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Abstract
Studies have long advocated the inclusion of domain knowledge for producing an ef-
fective visualization system. The insights and reasoning artifacts gained from these
systems are closer to the knowledge of the domain users and the data context. How-
ever, most existing knowledge-based visualization applications focus on integrating
domain knowledge tailored only for the specific analytic task. Visualization recom-
mendation systems are those systems that provide different insights into the dataset
by automatically selecting different views or visualizations of the dataset. Previous
work relating to the development of visualization recommendation systems suggest
visualizations based on different parameters: visual mapping of data attributes, pre-
selection of user tasks and mapping accordingly, deviation based theory, machine
trained visuals to data encoding schemes, ontology mapping, etc. However, there
are limited studies that have tried to include domain knowledge as the visualization
selection criteria. In developing a visualization recommendation system where the
ultimate goal is not to answer any specific question but to explore the dataset’s
multidimensional insights, the inclusion of domain knowledge is not common. Thus,
though we know that domain knowledge could be a pivotal ingredient to increase the
visualization interpretation, how such knowledge can be included in a visualization
recommendation system has not yet been sufficiently explored.

In this thesis, we have explored how domain knowledge can be integrated into
various stages of visualization recommendation systems. As a result of that work,
we have developed a novel domain knowledge-based visualization recommendation
system. We have used biodiversity research as our application domain. The contri-
butions of this thesis are: 1) The domain knowledge-based visualization recommend-
ation model. 2) A system for automatic runtime generation of visual goals. We have
developed the first visualization text classifier that suggests visualizations by pro-
cessing a domain-specific text. Using our visualization taxonomy, this classifier then
functions on the provided data’s metadata text to generate visual goals (Distribu-
tion, Network, Composition, Trend, Comparison, Overview). This classifier further
contributes to a novel machine learning-based technique of gathering domain know-
ledge from visualization image captions in the literature. Moreover, we developed
the very first visualization or chart type classifier based on textual data. 3) Fi-
nally, in this work, we designed a context-aware variable selection algorithm that
automatically selects the most relevant variable set to visualize a high-dimensional
dataset.
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Zusammenfassung
Studien befürworten seit langem die Einbeziehung von Domänenwissen bei der
Erstellung eines effektiven Visualisierungssystems. Die aus solchen Systemen ge-
wonnenen Erkenntnisse und Argumentationsartefakte sind näher am Wissens- und
Datenkontext der fachspezifischen Nutzer. Die meisten vorhandenen wissensbasier-
ten Visualisierungsanwendungen konzentrieren sich jedoch auf die Integration von
Domänenwissen, das lediglich auf die spezielle Analyseaufgabe zugeschnitten ist. Bei
der Entwicklung eines Systems zur Empfehlung von Visualisierungen, bei dem das
ultimative Ziel nicht darin besteht, eine bestimmte Frage zu beantworten, sondern
die mehrdimensionalen Erkenntnisse des Datensatzes zu untersuchen, ist die Ein-
beziehung von Domänenwissen eher unbekannt. Obwohl wir wissen, dass Domän-
enwissen ein entscheidender Faktor zur verbesserten Interpretation einer Visualis-
ierung sein könnte, ist nicht bekannt, wie dieses Wissen in das Visualisierungsem-
pfehlungssystem aufgenommen werden kann. Visualisierungsempfehlungssysteme
sind Systeme die unterschiedliche Einsichten in den Datensatz bieten, indem sie
automatisch verschiedene Ansichten oder Visualisierungen des Datensatzes auswäh-
len. In früheren Arbeiten hinsichtlich Systemen zur Empfehlung von Visualisier-
ungen basieren die Vorschlägen für Visualisierungen auf verschiedenen Parametern:
visuelle Zuordnung von Datenattributen, Vorauswahl der Benutzeraufgaben und
entsprechende Zuordnung, abweichungsbasierte Theorie, maschinell trainierte Visu-
alisierungen zu Datencodierungsschemata, Ontologie basierte Zuordnung usw. Es
gibt jedoch nur wenige Studien, die versucht haben Domänenwissen als Auswahlkri-
terium für Visualisierungen einzubeziehen.

In dieser Arbeit haben wir untersucht, wie Domänenwissen in verschiedene Phasen
der Visualisierungsempfehlungssysteme integriert werden kann. Hieraus resultierend
haben wir das allererste Visualisierungsempfehlungssystem das auf Domänenwissen
basiert bereitgestellt. Als Anwendungsbereich haben wir das Forschungsfeld der
Biodiversität verwendet. Die Beiträge dieser Arbeit sind: 1) Das allererste Visualis-
ierungsempfehlungsmodell das auf Domänenwissen basiert. 2) Ein System zur auto-
matischen Erzeugung des Visualisierungsziels während der Laufzeit. Wir haben die
ersten auf Domänenwissen basierenden Visualisierungstextklassifizierer entwickelt,
die Visualisierungen aus dem Text vorhersagen. Mithilfe unserer Visualisierungstax-
onomie arbeiten diese Klassifizierer dann auf dem Metadatentext der bereitgestell-
ten Daten um visuelle Ziele zu generieren. Diese Klassifikatoren tragen ferner dazu
bei, eine neuartige, auf maschinellem Lernen basierende Technik zum Sammeln von
Domänenwissen aus Bildunterschriften von Visualisierungen in der Literatur zu sein.
Darüber hinaus allererste Visualisierungs- oder Diagrammtypklassifizierer basierend
auf den Textdaten. 3) Der kontextsensitive Algorithmus zur Variablenselektion, der
automatisch einen prominenten Variablensatz auswählt um den hochdimensionalen
Datensatz zu visualisieren.
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Chapter 1

Introduction

The human brain can comprehend images a lot easier than words or numbers. This
aptness is due to our cognition’s ability to detect patterns, anomalies, textures or
distances in graphics. Data graphics or visualizations summarize data and present
the most relevant information in an easy-to-understand form. This makes data
visualization an essential tool in exploring, analyzing, and presenting both the ob-
vious and less obvious data features. The increasing awareness of the importance
of visualization and the vast diversity in types of data visualized have led to the
generation of a plethora of visualization classes. Given these many visualization
classes or types, and the various ways each class shows a particular aspect of the
data, and ever-increasing visualization applications (for a data science domain, it
is result presentation, data quality or trend analysis), individuals are increasingly
faced with the difficulty of deciding which visualization is most appropriate for their
task.

1.1 Visualization Selection Problem
As mentioned by [Bertin, 1983], "A hundred different graphics for the same inform-
ation". If we say that this number has increased to thousands after nearly four
decades, it would not be an overstatement. Due to the unlimited choice of graphics
or visualizations available, a visualization process is considered as a search process
[Chen et al., 2008]. In the construction of visualization, one needs to make vari-
ous nuanced judgments, e.g., selecting an appropriate visualization tool, the type
of chart, type of variables and color scheme. This process is iterative, which ends
when one produces satisfactory results. In Figure 1, we show a workflow of a manual
visualization creation process on a tabular dataset.

15
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Figure 1: Manual visualization creation process.

To understand this visualization creation process, we first need to know the termin-
ologies related to it, which are described in the next section.

1.1.1 Basic concepts and terminologies
• Data visualization: Colin Ware [Ware, 2012] defines visualization as, “a

graphical representation of data or concepts,” which is either an “internal con-
struct of the mind” or an “external artifact supporting decision making.” In
other words, visualizations assist humans with data analysis by representing
information visually. Traditionally visualization is grouped into two major
areas: Scientific Visualization, which involves scientific data with an inherent
physical component, and Information Visualization, which involves abstract
and non-spatial data [Tory and Moller, 2004]. Both of them create graphical
models and visual representations from data that support direct user interac-
tion to explore and acquire insight into useful information embedded in the
underlying data [Ferreira de Oliveira and Levkowitz, 2003].
According to [Mennis et al., 2000], data is observational measurements that
have been recorded in some way, whereas information is generalized data,
ordered, and contextualized in a meaningful way. The information thus is
selective towards data, and it separates the important from the relatively un-
important. Therefore, data visualizations are the ones which provide an insight
into the observational data that is not yet information or not yet contextual-
ized. In this work, we propose a solution for one specific domain’s observational
data. Therefore, throughout this thesis, a reference to a keyword visualiza-
tion is meant for data visualization. Reference to the data is for observational
data. The terms visualizations, charts, graphs, plots and graphics are used
synonymously in many places.

• Visual goals: Visualizations can be classified by their representational goals
or tasks. Different authors have provided different views on the organization of
these tasks. A useful reference can be found in the InfoVis wiki1. In this thesis,
we have considered two broad categories of these tasks, i.e., high-level tasks

1www.infovis-wiki.net/wiki/Task

www.infovis-wiki.net/wiki/Task
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and low-level tasks. High-level tasks [Schulz et al., 2013] define a relationship
between the chart variables. For example, scatterplots are relevant for repres-
enting ‘correlation’ and ‘distribution’. As coined by [Amar and Stasko, 2004],
low-level tasks manipulate the chart and the data and thus aid in representing
high-level tasks. For example, data transformation or data filtering.

In this thesis, both goals and tasks have the same meaning. A reference to
visual goals or tasks is meant for high-level tasks.

• Visual Marks: Jaques Bertin [Bertin, 1983] has argued that visual marks
are the basic visualization units that visually differentiate one graphical ob-
ject from another. He developed methods through which these units can be
modified, including position, size, shape, or color. These predefined modifica-
tions are called visual variables. He defined seven visual variables as shown in
Figure 2. Visual variables are also called visual attributes, visual marks, visual
components, and visual elements. We have used these terms interchangeably
throughout the thesis.

• Visualization types: We have used visualization types, visualization tech-
niques, visualization classes, and chart types synonymically in this thesis. All
these terms differentiate one type of visualization from another. For example,
scatterplots and line charts are two different visualization types.

Figure 2: Bertin’s Visual Variables. Adapted from Bertin’s Original Visual Variables
[Bertin, 1983].

Once we know these basic visualization terminologies, we can understand the manual
visualization creation process depicted in Figure 1.
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1. Chart selection: Chart type or visualization type selection is crucial in a
visualization creation process. It is directly based on the user’s goal of the
analysis. What does a user want to show or want to see from the visualiza-
tion? Each visualization has its own set of representative goals [Harris, 2000].
For example, if a user is interested in data distribution, then the appropriate
visualizations are line charts, scatterplots or other distribution based charts.
In case the user wants to show the network or connection between variables,
then appropriate visualizations: node-link diagrams, chord diagrams.

2. Visual mapping: InfoVis wiki2 defines visual mapping as a mapping between
data aspects and visual variables, i.e., assigning specific data attributes to
visual characteristics to facilitate visual sense-making. Once the type of visu-
alization is determined, the second step is to map the data variables to the
chart-specific visual marks. The mapping of the data to the visual variables
is done based on some existing classification schemes. For example, the one
used by Tableau [Mackinlay, 1986] is presented in Table 1.1. Here, based on its
data attribute, the dataset variables are mapped to the visual marks. Here,
‘C’ is categorical, ‘Qi’ is quantitative interval, ‘Qd’ is quantitative discrete,
and ‘Cdate’ is categorical date data attributes.

Table 1.1: Tableau Visual Mapping Rules [Mackinlay, 1986]
Pane Type (Field 1) Pane Type (Field 2) Mark Type View Type

C C Text Cross-tab
Qd C Bar Bar view
Qd Cdate Line Line view
Qd Qd Shape Scatterplot
Qi C Gantt Gantt view
Qi Qd Line Line view
Qi Qi Shape Scatter plot

3. Chart configuration: Once the chart is developed, it is important to con-
figure it in a presentable form. A chart needs to be configured with proper
scales, color scheme, chart size and legends to make it more understandable
and interpretable.

As we can see, even creating a single visualization involves complex decision-
making steps. The mismatch of any of these elements leads to misinterpreted
charts. If these elements are ignored, people might interpret the data unintendedly
or not understand the underlying information [Kulyk et al., 2007]. Studies have cri-
ticized the visualizations in scientific articles due to many of the following quality
issues: inadequate, missing, or contradictory explanation or labeling, visual clutter
and distortion, extraneous and unnecessary decoration, non-standard graphic con-
ventions, inappropriate selection of representations (e.g., simple univariate displays
when multivariate displays were needed) [Cooper et al., 2002, Schriger et al., 2006,
Dasgupta et al., 2017]. Previous usability studies [Dasgupta et al., 2017], investig-
ated the reasons behind these visualization usage inadequacies and found that users
(especially scientists) lack trust in cutting-edge tools as opposed to conventional ana-
lysis mediums. They often use their own analysis and visualization techniques thus

2www.infovis-wiki.net/wiki/Visual_Mapping

www.infovis-wiki.net/wiki/Visual_Mapping
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do not consider the spectrum of available chart types. Due to the lack of automated
assistance for visualization creation and tremendous efforts, time and resources need
to learn a new tool; a non-visualization expert would avoid using new technolo-
gies. To decrease these usability barriers, studies [Wongsuphasawat et al., 2015,
Parameswaran et al., 2013, Vartak et al., 2014] have advocated to use automation
at different levels of the visualization creation process. This further opens the door-
way to the research in visualization recommendation systems.

1.2 Visualization Recommendation Systems

A Visualization Recommendation System is described by [Vartak et al., 2017], as
one "that automatically recommend visualizations that highlight patterns or trends
of interest, thus enabling fast visual analysis". According to [Hu et al., 2019], "Visu-
alization recommender systems aim to lower the barrier to exploring basic visualiz-
ations by automatically generating results for analysts to search and select, rather
than manually specify".

Visualization recommendation systems automatically construct visualizations
and show various data insights visually. These visualization recommendations are
based on the different data aspects and users’ analytical goals. These aspects were
thoroughly investigated and are presented in Chapter 3.

1.3 Domain of Application: Biodiversity Research

Biodiversity research understands the enormous diversity of life on earth and iden-
tifies the factors and interactions that generate and maintain this diversity. Biod-
iversity data is the data accumulated from research done by biologists and ecologists
on different taxa and levels, land use, and ecosystem processes. For proper preser-
vation, reusability, and sharing of such data, metadata is provided along with the
data. This metadata contains vital contextual information related to the datasets
like the purpose of the research work, data collection method, and other important
keywords. In order to answer the most relevant questions of biodiversity research,
synthesis of data stemming from the integration of datasets from different experi-
ments or observation series is frequently needed. Collaborative projects thus tend
to enforce centralized data management. This is true, e.g., for the Biodiversity
Exploratories (BE) [Fischer et al., 2010], a large-scale, long-term project funded by
Deutsche Forschungsgemeinschaft (DFG). The Exploratories use the BExIS plat-
form (Biodiversity Exploratories Information System) [Lotz et al., 2012] for central
data management. The instance of BExIS3 used within the Biodiversity Explorator-
ies serves as one of the primary sources for collecting this study’s requirements. The
large collection of data available in the BE instance of BExIS results from research
activities by many disciplines involved in biodiversity science for many years.

