and a positive 𝑣0 accounts for an departing scatterer. The time-dependent path length
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𝑣0

𝑓Tx 𝑓Rx

Figure 3.10: Doppler effect for a monochromatic plane wave and relatively moving scatterer. If the
scatterer approaches the observer (𝑣0 < 0), then 𝑓Tx < 𝑓Rx. If the scatterer departs from
the observer (𝑣0 > 0), then 𝑓Tx > 𝑓Rx. (Picture adapted from [Fue09].)

can be expressed as

𝑟(𝑡) = 𝑅0 + 𝑣0 ⋅ 𝑡 . (3.33)

Plugging into the transmit signal yields [CB93]

𝑠 (𝑡 − 𝜏(𝑡)) = 𝑠 (𝑡 − 𝑟(𝑡)𝑐0 ) = 𝑠 (𝑎 ⋅ 𝑡 − 𝑅0𝑐0 ) = 𝑠 (𝑎 ⋅ 𝑡 − 𝜏0) , (3.34)

with 𝑎 = 1 + 𝑣0/𝑐0 . Hence, the movement of the scatterer causes a temporal scaling (extension
or compression) of the transmit signal, which is called Doppler effect. Because the signal
energy is not allowed to change according to Parseval’s Theorem, the scaling factor √𝑎 is
introduced [CB93]. Hence, the observed signal due to scatterer movement is √𝑎 ⋅ 𝑠 (𝑎𝑡), a
time and amplitude scaled version of the transmit signal.

Figure 3.10 sketches the influence of the Doppler on a monochromatic signal. The Doppler
causes a varying frequency of the received signal compared to the transmitted one.

Approximation of the Doppler Effect – The Doppler Shift Commonly, the Doppler
effect is approximated, such that the temporal scaling becomes a constant frequency shift over
the whole frequency band. This is only approximately true, because the Doppler effect results
in a frequency dependent shift, and therefore is not constant over the whole frequency band.
Consider the Fourier transformation of the observed signal, the frequency axis is scaled by the
Doppler effect too.

√𝑎 ⋅ 𝑠 (𝑎𝑡) ❞ t
1√𝑎 ⋅ 𝑆 (𝑓𝑎 ) (3.35)

Take the first order Taylor series approximation of the frequency scaling for |𝑣0| ≪ 𝑐0.
𝑓𝑎 = 𝑓1 + 𝑣0/𝑐0 ≈ 𝑓 ⋅ (1 − 𝑣0𝑐0 ) = 𝑓 − 𝑓𝑣0𝑐0 (3.36)

Next, the narrowband conditions are assumed. The frequency dependent Doppler shift becomes
a bandwidth independent Doppler shift 𝜈, which will be related to the carrier frequency 𝑓c.

𝑓𝑣0𝑐0 ≈ 𝑓c
𝑣0𝑐0 (3.37)
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Summarised, the scaling of the frequency axis simplifies to a frequency shift [CB93].

𝑓1 + 𝑣0/𝑐0 ≈ 𝑓 − 𝑓c
𝑣0𝑐0 (3.38)

For sake of convenience, the Doppler shift at centre frequency is introduced: 𝜈 = 𝑓c 𝑣0/𝑐0 . It
is worthwhile to note, that this approximation is the first order Taylor series expansion at the
points 𝑓 = 𝑓c and 𝑣0/𝑐0 = 0. Plugging into the spectral representation of the transmit signal
and taking √𝑎 ≈ 1 into account yields

1√𝑎 ⋅ 𝑆 (𝑓𝑎 ) ≈ 𝑆 (𝑓 − 𝜈) = 𝑆 (𝑓) ⋅ 𝛿 (𝑓 − 𝜈) . (3.39)

The respective simplification in the time domain is

√𝑎 ⋅ 𝑠 (𝑎𝑡) ≈ 𝑠 (𝑡) ⋅ exp {𝚥2𝜋𝜈𝑡} . (3.40)

Summarised, the scaling of the transmit signal due to the Doppler effect can be approximated
by the multiplication with a harmonic exponential in time domain. The respective propagation
model for the 𝑝-th specular propagation path in time domain is

ℎ (𝑡) = exp{𝚥2𝜋𝜈𝑝𝑡} ❞ t 𝐻 (𝜈) = 𝛿 (𝜈 − 𝜈𝑝) , (3.41)

with 𝜈𝑝 the Doppler shift of the propagation path.
The narrowband approximation is valid, if the largest and smallest Doppler shift in the

frequency band are approximately equal to the Doppler shift at carrier frequency.
𝑣0𝑐0 ⋅ 𝑓max ≈ 𝑣0𝑐0 ⋅ 𝑓min ≈ 𝑣0𝑐0 ⋅ 𝑓c (3.42)

Frequencies 𝑓max and 𝑓min are the upper and lower frequency of the transmit signal at passband,
respectively. This approximation is valid, as long as the variation of the Doppler shift over the
entire frequency band 𝛥𝜈 is smaller than the frequency spacing 𝛥𝑓 = 1/𝑇 . Variable 𝑇 denotes
the observation time.

𝛥𝜈 ≪ 𝛥𝑓 (3.43)

The variation of the Doppler shift over the entire frequency band is given by

𝛥𝜈 = 𝑣0𝑐0 ⋅ (𝑓max − 𝑓min) = 𝑣0𝑐0 ⋅ 𝑊 . (3.44)

Finally, the following criterion can be derived to validate the narrowband approxima-
tion [CB93].

𝛥𝜈 = 𝑣0𝑐0 ⋅ 𝑊 ≪ 𝛥𝑓 = 1𝑇 → 𝑇 ⋅ 𝑊 ≪ 𝑐0𝑣0
(3.45)

Product 𝑇 ⋅ 𝑊 is the time-bandwidth product. Summarised, the narrowband approximation of
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the Doppler shift is valid, if i) the time-bandwidth product is small (𝑇 ⋅ 𝑊 ≪ 1) and/or ii) the
relative velocity is much smaller than the wave propagation velocity (|𝑣0| ≪ 𝑐0).
The Multidimensional Path Function
Collecting the model for the delay domain, the spatial domain, the Doppler domain and the
scatteringmatrix together yields themodel of a specular propagation path: themultidimensional
path function 𝐇𝑝. The multidimensional path function in the complex baseband is given as the
product of the Dirac functions in delay, spatial and Doppler domain, which is weighted by the
scattering matrix [Ric05, TLS+04].

𝐇𝑝 (𝜏, 𝜈, 𝛋Tx, 𝛋Rx) = 𝚪𝑝 ⋅ 𝛿 (𝜏 − 𝜏𝑝) ⋅ 𝛿 (𝛋Tx − 𝛋Tx𝑝) ⋅ 𝛿 (𝛋Rx − 𝛋Rx𝑝) ⋅ 𝛿 (𝜈 − 𝜈𝑝) (3.46)

The parameters of the propagation path 𝑝 are collected in the vector 𝛡𝑝.
𝛡𝑝 = [𝜑Tx𝑝 𝜗Tx𝑝 𝜑Rx𝑝 𝜗Rx𝑝 𝜏𝑝 𝜈𝑝 ℜ {vec{𝚪𝑝}}T ℑ {vec{𝚪𝑝}}T]T (3.47)

3.2.2 Multipath Propagation Channel Model
The multidimensional path function (3.46) describes the propagation of a single path.
Commonly, the propagation channel constitutes of multiple propagation paths, arising due
to e.g. multiple targets, multiple scatterings per target (extended target) or clutter. Because
the propagation channel is assumed as linear, multipath propagation is modelled as the
superposition of a finite number 𝑃 of propagation paths [Czi07, Lan08, Ric05], resulting in
the multidimensional propagation channel model [DEH19].

𝐇 (𝜏, 𝜈, 𝛋Tx, 𝛋Rx) = 𝑃
∑𝑝=1 𝐇𝑝 (𝜏, 𝜈, 𝛋Tx, 𝛋Rx) (3.48)

For sake of convenience, the parameters of all propagation paths are collected into a single
vector 𝛡.

𝛡 = [𝛡T1 , … , 𝛡T𝑃]T (3.49)

3.3 Summary
In this chapter, a model for the physical system under identification has been proposed. The
considered physical system is the radar scattering channel, which is made up of propagating
EMWs and scattering radar targets or clutter.

The propagation of EMWs has been described by ray optics or geometrical optics. The wave
is treated as a ray, whose propagation direction coincides with the ray’s pointing direction. Ray
optic enables the assignment of specular propagation paths to scattering point targets at a radar
target or clutter. Furthermore, geometrical parameters as e.g. directions in terms of angles or a
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delay can be assigned to each specular propagation path, which are related to the radar (point-
) targets and their spatial position. According to the geometrical optics a single propagation
path is modelled by a multidimensional Dirac function. Because the radar scattering channel
is made up of multiple point targets and clutter sources, multipath propagation is present. The
respective model (3.48) represents multipath propagation as superimposed multidimensional
Dirac functions. As pointed out in Section 1.1.1, a model of superimposed Dirac functions
enables high-resolution of each contribution, here high-resolution estimation of propagation
paths in the spatial, delay and Doppler domain.
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CHAPTER 4
Device Model – Modelling of the
Radar System

SOLVING the inverse problem necessitates a model ℳD of the device, as discussed in
Section 2.1. The device model describes i) the transmit to receive transfer characteristic of

the observer, which will be denoted as transceiver response; and ii) models the received signal
in terms of this transceiver response. Here, an observer equipped with antenna arrays at Tx and
Rx side will be considered, in order to resolve directions of impinging or transmitted waves.
Therefore, a parametric model of the antenna array in terms of the directions is required as
well. Proper selection of the device model is highly important for the solution of the inverse
problem and hence the quality of the parameter estimates, especially if high-resolution shall
be achieved. In [LKT12] the impact of inaccurate device models on the parameter estimation
quality, especially the correct antenna array model, has been discussed. As it has been shown,
an inaccurate model will cause an increased estimation variance, bias or even false estimates.
Hence, the device model has to be carefully assigned. Furthermore, the noise model ℳN is
required as well. The noise model describes the noise processes of the observer system and their
influence on the observations. This results in a model on the distribution of the observations
(the likelihood), which is required to solve the stochastic inverse problem by Bayes’ theorem
(see Section 2.3). In this chapter the device model for an exemplarily FMCWMIMO radar will
be successively derived. A novel noise model for a co-located FMCW MIMO radar will be
presented too.

Related Work and Own Contributions
There are many publications, which focus on the topic of modelling and calibrating sensor
devices and multi-sensor devices, i.e. devices with arrays of sensors, see e.g. [LKT12, Suh+17,
Vas+20, Whi+91]. However, each of them are somehow restricted to a certain device or device
class, because the model and its parametrisation highly depends on the considered device itself.
Especially the device bandwidth, properties of the hardware components or the size of the spatial
aperture etc. determine the device model. Hence, literature-based device models cannot be
applied out-of-the-box. As pointed out, a proper device model is required, which covers all
aspects of the device sensing. The device model and its derivation will be divided into four
parts:

• Model of the transceiver response
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• Model of the antenna array

• Model of the sampling process

• Model of the noise processes.

Accordingly, modelling of a device spans a wide field of topics, because many different physical
properties and aspects have to be accounted for. This fact in conjunction with the dependence
of the device model on the device itself makes it hard to briefly describe the related work.
Subsequently, the mentioned models will be derived for the FMCW radar presented in [2],
which is exemplary considered here. A brief discussion on related work will be given in the
respective section.

The basic principle and signal theory of a single input single output (SISO) FMCW radar will
be reviewed and model for the baseband signal is derived in Section 4.1. Hardware impairments
and noise will be neglected. Thereafter, novel transceiver response models for an FMCW ra-
dar are described in Section 4.2. A linear, dynamic radar device model will be developed first,
which is later on refined to a non-linear, dynamic device model in order to account for non-
linearities in the signal generation block of the hardware. Next, modelling of antennas and
antenna arrays is discussed in Section 4.3. Two modelling approaches will be distinguished:
narrowband and wideband. Necessary constraints in order to apply the presented modelling
approaches are discussed. The model of the transceiver characteristic and the antenna arrays
have to be parametrised from calibration measurements, which will be described in Section 4.4.
If the observer is realised as an integrated on-chip antennas system, i.e. the array cannot be
detached from the transceiver chain, a joint parametrisation of array and transceiver response
model is necessary. A novel calibration method is proposed to accomplish this. As the inverse
problem is solved using time sampled data, the sampling has to be modelled too. Especially the
sampling in case of moving targets and the gathering of all MIMO channels by time-division
multiplexing has to be accounted for. MIMO systems with TDM suffer from angle-Doppler
coupling, which causes disturbances of the angle and Doppler estimation. A model to take into
account angle-Doppler coupling in the description of the sampling will be presented. Hence,
disturbances of angle and Doppler estimation can be circumvented. The sampling process will
be described in Section 4.5. Furthermore, a novel method to cope with signal leakage in co-
located FMCW radar systems will be presented. According to this method, a new noise source
in FMCW radars has been established: leakage noise. Also, a novel model to describe the im-
pact of phase noise of the radar hardware on the observations is derived. To the best of the
authors knowledge, this is done for the first time in modelling of a FMCW MIMO radar. The
modelling of the statistical characteristics of all considered noise sources will be discussed in
Section 4.6. Also, the proposed noise model will be verified by measurements. Section 4.7
concludes the chapter.

The contributions in the field of modelling the response of FMCW radars have been published
in [21, 5, 9]. The contributions in the area of modelling and calibration of antenna arrays for
DoA estimation have been published in [7, 24, 26]. Publications in the are of array signal
processing under broadband conditions are [23, 7, 25, 8]. The method to cope with transmit
signal leakage in co-located FMCW radar systems has been published in [6]. The compensation
of angle-Doppler coupling has been published in [10].
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4.1 Signal Model of a Homodyning FMCW
Radar

Understanding the functionality of a FMCW radar is fundamentally for the derivation of a
device model. Therefore, a (theoretical) model of the baseband signal will be derived in this
sections, which allows to understand the basics of FMCW radar, and their benefits and limits.
Furthermore, the theoretical model allows to identify signal distortions, which occur in real
FMCW radars.

4.1.1 Model of a FMCW Signal
A frequency modulated continuous wave (FMCW) signal is a linear frequency modu-
lated (LFM) signal or chirp [CB93]. During the modulation or transmit time 𝑇M the frequency
is linearly increased (swept) from start frequency 𝑓0 up to frequency 𝑓0 + 𝑊, with 𝑊 the sig-
nal bandwidth. Afterwards, the signal recovers from 𝑓0 + 𝑊 back to starting frequency 𝑓0,
which takes the recovery time 𝑇R. A new chirp is radiated after settling time 𝑇W. The respect-
ive time-frequency diagram of an FMCW signal is depicted in Fig. 4.1. The signal is sampled
by the analog-to-digital converter (ADC) only during the modulation time, such that 𝑇R and𝑇W are idle times of the measurement capturing. Hence, the time 𝑇R + 𝑇W is a guard interval
to avoid inter symbol interference or disturbances due to antenna switching in e.g. TDM (see
Section 4.5.3).

A FMCW signal during the transmit duration 0 ≤ 𝑡 ≤ 𝑇M can be represented in complex
passband domain [CB93].

𝑠 (𝑡) = rect
⎛⎜⎜⎝

𝑡 − 𝑇M2𝑇M

⎞⎟⎟⎠ ⋅ exp{𝚥2𝜋 (𝑓0 ⋅ 𝑡 + 𝑊2𝑇M
⋅ 𝑡2)} (4.1)

An instantaneous frequency 𝑓 (𝑡) can be assigned to the FMCW signal [Pip93].

𝑓 (𝑡) = 𝑊𝑇M
⋅ 𝑡 + 𝑓0 (4.2)

The respective instantaneous signal phase 𝜙 (𝑡) can be calculated from the instantaneous
frequency 𝑓 (𝑡) by integration.

𝜙 (𝑡) = 2𝜋 ∫𝑡
0 𝑓 (𝑡′) 𝑑𝑡′ = 2𝜋 (𝑓0𝑡 + 𝑊2𝑇M

𝑡2) − 𝜙0 (4.3)

Conversely, the instantaneous frequency can be calculated by differentiation of the instantan-
eous phase.

𝑓 (𝑡) = 12𝜋 𝑑𝜙 (𝑡)𝑑𝑡 (4.4)

For sake of convenience, the initial phase will be assumed as zero: 𝜙0 = 0. In sensing
applications the transmit signal is periodically radiated with period time 𝑇P, required to capture
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𝑇R 𝑇W𝑇M

𝑇P

𝑊
𝑓0

𝑓0 + 𝑊
frequency

time

Figure 4.1: Time-frequency diagram of a frequency modulated continuous wave (FMCW) signal,
periodically radiated with 𝑇P = 𝑇M + 𝑇R + 𝑇W. Time 𝑇R + 𝑇W is an idle time of the radar,
while measurements are discarded or are not captured by the ADC.

time-varying events (see Section 4.5).

𝑠P (𝑡) = ∞
∑𝑛=−∞ 𝑠 (𝑡 − 𝑛 ⋅ 𝑇P) (4.5)

The signal period 𝑇P and the modulation time 𝑇M are related according to 𝑇P = 𝑇M + 𝑇R + 𝑇W.

4.1.2 Range Resolution
In radar applications the range resolution, i.e. the separability of two targets, is of significant
importance. Considering a monostatic radar (see Section 4.3.4), the range resolution 𝛥𝑅 is

𝛥𝑅 = 𝑐02𝑊 . (4.6)

In order to process the complete signal bandwidth, i.e. to have the full range resolution, the
sampling frequency 𝑓S of the ADC has to fulfil the Nyquist criterion.

𝑓S ≥ 𝑊 (4.7)

If large bandwidths (e.g. several GHz) are used, appropriate ADCs are costly. Hence, stretch
processor or homodyning receivers are commonly employed in FMCW radar systems [CB93,
Ric13]. These receivers are a special realisation of matched filter receivers, suitable for
processing of FMCW signals with a large time-bandwidth product [CB93].

4.1.3 Stretch Processing or Homodyning Receiver
A stretch processing [Ric13] or homodyning [CB93] receiver architecture (sometimes also
denoted as de-ramping receiver) is sketched in Fig. 4.2. The echo signal, emerging from e.g.
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𝑠(𝑡)
ℎ(𝑡)

𝑥(𝑡) ×
Figure 4.2: Block diagram of a FMCW radar with stretch processor or homodyning receiver architec-

ture. [21]

target scattering, is down-converted to baseband by the transmit signal, using a mixer and a
low-pass filter in the receiver stage. For the subsequent analysis, a single echo from a stationary
target is assumed, which impinges with delay 𝜏 at the radar receiver. Neglecting attenuation due
to propagation, the transfer function ℎ (𝑡) of the propagation channel in Fig. 4.2 is

ℎ (𝑡) = 𝛿 (𝑡 − 𝜏) . (4.8)

The delay causes the FMCW signal to be shifted along the time axis, see Fig. 4.3. Because
the transmit signal is a LFM signal a one-to-one relationship of this delay to a frequency shift
exists. Considering 𝑠 (𝑡) in the complex passband (see equation (4.1)), the output signal 𝑥 (𝑡) of
the stretch processor is

𝑥 (𝑡) = [𝑠 (𝑡) ∗ℎ (𝑡)] ⋅ 𝑠 (𝑡)† . (4.9)

Note, that, if real-valued signals are present, the integral due to the low-pass filter has to be
taken into account. Plugging equation (4.1) into equation (4.9) yields the (ideal) baseband
signal [FJ15, Ric13], while neglecting the rectangular function due to time limitation for a
moment.

𝑥 (𝑡) = exp{𝚥2𝜋 (𝑓0 ⋅ (𝑡 − 𝜏) + 𝑊2𝑇M
⋅ (𝑡 − 𝜏)2)} ⋅ exp{𝚥2𝜋 (𝑓0 ⋅ 𝑡 + 𝑊2𝑇M

⋅ 𝑡2)}†

= exp{𝚥2𝜋 ( 𝑊2𝑇M
𝜏2 − 𝑊𝑇M

𝜏𝑡 − 𝑓0𝜏)} (4.10)

Accordingly, the output 𝑥 (𝑡) of the stretch processor is a harmonic [Ric13]. The frequency𝑓b of the harmonic, commonly denoted as beat frequency, equals the frequency shift between
transmitted and received FMCW signal [Ric13].

𝑓b = 𝑊𝑇M
𝜏 (4.11)

Typically, the residual video phase 𝑊𝜏2/2𝑇M can be neglected, if 𝑊 < 𝑓c holds [FJ15].

𝑥 (𝑡) = exp{𝚥2𝜋 ( 𝑊2𝑇M
𝜏2 − 𝑓b𝑡 − 𝑓0𝜏)} ≈ exp{−𝚥2𝜋 (𝑓b𝑡 + 𝑓0𝜏)} (4.12)
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𝜏
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frequency
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Figure 4.3: Time-frequency diagram of a transmitted FMCW signal and the received, time shifted replica
due the propagation delay 𝜏. The baseband signal after homodyning is a harmonic signal
with the beat frequency 𝑓b. The fading curves are beat frequencies which are not sampled
by the receiver.

By spectral analysis of the baseband signal 𝑥 (𝑡) the beat frequency and hence the delay can
be estimated [CB93]. Summarised, the linear FMCW transmit signal in conjunction with the
stretch processing receiver maps the propagation delay in a harmonic signal at baseband, whose
frequency is proportional to the propagation delay.

Due to the stretch processing the received baseband signal is no longer a time shifted replica of
the transmitted signal. Therefore, the stretch processor is not a classical matched filter, which is
commonly used for pulse compression in radar [CB93]. If a matched filter would be employed,
the baseband signal would be given by

𝑥 (𝑡) = [𝑠 (𝑡) ∗ℎ (𝑡)] ∗𝑠 (−𝑡) . (4.13)

Therefore, the stretch processing does not accomplish a classical pulse compression, which
would result in a pulse in time domain. It can be stated, that the pulse compression is
accomplished by the Fourier transformation of the baseband signal after homodyning, which
yields a peak in the spectral domain at the beat frequency location.

Advantages
The main benefit of the stretch processing is, that the ADC samples the beat frequency signal
rather than the time-shifted transmit signal. A much lower ADC sampling frequency 𝑓S
becomes sufficient and therefore simpler and cheaper ADCs are usable. Because the beat
frequency is directly related to the propagation delay, the largest ascertainable delay 𝜏max is

𝜏max = 𝑇M𝑊 ⋅ 𝑓S2 . (4.14)
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Disadvantages
Drawback of the stretch processing is the correlation without a delay line, resulting in a
degradation of the range resolution [Pip95]. Reconsider the time limitation of the transmit
signal, the baseband signal 𝑥(𝑡) is (see APPENDIX C.1)

𝑥(𝑡) ≈ rect
⎛⎜⎜⎝

𝑡 − 𝑇M+𝜏2𝑇M − 𝜏 ⎞⎟⎟⎠ ⋅ exp{𝚥2𝜋 ( 𝑊2𝑇M
𝜏2 − 𝑊𝑇M

𝜏𝑡 − 𝑓0𝜏)} . (4.15)

Hence, the beat frequency is observed over 𝑇M−𝜏 only. The respective spectral density |𝑋(𝑓)|2
of the baseband signal is

|𝑋(𝑓)|2 ∝ |sinc ([𝑇M − 𝜏] ⋅ 𝑓) ∗𝛿 (𝑓 + 𝑓b)|2 . (4.16)

The main lobe of the sinc-function is broadened compared to a full observation time of 𝑇M,
indicating a loss of resolution. Due to the resolution loss an effectively processed bandwidth
can be stated [Pip95].

𝑊′ = 𝑊𝑇M
⋅ (𝑇M − 𝜏) = 𝑊 − 𝑊 ⋅ 𝜏𝑇M

= 𝑊 ⋅ (1 − 𝜏𝑇M) (4.17)

Consequently, the spectral resolution and therefore the range resolution is degraded [Pip95].

𝛥𝑅′ = 𝑐02𝑊′ = 𝑐02𝑊 ⋅ (1 − 𝜏/𝑇M ) = 𝑐02𝑊 ⋅ 𝑇M𝑇M − 𝜏 (4.18)

Considering the maximal observable beat frequency, which is given by 𝑓S/2 , the max. range
resolution loss can be given [FJ15].

𝑇M𝑇M − 𝜏max
− 1 = 𝜏max𝑇M − 𝜏max

= 1𝑇M/𝜏max − 1 = 12𝑊/𝑓S − 1 (4.19)

The maximal range resolution loss is determined by the ratio of the sampling frequency 𝑓S and
the signal bandwidth 𝑊. Hence, by properly choosing the signal parameters and the sampling
frequency, the resolution loss can be minimised.

Subsequently it will be assumed, that the modulation time is much larger than the delay:𝑇M ≫ 𝜏. Hence, the resolution loss is negligible and the range resolution is approximately
given by the whole signal bandwidth.

4.1.4 Doppler Effect and Doppler Shift
Consider the Doppler effect formula (3.34) and the FMCW signal model (4.1), the signal at the
receiver is

√𝑎 ⋅ 𝑠 (𝑎𝑡 − 𝜏0) = √𝑎 ⋅ exp{𝚥2𝜋 [𝑓0 ⋅ (𝑎𝑡 − 𝜏0) + 𝑊2𝑇M
⋅ (𝑎𝑡 − 𝜏0)2]} . (4.20)
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The respective baseband signal after homodyning is

𝑥 (𝑡) = √𝑎 ⋅ 𝑠 (𝑡)† ⋅ 𝑠 (𝑎𝑡 − 𝜏0)
= √𝑎 ⋅ exp{𝚥2𝜋 [(𝑎 − 1) 𝑓0𝑡 + 𝑊2𝑇M

(𝑎2 − 1) 𝑡2 + 𝑊2𝑇M
𝜏2
0 − 𝑊𝑇M

𝑎𝜏0𝑡 − 𝑓0𝜏0]} .
(4.21)

Accordingly, the signal remains a chirp and is not a simple harmonic.
As pointed out in Section 3.2.1 the Doppler effect can be approximated, if |𝑣0| ≪ 𝑐0

holds and the narrowband assumption can be drawn. Hence, the Doppler induced scaling of
the signal becomes negligible. The baseband signal for a single period is approximately (see
APPENDIX C.3 for a detailed derivation)

𝑥 (𝑡) ≈ exp{−𝚥2𝜋 (𝜈𝑡 + 𝑊𝑇M
𝜏0𝑡 + 𝑓0𝜏0)} , (4.22)

with 𝜈 = 𝑓0 𝑣0/𝑐0 the Doppler shift.

4.2 Transceiver Model of a FMCW Radar
Real observers suffer from hardware impairments, which cause amplitude and phase distortions
of the transmitted and received signal. Such hardware impairments and their influence have not
been considered for the baseband signal derived in Section 4.1. They have to be accounted
for by the device model ℳD, which describes the transceiver (joint transmitter & receiver)
characteristic of the device. In the following, the FMCW radar chip presented in [Hit+17] will
be exemplary considered.

Modelling approaches for FMCW radars are mainly towards modulation errors of the
frequency sweep as e.g. non-linear sweeps [Avi+12, Ayh+16, MHL07], variations in the
sweep rate [Gro17] or sinusoidal distortions of the sweep [Pip95]. Such modulation errors
cause degradation of the range resolution. However, modelling of the transceiver characteristic,
which also degrades the range resolution, is less considered in literature. Description of the
transfer characteristic of the radar can bemodel-based or not. Inmodel-based description, which
will be considered here, two principles can be distinguished: i) physical and ii) behavioural
modelling [Gri14, 5, Sch09]. In physical modelling the device is modelled by the microscopic
description of each hardware component and their interaction. Such modelling approaches are
conceivable for individual hardware components or slightly complicated systems only, because
the modelling effort scales with the device complexity. Behavioural modelling is a macroscopic
description of the influence of the device characteristic on the transmit and/or receive signal.
Hence, behavioural modelling is a black-box modelling useful for complicated devices, because
hardware details are not accounted for or not of interest.

A separate measurement of all radar components is not possible due to the MMIC setup of
the considered radar chip. Furthermore, the influence of the radar device on the received signal
is of interest, rather than a detailed description of hardware related issues. Hence, a behavioural
model for the transceiver characteristic of the radar system will be developed. The behavioural
model will be derived by i) identifying the best suited model structure and ii) estimating the
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𝑠(𝑡) 𝑔Tx(𝑡)

𝑔S(𝑡) ℎ(𝑡)

x(t) × 𝑔Rx(𝑡)
𝑦2(𝑡)

𝑦1(𝑡)
Figure 4.4: Model of a real FMCW radar with LTI systems to account for respective hardware

impairments. [21]

corresponding model parameters from calibration measurements. Assuming the radar as time-
invariant, the device model has to be structurally determined and parametrised from calibration
measurements only once. First, a linear device model will be developed in Section 4.2.1. As
this model is not sufficient to describe the response of the considered radar, a novel non-linear
device model will be developed in Section 4.2.2. Both models attempt to describe the joint
influence of the hardware impairments of the transmit and receive chain on the received signal.
The developed device models have been published in [21] and [5], respectively.

4.2.1 Linear Device Model
May the hardware impairments of the radar be modelled as linear time-invariant systems [21].
Then, the radar model in Fig. 4.2 will be extended by incorporating LTI systems in the transmit
and receive path to account for hardware impairments. The respectively advanced radar model
is shown in Fig. 4.4. The following signals and system responses are introduced, which will be
described by their respective passband representation.

• Transmit signal: 𝑠 (𝑡) = 𝑈 exp {𝚥𝜙 (𝑡)} (amplitude 𝑈 ∈ ℝ, phase 𝜙 (𝑡) according to
equation (4.3))

• LTI system in transmit path: 𝑔Tx (𝑡) ❞ t𝐺Tx (𝑓)
• LTI system in receive path: 𝑔Rx (𝑡) ❞ t𝐺Rx (𝑓)
• Propagation channel response: ℎ (𝑡) ❞ t𝐻 (𝑓)
• LTI system in the feedback path: 𝑔S (𝑡) ❞ t𝐺S (𝑓)

Lets introduce the respective input signals to the mixer of the stretch processing receiver.

𝑦1 (𝑡) = 𝑠 (𝑡) ∗𝑔Tx (𝑡) ∗ℎ (𝑡) ∗𝑔Tx (𝑡) (4.23a)𝑦2 (𝑡) = 𝑠 (𝑡) ∗𝑔S (𝑡) (4.23b)
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Analytic signals are considered in the following, such that the low-pass filter in Fig. 4.4 can be
neglected [Ric13]. The output signal of the stretch processor is

𝑥 (𝑡) = 𝑦1 (𝑡) ⋅ 𝑦2 (𝑡)† = [𝑠 (𝑡) ∗𝑔Tx (𝑡) ∗ℎ (𝑡) ∗𝑔Rx (𝑡)] ⋅ [𝑠 (𝑡) ∗𝑔S (𝑡)]† . (4.24)

In order to proceed the following theorem is used [9].

Theorem 1. Transmitting an FMCW signal over an LTI system and the FMCW signal fulfils𝑇M ⋅ 𝑊 ≫ 1, the output signal is an FMCW signal whose amplitude and phase is varied
according to the frequency response of the LTI system.

Accordingly, the input signals to the mixer of the stretch processor are

𝑦1 (𝑡) ≈ 𝑈 exp {𝚥𝜙 (𝑡)} ⋅ 𝐺Tx (𝑓 (𝑡)) ⋅ 𝐻 (𝑓 (𝑡)) ⋅ 𝐺Rx (𝑓 (𝑡)) (4.25a)𝑦2 (𝑡) ≈ 𝑈 exp {𝚥𝜙 (𝑡)} ⋅ 𝐺S (𝑓 (𝑡)) , (4.25b)

with 𝑓 (𝑡) the instantaneous frequency (4.2). Plugged into the stretch processor model (4.24)
the output signal of the stretch processor is

𝑥 (𝑡) ≈ 𝑈 2 ⋅ 𝐻 (𝑓 (𝑡)) ⋅ 𝐺Tx (𝑓 (𝑡)) ⋅ 𝐺Rx (𝑓 (𝑡)) ⋅ 𝐺S (𝑓 (𝑡)) = 𝑈 2 ⋅ 𝐻 (𝑓 (𝑡)) ⋅ 𝐺 (𝑓 (𝑡)) .
(4.26)

Summarised, the signal after the stretch processor is a multiplication of the system transceiver
response 𝐺 (𝑓 (𝑡)) and the propagation channel response 𝐻 (𝑓 (𝑡)) [21]. Hence, the radar
observations can be calibrated by deconvolution with the system transceiver response.

Model Calibration and Verification
The derived system model describes the transceiver response of the radar by the LTI system𝐺 (𝑓 (𝑡)). This LTI system will be deduced from calibration measurements. The basic settings
of the radar for the calibration measurements are summarised in Tab. 4.1. Because the radar is
realised as a MMIC, back-to-back of connection the transmit and receive chain over a known
reference standard cannot be accomplished. Instead, over-the-air calibration has to be applied,
with the propagation channel as reference standard. Note, that in an over-the-air calibration
setup, the response of the Tx and Rx antenna are included in the calibration measurement too.
Because Tx and Rx are on the same MMIC (monostatic radar), transmitter and receiver cannot
be placed in LOS connection. Therefore, a corner reflector (i.e. a radar target) is employed for
the calibration measurements. The corner reflector is placed at a known distance 𝑅 apart from
the radar and has a known RCS. The respective propagation channel response 𝐻(𝑓), which is
now the reference standard, is given by the radar equation [Sko90].

𝐻 (𝑓) = √ 𝑐2(4𝜋)3𝑓2𝑅4 ⋅ 𝜉 ⋅ exp{−𝚥2𝜋𝑓 2𝑅/𝑐0} (4.27)

For the calibration and verification measurements, two corner reflectors with RCS of 𝜉 =
0 dBsm and 𝜉 = −10 dBsm were separately deployed at a distance of 𝑅 = 1.6m and 𝑅 = 0.8m,
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Table 4.1: Basic settings of the radar device for the calibration measurements.

Parameter Setting Parameter Setting𝑓0 147GHz 𝑊 20GHz𝑇M 1024 µs 𝑓S 4MHz

respectively.
Because the radar is monostatic strong leakage between the Tx and Rx channel occurs, see

Fig. 4.5(a). High-pass filtering is applied to suppress the corresponding beat frequencies. Af-
terwards, because the I-channel of the radar has been captured only and the baseband signal is
therefore real-valued, the analytic signal is calculated. The analytic time domain signal is de-
picted in Fig. 4.5(b). Note, that the time scale was mapped to frequency by 𝑓 = 𝑊/𝑇M ⋅ 𝑡 + 𝑓0.
The range spectra for both deployed corner reflectors after pre-processing are shown in Fig. 4.6.
The highest beat frequency peaks can be assigned to the ranges of the corner reflectors. Further-
more, additional beat frequency peaks are visible, indicating the presence of more scatterers.
However, these beat frequencies cannot be assigned to a scatterer of the surrounding envir-
onment. Furthermore, their location varies, if the target distance is varied. This, however, is
crucial, because the surrounding environment has not changed. It can be concluded, that these
beat frequencies are not due to scattering. Instead, they are parasitic signal components due to
the radar hardware and will be termed as ghost targets. Ghost targets will be defined as beat
frequencies, which occur in conjunction with the beat frequency of a true target echo. It has
been found, that the ghost targets are due to hardware impairments, which are not covered by
the derived LTI device model [21]. In order to apply the derived system model, bandwidth
limitation is conducted by reducing the frequency range to 155GHz to 161GHz. The range
spectra after band limitation are shown in Fig. 4.6, indicating that the ghost targets vanished.

Summarised, the derived LTI device model does not properly describe the radar system. Ghost
targets are present in the received signal, whose occurrence cannot be described by a LTI device
model. The derived radar system model is applicable, if bandwidth limitation (reduced from
20GHz to 6GHz) is applied in a post-processing step. However, band limitation reduces the
resolution, which is a major drawback.

4.2.2 Non-Linear Device Model
It has been pointed out in the previous section, that the considered radar suffers from parasitic
signal components or ghost targets, which are not covered by the LTI system model. Because
these signal components occur with large amplitudes, they cannot be distinguished from
real targets in the range profile and hence the number of targets will be overestimated by a
detector. The ghost targets can be mitigated by additional filtering of the transmit signal [5], but
realisation of filters requires more place on the MMIC and hence increases the costs. Because
the ghost targets are hardware caused and therefore predictable, they can be accounted for in the
target detection step by e.g. excluding the respective peaks in the range profile [5]. However,
if a true target peak is hidden or intersected by a ghost target peak, the true target cannot be
detected. Hence, this approach may fail in case of multiple targets. In the previous section the
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Figure 4.5: Measurement with target at 0.8m distance and radar cross section of −10 dBsm. The range
spectrum before and after high-pass filtering to suppress the leakage is shown in (a). The
respective time domain signals are shown in (b). The time axis has beenmapped to frequency
by 𝑓 = 𝑊/𝑇M ⋅ 𝑡 + 𝑓0.
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Figure 4.6: Range spectra of the measured and band limited signal for two different measurements with
a single target (a) at distance 0.8m and RCS of −10 dBsm; (b) at distance 1.6m and RCS of
0 dBsm. The bandwidth has been reduced from 20GHz to 6GHz. [21]

occurrence of ghost targets has been tackled by limiting the bandwidth of the received signal,
which decrease the resolution and dynamic range of the measurements.

A signal processing solution is to favour, which mitigates the ghost targets and preserves
the resolution. Using signal processing to compensate or mitigate hardware impairments
is conceptually known as dirty RF [Fet+05, Fet+07]. In [Gri+14] modelling of non-
linear distortions in communication system receivers and their real-time mitigation has been
discussed. However, dirty RF attempts to ”clean” the baseband signal from hardware caused
distortions. Here, estimation of model parameters from the baseband signal is focused and
the hardware impairments are accounted for in the estimator, rather than attempting to mitigate
them beforehand. Hence, both approaches are different in terms of how they tackle the hardware
impairments.

Subsequently the transfer characteristic of the radar in conjunction with the transmit signal
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generation will be considered, in order to derive a novel device model of an FMCW radar [5].
First, the source of ghost target causing hardware impairments has to be identified. Afterwards,
their proper modelling and last their incorporation in an extended device model has to be
clarified. Due to the newmodelling approach, the device model ℳD and propagation (physical)
model ℳP become coupled in the system model ℳS, because the device model depends on
the parameters of the propagation model. In classical system models for radar applications,
as presented e.g. in [21], device and propagation model can be decoupled by deconvolution.
This is no longer possible for the non-linear device model, which will be derived in the
following. By estimating the propagation channel parameters, the corresponding device model
is automatically selected and the ghost targets are suppressed, i.e. parameter estimation and
mitigation are jointly done. Consequently, parameter estimation becomes a deconvolution
aspect, as the effects of the hardware non-linearities are mitigated in the parameter estimation
step.

Analysis of the Signal Synthesiser

A block diagram of the signal generator of the considered MMIC radar chip is shown in
Fig. 4.7. The radar chip features a frequency offset synthesiser for signal generation, where
a ramp oscillator (RO) signal, which is a FMCW signal at passband, is up-converted by mixing
with a local oscillator (LO) signal [Hit+17]. The digitally generated RO signal is applied to
a quadrupler, resulting in a signal at a higher passband range and four times the bandwidth.
The low phase noise LO signal, generated by a push-push voltage controlled oscillator (VCO),
is applied to a doubler to enhance its frequency. Both signals are subsequently mixed by a
Gilbert cell mixer, which does not feature a sideband suppression [Hit+17]. Hence, the lower
and the higher sideband are present at the output of the mixer. Due to the filter characteristics
of the signal paths and the passband characteristic of the employed on-chip antennas, the lower
sideband is attenuated [Hit+17]. In the following, the RO and LO signal are assumed as perfect,
hence no distortions in the RO ramp are considered. The corresponding model for the RO and
LO signal are

𝑤RO (𝑡) = 𝑈RO ⋅ cos(𝜋𝑊RO𝑇M
𝑡2 + 2𝜋𝑓RO𝑡 + 𝜙RO) (4.28a)

𝑤LO (𝑡) = 𝑈LO ⋅ cos (2𝜋𝑓LO𝑡 + 𝜙LO) . (4.28b)

The parameters 𝑊RO and 𝑇M are bandwidth and modulation time of the ramp of the RO signal,
respectively; and frequency 𝑓RO is the centre frequency of the RO signal. Variables 𝜙LO and𝜙RO are the initial phases of LO and RO signal, respectively. For sake of convenience, the phase
terms are omitted in the following (𝜙LO = 0 and 𝜙RO = 0).

Before the mixing, the LO and RO signal are up-converted by multipliers in order to enhance
the bandwidth (RO signal) and increase the centre frequency (LO signal). Multipliers are
non-linear devices, which input-output relation can be formulated in terms of a non-linear
function 𝑥out = 𝑓 (𝑥in). Afterwards a mixer is used, which is a non-linear device too. A
common model for the input-output relation of non-linear devices is the memory-less power
series model [Sch09], which can be assumed as the Taylor series approximation of the non-
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𝑤LO(𝑡) ×2
× 𝑠(𝑡)

𝑤RO(𝑡) ×4

𝑠LO(𝑡)

𝑠RO(𝑡)
Figure 4.7: Block diagram of the signal generator of the MMIC radar chip in [Hit+17]. [5]

linear transfer function. The input-output relation is

𝑓 (𝑥in (𝑡)) = 𝑥out (𝑡) = 𝐾
∑𝑘=0 𝑐𝑘 ⋅ 𝑥𝑘

in (𝑡) , (4.29)

with 𝐾 the degree of the non-linearity and 𝑐𝑘 the coefficients of the power series. Applying the
power series model to the RO and LO signal yields

𝑠RO (𝑡) = 𝑀
∑𝑚=1 𝑎𝑚 ⋅ 𝑈 𝑚

RO ⋅ cos(𝜋𝑚𝑊RO𝑇M
𝑡2 + 2𝜋𝑚𝑓RO𝑡) (4.30a)

𝑠LO (𝑡) = 𝑁
∑𝑛=1 𝑏𝑛 ⋅ 𝑈 𝑛

LO ⋅ cos (2𝜋𝑛𝑓LO𝑡) , (4.30b)

with 𝑀 and 𝑁 denoting the degrees of non-linearity of the RO and LO multiplier, respectively.
In the following, the summation limits will be omitted for notational convenience.

The resulting signals after the multipliers are harmonics of the input signals, rather than just
the up-converted signals for 𝑛 = 4 and 𝑚 = 2. Assuming the mixer as perfect (i.e. performs an
ideal multiplication), the transmit signal is given by

𝑠 (𝑡) = ∑𝑛 ∑𝑚 𝑎𝑚 ⋅ 𝑈 𝑚
RO ⋅ 𝑏𝑛 ⋅ 𝑈 𝑛

LO ⋅ cos (2𝜋𝑡𝑛𝑓LO) ⋅ cos(𝜋𝑚𝑊RO𝑇M
𝑡2 + 2𝜋𝑚𝑓RO𝑡) .

(4.31)

The assumption of a perfect mixer can be relaxed for the subsequent investigations, because a
non-perfect mixer just causes additional harmonics, which can be described by adjusting the
degrees of non-linearity 𝑁 and 𝑀 of the power series models. Using trigonometric identity 1

yields

𝑠 (𝑡) = ∑𝑛 ∑𝑚 𝑐𝑛,𝑚 ⋅ [cos (𝜙+𝑛,𝑚 (𝑡)) + cos (𝜙−𝑛,𝑚 (𝑡))] , (4.32)

1cos 𝑥 cos 𝑦 = 0.5 ⋅ [cos(𝑥 − 𝑦) + cos(𝑥 + 𝑦)]
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time

frequency1𝑓LO 2𝑓LO 3𝑓LO

𝑇M

Figure 4.8: Frequency-time diagram of the transmit signal for non-linearity degrees 𝑀 = 6 and 𝑁 = 3
for the RO and LO multiplier, respectively. The orange highlighted area denotes the band
of operation of the radar system and the coloured ramps denote the actually transmitted
ramps. [5]

with

𝑐𝑛,𝑚 = 0.5 ⋅ 𝑎𝑚 ⋅ 𝑈 𝑚
RO ⋅ 𝑏𝑛 ⋅ 𝑈 𝑛

LO (4.33a)

𝜙+𝑛,𝑚 (𝑡) = 2𝜋𝑡𝑛𝑓LO + 𝜋𝑚𝑊RO𝑇M
𝑡2 + 2𝜋𝑡𝑚𝑓RO (4.33b)

𝜙−𝑛,𝑚 (𝑡) = 2𝜋𝑡𝑛𝑓LO − 𝜋𝑚𝑊RO𝑇M
𝑡2 − 2𝜋𝑡𝑚𝑓RO . (4.33c)

Summarised, the transmit signal 𝑠 (𝑡) constitutes of multiple FMCW signals, which operate
at different frequency ranges and have different bandwidths. Figure 4.8 shows the frequency-
time diagram of the transmit signal for the non-linearity degrees 𝑀 = 6 and 𝑁 = 3. The
highlighted area and the coloured ramps indicate the operational bandwidth of the radar system
and the actually transmitted ramps.

Non-linear Static Device Model

In order to derive a device model, the received baseband signal has to be analysed, while
considering the transmit signal model and the propagationmodel in conjunction with the system
architecture. As system architecture, the stretch processing receiver depicted in Fig. 4.2 is
considered. Accordingly, the (real-valued) baseband signal is

𝑥 (𝑡) = ∫𝑡+𝑇
𝑡 𝑠 (𝑡′) ⋅ [𝑠 (𝑡′) ∗ℎ (𝑡′)] 𝑑𝑡′ , (4.34)

with ℎ (𝑡) denoting the transfer function of the propagation channel, and 𝑇 the integration time
of the low-pass filter. The propagation channel constitutes of the superposition of 𝑃 propagation
paths, which can be modelled in time domain as (see Section 3.2)

ℎ (𝑡) = 𝑃
∑𝑝=1 𝛾𝑝 ⋅ 𝛿 (𝑡 − 𝜏𝑝) . (4.35)
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The approximate baseband signal is given by (see APPENDIX C.2 for the derivation)

𝑥 (𝑡) ≈ ∑𝑝
𝛾𝑝2 ⋅ ∑𝑛1 ∑𝑚1 ∑𝑛2 ∑𝑚2

𝑐𝑛1,𝑚1 ⋅ 𝑐𝑛2,𝑚2 ⋅ cos(𝜙+𝑛1,𝑚1 (𝑡) − 𝜙+𝑛2,𝑚2(𝑡 − 𝜏𝑝))
+ ∑𝑝

𝛾𝑝2 ⋅ ∑𝑛1 ∑𝑚1 ∑𝑛2 ∑𝑚2
𝑐𝑛1,𝑚1 ⋅ 𝑐𝑛2,𝑚2 ⋅ cos(𝜙−𝑛1,𝑚1 (𝑡) − 𝜙−𝑛2,𝑚2(𝑡 − 𝜏𝑝)) (4.36)

According to the summation indices, the baseband signal constitutes of the superposition of
auto- and cross-terms.

Auto-Terms For the auto-terms (𝑚 = 𝑚1 = 𝑚2, 𝑛 = 𝑛1 = 𝑛2) the baseband signal re-
duces to

𝑥 (𝑡) ≈ ∑𝑝
𝛾𝑝2 ∑𝑛 ∑𝑚 𝑐2𝑛,𝑚 cos (𝜙+𝑛,𝑚 (𝑡) − 𝜙+𝑛,𝑚(𝑡 − 𝜏𝑝))

+ ∑𝑝
𝛾𝑝2 ∑𝑛 ∑𝑚 𝑐2𝑛,𝑚 cos (𝜙−𝑛,𝑚 (𝑡) − 𝜙−𝑛,𝑚(𝑡 − 𝜏𝑝)) (4.37)

with the phase differences

𝜙+𝑛,𝑚 (𝑡) − 𝜙+𝑛,𝑚 (𝑡 − 𝜏𝑝) = 2𝜋𝜏𝑝𝑛𝑓LO + 𝜃𝑛,𝑚 (𝑡, 𝜏𝑝) (4.38a)𝜙−𝑛,𝑚 (𝑡) − 𝜙−𝑛,𝑚 (𝑡 − 𝜏𝑝) = 2𝜋𝜏𝑝𝑛𝑓LO − 𝜃𝑛,𝑚 (𝑡, 𝜏𝑝) . (4.38b)

The resulting beat frequency at the stretch processor output is given by the derivative of the
above phase terms.

𝑓b = |± 12𝜋 𝜕𝜕𝑡𝜃𝑛,𝑚 (𝑡, 𝜏𝑝)| = 𝑚𝑊RO𝑇M
𝜏𝑝 (4.39)

Consequently, each delay 𝜏𝑝 causes multiple beat frequencies, which depend on the non-
linearity degree 𝑚 of the RO signal multiplier.

Cross-Terms Focusing the cross-terms (𝑚1 ≠ 𝑚2, 𝑛1 ≠ 𝑛2) the resulting beat frequency
of the baseband signal is

𝑓b (𝑡) = ± (𝑛1 − 𝑛2) 𝑓LO ± 𝑚2 𝑊RO𝑇M
𝜏𝑝 ± (𝑚1 − 𝑚2) 𝑓RO ± (𝑚1 − 𝑚2) 𝑊RO𝑇M

𝑡 . (4.40)

As the resulting beat frequency depends on the time 𝑡 it undergoes variations over time. Only a
small portion will remain in the baseband, if the beat frequency exceeds the cut-off frequency
of the low-pass filter. Hence, the cross-terms occur as short-time distortions, e.g. ramps with
different and intersecting slopes. Because the cross-term beat frequency depends on the centre
frequency of the RO and LO signal, which are much higher than the cut-off frequency of the
low-pass filter, the cross-term have a minor influence on the baseband signal and therefore can
be assumed as negligible.
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Figure 4.9: Centre frequencies of the FMCW signals which cause the respective beat frequency peaks.
The colours correspond to the colours of the FMCW ramps in Fig. 4.8.

Summarised, the baseband signal constitutes of multiple beat frequencies for each target. This
is caused by the multiple FMCW signals, which are due to the non-linear multipliers of the
signal generator. Accordingly, a model for the baseband in case of 𝑃 targets is

𝑥 (𝑡) = 𝑃
∑𝑝=1 𝛾𝑝 ⋅ 𝑀

∑𝑚=1 𝑐𝑚 ⋅ cos(𝑚𝑊RO𝑇M
𝑡𝜏𝑝 + 𝜙𝑚) , (4.41)

with 𝑐𝑚 the power series coefficients, which are related to the non-linearity of the RO and LO
multiplier. The phase term 𝜙𝑚 accounts for all yet unconsidered phase variations for each beat
frequency.

Model Order and Degrees of Non-linearity The degrees of non-linearity 𝑀 and 𝑁 (i.e.
the order of the power series device models) have to be known, because they determine the
number of observed ghost targets. Basically, they depend on the degree of the non-linearity
of the multipliers, which are unknown in advance. According to the transmit signal model in
equation (4.32), the generated FMCW signals feature different frequency ranges. Due to the
passband characteristic of the radar system, caused by e.g. the antennas or amplifiers, these
frequency ranges are differently attenuated. Hence, the radar system transmits only a subset
of the generated FMCW signals. This subset of transmitted FMCW signals can be identified
from calibration measurements. The transmitted FMCW signals and their corresponding peaks
in the range profile are depicted in Fig. 4.9. Accordingly, the non-linearity degrees have been
determined to be 𝑁 = 3 and 𝑀 = 6.
Estimation of Power Series Coefficients Consider a single target. Then, the complex-
valued baseband signal is

𝑥 (𝑡) = 𝛾 ⋅ 6
∑𝑚=2 𝑐𝑚 ⋅ exp{𝚥2𝜋𝑚𝑊RO𝑇M

𝑡𝜏} . (4.42)

Note, that 𝑐𝑚 is complex-valued in order to account for the phase term 𝜙𝑚: 𝑐𝑚 = |𝑐𝑚| exp{𝚥𝜙𝑚}.
The complex path weight 𝛾 accounts for the propagation attenuation given by the radar
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equation [Sko90] and for remaining phase variations [Ric13].

𝛾 (𝑓c, 𝑊) = √ 1(4𝜋)3 𝑓c2𝑐02𝜏4 ⋅ 𝜉 ⋅ exp{−𝚥2𝜋𝑓c𝜏} ⋅ exp{𝚥𝜋 𝑊𝑇M
𝜏2} (4.43)

Because each generated FMCW signal operates at a different frequency range, attenuation and
phase variation due to propagation differ. Hence, a separate path weight has to be considered
for each beat frequency.

A model for the observation of 𝐾 data samples, which are stacked in vector 𝐲 ∈ ℂ𝐾 is

𝐲 = 𝐄 (𝜏) ⋅ diag {𝛄} ⋅ 𝐜 + 𝐰 . (4.44)

The respective matrix and vectors are given by

𝐄 (𝜏) = exp{𝚥2𝜋𝑊RO𝑇M
𝜏𝑇S ⋅ 𝐤 ⋅ 𝐦T} (4.45a)

𝛄 =
⎡⎢⎢⎢⎢⎣

𝛾 (3𝑓LO − 2𝑓RO, 2𝑊RO)𝛾 (2𝑓LO + 3𝑓RO, 3𝑊RO)𝛾 (2𝑓LO + 4𝑓RO, 4𝑊RO)𝛾 (2𝑓LO + 5𝑓RO, 5𝑊RO)𝛾 (2𝑓LO + 6𝑓RO, 6𝑊RO)

⎤⎥⎥⎥⎥⎦
(4.45b)

𝐜 = [𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6]T . (4.45c)

The operator diag {𝛄} forms a diagonal matrix from the entries of vector 𝛄, and 𝐦 = [2, … , 6]T
and vector 𝐤 = [0, … , 𝐾 − 1]T. Vector 𝐰 accounts for the additive measurement noise.
Assuming proper complex, white and normally distributed noise, an estimate of the power series
coefficients 𝐜 is given by the best-linear-unbiased estimator (BLUE) [MS00].

̂𝐜 = [𝐄 (𝜏) ⋅ diag {𝛄}]+ ⋅ 𝐲 (4.46)

Exemplary measurements with two corner reflectors as targets, which are placed at different
distances apart from the radar and featuring different radar cross section (RCSs), are considered
now. From the first measurement in Fig. 4.10(a), the power series coefficients are estimated.
The estimated coefficients and the knownmeasurement setup (target distance and RCS) are used
to reconstruct the range spectrum of the second measurement, which is shown in Fig. 4.10(b).
A good match of the peak height and peak position between measurement and model can be ob-
served. However, the peak width does not match to the measurements. The peak width indicates
the presence of dynamic effects in the system, which occur due to the frequency dependence
of e.g. power amplifiers, transmission lines, splitters etc. [Sch09]. Frequency dependence or
dynamic effects also indicate memory effects, hence the dependence of the output to the history
of the input. Last, the peak width varies for each beat frequency, because the corresponding
FMCW signals are at different frequency ranges and therefore undergo different variations of
the radar system response.

Summarised, the power series model properly describes the occurrence of ghost targets, i.e.
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Figure 4.10: Range profile of two example measurements (target parameters: (a) 0.8m, 0.45 dBsm and
(b) 1.6m, 0.45 dBsm) compared to the reconstructed range profile according to the static
power series model for (a) estimation and (b) reconstruction. [5]

multiple beat frequencies for a single target. The previously introduced term ”ghost targets”
for the parasitically occurring beat frequencies is slightly misleading, because they are caused
by the same target but are due to multiple transmit signals with different bandwidths. Hence, a
more appropriate term would be beat frequency harmonics. The power series model is a non-
linear static device model, such that system dynamics due to the frequency dependence of radar
system components are not accounted for. Hence, a non-linear dynamic system model becomes
necessary in order to properly incorporate the transfer characteristics of the radar system.

Advanced Radar Device Model

The joint consideration of dynamics and non-linearities in modelling of feedback-free systems
can be accomplished by Volterra or Wiener theory [Nel01, Sch80]. Both theories describe the
expansion of a non-linear functional (e.g. an input-output relation of a system) into a functional
series, whereas memory or dynamic effects are accounted for. The truncated Volterra series for
a non-linear, time-invariant, SISO system with linear memory is [Sch09]

𝑥out (𝑡) = 𝑁
∑𝑛=0 ∫∞

−∞ … ∫∞
−∞ 𝑔𝑛 (𝜏1, … , 𝜏𝑛) 𝑛

∏𝑖=1 𝑥in (𝑡 − 𝜏𝑖) 𝑑𝜏𝑖 , (4.47)

with 𝑔𝑛 (𝜏1, … , 𝜏𝑛) the 𝑛-th Volterra kernel and 𝑁 the truncation order of the series.
Estimation of theVolterra kernels is complicated and requiresmultiplemeasurements [Sch80].

Therefore, simplifications with reduced effort are commonly employed [Nel01]. Assume, that
the non-linearity and the dynamics are separable, the Volterra kernels are zero along their off-
diagonals [Sch09].

𝑔𝑛 (𝜏1, … , 𝜏𝑛) = {𝑔𝑛 (𝜏) 𝜏 = 𝜏1 = … = 𝜏𝑛0 otherwise
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𝑤RO(𝑡) 𝑎1 ⋅ (•)1 + ⋯ + 𝑎6 ⋅ (•)6

× 𝑔Tx(𝑡)
𝑤LO(𝑡) 𝑏1 ⋅ (•)1 + ⋯ + 𝑏3 ⋅ (•)3 𝑔S(𝑡) ℎ(𝑡)

𝑥(𝑡) × 𝑔Rx(𝑡)
Figure 4.11: Radar device model with Hammerstein model at passband domain. [5]

Plugging into equation (4.47) yields the generalised Hammerstein series.

