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Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable

crops consumed throughout the world. The chemical composition of watermelon

provides both high nutritional value and various health benefits. The present manuscript

introduces a catalog of 1,679 small molecules occurring in the watermelon and their

cheminformatics analysis for diverse features. In this catalog, the phytochemicals are

associated with the literature describing their presence in the watermelon plant, and

when possible, concentration values in various plant parts (flesh, seeds, leaves, roots,

rind). Also cataloged are the chemical classes, molecular weight and formula, chemical

structure, and certain physical and chemical properties for each phytochemical. In our

view, knowing precisely what is in what we eat, as this catalog does for watermelon,

supports both the rationale for certain controlled feeding studies in the field of precision

nutrition, and plant breeding efforts for the development of new varieties with enhanced

concentrations of specific phytochemicals. Additionally, improved and comprehensive

collections of natural products accessible to the public will be especially useful to

researchers in nutrition, cheminformatics, bioinformatics, and drug development, among

other disciplines.

Keywords: food chemistry, natural products, natural compounds, watermelon, phytochemicals

INTRODUCTION

Food is a complex mixture of chemical compounds, often numbering well over a thousand
different compounds in any individual food item (1–3). That complexity expands when
considering processing (4), the food matrix (5, 6), or byproducts, such as those derived from
both human and microbial metabolism (7), as well as taints and off-flavors derived from
degradation and packaging (8). Nonetheless, any catalog of the metabolites of food compounds
coupled to research on their health effects ought to begin with knowledge of a chemical
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inventory of what is in the food, and in the forms in which it
will be consumed. Here, we focus primarily on watermelon fruit,
seed, and rind to provide a comprehensive, publicly accessible list
of phytochemicals in watermelon.

Natural product databases generally are at the small end
of the size spectrum of chemical databases when compared
with the vastly larger PubChem (∼110 million compounds)
(9) and collections of synthetic compounds numbering in
the billions (10). This necessitates a significant and genuine
need to build resources for natural products. Existing natural
product databases also suffer from missing links between the
chemical structures and the organisms that produce them
(3). These missing links often result from the standard
practice that only newly elucidated structures are reported in
scientific journals and then aggregated into public databases
(11). Well-known metabolites identified in a newly studied
organism or food are not reported. Hence, research programs in
nutrition, cheminformatics, and drug development, among other
disciplines, will benefit from natural product datasets that are
comprehensive in scope and of a design that easily merges with
other data.

Regarding human nutrition, knowledge of what is in a food is
the basis by which to characterize the health benefits of that food.
Those efforts support knowing what to eat to remain healthy (12)
and assist in defining the “dark matter” or chemical complexity
of nutrition (13, 14). In addition, comprehensive catalogs of the

biochemicals present in a crop can stimulate projects in plant
breeding and crop improvement, especially when coupled with
genome sequencing and other such data streams (15, 16). Thus,
to support and then fully implement projects in computational
nutrition and cheminformatics research on natural products,
and expand capabilities for dietary assessment, we sought to
build a comprehensive catalog of compounds naturally occurring
in watermelon.

Sweet dessert watermelon (Citrullus lanatus) is among
the most important vegetable crops grown and consumed
throughout the world, with global annual planting of more than
3 million hectares and production of over 100 million tons.
China leads the world in watermelon production with an annual
output of over 60 million tons. Other top watermelon producing
countries are Turkey, India, Brazil, Algeria, Iran, Russia,
United States, Egypt, Mexico, Kazakhstan, and Uzbekistan (with
an annual production of 3.9, 2.5, 2.3, 2.2, 1.9, 1.8, 1.7, 1.6, 1.3, 1.3,
and 1.2 million tons, respectively) (17).

Watermelon belongs to the xerophytic genus Citrullus, native
to Africa (18). It was domesticated in Africa over 4000 years ago,
while sweet dessert watermelons emerged in the Mediterranean
region over 2000 years ago (19). It was introduced to India
and China by the seventh and tenth centuries, respectively,
and to Europe via Moorish Spain in the tenth century. There,
watermelon has been cultivated successfully in the warmer
Mediterranean regions of the continent. Watermelons were
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brought to the Americas by European colonists and with the
slave trade from Africa during the sixteenth century (19). Today,
watermelon is grown in 44 states in the USA, while most
production is centered in Texas, Florida, Georgia, and California.
Overall, sweet dessert watermelon varieties share a narrow
genetic base, indicating a possible origin from a single founder
population (20, 21). Those origins, their environments and the
growth conditions of current production areas combined with
detailed metabolomics will offer insight into origins of favored
varieties as well as approaches to use levels of key compounds as
quantitative traits for crop improvement.

