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Abstract: High pressure processing (HPP) represents a non-thermal preservation technique for
the gentle treatment of food products. Information about the impact of HPP on lipophilic food
ingredients (e.g., carotenoids, vitamin E) is still limited in more complex matrices such as kale.
Both the variation of pressure levels (200–600 MPa) and different holding times (5–40 min) served
as HPP parameters. Whereas a slightly decreasing solvent extractability mostly correlated with
increasing pressure regimes; the extension of holding times resulted in elevated extract concentrations,
particularly at high-pressures up to 600 MPa. Surprisingly, slightly increasing bioaccessibility
correlated with both elevated pressures and extended holding times, indicating matrix-dependent
processes during in vitro digestion, compared to results of extractability. Moreover, the verification of
syringe filters for digest filtration resulted in the highest relative recoveries using cellulose acetate and
polyvinylidene difluoride membranes. The α-tocopherol equivalent antioxidant capacity (αTEAC)
and oxygen radical antioxidant capacity (ORAC) assays of treated kale samples, chopped larger in
size, showed increased antioxidant capacities, regarding elevated pressures and extended holding
times. Consequently, one may conclude that HPP was confirmed as a gentle treatment technique for
lipophilic micronutrients in kale. Nevertheless, it was indicated that sample pre-treatments could
affect HP-related processes in food matrices prior to and possibly after HPP.

Keywords: high-pressure processing (HPP); in vitro digestion; digest filtration; α-tocopherol equiva-
lent antioxidant capacity (αTEAC); oxygen radical antioxidant capacity (ORAC)

1. Introduction

Global consumer awareness, in relation to sustainable and clean-living lifestyles, has
increased during the last decade. These trends continue to influence demands in the
food industry, such as clean labeling and unprocessed food, to preserve health-promoting,
bioactive food ingredients [1]. Bioactive compounds can be defined as secondary plant
metabolites, which may impact the physiological or cellular activities contributing to
health benefits [2]. Vegetables, such as kale (Brassica species), contain natural antioxidants,
including hydrophilic vitamin C or polyphenols, as well as lipophilic carotenoids and
vitamin E [3]. Moreover, kale was recently reviewed, due to its popularity of being a
“superfood” [4]. Reasons for increasing kale consumption may be explained by consumer’s
association of kale as part of the cruciferous family with general health aspects, such as
the protection against different types of cancers, depending on bioactive ingredients [5,6].
Consequently, the preservation of health-promoting secondary plant metabolites in food is
a key to an increased intake via a proper diet.

In contrast to conventional preservation techniques (e.g., pasteurization, sterilization),
high-pressure processing (HPP) represents an alternative, non-thermal method to maintain
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sensory, nutritional, and functional characteristics in minimally processed food, while
meeting food safety levels and extended shelf lives [7–9]. While previous studies on
pressure stabilities of hydrophilic food ingredients (e.g., vitamin C, B group vitamins)
were reported for different matrices [10–13], data for lipophilic micronutrients such as
carotenoids and vitamin E in kale are still limited. In general, investigating HPP samples
including only one raw material is supposed to improve the understanding of HP processes,
prior to an examination of multi-component systems.

Techniques like the solvent extraction of lipophilic compounds, the determination of
bioaccessibilities or antioxidant capacities may be utilized to investigate the impact of HP
treatments on kale ingredients. Bioaccessibility is defined as the fraction of a compound that
is released from its matrix during digestive processes and becomes available for intestinal
absorption [14,15]. A previously reported standardization of in vitro digestion assays acts
as guideline for further investigations [16]. Where solvent extraction and bioaccessibilities
often focus on selected groups of compounds, the determination of antioxidant capacities
describes the impact of HPP on all available extracted antioxidants (e.g., phenolic acids,
flavonoids, vitamins, carotenoids) as sum parameters, depending on chosen extraction
solvents [17,18]. The hydrophilic trolox equivalent antioxidant capacity (TEAC) assay
and oxygen radical antioxidant capacity (ORAC) assay represent popular techniques
that are based on electron transfer and hydrogen atom transfer reactions. Since TEAC
was reported to potentially result in an underestimation of the antioxidant capacity of
complex samples, additional ORAC assays may be useful to support or correct for obtained
findings [19]. Lipophilic TEAC and ORAC versions may be used to supplement the still
limited information on the impact of HPP on lipophilic micronutrients in kale [20–22].

Since kale may be used as an ingredient in a variety of potentially HP-treated products,
such as spreads, smoothies, and infant food, the aim of this study was the investigation of
HPP effects on lipophilic kale ingredients, excluding the examination of storage, in terms of
preservative properties. Consequently, the carotenoids, vitamin E, and chlorophylls in kale
puree samples were identified and quantified before and after HP treatments. Different
pressure parameters (200 MPa, 400 MPa, and 600 MPa) and holding times (5 min, 10 min,
and 40 min) were applied to finally express results, in terms of analyte’s extractability.
Another purpose was to adapt an in vitro digestion assay for HP-treated kale samples,
including an assay characterization, and to report obtained results as bioaccessibility. Fi-
nally, determined lipophilic antioxidant capacities were supposed to create supplementary
information and a bigger picture by taking the complexity of kale as a food matrix into
consideration.

2. Materials and Methods
2.1. Chemicals

All chemicals were of analytical grade. Solvents for using HPLC, extraction proce-
dures, and to dissolve reference standards were obtained in HPLC grade quality. All
aqueous solutions were prepared by using HPLC grade water (18 MΩ) from a Barn-
stead MicroPure UV system (Thermo Electron LED GmbH, Niederelbert, Germany).
Carotenoid standards (97–99%) were purchased from CaroteNature (Münsingen, Switzer-
land). Pure tocopherols (>95%) were obtained from Calbiochem (Darmstadt, Germany).
Pyrogallol (≥99%), magnesium carbonate basic (≥40% as MgO), 2,6-di-tert-butyl-4-methyl-
phenol (≥99%), and (all-rac)-α-tocopheryl acetate (>96%) were purchased from Sigma-
Aldrich (Taufkirchen, Germany). Additionally, α-Amylase (≥5 units/mg solid), pepsin
(≥250 units/mg solid), and pancreatin (8 × USP) from porcine pancrease were obtained
from Sigma-Aldrich. Porcine bile extract was purchased from Santa Cruz Biotechnology
(Heidelberg, Germany). Peanut oil was obtained from a local grocery store. Lucantin® Yel-
low (ethyl-8′-apo-β-caroten-8′-oat) was obtained from BASF SE (Lampertheim, Germany);
2,2′-Azobisisobutyramidinium chloride (98%) and sodium chloride (99.5%) were purchased
from Fisher Scientific (Nidderau, Germany). Hydrochloric acid (32%), sodium bicarbonate
(≥99.5%), sodium sulfate (≥99%), and dimethyl sulfoxide (≥99.8%) were obtained from
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Carl Roth GmbH + Co. KG (Karlsruhe, Germany); 2,2′-azino-di-[3-ethylbenzthiazoline
sulfonate (6)] (>98%) and pH buffer solutions (pH 4, pH 7, pH 10) were purchased from
Sigma-Aldrich. Fluorescein (Reag. Ph. Eur.) was obtained from Riedel-de Haën (Seelze,
Germany). Potassium dihydrogen phosphate (≥99.5%) and manganese dioxide (≥90%)
were purchased from Merck KGaA (Darmstadt, Germany). Randomly methylated β-
cyclodextrin (RMCD) was obtained from TCI Deutschland GmbH (Eschborn, Germany).

