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2  Abstract:  

Background As life expectancy rises, the number of patients with age-related conditions 

such as cardiovascular diseases, neurodegenerative diseases, and sarcopenia grows. One of 

the most accepted theories to explain the mechanism of aging is the accumulation of 

oxidative damage over time. Oxidative stress, defined as the imbalance between reactive 

oxygen species production and the antioxidant defenses, can result in macromolecular 

damage of lipids, proteins, and DNA. Over time, this eventually leads to progressive loss 

of tissue and organ function, a main feature of aging. However, the factors affecting this 

complex process are still poorly understood. It has been suggested that sex and inherited 

exercise capacity are two defining factors in the body’s response to aging and its 

corresponding pathologies. Women live longer and develop many diseases with a 10-year 

delay compared to men. Similarly, high inherited exercise capacity has been associated 

with a higher life expectancy. Since the influence of the intrinsic (inherited) exercise 

capacity is hard to investigate in humans separately from the extrinsic form, a specifically 

bred rat model for high (HCR) and low (LCR) intrinsic aerobic running capacity was 

developed. In fact, HCRs showed to live almost one third longer than LCRs. 

Objective We aimed to investigate the antioxidant defense system and oxidative damage 

markers in the context of aging, sex, low and high inherited exercise capacity. 

Methods Heart, brain, and gastrocnemius muscle tissues of each female and male rats were 

tested in 4 different groups: young (4 months old), old (24 months old), HCRs & LCRs. 

Antioxidant capacity was evaluated through photometric measurements of the 3 most 

important antioxidant enzyme activities: superoxide dismutase (SOD), catalase (CAT), and 

glutathione peroxidase (GPx). On the other hand, oxidative damage markers related to lipid 

peroxidation (4-hydroxynonenal: 4-HNE) and protein carbonylation (PCO) were 

quantified by western blots and spectrophotometric measurements, respectively.   

Results In hearts, females presented a similar basal CAT activity between young HCR and 

LCR rats. A significant increase in enzyme activity with age was observed in both 

phenotypes. However, this increase was stronger in LCRs, leading to higher enzyme 

activity in LCRs compared to HCRs within the old females. On the other hand, males 

exhibited a similar CAT activity among all groups. The other two antioxidant enzymes 
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(SOD & GPx) did not show any significant differences. In terms of oxidative damage 

markers, both sexes presented similar PCO and 4-HNE basal levels in young HCR and 

LCR rats. With age, PCO level was significantly elevated in both phenotypes. However, 

4-HNE level increased with age in HCRs only in both sexes.  

In brains, both phenotypes showed similar patterns. Females exhibited a significant 

elevation of CAT activity with age, whereas SOD activity remained unchanged. On the 

other hand, males showed no significant differences in CAT activity, whereas SOD activity 

was remarkably reduced with age in both phenotypes. GPx activity showed no significant 

differences. Both sexes presented a strong elevation of PCO and 4-HNE with age in both 

HCRs and LCRs.  

In gastrocnemius muscles, both sexes showed similar patterns. CAT activity, basally 

similar, presented a remarkable age-related elevation in HCRs only. LCRs maintained a 

relatively unchanged enzyme activity with age. This led to a significantly higher CAT 

activity in old HCRs compared to old LCRs. SOD and GPx activities showed no significant 

changes. PCO level was strongly elevated with age in both HCRs and LCRs. 4-HNE level 

did not present any relevant variations with age.  

Conclusion Genetic predisposition to high exercise capacity was not associated with 

decreased oxidative damage in heart and brain. Higher protection of HCRs might be 

assumed in the skeletal muscle due to a higher antioxidant capacity. Furthermore, both 

sexes presented similar patterns of oxidative damage during aging. 
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3  Zusammenfassung:  

Mit steigender Lebenserwartung nimmt die Zahl der Patienten mit altersbedingten 

Erkrankungen zu. Eine der am meisten akzeptierten Theorien zur Erklärung des 

Mechanismus des Alterns ist die Anhäufung oxidativer Schäden im Laufe der Zeit. 

Oxidativer Stress, definiert als das Ungleichgewicht zwischen der Produktion reaktiver 

Sauerstoffspezies (ROS) und der antioxidativen Abwehr, kann zu einer makromolekularen 

Schädigung von Lipiden, Proteinen und DNA führen. Im Laufe der Zeit führt dies 

schließlich zu einem fortschreitenden Verlust der Gewebe- und Organfunktion, ein 

Hauptmechanismus des Alterns. Die Faktoren, die diesen komplexen Prozess beeinflussen, 

sind jedoch noch wenig bekannt. Es wurde vermutet, dass Geschlecht und vererbte 

körperliche Leistungsfähigkeit eine wichtige Rolle im Alterungsprozess und bei den 

entsprechenden Pathologien spielen. Frauen leben länger und entwickeln viele Krankheiten 

mit einer Verzögerung von zehn Jahren im Vergleich zu Männern. In ähnlicher Weise 

wurde eine hohe vererbte Ausdauerkapazität mit einer höheren Lebenserwartung in 

Verbindung gebracht. Da der Einfluss der intrinsischen (genetisch bedingten) 

Ausdauerkapazität beim Menschen unabhängig von der extrinsischen (trainierten) Form 

schwer zu untersuchen ist, wurde ein speziell gezüchtetes Rattenmodell für eine hohe 

(HCR) und eine niedrige (LCR) intrinsische aerobe Laufkapazität entwickelt. Tatsächlich 

lebten HCRs fast ein Drittel länger als LCRs. 

Ziel dieser Arbeit war es, das antioxidative Defenssystem und die Marker für oxidative 

Schäden im Zusammenhang mit Alterung, Geschlecht, geringer und hoher vererbter 

körperliche Leistungsfähigkeit zu untersuchen. 

Herz-, Gehirn- und Gastrocnemius-Muskelgewebe aller weiblichen und männlichen Ratte 

wurden in 4 verschiedenen Gruppen getestet: jung (4 Monate alt), alt (24 Monate alt), 

HCRs und LCRs. Die Antioxidant-kapazität wurde durch photometrische Messungen der 

3 wichtigsten antioxidativen Enzymaktivitäten untersucht: Superoxiddismutase (SOD), 

Katalase (CAT) und Glutathionperoxidase (GPx). Andererseits wurden oxidative 

Schadensmarker, die mit der Lipidperoxidation (4-Hydroxynonenal: 4-HNE) und der 

Proteincarbonylierung (PCO) zusammenhängen, durch Western Blots bzw. 

spektrophotometrische Messungen quantifiziert. 

ZUSAMMENFASSUNG 
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In den Herzen zeigten Weibchen eine ähnliche basale CAT-Aktivität zwischen jungen 

HCR- und LCR-Ratten. Bei beiden Phänotypen wurde ein signifikanter Anstieg der 

Enzymaktivität mit dem Alter beobachtet. Dieser Anstieg war jedoch bei LCRs stärker, 

was zu einer höheren Enzymaktivität bei LCRs im Vergleich zu HCRs bei den alten 

Weibchen führte. Andererseits zeigten Männchen in allen Gruppen eine ähnliche CAT-

Aktivität. Die beiden anderen antioxidativen Enzyme (SOD & GPx) ergeben keine 

signifikanten Unterschiede. In Bezug auf oxidative Schadensmarker zeigten beide 

Geschlechter ähnliche PCO- und 4-HNE-Basalwerte zwischen jungen HCR- und LCR-

Ratten. Mit zunehmendem Alter war der PCO-Spiegel in beiden Phänotypen signifikant 

erhöht. Der 4-HNE-Spiegel zeigte jedoch nur einen altersbedingten Anstieg der HCRs bei 

beiden Geschlechtern. 

Im Gehirn war dennoch bei beiden Phänotypen ähnliche Muster zu beaobacten. Weibchen 

zeigten eine signifikante Erhöhung der CAT-Aktivität mit dem Alter, während die SOD-

Aktivität unverändert blieb. Dagegen zeigten männliche Ratten keine signifikanten 

Unterschiede in der CAT-Aktivität, während die SOD-Aktivität mit dem Alter 

bemerkenswert reduziert war bei beiden Phänotypen. Die GPx-Aktivität blieb unverändert. 

Beide Geschlechter zeigten mit zunehmendem Alter einen starken Anstieg von PCO und 

4-HNE sowohl bei HCRs als auch bei LCRs. 

In den Gastrocnemius-Muskeln wiesen beide Geschlechter ähnliche Muster auf. Die CAT-

Aktivität mit ähnlichen Basalwerten zwichen beiden Phänotypen zeigte nur eine relevante 

altersbedingte Zunahme der HCR. Die LCRs behielten mit steigendem Alter eine relativ 

unveränderte Enzymaktivität. Dies führte zu einer signifikant höheren CAT-Aktivität bei 

alten HCRs im Vergleich zu alten LCRs. SOD- und GPx-Aktivitäten zeigten keine 

signifikanten Veränderungen. Der PCO-Spiegel war bei beiden HCRs und LCRs mit dem 

Alter stark erhöht. Der 4-HNE-Spiegel zeigte jedoch keine relevanten Unterschiede. 

