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Abstract
Crude oil frequently contains stable radicals that allow detection by means of EPR 
spectroscopy. On the other hand, most sands and soils possess significant amounts 
of iron, manganese or other metallic species that often provide excessively broad 
EPR signatures combined with well-defined sharp features by quartz defects. In this 
study, we demonstrate the feasibility to identify oil contamination in natural envi-
ronments that are subject to oil spillage during production on land, as well as beach-
side accumulation of marine oil spillage. Straightforward identification of oil is ena-
bled by the radical contributions of asphaltenes, in particular by vanadyl multiplets 
that are absent from natural soils. This potentially allows for high-throughput soil 
analysis or the application of mobile EPR scanners.

1 Introduction

Despite its obvious advantage and high sensitivity in identifying radical species 
and ion complexes, the documented literature of EPR applications in environmen-
tal sciences has been rather limited. Among many reasons are its lack of specific-
ity in the study of metal-containing minerals, and the availability of a wide range 
of alternative, more established, and possibly more sensitive laboratory methods. 
However, EPR has developed into an accessible standard method that uses afford-
able desktop devices which combine satisfactory sensitivity with potential portabil-
ity. In this respect, EPR is somehow following the development of desktop NMR 
which dates back decades but has only recently resulted in sophisticated, high-res-
olution spectrometers which compete with high-field instruments in fields such as 
education and reaction engineering. Different approaches for truly mobile scanners 
such as the NMR-MOUSE [1, 2] and other concepts [3–8] have vastly expanded 
the use of NMR relaxometry and allow its use in field studies, opening up NMR 
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characterization as a method for environmental investigations in  situ such as in 
plants [9, 10] and in soil [11, 12]. However, spectroscopic resolution or the detection 
of small amounts of contaminants in natural soils is not feasible with single-sided 
sensors but has to rely on lab-based desktop or high-field instruments. Recently, 
small and mobile EPR scanners have indeed been suggested that combine portabil-
ity with the superior detection sensitivity that is known from lab-based EPR instru-
ments as a consequence of the larger electron magnetic moment [13, 14]. See [15] 
for an overview of recent low-field and portable EPR applications.

Crude oil is a complex mixture of several tens of thousands of known com-
pounds, a fact that needs to be taken into consideration if oil shall be identified by 
spectroscopic methods. Its 1H NMR signature consists of a broad spectrum repre-
senting the unresolved sum of many resonance lines that have tentatively been sepa-
rated into aromatic and aliphatic regions [16, 17] The distinction of different types 
of crude oil has been attempted based on quantifying the individual spectral line 
groups, but the assignment of individual chemicals has not been achieved. It can 
be assumed that a 1H spectroscopic separation of crude oil in natural soil, against 
the background of soil organic matter (SOM), is difficult at best [18]. 13C spectros-
copy, on the other hand, which is generally used for SOM studies [19, 20], is more 
challenging for desktop systems, and unfeasible for field work. Much more promis-
ing are approaches that include the analysis of relaxation times and diffusion coef-
ficients, as has been successfully demonstrated for oils and brine/oil mixtures in 
rocks [21, 22]. Oil and water were quantified in oil-containing coastal sands with 
enhancing the relaxation contrast by addition of manganese salts [23]. While this 
is an established laboratory method and has been used repeatedly, it is not feasible 
under in  situ conditions where relaxation contrast may be too small. Two-dimen-
sional studies, correlating  T2 relaxation time and diffusion coefficient, succeed in 
separating oil from water and other fluids [24]. While such experiments can be car-
ried out even on mobile NMR systems such as the NMR-MOUSE, depending on 
the range of parameters, they can be time-consuming and problematic in terms of 
quantification.

EPR, on the other hand, is sensitive to detect paramagnetic centers and the 
unpaired electrons of radicals in the liquid and the solid state, i.e., unlike in NMR 
the solid component of the sample cannot be neglected. In many types of rocks, the 
EPR signature is characterized by extremely broad metal ion lines emanating from 
metallic grains or larger agglomerations, with  Fe2+ and  Fe3+ of iron oxides often 
dominating [25–27]. In addition, individual ions and nanoaggregates generate sharp, 
well-defined lines as have been observed in metal-containing clays [28, 29]. These 
consist of singlets and multiplets of Fe or Mn as well as sulfur oxides, for instance 
[30]. In addition, crystal defects in quartz grains provide narrow and characteristic 
features close to the Landé factor of the free electron. One particular application 
of EPR to environmental science aims at the temporal evolution as a consequence 
of fires [31], while it has been used for decades in archaeological dating [32]; [33] 
gives an overview of environmental applications of EPR.

