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“It’s not what you look at that matters; it’s what you see.”

-Henry David Thoreau

“Anyone who has never made a mistake has never tried anything new.”

-Albert Einstein





Abstract

Since its introduction a little over 20 years ago, the Interconnection and Damping Assignment
Passivity-based Control (IDA-PBC) has led to many theoretical extensions and practical
applications. These controllers have been reported successful, among others, for i) their
robust features, ii) exploiting the system’s structural properties, and iii) their universal
stabilization feature, reflected in the wide variety of applications ranging from electrical,
mechanical, general nonlinear, and even infinite-dimensional systems. The major obstacle for
implementing this control scheme is the satisfaction of the matching condition, which turns
out to be a system of Partial Differential Equations (PDEs). Other significant problems
include the dissipation condition in Underactuated Mechanical Systems (UMSs), splitting
the controller scheme into two stages, and the incomplete theory for systems in implicit
representation, i.e., systems described by Differential-algebraic Equations (DAEs).

In this context, the present work is divided into two parts. First, we introduce algebraic
solutions for a class of nonlinear systems with polynomial structure. The proposed method
avoids some of the standard problems of IDA-PBC previously mentioned and leads to
conditions that can be recast as Sum of Squares (SOS) programs. Besides, it allows incor-
porating input saturation and minimization objectives to address the controller parameter
selection. In the second part, we generalized the total energy shaping IDA-PBC to mechan-
ical systems in implicit representation, i.e., with kinematic constraints. Furthermore, we
introduce a heuristic formulation and some constructive methods to solve the PDEs of the
matching conditions. Finally, we provide a method for eliminating kinematic constraints
and constraint forces, i.e., reducing the implicit to explicit representation.
The contributions are validated in two second-order polynomial systems, a third-order

rational system, the simple pendulum, the rolling disk, the Planar Vertical Takeoff-and-
landing (PVTOL) aircraft, the cart-pole and the portal crane. Real experiments are carried
out in the last two, both located at the Control Engineering Group’s laboratory in the
TU-Ilmenau.





Kurzfassung

Seit seiner Einführung vor etwas mehr als 20 Jahren hat das Verfahren Interconnection and
Damping Assignment Passivity-based Control (IDA-PBC) zu vielen theoretischen Erweite-
rungen und praktischen Anwendungen geführt. Diese Regler zeichen sich unter anderem
durch i) robuste Eigenschaften, ii) die Ausnutzung der strukturellen Eigenschaften des
Systems und iii) ihre universelle Stabilisierungseigenschaft aus. Dies spiegelt sich in der
großen Vielfalt der Anwendungen von elektrischen, mechanischen, allgemein nichtlinearen
und sogar unendlich-dimensionalen Systemen wider. Das größte Problem für die Imple-
mentierung dieser Regelverfahren ist die Erfüllung der sogenante matching condition, die
sich als ein System von partiellen Differentialgleichungen herausstellt. Weitere wichtige
Probleme sind die Dissipationsbedingung in unteraktuierten mechanischen Systemen, die
Aufteilung der Regelverfahren in zwei Stufen und die unvollständige Theorie für Systeme in
impliziter Darstellung, d.h. für Systeme, die durch differential-algebraische Gleichungen
beschrieben werden.
In diesem Zusammenhang gliedert sich die vorliegende Arbeit in zwei Teile. Zunächst

werden algebraische Lösungen für eine Klasse von nichtlinearen Systemen mit Polynom-
struktur vorgestellt. Die vorgeschlagene Methode vermeidet einige der zuvor erwähnten
Standardprobleme von IDA-PBC und führt zu Bedingungen, die als Summen-Quadrate-
Programme umformuliert werden können. Außerdem erlaubt sie die Einbeziehung von
Eingangssättigungs- und Minimierungszielen, um den Regler zu parametrieren. Im zwei-
ten Teil verallgemeinern wir die Gesamtenergieumformung bei IDA-PBC auf mechanische
Systeme in impliziter Darstellung, d.h. mit kinematischen Nebenbedingungen. Weiterhin
stellen wir eine heuristische Formulierung und einige konstruktive Methoden zur Lösung
der partiellen Differentialgleichungen der matching conditions vor. Schließlich stellen wir
eine Methode zur Eliminierung von kinematischen Zwangsbedingungen und Zwangskräften
vor, d. h. zur Reduzierung der impliziten auf die explizite Darstellung.

Die Beiträge werden in zwei Polynomsystemen zweiter Ordnung, einem rationalen System
dritter Ordnung, dem einfachen Pendel, der rollenden Scheibe, dem PVTOL-Flugzeug, dem
cart-pole System und dem Portalkran validiert. Für die beiden letztgenannten werden reale
Experimente durchgeführt, die beide im Labor des Fachgebiets Regelungstechnik an der
TU-Ilmenau angesiedelt sind.
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Notation and Acronyms

Throughout this dissertation, lower-case Roman letters refer to vectors, upper-case Roman
letters stand for matrices, upper-case script or blackboard letters denote sets or manifolds,
and upright bold letters are used to represent variables or functions from the implicit model
representation. For instance:

x, q, r, f, h Vectors and vector-valued functions
A, M, F, Γ Matrices and matrix-valued functions
R, Sn, X , E Sets and manifolds
M, G Matrices and matrix-valued functions from an implicit model
H, H, g Some exceptions caused by common conventions

If the same symbol denotes a variable or a function simultaneously, we will use the dot
notation to highlight this difference, e.g., x are the states of a dynamical system while x(·)
denotes its solution or integral curve. Besides, for multivariable calculus, we employ the
matrix calculus notation and the numerator layout (also known as Jacobian formulation),
meaning that the partial derivative ∂y

∂x is arranged as ∂y
∂x =

[
∂y
∂x1

∂y
∂x2

. . .
]
, where y is a

column vector (or scalar) function. The reader is additionally advised to look briefly at the
below-stated notation and acronyms.

Frequent Symbols

R set of real numbers
Rn set of real column vectors of length n
Rn×m set of n×m real matrices (n rows and m columns)
Rn×md set of n×m real matrices with rank d
Rn×nn set of square and invertible matrices of size n, or equivalently general

linear group of degree n over R
Sn n-dimensional sphere
C0 set of continuous functions
Ck set of functions with k-continuous derivatives
I real interval



xviii Notation and Acronyms

In identity matrix of size n
0n, 0n×m column vector of size n with elements equal to 0, matrix of size n×m

with elements equal to 0
:= equal by definition
≡ identical equality, i.e., f(x) ≡ g(x) imply f(x) = g(x) for all x
ei, ēi, êi column vectors with the i-th element equal to one and zeros elsewhere,

or equivalently, standard basis vectors for a Euclidean space
q, p, H, V generalized coordinates, generalized momenta, Hamiltonian, and

potential energy of mechanical systems in explicit representation
r, ρ, H, V coordinates, momenta, Hamiltonian, and potential energy of

mechanical systems in implicit representation
� end of a proof
4 end of an example

Superscripts, Subscripts and Accents

(·)> transpose of a matrix or vector
(·)∗ conjugate transpose
(·)−1 inverse of a non-singular square matrix
(·)−>

(
(·)−1)> or

(
(·)>

)−1

(·)g generalized inverse
(·)+ Moore–Penrose inverse
(·)s (·) + (·)>

(·)⊥ orthogonal complement of a subspace
(·)⊥, (·)⊥> left and right annihilators, respectively, which are full rank for

convenience
(·)>⊥, (·)>⊥> ((·)⊥)> , ((·)⊥>)>

(·)d desired constant or function
(·)? value on an equilibrum point
˙(·) first derivative of a (vector-valued) function with respect to time

(̈·) second derivative of a (vector-valued) function with respect to time

Operators and Relations

diag(A1, . . . , Ak) (block) diagonal matrix with entries given by A1, . . . , Ak, or
equivalently, the direct sum A1 ⊕ . . .⊕ Ak

vec(f1, . . . , fk) column vector build with the scalars or vectors f1, . . . , fk

coli(A), rowi(A) i-th column of A, i-th row of A



Notation and Acronyms xix

elemi,j(A) element of the i-th column and j-th row of A
rank(A) rank of a real matrix A
det(A) determinant of a real square matrix A
trace(A) trace of a real square matrix A
Colsp(A) column space of a matrix A, i.e., span of the columns of A
Rowsp(A) row space of a matrix A, i.e., span of the rows of A
Null(A) null space of a matrix A
int(A) interior of a set A
∂A boundary of a set A
span{f1, . . . , fk} span of the set of vectors {f1, . . . , fk}
dim(x) dimension of a real vector x
atan2(y, x) four-quadrant inverse tangent of y and x(n
k

)
binomial coefficient, i.e., n!

k!(n−k)!
M/A (generalized) Schur complement of (the block) A in the matrix M
A

1
2 A

1
2A

1
2 = A

λi(A) i-th eigenvalue of A
σmax(A), σmin(A) maximum, minimum singular value of A
loge(a), ln(a) natural logarithm of a
arg min
x∈X

f(x) argument x ∈ X that minimizes the function f

‖x‖2 , ‖A‖2 Euclidean norm of a real vector x, spectral norm of a real matrix A
∂f
∂x partial derivative of f with respect to x
∂>f
∂x

(
∂f
∂x

)>
∂2γ

∂x2 Hessian (second order partial derivative) of a function γ w.r.t. x
Lnfh(x) n-th order Lie (or directional) derivative of h along f evaluated at

x, i.e., L0
fh(x) = h(x), L1

fh(x) = Lfh(x) = ∂h
∂x(x)f(x),

L2
fh(x) = LfLfh(x) = ∂Lfh

∂x (x)f(x), . . . , Lnfh(x) = ∂Ln−1
f h

∂x (x)f(x)
[f, h] (x) Lie bracket of f and h evaluated at x, i.e., ∂h∂x(x)f(x)− ∂f

∂x(x)h(x)
f |x=x? evaluation of f in x?, i.e., f(x?)
f |X restriction of f in the set X
X × Y Cartesian product of sets X and Y
A⊗B Kronecker product of A and B
a ≥ b, a > b a is greater than or equal b, a is greater than b
a ≤ b, a < b a is less than or equal b, a is less than b
A � B, A � B A−B is positive semidefinite, A−B is positive definite
A � B, A ≺ B B − A is positive semidefinite, B − A is positive definite
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Acronyms

LHS Left-hand Side
RHS Right-hand Side
ODE Ordinary Differential Equation
DAE Differential-algebraic Equation
PDE Partial Differential Equation
UMS Underactuated Mechanical System
FMS Fully-actuated Mechanical System
DoF Degrees of Freedom
PVTOL Planar Vertical Takeoff-and-landing
PBC Passivity-based Control
IDA-PBC Interconnection and Damping Assignment Passivity-based Control
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PFL Partial Feedback Linearization
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Chapter 1

Introduction

Energy is a fundamental property of physical systems that describes their dynamic behavior
to such an extent that these systems can be considered energy transformation devices [1].
For example, the total mechanical energy (kinetic plus potential) of a falling object is
dissipated (transformed and transferred) in the presence of air friction, and it determines
the object’s velocity before hitting the ground. This is the starting point of passivity and
port-Hamiltonian systems, which are key components in multi-physics modeling and
control. In a nutshell, a passive system is a dynamic system that cannot possess more
energy than the one is supplied to it from its inputs, whereas a port-Hamiltonian system is
a dynamic system defined by a power conserving interconnection structure, a dissipation
object, and an energy-storing function called Hamiltonian [2]. Besides, port-Hamiltonian
systems are passive whenever their Hamiltonian is lower bounded but the converse is not
always true [3]. In both cases, the “energy” term is not necessarily a physical property but
an abstract generalization.

1.1 Motivation and Literature Review

Ortega and Spong coined the term Passivity-based Control (PBC) in [4] to describe
controller design methodologies that achieve stabilization by rendering the closed-loop
passive. The main motivation for PBC stems from three facts.

1. There is a strong link between passivity and stability [5–7].

2. The scheme may take advantage of the system’s structural properties [8, 9].

3. Passivity is an input-output feature, i.e., it is independent of the notion of states [3].

Several strategies within the framework PBC have been proposed in the last 40 years. For
example the Proportional-derivative (PD) controller [8, 10] and the potential energy shap-
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ing [11] for fully actuated mechanical systems, the energy-balancing PBC [12, 13], the energy-
Casimir methods [3, 14], backstepping and forwarding [5], the controlled Lagrangians [15–
17], theProportional-integral-derivative Passivity-based Control (PID-PBC) [18–
21], and the Interconnection and Damping Assignment Passivity-based Con-
trol (IDA-PBC) [22–24], to name but a few. Although not all of them were initially
proposed within the framework of passivity, they all belong to the PBC group.

1.1.1 Why IDA-PBC?

Since its introduction, the IDA-PBC has led to many theoretical extensions and practical
applications [13, 23–28]. In its most general description, this strategy achieves closed-loop
stabilization by transforming a nonlinear system into a port-Hamiltonian system with some
desired dissipation, interconnection structure, and lower bounded Hamiltonian. These
controllers solve some of the intrinsic problems of other PBC formulations, such as

• the dissipation obstacle in energy-balancing PBC [12],

• the restrictive total energy shaping in energy-Casimir methods [12], and

• the reduced system class of backstepping (pure-feedback form), forwarding (pure-
feedforward form) and controlled Lagrangians (Euler-Lagrange systems) [23, 24, 29].

Nevertheless, the above points are merely a product of the universal stabilization feature
of IDA-PBC [13], reflected in the wide variety of applications ranging from electrical [30–32],
mechanical [22, 33–35], electromechanical [25, 35–37], general nonlinear [23, 26], and even
infinite dimensional systems [38]. Another strength that cannot be overlooked is the inherent
robustness of IDA-PBC [39] that can be enhanced with a dynamic extension, designed
under adaptive control [40–45] or integral action control [46–50].

1.1.2 Obstacles in the Application of IDA-PBC

The standard IDA-PBC method requires a two-stage procedure: energy shaping and
damping injection. The energy shaping stage renders the nominal system into a lossless
port-Hamiltonian system under the satisfaction of the so-calledmatching condition, which
is a system of nonhomogeneous and quasilinear Partial Differential Equations (PDEs) with
unknowns in the target Hamiltonian and the desired interconnection structure and whose
solutions are not a simple task, see [51] for example. In the next stage, we inject damping
to render the closed-loop passive and guarantee stabilization whenever the Hamiltonian has
a strict minimum in the desired state.
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The Matching Condition

Solving the matching condition persists in being a stumbling block in IDA-PBC. Great
effort has been devoted to solve, simplify or completely avoid the PDEs. The simplest idea
goes back to [52], and it consists in fixing the desired energy function (Hamiltonian) so that
the PDEs are reduced to algebraic equations. This approach is then adapted to IDA-PBC
in [23, 25] for the control of a micro-electromechanical system and an induction motor.
By using algebraic solutions, Nunna et al. [26, 53, 54] introduce a dynamic extension to
further simplify the matching conditions, testing their results in three third-order systems: a
magnetic levitated ball, an electrostatic microactuator and a prey-predator system. However,
the resulting closed-loop may lose the port-Hamiltonian structure.

Changing the coordinates and modifying the target dynamics has been proposed in [52, 55]
to reduce or eliminate PDEs in port-Hamiltonian systems. In [56], Acosta and Astolfi
construct a dynamic extension and an approximate integral of the target Hamiltonian as an
alternative to handle the PDEs with major applications in strict-feedback and -feedforward
systems. In another perspective, for some systems, we can impose sufficient conditions to
ensure that the PDEs are reduced to simple integrals. This formulation has been developed
in [12, 57, 58] for the control of a class of Underactuated Mechanical Systems (UMSs) with
underactuation degree one and a magnetic levitated ball. Recently, in [59], the authors
transform the nonhomogeneous PDEs to the corresponding Pfaffian differential equations,
simplifying the solution task for third-order systems. Their results are verified in a magnetic
levitation system, a Pendubot and an underactuated cable-driven robot.
Underactuation is a technical term used in robotics and control theory to describe

mechanical systems that possess a lower number of independent actuators (or control
inputs) than Degrees of Freedom (DoF) [60]. The distinction is fundamental since it
poses a restriction to manipulate (or control) the instantaneous accelerations, meaning
that Fully-actuated Mechanical Systems (FMSs) can follow arbitrary trajectories
whileUnderactuated Mechanical Systems (UMSs) not [61–65]. For FMSs, the match-
ing condition of IDA-PBC is trivial, but for UMSs it is usually split twofold: a kinetic
energy shaping, which includes quasilinear PDEs, and a potential shaping part, which are
linear PDEs whenever the kinetic shaping has a solution first. In [66], it is used the so-called
λ-method to reduce the matching conditions to linear PDEs. The contribution is actually
developed for controlled Lagrangians, but the results can be easily extrapolated since this
formulation is strictly contained in IDA-PBC [17, 67]. In [68], Mahindrakar et al. proposed
a constructive approach for the potential energy shaping of a class of UMSs with two DoF,
obtaining for the first time swing-up and stabilization of the Acrobot without using two
distinct controllers. By using new passive outputs, in [20, 69], an alternative constructive
method that completely avoids PDEs for a class of UMSs is introduced. The approach has
been further developed under the name PID-PBC [70].
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Simultaneous IDA-PBC

Splitting the IDA-PBC in energy shaping and damping injection is not always the best
option. Batlle et al. [25] prove that such a partition prevents the application of IDA-PBC
in a simple induction motor regulation, and to overcome the problem, they propose a
one-stage approach called simultaneous IDA-PBC (SIDA-PBC). Inspired in [25], Donaire
et al. [24] introduce the use of generalized forces, extending the SIDA-PBC application in
UMSs at the cost of adding flexibility and complexity in the PDEs.

The Dissipation Condition

Another adversity in the IDA-PBC design is the dissipation condition. This problem
appears in mechanical systems when using kinetic energy shaping [27], and therefore also
in general port-Hamiltonian systems with total Hamiltonian shaping. As a remedy, [71]
propose to overcome the dissipation condition for a class of mechanical systems by adding
a cross term between coordinates and momenta in the desired Hamiltonian. However, the
stability proof relies on linearity, and it is not analyzed whether nonlinearities outside of
the local point contribute to or obstruct stability.

Implicit Mechanical Systems

At least two different representations can be used when modeling port-Hamiltonian sys-
tems [72]:

1. The implicit representation, where system models are obtained by aggregating
simpler subsystems and the dynamics are described by Differential-algebraic Equations
(DAEs) with the interconnections expressed as algebraic constraints.

2. The explicit representation, where the interconnections are simplified and the
system is handled as a whole with a model described by Ordinary Differential Equations
(ODEs).

For example, in the framework of implicit mechanical systems, interconnections can be
joint constraints, distances between points of a rigid body, a non-slip condition in wheeled
robots, etc. As discussed in [73], most ODEs that we encounter in applications are actually
simplified DAEs, and this reduction can

• produce less meaningful variables (physical quantities are usually found DAE models)

• require different explicit models,

• be numerically inefficient (most leading software generates a differential-algebraic
model whenever constraints are present), and
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• be time consuming or impossible to obtain.

In this regard, the IDA-PBC has been intensively studied on explicit systems, capturing
a wide range of applications. However, only few research has been devoted to IDA-PBC in
implicit systems. The first contribution goes back as far as [74] for the control of nonholo-
nomic systems with controlled Lagrangians. The approach is then extended and adapted
to IDA-PBC in [75]. Motivated by discretized infinite-dimensional systems, Macchelli [76]
introduces a general IDA-PBC approach, conditions of which are stated in image and kernel
Dirac representations with linear maps. This scheme appears very generic such that for
UMSs almost no advantages may be explored. Therefore, Castaños and Gromov [77] take a
closer look and focus on UMSs with holonomic constraints and a representation equivalent
to a Dirac structure given by a combination of hybrid and constrained input-output repre-
sentations, see [78]. Their algorithm does not modify the interconnection structure and
dissipation object, but, for a class of holonomic systems, is able to reduce the matching
condition to a simple quadratic programming problem. In other words, by using implicit
formulations, we may also avoid the PDEs of the matching conditions.

Input Saturation

It is well-known that input saturation can cause performance losses or even lead to closed-
loop instability. Perhaps the earliest inputs saturation work on PBC are due to Loria
et al. [79], where the authors present a dynamic output feedback controller with input
saturation for a class of FMSs. Escobar et al. [80] extend and implement this algorithm in
the TORA robot, which is an UMS. From the variable structure point of view, Machelli
[81, 82] develops an approach to energy shaping that includes input saturation for a class
of port-Hamiltonian systems. Later, Åström et al. [83] study the energy shaping with
input saturation for swinging up a pendulum. The works [84, 85] focus only on saturating
the damping injection term. Not long ago, Sprangers et al. [86] studied a reinforcement
learning method for energy shaping showing robust properties under input saturation.

1.1.3 Polynomial Systems and Sum of Squares

The celebrated book of Boyd et al. [87] has laid open the wide range of control problems
that can be stated as Linear Matrix Inequalities (LMIs). Most of the theory was focused
first on linear systems with nonlinearities modeled as uncertainty [88]. The contribution
of LMIs in nonlinear control roughly started with the Sum of Squares (SOS) decomposition,
which is a computationally tractable method to certify the nonnegativity of polynomial
functions and matrices. Since most nonlinear systems can be locally approximated [89]
or parameterized [90] with polynomial or rational functions, the SOS approach give new
perspectives for solving problems such as
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• construction of Lyapunov Functions [91],

• optimal control [92],

• H∞ control with policy iteration [93],

• stabilization of uncertain systems [94],

• controller synthesis with actuator saturation [95],

• control of UMSs [96, 97], and many more.

1.2 Contributions of this Thesis

This work has two main contributions. First, for a class of nonlinear systems, we introduce
algebraic solutions to avoid some of the standard problems of IDA-PBC: the necessity of
solving PDEs, meeting the dissipation condition, and splitting the controller scheme into
two stages. The proposed method leads to conditions that can be recast as SOS programs.
Besides, we consider input saturation and four minimization objectives, including local
optimal performance assignment, to address the great flexibility in the controller parameter
selection. The results are verified in two second-order polynomial systems, a third-order
rational system with two inputs, and the well-known cart-pole. This contribution leads to
the publications [98, 99]

The second contribution is the extension of the total energy shaping IDA-PBC to mechan-
ical systems with kinematic constraints (holonomic and nonholonomic). We combine the
formulations of [75] and [77] into a unique scheme and remove the conservative assumptions
that restricts the energy shaping and the scope of application. To solve the PDEs of the
matching conditions, we introduce i) a heuristic formulation based on Sum of Squares (SOS)
programs, and ii) some constructive methods that can also be employed in the explicit
representation. Furthermore, it is shown that, based on the full state information control
and two additional conditions, an output feedback controller might be obtained, reducing
measurement requirements. Finally, we provide a method for eliminating kinematic con-
straints and constraint forces, which allows for comparing the approaches from explicit and
implicit representations. The controller strategies are validated on two fully-actuated and
three underactuated benchmark examples: the rolling disk, the simple pendulum, the Planar
Vertical Takeoff-and-landing (PVTOL) aircraft, the portal crane and the cart-pole. Real
experiments are carried out in the last two, both located at the Control Engineering Group’s
laboratory in the TU Ilmenau. This contribution leads to the publications [100–104]
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1.3 Outline of the Thesis

The thesis is divided into four parts, where the second and third correspond to the contribu-
tions we discuss in the previous section, respectively. Outline of the parts can be consulted
below.

Part I

Chapter 2: This chapter provides an overview of the fundamental concepts that this
dissertation entails. It discusses stability of nonlinear autonomous systems, the SOS
decomposition, manifolds and vector fields, DAEs from a geometric perspective,
Lagrangian and Hamiltonian mechanics with kinematic constraints, and a closer look
at passivity and port-Hamiltonian systems.

Part II

Chapter 3: This chapter recalls the standard formulation of IDA-PBC for nonlinear
affine systems while introducing the use of generalized inverses to provide greater
flexibility in the controller expression. Furthermore, for a class of systems with
polynomial structure, we present a new algebraic solution, conditions of which can be
restated as SOS programs. An analysis of the region of convergence and a comparison
with Linear Time-invariant (LTI) systems is also addressed in this chapter. The
results are verified in two second-order systems: one polynomial and one rational.

Chapter 4: In this chapter, the new algebraic solution of Chapter 3 is extended by
incorporating input saturation and four main optimization objectives: volume max-
imization for the region of convergence, minimization of the control action, and
standard and generalized H2 local optimal performance assignment. We test the
results in a second-order polynomial system, a third-order rational system with two
inputs and the cart-pole.

Part III

Chapter 5: The chapter addresses the total energy shaping IDA-PBC for mechanical sys-
tems with and without kinematic constraints. The innovations are i) the introduction
of generalized inverses (to offer greater flexibility in the controller expression), ii) the
comparison between the standard and simultaneous IDA-PBC, iii) the unification
of [74, 75, 105] into a unique scheme while removing three conservative assumptions
that restrict the kinetic energy shaping and the scope of application for constrained
mechanical systems, and iv) the inclusion of non-classical constrained systems, i.e.,
systems where the constraint forces can perform work.
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Chapter 6: Under the developments of Chapter 5 for constrained mechanical systems,
in this chapter, we analyze the controller synthesis for Fully-actuated Mechanical
Systems (FMSs), testing the results in a simple pendulum and a vertical rolling disk.
For Underactuated Mechanical Systems (UMSs), we introduce a heuristic solution
and some constructive methods to solve the PDEs arising in the matching condition.
Furthermore, we generalized (by including constrained systems) the well-known result
that the PBC design can obviate velocity measurement for some unconstrained
systems, i.e., we present an output feedback controller for implicit systems. Finally,
to provide equivalence between explicit and implicit representations, we eliminate the
kinematic constraints and constraint forces of systems i) whose constraint forces are
allowed to perform work, ii) that possess holonomic and nonholonomic constraints
simultaneously, and iii) that have a closed-loop representation.

Chapter 7: This chapter deals with the controller design of Chapters 5 and 6 on three
underactuated benchmark examples with holonomic constraints: the PVTOL aircraft,
the portal crane, the cart-pole. Real experiments with a dSPACE are carried out in
the last two.

Part IV

Chapter 8 and Appendices A and B: These chapters provide the conclusions, fu-
ture works, standard lemmas employed throughout this thesis, and the proof of
propositions and lemmas of lesser relevance.



Chapter 2

Theoretical Preliminaries

This chapter provides an overview of the fundamental concepts that this dissertation entails.
Section 2.1 is devoted to studying the stability of nonlinear autonomous systems in the
sense of Lyapunov as well as the extensions under invariant sets. In Section 2.2, we review
the SOS decomposition, which is as a sufficient and computationally tractable condition
to certify the nonnegativity of polynomial functions. Section 2.3 is mainly concerned with
implicitly defined manifolds, and vector fields. It lays the foundations to analyze DAEs from
a geometric perspective in Section 2.4 and to understand the Lagrangian and Hamiltonian
mechanics with kinematic constraints (holonomic and nonholonomic) discussed in Section 2.5.
In addition, for each set of (non-independent or constraint-free) coordinates that completely
specify a mechanical system, it allows us to obtain equations of motion that are equivalent
for each selected set of coordinates. We close this preliminary chapter by presenting the
concepts of passivity and port-Hamiltonian systems in Section 2.6.

2.1 Stability of Nonlinear Affine Systems

System stability is one of the pillars for the design of nearly any control algorithm. Roughly
speaking, an equilibrium point of a dynamical system is stable if every solution starting in
a vicinity of the equilibrium remains nearby for all future time. In the following section, we
formalize this theory for autonomous systems and state the basic Lyapunov theorems as
well as their extensions under the invariance principle. The concepts presented here are
mainly borrowed from [106–110].

We begin by considering a nonlinear dynamical system of the form

ẋ = f(x), (2.1)

where x ∈ X ⊂ Rnx are the states, X is an open and connected set, and f : X → Rnx

is a locally Lipschitz continuous function. A solution (or integral curve) of (2.1)
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over an interval I ⊂ R is a differentiable map, represented by x : I → X and t 7→ x(t),
with the property that ẋ(t) = f(x(t)) holds for all t ∈ I. Besides, due to the Lipschitz
condition, the solution of the initial-value problem exists and is unique, see [110]. We call
x? an equilibrium point of the dynamical system (2.1) if f(x?) = 0, or equivalently if
x(tp) = x? =⇒ x(t) = x? for all t 6= tp.

Definition 2.1 (Lyapunov Stability). The equilibrium x? of (2.1) is

• (Lyapunov) stable if, for any neighborhood1 Xε of x?, there exists a neighborhood
Xδ of x? satisfying

x(t0) ∈ Xδ =⇒ x(t) ∈ Xε ∀t ≥ t0;

• (locally) asymptotically stable if it is stable and Xδ can be chosen such that

x(t0) ∈ Xδ =⇒ lim
t→∞

x(t) = x?;

• globally asymptotically stable if it is asymptotically stable and Xδ = Rnx; and

• unstable if it not stable.

2.1.1 Lyapunov’s Theorems

The following results, called the direct and indirect methods of Lyapunov, provide a simple
framework to determine the stability of an equilibrium point in the system (2.1). The direct
method relies on finding a so-called Lyapunov function, which can be interpreted as the
generalization of energy functions, while the indirect one analyzes the linearized system.

Theorem 2.1 (Lyapunov’s direct method). Consider the autonomous system (2.1) and
the equilibrium point x?. Suppose there exists a C1 (continuously differentiable) function
V : X → R such that

V (x?) = 0, (2.2a)
V (x) > 0 ∀x ∈ X − {x?} , (2.2b)

V̇ (x) = ∂V

∂x
f(x) ≤ 0 ∀x ∈ X . (2.2c)

Then, the equilibrium is (Lyapunov) stable. If additionally,

V̇ (x) = ∂V

∂x
f(x) < 0 ∀x ∈ X − {x?} , (2.2d)

1Let p be a point in a topological space M. A neighborhood of p is a open subset of M for which p
belongs.
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then it is asymptotically stable.

Theorem 2.2 (Lyapunov’s indirect method). Let x? be an equilibrium point of (2.1) with
f ∈ C1. Then, the equilibrium is

i) asymptotically stable if the real part of every eigenvalue in ∂f
∂x

∣∣∣
x=x?

is negative, and

ii) unstable if the real part of some eigenvalue of ∂f
∂x

∣∣∣
x=x?

is positive.

A C1 function V verifying (2.2a)–(2.2b) is called a candidate Lyapunov function
for (2.1) in the equilibrium x?. If V also fulfills (2.2c), then it is a Lyapunov function.
Observe that the conditions of Theorem 2.1 are only sufficient, meaning that if a candidate
function does not satisfy (2.2c) or (2.2d), it does not imply that the equilibrium is unstable
or stable but not asymptotically, it just means that the candidate function is inadequate.
In general, Lyapunov functions are non-unique and there is not a universal approach to
find them, but there are some cases in which the selection is relatively natural or intuitive.
For instance, in mechanical systems, the total energy (kinetic plus potential) is a standard
choice. If such a selection is not straightforward, there are various methods for constructing
V , e.g., the variable gradient, Krasovskii’s, Zubov’s, energy-Casimir, composite functions,
among others. An eager reader can consult [5, 107] for a comprehensive discussion on
some of the previously mentioned. Unlike Lyapunov’s direct method, Theorem 2.2 avoids
Lyapunov functions by calculating the Jacobian of f and evaluating its eigenvalues, i.e., the
qualitative behavior of the nonlinear system near the equilibrium point. If the Jacobian
matrix has at least one eigenvalue on the imaginary axis while the rest belong to the left
half-plane, stability cannot be establish with this theorem because the linearization could
behave differently from the original system.
It is important to remark that the conditions of Theorem 2.1 are unable to ensure that

every solution with initial conditions in X will approach x? or even stay at X for all t > t0.
However, if we find a constant d such that the set

Ωd := {x ∈ X | V (x) ≤ d}

is bounded, then every trajectory starting in Ωd ⊂ X will remain in Ωd because V̇ (x) ≤ 0,
or equivalently V (x(t)) ≤ V (x(t0)) ≤ d for all t ≥ t0. In view of the above, we say that
a set XR ⊂ X is a region of convergence (or attraction) of x? if x(t)→ x? as t→∞
for every solution starting in XR (not necessarily of the form of Ωd). From the proof
of Theorem 2.1, see [107], we can conclude that Ωd is actually a region of attraction of x?

if (2.2d) holds and x? is the only equilibrium in Ωd. Besides, the region of convergence
covers to the whole space Rnx if X = Rnx and Ωd is bounded for every value of d > 0. The
latter can be guarantee if V is radially unbounded, i.e.,

V (x)→∞ as ‖x‖ → ∞. (2.3)



14 Chapter 2. Theoretical Preliminaries

The next theorem provided by Barbashin and Krasovskii [109, p. 5226] summarizes this
insight.

Theorem 2.3. Let the conditions of Theorem 2.1 for asymptotic stability be fulfilled.
Assume besides that X = Rnx and V is radially unbounded, then the origin of (2.1) is
globally asymptotically stable.

2.1.2 Invariant Set Stability Theorems

To establish asymptotic stability using Theorem 2.1, we require to find a Lyapunov function
whose time derivative V̇ is negative definite2 about x?. As demonstrated in the theorem
below this condition can be relaxed while ensuring asymptotic stability if no solution other
than x(t) ≡ x? can stay indefinitely at the points where V̇ (x) = 0. Before we state the
theorem, let us introduce some necessary terminology. A set XI ⊂ X is called invariant with
respect to (2.1) if, for any initial state x(t0) inside of XI, the solutions remain in XI for all past
and future time, i.e., x(t0) ∈ XI =⇒ x(t) ∈ XI ∀t ∈ R. It is called positively invariant if
the solutions remain in XI for all future time, i.e., x(t0) ∈ XI =⇒ x(t) ∈ XI ∀t ≥ t0. The
region of convergence XR and the bounded set Ωd (of the previous section) are examples of
positively invariant sets.

Theorem 2.4 (LaSalle’s invariance principle). Let XI ⊂ X be a compact3 and positively
invariant set of (2.1). Assume there exists a C1 function V : XI → R with V̇ (x) = ∂V

∂x f(x) ≤
0. Let XL be the largest invariant set of (2.1) contained in

{
x ∈ XI | ∂V∂x f(x) = 0

}
.

Then, every solution of (2.1) starting in XI approaches XL as t→∞.

The previous theorem not only avoids the negative definite condition on V̇ , but it also
extends the Lyapunov direct method (Theorem 2.1) in four additional ways: First, it
allows sign-indefinite functions V . Second, we can guarantee convergence to an invariant
set rather than just an equilibrium point. Third, it gives an estimate of the region of
convergence which is more comprehensive than Ωd. And fourth, since XI is a compact set,
it may take the form of a manifold, which is not always an open subset of Rnx (with its
boundary) as it is in the classical Lyapunov theory. In other words, we can work with ODEs
on manifolds (also known as ODEs with invariants, see [112, 113]).

When V is selected as a Lyapunov function, we have the following corollary that histori-
cally predates LaSalle’s invariance principle.

2We recall that a function H : X → R is said to be positive definite about x? if H(x?) = 0 and H(x) > 0
for all x ∈ X − {x?}, and it is said to be positive semidefinite if H(x) ≥ 0 for all x ∈ X . Negative
definite and negative semidefinite functions are defined analogously. Finally, a function H is called
sign-indefinite if it is neither positive nor negative semidefinite.

3A set is called compact if it is closed and bounded [111].
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Corollary 2.1 (Barbashin-Krasovskii-LaSalle). Consider the autonomous system (2.1) and
assume there exists a C1 function V : X → R such that

V (x?) = 0,
V (x) > 0 ∀x ∈ X − {x?} ,

V̇ (x) = ∂V

∂x
f(x) ≤ 0 ∀x ∈ X .

Then, every bounded solution x(·) approaches the largest invariant set of (2.1) contained
in
{
x ∈ X | ∂V∂x f(x) = 0

}
. If this invariant set posses no other than the trivial solution

x(t) ≡ x?, then x? is asymptotically stable. The stability properties are global if V is also
radially unbounded.

2.2 Sum of Squares

Certifying the nonnegativity of a polynomial function is, in general, an NP-hard prob-
lem [114]. On the other hand, a polynomial function is nonnegative if it can be written as
a Sum of Squares (SOS) of polynomials, and this task is now equivalent to a semidefinite
program that can be solved numerically in polynomial-time. A wide variety of control
problems can be formulated under the framework of SOS, e.g. Lyapunov stability analysis.
In this section, we briefly recall the SOS method and its connection with nonlinear stability.
The ideas discussed here are essentially extracted from [115–119]. Due to space limita-
tions, it is not our purpose to review Linear Matrix Inequalities (LMIs) or Semidefinite
Programming (SDP). For that end, the reader can consult [87, 88, 120, 121].

2.2.1 SOS Decomposition

We proceed by introducing the required terminology. A monomial in x ∈ Rn is a product
given by

xα :=
n∏
i=1

xαii ,

where α1, α2, . . . , αn are nonnegative integers and xi is the i-th element of x. A (multivariate)
polynomial p in x is a linear combination of monomials in x, i.e.,

p(x) =
∑
α

aαx
α,

where the constants aα ∈ R are called coefficients. The (total) degree of a polynomial p,
denoted by deg(f), is the maximum number |α| := ∑n

i=1 αi with nonzero coefficient aα.
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Definition 2.2 (SOS polynomial). A multivariate polynomial p : Rn → R in x is said to
be SOS (or to accept a SOS decomposition) if there are polynomials g1, ..., gk (in x) such
that

p(x) =
k∑
i=1

g2
i (x).

The subsequent theorem states an equivalent characterization of SOS polynomials.

Theorem 2.5. A polynomial function p : Rn → R of degree 2d is SOS if and only if there
exists a positive semidefinite matrix Q such that

p(x) = Z>(x)QZ(x) ∀x ∈ Rn (2.4)

where Z is a vector of monomials in x of degree less than or equal to d.

Theorem 2.5 implies that finding a SOS decomposition for any polynomial p can be
recast as a semidefinite program, which is solved in polynomial time using interior-point
methods [91]. This recasting process involves two steps. First, a suitable selection of Z
such that the monomials of Z>QZ are enough to represent p. Note that the size of Z is
bounded by

(n+d
n

)
.4 In the second step, to fulfill (2.4), we compare all coefficients of the

corresponding polynomials to extract constraints of the form

F (Q) = 0, (2.5)

where F is affine on the elements of Q. Now, the semidefinite program can be expressed as

find Q

subject to (2.5), Q = Q> and Q � 0.

Example 2.1. Suppose we want to determine if the polynomial

p(x) = x2
1x

4
2 − 2x3

1x
3
2 + 2x4

1x
2
2 − 2x1x

5
2 + 2x6

2

is SOS. Selecting Z(x) = vec(x2
1x2, x1x

2
2, x

3
2) gives

p(x) = Z>(x)


q1 q2 q4

q2 q3 q5

q4 q5 q6


︸ ︷︷ ︸

Q

Z(x)

= q1x
4
1x

2
2 + 2q2x

3
1x

3
2 + q3x

2
1x

4
2 + 2q4x

2
1x

4
2 + 2q5x1x

5
2 + q6x

6
2.

4The maximum number of monomials required to identify a polynomial of degree d in n variables is
(
n+d
n

)
.
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The previous equality holds for all x ∈ R2 if and only if

q1 = 2, q2 = −1, q3 = 1− 2q4, q5 = −1, q6 = 2. (2.6)

Consequently, p is SOS if and only if we can find Q � 0 verifying (2.6). Let q4 = 0, then Q
is positive semidefinite and it admits the factorization Q = L>L with

L =

 1 −1 1
−1 0 1

 .
Hence, p(x) = Z>(x)L>LZ(x) = ‖LZ(x)‖22 =

(
x2

1x2 − x1x
2
2 + x3

2
)2 +

(
x3

2 − x2
1x2

)2. 4

The Definition 2.2 and Theorem 2.5 can be naturally extended to polynomial matrices
as follows.

Definition 2.3 (Matrix SOS). A polynomial matrix S : Rn → Rp×p is SOS if there exists
a polynomial matrix T , not necessary square, such that

S(x) = T>(x)T (x).

Theorem 2.6. A polynomial matrix S : Rn → Rp×p is SOS if and only if there exists a
positive semidefinite matrix Q such that

S(x) = (Ip ⊗ Z(x))>Q (Ip ⊗ Z(x)) , (2.7)

where Z is a column of monomials and ⊗ represents the Kronecker product.

We are ready to define SOS programs as convex optimization problems in the form:

minimize b>y

subject to Fi(x, y) = 0 i = {1, 2, . . . , k} ,
Sj(x, y) is SOS j = {1, 2, . . . , l} ,

where y ∈ Rm are the decision variables, b ∈ Rm is a constant, Fi and Sj are polynomial
in x but affine in y, and Sj(x, y) = S>j (x, y). Note, from Theorem 2.6, that linear matrix
inequalities P (y) � 0 can be included in a SOS program, because they belong to the class
of matrix SOS.
While the recasting process (SOS to SDP) in Example 2.1 is feasible by hand, the

overall situation is quite cumbersome. As a result, several software packages such as
SOSTOOLS [122], SparsePOP [123], GpoSolver [124], and SOSOPT [125], to name but a
few, have been developed. These implementations i) automate the process of conversion from
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a SOS program to a semidefinite program, ii) call a SDP solver, and iii) present the solution
in the original SOS program. Besides, they take advantage of sparsity, symmetry and
different representations to reduce computational cost and remove numerical ill-conditioning
in the semidefinite program [126–129]. Although newer alternatives claim to be more
efficient by solving the SOS decomposition without SDP [130, 131], these methods currently
have no software package to ease the general SOS decomposition task.

2.2.2 Stability with SOS

With these tools in mind and given that every SOS polynomial (or polynomial matrix)
is undoubtedly positive semidefinite, we can now replace any polynomial inequality with
an SOS decomposition. However, this is just a sufficient condition, meaning that there
might be positive semidefinite polynomials that are not SOS. In fact, Hilbert showed
in [132] that aside from i) univariate polynomials, ii) quadratic polynomials or iii) bivariate
quartics, there exist polynomials that fit into this group. The first historical example is the
Motzkin polynomial

p(x) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 + x6

3,

which is not SOS but its nonnegativity follows from the arithmetic-geometric inequality. A
similar situation is observed for polynomial matrices [117]. We will not address the question
of how conservative is decomposing a polynomial with SOS, but it is worth mentioning that
some results suggest it is not too conservative [133, 134]. The proposition below restates
the Barbashin-Krasovskii-LaSalle Corollary 2.1 under the SOS framework.

Proposition 2.1. Consider the autonomous system (2.1) and the equilibrium point x?.
Suppose there exists a polynomial function V : Rnx → R with V (x?) = 0 such that

V (x)−Ψ(x) is SOS (2.8a)

−∂V
∂x

f(x) is SOS, (2.8b)

where Ψ : Rnx → R is a given polynomial function that is positive definite about x?. Then,
the equilibrium is (Lyapunov) stable and every bounded solution x(·) approaches the largest
invariant set of (2.1) contained in

{
x ∈ Rnx | ∂V∂x f(x) = 0

}
. If this invariant set posses no

other than the trivial solution x(t) ≡ x?, then x? is asymptotically stable. The stability
properties are global if V is also radially unbounded.

Proof. From (2.8) and Ψ(x) being positive definite about x?, we have

V (x) ≥ Ψ(x) > 0 ∀x ∈ Rnx − {x?} .

V̇ (x) ≤ 0 ∀x ∈ Rnx .
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The proof follows from a straightforward application of Theorem 2.1 and Corollary 2.1.

2.3 Manifolds and Vector Fields

Throughout Part III, we will work with mechanical systems described by DAEs. For
those systems, we use implicitly defined manifolds as an intrinsic tool to handle kinematic
constraints. In essence, manifolds are an abstract generalization of curves and surfaces to
arbitrary dimensions with the property that locally, they are open subsets of Euclidean
space. Simple examples are n-spheres, paraboloids, ellipsoids and also Euclidean Spaces.
The purpose of this section is to provide a basic understanding of smooth manifolds, vector
fields, distributions, integral manifolds and conservative vector fields. The content is mainly
extracted from [135–139].

Definition 2.4 (Manifolds). LetM be a Hausdorff 5 topological space with a countable
basis of open sets (second-countable). A pair (N ,Ψ) is called a coordinate chart onM
if N is an open subset ofM and Ψ is a homeomorphism6 from N to an open subset of a
Banach space. The spaceM is said to be a manifold of dimension m (or an m-dimensional
manifold or just an m-manifold) if it is locally Euclidean of dimension m, i.e., for every
point p inM there exists a coordinate chart (N ,Ψ) onM such that p ∈ N and Ψ(N )
is an open subset of Rm.

For simplicity, let us think ofM as a topological subspace7 of an Euclidean space,
which means thatM is Hausdorff and second-countable, see [135, Proposition A.17]. Then,
M is a manifold if we can find a collection of charts whose domain coversM.
Example 2.2 (Open subsets). Any open subset of Rn is a manifold of dimension n because
it is a topological subspace of Rn that is homeomorphic to Rn with a single coordinate
chart. 4
Example 2.3 (Unit circle). A more interesting case is the unit circle

S1 :=
{

(x, y) ∈ R× R | x2 + y2 = 1
}
,

which is also a topological subspace of R2. Here we can define the charts (N1,Ψ1) and
(N2,Ψ2), where

N1 :=M−{(−1, 0)} , t1 = Ψ1(x, y) := y

1 + x
,

5A topological spaceM is Hausdorff if for each pair of different points p, q ∈M, there are open subsets
P, Q ∈M provided p ∈ P, q ∈ Q and P ∩Q = ∅.

6A continuous map between two topological spaces is said to be a homeomorphism if it is bijective and its
inverse is also continuous.

7Let X be a topological space with topology τ . We say that S is a (topological) subspace of X if S is an
arbitrary subset of X endowed with the subspace topology τ |S = {U ∈ τ | U ∩ S}. In other words, the
topology of the subset S is inherited (or induced) from X .
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N2 :=M−{(1, 0)} , t2 = Ψ2(x, y) := y

1− x,

and t1 stems from the intersection of the vertical line x = 0 and the line that passes through
the points (−1, 0) and (x, y), see Figure 2.1. The parametrization t2 is obtained analogously
with the point (1, 0). Since Ψi are homeomorphisms and N1 ∪ N2 = M, then S1 is a
1-dimensional manifold. 4

(x, y)
(0, t1)

(−1, 0)

y

x

S1

Figure 2.1. – Circle parametrization with t1.

2.3.1 Smooth Manifolds and Implicitly Defined Submanifolds

When working with manifolds, we usually require to do calculus on them, for instance,
integration or differentiation of a curve on a given manifold. Besides, manifolds are mostly
defined as subsets of other manifolds, especially as level sets.8 In this regard, we focus on
the class of smooth manifolds, and in particular, on the regular (or embedded) submanifolds.
Before presenting the main result, in Lemma 2.1, whereby we construct regular submanifolds
from level sets, we introduce the required terminology.

Definition 2.5 (Smooth manifolds). A manifoldM is endowed with a smooth structure
(or simplyM is a smooth manifold) if for any two charts (Ni,Ψi) and (Nj ,Ψj) onM with
Ni ∩Nj 6= ∅, the overlap map

Ψi ◦Ψ−1
j : Ψj(Ni ∩Nj)→ Ψi(Ni ∩Nj)

is a diffeomorphism,9 see Figure 2.2.

Definition 2.6 (Submanifolds). LetM be a smooth manifold and K be a subset ofM. A
subset K is a k-dimensional immersed submanifold ofM if K is also a smooth manifold

8By a level set, we mean a set of the form Sc := {x ∈M | γ(x) = c} for some constant c and mapping
γ :M→N

9A map f between two smooth manifolds is called a diffeomorphism if it is a homeomorphism and both f
and its inverse are of class C∞ (smooth).
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MNi
Nj

Ψi(Ni) ⊂ Rm Ψj(Nj) ⊂ Rm

Ψi Ψj

Ψi ◦Ψ−1
j

Figure 2.2. – ManifoldM with a nonempty intersection of two coordinate charts.

of dimension k. It is a k-dimensional regular (or embedded) submanifold ofM if for
every point p ∈ K, there exists a chart (N ,Ψ) ofM with p ∈ N verifying

Ψ(N ∩K) = Ψ(N ) ∩
(
Rk × {0}

)
.

From the definitions, a smooth manifold can be understood as a manifold for which an
arbitrary change of coordinates is always given by smooth functions. On the other hand, a
regular submanifold is an immersed submanifold10 that is also a topological subspace of the
smooth manifold where it is contained, i.e., it inherits the subspace topology. For instance,
the unit circle of Example 2.3 is a regular submanifold of R2 (see Example 2.4), whereas the
figure-eight defined by

{
(sin 2t, sin t) ∈ R2 | t ∈ (−π, π)

}
is an immersed submanifold of

R2 but not a regular one because it is a smooth manifold subset of R2 without the subspace
topology, see [135].

IfM is a smooth m-manifold. The tangent space toM at the point p ∈M, denoted
by TpM, is the linear subspace of dimension m spanned by the tangent vectors11 to all
possible curves inM that passes through p. In other words, the tangent space is the linear
approximation of a manifold at some point. Given a smooth mapping Φ :M→ N , the
rank of Φ at p ∈M is the rank of the linear map dΦp : TpM→ TΦ(p)N , i.e., the rank of
the Jacobian matrix of Φ at p bounded from above by the minimum dimension ofM and
N . A level set Sc = {p ∈M | Φ(p) = c} is called regular if dΦp is surjective for each

10Immersed submanifolds are also known as smooth submanifolds.
11Let γ : I ⊂ R→M be a C1 curve in a manifoldM with p = γ(tp). The tangent vector to γ at the point

p is the vector dγ
dt

∣∣
t=tp

.
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p ∈ Sc, meaning that the rank of Φ is equal to the dimension of N for all p ∈ Sc. We are
now ready to construct smooth manifolds from level sets.

Lemma 2.1 (Implicit definition of submanifolds). LetM and N be smooth manifolds of
dimension m and n, respectively, and let Φ :M→N be a smooth mapping. Every regular
level set of Φ is a properly embedded submanifold of dimension m− n.

Example 2.4 (Unit sphere of dimension n). Let us consider the unit n-sphere Sn :={
x ∈ Rn+1 | ‖x‖22 = 1

}
. Clearly, Sn is a level set where Φ can be selected as Φ : Rn+1 → R

with Φ(x) := 1
2 ‖x‖

2
2. Given that Euclidean spaces are smooth manifolds and the Jacobian

of Φ has rank 1 whenever x 6= 0, the level set Sn is a regular submanifold of Rn+1 with
dimension n. 4

By using Lemma 2.1 in the n-sphere, not only did we give a much simpler proof that S1

is a manifold, but we also show that it is a smooth one embedded in R2.

2.3.2 Vector Fields and Distributions

In its simplest form, a vector field in an open subset of Euclidean space is just a mapping
that assigns a vector to each point in the subset. We will extend this idea to smooth
manifolds as follows.

Definition 2.7 (Vector fields and integral curves). LetM be a smooth manifold. A map
f is called a vector field onM if it assigns a tangent vector f(x) ∈ TxM to every point
x ∈ M. A differentiable curve x : I →M with interval I ⊂ R is said to be an integral
curve of a vector field f if it verifies ẋ(t) = f(x(t)) for all t ∈ I.

From Definition 2.7, we see that an integral curve x(·) of a vector field f on a manifold
M is just a solution of the dynamical system ẋ = f(x) with the properties that x(·) remains
inM and f is the tangent vector to every solution. See Figure 2.3a for an example of a
vector field on S1 and Figure 2.3b for an integral curve x(·) on a manifoldM. Given that
M is locally diffeomorphic to Euclidean space and f(x) ∈ TxM, it can be demonstrated
that the solution of the initial-value problem exists and is unique if f is locally Lipschitz
continuous for all x ∈ M. This is essentially a restatement of the local existence and
uniqueness theorem for ODEs. Observe now that an integral curve (generated by a vector
field) is actually a 0- or 1-dimensional manifold. Similarly, we can extend this concept to
higher dimensions in the definition below.

Definition 2.8 (Distributions and integral manifolds). A distribution D on the manifold
M⊂ Rn is a mapping that assigns to each x ∈M, a linear subspace D(x) of TxM. We
say that D is regular if its dimension dimD(x) remains constant for all x ∈ M. An
immersed submanifold N ofM is called an integral manifold of the distribution D on
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f(1, 0)
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(a) Vector field on S1

x(t)f(x(t0))
f(x(t1))

f(x(t2))
f(x(t3))

M

y

x
z

(b) Integral curve x(·) onM with t0 < t1 < t2 < t3 < t

Figure 2.3. – Subfigures showing a vector field and an integral curve.

M if TxN = D(x) for every x ∈ N . A distribution D onM is integrable if through each
point x ∈M there is an integral manifold of D.

In other words, a distribution is the generalization of a vector field while an integrable
manifold is that of an integrable curve. Besides, we can generate distributions from a
set of vector fields f1, f2, . . . , fk onM as

Df1,...,fk(x) := span{f1(x), . . . , fk(x)} ∀x ∈M,

where dimDf1,...,fk(x) = rank
[
f1(x) . . . fk(x)

]
ifM is an open subset of Rn. We refer

the reader to the textbooks [139–142] for more details on vector fields and distributions
in ODEs and control. The above discussion raises an interesting question; namely, if every
vector field is (locally) integrable, is every distribution also (locally) integrable? The answer
to this question is given in Theorem 2.7 by requiring the involutive condition. A distribution
Df1,...,fk on M is called involutive if [fi, fj ] (x) ∈ Df1,...,fk(x) for all x ∈ M, where [·, ·]
denotes the Lie bracket operator between two vector fields.