2.2. Chlorophyll Isolation

A mixture of 1 g of wheat grass powder and oat grass powder was extracted with
MeOH/THF (50:50 = v/v) containing 0.1% butylated hydroxytoluene (BHT). After solvent
removal, using a rotary evaporator, the residue was dissolved in 10 mL of n-hexane. The
isolation of chlorophyll reference standards was achieved via semi-preparative HPLC
(Merck Hitachi 7000 series) in normal-phase mode (ACE 5 Sil, 250 × 7.75 mm) using a
variable wavelength detector at 662 nm. Gradient elution at 25 ◦C was used with an
n-hexane-i-propanol eluent (97/3; v/v) at 0 min, with a linear increase of i-propanol (9%)
over 60 min, at a flow rate of 4.0 mL/min and injection volume of up to 200 µL sample.
Fractions of chlorophyll a and chlorophyll b were isolated at retention times of 22.7 min and
29.9 min, as well as pheophytin at 16.4 min. Identity and purity of isolated fractions was
confirmed by reversed-phase HPLC methodology described in Section 2.5. Concentrations
of chlorophyll standards were determined via VIS spectrophotometry using wavelengths
of 662 nm (chlorophyll a) and 644 nm (chlorophyll b).

2.3. Samples Description

Fresh kale was bought during winter from local distributors (Jena, Germany). Kale
leaves were manually separated from stems. A knife mill (Retsch Grindomix GM 200)
served to shred leaves to puree-like portions at 8000 rpm for 30 s. Kale samples, intended
for high-pressure processing, were transferred into 2 mL polypropylene cryo tubes. High-
pressure processing was carried out at pressure levels of 200 MPa, 400 MPa, and 600 MPa,
including a set of three holding times (5 min, 10 min, and 40 min) for each pressure regime.
After HPP treatment, all samples were immediately deep-frozen at −25 ◦C.

2.4. High-Pressure Processing

A high-pressure pilot plant (Dieckers, Willich, Germany) was used for the pressure
treatment of kale puree. A mixture of water/ethylene glycol (50:50, v/v) served as pressure
transduction liquid. The unit was equipped with two temperature-controlled 25 mL
pressure vessels (Sitec, Maur, Switzerland), which are designed for pressures up to a limit
of 700 MPa. Prior to the pressure application, the samples were filled into polypropylene
test tubes (2 mL) and wrapped with sealing film. The pressure was increased at the rate of
200 MPa/min, while it was released immediately at the end of the holding time by valve
opening. The decompression time was less than 10 s. Kale puree samples were treated for
time periods between 5 and 40 min, at pressures up to 600 MPa at RT. All treatments were
performed in duplicate and analysed thrice.

2.5. Determination of Carotenoids, Vitamin E, and Chlorophyll
2.5.1. Extraction Procedure

Kale samples (0.5 g) were weighed into conical test tubes (50 mL). Then, 200 mg
of magnesium carbonate, 200 mg of sodium sulfate, and 25 µL of an internal standard
(Lucantin-Yellow®, α-tocopheryl acetate) were added. Afterwards, 20 mL of a mixture of
MeOH/MtBE (50:50 = v/v), including 0.1 wt% BHT, served as extraction solvent, following
5 s of vortexing. All samples were then sonicated four times in an ice bath under reduced
daylight conditions. Centrifugation at 7000 rpm was applied for phase separation between
repetitions of extractions. Consequently, combined upper phases were evaporated under
reduced pressure using a rotary evaporator at 30 ◦C. Afterwards, the residue was dissolved
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in MeOH/MtBE (70:30 = v/v), following centrifugation (14,000 rpm, 5 min) for further
HPLC analysis.

2.5.2. Identification and Quantification of Carotenoids and Chlorophyll
HPLC-DAD

Kale extracts were analyzed using a VWR Hitachi Chromaster (5000 series) reversed-
phase HPLC system (Develosil C30, 250 × 4.6 mm, 5 µm, Phenomenex, Aschaffenburg,
Germany) at a column temperature of 13 ◦C and 20 µL injection volume. Both an eluent
gradient and a flow gradient were applied. At 0 min, the eluent gradient started at 9% of
solvent A (MeOH) and 91% of solvent B (MtBE), at a flow rate of 0.43 mL min−1. Solvent
A was then increased to 50% over 23.5 min at constant flow rates. Afterwards, solvent A
was increased to 70% until 38 min, with an increasing flow rate of 0.6 mL min−1, which
was held until 40 min. Subsequently, solvent A was reduced to 9%, with an increased flow
rate of 1.0 mL min−1 and following a holding time of 12 min for equilibration. A diode
array detector served for identification, in regards to the characteristic spectral absorbance
profiles and quantification of carotenoids (λ450 nm), chlorophyll a (λ662 nm), and chloro-
phyll b (λ644 nm), in comparison to external standards applying 5-point calibration curves
(r > 0.999). Recovery of the internal standard (Lucantin-Yellow®) was considered. Chro-
master system manager (Version 2.0, Hitachi High-Tech Science Corporation, Tokyo, Japan)
was applied for data evaluation.

HPLC–MS/MS

Mass spectral analysis was applied to support results from identification via diode
array detection. Therefore, a Shimadzu HPLC system (LC-20 series) was hyphenated with
a triple quadrupole mass spectrometer (API 2000, AB Sciex). Kale extracts (50 µL) were
injected onto a reversed-phase column (YMC C30, 250 × 4.6 mm, 5 µm, YMC Europe,
Dinslaken, Germany), applying a gradient elution with MeOH/water (80:20 = v/v; A) and
MtBE/MeOH/water (78:20:2 = v/v/v; B) at 30 ◦C. Pumping flow mode was kept isocratic
at 1.3 mL min−1. The gradient elution started with an increase of solvent B to 30% for
5 min, which was increased to 60% until 35 min. Finally, solvent B was set to 100% until
42 min, which was kept for 1 min afterwards. Re-equilibration time was set to 7 min at
100% of solvent A. MS measurements were run in positive Q1 scanning mode, comparing
external standards of carotenoids and chlorophylls with compounds from kale extract.
Analyst® (Version 1.5.2, AB Sciex, Darmstadt, Germany) was applied for data evaluation.

2.5.3. Identification and Quantification of Vitamin E

Analysis of vitamin E in kale extracts was accomplished via normal-phase chromatog-
raphy using a Jasco LC-900 series HPLC system and fluorescence detection. Therefore,
previously redissolved extract residues in MeOH/MtBE (70:30 = v/v) were subject to a sol-
vent exchange under nitrogen at 30 ◦C towards a mixture of n-hexane/MtBE (98:2 = v/m),
which was used for isocratic elution, as well. Kale extracts (20 µL) were injected onto an
Eurospher Diol column (250× 4.6 mm, 5 µm, Knauer, Berlin, Germany) with a set flow rate
of 1.5 mL min−1 at 25 ◦C for 40 min. The α-tocopherol was identified via comparison of re-
tention times with the corresponding external standard. Quantification was achieved with
a 5-point calibration curve (r > 0.999) and taking recovery rates of the internal standard (α-
tocopheryl acetate) into account. Excitation and emission wavelengths were set to 292 nm
and 330 nm. Jasco ChromNav (Version 1.18.07, Build 3) was applied for data evaluation.