Die Ergebnisse lassen darauf schließen, dass eine genetische Prädisposition für hohe 

aerobe Leistungsfähigkeit nicht im Zusammenhang mit einer verminderten oxidativen 

Schädigung von Herz und Gehirn steht. Aufgrund einer höheren antioxidativen Kapazität 

kann ein höherer Schutz der HCRs im Skelettmuskel angenommen werden. Darüber hinaus 

zeigten beide Geschlechter ähnliche Muster oxidativer Schäden während des Alterns. 

ZUSAMMENFASSUNG 
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4  Introduction:  

According to the latest population estimates, the number of old people around the globe 

will almost double by 2050 from 2019 numbers (United Nations, 2019). The rapid growth 

in life expectancy and the aging population is accompanied by a parallel rise of age-related 

diseases. This imposes a major burden on global health, which requires developing a deeper 

understanding of the aging process and its related conditions. Recent research is 

considering oxidative stress to be highly implicated in most of the age-related diseases 

(Liguori et al., 2018). 

 

4.1  Age-related pathologies in heart, brain and skeletal muscles 

Cardiovascular diseases are considered the leading cause of death in the aging population 

(Jaul & Barron, 2017). Due to the high aerobic metabolism of the heart, mitochondrial 

dysfuction and oxidative stress have been pointed out as relevant factors contributing to 

heart aging and in the development of cardiac diseases (Peoples et al., 2019). During aging, 

cellular processes related to mitochondrial function including oxidative stress regulation 

are negatively altered, which causes cardiac dysfunction (Martín-Fernández & Gredilla, 

2018). In fact, the accumulation of oxidative stress over time is considered a major 

stimulant of pathological remodeling in the aging heart (Rababa'h et al., 2018). This 

repetitive pattern contributes to several cardiovascular conditions during aging such as 

atherosclerosis, cardiac hypertrophy and heart failure (Garcia et al., 2017).  

Neurodegenerative diseases are another prevalent group in the age-related diseases. The 

accumulation of oxidative damage in the aging brain is involved the development of many 

neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases (Carvalho & 

Moreira, 2018; Hardy & Higgins, 1992). “The iron hypothesis” has gained a special 

attention as an underlying mechanism in the literature. It is based on the accumulation of 

iron with aging that through the Fenton reaction (Fe2+ + H2O2→Fe3+ + OH-+•OH) produces 

highly reactive hydroxyl radicals, causing damage to DNA, lipid and protein (Egana et al., 

2003; Ke & Ming Qian, 2003; Zecca et al., 2004). Furthermore, oxidative stress causes the 

accumulation of β-Amyloid plaques and neurofibrillary tangles, which are shown to 
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interfere in neuronal function and induce neuronal death (Ang et al., 2010; Ballatore et al., 

2007; Hardy & Higgins, 1992). 

Similarly, aging is highly associated with skeletal muscle dysfunction. One of the most 

striking effects of aging on muscle is sarcopenia, a condition described as a progressive 

decline of muscle mass, strength, and quality (Thompson, 2009). The skeletal muscle is 

one of the largest consumers of oxygen in the body, which makes it very vulnerable to 

oxidative stress. During aging, the continuous accumulation of oxidative damage leads to 

a progressive oxidation of its cellular components, including contractile proteins, causing 

skeletal muscle dysfunction (Aoi & Sakuma, 2011). Conversely, targeting oxidative stress 

has shown efficacy at preventing the sarcopenic phenotype in aged mice (Vasilaki et al., 

2017). The association of sarcopenia with impaired physical performance, frailty, and 

increased risk of falls and morbidity is well established in the literature (Doria et al., 2012). 

Furthermore, sarcopenia is shown to contribute to the development of cardiovascular and 

metabolic diseases because of its function as an endocrine organ and its involvement in the 

body’s metabolism (Batsis et al., 2014; Ritov et al., 2005; von Haehling, 2018).  

Therefore, the better understanding and management of oxidative stress level is very likely 

to play an important role in the overall aging process, its disease course, and prognosis. 

Although the nature of the mechanisms underlying aging is at present poorly understood. 

One of the most accepted theories is the oxidative damage caused by the progressive 

decline of mitochondrial function with age (Bhatti et al., 2017). 

 

4.2  Mitochondrial function, oxidative stress, and the theory of aging 

4.2.1  Mitochondrial function 

Mitochondria are the major producers of reactive oxygen species (ROS), which are a 

family of highly reactive free radicals generated at the electron transport chain of the inner 

mitochondrial membrane as a consequence of the aerobic metabolism (Lambert & Brand, 

2009). This takes place during oxidative phosphorylation (OXPHOS), the process in which 

mitochondria convert oxygen and nutrients into adenosine triohosphate (ATP), the cell’s 
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main energy source. The electron transport chain is composed of 5 big complex proteins. 

ROS are produced as a result of the electrons leakage at complex I and complex III to form 

superoxide (O2-). Subsequently, superoxide is quickly dismutated to hydrogen peroxide 

(H2O2) (Li et al., 2013). Both superoxide anion (O2-) and hydrogen peroxide (H2O2) are 

considered strong ROS molecules that can damage macromolecules such as lipids, proteins 

and DNA (Tsutsui et al., 2011). However, mitochondria are not only responsible for ROS 

production, but they are equipped with the necessary antioxidant defenses to detoxify them. 

Under the normal physiological state, the antioxidant system converts ROS into less 

reactive radicals or completely eliminates them. Therefore, they are of a great importance 

in maintaining mitochondrial function and protecting the cellular macromolecules. This 

major role of antioxidant defense is fulfilled by antioxidant enzymes that contribute to the 

mitochondrial protective function (Sies, 2015). The most important antioxidant enzymes 

are catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) 

(Birben et al., 2012). SOD rapidly catalyzes the conversion of superoxide(O2-) to hydrogen 

peroxide (H2O2), which is later metabolized to oxygen and water by either CAT or GPx 

(Kander et al., 2017).  

4.2.2  Oxidative stress theory of aging  

Mitochondria are negatively affected by aging, leading to an enhanced production of ROS 

and a diminished antioxidant defense. This consequent imbalance between ROS 

production and antioxidant defenses leads to oxidative stress (Cui et al., 2012). According 

to the free radical theory of aging, later termed as oxidative stress theory of aging, aging 

results from the deleterious effects of ROS causing accumulative structural damage to the 

macromolecules (lipids, DNA, and proteins). This is followed by tissue and functional 

losses that is often accompanied by many age-related pathologies (Liguori et al., 2018). 

Figure 1 describes the cellular mechanism of ROS-mediated oxidative damage in aging. 

The uninhibited free radicals lead to the lipid peroxidation of poly-unsaturated fatty acids 

(PUFAs) in membranes, which produce several reactive aldehydes such as trans-4-

hydroxy-2-nonenal (4-HNE). As a very reactive aldehyde, and a product of lipid 

peroxidation, 4-HNE transfers from the membrane into the nucleus and cytoplasm to 

disrupt the activity of several proteins and DNA. The secondary protein carbonylation 
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impairs the cellular signal transduction, induces inflammation, and triggers cellular 

apoptosis (Fedorova et al., 2014). Over time, the accumulation of oxidative damage results 

in a progressive loss of tissue and organ function, the main mechanism behind aging (Bhatti 

et al., 2017; Garcia et al., 2017). Due to the high reactivity and short half-life of ROS, 

investigating the age-related oxidative damage through the direct measurement of ROS is 

generally considered hard. Therefore, ROS are most commonly tracked by the 

concentrations of their oxidation target products, including lipid peroxidation end products 

and oxidized proteins (Dalle-Donne et al., 2006). 4-HNE and protein carbonyls, the 

products of lipid and protein oxidation, are considered one of the most important markers 

of oxidative damage in aging studies (Frijhoff et al., 2015).   

  

 

 

 

INTRODUCTION INTRODUCTION 



15 
 

 
 

4.2.3 Hormesis principle 

On the other hand, taking the hormesis principle into consideration, sublethal exposure to 

stressors can induce a response that results in stress resistance (Gems & Partridge, 2008). 

Research has shown that low concentrations have a beneficial effect (inducing 

mitochondrial biogenesis, cellular repair, and antioxidant enzyme synthesis), while a 

massive level of ROS inhibits enzyme activity and causes apoptosis or necrosis (Gems & 

Partridge, 2008; Giorgi et al., 2018; Słodki & Bogucka, 2019). This positive response to 

moderate levels of ROS has been termed as mitochondrial hormesis or mitohormesis 

(Barcena et al., 2018). However, the molecular mechanisms regulating these benefits are 

largely unknown. Radak et al. proposed that intermittent, brief increases in ROS production 

(e.g., during exercise training) can cause a slight molecular damage, which further 

stimulates the oxidative damage repair system (antioxidants synthesis, protein and DNA 

damage repair). This will protect against a subsequent stronger stress and ROS-associated 

pathologies, thus slowing down aging (Radak et al., 2005). In fact, the activation of the 

mitohormetic response is suggested to increase lifespan, which has been shown in different 

yeast and animal models (Barcena et al., 2018; Musa et al., 2018). Thus, the relationship 

of ROS to the generated oxidative damage in aging is still not fully understood. In addition, 

many cofactors such as different sex and exercise capacity have been proposed to play an 

important role in the body’s response to oxidative stress, and thus aging.  

