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On ReH-matrices and corresponding topics
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Ilmenau Technical University

1 Introduction

We are interested in ReH-matrices because they help us to solve a complex
operations research problem (see [5], [10] and also Appendix C). However,
these matrices themselves represent an interesting combinatorial structure.
ReH-matrices can be initially computed by means of a simple enumeration
(however a laborious method). Unfortunately, no formulas for explicit com-
putation are known for most elements of ReH-matrices.

ReH-matrices are defined by three positive integers n, kg, su. The num-
ber of rows and columns of such a matrix is equivalent to the number of
restricted (unordered) partitions of su into at most n parts with summands
not greater than kg. The elements of a row (which corresponds to a partition
(s)) are computed as numbers of "balanced” covers of certain ”vectors w”
by partitions, which differ from the partition s at least as possible (divided
by a normalizing factor) if the components of these vectors are discrete uni-
formly distributed (and in an analogous way for other distributions of the
vectors).

In Section 3 we will introduce ”perturbed permutations”. They can be
used to compute the elements of ReH-matrices more effectively than enu-
meration. A polynomial and sometimes an exponential dependence of the
elements on the variables n and kg in the case of discrete uniformly dis-
tributed components of the vectors w (and similar relationships for other
distributions) can also be shown by means of perturbed permutations.

Limits of ReH-matrices are also significant. In Section 4 we will compute
such limits if corresponding sequences consist of matrices of the same type.

So-called Poisson equations (Section 5) are important for applications.
If their solutions are "monotone” then ReH-matrices correspond to optimal
solutions of the above mentioned operations research problem. But proofs
for monotone solutions are very difficult, since ReH-matrices do not fulfil a
”dominance property”, in general. We give an overview on this topic and
present a new result using limits from Section 4.



1.1 Notation and terminology

Let su, n and ko be integers with n > 2 and 1 < ky < su < nko. Spisuzk,
denotes the set of the restricted (unordered) partitions of su into at most
n parts with summands not greater than k. 7 is the number of partitions
of such a set. We write the elements s of S,,.4,.1, as n-dimensional vectors.
That means s = (51, S9,-++ ,8p) with s1 +sg+ -+ + s, = su and (w.l.o.g.)
S1 >8> > sy !

Furthermore, the box B, = {w IS \O <w; <kg,i=1,--- ,n} is
called the set of requirements. We assume that the requlrements w are ran-
dom vectors 2 and that their components w;, (i = 1,--- ,n) are independent
and identically distributed. Let

n

g(w) := [ qo(w:) (1)

i=1

be a corresponding probability function where the marginal or single proba-
bilities qo(w;) are such that

go(w;) > 0 if and only if w; € {0,1,--- ;ko} and qu(j) =1. (2
j=0

n
If, in particular, w; are discrete uniformly distributed then ¢(w) = (ﬁ)
for all w € By, follows.
Pr1nc1pally, two cases in relation to the requ1rements have to distin-

guished: Z w; < su (surplus-situation) and Z w; > su (scarcity-situation).

=1 =1
3

n
B}I ko = Bk N {w € Bkl Do wi < su} and
i=1

BTQL ko = Briko N {w € By | Z w; > su} are corresponding subsets of By, .
=1
For given s € Sy.suk, and w € By, a feasible partition s’ is defined by:

1) w is covered by a permutation s;r of s’ in the case of the surplus-situation.
2) w should be met as much as possible in case of the scarcity-situation.

n
3) The "difference” () |s; —s,,|) between s and s, is as a small as possible.

1However, each permutation of (s1, s2,- -, $n) represent the same partition s.

2We use the same notations for the random vectors and their realizations.

3The equal sign in both cases is useful for the following and does not lead to contra-
dictions.



Thus : §'(= 8 (s,0)) € Ap.guky (5, W)

. 3\
3 s/ permutation of s’ :
n
, wigsgigmaw{si,wi},z'zl,-~,nif E w; < su
=45 € Sn;su;ko =1
n
min{s;, w;} < s <wi, i=1,--+ ,nif Y w; > su
\ ’671 )

n
> max{0,w; — s;} if > w; < su,
i i=1

n
=1 > max{0,s; —w;} if Y w; > su
i =1

We denote s* = s*(s,w) € fln;su;ko(s,w) as a feasible balanced partition
n

with regard to s and w if Y (s})? is as small as possible. The fewer the
i=1

n
coordinates s} differ from one another, the smaller is > (s})?, since
i=1

(s + (s;)2 < (st —x)*+ (57 + z)?for0 <z < s} < s} (4)

In addition, we define B, (s,5*) = {w € By, | s* = s*(s,w)} as the set

1

of balancing requirements and B:L.lko (5,8%) = B4, (8,8") N By .

B,’;;Zko(s, s*) = B (s,8")N Bi;ko'
2 Definition of ReH-matrices and their iterative
computation

At first, we want to introduced ReH-matrices. For this, let Sp.ouk, =
{s!,s2,--- 5"}, Bk, and g as above.
ReH-matrices are matrices P* = P . ko = (p;il) f=1,...», with elements
[atat] 1 o
ph=p"sN) = > qw) =

col —gox * 1
wisl=s*(sf w) weBy (sf,sh)

(]

q(w). (5)

(For an example, see Appendix A, a).)  Thereby,
pp>0for f=1,---,r, I=1,---,m, (6)

because of p}; > q(w = s') and (2).



Thus, the definition of ReH-matrices includes the usage of (balanced)
transitions s*(s/,w), f =1, ,r,w € Bpk,-

Using property (4), feasible balanced partitions for given s € Sp.su:k,
and w € By, can be computed by the following iterative method. (This is
easy to prove.):

n
> max{s;,w;} if > w; < su,
i i=1

Set s7 = n
S omin{s;, w;} if > w; > su
i i=1

2

n
> - max{0,w; — s;} if Z w; < su,
i

ZmaX{O si —wi} if Z w; > su

(*) If d = O then s* is the deszred partztzon (end) else:
Determine a component SJ of s*

n
maz{s} | s7 > w;} if > w; < su,
such that sj» = i=1
man{s} | sf <w;} if Y w; > su
t
n (2
s;i—1df Y wi<su
Set S;f: =l andd=d— 1.
s;f—i—l if > w; > su
i=1

Go to (*).
If the feasible balanced partitions (with regard to s/ and all w € Bi.io)
have been computed then the elements p}l, l=1,---,r of a ReH-matrix can

be calculated as sums of the probabilities of the requirements w, for which
feasible balanced transitions from sf to s' can be found. The computation
of ReH-matrices by means of such enumerations is a laborious method.
An important question is wether we can determine sets By, ;- (sf,s!) for
given s/ and s' by a more effective method than the above enumeration.
For this, an idea could be to partition B;‘L;ko(sf, s!) in relation to the
permutations of s'. In more detail, that means
B (s fosh)y = U Bzﬂko(sf s (])) where

$'@) permutation of st

o (s7 5) = {w € Bl (7 s | ws? purfin @)} (1)

Such sets have a simple structure:



B*™ (sf,sir) =

n;ko

:sir_ for i, € 1,
7" |w; @ LUl =1{12,-
we +|wz G{Oalf"”sl'b} for Z.bGIb ’ OLU b {’ ’ ,n}’

“ Burcu) U

=1

- :Sgrza for i, € I, Ul L9
w e +|wi { )Sgrib‘f‘l,...,kO} for ibEI_b 70 U b_{7 7'”7n}7

n
> wi > SU},
=1

where I, I, I,,, I, must be determined.

(8)

However in general, it must be stated that

*TT e *TT L
n;ko (va Sﬂ(J)) ﬂ n;ko (8f7 S7T( )) 7é q) (9)

If we use perturbed permutations (which will be define in the following
section) instead of the permutations themselves, then the intersection (9) is
empty.

3 Computation of ReH-matrices by means of per-
turbed permutations

A ReH-matrices (and especially, single elements of it) can be determined
more effectively if we use perturbed permutations.

Perturbed permutations .§£r are particularly characterized by J,, jg, j1 in
the case of the surplus-situation and by J,,jo,j1 in case of the scarcity-
situation, respectively. Based on perturbed permutations §£T and corre-
sponding J,, jo, j1 or Jo, jo,j1, we define sets of requirements E’;:lko (sf , §£r)
and f};?ko(sf, L), which are subsets of Bk (sf,s!). The sets é;”,;o (sf,5)
(m = 1,2) are pairwise disjoint (regarding ') and their union (over all per-
turbed permutations) is equal to By (sf,s!). Thus, an element py of a
ReH-matrices can be calculated as sum of the probabilities of requirements
which are elements from sets B:L;lko(sf ,8L) or Bffko (sf,8L) (minus a simple
term). An example for such a calculation can be found in Appendix A, b).

Let us assume in this section that (without loss of generality) the compo-
nents of the partitions s/ € Shisusko and st e Shisusko are initially ordered
monotonically decreasing:



f>sf> Zs{; andsllz,sl22~-28£l.

Furthermore, we use the the following additional notation and symbols:

F: the number of components of s/ which are not equal to 0,

10
L: the number of components of s' which are not equal to 0. (10)
£, S ) f ot
S 1S = o =Sp >Sp = =8, > >8p = =55 >0

(s/ =0fori>F.+ 1if F. < n)

(11)
(with Fi < Fo<--- < F, =F(< F,41 =n for F, <n)),

1. l _ _ ol l _ _ ol
(S 1_ .._SL1>SL1+1_..._SL2>...
— — ol l — — ol l —
> 8 = =8y, >sy, g =cee=sy, >y, =
— ol l _ _ Gl
g > >S4 = =8, >0
(O:ley+1:---:ley+1 = sl if L, < n)
(12)
(with L1 < Ly < -+ < Ly = L(< Lyy1 =n for L, < n), further-
more Ly := 0). Moreover, we define
Uf] = SlLJ for J=1,2,...,y (ory+1 for L, <n) and so
ol>oh>o>ol  >ab >ol  >sel (sl =0 (13)
for L, < n)
follows.
Lastly let
(sl o) = 5 1 ifs/ =4, 14)
§7,8 ) =0f ‘=
/ 0 ifsf # sl

Below we will show how to compute the requirements w € B;fb.ko(sf ,s)
1n the cases

Z w; < su and Z w; > su by means of sets of perturbed permutations.
=1 =
The elements pfl of the ReH-matrices can then be calculated in the

following way



1,2
Ph =P + P — P

withply = 33 q(w). pii= 3 a(w)
“’EBZ;kO(Sf’SZ) wEB;;kO(sf,sl)
1,2
and p;l’ = > q(w) = > q(sh).
weB} Y (s7.81) N By (57 s) sh: permutation of s!