Theorem 2.7 (Frobenius’ Theorem). A distribution D is (completely) integrable if and
only if it is involutive and regular.

Perhaps the paramount application of Frobenius’ Theorem 2.7 is in giving necessary and
sufficient conditions for the solution existence of first-order homogeneous PDEs as presented
in the next corollary.

Corollary 2.2. Consider B : X ⊂ Rnx → Rnx×m with full rank B(x). Let DB(x) be a
distribution generated by the columns of B, i.e., DB(x) := ColspB(x). For every x ∈ X ,
there exists a neighborhood N of x such that the PDE

∂h

∂x
(x)B(x) = 0 ∀x ∈ N (2.9)
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has a solution in h with rank nx −m if and only if the distribution DB is involutive.

2.3.3 Poincare’s Lemma and Conservative Vector Fields

In few words, differential forms are alternating tensor fields on manifolds. They can
be integrated over higher-dimensional submanifolds and generalize concepts such as the
cross product, curl, divergence and Jacobian determinant. Given that there is a natural
isomorphism between forms and vector fields, the Poincare lemma, which is technically
formulated in the language of differential forms, provides an abstraction to all existing
theorems of potential fields in multivariable calculus, namely the solutions φ, h and g in
the equations grad(φ) = f , div(h) = α and curl(g) = k, respectively [143]. Rather than
presenting Poincare’s Lemma together with a precise definition of differential forms, we
concentrate on the particular case of solving the equation grad(φ) = f (scalar potentials),
thereby obtaining the well-known integrability condition on conservative (or gradient)
vector fields, as stated in Lemma 2.2. An eager reader can consult [135, 144, 145] for a
better understanding of differential forms.

Lemma 2.2 (Gradient vector [23, 107]). Let f be a C1 (continuously differentiable) vector
field on X , an open subset of Rn. There exists a function φ : Rn → R with f(x) = ∂>φ

∂x if
and only if the vector f satisfies the integrability condition

∂f

∂x
= ∂>f

∂x
∀x ∈ X . (2.10)

If a function φ exists, then it can be calculated from the line integral

φ(x) =
∫ x

0
f>(x̄)dx̄+ a =

∫ 1

0
f>(xs)xds+ a,

where a ∈ R is an arbitrary constant.

2.4 Differential-algebraic Equations

When modeling, for example, physical systems with lumped-parameters (finite-dimensional),
we usually get differential equations of the form12

F (ẏ, y) = 0, (2.11)

where y ∈ Y are the states. If the Jacobian ∂F
∂ẏ is nonsingular, we can use the implicit

function theorem to (locally) transform (2.11) into the explicit ODE ẏ = f(y). However,
if the Jacobian is singular, the transformation is not direct and (2.11) is said to be
12Non-autonomous systems fit into (2.11) by appending t to x and including ṫ = 1.
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a Differential-algebraic Equation (DAE). The term “algebraic” does not necessarily
refer to polynomial equations but to non-differential ones.13 The most fundamental types
of DAEs in scientific or engineering problems are the quasilinear DAEs, given by

A(y)ẏ = B(y),

and the semi-explicit DAEs, given by

ẋ = g(x, z), (2.12a)
0 = Φ(x, z), (2.12b)

where A, B, g and Φ are functions of the states x ∈ X , y ∈ Y and z ∈ Z, and A(y) is non-
invertible. Relevant examples include electrical networks, finite dimensional multi-physic
systems and mechanical systems with kinematic constraints [2, 147]. In the following, we
briefly discuss the differential index of DAEs and the prevailing view of DAEs as ODEs on
manifolds, which was pioneered by Rheinboldt in [148]. For a fuller treatment on DAEs
from the “classical” (differential calculus and algebraic considerations) and geometric
perspectives, the reader is referred to [73, 113, 149–152].14

2.4.1 Differentiation Index

The index is a classification tool for DAEs that measures a specific aspect of the system
at hand. For example, the perturbation index measures the solution sensitivity of
the perturbed system while the differentiation index, which we properly define below,
measures the number of differentiations to render (2.11) explicit in ẏ. Although there are
several notions of index (Kronecker, perturbation, tractability, to name but a few), we focus
on the differentation index because it is the most popular classification tool for DAEs and
is closely related with the geometric perspective.

Definition 2.9. Consider the dynamical system (2.11). Its differentiation (or differ-
ential) index is the minimal number µ such that, using only algebraic manipulations, the
system of equations

F (ẏ, y) = 0, dF
dt (ẏ, y) = 0, . . . ,

dµF

dtµ
(ẏ, y) = 0.

can be transformed into an explicit ODE of the form ẏ = f(y).

13Some authors refer to (2.11) as an implicit ODE which is called regular or singular according to singularity
of its Jacobian ∂F

∂ẏ , see [146].
14Although the projector based analysis on DAEs [146] is an alternative approach with great relevance in

the general theory, it does not take part of our discussions.
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In other words, the differentiation index assumes that the nonlinear system (2.11) is
eventually reducible to an ODE, called the underlying ODE, and that this transformation
is accomplished in an iterative procedure with a finite number of steps (differentiations)
denoted by µ. Furthermore, after this reduction, the existence and uniqueness can be
guaranteed with the usual Lipschitz continuity assumption.15

Example 2.5 (Index 1 semi-explicit DAEs). Let us consider the system (2.12) with nonsin-
gular Jacobian ∂Φ

∂z . Note that (2.12a) is already explicit in ẋ while (2.12b) is independent
of ż. Thus, we differentiate (2.12b) w.r.t. the independent variable t to obtain

dΦ
dt = ∂Φ

∂x
g(x, z) + ∂Φ

∂z
ż = 0. (2.13)

Since ∂Φ
∂z is invertible, the underlying ODE can be express as

ẋ = g(x, z), (2.14a)

ż = −
(
∂Φ
∂z

)−1 ∂Φ
∂x

g(x, z), (2.14b)

meaning that our original system has differentiation index one. 4

In Example 2.5, we assume that ∂Φ
∂z is nonsingular. However, if it were singular, we would

proceed by writing (2.12a), (2.13) in a semi-explicit form (e.g., by using coordinate change
and algebraic manipulations) and differentiating the hidden constraints, which are the
equations without ẋ and ż.
Example 2.6 (Index 2 semi-explicit DAEs). Consider the system

ẋ = g(x, z), (2.15a)
0 = Φ(x), (2.15b)

and assume ∂Φ
∂x

∂g
∂z is nonsingular. Differentiating (2.15b) gives the hidden constraint

dΦ
dt = ∂Φ

∂x
g(x, z) = 0. (2.16)

In the next step, we differentiate this constraint and use the nonsingularity of ∂Φ
∂x

∂g
∂z to

write the underlying ODE as

ẋ = g(x, z), (2.17a)

ż = −
(
∂Φ
∂x

∂g

∂z

)−1 ∂

∂x

(
∂Φ
∂x

g(x, z)
)
g(x, z). (2.17b)

15Geometrically, it can be shown that the transformation of DAEs into ODEs is indeed a reduction
of manifolds. Consequently, the differentiation index is independent of the solution existence and
uniqueness [113].
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Hence, system (2.15) with nonsingular ∂Φ
∂x

∂g
∂z has index two. 4

In Example 2.5, we observe that the ODE (2.14) ensures Φ̇(x(t), z(t)) ≡ 0 but not
necessarily Φ(x(t), z(t)) ≡ 0. Similarly, in Example 2.6, (2.17) ensures Φ̈(x(t), z(t)) ≡ 0
but not Φ̇(x(t), z(t)) ≡ 0 or Φ(x(t)) ≡ 0. This issue is solved with the mean value theorem
by requiring that the initial conditions (x(t0), z(t0)) satisfy every constraint (including the
hidden ones). Initial conditions with this property are said to be consistent.

2.4.2 DAEs on Manifolds

For sake of simplicity, let us consider the semi-explicit DAE of index 2 discussed in Exam-
ple 2.6. By Lemma 2.1, the zero level set of Φ defines the regular submanifold

M := {x ∈ X | Φ(x) = 0} ⊂ Rnx

of dimension nx − nz whenever Φ is a smooth function and the Jacobian ∂Φ
∂x has full rank

onM. Given that every solution x(·) must belong toM, we deduce that x(·) is an integral
curve of the vector field g(x, z) onM, i.e.,

g(x, z) ∈ TxM :=
{
v ∈ Rnx | ∂Φ

∂x
v = 0

}
.

Besides, from the implicit function theorem on (2.16), there exists (locally) a C1 function
φ verifying z = φ(x), Φ(x, φ(x)) = 0 and that ∂φ

∂xg(x, z) is equal to the right-hand side
of (2.17b). In other words, z can be interpreted as an implicitly defined variable that
guarantees g(x, z) being a vector field on M. Figure 2.4 illustrates the situation with
g(x, z) := a(x) + b(x)z. Now, ifM is a smooth manifold, we have the following affirmations:

i) Every C1 solution (x(·), z(·)), which we assumed belongs to the open set X × Z, is
actually in the reduced manifold XR = {(x, φ(x)) | x ∈M}.

ii) The DAE (of Example 2.6) is in fact an ODE onM that is (locally) described by

ẋ = g(x, φ(x)), z = φ(x),

whereM is called the constrained state space.

iii) For every point x? inM, there exists a coordinate chart (N ?,Ψ?) onM with x? ∈ N ?

and local coordinates x̄ := Ψ?(x) such that for all x ∈ N the ODE of Item ii is
equivalent to

˙̄x = ∂Ψ?

∂x
g(x, φ(x))

∣∣∣∣
x=Ψ?−1(x̄)

, z = φ(Ψ?−1(x̄)).



28 Chapter 2. Theoretical Preliminaries

a(x)

ẋ

b(x)z

x

M

TxM

(TxM)⊥

Figure 2.4. – Vector field g(x, z) := a(x) + b(x)z ∈ TxM.

2.5 Analytical Mechanics of Rigid Multibody Systems

A rigid multibody system is a collection of interconnected rigid bodies, where the
interconnections are massless couplings and constraint elements. The approaches to model
such systems can be classified intoNewton-Euler mechanics and analytical mechanics.
The former, as its name suggests, involves a recursive application of Newton’s and Euler’s
laws. The latter has two dominant branches known as Lagrangian and Hamiltonian
mechanics, which essentially use the kinetic and potential energy to derive motion equations.
In this section, we focus on scleronomic (time independent [153]) mechanical systems and
give an overview of the leading analytical methods under the presence of kinematic
constraints.16 For a more in-depth discussion on mechanics, the reader can consult the
textbooks [154–158], and for a great emphasis on constraints, we refer to [10, 159–161].

2.5.1 Coordinates and Kinematic constraints

To describe the motion of a rigid multibody system, we start by specifying its geometry.
More precisely, we select a set of coordinates (or dynamical variables) that fully defines
the system configuration, which is the position and orientation of each body in the
system. These coordinates, that throughout this document we denote with the vector
r ∈ R ⊂ Rnr , are non-unique and may also be subject to constrains of the form

Φ(r) = 0 ∀r ∈ R, (2.18)

with Φ : R → RnΦ , where R is an open and connected set. Any kinematic constraint
that can be expressed as a functional relation between the coordinates alone, i.e., in the
form of (2.18), is said to be holonomic.17 Typical examples include joint constraints and
16A kinematic constraint is a functional relation between coordinates, velocities (or momenta) and time.
17Holonomic constraints are also called geometric because they impose a restriction on the system

configuration.
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distances between points of a rigid body. For simplicity, assume that the zero level set

RΦ := {r ∈ R | 0 = Φ(r)}

is an immersed submanifold of R with dimension nq = nr − nΦ.18 Then, RΦ is said to
be a configuration manifold (or space) [162] for the given multibody system because
each point in RΦ represents an admissible configuration. Although configuration manifolds
are generally non-unique, they are all diffeomorphic, i.e., they share the same topology,
which is inherent to the physical system and not to the coordinates we select to describe
it. The dimension of RΦ represents the number of DoF, that is, the minimum number
of independent (or constraint-free) coordinates that specify the system configuration. We
call these minimal coordinates generalized and denote them by q ∈ Q ⊂ Rnq , satisfying
r = ξ(q) for some surjective mapping ξ : Q → RΦ.19

Example 2.7 (Simple Pendulum). Let us examine the simple one arm pendulum of Figure 2.5.
It consists of a point mass m attached at the end of a weightless bar (or rod) of length
l. At the other end, there is a revolute joint constraining the mass position to a circle,
which implies that the configuration manifold is S1 and that it can be parameterized by the
angle θ ∈ Q = R (generalized coordinate). Alternatively, we can also select the Cartesian
coordinates r := vec(xp, yp) ∈ R = R2 on the position of m, obtaining the holonomic
constraint Φ(xp, yp) := x2

p +y2
p− l2 = 0. Note that RΦ ∼= S1 while ξ(θ) := vec(l cos θ, l sin θ)

is a surjection. 4

m

l

θ

xp

gc

yp

x

y

τ

Figure 2.5. – Simple pendulum diagram.

18If the mapping Φ is smooth and has full rank in RΦ, then RΦ is an embedded submanifold of R with
dimension nr − nΦ, see Lemma 2.1.

19We may require multiple sets of generalized coordinates to cover the whole configuration space.



30 Chapter 2. Theoretical Preliminaries

Kinematic constraints that could not be represented as (2.18) are said to be nonholo-
nomic. They have the property of restricting motion but not configuration. This is the
case of inequality constraints f(r, ṙ) ≤ 0 and constraints of the form f(ṙ, r) = 0 that cannot
be integrated into (2.18). In this dissertation, we will consider nonholonomic constraints in
Pfaffian form [163], namely

b>(r)ṙ = 0 (2.19)

for some function b. Observe from Corollary 2.2 that the distribution Db(r) := Null b>(r) is
not involutive. A common example of a nonholonomic constraint is the non-slip condition
in wheeled robots.

Definition 2.10. A holonomic system is a mechanical system whose constraints are
all holonomic. Analogously, the system is nonholonomic if all its constraints are non-
holonomic.

2.5.2 Lagrangian Mechanics

The Lagrange equations of motion for rigid multibody systems have their fundamentals in
Hamilton’s principle for holonomic systems and the Lagrange-d’Alembert formalism
for the general situation (holonomic and nonholonomic). These principles rely on the
topology of the configuration manifold and are therefore independent of a specific set of
coordinates.
To recall this concept, let us consider a rigid multibody system with coordinates r ∈ R

(that uniquely defines the system configuration) subject to the holonomic constraints (2.18),
defining an immersed submanifold RΦ.

Definition 2.11. The Lagrangian of a mechanical system is the difference between its
kinetic and potential energy, namely

L(r, ṙ) := 1
2 ṙ
>M(r)ṙ −V(r),

where V : R → R is the potential energy and M : R → Rnr×nr is the inertia matrix.

The Lagrange equations of the first kind are given by

d
dt
∂>L
∂ṙ
− ∂>L

∂r
+ ∂>D

∂ṙ
= ∂>Φ

∂r
λΦ + Bnh(r)λnh + G(r)u. (2.20)

where u ∈ U ⊂ Rnu is the control input, G : R → Rnr×nu is the input matrix, G(r)u are
the external control forces with the property that ṙ>G(r)u is power, D : R× Rnr → R is
the Rayleigh dissipation function, which is usually defined by

D(r, ṙ) := ṙ>R(r)ṙ (2.21)
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with R : R → Rnr×nr being a positive semidefinite dissipation matrix, ∂>Φ
∂r λΦ are the

constraint forces related to the holonomic constraints (2.18) while Bnh(r)λnh are the
constraint forces related to the nonholonomic (or non-integrable) constraints

0 = B>nh(r)ṙ ∀r ∈ R, ṙ ∈ Rnr , (2.22)

with Bnh : R → Rnr×nnh , and λΦ ∈ RnΦ and λnh ∈ Rnnh are Lagrange multipliers (or
implicit variables). Observe that constraint forces are workless for any trajectory of the
system, i.e.,

0 = ṙ>
∂>Φ
∂r

λΦ, 0 = ṙ>Bnh(r)λnh

for every λΦ ∈ RnΦ and λnh ∈ Rnnh , which is consistent with the Lagrange-d’Alembert
principle. By using the generalized coordinates q ∈ Q with r = ξ(q), we can eliminate the
redundant coordinates as well as the explicit appearance of constraint forces stemming from
holonomic constraints. This results in the Lagrange equations of the second kind
(also known as Euler-Lagrange equations)

d
dt
∂>L

∂q̇
− ∂>L

∂q
+ ∂>D

∂q̇
= Bnhλ̄nh +G(q)u, (2.23)

where L(q, q̇) = L(ξ(q), ∂ξ∂q q̇) = 1
2 q̇
> ∂>ξ

∂q M(ξ(q))∂ξ∂q q̇ −V(ξ(q)) = 1
2 q̇
>M(q)q̇ − V (q), G(q) =

∂>ξ
∂q G(ξ(q)),D(q, q̇) = D(ξ(q), ∂ξ∂q q̇) = q̇> ∂

>ξ
∂q R(ξ(q))∂ξ∂q q̇ = q̇>R(q)q̇, Bnh(q) = ∂>ξ

∂q Bnh(ξ(q)),
and (2.22) reduces to

0 = B>nh(q)q̇ ∀q ∈ Q, q̇ ∈ Rnq . (2.24)

We will not entail the debate of which model is better than the other, but we may point
out that Euler-Lagrange equations are mainly used in control because they constitute
a system ODEs in Euclidean space, and this situation also extends to systems with
nonholonomic constraints, given that they can take the form of ODEs as well, see [3].
In contrast, the Lagrange equations of the first kind, which are a system of DAEs, are
preferred in the simulation of complex systems because it might be impossible to obtain a
set of generalized coordinates q that is valid for the whole configuration space and q do
not necessarily have a physical significance [164]. We conclude this section, by providing a
classification of mechanical systems in the following definition.

Definition 2.12. A multibody system described by (2.20) is called fully-actuated if

rank
[
G(r) ∂>Φ

∂r Bnh(r)
]

= nr ∀r ∈ RΦ,
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or in the representation (2.23), if

rank
[
G(q) Bnh(q)

]
= nr − nΦ ∀q ∈ Q.

A system is said to be underactuated if it is not fully-actuated.

Definition 2.12 is of great relevance in control because if a system is fully-actuated, we
can arbitrarily modify the acceleration vector r̈ (or equivalently q̈) provided the resultant
trajectory is consistent with the kinematic constraints. In the situation without nonholo-
nomic constraints, this implies that q̈ can take any value, but r̈ must still agree with (2.18).
On the other hand, if the system is underactuated, the assignment of r̈ (or q̈) is less flexible,
meaning that the control law is far from trivial and must be carefully selected.

2.5.3 Hamiltonian Mechanics

The Lagrange equations presented above describe the behavior of a mechanical system
with respect to its coordinates (r or q) and velocities (ṙ or q̇). Similarly, in Hamiltonian
mechanics, we derive the equations of motion but with the velocity variables replaced by
their corresponding conjugate momenta

ρ := ∂>L
∂ṙ

= M(r)ṙ, p := ∂>L

∂q̇
= M(q)q̇.

Performing the above change of coordinates in the Lagrange equations (a process known as
Legendre transformation) is always feasible if the Lagrangian is regular (or nondegen-
erate), i.e., if M is nonsingular. As a result, system (2.20) with Rayleigh dissipation (2.21)
can be rewritten asṙ

ρ̇

 =

 0 Inr
−Inr −R(r)

∂>H
∂r

∂>H
∂ρ

+

 0
B(r)

λ+

 0
G(r)

u, (2.25a)

while the nonholonomic constraints (2.22) take the form

0 = B>nh(r)∂
>H
∂ρ

, (2.25b)

where B(r) :=
[
∂>Φ
∂r Bnh(r)

]
, λ = vec(λΦ, λnh) and H : R×Rnr → R is theHamiltonian

function defined as the total mechanical energy (kinetic plus potential), namely

H(r, ρ) = 1
2ρ
>M−1(r)ρ+ V(r).
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Similarly, system (2.23) and equations (2.24) can be expressed as

q̇
ṗ

 =

 0 Inq
−Inq −R(q)


∂>H∂q
∂>H
∂p

+

 0
Bnh(q)

 λ̄nh +

 0
G(q)

u, (2.26)

H(q, p) = H(ξ(q),M(ξ(q))∂ξ
∂q
M−1(q)p) = 1

2p
>M−1(q)p+ V (q),

0 = B>nh(q)∂
>H

∂p
.

Such equivalence between (2.25a) and (2.26) allows, e.g., to design a controller using one
representation and to implement it using the other. For a thorough geometric analysis of
the equivalence without nonholonomic constraints, the reader can consult [72].

2.5.4 Mechanical Systems as DAEs

We will apply the DAE concepts of Section 2.4 to mechanical systems with kinematic con-
straints (2.18) and (2.25b), whose motion is described by the Hamiltonian equations (2.25a).
We exclude the analysis of (2.26) as it obeys the same procedure. Differentiating the holo-
nomic constraints (2.18) w.r.t. time and rearranging with (2.25b), yields the momentum
level constraints

0 = B>(r)∂
>H
∂ρ

. (2.27)

Differentiating them, results in the hidden constraints

0 = d
dt

(
B>(r)∂

>H
∂ρ

)
= ∂B>M−1ρ

∂r
ṙ + B>(r)M−1(r)ρ̇

= ∂B>M−1ρ

∂r

∂>H
∂ρ

+ B>(r)M−1(r)
(
−∂
>H
∂r
−R(r)∂

>H
∂ρ

+ G(r)u+ B(r)λ
)
.

(2.28)

Hence, λ has a unique solution from (2.28) if B>(r)M−1(r)B(r) is nonsingular. Now,
following Hairer and Wanner [149], the system has differentiation index three if we consider
holonomic constraints and index two without them.20 Note that if B>(r)M−1(r)B(r)
is singular, λ could still be calculated but we will require additional derivatives in the
constraints, i.e., the index is higher. The equivalent ODE on a manifold Xc is thus given
by (2.25a) with λ calculated from the hidden constraints (2.28). The manifold Xc, which is
known as the constrained state space, is now defined as

Xc :=
{

(r, ρ) ∈ R× Rnr | 0 = Φ(r), 0 = B>(r)∂
>H
∂ρ

}
.

20Our result agrees with [149] but differs from van der Schaft’s [78] because of the chosen index.
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Eventually, the solution existence and uniqueness of (2.25a) over an interval I ⊂ R is
reduced to the standard Lipschitz condition on the underlying ODE.

2.6 Dissipativity

Dissipative systems are dynamical systems for which its stored “energy” is less than or
equal to the supplied one.21 In other words, there is energy dissipation along the system
trajectories and thus the name dissipative. Typical examples include mechanical and
electrical systems, where the dissipation stems from friction and electrical resistance. This
section gives a precise definition of dissipativity and passivity to then focus on stability
and port-Hamiltonian systems. For a more in-depth discussion on the topic, the reader can
consult [2, 3, 5, 165–167] from where most of the content is drawn.

2.6.1 Dissipative and Passive Systems

Let us consider a dynamical system of the form

ẋ = f(x) + g(x)u, (2.29a)
y = h(x, u), (2.29b)

where x ∈ X ⊂ Rnx are the states, u ∈ U ⊂ Rnu is the input and y ∈ Y ⊂ Rny is the
output. Besides, we assume that (2.29a) has a unique global solution to the initial-value
problem.

Definition 2.13 (Dissipativity). A system (2.29) is said to be dissipative with respect to
the supply rate ω : U × Y → R if there exists a positive semidefinite function S : X → R,
called the storage function, such that

S(x(T ))− S(x(t0)) ≤
∫ T

t0
ω(u(t), y(t))dt <∞ (2.30)

for every x(t0) = x0 ∈ X , u ∈ U and T ≥ t0. If (2.30) holds but S is not necessarily
positive definite, then (2.29) is called cyclo-dissipative.

Inequality (2.30), which is called the dissipation inequality, states that the system’s
energy can only be increased with the supply rate ω, namely a function of the input u and
output y. When S is differentiable, (2.30) can be written as

∂S

∂x
f(x) + ∂S

∂x
g(x)u ≤ ω(u, y) ∀x ∈ X , u ∈ U , (2.31)

21By energy, we do not necessarily refer to the physical property but the abstract generalization.
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which is known as the differential dissipation inequality. Condition (2.31) is mostly
used for stability analysis and control purposes because no knowledge of the system’s
trajectories is required. The storage function S is not unique, and the set of all possible
storage functions is convex. In fact, there is a function

Sa(x0) := sup
T≥t0, u∈U

−
∫ T

t0
ω(u(t), y(t))dt ≥ 0 x(t0) = x0 ∈ X ,

called the available storage, which can be understood as the maximum extractable energy
of a dissipative system in the state x0. The function Sa is itself a storage function and
verifies

S(x) ≥ Sa(x) x ∈ X ,

for any other storage function S with the same supply rate, see [5, 167].

Definition 2.14 (Passivity). System (2.29) with ny = nu is said to be

• passive if it is dissipative w.r.t. ω(u, y) := y>u,

• output strictly passive if it is dissipative w.r.t. ω(u, y) := y>u − δ(y) for some
positive definite function δ : Y → R, and

• lossless if it is passive and (2.30) holds with equality.

Cyclo-passive systems are defined analogously.

The differential dissipation inequality and Definition 2.14 lead to the following proposition.

Proposition 2.2. Consider (2.29) without throughput (or a feedthrough term), i.e.,
y = h(x). The system is passive with a C1 storage function S if and only if

∂S

∂x
f(x) ≤ 0 and ∂S

∂x
g(x) = h(x) ∀x ∈ X .

Proof. See [3, Proposition 4.1.2 and Corollary 4.1.5].

The conditions of Proposition 2.2 provide a characterization of input affine passive systems
and represent the nonlinear version of the celebrated Kalman-Yakubovich-Popov lemma
(see, e.g. [110]). As discussed by van der Schaft in [3], the definitions of dissipativity and
passivity are not limited to ODEs, and they can be easily extended to dynamical systems
with DAEs of the form

0 = F (ẋ, x, u), (2.32a)
y = h(x, u), (2.32b)
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where state, input and output spaces remain as in (2.29). Here, the solutions x(·), which are
assumed to belong to the open set X , are actually in the reduced manifold XR ⊂ X ⊂ Rnx ,
see Section 2.4.2. In this situation the dissipation inequality (2.30) and S(x) ≥ 0 are only
required to hold in XR.

2.6.2 Stability of Passive Systems and Damping Injection

A passive system is not inherently Lyapunov stable.22 For this relation to hold we require
additional conditions as demonstrated in Lemma 2.3. First, however, the following ter-
minology is required. A system (2.32) with zero input (u = 0) is said to be zero-state
detectable about the state x? if, for every x(t0) ∈ X ,

0 = h(x(t)) ∀t ≥ t0 =⇒ lim
t→∞

x(t) = x?.

It is called zero-state observable (about x?) if, for every x(t0) ∈ X ,

0 = h(x(t)) ∀t ≥ t0 =⇒ x(t) ≡ x?.

The properties are said to be local if they are valid for any initial condition x(t0) in a
neighborhood of x?.

Lemma 2.3 (Stability of passive systems). Let the system (2.29) be passive with a C1

storage function S. Let x? be an equilibrium point of (2.29a) with zero input (u = 0), i.e.
f(x?) = 0. Let h be C1 in u for all x, h(x?, 0) = 0 and S(x?) = 0. The following statements
hold for (2.29a) with zero input.

i) The equilibrium is stable if S is positive definite about x?.

ii) The equilibrium is stable if (2.29) is (locally) zero-state detectable about x?.

iii) The equilibrium is asymptotically stable if S is positive definite about x?, and x(t) ≡ x?

is the largest invariant set of (2.29a) with zero input contained in
{
x ∈ X | ∂S

∂x
f(x) = 0

}
.

iv) Suppose (2.29) is output strictly passive. The equilibrium is asymptotically stable if
and only if (2.29) is (locally) zero-state detectable about x?.

Moreover, the properties are global if S is radially unbounded and the detectability is not
only local.
22Consider the linear system ẋ1 = −x1 + u, ẋ2 = x2 + u with storage function S = 1

2x
2
1 and output y = x1.

Clearly the system with zero input is unstable, but Ṡ = −x2
1 + x1u ≤ yu which implies passivity.
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Proof. The stability proof of iii follows from a direct application of the Barbashin-
Krasovskii-LaSalle Corollary 2.1. The proof of i, ii and iv is along the same lines as [5,
Proof of Theorem 2.28].

Lemma 2.3 is fundamental in Passivity-based Control (PBC), and in our case in IDA-PBC.
The Theorem also supports the stronger condition of zero-state observability instead of
detectability. The main idea for the controller design is to transform a nonlinear system
into a passive system with a positive definite storage S to have stability in x?, and
then inject damping and use statements iii or iv to demonstrate asymptotic stability of
x?. Clearly, Lemma 2.3 can be modified to obtain convergence to a set rather than an
equilibrium point, but we will not prove this fact here. By damping injection we mean
the negative feedback interconnection (see Figure 2.6) of a passive system without
throughput and a locally Lipschitz function Ψ : X × Y → Rny with y>Ψ(x, y) ≥ 0, called
nonlinear damping. From the dissipation inequality (2.30) it can be seen that any passive
system with damping injection remains passive w.r.t the same storage function:

S(x(T ))− S(x(t0)) ≤
∫ T

t0
y>(t)u(t)dt =

∫ T

t0
y>(t)ū(t)dt−

∫ T

t0
y>(t)Ψ(x(t), y(t))dt

≤
∫ T

t0
y>(t)ū(t)dt.

Furthermore, the closed-loop is rendered output strictly passive if there is a positive definite
function δ : Y → R such that y>Ψ(x, y) ≥ δ(y) for all x ∈ X and y ∈ Y :

S(x(t))− S(x(t0)) ≤
∫ T

t0
y>(t)u(t)dt =

∫ T

t0
y>(t)ū(t)dt−

∫ T

t0
y>(t)Ψ(x(t), y(t))dt

≤
∫ T

t0
y>(t)ū(t)dt−

∫ T

t0
δ(y(t))dt.

In other words, any passive system can be converted into output strictly passive. Observe
from iii in Lemma 2.3 that if (2.29) is output strictly passive, then

{
x ∈ X | ∂S

∂x
f(x) = 0

}
⊂ {x ∈ X | h(x) = 0}

with the zero-state detectability property implies that the largest invariant set of (2.29a)
contained in

{
x ∈ X | ∂S∂xf(x) = 0

}
is {x?} , which is consistent with statement iv.

2.6.3 Port-Hamiltonian Systems

In a nutshell, port-Hamiltonian systems are cyclo-passive systems defined by a Dirac
structure and two types of components: energy-storing and energy-dissipating. The
energy-storing components are grouped into a single energy function H : X → R, called
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+ ẋ = f(x) + g(x)u h(x)

Ψ(x, y)

ū u x y

−

Figure 2.6. – Feedback interconnection of (2.29) with −Ψ.

the Hamiltonian. The energy-dissipating ones are constituted by static resistive elements.
And, the Dirac structure is a geometric and power-conserving structure that interconnects
the system components. Rather than taking the geometric viewpoint of Dirac structures—
fundamental for a coordinate-free analysis of port-Hamiltonian systems, see [2, 78]—we
employ the explicit and implicit input-state-output representations [3, 168].

Definition 2.15. An (explicit) input-state-output port-Hamiltonian system is a
system of the form23

ẋ = W (x)∂
>H

∂x
+ g(x)u, (2.33a)

y = g>(x)∂
>H

∂x
, (2.33b)

where x ∈ X ⊂ Rnx are the states, u ∈ U ⊂ Rnu is the input (port), y ∈ Y = U is the
output (port), g : X → Rnx×nu is the input matrix, H : X → R is the Hamiltonian or
energy function, and W : X → Rnx×nx fulfills the energy-balance relation

∂H

∂x
W (x)∂

>H

∂x
≤ 0 ∀x ∈ X . (2.34)

Note that the time derivative of H along the system’s trajectories is

Ḣ(x) = ∂H

∂x
ẋ = ∂H

∂x

(
W (x)∂

>H

∂x
+ g(x)u

)
≤ ∂H

∂x
g(x)u = y>u,

which implies cyclo-passivity, and passivity if H(x) ≥ 0 for all x ∈ X . The skew-symmetric
portion of W conserves power and is called interconnection matrix, whereas the sym-
metric portion (of W ) dissipates energy and is thereby called dissipation matrix.

Definition 2.16. An implicit input-state-output port-Hamiltonian system is a
system of the form

ẋ = W (x)∂
>H

∂x
+ g(x)u+ b(x)λ, (2.35a)

0 = b>(x)∂
>H

∂x
, (2.35b)

23When referring to this class of systems, the word “explicit” is usually omitted.
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y = g>(x)∂
>H

∂x
, (2.35c)

where x, u, y and H are given as in Definition 2.15. Besides, λ ∈ Rnλ is the implicit
variable, (2.35b) represents the independent constraints with constant rank b : X → Rnx×nλ

and W : X → Rnx×nx verifies the energy-balance relation (2.34) but for x in the
constrained state space Xc ⊂ X .

Similar to the explicit situation, the time derivative of H along the trajectories is

Ḣ(x) = ∂H

∂x

(
W (x)∂

>H

∂x
+ g(x)u+ b(x)λ

)
= ∂H

∂x
W (x)∂

>H

∂x
+ ∂H

∂x
g(x)u ≤ y>u,

which implies cyclo-passivity, and passivity if H(x) ≥ 0 for all x ∈ Xc. The implicit port-
Hamiltonian system (2.35a)–(2.35b) is a system of DAEs and constitutes a generalization
of the Hamiltonian equations for mechanical systems, see Section 2.5.3.
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Chapter 3

IDA-PBC for Systems with
Polynomial Structure

Most nonlinear affine systems can be locally approximated or even parameterized with
polynomial or rational functions, potentially simplifying their analysis and controller de-
sign. The purpose of this chapter is to introduce algebraic solutions for the well-known
Interconnection and Damping Assignment Passivity-based Control (IDA-PBC) in a class
of affine systems with polynomial structure. These classes do not involve solving Partial
Differential Equations (PDEs), and the proposed method leads to conditions that can
be recast as a Sum of Squares (SOS) program. The chapter is divided into two sections.
In Section 3.1, we provide the general formulation of IDA-PBC for nonlinear affine systems.
And, in Section 3.2, we introduce the algebraic solutions analyzing the region of convergence
and some particular parameterizations for the desired Hamiltonian function.

3.1 Nonlinear Affine Systems

Generally speaking, the IDA-PBC aims to stabilize a nonlinear system by transforming it
into a desired (or target) port-Hamiltonian system at the cost of satisfying the matching
and stabilizing conditions.

3.1.1 Preliminaries

Before presenting the IDA-PBC, let us introduce the required concepts and terminology
used extensively throughout this dissertation.
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Definition 3.1 (Annihilators). Given g : X → Rnx×nu, a function g⊥ with domain in X
is called the left annihilator of g if 24

Rowsp g⊥(x) = (Colsp g(x))⊥ ∀x ∈ X ,

that is, g⊥(x)g(x) ≡ 0 and rank g⊥(x) + rank g(x) ≡ nx. Similarly, a function g⊥> with
domain in X is said to be the right annihilator of g if

Colsp g⊥>(x) = (Rowsp g(x))⊥ ∀x ∈ X ,

that is, g(x)g⊥>(x) ≡ 0 and rank g⊥>(x) + rank g(x) ≡ nu.

For convenience, we will always consider g⊥(x) as a full rank matrix unless rank g(x) = nx,
in which case g⊥ is a zero matrix.25 An analogous argument applies to g⊥>.

Definition 3.2 (Generalized inverse [169, 170]). Let g be a matrix-valued function with
domain in X . A function gg is said to be a generalized inverse of g if

g(x)gg(x)g(x) = g(x) ∀x ∈ X .

A function g+ is called a Moore–Penrose inverse (or pseudoinverse) of g if it is a
generalized inverse and satisfies

g+(x)g(x)g+(x) = g+(x),
(
g(x)g+(x)

)∗
= g(x)g+(x),

(
g+(x)g(x)

)∗
= g+(x)g(x)

for every x ∈ X .

Lemma 3.1 (Inverse uniqueness). Let g be a matrix-valued function. If its Moore–Penrose
inverse g+ exists, then it is unique.

Proof. Point-wise extension of [169, Theorem 4.14]

Suppose g(x) can be decomposed as

g(x) = Ur(x)

Σ(x) 0
0 0

Ul(x),

where Ur, Ul and Σ are square and nonsingular matrix-valued functions of appropriate size.
Hence, according to [171], the set of all generalized inverses of g readsU−1

l (x)

Σ−1(x) R1(x)
R2(x) R3(x)

U−1
r (x) | R1, R2, R3 arbitrary

 ,
24The superscript ⊥ denotes the orthogonal complement of a subspace.
25By definition, a zero matrix is not full rank.
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and the uniquely defined Moore–Penrose inverse is

g+(x) = U−1
l (x)

Σ−1(x) 0
0 0

U−1
r (x).

Clearly, if g is constant, we can always compute its inverses by using the singular value
decomposition with Ur and Ul being unitary matrices26 and Σ being diagonal with positive
real numbers as elements. For other methods on calculating generalized inverses for constant
and polynomial matrices, the reader can consult [172–176].

Lemma 3.2. Consider A : X → Rn×s and G : X → Rn×m. Then, the equation

0 = A(x) +G(x)K(x) ∀x ∈ X

has a solution in K : X → Rm×s if and only if

0 = G⊥(x)A(x) ∀x ∈ X .

Furthermore, all the solutions are of the form

K(x) = −Gg(x)A(x) +G⊥>(x)ν,

where ν is arbitrary and of adequate size.

Proof. The proof is a point-wise extension of [169, Corollary 5.2] and the properties
of Lemma A.7, see also [177].

In particular, if G(x) is full column rank for every x ∈ X and we choose Gg as the
Moore–Penrose inverse, then K(x) = −

(
G>(x)G(x)

)−1
G>(x)A(x), which is a standard

result in Passivity-based Control (PBC), see [178, Lemma 2.1] or [179, Lemma 2]. The
advantage of using generalized inverses in Lemma 3.2 can be seen as follows. Suppose
G(x) =

[
E(x) Inu

]>
for some appropriate matrix-valued function E, then its Moore-

Penrose inverse reads

G+(x) =
(
E(x)E>(x) + Inu

)−1 [
E(x) Inu

]
.

Clearly, using G+ to build K can result in large expressions that may be difficult to compute
because of the term

(
E(x)E>(x) + Inu

)−1
. However, if we employ

Gg(x) =
[
0 Inu

]
,

26A real matrix U is said to be unitary if its inverse is equal to its transpose, i.e., U>U = UU> = I.
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the aforementioned problem is avoided. In fact, we may use the high flexibility in the
selection of Gg s.t. K takes its most simple form; however, this is still an open problem in
general, and the choice of Gg depends on the designer.
The lemma below extends the standard Finsler Lemma A.9 by providing equivalent

statements for non-strict inequalities.

Lemma 3.3 (Extended Finsler lemma). Let A ∈ Rn×n and B ∈ Rn×m be given. The
subsequent statements are equivalent:

i) y>Ay � 0 for all y ∈
{
y ∈ Rn | B>y = 0

}
.

ii) B⊥AsB>⊥ � 0.

iii) There exists K ∈ Rm×n such that As +BK +K>B> � 0.

If statement iii holds, the solutions of K are all of the form

K = K1B
> +

(
K2B⊥ −B+

)
AsB+

⊥B⊥ +B⊥>ν, (3.1a)

where K1 and K2 are arbitrary matrices of adequate size satisfying

Br
(
Ks

1 +B+AsB+> −K2B⊥A
sB>⊥K

>
2

)
B>r � 0, (3.1b)

ν is also arbitrary and (Bl, Br) are the full rank factors of B, i.e., B = BlBr. Suppose
rankB < n and y 6= 0, then statements i–iii are also equivalent with strict inequalities and
the solutions of K are given by (3.1) with (3.1b) being also strict.

Proof. See Appendix B.1.

Remark 3.1. Matrix K can be written as

K = K1B
> +B⊥>ν̄

if and only if there exist K1 and K2 satisfying (3.1b) and 0 = Br
(
K2B⊥ −B+

)
AsB>⊥ .

Corollary 3.1. Given A ∈ Rn×n and B ∈ Rn×m with symmetric A and rankB < n. Then,

A+BKB> � 0

has a solution in K ∈ Rm×m, if and only if

B⊥AB
>
⊥ � 0.

If a solution exist, they are all of the form

BrKB
>
r � B+

l

(
AB>⊥

(
B⊥AB

>
⊥

)−1
B⊥A− A

)
B+>

l ,
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where (Bl, Br) are the full-rank factors of B, i.e., B = BlBr.

Lemma 3.4. Assume A : X → Rn×n is partitioned as

A(x) =
[
B(x) C(x)

]
.

The following are equivalent for every x ∈ X :

i) The inverse of A exists and is given by

A−1(x) =

(C⊥(x)B(x))−1 C⊥(x)
(B⊥(x)C(x))−1B⊥(x)

 . (3.2)

ii) B⊥(x)C(x) and C⊥(x)B(x) are nonsingular.

iii) A(x) is nonsingular.

Proof. See Appendix B.2.

Lemma 3.5 (Subsets). Consider the nonempty sets Xα := {x ∈ X | α(x) ≥ 0} and Xβ :=
{x ∈ X | β(x) ≥ 0} for some functions α and β. If

α(x) ≤ β(x) ∀x ∈ Xα,

then Xα ⊂ Xβ.

Proof. Suppose there exists an element x? ∈ Xα that is not in Xβ. Then, α(x?) ≥ 0 > β(x?),
which is a contradiction, meaning that every element of Xα belongs to Xβ.

Let us consider the nonlinear and affine system

ẋ = f(x) + g(x)u, x ∈ X , u ∈ Rnu , (3.3)

where X is an open and connected subset of Rnx , f : X → Rnx , g : X → Rnx×nu has
constant rank, and f, g ∈ C1.

Definition 3.3. A point x? ∈ X is said to be an admissible equilibrium of (3.3) if
there exists a control action u = u? ∈ Rnu such that x? is an equilibrium point.

From this definition it is evident that x? being an admissible equilibrium is a necessary
condition for the asymptotic stabilization of the closed-loop in that point.

Lemma 3.6. The state x? is an admissible equilibrium of (3.3) if and only if

x? ∈ Xa := {x ∈ X | g⊥(x)f(x) = 0} .

Proof. Direct application of Lemma 3.2 on 0 = f(x?) + g(x?)u?.
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3.1.2 Controller Design

The following proposition extends the IDA-PBC methodology of [23, 29, 56] for affine
nonlinear systems by replacing the Moore-Penrose inverse with generalized inverses, which
are usually non-unique.

Proposition 3.1. Let system (3.3) be given. The state feedback u = uida(x), with

uida(x) = gg(x)
(
Wd(x)∂

>Hd

∂x
− f(x)

)
+ g⊥>(x)ν (3.4)

and arbitrary ν, transforms (3.3) into the desired or target system

ẋ = Wd(x)∂
>Hd

∂x
(3.5)

if and only if the matching condition

0 = g⊥(x)
(
Wd(x)∂

>Hd

∂x
− f(x)

)
∀x ∈ X (3.6)

holds. Here, Hd : X → R, Hd ∈ C1 and Wd : X → Rnx×nx. The closed-loop system (3.5) is
stable in the admissible equilibrium xd if

Hd(x)−Hd(xd) > 0 ∀x ∈ X − {xd} , (3.7a)

Ḣd(x) = ∂Hd

∂x
Wd(x)∂

>Hd

∂x
≤ 0 ∀x ∈ X . (3.7b)

Let Ωinv be the largest invariant set of (3.5) contained in

Ω :=
{
x ∈ X | ∂Hd

∂x
Wd(x)∂

>Hd

∂x
= 0

}
.

The equilibrium xd is (locally) asymptotically stable if Ωinv posses no other than the trivial
solution x(t) ≡ xd. Define Ac := {x ∈ Rnx |Hd(x) ≤ c} with c being the largest scalar such
that Ac ⊂ X is a compact set. Then, Ac is an estimate of the region of attraction.

Proof. Equating the right-hand side of (3.3) and (3.5) yields

0 = Wd(x)∂
>Hd

∂x
− f(x)− g(x)u. (3.8)

The control law (3.4) and matching condition (3.6) follow immediately from (3.8) with
Lemma 3.2. Let H̃d(x) := Hd(x)−Hd(xd) and take its time derivative along the trajectories
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of (3.5):
˙̃Hd(x) = ∂Hd

∂x
ẋ = ∂Hd

∂x
Wd(x)∂

>Hd

∂x
.

In view of conditions (3.7), we deduce that H̃d and ˙̃Hd are positive definite and negative
semidefinite (about xd), respectively. Now, since H̃d ∈ C1, the equilibrium xd is stable with
Lyapunov function H̃d (Theorem 2.1). Asymptotic stability and the region of attraction
are obtained by invoking LaSalle’s invariance principle, see Theorem 2.4.

Remark 3.2. Suppose (3.7a) is not necessarily fulfilled, and let yd be defined such that

y>d yd := −∂Hd

∂x
Wd(x)∂

>Hd

∂x
.

Then, asymptotic stability of xd is achieved if and only if (3.5) with output yd is zero-state
detectable about xd, see Lemma 2.3.

Remark 3.3. Assume Hd ∈ C2. The necessary and sufficient conditions (see [180, Proposition
1.3–1.4]) for Hd to have a strict local minimum in xd are

∂Hd

∂x

∣∣∣∣
x=xd

= 0, ∂2Hd

∂x2

∣∣∣∣∣
x=xd

� 0.

Remark 3.4. Setting

Wd(x) +W>d (x) � 0 ∀x ∈ X

is a sufficient but not necessary condition for (3.7b).

Remark 3.5. If X = Rnx and Ac is compact for every value of c > 0, i.e., Hd is radially
unbounded, then the asymptotic stability is global, see Section 2.1.

The crucial requirements for Proposition 3.1 are the satisfaction of the matching (3.6)
and the stabilizing conditions (3.7) for some g⊥, Hd and Wd. Then, we select gg and build
the controller uida. Note that a closed-loop verifying (3.7) is a port-Hamiltonian system
that is passive with respect to the triplet27

{
H̃d, ud, yd

}
, where H̃d(x) = Hd(x)−Hd(xd),

yd = g>(x)∂>Hd
∂x and u = uida(x) + ud, see Section 2.6. If the input matrix g is full row

rank, i.e., rank g(x) = nx, then g⊥ is a zero matrix and the problem is trivial because the
matching condition holds for an arbitrary closed-loop dynamics. Therefore, we can select
any Hd and Wd satisfying (3.7). However, if rank g(x) < nx, the solvability of (3.6) is in
general not a simple task [29], and we can classify its solution strategies in at least three
groups [23].

27We follow the notation of [27] by calling a system (output strictly) passive with respect to the triplet
{S, u, y} if it is (output strictly) passive with storage function S, input u, and output y.
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Non-parameterized: Fixing Wd and g⊥ in the matching condition (3.6) yields a PDE
whose general solution is the target Hamiltonian Hd, parameterized by arbitrary
functions that are selected to satisfy the strict (global) minimum of Hd in xd.

Algebraic: On the contrary, if Hd is initially fixed, then (3.6) becomes an algebraic
equation with unknowns in Wd and g⊥. We will use this perspective in the next
section to address systems with polynomial structure in the matching and stabilizing
conditions.

Parameterized: This scheme is typically employed for UMSs, as showed in Chapter 5.
It consists of exploiting the nominal system properties by restricting the target
Hamiltonian Hd to a particular class, which indirectly shapes the dissipation and
interconnection matrix Wd. We employ this solution in Chapter 5 to extend the
IDA-PBC to implicit mechanical systems.

In addition to the previous solutions strategies, we can assume that Wd is partitioned as

Wd(x) = W1(x)− g(x)Kvg
>(x), (3.9)

where W1 : X → Rnx×nx is skew-symmetric and Kv ∈ Rnu×nu is constant, then the design
procedure, known as standard IDA-PBC, is split in two distinct stages [13, 23, 25]:
energy shaping and damping injection. In the energy shaping stage we solve the
matching condition (3.6) for some functions Hd, W1, and g⊥ provided Hd is positive definite
about xd. Clearly, the term g(x)Kvg

>(x) vanishes from the matching condition, which
simplifies its solution. Later, in the damping injection (see Section 2.6.1), we choose
Kv +K>v � 0 to enforce (3.7b), obtaining a closed-loop that is output strictly passive w.r.t.{
H̃d, ud, yd

}
.

As pointed out in [25], partitioning Wd as (3.9) is not without loss of generality because it
reduces the system classes for which IDA-PBC is applicable. Therefore, whenever possible,
we pursue the one stage approach, also called Simultaneous IDA-PBC [24, 25] because
it involves searching directly for Wd, g⊥ and a positive definite (about xd) Hamiltonian
Hd such that conditions (3.6) and (3.7b) hold. Finally, Proposition 3.1 can be extended to
i) non-autonomous systems (see [181, 182]), and ii) stabilization of an invariant set rather
than an equilibrium point, see [183, 184] for instance, where a “Mexican hat” function is
assigned to the target Hamiltonian.

3.2 Systems with Polynomial Structure

Polynomials may simplify analysis and controller design of nonlinear systems. In doing so,
it is often preferred that all formulations remain polynomial and do not get rational. In
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this section, we take advantage of the algebraic solution and polynomial representation to
recast the IDA-PBC problem as Sum of Squares (SOS) programs.

3.2.1 Controller Design

In view of Proposition 3.1, we consider affine systems of the form (3.3) and define the
region of interest Xβ := {x ∈ Rnx | β(x) ≥ 0} with arbitrary function β : Rnx → R
such that Xβ ⊂ X and int(Xβ) is a connected set.28 For instance, Xβ is an ellipsoid if
β(x) = 1− x>Sβx and Sβ � 0, or Xβ is the whole space Rnx if β(x) = 0. We identify the
system class by imposing

Assumption 3.1. Given (3.3), there exist functions Λ0 : X → R(nx−m)×nz , z : X → Rnz

and g⊥ : X → R(nx−m)×nx verifying

g⊥(x)f(x) = Λ0(x)z(x) ∀x ∈ Xβ (3.10a)
z(x) = 0 ⇔ x = xd, ∀x ∈ Xβ (3.10b)

where xd is an admissible equilibrium. Here, nz ≥ nx and nu ≥ m := rank g(x).

By Lemma 3.6, the system (3.3) must satisfy g⊥(xd)f(xd) = 0 in the admissible equi-
librium xd, which means that (3.10a)–(3.10b) are not so conservative. Before stating our
main result in Proposition 3.2, let us consider the target system (3.5) and select Wd as

Wd(x) =

g⊥(x)
η>(x)

−1 F0(x)
F1(x)

 , (3.11a)

with nonsingular matrix
[
g⊥(x)
η>(x)

]
, for some functions F1, η : X → Rm×nx and F0 : X →

R(nx−m)×nx . We exploit the algebraic solution for the matching condition by fixing the
Hamiltonian as

Hd(x) = 1
2z
>(x)P−1z(x) + ψ(γ(x)), (3.11b)

where P ∈ Rnz×nz is a positive definite constant matrix, ψ is a C2 positive semidefinite
function (about 0) and γ is a function that verifies F0(x)∂>γ∂x = 0, see Corollary 2.2
and Lemma 2.2 for the solutions of γ.

Proposition 3.2. Consider the system (3.3) verifying Assumption 3.1. Let (3.5) be the
target system, where Wd and Hd are defined in (3.11) with γ(xd) = 0. Suppose P and F0

can be chosen such that

Λ0(x)P − F0(x)∂
>z

∂x
= 0 ∀x ∈ X , (3.12)

28The interior of a set A, denoted with int(A), is the union of all the open subset of A [111].
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AF(x) := −g⊥(x)F>0 (x)− F0(x)g>⊥(x)− β(x)S11(x) � 0 ∀x ∈ X (3.13)

for some S11 : X → R(nx−m)×(nx−m) with S11(x) � 0. Then, for every η provided[
g>⊥(x) η(x)

]
is nonsingular, there exists F1 verifying

−

g⊥(x)
η>(x)

F0(x)
F1(x)

>−
F0(x)
F1(x)

g⊥(x)
η>(x)

>− β(x)S1(x) � 0 ∀x ∈ X (3.14)

for some S1 : X → Rnx×nx with S1(x) � 0. The result also holds if (3.13) and (3.14) have
strict inequalities. Under such a P and F1, feedback u = uida(x) with

uida(x) =
(
η>(x)g(x)

)g
(
F1(x)∂

>Hd

∂x
− η>(x)f(x)

)
+ g⊥>(x)ν (3.15)

and arbitrary ν renders system (3.3) into a stable (in xd) port-Hamiltonian system (3.5).
Asymptotic stability in the equilibrium is demonstrated if the left-hand side of (3.14) is
positive definite. Furthermore, a solution to F1 verifying (3.14), or its strict version, is
given by

F1(x) = −
[
η>(x)F>0 (x) +K2(x)AF(x), K1(x)

] [
g>⊥(x) η(x)

]−1
(3.16a)

for any K1 : X → Rm×m and K2 : X → Rm×(nx−m) such that

K1(x) +K>1 (x)−K2(x)AF(x)K>2 (x) � 0 ∀x ∈ X . (3.16b)

Proof. The proof is divided into three parts: i) transformation of (3.3) into (3.5), ii) sta-
bility analysis, and iii) existence of F1. We will use Proposition 3.1 for the first two parts
and Lemma 3.3 for the last one.
i) Pick gg(x) :=

(
η>(x)g(x)

)g
η>(x), which is a generalized inverse of g because

g⊥(x)
η>(x)

 g(x)gg(x)g(x) =

 0
η>(x)g(x)

(
η>(x)g(x)

)g
η>(x)g(x)

 =

g⊥(x)
η>(x)

 g(x).