 

4.3  Sex-dependent differences in aging 

It has been shown that, on average, women in developed countries have an expected 

lifespan of five years longer than that of men (Popkov et al., 2015). This survival advantage 

in women has been contributed to the evident sex bias in the manifestation of age-related 

diseases. Taking cardiovascular diseases into consideration, the leading cause of death, 

women have a disease onset with a 10-years delay compared to men (Popkov et al., 2015; 

Radovanovic et al., 2012). In fact, it has been shown that there is a sex-specific cardiac 

remodeling during aging, in which women could preserve a better cardiac function than 

men (Ostan et al. 2016). Furthermore, many studies addressing sarcopenia as well have 

shown a higher prevalence in males in comparison to females (D. R. Bouchard et al., 2009; 
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Du et al., 2019; Landi et al., 2012). As for neurodegenerative diseases, there is an intriguing 

asymmetry in the manifestation between sexes, considering that oxidative damage is highly 

proposed as a common underlying cause. For example, Alzheimer’s disease is more likely 

to affect women, whereas Parkinson’s disease is more likely to affect men (Gaignard et al., 

2017). Overall, women have been shown to suffer less from most of the leading causes of 

death compared to men, with the remarkable exception of Alzheimer's disease (Austad & 

Bartke, 2015). 

The specific molecular mechanisms underlying the sex differences in aging remain poorly 

understood. At present, mitochondrial theory of aging is considered the best agreement 

explaining the sex-dependent differences in age-induced oxidative damage and its related 

pathologies (Popkov et al., 2015). To understand these differences, acknowledging the very 

basic variations between the two sexes at the physiological, cellular, hormonal and genetic 

level is essential. At the physiological level, men weigh on average 15% more than women. 

They have higher skeletal muscle mass/body weight ratio (Janssen et al., 2000). At the 

cellular level, men demand higher oxygen consumption due to the structural differences in 

muscles, brain, heart, and oxygen capacity of blood. This is assumed to create differences 

in the mitochondrial biogenesis between the two sexes (Popkov et al., 2015). In addition, 

estrogen in women plays an important role in inducing mitochondrial biogenesis and 

preserving mitochondrial function including oxidative stress regulation, cellular 

proliferation and death (Klinge, 2008). Therefore, estrogen, which also acts as antioxidant 

itself, contributes to higher cardio- neuro- and skeletal muscles- protective properties in 

women (Bell et al., 2013; Jung & Metzger, 2016; Lopez-Ruiz et al., 2008; Sullivan et al., 

2007). Furthermore, higher expression of genes responsible for mitochondrial network was 

found in old women compared to old men (Guebel & Torres, 2016). Taken together, all 

those mentioned multifactorial traits lead to sex-dependent differences in redox hemostasis 

and the body’s response to oxidative stress and aging.  

In fact, a human study provided evidence of enhanced oxidative stress in males compared 

to females of the same age (Ide et al., 2002). Furthermore, a series of studies in a rat model 

showed that females had lower oxidative stress and mitochondrial dysfunction than males 

in various tissues (Bhatia et al., 2012; Borras et al., 2003; Brandes & Mugge, 1997; Vina 
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et al., 2003). Thus, there is a growing number of literature highlighting clear sex-dependent 

differences in aging, in which women seem to be more resistant to oxidative stress and its 

related pathologies (Popkov et al., 2015). Another factor that has been shown to play an 

important role in the mitochondrial biogenesis and function is the genetic predisposition to 

different aerobic exercise capacity  (L. G. Koch & Britton, 2005). 

 

4.4  Genetic (intrinsic) exercise capacity and aging 

It is well established that low physical fitness is a powerful predictor of premature 

morbidity and mortality (Blair et al., 1996; Sandvik et al., 1993). Independent of genetics, 

physical inactivity has been associated with cardiovascular diseases and skeletal muscle 

dysfunction as well, whereas training showed protective features (Brunjes et al., 2017; 

Myers et al., 2002). Exercise training is similarly shown to slow down neurodegeneration, 

by promoting neurogenesis, synaptic plasticity and antioxidant-related pathways (Ang et 

al., 2010; Gomez-Pinilla, 2008). However, it is important to understand that exercise 

capacity consists of two components: extrinsic and intrinsic exercise capacity. While the 

former is acquired through physical activity and other environmental factors, the intrinsic 

form is genetically determined (C. Bouchard et al., 1999; Kim et al., 2011). Investigating 

the contribution of intrinsic exercise capacity independently is considered challenging due 

to the numerous confounding environmental factors. Koch and Britton developed by 

selective breeding a rat model  that was segregated according to its maximal treadmill 

running capacity into high capacity runners (HCR) and low capacity runners (LCR) (L. G. 

Koch & Britton, 2001). This animal model offers the possibility to investigate the influence 

of intrinsic (genetic) exercise capacity separately from the extrinsic form. Rats were tested 

for their running capacity that included duration, distance, and maximum speed. The best 

runners were then mated over several generations to create the HCRs line. Likewise, the 

worst runners were bred analogously to generate the LCRs line. The median age of death 

between the 2 lines was 24.0 months for LCR rats and 34.7 months for HCR rats, 

representing a 45% difference in life expectancy (Lauren Gerard Koch et al., 2011).  

On the cellular level, LCRs showed a lower expression of proteins that are associated with 

mitochondrial biogenesis and activity  (L. G. Koch & Britton, 2005). On the contrary, 
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numerous studies found that HCR rats have superior mitochondrial enzyme activities 

compared to LCR rats (Lessard et al., 2009; Naples et al., 2010; Rivas et al., 2011; Walsh 

et al., 2006). In fact, LCR rats tend to have increased visceral adiposity, dyslipidemia, 

increased blood pressure, endothelial dysfunction, and insulin resistance. These features 

make them develop a phenotype consistent with metabolic syndrome, which is considered 

a great risk factor for cardiovascular diseases and skeletal dysfunction (Noland et al., 2007; 

Wisloff et al., 2005). It is also well elaborated in literature that metabolic syndrome can 

lead to cognitive impair and neurodegenerative diseases like Alzheimer’s disease. Two 

studies revealed evidence of a neurodegenerative process in the aged LCR brains, 

consistent with those seen in Alzheimer’s disease in humans (Choi et al., 2014; Wikgren 

et al., 2012). Thus, HCR/LCR animal model with its complex phenotypes is considered a 

great model to investigate the pathogenesis of various systemic diseases during aging, in 

which oxidative damage is considered the main mechanism behind. This can help us in 

developing a deeper understanding of the impact of different inherited aerobic and 

metabolic capacity on the process of aging and its related diseases.  
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5 Aim of the study: 

The aim of the current study was to investigate the impact of different intrinsic exercise 

capacities on the antioxidant defense system and the generated oxidative damage during 

aging in different sexes.  

 

The following hypotheses were tested in this study: 

• We hypothesized that HCRs exhibit less oxidative damage with age than LCRs, 

which is the possible reason for their longer life expectancy. 

• We further proposed that there would be sex-dependent differences in the generated 

oxidative damage with age.  
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6 Materials and Methods: 

6.1  Materials: 

6.1.1  Chemicals & Reagents: 

The used chemicals and reagents during this work are the following: 

Chemicals Company 
KH2PO4 
K2HPO4 

Ailied Signal 30407 
MERCK A604404 

Tris- HCl Roth 9090.3 
EDTA Roth 8043.3 
Glutathione Reductase Sigma Aldrich G3664 
Glutathione reduced Sigma G4251- 300 MG 
NADPH Sigma 93025-1G 
Cumene Hydroperoxide (80%) Sigma Aldrich 247502 
30 % H2O2 Roth CP26.1 
Catalase preparation Aspergillus niger Sigma C16K3789 
Pyrogallol Sigma P0381- 25 G 
37 % HCl. Roth; X942.1 
Triton -X 100 Sigma, T9284 
Tris-HCl Sigma, T3253 
NaCl Roth, 9265.1 
NaF Sigma, S7920 
Na4P2O7 Sigma, S6422 
PMSF Roth, 6367.1 
Na3VO4 Sigma, S6508 
Protease Inhibitor Cocktail-Tablet  Roche, 11697498001 
Tris (basic) Roth, 5429.3 
SDS (Sodium Dodecyl Sulfat) Roth, 2326.2 
Dithiothreitol DTT Roth, 6908.1 
Glycerol Sigma, G7893 
Brom phenol blue Roth, A512.1 
Glycine Roth, T873.2 
Methanol Roth, 4627.5 
Tween 20 AppliChem, A1389 
Luminol Fluka, 9253 
Coumarin acid Sigma, C 9008 
H2O2 Sigma, 34,988-7 
Chemiluminescence reagent for 
horseradish peroxidase SERVA, 42582.02 