𝑥out (𝑡) = 𝑁
∑𝑛=0 ∫∞

−∞ 𝑔𝑛 (𝜏) ⋅ 𝑥𝑛
in(𝑡 − 𝜏) 𝑑𝜏 = 𝑁

∑𝑛=0 𝑔𝑛 (𝑡) ∗𝑥𝑛
in (𝑡) (4.48)

System 𝑔𝑛 (𝑡) denotes a LTI system. The Hammerstein series describes a Hammerstein model,
which models the system as a serial cascade of two subsystems: a static, non-linear system
followed by a dynamic, linear system [Hab99, Sch09]. The static, non-linear subsystem is
described by a power series; whereas the dynamic, linear subsystem is a LTI system. If different
LTI systems are considered for different powers as in equation (4.48), the model is called
generalised Hammerstein model [Hab99]. The generalised Hammerstein modelling approach
is closely related to the power series approach, where the series coefficients are time-variant.
Separating the generalised Hammerstein model explicitly in the power series and LTI system
model yields

𝑥out (𝑡) = 𝑁
∑𝑛=0 𝑔𝑛 (𝑡) ∗ [𝑐𝑛 ⋅ 𝑥𝑛

in (𝑡)] . (4.49)

Subsequently, the Hammerstein model structure will be considered to describe the radar system
at passband and baseband domain.

Hammerstein Model at Passband A Hammerstein model at passband domain is given by
combining the power series model and the model in Section 4.2.1, which accounts for occurring
system dynamics at passband level. The model structure is shown in Fig. 4.12. This model
structure has a physical interpretation, because themodel components can be related to hardware
components and their behaviour in the real system. However, the measurements are at baseband
domain such that the Hammerstein model in passband domain is hard to identify. Therefore, a
baseband model, which equivalently describes the behaviour of the system, is necessary.

Generalised Hammerstein Model at Baseband An equivalent basebandmodel is defined
as a model which results in the same baseband signal as the passband model would. In
order to transform the passband model in Fig. 4.11 into an equivalent baseband representation,
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𝑤RO(𝑡)
×

𝑤LO(𝑡) ℎ(𝑡)
𝑔2(𝑡) 𝑐2 ×2 ×

𝑥(𝑡) + ⋮ ⋮
𝑔6(𝑡) 𝑐6 ×6

Figure 4.12: Radar device model with generalised Hammerstein model at baseband. [5]

several considerations have to be taken into account. First, the non-linearities at transmitter
passband can be equivalently represented by non-linearities at receiver baseband, because
only contributions of the auto terms of the multiple generated FMCW signals are considered
at baseband, and cross terms are neglected. Second, the generated FMCW signals are at
different frequency ranges (see Fig. 4.8) and therefore are influenced by different parts of the
radar transfer function at passband. Hence, each beat frequency at baseband is affected by a
different system dynamic. Last, the different system dynamics are assumed to be related to
non-intersecting parts of the radar transfer function at passband. Hence, the system dynamics
can be modelled independently. Summarised, an equivalent representation of the Hammerstein
model at passband is given by a generalised Hammerstein model [Hab99] at baseband. The
corresponding block chart is shown in Fig. 4.11. Disadvantageously, a generalisedHammerstein
model features more unknown parameters than the Hammerstein model [Nel01].

According to [9], a convolution at passband simplifies to a multiplication in baseband for
FMCW radars with stretch processor receiver architecture. The output of the generalised
Hammerstein model in the complex baseband is

𝑥 (𝑡) = 6
∑𝑚=2 𝑐𝑚 ⋅ 𝛾𝑚 ⋅ 𝑔𝑚 (𝑡) ⋅ exp{𝚥2𝜋𝑚𝑊RO𝑇M

𝑡𝜏} . (4.50)

Estimation of the Hammerstein model will be divided into the estimation of the power series
coefficients 𝑐𝑚 (i.e. identification of the static, non-linear subsystem) and determination of
the LTI systems 𝑔𝑚 (𝑡) (i.e. identification of the dynamic, linear subsystem). The power series
coefficients are estimated by the BLUE approach from the previous section. Knowing the power
series coefficients the input signal 𝑧𝑚 (𝑡) to each LTI system 𝑔𝑚 (𝑡) (i.e. the 𝑚-th dynamic, linear
subsystem) is

𝑧𝑚 (𝑡) = 𝑐𝑚 ⋅ 𝛾𝑚 ⋅ exp{𝚥2𝜋𝑚𝑊RO𝑇M
𝑡𝜏} . (4.51)
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The sum of the outputs 𝑧𝑚 (𝑡) of all 𝑀 LTI systems is the baseband signal 𝑥 (𝑡), such that a
multiple input single output (MISO) system is given [Nel01]. Hence, the data model for a noisy
radar observation 𝑦 (𝑡) is

𝑦 (𝑡) = 𝐠 (𝑡)T ⋅ 𝐳 (𝑡) + 𝑤 (𝑡) , (4.52)

with 𝐠 (𝑡) = [𝑔2 (𝑡) , … , 𝑔6 (𝑡)]T the vector of LTI system responses, 𝐳 (𝑡) = [𝑧2 (𝑡) , … , 𝑧6 (𝑡)]T
the vector of input signals and 𝑤 (𝑡) the proper complex, normally distributed measurement
noisy. Estimation of the vector 𝐠 (𝑡) from the output 𝑦 (𝑡) while knowing the input 𝐳 (𝑡) equals
the identification of a MISO system with p-canonical model structure [Nel01]. The data model
for 𝐾 observed samples is

𝐲 = 6
∑𝑚=2 𝐳𝑚⊙𝐠𝑚 + 𝐰 , (4.53)

with vectors 𝐲, 𝐳𝑚, 𝐠𝑚 ∈ ℂ𝐾. The vectors contain the samples of the 𝑚-th beat frequency signal𝐳𝑚 = [𝑧𝑚 (0) , … , 𝑧𝑚 ((𝐾 − 1)𝑇S)]T, and 𝐠𝑚 = [𝑔𝑚 (0) , … , 𝑔𝑚 ((𝐾 − 1)𝑇S)]T the samples of
the corresponding system dynamic.

Summarised, the generalised Hammerstein model at baseband describes the response of the
radar system as a MISO system of multiple LTI systems. Each LTI system gets a unique input
signal, which is given by a harmonic of the respective beat frequency signal. Identification of
the LTI systems 𝑔𝑚 (𝑡) can be accomplished in frequency or time domain by separation technique
or parametric modelling, respectively.

Frequency Domain Separation All beat frequencies and their respective system
dynamic are superimposed in time domain. Taking the Fourier transform of equation (4.50)
yields the spectrum 𝑌 (𝑓).

𝑦 (𝑡) ❞ t 𝑌 (𝑓) = 6
∑𝑚=2 𝑐𝑚 ⋅ 𝛾𝑚 ⋅ 𝐺𝑚 (𝑓 − 𝑚𝑊RO𝑇M

𝜏) + 𝑊 (𝑓) (4.54)

The system dynamics are differently shifted in frequency domain according to their respective
beat frequency. Assuming, that the dynamics do not superimpose in frequency domain (the
peaks do not overlap), they can be separated by gating. A window function has to be determined
for gating, i.e., the window type and the window width has to be selected. Also, the windows
should be selected such that the complete spectrum part, which is occupied by the beat frequency
components, is captured. AHann window function with an overlapping of 50% percent between
neighbour windows will be used to separate the system dynamics. The window functions are
depicted in Fig. 4.13. Due to the window overlapping, the spectrum part with the beat frequency
dynamics is completely captured. The estimated system dynamics are depicted in Fig. 4.14.
The contribution of the dynamic of each beat frequency to the time domain measurement signal
becomes obvious. In [21] the problem of multiple occurring beat frequencies has been tackled
by limiting the time domain signal to the range of approx. 0.4ms to 0.75ms (correspondingly
limiting the bandwidth). As a consequence, all parasitic beat frequencies were suppressed,
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Figure 4.13: Window functions to separate the system dynamics in frequency domain. The colours
indicate the respective beat frequency (see Fig. 4.9) for which the window is applied. The
black dashed line indicates the overall window function, resulting from the superposition
of all window functions.

0 0.2 0.4 0.6 0.8 1
−80
−60
−40

time [ms]

m
ag

ni
tu
de

[dB ]

0.5 1
−40
−20

0

range [m]

m
ag

ni
tu
de

[dB ]
Measurement 𝑓LO − 2𝑓RO 2𝑓LO + 3𝑓RO2𝑓LO + 4𝑓RO 2𝑓LO + 5𝑓RO 2𝑓LO + 6𝑓RO

(a) (b)

Figure 4.14: Estimated system dynamics of each beat frequency in (a) time and (b) frequency domain.
The dynamics were estimated by gating in frequency/range domain using the Hann window
sequence depicted in Fig. 4.13. The coloured lines indicate the respective beat frequencies,
influenced by their respective dynamics.

because their contributions are low in this signal part as visible in Fig. 4.14(a).
Drawback of the gating approach is, that it is not a hands-on solution. For varying calibration

scenarios the gating windows must be always adjusted accordingly. Furthermore, the estimated
dynamics are confounded by the power series coefficients and the path weights, such that
separation in post-processing is necessary. Therefore, an approach who directly solves the
MISO identification problem is to favour.

Time Domain Parametric Model Because 5 beat frequencies were previously
identified as significant, 5𝐾 samples would be necessary to estimate the system dynamic for
all beat frequencies. However, if only one calibration measurement is taken into account, more
unknowns than number of measurements would be present. Hence, a parametric model with a
fewer number of parameters is required, in order to get a unique estimation result.
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A parametric model for a system dynamic 𝑔 (𝑡) can be given by the rational form [PS01]

𝑔 (𝑡) = 𝑣0 + ∑𝐷𝑟=1 𝑣𝑟 ⋅ 𝜔𝑟 (𝑡)1 + ∑𝐹𝑟=1 𝑓𝑟 ⋅ 𝜔𝑟 (𝑡) , (4.55)

with model parameters (coefficients) 𝑣𝑟, 𝑓𝑟 ∈ ℂ and function 𝜔 (𝑡) = 𝚥2𝜋𝑡. Accounting for
the superposition of multiple beat frequencies, each one described by a different LTI system, a
MISO output-error model can be given [Nel01].

𝑦 (𝑡) = 6
∑𝑚=2 𝑧𝑚 (𝑡) ⋅ 𝑣0,𝑚 + ∑𝑉𝑚𝑟=1 𝑣𝑟,𝑚 ⋅ 𝜔𝑟 (𝑡)

1 + ∑𝐹𝑚𝑟=1 𝑓𝑟,𝑚 ⋅ 𝜔𝑟 (𝑡) + 𝑤 (𝑡) = 6
∑𝑚=2 𝑧𝑚 (𝑡) ⋅ 𝛚𝑉𝑚 (𝑡)T ⋅ 𝐯𝑚1 + 𝛚𝐹𝑚 (𝑡)T ⋅ 𝐟𝑚 + 𝑤 (𝑡)

(4.56)

The corresponding vectors of model parameters are

𝐯𝑚 = [𝑣0,𝑚, … , 𝑣𝑉𝑚,𝑚]T ∈ ℂ𝑉𝑚+1 (4.57a)𝛚𝑉𝑚 (𝑡) = [1, 𝜔1 (𝑡) , … , 𝜔𝑉𝑚 (𝑡)]T ∈ ℂ𝑉𝑚+1 (4.57b)𝐟𝑚 = [𝑓1,𝑚, … , 𝑓𝐹𝑚,𝑚]T ∈ ℂ𝐹𝑚 (4.57c)𝛚𝐹𝑚 (𝑡) = [𝜔1 (𝑡) , … , 𝜔𝐹𝑚 (𝑡)]T ∈ ℂ𝐹𝑚 . (4.57d)

The best suited numbers of numerator 𝑉1, … , 𝑉𝑀 and denominator 𝐹1, … , 𝐹𝑀 coefficients,
and the corresponding model parameters 𝐯1, … , 𝐯𝑀, 𝐟1, … , 𝐟𝑀 have to be estimated from the
calibration measurement. This, however, is a system identification problem. Estimation of the
model parameters can be accomplished by maximum-likelihood (ML) estimation, where the
square error between measurements and model is minimised [PS01]. Minimising the square
error w.r.t. the numbers of coefficients is not practicable, because an increase of the model
complexity always reduces the square error [PS01]. Hence, a more sophisticated criterion is
necessary to validate the parameter estimates in conjunction with the numbers of coefficients.

The minimum description length (MDL) [PS01], which defines a trade-off between model
accuracy (sum of squared errors) and model complexity (number of parameters), will be used as
validation criterion. In order to jointly estimate the best suited numbers of coefficients and the
corresponding model parameters, the MDL has to be minimised. Because minimisation of the
MDL w.r.t. all unknowns is computationally cumbersome due to the high dimensionality of the
problem, a sequential optimisation approach will be used. For given numbers of coefficients
the model parameters are estimated and the MDL is calculated. Subsequently the MDL is
minimised subject to the numbers of coefficients.

̂𝐯1, … , ̂𝐯𝑀̂𝐟1, … , ̂𝐟𝑀 = arg min𝑉1, … , 𝑉𝑀𝐹1, … , 𝐹𝑀

⎧⎪⎨⎪⎩
ln (2𝐾) 6∑𝑚=1 (𝐹𝑚 + 𝑉𝑚) + arg min𝐯1, … , 𝐯𝑀𝐟1, … , 𝐟𝑀

𝐾−1∑𝑘=0 |𝑦 (𝑘𝑇S) − 6∑𝑚=2 𝑧𝑚 (𝑘𝑇S) 𝛚𝐹𝑚(𝑘𝑇S)T𝐯𝑚1+𝛚𝑉𝑚(𝑘𝑇S)T𝐟𝑚 |
2⎫⎪⎬⎪⎭

(4.58)

The genetic algorithm from MatLab® global optimisation toolbox (Version 4.0) is used to
minimise the MDL subject to the numbers of coefficients, whereas the output-error model
function fromMatLab® system identification toolbox (Version 9.9) is used to estimate themodel
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Figure 4.15: Range profile of two example measurements (target parameters: (a) 0.8m, 0.45 dBsm
and (b) 1.6m, 0.45 dBsm) compared to the reconstructed range profile according to
the Hammerstein model at baseband. The remaining signal remains from the coherent
subtraction of the reconstruction from the measurement.

parameters for given numbers of coefficients. For unique parameter identification, the number
of coefficients has to fulfil

6
∑𝑚=2 5𝐹𝑚 + 𝑉𝑚 ≤ 𝐾 , (4.59)

which has to be considered as a constraint in the optimisation. Furthermore, integer optimisation
can be applied, because the numbers of coefficients are 𝑉1, … , 𝑉𝑀, 𝐹1, … , 𝐹𝑀 ∈ ℕ.

Model Calibration and Verification Figure 4.15(a) shows the range spectrum of the
measurement, which is used to calibrate the proposed device model. Also, the range spectrum,
calculated from the output of the calibrated device model, is shown too. A good match is visible
which indicates, that the proposed device model properly describes the signal generation and
transfer characteristics of the system.

For verification purpose, the calibrated Hammerstein model will be incorporated in an
estimator. The ML estimator presented in [21] will be used, which estimates the complex
weight 𝛾 and delay 𝜏 for each target. The device model of the radar system is incorporated
in the estimator by extending the objective function accordingly.

𝛕̂, 𝛄̂ = arg min𝛕,𝛄 ‖𝐲 − 6
∑𝑚=2 𝑐𝑚 ⋅ 𝐠𝑚⊙ 𝑃

∑𝑝=1 𝛾𝑚,𝑝 ⋅ 𝐞𝑚 (𝜏𝑝)‖
2

Vector 𝐞𝑚 (𝜏𝑝) represents the harmonic according to the 𝑚-th beat frequency for delay 𝜏𝑝. The
optimisation scheme presented in Section 5.3 is used to minimise the non-convex objective
function subject to the parameters. The measured and reconstructed range profile, calculated
from the estimation results and the data model, is shown Fig. 4.15(b). A good match of the
reconstructed and measured range profile is obvious. Also, the remaining range profile is noise
like, indicating a good match of measurement and reconstruction.

73



4 DEVICE MODEL – MODELLING OF THE RADAR SYSTEM

0.5 1
−40
−20

0

range [m]

m
ag

ni
tu
de

[dB ]

0.5 1 1.5 2 2.5
−40
−20

0

range [m] 1 2
−40
−20

0

range [m]

Measurement Reconstruction Remaining

(a) (b) (c)

Figure 4.16: Results for synthetic dual target data (target parameters: (a) 0.8m, −10 dBsm and (b) 1.6m,
−10 dBsm). The plots show the measured, reconstructed and remaining range profiles for
(a) the first target, (b) the second target and (c) the dual targets.
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Figure 4.17: Deployed radar system (a) and corner reflectors (b) in the anechoic chamber. [5]

Synthetic Data The proposed radar system model will be verified with measurements
featuring a two target setup. The measurement is synthetically constructed by superimposing
two single target measurements. The measurement was synthetically generated in order to
check, how well the estimator in conjunction with the radar model can predict the two single
target measurements. In both measurements, the target RCS was −10 dBsm, and the targets
were placed at 0.8m and 1.6m, respectively. The measured range profile and the reconstructed
range profile from the parameter estimates are depicted in Fig. 4.16. Obviously, the estimator
is able to estimate the single target measurements. Furthermore, the remaining signal features
no significant components and only noise remains. Hence, the ghost targets are successfully
mitigated by the parameter estimator in conjunction with the device model.

Measured Data The proposed radar device model will be verified by measurements
with multiple corner reflectors to set up multi-target scenarios. Pictures of the radar system and
the deployed corner reflectors are shown in Fig. 4.17. Sequentially, three corner reflectors with
varying RCS and distance are placed in front of the radar system, see Tab. 4.2 for a summary.
Targets with a huge RCS are deployed, such that the ghost targets are properly present in order
to verify the radar system model. As radar system the MIMO radar presented in [2] has been
used, whereas only one channel has been captured and processed. The radar bandwidth and
sweep time was set to 16GHz and 1ms, respectively. The scenario with a single target has been
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Table 4.2: Ranges, ghost ranges and of deployed targets; and estimated target ranges

Deployed range [m] Ghost ranges [m] RCS [dBsm] Estimated range [m]
3 1.52, 2.28 and 3.81 15.8 3.05
3 1.50, 2.25 and 3.75 15.8 3.05

3.81 1.91, 2.86 and 4.77 -10 3.82
2.87 1.44, 2.15 and 3.59 7 2.87
3.6 1.81, 2.73 and 4.52 -10 3.61
4.37 2.19, 3.28 and 5.46 7 4.37
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Figure 4.18: Measured, reconstructed and remaining range profiles for the (a) two target and (b) three
target scenario. The maximum-likelihood parameter estimator in conjunction with the
device model is used for the reconstruction. The loosely dashed lines indicate the range of
the deployed targets. [5]

used to calibrate the radar device model, and the number of maximal occurring harmonics per
target was found to be 𝑀 = 5.

The measured, reconstructed and remaining range profile for the two and three target scenario
are depicted in Fig. 4.18. First, the scenario with two targets will be considered. Obviously,
the estimator is able to detect and separate the two targets properly and jointly mitigates the
ghosts, such that the remaining range profile is noise like. Second, the three target scenario will
be considered. Again, the parameter estimator in conjunction with the radar model properly
detects all targets and mitigates the ghosts, such that the remaining range profile is noise like.

Last, the usability of the radar model for high-resolution will be verified. Therefore, a meas-
urement with two targets of equal RCS and a separation of 12mm is conducted. The measured
range profile is shown in Fig. 4.19(a). According to the transmit signal bandwidth of 16GHz
the range resolution should be 9.4mm. However, due to the transceiver characteristic of the ra-
dar, the bandwidth is not preserved and the range resolution is degenerated to approx. 15mm.
Hence, the target separation is below the Rayleigh resolution limit and the targets cannot be dis-
tinguished in the range profile, because only one peak is clearly visible. The parameter estimator
in conjunction with the device model is able to resolve both targets, hence the radar model in
conjunction with the ML estimator is suitable to achieve high-resolution. This is furthermore
indicated by the proper fit of the measured and reconstructed range profile in Fig. 4.19(a). The
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Figure 4.19: Measured and model-based reconstructed range profile for measurements with two targets.
The target ranges are indicated by loosely dotted lines. The targets are separated by approx.
(a) 12mm and (b) 18mm. The range resolution of the radar is approx. 15mm, such that the
targets cannot be distinguished in the range profile in (a). The estimator properly detects
and separates the targets in both cases, hence achieves a resolution better than the Rayleigh
resolution,i.e., high-resolution.

same measurement has been repeated with a target separation of 18mm. The results are de-
picted in Fig. 4.19(b). Two peaks are clearly visible, such that the targets are separable by the
range resolution of the radar. Also, the targets are detected and separated properly.

Summarised, a ML estimator in conjunction with the new radar device model properly
detects the true targets and jointly mitigates the ghost targets. This has two advantages i) an
overestimation of the number of targets is circumvented as the ghost targets are mitigated, and
ii) targets hidden by ghost targets are detected. Hence, the estimator is robust in terms of target
detection.
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4.3 Antennas and Arrays of Antennas –
Definition and Modelling

Estimation of direction, i.e. angles, of impingement and radiation will be accomplished by
employing antenna arrays at Tx and Rx side. Hence, a MIMO system is employed. Exact
knowledge of the array response is important for the direction estimation [7, Nai09, TF09]. As
stated in literature, the antenna and array response depends on the direction, as well as on the
polarisation of excitation [23, LKT12]. Furthermore, the array response is frequency dependent
for wideband applications as e.g. for large signal bandwidths. Summarised, the array response
has to be known in angular, polarisation and frequency domain. In this section wideband and
narrowband modelling of the response of antennas and arrays of antennas are discussed for the
purpose of direction estimation. Furthermore, the topology of a MIMO system is discussed too,
whereas the case of co-located and distributed MIMO systems will be distinguished.

4.3.1 Modelling of the Antenna Output

Antennas will be described by means of a behavioural modelling approach. They will be
considered as a linear time-invariant systems with a finite impulse response duration [WAS09].
The response of an antenna depends on the direction of impingement/radiation and polarisation
of the impinging/radiated EMW. Direction and polarisation are vector quantities, whose
definition necessitates a coordinate system. The Cartesian and spherical coordinate systems (see
Fig. 3.1) can be considered therefore. It is convenient to describe the polarisation and direction
of radiation of an EMW from an antenna in terms of spherical coordinates, because the number
of required parameters is reduced compared to the number of parameters for a description in
Cartesian coordinates. Hence, the characteristic of an antenna will be described in terms of the
angles 𝜑 and 𝜗, and polarisation vector 𝐪 = [𝑞φ, 𝑞ϑ]T.

Consider a transmit antenna. The electric field E⃗ at distance 𝑅 from the antenna, at radiation
direction 𝛋Tx and excitation signal 𝑆 (𝑓) is given in [WAS09].

E⃗ (𝛋Tx, 𝑓) = 𝚥2𝜋𝑓 ⋅ 𝑆 (𝑓) ⋅ √ 𝑍0𝑍Tx (𝑓) ⋅ 𝑒𝚥2𝜋𝑓 𝑅𝑐02𝜋𝑅𝑐0 ⋅ 𝐡Tx (𝛋, 𝑓) ⋅ 𝛿 (𝛋 − 𝛋Tx) (4.60)

Vector 𝐡Tx (𝛋, 𝑓) = [𝐻Tx (𝛋, 𝑓, 𝑞φ) , 𝐻Tx (𝛋, 𝑓, 𝑞ϑ)]T is the polarimetric radiation pattern
of the transmit antenna. It is the response of the antenna w.r.t. two EMWs of orthogonal
polarisations 𝑞ϑ and 𝑞φ. The impedances 𝑍0 and 𝑍Tx (𝑓) are the impedance of a plane wave in
free space and the transmit antenna impedance, respectively. The phase is related to the phase
centre of the antenna, from where the wave is assumed as radiated. Note, that 𝐡Tx (𝛋, 𝑓) is a
short hand notation for 𝐡Tx (𝜑, 𝜗, 𝑓).

Assume an EMW impinging under direction 𝛋Rx at a receive antenna. The antenna output𝑋 (𝛋Rx, 𝑓) is given by the polarimetric radiation pattern𝐡Rx (𝛋, 𝑓) = [𝐻Rx (𝛋, 𝑓, 𝑞φ) , 𝐻Rx (𝛋, 𝑓, 𝑞ϑ)]T
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of the receive antenna, weighted with the electric field E⃗ (𝛋, 𝑓) at the receive antenna [SW05].

𝑋 (𝛋Rx, 𝑓) = √𝑍Rx (𝑓)𝑍0
⋅ 𝑆 (𝑓) ⋅ (𝐡Rx (𝛋, 𝑓)T ⋅ E⃗ (𝛋, 𝑓)) ⋅ 𝛿 (𝛋 − 𝛋Rx) (4.61)

Impedance 𝑍Rx (𝑓) is the characteristic impedance of the receive antenna. Hence, the antenna
output can be described as the convolution of the electric field vector with the polarimetric
antenna response, sampled at the direction of impingement. For sake of convenience, the
normalised polarimetric array pattern 𝐚Rx (𝛋Rx, 𝑓) and 𝐚Tx (𝛋Tx, 𝑓) at Rx and Tx side are
introduced, respectively.

𝐚Rx (𝛋Rx, 𝑓) = √𝑍Rx (𝑓)𝑍0
⋅ 𝐡Rx (𝛋Rx, 𝑓) = [𝐴Rx (𝛋Rx, 𝑓, 𝑞φ) , 𝐴Rx (𝛋Rx, 𝑓, 𝑞ϑ)]T (4.62a)

𝐚Tx (𝛋Tx, 𝑓) = 𝚥2𝜋𝑓2𝜋𝑐0 ⋅ √ 𝑍0𝑍Tx (𝑓) ⋅ 𝐡Tx (𝛋Tx, 𝑓) = [𝐴Tx (𝛋Tx, 𝑓, 𝑞φ) , 𝐴Tx (𝛋Tx, 𝑓, 𝑞ϑ)]T
(4.62b)

Summarised, the the output of an antenna and the radiated EMW is uniquely described by the
polarimetric response of the antenna 𝐚 (𝛋, 𝑓). The polarimetric response is vectorial to account
for two orthogonal polarisations, whereas each vector entry represents a LTI system.

4.3.2 Description of Antenna Arrays
An array of antennas is a composite of multiple antennas in a geometrical assembly [Bal97],
which share a common reference point and whose feeding or output signals are coherently
processed. The reference point of the array or the array centre is a point in space, typically
chosen as the array’s geometrical centre or centre of gravity. The array centre coincides with the
origin of the spherical coordinate system and the array is described w.r.t. this point. Moreover,
the propagation delay is defined to be the travelling time of the wave from the array geometrical
centre at Tx to the array geometrical centre at Rx.

Array Geometry and Direction-Related Delay

The array geometry is the assembly of the antennas of the array. Several geometries are know,
e.g. planar geometries like uniform linear array (ULA) or uniform rectangular array (URA),
or conformal geometries as uniform circular array or stacked uniform circular array [Kil15].
The array geometry is realised by a mechanical construction or movement of a single antenna.
The array geometry is described by means of a spatial vector 𝐝 for each array antenna [Bal97,
Kil15]. This vector describes the displacement of the phase centre of each antenna from the
reference point of the array, see Fig. 4.20.

The spatial displacement 𝐝 results in a time delay 𝜏 of an impinging/radiating wave w.r.t. the
array reference point. Considering the Fraunhofer approximation, where far field conditions
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Figure 4.20: Spatially displaced sampling at position 𝐝 to transform the direction 𝛋 of impingement into
a delay w.r.t. the coordinate system origin. (Picture adapted from [Hei09b].)

and a plane wave (see Section 3.1.1) are assumed, this delay is given by [Bal97, Kil15]

𝜏 = 1𝑐0𝐝T ⋅ 𝛋 (𝜑, 𝜗) , (4.63)

with 𝛋 (𝜑, 𝜗) the normalised wave vector of the impinging/radiated wave. Accordingly, the
direction of impingement/radiation is mapped into a delay. At receiver side this delay is

𝜏Rx = 1𝑐0𝐝T
Rx ⋅ 𝛋Rx (𝜑Rx, 𝜗Rx) , (4.64)

and at transmitter side this delay is

𝜏Tx = 1𝑐0𝐝T
Tx ⋅ 𝛋Tx (𝜑Tx, 𝜗Tx) . (4.65)

The overall delay due to the spatially displaced sampling at Tx and Rx side is

𝜏 = 1𝑐0 [𝐝T
Rx ⋅ 𝛋Rx (𝜑Rx, 𝜗Rx) + 𝐝T

Tx ⋅ 𝛋Tx (𝜑Tx, 𝜗Tx)] . (4.66)

Summarised, the array geometry relates the direction of radiation 𝛋Tx or direction of
impingement 𝛋Rx into a delay w.r.t. the reference point of the array at transmitter or receiver
side, respectively. This founds the basis for direction estimation with antenna arrays.

Antenna Response in the Array Composite
An antenna array consists of 𝑀 antennas. Each antenna in the array compound is described by
its response 𝐴𝑚 (𝛋, 𝑓, 𝑞), which depends on the direction vector 𝛋, and polarisation 𝑞 being 𝑞φ or𝑞ϑ. Note, that 𝐴𝑚 (𝛋, 𝑓, 𝑞) is now the response of the 𝑚-th antenna in the array composite, and
not the characteristic of the antenna outside of the array! In the array composite, coupling and
crosstalk between the array antennas occur, which change the characteristics of each antenna.

To proceed it will be assumed, that the Fraunhofer approximation holds for the whole array,
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i.e. a plane wave is considered in the far field or to be propagating across the array. Hence, the
delay of the observed wave depends on the displacement 𝐝 of the antenna only and is not related
to the distance 𝑅 of the source or the far field reference point [Kil15]. A criterion to ensure,
that the Fraunhofer approximation holds for the whole array, is [Kil15]

𝑅 ≫ 4𝜅0𝜋 𝐷2 = 8𝐷2𝜆 , (4.67)

with 𝐷 the radius of a sphere, which enclosures the array and whose centre coincides with the
array reference point [Kil15]. Hence, in order to have the most compact representation of the
array regarding the Fraunhofer approximation it is best practise to set the centre of gravity of
the array as the array reference point, such that the sphere becomes smallest.

According to the Fraunhofer approximation the response of the 𝑚-th antenna to a plane wave
from direction 𝛋 (𝜑, 𝜗) is

𝐵𝑚 (𝛋, 𝑓, 𝑞) = 𝐴𝑚 (𝛋, 𝑓, 𝑞) ⋅ exp{−𝚥2𝜋 𝑓𝑐0𝛋T ⋅ 𝐝𝑚} . (4.68)

Because the antenna position 𝐝𝑚 in the array is fixed and the wave vector 𝛋 depends on the
direction only, the delay 𝜏𝑚 (𝛋) = 𝜏𝑚 (𝜑, 𝜗) = 1𝑐0 𝛋T ⋅ 𝐝𝑚 is direction-dependent only. For sake
of convenience the following abbreviation is introduced

𝐵𝑚 (𝛋, 𝑓, 𝑞) = 𝐴𝑚 (𝛋, 𝑓, 𝑞) ⋅ exp{−𝚥2𝜋𝑓𝜏𝑚 (𝛋)} . (4.69)

4.3.3 Modelling of an Antenna Array – Wideband and
Narrowband Array Model

For practical application, realistic data of the antenna array response have to be considered
for modelling, in order to incorporate antenna imperfections and mutual coupling. Typically,
such data can be gained only on a finite measurement or simulation grid [24]. Sampled array
responses in angular and frequency domain are not sufficient as model, as the array response
has to be known at arbitrary sampling points [24, LD04]. Furthermore, storage saving compact
representation of sampled array responses and the efficient reconstruction is quite important.
Thus, an array model is necessary to continuously reconstruct or interpolate the discretised
array responses. Such models can be derived from wave field modelling [DD94, 24]. There, the
sampled responses of each array antenna are decomposed in a sampling matrix and a direction
and frequency dependent basis vector, why this kind of array models are stated as algebraic
array models.

Wideband Array Model
Equation (4.69) is the model of the (wideband) response of an antenna in the array compound.
Stacking the responses of all 𝑀 antennas into a vector yields the array response vector.

𝐛 (𝛋, 𝑓, 𝑞) = [𝐵1 (𝛋, 𝑓, 𝑞) , … , 𝐵𝑀 (𝛋, 𝑓, 𝑞)]T ∈ ℂ𝑀 (4.70)
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The array response vector 𝐛 (𝛋, 𝑓, 𝑞) is a LTI system of multiple input (receiver) or multiple
output (transmitter) ports. Known algebraic models to continuously describe gridded wideband
array data are the scalar spherical harmonics (SSH) with Padé approximation [AW03],
vector spherical harmonics (VSH) with Slepian mode expansion (SME) [DR10], VSH with
singularity expansion method (SEM) [Rob06] or the effective time-aperture distribution
function (ETADF) [24]. Among the other approaches, the ETADF approach is the most
promising one and will be used. The ETADF necessitates more coefficients and therefore does
not provide the most compact description of the data. However, because simple Fourier basis
functions are employed, the numerical complexity is lower compared to e.g. VSH or SSH basis
functions. Furthermore, the first order derivative can be easily calculated.

Narrowband Array Model
Commonly, the narrowband approximation of the array response is used in array signal
processing, see e.g. [Nai09, TF09, Vas+20]. Advantage is the reduced numerical complexity
and the ability to apply numerical efficient algorithms for direction estimation as e.g. the
multiple signal classification (MUSIC) or estimation of signal parameters via rotational
invariance technique (ESPRIT).

Consider a point source in the far field, whose signal impinges as a plane wave at the array
and having centre frequency 𝑓c. Introduce the passband signals ̃𝑠(𝑡) and 𝐛̃ (𝛋, 𝑡, 𝑞) of the source
signal and the array response, respectively.

𝐛̃ (𝛋, 𝑡, 𝑞) = 𝐛 (𝛋, 𝑡, 𝑞) ⋅ exp{𝚥2𝜋𝑓c𝑡} ❞ t 𝐛 (𝛋, 𝑓 − 𝑓c, 𝑞) (4.71a)̃𝑠(𝑡) = 𝑠(𝑡) ⋅ exp{𝚥2𝜋𝑓c𝑡} ❞ t 𝑆 (𝑓 − 𝑓c) (4.71b)

Signal 𝑠(𝑡) and 𝐛 (𝛋, 𝑞, 𝑡) are the respective complex envelops. The array output 𝐱(𝑡) at baseband
is given by the convolution of the array response and the source signal at passband, and
subsequent down-conversion.

𝐱(𝑡) = exp{−𝚥2𝜋𝑓c𝑡} ⋅ [𝐛̃ (𝛋, 𝑡, 𝑞) ∗ ̃𝑠(𝑡)] (4.72)

Consider the frequency response ̃𝐵𝑚 (𝛋, 𝑓, 𝑞) of the 𝑚-th antenna. Decompose the magnitude𝐾𝑚 (𝛋, 𝑓, 𝑞) into a constant part at centre frequency 𝐾𝑚 (𝛋, 𝑓c, 𝑞) and a remaining part𝐾′𝑚 (𝛋, 𝑓, 𝑞), and decompose the phase 𝜙𝑚 (𝛋, 𝑓, 𝑞) into a linearly varying part 𝜙′𝑚 (𝛋, 𝑓, 𝑞) and
a remaining part 𝜙″𝑚 (𝛋, 𝑓, 𝑞).

̃𝐵𝑚 (𝛋, 𝑓, 𝑞) = 𝐾𝑚 (𝛋, 𝑓, 𝑞) ⋅ exp{𝚥𝜙𝑚 (𝛋, 𝑓, 𝑞)}= 𝐾′𝑚 (𝛋, 𝑓, 𝑞) ⋅ exp{𝚥𝜙″𝑚 (𝛋, 𝑓, 𝑞)} ⋅ 𝐾𝑚 (𝛋, 𝑓c, 𝑞) ⋅ exp{𝚥𝜙′𝑚 (𝛋, 𝑓, 𝑞)} (4.73)

Then, the output signal at passband in frequency domain, 𝑋̃𝑚 (𝑓), is given by

𝑋̃𝑚 (𝑓) = 𝑆 (𝑓 − 𝑓c) ⋅ 𝐾′𝑚 (𝛋, 𝑓, 𝑞) ⋅ exp{𝚥𝜙″𝑚 (𝛋, 𝑓, 𝑞)} ⋅ 𝐾𝑚 (𝛋, 𝑓c, 𝑞) ⋅ exp{𝚥𝜙′𝑚 (𝛋, 𝑓, 𝑞)}= 𝑆′𝑚 (𝑓 − 𝑓c) ⋅ 𝐾𝑚 (𝛋, 𝑓c, 𝑞) ⋅ exp{𝚥𝜙′𝑚 (𝛋, 𝑓, 𝑞)} . (4.74)

The linear part 𝜙′𝑚 (𝛋, 𝑓, 𝑞) of the phase is mainly determined by the direction dependent delay𝜏𝑚 (𝛋), but also by the delaying properties of the antenna. It can be determined by the Taylor
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series expansion of the phase 𝜙𝑚 (𝛋, 𝑓, 𝑞) at centre frequency.

𝜙′𝑚 (𝛋, 𝑓, 𝑞) = 𝜙𝑚 (𝛋, 𝑓c, 𝑞) + 𝜕𝜙𝑚 (𝛋, 𝑓, 𝑞)𝜕𝑓 |𝑓=𝑓c

⋅ (𝑓 − 𝑓c) (4.75)

Introduce the phase delay 𝜏p𝑚 (𝛋, 𝑞) and the group delay 𝜏g𝑚 (𝛋, 𝑞).
𝜏p𝑚 (𝛋, 𝑞) = −𝜙 (𝛋, 𝑓c, 𝑞)2𝜋𝑓c

(4.76a)

𝜏g𝑚 (𝛋, 𝑞) = − 12𝜋 𝜕𝜙 (𝛋, 𝑓, 𝑞)𝜕𝑓 |𝑓=𝑓c

(4.76b)

Thus, the output at baseband in time domain can be given by [Hay94]

𝑥𝑚 (𝑡) = 𝑠′𝑚 (𝑡 − 𝜏g𝑚 (𝛋, 𝑞)) ⋅ 𝐾𝑚 (𝛋, 𝑓c, 𝑞) ⋅ exp{−𝚥2𝜋𝑓𝜏p𝑚 (𝛋, 𝑞)} . (4.77)

Signal 𝑠′𝑚 (𝑡 − 𝜏g𝑚 (𝛋, 𝑞)) is the complex envelope of the transmit signal after transmission over
the antenna. Assume, that the product of signal bandwidth 𝑊 and the largest occurring group
delay fulfils

𝑊 ⋅ max{|𝜏g𝑚 (𝛋, 𝑞)|} ≪ 1 . (4.78)

As a result, the group delay of the antenna response becomes negligible. Furthermore, the
complex envelope of the source signal shall not be significantly changed by the antenna
response. Summarised, approximation 𝑠′𝑚 (𝑡 − 𝜏g𝑚 (𝛋, 𝑞)) ≈ 𝑠(𝑡) holds [TF09], and the source
signal is said to be narrowband w.r.t. the array. Thus, the baseband signal can be simplified.

𝑥𝑚(𝑡) ≈ 𝑠(𝑡) ⋅ 𝐾𝑚 (𝛋, 𝑓c, 𝑞) ⋅ exp{−𝚥2𝜋𝑓c𝜏p𝑚 (𝛋, 𝑞)} (4.79)

Summarised, narrowband approximation assumes the array response as bandwidth independent,
such that the direction dependent delay is approximated as a phase change at centre frequency.
Hence, the response of each antenna in the array composite can be approximated by a constant
amplitude and phase at centre frequency.

Consider the Taylor series expansion [AS72] of the passband response of the 𝑚-th antenna
at centre frequency.

̃𝐵𝑚 (𝛋, 𝑓, 𝑞) = ∞
∑𝑘=0

1𝑘! ⋅ 𝜕𝑘 ̃𝐵𝑚 (𝛋, 𝑓, 𝑞)𝜕𝑓𝑘 |𝑓=𝑓c

⋅ (𝑓 − 𝑓c)𝑘 (4.80)

Then, the narrowband approximation of ̃𝐵𝑚 (𝛋, 𝑓, 𝑞) is given by the zeroth-order Taylor series
coefficient ̃𝐵𝑚 (𝛋, 𝑓c, 𝑞), which can be expressed as

̃𝐵𝑚 (𝛋, 𝑓c, 𝑞) = ̃𝐴𝑚 (𝛋, 𝑓c, 𝑞) ⋅ exp{−𝚥2𝜋𝑓c𝜏𝑚 (𝛋)} . (4.81)
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Stacking the narrowband response approximations of all 𝑀 array antennas into a vector yields
the narrowband array response at centre frequency, commonly stated as array steering vector.

𝐛 (𝛋, 𝑞) = [ ̃𝐵1 (𝛋, 𝑓c, 𝑞) , … , ̃𝐵𝑀 (𝛋, 𝑓c, 𝑞)]T (4.82)

Known algebraic models to continuously describe the steering vector from gridded array data
are e.g. the effective aperture distribution function (EADF) [LD04], the SSH [Del+06, SKK12]
or the VSH [Koi04]. Here, the EADF will be used, because of its numerical simplicity in terms
of the used basis functions, and because the first order derivative w.r.t. the angles can be easily
calculated.

Narrowband Validation Criterion A common criterion for narrowband is a small relative
bandwidth 𝑊/𝑓c [Ric05, Zat97]. However, this definition is crucial, because only the signal
bandwidth is taken into account. Frequency dependence of the array antennas or the influence
of the array geometry is neglected. Hence, it cannot be ensured that the narrowband assumption
is fulfilled by a small relative signal bandwidth.

A criterion which includes antenna and signal properties is stated in [Lan08]: The
narrowband assumption is fulfilled, if the frequency response of each antenna is constant in
magnitude and phase over the signal bandwidth. A method to verify this criterion is missed.

Another narrowband criterion can be derived from communication system theory, where
a communication signal is assigned to undergo a frequency selective or frequency flat radio
channel. A communication signal with a bandwidth smaller than the coherence bandwidth
of the radio channel is designated as narrowband, and the radio channel can be assumed as
frequency flat (frequency independent) [Mol12]. Such a coherence bandwidth can be similarly
assigned to an antenna array. Depending on the direction, each array antenna introduces a delay
on the impinging wave w.r.t. the array phase centre. Summing up all delayed waves leads to
fading in the frequency domain (frequency selectivity). This frequency selective behaviour is
described by the array transfer function 𝐻 (𝛋, 𝑓, 𝑞), which is the average frequency response
over all array antennas [Nai09].

𝐻 (𝛋, 𝑓, 𝑞) = 1𝑀 ⋅ 𝑀
∑𝑚=1 𝐵𝑚 (𝛋, 𝑓, 𝑞) (4.83)

Knowing the array transfer function, the direction dependent coherence bandwidth 𝑊coh (𝜑, 𝜗)
can be estimated. In general, the smallest coherence bandwidth over the unit sphere should be
used to address the coherence bandwidth of the array

𝑊coh = min{𝑊coh (𝜑, 𝜗)} . (4.84)

Accordingly, a new narrowband condition can be stated [26].

Definition 1. An antenna array can be sufficiently described by a narrowband model, if the
signal bandwidth 𝑊 is much smaller than the array coherence bandwidth 𝑊coh in the frequency
band under consideration.

For directive and non-isotropic antenna characteristics the coherence bandwidth increases,
because only neighbourhood antennas receive the impinging wave [Jac+15]. In Fig. 4.21 the
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Figure 4.21: Normalised magnitude of transfer function of (a) circular dipole array [23] and (b) circular
patch array [37].

transfer function of two (UCAs), consisting of dipole or patch antennas, are depicted. Note,
that both arrays are calibrated at different centre frequencies. The UCA with patch antennas
shows less variations of the magnitude compared to the dipole array. Therefore, the frequency
selectivity is less severe and the coherence bandwidth is larger.

Constraints for Antenna Spacing Under Narrowband and Wideband
Modelling
According to the modelling of the array by a narrowband or wideband approach and
consideration of these models for direction estimation, the spatial displacement of the array
antennas becomes constrained. As stated previously, estimation of the angles coincides with
a time difference estimation, whereas in the narrowband case the time difference transforms
into a phase difference only. The delay difference 𝛥𝜏 between array antennas 1 and 2 can be
expressed in terms of their baseband signals as

𝑥1 (𝑡) = 𝑥2 (𝑡 − 𝛥𝜏) ❞ t 𝑋1 (𝑓) = 𝑋2 (𝑓) ⋅ exp {−𝚥2𝜋𝑓𝛥𝜏} . (4.85)

The delay difference is given by

𝛥𝜏 = 1𝑐0𝛋T ⋅ (𝐝1 − 𝐝2) = 1𝑐0𝛋T ⋅ 𝛥𝐝 . (4.86)

In the following, constraints for the antenna displacement𝛥𝐝 in order to ambiguous free estimate
the delay difference and hence the angles 𝜑 and 𝜗 will be discussed.

Narrowband Model In the narrowband case, the phase term exp {−𝚥2𝜋𝑓𝛥𝜏} is examined at
the centre frequency only. For an unambiguous phase term the argument must be in the range]−𝜋, 𝜋], such that

|2𝜋𝑓c𝛥𝜏| = |2𝜋𝑓c𝑐0 𝛋T ⋅ 𝛥𝐝| < 𝜋 (4.87)
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must hold. Considering the Cauchy–Schwartz inequality2 the magnitude becomes

|2𝜋𝑓c𝑐0 𝛋T ⋅ 𝛥𝐝| = 2𝜋𝑓c𝑐0 |𝛋T ⋅ 𝛥𝐝| ≤ 2𝜋𝑓c𝑐0 ‖𝛋‖ ⋅ ‖𝛥𝐝‖ = 2𝜋𝑓c𝑐0 ⋅ ‖𝛥𝐝‖ . (4.88)

Hence, the followingwell known constraint for the antenna displacement is given [Nai09, TF09]

‖𝛥𝐝‖ ≤ 𝜆𝑐2 . (4.89)

Wideband Model In the wideband case multiple frequencies are considered instead of the
centre frequency only. Assuming a discretised spectrum with spacing 𝛥𝑓 = 1/𝑇 and the
observation duration 𝑇. The consecutive frequency bins 𝑓1 and 𝑓2 = 𝑓1 + 𝛥𝑓 feature a
directional dependent phase difference, which is

exp{−𝚥2𝜋𝑓2𝛥𝜏} = exp{−𝚥2𝜋 (𝑓1 + 𝛥𝑓) 𝛥𝜏} = exp{−𝚥2𝜋𝑓1𝛥𝜏} ⋅ exp {−𝚥2𝜋𝛥𝑓𝛥𝜏} .
(4.90)

For an unambiguous phase difference the following criterion must be fulfilled

|2𝜋𝛥𝑓𝑐0 𝛋T ⋅ 𝛥𝐝| = 2𝜋𝛥𝑓𝑐0 |𝛋T ⋅ 𝛥𝐝| ≤ 𝜋 . (4.91)

Considering again the Cauchy–Schwartz inequality the antenna displacement is constrained
by [CG92]

‖𝛥𝐝‖ ≤ 𝑐0 ⋅ 𝑇2 . (4.92)

Summarised, the antenna displacement is differently constrained if a narrowband or wideband
modelling approach is considered for direction estimation. This must be taken into account, if
one has to chose between both modelling approaches. Note, that the displacement constraints
can be relaxed, if directive array antennas are employed [Jac+15].

4.3.4 MIMO Topology – Displacement of Tx and Rx
Array

For MIMO systems as depicted in Fig. 4.22 not only the array geometry is of importance. Also
the arrangement of the transmit and receive array w.r.t. to each other, which will be denoted as
MIMO topology, is important. Especially the spatial separation of transmit and receive array is
of importance to describe the spatial observation of a target by theMIMO radar system. Because
an array consists of spatially distributed antennas, it can be stated that each antenna focuses the
target under different angles. Under far field conditions it is assumed, that all array antennas
focus the target under the same angles as a plane wave travels across the array. Subsequently,
2|𝐱T ⋅ 𝐲| ≤ ‖𝐱‖ ⋅ ‖𝐲‖
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Figure 4.22: Sketch of MIMO system, with a Tx channel (dashed box), a Rx channel (dotted box) and a
MIMO channel (solid box).

far field condition (i.e. plane waves) for the array at Tx and Rx side will be assumed, such that
all antennas at Tx focus the target under the same angle and all antennas at Rx focus the target
under the same angles. However, the angles at Tx and Rx side are not necessarily equal and
remain subject to clarification, which depends on the array topology. Two topologies will be
distinguished according to the spacing of transmit and receive array: monostatic and bistatic,
see Fig. 4.23. Both topologies are different in terms of the separation of Tx and Rx array and
the resulting focusing angles w.r.t. the target. Subsequently, both topologies will be briefly
described and their influence on the spatial delay (4.66) will be discussed.

Bistatic or Distributed Array Topology
For the bistatic or distributed topology sketched in Fig. 4.23(b), transmit and receive array
are widely separated [HBC08], such that the focusing angles and ranges to the target are
”significantly different”, as defined in the ”IEEE Standard Radar Definitions” [Pan17] or
see [Wil05]. Therefore, the far field condition for each array holds, but not for the complete
MIMO system. Hence, Tx and Rx have different focusing angles to the target. Figure 4.20
shows a bistatic arrangement. Advantage of widely separated arrays is, that the target is focused
under different angles and hence different parts of the RCS of the target are viewed, see Fig. 3.9
for a respective sketch of this aspect. If the RCS of the target is spatially diverse, hence varies
w.r.t. the focusing angles, the possibility of target detection might be increased [HBC08]. The
delay by joint processing of the Tx and Rx channel is

𝜏bi = 1𝑐0 [𝐝T
Rx ⋅ 𝛋Rx (𝜑Rx, 𝜗Rx) + 𝐝T

Tx ⋅ 𝛋Tx (𝜑Tx, 𝜗Tx)] . (4.93)

Hence, a virtual array is also present, which is not as easily understandable as in the monostatic
case, see [Yan+13] formore details. From amodelling point of view, a bistatic topology requires
a separate modelling of Tx and Rx array, because of the different focusing angles.

Monostatic or co-located Array Topology
For the monostatic or co-located topology sketched in Fig. 4.23(a), Tx and Rx array are
closely located and their reference points are assumed to coincide. Hence, the term co-located
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(a) (b)

Figure 4.23: MIMO topology (a) monostatic (co-located Tx and Rx) and (b) bistatic (distributed Tx and
Rx) [Sko61]

arrays [HV10, LS07, LS08] is often stated. co-located arrays focus the target under the same
angles, such that 𝜑 = 𝜑Tx = 𝜑Rx and 𝜗 = 𝜗Tx = 𝜗Rx holds. By joint processing of the Tx and
Rx channels the delay in equation (4.66) becomes

𝜏mono = 1𝑐0 [𝐝Rx + 𝐝Tx]T ⋅ 𝛋 (𝜑, 𝜗) . (4.94)

Hence, because Tx and Rx array are co-located, the spatial sampling by the MIMO array is
conducted at the virtual point 𝐝Rx + 𝐝Tx. A virtual sampling point exists for each MIMO chan-
nel, such that a virtual array of increased size [LS07] is present. The virtual array aperture
offers higher angular resolution, the ability to resolve more targets and better parameter identi-
fiability [LS07, LS08]. From a modelling point of view, a monostatic topology enables a joint
modelling of Tx and Rx array, because of the unique focusing angles. Hence, the MIMO chan-
nels can be described as the channels of a single, virtual array.

A note w.r.t. the joint processing of Tx and Rx array is necessary. If both arrays shall be jointly
processed to get the virtual array (co-located case), the Tx and Rx have to be coherent to each
other. Coherence can be ensured by the radar hardware or by calibration [Dür+20]. Here, a co-
located MIMO radar is considered and a fully coherent system will be assumed. If both arrays
are separately processed as e.g. separate angles shall be estimated at both sides (distributed
case), the measurements over the Rx and the measurements over the Tx have to be coherent
each. However, coherence of Tx and Rx w.r.t. each other is not demanded.

4.4 Joint Parametrisation of Antenna Array
and Transceiver Model

The model of the antenna array (see Section 4.3) as well as the response model of the radar
(see Section 4.2) has to be calibrated from measurements. Theoretical or simulation-based
determination of the array or device response is not suitable under practical considerations,
because of mechanical and electrical imperfections, which are not account for in the simulations
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(a) (b)

Figure 4.24: Mounting of (a) the array in [25] and (b) the reference antenna in an anechoic chamber for
array calibration measurements. (Pictures by Michael Huhn, RF and Microwave Research
Group, TU Ilmenau)

or the theoretical models [7]. Therefore, calibration measurements will be employed [Dür+19,
Vas+20].

Commonly, the array response and the device response are measured separately by detaching
the array from the device [25]. Array calibration can be conducted in an anechoic chamber or a
test range using a well known calibration system [7]. The array is attached to a 3-D positioner
system and a fix reference antenna is set up. Figure 4.24 shows the setup for the calibration of
an 30GHz antenna array [25]. The spatial characteristic is captured according to the azimuth
and elevation angle by moving the array w.r.t. the origin of the coordinate system of the 3-
D positioner. Polarimetric properties are captured by employing two orthogonal polarisations
at the reference antenna. The frequency characteristic of the array is captured by wideband
measurements. The response of the device can be captured by back-to-back measurements
using a well known reference or by over-the-air (OTA) calibration with the LOS propagation
channel as reference.

However, if the array cannot be detached from the device as e.g. in case of an integrated
MIMO radar [2], array and device response are jointly captured by the calibrationmeasurements
and other processing techniques are required to separate them. In Section 4.4.1 the separation
of array and device response under narrowband approximation is discussed. Because the
narrowband approximation is crucial in case of a high signal bandwidth and/or large arrays [26],
a wideband array model and its parametrisation from calibration measurements is discussed in
Section 4.4.2. The wideband and narrowband array model will be compared in Section 4.4.3.

The monostatic MIMO radar presented in [2] is exemplary considered in the following. The
calibration measurements have been conducted by university Ulm. Due to the monostatic setup,
Tx and Rx array are co-located and a virtual array is present, see Section 4.3.4. The response
of this virtual array depends only on two angles: azimuth and elevation, which are equal for Tx
and Rx. Therefore, array calibration has to be conducted according to these two angles only.
Contrarily, the joint array response of a bistatic MIMO radar depends on four angles: azimuth
and elevation at Tx and at Rx. Therefore, calibration measurements have to be conducted
according to these four angles. The radar has been mounted on a positioner, and a corner
reflector has been set as target. Because Tx and Rx array are linear arrays and are arranged
in the same plane, the virtual array is a linear array too. Hence, calibration measurements in
the azimuth plane only have been conducted, by rotating the radar using the positioner device.
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4.4.1 Joint Estimation of Narrowband Array Response
and Transceiver Response

The separation of the system and array response from one set of calibration measurements
necessitates a model describing the embedding of the antenna and observer response in the
measurements. The joint response of array and device is measured over multiple angles𝛋 (𝜑, 𝜗) and frequencies 𝑓, in order to properly characterise the array. Note, that only a single
polarisation will be considered in the following. In total, the calibration measurements are
conducted at 𝑁 different angles, 𝐾 samples are captured per channel and the array constitutes
of 𝑀 antennas.

Subsequently, narrowband approximation of the antenna array response will be considered,
see Section 4.3. This approximation is only meaningful as long as the signal bandwidth is
smaller than the coherence bandwidth of the array [26], such that (4.78) is fulfilled. This will
be assumed in the following. Furthermore, it is assumed, that each array antenna is driven
by an individual transmitting/receiving chain of the observer system. Hence, the calibration
measurement of each antenna 𝑚 is confounded by a different frequency response 𝑔𝑚 (𝑓), on the
contrary to switched arrays connected to a SISO system. The responses are assumed to undergo
variations over the considered frequency band. For sake of convenience, the frequency response
of all transmitting/receiving channels is concatenated in vector 𝐠 (𝑓) ∈ ℂ𝑀. Furthermore,
coupling between the array antennas is assumed, which will be described by the matrix𝐂 ∈ ℂ𝑀×𝑀, which is independent on the frequency and the angles of incidence/radiation.
Therefore, the coupling matrix describes the average, global coupling between the antennas
and the transmitting/receiving channels of the observer. Measurement errors and noise are
accounted for by an additive term 𝐰 (𝑓) ∈ ℂ𝑀, which describes a normally distributed and
proper complex random process with zero mean. Summarised, the data model for a calibration
measurement 𝐲 (𝛋, 𝑓) at certain frequency and angles is [26]

𝐲 (𝛋, 𝑓) = 𝐂 ⋅ diag {𝐠 (𝑓)} ⋅ 𝐛 (𝛋) + 𝐰 (𝑓) . (4.95)

The steering vector 𝐛 (𝛋) and the observer response 𝐠 (𝑓) has to be estimated from the
calibration measurements 𝐲 (𝛋, 𝑓), while accounting for the coupling 𝐂. The estimation will
be accomplished by tensor decomposition of the calibration data. For sake of convenience the
calibration measurements are concatenated in the tensor 𝓨 ∈ ℂ𝑀×𝐾×𝑁. As published in [26]
tensor decomposition methods can be used to identify 𝐠 (𝑓), 𝐛 (𝛋) and 𝐂 from the measurements𝓨.

Joint Estimation by Tensor Decomposition
Tensor decomposition is a processing method to analyse multidimensional data sets [Bro+09,
DDV00, KB09]. According to a model of the multidimensional data set, the data set features an
underlying, hidden structure. Tensor decomposition methods take advantage of the data model
in order to identify this structure. For example, the data model in equation (4.95) describes a
multidimensional outer product, which can be identified by rank decomposition methods.