2.5.4. Limits of Detection and Quantification

The limit of detection (LOD) and limit of quantification (LOQ) for each analyte were
based on signal-to-noise ratios of S/N = 3:1, as well as S/N = 10:1.
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2.6. Antioxidant Capacity Assays
2.6.1. Extraction Procedure

A standardized extraction method was established for samples intended for the
lipophilic ORAC and TEAC assays. Kale samples (0.5 g) were weighed into 50 mL conical
and sealable test tubes. For pre-treatment 2 mL of MeOH were added with a following
sonication for 15 min, which was cooled with ice water. Afterwards, 20 mL of n-hexane were
added with subsequent extraction using a vortex blender for 30 s. Then, test tubes were
subjected to centrifugation with 3800 rpm at 4 ◦C for 1 min. Supernatants were combined
in a 250 mL brown round-bottom flask and the extraction procedure was repeated up
to 10-fold, until supernatants were colourless. Subsequently, a rotary evaporator was
used to remove n-hexane under reduced pressure. Residues were dissolved in 5 mL of
n-hexane afterwards.

2.6.2. The α-Tocopherol Equivalent Antioxidant Capacity (αTEAC) Assay

All experiments were performed according to Müller et al. [20]. Briefly, Trolox, as a
reference standard, was replaced by α-tocopherol dissolved in ethanol, for the generation
of calibration curves using a UV/VIS spectrophotometer (V-530, Jasco Deutschland GmbH,
Pfungstadt, Germany). An aliquot of 1.5 mL of kale extract in n-hexane was transferred
into a 2 mL centrifuge tube, with subsequent centrifugation at 14,000 rpm for 5 min at
ambient temperature. Afterwards, 100 µL of supernatant were pipetted into a 1.5 mL test
tube, followed by the addition of 1000 µL of an aqueous ABTS•+ solution (1.6 mM KH2PO4
buffer at pH 7.4). The test tube was then subject to 30 s of vortexing with subsequent
centrifugation for 30 s at 14,000 rpm and ambient temperature. Afterwards, the lower
phase was immediately transferred into a disposable 1.6 mL semi-micro cuvette made
of polystyrene (Th. Geyer, Renningen, Germany). The subsequent determination of an
absorption at 734 nm was initiated after 2 min in total, in relation to first the mixing
of the sample and ABTS•+ solution. An increasing antioxidant activity correlated with
a decreasing absorption value. Blank values consisted of 100 µL of n-hexane replacing
100 µL of sample solution.

2.6.3. Lipophilic Oxygen Radical Absorbance Capacity (L-ORAC) Assay

All experiments were performed according to Huang et al. [21] and Watanabe et al. [22].
An aliquot of 1.5 mL of the kale extract in n-hexane was transferred into a 2 mL centrifuge
tube with subsequent centrifugation at 14,000 rpm for 5 min at ambient temperature.
Afterwards, 750 µL of the supernatant were transferred into a 1.5 mL centrifuge tube,
followed by evaporation under a gentle stream of nitrogen at 30 ◦C. Then, the residue
was dissolved in 750 µL of DMSO. Furthermore, a previously prepared aqueous stock
solution of β-RMCD (14 wt%) was diluted with acetone (50:50 = v/v). An aliquot of 750 µL
of the obtained β-RMCD solution in acetone was used to dissolve the evaporated extract
using a vortex blender. Afterwards, a thermomixer (compact 5350, Eppendorf, Hamburg,
Germany) was applied for incubation at 25 ◦C and 1000 rpm for 1 h. Finally, the incubated
mixture was further diluted (50:50 = v/v) with acetone-containing β-RMCD solution, which
was previously spiked with 10 vol% of DMSO. All following steps were performed on a
96-well microplate made from quartz glass. Diluted extracts (50 µL) were combined with
25 µL of fluorescein solution (1.2 µM in 1.6 mM KH2PO4 buffer at pH 7.4) and 100 µL
of phosphate buffer (1.6 mM KH2PO4 buffer at pH 7.4). Afterwards, the microplate was
moved into a filter-based microplate reader (FLUOstar Optima, BMG Labtech GmbH,
Ortenberg, Germany) at 37 ◦C. After 10 min for incubation, the microplate was removed
and 150 µL AAPH (129 mM in phosphate buffer at pH 7.4) were immediately added to
wells. The following fluorescence measurements were performed at 490 nm (λex) and
520 nm (λem) at 37 ◦C and 240 cycles applying a cycle time of 60 sec. Blank values consisted
of 50 µL diluted β-RCMD solution in acetone and 10 vol% of DMSO instead of the addition
of kale extract. Negative controls were prepared by mixing fluorescein solution (25 µL) with
β-RCMD solution containing acetone and DMSO (50 µL) and phosphate buffer (250 µL).
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2.7. In Vitro Digestion Model
2.7.1. Experimental Design

An in vitro digestion procedure (Figure 1) was adapted from Werner and Böhm [23],
Minekus et al. [16], and Reboul et al. [15]. Kale samples were thawed for two hours at
ambient temperature in the dark. Conical, sealable test tubes (50 mL, polypropylene) served
as vessels for the digestive process. The initial phase was inserted for proper mixing of kale,
sodium chloride solution, peanut oil, and pyrogallol serving as antioxidant. An orbital
shaker-incubator (Grant-bio ES-20) was operated at 250 rpm and 37 ◦C under reduced
day light conditions. Mixtures of each phase were overlaid with nitrogen for incubation.
Adjustment of pH values was achieved by the addition of pre-defined volumes of 0.1 M
HCl and 0.1 M NaHCO3 solutions containing either enzymes or bile salt, as shown in
Figure 1.

Figure 1. In vitro digestion procedure for determination of bioaccessibility of carotenoids in kale
samples.

2.7.2. Isolation of Micellar Fraction

After completing the digestion process, all samples were subject to centrifugation
with 4900 rpm at 4 ◦C to separate the fraction of released carotenoids from food matrix.
Then, each aqueous supernatant was divided into two aliquots, which were transferred to
2 mL test tubes, followed by centrifugation at 14,500 rpm for 5 min at ambient temperature.
Supernatants were filtered through a 0.45 µm cellulose acetate filter into sealable 15 mL
polypropylene test tubes. Weights of digestion residues and filtered supernatants taken
were determined prior to storage at −25 ◦C for further analysis.

2.7.3. Extraction of Carotenoids and Vitamin E

Applied extraction steps followed a procedure of Werner and Böhm [23], with minor
modifications. Previously deep-frozen digestive supernatants and residues were thawed
for 2 h at ambient temperature in the dark. First, 2 mL of MeOH, 50 µL of Lucantin-Yellow®,
50 µL of α-tocopheryl acetate, and 4 mL of a mixture of MtBE/petroleum ether (50:50 = v/v)
containing 0.1% BHT were added to each supernatant. After 30 s of vortexing, samples
were centrifuged for 3 min at 3800 rpm and 10 ◦C. This extraction process was repeated
4 times in total, and upper phases were combined in brown pear-shaped flasks (100 mL),
with adjacent solvent removal under reduced pressure at 30 ◦C. Remaining residues were
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dissolved in 5 mL of MeOH/MtBE (70/30 = v/v) with 0.1% BHT using a sonication bath.
Subsequently, aliquots of 1.5 mL were centrifuged at 14,500 rpm for 5 min at ambient
temperature for subsequent HPLC-DAD analysis of carotenoids. Finally, an additional
aliquot of 400 µL was dried under a gentle stream of nitrogen at 30 ◦C and dissolved in
400 µL of n-hexane/MtBE (98:2 = v/m), followed by centrifugation at 14,500 rpm for 5 min
prior to HPLC analysis of vitamin E. The extraction procedure of digestive residues was
modified, in terms of the addition of 1 mL of water prior to the addition of 2 mL of MeOH.
Furthermore, the solvent volume MtBE/petroleum ether (50:50 = v/v) with 0.1% BHT was
increased to 8 mL for each extraction cycle.