HCl Roth, K025.1 
Ammonium pyrosulfate (APS) Roth, 9592.2 
Isopropanol (2-Propanol) Sigma, 15,246-3 

MATERIALS AND METHODS 
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Acetic acid Roth, 3738.5 
Coomassie brilliant blue  Serva, 17524 
BSA Sigma, A7906 
Protein standard Sigma, P0834 
Coloring reagent concentrate Biorad, 500-0006 
30% Polyacrylamide AppliChem, A1672 
TEMED Sigma, T8133 
Skimmed milk powder 
Serva Visi Plot Standard I  

Roth, T145.2 
Serva 39260.01 

Precision Protein Strep Tactin –  
HRP Conjugate 

Bio-Rad; 161-0380 

 

6.1.2  Buffers:  

Buffers Recipe         
Lyse buffer  0,1 M K2HPO4, 2 mM EDTA, 2 Protease Inhibitor 

Tablets; pH 7.4; storage by 4 °C for 3 months          

Tris- buffer 50 mM Tris- HCl, 0,1 mM EDTA    
 

 
pH 7.6; storage by 4 °C for 2 months  

 
      

GSH- buffer  0,2 mM NADPH, 9 mM GSH 
  

 
7,5 U/ml Glutathione- Reductase; storage by 4 °C       

Phosphate buffer 1 M KH2PO4, 1 M K2HPO4 
 

 
pH 7.8; storage by 4 °C for 6 months 

 
      

Pyrogallol 10 mM HCL, 8 mM Pyrogallol 
 

 
Stored by 4 °C for 1 week 

  
 

 
    

H2O2 30 mM H2O2; freshly prepared for every 
measurement       

Protein carbonyl-                                                   Na2HPO4 (1M), NaH2PO4 (1M), EDTA (0,5M), 
0,015g Digitonin, PMSF (0,1mM), Leupeptin 
(10mM), Pepstatin A (1mM), Aprotinin (1,54mM).                                                                      
Freshly prepared for every measurement 

sample buffer   

  
     

Separating/stacking 
buffers  

2M Tris Hydrochloride, 2 M Tris Basic, 0.4% SDS; 
pH 8.8. 

MATERIALS AND METHODS 
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10x Running buffer 144 g Glycine (2M), 10 g SDS (1%), 30g Tris Base 
(250mM), + dd H2O up to 1L                                                       
Stored at 4 °C for 1 month 

 
 
      

1x Running buffer 100ml 10x Stock buffer + 900ml dd H2O       

10x Stock TBS 87.6g NaCl (1.5M), 60.5g Tris, (500mM) dd H2O up 
to 1L; pH 8; stored at -20°C         

1x TBS-T 100ml 10x stock buffer + 900 ml dd H2O. + 1ml 
Tween 20 (0,1%)  

 
      

10x Transfer buffer 30 g Tris Base (250mM), 2 g SDS (1%), 141 g 
Glycine (2M), dd H2O up to 1L. 

 

  
    

1x Transfer buffer 100 ml 10x Stock buffer + 200 ml Methanol + 700ml 
ddH2O  

 
     

Stripping buffer  1 M Glycine (37.54 g), dd H2O up 500ml 
 pH 1.9; stored at -20°C.         

Blocking buffer 5% skimmed milk powder in TBS-T 
 

 
     

Naphthol Blue Black  200mg Naphthol Blue Black (16.22M), 10 ml Acetic 
acid (5%), 90 ml Methanol (45%), dd H2O up 200ml 

 

  
    

Lämmli 3x 100 mM Dithiothreitol DTT, 3 mM EDTA, 2,3 mM 
Tris- HCl, 3 % SDS, 40 % Glycerol, 0,02 % 
Bromophenol blue  

       

Chemiluminescence 
solution 

1:1000 H2O2 (30%) + SERVA Chemiluminescence 
reagent 

 

6.1.3  Antibodies:  

Antibodies Company Product number 

MATERIALS AND METHODS 
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Primary Antibody:    
Anti-4 Hydroxynonenal antibody  abcam ab46545 

   
Secondary Antibody:   
Anti-Rabbit IgG, Horseradish Peroxidase 
(HRP), linked whole antibody 

Amersham 
pharmacia 

RPN4301 
  

 

6.1.4  Animal model:  

The used animal model, originally from the University of Michigan, Ann Arbor, USA, was 

specifically selected over 33 generations of females and males rats according to their high 

(HCR) and low (LCR) intrinsic aerobic running capacity (G. Koch & Britton, 2001). The 

rats were kept in standard cages with ad libitum access to food and water. The animals 

were kept at a 12hrs day/12hrs night rhythm at a constant room temperature of 21° C.  

 

6.2  Methods: 

6.2.1  Experimental Design: 

Frozen tissues of hearts, brains and skeletal muscles were investigated in each of female 

and male rats through 4 different groups: young (4 months old) and old (24 months old) 

rats divided into HCRs & LCRs. Each group contained 6 to 10 samples.  

MATERIALS AND METHODS 

Figure 1. Flow chart of the experimental design demonstrating the group distribution 
of the heart / brain / skeletal muscle samples among female and male rats. 
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6.2.2  Sample Preparation: 

The HCR and LCR rats at the ages of 4 or 24 months were anesthetized with thiopental 

and sacrificed with their organs removed. Thereafter, they were washed in ice-cold NaCl 

buffer, weighed and stored at -80° C. For this study, the stored frozen tissues of the above-

mentioned groups were crushed and powdered under liquid nitrogen and used in 

measurements.  

The sample preparation was carried out according to (Constance Tweedie et al., 2010). 50 

mg of the ground tissue were mixed with 500 µl lysis buffer (100 mM KH2PO4, 2 mM 

EDTA and 2 tablets protease inhibitor, pH 7.4) and mixed. Thereafter, centrifugation was 

carried out at 3000* g for five minutes at a temperature of 4° C. The supernatant was 

collected, transferred into 1.5 ml tubes, and stored at -20° C to be used later for CAT and 

SOD detection.  

The same procedure was conducted again with a centrifugal force of 10,000*g for 15 

minutes at a temperature of 4° C to obtain the supernatant used for the measurements of 

GPx activity (Forstrom et al., 1978; Ursini et al., 1985) and aliquots preparation for HNE 

Western blotting (Arcaro et al., 2015; Usatyuk et al., 2006). The samples were stored at -

20° C when not used at the same day. 

 

6.2.3  Quantitative protein determination: 

The Bradford photometric method (Bradford, 1976) was used for quantitative protein 

determination, owing principally to its high sensitivity, perceived linearity, and the speed 

of analysis (Sapan et al., 1999). The Bradford assay is based on the interactions between 

basic amino acids residues (arginine, lysine and histidine) with the staining reagent in an 

acidic environment. This binding results in a color change to the blue form of the dye, 

depending on the protein concentration of a sample.  Prior to the measurement, the prepared 

samples were diluted with distilled water in a dilution’s factors of 1:20 for brains and 1:30 

for hearts and skeletal muscles. In order to obtain a standard curve, bovine serum albumin 

(BSA, Sigma P0834) was prepared in varying concentrations of 0.2, 0.4, 0.6, 0.8, and 1 mg 

MATERIALS AND METHODS 
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/ ml. The staining reagent (BioRad, 500-0006) was diluted 1:5 with distilled water and 

stored at room temperature until measured. As a blank, to subtract the background, distilled 

water was used. 5 μl of each of distilled water, standards, and diluted samples were pipetted 

in triplicates in the corresponding wells of a microtiter plate (MTP, Greiner bio-one, 

655101). Immediately afterwards, 200 μl of staining reagent were added using a 

multichannel pipette. The plate was placed in the photometer for a 3 minutes incubation 

time followed by the measurement, which was adjusted at a wavelength of 595 nm to detect 

the spectral shift in color range. Using the standard curve and Lambert-Beer's law, the final 

protein concentration was calculated and the values were expressed in mg/ml.  

 

6.2.4  Catalase activity (CAT): 

The detection of catalase activity was conducted according to the method of Aebi (Aebi, 

1984), as well as  (Banerjee et al., 2010; Weydert & Cullen, 2010)  with minor 

modification. This photometric measurement method is based on a special absorption 

pattern of hydrogen peroxide at a wavelength of 240 nanometers. Phosphate buffer (1 M 

KH2PO4; 1 M K2HPO4; pH 7.8) was used for dilution. The buffer is stored at 4° C and is 

stable for 6 months. To control the ongoing reaction, a positive control was prepared using 

Catalase preparation from Aspergillus niger (Sigma C16K3789).   