The parallel factors (PARAFAC) decomposition [KB09] is a widely used tensor rank
decomposition, which describes the tensor as a sum of 𝐿 rank-one tensors. A rank-one tensor is
given by the multidimensional outer product of several vectors. These vectors are stacked into
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𝓨 = 𝐜1𝐠1
𝐛1 + 𝐜2𝐠2

𝐛2 + … 𝐜𝐿𝐠𝐿
𝐛𝐿

Figure 4.25: PARAFAC decomposition of a three-way data tensor 𝓨 into a sum of 𝐿 rank-one tensors.

matrices yielding the set of decomposition or loading matrices 𝐃𝑖 according to the number of
tensor dimensions. The PARAFAC decomposition is unique, i.e., the resulting decomposition
matrices are unique up to a scaling and permutation of their columns, if ∑𝑖 k-rank{𝐃𝑖} ≥2𝐿 + 2 holds [Kru77, Ste09]. 𝐿 is the considered rank of the tensor for the decomposition
and k-rank denotes Kruskal’s rank of a matrix. The k-rank of a matrix is defined as the
maximum number of columns of the matrix in a subset of them, such that every subset is linearly
independent [Ste09].

Tensor decomposition of Tucker type are conceivable, e.g. the higher-order singular
value decomposition [DDV00]. On the contrary to the PARAFAC decompositions, Tucker
decompositions are more flexible w.r.t. the data, because the core tensor is not restricted to be
diagonal and unity. Drawback of a Tucker decomposition for the problem under consideration
is, that the decomposition matrices cannot be directly related to the array or observer response
due to the arbitrary core tensor. Consequently, the array and observer response cannot be gained
from a Tucker decomposition.

The PARAFAC decomposition has been proposed in [26] to jointly estimate the steering
vector and the device response from the three-way calibration data tensor 𝓨. The respective
PARAFAC decomposition is graphically sketched in Fig. 4.25, whereas the loading matrices
are

• 𝐆 = [𝐠1, … , 𝐠𝐿] ∈ ℂ𝐾×𝐿: matrix of observer responses

• 𝐁 = [𝐛1, … , 𝐛𝐿] ∈ ℂ𝑁×𝐿: matrix of steering vectors

• 𝐂 = [𝐜1, … , 𝐜𝐿] ∈ ℂ𝑀×𝐿: coupling matrix .

Hence, by applying PARAFAC decomposition to the tensor of calibration measurements, the
array and device response can be gained from the loading matrices. In order to estimate the
response of all device transceiver channels and their attached antennas, the tensor rank for
the decomposition is set to 𝐿 = 𝑀. According to the criterion for a unique PARAFAC
decomposition, it must hold

k-rank {𝐆} + k-rank {𝐁} + k-rank {𝐂} ≥ 2𝑀 + 2 . (4.96)

This criterion is fulfilled, if the matrices are of full column rank. Thematrices are of full column
rank, if the number of effective antennas, hence the number of antennas which contribute
information from the observed scenario, is equal to the number of physical antennas. The
number of effective antennas can be deteriorated, if the coupling between the antennas is large,
such that one or multiple antennas do not contribute any additional information.

Example 4.1. Consider a theoretical array of 𝑀 antennas, whereas all antennas are located at
the same spatial position and have the same response. Hence, the number of effective antennas
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Figure 4.26: Aperture of the 8 × 8 MIMO radar in [2]. Because Tx and Rx array are co-located, their
respective apertures combine to a virtual aperture of larger size.

should be 1, because all other 𝑀 − 1 antennas do not contribute any additional information of
the observed scenario.

The PARAFAC decomposition is applied to calibration measurements of two MIMO radars.
For the decomposition it is assumed that the number of effective antennas is equal to the number
of physical antennas. First, calibration measurements of a monostatic MIMO radar in [2] are
considered. The estimated aperture (Fourier transform of the steering vectors over azimuth
domain) for all MIMO channels is depicted in Fig. 4.26. The aperture of the Rx array only is
represented by eight single maxima. Because Tx and Rx array are co-located and the respective
channels are coherent, the apertures of both arrays are ”convolved” with each other. This results
in eight shifts of the Rx aperture in the aperture domain. The shifted Rx aperture gives the
resulting virtual aperture, whose size (equal to a bandwidth) is larger than the size of the Rx
only aperture. Hence, the angular resolution is increased. Second, calibration measurements of
a 16x16 binocularMIMO radar are considered. The the narrowband response is again estimated
by the PARAFAC decomposition. The aperture domain is shown in Fig. 4.27. The binocular
radar consists of two monostatic and two bistatic MIMO radars, which all operate coherently.
The aperture domain shows 4 blocks, whereas each block corresponds to the virtual aperture of a
monostatic or bistaticMIMO radar. For a coherent processing of the observations of all 4MIMO
radars the resulting virtual aperture is sketched in Fig. 4.27. The derived narrowband array
response is provided to the EADF approach [LD04], in order to get a continuous description of
the array response in the angular domain.

4.4.2 Joint Estimation of Wideband Array Response and
Transceiver Response

If a wideband array model is considered, hence the array response is assumed as bandwidth
dependent, separation of the overall response into the array and observer response is not
necessary. The observer response can be swapped to the wideband array model [25], if the
device response is describable as an LTI system. Consequently, the calibration measurements
itself are the wideband array description. The calibration measurements are provided to the
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Figure 4.27: Aperture of a 16 × 16 binocular MIMO radar (see Section 7.4.2). The apertures of the two
monostatic (lower left and upper right) and the two bistatic (upper left and lower right)
MIMO arrays are visible.

ETADF approach [24] to get a grid free description of the response in angular and frequency
domain.

However, if an estimate of the response of the observer is of necessity due to e.g. modelling
purposes, a reference response has to be defined. Here, the response of the observer for 0°
impingement/radiation direction will be used as reference response. Note, that this response is
not the response of the transmitting/receiving chains of the observer only, as the antennas are
still included. The respectivemeasurement is taken from the calibration data, and the calibration
data w.r.t. all other directions are deconvolved by this measurement. As a result the calibration
data are now related to the response of the observer to an impinging/radiated wave at 0°.

Denoising by Singular Value Decomposition
Calibration measurements are confounded by additive errors as e.g. thermal noise or
parasitic reflections from the mechanical measurement setup. In order to reduce such errors,
decomposition of the calibration data as described in [26] can be applied. In the following, the
MIMO radar in [2] will be considered, which has a linear array at Tx and Rx side. The angle
dependent responses of all MIMO channels are measured in an anechoic chamber by placing a
corner reflector w.r.t. the azimuth plane in front of the radar. Because the radar features linear
arrays, only azimuth angles are varied by rotating the radar on a turntable. Note, that the Tx
and Rx channels are jointly measured and not separately. Because a wideband array model,
i.e. a frequency dependent array response, is considered, joint processing of all calibration data
as described in Section 4.4.1 is not applicable. The processing has to be carried out for each
frequency and angle separately. A model of the frequency and angle dependent measurements
is given by

𝐲 (𝜑Tx, 𝜑Rx, 𝑓) = 𝐛Tx (𝜑Tx, 𝑓) ⊗𝐛Rx (𝜑Rx, 𝑓) + 𝐰 (𝑓) . (4.97)

The considered radar has co-located Tx and Rx array. Hence, the angles are equal 𝜑Tx ≡𝜑Rx ≡ 𝜑, and the measurements become 𝐲 (𝜑Tx, 𝜑Rx, 𝑓) ⇒ 𝐲 (𝜑, 𝑓). The measurement vector
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𝐲 (𝜑, 𝑓) ∈ ℂ𝑀Tx⋅𝑀Rx will be reshaped in a matrix 𝐘 (𝜑, 𝑓) ∈ ℂ𝑀Tx×𝑀Rx.

𝐲 (𝜑, 𝑓) = vec {𝐘 (𝜑, 𝑓)} ⟹ 𝐘 (𝜑, 𝑓) = 𝐛Rx (𝜑, 𝑓) ⋅ 𝐛T
Tx (𝜑, 𝑓) + 𝐖 (𝑓) (4.98)

Accordingly, the measurement matrix 𝐘 is of rank-one, which can be utilised to reduce the
errors 𝐖. The singular value decomposition (SVD) will be utilised therefore.

Definition 2. The singular value decomposition of a 𝑀 × 𝑁 complex-valued matrix 𝐙 of rank𝐿 is given by [MS00]

𝐙 = 𝐔 ⋅ 𝐒 ⋅ 𝐕H . (4.99)

The matrices 𝐔 ∈ ℂ𝑀×𝑀 and 𝐕 ∈ ℂ𝑁×𝑁 are unitary matrices, whose columns are
orthonormal. Matrix 𝐒 ∈ ℝ𝑀×𝑁+ is the matrix of the singular values 𝑠1 ≥ … ≥ 𝑠𝐿 > 0.

𝐒 =
⎡⎢⎢⎢⎢⎢⎢⎣

𝑠1 ⋱ 𝟎𝑠𝐿
𝟎 𝟎

⎤⎥⎥⎥⎥⎥⎥⎦
(4.100)

If the matrix is of rank 𝐿 = 1 and confounded by errors, the singular values are given by𝑠1 + 𝑤1 ≥ 𝑤2 ≥ …, whereas 𝑤 are singular values of the errors.

Consider the SVD of matrix 𝐘 (𝜑, 𝑓) and select the columns of 𝐔 and 𝐕 which correspond
to the largest singular value 𝑠1: 𝐮1 and 𝐯1. Then, the calibration matrix can be approximated.

𝐘 (𝜑, 𝑓) ≈ 𝐮1 ⋅ 𝑠1 ⋅ 𝐯H1 (4.101)

Because the contributions of all other singular values, which are assigned to the errors only,
are discarded, the measurements are denoised. Note, that by considering the largest singular
value only it is inherently assumed, that the reflection from the calibration target (the corner
reflector) always supersedes the errors in the calibration data, i.e. are larger in amplitude. This
is ensured as long as the target is in the vicinity of the broad fire direction, because the antennas
of the radar have their highest gain in that direction [Hit+18, Hit+17]. However, if the target
direction becomes closer to end fire, the amplitude of the target reflection in the data decreases.
As a consequence the largest singular value may now correspond to a parasitic reflection or
leakage and no longer to the target reflection. Therefore, gating of the peak corresponding to
the target reflection is carried out prior to the denoising.

The array response vectors of the Tx and Rx array 𝐛Tx (𝜑, 𝑓) and 𝐛Rx (𝜑, 𝑓) can be identified
from the decomposition results as well, and 𝐘 (𝜑, 𝑓) is the matrix of calibration data.

𝐛Rx (𝜑, 𝑓) = √𝑠1 ⋅ 𝐮1 (4.102a)
𝐛Tx (𝜑, 𝑓) = √𝑠1 ⋅ 𝐯†1 (4.102b)

This is especially useful for bistatic (distributed) MIMO arrays, where the Tx and Rx array
cannot be separately calibrated and 𝜑Tx and 𝜑Rx differ. From the decomposition the respective
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Figure 4.28: Measured and resulting signal after the denoising. The signals are shown for (a) time and
(b) frequency domain. Calibration measurements of the 10th channel of the FMCWMIMO
radar in [2] are used. The direction is 0°.

array response vectors can be assigned.

𝐛Rx (𝜑Rx, 𝑓) = √𝑠1 ⋅ 𝐮1 (4.103a)
𝐛Tx (𝜑Tx, 𝑓) = √𝑠1 ⋅ 𝐯†1 (4.103b)

Figure 4.28 shows the time and frequency domain signal of a calibration measurement before
and after application of the SVD-based denoising. The direction of radiation/impingement is
chosen to be 0°. From the frequency domain signal a reduction of the noise floor becomes
obvious, and the time domain signal becomes less noisy.

4.4.3 Comparison of Narrowband and Wideband Array
Model

The calibrated narrowband and wideband array model for the MIMO radar presented in [2] will
be compared in the following. The array ambiguity function will be utilised as figure of merit for
comparison. The array ambiguity function is commonly used to investigate array ambiguities in
direction estimation and to investigate the resolution capabilities of an array. First, a definition
of an ambiguity in direction estimation with antenna arrays will be given.

Definition 3. An ambiguity is defined as (at least) two different wave vectors 𝛋1 and 𝛋2, which
cause the same array response.

𝐛 (𝛋1, 𝑡, 𝑞) ≡ 𝐛 (𝛋2, 𝑡, 𝑞) ; 𝛋1 ≠ 𝛋2 (4.104)

The ambiguity function is the correlation of the array response for two different directions.
The ambiguity function features a maximum for equal directions and, in case of ambiguities,
multiple maxima for different directions. The normalised wideband array ambiguity function
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𝛹wideband for reference direction 𝛋 and testing direction 𝛋̂ is [SM11]

𝛹wideband (𝛋, 𝛋̂) = |∑𝐾−1𝑘=0 𝐛 (𝛋, 𝑓0 + 𝑘𝛥𝑓)H ⋅ 𝐛 (𝛋̂, 𝑓0 + 𝑘𝛥𝑓)|
∑𝐾−1𝑘=0 ‖𝐛 (𝛋̂, 𝑓0 + 𝑘𝛥𝑓)‖2 . (4.105)

The exemplary considered MIMO radar can resolve azimuth angles only. Hence, invest-
igations of array ambiguities are limited to the azimuth plane. A measured array response𝐲 (𝜑, 𝑓0 + 𝑘𝛥𝑓) for a certain azimuth angle 𝜑 is taken from the calibration measurements. Af-
terwards, the ambiguity function is determined using the calculated array response 𝐛 (𝜑̂) or𝐛 (𝜑̂, 𝑓0 + 𝑘𝛥𝑓) from the narrowband or wideband array model, respectively. The ambiguity
function for the wideband array model is given by

𝛹wideband (𝜑, 𝜑̂) = |∑𝐾−1𝑘=0 𝐲 (𝜑, 𝑓0 + 𝑘𝛥𝑓)H ⋅ 𝐛 (𝜑̂, 𝑓0 + 𝑘𝛥𝑓)|
∑𝐾−1𝑘=0 ‖𝐛 (𝜑̂, 𝑓0 + 𝑘𝛥𝑓)‖2 . (4.106)

To get the ambiguity function for the narrowband model, the selected response 𝐲 (𝜑, 𝑓0 + 𝑘𝛥𝑓)
has to be calibrated using the decomposition results from Section 4.4.1. Accordingly, the
ambiguity function for the narrowband array model is

𝛹narrowband (𝜑, 𝜑̂) = 𝐾−1
∑𝑘=0

|[(𝐂-1 ⋅ 𝐲 (𝜑, 𝑓0 + 𝑘𝛥𝑓)) ⊘𝐠 (𝑓0 + 𝑘𝛥𝑓)]H ⋅ 𝐛 (𝜑̂)|𝐾 ⋅ ‖𝐛 (𝜑̂)‖2 . (4.107)

Operator ⊘ denotes the element-wise division. Note, that the frequency dependence of the
array response is dropped due to the narrowband modelling.

The ambiguity functions for the narrowband and wideband array, and for different azimuth
angles are shown in Fig. 4.29. Note, the virtual array is a linear array and 0° correspondence
to the broad fire direction. Obviously, the narrowband array model starts to fail towards the
end fire direction, because the maximum of the ambiguity function is shifted apart from the
true angle. Hence, azimuth estimates tend to become biased. However, the maximum of the
ambiguity function for the wideband array model stays at the true azimuth direction.

An explanation for the failure of the narrowband model is the size of the virtual array, which
violates the narrowband criterion in (4.78). Furthermore, the antenna spacing in the virtual
array is sometimes larger than 𝜆c/2 [2], which violates the narrowband criterion of antenna
spacing, see Section 4.3.3. Figure 4.30 shows the spectrum of 8 channels taken from calibration
measurements and a target angle of −30°. Obviously, the peaks of the beat frequencies are at
different frequencies. Hence, the target echo returns arrive at different delays, resulting in a
delay spread across the array. The virtual array is a linear array, and the delay 𝜏𝑚 observed at
the virtual array position 𝑟𝑚 and for azimuth angle 𝜑 is

𝜏𝑚 (𝜑) = 𝑟𝑚𝑐0 sin (𝜑) . (4.108)

The size of the virtual array is approximately 70𝜆c [2], such that the largest observed delay for
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Figure 4.29: Array ambiguity function of the MIMO radar in [2] for the wideband and narrowband
array model and various directions 𝜑̂: (a) 𝜑̂ = 0°, (b) 𝜑̂ = −10°, (c) 𝜑̂ = −20° and (d)𝜑̂ = −30°.

direction 𝜑 is

𝜏max (𝜑) = 70𝜆c𝑐0 sin (𝜑) = 70𝑓c
sin (𝜑) . (4.109)

Plugging into equation (4.78) yields the following narrowband criterion for the virtual array

𝑊𝑓c
≪ 170 ⋅ sin (𝜑) . (4.110)

Accordingly, the narrowband criterion depends on the aperture of the array, which is faced by
an impinging wave. For the considered case, the narrowband criterion is always fulfilled for
broad fire direction (𝜑 = 0°), and becomes more severe towards end fire direction (𝜑 = ±90°).
Because the radar operates with a bandwidth of 10GHz at a centre frequency of around
155GHz, the narrowband assumption is severely violated towards end fire. This finding is
proven in Fig. 4.30, showing the measured frequency spectrum of 8 MIMO channels for𝜑 = −30°. The peaks in the frequency spectrum are not at the same frequency bin. Hence
they do not have the same beat frequency, indicating the occurrence of a delay spread across
the array. Accordingly, the narrowband assumption is violated [26] and narrowband modelling
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Figure 4.30: Signal spectrum of calibration measurements of 8 channels of the FMCW MIMO radar

presented in [2]. The azimuth angle is chosen to be −30°.

of the array response is not applicable.

4.5 Model of the Sampling Process
So far, gathering of the observations by ADC sampling of the baseband signal has not been
considered in the previous device modelling steps. Also, the process of gathering all MIMO
channels has not been discussed yet. However, as the parametric system identification is done
from sampled data the sampling process, i.e. the process of gathering the observations, has to
be taken into consideration. A time-invariant channel has been considered for the device model
derivations. However, if the channel becomes time-variant due to e.g. moving scatterer, or
time-division multiplexing (TDM) is employed to capture all MIMO channels, a model for the
observation and the respective sampling process becomes necessary. Basically, the propagation
path parameters direction and delay are determined from time delays in a respective domain.
Therefore, baseband signals are time sampled. In order to relate the propagation parameters
to a time delay measurement, while jointly considering time-variance and the TDM accessing
scheme, a model of the sampling process over the time axis is required.

4.5.1 Observation of Time-Invariant Systems
If the propagation channel is time-invariant, hence the scatterer nor the observer is moving, the
delay 𝜏 of the echo signal is a constant.

𝜏 = 𝜏0 (4.111)

An observation of a single ramp of the FMCW is sufficient to determine this delay. The time
axis 𝑡 is discretised by sampling of the observations by the ADC.

𝑡 = 𝑘 ⋅ 𝑇S (4.112)

Variable 𝑘 ∈ ℤ, 𝑘 = 0 … 𝐾 − 1 indicates the captured samples. This sampling can be
schematically sketched as a 1-D sampling of a signal (see Fig. 4.31).
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𝑘𝑇S

𝑇S

Figure 4.31: Discretisation of the time axis by ADC sampling time 𝑇S

𝑛𝑇P 𝑘𝑇S

𝑇S𝑇P

Figure 4.32: Discretisation of the time axis by ADC sampling time 𝑇S and signal period 𝑇P

FMCW Radar and Delay

Considering the model (4.12) of the baseband signal and plugging in the discretised time axis,
the sampled phase of the baseband signal becomes

− 12𝜋𝜙 (𝑘𝑇S) ≈ 𝑊𝑇M
𝜏0𝑘𝑇S + 𝑓0𝜏0 . (4.113)

4.5.2 Observation of Time-Variant Systems
Considering a time-variant channel due to e.g. a moving scatterer, the delay 𝜏 of the echo signal
becomes a time dependent quantity (see Section 3.2.1). Assume a homogeneously moving
scatterer, which moves with relative velocity 𝑣0 = 𝑑𝑅 (𝑡)/𝑑𝑡 w.r.t. the observer. The time-
variant delay is

𝜏 (𝑡) = 𝜏0 + 𝑣0𝑐0 𝑡 . (4.114)

Repeating observations are necessary in order to capture sufficient information on this time-
varying behaviour. Consider a periodically radiated transmit signal with repetition/period time𝑇P. Then, the sampling of the time axis can be split into the sampling by the ADC and the
sampling by the signal period. Accordingly, the time axis 𝑡 is discretised as

𝑡 = 𝑘 ⋅ 𝑇S + 𝑛 ⋅ 𝑇P , (4.115)

with 𝑛 ∈ ℤ, 𝑛 = 0 … 𝑁 −1 the number of captured/radiated signal periods, and (𝐾 −1)⋅𝑇S < 𝑇P
should hold. Accordingly, a 2-D sampling scheme of the time axis can be established, see
Fig. 4.32. Note, that this 2-D sampling scheme is only virtually present, because there is still
one unique time axis.
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𝑡

𝑇P

Figure 4.33: Motion induced Doppler harmonic (solid line) and their approximation (dotted line) by
neglecting the range-Doppler coupling.

FMCW Radar and Doppler Shift
Consider model (4.22) of the baseband signal and plug in the discretised time axis (4.115). The
sampled phase of the baseband signal becomes

− 12𝜋𝜙 (𝑘𝑇S + 𝑛𝑇P) ≈ 𝑓0
𝑣0𝑐0 (𝑘𝑇S + 𝑛𝑇P) + 𝑊𝑇M

𝜏0 (𝑘𝑇S + 𝑛𝑇P) + 𝑓0𝜏0 . (4.116)

Term 𝑓0𝑘𝑇S 𝑣0/𝑐0 accounts for range-Doppler coupling, i.e. the Doppler shift during the
observation of the FMCW ramp. Hence, the Doppler shift causes a variation of the baseband
signal phase during the observation of the FMCW ramp. This phase variation cannot be easily
distinguished from a delay in FMCW radar with stretch processing receiver. A delay causes a
shift of the FMCW signal along the time axis, and a Doppler causes a shift of the FMCW signal
along the frequency axis, see Fig. 4.1. In both cases a beat frequency occurs at baseband, which
cannot be unambiguously assigned to the Doppler or the delay or a mix of both. Consider a
steep slope 𝑊/𝑇M of the FMCW transmit signal due to e.g. a short modulation time. Then,𝜏0 ⋅ 𝑊/𝑇M ≫ 𝑓0 ⋅ 𝑣0/𝑐0 holds and the range-Doppler coupling can be neglected, because
only a minor influence of the Doppler shift on the phase variation during a single FMCW
ramp is observed. A periodic FMCW signal with a steep slope is denoted as chirp sequence
signal [FJ15]. Accordingly, the phase simplifies [FJ15].

− 12𝜋𝜙 (𝑘𝑇S + 𝑛𝑇P) ≈ 𝑓0
𝑣0𝑐0 𝑛𝑇P + 𝑊𝑇M

𝜏0𝑘𝑇S + 𝑓0𝜏0 (4.117)

Figure 4.33 shows a Doppler caused harmonic, i.e. the differentiation of the phase of the
baseband signal, and their corresponding approximation by the above model. According to
equation (4.117) the delay related phase variation is observed over one signal period, whereas
the phase variation due to the Doppler shift is observed over multiple periods. As the Doppler
related phase variation is sampled over the period time 𝑇P, the period time has to fulfil the
Nyquist criterion w.r.t. the Doppler harmonic.

4.5.3 Observation by MIMO Systems
So far, a SISO system has been considered, which is capable to resolve delay and Doppler.
If directional information are of interest too, antenna arrays (see Section 4.3) at Tx and/or
Rx have to be employed. On the contrary to phased-array radar, where beamforming is
applied [Bro03, Fri09], MIMO radars exploit the transmission of orthogonal waveforms and
the additional degrees of freedom are exploited [BF03]. Such radar system are termed as
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Figure 4.34: Timing diagrams for a single MIMO snapshot in a TDM system. Eight sequentially
radiating transmitters and eight (a) sequentially captured or (b) parallel captured receivers
are sketched. The high level indicates the activity of the respective Tx or Rx channel.

𝑛𝑀Tx𝑇P
𝑘𝑇S

𝑚Tx𝑇P

𝑇S

𝑀Tx ⋅ 𝑇P

𝑇P

Figure 4.35: Discretisation of the time axis by ADC sampling time 𝑇S, signal period 𝑇P and MIMO
snapshot duration 𝑀Tx𝑇P for TDM at transmitter.

MIMO radar [Fis+06]. Considering MIMO measurements, the delay of the received signal
for a single MIMO channel observation is given by the summed delays in equation (4.114) and
equation (4.93).

𝜏 (𝑡) = 𝜏0 − 1𝑐0 [𝐝T
Rx ⋅ 𝛋Rx (𝜑Rx, 𝜗Rx) + 𝐝T

Tx ⋅ 𝛋Tx (𝜑Tx, 𝜗Tx)] + 𝑣0𝑐0 𝑡 (4.118)

In order to gather allMIMOchannels free of self interference, the transmittedwaveforms have
to be orthogonal. Hence, multiplexing is required. Known multiplexing techniques for MIMO
measurements are time-division multiplexing (TDM), frequency-division multiplexing or code-
division multiplexing [SBL14, UP09]. In the following a TDM scheme will be considered,
because it provides the best trade-off in terms of hardware effort, SNR and measurement
duration. In TDM the MIMO channels are captured by successively switching i) the transmit
and receive channels [Tho+01] or ii) the transmit channels [2], if parallel receiver channels
are employed. Hence, a MIMO snapshot is realised as multiple SISO or single input multiple
output (SIMO) measurements. The timing diagrams for both TDM schemes are shown in
Fig. 4.34. Consider 𝑀Tx antennas at the Tx side and 𝑀Rx antennas at Rx side. Then, the
sampling points for the 𝑚Tx = 0 … 𝑀Tx − 1 transmit channel and the 𝑚Rx = 0 … 𝑀Rx − 1
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receive channel are

𝑡 = 𝑘 ⋅ 𝑇S + (𝑚Rx + 𝑚Tx𝑀Rx) ⋅ 𝑇P + 𝑛 ⋅ 𝑀Tx𝑀Rx𝑇P (4.119)

for sequentially captured MIMO channels, and

𝑡 = 𝑘 ⋅ 𝑇S + 𝑚Tx ⋅ 𝑇P + 𝑛 ⋅ 𝑀Tx𝑇P (4.120)

for parallelly captured Rx channels. Figure 4.35 shows the respective 3-dimensional sampling
of the time axis according to the ADC sampling time, the period time and the MIMO snapshot
time.

FMCW TDM-MIMO Radar
Lets consider an FMCWMIMO radar with parallel receivers and TDM scheme for the transmit
channels, e.g. [2]. Then, the phase of the baseband signal of the 𝑚Tx-𝑚Rx MIMO channel,
considering the approximation in equation (4.117) and the delay given by equation (4.118), can
be stated.

− 12𝜋𝜙 (𝑘𝑇S + 𝑚Tx𝑇P + 𝑛𝑀Tx𝑇P) ≈𝑓0𝜏0 + 𝑊𝑇M
𝜏0 ⋅ 𝑘𝑇S + 𝜈 ⋅ 𝑚Tx𝑇P + 𝜈 ⋅ 𝑛𝑀Tx𝑇P

− 𝑊𝑇M ( 1𝑐0𝐝Rx
T𝛋Rx + 1𝑐0𝐝Tx

T𝛋Tx) 𝑘𝑇S (4.121)

Variable 𝜈 = 𝑓0 𝑣0/𝑐0 is the Doppler shift.

Angle-Doppler Coupling – Compensation and Exploitation
The Tx channels are accessed at different time instances due to the TDM. Consequently,
the Doppler induced harmonic in the baseband signal is observed at different time instances
for each active Tx channel, resulting in different phase constellations due to a phase shift.
Figure 4.36 shows the time shifted sampling of the Doppler induced harmonic for a MIMO
radar system with parallel receivers and TDM of the transmitters. The time shifted observation
of the Doppler causes angle-Doppler coupling, which deteriorates the Doppler and angle
estimation [Som+02]. The phase shift 2𝜋𝜈𝑚Tx𝑇P represents the angle-Doppler coupling for
this radar system.

Typically, the Doppler shift 𝜈 is estimated over the 𝑁 gathered MIMO snapshots, which
requires each MIMO snapshot to be time aligned [Som+02]. Due to the angle-Doppler
coupling, the MIMO measurements are not time aligned. A time alignment and hence
compensation of the angle-Doppler coupling can be achieved by pre-processing of the
measurements using Fourier interpolation [BRW17, Som+02]. This interpolation requires
the fulfilment of the Nyquist-criterion w.r.t. the Doppler shift, such that the maximal
allowed Doppler shift is: max {|𝜈|} ≤ 1/2𝑇P . Afterwards, the Doppler shift is estimated
over the gathered MIMO snapshots, such that the maximal resolvable Doppler shift is:
max {|𝜈|} ≤ 1/2𝑀Tx𝑇P . However, the angle-Doppler coupling can also be exploited by proper
consideration in the model of the parameter estimator. Consequently, a maximal Doppler shift
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Figure 4.36: Sampling of the motion induced Doppler harmonic (solid line) by a 8×8 MIMO radar with

parallelly captured receive channels and TDM of the transmit channels. For each active Tx
channel the Doppler induced harmonic is sampled at a different time instance. The densely
dotted and dashed line indicates the model-based approximation of the Doppler harmonic,
if their temporal evolution over the duration of theMIMO snapshot is considered or ignored
in the model, respectively. [10]

of max {|𝜈|} ≤ 1/2𝑇P can be estimated and a single MIMO snapshot becomes sufficient for
Doppler estimation.

Ambiguity Function The ambiguity function, which is actually the correlation of the
simulated data and the considered data model in the noise-free case, for the velocity dimension
will be investigated. As data model equation (4.121) is considered. The ambiguity function
is calculated for the case of compensation and exploration of the angle-Doppler coupling. For
the case of compensation, the simulated data are time aligned [Som+02] and the angle-Doppler
coupling term 2𝜋𝜈𝑚Tx𝑇P is neglected in the data model. The ambiguity function is calculated
for the case of 1 and 8 MIMO snapshots. A 8 × 8 monostatic FMCWMIMO radar with parallel
receivers and TDM accessing for the transmitters will be considered. The receive and transmit
array are ULAs with isotropic antennas, which are spaced by 𝜆c/2 and 𝜆c, respectively. The
parameters of the radar are: 𝑊 = 20GHz, 𝑓0 = 150GHz, 𝑇M = 1024 µs, 𝑇P = 1124 µs and𝑇S = 500 ns. A single target at a distance of 2m and azimuth angle of 0° is considered, which
moves with a velocity of 0.025m/s apart from the radar. The model (4.121) is used to calculate
the simulated data for each MIMO channel.

The calculated ambiguity functions are shown in Fig. 4.37. From Fig. 4.37(a) it becomes
obvious, that the velocity (respectively the Doppler shift) can be estimated over a single
MIMO snapshot, if the angle-Doppler coupling is considered in the data model. Furthermore,
Fig. 4.37(b) indicates that exploitation of the angle-Doppler coupling increases the Doppler
bandwidth compared to the compensation approach.
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Figure 4.37: Ambiguity function in the velocity dimension for (a) 1 MIMO snapshot and (b) 8 MIMO
snapshots. The ambiguity function is calculated for compensation and exploitation of the
angle-Doppler coupling. The black dashed line indicates the velocity of the target. [10]

4.6 Model of Noise Sources in FMCW MIMO
Radar

The models so far consider perfect, i.e. noise-less measurements. Apart from influences
due to hardware impairments, measurements are always confounded by unwanted disturbance
signals. Such disturbances can be interference from e.g. other observers, which will not be
considered here, or disturbance signals from the observer system itself. Such disturbances will
be considered in the following and are termed as noise. Noise origins from various sources such
as thermal caused motion of electrons in electrical devices or vibrations in mechanical setups.
Various noise processes in electrical devices are known from literature, e.g. shot noise, thermal
noise, phase noise or flicker noise [SSR06].

Noise causes uncertainties on the measurements and limits the measurement accuracy.
In order to account for these uncertainties in the interpretation of the measurements or the
parameter estimation, a model ℳN of the noise process is necessary. However, description
of the time-dependent behaviour of the noise by a deterministic mathematical model is
generally hard up to impossible, because limited knowledge on the noise source is available.
Hence, modelling on a microscopic level is not taken into account, such that modelling on a
macroscopic level is employed. There, the noise is modelled as a random process according to
the law of large numbers [SSR06].

Three noise sources in FMCW radars will be considered in the following: leakage
noise, thermal noise and phase noise. Statistical models by means of a probability density
function (PDF) will be derived for these noise sources, in order to account for the uncertainties
which are introduced in the observations by these noise signals.

4.6.1 Thermal Noise Model
Thermal noise or sometimes denoted as Johnson–Nyquist noise is due to thermal agitation of the
electrons within an electrical conductor of finite conductivity [SSR06]. Thermal noise 𝑤 (𝜏) is
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commonlymodelled as a circularly normal distributed randomprocess in the complex baseband.
Circularity of a normally distributed process implies propriety and also zero-mean [SS10].

E {𝑤 (𝜏)} = 0 (4.122)

Thermal noise is assumed as wide-sense stationary (WSS) (see APPENDIX B.2.1 for a
definition of wide-sense stationarity) and white, i.e., uncorrelated process. The respective
second-order statistic is given by the auto-correlation function (ACF) 𝜓w (𝜏) of the process
(the expectation is taken w.r.t. the delay 𝜏′).

𝜓w (𝜏) = E{𝑤 (𝜏′ + 𝜏)† ⋅ 𝑤 (𝜏′)} = 𝜂 ⋅ 𝛿 (𝜏) (4.123)

𝜂 is the noise power. Due to the assumption of a white process, the power spectral density of
the noise process is uniform. The respective PDF of the noise is

𝑤 (𝜏) ∼ 𝒞𝒩 (0, 𝜂 ⋅ 𝛿 (𝜏)) . (4.124)

Thermal noise will be assumed as independent and identical distributed (i.i.d.) process,
such that individual realisations are mutually independent but have the same distribution.
Accordingly, the ACF in time domain 𝜓w (𝑡) is

𝜓w (𝑡) = E{𝑤 (𝑡′ + 𝑡)† ⋅ 𝑤 (𝑡′)} = 𝛿 (𝑡) . (4.125)

As the thermal noise is assumed as WSS and i.i.d., the second-order statistic of the thermal
noise process in the delay-time domain 𝜓w (𝜏, 𝑡) is

𝜓w (𝜏, 𝑡) = E{𝑤 (𝜏′ + 𝜏, 𝑡′ + 𝑡)† ⋅ 𝑤 (𝜏′, 𝑡′)} = 𝜂 ⋅ 𝛿 (𝜏) ⋅ 𝛿 (𝑡) . (4.126)

Summarised, the thermal noise in delay-time domain is modelled as an i.i.d. random process
with PDF

𝑤 (𝜏, 𝑡) ∼ 𝒞𝒩 (0, 𝜓w (𝜏, 𝑡)) . (4.127)

Figure 4.38 shows the average spectrum of two measurements with a single target, and the
estimated power spectral density (PSD) of the thermal noise process.

Last, the statistic of the thermal noise in MIMO radar has to be clarified. The thermal
noise among the parallel Rx channels is uncorrelated and heteroscedastic (has different power),
because the Rx channels have different receiver chains. As thermal noise is assumed as a white
process over the time domain, thermal noise among the dimension of the Tx channels is also
uncorrelated, if a TDM accessing scheme is employed to access the different Tx channels.
Because thermal noise occurs only in the receiver channels it can be assumed, that the noise
power is equal for MIMO channels sharing the same receiver channel. However, due to e.g.
different phase noise of the transmit and homodyning signal, the thermal noise power slightly
varies among the different Tx channels. Hence, the MIMO channels are assumed to be subject
to different thermal noise powers. Summarised, thermal noise is assumed as uncorrelated
and heteroscedastic among the MIMO channels. Hence, the MIMO covariance matrix of the
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Figure 4.38: Average power spectral density (averaged over 64 measurements) of two measurements
with a FMCW radar, and the fitted power spectral density of the model of the thermal
noise.

thermal noise is modelled as a matrix with diagonal structure.

4.6.2 Mitigation of Leakage and Leakage Noise Model
In a co-located radar setup as e.g. a monostatic radar, transmitter and receiver are close to
each other. Hence, leakage or cross-talk occurs [DSW19], which disturbs the received signal.
Besides from leakage due to the limited isolation between the transmit and receive chain [Sto92],
short-range leakage may by present [DSW19, Mel+15, Mel+17]. Short-range leakage can be
due to undesired targets in the radars vicinity (e.g. the bumper of a car) or the radar setup (e.g.
a radome or lens). Hence, short-range leakage is composed of many individual propagation
paths. Leakage and short-range leakage cause the signal spectrum in a FMCW radar system
to be disturbed and the sensitivity of the radar is lowered. Figure 4.39 shows the spectrum
of a measurement with the FMCW radar in [2]. The radar is equipped with a focusing lens,
which is approx. 2 cm apart from the antennas. Short-range leakage and leakage occur due to
the lens and the close location of Tx and Rx, respectively. As a result, the lower parts of the
spectrum of the receive signal are disturbed, such that beat frequencies of close target reflections
are hard to identify in the spectrum. Hence, the radar is possibly ”blind” w.r.t. close targets.
Solutions in hardware [Bea+90, Dür+18, DSW19, Mel+15] or digital pre-processing [Kia+18,
LMY04, Mel+17, Par+19] are proposed in literature to reduce the influence of the leakage. In
the following, a novel signal processing solution will be presented, which has been published
in [6]. It can be easily incorporated in aMLparameter estimation framework, such that hardware
changes are not necessary.

Furthermore, leakage affects the development of a parameter estimator too. An estimator
would attempt to resolve the individual path contributions of the short-range leakage as they
occur with a large power. Thus an estimator can be employed to suppress the leakage by
resolving its individual contributions. As the leakage is a distinct process for each MIMO
channel, a joint processing over all MIMO channels is prohibited. Hence, the estimator has to
account for distinct models for eachMIMO channel, which severely increases the computational
complexity. Therefore, resolution of the leakage by an estimator is not adorable.
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Figure 4.39: Average power spectral density (averaged over 64 measurements) of a measurement with

a FMCW radar featuring co-located transmit and receive channel. The radar is equipped
with a lens (2 cm apart from the antennas), such that short-range leakage occurs.

Background Subtraction

Leakage will be assumed as a disturbance of the received signal due to the radar setup. As
long as the system hardware remains unchanged, the leakage can be assumed as static. Hence,
background subtraction, i.e. the coherent subtraction of an estimate of the leakage from the
measurement, can be used. An estimate of the static leakage can be gained from a calibration
measurement with no target, or a measurement with an apart target, which can be excluded by
gating. In Fig. 4.40 the spectrum of a time-limited measurement before and after background
subtraction is shown. Obviously, the leakage is reduced and the peak of the target reflection
becomes more present. A small signal portion remains after the background subtraction, which
will be termed as leakage noise. The leakage noise can be caused by phase variations in the radar
hardware. Due to phase variations the estimated leakage and the leakage in the measurement
slightly differ, such that the leakage is not totally mitigated by background subtraction. A
solution would be an online estimation of the leakage, such that phase variations of the system
are accounted for. Another solution would be a probabilistic modelling approach to suppress
the leakage noise, which will be considered subsequently.

Leakage Noise Model

First, it will be assumed that each MIMO channel is subject to different leakage noise. Hence,
the leakage noise is assumed as uncorrelated among the MIMO channels. Accordingly,
derivation of a model for leakage noise in a SISO radar will be sufficient. An extension to
the MIMO case is given by considering different model parameters for each MIMO channel
and a diagonal structure for the respective MIMO covariance matrix.

Leakage noise will be assumed as a coloured random process, as it is caused by random
variations in the radar hardware like phase noise or flicker noise. Leakage noise in delay domain𝑙 (𝜏) will be modelled as a zero mean, proper complex normally distributed random process.

𝑙 (𝜏) ∼ 𝒞𝒩 (0, 𝜓l (𝜏1, 𝜏2)) (4.128)
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Figure 4.40: Average power spectral density (averaged over 64 measurements) of a measurement before
and after background subtraction. The short range leakage is reduced and the peak of
the target reflection becomes more obvious. A signal portion remains after background
subtraction, which is termed as leakage noise.

Function 𝜓l (𝜏1, 𝜏2) denotes the correlation of the leakage noise at the lags 𝜏1 and 𝜏2.
𝜓l (𝜏1, 𝜏2) = E{𝑙 (𝜏1) ⋅ 𝑙 (𝜏2)†}

The leakage noise will be assumed as a WSS process in delay domain, such that observations
of the process at different frequency bins 𝑓1 and 𝑓2 are uncorrelated.

E{𝐿 (𝑓1) ⋅ 𝐿 (𝑓2)†} = 0 , ∀𝑓1 ≠ 𝑓2
The PSD of the leakage noise is assumed as exponentially decaying, see Fig. 4.40. Accounting
for the WSS assumption, a model for the correlation of the leakage noise at frequency bins 𝑓1
and 𝑓2 is

𝛹l (𝑓1, 𝑓2) = 𝜍 ⋅ exp{−𝜀 (𝑓1 − 𝜚)} ⋅ H (𝑓1 − 𝜚) ⋅ 𝛿 (𝑓1 − 𝑓2) (4.129)

Function H (•) is the Heaviside step function, which is used to model the limitation of the
leakage noise process in frequency domain. Offset frequency 𝜚 accounts for the offset of
the slope of the leakage noise from the 0Hz frequency. Variable 𝜀 defines the slope of
the noise, which actually describes the coherence time of the leakage noise; and 𝜍 is the
power. The correlation function in delay domain is given by the inverse Fourier transform
of equation (4.129).

𝛹l (𝑓1, 𝑓2) 𝑓1→𝜏1
t ❞𝑓2→𝜏2 𝜓l (𝜏1, 𝜏2)

Because the leakage noise is assumed as WSS, only the lag difference 𝜏 = 𝜏1 − 𝜏2 is relevant,
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which yields the ACF: 𝜓l (𝜏1, 𝜏2) ⇒ 𝜓l (𝜏).
𝜓l (𝜏) = 𝜍𝜀 − 𝚥2𝜋𝜏 ⋅ exp {𝚥2𝜋𝜚𝜏} (4.130)

The observation time of the measurements is limited. Hence, model (4.129) is not the
correlation of the observed leakage noise in frequency domain, because this model assumes
a unlimited observation time. The time limitation causes a convolution with a sinc-function in
frequency domain.

𝛹l (𝑓1, 𝑓2) = [𝜍 exp{−𝜀 (𝑓1 − 𝜚)} 𝐻 (𝑓1 − 𝜚) 𝛿 (𝑓1 − 𝑓2)] ∗ sinc (𝑇M𝑓1) ∗ sinc (𝑇M𝑓2)
(4.131)

The leakage noise will be assumed as an i.i.d. process over time 𝑡. Accordingly, the leakage
noise is uncorrelated at different time lags 𝑡1 and 𝑡2. Furthermore, the process is assumed as
WSS, such that the lag difference 𝑡 = 𝑡1 − 𝑡2 is relevant.

𝜓l (𝑡1, 𝑡2) = E{𝑙 (𝑡1)† ⋅ 𝑙 (𝑡2)} = 𝛿 (𝑡1 − 𝑡2) = 𝛿 (𝑡) (4.132)

Knowing the second-order statistic of the leakage noise in delay 𝜏 and time 𝑡, the second-order
statistic 𝜓l (𝜏, 𝑡) in the delay-time domain can be derived.

𝜓l (𝜏1, 𝜏2; 𝑡1, 𝑡2) = E{𝑙 (𝜏1, 𝑡1)† ⋅ 𝑙 (𝜏2, 𝑡2)} = 𝜓l (𝜏) ⋅ 𝛿 (𝑡) (4.133)

Summarised, leakage noise in delay-time domain is an i.i.d. random process with the
probability density function

𝑙 (𝜏, 𝑡) ∼ 𝒞𝒩 (0, 𝜓l (𝜏, 𝑡)) . (4.134)

Figure 4.41 shows the average PSD of two exemplary measurements and the estimated PSD of
the leakage noise process, see Section 5.2 for details of the estimation procedure.

4.6.3 Phase Noise Model
Phase noise is a random variation of the signal phase, which can be caused by noise occurring
in the phase locked loops (PLLs), oscillators, amplifiers etc. In FMCW radar phase noise is of
major concern [BB93, 2]. Due to the presence of phase noise in the transmit and homodyning
signal range-correlation effects occur [BB93], such that the noise floor in the received signal
is not a temporarily white process. Hence, assuming only white noise in the observation will
cause a model error, which deteriorates the parameter estimation results. Therefore, a model to
account for the phase noise in the parameter estimator is necessary.

Phase Noise in FMCW SISO Radar
Amodel of phase noise occurrence in a FMCW SISO radar is sketched in Fig. 4.42. In general,
the transmit 𝑠Tx (𝜏) and homodyning 𝑠Rx (𝜏) signal are affected by separate phase noise sources
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Figure 4.41: Average power spectral density (averaged over 64 measurements) of two measurements
with a FMCW radar, and the fitted model of the power spectral density of the leakage
noise.

𝑠(𝑡) ×
exp{𝚥𝑒Rx(𝑡)} × exp{𝚥𝑒Tx(𝑡)} ℎ(𝑡)

𝑥(𝑡) ×
Figure 4.42: Sketch of an FMCW radar with stretch processor receiver architecture. The phase noise

processes 𝑒Tx(𝑡) and 𝑒Rx(𝑡) affect the transmit and homodyning signal, respectively.

as e.g. both signals are driven by different PLLs, see [2]. The respective signal models are

𝑠Tx (𝜏) = exp {𝚥𝜑 (𝜏)} ⋅ exp{𝚥𝑒Tx (𝜏)} (4.135a)𝑠Rx (𝜏) = exp {𝚥𝜑 (𝜏)} ⋅ exp{𝚥𝑒Rx (𝜏)} , (4.135b)

with 𝑒Tx (𝜏) and 𝑒Rx (𝜏) the phase noise process at Tx and Rx, respectively. Phase function𝜑 (𝜏) is the phase of the FMCW signal, see Section 4.1. The transmit signal is passed
over a transmission channel, which constitutes of the propagation channel featuring a single
propagation pathwith delay 𝜏𝑝 and pathweight 𝛾𝑝, and the response of the radar system𝐺 (𝑓(𝜏)).
The received signal after stretch processing (homodyning,de-ramping) is

𝑥 (𝜏) = 𝛾𝑝 ⋅ 𝐺 (𝑓(𝜏)) ⋅ exp{𝚥𝜑 (𝜏𝑝)} ⋅ exp{𝚥𝛥𝑝 (𝜏)} . (4.136)

Variable 𝛥𝑝 (𝜏) denotes the phase noise difference.
𝛥𝑝 (𝜏) = 𝑒Tx (𝜏 − 𝜏𝑝) − 𝑒Rx (𝜏) (4.137)
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In case of multiple propagation paths, the received signals becomes

𝑥 (𝜏) = ∑𝑝 ℎ𝑝 (𝜏) ⋅ exp{𝚥𝛥𝑝 (𝜏)} , (4.138)

with ℎ𝑝 (𝜏) = 𝛾𝑝 ⋅ 𝐺 (𝑓(𝜏)) ⋅ exp{𝚥𝜑 (𝜏𝑝)} the channel transfer function for the 𝑝-th propagation
path and 𝛥𝑝 (𝜏) the corresponding phase noise difference.

The phase noise 𝑒 (𝜏) at Tx and Rx will be modelled as an Ornstein-Uhlenbeck (OU)
process [BTB19, HK17]. An OU process is described by means of a stochastic differential
equation.

𝑑𝑑𝜏𝑒 (𝜏) = 1𝛽 ⋅ [𝜇 − 𝑒 (𝜏)] + √2𝛼𝛽 ⋅ 𝑑𝑑𝜏𝑤 (𝜏) , 𝛽 > 0 , 𝛼 ≥ 0 (4.139)

Process 𝑤 (𝜏) is a Wiener process or standard Brownian motion, 𝛽 is the correlation time, 𝛼 the
diffusion constant and 𝜇 the drift term. An OU is a normal distributed random process, whose
first-and second-order statistic is given by solving the respective stochastic differential equation
using the Itô calculus.

𝑒 (𝜏) ∼ 𝒩 ([𝑒 (0) − 𝜇] ⋅ exp{− 𝑡𝛽} + 𝜇, 𝛼 ⋅ [1 − exp{−2 𝑡𝛽}]) (4.140)

The phase noise difference 𝛥𝑝 (𝜏) will be assumed as zero mean. This assumption is justified
by the fact, that the considered radar (see [2]) operates in a coherent fashion, because a common
reference signal is distributed to all transmit and receive channels. Hence, Tx and Rx channel
are facing the same drift, such that the phase noise difference is drift free. Therefore, 𝜇 = 0 can
be assumed. Furthermore, the initial phase noise difference will be assumed as 𝑒 (0) = 0, such
that the OU process becomes a stationary process [HK17]. Figure 4.43 shows four realisations
of such a OU process for various diffusion constants. The PDF of 𝑒 (𝜏) becomes [BTB19]

𝑒 (𝜏) ∼ 𝒩 (0, 𝜓e (𝜏)) , (4.141)

with 𝜓e (𝜏) the ACF of the process.

𝜓e (𝜏) = 𝛼 ⋅ exp{−|𝜏|𝛽 } (4.142)

As the phase noise will be assumed as a WSS process, the respective PSD 𝛹e (𝑓) is given by
the Fourier transform of the ACF according to the Wiener–Khinchin theorem.

𝛹e (𝑓) = √ 2𝜋 ⋅ 𝛼 ⋅ 𝛽1 + (2𝜋𝑓𝛽)2 (4.143)

Because the phase noise processes 𝑒Tx (𝜏) and 𝑒Rx (𝜏) at Tx and Rx are modelled as normally
distributed, the distribution of the phase noise difference 𝛥 (𝜏) is normally distributed too.

For parameter estimation the distribution of observation 𝑥 (𝜏) in (4.138) has to be known.
Because ℎ𝑝 (𝜏) is deterministic and the summation is a linear operation, the distribution of
exp{𝚥𝛥𝑝 (𝜏)} has to be determined. However, the distribution of exp{𝚥𝛥𝑝 (𝜏)} is not easily
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Figure 4.43: Exemplary realisations of an Ornstein-Uhlenbeck process with different diffusion constants𝛼; and parameters 𝜇 = 0, 𝑒 (0) = 0 and 𝛽 = 2.
given, as it includes the non-linear transformation of the Gaussian random variable 𝛥𝑝 (𝜏). Here,
a Gaussian approximation of the non-linear transformation of a Gaussian random variable will
be considered [GH08]. Assuming the phase noise difference as a process with minor variations,
the first-order approximation can be used [BB93].

exp{𝚥𝛥𝑝 (𝜏)} ≈ 1 + 𝚥𝛥𝑝 (𝜏) (4.144)

Plugging into equation (4.138) the phase noise becomes additive amplitude noise 𝑝 (𝜏).
𝑥 (𝜏) ≈ ∑𝑝 ℎ𝑝 (𝜏) ⋅ [1 + 𝚥𝛥𝑝 (𝜏)] = ∑𝑝 ℎ𝑝 (𝜏) + 𝚥 ∑𝑝 ℎ𝑝 (𝜏) ⋅ 𝛥𝑝 (𝜏) = ∑𝑝 ℎ𝑝 (𝜏) + 𝑝 (𝜏) (4.145)

The received signal 𝑥 (𝜏) can be separated into the deterministic part ∑𝑝 ℎ𝑝 (𝜏) and the stochastic
part 𝑝 (𝜏) = 𝚥 ∑𝑝 ℎ𝑝 (𝜏) ⋅ 𝛥𝑝 (𝜏).

According to the Gaussian approximation 𝑥 (𝜏) is normal distributed, and the first- and
second-order statistics have to be determined. For the first-order statistic it has to be noted,
that the channel ℎ𝑝 (𝜏) is deterministic and therefore a constant w.r.t. the expectation operator.

E {𝑥 (𝜏)} = E{∑𝑝 ℎ𝑝 (𝜏) + 𝑝 (𝜏)} = ∑𝑝 ℎ𝑝 (𝜏) + E {𝑝 (𝜏)} . (4.146)

The phase noise is assumed as zero mean, such that the first-order statistic of 𝑝 (𝜏) vanishes.
E {𝑝 (𝜏)} = E{𝚥 ∑𝑝 ℎ𝑝 (𝜏) ⋅ 𝛥𝑝 (𝜏)} = 𝚥 ∑𝑝 ℎ𝑝 (𝜏) ⋅ E{𝛥𝑝 (𝜏)} = 0 (4.147)

Accordingly, the second-order statistic 𝜓x (𝜏1, 𝜏2) can be given.

𝜓x (𝜏1, 𝜏2) = E{[𝑥 (𝜏1) − E{𝑥 (𝜏1)}] ⋅ [𝑥 (𝜏2) − E{𝑥 (𝜏2)}]†}
= E{𝑝 (𝜏1) ⋅ 𝑝 (𝜏2)†} = 𝜓p (𝜏1, 𝜏2) (4.148)
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The second-order statistic 𝜓p (𝜏1, 𝜏2) of the amplitude phase noise 𝑝 (𝜏) is given by

𝜓p (𝜏1, 𝜏2) = E{[𝚥 ∑𝑝 ℎ𝑝 (𝜏1) ⋅ 𝛥𝑝 (𝜏1)]
† ⋅ [𝚥 ∑𝑝 ℎ𝑝 (𝜏2) ⋅ 𝛥𝑝 (𝜏2)]}

= E{∑𝑝1 ∑𝑝2
ℎ𝑝1 (𝜏1)† ⋅ 𝛥𝑝1 (𝜏1) ⋅ ℎ𝑝2 (𝜏2) ⋅ 𝛥𝑝2 (𝜏2)}

= ∑𝑝1 ∑𝑝2
E{ℎ𝑝1 (𝜏1)† ℎ𝑝2 (𝜏2) ⋅ 𝛥𝑝1 (𝜏1) 𝛥𝑝2 (𝜏2)} . (4.149)

Again, the channel ℎ𝑝 (𝜏) is deterministic and hence a constant w.r.t. the expectation operator,
such that the second-order statistic can be simplified.

𝜓p (𝜏1, 𝜏2) = ∑𝑝1 ∑𝑝2
E{ℎ𝑝1 (𝜏1)† ℎ𝑝2 (𝜏2)} ⋅ E{𝛥𝑝1 (𝜏1) 𝛥𝑝2 (𝜏2)}

= ∑𝑝1 ∑𝑝2
𝜓ℎ𝑝1,𝑝2 (𝜏1, 𝜏2) ⋅ 𝜓𝛥𝑝1,𝑝2 (𝜏1, 𝜏2) (4.150)

The second-order statistic 𝜓𝛥𝑝1,𝑝2 (𝜏1, 𝜏2) is given by

𝜓𝛥𝑝1,𝑝2 (𝜏1, 𝜏2) = E{[𝑒Tx (𝜏1 − 𝜏𝑝1) − 𝑒Rx (𝜏1)] ⋅ [𝑒Tx (𝜏2 − 𝜏𝑝2) − 𝑒Rx (𝜏2)]} .
(4.151)

The phase processes 𝑒Rx (𝜏) and 𝑒Tx (𝜏) are assumed as WSS, such the second-order statistic of
the phase noise difference depends on the time difference 𝜏 = 𝜏1 − 𝜏2. Hence, the second-order
statistic can be simplified: 𝜓𝛥𝑝1,𝑝2 (𝜏1, 𝜏2) ⇒ 𝜓𝛥𝑝1,𝑝2 (𝜏).

𝜓𝛥𝑝1,𝑝2 (𝜏) = 𝜓eTx,Tx (𝜏 + 𝜏𝑝2 − 𝜏𝑝1) − 𝜓eTx,Rx (𝜏 − 𝜏𝑝1) − 𝜓eTx,Rx (𝜏 + 𝜏𝑝2) + 𝜓eRx,Rx (𝜏)
(4.152)

𝜓eTx,Tx (𝜏) is the ACF of the phase noise process at Tx, 𝜓eRx,Rx (𝜏) is the ACF of the phase
noise process at Rx, and 𝜓eTx,Rx (𝜏) is the cross-correlation function (CCF) between these noise
processes. The ACF and the CCF of the phase noise processes at Tx and Rx depend on the
signalling of the Tx and the Rx. Two signalling variants are distinguished: same signal at Tx
and Rx (common signalling) or different signals at Tx and Rx (disparate signalling).

Common Signalling If the same signal is used for transmission at the transmitter and
homodyning at the receiver (e.g. in monostatic radar applications), the phase noise process
at Tx and Rx can be assumed as equal: 𝑒Tx (𝜏) ≡ 𝑒Rx (𝜏). Accordingly, the following relation
for the ACF and the CCF holds.

𝜓eTx,Tx (𝜏) = 𝜓eRx,Rx (𝜏) = 𝜓eTx,Rx (𝜏) (4.153)
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Disparate Signalling If the transmission and homodyning signal differ (e.g. in bistatic radar
applications), then 𝑒Tx (𝜏) ≠ 𝑒Rx (𝜏) and the ACFs are 𝜓eTx,Tx (𝜏) ≠ 𝜓eRx,Rx (𝜏). Assuming the
phase noise processes at Tx and Rx as uncorrelated, the CCF becomes 𝜓Rx,Tx (𝜏) = 0. Hence,
the correlation of the phase noise difference simplifies.

E{𝛥𝑝1 (𝜏′ + 𝜏) 𝛥𝑝2 (𝜏′)} = 𝜓eTx,Tx (𝜏 + 𝜏𝑝2 − 𝜏𝑝1) + 𝜓eRx,Rx (𝜏) (4.154)

Phase Noise Model in FMCW MIMO Radar

If a FMCWMIMO radar is considered, phase noise correlation among the MIMO channels has
to be taken into account. Consider the 𝑝-th propagation path with propagation delay 𝜏𝑝. Due to
the direction of transmission and impingement the delays 𝛕Tx𝑝 and 𝛕Rx𝑝 across the Tx and Rx
array occur (see Section 4.3).

