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Summary 

Fe-cycling bacteria are often found coexisting in nature and a variety of interactions 

occur between acidophilic Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing 

bacteria (FeRB). A perfect low-complexity environment to disentangle the 

mechanisms underlying these microbial interactions is within iron‐rich pelagic 

aggregates (“iron snow”), which are dominated by acidophilic Fe-cycling microbes, 

best represented by the FeOB (Acidithrix, Ferrovum) and the FeRB (Acidiphilium). 

Acidithrix is known to facilitate Fe(III) mineral deposition and induces the co-

colonization of Acidiphilium via a secondary signaling metabolite (2-phenethylamine, 

PEA). The subsequent colonization of Ferrovum contributes to the formation of the 

iron-cell aggregates. The overarching aim of this thesis was to elucidate the metabolic 

mechanisms between different FeOB and FeRB shaping iron snow formations. 

First, to identify the potential metabolic capabilities of the dominant Fe-cycling 

microbes in iron snow, the whole genomes of representative FeOB (Acidithrix sp. C25) 

and FeRB (Acidiphilium sp. C61, Acidocella sp. C78) strains were sequenced. These 

genomes paired with a two-year metatranscriptome profiling monitored the activities 

of the iron snow microbiome, including the uncultivated Ferrovum. Both approaches 

revealed the presence and expression of genes involved in the synthesis of the 

infochemical PEA in FeOB, and the motility and polysaccharide hydrolysis enabling 

FeRB to join and colonize FeOB. Ferrovum showed high transcriptional activity for 

CO2 fixation and exopolysaccharide biosynthesis, essential steps in providing 

necessary organic matter (e.g., extracellular polymeric substances, EPS) for 

establishing iron snow formation. 
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A follow-up experiment was designed to trace the autotrophic activities and follow the 

carbon flow within iron snow, a protein-based 13C labeling approach profiled the 13C 

incorporation into iron snow microbiome under oxic and anoxic conditions. Supporting 

our previous findings, 13C quantification confirmed that chemolithoautotrophic 

Ferrovum fixed CO2 to produce organic carbon under both conditions and FeRB 

Acidiphilium and Acidocella took up the carbon under oxic conditions. Taken together, 

these results demonstrate the importance of chemolithoautotrophic Ferrovum (FeOB) 

in feeding FeRB within iron snow, implying cooperative interactions between them.  

Finally, the specificity and the detailed aggregation mechanism of PEA on the Fe(III)-

reducing members was investigated as it represents one of the first steps in 

establishing iron snow. The morphologies of different FeRB strains and gene 

expression patterns of Acidiphilium sp. C61 in the presence of PEA were evaluated. 

The addition of PEA induced aggregation in all tested Acidiphilium spp., but not in the 

iron snow isolate Acidocella sp. C78. Comparative transcriptomics indicated the 

upregulated expression patterns of genes associated with flagellar motility in 

Acidphilium sp. C61. The specific aggregation and motility induction effect of PEA on 

FeRB promotes rapid co-colonization onto the surface of the iron snow particles. 

Collectively, these findings addressed that FeOB in iron snow create niches for the co-

colonizing heterotrophic FeRB by providing chemolithoautotrophically-fixed organic 

carbon. Additionally, specific FeRB species rapidly find FeOB by recognizing the 

infochemicals. These specific inter-species relationships between FeOB and FeRB 

are advantageous to fulfill their metabolic dependencies through the formation and 

aggregates stability of iron snow.  
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Zusammenfassung 

Bakterien des Fe-Kreislaufes koexistieren in der Natur häufig und eine Vielzahl von 

Interaktionen zwischen acidophilen Fe(II)-oxidierenden Bakterien (FeOB) und Fe(III)-

reduzierenden Bakterien (FeRB) finden statt. Eine perfekte Umgebung mit geringer 

Komplexität, um die Mechanismen zu entschlüsseln, die diesen mikrobiellen 

Interaktionen zugrunde liegen, stellen eisenreiche pelagische Aggregate 

("Eisenschnee") dar. Diese werden von acidophilen  Mikroorganismen des Fe-

Kreislaufes dominiert , am besten repräsentiert durch die FeOB (Acidithrix, Ferrovum) 

und die FeRB (Acidiphilium). Von Acidithrix ist bekannt, dass es die Fe(III)-

Mineralablagerung fördert und die Co-Besiedlung von Acidiphilium über einen 

sekundären Signalstoff (2-Phenethylamin, PEA) induziert. Die anschließende 

Besiedlung von Ferrovum trägt zur Bildung der Eisenzellaggregate bei. Das 

übergeordnete Ziel dieser Arbeit war es, die metabolischen Mechanismen zwischen 

verschiedenen FeOB und FeRB aufzuklären, die die Eisenschneebildung 

beeinflussen. 

Um die potentiellen metabolischen Fähigkeiten der dominanten Mikroorganismen des 

Fe-Kreislaufes im Eisenschnee zu identifizieren, wurden zunächst die kompletten 

Genome von repräsentativen FeOB (Acidithrix sp. C25) und FeRB (Acidiphilium sp. 

C61, Acidocella sp. C78) Stämmen sequenziert. Diese Genome, zusammen mit einem 

zweijährigen Profiling des Metatranskriptoms wurden genutzt, um die Aktivitäten des 

Eisenschnee-Mikrobioms, einschließlich des unkultivierten Ferrovums, zu verfolgen. 

Beide Ansätze zeigten die Anwesenheit und die Expression von Genen, die an der 

Synthese der Signalchemikalie PEA in FeOB beteiligt sind, sowie die Motilität und 

Polysaccharidhydrolyse, die es FeRB ermöglicht, sich FeOB anzuschließen und zu 

kolonisieren. Ferrovum zeigte eine hohe transkriptionelle Aktivität für die CO2-
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Fixierung und die Exopolysaccharid-Biosynthese, wesentliche Schritte bei der 

Bereitstellung der notwendigen organischen Substanz (z.B. extrazelluäre polymere 

Substanzen, EPS) für die Etablierung der Eisenschneebildung. 

Ein Folgeexperiment diente dazu, die autotrophen Aktivitäten nachzuvollziehen und 

den Kohlenstofffluss innerhalb des Eisenschnees zu verfolgen. Ein proteinbasierter 

13C-Markierungsansatz verfolgte den 13C-Einbau in das Eisenschnee-Mikrobiom unter 

oxischen und anoxischen Bedingungen. Die 13C-Quantifizierung bestätigte unsere 

früheren Ergebnisse, dass das chemolithoautotrophe Ferrovum unter beiden 

Bedingungen CO2 fixierte, um organischen Kohlenstoff zu produzieren, während 

FeRB Acidiphilium und Acidocella den Kohlenstoff unter oxischen Bedingungen 

aufnahmen. Zusammengenommen zeigen diese Ergebnisse die Bedeutung des 

chemolithoautotrophen Ferrovum (FeOB) bei der Nährstoffzufuhr von FeRB innerhalb 

des Eisenschnees, was kooperative Interaktionen zwischen ihnen impliziert.  

Schließlich wurden die Spezifität und der detaillierte Aggregationsmechanismus von 

PEA auf den Fe(III)-reduzierenden Mitgliedern untersucht, da dies einen der ersten 

Schritte bei der Etablierung von Eisenschnee darstellt. Die Morphologien 

verschiedener FeRB-Stämme und die Genexpressionsmuster von Acidiphilium sp. 