Watermelon fruits contain a wide range of bioactive
compounds, including glycosides, carotenoids, flavonoids,
alkaloids, carbohydrates, fatty acids, and essential oils (22).
Cucurbitacins, a rather broad family of bitter-tasting compounds
in watermelon (23, 24), have drawn interest for their anti-
oncogenic pharmacological properties (25). Through many years
of evolution, domestication, and selection for desirable qualities,
watermelon fruit has undergone significant changes in quality
traits, mainly those associated with flesh color and texture,
and nutrient and sugar content (26). Developing varieties with
desirable fruit characteristics and high nutritional value is a top
priority for watermelon breeding programs. Watermelon is a
naturally rich source for the non-protein α-amino acid citrulline,
which was reported to have antioxidant and vasodilatation
activity (27). Citrulline was first isolated from watermelon by the
Japanese researchers Yotaro Koga and Ryo Odake in 1914 (28)
and further validated in 1930 (29). Lycopene was first reported in
watermelon in 1930 (30), and like tomato, watermelon contains
high levels of lycopene and other carotenoids with potential
benefit for human health (31, 32). The health benefits of some
of these compounds are known and continue to be the focus
of nutrition research. Yet, interest is growing in documenting
the chemical complexity of foods and assessing their impact
on human health. The watermelon genome was sequenced,
assembled, and annotated in 2019 (21), enabling exploration
with bioinformatic tools to elucidate further its nutritive
value and identify relevant biochemical pathways to tune the
production of compounds of interest.

This manuscript presents a compilation of phytochemicals,
linking chemically correct structures to the public resources
where they were identified in watermelon and different parts
of the plant. The 1,679 natural products that are part of this
catalog underwent a curation process, their physicochemical
properties were computed with cheminformatics tools, and all
data are available at https://watermelon.naturalproducts.net. In
this online database, users can freely browse and search for
watermelon natural products.

MATERIALS AND METHODS

Data Collection
Scientific articles on watermelon compounds or metabolomics
were collected based on queries at PubMed and Agricola, 42
and 22 articles respectively, and supplemented with an additional
15 articles based on careful reading of other articles and 17 via
personal communication. We also mined data from watermelon

genome (CuCyC, genome v1) (33), and nutrition resources
[Food Data Central (34); Phytochemical and Ethnobotanical
Database at the USDA (35), PhytoHub (36)], and the LOTUS
project (37). The latter aims to catalog documented pairs of
natural products and the organisms producing them. Data
collection was restricted to C. lanatus cultivars, varieties, and
grafts. Expert knowledge of the authors directed the cataloging
efforts to specific publications. We sought not to incorporate the
compounds cataloged at FooDB (https://foodb.ca) and replicate
that resource, but do include FooDB identifiers for compounds
reported in other sources. Although essential for basic life
processes, central metabolites, such as nucleotides, nucleosides,
and ubiquitous coenzymes were excluded from the catalog, as
these are shared by all living organisms.

Data Curation
After retrieving the literature, all collected information about
the natural products was processed in Java with the Chemistry
Development Kit (CDK) (38). For each molecule, the original
SMILES were converted to unique and absolute SMILES, implicit
hydrogens were tagged accordingly, compound aromaticity was
corrected when appropriate, and tautomers and ionization states
were standardized. Also, compounds of less than five heavy
atoms were discarded. A structure-based compound unification
was performed to prevent redundancies within the catalog.
This was done using Tanimoto similarity with three different
fingerprints, PubChem, Extended, and ECFP fingerprints, and a
similarity threshold of 99% between two molecules for three of
their fingerprints. Using three different fingerprints is necessary
as they do not all perform well on all structure types, in
particular for highly redundant monomeric structures like lipids
and polysaccharides. The combined fingerprint comparison
guarantees that two molecules with a Tanimoto similarity
score over 99% with the three approaches are truly identical.
The computer code for compound curation, unification, and
calculation of features is available on GitHub (https://github.
com/mSorok/Watermelon).