𝛕Tx𝑝 = [𝜏1Tx𝑝 , … , 𝜏𝑀Tx𝑝]T
𝛕Rx𝑝 = [𝜏1Rx𝑝 , … , 𝜏𝑀Rx𝑝]T

Also, lets introduce the vectors 𝐞Tx (𝜏) and 𝐞Rx (𝜏), which encompass the phase noise processes
for each channel at Tx and Rx side, respectively.

𝐞Tx (𝜏) = [𝑒Tx1, … , 𝑒Tx𝑀Tx]T
𝐞Rx (𝜏) = [𝑒Rx1, … , 𝑒Rx𝑀Rx]T

Then, the phase noise difference for the 𝑝-th path and the 𝑚-th MIMO channel (formed by the𝑚Tx-Tx channel and the 𝑚Rx-Rx channel) is given by

𝛥𝑚𝑝 (𝜏) = 𝑒Tx𝑚Tx (𝜏 − 𝜏𝑚Tx𝑝 − 𝜏𝑝 + 𝜏𝑚Rx𝑝) − 𝑒Rx𝑚Rx
(𝜏) . (4.157)

The vector of the MIMO transfer function 𝐡𝑝 (𝜏) ∈ ℂ𝑀 is introduced too, which confounds the
transfer function for each MIMO channel w.r.t. the 𝑝-th path. According to model (4.145) for a
SISO observation, the model for a MIMO observation 𝐱 (𝜏) under the first-order approximation
can be stated.

𝐱 (𝜏) ≈ ∑𝑝 𝐡𝑝 (𝜏) + 𝚥 ∑𝑝 𝐡𝑝 (𝜏) ⊙𝚫𝑝 (𝜏) = ∑𝑝 𝐡𝑝 (𝜏) + 𝐩 (𝜏) (4.158)

The PDF of 𝐱 (𝜏) is given by a multidimensional normal distribution, which mean vector and
covariance matrix are subject to clarification.

The multidimensional phase noise process at Tx and Rx side will be assumed as zero mean,
because a common signal is distributed to all Tx and Rx channels. Hence, the first-order statistic
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of the MIMO observation 𝐱 (𝜏) is
E {𝐱 (𝜏)} = E{∑𝑝 𝐡𝑝 (𝜏) + 𝐩 (𝜏)} = ∑𝑝 𝐡𝑝 (𝜏) + 𝟎𝑀Tx𝑀Rx . (4.159)

Accordingly, the second-order statistic 𝚿𝐱 (𝜏1, 𝜏2) of the MIMO observation simplifies.

𝚿𝐱 (𝜏1, 𝜏2) = E{[𝐱 (𝜏1) − E{𝐱 (𝜏1)}] ⋅ [𝐱 (𝜏2) − E{𝐱 (𝜏2)}]H} = E{𝐩 (𝜏1) ⋅ 𝐩 (𝜏2)H} = 𝚿𝐩 (𝜏1, 𝜏2)
(4.160)

Hence, the second-order statistic depends on the phase noise only, as in the SISO case. Straight
forward extension of the covariance model (4.150) for a SISO system gives the covariance of a
MIMO system.

𝚿𝐩 (𝜏1, 𝜏2) = ∑𝑝1 ∑𝑝2
E{[𝐡𝑝1 (𝜏1) ⋅ 𝐡𝑝2 (𝜏2)H] ⊙ [𝚫𝑝1 (𝜏1) ⋅ 𝚫𝑝2 (𝜏2)T]}

= ∑𝑝1 ∑𝑝2
E{𝐡𝑝1 (𝜏1) ⋅ 𝐡𝑝2 (𝜏2)T} ⊙E{𝚫𝑝1 (𝜏1) ⋅ 𝚫𝑝2 (𝜏2)T}

= ∑𝑝1 ∑𝑝2
𝚿𝐡𝑝1,𝑝2 (𝜏1, 𝜏2) ⊙𝚿𝚫𝑝1,𝑝2 (𝜏1, 𝜏2) (4.161)

The second-order statistic 𝚿𝚫𝑝1,𝑝2 (𝜏1, 𝜏2) of the phase noise difference 𝛥 (𝜏) is given by

𝚿𝚫𝑝1,𝑝2 (𝜏) = E{[𝐞Tx (𝜏1 − 𝜏𝑝1) − 𝐞Rx (𝜏1)] ⋅ [𝐞Tx (𝜏2 − 𝜏𝑝2) − 𝐞Rx (𝜏2)]} . (4.162)

The MIMO phase noises 𝐞Tx (𝜏) and 𝐞Rx (𝜏) are assumed as a WSS process, such that
the covariance matrix 𝚿𝚫𝑝1,𝑝2 (𝜏1, 𝜏2) depends on the time difference 𝜏 = 𝜏1 − 𝜏2 only:𝚿𝚫𝑝1,𝑝2 (𝜏1, 𝜏2) ⇒ 𝚿𝚫𝑝1,𝑝2 (𝜏).

𝚿𝚫𝑝1,𝑝2 (𝜏) = 𝚿𝐞Tx,Tx (𝜏 + 𝜏𝑝2 − 𝜏𝑝1) − 𝚿𝐞Tx,Rx (𝜏 − 𝜏𝑝1) − 𝚿𝐞Tx,Rx (𝜏 + 𝜏𝑝2) + 𝚿𝐞Rx,Rx (𝜏)
(4.163)

Simplification of the MIMO Phase Noise Model Consideration of model (4.161) for
the covariance matrix of the measurement data is difficult and computational effortable in a
parameter estimator, because the dimension of the covariance matrix (which is 𝑀𝐾 × 𝑀𝐾 in
a practical implementation, see Section 5.1) can become quite large. Hence, simplifications,
which are mathematically instead of physically driven, will be stated in the following.

In order to simplify the phase noise model it will be assumed, that a common signal is
distributed. Furthermore, the phase noise is assumed as an approximately white process over
time. Assuming all propagation paths to be differently delayed, the covariance matrix for
different paths vanishes. Furthermore, correlation of the phase noise difference among the
MIMO channels will be neglected. This assumption is not valid from a physical viewpoint, as
some MIMO channels share the same Tx or Rx channel, such that their phase noise processes
are inherently correlated. Lets consider time-division multiplexing at Tx side and parallel
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receiver channels at Rx side (see Section 4.5.3), and assume the phase noise processes as
i.i.d. process in time domain. Thus it can be assumed, that the phase noise is uncorrelated
among the Tx channels, as the respective phase noise processes are observed at different times.
However, correlations among the Rx channels are still present, such that 𝑀Tx covariance
matrices of size 𝑀Rx𝐾 × 𝑀Rx𝐾 remain. The Cholesky decompositions [PP12] of these
covariance matrices have to be calculated by the parameter estimator (see Section 5.3), which
has an overall computationally complexity of 𝒪 (𝑀Tx𝑀Rx

3𝐾3). If the phase noise among the
MIMO channels (combination of Tx and Rx channels) are assumed as uncorrelated processes,𝑀Tx𝑀Rx Cholesky decompositions of matrices of size 𝐾 × 𝐾 have to be calculated by the
parameter estimator. The overall computational complexity in that case is 𝒪 (𝑀Tx𝑀Rx𝐾3).
Hence, assumption of uncorrelated phase noise difference among the MIMO channels severely
reduces the computational complexity of the parameter estimator.

Taking into account the above simplifications the covariance matrix of the phase noise
difference becomes

𝚿𝚫𝑝1,𝑝2 (𝜏) ≈ {𝟎 , 𝑝1 ≠ 𝑝2
diag{𝛙𝐞 (𝜏)} , 𝑝1 = 𝑝2 = 𝑝 . (4.164)

The entries of vector 𝛙𝐞 (𝜏) are given by the ACF (4.142), whereas each entry is described
in terms of another set of parameters 𝑎 and 𝛽. Plugging the simplified covariance (4.164)
into (4.161) yields the second-order statistic of the MIMO phase noise difference process 𝐩 (𝜏).

𝚿𝐩 (𝜏) ≈ diag{𝛙𝐞 (𝜏)} ⊙ ∑𝑝 𝚿𝐡𝑝 (𝜏) (4.165)

According to this model the phase noise statistic is independent on the delay of a received path.
This is a tough assumption, as range correlation effects are therefore neglected. However, the
model complexity is severely reduced by this assumption. Summarised, the MIMO phase noise𝐩 (𝜏) in delay domain is modelled as an additive, proper complex, normally distributed process.

𝐩 (𝜏) ∼ 𝒞𝒩 (𝟎, diag{𝛙𝐞 (𝜏)} ⊙ ∑𝑝 𝚿𝐡𝑝 (𝜏)) (4.166)

Note, that also the modelling as proper complex process is an approximation due to numerical
complexity reasons.

In order to derive the second-order statistic in time domain 𝚿𝐩 (𝑡), a statement regarding
the propagation channel is necessary. The propagation channel is time-variant, such that
propagation paths can appear or vanish over time 𝑡. Therefore, the number of propagation
paths becomes a time-dependent quantity 𝑃 (𝑡). However, it will be assumed, that the number
of propagation paths stays fix during the observation time, hence 𝑃 (𝑡) = 𝑃. Assuming the phase
noise process 𝐞 (𝑡) as i.i.d. in the time domain, the second-order statistics in time domain is

𝚿𝐩 (𝑡) = ∑𝑝 𝚿𝐡𝑝 (𝑡) ⊙E{𝚫𝑝 (𝑡′ + 𝑡) ⋅ 𝚫𝑝 (𝑡′)T} = 𝛿 (𝑡) ⋅ 𝐈⊙ ∑𝑝 𝚿𝐡𝑝 (𝑡) . (4.167)
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Accordingly, the second-order statistic 𝚿𝐩 (𝜏, 𝑡) in the delay-time domain is

𝚿𝐩 (𝜏, 𝑡) = E{𝐩 (𝜏′ + 𝜏, 𝑡′ + 𝑡) ⋅ 𝐩 (𝜏′, 𝑡′)H} = 𝛿 (𝑡) ⋅ diag{𝛙𝐞 (𝜏)} ⊙ ∑𝑝 𝚿𝐡𝑝 (𝜏, 𝑡) (4.168)

and the delay-time correlation function 𝚿𝐡𝑝 (𝜏, 𝑡) of the 𝑝-th path is given by

𝚿𝐡𝑝 (𝜏, 𝑡) = E{𝐡𝑝 (𝜏′ + 𝜏, 𝑡′ + 𝑡) ⋅ 𝐡𝑝 (𝜏′, 𝑡′)H} , (4.169)

with 𝐡𝑝 (𝜏, 𝑡) the delay-time model of the 𝑝-th propagation path.
Summarised, the MIMO phase noise in delay-time domain is modelled as an additive,

normally distributed random process with probability density function

𝐩 (𝜏, 𝑡) ∼ 𝒞𝒩 (𝟎, 𝚿𝐩 (𝜏, 𝑡)) . (4.170)

4.6.4 Noise Model and Verification
Complete Noise Model

The presented noise models for a FMCW MIMO radar account for three noise sources: phase
noise, leakage noise and thermal noise. Because all noise sources are additive disturbances of
the receive signal an overall noise process 𝑛 (𝜏, 𝑡) in the delay-time domain can be defined.

𝑛 (𝜏, 𝑡) = 𝑤 (𝜏, 𝑡) + 𝑙 (𝜏, 𝑡) + 𝑝 (𝜏, 𝑡) ≈ 𝑤 (𝜏, 𝑡) + 𝑙 (𝜏, 𝑡) + 𝚥𝑒 (𝜏, 𝑡) ⋅ ℎ (𝜏, 𝑡) (4.171)

As each of the noise processes is modelled as normally distributed the overall noise process
is normally distributed too. Hence, the first-order and central second-order moment of 𝑛 (𝜏, 𝑡)
have to be determined. Because the overall noise process is given by the summation of multiple
noise processes and these noise processes are zero-mean, the first-order moment is

E {𝑛 (𝜏, 𝑡)} = 0 . (4.172)

The phase noise, thermal noise and leakage noise are WSS processes and uncorrelated w.r.t.
each other. Accordingly, the central second-order moment 𝜓n (𝜏, 𝑡) of the overall noise process
can be stated.

𝜓n (𝜏, 𝑡) = E{𝑛 (𝜏′ + 𝜏, 𝑡′ + 𝑡)† 𝑛 (𝜏′, 𝑡′)}
= 𝛿 (𝑡) ⋅ [𝜂 ⋅ 𝛿 (𝜏) + 𝜓l (𝜏) + 𝜓e (𝜏) ⋅ 𝑃

∑𝑝 𝜓h𝑝 (𝜏, 𝑡)] (4.173)

The respective PDF of the overall noise process in the delay-time domain is

𝑛 (𝜏, 𝑡) ∼ 𝒞𝒩 (0, 𝛿 (𝑡) ⋅ [𝜂 ⋅ 𝛿 (𝜏) + 𝜓l (𝜏) + 𝜓e (𝜏) ⋅ ∑𝑝 𝜓h𝑝 (𝜏, 𝑡)]) . (4.174)
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Figure 4.44: Average power spectral density (average over 64 periods) of measurements with a single
target, the fitted thermal and leakage noise model, and the resulting signal after whitening.

The parameters of the covariance model are unknown in advance and hence must be estimated
from measurements too, see Chapter 5 for details on the estimator. As the covariance model
parameters are not of immediate interest, rather than the parameters of a propagation path, they
enter the estimator as so called nuisance parameters.

Experimental Verification of the Noise Model
Figure 4.44 shows the range spectra of two measurements with an FMCW radar. For both
measurements the parameters of the leakage and thermal noise model have been estimated and
the respective PSDs are shown in the figures. The phase noise model will be neglected for the
moment. The covariance matrix is constructed from the estimated leakage and thermal noise
model, and this covariance matrix has been used to whiten (multiplication of the measurements
with the inverse Cholesky factor of the covariance matrix) the measurements. After whitening
the contribution from the leakage noise is suppressed, such that the overall noise floor becomes
more uniform.

Last, the influence of the phase noise model will investigated. A measurement with a single
corner reflector as target will be considered therefore, see Fig. 4.45. The physical path emerging
from the reflection at the corner reflector is estimated by the approach presented in Chapter 5.
Afterwards, the residual signal is calculated by coherently subtracting the path model (i.e. the
channel model corresponding to the estimated path) from the measurements. A small signal
portion remains in the residual signal. This signal portion can be due to model errors or phase
variations in the measurements. A parameter estimator may attempt to cover them by additional
propagation paths in the model. Hence, an overestimation of the number of propagation paths
can occur. The residuals are used to estimate the parameters of the covariance model (4.173).
For comparison, the parameters of the covariance model have been estimated for the case of
considering phase noise (see Fig. 4.45(b)) and neglecting phase noise (see Fig. 4.45(a)) in the
model. If phase noise is neglected the estimated PSD of the noise process does not fit well with
the noise profile of the residuals, such that the whitening does not suppress the leakage noise.
An explanation for the bad fit is the residual signal portion from the path model subtraction,
which is not covered by the noise model. However, if phase noise is taken into account in
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Figure 4.45: Average power spectral density (averaged over 64 periods) of the measurements, the
residuals after subtraction of the estimated path, the fitted model of the power spectral
density of the noise, and the whitening result of the residuals. Phase noise has been (a)
neglected or (b) considered in the noise model.

the covariance model, the fit of the PSD with the residuals is much better, as the covariance
model covers the residual signal portion. Consequently, the whitened residual is white noise
like, which indicates a proper choice of the noise model in that case. Hence, the consideration
of phase noise in the covariance model is also advantageously to cover model errors.

4.7 Summary
In this chapter, a detailed model of the response and noise sources of the considered FMCW
MIMO radar has been developed.

The basic signal theory and hardware setup of an FMCWwith homodyning receiver has been
reviewed. A model for the received signal with neglected hardware effects has been presented.
In order to take hardware effects into account, a model of the response of the radar hardware has
been developed. The response of the MIMO radar system has been divided into the response
of the transceiver chains and the response of the MIMO antenna array. The joint calibration of
the model of the transceiver chain and the model of the antenna array using calibration data has
been presented.

Hardware impairments are described by a behavioural transceiver model. It has been shown
that, due to non-linearities in the signal generator, the transmit signal of the considered FMCW
radar constitutes of multiple signals. As a result, the received baseband signal is distorted,
because multiple beat frequencies for a single target occur. This may cause false detections.
In order to account for these signal disturbances, a non-linear, dynamic response model of the
transceiver chain has been developed using a generalised Hammerstein model. The developed
response model allows the de-embedding (see Section 1.1.1) and mitigation of the signal
disturbances, which improves the target detection performance.

In order to model the array response narrowband as well as wideband modelling has been
discussed. Narrowband models are the de facto state-of-the-art. It turned out, that the
narrowband array model is not suitable to describe the array response, because narrowband
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modelling assumptions are violated. The radar is of broadband type (huge signal bandwidth and
large array aperture), such that angle-delay coupling occurs, which is not coped by a narrowband
array model. The wideband model remains useful, as it copes with angle-delay coupling. On
the downside, the wideband model is much more complicated and hence causes a much higher
numerical effort of a parameter estimator.

The sampling of the receive signals in conjunction with the interference free accessing
of all MIMO channels by TDM has been discussed as well. It has been pointed out, that
TDM accessing of a time-variant channel causes angle-Doppler coupling. A model, which
accounts for angle-Doppler coupling has been developed. By exploiting this model in a
parameter estimator, the angle-Doppler coupling is compensated and the Doppler bandwidth
of a traditional TDM system is enhanced.

Three occurring noise sources have been considered: thermal noise, leakage noise and phase
noise. For each noise sources a parametric model in the delay and time domain, and dimension
of MIMO channels has been derived. The leakage and phase noise model are novelties for
FMCW MIMO radars. The consideration of leakage noise enables the detection of close and
weak targets. The consideration of phase noise is advantageously to cope with model errors.
Model errors cause residual signals, which deteriorate the estimation quality and result in an
overestimation of the number of propagation paths. The phase noise model accounts for such
residual signals and suppresses them. Hence, an overestimation of the number of propagation
paths is circumvented. The parameters of the noise models are unknown, and hence are subject
to the parameter estimation problem as well.
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CHAPTER 5
Parameter Estimation from Ob-
servations by an FMCW MIMO
Radar

THE physical model and the radar device model from the previous two chapters, and the
MAP estimator will be considered for the development of a model-based signal processing

scheme. In this chapter, the implementation of a parameter estimator for a broadband,
monostatic FMCW MIMO radar will be outlined. The resulting estimator can be applied to the
radar data cube in Fig. 5.1. Target parameters as delay, angle and Doppler will be estimated,
which can be used for e.g. target localisation.

Related Work and Own Contributions
Model-based signal processing is not a new application to radar signal processing, and there is
muchwork done already [DEH19, LS08, Ric13]. Also, the idea of compressive sensing [CW08,
ME11] has been transferred to radar applications [Coh+18, DEH19, YPP10]. Furthermore,
space-time adaptive processing (STAP) methods have been introduced to MIMO radar [LS08,
Ric13], in order to improve the robustness of target detection against interference as clutter,
jamming or multipath by maximising the signal-to-interference-plus-noise ratio (SINR) at the
processor output [Mel04]. Standard STAP processing is conducted for each acquired delay bin
and each target separately. Here, joint processing of the space- (spatial-), delay and time-domain
of MIMO radar observations is considered. Also, it will not be distinguished between target
scattering and clutter in the estimator. Instead, every received propagation contribution will be
resolved by the estimator. Separation of the resolved contributions into scattering from a true
target and clutter will not be accomplished here. Hence, target detection and clutter separation
is not considered.

A variety of model-based parameter estimators have been proposed for radars, ranging from
fast Fourier transform (FFT)-based processing schemes [JAA17, Pay07, Sam+12], to subspace-
based processing schemes asMUSIC [BRH14, Zha+10] and ESPRIT [DBG08, LZG19, NS10],
to maximum-likelihood (ML) type estimators [LS08, SM11, SS98, XLS08]. ML methods are
mainly criticised due to their high computational complexity, such that a real-time application
of the estimator is hardly feasible. However, a ML estimator is very flexible regarding the data
model. On the other hand, ESPRIT and FFT-based algorithms are computationally efficient
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Figure 5.1: Radar data cube 𝓨, which concatenates all observations in spatial-, time- and delay domain
into a 3-dimensional tensor. The spatial domain is sampled by the MIMO channels, which
are spanned by the Tx and Rx array. (Picture adapted from [Sta19].)

methods, but demand a certain structure of the data model (Kronecker structure and shift-
invariant observations in each dimension). Apart from the radar community, model-based or
parametric signal processing is also well known in channel sounding, in order to derive the
parameters of propagation paths from measurement data: SAGE [Fle+99], RARE [PMB04],
ESPRIT [HTR03, 8] or RIMAX [LKT12, Ric05]. The close link between radar and channel
sounding has been pointed out in Section 1.1, such that these algorithms are also conceivable
for estimating target parameters.

Basically, each one of the target parameters 𝜏, 𝜑 and 𝜈 can be assigned to one dimension of the
radar data cube in Fig. 5.1. For example, the delay relates to the fast time, theDoppler to the slow
time, and the azimuth relates to the MIMO channels. Common signal processing algorithms
for the radar data cube exploit this fact by processing each dimension separately, which
is computationally very attractive. However, the separate processing lowers the resolution
capability. Furthermore, the separate processing necessitates a certain structure of the system
model, the so called Kronecker structure [Ric05]. Under this model structure, each parameter
causes only variations of the measurements in his respective observation dimension. Hence,
decoupled observation dimensions are assumed in the systemmodel. For example, variations of
the azimuth angle causes variations over the dimension of theMIMO channels only. This is only
true, if a narrowband model of the array response is assumed. The Kronecker model structure
is not be given by the system model, which will be considered in the following. Because angle-
delay coupling is considered due to the wideband array model, and angle-Doppler coupling due
to the TDM of the Tx channels is considered, the system model has no Kronecker structure.
Furthermore, joint processing of all dimensions shall be applied to achieve high-resolution.
Summarised, the common and computational attractive estimators in radar signal processing
cannot be applied, because of the considered system model. Instead, a MAP estimator has to
be applied, because this kind of estimators are not restricted by a certain model structure.

First, the statistical model of the noisy radar observations, stacked into the radar data cube
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Fig. 5.1, will be developed in Section 5.1. There, the physical model ℳP of the propagation
(see Chapter 3) and the device model ℳD of the MIMO radar from (see Chapter 4) are con-
sidered, which gives a novel systemmodel ℳS. Next, the statistical model, which considers the
systemmodel and the noise sources, will be derived. The noise sources presented in Section 4.6
including leakage noise and phase noise will be taken into account as noise disturbances. Based
on the statistical model the likelihood of the observations in terms of the parameters of interest
(the parameters of the physical model) and the nuisance parameters (parameters of the noise
model) will be given. Afterwards, the statistical inversion using Bayes’ rule is described and
the required prior distribution of the parameters is stated using the principle of indifference.
The MAP estimator will be used as point estimator to derive parameter values from the pos-
terior distribution [28]. As the MAP is considered and the prior is derived from the principle of
indifference, the parameter estimator becomes a maximum-likelihood estimator with box con-
straints on the parameters. Theoretic properties of ML estimators will be given, and how to
calculate asymptotic values of the variance of the parameter values. The ML estimator results
in an objective, such that an optimisation scheme is required, which takes box constraints into
account. As the objective is of non-convex nature (see APPENDIX B) an iterative optimisation
scheme is proposed, which includes a coarse global search and a subsequent gradient-based op-
timisation algorithm for refinement of the parameter estimates. The optimisation scheme will
be described in Section 5.3. The complete parameter estimation framework will be outlined in
Section 5.4. Section 5.5 concludes the chapter.

Parts of this chapter have been published in [6, 25, 10, 28].

5.1 Statistical Model – Model of the Noisy
Observations

The statistical model describes the PDF of the observations in terms of the parameters of
interest. This PDF is the likelihood. Subsequently, a statistical model for the radar observations,
i.e. the radar data cube, will be derived. This model will be later on used to infer the parameters
of interest from the measurements. The statistical model will be derived for observations with
an FMCW MIMO radar with parallel receiver channels and TDM accessing of the transmit
channels, as presented in [2]. First, some termini have to be clarified: a MIMO observation
denotes the measurement of multipleMIMO snapshots, whereas oneMIMO snapshot is a single
measure of all MIMO channels. The radar data cube can be represented by a 3-way tensor𝓨 ∈ ℂ𝐾×𝑁×𝑀, with 𝑀 = 𝑀Tx ⋅ 𝑀Rx denoting the number of MIMO channels, 𝐾 the number
of samples per channel, and 𝑁 the number of MIMO snapshots. The considered MIMO radar
requires the time 𝑇 = 𝑁 ⋅ 𝑀Tx ⋅ 𝑇P to capture the radar data cube.

In case of a moving target the observation angle and the target range varies during the
capturing time of 𝓨. Hence, these parameters are basically time-variant [27]. Commonly, time-
variations of the delay are considered only, which results in Doppler (see Section 3.2.1); whereas
the angle or path weight are assumed as stationary. However, the Doppler model in Section 3.2.1
assumes a homogeneously and linearly moving target (neither the moving direction nor the
velocity changes). Hence, theDoppler shift is assumed as stationary too. It will be assumed, that
the target is slowly moving compared to the capturing time of 𝓨, such that the path parameters
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(angle, path weight and the Doppler shift) are fix during the observation time 𝑇. In order to
ensure this assumption, the observation timemust be chosen sufficiently small [27], e.g. 𝑁 must
be small. If the target is rapidly moving, such that static parameters are not to be considered,
a dynamic system model to describe the time-variant behaviour of the parameters have to be
employed [27].

5.1.1 The System Model – Model of Observations in the
Noiseless Case

In the noiseless case, only the model of the physical system under identification ℳP (see
Section 3.2), and themodel of the response of the observer ℳD (see Section 4.2 and Section 4.3)
are employed to describe the observations. The resulting model is the system model ℳS, i.e.,
the system model describes the noiseless observations.

Model of a SISO Observation
First, a SISO observation will be considered. The presence of an observation device, i.e.
the influence of the device response as well as the response of the Tx and Rx antenna, will
be neglected for the moment. An observation of a single specular propagation path 𝑝 in the
noiseless case is given by (4.117), taking into account the narrowband, polarimetric scattering
matrix 𝚪𝑝 (𝑓c) from Section 3.2.1. Resolution of the polarimetric scattering matrix 𝚪𝑝 (𝑓c)
requires polarimetric measurements or at least polarimetric calibration data of the employed
antennas [23, Ric05]. Because only single polarised antennas are employed at the considered
radar and polarimetric calibration data of the antenna array are not available, polarimetric
properties of the antennas and the propagation channel must be neglected.

The considered FMCWradar gathers real-valued baseband signals only, because no IQ stretch
processor is employed. For the data model derivation the analytic signal (right side part of the
signal spectrum) will be considered. Signal model (4.117) describes the mirrored version of the
analytic signal, such that a time reversion −𝑡 has to be considered as 𝑢(−𝑡) ❞ t𝑈(−𝑓) holds
for complex signals. According to equation (4.117), the 𝑘-th sample of the complex baseband
signal 𝑥 for the 𝑛-th FMCW ramp (signal period) is modelled as

𝑥 (𝑘, 𝑛) ≈ 𝛾′𝑝 ⋅ exp{𝚥2𝜋 𝑊𝑇M
𝜏′𝑝𝑘𝑇S} ⋅ exp{𝚥2𝜋𝜈′𝑝𝑛𝑇P} ⋅ exp{−𝚥2𝜋𝑓0𝜏′𝑝} , (5.1)

with 𝑘 = 0 … 𝐾 − 1 and 𝑛 = 0 … 𝑁 − 1. The delay and the Doppler shift of the 𝑝-th path are
denoted by 𝜏′𝑝 and 𝜈′𝑝. The phase term 2𝜋𝑓0𝜏𝑝 is a constant. Therefore, the term can be swapped
to the path weight and the model becomes

𝑥 (𝑘, 𝑛) ≈ 𝛾𝑝 ⋅ exp{𝚥2𝜋 𝑊𝑇M
𝜏′𝑝𝑘𝑇S} ⋅ exp{𝚥2𝜋𝜈′𝑝𝑛𝑇P} . (5.2)

Delay and Doppler shift have a difference in their order of magnitudes of up to 109, e.g.
a delay in 𝑛𝑠 and a Doppler shift in 𝐻𝑧 is commonly given for the considered scenarios
(slowly moving targets). Thus, numerical instabilities in the parameter estimation framework
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can occur [Ric05]. In order to avoid numerical instability the normalised delay 𝜏𝑝 and Doppler
shift 𝜈𝑝 are introduced.

𝜏𝑝 = 2𝜋 𝑊𝑇M
𝜏′𝑝𝑇S (5.3a)

𝜈𝑝 = 2𝜋𝜈′𝑝𝑇P (5.3b)

Due to this normalisation the parameter range is now: 𝜏𝑝 = [0, 2𝜋[ and 𝜈𝑝 = [−𝜋, 𝜋[. Hence,
numerical instabilities are circumvented as the parameters have now a similar range. After the
normalised delay and Doppler shift have been estimated normalisation (5.3) has to be inverted
in order to get the true delay and Doppler values. Plugging the normalisations into the model
yields

𝑥 (𝑘, 𝑛) ≈ 𝛾𝑝 ⋅ exp{𝚥𝜏𝑝𝑘} ⋅ exp{𝚥𝜈𝑝𝑛} . (5.4)

Model (5.4) describes a single observation at delay 𝑘 and time 𝑛. In order to extend this model
to the complete set of observations the vectors 𝐤 = [0, … , 𝐾 − 1]T and 𝐧 = [0, … , 𝑁 − 1]T
of sampling points are introduced. Then, the matrix 𝐗 ∈ ℂ𝐾×𝑁 comprising all samples can be
modelled.

𝐗 = 𝐱 (𝐤, 𝐧) ≈ 𝛾𝑝 ⋅ exp{𝚥𝜏𝑝𝐤} ⋅ exp{𝚥𝜈𝑝𝐧T} (5.5)

Commonly, the observations are stacked into a vector rather than stacking them into the columns
of a matrix [Ric05]. Using the vec-operator the model of the vectorised matrix 𝐗 is

𝐱 = vec {𝐗} ≈ 𝛾𝑝 ⋅ (exp{𝚥𝜈𝑝𝐧} ⊗ exp{𝚥𝜏𝑝𝐤}) ∈ ℂ𝐾⋅𝑁 , (5.6)

which has a so called Kronecker structure due to the Kronecker operator ⊗. Kronecker
structuredmodels are very popular in signal processing, because their structure can be employed
for numerical simplifications, see e.g. [Ric05].

Now consider the presence of 𝑃 resolvable propagation paths. According to the findings in
Section 3.2.2 these propagation paths are superimposed. Hence, the model for 𝑃 paths is

𝐱 ≈ 𝛾1 ⋅ (exp{𝚥𝜈1𝐧} ⊗ exp{𝚥𝜏1𝐤}) + … + 𝛾𝑃 ⋅ (exp{𝚥𝜈𝑃𝐧} ⊗ exp{𝚥𝜏𝑃𝐤})
= ([exp{𝚥𝜈1𝐧} , … , exp{𝚥𝜈𝑃𝐧}] ♦ [exp{𝚥𝜏1𝐤} , … , exp{𝚥𝜏𝑃𝐤}]) ⋅ ⎡⎢⎢⎣

𝛾1⋮𝛾𝑃
⎤⎥⎥⎦= [𝐁ν (𝛎) ♦𝐁τ (𝛕)] ⋅ 𝛄 , (5.7)

with ♦ denoting the Khatri-Rao product (column-wise Kronecker product). For sake of
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notational convenience, the parameter vectors

𝛗 = [𝜑1, … , 𝜑𝑃]T ∈ ℝ𝑃 (5.8a)𝛝 = [𝜗1, … , 𝜗𝑃]T ∈ ℝ𝑃 (5.8b)𝛕 = [𝜏1, … , 𝜏𝑃]T ∈ ℝ𝑃 (5.8c)𝛎 = [𝜈1, … , 𝜈𝑃]T ∈ ℝ𝑃 (5.8d)𝛄 = [𝛾1, … , 𝛾𝑃]T ∈ ℂ𝑃 (5.8e)

and the matrices

𝐁τ (𝛕) = exp{𝚥𝐤𝛕T} ∈ ℂ𝐾×𝑃 (5.9a)𝐁ν (𝛎) = exp{𝚥𝐧𝛎T} ∈ ℂ𝑁×𝑃 , (5.9b)

have been introduced. The columns of the matrices comprise the respective delay and Doppler
harmonic for each propagation path.

So far, the influence of the Tx and Rx antenna on the observation has been ignored. In order
to account also for the influence of the antennas, equation (5.4) will be considered again. In
Section 4.3 it was found, that a wideband model of the antenna array has to be considered to
properly account for the antenna embedding in the measurements. Hence, the antenna influence
varies over the delay dimension 𝑘. Furthermore, because dual-polarimetric calibration data
of the antenna are not available, a single polarised antenna is considered only. Neglecting
the polarimetric properties of antennas cause model errors, which influence the parameter
estimation accuracy [23, LKT12]. However, these model errors cannot be circumvented. In
order to account for the influence of the Tx and Rx antenna equation (5.4) is extended to

𝑥 (𝑘, 𝑛) ≈ 𝛾𝑝 ⋅ [𝑏Tx (𝑘; 𝜗Tx𝑝, 𝜑Tx𝑝) ⋅ 𝑏Rx (𝑘; 𝜗Rx𝑝, 𝜑Rx𝑝)] ⋅ exp{𝚥𝜏𝑝𝑘} ⋅ exp{𝚥𝜈𝑝𝑛} ,
(5.10)

with 𝑏Tx (𝑘; 𝜗Tx𝑝, 𝜑Tx𝑝) and 𝑏Rx (𝑘; 𝜗Rx𝑝, 𝜑Rx𝑝) the response of the Tx and Rx antenna w.r.t.

the directions of radiation (𝜗Tx𝑝, 𝜑Tx𝑝) and impingement (𝜗Rx𝑝, 𝜑Rx𝑝) of the 𝑝-th path,
respectively. Next, a monostatic radar with co-located Tx and Rx antennas is considered.
Hence, the angles at Tx and Rx side are equal: 𝜑 = 𝜑Rx = 𝜑Tx and 𝜗 = 𝜗Rx = 𝜗Tx. Thus, the
model reduces

𝑥 (𝑘, 𝑛) ≈ 𝛾𝑝 ⋅ 𝑏 (𝑘; 𝜑𝑝, 𝜗𝑝) ⋅ exp{𝚥𝜏𝑝𝑘} ⋅ exp{𝚥𝜈𝑝𝑛} , (5.11)

with 𝑏 (𝑘; 𝜑𝑝, 𝜗𝑝) = 𝑏Tx (𝑘; 𝜑𝑝, 𝜗𝑝)⋅𝑏Rx (𝑘; 𝜑𝑝, 𝜗𝑝) the joint response of the Tx and Rx antenna
w.r.t. the azimuth angle 𝜑𝑝 and elevation angle 𝜗𝑝. Introduce matrix 𝐁φ (𝛗, 𝛝), in which the
responses of the antenna to all paths are column-wisely stacked.

𝐁φ (𝛗, 𝛝) = [𝐛 (𝐤; 𝜑1, 𝜗1) , … , 𝐛 (𝐤; 𝜑𝑃, 𝜗𝑃)] ∈ ℂ𝐾×𝑃 (5.12a)
𝐛 (𝐤; 𝜑𝑝, 𝜗𝑝) = [𝑏 (0; 𝜑𝑝, 𝜗𝑝) , … , 𝑏 (𝐾 − 1; 𝜑𝑝, 𝜗𝑝)]T ∈ ℂ𝐾 (5.12b)
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Then, the model becomes

𝐱 = [𝐁ν (𝛎) ♦ [𝐁φ (𝛗, 𝛝) ⊙𝐁τ (𝛕)]] ⋅ 𝛄 , (5.13)

with ⊙ the Schur product (element-wise matrix product).
Last, the embedding of the device response into the observations has to be clarified. In

Section 4.2, two models for the response of a SISO FMCW radar have been derived. In the
following, the model presented in Section 4.2.1 will be assumed as sufficient. Hence, bandwidth
limitation is done as a pre-processing step before the estimation, in order to suppress the ghost
targets. Also, the more complicated model presented in Section 4.2.2 has to be accounted for
under very high SNR conditions, which will not be considered here. Accounting for the device
response 𝐺 (𝑘) the model becomes

𝑥 (𝑘, 𝑛) ≈ 𝛾𝑝 ⋅ 𝑔 (𝑘) ⋅ 𝑏 (𝑘; 𝜑𝑝, 𝜗𝑝) ⋅ exp{𝚥𝜏𝑝𝑘} ⋅ exp{𝚥𝜈𝑝𝑛} . (5.14)

Plugging the sampled time-invariant radar response 𝐠 = [𝐺 (0) , … , 𝐺 (𝐾 − 1)]T ∈ ℂ𝐾 into
model (5.13) yields the model for a SISO observation in the noiseless case.

𝐱 = [𝐁ν (𝛎) ♦ [(diag {𝐠} ⋅ 𝐁φ (𝛗, 𝛝)) ⊙𝐁τ (𝛕)]] ⋅ 𝛄 (5.15)

Model of a MIMO Observation

In case of MIMO observations not only multiple channels have to taken into account to derive
a model. It has been pointed out in Section 4.5, that the MIMO accessing scheme, i.e. how all
MIMO channels are accessed, has to be taken into account too. Here, a TDM scheme at the Tx
and parallel receiving channels will be considered. Thus, the phase term 𝜙Doppler related to the
Doppler shift 𝜈 becomes dependent on the actual Tx channel, see Section 4.5.

12𝜋𝜙Doppler ≈ 𝜈′ ⋅ 𝑚Tx𝑇P + 𝜈′ ⋅ 𝑛𝑀Tx𝑇P = 𝜈′ ⋅ 𝑇P ⋅ 𝑀Tx ⋅ (𝑛 + 𝑚Tx𝑀Tx) (5.16)

Variable 𝑚Tx = 0 … 𝑀Tx − 1 denotes the actually active Tx channel. Note, that the normalised
Doppler 𝜈 is now given by 𝜈 = 2𝜋𝜈′ ⋅ 𝑇P ⋅ 𝑀Tx, as the duration for a MIMO observation is𝑀Tx ⋅ 𝑇P. In order to account for the variation of the observed Doppler phase due to the TDM
scheme, the matrix 𝐁ν (𝛎), comprising the Doppler shift related harmonics, has to be modified.
If the MIMO channel index 𝑚 is a consecutive number from 1 … 𝑀Rx … 𝑀Tx𝑀Rx, the index𝑚Tx of the active Tx channel is given by

𝑚Tx = (𝑚 − 1) ⧵ 𝑀Tx , (5.17)

with operator (⧵) denoting the integer division. Accordingly, the matrix 𝐁ν𝑚 (𝛎) ∈ ℂ𝑁×𝑃 of
Doppler harmonics for all paths and the 𝑚-th MIMO channel being active is

𝐁ν𝑚 (𝛎) = exp{𝚥 (𝐧 + (𝑚 − 1) ⧵ 𝑀Tx𝑀Tx
⋅ 𝟏𝑁) 𝛎T} = 𝐀𝑚 (𝛎) ⊙𝐁ν (𝛎) . (5.18)
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Vector 𝟏𝑁 ∈ ℝ𝑁 is the unity vector and

𝐀𝑚 (𝛎) = exp{𝚥(𝑚 − 1) ⧵ 𝑀Tx𝑀Tx
⋅ 𝟏𝑁 ⋅ 𝛎T} . (5.19)

The considered radar system is able to resolve the azimuth angle 𝜑 only, because the array
at Tx and Rx is an ULA, and hence the virtual array too. The elevation angle is assumed to be𝜗 = 0°. Resolution of azimuth only causes the ambiguity cone [LKT12]. Hence, an unresolved
or wrongly presumed elevation angle cause the estimation of a different azimuth angle than the
actual one. Because the considered radar is equipped with a lens focusing the azimuth plane,
the assumption 𝜗 = 0° is ensured by the radar hardware. The model for an observation of the𝑚-th MIMO channel in the noiseless case has to be re-stated.

𝐱𝑚 (𝛡) = ([𝐀𝑚 (𝛎) ⊙𝐁ν (𝛎)] ♦ [(diag{𝐠𝑚} ⋅ 𝐁φ𝑚 (𝛗)) ⊙𝐁τ (𝛕)]) ⋅ 𝛄 = 𝐒𝑚 (𝛗, 𝛕, 𝛎) ⋅ 𝛄
(5.20)

For sake of convenience the parameter vector 𝛡 ∈ ℝ5𝑃 has been introduced, which comprises
the parameters of all 𝑃 propagation paths

𝛡 = [𝛗T, 𝛕T, 𝛎T, ℜ {𝛄}T , ℑ {𝛄}T]T . (5.21)

Finally, the observations of all 𝑀 MIMO channels are column-wisely stacked into a matrix.
Afterwards, this matrix is vectorised, which gives the vector 𝛍 ∈ ℂ𝑀⋅𝐾⋅𝑁 of MIMO
observations in the noiseless case.

𝛍 (𝛡) = vec{[𝐱1 (𝛡) , … , 𝐱𝑀 (𝛡)]} = ⎡⎢⎢⎣
𝐒1 (𝛗, 𝛕, 𝛎)∶𝐒𝑀 (𝛗, 𝛕, 𝛎)

⎤⎥⎥⎦ ⋅ 𝛄 = 𝐒 (𝛗, 𝛕, 𝛎) ⋅ 𝛄 (5.22)

Unfortunately, a notational more convenient formula for 𝛍 could not be found. Equation (5.22)
will be denoted as system model of the co-located FMCW MIMO radar.

A note regarding the neglection of dual-polarimetric properties of the antennas, especially if
arrays are employed and angles shall be estimated, is necessary. In case of a SISO system,
neglection of polarimetry is not harmful to the parameter estimation performance, as the
estimator compensates for the neglected polarimetry by tuning the path weights. Hence, only
the estimate of the path weights are effected. However, in case of antenna arrays at Tx, Rx
or both sides, neglection of polarimetry cause severe model errors, such that the estimation
performance for all parameters is degraded [23, LKT12]. The reason is, that the polarimetric
properties are different for each antenna of the array compound and they are direction dependent
too. Hence, the model error by neglecting polarimetry cannot be compensated by tuning a
path weight, which is fix for each antenna. Unfortunately, the resulting degradation of the
estimation performance cannot be circumvented here, because of the considered radar hardware
and available calibration data.
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5.1.2 The Statistical Model – Model of Observations in
the Noisy Case

In the noisy case the system model ℳS and the noise model ℳN (see Section 4.6) are used to
describe the observations. Incorporation of the noise model in the system model results in the
statistical model, which is actually the observation distribution or likelihood. It has been stated
in Section 2.3, that the likelihood is required to solve the inverse problem.

In Section 4.6, thermal noise, phase noise and leakage noise has been introduced as noise
sources of the radar device. Subsequently, consideration of each of this noise sources by a
statistical model will be discussed, and the final statistical model will be derived last.

Thermal Noise
In Section 4.6.1 thermal noise has been introduced. Taking into account a thermal noise source
in the observation 𝐲𝑚 ∈ ℂ𝐾⋅𝑁 of the 𝑚-th MIMO channel, the respective observation model is

𝐲𝑚 = 𝐱𝑚 (𝛡) + 𝐰𝑚 . (5.23)

The sampled thermal noise process 𝐰𝑚 is a zero-mean, proper complex, normally distributed
random process with PDF

𝐰𝑚 ∼ 𝑝w𝑚 = 𝒞𝒩 (𝟎, 𝚺w𝑚) . (5.24)

𝚺w𝑚 is the respective covariance matrix. As the thermal noise is assumed as white, i.e. the
process is uncorrelated in delay and time, the covariance matrix is a diagonal matrix.

𝚺w𝑚 = 𝜂𝑚 ⋅ 𝐈𝑁𝐾 (5.25)

𝜂𝑚 the respective power of the thermal noise process.
Treating the noise parameters 𝜂𝑚 and the propagation channel parameters 𝛡 as random

quantities, the distribution of the observation 𝐲𝑚 is [KS05]

𝑝 (𝐲𝑚| 𝛡, 𝜂𝑚) = 𝑝w (𝐲𝑚 − 𝐱𝑚 (𝛡)| 𝛡, 𝜂𝑚) . (5.26)

Assuming mutually independence of the generation process of the propagation parameters and
noise parameters, the PDF reduces to [KS05]

𝑝 (𝐲𝑚| 𝛡, 𝜂𝑚) = 𝑝w (𝐲𝑚 − 𝐱𝑚 (𝛡)) . (5.27)

Accordingly, the PDF for the observation of the 𝑚-th MIMO channel is

𝐲𝑚 ∼ 𝒞𝒩 (𝐱𝑚 (𝛡) , 𝚺w𝑚) . (5.28)

Extending the model of additive thermal noise to the observation of 𝑀 MIMO channels, one
get

𝐲 = vec{[𝐱1, … , 𝐱𝑀]} + vec{[𝐰1, … , 𝐰𝑀]} = 𝛍 + 𝐰 . (5.29)
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Assuming that the noise processes of the channels are uncorrelated to each other, therefore

E{𝐰𝑚1 ⋅ 𝐰H𝑚2} = 𝟎𝑁𝐾×𝑁𝐾 , ∀𝑚1 ≠ 𝑚2 (5.30)

holds, the PDF of the MIMO thermal noise process 𝐰 is

𝐰 ∼ 𝑝w = 𝒞𝒩 (𝟎, 𝚺w (𝛈)) . (5.31)

Matrix 𝚺w (𝛈) = diag {𝛈} ⊗𝐈𝑁𝐾 is the covariance matrix, and vector 𝛈 = [𝜂1, … , 𝜂𝑀]T ∈ ℝ𝑀+
comprises the powers of the thermal noise processes for all 𝑀 MIMO channels.

Finally, the PDF of a MIMO radar observation (radar data cube) for the presence of thermal
noise is

vec {𝓨} = 𝐲 ∼ 𝑝 (𝐲| 𝛡, 𝛈) = 𝒞𝒩 (𝛍 (𝛡) , 𝚺w (𝛈)) . (5.32)

Leakage Noise

In Section 4.6.2 leakage noise has been introduced. The correspondingmodel for an observation
of the 𝑚-th MIMO channel is

𝐲𝑚 = 𝐱𝑚 + 𝐥𝑚 . (5.33)

The leakage noise 𝐥𝑚 is assumed as a zero-mean, proper complex and coloured, normally
distributed random process.

𝐥𝑚 ∼ 𝒞𝒩 (𝟎, 𝚺l𝑚) (5.34)

Covariance matrix 𝚺l𝑚 is the sampled version of the correlation function (4.133).

𝚺l𝑚 = 𝐈𝑁⊗𝚺(τ)
l𝑚 (5.35)

Matrix 𝚺(τ)
l𝑚 is the covariance matrix of the leakage noise process in delay domain, given by

sampling model (4.130). Because 𝛙l (−𝜏) = 𝛙l (𝜏)† holds, the covariance matrix in delay
domain is of hermitian Toeplitz structure.

𝚺(τ)
l𝑚 = T{𝛙l (𝜍𝑚, 𝜀𝑚, 𝜚𝑚)} (5.36)

Operator T denotes the constructor of a hermitian Toeplitz matrix. Vector 𝛙l ∈ ℂ𝐾 comprises
the samples of model (4.130) of the ACF, taken at the delay points 𝜏 = 0, … , (𝐾 − 1)𝑇S.

𝛙l (𝜍𝑚, 𝜀𝑚, 𝜚𝑚) = 𝜍𝑚 [ 1𝜀𝑚 , … , exp{𝚥2𝜋𝜚𝑚(𝐾−1)}𝜀𝑚−𝚥2𝜋(𝐾−1) ]T (5.37)

Note, that the parameters 𝜍𝑚, 𝜀𝑚, 𝜚𝑚 are normalised versions of the parameters of the
ACF (4.130): 𝜍𝑚 = 𝜍𝑇S

, 𝜀𝑚 = 𝜀𝑇S
, 𝜚𝑚 = 𝜚 ⋅ 𝑇S.
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Next, leakage noise in the observation of all 𝑀 MIMO channels is considered.

𝐲 = vec{[𝐱1, … , 𝐱𝑀]} + vec{[𝐥1, … , 𝐥𝑀]} = 𝛍 + 𝐥 (5.38)

The leakage noise processes are assumed as uncorrelated among the MIMO channels.

E{𝐥𝑚1 ⋅ 𝐥H𝑚2} = 𝟎 , ∀𝑚1 ≠ 𝑚2 (5.39)

Accordingly, the overall covariance matrix 𝚺l of the leakage noise processes is a block diagonal
matrix, whereas the 𝑚-th block entry corresponds to the leakage noise covariance matrix of the𝑚-th MIMO channel.

𝚺l (𝛓, 𝛆, 𝛠) = E{𝐥 ⋅ 𝐥H} = ⎡⎢⎢⎣
𝚺𝑙1 (𝜍1, 𝜀1, 𝜚1) 𝟎⋱𝟎 𝚺l𝑀 (𝜍𝑀, 𝜀𝑀, 𝜚𝑀)

⎤⎥⎥⎦ (5.40)

The parameter vectors 𝛓, 𝛆 and 𝛠 are introduced for convenience, which comprise the parameters
of the leakage noise model for all 𝑀 MIMO channels.

𝛓 = [𝜍1, … , 𝜍𝑀]T ∈ ℝ𝑀+ (5.41a)𝛆 = [𝜀1, … , 𝜀𝑀]T ∈ ℝ𝑀+ (5.41b)𝛠 = [𝜚1, … , 𝜚𝑀]T ∈ ℝ𝑀 (5.41c)

The PDF of the MIMO leakage noise process 𝐥 is
𝐥 ∼ 𝑝l = 𝒞𝒩 (𝟎, 𝚺l (𝛓, 𝛆, 𝛠)) . (5.42)

Finally, the PDF of theMIMO radar observation (radar data cube) for the presence of leakage
noise is

vec {𝓨} = 𝐲 ∼ 𝑝 (𝐲| 𝛡, 𝛓, 𝛆) = 𝒞𝒩 (𝛍 (𝛡) , 𝚺l (𝛓, 𝛆, 𝛠)) . (5.43)

Phase Noise

In Section 4.6.3 a model for the occurrence of phase noise has been derived. Consider the noisy
observation 𝐲𝑚 of the 𝑚-th MIMO channel. The corresponding observation model is

𝐲𝑚 = 𝐱𝑚⊙ exp{𝚥𝐞𝑚} ≈ 𝐱𝑚⊙ [𝟏 + 𝚥𝐞𝑚] = 𝐱𝑚 + 𝐱𝑚⊙𝚥𝐞𝑚 = 𝐱𝑚 + 𝐩𝑚 . (5.44)

Mean vector and covariance matrix of the observation 𝐲𝑚 have to be determined in order to
describe the respective PDF. The random process 𝐞𝑚 is assumed as zero mean circular normally
distributed. Because the phase noise process 𝐞𝑚 is assumed as zero-mean, the expectation (mean
vector) of the observation is

E{𝐲𝑚} = E{𝐱𝑚 + 𝐱𝑚⊙𝚥𝐞𝑚} = 𝐱𝑚 + 𝚥𝐱𝑚⊙E{𝐞𝑚} = 𝐱𝑚 . (5.45)
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In order to derive the covariance matrix, the observation vector 𝐲𝑚 of the 𝑚-th MIMO channel
is split into its 𝑁 snapshot vectors 𝐲𝑚,𝑛.

𝐲𝑚 = vec{[𝐲𝑚,1, … , 𝐲𝑚,𝑁]}
According to the MIMO phase noise model in equation (4.165), the covariance matrix 𝚺(τ)

p𝑚,𝑛 for
observation 𝐲𝑚,𝑛 (𝑚-th MIMO channel and the 𝑛-th snapshot) is given by

𝚺(τ)
p𝑚,𝑛 = E{[𝐲𝑚,𝑛 − E{𝐲𝑚,𝑛}] ⋅ [𝐲𝑚,𝑛 − E{𝐲𝑚,𝑛}]H} = E{𝐩𝑚,𝑛 ⋅ 𝐩H𝑚,𝑛}

= E{[𝐱𝑚,𝑛⊙𝚥𝐞𝑚,𝑛] ⋅ [𝐱𝑚,𝑛⊙𝚥𝐞𝑚,𝑛]H} ≈ 𝚺(τ)
e𝑚 ⊙ 𝑃

∑𝑝=1 𝐱𝑚,𝑛 (𝛡𝑝) ⋅ 𝐱𝑚,𝑛 (𝛡𝑝)H . (5.46)

Matrix 𝚺(τ)
e𝑚 is the covariance matrix of the phase noise process 𝐞𝑚,𝑛 in the delay domain. Note,

that the property1 of the Schur product has been utilised for derivation. Because the phase noise
process is assumed as WSS in delay domain, the covariance matrix is of hermitian Toeplitz
structure.

𝚺(τ)
e𝑚,𝑛 = T{𝛙e (𝛼𝑚, 𝛽𝑚)} (5.47)

Vector 𝛙e (𝛼𝑚, 𝛽𝑚) ∈ ℂ𝐾 comprises the samples of model (4.142) of the ACF, which are taken
at the delay points 𝜏 = 0, … , (𝐾 − 1)𝑇S.

𝛙e (𝛼𝑚, 𝛽𝑚) = 𝛼𝑚 ⋅ [1, … , exp{−(𝐾 − 1) ⋅ 𝛽𝑚}]T (5.48)

Note, that the parameter 𝛽𝑚 of the sampled ACF has been normalised to 𝑇S compared to the
parameter in equation (4.142): 𝛽𝑚 = 𝑇S𝛽 . The phase noise process is assumed as i.i.d. process.
Hence, the covariancematrix𝚺p𝑚 (𝛡, 𝛼𝑚, 𝛽𝑚) in delay-time domain for the𝑚-thMIMOchannel
is a block diagonal matrix.

𝚺(τ)
p𝑚 (𝛡, 𝛼1, 𝛽1) = ⎡⎢⎢⎣

𝚺(τ)
p𝑚,1 (𝛡, 𝛼1, 𝛽1) 𝟎⋱𝟎 𝚺(τ)

p𝑚,𝑁 (𝛡, 𝛼1, 𝛽1)
⎤⎥⎥⎦ = [𝐈𝑁⊗𝚺(τ)

e𝑚 ] ⊙ ∑𝑃𝑝=1 𝐱𝑚 (𝛡𝑝) ⋅ 𝐱𝑚 (𝛡𝑝)H
(5.49)

Due to the assumption of uncorrelated phase noise among the MIMO channels, the respective
covariance matrix 𝚺p (𝛡, 𝛂, 𝛃) for all 𝑀 MIMO channels is a block diagonal matrix.

𝚺p (𝛡, 𝛂, 𝛃) = ⎡⎢⎢⎣
𝚺p1 (𝛡, 𝛼1, 𝛽1) 𝟎⋱𝟎 𝚺p𝑀 (𝛡, 𝛼𝑀, 𝛽𝑀)

⎤⎥⎥⎦ (5.50)

1(𝐚⊙𝐛) ⋅ (𝐜⊙𝐝)H = (𝐚 ⋅ 𝐜H) ⊙ (𝐛 ⋅ 𝐝H)
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For sake of convenience the parameter vectors 𝛂 and 𝛃 are introduced, comprising the phase
noise parameters for all 𝑀 channels.

𝛂 = [𝛼1, … , 𝛼𝑀]T ∈ ℝ𝑀+ (5.51a)𝛃 = [𝛼1, … , 𝛽𝑀]T ∈ ℝ𝑀+ (5.51b)

Finally, the PDF of the MIMO radar observation (radar data cube) for the presence of phase
noise is

vec {𝓨} = 𝐲 ∼ 𝑝 (𝐲| 𝛡, 𝛂, 𝛃) = 𝒞𝒩 (𝛍 (𝛡) , 𝚺p (𝛡, 𝛂, 𝛃)) . (5.52)

The Statistical Model or Likelihood
Phase noise, thermal noise and leakage noise are modelled as additive processes. The
corresponding model for the observations of the 𝑚-th MIMO channel is

𝐲𝑚 = 𝐱𝑚 + 𝐰𝑚 + 𝐥𝑚 + 𝐩𝑚 . (5.53)

The individual noise processes are assumed as uncorrelated to each other. The noise processes
are modelled as circular normally distributed, such that the measurements are circular normally
distributed too. The mean vector and covariance matrix have to be defined in order to describe
the PDF of the observations. The mean vector of the observation of the 𝑚-th MIMO channel is

E{𝐲𝑚} = E{𝐱𝑚} + E{𝐱𝑚⊙𝚥𝐩𝑚} + E{𝐥𝑚} + E{𝐰𝑚} = 𝐱𝑚 + 𝐱𝑚⊙𝚥E{𝐩𝑚} + 𝟎 = 𝐱𝑚 .
(5.54)

Taking into account, that the noise sources are uncorrelated, the covariance matrix is given by
the sum of the covariance matrices of the noise sources.

𝚺𝑚 = E{[𝐲𝑚 − E{𝐲𝑚}] ⋅ [𝐲𝑚 − E{𝐲𝑚}]H} = E{[𝐩𝑚 + 𝐥𝑚 + 𝐰𝑚] ⋅ [𝐩𝑚 + 𝐥𝑚 + 𝐰𝑚]H}= 𝚺l𝑚 + 𝚺w𝑚 + 𝚺p𝑚 (5.55)

A model for the ACF of all noise processes has been derived in Section 4.6.4. The covariance
matrix is given by sampling this model (4.173).

𝚺𝑚 (𝛔𝑚) = 𝐈𝑁⊗ [𝚺(τ)
l𝑚 (𝜍𝑚, 𝜀𝑚, 𝜚𝑚) + 𝜂𝑚𝐈𝐾] + [𝐈𝑁⊗𝚺(τ)

e𝑚 (𝛼𝑚, 𝛽𝑚)] ⊙ 𝑃
∑𝑝=1 𝐱𝑚 (𝛡𝑝) 𝐱𝑚 (𝛡𝑝)H

(5.56)

Vector 𝛔𝑚 comprises the parameters of the covariance model for the 𝑚-th MIMO channel.