While the complexity of features renders a quantitative assessment of the EPR 
spectrum cumbersome, the large width of the metal grain signal along with the well-
defined contributions of manganese, sulfur oxide and other substances makes the 
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sharp features of isolated ions or radical electrons stand out, in a similar way as the 
solid contribution to an NMR signal is often negligible or completely suppressed 
with many detection coils, and only the liquid signal remains.

These particular features provide an opportunity to identify crude oil within a 
background of natural soil or sand. While by no means all types of oil contain sig-
nificant amounts of free radicals, most heavy oils have indeed been found to show 
an EPR signal [34]; see also [35–39] for more recent studies on oil composition. 
It is commonly assumed that radicals are located in the large polycyclic aromatic 
hydrocarbons (PAHs), predominantly in asphaltenes, but possibly also in resins [40]. 
By definition, asphaltenes and resins are characterized by their respective solubil-
ity in n-heptane (although other solvents are used in the literature), i.e. asphaltenes 
precipitate while resins remain in solution, following a classical separation process 
(SARA [41]), and correlations between the different components and NMR proper-
ties have been studied [42]. However, there is no structural difference between both 
substance classes. In quantitative studies, the EPR signal is found to correlate with 
the asphaltene content. The NMR relaxation properties of liquid components in oil, 
the so-called maltenes, were likewise found to correlate with the asphaltene content 
[43, 44], suggesting that the latter contain the largest amount of unpaired electrons 
in crude oil, and therefore act as a relaxation agent in analogy to contrast agents in 
aqueous solution. Current literature concludes that free, delocalized electrons and 
vanadyl ions  (VO2+) constitute the major contributions to the EPR spectrum, though 
their relative proportion varies greatly. While free electrons lead to a single EPR 
resonance line, vanadyl ions, which are located in porphyrin rings, give rise to a 
characteristic octet (I = 7/2 for 51V) [45–47]. Only one in ten to a hundred asphaltene 
molecules contain a radical, therefore they can be considered isolated and are char-
acterized by small linewidths.

The EPR signature of crude oils has been employed for characterization [48], but 
also for signal enhancement of the remaining maltenes by exploiting the Dynamic 
Nuclear Polarization (DNP) effect [49]. Related research has been carried out on 
marine diesel as an important oil byproduct [50, 51].

Considering the rather unspecific proton NMR spectrum, the use of the EPR sig-
nal of crude oils appears more promising in their identification as a contaminant to 
an organic background. In view of the abovementioned specifications, this contribu-
tion aims at assessing the conditions necessary for identifying the presence of crude 
oil in samples of sand and soil, and to give an estimated lower limit for its detection 
in a routine desktop experiment.

2  Samples and Experiment

In this study, a range of beach sands and soils have been compared in order to 
cover typical environmental situations; beach sand was used for simulating 
coastal crude oil spill. FH31, FH32 and W3 sand were obtained from Quarzwerke 
Frechen, Germany; all other samples were gathered at the given locations (see 
Table 1). As a representative crude oil sample, Ashalchinskoe heavy oil (Volga-
Ural basin, Tatarstan, Russia) has been chosen since its EPR properties are well 
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studied [47, 52]. While being rather viscous, it has an intermediate asphaltene 
fraction of 4.5% whereas some oil types exceed 15% of asphaltene (see Table 2). 
From [53] it is known (see Table 3) that the concentration of vanadyl complexes 
at 7.5 ×  1018 spins  g−1 in asphaltenes is about ten times higher than that of free 
radicals (8.1 ×  1017 spins  g−1). In resins, the content of which is about 26% in this 
oil, the amount is about 9 times lower. In total, radicals contained in Ashalchin-
skoe oil are contained in the asphaltene and the resin fraction, respectively, in a 
ratio of about 3:2.

EPR experiments were carried out at a temperature of 300  K on a Miniscope 
MS-5000 EPR desktop spectrometer (Magnettech, Freiberg Instruments, Germany) 
operating in X band (9.5 GHz microwave frequency).