3www.bexis.uni-jena.de

www.bexis.uni-jena.de


20

1.4 Motivation

Most of the BE data is observational data, which is in a raw/unprocessed form.
This data is highly complex, heterogeneous, and often not easy to understand. To
explore, interpret, present, and reuse such data, a system is required to visualize
these datasets effectively. Providing a workflow to explore such data is essential for
scientists to decide if such data fit their hypothesis and is relevant for their work.
As stated by [Boyle et al., 1993], the benefits of such visual exploration tools at the
data management level support the continual search of the data without transferring
it from one tool to another.

Visualization recommendation tools at the database level assist in getting data
insights and help with a visualization selection dilemma. The visualization selection
dilemma happens when a user cannot find the relevant visualization techniques
or types to represent their data. Nowadays, with ample visualizations available,
an appropriate visualization selection can become challenging for a visualization
layman [Kaur et al., 2018].

Furthermore, matters related to visualization are made even more complicated
by human perception subjectivity [Rui et al., 1998], which means people perceive
the same thing differently under different circumstances. For better understand-
ing, readers primarily need to relate the visualizations to the realm of their existing
knowledge domain [Amar and Stasko, 2004]. To ensure that the chosen visualiza-
tion does indeed convey the intended message to the target readers, a visualization
model should integrate the domain knowledge and the context of the data at the
different levels of the visualization design process. Studies have long advocated the
inclusion of domain knowledge for producing an effective visualization system. The
insights and reasoning artifacts gained from these systems are closer to the know-
ledge of the domain user and the data context. However, most existing knowledge-
based visualization applications focus on integrating domain knowledge tailored ex-
clusively for the specific analytic task [Federico et al., 2017, Wagner et al., 2017,
Wagner et al., 2018].

1.5 Problem Specification

In developing a visualization recommendation system where the ultimate goal is
not to answer any specific question but to explore the dataset’s multidimensional
insights, the inclusion of domain knowledge is not common. Though we know that
domain knowledge could be a pivotal ingredient to increase the visualization inter-
pretation, how such knowledge can be included in the visualization recommendation
system has not yet been sufficiently explored. This thesis explores and answers this
question by using biodiversity as our application domain. In the earlier days of our
research, we could not find studies understanding the visualization requirements
for this community. Consequently, we conducted several surveys, meetings and
interviews to know their requirements. Therefore, this thesis also contributes in
understanding the biodiversity community’s visualization requirements and wishes.
Our intensive visualization usability study is reported in Chapter 2. Based on their
feedback, we investigated the scientific literature to understand the current state-
of-the-art (Chapter 3). Analyzing both these aspects, we observed that the visual-
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ization science still lacks studies related to domain-based recommendation systems.
Due to insufficient research on this subject, there are no clear directions on how the
domain knowledge for such visualization systems can be gathered and integrated.
In the coming chapters, we have provided a detailed investigation into this problem
and our solution.

1.6 Thesis Structure
This thesis is structured into the following chapters:

• Chapter 1 provides a brief introduction to the visualization and biodiversity
domain and the motivation for this research.

• Chapter 2 presents details about the visualization requirements survey which
we had conducted to gather our community’s visualization requirements.

• Chapter 3 presents the current state-of-the-art in the context of visualization
tools for the biodiversity community and visualization recommendation tech-
niques.

• Based on the identified issues and requirements from the previous chapters,
Chapter 4 lays down the core requirements fulfilled by our research and the
contributions of this thesis.

• Chapter 5 introduces the first contribution of our research work. It presents our
Domain Knowledge-based Visualization Recommendation Model. We describe
in detail the role of different components of this model.

• Chapter 6 describes the construction of the Biodiversity Visualization Text
Classifier. It details the necessary procedures we had adopted to obtain the
required data, the classification process, the enhancements, results, and the
comparison with other studies.

• Chapter 7 presents our visualization taxonomy. It also explains the workflow
to generate the visual goals based on the predicted visualization list from our
visualization classifier.

• Chapter 8 presents our Context-aware Variable Selection Algorithm. It presents
the motivation of this work and the workflow we have adopted to construct
this algorithm.

• Chapter 9 presents the visualization tool that we have developed as a result
of our research. It provides the technical details on the construction of our
visualization system.

• Chapter 10 presents the results of the quantitative and qualitative evaluations
conducted to evaluate the Biodiversity Visualization Text Classifier, Context-
aware Variable Selection Algorithm, and the overall system.

• In Chapter 11, we summarize the results of this thesis and conclude by present-
ing some open issues and future research directions.
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1.7 Publications

• Kaur, P., Owonibi, M., & Koenig-Ries, B. (2015, May). Towards Visualization
Recommendation-A Semi-Automated Domain-Specific Learning Approach. In
Proceedings of the 27th GI-Workshop Grundlagen von Datenbanken. 1366.
30–35. Magdeburg, Germany.

It is one of our first publications related to this work. It highlights our motiv-
ation and the vision of creating a visualization recommendation system that
is tightly integrated with the data domain. The details of which have been
partially discussed in this chapter.

• Kaur, P., & Owonibi, M. (2017, February). A review on visualization re-
commendation strategies. In Proceedings of the 12th International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics Theory and
Applications. 3. 266-273. Porto, Portugal.

This paper is a result of our study of the state-of-the-art on visualization
recommendation techniques. It distinguished these techniques into several
groups based on different aspects as detailed in Chapter 3.

• Kaur, P., Gaikwad, J., & König-Ries, B. (2016). Towards recommending visu-
alizations for biodiversity data. Biodiversity and conservation. 25(9). 1801-
1803.

This paper discusses the usefulness of our solution to the biodiversity com-
munity. Through this paper, we appealed to the community to participate in
our online visualization requirement survey. Based on this, we have created
our user-centric visualization system. The results from this survey are also
discussed in Chapter 2.

• Kaur, P., Klan, F., & König-Ries, B. (2018, June). Issues and Suggestions
for the Development of a Biodiversity Data Visualization Support Tool. In
Proceedings of the Eurographics/IEEE VGTC Conference on Visualization:
Short Papers. 73-77. Brno, Czech Republic.

This paper presents results from our visualization requirement survey, which
was distributed online and offline among biodiversity researchers. The prob-
lems identified from this survey and the gathered feedback have served as
an integral part of creating our visualization solution. This paper has also
contributed to the writing of Chapter 2.

• Kaur, P., & König-Ries, B. (2017, June). Visualization Taxonomy based on
the Specification of User’s Goal and Data Dimensions. In Proceedings of the
Eurographics/IEEE VGTC Conference on Visualization: Posters. 29-31. Bar-
celona.

This paper introduces our visualization taxonomy based on the user goals and
the data dimensions. For the construction of this taxonomy, we gathered some
high-level goals and assigned different visualizations to them. The detail of
this work is provided in Chapter 7.
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• Kaur, P., & Kiesel, D. (2020, February). Combining Image and Caption Ana-
lysis for Classifying Charts in Biodiversity Texts. In Proceedings of the 15th
International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications. 3. 157-168. Valletta, Malta.
This paper provides the methods we have adopted to create the first text-based
visualization classifier. This classifier was produced by processing a large set
of visualization captions from the biodiversity publications. This paper has
also contributed to the writing of Chapter 6.



Chapter 2

Requirement Analysis

*Part of this chapter is based on work published in the Proceedings of the Eurograph-
ics/IEEE VGTC Conference on Visualization: EuroVis’18, 73–77, Brno, Czech Re-
public

In the previous chapter, we have briefly introduced the problem of visualiza-
tion selection and other complexities involved in creating a visualization. Due to
which there is limited usability of novel visualization technologies among the non-
visualization community. To support such a community, we have provided a vision
to create a domain knowledge integrated visualization recommendation solution.
However, before developing software for a specific community, it is important to
perceive the usefulness of the new system for them [Marangunić and Granić, 2015].
Such a software design process where all stakeholders (e.g., partners, customers, end-
users) are actively involved is known as participatory design process (sometimes also
referred to as co-operative design process) [Hinrichs et al., 2017]. The participatory
design ensures that the resulting technical solutions meet all needs, that the final
systems are usable, and that it can be easily integrated into existing workflows of
the end-users [Jänicke et al., 2020]. The involvement of the end-users in the process
has always proven to be very rewarding and has lead to the creation of successful
products [Lindsay et al., 2012].

For our research, we have also followed a similar participatory design approach.
In the earlier stages of this work, we gathered the requirements, needs, and as-
pirations from our community on a visualization software product through a user
requirement survey. In the coming sections, we present detailed information about
this survey.

2.1 Method

We performed a survey (Appendix A) to get direct feedback from our domain users
about the domain specific operations they perform with different visualizations,
challenges they face in visualizing their data and the technological assistance that
can support them. This survey was done via the medium of a paper questionnaire
and an online form at various conferences organized by German and international
biodiversity organizations. These organizations are: GfÖ (The Ecological Society
of Germany, Austria and Switzerland)1, iDiv (German Centre for Integrative Biod-

1www.gfoe.org
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iversity Research)2, GFBio (German Federation for Biological Data)3, CRC 1076
Aquadiva4, BE (Biodiversity Exploratories)5 and TDWG (Biodiversity Information
Standards)6.

The online survey was active from August 2015 until December 2017. Besides,
a commentary paper [Kaur et al., 2016] with a survey link was also published in
an international journal to reach a large audience. We have received 100 responses
in total. Considering the outreach of participants through all these venues, this
number is low. This is symptomatic of the limited willingness to share knowledge
across interdisciplinary borders. Within the survey, some questions were multiple
choice and others were single choice. For some questions, a commentary section was
provided to allow the participants to provide additional information and viewpoints
on different inquiries. For the convenience of the participants in completing the
survey, no mandatory fields were added. This resulted in many questions remaining
unanswered. Therefore, the scores calculated and presented in the next section are
based on the number of answers for each question received rather than the total
number of survey responses.

2.1.1 Results and discussion
2.1.1.1 Issues with visualization selection

Figure 3 shows that the majority of biodiversity researchers feel comfortable with
their visualization skills and indicate not to face problems when selecting and cre-
ating visualizations. On the other side, the study participants have expressed (Fig-
ure 4) the need for a visualization support tool to assist them in these processes by
recommending suitable visualizations. Through comments, they have directed their
concerns on various issues they face when choosing a proper visualization. In the
following, we have analyzed these comments and have categorized them into distinct
visualization selection challenges:

• Visualization selection dilemma: The participants face difficulties in find-
ing the best visualization solution to represent their data. Nowadays, with
ample visualizations available, an appropriate visualization selection can be-
come challenging as for a visualization layman; every other visualization looks
the same.

• Dependency on the visualization publication medium: The parti-
cipants find it more complicated to publish visualizations in journal articles,
as it is costly to use colors. Whereas for online presentations, users have a
wide selection and choice of visualizations which they can easily configure to
make them more appealing to their audience.

• Lack of knowledge: The participants feel that they are unaware of altern-
ative types of visualization techniques. Their visualization selection options
are limited to what they have developed earlier or what they have seen in

2www.idiv.de
3www.gfbio.org
4www.aquadiva.uni-jena.de
5www.biodiversity-exploratories.de
6www.tdwg.org

www.idiv.de
www.gfbio.org
www.aquadiva.uni-jena.de
www.biodiversity-exploratories.de
www.tdwg.org
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previously published work. Due to this, they use similar visualization types
repetitively.

• Visualizing large and complex datasets: The participants find it difficult
to choose suitable visualizations to represent large and complex datasets. It
is problematic to convey a message within multi-dimensional datasets clearly
and precisely using a single figure.

Figure 3: Do users find it difficult to select a visualization for presenting their data?
The total number of responses received was 100.

Figure 4: Are users interested in having a software tool that can guide them in the
selection of suitable visualizations? The total number of responses received was 100.

2.1.2 Visualizations and their usage in the biodiversity do-
main

To this end, participants were shown a list of different visualizations and were asked
to indicate the different purposes for using these visualizations in their daily work.
This list was produced after knowing the types of common visualizations available
in the biodiversity publications. In order to get a varied result, participants were
asked to provide the answer to this question in a form of free-text. Table 2.1 shows
the most frequently used visualizations and its usage. It’s raw data is available in
Appendix B. The word cloud associated with each visualization shows the usage or
purposes indicated by the study participants. The larger the size of the word is, the
more frequently it was mentioned by the participants. It is evident that biodiversity
scholars use a spectrum of different visualizations for similar tasks; for example, the
representation of data grouping and its comparison is done by scatterplot, boxplot,
and bar chart. However, there are typically one or two tasks that are prominent
to each visualization. Scatterplot for example, is used to illustrate the result of a
principal component analysis (PCA) or to visualize the spatial distribution of ob-
jects, e.g., species. Dendrograms are frequently used for facilitating phylogenetic
or cluster analysis. In Appendix E, we have taken examples from biodiversity pub-
lications regarding different visualizations along with their domain specific usage.
The study participants were also asked to provide the reasons for not using some of
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Table 2.1: Visualization types and the purposes they are used for in the biodiversity
domain.

BarChart PieChart

LineChart Heatmap

Coplot ScatterplotMatrix

Boxplot DensityPlot

Dendrogram Scatterplot
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the listed visualizations. We have categorized these reasons into two groups: Never
Needed and Don’ Know (not aware of the visualization). Figure 5 indicates that
Parallel Coordinates, Treemap, Venn Diagram and Coplot (conditioning scatter-
plot) are much less used than the other visualizations, although at least half of the
respondents were aware of those types of visualizations. This raises question why
those visualizations were not considered although most of them are more advanced
and suited to multidimensional data. As it turned out, participants consider Par-
allel Coordinates as difficult to interpret and hard to comprehend. One participant
said that instead of it he will prefer to represent different dimensions via different
3d plots. The study participants also noted that one of the reasons for rarely using
Treemaps is that it is often dynamic and is thus hard to include in a paper. Some
participants show more preference to Lattice Graphs than Coplot. The reason for
the rare use of Venn Diagrams is that they are mostly known to represent concepts
or ideas rather than numerical data. One participant said that he would like it when
its area and colors were also meaningful.

Figure 5: Stacked column chart showing the number of participants that never
needed a given visualization or were not aware of it yet.

2.1.3 Visualization tool requirements
In the following, we have analyzed and have categorized the comments from the
participants about their expectations on a software tool that supports visualization:

• Visualization support for data management tasks: We found out that
visualization usage is not limited to the purpose of presenting results. There
is a high necessity of visualization support for other data management related
tasks. Our results (Figure 6) reveal that data analysis, result presentation,
and data exploration are the three prominent tasks that can be effectively
supported by visualization. Moreover, Figure 6 also conveys that researchers
have started realizing the usefulness of visualization for data quality assurance
and data search.

• Factors for visualization selection: Visualization tools offer visualization
selection based on certain factors. In our study (Figure 7), we have found
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Figure 6: For what purposes do you use visualizations? Total responses received 99.
Multiple answers per participant possible.

that scientists consider these three factors as most prominent for visualization
selection: data type, aesthetics, and data size. Here aesthetics refers to the
clarity and comprehensibility of a visualization. Comparing these factors to the
ones presented in [Rougier et al., 2014], they are quite similar with an addition
to the factor ’Ease of use’ which our participants have indicated equally crucial
as ’Data size’.

Figure 7: What factors do users consider while selecting a particular visualization for
their task? Total responses received 99. Multiple answers per participant possible.