(15)

n
At first we consider Case Y w; < su (the requirements can be completely
i=1
fulfilled):

Given a partition s € Shnisuko and a permutation sﬁr of a partition
st e Shi:susko» We then compare the components of s/ with the components
of st in order of increasing sﬁri. More formally we state:

Definition 3.1 Let J, € {1,2,...,y (or y+1 for L, <n)} (see (12)) and
jO € {1727 .- '7LJO - LJo—l}'

(i) If
sl < st for any st <ol * (al)
slf < siri for Ly, — Lj _1 — jo elements of the
set {sﬁrl, e ,s;n|sﬁn = af,o} (a2)
and s{ > sﬁri for jo elements of the set
{Sgrl"" 75£rn|‘9£ri 20510}7 (a?’)

we then refer to a (Jo,jo)-perturbation of the relation ” <” be-
tween sf and s! .
(ii) 8L with
st.+1  for slf > b= af,o (ad)
S, = (see (a3) from Definition 3.1),
Soe. otherwise (ab)

K3

is called a (Jo,jo)-perturbed permutation with respect to sf.
(i) Sf{l(Jo,jo) is the set of all (J,, jo)-perturbed permutations 8L of per-
mutations st of s', for which a (J,, jo)-perturbation of the relation "<”

between st and sT is present.

(iv) S8 = U 8L Jo, jo) is the set of perturbed permutations in the case
(J01j0)
of the surplus-situation.



n ~
Thus, Y- 84 = su+ jo follows for &\ € S5 (T, o).
i=1

Definition 3.2 gfr’l(Jo,jo,jl) denotes the subset of S,J:’l(JO,jO), where
J1+ Jjo is the number of i’s with:
5{2.%%,:030—}—1 (a6)
for all elements 8L of this subset.
(Obviously, j1 € {0,1,-- ,Lj,_1 — Lj,—o} if o, =0y | —1 and

j1=0 if o, <ol 1 —1.) (a7)

Example: Let n = 8, su = 25,k, = 6,
sf =(6,4,4,4,3,2,2,0)7, s = (4,4,4,3,3,3,2,2). Then for instance
Sir(l) = (47 4737 27374737 2)T7 where JO = 37j0 = 17j1 =2
l
and s> = (4,3,3,2,3,4,4,2)", where J, = 3,jo = 1,j1 = 3 are elements of
S

Lemma 3.1 Given a set Sﬁ’l(Jo,jo,jl) and let §' € Z"
sh=st for je{1,2,---,Lj,_1} or
with j€{Lsj-1+jo+1,---,nt  (a8)

sh=s+ (=0l +1) for je{Lj1+1,---,Ls,—1+jo} (a9)
Then § € Z™ is an element of the set S’T{’l(Jo,jo,jl) if and only if § fulfils
the following conditions regarding s¥ and §:
(i) 4 is a permutation of &',
(ii) s < 3 if 5 <al, (a10)
(7i1) slf<§i for Lj,_1— Lj _o — j1 elements of the set

{81,--+ . 8nl8s = 0l +1}

ifoy, +1=0} _y, (all)

(iv) slf > 3 for jo + 71 elements of the set
{§1,--- ,§n‘§i20f]0+1}. (a12)

PROOF. Obviously, (i) is a necessary condition for § € S£*(.J,, jo, j1)-
1. (=): Let &L ¢ S{:’I(Jo,jo,jl) be given.
Condition (al0) is valid for 8 < af,o 41 according to (al) and for §£TZ = GZJO
according to (a2) and (a4).
The condition (all) is fulfilled for the remaining L; 1 — Lj,—2 — j1
components §£rl equal to af,o + 1 according to the definition of j; (see (a6)).

Condition (al2) is valid according to (a6).

“Clearly, if J, =y (or =y + 1 for L, < n) this case does not exist.



2. («): Now, let § be a permutation of & satisfying (al0), (all) and
(al2).
A permutation s! of s' may then be constructed in the following way:

$;—1 for Jo components §; = Jf,o +1< szf

s = (which thus also satisfies (a12)), (16)
S otherwise.

We show that s!. fulfils the conditions from Definition 3.1:

Condition (al): This follows from (al0) (specifically

for §£rz < Uf,o+1(< af]o)).

Condition (a2): According to the definition of § (and (12)) §; = o) is
valid for Lj, — Lj,—1 — jo components. Only (al0) can be present in Lemma
3.1 for these components, which means slf < §; (see also (16)). (a2) then
follows.

Then (al2) (and (12)), the definition of & (see (a9)) and (16) yield (a3).

Vice versa, the permutation s leads to 8, according to (a4) and (a5).
Reconsidering (al2) and (all) we can conclude that, 3! is an element of the

set Sgl(Jovjovjl)' n
Together Definitions 3.1, 3.2 and Lemma 3.1 obviously yield:

Lemma 3.2 Let S’,{’Z(J(},jé,jll) and S’f:’l(,]g,jg,j%) (with respect to sf) be
given and assuming J} # J2 or j§ # j3 or ji # ji.

Then, SF'(JL, 58,3 NS (I2,33,33) = @ follows.

PROOF.

Case J! # J2 : For perturbed permutations from SI*(.J1, il ih) or Sit(2, 42, i?),

respectively different ofjl and 032 have been increased by 1 (see Defi-
nition 3.1, (a4) and (ab)).

Case J! = J2 and j! # j2: Perturbed permutations of S1*(J!, i1, j1) and
Sf:’l(Jg ,j2,7%) have then different numbers of components with value
0-(1]1:2, since different numbers of components have been increased by

o

1 (see Definition 3.1).

Case J! = J2, jl = j2and j{ # j? : Perturbed permutations of S%’I(J(},jg,jll)
and S,J:’Z(Jg, §2,7%) have different numbers of components for which
(all) or (al2) from Lemma 3.1 is valid. [ |

Definition 3.3 Let an element 5. from a set Sﬁ’l(t]o,jg,jl) be given.
Then the set of all w € By.i, which fulfil the properties:



()wle{O,l,...,ﬂ if sl =38 <o (al3)

(13) w; € {0,1,. o 8t =oh +1} and w with at most jy coordi-
nates w; = O'Jo +1
ifs] > 8 =dl +1, (a14)
(i1i) w; = &k, otherwise (alb)

is denoted by B;;lko (sf,38L).

Remark 3.1 Properties (al4) and (al13) show that the increase of compo-

nents of value ofjo by 1 in order to determine (J,, jo)-perturbed permutations

for B*1 (sf, 8L) is in fact not necessary in the case Jf,o +1< 050—17 since

the last mequalzty implies that j1 = 0 because of (a7). However, this method
leads to clearer and more uniform representations of the Definitions 3.1, 3.2,
3.8 and so on, so that distinctions in certain cases in the representations are
not necessary.

Lemma 3.3  Let an element 8. from a set gﬁ’l(Jo,jo,jl) be given. In
addition, let w € B;’;.lko(sf, by,

Then, the case ”otherwise” in Definition 3.3 is valid if

s{ <8 or (al6)
l ; l l
o >4 01 oy, +1l=0;5_4, 1
Si = Sm = { Uf,o if UlJo +1< Uf]rl (a17)
PROOF.
Case §£Tz < Uf,oz The inequality slf < '§£rz follows according to (al0) from

Lemma 3.1.
f =3l (<} _) can be found in (al3) of Definition 3.3.

sf < 5h . belongs to "otherwise” in this definition.

Case 8. = Ufjo +1: szf <3d (= Jf]o + 1) can be found in (al4) of Definition
3.3.

szf < §£rz belongs to ”otherwise” in this definition.

l e l
. . . o ifo l=o0
Case & > Uf] + 1: This means &, > fomt e * fo b
i o i oy, lfUJa+1<JJo—l
If we have in addition slf > 8!, then (al7) is valid and if we have

s/ < &, then (al6) is valid. [

Lemma 3.4 Let a set leko (sf,5L) be defined according to Definition 3.83.

Then there exist exactly <]O;;Jl> requirements w € B::k (sf,8L), which

n n
satisfy the cases . w; < su and Y w; > su simultaneously.
i=1 i=1

10



PROOF.
Case Uf,o +1= af,ofl : (j1 > 01is possible in this case, see Definition 3.2).

If the components of s and the (.J,, j,)-perturbed permutation 5’ from
S;’I(Jo,jo,jl) (with respect to s/) are compared, then

8L > sk may only be possible if s{ > 5 =0l +1 (*1)
(see also Definition 3.3)

is valid according to (i) and (ii) of Definition 3.1.
The condition (al4) from Definition 3.3
slf > ‘§£m = Uf,o + 1 is valid for exactly j, + j1 components ,§£TZ (*2)
according to Lemma 3.1, (al2).
In relation to (al4) from Definition 3.3 let
w; = af,o + 1 for jo coordinates w; where jo < j1. (*3)

From (*3) and (*1) (refer also to (*2)) and Definition 3.3 it follows that

n
> wi < jo(ol +1) + [jo + (1 — J2))ol, + > st
=1 it if not s{2§£‘.i :af]OJrl
n
=3 sk, + (2 = j1) = su+ (j2 — j1) < su. (*4)
=1

n
The equation ) w; = su is only correct, if jo = j; in (*4) and all w; are as
i=1
large as possible, according to Definition 3.3. This means that, in relation
to (al4), ji coordinates w; are equal to Ufjo 4+ 1 and jg coordinates w; are

equal to o (see also (*2)).
n

Thus, exactly (JO + ‘71> different requirements w satisfy the cases > w; <

o =1

n
su and Y w; > su simultaneously.
i=1

Case af]o +1< af,o_l : 71 = 0 follows according to Definition 3.2.
Hence, in relation to (al4), it is impossible that w; = Ufjo + 1 (for any 14
with s/ > 8, =0l +1).

Since (‘70 +§) —J O) = 1, there is only one possibility, in which all
o
coordinates w; from Definition 3.3 are as large as possible, which then implies

n

> w; = su. [ |
i=1

Remark 3.2 Probabilities of w from Lemma 3.4 are added in order to com-
pute p}% and also pﬁ Therefore, these probabilities must be subtracted once

from p}} + p}% for the determination of p% in (15).

