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Abstract

In this thesis, we develop a constrained structural prediction approach for the structural
reconstructions of interfaces and point defects in crystals.

First, we investigate the structure-property relations for a large and varied family of
symmetric and asymmetric tilt grain boundaries in polycrystalline silicon. We find a rich
polymorphism in the interface reconstructions, with recurring bonding patterns that we
classify in increasing energetic order. We systematically classify the grain boundaries
into different types by the structural reconstructions when atoms are removed or added at
the interface. Then, we extend the low-energy structures from silicon to other group-IV
elementary crystals (carbon, germanium, and tin) and study their stability. Finally, a clear
relation between bonding patterns and electrically active grain boundary states is unveiled
and discussed.

Second, we study the reconstructions of diamond interfaces along different directions
and focus on the formation of diamond-graphite hybrid structures. We find that the formed
graphite layers at interfaces parallel to the [100] axis are always following similar patterns. In
contrast, for the interfaces parallel to the [110] axis, the graphite layers can be formed along
two directions. We find the number of the graphite layers is limited by the distances between
the bonded atoms on the diamond surface. We also compare the formation of diamond-
graphite structures in carbon grain boundaries. Finally, how the electronic properties of
diamond is affected by the graphitization is discussed.

Finally, we extend our approach to the study of point defect geometries in hexagonal
silicon. We obtain among the lowest-energy structures the hexagonal counterparts of all
known defects of cubic silicon, together with other often more complex geometries. Neutral
vacancies, fourfold-coordinated and Frenkel defects have comparable formation energies
in both hexagonal and cubic phases, while some interstitial defects become considerably
more stable in the hexagonal lattice. Furthermore, due to the reduced symmetry, formation
energies can depend on the orientation of the defect with respect to the c-axis. The density of
states of the defective supercells is calculated to determine which defects lead to electronic
states in the band gap, potentially affecting the performance of optoelectronic devices based
on hexagonal group-IV crystals.





Abstrakt

In dieser Arbeit entwickeln wir einen eingeschränkten Strukturvorhersageansatz für die
strukturelle Rekonstruktion von Grenzflächen und Punktdefekten in Kristallen.

Zunächst untersuchen wir die Struktur-Eigenschafts-Beziehungen für eine große und
vielfältige Familie von symmetrischen und asymmetrischen Kipp-Korngrenzen in polykristall-
inem Silizium. Wir finden einen reichen Polymorphismus in den Grenzflächen-Rekonstruktio-
nen, mit wiederkehrenden Bindungsmustern, die wir in zunehmender energetischer Ordnung
klassifizieren.

Wir klassifizieren die Korngrenzen systematisch in verschiedene Typen anhand der
strukturellen Rekonstruktionen, wenn Atome an der Grenzfläche entfernt oder hinzugefügt
werden. Dann erweitern wir die niederenergetischen Strukturen von Silizium auf andere
Elementarkristalle der Gruppe IV (Kohlenstoff, Germanium und Zinn) und untersuchen
deren Stabilität. Schließlich wird ein klarer Zusammenhang zwischen Bindungsmustern und
elektrisch aktiven Korngrenzenzuständen aufgedeckt und diskutiert.

Zweitens untersuchen wir die Rekonstruktionen von Diamantgrenzflächen entlang ver-
schiedener Richtungen und konzentrieren uns auf die Bildung von Diamant-Graphit-Hybridst-
rukturen. Wir finden, dass die gebildeten Graphitschichten an Grenzflächen parallel zur [100]-
Achse immer ähnlichen Mustern folgen. Im Gegensatz dazu können die Graphitschichten an
Grenzflächen parallel zur [110]-Achse in zwei Richtungen gebildet werden. Wir finden, dass
die Anzahl der Graphitschichten durch die Abstände zwischen den gebundenen Atomen auf
der Diamantoberfläche begrenzt ist. Wir vergleichen auch die Bildung von Diamant-Graphit-
Strukturen in Kohlenstoff-Korngrenzen. Schließlich wird diskutiert, wie die elektronische
Struktur von Diamant durch die Graphitierung beeinflusst wird.

Schließlich erweitern wir unseren Ansatz auf die Untersuchung von Punktdefektgeome-
trien in hexagonalem Silizium. Wir erhalten unter den Strukturen mit der niedrigsten Energie
die hexagonalen Gegenstücke aller bekannten Defekte des kubischen Siliziums, zusammen
mit anderen oft komplexeren Geometrien. Neutrale Leerstellen, vierfach koordinierte und
Frenkel-Defekte haben sowohl in der hexagonalen als auch in der kubischen Phase vergleich-
bare Bildungsenergien, während einige interstitielle Defekte im hexagonalen Gitter deutlich
stabiler sind. Außerdem können die Bildungsenergien aufgrund der reduzierten Symmetrie
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von der Orientierung des Defekts in Bezug auf die c-Achse abhängen. Die Zustandsdichte
der defekten Superzellen wird berechnet, um festzustellen, welche Defekte zu elektronischen
Zuständen in der Bandlücke führen, die möglicherweise die Leistung von optoelektronischen
Bauelementen auf Basis von hexagonalen Gruppe-IV-Kristallen beeinflussen.
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Chapter 1

Introduction

In solid-state physics, interfaces are defined as the small regions that separate two matters in
intimate contact with each other [1]. Interfaces are of great importance that they strongly or
even control the most important properties of materials in high-technology applications [2].
The prediction of microscopic atomic structures of interfaces, and the determination of their
effects on the electronic properties of a multicomponent material is a challenging open
problem of materials science. A solution to this scientific question is of utmost importance to
understand, e.g., how to control the overall electronic response of a functional material.

An ubiquitous example of such internal interfaces is grain boundaries (GBs), i.e. two-
dimensional defects that separate crystalline domains with different orientation in a polycrys-
talline sample [3]. GBs can affect dramatically structural, electronic, transport, and optical
properties of semiconducting crystals used in microelectronic devices or solar cells [4–13].
In the latter devices, in particular, the effect of GBs is generally considered to be detrimental
to charge transport, as deep defect states at internal interfaces can act as recombination
centers for excited electrons and holes. However, the introduced disorder has a beneficial
effect on light absorption efficiency, as it allows to break the k-point selection rule for optical
transitions [14]. A deep understanding of low-enthalpy structural reconstructions at GBs
would provide the missing insight on how GBs limit energy conversion efficiency, disclosing
new routes to enhance both light absorption and charge mobility in photovoltaic devices.

Due to the structural complexity of interfaces, the investigation of the precise link be-
tween material performance and interface reconstructions remains a challenging task for
experimental techniques and computer simulations. Thanks to recent advances in nanocrys-
talline engineering, it is now possible to incorporate specific interface in a material [15, 16].
Directly experimental observations of interfacial geometries by high-resolution transmission
electron microscopy are extremly difficult [17]. But, when they are successful, they generally
show that GB atomic structures can bear little resemblance to intuitively guessed atomic
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configurations [18]. In many cases, experimental images do not provide sufficient informa-
tion about the atomic-level structure, so that, without theoretical support, it remains debated
whether certain GBs are ordered, partially ordered, amorphous, or liquid. Unfortunately, and
despite the large amount of theoretical work in literature, a comprehensive understanding of
low GB reconstructions determine the electronic properties of a realistic polycrystal is still
missing. The main difficulty is that experimental data are incomplete and simulations do not
always sample the configuration space in an adequate manner.

Thus, it is my intention to provide an accurate and unbiased ab initio procedure for the
extraction of structure-property relations of different families of interfaces in this thesis. We
propose an efficient approach for the prediction of low-energy reconstructions of interfaces,
that retains and combines strong points of previous approaches and tries to go beyond still
existing limitations. In Chapter 3, a brief introduction of the current interface prediction
methods is given, then, I will introduce our constrained structural prediction approaches in
detail, followed by the computational details for different systems we have studied in this
thesis.

The rest part of this thesis is organized as follows. Chapter 2 is an introduction to the
fundamental theoretical background. In this part, the density functional theory (DFT) will
be introduced briefly, then I will present a description of density-functional tight-binding
(DFTB). Finally, I introduce the basic knowledge of the grain boundaries.

In Chapter 4, I apply our approach to study a set of low-energy tilt GBs in silicon. The
focus on this family of GBs is motivated by the large amount of data available in the literature
for polycrystalline silicon, which makes this system ideal for a thorough validation of the
proposed approach. Our objective is, on one hand, to identify GB phases at a lower energy
than those already reported and/or in better agreement with available experimental data.
On the other hand, we want to collect comprehensive information on recurrent patterns in
low-energy interface reconstructions for silicon and use these patterns to build a systematic
classification of Si GBs. We also want to check the stability of the obtained low-energy
structural patterns in other group-IV elementary crystals, including carbon, germanium, and
tin. In the last section of this chapter, we study the electronic structures of the lowest-energy
GBs to find the relation between the bonding patterns and the electrically active GB states.

Chapter 5 focuses on the graphitizations at diamond interfaces. This study is motivated by
the studies of diamond-graphite composite nanostructures that such hybrid structures exhibit
interesting properties both mechanically and electronically [19–25]. Thus, a systematical
study of diamond-graphite structures is essential to understand the mechanism of transition
between diamond and graphite. Our objective is to identify different diamond-graphite
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phases at low energy and collect comprehensive information on graphitizations at different
interfaces in the diamond.

In addition to the interfaces, the point defects are also of great importance in materials
that the technological applications of semiconductors are extremely sensitive to the presence
of defects. They can be seriously hindered, or sometimes even enabled, by the defects.
In cubic diamond, the defects have already been widely studied both experimentally and
theoretically. In fact, there is a detailed knowledge of which point defects are likely to exist
in cubic silicon, their electronic properties, and their influence on functioning optoelectronic
devices [26]. However, for its hexagonal counterpart, the Lonsdaleite silicon, that knowledge
is still to a large extent lacking. Therefore, in Chapter 6 we move our study of interfaces
to the point defects in hexagonal silicon. I will present the lowest-energy defects found in
hexagonal silicon, and compare them with all known defects in cubic silicon. Furthermore,
the electronic structures are also investigated to determine how the electronic density of states
of hexagonal group-IV crystals will be affected by the defects.

Finally, Chapter 7 presents a summary and conclusions of the main results of this thesis.





Chapter 2

Theoretical Background

The many-body problem has bothered scientists for a long time. Thanks to the density-
functional theory (awarded the Nobel Prize in chemistry in 1998), providing us a simpler
way to deal with this problem with proper approximations.

In this chapter, we introduce the basic concepts of Kohn-Sham density-functional theory
(DFT) in Sec. 2.1, and in the Sec. 2.2, we present a description of density-functional
tight-biding (DFTB). In the last part, Sec. 2.3, the basic knowledge of grain boundaries is
introduced for the reader to better understand the results of this work.

2.1 Density Functional Theory

Quantum properties of a many-body system are determined by the Hamiltonian of all the
particles. Let us consider a system with K atoms and N electrons. The Hamiltonian Ĥ can be
written as

Ĥ = T̂n + T̂e +V̂nn +V̂ne +V̂ee, (2.1)

where T̂n and T̂e represent the kinetic energy of the nuclei and electrons, respectively:

T̂n =
K

∑
α=1

− h̄2

2Mα

∇
2
Rα

, T̂e =
N

∑
i=1

− h̄2

2m
∇

2
ri
, (2.2)

Rα and ri denote the Cartesian coordinates of nucleus α with mass Mα and electron i with
mass m, respectively. ∇2

Rα
and ∇2

ri
are the Laplacian operators. The interaction among the

nuclei V̂nn and among the electrons V̂ee are:

V̂nn =
K

∑
α,β=1;α ̸=β

1
2

ZαZβ e2

|Rα −Rβ |
and V̂ee =

N

∑
i, j=1;i̸= j

1
2

e2

|ri − r j|
, (2.3)
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respectively. Zαe is the charge of nuclei, and the interaction between the nucleus and electron
V̂ne is

V̂ne =−
K

∑
α=1

N

∑
i=1

Zαe2

|Rα − ri|
. (2.4)

Since the huge difference between the mass of nuclei and electrons, m ≪ Mα . The
positions of the nuclei are treated as parameters of the Hamiltonian. This is achieved by
the Born-Oppenheimer approximation [27]. The nuclei terms T̂n and V̂nn in Ĥ are taken as
constants, so that we are focusing on the parts related to electrons. The interactions between
nuclei and electrons V̂ne is treated as external potential V̂ext(ri) in the Hamiltonian

Ĥ = T̂e +V̂ee +V̂ext with V̂ext(ri) =
N

∑
i=1

vext(ri), (2.5)

where vext(ri) =
K
∑

α=1

−Zα e2

|Rα−ri| . With the Hamiltonian, the ground-state wavefunction Ψ0 can

be obtained by solving the Schrödinger equation:

ĤΨ0(r1, ...,rN) = E0Ψ0(r1, ...,rN), (2.6)

However, it is difficult to solve Eq. 2.6, due to the high dimensionality, where the many-body
wavefunction is depending on N ∗3 spatial variables. Approximated approaches are necessary
to have solutions as close as possible to the accurate ones. And the density functional theory
(DFT) is an exceptional way to solve this problem.

2.1.1 Hohenberg-Kohn Theorem

To introduce DFT, the Hohenberg-Kohn (HK) theorem [28] is always the beginning of the
story. It ensures the many-body system can be characterized by the electron density nr and
the relation between nr and the ground-state wavefunction. The first Hohenberg-Kohn (HK)
theorem states that the external potential vext(r), with an additive constant, is determined
uniquely by the the ground state electronic density n0(r), which implies that

vext(r) = vext[n0(r)]. (2.7)

Since there is a one-to-one correspondence between the external potential vext and the corre-
sponding ground-state wavefunction Ψ0(r) which is obtained from solving the Schrödinger
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equation, Ψ0(r) is also a functional of n0(r),

Ψ0(r) = Ψ[n0(r)]. (2.8)

For any observable Ô(r) of the system, the expectation value of Ô(r) at ground state
Ψ0(r) is also a functional of n0(r),

Ô[n0(r)] = ⟨Ψ[n0(r)]|Ô|Ψ[n0(r)]⟩. (2.9)

Particularly, the ground-state energy is a density functional

E[n0(r)] = ⟨Ψ[n0(r)]|T̂ +V̂ee +V̂ext|Ψ[n0(r)]⟩

= FHK[n]+
∫

d3r n0(r)vext(r),
(2.10)

where
FHK = T [n]+Vee[n], (2.11)

which is an universal functional and only dependent on the density n(r).
The second Hohenberg-Kohn theorem states that for a given vext, minimizing the energy

functional gives the groud-state energy of the system, and the functional is minimized only
by the true ground-state density n0(r):

E0 = min
{n}

Evext[n], (2.12)

which can also be written by the variational principle with a Euler-Lagrange equation:

δ

δn(r)
[Evext[n]−µ(

∫
d3r n(r)−N)] =

δFHK[n]
δn(r)

+ vext(r)−µ = 0 (2.13)

where µ is the Lagrange multiplier and the subsidiary condition is required to ensure the
proper normalization of the density. The exact ground-state of the system can be obtained
by solving Eq 2.13. Unfortunately, the explicit form of FHK still remains unknown. In
this section we have briefly introduced the HK-theorem and the proof part is skipped, for
any reader who is interested in the details, there are several DFT books that can be good
references [29–32].
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2.1.2 Kohn-Sham Equations

The Kohn-Sham (KS) system is an auxiliary system of non-interacting particles with the
same density as the physical system. To introduce the KS equations, we start from the
Hamiltonian of a non-interacting system with a multiplicative external potential vs(r),

Ĥs = T̂ +V̂s(r), V̂s =
∫

d3r n(r)vs(r) (2.14)

with
Ĥs|Φ0⟩= [T̂ +Vs(r)]|Φ0⟩= Es,0|Φ0⟩ (2.15)

To satisfy the Pauli principle, the non-degenerate ground state |Ψ0⟩ is a Slater determinant,

Φ0(r1σ1, ...,rNσN) =
1√
N!

det


φ1(r1σ1) ... φN(r1σ1)

. .

. .

. .

φ1(rNσN) ... φN(rNσN)

 (2.16)

φi are orbitals satisfying the one-particle Schrödinger equation

{− h̄2

2m
∇

2 +νs}φi(rσ) = εiφi(rσ). (2.17)

The variable σ represents the spin degree of freedom. The ground-state wavefunction of
such a non-interacting system is a unique functional of the ground state density, i.e.,

|Φ[n(r)]⟩ with |Φ0⟩= |Φ[n0(r)]⟩, (2.18)

and

n(r) =
N

∑
i=1

|φi(r)|2. (2.19)

Eq. 2.17 and 2.19 are called the KS equations. The HK ground-state energy functional of the
non-interacting system can be defined as:

Es[n] = ⟨Φ[n]|T̂ +V̂s|Φ[n]⟩= Ts +
∫

d3r n(r)vs(r),
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where Ts = ⟨Φ[n]|T̂ |Φ[n]⟩. The total energy E[n] is written as

E[n] = T [n]+Eee[n]+Eext[n]

= T [n]+Eee[n]+Eext[n]+Ts[n]+EH[n]−Ts[n]−EH[n]

= Ts[n]+Eext[n]+EH[n]+Exc[n],

(2.20)

where the functional EH[n] is the classical (Hartree) interaction energy between the particles
with density n(r),

EH[n] =
1
2

∫ ∫
d3r d3r′

n(r)n(r′)
|r− r′| . (2.21)

The last term of Eq. 2.20, Exc[n] = FHK[n]−Ts[n]−EH[n], is defined as the exchange-
correlation (xc) energy functional, and FHK[n] = T [n]+Vee[n]. All the coomplicated many-
body effects not contained in Ts, EH and Eext are absorbed in Exc.

2.1.3 Exchange-Correlation Energy Functionals

The Kohn-Sham equations 2.17 give the exact density of the physical system, and the
complicated many-body Schrödinger equation is converted to a set of single-particle equations
which are much easier to solve. Unfortunately, the term Exc[n] in Eq. 2.20 is still hard to
handle. Thus, an appropriate approximation of Exc is indispensable for solving the KS
equations, which will be discussed in this part. Exc is usually decomposed into an exchange
part Ex and a correlation part Ec,

Exc = Ex +Ec. (2.22)

The standard definition [33, 34] of the exchange energy functional in DFT is

Ex[n] = ⟨Φ0[n]|V̂ee|Φ0[n]⟩−EH[n]. (2.23)

The correlation energy Ec[n] is written as

Ec = ⟨Ψ0[n]|Ĥ|Ψ0[n]⟩−⟨Φ0[n]|Ĥ|Φ0[n]⟩, (2.24)

where |Ψ0[n]⟩ is the true ground-state wavefunction of the interacting system and |Φ0[n]⟩ is
the Kohn-Sham wavefunction.

In practice, the exact form of Exc is unknown and it has to be approximated. Perdew and
Schmidt described a ladder of approximations for Exc, which is called “Jacob’s ladder” [35].
At the lowest rung of this ladder is the local density approximation (LDA) [36]. In LDA, the
system is treated locally as a homogeneous electron gas, where the interacting electrons are
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in an infinite region of space with a uniform positive external potential, that neutralizes the
charge of the electrons.