Untreated samples (sands, soils as well as crude oil) were first crushed manually 
with a pestle in order to obtain grain sizes well below the capillaries’ inner diameter 
of 2  mm. All measurements took place inside these 2  mm capillaries, containing 
about 200 μl of sample volume. Subsequently, 1 g of selected soils were filled into 
open glass vessels, and the appropriate amount of crude oil added, samples were 
manually stirred with a spatula for several minutes until a visually homogeneous oil 
distribution was achieved; 200 μl of these soils were then filled into glass capillaries, 
before these were flame-sealed.

Depending on the shape of the spectra and the intensity of the spectral lines, 
experiments were carried out using a number of settings. The modulation frequency 
was kept constant at 100 kHz and the amplitude was between 0.3 and 0.5 mT unless 
otherwise noted. Either 0.1 or 1 mW was used as microwave power, and the scan-
ning period was set to 300–500 s for the whole range of magnetic field 50–600 mT.

Prior to concentration dependent measurements, a calibration series was carried 
out on solutions of TEMPO in n-decane between 0.1 mM and 50 mM which con-
firmed the linearity of the signal (double integral over the full dispersion spectrum) 
for all parameter settings used in this study.

Table 1  Abbreviations and origin of sand and soil samples in this study

Sample Soil/sand Description Location Coordinates

FH31 Sand Sieved quartz sand Frechen & Haltern (mixed) 50°55′ N,6°47′ E
51°48′ N,7°15′ E

FH32 Sand FH31 enriched with  Fe2O3 dto dto
W3 Sand Quartz sand/silt size Frechen 50°55′ N,6°47′ E
KAL Soil Sandy loam Kaldenkirchen 51°19′ N,6°12′ E
MER Soil Silt loam Merzenhausen 50°56′ N,6°17′ E
SEL Soil Silt loam Selhausen 50°52′ N,6°27′ E
BON Sand Beach sand (white) Bondi Beach, NSW 33°53′ S,151°17′ E
KIN Sand Beach sand (white) Kingscliff, NSW 28°17′ S,153°35′ E
NOU Sand Beach sand (white) Noumea, NC 22°18′ S,166°27′ E
LPS Sand Beach sand (black) La Palma 28°39′ N,17°57′ W
LPV Mineral Weathered volcanic rock La Palma 28°28′ N,17°51′ W
ILM Soil Town soil Ilmenau 50°51′ N,10°55′ E
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3  Reference EPR spectra

The X-band CW EPR spectrum of Ashalchinskoe crude oil is shown in Fig. 1. Its 
main features are the free radical (FR) peak at g = 2.0030 with a width of approxi-
mately 6 G, and the asymmetric octet of the 51V splitting in the  VO2+ porphyrin 
molecule. (See [53] and references therein for a detailed discussion of the vana-
dyl EPR spectrum). These two features are those most frequently encountered in 
heavy oils, although the relative contribution of  VO2+ varies significantly. For 
the purpose of identifying crude oil in an EPR spectrum relative to a background 
signal, the FR peak and the largest vanadyl peak (representing  mI = 1/2) appear to 
be most suitable.

Figure  2 presents an overview of EPR spectra of all types of soil and sand 
employed in this study; all measurements were carried out with a microwave 
power of 0.1 mW and a modulation amplitude of 0.3 mT. Note the different 
amplitude scales, while all samples contained identical sample volumes. The pre-
dominant property of these spectra is an extremely broad background signature 
arising from Fe ions in unspecified environment. The two by far largest signals 

Table 3  Concentrations of FR and  VO2+ (from simulation of experimentally obtained spectra in MatLab/
Easyspin and comparison with Cu-DETC reference) at T = 295 K [53]

C  (VO2+) (spins/g) C (FR) (spins/g) C 
 (VO2+)/C(FR)

Oil 1.1 (2)  1018 1.2 (1)  1017 9.2
Asphaltene (A) 7.5 (9)  1018 8.1 (9)  1017 9.1
Resin (R) 0.8 (1)  1018 0.9 (1)  1017 9.0

Fig. 1  EPR spectrum of Ashalchinskoe crude oil, with coupling constants for the  VO2+ multiplet indi-
cated. FR refers to Free Radicals. The inset shows the vanadyl porphyrin which is expected to occur as 
part of the PAH of asphaltene molecules [53]
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(two bottom spectra) correspond to volcanic rocks and sand from La Palma 
island, which can tentatively be decomposed into two separate contributions.