Pipetting was conducted in triplets in UV sensitive microtiter plates (MTP, Greiner bio-

one, 655801) as the following: 150 μl of the phosphate buffer as the blank, 5 μl of the 

positive control and each of the samples followed by additional 45 μl of phosphate buffer 

for the latter two. Afterwards 100 μl of H2O2 (30 mM) were rapidly added using a 

multichannel pipette. The measurement was carried out immediately using a designed 

protocol on the photometer (Biotek Synergy 2 Multi-Mode Microplate Reader) measuring 

interval of 15 seconds, at a wavelength of 240 nm. In this range, the conversion of one 

micromole of hydrogen peroxide per minute corresponds to a catalase activity of one unit. 

The molar extinction coefficient of 43.6 M cm−1 was used to determine catalase activity. 

The values were transferred in an Excel spreadsheet and calculated similarly to the catalase 

activity (Beer, 1852). 

MATERIALS AND METHODS 
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6.2.5  Superoxide dismutase activity (SOD): 

This photometric measurement method is based mainly on the enzyme ability to 

inhibit the auto-oxidation of pyrogallol at a specific absorption pattern at 420 nm 

(Ramasarma et al., 2015; Weydert & Cullen, 2010). Normally, the auto-

oxidation of pyrogallol in an alkaline environment (pH 7.9-10.6) leads to the 

formation of quinone compounds which have a specific absorption pattern at 

420 nm. In the presence of superoxide dismutase, this reaction is inhibited and 

the recorded enzyme activity is proportional to the inhibition of autooxidation. 

The total SOD activity which is the sum of the cytosolic (Cu-Zn-SOD) and 

mitochondrial (Mn-SOD) activity was analyzed. 

Pyrogallol mixture (8 mM) mixed with10 mM HCL was prepared and stored at 4° C for a 

maximum time of 1 week. The measurement was carried out by pipetting 10 μl of the 

samples or distilled water (100% values) in triplets into the wells of the MTP (Greiner bio-

one, 655101). Subsequently, 280 μl Tris-HCl buffer (0.5 mM, pH 8.5) was added into each 

of the sample and 100% value wells. As for the blank well, 300 μl of the Tris-HCL buffer 

was used. After a 10 minutes incubation at 24° C, 10 μl of pyrogallol (8 mM) was added 

immediately to start the reaction. Detection was carried out for two minutes at an interval 

of 15 seconds, at a wavelength of 420 nm. The enzyme activity was calculated in units (U) 

where one unit represents the 50% of the inhibition of the corresponding reaction.  

 

6.2.6  Glutathione Peroxidase activity (GPx):  

This photometric measurement method detects GPx activity that correlates to the 

conversion of NADPH to NADP at a special adsorption pattern of 340nm (Paglia & 

Valentine, 1967; Tappel, 1978). Glutathione exists in reduced (GSH) and disulfide 

oxidized (GSSG) states. Under physiological state, more than 90% of the total glutathione 

pool is in the reduced form (GSH). An increased GSSG-to-GSH ratio is indicative of 

oxidative stress (Lu, 2013). 

 

MATERIALS AND METHODS 
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The measurement is based on the regeneration cycle of the antioxidant enzyme as shown 

in Fig. X.  The regeneration of the reduced state (GSH) is conducted over several reactions 

catalyzed by glutathione reductase. This regeneration involves the conversion of NADPH 

into NADP+:  NADPH + GSSG + H2O → 2 GSH + NADP+ + H2O2 

 

Paglia and Valentine (1967) recognized that the decrease in nicotinamide adenine 

dinucleotide phosphate (NADPH) levels correlates with GPx activity, where 1 unit 

corresponds to the conversion of 1 μmol NADPH to NADP per minute at 37 ° C (Tappel 

1978). The measurement was carried out using cumene hydroperoxide (1.2 M) as substrate 

and an assay buffer (GSH 9 mM; NADPH 0.2 mM; Glutathione reductase 7.5 U/ml; pH of 

7.6). 15 μl of the undiluted samples were pipetted into triplets in the wells of a MTP 

(Greiner bio-one, 655101) and 200 μl of GSH buffer were then added. The blank used was 

225 μl of the assay buffer. After an incubation period of 10 minutes in the photometer for 

ten minutes at 37 ° C, 10 μl of cumene hydroperoxides was rapidly added into the wells. 

The measurement was carried out over two minutes in a measuring interval of 15 seconds 

at 340 nm. Subsequently, the values were transferred in an Excel spreadsheet and 

calculated similarly to the catalase activity according to the Lambert-Beer law (Beer, 

MATERIALS AND METHODS MATERIALS AND METHODS 

Figure 2. Regeneration cycle of two glutathione molecules in the reduced state. The activity of 
glutathione peroxidase correlates with the consumption of NADPH by glutathione reductase. 
Glutathione (GSH), oxidized glutathione (GSSG), oxidized nicotinic adenine dinucleotide (NADP), 
reduced nicotinic adenine dinucleotide (NADPH), hydrogen peroxide (H2O2), hydrogen ion (H +). 
The cycle involves other substrates and enzymes. 

https://en.wikipedia.org/wiki/Glutathione_reductase
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1852). The molar extinction coefficient of NADPH at 340 nm was used at 0.0062 (1*cm) 

/μmol. 

 

6.2.7  4-HNE western blotting: 

Western blotting was used to detect 4-HNE modified proteins according to the standard 

immunoblotting procedure with some minor modifications.(Mahmood & Yang, 2012; 

Towbin et al., 1979). The used antibody is highly specific to 4-HNE derived protein 

adducts (cysteine, lysine, and histidine). It does not cross react with other proteins (Uchida 

et al., 1993). 

Aliquots preperation: Following to samples preparation with lyse buffer and their 

quantitative protein determination with Bradford photometric method (section 2.3), 

aliquots were prepared for gel electrophoresis. The target protein concentration of the 

aliquots was 25 µg Protein/15 µl. Based on the sample’s protein concentration, the amount 

of protein necessary was calculated and adjusted with 3× Lammli buffer and distilled water. 

For protein denaturation, aliquots were heated to 95°C for 10 minutes before use. They 

were stored at -20 ° C, if not directly measured. 

Electrophoresis: Polyacrylamide gels including 10% separating and 5% stacking gels of 

were prepared and stored maximum for 3 days at 4°C prior to electrophoresis. After filling 

the apparatus with running buffer until 1/3rd of the outer chamber, the gels were loaded 

with 10 μl aliquots per pocket. One control and a 5 μl of marker (Serva Visi Plot Standard) 

were used for each gel. The electrophoresis was then initiated to include a running phase 

of 10 mA/gel for 15 minutes and a separation phase of 25 mA/gel that lasted around 45 

minutes. 

Blotting: After completion of the electrophoresis, the gels were removed from the 

apparatus and the stacking gel was separated and discarded. The separating gel was washed 

in transfer buffer. To transfer the proteins from the gel, a transfer membrane 

(polyvinylidene fluoride - 45 μm pores-Roth) was first activated in methanol for 30 s, 

washed in distilled water, and then equilibrated again in transfer buffer. This process 

MATERIALS AND METHODS 
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involved placing the polyacrylamide gel on the transfer membrane and covering it from 

bottom and top with 5 filter Whatman papers, previously soaked in transfer buffer. The 

transfer was carried out for 2 hours at a voltage of 13 V. 

Blocking and Detecting: After the transfer, membranes were washed for 5 min in wash 

buffer (TBS-T) and then blocked in 5% milk powder solution for 2 hours at room 

temperature. This was followed by three 5 min-washings with TBS/T and then an overnight 

incubation with the primary HNE-antibody (ab46545) with an optimal established dilution 

ratio of 1:500. On the next day, membranes were again washed three times, 5 minutes each, 

with TBS/T, and then incubated for 2 hours with secondary antibody (Anti-Rabbit IgG, 

HRP, RPN4301) with a 1:10000 dilution ratio.  

Evaluation: LAS 3000 (Luminescent Image Analyzer / Fujifilm) was used to evaluate the 

membranes after covering each with 3 ml SERVA chemiluminescence solution (3μl H2O2: 

30%) for a better imaging. Finally, the membranes were washed again for 5 min in TBS-

T, dyed with naphthol blue-black for 1 hour and then discolored with distilled water. After 

complete drying in air, membranes were scanned and used for the evaluation of total 

nonspecific proteins. The program Image J was used to quantify the bands in LAS 3000 

images, representing the HNE-bound proteins, and of the normally scanned blue-black 

images, that represented the total non-specific proteins. The values obtained for the 

reference protein were used to determine a correction factor, facilitating the comparison 

between two different membranes. 

 

6.2.8  Protein carbonylation (PCO): 

Protein carbonylation (PCO) is detected through the derivatization of carbonyl groups by 

2,4-Diphenylhydrazone (DNPH). This reaction produces hydrazones that are detected 

spectrophotometrically at a specific adsorption pattern, (Levine et al., 1990; Reznick & 

Packer, 1994; Wehr & Levine, 2013). 