11



Theorem 3.5 Let s/ ¢ Shisuko and st e Snisusko be given. Then we have:

Bnko( = U Bnko(sf,§£r) if s7 # st and
s GS
Bl (s, sy = U Bl (s5.8h) Ufw € Bugol wi < s/, i=1,...,n}
8 e 8t
if st = st

PROOF. N

1. (=): Let a requirement w € B;;.lko(sf, s) with >~ w; < su be given.
' i=1

The easy case in which w; < sf for i = 1,...,n, so that a permutation Sir

of st, sf and w satisfy (3), is only possible 1f sf =

irl, fort=1,...,n. In
consequence we have to add {w € By,x,| wi < szf, i=1,...,n} in the second

set-equality.

Now, let sl # s/ be a permutation of s' such that sir,sf and w satisfy
(3). The implication

w; 2> S,f = sl =w; (thus also st > Szf) (*1)

follows from (3) (case > w; < su).
i=1

Next we consider the iterative method from Section 2 in case ) w; < su:
i=1

Since s} = s7 —1 for s} = max{s! | s > w;}, components of different per-

mutations of s' (which, together with s/ and w, satisfy (3)), differ by at most

1. (Different components are only possible if j with s7 = max{s; | s > w;}
is not unique in the final iteration steps). In more detail, 55% can be differ-
ent if:

st 0 = min{s | slf > sho>w;i} (*2)
and if 77 exists so that

I > Lo+ 1> w;,. (*3)

Siy 2 Sml = Sﬂ'io

(Then Si"il could be reduced by 1 instead of si% + 1(= s}) in the final iter-
ation steps if the iterative method from Section 2 is used.)

Possible relationships between sﬁ% (in (*2)) and certain slf ,w;, sk can
be:

f sho= sirio > wj or (*4)

f>s :55%4‘1:“’1‘ or (*5)

f > b= w; > sﬁrio + 1. (*6)

12



With regard to Definition 3.1, we now use sirio (from (*2)) as Ufjo,

and the number of ig, for which (*2) is satisfied, as jo.

With the help of (*1), ..., (*5) we can show that (J,,j,) is a perturbation
of the relation ”<” between s/ and sir:

(al): Sir,- < crf,o+1(< Ufjo) can only be possible if (*1) is valid,
from which siri > szf follows,

(a2) and (a3): sb = af,o is only valid if (*2) and (*4) are valid,
then (a3) follows from (*2) and (a2) from (*4).

So, &L with

. st +1 if (*2) is satified for i = o,
S, =
™ slm. otherwise

is a (Jy, jo)-perturbed permutation of sir with respect to sf.

With regard to Definition 3.2, we set  j; equal to the number of is’s
for which (*5) is satisfied. Thus, 8L € S£'(J,, jo, 41).

™

Finally, we show that w is an element of B;kzlko (sf,38L) (see Definition
3.3):
(al3): mainly follows from (*4) and (*1) with siri = slf <s

l
777,'0 ?

(al4): mainly follows from (*2), (*3) and (*5)
(considering the previous determination of '),

(alb): mainly follows from (*1) and (*6).

2. («): Let w € B:‘L}ko(sf, gy, 5 e Sﬁ:’l(l]o,jo,jl).
If w; < slf for i = 1,...,n, then s*(sf,w) = s/ (= s') follows immediately.

Now, let 7 exist with w; > szf.
n
We will show that the iterative method from Section 2 (case > w; < su),

i=1
initially leads to &L and further to a sl (as in (16)). This means that
s* (s, w) = s.

At first, we note that

ST wi-sh= Y (5] -sb) (*7)

i:s{<wi z’:séri<s{
is a necessary condition for s*(sf,w)(= s.) = s!. According to the

13



iterative method from Section 2, differences between s{ and w;, in the cases
f to certain sﬁrj

is a permutation of s = s*(sf, w)).

that slf < wy, are used in order to reduce s in the cases that

sj-c > w; (where sh

We prove that (*7) is valid:

szf < w; is only possible in the case (al5) of Definition 3.3 where w; = §

Thus,

l

"

S wi-sh= 3 @ —sh) (*8)

follows.

n n
According to (ad) (together with (a3)), and since > s{ =3 sk = su,

7
=1 i=1

ook =sh= Y (sl =)+ (*9)

iof <3l i 5l f
1:8; <sﬂ.i vSn, <s;

is valid and

STl -8y tde= > (s] - sh) (*10)

i:éﬁ,i<s{ i:sﬁri<szf

follows for sk as in (16).

So, (*8), (*9) and (*10) imply (*7).

Lastly, the consideration of the following cases show that the iterative
n

method from Section 2, case Y w; < su, initially leads to &, (from this
i=1

theorem) and then to a s\ (as in (16)):

e Case slf < w;:

According to the iterative method (and also according to (3)) it follows
in this case that w; = §£T1(: st.), which corresponds to (al5).

e Case szf = w;:
In this case the iterative method leads to s; = sﬁri, which corresponds

to the relevant cases of Definition 3.3 (s{ = st =3L).

l

: l l
o ifo, +1=0¢
e Case szf > w; > { Jo—1 Jo Jo—1> .
o

if Ufjo +1< ‘75]0—1
) which corresponds to (al7) (partial case
f

%

l

i
of (alb)). Because the values s
method.

l

This means st = w;(= 8,

are reduced to w; using the iterative

14



l : 1 l
o ifo;, +1=0¢
e Case szf > w; and w; < { o=t Jo Jo—1 < gf.

oy ifof,o—|—1<alJo_1 -
!

Initially, s; are reduced to UZJD + 1 using the iterative method, which

corresponds to §£rl from (al4). So jo units remain, which can be used to
further reduce the jy parts of the value 050 +1by 1 (ifw; < afjo) (which

then corresponds to 8. from Definition 3.3, (al3) with szf = O'ZJO).

e _
ifo;, +1=0; 4,

!
o
. Caseszf>wz andwi<8{<{ gio_l ifaf] +1<Uf] 1

In this case the iterative method can not reduce components s{ (see

also (*7), (*8), (*9) and (*10)). So we have st = slf(: 8L) as also in
(al3).

Theorem 3.6
Let 3b € SPand 842 € ST be given with b +# 542, (*1)

Then, BiL, (s7,83") N Bl (7,8 = 2.

n;ko
(Furthermore, in the case s/ = s' we have
B;}ko(sf,éﬁr) N {w € Byl wi <55, i=1,...,n} =2.)

PROOF. Let w' be an element of the set B:,lk,o (sf, 5591), w? an element
of B;;;lko(sf ,§%%) and §£rllo # §£r?o according to (*1). In order to show that
w! # w? we have to consider 3 cases.

Case 1: éirllo > slfo

From Definition 3.3 it follows that

1 . .
wi = Sir’,-o (in particular, see (al5) and (al0)),
A2 .o al2
) = 87, if 87, > 8{0,
Tig

A2 e al2
<&z, if sz, < s/

<s;,
1 2
Thus, wzr, #wy, .

Case 2:
1,2
> 87,

o o

f gll ! l *
s > 8, and 0y > 07 (*2)

The relationship §£Tzlo < af,l is not possible according to (*2), Defini-

tion 3.3 and in particular (al0), Lemma 3.1
1

io

. . . N/
Hence, it remains to consider the case 57
1

Ur

> oy + 1. For requirements
wh € B;;.lko(sf, sh1) we have wl < §£r110 and with regard to (*2) we get
G2 > 8kl 2o +12) o+ 1.

15



Thus, w2, = slTr2 is valid according to Definition 3.3 (see (al5) together
with (al?)) ‘and so wk . F wmo

Case 3:
A2 Al
szfo > 57, > 87, and ofjl < Uf]g (*3)
In this case there exists i; with si > 55,31 = §£r}1 —1= Ufﬂ (*4)
according to (a3) and (a4).
Regarding 5% and i1 either
2 > ol (*52)
or
O'J2 > 8531 > sf (see also (al)) (*5b)
is valid.

Relations (*4),(*5a) and ofﬂ < UIJQ lead to

siri > aﬂ > o = §£rz11 —-1= irlll (*6a)
and (*4) and (*5b) respectively to

55}2.21 > slfl > Sml —-1= 55}2.11 = af]g. (*6b)
Because of (*6a) and (*6b) it follows that

sw, > say, = ol (*7)

(where i, = i1 is possible).

. 12 . : 1,1
Since s7” is a permutation of s;

there exists i (12 # i1) with 85%1-2 sirlll( ohy <ohy —1). (*8)
Furthermore, sf < st 55,122 is valid (see also (al)). (*9)

If gh! >87r (>s ) then w;, —st >§£32 > w?

follows accordmg to Deﬁnltlon 3.3 and Lemma 3. 3 Thus
wi12 # wl-22. (*10)

In addition, if &% 12 < 3532 (= sﬁri = sirll ) (see also (*8) and (*9)),

we can conclude agam 1n a similar way for the two possible subcases:

1 1,2 . 1,2 . 1,1
; st and s < st, with s7;” as a permutatlon of s

7T,L'2

There exists i3 (i3 # 12 A i3 # i1) with sl’ Sm (< a , < 0 —1) and

71'12

SO omn. Smce the numbers of parts of s7r and s,r are ﬁnlte, we can conclude
that w; # w? for a certain m analogous to (*10).

(Finally, the Definition 3.3 of B;:lko( ,8L) and Lemma 3.3 dlrectly yields
B;kl;lko(sfﬁﬁ,) N {w € Bugo| wi <84, i =1,...,n} = @ if s/ =sl) [ |
We now compute the probability of requirements w € BZ; ko (sf ,s!) in the
n
case Y w; < su using Definition 3.3, Theorem 3.5 and Theorem 3.6:

=1

16



Pi= X > qw)
sheSPt weBgl (sfsh)
(17)
+ o1 * > q(w).
WE{WE By iy | wi<s!,i=1,..,n}

In the case of discrete uniformly distributed requirements, Definition
3.3 yields:

Xooaw) = g | I Gt
wEBZ;lkO (sf,5L) Zéi‘z :SZSUGD
l ot (Jo I (1 o1 jo+j1> l 0)]
oty +2)0tin (4 ol 4+ 1)1 ... : ol +1
(( Wt 2 <31+1>( 5+ <Jo+]1 (@5, +1)
n
and dp; * > q(w) = bp * (ko—ll—l)" [ (s{—i—l)_

=1

wWE{WEBy iy | wi<s{, i=1,...,n}

(18)

n
It remains to consider the case > w; > su (the requirements cannot
i=1
be completely fulfilled):

n
The considerations are analogous to the case > w; < su. Therefore, we
i=1
only present definitions, lemmas and theorems in this part of the section
but no corresponding proofs, which would be very similar to the proofs in

the other case.