Content of the Catalog
The information on compounds found in watermelon is
organized into tables pertinent to two distinct but overlapping
disciplines: cheminformatics of natural products and human
nutrition. All data are also available on the Watermelon
Online website (https://watermelon.naturalproducts.net) with
accompanying diverse search functionality. Data presented in
these tables include common and alternative names in English,
and compound identifiers in major chemical databases: CAS R©

(Chemical Abstracts Service), KEGG (Kyoto Encyclopedia
of Genes and Genomes) (39), HMDB (Human Metabolome
Database) (40), PubChem (9), ChEBI (Chemical Entities
of Biological Interest) (41), FooDB (https://foodb.ca/), and
LipidMaps (https://www.lipidmaps.org) (42). Additionally,
provided for each molecule are the molecular formula and
weight, together with classic structure representations, such
as InChI, original (as from their source), canonical, and
absolute SMILES, plus other representations such as Murcko
scaffolds (43) (used generally for structure-activity relationship
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elucidation) and deepSMILES (an adaptation of SMILES for
machine-learning purposes) (44). A wide range of molecular
descriptors, such as AlogP, topological polar surface, atomic
polarizabilities, Zagreb Index, Petitjean number, Kappa shape
index, and the Lipinsky rule of five failures, have been computed
with the CDK. Chemical pathways, superclasses, and classes
were calculated with NPclassifier (https://npclassifier.ucsd.edu/)
(45). This dataset is provided in Supplementary Table 1 and is
available at https://watermelon.naturalproducts.net.

AFC Identifiers
Unique identifiers are a convenientmeans to refer to a compound
without ambiguity. However, no single data repository has
identifiers for all compounds cataloged here. Thus, we define
the “AFC” identifier to represent Agricultural Research Service
Food Compound and encourage its use in other catalogs. This
has been assigned to all entries and serves as a bridge between
data resources, the source literature, and across the two tables
presented here.

Nutrition Data
Parallel to cataloging the natural products of watermelon and
supporting nutrition research, effort was expended to assemble
information, when available, on concentrations of compounds
from different parts of the plant. The plant parts for which data
are tabulated include (red) flesh, heart tissue, juice, seed, rind,
peel, yellow flesh, seedling, leaf, root, other parts of the plant,
and detected but plant part not reported. The collected data
included the low value in the range, the high value in the range,
deviation from those values, and units (assumed to be fresh or
wet weight unless noted). This table (Supplementary Table 2)
also provides for all compounds the citations to the literature
and database sources. This information is archived at the
USDA’s Ag Data Commons (https://doi.org/10.15482/USDA.
ADC/1522862), where updates will be provided.

Data Analysis
Simple statistical analyses and plots were made with ggplot in R,
or Python 3 and the RDkit cheminformatic library for Python
(46). The glycosylation analysis was performed with the Sugar
Removal Utility (47) and RDkit. The graphical representation
of the chemical space covered by the known watermelon
natural products was performed with the t-distributed stochastic
neighbor embedding (t-SNE), a dimensionality reduction
method that captures a large fraction of the overall structural
variance across the molecular set. t-SNE was performed with the
scikit-learn Python 3 library and MACCS fingerprints.

Genome Mining
The C. lanatus genome (accession number GCA_000238415.2)
was downloaded from the NCBI Genome on 1 Dec 2020.
Online versions of plantiSMASH v.1 (48) and PRISM 3 (49)
were used under default parameters to mine this genome
for known biosynthetic gene clusters (BGCs) whose products
synthesize small molecules such as non-ribosomal peptides
(NRP) and polyketides.

Data Dictionary
The different terms and abbreviations are defined in
Supplementary Table 3, and archived at https://doi.org/10.
15482/USDA.ADC/1522862.