C61 in Gegenwart von PEA wurden ausgewertet. Die Zugabe von PEA induzierte die 

Aggregation in allen getesteten Acidiphilium spp., jedoch nicht in dem Eisenschnee-

Isolat Acidocella sp. C78. Vergleichende Transkriptomik zeigte die hochregulierten 

Expressionsmuster von Genen, die mit der Flagellenbewegung in Acidphilium sp. C61 

assoziiert sind. Der spezifische Aggregations- und Motilitätsinduktionseffekt von PEA 

auf FeRB fördert die schnelle Co-Kolonisierung auf der Oberfläche der 

Eisenschneepartikel. 
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Zusammengefasst zeigen diese Ergebnisse, dass FeOB im Eisenschnee Nischen für 

die co-kolonisierenden heterotrophen FeRB schaffen, indem sie chemolithoautotroph 

fixierten organischen Kohlenstoff bereitstellen. Zusätzlich spüren spezifische FeRB-

Arten FeOB schnell auf, indem sie deren Signalchemikalien erkennen. Diese 

besonderen Inter-Spezies-Beziehungen zwischen FeOB und FeRB sind vorteilhaft, 

um ihre metabolischen Abhängigkeiten durch die Bildung und Aggregatstabilität von 

Eisenschnee zu erfüllen.  
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1. Introduction 

1.1 Pelagic aggregates 

In the water column of deep stratified waters, amorphous pelagic aggregates are 

composed of microorganisms, phytoplankton, feces, detritus, and biominerals which 

are stabilized by extracellular polymeric matrix (Alldredge and Silver, 1988; Grossart 

and Simon, 1993; Thornton, 2002). These aggregates vary in size, ranging from 

micrometers to centimeters, depending on their residence time in the water column 

and the trophic state of the ecosystem (Riebesell, 1992; Lehours et al., 2010; Passow 

et al., 2012). They occur in oceans, tidally affected coastal areas, rivers, and lakes 

(Simon et al., 2002).  

1.1.1 Marine/Lake snow 

Large (> 500 μm) pelagic aggregates, found in oceans and lakes, are termed marine 

snow (Suzuki and Kato, 1953) or lake snow (Grossart and Simon, 1993). Similar 

aggregates have also been identified in rivers (river snow) (Böckelmann, 2000; Neu, 

2000). Physical coagulation leads to collisions between particles in the water column 

through Brownian motion, fluid shear, differential settlement, and animal feeding 

(McCave, 1984; Engel, 2000). Once brought together, two biologically-mediated 

pathways have been proposed to enhance macroaggregate formation via physical 

aggregation: (I) production of sticky mucus, exopolymers, or products of cell lysis, 

which increase the attachment probability of colliding particles, and (2) biological 

alteration of the effective size and surface characteristics of component particles, 

which potentially increase collision probabilities (Simon et al., 2002).  

The role of marine/lake snow in the transformation of particulate organic matter (POM) 

is essential for the transformation and cycling of elements in pelagic marine and 



1. Introduction 

2 
 

limnetic ecosystems (Figure 1) (Grossart and Simon, 1998b; Ploug et al., 1999). They 

drive the biological carbon pump via sedimentation of organic matter from the surface 

ocean to the deep ocean, where carbon can be sequestered for years. During the 

sinking, organic matter in aggregates is decomposed as POM in the food web, thus 

providing energy to heterotrophic organisms in the surrounding waters and sediments 

(Grossart and Simon, 1998a; Herndl and Reinthaler, 2013; Turner, 2015).  

 

Figure 1. The biological pump of marine snow transforms dissolved inorganic carbon into 

organic biomass and pumps it in particulate or dissolved form into the deep ocean.  

Phytoplankton incorporate carbon into biomass, which either sinks to the sediment or being grazed  

or decomposed (figure modified from Ducklow et al., 2001). 
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1.1.2 Fe(III) mineral-cell aggregates in ferruginous lakes 

Pelagic aggregates are also found in ferruginous meromictic lakes that provide 

geochemical analogs of the conditions that dominated the Earth's oceans during the 

Precambrian (Koeksoy et al., 2016; Lambrecht et al., 2018; Thompson et al., 2019). 

These lakes are permanently stratified with a superficial O2-rich layer and a deeper 

anoxic layer separated by a zone called the redoxycline that exhibits strong opposing 

gradients of oxygen and Fe(II) (Miracle et al., 1992; Havig et al., 2018). Redoxclines 

with neutral pH lead to the precipitation of Fe-minerals mediated by abiotic and biotic 

Fe oxidation in a range of ferruginous lakes, like, Lake Matano (Indonesia; Zegeye et 

al., 2007), Lake La Cruz (Spain; Rodrigo et al., 2001), Lake Pavin (France; Cosmidis 

et al., 2014), and the ferruginous Kabuno Bay within Lake Kivu (Democratic Republic 

of Congo; Michiels et al., 2017). These Fe(III) mineral-cell aggregates with a high 

specific surface area and their organic carbon component make them ideal sorbents 

for several solutes (Fortin et al., 1993; Clarke et al., 1997). Consequently, these 

aggregates produced in redoxclines will settle down to accumulate in the bottom 

sediment and transport and mobilize various ions, metal complexes in modern Fe-rich 

water columns (Posth et al., 2010).  

1.1.3 Iron-rich pelagic aggregates (iron snow) in acidic pit lake 

As in the case of natural lakes, pit lakes are vertically stratified (Schultze, 2013). 

Compared to stratification mostly from variability in temperature, depending on the 

seasons in natural lakes, artificial mine pit lakes are chemically stratified, mainly 

resulting from mineralization (Boehrer and Schultze, 2008). They are found to be 

formed in former excavations of brown coal, sand mines, peat bogs for many centuries 

around the world (Sienkiewicz and Gasiorowski, 2016). Most pit lakes are acidic or 

extremely acidic (pH < 3), although some are neutral or even alkaline (Savage et al., 
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2009). The acidic pit lake water may be contaminated with elevated concentrations of 

heavy metals and/or acid mine drainage (AMD) (Banks et al., 1997).  

In the south‐eastern part of Germany, acid mining lakes were formed from previous 

surface mining in the Lusatian district (Schultze and Geller, 1996; Geller et al., 1998). 

When opencast mining of coal and metals terminated, the water drainage pumps were 

shut off and groundwater and rainfall accumulated, forming pit lakes. Acidic lake 77 is 

an acidic ferruginous post lignite mining lake (pH 2.5). The water quality is mainly 

influenced by the acidification caused by pyrite oxidation and the accompanying 

mobilization of acidity, iron, and sulfate (Schultze et al., 2011). The lake is 

characterized by the formation of iron-rich pelagic aggregates at redoxcline with 

steeply opposing gradients of oxygen and Fe(II). These aggregates ( ≤ 380 μm) have 

a high sedimentation velocity (~ 2 m h-1) and contain high amounts of Fe(III)-sulfate 

minerals (≥ 35%), schwertmannite as the dominant minerals, and a low amount of 

organic matter (< 11%) (Reiche et al., 2011). The higher inorganic fractions in 

aggregates lead to a higher sinking velocity and limited light penetration in the water 

column. Given the pronounced differences compared to organic-rich ‘‘snows’’ from 

oceans, lakes, and rivers, these particles from Lake 77 were called “iron snow” (Reiche 

et al., 2011; Figure 2).  

Figure 2. Photos of Lake 77 and iron snow.  

(A) Lignite mine Lake 77 in the Lusatian mining area in eastern Germany. (B) Iron snow precipitated 

from lake water collected below the redoxcline of the lake in 2015. Figures from Lu, 2012. 
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1.2 Diversity of bacteria in pelagic aggregates 

Pelagic aggregates provide a niche for microbes that can exploit these physical 

structures and resources for growth. Thus, they are local hot spots for microbial activity 

in energy fluxing, biogeochemical cycling, and food web dynamics (Caron et al., 1982; 

Alldredge and Gotschalk, 1990; Grossart and Ploug, 2000; Long and Azam, 2001). 

Due to different aggregates in different aquatic systems, the bacterial diversity and 

their relative abundances vary greatly. 

1.2.1 Marine/Lake Snow-attached bacteria 

Marine/Lake aggregates are colonized by phytoplankton and a rich and diverse detrital 

community of bacteria with densities from 106 cells to 109 cells per aggregate or ml, 

usually at concentrations many-fold higher than in the surrounding water (Alldredge et 

al., 1986; Grossart and Simon, 1993; Schweitzer et al., 2001). Phytoplankton (e.g., 

cyanobacteria, algae) represent a prominent group of primary producers in marine 

snow or lake snow (Simon et al., 1990; Kaltenbock and Herndl, 1992; Grossart et al., 

1997). β-proteobacteria, α-proteobacteria, γ-proteobacteria, and Bacteroidetes 

(formerly known as the Cytophaga-Flavobacteria-Bacteroides) are the most abundant 

bacteria on these aggregates (Tang et al., 2012). Aggregate-associated bacteria 

mainly degrade organic matter into the dissolved phase during sinking (Steinberg et 

al., 2008). Besides, eukaryotes, such as copepods, hydrozoans, radiolarians, and 

dinoflagellates, are also detected from marine snow particles (Lundgreen et al., 2019). 