𝛔𝑚 = [𝜍𝑚, 𝜀𝑚, 𝜚𝑚, 𝛼𝑚, 𝛽𝑚, 𝜂𝑚]T ∈ ℝ6 (5.57)

Summarised, the PDF of an observation of the 𝑚-th MIMO channel is

𝐲𝑚 ∼ 𝒞𝒩 (𝛍𝑚 (𝛡) , 𝚺𝑚 (𝛡, 𝛔𝑚)) . (5.58)
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Because thermal noise, leakage noise and phase noise are assumed as uncorrelated among the
MIMO channels, the covariance matrix 𝚺 (𝛡, 𝛔) of the MIMO observation is block diagonal.

𝚺 (𝛡, 𝛔) = E{[𝐲 − E {𝐲}] ⋅ [𝐲 − E {𝐲}]H} = ⎡⎢⎢⎣
𝚺1 (𝛡, 𝛔1) 𝟎⋱𝟎 𝚺𝑀 (𝛡, 𝛔𝑀)

⎤⎥⎥⎦ (5.59)

Vector 𝛔 comprises the parameters of the whole covariance model.

𝛔 = [𝛓T, 𝛆T, 𝛠T, 𝛂T, 𝛃T, 𝛈T]T ∈ ℝ6𝑀 (5.60)

Finally, the statistical model or likelihood of the MIMO radar observation (radar data cube)
for the presence of thermal, leakage and phase noise is

𝐲 ∼ 𝑝 (𝐲| 𝛡, 𝛔) = 𝒞𝒩 (𝛍 (𝛡) , 𝚺 (𝛡, 𝛔)) . (5.61)

For sake of convenience the parameters of the system model 𝛡 and the parameters of the noise
model 𝛔 are concatenated in the vector of model parameters 𝛉 = [𝛡T, 𝛔T]T ∈ 𝛩 = Π × Σ ⊂ℝ5𝑃 +6𝑀, which has to be estimated from the observations 𝐲.
5.2 Derivation of the Parameter Estimator
5.2.1 Maximum-Likelihood Estimation
In Chapter 2 Bayesian inversion has been pointed out as a method to estimate parameter values
from noisy observations according to a stated statistical model. The statistical model (or
the likelihood, respectively) of the observations 𝑝 (𝐲| 𝛉) has been described in the previous
section 5.1. Knowing also the prior distribution 𝑝 (𝛉), which is so far subject to clarification,
the point estimators maximum a posteriori (MAP) and minimum mean-square error (MMSE)
can be derived (see Section 2.3). Here, the MAP estimator will be considered, because its
calculation requires just the optimisation of an objective function and numerical exhaustive
MCMC sampling techniques are not required as the MMSE estimator requires [GL06, 28]. The
MAP estimator examines the mode of the posterior distribution as the estimation criterion.

𝛉̂MAP = arg max𝛉
𝑝 (𝐲| 𝛉) ⋅ 𝑝 (𝛉)𝑝 (𝐲) = arg max𝛉 𝑝 (𝐲| 𝛉) ⋅ 𝑝 (𝛉) (5.62)

Hence, the probability of the parameters to be included in the observation is maximised. The
denominator does not depend on the parameters and hence becomes negligible.

Assignment of the Prior
So far, a prior distribution of the parameters has not been assigned. As stated in Section 2.3
the prior must be properly selected, because the prior influences the posterior and hence the
estimation result. Because no certain parameter realisation can be preferred over the other
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(principle of indifference), a constant or uniform prior is considered for the parameters.

𝑝 (𝛉) = 𝑐𝑜𝑛𝑠𝑡 (5.63)

Furthermore, the prior can represent any information regarding the parameters, which is
available before the observation. Focusing on the set space for the path and noise parameters, 𝛱
and 𝛴, it can be concluded that these sets are bounded due to the parameter’s nature. Accounting
for this bounds, the prior distribution becomes

𝑝 (𝛉) = 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑐𝑢𝛩 (𝛉) , (5.64)

with 𝑐𝑢𝛩 (•) the characteristic function of the cube, who is limited according to the parameter
bounds. Due to the principle of indifference and the parameter bounds a uniform distribution
can be assigned as prior distribution.

𝑝 (𝛉) = 𝒰 (𝛉) (5.65)

Maximum-Likelihood Estimator with Bound Constraints

Considering a uniform prior distribution the MAP estimator reduces to

𝛉̂ML = arg max𝛉∈ℝ5𝑃 +6𝑀 𝑝 (𝐲| 𝛉) ⋅ 𝒰 (𝛉) = arg max𝛉∈𝛩 𝑝 (𝐲| 𝛉) . (5.66)

This is actually an ML estimator, i.e., the maximisation of the likelihood function only. The
maximisation is conducted over the (bounded) space 𝛩, and not the entire space ℝ5𝑃 +6𝑀.
Hence, the considered parameter estimator is a maximum-likelihood estimator with bound
constraints.

According to the statistical model (5.61) the observation is multidimensional, proper complex
normally distributed.

𝑝 (𝐲| 𝛉) = 𝒩 (𝛍(𝛉), 𝚺(𝛉)) = 1|𝜋𝚺 (𝛉)| ⋅ exp{− [𝐲 − 𝛍 (𝛉)]H ⋅ 𝚺 (𝛉)-1 ⋅ [𝐲 − 𝛍 (𝛉)]} . (5.67)

Variables 𝛍(𝛉) and 𝚺(𝛉) denote the parametric model of the mean vector and covariance matrix,
respectively. Plugging into the ML estimator yields a maximisation problem for parameter
estimation.

𝛉̂ = arg max𝛉∈𝛩
1|𝜋𝚺 (𝛉)| ⋅ exp{− [𝐲 − 𝛍 (𝛉)]H ⋅ 𝚺 (𝛉)-1 ⋅ [𝐲 − 𝛍 (𝛉)]} (5.68)

Commonly, the negative natural logarithm of the objective function is taken. Ignoring
constant terms, because the do not influence the maximisation problem, the negative log-
likelihood function or objective function ℒ (𝐲| 𝛉) can be stated.

ℒ (𝐲| 𝛉) = ln {|𝚺 (𝛉)|} + [𝐲 − 𝛍 (𝛉)]H ⋅ 𝚺 (𝛉)-1 ⋅ [𝐲 − 𝛍 (𝛉)] (5.69)

Minimising the objective function over the parameter space 𝛩 yields the ML estimate of the
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parameter vector 𝛉̂.
𝛉̂ = arg min𝛉∈𝛩 {ℒ (𝐲| 𝛉)}⇑⇑⇑⇓𝛉̂ = arg min𝛉=[𝛡T,𝛔T]T∈𝛩 {ln {|𝚺 (𝛡, 𝛔)|} + [𝐲 − 𝛍 (𝛡)]H ⋅ 𝚺 (𝛡, 𝛔)-1 ⋅ [𝐲 − 𝛍 (𝛡)]} (5.70)

Because the parameter space 𝛩 is not an open space, i.e. bounds on the parameters exist, the
optimisation problem (5.70) is a box-constrained problem.

A necessary but not sufficient condition for the ML estimate 𝛉̂ is, that for the first-order
derivative (gradient vector) of the objective

𝜕𝜕𝛉ℒ (𝐲| 𝛉)|𝛉=𝛉̂ = 𝟎 (5.71)

holds. Hence, the objective function must exhibit an optimum at the point 𝛉̂ of the ML estimate.
This criterion ensures an optimum only, whereas the ML estimate requires a minimum. In order
to ensure the optimum to be a minimum, the second-order derivative (Hessian matrix) must be
positive definite.

𝜕2𝜕𝛉𝜕𝛉Tℒ (𝐲| 𝛉)|𝛉=𝛉̂ ≻ 𝟎 (5.72)

In order to have an identifiable problem, i.e. the inverse problem can be solved assuming the
Hadamard conditions as fulfilled, the number of parameters 5𝑃 + 6𝑀 must be less than the
number of real-valued measurement samples 2𝑀𝑁𝐾. As only the number of paths 𝑃 can vary
for given observations, the condition

𝑃 ≤ 2𝑀𝑁𝐾 − 6𝑀5 (5.73)

must be fulfilled in order to have an identifiable problem.

5.2.2 Some Asymptotic Properties of
Maximum-Likelihood Estimators

The maximum-likelihood estimator exhibits some asymptotic properties, why it becomes one
of the most popular parameter estimators [Van04].

The estimation error 𝛉𝜖 for any parameter estimator can be expressed as [TB07]

𝛉𝜖 = 𝛉̂ − 𝛉 . (5.74)

The bias 𝐛 (𝛉̂) is quite often considered as performance metric of an estimator. Having
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defined the estimation error, the bias is given as its respective expectation.

𝐛 (𝛉̂) = E{𝛉𝜖} = E{𝛉̂ − 𝛉} (5.75)

Under some regularity conditions, which are often encountered in practise, the ML estimator is
unbiased. However, unbiasedness of the estimator also depends on the data model and whether
the inverse problem fulfils the Hadamard condition of uniqueness. For an unbiased estimator,
the expectation of the estimated parameters 𝛉̂ is equal to the true parameters.

E{𝛉̂} = 𝛉 ⟺ 𝐛 (𝛉̂) = 𝟎 (5.76)

The covariance matrix 𝐂 (𝛉̂) of the parameter estimates is a further performance metric of
any parameter estimator.

𝐂 (𝛉̂) = E{(𝛉̂ − E{𝛉̂})T ⋅ (𝛉̂ − E{𝛉̂})} . (5.77)

Assuming an unbiased estimator, the respective covariance matrix of the parameter estimates
becomes

𝐂 (𝛉̂) = E{(𝛉 − 𝛉̂)T (𝛉 − 𝛉̂)} . (5.78)

Having defined the bias and the covariance matrix, the mean-squared error matrix 𝐄 (𝛉̂) of
the parameter estimation error can given [TB07].

𝐄 (𝛉̂) = E{𝛉𝜖𝛉T𝜖 } = 𝐂 (𝛉̂) + 𝐛 (𝛉̂) 𝐛 (𝛉̂)T (5.79)

Note, that the covariance matrix 𝐂 (𝛉̂) and the mean-squared error matrix 𝐄 (𝛉̂) are equal for
an unbiased estimator.

It is known from theory [TB07], that the variance of the ML estimates (diagonal entries of𝐂) asymptotically attain the Cramér-Rao lower bound 𝐜 (𝛉).
lim𝑀𝑁𝐾→∞ diag{E{(𝛉 − 𝛉̂)T ⋅ (𝛉 − 𝛉̂)}} = 𝐜 (𝛉) (5.80)

Thus, an ML estimator is an asymptotically efficient estimator. The Cramér-Rao lower bound
is given by the diagonal entries of the Cramér-Rao matrix, which is given by the inverse of the
FIM 𝐅. Calculation of the FIM will be elaborated in the next section.

Last, ML estimates are asymptotically normal distributed [Van04].

𝛉̂ ∼ 𝒩 (𝛉, 𝐂) (5.81)

5.2.3 The Bayesian Cramér-Rao Bound
Considering Bayesian estimators as e.g. the MAP or MMSE (see Section 2.3), a likelihood𝑝 (𝐲| 𝛉) and a prior 𝑝 (𝛉) have been stated. The lowest achievable variance of Bayesian parameter
estimates is given by the Bayesian Cramér-Rao bound (BCRB), if the parameter estimator is
unbiased. In this case, the expectation of the mean-squared error matrix 𝐄 (𝛉) (expectation
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w.r.t. the prior) is lower bounded by the inverse of the Bayesian information matrix (BIM)𝐁 [TB07].

E {𝐄 (𝛉)} ⪰ 𝐁 (𝛉)-1 (5.82)

Under some regularity conditions, the entry for the 𝑖-th column and 𝑗-th row of the BIM is given
by [TB07]

[𝐁](𝑖,𝑗) = −E{𝜕2 ln {𝑝 (𝐲| 𝛉)}𝜕𝜃𝑖𝜕𝜃𝑗 } − E{𝜕2 ln {𝑝 (𝛉)}𝜕𝜃𝑖𝜕𝜃𝑗 } . (5.83)

The first summand in equation (5.83) represents the contribution of the observations (i.e. the
likelihood), whereas the second summand represents contributions of the prior to the BIM.

The BCRB requires some regularity conditions as e.g. the continuity conditions of a twice
differentiable prior [TB07]. This condition is not satisfied, if a uniform prior is assigned to𝛉. A uniform prior is a cube (a rectangular function in the one-dimensional space), which is
not continuous and hence not differentiable. However, asymptotically, i.e. for large sample
sizes 𝑀𝑁𝐾 → ∞ or equivalently high SNR, the contribution of the observation dominates the
contribution of the prior to the BIM. Hence, the inverse of the BIM 𝐁 reduces to the inverse of
the expectation of the FIM 𝐅 [TB07].

lim𝑀𝑁𝐾→∞ 𝐁-1 = E {𝐅}-1 (5.84)

This presupposes, that the MAP estimator asymptotically converges to the ML estim-
ator [TB07].

lim𝑀𝑁𝐾→∞ 𝛉̂MAP = 𝛉̂ML (5.85)

The entries of the FIM 𝐅 are given by partial derivatives of the likelihood 𝑝 (𝐲| 𝛉).
[𝐅](𝑖,𝑗) = −E{𝜕2 ln {𝑝 (𝐲| 𝛉)}𝜕𝜃𝑖𝜕𝜃𝑗 } = E{𝜕 ln {𝑝 (𝐲| 𝛉)}𝜕𝜃𝑖 ⋅ 𝜕 ln {𝑝 (𝐲| 𝛉)}𝜕𝜃𝑗 } (5.86)

In order to calculate the FIM lets consider a multivariate, complex normal distributed random
variable with parametric mean 𝛍 (𝛉) and structural covariance 𝚺 (𝛉). The FIM entries are given
by the summation of a stochastic part (derivative of the covariance matrix w.r.t. the parameters)
and a deterministic part (derivative of the mean vector w.r.t. the parameters).

[𝐅](𝑖,𝑗) = trace{ 𝜕𝚺𝜕𝜃𝑖 𝚺-1 ⋅ 𝜕𝚺𝜕𝜃𝑗 𝚺-1} + 2 ⋅ ℜ {𝜕𝛍H

𝜕𝜃𝑖 𝚺-1 𝜕𝛍𝜕𝜃𝑗 } (5.87)

For convenience lets consider the Cholesky factorisation [PP12] of the covariance matrix.

𝚺 = 𝐋 ⋅ 𝐋H ⟺ 𝚺-1 = 𝐋-H ⋅ 𝐋-1 (5.88)

Furthermore lets introduce the variables 𝐉𝑖 and 𝐣𝑖, which comprise the partial derivatives of
the covariance matrix and the mean vector w.r.t. the 𝑖-th parameter in 𝛉, multiplied with the
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Cholesky factor of the covariance matrix.

𝐉𝑖 = 𝐋-1 𝜕𝚺𝜕𝜃𝑖 𝐋-H (5.89a)

𝐣𝑖 = 𝐋-1 𝜕𝛍𝜕𝜃𝑖 (5.89b)

The partial derivatives of the mean vector and the structural covariance matrix w.r.t. the
parameters are given in Section 5.3. Plugging into equation (5.87) the 𝑖, 𝑗-th entry of the FIM
can be given, using mathematical identity 2 and 3.

[𝐅](𝑖,𝑗) = trace{𝐉𝑖 ⋅ 𝐉𝑗} + 2 ⋅ ℜ {𝐣H𝑖 ⋅ 𝐣𝑗} = vec{𝐉T𝑖 }T ⋅ vec{𝐉𝑗} + 2 ⋅ ℜ {𝐣H𝑖 ⋅ 𝐣𝑗} (5.90)

Now, the complete FIM can be calculated.

𝐅 = 𝐉″T ⋅ 𝐉‴ + 2 ⋅ ℜ {𝐉′H ⋅ 𝐉′} (5.91)

The matrices 𝐉′, 𝐉″ and 𝐉‴ comprise the partial derivatives all variables in 𝛉.
𝐉′ = [𝐣1, … , 𝐣𝐽] (5.92a)𝐉″ = [vec{𝐉T1 } , … , vec{𝐉T𝐽}] (5.92b)𝐉‴ = [vec{𝐉1} , … , vec{𝐉𝐽}] (5.92c)

The true parameter values are unknown in practical situations, such that the FIM cannot be
calculated. However, the covariance of the estimated parameter values can be necessary in
practical situations. Hence, a consistent estimate of the FIM is required in practical situations.
A consistent estimate of the FIM can be get by evaluating the FIM at the actual ML parameter
estimates [Van04].

𝐅̂ = 𝐅 (𝛉̂) (5.93)

𝐅̂ will be denoted as observed Fisher information matrix. Consequently, the Hessian at the ML
estimates is the observed FIM, which is asymptotically the FIM.

Matrix Block Partitioning

The covariance matrix of the parameter estimates is required for e.g. model order estimation,
see Chapter 6. Hence, the FIM has to be inverted. If the covariance of a subset of the parameters
in 𝛉 is required only, e.g. the covariance matrix for the parameter vector 𝛉 is of interest only,
inversion of the complete FIM can be circumvented by matrix block partitioning.

Partition the parameter vector 𝛉 in the vector of system parameters 𝛡 and the vector of noise
parameters 𝛔. Then, the covariance matrix of the parameter estimates can be represented as a

2trace {𝐀 ⋅ 𝐁} = vec{𝐀T}T ⋅ vec {𝐁}
3trace {𝐀 ⋅ 𝐁 ⋅ 𝐂} = trace {𝐁 ⋅ 𝐂 ⋅ 𝐀}
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block partitioned matrix [Van04].

𝐅 (𝛉 = [𝛡T 𝛔T]T)-1 = 𝐂 (𝛉 = [𝛡T 𝛔T]T) = [ 𝐂𝛡 𝐂𝛡,𝛔𝐂T𝛡,𝛔 𝐂𝛔 ] = [ 𝐅𝛡 𝐅𝛡,𝛔𝐅T𝛡,𝛔 𝐅𝛔 ]-1
(5.94)

Calculating the inverse of the FIM can be costly, because the size of the FIM scales with the
number of paths: 5𝑃 + 6𝑀 × 5𝑃 + 6𝑀. Exploiting the theorem of inverting a block partitioned
matrix [MS00], only the inversion of smaller matrices is necessary. Knowing the block entries
of the FIM, the covariance 𝐂𝛡 for the system parameters 𝛡 can be stated.

𝐂𝛡 = (𝐅𝛡 − 𝐅𝛡,𝛔 ⋅ 𝐅-1𝛔 ⋅ 𝐅T𝛡,𝛔)-1 (5.95)

Hence, inversion of the complete FIM is not necessary.

5.3 Global Optimisation of the Bounded
Non-Convex Objective

According to the ML estimator derived in Section 5.2 the parameters are estimated from the
observations by finding the global minimum of objective function (5.69) (the negative log-
likelihood function) subject to bounds. A global minimum 𝛉̂ ∈ 𝛩 is defined as [Wei09]

ℒ (𝐲| 𝛉̂) < ℒ (𝐲| 𝛉) , ∀𝛉 ∈ 𝛩 . (5.96)

Hence, a global minimum is a unique point of the multidimensional objective function in
the parameter space 𝛩. An optimisation method is used to detect this global minimum.
An optimisation method shall converge to the global minimum, while maintaining numerical
efficiency.

The demand for a global minimum somehow coincides with the Hadamard criteria for a
well-posed inverse problem. Hadamard criteria are, that a solution should exist and be unique.
Hence, this criteria demands an unique global minimum. However, if the posterior has multiple
modes, multiple global optima exist and the inverse problem is ill-posed in the sense of the
Hadamard criteria.

Parameter Bounds
Uniqueness of a global minimum is determined by the the the statistical model, which
determines the ”shape” of the objective function (the posterior), and also by the parameter
bounds. For example, consider the estimation of AoA with an ULA. ULAs suffer, apart from
the ambiguity cone for unknown elevation angles [LKT12], from a forward-backward ambiguity
in their array response, i.e. the array cannot distinguish between the incidence of a wave from
the front or the rear. If the set of possible AoA angles is bounded, e.g. angles from the front
are taken into account only, a unique global minimum exists. The parameter bounds have to
be chosen according to physical reasoning. For example, capturing of impinging waves from
the rear can be excluded, if directive antennas are employed in the ULA. Summarised, a proper
selection of the parameter space (i.e. the parameter bounds) can be advantageous the ensure the
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Table 5.1: Bounds for the parameters of the mean and covariance model

Mean Parameters Bounds Covariance Parameters Bounds
𝜑 −2𝜋9 … 2𝜋9 𝜍 0 … ∞𝜏 0 … 2𝜋 𝜀 0 … ∞𝜈 −𝜋 … 𝜋 𝜚 0 … 1ℜ {𝛾} −∞ … ∞ 𝛼 0 … ∞ℑ {𝛾} −∞ … ∞ 𝛽 0 … ∞𝜂 0 … ∞

existence of a unique global minimum. The parameter bounds must be carefully chosen under
hardware and environment considerations.

The minimisation problem (5.70) takes place in the parameter space 𝛩. Necessary or at
least sufficient bounds exist for all of the considered parameters. Bounds on the mean model
parameters are given due to the limited observation space; and bounds on the covariance
parameters are given due to model restrictions. Table 5.1 summarises the parameter bounds.
Note, that the bounds for the azimuth angle 𝜑 have been chosen in accordance to the 3 dB
opening angle of the array antennas of the considered radar.

Non-Convex Objective
Presume the existence and uniqueness of a global minimum. Then, the optimisation problem
can still be problematic, if local minima exist. A local minimum is a point of the objective
function, which is minimal compared to all other feasible points in its vicinity [NW06].
If an objective function has a unique minimum [Sor93], the function is stated as convex.
Optimisation problems featuring convex objectives can be efficiently solved [BV04]. An
objective function exhibiting multiple minima, which can be local or global, is stated as non-
convex, see APPENDIX B. It cannot be easily decided, whether a found minimum is of global
or local nature. Hence, optimisation methods can fail to found the global minimum, even
if there is one. In order to circumvent this problem, multiple optimisation trials can be run
and the values of the objective function at the detected minima are compared. However, it
cannot be ensured that one of the detected minima is the global minimum. Furthermore, the
computational complexity is high. Summarised, detection of the global minimum of a non-
convex objective cannot be assured in general and under practical considerations. Therefore,
optimisation problems including non-convex objective functions are quite difficult to solve
and no general solvers exist [BV04]. Unfortunately, the objective function for the considered
parameter estimation problem is non-convex.

Many computational optimisation methods for non-convex objectives are known from
literature, see e.g. [Koz11, NW06, Wei11, Yan17]. Optimisation methods can be roughly
classified into global and local optimisation, i.e. the methods converge surely to a local or
global minimum, and heuristic and deterministic methods, i.e. the methods exhibit some
heuristics or randomness in finding the optima or not. Some optimisation frameworks featuring
global convergence are e.g. simulated annealing, particle swarm, genetic algorithm or cuckoo
search [Wei09]. Advantages of these methods are, in addition to global convergence, that they
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require the evaluation of the objective function only and they are numerically stable, e.g. do
not require the calculation of derivatives. On the other hand, these methods feature a low
convergence speed. Gradient-based methods as gradient descent, Gauß–Newton or Levenberg-
Marquardt [NW06] feature a fast convergence speed, but only convergence to a local optimum
is ensured. Therefore, an initial guess close to the global minimum is necessary, which acts
as the starting point for the local optimisation method. Furthermore, gradient methods can
become numerically unstable as the calculation of derivatives is required. All of the mentioned
methods are iterative or feature multiple estimation trials, such that they are computationally
costly. Because online estimation fulfilling real-time requirements will not be considered here,
there is no demand for high computational efficiency. A simplified version of the RIMAX
framework [RT05, Ric05] will be employed to minimise the objective function.

Reduction of the Dimensionality
The objective function (5.69) has a high-dimensional parameter space.

ℒ (𝐲| 𝛉 = [𝛡T, 𝛔T]T) ∶ ℝ5𝑃 × ℝ6𝑀 ↦ ℝ (5.97)

Furthermore, the size of the parameter space scales with the number of propagation paths 𝑃.
Hence, exhaustive search for a global minimum is highly computationally costly and hence
not conceivable. Hence, a compromise must be drawn between reduced estimation accuracy
and computational effort. Simplifications or dimensionality reductions can be employed to
reduce the numerical effort to the risk of a lower estimation accuracy. The dimensionality
of the optimisation problem can be reduced by optimising the objective w.r.t. a subset of the
parameters only, whereas all other parameters are kept fix. Hence, the parameter search space
and therefore the numerical complexity for a single optimisation step is reduced. In other words,
the optimisation problem is split into multiple subproblems with disjunct parameter sets, and
these subproblems are solved in an alternating manner. This optimisation strategy is known
as the space-alternating generalized expectation-maximization (SAGE) algorithm [FH94]. A
proper choice for the optimisation problem under consideration is the separate optimisation
w.r.t. the parameters of the mean and covariance model. Hence, the vector of unknown
parameters 𝛉 is split into the vectors 𝛡 and 𝛔, which yields two subproblems for optimisation.

𝛡̂ = arg min𝛡∈Π ℒ (𝐲| 𝛡, 𝛔̂) (5.98a)

𝛔̂ = arg min𝛔∈Σ ℒ (𝐲| 𝛔, 𝛡̂) (5.98b)

Both optimisation problems are considered in an alternating manner until convergence.
However, if the parameters are coupled, i.e. variation of one parameter causes variations of
the objective in the dimension of another parameter, this approach is suboptimal and many
iterations are necessary. Also, separation of the optimisation problem into an optimisation
w.r.t. the mean parameters and an optimisation w.r.t. the covariance parameters necessitates,
that the mean and covariance model are driven by disjunct parameters. This, however, is not
ensured as the covariance matrix depends on the propagation parameters due to the phase noise
model (see Section 4.6). As a consequence, more iterations are necessary. However, this is still
computationally more efficient than optimising w.r.t. all unknown parameters jointly.
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5.3.1 Optimisation w.r.t. the Parameters of the Mean
Model

Estimation of the parameters of the mean model requires the minimisation of the objectiveℒ (𝐲| 𝛡, 𝛔̂).
ℒ (𝐲| 𝛡, 𝛔̂) = ln {|𝚺 (𝛡, 𝛔̂)|} + [𝐲 − 𝛍 (𝛡)]H ⋅ 𝚺 (𝛡, 𝛔̂)-1 ⋅ [𝐲 − 𝛍 (𝛡)] (5.99)

This objective is non-convex, such that an iterative approach is required. An iterative approach
requires the evaluation of the objective for various 𝛡. Thus, the determinant and the inverse of
the covariance matrix 𝚺 (𝛡, 𝛔̂) has to be evaluated multiple times, which is numerically very
expensive.

Because an iterative optimisation scheme will be employed and based on numerical
experiences, a simplification will be drawn: the covariance matrix will be kept fix 𝚺̂ = 𝚺 (𝛡̂, 𝛔̂)
while optimising the objective w.r.t. the parameters 𝛡. This simplification changes the shape of
the objective, but does not alter the location of the global optimum. The varied shape will tend
to more iterations of the optimisation algorithm, but each iteration is numerically much cheaper.
Also, the estimator does not become biased due to the simplification. The simplification might
not be optimal in the sense of the parameter estimates, but the estimator still converges. In
order to draw the above simplification, the parameters 𝛔 have to be known prior to the mean
parameters 𝛡. Hence, the parameters of the covariance model have to be estimated before the
parameters of the mean model, which is especially important for the beginning of the iteration
of the optimisation algorithm. Assuming the covariance matrix as fix w.r.t. the parameters 𝛡,
the objective function can be simplified.

𝛡̂ = arg min𝛡∈Π ℒ (𝐲| 𝛡, 𝛔̂) ≈ arg min𝛡∈𝛱 [𝐲 − 𝛍 (𝛡)]H ⋅ 𝚺̂-1 ⋅ [𝐲 − 𝛍 (𝛡)] (5.100)

The estimation of the parameter vector 𝛡 simplifies to a box-constrained weighted non-linear
least-squares problem. The computational burden is much lower, because the inverse of the
covariance matrix has to be calculated only once.

Many algorithms are known in literature to solve a weighted non-linear least-squares
optimisation problem (5.100): SAGE-based algorithm with line-search [Fle+99], alternating
projection [ZW88], RELAX algorithm [LS96, LL98] or CLEAN algorithms [CSW02,
MSE08, TS88]. The subsequently described optimisation procedure is related to the RIMAX
framework [RLT03, RLT02], which among the other algorithms features a good convergence
speed and convergence to a global minimum is not guaranteed but highly probable. The
algorithm is twofold. First, a coarse initial estimate of the non-linear parameters delay,
angle and Doppler is conducted using an RELAX-like approach. The linear parameters are
jointly estimated using the BLUE. Second, the coarse parameter estimates are refined by joint
optimisation of all parameters by a gradient-based optimisation approach to ensure the high-
resolution capability of the parameter estimator.

Because the covariance matrix is hermitian and positive semi-definite, their Cholesky
factorisation [GV13] can be calculated.

𝚺̂ = 𝐋 ⋅ 𝐋H (5.101)
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Plugging into (5.100), the weighted non-linear least-squares problem becomes a non-linear
least-squares problem [NW06].

[𝐲 − 𝛍 (𝛡)]H ⋅ 𝚺̂-1 ⋅ [𝐲 − 𝛍 (𝛡)] = ‖𝐲L − 𝛍L (𝛡)‖2 (5.102)

Variables 𝐲L = 𝐋-1𝐲 and 𝛍L (𝛡) = 𝐋-1𝛍 (𝛡) are introduced for short hand notation.

Initial Estimation of Parameter Values

Finding initial and coarse estimates for the parameter vector 𝛡 is possible by amultidimensional
exhaustive search of the minimum of the objective (5.102). However, an exhaustive search is
intractable under practical considerations of numerical complexity, because the dimensionality
of (5.102) is too high and also scales with the number of paths. Hence, one may seek for
methods, which are possibly iterative but numerically less complex in each iteration.

Variable Projection Method Consider the matrix-vector representation of model (5.22) of
the mean vector.

𝛍 (𝛡) = 𝐒 (𝛗, 𝛕, 𝛎) ⋅ 𝛄 = [𝐬 (𝜑1, 𝜏1, 𝜈1) , … , 𝐬 (𝜑𝑃, 𝜏𝑃, 𝜈𝑃)] ⋅ 𝛄 = 𝑃
∑𝑝=1 𝛾𝑝 ⋅ 𝐬 (𝜑𝑝, 𝜏𝑝, 𝜈𝑝)

Note, that 𝐬 (𝜑𝑝, 𝜏𝑝, 𝜈𝑝) describes the model for a single path. Plugging into the least-squares
objective (5.102) yields

𝛗̂, 𝛕̂, 𝛎̂, 𝛄̂ = arg min𝛗,𝛕,𝛎,𝛄 ‖𝐲L − 𝐒L (𝛗, 𝛕, 𝛎) ⋅ 𝛄‖2 , (5.103)

with 𝐒L = 𝐋-1𝐒 introduced for short hand notation. This optimisation problem is a separable
non-linear least-squares problem [GP73, GP03], as the non-linear functions 𝐬 (𝜑𝑝, 𝜏𝑝, 𝜈𝑝) are
weighted add up in the model. Hence, the variable projection algorithm [GP73, GP03] can be
used. Once estimates of the non-linear parameters 𝛗̂, 𝛕̂, 𝛎̂ are known, an estimate of the vector
of linear parameters 𝛄 is given by the BLUE [MS00].

𝛄̂ = 𝐒L (𝛗̂, 𝛕̂, 𝛎̂)+ ⋅ 𝐲L = [𝐒 (𝛗̂, 𝛕̂, 𝛎̂)H ⋅ 𝚺̂-1 ⋅ 𝐒 (𝛗̂, 𝛕̂, 𝛎̂)]-1 ⋅ 𝐒 (𝛗̂, 𝛕̂, 𝛎̂)H ⋅ 𝚺̂-1 ⋅ 𝐲 (5.104)

Plugging the BLUE into equation (5.103) yields the variable projection functional, which is the
profiled (concentrated) objective (5.103) w.r.t. the linear parameters 𝛄.

𝛗̂, 𝛕̂, 𝛎̂ = arg min𝛗,𝛕,𝛎 ‖𝐲L − 𝐒L (𝛗, 𝛕, 𝛎) ⋅ 𝐒L (𝛗, 𝛕, 𝛎)+ ⋅ 𝐲L‖2 (5.105)

Instead of optimising the 5𝑃-dimensional objective (5.103), the variable projection method
splits the optimisation problem into a non-linear least squares problem of dimensionality 3𝑃
and a linear optimisation problem, which has a closed-form solution. Hence, the optimisation
problem is relaxed.
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SAGE Algorithm with Beamforming Estimation From the variable projection method a3𝑃-dimensional non-linear least squares optimisation problem remains. However, an exhaustive
multidimensional search is still not conceivable from the viewpoint of numerical complexity.

A further relaxation of the search space dimensionality can be achieved by exploiting the
concept of the SAGE algorithm [FH94]. The single search in the 3𝑃-dimensional parameter
space is decoupled into 𝑃 successive searches in a 3-dimensional parameter space, and the 𝑃
searches are considered in an alternating manner. Presume that estimates of 𝑃 − 1 paths, i.e.
the respective vector of parameter estimates, is known.

𝛡̂1∶𝑃 −1 = [𝛗̂T1∶𝑃 −1, 𝛕̂T1∶𝑃 −1, 𝛎̂T1∶𝑃 −1, ℜ {𝛄̂1∶𝑃 −1}T , ℑ {𝛄̂1∶𝑃 −1}T]T
By removing the contributions of all 𝑃 − 1 paths from the observation (expectation step), only
the contribution from the 𝑃-th path remains.

𝐫 = 𝐲 − 𝛍 (𝛡̂1∶𝑃 −1) = 𝐲 − 𝐒 (𝛗̂1∶𝑃 −1, 𝛕̂1∶𝑃 −1, 𝛎̂1∶𝑃 −1) ⋅ 𝛄1∶𝑃 −1 (5.106)

Vector 𝐫 denotes the remaining signal. The parameter estimation problem is reduced to the
estimation of the parameters of the 𝑃-th path only, which is a 3-dimensional problem. Restating
the variable projection functional (5.105) w.r.t. a single path yields

𝜑̂, ̂𝜏, ̂𝜈 = arg min𝜑,𝜏,𝜈 ‖𝐫L − 𝐬L (𝜑, 𝜏, 𝜈) ⋅ 𝐬L (𝜑, 𝜏, 𝜈)+ ⋅ 𝐫L‖2 . (5.107)

After some numerical manipulations and ignoring constant terms, the minimisation problem
can be formulated as an equivalent maximisation problem (maximisation step).

𝜑̂, ̂𝜏, ̂𝜈 = arg max𝜑,𝜏,𝜈
|𝐫HL ⋅ 𝐬L (𝜑, 𝜏, 𝜈)|2

‖𝐬L (𝜑, 𝜏, 𝜈)‖2 (5.108)

Objective equation (5.108) can be considered as correlation function or beamforming, whereas
the ”beam” is adjusted by tuning the non-linear parameters of interest.

For maximisation of the 3-dimensional correlation function a grid-based search is conducted.
A grid for each parameter dimension is defined beforehand, and the grid bounds are chosen in
accordance to the respective parameter bounds in Tab. 5.1.

• Grid size in delay domain: variable resolution of 360°4⋅𝐾
• Grid size in azimuth domain: 1° resolution

• Grid size in Doppler domain: variable resolution of 360°10⋅𝑁
The search grid is very densely chosen, because the considered radar has a large aperture
in spatial and delay domain. Due to the large aperture, the main lobe of the beamforming
function (5.108) is very narrow and a dense grid becomes necessary for proper detection of it.
Remember, that a proper detection is required to ensure the initial estimates being close to the
optimum. For each 3-dimensional grid point (𝜑ℎ, 𝜏𝑖, 𝜈𝑗) a pattern 𝐬 (𝜑ℎ, 𝜏𝑖, 𝜈𝑗) is calculated
beforehand. In the maximisation step these patterns are compared by calculating the respective
correlation function equation (5.108), and the parameters which correspond to the pattern with
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Algorithm 1 Path Search Algorithm
Define grid: 𝜑1, … , 𝜑𝐻; 𝜏1, … , 𝜏𝐼; 𝜈1, … , 𝜈𝐽
Calculate model patterns: 𝐬 (𝜑1, 𝜏1, 𝜈1) , … , 𝐬 (𝜑𝐻, 𝜏𝐼, 𝜈𝐽)

Require: 𝐲, 𝐋-1, 𝛡̂1∶𝑃
Expectation step: 𝐫L ← 𝐋-1 ⋅ [𝐲 − 𝛍 (𝛡̂1∶𝑃)]
Maximisation step: 𝜑̂, ̂𝜏, ̂𝜈 ← arg max𝜑ℎ ∈ {𝜑1, … , 𝜑𝐻}𝜏𝑖 ∈ {𝜏1, … , 𝜏𝐼}𝜈𝑗 ∈ {𝜈1, … , 𝜈𝐽}

|𝐫HL ⋅ 𝐬 (𝜑ℎ, 𝜏𝑖, 𝜈𝑗)|2/ ‖𝐬 (𝜑ℎ, 𝜏𝑖, 𝜈𝑗)‖2

𝛗̂1∶𝑃 +1 ← [𝛗̂T1∶𝑃, 𝜑̂]T𝛕̂1∶𝑃 +1 ← [𝛕̂T1∶𝑃, ̂𝜏]T𝛎̂1∶𝑃 +1 ← [𝛎̂T1∶𝑃, ̂𝜈]T
the highest correlation are considered as results of the maximisation step, i.e are the estimates
of the non-linear parameters.

The maximisation (5.108) can be costly, because a 3-dimensional objective is considered.
In [Ric05] the domains of the correlation function (i.e. time, frequency or spatial domain)
are individually processed in the maximisation step, i.e. three 1-dimensional maximisation are
conducted. All other dimensions are collapsed by either incoherent averaging or application
of beamforming using the previously gained estimates. This kind of optimisation coincides
with the optimisation approach in [Fle+99]. The individual processing of each dimension is
possible due to the Kronecker structured data model, which causes the data dimensions to be
decoupled in the model. The individual processing causes loss of correlation gain, such that the
results of themaximisation step are just coarse estimates. Advantageously, only a 1-dimensional
maximisation has to be conducted, which has advantages in terms of computational complexity.
However, the data model under consideration has no Kronecker structure due to the angle-
Doppler and angle-delay (wideband array model) coupling. Hence, it is not possible to collapse
the dimensions and a complete 3-dimensional search becomes necessary.

Path Search Algorithm Assume, that the parameters of 𝑃-paths (𝑃 can be zero as well!)
have been estimated, or are known due to e.g. tracking [28] or a previous run of the estimator:𝛡̂1∶𝑃. Then, an approach to estimate a single, additional path is given by using the previously
described SAGE algorithm with the beamforming estimation. Here, the algorithm is used to
estimate the parameters of a single new path from the remaining signal defined in (5.106), rather
than alternating between the already known paths to improve their estimates. The path search
algorithm is given in Algorithm 1.

Having a new set of non-linear parameters, the corresponding linear parameters can be
estimated using the BLUE.

𝛄̂1∶𝑃 +1 = 𝐒L (𝛗̂1∶𝑃 +1, 𝛕̂1∶𝑃 +1, 𝛎̂1∶𝑃 +1)+ ⋅ 𝐲L

Note, that the vector of linear parameters 𝛄 is estimated in each iteration step, i.e., the path
weights are jointly estimated after each newly detected path. This is a difference compared
to the path search approach in [Ric05], where the path weight of each newly detected path
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is individually estimated. By jointly estimating the path weights w.r.t. all detected paths the
estimation accuracy is improved, such that the expectation step becomes more accurate. Last,
the new set of parameter estimates is given by concatenating all latest estimates.

𝛡̂1∶𝑃 +1 = [𝛗̂T1∶𝑃 +1, 𝛕̂T1∶𝑃 +1, 𝛎̂T1∶𝑃 +1, ℜ {𝛄̂1∶𝑃 +1}T , ℑ {𝛄̂1∶𝑃 +1}T]T
This path search scheme is comparable to the RELAX algorithm [LS96, LL98]. On the

contrary, no re-estimation of the non-linear parameters of the previously detected paths is
considered, and the search grid is fix and not re-adjusted/zoomed to improve the resolution
of the estimates. Hence, the presented path search scheme may result in worse estimates,
if multiple propagation paths, which are close to each other [Ric05], occur. Therefore, an
additional optimisation step is necessary to improve the parameter estimates.

Joint Estimation by Gradient Method

The initial parameter estimates are probably imprecise, such that a refinement becomes
necessary. Furthermore, optimisation w.r.t. all estimated paths is necessary to ensure high-
resolution. A gradient-based optimisation method will be used, because it features a better
convergence speed than e.g. axis parallel optimisation as done by the SAGE algorithm [FJS02,
Fle+99].

Consider a point 𝛡, which is 𝛥𝛡 apart from a (local) minimum 𝛡̂ of the objective (5.102).
By linearisation (first-order Taylor series expansion) of themeanmodel 𝛍L (𝛡) at point 𝛡+𝛥𝛡,
the descent direction 𝛥𝛡 to the minimum can be calculated.

𝛍L (𝛡 + 𝛥𝛡) ≈ 𝛍L (𝛡) + 𝐉L (𝛡) ⋅ 𝛥𝛡 (5.109)

Matrix 𝐉L (𝛡) is the Jacobian matrix.

𝐉L (𝛡) = 𝜕𝛍L (𝛡)𝜕𝛡T (5.110)

Plugging the Taylor series expansion into the non-linear least-squares objective yields the
subproblem of gradient-based optimisation (arguments are dropped for notational convenience).

arg min𝛥𝛡∈ℝ5𝑃 ‖(𝐲L − 𝛍L) − 𝐉L ⋅ 𝛥𝛡‖2 ⟺ 𝐲L − 𝛍L = 𝐉L ⋅ 𝛥𝛡 (5.111)

The solution to this optimisation problem (left-hand side) is given by solving a linear system of
equation (right-hand side). Because the descent direction 𝛥𝛡 is real-valued and 𝐲L, 𝛍L and 𝐉L
are complex-valued, the system of equations is split into its real and imaginary part.

[ℜ {𝐲L − 𝛍L}ℑ {𝐲L − 𝛍L}] = [ℜ {𝐉L}ℑ {𝐉L}] ⋅ 𝛥𝛡
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The solution of the subproblem is given by the Moore–Penrose pseudo inverse [GV13].

𝛥𝛡 = ([ℜ {𝐉L}ℑ {𝐉L}]T ⋅ [ℜ {𝐉L}ℑ {𝐉L}])
-1 ⋅ [ℜ {𝐉L}ℑ {𝐉L}]T ⋅ [ℜ {𝐲L − 𝛍L}ℑ {𝐲L − 𝛍L}]

By exploiting4 it can be re-written in more compact form.

𝛥𝛡 = [ℜ {𝐉L (𝛡)H ⋅ 𝐉L (𝛡)}]-1 ⋅ ℜ {𝐉L (𝛡)H ⋅ [𝐲L − 𝛍L (𝛡)]}
The vector 𝐠 (𝛡) and the matrix 𝐇 (𝛡) will be introduced for short hand notation.

𝐠 (𝛡) = ℜ {𝐉 (𝛡)H ⋅ 𝚺-1 ⋅ [𝐲 − 𝛍 (𝛡)]} (5.112a)𝐇 (𝛡) = ℜ {𝐉 (𝛡)H ⋅ 𝚺-1 ⋅ 𝐉 (𝛡)} (5.112b)

Last, the location of the optimum (respectively the parameter estimate) can be calculated by

𝛡̂ = 𝛡 + 𝛥𝛡 . (5.113)

The linearisation (5.109) of the mean model is just an approximation, such that the descent
direction 𝛥𝛡 towards the minimum is not optimal. Hence, an iterative minimisation of (5.100)
is commonly applied. For each iteration 𝑖 an update of the parameter estimate is given by the
previous parameter estimate 𝛡𝑖−1 and an estimated update step 𝛥𝛡𝑖.

𝛡𝑖 = 𝛡𝑖−1 + 𝛥𝛡𝑖 (5.114)

The initial guess 𝛡0 is known from the previously described path search approach. Further-
more, because the first-order Taylor approximation of the objective is minimised rather than the
true objective, usage of the raw descent direction as the update step is probably not optimal too.
The objective is possibly not decreased or not decreased in the best manner. Hence, the update
step has to be adjusted. Twomethods are known from literature to adjust the update step: the line
search and the trust region approach, resulting in the Gauß-Newton and Levenberg-Marquardt
algorithm, respectively.

Line Search Approach The line search approach attempts to adjust the length of the descent
direction 𝛥𝛡𝑖 in order to find a proper update step. Therefore, a step length factor 𝛿𝑖 is
introduced [NW06].

𝛥𝛡𝑖 = 𝛿𝑖 ⋅ 𝐇 (𝛡𝑖)-1 ⋅ 𝐠 (𝛡𝑖) (5.115)

The factor 𝛿𝑖 is chosen by a line search algorithm, which attempts to satisfy the Wolfe
conditions [NW06] in order to terminate the line search. The parameter update in each iteration
is now given by

𝛡𝑖+1 = 𝛡𝑖 + 𝛿𝑖 ⋅ 𝐇 (𝛡𝑖)-1 ⋅ 𝐠 (𝛡𝑖) . (5.116)

4[ℜ {𝐀}ℑ {𝐀}]T ⋅ [ℜ {𝐁}ℑ {𝐁}] = ℜ {𝐀}T ⋅ ℜ {𝐁} + ℑ {𝐀}T ⋅ ℑ {𝐁} = ℜ {𝐀H ⋅ 𝐁}
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The above parameter update is known as Gauß-Newton update.
The line-search approach is able to minimise the objective towards a local minimum.

However, the Gauß-Newton update may face numerical issues, if matrix 𝐇 (𝛡𝑖) becomes
singular or nearly singular, i.e. the Jacobian becomes rank-deficient. This may happen, if two
propagation paths are close and the parameter estimator attempts to resolve both paths, i.e. high-
resolution shall be achieved. Hence, the Gauß-Newton update is possibly not the appropriate
method to calculate the update step for the problem under consideration.

Trust Region Approach The trust region approach attempts to determine the direction of a
proper update step, while the length ‖𝛥𝛡𝑖‖ of the update step is pre-determined. Because the
first-order Taylor approximation of the objective is only valid in a small region (trust region)
around the actual iteration point 𝛡𝑖−1, one may restrict the length of the update step 𝛥𝛡𝑖, such
that the new iteration point 𝛡𝑖+1 lies inside of the trust region. The respective descent direction
is found by solving the modified subproblem.

arg min𝛥𝛡𝑖∈ℝ5𝑃 ‖[𝐲L − 𝛍L (𝛡𝑖)] − 𝐉L (𝛡𝑖) ⋅ 𝛥𝛡𝑖‖2 s.t. ‖𝛥𝛡𝑖‖ < 𝜖𝑖 (5.117)

Length 𝜖𝑖 the radius of the trust region or length of the update step. Hence, the descent direction
is calculated for a predefined step length. It is proven, that a solution for the trust region
subproblem is given if and only if a parameter 𝛿𝑖 > 0 exists [NW06].

𝛡𝑖+1 = 𝛡𝑖 + [𝐇 (𝛡𝑖) + 𝛿𝑖 ⋅ 𝐈5𝑃]-1 ⋅ 𝐠 (𝛡𝑖) (5.118)

The parameter 𝛿𝑖 is tuned in order to adjust the trust region radius (i.e. tuning the step length)
and also the update direction. The above update step is known as Levenberg’s update step. An
improvement of Levenberg’s update step, which improves the convergence rate in the direction
of a small gradient, is the Marquardt update step.

𝛡𝑖+1 = 𝛡𝑖 + [𝐇 (𝛡𝑖) + 𝛿𝑖 ⋅ 𝐈5𝑃⊙𝐇 (𝛡𝑖)]-1 ⋅ 𝐠 (𝛡𝑖) (5.119)

The trust region approach has a clear advantage compared to the line search approach and
will be considered therefore. Instead of inverting the (possible) singular matrix 𝐇 (𝛡𝑖), the
regularised matrix [𝐇 (𝛡𝑖) + 𝛿𝑖 ⋅ 𝐈5𝑃⊙𝐇 (𝛡𝑖)] is inverted, which results in numerically more
stable solutions. Therefore, the Levenberg-Marquardt update step seems to be more appropriate
to achieve high-resolution.

The complete Levenberg-Marquardt optimisation algorithm is shown in Algorithm 2.

Calculation of the Partial Derivatives

The Jacobian matrix 𝐉 comprises the partial derivatives of the mean model 𝛍 (𝛡) w.r.t. its
parameters 𝛡.

𝐉 = 𝜕𝜕𝛡T𝛍 (𝛡) (5.120)
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Algorithm 2 Levenberg-Marquardt Algorithm
Require: 𝛡0, 𝐋-1𝑖 ← 0𝛿𝑖 ← 0.01

repeat𝐠𝑖, 𝐇𝑖 ← 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.112)𝛡𝑖+1 ← 𝛡𝑖 + [𝐇𝑖 + 𝛿𝑖 ⋅ diag{diag{𝐇𝑖}}]-1 ⋅ 𝐠𝑖
if ‖𝐋-1 ⋅ [𝐲 − 𝛍 (𝛡𝑖+1)]‖2 < ‖𝐋-1 ⋅ [𝐲 − 𝛍 (𝛡𝑖)]‖2 then𝛿𝑖+1 ← 𝛿𝑖/10
else𝛡𝑖+1 ← 𝛡𝑖𝛿𝑖+1 ← 10 ⋅ 𝛿𝑖
end if𝑖 ← 𝑖 + 1

until 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
The mean model is given by equation (5.22). Therefore, the partial derivative of vector 𝛍 (𝛡)
w.r.t. an arbitrary parameter 𝜛 is given by the partial derivatives of each vector entry w.r.t. this
variable.

𝜕𝜕𝜛𝛍 (𝛡) = vec{[ 𝜕𝜕𝜛𝛍1 (𝛡) , … , 𝜕𝜕𝜛𝛍𝑀 (𝛡)]} (5.121)

The vectors 𝛍𝑚 (𝛡) are given by equation (5.20). Applying the product rule for derivat-
ives [AS72], the partial derivative becomes (arguments are dropped for convenience)

𝜕𝜕𝜛𝛍𝑚 = (𝜕𝐀𝑚⊙𝐁ν𝜕𝜛 ♦ [(diag{𝐠𝑚} ⋅ 𝐁φ𝑚) ⊙𝐁τ]) ⋅ 𝛄
+ ([𝐀𝑚⊙𝐁ν] ♦ [𝜕 diag{𝐠𝑚} ⋅ 𝐁φ𝑚𝜕𝜛 ⊙𝐁τ]) ⋅ 𝛄
+ ([𝐀𝑚⊙𝐁ν] ♦ [(diag{𝐠𝑚} ⋅ 𝐁φ𝑚) ⊙𝜕𝐁τ𝜕𝜛 ]) ⋅ 𝛄
+ ([𝐀𝑚⊙𝐁ν] ♦ [(diag{𝐠𝑚} ⋅ 𝐁φ𝑚) ⊙𝐁τ]) ⋅ 𝜕𝛄𝜕𝜛 . (5.122)

Derivation w.r.t. the Doppler Shift The partial derivatives w.r.t. the Doppler shift are
the derivatives of the matrix [𝐀𝑚 (𝛎) ⊙𝐁ν (𝛎)]. According to the product rule of derivatives, the
partial derivative is

𝜕𝜕𝜛 [𝐀𝑚 (𝛎) ⊙𝐁ν (𝛎)] = [ 𝜕𝜕𝜛𝐀𝑚 (𝛎)] ⊙𝐁ν (𝛎) + 𝐀𝑚 (𝛎) ⊙ [ 𝜕𝜕𝜛𝐁ν (𝛎)] . (5.123)
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Matrix 𝐁ν (𝛎) and 𝐀𝑚 (𝛎) are given by (5.9b) and (5.19), respectively, and their derivatives are

𝜕𝜕𝜛𝐁ν (𝛎) = exp{𝚥𝐤𝛎T} ⊙ [𝚥𝐤 ( 𝜕𝜕𝜛𝛎)T] (5.124a)

𝜕𝜕𝜛𝐀𝑚 (𝛎) = exp{𝚥(𝑚 − 1) ⧵ 𝑀Tx𝑀Tx
⋅ 𝟏𝑁 ⋅ 𝛎T} ⊙ [𝚥(𝑚 − 1) ⧵ 𝑀Tx𝑀Tx

⋅ 𝟏𝑁 ⋅ ( 𝜕𝜕𝜛𝛎)T] .
(5.124b)

Derivation w.r.t. the Azimuth Angle The partial derivatives w.r.t. the azimuth angle are
the derivatives of matrix diag{𝐠𝑚} ⋅ 𝐁φ𝑚 (𝛗). Applying the product rule, the partial derivative
is given by

𝜕𝜕𝜛 [diag{𝐠𝑚} ⋅ 𝐁φ𝑚 (𝛗)] = diag{𝐠𝑚} ⋅ 𝜕𝜕𝜛𝐁φ𝑚 (𝛗) . (5.125)

Hence, the partial derivative of the antenna response matrix 𝐁φ𝑚 (𝛗) of the 𝑚-th MIMO channel
has to be calculated. Using the concept of array manifold decomposition [CRK10] as e.g.
exploited by the ETADF [24], the antenna response can be represented by

𝐁φ𝑚 (𝛗) = 𝐆𝑚 ⋅ exp{𝚥𝐮𝛗T} , (5.126)

with 𝐮 = 1𝑈 ⋅ [−𝑈2 , … , 𝑈2 − 1]T ∈ ℝ𝑈. Matrix 𝐆𝑚 ∈ ℂ𝑀×𝑈 is a specific matrix for the 𝑚-th
MIMO channel and can be derived from calibration measurements (see Section 4.4). Note, that
this matrix is independent on the azimuth angle. Using the array manifold decomposition, the
partial derivative becomes

𝜕𝜕𝜛𝐁φ𝑚 (𝛗) = 𝐆𝑚 ⋅ 𝜕𝜕𝜛 exp{𝚥𝐮𝛗T} = 𝐆𝑚 ⋅ [(𝚥𝐮 𝜕𝜕𝜛𝛗T) ⊙ exp{𝚥𝐮𝛗T}] . (5.127)

Derivation w.r.t. the Delay The partial derivatives w.r.t. the delay are the derivatives of
matrix 𝐁τ (𝛕). Matrix 𝐁τ (𝛕) is given by equation (5.9a). Its partial derivative is

𝜕𝜕𝜛𝐁τ (𝛕) = exp{𝚥𝐤𝛕T} ⊙ [𝚥𝐤 ( 𝜕𝜕𝜛𝛕)T] . (5.128)

Derivation w.r.t. the Path Weights The partial derivatives w.r.t. the path weights are
the derivatives of the path weight vector 𝛄 itself. The path weight vector is split into his real
and imaginary part. Using the sum rule of derivatives [AS72], the partial derivative of the path
weight vector is

𝜕𝜕𝜛𝛄 = 𝜕𝜕𝜛 [ℜ {𝛄} + 𝚥ℑ {𝛄}] = 𝜕𝜕𝜛ℜ {𝛄} + 𝚥 𝜕𝜕𝜛ℑ {𝛄} . (5.129)
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5.3.2 Optimisation w.r.t. the Parameters of the
Covariance Model

In order to estimate the parameters 𝛔 of the covariance model the objective ℒ (𝐲| 𝛔, 𝛡̂) has to
be minimised w.r.t. these parameters.

ℒ (𝐲| 𝛔, 𝛡̂) = ln {|𝚺 (𝛡̂, 𝛔)|} + [𝐲 − 𝛍 (𝛡̂)]H ⋅ 𝚺 (𝛡̂, 𝛔)-1 ⋅ [𝐲 − 𝛍 (𝛡̂)] (5.130)

Model (5.59) of the covariance matrix is block diagonal w.r.t. the MIMO channels and the
model parameters of the blocks (of the MIMO channels, respectively) are disjunct. Hence,
the objective can be restated using the properties of block diagonal matrices [GV13]. The
determinant of a block diagonal matrix is given by the product of the determinants of the blocks.

|𝚺 (𝛡̂, 𝛔)| = 𝑀
∏𝑚=1 |𝚺𝑚 (𝛡̂, 𝛔𝑚)| (5.131)

The inverse of a block diagonal matrix is given by the inverse of the blocks.

𝚺 (𝛡̂, 𝛔)-1 = ⎡⎢⎢⎣
𝚺1 (𝛡̂, 𝛔1)-1 𝟎⋱𝟎 𝚺𝑀 (𝛡̂, 𝛔𝑀)-1

⎤⎥⎥⎦
The vector 𝐲 of MIMO observations will be split into the observations at each MIMO channel,
with 𝐲𝑚 the observation at the 𝑚-th MIMO channel.

𝐲 = [𝐲T1 , … , 𝐲T𝑀]T
Now, objective (5.130) can be re-stated.

ℒ (𝐲| 𝛔, 𝛡̂) = 𝑀
∑𝑚=1 ℒ𝑚 (𝐲𝑚| 𝛔𝑚, 𝛡̂)

The respective objective ℒ𝑚 (𝐲𝑚| 𝛔𝑚, 𝛡̂) for each MIMO channel 𝑚 is

ℒ𝑚 (𝐲𝑚| 𝛔𝑚, 𝛡̂) = ln{|𝚺𝑚 (𝛡̂, 𝛔𝑚)|} + 𝐫H𝑚 ⋅ 𝚺𝑚 (𝛡̂, 𝛔𝑚)-1 ⋅ 𝐫𝑚 . (5.132)

Vector 𝐫𝑚 = 𝐲𝑚 − 𝐱𝑚 (𝛡̂) denotes the residuals of the 𝑚-th MIMO channel after coherently
subtracting the estimated paths using equation (5.20). As the parameters of the noise model are
disjunct w.r.t. the MIMO channels, the minimum of the sum is given by the minimum of each
summand. Hence, the parameters can be estimated for each MIMO channel separately.