In LDA we assume a spin-unpolarized system. For actual applications, the spin polar-
ization should be taken into consideration. Thus, the more popular local spin density (LSD)
approximation is introduced. The LSD exchange energy formula is

ELSD
xc [n↑,n↓] =

∫
d3r n(r)εxc(n ↑ (r),n ↓ (r)), (2.25)

where exc(n ↑ (r),n ↓ (r)) is the exchange-correlation energy per particle for the homogeneous
electron gas of spin densities n↑ and n↓ [37–39].

To correct the formal features of LSD, generalized-gradient approximations (GGA) are
proposed, which is one of the most popular methods to describe the exchange-correlation
energy in computational physics. The general formula is

EGGA
xc [n↑,n↓] =

∫
d3r n(r)εGGA

xc (n↑,n↓,∇n↑,∇n↓). (2.26)

It can be treated as an extension of LSD, but taking the gradients of the density n(r) into
consideration. The functional εGGA

xc (n↑,n↓,∇n↑,∇n↓) is not unique in the form. It dependents
on different constraint methods. The most used GGA exchange functional nowadays in
computational physics was proposed by Perdew, Burke, and Ernzerhof (PBE) [40].

Beyond the GGA we have the meta-GGAs. Compared to the form of GGA in Eq. 2.26,
meta-GGAs take the more general form

EmGGA
xc [n↑,n↓] =

∫
d3r n(r)εmGGA

xc (n↑,n↓,∇n↑,∇n↓,∇2n↑,∇2n↓,τ↑,τ↓). (2.27)

The most obvious variable meta-GGAs is the second-order gradient correction ∇2n for
previous approximations and the Kohn-Sham orbital kinetic energy density for electrons of
spin σ

τσ (r) =
1
2 ∑

k
|∇φkσ (r)|2. (2.28)

Several meta-GGAs have been constructed by a combination of theoretical constraints
and fitting to chemical data [41–46] . The modified Becke-Johnson (mBJ) [46] approximation
is one notable example of them. The mBJ potential is a local approximation to an atomic
exact-exchange potential plus a screening term,

vmBJ
x,σ (r) = cvBR

x,σ (r)+(3c−2)
1
π

√
5

12

√
2τσ (r)

n(r)
, (2.29)
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where vBR
x,σ (r) is the Becke-Roussel potential [47] and the density dependent parameter c:

c = α +β

(
1

Vcell

∫
cell

|∇n(r)|
n(r)

)1/2

. (2.30)

Vcell is the unit cell volume, α and β are two dimensionless parameters with the default values
of -0.012 and 1.023 bohr1/2 according to a fit to experimental results [48]. This functional is
rather excellent for calculating band gaps of semiconductors and insulators [48, 49].

2.2 Density Functional Tight-Binding

DFT is successful in accurately calculating the energy and electronic structures for different
systems, but for large atomic structures which contain from hundreds of atoms up to tens of
thousands of atoms, the cost of computational resources increases exponentially and the time
consumption is rather large.

Density functional tight-binding (DFTB) [50, 51] method is a good choice for dealing
with such large systems. One major aspect of DFTB is that the Kohn-Sham energy for the
real system of density n(r) is taken as an expansion of n(r) around a reference density n0(r),
n(r) = n0(r)+δn(r). It assumes that the artificial system of n0(r) without charge transfer is
close enough to the real density such that δn(r) is small. Another aspect of DFTB is that
the electronic wave functions φa(r) are defined as linear combinations of minimal atomic
orbital-type basis sets, {ϕµ}.

φa(r) = ∑
µ

ca
µϕµ(r). (2.31)

In DFTB the total energy EDFTB is composed by three terms [52],

EDFTB = EBS +Erep +Ecoul. (2.32)

The term EBS is called band-structure energy,

EBS = ∑
a

fa ∑
µν

ca∗
µ ca

νĤ0
µν , (2.33)

where

Ĥ0
µν = ⟨φµ |ĤKS

0 |φν⟩= ⟨φµ |−
1
2

∇
2 +V̂ext[n0]+V̂H[n0]+V̂xc[n0]|φν⟩, (2.34)

and fa is the occupation of a single-particle state φa.
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The term Erep is the repulsive energy, it contains the nucleus-nucleus interaction and
exchange-correlation interactions, thus it is in a complicated form,

Erep =−1
2

∫
d3r V̂H [n0(r)]n0(r)+Exc[n0(r)]+Vnn −

∫
d3r V̂xc[n0(r)]n0(r). (2.35)

Erep can be considered as an equivalent to the exchange-correlation functional in DFT,
since it absorbs the most difficult parts and is usually approximated as pairwise repulsive
potential [52]

Erep =
nuclei

∑
I<J

V IJ
rep(RIJ), (2.36)

where V rep
IJ is the repulsive potential between atoms I and J at the inter-nuclear distance RIJ .

The last term, Ecoul, is the energy from charge fluctuations and it contains mainly the
Coulomb interaction, but also the exchange-correlation contributions [52]. It includes the
effects of charge transfer in hetero-nuclear systems [53],

Ecoul =
1
2

∫ ∫
d3r d3r′

(
δ 2Exc[n0]

δnδn′
+

1
|r− r′|

)
. (2.37)

By using the approach of Mulliken population analysis [54], this term can be written as

Ecoul =
1
2

nuclei

∑
IJ

γIJ(RIJ)∆qI∆qJ, (2.38)

where γIJ(RIJ) represents the effective interaction between two spherical charge distributions,
and qI is the total number of electrons on atom I using the localized basis. ∆qI = qI −q0

I are
the atomic charges fluctuations, where q0

I is the number of valence electrons for a neutral
atom.

Following the different terms written above, the final energy expression is

EDFTB = ∑
a

fa ∑
µν

ca∗
µ ca

νH0
µν +

1
2 ∑

IJ
γIJ(RIJ)∆qI∆qJ + ∑

I<J
V rep

IJ (RIJ) (2.39)

The energy in Eq. 2.39 is minimized by variation of δ (EDFTB−∑a εa⟨ψa|ψa⟩) and we obtain

∑
ν

ca
ν

(
H0

µν +
1
2

Sµν ∑
K
(γIK + γJK)∆qK − εaSµν

)
= 0,µ ∈ I,ν ∈ J. (2.40)

Sµν = ⟨ϕµ |ϕν⟩ are the overlap matrix elements [52].
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Fig. 2.1 A schematic of the composed parts of a tilt GB, panels (a) and (c) are two grains
in the GB, vector n is normal to plane (h1k1l1), which is also the boundary plane, θ is the
misorientation angle between the planes (h1k1l1) and (h2k2l2) around the rotation axis o.

The parameters Sµν , H0
µν and V rep

IJ need to be fitted to adequate datasets of DFT calcula-
tions [55] and stored in tables for future calculations to use.

2.3 Basic knowledge of grain boundaries

A grain boundary (GB) is a two-dimensional planar defect in solid crystalline materials
between two portions of material with the same chemical composition and crystal structure.
Inside the GB region, the atomic positions are therefore shifted from the regular sites in a
perfect monocrystal [56].

The GB is usually described by five independent parameters, i.e. macroscopic degrees of
freedom (DOFs), with which we can obtain the full information to build the initial structure
of the GB.

Two degrees of freedom result from the orientation of the grain boundary plane between
different grains and can be described by the normal vector n to this plane. Typically, this
normal vector is given in terms of the Miller indices (hkl). The rotation axis o, which
describes the misalignment of the grains, leads to another two degrees of freedom and is
described by [hokolo]. The last DOF is given by the misorientation angle θ . By these
parameters, the GB is fully described (full notation: θ [hokolo]{hkl}).

Besides the five DOFs, GBs can be classified by the relation between the rotation axis
and the boundary plane: when the rotation axis is parallel to the boundary plane, the GBs
are defined as tilt GBs, and when the axis is perpendicular to the boundary plane they are



14 Theoretical Background

defined as twist GBs. Due to the symmetry of cubic structures, there are cases, in which
the same boundary can be described by different but equivalent notations and the GBs can
belong to more than one category. For example, the tilt GB 53.1◦[100]{021} can also be
described as 36.9◦[100]{021}. The twin tilt GB 70.5◦[110]{111}, where two grains are in
mirror symmetry, can also be obtained by a rotation of 60◦ or 180◦ around the [111] axis
which indicates a twist GB.

To understand the structures of GBs comprehensively, the GBs can also be classified by
the symmetry of the boundary planes. When the boundary planes of adjoining grains can be
defined by the same Miller indices, then the GBs are called symmetrical. GBs with different
boundary planes are called asymmetrical and the notation θ [hokolo]{h1k1l1}× {h2k2l2}
is used, in which h1k1l1 and h2k2l2 represent the Miller indices of the two asymmetrical
boundary planes. For example, 38.9◦[110]{111}×{115} describes an asymmetrical GB.

If the misorientation angles θ of GBs are larger than 15◦, they are called high-angle GBs
and the atomic arrangement in the boundary region can be described using the structural unit
model. In contrast, low-angle GBs (θ < 15◦) are described with the dislocation model [56].
In experimental studies of polycrystalline silicon, the most common high-angle GB is the
mirror symmetrical GB 70.5◦[110]{111} [57, 58].

For an efficient identification of special high-angle GBs, the coincidence-site lattice (CSL)
model was proposed by Kronberg and Wilson in their study of the secondary recrystallization
in copper [59]. In this model, the lattice sites of one grain coincide/overlap exactly with
the lattice sites of the neighboring grain and the number of bonds that are broken across the
boundary is small, which leads to the high stability of GBs. A dimensionless parameter Σ is
used to present the reciprocal value of the density of coincidence sites, Σ can be determined
as Ref. [60]:

Σ =
number of coincidence sites in an elementary cell

total number of all lattice sites in an elementary cell
(2.41)

Σ is an important parameter for characterizing the CSL model. It depends not only on the
misorientation angle but also on the Miller indices of the boundary planes in tilt symmetrical
GBs. The value of Σ can be simply calculated as [56]:

Σ =

h2 + k2 + l2 if (h2 + k2 + l2) is odd

0.5∗ (h2 + k2 + l2) if (h2 + k2 + l2) is even
(2.42)
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For example, the Σ of 53.1◦[100]{021} GB is Σ= 22+12 = 5, and of 36.9◦[100]{031} GB is
Σ = 0.5∗ (32+12) = 5. The two GBs can be written within the CSL model as Σ5[100]{021}
and Σ5[100]{031}, respectively.

The smallest possible value of Σ equals 1: in this situation, all the coincidence sites are
overlapping with the atomic position of the perfect crystal, i.e. Σ = 1 indicates a perfect
crystal (no GB). In experiments, the most observed GBs in bcc and fcc structures are the
twin GBs with the value Σ = 3. Various studies, in both experiments and theories, suggest
that the GBs with a low value of Σ usually correspond to special GBs. In our studies on
silicon, we thus consider CSLs with Σ ≤ 29. These structures display a significant variety
of starting interface configurations and have often been detected in experimental samples,
where the most frequently encountered GBs are the energetically favored CSLs of Σ3, Σ9
and Σ27 [61, 58, 62, 63].





Chapter 3

Constrained structural prediction
approaches and computational details

The development of reliable approaches for crystal structure prediction has brought much
convenience to the discoveries and studies of new materials. It is a challenging open problem
of materials science for predicting microscopic atomic structures of internal reconstructions,
and the determination of their effects on the electronic properties of a multicomponent
material.

In this chapter, we first briefly review the methods of interface structural predictions
in current literature in Sec. 3.1. Then, in Sec. 3.2, our constrained structural prediction
approaches are introduced in detail. Finally, in Sec. 3.3, we present the computational details
in different systems which are investigated using our approaches.

3.1 Interface structure prediction

In the past years, various approaches have been proposed for predicting the interface struc-
tures [64–75]. The introduction of genetic algorithms for the prediction of interface recon-
structions [67, 68] represented a significant advance. Zhang et al. [67] combined a genetic
algorithm with classical molecular dynamics and tight-binding to study silicon GBs. The
use of quantum tight-binding methods led to substantial improvement of the reliability of
calculations, as classical potentials are often inaccurate, and sometimes even qualitatively
wrong [70, 73] when it comes to sampling the complex multi-dimensional potential energy
surface. Chua et al. [68] developed a genetic algorithm to study both stoichiometric and
non-stoichiometric GBs of SrTiO3. Due to the high computational cost, classical inter-
atomic potentials were preferred to carry out this work [68]. More recently, algorithms
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and codes developed for structural prediction of bulk materials were adapted to tackle the
challenging problem of predicting interface reconstructions. Zhu et al. [74] extended US-
PEX [76, 77], a well-established and robust crystal structure prediction code, to the structural
prediction of interfaces. In their seminal work [74], they combined evolutionary search
and classical molecular dynamics, boosted by machine learning post-processing analysis, to
uncover an unexpected rich polymorphism of Cu tilt GBs [69, 72, 74]. Genetic algorithms
together with classical potentials were similarly successfully employed to investigate GBs
in SrTiO3 [68, 78] and symmetric tilt and twist GBs in elementary body-centered cubic
metals [79]. The reduced computational cost provided by the use of classical potentials
enabled the reconstruction and classification of a large set of boundaries, accounting for vari-
able atomic densities at the interface. Similar low-energy reconstruction patterns were also
determined in other metallic GBs, combining structural relaxation using classical potentials
with Monte Carlo probabilities of atom addition or removal [80].

The stabilizing effect of a reduced atomic density at the interface had already been
discussed in early studies on twist GBs in ionic oxides by Tasker and Duffy [81]. Concerning
specifically GBs in silicon, this important issue was stressed by Von Alfthan et al. [64–66].
Using classical molecular dynamics, they revealed low-energy configurations with a higher
degree of structural diversity by varying the number of atoms in the interface region. DFT GB
energies were then calculated a posteriori. In view of those findings, previous simulations of
GBs in silicon that did not consider variable atomic densities at the interface were disputed.

Gao et al. [75] have recently adapted the particle swarm method for crystal structure
prediction to determine GB reconstructions, presenting applications for graphene and rutile
TiO2 [75]. Bonding constraints were imposed to generate better starting structures and DFTB
was used to obtain energies and forces. As standard Slater-Koster parameters provided by
the DFTB+ distributions [82] were adopted, the less accurate tight-binding calculations were
complemented by DFT reoptimization of the lowest-energy structures. The addition and
removal of atoms in the interface region during structural prediction were not considered.

Random structure searching for interfaces was proposed by Schusteritsch and Pickard [71].
This method relies on the repeated generation of random atomic positions in the vicinity of
an interface, respecting efficient constraints, followed by relaxations using DFT energies
and forces. Results for GBs in graphene and SrTiO3 were discussed in both stoichiometric
and non-stoichiometric conditions. The computational cost involved, especially for the
three-dimensional system, was considerable, and in fact, only one tilt GB (the Σ3(111)) was
discussed in this work. Moreover, to ease the computational burden, a structural search was
performed using coarse parameters and soft pseudopotentials, and only the relevant structures
were refined by final accurate calculations.
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All in all, a comparison of the different technical choices underlying these multiple
studies brings to light complementary insight on the mechanisms of interface reconstruction.
We can learn important lessons from the analysis of previous literature. First of all, varying
the atomic density at the interface is a key step. In fact, some thermodynamic states that are
accessed in real systems by a diffusion process, can be simulated in a supercell model only by
removing or adding atoms. Significant deviations from DFT results have been demonstrated
for calculations using classical potentials for silicon [83]. It is also known that force fields are
not capable to stabilize the lowest energy point defect in silicon [84]. A recent comparison
with DFT results for a large dataset also shows that forces calculated with Stillinger-Weber
or Tersoff force fields are of poor quality, both in magnitude and in direction [85], pointing
to the need for a quantum-mechanical description of energies and forces. However, DFT
calculations remain too costly, and different strategies for computational efficiency need to be
followed to ensure the accuracy of quantum ab initio calculations of energies and forces, as
well as the possibility to access large families of interfaces. In this work, we use tight-binding
parameters optimized to repropduce a large dataset of DFT calculations that guarantee a
good sampling of the potential energy surface and yield DFT quality energy and forces [55].

3.2 Constrained structural prediction approaches

Our constrained structural prediction approach is implemented in the framework of the
minima hopping method (MHM), which is developed by S. Goedecker and M. Amsler [86,
87]. MHM is an efficient structural prediction algorithm designed to determine the low
energy crystal structures of a system given solely its chemical composition.

In MHM, the potential energy surface is explored using a sequence of local geometry
optimization steps, followed by molecular dynamics steps in order to allow the system to
escape from local minima. In the molecular dynamics steps, the direction of the initial
velocities is chosen through a softening procedure. This returns the direction of a low
potential barrier, which, according to the Bell-Evan-Polanyi principle [88, 89], is likely
to lead to a lower minimum. This new minimum can, after optimization, be accepted or
not, depending on whether the energy difference to the previous minimum is below or
above a certain threshold. The latter is dynamically adapted to obtain an acceptance rate of
approximately 50%. The predictive power of this approach was already demonstrated in
a wide set of applications, ranging from bulk crystals [90] to low-density structures [91],
crystals with defects [92], quasi two-dimensional materials [93], etc.

Most often, structural prediction using the MHM is performed calculating energy and
forces from first-principles using density functional theory (DFT). This is clearly the preferred
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method as DFT allows for the study of the whole periodic table with good accuracy. However,
as the number of atoms in the unit cell (and, consequently, the number of local minima of the
enthalpy surface) grows, DFT simulations become prohibitively long. This is certainly the
case for our unit cells containing several hundred atoms. When good parametrizations are
available, the DFTB scheme as implemented in the DFTB+ package [82] has proved to be a
valuable alternative for global structural prediction studies [91–95]. Tight binding combines
the advantages of a fully quantum approach with a moderate computational cost. We used
the tight-binding parameters developed by Huran et al. [55], which are designed to guarantee
an accurate evaluation of both energy and forces for group-IV compounds. The fitting
procedure includes the generation of unbiased training sets and subsequent optimization of
the parameters using a pattern search method. The DFT data sets are designed to encompass
a wide range of crystal structures characteristic of different atomic arrangements that can
appear in structural prediction simulations. As a target for the optimization, it is required that
the formation energy and the forces on the atoms calculated within tight-binding reproduce
the ones obtained using density-functional theory. An extensive test of these parameters is
reported in Ref. [55].

For a fully reliable interpretation of the results, the final structures are always refined at the
DFT level using the VASP [96–98] code with the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [40]. Despite the well-known limitations of the PBE functional for
calculation of formation enthalpies, with errors usually at the level of ∼ 0.2 eV/atom for
dissimilar chemistries, we can rely on strong error cancellations when considering chemically
similar phases [99]. In the specific case of silicon polymorphs, the reliability of PBE
calculations to predict phase stability has been proven by previous works [100, 91].