1.2.2 Fe(III) mineral-cell aggregates-attached bacteria in ferruginous lakes 

Fe- and S-cycling microorganisms have been considered as significant players in 

Precambrian oceans (Farquhar et al., 2000; Johnson et al., 2008; Planavsky et al., 

2009). Similarly, modern meromictic lakes studied so far host large populations of 
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microbes at redoxclines, especially with metabolisms involved in Fe and S 

biogeochemical cycles. These metabolisms may contribute to primary production and 

mineral formation through biomineralization processes (Boyd and Ellwood, 2010; 

Brown et al., 2011; Berg et al., 2016; Miot et al., 2016). In Lake Pavin, nitrate-

dependent Fe(II)-oxidizing bacteria (FeOB) are present in the water column and 

promote Fe-oxyhydroxide and Fe-phosphate precipitation (Miot et al., 2014). Lower 

light absorption in the ferruginous lakes would permit greater light penetration 

illuminating the Fe(II)-rich anoxic waters below. In Lake Matano, anoxygenic 

phototrophic sulfur bacteria may be responsible for forming carbonated green rust 

together with magnetite as abundant Fe minerals below the chemocline  (Crowe, 

Jones, et al., 2008; Zegeye et al., 2012). In Lake La Cruz, a large community of 

anoxygenic phototrophic sulfur bacteria and photoferrotrophs establish the carbonate 

mineral particles below the chemocline (Rodrigo et al., 1993). So far, only one study 

has targeted the eukaryotes in the water column of the ferruginous lake (Lake Pavin) 

and revealed a high genetic diversity of unicellular eukaryotes, e.g., Alveolata and 

Fungi in the permanent anoxic zone (Lepère et al., 2016). 

1.2.3 Iron-rich pelagic aggregates (iron snow)-attached bacteria in acidic pit Lake 77 

Due to the low pH and enormously different biogeochemical conditions (high amount 

of Fe(III) fraction) from other ferruginous lakes (Kamjunke et al., 2005; Boehrer et al., 

2009), neutrophiles (e.g., photoferrotrophs) are excluded in acidic mining lakes. Iron 

snow is colonized by acidophilic microbial communities (~ 1010 cells [g dry weight]-1), 

and Fe-cycling microorganisms constitute nearly 60% of the total community (Lu et al., 

2013). One hundred thirty-three bacterial isolates were obtained from iron snow below 

the redoxcline, and these isolates belong to either acidophilic FeOB related to 

Acidithrix (Actinobacteria), Ferrovum (β-Proteobacteria), or FeRB related to 
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Acidiphilium, Acidocella, and Acidisphaera (α-Proteobacteria) (Mori et al., 2017). The 

most dominant groups (Acidithrix, Ferrovum, Acidiphilium, Acidocella) comprise up to 

50% of the total community (Lu et al., 2013). Key players (Acidithrix sp. C25, Ferrovum 

sp. C4, Acidiphilium sp. C61, Acidocella sp. C78) from each group were isolated. But 

Ferrovum sp. C4 failed to grow due to multiple transfers. Only key players (Acidithrix 

sp. C25, Acidiphilium sp. C61, Acidocella sp. C78) are kept.  

1.3 Fe-cycling bacteria under acidic conditions 

Acidic pit lakes, due to anthropogenic activity, are often associated with the oxidation 

of sulfide minerals, many of which contain iron (pyrite, FeS2) (Johnson and Aguilera, 

2019). Abiotic and microbially mediated redox cycling of Fe plays an essential role in 

biogeochemistry (Figure 3). Ionic forms of (uncomplexed) iron are far more soluble 

(especially Fe(III)) at low pH than at circumneutral pH. Under neutral pH conditions, 

soluble Fe(II) reacts more quickly with oxygen into insoluble Fe(III) oxides, and the 

spontaneous chemical oxidation of Fe(II) outcompetes the biological oxidation of most 

bacteria (Emerson et al., 2010). This limits neutrophilic FeOB to the microoxic (e.g., 

Gallionella) or anoxic environments (e.g., Acidovorax (nitrate-dependent FeOB), 

Rhodobacter (phototrophic FeOB)) (Kucera and Wolfe, 1957; Widdel et al., 1993; 

Straub et al., 1996). These neutrophilic FeOB use different strategies to evade cell 

encrustation due to the increased exposure to poorly soluble Fe(III) oxides (Chan et 

al., 2009; Schädler et al., 2009; Schmid et al., 2014). The oxidized Fe(III) acts as an 

electron acceptor and neutrophilic Fe(III)-reducing bacteria (FeRB) (e.g., Shewanella, 

Geobacter) develop different strategies to cope with the difficulty of transferring 

electrons from the cell to the surface of a barely soluble electron acceptor at 

circumneutral pH (Ghiorse, 1984; Lovley et al., 2004). 
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Figure 3. Microbial Fe cycling under acidic and circumneutral conditions. 

Figure is modified from Kappler and Straub, 2005; Mori, 2016. 

Microbial Fe cycling in acidic environments is different from neutral environments due 

to low rates of chemical Fe(II) oxidation in the presence of oxygen. A broad range of 

acidophilic Fe-cycling microorganisms from iron-rich systems such as bioleaching 

systems, AMD biofilms, mine pit lakes have been investigated (Tyson et al., 2004; 

Acosta et al., 2014; Falagán et al., 2014). In phylogenetic terms, Fe-cycling 

acidophiles are distributed across the domain Bacteria within the phyla of 

Proteobacteria, Nitrospirae, Firmicutes, Actinobacteria, and Acidobacteria, and in the 

domain Archaea within the Crenarchaeota and Euryarchaeota phyla (Johnson and 

Hallberg, 2003; Johnson, 2012). Within the phylum β-Proteobacteria, Nitrospirae, 

Actinobacteria, the most relevant FeOB genus known to inhabit acidic mine 

environments are Ferrovum, Leptospirillum, Acidimicrobium separately, while 
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Acidiphilium, Acidocella within α-Proteobacteria are frequent FeRB in acidic mine 

environments (Nordstrom et al., 2000; Wenderoth and Abraham, 2005).  

1.3.1 Acidophilic Fe(II) oxidizing bacteria (FeOB) 

Chemolithoautotrophic Leptospirillum is one of the most important acidophilic FeOB in 

acidic and metal-rich environments. Leptospirillum couples the fixation of inorganic 

carbon and nitrogen with the oxidation of Fe(II) as their primary energy source (Sand 

et al., 1995; Goltsman et al., 2009; Christel et al., 2017). Leptospirillum has been 

identified to catalyze mineral dissolution (Acosta et al., 2014) and produced 

extracellular polymeric substances (EPS) to mediate attachment of bacterial cells and 

biofilm formation on the surface of sulfide minerals (Vardanyan et al., 2019). The novel 

proposed genus “Ferrovum” was discovered in the last decade in AMD habitats 

worldwide (Hallberg et al., 2006; Heinzel et al., 2009; Hua et al., 2015). Despite the 

difficulties related to the isolation of Ferrovum, Ferrovum myxofaciens strain P3G was 

successfully isolated from an abandoned copper mine (Johnson et al., 2014). Further 

Ferrovum strains were isolated from pit water (Ullrich, González, et al., 2016; Ullrich, 

Poehlein, et al., 2016). Chemolithoautotrophic Ferrovum is known for producing 

copious amounts of EPS and nitrogen fixation (Johnson et al., 2014; Grettenberger et 

al., 2020).  

Acidimicrobium-related bacteria have also been detected in many acidic environments 

where they contribute to primary production and Fe(II) oxidization (Brown et al., 2011; 

Tyson et al., 2004). Heterotrophic Acidithrix is a novel genus within Acidimicrobiaceae 

(Kay et al., 2013) and the isolate Py-F3 is the type strain of Acidithrix ferroxidans that 

was isolated from an abandoned mine (Jones and Johnson, 2015). Acidithrix sp. C25, 

isolated from iron snow, represents only the second isolated strain within the Acidithrix 

genus (Mori et al., 2016). Two Acidithrix strains can oxidize Fe(II) under oxic conditions 
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and reduce Fe(III) under microoxic and anoxic conditions, which has never been 

shown in neutrophiles. Only the genome of Acidithrix ferroxidans Py-F3 was 

sequenced. Genes encoding Rubisco and several enzymes required for carbon 

fixation via the Calvin-Benson-Bassham (CBB) cycle were found (Eisen et al., 2015). 