• User centric: The participants feel that a visualization software tool should
not be too prescriptive or conditional. It means that it should provide a range
of options (solutions) to the users to select from instead of selecting one for
them. This also means that the solutions (or visualization recommendations)
should not be fixed to and based on some preset conditions within the software.
The software should be adaptive to integrate user responses or preferences in
a real-time and then provide a personalized solution.



30

• Easy to use: The participants expressed their needs for a visualization soft-
ware that is easy to access, use and understand. Instead of making a user
guess on what procedures to follow to create a visualization, the software
should guide the user at each step.

• Showcasing: The participants believe that showcasing what visualizations
are present in the system will make them aware of the different options avail-
able within the tool. Such a showcase can be implemented in the form of a
visualization knowledgebase, website or a guidebook. This can assist them in
efficiently exploring, interpreting and developing graphical representations of
their data.

• Interactivity: The participants consider interactivity as an important fea-
ture of a visualization. A visualization software tool should offer support
for interactive visualizations. Interaction within a visualization helps explore
the different data dimensions, gives a better overview of visualization and its
elements, provides visualization customization, and enables the audience to
engage with the visualization.

• Multi-platform support: The participants indicated that the visualizations
produced by software tools should be flexible and platform-independent. This
means that visualizations should be easy to export or import and should not
depend on any one graphical tool. Other graphical platforms or tools should
able to easily alter them.

• Color-deficient friendly: The participants want visualization tools to pro-
duce color-blind friendly visualizations so that the color-blinded community
can effectively use them. A color-blind person has trouble seeing shades of red
and green or yellow or blue7. So, the visualizations produced for them either
avoid such color combinations, include both textures and patterns instead of
only colors, use colors with high contrast, leverage symbols wherever possible,
or use special color-blind friendly color palettes.

• Visualization audience: The participants also consider the visualization
audience as one of the important factors in the visualization selection process
that needs to be considered within the tool. The visualization selection will
be different if the visualization is going to be presented to graduate students,
experienced scientists, layman or stakeholders.

2.1.4 Data exploration workflow
One of the other important data management tasks for which visualization is used
is data exploration, as shown in Figure 6. Data exploration provides a sneak peek
into the data at hand and thus helps make an initial decision about the relevance of
a dataset for answering a certain research question. What steps need to be followed
to get an initial exploration and understanding of the data? We have asked our
survey participants to provide their experience about how they explore a dataset.
We have summarized their answers into the following four major steps:

7https://www.aao.org/eye-health/diseases/what-is-color-blindness
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• Data Pre-processing: In this step, if the dataset is not clean, then one would
investigate data for various quality issues and perform necessary cleaning.
Then one would further examine the different features of the data (for example,
data dimensions, data size, data types).

• Data Overview: In this step, one might perform the following actions:

– getting an overview of the dataset via different multi-dimensional visual-
izations

– examining the distribution of the data to understand if it is skewed or
symmetric

– detecting outliers
– summarizing the data for further statistical analysis or refinements

• Data Refinement: In this step, one might perform the following actions:

– filter or subset the data based on the individual analysis goal
– transform the data (for example at different scales to remove skewness)
– create the derived or compound variables as per the analysis requirements
– remove outliers if those were spotted in the previous step

• Data Analysis: In this step, one might perform the actual analytical tasks
like hypothesis formulation, understanding relationships existing within a data-
set or doing comparisons.

These are the preliminary steps that researchers follow to explore the data
wherein different visualizations are needed to facilitate each step. Data investig-
ation is the foremost step that users perform. Then depending on the individual
goals, some of the remaining steps follow in non-particular order. For example, if a
user has some information about the data then the user will go for data refinement
to explore the variable of its interest. Whereas, if a user has no prior information
about the data, then the user might be interested in seeing a multi-dimensional view
to get an overview of the complete dataset and then choose the variables of interest.
After the refinement step, the user might be interested in summarizing the variables
of interest and then would want to do further analysis. Again, after analysis, the
user might perform further data refinement or get an overview of the altered dataset
as per its requirements.

Our last three steps are also somewhat similar to Shneiderman’s Mantra of Visual
Information Seeking, i.e., "Overview first, zoom and filter and details-on-demand"
[Shneiderman, 1996]. Once the data is pre-processed or cleaned, the user is typically
interested in getting the overview of the data first, which is similar to our second
step. Then, she refines the data using a filter or other techniques, similar to our data
refinement step. Finally, if the user is further interested, she performs data analysis
which is the same as details-on-demand. Apparently, these tasks are complex and
abstract tasks which can further breakdown sequentially by using typologies like the
one presented by [Brehmer and Munzner, 2013].
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2.2 Summary
Our study revealed that although biodiversity researchers feel comfortable with their
current visualization practices, they wish to have a software support to choose ap-
propriate visualizations to represent their data. Major challenges arise from many
visualizations available today and from the increased size and complexity of the
data to visualize. Due to which, they are not able to keep pace with the current
visualization developments. Therefore, a tool developed for them must not be too
complicated and at the same time should not be too prescriptive. It should help
users follow a simple and intuitive workflow to concentrate on the data insights
rather than only understanding the tool’s functionalities.

We have also observed that apart from using visualization for data presentation
and analysis, users now realize the usefulness of visualization for other data manage-
ment tasks like data exploration, data search, and quality assurance. Thus opening
up a research dimension for the visualization community to provide visualization as
a service to the data management process at its different stages.

The resultant data for this survey is available online8. The results from this re-
quirement analysis survey strengthened our vision to create a visualization assistance
tool for them. From these results, we were certain to work towards the visual data
exploratory tool for the BExIS data management system. This tool should provide
data-driven visualization assistance to explore the dataset’s multi-dimensionality. In
the next chapter, we explore the state-of-the-art on such visualization recommend-
ation tools for data exploration.

8https://github.com/PawanKaur/SurveyDataset

https://github.com/PawanKaur/SurveyDataset


Chapter 3

State-of-the-Art

*Part of this chapter is based on work published in the Proceedings of the 12th In-
ternational Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3: IVAPP’17, 266-273, Porto, Portugal

In the previous chapter, we have presented the results from our visualization
tool requirement survey. We have observed that our community needs data-driven
visualization assistance software to explore the multi-dimensionality of the biod-
iversity datasets. In this chapter, we will explore various such available visualiza-
tion technologies to fulfill the needs of the community. We will investigate this by
presenting a study on the currently available visualization technologies specifically
for the biodiversity community and the current state-of-the-art studies in the related
visualization science.

To do so, we have divided this chapter into different sections, wherein we will
review the literature based on the following topics:

1. Visualization tools for the biodiversity domain

2. Visualization recommendation systems

3. Variable selection algorithms

3.1 Visualization Tools for the Biodiversity Do-
main

While reviewing the available literature and tools related to the biodiversity domain,
we have observed that there are different dimensions in which the community use
these visualization tools. In the following, we have enlisted some of these observed
dimensions in four different groups:

• Question specific visualization tools: We have put those visualization
tools in this group, which are developed specifically to answer particular ques-
tions about the biodiversity domain. For example, Keanu [Thrash et al., 2019]
is a visualization tool that shows the presence and abundance of organisms in
a sample, by analyzing sequence content alignments against a database that
contains taxonomical data. TaxonTree [Lee et al., 2004] is an interface to visu-
alize the Linnaean Classification for taxonomic names in the kingdom Anim-
alia. TaxonTree allows users to browse and search a tree of about 200,000
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animal names constructed by integrating data from several public and private
sources.

• Visualization as an aid to data search: Software tools in this group
use visualization assistance to search datasets from data repositories. In most
cases, these visualization tools are tightly integrated with a specific data repos-
itory from which it provides the dataset. GBIF-MAPA [Flemons et al., 2007],
i.e., GBIFs Mapping and Analysis Portal Application (MAPA), is a tool de-
ployed at distributed GBIF database portals. It is a web-based biodiversity
workflow application that provides users the means to semi-automate raw biod-
iversity data acquisition, shows geospatial visualization, and deployment of
core biodiversity analyses based on that data. The GFBIO VAT (The Visu-
alization, Analysis, and Transformation System) [Beilschmidt et al., 2017] is
another such GIS system to visualize the GFBIO data providers and access
the collections at different biodiversity data centers.

• Visualization to represent the geographical species distribution: There
is an abundance of visualization research done to show the geographical dis-
tribution of different species. For example, antmaps.org [Janicki et al., 2016]
is a client-server GIS-based web-mapping application to visualize and inter-
act with all other ant species’ geographic distributions throughout the globe
and aggregate patterns of their diversity and biogeography. Ebird1 is another
GIS-based system to explore the birds and their hotspot all around the globe.
Another similar one is inatualist2, to visualize the distribution or abundance
of multiple species. Herbaria [Auer et al., 2011], is another GIS-based ap-
plication that aids in the visual exploration of the species California Flora’s
dataset to understand plant diversity patterns, distribution ranges of species,
and vegetation associations for specimens held in physical collections.

• Visualization for data exploration or analysis: Here we have included
those tools that help in the exploration and analysis of a single dataset. From
our requirement analysis survey results, we have observed that most biod-
iversity researchers use R to visualize their dataset (Figure 8). As R is primar-
ily a scripting language and is not a user interface, it does not fit our review
criterion. Second to R is Microsoft Excel. Microsoft Excel is a spreadsheet
software created initially for business intelligence usage. Though it has a large
user base, it has limited visualization capabilities. Visualization is a small
module included in the software. We have provided the comparison between
the Microsoft Excel and our tool in Chapter 10. Wherein, because our tool
was more domain-based and user friendly, it has outperformed Excel in almost
all evaluated categories. Next to the Excel are the tools developed for the GIS
(ArcGIS3 and QGIS4) or spatial analysis purposes. Next to that are a bundle of
software like (SIGMA PLOT5 and SPSS6). All of them are statistical software
that provides statistical visualizations to show the results of the analysis. For

1www.ebird.org
2www.inaturalist.org/observations
3www.arcgis.com
4www.qgis.org
5www.systatsoftware.com/products/sigmaplot
6www.ibm.com/products/spss-statistics

www.ebird.org
www.inaturalist.org/observations
www.arcgis.com
www.qgis.org
www.systatsoftware.com/products/sigmaplot
www.ibm.com/products/spss-statistics
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running them, one needs to have an adequate level of statistical and analytical
knowledge, and one should already know what sort of analysis needs to be
done. These software tools are not based on one particular scientific domain.
Thus we again cannot consider them as knowledge-based visual exploratory
tools.

From the first three groups in the provided list, we have observed that all these
visualization tools are based on the synthesis and mapping of different datasets
to fulfill certain goals, i.e., either showing hierarchy or showing aggregated data
distribution or data publishers. The synthesis of the data is not a first step in the
creation of such an application. First, one needs to explore, analyze, and evaluate
each dataset to see if it fulfills the specific purpose or not. The last group in the
above list is about the non-domain specific statistical tools. They are used for
analytical purposes after knowing the dataset’s suitability to the specific analysis
task. However, none of the above shown software provides a simple way of visually
exploring the dataset using the knowledge of the target domain.

Figure 8: Bar chart showing typical visualization tools used by the biodiversity
users.

3.2 Visualization Recommendation Systems
The potential utility of graphics can only be assessed if we are able to answer what
type of graphic should be used? - Jacques Bertin [Bertin, 1983].

Based on the most distinguishing factors identified by [Vartak et al., 2017], we
classify approaches to visualization recommendation into four distinct categories.
These categories are defined according to the main contribution of their research in
providing techniques, guidelines, or directions that assist in recommending visualiz-
ations.
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1. Data characteristics oriented: Studies that fall in this category recommend
visualizations based on data characteristics.

2. Task oriented: Studies that fall under this category use the representational
goals along with the data characteristics to recommend visualizations.

3. User preferences oriented: Studies that fall under this category gather in-
formation about the user presentation goals and preferences explicitly through
user interactions with the visualization system.

4. Domain knowledge oriented: Studies that fall under this category improve
the visualization recommendation process with domain knowledge.

3.2.1 Data characteristics oriented
Visualization recommendation research studies in this category have tried to im-
prove the understanding of the data, different relationships that exist within the
data and procedures to represent them. The choice of variables to represent dif-
ferent aspects of the same information can significantly influence the perception
and understanding of the presented information. Therefore, the research under this
category focuses on the definition of new data dimensions or attributes, the formal-
ization of the process of visual mapping from data attributes to visual marks, and
the introduction of new techniques for visual mapping. The earliest known study
that proposed automation of graphical designs was that of Gnanamgari’s Bharat in
1981. As cited by [Bouali et al., 2016], Bharat proposed some rules for determin-
ing which type of visualization is appropriate for specific data attributes. However,
their work was based on the limited set of visualizations available in 1981. Mackin-
lay’s APT system [Mackinlay, 1986] proposed to formalize and codify the graphical
design specifications to automate the graphics generation process. This was based
on composition algebra, which consists of a basis set and composition operators.
Before applying this algebra, data attributes need to be encoded with the respective
visual mark, which should be consistent with the rules presented in Table 3.1.

Table 3.1: Data attributes to visual attributes mapping [Mackinlay, 1986]
Visual attributes Nominal Ordinal Quantitative

Size -
Saturation -
Texture
Color -

Orientation - -
Shape - -

In Composition Algebra, the basis set encodes data attributes to visual variables
or attributes (Table 3.1). Compositional operators generate different presentations
by composing different basis sets from different data attributes. They composed
visualizations by merging parts that encode the same information. For example,
two single-axis plots with a visual mark ‘dot’, can be composed of a 2D scatterplot.
Later, the specifications based on Mackinlay’s heuristics were used to develop a
research system called Polaris [Stolte et al., 2002]. These specifications were then
revised into a formal declarative visual language known as VizQL [Hanrahan, 2006].
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The visualization software Tableau’s7 Show Me module [Mackinlay et al., 2007] uses
VizQL specifications to recommend visualizations automatically. When the user
selects the data attributes of its interest, Show Me uses Tableau’s Visual Mapping
rules shown in Table 1.1, to define the visualization types.

In order to enhance the understandability of the data and the process of visual
encoding, [Roth and Mattis, 1990] argued that more structural and semantic in-
formation about the data relevant to the presentation design should be provided.
Therefore, they proposed a richer set of data characterizations, divided into different
data domains, to be used by humans or machines for designing visualizations. It in-
cludes original data measurement scales by [Mackinlay, 1986], along with new data
descriptors: Spatial (coordinates, name of the city), Amount (count and discrete
data), Range (duration). They have identified and grouped the data domains into
coverage, cardinality, and uniqueness. Coverage conveys whether every element of a
set can be mapped to at least one element of another set. Cardinality expresses the
dependency and ‘within’ relationship between two or more attributes of the same
dataset: one to one, one to many, and many to many. Uniqueness refers to the
uniqueness of values within a set or data column. Their proposed characteristics are
used in the SAGE (System for Automatic Graphical Explanation) software.