RESULTS/DATABASE DESCRIPTION

When writing this manuscript, the cheminformatics catalog of
naturally occurring compounds in watermelon contains 1,679
curated molecules (Supplementary Table 1). This set does not
include water, dissolved gases, minerals, salts, and common,
central metabolism compounds, such as ubiquitous coenzymes
(e.g., NADP, Coenzyme A) nor the nucleotides and their
derivatives (e.g., ATP, ADP, AMP). As some of these compounds
are nutrients, those are included in Supplementary Table 2.

General Characteristics
Molecules range in size (Figure 1A) frommolecular weight 82.10
Da (dihydropyrimidine, AFC000168) to 2,286.8 Da for cold-
adapted KDO2-lipid A (AFC001362). Grouping compounds into
molecular weight bins of 25 units shows that molecular weight
range 125–150 is the most populated with 161 compounds. The
mean molecular weight in the catalog is 348.65 Da, and the
median is 284.26 Da.

All molecules contain carbon except for the pyrophosphate
ion (AFC000828). Oxalate (AFC00451) is the only compound
that contains carbon and oxygen with no hydrogen atoms.
There are 86 compounds that lack oxygen atoms, and of these,
58 are composed solely of carbon and hydrogen, ranging in
molecular mass from ethenylbenzene (104.15 Da, AFC000284) to
phytoene (544.94 Da, AFC000908). Additionally, 599, 333, and
149 compounds contain nitrogen, phosphorus, or sulfur atoms,
respectively. Summary characteristics regarding the composition
of watermelon natural products with these three atoms are
presented in Figure 1B.

For each compound we determined the predicted partitioning
between a hydrophobic and hydrophilic phase, using the Atomic
logarithm of 1-octanol/water partition coefficient (AlogP) values
(Figure 1C). This provides information on the solubility of a
molecule based on its atomic constituents. A negative AlogP-
value indicates a hydrophilic compound and a positive value is
lipophilic. Of the natural products in this catalog, 925 (55.1%)
are predicted to be hydrophilic and 754 (44.9%) lipophilic.
The hydrophilicity of a compound has a direct impact on its
distribution within cells and tissues and on its capacity to transit
the cell membrane.

Each compound identified in watermelon is cross-referenced
to the identifiers from seven different chemical compound
databases (see section Materials and Methods). This information
is provided to facilitate links between this resource and well-
known, richly annotated databases of chemical compounds.
Of the 1,679 compounds inventoried here, the range of
representation spans from 1,591 (94.8%) with identifiers in
PubChem (9) to 490 (29.2%) compounds found in the specialized
LipidMaps (42) resource (Figure 1D). Because not all natural
products cataloged here are found in the large databases and for
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FIGURE 1 | General characteristics of 1,679 naturally occurring compounds in Citrullus lanatus. (A) Distribution of molecular weights of compounds comprising the

catalog. Bins from 75 to 600 are sized by 25 units, from 600 to 1,000 by 50 units, and from 1,000 to 1,200 by 100 units. (B) Distribution of watermelon compounds

containing atoms of nitrogen (N), phosphorus (P), and/or sulfur (S). The text “w/o” indicates without, e.g., compounds without phosphorus and sulfur in the leftmost

column of the plot. (C) Distribution of watermelon natural products at different levels of calculated hydrophilicity and lipophilicity. Molecules were counted in bins of one

unit of AlogP. Those predicted to be hydrophilic are plotted in light blue with the strongest predicted hydrophilicity at the extreme left of the plot. Lipophilic compounds

are in orange with the most lipophilic entities at the far right of the plot. (D) Compounds with identifiers in standard chemical repositories. Two hundred ninety-eight

compounds have identifiers in all seven of these resources.

ease of discussion, we created the AFC identifiers and assigned
such to all cataloged compounds.

Chemical Classes and Known Bioactive
Compounds
The classification of watermelon compounds with NPclassifier
distributed them into seven distinct chemical classes: 351
compounds were identified as fatty acids (Figure 2), 328 as
terpenoids (Figure 3), 209 as carbohydrates (Figure 4), 199 as
shikimates, phenylpropanoids or polyphenols (Figure 5) 142 as
alkaloids (Figure 6), 101 as amino acids, peptides, and NRPs
(Figure 7), and 16 as type III plant polyketides (catechols,
phloroglucinols, and chalcones—Figure 8). Among the latter, 28
compounds were classified in more than one category. Lastly, 305
compounds remained unclassified because of current limitations
of NPclassifier.