𝛔̂𝑚 = arg min𝛔𝑚∈Σ𝑚 {ℒ𝑚 (𝐲𝑚| 𝛔𝑚, 𝛡̂)} (5.133)

Summarised, because the MIMO channels are independent regarding their noise model
parameters (disjunct parameter sets) and the noise covariance matrix is block diagonal
w.r.t. the MIMO channels, the parameter estimation for all MIMO channels is independent.
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Hence, instead of solving the 6𝑀-dimensional minimisation problem (5.130), 𝑀 minimisation
problems of dimensionality 6 are solved, which is numerically more efficient. Also, the 𝑀
minimisations can be run in parallel, which reduces computational time. Subsequently, the
minimisation w.r.t. a single MIMO channel will be discussed. Note, that the index 𝑚, indicating
the considered MIMO channel, will be dropped in the following for notational convenience.

A closed-form solution of problem (5.133) is not possible, because the objective is non-
convex. Hence, a two stage and iterative optimisation is employed. The minimisation method
consists of an approach to estimate initial parameter values, which are refined by a gradient-
based method. The presented minimisation method has to be applied to all 𝑀 minimisation
problems (all 𝑀 MIMO channels).

Minimisation by Gradient Method

The objective (5.133) will be replaced by an approximation, whose minimisation is denoted
as subproblem. Quite often the Taylor series expansion of the objective is considered as
approximation. Since the approximation results only in suboptimal solution of (5.133), an
iterative scheme is employed, which alternates between the approximation of the objective and
the solution of the respective subproblem. Indicating the parameters in the 𝑖-th iteration as 𝛔𝑖,
which is 𝛥𝛔𝑖 apart from the minimum, the second-order Taylor series expansion of the objectiveℒ𝑚 (𝐲𝑚| 𝛔𝑚, 𝛡̂) is [PP12] is

ℒ (𝛔𝑖 + 𝛥𝛔𝑖) ≈ ℒ (𝛔𝑖) + 𝐠𝑖 (𝛔𝑖)T ⋅ 𝛥𝛔𝑖 + 12 ⋅ 𝛥𝛔T𝑖 ⋅ 𝐇𝑖 (𝛔𝑖) ⋅ 𝛥𝛔𝑖 . (5.134)

Vector 𝐠𝑖 (𝛔𝑖) is the gradient vector and matrix 𝐇𝑖 (𝛔𝑖) is the Hessian matrix, evaluated at
the iteration point 𝛔𝑖. An estimate of 𝛥𝛔𝑖, i.e. the solution of the subproblem, is given by
minimising function (5.134) w.r.t. 𝛥𝛔𝑖. This is a quadratic programming problem, which has
has a minimum, if the Hessian matrix is positive definite. Subsequently, the iteration index 𝑖
and the arguments will be dropped for convenience.

The entry 𝑔𝑥 of the gradient vector 𝐠 for the arbitrary parameter 𝑥 is given by

𝑔𝑥 = 𝜕𝜕𝑥ℒ = trace{𝚺-1𝜕𝚺𝜕𝑥 } − 𝐫H ⋅ 𝚺-1 ⋅ 𝜕𝚺𝜕𝑥 ⋅ 𝚺-1 ⋅ 𝐫 . (5.135)

The entry 𝐻𝑥,𝑦 of the Hessian matrix for the arbitrary parameters 𝑥 and 𝑦 is given by

𝐻𝑥,𝑦 = 𝜕2𝜕𝑥𝜕𝑦ℒ = trace{𝜕𝚺𝜕𝑥 𝚺-1 ⋅ 𝜕𝚺𝜕𝑦 𝚺-1} = trace{𝚺-1𝜕𝚺𝜕𝑦 ⋅ 𝚺-1𝜕𝚺𝜕𝑥 } . (5.136)

Consider the Cholesky factorisation (5.101) of the covariance matrix and plugging into (5.135)
and (5.136) yields

𝑔𝑥 = 𝜕𝜕𝑥ℒ = trace{𝐋-1𝜕𝚺𝜕𝑥 𝐋-H} − (𝐋-1𝐫)H ⋅ 𝐋-1𝜕𝚺𝜕𝑥 𝐋-H ⋅ (𝐋-1𝐫) (5.137a)

𝐻𝑥,𝑦 = 𝜕2𝜕𝑥𝜕𝑦ℒ = trace{𝐋-1𝜕𝚺𝜕𝑦 𝐋-H ⋅ 𝐋-1𝜕𝚺𝜕𝑥 𝐋-H} . (5.137b)
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Note, that property5 of the trace operator has been used for simplifications. Furthermore, the
Cholesky factor 𝐋 can be used to calculate the entropy, i.e., log-determinant of the covariance
matrix.

ln {|𝚺|} = 2 ⋅ 𝐾
∑𝑘=1 ln{[diag {𝐋}](𝑘)} (5.138)

Plugging the Cholesky factorisation into objective (5.132) yields

ℒ = 2 ⋅ 𝐾
∑𝑘=1 ln{[diag {𝐋}](𝑘)} + (𝐋-1 ⋅ 𝐫)H ⋅ (𝐋-1 ⋅ 𝐫) . (5.139)

Hence, knowing 𝐋-1, 𝐋-1 ⋅ 𝜕𝚺𝜕𝑥 ⋅ 𝐋-H and 𝐋-1 ⋅ 𝐫 is sufficient to evaluate the objective function,
and to calculate the entries of the gradient vector and the Hessian matrix. Introduce

𝐉𝑥 = 𝐋-1 ⋅ 𝜕𝚺𝜕𝑥 ⋅ 𝐋-H (5.140a)

𝐫L = 𝐋-1 ⋅ 𝐫 (5.140b)

for short hand notation, an entry of the Hessian matrix is given by

𝐻𝑥,𝑦 = trace{𝐉𝑥 ⋅ 𝐉𝑦} = vec{𝐉T𝑥}T ⋅ vec{𝐉𝑦} . (5.141)

Identity6 has been used for simplification. The complete Hessian matrix can be calculated by

𝐇 = 𝐉′T ⋅ 𝐉″ (5.142)

with

𝐉′ ́𝐉 ̀𝐉 = [vec{𝐉Tς } , vec{𝐉Tε } , vec{𝐉Tϱ } , vec{𝐉Tα} , vec{𝐉Tβ } , vec{𝐉Tη }] (5.143a)

𝐉″ = [vec{𝐉ς} , vec{𝐉ε} , vec{𝐉ϱ} , vec{𝐉α} , vec{𝐉β} , vec{𝐉η}] . (5.143b)

Similarly, the gradient vector 𝐠 can be calculated.

𝐠 = 𝐉′T ⋅ vec{𝐈𝑁⋅𝐾 − 𝐫L ⋅ 𝐫HL} (5.144)

Trust Region Algorithm for Bound Constraints The minimisation problem (5.133)
is subject to the parameters 𝛔𝑚 being in the set Σ𝑚 ⊂ ℝ6+. This set is bounded according
to Tab. 5.1. These bounds have to be fulfilled in the gradient-based method. According
to the parameter bounds, minimisation problem (5.133) can be restated as a box constrained
minimisation problem (channel index 𝑚 dropped for convenience).

𝛔̂ = arg min𝛔 ℒ (𝛔) s.t. 𝐥 ≤ 𝛔 ≤ 𝐮 (5.145)

5trace {𝐀 ⋅ 𝐁 ⋅ 𝐂} = trace {𝐁 ⋅ 𝐂 ⋅ 𝐀}
6trace {𝐀 ⋅ 𝐁} = vec{𝐀T}T ⋅ vec {𝐁}
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Vector 𝐥 ∈ ℝ6+ and 𝐮 ∈ ℝ6+ are the vector of the lower and upper parameter bounds, respectively.
The algorithm in [CL96] will be used to solve the box constrained minimisation problem, as it
is numerically less costly than other competitive methods [CL96].

Be 𝛔⋆ a (local) minimum of ℒ. Then, the first-order necessary (but not sufficient) optimality
conditions (also denoted as Karush–Kuhn–Tucker (KKT) conditions) for 𝛔⋆ to be a minimum
have to be fulfilled. If no constraints are set, the first-order necessary conditions are

𝜕ℒ𝜕𝛔 |𝛔=𝛔⋆ = 𝟎 .
Because box constraints are employed, the KKT conditions have to be modified. Be 𝑔𝑗 the 𝑗-th
entry of the gradient vector 𝐠, 𝜎𝑗 the 𝑗-th entry of the parameter vector 𝛔, and 𝑢𝑗 and 𝑙𝑗 the 𝑗-th
entries of the boundary vectors. Then, the KKT conditions are [CL94]

if 𝑙𝑗 < 𝜎̂𝑗 < 𝑢𝑗 then 𝑔𝑗 (𝜎⋆𝑗 ) = 0
if 𝜎⋆𝑗 = 𝑢𝑗 then 𝑔𝑗 (𝜎⋆𝑗 ) ≤ 0
if 𝜎⋆𝑗 = 𝑙𝑗 then 𝑔𝑗 (𝜎⋆𝑗 ) ≥ 0

⎫⎪⎪⎬⎪⎪⎭
⟹𝑗=1,…,6 𝐃 (𝛔⋆) ⋅ 𝐃 (𝛔⋆) ⋅ 𝐠 (𝛔⋆) = 𝟎 .

Considering the KKT conditions as additional constraints for the optimisation problem, a trust
region update step 𝛥𝛔𝑖 for the 𝑖-th iteration can be defined. The respective subproblem is
solved in a transformed variable space by a affine scaling transformation. The affine scaling
transformation accounts for the additional constraints due to the KKT conditions.

𝛥𝛔̃𝑖 = 𝐃 (𝛔𝑖)-1 ⋅ 𝛥𝛔𝑖 (5.146)

The trust region update step in the transformed variable space is given by the following
minimisation problem (arguments are dropped) [CL96].

𝛥𝛔̃𝑖 = arg min𝛥𝛔̃𝑖 {[𝐃𝑖𝐠𝑖]T 𝛥𝛔̃𝑖 + 12𝛥𝛔̃T𝑖 [𝐃𝑖𝐇𝑖𝐃𝑖 + diag{𝐠𝑖} 𝐕𝑖] ⋅ 𝛥𝛔̃𝑖} s.t. ‖𝛥𝛔̃𝑖‖ < 𝜖𝑖
(5.147)

The diagonal scaling matrix 𝐃𝑖 = 𝐃 (𝛔𝑖) = diag{𝐝 (𝛔𝑖)} 12 is related to the distance to the
boundaries. Diagonal matrix 𝐕𝑖 = diag{𝐯 (𝛔𝑖)} is the Jacobian matrix of the constraint𝐃𝑖 ⋅ 𝐃𝑖 ⋅ 𝐠𝑖 = 𝟎, i.e. the Jacobian of vector 𝐝 (𝛔𝑖). The entries 𝑑𝑗 and 𝑣𝑗 of vector 𝐝 (𝛔)
and 𝐯 (𝛔) are given by [CL96]

if 𝑔𝑗 < 0 and 𝑢𝑗 < ∞ then 𝑑𝑗 = |𝜎𝑗 − 𝑢𝑗| and 𝑣𝑗 = 1 (5.148a)
if 𝑔𝑗 ≥ 0 and 𝑙𝑗 > −∞ then 𝑑𝑗 = |𝜎𝑗 − 𝑙𝑗| and 𝑣𝑗 = 1 (5.148b)
if 𝑔𝑗 < 0 and 𝑢𝑗 = ∞ then 𝑑𝑗 = |−1| and 𝑣𝑗 = 0 (5.148c)
if 𝑔𝑗 ≥ 0 and 𝑙𝑗 = −∞ then 𝑑𝑗 = |1| and 𝑣𝑗 = 0 . (5.148d)

Note, that 𝐃 (𝛔)⋅𝐃 (𝛔)⋅𝐠 (𝛔) is not differentiable if 𝑑𝑗 = 0, i.e. the parameter attains the upper or
lower bound. Non-differentiability can be avoided by ensuring strict feasibility, e.g. 𝐥 < 𝛔 < 𝐮.
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Algorithm 3 Trust Region Algorithmwith Box Constraints and Step Size Control by Levenberg
Method
Require: 𝛔0, 𝐫𝑖 ← 0𝛿𝑖 ← 0.1ℒ𝑖 ← equation (5.139)

repeat𝚺𝑖 ← equation (5.56)𝐋𝑖 ← equation (5.101)𝐠𝑖 ← equation (5.144)𝐇𝑖 ← equation (5.142)𝐃𝑖, 𝐕𝑖 ← equation (5.148)𝛔𝑖+1 ← 𝛔𝑖 − 𝐃𝑖 ⋅ [𝐃𝑖 ⋅ 𝐇𝑖 ⋅ 𝐃𝑖 + diag{𝐠𝑖} ⋅ 𝐕𝑖 + 𝛿𝑖 ⋅ 𝐈]-1 ⋅ 𝐃𝑖 ⋅ 𝐠𝑖𝐋𝑖+1 ← equation (5.101)ℒ𝑖+1 equation (5.139)
if ℒ𝑖+1 < ℒ𝑖 then𝛿𝑖+1 ← 𝛿𝑖/10
else𝛔𝑖+1 ← 𝛔𝑖𝛿𝑖+1 ← 10 ⋅ 𝛿𝑖
end if𝑖 ← 𝑖 + 1

until 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
A solution of the trust region subproblem (5.147) is given by the Levenberg update step.

𝛥𝛔̃𝑖 = − [𝐃𝑖𝐇𝑖𝐃𝑖 + diag{𝐠𝑖} 𝐕𝑖 + 𝛿𝑖𝐈]-1 ⋅ 𝐃𝑖 ⋅ 𝐠𝑖 (5.149)

Parameter 𝛿𝑖 > 0 is tuned to adjust the trust region size and hence the step length, and to adjust
the direction [NW06]. After calculating the update step the affine scaling transformation has to
be reverted to get the update step in the original variable space: 𝛥𝛔𝑖 = 𝐃 (𝛔𝑖) ⋅ 𝛥𝛔̃𝑖.

The complete trust region algorithm for bound constraints is shown in Algorithm 3.

Calculation of the Partial Derivatives

Lets recap the model of the covariance matrix of the 𝑚-th MIMO channel from equation (5.56).

𝚺𝑚 (𝛔𝑚) = 𝐈𝑁⊗ [𝚺(τ)
l𝑚 (𝜍𝑚, 𝜀𝑚, 𝜚𝑚) + 𝜂𝑚𝐈𝐾] + [𝐈𝑁⊗𝚺(τ)

e𝑚 (𝛼𝑚, 𝛽𝑚)] ⊙ 𝑃
∑𝑝=1 𝐱𝑚 (𝛡𝑝) 𝐱𝑚 (𝛡𝑝)H

For the calculation of the gradient vector and the Hessian matrix, the partial derivatives of the
covariance model w.r.t. the parameter vector 𝛔𝑚 are required.
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Derivative w.r.t. the Thermal Noise Parameters According to the sum and product
rule for derivatives, the partial derivative w.r.t. the thermal noise power is

𝜕𝜕𝜂𝑚 𝚺𝑚 (𝛔𝑚) = 𝐈𝑁⊗𝐈𝐾 . (5.150)

Derivative w.r.t. the Leakage Noise Parameters According to the sum and product
rule for derivatives, the partial derivative w.r.t. a parameter of the leakage noise is

𝜕𝜕𝑥𝚺𝑚 (𝛔𝑚) = 𝐈𝑁⊗ 𝜕𝜕𝑥𝚺(τ)
l𝑚 (𝜍𝑚, 𝜀𝑚, 𝜚𝑚) , (5.151)

with 𝑥 ∈ {𝜍𝑚, 𝜀𝑚, 𝜚𝑚}. Matrix 𝚺(τ)
l𝑚 is constructed by the Toeplitz operator and the vector 𝛙l of

the sampled leakage noise ACF, see equation (5.37). Considering the product rule the partial
derivate is

𝜕𝜕𝑥𝚺(τ)
l𝑚 = diag{𝐠𝑚} ⋅ T{ 𝜕𝜕𝑥𝛙l (𝜍𝑚, 𝜀𝑚, 𝜚𝑚)} ⋅ diag{𝐠𝑚}H . (5.152)

The derivative of vector 𝛙l is given by sampling the respective derivative of the ACF at delay
points 𝜏 = 0, … , (𝐾 − 1) ⋅ 𝑇S.

𝜕𝜕𝜍𝑚 𝛙l (𝜍𝑚, 𝜀𝑚, 𝜚𝑚) = [ 1𝜀𝑚 , … , exp{𝚥2𝜋𝜚𝑚(𝐾−1)}𝜀𝑚−𝚥2𝜋(𝐾−1) ]T (5.153a)

𝜕𝜕𝜀𝑚 𝛙l (𝜍𝑚, 𝜀𝑚, 𝜚𝑚) = 𝜍𝑚 ⋅ [− 1𝜀2𝑚 , … , − exp{𝚥2𝜋𝜚𝑚(𝐾−1)}(𝜀𝑚−𝚥2𝜋(𝐾−1))2 ]T
(5.153b)

𝜕𝜕𝜚𝑚 𝛙l (𝜍𝑚, 𝜀𝑚, 𝜚𝑚) = 𝜍𝑚 ⋅ [0, … , 𝚥2𝜋(𝐾 − 1) ⋅ exp{𝚥2𝜋𝜚𝑚(𝐾−1)}𝜀𝑚−𝚥2𝜋(𝐾−1) ]T (5.153c)

Derivative w.r.t. the Phase Noise Parameters Considering the sum and product rule,
the partial derivatives w.r.t. the parameters of the phase noise model are

𝜕𝜕𝑥𝚺𝑚 (𝛔𝑚) = (𝐈𝑁⊗ 𝜕𝜕𝑥𝚺(τ)
e𝑚 (𝛼𝑚, 𝛽𝑚)) ⊙ 𝑃

∑𝑝=1 𝐱𝑚 (𝛡𝑝) ⋅ 𝐱𝑚 (𝛡𝑝)H , (5.154)

with 𝑥 ∈ {𝛼𝑚, 𝛽𝑚}. The partial derivative of the Toeplitz matrix 𝚺(τ)
e𝑚,𝑛 is

𝜕𝜕𝑥𝚺(τ)
e𝑚,𝑛 = T{ 𝜕𝜕𝑥𝛙e (𝛼𝑚, 𝛽𝑚)} . (5.155)

The derivative of vector 𝛙e is given by sampling the respective derivative of the ACF (4.142)
at the delay points 𝜏 = 0, … , (𝐾 − 1) ⋅ 𝑇S.

𝜕𝜕𝛼𝑚 𝛙e (𝛼𝑚, 𝛽𝑚) = [1, … , exp{−(𝐾 − 1) ⋅ 𝛽𝑚}]T (5.156a)

𝜕𝜕𝛽𝑚 𝛙e (𝛼𝑚, 𝛽𝑚) = 𝛼𝑚 ⋅ [0, … , −(𝐾 − 1) ⋅ exp{−(𝐾 − 1) ⋅ 𝛽𝑚}]T (5.156b)
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Estimation of Initial Parameter Values
The gradient-based optimisation requires initial estimates 𝛔0. These estimates have to be close
to the global minimum, such that the gradient-based optimisation does not end up in a local
minimum.

Leakage Noise and Thermal Noise Parameters In order to estimate initial values of
the parameters of the leakage and thermal noise model, a suboptimal but numerically efficient
estimator will be employed.

First, the vector ̂𝐳𝑚 ∈ ℝ𝐾 of an estimate of the PSD of the 𝑚-th MIMO channel is introduced.
As thermal noise and leakage noise are assumed as i.i.d., the PSD can be averaged over the
captured signal periods 𝑁.

̂𝐳𝑚 = 1𝑁
𝑁

∑𝑛=1 (𝐄 ⋅ 𝐫𝑚,𝑛)† ⊙ (𝐄 ⋅ 𝐫𝑚,𝑛) (5.157)

Matrix 𝐄 ∈ ℂ𝐾×𝐾 denotes the discrete Fourier transform (DFT) matrix, and 𝐫𝑚,𝑛 ∈ ℂ𝐾 are
the residuals at the 𝑚-th MIMO channel for the 𝑛-th signal period. If no previous estimates𝛡̂ of the path parameters are available, then 𝐫𝑚,𝑛 = 𝐲𝑚,𝑛. Note, that ̂𝐳𝑚 is an estimate of the
PSD of the noise processes, if all paths have been coherently subtracted. Now recall, that both
noise processes are assumed as WSS. Hence, the covariance matrix of the leakage noise 𝚺(τ)

l
and the covariance matrix of the thermal noise 𝚺(τ)

w are diagonal matrices in the frequency
domain. However, due to the limited observation bandwidth of the measurements, this is only
approximately true. Furthermore, thermal noise and leakage noise are assumed as uncorrelated
with each other. Hence, the sum of the diagonal entries are a model 𝐳𝑚 of the PSD of the noise
processes.

𝐳𝑚 = diag{𝐄 ⋅ 𝚺l (𝜍𝑚, 𝜀𝑚, 𝜚𝑚) ⋅ 𝐄H} + diag{𝐄 ⋅ 𝚺w (𝜂𝑚) ⋅ 𝐄H} (5.158)

Assume, that the frequency shift parameter is approx. 𝜚𝑚 = 0, because the leakage noise is
commonly not significantly shifted. Then, a model for the PSD of the noise processes can be
given.

𝐳𝑚 = 𝐖 (𝜀𝑚) ⋅ [𝜍𝑚, 𝜂𝑚]T (5.159)

Matrix 𝐖 (𝜀𝑚) contains the normalised PSD of the leakage noise and thermal noise process.

𝐖 (𝜀𝑚) = [diag{𝐄 diag{𝐠𝑚} ⋅ T{exp{− ln{𝜀𝑚𝟏𝐾 − 𝚥2𝜋𝐤}}} ⋅ diag{𝐠𝑚}H 𝐄H} , 𝟏𝐾]
(5.160)

Now, a suboptimal estimator, i.e. not the ML estimator, of the model parameters can be given
by the least-squares of the estimated PSD ̂𝐳𝑚 and its respective model (5.159).

̂𝜍𝑚, 𝜀̂𝑚, 𝜂̂𝑚 = arg min𝜍𝑚,𝜀𝑚,𝜂𝑚 {‖ ̂𝐳𝑚 − 𝐖 (𝜀𝑚) ⋅ [𝜍𝑚, 𝜂𝑚]T‖2} (5.161)
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Figure 5.2: Average range spectrum, the initially estimated PSD of the leakage and thermal noise, and
the range spectrum after whitening with the estimated noise model.

Because the parameters 𝜍𝑚 and 𝜂𝑚 are linearly included in the objective (5.161), the variable
projection method can be employed. An estimator of the parameters 𝜍𝑚 and 𝜂𝑚 is the BLUE.

[ ̂𝜍𝑚, 𝜂̂𝑚]T = 𝐖 (𝜀𝑚)+ ⋅ ̂𝐳𝑚 (5.162)

Plugging equation (5.162) into equation (5.161) and applying some mathematical manipula-
tions, the profiled objective function, which depends on the parameter 𝜀𝑚 only, can be stated.

𝜀̂𝑚 = arg max𝜀𝑚 ̂𝐳T𝑚 ⋅ 𝐖 (𝜀𝑚) ⋅ 𝐖 (𝜀𝑚)+ ⋅ ̂𝐳𝑚 (5.163)

Maximisation of objective (5.163) is done by a 1-dimensional search over a finite grid.
Afterwards, the noise level 𝜂𝑚 and the amplitude 𝜍𝑚 is estimated using equation (5.162).

Figure 5.2 shows an example measurement and the initially estimated model of the leakage
and thermal noise using the stated method. The estimated noise model has been used to pre-
whiten the measurement. As the noise model is quite properly estimated, the pre-whitening
result shows a uniform noise floor.

Phase Noise Parameters Because the covariance model of the phase noise depends on
parameters of the mean model (path parameters), initial estimates of the parameters of the phase
noise model cannot be drawn until one path has been detected. Hence, the parameters 𝛼𝑚 and𝛽𝑚 of the phase noise model are initialised by heuristic experiences. From multiple estimation
trials it turned out, that the initial values 𝛼𝑚 = 0 and 𝛽𝑚 = 0 are proper choices.

The complete algorithm to initialise the parameters of the covariance model is given in
Algorithm 4.
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Algorithm 4 Initialisation of Covariance Model Parameters
Require: 𝓨, 𝛡̂

Define grid: 𝜀1, … , 𝜀𝐻
for 𝑚 = 1 … 𝑀 do𝜚̂𝑚 ← 0𝛼̂𝑚 ← 0𝛽̂𝑚 ← 0𝐫𝑚,𝑛 ← 𝐲𝑚,𝑛 − 𝐱𝑚,𝑛 (𝛡̂)̂𝐳𝑚 = 1𝑁 ∑𝑁𝑛=1 (𝐄 ⋅ 𝐫𝑚,𝑛)† ⊙ (𝐄 ⋅ 𝐫𝑚,𝑛)𝜀̂𝑚 ← arg max𝜀ℎ=𝜀1,…,𝜀𝐻 ̂𝐳T𝑚 ⋅ 𝐖 (𝜀ℎ) ⋅ 𝐖 (𝜀ℎ)+ ⋅ ̂𝐳𝑚

[ ̂𝜍𝑚, 𝜂̂𝑚]T ←equation (5.162)𝛔̂𝑚 ← [ ̂𝜍𝑚, 𝜀̂𝑚, 𝜚̂𝑚, 𝛼̂𝑚, 𝛽̂𝑚, 𝜂̂𝑚]T
end for

5.4 Outline of the Algorithm for Parameter
Estimation

The state diagram of the proposed optimisation and parameter estimator algorithm is shown
in Fig. 5.3. As the simplification in equation (5.100) requires a proper guess of the noise
parameters, an initial estimate of the noise parameters is deduced first. Afterwards, the iterative
path detection and parameter estimates refinement is run. In each run a new propagation path
is estimated first by the path search and path weight estimation method. Subsequently, the
parameters of the yet detected paths (i.e. the mean model parameters) are jointly refined by
the gradient-based optimisation. After refining the estimates of the mean model parameters 𝛡,
the estimates of the covariance model parameters 𝛔 are refined by the respective gradient-based
approach. The algorithm continues as long as the selected number of propagation paths ̂𝑃 has
not been estimated.

5.5 Summary
The developed parameter estimator for a broadband FMCWMIMO radar has been presented in
this chapter. The parameter estimator is a maximum-likelihood estimator with box constraints,
resulting from the consideration of the MAP as point estimator and a prior derived from the
principle of indifference.

The ML estimator exploits a statistical model of the noisy observations, which is a
multidimensional normal distribution featuring a parametric model of its mean and covariance.
The mean model is given by the system model including the parameters of interest. The system
model takes into account angle-Doppler and delay-Doppler coupling. By considering this
system model in the parameter estimator, the angle-Doppler and delay-Doppler coupling are
coped. The statistical model includes noise sources as leakage noise and phase noise, which
have not been considered in signal processing for FMCW MIMO radars so far. As a result, the
influence of these noises is tackled, which improves detection robustness against these noises
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do/Algo. 4
exit/parameters 𝛔̂, 𝑃 = 0

Initialisation of Covariance Model Parameters
do/Algo. 4
exit/parameters 𝛔̂, 𝑃 = 0

Initialisation of Covariance Model Parameters

do/𝑃 = 𝑃 + 1
exit/𝑃
Increment

do/𝑃 = 𝑃 + 1
exit/𝑃
Increment

do/Algo. 1
exit/parameters 𝜑̂, ̂𝜏, ̂𝜈

Path Search
do/Algo. 1
exit/parameters 𝜑̂, ̂𝜏, ̂𝜈

Path Search

do/BLUE (5.104)
exit/parameters 𝛄̂

Path Weight Estimation

do/BLUE (5.104)
exit/parameters 𝛄̂

Path Weight Estimation

do/Algo. 2
exit/parameters 𝛡̂

Estimation of Mean Model Parameters
do/Algo. 2
exit/parameters 𝛡̂

Estimation of Mean Model Parameters

do/Algo. 3 for each MIMO channel
exit/parameters 𝛔̂

Estimation of Covariance Model Parameters
do/Algo. 3 for each MIMO channel
exit/parameters 𝛔̂

Estimation of Covariance Model Parameters

do/-
exit/boolean

̂𝑃 reached?
do/-
exit/boolean

̂𝑃 reached?

true

false

Figure 5.3: State diagram of the optimisation algorithm to minimise the objective and to estimate the
model parameters. The states of the initialisation approaches for the covariance model
parameters and the mean model parameters are coloured in green and red, respectively,
and the states of the joint optimisation approaches are coloured in blue.
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and prevents an overestimation of the number of targets.
The ML estimation requires the global optimisation of an objective, which turned out to

be non-convex. A two-stage and iterative optimisation scheme has been proposed to detect
the global optimum and hence get the parameter estimates. In the first stage a new path is
detected and the parameters of the parameters of the meanmodel are refined by a gradient-based
optimisation. In the second stage the parameters of the model of the covariance are refined by
a gradient-based optimisation.

Because an iterative approach is used, whereas the number of iterations to attain a termination
criterion are unknown and may vary, the optimisation algorithm is computational cumbersome.
For example, in each iteration of the gradient optimisation, the respectivemodel, being themean
or covariance model, has to be evaluated. Furthermore, the respective Jacobian matrix has to
be evaluated in each iteration. These function evaluations are computational costly, because
the respective functions are non-linear and multidimensional. It has to be pointed out, that the
gradient-based optimisation of the covariance model parameters are the numerically most costly
part of the optimisation algorithm. First, an optimisation has to be run for each MIMO channel,
which are 64 for the considered radar. Second, calculation of the required Cholesky factorisation
of the covariance matrix and its inverse (see Algorithm 3) are the numerically very costly. A
numerical more efficient method, which circumvents the Cholesky factorisation or calculation
of its inverse, could not be found. The basic problem is, that the covariance matrix does not
feature structural properties as e.g. a Toeplitz structure, because of the phase noise covariance
matrix. Hence, properties of Toeplitz matrices, as applied in [Ric05] to reduce the numerical
effort, cannot be exploited. Consequently, calculation of the Cholesky factorisation and its
inverse cannot be circumvented. Hence, the optimisation is computationally very complex and
time consuming. As a result of the high computational burden a real-time application of the
estimator is not possible.
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CHAPTER 6
Model Order Estimation – De-
termination of the Number of
Propagation Paths

SO far, the statistical model has been assumed as specified for the estimation of the respective
model parameters 𝛉. However, the model is not completely specified in advance, because

the number of resolvable point targets/propagation paths 𝑃 is unknown in advance. Hence, this
number has to be determined too, taking into account the actual observations. Selection of the
model has a severe influence on the parameter estimates, e.g. on their variance or bias [BA02,
SMS02]. In this chapter, the estimation of the number of point targets/propagation paths is
discussed.

Related Work and Own Contributions
In statistical inference, specification of the statistical model is a crucial before to the model
parameter estimation and assignment of precisions [BA02]. Themodel specification can be split
into the formulation of a set of candidate models {ℳ1, ℳ2, …} and the selection of the model
which most properly describes/predicts the underlying observations [BA02]. For the problem
under consideration the model structure (i.e. the model family) is predetermined. Candidate
models only differ in their model order, such that the set of candidate models composes of
models of different order, i.e. 0, 1, … , 𝑃max and {ℳ0, ℳ1, … , ℳ𝑃max}. The model order
is the a-priori unknown number of resolvable point targets/propagation paths 𝑃. Hence, by
selecting the best suited model ℳ ̂𝑃 from the set of candidate models, the best suited model
order ̂𝑃 (number of resolvable point targets) is inherently determined. As model ℳ𝑃 is a subset
of model ℳ𝑃 +1 in terms of the model parameters, the candidate models are so called nested
hierarchical models.

ℳ0 ⊂ ℳ1 ⊂ … ⊂ ℳ𝑃max

Hence, the subsequently considered task is to select the best suited model from a set of nested,
hierarchical candidate models. Methods for model order selection are widely dealt with in
literature, see e.g. for an overview of some methods [Cos+09, SS04, Wal+05].

Some model order estimation methods determine the model order before the parameter
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estimation step. Quite often, the eigenvalues of the data covariance matrix are exploited
therefore [Cos+09, Qui+06]. This is advantageously, because the costly parameter estimation
step is conducted only once. However, these methods need a certain sample size in order to
properly estimate the data covariance matrix. Hence, these methods are not applicable in the
single snapshot case. Also, they become less powerful in case of correlated sources [SN89].
Furthermore, these methods do not take into account the model structure or results of the
parameter estimation, which can be beneficial to properly select the model order.

Other model selection schemes determine the best suited model by comparing the estimation
results of all models in a set of candidate models. Such methods are in contrast to the previously
stated approaches, because the best suited model is determined after the parameter estimation.
A well known representative of such a model selection scheme is the stepwise regression search
procedure. This procedure composes of

• A strategy to search for candidate models

• A criterion to compare candidate models.

After a candidate model has been discovered the respective model parameters are estimated.
Afterwards, the model is compared to all yet discovered candidate models (whose parameters
have been previously estimated). It is obvious, that this approach requires multiple estimation
runs, such that this kind of model selection is computationally intensive. Therefore, a proper
search strategy is required, in order to keep the number of candidate models and hence the
number of estimation runs low. A proper search strategy for candidate models is to change
the model in each search step based on a specified criterion. For the problem at hand only the
model order has to be adjusted to get a new candidate model, such that two ”search directions”
can be distinguished: step up and step down. In the step up case the order is gradually
increased (ℳ𝑃 → ℳ𝑃 +1), whereas in the step down case the order is gradually decreased
(ℳ𝑃 → ℳ𝑃 +1). Step up requires the predefinition of a lower bound and step down requires
the predefinition of an upper bound of the model order. A lower bound can be easily given
by 0, i.e. no target/path is present, whereas an upper bound is hard to define. Hence, the step
up strategy will be considered. The gradually increase of the model order continues, unless a
stopping rule, which is defined from the comparison of candidate models, is fulfilled [Chu+07,
Ric05]. As a consequence of this approach, the model with the lowest order is preferred against
all models of higher order. In statistics, preferring a model of lower complexity (lower order)
against all models of higher complexity (higher order) is known as principle of Occam’s razor,
which will be applied here.

As a criterion to compare candidate models, sometimes denoted as goodness-of-fit criterion,
information theoretic criteria like Akaike information criterion [BA02], Takeuchi’s information
criterion [BA02], Bayesian information criterion [SS04] or minimum description length
[WK85] are mostly employed. These criteria provide a figure-of-merit of each estimated
candidate model. Hence, the best suited model is given by maximising/minimising this criteria.
Information theoretic criteria tend to over- or under-estimate the model order in low or even
high SNR scenarios [Qui+06, Won+90]. Also, they do not take into account knowledge on the
model structure.

Another class of approaches to compare candidate models is hypothesis testing [BA02,
Chu+07]. Recap, that candidate models are nested hierarchical for the problem under
consideration. Hence, one can get ℳ𝑃 out of the models ℳ𝑃 +1, ℳ𝑃 +2, … by stating
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restrictions on the parameters of the models of higher order. By validating these restrictions the
models are compared and the model structure is inherently exploited for model order estimation.
Parametric hypothesis tests on the estimated model parameters can be used for the validation
of the restrictions. The authors in [WHG+02] propose a hypothesis test of the estimated path
weights. Similar approaches can be found in [Ric05] and [SRK09]. These authors do not
discuss the problem of having a non-linear statistical model, which causes the test statistic to
not attain a theoretically assumed distribution. Nor they account for the problem of multi-
hypothesis testing, which occurs in stepwise regression search. In [Chu+07] a solution for the
multi-hypothesis testing problem is presented. Also, an approach to handle the problem of an
unknown distribution of the test statistic is presented. However, this approach does not cover
for the problem of having a non-linear statistical model.

In this chapter, a novel approach to estimate the number of point targets/propagation paths
using step up regression search in conjunction with parametric hypothesis testing is presented.
First, fundamentals of parametric hypothesis tests will be recapped in Section 6.1. Afterwards,
the recapped hypothesis tests are adapted for the consideredmodel order selection in Section 6.2.
Their performance will be verified by Monte Carlo simulations. Because theoretical assump-
tions necessary to apply the hypothesis tests are violated, the test performance and hence the
model order selection performance is low. Improvements to circumvent the problem of violated
theoretical assumptions are proposed in Section 6.2, and Monte Carlo simulations are carried
out to verify the improved tests. Themodel order estimation algorithm is outlined in Section 6.4,
and the incorporation of the model order determination in the parameter estimation framework
from Section 5.4 is presented. Section 6.5 concludes the chapter.

Some aspects of the presented model order estimation scheme have been used in the own
publications [22, 25].

6.1 Parametric Hypothesis Testing
In parametric hypothesis testing statements on the parameters of the statistical model are drawn
and validated. For example, a hypothesis on theML parameter estimates 𝛉̂ is drawn and checked
concerning their reasonableness. This hypothesis is called null hypothesis, symbolised by ℋ0.
Also, an alternative hypothesis ℋ1 is stated, which opposites the null hypothesis. Say, that the
ML parameter estimates under the null hypothesis 𝛉̂ℋ0 attain certain values 𝛉̃. The opposite
statement would be, that the ML parameter estimates under the alternative hypothesis 𝛉̂ℋ1 do
not attain these values. The hypothesis test now verifies, whether ℋ1 holds or whether ℋ0
cannot be rejected.

ℋ0 ∶ 𝛉̂ℋ0 = 𝛉̃ (6.1a)ℋ1 ∶ 𝛉̂ℋ1 ≠ 𝛉̃ , (6.1b)

As the null hypothesis states restrictions on the parameters of the statistical model, the statistical
model under the null hypothesis is referred to as restricted model. Accordingly, the model
under the alternative hypothesis is stated as unrestricted model. Prominent restrictions on the
parameter estimates 𝛉̂ are linear restrictions or linear hypothesises. Introducing matrix 𝐑, which
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describes the superposition or selection of parameter values, the ℋ0 and ℋ1 hypothesis are

ℋ0 ∶ 𝐑 ⋅ 𝛉̂ = 𝐡 (6.2a)ℋ1 ∶ 𝐑 ⋅ 𝛉̂ ≠ 𝐡 . (6.2b)

Based on the null hypothesis a test statistic or T-value 𝑡val is calculated, which follows a
certain distribution under the null hypothesis (denoted as null distribution). By calculating the
p-value 𝑝val or the critical value 𝑐val the significance of the null hypothesis is verified w.r.t. the
significance level 𝛼s. The value 𝑝val (also termed as observed significance) is the likelihood of
the test statistic under the null distribution.

𝑝val = 1 − 𝐶𝐷𝐹ℋ0 (𝑡val) (6.3)

The value 𝑐val is the distribution value for a probability given by the significance level.

𝑐val = 𝑖𝐶𝐷𝐹ℋ0 (1 − 𝛼s) (6.4)

Here, 𝐶𝐷𝐹ℋ0 and 𝑖𝐶𝐷𝐹ℋ0 denote the cumulative distribution function of the null distribution,
and their respective inverse. Based on the 𝑝val or the 𝑐val it is decided, whether the null
hypothesis can be rejected or not.

𝛼s
ℋ1≷ℋ0

𝑝val or 𝑡val ℋ1≷ℋ0
𝑐val (6.5)

6.1.1 Popular Test Statistics
Three well known tests, which measure the discrepancy of the parameter estimates under the
null and alternative hypothesis, are the Wald test, the Rao’s score test (or Lagrangian multiplier
test) and the likelihood-ratio test [Eng84, Kay98]. Figure 6.1 shows the measures, which
are used by these tests to compare the parameter estimates under the null hypothesis and the
alternative hypothesis. Comparing the Wald and Rao test w.r.t. their test statistic, both tests
focus a different question in view of the problem under consideration. Basically, the Rao test
calculates the test statistic using the parameter estimates under the null hypothesis and theWald
test calculates the test statistic using the parameters under the alternative hypothesis [Eng84].
Besides the Wald and Rao test, the likelihood-ratio test incorporates parameter estimates under
the null and alternative-hypothesis. Other conceivable tests are the gradient test [Ter02] or the
residual-ratio test (modified likelihood-ratio test) [Chu+07]. Furthermore, the F-test [Kay98]
is well known for comparing nested models, whose parameters have been inferred by an
ML estimator. Subsequently, only the mentioned Wald, Rao and likelihood-ratio test will be
considered.

Wald Test
The Wald test verifies, how significant the distance between parameter values under the null
hypothesis and parameter values under the alternative hypothesis is. Hence, the parameters 𝛉̂ℋ1
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𝜃

ℒ (𝜃) 𝜕𝜕𝜃 ℒ (𝜃)

𝜃̂ℋ1 𝜃̂ℋ0
W

ℒ (𝜃̂ℋ1)
ℒ (𝜃̂ℋ0)

LR

RS

Figure 6.1: Log-likelihood function ℒ (𝜃) and the measures of the Wald test (W), Rao’s score test
(RS) and the likelihood-ratio test (LR) to compare the ML parameter estimates under the
null hypothesis 𝜃̂ℋ0

(estimates for the restricted model) and the alternative hypothesis 𝜃̂ℋ1
(estimates for the unrestricted model).

of the unrestricted model has to be estimated from the observations. The test statistic is [Kay98]

𝑡W = (𝛉̂ℋ1 − 𝛉̃)T ⋅ 𝐅 (𝛉̂ℋ1) ⋅ (𝛉̂ℋ1 − 𝛉̃) , (6.6)

with 𝐅 (𝛉̂ℋ1) denoting the evaluated FIM (see Section 5.2.2) of the unrestricted model. If linear
restrictions on the ML estimates shall be tested, the Wald test statistic is

𝑡W = [𝐑𝛉̂ − 𝐡]T ⋅ [𝐑𝐅 (𝛉̂)-1 𝐑T]-1 ⋅ [𝐑𝛉̂ − 𝐡] . (6.7)

Rao’s Score Test

The Rao test assumes, that the score function 𝐠 (𝛉) (gradient of the log-likelihood function)
evaluated at the parameter estimates is zero, because the estimates are (at least) at a local
minimum of the log-likelihood function (first-order optimality condition). The Rao test verifies,
how significant the score function of the unrestricted model, evaluated by the parameter
estimates 𝛉̂ℋ0 of the restricted model, differs from zero. Hence, the restricted model has to
be fitted to the data. The test statistic is [Kay98]

𝑡RS = 𝐠 (𝛉̂ℋ0)T ⋅ 𝐅 (𝛉̂ℋ0)-1 ⋅ 𝐠 (𝛉̂ℋ0) (6.8)

with 𝐅 (𝛉̂ℋ0) denoting the FIM evaluated for the parameter estimates 𝛉̂ℋ0 under the restricted
model.
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Likelihood-Ratio Test
The likelihood-ratio test verifies, how significant the log-likelihood function under the
null hypothesis ℒ (𝐲| 𝛉̂ℋ0) differs from the log-likelihood under the alternative hypothesis

ℒ (𝐲| 𝛉̂ℋ1). Therefore, the restricted and the unrestricted model has to be fitted to the data.
The test statistic is [Kay98]

𝑡LR = 2 [ℒ (𝐲| 𝛉̂ℋ1) − ℒ (𝐲| 𝛉̂ℋ0)] . (6.9)

Hence it is tested, whether a significant improvement of the log-likelihood is achieved by
considering the unrestricted model.

6.1.2 Distribution of the T-Value Under the Null
Hypothesis

The test statistics of the presented Wald, Rao and likelihood-ratio test are assumed to be
asymptotic 𝜒2𝐿(Chi-quadrate)-distributed under ℋ0, with 𝐿 degrees of freedom. The degrees of
freedom correspond to the number of restrictions under the null hypothesis. The test statistic
distribution under the null hypothesis (null distribution) is commonly derived from first order
approximations under asymptotic (large sample size) conditions [CC96]. Hence, the assumed
null distribution is only an approximation of the true one. For example, the considered Wald
and likelihood-ratio test are asymptotically similar w.r.t. their test statistic distribution [LF12,
Ter02], if the log-likelihood function is well approximated by a quadratic function [Bus82].
However, different decisions are drawn by these tests in the finite-sample (low SNR) case,
because the null distribution varies from the asymptotically one [Par17].

6.1.3 Multiple Hypothesis Testing
Because multiple candidate models are compared by hypothesis testing, multiple hypothesis
tests are conducted. Multiple hypotheses tests on the same data set increase the type I error or
false positive decision, which is the likelihood of rejecting a true null hypothesis [Kay98]. On
the other hand, a false negative or type II error is committed, if a false null hypothesis is not
rejected [Kay98].

Commonmetrics of describing the rate of type I errors are the family-wise error rate (FWER)
and the false discovery rate (FDR). The FWER is the probability of committing at least one
type I error, whereas the FDR is the ratio of falsely rejected null hypothesises among the total
number of rejected null hypothesises [Chu+07, Yoa10]. The FDR controlling methods have
greater statistical power but an increased number of type I errors. The FWER is given by the
significance level 𝛼s, whereas the family-wise error rate for 𝑃 tests is: 𝐹 𝑊 𝐸𝑅 = 1 − (1 − 𝛼s)𝑃
for independent tests and 𝐹 𝑊 𝐸𝑅 ≤ 𝑃 ⋅ 𝛼s for dependent tests. Methods to control the FWER
can be divided in the group of single step procedures and step down procedures. Single step
procedures use the same criterion for all tests. Step down procedure apply different criteria for
each test by priorly sorting the calculated 𝑝val.
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Several methods and concepts are known to control the FWER and the FDR. To control the
FWER the Bonferroni correction (dependent tests) or the Šidak correction (independent tests)
or the Holm–Bonferroni method can be applied [ADA14]. The Bonferroni and Šidak correction
are single step procedures, whereas the Holm–Bonferroni method is a step down procedure. To
control the FDR, methods like Benjamini-Hochberg (independent tests) or Benjamini-Yekutieli
(dependent tests) procedure are known [ADA14]. The Benjamini-Hochberg procedure is uni-
formlymore powerful than the Holm-Bonferroni procedure. However, the Benjamini-Hochberg
procedure requires the hypotheses to be independent or under certain forms of positive depend-
ence, whereas Holm–Bonferroni can be applied without such assumptions [Chu+07].

6.2 Considered Hypothesis Testing Approaches
6.2.1 Considered Test Statistics
Likelihood-Ratio Test
The likelihood-ratio test can be used to statistically compare the nested models of order 𝑃 − 1
and 𝑃. The model of order 𝑃 − 1 is considered as the restricted model (model under ℋ0),
and model of order 𝑃 is considered as the unrestricted model (model under ℋ1). Denoting the
respective parameter estimates for both model orders as 𝛉̂ℋ0 and 𝛉̂ℋ1, respectively. Then, the
null and alternative hypothesis is stated regarding the true parameter values 𝛉 of the distribution
of the observations as

ℋ0 ∶ 𝛉 = 𝛉̂ℋ0 (6.10a)ℋ1 ∶ 𝛉 = 𝛉̂ℋ1 . (6.10b)

The likelihood-ratio test verifies, if the improvement of the log-likelihood by considering a
higher model order is statistically justifiable. In other words, is a higher model order (corres-
ponding to parameter estimates 𝛉̂ℋ1) to be favoured over a lower model order (corresponding
to parameter estimates 𝛉̂ℋ0). The corresponding test statistic is

𝑡LR = 2 ⋅ [ℒ (𝐲| 𝛉̂ℋ1) − ℒ (𝐲| 𝛉̂ℋ0)] ∼ 𝜒25 . (6.11)

Wald Amplitude Test
Instead of comparing models of adjacent order, a criterion to stop the stepwise regression
search is given by testing the statistical significance of the current model order 𝑃. Be the
vector of correspondingly estimated parameters 𝛡̂1∶𝑃 = [𝛡̂T1 , … , 𝛡̂T𝑃]T. In order to determine,
whether the model order 𝑃 is statistically justifiable, i.e. the stepwise regression search must be
continued or stops, the significance of all estimated propagation paths has to be jointly verified.
As these propagation paths superimpose in the model, the joint significance test can be restated:
Justifying the significance of all estimated paths is equivalent to justifying the significance of
each estimated path separately. Testing the significance of one path only, e.g. the significance
of the newly estimated path after increasing the model order, is not sufficient. In this case path
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splitting, i.e. the approximation of a path in the observations by two paths in the data model,
will not be detectable. Path splitting can only be detected by testing all paths, i.e. testing the
complete datamodel, whether jointly (likelihood-ratio test) or separately (Wald test). Themodel
order is statistically justifiable and hence the model order can be increased, if all detected paths
are significant. Accordingly, the following null hypothesis and alternative hypothesis regarding
the 𝑝-th path can be stated, where the 𝑝-th path is excluded under to null hypothesis.

ℋ0 ∶ 𝛡ℋ0 = 𝛡̂{1∶𝑃}⧵{𝑝}, 𝛔̂ℋ1 (6.12a)ℋ1 ∶ 𝛡ℋ1 = 𝛡̂1∶𝑃, 𝛔̂ℋ1 (6.12b)

Noise parameters 𝛔̂ℋ1 are the estimates under the alternative hypothesis, respectively. Hence, if
the null hypothesis cannot be rejected, the 𝑝-th path is not significant and therefore negligible/not
justifiable. As a consequence, the model order 𝑃 is too largely chosen and the stepwise
regression search procedure stops. Because the path parameters are jointly estimated, the path
parameters may change for each model order incremental 𝑃 −1 → 𝑃. Hence, validation of each
path has to be conducted for every new model order.

Lets assume, that the 𝑝-th estimated path is not present, i.e. the path has been wrongly
estimated due to a too largely chosen model order. Then, the estimated path weight ̂𝛾𝑝 should
approach zero in expectation. In order to justify this assumption, the estimated path weight is
compared to 0 under ℋ0. The Wald test is used therefore, which becomes in this case the Wald
amplitude test [WHG+02]. As the path weight is complex-valued the null hypothesis for the
path 𝑝-th is

ℋ0 ∶ [ℜ { ̂𝛾𝑝} , ℑ { ̂𝛾𝑝}]T = 𝟎, 𝛔̂ℋ1 (6.13a)
ℋ1 ∶ [ℜ { ̂𝛾𝑝} , ℑ { ̂𝛾𝑝}]T ≠ 𝟎, 𝛔̂ℋ1 . (6.13b)

If the null hypothesis is not rejectable, the estimated path can be stated as unreliable and the
model order can be decreased or the stepwise regression search procedure stops. The Wald test
will be used to verify the null hypothesis regarding the path weight value.

𝑡W = [ℜ { ̂𝛾𝑝} , ℑ { ̂𝛾𝑝}] ⋅ [𝐅 (𝛡̂ℋ1, 𝛔̂ℋ1)-1]-1

𝛾𝑝
⋅ [ℜ { ̂𝛾𝑝} , ℑ { ̂𝛾𝑝}]T ∼ 𝜒22 (6.14)

Expression [𝐅 (𝛡̂ℋ1, 𝛔̂ℋ1)-1]𝛾𝑝
picks the entries from the inverse FIM, which correspond to

the real and imaginary part of the 𝑝-th path weight, see Section 5.2.3.

6.2.2 Control of the Type I Error

As the model order is gradually increased and each increase is justified by statistical test(s),
multiple tests are conducted. Denoting ℋ ∶ ̂𝑃 = 𝑃 as the hypothesis that model order 𝑃 is
valid and ̂𝑃 be the estimated model order. Then, the following null hypothesises and alternative
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Table 6.1: Simulation settings of the monostatic FMCW MIMO radar

Parameter Setting Parameter Setting
MIMO channels 8 × 8 𝑇S 500 ns𝑓c 155GHz 𝑊 10GHz𝑇M 100 µs 𝑇P 150 µs

hypothesises are successively tested by the stepwise regression search [Chu+07, Eri01].

ℋ0 ∶ ̂𝑃 = 0 vs. ℋ1 ∶ ̂𝑃 = 1ℋ0 ∶ ̂𝑃 = 1 vs. ℋ1 ∶ ̂𝑃 = 2⋮ℋ0 ∶ ̂𝑃 = 𝑃max − 1 vs. ℋ1 ∶ ̂𝑃 = 𝑃max

Therefore, multiple hypothesis are tested, which increases the type I error. Note, that for the
Wald amplitude test 𝑃 tests are conducted to compare model order 𝑃 − 1 vs. model order 𝑃.
Hence, the problem of increased type I error becomes even more severe.

The Bonferroni correction of the significance level will be used in order to control the
correspondingly increase of the FWER: 𝛼s = 𝛼s/𝑃 . Bonferroni control does not require any
assumptions about dependence among 𝑝val or about how many of the null hypotheses are true.

6.2.3 Experiments
Monte Carlo simulations are carried out to experimentally investigate the proposed estimator
for the number of propagation paths (number of point targets, respectively). Calibration data of
the 8 × 8 monostatic FMCW MIMO radar presented in [2] will be considered. A single point
target will be considered, whose parameters are generated as uniformly distributed, random
numbers: 𝜑 ∼ 𝒰 (−35°, 35°), 𝑅 ∼ 𝒰 (0.1m, 1.3m) and 𝑣 ∼ 𝒰 (0m s−1, 0.5m s−1). The path
weight is set to 𝛾 = 1. The simulations are carried for various SNRs, see equation (7.1) for the
considered SNR definition. The number of samples per MIMO channel, the number of MIMO
channels and the number of signal periods is 𝐾 = 200, 𝑀 = 64 and 𝑁 = 8, respectively.
Thermal noise will be considered as the only noise source, and leakage and phase noise will be
neglected for convenience. In total 1000 Monte Carlo trials are ran for each SNR value, and a
new set of target parameters is randomly generated for each Monte Carlo trial.

T-Value and Null Distribution

In case of a single propagation path (single point target, respectively) the critical decision for
the model order estimator is to distinguish between a single- and two-path scenario in the data
model. Assuming a two-path model for the observations 𝐲 one gets

𝐲 = 𝐬 (𝜑1, 𝜏1, 𝜈1) ⋅ 𝛾1 + 𝐬 (𝜑2, 𝜏2, 𝜈2) ⋅ 𝛾2 + 𝐰 .
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Figure 6.2: 95%-percentile value of the T-value for a single path scenario. The solid line corresponds
to the T-value of the firstly estimated path (valid path), and the dashed line corresponds to
the T-value of the secondly estimated path (invalid path).

Without loss of generality one can say, that distinguishing between a single- and two-path model
is equivalently to decide, whether the null hypothesis ℋ0 ∶ 𝛾2 = 0 holds. Again, in order to
detect path splitting, the null hypothesis ℋ0 ∶ 𝛾1 = 0 has to be tested by the Wald test too.
The proposed Wald amplitude and likelihood-ratio test both require the fitting of the two-path
model. Hence, the number of paths to be inferred by the parameter estimator is set to two.

First, the 95%-percentile value of the test statistic value calculated over the Monte Carlo runs
is investigated for both tests. The results are depicted in Figure 6.2 for various SNRs. The
solid line represents the T-value for the firstly estimated path (valid path) and the dashed line
corresponds to the T-value for the secondly estimated path (invalid path). It can be observed,
that the T-value of the valid path for the Wald and likelihood-ratio test are equal for high SNRs.
This fits to the theory, where the test performance of the Wald and likelihood-ratio test are
considered as asymptotically (large sample size or high SNR, respectively) equal. The T-value
of the invalid path are approx. independent of the SNR, and is always below the T-value of the
valid path for a SNR above −40 dB. Hence, a simple threshold as e.g. 𝑐val can be applied to
separate the valid and invalid path by their T-value. For a SNRs below −40 dB, the T-value of
the valid path converges to the T-value of the invalid path for the Wald test, such that a simple
threshold for separation becomes hardly applicable. However, the T-values for the likelihood-
ratio test are still separable by thresholding.

Second, the empirical distribution of the T-value under ℋ0 will be investigated. According
to theory, the distribution of this T-value should follow the null distribution, which is 𝜒22 and𝜒25 for the Wald and likelihood-ratio test, respectively. The empirical null distribution must be
well approximated by the theoretical one in the region of 1 − 𝛼s, because the critical value
is calculated there. The empirical cummulative distribution function (CDF) of the T-value
for the Wald and likelihood-ratio test, as well as the CDFs of the assumed null distributions,
are shown in Fig. 6.3. It becomes obvious, that the theoretical null distributions do not fit to
the empirical ones. An explanation for this mismatch is, that the theoretic null distributions
are derived under certain assumptions, as e.g. unbiasedness and normal distribution of the
estimates or the proper quadratic approximability of the log-likelihood. If the data model
in the likelihood is a linear model, i.e. the parameters are linearly included in the model,
this is ensured. However, the considered data model (6.15) has linear (𝛾1,𝛾2) and non-linear
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Figure 6.3: Cummulative distribution function (CDF) of the T-value of the invalid path for the Wald and
likelihood-ratio test. Solid lines are the empirical CDFs and dashed lines are the respectively
theoretical CDFs.