Unlike previous work, where researchers seek knowledge among different vari-
ables of the dataset, Shneiderman’s theory [Shneiderman, 1996] emphasized on con-
sidering the dataset as a whole collection and understanding the overall relation-
ship between a single collection (like hierarchical data) or within different data
collections. He has categorized the data into seven dimensions: 1-dimensional, 2-
dimensional, 3-dimensional, multi-dimensional, temporal, tree, and network data.
This proposal serves as the basis of the implementation of the TIBCO Spotfire
[Shneiderman, 1999]. In the previously mentioned studies and tools, visualizations
were generated offline by specialists. The ‘Many Eyes’ had changed this trend and
provides the first known public website where users may upload data and create in-
teractive visualizations collaboratively [Viegas et al., 2007]. In Many Eyes, a visual-
ization is created by matching a dataset with the visualization components (or visu-
alization techniques). The list of visualization components is provided in Table 3.2.

Table 3.2: Many Eyes visual mapping scheme [Viegas et al., 2007]
Technique Data schema

Bubble Chart, Histogram, Pie Chart, Maps Labels: T, Values: N
Bar Chart, Line Graph, Stack Graph Axis: T, Values: N+

Network T+, to : T
Scatterplot Xaxis: N, Yaxis: N, Label: T, Dotsize: N

Stack Graph/Categories Hierarchy: T+, Values: N+
Treemaps Hierarchy: T+, Size: N, Color: N
Tag Cloud U

Each row consists of a visualization technique that shares a common data schema.
When the user selects some data columns, they are mapped with the data schema as-
sociated with some data visualizations. A data schema is a set of named, typed slots.
For example: ‘T’ in the above table is single column textual data, and ‘T+’ means
the dataset has more than one textual data column. Thus, a treemap (Table 3.2)

7www.tableau.com

www.tableau.com
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can be expressed as an ordered set of textual columns, where each row in the set de-
scribes the path from the top of the hierarchy to the leaf item. The dataset and the
produced visualizations can then be shared with other users for comments, feedback,
and future improvement, thus providing a collaborative workbench for visualization
creation.

Many Eyes popularity has proved the usability and ease of deploying visualiz-
ation software as a web application. Along with that, the dashboard environment
provided by Tableau also became a standard for visualization creation interfaces.
Voyager [Wongsuphasawat et al., 2015] is a visualization recommendation web ap-
plication based on the dashboard type environment. Voyager uses the Compass Re-
commendation Engine, which suggests visualizations based on the statistical proper-
ties of the data. The suggestions are produced in the form of Vega-lite specifications
[Satyanarayan et al., 2016]. A Vega-lite specification is a JSON object (Figure 9)
that describes a single data source, a mark type, visual encoding of data variables,
key-value, and data transformations including filters and aggregate functions. The
Compass Recommendation Engine first suggests a list of visualizations based on
each variable’s univariate summary in the dataset. Then the user can exclude or
include variables from the list to focus on a particular variable set of interest. Sim-
ilar to the study by [Satyanarayan et al., 2016], recent studies have tried to exploit
the statistical characteristics of data as assistance to visualization recommendation.

Figure 9: Vega-lite JSON Object [Satyanarayan et al., 2016]

VizDeck [Key et al., 2012] is another such initiative. It automatically recommends
ranked and coordinated visualizations based on the statistical properties of the data.
VizDeck adopts a card game metaphor to organize multiple visualizations into inter-
active visual dashboard applications. When a user selects a data, the system initially
presents the xy charts’ small multiple views (scatterplot or line chart based on the
data attributes). Users interact with these vizlets while keeping the good ones and
discarding the unwanted vizlets. User interaction makes a system learn which vizlets
are more likely to be useful for a dataset with particular features. The learned in-
formation enhances the system’s ability to recommend more suitable visualizations
when provided with similar data in the future. A study by [Vartak et al., 2017] used
statistical methods of a probability distribution, distance matrices and deviations
to suggest the different bar chart and line chart views. Their prototype SEEDB
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computes a deviation of the subset of the data in comparison to the whole dataset.
It then recommends those visualizations for which the underlying data (a subset
of data) has a high deviation from the current and regular trends reflected in the
whole dataset. They argue that users find visualizations with high deviations more
interesting and expressive.

More recent studies have used machine learning-based techniques to train a clas-
sifier on the historical data and their visualizations. Based on the features a classifier
is trained on, these studies recommend visualizations for the provided data. With
their trained binary classifiers on data and visualization constraints, application
by [Luo et al., 2018] first recognizes if the visualization is good for a dataset or
not. Through their supervised learning-to-rank model, they decide the appropri-
ate ranking of the visualization, and then using rule-based optimization they select
and provide the top-k suitable visualizations. VizML [Hu et al., 2019] is trained
on design choices from a corpus of data-visualization pairs. They have described
visualization recommendation as a problem of developing models that learn to make
design choices.

In Table 3.3, the contributions provided by the studies in this section are classified
into five broad areas based on their work towards better visualization recommend-
ation:

1. Data properties definition: by providing richer sets of data dimension and
characterization.

2. Rule definition: by providing rules, specifications and schemas to manipulate
data and perform visual mapping.

3. Language formalization: by defining specifications in system understand-
able language to automate the process of visual mapping.

4. Statistics based: by using statistical and exploratory data analytics proced-
ures to recommend visualization.

5. Machine Learning: by training machine learning models to learn data or
chart characteristics or both to produce future recommendations.

Table 3.3: Classification table
Categories Studies

Data Properties SAGE, TIBCO Spotfire
Rule Definition APT, Many Eyes

Language Formalization VizQL, Vega-Lite
Statistics Voyager, VizDeck, SeeDB

Machine Learning DeepEye, VizML

3.2.2 Task oriented
Visualization recommendation research studies in this category have designed dif-
ferent techniques to infer the representational goal or user’s intentions behind visu-
alizing the data. Differences in goals can significantly alter the effectiveness of
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graphical designs. A study by [Roth and Mattis, 1990] was the first to contribute
to the idea of instigating the user’s information seeking goals in the visualization
design process. Their study identified different domain-independent information-
seeking goals, e.g., comparison, distribution, correlation and many more. Based
on some sets of representational goals, a classification scheme for visualization re-
commendation was proposed by [Wehrend and Lewis, 1990] in the form of a 2D
matrix of ‘objects’ vs. ‘operations’. In this matrix, ‘objects’ are data attributes,
‘operations’ are representational goals, and cells contain visualization techniques.
According to [Kerpedjiev et al., 1997], visualization recommendations can further
be enhanced by using domain-level tasks. They introduced the idea of decompos-
ing representational goals from the domain-specific goals. Hence, they proposed
a model (Figure 10) to hierarchically decompose domain-specific user’s goals (for
the ‘transportation scheduling’ domain) into common domain-independent goals or
representational goals, which are further associated with some graphical actions or
operations. For example, in Figure 10, domain-specific goals like ‘know-shortfalls’
(which means to know the daily shortfalls in the goods transported) were decom-
posed to tasks that include ‘know-difference’. In turn, ‘know-difference’ is associated
with ‘differentiate’, a high-level domain-independent task or goal that acts on data.
Actions associated with ‘differentiate’ include ‘enable-lookup’ on the value of indi-
vidual days and ‘enable-comparison’ on those values. This approach was applied
in the development of AutoBrief [Kerpedjiev et al., 1997], which is a multimedia
presentation system that assists in data analysis.

Figure 10: Decomposition of goals into actions by [Kerpedjiev et al., 1997]. Adapted
from "Autobrief: a multimedia presentation system for assisting data analysis" by
S Kerpedjiev, G Carenini, S. F Roth, and J. D Moore, 1997, Computer Standards
Interfaces, 18(6-7):587.

In all the previous studies, the user task list was manually created. Advance-
ments in linguistic research seek an opportunity to automate the user task’s de-
rivation from a natural language query in the visualization creation process. One
such study [Zhou and Feiner, 1998], introduced visual task taxonomy to automate
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gaining a high level of presentation intents from the text. Their taxonomy as-
sociates high-level tasks (presentation intent) to low-level visualization techniques
(visual action). For example, the visual task Focus<?x> implies that visual tech-
niques such as Enlarge<?x> or Highlight<?x> could be used to focus attention on
?x. Their taxonomy and techniques are implemented in IMPROVISE (Illustrative
Metaphor Production in Reactive Object-Oriented Visual Environments). Studies,
e.g., Eviza [Setlur et al., 2016], and Datatone [Gao et al., 2015], are based on the
advancement of this idea of generating visual tasks from the natural language inter-
face at the run time. These studies have applied advanced text mining and natural
language processing techniques and used semantic technologies based on existing
knowledge-bases like Wolfgram8 or Wordnet9, to map different concepts with their
defined tasks. Recent developments of deep learning models have been applied to
understand the semantics and characteristics of the charts and the data. ChartSeer
[Zhao et al., 2020] uses deep learning models to convert user-provided charts into se-
mantic vectors defining visual goals (trend, pattern, outliers). Then based on these
recognized chart semantics, it provides a system recommended charts for further
visual exploration.

3.2.3 User preferences oriented
Here, those visualization recommendation strategies are grouped, which gather users’
intentions explicitly from their behavior and interaction records while they com-
municate with the visualization system. They are also known as behavior-driven
studies. Some studies also use probabilistic and machine learning techniques to
predict the patterns of user choice from these records. The first known behavior-
driven study is from [Gotz and Wen, 2009]. BDVR (Behaviour Driven Visualization
Recommendation) consists of two distinct phases: Pattern Detection and Visualiz-
ation Recommendation. In the first phase, user behavior while interacting with
the visualization system is analyzed to find meaningful interaction patterns. These
patterns are, e.g., scan, flip, swap, and drill-down. In the second phase, a recom-
mendation engine infers a user’s intent from these detected patterns. In the case
of ‘scan pattern’, e.g., the user interactively ‘inspects’ values over a series of data.
Then they ‘compares’ those series within themselves or over time. Visual tasks are
inferred from these intents, suggesting an alternative visualization to the user that
suits more accurately than their current visualization selection. A similar study
conducted by [Steichen et al., 2013], has provided results on accumulating inform-
ation from user eye gaze patterns. They recorded the interaction of the user with
a given visualization to predict the users’ visual goals, as well as user cognitive
abilities, including perceptual speed (a measure of speed when performing simple
tasks), verbal working memory (a measure of storage and manipulation of the capa-
city of verbal information), and visual working memory (a measure of storage and
manipulation capacity of visual and spatial information). They have shown that
such characteristics significantly affect task efficiency, user preference, and ease of
use with visualization systems. These findings are presented in view of designing
visualization systems that can adapt to each user in real-time. Towards the recom-
mendation of more user-centric and user-adaptive visualization tools, many systems

8www.wolframalpha.com
9https://wordnet.princeton.edu/

www.wolframalpha.com
https://wordnet.princeton.edu/
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have applied machine and probabilistic learning approaches from the user interac-
tions while they browse through the recommended visualizations as in the case of
[Key et al., 2012]. Study by [Mutlu et al., 2016] used techniques like collaborative
and content-based filtering to suggest charts by deriving a similarity matrix accord-
ing to the information needs of the user and chart characteristics. First, they have
designed a crowdsource study to obtain personalized scores and tags on each visual-
ization. Then a multi-dimensional scale is used to estimate the quality of charts for
collaborative filtering, and a tag vector is used to recommend potentially interesting
charts based on content. Recent work by [Xu, 2019] uses a machine learning model
to train a system first on user stories and then user profiles. Their tool, ReViz,
builds a multiple linear regression model based on saved user data and then uses
this model to give new suggestions based on new user stories and metadata.

3.2.4 Domain knowledge oriented
In the visualization development process, it is essential to first characterize the task
and data in the vocabulary of the problem domain so that the visualization can
fulfill the requirements of users in any particular target domain [Munzner, 2009].
The objectives of domain knowledge-based approaches include sharing such know-
ledge among different designers and end-users and reducing users’ burden to ac-
quire knowledge about complex visualization techniques. Such approaches are not
core techniques to produce a visualization, but they assist with other techniques
for improving performance while recommending visualizations. The studies falling
into this category deal with gaining the domain knowledge from existing knowledge
sources or creating a new one, which further assist in the visualization recommend-
ation process.

Though research is abundant in the field of knowledge-based visualization sys-
tems ([Federico et al., 2017, Wagner et al., 2018, Wagner et al., 2017]), there is min-
imal research in the subject of domain knowledge-based visualization recommenda-
tion systems. It is imperative to know that both approaches are very much different.
Knowledge-based visualization systems use existing domain knowledge to answer a
particular domain problem. Knowledge-based visualization recommendation sys-
tems do not specifically answer one particular type of domain question. Instead,
it shows different visual insights into the datasets for better data exploration and
understandability.

The earliest known knowledge-based visualization recommendation study is RAVE
[Klumpar et al., 1994]. RAVE has been used for the visualization of in-situ meas-
urement data captured by the NASA spacecraft. The user needs to select either a
visualization type or a representational goal from a provided list. On user selection,
RAVE triggers the visualization technique associated with the entries in a list and
provides the resultant graphics. RAVE’s knowledge-base contains: (1) a set of visu-
alization objects that corresponds to a specific visual technique that can create that
visualization, (2) a set of rules that corresponds to the selection of one particular
visualization technique, (3) the high-level task that visualization can perform like
correlation for a scatterplot, (4) the refinements that visualization can accept and
(5) the domain(s) in which it can be used. For example, the visualization object
that corresponds to the 2D scatterplot can satisfy the rule ‘attribute x is related to
attribute y’, can accept zooming and color as refinements, and can be applied in
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any domain where numerical attributes are compared.
To include semantic abilities in the process of recommendations, studies from

[Gilson et al., 2008] proposed a pragmatic approach for automatic generation of
visualizations from domain-specific data available on the web in the form of on-
tologies. They described a pipeline that combines ontology mapping from three
different ontologies. In their approach, a web page is first mapped to a ‘domain
ontology’, which stores the specific subject domain’s semantics. The ‘domain on-
tology’ is then mapped to one or more ‘visual representation ontologies’, each of
which captures the semantics of visualization types. A ‘semantic bridging ontology’
bridges the information from the two ontologies and holds vital knowledge about
the relationships between data entities of the source, the subject domain and the
visual artifacts of the target visualizations. They have implemented the visualiz-
ation pipeline in a prototype, SemViz, which functions end-to-end from a source
web page to the target visualization. Building upon somewhat similar grounds,
[Voigt et al., 2013] propose a novel approach for knowledge-based, context-aware
visualization recommendation for semantic web data. VISO is a modular visualiz-
ation ontology composed of seven modules that provide a vocabulary to annotate
data sources and visualization components. Graphic module formalizes knowledge
in the domain of visualization. Data module characterizes the data variables and
structure. Activity module is concerned with the human aspects of visualization,
i.e., tasks, actions, and operations. System, user, and domain module describe the
data and visualization context and the domain information. Based on the different
modules’ shared knowledge, a recommendation algorithm covers both the discovery
and context-aware ranking of suitable graphic representations.

3.3 Variable Selection Algorithm
In an era of data abundance of a complex nature, it is essential to extract useful
and valuable knowledge from the data. One crucial step in this process is selecting
relevant and non-redundant information or features from the dataset to clearly define
the problem at hand and aim for its solution [Macedo et al., 2019].