However, the ability to fix CO2
 by strain Py-F3 has not yet been tested.  

1.3.2 Acidophilic Fe(III) reducing bacteria (FeRB) 

A variety of autotrophic and heterotrophic bacteria that thrive in acidic environments 

at low pH (< 3) can grow by Fe(III) reduction (Straub, 2011). All known acidophiles that 

use Fe(III) as an electron acceptor for their growth are facultative FeRB and reduce 

oxygen (Johnson et al., 2012). Both organic and inorganic electron donors can be 

coupled with Fe(III) reduction by FeRB. Autotrophic FeRB (e.g., Acidithiobacillus 

ferrooxidans, Thiobacillus ferrooxidans) can grow by Fe(III) respiration using either 

sulfur or hydrogen as electron donors under anoxic conditions (Pronk et al., 1991; 

Pronk and Johnson, 1992; Ohmura et al., 2002).  

Heterotrophic FeRB, such as Acidiphilium and Acidocella, use organic electron donors 

(e.g., glucose or glycerol) to reduce soluble Fe(III) as the terminal electron acceptor 

(Johnson and McGinness, 1991; Küsel et al., 1999). This is widespread among 

heterotrophic FeRB under anoxic conditions (Coupland and Johnson, 2008). 

Acidiphilium strain SJH is capable of reducing a variety of Fe(III) minerals, with the 

highest reduction rates observed for dissolved Fe(III) (Bridge and Johnson, 2000). 

However, anoxic conditions are not required for Fe(III) reduction in acidophilic FeRB. 

Acidiphilium cryptum JF-5 reduced soluble Fe(III) and schwertmannite in sediment 

microcosms at pH 3 under oxic conditions (Küsel et al., 2002). The enzymatic system 

related to Fe(III) reduction remains unknown, but evidence exists that this process 

may involve iron reductases (Schröder et al., 2003; Bird et al., 2011).  
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1.4 Microbial interactions in pelagic aggregates 

Organisms that exploit interspecific interactions to increase ecological performance 

often co-aggregate. Microbial interactions are the effects that the organisms in a 

community have on one another, and they are a ubiquitous, diverse, critical 

component of any biological community. Microbial interactions are likely to drive 

population structure and dynamics at microscale diverse taxonomic cell aggregates 

(∼100 μm) (Cordero and Datta, 2016). Marine/Lake snow aggregates with high 

microbial densities are found to act as local hot spots for microbial interaction (Figure 

4), and these interactions include quorum sensing (Gram et al., 2002; Hmelo et al., 

2011), antagonistic interactions via antibiotics (Long and Azam, 2001) and exploitation 

of public goods (Smith et al., 1992; Cordero et al., 2012). 

 

Figure 4. Different forms of microbial interactions between bacteria in marine snow.  

+ indicates the positive benefit, whereas - depicts the negative constraint. 0 means no effect. 

Iron snow is characterized by lower microbial and chemical complexity than marine 

and lake snow (Reiche et al., 2011). Former studies have indicated that different 

acidophilic FeOB (Acidithrix, Ferrovum) coexist with FeRB (Acidiphilium) in iron snow 
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aggregates. A range of microbial interactions have been demonstrated to occur 

between acidophilic microorganisms (Johnson, 1998), including competition (Johnson, 

1991; Schrenk et al., 1998), predation (McGinness and Johnson, 1992; Johnson and 

Rang, 1993), mutualism (Hallmann et al., 1992; Johnson and Roberto, 1997) and 

synergy (Norris, 1990; Clark and Norris, 1996). Thus, interspecies cell signaling 

between the acidophilic FeOB and FeRB may evolve through different mechanisms 

like marine/lake snow to adhere to and colonize in iron snow. 

1.4.1 Quorum sensing (QS) 

Particle-associated bacteria are metabolically more active than free-living bacteria 

(Smith et al., 1995), and microbial colonization and coordinated group behavior are 

likely regulated by chemicals, including QS signaling molecules within pelagic 

aggregates (Gram et al., 2002; Dang and Lovell, 2016). QS is a possible mechanism 

in marine snow bacteria that produce acylated homoserine lactones (AHLs) to govern 

phenotypic traits (biofilm formation, exoenzyme production, and antibiotic production) 

when the population reaches high densities (Gram et al., 2002). QS system has also 

been identified in the acidophilic Acidithiobacillus ferrooxidans (Mamani et al., 2016). 

It can produce AHL analog to modulate cell adhesion to solid Fe substrates and 

establish optimal niches within biofilms (Altermann, 2014).  

1.4.2 Secondary metabolites-driven interactions 

Within aggregates on the order of 100 µm, cell-cell distances are short enough for 

diffusible metabolites to reach neighboring cells (Datta et al., 2016). Long and Azam 

(2001) showed that approximately 50% of particle-associated bacteria growing on 

marine snow produced inhibitory molecules and displayed antagonistic activities 

towards other bacteria. The excreted metabolites produced by one partner and 



1. Introduction 

13 
 

needed by the other can also drive mutualistic interactions that positively affect the 

growth of co-existing organisms. Two co-occurring bacteria (Acidithrix, Acidiphilium) 

that make up 29.8% of the community in iron snow showed the role of metabolite 

signaling, 2-phenethylamine (PEA) (Mori et al., 2017). Increased rates of Fe(II) 

oxidation in FeOB Acidithrix sp. C25 and the induced bacterial aggregation in 

Acidiphilium sp. C61 were found when incubated with cell-free supernatants of each 

partner (Mori et al., 2017), which may suggest the mutualistic interaction from 

metabolites released in the individual culture media. 

1.4.3 Cooperation  

Oligosaccharides hydrolyzed from complex insoluble organic materials by 

extracellular enzymes can act as common goods that promote cooperative growth in 

microbial populations, whereby aggregates increase both the per capita availability of 

resources and the per-cell growth rate (Ebrahimi et al., 2019). As carbon sources are 

severely limited in acidic waters, obligate interactions between microbial members are 

probably critical in optimizing acidic microbial activity (Baker and Banfield, 2003). 

Notably, some typical acidophilic FeOB contain genes that enable them to fix CO2 

through different pathways. At. ferrooxidans (Valdés et al., 2008), Ferrovum 

myxofaciens (Johnson et al., 2014), and Acidimicrobium ferrooxidans (Caldwell et al., 

2007) may perform carbon fixation through the CBB cycle while several Leptospirillum-

related members, such as L. rubarum, L. ferrodiazotrophum (Ram et al., 2005; 

Goltsman et al., 2009, 2013) may fix CO2 through the reductive tricarboxylic acid (rTCA) 

cycle. On the other hand, obligate heterotrophic FeRB that belong to the 

Alphaproteobacteria (Acidiphilium except for A. acidophilum, Acidocella, Acidisphaera, 

and Acidicaldus) benefit from secreted metabolites and remnants of the biomass from 

FeOB by utilizing them as carbon and energy sources (Harrison, 1984; González-Toril 
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et al., 2011; Liu et al., 2011). Hence as the heterotrophs also supply the autotrophs 

with CO2 by oxidizing organic carbon compounds, which further boosts the growth of 

autotrophs (Kermer et al., 2012), similar cooperative interactions between the 

autotrophic FeOB and heterotrophic FeRB may exist in iron snow.  

1.5 Project background and hypotheses 

The acidic ferruginous lignite mine lake 77 in the Lusatian mining district (Brandenburg 

Germany) formed after lignite mining ceased in the 1960s. Lake 77 receives the acidic, 

Fe(II)-rich underground AMD inflow and is characterized by oxic-anoxic redoxclines. 

These redoxclines which occur in the water column of the lake lead to iron snow 

formation. Three dominant Fe-cycling groups (Ferrovum, Acidithrix, Acidiphilium) 

inhabit iron snow (Lu et al., 2013). Using the available strains (Acidithrix sp. C25, 

Acidiphilium sp. C61), chemical signaling (2-phenethylamine, PEA) was characterized 

in the former studies (Mori et al., 2017). However, the genome potentials of Acidithrix 

sp. C25, Acidiphilium sp. C61 involved in the above chemical interaction remain 

unknown. Further investigations are needed to clarify the specificity and aggregation 

mechanisms of PEA on Acidiphilium. 