3.2.1 Approach for interface reconstructions

For the simulations of lowest-energy interface reconstruction, the implementation of the
constraints is explained as follows: we build a supercell that contains the interface we want
to study, as shown in Fig. 3.1. Such supercell is flexible for different studies that the structure
can either contain the grain boundary or interface. The atoms of the supercell are separated
into two sets, namely those belonging to the bulk regions and the ones making part of the
interface. Considering the variation of volume during the structural reconstruction, we add
a vacuum layer between the two bulk regions as depicted in Fig. 3.1, while the periodic
boundary conditions are maintained parallel to the interface plane. The thickness of the
vacuum layer should be large enough to eliminate the interaction between the two separated
bulk parts. The thickness of bulk regions also needs to be sufficiently large to avoid the
effects from the free surfaces of bulk regions.
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Fig. 3.1 A schematic of a starting supercell for the reconstruction of an interface. The
constrained parts are indicated by orange rectangles, while the blue rectangle indicates the
interface region, and their atomic positions are optimized during the MHM simulations.
Atoms A and B are highlighted in red as they are mentioned in the text.
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The relative positions of the bulk-like atoms (orange regions in Fig. 3.1) are fixed, so that
the bulk regions behave like rigid bodies. This is achieved by imposing the conditions [101]

Fn −Fm = 0 , (3.1)

where n and m run over pairs of atoms in each bulk region. Then we choose in the top and
bottom bulk layers, respectively, one atom A and one atom B (red atoms in Fig. 3.1). In
the top bulk region, we imposed Eq. 3.1 to all pairs of atoms containing atom A, while in
the bottom bulk region we impose the same constraint to all pairs containing atom B. We
obtain therefore N −1 equations per layer, where N is the number of atoms composing each
bulk layer. This kind of constraint is clearly more physical than fixing each single atomic
position to the perfect crystalline bulk, as the bulk layer can move as a whole, allowing for
the minimization of the strain on the atoms at the interface during their reconstruction. In
the (blue) interface region, all atomic coordinates are fully optimized. Note that, during the
MHM calculations, the supercell lattice parameters are always kept fixed while the atomic
positions are relaxed.

These constraints can also be easily applied to the study of surface reconstruction. We
only need to eliminate the constrained condition in the top bulk region and impose Eq. 3.1
between atom B and the atoms of the interface region. Under this constraint, the atoms of the
top bulk region will be optimized, while the bottom and interface regions are maintained as
bulk.

Our approach also allows for variable atomic densities close to the interface. We observe
that in many cases the lowest-energy reconstruction is attained only after adding (or removing)
atoms to (from) the interface region. We remark that we tested systematically all possible
modifications of the atomic density, until reaching a configuration equivalent to the starting
one, differing by the simple addition of a full atomic plane.

3.2.2 Approach for point defects

For the geometrical prediction of point defects in a bulk crystal, we adjust the constraint
conditions in the reconstructions of interfaces. Our procedure is the following: (i) we build a
supercell of the parent compound large enough to include the defect plus a buffer region, as
shown in Fig. 3.2. (ii) We select the atoms within a slab in each Cartesian direction and fix
them to their equilibrium coordinates. For the purposes of the algorithm, this buffer region
should be thick enough to represent the bulk of corresponding crystals, while the volume
inscribed (atoms in green part in Fig. 3.2) should be large enough to contain the point defects.
We also fix the lattice vectors. (iii) We may add or remove atoms from the green region, in
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Fig. 3.2 A Schematic of starting supercell for the reconstruction of point defect in a bulk
crystal. During the MHM simulations, the atoms in the gray part are fixed, while the atomic
positions in the green part are optimized.

case we want to study interstitials or vacancies. (iv) We perform MHM simulations obeying
the above constraints. These yield as the lowest possible structure the bulk phase, while
metastable structures represent point defects.

Due to the geometrical constraints, it turns out that the same point defect located in
different positions of the green region will have slightly different energies as a consequence
of the different strains imposed by the fixed atoms. As such, they will likely be misidentified
by the global structural prediction algorithm as different defects. To resolve this issue, we
perform an extra step in our methodology: (v) We eliminate the constraints on the atoms
(while still keeping the lattice vectors fixed) and perform a re-optimization of the geometry.

The process of defect creation stems from the competition between the minimum internal
energy of the ideal crystal and the stabilizing effect of entropy related to the disorder
introduced by defect creation. Formally, the Gibbs’ free energy of formation of a defect
is given at temperature T and pressure P by the sum of the formation enthalpy and the
entropic term T ∆S. We can however safely rely on the formation energy only to obtain
the geometry of the lowest-energy isolated defects. First of all, we are interested in single
isolated defects. The variation of volume due to the creation of a point defect is negligible
in the dilute case and the formation enthalpy can be approximated by the internal energy
only. The entropic term can be split in the contributions of configurational entropy and
phonons. The configurational entropy contribution to the free energy of alloys cannot be
neglected, but in the case of a diluted defect (i.e., if the defect concentration is close to zero)
the entropic contribution is of the order of few meV per unit cell. The vibrational entropy
also contributes to the free energy, but its inclusion has an extremely high computational
cost, and it is therefore also neglected in this work.
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3.3 Computational details

3.3.1 Simulations for silicon GBs

Fig. 3.3 Construction of a starting supercell containing a single Σ5(021) GB. We see a
cut of the supercell along the axis perpendicular to the (021) boundary plane (pink line).
The constrained layers are indicated by the magenta (and yellow) atoms, while blue atoms
constitute the interface region and their atomic positions are optimized during the MHM
simulations. Atoms A and B are highlighted in yellow as they are reference atoms for
imposing the constraint conditions for the top and bottom bulk parts, respectively.

All starting geometries of grain boundaries were built using the software GB STU-
DIO [102], the different GBs are labeled by the introduced notation θ [hokolo]{hkl} (presented
in Sec. 2.3). As an illustration, we show in Fig. 3.3 the starting supercell of the Σ5(021) GB.
In the figure, we also indicate how atoms are separated into bulk-like and interface atoms.

We run two different MHM calculations for each GB supercell from different initial inter-
face configurations to avoid starting point biases. Note that the supercell lattice parameters
are always kept fixed while the atomic positions are relaxed. After having explored more than
200 different minima, we stopped the MHM runs. Note that we tested that the lowest-lying
minima evaluated during each run are independent of the chosen initial configuration.

The most promising structures (i.e. the five lowest-energy structures of each run) were
then refined using VASP: the energy cutoff was set to 420 eV for silicon atoms, and for
geometry optimization a 1×1×1 Monkhorst-Pack k-point [103] grid is selected. We then
increased it to 8×4×1 for accurate energy and DOS. We assured that the convergence of total
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energy is better than 0.01 eV per atom. We notice that the energy ordering of the different
structures with the PBE is consistent with the one of tight-binding. However, it turns out
that bulk silicon is slightly over-stabilized in tight-binding, leading systematically to larger
GB energies when compared to DFT. The DOS is also calculated with VASP using the PBE
functional [40] and a Gaussian broadening of 0.1 eV.

The quantity that the minima-hopping algorithm must optimize is not the total energy of
the supercell, but the interface energy γ , which is defined as the difference of total energy per
unit area between the supercell with a GB and a supercell with the same number of atoms of
crystalline silicon. It consists of the following steps. Using periodic boundary conditions, we
build a starting supercell that contains two equivalent GBs. After having calculated once for
all the total energy per atom µSi of bulk Si, we calculate the total energy of the unrelaxed
supercell E2GB

unrel containing two equivalent GBs. We then add a vacuum layer to obtain open
surfaces in the normal direction, while periodic boundary conditions are maintained parallel
to the GB plane. The resulting supercell has only one GB and two surfaces separated by
vacuum (see Fig. 3.3). We calculate the energy of this unrelaxed supercell with vacuum
E1GB

unrel. We use now the supercell with a single GB and vacuum as a starting geometry for the
MHM structural prediction, obtaining E1GB

rel from the lowest-energy minimum.
The interface energy of the single unrelaxed GB is γunrel = 1

2A

(
E2GB

unrel −NµSi
)
, where N is

the number of Si atoms in the supercell and A is the GB interface area. The surface energy of
the unrelaxed interface with vacuum is γsurf = 1

A

[
E1GB

unrel −NµSi − 1
2

(
E2GB

unrel −NµSi
)]

. Finally,
we can evaluate the relaxed GB energy as

γ =
1
A
(E1GB

rel −MµSi)− γ
surf, (3.2)

where M is the number of atoms in the relaxed supercell and M can differ from N, i.e. we
account for the possible change of atomic density in the interface region.

We needed, of course, to build supercells of different sizes and perform consistent
convergence tests to determine the ideal number of atomic layers that allows for a valid
description of an isolated interface between two bulk-like crystalline domains. In Fig. 3.3 the
thickness of the bulk layer is 14 Å while the interface is 15.4 Å thick. The vacuum layer is
10 Å thick. To perform electronic structure calculations we added hydrogen atoms to saturate
the Si atoms at the surface in contact with the vacuum layer. This surface passivation, used
only for calculations of the DOS, prevents from having spurious surface statesappearing in
the band gap.
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Fig. 3.4 Construction of a starting supercell containing {111} diamond interface. The
supercell is viewed along [110] direction, the constrained layers are indicated by the brown
(and orange) C atoms, while blue atoms constitute the interface region and their atomic
positions are optimized during the MHM simulations, Atoms A and B are highlighted in
orange as they are reference atoms for imposing the constraint conditions for the top and
bottom bulk parts, respectively.

3.3.2 Simulations for interface reconstructions in diamond

The study of interface reconstructions in diamond is separated into two parts: the grain
boundaries and the interfaces along different directions in bulk diamond. The procedure of
the structural prediction follows the approach in Sec. 3.2.1, in particular, the simulations of
carbon GBs are similar to the study of silicon GBs in Sec. 3.3.1.

The carbon GB supercells were built using the software GB STUDIO [102]. Then, for
the interface study, we removed one of the grains to obtain a supercell composed of pure
diamond with specific interface planes. As shown in Fig. 3.4, we present a supercell for the
study of the {111} interface reconstruction. During the MHM simulations, the constraint
condition on the forces in Eq. 3.1 is imposed on the atoms in the top and bottom layers (the
brown atoms), in which the atoms A and B (orange atoms) are taken as reference atoms for
the constraints. The thickness of added vacuum is larger than those in silicon GBs (10 Å),
because of the large volume expansion during the structural reconstruction. In our study, the
vacuum for carbon supercells is set from 15 to 20 Å, the specific value depends on the size of
the atomic structure.

For convenience, the supercells are labeled by the Miller indices of the interface plane.
For example, the supercell with the interface of (112) diamond plane is represented as (112)
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supercell. The lattice constant of the cubic diamond unit cell for constructing the supercell is
lC=3.57 Å, which is optimized with DFTB [82].

The structural prediction follows the same strategy introduced in Sec. 3.2.1. We performed
four different MHM calculations for each supercell, we stopped each run after having
explored more than 200 different minima. In contrast to focusing on the lowest-energy
structures in Sec. 3.3.1 of Si GBs, we mainly investigate the low-energy structures composed
of sp3- and sp2-hybridized carbon atoms in this part of the study.

The final structures were then refined with VASP using the PBE exchange-correlation
functional [40]. The energy cutoff was set to 350 eV, we selected a 1× 1× 1 Monkohst-
Pack k-point [103] grid for geometry optimization and increased it to 6×6×2 for accurate
energies and the DOS (with a Gaussian broadening of 0.1 eV). To saturate the C atoms at the
surface contact with the vacuum layer, we added hydrogen atoms to them for the electronic
structure calculations.

3.3.3 Simulations for point defects in hexagonal silicon

Fig. 3.5 Depiction of the (0001) surface of the constrained cell. In gray, we show the silicon
atoms that are fixed and in blue the atoms that are allowed to move. Note that there is a slab
of silicon atoms in the perpendicular direction that are fixed, but that is not visible in the
figure.

To study the point defect in hexagonal silicon, we apply our approach presented in
Sec. 3.2.2 to an orthorhombic supercell containing 288 silicon atoms (72 unit cells of the
primitive hexagonal lattice) with lattice vectors a = 15.4 Å, b = 20.0 Å, and c = 19.1 Å. The
supercell is depicted in Fig. 3.5, 3 layers of atoms are selected to be fixed as the bulk part,
these are the atoms in gray in Fig. 3.5.

Following this procedure, we performed a series of simulations for unit cells containing
one or two vacancies (-1 or -2 atoms), one or two interstitials (+1 or +2 atoms), and with
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the pristine 288-atom cell. The atoms were added/removed to/from random positions in the
lattice. For each case, we performed four independent minima-hopping runs, and each run
was stopped after obtaining around 400 minima.

It is true that, in general, the charge state of the defect is essential to determine its
thermodynamic and electronic properties. However, it was shown for cubic silicon that the
vacancy is the only defect stabilized by charge, and this stabilization is rather small [104, 105].
In view of that, we concentrate in this work on neutral defects only.

To eliminate the error introduced by the use of tight-binding, we perform a final geometry
optimization of all interesting geometries using VASP with PBE exchange-correlation
functional [40]. In this case, we used an energy cutoff of 420 eV, and a mesh of 1×1×1 k-
points for the geometry optimization and 4×3×3 for the calculation of formations energies.
This leads to a precision in the defect formation energies better than a hundredth of an eV. It
is harder to estimate the intrinsic accuracy of DFT functionals in evaluating defect formation
energies. In any case, we should remember that we are calculating energy differences of
structures that are chemically similar, so we expect that many of the errors are likely to
cancel out in this process. We remark that we do not include here any finite-size or band-edge
correction, as our present aim is to predict the lowest-energy defects in hexagonal silicon,
and this should be largely unaffected by these corrections.

For the analysis of the electronic structure, we employed the modified Becke-Johnson
potential of Tran and Blaha [46, 48]. It is by now known that this is the best functional to
calculate band gaps of semiconductors and insulators [49]. It is in fact even slightly better on
average than the screened hybrid of Heyd and Scuseria from 2006 [106] at only a fraction
of the computational effort. Moreover, it was shown that it yields a very good description
of the hexagonal phase of silicon and germanium [107–109]. Modified Becke-Johnson
has been used in the past to calculate the electronic structure of defects, for example in
ZrO2 [110], in the mixed borate–carbonate Pb7O(OH)3(CO3)3(BO3) [111] or in Mg2X (X =
Si, Ge, Sn) [112]. The DOS calculations were performed using the tetrahedron method with
a 2×2×2 k-point grid.



Chapter 4

Structure-property relations at silicon
grain boundaries

In this chapter, we present the results of silicon GBs obtained with our constrained structural
prediction approach, which has been introduced in Chapter 3, for a large and varied family
of symmetric and asymmetric tilt boundaries in polycrystalline silicon (Sec. 4.1.1, Sec. 4.1.2
and Sec. 4.1.3). We find a rich polymorphism in the interface reconstructions, with recurring
bonding patterns that we classify in increasing energetic order. We also compare the energy
calculated with different DFTB parameterizations in Sec. 4.1.4. Then, we compare the
stability of the obtained low-energy structures in different group-IV elementary crystals
(Sec. 4.1.5). We also classify the grain boundaries into different types according to how the
interface reconstructions are affected by removing or adding atoms at the interface region
(Sec. 4.2). Finally, a clear relation between bonding patterns and electrically active grain
boundary is unveiled and discussed (Sec. 4.3).

4.1 Low-energy grain boundaries

4.1.1 Grain boundaries with rotation axis [110]

In Table 4.1 we present the structures of tilt GBs with rotation axis [110] under investigation,
with information on their tilt axis, misorientation angle, GB energy of the lowest-energy
structures found in MHM, the total number of atoms in the supercell, and number of atoms
at the interface region. An example of the reconstructed lowest-energy structure of Σ11(113)
GB is shown in Fig. 4.1.

Our calculations indicate that almost all considered GBs present a strong reconstruction
of atomic bonding at the interface, that completely modifies the initial welding of tilted
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Table 4.1 Summary of the structures for GBs with rotation axis [110] studied in this work:
GB labels, tilt axis, misorientation angle θ , minimum GB energy γ in J/m2 after interface
reconstruction, the number of atoms at the interface region Nint and the total number of atoms
in the supercell Ntotal

label tilt axis θ γ Nint Ntotal
Σ19a(331) [110] 26.5◦ 0.339 104 160
Σ27a(552) [110] 31.6◦ 0.381 320 432
Σ9(221) [110] 38.9◦ 0.202 234 432

Σ11(332) [110] 50.5◦ 0.392 184 352
Σ3(111) [110] 70.5◦ 0.013 80 192

Σ17b(334) [110] 86.6◦ 0.462 182 272
Σ17b(223) [110] 93.4◦ 0.440 178 266
Σ3(112) [110] 109.5◦ 0.386 84 188

Σ11(113) [110] 129.5◦ 0.402 184 352
Σ9(114) [110] 141.1◦ 0.378 200 288

Σ27a(115) [110] 148.4◦ 0.623 204 428
Σ19a(116) [110] 153.5◦ 0.616 208 304

Σ3(001x221) [110] 70.5◦ 0.497 132 284
Σ9(111x115) [110] 38.9◦ 0.433 224 304

crystalline grains. Such reconstructions cannot be obtained by performing standard structural
optimizations: a local relaxation would in fact only lead to the closest local minimum, totally
ignoring the complexity of the highly-dimensional potential energy surface. An exception is
the very symmetric Σ3(111) GB, where all silicon atoms are already conveniently bonded
from the start. Not surprisingly, the reconstructed geometries always tend to eliminate
dangling bonds and to bring Si–Si bond lengths and bond angles as close as possible to
their value in bulk diamond silicon. For example, in Fig. 4.1 the starting interface and
reconstructed interface of Σ11(113) GB are shown along [110] axis. The irregular gap
between the two grains forms symmetric six-atom rings with atomic bonds differing from
the tetrahedral bonds in bulk Si. Those bonds are formed along the [110] direction and called
single atomic columns [113, 73], which will be discussed in a later part.

To label and classify the reconstructed GBs, we extend the set of structural units and the
notation proposed by Papon and Petit [114]. If we draw [110] projections of the stick-and-ball
models of the interface, as in Fig.4.1, we can see that sp3-hybridized atoms form cyclic units,
whose composing rings can be labeled by the symbols kn j

ai. The notation is easy to interpret:
n is the number of edges of the ring, i is the number of single atomic columns (see panel
(a) and (b) of Fig.4.2), a indicates either a boat shape (a = “b”) or a nearly flat shape (a =
“f”) in the lateral view of the bonding pattern, and j is the number of double lines (if j = 2,
this index is omitted). A double line, which sometimes is really indicated as a double line in



4.1 Low-energy grain boundaries 31

Fig. 4.1 The [110] projection of the starting structure (left panel) and the reconstructed
interface (right panel) of Σ11(113) GB. Single-atomic columns aligned along the [110] axis,
i.e. perpendicular to the view plane, are highlighted by red atoms.

the stick-and-ball model, is the bonding of an atom of the basic (110) plane with two others
atoms situated in the upper and lower planes. It turned out that our simulations yielded a few
extra bonding patterns that were absent in the classification of Ref. [114]. These new units
are related, specifically, to the existence of silicon atoms with five-fold coordination (see
panel (c) of Fig. 4.2). In view of that, we added the superscript k = 5 to indicate the presence
of five-fold coordinated atoms in the ring. We never found, in most stable reconstructed GBs,
silicons atoms with less than 4 nearest neighbors (i.e., with dangling bonds), or with more
than 5 nearest neighbors. These units appear only in very high-energy configurations that are
quickly dismissed by our structural prediction procedure.

A scheme of the percentage of GBs that contain a specific atomic-ring unit is shown
in Fig. 4.3. We see that the most common unit is, not surprisingly, the standard bulk six-
atom ring. This is followed by five-membered rings and 6b and 6b1 six-membered rings.
Also, 61 and 71 units appear with a high frequency. Note that 6b1, 61, and 71 rings include
one single atomic column, making this particular bonding scheme rather common in our
reconstructed interfaces. And the rings composed with more atoms, 82 and 8b2 rings only
found in Σ27a(115), are accompanied with higher GB energy, as shown in Table 4.1. The
GB energy of the Σ27a(115) reconstructed interface is higher than that of any other GB with
a rotation axis of [110].