2.7.4. Calculations

Bioaccessibility was defined as a fraction of carotenoids and vitamin E being po-
tentially available for absorption. Hence, bioaccessibility was calculated in terms of the
efficiency of micellization, according to Equation (1):

bioaccessibility [%] =
content in supernatant × 100

(content in supernatant + residue)
(1)

The stability of carotenoids and vitamin E during the in-vitro digestion process
was determined by comparing contents in the digested samples and raw samples us-
ing Equation (2):

recovery [%] =
(content in supernatant + residue)× 100

content in raw sample
(2)

2.8. Statistical Analysis

Significance of results was determined by using IBM® SPSS® Statistics (Version 27.0.0.0,
Chicago, IL, USA), applying one-factor ANOVA and Tukey-HSD post hoc test (α = 0.05).
All results were processed in triplicates.

3. Results & Discussion
3.1. Identification of Compounds

Carotenoids and chlorophylls were identified in kale extracts according to their re-
tention time, absorption wavelengths, and mass-to-charge ratio via RP-HPLC-DAD/MS
measurements presented in Table 1. Acquired data were compared to literature related
to carotenoid and chlorophyll content in kale [24]. A representative chromatogram of an
extract of untreated (raw, crushed) kale at a wavelength of 450 nm with Lucantin® Yellow
as internal standard (IS) is shown in Figure 2. In total, four xanthophylls (peaks 1–4), two
chlorophylls (peaks 5, 6) and four carotenes (peaks 7–10) were identified, in relation to
characteristic parameters in Table 1. The NP-HPLC-FLD measurements of kale extracts
(not shown) resulted in the identification of (all-rac)-α-tocopherol (tR = 8.23 min) using (all-
rac)-α-tocopherol acetate as internal standard (tR = 3.04 min). A comparison of identified
compounds in kale with literature data confirmed a certain biological diversity between
kale species, which can be impacted by environmental influences, such as growing seasons.
All identified chemical species except (15Z)-β-carotene were previously reported in liter-
ature [25–31]. Furthermore, γ-tocopherol, α-carotene, α-cryptoxanthin, β-cryptoxanthin,
and antheraxanthin were reported as kale ingredients, which could not be identified within
this study [27,31].
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Table 1. Identified compounds in kale extracts with experimental parameters derived from external
standard measurements.

No. Compound
Name tR (min) λmax 1

(nm)
λmax 2
(nm)

λmax 3
(nm)

m/z
[M + H]+

1 (all-E)-Violaxanthin 14.39 415.0 439.0 469.0 601.3 1

2 (all-E)-Neoxanthin 14.97 413.0 436.0 465.0 601.3 2,4

3 (all-E)-Lutein 19.07 422.0 445.0 473.0 569.2 3

4 (all-E)-Zeaxanthin 20.23 428.0 451.0 478.0 569.2
5 Chlorophyll b 21.12 457.0 589.0 644.0 907.3
6 Chlorophyll a 25.60 432.0 618.0 662.0 893.3
7 (15Z)-β-Carotene 34.13 339.0 449.0 474.0 537.3
8 (13Z)-β-Carotene 34.46 338.0 446.0 470.0 537.3
9 (all-E)-β-Carotene 36.29 - 453.0 479.0 537.3

10 (9Z)-β-Carotene 37.04 - 447.0 473.0 537.3
1–3 [M-H2O + H]+ = 583.2; 583.4; 551.1; 4 [M-2H2O + H]+ = 565.3.

Figure 2. RP-HPLC-DAD chromatogram of a kale extract at 450 nm, using the HPLC parameters
described in Section 2.5.2. Identified compounds are listed in Table 1, according to no. 1–10. Lucantin®

Yellow was used as internal standard (IS, tR = 30.45 min). A gradient peak caused by LC equilibration
appears after 46.7 min.

3.2. Extractability

High-pressure processing was previously reported as a gentle preservation technique
with no significant or only slight impact on vitamin stability [32]. However, influences on
extraction yields were reported, depending on HPP conditions and treated food matrix [33].
Hence, extractability may be used to describe the impact of high-pressure processing on
food samples [34,35]. Corresponding results for kale samples are presented in Figure 3.
Concentrations of (all-E)-neoxanthin, (all-E)-violaxanthin, and (all-rac)-α-tocopherol in
untreated kale were compared to pressurized samples at 200 MPa, 400 MPa, and 600 MPa
applying holding periods of 5 min, 10 min, and 40 min.

A decrease in α-tocopherol concentration could be observed for all parameters, com-
pared to untreated kale and depending on HPP conditions. A reduction in concentration
of up to 86% was observed at 400 MPa (5 min). However, the effect of sample transport
(not shown) between the external HPP site and in-house HPLC analysis accounted for
a reduction of up to 60% in α-tocopherol content. Consequently, it might be assumed
that sample transport negatively influenced the vitamin E concentration much more than
high-pressure processing. Mechanistically, one may suggest a loss of α-tocopherol caused
by antioxidant, protective effects towards carotenoids, e.g., β-carotene [36]. A signifi-
cant decrease in α-tocopherol content (p < 0.05) was also reported for HP-treated orange
juice-milk samples when pressure conditions exceeded 200 MPa [37]. Non-significant
(p > 0.05) changes between high pressurized samples and controls were reported for acai
juice. However, a significant decrease of α-tocopherol concentration was observed for
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increasing pressure rates above 500 MPa, by comparison within different pressure regimes
of treated acai juice [38]. In contrast, we observed increased vitamin E concentrations
in kale correlating with increased pressure and holding periods. Significant differences
in α-tocopherol content within pressure parameters were obtained at 600 MPa (10 min,
40 min), in comparison to 200 MPa (5 min). A reverse trend was reported for HP-treated
spinach related to a reduced content of α-tocopherol when pressure rates or holding pe-
riods were increased [39]. Overall, information about the stability and extractability of
vitamin E after HPP is still limited and is often described by either non-significant or only
slight changes in concentration [7]. Since α-tocopherol biosynthesis was attributed to the
envelope membrane of chloroplasts [40–42], it might be assumed that membrane disrup-
tion after HPP [43] could partially contribute to an increased concentration of vitamin E in
HP-treated kale.

Figure 3. Concentrations of (all-E)-neoxanthin, (all-E)-violaxanthin, and (all-rac)-α-tocopherol
in untreated and HP-treated kale in dependence on high-pressure processing (HPP) parameters
(200–600 MPa with holding periods of 5 min, 10 min, and 40 min). Untreated kale represents raw,
crushed kale samples, without HP-treatment. One-way ANOVA with Tukey-HSD post hoc test; aster-
isks in the same line indicate significant differences (p < 0.05) between treated and untreated samples.

Similar trends could be observed regarding (all-E)-violaxanthin, considering a signifi-
cant decrease of up to 37%, compared to untreated kale including a decrease of 15% caused
by transport. Slightly increasing, but non-significant changes in concentration of (all-E)-
violaxanthin were again obtained for elevated pressure rates and extended holding periods,
in comparison to an HPP treatment at 200 MPa (5 min). Interestingly, (all-E)-neoxanthin
experienced an increase in concentration of 33%, caused by transport of untreated kale,
and resulted in decreasing concentrations in correlation to elevated pressure regimes
and extended treatment periods, which describes a reversed trend compared to (all-E)-
violaxanthin. Significant differences in comparison to untreated kale were found for HPP
conditions at 200 MPa (40 min), 400 MPa (10 min, 40 min), and 600 MPa (10 min, 40 min).