While it is beyond the purpose of this study, a rough estimation of the Fe content 
can be obtained by comparison with soil samples with known metal content; the 
result is about 26% for LPS and 11% for LPV. These figures are probably overes-
timated due to the excessive width of the EPR signal, but are in qualitative agree-
ment with values indicated for La Palma basaltic sand of between 17 and 21% FeO 
[54]. These are among the highest Fe contents occurring naturally on Earth, and we 
have refrained from carrying out oil contamination experiments on these samples, 
although they might indeed be feasible in the center part of the EPR spectrum.

Fig. 2  EPR CW spectra of all dry sand and soil samples studied in this work. Note that three different 
scales have been used in order to accommodate the whole range of signal intensities
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Excluding the La Palma basalt samples, the remaining spectra can be separated 
into two groups, five sands and four soils. Again, the predominant contribution 
is iron, mostly in the form of FeO and  Fe2O3 as well as of Fe hydroxides such as 
Goethite. Within typical errors of about ±10%, the ratios of the double integral 
over the broad line are proportional to elementary Fe weight content obtained 
from ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy), 
i.e. 1.89 wt-% for MER, 2.08 wt-% for SEL and 0.71% for KAL (see Table 4). 
The influence of these Fe ions on the NMR relaxation of water protons has been 
studied earlier [55]. Also obtained by this method were concentrations of 0.014 
wt-% for FH31 and 0.15 wt-% for FH32, sand artificially enriched with iron 
oxide. Employing these data, we could fit approximate iron concentrations for 
the remaining samples, and obtained 1.81 wt-% for ILM, 1.4 wt-% for NOU, 0.02 
wt-% for W3, and about 0.002–0.003 wt-% for BON and KIN.

The four soil samples apparently represent typical spectra for iron contents in 
the range of a few percent, whereas clean quartz sand can possess up to three 
orders of magnitude less iron. The pronounced peak in FH32 about g = 2.98 is 
a consequence of the addition of iron predominantly in the form of Fe hydrox-
ide. Among the sands, NOU is somewhat different since it represents a metal-rich 
source (see below).

An additional contribution, however, will become important if small amounts 
of oil must be detected. The sharp feature visible in Fig.  2, and magnified in 
Fig.  3/top for several of the sand samples, represents naturally occurring crys-
tal defects in quartz. It appears at 336,1 mT, corresponding to g = 2.01, and is 
attributed to the well-known E’ defects of oxygen vacancies in quartz [56, 57]. 
Its width is between 2.5 and 3 G. Nouméa sand (taken at a beach close to the city, 
Fig. 3/center) differs not only by its larger iron content but also by the fact that a 
small quartz defect peak at 335.6 mT (g = 2.02) is superposed onto a  Mn2+ sextet, 
in agreement with a Mn concentration of 0.2% or larger (see magnification in 
Fig. 3/bottom). It is well-known that New Caledonian minerals, apart from pos-
sessing one of the world’s largest nickel reservoir, do also contain high concen-
trations of MgO of up to 21%.

Table 4  Metal content of selected soils and sand, obtained from ICP-OES (c/o Andreas Pohlmeier, FZ 
Jülich)

Sample Fe wt [%] SD 
[%]

Mn wt [%] SD 
[%]

Cu wt [%] SD 
[%]

Ca wt [%] SD 
[%]

Mg wt [%] SD [%]

MER 1.89 0.03 0.071 0.002 0.0044 0.0003 0.537 0.007 0.326 0.004
SEL 2.083 0.017 0.0827 0.0009 < 0.002 0.509 0.003 0.357 0.006
KAL 0.712 0.014 0.037 0.002 < 0.002 0.161 0.002 0.074 0.003
FH31 0.0138 0.0015 < 0.0005 < 0.002 0.0074 0.0006 < 0.00008
FH32 0.149 0.007 < 0.0005 < 0.002 0.0101 0.0006 < 0.00008
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4  Results for Oil Contaminated Soils

In order to test the feasibility of detecting oil contamination in soil, two sand sam-
ples (FH32 and Bondi Beach) and one soil (Kaldenkirchen) were prepared with con-
centrations in the range from 0.5 to 9 wt-% of Ashalchinskoe oil.

The iron peak in FH32 is centered about g = 2.98 and is outside the center region 
of the spectrum; the spectrum upward from 300 mT is therefore comparable to a 
native sand without added Fe.