(𝜑1, 𝜏1, 𝜈1,𝜑2, 𝜏2, 𝜈2) parameters, which all have to be estimated from the observations. If𝛾2 = 0 is assumed under ℋ0, the corresponding non-linear parameters 𝜑2, 𝜏2, 𝜈2 are in fact
not observable [Eri01]. Consequently, these parameters are not estimable as the objective is
nearly flat w.r.t. this parameters [Gal77], and their values are driven by noise and numerical
accuracy as e.g. the convergence behaviour of the Levenberg-Marquardt algorithm. Hence, the
parameter estimates ̂𝜑2, ̂𝜏2, ̂𝜈2 do not converge in probability [Gal77], such that the estimator
becomes biased. In principle, model of order 𝑃 is nested in model of order 𝑃 + 1 and can
be obtained by setting the path weight of the corresponding path to zero. As a consequence,
the regularity conditions for the standard asymptotic null distribution fail and furthermore the
information matrix becomes singular. Therefore, the standard asymptotic null distribution
cannot be observed. Vuong [Vuo89] has shown, that in general and especially under model
misspecification the null distribution asymptotically tends to a weighted sum of independent
chi-square distributions. However, determination of the weights and of the degrees-of-freedom
of the respective chi-square distributions is hard to derive analytically. Summarised, the theory
to analytically derive the null distribution breaks down, because assumptions are violated by
forcing the estimation of an additional, invalid path. As a consequence, the critical value 𝑐val
cannot be calculated, as the null distribution is unknown.

In order to further investigate the breakdown of the theory, another Monte Carlo simulation
is run. A single path with fix parameter settings 𝜑 = 0°, 𝑅 = 1.3m, 𝑣 = 0.5m s−1 and 𝛾 = 1
is considered. The SNR is chosen to be −9 dB and 𝐼 = 1000 Monte Carlo trials are ran. The
parameter estimator is forced to estimate two paths. The normalised histogram (empirical PDF)
of the parameter estimates is shown in Fig. 6.4. Note, that the histograms have been centralised
by their respective mean value. The distributions of the estimates of the first path (valid path)
follow a normal distribution as forecast by theory, see Section 5.2. However, the distribution of
the estimates of the second path (invalid path) do not indicate a normal distribution. In order
to apply the proposed tests, at least the linear parameters should follow a normal distribution.
The non-linear parameters (azimuth, delay, Doppler) are approx. uniformly distributed in their
parameter space, and the distribution of the linear parameters is comparable to a Laplacian
distribution. Summarised, the assumptions regarding the parameter’s distribution are violated
and therefore the theoretical null distribution is not observed.
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Figure 6.4: Centralised and normalised histograms of the estimated parameters of the first path ((a) to
(d)) and the second path ((e) to (h)) for SNR of −9 dB. Plot (d) and (h) shows the histograms
of the real (dark) and imaginary (bright) part of the path weight estimates.
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6.3 Hypothesis Testing by Bootstrapping and
Monte Carlo Simulation

In order to circumvent the problem of an unknown null distribution one can choose another
distribution, which is a better approximation of true null distribution; or one can improve the
test statistic such that the assumed null distribution becomes more valid. Approaches of the
first kind are re-sampling techniques as e.g. bootstrapping [Efr79], where the null hypothesis’
distribution is determined by an empirical sampling distribution. Methods of the second kind
are e.g. Bartlett and Bartlett-type corrections [CC96]. The number of degrees of freedom can
be adjusted too, in order to better approximate the true null distribution. Also, the empirical
null distributions can be considered to calculate 𝑐val = 37. For a significance level 𝛼s = 0.05
the empirically derived critical values are approx. 𝑐val = 37 and 𝑐val = 34 for the Wald test
and likelihood-ratio test, respectively. Hence, with a probability of 5% an invalid path will be
considered as valid one and the model order is overestimated. This is not practical, as these
critical values values depend on the number of samples or MIMO snapshots.

Other methods to derive the null distribution are resampling methods as bootstrapping or
Monte Carlo simulations. Resampling methods are powerful tools to substitute theoretical
derivations by computational calculations. For example, if the statistic of the data are unknown
or only a few samples are available, asymptotic theory may not apply. In this case, resampling
methods become conceivable. Resampling techniques will be considered for the likelihood-
ratio and Wald test in order to tackle the problem of the unknown null distribution.

6.3.1 Likelihood-Ratio t-Test with Bootstrapping
An introduction to bootstrapping and its application for signal processing can be found in [ZB98]
and [Pol98]. The problem, which is addressed by bootstrapping, can be summarised as follows:
having the set X = {𝑋1, … , 𝑋𝑃} of 𝑃 observed i.i.d. random variables 𝑋, which have an
unknown distribution𝐹. Say that 𝜃 is an unknown characteristic of𝐹 as e.g. a location parameter
like the mean or median. The question now is, how the estimator 𝜃̂ is distributed, derived from
the set of observations X. A possible way would be to repeat the experiment multiple times
to get multiple sets of observations, and to estimate 𝜃 from each observed set. If a sufficient
number of repeated experiments is conducted, the distribution of 𝜃̂ can be approximated by
empirical distribution ̂𝐹 of the multiple estimates. However, repeating the same experiment
multiple times may be inapplicable under practical considerations.

Assume, that X features the underlying distribution and the experiment can be repeated by
random sampling with replacement from X. Draw 𝐶 bootstrap samples 𝑋⋆𝑐 from X by sampling
with replacement, and build the set X⋆ = {𝑋⋆1 , … , 𝑋⋆𝐶}. Repeat the bootstrap sampling 𝐵 times
to get X⋆1, … , X⋆𝐵 sets, and calculate the estimate 𝜃̂⋆𝑏 of the unknown characteristic 𝜃 from each
set X⋆𝑏. Last, approximate the distribution of the estimator 𝜃̂ by the empirical distribution of the𝜃̂⋆1, … , 𝜃̂⋆𝐵. This kind of bootstrapping is known as non-parametric bootstrapping, because the
observations are resampled.

In order to apply bootstrapping for the likelihood-ratio test, the respective test statistic
in equation (6.9) will be restated. As the covariance matrix in equation (5.56) is a block-
diagonal matrix in the dimension 𝑚 of the MIMO channels and the dimension 𝑛 of the MIMO
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snapshots, the log-likelihood can be separately calculated for each MIMO channel and each
MIMO snapshot: ℒ𝑚,𝑛 (𝐲| 𝛉̂). The overall log-likelihood is now given by summation over all𝑀 MIMO channels and 𝑁 snapshots. Hence, the likelihood-ratio test statistic becomes

𝑡LR = 𝑀
∑𝑚=1

𝑁
∑𝑛=1 2 ⋅ [ℒ𝑚,𝑛 (𝐲| 𝛉̂ℋ1) − ℒ𝑚,𝑛 (𝐲| 𝛉̂ℋ0)] = 𝑀

∑𝑚=1
𝑁

∑𝑛=1 𝑡LR𝑚,𝑛 . (6.15)

According to theory, 𝑡LR𝑚,𝑛 ∼ 𝜒25 should hold under the null hypothesis. Hence, under
asymptotic conditions 𝑀𝑁 → ∞

𝜇 = lim𝑀𝑁→∞
𝑡LR𝑀𝑁 = lim𝑀𝑁→∞ 1𝑀𝑁

𝑀
∑𝑚=1

𝑁
∑𝑛=1 𝑡LR𝑚,𝑛 = 5 (6.16)

should hold, as the expectation of a 𝜒2 random variable are the respective degrees-of-freedom.
Hence, if the mean value of the likelihood-ratio test statistic is smaller than 5 it will be
concluded, that the respective null hypothesis cannot be rejected. However, in the finite sample
case a mean of 5 may not be observed, as only an estimate ̂𝜇 is available. The check the
estimated mean regarding the asymptotical value, a statistical test will be applied, whose null
and alternative hypothesis are

ℋ0 ∶ ̂𝜇 ≤ 𝜇0 = 5 (6.17a)ℋ1 ∶ ̂𝜇 > 𝜇0 = 5 . (6.17b)

The considered test for the null hypothesis is the Student’s t-Test, whose test statistic 𝑡S is

𝑡S = ̂𝜇 − 𝜇0𝜎̂𝜇 . (6.18)

The statistic is ”studentised” by an estimate of the standard deviation in order to ensure pivoting.

̂𝜇 = 1𝑀𝑁
𝑀

∑𝑚=1
𝑁

∑𝑛=1 𝑡LR𝑚,𝑛 (6.19a)

𝜎̂ = √√√⎷
1𝑀𝑁 − 1

𝑀
∑𝑚=1

𝑁
∑𝑛=1 (𝑡LR𝑚,𝑛 − ̂𝜇)2

(6.19b)

As the distribution of 𝑡LR𝑚,𝑛 is unknown, the statistic of 𝑡S is unknown too. Hence, a t-Test
with bootstrapping will be applied to justify the null hypothesis [Chu+07, ZB98]. Consider the
likelihood-ratio values 𝑡LR as the set of observations X for the bootstrapping.

X = {𝑡LR1,1, … , 𝑡LR1,𝑁, … , 𝑡LR𝑀,𝑁}
Draw 𝐶 bootstrap samples by random sampling with replacement from X, and repeat this 𝐵
times. As a result, one gets the sets X⋆1, … , X⋆𝐵 of bootstrap samples. For each set X⋆𝑏 calculate
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Algorithm 5 Likelihood-Ratio t-Test with Bootstrapping
Require: 𝐵, 𝐶, 𝜇0
Require: X = {𝑡LR1,1, … , 𝑡LR1,𝑁, … , 𝑡LR𝑀,𝑁}
Compute: 𝑡S𝑏 = ̂𝜇−𝜇0𝜎̂for 𝑏 = 1, … , 𝐵 do
Resampling: Get X⋆𝑏 by drawing 𝐶 random samples with replacement from X
Compute: 𝑡⋆S𝑏 = ̂𝜇⋆𝑏 − ̂𝜇𝜎̂⋆𝑏

end for
Ranking: 𝑡⋆S(1) < 𝑡⋆S(2) < … < 𝑡⋆S(𝐵)
Get 𝐿: ⋯ 𝑡⋆S(𝐿−1) < 𝑡S < 𝑡⋆S(𝐿) ⋯
Compute: 𝑝val = 1 − 𝐿/𝐵

the respective Student’s test statistic 𝑡⋆S.
𝑡⋆S = ̂𝜇⋆ − ̂𝜇𝜎̂⋆

(6.20)

The empirical distribution of the bootstrap statistics 𝑡S⋆1, … , 𝑡S⋆𝐵 are now an approximation of
the null distribution. The 𝑝val is given by

𝑝val = 1 − 𝑃 (𝑡⋆S < 𝑡S) =̂𝐵 − 𝐿𝐵 , (6.21)

with 𝐿 the number of bootstrap statistics 𝑡⋆S smaller than 𝑡S. If the null hypothesis is rejected
using a certain significance level 𝛼s, i.e. 𝑝val < 𝛼s, it will be concluded, that the higher model
order is statistically not justifiable.

The test procedure, denoted as Likelihood-Ratio t-Test with Bootstrapping, is summarised in
Algorithm 5.

6.3.2 Wald Amplitude Test with Monte Carlo Simulation
It has been shown, that the null distribution of the Wald test statistic does not follow the
theoretical one. An explanation has been given by the presence of non-linear parameters,
respectively by the non-linear model of the propagation. Under the null hypothesis, the
respective parameter estimates do not follow the theoretically assumed normal distribution. As
a consequence, the calculated test statistic does not follow the assumed distribution too.

An approximation of the null distribution can be drawn from stochastic simulation as
e.g. Monte Carlo simulation, giving an empirical null distribution. The basic idea can be
summarised as follows: consider a single path under the null hypothesis of the Wald amplitude
test. Assign a distribution 𝒟 to the parameter estimates of this path under the null hypothesis:𝛡̂ℋ0 ∼ 𝒟. Draw 𝐵 random samples from this distribution, resulting in a set of parameter
estimates under the null hypothesis: {𝛡⋆1, … , 𝛡⋆𝐵}. For each set entry 𝛡⋆𝑏 calculate the test
statistic 𝑡⋆W𝑏 of the Wald amplitude test, see equation (6.14). An approximation of the null
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Figure 6.5: Empirical PDFs of the (a) real and (b) imaginary part of the path weight estimates under
the null hypothesis, and the PDF of the fitted normal and Laplace distribution.

distribution is now given by the empirical distribution of all 𝑡⋆W1, … , 𝑡⋆W𝐵 test statistics.
The remaining question is, how the distribution 𝒟 of the parameter estimates under the null

hypothesis has to be selected. Figure 6.4 shows the distribution of the parameter estimates
for the valid path, i.e. the parameter distribution under the alternative hypothesis; and the
distribution of the parameter estimates for the invalid path, i.e. the parameter distribution
under the null hypothesis. The estimated non-linear parameters can be assumed as being
independent uniformly distributed under the null hypothesis. The distribution of the linear
parameters, i.e. distribution of the real and imaginary part of the path weight, is subject to
clarification. Figure 6.5 shows the empirical distribution of the path weight estimates under the
null hypothesis, and the PDFs of a fitted normal and Laplace distribution. The PDF ℒ𝑝 of a
Laplace distributed variable 𝑥 is

ℒ𝑝 (𝑥| 𝜇, 𝜎) = 12𝜎 ⋅ exp{−|𝑥 − 𝜇|𝜎 } , (6.22)

with location parameter 𝜇 and scale parameter 𝜎 > 0. Obviously, the Laplace distribution
approximates the empirical distribution more properly, such that the path weight estimates will
be assumed as being Laplace distributed under the null hypothesis.

The estimates of the real and imaginary part of the path weight may expose correlations due
to the data model, such that a joint PDF has to be stated. The general PDF of a multivariate and
symmetric Laplace distributed variable 𝐱 ∈ ℝ𝑑 is (for |𝚺| = 1) [ETT06]

ℒ𝑝 (𝐱| 𝛍, 𝚺) = 2(2𝜋)𝑑/2
𝐾𝑑/2 −1 (√2 (𝐱 − 𝛍)T 𝚺-1 (𝐱 − 𝛍))
(√12 (𝐱 − 𝛍)T 𝚺-1 (𝐱 − 𝛍))𝑑/2 −1 , (6.23)

with 𝐾𝑚 the modified Bessel function of the second kind and order 𝑚 [AS72]. Under the null
hypothesis of the Wald amplitude test, the path weight is assumed as vanishing: E {ℜ { ̂𝛾}} = 0
and E {ℑ { ̂𝛾}} = 0. Accordingly, the scale parameter is set to 𝛍 = 𝟎 under the null hypothesis.
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Algorithm 6 Monte Carlo Simulation-Based Wald Amplitude Test for 𝑝-th Path
Require: ̂𝛾𝑝, 𝐂̂𝛾, 𝐵
Require: 𝒟𝑝

Compute: 𝑡W = [ℜ { ̂𝛾𝑝} , ℑ { ̂𝛾𝑝}] ⋅ 𝐂̂-1𝛾𝑝 ⋅ [ℜ { ̂𝛾𝑝} , ℑ { ̂𝛾𝑝}]T
for 𝑏 = 1, … , 𝐵 do
Draw: 𝛡⋆𝑏 = [𝜑⋆𝑏, 𝜏⋆𝑏, 𝜈⋆𝑏, ℜ {𝛾⋆𝑏} , ℑ {𝛾⋆𝑏}]T ∼ 𝒟𝑝
Compute: 𝐂̂⋆𝛾
Compute: 𝑡⋆W𝑏 = [ℜ {𝛾⋆𝑏} , ℑ {𝛾⋆𝑏}] ⋅ 𝐂̂⋆-1𝛾 ⋅ [ℜ {𝛾⋆𝑏} , ℑ {𝛾⋆𝑏}]T

end for
Ranking: 𝑡⋆W(1) < 𝑡⋆W(2) < … < 𝑡⋆W(𝐵)
Get 𝐿: ⋯ 𝑡⋆W(𝐿−1) < 𝑡W < 𝑡⋆W(𝐿) ⋯
Compute: 𝑝val = 1 − 𝐿/𝐵

The symmetric Laplace distribution for the bivariate case (𝑑 = 2) and zero location parameter
is

ℒ𝑝 (𝐱|𝟎, 𝚺) = 1𝜋√|𝚺| ⋅ 𝐾0 (√2𝐱T𝚺-1𝐱) . (6.24)

The covariance matrix 𝚺 is chosen to be the observed Cramér-Rao matrix (CRM) of the
respectively estimated path weight: 𝚺 = 𝐂̂𝛾.

The Monte Carlo simulation-based Wald amplitude test for the 𝑝-th path is summarised in
Algorithm 6. Note, that this algorithm has to be run for each estimated path.

6.3.3 Experiments
Monte Carlo simulations as described in Section 6.2.3 are carried out to experimentally
investigate the performance of the proposed model order estimation schemes. Hence, a
simulation with a single path is carried out, but two paths are forced to be estimated.
Furthermore, methods to control the FWER and the FDR are considered, too. The level of
significance has been set to 𝛼s = 0.05. The percentage of the positive decisions for the
likelihood-ratio test and theWald amplitude test are shown in Fig. 6.6 and Fig. 6.7, respectively,
for both estimated paths. A positive decision means, that the path has been justified as valid by
the test. Hence, Fig. 6.6(b) and Fig. 6.7(b) are the percentages of the false positive decisions.

The likelihood-ratio t-test shows a strong test performance for SNR above −20 dB as no false
negative decision is drawn for the valid path. This SNR threshold can be explained by the fact,
that the estimator starts to work properly, i.e. detects the valid path, for this SNRs. Furthermore,
the test conducts no false positive decision for the invalid path and the methods to control the
FWER or the FDR have therefore no influence. For the Wald amplitude test with Monte Carlo
simulation the SNR threshold of −20 dB also applies, as no false negative decision is drawn
for the valid path. However, a high percentage of false positive decisions for the invalid path is
present, which is most properly reduced by the Bonferroni and the Šidak method.
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Figure 6.6: Percentage of positive decisions of the likelihood-ratio t-test with bootstrapping for (a) the
valid path (true positive decision) and (b) the invalid path (false positive decision).

−20 0 20
0.6
0.8

1

SNR [dB]

CD
F

−20 0 200
0.2
0.4

SNR [dB]

CD
F

None Bonferroni Šidak Holm Benjamini

(a) (b)

Figure 6.7: Percentage of positive decisions of the Wald amplitude test with Monte Carlo simulation for
(a) the valid path (true positive decision) and (b) the invalid path (false positive decision).

6.4 Outline of the Algorithm for Model Order
Estimation

Figure 6.8 shows the state diagram of the joint model order and parameter estimation approach.
If no previous estimates are available, the initial model order is set to 𝑃 = 0. If previous
parameter estimates are available, they are validated by the Wald amplitude test (Algorithm 6).
The number of valid paths 𝑃valid is set as the initial model order, and the corresponding
parameter estimates 𝛡̂𝑃valid are passed to the stepwise regression search. In the stepwise
regression search themodel order is gradually increased until abortion. The parameter estimator
from Chapter 5 is run to estimate the parameters for the considered model order. The gradual
increase of the model order is exploited to save computation effort. The parameter estimates for
model order 𝑃 − 1 can be reused as initial parameter estimates for model order 𝑃. Hence, only
a single path has to be detected by the initial path search scheme in Section 5.3.1. However,
the joint optimisation of all estimates is still required. In conclusion, the estimator has not to be
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completely re-run for each new model order. As abortion criterion for the stepwise regression
search, the estimated models of order 𝑃 and 𝑃 − 1 are compared using the likelihood-ratio
test (Algorithm 5). If the test fails, the stepwise regression continues. If the test succeeds, the
stepwise regression stops and the estimated model order is ̂𝑃 = 𝑃 − 1. Also, the corresponding
vector of parameter estimates 𝛡̂ ̂𝑃 is given.

6.5 Summary
Stepwise regression search in conjunction with parametric hypothesis testing has been proposed
to determine the order of the statistical model, i.e. the number of propagation paths/point
targets to be considered in the estimation process. According to the step up search direction
and the applied principle of Occam’s razor, the model order is successively increased until
a termination criterion is satisfied. As termination criterion parametric hypothesis testing is
proposed, where models of adjacent order are compared. A null hypothesis proposes that the
model of higher order is statistically not justifiable. If this null hypothesis cannot be rejected,
the lower model order has to be preferred. The likelihood-ratio test and the Wald amplitude
test have been proposed as parametric hypothesis tests. The likelihood-ratio test verifies the
statistical significance of the improvement of the log-likelihood by taking into account an
additional path, i.e. a higher model order. TheWald amplitude test verifies each path separately,
by judging the statistical significance of the estimated path weight compared to zero. Both
test have been compared in simulations. It turned out, that both test perform equally under
asymptotic conditions. However, the likelihood-ratio test turned out to perform better for
low SNR conditions. Hence, the likelihood-ratio test is proposed as termination criterion of
the stepwise regression search. Additionally, the Bonferroni correction is used to control the
FWER.

If paths from a previous estimation step e.g. due to tracking [27] are available, the model
order selection problem slightly changes. The provided paths have to be evaluated, whether
they are still valid or not, because paths can vanish. This evaluation of each path can be done
by the Wald amplitude test. The Wald test is used, because the likelihood-ratio test requires the
fitting of the restricted model. Hence, the model without the path under verification has to be
estimated, which would increase the numerical effort. Paths, which are decided to be invalid by
the Wald amplitude test, are dropped. The resulting model order is the initial model order for
the subsequent stepwise regression search.
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Figure 6.8: State diagram of the approach to determine the model order ̂𝑃 and jointly estimate the
respective model parameters 𝛡̂ ̂𝑃. The states of the initialisation procedure are coloured
in red, and the states of the stepwise regression search are coloured in blue.
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CHAPTER 7
Experimental Verification

THE parameter estimator from Chapter 5 in conjunction with the model order estimator
from Chapter 6 will be investigated by simulations, and will be applied to measurements

as well. First, Monte Carlo simulations are carried out in Section 7.1, in order to experimentally
investigate the estimator performance in conjunction with the optimisation scheme. The
resulting root-mean-square error (RMSE) will be compared to theoretical foundations of ML
estimators in Section 5.2. Next, the influence of model misspecification on the parameter
estimation accuracy will be investigated in Section 7.2. Measurements with stationary and
moving objects like corner reflectors, metal cylinders and a metal cube are considered in
Section 7.3. The estimator is used to detect and localise point scatterers emerging from these
objects. Last, in Section 7.4, the BinoMimo radar is introduced and the estimator is applied
to measurements with this radar system. Limits of the applicability of the parameter estimator
to observations by the BinoMimo radar are discussed, and alternative ways of processing the
observations are outlined.

7.1 Estimator Performance and
Root-Mean-Square Error

Monte Carlo simulations are carried out to experimentally investigate the performance of the
parameter estimator. There, radar observations are generated from known model parameters,
and the estimator is applied to infer the parameters from the generated observations. The 8 × 8
monostatic FMCW MIMO radar presented in [2] will be considered for the simulations, and
calibration data of the radar are used to calibrate the device model. The settings of the radar are
summarised in Tab. 7.1.

The simulations are carried out for various SNRs, whereas the SNR is defined as

𝑆𝑁𝑅 = ‖𝐱‖2
𝑁𝑀𝐾 ⋅ 𝜂 . (7.1)

Vector 𝐱 is the noise-free observation, generated according tomodel (5.22); and𝑁 = 8, 𝑀 = 64
and 𝐾 = 200. In total 𝐼 = 1000 Monte Carlo trials are ran for each SNR value.

The RMSE of the estimated parameters will be used to evaluate the performance of the
parameter estimator. The RMSE of the parameter 𝜃 is calculated from the estimates of the
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Table 7.1: Settings of the monostatic FMCW MIMO radar for the Monte Carlo simulations

Parameter Setting Parameter Setting
MIMO channels 8 × 8 No. ramp periods 𝑁 8𝑓c 155GHz 𝑊 10GHz𝑇M 100 µs 𝑇P 150 µs𝑓S 2MHz

𝐼 Monte Carlo runs per SNR value.

𝜌 = √√√⎷
1𝐼

𝐼
∑𝑖=1 (𝜃𝑖 − ̂𝜃𝑖)2

𝜃𝑖 denotes the known parameter in the 𝑖-th Monte Carlo run and ̂𝜃𝑖 is its respective estimate by
the parameter estimator. As known from Section 5.2 the RMSE should asymptotically, hence
for a high SNR, attain the Cramér-Rao lower bound (CRLB).

7.1.1 Root-Mean-Square Error of Path Parameter
Estimates

A single point target (a single propagation path, respectively) will be considered. The target
parameters, i.e. the azimuth angle 𝜑, the target range from the radar 𝑅, and the radial
velocity 𝑣, are generated as uniformly distributed, random numbers: 𝜑 ∼ 𝒰 (−35°, 35°),𝑅 ∼ 𝒰 (0.1m, 1.3m) and 𝑣 ∼ 𝒰 (0m s−1, 0.5m s−1). The path weight is set to 𝛾 = 1. A
new set of path parameters is randomly generated for each Monte Carlo run. Thermal noise
will be considered as the only noise source, and leakage and phase noise will be neglected for
simplicity.

The RMSE of the estimated path parameters and the corresponding CRLB are shown in
Fig. 7.1. Obviously, the RMSE attains the CRLB for SNRs above −30 dB, indicating that the
proposed estimator is an asymptotically efficient estimator.

Furthermore, one can observe that the RMSE curves for the non-linear parameters tend to
saturate for low SNRs. For very low SNRs the RMSE becomes lower than the CRLB. However,
in Section 5.2.3 it has been pointed out, that the CRLB denotes the lowest achievable bound for
the RMSE. Hence, the empirical RMSE from the Monte Carlo simulation seems to be opposing
with the theory. However, this is a known general issue in non-linear parameter estimation
problems [TB07]. It has to be kept in mind, that the CRLB has been derived for an unbiased
ML estimator. However, for very low SNRs the ML estimator cannot be assumed as unbiased,
such that the CRLB is not a valid lower bound for the estimation variance in that region [TB07].
The ML estimator becomes biased for low SNRs as the location of the global maximum of the
log-likelihood function becomes more and more influenced by the noise. Hence, the global
maximum is not properly detectable. In the very low SNR case the location of the maximum
becomes totally arbitrary, such that no useful information on the parameters are available any
longer. The saturation of the RMSE of the non-linear parameters for low SNRs is due to
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Figure 7.1: Root-mean-square error (solid lines) of the estimated (a) non-linear parameters and (b)
linear parameters of the path model. The CRLB for each parameter is indicated by dashed
lines. The RMSE for the non-linear parameters has been normalised to 2𝜋.

the parameter bounds. The parameter bounds restrict the arbitrariness of the location of the
maximum of the log-likelihoods, such that the estimation variance is upper bounded. As the
linear parameters are unbounded, their RMSE does not converge for low SNRs. In conclusion
the CRLB is only a valid under asymptotic, i.e. high SNR, conditions. Some other bounds are
known from literature, which circumvent the problem of the CRLB for low SNRs as e.g. the
Weiss-Weinstein bound, Ziv-Zakai bound or the Bhattacharyya bound [TB07].

7.1.2 Root-Mean-Square Error of Noise Parameter
Estimates

Next, the RMSE of the estimates of the noise model parameters 𝛔 will be investigated byMonte
Carlo simulations as well. The same settings of the radar as shown in Tab. 7.1 are used for the
simulations. A single point target is considered, which is at azimuth angle 𝜑 = 0° and at range𝑅 = 1.5m. The target moves with radial velocity of 𝑣 = 0.05m s−1 apart from the radar. The
path weight is set to 𝛾 = 1. Various SNRs will be considered, such that the power 𝜂 of the
thermal noise varies. As a MIMO radar is considered, one set of noise parameter estimates 𝛔̂𝑚
is available for each MIMO channel 𝑚. For convenience, an average RMSE over all MIMO
channels is calculated for each noise parameter.

𝜌 = √√√⎷
1𝑀

𝑀
∑𝑚=1

1𝐼
𝐼

∑𝑖=1 (𝜎𝑚,𝑖 − 𝜎̂𝑚,𝑖)2

First, thermal noise and leakage noise are considered as noise sources only. The parameters
of the leakage noise model are set to 𝜍 = −60 dBHz, 𝜀 = 150 and 𝜚 = −0.45 for all
MIMO channels. The resulting RMSE curves are shown in Fig. 7.2(a) as solid lines, and the
respective CRLB are indicated by dashed lines. The estimator attains the CRLBs for SNRs
above −20 dB. For lower SNRs the leakage noise process cannot be observed, as the process
is hidden by the thermal noise process. Therefore, parameters cannot be estimated and the

185



7 EXPERIMENTAL VERIFICATION

−30 −20 −10 0 1010−10

10−2

106

SNR [dB]

RM
SE

−20 0 20 4010−14

10−4

106

SNR [dB]

RM
SE

̄𝜍 𝜀̄ 𝜚̄ ̄𝜂 𝛼̄ 𝛽̄

(a) (b)

Figure 7.2: Root-mean-square error (solid lines) of the parameters estimates of the covariance model,
averaged over all MIMO channels. The CRLB for each parameter is indicated by dashed
lines. The RMSE curves are drawn from Monte Carlo simulations (a) with and (b) without
consideration of phase noise in the data generation and parameter estimation.

estimation performance for the leakage model parameters breaks down. The estimator always
attains the CRLB for the parameter 𝜂 of the thermal noise model, as the thermal noise process
is always properly observable.

Second, thermal noise, phase noise and leakage noise are considered as noise sources. The
parameters of the leakage noise model are set to 𝜍 = −30 dBHz, 𝜀 = 150 and 𝜚 = −0.45;
and the parameters of the phase noise model are 𝛼 = −27 dB and 𝛽 = 0.01. The resulting
RMSE curves are shown in Fig. 7.2(b) as solid lines, and the respective CRLB are indicated
by dashed lines. The RMSE of the parameters of the leakage noise attains the CRLB for SNRs
above −20 dB. For lower SNRs the leakage noise process is hidden by the thermal noise process
and hence the parameters are not estimable. The same can be stated for the parameters of the
phase noise model. If the SNR is too low, the phase nose process is hidden by the thermal
noise process, such that the process is effectively not observed. As a consequence, the model
parameter cannot be estimated.

7.1.3 Summary

Summarised, the Monte Carlo simulations indicate, that the estimator is capable to infer
the model parameters from synthetically generated observations and asymptotically (for large
SNRs) attains the Cramér-Rao lower bound. Hence, the estimator meets the ML property
of asymptotic efficiency. Furthermore, the Monte Carlo simulations indicate, that the RMSE
curves for the path parameters attain the CRLB for a SNR of approx. −30 dB. A much higher
SNR is required for the parameters of the leakage and phase noise model, so that their RMSE
curves attain the CRLB. In other words, the noise processes have to be properly observed and
should not be hidden by the thermal noise.
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Table 7.2: Simulation settings of the monostatic FMCW MIMO radar

Parameter Setting Parameter Setting
MIMO channels 8 × 8 𝑇S 500 ns𝑓c 155GHz 𝑊 10GHz𝑇M 100 µs 𝑇P 150 µs

7.2 Estimator Performance Under Model
Misspecification

The influence of model misspecification on the parameter estimation performance will be
investigated in the following. Two cases of model misspecification will be considered: angle-
delay coupling due to the narrowband modelling of the array response (see Section 4.4.3),
and angle-Doppler coupling (see Section 4.5) and its ignorance and compensation by
interpolation [10].

Monte Carlo simulations with 𝐼 = 1000 runs will be carried out for the investigations.
As figure of merit the RMSE (7.2a) will be calculated and compared to the CRLB. If the
estimator works properly and the data model is sufficiently accurate the estimator is bias free
and the RMSE should asymptotically attain the CRLB according to theory (see Section 5.2).
Calibration data of the 8 × 8 monostatic FMCW TDM-MIMO radar presented in [2] will be
used for the Monte Carlo simulations. The simulation settings of the radar are summarised
in Tab. 7.1. Thermal noise with varying power is employed as only noise source. A single
target will be considered, whose parameters (azimuth, range and velocity) are randomly
generated from a uniform distribution: azimuth angle 𝜑 ∼ 𝒰 (−35°, 35°), target range 𝑅 ∼𝒰 (0.1m, 1.3m) and target velocity 𝑣 ∼ 𝒰 (0m s−1, 0.5m s−1). The path weight is set to 𝛾 = 1.
7.2.1 Angle-Delay Coupling
It has been pointed out in Section 4.4, that the array aperture size of the considered radar
in conjunction with the signal bandwidth violates the narrowband assumption. Hence, a
narrowband approximation of the array response is not conceivable, as the angle-delay coupling
due to the large array aperture and the huge signal bandwidth is neglected there. However, if
the narrowband approximation (due to e.g. its computational lower complexity) is nevertheless
considered in the parameter estimator, the question arises, how this will effect the estimation
performance. Monte Carlo simulations will be carried out to investigate this. The parameter
estimator will be used to estimate the parameter values, whereas the wideband and the
narrowband array model will be considered. The wideband array model of the radar will be
used to generate the observations.

The resulting RMSE curves are shown in Fig. 7.3 together with the CRLB. The RMSE curves
for the wideband model attain their respective CRLB. The RMSE curves for the narrowband
model fail to do so and only the RMSE curve for the velocity attains their CRLB. An explanation
for the failure is given by the model mismatch, because the observations are generated using
the wideband array model, whereas the estimator considered the narrowband array model. As
a result the estimator becomes biased and hence does not attain the CRLB (see Section 5.2). If
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the narrowband approximation would be sufficiently valid, i.e. the array aperture size and/or
signal bandwidth is small, the bias would be negligible. However, because the narrowband
assumption is severely violated a strong bias is present.

The estimation performance for the azimuth angle 𝜑 and the delay 𝜏 are jointly degraded,
if the narrowband array model is considered. The joint degradation arises, as both parameters
influence the delay domain of the observations, i.e., both parameters introduce a delay in the
observations. Hence, the parameters are coupled, which is account for by the data model, if
the wideband array model is employed. Note, that the parameters are not coupled in physical
reality. Under narrowband approximation the coupling is ignored in the data model, such that
the coupling will be shifted to the estimates. Thus, if the estimation performance of one of the
parameters degrades (e.g. the estimation performance of the azimuth due to the narrowband
approximation), the estimator attempts to compensate this degradation by tuning the other
parameter, resulting in a joined degradation of the estimation performance. A similar behaviour
can be assigned to the path weight estimation. The estimator attempts to compensate the model
mismatch by tuning the path weight estimates, to the cost of becoming biased and hence failing
to attend the CRLB. As the Doppler (velocity) is not coupled to any other parameter by e.g.
influencing the same dimension of the observations, the RMSE of the Doppler attains the CRLB
also in the case of the narrowband array model.

The Monte Carlo simulations indicate, that the considered radar necessitates the usage of a
wideband array model to properly describe the observations. Consideration of a narrowband
array model in the estimator results in a strong model mismatch, such that the estimator
performance severely degrades to a biased estimator. Also, narrowband approximation causes a
coupling of the angle and delay estimates. However, the narrowband model can still be applied,
if the bandwidth is reduced by e.g. pre processing of the measurements. Also, reducing the
bandwidth enables the usage of a simpler model of the radar response, see Section 4.2.1.
Therefore, simpler device models are applicable after bandwidth limitation, such that the
numerical effort for the parameter estimator reduces. Hence, the computation time is much
lower. Drawback is the loss in resolution, which can be compensated up to some extend by the
high-resolution capability of the parameter estimation.

7.2.2 Angle-Doppler Coupling
The observations in each Monte Carlo ran are generated by considering the angle-Doppler
coupling, and employing the wideband array model. Three different estimators are run to infer
the model parameters from the generated observations. They differently cope with the angle-
Doppler coupling: the proposed model-based consideration, compensation by interpolation to
ensure time alignment [Som+02] and ignoring of the angle-Doppler coupling. The RMSE
curves of the estimated path parameters for all three estimators are shown in Fig. 7.4 as
solid linens, together with their respective CRLB (dashed lines). It can be observed, that the
estimator does not attain the CRLB for the azimuth 𝜑, if angle-Doppler coupling is ignored
(see Fig. 7.4(a)). It can be concluded, that the estimator is biased due to the model mismatch.
However, the estimator attains the CRLB for the velocity estimation, as the model mismatch
seems to affect the angle estimation only. Furthermore, the delay estimation performance is
affected too, which can be explained by the coupling of delay and azimuth due to the considered
wideband array model in the observation generation. However, if the angle-Doppler coupling
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Figure 7.3: RMSE curves (solid lines) of estimated path parameters drawn from Monte Carlo simula-
tions. The dashed lines denote the CRLB, which indicates the lowest achievable RMSE of
the parameter estimates (see Section 5.2). The RMSEs have been derived for the usage of (a)
the narrowband array model and (b) the wideband array model in the parameter estimator,
whereas the wideband array model has been considered for the observation generation in
the Monte Carlo simulations. Therefore, a model mismatch is present for the narrowband
estimation case, resulting in a biased estimator.
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Figure 7.4: RMSE curves (solid lines) of estimated path parameters drawn from Monte Carlo simula-
tions. The dashed lines denote the CRLB (see Section 5.2). The RMSE curves have been
derived from parameter estimators, which (a) ignore, (b) compensate and (c) exploit the
angle-Doppler coupling in the parameter estimator.

is compensated by time-alignment, the delay estimation attempts the CRLB, as the accuracy
of the azimuth estimation is improved, see Fig. 7.4(b). The RMSE of the azimuth estimation
is improved by a factor of approx. 10, whereas the velocity estimation (Doppler) is degraded.
If the correct model is used, the RMSE curves of all parameters attain the CRLB, because no
model mismatch is present and the estimator is therefore not biased.

189



7 EXPERIMENTAL VERIFICATION

7.2.3 Summary
Based on the simulations it can be concluded, that model mismatches or model errors cause
the estimator to become biased. This bias occurs, as the estimator attempts to tackle the model
errors by further tuning of the parameters, or the global optimum of the objective function is
shifted due to the model errors. Furthermore, joint degradation of the estimates of multiple
parameters can occur, even if the model error is only present w.r.t. a single observation domain,
e.g. the aperture domain (domain of the MIMO channels, respectively) for a wrongly chosen
array model. The joint degradation is due to the coupling of the respective parameters, as they
jointly influence the same domain of observation, e.g. azimuth angle and delay both influence
the delay domain as explained by the wideband array model.

Quite often model errors can be neglected or are neglected in practise, as the SNR is low
enough, such that the noise hides the model errors. Hence, degradation of the estimation
performance due to model errors is not observed. However, model errors are not noise like.
They are reproducible, if the observation setup remains fix, which is contrarily to noise.
Therefore, model errors will cause a bias in the parameter estimates, if they become severe.
Nevertheless, selection of a more proper model is not only suitable to avoid biased estimates,
but also improves the variance of the estimates. Hence, a proper or more complicated model
is always adorable if the estimation results shall be improved, typically to the cost of a higher
computational complexity.

7.3 Estimation Results from Measurements
In order to demonstrate the capabilities of the developed parameter estimator, measurements
will be considered now. The monostatic MIMO FMCW radar presented in [2] and shown in
Fig. 7.5 is used for themeasurements. The basic settings of the radar are summarised in Tab. 7.3.
Various objects as e.g. corner reflectors, metal cylinders or a metal cuboid will be used as radar
targets. These targets are either stationary or moving by slowly rotating them on a turntable.
In the following, the localisation accuracy of the radar by investigating the angle and delay
resolution capability will be proven. From the estimated delay ̂𝜏 and the estimated azimuth 𝜑̂
the point target location 𝑥̂, ̂𝑦 in the azimuth plane can be estimated by

𝑥̂ = ̂𝜏 ⋅ 𝑐02 cos (𝜑̂) (7.2a)

̂𝑦 = ̂𝜏 ⋅ 𝑐02 sin (𝜑̂) . (7.2b)

In addition, the influence of the phase noise model on the attenuation of model errors and the
resulting detection of weak paths is investigated.

7.3.1 Stationary Scenario
Angle and Delay Resolution Capability
First, the angle and delay resolution capability will be verified by measurements with a single
corner reflector (RCS: −3 dBsm) as target. The reflector is placed at a distance of approx.
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Figure 7.5: MonostaticMIMOFMCWradar used for themeasurements (Picture by AndréDürr, Institute
of Microwave Engineering, Ulm University.)

Table 7.3: Radar settings for the measurements

Parameter Setting Parameter Setting𝑓c 154GHz 𝑊 10GHz𝑇M 100 µs 𝑇R 25 µs𝑇W 25 µs 𝑇P 150 µs𝑇S 40 ns

3.58m apart from the radar in broadside direction (azimuth of 0°). In order to realise different
azimuth angles, the radar is rotated on a positioning device in the angular range of −40° to 40°
in 5° steps. The measurements are conducted in an anechoic chamber in order to have a well
known environment, i.e. free of parasitic reflections. The localised reflector positions for each
rotation position are shown in Fig. 7.7(a). Because the radar is rotated around its centre point,
the corner reflector occurs as moving on a circle around the radar. Hence, the ground truth of
the reflector positions occurs as a circular shape. It can be noted, that the parameter estimator
perfectly estimates the target position.

Second, a measurement setup with two targets (RCS: 7 dBsm and 15.8 dBsm, distance:
3.59m and 4.54m, azimuth −10° and 5°) will be considered. Again, the radar is rotated from
−40° to 40° in order to realise different focusing angles between targets and radar. The resulting
ground truth and estimates are shown in Fig. 7.7(b). It can be seen, that the target locations are
properly estimated, except for the radar rotation angles −40° and 40°. Note, that the targets
have an initial angle w.r.t. the radar of −10° and 5°. Hence, one of the targets is seen under a
more extreme angle, if the radar is rotated to ±40°. The array antennas have a quite low gain
in this angular region, such that a low SNR is present. As a consequent, the target cannot be
resolved properly.

Phase Noise and Model Error
In the following, the influence of the phase noise model on the remaining range profile after
coherently subtracting all detected paths will be investigated. It will be shown, that the
consideration of phase noise in the covariance model better whitens the remaining range profile,
such that contributions of detected paths are sufficiently removed and weak paths become
detectable.
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Figure 7.6: Measurement setup with two corner reflectors as radar targets, and rotation of the radar
to realise different focusing angles. (Picture by André Dürr, Institute of Microwave
Engineering, Ulm University.)
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Figure 7.7: Estimated positions of (a) two and (b) one corner reflector(s) and a stepwise rotated radar
system.

Corner Reflector A single corner reflector with a RCS of 11.8 dBsm is used as target.
The average range profile (averaged over the MIMO channels) for the case of phase noise
consideration and phase noise neglection will be investigated. The measured, estimated and
remaining range profile is shown in Fig. 7.8, with the corner reflector placed at location
0.8m × 2.6m. Note, that the number of paths to be estimated has been set to 1. The remaining
range profile in Fig. 7.8(a), which is calculated by coherent subtraction of the parametrised data
model using the parameter estimates, exhibit a strong remaining peak. This peak can be either
due to phase noise or model errors, which cause the coherent subtraction to fail, such that a
contribution from the path remains in the signal. The remaining contribution in Fig. 7.8(a) has
an SNR of approx. 20 dB. By taken phase noise into account the range spectra becomes more
white noise like, see Fig. 7.8(b). The remaining contributions are reduced to an SNR of approx.
3 dB.

Four Metal Cylinders As radar target four metal cylinders (cylinder diameter: 16mm) are
used, which are mounted in a rectangular arrangement (dimension 25 cm × 19 cm) on a wooden
plate, see [2]. Figure 7.9(a) shows a photography of the target setup, placed in an anechoic
chamber. Eight sequentially captured MIMO snapshots are used for Doppler estimation. The
estimated range, Doppler and azimuth angle are shown in Tab. 7.4. Measured, estimated and
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Figure 7.8: Average range profile for a measurement with a corner reflector at 0.8m × 2.6m (distance:
2.72m), and (a) neglection and (b) consideration of phase noise in the covariance model of
the parameter estimator.

remaining range profile and time domain signals are shown in Fig. 7.10, for the consideration
and neglection of phase noise in the covariance model. Note, that the number of paths to be
estimated has been set to 5. This is necessary in order to prevent the estimator from estimating
too many paths, which happens if phase noise is neglected. It is obvious, that the consideration
of phase noise significantly attenuates the model errors. Furthermore, an additional weak path
(indicated by an arrow) is estimated at range of approx. 3m, if phase noise is taken into
account. The reason is, that, if phase noise is neglected, the remaining contributions are larger
in amplitude than this path. Hence, the estimator attempts to resolve the model errors instead
of detecting the really present path. However, if phase noise is taken into account, the model
errors are sufficiently attenuated and the estimator can detect the weak path.

Summary Summarised, neglection of phase noise in the covariance model causes remaining
signal contributions, which may dominate weaker paths in amplitude. As a consequence,
weaker paths are not detectable. Furthermore, the estimator attempts to approximate the
remaining signal contributions as propagation paths, which cause false detections and/or and
overestimation of the number of propagation paths in the measurements. Not only phase noise
but also modelling errors are covered by the phase noise model. Model errors can cause
phase mismatches between measurement and data model, such that signal parts remain after
the coherent subtraction. By considering phase noise in the covariance model, these remaining
signal parts are attenuated. The attenuation of the model errors will improve the model order
estimation accuracy, as remaining model errors can cause the estimation of additional, incorrect
paths.

7.3.2 Non-stationary Scenario
Four Metal Cylinders
The plate with the mounted metal cylinders is rotated by a positioning device with an angular
velocity of 50 ° s−1. Eight sequentially captured MIMO snapshots are used for Doppler
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(a) (b)

Figure 7.9: Deployed radar targets, (a) four metal cylinders mounted on a wooden plate and (b) metal
cuboid. The pictures are taken from [2].

Table 7.4: Estimated range, Doppler and azimuth angle of point targets, from measurement with four
metal cylinders being the target.

Azimuth [°] Range [m] Doppler [Hz]1.31 1.43 0.25−4.71 1.53 0.16−0.21 1.74 2.38 ⋅ 10−25.51 1.65 4.87 ⋅ 10−2
Table 7.5: Estimated range, Doppler and azimuth angle of point targets, from measurement with four

rotating metal cylinders being the target.

Azimuth [°] Range [m] Doppler [Hz]3.74 1.73 −88.185.61 1.56 −132.89−4.49 1.68 113.32−3.8 1.5 95.43
estimation. Accordingly, the overall observation time is 8 ⋅ 8 ⋅ 150 µs = 9.6ms and the total
rotation angle of the plate is 0.48°. Due to the low total rotation angle, the angles of the point
targets emerging from scattering at the object are static and the delays approximately vary in
a linear manner, which can be described by the Doppler. Otherwise, if the plate is rotated
faster or the total observation time is much longer, the assumption of fix target angles and a
linearly varying delay are not ensured. In that case a dynamic model of the parameter variation
and tracking of the parameters has to be employed [27]. The number of paths to be estimated
is limited to 10, and the significance level is set to 𝛼s = 0.05. The estimated values for the
range, Doppler and azimuth angle are shown in Tab. 7.5. Figure 7.11 shows the estimated
target positions. The rectangular arrangement of the four metal cylinders is clearly visible.

The estimated range (delay, respectively) and azimuth angle are easy to validate, because they
coincide with the initial target locations (see equation (7.2)). However, validating the estimated
Doppler is more difficult, as the Doppler of a scattering point of a rotating object has to be taken
into account [CS98, Wal80]. Because the metal cylinders (scattering points) are arranged in a
rectangular shape and a rectangle is cyclic (all corners lie on a circle), the consideration of a
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Figure 7.10: Average range profiles (top) and time domain signal (bottom) of a measurement with four
standing metal cylinders as radar target, and (a) neglection and (b) consideration of phase
noise in the covariance model.
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Figure 7.11: Estimated point target locations from measurement with four rectangularly arranged metal
cylinders in Fig. 7.9(a) as target.

circle as moving path of the scatterers is sufficient. Be the rotation centre at location 𝑥0, 𝑦0 apart
from the centre of a monostatic radar, see Fig. 7.12. The position of a scattering point of an
rotating object at time 𝑡 is

𝑥(𝑡) = 𝑟 ⋅ cos (𝜔𝑡 + 𝜙0) + 𝑥0 (7.3a)𝑦(𝑡) = 𝑟 ⋅ cos (𝜔𝑡 + 𝜙0) + 𝑦0 (7.3b)

with 𝑟 the distance of the scattering point to the centre of the rotating object, 𝜔 the angular
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Figure 7.12: Geometry of a rotating scatterer in the 𝑥 − 𝑦 plane, which rotates with angular velocity 𝜔
around the centre point at (𝑥0, 𝑦0).

velocity of the rotating object and 𝜙0 the initial rotation angle. The distance of the scatter point
to the radar at time 𝑡 is

𝑅 (𝑡) = √𝑥(𝑡)2 + 𝑦(𝑡)2 . (7.4)

From Section 3.2.1 it is known, that the Doppler shift 𝜈 is proportional to the partial derivative
of the path length. As a monostatic radar is considered, the path length is given by twice the
distance.

𝜈 = 2 ⋅ 𝑓c𝑐0 ⋅ 𝑑𝑑𝑡𝑅 (𝑡) . (7.5)

Calculating the derivative of the distance and plugging in to the Doppler formula yields

𝜈 = 2 ⋅ 𝑓c𝑐0 ⋅ 𝑟 ⋅ 𝜔 ⋅ [𝑦0 cos (𝜔𝑡 + 𝜙0) − 𝑥0 sin (𝜔𝑡 + 𝜙0)]
√[𝑥0 + 𝑟 ⋅ cos (𝜔𝑡 + 𝜙0)]2 + [𝑦0 + 𝑟 ⋅ sin (𝜔𝑡 + 𝜙0)]2 . (7.6)

Considering the wooden plate with the four metal cylinders (the rotating object is the plate
with the mounted cylinders, and each cylinder causes a scattering point), the parameters are:𝑥0 = 0m, 𝑦0 = 1.56m, 𝑟 = 0.157m and 𝜔 = −0.87 rad s−1 (negative sign due to clockwise
rotation in the measurement). The initial rotation angle 𝜙0 for each scattering point is calculated
by

𝜙0 = atan( ̂𝑦 − 𝑦0𝑥̂ − 𝑥0 ) , (7.7)

with 𝑥̂ and ̂𝑦 the estimated location of the scattering point using equation (7.2). The Doppler
frequencies for 𝑡 = 9.6ms are −83.97Hz, −137.02Hz, 107.0Hz and 112.97Hz for the
respective targets, which coincide quite well with the estimated values in Tab. 7.5.

Next, the impact of the consideration of phase noise in the covariance model will be briefly
discussed. Figure 7.13 shows the range-Doppler spectra of the remaining and whitened signal
for the consideration and neglection of phase noise in the covariance model. The advantage of
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Figure 7.13: Average range-Doppler spectra for a measurement with four rotating metal cylinders as
target, and (a) neglection and (b) consideration of phase noise in the covariance model of
the parameter estimator.

phase noise consideration becomes visible, because the range-Doppler spectra in Fig. 7.13(b)
does not exhibit strong remaining contributions as the spectra in Fig. 7.13(a). Hence, model
errors, which are due to the phase noise, are attenuated. Because the model errors are attenuated
two paths at range of 3.2m and 3.3m, and 0Hz Doppler could be detected. If phase noise is
neglected these paths stay in the remaining signal (see Fig. 7.13(a)), because the estimator
attempts to resolve the model errors rather than detecting these paths.

Metal Cuboid
Measurements with a rotating metal cuboid, which is shown in Fig. 7.9(b), are considered next.
The cuboid is of dimension 45 cm × 30 cm × 30 cm and is rotated with an angular velocity of
50 ° s−1 around his centre point. SixteenMIMO snapshots are employed for Doppler estimation.
The number of paths to be estimated is limited to 10, and the significance level is set to 𝛼s = 0.05.
In Fig. 7.14 and Fig. 7.15 results for two different rotations of the cuboid are shown.

Figure 7.14(b) and Fig. 7.15(b) show the localisation results for the detected point targets.
The geometry of the cuboid in the x-y-plane can be identified. In Fig. 7.14 the distances of the
localised points targets coincide with the dimension of the cuboid. Hence, it can be concluded,
that the respective propagation paths emerge from scattering at the edges of the cuboid. In
Fig. 7.15 the shorter distance between two detected point targets is 20 cm, and does not coincide
with the shortest cuboid dimension of 30 cm. An explanation is, that the localised point target
on the right side does not emerge from scattering at the edge of the cuboid and is maybe due to
a reflection from the metallic surface.

The measured (top) and from the estimation results reconstructed (bottom) average range-
Doppler spectra are shown in Fig. 7.14(a) and Fig. 7.15(a). The range-Doppler spectra
are averaged over the MIMO channels. Obviously, the range-Doppler spectra is properly
reconstructed from the estimated parameters.
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Figure 7.14: Estimation results for the metal cuboid in Fig. 7.9(b) as target, (a) the measured (top) and
reconstructed (bottom) average range-Doppler spectrum and (b) the localised scattering
points.
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Figure 7.15: Estimation results for the metal cuboid in Fig. 7.9(b) as target, (a) the measured (top) and
reconstructed (bottom) average range-Doppler spectrum and (b) the localised scattering
points.
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7.3.3 Summary
The applicability of the proposed parameter estimator to estimate parameters from measure-
ments with a monostatic radar has been shown. Measurement scenarios with static and rotating
targets, as well as point targets (corner reflector) and extended targets (metal cylinders andmetal
cuboid) have been used therefore. The estimator was capable to detect each scattering contri-
bution from the targets. The estimated angle and delay values have been successfully used to
localise the corresponding scattering sources, which fits quite well to the ground truth. Further-
more, the advantage of considering phase noise in the model of the covariance matrix has been
demonstrated. It has been shown, that the consideration of phase noise attenuates remaining sig-
nal contributions due to phase noise in the hardware and model errors. As a result, the dynamic
of weak paths w.r.t. remaining signals is improved, such that these paths become detectable.

7.4 Binocular MIMO Radar – An Outlook
7.4.1 Overview of the Radar System
In the BinoMimo project, funded by the Deutsche Forschungsgemeinschaft under grant no.
TH 494/27-1, an advanced MIMO radar system is developed. The radar system is shown in
Fig. 7.16. It comprises of two cooperative and spatially separated 8 × 8 MIMO radars, termed
as sub-radars. The term binocular radar steams from the fact, that the sub-radars will focus
an extended target under different angles due to their spatial displacement. Hence, they are
”viewing” different scattering points, such that the radar exhibits the perception of depth w.r.t.
the target as present in stereoscopic (binocular) vision.

Each sub-radar is a monostatic MIMO radar (co-located Tx and Rx array), having 8 Tx
and 8 Rx channels. The sub-radars are mounted on a common platform and are driven by
the same signal in order to ensure a coherent operation of the whole radar. Besides of the
compact construction, the mounting on a common platform also reduces the hardware effort for
a coherent operation. The sub-radars operate in a cooperative fashion as their transmit channels
are orthogonal to each other due to a TDM accessing scheme. Furthermore, if the Tx channel
of one sub-radar is radiating, the Rx channels of the other sub-radar are receiving. Hence,
the whole radar is a 16 × 16 MIMO system (256 MIMO channels). As the two sub-radars
are spatially separated they basically have different focusing angles to the target. Therefore, a
bistatic radar architecture is present, if the transmit and receive array are from different sub-
radars. Summarised, the novel radar system provides radar measurements with both co-located
and distributed arrays, and advantages of both types of radar architectures can be exploited.
Last, as both sub-radars operate coherently and if the target is far apart from the radar, such
that both sub-radars have approx. the same focusing angle, the whole radar system becomes a
monostatic radar. As a result, a giant virtual aperture is present, offering an angular resolution
according to the Rayleigh criterion of better than 1° in broadside direction [Sch19].

7.4.2 Measurements with the Binocular MIMO Radar
Measurements with the binocular radar system and parameter estimation results will be
considered next. The settings of the radar system are summarised in Tab. 7.6. As explained, the
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BinoMimo Radar
Sub-radar 1 Sub-radar 2

(a) (b)

Figure 7.16: A 16 × 16 binocular MIMO radar system (BinoMimo radar) consisting of two cooperative
and spatially separated 8×8MIMO radars (sub-radar 1 and sub-radar 2). Because the sub-
radars are cooperative, the binocular MIMO radar is capable to capture two monostatic
radar observations (dashed lines) and a bistatic observation (dotted line), see (a). Picture
(b) shows the setup up binocular radar system (picture taken from [Sch19]). The array
centres of the sub-radars are separated by approx. 𝐿 = 14 cm.

Table 7.6: Radar settings for the measurements

Parameter Setting Parameter Setting𝑓c 152.5GHz 𝑊 12 ⋅ 844MHz𝑇M 100 µs 𝑇R 25 µs𝑇W 25 µs 𝑇P 150 µs𝑇S 50 ns

binocular radar system is capable to gather two mono- and two bistatic radar measurements.
As the statistical model of the proposed parameter estimator (see Section 5.1) assumes
measurements with amonostatic radar, themeasurements have to be treated accordingly. Hence,
the bistatic radar observations will not be considered subsequently and the corresponding
measurements are excluded beforehand from the radar data cube (reduced from 256 to 128
MIMO channels). Only the monostatic measurements from each sub-radar will be considered.
These measurements can be jointly or separately processed by the parameter estimator,
depending on the assumption of co-located or distributed sub-radars. In the joint processing
case it is assumed, that both sub-radars are focusing the target under the same angle. Hence,
co-located sub-radars are assumed and the observations of both sub-radars are jointly processed
by the estimator. In the separate processing case it is assumed, that both sub-radars are focusing
the target under different angles. Hence, distributed sub-radars are assumed and the parameter
estimator is applied to each sub-radar measurement separately.

Stationary Corner Reflector
The influence of the spatial separation of the sub-radars in relation to the distance of the target
from the radar system will be investigated subsequently. The result of the beamforming in
azimuth domain (see Section 5.3) will be used for the investigations. The beamforming result
is calculated for the separate processing of the sub-radar measurements (i.e. assumption of
distributed sub-radars), and the joint processing of the sub-radar measurements (i.e. assumption
of co-located sub-radars). Measurements with a single target placed at 3m, 4m and 5m apart
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from the radar, and at angles −10°, 0° and 10° are considered. The calculated beamforming
results are depicted in Fig. 7.17. First, it can be observed, that the width of the main lobe is
smaller for the joint processing case compared to the separate processing case, indicating the
higher resolution due to the larger virtual aperture. Second, it can be observed, that the maxima
of the beamforming result occur at a biased position, if separate processing of the sub-radar
measurements is considered. For the target being close to the radar the bias is severe, e.g. 0.5°
for a target distance of 3m. The reason is, that for a close target the sub-radars focus the target
under different angles, hence, the sub-radars occur as spatially distributed w.r.t. the target. In
other words, a spherical wave front occurs across the virtual aperture. As a result, different target
direction are estimated. If the target is further apart, the bias vanishes as the sub-radars occur
as co-located w.r.t. the target. Hence, a plane wave front is present across the virtual aperture.
However, plane wave fronts can be assumed as always present across the virtual apertures of
the sub-radars for the considered target distances. It can be concluded, that the consideration of
the sub-radars as co-located or distributed depends on the relation of the sub-radar separation𝐿 and the target range 𝑅. If 𝐿/𝑅 ≪ 1 holds, the sub-radars can be considered as co-located.