Given a partition s/ € Shisusko and a permutation sﬁr of a partition
st e Shisuzkes» We then compare the components of s/ with the components
of st in order of decreasing st.. More formally we state:

Definition 3.4 Let J, € {1,2,...,y} and jo € {1,2,...,L; — Lj _4}.

(i) If

slf > siri for any slm. > Ufj 0 (b1)
slf > siri for Ly —Lj | — jo elements of the

set {sﬁrl, e ,sﬁr”|siri = O'ljo} (b2)
and szf < sﬁri for jo, elements of the set

{shee b lst, = ob ), (b3)

17



we then refer to a (Jo, jo)-perturbation of the relation ”>” be-
tween sf and s!.

(ii) &L with

sﬁri —1 for szf < sﬁri = afj (b4)
g = (see (b3) from Definition 3.4),
sirl_ otherwise (b5)

is called a (Jo,jo)-perturbed permutation of the (J,,jo)-perturbed

partition §! with respect to sf.

(113) §fr’1(jo,jo) is the set of all (jo,jo)_—perturbed permutations 8- of per-
mutations s of s', for which a (J,, jo)-perturbation of the relation ">
between s and s' is present.

(iv) Sit — U é{’l(jo,jo) is the set of perturbed permutations in case of

(jDJO)
the scarcity-situation.

n _ ~ _ _
Thus, Y 84 = su — jo follows for & € SL'(J,, jo).
=1

)

Definition 3.5 §7fr’1(jo,jo,jl) denotes the subset of g’fi’l(jo,jo), where
j1+ jo 1is the number of i’s with:
s] <d =0l —1 (b6)
for all elements 8L of this subset.

(Obviously, j1 € {0,1,-+- , Ly ., — Lz} if o, —1=0%  and

J Jo+1
J1=0 if oy —1>0% ) (b7)
Lemma 3.7 Given a set §¥:’l(jo,50,31) and let §' € Z™
3= for je{1,2,--- L —jo} or
with je{Lly +1,--,n} (b8)
sh=sh—1=0" —1) for je{Lly —Jo+1,--- L} (09)

Then § € 7™ is an element of the set g'ﬁﬁ’l(jo,jo,jl) if and only if § fulfils
the following conditions regarding s’ and §':

5Clearly, if J, = 1 this case does not exist.
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(i) § is a permutation of &,

(ii) s] > 8L, if 3 >0%, (b10)
(7i1) 8{>§¢ for Ly .y — Lj — j1 elements of the set
81,00y daldi = of — 1}
ifoly —1=0b ., (b11)
(iv) slf <5 for jo + j1 elements of the set
{31 ,§ny§i:aljo—1}. (b12)

Together Definitions 3.4, 3.5 and Lemma 3.7 obviously yield:

Lemma 3.8 . Let g*frcl(jj,ﬁ,jll) and é{l(jg,}g,j%) (with respect to s!) be
given and assuming J} # J2 or jt # 52 or ji # ji.

Then, SF'(JL,5%, 7 NS (J2,52,5%) = @ follows.

Definition 3.6 Let an element 5. from the set §,{’l(jo,jo,jl) be given.

Then the set of all w € By, which fulfil the properties:
(i) wi € {84 ,8% +1,... ko) if sl =3 >0l (b13)
(i) w; € {8, = afjo -

nates w; = J(l]— —1,
o

1, ‘§£rz +1,...,ko} and w with at most j1 coordi-

ifs] <sb =0l —1, (b14)

(i1i) w; = &k, otherwise (b15)

is denoted by 3;;2% (sf,38L).

Remark 3.3 Properties (b14) and (b13) show that the reduction of compo-

nents of value US— by 1 in order to determine (Jy, jo)-perturbed permutations

2 Ay e s ; ! ! ;
for Bn;k0 (sf, §t) is in fact not necessary in the case o5 = 1> 0% since

- J Jo+1’

the last inequality implies that j3 = 0 because of (b7). However, this method
leads to a clearer and more uniform representation of the Definitions 3.4,
3.5, 8.6 and so on, so that distinctions in certain cases for the representa-

tions are not necessary.

Lemma 3.9  Let an element 8. from a set §7]:’l(jo,jo,31) be given. In
addition, let w € B:L;zko(sf, gy,

Then, the case "otherwise” in Definition 3.6 is valid if

szf > 8k or (b16)
Al Ulj +1 z’faf]— —1= U(lf 1

S; < Sr; < O.Zf) ?;fO'lfO 1> o_lio (617)
Jo Jo Jo+1°
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Theorem 3.10 Let sf € Shisusko and st e Snisusko be given. Then we have:

B:fko( = U Bn ko( 8Ly if sf #£ st and
sl e §b

B3 (s = U B (s7,8) Ufw € By wi < sf, i =

s e SP
if st =&t

Theorem 3.11
A1 - Gfil A2 — ofl . oAl Al,2
Let 851 € SPU and 842 € ST be given with 54 # 542,

Then, B2, (s “”)ﬂB* (s 8 =,

(Furthermore in the case s/ = s we have
B*2k0(sf 52) ﬂ{wEBnko\wl>sf, i=1,.,n}=2.)

According to Definition 3.6, Theorem 3.10 and Theorem 3.11

P = 2 > q(w)

sLeSh weB3 (s7.5h)

+ dp * > q(w)

wWE{WE B,k | wl_s{, i=1,...,n}

follows.

In the case of discrete uniformly distributed requirements, Definition 3.6

yields:
> (W) = o3 [T (ko+1-5)
wGBZ?kO (s%,8L) i5§£ri:5{20ljo
Jo+7i J +31 Jo— 30+51
ko — ot 4 2)otii — (o ko — ol 4+ 1)fomt o (LTI (gl
<(0 75 T2 <]1+1>(0 o5+ Got 1) Ko =0
n
and 0f * > q(w) = dp * (ko-il-l)” IT(ko+1-s;)
we{wEBy, k0|wz>sf i=1,...,n} i=1
(20)

Theorem 3.12  Elements p}l of ReH-matrices can be calculated by:
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1,2
Ph =05 P -y

where p}} is computed as in (17), p}% asin (19) cmdp;i}’2 = > q(sh).

s permutations of s "
In particular, in the case of discrete uniformly distributed requirements
(18) and (20) can be used to compute elements p},.

In addition, we would like to note the following. (20) (together with (18)
and Theorems 3.6, 3.10) implies that the numbers of elements in the sets
B:L’ko(sf ,s') are polynomials in kg as well as elements p}; of the correspond-
ing ReH-matrices multiplied by (kg + 1)™ in the case of discrete uniformly
distributed requirements. It is more difficult to show that the numbers of el-
ements in the sets B (s, s!) are either polynomials or sums of exponential
functions and polynomials in n as well as elements p}l of the correspond-
ing ReH-matrices multiplied by (kg + 1)™ in the case of discrete uniformly

distributed requirements. As you can see in [10], Theorem 4.5.1.

4 Limits of ReH-matrices

If we want to determine limits of elements from ReH-matrices, there are two
approaches:

a) Let s/ and s' be partitions of a given su. Then we could consider
lim p*(s'(n)|sf(n)) for arbitrary but fixed kg > max {sf sl-}, where
n—oo 3

1771

s/ (n), s'(n) € Sy.suky and all positive components of s/ (n) (s!(n))
are equal to the positive components of s/ (s!).
(21)
If n > su, then all Sp.guk, (n = su,su+1,---) have the same number
of elements and the corresponding ReH-matrices all have the same
numbers of rows and columns. Sets Sy.guk, With n > su are called
sets of sparse partitions.

b) If s € Spsusky With ky = max {s;}, then let
(2

5 = (ko,- - ,ko)T — s for a given ko > k. (22)

(Hence, 5 is a partition of su = n ko — su.)

Now, let n, su, s/ € Sn;sﬂ;k(/)f, 5 e Sn;sﬂ;kg be given and let

Sf(ko) = (k[), e ,k?[))T - gf, Sl(k‘o) = (k‘o, <o ,k‘o)T — §l, where

ko > max {k:gf, k:(’)l} Then we could consider klim p* (st (ko)|s’ (ko).
0—00
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If ko > su then all Sp.guk, With su = n kg — su (kg = su,su +
1,---) have the same number of elements and the corresponding ReH-
matrices all have the same numbers of rows and columns. Sets Sy, gk,

with kg > su are called sets of heavy partitions.

In more detail,

— Sets Spsusky With kg > su and n > su are called sets of
non-truncated heavy partitions,

— Sets Sp.susky With kg > su and n < su are called sets of
truncated heavy partitions.

Please note that limits with only su — oo are not possible since su is
limited by nkg, see Section 1.1.

Now, let us consider the two cases in more detail. a) Let n = |{i | s; > 1}|
for given s € Sy.qu:k, Where n(i) su. Furthermore, let s/ and s' be partitions

of given su with (w.l.o.g.) s{ > sg >0 > sj;f and sll > sl2 > 0> Siﬂ'

Then s' is called a monotone successor of s if ny > m and szf > sé for
i=1,--,m(ns). If s/ (n), s'(n) are given as in (21) then,

lim_p*(s'(n)]s’ (n)) =

n—od

0 if st is not a monotone successor of s/,
(90(0) o)™ ™ > TI  aolsk) TT  (ao(s]) +---+ qo(ko)
Sh€S) iis] sl >2 irs]=sl._>2

l[ Sl iS a lIlOHO(Olle SucCCesSsor OI Sf
Where 5717 — {Sﬂ S Z f ‘ St iS a [)ermula‘ion Of

(sh,8h,--- ,sfn,O,--- ,O)TEZZfWithS{ZSm fore=1,--- ,nf}.

(See [8], [11] or[10], Section 4.4.2)

b) This case requires additional properties of the probability functions
q. Let ¢* denote probability functions corresponding to Bk, (where n is
fixed). Then we assume that

klim qgo(ko —w;) =0 forw; =0,1,... and (23)
0—00
. . @O (ko—) _
I e(ko) (with 1 > ¢(ko) > 0) : Eikhm Gy #0 for w;=0,1,....
0—00

(24)

ko .
(The limits klim ‘Ico(k(())) are unique. But they can differ by a constant multi-
0—00

ple in relation to c¢(ko).)

5A more detailed classification of sets of restricted partitions can be found in [6].
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Definition 4.1 Let s/ € Snisusko b€ a heavy partition.

Then s' € Shnisuko 15 called an essential partition respecting st if st=sf or

if s' # s and a permutation st of s exists such that sfo < sﬁ% for exactly

st if i = jo
15 also called essential.

one jo and s = s*(s,w), where w; = {

l

Such a corresponding permutation s

If
B;}&(sf, sb) = B}L’ko N B (sf,sL) and

By (sT,sh) = By, N BT (57, 7) (see(7))

n,ko

(25)
then Definition 4.1 and (8) yield the following lemma.