As an example, the lowest-energy GB reconstructions of the Σ3(112) interface and their
classification using atomic-ring units are given in Fig. 4.4. The Σ3(112) interface is one of
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(a) (b) (c)

Fig. 4.2 Recurring reconstruction patterns. (a) and (b): A [111̄] view of the ground state of
the Σ3(112) GB, showing two possible types of reconstructed single atomic columns (red
atoms), aligned along the [110] rotation axis, the corresponding GB energy of those two
patterns is 0.386 and 0.398 J/m2, respectively; (c) View of a [111] plane of a low-energy
reconstruction of the Σ3(112) GB with 5-coordinated silicon atoms (orange atoms) and single
atomic columns (red atoms).
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Fig. 4.3 Percentage of GBs that contain a specific atomic-ring unit. We consider the set of
lowest-energy [110] GBs of Table 4.2 and Table 4.3. For example, all studied structures
contain six-membered rings, so their occurrence is 100%. Only Σ27a(115) contains 82 and
8b2 rings, and their occurrence is 7.14%.

the most studied in silicon and in germanium [113, 115]. The structure (d) is also known
as the mirror-symmetric model of Ziebarth et al. [116], while (a) is the corresponding non-
symmetric model. In agreement with Ref. [116], we conclude that the non-symmetric model
is the ground-state, with a considerably lower GB energy than its symmetric counterpart. We
also find that the single atomic columns have two different ways to be formed in the structure,
which depends on the coordinates of bonded atoms along [110] axis shown in Fig. 4.2(a) and
(b), the two patterns exhibit the same structural view along [110] direction, and the more
symmetric pattern in panel (a) is slightly more stable than the pattern in panel (b). Moreover,
we find two new reconstruction patterns with intermediate interface energies, shown in panels
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(b) and (c) of Fig. 4.4. The three most stable structures exhibit two single atomic columns
per unit cell (indicated by red atoms in the panels (a), (b), and (c) of Fig. 4.4), while the
higher-energy symmetric model has one column plus a pair of five-fold coordinated atoms
(indicated by orange balls). The initial unrelaxed cell is given for comparison in panel (f): it
contains five-fold coordinated atoms and dangling bonds, which are responsible for a value
of the GB energy about 1 J/m2 larger than in the optimized ground-state structure.

In those low-energy structures of Σ3(112) GB in Fig. 4.4, even though they contain a
variety of atomic rings, the number of single atomic columns in panel (a), (b), (c), and (e)
keeps the same, with four atoms forming two columns, and in (d) the GB contains one
column and a pair of five-fold coordinated atoms which also include four atoms in total. We
find this is not occasional that the total number of atoms composing the single atomic column
and bonded with five-fold coordination is always even (seen in Table 4.2 and 4.3), and this
number is consistent in most low-energy structures of the [110] GBs with misorientation
angle θ exceeding 70.5◦.

In Fig. 4.5, we present six low-energy structures of the Σ11(113) GB, where panel (a)
is the ground state as we have shown in Fig. 4.1. In the structures presented in Fig. 4.5(a)
and (c), there are 8 single atomic columns, which are formed by 16 atoms. In panel (c), the
interface contains 7 columns plus a pair of five-fold coordinated atoms. In panel (d), the
structure contains 6 columns plus two pairs of five-fold coordinated atoms. The interfaces in
panels (e) and (f) contain 5 columns plus three pairs of five-fold coordinated atoms and 4
columns plus four pairs of five-fold coordinated atoms, respectively. The two sites with a
single atomic column in the first 6f2 ring starting from left in (a) are indicated with “A” and
“B”, the atomic site between them is labeled with “C” and the connecting site in the second
6f2 ring is “D”. In the second lowest-energy structure, shown in panel (b), the single atomic
columns at “A” and “B” break. The atoms at those sites move towards the boundary plane
and form zigzag bonds with the two atoms at “C”. At the same time, the atoms at “C” and
“D” separate and make each atom at “C” bonded only with one atom at “D”. Then, the atoms
at “D” move to each other along [110] axis and form a new atomic column to ensure a fully
bonded situation for the atoms. As a result, we obtain over-coordinated atoms at “C” and a
new single atomic column at “D”. Another transition structure resulting from the structure in
Fig. 4.5(a) is shown in panel (c), where the GB energy (0.493 J/m2) is basically the same
with structure in (b) (0.490 J/m2), but there is no over-coordinated atom at the interface.
The formation of the structure in Fig. 4.5(c) can be described as follows: The single atomic
column at “A” in Fig. 4.5(a) breaks and atoms at “C” move towards “A” and away from “D”,
a new single atomic column is formed between the atoms at “D”. Similarly, atoms at “C” can
also move towards “B” and form an equivalent interface.
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Fig. 4.4 In panels (a) to (e), we present the five lowest energy structures of the Σ3(112)
GB. Panel (f) shows the starting structure used for the MHM simulations. For a clearer
representation, we always show two unit cells along the boundary. In the figures, identical
reconstructed atomic rings are filled with the same color. Red atoms form single atomic
columns, orange atoms are five-fold coordinated, and green atoms have dangling bonds. We
also present the GB energy and the unit atomic rings composing the interface. The same
color scheme for the unit rings is used in Fig. 4.1.



4.1 Low-energy grain boundaries 35

In the higher-energy structures shown in Fig. 4.5(d) to (f), similar structural transition
features are found, which means that two single atomic columns break and form one column
at another site plus a pair of five-fold coordinated atoms. The stability of the interface
decreases with the increasing proportion of five-fold coordinated atoms, as we can see from
the given GB energy. For the interface in Fig. 4.5 (f), the GB energy (0.805 J/m2) is over
two times larger as for the interface in Fig. 4.5 (a) (0.391 J/m2). Regardless the locations
of the single atomic columns and over-coordinated atoms, the number of atoms involved
those “new” bonds, which are different from the tetrahedral coordination in bulk silicon,
always keeps the same during the transitions. This is observed in most GBs reconstructed
with single atomic columns, such as Σ3(112) shown in Fig. 4.4, Σ9(114) shown in Fig. 4.6,
Σ17b(334) shown in Fig. 4.7, Σ17b(223) shown in Fig. 4.8, Σ19a(116) shown in Fig. 4.9 and
Σ27a(115) shown in Fig. 4.10.

(a) EGB = 0.391 J/m2 (b) EGB = 0.490 J/m2 (c) EGB=0.493 J/m2

(d) EGB = 0.619 J/m2 (e) EGB=0.696 J/m2 (f) EGB=0.805 J/m2

Fig. 4.5 Six low-energy interfaces of the Σ11(113) GB viewed along [110] axis. The single
atomic columns and five-fold coordinated atoms are indicated by red and orange atoms,
respectively.

In general, we find that the patterns present in the reconstructed interfaces of [110] GBs
are highly dependent on the misorientation angle. In fact, for values of this angle up to
70.5◦, low-energy reconstructions are composed of five-, six-, and seven-membered rings,
without single atomic columns. This is confirmed by experiments, and it is reflected in
experimentally-based models [117, 118], originally built for diamond and then extended to
other group-IV elements [119]. In contrast to these models, we do not need to introduce
dangling bonds to model GBs with larger angles. Our results from structural prediction
show instead that at larger angles the inclusion of single atomic columns is enough to
restore a four-fold coordination of all silicon atoms and to reduce bond distortions. We



36 Structure-property relations at silicon grain boundaries

(a)EGB = 0.378 J/m2 (b) EGB = 0.600 J/m2 (c) EGB = 0.643 J/m2

(d) EGB = 0.699 J/m2 (e) EGB = 0.727 J/m2

Fig. 4.6 Low-energy structures of the Σ9(114) GB. Four single atomic columns are in (a),
(b), (c), and (e); three columns and a pair of five-fold coordinated atoms are in (d). The
atoms bonded with single atomic columns and five-fold coordination are indicated by red
and orange atoms, respectively.

note that, from high-resolution electron microscopy images [118], it is often not possible to
distinguish between single atomic columns and under-coordinated atoms, which may lead to
the construction of erroneous empirical models.

The lowest-energy interfaces of the studied GBs with rotation axis [110] are shown with
structural patterns in the Tables 4.2 and 4.3.
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(a)EGB = 0.462 J/m2 (b) EGB = 0.491 J/m2 (c) EGB = 0.522 J/m2

(d) EGB = 0.543 J/m2 (e) EGB = 0.545 J/m2

Fig. 4.7 Low-energy structures of the Σ17b(334) GB. Two single atomic columns are in all
structures. The atoms bonded with single atomic columns and five-fold coordination are
indicated by red and orange atoms, respectively.

(a)EGB = 0.440 J/m2 (b) EGB = 0.448 J/m2 (c) EGB = 0.449 J/m2

(d) EGB = 0.496 J/m2 (e) EGB = 0.612 J/m2

Fig. 4.8 Low-energy structures of the Σ17b(223) GB. Two single atomic columns are in (a)
to (d); one column and a pair of five-fold coordinated atoms are in (e). The atoms bonded
with single atomic columns and five-fold coordination are indicated by red and orange atoms,
respectively.
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(a)EGB = 0.616 J/m2 (b) EGB = 0.627 J/m2 (c) EGB = 0.646 J/m2

(d) EGB = 0.659 J/m2 (e) EGB = 0.661 J/m2

Fig. 4.9 Low-energy structures of the Σ19a(116) GB. Five single atomic columns and a pair
of five-fold coordinated atoms are in (a); Four columns are in (b), (c), and (e); three columns
and a pair of five-fold coordinated atoms are in (d). The atoms bonded with single atomic
columns and five-fold coordination are indicated by red and orange atoms, respectively.

(a)EGB = 0.624 J/m2 (b) EGB = 0.675 J/m2 (c) EGB = 0.677 J/m2

(d) EGB = 0.678 J/m2 (e) EGB = 0.681 J/m2

Fig. 4.10 Low-energy structures of the Σ27a(115) GB. Four single atomic columns are in
all structures. The atoms bonded with single atomic columns and five-fold coordination are
indicated by red and orange atoms, respectively.



4.1 Low-energy grain boundaries 39

Table 4.2 Part I. Summary of misorientation angles θ , GB energies γ and structural patterns
for [110] tilt GBs. Atoms forming single atomic columns are indicated in red.

θ GB label γ (J/m2) Patterns

26.5◦ Σ19a(331) 0.339 5+6+7

31.6◦ Σ27a(552) 0.381 5+6+7

38.9◦ Σ9(221) 0.202 5+6+7

70.5◦ Σ3(111) 0.013 6+6b

86.6◦ Σ17b(334) 0.462
5+5 f 2

6+6b +61 +6b1
7+7b +71

93.4◦ Σ17b(223) 0.449
5+5 f 2

6+6b +61 +6b1
7+7b +71

109.5◦ Σ3(112) 0.386
5

6+6b +6b1 +6 f 2
71
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Table 4.3 Part II. Summary of misorientation angles θ , GB energies γ and structural patterns
for [110] tilt GBs. Atoms forming single atomic columns are indicated in red, orange atoms
are five-fold coordinated.

θ GB label EGB(J/m2) patterns

129.5◦ Σ11(113) 0.402 6+61 +6b1 +6 f 2

141.1◦ Σ9(114) 0.378
5+5 f 1

6+6b +61 +6b1
71 +7b1

148.4◦ Σ27a(115) 0.623

5+51 +5 f 1 +5 f 2
6+6b +61 +6b1

71 +73

82 +8b2

153.5◦ Σ19a(116) 0.616

5+5 f 2 +
55

6+6b +61 +6b1 +
6 f 2 +

56
71 +7b1 +

572

70.5◦ Σ3(001x221) 0.497
5 f 2 +

55
6+6b +61 +6b1 +

56b
7b +7b1

38.9◦ Σ9(111x115) 0.433
5+5 f 1

6+6b +61 +6b1 +6 f 3
7+71
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4.1.2 Grain boundaries with rotation axis [100]

In contrast to the variety of reconstructed patterns shown by the GBs with a [100] tilt axis,
we find that all GBs with a [100] tilt axis are characterized by only three structural units:
namely atomic spirals formed by three-, four- and five-atom rings oriented along the [100]
axis.

As an example, we compare the interfaces of the Σ5(021) GB in Fig. 4.11. The two
interfaces in (a) and (c) present similar atomic configurations along the [100] axis and can
be hardly distinguished. In contrast, when comparing the structure of the highlighted parts
extending along [100] in (b) and (d), a strong reconstruction is showing so that the layer-type
interface in the starting structure reconstructs to an atomic spiral along the [100] axis, which
dramatically enhances the stability of the interface so that the GB energy drops from 1.883
to 0.393 J/m2.

In Table 4.4, more information on investigated structures of GBs with rotation axis [100]
is given, and the corresponding structural patterns are listed in the Table 4.5. These results are
in agreement with reported experiments [120] and calculations [121, 122, 67]. We also find,
for a fixed GB symmetry, that several low-energy reconstructed patterns have similar GB
energies. This implies that experimental samples will exhibit a certain degree of disorder, as a
mixture of low-energy patterns is expected to coexist at room temperature. Other constraints,
related, for example, to the proximity of another GB, may lead to the formation of higher
energy reconstructions.

(a) (b) (c) (d)

Fig. 4.11 Recurring reconstruction patterns in [100] GBs. (a) and (b): A [100] view of the
starting interface of Σ5(021) GB, and the atomic configuration of the interface plane along
the [100] axis. (c) and (d): A [100] view of the ground state of the Σ5(021) GB and the
atomic spirals along the [100] rotation axis of the reconstructed parts indicated by pale green
atoms. The [100] axis is indicated with a light blue arrow line.
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Table 4.4 Summary of the structures studied in this work: GB labels, tilt axis, misorientation
angle θ , and minimum GB energy γ in J/m2 after interface reconstruction.

label tilt axis θ γ Nint Ntotal
Σ13a(051) [100] 22.6◦ 0.672 110 204
Σ17a(041) [100] 28.1◦ 0.601 184 272
Σ5(031) [100] 36.9◦ 0.358 80 160

Σ29a(052) [100] 43.6◦ 0.536 258 464
Σ5(021) [100] 53.1◦ 0.393 46 94

Σ13a(032) [100] 67.4◦ 0.614 98 206
Σ25a(043) [100] 73.7◦ 0.646 294 398

Table 4.5 Summary of misorientation angles θ , GB energies γ and structural patterns for
[100] tilt GBs.

θ GB label EGB(J/m2) patterns

22.6◦ Σ13a(051) 0.672

28.1◦ Σ17a(041) 0.601

36.9◦ Σ5(031) 0.358

43.6◦ Σ29a(052) 0.536

53.1◦ Σ5(021) 0.393

67.4◦ Σ13a(032) 0.614

73.7◦ Σ25a(043) 0.646
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Fig. 4.12 Interface energy γ as a function of the misorientation angle for [110] (left panel)
and [100] (right panel) tilt GBs.

4.1.3 Comparison of GB energies

In Fig. 4.12, we plot the GB energies of the ground-state atomic reconstructions, identified by
the MHM simulations, of the [110] and the [100] tilt GBs, as a function of the misorientation
angle. We can see that the GB energies of the [110] GBs are on average lower than the
GB energies of the [100] GBs. Unsurprisingly, the Σ3(111) system has by far the lowest
energy [123]. In fact, this is the only system that did not present a significant interface
reconstruction during the MHM simulations. The second most stable GB, according to
our calculations, is the Σ9(221) interface. This can be understood by noticing that it only
includes pairs of five-membered and seven-membered rings, that constitute the 5+7 building
blocks also present in low-energy defects of carbon [92]. Interestingly, the combination of 5
and 7-fold atomic rings is also the building block of M-carbon [124] and W-carbon [125].
These patterns appear as well, for example, in low-energy reconstructions of Σ27a(552)
and Σ19a(331) GBs (shown in Table 4.2). In contrast, the least stable GBs present more
complicated arrangements of ring units, in an attempt to eliminate dangling bonds and to
decrease the stretching of the Si–Si bonds. For example, the Σ27a(115) GB, with a GB energy
of 0.623 J/m2, shows the pattern 5+51 +5f1 +5f2 +6+6b +61 +6b1 +71 +73 +82 +8b2,
while the Σ19a(116) GB, with a GB energy of 0.616 J/m2, has 5+5f2 +

55+6+6b +61 +

6b1 +6f2 +
56+71 +7b1 +

572 units (shown in Table 4.2).
For the majority of the GBs studied here, we find that the ground-state structure does not

contain five-fold coordinated atoms. There are however exceptions to this rule, namely the
Σ3(001x221) and the Σ19a(116) GB. Also for these anomalous cases, we can always find
low-lying geometries, just slightly higher in energy, that do not present overcoordination.
As we will see in the later part, the presence of five-fold coordinated atoms has important
consequences on electronic properties.
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(a) Σ17a(041) (b) Σ11(113)

(c) Σ5(031) (d) Σ9(221)

Fig. 4.13 A comparison of energy calculated by DFTB with different parameterizations and
DFT. (a) and (b): the difference of total free energy between different structures in Σ17a(041)
and (b) Σ11(113) GBs, respectively. (c) and (d): the GB energies of the low-energy structures
in Σ5(031) and Σ9(221) GBs. Light blue line: results calculated with DFTB parameterization
provided by DFTB+ package; green line: results calculated with our DFTB parameterization;
orange line: results obtained with DFT. The structures contain five-fold coordinated defects
that are indicated with a superscript “5” on the labels.

4.1.4 Comparison of energy with different DFTB parameterizations

We have introduced the computational details in Chapter 3 that the free energy during
structural prediction is calculated by DFTB with tight-binding parameters specially crafted
for group-IV elements [55]. Since the most promising structures for reoptimizations are
selected by MHM, the accuracy of DFTB parameters in reproducing the energetic properties
of GBs is significant to find the ground-state structures. To verify that our parameters are
more reliable to calculate the energy than the standard parameters provided by the DFTB+
distributions [82], we compare the energy differences calculated by DFTB with different
parameterizations and DFT, as plotted in Fig. 4.13.

We see that, in many cases, there is no significant difference between DFT and the two
DFTB calculations (see e.g. Fig. 4.13 (a)), and this is because the tight-binding parameters
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available for Si are already rather good, especially when the reconstructions of the interface
is such that all Si atoms are four-fold coordinated. Some differences show up when five-fold
coordinated atoms are present at the interface. This is visible in Fig. 4.13(b) and it is no
surprise that the discrepancy between our parameterization and the standard parameterization
appears more pronounced. During the MHM simulation, highly defected structures are
explored by the algorithm to reach new minima, and therefore the difference in the reliability
of the two parameterizations becomes more severe. Note that the selected structures of the
Σ11(113) GB are mainly focusing on the five-fold coordinated defects, thus the comparison
of energy starts from structure “m15” which contains five-fold coordinated atoms.

We also find that the DFTB results with our parameterization are a significant improve-
ment for calculating GB energies, as shown by the energies of the Σ5(031) and Σ9(221) GBs
that are shown in Fig. 4.13 (c) and (d), respectively. For Σ5(031) GB (Fig. 4.13(c)), the
GB energies calculated with our DFTB parameterization are about 0.1 J/m2 larger than the
results of DFT, while the GB energies obtained from standard DFTB parameterization are
over two times larger than the results of DFT. And for Σ9(221) GB (Fig. 4.13(d)), our param-
eterization gives results closer to DFT, so that the difference is between 0.04 to 0.05 J/m2.
The standard parameterization gives a considerably larger discrepancy. Although the GB
energy is always calculated by DFT after we obtain the low-energy structures, the accurate
GB energy calculated by DFTB is helpful for estimating the stability of the interfaces, since
the supercells are usually large and the DFT calculations are therefore rather costly.