Based on this knowledge the beamforming result for the joint processing of the sub-radar
measurements can be explained. First, the maximum is always at the position of the true target
angle, but the beamforming results show strong side lobes. The position of the highest side lobe
approximately coincides with the position of the beamforming maxima for separate processing,
especially for the target being close. Because the sub-radars have different focusing angles for
a close target, they cannot be jointly processed by assuming a common angle. Hence, a model
error is present, leading to ambiguities as e.g. increased side lobes. These side lobes are not
harmful in the single target case, as the maximum stays at the true target angle. However,
in the multi target case the side lobes are harmful, as they may cause wrong detection by the
beamforming-based initialisation scheme of the optimisation procedure (see Section 5.3). The
maxima of the beamforming result stays at the position of the true target angle, because the
beamformer attempts to compensate the model errors in a least-squares sense, resulting in a
maxima at the position of an ”average angle”. Summarised, joint processing of the monostatic
sub-radar measurements cannot be taken into account for close targets. As the target distance
is unknown in advance, only separate processing will be considered in the following.

Stationary Metal Cylinders
Next, the localisation performance will be investigated. Therefore, the monostatic sub-radar
measurements are separately processed by the parameter estimator. In total 8 MIMO snapshots
are considered in the parameter estimator. The significance level for the model order estimation
has been set to 𝛼s = 0.05. The locations of the detected point targets are calculated from the
estimated azimuth and delay values using equation (7.2). The four metal cylinders depicted in
Fig. 7.9(a) are used as radar target, which are stationary here. Three different rotation angles
of the mounting platform are considered: 0°, 20° and 45°. The localisation results are shown
in Fig. 7.18. It can be observed, that the localisation results from the processed monostatic
measurements coincide, and the rectangular arrangement of the four metal cylinders can be
identified. However, the localisation results do not totally agree with each other, as the metal
cylinders have a diameter of 16mm and each sub-radar may focus a different part of the cylinder,
resulting in slightly different location results. Hence, by employing the measurements of both
sub-radars the metal cylinders are recognised as slightly extended targets, rather than as point
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Figure 7.17: Beamforming results in the azimuth domain using measurements with a corner reflector
at distances 3m (sub-figures (a), (d), (g)), 4m (sub-figures (b), (e), (h)) and 5m (sub-
figures (c), (f), (i)); and angular positions −10°, 0° and 10°. The beamforming results are
calculated for the separate processing (densely dashed and densely dotted line) and the
joint processing (solid line) of the sub-radar measurements.
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Figure 7.18: Localisation results from separately processed sub-radar measurements for the target in
Fig. 7.9(a). The rotation angles of the mounting platform are (a) 0°, (b) 20° and (c) 45°.
The ground truth according to the target geometry is indicated by dashed lines.

targets.

Rotating Metal Cube
The open metal cube (size: 20 cm × 20 cm × 20 cm) depicted in Fig. 7.19(a) will be considered
next. The cube has three metal walls, two outside and one inside, such that 6 scattering edges are
basically present in the x-y plane. The inside metal wall can be viewed, as the cube is open on
two sides, which are turned to the radar. The cube is counter clock-wisely rotated with 50 ° s−1.
Eight MIMO snapshots are employed for Doppler estimation, and the significance level is set
to 𝛼s = 0.05. The localised scattering points by individually processing the monostatic sub-
radar measurements are shown in Fig. 7.19(b). It is interestingly to note, that the 6 scattering
edges of the cube are detectable only by considering the measurements of both sub-radars.
This observation verifies the binocular idea, where more details of an extended target become
detectable by using measurements of spatially distributed MIMO radars.

Rotating Wooden Box
Last, a wooden box of size 44 cm × 32 cm × 26 cm (width × height × depth) is considered
as target, see Fig. 7.20a. The box is counter-clock wise rotated with 35 ° s−1. Eight MIMO
snapshots are used for Doppler estimation, and the significance level is set to 𝛼s = 0.05. Again,
only the monostatic sub-radar measurements are considered, and are separately processed by
the parameter estimator. The localised point scatterers are shown in Fig. 7.20b. Both sub-radars
view the same scattering points of the wooden box, such that one sub-radar would be sufficient
in that case.

7.4.3 Summary
A novel radar setup, the BinoMimo radar, has been briefly introduced. The radar consists of
two spatially separated, and coherently and cooperatively operating MIMO sub-radars.
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Figure 7.19: (a) picture of the open metal cube and (b) located point targets from the processed sub-
radar measurements. The ground truth according to the target geometry is indicated by
dashed lines.
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Figure 7.20: (a) picture of a wooden box and (b) located point scatterers from the processed sub-radar
measurements. The ground truth according to the target geometry is indicated by dashed
lines.

The coherent operation allows joint processing of the measurements of both sub-radars,
resulting in a virtual radar featuring a huge aperture. It has been shown, that the joint processing
necessitates a target, which distance apart from the radar is much larger than the spatial
separation of the sub-radars. Otherwise, spherical wave fronts occur across the large virtual
aperture, resulting in erroneous direction estimates.

The developed parameter estimator has been applied to measurements taken by the
BinoMimo radar. Because the target distance is unknown in advance, only separate processing
of the sub-radar measurements has been considered to prevent the problem of spherical wave
fronts. It could by shown, that more targets can be identified by evaluating the measurements
of both sub-radars. Hence, the radar offers a more robust target detection and better recognition
of target structures.
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CHAPTER 8
Summary and Outlook

PROCESSING of gathered radar observations has been treated as a model-based system
identification problem in this thesis. The system under identification is the radar channel

(or equivalently the wireless propagation channel) featuring radar targets, which is sensed by
the radar system. This, however, is a quite uncommon treatment of radar signal processing.
However, it provides a more general view on radar signal processing, which is not limited
to the consideration of a certain radar hardware architecture, waveform of the radar signal
or application. The considered system identification is model-based. A parametric model of
the system under identification, termed as physical model, has been stated and the respective
model parameters are subject to estimation. Accordingly, the system identification step becomes
the parameter estimation step. The model parameters are related to the radar targets. By
identifying the radar channel the targets are inherently detected and the estimated parameters
can be exploited to localise or classify the respectively detected targets.

The sensing process causes the parameters of the model to be mapped to the observations.
This mapping can be treated as a forward problem. The estimation of the model parameters
from the observations is the reverse of this process. Hence, the parameter estimation is an
inverse problem. The necessary basics of inverse problems have been revised, indicating, that a
model of the observation process is required to solve the inverse problem. This model describes
the embedding of the physical model and its respective parameters in the observations. As
the embedding depends on the observer itself, this model cannot be the raw physical model.
Therefore, a system model is required, which consists of the physical model and a model of the
observer, termed as device model. The device model describes the observer, e.g. it is a model
of the device response, and can depend on additional unknown parameters, which are subject
to estimation too. These parameters are typically not of immediate interest and are therefore
termed as nuisance parameters. Due to noise processes of the observer and uncertainties of the
considered system model disturbances are present. These disturbances are treated as random,
because of the lack of information and reasons of complexity. A statistical model, which
subsists of the system model and a model of the noise processes, is required to account for these
disturbances. As a consequence, the inverse problem casts into a stochastic inverse problem.
The stochastic inverse problem is solved by Bayes’ theorem, where a distribution of the model
parameters after the observation process is assigned. Point estimators are used to deduce the
intended parameters from their assigned distribution. Two well known point estimators, namely
the MAP and MMSE point estimator, have been discussed and the MAP has been chosen due
to its simpler calculation.
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A physical model describing the propagation of EMWs in the radar channel has been derived
from the principle of ray optics. Geometrical parameters as e.g. angles of incidence and
departure or a propagation delay are assigned to each propagation path, which emerges from
scattering at a point target. Each propagation path is modelled as a weighted multidimensional
Dirac function, with a Dirac function for each geometrical dimension and dedicated parameter.
The final physical model is given by the superposition of the propagation paths. Due to the Dirac
function high-resolution, i.e., a resolution higher than the bandwidth or aperture determined
resolution, is achievable to resolve each path. Subject to clarification is the modelling of the
weight, which describes the time dispersion and variation of the wave due to interactions with
scatterers. The weight has to be considered as a function, e.g. as an impulse response, under
broadband considerations. A model of this function is required to keep the inverse problem
unambiguous. However, to the best of the authors knowledge, such a model is not available.
Hence, the narrowband assumption has been stated, where the weight becomes a scalar or,
equivalently, a constant over the whole frequency band. This is a crucial simplification, because
the considered radar system is a broadband system, which makes the narrowband assumption
hard to be fulfilled.

A broadband, monostatic mmWave FMCW MIMO radar has been exemplary considered as
observer, and a respective device model has been developed. The basic signal theory of FMCW
radars has been reviewed. A linear response model has been proposed to describe the influence
of the radar hardware on the observations. It has been turned out, that a linear device model is
not sufficient due to hardware impairments, which cause strong signal distortions. Therefore, a
novel non-linear device model has been proposed, which can be incorporated in the parameter
estimation framework. It has been shown, that the signal distortions due to the hardware
impairments aremitigated and the target detection accuracy is improved. Estimation of angles of
incidence and departure of a propagation path is accomplished by using antenna arrays at Tx and
Rx side of the observer. The response of the array in terms of the angles has to be known in order
to estimate the respective angles. Commonly, a narrowbandmodel is employed, where the array
response is an angle and polarisation dependent scalar. However, because the considered radar
is a broadband system (large signal bandwidth and large array aperture) angle-delay coupling
occurs. Hence, the narrowbandmodel is not sufficient. A broadbandmodel has been introduced,
which has been proven to outperform the narrowband model. Furthermore, the influence of
TDM to access all MIMO channels has been discussed. The successive antenna switching
results in a angle-Doppler coupling, because the Doppler phase evolves due to continuously
moving targets. An extension of the Doppler model to cope with the angle-Doppler coupling
has been proposed, which can be easily incorporated in the parameter estimator. Monostatic
radars, i.e. radars with co-located Tx and Rx, suffer from leakage of the transmit signal into
the receiver. Leakage can be due to the limited isolation between the Tx and Rx or due to
hardware obstacles in the close vicinity of the radar (e.g. radome, car bumper, lens). Leakage
can cause saturations of the receiver (especially in impulse radars) and short-range distortions
of the receive signal, such that close and weak targets cannot be detected. A novel approach
to mitigate the short-range distortions has been proposed. Background subtraction is used to
mitigate the leakage. Remaining signal portions are treated as coloured, noise process and are
termed as leakage noise. These signal portions are ”suppressed” by whitening with a model
of their covariance. As a result, short-range targets become detectable. Note, that saturation
of the receiver cannot be avoided and corresponding signal distortions cannot be repaired by
this approach! Radar observations are confounded by random noise. As explained, this turns
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the inverse problem into a stochastic inverse problem. Here, three noise sources have been
considered in the parameter estimation framework: thermal noise, leakage noise and phase
noise of the radar hardware. Taking into account leakage noise and phase noise in the estimation
process is a novelty in radar signal processing. The consideration of phase noise is additionally
beneficial to treat uncertainties of the used system model, because model uncertainties cause
similar errors as phase noise. Hence, by coping with phase noise model errors are additionally
coped with. Statistical models, i.e. the distributions, of these noise sources have been proposed
and the respective model parameters are nuisance parameters in the estimator.

Using the system model (physical model + device model) and the statistical model of all
noise sources (thermal, leakage and phase noise), the statistical model of the radar observations,
the likelihood, has been formulated. Based on the likelihood and prior informations regarding
the model parameters, a MAP estimator has been derived. MAP estimation results in a high-
dimensional objective function, which has to be optimised w.r.t. the model parameters. Because
the objective is high-dimensional and also non-convex, its optimisation is computationally
expensive. Exhaustive search has to be avoided and a computationally more attractive
optimisation method has been presented. There, a coarse initial search for the optimum
is followed by a gradient-based optimisation algorithm for refinement. Nevertheless, the
computational effort is still high, which prevents the application of the estimator for online
or real-time estimation. Instead, the parameter estimator can be considered as a benchmark
regarding achievable resolution, mitigation of hardware impairments, coping with noise
processes or issues related to the measurement principle.

Finally, an algorithm to estimate the number of targets, or respectively the number of
propagation paths, has been presented. The stepwise regression search, where the number of
considered targets is incremented until an abortion criterion is met, has been proposed. As
abortion criterion parametric hypothesis tests, namely the Wald amplitude and the likelihood-
ratio test, haven been taken into account. It has been shown, that the theoretic distributions
of these tests do not apply, because the system model is partially non-linear in its parameters.
Improvements, which use stochastic simulation techniques like bootstrap sampling and Monte
Carlo simulations, have been used in order to get a more proper estimate of the distributions.
Also, methods to cope with the problem of multi-hypothesis testing, which occur due to the
stepwise regression search, have been discussed and the Bonferroni method has been chosen as
best suited method.

The performance of the proposed estimator has been investigated by various simulations
and practical experiments. The simulations indicate, that the estimator compensates the angle-
Doppler and angle-delay coupling, which occur due to the TDM and the utilisation of a broad-
band radar. Therefore, the developed estimator outperforms standard estimators. Experiments
have been conducted in an anechoic and various objects (corner reflector, metal cube, metal-
lic cylinders) have been deployed as radar targets. The estimated ranges and angles have been
used to localise the respective point targets. The localisation results show, that the estimator
properly detects scatterers at the deployed targets. Extended targets become recognisable and
the estimates can be applied to identify the geometric structure of extended targets. Last, the
estimator has been applied to observations with a novel radar system, a binocular MIMO radar
(the BinoMimo radar). This radar composes of two spatially separated, cooperative and coher-
ent operating sub-radars, which are monostatic MIMO radars each. Hence, mono- as well as
bistatic observations are gathered, and a suitable estimator is required in order to fully exploit
the accompanying benefits of this radar, e.g. improved target detection performance or clutter
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suppression. Limits of the applicability of the proposed estimator for the BinoMimo radar have
been discussed. It has been shown, that the target range from the radar must be sufficiently large
in order to jointly process the observations of both sub-radars (same angle of the target to each
sub-radar). Otherwise, the sub-radar observations have to be processed individually, because
the angle of the target to each sub-radar is different. Last, the benefit of the BinoMimo radar in
terms of target recognition has been proven. It has been shown, that more point scatterers at an
extended object are detectable, which improves the identifiability of the respective geometric
structure.

A basic drawback of the developed estimator (or the considered radar itself) is the limitation
to targets in the azimuth plane. ULAs are used at the co-located Tx and Rx. Hence, only the
azimuth angle can be estimated, because the resulting virtual array is an ULA too. Furthermore,
azimuth estimates become erroneous for targets out of the azimuth plane. As a result, such
targets will be wrongly localised. A solution to this issue is the usage of an URA, which is
capable to estimate azimuth and elevation. Hence, targets in the 3D space can be localised. A
URA can be realised by a monostatic MIMO radar, where the ULAs at Tx and Rx are flipped
by 90° to each other. As a result, a virtual URA is formed.

The implemented parameter estimator allows the estimation of two angles, and is flexible
regarding the array model. Hence, the processing of bistatic radar observations with an ULA at
Tx and Rx, i.e. two azimuth angles have to be estimated, is possible. Also, observations with a
monostatic radar featuring a virtual URA as mentioned above can be processed. Note, that only
the case of a virtual ULA, i.e. one azimuth angle has to be estimated, has been covered in this
thesis. However, the required change of the statistical model, precisely the array model of the
system model, is straightforward. The ability to process mono- and bistatic radar observations
is a necessity to process all observations of the BinoMimo radar, because this radar captures
both types of radar observations.

Last, the estimator does not assign or account for any relations of the detected point targets.
Relations occur, when the point targets are due to scattering from a common target like an
extended target. The developed estimator provides only estimates of point targets. Hence, no
target identification or classification is conducted by the estimator. The developed estimator can
be extended to do so, which requires a target model to assign geometric relations to the point
targets. The identified geometric relations can be exploited to finally identify the object type.
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APPENDIX A
Mathematical Notation, Func-
tions, Operations and Relations

A.1 Notation
A.1.1 Variables
𝑎, 𝐴, 𝜎 Scalars, defined as italic Greek or Latin letters
𝐚, 𝛔 Column vectors, defined as bold face lower-case Greek or Latin letters
𝐀, 𝚺 Matrices, defined as bold face capital Greek or Latin letters
𝓐, 𝓑 Tensors, defined as bold face calligraphic Latin letters
A, B Sets, defined as serif Latin upper-case letters

A.1.2 Sets
A = {𝑎1, 𝑎2, …} Set A containing the elements 𝑎1, 𝑎2, …
A ⊆ B Set A subset of set B
A ⊂ B Set A proper subset of set B

A.1.3 Complex Numbers
𝑧 = 𝑧R + 𝚥𝑧I ∈ ℂ Cartesian form of complex number 𝑧
𝑧 = |𝑧| ⋅ exp {𝚥 arg{𝑧}} ∈ ℂ Polar form of complex number 𝑧
𝑧R = ℜ {𝑧} ∈ ℝ Real part of complex number 𝑧
𝑧I = ℑ {𝑧} ∈ ℝ Imaginary part of complex number 𝑧
arg {𝑧} ∈ ℝ Phase angle of complex number 𝑧
|𝑧| ∈ ℝ+ Absolute value of complex number 𝑧
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A.2 Functions
𝛿(𝑡) Dirac delta function or Dirac impulse [Hay94]
H (𝑥) Heaviside step function [AS72]
P𝑛(𝑥) Legendre polynomial of 𝑛-th degree [AS72]
rect( 𝑡𝑇) Rectangular function [Hay94]

sinc (𝑥) Sinc function [Hay94]
j𝑛(𝑥) Spherical Bessel function of first kind and 𝑛-th order [AS72]

A.2.1 Probability Distributions
𝑋 ∼ 𝒩 Normal distributed random variable 𝑋
𝑋 ∼ 𝒞𝒩 Proper complex Normal distributed random variable 𝑋
𝑋 ∼ 𝒰 Uniform distributed random variable 𝑋

A.3 Operations and Relations
A.3.1 Matrix Relations

𝐀 ⪰ 𝟎 Positive semi-definite matrix 𝐀 (all Eigenvalues larger than or equal to zero)
𝐀 ≻ 𝟎 Positive definite matrix 𝐀 (all Eigenvalues larger than zero)

A.3.2 Scalar Operations
𝑥(𝑡)∗𝑦(𝑡) Convolution of function 𝑥(𝑡) and 𝑦(𝑡) [Hay94]
𝑥(𝑡) ❞ t𝑡 𝑋(𝑓) Fourier transform of 𝑥(𝑡) [Hay94]

𝑋(𝑓) t ❞𝑓 𝑥(𝑡) Inverse Fourier transform of 𝑋(𝑓) [Hay94]

E {𝑋} Expected value of random process 𝑋 [Hay94]

A.3.3 Matrix and Vector Operations

[𝐚](𝑖) ∈ ℂ Selection of 𝑖-th entry of vector 𝐚 ∈ ℂ𝑀
[𝐀](𝑖) ∈ ℂ𝑀 Selection of 𝑖-th column of matrix 𝐀 ∈ ℂ𝑀×𝑁
[𝐀](𝑖,𝑗) ∈ ℂ Selection of 𝑖-th column and 𝑗-th row entry of matrix 𝐀 ∈ ℂ𝑀×𝑁
||𝐚|| ∈ ℝ+ Euclidian norm of vector 𝐚 ∈ ℂ𝑀
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A.3 OPERATIONS AND RELATIONS

||𝐀||𝐹 ∈ ℝ+ Frobenius norm of matrix 𝐀 ∈ ℂ𝑀×𝑁
|𝐀| ∈ ℂ Determinant of matrix 𝐀 ∈ ℂ𝑀×𝑀
trace{𝐀} ∈ ℂ Trace of matrix 𝐀 ∈ ℂ𝑀×𝑀

trace {𝐀} = ∑𝑀𝑚=1 [𝐀](𝑚,𝑚)𝐚T ⋅ 𝐛 ∈ ℂ Scalar product of vector 𝐚 ∈ ℂ𝑀 and 𝐛 ∈ ℂ𝑀
𝐚 × 𝐛 ∈ ℂ𝑀 Vector product of vector 𝐚 ∈ ℂ𝑀 and 𝐛 ∈ ℂ𝑀
vec {𝐀} ∈ ℂ𝑀𝑁 Stacks columns of matrix 𝐀 ∈ ℂ𝑀×𝑁 into a vector

vec {𝐀} = [[𝐀]T(1) , … , [𝐀]T(𝑁)]T𝐀T ∈ ℂ𝑁×𝑀 Transpose of matrix 𝐀 ∈ ℂ𝑀×𝑁
𝐀† ∈ ℂ𝑀×𝑁 Conjugate of matrix 𝐀 ∈ ℂ𝑀×𝑁
𝐀H ∈ ℂ𝑁×𝑀 Hermitian (conjugate transpose) of matrix 𝐀 ∈ ℂ𝑀×𝑁
𝐀-1 ∈ ℂ𝑀×𝑀 Inverse of matrix 𝐀 ∈ ℂ𝑀×𝑀
𝐀+ ∈ ℂ𝑁×𝑀 Moore–Penrose pseudo inverse of matrix 𝐀 ∈ ℂ𝑀×𝑁
diag{𝐀} ∈ ℂ𝑀 Stacks main diagonal elements of matrix 𝐀 ∈ ℂ𝑀×𝑀 into a vector

diag{𝐀} = [[𝐀](1,1) , [𝐀](2,2) , … , [𝐀](𝑀,𝑀)]T
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𝐀⊗𝐁 ∈ ℂ𝑁𝑃 ×𝑀𝑅 Kronecker product of matrix 𝐀 ∈ ℂ𝑁×𝑀 and 𝐁 ∈ ℂ𝑃 ×𝑅

𝐀⊗𝐁 =
⎡⎢⎢⎢⎢⎣

[𝐀](1,1) ⋅ 𝐁 … [𝐀](1,𝑀) ⋅ 𝐁
∶ ⋱ ∶

[𝐀](𝑁,1) ⋅ 𝐁 … [𝐀](𝑁,𝑀) ⋅ 𝐁
⎤⎥⎥⎥⎥⎦𝐀♦𝐁 ∈ ℂ𝑁𝑃 ×𝑀 Khatri–Rao product of matrix 𝐀 ∈ ℂ𝑁×𝑀 and 𝐁 ∈ ℂ𝑃 ×𝑀

𝐀♦𝐁 = [[𝐀](1)⊗[𝐁](1), … , [𝐀](𝑀)⊗[𝐁](𝑀)]𝐀⊙𝐁 ∈ ℂ𝑁×𝑀 Hadamard (element-wise) product of matrices 𝐀, 𝐁 ∈ ℂ𝑁×𝑀

𝐀⊙𝐁 =
⎡⎢⎢⎢⎢⎣

[𝐀](1,1) ⋅ [𝐁](1,1) … [𝐀](1,𝑀) ⋅ [𝐁](1,𝑀)∶ ⋱ ∶
[𝐀](𝑁,1) ⋅ [𝐁](𝑁,1) … [𝐀](𝑁,𝑀) ⋅ [𝐁](𝑁,𝑀)

⎤⎥⎥⎥⎥⎦𝐀⊘𝐁 ∈ ℂ𝑁×𝑀 Hadamard (element-wise) division of matrices 𝐀, 𝐁 ∈ ℂ𝑁×𝑀

𝐀⊘𝐁 =
⎡⎢⎢⎢⎢⎣

[𝐀](1,1)/[𝐁](1,1) … [𝐀](1,𝑀)/[𝐁](1,𝑀)∶ ⋱ ∶
[𝐀](𝑁,1)/[𝐁](𝑁,1) … [𝐀](𝑁,𝑀)/[𝐁](𝑁,𝑀)

⎤⎥⎥⎥⎥⎦
T {𝐚} ∈ ℂ𝑀×𝑀 Constructor for hermitian Toeplitz matrix from vector 𝐚 ∈ ℂ𝑀, [𝐚](1) ∈ ℝ

T {𝐚} =
⎡⎢⎢⎢⎢⎢⎢⎣

[𝐚](1) [𝐚]†(2) … [𝐚]†(𝑀−1) [𝐚]†(𝑀)[𝐚](2) ⋱ ⋱ [𝐚]†(𝑀−2) [𝐚]†(𝑀−1)∶ ⋱ ⋱ ⋱ ∶
[𝐚](𝑀) [𝐚](𝑀−1) … [𝐚](2) [𝐚](1)

⎤⎥⎥⎥⎥⎥⎥⎦
diag{𝐚} ∈ ℂ𝑀×𝑀 Constructs a diagonal matrix from vector 𝐚 ∈ ℂ𝑀

diag{𝐚} =
⎡⎢⎢⎢⎢⎢⎢⎣

[𝐚](1) ⋯ ⋯ 0
0 [𝐚](2) ⋯ 0
∶ ∶ ⋱ ∶
0 ⋯ ⋯ [𝐚](𝑀)

⎤⎥⎥⎥⎥⎥⎥⎦
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APPENDIX B
Mathematical Definitions

B.1 Mappings and Functions
B.1.1 Definitions
Definition 4. A mapping ℳ is defined as a rule which associates elements of the set A with
elements of the set B [MS00].

ℳ ∶ A ↦ B (B.1)

Definition 5. A function 𝑓 is a rule, which associates each point in the function domain 𝑎 ∈ A
to one point in the codomain 𝑏 ∈ B [MS00].

𝑓 ∶ A ↦ B (B.2)

The short hand notation is 𝑏 = 𝑓(𝑎).
A function is injective or an one-to-one function, if ∀𝑎1, 𝑎2 ∈ A the equality 𝑓(𝑎1) = 𝑓(𝑎2)

implies 𝑎1 = 𝑎2 holds [DG00].

Definition 6. The inverse function 𝑓 -1 of function 𝑓 is defined as [DG00, MS00]

𝑓 -1 ∶ B ↦ A . (B.3)

The inverse is given, if 𝑓 -1 (𝑓 (𝑎)) = 𝑎, ∀𝑎 ∈ A holds.

Definition 7. A multivariate function is a function which depends on multiple variables 𝑎𝑛 ∈
A𝑛. Therefore, the function domain is a set of 𝑁-tuples A𝑁 ⊆ A1 × … A𝑁.

𝑓 ∶ A𝑁 ↦ B (B.4)

The short hand notation is 𝑏 = 𝑓(𝑎1, … , 𝑎𝑁) = 𝑓(𝐚), with point 𝐚 in the vector space A𝑁.

Definition 8. If the codomain is also a vector space the function becomes a vector-valued
function, which maps points 𝐚 ∈ A𝑁 to points 𝐛 ∈ B𝑀.

𝐟 ∶ A𝑁 ↦ B𝑀 (B.5)
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𝑥 𝑦 𝑥 𝑦

function 𝑓 function 𝑔

(a) (b)

Figure B.1: Example of a 1-dimensional function 𝑓 being (a) convex and (b) non-convex, and linear
function 𝑔.

The short hand notation is 𝐛 = 𝐟 (𝐚).
B.1.2 Convex Function
Definition 9. A function 𝑓 ∶ A ↦ ℝ is said to be convex, iff its domain A is a convex set and
for all 𝐱, 𝐲 ∈ A and ∀𝜆 ∈ [0, 1]

𝑓 (𝜆𝐱 + (1 − 𝜆) 𝐲) ≤ 𝜆𝑓 (𝐱) + (1 − 𝜆) 𝑓 (𝐲) (B.6)

holds [BV04]. Accordingly, a 1-dimensional function 𝑓 with domain A can be said to be convex,
if each function value 𝑓(𝑧) on the interval 𝑧 ∈ [𝑥, 𝑦] is always lower or equal than the function
value 𝑔(𝑧) of a linear function 𝑔 connecting the interval edges 𝑥, 𝑦 ∈ A. Figure B.1 shows an
example of a 1-dimensional convex and non-convex function.

B.2 Description of Random Processes
B.2.1 Wide-Sense Stationary Processes
A random process 𝑧 (𝑡) is wide-sense stationary, if its first-ordermoment 𝑚𝑧 and its second-order
moment 𝜓𝑧𝑧 do not vary over time [Hay94].

E {𝑧(𝑡)} = 𝑚𝑧 (B.7a)
E{[𝑧 (𝑡1) − 𝑚] ⋅ [𝑧 (𝑡2) − 𝑚]} = 𝜓𝑧𝑧 (𝑡1, 𝑡2) = 𝜓𝑧𝑧 (𝑡1 − 𝑡2) (B.7b)

If 𝑧(𝑡) is complex-valued, than 𝑧(𝑡) is wide-sense stationary, if its real and imaginary part
are jointly wide-sense stationary. Wide-sense stationary in time domain implies, that distinct
frequency bins of 𝑍 (𝑓) t ❞𝑧 (𝑡) are uncorrelated.

E{𝑍(𝑓1) ⋅ 𝑍(𝑓2)} = 0 , ∀𝑓1 ≠ 𝑓2 (B.8)
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Hence, the power spectral density 𝛹𝑍𝑍 (𝑓1, 𝑓2) is given by

𝛹𝑍𝑍 (𝑓1, 𝑓2) = 𝛹𝑍𝑍 (𝑓1) ⋅ 𝛿 (𝑓2 − 𝑓1) . (B.9)

B.2.2 Probability Theory and Probability Density
Function

A Brief Introduction to Probability Theory
Randomquantities are defined on a common probability space, which is a specialmeasure space
given by the triple (𝛺, ℱ, 𝑃) [BS94, Loè77, Sul15]. The tuple (𝛺, ℱ) denotes a measurable
space, defined by the non-empty set 𝛺 and ℱ a 𝜎-algebra on 𝛺. Assuming ℱ as a Borel 𝜎-
algebra ℬ leads to the measurable space (𝛺,ℬ(𝛺)), where e.g. 𝛺 ⊆ℝ.

In stochastic, the measurable space is denoted as event space. The set 𝛺 is called the sample
space, which denotes the set of all elementary results of e.g. an empirical observation. The set of
events ℱ ⊆ 𝛺 denotes subsets of the sample space, comprising all conceivable combinations or
permutations of elementary events of 𝛺. In order to get a proper measure space a measure 𝑃 on
the measurable space (𝛺, ℱ) is introduced. Because the measure space should be a probability
space, the measure is a probability measure. Introducing the function 𝑃 (𝐵) as a probability
measure on ℱ, which fulfils 𝑃 (𝛺) = 1. This function assigns each event 𝐵 ⊆ ℱ a likelihood of
happening [BS94, Loè77]: 𝑃 ∶ ℱ ↦ [0, 1].
Example B.1. For illustration purpose of the above definition, consider tossing a six-sided die
once. Accordingly, the sample space is 𝛺 ∶= {1, 2, 3, 4, 5, 6}. For the set of events all subsets,
which are of interest, can be considered, e.g. ℱ ∶= {𝛺, 1, 3, 5}. According to the probability
measure, a probability can be assigned to each subset in ℱ. In case of an ideal and faire die,
these probabilities may be e.g. 𝑃 (1) = 16 , or 𝑃 (1, 3, 5) = 12 .
Probability Density Function
Stochastic processes are defined as a collection of random quantities or variables. Consider
a random quantity 𝑋. This quantity is defined as a function on the probability space [BS94,
Loè77], assigning a variable 𝑋(𝜔) ⊆ ℝ of the observation space to each elementary outcome𝜔 ∈ 𝛺 of the sample space [ABT13, BS94, Zac81].

𝑋 ∶ 𝛺 ↦ ℝ (B.10)

The expectation value E of the random variable 𝑋 is defined as [Zac81]

E {𝑋} = ∫𝛺 𝑋(𝜔) 𝑑𝑃 (𝑑𝜔) (B.11)

with 𝑑𝑃 (𝑑𝜔) the probability of event 𝜔 happening. Assuming 𝑑𝑃 (𝑑𝜔) as continuous, the
probability can be described in terms of a non-negative density function 𝑝(𝜔).

𝑝(𝜔) = 𝑑𝑃 (𝑑𝜔)𝑑𝜔 (B.12)
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Function 𝑝(𝜔) is denoted as probability density function (PDF).

Definition 10. A PDF 𝑝(𝜔) is said to be proper, if 𝑝(𝜔) ≥ 0, ∀𝜔 ∈ 𝛺 and ∫𝜔∈𝛺 𝑝(𝜔) 𝑑𝜔 = 1
are satisfied. Otherwise, the PDF is said to be improper.

The probability measure, which assigns a probability of the happening of event 𝐵, is given
by integral of the PDF over the event’s space.

𝑃 (𝐵) = ∫𝐵 𝑝(𝜔) 𝑑𝜔 (B.13)

Hence, a PDF is a convenient way to model random processes by assigning a probability of
happening to their quantities.

Probability Density of Complex Random Signals
Defining a stationary, complex randommultivariate vector 𝐲 = 𝐲R+𝚥𝐲I ∈ ℂ𝑁. Vector 𝐲R ∈ ℝ𝑁
and 𝐲I ∈ ℝ𝑁 denote the random real and imaginary part, respectively. The respective PDF is
given by the joint probability density function of the real and imaginary part.

𝑝(𝐲) = 𝑝 (𝐲R + 𝚥𝐲I) ≜ 𝑝 (𝐲R, 𝐲I) (B.14)

Next, the complex augmented vector 𝐲̄ is introduced, comprising the complex random variable
and its complex conjugate.

𝐲̄ = [𝐲T, 𝐲H]T (B.15)

The mean vector and the augmented mean vector are given by their respective expectation.

𝛍 = E {𝐲} (B.16a)𝛍̄ = E {𝐲̄} (B.16b)

The second-order statistic is given by the augmented covariance matrix [ASS11]

𝚺̄𝐲̄𝐲̄ = E{(𝐲̄ − 𝛍̄) ⋅ (𝐲̄ − 𝛍̄)H} = [𝚺𝐲𝐲 𝚺̃𝐲𝐲𝚺̃†𝐲𝐲 𝚺†𝐲𝐲] , (B.17)

with the regular covariance matrix

𝚺𝐲𝐲 = E{(𝐲 − 𝛍) ⋅ (𝐲 − 𝛍)H} = 𝚺H𝐲𝐲 (B.18)

and the complementary covariance matrix

𝚺̃𝐲𝐲 = E{(𝐲 − 𝛍) ⋅ (𝐲 − 𝛍)T} = 𝚺̃T𝐲𝐲 . (B.19)

If the complementary covariance matrix is zero (𝚺̃𝐲𝐲 = 𝟎), the random variable is uncorrelated
with its complex conjugate. Such a complex random variable is stated as proper, otherwise as
improper [SS10]. Propriety implies that the covariance and cross-covariance matrices of the
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real and imaginary part fulfil

𝚺𝐲R𝐲R = 𝚺𝐲I𝐲I (B.20a)𝚺𝐲R𝐲I = −𝚺T𝐲I𝐲R . (B.20b)

Another property, which is commonly assigned to complex random variables, is circularity.
A complex random variable is circular, if its PDF is rotationally invariant in the complex plane.
Define the rotated version of 𝐲 in the complex plane.

́𝐲 = exp {𝚥𝜑} ⋅ 𝐲 (B.21)

The random vector is circular, if 𝐲 ≡ ́𝐲 [ASS11]. Basically, propriety requires that the second-
order statistics (second moment) is rotationally invariant, whereas circularity requires that all
moments are rotationally invariant.

Special Case: Normal Distribution Consider the complex random vector as normal
distributed. Hence, its real and imaginary parts are jointly normal distributed. The respective
PDF is [SS10]

𝐲 ∼ 𝑝 (𝐲) = 𝒩 (𝛍̄, 𝚺̄𝐲̄𝐲̄) = 1
𝜋𝑁√|𝚺̄𝐲̄𝐲̄| ⋅ exp{−12 (𝐲̄ − 𝛍̄)H 𝚺̄-1𝐲̄𝐲̄ (𝐲̄ − 𝛍̄)} . (B.22)

Furthermore, assume the complex random vector 𝐲 as proper. The PDF simplifies, because the
covariance matrix 𝚺̄𝐲̄𝐲̄ becomes of block diagonal structure. The determinant reduces to [PP12]

|𝚺̄𝐲̄𝐲̄| = |[𝚺𝐲𝐲 𝟎𝟎 𝚺†𝐲𝐲]| = |𝚺𝐲𝐲| ⋅ |𝚺†𝐲𝐲| = |𝚺𝐲𝐲|2 . (B.23)

Also, the argument of the exponential simplifies due to the block-diagonal structure of 𝚺̄𝐲̄𝐲̄.
12 (𝐲̄ − 𝛍̄)H ⋅ 𝚺̄-1𝐲̄𝐲̄ ⋅ (𝐲̄ − 𝛍̄) = (𝐲 − 𝛍)H ⋅ 𝚺̄-1𝐲𝐲 ⋅ (𝐲 − 𝛍) (B.24)

Plugging in yields the PDF of a proper complex normal distributed vector [SS10].

𝐲 ∼ 𝑝 (𝐲) = 𝒞𝒩 (𝛍, 𝚺𝐲𝐲) = 1𝜋𝑁 |𝚺𝐲𝐲| ⋅ exp{− (𝐲 − 𝛍)H 𝚺-1𝐲𝐲 (𝐲 − 𝛍)} (B.25)

𝒞𝒩 denotes the proper complex normal distribution, with the first and second argument
denoting the mean and variance, respectively. Quite often, measurement noise is assumed as
complex normal distributed, whereas circularity is implicitly assumed. Circularity of a normal
distributed random vector implies propriety and also zero-mean [SS10].
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APPENDIX C
Derivations for FMCW Radars

C.1 Degradation of the Resolution

The delayed, periodically radiated transmit signal at the stretch processing receiver is

𝑠P(𝑡)∗𝛿(𝑡 − 𝜏) = ∞
∑𝑛=−∞ 𝑠 (𝑡 − 𝑛 ⋅ 𝑇P) ∗𝛿(𝑡 − 𝜏) = ∞

∑𝑛=−∞ 𝑠 (𝑡 − 𝑛 ⋅ 𝑇P − 𝜏) . (C.1)

The output signal 𝑥(𝑡) of the stretch processor is given by the mixing of the transmit and echo
signal

𝑥(𝑡) = 𝑠P(𝑡)† ⋅ [𝑠P(𝑡)∗𝛿(𝑡 − 𝜏)] = ∞
∑𝑛1=−∞ 𝑠 (𝑡 − 𝑛1 ⋅ 𝑇P)† ⋅ ∞

∑𝑛2=−∞ 𝑠 (𝑡 − 𝑛2 ⋅ 𝑇P − 𝜏)
= ∞

∑𝑛1=−∞
∞

∑𝑛2=−∞ 𝑠 (𝑡 − 𝑛1 ⋅ 𝑇P)† ⋅ 𝑠 (𝑡 − 𝑛2 ⋅ 𝑇P − 𝜏) . (C.2)

The respective complex baseband signal is

𝑥(𝑡) = ∞
∑𝑛1=−∞

∞
∑𝑛2=−∞ rect

⎛⎜⎜⎝
𝑡 − 𝑇M2 − 𝑛1 ⋅ 𝑇P𝑇M

⎞⎟⎟⎠ ⋅ rect ⎛⎜⎜⎝
𝑡 − 𝑇M2 − 𝜏 − 𝑛2 ⋅ 𝑇P𝑇M

⎞⎟⎟⎠
⋅ exp{−𝚥2𝜋 (𝑓0 ⋅ (𝑡 − 𝑛1 ⋅ 𝑇P) + 𝑊2𝑇M

⋅ (𝑡 − 𝑛1 ⋅ 𝑇P)2)}
⋅ exp{𝚥2𝜋 (𝑓0 ⋅ (𝑡 − 𝑛2 ⋅ 𝑇P − 𝜏) + 𝑊2𝑇M

⋅ (𝑡 − 𝑛2 ⋅ 𝑇P − 𝜏)2)} . (C.3)

To simplify the above equation, the following lemma is necessary:

Lemma 1. Multiplication of two rectangular functions with the same width 𝑇, but different
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shifts 𝑎, 𝑏 ∈ ℝ is

rect(𝑡 − 𝑎𝑇 ) ⋅ rect(𝑡 − 𝑏𝑇 ) = rect(
𝑡 − 12 ⋅ (𝑎 + 𝑏)𝑇 − |𝑎 − 𝑏| ) .

Accordingly, the output signal of the stretch processor simplifies to

𝑥(𝑡) = ∞
∑𝑛1=−∞

∞
∑𝑛2=−∞ rect(

𝑡 − 12 ⋅ [𝜏 + 𝑇P (𝑛2 − 𝑛1) + 𝑇M]
𝑇M − |𝑇P (𝑛2 − 𝑛1) + 𝜏| )

⋅ exp{𝚥2𝜋 (𝑓0𝑛1𝑇P + 𝑊𝑇M
𝑇P𝑛1𝑡 − 𝑊2𝑇M

𝑛21𝑇P
2)}

⋅ exp{𝚥2𝜋 (−𝑛2𝑓0𝑇P − 𝑓0𝜏 + 𝑊2𝑇M
𝑛22𝑇P

2 + 𝑊2𝑇M
𝜏2 − 𝑊𝑇M

𝑇P𝑛2𝑡 − 𝑊𝑇M
𝑡𝜏 + 𝑊𝑇M

𝑇P𝑛2𝜏)}
= ∞

∑𝑛1=−∞
∞

∑𝑛2=−∞ rect(
𝑡 − 12 ⋅ [𝜏 + 𝑇P(𝑛1 + 𝑛2) + 𝑇M]

𝑇M − |𝑇P (𝑛2 − 𝑛1) + 𝜏| )
⋅ exp{𝚥2𝜋 ((𝑛2 − 𝑛1) 𝑓0𝑇P + (𝑛22 − 𝑛21) 𝑊2𝑇M

𝑇P
2 − 𝑓0 ⋅ 𝜏 + 𝑊2𝑇M

𝜏2 + 𝑛2 𝑊𝑇M
𝑇P𝜏)}

⋅ exp{𝚥2𝜋 ((𝑛2 − 𝑛1) 𝑊𝑇M
𝑇P𝑡 − 𝑊𝑇M

𝑡𝜏)} . (C.4)

The argument of the first exponential is constant w.r.t. the time and therefore does not result in
a beat frequency. Hence, this term can be neglected. The argument of the second exponential
results in the beat frequency, which, according to equation (4.4), is

𝑓b = 𝑑𝑑𝑡 ((𝑛1 − 𝑛2) ⋅ 𝑊 ⋅ 𝑇P𝑇M
⋅ 𝑡 − 𝑊𝑇M

⋅ 𝑡 ⋅ 𝜏) = 𝑊 ⋅ ((𝑛1 − 𝑛2) ⋅ 𝑇P𝑇M
− 𝜏𝑇M) . (C.5)

In order derive the resulting beat frequency, the relation between the variables 𝑛1 and 𝑛2 has to
be examined. Assuming a non-ambiguous delay, hence 0 ≤ 𝜏 < 𝑇P holds, the beat frequency
must fulfil 0 ≤ |𝑓b| < 𝑊 𝑇P/𝑇M . Plugging into the above formula for the beat frequency yields

0 ≤ |(𝑛1 − 𝑛2) ⋅ 𝑇P𝑇M
− 𝜏𝑇M | < 𝑇P𝑇M

. (C.6)

Because the quotient 𝜏𝑇P
has to fulfil 0 ≤ 𝜏𝑇P

< 1 and (𝑛1 − 𝑛2) ∈ ℤ holds, the following criteria
for the variable 𝑛1 and 𝑛2 is given

0 ≤ 𝑛1 − 𝑛2 ≤ 1 . (C.7)

Accordingly, the indices 𝑛1 and 𝑛2 can have the following relations: 𝑛1 = 𝑛2 and 𝑛1 = 𝑛2 + 1.
Hence, two terms remain for the double summation. Furthermore, it will be assumed, that the
period equals the modulation time (𝑇M ≈ 𝑇P) and the signal recovery time and wait time is
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zero: 𝑇R ≈ 0 and 𝑇W ≈ 0. The output signal of the stretch processor becomes

𝑥(𝑡) ≈ ∞
∑𝑛=−∞ rect(

𝑡 − 12 ⋅ [𝜏 + 𝑇M ⋅ (2𝑛 + 1)]𝑇M − 𝜏 ) ⋅ exp{𝚥2𝜋 (− 𝑊𝑇M
𝑡𝜏 − 𝑓0𝜏 + 𝑊2𝑇M

𝜏2 + 𝑊𝑛𝜏)}
+ ∞

∑𝑛=−∞ rect(
𝑡 − 12 ⋅ [𝜏 + 𝑇M ⋅ (2𝑛 + 2)]𝜏 )

⋅ exp{𝚥2𝜋 (𝑊𝑡 − 𝑊𝑇M
𝑡𝜏 + 𝑓0 (𝑇M − 𝜏) + 𝑊2𝑇M

𝜏2 + 𝑊𝑛𝜏 − (2𝑛 + 1)𝑊𝑇M2 )}
= ∞

∑𝑛=−∞ rect(
𝑡 − 𝜏2 − 𝑛𝑇M𝜏 )

⋅ exp{𝚥2𝜋 (𝑊𝑡 − 𝑊𝑇M
𝑡𝜏 + 𝑓0 (𝑇M − 𝜏) + 𝑊2𝑇M

𝜏2 + 𝑊𝑛𝜏 − (2𝑛 + 1)𝑊𝑇M2 )}
+ ∞

∑𝑛=−∞ rect
⎛⎜⎜⎝

𝑡 − 𝑇M+𝜏2 − 𝑛𝑇M𝑇M − 𝜏 ⎞⎟⎟⎠ ⋅ exp{𝚥2𝜋 (− 𝑊𝑇M
𝑡𝜏 − 𝑓0𝜏 + 𝑊2𝑇M

𝜏2 + 𝑊𝑛𝜏)} .
(C.8)

Note, that the first exponential in equation (C.4) has been neglected in the above equation,
because the term is constant w.r.t. the time. The beat frequencies for both summands in
equation (C.8) can be calculated according to equation (4.4). The resulting beat frequencies
are

𝑓b1 = 𝑊𝑇M
⋅ 𝜏 (C.9a)

𝑓b2 = 𝑊 − 𝑊𝑇M
⋅ 𝜏 , (C.9b)

which are present at disjunct time instances in each period (see Fig. 4.3). Beat frequency 𝑓b1results from the frequency shift between the received and the actually transmitted chirp, and lasts𝑇M − 𝜏 per period. Beat frequency 𝑓b2 results from the frequency shift between the received
and the next transmitted chirp, and lasts 𝜏 per period. Commonly, the second beat frequency is
not captured by the ADC, because 𝑓S ≪ 𝑊 and 𝜏 ≪ 𝑇M. Hence, the effectively processed beat
frequency is 𝑓b1. Accordingly, the received baseband signal for a single period is

𝑥(𝑡) ≈ rect
⎛⎜⎜⎝

𝑡 − 𝑇M+𝜏2𝑇M − 𝜏 ⎞⎟⎟⎠ ⋅ exp{𝚥2𝜋 ( 𝑊2𝑇M
𝜏2 − 𝑊𝑇M

𝑡𝜏 − 𝑓0𝜏)} . (C.10)
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C.2 Stretch Processing of Multiple Received
FMCW Signals

The signal at the receiver is given by the convolution of the transmit signal model (4.32) and
the propagation model (4.35).

𝑠(𝑡)∗ℎ(𝑡) = ∑𝑝 𝛾𝑝 ⋅ 𝛿 (𝑡 − 𝜏𝑝) ∗ ∑𝑛 ∑𝑚 𝑐𝑛,𝑚 [cos(𝜙+𝑛,𝑚(𝑡)) + cos(𝜙−𝑛,𝑚(𝑡))]
= ∑𝑛 ∑𝑚 ∑𝑝 𝛾𝑝 ⋅ 𝑐𝑛,𝑚 ⋅ [cos (𝜙+𝑛,𝑚 (𝑡 − 𝜏𝑝)) + cos (𝜙−𝑛,𝑚 (𝑡 − 𝜏𝑝))] (C.11)

The corresponding phase terms are

𝜙+𝑛,𝑚(𝑡 − 𝜏𝑝) = 𝜙+𝑛,𝑚(𝑡) − 𝜃𝑛,𝑚 (𝑡, 𝜏𝑝) − 2𝜋𝜏𝑝𝑛𝑓LO (C.12a)𝜙−𝑛,𝑚(𝑡 − 𝜏𝑝) = 𝜙−𝑛,𝑚(𝑡) + 𝜃𝑛,𝑚 (𝑡, 𝜏𝑝) − 2𝜋𝜏𝑝𝑛𝑓LO (C.12b)

𝜃𝑛,𝑚(𝑡, 𝜏𝑝) = 2𝜋𝜏𝑝 (𝑚𝑓RO + 𝑚𝑊RO𝑇M
𝑡 − 𝑚𝑊RO2𝑇M

𝜏𝑝) . (C.12c)

Plugging equation (C.11) into equation (4.34) yields the baseband signal.

𝑥(𝑡) = ∑𝑝 𝛾𝑝 ⋅ ∫𝑡+𝑇
𝑡 ∑𝑛1 ∑𝑚1 ∑𝑛2 ∑𝑚2

⋅𝑐𝑛2,𝑚2 ⋅ [cos(𝜙+𝑛2,𝑚2 (𝑡′ − 𝜏𝑝)) + cos(𝜙−𝑛2,𝑚2 (𝑡′ − 𝜏𝑝))]
⋅ 𝑐𝑛1,𝑚1 ⋅ [cos(𝜙+𝑛1,𝑚1(𝑡′)) + cos(𝜙−𝑛1,𝑚1(𝑡′))] 𝑑𝑡′ (C.13)

Using trigonometric identity 1 the phase terms of the resulting cosines are the sum/difference
of 𝜙±𝑛1,𝑚1(𝑡) and 𝜙±𝑛2,𝑚2(𝑡). The constant terms 𝜃𝑛,𝑚(𝑡, 𝜏𝑝) and 2𝜋𝜏𝑝𝑛𝑓LO will be ignored for now.
The resulting phase terms are listed in equation (C.15). Keeping in mind that 𝑛1, 𝑛2, 𝑚1, 𝑚2 ≥ 1
holds, only phase terms with the difference of the sum indices (𝑛1 −𝑛2 and 𝑚2 −𝑚1) will remain
after integration (low-pass filtering). Other phase terms, which result in a frequency above the
cut-off frequency of the low-pass filter, will vanish or at least become negligible. Finally, the
baseband signal is

𝑥(𝑡) ≈ ∑𝑝
𝛾𝑝2 ⋅ ∑𝑛1 ∑𝑚1 ∑𝑛2 ∑𝑚2

𝑐𝑛1,𝑚1 ⋅ 𝑐𝑛2,𝑚2 ⋅ cos(𝜙+𝑛1,𝑚1(𝑡) − 𝜙+𝑛2,𝑚2(𝑡 − 𝜏𝑝))
+ ∑𝑝

𝛾𝑝2 ⋅ ∑𝑛1 ∑𝑚1 ∑𝑛2 ∑𝑚2
𝑐𝑛1,𝑚1 ⋅ 𝑐𝑛2,𝑚2 ⋅ cos(𝜙−𝑛1,𝑚1(𝑡) − 𝜙−𝑛2,𝑚2(𝑡 − 𝜏𝑝)) . (C.14)

1cos 𝑥 cos 𝑦 = 0.5 ⋅ [cos(𝑥 − 𝑦) + cos(𝑥 + 𝑦)]
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𝜙+𝑛1,𝑚1(𝑡) + 𝜙+𝑛2,𝑚2(𝑡) = 2𝜋𝑡 (𝑛1 + 𝑛2) 𝑓LO + 𝜋 (𝑚1 + 𝑚2) 𝑊RO𝑇M
𝑡2 + 2𝜋𝑡 (𝑚1 + 𝑚2) 𝑓RO

(C.15a)

𝜙−𝑛1,𝑚1(𝑡) + 𝜙−𝑛2,𝑚2(𝑡) = 2𝜋𝑡 (𝑛1 + 𝑛2) 𝑓LO − 𝜋 (𝑚1 + 𝑚2) 𝑊RO𝑇M
𝑡2 − 2𝜋𝑡 (𝑚1 + 𝑚2) 𝑓RO

(C.15b)

𝜙+𝑛1,𝑚1(𝑡) − 𝜙+𝑛2,𝑚2(𝑡) = 2𝜋𝑡 (𝑛1 − 𝑛2) 𝑓LO + 𝜋 (𝑚1 − 𝑚2) 𝑊RO𝑇M
𝑡2 + 2𝜋𝑡 (𝑚1 − 𝑚2) 𝑓RO

(C.15c)

𝜙−𝑛1,𝑚1(𝑡) − 𝜙−𝑛2,𝑚2(𝑡) = 2𝜋𝑡 (𝑛2 − 𝑛1) 𝑓LO + 𝜋 (𝑚2 − 𝑚1) 𝑊RO𝑇M
𝑡2 + 2𝜋𝑡 (𝑚2 − 𝑚1) 𝑓RO

(C.15d)

𝜙+𝑛1,𝑚1(𝑡) + 𝜙−𝑛2,𝑚2(𝑡) = 2𝜋𝑡 (𝑛1 + 𝑛2) 𝑓LO + 𝜋 (𝑚1 − 𝑚2) 𝑊RO𝑇M
𝑡2 + 2𝜋𝑡 (𝑚1 − 𝑚2) 𝑓RO

(C.15e)

𝜙−𝑛1,𝑚1(𝑡) + 𝜙+𝑛2,𝑚2(𝑡) = 2𝜋𝑡 (𝑛1 + 𝑛2) 𝑓LO + 𝜋 (𝑚2 − 𝑚1) 𝑊RO𝑇M
𝑡2 + 2𝜋𝑡 (𝑚2 − 𝑚1) 𝑓RO

(C.15f)

𝜙−𝑛1,𝑚1(𝑡) − 𝜙+𝑛2,𝑚2(𝑡) = 2𝜋𝑡 (𝑛1 − 𝑛2) 𝑓LO − 𝜋 (𝑚1 + 𝑚2) 𝑊RO𝑇M
𝑡2 − 2𝜋𝑡 (𝑚1 + 𝑚2) 𝑓RO

(C.15g)

𝜙+𝑛1,𝑚1(𝑡) − 𝜙−𝑛2,𝑚2(𝑡) = 2𝜋𝑡 (𝑛1 − 𝑛2) 𝑓LO + 𝜋 (𝑚1 + 𝑚2) 𝑊RO𝑇M
𝑡2 + 2𝜋𝑡 (𝑚1 + 𝑚2) 𝑓RO

(C.15h)

C.3 FMCW Signal and Doppler Shift
Consider a time-variant delay, which varies linearly.

𝜏(𝑡) = 𝜏0 + 𝑣0𝑐0 𝑡 (C.16)

Plugging into equation (4.12) yields the following expression for the phase of the baseband
signal.

12𝜋𝜙(𝑡) = 𝑊2𝑇M
𝜏(𝑡)2 − 𝑊𝑇M

𝜏(𝑡)𝑡 − 𝑓0𝜏(𝑡)
= 𝑊2𝑇M [𝜏2

0 + 2𝑣0𝑐0 𝜏0𝑡 + (𝑣0𝑐0 𝑡)2] − 𝑊𝑇M
𝜏0𝑡 − 𝑊𝑇M

𝑣0𝑐0 𝑡2 − 𝑓0𝜏0 − 𝑣0𝑐0 𝑓0𝑡 (C.17)
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If the velocity of the scatterer is small, i.e. |𝑣0| ≪ 𝑐0 holds, the following approximations can
be drawn.

𝑣0𝑐0 𝑊𝑇M
𝜏0𝑡 − 𝑊𝑇M

𝜏0𝑡 = 𝑊𝑇M
𝜏0𝑡 (𝑣0𝑐0 − 1) ≈ − 𝑊𝑇M

𝜏0𝑡 (C.18a)

𝑊2𝑇M (𝑣0𝑐0 )2 𝑡2 − 𝑊𝑇M

𝑣0𝑐0 𝑡2 = 𝑊𝑇M

𝑣0𝑐0 𝑡2 ( 𝑣02𝑐0 − 1) ≈ − 𝑊𝑇M

𝑣0𝑐0 𝑡2 (C.18b)

The residual video phase term 𝑊𝜏2
0/2𝑇M will be neglected too, because it is commonly very

small [FJ15]. Accordingly, the phase term (C.17) reduces to

12𝜋𝜙(𝑡) ≈ − 𝑊𝑇M
𝜏0𝑡 − 𝑊𝑇M

𝑣0𝑐0 𝑡2 − 𝑓0𝜏0 − 𝑣0𝑐0 𝑓0𝑡 . (C.19)

Commonly, it is assumed, that the Doppler shift w.r.t. the frequency 𝑓0 dominates (narrowband
approximation of the Doppler shift, see Section 3.2.1).

𝑊𝑇M

𝑣0𝑐0 𝑡2 ≪ 𝑣0𝑐0 𝑓0𝑡 (C.20)

Approximation (C.20) necessitates that

𝑊𝑓0
≪ 𝑇M𝑡 (C.21)

holds. Hence, a short observation time has to be assumed. If so, the phase term (C.17) finally
reduces to [FJ15]

𝜙 (𝑡) ≈ −2𝜋 (𝑓0
𝑣0𝑐0 𝑡 + 𝑊𝑇M

𝜏0𝑡 + 𝑓0𝜏0) . (C.22)
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