Fatty Acids
Fatty acids form a very large group of natural compounds,
and are the major components of lipids. Fatty acids can
be classified variously: by saturation, number of carbons, or
linearity. Dietary fatty acids also are important in human health
and disease prevention (50). Three hundred fifty-one fatty acids

were identified in the watermelon plant (Figure 2). Of particular
interest are some known functional compounds, such as nervonic
acid, which is beneficial to brain function (51), oleic acid, known
to be a good general anti-inflammatory (52), and punicic acid,
which has a wide range of biological properties, in particular
antidiabetic and anti-obesity (53). Arachidic acid was found
in the seeds and is one component of nanoparticles for drug
delivery (54). Interestingly, two prostaglandins are found in the
watermelon plant. H2 (55) regulates dilation of blood vessels, and
stimulates platelet aggregation, and E2 is involved in modulating
immune responses and has anti-inflammatory activity (56).

Terpenoids
Terpenoids are the largest class of known natural products
(57) and are characterized by their derivation from isoprene.
Plant terpenoids are often used for their aromatic properties,
but they also have notable pharmacological attributes. A
total of 328 terpenoids have been described in watermelon,
in particular cucurbitacins and carotenoids, and molecules
representative of this class are shown in Figure 3. Cucurbitacins,
also known as cucurbitane triterpenoids, have anti-inflammatory,
antioxidant, and anticancer properties (58–60). Watermelon
fruit is abundant in lycopene, which has significant antioxidant
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FIGURE 2 | Examples of fatty acids from watermelon. Please refer to Materials and Methods (section AFC Identifiers) for the definition of the AFC identifiers.

FIGURE 3 | Examples of terpenoids (including triterpenoids, sterols) present in the watermelon plant. Please see Materials and Methods (section AFC Identifiers) for

the definition of the AFC identifiers.
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FIGURE 4 | Illustration of the diversity of carbohydrates in watermelon. AFC identifiers are defined in Materials and Methods, section AFC Identifiers.

activity (61). Carotenoids as a group of phytochemicals are
of intense interest for their overall benefits to human health.
In particular their consumption is associated with lower
risk of cardiovascular disease, cancer, and eye disease (61).
Watermelon also contains squalene, a natural product with broad
applications in nutrition, pharmacy, medicine, and cosmetics
(62), erythrodiol, a vasorelaxant (63), and karounidiol which
was observed to have anti-tumor effects (64). Distinct from
terpenoids with pharmacological interest, the plant also contains
pheophytin A (65), a beautiful molecule that can be used to
estimate fruit ripening, and violaxanthin, which protects the
plant from photooxidative damage (66).

Carbohydrates
The carbohydrate class of watermelon natural products is
large, and despite the common association with a sweet taste,
its molecules are not limited to this attribute. As expected,
watermelon has a noted diversity of carbohydrates, including
mono-, di-, and tri-saccharides, plus polysaccharides. Some
examples of this group are illustrated in Figure 4. Only a few
of these, such as glucose, fructose, and sucrose, impart a sweet
taste to the fruit. The others, such as maltotriose, ajugose, and
maltoheptaose, are synthesized and deposited in storage organs,

such as seeds, during the maturation and ripening processes,
which are then mobilized during early seed germination (67).
In addition to typical carbohydrates, watermelon also contains
chitotriose, an interesting carbohydrate-like molecule studied for
antioxidant activity (68).

Shikimates, Phenylpropanoids, and Polyphenols
Shikimates, also known as shikimic acids, and the structurally
similar phenylpropanoids, are a diverse family of natural
products occurring in plants and synthesized from the aromatic
amino acids phenylalanine and tyrosine. This family is also
known for flavorful molecules, in particular flavonoids, but
also coumarins and lignans. The watermelon plant contains
199 identified molecules from this chemical family (Figure 5).
Among these, several have industrial or pharmacological
interest, such as coumarin. Although toxic for humans in high
concentrations, coumarin does add a pleasant odor in low
concentrations, as is the case in watermelon. Coumarin also
has a wide range of uses in industry, mainly related to its
fragrance (69). Coumarin derivatives have demonstrated anti-
inflammatory and antioxidant properties (70). Watermelon red
flesh contains several flavonoids, polyphenols well-known for
their pharmacological activities. These include luteolin, which
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FIGURE 5 | Some shikimates, phenylpropanoids, and polyphenols present in the watermelon plant, including coumarins, lignans, and flavonoids. AFC identifiers are

defined in Materials and Methods, section AFC Identifiers.