Additionally, Table 2 shows concentrations of further carotenes, xanthophylls, and
chlorophylls in HP-treated kale samples. No significant differences, compared to untreated
kale, could be observed for (all-E)-β-carotene, (9Z)/(13Z)-β-carotene, and (all-E)-lutein.
Significantly elevated concentrations were obtained for (15Z)-β-carotene (600 MPa, 40 min),
and for all 400 MPa parameters of (all-E)-zeaxanthin including 600 MPa (5 min). Concentra-
tions of chlorophyll a and chlorophyll b decreased significantly after treatments, regarding
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all pressure parameters and holding periods up to 27% (chl a) and 30% (chl b). However,
an increase of carotenoid and chlorophyll concentrations within the pressure regime of
600 MPa could be observed, in relation to the extended holding periods. This trend was
partially obtained for pressure treatments at 400 MPa depending on the investigated com-
pound. Interestingly, at 200 MPa, concentrations of (all-E)-β-carotene and (all-E)-lutein did
not correlate with an increase of holding periods.

Unaffected concentrations of lutein and β-carotene were reported for HP-treated,
freshly prepared broccoli samples, which corresponds to presented results of kale [44].
Nevertheless, previous studies on high-pressure processing of spinach puree showed
increased carotenoid and chlorophyll concentrations, which was prepared from previ-
ously frozen spinach [39,45]. The present study focussed on HPP treatment of a freshly
prepared kale puree though, which did not experience a previous freezing treatment. Ele-
vated chlorophyll concentrations were also reported for HP-treated wheatgrass juice [46].
However, a matrix dependence of carotenoid and chlorophyll concentration in treated
vegetables became more obvious in the reported results on HP-treated broccoli, spinach,
and green pepper. Therefore, a significantly increased content of lutein was only observed
for HP-treated broccoli and spinach, whereas β-carotene concentration increased in spinach
only [47]. Apparently, pre-treatments, such as the preparation of juice or puree, may have
an impact on carotenoid concentrations of HP-processed carrot juice [48] and carrots [49],
wherein β-carotene concentrations were observed as being reduced for juice and unaffected,
in the case of carrots. Different trends regarding β-carotene contents were also published
for tomato puree [50] and tomato juice [51]. Overall, it might be assumed that a variety of
factors could influence the extractability of carotenoids from food matrices. Possible expla-
nations for increased extractabilities after HPP treatment may be the disruption of cellular
compartmentalization [52], above 150 MPa, or the occurrence of enzymatic reactions using
mild pressure parameters as response to oxidative stress [53–55]. Recently, HPP treatment
was associated with the accumulation of plant metabolites caused by modulation of gene
expression and corresponding coding of biosynthetic enzymes [56]. Both hypothetical
mechanisms can be referred to as immediate response (increased extractability) or late
response (biosynthetical pathway during storage) after causing stress on plant cells by
HPP. However, a change of cellular integrity was also suggested as possible exposure
of carotenoids to enzymes, oxygen, and further reactants that cause degradation [48].
Moreover, it was reported that the deposition of carotenoids in vegetables may occur in
crystalloid chromoplasts, which are more prone to mechanical stress, compared to glob-
ular ones [57]. One may suggest that this could influence the exposure to extracellular
room, as well. Furthermore, pressure-resistant plant enzymes, such as lipoxygenase (LOX),
may contribute to carotenoid degradation [58–60]. Hence, HP-assisted treatments, such
as the addition of gentle heating or change in pH value, were suggested to enhance the
inactivation of vegetative microorganisms, recently [61].

Table 2. Concentrations of carotenes, xanthophylls, and chlorophylls in treated and untreated kale in dependence on HPP
parameters (200–600 MPa with holding periods of 5 min, 10 min, 40 min). One-way ANOVA with Tukey-HSD post hoc test;
asterisks in the same line indicate significant differences (p < 0.05) between treated and untreated samples.

Compound Untreated 200 MPa
5 min 10 min 40 min

400 MPa
5 min 10 min 40 min

600 MPa
5 min 10 min 40 min

Concentration in µmol/100 g

(all-E)-β-Carotene 9.83 ±
0.53

9.66 ±
0.69

9.36 ±
0.33

10.20 ±
0.90

8.81 ±
0.52

8.53 ±
0.23

8.60 ±
0.37

8.14 ±
0.16

8.73 ±
0.78

9.67 ±
0.83

(9Z)-β-Carotene 1.90 ±
0.15

2.11 ±
0.12

2.06 ±
0.18

1.02 ±
0.01

1.73 ±
0.09

1.76 ±
0.04

1.81 ±
0.08

1.74 ±
0.09

1.85 ±
0.01

2.03 ±
0.12

(13Z)-β-Carotene 0.92 ±
0.06

0.81 ±
0.05

0.83 ±
0.01

0.90 ±
0.12

0.91 ±
0.03

0.94 ±
0.07

0.98 ±
0.06

0.74 ±
0.08

0.88 ±
0.11

1.05 ±
0.05

(15Z)-β-Carotene 0.16 ±
0.01

0.18 ±
0.01

0.21 ±
0.01

0.23 ±
0.04

0.19 ±
0.02

0.21 ±
0.01

0.22 ±
0.03

0.23 ±
0.01

0.23 ±
0.02

0.27 ±
0.03 *

(all-E)-Lutein 14.51 ±
0.75

13.11 ±
0.75

14.00 ±
1.06

12.49 ±
0.33

12.05 ±
0.85

11.79 ±
0.25

12.09 ±
0.57

11.44 ±
0.35

12.19 ±
0.84

12.64 ±
0.63
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Table 2. Cont.