4.1.5 Extension of the study of low-energy GBs to other group-IV ele-
mentary crystals

In previous studies, similar models are usually used for describing group-IV GBs, in particular
for silicon and germanium GBs, since the atoms in silicon and germanium prefer to bond with
each other by σ -bonds. But for carbon, which is well known for its orbital hybridizations,
and metallic tin, the ground-state GBs may differ from Si and Ge. Here, we extend the
low-energy structures from silicon GBs to other group-IV elementary crystals, including
carbon, germanium, and tin. We replace the Si atoms with C, Ge, and Sn atoms, then scale
the supercells and atomic positions according to the optimized lattice parameters of diamond
C, Ge, and Sn. Finally, the interfaces are reoptimized and the GB energy is calculated
with the formula Eq. 3.2. In Table 4.6, the GB energies of the lowest-energy structures for
different elements are presented. In Fig. 4.14 the GB energy with respect to different GBs is
plotted. The variation of the GB energy of different group-IV elements is displayed. There
are similar features for the GBs of all four elements. The GBs with higher energy for silicon
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Table 4.6 Summary of the structures studied: GB labels, tilt axis, and GB energy (J/m2) EGB
after reconstructing. The optimized lattice parameters in diamond-like cubic are: lC = 3.55,
lSi = 5.47, lGe = 5.76 and lSn = 6.65 Å.

label C Si Ge Sn

Σ3(112) 2.851 0.386 0.320 0.171
Σ5(021) 3.311 0.393 0.424 0.191
Σ5(031) 3.050 0.358 0.304 0.175
Σ9(114) 2.615 0.378 0.328 0.175

Σ11(113) 2.646 0.402 0.337 0.181
Σ11(332) 2.796 0.392 0.332 0.228
Σ13a(051) 4.809 0.672 0.537 0.294
Σ17b(223) 3.011 0.449 0.348 0.198
Σ17b(334) 3.115 0.462 0.371 0.217
Σ19a(331) 2.265 0.339 0.318 0.168
Σ19a(116) 4.172 0.616 0.464 0.286
Σ27a(115) 4.403 0.624 0.518 0.269
Σ29a(052) 4.077 0.536 0.417 0.235

are also more unstable in carbon, germanium, and tin. For example, the Σ13(051) GB shows
the highest energy for all four elements. Also, Σ19(116) and Σ27a(115) GBs have higher
energies than an average GB in each of the curves. We also find that the average GB energy
of carbon GBs is one magnitude higher than the average energy of GBs of the other three
elements. The GBs energy of carbon is higher than 3 J/m2 in average while the GB energy of
the other elements is less than 0.7 J/m2 (0.672 J/m2 of Σ13a(051) Si GB). In particular, the
Sn GBs have an average GB energy of only 0.2 J/m2 which is much lower than for the other
elements. In addition to the differences in the GB energies for the different elements, the
energy curves become flatter when going from carbon to tin. This reflects a smaller energy
discrepancy among the GBs for tin than for the three other elements in the plot.

We now move from the general lowest-energy GBs to specific GBs. Here, we compare
the energy of five low-energy interfaces for each GB with a special focus on the interfaces
containing five-fold coordinated atoms. We compare the energy of the five low-energy
interfaces for each GB, especially the interfaces containing defect bonds, namely five-fold
coordinated atoms. In Fig. 4.15, we compare the GB energy of interfaces in Σ3(112) and
Σ9(114) GBs. The energy ranking of the interfaces is usually consistent across all group-IV
elements if the interface structures contain only four-fold coordinated atoms. This is different
for interfaces with five-fold coordinated atoms. For these interfaces, the GB energy of the C
GBs increases significantly compared to the GBs of the other three elements. As shown in
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Fig. 4.14 GB energy of the ground-state GBs consisting of carbon (purple squares), sil-
icon (green dots), germanium (light blue triangles), and tin (orange rhombuses) atoms,
respectively.

Fig. 4.15(a), the interface with the fourth lowest GB energy for Si becomes the highest-energy
interface for C. More precisely, the m45 interface of Σ3(112) GB is about 1.38 J/m2 higher
in GB energy than m5. A similar result is found for Σ9(114) GB, where the GB energy curve
shows a sharp peak at m35 with a GB energy of 6.24 J/m2.

In contrast to the situation in C GBs, five-fold coordinations in Ge and Sn GBs are less
unstable. As shown in Fig. 4.15(a), the GB energy of the m45 interface in both Ge and Sn
is lower than the one of the m3 interface. This was different in Si where the m3 interface
had lower energy than the m45 interface. In Fig. 4.15(b), the GB energies of the most stable
interfaces for the Σ27a(115) GB are shown. Here, the stability of five-fold coordination is
more even more visible. The m35 interface is now the lowest-energy structure in the Ge and
Sn GBs. In the Si GB, it is the one with the third lowest energy.

These differences between the coordinations of C and Ge/Sn are in agreement with
previous studies. These studies reported hyper-coordinated atoms for Ge and Sn [126–129]
but hardly any over-coordinated atoms in carbon allotropes. These over-coordinated atoms
of carbon usually appear under high pressure [130].



48 Structure-property relations at silicon grain boundaries

	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8

m1 m2 m3 m45 m5

Si
Ge
Sn

	3
	4
	5
	6
	7

G
B	
en
er
gy
	(J
/m
2 ) C

	0.2
	0.3
	0.4
	0.5
	0.6

m1 m2 m35 m4 m5

Si
Ge
Sn

	4
	5
	6
	7

G
B	
en
er
gy
	(J
/m
2 ) C

(a) Σ3(112) (b) Σ27a(115)

Fig. 4.15 GB energy of the five lowest-energy interfaces in (a) Σ3(112) and (b) Σ27a(115)
GBs. C, Si, Ge, and Sn GBs are represented by purple squares, green dots, light blue triangles,
and orange rhombuses, respectively. The low-energy structures are labeled with m1 to m5,
and the structures containing five-fold coordinated atoms are indicated by a superscript “5”.
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4.2 Are the interfaces more stable after removal of atoms?

During our simulations, we observe that in many cases the lowest-energy reconstruction is
attained only after adding (or removing) atoms to (from) the interface region. We tested
systematically all possible modifications of the atomic structure, until reaching a configuration
equivalent to the starting one, differing by the simple addition of a full atomic plane. The
influences on structural reconstructions by removal of atoms from the interface in tilt copper
GBs have also been stressed in previous studies [131, 72, 74] in which the interface reaches
new structural phases with lower energy for certain GBs.

We notice that in those studied copper GBs when a plane of copper atoms is removed
from the interface, the reconstructed GB will recover the structure obtained from the initial
interface. But in silicon tilt GBs, we found that the GBs can be classified into two types: for
type-I GBs, when one plane of atoms is removed, the interface recovers the structure from
the initial interface, while for type-II GBs, the interfaces reach new configurations and the
recoveries only occur with two planes of atoms being removed. To characterize the removal
of atoms, we use a dimensionless parameter λ = Nrm

Nplane
, where Nrm is the number of removed

atom at the interface region, and Nplane is the number of atoms in a perfect boundary plane.
As an example, we present the lowest-energy structures found in the Σ5(021) GB after the

different number of atoms were removed from the starting interface in Fig. 4.16. Note that,
the atomic positions of removed atoms at the interface region are random that this will not
affect the results of the reconstructions. As we can see, the ground-state structure is obtained
after two atoms are removed (λ = 1). The reconstructed structure in panel (f) (λ = 2) is
equal to the structure in panel (a) (λ = 0), which consists of the spiral patterns presented in
Fig. 4.11. When one atom is removed, the interface (panel (b)) contains over-coordinated
and dangling-bonded atoms, which lead to a high GB energy of it. Compared with the
ground-state structure (Fig. 4.16 (c)), the unsaturated atom can be regarded as an extra
interstitial atom which leads to an over-bonding of the neighbor atoms. We find that, for GBs
with the rotation axis [100], the dangling bonds are only found at the interfaces when the
odd number of atoms are removed. And when pairs of atoms are removed, the under- or
over-coordinated atoms hardly appear. The reconstructed structure in panel (d), where three
atoms are removed, the GB energy of is also higher than the structures in panel (a), (c), and
(e). This is because parts of bonds are stretched.

For a better comparison, we plot the GB energy as a function of λ in Fig. 4.17 for all
studied GBs. The plots are separated into four parts. In the panels (a) and (c) are the results
of type-I GBs with rotation axis [100] and [110], respectively, where the range of λ is from 0
to 1 since the interfaces at λ = 1 recover the structures of λ = 0. While in panels (b) and
(d), the results of type-II [100] and [110] GBs are plotted with a range of λ from 0 to 2.
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(a) m1 (λ = 0) (b) m1-rm1 (λ = 0.5) (c) m1-rm2 (λ = 1)
EGB=0.772 J/m2 EGB=1.025 J/m2 EGB=0.393 J/m2

(d)m1-rm3 (λ = 1.5) (e) m1-rm4 (λ = 2) (f) Starting GB
EGB=0.915 J/m2 EGB=0.761 J/m2 EGB=1.883 J/m2

Fig. 4.16 The lowest-energy structures found in Σ5(021) GB, from panel (a) to (e), different
number of atoms are removed from the initial interface region, and panel (f) shows the
starting interface. Here we use the label “rm” to indicate the removal of atoms and this is
followed by a number to indicate how many atoms are removed. For a clear representation,
each panel shows two unit cells along the boundary. In the unit cell, there are two atoms
per (021) plane, Nplane=2. The blue atoms represent the full bonded Si atoms, orange atoms
represent over-coordinated atoms and violet atoms represent the atoms with dangling bonds.

In general, we find that removing atoms from the interfaces leads to structures with higher
energies after reconstruction of the interfaces, especially for type-I GBs (with 0 < λ < 1).
For example, in Fig. 4.17 (a) and (c), the ground-state interfaces of type-I GBs are only
obtained from the starting structures or when a whole plane of atoms is removed (λ = 1).

But for type-II GBs (Fig. 4.17(b) and (d)), adjusting the number of atoms at the interfaces
is more essential for reconstructing the lower-energy structures. For example in Σ5(021)
Σ13a(032), Σ25a(043) and Σ17b(223) GBs, the reconstructed interfaces of the starting
structures are much higher in energy. And the ground-state interfaces can only be obtained
when a whole plane of atoms is removed. Detailed information on the GB energies due to
the removal of atoms can be found in Table 4.7 and 4.8.

By drawing the boundary planes in a perfect silicon supercell, and associated with the
information presented in Table 4.7 and 4.8, we find the classification of type-I and -II GBs is
not random, so that it is predictable before the structural reconstruction. To investigate the
mechanism, we start from the basic geometry of bulk silicon. As we know, the diamond cubic
structure consists of two of the same face-centered cubic with a displacement of (0.25, 0.25,
0.25)*l0, where l0 is the lattice constant of the cubic structures. For instance, a bulk silicon
cell is shown in Fig. 4.18(c), where the atoms in the two face-centered cubic structures are
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Σ29a(073)
Σ25a(071)

Σ17a(053)

Σ13a(051)

0 0.25 0.5 0.75 1
Σ5(031)

Σ25a(043)

Σ17a(041)

Σ13a(032)

0 0.5 1 1.5 2
Σ5(021)

(a) type-I [100] GBs (b) type-II [100] GBs

Σ27a(552)

Σ19a(116)
Σ17b(334)
Σ9(114)

0 0.25 0.5 0.75 1
Σ3(112)

Σ19a(331)

Σ17b(223)

Σ11(113)

0 0.5 1 1.5 2
Σ9(221)

(c) type-I [110] GBs (d) type-II [110] GBs

Fig. 4.17 The GB energy varies with respect to the atomic fraction of the boundary plane
λ . Panels (a) and (b) show the results of GBs with rotation axis [100], panels (c) and (d)
show the results of GBs with rotation axis [110]. The presented results start from the atomic
structures obtained by the initial structures until the equivalent structures, in panels (a) and
(c) 0 ≤ λ ≤ 1, in panels (b) and (d) 0 ≤ λ ≤ 2.
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Table 4.7 The GB energy EGB of type-I GBs with respect to the atomic fraction in the
boundary plane. Nplane is the number of atoms in the perfect boundary plane. The equivalent
atomic configurations of a GB are indicated by the underline. For the GBs with Nplane=2,
there are not any data when λ=0.25 and 0.75. This is indicated by the symbol ”− ”.

λ 0 0.25 0.5 0.75 1
Lable Nplane EGB (J/m2)

Σ5(031) 4 0.358 0.756 0.687 0.807 0.361
Σ13a(051) 4 0.680 0.885 0.743 0.811 0.672
Σ17a(053) 2 0.597 - 0.816 - 0.600
Σ25a(071) 2 0.657 - 0.934 - 0.665
Σ29a(073) 2 0.510 - 0.912 - 0.508
Σ3(112) 4 0.409 0.762 0.880 0.888 0.386
Σ9(114) 4 0.378 0.715 0.878 0.686 0.304

Σ11(332) 4 0.392 0.736 0.702 0.651 0.477
Σ17b(334) 4 0.462 0.571 0.696 0.710 0.493
Σ19a(116) 4 0.616 0.742 0.850 0.796 0.663
Σ27a(552) 4 0.381 0.503 0.547 0.569 0.358

Table 4.8 The GB energy EGB of type-II GBs with respect to the atomic fraction in the
boundary plane. Nplane is the number of atoms in the perfect boundary plane. The equivalent
atomic configurations of a GB are indicated by an underline. The GB energies of structures
of Σ13a(032) with λ=0.5 and 1.5 are rather close, but the atomic structures are actually
different.

λ 0 0.5 1 1.5 2
Lable Nplane EGB (J/m2)

Σ5(021) 2 0.772 1.025 0.393 0.915 0.761
Σ13a(032) 2 0.698 0.790 0.614 0.791 0.696
Σ17a(041) 2 0.601 0.770 0.668 0.811 0.603
Σ25a(043) 2 0.818 0.906 0.646 0.740 0.838
Σ9(221) 6 0.202 0.524 0.864 0.585 0.209

Σ11(113) 8 0.391 0.653 0.787 0.861 0.402
Σ17b(223) 2 0.697 0.785 0.440 0.624 0.697
Σ19a(331) 4 0.339 0.476 0.607 0.544 0.360
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(a) (b)

(c)

(d) (e)

Fig. 4.18 The interface planes are drawn in a 3×3×3 silicon unit cell. Panel s (a) and (d)
show the planes of type-I GBs with purple lines, while the planes of type-II GBs are shown
by orange lines in (b) and (e). In panel (c), a unit cell of bulk silicon is presented, and two
face-centered cubics are represented by brown and blue atoms, respectively.

indicated by brown and blue atoms, respectively. In panels (a)(d) and (b)(e) of Fig. 4.18, the
boundary planes of type-I and -II GBs are drawn in a 3×3×3 silicon supercell, respectively.
We find that all the boundary planes of type-I GBs follow the directions that cross both brown
and blue atoms, while the boundary planes of type-II GBs only cross brown (or blue) atoms.
This shows us that we can identify the silicon planes, which contribute to both face-centered
cubic substructures, as type-I GBs.

To construct the interface planes of type-I GBs, we use a simple geometric way. In
Fig. 4.19, we put two schemes for type-I boundary planes of GBs with the rotation axis
[100] and [110], respectively. The direction of those boundary planes are determined
by angles α100 and β110, respectively. The tangent of those angles can be expressed as
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(a) (b)

Fig. 4.19 Schematic of interface planes for type-I GBs in a cubic silicon unit cell, (a) and
(b) show the planes of GBs with [100] and [110] rotation axis, respectively. The Si atoms in
different FCC are brown and blue atoms, the (100), (010), and (110) planes are indicated by
light green, deep green, and light blue lines. The interface plane are represented by purple
and orange lines with Miller indices (hkl) and (h′k′l′).

tanα100 = b010
c001

= |l|
|k| and tanβ100 = d110

c001
=

√
2

2 · |l′|
|k′| , where b010 and c001 are the possible

distances between the layers that are composed of blue or maroon atoms along [010] and
[001] directions, respectively. The calculated values of them are:

b010 = 0.25∗ l0 +0.5∗n∗ l0, (4.1)

c001 = 0.25∗ l0 +0.5∗m∗ l0. (4.2)

Where m,n are 0, 1, 2, 3... . d110 is the distance between the two non-equivalent layers along
[110] direction, so that d110 =

√
2

4 ∗ l0+
√

2
2 q∗ l0 with q = 0,1,2,3... . After we substitute the

possible value of b010, c001, b110, we obtain:

|l|
|k| =

2n+1
2m+1

(4.3)

|l′|
|k′| =

2q+2
2m+1

(4.4)

Since in [100] GBs, the Miller index h is always 0 and in [110] GBs h′ = k′, the Miller
indices of the boundary planes in type-I GBs can be written as (0,2m+ 1,2n+ 1) and
(2m+1,2m+1,2q+2) for [100] and [110] GBs, respectively. Using the relation between
coincidence lattice density and Miller indices of the boundary plane in Eq. 2.42, we can
calculate Σ, then easily distinguish the types of studied GBs. For example, when m = 1 and
n = 0, we obtain the GB Σ5(031), where Σ = 1

2 ∗ (32 + 12) = 5. When m = 0 and q = 0,
we have the GB Σ3(112), where Σ = 1

2 ∗ (12 +12 +22) = 3. According to the results of the
interface reconstructions shown in Fig. 4.17, these two GBs are indeed belong to type-I GBs.
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In contrast, for the GBs with boundary planes that the Miller indices do not satisfy Eqs. 4.3
and 4.4, they belong to tyep-II GBs.

There is also another more visualized way to roughly distinguish the type of a GB before
reconstructions, we can compare the interfaces after a whole plane of atoms is removed with
the initial interfaces. For example, in Fig. 4.20 and 4.21 we present the interfaces of Σ5(031)
and Σ5(021) GBs. We removed the whole plane of atoms at the interface (highlighted by red
dots), then we shift the top grains along a vector between the two neighbor atoms in different
planes, in Fig. 4.20 is Si1Si5 and in Fig. 4.21 is Si1Si3. Strictly speaking, the shift of top
grains can also follow other paths to fill the vacancies, such as from Si6 to Si1 and Si7 to Si1
in Σ5(031) interface (Fig. 4.20), and from Si4 to Si1 in Σ5(021) interface (Fig. 4.21), but the
results are equivalent so we only present the simplest cases.