Therefore, these days variable or feature selection have become important re-
search application areas for which datasets with hundreds or thousands of variables
are available. Some of its benefits are: better data visualization and understanding,
and reducing the measurement and storage requirements. Benefits for machine learn-
ing applications are: reducing training and utilization times, defying the curse of
dimensionality to improve prediction performance [Guyon and Elisseeff, 2003]. Fea-
ture selection techniques can be categorized as classifier-dependent (wrapper and
embedded methods) and classifier-independent (filter methods). Wrapper methods
[Kohavi et al., 1997] search the space of candidate feature subsets using a classifier’s
accuracy. There are clear disadvantages to using such an approach. The computa-
tional cost is enormous, while the selected features are specific for the considered
classifier. Embedded methods [Guyon et al., 2008] exploit the structure of specific
classes of classifiers to guide the feature selection process. In contrast, filter meth-
ods [Guyon et al., 2008] separate the classification and feature selection procedures
and define a heuristic ranking criterion that acts as a measure of the classification
accuracy.

As per the recommended checklist provided by [Guyon and Elisseeff, 2003], if it
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is possible to get the domain knowledge, then the best method for variable selection
is to create an ad-hoc algorithm using that knowledge. In contrast to the data-driven
methods discussed before, the ad-hoc domain-specific algorithms rely on the know-
ledge gathered directly from domain experts or other domain sources. Combining
prior domain knowledge as a part of machine learning projects would complement
the data-driven approaches [Bochare et al., 2014, Islam et al., 2018]. Different re-
search domains use domain knowledge in feature or variable selection algorithms:
breast cancer prediction model [Bochare et al., 2014], predicting airline ticket prices
[Groves and Gini, 2013], oral disease prediction [Li et al., 2018], etc.

However, all these discussed applications are employed for machine learning prob-
lems, where the focus is on boosting the accuracy of feature selection methods
[Georges et al., 2020]. Our application of variable selection is for data visualiza-
tion and our goal is to provide interesting and relevant features that can provide
useful data insights. It is important to note that visualization is not used for vari-
able selection, but the variable selection is used to provide data insights through
visualization.

To know which variable or feature selection techniques are used by the visualiza-
tion recommendation systems, we reviewed some studies to understand their variable
selection techniques. In the visualization recommendation tool by [Bouali et al., 2016],
the user has to explicitly provide a score to the variables, for their algorithm to
decide the relevance. Voyager [Wongsuphasawat et al., 2015] does not make any
variable selection and shows the univariate summary of all the variables. SeeDB
[Vartak et al., 2017] uses deviation from reference as a criterion for searching the in-
teresting variables and finding the appropriate visualizations. Vizml [Hu et al., 2019]
and DEEP EYE [Luo et al., 2018] have trained the algorithm on the set of the visu-
alizations and the datasets they represent. Based on their classifier’s decision, they
pre-select the variables and corresponding visualizations for users.

3.4 Summary and Discussion
In this chapter, we have provided a review of different visualization techniques avail-
able for the biodiversity community. We have observed that the community is
already leveraging different visualization software to fulfill their different purposes.
However, we could not find any study or software that visually explores a data-
set’s multi-dimensionality without getting much into statistical analysis. Moreover,
we did not find any available visualization recommendation tool or study for the
biodiversity community.

The literature review on different visualization recommendation studies shows
the scarcity of domain knowledge-based systems that can recommend or assist users
in selecting suitable visualizations for exploring or analyzing their datasets. A more
detailed discussion on these shortcomings and our solution is provided in the next
chapter.



Chapter 4

Problem Statement

In Chapter 2, we tried to understand the needs and demands in the biodiversity
community regarding current visualization practices. The main aspects of the survey
analysis can be summarized as follows:

1. The biodiversity community starts realizing that visualization tools can be
utilized for important data management tasks in addition to data presentation
and analysis, like data exploration, data search, and quality assurance.

2. Biodiversity researchers wish to have software support to choose appropriate
visualizations for their data.

3. Major challenges in visualization creation arise from the plethora of visualiz-
ation options available and from the large size and complexity of the data to
visualize.

Our survey confirms that the biodiversity community needs visualization support
or a recommendation tool for visual data exploration. The visual exploratory tool
should assist the domain users with choosing appropriate visualizations for the data.
Such a tool must not be too complicated and should help users follow a simple and
intuitive workflow to focus on the data insights.

A review of the literature regarding visualization recommendation studies shows
that domain knowledge-based visualization recommendation studies are very scarce.
Though visualization recommendation studies have used state-of-the-art machine
learning technologies to train the model on the visualization and data attribute
knowledge [Luo et al., 2018, Hu et al., 2019], they are not based on the target com-
munity’s domain knowledge. Studies that have used data semantics from a spe-
cific community are highly dependent on the efficiency of the ontology-matching
strategies. When the domain is as vast as biodiversity, ontologies can be very large
(as in ENVO1 with 6199 classes). Gathering domain knowledge only based on on-
tologies tends to be insufficient because not all biodiversity-related information is
available in single ontology. For example in [Löffler et al., 2020], researchers had
to use ten ontologies to gather information for only four biodiversity entity types,
i.e., Environment, Process, Material, and Quality. Despite these constraints, the
usefulness of semantic information obtained from ontologies about the data context
can not be ignored.

1www.bioportal.bioontology.org/ontologies/ENVO
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The literature review also revealed that very few studies used automated variable
selection algorithms for visualization recommendation systems. Moreover, in these
studies the automatic variable selection algorithms are based on the data variables’
statistical properties or classification results from the trained datasets. The inclusion
of context or domain-knowledge is limited in such algorithms.

After a thorough evaluation of the community’s visualization demands, we pro-
posed to provide a visualization system that meets the following requirements:

1. The tool provides a visual exploration of the dataset for better data under-
standability.

2. The tool provides visualization selection support to the researchers.

3. The tool should not only be based on visualization semantics but also on the
domain knowledge and dataset context.

4. The tool provides a way to visualize high dimensional datasets.

To fulfill these requirements successfully, we created milestones that need to
be reached. The milestones were systematically established so that each milestone
matched one of the above requirements. All milestones helped to: progress towards
achieving the overall solution, and contributed to the knowledge of visualization
science. We have listed the milestones of this project as follows:

1. The first milestone of any domain-based study is to understand the require-
ments of the target community. Based on that, one can plan to provide appro-
priate solutions. We had conducted surveys within the biodiversity community
to reach this milestone, as discussed in Chapter 2.

2. The second milestone was to conceptually model the complete visualization
system that fulfills all requirements mentioned above. This model should in-
clude the various steps to develop our domain knowledge-based visualization
recommendation system. The details are provided in Chapter 5.

3. The third milestone was to combine the domain knowledge, acquired from our
user’s data domain with the area of information visualization. As mentioned
by Tamara Munzner [Munzner, 2014], the abstract task of understanding dis-
tribution, outliers, trends, correlation, etc. are extremely common reasons to
use visualization. Each of the tasks can be expressed by very diverse terms us-
ing domain-specific language. Processing domain specific terminologies related
to visualizations by using machine learning models can infer these tasks from
domain-specific texts. In our work, we have chosen a similar approach. This
approach is described in detail in Chapters 6 and 7.

4. The fourth milestone was to provide a solution to visualize large datasets. This
can be achieved by reducing the dataset’s dimensionality to a few key variables
that provide interesting insights. We designed a variable or feature selection
algorithm to select the relevant and contextually interesting variables. The
details about this algorithm are described in Chapter 8.



47 Chapter 4. Problem Statement

5. The fifth and final milestone was the quantitative and qualitative evaluation
of our system. The qualitative evaluation of such a visualization system is
based on the insights gained from the datasets. As recommended by Spence
et al. [Spence, 2001], the visualization systems should also be evaluated on
the overall perceived insights. In Chapter 10, we have provided details about
our quantitative and qualitative evaluations.

Based on the identified problems, mentioned requirements, and milestones set in for
project, the scientific questions we have answered in this thesis are:

1. How can the domain knowledge be integrated into the develop-
mental stages of visualization recommendation systems?

2. Does the integration of domain knowledge into visualization recom-
mendation systems improve the overall dataset insight?

The contributions of this thesis are:

1. Domain knowledge-based Visualization Recommendation Model: One
of the core contributions of this thesis is the construction of our visualization
recommendation model that is based on the biodiversity domain knowledge
and the context of the data. As a result of our interactions with the community
about visualization requirements, the visualization tool also includes an ele-
ment of support for selecting the most appropriate visualization. The sugges-
tions for visualization are based on the target community’s domain knowledge.

2. Biodiversity Visualization Text Classifier: Another main contribution of
this thesis is the design of a visualization classifier that, to our knowledge, is
the first to be based on textual data. The classifier automatically selects one
of the 15 visualization types for any given biodiversity specialized text. Irre-
spective of the conventional chart type recognition techniques based on image
identification, the text-based visualization classifier is the first to recognize
different chart types from the text. The need for this classifier resulted from
the limited data input by the domain scientists. We used a machine learning-
based approach for obtaining domain knowledge from visualization captions
available in biodiversity publications. By combining this classifier with our
visualization taxonomy, we generated the visual goals for our system.

3. Context-aware Variable Selection Algorithm: A context-aware variable
selection algorithm reduces a large number of variables to the most interesting
and relevant one. The candidate variables are selected based on the metadata’s
contextual and semantic properties. This ad-hoc algorithm can be created for
any domain that provides the metadata alongside the dataset by following our
context-aware variable selection workflow.



Chapter 5

Domain Knowledge-based
Visualization Recommendation
Model

"My particular ability does not lie in mathematical calculation, but rather in visual-
izing effects, possibilities, and consequences." - Albert Einstein

A conceptual model is an application model that the designers want users to
understand [Johnson, 2007]. It enables a software designer to provide an overview
of the solution without getting into many details. It precisely discusses the vari-
ous components that constitute the development of the system. In visualization
science, the visualization pipeline is a general model for a typical visualization pro-
cess structure [Haber and McNabb, 1990]. Starting from data to be visualized and a
particular visualization task at hand, several steps are processed along the visualiza-
tion pipeline, including data enhancement, visualization mapping, and rendering, to
eventually achieve visuals of the data to serve the given visualization task through ef-
fectiveness, expressiveness, and appropriateness [Schumann and Müller, 2013]. This
chapter presents our visualization recommendation model based on integrating the
knowledge from the biodiversity domain. This model provides an overview and the
importance of various elements that constitute the development of our knowledge-
based visualization system. Before defining our model, we first need to understand
the specific terms related to the knowledge-based systems in the visualization sci-
ence.

The terms data, information, and knowledge are often extensively used in an in-
terrelated context [Chen et al., 2008]. In visualization, [Chen et al., 2008] untangles
these definitions, not only in perceptual and cognitive space but also in computa-
tional space. In computational space, they define knowledge as "data that represents
the results of computer-simulated cognitive process, such as perception, learning, as-
sociation, and reasoning or the transcript of some knowledge acquired by human
beings". Others describe knowledge as a combination of data and information com-
plemented with expert opinion, skills, experience, expertise, and accumulated learn-
ing [Rowley, 2007].

Visualization researchers have repeatedly called for the integration of knowledge
with visualization [Wagner, 2015]. ‘Integration of prior knowledge in the visualiza-
tion systems’ is listed as one of the ten unsolved information visualization (InfoVis)
problems [Chen, 2005]. He argues that InfoVis systems need to be adaptive for user’s
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accumulated knowledge, especially domain knowledge needed to interpret results. In
their discussion on the ‘science of interaction’, [Pike et al., 2009] declare ‘knowledge-
based interfaces’ as one of seven research challenges for the coming years.

Knowledge-assisted or knowledge-based visualizations are defined as:
"Knowledge: Data that represents the results of a computer-simulated cognitive

process, such as perception, learning, association, and reasoning, or the transcripts
of some knowledge acquired by human beings." [Chen et al., 2008]

There are various ways by which one can apply the user’s knowledge in a visu-
alization system. For example: choosing variables, views or charts for visualization
recommendation systems, colors within the visualizations, etc. Knowledge-based
visualization systems’ objectives include sharing domain knowledge among different
users and reducing users’ burden to acquire knowledge about complex visualization
techniques [Chen et al., 2008]. However, [Chen et al., 2008] also list the following
shortcoming of such systems: 1) it is difficult to know what knowledge to capture
and the inconvenience of collecting knowledge in bulk from the experts, 2) it leads
to the development of a system only at a specific application level. Keeping these
limitations in mind, we developed our system based on the simple rule-based visu-
alization reference model by [Heer and Agrawala, 2006].

Figure 11: From a) the visualization reference model [Heer and Agrawala, 2006] to
b) the knowledge-based visualization model.

The reference model (Figure 11(a) by [Heer and Agrawala, 2006]) provides a gen-
eral template for structuring visualization applications that separate data models,
visual models, views, and interactive controls. This separation of data and visual
models enables multiple visualizations of a data source, separates visual models
from displays to enable multiple views of visualization, and modular controllers to
handle user input in a flexible and reusable fashion. As depicted in Figure 11(b),
when we include our Knowledge Engine, the same rule-based visualization model
becomes a knowledge-based visualization model. This Knowledge Engine is a cent-
ral processor by which one can integrate the domain knowledge in any visualization
system. Therefore without this unit, this model will lose the benefits provided by
the domain knowledge in the system. For us, these benefits are to decrease the the
variable space and provide domain-based data insights. This Knowledge Engine is
a base of our Knowledge-based Visualization Recommendation Model.
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5.1 Knowledge-based Visualization Recommend-
ation Model

Figure 12 shows our visualization recommendation model, which uses the domain
knowledge at its different stages.

Figure 12: Domain Knowledge-based Visualization Recommendation Model

In the context of recommendation systems, we would like to divide the know-
ledge inclusion in two forms: data specific and technique specific. Data specific
knowledge is the knowledge about the domain and the context of the data. In our
model, Biodiversity Visualization Text Classifier and Context-aware Variable Selec-
tion Algorithm, include data specific knowledge in our system. Technique specific
knowledge is about visualization specific technical knowledge: visual mapping, code
to create the visualizations etc. In our model, Visualization Knowledgebase per-
forms this task.

Biodiversity Visualization Text Classifier reads in the metadata from the
dataset and classifies it into different visualization types. Based on the provided
metadata, it performs the chart selection for the dataset. The classification is done
based on the machine learning classifier trained on the abundance of visualization
images and captions available in biodiversity publications. Detail about the con-
struction of this classifier is provided in Chapter 6.

Context-aware variable selection algorithm (CVS) reads in the metadata.
Based on this metadata’s context and salient keywords from other metadata files
within the project, it filters out the important variables. Thus it performs the
variable selection for the dataset to be visualized with the charts selected by the
classifier. This algorithm is explained in detail in Chapter 8.

Visualization Knowledgebase is composed of a visualization database and
visualization conditions files. The visualization database is implemented in Neo4j1
and is the database level view of the visualization taxonomy presented in Chapter
7. It gets the predicted ranked visualization list from the classifier and provides the
ranked visual goal list. The detail about visual goals realization is also provided in

1www.neo4j.com

www.neo4j.com
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Chapter 7. The visualization conditions file reads in the visual tasks and the vari-
ables filtered by the CVS. Based on the data type of these variables, it filters the
reasonable goals out. For example, for any network-related visualizations like allu-
vial diagrams, node-link diagrams, etc., it is essential to have at least two categorical
variables. Only the overview goal has no restriction on a specific data attribute, as
it provides a univariate analysis of a selected variable. The detail logic for the se-
lection of the visual goals is provided in Table 5.1. Based on the data type of the
variable, it ignores those goals which cannot be visualized. For example, ignoring
the hierarchy visual goals when no categorical variables are present.