From (3.10a) and (3.11), the feedback (3.4) reads (3.15) and the matching condition (3.6)
yields

Λ0(x)z(x) = F0(x)∂
>z

∂x
P−1z(x) ∀x ∈ X , (3.17)

where (3.12) is a sufficient condition for (3.17), meaning that (3.15) transforms system (3.3)
into (3.5).
ii) From (3.10b), P � 0, ψ being positive semidefinite (about 0) and γ(xd) = 0, it follows

that Hd is positive definite about xd for all x ∈ Xβ. Next, multiply (3.14) on the left by
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∂Hd
∂x G

−1(x) and on the right by G−>(x)∂>Hd
∂x , with G(x) =

[
g⊥(x)
η>(x)

]
, obtaining

Ḣd(x) = ∂Hd

∂x
Wd(x)∂

>Hd

∂x
≤ −1

2β(x)∂Hd

∂x
G−1(x)S1(x)G−>(x)∂

>Hd

∂x
∀x ∈ X .

Since S1(x) � 0, we deduce that Ḣd(x) ≤ 0 whenever x ∈ Xβ. Thus, the closed-loop with
domain in int(Xβ), an open and connected subset of X ⊂ Rnx , is stable in xd. Moreover,
since Hd ∈ C2 is positive definite, we have ∂Hd

∂x

∣∣∣
x=xd

= 0 and ∂2Hd
∂x2

∣∣∣
x=xd

� 0, see [180,
Section 1.3]. Consequently, there is a neighborhood of xd subset of Xβ s.t.

{
∂Hd
∂x = 0

}
= {xd} .

Now, If the left-hand side of (3.14) is positive definite, then asymptotic stability can be
demonstrated with Lyapunov’s direct method (Theorem 2.1) on such neighborhood.
iii) Let us decompose S1 as

S1(x) =

S11(x) S12(x)
S>12(x) S22(x)


with S12(x) ∈ R(nx−m)×nu and S22(x) ∈ Rm×m. Inequality (3.14) may be rewritten as

Ax(x)−

 0
Im

F1(x)
[
g>⊥(x) η(x)

]
−

g⊥(x)
η>(x)

F>1 (x)
[
0 Im

]
� 0, (3.18)

Ax(x) =

−F0(x)g>⊥(x)− g⊥(x)F>0 (x)− β(x)S11(x) −F0(x)η(x)− β(x)S12(x)
−η>(x)F>0 (x)− β(x)S>12(x) −β(x)S22(x)

 .
Let η satisfy the nonsingular condition on

[
g>⊥(x) η(x)

]
. A direct application of Lemma 3.3

shows that (3.18) has a solution to F1 if and only if so does (3.13). Besides, (3.16) gives a
suitable solution provided S12(x) = 0 and S22(x) = 0. The same is true for strict inequalities
in (3.13) and (3.18).

For a class of affine systems, Proposition 3.2 exposes sufficient conditions to synthesize
the stabilizing controller (3.15). The controller synthesis procedure requires to first select
the region of interest Xβ and functions g⊥, Λ0 and z under Assumption 3.1. In the next step,
we solve (3.12)–(3.13) for P , F0 and S11. If g⊥, β, F0, S11, Λ0 and z are all polynomial, we
can reformulate this task as the SOS program below.29

29Notice that the SOS decomposition is only a sufficient condition because there exist positive semidefinite
polynomials that are not SOS, see Section 2.2.
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SOS Program 3.1.

find the coefficients of P, F0, S11

subject to Λ0(x)P = F0(x)∂
>z

∂x
,

P − ε0Inz is SOS,
S11 is SOS,
− g⊥(x)F>0 (x)− F0(x)g>⊥(x)− β(x)S11(x)− ε1Inx−m is SOS,

where ε0 > 0 and ε1 ≥ 0 are user defined constants.

Later, we select η and calculate F1 from (3.16a) with some user-defined functions K1

and K2 (not necessarily polynomial) verifying (3.16b). However, instead of calculating F1

afterwards, we may fix η and search simultaneously for P , F0, F1 and S1 satisfying the
conditions (3.12) and (3.14). Similarly, if g⊥, η, β, F0, F1, S1, Λ0 and z are all polynomial,
then the problem can be recast as

SOS Program 3.2.

find the coefficients of P, F0, F1, S1

subject to Λ0(x)P = F0(x)∂
>z

∂x
,

P − ε0Inz is SOS,
S1 is SOS,

−

g⊥(x)
η>(x)

F0(x)
F1(x)

>−
F0(x)
F1(x)

g⊥(x)
η>(x)

>− β(x)S1(x)− ε1Inx is SOS,

where ε0 > 0 and ε1 ≥ 0 are user defined constants.

In the SOS programs, the term ε0Inz establishes a minimum bound in P and guarantees
P � 0 while the terms ε1Inx−m and ε1Inx with ε1 > 0 are used to impose strict inequalities
in (3.13) and (3.14), and thus guarantee asymptotic stability. Besides, if dim(z) = dim(x)
and ∂z

∂x is nonsingular in Xβ, then (3.12) has a unique solution in F0 given by

F0(x) = Λ0(x)P
(
∂z

∂x

)−>
, (3.19)

which can be introduced in the SOS Programs 3.1 and 3.2 whenever the right-hand side
of (3.19) is polynomial for every P . Observe that Λ0 and z are not necessarily polynomial
in this case. Lastly, with the obtained P , F0 and F1, we calculate γ, select ψ,

(
η>(x)g(x)

)g
,

g⊥> and ν, and build the controller (3.15).



Systems with Polynomial Structure 55

In comparison, SOS Program 3.1 posses smaller LMIs, whereas SOS Program 3.2 defines
F1 as a polynomial function that is included in the optimization. Consequently, SOS
Program 3.2 requires a higher computational cost (time) but allows imposing minimization
objectives in P , F0 and F1 at the same time. Note that having a large number of unknown
coefficients provides a great flexibility in the controller performance but may lead to
an unpredictable behavior because the SOS Programs 3.1 and 3.2 have either none or
infinite solutions. We can alleviate or even solve this issue by imposing constraints or
minimization objectives on such new variables as we will discuss in Chapter 4. Given that
the computational cost of SOS programs is upper bounded by a polynomial expression
of the number of coefficients and linear constraints, we should aim (in practice) at a low
polynomial order on the unknown functions F0, F1, S1 and S11. In this context, SOS
Program 3.1 can be used as a fast indicator such that SOS Program 3.2 will work, but
since F1 is not necessarily polynomial,30 this is experimentally still a good but not an
unconditionally reliable reference.

Even tough, Proposition 3.2 impose only sufficient conditions, making it a bit conservative,
it has the following advantages:

i) The matching condition is solved algebraically, avoiding the solution of PDEs.

ii) The controller design is not restricted to polynomial systems, i.e., f and g can posses
non-polynomial elements (see Example 3.3 or Section 4.4).

iii) The terms β(x)S11(x) and β(x)S1(x) provide a relaxation for the local objectives.

iv) The polynomial structure allows to reformulate the matching and stabilizing conditions
as the SOS Programs 3.1 or 3.2, simplifying algebraic analysis.

v) The design avoids the conservative partitioning of Wd as (3.9).

Throughout this dissertation, we will solve SOS programs with SOSTOOLS [122] because
it is a free and third-party MATLAB toolbox that provides an intuitive environment to work
with polynomial matrices, equality constraints, and minimization objectives. In addition it
is compatible with many commercial and non-commercial Semidefinite Programming (SDP)
solvers, namely SeDuMi, SDPT3, CSDP, SDPNAL, SDPNAL+ and SDPA.

Example 3.1. Consider the polynomial systemẋ1

ẋ2

 =

x2
1 + x2

x1

+

0
1

u (3.20)

30Proposition 3.2 does not guarantee the existence of a polynomial F1, which is a stronger condition.
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with x := vec(x1, x2) ∈ X = R2. We shall determine an asymptotically stabilizing controller
with Proposition 3.2 and SOS Program 3.1. For this, we select the desired equilibrium

xd = vec(x?1,−(x?1)2) ∈ Xa :=
{
x ∈ R2 | x2

1 + x2 = 0
}

and the region of interest Xβ as the whole space R2 with β(x) = 0. Next, we pick

z(x) = vec(x1 − x?1, x2
1 + x2), g⊥ =

[
1 0

]
, Λ0 =

[
0 1

]
to fulfill Assumption 3.1, i.e.,

g⊥(x)f(x) = Λ0z(x) and z(x) = 0 ⇐⇒ x = xd.

At this point, we fix ε0 = ε1 = 10−5, S11(x) = 0 and employ the solution of F0 given
by (3.19), which is polynomial for every P because ∂z

∂x is unimodular31 and Λ0 is constant.
Solving the SOS Program 3.1 in SOSTOOLS and SDPT3 [185] yields

P =

 5.079 −1.935
−1.935 5.079

 � 0,

i.e., (3.13) holds with a strict inequality. To calculate γ, we use Lemma 2.2 and search for
a full-rank right annihilator of F0 that is also a gradient vector:

F0(x)
[
2x1 + 2.624 1

]>
= 0.

Then, integration of the right annihilator yields

γ(x) =
∫ 1

0

[
2x1s+ 2.624 1

]
xds+ a = x2

1 + 2.624x1 + x2 + a,

where we pick a such that γ(xd) = 0, i.e., γ(x) = x2
1+2.624(x1−x?1)+x2. In the next step, we

choose ψ(γ) = 10−3γ4, η = g and F1 from (3.16) with K2(x) = 0. Hence, controller (3.15)
reads

uida(x) = 1.17x?1 − 0.4458x2 − 2.17x1 − 0.0878K1x1 − 0.2303K1x2

+ 0.0878K1x
?
1 − 2.679x1x2 + 1.783x1x

?
1 − 0.2303K1x

2
1

− 1.783x2
1x2 + 0.6794x2

1x
?
1 − 2.229x2

1 − 3.359x3
1 − 1.783x4

1

− (γ(x))3(0.004K1 + 0.0813x1 + 0.0533 + 0.031x2
1)

(3.21)

31A polynomial matrix is unimodular if it is square and its inverse is again a polynomial matrix. In other
words, its determinant is always a non-zero constant.
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and yields an asymptotically stable closed-loop in xd for any K1(x) > 0, where (n>g)g = 1
and g⊥>(x)ν = 0.
Figure 3.1 shows the simulation results of system (3.20) with initial conditions x(0) =

vec(2,−5) under the controller (3.21), where K1(x) = 5(x2
1 + 1)−1 is chosen for illustration.

We restrict the time span to 12 s, where the desired equilibrium is set to xd = 0 for t ∈ [0, 6[
s and xd = vec(2,−4) for t ∈ [6, 12[ s. Clearly, the states converge to xd asymptotically
and the desired Hamiltonian decreases monotonically as expected. 4

3.2.2 Application to Linear Time-invariant Systems

Consider a Linear Time-invariant (LTI) system of the form

ẋ = Ax+Bu,

Assumption 3.1 is satisfied with

z(x) = x− xd, β(x) = 0, Λ0 = B⊥A,

for every xd such that
0 = B⊥Axd,

see Lemma 3.6. From Proposition 3.2 with γ(x) = 0 and β(x) = 0, we conclude that
F0 = B⊥AP and there exists F1 verifying (3.14) if P can be chosen such that P � 0 and

AF := −B⊥PA>B>⊥ −B⊥APB>⊥ � 0. (3.22)

With such a P and F1, the controller (3.15) stabilizes the nominal system in the origin.
Asymptotic stability is achieved if (3.22) holds with a strict inequality. Besides, a solution
of F1 is

F1 = −
[
η>PA>B>⊥ +K2AF, K1

] [
B>⊥ , η

]−1

for any K1 and K2 verifying

K1 +K>1 −K2AFK
>
2 � 0.

Let B be full column rank, and set η = B, K2 = 0 and K1 = kB>B with k > 0, then the
solution of F1 reduces to

F1 = −B>PA>B+
⊥B⊥ − kB

>, (3.23)
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Figure 3.1. – Evolution of x, uida and Hd in Example 3.1.
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where the inverse of
[
B>⊥ , η

]
is computed from Lemma 3.4. Here, we can observe that

equations (3.22) and (3.23) are equivalent to the results of [186, Proposition 7 and Remark 8].
In addition, according to [187, 188], solvability of P for (3.22) is equivalent to stabilizability
of the pair (A,B).

3.2.3 Dimension of z greater than x

Let us consider a function z with a dimension greater than nx and take z(x) = vec(x, xv)
with xv : X → Rnz−nx . Then, z contains the states x and some functions of the states
called xv. It is interesting to see that this approach is equivalent to the adding of virtual
states xv in the system (3.3) and then searching for a desired system with z as the new
states. Thus, the original and desired systems take the form

ż =

 ẋ
ẋv

 =

 In
∂xv
∂x

 (f(x) + g(x)uida(x)) =

 In
∂xv
∂x


Wd(x)︷ ︸︸ ︷g⊥(x)

η>(x)

−1 F0(x)
F1(x)

 [In ∂>xv
∂x

]
︸ ︷︷ ︸

=:W̄d(x)

∂>Hd

∂z
.

The stability analysis given by W̄d(x) + W̄>d (x) � 0 completes this equivalence. Note that
the main advantage of choosing a vector z with dimension greater than nx is in the selection
of Λ0, g⊥ and z from Assumption 3.1, which influence the algorithm solution. However, in
this case we cannot achieve W̄d(x) + W̄>d (x) ≺ 0 since rankWd = nx < nz.

3.2.4 Region of Convergence

The conditions of Proposition 3.2 cannot guarantee that every solution with initial conditions
in Xβ will approach xd or even stay at Xβ for all t > t0. The proposition below addresses
this issue by providing invariant sets.

Proposition 3.3. Suppose the conditions of Proposition 3.2 are satisfied with Xβ = Rnx,
i.e., β is a nonnegative constant. The stability is global if

‖z(x)‖ → ∞ as ‖x‖ → ∞.

Suppose on the other hand that the conditions of Proposition 3.2 hold with ψ(γ(x)) ≡ 0 and
β(x) := 1− z>(x)Sβz(x), where Sβ ∈ Rnz×nz is a constant matrix satisfying Sβ � 0. If

Inz − 2cS
1
2
β PS

1
2
β � 0, (3.24)
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then Ac := {x ∈ Rnx |c ≥ Hd(x)} with positive constant c is an invariant set of the closed-
loop. If, in addition, xd is asymptotically stable from Proposition 3.2 and{

x ∈ Ac |
∂Hd

∂x
= 0

}
= {xd} , (3.25)

then Ac is also a region of attraction of xd. Lastly, a state x? belongs to Ac if and only if

2cP − z(x?)z>(x?) � 0. (3.26)

Proof. By definition of ψ, we can infer that Hd is radially unbounded if ‖z(x)‖ → ∞ as
‖x‖ → ∞, meaning that the global result stems from Xβ = Rnx , see Remark 3.5. For the
local result, we use use the generalized Schur complements (see Lemma A.8) to express (3.24)
as (cP )−1 � Sβ, which is a sufficient condition to guarantee Ac ⊂ Xβ whenever ψ(γ(x)) ≡ 0,
see Lemma 3.5. Observe that Ac is closed by definition (see [189]) and bounded from P � 0
and z being polynomial. Hence, from LaSalle’s invariance principle (Theorem 2.4) and the
properties of Hd and Ḣd in Xβ, it follows that any trajectory starting in Ac remains in Ac
whenever (3.24) holds. Besides, from (3.10b) and (3.25), we have

Ḣd(x) = 0 ⇐⇒ x = xd,

meaning that Ac is the region of attraction. Lastly, condition x? ∈ Ac reads c ≥
1
2z
>(x?)P−1z(x?), which by using the generalized Schur complements can be equivalently

written as (3.26).

Remark 3.6. A sufficient condition to guarantee (3.25) is ∂z
∂x being square and nonsingular

in Xβ.

In the controller design, we usually select the region of interest Xβ as the whole space Rnx ,
and if global stability cannot be ensured, we reduce Xβ, yielding at least local stability for
adequate Λ0, z and g⊥. In doing so, conditions (3.24) and (3.26) establish upper and lower
bounds on cP , constraining the size of Ac. Evidently, these conditions can be introduced
in the SOS Programs 3.1 and 3.2 as

LHSs of (3.24), (3.26) are SOS.

Example 3.2 (Example 3.1, continued). Since β(x) ≡ 0 and ‖z(x)‖ → ∞ as ‖x‖ → ∞, we
conclude that the asymptotic stability result is global. 4

Example 3.3. Consider the systemẋ1

ẋ2

 =

 x2

x1x2

 1
(x2

1 + 1) +

−x1

1

 u

x2
1 + 1 (3.27)
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with x := vec(x1, x2) ∈ X = R2. Suppose we are now interested in finding an asymptotically
stabilizing controller in the origin but with the SOS Program 3.2 in a region of interest Xβ
defined from

β(x) = 1− z>(x)Sβz(x) and Sβ = diag( 1
22 , 1).

For this, we pick

xd = 0 ∈ Xa :=
{
x ∈ R2 | x2 = 0

}
, z(x) = x, g⊥(x) =

[
1 x1

]
, Λ0 =

[
0 1

]
to fulfill Assumption 3.1. Now, we fix ε0 = ε1 = 10−5, set F1 and S1 as polynomials in
x with maximum degree one and two, respectively, and employ the solution of F0 given
by (3.19). Solving the SOS Program 3.2 in SOSTOOLS and SDPT3 including (3.24) and
(3.26) with c = 1, x? = vec(1,−0.5), ψ(γ(x)) ≡ 0 and η(x) = vec(−x1, 1), results in

P =

 1.229 −0.3921
−0.3921 0.183

 , F1(x) =
[
35.67x1 − 0.2495 0.02693x1 − 36.08

]
.

Hence, the controller (3.15) reads

uida(x) = −624.4x2 − 199.3x1 + 196.8x1x2 + 91.78x2
1

and it yields from Propositions 3.2 and 3.3 a locally asymptotically stable closed-loop
in the origin of (3.27) with region of attraction A1. Figure 3.2 shows the x1–x2 plane
with A1 ⊂ Xβ and the closed-loop trajectory with initial position x(0) = x?. Figure 3.3
illustrates the evolution of the corresponding states, which clearly converge to the origin
asymptotically. 4
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Figure 3.2. – Point x? and sets Xβ and A1 in Example 3.3.
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Chapter 4

Algebraic IDA-PBC with
Optimization and Input Saturation

In Chapter 3, we develop algebraic solutions for IDA-PBC in a class of affine systems with
polynomial structure. The method solves the typical problems of IDA-PBC at the expense
of an adequate parameterization and selection of the target Hamiltonian. In this chapter,
the previous approach is extended in two directions. First, we incorporate input saturation
using the polytope representation. And second, we include four minimization objectives in
the SOS programs to address the great flexibility in the controller parameter selection. This
chapter is divided in four sections. In Section 4.1 the input saturation problem is studied,
whereas Section 4.2 discusses the minimization objectives. Finally, in Sections 4.3 and 4.4,
we verify our results on a third-order rational system and the well-known cart-pole.

4.1 Input Saturation

In view of Propositions 3.2 and 3.3, we consider input saturation.

4.1.1 Restriction of the Control Action

Before presenting our main result in Proposition 4.1, let us define the lower and upper
(state dependent) bounds in each input as the set

Uida(x) :=
{
u ∈ Rnu | 1−

(
Ei(x)u− di(x)

)>
U−1
i (x)

(
Ei(x)u− di(x)

)
≥ 0, i = 1, . . . , ne

}

for some functions di : X → Rnd , Ui : X → Rnd×nd and Ei : X → Rnd×nu with Ui(x) � 0.
For instance, the set

{u = vec(u1, u2) | u1 ∈ R, u2 ∈ R, 0 ≤ u1 ≤ 4, −3 ≤ u2 ≤ 3}
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can be written in our notation with E1 =
[
1 0

]
, U1 = 22, d1 = 2, E2 =

[
0 1

]
, U2 = 32,

d2 = 0 and ne = 2. The following proposition ensures that the stabilizing feedback uida, as
defined in (3.15), belongs to Uida.

Proposition 4.1. Let all conditions of Propositions 3.2 and 3.3 for local (asymptotic)
stability be satisfied. Assume there exist functions S̄i : X → R(nd+nz)×(nd+nz) and Λ̄i : X →
Rnd×nz with S̄i(x) � 0 and i = 1, . . . , ne such that

Ēi(x)η>(x)f(x) + di(x)− Λ̄i(x)z(x) = 0 ∀x ∈ X , (4.1) Ui(x) Ēi(x)F1(x)∂>z∂x − Λ̄i(x)P
∂z
∂xF

>
1 (x)Ē>i (x)− P Λ̄>i (x) 1

2cP

− β(x)S̄i(x) � 0 ∀x ∈ X , (4.2)

where Ēi(x) = Ei(x)
(
η>(x)g(x)

)g
. Then, for any initial condition in Ac (as defined in

Proposition 3.3), the stabilizing control law (3.15) is restricted to Uida(x).

Proof. From (4.2), S̄i(x) � 0 and the definition of Xβ, we have Ui(x) Ēi(x)F1(x)∂>z∂x − Λ̄i(x)P
∂z
∂xF

>
1 (x)Ē>i (x)− P Λ̄>i (x) 1

2cP

 � 0 ∀x ∈ Xβ.

Using the generalized Schur complements (Lemma A.8) in the previous inequality yields

1
2cP−

(
∂z

∂x
F>1 (x)Ē>i (x)− P Λ̄>i (x)

)
U−1
i (x)

(
Ēi(x)F1(x)∂

>z

∂x
− Λ̄i(x)P

)
� 0 ∀x ∈ Xβ.

(4.3)
Hence, multiplying (4.3) on the right by P−1z(x) and on the left by its transpose and
replacing (4.1) gives

1
2z
>(x)(cP )−1z(x) ≥

(
Ei(x)uida(x)− di(x)

)>
U−1
i (x)

(
Ei(x)uida(x)− di(x)

)
∀x ∈ Xβ,

where uida is as defined in (3.15). Now, from Ac ⊂ Xβ (see Proposition 3.3) and Lemma 3.5,
it follows that

Ac ⊂ Ūi :=
{
x ∈ Rnx | 1−

(
Ei(x)uida(x)− di(x)

)>
U−1
i (x)

(
Ei(x)uida(x)− di(x)

)
≥ 0

}

for i = 1, . . . , ne, that is, Ac ⊂
⋂
Ūi. Since u = uida(x), we see that x ∈ ⋂ Ūi is equivalent

to u ∈ Uida(x). Consequently, from the results of Propositions 3.2 and 3.3, every trajectory
starting in Ac remains in Ac and has a control action that belongs Uida, which completes
the proof.

To obtain the restriction of uida in Uida, we first calculate Λ̄i from (4.1), and then solve
the conditions of Propositions 3.2 and 3.3 together with (4.2). Observe that if Λ̄i, Ēi, Ui,
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∂z
∂x and S̄i are also polynomial, then (4.2) and S̄i(x) � 0 can be easily introduced in the
SOS Program 3.2. Similarly, if the condition (3.16b) and the solution of F1 given by (3.16a)
remains polynomial for some user-defined K2, then we can replace such a solution in (4.2)
and introduce (3.16b), (4.2) and S̄i(x) � 0 in the SOS Program 3.1.

Example 4.1. Consider system (3.20). We shall test Propositions 3.2, 3.3 and 4.1 with
the SOS Program 3.2 for synthesizing an IDA-PBC controller constrained to the set
Uida := {u ∈ R | −10 ≤ u ≤ 10} in the region of interest Xβ :=

{
x ∈ R2 | −3 ≤ x1 ≤ 3

}
,

i.e., ne = 1, E1 = 1, d1 = 0, U1 = 102 and β(x) = 1− 3−2x2
1.

Similar to Example 3.1, we pick xd = 0, z(x) = vec(x1, x
2
1+x2), g⊥ =

[
1 0

]
, Λ0 =

[
0 1

]
,

η = g and c = 1, and employ the solution of F0 given by (3.19). Since β and F0 are
functions in x1, we select for simplicity F1, S1 and S̄1 as polynomials in x1 with maximum
degree 1, 2 and 2, respectively. At this point, we impose a lower bound in P by forcing
x? = vec(2,−5) ∈ A1, i.e., condition (3.26). Let ε0 = ε1 = 10−5, after solving the SOS
Program 3.2 in SOSTOOLS and SDPT3 including (3.24), (3.26), (4.2) and S̄1(x) � 0,
where ψ(γ(x)) ≡ 0, Λ̄1 =

[
1 0

]
and Ē1 = 1, we have

P =

 3.695 −0.2888
−0.2888 1.105

 , F1(x) =
[
0.01915x1 + 0.3475 −1.019x1 − 6.412

]

and the asymptotically stabilizing (in xd = 0) controller

uida(x) = −5.912x2 − 1.368x1 − 0.2946x1x2 + 0.0352x2
1(x2 + x2

1)− 5.93x2
1 − 0.2919x3

1.

Figure 4.1 shows the x1–x2 plane with sets A1 ⊂ Ū1 =
{
x ∈ R2 | 1− u2

ida(x)U−1
1 ≥ 0

}
,

A1 ⊂ Xβ and the phase portrait of the closed-loop for 10 extreme initial positions x(0)
represented by symbol “∗”, where all trajectories converge to the origin as expected. Since
u = uida(x), note that x ∈ Ū1 is equivalent to u ∈ Uida(x). In addition, Figure 4.2 illustrates
5 seconds of respective control actions, which are all constrained to Uida. 4

4.1.2 Saturation

Following the works of [95, 190, 191], among others, we are now ready to introduce the
input saturation within the framework of algebraic IDA-PBC (Propositions 3.2 and 3.3) by
using a modification of the polytope (or polytopic) saturation model.

Proposition 4.2. Let the conditions of Propositions 3.2, 3.3 and 4.1 be satisfied for a
system of the form (3.3) resulting in some matrices P , F0, F1 and a locally (asymptotically)
stabilizing controller uida that is constrained in Uida for every initial condition in the
region of attraction Ac. Then, for all ik ∈ {1, 2} with k = 1, . . . ,m, there exist functions
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Figure 4.2. – Response of control signal uida ∈ Uida in Example 4.1.

F2 : X → Rm×nx and Ŝi1...im : X → Rnx×nx with Ŝi1...im(x) � 0 verifying

−


F0(x)

row1(Fi1(x))
...

rowm(Fim(x))


g⊥(x)
η>(x)

> −
g⊥(x)
η>(x)




F0(x)
row1(Fi1(x))

...
rowm(Fim(x))



>

− β(x)Ŝi1...im(x) � 0 ∀x ∈ X .

(4.4)



Input Saturation 67

Under such an F2, the feedback u = uF ida(x, θ) with

uF ida(x,Θ) = uida(x) +
(
η>(x)g(x)

)g
Θ
(
F2(x)− F1(x)

)∂>Hd

∂x
(x), (4.5)

and Θ = diag(θ1, . . . , θm) renders the closed-loop stable in the desired equilibrium for any
θk ∈ [0, 1] , k = 1, . . . ,m. In addition, asymptotic stability is achieved if (3.14) and (4.4)
hold with strict inequalities.

Proof. Define
F3(x,Θ) := ΘF2(x) + (Im −Θ)F1(x)

and replace F1 with F3 in (3.15) to obtain (4.5). From Proposition 3.2, the controller (4.5)
stabilizes the system (3.3) in the desired equilibrium if (3.14) holds with F1 substituted by
F3. For this, suppose Θ = diag(θ1, . . . , θm) with θk ∈ [0, 1] , k = 1, . . . ,m. Hence,

F(x) := {F3(x,Θ) | θk ∈ R, 0 ≤ θk ≤ 1, k = 1, . . . ,m}

is a convex polytope and we can define θ̄k1 := 1− θk and θ̄k2 := θk to obtain

2∑
ik=1

θ̄kik = 1, θ̄1i1 θ̄2i2 . . . θ̄mim ≥ 0,
∑
i1...im

θ̄1i1 θ̄2i2 . . . θ̄mim = 1, (4.6)

F3(x,Θ) =


∑2
i1=1 θ̄1i1 row1(Fi1(x))

...∑2
im=1 θ̄mim rowm(Fim(x))

 =
∑
i1...im

θ̄1i1 θ̄2i2 . . . θ̄mim


row1(Fi1(x))

...
rowm(Fim(x))

 ,
where the second equality in F3 results from multiplying its first row by 2∑

i2=1
θ̄2i2

 2∑
i3=1

θ̄3i3

 . . .
 2∑
im=1

θ̄mim

 ,
its second row by  2∑

i1=1
θ̄1i1

 2∑
i3=1

θ̄3i3

 . . .
 2∑
im=1

θ̄mim


and so on. Now, replacing F1 by F3 in (3.14), where we can define without loss of generality

S1(x) =
∑
i1...im

θ̄1i1 θ̄2i2 . . . θ̄mimŜi1...im(x) � 0,

yields

∑
i1...im

θ̄1i1 θ̄2i2 . . . θ̄mim
(
−T>i1...im(x)− Ti1...im(x)− β(x)Ŝi1...im(x)

)
� 0 ∀x ∈ X , (4.7)
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Ti1...im(x) =


F0(x)

row1(Fi1(x))
...

rowm(Fim(x))


g⊥(x)
η>(x)

> .

Consequently, (4.4) is a sufficient condition for (4.7), meaning that (4.5) is a stabilizing
controller for (3.3). The existence of F2 can be demonstrated by setting F2(x) := F1(x)
and Ŝi1...im(x) := S1(x), in which case (4.4) reduces to (3.14) and uF ida(x,Θ) ≡ uida(x).
The proof of asymptotic stability follows a similar procedure.

Remark 4.1. Let θ1 = θ2 = . . . = θm, then i1 = i2 = . . . = im and (4.4) reduces to

−

g⊥(x)
η>(x)

F0(x)
F2(x)

>−
F0(x)
F2(x)

g⊥(x)
η>(x)

>− β(x)Ŝ2(x) � 0 ∀x ∈ X . (4.8)

Remark 4.2. Let F1 and F2 be given by (3.16), then

Fi(x) = −
[
η>(x)F>0 (x) +K2i(x)AF(x), K1i(x)

] [
g>⊥(x) η(x)

]−1
, i = 1, 2

and (4.4) reduces to


row1(K1i1(x))

...
rowm(K1im(x))

+


row1(K1i1(x))

...
rowm(K1im(x))


>

−


row1(K2i1(x))

...
rowm(K2im(x))

AF(x)


row1(K2i1(x))

...
rowm(K2im(x))


>

� 0

with K11, K12 : X → Rm×m and K21, K22 : X → Rm×(nx−m).

The proposition implies that if there is a solution to the conditions of Propositions 3.2,
3.3 and 4.1, then there also exists an (asymptotically) stabilizing controller uF ida(x,Θ),
defined in (4.5), that verifies

uF ida(x, 0) = uida(x) ∈ Uida(x) ∀x ∈ Ac.

If F2 and Ŝi1...im for all ik ∈ {1, 2} , k = 1, . . . ,m, are polynomial, then the conditions of
Proposition 4.2 can be presented as the following SOS program.

SOS Program 4.1.

find the coefficients of F2, Ŝi1...im , ik ∈ {1, 2} , k = 1, . . . ,m,
subject to LHS of (4.4) minus ε1Inx is SOS for every ik ∈ {1, 2} , k = 1, . . . ,m.
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Let us denote by u = vec(u1, . . . , unu) and u = vec(u1, . . . , unu) the maximum and
minimum input values for the saturation, and define the set

Usat := {u = vec(u1, . . . , unu) | uk ∈ R, uk ≥ uk ≥ uk, k = 1, . . . , nu} .

Hence, if Uida(x) ⊂ Usat for all x ∈ Ac, we can employ the feedback u = uF ida(x,Θ) and
define a saturation, for every uF ida(x, Im) 6∈ Usat, by choosing Θ such that uF ida(x,Θ) ∈
∂Usat. Figure 4.3 illustrates the situation for a system with two inputs u = vec(u1, u2),
where Uida is an ellipsoid contained in Usat, usat-i ∈ ∂Usat and usat-n ∈ ∂Usat are examples
for input saturation, and

UF(x) := {uF ida(x,Θ) ∈ Rnu | θk ∈ R, 0 ≤ θk ≤ 1, k = 1, . . . ,m} .

uF ida(x, 0)

uF ida(x, Im)
usat-i(x)

usat-n(x)u2

u2
Uida(x)

u1u1u1

u2

UF(x)

Usat
∂Usat

Figure 4.3. – Relations of Uida, Usat and UF for a system with two inputs.

Suppose that (
η>(x)g(x)

)g
Θ ≡ Θ

(
η>(x)g(x)

)g
, (4.9)

then UF(x) is an orthotope (or hyperrectangle32), and we can employ the independent
input saturation of [95, 190–193], meaning that the controller is now

usat-i(x) = vec(ρ̄1, . . . , ρ̄nu), (4.10)

ρ̄k =


uk, if rowk(uF ida(x, Im)) > uk,

uk, if rowk(uF ida(x, Im)) < uk, k = 1, . . . nu,
rowk(uF ida(x, Im)), otherwise.

for all ik ∈ {1, 2} with k = 1, . . . ,m
Implementation of usat-i demands the solution of (4.4) for all the values of ik ∈ {1, 2}

with k = 1, . . . ,m, i.e., solving 2m inequalities while searching for F2 and 2m positive
32A hyperrectangle is the generalization of a rectangle for higher dimensions.
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semidefinite polynomial matrices Ŝi1...im . To guarantee condition (4.9) and reduce the
number of matrices and inequalities, we can fix θ1 = θ2 = . . . = θm, see Remark 4.1. As a
consequence the set UF (x) is a line between uF ida(x, 0) and uF ida(x, Im) that intersect ∂Usat

in at least a point whenever uF ida(x, Im) 6∈ Usat, see Figure 4.3. The resulting controller,
which we denote by usat-n, can be written as

usat-n(x) := uF ida(x,min(ρ1, . . . , ρnu)Im), (4.11)

ρk =


uk−rowk(uFida(x,0))
|rowk(uδ(x))| , if rowk(uF ida(x, Im)) > uk,

rowk(uFida(x,0)−uk)
|rowk(uδ(x))| , if rowk(uF ida(x, Im)) < uk, k = 1, . . . nu,

1, otherwise,

uδ(x) = uF ida(x, Im)− uF ida(x, 0) =
(
η>(x)g(x)

)g (
F2(x)− F1(x)

)∂>Hd

∂x
(x).

4.2 Minimization Objectives

If the conditions of Proposition 3.2 have a solution for P and F1, this solution is non-unique,
meaning that some properties in the controller design can be further specified. In general, we
can do so by imposing new constraints (e.g. with Propositions 3.3 and 4.1) and establishing
a minimization objective. In this section, we take the second approach, providing four
optimizations that can be included in the SOS Programs 3.1, 3.2 and 4.1. The lemma below
will be used in the proof of the first two.

Lemma 4.1. Let A ∈ Rn×n be a positive definite matrix, then

trace(In − A−1) ≤ ln(det(A)) ≤ trace(A− In). (4.12)

Proof. Since A is positive definite, its eigenvalues are positive. Therefore, replacing the
well-know identities trace(Ak) = ∑n

i=1 λ
k
i (A) and det(A) = ∏n

i=1 λi(A) in (4.12) reads

n∑
i=1

λi(A)− 1
λi(A) ≤

n∑
i=1

ln(λi(A)) ≤
n∑
i=1

(λi(A)− 1) ,

where λi(A) is the i-th eigenvalue of A. Now, the proof is a direct consequence of the
logarithm inequality [194, Section 4.5]

x− 1
x
≤ ln(x) ≤ x− 1 ∀x ∈ R, x ≥ 0.

Optimization 4.1 (Volume maximization of Ac).

minimize trace(Y )
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subject to

cP Inz
Inz Y

 � 0. (4.13)

Proof. The set Ac with respect to the coordinates z̄ = z(x) is an ellipsoid whose volume
is proportional to

√
det(cP ), see [87, pp. 48-49]. Therefore, maximizing the volume of Ac

with cP � 0 and z̄ = z(x) is equivalent to maximize ln(det(cP )). From Lemma 4.1, we
achieve this objective by enlarging the minimum bound of ln(det(cP )), i.e., minimizing
trace(c−1P−1), which is equivalent to Optimization 4.1 with Schur complement in (4.13).

Optimization 4.1 maximizes the volume of Ac by maximizing the minimum bound of
cP given by Y −1. Note that Ac is not necessarily an ellipsoid (see Figure 4.1) meaning
that Optimization 4.1 gives only an approximation. This optimization is also used empirically
in [191].

Optimization 4.2 (Volume minimization of Uida).

minimize
ne∑
i=1

trace(Ui)

subject to Ui is constant, Ui − ε2Ind � 0 for all i = 1, . . . , ne, (4.14)

where ε2 > 0 is a user defined constant.

Proof. The proof is along the same lines of Optimization 4.1, except that we consider the
ellipsoids

{
û ∈ Rnd | 1 ≥ 1

2 û
>U−1

i û
}
with û = Ei(x)uida(x)− di(x) and the upper bound

of (4.12).

Using the Schur complements in (4.2), for all x ∈ Xβ, reads

Ui − 2c
(
P−1Ē>i (x)− Λ̄>i (x)

)>
P
(
P−1Ē>i (x)− Λ̄>i (x)

)
� 0.

Since
(
Ēi(x)P−1 − Λ̄i(x)

)
z(x) = Ēi(x)uida − di(x), the previous inequality shows that

minimization of Ui (upper bound of u) implies minimizing Ēi(x)uida − di(x) and the upper
bound of P . As a consequence, it is require to have at least one minimum bound on P like
P − ε0Inz � 0, condition (3.26), or an optimization objective (see Optimization 4.1).

Before introducing Optimizations 4.3 and 4.4, let us consider the Jacobian linearization
of system (3.3) about the admissible equilibrium xd, including an exogenous disturbance
w̄ ∈ Rnw and a linear output ȳ ∈ Rny related to the H2 performance by means of Bw ∈
Rnx×nw , Cx ∈ Rny×nx and Du ∈ Rny×nu :

˙̄x = ∂ (f + gu)
∂x

∣∣∣∣∣
x=xd
u=ud

x̄+ ∂ (f + gu)
∂u

∣∣∣∣∣
x=xd
u=ud

ū+Bww̄
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=

 ∂f

∂x

∣∣∣∣
x=xd

+
nu∑
i=1

rowi(ud) ∂ coli(g)
∂x

∣∣∣∣∣
x=xd


︸ ︷︷ ︸

=:Ax

x̄+ g(xd)︸ ︷︷ ︸
=:Bu

ū+Bww̄,

ȳ = Cxx̄+Duū,

where x̄ = x− xd and ū = u− ud.

Optimization 4.3 (Standard H2 optimal local performance assignment).

minimize trace(D)
subject to −Wd(xd)−W>d (xd)−BwB>w − ε3Inx � 0, (4.15a) D C1

∂z
∂x

+
P + C2

∂>z
∂x(

C1
∂z
∂x

+
P + C2

∂>z
∂x

)>
P

∣∣∣∣∣∣
x=xd

� 0, (4.15b)

where D ∈ Rny×ny , ε3 > 0 is a sufficiently small constant,

C1 = Cx −Du
∂(η>g)gη>f

∂x

∣∣∣∣∣
x=xd

, C2 = Du

(
η>(xd)g(xd)

)g
F1(xd).

Proof. Define ud = uida(xd), Kx = ∂uida
∂x

∣∣∣
x=xd

and ū = Kxx̄, with uida as defined in (3.15),
then

˙̄x = (Ax +BuKx) x̄+Bww̄

=

 ∂f

∂x

∣∣∣∣
x=xd

+
nu∑
i=1

rowi(uida(xd)) ∂ coli(g)
∂x

∣∣∣∣∣
x=xd

+ g(xd) ∂uida

∂x

∣∣∣∣
x=xd

 x̄+Bww̄

= ∂f + guida

∂x

∣∣∣∣
x=xd

x̄+Bww̄ =
∂Wd

∂>Hd
∂x

∂x

∣∣∣∣∣∣
x=xd

x̄+Bww̄

= Wd(xd)
(
∂>z

∂x
P−1 ∂z

∂x

)∣∣∣∣∣
x=xd

x̄+Bww̄,

ȳ = Cxx̄+Duū =
(
Cx +Du

∂uida

∂x

∣∣∣∣
x=xd

)
x̄ =

C1 + C2

(
∂>z

∂x
P−1 ∂z

∂x

)∣∣∣∣∣
x=xd

 x̄,
where the last equality in ˙̄x and ȳ are obtained from

∂>Hd

∂x

∣∣∣∣∣
x=xd

= 0, ∂2Hd

∂x2

∣∣∣∣∣
x=xd

=
(
∂>z

∂x
P−1 ∂z

∂x

)∣∣∣∣∣
x=xd

and the definitions of C1 and C2. From Lemma A.5, it follows that the linearized closed-loop
is internally stable with a standard H2 performance JH2 < γ if and only if there exists a
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matrix Q � 0 such that

−Wd(xd)
(
∂>z

∂x
P−1 ∂z

∂x

)∣∣∣∣∣
x=xd

Q−Q
(
∂>z

∂x
P−1 ∂z

∂x

)∣∣∣∣∣
x=xd

W>d (xd)−BwB>w � 0, (4.16)

trace

(C1 + C2
∂>z

∂x
P−1 ∂z

∂x

)
Q

(
C1 + C2

∂>z

∂x
P−1 ∂z

∂x

)>∣∣∣∣∣∣
x=xd

< γ. (4.17)

Hence, the optimal performance is obtained by finding C2 and Q such that the upper bound
γ is minimized. Since P and ∂z

∂x are full rank, let Q =
(
∂>z
∂x P

−1 ∂z
∂x

)−1
∣∣∣∣
x=xd

and let D be a
matrix such that(

C1 + C2
∂>z

∂x
P−1 ∂z

∂x

)
Q

(
C1 + C2

∂>z

∂x
P−1 ∂z

∂x

)>∣∣∣∣∣∣
x=xd

� D. (4.18)

Then, (4.15a) is a sufficient condition for (4.16), and minimizing γ can be achieved by
minimizing the trace of D in (4.18). Using the Schur complements and the pseudoinverse
of ∂z

∂x , we can rewrite (4.18) as

0 �

 D C1 + C2
(
∂>z
∂x P

−1 ∂z
∂x

)∣∣∣
x=xd

C>1 +
(
∂>z
∂x P

−1 ∂z
∂x

)∣∣∣
x=xd

C>2
(
∂>z
∂x P

−1 ∂z
∂x

)∣∣∣
x=xd


=

I 0
0 ∂>z

∂x P
−1

 D C1
∂z
∂x

+
P + C2

∂>z
∂x(

C1
∂z
∂x

+
P + C2

∂>z
∂x

)>
P

I 0
0 P−1 ∂z

∂x

∣∣∣∣∣∣
x=xd

.

Consequently, (4.15b) is a sufficient condition for (4.18), and the proof is complete.

Remark 4.3. The Linear Quadratic Regulator (LQR) problem, which consist of minimizing
a performance index of the form

min
u∈L2[0,∞)

∫ ∞
0

(
x̄>(t)Qlqrx̄(t) + ū>(t)Rlqrū(t) + x̄>(t)Nlqrū(t)

)
dt

with weighting matrices Qlqr ∈ Rnx×nx , Rlqr ∈ Rnu×nu and Nlqr ∈ Rnx×nu , can be recast as
the standard H2 optimal control (Optimization 4.3) by setting

Bw = Inx ,

C>x
D>u

 [Cx Du

]
=

 Qlqr
1
2Nlqr

1
2N
>
lqr Rlqr

 ,
see [195].
Optimization 4.3 assigns an standard H2 optimal local performance to the closed-loop

system with controller (3.15). In other words, we can locally guarantee a maximum peak
value of the output ȳ in response to exogenous input w̄ with unit energy. However, for
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MIMO systems, the standard H2 problem is not consistent with the H2 norm interpretation,
as opposed to the generalized H2, which is [196]. We obtain the generalized H2 performance
as follows.

Optimization 4.4 (Generalized H2 optimal local performance assignment).

minimize γ

subject to −Wd(xd)−W>d (xd)−BwB>w − ε3Inx � 0, (4.19a) Inyγ C1
∂z
∂x

+
P + C2

∂>z
∂x(

C1
∂z
∂x

+
P + C2

∂>z
∂x

)>
P

∣∣∣∣∣∣
x=xd

� 0, (4.19b)

where C1 and C2 are as defined in Optimization 4.3.

Proof. Along the same lines of the proof of Optimization 4.3 but with (4.17) replaced by

σmax

(C1 + C2
∂>z

∂x
P−1 ∂z

∂x

)
Q

(
C1 + C2

∂>z

∂x
P−1 ∂z

∂x

)>∣∣∣∣∣∣
x=xd

< γ,

and using Lemma A.2.

Unlike Optimizations 4.1 and 4.2, Optimizations 4.3 and 4.4 can be used with global
asymptotic stability. Lastly, we should point out that the optimizations presented here
are only a fraction of the feasible optimizations objectives, see [197, 198] for instance,
where objectives as H∞, passivity, asymptotic disturbance rejection, robust stability, among
others, are employed. In addition, the optimizations can be combined in many cases, as
shown below.

Optimization 4.5 (Maximization of Ac with standard H2 local performance).

minimize aY trace(Y ) + trace(D)
subject to (4.13), (4.15)

with aY > 0 being a user-defined constant.

Optimization 4.6 (Maximization of Ac, minimization of Uida and standard H2 local
performance).

minimize aY trace(Y ) + trace(D) + aU

ne∑
i=1

trace(Ui)

subject to (4.13), (4.14), (4.15)

with aY , aU > 0 being user-defined constants.

The following table outlines the optimization objectives.
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Optimization Description
Optimization 4.1 Volume maximization for the region of convergence Ac.
Optimization 4.2 Minimization of the control action uida for any initial condition in

Ac.
Optimization 4.3 Standard H2 local optimal performance assignment in xd. By

using Remark 4.3, Optimization 4.3 reduces to the LQR local
assignment.

Optimization 4.4 Generalized H2 local optimal performance assignment in xd.
Optimization 4.5 Since maximizing the volume of Ac may yield poor or undesired

performance, Optimization 4.5 combines Optimization 4.1 with
the standard H2 local optimal performance assignment.

Optimization 4.6 Since Optimizations 4.1 and 4.2 may yield poor or undesired
performance, Optimization 4.6 combines them with the standard
H2 local optimal performance assignment.

Table 4.1. – Optimization objectives for IDA-PBC with SOS programs.

The subsequent algorithm summarizes the discussion of Sections 3.2.1, 3.2.4, 4.1 and 4.2
under SOS programs.

Algorithm 4.1 IDA-PBC with SOS programs for polynomial systems.
Require: A nonlinear affine system of the form (3.3).
1: Select the region of interest Xβ with a polynomial function β. Find polynomial g⊥, Λ0

and z verifying Assumption 3.1 with xd ∈ Xa := {x ∈ X | g⊥(x)f(x) = 0}.
2: Pick ε0, ε1, the polynomial order for F0 and S11, and solve the SOS Program 3.1 e.g.,

with SOSTOOOLS and a SDP solver. In the case dim(z) = dim(x), we can use (3.19) to
compute the solution of F0 and simplify the SOS program whenever the right-hand side
of (3.19) is polynomial for every P . If solver converges proceed to next step, otherwise
return to step 1 and reduce the region of interest Xβ or select different functions g⊥, Λ0

and z.
3: Choose a polynomial η and the polynomial order for F1 and S1 such that the order of
S1 is greater than or equal to the order of S11, and solve the SOS Program 3.2.33 Here,
we can include additional constraints such as

i) determining the invariant set (or region of convergence) Ac with (3.24) and
β(x) := 1− z>(x)Sβz(x) for some user defined Sβ � 0;

ii) introducing a desired state x? in Ac with (3.26); and34

iii) restricting the stabilizing control law (3.15) to a set Uida with (4.2), where Λ̄i is
obtained from (4.1).

33Since the computational cost of SOS programs depends on the number of unknown coefficients, we should
aim at a low polynomial order for F0, F1 and S1.

34The state x? can represent a tentative initial condition.
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Note that the last constraint requires setting the polynomial order of S̄i with i =
1, . . . , ne. Similarly, we can consider the optimization objectives summarized in Table 4.1.

4: Calculate γ, and select ψ,
(
η>(x)g(x)

)g
, g⊥> and ν to build the feedback (3.15) whenever

no saturation is required. Otherwise, choose the polynomial order of F2, Ŝi1...im , ik ∈
{1, 2} , k = 1, . . . ,m, and solve the SOS Program 4.1 to build the controllers (4.10)
or (4.11). In SOS Program 4.1 we can also include additional constraints and optimiza-
tion objectives.

5: For ε1 > 0, asymptotic stability in Ac can be verified if ∂z
∂x is square and nonsingular in

Xβ, or more generally if (3.25) holds.

4.3 Application on a Third-order System

Consider the third-order system


ẋ1

ẋ2

ẋ3

 =


1 x1 0
−x1 1 0

0 0 1


−1 

x2 − x3 − x1x2 − x2
2

x1x2

x1x2


︸ ︷︷ ︸

=:f(x)

+


1 x1 0
−x1 1 0

0 0 1


−1 

0 0
1 0
0 1


︸ ︷︷ ︸

=:g(x)

u, (4.20)

where x := vec(x1, x2, x3) ∈ X = R3 and u = vec(u1, u2). In the region of interest Xβ,
defined from

β(x) = 1− 1
22x1 −

1
22x2,

we wish to test Algorithm 4.1 to synthesize the IDA-PBC asymptotically stabilizing con-
trollers uida (without saturation) and usat-n (including saturation), as defined in (3.15)
and (4.11), respectively, which are both bounded to the set

Usat :=
{
u ∈ R2 | −3 ≤ ui ≤ 3, i = 1, 2

}
.

4.3.1 Algebraic IDA-PBC Design

Step 1: Assumption 3.1 is fulfilled by choosing

Λ0 =
[
0 1 −1

]
, g⊥(x) =

[
1 0 0

] 
1 x1 0
−x1 1 0

0 0 1

 , z(x) =


x1

x2

x3 + x1x2 + x2
2


and xd = vec(0, 0, 0) ∈ Xa =

{
x ∈ X | x2 − x3 − x1x2 − x2

2 = 0
}
. Note that ∂z

∂x is unimodu-
lar and Λ0 is constant, meaning that F0 has a unique and polynomial solution, see (3.19).
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Step 2: We set ε0 = ε1 = 10−5, S11 with maximum polynomial order 2, and use SOS
Program 3.1 as a fast indicator (that SOS Program 3.2 can work), which is met successfully
because the SDP solver (from SOSTOOOLS) converges to a solution.

Step 3: To have a control action that remains in Uida = Usat, we consider the con-
straints (3.24), (4.1) and (4.2), where Sβ = 1

22 diag(1, 1, 0), ψ(γ(x)) ≡ 0, ne = 2, d1 = d2 = 0,
U1 = U2 = 32, E1 =

[
1 0

]
and E2 =

[
0 1

]
. Let

η>(x) =

0 1 0
0 0 1




1 x1 0
−x1 1 0

0 0 1

 ,

then
(
η>(x)g(x)

)g
= I2, Ē1 = E1, Ē2 = E2 and a solution to (4.1) is

Λ̄1(x) =
[
x2 0 0

]
, Λ̄2(x) =

[
0 x1 0

]
.

Since β, F0, Λ̄1 and Λ̄2 are functions in (x1, x2), we select for simplicity F1, S1, S̄1 and S̄2 as
polynomials in (x1, x2) with maximum degree 2. Furthermore, we include Optimization 4.5
to have a LQR optimal local performance while increasing the region of convergence with
bounded input. Solving the SOS Program 3.2 with (3.24), (4.2) and Optimization 4.5 in
SOSTOOOLS and SDPT3, where c = 1, a = 20, Qlqr = I3, Rlqr = I2 and ε3 = 10−5, yields

P =


1.425 0.04322 0.5432

0.04322 1.188 0.9377
0.5432 0.9377 1.888

 , F1(x) =
[
F1a(x) F1b(x) F1c(x)

]
,

F1a(x) =

0.3222x1 + 0.3632x2 + 0.05766x1x2 − 0.01062x2
1 + 0.08363x2

2 − 0.25
0.1724x2 − 0.1728x1 − 0.6683x1x2 − 0.1107x2

1 − 0.6614x2
2 + 0.9502

 ,
F1b(x) =

 0.001546x2
1 − 0.1326x2 − 0.03595x1x2 − 0.156x1 − 0.02119x2

2 − 0.5
0.6326x1 + 0.435x2 + 0.004657x1x2 − 0.1438x2

1 + 0.2359x2
2 − 0.04032

 ,
F1c(x) =

0.6167x1 + 0.6915x2 + 0.145x1x2 + 0.3096x2
1 − 0.2017x2

2 + 0.04032
1.059x1 + 0.7465x2 − 1.664x1x2 − 0.8575x2

1 − 0.9628x2
2 − 0.5

 .
Figure 4.4 shows the sets A1 ⊂ Xβ, A1 ⊂ Ū1 and A1 ⊂ Ū2 in the planes x3 = −1, x3 = 0
and x3 = 1. Here, Ūi =

{
x ∈ X | 1− (Eiuida(x))2 U−1

i ≥ 0
}
and x ∈ ⋂ Ūi is equivalent to

u ∈ Uida.