By comparing the interfaces in Fig. 4.20 (b) and (d), it shows clearly that the two
interfaces in Σ5(031) GB are in same configurations. But for Σ5(021) GB, the result is
different that the interface is unable to recover the structure of the starting GB by simply
shifting the grain after the removal of atoms. In Fig. 4.21 (a), all the atoms are full-bonded,
while in Fig. 4.21 (c), atoms at sites of Si5 and Si6 are only bonded with other three atoms.
During the structural reconstruction, this inequivalent interface in Σ5(021) GB reconstruct
to different structures, while in Σ5(031) GB the reconstructions are the same. The results
are consistent with our classification that Σ5(031) and Σ5(021) belong to type-I and -II GBs,
repectively.
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(a) (b)

(c) (d)

Fig. 4.20 An example of a type-I [100] GB in which atoms are removed from the interface.
The panel shows the starting interface of the Σ5(031) GB viewed along [100] direction, the
atoms of interface plane are highlighted by red dots, and with labels Si1 to Si4. The atoms in
the planes above the interface plane are indicated by yellow and green dots and with labels
from Si5 to Si12. The interface in the view of [010] direction is shown in panel (b). In panel
(c), the atoms Si1 to Si4 are removed, and the top grain is shifted by a vector Si1Si5. The
interface viewed along [010] direction is shown in (d).
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(a) (b)

(c) (d)

Fig. 4.21 An example of a type-II [100] GB in which atoms are removed from the interface.
The panel shows the starting interface of the Σ5(021) GB viewed along [100] direction, the
atoms of interface plane are highlighted by red dots, and with labels Si1, Si2. The atoms in
the planes above the interface plane are indicated by yellow and green dots and with labels
from Si3 to Si6, and the interface in the view of [010] direction is shown in panel (b). In
panel (c), the atoms Si1 and Si2 are removed, and the top grain is shifted by a vector Si1Si3,
the interface viewed along [010] direction is shown in (d).
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4.3 Electronic properties of reconstructed interfaces

We now turn to the discussion of the electronic properties of the GBs and how the structure
at the interface can affect the transport of charge carriers. We calculated the total density of
states (DOS) and partial DOS, where we separate contributions from atoms belonging to bulk
and interface layers, for all lowest-energy reconstructed supercells. As an example, we show,
in Fig. 4.22, the partial DOS in an energy interval around the band gap for two polymorphs
of the Σ3(112) GB: the asymmetric and mirror-symmetric models of Ziebarth (see panels
(a) and (d) of Fig. 4.4). These structures correspond to our ground state and the structure
with the fourth lowest energy, with GB energies of 0.386 and 0.747 J/m2, respectively. Both
interface reconstructions have been observed in experiments [113] and contain single atomic
columns. In the symmetric one, we can also find five-fold coordinated atoms, that are not
present in the asymmetric interface.

Fig. 4.22 Contributions to the DOS of the Σ3(112) GB coming from atoms in the top
and bottom bulk layers, and atoms in the interface region. The left panel shows the DOS
calculated for the non-symmetric model of Ziebarth (lowest-energy structure in Si) and in the
right panel for the corresponding mirror-symmetric model (structure with the fourth lowest
energy), respectively. In the inset, we can see [110] projections of the reconstruction patterns.
In the right panel, we can also see the partial charge density corresponding to the DOS energy
interval from -0.1 to 0.2 eV. The Fermi energy is set to zero.

Looking at the left panel of Fig. 4.22, we can observe that the contributions to the DOS
coming from bulk-like atoms or interface atoms are rather similar and similar to those of
tetrahedrally coordinated atoms in monocrystalline silicon. In particular, there are no deep
defect states in the gap. In contrast, the DOS of the symmetric structure containing five-fold
coordinated atoms (right panel of Fig. 4.22) displays a broad peak in the middle of the
band-gap. In the inset, in which we plot the charge density coming from the electronic states
around the Fermi level, we can clearly see that the electronic density corresponding to the
states in the gap is localized on the five-fold coordinated atoms. We remind the reader that
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localized trapping states can act as electron-hole recombination centers, and therefore are
responsible for the reduction of the electrical performance of, e.g., a solar device.

Calculated DOS of lowest-energy GBs can be found in Fig. 4.23 and 4.24. These
calculations prove consistently that single atomic columns, often present at the interface of
[110] GBs, and spiral rings, typical of reconstructions of [100] GBs, do not yield states in
the gap, and are therefore benign for electron and hole transport in solar devices. In contrast,
we found a perfect correlation between the existence of localized defect states in the gap and
the presence of five-fold coordinated atoms.
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Fig. 4.23 Part I. Densities of states close to the band gap. The Fermi energy is set to zero.
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Chapter 5

Simulation of diamond/graphite
interface in crystalline carbon

Diamond-graphite structures have recently drawn wide attention because of their special
compositions of sp2 and sp3-hybridized carbon atoms and potential applications in electronic
devices. However, only a few of them at certain interfaces of diamond have been studied
and very little knowledge about the constructed patterns exists. In this chapter, we study the
formation of diamond-graphite structures in various diamond interfaces with our constrained
structure prediction approach, which has been introduced in Chpater 3. First, in Sec. 5.2.1,
we present the transition between diamond and graphite at (001) diamond interface. Then, in
Sec. 5.2.2 and 5.2.3, we extend the study of graphitizations in diamond to different interfaces
which are parallel to the [110] and [100] axis, respectively. Finally, we calculate the DOS
of the obtained diamond-graphite structures to determine these new carbon allotropes are
semiconductors or they have metallic characteristics.

5.1 Diamond-graphite: a new carbon allotrope

Carbon is well known for its ability to form diverse types of bonds, leading to a diverse
family of carbon allotropes. The most-well known allotropes composed of sp3 or sp2-
hybridized atoms are diamond and graphite, respectively. Those two materials are extremely
different from the structural and electronic points of view: diamond is the hardest material
existing in nature and exhibits a large band gap, while graphite is a soft semi-metal made of
two-dimensional gap graphene layers [132, 133]. In spite of these remarkable differences,
diamond-graphite composite nanostructures have been reported in the literature [19, 20, 22–
24].



62 Simulation of diamond/graphite interface in crystalline carbon

Graphitization of diamond occurs, for example, when the system is at high tempera-
ture [19, 20]. A mechanism for this graphitization process was proposed by De Vita et
al. [134]. By performing molecular dynamics simulations of the (111) diamond surface,
they observed that the atomic bonds between (111) layers break and the puckered layers
flatten to ABC stacked hexagonal graphene planes parallel to the surface. The temperature
for graphitization can be decreased by the use of a metal catalyst like Ni [22].

Diamond-graphite hybrid structures also appear in a variety of the systems, such as the
epitaxial growth of diamond on graphite edges [135], on stretched diamond nanopillars [136],
on polished (110) textured diamond plates [25], or between (113) diamond surfaces [23].

The combination of diamond and graphene results in nanocomposites that are interest-
ing both mechanically and electronically [21, 23, 25]. The superhard diamond provides
mechanical strength while the graphene domains enable high fracture toughness [23, 136].
Moreover, the large band gap of the diamond can be tuned by the zero-gap graphene layers.
For example, Ref. [25] found that with increasing thickness of graphene, the band gap of
diamond-graphite composites decreases to ∼0.25 eV, and can even become metallic [21].
Similarly, a transition from sp2 to sp3-hybridized atoms in graphite can open a pseudogap in
graphite [137].

All the results suggest that a systematical study of diamond-graphite structures is es-
sential to understand the mechanism of transition between diamond and graphite. Unfortu-
nately, existing studies in literature are only focusing on a few interfaces, specifically on the
{111} [134, 138, 22, 25, 24, 23], {112} [135], {113} [23] and {001} [21, 24, 136] diamond
planes. This leaves a large gap in the study of diamond-graphite structures to fill, which
motivates the study of this chapter. In Chapter 4, our structural prediction approach for
interfaces has succeeded in finding the recurrent patterns in a large family of silicon GBs. In
this chapter, we apply this approach to study the reconstructions of interfaces in diamond,
and in this study, we focus on the formation of diamond-graphite hybrid structures.

5.2 Reconstructions of diamond interfaces

5.2.1 Reconstructions of (001) diamond interface

In Fig. 5.1 we present the low-energy interfaces containing sp2-hybridized atoms in the (001)
diamond supercell. The sp2-hybridized atom layers are perpendicular to the interface plane
and form AA-stacked graphene terminated by sp3-hybridized atoms bonded to the (001)
diamond planes. The reconstructed interface in Fig. 5.1(a) is consistent with the sp2 junction
designed in a new carbon phase, O20-carbon Ref. [21]. In our results, this junction can be
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(a) O42 (b) O64

(c) O86 (d) O84

Fig. 5.1 Different reconstructed interfaces containing sp2-hybridized layers along the [001]
direction. For a better view, each structure is presented along the [100] and [1̄10] directions.
The structures are shown in order of increasing total energy. Interface unit cells are indicated
by light blue rectangles, sp2-hybridized atoms are denoted in red, and sp3-hybridized atoms
are denoted in green and brown.
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regarded as a basic structural unit. The reconstructed interfaces in Fig. 5.1(b) and (c) are
extensions of the junction, while the interface shown in Fig. 5.1(d) can be seen as composed
of two connected junctions with a dislocation along (001) plane. This so-called O8-carbon
structure was reported in the study of bending diamond nanopillars [136].

The structural units of the reconstructed interfaces have orthorhombic symmetry, and
they belong to the O-type carbon family [21, 136]. Following the naming rule [21], we use a
notation Omn to name the interfaces, where O indicates orthorhombic symmetry, and m is
the number of atoms in the unit cell. We found interfaces with the same number of atoms
in the unit cell, but the different number of sp2-hybridized atoms. Therefore, we add an
additional subscript n indicating the number of sp2-hybridized atoms. Based on this naming
rule, the interfaces in Fig. 5.1 are labeled as O42- (a), O64- (b), O86- (c) and O84-carbon (d).
In Table 5.1 we show the bond length of different types of atomic bonds.

We observe that the σ -bonds between sp3 and sp2-hybridized atoms are slightly shorter
than the bonds between sp3 and sp3-hybridized atoms in the bulk parts. The C–C double
bonds along [001] near the interfaces are compressed, becoming longer and approaching
their value in graphite (1.42 Å [139]) closer to the center of the sp2-hybridized layers. For
example, along the [001] axis the sp2–sp2 bonds in O86-carbon near the bulk interfaces are
1.41 Å, while the bonds in the central layer are 1.43 Å. We also note that the sp2–sp2 bonds
along the zigzag direction, which extends parallel to the (001) plane, are slightly longer than
the bonds in graphite.

Type of bonds O42 O64 O86 O84
sp3–sp3 1.56 1.55 1.55 1.55
sp2–sp3 1.49 1.49 1.49 1.49
sp2–sp2 (vertical) 1.36 1.40 1.41-1.43 1.37
sp2–sp2 (zigzag) - 1.43 1.43 -

Table 5.1 Bond length (in Å) between different hybridized atoms in structures shown in
Fig. 5.1. The bond between green–green atoms in O84 is 1.58 Å. The C–C bond in bulk
diamond is 1.54 Å. The C–C bonds are represented by different notations: sp3–sp3 (the σ

bond between the sp3-hybridized atoms in the junctions and diamond surfaces, namely the
green and brown atoms in Fig. 5.1), sp2–sp3 (the σ bond between sp2 and sp3-hybridized
atoms) and sp2–sp2 (the bond between sp2-hybridized atoms). Bonds along [001] and [1̄10]
axes are indicated with “vertical” and “zigzag” in the parentheses, respectively.

To check the energetic stability of the reconstructed interfaces, we re-optimized the
structures with DFT. The energy per atom in the interface region is listed in Table 5.1. The
relative energy per atom µ is calculated by the formula µ = ∆E/Nint, with ∆E = Etot −E0

and Etot is the total energy of reconstructed supercell, E0 is the energy of starting supercell
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Interface ∆E (eV) µ (eV/atom) Nsp2

O42-carbon 11.812 0.369 16
O64-carbon 16.415 0.342 32
O86-carbon 19.753 0.309 48
O84-carbon 22.898 0.358 32

Table 5.2 The energy calculated with DFT (GGA-PBE), ∆E is the difference between total
energy of the reconstructed interfaces and the starting structure with vacuum, µ is the energy
per atom of sp2 and sp3-hybridized atoms and Nsp2 is the number of sp2-hybridized atoms.

with vacuum, and Nint is number of sp2-hybridized atoms and the connected sp3-hybridized
atoms. We find that the structures are relatively stable with small energy per atom µ . As
expected, the energy decreases with respect to the length of the graphene layers. For example
in O42 µ is 0.369 eV/atom and in O86 it drops to 0.309 eV/atom. The results suggest that
the main instability is raised by the compressed σ bonds and double bonds near the bulk
interfaces. Therefore, when the graphene layers are longer, atoms at the interface region
become more stable. We can assume that if the graphene layers extend to infinite, the energy
per atom will tend to the value of AA-stacked graphite with the same interlayer distance.

Note that, even if µ decreases with the length of graphene layers increasing, the system
is still getting more unstable because of the small interlayer distance (2.51 Å) between
graphene layers. In Fig. 5.2 we plot the energy per atom in AA- and AB-stacking graphite
with respect to the interlayer distance. We see clearly that the energy increases dramatically
when the graphene layers get closer. In particular, when the interlayer distances of AA- and
AB-stacking graphene layers are less than 2.95 and 2.76 Å, respectively, the cubic diamond
becomes more stable than graphite. This is essential for understanding the formation of
graphite structures between diamond interfaces.

5.2.2 Reconstructions of interfaces parallel to the [110] axis

The (001) diamond supercell is just one particular case of all interfaces parallel to the [110]
axis in the diamond. Now we discuss other cases. In general, we find that the reconstructed
interfaces containing graphene layers can be classified into two types: type-I reconstructions
where the puckered {111} diamond layers flatten and form hexagonal graphene layers; and
type-II reconstructions, where the graphene layers are formed perpendicularly to the interface
plane. In this latter case, the length of the graphene layers is usually shorter than in type-I
reconstructions.

In Fig. 5.3, we present the two different reconstructed types of diamond-graphite struc-
tures in the (112) and (331) supercells. We find that [0001] direction of the formed graphene
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Fig. 5.2 The energy per atom as a function of the interlayer distance in AA- (red line) and
AB-stacking (blue line) graphite. The energy is calculated with GGA-PBE, and dashed-line
indicates the energy per atom of bulk diamond, -9.109 eV. The cross points of dashed line on
AA- and AB-stacking curves are labeled as Px and Qx, respectively, and the corresponding
interlayer distances are Px=2.95 Å and Qx=2.76 Å.

(a) (112) type-I (b) (112) type-II (c) (331) type-I (d) (331) type-II

Fig. 5.3 The reconstructed interfaces between (112) planes ((a) and (b)), and (331) planes
((c) and (d)), panels (a) and (c) present the type-I reconstruction, while panels (b) and (d)
present the type-II reconstruction. The red atoms indicate the sp2-hybridized atoms, brown,
green, and yellow atoms are sp3-hybridized, where the green atoms are connected to red
atoms and yellow atoms are unsaturated. For a clear presentation, the panels show two unit
cells of (112) interface along the interface planes. The (111) and (111̄) diamond planes are
indicated by green and red lines.
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layers is perpendicular to the [110] axis in diamond, and the connecting direction of graphene
between the top and bottom bulks interfaces is along the [11̄00] direction of the graphene
plane.

To label the diamond-graphite interface we use the ratio between the number of {111}
diamond planes and the number of graphene planes connected to them [138, 25]. For
example, in Fig. 5.3(a), the ratio is 1 : 1 and the structure is described by a 1 : 1 registry,
while Fig. 5.3(b) has a 3 : 2 registry. The study of Ref. [135] suggests that when three {111}
planes of the diamond match with two {0001} planes of graphite the interface strain energy
is minimized, leading to a 3 : 2 registry for the diamond-graphite structures with vertical
graphene layers. This stabilization was further demonstrated in later studies [138, 25, 22],
and in our simulations presented later. But we also find vertical graphene layers forming at
the diamond interface with 1 : 1 registry, like the structures present in the (001) supercells
discussed in Sec. 5.2.1 and the type-II interface presented in Fig. 5.3(d).

As we mentioned in Sec. 5.2.1, the stability of the graphene layers is highly dependent
on the interlayer distance. Therefore, in order to verify the correlation between this distance
and the number of graphene layers, we measured this quantity in each reconstructed interface
shown in Fig. 5.3. The separations of the graphene layers range from 3.01–3.63 Å in
Fig. 5.3(a), 2.62–3.57 Å in Fig. 5.3(b), 2.82–3.42 Å in Fig. 5.3(c) and 2.62–2.72 Å in
Fig. 5.3(d). These values are not substantially smaller than the threshold distance for
AA-stacking graphite shown in Fig. 5.2, suggesting that these structures are potentially
stable. However, if we add an extra graphene layer to the structure depicted in Fig. 5.3(b),
connected between the unsaturated (yellow) atoms, the interlayer distance becomes around
3.57/2 = 1.785 Å, leading to a significant destabilization.

The formation of graphene layers with a 3 : 2 registry could, on one hand, lead to sufficient
interlayer distance between the graphene layers and, on the other hand, reduce the number of
unsaturated carbon atoms rather than forming a single graphene layer (3 : 1 registry). This
can also explain the number of vertical graphene layers on the (111) diamond interface,
where the interlayer distance is rather large (4.36 Å [138]). In this case, it is possible to
form an extra graphene layer while still allowing for a reasonable value of the interlayer
distance reasonable. This leads therefore to a mixture of 2 : 1 and 1 : 1 registries, as reported
in experiments [138, 22, 25].

This analysis begets the question if it is possible to predict the registry ratio of diamond-
graphite, based on the number of unsaturated diamond atoms at the interface and the distance
between the graphene layers. The first step is to figure out the favored atoms for the formation
of covalent bonds between graphene and diamond. As an example of this procedure, we take
the supercells containing the (112) and (331) interfaces planes, as shown in Fig. 5.4. For
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(a) (112) diamond interface (b) (331) diamond interface

Fig. 5.4 Examples of the initial diamond bulk parts in the supercells with (112) (left panel)
and (331) (right panel) interface planes. The bulks parts are put together for a better
presentation, as in the actual simulations the interface regions are much larger. The (111) and
(111̄) diamond planes are indicated by green and red lines, the atomic positions, where the
terminated atoms bind to graphene layers, are highlighted in green and labeled with capital
letters.

clarity, we only depict the top and bottom bulk layers, and we indicate the {111} diamond
planes and the termination atoms.

For the type-I reconstruction of the (112) interface (see Fig. 5.3(a)) the graphene layers
are bonded at the A, D, and E atoms on the bottom bulk interface and the B′, D′, and E′

atoms on the top bulk interface. This allows for a stable interlayer distance ranging from
3.01 to 3.63 Å, and for an optimal 1 : 1 registry, that minimizes the number of unsaturated
diamond atoms at the interface.

For a type-II reconstruction, the situation is more complicated. Indeed, the distances
between the terminal atoms in the (112) interface (see Fig. 5.4(a)) are |AB| = 1.55 and
|BC| = 2.19 Å, making impossible the formation of a 1 : 1 registry. This is not the case,
however, for the (331) interface (see Fig. 5.4(b)), where the distances are now |FG|=3.57
and |GH|=2.19 Å, suggesting that a 1 : 1 registry is indeed capable, with small distortion, of
leading to stable structures. This is consistent with our result shown in Fig. 5.3(d), where
the interlayer distance varies from 2.62 to 2.72 Å. Of course, the type-II reconstruction is
not unique. For example, the lowest energy type-II reconstruction is shown in Fig. 5.3(b),
where the graphene layers are bonded between the A and B and the A′ and B′ atoms on the
top and bottom bulk interfaces, respectively. However, and as expected the MHM also finds
other type-II structures where the graphene layers are formed between AA′ and BC′, or AB′

and CC′ with 3 : 2 registry (see Fig. 5.5). More diamond-graphite structures can be found in
Fig. 5.6.
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(a) (b)

Fig. 5.5 Two type-II reconstructions at (112) interfaces. The red atoms indicate the sp2-
hybridized atoms, brown, green and yellow atoms are sp3-hybridized, where the green atoms
are connected to red atoms and yellow atoms are unsaturated. For a clear presentation, the
panels show two unit cells of (112) interface along the interface planes.