65 mg of frozen heart, brain or gastrocnemius muscle tissue was weighed and mixed with 

1 ml of a freshly prepared assay buffer into 2 ml tubes. The sample tubes were then 

MATERIALS AND METHODS 
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homogenized well on ice with at 250U until no tissue pieces were visible anymore. After 

15 minutes of rest, the samples were centrifuged at 6000x g for 10 min. The resulting 

supernatant of each sample was then divided into 2 new sets of tubes: one set served as 

"sample blanks" and the second was used for the carbonyl measurement. To induce protein 

precipitation, 450μl 20% TCA was then added to each tube, centrifuged for 2 min at 2000x 

g, and followed by the removal and the discard of the supernatant. Afterwards, 500μl of 

DNPH solution or 2.5M HCl was added to carbonyl samples or sample blanks, 

respectively. Samples were homogenized at 250-300U, until the pellets broke, and then 

incubated for 15 min in the dark at rest. Subsequently, 500μl 20% TCA was added, samples 

were vortexed, centrifuged for 2 min at 2000x g, and the resulting supernatant was 

discarded. The pellets are then washed with 1ml ethanol-ethyl acetate, homogenized, and 

centrifuged. This step was repeated for 3 times to remove any excess of reactants, with the 

supernatant discard at end of each step. Finally, 200μl guanidine-HCl was added to the 

tubes, vortexed and centrifuged prior to measurement.  

60 μl of each sample was pipetted as triplicates into a UV sensitive microtiter plates (MTP, 

Greiner bio-one, 655801).  Guanidine-HCl was used in the blank well. The photometric 

measurement was automatically conducted by a Gen5 Data Analysis software program. 

The absorption wave was at 370 nm to quantify carbonyl derivates, and at 276 nm to 

quantify proteins. The obtained values were expressed as the total carbonyl content; unit 

(mol carbonyl / mol protein).  

 

6.2.9  Statistical analysis:  

The software Sigma Plot was used for the statistical analysis of the data. The mean values 

(MV) of the data were calculated and the deviations indicated as standard errors (SE). For 

the statistical analysis of the obtained values in each of the female and male groups, a two-

way ANOVA (HCR / LCR: young / old) was performed, according to the Holm-Sidak 

method. Statistical outliers were determined by the outlier test according to Grubbs. The 

significant results were marked with * for the age comparison, and with # for the inherited 

exercise capacity comparison. The significance was expressed as the following: P <0.05 = 

* / #, P <0.01 = ** / ##, P <0.001 = *** / ###, and ns = not significant. 

MATERIALS AND METHODS MATERIALS AND METHODS 
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7  Results:  

7.1  Oxidative status in Heart: 

7.1.1  Antioxidant Capacity: 

7.1.1.1  Catalase enzyme activity: 

Figure 4 shows catalase activity measured in the hearts of young and old HCR and LCR 

rats in females (A) and males (B). Females showed a similar basal catalase activity between 

the young HCRs and LCRs rats. A significant increase of enzyme activity with age in both 

HCR (P<0.05) and LCR (P<0.001) females was noticed. This increase was bigger in LCR 

compared to HCR females. Therefore, LCRs showed a higher enzyme activity than HCRs 

within the old females (P<0.05). On the other hand, males showed similar CAT activity 

between groups with a tendency to decrease with age.  

Figure 3. Catalase activity measured in hearts of 4 and 24 months old HCR and LCR 
female (A) and male (B) rats. Mean values ± standard error; n =6-10; A (*): age-dependent 
differences, E (#): intrinsic exercise capacity (phenotype) dependent difference, I: interaction; the 
significance was expressed as the following: */# = P <0.05, **/## = P <0.01, ***/### = P <0.001, 
and ns = not significant. 

 

7.1.1.2  Superoxide dismutase and Glutathione peroxidase activities: 

Table 1 and 2 demonstrate superoxide dismutase and glutathione peroxidase activities in 

the hearts of young and old HCR and LCR rats in both females (A) and males (B).  In both 

sexes, SOD showed a tendency to increased activity level in LCRs compared to HCRs in 

HCR-Y HCR-O LCR-Y LCR-O

A
ct

iv
ity

 in
 U

/m
g

0

2

4

6

8

10

12 A ***
E ns
I ns

***
#

*

HCR-Y HCR-O LCR-Y LCR-O

A
ct

iv
ity

 in
 U

/m
g

0

2

4

6

8

10

12 A ns
E ns
I ns

A B

 

RESULTS 



32 
 

 
 

both young and old groups. As for the GPx activity, all the groups showed relatively similar 

levels in both sexes.  

Table 1. Superoxide dismutase activity measured in the hearts of 4 and 24 months old HCR 
and LCR female (A) and male (B) rats. 

  HCR-Y HCR-O LCR-Y LCR-O P-A P-E P-I 
Females 353,5 ± 65,1 439,8 ± 72,7 498,8 ± 56,1  609,6 ± 92  ns * ns 
Males 472,7 ± 70,5 449,4 ± 63,1 534,9 ± 70,5 547,6 ± 51,5 ns ns ns 

Values are presented as mean values ± standard error; enzyme activity measured in U/mg; n =6-
10; A (*): age-dependent differences, E (#): intrinsic exercise capacity (phenotype) dependent 
differences, I: interaction; the significance was expressed as the following: */# = P <0.05, **/## = 
P <0.01, ***/### = P <0.001, and ns = not significant. 

 

Table 2. Glutathione peroxidase activity measured in hearts of 4 and 24 months old HCR 
and LCR female (A) and male (B) rats. 

  HCR-Y HCR-O LCR-Y LCR-O P-A P-
E P-I 

Females 0,26 ± 0,05 0,11 ±   0,06 0,15 ±   0,06 0,09 ±  0,08 ns ns ns 
Males 0,12  ±  0,04 0,16  ±  0,04 0,09  ±  0,03 0,12  ±  0,03 ns ns ns 

Values are presented as mean values ± standard error; enzyme activity measured in mU/mg; n =6-
10; A (*): age-dependent differences, E (#): intrinsic exercise capacity (phenotype) dependent 
differences, I: interaction; the significance was expressed as the following: */# = P <0.05, **/## = 
P <0.01, ***/### = P <0.001, and ns = not significant. 

 

7.1.2  Oxidative damage: 

7.1.2.1  Protein carbonylation level: 

Figure 5 illustrates the protein carbonylation level, an important marker of protein 

oxidation, in the hearts of young and old HCR and LCR rats in both females (A) and males 

(B). There was no sex- or phenotype-dependent differences. Both female and males 

showed similar basal protein carbonyl levels between HCRs and LCRs in the young rats. 

A strong elevation of protein carbonyls with age was observed in both phenotypes (P < 

0.001).  

RESULTS 
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7.1.2.2  4-HNE level: 

Figure 6 presents 4-HNE levels, an important marker of lipid peroxidation, in the hearts of 

young and old HCR and LCR female (A) and male (B) rats. Both sexes showed similar 

patterns. Females showed similar basal 4-HNE levels between young HCRs and LCRs. 

Surprisingly, this level was strongly increased in HCRs (P < 0.001) and decreased in LCRs 

(P < 0.05) with age. Similarly, males showed an increase in HCRs (P < 0.01) and a tendency 

to decrease in LCRs with age. Consequently, both females and males had a higher 4-HNE 

level in old HCRs compared to old LCRs (P < 0.001).  
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7.2  Oxidative status in Brain:  

7.2.1  Antioxidant Capacity: 

7.2.1.1  Catalase enzyme activity: 

Figure 7 illustrates catalase activity measured in the brains of young and old HCR and LCR 

rats in females (A) and males (B). Females, basally similar, showed an age-related increase 

of CAT activity in HCRs (ns) and LCRs (P < 0.05). On the other hand, males presented 

similar CAT activity between all the groups.  

  
Figure 4. Catalase activity measured in brains of 4 and 24 months old HCR and LCR female 
(A) and male (B) rats. Mean values ± standard error; n =6-10; A (*): age-dependent differences, 
E (#): intrinsic exercise capacity (phenotype) dependent differences, I: interaction; the significance 
was expressed as the following: */# = P <0.05, **/## = P <0.01, ***/### = P <0.001, and ns = not 
significant. 

 

7.2.1.2  Superoxide dismutase activity: 

Figure 8 demonstrates superoxide dismutase activity in young and old HCR and LCR rats 

in both females (A) and males (B). Females did not have any remarkable variations with 

age or between phenotypes. On the other hand, males presented a similar basal SOD 

activity between young HCRs and LCRs. This activity showed an age-induced reduction 

in both HCRs (P < 0.01) and LCRs (P < 0.05).  
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Figure 5. Superoxide dismutase activity measured in brains of 4 and 24 months old HCR and 
LCR female (A) and male (B) rats. Mean values ± standard error; n =6-10; A (*): age-dependent 
differences, E (#): intrinsic exercise capacity (phenotype) dependent differences, I: interaction; the 
significance was expressed as the following: */# = P <0.05, **/## = P <0.01, ***/### = P <0.001, 
and ns = not significant. 

 

7.2.1.3 Glutathione peroxidase activity: 

Table 3 lists the values of glutathione peroxidase activity in the brains of young and old 

HCR and LCR rats in both females (A) and males (B). Both sexes presented similar enzyme 

activities among all groups.      