Steps 4 and 5: Since
(
η>(x)g(x)

)
= I2 and g⊥>(x)ν = 0, we can build the controller

uida from (3.15) that renders the closed loop asymptotically stable in the origin from any
initial condition in A1 because ∂z

∂x is nonsingular. On the other hand, we recall that usat-n

is obtained from θ1 = θ2. Hence, condition (4.4) reduces to (4.8), and solving the SOS
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Figure 4.4. – Sets A1 ⊂ Xβ, A1 ⊂ Ū1 and A1 ⊂ Ū2 in the planes x3 = −1 (upper
plot), x3 = 0 (middle plot) and x3 = 1 (lower plot).
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Program 4.1 with Optimization 4.3 in SOSTOOLS and SDPT3, where F2 and Ŝ2 are
polynomials in (x1, x2) of maximum degree 2, results in F2(x) =

[
F2a(x) F2b(x) F2c(x)

]
,

F2a(x) =

 2.29x1 + 0.5178x2
1 + 0.06412x2

2 − 0.25
0.6146x1 − 0.07858x2

1 + 0.01402x2
2 + 0.9502

 ,
F2b(x) =

 −0.5276x1 − 0.5677x2
1 − 0.9799x2

2 − 0.5
0.1337x1 − 0.1029x2

1 − 0.1132x2
2 − 0.06251

 ,
F2c(x) =

0.4467x1 + 2.117x2
1 + 0.6713x2

2 + 0.06251
−0.07331x1 − 615.4x2

1 − 615.9x2
2 − 0.5

 .
At this point, we can also build the asymptotically stabilizing controller usat-n from (4.11).
Note that the region of convergence A1 remains the same since P and c are not modified
with SOS Program 4.1.

4.3.2 Simulations

Figures 4.5 and 4.6 show the simulation results of the system (4.20) with initial condition
x(0) = vec(1.2,−1, 0) ∈ A1 and controllers uida and usat-n. It is clearly seen that all
states will converge to the origin, and the controllers uida and usat-n remain in Uida = Usat.
Furthermore, the saturation of usat-n does not compromise the monotonically decreasing
feature of the Hamiltonian, which is linked to the system’s stability. Finally, we observe
that the selected F2 yields a faster settling time in the saturated controller usat-n. However,
this feature does not hold for any F2 obtained with SOS Program 4.1, and a suitable
optimization objective has to be chosen.

4.4 Application on a Cart-pole System

In the previous examples, we considered a system that is naturally described with polynomial
functions. We now address the cart-pole of Figure 4.7, which is an underactuated mechanical
system that possess trigonometric functions in its model. The system is composed of a cart
with mass mc sliding on a runway and a simple one arm pendulum attached to the
cart. The cart moves along the x-axis and is actuated by the force τ while the pendulum is
unactuated (free).
Our purpose is to synthesize an IDA-PBC controller without saturation that ensures

the asymptotic stabilization of the pendulum’s upright equilibrium as well as the cart
at a desired position. With this objective, we device a model in explicit representation
under Assumption 4.1, re-parametrize its trigonometric functions so as to obtain rational
ones, and test Algorithm 4.1 with a local optimal performance assignment. The result is
implemented in the test-bench of Figure 4.7, which is located at the laboratory of the Control



80 Chapter 4. IDA-PBC with Optimization and Input Saturation

0 2 4 6 8 10 12

0

0.3

0.6

0.9

1.2

time [s]

x
1

SP
uida
usat-n

0 2 4 6 8 10 12

−1

−0.8

−0.6

−0.4

−0.2

0

time [s]

x
2 SP

uida
usat-n

0 2 4 6 8 10 12

−0.8

−0.6

−0.4

−0.2

0

time [s]

x
3 SP

uida
usat-n

Figure 4.5. – States of the third-order system with initial conditions x(0) =
vec(1.2,−1, 0).
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Cart

Pendulum

Runway

Figure 4.7. – Cart-pole of the Control Engineering Group at TU Ilmenau.

Engineering Group (Fachgebiet Regelungstechnik), Department of Computer Science and
Automation, TU Ilmenau.

Assumption 4.1. i) The pendulum’s rod is massless and has a constant length l. ii) The
pendulum’s bob of mass mp is a point mass. iii) The gravity of magnitude gc points
downwards (direction −y). 35 iv) The initial conditions are consistent (to be used in
Chapters 5 to 7).

Figure 4.8 illustrates the cart-pole schematic diagram, where xc denotes the cart pivot
position on the x-axis, (xp, yp) is the relative position of the bob with respect to the
cart pivot and θ is the pendulum angle with respect to the y-axis. The real system is
equipped with encoders in xc and θ, as well as three modes to move its servomotor: current,
velocity and position tracking. The former is usually approximated to force input,
meaning that controller design entails the identification of masses, moments of inertia,
frictions, gear and belt features, and others, which are all non-error-free. On the other hand,
we can use the velocity tracking with an integrator in its input to have an approximate
representation of the cart-pole in Partial Feedback Linearization (PFL) with new input
u∗ = ẍ∗c ≈ ẍc, see Figure 4.9. This option avoids the cumbersome parameter identification
because the PFL may yield a cart-pole model independent of masses and inertias (in the
implicit and explicit representations), see [199]. How close our approximation is, clearly
depends on the performance of the tracking controller, which consists of a Proportional-
integral-derivative (PID) plus Feedforward. We discard the position tracking because it

35Changing the gravity direction is equivalent to tilt the whole system, that is, a cart-pole on an inclined
plane, see [18].
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is analogous to the velocity mode, but it may introduce some additional error due to its
cascade nature.

mp

l

mc
xc

τ

θ

xp
gc

yp

x

y

Figure 4.8. – Cart-pole diagram.

∫
+ PID + Plant

Feedforward

ẍ∗c ẋ∗c (r, ṙ)

ẋc

−

Cart-pole with Velocity Control
Cart-pole with PFL

Figure 4.9. – Approximate cart-pole with PFL.

In the following, we will use the scheme of Figure 4.9, assuming that the PID plus
Feedforward is well-tuned such that it corresponds to an acceptable approximation for
practical purposes. It is important to remark that the algebraic IDA-PBC introduced in
this dissertation do not necessarily require the cart-pole model in PFL (see e.g., [98]) but
we employ such a representation to streamline design and implementation.

4.4.1 Explicit Model with PFL

The cart-pole has two DoF and its configuration space is given by R× S. Therefore, taking
q := vec(θ, xc) ∈ Q = R2 as our generalized coordinates and using Assumption 4.1, we may
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calculate the kinetic and potential energy as36

Ek(q, q̇) = mc

2 ẋ2
c + mp

2
(
ẋc + θ̇l cos θ

)2
and V̂ (q) = gclmp cos θ.

Hence, the Lagrange equations (of the second kind) with Rayleigh dissipation D̂(q, q̇) =
1
2cθθ̇

2 + 1
2ccẋ

2
c ≥ 0 are

M̂(q)q̈ + Ĉ(q, q̇)q̇ + R̂q̇ + ∂>V̂

∂q
= Ĝτ, (4.21)

where R̂ = diag(cθ, cc), Ĝ = vec(0, 1),

M̂(q) =

 mpl
2 mpl cos θ

mpl cos θ mp +mc

 , Ĉ(q, q̇) =

 0 0
−mplθ̇ sin θ 0

 .
Following [200, 201], we obtain the partially linearized model

Mq̈ +Rq̇ + ∂>V

∂q
= G(q)u, (4.22)

where M = I2, V (q) = gc
l cos θ, G(q) = vec(−1

l cos θ, 1), and R = diag( cθ
mpl2

, 0). Now, for
θ ∈ ]−π, π[ , we can parametrize the trigonometric functions so as to obtain the rational
functions37

cos θ = 1− α2

1 + α2 , sin θ = 2α
1 + α2 , tan θ2 = α.

Hence, the cart-pole model (4.22) with states x = vec(α, xc, θ̇, ẋc) can be written as


α̇

ẋc

θ̈

ẍc

 =



1
2(1 + α2)θ̇

ẋc
2gcα

l(1 + α2) −
cθθ̇

mpl2

0

+



0
0

α2 − 1
l(1 + α2)

1

u. (4.23)

Notice that (4.23) is independent of the mass mp whenever cθ
mpl2

≈ 0.

4.4.2 Algebraic IDA-PBC Design

In this section, we test Algorithm 4.1 for the cart-pole with PFL described by (4.23).

36Since the cart is constrained to move horizontally, its center of mass can be described w.r.t. xc.
37This parametrization is an exact change of coordinates, which is used in [129] to take advantage of SOS

decomposition.
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Step 1: With β(x) = 0, we select the region of interest Xβ as the whole space X = R4,
and choose

Λ0(x) =


0 0 1

2(1 + α2) 0
0 0 0 1

−2gc 0 cθ(1 + α2)
mpl

0

 , g⊥(x) =


1 0 0 0
0 1 0 0
0 0 −l(1 + α2) α2 − 1

 ,

xd = vec(0, x?c , 0, 0) ∈ Xa =
{
x ∈ X | 0 = α = θ̇ = ẋc

}
and z(x) = x − xd verifying As-

sumption 3.1, where x?c is the desired cart position. Note that ∂z
∂x is unimodular and Λ0 is

polynomial, meaning that F0 has a unique and polynomial solution, see (3.19).

Step 2: We pick ε0 = ε1 = 10−5, S11 with maximum polynomial order 2, and use SOS
Program 3.1 as a fast indicator (that SOS Program 3.2 will work), observing that the SDP
solver (from SOSTOOOLS) does not converge. Therefore, we reduce the region of interest
to a subset of −90° < θ < 90°, i.e., the pendulum is above the x-axis. For illustration we
select β(x) = 1 − 0.62α2 or equivalently −61.927° ≤ θ ≤ 61.927°, obtaining the desired
solution.

Step 3: To determine the region of convergence, we consider the constraint (3.24), where
Sβ = 1

0.62 diag(1, 0, 0, 0) and ψ(γ(x)) ≡ 0. Since β and F0 are functions in α, we select
for simplicity F1 and S1 as polynomials in α with maximum degree 2. Furthermore, we
include Optimization 4.5 to have a LQR optimal local performance while increasing the
region of convergence. Solving the SOS Program 3.2 with (3.24) and Optimization 4.5
in SOSTOOOLS and SDPT3, where η(x) = vec(0, 0, 0, 1), c = 0.5, a = 20, Qlqr =
diag(10I2, I2), Rlqr = 1, l = 0.4840 m, gc = 9.81, cθ = 0 and ε3 = 10−5, yields

F1(x) =
[
31.62α2 + 11.0 −65.83α2 − 25.34 11.9α2 − 10.93 −37.45α2 − 16.72

]
,

P =


0.36 −1.037 −1.317 0.1698
−1.037 22.92 1.328 −6.165
−1.317 1.328 24.9 −25.58
0.1698 −6.165 −25.58 44.34

.

Although we have assumed negligible friction in the underactuated degree, i.e., cθ = 0, it
is possible to solve the SOS Program 3.2 with cθ 6= 0, see [98]. This is an advantage with
respect to the controller design with the standard IDA-PBC for underactuated mechanical
systems (see Chapter 5), where the dissipation condition (5.7a) holds whenever cθ = 0.
Figure 4.10 shows the sets A0.5 ⊂ Xβ in the planes θ̇ = −134.7°/s, θ̇ = 0°/s and θ̇ = 134.7°/s
intersected with ẋc = 0 m/s.
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Figure 4.10. – Set point xd = vec(0,−0.9, 0, 0) and sets A0.5 ⊂ Xβ in the planes
θ̇ = −134.7°/s (upper plot), θ̇ = 0°/s (middle plot) and θ̇ = 134.7°/s
(lower plot) intersected with ẋc = 0 m/s.
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Steps 4 and 5: Since η>(x)g(x) = 1, ∂z∂x = I4 and g⊥>(x)ν = 0, the controller (3.15) reads

uida(x) = 48.81α + 4.146θ̇ + 2.024ẋc + 1.406(xc − x?c) + 23.86α2θ̇ + 13.3α2ẋc

+ 8.004α2(xc − x?c) + 191.9α3
(4.24)

and it yields an asymptotically stable closed-loop in xd. The simulation and implementation
results are displayed in Section 7.2.5, where we compare the controller (4.24), with the ones
obtained from the developments of Chapters 5 and 6.
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Mechanical Systems





Chapter 5

IDA-PBC for Mechanical Systems

The aim of this chapter is to introduce the total energy shaping IDA-PBC for mechanical
systems with kinematic constraints (holonomic and nonholonomic). Since those systems
are described by DAEs (see Section 2.5.4), we handle them from the geometric perspective,
meaning that they are actually ODEs on a manifold. We will restrict our discussion to the
general aspects of the IDA-PBC and leave the specific solutions and examples to Chapters 6
and 7. This chapter is divided in two sections. In Section 5.1, we review the total energy
shaping IDA-PBC for unconstrained (or explicit) mechanical systems. Later, Section 5.2
encourages the controller design with constrained (or implicit) representations and introduces
the corresponding IDA-PBC theory. Both situations (explicit and implicit designs) are
discussed under the presence of dissipation and preliminary feedback.

5.1 Unconstrained Mechanical Systems

Let us recall the basic principles of the IDA-PBC for unconstrained mechanical systems,
which was introduced in [22] and extended in [24, 27]. Consider the mechanical systemq̇

ṗ

 =

 0 Inq
−Inq −R(q)

∂>H∂q
∂>H
∂p

+

 0
G(q)

u, (5.1)

where q ∈ Q ⊂ Rnq are the generalized coordinates, Q is an open and connected subset of
Rnq , p ∈ Rnq are the conjugate momenta defined as p = M(q)q̇, u ∈ U ⊂ Rnu is the input,
G : Q → Rnq×nu is the input matrix with constant rank, R : Q → Rnq×nq is the positive
semidefinite dissipation matrix (obtained e.g. from the Rayleigh dissipation function) and
H is the Hamiltonian which represents the system’s total energy (kinetic plus potential),
meaning

H(q, p) = 1
2p
>M−1(q)p+ V (q),
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with M : Q → Rnq×nqnq being (the positive definite) inertia matrix and V : Q → R the
potential energy.

5.1.1 Controller Design

Following Proposition 3.1, we will render (5.1) via state feedback u = uida(q, p) into the
port-Hamiltonian system (3.5) such that the closed-loop is (asymptotically) stable in the
desired equilibrium (qd, 0), with qd ∈ Qa :=

{
q ∈ Q | G⊥(q)∂>V∂q = 0

}
.38 For this, we take

advantage of the parameterized IDA-PBC, setting39

Hd(q, p) = 1
2p
>M−1

d (q)p+ Vd(q),

whereMd : Q → Rnq×nqnq and Vd : Q → R are the desired inertia matrix and potential energy,
respectively. Besides, we may impose a structure in the dissipation and interconnection
matrix, writing the target system (3.5) asq̇

ṗ

 =

 0 J(q)
−J>(q) Γ1(q, p) + Γ2(q)

∂>Hd
∂q

∂>Hd
∂p

 , (5.2)

for some Γ2 : Q → Rnu×nq and Γ1 : Q × Rnq → Rnq×nq with Γ1 being linear in p. Now,
the matching condition (3.6) can be reduced and decoupled w.r.t the dependency of p
(quadratic in p, independent of p and linear in p) as

0 = G⊥(q)
(

1
2
∂>p>M−1p

∂q
−Md(q)M−1(q)1

2
∂>p>M−1

d p

∂q
+ Γ1(q, p)M−1

d (q)p
)
, (5.3a)

0 = G⊥(q)
(
∂>V

∂q
−Md(q)M−1(q)∂

>Vd

∂q

)
, (5.3b)

0 = G⊥(q)
(
R(q)M−1(q)p+ Γ2(q)M−1

d (q)p
)
, (5.3c)

where J(q) = M−1(q)Md(q). Equations (5.3), which are not trivial if (5.1) is underactuated
(rankG < nq), are known as the matching conditions of the kinetic energy, potential
energy and dissipation, respectively. Conditions (5.3a)–(5.3b) are a system of nonho-
mogeneous quasi-linear PDEs with unknowns in Γ1, Md and Vd. On the other hand, (5.3c)
is an algebraic equation, and its solution is given by

Γ2(q) = −G(q)Γ̄2(q)J(q)−R(q)J(q)

38See Lemma 3.6 to determine the admissible equilibria set.
39The target Hamiltonian under the parameterized approach is not unique, see [71, 202], where the desired

Energy is augmented by a mixed term of coordinates and momenta p>η(q).
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with arbitrary Γ̄2 : Q → Rnu×nq . It follows that the controller u = uida(q, p) is

uida(q, p) = Gg(q)
(
∂>H

∂q
− J>(q)∂

>Hd

∂q
+ Γ1(q, p)∂

>Hd

∂p

)
− Γ̄2(q)∂

>H

∂p
+G⊥>(q)ν, (5.4)

where ν is also arbitrary. Stability in the desired equilibrium (qd, 0) is now obtained if

Md(q) � 0 ∀q ∈ Q, (5.5a)
Vd(q)− Vd(qd) > 0 ∀q ∈ Q− {qd} , (5.5b)

∂Hd

∂p

(
G(q)Γ̄2(q)J(q) +R(q)J(q)− Γ1(q, p)

)∂>Hd

∂p
≥ 0 ∀ (q, p) ∈ Q× Rnq . (5.5c)

Here,

Md(qd) � 0, ∂Vd

∂q

∣∣∣∣
q=qd

= 0, ∂2Vd

∂q2

∣∣∣∣∣
q=qd
� 0 (5.6)

are the necessary and sufficient conditions (see [180, Proposition 1.3–1.4]) to locally guarantee
the requirement for Hd ∈ C2, i.e., (5.5a)–(5.5b). Finally, asymptotic stability can be
demonstrated if the largest invariant set of (5.2) contained in

Ω =
{

(q, p) ∈ Q× Rnq | ∂Hd

∂p
(q, p)

(
G(q)Γ̄2(q)J(q) +R(q)J(q)− Γ1(q, p)

)∂>Hd

∂p
= 0

}

is no other than {(qd, 0)}, or if (5.2) with output yd, defined from

y>d yd := ∂Hd

∂p
(q, p)

(
G(q)Γ̄2(q)J(q) +R(q)J(q)− Γ1(q, p)

)∂>Hd

∂p
,

is zero-state detectable (or observable). Note that (5.4) uses Gg (the generalized inverse ofG)
instead of

(
G>(q)G(q)

)−1
G>(q). The latter is a particular case of inverse (Moore–Penrose)

that is used in the standard IDA-PBC literature, see [13, 48, 56, 58, 178, 203]. Observe
that the freedom of Gg and ν may simplify the final expression of (5.4) without impairing
the system behavior. The procedure to apply the IDA-PBC method can be summarized
in Algorithm 5.1.

Algorithm 5.1 IDA-PBC for unconstrained mechanical systems.
Require: A mechanical system of the form (5.1).
1: Select G⊥ and qd ∈ Qa :=

{
q ∈ Q | G⊥(q)∂>V∂q = 0

}
.

2: Calculate a solution to Md (symmetric) and Γ1 (linear in p) from the kinetic match-
ing (5.3a). Here, Γ1 is chosen to simplify the PDE solution.

3: With Md from step 2, calculate a general solution to Vd from the potential match-
ing (5.3b).
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4: Select the arbitrary functions and parameters in Md, Vd, Γ1 and Γ̄2 such that the
stabilizing conditions (5.5c) and (5.6) hold. If no solution exist, return to steps 2 or 3.

5: Select Gg, G⊥> and ν to build the feedback (5.4).
6: (Local) asymptotic stability can be verified from

• the largest invariant set of (5.2) contained in Ω,

• the (local) zero-state detectability of (5.2) with output yd, or

• Lyapunov’s indirect method (Theorem 2.2).

5.1.2 Standard IDA-PBC and the Dissipation Condition

Taking a closer look to steps 2 and 4 of Algorithm 5.1, we observe that (5.5c) relies in general
on the solution ofMd and Γ1 obtained from (5.3a) and (5.6). In fact, we are solving matching
and stabilizing conditions simultaneously, and thus the name simultaneous IDA-PBC,
see [24].40 To avoid this dependency, we impose the following assumptions.

Assumption 5.1. System (5.1) is lossless or has a negligible dissipation (R(q) = 0).

Assumption 5.2. Γ1 is skew-symmetric.

This allows us to split the design procedure in two stages: energy shaping and
damping injection. The former implies solving (5.3a)–(5.3b) and (5.6) for Md, Vd and
Γ1. The latter injects damping with

Γ̄2(q) = KdG
>(q)J−1(q), Kd = K>d � 0,

to satisfy (5.5c) and yields an output strictly passive closed-loop, see Section 2.6.1. This
twofold stage approach, known as the standard IDA-PBC [13, 22, 23, 203, 204], may fail
to satisfy (5.5c) if Assumption 5.1 does not hold. Therefore, we can modify the damping
injection stage by using Lemma 3.3, obtaining that there exists a Γ̄2 (not necessarily equal
to KdG

>J−1) satisfying (5.5c) if and only if

Ā(q) := G⊥(q)
(
R(q)J(q) + J>(q)R>(q)

)
G>⊥(q) � 0 ∀q ∈ Q. (5.7a)

If a solution exists, then Γ̄2 can be express as

Γ̄2(q)J(q) = K1(q)G>(q)+
(
K2(q)G⊥(q)−G+(q)

)
A(q)

(
G⊥(q)

)+
G⊥(q)+G⊥>(q)K3(q), (5.7b)

40Donaire et al. argued in [24] that the simultaneous IDA-PBC for mechanical systems may extend the
application scope of the standard IDA-PBC. Nevertheless, we will see in Section 5.2.4 that this is not
always the case.



Unconstrained Mechanical Systems 95

where K1, K2 and K3 are arbitrary functions of adequate size, verifying

Gr(q)
(
K1(q) +K>1 (q) +G+(q)A(q)

(
G+(q)

)>
−K2(q)Ā(q)K>2 (q)

)
G>r (q) � 0 (5.7c)

for all q ∈ Q. Here, A(q) = R(q)J(q) + J>(q)R(q), (Gr, Gl) are the full rank factors of G,
i.e., G(x) = Gl(x)Gr(x), and the strict inequality in (5.7c) ensures that the closed-loop is
output strictly passive, meaning

Ω ⊂
{

(q, p) ∈ Q× Rnq | 0 = G>(q)M−1
d (q)p

}
.

Condition (5.7a) is called the dissipation inequality, and it was introduced by Gómez-
Estern and van der Schaft in [27, Prop. 3.1]. However, unlike them, we give the general
solution of Γ̄2 instead of a particular one. Besides, from (5.7b) and Lemma 3.2, we can
show that Γ̄2 may take the usual form Γ̄2(q) = K1G

>(q)J−1(q) if and only if there exists
K2 satisfying

0 = Gr(q)
(
K2(q)G⊥(q)−G+(q)

)(
R(q)J(q) + J>(q)R(q)

)
G>⊥(q) ∀q ∈ Q.

The most straightforward examples of this situation are R(q) = 0 and (5.7a) being a strict
inequality.

5.1.3 Enlarging the Scope of Application

The previous IDA-PBC scheme for unconstrained mechanical systems in port-Hamiltonian
representation can be extended to systems of the formq̇

ṗ

 =

 M−1(q)p
−f1(q)− f2(q, p)−R(q)M−1(q)p

+

 0
G(q)

u, (5.8)

where f1 : Q → Rnq , f2 : Q× Rnq → Rnq is quadratic in p and M can be sign indefinite
but nonsingular and symmetric.41 The representation (5.8) may include mechanical systems
with change of coordinates, preliminary feedback (e.g. partial feedback linearization), or
both that cannot be written in the form (5.1);42 however, it may also cover non-mechanical
systems. The application of IDA-PBC for (5.8) follows straightforwardly by replacing ∂>V

∂q

and 1
2
∂>p>M−1p

∂q with f1 and f2, respectively, in (5.3)–(5.5c). In the literature, shaping
the energy of (5.8) is also known as the Lyapunov direct method for mechanical
systems, see [24, 205–207].

41A square and symmetric matrix is called indefinite if it is neither positive nor negative semidefinite.
42System (5.8) preserves the port-Hamiltonian structure of (5.1) if f1(q) + f2(q, p) + Rx(q)M−1(q)p =
−∂

>H
∂q −R(q)∂>H∂p .
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5.2 Constrained Mechanical Systems

5.2.1 A Motivating Example

Let us consider the cart-pole system without PFL discussed in Section 4.4 but with negligible
friction in the pendulum. By selecting the generalized coordinates q := vec(θ, xc) ∈ Q = R2,
the port-Hamiltonian (explicit) model with Rayleigh dissipation D(q, q̇) = 1

2ccẋ
2
c ≥ 0 reads

q̇
ṗ

 =

 0 I2

−I2 R̂

∂>Ĥ∂q
∂>Ĥ
∂p

+

0
Ĝ

 ν, (5.9)

where Ĝ = vec(0, 1), R̂ = vec(0, cc) and Ĥ is the cart-pole’s total energy, which is

Ĥ(q, p) = 1
2p
>M̂−1(q)p+ gclmp cos θ, M̂(q) =

 mpl
2 mpl cos θ

mpl cos θ mp +mc

.
Suppose we wish to design an IDA-PBC law that ensures the upright (asymptotic) sta-
bilization of the pendulum as well as the cart at a desired position, i.e., qd = vec(0, x?c).
For this purpose, we may use the theory for unconstrained mechanical systems developed
in Section 5.1. In the first step, we select Ĝ⊥ =

[
1 0

]
and verify that qd ∈ Qa. Next, we

calculate M̂d from the quasi-linear PDE (5.3a). This step can be a significant obstacle
in the application of IDA-PBC, so for simplicity, let us choose M̂d(q) = M̂(q) � 0 and
Γ̂1(q, p) = 0, i.e., we are not shaping the kinetic energy. It follows that (5.3a) holds and
the linear PDE (5.3b) reduces to an ODE that can be solved with a simple integration. As
a result, we have V̂d(q) = gclmp cos θ+ β(xc), where β : R→ R is an arbitrary function. In
the fourth step, we observe that there is no such β that renders qd a strict local minimum
of V̂d, see conditions (5.6). Consequently, we have to modify the kinetic energy (M̂d 6= M̂),
which can prevent the reduction of (5.3b) to an ODE, that is, we have to solve PDEs or
find a method that avoids them.

Instead of going forward with this viewpoint, suppose we choose the Cartesian coordinates
r = vec(xp, yp, xc), where (xp, yp) is the relative position of the pendulum w.r.t. the cart
pivot, see Figure 4.8. This leads to the holonomic constraint

Φ(r) := 1
2
(
x2

p + y2
p − l2

)
= 0, (5.10a)

the kinetic energy

Ek(r, ṙ) = mc

2 ẋ2
c+mp

2 ẏ2
p+mp

2 (ẋc + ẋp)2 = 1
2 ṙ
>M̂ ṙ, with M̂ =


mp 0 mp

0 mp 0
mp 0 mc +mp

,
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and the potential energy
V̂(r) = gcmpyp.

Now, following Section 2.5.3, the Hamiltonian equations with external forces and con-
straints (5.10a) are

ṙ
ρ̇

 =

 0 I3

−I3 R̂

∂>Ĥ
∂r

∂>Ĥ
∂ρ

+

 0
∂>Φ
∂r

 λ̂+

 0
Ĝ

 τ, (5.10b)

Ĥ(r, ρ) = 1
2ρ
>M̂−1ρ+ V̂(r),

where λ is the implicit variable (that is calculated from the hidden constraints), Ĝ =
vec(0, 0, 1) and R̂ = vec(0, 0, cc) is obtained from the Rayleigh dissipation D(r, ṙ) =
D(q, q̇) = 1

2ccẋ
2
c . Stemming from the above, we observe that

• (5.9) has 4 states while (5.10b) has 6,

• (5.9) is an ODE while (5.10) is a DAE,

• the inertia matrix M is state-dependent while M̂ is constant, and

• the potential energy V is nonlinear while V̂ is linear.

In other words, after an adequate selection of coordinates, we can describe the system
with DAEs and get simpler expressions in the inertia matrix and potential energy. The
previous example raises the following questions.

1. Is it possible to extend the IDA-PBC to systems in implicit representation?

2. Since the nonlinear expressions of the matching conditions (5.3a)–(5.3b) arise from
M and V being nonlinear, could we take advantage of the implicit model (5.10) (that
has constant M̂, Ĝ and linear V̂) to alleviate the task of solving PDEs (shaping the
total energy)?

The answer to the first question is yes, and it can be traced back to [74, 75] for non-
holonomic systems and [105] for the holonomic case. However, those works impose strong
conditions in the target system, hindering the total energy shaping:

Assumption 5.3 (Establish by [74, 75, 105]). The constraint forces of the target and
nominal port-Hamiltonian systems have the same direction.

Assumption 5.4 (Establish by [74, 75, 105]). The nominal and desired inertia matrices
are positive definite.

Assumption 5.5 (Establish by [105]). The nominal and desired interconnection matrices
are equal.
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In the remainder of this chapter we will drop Assumptions 5.3 to 5.5 by presenting a more
general framework of the total energy shaping IDA-PBC for constrained mechanical systems
that do not necessarily have a port-Hamiltonian representation. The second question, which
is also motivated by Castaños and Gromov in [105], has an affirmative answer for a class of
systems that includes, for instance, the cart pole, portal crane and PVTOL aircraft. The
methods to solve these implicit matching conditions are discussed in Chapter 6.

5.2.2 System Class

We consider a general mechanical system of the formṙ
ρ̇

 =

 0 Inr
−Inr −R(r)

∂>H
∂r

∂>H
∂ρ

+

 0
B̄(r)

λ+

 0
G(r)

u, (5.11a)

0 = Φ(r), (5.11b)

0 = B>nh(r)∂
>H
∂ρ

, (5.11c)

where r ∈ R ⊂ Rnr are coordinates (that uniquely specify the system configuration),
ρ ∈ Rnr are the conjugate momenta defined as ρ = M(r)ṙ, R is an open subset of
Rnr , u ∈ U ⊂ Rnu is the input or control signal, G : R → Rnr×nu is the input matrix,
R : R → Rnr×nr is the dissipation matrix (obtained e.g. from the Rayleigh dissipation
function), B̄(r)λ are the constraint forces with B̄ : R → Rnr×nλ and implicit variables
λ ∈ Rnλ , (5.11b) and (5.11c) are the holonomic and nonholonomic constraints (respectively)
with Φ : R → RnΦ and Bnh : R → Rnr×(nλ−nΦ), and H is the Hamiltonian that represents
the system’s total energy, meaning

H(r, ρ) = 1
2ρ
>M−1(r)ρ+ V(r)

with M : R → Rnr×nrnr being the nonsingular and symmetric inertia matrix, and V : R → R
the potential energy. Furthermore, the kinematic constraints (holonomic plus nonholonomic)
define the level-sets

RΦ := {r ∈ R | 0 = Φ(r)} , Xc :=
{

(r, ρ) ∈ R× Rnr
∣∣∣∣ 0 = B>(r)∂>H

∂ρ , 0 = Φ(r)
}
,

where B(r) =
[
∂>Φ
∂r Bnh(r)

]
. We identify the class by imposing

Assumption 5.6. Mappings Φ and ∂H
∂ρ Bnh are smooth. Matrix

∆(r) := B>(r)M−1(r)B̄(r)

is nonsingular for all r ∈ RΦ.
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Assumption 5.7. The initial conditions (r(t0), ρ(t0)) are consistent, i.e., they satisfy (5.11b)
and the momentum level constraints 43

0 = B>(r)∂
>H
∂ρ

. (5.12)

Assumption 5.8. The set RΦ is connected. The matrix

N(r) :=
[
G(r) B̄(r)

]
has constant rank and satisfies nλ < rank N(r) for every r ∈ RΦ.

By considering a general B̄ rather than Colsp B̄(r) ≡ Colsp B(r), we can include systems
whose constraint forces do not necessarily satisfy the Lagrange-d’Alembert principle, meaning
that they are allowed to do work along the system trajectories: ∂H

∂ρ B̄(r)λ 6= 0. Such
systems have not been previously discussed in the PBC literature and they may result
from Lagrangian or Hamiltonian dynamical systems with preliminary feedback, change
of coordinates, or both. See Sections 7.1.5 and 7.1.6 for an example on the 5-DoF portal
crane. Note that (5.11) is cyclo-passive w.r.t. to the triplet {H, u, y} with y := G>(r)∂>H

∂ρ

whenever

Colsp B̄(r) = Colsp B(r) and ∂H
∂ρ

R(r)∂
>H
∂ρ
≥ 0 ∀(r, ρ) ∈ Xc.

From Assumption 5.6, the Jacobian of
[

Φ
B> ∂

>H
∂ρ

]
exists and is full rank on Xc, implying

that we have nλ smooth and independent kinematic constraints. Besides, by Lemma 2.1, the
sets RΦ and Xc are regular submanifolds of dimensions nr −nΦ and 2nr −nλ−nΦ that are
embedded in R and R×Rnr , respectively. Differentiating the momentum constraints (5.12)
along the system trajectories, yield the hidden or secondary constraints

0 = ∂B>M−1ρ

∂r

∂>H
∂ρ

+ B>(r)M−1(r)
(
−∂
>H
∂r
−R(r)∂

>H
∂ρ

+ G(r)u+ B̄(r)λ
)
, (5.13)

where λ can be uniquely calculated from Assumption 5.6.44 Replacing such a solution
in (5.11a) results inṙ

ρ̇

 =

 M−1(r)ρ
Z(r)

(
−∂>H

∂r −R(r)∂>H
∂ρ

)
− B̄(r)∆−1(r)∂B>M−1ρ

∂r
∂>H
∂ρ + Z(r)G(r)u

, (5.14)

43The momentum level constraints are obtained by differentiating the holonomic constraints (5.11b) w.r.t.
time and rearranging them with the nonholonomic constraints (5.11c).

44Assumption 5.6 is a sufficient but not necessary condition to calculate λ. If ∆ is singular, we may require
higher-order derivatives of (5.12) to calculate λ, see Section 2.4.
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where Z(r) = Inr − B̄(r)∆−1(r)B>(r)M−1(r). It follows from the geometric perspective
of DAEs that system (5.11) with consistent initial conditions (Assumption 5.7) is equivalent
to the ODE (5.14) on the manifold Xc, i.e., the solutions (r(·), ρ(·)) of (5.11) are constrained
to Xc. Besides, from Definition 2.9, the system has differentiation index 3 if at least one
constraint is holonomic; otherwise, it has index 2. To be coherent with the terminology
of Sections 2.4 and 2.5, we refer to RΦ as the configuration manifold (or space) and
Xc as the constrained state-space. The above can be summarized as

Lemma 5.1 (Well-posedness). Consider the mechanical system (5.11) verifying Assump-
tions 5.6 and 5.7. Then, i) the system has nλ independent kinematic constraints and
differential index 2 or 3, ii) λ has a unique solution, iii) the DAE (5.11) is equivalent to
the ODE (5.14) on Xc, and iv) the configuration manifold RΦ and constrained state space
Xc are regular (or embedded) submanifold of R and R× Rnr with dimension nr − nΦ and
2nr − nλ − nΦ, respectively.

Finally, from Assumption 5.8, we exclude trivial systems with non-constant underactuation
degree: If RΦ is not connected, then it is not path-connected (see [135, Proposition 1.11]),
and we may have solutions of r for which ṙ(t) does not exist. Suppose nλ = rank N(r), then
the input and constraint forces has the same direction, meaning that u has no influence on
the system trajectories because B̄(r)λ dominates G(r)u. And, if nλ = nr, the trajectories
of (5.11) are reduced to (r(t), ρ(t)) ≡ (rc, 0) for some constant rc.

5.2.3 Controller Design

Having defined the class of mechanical systems in implicit representation, our task now is to
design a control law that transforms (5.11) into a constrained (or implicit) port-Hamiltonian
system, which is (asymptotically) stable at the desired equilibrium (rd, 0). The following
result is instrumental to our subsequent discussions.

Lemma 5.2 (Nonsingular matrices). Consider A ∈ Rn×nn , B ∈ Rn×m and C ∈ Rn×m with
n > m. The statements below are equivalent:

i) B>AC ∈ Rm×mm

ii) C⊥A−1B>⊥ ∈ R(n−m)×(n−m)
(n−m)

iii)
[
C>⊥ A>B

]
∈ Rn×nn

Suppose any (and hence all) of the assertions is satisfied, then

In ≡ A−1B>⊥
(
C⊥A

−1B>⊥
)−1

C⊥ + C
(
B>AC

)−1
B>A.

Proof. See Appendix B.3.
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Energy Shaping

In spirit of Section 5.1.1, we employ the parameterized IDA-PBC, setting the target
Hamiltonian as

Hd(r, ρ) = 1
2ρ
>M−1

d (r)ρ+ Vd(r),

where Md : R → Rnr×nrnr with Md(r) = M>
d (r) and Vd : R → R are the desired inertia

matrix and potential energy, respectively. To streamline the controller design, we select a
structure in the target system, writingṙ

ρ̇

 =

 0 J(r)
−J>(r) Γ1(r, ρ) + Γ2(r)

∂>Hd
∂r

∂>Hd
∂ρ

+

 0
Bd(r)

λd, (5.15)

where the state space remains the same, Bd(r)λd are the target constraint forces with
Bd : R → Rnr×nλ and implicit variables λd ∈ Rnλ , Γ1 : R× Rnr → Rnr×nr is linear in ρ,
Γ2 : R → Rnr×nr is the target dissipation matrix (not necessarily symmetric and negative
semidefinite), and J : R → Rnr×nr is a matrix that enables kinetic energy shaping. Observe
that the kinematic constraints are a physical property of the nominal system (5.11), and
therefore, they cannot be modified by control. The subsequent proposition shapes the total
energy (kinetic plus potential) of the mechanical system (5.11).

Assumption 5.9. Matrices J and Md satisfy
(
Inr − J(r)M−1

d (r)M(r)
)

B>⊥(r) = 0 ∀r ∈ RΦ.

Assumption 5.10. Matrix

∆d(r) := B>(r)M−1(r)Bd(r)

is nonsingular for all r ∈ RΦ.

Clearly, a sufficient condition for Assumption 5.9 is J(r) = M−1(r)Md(r).

Proposition 5.1 (Implicit matching). Consider the implicit system (5.11) verifying As-
sumptions 5.6 to 5.8. Let (5.15) be the target system verifying Assumptions 5.9 and 5.10.
System (5.11) can be transformed into (5.15) if and only if

0 = N⊥(r)
(
Z(r)1

2
∂>ρ>M−1ρ

∂r
+ Zd(r)B̄(r)∆−1(r)∂B>M−1ρ

∂r
M−1(r)ρ

)

+ N⊥(r)Zd(r)
(
−J>(r)1

2
∂>ρ>M−1

d ρ

∂r
+ Γ1(r, ρ)M−1

d (r)ρ
)
,

(5.16a)

0 = N⊥(r)
(
Z(r)∂

>V
∂r
− Zd(r)J>(r)∂

>Vd

∂r

)
(5.16b)
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for all (r, ρ) ∈ Xc. Consequently, a solution of Γ2 is given by

Γ2(r)M−1
d (r)ρ = −

(
Ḡ(r)Γ̄2(r) + Z(r)R(r)

)
M−1(r)ρ ∀(r, ρ) ∈ Xc, (5.17)

and the control laws are all of the form u = uida(r, ρ),

uida(r, ρ) = Ḡg(r)
(

Z(r)∂
>H
∂r
− Zd(r)J>(r)∂

>Hd

∂r
+ Zd(r)Γ1(r, ρ)∂

>Hd

∂ρ

)

+ Ḡg(r)Zd(r)B̄(r)∆−1(r)∂B>M−1ρ

∂r

∂>H
∂ρ
− Γ̄2(r)∂

>H
∂ρ

+ Ḡ⊥>(r)ν.
(5.18)

Here, Z(r) = Inr − B̄(r)∆−1(r)B>(r)M−1(r), Zd(r) = Inr − Bd(r)∆−1
d (r)B>(r)M−1(r),

Ḡ(r) = Z(r)G(r), and ν and Γ̄2 : RΦ → Rnu×nr are both arbitrary.

Proof. From Assumptions 5.6 to 5.8, system (5.11) is equivalent to the ODE (5.14) on
the regular manifold Xc. Geometrically, it means that every solution (r(·), ρ(·)) of (5.11)
belongs to Xc while its derivative (ṙ(·), ρ̇(·)) belongs to the tangent space of Xc, i.e.,

(ṙ, ρ̇) ∈ T(r,ρ)Xc :=
{

(sr, sρ) | B>(r)sr = 0, ∂
>B>M−1ρ

∂r
sr + B>(r)M−1(r)sρ

}
.

For clarity, we will omit the expression (r, ρ) ∈ Xc in the rest of this proof, as it is implicitly
included in all our derivations. From the tangent space of Xc, it follows that the trajectories
of the closed-loop are consistent with the constrained state space if

0 = B>(r)J(r)M−1
d (r)ρ, (5.19a)

0 = ∂B>M−1ρ

∂r
J(r)M−1

d (r)ρ+ B>(r)M−1(r)Xd(r, ρ) + ∆d(r)λd, (5.19b)

where Xd(r, ρ) = −J>(r)∂>Hd
∂r +

(
Γ1(r, ρ) + Γ2(r)

)
∂>Hd
∂ρ . Since Xc can always be written as

Xc =
{

(r, ρ) | r ∈ RΦ, ρ̄ ∈ Rnr−nλ , ρ = M(r)B>⊥(r)ρ̄
}
, (5.20)

we conclude that Assumption 5.9 verifies (5.19a) while Assumption 5.10 guarantees the
existence of a unique λd that meets (5.19b).

In the next step, we replace the solution of λd in the target system (5.15) to get the
equivalent (target) ODEṙ

ρ̇

 =

 J(r)∂>Hd
∂ρ

Zd(r)Xd(r, ρ)−Bd(r)∆−1
d (r)∂B>M−1ρ

∂r
∂>H
∂ρ

 . (5.21)
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At this point, system (5.11) can be transformed into (5.15) if and only if, for some feedback
u = u(r, ρ), the ODEs (5.14) and (5.21) have identical trajectories, or equivalently their
vector fields match (are equal) in Xc. Such a matching process verifies Assumption 5.9 and
results in

Ḡ(r)u = Zd(r)Xd(r, ρ)− Z(r)X(r, ρ) + Zd(r)B̄(r)∆−1(r)∂B>M−1ρ

∂r

∂>H
∂ρ

,

where X(r, ρ) = −∂>H
∂r −R(r)∂>H

∂ρ . Besides, the above equation can always be decomposed
w.r.t. its dependency on ρ (quadratic in ρ, linear in ρ and independent of ρ, respectively),
obtaining

Ḡ(r)u1(r, ρ) = Z(r)1
2
∂>ρ>M−1ρ

∂r
+ Zd(r)B̄(r)∆−1(r)∂B>M−1ρ

∂r

∂>H
∂ρ

− Zd(r)J>(r)1
2
∂>ρ>M−1

d ρ

∂r
+ Zd(r)Γ1(r, ρ)∂

>Hd

∂ρ
,

(5.22a)

Zd(r)Γ2(r)∂
>Hd

∂ρ
= Ḡ(r)u2(r, ρ)− Z(r)R(r)∂

>H
∂ρ

, (5.22b)

Ḡ(r)u3(r) = Z(r)∂
>V
∂r
− Zd(r)J>(r)∂

>Vd

∂r
, (5.22c)

u = u1(r, ρ) + u2(r, ρ) + u3(r), (5.22d)

where we set (without loss of generality) u2(r, ρ) := −Γ̄2(r)∂>H
∂ρ .

Suppose for the moment that
[

B>M−1

N⊥

]
is a full-rank left annihilator of Ḡ, and B>M−1

is the one of Z and Zd. Then, by using Lemma 3.2, we can show that (5.22b) has always
a solution in Γ2 for every Γ̄2 and that (5.22a) and (5.22c) have a solution in u1 and u3,
respectively, if and only if the matching conditions (5.16a)–(5.16b) hold. Furthermore, the
general solution of u is given by (5.18) while the general solution of Γ2 is given by

Γ2(r)∂
>Hd

∂ρ
= −Zg

d(r)Ḡ(r)Γ̄2(r)∂
>H
∂ρ
− Zg

d(r)Z(r)R(r)∂
>H
∂ρ

+ Zd⊥>(r)ν̄.

Here, we recover (5.17) by choosing ν̄ = 0 and Zg
d(r) = Z(r).45

The demonstration of B>M−1 being a full-rank left annihilator of Z and Zd, is a direct
consequence of identitiesB>(r)M−1(r)

B̄⊥(r)

Z(r) =

 0
B̄⊥(r)

,
B>(r)M−1(r)

B̄d⊥(r)

Zd(r) =

 0
B̄d⊥(r)

,

45Note that Z(r)Z(r) ≡ Z(r) and Zd(r)Z(r)Zd(r) ≡ Zd(r).
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where
[
M−1(r)B(r) B̄>⊥(r)

]
and

[
M−1(r)B(r) B̄>d⊥(r)

]
are nonsingular as a result of the

nonsingularity condition in ∆ and ∆d, see Lemma 5.2. It remains to prove that
[

B>M−1

N⊥

]
is a full-rank left annihilator of Ḡ. For this, we employ Sylvester’s inequality (Lemma A.1)
and identity B>(r)M−1(r)

B̄⊥(r)

 Ḡ(r) =

 0
B̄⊥(r)G(r)


to get rank(N(r))− nλ ≤ rank(B̄⊥(r)N(r)) = rank(B̄⊥(r)G(r)) = rank Ḡ(r), which (by
the rank–nullity theorem) is equivalent to rank Ḡ⊥(r) ≤ nr + nλ − rank N(r). The proof is
now completed with identitiesB>(r)M−1(r)

N⊥(r)

Ḡ(r) = 0,

B>(r)M−1(r)
N⊥(r)

[B̄(r) N>⊥(r)
]

=

∆(r) ?

0 N⊥(r)N>⊥(r)


under the observation that

[
B>(r)M−1(r)

N⊥(r)

]
annihilates Ḡ and that it posses the maximum

admissible rank of Ḡ⊥, i.e., rank
[

B>(r)M−1(r)
N⊥(r)

]
= rank ∆(r) + rank N⊥(r)N>⊥(r) = nr +

nλ − rank N(r).

Remark 5.1. If Ḡg(r)
[
B̄(r) Bd(r)

]
≡ 0, then (5.18) reduces to

uida(r, ρ) = Ḡg(r)
(
∂>H
∂r
− J>(r)∂

>Hd

∂r
+ Γ1(r, ρ)∂

>Hd

∂ρ

)
− Γ̄2(r)∂

>H
∂ρ

+ Ḡ⊥>(r)ν. (5.23)

Proposition 5.1 transforms the well-posed implicit system (5.11) into the target sys-
tem (5.15) at the expense of satisfying the (implicit) matching conditions (5.16). These
conditions, which are split into the matching of the kinetic energy (5.16a) and the
matching of potential energy (5.16b), are the backbone of the proposed energy shaping
and represent a system of nonhomogeneous first-order quasi-linear PDEs with unknowns in
Md, Vd and Γ1 but constrained to Xc.

A striking feature of Proposition 5.1 is that it does not require the target system (5.15)
to be port-Hamiltonian, since the only condition imposed on Bd is the nonsingularity of
∆d(r) := B>(r)M−1(r)Bd(r).46 Besides, comparing the implicit and explicit energy shaping
perspectives, we notice that the control law (5.4) and matching conditions (5.3) of the
unconstrained situation can be viewed as a specific case of the implicit perspective introduced
in Proposition 5.1:

r = q, M(r) = M(q), J(r) = J(q), N(r) = G(q), B(r) = 0,
ρ = p, V(r) = V (q), R(r) = R(q), Zd(r) = Inr .

46System (5.15) is port-Hamiltonian if 0 = B>d (r)∂
>Hd
∂ρ for all (r, ρ) in Xc, i.e., if the constrained forces are

workless for every λd, see Section 2.6.3.
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This considerable resemblance will allow us to extrapolate most of the results for constrained
systems to unconstrained ones, see e.g., Section 6.2. Besides, using the generalized inverse
of Ḡ instead of the Moore–Penrose inverse, we can simplify the final expression of (5.18),
see Remark 5.1 and Sections 7.1.3, 7.1.6, 7.2.2, 7.2.3 and 7.3.3.

Example 5.1. (Example 2.7, continued) Consider the simple pendulum of Figure 2.5 with
coordinates r = vec(xp, yp) ∈ R = R2, input torque τ , holonomic constraint

Φ(r) := 1
2

(
x2

p + y2
p − l2

)
= 0 (5.24a)

and consistent initial conditions (Assumption 5.7). We wish to reshape the pendulum’s
energy with Proposition 5.1. For this, we employ the standard assumptions that the bob is
a point mass while the rod is massless. Hence, the pendulum’s total energy is given by

H(r, ρ) = 1
2ρ
>M−1ρ+ V(r) = 1

2 ṙ
>Mṙ + V(r) = m

2

(
ẋ2

p + ẏ2
p

)
+ gcmy,

and its constrained Hamiltonian dynamics isṙ
ρ̇

 =

 0 I2

−I2 −R(r)

∂>H
∂r

∂>H
∂ρ

+

 0
∂>Φ
∂r

λ+

 0
G(r)

 τ, (5.24b)

where M = mI2, gc is the gravity constant, and matrices G = 1
l2 vec(−yp, xp) andR = 1

l2 cθI2

result from ṙ>G(r)τ = θ̇τ , the Rayleigh dissipation D(r, ṙ) = 1
2cθ

ẋ2
p+ẏ2

p
l2 ≥ 0 and ẋ2

p+ẏ2
p

l2 = θ̇2.
We have the following observations regarding the implicit system (5.24).

• The set RΦ := {r ∈ R | 0 = Φ(r)} ∼= S1 is a smooth manifold (see Example 2.4), and

∆(r) := B>(r)M−1B̄(r) =
x2

p + y2
p

m
= l2

m
> 0 ∀r ∈ RΦ,

i.e., Assumption 5.6 is verified.

• N(r) :=
[
G(r) B̄(r)

]
=
[
G(r) ∂>Φ

∂r

]
is nonsingular for every r ∈ RΦ, meaning

that Assumption 5.8 holds and the pendulum is fully actuated (see Definition 2.12).

To fulfill Assumptions 5.9 and 5.10, let for simplicity Md = a1I2, J = M−1Md and
Bd(r) = J>B(r) with a nonzero constant a1:

∆d(r) = a1
x2

p + y2
p

m2 = a1l
2

m2 6= 0 ∀r ∈ RΦ.

Since N is nonsingular, the implicit matching conditions (5.16) are trivial (N⊥(r) = 0) for
any a1, Vd and Γ1. Consequently, all the conditions of Proposition 5.1 are fulfilled and
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feedback47

uida(r, ρ) = xpgcm+ a1

m

[
yp −xp

] ∂>Vd

∂r
+ 1
a1

[
−yp xp

]
Γ1(r, ρ)ρ− 1

m
Γ̄2(r)ρ (5.25)

transforms (5.24) into the systemṙ
ρ̇

 =

 0 a1
m I2

−a1
m I2 Γ1(r, ρ) + Γ2(r)

∂>Hd
∂r

∂>Hd
∂ρ

+

 0
a1
mB(r)

λd, (5.26a)

0 = Φ(r) := 1
2

(
x2

p + y2
p − l2

)
(5.26b)

with new energy
Hd(r, ρ) = 1

2ρ
>M−1

d ρ+ Vd(r),

where Γ̄2 is arbitrary, Γ2 is defined in (5.17) and Ḡg is selected as Ḡg(r) =
[
−yp xp

]
. 4

Admissible Equilibria

A necessary condition to asymptotically stabilize a point (rd, 0) is that this point must be
an admissible equilibrium. In this regard, Lemma 3.6 gives the admissible equilibria set
for ODEs of the form (3.3) that naturally includes mechanical systems without constraints.
The Lemma below gives such a set for the constrained case.

Lemma 5.3. The state (r?, ρ?) is an admissible equilibrium of (5.11) verifying Assump-
tions 5.6 to 5.8 if and only if

ρ? = 0 and r? ∈ Ra :=
{
r ∈ RΦ | 0 = N⊥(r)∂

>V
∂r

}
. (5.27)

Proof. Let (r?, ρ?) be an admissible equilibrium of the well-posed system (5.11), or equiv-
alently, of the underlying ODE (5.14). Then, ρ? = 0, r? ∈ RΦ and

∃u? ∈ Rnu s.t. 0 = −Z(r?) ∂
>V
∂r

∣∣∣∣∣
r=r?