FIGURE 6 | A subset of alkaloids documented in watermelon. Please see Materials and Methods (section AFC Identifiers) for the definition of the AFC identifiers.
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FIGURE 7 | Examples of dipeptides, tripeptides, and one non-ribosomal peptide (AFC001723) present in the watermelon. Please refer to Materials and Methods

(section AFC Identifiers) for the definition of the AFC identifiers.

FIGURE 8 | Examples of the type III polyketides, catechols, phloroglucinols, and chalcones, present in watermelon. AFC identifiers are defined in Materials and

Methods, section AFC Identifiers.

has potential anti-cancer (71), anti-inflammatory, antioxidant,
and anti-allergic activities (72), quercetin, with a vast range of
activities, in particular antioxidant effects (73), and taxifolin,

also recognized for its antioxidant properties (74). Watermelon
also contains potent lignans, such as pinoresinol, with potential
hepatoprotective effects (75) and thiosulfates like petivericin,
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FIGURE 9 | Additional noteworthy natural products present in the watermelon plant. The illustrated structures represent compounds not placed in the classes

represented in Figures 2–8. These include a tannin and some volatile compounds. AFC identifiers are defined in Materials and Methods, section AFC Identifiers.

involved in plant defense (76) with noted antibacterial and
antifungal properties.

Alkaloids
Alkaloids are a class of natural products that contain at least
one nitrogen atom and are produced by diverse organisms, with
plants in particular. These molecules are known to have a wide
spectrum of bioactivities, such as pharmacological applications,
psychotropic, and stimulant use, and may be toxic. In general,
alkaloids have a bitter taste for humans. The NPclassifier
identified 142 alkaloids in the present watermelon natural
products catalog, with selected examples shown in Figure 6.
Among the alkaloids, particular attention is drawn to melatonin
and serotonin, important for signaling and stress mitigation
in plants (77), but also regulating mood, circadian cycles, and
anxiety in mammals (78, 79). The watermelon fruit contains six
of the eight types of water-soluble vitamin B: biotin (B7), folic
acid (B9), thiamin (B1), riboflavin (B2), pantothenic acid (B5),
and pyridoxine (B6). These compounds are involved in a wide
range of metabolic processes in mammals and therefore are used
for a broad spectrum of pharmacological applications (80). Also
observed in the watermelon plant are xanthine and bilirubin,
which have antioxidant effects (81, 82).

Amino Acids and Small Peptides
Over 100 non-proteinogenic amino acids and small peptides
are reported in watermelon. The structures of selected examples
are depicted in Figure 7. Among these, citrulline is most
prominent, and watermelon remains its most important source

known (27). Citrulline is used as a drug and in food
supplements for its stimulating activity on protein synthesis
in skeletal muscle (83), its cardioprotective and overall
beneficial cardiovascular effects (84), and even for erectile
dysfunction (85). In addition to citrulline, watermelon also
contains high levels of glutathione and its derivatives (e.g.,
S-formylglutathione, glutathione disulfide, S-lactoglutathione),
which show antioxidant activities (86). Four NRPs are reported
(Figure 7) in the watermelon plant. However, as NRPs are known
to be producedmainly by bacteria and fungi, caution is warranted
as these NRPs might also be produced by a bacterium or fungus
inside the plant or by the plant independent of bacterial or
fungal infection.

Catechols, Phloroglucinols, and Chalcones
Sixteen natural products in the watermelon plant have been
classified as catechols, phloroglucinols or chalcones, or type
III polyketides produced only by plants. Representatives
of this class are shown in Figure 8. Among these, two
stand out for their recognized properties. Ginkgolic acid
(AFC000953) is a natural product known for its anti-
inflammatory (87) and neuroprotective (88) bioactivities.
Phloretin (AFC001890) has various applications in medicine
and cosmetics, derived from its broad and potent antioxidant
activities (89).