(all-E)-Zeaxanthin 0.84 ±
0.04

0.94 ±
0.01

0.99 ±
0.07

1.02 ±
0.08

0.93 ±
0.03 *

0.96 ±
0.08 *

0.97 ±
0.12 *

0.87 ±
0.06 *

0.91 ±
0.09

0.95 ±
0.03

Chlorophyll a 77.99 ±
5.28

64.93 ±
2.04 *

65.31 ±
2.00 *

69.62 ±
6.52

57.04 ±
1.47 *

58.87 ±
3.69 *

61.08 ±
3.51 *

56.94 ±
2.53 *

62.14 ±
4.84 *

63.19 ±
2.81 *

Chlorophyll b 27.78 ±
2.42

22.71 ±
0.42 *

24.44 ±
2.62

23.31 ±
0.73

20.84 ±
1.43 *

20.79 ±
0.64 *

22.02 ±
1.48 *

19.23 ±
1.46 *

21.05 ±
1.87 *

21.60 ±
0.23 *

3.3. In Vitro Digestion Assay
3.3.1. Effect of Oil Volume

The application of plant oil in digestion assays was reported to potentially impact
the bioaccessibility and bioavailability of lipophilic food ingredients [62]. Furthermore,
different oil types were investigated, regarding their impact on the availability for intestinal
resorption and cell uptake, which was partially referred to the fatty acid composition and
ability of pancreatic lipase to bind more easily to mono-saturated fatty acids (MUFAs), com-
pared to poly-saturated fatty acids (PUFAs) [62–64]. For this study, peanut oil was chosen
as carrier oil, which has both a relatively high amount of MUFAs and low concentrations
of α-tocopherol. All in all, little information on added oil volume and the impact on the
bioaccessibility of lipophilic micronutrients in digestion assays is known. Consequently,
the adapted assay for in vitro digestion of kale was investigated, according to the amount
of added peanut oil prior to further applications with highly pressurized kale. In advance,
blank digestive experiments without kale have shown that the addition of all selected oil
volumes did not affect any carotenoid concentrations of analytes both in supernatants
and in residues. Figure 4 shows corresponding results for (all-E)-β-carotene, (all-E)-lutein,
and (all-rac)-α-tocopherol of in vitro digestion experiments using kale and different vol-
umes of peanut oil up to 100 µL. All investigated compounds had in common that an
increasing amount of oil correlated with an elevated concentration of analytes in aqueous
supernatants up to a maximum amount of oil such as 25 µL for (all-E)-β-carotene and 50 µL
of oil for (all-E)-lutein and (all-rac)-α-tocopherol. Further increasing the amounts of added
oil resulted in decreased analyte concentrations in supernatants. Corresponding reduced
concentrations in digest residues confirmed expected trends of reduced analyte contents
related to increased oil volumes. This may be attributed to a transfer of compounds from
kale samples into the aqueous digestive phase, caused by micellarization. However, the
application of highest oil volumes (100 µL) clearly showed technical limitations of the
used digestion setup. Analyte concentrations in supernatants decreased, due to oil droplet
formation on the vessel walls, which consequently contributed to elevated residue con-
centration after solvent extraction. Moreover, further loss of analytes could be caused by
filtration of oily supernatants. Nevertheless, one needs to consider partially biased results
of (all-rac)-α-tocopherol, since peanut oil contains this kind of vitamin E isomer, as well.
Hence, increased concentrations in supernatants and residues were also caused by the
addition of elevated oil volumes. Overall, the addition of 10 µL of peanut oil showed
significantly different (p < 0.05) concentrations of all analytes in aqueous supernatants,
compared to samples without oil. Especially, (all-E)-β-carotene and (all-rac)-α-tocopherol
could not be determined in the aqueous digestive layer without the addition of oil. Finally,
the following arguments allowed for choosing 10 µL of peanut oil as default digestion
parameter. First, the determined concentration of (all-rac)-α-tocopherol in blank digestion
experiments was below the limit of detection. Thus, impacts on results of digested kale
samples could be seen as being reduced to a minimum for the applied procedure. Second,
according to results for (all-E)-lutein, there were no significant differences (p > 0.05) re-
lated to larger oil volumes. Moreover, despite a low transfer of (all-E)-β-carotene into the
aqueous supernatant, analyte concentrations were above the limit of quantification, which
made a further optimization of oil volumes redundant. Additionally, the application of oil
volumes larger than 10 µL infrequently required the use of a second syringe filter caused
by clogging. This, in turn, may have caused increased standard deviations. Consequently,
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low oil volumes facilitated a more reliable sample clean up procedure, along with reduced
back pressure by syringe filters.

Figure 4. Dependence of concentrations of (all-E)-β-carotene, (all-E)-lutein, and (all-rac)-α-tocopherol
after in vitro digestion in aqueous supernatants (left ordinate axis, white bars) and in solid residues
(right ordinate axis, brown bars) on added volumes of peanut oil (0–100 µL). One-way ANOVA with
Tukey-HSD post hoc test; asterisks in the same line indicate significant differences (p < 0.05) between
digests with and without oil.

3.3.2. Investigation of Digestion Phases

Static in vitro digestion models may represent a comparatively simple tool to investi-
gate specific questions in potentially more complex processes. Despite recommendations
for performing in vitro digestion, there is a need to choose appropriate conditions ac-
cording to sample composition. Hence, it might be useful to verify selected digestion
parameters and phases related to technical feasibility and reproducibility [16,65]. Conse-
quently, Figure 5 presents the attempt to check the adapted in vitro digestion procedure
on potential loss of analytes during initial, oral, gastric, and intestinal phases and, thus,
to verify a selected digest parameter. Concentrations of (all-E)-β-carotene, (all-E)-lutein,
and (all-rac)-α-tocopherol are represented for supernatants by white bars (left ordinate)
and for residues by brown bars (right ordinate). First, no analytes were determined in
supernatants until intestinal phase was initiated. This confirms expectations of required
additives such as bile salts and pancreatin to allow for micellarization of micronutrients. A
relatively low transfer into the aqueous supernatant was observed for (all-E)-β-carotene,
compared to (all-E)-lutein. This might be explained by several factors influencing the
micellarization of carotenoids, including, but not limited, to carotenoid hydrophobic-
ity. Moreover, it was reported that lutein reduced the transfer of β-carotene into micelle
phase [66]. This might be linked to the preferential location of xanthophylls (such as lutein)
in the phospholipid surface compared to the triacylglycerol core of lipid droplets, in case
of more apolar carotenes [67]. Overall, lower transfer rates were reported for carotenoids
in green leafy vegetables caused by association of carotenoids with the light-harvesting
complex (thylakoid membrane) in chloroplasts, compared to accumulation in chromoplasts
and membrane-bound semicrystalline structures in roots and fruits [68–71]. Significantly
elevated (p < 0.05) concentrations of (all-rac)-α-tocopherol in the aqueous supernatant
were also determined in comparison to (all-E)-β-carotene. This might be explained by
the presence of α-tocopherol mostly either in unbound form in photosynthetic tissues
or as fatty acid esters, presumably for the purpose of storage [72,73]. Consequently, one
may assume a preferred location of α-tocopherol on the phospholipid surface caused by
the hydroxyl group at the chromanol ring and thus showing a behaviour similar to more
polar xanthophylls. Furthermore, no significant loss (p > 0.05) of analytes in residues
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was observed comparing all digestive phases with the initial phase. Similar trends were
reported for (all-E)-β-carotene and (all-E)-lutein in in vitro digested carrot juice. However,
a loss was reported for both compounds in raw spinach after comparison with an untreated
sample [74]. Interestingly, significant increases in concentrations of (all-E)-β-carotene and
(all-E)-lutein were determined for residues of intestinal phases in comparison to initial, oral,
gastric phase (β-carotene), as well as comparing with the initial and oral phase (lutein). An
overall increased concentration of (all-E)-lutein might be also explained by its reported
relative stability during in vitro digestion linked to the presence of enzymes. In particular,
(all-E)-β-carotene was reported to be prone to decay during gastric phases, independent of
the presence of enzymes [75].

Figure 5. Dependence of concentrations of (all-E)-β-carotene, (all-E)-lutein, and (all-rac)-α-tocopherol
after in vitro digestion in aqueous supernatants (left ordinate axis, white bars) and in solid residues
(right ordinate axis, brown bars) on digestion phases. One-way ANOVA with Tukey-HSD post hoc
test; asterisks in the same line indicate significant differences (p < 0.05) between initial phase and
oral, gastric, intestinal phases in both supernatant and residue.

3.3.3. Filtration of Digest

Sample filtration is an important measure to protect analytical instrumentation, such as
HPLC systems. Thereby, several aspects of filter conditions such as hydrophobicity, solvent
resistance, adsorption, and further characteristics need to be considered [76]. Hydropho-
bicity of aqueous supernatants derived from in vitro digestion experiments is difficult to
classify, since both hydrophilic and hydrophobic components are present. Information
in literature on proper filter selection is limited, and details about chosen filter material
are occasionally not given. Since syringe filters of different hydrophobicity were applied
for carotenoid analysis in the past, we investigated a variety of materials keeping pore
size of 0.45 µm and diameter of 25 mm constant and used one aqueous supernatant for
all materials to maintain comparability [14,77–80]. Concentrations of (all-E)-β-carotene,
(all-E)-lutein, and (all-rac)-α-tocopherol after filtration with cellulose acetate (CA), mixed
cellulose ester (MCE), polyamide (PA), polypropylene (PP), polytetrafluoroethylene (PTFE),
and polyvinylidene difluoride (PVDF) are presented in Table 3. Significant differences
(p < 0.05) were only observed in case of (all-E)-lutein by comparing PA and PTFE with
CA, as well as MCE, PA, and PTFE with PVDF. No significant differences could be deter-
mined between CA and PVDF, which at the same time showed highest relative recovery
performance, compared to other materials. However, one needs to take into account that
recovery, in this case, cannot be considered as absolute value since samples were derived
from in vitro digested kale, in contrast to investigating external standards, which can be an-
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alyzed without filtration. Furthermore, the addition of echinenone to aqueous supernatants
(not shown) confirmed the observed results by showing higher recoveries in case of CA
and PVDF, compared to other materials. Finally, relatively more hydrophilic membranes
performed better in terms of backpressure during filtration. Hydrophobic materials, such
as PP, resulted in challenging sample filtration.