Lemma 4.1 Let Sk, be a set of heavy partitions. Furthermore, let sh
be an essential permutation respecting s € Shisusko With 8;0 < sirjo. Then,

l . . B
i of Yy 1 = if = o
B (s, sh) {weBn;kO!wz{ € {0,1,-- 5L} if i#jo(i€{1,2,---,n}) [

Theorem 4.2 (Limits of ReH-matrices with regard to sets of heavy parti-
tions) Let Sp.su:k, be sets of heavy partition where su is represented by
su = nky — su, s € Spieusky by s = (Ko, - ko) — 5 with fized n(> 2) and
su(> 2). Finally, let given probability functions ¢~ fulfill (23) and (24)
a5° (ko —15)

for certain c(ko) and let q8(w;) := k:glinoo ko)

Then, lim 1 (p*(sl(ko)|8f(ko)) — 5(81(190)7 Sf(k()))) =

ko—o0 c(ko)

(0 if st (ko) is not an essential partition respecting sf (ko), 7

S Y @G Do)+ X L) ifsf (ko) = sl(ho)
isl>1 8 st (ko)€eS

> qg(Eij ) if st(ko) is an essential partition respecting s¥ (ko)
st (o)€SL 0
\ and s (ko) £ s/ (ko)

1 if s (ko) = (ko)
0 if sf (ko) # ' (ko)

SL is the mazimal set of essential permutations sk(ko) such that the
following conditions are valid for all pairs sla (ko)(# s/ (ko)) € S, sk (ko) (#

where §(s'(ko), s7 (ko)) = { and

"Clearly, s'(ko) is a essential partition respecting s' (ko) for all ko = su + 1, su+2,- - -
or for no ko.
8This is a finite number of i since su is fixed.
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sT(ko)) € St: joa # Jobs (where s/ (ko)jo, < sk (ko)jo, and s'(ko)jy, <
s (ko) joy) 07 8k (ko) jou 7 5% (k0)joy of Joa = Job- °

Proof:
Let us denote

PERS )= Y )= ¥ oW S ),
weBy (sf(ko),st (ko)) weB*! weB*2
where the following abbreviations B*! = B;lko (s (ko), s' (ko)) and
B*? = B:fko(sf(kg), st(ko)) are used.
At first, we consider w € B*? : The scarcity-situation implies (see (3)) that
a permutation sk (ko) of s'(kg) exists with w > sl (ko).
Hence, B*?> C {w € By, | wi > ko — su for i = 1,--- ,n}, which can be
used to conclude the following:

Z "o (w) < [qlgo(ko — 5u) + qi° (ko — Su+ 1) 4 - 4 gi° (k‘o)] . (%1
weB*2

Furthermore,

50 (ko —su ~o _ n—l
< lim [qoifkoo)) ot q%(,ilsg))] [qgo(ko —su)+---+ qlgo(ko)]

(*2)
since the limit of the first factor (a finite sum) exists according to (24) and
the limit of the second factor (a power of a finite sum) is equal to 0 according
to (23). Thus, it remains to consider

lim —L (st (kM sf (ko)) = 1 1 ko (w).
01—r>noo C(ko)p (S( 0)‘8 ( O)) kolinoo c(ko) wEZB*lq (w)

k
Case 1: Let s'(kg) not be an essential partition respecting s/ (ko).
If BT (57 (ko), sk (ko)) # 0 then BEIT (sf(ko), sk (ko)) =
l .
= st (ko);, for i, € I, n
n . i a f— .. ; <
{w € Z+wz{ c {0’1’”. ,Sgr(ko)z‘b} for iy € I, ULy ={1,2, ,n},i;wz < su

where |I,| > 2 (for any permutation sk (kq) of s'(kg)) according to Lemma
4.1 and (8). Thus,

G Y )
0 wEB:‘L},’CTO (s (ko),sk (ko))

9A corresponding statement, but only regarding sets of non-truncated heavy partitions,
can be found in [8], [11] or[10], Section 4.4.3. In this case, the term ”s' is a restricted
monotone successor of s/ is equivalent to s’ is essential respecting sf7. Unfortunately,
the statement in the references above includes a representation, which is not fully correct.
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. ko st (ko)s
= Jim G T ko) 11 [a00) + gl (1) + -+ P (5L (ko))
1a€lq ial ibe b

s I ako—sk,) T1 [ab?(0) +a? (1) + -+ af (sh(Ko)s,)|
iaela\ial wElp

according to (24), (23) and since qgo (0) + qgo(l) + -+ qgo(sﬁr(kg)ib) <1.
lim ﬁ S ko (w)

ko—oo we B*1
< lim ) > > ¢"(w) =0
0—00 sgr(ko);B;},go(sf(ko),sg,(ko));é(z) weB;}gO(sf(ko),slﬂ(ko))

follows.

Case 2a: Let s'(kg) be an essential partition respecting s/ (ko)

and sf (ko) # s'(ko).

We partition B*! = B*1¢ U B*! with

B*' = {w € B*'| all permutations sk (ko) of s'(kg) satisfying (3)

are not essential},
B*'* = {w € B*! | permutation s’ (kq) of s!(ko) satisfying (3)
exists which is essential}.
Analogously to Case 1, it follows, that lim C(Tl) S gro(w) = 0.
ko—oo V0 B4

Now, let s (kg) be an essential permutation respecting s/ (ko) € Sy.su:ko

with Sf(k())jo < Sir(k‘())jo and A = S;.(ko)jo — Sf(k())jo = gf — §;.jo. Then,

Jo
. kg Sl ko) s
lim %(0)0)30) I1 [qgo (0) + g5 (1) + -+ + gp” (max { s} (ko)i — A, 0})}
0—00 i€{1,2,-- mM\{jo}
< lim —i~ > ¢" (w)

c(ko)
ko—o0 weB*lan::rkO (sf(ko)’sgr (ko))

. qgo(sir(kO)jo) ko ko ko ( ol )

< lim k) II ') (0) + qp () +---+ qy (57(ko)i) |-
ko—o0 i€{1,2,~ P\ {jo}
Hence,
k
lim W I [1—q§0(k0—min{§;i +A,k0}+1)—---—q(’§0(ko)}

ko—o0 Y ie{1,2, P\ o)
< lim —% > q~o (w)

— c(ko)
ko—o0 weB*lanZTkO(sf(ko)’sér(ko))

ko (ol )
< lim 40 (i?lgk)o)m) H [1 _ q/go(ko _ glm 4 1) . — qgo(ko)]
ko—o0 Y12, o}
The limit of the product is equal to 1, since finite sums are subtracted
from 1 in the factors (see also (23)). Then,

1 g (sk(Ro)jo) _ o
lim > o(w) = tim D" Cxodio) _ ot
b0 0] ety o i) oo elko) 0
&
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follows according to (24). Finally, lim C(Tl) o) = Y ¢§(5L)
ko—o0 0 weB*1b sir(ko)eSlé 70

is right by reason of the following facts. On the one hand, we have

B0 B (57 (o)l (ko)) 1 (B0 BT (57 (ko). sl (o)) = 0 for

sla(kg) € SL, sl(ko) € SL. On the other hand, if sle(ko)jo, = s2(ko)jy,

and jo, = jop then the equivalence

w € BN B (sf(kzo) sla(ky)) & w e B*Pn B ( ko), s (ko)) is

valid, except for certaln w with a finite number of w; Wlth sla (ko) < w; <

lb(ko) or sla(kg); > w; > sl (ko);, respectively.

Case 2b: Let s/ (ko) = s' (ko).

Similar considerations as in Case 2a lead to

Jim ks > S dow)
00 ) (ko): essential perm. resp. sf (ko). weB*“r (s (ko),sZ (ko))
L (k)8 (ko)

= Y &G
JESS

S (ko)es!
(*4)
If sf(ko) = s/ (ko) then we have
BT (s (ko). o7 (ko)) = {w € Bl | w; < s/ (ko)iyi = 1,2, ,n}. Hence,

lim —t > q"o(w) — 1

ko—oo <(ko) weBIT (sF (ko),s7 (ko))

C i D R0 (0) 4 gk (1) + - - + g™ (s (ko)i = ko — 57)) —
k 1m (ko) ]__[ (QO ( )+QO ( )+ +q0 (S O)Z 0 SZ )
0—00 ie{1,2, n}

= lim i | IT (1= (ko — 5] +1) = = g° (ko)) — 1
ko—o00 i:s] >1
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= lim s (= 5 (g (ko — 5] + 1)+ + qf° (ko)

ko—o0 sl >1
(ko — 5 + 1)+ + ¢ (ko)) (g (ko — 5L + 1)+ -+ gfo(k
+ Z# (g0° (Ko s, t+ )+ +qp° (ko)) (g0 (Ko Si, T )+ +q5° (ko))
- > [T (a6 (ko — 5 + 1)+ + g5 (ko))

i1,i9,i3:41 Fia#i3741, j€{1,2,3}
s >1,50 >150 >
i ig= 7

e ()T T (o — 5 4 1) -+ @ (ko))

i3] >1
= dim i (= 2 @7k — 5 + 1)+ 4 (ko) (using (23) and (24))
i3] >1
=— ¥ (@G -1+ +gd0)).
i 5,{21 10

(The limits of the products are equal to 0, since the factors are finite sums
and using (23) and (24).)

Together with (*4) this proves Case 2b and therefore also the theorem. M
10

Remark 4.1 Take the same assumption as in Theorem 4.2.
(i) In addition, let n > su. Then,

lim o (0" (51 (ko)s” (o) — (s (ko). 57 (ko))

ko—o0
—— > (@G 1)+ +43(0)  if 5T (ko) = st(ko).
1:57 >2

(26)

(ii) If n = su then (26) is valid for s/ (ko) # (ko — 1,--- ko — 1)T and
s/ (ko) # (Ko, ko =1, ko — 1, ko = 2)T.

(iii) For y € Z we define the vector y[ii;iz] by

yi +1 fOT’i =11,
yi[z'l; ig] = Yi — 1 fOTi = ig, (27)
Ui otherwise.