Figure 4 demonstrates the prominence of the crude oil EPR signal in the FH32 
sand sample. In this representation, the free radical peak of oil and the quartz defect 
peak, both in the region between 335 and 336 mT, overlap; the largest  VO2+ peak 
at 333.4 mT becomes distinct. The presence of oil, however, is clearly visible. An 
initial attempt to determine the oil content from a double integral of the full range of 
Fig. 4, and taking the expected number of spins in the crude oil sample into account, 
delivers an amount of 0.6%. By proper fitting of the actual crude oil spectral fea-
tures, if these were available for the sample under study such as in the case of a 
known spillage situation, this quantitation can possibly be improved significantly.

Figure 5 compares the spectra obtained with oil in Bondi Beach sand at different 
weight fractions. The double integral over this frequency range provides a rather 
good correlation with oil content (Pearson’s coefficient 0.9988), even though abso-
lute values are hard to obtain—this would require a separate calibration. (Integration 
over a narrower range 336… 337 mT gives a slightly lower correlation coefficient). 
Nevertheless, oil fractions from 0.5% can be detected with certainty, and become 
quantitative at least from 1% upward.

For the situation with KAL, a typical soil, the background signal emanating from 
Fe ions is much more dominant, and needs to be subtracted assuming a polynomial 
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function that provides minimum background in the central region of the spectrum. 
The total integral correlates with the oil concentration but the minimum concentra-
tion that can be safely detected is on the order of 3%; a better correlation is obtained 
when the integral is carried out over the single line between about 336 and 337 
mT, than by integration over the wider range 329–339 mT (Pearson’s correlation 
coefficient of 0.967 as compared to 0.939). Figure 6 shows the spectra before and 
after background correction as well as the double integral of the narrow integra-
tion region. In all attempts to establish a correlation between signal intensity and 
weight of oil it must be considered that the actual amount of radical-containing oil 
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components within the 200  μl sample volume may differ from the average deter-
mined within the larger volume of the prepared soil/oil mixture due to heteroge-
neities in the distribution; this also affects the overall metal content in the meas-
ured sample and its influence onto the background signal. Wherever possible, larger 
sample volumes or repetitive measurements of different samples will increase the 
precision in quantitation in a dedicated laboratory study or in portable scanner 
applications.

5  Conclusions

EPR single-scan spectra on a desktop spectrometer operating at X band demonstrate 
that detection of the presence of a typical crude oil is feasible due to a combina-
tion of either its vanadyl ion or its free radical signature. While the free radical is 
found more commonly in oil, it tends to overlap with a sharp line emanating from 
crystal defects in quartz structures. However, even with a spectrometer possessing 
low resolution such as might be expected from a portable solution, oil can be identi-
fied by integrating over the region about this central peak and comparing it to the 
signal from an uncontaminated sample. The  VO2+ central peak of  mI=+1/2, wher-
ever present, is more distinct and can be employed for a better quantitation of the 
oil content. In clean sands, such as would be encountered in shoreline oil spillage, 
a detection limit of well below 1% of oil was obtained for laboratory conditions, 
and 0.1% appears entirely feasible; reliable quantitation is possible at least from 1% 
upward, and more detailed modelling with the lineshape of the bulk crude oil will 
reduce this limit significantly. For typical soils of 1–2 wt-% iron content, oil detec-
tion is still possible down to about 1% due to the narrow lines in comparison to the 
very broad spectral background of the iron containing compounds, but quantitation 
requires more elaborate treatment of the background signal. One possibility could be 
the use of an internal standard with a defined line intensity, preferably not overlap-
ping with the spectral features expected from oil.

As a method for high-throughput serial sampling, where precise oil concentra-
tions are of less immediate interest, EPR of soil/crude mixtures can serve as a rou-
tine scanning method for oil fractions of 1% or less. This amount is difficult to study 
even by conventional low-field NMR spectroscopy, particularly in the presence of 
soil organic matter, and is below the resolution limit of most relaxation/diffusion 
NMR studies reported so far. EPR thus does have an advantage over many NMR 
methods. With the properties of oil EPR spectra known from the literature, a dedi-
cated narrow-range EPR scan will further reduce the total experimental time for a 
single scan, and can therefore bring mobile EPR equipment, typically operating at 
low microwave frequencies, into the range of operative sensors for identifying oil 
spillage in sand and soil environments.
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