Table 3. Glutathione peroxidase activity measured in brains of 4 and 24 months old HCR and 
LCR female (A) and male (B) rats. 

  HCR-Y HCR-O LCR-Y LCR-O P-A P-
E P-I 

Females 0,22 ± 0,04 0,26 ± 0,04 0,19 ± 0,03 0,24 ± 0,04 ns Ns ns 
Males 0,21 ± 0,03 0,19 ± 0,03 0,2 ± 0,03 0,19 ± 0,03 ns Ns ns 

Values are presented as mean values ± standard error; enzyme activity measured in mU/mg; n =6-
10; A (*): age-dependent differences, E (#): intrinsic exercise capacity (phenotype) dependent 
differences, I: interaction; the significance was expressed as the following: */# = P <0.05, **/## = 
P <0.01, ***/### = P <0.001, and ns = not significant. 

 

 

7.2.2  Oxidative damage: 

7.2.2.1  Protein carbonylation level: 

Figure 9 reveals the protein carbonylation level in the brains of young and old HCR and 

LCR rats in both females (A) and males (B). Females showed similar basal PCO levels 
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between young HCRs and LCRs. A significant age-related increase of protein carbonyls in 

both HCRs (p<0.001) and LCRs (p <0.001) was observed. On the other hand, young males 

presented a significantly higher protein carbonylation in HCRs than in LCRs (p < 0.05). 

Similarly, a significant age-related increase of protein carbonyls in both HCRs (p <0.01) 

and LCRs (p <0.001) was observed. There was no difference in the PCO level between old 

HCRs and LCRs in both sexes. 

 

 

7.2.2.2  4-HNE level: 

Figure 10 presents 4-HNE levels measured in the brains of young and old HCR and LCR 

female (A) and male (B) rats. Both sexes, basally similar, showed a strong age-induced 

elevation of 4-HNE levels in both HCRs (p<0.01) and LCRs (females: p<0.05; males: 

p<0.001). No significant variations between the phenotypes were noticed in both sexes. 

RESULTS 



37 
 

 
 

 

 

7.3  Oxidative status in Skeletal Muscle: 

7.3.1  Antioxidant Capacity: 

7.3.1.1  Catalase enzyme activity: 

Figure 11 shows catalase activity measured in gastrocnemius muscles of young and old 

HCR and LCR rats in both females (A) and males (B). Both sexes showed similar basal 

CAT levels in the young groups. A remarkable age-related elevation of CAT activity was 

only observed in HCRs (p < 0.001) of both sexes. LCRs maintained a relatively unchanged 

activity with age. This led to a significantly higher CAT activity in HCRs than in LCRs 

among the old groups (p < 0.001).  
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Figure 6. Catalase activity measured in gastrocnemius muscles of 4 and 24 months old HCR 
and LCR female (A) and male (B) rats. Mean values ± standard error; n =6-10; A (*): age-
dependent differences, E (#): intrinsic exercise capacity (phenotype) dependent differences, I: 
interaction; the significance was expressed as the following: */# = P <0.05, **/## = P <0.01, 
***/### = P <0.001, and ns = not significant. 

 

7.3.1.2  Superoxide dismutase and glutathione peroxidase activities: 

Table 4 and 5 demonstrate superoxide dismutase and glutathione peroxidase activities in 

the gastrocnemius muscles of young and old HCR and LCR rats in both females (A) and 

males (B). SOD showed a tendency to be higher in HCRs among female rats and in LCRs 

among male rats. As for GPx, similar enzyme activities were observed among all groups 

of both sexes.   

Table 4. Superoxide dismutase activity measured in gastrocnemius muscles of 4 and 24 
months old HCR and LCR female (A) and male (B) rats. 

  HCR-Y HCR-O LCR-Y LCR-O P-A P-
E P-I 

Females 320,2 ± 43,4 310,2 ± 38,3 251,8 ± 38,3 252 ± 51,3 ns ns ns 
Males 269 ± 25,1 298,2 ± 30,7 416,4 ± 39,6 363,4 ± 29,2 ns * ns 

Values are presented as mean values ± standard error; enzyme activity measured in U/mg; n =6-
10; A (*): age-dependent differences, E (#): intrinsic exercise capacity (phenotype) dependent 
differences, I: interaction; the significance was expressed as the following: */# = P <0.05, **/## = 
P <0.01, ***/### = P <0.001, and ns = not significant. 

 

Table 5. Glutathione peroxidase activity measured in gastrocnemius muscles of 4 and 24 
months old HCR and LCR female (A) and male (B) rats. 

  HCR-Y HCR-O LCR-Y LCR-O P-A P-
E P-I 

Females 0,01 ± 0,004 0,02 ±  0,004 0,028 ±  0,007 0,028 ±  0,008 ns ns ns 
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Males 0,028 ± 0,005 0,01 ± 0,005 0,014 ± 0,003 0,028 ± 0,006 ns ns ns 
Values are presented as mean values ± standard error; enzyme activity measured in mU/mg;  n =6-
10; A (*): age-dependent differences, E (#): intrinsic exercise capacity (phenotype) dependent 
differences, I: interaction; the significance was expressed as the following: */# = P <0.05, **/## = 
P <0.01, ***/### = P <0.001, and ns = not significant. 

 

7.3.2  Oxidative damage: 

7.3.2.1  Protein carbonylation level: 

Figure 12 illustrates the protein carbonylation level measured in gastrocnemius muscles of 

young and old HCRs and LCRs in female (A) and male (B) rats. Both sexes presented 

similar basal protein carbonylation levels in young HCRs and LCRs. A strong elevation of 

protein carbonyls with age in HCRs (p<0.001) and LCRs (females: p<0.001; males: 

p<0.01) was present. Furthermore, old females showed a significantly higher level of 

protein carbonylation in LCRs than in HCRs (p<0.01). 

 

 

7.3.2.2  4-HNE level: 

Figure 13 demonstrates the measured 4-HNE level in gastrocnemius muscles of young and 

old HCR and LCR females (A) and males (B). Both sexes showed no significant change in 

4-HNE level with age. Females presented similar 4-HNE levels among all groups. On the 
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other hand, males showed a higher 4-HNE level in the young HCRs compared to the young 

LCRS (p < 0.01). This difference disappeared among the old males.  

Figure 7. 4-HNE level measured in gastrocnemius muscles of 4 and 24 months old HCR and 
LCR female (A) and male (B) rats. Mean values ± standard error; n =6-10; A (*): age-dependent 
differences, E (#): intrinsic exercise capacity (phenotype) dependent differences, I: interaction; the 
significance was expressed as the following: */# = P <0.05, **/## = P <0.01, ***/### = P <0.001, 
and ns = not significant. 
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8  Discussion:  

We aimed to investigate the role of different intrinsic exercise capacities on the antioxidant 

defense system and the generated oxidative damage during aging in both sexes. In this 

work, it could be shown that intrinsic exercise capacity did not have an evident impact on 

the generated oxidative damage with age in heart and brain. Higher protection of HCRs in 

the skeletal muscle due to a higher antioxidant capacity with age could be assumed. 

Furthermore, both sexes presented similar patterns of oxidative damage during aging, 

despite of a higher antioxidant potential in female hearts and brains.  

One of the recently proposed factors showing a strong effect on life-expectancy is the 

intrinsic (genetic) exercise capacity (L. G. Koch & Britton, 2005). Through the HCR/LCR 

rat model, we could investigate for the first time the effect of different intrinsic exercise 

capacities on the generated oxidative damage markers in the context of aging. In heart, we 

found surprisingly that LCRs exhibited a higher antioxidant capacity and a lower lipid 

peroxidation marker (4-HNE) with age, compared to HCRs. The greater antioxidant 

capacity in old LCRs was represented by a higher CAT enzyme activity in females as well 

as a tendency to higher SOD activity in both sexes. Similar findings of higher CAT and 

SOD levels with age in LCRs was obtained previously by our working group (Schenkl, 

2018). Despite the lack of aging-focus, two previous studies conducted proteomic analysis 

on the hearts and livers of adult HCRs and LCRs. Interestingly, they found that LCRs 

exhibit higher expression of CAT enzyme and of 4-HNE as well in both hearts (Burniston 

et al., 2011) and livers (Thyfault et al., 2009). The authors argue that enhanced expression 

of catalase in LCRs is due to a higher level oxidative stress in LCRs, compared to HCRs. 