The co-occurrence of Ferrovum and Acidiphilium has long been known (Kipry et al., 

2013; Tischler et al., 2013). Due to the lack of Ferrovum isolate from iron snow, the 

cultivation-independent method, metatranscriptomics, is used to reveal the diversity 

and metabolic activities within iron snow environmental samples, including the 

uncultivated FeOB (Ferrovum). We could examine the link between the taxonomies 

and functions, e.g., CO2 fixation, EPS production, EPS degradation, motility, which are 

linked to iron snow formation and stability. Further methods based on stable isotope 

probing (SIP) allow relating taxonomic identification to the metabolic activity of that 

organism through the assimilation of an isotopically labeled substrate in complex 
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communities (Radajewski et al., 2000). Organisms that utilize the labeled substrate 

take up the isotopic label and incorporate it in their biomass, e.g., proteins. The 

proteins can be identified and analyzed by mass spectroscopy, and subsequently, 

their taxonomic affiliation is assigned using reference databases (Taubert et al., 2011; 

Taubert, 2019). By applying genomics, transcriptomics, and protein-SIP to profile the 

genes involved in metabolic potentials, gene expression patterns, protein expression 

patterns, and 13C incorporation in iron snow microbes, this study aims to elucidate the 

metabolic activities and microbial interactions mechanisms of dominant FeOB and 

FeRB shaping the iron snow formation and structure (Figure 5).  

 

Figure 5. Project workflow to investigate the three hypotheses (HI-HIII) in this dissertation.  

Multi-omics in combination with experimental methods were used to address all three hypotheses in 

the following chapters of this thesis. 
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Hypothesis I Chemolithoautotrophy is the driving factor for building biomass. 

Hypothesis II Organic carbon derived from the chemolithoautotrophic CO2 fixation in 

FeOB acts as a carbon source for FeRB. 

To address the above two hypotheses, the objectives were: 

(i) Profiling the metabolic potentials of the key iron snow isolates. 

(ii) Profiling the activities of autotrophic CO2 fixation and heterotrophic organic carbon 

utilization by the in-situ iron snow microbiome.  

(ii) Protein-based 13CO2 metabolic labeling of oxic and anoxic microcosms to track the 

carbon flow between the members of the iron snow microbiome. 

Hypothesis III  The secondary metabolite, 2-phenethylamine (PEA), produced by 

Acidithrix sp. C25, targets the Fe(III)-reducing members to induce aggregation.  

To test the third hypothesis, the objectives were: 

(i) Incubation-based experiments designed to monitor the effect of PEA amendment 

on aggregation morphologies by the acidophilic FeRB, Acidiphilium sp. C61, 

Acidiphilium cryptum JF-5, Acidiphilium SJH, Acidocella sp. C78. 

(ii) Elucidation of potential aggregation mechanisms (i.e., autoaggregation, biofilm 

formation, flagellar inhibition) in Acidiphilium sp. C61. 

1.6 Structure of the thesis 

In chapter 2, “Draft genome sequences of Acidithrix sp. strain C25 and Acidocella sp. 

strain C78, acidophilic Fe(III)-oxidizer and Fe(III)-reducers isolated from iron-rich 

pelagic aggregates (iron snow) (Li et al., published in Microbiology Resource 
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Announcements), genomes were sequenced and annotated. Preliminary genome 

analysis provided genetic evidence about their contribution to iron snow formation, 

e.g., production of aggregation-inducing signals and hydrolysis of polysaccharides.  

In chapter 3, “Insights into autotrophic activities and carbon flow in iron-rich pelagic 

aggregates” (Li et al., published in Microorganisms), metatranscriptomics was used to 

reveal the dominance of FeOB and FeRB and linked them to iron snow microbiome 

activities, e.g., CO2 fixation, polysaccharide biosynthesis, and flagellar motility. 

Protein-based stable isotope probing (protein-SIP) justified that a small amount of the 

carbon fixed by the FeOB (Leptospirillum, Ferrovum) flew to FeRB (Acidiphilium, 

Acidocella) while a majority of carbon was converted to EPS to stabilize iron snow. 

In chapter 4, “Molecular mechanisms underpinning aggregation in Acidiphilium sp. 

C61 isolated from iron-rich pelagic aggregates” (Li et al., 2020; published in 

Microorganisms), the specific effect of PEA on the aggregation of iron-reducing 

bacteria Acidiphilium spp. was investigated. Pangenomes of Acidiphilium spp. 

characterized 65 shared gene clusters linked to potential aggregation. Further 

comparative transcriptomics elucidated the essential motility underlying the 

aggregation formation in Acidiphilium sp. C61.  
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2. Draft genome sequences of Acidithrix sp. strain C25 and 

Acidocella sp. strain C78, acidophiles isolated from iron-rich pelagic 

aggregates (iron snow) 

Published in Microbiology Resource Announcements. doi: 10.1128/MRA.00102-21 

Qianqian Li, Rebecca E. Cooper, Carl-Eric Wegner, Shipeng Lu, and Kirsten Küsel 

Abstract  

We report the draft genome sequences of two acidophiles, the Fe-oxidizing bacterium 

Acidithrix sp. Strain C25 and the putative Fe-reducing bacteria Acidocella sp. Strain 

C78.  Both strains were isolated from iron-rich pelagic aggregates (iron snow) 

collected below the redoxcline at a 5-m depth in an acidic pit lake located in Germany 

(51°31′8.2′′N, 13°41′34.7′′E).  
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3. Insights into autotrophic activities and carbon flow in iron-rich 

pelagic aggregates (iron snow) 

Published in Microorganisms. doi: 10.3390/microorganisms9071368 

Qianqian Li, Rebecca E. Cooper, Carl-Eric Wegner, Martin Taubert, Nico Jehmlich, 

Martin von Bergen, and Kirsten Küsel 

Abstract 

Pelagic aggregates function as biological carbon pumps for transporting fixed organic 

carbon to sediments. In iron-rich (ferruginous) lakes, photoferrotrophic and 

chemolithoautotrophic bacteria contribute to CO2 fixation by oxidizing reduced iron, 

leading to the formation of iron-rich pelagic aggregates (iron-snow). The significance 

of iron oxidizers in carbon fixation, their general role in iron snow functioning and the 

flow of carbon within iron snow is still unclear. Here, we combined a two-year 

metatranscriptome analysis of iron snow collected from an acidic lake with protein-

based stable isotope probing to determine general metabolic activities and to trace 

13CO2 incorporation in iron snow over time under oxic and anoxic conditions. mRNA-

derived metatranscriptome of iron snow identified four key players (Leptospirillum, 

Ferrovum, Acidithrix, Acidiphilium) with relative abundances (59.6%-85.7%) encoding 

ecologically relevant pathways, including carbon fixation and polysaccharide 

biosynthesis. No transcriptional activity for carbon fixation from archaea or eukaryotes 

was detected. 13CO2 incorporation studies identified active chemolithoautotroph 

Ferrovum under both conditions. Only 1.0-5.3% relative 13C abundances were found 

in heterotrophic Acidiphilium and Acidocella under oxic conditions. These data show 

that iron oxidizers play an important role in CO2 fixation, but the majority of fixed C will 

be directly exported to the sediment without feeding heterotrophs in the water column 

in acidic ferruginous lakes. 

Supplementary data to this article can be found online at https://www.mdpi.com/2076-

2607/9/7/1368 #supplementary material 
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4. Molecular mechanisms underpinning aggregation in Acidiphilium 

sp. C61 isolated from iron-rich pelagic aggregates 

Published in Microorganisms. doi: 10.3390/microorganisms8030314 

Qianqian Li, Rebecca E. Cooper, Carl-Eric Wegner, and Kirsten Küsel 

Abstract 

Iron-rich pelagic aggregates (iron snow) are hot spots for microbial interactions. Using 

iron snow isolates, we previously demonstrated that the iron-oxidizer Acidithrix sp. 

C25 triggers Acidiphilium sp. C61 aggregation by producing the infochemical 2-

phenethylamine (PEA). Here, we showed slightly enhanced aggregate formation in 

the presence of PEA on different Acidiphilium spp. but not other iron-snow 

microorganisms, including Acidocella sp. C78 and Ferrovum sp. PN-J47. Next, we 

sequenced the Acidiphilium sp. C61 genome to reconstruct its metabolic potential. 