Table 3. Concentrations of (all-E)-β-carotene, (all-E)-lutein, and (all-rac)-α-tocopherol after filtration of an aqueous su-
pernatant derived from in vitro digestion of kale using different syringe membrane materials (0.45 µm pore size, 25 mm
diameter). Tested membrane materials consisted of cellulose acetate (CA), mixed cellulose ester (MCE), polyamide (PA),
polypropylene (PP), polytetrafluoroethylene (PTFE), and polyvinylidene difluoride (PVDF).

Filter Material
Compound CA MCE PA PP PTFE PVDF

Concentration in Filtered Supernatant (µmol/100 g)

(all-E)-β-
Carotene

0.19 ±
1.5 × 10−5

0.20 ±
2.3 × 10−3

0.17 ±
7.0 × 10−4

0.18 ±
0.04

0.17 ±
7.8 × 10−4

0.20 ±
0.01

(all-E)-Lutein 0.51 ±
0.01

0.49 ±
7.6 × 10−4

0.44 ±
3.6 × 10−3

0.50 ±
0.01

0.45 ±
0.02

0.52 ±
0.01

α-Tocopherol 0.40 ±
0.01

0.39 ±
0.01

0.36 ±
0.01

0.36 ±
0.04

0.38 ±
0.02

0.39 ±
0.02

3.3.4. Bioaccessibility

The previous investigation of carotenoid and vitamin E extractability in kale aimed to
obtain a quantitative extraction. With these information, conclusions may be drawn related
to the effect of high-pressure processing on the total contents of several micronutrients.
Additionally, the investigation of bioaccessibilities may lead us to further conclusions on
how affected extractabilites may influence the availability of analytes for absorption or
later on the assimilation through epithelian tissue and to evaluate potential loss during
in vitro digestion [81]. Therefore, in Figure 6 we present a comparison of extractability and
bioaccessibility of (all-E)-lutein in kale, depending on applied HPP parameters. Significant
differences (p < 0.05), compared to untreated kale, were observed for the extractability of
HP-treated kale using parameters at 400 MPa (5 min, 10 min, 40 min) and 600 MPa (5 min).
Hence, the application of higher pressure rates correlated with decreasing concentrations
of (all-E)-lutein whereas the extension of pressure treatments up to 40 min at 600 MPa
correlated with slightly elevated concentrations. Although, no significant differences re-
garding the bioaccessibility of (all-E)-lutein in HP-treated kale samples was observed, an
increase of pressure regimes correlated with moderate increasing bioaccessibilities on aver-
age. Moreover, extended holding periods during HPP caused elevated bioaccessibilities.
This represents a contrary trend, compared to extractability results. Again, this may raise
the question about the complexity of competitively occurring reactions both during high-
pressure processing and during the in vitro digestion assay. In particular, it may be possible
that for example pressure-resistant lipoxygenase (LOX) could lead to carotenoid degra-
dation in digested kale samples treated with lower pressure parameters. It was reported
that extremely high-pressure rates of 800 MPa or temperature-assisted HPP at 600 MPa
were needed to achieve a complete inactivation of LOX in soybeans. Moreover, elevated
treatment periods correlated with reduced LOX activities [82]. Consequently, high residual
LOX activities in untreated kale or HP-treated kale at 200 MPa may be associated with
increased carotenoids degradation and reduced bioaccessibility in an oil enriched in vitro
digestion assay. In contrast, one may ask for possible correlations between reduced LOX
activities related to extended HP-treatments at 600 MPa and increased bioaccessibilities of
(all-E)-lutein, caused by less LOX-mediated carotenoid degradation during HPP treatment
and in vitro digestion. In line with the observed trends of (all-E)-lutein bioaccessibilities,
we observed similar results related to (all-E)-β-carotene and (all-rac)-α-tocopherol shown
in Table 4. Again, elevated pressures up to 600 MPa and extended holding periods up
to 40 min caused slightly increased (but non-significant) bioaccessibilities compared to
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untreated kale. Highest increases of bioaccessibility compared to untreated kale were
observed at 600 MPa for 40 min regarding all investigated compounds. Furthermore, we
observed that analyte’s bioaccessibilities were in line with polarity of investigated com-
pounds ((all-E)-lutein > (all-rac)-α-tocopherol > (all-E)-β-carotene). These findings seem
to be consistent with other research [83]. On average, recovery values were determined
for (all-E)-lutein (24.9 ± 3.3%), (all-E)-β-carotene (34.1 ± 6.9%), and (all-rac)-α-tocopherol
(58.5 ± 9.5%).

Figure 6. Comparison of extractability (grey bars in µmol/100 g) and bioaccessibility (green bars in %)
of (all-E)-lutein in untreated and HP-treated kale using different pressure parameters (200–600 MPa)
and holding periods (5–40 min). One-way ANOVA with Tukey-HSD post hoc test; asterisks in the
same line indicate significant differences (p < 0.05) between treated and untreated samples.

Table 4. Bioaccessibility of (all-E)-β-carotene and (all-rac)-α-tocopherol in untreated and HP-treated kale in dependence on
HPP parameters (200–600 MPa with holding periods of 5 min, 10 min, and 40 min).