The output from all the above modules is input to the visualization gallery, which
sends out the appropriate visual goals clubbed with related visualizations.

Table 5.1: Rules for the selection of visual goals
Visual Goals Rules

Network len(categorical)>=2 and (len(quantifiable)>=1 or len(discrete)>=1)
Composition len(categorical)>=2 and (len(quantifiable) >2 and len(discrete) >=1)
Comparison len(categorical)>=1 and (len(discrete)>=1 or len(quantifiable)>=2)
Hierarchy len(categorical)>=1 and (len(discrete)>=1 or len(quantifiable)>=1)
Clustering len(quantifiable)>=2 and len(discrete)>=1
Distribution len(quantifiable)>=2 and len(discrete)>=1
Overview all allowed

The rules presented in Table 5.1 are encoded according to the Python program-
ming language. Here len is length. For example, len(categorical) means the number
of variables that are of data type categorical. Symbol ">=" means either left ex-
pression is greater than or equal to the right expression or vice-versa. and and or
are basic logical operators.

Each data variable is classified into three data attributes types. They are:

• Categorical: Categorical scales can be of type string or integer. They identify
entities as belonging to mutually exclusive categories. Categorical columns are
differentiated from other data columns or variables by the number of unique
values. Though there is no one protocol on which this threshold of unique
value is defined. However, for our application, we kept this value as 10. So, all
variables which have ten or fewer unique values are categorical. For example,
leaves_dead categorical column with 0 signifies the absence of dead leaves,
and 1 signifies the presence of dead leaves. Same with variable tree_type, with
different labels which are names of different tree types.

• Quantifiable: All quantitative variables are considered as a quantifiable scale.
For our application, we have considered both ratio and interval scales as
one. This distinction is not useful when designing a visual encoding system
[Munzner, 2014]. Therefore we have merged both of them in one category.
For example, temperature, height, weight, etc., are all considered as one type.
Date format is also considered in this category.

• Discrete: Discrete is a numerical scale with a finite number of possible values
and can only be expressed in whole numbers. Examples of such values are
count, age, etc.
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5.2 Recommendation Workflow
In the following, we have step-wise described the recommendation workflow within
our system.

1. When a user selects a dataset, our Biodiversity Text Classifier gets activated
and provides a list of all the suitable visualizations based on the metadata’s
text.

2. Then, the context-aware variable selection algorithm filters out the interesting
variables from the dataset.

3. Based on the visualization knowledgebase and the filtered variables’ data at-
tributes, appropriate visual goals are sent to the user. Visual goals are ex-
plained in detail in Chapter 7.

4. Based on the user selected goal, the relevant visualizations are sent to the user
interface along with the suitable variables that can be represented by these
visualizations.

5.3 Summary
This chapter presents an overview of the solution to provide a visualization re-
commendation system for the biodiversity community. We have described our
knowledge-based visualization recommendation model, which we have extended from
the visualization reference model by [Heer and Agrawala, 2006]. The next chapters
contain details about the construction of each component of this model.



Chapter 6

Biodiversity Visualization Text
Classifier

*Part of this chapter is based on work published in the Proceedings of the 15th In-
ternational Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3: IVAPP, 157-168, 2020, Valletta, Malta

One of the core elements of our visualization recommendation system is to derive
the visual goals from the datasets automatically. In our work, these visual goals are
derived based on the domain knowledge and the context of the data. Our need to
gather this domain knowledge in bulk has led to the creation of the biodiversity
visualization text classifier. This chapter describes in detail the development of this
classifier.

From our requirement analysis survey (Chapter 2), we found that a spectrum
of different visualizations can represent a single domain-specific task. On the other
hand, there are always typically one or two tasks prominent to each visualization
(Table 2.1). Most of these tasks are domain-dependent tasks. For example, for a
dendrogram, it is a phylogenetic analysis. For a scatterplot, it is spatial distribution
along with other analytical tasks like PCA, Regression Analysis. It shows that
each visualization type can be identified by its typical visual and domain-specific
tasks and vice versa. The abstract task of distribution, correlation or so, can be
expressed in very diverse terms using a domain-specific language [Munzner, 2014].
As these tasks are described in a human language, a text containing such terms
can be identified into visualization types. Typically, a biodiversity dataset comes
with a metadata file. These metadata files provide information about the what,
why, when, and who of data and context, methodology, keywords related to the
dataset, and research. Thus, these files are a good source of textual information that
can provide dataset-specific visual goals when appropriately processed. Classifying
this metadata information with an intelligent system that understands the domain
and the visualization vocabulary can produce interesting visual insights into the
data. To develop a system that can simultaneously understand the biodiversity and
visualization tasks, we needed much training data.

As also mentioned in Chapter 2, several attempts to gather this training data
from users failed. Therefore, we decided to gather this information from already
published biodiversity literature. Reviewing the literature for eliciting possible
domain tasks is a core data generation strategy in different visualization studies
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[Kerracher and Kennedy, 2017, McKenna et al., 2014]. For developing a classifica-
tion system that understands both visualization and domain-specific vocabularies,
textual training data needs to be an amalgamation of a) terminologies from dif-
ferent visualizations b) domain-specific terminologies used in conjunction with the
visualization terms. In scientific publications, visualization captions contain such
information. For our training data, we extracted the following information content
from the biodiversity publications: a) visualization or chart images, by which we
can identify the chart type in it, and b) the related visualization image captions.
Visualization captions provide multitudes of information: a) representative goals of
the author which are not directly visible from the image itself, b) domain-specific
tasks, depicted through the chart, and c) chart layout and characteristics (e.g., text,
colors, lines, shapes). Consider, for instance, Figure 13 and the original caption to
the visualization taken from [Moody and Jones, 2000].

"Fig. 5. Boxplots comparing the distribution of the measured soil variables at
the different canopy positions at trunk, midcanopy, the canopy edge, and outside
the canopy, respectively. The upper and lower boundaries of each box represent
the interquartile distance (IQD). The horizontal midline is the median value. The
whiskers extend to 1.5x IQD. Outliers are displayed as horizontal lines beyond the
range of the whiskers. If the notches of any two boxes do not overlap vertically, this
suggests a significant difference at a rough 5% confidence interval."

Figure 13: Example image adapted from "Soil response to canopy position and
feral pig disturbance beneath quercus agrifolia on santa cruz island, california" by
A Moody and J. A. Jones, 2000, Applied Soil Ecology, 14(3):269 – 281.

The caption of this figure provides clues about the following information:

Chart type: boxplots, box, horizontal midline, whiskers, horizontal lines, notches.

Representative goals: comparing, distribution.

Domain specific variables: soil variables, canopy positions, trunk, midcanopy,
canopy edge.

Statistical or analytic information: interquartile distance (IQD), median value,
confidence interval.
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If a system knows this information for each chart type, then with the provided
biodiversity text, one can infer different chart types. Once chart type is known,
then using a visualization task taxonomy, visual goals can be inferred. This idea
leads to the foundation of the creation of the very first biodiversity visualization text
classifier. As we are unaware of any past studies on visualization classifier based on
text, we can claim it to be the first visualization text classifier in the visualization
research. Previously, visualization or chart type classification or recognition has
only been done based on chart images [Savva et al., 2011, Balaji et al., 2018].

6.1 Classification Process

The process of creating the biodiversity text classifier consists of a sequence of com-
plex steps, visualized in Figure 14. The first step was to manually create a starting
dataset, that associates caption texts with their respective chart types. This set is
then incrementally extended using a combination of image and caption classification
techniques, in order to gain the highest possible quality on the automatic labeling
of unlabeled data. The resulting dataset is then used as training set for the biod-
iversity text classifier, that can be integrated into the biodiversity knowledge-based
visualization recommendation system.

Figure 14: Workflow for the creation of the biodiversity visualization text classifier

6.1.1 Data preparation
In our data collection process, first we selected reputed biodiversity journals rep-
resenting different biodiversity sub-domains. The breakdown of the downloaded
publications is shown in Appendix I.

We had downloaded all available volumes and issues of these journals till 2016,
which is the year when this download was done. For creating the initial dataset, we
downloaded 26 588 biodiversity publications through Elsevier ScienceDirect article
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retrieval API1, which allows the download of a complete publication in an XML
format. From these 26 588 downloaded publications, 96 837 images and their cap-
tions were extracted using a python script.

6.1.2 Class formation and annotation process
Out of 96 837 image and caption samples, we created our training data by randomly
selecting a subset of 4 073 visualization image captions and labeling them with their
respective visualization types. Due to the sheer richness of different visualization
types – a closer study revealed the sample to contain 59 different visualizations (see
Appendix C) – we continued our annotation process in the following stages:

Class grouping: In order to gain adequate sample sizes for each of the visu-
alization types or classes, we split/merged the original 59 classes into super/sub
classes:

> 50 samples in class Since we considered 50 examples to be sufficient for classi-
fication, all classes with same or more examples were kept as super classes.

< 10 samples in class These classes had very small set of examples and were not
suitable match for our super classes. Therefore, they were rejected from the
further annotation process.

all other classes All classes, that do not figure frequently enough to suffice for the
classification task have been merged into super classes either based on their
visual similarity or their representational goals. For example, chart types that
use the same coordinate space (e.g., xy plot) and same visual marks (e.g., bars)
were considered visually similar and then were merged. This way, all the chart
types which are visually similar to Column Chart e.g., Bar Chart, Stacked Bar
Chart, Multiset Bar Chart etc. were all merged into the super class ‘Column
Chart’. On the other hand, Chord Diagrams, Alluvial Diagrams and Network
Diagrams are visually dissimilar but have the common representational goal
of connecting entities. Thus, they all were grouped in the class Network’. All
non-visualization images (e.g., camera-clicked pictures, conceptual diagrams
etc.) were grouped into the ‘NoViz’ class. Due to the variant structure of
non-visualization images, ‘NoViz’ class was also excluded from the image clas-
sification process. An overview of retained classes is provided in Appendix
D.

Doing so, we ended up with 15 different super classes.
Assignment of classes for caption classification: Once, we had formed the
classes, we did another round of annotation. We have now labeled our selected
corpus of 4 073 captions with these 15 classes. For detailed information about these
classes, refer to Appendix E.
Assignment of classes for image classification: For creating a training set
for image classification, we had to ignore the visually similar classes. Histogram is
visually similar to the column chart and timeseries is visually similar to the line chart
(see Appendix E). Thus, histograms and timeseries were ignored from the image
classification process. Alongside, due to the variant structure of non-visualization
images, ‘NoViz’ class was also excluded from the image classification process.

1https://dev.elsevier.com/sciencedirect.html#/Article_Retrieval

https://dev.elsevier.com/sciencedirect.html##/Article_Retrieval
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We have provided the frequency distribution of classes for image and caption
classification in Table 6.1. In Appendix E, we have shown examples for each class,
that consist of the replicated original image and caption from open-access publica-
tions. Due to copyright issues, we are unable to provide original examples from our
dataset.

Table 6.1: Frequency distribution of our manually annotated training dataset for
caption and image classification.

Classes Caption Classes Image Classes
Ordination Plot 503 278

Map 529 277
Scatterplot 399 272
Line Chart 320 283
Dendrogram 282 243
Column Chart 427 302

Heatmap 147 124
Boxplot 210 104

Area Chart 159 95
Network 58 32
Histogram 57 -
Timeseries 319 -

Noviz 511 -
Pie Chart - 134
Proportion 157 -

Total 4073 2144

6.1.3 Image classification
For image classification, we have used Convolutional Neural Networks (CNNs).
CNNs are a specialized kind of neural networks for processing data that has a
known grid-like topology. Since images can also be thought of as 2D-grid of pictures
[Goodfellow et al., 2016], CNNs have been tremendously successful in application to
image data.

For training, we have used reusable pre-trained neural network modules provided
by TensorFlow Hub2. TensorFlow Hub is a library for the publication, discov-
ery, and consumption of reusable parts of machine learning models. Each Tensor-
Flow Hub module is a self-contained piece of a TensorFlow graph, along with its
weights and assets, that can be reused across different tasks in a process known
as transfer learning. Out of the available CNN modules in TFHub, we chose
MobileNet_V2 [Sandler et al., 2018] as our CNN architecture. MobileNet_V2 is
a family of neural network architectures for efficient on-device image classifica-
tion and related tasks. MobileNet has achieved a similar accuracy to VGG-16
[Simonyan and Zisserman, 2014] using far fewer parameters on ImageNet dataset
[Russakovsky et al., 2015]. MobileNet_v2 module of TensorFlow Hub contains a
trained instance of the network, packaged to do the image classification. This
TensorFlow Hub module uses the TensorFlow Slim implementation of ‘Mobile-
Net_v2’ with a depth multiplier of 1.0 and an input size of 224x224 pixels. For

2www.tfhub.dev/google/imagenet/mobilenet_v2_050_96/feature_vector/2

www.tfhub.dev/google/imagenet/mobilenet_v2_050_96/feature_vector/2
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training the classifier, we used Keras3 with TensorFlow [Abadi et al., 2016] backend.
To train the classification network on our data, we resized the images to a fixed size
of 224 x 224 x 3 and normalized them before feeding them into the network. We
used Adam optimizing function [Kingma and Ba, 2014] with the learning rate of
0.001. We have trained with the default batch size of 32 for 60 epochs. This net-
work was trained on Intel Core i7 - 8550U CPU 1.80GHz with 16GB memory for
approximately 1 hour.

6.1.3.1 Results from image classification

For evaluation, we have used Keras’ in-build evaluation function. When provided
with suitable parameters, Keras separates and retains a portion from the training
data and then uses that unseen retained data for evaluating the model. For evalu-
ating our image model, 20% of the examples from the image dataset were retained
from training. Our model has achieved a classification accuracy of 75% on an auto-
matically selected batch of 100 images. Then this classifier was used to classify the
original corpus of 96837 IDs. Our image classifier was able to annotate 54%, i.e.,
52921 IDs out of 96837 IDs, with confidence of 95% and more.

6.1.4 Caption classification

The 4 073 manually labeled image captions served as training set for the initial su-
pervised classifier. In order to be able to optimize the classifier for each of the
identified classes separately, we decided to build binary classifiers, that can distin-
guish one specific class from all others. From these specialized binary classifiers, an
assembly classifier is constructed (see Figure 15, Training Step). Given an input,
the assembly asks each classifier to process the input separately (as detailed in Fig-
ure 15, Classification Step), and receives a probability score that states how likely
it is, that the given sample is of the respective class. The classes of all classifiers,
that give a positive response with a certain preset confidence (in our case usually
90%), will then be returned as result vector.