+ Ḡ(r?)u?. (5.28)

Hence, from Lemmas 3.2 and 5.2 with
[

B>M−1

N⊥

]
being a full-rank left annihilator of Ḡ (see

the proof of Proposition 5.1), we have

(5.28) ⇐⇒ 0 = N⊥(r?) ∂
>Vd

∂r

∣∣∣∣∣
r=r?

, (5.29)

47Controller (5.25) is actually the simplified version given in Remark 5.1.
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and the necessity is established. Now, suppose (5.27) holds. Evaluating (5.14) in (r?, 0)
gives ṙ = 0 and

ρ̇ = −Z(r?) ∂
>V
∂r

∣∣∣∣∣
r=r?

+ Ḡ(r?)u, (5.30)

but we know from (5.29) that there exists u = u? s.t. the right-hand side of (5.30) is zero,
which completes the proof.

Stabilization

The following proposition applies and extends the results of [38, 75, 77] to mechanical
systems with kinematic constraints (holonomic and nonholonomic) for the (asymptotic)
stabilization of an admissible equilibrium with total energy shaping IDA-PBC.

Assumption 5.11. Matrices Bd and Md satisfy

Colsp(Md(r)M−1(r)B(r)) = Colsp Bd(r) ∀r ∈ RΦ.

A sufficient condition for Assumption 5.11 is Bd(r) = Md(r)M−1(r)B(r).

Proposition 5.2 (Implicit IDA-PBC). Consider the system (5.11) under Assumptions 5.6
to 5.8. Let (5.15) be the target dynamics verifying Assumptions 5.9 and 5.11, and

B⊥(r)M(r)M−1
d (r)M(r)B>⊥(r) � 0 ∀r ∈ RΦ, (5.31a)

∂Hd

∂ρ

(
Ḡ(r)Γ̄2(r)J(r) + Z(r)R(r)J(r)− Γ1(r, ρ)

)∂>Hd

∂ρ
≥ 0 ∀(r, ρ) ∈ Xc. (5.31b)

Then, Assumption 5.10 holds, and the feedback (5.18) transforms (5.11) into (5.15) if
and only if the matching conditions (5.16) are fulfilled. Here, Γ2 is as specified in (5.17).
Furthermore, all bounded trajectories of (5.15) converge to the set Ωinv, defined as the
largest invariant set of the closed-loop contained in

Ω =
{

(r, ρ) ∈ Xc |
∂Hd

∂ρ

(
Ḡ(r)Γ̄2(r)J(r) + Z(r)R(r)J(r)− Γ1(r, ρ)

)∂>Hd

∂ρ
= 0

}
.

Suppose, in addition, that

Vd(r) > Vd(rd) ∀r ∈ RΦ − {rd} , (5.31c)

then (5.15) is stable in the admissible equilibrium (rd, 0). (Local) asymptotic stability can
be demonstrated whenever (rd, 0) is an isolated point in Ωinv.48

48Let X be a topological set. A point p is said to be isolated in a set P ⊂ X if there is a neighborhood
N ⊂ X of p with the property that N ∩ P = {p}.
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Proof. The proof falls naturally into three parts: i) transformation of (5.11) into (5.15),
ii) application of LaSalle’s Theorem 2.4, and iii) stability analysis.

i) From Lemma 5.2, inequality (5.31a) is sufficient for the nonsingularity of

∆̄d(r) := B>(r)M−1(r)Md(r)M−1(r)B(r).

This means that Md(r)M−1(r)B(r) is full rank and Assumption 5.11 can be equivalently
written as

Bd(r) = Md(r)M−1(r)B(r)KB(r)

with an arbitrary function KB : RΦ → Rnλ×nλnλ
. Now, ∆d takes the form ∆d(r) =

∆̄d(r)KB(r), which is clearly nonsingular. Hence, all conditions of Proposition 5.1 are
fulfilled, meaning that (5.11) with controller (5.18) is transformed into system (5.15).
ii) Taking the time derivative of Hd along the trajectories of (5.15) gives

Ḣd
∣∣∣
Xc

(r, ρ) = ρ>M−1
d (r)

(
Γ1(r, ρ) + Γ2(r)

)
M−1

d (r)ρ
∣∣∣
Xc

+ ρ>M−1
d (r)Bd(r)λd

∣∣∣
Xc

= ρ>M−1
d (r)

(
Γ1(r, ρ) + Γ2(r)

)
M−1

d (r)ρ
∣∣∣
Xc

= ρ>M−1
d (r)

(
Γ1(r, ρ)− Ḡ(r)Γ̄2(r)J(r)− Z(r)R(r)J(r)

)
M−1

d (r)ρ
∣∣∣
Xc
,

where the second equality results from Bd(r) = Md(r)M−1(r)B(r)KB(r) and the last
one from the solution of Γ2 obtained from (5.17). Notice that replacing the most general
solution of Γ2 given by (5.22b) also yields the same result because ρ>M−1

d (r)Zd(r)
∣∣∣
Xc

=

ρ>M−1
d (r)

∣∣∣
Xc
. Since (5.15) is actually the ODE (5.21) on Xc, it follows by Lemma A.4

that the bounded trajectories of (5.21) approach a positive limit set L+ ⊂ Xc that is a
nonempty, compact, connected and invariant. Now, application of LaSalle’s Theorem 2.4 on
this ODE with L+ and (5.31b), i.e., Ḣd

∣∣∣
Xc

(r, ρ) ≤ 0, shows that the bounded trajectories
of the closed-loop approach Ωinv as time goes to infinity.
iii) Let (N̄ , Ψ̄) be a coordinate chart on Xc with local coordinates x̄ s.t. N̄ is a connected

set and (rd, 0) ∈ N̄ . Then, (5.15) can be locally rewritten as an ODE with coordinates x̄
and domain Ψ̄(N̄ ),49 which is an open and connected set. Define V̄ (x̄) := Hd(Ψ̄−1(x̄))−
Hd(rd, 0). From Lyapunov’s Theorem 2.1, the point x̄d = Ψ̄(rd, 0) is an stable equilibrium
of the local ODE if V̄ is positive definite about x̄d and ˙̄V is negative semidefinite (about
x̄d). For this, rewrite Xc as in (5.20), observing that the constrained target Hamiltonian
can be express as

Hd|Xc
(r, ρ) = 1

2 ρ
>M−1

d (r)ρ
∣∣∣
Xc

+ Vd(r)|RΦ
,

49The ODE (5.21) on Xc ⊂ R×Rnr has coordinates (r, ρ) while the local one has coordinates x̄ ∈ Ψ̄(N̄ ) ⊂
R2nr−nλ−nΦ , see Section 2.4.2.
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= 1
2 ρ̄
>B⊥(r)M(r)M−1

d (r)M(r)B>⊥(r)ρ̄
∣∣∣
RΦ

+ Vd(r)|RΦ
.

Thus, the conditions (5.31) are sufficient for Hd|N̄ being positive definite about (rd, 0) and
Ḣd
∣∣∣
N̄

being negative semidefinite, meaning that x̄d is a stable equilibrium of the local ODE
and (rd, 0) is a stable equilibrium of (5.15).50 If (rd, 0) is an isolated point in Ωinv, there is
a neighborhood Nnh of (rd, 0) satisfying Nnh ∩ Ωinv = {(rd, 0)}. The asymptotic stability
of (rd, 0) is obtained by setting L+ ⊂ N̄ ⊂ Nnh.

Proposition 5.2 is our primary tool for the controller synthesis of constrained mechanical
systems. It extends the results of Proposition 5.1 by ensuring convergence to the invariant set
Ωinv and even (asymptotic) stability of the desired equilibrium (rd, 0), where the closed-loop
is a port-Hamiltonian system. Overall, the method presented above does not require

Colsp Bd(r) = Colsp B(r) = Colsp B̄(r) or J(r) = Inr .

Besides, Md can be sign-indefinite yet without compromising stability. In other words,
Assumptions 5.3 to 5.5 introduced in [74, 75, 77, 105] are unnecessary, and our method can
be regarded as a generalization of those works. Needless to say, it is possible to omit the
kinetic energy shaping, i.e., setting Md(r) = M(r), see Section 6.2.2.
The actual synthesis with this proposition is similar to the explicit IDA-PBC case. It

starts by defining the structure of J and Bd from Assumptions 5.9 and 5.11. Next, we
obtain an appropriate solution of Md, Γ1 and Γ̄2 from (5.16a), (5.31a) and (5.31b), to
finally solve Vd from (5.16b) and (5.31c). If Vd cannot be obtained, we repeat the procedure
by searching for a different Md. Unlike the explicit IDA-PBC, imposing

Md(r) � 0 ∀r ∈ RΦ

to guarantee (5.31a) may significantly reduce the system class or hinder the solution of
Md. For example, see Sections 7.2.2 and 7.2.4, where the upright position of the cart-pole’s
pendulum cannot be stabilize if Md is constant and positive definite, but it can if Md is
i) constant and sign-indefinite, or ii) positive definite and state-dependent.

Local IDA-PBC

To achieve (asymptotic) stability with Proposition 5.2 it is required that Hd|Xc
has a

global strict minimum in (rd, 0), see (5.31a) and (5.31c). Nonetheless, this condition can
50Lyapunov’s direct method (see Theorem 2.1) is originally developed for ODEs in the Euclidean space. If

we use this formulation on the equivalent ODE (5.21), we obtain stronger conditions than (5.31), namely
Hd being positive definite and Ḣd being negative semidefinite for all (r, ρ) ∈ R× Rnr (instead of Xc).
Therefore, either we use the standard Lyapunov theorem as shown above or a Lyapunov formulation
on manifolds (see [137, 162, 208]). Note that LaSalle’s Theorem 2.4 does not require an additional
formulation on manifolds because it employs compact (closed and bounded) sets.
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be relaxed by selecting a local minimum instead (see proof of Proposition 5.2). Towards
this goal, let us define the Lagrange function51

Ld(r, ρ, δ, µ) := Hd(r, ρ) + δ>B>(r)M−1(r)ρ+ µ>Φ(r)

with Lagrange multipliers µ ∈ RnΦ and δ ∈ Rnλ , and constraints

B>(r)M−1(r)ρ = 0 and Φ(r) = 0.

According to the constrained minimization theory, see [180, Section 1.4], the point (rd, 0)
is a strict local minimum of Hd|Xc

∈ C2 if and only if there exist vectors µd ∈ RnΦ and
δd ∈ Rnλ such that

0 = ∂Ld

∂r

∣∣∣∣ r=rd, ρ=0
δ=δd, µ=µd

, 0 = ∂Ld

∂ρ

∣∣∣∣ r=rd, ρ=0
δ=δd, µ=µd

, (5.32a)

[
z>r z>ρ

] ∂2Ld
∂r2

∂
∂ρ

(
∂>Ld
∂r

)
∂
∂r

(
∂>Ld
∂ρ

)
∂2Ld
∂ρ2

∣∣∣∣∣∣ r=rdρ=0
δ=δd
µ=µd

zr
zρ

 > 0 ∀(zr, zρ) ∈ Z, (5.32b)

where

Z =
{

(zr, zρ) ∈ Rnr × Rnr
∣∣∣∣ 0 = ∂Φ

∂r

∣∣∣∣
r=rd

zr, 0 = B>(rd)M−1(rd)zρ
}
,∂>Ld

∂r
∂>Ld
∂ρ

 =

∂>Vd
∂r + ∂>ρ>M−1

d ρ

∂r + ∂>Φ
∂r µ+ ∂>ρ>M−1bδ

∂r

M−1(r)B(r)δ + M−1
d (r)ρ

.
Hence, (5.32) can be equivalently rewritten as

∂Vd

∂r

∣∣∣∣
r=rd

+ µ>d
∂Φ
∂r

∣∣∣∣
r=rd

= 0, (5.33a)(
∂>Φ
∂r

)
⊥

(
∂2 Vd

∂r2 + ∂2µ>dΦ
∂r2

)(
∂>Φ
∂r

)>
⊥

∣∣∣∣∣∣
r=rd

� 0, (5.33b)

B⊥(rd)M(rd)M−1
d (rd)M(rd)B>⊥(rd) � 0, (5.33c)

where (5.33b)–(5.33c) is obtained from (5.32b) with Finsler’s Lemma A.9. Observe
that (5.33a)–(5.33b) reduce to

∂Vd

∂r

∣∣∣∣
r=rd

= 0 and ∂2Vd

∂r2

∣∣∣∣∣
r=rd
� 0

51By a Lagrange function, we mean a function associated with the method of Lagrange multipliers. This
concept should not be confused with the Lagrangian, which we use as kinetic minus potential energy,
see Section 2.5.2.
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if the nominal system does not have holonomic constraints. Letting Md(rd) be sign-indefinite
involves calculating its inverse to verify (5.33c), but this can be an arduous task depending
on the size and form of Md. Lemma 5.4 restates this problem by requiring the inverse of a
square matrix of size nλ (number of constraints) instead of Md.

Lemma 5.4. Consider systems (5.11) and (5.15) with Assumptions 5.6 to 5.8. Let Bd(r) =
Md(r)M−1(r)B(r). Then, (5.31a) holds if and only if

B̄⊥(r)
(
Md(r)−Md(r)M−1(r)B(r)∆̄−1

d (r)B>(r)M−1(r)Md(r)
)

B̄>⊥(r) � 0 (5.34)

and ∆̄d(r) = B>(r)M−1(r)Md(r)M−1(r)B(r) is nonsingular for all r ∈ RΦ.

Proof. See Appendix B.4.

Now, we can express inequality (5.33c) as

B̄⊥(r)
(
Md(r)−Md(r)M−1(r)B(r)∆̄−1

d (r)B>(r)M−1(r)Md(r)
)

B̄>⊥(r)
∣∣∣
r=rd
� 0, (5.35)

with ∆̄d(rd) being nonsingular. Note that if

B̄⊥(rd)Md(rd)M−1(rd)B(rd) = 0,

then (5.35) reduces to
B̄⊥(rd)Md(rd)B̄>⊥(rd) � 0.

Applying the IDA-PBC method to constrained systems can be summarized as follows.

Algorithm 5.2 IDA-PBC for mechanical systems with kinematic constraints.
Require: A mechanical system of the form (5.11) verifying Assumptions 5.6 to 5.8.
1: Select N⊥ and rd ∈ Ra :=

{
r ∈ RΦ | 0 = N⊥(r)∂>V

∂r

}
. Pick the structure of J and Bd

from Assumptions 5.9 and 5.11, e.g.,

J(r) = M−1(r)Md(r) and Bd(r) = Md(r)M−1(r)B(r).

2: Compute a solution to Md (symmetric) and Γ1 (linear in ρ) from (5.16a). Here, Γ1 is
chosen to simplify the PDE of the kinetic matching (5.16a).

3: With Md from step 2, calculate a general solution to Vd from the potential match-
ing (5.16b).

4: Select the arbitrary functions and parameters in Md, Vd, Γ1 and Γ̄2 such that the
stabilizing conditions (5.31b) and (5.33) hold. To avoid the inverse of Md, we can
replace (5.33c) by (5.35) with ∆̄d(rd) being nonsingular. If no solution exists, return
to steps 3 or 4.
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5: (Local) asymptotic stability can be verified from the invariant set Ωinv (as defined
in Proposition 5.2).

6: Select Ḡg and Ḡ⊥>ν to build the feedback (5.18). The freedom in the selection of Ḡg

and ν can simplify the controller expression. For example, if

Ḡg(r)
[
B̄(r) Bd(r)

]
≡ 0,

then (5.18) reduces to (5.23).

5.2.4 Standard IDA-PBC and the Dissipation Condition

Similar to the unconstrained situation, we can observe that the solutions of Md and Γ1

depend simultaneously on the matching condition (5.16a) and the stabilizing condition (5.2).
This dependency on (5.2) can be eliminated by assuming skew-symmetry on Γ1. However,
Donaire et al. [24] argue for the unconstrained case that assigning skew-symmetry may
introduce conservatism in the design. The following propositions solve this query for both
constrained and unconstrained systems.

Proposition 5.3. Consider the system (5.11) under Assumptions 5.6 to 5.8. Let (5.15)
be the target dynamics verifying (5.31a) and Assumptions 5.9 and 5.11, . The term Γ̄2 has
a solution in (5.31b) if and only if

ρ>M−1
d (r)Γ1(r, ρ)M−1

d (r)ρ = 0 ∀(r, ρ) ∈ Xc, (5.36a)

N⊥(r)
(
R(r)M−1(r)Md(r)Z>d (r)

)s
N>⊥(r) � 0 ∀r ∈ RΦ, (5.36b)

Let ρ be bounded, then (5.36) is a sufficient but not necessary condition for (5.31b). Fur-
thermore, for any Γ1 verifying (5.36a), there is an equivalent target system with Γ1 replaced
Γ̂1 : R× Rnr → Rnr×nr such that Γ̂1 is skew-symmetric and linear in ρ.

The lemma below, whose proof is given in Appendix B.5, is an extension of the well-known
result

0 = z>Qz ∀z ∈ Rnz ⇐⇒ Q+Q> = 0

and it will be used to demonstrate Proposition 5.3.

Lemma 5.5. Consider A ∈ Rn×m and Q(z) = ∑n
i=1Qi

(
z>ei

)
with Qi ∈ Rn×n. Then,

0 = z>Q(z)z ∀ z ∈ {z ∈ Rn | z = Ay, y ∈ Rm} (5.37)

⇐⇒ 0 =
n∑
i=1

A>
(
Qs
i

(
ē>k A

>ei
)

+ eiē
>
k A
>Qs

i +Qs
iAēke

>
i

)
A ∀k ∈ {1, 2, . . . , m} , (5.38)

where ei = coli(In) and ēk = colk(Im).
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Proof of Proposition 5.3. From Assumption 5.11 and (5.31a), we can assert that ∆d

is nonsingular and Bd(r) = Md(r)M−1(r)B(r)KB(r) for some function KB : RΦ →
Rnλ×nλnλ

, see the proof of Proposition 5.2. By definition of Xc, we can write (without
loss of generality) ρ = M(r)B>⊥(r)ρ̄ with ρ̄ = hτ ∈ Rnr−nλ , τ ∈ R and h ∈ Snr−nλ−1 =
{h ∈ Rnr−nλ | ‖h‖2 = 1}, meaning that ρ̄ is parameterized with magnitude τ and direction
h. Then, from Assumption 5.9 and linearity of Γ1 in ρ, the condition (5.31b) reads

τ 2
(
−τκ1(r, h) + h>κ2(r)h

)
≥ 0 ∀τ ∈ R, h ∈ Snr−nλ−1, r ∈ RΦ, (5.39a)

⇐⇒ κ1(r, h) = 0, κ2(r) + κ>2 (r) � 0 ∀h ∈ Snr−nλ−1, r ∈ RΦ, (5.39b)
⇐⇒ (5.36a), κ2(r) + κ>2 (r) � 0 ∀(r, ρ) ∈ Xc, (5.39c)

where κ1(r, h) = h>Bd⊥(r)Γ1(r,M(r)B>⊥(r)h)B>d⊥(r)h, Bd⊥(r) = B⊥(r)M(r)M−1
d (r) and

κ2(r) = Bd⊥(r)
(
Ḡ(r)Γ̄2(r)+Z(r)R(r)

)
M−1(r)Md(r)B>d⊥(r). Observe that if ρ is bounded,

then τ is bounded and (5.39b) is a sufficient but not necessary condition for (5.39a). For
clarity, we left out the expression (r, ρ) ∈ Xc in the rest of this proof. From (5.39c), we
have the following chain of implications.

∃Γ̄2 s.t. Bd⊥(r)
(
F1(r) + Ḡ(r)Γ̄2(r)M−1(r)Md(r)

)s
B>d⊥(r) � 0

⇐⇒ ∃Γ̂3, Γ̂2 s.t. Fs
1(r)−

[
Ḡ(r) Bd(r)

] Γ̂2(r)
Γ̂3(r)

−
Γ̂2(r)
Γ̂3(r)

>[Ḡ(r) Bd(r)
]>
� 0

⇐⇒ N⊥(r)Zd(r)
(
F1(r) + F>1 (r)

)
Z>d (r)N>⊥(r) � 0

⇐⇒ (5.36b).

where F1(r) = Z(r)R(r)M−1(r)Md(r) and Γ̂2(r) = Γ̄2(r)M−1(r)Md(r). Here, the first
and second equivalences are a consequence of the extended Finsler Lemma 3.3 while the
third one results from N⊥(r)Zd(r)Z(r) = N⊥(r) and N⊥(r)Zd(r) being a full rank left
annihilator of

[
Ḡ(r) Bd(r)

]
. To demonstrate the annihilator, let us consider the identities

B>(r)M−1(r)
B̄⊥(r)

[Ḡ(r) Bd(r)
]

=

 0 ∆d(r)
B̄⊥(r)G(r) ?

,
N⊥(r)Zd(r)

[
Bd(r) M(r)B>⊥(r)

]
= N⊥(r)

[
B̄(r) M(r)B>⊥(r)

]
, (5.40)

where matrices
[
Bd(r) M(r)B>⊥(r)

]
and

[
B̄>⊥(r) M−1(r)B(r)

]
are nonsingular from

Lemma 5.2 with Assumption 5.6 and nonsingularity of ∆d. Hence, by using rank(B̄⊥(r)G(r))
= rank(N(r)) − nλ, which is obtained from the proof of Proposition 5.1 under Assump-
tions 5.6 and 5.8, we can infer that

rank
[
Ḡ(r) Bd(r)

]
= rank N(r), rank N⊥(r)Zd(r) = rank N⊥(r).
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At this stage, the result is evident from N⊥(r)Zd(r)
[
Ḡ(r) Bd(r)

]
= 0.

It remains to proof that for any Γ1 verifying (5.36a), there is an equivalent closed-loop
with a skew-symmetric Γ̂1. For this, note from the ODE (5.21) on Xc that two target
systems, one with Γ1 and another with Γ̂1 instead, have identical trajectories iff

Zd(r)Γ1(r, ρ)M−1
d (r)ρ = Zd(r)Γ̂1(r, ρ)M−1

d (r)ρ. (5.41)

Left multiplying the above equation by the matrix
[
M−1(r)B(r) M−1

d (r)M(r)B>⊥(r)
]>
,

which is nonsingular from Lemma 5.2 with (5.31a), results in the equivalent expression

0 = B⊥(r)M(r)M−1
d (r)

(
Γ1(r, ρ)M−1

d (r)ρ− Γ̂1(r, ρ)M−1
d (r)ρ

)
. (5.42)

Now, let us write (without loss of generality)

Γ1(r, ρ) :=
nr∑
i=1

eiρ
>M−1

d (r)Qi(r), akjm := ē>j A>(r)
nr∑
i=1

Qs
i(r)

(
ē>k A>(r)ei

)
A(r)ēm,

Γ̂1(r, ρ) :=
nr∑
i=1

Q̂i(r)
(
e>i M−1

d (r)ρ
)
, bjkm := ē>k A>(r)

nr∑
i=1

Q̂i(r)
(
ē>j A>(r)ei

)
A(r)ēm,

where Qi, Q̂i : R → Rnr×nr , A(r) = M−1
d (r)M(r)B>⊥(r), ēk = colk(Inr−nλ), ei = coli(Inr)

and akjm satisfies

akjm = akmj ∀k, j,m ∈ {1, . . . , nr − nλ} . (5.43a)

Hence, (5.42) reads

A>(r)
nr∑
i=1

eiρ̄
>A>(r)Qi(r)A(r)ρ̄ = A>(r)

nr∑
i=1

(
e>i A(r)ρ̄

)
Q̂i(r)A(r)ρ̄ ∀ρ̄ ∈ Rnr−nλ

⇐⇒
nr∑
i=1

A>(r)Qs
i(r)A(r)

(
e>i A(r)ēk

)
= A>(r)

nr∑
i=1

eiē
>
k A>(r)Q̂i(r)A(r)

+ A>(r)
nr∑
i=1

Q̂>i (r)A(r)ēke>i A(r)

⇐⇒ akjm = bjkm + bmkj ∀k, j,m ∈ {1, . . . , nr − nλ} , (5.43b)

while (5.36a) with Lemma 5.5 is equivalent to

akjm + ajkm + amjk = 0 ∀k, j,m ∈ {1, . . . , nr − nλ} , (5.43c)
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It follows that (5.43a), (5.43c) and

bjkm = c
(
akjm − amjk

)
∀k, j,m ∈ {1, . . . , nr − nλ} , (5.43d)

imply (5.43b), or equivalently (5.41), if c = 1
3 . Rewriting (5.43d) in matrix notation

0 =
nr−nλ∑
k=1

nr−nλ∑
m=1

ēk

(
bjkm −

1
3
(
akjm − amjk

))
ē>m

= A>(r)
(( nr∑

i=1
Q̂i(r)

(
ē>j A>(r)ei

))
− 1

3

( nr∑
i=1

eiē
>
j A>(r)Qs

i(r)−Qs
i(r)A(r)ēje>i

))
A>(r),

to then multiply by ρ̄
(
ē>j ρ̄

)
on the right and sum over j gives

0 = A>(r)
nr∑
i=1

Q̂i(r)
(
e>i M−1

d (r)ρ
)

︸ ︷︷ ︸
Γ̂1(r,ρ)

M−1
d (r)ρ

− 1
3A>(r)

(
nr∑
i=1

eiρ
>M−1

d (r)Qs
i(r)−Qs

i(r)M−1
d (r)ρe>i

)
M−1

d (r)ρ.

It follows that Γ̂1 can take the skew-symmetric form

Γ̂1(r, ρ) = 1
3

(
nr∑
i=1

eiρ
>M−1

d (r)
(
Qi(r) + Q>i (r)

)
−
(
Qi(r) + Q>i (r)

)
M−1

d (r)ρe>i

)

and our claim is proved.

To preserve the usual terminology, we refer to (5.36b) as the dissipation condition for
mechanical systems with kinematic constraints. In this regard, Proposition 5.3 asserts that
there exists a Γ̄2 satisfying the stabilizing condition (5.31b) if an only if the dissipation
condition holds and Γ1 verifies (5.36a), which implies that Γ1 can be skew-symmetric
without loss of generality. On the other hand, if we relax (5.31b) to hold only locally
(bounded ρ), then the skew-symmetry feature indeed introduces conservatism. For example,
we may have Γ1 not satisfying (5.36a) and still be able to find Γ̄2 that certifies (5.31b)
in a compact set Xk = {(r, ρ) ∈ Xc | Hd(r, ρ) ≤ k} for some appropriate constant k ∈ R
and energy function Hd. Note that Ḣd

∣∣∣
Xk
≤ 0, and therefore, stability can be guaranteed

inside of Xk, but (overall) this may complicate the analysis and render smaller regions of
convergence.

The statements of Proposition 5.3 can be extended to unconstrained mechanical systems
as follows.
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Proposition 5.4. Consider the system (5.1), and let (5.2) be the target dynamics. The
term Γ̄2 has a solution in (5.5c), i.e.,

p>M−1
d (q)

(
G(q)Γ̄2(q)J(q) +R(q)J(q)− Γ1(q, p)

)
M−1

d (q)p ≥ 0 ∀ (q, p) ∈ Q× Rnq

if and only if

p>M−1
d (q)Γ1(q, p)M−1

d (q)p = 0 ∀(r, ρ) ∈ Xc (5.44)

and the dissipation condition (5.7a) holds. Let p be bounded, then (5.7a) and (5.44) are
sufficient but not necessary conditions for (5.5c). Furthermore, for any Γ1 verifying (5.44),
there is an equivalent target system with Γ1 replaced Γ̂1 : Q× Rnq → Rnq×nq such that Γ̂1

is skew-symmetric and linear in p.

Proof. Along the same lines of the proof of Proposition 5.3.

Proposition 5.4 shows that the simultaneous IDA-PBC, as presented by Donaire et al. [24]
where (5.5c) is satisfied for all p ∈ Rnq , can be reframed as the standard IDA-PBC with
the dissipation condition (5.7a).

Example 5.2 (PID-PBC). Donaire et al. [24] consider a class of unconstrained mechanical
systems in feedback with the Proportional-integral-derivative Passivity-based Control
(PID-PBC). Their resulting closed-loop is of the form (5.2), where

Γ2(q) = −G(q)KvG
>(q) = −G(q)Γ̄2(q)J(q),

Γ1(q, p) = Md(q)

 0 2kaku
∂mxpu
∂qu

m−1
uu (qu)

−kakum
−1
uu (qu)∂>mxpu

∂qu
Luu(qu, p)− kakum

−1
uu (qu)∂

>m>x pa
∂qu

Md(q),

Luu(qu, p) = −2k2
um
>
x (qu)K−1

k
∂mxpu

∂qu
m−1

uu (qu) + k2
um
−1
uu (qu)∂

>m>x K
−1
k mxpu

∂qu
,

Ḣd(q, p) = −p>M−1
d (q)G(q)KvG

>(q)M−1
d (q)p.

Besides, Kv = K>v � 0, ka, ku ∈ R and Kk = K>k ∈ Rnu×nu are controller parameters,
q = vec(qa, qu), qa ∈ Rnu and qu ∈ Rnq−nu are the actuated and unactuated coordinates,
respectively, p = vec(pa, pu) are the momenta with pa ∈ Rnu and pu ∈ Rnq−nu , muu :
Rnq−nu → R(nq−nu)×(nq−nu) and mau : Rnq−nu → Rnu×(nq−nu) are submatrices of M , and
mx(qu) = Kkmau(qu)m−1

uu (qu). There is also a particular structure on Md and Vd, but we
omit them and other details for presentation easiness.
Given that Γ1 is not skew-symmetric, they conclude that this problem belongs to the

simultaneous IDA-PBC but not to the standard one, see Section 5.1.2. However, from the
form Ḣd and the structure of (5.2), it is not difficult to see that Γ1 also verifies (5.44),
meaning the closed-loop can always be reformulate as the standard IDA-PBC, i.e., there
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exists an equivalent closed loop with skew-symmetric Γ̂1 verifying

Γ1(q, p)M−1
d (q)p = Γ̂1(q, p)M−1

d (q)p. (5.45)

In fact, after some straightforward manipulations and omitting the arguments (q, p) for
clarity, it follows that

Γ1M
−1
d p =Md

 2kaku
∂mxpu
∂qu

m−1
uu pu

−2kakum
−1
uu

∂>p>a mxpu
∂qu

− 2k2
um
>
x K

−1
k

∂mxpu
∂qu

m−1
uu pu + k2

um
−1
uu

∂>p>u m
>
x K
−1
k mxpu

∂qu


=Md

 2kaku
∂mxpu
∂qu

m−1
uu pu

−2kakum
−1
uu

∂>mxpu
∂qu

pa + 2k2
u

(
m−1

uu
∂>mxpu
∂qu

K−1
k mx −m>x K−1

k
∂mxpu
∂qu

m−1
uu

)
pu


=Md

 0 2kaku
∂mxpu
∂qu

m−1
uu

−2kakum
−1
uu

∂>mxpu
∂qu

2k2
u

(
m−1

uu
∂>mxpu
∂qu

K−1
k mx −m>x K−1

k
∂mxpu
∂qu

m−1
uu

)
︸ ︷︷ ︸

M−1
d Γ̂1M

−1
d

pa

pu

,

which verifies (5.45). Although, there are further extensions that enlarge the realm of
applicability of the PID-PBC for UMSs [18, 19, 70], those results yield a closed-loop of the
form (5.2) with Γ1 satisfying (5.44). Consequently, they all can be reformulated as the
standard IDA-PBC framework. 4

5.2.5 Enlarging the Scope of Application

In our IDA-PBC formulation for constrained mechanical systems, we consider systems with
constrain forces that are not necessarily workless. The objective is to include systems with
change of coordinates, preliminary feedback (e.g., partial feedback linearization), or both.
However, such mechanical systems may not preserve the structure of (5.11a), but have the
more general formṙ

ρ̇

 =

 M−1(r)ρ
−f1(r)− f2(r, ρ)−R(r)M−1(r)ρ

+

 0
G(r)

u+

 0
B̄(r)

 λ̄, (5.46)

where f1 : R → Rnr and f2 : R× Rnr → Rnr is quadratic in ρ.52 In fact, the representa-
tion (5.46) may also include non-mechanical systems. In this regard, we can straightfor-
wardly incorporate this class by replacing the terms ∂>V

∂r and 1
2
∂>ρ>M−1ρ

∂r with f1 and f2,
respectively, in all our previous derivations.

52System (5.46) can be written as (5.11a) if f1(r) + f2(r, ρ) = ∂>H
∂r .





Chapter 6

On the Solutions of IDA-PBC for
Constrained Mechanical Systems

Chapter 5 develops the fundamentals of the total energy shaping IDA-PBC for constrained
(or implicit) mechanical systems. The approach’s success relies on our ability to solve the
matching conditions (quasilinear PDEs) such that we have a sufficiently general target
Hamiltonian that can verify the stabilizing conditions. In this chapter, we analyze these
conditions (matching and stabilizing) more closely and provide some solutions.

Roughly speaking, a mechanical system is fully-actuated if the number of coordinates is
less than or equal to the number of independent constraints and inputs; otherwise, it is
underactuated, see Definition 2.12. Fully-actuated systems, which are studied in Section 6.1,
stand out for the matching conditions’ trivial satisfaction. We discuss underactuated
systems in Section 6.2, where we introduce some heuristic and constructive methods to
solve the PDEs of the matching conditions. Furthermore, we show that, based on the
full state information control and two additional conditions, an output feedback controller
may be obtained. We close the chapter, in Section 6.3, with the elimination of kinematic
constraints and constraint forces to provide an equivalence between explicit and implicit
representations.

6.1 Fully Actuated Systems

Let us synthesize an IDA-PBC controller for fully actuated mechanical systems with
kinematic constraints on the basis of Algorithm 5.2. As usual, we will consider systems of
the form (5.11), verifying Assumptions 5.6 to 5.8. We recall from Definition 2.12 that (5.11)
is fully actuated if rank N(r) = nr for all r ∈ RΦ. This means that i) N⊥ is a zero matrix
or equivalently rank N⊥(r) = 0, ii) the admissible equilibria set Ra = RΦ, and iii) the
matching conditions (5.16) are trivially guaranteed for every Md, Vd and Γ1. Now, setting
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J(r) = M−1(r)Md(r) and Bd(r) = Md(r)M−1(r)B(r) to satisfy Assumptions 5.9 and 5.11
completes steps 1–3. In step 4, we choose Md(r) � 0, Γ1(r, ρ) = −Γ>1 (r, ρ) and

B⊥(r)
(
J−>(r)Ḡ(r)Γ̄2(r) + J−>(r)Z̄(r)R(r)

)s
B>⊥(r) � 0 ∀r ∈ RΦ (6.1)

to fulfill (5.31a) and (5.31b), obtaining Ω = {(r, ρ) ∈ Xc | ρ = 0} . The key aspect is that
there always exist a Γ̄2 verifying (6.1). This can be demonstrated in a similar way as in
the proof of Proposition 5.3 but with Lemma A.9 instead of Lemma 3.3.
In the next step, let (r(t), ρ(t)) be a solution of the target system (5.15) that belongs

identically to Ω. We have

ρ(t) ≡ 0 ⇒ ρ̇(t) ≡ ṙ(t) ≡ 0 ⇒ 0 ≡ Zd(r(t))J>(r(t))∂
>Vd

∂r
⇔ 0 ≡ B⊥(r(t))∂

>Vd

∂r
,

where the last equivalence is a direct consequence of Lemma 5.2, Assumption 5.11 and
Md(r) � 0. At this point, we can claim from Proposition 5.2 that every bounded trajectory
of (5.11) in closed loop with (5.18) approaches the invariant set

Ωinv :=
{

(r, 0) | r ∈ RΦ, r is constant, 0 = B⊥(r)∂
>Vd

∂r

}
. (6.2)

Furthermore, if system (5.11) is holonomic and Vd ∈ C2, condition (5.33a) is equivalent to
0 = B⊥(r)∂>Vd

∂r , which means that Ωinv is the set of all equilibria (r?, 0) with r? being the
local minima or maxima of Vd|RΦ

. Consequently, if Vd|RΦ
∈ C2 has a strict minimum in

rd, i.e., conditions (5.31c) or (5.33a)–(5.33b) hold, then (rd, 0) is a (locally) asymptotically
stable equilibrium of the closed-loop.
Suppose, on the other hand, that (5.11) has nonholonomic constraints. Thus, Ωinv can

have points that are not local extrema of Vd|RΦ
, and we cannot guarantee asymptotic

stability in (rd, 0) but only a partial convergence to it. In fact, Brockett’s necessary condi-
tion [209] implies that (both fully actuated and underactuated) systems of the form (5.11)
with nonholonomic constraints are not asymptotically stabilizable through continuous time-
invariant and static-state feedback, see [3, Corollary 6.4.7].53 It is important to highlight
that if we only consider nonholonomic systems, then Ωinv is equal to the invariant set
obtained in [75, 215]. We summarize the above material in the next proposition.

Proposition 6.1. Let (5.11) be a fully-actuated system satisfying Assumptions 5.6 to 5.8.
Consider the system (5.15) with J(r) = M−1(r)Md(r) and Bd(r) = Md(r)M−1(r)B(r).
Suppose Md is positive definite, Γ1 is skew-symmetric and Vd ∈ C2 satisfies (5.31c)
or (5.33a)–(5.33b) for some rd ∈ RΦ. Then, there is a function Γ̄2 verifying (6.1) that
entails the following affirmations: i) System (5.11) in closed-loop with feedback (5.18) is
53A broader discussion on Brockett’s necessary condition and the asymptotic stabilization of nonholonomic

systems can be found in [210–214].
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stable in (rd, 0). ii) Every bounded trajectory of the closed-loop approaches the invariant set
Ωinv defined in (6.2). iii) (Local) asymptotic stability of (rd, 0) can be achieved if (5.11) is
a holonomic system.

Example 6.1. (Example 5.1, continued) Consider the simple pendulum of Examples 2.7
and 5.1, and suppose we intend to stabilize the equilibrium (rd, 0) with Proposition 6.1.
To this end, select Md = a1I2 � 0, Γ1(r, ρ) = 0, Γ̄2 = a2G>(r), J = M−1Md, Bd(r) =
MdM−1B(r) and

Vd(r) = 1
2(r − rd)>A(r − rd)− (r − rd)>B(rd)a3,

where ai and A are constants. Hence, condition (6.1) is verified with a2 > −cθl2, and Vd|Rφ
has a strict local minimum in rd if and only if (5.33a)–(5.33b) holds, i.e., a3 = µd and

B⊥(rd) (A+ I2a3) B>⊥(rd) � 0. (6.3)

See e.g., Figure 6.1. Since the system is holonomic, all conditions of Proposition 6.1 are

−1
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Vd|RΦ

xp yp

Figure 6.1. – Function Vd|RΦ
with A = 0, l = 1, a3 = 1 and rd = vec(l, 0).

satisfied and (rd, 0) is an asymptotically stable equilibrium of (5.24) in feedback with (5.25),
which reads

uida(r, ṙ) = xpgcm+ a1

m

[
yp −xp

] (
A(r − rd)−B(rd)a3

)
− a2

l2
(xpẏp − ypẋp) . (6.4)

We have the following observations regarding (6.4). First, the design using global coordinates
avoids undesirable behavior such as unwinding,54 see [77] for an illustration on the simple

54By unwinding, we mean the unstable behavior of a closed-loop where a particular set of initial conditions,
relatively close to the desired point in space, produces long trajectories before returning to the desired
equilibrium [216, 217].
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pendulum. And last, after setting a1a3 = m2gc
l , a2 = 0 and A = 0, for rd = vec(0, l), we

recover the controller of [105]. 4

Example 6.2. (Rolling disk) The vertical rolling disk or coin is a benchmark example in the
analysis and control of mechanical systems with nonholonomic constraints [78, 159, 178,
212, 218]. It is also widely used as the basic representation of unicycle type robots [219–221].
This system, as shown in Figure 6.2, consists of a disk with symmetric mass distribution
(constant density) that rolls on a horizontal plane without slipping and keeping its midplane
vertical (not “falling”). Its configuration space is given by R2 × S1 × S1, and therefore, we
can choose the (generalized) coordinates r = q = vec(xc, yc, θ1, θ2) ∈ R = R4, where (xc, yc)
is the point of contact, θ2 is the orientation, and θ1 represents the rotation angle. The
port-Hamiltonian model of the rolling disk subject to torques τ1 and τ2 is given byṙ

ρ̇

 =

 0 I4

−I4 0

∂>H
∂r

∂>H
∂ρ

+

 0
B(r)

λ+

 0
G(r)

 τ, (6.5a)

0 = B>(r)∂
>H
∂ρ

, (6.5b)

where H(r, ρ) = 1
2ρ
>M−1ρ = 1

2 ṙ
>Mṙ is the Hamiltonian,

M =


m 0 0 0
0 m 0 0
0 0 J1 0
0 0 0 J2

, B̄(r) = B(r) =


1 0
0 1

−Rc cos θ2 −Rc sin θ2

0 0

, G(r) =


0 0
0 0
1 0
0 1

,

m is the coin mass, Ji is the moment of inertia passing through the coin center and
relative to θi, Rc is the coin radius, and (6.5b) represents the no-slip constraints (of the
coin w.r.t the plane), which are nonholonomic (nonintegrable). We leave the verification
of Assumptions 5.6 to 5.8 to the reader.
To stabilize the equilibrium point (rd, 0) using Proposition 6.1, we set Γ̄2(r)J(r) =

Kv(r)Ḡ>(r), Bd(r) = Md(r)M−1(r)B(r) and J(r) = M−1(r)Md(r) with arbitrary Md(r) �
0, Γ1(r, ρ) = 0 and Kv : R → Rnu×nu verifying Kv(r) + K>v (r) � 0. Besides, given that
the system is nonholonomic, we can pick

Vd(r) = 1
2(r − rd)>A(r − rd)

for some positive definite constant A ∈ R4×4. It follows that (6.5) in closed loop with (5.18)
achieves stability in (rd, 0) and its trajectories converge to the set

Ωinv :=

(r, 0) | r ∈ R, r is constant, 0 =

Rc cos θ2 Rc sin θ2 1 0
0 0 0 1

A(r − rd)

 .
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Figure 6.2. – Vertical rolling disk diagram.

For instance, let rd = 0 and

A =


a1 + a2 0 −Rca1 0

0 a3 0 0
−Rca1 0 R2

ca1 0
0 0 0 a4


with ai > 0, then Ωinv is reduced to xc = θ2 = 0 with arbitrary but bounded yc and θ1.
Similarly, if

A =


a1 0 −Rca1 0
0 a3 0 0

−Rca1 0 a2 +R2
ca1 0

0 0 0 a4


with ai > 0, then Ωinv is reduced to θ1 = θ2 = 0 with arbitrary but bounded xc and yc. 4

6.2 Underactuated Systems

For underactuated mechanical systems, the matching conditions (5.16) are a system of
nonhomogeneous quasilinear first-order PDEs with unknowns in Md, Vd and Γ1. Hypo-
thetically, they can be solved with the method of characteristics [222, 223]; however,
(in practice) it is not always feasible to find such a solution, see [17, 23, 58, 68, 69, 224, 225]
for some solutions of the matching conditions in the explicit situation. In the following
section, we will introduce
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i) a heuristic solution to the matching and stabilizing conditions by means of SOS
programs,

ii) an equivalent representation of the kinetic matching (5.16a) that provides a charac-
terization of the target inertia matrix, and

iii) a constructive method to solve the potential matching (5.16b) by using full-rank
annihilators and the integrability condition of gradients.

6.2.1 A Heuristic Solution

Under an appropriate selection of coordinates, typically Euclidean, many mechanical systems
in implicit representation possess a polynomial characterization.

Definition 6.1. An implicit mechanical system of the form (5.11) is said to be polynomial
(or possess a polynomial characterization) if the functions M, V, B and N are polynomial.

For instance, the cart-pole system addressed in Section 5.2.1 has a linear potential energy,
a quadratic (holonomic) constraint, a constant inertia matrix and a constant input matrix in
the implicit representation, but its inertia matrix and potential energy are nonlinear when
using generalized coordinates. In fact, the polynomial characterization is rather unusual
when a mechanical system is modeled in an explicit representation. In this section, due
to the inherent complexity of solving the matching and stabilizing conditions, we take
advantage of the implicit systems with polynomial characterization to propose a heuristic
solution that reformulates the IDA-PBC problem into an SOS program, see Section 2.2.
The proposition below provides equivalent conditions to solve the IDA-PBC problem and
is instrumental for our derivations.

Proposition 6.2 (Equivalent IDA-PBC). Consider (5.11) verifying Assumptions 5.6 to 5.8.
Let (5.15) be the target system with J−>(r) = M(r)M−1

d (r) and Bd(r) = Md(r)M−1(r)B(r).
Let r 7→ Ke(r) with domain in RΦ be a function s.t. N⊥(r)M(r)K>e (r) is nonsingular and

0 = Ke(r)
[
J−>(r)Ḡ(r) B(r)

]
∀r ∈ RΦ (6.6)

Suppose (5.31a) holds, then the matching conditions (5.16) are equivalent to

0 = Ke(r)J−>(r)
(

Z(r)1
2
∂>ρ>M−1ρ

∂r
+ B̄(r)∆−1(r)∂B>M−1ρ

∂r

∂>H
∂ρ

)

+ Ke(r)
(
−1

2
∂>ρ>M−1

d ρ

∂r
+ Γ̄1(r, ρ)M−1(r)ρ

)
∀(r, ρ) ∈ Xc,

(6.7a)

0 = Ke(r)
(

J−>(r)Z(r)∂
>V
∂r
− ∂>Vd

∂r

)
∀r ∈ RΦ, (6.7b)
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and the control law (5.18) can be expressed as

uida(r, ρ) = Ĝg(r)B⊥(r)J−>(r)
(

B̄(r)∆−1(r)∂B>M−1ρ

∂r

∂>H
∂ρ

+ Z(r)∂
>H
∂r

)

+ Ĝg(r)B⊥(r)
(
−∂
>Hd

∂r
+ Γ̄1(r, ρ)∂

>H
∂ρ

)
− Γ̄2(r)∂

>H
∂ρ

+ Ḡ⊥>(r)ν,
(6.8)

where Γ̄1(r) = J−>(r)Γ1(r)J−1(r) and Ĝ(r) = B⊥(r)M(r)M−1
d (r)Ḡ(r). Furthermore,

inequalities (5.31b) and (5.36b) read

∂H
∂ρ

(
J−>(r)

(
Z(r)R(r) + Ḡ(r)Γ̄2(r)

)
− Γ̄1(r, ρ)

)
∂>H
∂ρ
≥ 0 ∀(r, ρ) ∈ Xc, (6.9)

Ke(r)
(
J−>(r)Z(r)R(r)+R>(r)Z>(r)J−1(r)

)
K>e (r) � 0 ∀(r, ρ) ∈ Xc. (6.10)

Proof. Recall from the proof of Proposition 5.3, Assumptions 5.6 and 5.8, and condition
(5.31a) that

[
Ḡ(r) Bd(r)

]
is the full-rank right annihilator of N⊥(r)Zd(r). It follows

by Lemma 3.2 and condition (6.6) that the relation

Ke(r) = K̄(r)N⊥(r)Zd(r)Md(r)M−1(r) ∀r ∈ RΦ (6.11)

holds with
K̄(r) = Ke(r)J−>(r) (N⊥(r)Zd(r))g (r).

From (6.6), we can write without loss of generality Ke(r) = K̄e(r)B⊥(r), meaning that

Ke(r)M(r)M−1
d (r)M(r)K>e (r) � 0 ∀r ∈ RΦ (6.12)

whenever (5.31a) is verified. Hence, from the nonsingularity of N⊥(r)M(r)K>e (r) and
(5.31a), we can always build a nonsingular K̄ by choosing

(N⊥(r)Zd(r))g (r) := M(r)K>e (r)
(
N⊥(r)M(r)K>e (r)

)−1
.

Now, replacing N⊥(r)Zd(r)Md(r)M−1(r) by K̄−1(r)Ke(r) in (5.16), (5.31b) and (5.36b)
yields the equivalent expressions (6.7), (6.9) and (6.10), respectively. To obtain the control
law (6.8), note that

[
M−1(r)B(r) M−1

d (r)M(r)B>⊥(r)
]
is nonsingular from (5.31a), which

implies that

Ḡ(r)Ḡg(r)Ḡ(r) = Ḡ(r) ⇐⇒ Ĝ(r)Ḡg(r)Ḡ(r) = Ĝ(r) (6.13)

and that Ḡg(r) can be taken as Ḡg(r) = Ĝg(r)B⊥(r)M(r)M−1
d (r). Replacing this selection

in (5.18) gives (6.8), and the proof is complete.
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Remark 6.1. The condition

0 = Ke(r)J−>(r)N(r) ∀r ∈ RΦ (6.14)

guarantees 0 = Ke(r)J−>(r)Ḡ(r) and renders simpler expressions in (6.7) and (6.10).

Proposition 6.2 asserts that (5.16), (5.18), (5.31b) and (5.36b) can be written as (6.7)–
(6.10) where only M−1

d is present (Md has been removed) at the cost of introducing a
new unknown matrix Ke satisfying (6.6) with nonsingular N⊥(r)M(r)K>e (r). Another
contribution of Proposition 6.2 is that by fixing Ke, we reduce the problem of solving
the quasilinear PDEs (5.16) to the one of solving the linear PDEs (6.7). Consequently,
if we i) restrict our attention to polynomial systems, ii) assume that the solutions of Γ̄1,
M−1

d and Vd are polynomial, and iii) choose Ke verifying 0 = Ke(r)B(r) with nonsingular
N⊥(r)M(r)K>e (r) such that the conditions (6.6)–(6.7) and (6.10) are all polynomial. Then,
we can reframe the IDA-PBC controller synthesis as the following SOS program.

SOS Program 6.1 (Heuristic solution).

find the coefficients of Γ̄1, M−1
d , Vd

subject to (5.33a), (6.7), 0 = Ke(r)M(r)M−1
d (r)Z(r)G(r), 0 = Vd(rd),

LHSs of (5.33b), (5.33c), (6.10) are SOS,

where we add −εInr−nΦ and −εInr−nλ with a sufficiently small ε > 0 in the left-hand sides
of (5.33b) and (5.33c), respectively, to guarantee the strict inequalities.

Observe that the SOS program cannot be formulated with the matching conditions (5.16)
or by searching simultaneously for Ke, Γ̄1, M−1

d and Vd in (6.7) because their coefficients
would not be subject to linear constraints.

Given that (5.33b)–(5.33c) are LMIs, there is no loss of generality by including them in
the framework of SOS, see Section 2.2. Nevertheless, choosing Ke in advance, searching only
for polynomial solutions, and assuming that the left-hand side of (6.10) is SOS introduce
some conservatism that, in the worst case, may lead to no solution whatsoever. To alleviate
the first problem, we propose two options to pick Ke:

Option 1. Choose Ke such that N⊥(r)M(r)K>e (r) is nonsingular and

0 = Ke(r)
[
G(r) B(r)

]
∀r ∈ RΦ.

Option 2. Choose Ke such that 0 = Ke(r)B(r) and there exist functions Ka and V̂d of
appropriate size verifying

Ka(r)N⊥(r)∂
>V
∂r
−Ke(r)

∂>V̂d

∂r
= 0, (6.15a)
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Ka(rd)N⊥(rd)M(rd)K>e (rd) � 0 (6.15b)

for every r ∈ RΦ, where V̂d is polynomial and has a strict local minimum in rd.55

Option 1 is the most simple but also uncertain. It actually implies, from (6.11), that
M−1

d is constrained by

0 = N⊥(r)Zd(r)Md(r)M−1(r)G(r).

This solution can be implemented for relatively straightforward control objectives where
the target potential field (gradient of Vd) does not change drastically, see e.g., the 4-DoF
portal crane of Section 7.1.2. The typical steps where Option 1 might fail are two.

• The solution of Vd resulting from the potential matching (6.7b) could be incompatible
with rd being the strict local minimum of Vd|RΦ

, i.e., (5.33a)–(5.33b).

• The solution of M−1
d that guarantees (5.33a)–(5.33b) and (6.7b) could be incompatible

with the necessary condition (6.12).

Option 2 overcomes the aforementioned problems, by selecting a Ke that certifies the
existence of Vd and M−1

d verifying (5.33a)–(5.33b), (6.7b) and (6.12). Here, conditions (6.15)
are an equivalent and simpler representation of (6.7b) and (6.12), see (6.11). We remove
the nonsingularity condition of N⊥(r)M(r)K>e (r) because (6.15b) already guarantees it
locally. The underlying idea with Option 2 is to propose a tentative polynomial solution for
V̂d and then calculate Ke and Ka from (6.15a), but if the selection does not meet (6.15b),
we change V̂d and repeat the process. By using this option, we can achieve the upright
stabilization of the cart-pole’s pendulum (see Section 7.2.3), which otherwise with Option 1
is unfeasible.
In summary, the proposed method hinges on finding a suitable function Ke and the

computational cost of solving the SOS Program 6.1. Recall that an SOS program is solved
in polynomial time, meaning that the computational cost (time) is upper bounded by a
polynomial expression of the number of inputs, i.e., the number of coefficients and linear
constraints in Γ̄1, M−1

d and Vd. Similar to the algebraic approach of Chapter 3, having a
large number of unknown coefficients (parameters) may lead to an unpredictable controller
performance because the SOS Program 6.1 has either none or infinite solutions. But the
result can be improved by imposing constraints or minimization objectives on such new
variables. This implies, for practical purposes, that we should aim at a low polynomial
order on Vd, M−1

d and Γ̄1. Algorithm 6.1 merges the procedure to synthesize the IDA-PBC
for constrained mechanical systems of Algorithm 5.2 with the proposed heuristic solution.