Other Notable Molecules
Tannins are astringent polyphenolic biomolecules widely
distributed in many plant species where they are mainly
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involved in protection against predation (90). It therefore is not
surprising to find this molecule class in the watermelon plant.
Interestingly, of five compounds reported to repel the malaria
mosquito Anopheles gambiae (91), watermelon contains three:
2-nonanone, 6-methyl-5-hepten-2-one, and linalool. Another
notable compound reported in watermelon is picroside I, a
potent hepatoprotective antioxidant (92, 93). Structures of these
molecules are shown in Figure 9.

Glycosylated Molecules
In addition to the aforementioned carbohydrates, watermelon
contains 322 glycosylated molecules, i.e., non-carbohydrate
molecules with glycosidic moieties attached. The glycosylation
of a molecule positively affects its hydro-solubility and can
increase or decrease its bioactivity. For example, in vitamin
B6 in humans, glycosylation of the parent structure reduces its
bioavailability (94).

In watermelon, luteolin, a flavonoid with potential anti-
cancer, anti-inflammatory, antioxidant, and anti-allergic
activities (72, 95), has five glycosylated derivatives. In Figure 10

the sugar moieties of these derivatives are marked in red,
under the luteolin aglycon. Two studies demonstrated that
glycosylation of luteolin at different positions is closely linked
to the intensity and modulation of its antioxidant and anti-
inflammatory effects (96, 97). Such glycosylation is catalyzed in
vivo by glycosylases, enzymes that add sugar moieties to aglycons
with various selectivity. Some glycosylases add only a specific
type of sugar on a specific aglycon, while others add sugars less
selectively, based on aglycon substructures. Further investigation
is needed to elucidate watermelon glycosylase genes and to link
those enzymes to their glycosylation capabilities. Doing so will
support the eventual expansion of the current catalog with other,
as yet uncharacterized glycosylated natural products.

Watermelon Chemical Space
t-SNE analysis, by design, converts a complex dataset of points
in a high-dimensional space, such as chemical structures, and
identifies an accurate representation of those data in lower-
dimensional space, typically the flat 2-D version of paper or
screen. Applying this tactic to the watermelon plant compound
catalog shows great structural diversity (Figure 11A). The major
compound classes are well-separated, as they are structurally
distinct, although some map between chemical classes. The
latter correspond to molecules that are hybrids, for example,
glycosylated flavonoids. Compared to the chemical space
occupied by all known natural products (Figure 11B, in gray), the
watermelon natural products (Figure 11B, in red) cover a similar
space, with only a few territories not represented. This indicates
that the assembled NP catalog is relatively complete in terms of
chemical diversity.

Human Nutrition
A major impetus for assembling this list of compounds that
occur naturally in watermelon was to provide information on
concentration in support of research in human nutrition and
plant metabolism. Moreover, in consideration of reducing food
waste, different parts of the watermelon plant are considered

FIGURE 10 | Luteolin and its glycosylated derivatives that are present in

watermelon. The structure of the luteolin aglycon is depicted in black and the

sugar moieties are in red. Please refer to Materials and Methods (section AFC

Identifiers) for the definition of the AFC identifiers.

here as these are sources of livestock feed (98, 99). Although
watermelon fruit is the most popular part of the plant consumed
by people, the rind and seeds are not uncommon food items.
Hence, collected in Supplementary Table 2 are the levels of
different compounds from different parts of the plant, as parsed
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FIGURE 11 | Graphical representation of the chemical space covered by watermelon natural products. (A) t-SNE plot of the known watermelon chemical space.

Every point represents one molecule with points colored by their chemical class. (B) t-sne plot of the watermelon compounds (in red) within the known natural

products chemical space (in gray).

from the corresponding references. Values are presented for 300
different compounds in Supplementary Table 2 and derive from
various experimental conditions, different cultivars, and varieties
of melon, or measurement techniques. This table also lists
1,611 other compounds that have been detected in watermelon
but not quantified, including dissolved gases, nucleotides, and
nucleotide derivatives, and several incompletely characterized
flavone glycosides, and the like. Altogether, this table provides
useful information but is intended as a guide to the source
literature and nutrition databases, the latter of which may be
updated in the future. We note that no data are provided for
nearly 85% of the natural products tabulated.