Let the partitions of the sets Sp.suk, = {8 (ko),- -+ ,s"(ko)} be num-
bered according to (partial) dominance (or in other words majoriza-
tion) ordering. That implies

sl e Shnisusko 5 a direct predecessor of st e Snisusko 4 and only if

10An example can be found in Appendix B.
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Fiq,io: (sﬁ1 > 522) A (st = sT[ig;i1]) (where s > s§ > > s}

fory=1,2).11

Ifn > su then the matrix klim %(P*(kig)—f) is a triangular matriz.
0—00
These statements can be proved directly. Alternatively, (i) and (iii) fol-
lows from results for non-truncated heavy partitions.
Please note that (i) means > qg(gﬁrj )= > ¢3(0).
sk (ko) €SL s

5 Poisson equations and the monotonicity of their
solutions

In the following we introduce Poisson (vector) equations, where correspond-
ing matrices are ReH-matrices minus identity matrices. Based on the par-
titions, which characterize the rows of a ReH-matrix, we will compute the
right-hand-sides of the equations. Poisson equations are important in con-
nection with application problems (see Appendix C). If the solutions of our
Poisson equations are ”monotone” then transitions into feasible balanced
partitions are optimal decisions for the operations research problem (see [8],
[11] or [10], Section 4.6.). We conjecture that the solutions of all Poisson
equations with ReH-matrices are monotone. It is easy to prove the con-
jecture for a small number of Poisson equations where the corresponding
ReH-matrices satisfy the conditions of dominance (see Appendix D) and
the right-hand-sides of the equations are monotone. However, ”most” ReH-
matrices do not fulfil these conditions. In this case it is very difficult to show
the monotonicity of the solutions. > Never the less, we can use limits von
ReH-matrices in order to show the monotonicity for certain subsets of Pois-
son equations. Results regarding sets of sparse partitions or non-truncated
heavy partitions are stated in the following. It is possible to expand these
results to certain subsets of truncated heavy partitions.

At first we introduce vectors «: Let a set of restricted partitions

Spisuko = {81, 8%,--+ ,s"} and a probability function ¢ be given. Then,
n 52’
"= 221 ZO(Sé - w’t) QO(wi)v [ = 1> ceey T (28)
i=1w;=
Y= (’Yl?' o 77’/‘)T

"This is equivalent to permutations sf of s¥ and sk of s' exist such that
32 Ish, —sh, | =1and 3(s])* > > (s)* (See [12], Marshall, A.-W. and Olkin,

2 K3 2
I.,Chapter 1. A., B. and Chapter 5. D. and see also [6].)
12Methods as mathematical induction, estimations of the solutions or the use of certain
properties (see [10], Lemma 4.6.4 for instance) are so fare not successful to prove the
conjecture.
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n

(v=13% k01+1 >~ (s5)24R(n; su; ko) follows in the case of discrete uniformly
i=1

distributed requirements, where R(n, su, ko) is independent of s'. (See [7],
3.3.1, Lemma 3.12 and Remark b).)

Definition 5.1 Let a set of restricted partitions Sp.suk, = {s*,s%, -+ ,s"}
and a probability function q be given. Further on let P* be the corresponding
ReH-matriz and v as in (28). The vector equations

g(=1,.., - )T+ (P —T)v=—
(with variables (g,v) € R x R" and where I is the identity matriz and v any
affine transformation of v with v' = a v+ B(1,...,1)T, a > 0) are called
Poisson equations.

Such a equation does have solutions. We have any choice for one ;. Then
the values of the remaining variables are unique (for instance, see the proof
of Theorem 2.4.8 in [13] and Lemma 2.3.2 in [10]).

Definition 5.2 Let a set of restricted partitions Sp.suk, = {s*, 8%, -+ ,s"}
and a probability function q be given. The solution of a corresponding Pois-
son equation is called monotone in v (in relation to the partial order, see
Remark 4.1, (iii)) if:

sh e Spisusk 18 a (direct) predecessor of s\ € Sp.suky = Vi > V.

We known from literature (see [8], [11] or [10], Section 4.6.) that Poisson
equations have monotone solutions for ReH-matrices, which are either based
on

a) sets Sp.su:k, With 2 or 3 partitions or on sets with 4 partitions for
discrete uniformly distributed requirements, respectively

b) m-totally ordered sets Sp.suk, = {s', 5%+, s"} (that means, only, s/
is a direct predecessor of /! for f =1,2,--- ,r —1)

(Corresponding ReH-matrices fulfil the dominance property, see Ap-
pendix D)

c) sets Sy.su:k, Of sparse partitions with sufficiently large n > su
(and where the sets of requirements have the same marginal probability
function ¢o for all n, where w;, (i = 1,---,n) are independent and
identically distributed and (2) is additionally assumed)

d) sets of non-truncated heavy partitions Sy sy=nk,—suk, With arbitrary
but fixed su, n(> su) and sufficiently large ko > su
(where the probability functions ¢* fulfil (23) and (24) for certain

c(ko)).
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c¢) and d) can be proved by means of equation systems which are related
to the Poisson equations, where limits of ReH-matrices are used. The corre-
sponding solutions are vectors which include generalized harmonic numbers
(in relation to the distribution of requirements):
c) v((1,1,---,1,0,0,--- ,0)7) := 0,v(s) =
1 1 2 1 2)+-+qo(si—1
Z.:S%2 (qo(g)oiq)o(l) T qo(g)OJ(rq)oJ(rlq)OJ(rq)o@) Tt gggogiggglgi"igg&ﬁl;) '

Sesn;su;km 87&(1717"' alaoaoa"' 70)T

d) V((k()?"' 7k070k0 - 1, ,%’0 — 10)T) = O’
4, (1) 0(1)+q0(2)
v(s) = i:§¢Z>2 (q8(0)0+q8(1) T q8(0)0+qg(1)0+qg(2) +
q8(1)+q8(2)+~-~+q8(§i—1))
20(0) a3 (D) +++43(5:—1)
M)
c(ko) )

+

(where 5 as in (22) and ¢J(5;) := lim
kg—o00
Now, we want to prove the monotonicity of the solutions of the Poisson
equations, which are based on sets of truncated heavy partitions Sy su—nko—su:ko
with n = su and sufficiently large ko(> su).
For this we use related equation systems which include limits of ReH-
matrices:

1
01, =)+ 1 Pko)—Dv=— 1l "2
g ( ’ ’ ) + kognoo C(ko) ( ( O) ) v k:ol—r>noo C(ko) fY ( 9)

(with ¢ = lim 55 9. 9 = g(ko)).

We will show that the solutions of these equations are qualitatively dif-
ferent from the expressions in d). Please note, that these approach cannot
be transferred to the remaining cases of sets of truncated heavy partitions
with n < su.

Firstly, we present an affine transformation of v(s), which straightly
depends only on § and the distribution of the requirements (but not on s):

V(s) = Zn: i (si — wi) qo(wi) = i 503 (si —w;) qo(wi)
i=1 w;=0 i=1 w;=0
ko
- X > (si—wi) qo(wi) +(su— > (ko—si)) qo(ko)
i:8;<ko—1 w;=s;+1 i:8;<kp—1

n ko ko—1

n ko
= ;sz' wzzoqo(wz’) - Zowi qo(wi) + X >, (wi —si) qo(wi)

=1 w; = i:8;<ko—1 w;=8;+1

+ Zk 71(790—81‘) go(ko)+ st go(ko) — Zk 4(’?0—8@') qo(ko)
—su- Y % wi qo(wi) + X2 kOZ_I (wi = si) qo(wi) + su qo(ko)

i=1 w;=0 i:8;<ko—1 w;=s8;+1
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ko—1 B
= > (wi —si) qo(w;) + R(n, su, ko, q), where

1:8;<kp—2 w;=s;+1

_ n ko
R(n, su,ko,q) = su— > > w; qo(w;)~+ su qo(ko) is independent of
=1 w;=0
s. We define
Y (s) =
ko—1 §;or (§;—1)
> > (wi—si)qw)= > > ($i—wi)qo(ko —wi),
i:5;<kop—2 w;=s;+1 1:8;>2 w;=1
87'é (]{70—1,'” ,ko—l)T
0, s=(kog—1,--- kg —1)T
(30)

where §; := kg — s;. Then

S; Or (S_i—l)

Jim T Y= X X (G- w) g(@),
AO(5) = { R 522 wi=1

S
0, 5
(31)

If we use 7%(5) from (31) in the equation system (29) and fixing
v(5") = 0, where s" = (kg — 1,--- , ko — 1)7, the following system remains

g(] (_L T _1)T + Til lim c(lio) (p*(sl<k0)‘sf(k0)) (32)

l:1 k0—>oo

— 5(sl(k0),sf(k0))) V(El) = —’yo(§f), f=1--,r—1.

Theorem 5.1 Let Sp.su—n(ko—1)iko» k0o = n+ 1,n+2,--- be certain sets
of truncated heavy partitions with fivzed n(> 2) . Furthermore, let By, be
the corresponding sets of requirements, where for any kg, the requirements
wi, (1 = 1,---,n) are independent and identically distributed and (2) is
fulfilled. In addition, let the corresponding given probability functions ¢~
fulfill (23) and (24) for certain c(ko). Finally, let P*(ko) be the corre-
n q9(0) g5(1) Ty ._

. . W7 V((la"',l))'_oa

3) — 2 (1) 90 (1)+49(2)
Vs = 2, (ot + g g +
)+q8(2)+~-~+q8(§z‘—1)) (1—(tg++)n) (0 (1) s#(1,---,1)7
)+ap(D+-+g5(5i—1) ) " (g5(0)+45(1)) (n g5 (0)+45(1)) ’ T

k _
(where 5 is as in (22), ¢§(5;) == ki{n@%,n =1{i|s >1}|

sponding ReH-matrices. Then, ¢° =

a1
+ a9(0

are solutions of the equation system (32).

Proof:
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We use the following notation in relation to partitions:
s(= s(ko)) = (ko,- -+ ko, ko —1,-++ ko — 1, ko — Sp—py1,- -+ ko — 5n)7
where 2 <5, forie{n—n+1,n—n+2,--- ,n},

n
> Sn—ht1 < su(=mn) and
h=1

n n
|{i|si=ko—1}| = su— hzl«?n—hH, [{i|si=ko}| = h21§n—h+1 — 1.
(*1)

Let Sl(ko) = (ko, -+ , ko, ko — SH)T,
s" 1 (ko) := (ko,ko—1,--+ ,ko—1,ko—2)" and s" (ko) := (ko—1,--- ,ko—1)".
Furthermore, we introduce

iz .— _a(1) a9 (1)+45(2) a0 +ag(2)+4ap (5i—1)
vi(5i) = q8(0)0+q8(1) + QS(O)(]+q8(1)0+<18(2) Tt q§(0)+q§(l)+~~-+q§(§i—1)
for §; > 2,
S; Or (871‘71)
70(3;) == ;1 (8; — ;) qQ(w;) for 3; > 2 (see (31))

7°(0) =~°(1) :=0.