55Ka does not have to be polynomial.
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Algorithm 6.1 Heuristic solution of IDA-PBC with SOS programs for mechanical
systems with kinematic constraints.
Require: A UMS of the form (5.11) with a polynomial characterization and verifying As-

sumptions 5.6 to 5.8.
1: Select N⊥ and rd ∈ Ra :=

{
r ∈ RΦ | 0 = N⊥(r)∂>V

∂r

}
. Let J−>(r) = M(r)M−1

d (r)
and Bd(r) = Md(r)M−1(r)B(r).

2: Pick the polynomial order for M−1
d (symmetric), Vd and Γ̄1 (skew-symmetric and linear

in ρ).
3: Choose Ke from either Option 1 or 2 such that the conditions (6.6)–(6.7) and (6.10)

are all polynomial. From (6.6), we can replace 0 = Ke(r)J−>(r)Ḡ(r) with the stronger
condition (6.14) to simplify (6.7) and (6.10).

4: Select ε,
(
∂>Φ
∂r

)
⊥
and B⊥, and solve the SOS Program 6.1. If desired, impose a minimiza-

tion objective and additional constraints on the coefficients of M−1
d , Vd and Γ̄1. This

step can be computed e.g., with SOSTOOLS56 and a SDP solver. If solver converges
and M−1

d (rd) is nonsingular proceed to next step, otherwise return to steps 2 or 3.
5: To build the feedback (6.8), select Γ̄2 from (6.9),57 Ĝg and Ḡ⊥>ν. If R(r) = 0, then

Γ̄2(r) := Kv(r)Ḡ>(r)J−1(r)

with Kv : RΦ → Rnu×nu , Kv(r) + K>v (r) � 0 verifies (6.9).
6: (Local) asymptotic stability can be verified from the invariant set Ωinv (as defined

in Proposition 5.2).

6.2.2 Constructive Solutions

Instead of solving the matching and stabilization conditions simultaneously, as performed
in the heuristic solution, here we take the standard procedure of Algorithm 5.2 whereby
we first solve the kinetic matching, then the potential one, and finally take advantage of
the arbitrary functions and free parameters to fulfill the stabilizing conditions. In this
context, we provide three solutions for the kinetic matching conditions (5.16a) and one for
the potential matching (5.16b).

Avoiding the Kinetic Energy Shaping

Suppose
Colsp B(r) ⊂ Colsp N(r) ∀r ∈ RΦ. (6.16)

56SOSTOOLS is a Matlab toolbox specialized on the SOS method, providing a simple environment to
work with polynomial equalities and inequalities, see Section 2.2 and [122].

57The satisfaction of (6.10) from the SOS Program 6.1 certifies the existence of Γ̄2 verifying (6.9).
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Then, Assumption 5.9 and the kinetic matching (5.16a) can be satisfied with Md(r) = M(r),
J(r) = Inr , Γ1(r, ρ) = 0 and Bd(r) = B(r). The proof is self-evident after noting that (6.16)
with Bd(r) = B(r) is equivalent to 0 = N⊥(r)Bd(r). As one would expect, not shaping
the kinetic energy in IDA-PBC reduces the scope of application. For instance, under this
selection, we can stabilize the downward pendulum position of the cart-pole, but not the
upward (see Section 7.2.2).

Constant Target Inertia Matrix

For unconstrained mechanical systems verifying

0 = G⊥(q)∂
>p>M−1p

∂q
∀(q, p) ∈ Q× Rnq , (6.17)

a common approach to solve the kinetic matching (5.3a) with J(q) = M−1(q)Md(q) is to
consider Γ1(q, p) = 0 and a constant target inertia matrix Md, see e.g., [67, 68]. We can
extrapolate this idea to the implicit situation if

N⊥(r)∂
>ρ>M−1ρ

∂r
= 0 ∀(r, ρ) ∈ RΦ × Rnr . (6.18)

Hence, (5.16a) with J(r) = M−1(r)Md(r) and Bd(r) = Md(r)M−1(r)B(r) can be satisfied
by choosing Γ1(r, ρ) = 0 and a constant Md such that

0 = N⊥(r)Md(r)M−1(r)B(r) ∀r ∈ RΦ. (6.19)

Condition (6.18) includes systems with constant mass matrix M mostly modeled in a
Euclidean space, which otherwise in an unconstrained representation may possess a state-
dependent inertia matrix M , see Section 6.3. Similarly, even though Md is constant,
the inertia matrix of the reduced closed-loop can be state-dependent. Looking back to
the motivating example of Section 5.2.1, we observe that the cart-pole model in explicit
representation does not fulfill (6.17). Nevertheless, in the implicit representation, the inertia
matrix M is constant, and shaping its kinetic energy relies on satisfying the algebraic
equation (6.19), see Section 7.2.2 for the upward stabilization of the cart-pole pendulum.

A Characterization of the Target Inertia Matrix

Until now, we have provided two analytic solutions to the kinetic matching (5.16a). These
approaches avoid the task of solving PDEs but have two significant disadvantages. First, they
reduce the scope of application of the implicit IDA-PBC, because if step 4 in Algorithm 5.2
fails, we may be forced to seek out a state-dependent Md(r) 6= M(r). And second, using
kinetic shaping with non-constant Md increases the controller’s versatility e.g., by enlarging
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the region of convergence. In this regard, the following result provides an equivalent
expression of the matching condition (5.16a), replacing the task of solving PDEs with the
one of solving DAEs. This equivalence reduces the complexity of obtaining a solution of
Md in such a manner that we can introduce a state-dependent characterization of Md that
solves (5.16a). The following lemma, whose proof is given in Appendix B.6, is used in the
proof of Proposition 6.3.

Lemma 6.1. Let A : X → Rn×n and G : X → Rn×m be given. Assume A is symmetric
and G has constant rank. Then,

0 = A(x) +G(x)K(x) +K>(x)G>(x) x ∈ X

has a solution in K : X → Rm×n if and only if

0 = G⊥(x)A(x)G>⊥(x) x ∈ X .

If a solution exists, then they are all of the form

K(x) = Gg(x)A(x)
(

1
2G(x)Gg(x)− In

)>
+W (x)G>(x) +G⊥>(x)K̂,

where K̂ is arbitrary and of adequate size, while W : X → Rm×m is arbitrary and skew-
symmetric.

Proposition 6.3. Consider the system (5.11) verifying Assumptions 5.6 to 5.8. Let (5.15)
be the target system with J(r) = M−1(r)Md(r), Bd(r) = Md(r)M−1(r)B(r) and Γ1

being skew-symmetric. Assume Md satisfies (5.31a). The implicit matching of the kinetic
energy (5.16a) holds if and only if there exists a function P : RΦ×Rnr → Rnr×nr such that

0 = N⊥(r)Zd(r)
(dMd

dt + P(r, ṙ)J(r) + J>(r)P>(r, ṙ)
)

Z>d (r)N>⊥(r), (6.20a)

0 = P(r, ṙ)ṙ + Z(r)1
2
∂>ṙ>Mṙ

∂r
− B̄(r)∆−1(r)dB>M−1

dt M(r)ṙ (6.20b)

for all (r, ṙ) ∈ X̄c :=
{

(r, ṙ) ∈ RΦ × Rnr | 0 = B>(r)ṙ
}
. Furthermore, the controller (5.18)

can be express as

uida(r, ρ) = Ḡg(r)
(

Z(r)∂
>V
∂r
− Zd(r)J>(r)∂

>Vd

∂r

)
− Γ̄2(r)∂

>H
∂ρ

+ Ḡ⊥>(r)ν

+ Ḡg(r)A(r, ρ)
(
Inr − 1

2Ḡ(r)Ḡg(r)
)>∂>Hd

∂ρ
+ Kw(r, ρ)Ḡ>(r)∂

>Hd

∂ρ
,

(6.21)
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where Kw : Xc → Rnu×nu is arbitrary and skew-symmetric, and

A(r, ρ) = Zd(r)
(dMd

dt + P(r, ṙ)J(r) + J>(r)P>(r, ṙ)
)∣∣∣∣
ṙ=M−1(r)ρ

Z>d (r).

Proof. The kinetic matching (5.16a) is the necessary and sufficient condition for the
existence of u1 verifying (5.22a), see the proof of Proposition 5.1. Hence, by setting

P̄(r, ρ) := Z(r)1
2
∂>M−1ρ

∂r
M(r) + B̄(r)∆−1(r)∂B>M−1ρ

∂r
,

equation (5.22a) reads

Ḡ(r)u1(r, ρ) = Zd(r)
(

P̄(r, ρ)∂
>H
∂ρ
− J>(r)1

2
∂>ρ>M−1

d ρ

∂r
+ Γ1(r, ρ)∂

>Hd

∂ρ

)

= Zd(r)
(

P̄(r, ρ)∂
>H
∂ρ

+ J>(r)1
2
∂>ρ̂>Mdρ̂

∂r

∣∣∣∣∣
ρ̂=M−1

d ρ

+ Γ1(r, ρ)∂
>Hd

∂ρ

)

= Zd(r)
(

P̄(r, ρ)∂
>H
∂ρ

+ 1
2
∂Mdρ̂

∂r

∣∣∣∣
ρ̂=M−1

d ρ

∂>H
∂ρ

+ 1
2 Γ̂1(r, ρ)∂

>Hd

∂ρ

)

= Zd(r)
(

P̄(r, ρ)J(r) + 1
2

dMd

dt

∣∣∣∣
ṙ=M−1(r)ρ

+ 1
2 Γ̂1(r, ρ)

)
Z>d (r)∂

>Hd

∂ρ
, (6.22)

where the second equality results from

0 ≡ ∂Md

∂ri
M−1

d (r) + Md(r)∂M−1
d

∂ri
,

the third one from

1
2 Γ̂1(r, ρ) := Γ1(r, ρ) + 1

2

(
J>(r) ∂

>Mdρ̂

∂r

∣∣∣∣∣
ρ̂=M−1

d ρ

− ∂Mdρ̂

∂r

∣∣∣∣
ρ̂=M−1

d ρ
J(r)

)
,

and the last one from a simple factorization. We did left out the membership (r, ρ) ∈ Xc

for clarity. Let, without loss of generality, u1(r, ρ) := K(r, ρ)∂>Hd
∂ρ for some function

K : RΦ → Rnu×nr that is linear in ρ (u1 is quadratic in ρ). Consequently, (6.22) can be
expressed as

Ḡ(r)K(r, ρ) = Zd(r)
(

P̄(r, ρ)J(r) + P̂(r, ρ)J(r) + 1
2

dMd

dt

∣∣∣∣
ṙ=M−1(r)ρ

+ 1
2 Γ̂1(r, ρ)

)
Z>d (r),

for some function P̂ : Xc → Rnr×nr verifying P̂(r, ρ)M−1(r)ρ = 0, or equivalently as

Ḡ(r)K(r, ρ) = Zd(r)
(

P(r, ρ)J(r) + 1
2

dMd

dt

∣∣∣∣
ṙ=M−1(r)ρ

+ 1
2 Γ̂1(r, ρ)

)
Z>d (r),
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with P satisfying (6.20b). Splitting the above equation in its symmetric and skew-symmetric
components gives

Ḡ(r)K(r, ρ) + K>(r, ρ)Ḡ>(r) = Zd(r)
(

1
2

dMd

dt

∣∣∣∣
ṙ=M−1(r)ρ

+ P(r, ρ)J(r)
)s

Z>d (r), (6.23a)

Ḡ(r)K(r, ρ)−K>(r, ρ)Ḡ>(r) = Zd(r)
(

1
2 Γ̂1(r, ρ) + P(r, ρ)J(r)

)skew

Z>d (r). (6.23b)

Hence, by Lemma 6.1 and Ḡ⊥(r) :=
[

B>(r)M−1(r)
N⊥(r)

]
, the equation (6.23a) has a solution for

K, i.e., u1, if and only if there exist Md and P satisfying (6.20a). If a solution exists, then
K can be written as

K(r, ρ) = Ḡg(r)A(r, ρ)
(
Inr − 1

2Ḡ(r)Ḡg(r)
)>

+ Kw(r, ρ)Ḡ>(r), (6.24)

and (6.21) is obtained from (5.22d) with u1(r, ρ) = K(r, ρ)∂>Hd
∂ρ . After multiplying (6.23b)

on the left with the nonsingular matrix
[
M−1(r)B(r) M−1

d (r)M(r)B>⊥(r)
]>

and on
the right with its transpose,58 we observe that there always exists a skew-symmetric Γ1

verifying (6.23b) with K from (6.24), which completes the proof.

Corollary 6.1. Consider the system (5.11) verifying (6.18) and Assumptions 5.6 to 5.8.
Let (5.15) be the target system with J(r) = M−1(r)Md(r) and Bd(r) = Md(r)M−1(r)B(r).
Let Md be defined as

Md(r) := Md1 + Md4(r)Md2M>
d4(r) + N(r)Md3(r)N>(r), (6.25)

where Md1 and Md2 are arbitrary constants, and Md3 and Md4 are arbitrary functions.
Suppose Md fulfills (5.31a), (6.19) and

N⊥(r)Ṁd4(r, ṙ) = 0 ∀(r, ṙ) ∈ X̄c, (6.26)

where X̄c is as defined in Proposition 6.3. Then, there exists a skew-symmetric Γ1 such
that the kinetic matching (5.16a) holds. Furthermore, the control law is given by (6.21) for
any P satisfying (6.20b).

Proof. An immediate result of combining (6.25) and (6.20b) with (6.20a) for Md verify-
ing (5.31a) and (6.19).

Condition (6.20) is equivalent to the kinetic matching (5.16a) and it represents a system
of DAEs with unknowns in Md and P. Here, there are infinite solutions of P from (6.20b),

58The nonsingularity of
[
M−1(r)B(r) M−1

d (r)M(r)B>⊥(r)
]
is a direct consequence of Lemma 5.2 and

condition (5.31a).
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and its freedom is used to solve Md from (6.20a). Furthermore, the characterization of
Md given in Corollary 6.1 already includes the solution with constant Md introduced in
the previous subsection, and it is therefore, a state-dependent generalization of that case.
Note that such a characterization (of Md) is only a sufficient condition for (5.16a), meaning
that there may exist solutions of Md satisfying (6.20), but not (6.25). In Sections 7.2.4
and 7.3 we show examples using the characterization (6.25). We extend the results of
Proposition 6.3 to the explicit situation as follows.

Proposition 6.4. Consider systems (5.1) and (5.2). The matching condition of the kinetic
energy (5.3a) with Γ1 being skew-symmetric holds if and only if there exists P : Q×Rnq →
Rnq×nq verifying

0 = G⊥(q)
(dMd

dt + P (q, q̇)J(q) + J>(q)P>(q, q̇)
)
G>⊥(q), (6.27a)

0 = P (q, q̇)q̇ + 1
2
∂>q̇>Mq̇

∂q
(6.27b)

for all (q, p) ∈ Q× Rnq .

Proof. Along the same lines of the proof of Proposition 6.3.

Similar to the implicit situation, there are infinite solutions of P in (6.27b). For instance,
we can take P (q, q̇) := −C>(q, q̇), where C is the centrifugal and Coriolis matrix obtained
from the Christoffel symbols [10, 63, 226] corresponding to the inertia matrix M , that is,

C(q, q̇) := 1
2

(
Ṁ + ∂Mq̇

∂q
− ∂>Mq̇

∂q

)

and it verifies

C(q, q̇)q̇ = Ṁ q̇ − 1
2
∂>q̇>Mq̇

∂q
, Ṁ = C(q, q̇) + C>(q, q̇) and

Ṁ − 2C(q, q̇) is skew-symmetric.

Then, (6.27a) is a sufficient conditions for (5.3a) and it is equivalent to the conditions
of [227, 228] for the method of Controlled Lagrangians.59

Example 6.3. In [102], the authors apply the simplified IDA-PBC of Ryalat and Laila [57] on
a 2-DoF portal crane (planar model) with partial feedback linearization described by (5.1)
with q = vec(q1, q2), M = I2, R = 0, V (q) = −ḡ cos(q1) and G(q) = vec(−a cos q1, 1), where
a and ḡ are system parameters. The approach of Ryalat and Laila consists of reducing the
potential matching (5.3b) to a simple integral. This is achieved by proposing a candidate
59In [227, 228] the authors actually consider a Lagrangian system with gyroscopic forces; nonetheless, this

situation can also be included by using (5.8) instead of (5.1) and replacing 1
2
∂>p>M−1p

∂q by f2 in (6.27b).
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Md that meets the previous goal and then imposing conditions on Md such that the kinetic
matching (5.3a) holds with a skew-symmetric Γ1. In other words, we assume that the
candidate Md will satisfy (5.3a), and if it does not, we propose a new candidate.
In summary, [102] initially considers

Md(q) =

m1(q1) m2(q1)
m2(q1) m3


for some function m1 and constant m3, where the potential matching (5.3b) is reduced to
a simple integral whenever

m2(q1) = −am3 cos q1, G⊥(q) =
[
1 a cos q1

]
.

Under the above assumptions, it was feasible to obtain m1(q1) = a2m3 cos(q1)2 + c1

satisfying (5.3a) with a skew-symmetric Γ1 because the kinetic matching also reduces to a
simple integral. However, this is not always the case and (5.3a) may involve solving PDEs.
To avoid this as well as “guessing” a structure for Md, we can alternatively start with
a characterization of Md obtained from Proposition 6.4, and then impose conditions to
reduce the potential matching. Therefore, in the crane example, we use Proposition 6.4
with P = 0 to prove the existence of a skew-symmetric Γ1 and

Md(q) =

c1 c2

c2 c3

+G(q)m3(q)G>(q) +

−a sin q1

q1

 c4
[
−a sin q1 q1

]

verifying the kinetic matching (5.3a). Here, ci ∈ R are arbitrary constants and m3 : Q → R
is also arbitrary. Now, it is not difficult to see that the potential matching can be reduced
to a simple integral if c2 = c3 = c4 = 0. Besides, the work [102] assumes m3 to be constant,
but our characterization shows that such an assumption is unnecessary. Note that the
second approach is also simpler and it can be applied to systems with more than two
coordinates, which was a limitation in the Ryalat and Laila method. 4

Solving the Potential Matching

Once the solution of Md is found, the next step is to solve the potential matching
PDE (5.16b). For this purpose, let us define

S(r) := N⊥(r)Zd(r)Md(r)M−1(r), Q(r) :=
[
S(r) −N⊥(r)∂V

∂r

]
. (6.28)

Then, (5.16b) can be expressed as

0 = Q(r)
[
∂Vd
∂r 1

]>
∀r ∈ RΦ,
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or equivalently
[
∂Vd
∂r 1

]>
= Q⊥>(r)ν̄ ∀r ∈ RΦ, (6.29)

where ν̄ is arbitrary provided the last row of (6.29) holds. Using Assumption 5.6 and con-
dition (5.31a), we know from the proof of Proposition 5.3 with Bd(r) = Md(r)M−1(r)B(r)
that S is full rank and S(r)B(r) = 0. Consequently, Q⊥> and S⊥> can be partitioned as

Q⊥>(r) =

S⊥>(r) Ŝ(r)
0 1

 , S⊥>(r) =
[
∂>Φ
∂r S̄(r)

]
(6.30)

for some S̄ : R → Rnr×nγ and Ŝ : R → Rnr with nγ = rank(N(r)) − nΦ. Given that[
∂Vd
∂r 1

]
is a gradient and ν̄ is almost arbitrary, a solution of the PDE (6.29), which is the

equivalent representation of (5.16b), can be calculated by searching for S̄ and Ŝ such that
their columns are gradient (or integrable) vector fields (see Lemma 2.2), i.e.,60

∂ coli(S̄)
∂r

= ∂>coli(S̄)
∂r

,
∂Ŝ
∂r

= ∂>Ŝ
∂r

, ∀r ∈ R. (6.31)

Now, from the chain rule and equations (6.29)–(6.31), we can build

Vd(r) =
∫ 1

0
Ŝ>(vr) rdv + β(γ(r)), γ(r) =

∫ 1

0
S̄>(vr) rdv, (6.32)

where β : Rnγ → R is user defined. It follows that the necessary and sufficient conditions
for rd being a strict local minimum of Vd in RΦ (see Section 5.2.3) are

Ŝ(rd) + S̄(rd) ∂
>β

∂γ

∣∣∣∣∣
γ=γ(rd)

+ ∂>µ>d Φ
∂r

∣∣∣∣∣
r=rd

= 0, (6.33a)
(
∂>Φ
∂r

)
⊥

(
∂Ŝ
∂r

+
nγ∑
i=1

∂>β

∂γi

∂ coli(S̄)
∂r

+ ∂2µ>d Φ
∂r2 + S̄(r)∂

2β

∂γ2 S̄>(r)
)(

∂>Φ
∂r

)
⊥

∣∣∣∣∣ r=rd
γ=γ(rd)

� 0

for some suitable constant µd ∈ RnΦ . We can decouple the effects of ∂>β
∂γ and ∂2β

∂γ2 in the
above inequality by using Finsler’s Lemma A.9 and Corollary 3.1. This results in

Ā := S(rd)
(
∂Ŝ
∂r

+
nγ∑
i=1

∂>β

∂γi

∂ coli(S̄)
∂r

+ ∂2µ>d Φ
∂r2

)∣∣∣∣∣ r=rd
γ=γ(rd)

S>(rd) � 0, (6.33b)

∂2β

∂γ2

∣∣∣∣∣
γ=γ(rd)

−

 0
Inγ

>S+
⊥>(rd)

(
AS>(rd)Ā−1S(rd)A− A

) (
S+
⊥>(rd)

)>  0
Inγ

 � 0, (6.33c)

60We use coli(A) to denote the i-th column of a matrix A.
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where
A =

(
∂Ŝ
∂r

+
nγ∑
i=1

∂>β

∂γi

∂ coli(S̄)
∂r

+ ∂2µ>d Φ
∂r2

)∣∣∣∣∣ r=rd
γ=γ(rd)

.

The proposition below encapsulates the previous reasoning together with the results of
Sections 5.2.3 and 5.2.4.

Proposition 6.5. Let (5.11) be an underactuated mechanical system verifying Assump-
tions 5.6 to 5.8. Consider the target system (5.15) with J(r) = M−1(r)Md(r), Bd(r) =
J>(r)B(r) and Γ1 being skew-symmetric. Suppose the following conditions hold.

C6.1 Md and Γ1 satisfy (5.33c), the kinetic matching (5.16a) and the dissipation condi-
tion (5.36b).

C6.2 S and Q are as defined in (6.28).

C6.3 There are functions S̄ and Ŝ, obtained from (6.30), such that their columns are
gradient vector fields, i.e., (6.31).

C6.4 Vd is given by (6.32).

C6.5 The functions β, S̄ and Ŝ verify (6.33a)–(6.33c).

Then, there exists a function Γ̄2 verifying (5.31b) that leads to the following assertions:
i) System (5.11) in closed-loop with feedback (5.18) is stable in (rd, 0). ii) Every bounded
trajectory of the closed-loop converge to Ωinv (set Ωinv as defined in Proposition 5.2).
iii) (Local) asymptotic stability can be demonstrated whenever (rd, 0) is an isolated point of
Ωinv.

Remark 6.2. Given S̄ from (6.30), we can write

Ḡ(r)Γ̄2(r) := Zd(r)J>(r)S̄(r)Γ̂2(r)

or equivalently
Γ̄2(r) := Ḡg(r)Zd(r)J>(r)S̄(r)Γ̂2(r)

for any function Γ̂2 : R → Rnγ×nr . The proof is a direct consequence of Lemma 3.2 and[
B>(r)M−1(r)

N⊥(r)

]
being a full-rank left annihilator of Ḡ (see the proof of Proposition 5.1).

Proposition 6.5 exploits of the freedom of Q⊥> to solve the potential matching PDEs and
provides conditions to synthesize an IDA-PBC feedback. The key step of this proposition is
finding S̄ and Ŝ with the property that their columns are gradient vectors. The complexity
of this task depends heavily on the solution of Md. Therefore, we may attempt to find
a characterization of Md from Proposition 6.3 or Corollary 6.1 and then select its free
functions and parameters to facilitate the search of S̄ and Ŝ (possibly constants). Besides,
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possessing the polynomial characterization (see Definition 6.1), can also help to simplify
the search. This can be observed with more detail in the examples of Chapter 7.

To conclude this section, we remark that the proposed solution of the potential match-
ing (5.16b) is not exclusive to constrained mechanical systems, and it can be employed to
solve the potential matching (5.3b) for unconstrained systems. In such a situation,

S(q) := G⊥(q)Md(q)M−1(q), Q(q) :=
[
S(q) −G⊥(q)∂V∂q

]
, Q⊥>(q) =

S⊥>(q) Ŝ(q)
0 1


and S⊥> has no partition because there are no constraints. Similarly, we search for S⊥> and
Ŝ such that their columns are gradient vectors and build the target potential energy as

Vd(q) =
∫ 1

0
Ŝ>(vq) qdv + β(γ(q)), γ(q) =

∫ 1

0
S>⊥>(vq) qdv,

where β is an arbitrary function of adequate size. Under this result, Vd has a strict local
minimum in qd if an only if

Ŝ(qd) + S⊥>(qd) ∂
>β

∂γ

∣∣∣∣∣
γ=γ(qd)

= 0,
(
∂Ŝ

∂q
+

nγ∑
i=1

∂>β

∂γi

∂ coli(S⊥>)
∂q

+ S⊥>(r)∂
2β

∂γ2S
>
⊥>(q)

)∣∣∣∣∣ q=qd
γ=γ(qd)

� 0.

The following algorithm summarizes the discussion of Section 6.2.2.

Algorithm 6.2 Constructive solution of IDA-PBC for constrained mechanical systems.
Require: A UMS of the form (5.11) verifying Assumptions 5.6 to 5.8.
1: Select N⊥ and rd ∈ Ra :=

{
r ∈ RΦ | 0 = N⊥(r)∂>V

∂r

}
. Let

J(r) = M−1(r)Md(r) and Bd(r) = Md(r)M−1(r)B(r).

2: Compute a solution to Md (symmetric) and Γ1 (skew-symmetric and linear in ρ) from
the kinetic matching (5.16a) or its equivalent representation (6.20). If the mechanical
system (5.11) satisfies (6.16) we may neglect to shape the kinetic energy by using
Md(r) = M(r) and Γ1(r, ρ) = 0. On the other hand, if (5.11) satisfies (6.18), we may
use the characterization (6.25) and impose the condition (6.19) to satisfy (5.16a).

3: Calculate S̄ and Ŝ from (6.30) provided their columns are gradient vector fields,
i.e., (6.31).

4: Choose the arbitrary functions and parameters in β and Md such that (5.33c), (5.36b)
and (6.33a)–(6.33c) hold. Here, (5.33c) can be substituted by (5.35) with ∆̄d(rd) being
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nonsingular. The function β can be defined, e.g., as

β(γ) := 1
2(γ − γ?)>Kγ(γ − γ?),

where γ? and Kγ = K>γ � 0 are appropriate constants. If no solution exists, return to
step 2.

5: To build the controller (5.18), with Vd as defined in (6.32), pick Γ̄2 from (5.31b),61

Ḡg and Ḡ⊥>ν. Note that if Ḡg(r)
[
B̄(r) Bd(r)

]
≡ 0, then (5.18) reduces to (5.23).

Besides, setting
Γ̄2(r) := Ḡg(r)Zd(r)J>(r)S̄(r)Kv(r)S̄>(r)

with Kv : RΦ → Rnγ×nγ , Kv(r) + K>v (r) � 0 fulfills (5.31b) if R(q) = 0.
6: (Local) asymptotic stability can be verified from the invariant set Ωinv (as defined

in Proposition 5.2).

6.2.3 Position Feedback

On the basis of the full-state feedback obtained from the analytic solution it is also possible
(under two additional requirements) to implement a simple dynamic output-feedback
(independent of ρ), extending the well-known result that in some system classes the PBC
design can obviate velocity measurement [8, 229].

Proposition 6.6 (Position-feedback). Let the conditions of Propositions 6.3 and 6.5 be
satisfied with Γ̄2(r) = 0,

∂Hd

∂ρ
Z(r)R(r)J(r)∂

>Hd

∂ρ
≥ 0, (6.34a)

Ḡg(r)A(r, ρ)
(
Inr − 1

2Ḡ(r)Ḡg(r)
)>∂>Hd

∂ρ
+ Kw(r, ρ)Ḡ>(r)∂

>Hd

∂ρ
= 0 (6.34b)

for all (r, ρ) ∈ Xc. Then, the new control law u = uof(r, ρ, ζ),

uof(r, ζ) = Ḡg(r)
(

Z(r)∂
>V
∂r
− Zd(r)J>(r)∂

>Vd

∂r

)
− Ḡg(r)Zd(r)J>(r)S̄(r)K̄u

(
ζ + γ(r)

)
+ Ḡ⊥>(r)ν,

(6.35a)

ζ̇ = −Λζ(r)K̄u
(
ζ + γ(r)

)
(6.35b)

with ζ ∈ Rnγ stabilizes the system at (rd, 0). Moreover, the closed loop is asymptotically
stable if the equilibrium (rd, 0) is an isolated point of the largest invariant set of (5.15)

61The satisfaction of (5.36b) from step 4 certifies the existence of Γ̄2 verifying (5.31b).
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contained in

Ωof :=
{

(r, ρ) ∈ Xc |
∂Hd

∂ρ
Z(r)R(r)J(r)∂

>Hd

∂ρ
= 0, γ(r) is constant

}

with Γ2(r) = −Z(r)R(r)J(r). Here, K̄u ∈ Rnγ×nγ and Λζ : RΦ → Rnγ×nγ are user-defined
provided K̄u = K̄>u � 0 and Λζ(r) + Λ>ζ (r)� 0.

Proof. Let Γ̄2(r) = 0. Suppose (6.34) and the conditions Propositions 6.3 and 6.5 are
satisfied. Then, there is a solution of Md, Γ1 and Vd verifying (5.16) with (rd, 0) being a
strict local minimum of Hd. Besides, the control law u = ūof(r) + ūx with

ūof(r) = Ḡg(r)
(

Z(r)∂
>V
∂r
− Zd(r)J>(r)∂

>Vd

∂r

)
+ Ḡ⊥>(r)ν (6.36)

transforms the nominal system (5.11) intoṙ
ρ̇

 =

 0 J(r)
−J>(r) Γ1(r, ρ)− Z(r)R(r)J(r)

∂>Hd
∂r

∂>Hd
∂ρ

+

 0
Bd(r)

λd +

 0
Ḡ

 ūx. (6.37)

where

Ḣd(r, ρ) = −∂Hd

∂ρ
Z(r)R(r)J(r)∂

>Hd

∂ρ
+ ∂Hd

∂ρ
Ḡ(r)ūx ≤

∂Hd

∂ρ
Ḡ(r)ūx.

Note that the constraint forces Bdλd are independent of the instantaneous value of ūx,
see (5.19b). Let

H̄d(r, ρ, ζ̃) := 1
2ρ
>M−1

d (r)ρ+ Vd(r) + 1
2 ζ̃
>K̄uζ̃

with ζ̃ ∈ Rnγ and set
Ḡ(r)ūx = Zd(r)J>(r)S̄(r)K̄uζ̃ .

From Remark 6.2, the previous equality has always a solution in ūx, and it is given by

ūx = Ḡg(r)Zd(r)J>(r)S̄(r)K̄uζ̃ .

Hence, by setting ζ̃ := ζ+γ(r), we can rewrite ūof(r)+ūx as (6.35a), and (6.37) with (6.35b)
as

ṙ

ρ̇
˙̃ζ

 =


0 J(r) 0

−J>(r) Γ1(r, ρ)− Z(r)R(r)J(r) −Zd(r)J>(r)S̄(r)
0 S̄>(r)J(r)Z>d (r) −Λζ(r)



∂>H̄d
∂r

∂>H̄d
∂ρ

∂>H̄d
∂ζ̃

+


0

Bd(r)
0

λd

(6.38)
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where
˙̄Hd(r, ρ, ζ) = −∂Hd

∂ρ
Z(r)R(r)J(r)∂

>Hd

∂ρ
− ζ̃>K̄uΛζ(r)K̄uζ̃ ≤ 0.

Since H̄d has strict local minimum in (rd, 0, 0), (following the proof of Proposition 5.2)
we conclude that the closed-loop (6.38) is stable in (rd, 0, 0). Asymptotic stability can be
demonstrated whenever the equilibrium is also an isolated point of the largest invariant set
of (6.38) contained in

Ω̄of =
{

(r, ρ, ζ̃) ∈ Xc × Rnγ | ∂Hd

∂ρ
Z(r)R(r)J(r)∂

>Hd

∂ρ
+ ζ̃>K̄uΛζ(r)K̄uζ̃ = 0

}
.

Let (r(t), ρ(t), ζ(t)) be a solution that belongs to such a set, then

ζ̃(t) ≡ 0 =⇒ ūx(t) ≡ 0, ˙̃ζ(t) ≡ 0 =⇒ γ̇(t) ≡ 0,

that is, the largest invariant set of (6.38) contained in Ω̄of is equal to the one of (5.15)
contained in Ωof with Γ2(r) = −Z(r)R(r)J(r), and the proof is complete.

Remark 6.3. Let M and Md be constant. If

Colsp Bd(r) = Colsp B̄(r) or equivalently 0 = B̄⊥(r)Bd(r), (6.39)

then Zd(r)B̄(r) = 0 and condition (6.34b) holds with Kw(r, ρ) = 0.

6.3 From Implicit to Explicit Representation

Eliminating the constraint forces and kinematic constraints from the Hamiltonian equations
of motion, i.e., constructing an equivalent mechanical system in explicit representation,
has been studied in [3, 78, 178] for nonholonomic systems and in [72] for the holonomic
situation. However, these approaches are inadequate for implicit systems that

• do not satisfy the Lagrange-d’Alembert principle (workless constraint forces),

• possess holonomic and nonholonomic constraints simultaneously, and

• have the closed-loop form (5.15).

In this section, we overcome the previous restrictions by introducing a more general
framework to reduce implicit systems to their explicit representation. This reduction is
used in Chapter 7 to compare the novel implicit controller with other authors’ results in the
explicit framework. Before introducing our main result in Proposition 6.7, let us consider
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the system ṙ
ρ̇

 =

 0 Je(r)
−J>e (r) Γe(r, ρ)

∂>He
∂r

∂>He
∂ρ

+

 0
B̄e(r)

λe +

 0
Ge(r)

u, (6.40a)

He(r, ρ) = 1
2ρ
>M−1

e (r)ρ+ Ve(r)

subject to smooth holonomic constraints

0 = Φ(r) (6.40b)

and smooth momentum constraints (nonholonomic constraints and the time derivative of
the holonomic constraints)

0 = B>e (r)∂
>He

∂ρ
. (6.40c)

Here, r ∈ R ⊂ Rnr are coordinates, ρ ∈ Rnr are the momenta, R is an open subset of
Rnr , u ∈ U ⊂ Rnu is the input, Ge : R → Rnr×nu is the input matrix, M : R → Rnr×nrnr

is the nonsingular and symmetric inertia matrix, Ve : R → R is the potential energy,
Je : R → Rnr×nr , Γe : R × Rnr → Rnr×nr , and B̄e(r)λe are the constraint forces with
B̄e : R → Rnr×nλ and implicit variables λe ∈ Rnλ . For the constraints (6.40b)–(6.40c) with
Φ : R → RnΦ and Be : R → Rnr×nλ , we will assume that

∆e(r) := B>e (r)M−1
e (r)B̄e(r)

is nonsingular for all r ∈ RΦ := {r ∈ R | 0 = Φ(r)} and that the initial conditions are
consistent, i.e.,

(r(t0), ρ(t0)) ∈ Xc :=
{

(r, ρ) ∈ R× Rnr
∣∣∣∣ 0 = B>e (r)∂>He

∂ρ , 0 = Φ(r)
}
.

Proposition 6.7 (Implicit reduction). Consider the implicit system (6.40). Let (N , ξ−1)
be a coordinate chart on RΦ with local coordinates q ∈ ξ−1(N ) ⊂ Rnr−nΦ, i.e., r = ξ(q).
Let T : ξ−1(N ) → R(nr−nλ)×nr be a C1 full-rank left annihilator of Be ◦ ξ. Then, for all
r ∈ N , system (6.40) with s = T (q)ρ ∈ Rnr−nλ can be reduced toq̇

ṡ

 =

 0 Je(q)
−J>e (q) Γe(q, s)

∂>He
∂q

∂>He
∂s

+

 0
T (q)fe(ξ(q), L(q)s)

+

 0
Ge(q)

u (6.41)

He(q, s) = 1
2s
>
(
T (q)Me(ξ(q))T>(q)

)−1
s+ Ve(ξ(q)) = He(ξ(q), L(q)s),

Ge(q) = T (q)Ze(ξ(q))Ge(ξ(q)), Ze(r) = Inr − B̄e(r)∆−1
e (r)B>e (r)M−1

e (r),

Je(q) =
(
∂ξ

∂q

)g
Je(ξ(q))T>(q), L(q) = Me(ξ(q))T>(q)

(
T (q)Me(ξ(q))T>(q)

)−1
,
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Γe(q, s) =
(
∂Tρ

∂q
Je(q)− J>e (q)∂

>Tρ

∂q

)∣∣∣∣∣
ρ=L(q)s

+ T (q)Γe(ξ(q), L(q)s)T>(q),

fe(r, ρ) = B̄e(r)∆−1
e (r)B>e (r)M−1

e (r)
(

J>e (r)∂
>He

∂r
− Γe(r, ρ)∂

>He

∂ρ

)

− B̄e(r)∆−1
e (r)∂B>e M−1

e ρ

∂r
Je(r)

∂>He

∂ρ
.

Proof. Let Tx : ξ−1(N ) → Rnλ×nr and D : ξ−1(N ) → Rnr×nΦ be C1 arbitrary functions
such that

[
T>(q) T>x (q)

]
and

[
∂ξ
∂q D(q)

]
are nonsingular for all q ∈ ξ−1(N ). Consider

the change of variables

r = ξ̄(q̄) := ξ(q) +D(q)qx, s̄ = T̄ (q)ρ :=

T (q)
Tx(q)

 ρ, (6.42)

with s̄ = vec(s, sx), q̄ = vec(q, qx), sx ∈ Rnλ and qx ∈ RnΦ . By definition, the map
(q̄, s̄) 7→ (ξ̄(q̄), T̄−1(q)s̄) is a C1 diffeomorphism in a neighborhood of qx = 0 and for all
q ∈ ξ−1(N ) and s̄ ∈ Rnr , see [137, Thm. 2.5.2]. Write

H̃e(q̄, s̄) := He(ξ̄(q̄), T̄−1(q)s̄).

Application of the chain rule on H̃e gives

∂H̃e

∂q̄
=
(
∂He

∂r

∂ξ̄

∂q̄
+ ∂He

∂ρ

∂T̄−1s̄

∂q̄

)∣∣∣∣∣r=ξ̄(q̄)
ρ=T̄−1(q)s̄

,
∂H̃e

∂s̄
= ∂He

∂ρ

∣∣∣∣r=ξ̄(q̄)
ρ=T̄−1(q)s̄

T̄−1(q),

or equivalently

∂>He

∂r

∣∣∣∣∣r=ξ̄(q̄)
ρ=T̄−1(q)s̄

=
(
∂ξ̄

∂q̄

)−>
∂>H̃e

∂q̄
+
(
∂ξ̄

∂q̄

)−>
∂>T̄ ρ

∂q̄

∣∣∣∣∣
ρ=T̄−1(q)s̄

∂>H̃e

∂s̄
,

∂>He

∂ρ

∣∣∣∣∣r=ξ̄(q̄)
ρ=T̄−1(q)s̄

= T̄>(q)∂
>H̃e

∂s̄
,

where it was used ∂T̄
∂qi
T̄−1(q) + T̄ (q)∂T̄−1

∂qi
= 0 on ∂T̄−1s̄

∂q̄ . Since ∆e is nonsingular, λe is
uniquely defined and every solution (r(·), ρ(·)) with consistent initial conditions will remain
in Xc. Now, system (6.40) with λe calculated from the hidden constraints is an ODE on
the manifold Xc, and employing the change of coordinates (6.42) on this ODE results in

˙̄q =
(
∂ξ̄

∂q̄

)−1

ṙ =
(
∂ξ̄

∂q̄

)−1

Je(ξ̄(q̄))
∂>He

∂ρ

∣∣∣∣∣r=ξ̄(q̄)
ρ=T̄−1(q)s̄

=
(
∂ξ̄

∂q̄

)−1

Je(ξ̄(q̄))T̄>(q)∂
>H̃e

∂s̄
, (6.43a)
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˙̄s = ∂T̄ρ

∂q̄
˙̄q + T̄ (q)ρ̇

= ∂T̄ρ

∂q̄

∣∣∣∣∣
ρ=T̄−1(q)s̄

(
∂ξ̄

∂q̄

)−1

Je(ξ̄(q̄))T̄>(q)∂
>H̃e

∂s̄
− T̄ (q)

(
J>e (r)∂

>He

∂r

)∣∣∣∣∣r=ξ̄(q̄)
ρ=T̄−1(q)s̄

+ T̄ (q)
(

Γe(r, ρ)∂
>He

∂ρ

)∣∣∣∣∣r=ξ̄(q̄)
ρ=T̄−1(q)s̄

+ T̄ (q)fe(ξ̄(q̄), T̄−1(q)s̄)

+ T̄ (q)Ze(ξ̄(q̄))Ge(ξ̄(q̄))u

= ∂T̄ρ

∂q̄

∣∣∣∣∣
ρ=T̄−1(q)s̄

(
∂ξ̄

∂q̄

)−1

Je(ξ̄(q̄))T̄>(q)∂
>H̃e

∂s̄
− T̄ (q)J>e (ξ̄(q̄))

(
∂ξ̄

∂q̄

)−>
∂>H̃e

∂q̄

− T̄ (q)J>e (ξ̄(q̄))
(
∂ξ̄

∂q̄

)−>
∂>T̄ ρ

∂q̄

∣∣∣∣∣
ρ=T̄−1(q)s̄

∂>H̃e

∂s̄
+ T̄ (q)fe(ξ̄(q̄), T̄−1(q)s̄)

+ T̄ (q)Γe(ξ̄(q̄), T̄−1(q)s̄)T̄>(q)∂
>H̃e

∂s̄
+ T̄ (q)Ze(ξ̄(q̄))Ge(ξ̄(q̄))u.

(6.43b)

Given that (N , ξ−1) is a coordinate chart on RΦ and ξ̄ is a diffeomorphism between open
subsets of Rnr , then qx(·) must be zero for every solution r(·) ∈ RΦ. Then, by using
T (q)Be(ξ(q)) = 0 and the previous change of coordinates we have (6.40c) ⇐⇒ 0 = ∂>H̃e

∂sx
.

Write T>x (q) := M−1
e (ξ(q))Be(ξ(q)), which is consistent with the nonsingularity of T̄

(see Lemma 5.2 with nonsingular ∆e and the annihilating feature of T ). Then, every
solution ρ(·) ∈ Xc implies that sx(·) is zero. Let, without loss of generality,

Je(ξ(q))T>(q) = ∂ξ

∂q
Je(q) +D(q)Jx(q) (6.44)

for some functions Je and Jx. From the constraints (6.40b)–(6.40c),
(
∂ξ
∂q

)
⊥
can be selected

as ∂Φ
∂r

∣∣∣
r=ξ(q)

while Rowsp
(
∂Φ
∂r Je(r)

)
⊂ Rowsp B>e (r). Hence, by Lemmas 3.2 and 3.4,

T (q)Be(ξ(q)) = 0 and the nonsingularity of
[
∂ξ
∂q D(q)

]
we deduce that Jx(q) = 0, Je(q) =(

∂ξ
∂q

)g
Je(ξ(q))T>(q) and that (6.44) can be expressed as

(
∂ξ̄

∂q̄

)−1
∣∣∣∣∣∣
qx=0

Je(ξ(q))T̄>(q) =

Je(q) ?

0 ?

 , (6.45)

where ? denotes unspecified elements. At this point we can use qx = 0, sx = 0, 0 = ∂>H̃e
∂sx

and (6.45) to rewrite (6.43) as

q̇ = Je(q)
∂H̃e

∂s
, (6.46a)
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ṡ = ∂Tρ

∂q

∣∣∣∣
ρ=L(q)s

Je(q)
∂H̃e

∂s
− J>e (q)∂

>H̃e

∂q
− J>e (q) ∂

>Tρ

∂q

∣∣∣∣∣
ρ=L(q)s

∂H̃e

∂s

+ T (q)Γe(ξ(q), L(q)s)T>(q)∂H̃e

∂s
+ T (q)fe(ξ(q), L(q)s) +Ge(q)u,

(6.46b)

where L(q)s is calculated from Lemma 3.4 with T being the full-rank left annihilator of
Be ◦ ξ. The proof is complete, i.e., we show that (6.41) is equivalent to (6.46) by observing
that

∂H̃e

∂q

∣∣∣∣∣qx=0
sx=0

=
(
∂He

∂r

∂ξ

∂q
+ ∂He

∂ρ

∂T̄−1s̄

∂q

)∣∣∣∣∣r=ξ(q)
ρ=T̄−1(q)s̄
sx=0

= ∂He

∂q
,

∂H̃e

∂s

∣∣∣∣∣qx=0
sx=0

= ∂He

∂s
.

Proposition 6.7 removes the kinematic constraints of the system (6.40), reducing it from
an implicit model of 2nr states to an explicit one whose number of states is given by
the dimension of the constrained manifold Xc, namely 2nr − nλ − nΦ. The new states
q represent generalized coordinates while the states s are a projection of the conjugate
momenta. We remark that the reduced system is non-unique (ξ, T and

(
∂ξ
∂q

)g
are user-

defined), but all the reductions are locally equivalent because the system dynamics is
restricted to a manifold, and the coordinates we choose to represent it are immaterial
(geometric perspective). Specializing Proposition 6.7 to implicit holonomic systems and
their corresponding closed-loops with IDA-PBC leads to the following two corollaries.

Corollary 6.2. Let (5.11) be an holonomic system verifying Assumptions 5.6 and 5.7.
Then, there exists a diffeomorphism ξ : Q → ξ(Q), with r = ξ(q) and Q being an open
subset of Rnr−nΦ such that (5.11) can be transformed intoq̇

ṗ

 =

 0 Inr−nΦ

−Inr−nΦ −∂>ξ
∂q R(ξ(q))∂ξ∂q

∂>H∂q
∂>H
∂p

+

 0
∂>ξ
∂q fe(ξ(q), L(q)p)

+

 0
G(q)

u, (6.47)

where H(q, p) = 1
2p
>M−1(q)p + V(ξ(q)), M(q) = ∂>ξ

∂q M(ξ(q))∂ξ∂q , p = ∂>ξ
∂q ρ, G(q) =

∂>ξ
∂q Z(ξ(q))G(ξ(q)), L(q) = M(ξ(q))∂ξ∂qM

−1(q) and

fe(r, ρ) = B̄(r)∆−1(r)
(

B>(r)M−1(r)
(
∂>H
∂r
−R(r)∂

>H
∂ρ

)
− ∂B>M−1ρ

∂r

∂>H
∂ρ

)
.

Proof. From Assumption 5.6, RΦ is a regular and smooth manifold of dimension nq.
Therefore, we may choose (N , ξ−1) as a coordinate chart on RΦ with local coordinates q,
such that Q = ξ−1(N ) and r = ξ(q). Since ∂ξ

∂q is a full-rank left annihilator of B ◦ ξ, we
use Proposition 6.7 with T>(q) = ∂ξ

∂q , to obtain a reduced system of the form of (6.41),
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where Je = Inr−nΦ for any selection of
(
∂ξ
∂q

)g
. The equivalence with (6.47) is obtained from

Γe(q) = −T (q)R(ξ(q))T>(q) +
(
∂Tρ

∂q
− ∂>Tρ

∂q

)∣∣∣∣∣
ρ=L(q)s

= −∂
>ξ

∂q
R(ξ(q))∂ξ

∂q
+

nr∑
i=1

∂2ξi
∂q2 −

(
∂2ξi
∂q2

)> rowi(L(q)p)

= −∂
>ξ

∂q
R(ξ(q))∂ξ

∂q
,

where ξi denotes the i-th element of ξ.

Corollary 6.3. Consider a holonomic system of the form (5.11). Suppose the conditions
of Proposition 5.2 are satisfied with J(r) = M−1(r)Md(r), meaning that (5.15) is the
closed-loop of (5.11) with feedback u = uida(r, ρ). Then, there exists a diffeomorphism
ξ : Q → ξ(Q), with r = ξ(q) and Q being an open subset of Rnr−nΦ, that locally transforms
(5.15) into (5.2), where

J(q) = M−1(q)Md(q), T>(q) = J−1(ξ(q))∂ξ
∂q
J(q), Vd(q) = Vd(ξ(q)),

M(q)M−1
d (q)M(q) = ∂>ξ

∂q
M(ξ(q))M−1

d (ξ(q))M(ξ(q))∂ξ
∂q
,

Γ1(q, p) =
(
∂Tρ

∂q
J(q)− J>(q)∂

>Tρ

∂q

)∣∣∣∣∣
ρ=L(q)p

+ T (q)Γ1(ξ(q), L(q)p)T>(q),

Γ2(q) = T (q)Γ2(ξ(q))T>(q),

and M , L are as defined in Corollary 6.2.

Corollary 6.2 states that holonomic systems in the representation (5.11) can be reduced
into a system of the form (6.47), which is port-Hamiltonian if

∂>ξ

∂q
B̄(ξ(q)) = 0 and ∂>ξ

∂q

(
R(ξ(q)) + R>(ξ(q))

) ∂ξ
∂q
� 0 q ∈ Q.

Observe that the result is consistent with the equivalence of Section 2.5 whenever B̄(r) = ∂>Φ
∂r .

Corollary 6.3 establishes that any holonomic system in closed-loop with IDA-PBC can be
reduced into (5.2), which is the closed-loop of IDA-PBC for explicit systems. Consequently,
for this class, there is a locally equivalent IDA-PBC feedback u = uida(q, p) with uida as
defined in (5.4). Furthermore, instead of analyzing the invariant set Ωinv in Algorithms 6.1
and 6.2 to demonstrate asymptotic stability, we can now employ the Lyapunov indirect
method (Theorem 2.2) on (6.47) with u = uida(ξ(q), L(q)p) or equivalently in the reduction
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of Corollary 6.3. Chapter 7 will use these concepts to assign an optimal local performance
in the controllers designed from the implicit representation.



Chapter 7

Applications on Mechanical Systems
with Holonomic Constrains

In Chapters 5 and 6, we develop the total energy shaping IDA-PBC for mechanical systems
with kinematic constraints (holonomic and nonholonomic) and provide some solutions to
the matching conditions of UMSs. We are able to achieve the asymptotic stabilization of
holonomic systems, but we can only guarantee partial convergence (to the desired state) of
nonholonomic ones [3]. This is true even in the fully-actuated case (see Example 6.2) and is
a consequence of the Brockett’s necessary condition [209]. In this chapter, with the aim of
asymptotic stability, we validate our results on three underactuated benchmark examples
with holonomic constraints: the portal crane (Section 7.1), the cart-pole (Section 7.2), and
the PVTOL aircraft (Section 7.3). For better visibility, values presented in this chapter
have been rounded to four decimals.

7.1 Portal Crane System

The portal (or overhead) crane, shown in Figure 7.1, is a classic example of an UMS [65, 201,
230]. It consists of a bridge sliding on parallel runways, a trolley to provide horizontal
motion of a winch through the bridge, and a payload that hangs from the winch’s (wire)
rope. The bridge of mass mb moves along the x-axis and is actuated by the force τx while
the trolley of mass mt does so in the y-axis and is actuated by the force τy. The winch
lifts the payload of mass mp by exerting a force τl on the rope of length l > 0. Figure 7.2
depicts the portal crane schematic diagram, where (xt, yt) denotes the trolley position (on
the plane z = 0), which is also one end of the rope, (xp, yp, zp) is the payload position
relative to (xt, yt), and α and β are the angles of the wire rope with respect to the x-axis
and vec(0, cosα, sinα), respectively.
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Figure 7.1. – Portal crane of the Control Engineering Group at TU Ilmenau.
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Figure 7.2. – Schematic diagram of the portal crane.
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Our goal is to design implicit IDA-PBC controllers that asymptotically stabilize the crane
in the desired payload’s position. For this task we device a 4-DoF model in implicit represen-
tation under Assumption 7.1 and test Algorithms 6.1 and 6.2 together with Proposition 6.6
in the synthesis of three controllers: two full-state feedback and a position feedback. We
consider the 4-DoF model because it is commonly used in the PBC literature when given in
the explicit representation [20, 231–233];62 however, this model requires a fixed rope length
l, which is a restrictive description of the crane. To avoid this limitation, we also devise a
5-DoF implicit model and synthesize a full-state feedback with Algorithm 6.2. We recall
that in either case (with and without fixed rope length), two DoF remain underactuated.
All (four) controllers are designed with a constant target inertia matrix (of the implicit
representation), and the asymptotic stability is demonstrated with Lyapunov’s indirect
method on the reduced (explicit) systems, see Section 6.3. The results are compared in
simulation and the best controller is implemented in the test-bench of Figure 7.1, which is
located at the laboratory of the Control Engineering Group (Fachgebiet Regelungstechnik),
Department of Computer Science and Automation, Technische Universität Ilmenau.