It is well-recognized that the diet feeds the metabolism of
the gut microbiota, and those metabolites generated by the
microbes can affect health in humans or act as biomarkers of
intake of a specific food or food group. A diverse repertoire
of natural products as present in watermelon underscores
its potential as a prebiotic. For example, the oligosaccharide
content of watermelon, including mannitol and 1-kestose,
has suggested the fruit as a source of prebiotics (100). Of
different fruit peels tested, yellow watermelon showed the
highest probiotic activity on Lactobacillus rhamnosus and
Bifidobacterium bifidum (101). In addition, supplementing the
high-fat diets of obese male mice with different watermelon
products improved serum insulin and fasting blood glucose
levels, as well as the hepatic metabolite profile. Furthermore,
supplementation with fiber-rich extracts of rind and skin
showed added improvements in glucose metabolism and
energy efficiency while shifting the microbiome composition
(102). Although cataloging bacterially derived metabolites
is beyond the scope of this work, the catalog of natural

products presented here is a necessary component that supports
such efforts.

In addition to its nutrition content, watermelon is known
as a folk functional food, being offered, for example, as an
ethnopharmacological diuretic (103). Rat models of urolithiasis
demonstrated that watermelon pulp extract reduced calcium
oxalate crystal count in kidney and urine, increased urinary
pH and output, elevated serum creatinine clearance, and
reduced urea and creatinine levels (104). In a rat model of
diuresis, watermelon pulp extract produced diuresis, reduced
serum chloride levels, and elevated urinary sodium and
chloride levels, in addition to inhibiting aggregation of
oxalate crystals (104). Sources for these benefits include
citrate, antioxidants, steroids, and alkanes. Other folk medicine
uses of watermelon were for erectile dysfunction in ancient
Egypt (105), as a diuretic among Russlanddeutschen living in
Germany (103), and to quench thirst and act as a diuretic
according to traditional Chinese medicine practices. In many
instances, results from folk medicine, molecular nutrition, and
clinical studies agree, which underscores the healthy benefits
of watermelon.

Genome Mining
The sequencing of the watermelon genome with its 11
chromosomes of different sizes is complete (21). plantiSMASH
and PRISM with default parameters were used to identify
eventual BGCs in each of the chromosomes (48, 49).
PlantiSMASH predicted, spread across 10 of the 11
chromosomes, eight BGCs for terpene synthesis, six for
saccharide synthesis, two for alkaloid synthesis, one for
lignan synthesis, one for lignan-polyketide synthesis, one
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for saccharide-alkaloid synthesis, and three putative BGCs.
Surprisingly, no NRP synthase clusters have been detected
despite the documented presence of 121 NRPs in watermelon.
Although the current version of PRISM is not adapted for plant
genomes, it detected a total of 18 terpene BGCs across five
chromosomes, overlapping significantly with plantiSMASH
results for this compound category. A number of terpenes,
alkaloids, NRPs, and polyketides are present in the watermelon
NP catalog described here, but BGCs responsible for their
synthesis were not detected by this analysis. Thus, these
predictions are simply an initial glimpse of the biosynthesis
capacities of watermelon. Deeper genome mining coupled with
comparative genomics can lead to the discovery of other equally
noteworthy natural products and the enzymes responsible for
their biosynthesis.

SUMMARY

This catalog is a unique resource that highlights the diversity
of chemical compounds in watermelon. The information
presented here will be useful in crop development research
integrating metabolomics, phytochemical genomics, and plant
breeding to improve nutritional values of watermelon. Such
a curated list of compounds associated with a single food
is a necessary component in building a comprehensive
catalog of natural products in all foods and can serve as a
reference set for testing automated methods to capture food-
compound relationships. This catalog will support detailed
analyses of watermelon and can be merged with other
genomics data. Such analyses can identify loci for genes
whose encoded proteins facilitate synthesis, transport or
storage of specific compounds, and which then can be
used for crop improvement with traditional plant breeding
approaches and/or biotechnology methods, constructing new
links between gene, protein, and compound, and expanding
existing biochemical pathways.
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