Since v((1,---,1)T) =0, we have to prove the equation (see (32))

P+ Tim L (5751 o)l (o))

1=1 ko—o0
—d(s'(ko), 5(ko))) v(5') = —7°(5) (*2)
(where ¢° and v(-) as in Theorem 5.1) for any partitions s(kg). Please

note that klim ﬁp*(sl(koﬂs(ko)) =0 if s'(ky) is no essential partition
0—00

respecting s(ko) (see Theorem 4.2). Hence, we can replace the sum over
I =1,---,7r—11in (*2) by a sum over the essential partitions respecting

S(k‘o).
Case: s(kg) ¢ {sl(ko),sr_l(ko)asr(ko)}

From Definition 4.1 together with the iterative method from Section 2
and (*1) it follows that
8/(: S/(k‘o)) = (k‘o, oo koyko— 1,0 J ko — 1, kg — gn,n+1,k0 — §j,1,k20 —
85, ko — 841, ko — 5,)7 with 8, < 3; are essential respecting s(ko) and no
other essential partitions, different from s(kg) itself, exist. For s(kg) the
numbers of the components ko and ko — 1 are determined by (*1). If 59 > 2
then n' = 7, otherwise ' =n — 1.

If we additionally apply Remark 4.1 (ii) and recall the definition of Sé
in Theorem 4.2 then we can replace the left side of equation (*2) in the
following way
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§j—1
+ 2 { > a9(&) v((0,--- 0,1, 1, 80 p41, 551, 8, 85415 80) )

+ (g9(1) +q3(0)) v((0,-++ 0,1, , 1, 5p_p41,5j-1, 5541, 5n) ") }

5;—1 1 1 0
0 & o iy, O=(+3++Dm) qf(0) g(1)
= 2 (2 ) (2 V) G gy CHOEOD,
= - » ‘ (1=(1+3+-+1)n) gB(0) g (1)
O(g i(5 S i(g
+j-§JZ>2 {S/Z q0(5}) (MZQV (81) — 17 (85) +v*(8)) + (q8(0)+?18<1))(" PIORRIG )))
- i 1
0 0 if=. ooy (=0 g+t 2)n) 68(0) gf (1)
o)+ ao(0)) (2 vi(5) = 1(5) + o) w gorg) )
(reorganizations of the sum:)
5;—1 1 0
_ 0 S0 ooy A=(Hi+5m) 60 af(1)
-7 ]Z>2 (g,_Z:O 90(5) O+ (2 O D)
- J

51 (1=(1+3+-+2)n) ¢5(0) g§ (1)
0/ 5 90\Y) 99
+ 2 2 %) @moram) (R Rm)

(= btz B0) (1)
s @O)+401) (n 0+ (1)

i:§j22 53.:2

p> {]Z 40(55) (7 (55) = v (7)) + (g5 (1) + ¢5(0)) Vj(é‘j)}

~ n.43(0) g3(1) 0 0 77 9(0) g5(1)
naotragm T (@01 +9%(0) G o g g
= B ()+a(2)++a3(5))

_i:Esz2 {s/zqu( ) G (O)+q8(1)+"'+q8(§g)

0 (1)+45(2)+-+40 (57 +1) NN a9 (1) +ap(2)+ (18(8j—1))

45(0)+qQ (1)+++45 (5 +1) 45 (0)+qg (1)++4g (5;—1)

0 0 ag(1) N a0 (1)+44 (2)+--+4¢)(5;—1)

H@(1) + a(0)) (orils) + -+ + (BB rtte i) L

5 8(1)+4(2)++43(5;—1)
=0— 3 3 (@O0 +aM) + -+ - ) Fomameae
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g].,l

== X 2 G —wy) aws) =)
Ji5;22 wi=1

Case: s(ko) = s'(ko) = (ko, - , ko, ko — su)”

From Definition 4.1 together with the iterative method from Section 2
and (*1) it follows that
S/(: S/(kio)) = (k?(_), coe ko ko — 1, L ko — 1, ko — §{n>T with 1 < g,/n < su,
(ko—1,--- ,ko—1)T and (ko—1,--- ,ko—1,ko—2, ko)” are essential respecting
s(ko) and no other essential partitions, different from s(ko) itself, exist. The
numbers of the components kg and kg — 1 are determined by (*1).

If we additionally apply Remark 4.1 (ii) and recall to the definition of
SLin Theorem 4.2 then we can replace the left side of equation (*2) in the
following way

"~ (X 5~ 1) v(E)
s’u—;i

_ 0 0/t (e (1-n) g3(0) g§ (1)
=g = (2 a5, — 1)) ("(su) + (qg(0)+q8(1))0(n q8(00)+qg(1)))

—n 0 0
£ ) (0 + BB )

_ _ 0 (1—n) ¢5(0) gg(1) L 0(z £ 0/ 0
=9 T @) Gy 2o )+ 2 a0(Sn) +a0(0))
su—1
- _/2;2 a0 (87,) (V" (su) — v™(5,,)) — qg(0) (V™ (su) — v™(2)) — qf(1)v" (su)

_ _ nad(0) ()
n q3(0)+¢§(1)

(1—n) q2(0) q8(1) 0
+ @O+RM) (0 (—q0(1))



su—1

- 2,80 G
ol o e )
~ab(0) G+ + dsaico )
~ab0) Gl s D)
49(0) g9(1)
(0)+qo(1)
- ;2(%(0) (1) + o+ a5, — 1) PGBy
+ Aq%8(<00)>+qq88<(11>)
= 3 a0+ b~ 1) = = 5 ) ) = 73

Case: Let s(ko) = s" 1 (ko) = (ko, ko — 1,--- ko — 1,kg — 2)7

In this case, we only have lim ,1 (p*(s" 1 (ko)|s""L(ko)) — 1) # 0 and
ko—o00 c(ko)

klim C(Tlo)(p*(s’"(ko)\srfl(ko)) # 0 according to Theorem 4.2.
0—00

ko—1 ko—1 ko—1 ko—2
ko ko—1 ko—1 ko—1
ko—1 ko ko—1 ko—1
Sg—lz ko—l , k‘o—l AR , for
: : ko —1 ko —1
ko—1 ko—1 ko ko—1
ko — 2 ko — 2 ko —2 ko

s(ko) = s"! leads to

im0 (5 o)l (ko)) — 1)
= — ((n—2)gg(0) + gg(1) + g9 (0)) + ((n — 2)gg(0) + ¢9(0)).

Then, (*2) has the representation
¢ =) v(5 ") = (5" = —gf(1) for 5 =51,

If we insert the corresponding expressions for ¢° and v(5"~!) then the
equation
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_ngd(0)gd(1) o O (n—1) g3(0) g5 (1) _ 0
nd©+q0) — (1) <q8<of+qg<1> (qg(0)+qg(1))°<nng0)+qg<1)>) =—0(1)

is true.

Case: Let s(ko) = s"(ko) = (ko — 1,--- , ko — 1)T

In this case, we only have lim —+~ (p*(s"*(ko)|s"(ko))) # 0 and
ko—o00 c(ko)

klim C(io) (p*(s"(ko)|s" (ko) — 1) # 0 according to Theorem 4.2.
0—00

( ko ko—1 ko—1 ko — 1\ )
k‘o—l k‘o k’O_l kO_1
ko—1 ko—1 ko—1 ko—1
nglz ]{:0—1 , k‘o—l R , for
: : ko—1| |ko—1
ko—l ko—l kO kO_2
ko — 2 ko —2 ko —2 ko

s(ko) = s" leads to

lim —+~(p*(s" 1 (ko)|s"(ko))) = n ¢J(0). Then, (*2) has the represen-

ko—00 c(ko)
tation

—g° +nqJ0) (37 1) = —4°(5") = 0 for 5 = 5""! and

_ ng(0) gd(1) 0 @ (n—1) ¢5(0) g3(1) _
n q§(0)+qJ(1) +n.45(0) (qg(0)+q8(1) (a3(0)+43(1)) (n q8(0)+q8(1))) =0
is true. |

Corollary 5.2 Let the same assumptions as in Theorem 5.1 be valid. Fur-
thermore, let sf (ko) = (ko,--- ,ko)T — 57 be direct predecessors of s'(ky) =
(ko,--- ko) — 5, kg = n+ 1,n+2,--- (see Remark 4.1 (iii)). Then,
v(8") < v(51) is valid for all solutions of the equation system (32).

This statement results from simple computations using the formulas of
Theorem 5.1 for v(5/) and v(5') (see Appendix F).

Corollary 5.3 Let the same assumptions as in Theorem 5.1 be valid. Then,
the solutions of the Poisson equations (see Definition 5.1) with regard to sets
Snin(ko—1):kes @re monotone for sufficiently large ko.

Main idee of the Proof:
If (9,v) € R x R" is a solution of a Poisson equation (see Definition 5.1)
then (g = %, v) is a solution of a system

g(—1,.., _1)T + C(io)(P* - = _%7, (c(ko) # 0).
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The result of Corollary 5.3 follows then from Corollary 5.2 and the solu-

tion behavior of a sequence of linear vector equations for which the coefficient
matrices and the right-hand-sides each tend towards a limit (there it is im-
portant that the inequalities v/(5') < v(5f) are strict inequalities in Corollary
5.2).
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Appendices

A An example of a ReH-matrix and its computation using
perturbed permutations

a) Let n = 4,su = 13,ky = 5 and let the requirements be discrete
uniformly distributed. Then, |Bys| = 6% and S4:13:5 include the elements
5 5 5 5 5 5
0 1 0 1 2 2
4 4 4
7 |4 s |4 9 |3
T4l T 3T T |
1 2 3
1 2
l 1], 4
For example, let w't = N 2 4l Then, we have:
2 4
4 3
N orfed ol 8 8a) _ |3 @ _ |4
i) s*(s*,w') = s°, where sp ' = dlorse =1, fulfil (3),
2 2
2 2
Gy kol 8 8 _ |4 8y _ |4
i) s*(s*,w'?) = s°, where sy~ = g | o s 5 fulfil (3).
3 4
The ReH-matrix
180 46 81 258 83 198 39 213 198
16 280 24 196 206 174 64 258 78
21 39 245 144 90 163 163 242 189
12 48 28 428 84 177 72 240 207
Piias=06"%[12 48 28 72 441 201 24 383 87
12 48 28 72 114 543 24 230 225
12 48 28 192 78 156 316 274 192
12 48 28 60 114 252 36 530 216
12 48 28 60 114 252 36 158 588

can then be computed using the iterative method from Section 2.

b) Now, we want to determine an element of P55 (for example pj,),
with the help of perturbed permutations (see Section 3).