Assumption 7.1. i) The rope’s mass is negligible. ii) The payload is a point mass and the
air friction is negligible. iii) The gravity of magnitude gc points downwards (direction −z).
iv) The initial conditions are consistent (Assumption 5.7 holds).

The physical system is equipped with five encoders to measure xt, yt, l, α and β. In
addition, it possesses three modes to operate its servomotors: current, velocity and
position tracking. Similar to the cart-pole system of Section 4.4, we use an integrator
in the input of the velocity tracking mode to have an approximate representation of the
portal crane in Partial Feedback Linearization (PFL) with new input u∗ = vec(ẍ∗t , ÿ∗t , l̈∗) ≈
vec(ẍt, ÿt, l̈), see Figure 7.3. This scheme avoids the identification of masses, inertia matrices
and others parameters on the implicit and explicit representations of the portal crane,
see [102] for the case with fix length l. We remark that the approaches of Chapters 5 and 6
do not require a system in PFL (see e.g., [100, 101]), but we use such a representation to
streamline design and implementation.

7.1.1 4-DoF Implicit Model

If the length of l is constant, the system has four DoF and R2×S2 represents its configuration
space. Therefore, we can choose the coordinates

r = vec(xp, yp, zp, xt, yt) ∈ R = R5

62The works [232, 233] actually employ the 2-DoF model (restriction to a plane) since two planar models
(one for x = 0 and the other for y = 0) are a local approximation of the one with 4-DoF [102].
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∫
+ PID + Plant

Feedforward

(ẍ∗t , ÿ∗t , l̈∗) (ẋ∗t , ẏ∗t , l̇∗) (r, ṙ)

(ẋt, ẏt, l̇)
−

Portal Crane with Velocity Control

Portal Crane with PFL

Figure 7.3. – Approximate portal crane with PFL.

satisfying the holonomic constraint

Φ(r) := 1
2
(
x2

p + y2
p + z2

p − l2
)

= 0. (7.1)

Then, by Assumption 7.1, the kinetic and potential energies are calculated as

Ek(r, ṙ) = mb +mt

2 ẋ2
t + mt

2 ẏ2
t + mp

2 (ẋt + ẋp)2 + mp

2 (ẏt + ẏp)2 + mp

2 ż2
p , (7.2a)

V̂(r) = gcmpzp. (7.2b)

Now, the Lagrange equations of motion (first kind) with Rayleigh dissipation D(r, ṙ) =
1
2c1ẋ

2
t + 1

2c2ẏ
2
t ≥ 0 (viscous friction in actuators) are

M̂r̈ + R̂ṙ + ∂>V̂
∂r

= Ĝτ + ∂>Φ
∂r

λ̂, (7.3)

where τ = vec(τx, τy), R̂ = diag(0, 0, 0, c1, c2),

M̂ =



mp 0 0 mp 0
0 mp 0 0 mp

0 0 mp 0 0
mp 0 0 mp +mt +mb 0
0 mp 0 0 mp +mb


and Ĝ =



0 0
0 0
0 0
1 0
0 1


.

Partial Feedback Linearization

To derive the partially linearized model from (7.3), see [200, 201] for the unconstrained
situation, we write (7.3) together with the hidden constraints—second derivative of (7.1)
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with respect to time—as M̂ −∂>Φ
∂r

∂>Φ
∂r 0

r̈
λ̂

+

∂>V̂
∂r + Rṙ

d
dt

(
∂>Φ
∂r

)
ṙ

 =

Ĝ
0

 τ, (7.4)

where
[

M̂ − ∂
>Φ
∂r

∂>Φ
∂r

0

]
is nonsingular for all r ∈ RΦ := {r ∈ R | Φ(r) = 0}, meaning that λ̂

has a unique solution (well-posed problem). Define the output y := h(r) and functions

Λ(r) :=
[
∂h

∂r
0
]  M̂ −∂>Φ

∂r
∂>Φ
∂r 0

−1 Ĝ
0

 , Λ̄(r) :=


[
∂h

∂r
0
]  M̂ −∂>Φ

∂r
∂>Φ
∂r 0

−1

Ĝ⊥ 0
0 1


with h : RΦ → Rnu . Left multiplying (7.4) by Λ̄, which is nonsingular if and only if so is Λ
(see Lemma 5.2), yields the equivalent expressions

∂h

∂r
r̈ +

[
∂h
∂r 0

]  M̂ −∂>Φ
∂r

∂>Φ
∂r 0

−1 ∂>V̂
∂r + Rṙ

d
dt

(
∂>Φ
∂r

)
ṙ

 = Λ(r)τ,

Ĝ⊥M̂r̈ + Ĝ⊥
(
∂>V̂
∂r

+ Rṙ
)

= Ĝ⊥
∂>Φ
∂r

λ̂. (7.5)

Consequently, if Λ is invertible, the state feedback law

τ = Λ−1(r)
[
∂h
∂r 0

]  M̂ −∂>Φ
∂r

∂>Φ
∂r 0

−1 ∂>V̂
∂r + Rṙ

d
dt

(
∂>Φ
∂r

)
ṙ

− Λ−1(r) d
dt

(
∂h

∂r

)
ṙ + Λ−1(r)u (7.6)

transforms (7.3) into (7.5) and

ÿ = ∂h

∂r
r̈ + d

dt

(
∂h

∂r

)
ṙ = u. (7.7)

By setting h(r) = vec(xt, yt) and Ĝ⊥ = m−1
p

[
I3 03×2

]
, we have

det Λ(r) = 1
(mt +mb)mbl2 +mpmtx2

p +mp(mt +mb)y2
p
> 0 ∀r ∈ RΦ

and the resulting equations of motion can now be expressed as

Mr̈ + ∂>V
∂r

= ∂>Φ
∂r

λ+ Gu
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or equivalently as (see Section 2.5.3)ṙ
ρ̇

 =

 0 I5

−I5 0

∂>H
∂r

∂>H
∂ρ

+

 0
∂>Φ
∂r

λ+

 0
G

u, (7.8)

where H(r, ρ) = 1
2ρ
>M−1ρ + V(r), M = I5, V = gczp and G> =

[
−1 0 0 1 0
0 −1 0 0 1

]
. We have

the following observation regarding (7.8) with the holonomic constraint (7.1).

• The accelerations of xt and yt are the new inputs of the 4-DoF model with PFL, i.e.,
u = vec(ẍt, ÿt).

• The model is independent of the masses (mb, mt, mp) and the frictions (c1, c2).

• The set RΦ := {r ∈ R | 0 = Φ(r)} ∼= S2 is a smooth manifold (see Example 2.4), and

∆(r) := x2
p + y2

p + z2
p = l2 > 0 ∀r ∈ RΦ,

that is, Assumption 5.6 is verified.

• rank N(r) = 3 > nλ = 1 for all r ∈ RΦ (Assumption 5.8 is verified), where

N(r) :=
[
G B̄(r)

]
=
[
G ∂>Φ

∂r

]
=



−1 0 xp

0 −1 yp

0 0 zp

1 0 0
0 1 0


.

• M, V, B and N are all polynomial.

Reduction and Linearization

Let us consider system (7.1), (7.8) in closed-loop with u = uida(r, ρ). Then, the reduction
of Corollary 6.2 yields q̇

ṗ

 =

 0 I4

−I4 0

∂>H∂q
∂>H
∂p

+

 0
G(q)

uida(q, p), (7.9)

H(q, p) = 1
2p
>M−1(q)p+ V (q)

where q = vec(β, α, xt, yt), M(q) = ∂>ξ
∂q

∂ξ
∂q = diag(l2, l2 cos2 β, 1, 1), V (q) = V(ξ(q)) =

−gcl cos β cosα, p = ∂>ξ
∂q ρ, G(q) = ∂>ξ

∂q G, L(q) = ∂ξ
∂qM

−1(q), uida(q, p) = uida(ξ(q), L(q)p)
and r = ξ(q) follows from the geometric relation of Figure 7.2, i.e.,

xp = l sin β, yp = l cos β sinα, zp = −l cos β cosα. (7.10)
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Note that ξ is a diffeomorphism for all α, β ∈
]
−π

2 ,
π
2

[
, and the implicit inertia matrix M

is constant while the explicit one, M , is not.
Linearizing the closed-loop (7.9) about the equilibrium xd = vec(qd, 0), with qd = ξ−1(rd),

yields

˙̃x =


 0 M−1(qd)
− ∂2V

∂q2

∣∣∣
q=qd

0

+

 0
∂Gu
∂x

∣∣∣∣∣∣x=xd
u=uida(qd,0)


︸ ︷︷ ︸

=:Ar

x̃+

 04×2

G(qd)


︸ ︷︷ ︸

=:Br

∂uida

∂x

∣∣∣∣
x=xd︸ ︷︷ ︸

=:Kr

x̃, (7.11)

where x̃ = x− xd, x = vec(q, p).

7.1.2 4-DoF System: Heuristic Solution

We shall determine an IDA-PBC stabilizing controller for the 4-DoF portal crane (fixed
length l) with PFL. Since the implicit model is polynomial and verifies Assumptions 5.6
to 5.8, we test the heuristic solution of Algorithm 6.1 whereby the controller synthesis is
recast as an SOS program that we solve with SOSTOOLS and SDPT3.63

Step 1: We select

N⊥(r) =

−zp 0 xp −zp 0
0 −zp yp 0 −zp


and rd = vec(0, 0,−l, x?t , y?t ) ∈ Ra = {r ∈ R | 0 = Φ(r), 0 = xp, 0 = yp} , where (x?t , y?t ) is
the desired trolley position.

Step 2: To have a low polynomial order on Vd, M−1
d and Γ̄1, we choose Vd as a quadratic

function of r − rd, M−1
d to be constant, and Γ̄1(r, ρ) = 0.

Step 3: Since R(r) = 0, condition (6.10) is already verified. Furthermore, imposing (6.14)
satisfies (6.7a) and 0 = Ke(r)J−>(r)Ḡ(r), and reduces (6.7b) to

0 = Ke(r)
(

J−>(r)∂
>V
∂r
− ∂>Vd

∂r

)
∀r ∈ RΦ,

which is a polynomial equation if Ke is polynomial. Now, according to Option 1, we can
select Ke(r) = N⊥(r).

63SDPT3 is a Matlab software package for SDP [185].
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Step 4: We select ε = 10−5, gc = 9.81

(
∂>Φ
∂r

)
⊥

= B⊥(r) =


−zp 0 xp −zp 0

0 −zp yp 0 −zp

0 0 0 1 0
0 0 0 0 1

,

and proceed to solve the SOS Program 6.1 on Matlab with SOSTOOLS and SDPT3. After
setting l = 1 in the stabilizing conditions (5.33), we obtain µd = 4.243,

Vd(r) = 4.243(l + zp) + 1.727(xp − xt + x?t )2 + 1.727(yp − yt + y?t )2,

M−1
d =



2.628 0 0 −2.196 0
0 2.628 0 0 −2.196
0 0 0.4325 0 0

−2.196 0 0 2.628 0
0 −2.196 0 0 2.628


� 0.

We remark that the solver converges for every l > 0, but we take l = 1 for simplicity and
because it is compatible with the test-bench of Figure 7.1.

Step 5: From the full-rank feature of Ḡ and

Ĝ(r) := B⊥(r)M(r)M−1
d (r)Ḡ(r) = 1

l2

0 0 4.824l2 − 2.196x2
p −2.196xpyp

0 0 −2.196xpyp 4.824l2 − 2.196y2
p

>,
we have Ḡ⊥>(r)ν = 0 and can select

Ĝg(r) = 1
23.28l2 + 10.59z2

p − 10.59

0 0 4.824l2 − 2.196y2
p 2.196xpyp

0 0 2.196xpyp 4.824l2 − 2.196x2
p

,
which is also the Moore–Penrose inverse of Ĝ. Since R = 0, we pick Γ̄2(r) = KvḠ>(r)J−1(r)
with Kv = diag(kv1, kv2) � 0. Hence, the IDA-PBC controller (6.8) reads

uida(r, ṙ) = 1
u3(r)

u1(r)
u2(r)

+
103.9zp − 10.59(ẋ2

p + ẏ2
p + ż2

p)
u3(r)

xp

yp

− Γ̄2(r)ṙ, (7.12)

u1(r) = 16.66l2(xp − xt + x?t ) + 7.583yp(xtyp − x?typ − xpyt + xpy
?
t ),

u2(r) = 16.66l2(yp − yt + y?t ) + 7.583xp(ytxp − xpy
?
t − xtyp + x?typ),

u3(r) = 23.28l2 + 10.59(z2
p − 1),

Γ̄2(r)ṙ = 1
l2

Kv

4.825(ẋt − ẋp)− 2.196xp(ẋtxp + ẏtyp + żpzp)
4.825(ẏt − ẏp)− 2.196yp(ẋtxp + ẏtyp + żpzp)

 ,
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where ṙ = ρ. We used ∂Φ
∂r ṙ = 0 to reduce the expressions in Γ̄2(r)ṙ.

Step 6: By Proposition 5.2, system (7.1), (7.8) in feedback with (7.12) is stable in (rd, 0)
with l = 1 for every Kv � 0. Asymptotic stability can be demonstrated if (rd, 0) is an
isolated point of Ωinv (defined in Proposition 5.2), or by using Lyapunov’s indirect method
(Theorem 2.2) on the reduced system (7.9), see Section 6.3.

Following the second approach, we linearize (7.9) about the equilibrium xd = vec(qd, 0),
qd = vec(0, 0, x?t , y?t ) = ξ−1(rd), obtaining (7.11) with

Ar =

 0 I4

−9.81 diag(1, 1, 0, 0) 0

, Br =

0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1

>,
Kr =

−3.749 0 −0.7158 0 4.825kv1 0 −4.825kv1 0
0 −3.749 0 −0.7158 0 4.825kv2 0 −4.825kv2

.
Let e.g., kv1 = kv2 = 0.21. Hence, asymptotic stability is a direct consequence of the
eigenvalues of (Ar + BrKr) being in the left half plane: λ1,2 = λ3,4 = −0.0678± 2.2703i,
λ5,6 = λ7,8 = −0.9454± 0.6836i.

7.1.3 4-DoF System: Constructive Solution

In this section, we test the constructive perspective of Algorithm 6.2 with a constant
target inertia matrix to synthesize an IDA-PBC feedback for the portal crane described
by (7.1), (7.8). We omit Step 1 because it is equal to the one from the previous section.
Step 2: Since M is constant, we can satisfy the kinetic matching (5.16a) by using a constant
target inertia matrix Md, setting Γ1(r, ρ) = 0 and imposing (6.19), see Section 6.2.2. Hence,

Md =



a1 e1 0 d− a1 −e1

e1 a2 0 −e1 d− a2

0 0 d 0 0
d− a1 −e1 0 b1 e2

−e1 d− a2 0 e2 b2


where ai, bi, ei and d are arbitrary constants.

Step 3: We recall that Bd(r) = Md(r)M−1(r)B(r), ∆d(r) = B>(r)M−1(r)Bd(r) and
Zd(r) = I5 −Bd(r)∆−1

d (r)B>(r)M−1(r). Then,

Q(r) :=
[
N⊥(r)Zd(r)Md(r)M−1(r) −N⊥(r)∂V

∂r

]
=

−dzp 0 dxp −zp(d− a1 + b1) 0 −gcxp

0 −dzp dyp 0 −zp(d− a2 + b2) −gcyp

,
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where
ei = 0 (7.13)

is chosen to streamline analysis. From Q⊥>(r) =
[
∂>Φ
∂r

S̄(r) Ŝ(r)
0 0 1

]
, we can select

S̄ =

a1 − d− b1 0 0 d 0
0 a2 − d− b2 0 0 d

>, Ŝ = vec(0, 0, gc

d
, 0, 0),

which are constants matrices, meaning that their columns are gradient vectors.

Step 4: The dissipation condition (5.36b) is trivially satisfied by R = 0. For the sake of
simplicity we pick

β(γ) := 1
2(γ − γ?)>Kγ(γ − γ?) + βc,

where γ? = vec(γ?1 , γ?2) ∈ R2, Kγ = diag(kγ1, kγ2) ∈ R2×2 and βc ∈ R are constants, and

γ(r) = S̄>r.

From (5.33a)–(5.33b), or equivalently (6.33a)–(6.33c), Vd|RΦ
has a strict minimum in rd if

γ?1 = dx?t , γ?2 = dy?t , µ? = gc

ld
, d > 0, kγ1 > 0, kγ2 > 0. (7.14)

Given that ∆̄d(rd) = l2d > 0, (5.33c) is verified if and only if so is (5.35), see Lemma 5.4.
Hence, by setting

B̄⊥(r) = B⊥(r) =


−zp 0 xp −zp 0

0 −zp yp 0 −zp

0 0 0 1 0
0 0 0 0 1

,

condition (5.35) reduces to

b1 > 0, b2 > 0, (2d− a1 + b1)a1 > d2, (2d− a2 + b2)a2 > d2. (7.15)

Steps 5: From R = 0 and

Ḡ(r) = 1
l2

x2
p − l2 xpyp xpzp l2 0
xpyp y2

p − l2 ypzp 0 l2

>,
we have Ḡ⊥>ν = 0 and can select

Ḡg =
[
02×3 I2

]
, Γ̄2(r) = Ḡg(r)Zd(r)J>(r)S̄(r)Kv(r)S̄>(r),
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with
Kv = diag(kv1, kv2) � 0. (7.16)

Note that Ḡg is not the Moore–Penrose inverse of Ḡ. Hence, the controller (5.18) with

Vd(r) := Ŝ>r + β(γ(r)) = gc(zp + l)
d

+ 1
2(γ(r)− γ?)>Kγ(γ(r)− γ?)

renders the system (7.8) stable in (rd, 0) whenever (7.13)–(7.16) are verified. The constant
βc = gcld

−1 assures Vd(rd) = 0.

Steps 6: In view of conditions (7.13)–(7.16), we see a great flexibility to select the controller
parameters that we tackle by assigning an optimal local performance. For this we use
the linearized system (7.11) about xd = vec(qd, 0), with qd = vec(0, 0, x?t , y?t ) = ξ−1(rd),
obtaining

Ar =

 0 diag(l−2, l−2, 1, 1)
−gcl diag(1, 1, 0, 0) 0

, Br =

0 0 0 0 −l 0 1 0
0 0 0 0 0 −l 0 1

>,
Kr =

k11 0 k12 0 k13 0 k14 0
0 k21 0 k22 0 k23 0 k24

 ,
ki1 = gcai

d
+ kγil(d− ai + bi)ηi − gc, ki2 = −dkγiηi,

ki3 = 1
l
kvi(d− ai + bi)ηi, ki4 = −dkviηi, ηi = (2aid+ aibi − a2

i − d2),

where the pair (Ar, Br) is controllable for any l > 0. Consequently, we can easily set a LQR
local optimal performance to (5.18) by matching the linearized IDA-PBC feedback Krx̃

with the LQR feedback ulqr(x) = −Klqrx̃, i.e., we impose −Klqr = Kr.

Setting the weighting matrices Qlqr and Rlqr to be diagonal, produces an optimal gain
matrix Klqr with the same structure (position of zeros) as Kr. As a result, the equation
−Klqr = Kr always provides a solution to ai, bi, Kv and Kγ with an arbitrary constant d.
Fix l = 1, d = 10, e1 = e2 = 0, Qlqr = diag(10I4, I4) and Rlqr = I2, then

a1 = a2 = 12.8055, b1 = b2 = 5.493, kγ1 = kγ2 = 0.00506, kv1 = kv2 = 0.00497, (7.17)

which are all consistent with (7.13)–(7.16) and yield a positive definite target inertia matrix
Md. Now, the control law (5.18) reads

uida(r, ṙ) = 1
10l2 + 2.806x2

p + 2.806y2
p

u1(r, ṙ)
u2(r, ṙ)

 , (7.18)

u1(r, ṙ) = 2.806xp(ẋ2
p + ẏ2

p + ż2
p) + (y2

p + 3.564l2)(2.342ẋp − 8.714ẋt + 8.872(x?t − xt))
− 27.52xpzp + 8.499l2xp − xpyp(2.342ẏp − 8.714ẏt + 8.872(y?t − yt)),
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u2(r, ṙ) = 2.806yp(ẋ2
p + ẏ2

p + ż2
p) + (x2

p + 3.564l2)(2.342ẏp − 8.714ẏt + 8.872(y?t − yt))
− 27.52ypzp + 8.499l2yp − xpyp(2.342ẋp − 8.714ẋt + 8.872(x?t − xt)),

where ṙ = ρ. Asymptotic stability is a direct consequence of Lyapunov’s indirect method.

7.1.4 4-DoF System: Position Feedback

We now test Proposition 6.6 in the synthesize of a position feedback for the portal crane
system (7.1), (7.8). In this regard, we employ the solutions of Vd and Md from the previous
section (constructive solution) because they already meet the conditions of Propositions 6.3
and 6.5. Furthermore, since M and Md are constant and R = 0, we impose

0 = B̄⊥(r)Bd(r), (7.19)

or equivalently a1 = a2 = d, to fulfill all the conditions of Proposition 6.6 (see Remark 6.3).
It follows that the position feedback (6.35) stabilizes the system (7.1), (7.8) in (rd, 0),
with rd = vec(0, 0,−l, x?t , y?t ) ∈ Ra, whenever (7.13)–(7.14), b1 > 0, b2 > 0, K̄u � 0 and
Λζ(r) + Λ>ζ (r)� 0 are fulfilled. Let us define K̄u = τ−1

γ Kv and Λζ = K−1
v with τγ > 0 and

Kv from (7.16), then the controller (6.35) can be interpreted as replacing γ̇ from the term

Γ̄2(r)∂
>H
∂ρ

= Ḡg(r)Zd(r)J>(r)S̄(r)Kv(r)S̄>(r)ṙ = Ḡg(r)Zd(r)J>(r)S̄(r)Kv(r)γ̇,

in the full-state feedback (5.18), with the dirty derivative of γ given by Dt

τγDt + 1γ, Dt = d
dt .

After setting the controller parameters from (7.17) with τγ = 0.1, feedback (6.35) reads

uof(r, ζ) =

21.17xp − 49.34xt + 4.56x?t − 3.497ζ1

21.17yp − 49.34yt + 4.56y?t − 3.497ζ2

 , (7.20a)

ζ̇1 = 54.93xp − 128.1xt − 10ζ1, (7.20b)
ζ̇2 = 54.93yp − 128.1yt − 10ζ2, (7.20c)

which is linear in the coordinates r but nonlinear in q = vec(β, α, xt, yt).

7.1.5 5-DoF Implicit Model

The controllers of Sections 7.1.2 to 7.1.4 guarantee the (asymptotic) stability of the crane
in rd for all values of l in a neighborhood of l = 1. In fact, the constructive solutions
(full-state feedback and position feedback) assure stability for any length l > 0. However, l
must be fixed during operation; otherwise, we risk losing performance and even unstable
behavior. To overcome this problem, we consider a non-fixed length l, meaning that
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our system has five DoF and the configuration space is given by R3 × S2.64 Then, we
can select the coordinates r = vec(xp, yp, zp, xt, yt, l) ∈ R = R6 satisfying the holonomic
constraint (7.1). From Assumption 7.1 and the chosen coordinates, the kinetic and potential
energy remains as in (7.2), meaning that the Lagrange equations with Rayleigh dissipation
1
2c1ẋ

2
t + 1

2c2ẏ
2
t + 1

2c3l̇
2 ≥ 0 (viscous friction in actuators) are

M̂r̈ + R̂ṙ + ∂>V̂
∂r

= Ĝ(r)τ + ∂>Φ
∂r

λ̂, (7.21)

where τ = vec(τx, τy, τl), R̂ = diag(0, 0, 0, c1, c2, c3),

M̂ =



mp 0 0 mp 0 0
0 mp 0 0 mp 0
0 0 mp 0 0 0
mp 0 0 mp +mt +mb 0 0
0 mp 0 0 mp +mb 0
0 0 0 0 0 0


and Ĝ =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


.

Since
[

M̂ − ∂
>Φ
∂r

∂>Φ
∂r

0

]
is nonsingular for all r ∈ RΦ := {r ∈ R | Φ(r) = 0}, system (7.21) can

be rewritten as r̈ = f(r, ṙ, λ̂, τ) for some function f , where λ̂ has a unique solution that
guarantees vec(ṙ, f) being a vector field on the constrained state space, see Section 2.4.2.
In other words, (7.21) is well-posed despite M̂ being singular.

Partial Feedback Linearization

The partially linearized model of (7.21) is obtained with the procedure of Section 7.1.1 but
with h(r) = vec(xt, yt, l) and Ĝ⊥ = m−1

p

[
I3 03×3

]
. The resulting system is now

ṙ
ρ̇

 =

 0 I6

−I6 0

∂>H
∂r

∂>H
∂ρ

+

 0
B̄

λ+

 0
G

u, (7.22)

where H(r, ρ) = 1
2ρ
>M−1ρ+ V(r), M = I6, V = gczp, B̄(r) = vec(xp, yp, zp, 0, 0, 0) and

G =


−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 0 0 0 1


>

.

64Similar to the 4-DoF crane, the model with 5-DoF can be approximate with two or more lower-order
models but at the price of confining the length of l to a tiny neighborhood. Recall that two 2-DoF
models are a local approximation of the 4-DoF model.
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Note that the system only requires the gravity constant gc as a parameter, simplifying the
implementation task. Besides, Colsp B̄(r) 6= Colsp ∂>Φ

∂r , i.e., the constraint forces B̄λ do
not satisfy the Lagrange-d’Alembert principle, meaning that they are not workless. We
leave the verification of Assumptions 5.6 and 5.8 to the reader.

Reduction and Linearization

Reducing system (7.1), (7.22), in feedback with u = uida(r, ρ), to the explicit representation
(see Corollary 6.2) results inq̇

ṗ

 =

 M−1(q)p
−f1(q)− f2(q, p)

+

 0
G(q)

uida(q, p), (7.23)

where q = vec(β, α, xt, yt, l), M(q) = ∂>ξ
∂q

∂ξ
∂q = diag(l2, l2 cos2 β, 1, 1, 2), r = ξ(q) follows

from (7.10), uida(q, p) = uida(ξ(q), L(q)p), p := vec(p1, p2, p3, p4, p5) = ∂>ξ
∂q ρ, G(q) = ∂>ξ

∂q G,
L(q) = ∂ξ

∂qM
−1(q),

f1(q) = gcl
[
cos(α) sin(β) cos(β) sin(α) 0 0 0

]>
, and

f2(q, p) = 1
l2 cos3(β)

[
p2

2 sin(β) 0 0 0 0
]>
.

Observe that the inertia matrix M is non-constant, and the reduction is well-defined for
α, β ∈

]
−π

2 ,
π
2

[
. Besides, since the system (7.23) is not port-Hamiltonian and M depends

on the actuated coordinate l, the geometric-PBC of [231] and the PID-PBC of [20, 24] that
were applied to the explicit model of 4-DoF, cannot work with the one of 5-DoF.

The linearization of (7.23) about the equilibrium xd = vec(qd, 0), with qd = ξ−1(rd),
yields

˙̃x =


 0 M−1(qd)
∂f1
∂q

∣∣∣
q=qd

0

+

 0
∂Gu
∂x

∣∣∣∣∣∣x=xd
u=uida(qd,0)


︸ ︷︷ ︸

=:Ar

x̃+

 05×3

G(qd)


︸ ︷︷ ︸

=:Br

∂uida

∂x

∣∣∣∣
x=xd︸ ︷︷ ︸

=:Kr

x̃, (7.24)

where x̃ = x− xd, x = vec(q, p).

7.1.6 5-DoF System: Constructive Solution

In this section, we test Algorithm 6.2 with a constant target inertial matrix and an
optimal local assignment for the asymptotic stabilization of the 5-DoF crane with PFL.
Although such a model is not port-Hamiltonian in the sense that it includes non-workless
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constraint forces, the procedure is fairly similar to the one discussed for the 4-DoF model,
see Section 7.1.3.
Step 1: We select

N⊥(r) =

−zp 0 xp −zp 0 0
0 −zp yp 0 −zp 0


and rd = vec(0, 0,−l?, x?t , y?t , l?) ∈ Ra = {r ∈ R | 0 = Φ(r), 0 = xp, 0 = yp} , where (x?t , y?t )
is the desired trolley position and l? > 0 is the desired rope length.

Step 2: Since M is constant, we can satisfy the kinetic matching (5.16a) by using a constant
target inertia matrix Md, setting Γ1(r, ρ) = 0 and imposing (6.19), see Section 6.2.2. Then,

Md =



a1 −e1 0 d1 − a1 e1 −e3

−e1 a2 0 e1 d1 − a2 −e4

0 0 d1 0 0 0
d1 − a1 e1 0 b1 e2 e3

e1 d1 − a2 0 e2 b2 e4

−e3 −e4 0 e3 e4 d2


,

where ai, bi, di and ei are arbitrary constants.

Step 3: To simplify the analysis, we set

ei = 0. (7.25)

Then,

Q(r) =

−d1zp 0 d1xp −zp(d1 − a1 + b1) 0 0 −gcxp

0 −d1zp d1yp 0 −zp(d1 − a2 + b2) 0 −gcyp

 ,
and we can select

S̄ =


a1 − d1 − b1 0 0 d1 0 0

0 a2 − d1 − b2 0 0 d1 0
0 0 0 0 0 1


>

, Ŝ = vec(0, 0, gc

d1
, 0, 0, 0).

Clearly, the columns of S̄ and Ŝ are gradient vectors.

Step 4: Since R = 0, (5.36b) holds. Now, define

β(γ) := 1
2(γ − γ?)>Kγ(γ − γ?) + βc,
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where γ? = vec(γ?1 , γ?2 , γ?3) ∈ R3, Kγ = diag(kγ1, kγ2, kγ3) ∈ R3×3 and βc ∈ R are constants,
γ(r) = S̄>r and βc is selected such that Vd(rd) = 0. Then, from (6.33a)–(6.33c), it follows
that

γ?1
γ?2
γ?3

 =


d1x

?
t

d1y
?
t

l? − gc/(kγ3d1)

, µ? = gc

l?d1
, d1 > 0, kγ1 > 0, kγ2 > 0, kγ3 > 0. (7.26)

Besides, from Lemma 5.4, (5.33c) is verified if and only if so is (5.35) and ∆̄d(rd) :=
B>(rd)M−1MdM−1B(rd) = (d1 + d2)(l?)2 is nonsingular. Hence, by setting

B̄⊥(r) =



−zp 0 xp 0 0 0
0 −zp yp 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

the previous conditions reduces to

b1 > 0, b2 > 0, d2 > 0, (2d1 − a1 + b1)a1 > d2
1, (2d1 − a2 + b2)a2 > d2

1. (7.27)

Step 5: Given that

Ḡ(r) = 1
l2


x2

p − l2 xpyp xpzp l2 0 0
xpyp y2

p − l2 ypzp 0 l2 0
lxp lyp lzp 0 0 l2


>

and R = 0, we have Ḡ⊥>ν = 0 and can select

Ḡg =
[
03×3 I3

]
, Γ̄2(r) = Ḡg(r)Zd(r)J>(r)S̄(r)Kv(r)S̄>(r),

with
Kv = diag(kv1, kv2, kv3) � 0. (7.28)

Hence, the controller (5.18) with

Vd(r) := Ŝ>r + β(γ(r)) = gc(zp + l?)
d1

+ 1
2(γ(r)− γ?)>Kγ(γ(r)− γ?)− g2

c
2d2

1kγ3

renders the system (7.8) stable in (rd, 0) whenever (7.25)–(7.28) are verified.
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Steps 6: To select the controller parameters with an optimal local performance, we use the
linearized system (7.23) about xd = vec(qd, 0), qd = vec(0, 0, x?t , y?t , l?) = ξ−1(rd). Then,

Ar =

 0 diag((l?)−2, (l?)−2, 1, 1, 1
2)

−gcl
? diag(1, 1, 0, 0, 0) 0

,

Br =


0 0 0 0 0 −l? 0 1 0 0
0 0 0 0 0 0 −l? 0 1 0
0 0 0 0 0 0 0 0 0 2


>

,

Kr =


k11 0 k12 0 0 k13 0 k14 0 0
0 k21 0 k22 0 0 k23 0 k24 0
0 0 0 0 k31 0 0 0 0 k32


ki1 = gcai

d1
+ kγil

?(d1 − ai + bi)ηi − gc, ki2 = −d1kγiηi,

ki3 = 1
l?
kvi(d1 − ai + bi)ηi, ki4 = −d1kviηi, ηi = (2aid1 + aibi − a2

i − d2
1),

k31 = − d1d2

d1 + d2
kγ3, k32 = − d1d2

2(d1 + d2)kv3,

with i ∈ {1, 2}. Since the pair (Ar, Br) is controllable for any l? > 0 and the optimal LQR
gainKlqr has the same structure (position of zeros) asKr for any diagonal weighting matrices
Qlqr and Rlqr, then the local optimal assignment can be obtained from Kr = −Klqr.65 This
equation produces a solution of ai, bi, Kv and Kγ with arbitrary constants d1 and d2. Fix
l? = 1, d1 = d2 = 10, e1 = e2 = e3 = e4 = 0, Qlqr = diag(10I5, I4, 5) and Rlqr = I3, then

a1 = a2 = 12.8055, kγ1 = kγ2 = 0.00506, kγ3 = 0.6325,
b1 = b2 = 5.493, kv1 = kv2 = 0.00497, kv3 = 1.0261,

(7.29)

which are all consistent with (7.25)–(7.28) and yield a positive definite target inertia matrix
Md. At this point, the controller (5.18) is

uida(r, ṙ) = 1
20l2 + 2.806x2

p + 2.806y2
p


u1(r, ṙ)
u2(r, ṙ)
u3(r, ṙ)

 , (7.30)

u1(r, ṙ) = 2.806xp(ẋ2
p − l̇2 + ẏ2

p + ż2
p) + 27.52xp(l − zp) + lxp(28.79l̇ − 17.74l?)

+ (y2
p + 7.129l2)(2.342ẋp − 8.714ẋt + 8.872x?t − 8.872xt) + 34.74l2xp

− xpyp(2.342ẏp − 8.714ẏt + 8.872y?t − 8.872yt),

65Matching the linearized IDA-PBC controller Krx̃ with the LQR feedback −Klqrx̃ gives Kr = −Klqr.
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u2(r, ṙ) = 2.806yp(ẋ2
p − l̇2 + ẏ2

p + ż2
p) + 27.52yp(l − zp) + lyp(28.79l̇ − 17.74l?)

+ (x2
p + 7.129l2)(2.342ẏp − 8.714ẏt + 8.872y?t − 8.872yt) + 34.74l2yp

− xpyp(2.342ẋp − 8.714ẋt + 8.872x?t − 8.872xt),

u3(r, ṙ) = 10l(ẋ2
p − l̇2 + ẏ2

p + ż2
p)− (x2

p + y2
p)(28.79l̇ − 17.74l? + 26.24l + 27.52)

− lxp(8.347ẋp − 31.06ẋt + 31.62x?t − 31.62xt) + 63.25l2(l − l?)
− lyp(8.347ẏp − 31.06ẏt + 31.62y?t − 31.62yt)− 98.1l(l + zp)− 102.6l2l̇,

where ṙ = ρ. Asymptotic stability is a direct consequence of Lyapunov’s indirect method
on the reduced closed-loop (7.23).

Unlike the 4-DoF case, we cannot impose the condition 0 = B̄⊥(r)Bd(r) to build a
position feedback controller (see Section 7.1.4) because it implies that a1 = a2 = d1 and
d2 = 0, which contradicts the condition (7.27).

7.1.7 Simulations and Real-system Implementation

In this section, we compare the controllers (7.12), (7.18), (7.20), (7.30) and

ue(q, q̇) =

3.162(x?t − xt)− 3.106ẋt + 0.3672 sinβ
l2 (lβ̇2 + 9.81 cos β + β̇ẋt cos β)

3.162(y?t − yt)− 3.106ẏt + 0.3672 sinα
l2 (lα̇2 + 9.81 cosα + α̇ẏt cosα)

 . (7.31)

The latter, is obtained from the simplified IDA-PBC of Ryalat and Laila [57] that we briefly
discussed in Example 6.3. This controller does not admit an arbitrary local assignment [102],
so we tuned it to behave locally as close as possible to the implicit controller (7.18).
Figures 7.4 to 7.6 show the simulation results for the portal crane with the controllers

of Table 7.1 and initial conditions xp(0) = yp(0) = xt(0) = yt(0) = 0 m, l(0) = 1 m and
ρ(0) = 0. We restrict the time span to 15 s, where the desired position is set to

• x?p = y?p = 0 m for all time t,

• x?t = y?t = 0 m and l? = 1 m for t ∈ [0, 1[ s, and

• x?t = y?t = 1 m and l? = 0.5 m for t ∈ [1, 15[ s.

Figure 7.4 depicts the positions of xt, yt and l while Figure 7.5 shows the position of xp

and yp as well as the Hamiltonian’s value. Clearly, all controllers achieve the asymptotic
stabilization of x?p = y?p = 0 m and x?t = y?t = 1 m but only (7.30) can do so for l? = 0.5 m.
Besides, it can be seen that the Hamiltonians are monotonically decreasing functions, which
is consistent with the design, namely Ḣd ≤ 0 and Ḣd ≤ 0. Figure 7.6 displays the velocities
ẋt, ẏt and l̇, which in the real experiment would correspond to the input of the velocity
tracking system, see Figure 7.3.
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Name Description Eq.
Im-4DoF-Heu Full-state feedback IDA-PBC synthesized from the heuristic

method (SOS programs) with a constant Md, a quadratic
Vd and kv1 = kv2 = 0.21 for the 4-DoF implicit model,
(Section 7.1.2)

(7.12)

Im-4DoF-Cons Full-state feedback IDA-PBC synthesized from the construc-
tive method with a constant Md for the 4-DoF implicit
model (Section 7.1.3)

(7.18)

Im-4DoF-PosF Position feedback IDA-PBC synthesized from the construc-
tive method with a constant Md for the 4-DoF implicit
model (Section 7.1.4)

(7.20)

Im-5DoF-Cons Full-state feedback IDA-PBC synthesized from the construc-
tive method with a constant Md for the 5-DoF implicit
model (Section 7.1.6)

(7.30)

Ex-2DoF-Simp Full-state feedback IDA-PBC synthesized from the simpli-
fied method [102] for the 2-DoF explicit model

(7.31)

Table 7.1. – IDA-PBC controllers for the portal crane.

Comparing the controllers, we observe that the optimal local assignment allows a faster
settling time and smaller overshoot of the full-state feedbacks with the constructive approach,
namely (7.18) and (7.30). We remark that if l? is set to remain equal to 1 m, then there
is no significant difference between them. The simplified IDA-PBC has a slightly inferior
performance (settling time and overshoot) than (7.18) and (7.30). This a consequence of
not allowing an arbitrary local assignment together with the simplicity of its model (2-DoF).
The IDA-PBC obtained from the heuristic approach has the largest settling time because
the solution of the SDP solver was obtained without any minimization objective or local
assignment. We will improve this aspect in cart-pole example of Section 7.2. The position
feedback has almost the same parameters as the full-state feedback from the constructive
method with 4-DoF, but it requires the additional restriction a1 = a2 = d, so it yields also
a slower settling time, but avoids any velocity measurement.
The physical setup is composed of a PC with Matlab/Simulink, an RTI-toolbox and a

dSPACE controller [234] that is connected to the servo drives of the portal crane as well
as the sensors (encoders, limit switches, etc.). In summary we take the fast prototyping
perspective, meaning that our control algorithm is written in Simulink, which compiles
and exports the algorithm to the dSPACE. For simplicity, we restrict our attention to the
controller that yields the best results, namely (7.30). Figure 7.7 illustrates real system
behavior, where the experiments are very close to the simulation results of Figures 7.4
to 7.6.
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7.2 Cart-pole System

When designing the IDA-PBC for the portal crane (in implicit representation) with Algo-
rithm 6.1 or 6.2 (see Section 7.1), we always have a positive definite target inertia matrix
Md. As for other systems, having a sign-indefinite target inertia matrix can certainly
simplify the analysis or even improve the results. This is the case of the stabilization of
the cart-pole upright pendulum position. In this regard, we consider the cart-pole system
of Sections 4.4 and 5.2.1 and synthesize a full-state feedback controller with Algorithm 6.2
under a constant target inertia matrix. Then, to enlarge the region of convergence, we design
two additional full-state feedback controllers under state-dependent target inertia matrices:
one with Algorithm 6.1 and the other with Algorithm 6.2. All (three) controllers are tuned
to have the same optimal local performance. The results are compared in simulation and
the best controller is implemented in the test-bench of Figure 4.7.

7.2.1 Implicit Model with PFL

The implicit port-Hamiltonian model of the cart-pole with negligible friction in the pendulum
and Rayleigh dissipation 1

2ccẋ
2
c ≥ 0 is given by (5.10). As described in Section 4.4, for the

real system implementation, we employ the velocity tracking mode (of the servomotor) with
an integrator in its input to have an approximate representation of the cart-pole in PFL
with new input u∗ = ẍ∗c ≈ ẍc, see Figure 4.9. Therefore, to derive such a model, it is used
the method of Section 7.1.1 with

h(r) = xc and Ĝ⊥ = m−1
p

[
I2 02×1

]
.

Hence,

Λ(r) = l2

mpx2
p +mcl2

> 0 ∀r ∈ RΦ,

and the complete system may be written as

Mr̈ + ∂>V
∂r

= ∂>Φ
∂r

λ+ Gu,

or equivalently (see Section 2.5.3)ṙ
ρ̇

 =

 0 I3

−I3 0

∂>H
∂r

∂>H
∂ρ

+

 0
∂>Φ
∂r

λ+

 0
G

u (7.32a)

with holonomic constraints

Φ(r) := 1
2

(
x2

p + y2
p − l2

)
= 0, (7.32b)
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where M = I3, V = gcyp, H(r, ρ) = 1
2ρ
>M−1ρ + V(r), G = vec(−1, 0, 1) and R = R3,

meaning that the system is polynomial (see Definition 6.1). We leave the verification
of Assumptions 5.6 and 5.8 to the reader.

Reduction and Linearization

Reducing system (7.32), in feedback with u = uida(r, ρ), to the explicit representation
(see Corollary 6.2) results inq̇

ṗ

 =

 0 I2

−I2 0

∂>H∂q
∂>H
∂p

+

 0
G(q)

uida(q, p), (7.33)

H(q, p) = 1
2p
>M−1(q)p+ V (q)

where q = vec(θ, xc), M(q) = ∂>ξ
∂q

∂ξ
∂q = diag(l2, 1), V (q) = V(ξ(q)) = gcl cos θ, uida(q, p) =

uida(ξ(q), L(q)p), p = ∂>ξ
∂q ρ, G(q) = ∂>ξ

∂q G, L(q) = ∂ξ
∂qM

−1(q) and r = ξ(q) follows from the
geometric relation of Figure 4.8, i.e.,

xp = l sin θ, yp = l cos θ. (7.34)

The linearization of the reduced system (7.33) about the equilibrium xd = vec(qd, 0),
with qd = ξ−1(rd), yields

˙̃x =


 0 diag(l−2, 1)
− ∂2V

∂q2

∣∣∣
q=qd

0

+

 0
∂Gu
∂x

∣∣∣∣∣∣x=xd
u=uida(qd,0)


︸ ︷︷ ︸

=:Ar

x̃+

 02×1

G(qd)


︸ ︷︷ ︸

=:Br

∂uida

∂x

∣∣∣∣
x=xd︸ ︷︷ ︸

=:Kr

x̃, (7.35)

where x̃ = x− xd, x = vec(q, p).

7.2.2 Constructive Solution with Constant Md

We test Algorithm 6.2 with a constant Md on the cart-pole system (7.32).
Step 1: We build

N(r) :=
[
G B̄(r)

]
=
[
G ∂>Φ

∂r

]
=


−1 xp

0 yp

1 0

 ,

and select N⊥ =
[
yp −xp yp

]
and rd = vec(0, l, x?c) ∈ Ra = {r ∈ R | 0 = Φ(r), 0 = xp},

(upward pendulum position), where x?c is the desired cart position.
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Step 2: Since M is constant, we can satisfy the kinetic matching (5.16a) by using a constant
target inertia matrix Md, setting Γ1(r, ρ) = 0 and imposing (6.19), see Section 6.2.2. Hence,

Md =


a 0 d− a
0 d 0

d− a 0 b


for some arbitrary constants a, b and d.

Step 3: We recall that Bd(r) = Md(r)M−1(r)B(r), ∆d(r) = B>(r)M−1(r)Bd(r) and
Zd(r) = I3 −Bd(r)∆−1

d (r)B>(r)M−1(r). Then,

Q(r) :=
[
N⊥(r)Zd(r)Md(r)M−1(r) −N⊥(r)∂V

∂r

]
=
[
dyp −dxp yp(d− a+ b) gcxp

]
.

From Q⊥>(r) =
[
∂>Φ
∂r

S̄(r) Ŝ(r)
0 0 1

]
, we can choose the gradient vectors

S̄ =


a− d− b

0
d

, Ŝ = 1
d


0
gc

0

.
Step 4: The dissipation condition (5.36b) is trivially satisfied by R = 0. For the sake of
simplicity, we pick

β(γ) := 1
2Kγ(γ − γ?)2 + βc,

where γ?,Kγ , βc ∈ R are constants, βc is selected such that Vd(rd) = 0, and γ(r) = S̄>r.
From (6.33a)–(6.33c), Vd|RΦ

has a strict minimum in rd if

γ? = dx?c , µ? = −gc

dl
, d < 0, Kγ > 0. (7.36)

Note that stabilizing rd = vec(0, l, x?c) requires Md 6= M; however, if our goal were the
downward pendulum position, i.e., rd = vec(0,−l, x?c), then d > 0 and we can actually
take Md = M. Given that ∆̄d(rd) = l2d > 0, (5.33c) is verified if and only if so is (5.35),
see Lemma 5.4. Hence, by setting

B̄⊥(r) = B⊥(r) =

−yp xp 0
0 0 1

,
condition (5.35) leads to

b > 0, (2d+ b− a) a > d2. (7.37)
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Step 5: Since R = 0, we pick Γ̄2(r) = Ḡg(r)Zd(r)J>(r)S̄(r)Kv(r)S̄>(r) with

Kv > 0. (7.38)

From Ḡ = vec(−y2
pl
−2, xpypl

−2, 1), we have Ḡ⊥>ν = 0 and can select

Ḡg =
[
0 0 1

]
,

which is not the Moore–Penrose inverse of Ḡ. Hence, the controller (5.18) with

Vd(r) :=
∫ 1

0
Ŝ>rdv + β(γ(r)) = gc(yp − l)

d
+ 1

2(γ(r)− γ?)2Kγ

renders the system (7.32a) stable in (rd, 0) whenever (7.36)–(7.38) are verified. Note that
the stability is achieved despite the fact that Md is sign-indefinite from (7.36)–(7.37).

Steps 6: In view of conditions (7.36)–(7.38), we observe a great flexibility to pick the
controller parameters. This problem is tackled by assigning an optimal local performance.
For this we use the length l = 0.4840 m, measured from the test-bench of Figure 4.7 (see
also [199]), and the linearized system (7.35) about xd = vec(qd, 0), with qd = vec(0, x?c) =
ξ−1(rd), obtaining

Ar =

 0 diag(l−2, 1)
gcl diag(1, 0) 0

, Br =
[
0 0 −l 1

]>
, Kr =

[
k1 k2 k3 k4

]
,

k1 = −gca

d
+ Kγl(d− a+ b)η + gc, k2 = −dKγη,

k3 = 1
l
Kv(d− a+ b)η, k4 = −dKvη, η = (2ad+ ab− a2 − d2),

where the pair (Ar, Br) is controllable. We set an LQR local optimal performance to the
controller (5.18) by matching the linearized IDA-PBC feedback Krx̃ with the LQR feedback
ulqr(x) = −Klqrx̃, i.e., we impose

−Klqr = Kr,

resulting in a solution to a, b, Kv and Kγ with an arbitrary constant d. Fix d = −1,
Qlqr = diag(10I2, I2) and Rlqr = 1, then

a = 1.9483, b = 6.7953, Kγ = 0.6955, Kv = 0.9099, (7.39)

which are all consistent with (7.36)–(7.38). Now, the control law (5.18) reads

uida(r, ṙ) =
1.308ẋc + 5.033ẋp + xc − x?c + 3.847xp + 39.04xpyp − 3.98xp(ẋ2

p + ẏ2
p)

3.98y2
p − 0.6161 . (7.40)
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Asymptotic stability is a direct consequence of Lyapunov’s indirect method.

Position Feedback

We cannot impose the condition 0 = B̄⊥(r)Bd(r) to build a position feedback controller
(see Proposition 6.6 and Remark 6.3) because it implies a = d, contradicting the condi-
tion (7.36).

Equivalence with the PID-PBC

Using Corollary 6.3, the closed-loop can be written in explicit representation asq̇
ṗ

 =

 0 J(q)
−J>(q) Γ1(q, p) + Γ2(q)

∂>Hd
∂q

∂>Hd
∂p

 , (7.41)

where Hd(q, p) = 1
2p
>M−1

d (q)p+ Vd(q), J(q) = M−1Md(q), T>(q) = J−1(ξ(q))∂ξ∂qJ(q),

Vd(q) = Vd(ξ(q)) = gckekul(cos θ − 1) +KI(kaxc − kul sin(θ))2,

M−1
d (q) = M−1∂

>ξ

∂q
M−1

d
∂ξ

∂q
M−1 =


keku

l2
+ Kkk

2
u cos2 θ

l2
−Kkkaku cos θ

l

−Kkkaku cos θ
l

kake +Kkk
2
a

 ,
Γ1(q, p) =

(
∂Tρ

∂q
J(q)− J>(q)∂

>Tρ

∂q

)∣∣∣∣∣
ρ= ∂ξ

∂q
M−1(q)p

,

Γ2(q) = T (q)Γ2(ξ(q))T>(q) = J>(q)∂
>ξ

∂q
S̄KvS̄>

∂ξ

∂q
J(q),

ku = ka(d− a+ b)
d

, ke = 1
ka(d− a+ b) , Kk = −d2(a− d)

k2
a(d− a+ b) det Md

, KI = Kγ
d2

k2
a

and ka ∈ R is arbitrary. From the reduced system (7.41), we observe that the target energy
function (Hamiltonian Hd) and its time derivative Ḣd(q, p) = Kp(ẋcka − θ̇kul cos θ)2, with
Kp = Kv

d2

k2
a
, are equal to the ones constructed in the PID-PBC of [20, 24], see also [18]. In

other words, the control algorithms are equivalent.

Region of Convergence

A central requirement in the IDA-PBC for implicit systems is the nonsingularity of ∆d. This
property assures that the trajectories of the closed-loop are consistent with the constrained
state-space Xc. Besides, from Lemma 5.2, the stabilizing condition (5.31a) does not hold
in {r ∈ RΦ | det ∆d(r) = 0}. Consequently, we may focus on regions of convergence that
are bounded by ∆d(r) = 0. Figure 7.8 shows this bound for the previous controller where
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yp > 0.3934 m, meaning that such a region is a subset of yp > 0.3934 m, or equivalently
θ ∈ ]−35.63°, 35.63°[.
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Figure 7.8. – Zero level sets of ∆d and Φ for the constructive solution with constant
Md.

7.2.3 Heuristic Solution with State-dependent Md

To increase the region of convergence of the previous controller, we have two main options:
change the controller parameters or redesign the controller with a state-depended Md. The
former is clearly the simplest option but it has a negative impact in the local performance
assignment, whereas the latter may keep its local behavior but increases the design com-
plexity. In this section, we choose the second option and solve the IDA-PBC problem for
the cart-pole system (7.32) with the heuristic solution of Algorithm 6.1. We omit Step 1
because is identical to the one of the previous section.
Step 2: To avoid undesirable behavior and reduce the computational cost, we aim at a low
polynomial order on Vd, M−1

d and Γ̄1. Therefore, we choose Vd as a quadratic function of
r − vec(0, 0, x?c), M−1

d quadratic in (xp, yp) and Γ̄1(r, ρ) linear in ρ but independent of r.

Step 3: Since R(r) = 0, B(r) = B̄(r) and M is a constant, the dissipation condition (6.10)
is trivially verified. Besides, we can impose (6.14) to satisfy 0 = Ke(r)J−>(r)Ḡ(r) and
reduce (6.7a)–(6.7b) to

0 = Ke(r)
(
−1

2
∂>ρ>M−1

d ρ

∂r
+ Γ̄1(r, ρ)M−1(r)ρ

)
∀(r, ρ) ∈ Xc,

0 = Ke(r)
(

J−>(r)∂
>V
∂r
− ∂>Vd

∂r

)
∀r ∈ RΦ,

which are polynomial equations if Ke is polynomial. Now, we may employ Option 1, i.e.,
Ke(r) = N⊥(r), but the SDP solver will not converge, meaning that there is no solution for
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the upright position of the pendulum.66 Consequently, we resort to Option 2, and employ
V̂d and M̂d from the constructive solution. To avoid confusion, we use the accent (̂ ) to
denote functions obtained from the constructive solution (see the previous section). Since
V̂d is polynomial and has a strict local minimum in rd, we can now select Ka = 1 and

Ke(r) = N⊥(r)Ẑd(r)M̂dM−1(r) =
[
dyp −dxp yp(d− a+ b)

]
,

to satisfy the conditions (6.15), where Ẑd(r) = I3 − B̂d(r)∆̂−1
d (r)B>(r)M−1(r), ∆̂d(r) =

B>(r)M−1(r)B̂d(r), B̂d(r) = M̂dM−1(r)B(r) and (a, b, d) satisfies (7.36)–(7.37).