Nevertheless, this is less likely to serve as an explanation in our study, because LCRs 

showed lower (4-HNE) or similar (PCO) oxidative damage markers with age compared to 

HCRs. Discrepancy in findings can be highly related to the differences in tissue type as 

well as in animal ages. Another unexpected finding of this working group was that LCRs 

survive longer under pressure-overload-induced heart failure in comparison to HCRs 

(Schenkl, 2018). A strong contributor for that was assumed to be the greater antioxidant 

capacity in LCRs as a results of their higher exposure to moderate amounts of ROS. Taking 

the hormesis principle into consideration, moderate levels of ROS can cause a slight 

molecular damage, which induces positive effects such as antioxidant enzyme syntheses 
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and cellular repair mechanisms (Radak et al., 2005). Assuming that LCRs are more 

exposed to moderate ROS production with age might not only explain their higher 

antioxidant capacity in this work, but also their lower lipid peroxidation marker (4-HNE) 

as a result of an increased cellular repair. Two studies using this rat model found that LCRs 

carry similar or even lower risk for contractile dysfunction and myocardial ischemia, 

compared to HCRs (Høydal et al., 2013; Hussain et al., 2001). The authors could not also 

support the cardio-protective effect of the high inherited exercise capacity. They further 

concluded that the protective effect of an enhanced inherited aerobic capacity in HCRs is 

only acquired as a response to training.  Physical fitness and exercising, independent of the 

genetic predisposition, are shown to be highly protective against age-related pathologies 

including cardiovascular diseases (Blair et al., 1989; Roh et al., 2016; Warburton et al., 

2010). Based on our results, genetic predisposition alone to high aerobic running capacity 

is not associated with decreased oxidative damage in the aging heart. 

Similarly in brains, we found that LCRs had a higher CAT activity than HCRs in old 

females. Both oxidative damage markers, however, were similarly elevated during aging 

in both phenotypes. Evidence of recent studies using this rat model showed that LCRs carry 

a higher risk profile for neurodegenerative diseases. Despite the lack of focus on aging, 

Sarga et al. showed that adult male HCRs had a better spatial memory, which was related 

to decreased protein carbonyl levels and DNA damage in the brain, when compared to LCR 

rats (Sarga et al., 2013). Interestingly, they noticed that after exercise training, oxidative 

damage markers were unexpectedly higher in HCRs, yet they still performed better in 

comparison to LCRs. Furthermore, Choi et al. examined aged rats (25 months old) and 

found that old LCRs exhibit many features of Alzheimer’s disease, including mitochondrial 

abnormalities, neuronal loss, decreased hippocampal volume as well as impaired cognitive 

function. Surprisingly, they observed that there were no significant differences in 

mitochondrial DNA damage between LCR and HCR rats (Choi et al., 2014). This raises 

the question whether oxidative damage markers are enough to reflect the evident 

differences in cognitive function between the two phenotypes. Based on our results, both 

HCR and LCR phenotypes showed similar patterns of age-related oxidative damage in 

brain tissue. However, this does not rule out variable aging processes in the brains of HCRs 

and LCRs. In the light of the previously discussed studies, we therefore assume that 
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differences in oxidative damage markers might not be relevant to the evaluation of 

cognitive function and neurodegenerative rate between the two phenotypes. 

In skeletal muscles, we could show that high inherited exercise capacity was associated 

with a higher antioxidant potential in aged rats. HCRs presented a significantly higher CAT 

activity than LCRs in the old rats. The benefits of antioxidants in declining skeletal muscle 

aging and preventing the negative effects of ROS is well established (Brioche & Lemoine-

Morel, 2016; Steinbacher & Eckl, 2015). As for oxidative damage markers, HCRs showed 

a lower level of PCO in comparison to LCRs among old females. Using this rat model, 

Tweedie et al. is so far the single study investigating antioxidants in the skeletal muscle. 

Similar to our results, they showed that HCRs have a higher antioxidant capacity compared 

to LCR rats. Interestingly, they found that HCRs generate higher ROS levels despite of 

lower DNA damage and higher antioxidant level. This was related to the previously 

discussed hormosis principle, in which moderate ROS levels in HCRs can promote 

beneficial cellular adaptations including higher antioxidants and cellular repair (C. 

Tweedie et al., 2011). In the same context, Radak et al. proposed that intermittent increases 

in ROS production can  stimulate the oxidative damage repair system including the 

proteasome complex, which is responsible for the degradation of oxidatively modified 

proteins and their replacement (Radak et al., 2005). Thus, it can be assumed that HCRs are 

exposed to a moderate production of ROS in the skeletal muscle, which explains the higher 

CAT production as well as the lower protein oxidation marker (PCO). In addition, the 

enhanced physical performance and intrinsic motoric skills in HCRs lead to a higher 

resistance against sarcopenia, which is determined by the presence of both low muscle 

mass and low muscle function (Cruz-Jentoft et al., 2010). On the other hand, sarcopenia 

tends to be associated with obesity. This association is termed as sarcopenic obesity, in 

which adipose tissue secretes bioactive molecules and high levels of ROS, causing further 

metabolic complications including sarcopenia (Lefranc et al., 2018). This suggests a higher 

susceptibility of LCRs to sarcopenia due to their predisposed adiposity in their phenotype. 

This could also explain the higher levels of PCO in LCRs among old female rats. In the 

light of the previously discussed findings and based on our results of higher antioxidant 

capacity in HCRs, we assume that HCRs are more protected against age-related oxidative 

damage in skeletal muscle.  
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In the HCR/LCR rat model, previous publications have not so far investigated sex-

differences in antioxidant capacity and oxidative damage markers during aging. However, 

several studies using different rat models showed that females are less prone to oxidative 

stress in hearts (No et al., 2018), brains (Borras et al., 2003), microvessles (Dantas et al., 

2004), aortic endothelium (Brandes & Mugge, 1997), and kidneys (Bhatia et al., 2012) in 

comparison to males. In this work, both sexes presented similar elevation patterns of 

oxidative damage markers with age, despite that females had a higher antioxidant capacity 

with age in the hearts and brains. This was represented by an age-dependent increase of 

CAT enzyme activity in hearts and brains of females. In contrast, males showed unchanged 

CAT activity and a strong reduction of SOD activity with age in brains. There is a lack of 

uniform consensus in literature on the relevance of antioxidant enzymes in cardiac tissue 

and their significance in different sexes (Barp et al., 2002; Colom et al., 2007). However, 

the loss of antioxidant defenses is shown to be highly involved in the aging process of the 

brain (Gaignard et al., 2017). In a series of studies addressing the brain tissue in Wistar 

rats, females showed higher antioxidants and less mitochondrial DNA damage compared 

to males. The authors argued that their findings are consistent with the oxidative stress 

theory of aging, which explains the survival advantage in female rats (Borras et al., 2003; 

Vina et al., 2003). Further, previous publications presented similar findings to ours of an 

age-dependent reduction of SOD in the brain of male rats (Ehrenbrink et al., 2006; 

Samarghandian et al., 2015; Tsay et al., 2000). In fact, SOD has been shown to be as one 

of the major targets of oxidative damage in neurodegenerative diseases (Gonos et al., 2018; 

Semsei et al., 1991), which could be even used as a prognostic marker (Flynn & Melov, 

2013). In conclusion, both sexes seem similarly exposed to the generated oxidative damage 

with age in this rat model. However, our findings imply that males have a diminished 

antioxidant capacity with age. This could potentially contribute to an accelerated aging in 

the male brain.  

Altogether, the oxidative stress theory of aging is based on the hypothesis that aging is 

caused by the accumulation of oxidative damage to macromolecules, which consequently 

contributes to several age-related pathologies (Betteridge, 2000; Liguori et al., 2018). 

Consistent with the above described hypothesis, we found in this study a remarkable 

increase of oxidative damage markers with age in all groups. This was represented by the 
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elevation of PCO in all tissues and that of 4-HNE in brains and selectively in hearts. We 

therefore could demonstrate an apparent association between oxidative damage and aging, 

which potentially supports the oxidative stress theory of aging. Nevertheless, our results 

showed no relevant variations of oxidative damage markers between different sexes and 

phenotypes. This, however, does not rule out other possible distinctive features. It is 

important to note that some types of macromolecular damage (to DNA, proteins or lipids) 

are reversible because of the repair mechanisms. Thus, the functional relevance of this 

damage could be also dependent on the capacity to repair it, which is often not measurable 

(Robert & Bronikowski, 2010). According to hormesis principle, moderate ROS 

production might be involved in stimulating this oxidative damage repair system (Radak 

et al., 2005). Thus, despite that our results suggest similar patterns of oxidative damage 

during aging in different phenotypes and sexes, other possible differences in the tolerance 

and repair capacity might be assumed. 

 

 

 

Limitations of the study:  

The results of our study may have some limitations in measurements. Most notably, our 

experimental design did not control for variations in the estrus cycle of female rats, which 

could affect the circulating estrogen levels over a period of several days. Investigations of 

mitochondrial DNA damage, direct ROS emission, and mitochondrial capacity might have 

increased the understanding of our results.  
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9  Conclusion:  

We could show in this work that oxidative damage markers increased with age, which 

potentially supports the oxidative stress theory of aging. Genetic predisposition to high 

aerobic capacity was, however, not associated with a decreased oxidative damage during 

aging in hearts and brains. In skeletal muscles, a higher protection in the HCRs could be 

assumed due to the higher antioxidant capacity with age. Furthermore, both sexes presented 

similar patterns of oxidative damage during aging, despite of a higher antioxidant potential 

in female hearts and brains. 
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