Pangenome analyses of Acidiphilium spp. genomes revealed the core genome 

contained 65 gene clusters associated with aggregation, including autoaggregation, 

motility, and biofilm formation. Screening the Acidiphilium sp. C61 genome revealed 

the presence of autotransporter, flagellar, and extracellular polymeric substances 

(EPS) production genes. RNA-seq analyses of Acidiphilium sp. C61 incubations (+/− 

10 µM PEA) indicated genes involved in energy production, respiration, and genetic 

processing were the most upregulated differentially expressed genes in the presence 

of PEA. Additionally, genes involved in flagellar basal body synthesis were highly 

upregulated, whereas the expression pattern of biofilm formation-related genes was 

inconclusive. Our data shows aggregation is a common trait among Acidiphilium spp. 

and PEA stimulates the central cellular metabolism, potentially advantageous in 

aggregates rapidly falling through the water column.  

Supplementary data to this article can be found online at https://www.mdpi.com/2076-

2607/8/3/314 #supplementary material 
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5. General Discussion 

Iron-rich pelagic aggregates formed from the collision and sticking together of particles 

function similarly to marine, lake, river snow as carriers bringing inorganic matter, 

organic carbon, and living microorganisms from the water column to the lake sediment 

(Reiche et al., 2011). Its inhabiting environment (acidic ferruginous lakes) results in 

unique features of iron snow compared to marine/snow aggregates and Fe(III) 

mineral-cell aggregates in other ferruginous lakes. The low microbial complexity (Fe-

cycling bacteria, ~ 60% of the total microbial community) enabled us to isolate the 

representative isolates and sequence their genomes. Pangenome analyses allowed 

us to expansively describe the metabolic potentials of each group. Nevertheless, for 

Ferrovum, there are reported difficulties related to the isolation and conservation, 

including contamination, high sensitivity to organic compounds released from the agar 

plates, and bacterial loss (Ullrich, Poehlein, et al., 2016). Although the 

metatranscriptome approach enabled us to record expressed transcripts within a 

microbiome, including the uncultivated members, the high fraction of Fe makes it very 

challenging to extract enough RNA for sequencing. These and various challenges 

were addressed to integrate multiple omics data sets. Thus, this dissertation highlights 

the unique features distinguishing iron snow from marine/lake snow and Fe(III) 

mineral-cell aggregates in ferruginous lakes. Furthermore, the interaction features 

between FeOB and FeRB colonizing iron snow provide additional insights into the 

microbially-mediated driving forces behind aggregates formation and stabilization in 

iron snow. 
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Hypothesis I Chemolithoautotrophy is the driving factor for building biomass. 

5.1 Bacterial, Eukaryotic and Archaeal diversity in iron snow  

Metatranscriptome taxonomic profiles of in-situ iron snow microbiome revealed the 

dominance of FeOB (Nitrospirae, β-Proteobacteria, Actinobacteria) and FeRB (α-

Proteobacteria) within the community (Chapter 3; Figure 6). The Fe-cycling microbes 

found in iron snow are similar to the previously characterized AMD and pit lake 

microbial communities (Santofimia et al., 2013; Bomberg et al., 2019). Additionally, 

eukaryotes and archaea were also detected in iron snow. In contrast to relatively high 

eukaryotic species richness in the Iron Mountain AMD and the Tinto River (Amaral-

Zettler et al., 2002; Baker et al., 2009), the eukaryotic community biodiversity in iron 

snow was low and Stramenopiles, Holozoa accounted for 88.6-93.2% of the total 

eukaryotic community (Chapter 3). Stramenopiles, Holozoa were also detected in 

other AMD systems (Amaral-Zettler, 2013; Méndez-García et al., 2015). The archaeal 

abundance was extremely low (rRNA rate, 0.10-0.12%), and the majority of rRNA 

sequences were assigned to Euryarchaeota (data not shown).  
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Figure 6. Bacterial community profile at phylum level in iron snow, marine snow, lake snow, and 

Fe(III) mineral-cell aggregates in ferruginous lakes. 

(A) Relative abundances of iron snow samples collected at 5-6 m depth below redoxcline in 2018 based 

on 16S rRNA gene sequencing. (B) The relative percentages of bacterial 16S rRNA clones in marine 

snow at 13 m depth in 1991. (C) The mean proportions of bacterial groups detected by fluorescence in 

situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes on lake snow at 50 m depth 

below redoxcline in 1995. (D) The percentage of metagenome reads mapped to bacterial 5S, 16S, and 

23S rRNA genes from lake water at 117.5 m depth in 2010. 

5.1.1 Bacterial classification in iron snow differs from that in marine/lake snow  

The dominance of Fe-cycling bacteria is consistent with qPCR-based taxonomic 

analysis (Lu et al., 2013). These Fe-cycling bacteria in iron snow are quite different 

from bacterial colonizers of marine snow or lake snow which are Bacteroidetes phylum, 

including the (Cytophaga and Flavobacteria genera cluster), and the members of 
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Proteobacteria phylum, most of which are α-, β-, γ-proteobacteria. These microbes are 

involved in the production of polysaccharides e.g., bacterioplankton (Stoderegger and 

Herndl, 1998, 1999; Reichenbach, 2006), hydrolysis of organic carbon e.g., 

Alteromonas, Methylophaga (Grossart and Ploug, 2001; Fontanez et al., 2015), 

production of chemical signals e.g., Roseobacter (Gram et al., 2002) and motility 

(Mitchell et al., 1995; Dash et al., 2012).  

5.1.2 Bacterial classification in iron snow differs from that in Fe(III) mineral-cell 

aggregates in ferruginous lakes  

Acidophilic Fe-cycling microbes inhabiting iron snow are also different from 

neutrophilic microbes in Fe(III) mineral-cell aggregates below redoxyclines in different 

ferruginous lakes. In Lake Palvin, sulfur cycling microbes as well as FeOB 

(Gallionella), FeRB (Geothrix, Geobacter, Rhodoferax) promoted the sulfur and iron 

cycling at lower depths of the lake, and Fe-phosphates precipitated within the water 

column profile in the particulate matter (Lehours et al., 2007, 2010; Miot et al., 2016; 

Berg et al., 2019). In Lake Matano, Lake La Cruz, Kabuno Bay of Lake Kivu, 

anoxygenic phototrophic sulfur bacteria, anoxygenic photoferrotrophic bacteria (e.g., 

Chlorobium ferrooxidans), Fe(III) reducer (e.g., Rhodoferax) were responsible for the 

cycling of iron, sulfur, and carbon as well as the formation of mineral particles with 

abundant Fe below the chemocline (Crowe, Jones, et al., 2008; Crowe et al., 2014; 

Llirós et al., 2015; Morana et al., 2016; Camacho et al., 2017). Unlike dominant 

phototrophs in other ferruginous lakes, Rhodopila was the only phototrophy detected 

in the metatranscriptome sequences, and its relative abundance (0.25%-0.59%) was 

77-323 times lower than that of chemolithoautotrophs (45.1%-83.2%). The low relative 

abundance of phototrophs is due to the high amount of iron snow, limiting light 

penetration in lake 77 (Lu, 2012).  
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5.2 Chemolithoautotrophic CO2 fixation in iron snow  

The dominant Fe-cycling groups showed the highest transcriptional activity for 

functions linked to CO2 fixation, polysaccharide biosynthesis and degradation, and 

motility (Chapter 3). Leptospirillum and Ferrovum, represented the genera with the 

highest numbers of mRNA sequences linked to CO2 fixation pathways (CBB cycle and 

rTCA cycle) as well as polysaccharide biosynthesis (Chapter 3). The dominant 

chemolithoautotrophic FeOB Leptospirillum, Ferrovum oxidize Fe(II) coupling with 

carbon and nitrogen fixation. Additional genome analysis of iron snow key isolates 

showed the presence of complete genes involved in the CBB cycle in Acidithrix and 

heterophilic Acidiphilium, Acidocella genome possessed genes (a pyruvate 

carboxylase (pyc) and a pyruvate orthophosphate dikinase (ppdk)) for anaplerotic CO2 

fixation (Chapter 2). 31-388 times lower mRNA sequences associated with 

eukaryotes than the mRNA sequences corresponding to bacteria as well as the 

absence of critical genes involved in CO2 fixation pathways in eukaryotes suggest 

eukaryotes are unlikely to be involved in phototrophic CO2 fixation in iron snow. Further 

protein-based 13C quantification confirmed that chemoautotrophic FeOB 

Leptospirillum and Ferrovum were responsible for 13CO2 fixation (Chapter 3; Figure 

7). Collectively, genomic, metatranscriptomic, protein-SIP findings confirm that 

chemolithoautotrophic CO2 fixation is the primary production in iron snow. 
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Figure 7. Schematic diagram illustrating different biological CO2 fixation in marine snow, Fe(III) mineral-cell aggregates, iron snow. 