Compound Un-treated 200 MPa
5 min 10 min 40 min

400 MPa
5 min 10 min 40 min

600 MPa
5 min 10 min 40 min

Bioaccessibility in %

β-Carotene 1.4 ±
0.2

1.5 ±
0.1

1.3 ±
0.3

1.6 ±
0.3

2.0 ±
0.5

2.0 ±
0.3

2.1 ±
0.6

2.1 ±
0.6

2.2 ±
0.3

2.5 ±
0.4

α-Toco-
pherol

13.0 ±
1.5

11.3 ±
4.2

14.0 ±
5.6

14.7 ±
2.9

16.7 ±
5.9

17.4 ±
3.8

20.1 ±
6.2

17.9 ±
3.3

19.1 ±
4.3

21.0 ±
2.1

3.4. Antioxidant Capacity

The lipophilic antioxidant capacity (L-AOC) may provide insights about the ability
of antioxidants in HP-treated kale samples to scavenge reactive oxygen species and to
reduce free radicals [84]. Hence, L-AOC tests such as L-ORAC and αTEAC were applied
to investigate the impact of HPP on the entirety of lipophilic antioxidants in treated kale as
sum parameter containing all chemical species in contrast to the HPLC analysis of selected
carotenoids. Figure 7 shows α-tocopherol equivalents (α-TE µmol/100 g) for both L-ORAC
and αTEAC of untreated and HP-treated kale in dependence on different pressure regimes
(200 MPa, 400 MPa, 600 MPa) using a fixed duration of 10 min (Figure 7A) as well as
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holding periods (5 min, 10 min, 40 min) using a pressure regime of 600 MPa, (Figure 7B).
It is important to mention that results in Figure 7 need to be considered as independent
data set since kale was crushed to larger pieces of approximately 0.5 cm. Hence, leaf
structures were partially maintained in contrast to previously presented results using a
kale puree in Figure 3. Interestingly, an increase of pressure regimes with a holding period
of 10 min correlated with significantly elevated (p < 0.05) antioxidant capacities, compared
to untreated kale samples. Furthermore, the extension of holding periods using a fixed
pressure rate of 600 MPa caused significantly different (p < 0.05), increased AOC values
compared to untreated kale. Even though one cannot consider AOC results as being only
connected to carotenoid extractability, these findings in Figure 7 partially present a contrary
trend, compared to carotenoid extractabilities in Figure 3 and Table 2. Extractabilities of
carotenoids in treated kale puree mostly decreased after increasing pressure rates. Here,
extractabilities increased after increasing pressure regimes (not shown) and resulted in
elevated antioxidant capacities, as well. Consequently, one may suggest that kale leaf
sizes could have an impact on HP-treated samples, as well. Possibly, the generation
of larger pieces of kale leaves caused less cell damage and thus reduced extracellular
contact of micronutrients such as carotenoids and chlorophylls to a potentially oxidizing
or enzymatically degrading environment prior to HP-treatment. In literature, antioxidant
capacities were mostly determined related to hydrophilic plant ingredients in contrast to
lipophilic assays used in the present study. Several blended juices such as broccoli and
cabbage with apple resulted in increased antioxidant capacities after HPP at 600 MPa [85].
Furthermore, our results are consistent with HP-treated green asparagus (200–600 MPa;
10–20 min), which showed significantly different, elevated AOC values correlating with
both higher pressure rates and extended holding periods [86]. Enhanced AOC results
were also reported for treated onion samples (100–400 MPa; 5 min) [87]. Furthermore, no
impact of HPP on antioxidant capacities were published for treated vegetables such as
carrot, tomato, broccoli (500–800 MPa) [88], and tomato juice (200 MPa) [89]. Ultra-high-
pressure processing (800 MPa) resulted in both slightly increased and decreased AOC
values depending on fruit or vegetables matrices such as orange, orange-lemon-carrot juice,
as well as tomato, carrot, and apple [90].

Figure 7. Comparison of the antioxidant capacity of untreated and HP-treated kale, using a fixed treatment period (10 min)
and varying pressure rates up to 600 MPa (a) as well as a fixed pressure rate (600 MPa) with varying treatment periods up
to 40 min (b). One-way ANOVA with Tukey-HSD post hoc test: asterisks in the same line indicate significant differences
(p < 0.05) between treated and untreated samples.

4. Conclusions

High-pressure processing does not represent a novel technique for the preservation
of food. However, the present study was able to show that HPP may be used as a non-
thermal, gentle treatment of minimally processed kale to preserve most lipophilic food
ingredients immediately after treatment. Nevertheless, kale represents a complex biological
matrix and the results of solvent extractability only reflect a limited class of carotenoids,
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which were partially affected by slight degradation, as well as increase of concentration.
This complicates pin-pointing specific reaction channels to explain sources or sinks of
formation and degradation, in order to better understand the processes occurring during
HPP treatments. Surprisingly, increasing bioaccessibilities, following increased pressure
rates, indicated an opposite trend compared to results of solvent extraction. Consequently,
more research may be needed to investigate a possible dependence of the comparability of
the extractability and bioaccessibility on biological matrices. Moreover, the impact of food
pre-treatments, such as freezing, chopping, and mashing, prior to HPP may be interesting
to achieve a better understanding of possible formation and degradation processes of
micronutrients in HP-treated food products.
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Polyphenol content and antioxidant capacity of fruit and vegetable beverages processed by different technology methods.
Potravinarstvo 2016, 10, 512–517. [CrossRef]

86. Chen, X.; Qin, W.; Ma, L.; Xu, F.; Jin, P.; Zheng, Y. Effect of high pressure processing and thermal treatment on physicochemical
parameters, antioxidant activity and volatile compounds of green asparagus juice. LWT Food Sci. Technol. 2015, 62, 927–933.
[CrossRef]

87. Roldán-Marín, E.; Sánchez-Moreno, C.; Lloría, R.; de Ancos, B.; Cano, M.P. Onion high-pressure processing: Flavonol content and
antioxidant activity. LWT Food Sci. Technol. 2009, 42, 835–841. [CrossRef]

88. Butz, P.; Edenharder, R.; García, A.F.; Fister, H.; Merkel, C.; Tauscher, B. Changes in functional properties of vegetables induced
by high pressure treatment. Food Res. Int. 2002, 35, 295–300. [CrossRef]

89. Hsu, K.-C. Evaluation of processing qualities of tomato juice induced by thermal and pressure processing. LWT Food Sci. Technol.
2008, 41, 450–459. [CrossRef]

90. Butz, P.; Fernández García, A.; Lindauer, R.; Dieterich, S.; Bognár, A.; Tauscher, B. Influence of ultra high pressure processing on
fruit and vegetable products. J. Food Eng. 2003, 56, 233–236. [CrossRef]

http://doi.org/10.1016/S0022-2275(20)37613-6
http://doi.org/10.1021/jf0480142
http://doi.org/10.1016/j.tplants.2004.06.006
http://doi.org/10.1021/jf070301t
http://doi.org/10.1016/j.bbadis.2004.11.012
http://www.ncbi.nlm.nih.gov/pubmed/15949674
http://doi.org/10.1016/j.plaphy.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/20036132
http://doi.org/10.1104/pp.104.054908
http://www.ncbi.nlm.nih.gov/pubmed/15665245
http://doi.org/10.1016/j.foodchem.2012.08.076
http://doi.org/10.1039/C7FO00021A
http://doi.org/10.1016/S0015-1882(09)70090-4
http://doi.org/10.1007/s13197-017-2812-4
https://www.harvestplus.org/node/536
http://doi.org/10.1016/j.foodchem.2016.11.146
http://doi.org/10.1021/jf048577d
http://doi.org/10.1007/s13197-016-2466-7
http://www.ncbi.nlm.nih.gov/pubmed/28242932
http://doi.org/10.3109/10715769009148569
http://www.ncbi.nlm.nih.gov/pubmed/2159941
http://doi.org/10.5219/635
http://doi.org/10.1016/j.lwt.2014.10.068
http://doi.org/10.1016/j.lwt.2008.11.013
http://doi.org/10.1016/S0963-9969(01)00199-5
http://doi.org/10.1016/j.lwt.2007.03.022
http://doi.org/10.1016/S0260-8774(02)00258-3

	Introduction 
	Materials and Methods 
	Chemicals 
	Chlorophyll Isolation 
	Samples Description 
	High-Pressure Processing 
	Determination of Carotenoids, Vitamin E, and Chlorophyll 
	Extraction Procedure 
	Identification and Quantification of Carotenoids and Chlorophyll 
	Identification and Quantification of Vitamin E 
	Limits of Detection and Quantification 

	Antioxidant Capacity Assays 
	Extraction Procedure 
	The -Tocopherol Equivalent Antioxidant Capacity (TEAC) Assay 
	Lipophilic Oxygen Radical Absorbance Capacity (L-ORAC) Assay 

	In Vitro Digestion Model 
	Experimental Design 
	Isolation of Micellar Fraction 
	Extraction of Carotenoids and Vitamin E 
	Calculations 

	Statistical Analysis 

	Results & Discussion 
	Identification of Compounds 
	Extractability 
	In Vitro Digestion Assay 
	Effect of Oil Volume 
	Investigation of Digestion Phases 
	Filtration of Digest 
	Bioaccessibility 

	Antioxidant Capacity 

	Conclusions 
	References