To find out which binary classifiers to incorporate into the assembly, we imple-
mented and optimized three standard classifiers in text classification [Joachims, 1998,
Sebastiani, 2002]: Support Vector Machines (SVM), CNN and Random Forests.
SVMs [Cortes and Vapnik, 1995] are inherently binary supervised learners. In their
linear form, they find the maximum-margin hyperplane in data space that best sep-
arates the data points of one class from the data points of the other class. Kernels
[Boser et al., 1992] have been introduced to generalize the principle to polynomial,
radial or sigmoid functions. Random Forests [Ho, 1995] are assemblies of a – usu-
ally rather large – number of Decision Trees that contribute to the main decision
in form of a majority vote. Additionally, in resemblance to the image classifier, a
neural network solution – specifically a multilayer perceptron classifier with the same
stochastic gradient-based optimizer as the image classifier and the same constant
learning rate of 0.001 – was used.

3www.keras.io/api/

www.keras.io/api/
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Figure 15: Caption classification process

6.1.4.1 Preprocessing

As is standard in natural language processing [Aggarwal and Zhai, 2012], the labels
have been broken into tokens, stemmed and stop words have been removed before
processing them. Additionally, some standard phrases that have been identified
during manual n-gram evaluation of the data and are unrelated to the contents of
the image, like phrases to make people aware of the modalities of the online version
of the paper – e. g. "For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article", – have been automatically
removed. In order to keep the training data as pure as possible, captions referring
to multiple visualizations were filtered out, leaving a dataset of 4 066.

The resulting word vectors contain the term frequency - inverse document fre-
quency (tf-idf) scores [Ramos et al., 2003] per word.

6.1.4.2 Model optimization or parameterization

Each binary classifier has been trained separately on a data set consisting of all
samples of the target class and an equal number of samples uniformly distributed
over all other classes. Classifiers have been evaluated using a 5-fold-cross-validation,
that splits the data set into 5 equal parts training on 4 parts and testing on the last.
The final evaluation result constitutes as the average of all five runs.

In order to reach the best results, we optimized both the pre-processing of the
data as well as the parameters of the classifier itself. On data level, we optim-
ized the maximum size of the vocabulary, the minimum number of documents each
word figures in and which n-grams should be included into the analysis. Applying
an exhaustive grid search over the range of sensible parameters for each feature
(vocabulary size: [250 to 1250 (steps of 250)], minimum document frequency: [0 to
4], n-grams: [1 to 6]), we achieved the best results using a base vocabulary that
consists of the 750 most important words and 2-grams, that occur in at least 3
documents in the whole corpus.

We also optimized SVM for its kernel function (linear, polygonal, sigmoid, and
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Figure 16: Classification results (F1 score) of the Random Forest (RF), Support
Vecor Machine (SVM) and Neural Network (NN) classifiers for each class in our
corpus.

radial basis function), finding a linear kernel to give the best results, and the Random
Forest classifier for the number of Decision Trees in the assembly (100 to 2000 in
steps of 100), finding that the impact on the classification accuracy is rather small.
The neural network has been tested with different node sizes in its hidden layers (2,
10, 15, 50). The best result has been achieved with 15 nodes.

Figure 16 shows the best results on each class of the classifiers. The results show
that Random Forests outperform the results of SVM and the neural network in all
classes with up to 7% increase in the F1 score. One possible conclusion to draw from
these results is that, the linguistic properties of caption data can be modelled more
precisely through a series of parallel boolean operations than through a maximum-
margin method. Following this finding, we will use Random Forests as classifier for
the assembly of binary classifier.

6.1.5 Incremental learning and caption dataset extension
The purpose of the caption classification is twofold. First, we want to extend the
existing dataset to reduce the risk of overfitting the single binary classifier. Second,
to train the binary classifiers to understand the words and phrases describing the
underlying data of the chart in order to finally recommend chart types based on
data set descriptions.

Incremental learning and an additional agreement step with the classification
result of the image classifier (see Figure 14) was used to increase the size of the
original 4 066 captions to a dataset of 22 881 captions.

One iteration of the incremental learning algorithm includes the following steps:
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Learning: Conduct 5-fold cross-validation on the current dataset to evaluate the
quality of the set (results see Figure 17). Train all binary classifiers on the
whole dataset.

Annotation: Use the assembly to label as many captions of the remainder of the
untagged data as possible with at least 90% confidence. Include new labels
and captions into the extended dataset.

The two steps are repeated until a finishing criterion is met. Since we were
focusing on extending the dataset in this phase, we stopped the algorithm when
the number of newly included tags fell underneath a preset threshold (0.01% of the
whole corpus in our case). This way, the caption classifier was able to annotate 44%
of the total corpus which amounts to 43 256 IDs with a confidence interval of 90%.

6.1.6 Refining the knowledgebase
In order to ensure highest quality in the creation of our knowledge base, we refined
the resultant data from image and caption classification in a multi-step process:

• We started with 52 921 labeled images in Image Corpus (IC), and 43 256
labeled captions in Caption Corpus (CC).

• To get only the visualization image IDs, first we removed the ’NoViz’ labelled
IDs from the caption corpus. Leaving behind 43 256-451= 42 805 to be merged.
After the merging process, these IDs were put back to the corpus for iterative
learning.

• We merged the two corpora by only keeping those IDs that have been unan-
imously tagged by both classifiers. This set contains a total of 22 817 common
IDs.

• This set was then reduced to only contain the most reliable ID/label pairs:

1. ID/label pairs with full or partial agreement in classified labels from image
and caption classifier (11 108 samples). Partial agreement is reached if the
label given by the image classifier is contained in the class list provided
by the caption classifier; full agreement is reached if the caption classifier
only provides one label and this label matches the class of the image
classifier.

2. ID/label pairs with more than 98% confidence from image classifier (10 728
samples).

3. ID/label pairs whose classes were absent in image classifiers (Area Chart,
Time Series, Histogram, Proportion), if the source of disagreement between
image and caption classifiers stems from these classes, like ‘Timeseries’ in
CC and ‘Line Chart’ in IC or ‘Histogram’ in CC and ‘Column Chart’ in
IC. All other conflicts have been resolved manually. In our manual veri-
fication, ‘Proportion’ has performed bad due to its similar vocabulary
with ‘Pie Chart’ and all other classes that represent some ‘Proportion’
or ‘Composition’ representation goals, for example different stack chart
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types: Stack Area or Stack Column. To avoid such confusions for incre-
mental learning round, we had to merge some of these example to ‘Pie
Chart’, ‘Stack Area Chart’ and ‘Column Chart’. Rest of the examples
were ignored.

4. ID/label pairs that have been manually checked upon due to the multi-
assignment of the caption classifier were assigned the single true class if
possible. Captions representing multiple visualizations have been rejec-
ted.

This leaves us with 22 248 high-quality ID/label pairs.

• Finally, the automatically created dataset has been merged with the manually
annotated dataset to further increase the quality and size of our knowledge-
base (22 866 samples in total, 1 468 Ordination Plots, 4 989 Maps, 1 669 Scat-
terplots, 6 173 Line Charts, 452 Dendrograms, 5 459 Column Charts, 603 Heat-
maps, 303 Boxplots, 99 Area Charts, 187 Network Diagrams, 69 Histograms,
330 Timeseries, 448 Noviz, 304 Pie Charts and 313 Stack Area Charts).

6.2 Results and Discussion

6.2.1 Results
Figures 17 and 18 show the development of the quality of the classifiers as well as
the number of samples for each label over the course of the 41 iterations necessary
to reach the ending criterion (a tag rate of less then 0.01 % of the unlabeled samples
of the corpus). In most cases, the quality of the classifiers rises the most within
the first 3 iterations. After that phase, most classifiers do not change in quality
any more. Exceptions are the line chart, with a drop after the steep rise in the
beginning, the time series, with a drop at the eleventh iteration, and the histogram
and area charts that fluctuate around 80% accuracy. The drops in the performances
of both line chart and time series classifiers coincide with steep rises in the numbers
of examples for the respective classes, suggesting that the classifier needed some
iterations to adapt to the new dataset. The fluctuations in the quality of histogram
and area chart classifiers stem from the small sample sizes for the respective classes.

Figure 19 shows which classes have been mixed up by the final classifiers, that
have been trained on the entire resulting caption dataset before the agreement step.
Rows represent the classification results, while the columns shows the names of the
actual class of the misclassified sample. For example, the row denoted with N (Net-
work) shows only zeros, meaning that no samples have been wrongly classified as
network in this run. The most consistent confusions can be seen between boxplots
and column charts, and maps and pie charts. The confusion between boxplots and
column charts could stem from the presence of error bars in boxplots and a special
type of column charts. The confusion between maps and pie charts could be ex-
plained with the presence of certain visualizations where pie charts were overlaid on
the maps. Another similar cluster can be seen between pie charts and stacked area
charts. The reason could be because both visualizations share a similar representa-
tion goal as ‘Proportion’ and the division of some examples from ‘Proportion’ into
these two charts at the previous stage (see subsection 6.1.6).
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Figure 17: Line graph of the development of the accuracy of each binary classifier
during the iterative learning phase. Notably, even though most classifiers began with
classification accuracy of less than 80%, almost all of them increase their accuracy
drastically after the first five iterations.

6.2.2 Reasons for misclassifications
In our extensive study of the misclassified cases, we extracted several reasons for
such cases.

Mixed vocabulary from different chart types: The main reasons for this prob-
lem were a) often, multiple different visualizations are used in conjunction in
one image, showing, for example, pie charts on different locations on a map.
We have observed that the classifier could not perform well on those image cap-
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Figure 18: The development of the sample sizes for each class during the iterative
annotation. Similar to the increase in accuracy of the binary classifiers in Figure 17,
the numbers of sample sizes increase very quickly within the first few iterations.

tions, as the information about multiple chart types in the same text seemed
to offer conflicting clues. b) In some images, multiple different visualizations
are used to represent multidimensionality of the results. For example, the use
of scatterplot for showing the distribution of some species and in the same
image use of column chart for illustrating the comparison with other species.
Although all efforts were made to remove such instances from our training set,
however, we can’t deny their existence in the rest of the corpus.

Similar representational goal: Histograms, boxplot and scatterplot share sim-
ilar goal of showing distribution among continuous variables. Where, histo-
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Table 6.2: Scores from incremental learning
Classes Accuracy

Ordination Plot 0.98
Map 0.97

Scatterplot 0.89
Line Chart 0.91
Dendrogram 0.97
Column Chart 0.97

Heatmap 0.95
Boxplot 0.96

Area Chart 0.80
Network 0.91
Histogram 0.83
Timeseries 0.84

Noviz 0.93
Pie Chart 0.97

Stack Area Chart 0.96

gram shows the frequency distribution of a variable, boxplot provides detail in-
formation about this distribution among different quartiles. Then, scatterplot
shows relationship and causation of this distribution with other variable/s.
Unfortunately, although the visual representation is different, the language
describing both visualizations tends to use similar wording, likely causing mis-
classifications.

Mixture of definition/description and interpretation A caption can be used
to fulfill different tasks: define/describe the contents and/or interpret them.
As the language differs very heavily from one task to the other and the ratio
between definitions and interpretations varies from sample to sample even
within a given class, a classifier might be drawn to either specialize in the
definition/interpretation parts of the samples (high precision, low recall) or
generalize to a point that it cannot exclude other classes (low precision, high
recall).

Level of abstraction of some classes: Due to limited examples for some of the
classes, we had to form superclasses of visualization types. For example,
’Column Chart’ class is created by merging examples from 14 visualizations
subclasses. This leads to the source of confusion among other classes. For ex-
ample boxplots are confused with column charts due to the presence of error
bars in certain types of column chart.

Wrongly mentioned visualization types: In addition to the regular vocabu-
lary, the binary classifiers also look for their specific visualization name in
the caption texts. Unfortunately in some captions, wrong visualization names
are referred, mistaking for example a column chart for a histogram.

6.2.3 Comparison
Table 6.2 provides individual scores for different classes. Due to the special goal and
characteristics of our study, currently we do not have any base study to compare our
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Figure 19: Distributions of the false positive cases over their actual classes. Each
row contains the distribution for one binary classifier. The values run from 0.0 to
1.0 and sum to one per row, where 0.0 is no false positive case. For visual clarity,
values more than 0.20 are shown in the white font.

results with. None of the previous studies have considered both aspects of charts
(visuals from images and chart semantics from captions) for chart classification. In
Figure 20, we have provided the comparison among scores from common classes in
3 different studies. In this figure, Revision refers to [Savva et al., 2011], ChartSense
refers to [Jung et al., 2017] and DocFigure refers to [Jobin et al., 2019]

Figure 20: Comparison with other studies

Figure 20 shows that in comparison to other studies, we are only lacking in two
classes i.e Scatterplot and Area Chart. In our work, Ordination Plot and Stack Area
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Chart which is similar to Scatterplot and Area Chart respectively, were considered
as a separate class based on their representative goal and visual dissimilarities. No
such fine differences were made in the other studies. Scores of Ordination Plot is
98% and Stack Area Chart is 96%, and if we compare them with the other studies,
then our performance is better. With an average accuracy (F1-score) of 92.2% we
have proved that our approach of chart classification is better than only chart image
classification.

6.3 Summary
In this chapter, we have presented one of the key contributions of this thesis i.e.,
biodiversity visualization text classifier. To gather the domain specific visualization
vocabulary, we had to classify the chart types in the biodiversity publications. To do
so, along with the visual similarity of different chart types, we have also considered
the charts’ conceptual similarities. We have manually labeled the chart images
and captions from biodiversity publications. We have trained both the image and
chart classifiers on this data. From the best results of these two classifiers, we have
incrementally trained our assembly of text classifiers. Doing so, we have achieved an
average F1-score of 92.2% from assembly of binary caption classifiers. In chapter 10,
we have presented the qualitative evaluation of this classifier. Our result proves that
conceptual/semantic chart classifier can efficiently differentiate between those chart
types which are visually similar and are as efficient as image classifier. Due to the
conceptual understanding of such classifiers, they can be used as a domain knowledge
source for knowledge-based visualization studies.

By using visualization taxonomy and the visualization predictions from this clas-
sifier, a system can infer the visual goals from the domain specific textual data. In
the next chapter, we have described this visual goals generation workflow.
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Visual Goals Generation

*Part of this chapter is based on work published in the Proceedings of the Eurograph-
ics/IEEE VGTC Conference on Visualization: EuroVis, 29–31, 2017, Barcelona,
Spain

In the previous chapter, we have presented our biodiversity visualization text
classifier that can classify a biodiversity text into different visualization types. Each
visualization type illustrates some abstract visual tasks [Munzner, 2014]. To know
these visual tasks or goals for different visualization types, one needs to have a
visualization knowledge source or a taxonomy. Visualization task taxonomy maps
different visualization types to their respective visual goals. This chapter presents
our visualization taxonomy, to get the visual goals from the classifier’s predicted
visualization list.

Visual goals generation refers to obtaining a set of analytical tasks to be per-
formed on the visualizations. Understanding which tasks or goals an analyst wishes
to carry out is a non-trivial problem [Kerracher and Kennedy, 2017]. In a typical
design scenario, [Wijk, 2006] noted that visualization researchers must spend time
and effort bridging ‘the knowledge gap’ between themselves and the domain expert.
In reviewing the literature, [Kerracher and Kennedy, 2017] found the most prevalent
approach to task generation involved literature-based methods. As it was impossible
to collect the needed mass knowledge directly from the biodiversity community, we
obtained these tasks from already published visualizations in the biodiversity literat-
ure for our visualization recommendation system. We did this by using visualization
caption classification, which resulted in the creation of biodiversity visualization text
classifier. We have already discussed the creation of this classifier in Chapter 6. The
produced classifier understand the vocabulary of high-level visual goals and domain-
level goals, as shown in Figure 21.