(A) Dissolved inorganic carbon is transformed into organic biomass by phytoplankton through photosynthesis in the euphotic zone, and a fraction of it is pumped 

to the deep ocean, either in the particulate or dissolved phase. (B) CO2 fixation by photoautotrophic bacteria couples microbial oxidation of Fe2+ or S2-. FeRB 

couple Fe3+ reduction to Fe2+ with the oxidation of organic carbon. (C) Chemilithoautotrophic FeOB couple CO2 fixation with microbial oxidation of Fe2+ while 

FeRB reduce Fe3+ / O2 using organic carbon as an electron donor.
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5.2.1 Chemolithoautotrophic CO2 fixation in iron snow is different from the 

photoautotrophic CO2 fixation in marine/lake snow  

The organic carbon content in iron snow is below 11%, while organic carbon 

constitutes 10 to 40% of the marine snow dry weight and up to 66% in lake snow 

(Simon et al., 2002; Reiche et al., 2011; Tang et al., 2012). Phytoplankton are 

responsible for the light-driven primary production in marine/lake snow, and they 

contribute more than 50% of overall primary production in marine snow or lake snow 

(Simon et al., 1990; Kaltenbock and Herndl, 1992; Grossart et al., 1997). The lower 

organic carbon of iron snow suggests the lower fixed carbon amount by 

chemolithoautotrophs than the photoautotrophic fixed carbon in marine/lake snow. 

These aquatic particles composing organic carbon generally contribute to the 

sedimentary organic carbon pool in aquatic systems (de Vicente et al., 2009). The 

higher velocity of iron snow than marine/lake snow in neutral aquatic systems 

compensates for the low organic carbon content contributing to the sedimentary 

organic carbon pool in acidic ferruginous lake 77 (Reiche et al., 2011). 

5.2.2 Chemolithoautotrophic CO2 fixation in iron snow is different from 

photoautotrophic CO2 fixation in Fe(III) mineral-cell aggregates in ferruginous lakes 

Ferruginous lakes host a large community of anoxygenic phototrophic bacteria below 

the chemocline. They oxidize sulfide or Fe(II) as an electron donor to harness energy 

from sunlight and drive anoxygenic phototrophic CO2 fixation into biomass. Due to 

phosphorus limitation, primary production limitation in the oxic layers enables light 

penetration down to a depth where oxygen is already absent (Crowe, O’Neill, et al., 

2008; Zegeye et al., 2012; Camacho et al., 2017). The organic carbon sedimentation 

rate of the phototrophic primary is 10.56–15.6 mg C m-2 d-1 in lake Matano, which is 
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10-40 times lower than C sedimentation rates (121-600 mg C m-2 d-1) estimated in 

Lake 77 (Reiche et al., 2011; Crowe et al., 2011).  

Hypothesis II Organic carbon derived from the chemolithoautotrophic CO2 

fixation in FeOB acts as a carbon source for FeRB.  

5.3 Carbon flow from autotrophic FeOB to heterotrophic FeRB in iron snow 

Protein-based 13C quantification suggested that Acidiphilium, Acidocella slowly took in 

a small amount of the converted 13C-carbon under oxic conditions, but no detectable 

metabolic activity was in the remaining bacterial community under anoxic conditions 

within the time frame investigated  (Chapter 3; Figure 8). Fe-cycling key players, e.g., 

Ferrovum, Acidiphilium, Acidocella in oxic and anoxic iron snow microcosms, have 

been found in iron snow at/below redoxcline and the lake sediments (Lu et al., 2010). 

Thus, under oxic and anoxic conditions, the iron snow microbiome behaves similarly 

to in-situ iron snow microbiome sinking from oxic mixolimniom to anoxic hypolimnion 

in lake 77. Leptospirillum drives CO2 fixation via the rTCA cycle, while Ferrovum 

performs CO2 fixation via the CBB cycle. The fixed organic carbon can be converted 

to polysaccharides for EPS production. In agreement, 24.9%-75.2% of the EPS 

production mRNA sequences were assigned to Leptospirillum, Ferrovum (Chapter 3). 

Heterotrophic bacteria prefer iron snow with rich organic carbon, e.g., EPS at higher 

concentrations than the surrounding water in the lake. Of mRNA sequences linked to 

polysaccharide breakdown, 2.9%-7.5% were assigned to heterotrophic Acidiphilium. 

In addition, genes encoding polysaccharide breakdown enzymes (e.g., glycoside 

hydrolase, alpha‐amylase) were present in all Acidiphilium spp. based on the 

pangenome analysis (Chapter 4). It suggests that Acidiphilium and Acidocella are 

dependent on derived organic carbon, e.g., EPS from Leptospirillum and Ferrovum 

(Chapter 3).  
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Figure 8. Schematic diagram showing carbon flow between FeOB (Leptospirillum, Ferrovum) 

and FeRB (Acidiphilium, Acidocella) in iron snow. 

Metabolic traits only present in Leptospirillum or Ferrovum are shown in dark brown or golden, while 

traits shared by Leptospirillum/Ferrovum or Acidiphilium/Acidocella are colored in Black or Blue. 

This type of interspecies carbon transfer has been previously described for acidophilic 

mixed cultures of Acidiphilium cryptum and Acidithiobacillus ferrooxidans (Kermer et 

al., 2012). These heterotrophic Fe(III)-reducing members are often isolated as 

contaminants from FeOB mixed cultures, e.g., Acidithiobacillus ferrooxidans (Harrison 

et al., 1980; Harrison, 1984), Ferrovum sp. JA12 (Kipry et al., 2013; Ullrich, 2016). 
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Acidiphilium and Acidocella degrade EPS as electron donors and Fe(III) as electron 

acceptors for their growth, facilitating the growth of autotrophic FeOB (Méndez-García 

et al., 2015; Ullrich et al., 2015). The carbon flow from autotrophs to heterotrophs is 

similar to that in marine snow. Phytoplankton fix CO2 to produce organic carbon. 

Heterotrophic bacteria colonizing marine snow exhibit a higher extracellular enzymatic 

hydrolysis rate than free-living bacteria to metabolize organic compounds 

(polysaccharides, di and monosaccharides, organic acids) (Grossart and Simon, 

1998a; Simon et al., 2002; Berkenheger et al., 2003). The long residence time of 

marine snow enables the attenuation of carbon flux to the deep sea (Turner, 2015). 

Despite the low chemolithoautotrophic primary production in iron snow compared to 

phototrophic primary production in marine snow, the shorter residence time due to 

higher velocity, and the small amount of organic carbon from FeOB to FeRB in iron 

snow enhanced contribution to the sedimentary organic carbon pool from the surface 

to the anoxic sediments in acidic lakes.  

 

Collectively, the first two hypotheses of this thesis are confirmed: 

“Chemolithoautotrophic FeOB fix CO2, and the fixed organic carbon not only flows to 

FeRB but also is converted to EPS to stabilize iron snow”. Dissimilar to oceans and 

lakes, iron snow sinks quickly through the water column as an efficient carbon pump 

in the acidic Fe-rich ferruginous lakes. 
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Hypothesis III The secondary metabolite, 2-phenethylamine (PEA), produced by 

Acidithrix sp. C25, targets the Fe(III)-reducing members to induce aggregation.  

Similar to marine snow-associated bacteria, which produce acylated homoserine 

lactones (AHLs) to trigger the community behavior by quorum sensing (QS), we 

mapped 0.005% of mRNA sequences to autoinducer-1 synthesis and receptor genes 

linked to QS (Chapter 3). This suggests that chemical communication appears to be 

at play in iron snow. 13C quantification showed that Acidithrix did not fix CO2, nor did it 

derive organic carbon from Ferrovum or Leptospirillum in oxic and anoxic microcosms 

(Chapter 3). This suggests that heterotrophic Acidithrix functions differently from 

chemolithoautotrophic FeOB to interact with FeRB. Indeed, screening the exchanged 

supernatant of Acidithrix sp. C25 (FeOB) & Acidiphilium sp. C61 (FeRB) identified the 

secondary metabolite (PEA), which induced faster growth and triggered aggregates 

formation of Acidiphilium sp. C61 (Mori et al., 2017). The absence of genes involved 

in PEA production and autoinducer receptor in Acidiphilium sp. C61 suggests that QS 

is unlikely to occur between Acidithrix and Acidiphilium. Screening the genome of 

Acidithrix sp. C25 identified genes encoding amino acid decarboxylase for PEA 

production (Chapter 2). In agreement, Acidithrix was also one of the top 5 bacteria 

with the most mRNA sequences linked to the above decarboxylase (Chapter 3). The 

produced PEA can be secreted by precursor/product exchangers or passive diffusion 

in bacteria (Konings et al., 1994; Lolkema et al., 1996; Marcobal et al., 2012). 