In summary, the ratio between the number of graphene layers and {111} diamond planes
tries to reach a registry ratio of 1 : 1, unless the distance between the terminal atoms is too
small. This destabilizes the system, leading to registries containing fewer graphene layers
per diamond plane.
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(a) (116) β = 13.26◦ (b) (115) β = 15.79◦ (c) (114) β = 19.47◦

(d) (113) β = 25.24◦ (e) (113) β = 25.24◦ (f) (223) β = 43.31◦

(g) (223) β = 43.31◦ (h) (334) β = 46.69◦ (i) (334) β = 46.69◦

Fig. 5.6 Part-I. Diamond-graphite structures found at interfaces parallel to [110] axis, the
structures are labeled by the Miller indices (hkl) of interface planes; β is the angle between
interface plane and (001) diamond plane. sp2-hybridized atoms are indicated in red, sp3-
hybridized atoms are in green, yellow and brown, where the green atoms are connected to
sp2-hybridized atoms and the yellow atoms are unsaturated.
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(j) (111) β = 54.74◦ (k) (111) β = 54.74◦

(l) (332) β = 64.76◦ (m) (332) β = 64.76◦

(n) (221) β = 70.53◦ (o) (221) β = 70.53◦

(p) (552) β = 74.21◦ (q) (552) β = 74.21◦

Fig. 5.6 Part-II. Diamond-graphite structures found at interfaces parallel to [110] axis, the
structures are labeled by the Miller indices (hkl) of interface planes; β is the angle between
interface plane and (001) diamond plane. sp2-hybridized atoms are indicated in red, sp3-
hybridized atoms are in green, yellow and brown, where the green atoms are connected to
sp2-hybridized atoms and the yellow atoms are unsaturated.
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5.2.3 Reconstructions of interfaces parallel to the [100] axis

We now discuss the formation of diamond-graphite structures at interfaces parallel to the [100]
axis. We investigate reconstructions for 9 different supercells. As an example, we present in
Fig. 5.7(a) to (c) and (d) to (f) the results for the (021) and (031) interfaces, respectively. We
find that the graphene layers are more distorted but follow the same reconstructed patterns.
In particular, the layers are bonded with the top and bottom {111} diamond planes and
can be regarded as an extension of the 111 diamond planes, as shown in Fig. 5.7(b) and
(e). Furthermore, the [0001] stacking of the formed graphene layers is nearly parallel to the
[1̄01] direction in diamond, as shown in Fig. 5.7(c) and (f). Such reconstruction type, which
we find to be stable only between interfaces parallel to [100] axis, has not been previously
reported in the literature. Among the interfaces studied in Sec. 5.2.2, we also find similar
structures of fractional domains, but with large distortions and high interface energy. In the
reconstructed interfaces of the (021) and (031) supercells, the interlayer distance varies from
2.79 to 3.24 Å and from 2.61 to 3.06 Å, respectively. This is in good agreement with the
graphite stability region depicted in Fig. 5.2.

In Fig. 5.8, we present the diamond-graphite structures found in other studied interfaces.
We find the number of unsaturated atoms at the interface planes is influenced by the planar
angle ϕ between the interface plane and (001) diamond plane In Table. 5.3 we present the
density of unsaturated atoms, ρ = Nunsat

A , where Nunsat is the number of unsaturated atoms and
A is the area of interface. ρ increases with the angle ϕ .

Interface ϕ µ (eV) Nunsat A (Å2) ρ

(001) 0 0.215 0 50.74 0
(017) 8.13 0.236 2 45.13 0.0443
(015) 11.31 0.262 2 32.54 0.0615
(014) 14.04 0.074 2 26.31 0.0760
(013) 18.43 0.056 2 20.18 0.0991
(025) 21.80 0.098 4 34.37 0.1164
(037) 23.20 0.074 6 48.60 0.1235
(012) 26.57 0.113 4 28.37 0.1410
(035) 30.96 0.037 6 37.21 0.1612
(023) 33.69 0.041 4 23.01 0.1738
(034) 36.87 0.048 6 31.91 0.1880

Table 5.3 The angle between interface plane and (001) plane ϕ , the energy difference per
atoms between the reconstructed structure and starting structure at the interface µ . A is the
area of the interface, ρ is the density of unsaturated atoms at the interfaces. The energy was
calculated with DFTB.
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(a) (b) (c)

(d) (e) (f)

Fig. 5.7 Diamond graphene structures found at (021) and (031) interfaces. (a) and (d): (021)
and (031) interfaces viewed along [100] direction; (b) and (e):(021) and (031) interfaces
viewed along [110] direction; (c) and (f): rotations of (021) (a) and (031) (d) interfaces
viewed counterclockwise with [001] axis with 114◦ and 122◦, respectively, the blue arrow
lines present the graphene-stacking directions. Here we present a 2× 2× 1 supercells of
each structure. sp2-hybridized atoms are indicated in red, sp3-hybridized atoms are in green,
brown, and yellow, where the green atoms are connected to sp2-hybridized atoms and yellow
atoms are with dangling-bonds.



74 Simulation of diamond/graphite interface in crystalline carbon

(a) (017) ϕ = 8.13◦ (b) (015) ϕ = 11.31◦

(c) (014) ϕ = 14.04◦ (d) (025) ϕ = 21.80◦

Fig. 5.8 Part-I. Diamond-graphite structures at different studied interfaces. ϕ is the planar
angle between the interface plane and (001) diamond plane. sp2-hybridized atoms are
indicated in red, sp3-hybridized atoms are in green, yellow, and brown, where the green
atoms are connected to sp2-hybridized atoms and the yellow atoms are unsaturated.
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(e) (037) ϕ = 23.20◦ (f) (035) ϕ = 30.96◦

(g) (023) ϕ = 33.69◦ (h) (034) ϕ = 36.87◦

Fig. 5.8 Part-II. Diamond-graphite structures at different studied interfaces. ϕ is the planar
angle between the interface plane and (001) diamond plane. sp2-hybridized atoms are
indicated in red, sp3-hybridized atoms are in green, yellow, and brown, where the green
atoms are connected to sp2-hybridized atoms and the yellow atoms are unsaturated.
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(a) Σ5(012) (b) Σ5(013)

(c) Σ3(112) (d) Σ11(113)

Fig. 5.9 The lowest-energy interfaces found in carbon grain boundaries. (a) Σ5(021) GB; (b)
Σ5(031) GB; (c) Σ3(112) GB; (d) Σ3(113) GB. The atomic-ring patterns in GBs with [110]
rotation axis are indicated in the panels.

5.3 Diamond-graphite structures in tilt grain boundaries

In this section, we study the interface reconstructions in tilt carbon GBs. In order to be
consistent, the supercells of GBs are built in the same way as the Si GBs. We find that the
lowest-energy reconstructed interfaces are in good agreement with the recurrent patterns
proposed in silicon (Chapter 4). For example, Fig. 5.9 presents the lowest-energy structures
found in carbon GBs Σ5(012), Σ5(013), Σ3(112) and Σ11(113), they are consistent with the
lowest-energy patterns presented in Table 4.5, 4.2, and 4.3.

The diamond-graphite structures usually appear with much higher energy. The graphene
layers formed in GBs with the rotation axis of [110] can also be classified into two types by
the extension directions as in Sec. 5.2.2. For example in Fig. 5.10 (a) and (b), we present two
examples of interfaces in Σ3(112), for the parts bonded with top bulk layers, the graphene
layers are similar to type-I (Fig. 5.3(a)) and type-II (Fig. 5.3(b)) reconstructions, but near
the bottom bulk layers, the bonds are in large distortions while for GBs with rotation axis
of [100] axis, the graphene layers are more neatly arranged, as shown in Fig. 5.10 (c) and
(d), the layers are bent to bonded with the {111} diamond planes in the top and bottom
bulk layers compared to reconstruction at pure (021) interface (Fig. 5.7(b)). Such bending
of graphene layers is because of the misorientation of the two bulk grains that the {111}
diamond planes are no longer parallel in the top and bottom parts while the graphene layers
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are still formed by flattening the puckered {111} planes. As a result, the distortions of
bonds in [110] GBs or bending of graphene layers in [100] GBs decrease the stability of the
diamond-graphite structures in carbon GBs, and it is true that those structures are normally
observed at the pure diamond interfaces [138, 25, 23], and in GBs only reported after catalytic
transformation [22].

(a) (b)

(c) (d)

Fig. 5.10 Diamond-graphite structures found in Σ3(112) and Σ5(021) carbon GBs. (a) and
(b) are two different types of graphene layers forming at Σ3(112) GB interface. (c) and
(d) present the graphitization of Σ5(021) GB interface viewed along [100] direction and a
rotation of 114◦ counterclockwise by [001] axis. sp2-hybridized atoms are indicated in red,
sp3-hybridized atoms are in green, yellow, and brown, where the green atoms are connected
to sp2-hybridized atoms and the yellow atoms are unsaturated.



78 Simulation of diamond/graphite interface in crystalline carbon

Fig. 5.11 An example of the C–C σ bonds near the bottom bulk surface in (331) type-I
reconstructed interface. The red atoms indicate the sp2-hybridized atoms, brown, green,
and yellow atoms are sp3-hybridized, while yellow atoms are unsaturated. The unit of
bond length is Å, and the specific bond lengths at the surface are: red–green is 1.47 Å,
green–yellow is 1.46 Å (not shown in the figure), yellow–brown is 1.46 Å, brown–brown is
1.69 Å and green–brown is 1.75 Å, the bond in the bulk layer is 1.54 Å.

5.4 Variation of atomic bonds in diamond-graphite

We now turn to discuss how the formation of graphene layers affects the bonds in the
supercells. In Sec. 5.2.1 Table 5.1, we notice the σ -bonds between sp2 and sp3-hybridized
atoms are usually compressed and the bonds between sp2-hybridized atoms are different
along armchair and zigzag directions. We find the same features in all the other diamond-
graphite structures. We plot the distributions of C–C bond length in type-I and type-II
reconstructions of (331) interface and (021) reconstructed interface in Fig. 5.12. As expected,
the bonds in the bottom and top bulk parts are kept the same (1.54 Å), since those parts
are constrained as rigid bulks, but in the interface region, some of the σ -bonds are under
compression, especially the bonds between sp2 and sp3-hybridized carbon atoms and the
ones bonded with the unsaturated atoms. Apart from those compressed σ -bonds, stretched
bonds are also found between the two neighbor {111} diamond planes at the bulk interfaces.
This is because the {111} diamond planes at the interfaces are flat and the bonds between
the planes are stretched. In Fig. 5.11 we present an example of the bottom bulk part of
the (331) type-I reconstructed interface shown in Fig. 5.3(c). The compressed σ -bonds
are about 5% shorter than the C–C bond in bulk diamond (1.54 Å), while the stretched
σ -bonds show a maximum length of 1.75 Å, is about 13.6% larger than the bond in the
diamond. Our results on compressed bonds are consistent with previous studies: the σ -bonds
between sp2 and sp3-hybridized atoms are always compressed [25, 136]. However, in the
literature the stretched σ -bonds are ignored, since the diamond-graphite structures are built
manually to fit either parameters of bulk diamond [138, 22, 25, 140] or low-energy surface
reconstructions [23].
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(a)(331) Diamond interface type-I (b) (331) Diamond interface type-II

(c) (012) Diamond interface (d) Σ5(012) GB

Fig. 5.12 The distributions of bond length along the coordinates of [001] axis. (a) and (b):
the two types of reconstructed graphene layers at (331) diamond interfaces; (c) diamond-
graphite structure at (012) interface; (d) diamond-graphite structure in Σ5(012) GB. Red
points indicate the sp2–sp2 bonds, brown points indicate the sp2–sp3 and sp3–sp3 σ -bonds.
The blue vertical dashed line indicates the C–C bond length in graphite, 1.42 Å.
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For the sp2–sp2 bonds, we notice that the lengths are anisotropic in the graphene lay-
ers, especially in type-I [110] and [100] reconstructions. For example in type-I (331)
( Fig. 5.12(a)) reconstructed interface, the sp2–sp2 bonds which are perpendicular to [110]
direction (about 1.42 Å) are shorter than those along zigzag direction parallel to [110] axis
(about 1.44 Å). But in type-II (331) ( Fig.5.12(b)) reconstructed interface, the discrepancy in
bond length of sp2–sp2 bonds is small and the bonds are larger than those in graphite.

The distributions of sp2–sp2 bonds in the (012) diamond interface and the grain boundary
Σ5(012) are similar, although the graphene layers are curved in GB. In contrary to the bonds
at (331) interfaces, part of the sp2-sp2 bonds near the interface planes are compressed. At
the central parts of the graphene layers, those bonds get closer to the value of graphite, while
the sp2-sp2 bonds along the armchair directions which are parallel to the interface plane are
nearly consistent and stretched.

5.5 Electronic properties of diamond-graphite structures

Finally, we discuss the electronic properties of the diamond-graphite structures. Two exam-
ples of diamond-graphite structures are chosen , which are formed at the interfaces parallel
to [110] and [100] axis, respectively. The calculated DOS of them are shown in FIg. 5.13.
We observe metallic characteristics in these diamond-graphite structures that peak electronic
states appearing around the Fermi energy. By calculating the partial charge density near the
Fermi energy, we see clearly that the electronic density corresponding to the states around the
Fermi level is localized at the unsaturated sp3-hybridized atoms (see Fig. 5.13(c)) or the sp2-
hybridized atoms bonded with the atoms on diamond surfaces (see Fig. 5.13(d)). Our results
are in good agreement with the previous studies [141, 142] that the π-like graphitic states
and the σ -like diamond states result in localized electronic states at the diamond/graphite
interface.

We also take another example of diamond-graphite structures which is found at (111)
diamond interface to compare the electronic properties. The difference is that we hydro-
genate the unsaturated atoms and the sp2-hybridized atoms which are connected to the
sp3-hybridized atoms. As shown in Fig. 5.14, we calculated the DOS, the partial charge
density, and roughly plotted the band structures.

We find that: in Fig. 5.14(a), (b), and (c), the structure has a metallic feature that around
the Fermi energy there is a peak of electronic states, and those electronic states at the Fermi
energy are mainly contributed from the sp2-hybridized atoms which are connected to the
diamond surface and the unsaturated atoms on the diamond surfaces. Then, in Fig. 5.14(d),
(e), and (f), we saturated the dangling-bonded atoms on diamond surfaces with hydrogen
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(a) (b)

(c) (d)

Fig. 5.13 Panels (a) and (b) present the total DOS of the diamond-graphite structures formed
at interfaces (032) and (116), respsectively. The Fermi energy is set to 0 eV. Panels (c) and
(d) present the partial charge density corresponding to the Fermi energy interval from -0.1
to 0.1 eV. Red atoms indicate the sp2-hybridized atoms, brown and green atoms indicate
sp3-hybridized atoms, where green atoms are bonded with the sp2-hybridized atoms.
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atoms. As a result, the amount of electronic states around the Fermi energy decreases, but it
is metallic. The partial charge density (panel (d)) proves that the effects from the unsaturated
atoms are eliminated, while the electronic states are from the sp2-hybridized atoms that are
connected to the diamond surface, Finally, to eliminate the effects from the sp2-hybridized
atoms near the diamond surfaces, we hydrogenated those atoms, as shown in Fig. 5.14. As we
expected, the electronic states around the Fermi energy disappear that the structure present
semiconductor feature that it has an indirect bandg ap of 0.34 eV (panel (h)). The results
suggest high potential applications of the diamond-graphite structures for electronic devices
in the future.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5.14 Panel (a) presents the graphite structure formed at (111) diamond interface, while
in panels (d) and (g) different number of atoms are hydrogenated. In panels (a) and (d) the
partial charge density corresponding to the Fermi energy interval from -0.2 to 0.2 eV are
also presented. Panels (b), (e) and (h) present the band structures calculated with GGA-PBE,
the red lines indicate the Fermi energy. Panels (c), (f) and (i) show the DOS. The Fermi
energy is set to 0 eV in all plots. Red atoms indicate the sp2-hybridized atoms, brown, green
and yellow atoms indicate sp3-hybridized atoms, where green atoms are bonded with the
sp2-hybridized atoms and yellow atoms are unsaturated. Hydrogen atoms are indicated by
pink atoms.





Chapter 6

Structural prediction of point defects in
hexagonal silicon

The importance of hexagonal Lonsdaleite silicon-germanium has been growing lately due
to its possible uses in optoelectronic devices [143–146, 107, 109]. However, very little is
known about defects in the hexagonal phases of group-IV semiconductors. In this chapter, we
perform an exhaustive structure prediction study of the most energetically favorable intrinsic
defects in Lonsdaleite silicon, using the constrained approach introduced in Chapter 3. In
Sec. 6.1, we explain why we are interested in the hexagonal phase of silicon. Then, in
Sec. 6.2, the geometric structures of these defects are presented. Finally, in Sec. 6.3, we
calculate the density of states of the defective supercells to determine which defects lead
to electronic states in the band gap, potentially affecting the performance of optoelectronic
devices based on hexagonal group-IV crystals.

6.1 Hexagonal phase is interesting

Most technologically relevant semiconductors crystallize in either a face-centered cubic
or a hexagonal closed-packed lattice. These closely related atomic arrangements differ by
the stacking of atomic planes: an ABC stacking leads to the cubic phase, while the ABAB
stacking results in a hexagonal symmetry. For an elemental semiconductor, the two phases are
commonly labeled as “diamond” and “Lonsdaleite” structure, respectively, while for binary
the terminology “zincblende” and “wurtzite” is used. The latter structures are obviously
obtained through the coloring of the two sublattices of the former structures.

The energy difference between cubic and hexagonal packing is often very small, so
the preferred choice for a certain composition is rather subtle and hard to predict. This is
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understandable, as the nearest neighbors and next-nearest neighbors are the same in the ideal
wurtzite and zincblende structures. For example, carbon, silicon, germanium, GaAs, etc.
have a cubic structure [147, 148], while ZnO, ZnS, CdS, and CdSe are known to crystallize
in the hexagonal phase [148].

The ground-state crystal structure of silicon, the most common semiconductor, is the
diamond phase. This is perhaps the most studied crystal in solid-state physics, and every
imaginable experimental probe or theory has been applied to it. However, many other
low-energy phases of silicon, respecting the tetrahedral arrangement of the atoms, are
possible [100, 91, 144–146], and some have been experimentally synthesized [149–154].

In recent years, the interest in the Lonsdaleite phase of silicon and germanium has been
growing. In fact, several methods have been reported for the growth of hexagonal silicon, such
as the diamond anvil cell technique at high pressures [155], the deposition of microcrystallites
during laser ablation of SiO2 films [156], the vapor-liquid-solid method [157, 151], and the
crystal structure transfer method [150, 152]. Moreover, the latter method was shown to lead
to large and stable regions of the pure hexagonal phase [150].