If f = 4,1 =9 then (10), .., (13) yield F = L = 4,

F1 == 1,F2 == 2,F3 :3,F4 :Fz :4;2 :4,
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L1:1,L2:Ly:4;y:2,

moreover, o} = sng =s)=4,0) = 39L2 = s = 3.
n

Case Y w; < su: Sets of perturbed permutations
i=1

(see Definitions 3.1, 3.2)

Tabular presentation of the quantities:

S Sfr(m §797(1) 579:(2) §?T<2> sfr<3> §‘;’r(3> 3?&'(4) §?r<4)
) 4 3 + 1 3 + 1 3 + 1
4 3 + 1 4 3 + 1 3 + 1
3 3 3 4 3
1 3 3 3 4
Jo 2 2 2 2
jo | 1 1 P p
J 1 1 0 0
J1 ) |
Hence, $29(2,1) = §49(2,1,1) = g (= 520 — gy L
3
4 4 4 4 4
&4,9 o a49 _ 41, 9 41, 9w &4,9 4 4 4
Sﬂ' (27 2) - Sﬂ' (27 27 0) - 4 (_ Sm )7 3 (_ Sn ) ’ Sﬂ' - 3 i 4 ’ 3
3 4 3 3 4
Computations of sets 32}5(34, 3‘2(')) (see Definition 3.3):
wi
352_15(34 52(1)) _ ) w|w= Z; with ws € {0,1,2,3} and w; € {0,1, ...,4}
’ 3

for j = 1,2 with at most one coordinate w; = 4,
and |BZ}5(54, 5| = (52 — 1)4 = 96,

Bik(s,5:7) = w |w= with w; € {0,1,2,3} for j = 1,2

and |BZ}5(54, §i()3)| =42 = 16,

Bii(sh 6 ={ w |w= with w; € {0,1,2,3} for j =1,2,3
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and |Bjk(s?, &) = 4% = 64.

n
Case ) wj > su: Sets of perturbed permutations
i=1
(see Definitions 3.4, 3.5)

Tabular presentation of the quantities:

5 S?ru) 32@) 879r<2> §?r(2) 579r<3> g?rw) 83(4) é?r(4)
5 4 3 3 3
4 3 4 3 3
3 3 3 4 - 1 3
1 3 - 1 3 - 1 3 4 - 1
Jo| 2 2 1 1
jo | 1 1 1 1
ji| O 0 1 1
4 3 )
4,9 4,9 3 Sy |4 @)
Hence, S*7(2,1) = §%7(2,1,0) = 5 (=52"), 3 (=527) 7,
2 2 )
3 4 3 3
54,9(17 1) — S4’9(1, 1, 1) — g (: §?r(3) — A9<4)) 754,9 _ 3 7 g ’ g
3 2 2 3

. A A9 o
Computation of sets BZ%(S ,4x") (see Definition 3.6):
%2 (4 29
B4’5(s JSr ) =4 w |w=

with w; € {3,4,5} for j = 3,4

A A9
Bt 5) = 8 = 0,

B (s%,5:7)| =232 = 18,

w | w=

- .9
Bt (st 57) = w3

)

3
B2(s% 6 = w [w=| " | withws e {4,5},w; € {3,4,5} for j = 3,4
) with w; € {3,4,5} for j = 3,4 and

with at most one coordinate w; = 4

Bi3(s%, 62) =32 —1=8.
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Finally, in the case of discrete uniformly distributed requirements, we
have

* * * *1,2
Pho = Pho+Di5 — Pao
= 67496 +16+64+9+18+8—4)

= 671.207
(see (17), (19), (15) and Lemma 3.4).

B An example for limits of elements in ReH-matrices

We want to consider the limit lim L (p*(s/(ko)|sf (ko)) — 1)) for

ko—00 c(ko)
ko—1
st (ko) = [ ko —2 |, where corresponding probability functions g are
ko—3
given and fulfil (23) and (24) for certain c(kp).
ko — 2 ko — 2 ko —2 ko —3
Then 8! = (ko—1|, [ ko—3] p (xS = [ko—1], | ko —2
ko — 3 ko —1 ko —3 ko —1
respectively).

lim C(io) (p*(sf(ko)\sf(kO)) - 1))

ko—o00

+40(1) + g5(1) = —34¢5(0) — g5(2)
follows according to Theorem 4.2.
C The origin of ReH-matrices

The theory of Stochastic Dynamic Distance Optimal Partitioning prob-
lems (SDDP) (see [5], [7], [10]) can be applied to cost-optimal repeated
conversions of machines in successive stages and also to the effective use of
manpower in different work places, where probability functions model future
requirements.

Optimal solutions of such problems can, for example, be determined by
iterativ methods which use Poisson equations: g (—1,--- ,—1)T+(P—1I)v =
—~ with variables (g,v) € R x R") and where I is the identity matrix, P a
matrix of transition probabilities, v average one-step reward functions (the
last two correspond to a chosen decision, in general). See, for example [13],
Section 2.4.2.1 or [14], Section 8.6.

Because such solution methods require an enormous amount of storage
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space, one is interested in heuristics and useful characteristic properties of
the solutions.

If all ”distance costs” for SDDP problems are equal (in other words, the
costs of converting machines/ all distance costs between two work places are
identical, we conjecture that transitions into ”balanced” partitions (”states”)
(see Section 1.1) are optimal. The corresponding matrices P are called ReH-
matrices. The conjecture is true if and only if all corresponding Poisson
equations have monotone solutions. (See introduction of Section 5.)

D The condition of dominance

Let P = (pﬂ) f=1,--~, be a stochastic matrix. Then the dominance con-

dition means yhat

L _
ZpllZZPQZZ"'ZZpTl forl:1,2,---,r,see[2].
= =1 =1

E An examples regarding Theorem 5.1

Let Sy;su=a(ko—1);ko

ko ko ko ko
E k k ko —1
— 1 __ 0 2 _ 0 3 _ 0 4 _ 0 5 _
YT ke )T T ko1 T ko207 T k1] T
ko —4 ko —3 ko —2 ko —2
ko =5,6,--- be given.
Using (31) we get the following equation system for (32)
3
-1 =X a0 @) 0 40(2) + 45(0)
=0 , 90
-1 0 - > a() 0 4(2) +45(0) | [ ¥
i=0 V2 [ =40
1 1 g
-1 0 0 =23 q0(i) 23 qp(d) v
i=0 i=0 A
-1 0 0 0 —g5(1)
-1 0 0 0 4¢3(0)
346(1) +240(2) + q5(3)
240(1) + 4f(2)
70 = 2¢)(1) which includes that v°(= v(3%)) = 0.
0 1)
qo(
0

_ 4400 q8(1)
T4 qo( )+ag(1)’
1 +o g8 (1)+45(2) 90(1)+40(2)+46(3) i (—=3) ¢5(0) g9 (1)

This system has the solution: ¢°

YT R0)+a30) T30 )+q0( )+a5(2) q8(0)+QS(1)+QS(2)+q8(3)

2 _ _ q() a6 ()+43(2) + (—3) ¢§(0) g3(1)
a3(0)+q3(1) qo(0)+qO(1) a(2) " (g0(0)+4§(1)) (4 ¢5(0)+45(1))

Y3 — g @ (=5) 43(0) g5 (1)

g0(0)+q0(1) " (g9(0)+qJ(1)) (4 q3(0)+4¢3(1))

14
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(=3) 45(0) gf(1) g6 (1)
(49(0)+4§(1)) (4 qf (0)+q M) ~ 4430)+¢J(10)

4 q()
V= goram T

F Proof of Corollary 5.2

Let
sl = (ko,-- ko, ko—1,--+ ,ko—1,ko—5,,_ nf+1ak0 Sn—nf 42" ko —5,)T
with 5,41 < En_anrQ < ... <5, and st = s7[j;4'] (with j* > i'). Then
the following cases must be considered (see Remark 4.1 (ii)):
f_ I _
a) sy = ko,sj, =ko—2
b) sl = ko, sl < ko — 2
c)sfj—k 1s,<k0—2
d) s <ko—1,8) < s, —1(<ko—3)
(=gt )n) ¢9(0) gf(—1)
M) = = (g0 o1y Lhen
nt <’ & tn') <tn?). (*1)
Obviously,
5l > 5 & Vi(s}) > v(5?), where 52 > 0 (*2)
and b bitb
0<by <by,0<b = L ATE *3
T T by Tty )

Case a): implies that s,—() sf/—2,s/—1 5,—1and77 =l —1.

Then v(5/) > v(3!) < Wﬁ%m —tn) > —t(nf - 1).
Case al): n/ =1:
O a9 (1) (n—1) ¢§(0) g§(1)
By >0 < BO+aD = GO+ EOFFD)
& @) g0) + () > (n— 1) 4(0) gd(1) is true.

a5 (1)
Case a2): n/ > 1: ﬁ t(n!) > —t(n! —1)

L0 = g3(0) (1)
< T @O BO) >0
& q(1)(n gg(0) +¢o(1)) > o % g9(0) ¢J(1) is true.

Case b): 1mphesthatsf—0 sf,>2 s,—l s,—sf,—landn =,

Then v(3/) > v(3) & 17'(5 j,) > v’ (s]., — 1) is true according to (*2).
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Case ¢): implies that sf =1, sf, > 2,5 =2, s = sf/—l and ot =nf +1.
Then o01)

g/ gl 355 — t(n! __9\) 355 1) —¢(nf —

v(sl) > v(s )<:>I/(Sj/) 75(77)>(18(0)+ ()+V( L, —1)—t(n! —1) &
a9 (1)+4g(2)+- +q0( 3 -1 _ f a9 (1) . f_ . .
PO r—E t(n?) > B0+l t(n? — 1) is true according to
*

(*2) and (*3).

Case d): implies that 5{/ > 1,55, > §{, + 1752, — 5{/ + 1’59/ _ 5;‘/ 1 and
=l | | '/ ./
Then v(5/) > v(3") < v/ (5)) + 1/ (gjf/) S i (55’ 1)+ 0 (5;0, _1)
Q8(1)+q8(2)+.4.+q8(§;,—1) @ (1)+q2(2 +"'+q8(§lf/)
48 (0)+a§(1)+++4f (s],~1) 7 RO+l ()

is true according to (*3). W
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