5.4 Genomic insights into aggregation in Acidithrix sp. C25, Acidiphilium sp. 

C61, Acidocella sp. C78 

Comparative metabolomics identified PEA in the supernatant exchange experiment 

between Acidithrix and Acidiocella (data not shown). However, the amendment of 

either Acidithrix supernatant (data not shown) or 10/50 µM exogenous PEA (Chapter 
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4) to Acidocella sp. C78 culture did not trigger the aggregate formation of Acidocella 

sp. C78. Acidiphilium sp. C61, on the other hand, formed aggregates not only in the 

presence of PEA (Chapter 4), but also in the co-culture of Acidithrix and Acidiphilium. 

98% and 93% of genes in Acidiphilium sp. C61 and Acidithrix sp. C25, respectively, 

were not differentially expressed in co-culture vs. pure culture (data not shown), 

presumably due to no significant growth of Acidiphilium. It should be noted that 

Acidiphilium grew faster than Acidithrix, and the co-cultivation was carried out after 

two days of pre-incubation of Acidithrix. This result would support the high sensitivity 

of Acidiphilium at low cell numbers responding to PEA.  

The cell aggregation effect induced by PEA is specialized in all tested Acidiphilium 

strains, but not Acidocella sp. C78 (Chapter 4). Therefore, genomes were examined 

to reveal their morphological differences. The same flagellar assembly pathway and 

the absence of flhDC in Acidiphilium and Acidocella (Chapter 2), imply that the PEA-

triggered cell aggregation of Acidiphilium is induced by regulations of other 

physiological pathways rather than flagellar motility. This is despite the fact that PEA 

has been previously reported to block cell motility by inhibiting the assembly or activity 

of flhDC, a key regulator of flagellin in lateral flagellum systems in Proteus mirabilis 

(Stevenson and Rather, 2006; Stevenson et al., 2013). Comparative genome analysis 

showed that shared genes accounted for 99.8%, 89.4% of total genes in Acidocella 

sp. C78 and Acidiphilium sp. C61 genome respectively (data not shown). Among the 

five unique genes in Acidocella sp. C78, four genes were uncharacterized, and one 

gene encoded dehydratase. Among the 377 unique genes in Acidiphilium sp. C61, 

26.5% of unique genes with inconsistent expression patterns were differentially 

expressed in Acidiphilium sp. C61 after the addition of PEA (data not shown).  



5. General Discussion 

79 
 

5.5 Transcriptomic insights into genes linked to aggregation mechanisms 

(autoaggregation, biofilm, and motility) in Acidiphilium sp. C61 

Here, we focus on characterizing the expression patterns of genes involved in general 

aggregation mechanisms. The overall expression pattern of autoaggregation and 

biofilm, motility-related genes were inconsistent (Chapter 4). Motility still seems to be 

essential for Acidiphilium sp. C61, as genes involved in flagella biosynthesis, were 

even slightly upregulated. In agreement, metatranscriptome data of in-situ iron snow 

and metaproteome data of iron snow microcosms detected many flagellin domain 

transcripts and proteins from Acidiphilium (Chapter 3). This might help Acidiphilium 

sp. C61 join FeOB Acidithrix sp. C25, which contributed to the aggregates growth. 

However, the majority of genes (55%) for autotransporter and biofilm formation in 

Acidiphilium sp. C61 remained unchanged, although PEA was found to strongly inhibit 

biofilm formation in E. coli (Irsfeld et al., 2013; Lynnes et al., 2014). It suggests that 

Acidiphilium sp. C61 may prefer to aggregate over forming biofilms.  

5.6 Potential unexamined aggregation mechanisms in Acidiphilium sp. C61 

Higher concentrations of PEA resulted in increased numbers of aggregates formed 

(Chapter 4). PEA can diffuse into the cell without the transporter, similar to brain cells 

(Crupi et al., 2016). Unlike AHLs, attractor or repellent molecules induce chemokinetic 

swimming behavior of bacteria toward the aggregates (Kiørboe and Jackson, 2001; 

Laganenka et al., 2016). PEA can be utilized as a carbon or nitrogen source (Scarlett 

and Turner, 1976; Paterson et al., 1990). However, qPCR showed that PEA did not 

promote bacterial growth as two mM glucose was added to the cultures of Acidiphilium 

sp. C61. Comparative transcriptomics showed that PEA stimulated the central 

metabolism, e.g., protein biosynthesis (Chapter 4). Likely, unknown synthesized 

protein, similar to the M protein found in Streptococcus canis (Nerlich et al., 2019), 
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may occur (Figure 9). These proteins are known to exhibit homophilic protein 

interactions with self-binding activity via the N-terminal to facilitate bacterial 

aggregation (Nerlich et al., 2019). Since higher concentrations of PEA led to more 

significant aggregates (Chapter 4), this suggests that Acidiphilium moves directionally 

towards PEA signals. Thus, different PEA concentrations gradient across the bacteria 

may function like polymer concentrations gradient which generates an osmotic 

pressure that physically holds aggregates together (Secor et al., 2018).  

 

Figure 9. Conceptual illustration of aggregation mechanisms in Acidiphilium sp. C61. 

The unknown protein interactions may facilitate bacterial aggregation. Additionally, the difference in 

PEA concentration across the cell generates an osmotic pressure that physically holds aggregates 

together.  

 

The third hypothesis III, “The secondary metabolite, 2-phenethylamine (PEA), 

produced by Acidithrix sp. C25, targets the Fe(III)-reducing members to induce 

aggregation” is confirmed. PEA produced by Acidithrix has a specific aggregation 

effect on Acidiphilium, but not Acidocella, despite the high similarity of their genomes. 

Inconsistent gene expression patterns relating to the aggregation mechanisms 

suggest PEA functions as an infochemical regulating other cellular mechanisms, not 

aggregation mechanisms directly. This specific aggregation of PEA on the most 

dominant FeRB Acidiphilium can enhance primary iron snow formation.  
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5.7 Conclusion 

Iron snow resembles marine/lake snow regarding carbon pump and chemical 

communication. This dissertation applied multi-omics approaches combined with 

experimental approaches to illustrate the functions and interactions of the key co-

occurring Fe-cycling players (Figure 10). The specific aggregation of metabolite 

produced by FeOB (Acidithrix) on co-colonizing FeRB (Acidiphilium) contributes to 

initiating the aggregation of a particular iron snow bacterial community. 

Chemolithoautotrophically fixed carbon by FeOB (Ferrovum) subsequently flows to 

FeRB (Acidiphilium) as their energy sources or is converted to EPS to stabilize iron 

snow. These findings differentiate iron snow from well-known marine/lake snow and 

other Fe(III) mineral-cell aggregates in ferruginous lakes regarding the contribution of 

photosynthetic CO2 fixation to the overall pool of fixed CO2 found in these 

environments. Thus, two forces of microbial interactions were characterized to 

contribute to iron snow formation and stability between dominant FeOB and FeRB: 

bring together (PEA) and stuck together (organic carbon form, e.g., EPS) in this thesis.   
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Figure 10. Schematic interaction model mediated by a chemical mediator and carbon flow 

between FeOB and FeRB in iron snow. 

Iron snow is primarily formed by Fe(II) oxidation by FeOB Acidithrix. Acidithrix excretes PEA, which 

induces specific colonization of free-living Acidiphilium. Leptospirillum, Ferrovum fix CO2 to produce 

organic carbon (e.g., EPS), of which a small amount of the fixed carbon serves as the carbon source 

for heterotrophic FeRB (Acidiphilium, Acidocella) colonization. The majority of fixed carbon favors the 

cohesiveness and additional growth of these pelagic aggregates
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