The importance of the hexagonal phase stems from theoretical calculations that predicted
a tunable direct band gap for Si1−xGex alloys [143–146, 107], which can increase the
efficiency of light emission for these semiconductors. This has been recently confirmed
by Fadaly et al. [109] that demonstrated experimentally efficient light emission from direct
band-gap hexagonal Ge and SiGe alloys. Furthermore, by controlling the composition of the
hexagonal SiGe alloy, they succeeded in changing continuously the emission wavelength
over a broad range, while preserving the direct band gap [109]. This seminal result opened
the way for the use of group-IV materials in optoelectronic applications.

It is well known that technological applications of semiconductors are extremely sensitive
to the presence of defects, and can be seriously hindered, or sometimes even enabled, by
them. The defects of cubic silicon have already been extensively studied both experimentally
and theoretically. In fact, by now we have a detailed knowledge of which point defects are
likely to exist in cubic silicon, their electronic properties, and their influence on functioning
optoelectronic devices [26]. However, that knowledge is still to a large extent lacking for its
hexagonal counterpart.

It is therefore our objective to fill this gap and perform an extensive study of structure-
property relations of point defects in lonsdaleite silicon. In this chapter, we will be focusing
on the defect geometries and formations energies at zero temperature, while deferring finite
temperature properties to future studies. Supercells are built for the selected point defects and
simple local relaxations of the atomic positions are performed at fixed cell parameters. Such
an approach is somehow unsatisfactory: in the best case, many defects that are energetically
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Hexagonal Si Cubic Si
Defect Energy (eV) Energy (eV)

Fourfold coordinated defect (FFCD) [2.52, 2.65] 2.42 [158]
Tetrahedral (T) interstitial [2.52, 2.60] 4.09 [159], 3.96 [160]
Split (X) interstitial [2.54, 3.27] 3.31 [158], 3.67 [159], 3.66 [160]
Hexagonal (H) interstitial [2.73, 3.25] 3.31 [158], 3.77 [159], 3.69 [160]
Extended split (EX) interstitial [3.40, 4.63]
FFCD2 [3.43, 3.44]
Pentagonal (P) interstitial [3.52, 4.97]
EX2 interstitial [3.82, 4.53]
EX3 interstitial [3.82, 4.68]
Vacancy (V) 3.78 3.17 [158]
EX4 interstitial [3.94, 4.99]
Double (XT) interstitial [4.11, 4.35]
Frenkel 4.26 4.32 [158]
Di-vacancy [5.48, 6.50]

Table 6.1 PBE formation energy (in eV) of the lowest-energy point defects in hexagonal Si,
compared (when possible) to the equivalent defect in cubic silicon. The square brackets in
the column of hexagonal Si energies denote energy intervals for the possible orientations
of each defect. Note that in the hexagonal lattice we obviously can not have a tetrahedral
interstitial due to symmetry, but there is a interstitial with similar geometry, so we decided to
keep the nomenclature.

unfavored are unnecessarily included in the study, in the worse case relevant low-energy
defects are not included. We propose therefore to identify a priori the most stable defect
configurations using structure prediction. This preliminary step is particularly relevant when
new materials are studied – as in this case, where the hexagonal symmetry implies that the
number of possible point defects is considerably larger than for cubic silicon – but it can also
lead to surprises for well-studied materials. For example, the four-fold coordinated defect
(FFCD) of cubic silicon was neglected for a long time in defect studies as it was not stable in
force-fields calculations and was only found very late using density functional theory [158].

6.2 Geometric properties of the low-energy point defects

A summary of the lowest-energy point defects stemming from our simulations of hexagonal
silicon can be found in Table 6.1, while in Fig. 6.1 we show the geometries of the defects.
The crystallographic information files for all defects with energies ranging from 2.52 eV to
7.00 eV.
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(a) pristine (b) FFCD (c) T interstitial (d) X interstiatial (e) H interstitial

(f) EX interstitial (g) FFCD2 (h) P interstitial (i) EX2 interstitial (j) EX3 interstitial

(k) Vacancy (l) EX4 interstitial (m) XT insterstitial (n) Frenkel (o) Di-vacancy

Fig. 6.1 Geometries of the lowest energy defects of hexagonal silicon that stemmed from our
simulations. Vacancies are depicted in red, interstitial atoms are in green, while atoms that
are slightly displaced from their bulk positions are in grey.

From the analysis of the runs, we found out that our structural prediction runs were able
to identify the hexagonal counterparts of all common defects already known for cubic silicon.
Furthermore, as the hexagonal lattice contains fewer equivalent sites than the cubic lattice,
we found a series of variants of these defects. Note that a similar symmetry breaking has
also been observed in some polymorphs of SiC [161, 162].

To make the analysis clearer, we grouped defects with similar spatial arrangements and
reported their energy range in Table 6.1. In general, these variant defects can have quite
different energies depending on their orientation. For example, we found two split (X)
interstitials, oriented along different crystallographic directions, that possess quite different
formation energies (2.54 eV and 3.27 eV). Another interesting example is the FFCD that
possesses energy ranging from 2.52 to 3.44 eV, depending on its orientation with respect to
the hexagonal c-axis. This anisotropic behavior suggests the possibility to observe in the
experimental samples defect alignment along certain crystallographic directions.
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Of course, our simulations also yielded a plethora of more complex defects, some of
them with energies in the same range as the most common defects. The lowest of these are
also listed in Table 6.1. In Table 6.1 we also compare the energy of the well-known point
defects of the cubic (diamond) Si lattice [158] with their hexagonal counterparts. Perhaps
not surprisingly, the energy to create a single vacancy [see Fig. 6.1(k)] in hexagonal silicon
is essentially the same as for the cubic lattice. We also find that removing two neighboring
silicon atoms [see Fig. 6.1(o)] is substantially more convenient (by around 2 eV) than creating
two isolated vacancies.

The situation is very different for the interstitials, as their energy is considerably lower
in the hexagonal phase. This is true for the tetrahedral (T), split (X), hexagonal (H), and
extended split (EX) interstitials, with the difference in energy between cubic and hexagonal
silicon around 1 eV. These defects are expected therefore to be much more common in
samples of hexagonal silicon.

The lowest-energy point defect of hexagonal silicon, as in cubic silicon [158], is the
fourfold coordinated defect (FFCD) [see Fig. 6.1(b)]. This defect results from the rotation of
two atoms, allowing to preserve the bond lengths and angles with respect to their bulk values,
leading to a rather stable configuration. In particular, we observed that when the interstitials
are aligned along the [112̄0] direction they possess lower energy than when aligned along the
[112̄1] direction [see the FFCD2 defect depict in Fig. 6.1(g)].

In terms of formation energy, the second-lowest energy defect is the tetrahedral interstitial
[see Fig. 6.1(c)]. We note that, strictly speaking, this defect does not exhibit tetrahedral
symmetry, as this is incompatible with the symmetry of the hexagonal lattice. We decided
nevertheless to keep the nomenclature to simplify the discussion. The formation of this defect
in this lattice requires the displacement of some of its surrounding atoms. The formation
energy of this defect in the hexagonal lattice is ≈ 1 eV lower than in the cubic lattice, meaning
that this defect becomes as stable as the FFCD.

The X interstitial appears afterwards [see Fig. 6.1(d)]. In the diamond lattice, this defect
is usually described as a dumbbell configuration formed by two silicon atoms oriented along
the [110] direction[163]. Moreover, a vacancy is located between these interstitials. In the
hexagonal lattice, the silicon atoms can orient along the [112̄0] or the [112̄1] lattice direction,
where the former configuration is more stable.

The H interstitial follows in terms of energy [see Fig. 6.1(e)]. In this defect, the interstitial
atom is located at the center of the characteristic hexagons formed by the silicon atoms.
The H interstitial is considerably important in Lonsdaleite since its formation energy can
be rather small. In fact, we found it to vary from 2.73 eV, when located at the center of an
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irregular hexagon, to 3.25 eV, when located at the center of the regular hexagons seen in the
c direction. Note that this latter value is close to the energy of this defect in the cubic lattice.

Next comes the EX interstitial [see Fig. 6.1(f)]. Similar to the X interstitial, this defect is
also a dumbbell configuration. However, two additional atoms leave their pristine position
and form a relatively symmetric “U”-shaped motif with the dumbbell interstitials. In total,
three Si-sites are vacant. In the Lonsdaleite the dumbbell interstitials are also oriented along
the [112̄0] direction. We note that the shape of the “U” can change due to the symmetry of
the hexagonal lattice. Furthermore, we found several configurations where the atoms did not
manage to form this U-shape. Instead, they can fold to form a squared-shape [see Fig. 6.1(j)]
or even an L-shape [see Fig. 6.1(l)]. In terms of energy, the U-shaped configurations have the
lowest energy, as low as 3.40 eV, while certain configurations of the squared- and L-shape
achieve 3.82 and 3.94 eV, respectively. We also observed another higher energy configuration
(4.51 eV or higher) resembling the EX, but where two vacancies form a line in the c direction
and are closer to one of the dumbbell interstitials.

The simulations with the 288-atom cell also yielded defects that are similar to the X and
EX interstitial, the difference being that they possess also one vacant site. In particular, the
latter is quite stable [see Fig. 6.1(i)].

The Frenkel defect [Fig. 6.1(n)] occurs when an atom abandons its lattice position in
favor of an interstitial position. In both types of lattice, this defect has characteristic energy
of around 4.30 eV.

Additionally, we would like to mention a couple of complex defect configurations: one
where the interstitials form a pentagonal structure, with 4 vacancies and energy of 3.52 eV
[see Fig. 6.1(h)]; the second can be seen either as an FFCD combined with 3 interstitials
forming a triangle-shape or as an EX combined with an additional dumbbell interstitial. It
has a formation energy of 3.82 eV. Finally, we also found several interesting defects with
energies between 4 and 5 eV, including combinations of the aforementioned interstitials, such
as the XT di-interstitial [see Fig. 6.1(m)], the hexagonal analogous of the modified triangle,
W, and Z di-interstitials [164], and many other complex defects.

We note that the concentration of point defects depends on the free energy of formation,
which can be approximated as the sum of the internal energy at zero temperature and the
vibrational free energy. For cubic silicon, the calculation of the phonon contribution was
performed for the neutral vacancy, the hexagonal and split self-interstitials, and the FFCD
defect in Ref. [165], as well as for the vacancy in Ref. [166]. At high temperatures, the
vibrational free energy associated with a point defect in silicon is of the order of 1 eV.
This stabilization term is especially large for the vacancy and it turns out to be similar for
all studied interstitials. We expect a similar situation for the hexagonal system due to its
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bonding similarity to cubic silicon. Unfortunately, we have to keep in mind a recent critical
study [167] that casts serious doubts on the convergence of calculations of the vibrational
free energy.

6.3 Electronic properties of the low-energy point defects

In order to gain some insight into the change of electronic properties induced by the presence
of these defects, we computed the density of states (DOS) for the most interesting defect
structures. These results are presented in Fig.6.2, where we plot the DOS for selected
defects in an energy window around the band gap, as this is the region of most interest for
optoelectronics. In all plots, the contribution to the DOS from the bulk region is perfectly
visible by comparing to the DOS of pristine hexagonal silicon, depicted as a green line. In
most cases, the states associated with the defects are found in the energy region close to the
band gap. Note that, for some interstitials, we also find localized states at the bottom of the
valence band (not shown).

Both vacancies and di-vacancies can have a profound effect on the electrical properties
of Lonsdaleite silicon. In fact, we find several deep states in the gap.

Turning now our attention to defects that do not change the initial number of atoms of
the 288-atom cell, we find that the FFCD does not lead to any defect states in the band gap,
although we do find a localized state at the bottom of the conduction band. This situation
is rather different when the interstitials align along the [112̄1] direction (as in the FFCD2
structure), as we witness the appearance of a shallow state close to the top of the valence
band. Finally, the Frenkel defect has a shallow state at the same position as the FFCD2,
and also a localized state close to the bottom of the conduction band. In any case, the high
formation energy of this defect is expected to limit its occurrence in experimental samples.

Finally, we analyze the modification to electronic band structure induced by the presence
of interstitials. The lowest-energy defect of this kind, the T interstitial, exhibits a localized
shallow state in the band gap close to the valence band edge. Both the X and the pentagonal
interstitial do not induce electronic states in the band gap, but we can easily identify states
coming from these defects in the valence band. The H and XT interstitials have deep states
localized approximately in the middle of the band gap. Finally, the EX3 defect leads to defect
states both at the top of the valence band and at the bottom of the conduction band. While
the XT interstitial has a large formation energy and can be safely disregarded, optimized
growth processes should consider reducing the occurrence of H interstitials.
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Fig. 6.2 Comparison between the DOS (around the band gap) of the pristine structure and
the DOS of the structures containing defects: (top panel) vacancy and di-vacancy, (middle
panel) defects conserving the number of atoms, (bottom panel) interstitial defects. All DOS
were aligned to a characteristic peak in the valence band. For the pristine structure, this peak
is located 3.1 eV below the Fermi level.



Chapter 7

Summary and Conclusions

In this thesis, we presented an efficient constrained structure prediction algorithm to study
the structural reconstructions of interfaces and point defects in group-IV elementary crystals.
In the following, a brief summary of the main results is presented.

In Chapter 3 we developed an ab initio global structural prediction method, which is
based on the minima hopping method combined with adequate constraints. Our approach
is fully unbiased and is capable of building the lowest-energy reconstructions of interfaces
and yielding the atomic configuration of low-energy defects, regardless of the chemistry or
the crystal symmetry of the material. Energies and forces are evaluated with tight-binding
parameters that can ensure, at the same time, accuracy comparable with the one of density-
functional calculations and numerical efficiency. The developed approach is quite general, as
it can be used to study GBs or heterogeneous interfaces of any chemical composition, and it
can be particularly useful in the investigation of systems with either low symmetry or where
defect complexes are expected to play an important role.

Applying our constrained structural prediction approach, we investigated a large family
of tilt grain boundaries in silicon in Chapter 4. Our structural prediction approach efficiently
reconstructs all interfaces, restoring fourfold coordination, with bond lengths and angles
comparable to those in diamond silicon. We note that in many cases, it was essential to add
or remove atoms in the interface layer to reach the ground-state structure. We systematically
classify the GBs into two types: in type-I GBs, the reconstructed interfaces recover the
structures when the number of atoms removed or added is equal to the number of a whole
perfect boundary plane. In type-II GBs, the interfaces reach new reconstructions when a
plane of atoms is removed or added and they recover the reconstructions of the starting
interface only when the number of removed or added atoms is equal to two whole planes of
atoms.
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The analysis of the recurrent bonding patterns in the GB structures with the lowest
interface energies allowed us to classify the reconstructed patterns in few families. In
particular, we systematically find single atomic columns in [110] GBs and spiral rings in
[100] GBs. Both these defects are electrically benign, as they do not yield states in the
band-gap, which could trigger non-radiative electron-hole recombination. On the other hand,
we can also find few geometries with relatively low interface energy that contain fivefold
coordinated silicon atoms. These defects create localized states in the gap and are therefore
expected to deteriorate charge-carrier lifetimes in electronic devices.

By extending the study of low-energy structures to other group-IV elementary crystals
(carbon, germanium, and tin), we find that the obtained structural patterns are also stable in
Ge and Sn GBs. Furthermore, the GB energy of the same atomic configuration decreases
with respect to the atomic number, from C to Sn. The order of the low-energy interfaces
in a specific GB is consistent for all group-IV elements except for interfaces with five-fold
coordinated atoms. Then, the structures are considerably more unstable in C GBs, while the
structures in Ge and Sn GBs are more stable. In some structures, a higher-energy interface in
a Si GB even becomes the ground-state structure in Ge and Sn GBs.

Move to Chapter 5, we investigate the reconstructed diamond-graphite hybrid structures
in cubic diamond along different interfaces. Our study demonstrated that the graphene layers
are formed from the {111} diamond planes and between the interfaces parallel to [110]
direction, the diamond-graphite structures can be classified into two types by the extended
directions of graphene layers, and the number of graphene layers is limited by the distances
between the terminated atoms for equilibrium interlayer distances. In type-I reconstructions,
the graphene layers are formed by flattening the puckered {111} diamond planes and because
of the large distances between the terminated atoms, the ratio between graphene layers and
connected {111} diamond planes is 1 : 1. In type-II reconstructions, the graphene layers
are nearly perpendicular to the interface planes and since the distance between terminated
atoms is smaller, the ratio between graphene layers and {111} diamond planes varies can be
1 : 1 and 2 : 3 or a mixture of both. For the interfaces parallel to the diamond [100] axis, the
graphene layers are usually formed only in one pattern, that the layers are terminated at the
{111} diamond planes and stacking along [-101] direction of the cubic diamond. We also
compared the formation of diamond-graphite structures in carbon GBs, that the graphene
layers are formed with similar features, but the bonds at the bulk interfaces are largely
distorted for GBs of [110] rotation axis, while for GBs of [100] rotations axis the graphene
layers are bent by the misorientation of two bulk grains. And these factors explained the rare
observations of diamond-graphite structures in carbon grain boundaries.
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By comparing the C–C bonds in these structures, we found the σ -bonds are affected by
the different hybridizations of atoms, that sp3–sp2 bonds are normally compressed, compared
to the bonds in the diamond. And the bonds of unsaturated atoms are also compressed while
the bonds between the {111} diamond planes are stretched at the interfaces. We also found
the C double bonds between sp2 atoms are dependent on the length of graphene layers, and
bonds near the interfaces are smaller than the bonds at the central parts of graphene layers.
Furthermore, the sp2–sp2 bonds are anisotropic in the structures because of the limitation of
supercell size. The calculations of DOS revealed localized electronic states at the unsaturated
atoms of diamond or the sp2-hybridized atoms which are connected to the diamond surfaces.

Finally, in Chapter 6 we presented a systematic investigation of the structure of lowest-
energy point defects in the Lonsdaleite phase of silicon with our constrained structural
prediction method. A plethora of low-energy point defects is identified by us, including the
analogous to all relevant defects known for diamond silicon.

A comparison of similar defects in the two hexagonal and cubic lattices reveals that some
interstitial defects have lower energy in Lonsdaleite silicon, meaning that they will be more
common in synthesized samples of hexagonal silicon than in diamond silicon. We note
that in the Lonsdaleite phase, the four-fold coordinated defect, the tetrahedral interstitial,
and the split interstitial are the defects with the lowest formation energy (around 2.5 eV),
while the vacancy is more than 0.5 eV higher than in cubic silicon. This latter difference is,
in our opinion, very important for the emerging hexagonal silicon technology. At typical
temperatures where silicon devices are thermally processed (around 1000–1100 K), both
interstitials and vacancies seem to exist in roughly equal measure [165]. In fact, although
the energy of the vacancy is considerably higher than the one for the interstitials, it is
compensated by a larger entropy contribution. Assuming a similar behavior of the entropy
for the hexagonal case, we conclude that vacancies should be significantly less common in
hexagonal silicon than in its cubic counterpart. Moreover, defects of the hexagonal silicon
lattice admit several variants due to symmetry breaking and can have quite different energies
depending on their relative orientation in the crystal lattice.

Analysis of the electronic density of states of the structures containing the defects reveals
that the fourfold-coordinated defect is electronically benign, but that the tetrahedral and split
interstitials exhibit localized shallow states slightly above and below the top of the valence
band, respectively. Deep states in the gap were found for the vacancies and for the hexagonal
and double interstitials.
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