Step 4: We select ε = 10−5, gc = 9.81,

(
∂>Φ
∂r

)
⊥

= B⊥(r) =

−yp xp 0
0 0 1

,
and replace (5.33c) with the stronger condition

B⊥(r)M(r)M−1
d (r)M(r)B>⊥(r)− ψ(r)Q(r)− εI2 � 0, Q>(r) = Q(r) � 0 (7.42)

for some functions Q : R3 → R3×3 and ψ : R → R such that rd ∈ Rψ := {r ∈ R | ψ(r) ≥ 0},
Rψ is compact and ψ is user defined. Since ε > 0, condition (7.42) guarantees

B⊥(r)M(r)M−1
d (r)M(r)B>⊥(r) � 0 ∀r ∈ Rψ, (7.43)

which is necessary for ∆d being nonsingular in Rψ (see Lemma 5.2), but sufficient for
for (5.33c). Hence, by setting ψ and verifying that Md is nonsingular in Rψ, we can change
the bound ∆d(r) = 0 (of the region of convergence). Note that Md can be sign indefinite,
and therefore, we do not include any constraint on it, but analyze the nonsingularity later.

Now, let us consider the closed-loop from the constructive solution, By using Corollary 6.3,
it is not difficult to see, that the local behavior, or equivalently the eigenvalues, are completely
specified from

MM̂−1
d (qd)M =

0.3501 0.3138
0.3138 0.4285

, ∂2V̂d

∂q2

∣∣∣∣∣
q=qd

=

7.159 1.295
1.295 0.6955

, K̂v = 0.9099.

Therefore, we can impose the following minimization objective to ensure convergence to
the desired MM̂−1

d (qd)M and ∂2V̂d
∂q2

∣∣∣
q=qd

as α→ 0.

66Using Option 1 it is possible to find a solution for the downward position of the pendulum.
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Optimization 7.1 (Local performance assignment).

minimize α

subject to

αI4 F

F> I4

 � 0,

F =


MM̂−1

d (qd)M − ∂>ξ
∂q M−1

d (rd)∂ξ∂q 0

0 ∂2V̂d
∂q2

∣∣∣
q=qd
− ∂2Vd(ξ(q))

∂q2

∣∣∣∣∣
q=qd

.

To be consistent with the local assignment, we also replace the values of (a, b, d)
from (7.39), obtaining Ke(r) =

[
−yp xp 3.847yp

]
. For avoiding excessively large values

on M−1
d , we constrain the monomial coefficients of order 2 in elem1,1(M−1

d ) to be smaller
than 20.

Let us set l = 0.4840 (obtained from the test-bench of Figure 4.7) and select ψ(r) =
1− 1

0.42x
2
p − 1

0.32 (yp − l2). The solution of the SOS Program 6.1 and Optimization 7.1 with
SOSTOOLS and SDPT3 is µd = 7.879, α = 0,

Vd(r) = 2.676(xc − x?c)xp + 0.3477(xc − x?c)2 − 9.81yp + 9.876x2
p + 4.73y2

p + 3.64

M−1
d (r) =


17.89(x2

p + y2
p)− 24.94yp + 9.375 0 4.649(x2

p + y2
p)− 6.483yp + 2.697

0 −1 0
4.649(x2

p + y2
p)− 6.483yp + 2.697 0 1.209(x2

p + y2
p)− 1.685yp + 0.961

,

Γ̄1(r, ρ) =


0 12.47ρ1 + 3.241ρ3 0

−12.47ρ1 − 3.241ρ3 0 −3.241ρ1 − 0.8426ρ3

0 3.241ρ1 + 0.8426ρ3 0

 .
Observe that α = 0 and Md is sign-indefinite but nonsingular:

det M−1
d (r) = −3.441x2

p − 3.441y2
p + 4.798yp − 1.736 < 0.

Figure 7.9 illustrates the zero level sets of ∆d, ψ and Φ, where the points of ∆d(r) = 0 do
not belong to the set Rψ because M−1

d is nonsingular. Besides, we can conclude that the
region of convergence is a subset of yp > 0.3081 m, or equivalently θ ∈ ]−50.46°, 50.46°[.

Step 5: From the full-rank feature of Ḡ and

Ĝ(r) := B⊥(r)M(r)M−1
d (r)Ḡ(r) =

6.483y2
p − 4.786yp + 62.18y3

p − 106.5y4
p

27.67y3
p − 16.16y2

p − 1.685yp + 1.244

,
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Figure 7.9. – Zero level sets of ∆d, ψ and Φ for the heuristic solution with state-
dependent inertia matrix Md.

we have Ḡ⊥>(r)ν = 0 and can select

Ĝg(r) = 1
27.67y3

p − 16.16y2
p − 1.685yp + 1.244

[
0 1

]
,

Since R = 0 and α = 0, we pick Γ̄2(r) = KvḠ>(r)J−1(r) with Kv = 18.812, which is
calculated from the linearized system with K̂v. Hence, the IDA-PBC controller (6.8) reads

uida(r, ṙ) = 1
27.67y3

p − 16.16y2
p − 1.685yp + 1.244u1(r, ṙ)−Kvu2(r, ṙ), (7.44)

u1(r, ṙ) = 0.6955(x?c − xc)− 2.676xp + 0.8426ẋcẏp + 3.241ẋpẏp − 158.6xpyp

+ 16.16(ẋ2
p + ẏ2

p)xp + 271.5xpy
2
p − 27.67(ẋ2

p + ẏ2
p)xpyp,

u2(r, ṙ) = 0.961ẋc + 2.697ẋp − 1.685ẋcyp − 6.483ẋpyp + 1.209ẋcx
2
p − 10.3ẋcy

2
p

+ 27.67ẋcy
3
p − 19.85ẋcy

4
p − 35.37ẋpy

2
p + 106.5ẋpy

3
p − 76.35ẋpy

4
p

+ 76.35ẏpxpy
3
p − 19.85ẋcx

2
py

2
p − 8.918ẏpxpyp,

where used ∂Φ
∂r ṙ = 0 to reduce the expressions in Γ̄2(r)ṙ. In summary, by using a state-

dependent Md, we achieve the desired local performance and successfully enlarge the
boundaries of the region of convergence.

Step 6: Asymptotic stability is a direct consequence of Lyapunov’s indirect method.

7.2.4 Constructive Solution with State-dependent Md

Similar to the heuristic solution of Section 7.2.3 we may intent to enlarge the region of
converge by synthesizing the cart-pole controller with Algorithm 6.1 under a state-dependent
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inertia matrix Md obtained from the characterization of Corollary 6.1. We omit the Step 1
because is equal to the one of Section 7.2.2.
Step 2: From Corollary 6.1, there exists a solution of Md characterized by (6.25) that
satisfies the kinetic matching condition (5.16a) whenever (5.31a), (6.19) and (6.26) hold.
Given that we verify (5.31a) or equivalently (5.33c) in Step 4, a solution to (6.26) is

Md4(r) =

−yp xp 0
0 0 1

> ,
and (6.19) results in

Md =


a1 0 a2 − a1

0 a2 0
a2 − a1 0 a3

+ Md4(r)

d1 d2

d2 d3

M>
d4(r) + N(r)

b1(r) b2(r)
b2(r) b3(r)

N>(r),

where ai and di are arbitrary constants, and bi : RΦ → R are also arbitrary.

Step 3: For simplicity, let us define ax := a2 − a1 + a3 + d3 and set

a2 = −d1l
2, b1(r) = b2(r) = 0, (7.45)

then

Q(r) =
[
−d2y

2
p d2xpyp axyp − d2l

2 gcxp
]
.

Assume that d2 6= 0 and yp > 0. By x2
p + y2

p = l2, we can choose the gradient vectors

S̄(r) =


− l2

l2 − x2
p

+ ax

d2
√
l2 − x2

p

0
1

, Ŝ(r) = 1
d2yp


0
−gc

0

,

which are state-dependent in comparison with all the previous examples where they are
just constants.

Step 4: Since R = 0, (5.36b) holds. Now, define

β(γ) := 1
2Kγ(γ − γ?)2 + βc,

where γ?,Kγ , βc ∈ R are constants,

γ(r) :=
∫ 1

0
S̄>(vr) rdv = xc − l arctanh(xp

l
) + ax

d2
arcsin(xp

l
).
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and βc is selected such that Vd(rd) = 0. Then, from (6.33a)–(6.33c), it follows that

γ? = x?c , µ? = gc

d2l2
, d2 > 0, Kγ > 0. (7.46)

From Lemma 5.4, a local condition to satisfy (5.31a) is (5.35) with ∆̄d(rd) = (b3(rd)− d1)l4

being nonsingular. Hence, by setting

B̄⊥(r) = B⊥(r) =

−yp xp 0
0 0 1

,
the previous conditions reduce to

b3(rd) 6= d1, a1 + d1l
2 > 0, a1axl

2 − d2
2l

4 − 2a1d2l
3 + axd1l

4 − 2d1d2l
5 > 0. (7.47)

Step 5: Γ̄2, Ḡg and Ḡ⊥>ν = 0 remain as in Step 5 of Section 7.2.2. Hence, the con-
troller (6.21) with

Vd(r) :=
∫ 1

0
Ŝ>(vr) rdv + β(γ(r)) = − gc

d2
ln(yp

l
) + 1

2Kγ(γ(r)− γ?)2

renders the system (7.32a) stable in (rd, 0) whenever (7.45)–(7.47) are verified.

Steps 6: To select the controller parameters, we follow the same procedure of Step 6
in Section 7.2.2 but with a1 = 0.03, d1 = 0.6 and b3(r) = 0 (l, Qlqr and Rlqr remain equal),
then

d2 = 0.1809, ax = 0.4243, Kγ = 7.9447, Kv = 10.3945,

which are all consistent with (7.46)–(7.47). Note that under these parameters Md is
sign-indefinite. Now, the control law (6.21) reads

uida(r, ṙ) = u1(r)
10.7y3

p − 0.441yp
+ u2(r, ṙ)

u4(r) + u3(r, ṙ)
45.69y5

p − 1.882y3
p
, (7.48)

u1(r) = (xc − x?c)(0.1484 + 5.599yp + 24.43y2
p)− 4.326xp + 81.59xpyp + 105.0xpy

2
p

+ arcsin(2.066xp)(0.3482− 13.14yp + 57.32y2
p)

− arctanh(2.066xp)(0.0718− 2.71yp + 11.83y2
p),

u2(r, ṙ) = ẏ2
p

(
20.2xpy

2
p − 1.877xpyp − 0.3567xp + 4.438xpy

3
p − 89.56xpy

4
p

)
+ ẋcẏp

(
0.7607yp + 0.9788y2

p − 18.46y3
p − 0.0403

)
− ẋpẏp

(
2.648y2

p − 3.062yp + 41.18y3
p − 6.703y4

p − 120.1y5
p + 0.2104

)
+ (ẏ2

p + ẋ2
p)(47.56 + 130.5yp)xpy

5
p,

u4(r) = 0.2482y2
p − 0.0807yp + 3.915y3

p − 15.83y4
p − 47.51y5

p + 207.3y6
p + 0.0021,
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u3(r, ṙ) = 9.271ẋpyp − 0.1942ẋp + 0.8291ẋcy
2
p − 31.27ẋcy

3
p + 136.5ẋcy

4
p − 105.3ẋpy

2
p

+ 320.2ẋpy
3
p,

Asymptotic stability is a direct consequence of Lyapunov’s indirect method.

Figure 7.10 depicts the zero level sets of ∆d, det M−1
d and Φ, where we can deduce that

region of convergence is a subset of yp > 0.203 m, or equivalently θ ∈ ]−65.20°, 65.20°[. In
other words, we can achieve the desired local behavior and, at the same time, have the
largest bound for the region of convergence.
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Figure 7.10. – Zero level sets of ∆d, Φ and det M−1
d for the constructive solution

with state-dependent and sign-indefinite Md.

As discussed in Section 5.2.3, forcing Md to be positive definite may hinder its solution.
This can be seen e.g., by setting b3 > d1. Then, Md(rd) � 0, but the zero level set of det M−1

d
significantly reduces the maximum bound for the region of convergence, see Figure 7.11
where b3 = 1.
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Figure 7.11. – Zero level sets of ∆d, Φ and det M−1
d for the constructive solution

with state-dependent and locally positive definite Md.
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7.2.5 Simulations and Real-system Implementation

Figures 7.12 to 7.14 illustrates the simulation results for the cart-pole with the controllers
of Table 7.2 and initial conditions

i) θ(0) = 30°, xc(0) = −0.9 m, θ̇(0) = −120°/s and ẋc(0) = 0 m/s,

ii) θ(0) = 45°, xc(0) = −0.9 m, θ̇(0) = −120°/s and ẋc(0) = 0 m/s, and

iii) θ(0) = 60°, xc(0) = −0.87 m, θ̇(0) = −134.7°/s and ẋc(0) = −0.09 m/s,

respectively. We restrict the time span of t to 10 s, where the desired cart position is set to

• x?c = −0.9 m for t ∈ [0, 5[ s and

• x?c = 1 m for t ∈ [5, 10[ s.

Name Description Eq.
Im-Cons-C Full-state feedback IDA-PBC synthesized from the construc-

tive method with constant Md for the implicit model (Sec-
tion 7.2.2)

(7.40)

Im-Heu Full-state feedback IDA-PBC synthesized from the heuristic
method (SOS programs) with state-dependent Md for the
implicit model (Section 7.2.3)

(7.44)

Im-Cons-SD Full-state feedback IDA-PBC synthesized from the construc-
tive method with state-dependent Md for the implicit model
(Section 7.2.4)

(7.48)

Ex-NL Full-state feedback IDA-PBC synthesized from the algebraic
method with SOS programs for the polynomial explicit model
(Section 4.4)

(4.24)

Table 7.2. – IDA-PBC controllers for the cart-pole.

Clearly, from the initial condition i, all controllers achieve the asymptotic stabilization
in x?c and θ? = 0. However, the controller from constructive method and constant Md,
which has an equivalence with the PID-PBC, fails under the initial conditions ii and iii.
Similarly, the controller from the heuristic solution enlarges the region of convergence of the
aforementioned controller, but it also fails for the initial conditions iii. These results are
consistent with the bound determined from the zero level set of ∆d, see Figures 7.8 to 7.10.

Comparing the controllers with the largest region of convergence (relative to the pendulum
inclination), i.e., (4.24) and (7.48), we observe that the controller from the constructive
method and state-dependent Md has a faster settling time, but it also yields a bigger
overshoot whenever the initial conditions are more demanding. For the algebraic IDA-PBC
controller, we notice that the initial conditions iii are slightly outside of the conservative
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Figure 7.12. – Cart-pole simulation with initial conditions i.
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Figure 7.13. – Cart-pole simulation with initial conditions ii.
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Figure 7.14. – Cart-pole simulation with initial conditions iii.
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region of attraction A0.5 without affecting the stability result, see Figure 4.10. Besides,
this controller does not posses exactly the same LQR local optimal performance but the
best one it can achieve with the same weighting matrices, namely Qlqr = diag(10I2, I2) and
Rlqr = 1. For visualization, the Hamiltonians of (7.48) and (4.24) are scaled by 10 and
10−1, respectively. Besides, they are monotonically decreasing functions, which is consistent
with Ḣd ≤ 0 and Ḣd ≤ 0.

The physical setup is analogous to the one for the portal crane, it consist of a PC with
Matlab/Simulink, an RTI-toolbox and a dSPACE controller [234] that is connected to the
servo drive of the cart-pole as well as the sensors (encoders, limit switches, etc.) we recall
that ẋc is the input of the velocity tracking system, see Figure 4.9. The control strategy
is carried out in two stages: swing-up of the pendulum and set point stabilization with
IDA-PBC. The swing-up controller is taken from [103, 199] and it follows a passivity based
design for implicit systems that does not preserve the port-Hamiltonian form of the closed-
loop. This controller is employed whenever θ /∈ ]−60°, 60°[. For the second stage, given by
the IDA-PBC, we test the controllers with the largest region of convergence, i.e., (4.24)
and (7.48). Figure 7.15 portraits the experimental results in the test bench of Figure 4.7 with
initial conditions iii. Both controllers yield similar results to the simulation (see Figure 7.14),
but there is a remarkable difference in the first 2 seconds of the xc, which corresponds to
the saturation in ẋc and ẍc of the real experiment.

7.3 PVTOL Aircraft

When addressing the portal crane or cart-pole systems with the techniques of Chapters 5
and 6, we design the controllers under the assumption of negligible friction in the underac-
tuated coordinates, meaning that the dissipation condition (5.36b) was trivial. As our last
example, we consider the simplified model of a Planar Vertical Takeoff-and-landing (PVTOL)
aircraft, introduced by [235]. Since the effect of drag forces for laminar or turbulent flow
(dissipation) is not usually included in the controller design, see e.g., [63, 235–239], our
objective is to design an IDA-PBC controller with the constructive solution of Algorithm 6.2
under the presence of drag for a laminar flow (low velocities) that renders the closed-loop
system asymptotically stable in a desired spatial position. For simplicity, we omit the
drag for turbulent flow in our discussion, i.e., dissipation forces that are proportional to
the squared velocity, because they would modify the kinetic matching (5.16a) rather than
in the dissipation terms of (5.17). Figure 7.16 illustrates the PVTOL aircraft diagram,
where (xa, ya) describes the planar position of the aircraft’s center of mass, θ is roll angle,
ε > 0 denotes the relationship between rolling torque and lateral acceleration, u1 and u2

are control inputs, and gc is the gravity constant.
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ẋ
c
[m

/s
]

Im-Cons-SD
Ex-NL

Figure 7.15. – Cart-pole real experiment with initial conditions iii.
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Figure 7.16. – PVTOL aircraft diagram.

7.3.1 Explicit Model

In summary, the PVTOL aircraft has a configuration space given by R2 × S1 and its
dynamical model with Rayleigh dissipation

D(q, q̇) = 1
2c1 (ẏa cos(θ)− ẋa sin(θ))2 + 1

2c2 (ẋa cos(θ) + ẏa sin(θ))2 + 1
2cθθ̇

2

can be written as q̇
ṗ

 =

 0 I3

−I3 −R(q)

∂>H∂q (q, p)
∂>H
∂p (q, p)

+

 0
G(q)

u, (7.49)

H(q, p) = 1
2p
>M−1p+ gcmaya = 1

2 q̇
>Mq̇ + gcmaya,

M =


ma 0 0
0 ma 0
0 0 Ja

 , G(q) =


− sin θ ε cos θ
cos θ ε sin θ

0 1

 ,

R(q) =


c2 cos(θ)2 + c1 sin(θ)2 c2−c1

2 sin(2θ) 0
c2−c1

2 sin(2θ) c1 cos(θ)2 + c2 sin(θ)2 0
0 0 cθ

,
where q = vec(xa, ya, θ) ∈ Q ⊂ R3, ma is the mass of the aircraft, Ja is the moment of
inertia from the center of mass, and (c1, c2, cθ) are the dissipation coefficients for a movement
in the direction of u1, εu2 and θ, respectively.
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We remark that this system cannot be addressed with the well-known PID-PBC because
the distribution spanned by the columns of the input matrix is not involutive. Consequently,
there are no change of coordinates such that the input matrix G can be written as G =[
02 I2

]>
, see [19].

7.3.2 Implicit Model

Let us choose the coordinates r = vec(xa, ya, xθ, yθ) ∈ R ⊂ R4 subject to the holonomic
constraint

0 = Φ(r) := 1
2
(
x2
θ + y2

θ − 1
)
, (7.50a)

with xθ = cos θ and yθ = sin θ, then the system (in implicit representation) takes the formṙ
ρ̇

 =

 0 I4

−I4 −R(r)

∂>H
∂r (r, ρ)
∂>H
∂ρ (r, ρ)

+

 0
∂>Φ
∂r (r)

λ+

 0
G(r)

u, (7.50b)

H(r, ρ) = 1
2ρ
>M−1ρ+ gcmaya = 1

2 ṙ
>Mṙ + gcmaya,

M =


ma 0 0 0
0 ma 0 0
0 0 Ia 0
0 0 0 Ia

 , G(r) =


−yθ εxθ

xθ εyθ

0 −yθ
0 xθ

 ,
∂>Φ
∂r

(r) =


0
0
xθ

yθ

,

R(r) =


c2x

2
θ + c1y

2
θ (c2 − c1)xθyθ 0 0

(c2 − c1)xθyθ c1x
2
θ + c2y

2
θ 0 0

0 0 cθ 0
0 0 0 cθ

,

where G and R are obtained from ṙ>G(r)u = q̇>G(q)u, the Rayleigh dissipation function

D(r, ṙ) = 1
2c1 (ẏaxθ − ẋayθ)2 + 1

2c2 (ẋaxθ + ẏayθ)2 + 1
2cθ(ẋ

2
θ + ẏ2

θ)

and θ̇2 = ẋ2
θ + ẏ2

θ . In addition, we assume that the initial conditions are consistent
(Assumption 5.7) and leave the verification of Assumptions 5.6–5.8 to the reader.

7.3.3 Constructive Solution

Step 1: We build

N(r) :=
[
G B̄(r)

]
=
[
G ∂>Φ

∂r

]
=


−yθ εxθ 0
xθ εyθ 0
0 −yθ xθ

0 xθ yθ

 ,
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and select
N⊥

[
−xθ −yθ −εyθ εxθ

]
and rd = vec(x?a, y?a, 1, 0) ∈ Ra = {r ∈ R | 0 = Φ(r), 0 = yθ}, where (x?a, y?a) is the desired
position of the center of mass.

Step 2: By Corollary 6.1, there is a solution of Md, characterized by (6.25), verifying the
kinetic matching condition (5.16a) whenever (5.31a), (6.19) and (6.26) hold. Hence, we
verify (5.31a) or equivalently (5.33c) in Step 4, compute a solution to (6.26) as

Md4(r) =

xθ yθ 0 0
0 0 −yθ xθ

> ,
and satisfy (6.19) with

Md(r) =


a1 a7 a6ε a4ε− a3ε− a5

a7 a2 a5 −a6ε

a6ε a5 a3 a6

a4ε− a3ε− a5 −a6ε a6 a4

+ Md4(r)

d1 d2

d2 d3

M>
d4(r)

+ N(r) diag(b1(r), b2(r), b3(r))N>(r)

for some arbitrary constants ai, di and functions bi : RΦ → R.

Step 3: Define

e1 := a1 + d1 + a5ε− d2ε+ a3ε
2 − a4ε

2

ma
, e2 := a2 + d1 + a5ε− d2ε

ma
,

e3 := a5 − d2 + a3ε+ d3ε

Ja
.

and set

a7 = −a6ε
2. (7.51)

From

Q(r) =
[
−xθe1 −yθe2 −yθe3 xθe3 gcmayθ

]
,

we can select the constant matrices

S̄ =

e3 0 0 e1

0 e3 −e2 0

>, Ŝ = vec(0, 0, gcma

e2
, 0).
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Step 4: The dissipation condition (5.36b) reduces to

c2(e1x
2
θ + e2y

2
θ) + cθe3ε ≥ 0. (7.52)

Define
β(γ) := 1

2(γ − γ?)>Kγ(γ − γ?) + βc,

where γ? = vec(γ?1 , γ?2) ∈ R2, Kγ = diag(kγ1, kγ2) ∈ R2×2 and βc ∈ R are constants, and
γ(r) = S̄>r. Then, Vd|RΦ

has a strict local minimum in rd whenever (6.33a)–(6.33c) hold,
i.e.,

γ? =

 e3x
?
a

e3y
?
a − e2

 , µ? = −gcma

e3
, e3 < 0, Kγ = diag(kγ1, kγ2) � 0. (7.53)

Condition (5.33c) is verified if and only if so is (5.35) and ∆̄d(rd) = a3+b3(rd)
J2

a
6= 0. Hence,

by setting

B̄⊥(r) = B⊥(r) =


1 0 0 0
0 1 0 0
0 0 −yθ xθ

,
the previous conditions yields b3(rd) 6= −a3,

w1 −a6ε
2 − a5a6ε

a3+b3(rd) w2

−a6ε
2 − a5a6ε

a3+b3(rd) a2 + b1 − a2
5

a3+b3(rd) −a6ε− a5a6
a3+b3(rd)

w2 −a6ε− a5a6
a3+b3(rd) a4 + d3 + b2(rd)− a2

6
a3+b3(rd)

 � 0, (7.54)

where w1 = a1 + d1 + ε2b2(rd)− a2
6ε

2

a3+b3(rd) , w2 = d2 − a5 − a3ε+ a4ε+ εb2(rd)− a2
6ε

a3+b3(rd) .

Step 5: From Ḡ(r) = G(r), we have Ḡ⊥>ν = 0 and can select

Ḡg =

−yθ xθ −xθ a5
a3
−yθ a5

a3

0 0 −yθ xθ

,
which is not the Moore–Penrose inverse of Ḡ. From the dissipation condition (5.36b), there
exists a function Γ̄2 such that the controller (6.21) with

Vd(r) = Ŝ>r + β(γ(r)) = gcma(xθ − 1)
e3

+ 1
2(γ(r)− γ?)>Kγ(γ(r)− γ?)

renders the system (7.50) stable in (rd, 0) whenever (7.51)–(7.54) are verified. Observe that
we do not consider any assumption on the coupling parameter ε as it is usually imposed in the
literature [5, 235, 236]. For simplicity, suppose Γ̄2(r) = Ḡg(r)Zd(r)J>(r)S̄(r)Kv(r)S̄>(r)
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with
Kv = diag(kv1, kv2) � 0 (7.55)

is sufficient to guarantee the desired result.

Steps 6: To select the controller parameters we assign an optimal local performance. For
this, we reduce the system with Corollary 6.2, linearized it about xd = vec(qd, 0), with
qd = vec(0, 0, x?t , y?t ) = ξ−1(rd), and match the linearized IDA-PBC feedback Krx̃ with
the LQR feedback ulqr(x) = −Klqrx̃, as implement in Section 7.1.3, 7.1.6, or 7.2.2. For
illustration, let us select ma = Ja = cθ = ε = 1, c1 = c2 = 0.5, a1 = a2, a3 = a4 = 10,
a6 = di = bi = 0, Qlqr = diag(10I5, 1) and Rlqr = diag(5, 10), then

a1 = 40.014, kγ1 = 12.277× 10−4, kv1 = 35.812× 10−4,

a5 = −16.6785, kγ2 = 25.997× 10−4, kv2 = 50.616× 10−4,

which are all consistent with (7.51)–(7.55). Now, the control law (5.18) reads

uida(r, ṙ) = u1(r) + u2(r, ṙ) + u3(r, ṙ), (7.56)

u1(r) =

0.7873(xa − x?a)yθ + 1.414xθ(y?a − ya) + 2.323y2
θ + 15.05xθ − 5.24

xθ(xa − x?a) + 2.95xθyθ + 1.796yθ(ya − y?a)− 19.11yθ

 ,
u2(r, ṙ) =

0.466(ẋaẏθ − ẋθẏa) + 0.0607(ẋ2
θ + ẏ2

θ)
0.5919(ẏθẏa + ẋθẋa)

 ,
u3(r, ṙ) =

yθ(1.632ẋa − 6.046ẏθ)− xθ(8.141ẋθ + 2.197ẏa)
yθ(10.34ẋθ + 2.791ẏa) + xθ(2.073ẋa − 7.679ẏθ)

 .
To proof that the selected Γ̄2 verifies (5.31b), we recall that Γ1 is skew-symmetric (see Corol-
lary 6.1) while Bd(r)Md(r)ρ = 0 holds along the system trajectories. Then, by the extended
Finsler Lemma 3.3, we can write (5.31b) as

(Bd(r))⊥
(
Z(r)R(r)J(r) + J>(r)R(r)Z>(r) + J>(r)S̄(r)KvS̄>(r)J(r)

)
(Bd(r))>⊥ � 0,

which is satisfied by replacing all the previous parameters. This implies that the closed-loop
system including dissipation (drag for a laminar flow) is stable in (rd, 0). Finally, asymptotic
stability is a direct consequence of Lyapunov’s indirect method.

Equivalence with the Controlled Lagrangians

Set a3 = a4, di = b2 = b3 = a6 = 0 and b1 = a2
5
a3
, then from Corollary 6.3 and the

equivalence between IDA-PBC and Controlled Lagrangians, see [17, 67], we can deduce
that the resulting closed-loop is equivalent to the one of [239], which has shown outstanding
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performance in comparison with the controllers of [58, 240] but does not analyze dissipation.
In other words, our controller is a generalization of [239], where the additional parameters
can be used to have a better specification of the transient response.

7.3.4 Simulations

As in [58, 239, 240], the simulation experiments of the PVTOL aircraft with feedback (7.56)
are divided in two parts.

i) Lateral motion near the ground: initial conditions xa(0) = −5 m, ya(0) = 0 m,
θ(0) = 5.7296°, ẋa(0) = −0.1 m/s, ẏa(0) = −0.1 m/s, θ̇(0) = 5.7296 °/s, and target
position x?a = 5 m and y?a = 0 m.

ii) Aggressive maneuver (from the upside down position): initial conditions xa(0) = 5 m,
ya(0) = −5 m, θ(0) = 180°, ẋa(0) = 0.1 m/s, ẏa(0) = −0.1 m/s, θ̇(0) = 5.7296 °/s,
and target position x?a = −5 m and y?a = 5 m.

Figures 7.17 and 7.18 illustrates the results for the Parts i and ii, respectively, where
the controller achieves the asymptotic stabilization for both objectives under the presence
of drag (c1 = c2 = 1 and cθ = 0.5) and the Hamiltonians are monotonically decreasing
functions, which is consistent with Ḣd ≤ 0.
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Figure 7.17. – PVTOL aircraft simulation from Part i.
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Figure 7.18. – PVTOL aircraft simulation from Part ii.
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Chapter 8

Conclusions and Future work

8.1 General Conclusions

In this thesis, we present algebraic solutions for IDA-PBC in a class of affine systems, where
the matching and stabilizing conditions remain polynomial. The algebraic essence of the
method avoids the solution of PDEs at the expense of an adequate parametrization and
selection of the Hamiltonian. Besides, the resulting conditions can be reformulated as SOS
programs, simplifying algebraic analysis from a computational perspective. The approach
can be seen as a generalization of IDA-PBC for LTI systems [187] to polynomial systems;
however, it is not restricted to them, increasing the scope of application in comparison
with other controller design methods with SOS programs, see [92, 93] for example. Since
the matching and stabilization conditions are solved simultaneously while considering
dissipation, we avoid the dissipation condition problem and the loss of generality of a
two-stage scheme.

By introducing supplementary constraints that can also be included in the SOS program,
we are able to impose restrictions in the control action and a minimum size in the region
of convergence. This constraints are then fundamental to incorporate input saturation
successfully. To address the great flexibility in the controller parameter selection, we
also include four minimization objectives in the SOS programs: volume maximization of
the region of convergence, volume minimization of the controller restriction, and local
performance assignment with the standard and generalized H2 optimal controls.

The SOS programs are solved with SOSTOOLS and SDPT3. The algebraic approach is
validated on two second-order polynomial systems, a third-order rational system with two
inputs and the well-known cart-pole with upright pendulum position. A real experiment
with a dSPACE is carried out in a cart-pole test bench, obtaining positive results. We
remark that the cart-pole is an UMS whose standard IDA-PBC design cannot satisfy the
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dissipation condition [71] whenever pendulum friction is considered, but it can be solved
with the algebraic method.

The second main contribution is the extension of the total energy shaping IDA-PBC to
mechanical systems in the implicit representation, namely full-actuated and underactuated
mechanical systems with kinematic constraints that can be holonomic, nonholonomic or
both. The approach yields comparable matching and stabilizing conditions, which can be
seen as generalizations of the explicit case. Besides, it extends the results of [74, 75, 77] by
removing assumptions that hinder the energy shaping, such as i) equal directions in the
constraint forces of the target and nominal systems, ii) positive definite inertia matrices,
and iii) not modifying the interconnection and dissipation matrix.

Our formulation includes systems that may not preserve the port-Hamiltonian structure
and whose constraint forces are allowed to perform work, i.e., they do not necessarily satisfy
the Lagrange-d’Alembert principle. To our knowledge, such implicit systems have not
been previously discussed in the PBC literature, and they may result from Lagrangian or
Hamiltonian dynamical systems with preliminary feedback and change of coordinates. Later,
we take a closer look at the simultaneous IDA-PBC for UMSs in explicit representation,
of Donaire et al. [24], observing that it only has an advantage if the stability analysis is
local and not global as originally claimed. In the global case, the simultaneous perspective
turns out to be equivalent to the standard IDA-PBC. The situation extends to implicit
systems and allows to derive the dissipation condition in that framework. Since full-actuated
systems are much easier to control than underactuated ones, we test the results directly on
the simple pendulum and the vertical rolling disk, which are examples of holonomic and
nonholonomic systems, respectively. As expected from Brockett’s necessary condition [209],
we are unable to achieve asymptotic stability for the vertical rolling disk since the feedback
is continuous time-invariant and static-state.

For a class of implicit UMSs, we propose a heuristic solution that, by using a supplementary
matrix Ke, reformulates the matching and stabilizing conditions as an SOS program. Two
methods for the selection of Ke are addressed, and the solution is then verified in the portal
crane with a constant target inertia matrix and the cart-pole with a state-dependent one.
Alternatively, we discuss the traditional approach of first solving the kinetic matching,

then the potential one, and finally taking advantage of the arbitrary functions and free
parameters to fulfill the stabilizing conditions. Here, we propose three solutions for the
kinetic matching condition and one for the potential matching. The solutions show that the
quasilinear PDEs of the kinetic matching can be equivalently written as DAEs providing
a characterization of the desired inertia matrix. In the case of potential matching, we
demonstrate that by finding a full-rank right annihilator of a known expression and whose
columns are gradient vectors, the desired potential energy can be calculated from a simple
integral. In summary, we follow a constructive method to solve the matching conditions
algebraically. We validate our results on the portal crane with four and five DoF, the cart-
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pole and the PVTOL aircraft, all of them in implicit representation. The former employs a
constant target inertia matrix, whereas the last two, constant and state-dependent ones.
The approach can be implemented successfully in the 5-DoF portal crane with Partial
Feedback Linearization (PFL), where the constraint forces do not satisfy the Lagrange-
d’Alembert principle. We should remark that the stabilization of the cart-pole with a
constant target inertia matrix is only feasible whenever it is not positive definite. This,
perhaps counter-intuitive, outcome is clarified with the reduction from implicit to explicit,
where the target inertia matrix is sign-indefinite in the implicit representation but positive
definite in the explicit one. The best controllers of the cart-pole and portal crane are
implemented in real experiments, confirming the expected results.

On the basis of the constructive solutions and under some mild conditions, it is developed
an output feedback law that is implemented in the portal crane at the cost of less parameter
tuning. The cart-pole case with upright pendulum position is not tractable with such
output feedback. Furthermore, we reduce the closed-loop of the cart-pole system with a
constant target inertia matrix to an explicit representation, finding that it is equivalent to
the PID-PBC of [20, 24]. However, the heuristic and constructive solutions of the cart-pole
with state-dependent inertia matrices are not equivalent to the PID-PBC, and we can use
them to enlarge the region of convergence. A similar result is obtained for the PVTOL
aircraft, where the reduction shows that the recent controller of [239] is a specific case of
our approach.

Finally, we have replaced the Moore-Penrose inverse of the input matrix in the feedback
expression with generalized inverses, which are usually non-unique. This relatively small
modification does not affect the stabilization result and provides more flexibility in the
controller’s final expression, which can be used, for example, to reduce computation cost.

8.2 Future Work

The algebraic method’s major adversity, in the first contribution, is the adequate parametriza-
tion and selection of the Hamiltonian given by z. This could significantly influence the
solution of the matching and stabilizing conditions, and therefore having a method for such a
parametrization is desirable. A possible solution would be to invert the interconnection and
dissipation matrix, see [241]. This changes the problem of parametrizing the Hamiltonian,
to the one of parametrizing the inverse of the dissipation and interconnection matrix, which
may be helpful as in the heuristic solution of our second contribution. Another improvement
is introducing new constraints and optimizations objectives. For example, imposing local
asymptotic disturbance rejection, restricting the eigenvalues of the closed-loop Jacobian
linearization to a region, assigning a local H∞ performance [197], assigning a non-local
optimal performance, robust stabilization of nonlinear systems [198], etc.



202 Chapter 8. Conclusions and Future work

For the IDA-PBC in implicit mechanical system, we assume that the differential index of
the model, described by DAEs, is two for nonholonomic systems and three otherwise. For
example, in the portal crane, this is interpreted as having a positive pendulum length l
along its trajectories, which is assumed in all the literature. However, even when the length
of l is equal to zero, no laws of mechanics have been broken because the system is just
fully-actuated in that set. This situation can be considered if we reformulate the approach
to allow higher index DAEs, meaning that the constrained state space is no longer a regular
manifold, but may still be an immersed one. On the other hand, by considering kinematic
constraints, it is possible to obtain a Lagrangian model that does not meet the regularity
(or nondegeneracy) condition of the Lagrangian, i.e., the inertia matrix can be singular.
Since regularity is required to obtain the port-Hamiltonian model because, by definition,
the Hamiltonian uses the inverse of the inertia matrix, this may be a disadvantage for the
IDA-PBC. Therefore, future research can include our developments in the framework of
controlled Lagrangians, where we may avoid inertia matrix inversion. To conclude our
future work, we remark that most research focuses on explicit systems rather than implicit
ones, even though physical system are naturally described by DAEs. In this context, it is
desirable to enlarge the scope of application of IDA-PBC to general nonlinear systems with
DAEs and to extend other PBC techniques to the implicit framework.



Appendix A

Standard Lemmas

In this appendix, we state some standard lemmas employed throughout this thesis.

Lemma A.1 (Sylvester’s inequality [242]). Suppose A ∈ Rn×m and B ∈ Rm×s, then

rank(A) + rank(B)−m ≤ rank(AB) ≤ min{rank(A), rank(B)}.

Lemma A.2. Consider A : X ∈ Rn → Rn×m. Then, σmax(A(x)) = ‖A(x)‖2 and

γ ≥ σmax(A(x)) ⇐⇒ γ2In � A(x)A>(x) ⇐⇒ γ2Im � A>(x)A(x),

where σmax(A(x)) is the maximum singular value of A(x), and ‖A(x)‖2 is the spectral norm
of A(x). If A(x) is additionally symmetric and positive semi-definite for all x ∈ X , then

γ ≥ σmax(A(x)) ⇐⇒ γIn � A(x).

Proof. The equivalence σmax(A(x)) = ‖A(x)‖2 is immediate, see [242, Example 5.6.6].
Let A(x) = U1(x)Σ(x)U>2 (x) be the singular value decomposition of A at each point
x, where Ui are unitary matrices. Then, A(x)A>(x) = U1(x)Σ2(x)U>1 (x) and γ2In �
A(x)A>(x) ⇐⇒ γ2In � Σ2(x). By definition of σmax(A(x)) and Σ we have γ2In �
Σ2(x) ⇐⇒ γ ≥ σmax(A(x)). The proof of the equivalence with γ2Im � A>(x)A(x) is
identical. Similarly, if A is symmetric and positive semi-definite, we see that U2(x) ≡ U1(x)
and γIn � A(x) ⇐⇒ γIn � Σ(x)⇐⇒ γ ≥ σmax(A(x)).

Lemma A.3 (Compact image [107, Proposition 2.14]). Let f : X → Rn be a continuous
function and X ⊂ Rn be a compact set. The image of X through f is compact.

Lemma A.4 ([110, Lemma 4.1]). Consider

ẋ = f(x), x ∈ X ,
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where X is an open and connected subset of Rn, and f : X → Rn is a locally Lipschitz
continuous function. Suppose a solution x(·) is bounded, then its positive limit set L+ is a
nonempty, compact, connected, and invariant set. Furthermore, x(t)→ L+ as t→∞.

Lemma A.5 (H2 performance). Consider a LTI system

ẋ = Ax+Bw (A.1a)
y = Cx (A.1b)

where x ∈ Rnx are the states, w ∈ Rnw are exogenous disturbances and z ∈ Rnz is the
output. Let Tyw be the closed-loop transfer function from w to y. System (A.1) is internally
stable with generalized H2 performance

JH2 = σmax

( 1
2π

∫ ∞
−∞

Tyw(jω)T ∗yw(jω)dω
)
< γ, γ ∈ R, γ > 0,

if and only if there exists a positive definite matrix Q ∈ Rnx×nx such that

−AQ−QA> −BB> � 0, (A.2a)

σmax
(
CQC>

)
< γ (A.2b)

hold. The standard H2 performance is obtained by replacing σmax with trace in JH2

and (A.2b).

Proof. It can be found in [196, 197], see also [195].

Lemma A.6 (Matrix inversion [243, Section 2.3]). Let M ∈ Rn×n be partitioned as

M :=

A B

C D

 ,
where A and D are square matrices. If D ∈ Rm×mm , then M can be decomposed asA B

C D

 =

In−m BD−1

0 Im

A−BD−1C 0
0 D

 In−m 0
D−1C Im

 .
Similarly, if A ∈ R(n−m)×(n−m)

(n−m) , then

A B

C D

 =

 In−m 0
CA−1 Im

A 0
0 D − CA−1B

In−m A−1B

0 Im

 .
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Suppose, additionally, that M is nonsingular, then
A B

C D

−1

=

 In−m 0
−D−1C Im

(A−BD−1C
)−1 0

0 D−1

In−m −BD−1

0 Im


and A B

C D

−1

=

In−m −A−1B

0 Im

A−1 0
0

(
D − CA−1B

)−1

 In−m 0
−CA−1 Im

 .
Lemma A.7 (Matrix inversion properties). Let G ∈ Rn×m. Then:

i) GGg and GgG are idempotent and have the same rank as G.67

ii) If G is nonsingular, Gg = G−1 uniquely.

iii) rankGg ≥ rankG.

iv) If G+ exists, it is unique.

v) G++ = G.

vi) If G is full column rank, GgG = Im and G+ =
(
G>G

)−1
G>.

vii) If G is full row rank, GGg = In and G+ = G>
(
GG>

)−1
.

viii) For some B ∈ Rn×e,

(In −GGg)B = 0 ⇔ ColspB ⊂ ColspG ⇔ ∃D s.t. B = GD ⇔ G⊥B = 0.

ix) For some C ∈ Rd×m,

C (Im −GgG) = 0 ⇔ RowspC ⊂ RowspG ⇔ ∃E s.t. C = EG ⇔ CG⊥> = 0.

Proof. The proof of assertions i–vii as well as the first two equivalences of viii are
given in [169, 177]. For the third equivalence (of viii) we left multiply B = GD by G⊥
obtaining G⊥B = 0. Conversely, if G⊥B = 0 holds. Then, from Definition 3.1, we have
ColspB ⊂ ColspG, which completes the proof of viii. Assertion ix is the dual of viii.

Lemma A.8 (Schur complements [88, 171]). Let M ∈ Rn×n be symmetric and partitioned
as

M :=

A B

B> D

 ,
67A square matrix A is idempotent if A2 = A.
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where A and D are square matrices. Then,

M � 0 ⇐⇒


D � 0
M/D � 0
RowspB ⊂ RowspD

⇐⇒


A � 0
M/A � 0
ColspB ⊂ ColspA.

Here, M/D := A − BDgB> and M/A := D − B>AgB are the generalized Schur
complements of D and A in M , respectively. Similarly,

M � 0 ⇐⇒

D � 0
M/D � 0

⇐⇒

A � 0
M/A � 0,

where M/D and M/A are the standard Schur complements M/D = A−BD−1B> and
M/A = D −B>A−1B.

Lemma A.9 (Finsler [244]). Consider Q ∈ Rn×n and B ∈ Rn×m with rankB < n. The
following are equivalent:

• x>Qx � 0 for all x ∈
{
x ∈ Rn | B>x = 0, x 6= 0

}
.

• B⊥
(
Q+Q>

)
B>⊥ � 0.

• There exists µ ∈ R such that Q+Q> − µ
(
BB>

)
� 0.

• There exists C ∈ Rn×m such that Q+Q> + CB> +BC> � 0.
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Proofs

B.1 Proof of Lemma 3.3

(i ⇔ ii) Along the same lines of [244, Appendix A].
(ii ⇔ iii) If rankB = 0 the equivalence is evident. If 1 < rankB < n, we multiply
As +BK +K>B> � 0 on the left byB⊥

B+
l

 ∈ Rn×nn

and on the right by its transpose to obtain B⊥A
sB>⊥

(
B+

l A
sB>⊥ + K̃3

)>
B+

l A
sB>⊥ + K̃3 K̃s

1 +B+
l A

sB>+
l

 � 0, (B.1)

where K̃1 = BrKB
>+
l and K̃3 = BrKB

>
⊥ , that is,68

BrK = K̃1B
>
l + K̃3B

+>
⊥ . (B.2)

Now, from Lemmas A.7 and A.8, the inequality (B.1) can be equivalently written as ii,

∃K̃2 s.t. B+
l A

sB>⊥ + K̃3 = K̃2B⊥A
sB>⊥ , and (B.3a)

K̃s
1 +B+

l A
sB>+

l −
(
B+

l A
sB>⊥ + K̃3

) (
B⊥A

sB>⊥
)g (

B+
l A

sB>⊥ + K̃3
)>
� 0, (B.3b)

where we can additionally define (without loss of generality) K̃1 := BrK1B
>
r and K̃2 := BrK2

for some matrices K1 and K2 because Br and Bl are the full rank factors of B. Given that
B+

r B
+
l = B+ and B⊥> is the full-rank right annihilator of B and Br, we deduce that (B.2)

68Note that E>+ = E+> and B⊥Bl = 0.
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with (B.3a) is (3.1a), whereas (B.3b) with (B.3a) reads (3.1b). The result with strict
inequalities follows a similar procedure.

B.2 Proof of Lemma 3.4

(i ⇒ iii) See e.g. [242, Section 0.5].
(iii ⇒ ii) Straightforward application of Lemma A.1 on B⊥(x)A(x) and C⊥(x)A(x).
(ii ⇒ i) Direct computation gives

A−1(x)A(x) =

(C⊥(x)B(x))−1 C⊥(x)
(B⊥(x)C(x))−1B⊥(x)

 [B(x) C(x)
]

= In.

B.3 Proof of Lemma 5.2

Define Ã := N>AN̄ with

N> =

(B⊥B>⊥)−1
B⊥

B>

> and N̄> =

(C⊥C>⊥)−1
C⊥

C>

.
Observe that Ã can be partitioned as Ã =

[
Ã11 Ã12
Ã21 Ã22

]
, where Ã22 = B>AC.

(i ⇔ ii) Suppose affirmation i holds, i.e., Ã22 ∈ Rm×mm , then B and C are full rank while
N , N̄ and Ã are square and nonsingular. Thus, from the decomposition of Lemma A.6
we conclude that Ã11 − Ã12Ã

−1
22 Ã21 is also nonsingular. Now, using Lemmas 3.4 and A.6

for the inverses of Ã, N̄ and N give C⊥A−1B>⊥ =
(
Ã11−Ã12Ã

−1
22 Ã21

)−1
, which implies

affirmation ii. The converse is along the same lines.
(i ⇔ iii) Observe that

N̄>
[
C>⊥ A>B

]
=

In−m Ã>21

0 Ã>22

 . (B.4)

If affirmation i is satisfied, then N̄ ∈ Rn×nn and the implication is immediate. Conversely,
if iii holds, C is full column rank and N̄ ∈ Rn×nn . Now, the result is a direct consequence
of Lemma A.1 with (B.4).
Given that

[
C>⊥ A>B

]
is nonsingular from i, ii, or iii, the identity is obtained from

In =
[
C>⊥ A>B

] [
C>⊥ A>B

]−1
and Lemma 3.4.

B.4 Proof of Lemma 5.4

By definition M(r), Md(r) ∈ Rnr×nrnr . Consequently, B⊥(r)M(r)M−1
d (r)M(r)B>⊥(r) is

nonsingular if and only if ∆̄d(r) is nonsingular, see Lemma 5.2 and Assumption 5.8. Now,
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we have the following chain of implications

B⊥(r)M(r)M−1
d (r)M(r)B>⊥(r) � 0

⇐⇒
(
B⊥(r)M(r)M−1

d (r)M(r)B>⊥(r)
)−1
� 0

⇐⇒ B̄⊥(r)M(r)B>⊥(r)
(
B⊥(r)M(r)M−1

d (r)M(r)B>⊥(r)
)−1

B⊥(r)M(r)B̄>⊥(r) � 0

⇐⇒ B̄⊥(r)
(
Md(r)−Md(r)M−1(r)B(r)∆̄−1

d (r)B>(r)M−1(r)Md(r)
)

B̄>⊥(r) � 0,

where the second equivalence is obtained with Lemma 5.2 and Assumption 5.6, and the
last one with Lemma 5.2 and ∆̄d being nonsingular.

B.5 Proof of Lemma 5.5

(⇐) Multiplying (5.38) on the left by
(
y>ēk

)
y> and right by y, summing over k, and

replacing Ay by z results in

0 =
m∑
k=1

(
y>ēk

)
y>
(

n∑
i=1

A>Qs
iA
(
ē>k A

>ei
)

+
n∑
i=1

A>eiē
>
k A
>Qs

iA+
n∑
i=1

A>Qs
iAēke

>
i A

)
y

=
m∑
k=1

(
y>ēk

)( n∑
i=1

z>Qs
iz
(
ē>k A

>ei
)

+
n∑
i=1

z>eiē
>
k A
>Qs

iz+
n∑
i=1

z>Qs
iAēke

>
i z

)

=
n∑
i=1

z>Qs
iz
(
z>ei

)
+

n∑
i=1

(
z>ei

)
z>Qs

iz+
n∑
i=1

z>Qs
iz
(
z>ei

)
,

that is, (5.37).
(⇒) Set z := z1 + z2 with zj := Ayj , then

0 =
n∑
i=1

(
z>1 + z>2

)
ei
(
z>1 + z>2

)
Qi (z1 + z2)

=
n∑
i=1

(
z>1 + z>2

)
ei
(
z>1 Qiz1 + z1Q

s
iz2 + z>2 Qiz2

)
=

n∑
i=1

(
z>1 ei

)
z>1Q

s
iz2+

n∑
i=1

(
z>2 ei

)
z>1 Qiz1+

n∑
i=1

(
z>1 ei

)
z>2 Qiz2+

n∑
i=1

(
z>2 ei

)
z>1 Q

s
iz2

= z>1

(
n∑
i=1

eiz
>
2 Q

s
i +

(
z>2 ei

)
Qi

)
z1 + z>2

(
n∑
i=1

eiz
>
1 Q

s
i +

(
z>1 ei

)
Qi

)
z2

= y>1A
>
(

n∑
i=1

eiy
>
2A
>Qs

i+
(
y>2A

>ei
)
Qi

)
Ay1+y>2A>

(
n∑
i=1

eiy
>
1 A
>Qs

i+
(
y>1A

>ei
)
Qi

)
Ay2.
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Given that yj ∈ Rm is arbitrary, it follows from the last equation that

Ā := A>
(

n∑
i=1

eiy
>
j A
>Qs

i +
(
y>j A

>ei
)
Qi

)
A

is skew-symmetric, or equivalently,

0 = Ā+ Ā> =
n∑
i=1

A>
(
eiy
>
j A
>Qs

i +
(
y>j A

>ei
)
Qs
i +Qs

iAyje
>
i

)
A

=
m∑
k=1

(
ē>k yj

) n∑
i=1

A>
(
Qs
i

(
ē>k A

>ei
)

+eiē>k A>Qs
i+Qs

iAēke
>
i

)
A, (B.5)

wherein the last step we used ∑m
k=1 ēkē

>
k = Im. Equality (5.38) is deduced by using again

the arbitrary feature of yj on (B.5).

B.6 Proof of Lemma 6.1

By using Lemma 3.2 twice we get

0 = A(x) +G(x)K1(x) +K>2 (x)G>(x)

⇐⇒


0 = G⊥(x)

(
A(x) +K>2 (x)G>(x)

)
K1(x) = −Gg(x)

(
A(x) +K>2 (x)G>(x)

)
+G⊥>(x)K̃1(x)

⇐⇒


0 = G⊥(x)A>(x)G>⊥(x)
K2(x) = −Gg(x)A>(x) + W̄ (x)G>(x) +G⊥>(x)K̂2(x)

K1(x) = Gg(x)A(x)
(
G(x)Gg(x)− In

)>
−Gg(x)G(x)W̄>(x)G>(x) +G⊥>(x)K̃1(x),

where K̃1 and W̄ are arbitrary functions, and −Gg(x)G(x)W̄>(x)G>(x) + G⊥>(x)K̃1(x)
can be equivalently written as −W̄>(x)G>(x) +G⊥>(x)K̂1(x) for an appropriate function
K̂1(x), see Lemma A.7. The proof is completed, by observing that K results from equating
K = K1 = K2 with A(x) being symmetric and W̄ (x) = 1

2G
g(x)A(x)Gg>(x) +W .
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