The word clouds in Figure 21 are generated from the top few words of our four
binary classifiers’ vocabulary. These images show that the classifiers have learned
high-level visual goals and the domain goals within each visualization. For example,
for Dendrogram, high-level goals are clustering and hierarchy, and some of the do-
main level goals are upgma or phylogenetic analysis. Thus, these biodiversity visu-
alization text classifier (an assembly of binary chart classifiers), automatically map
the high-level visual goals with the domain goals and provide relevant visualizations
based on the provided text.

68
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Figure 21: Word clouds show the prominent keywords in the four visualization text
classifiers.

7.1 Visualization Taxonomy
Once we get the visualizations list from our classifier, we map them with their high-
level visual goals using our visualization taxonomy. We gathered these visual goals
while manually annotating the captions for the visualization text classifier and doing
some literature studies.

However, we have seen that these domain-independent information-seeking goals
(high-level visual goals) are very generic and are used in many different studies
([Roth and Mattis, 1990, Amar et al., 2005, Schulz et al., 2013]). Different visual-
izations represent these goals differently. Consider a goal to show distribution. If
a user is interested in viewing distribution over the spatial scale, distribution maps
are suitable. If she is interested in the distribution among two variables, then scat-
terplots are suitable. Whereas if she is interested in finding further patterns from
the data distribution and especially for multiple variables, this might lead to fur-
ther sub-goal of either correlation or clustering. Scatterplot matrices or parallel
coordinates represent the correlation among multiple variables. Ordination plots or
dendrograms and their variants represent clustering. Moreover, one visualization
can represent more than one user goal depending upon the type of the data. For
example, a treemap can represent hierarchical levels and part-to-the whole compos-
ition relationships when provided with categorical data. The advent of different
visualizations has made it possible to classify the visualizations according to the
data and the user goals they represent.

This work is inspired by a mind map presented by Andrew V.Abela1. Here,
the author has presented the four main user goals, which he has decomposed into
different data domains to suggest the visualizations. This mind map covers limited
user goals and limited data domains. However, it provides us a clue of hierarchically
decomposing the goals into subgoals and data domains for effective data visualiza-
tion suggestions. In contrast to, e.g., [Nusrat and Kobourov, 2015], which focuses
on geographical data, we aimed for a taxonomy that is not based on a specific data
domain. Unlike [Lee et al., 2006], we also tried to avoid limitation to some specific

1https://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html

https://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html
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visualizations set like network visualizations. The typology presented by [?] helps
users formulating a scientific inquiry that leads to a generic user task. Our taxonomy
identifies and classifies such generic user tasks or visual goals and recommends the
related visualizations based on the specifications of each task. For example, a spe-
cification for the composition task is different from that of the distribution or the
comparison task. Each task has different specifications and is represented differently
for different data types. Once the visualization is presented, a user may choose dif-
ferent operators like filter, zoom, etc., to get insight into the data and the graphics
or change his task and choose another visualization.

We reviewed more than 5000 statistical/scientific data visualization images from
different scientific journals for the creation of this taxonomy. We have generated
a database of more than 59 different data visualizations (see Appendix C) through
this review. Further, this review has led us to understand six basic visual goals
or user intentions for visualizing data. These goals can further vary into subgoals.
Representing these subgoals into different data dimensions generates different visual-
izations. For example, a user goal of distribution can be decomposed into clustering,
correlation, and distribution. Here, the visualizations for clustering of two or more
variables will be different. The visualizations for correlation among one, two, and
more variable will be different. The visualizations for the distribution of one, two,
and more variables will be different. The visualizations for the spatial and temporal
variables will be different. Hence all these different visualizations represent different
facets of one main goal, i.e., Distribution. To further clarify this point, let us look
at the example of network visualizations. Someone interested in understanding a
network might want to know the hierarchy within the network or might be interested
in the flow within the network. The visualizations for representing the hierarchy are
different from the visualizations for representing the flow. Furthermore, the visual-
izations that represent the flow into temporal, non-temporal, and spatial domains
are different. We have provided the taxonomy as a list view in Figure 22. It has six
main visual goals:

1. Network is either in the form of Hierarchy or Flow. Flow can be seen on the
temporal, non-temporal and spatial scales.

2. Comparison can be viewed between two or more temporal and non-temporal
entities. Furthermore, the change in one entity over temporal or spatial scales
can also be visually depicted under the goal of comparison.

3. Overview of one variable and overview of multiple variables can be displayed
according to different visualizations.

4. Composition It can be defined either as a part-to-the-whole or part-to-the-
part relationship. This further can be represented differently on temporal,
non-temporal, and spatial dimensions.

5. Distribution can be viewed for one, two or multiple variables with different
visualizations. Geospatial distribution can also be represented by different
versions of distribution maps, e.g., Choropleth Maps, Dot Map or Bubble Map.
Distribution then leads to either depict correlation or clustering. Correlation
can further be visualized for one, two or multiple variables. At the same time,
clustering can only happen between two or multiple variables.
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6. Trend are all temporal trend represented by specialized visualizations like
Timeseries, Line Charts etc.

Figure 22: Visualization Taxonomy

7.2 Visualization Goals Realization
Our biodiversity visualization text classifier produces a list of visualizations with
the probabilities of its suitability to the text. Once we get these visualizations,
we map them with their visual goals. We have implemented this taxonomy on the
Neo4j network database. When a query is sent to the database with input as a
visualization list, visual goals related to each visualization are sent back. Then
the algorithm adds up the visualization probabilities based on these goals. These
summed up probability scores then comes up as a ranked visual goal list. This visual
goal realization workflow is presented in Figure 23. Apart from the realized goals,
we have included the Overview goal on each visual goal list. This is due to the
feedback we received from our domain scientists at the requirement analysis phase
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Figure 23: Visual Goals Realization workflow

of this work. They mentioned that after data refinement, the preliminary task they
perform is data overview (see subsection 2.1.4).

7.3 Summary
In this chapter, we have presented our visualization taxonomy through which we
derive our visual goals. We have presented a workflow that explains the process of
getting ranked visual goals for the biodiversity text. Once our biodiversity visualiz-
ation text classifier classifies the biodiversity text. It then provides a list of ranked
visualizations. The ranking is based on the classification scores of each visualiza-
tion type. Then based on the visualization taxonomy, these charts are mapped to
different visual goals.



Chapter 8

Variable Selection Algorithm

Our visualization recommendation system’s first core element is to generate visual
goals from the biodiversity text automatically. Chapter 6 and Chapter 7 present a
complete workflow, to attain this by using our biodiversity visualization text clas-
sifier and our visualization taxonomy. The second core element of our visualization
recommendation system is to visualize large multi-dimensional datasets efficiently.
For that purpose, we have devised a variable selection algorithm based on the biod-
iversity context. This chapter discusses the development of this algorithm in detail.

Variable selection algorithm is similar to the feature selection algorithms in ma-
chine learning. A feature selection algorithm decreases the dataset’s feature space
by selecting appropriate features [Venkatesh and Anuradha, 2019], to increase the
efficiency of a machine learning model. A variable selection algorithm is the one that
chooses the subset of the variables that can be visualized for a better understanding
of the dataset.

Let us consider the following scenario to understand the importance of the vari-
able selection algorithm for a visualization system. Given a:

• Dataset with 40 quantitative variables

• 2-d visualization with x and y axis. For example: a scatterplot.

The possible number of combination for one visualization is the permutation
relationship [Gilson et al., 2008] and is represented by:(

n

r

)
= n!

(n− r)! (8.1)

-where n is the number of variables and r is the number of axes or dimensions. This,
in our scenario will yield:

40!/(40− 2)! = 1560

These many combinations for one visualization type will increase the visualiza-
tion search space [Chen et al., 2008] and make it more challenging to explore and
understand the dataset. Therefore, to reduce this space, different studies have ap-
plied various techniques that we have already presented in Chapter 3.

Our approach to reducing this space is by applying the context from the metadata
files which come with each dataset. We have used text mining techniques on these
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files to filter contextually relevant variable sets that can provide a good understand-
ing of the dataset. Our context-aware variable selection approach is based on two
important assumptions:

1. Those terms which are important for the dataset are mentioned more fre-
quently than others in the metadata.

2. Not all variables are equally important in the exploration of the dataset.

Based on the first assumption, a corpus of important terms can be used to signi-
ficantly reduce the variable space and aids in selecting important variables for the
visualization of the dataset. The second assumption allows the reduction of the
variable space based on 1) filtering the important variables, 2) disregarding vari-
ables that cannot directly contribute to the analysis. Examples of such variables are
comments, record numbers or row identifiers.

8.1 Context-aware Variable Selection Algorithm

Figure 24: Workflow of the context-aware variable selection algorithm

The workflow of our context-aware variable selection algorithm is presented in
Figure 24. This workflow consists of three different steps:

1. TF-IDF vectorization from project metadata

2. Selection of ‘top-k’ terms as keywords

3. Filtering variable subset based on keyword similarity measures

8.1.1 Data preparation
For creating and testing our algorithm, we took eight publicly available metadata
files from the BEF-China1 project and thirteen publicly available metadata files
from the Biodiversity Exploratories2 project. From the pool of publicly available

1www.bef-china.de
2www.biodiversity-exploratories.de

www.bef-china.de
www.biodiversity-exploratories.de
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metadata files, we have selected a number of those metadata files which have rich
content and are well-formatted. These files were then semantically enriched by
annotating with the biodiversity domain specific tagger. It is essential to mention
that these files were only used as a helper in creating this algorithm. The efficiency
of the algorithm does not depend upon the content of these files. Our algorithm can
be used with any biodiversity metadata and data files.

8.1.2 TFIDF vectorization from project metadata files
For filtering the interesting variables from the metadata files, we assume that those
words which are really important for the dataset must have been mentioned more
frequently than others in the metadata. We used the widely popular measure TF-
IDF [Berry and Kogan, 2010] to filter these words.

TF-IDF is an established measure from the field of information retrieval and
stands for term frequency (TF) and inverse document frequency (IDF). Text docu-
ments can be TF-IDF encoded as vectors in multidimensional euclidean space. The
space dimensions correspond to keywords (also called terms or tokens) appearing in
the documents. The coordinates of a given document in each dimension (i.e., for
each term) are calculated as a product of two sub measures: term frequency and
inverse document frequency [Jannach et al., 2010].

Term frequency describes how often a specific term appears in a document
(metadata file for us). Inverse document frequency reduces the weight of terms
that appear very often in all documents in the collection. This collection for us is
all metadata files belonging to the same project.

Performing a TFIDF-vectorization on the collection of metadata files, produces
a list of terms with the IDF scores for each metadata file.

8.1.3 Selection of top IDF scored keywords
Once we have a list of keywords with IDF scores for each metadata file, the next
important step was to choose the top-k terms from this list. In most cases, this
k can be manually selected. Automatic selection of a threshold is a well-studied
problem in information retrieval. Current threshold selection methods for example,
Verne method [Vergne, 2004], Zipf curve [Piantadosi, 2014] and Otsu’s threshold
[Eler and Garcia, 2013], are all based on count of the frequent terms and document
length. In our case, we want to select a threshold that is not based on the document
length but the number of variables, as this threshold will not be used in document
extraction but will be used in the variable extraction. After analyzing various tech-
niques, we have realized that the square root of the Binomial Coefficient of the
total variable count (Equation 8.3) might be a good threshold for our problem. Our
threshold is:

Threshold(θ) =

√√√√(n
r

)
(8.2)

where:

– n is number of variables in a dataset.

– r is the number of axis or visual marks for one visualization type.
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Let us consider Equation 8.1 to understand why it could be an appropriate value.
We know that the resultant combinations or visualizations for one 2-dimensional
(2-d) visualization of 5 variables are 20, considering they all have the same data
attribute. In this formula, axis combination has been counted twice. Which is true
because if a and b are the variables for one scatterplot, then at one time a will be
horizontal axis and another time b will be horizontal axis. The same goes for the
vertical axis. However, such a swap of variables is accomplished in seconds with the
modern visualization tools. Therefore we decreased the effect of this swap in the
Equation 8.1 by dividing n! by an extra r!. It transformed the Equation 8.1 to the
binomial coefficient (bc) in Equation 8.3.

(
n

r

)
= n!
r!(n− r)! (8.3)

The binomial coefficient is the number of ways of picking r unordered out-
comes from n possibilities, also known as a combination or combinatorial number
[Fowler, 1996]. In our situation, it creates combinatorial number of visualizations
that are possible with the provided variable count. Consider a dataset with five vari-
ables and a two dimensional visualization (n=5, r=2). Adding it to the Equation 8.3,
will yield 10 combinations of one visualization type. However, as the variable count
grows, so does the value from Equation 8.3, which is number of visualizations for
the dataset. Therefore, we need a function that can reduce this growing number
of combinations. In statistics and data analysis, a transformation function is used
to replace a variable to reduce the effect of the growth of the original variable to
the one side of the axis or, in other terms, to reduce the right skewness of the dis-
tribution. In comparison to other transformation functions, the square root x to
x(̂1/2) = sqrt(x), is one with a moderate effect on distribution shape. It is weaker
than the logarithm and the cube root. These functions are also used to reduce
right skewness and are commonly applied to discrete data, especially if the values
are mostly rather small [Emerson and Stoto, 1983]. Therefore for our problem, we
use the Square Root (SQRT) function to reduce the ever-growing combination of
binomial function.

Table 8.1: Binomial Coefficient (BC) and an effect of Square root (SQRT) trans-
formation. VC is variable count.

VC BC SQRT
2 1 1
3 3 1.73
4 6 2.44
5 10 3.16
6 15 3.87
7 21 4.58
8 28 5.29
9 36 6
10 45 6.70

Figure 25 shows the effect of the SQRT function in reducing the exponential
growth of the combinations. Table 8.1 shows the SQRT of the binary coefficient is
always close to (but not exactly) half of the original variable count.



77 Chapter 8. Variable Selection Algorithm

Figure 25: Effect of square root (SQRT) function in reducing the growth of combin-
ations from binomial function (BC).

Getting back to our context of a function to find threshold or ’top-k’ from a
provided tf-idf list. Considering a case if one visualization need a minimum of two
variables, then for 10 variables, Equation 8.3 is 5 which is also our top-k. Once we
have a list of top-k keywords, we refine them using BiodivTagger [Löffler et al., 2020].
BiodivTagger is a biodiversity domain ontology-based annotation pipeline. It re-
cognizes biological, physical, and chemical processes, environmental terms, data
parameters, phenotypes, and materials and chemical compounds and links them to
concepts in dedicated ontologies. All these terms have some analytical significance
that can assist in providing insight into the data. Thus, these tagged terms were
kept, and the rest were ignored. To see the effect of using BiodivTagger on the
terms, we will consider an example of one of our test dataset3. After processing
the metadata of this dataset, applying Equation 8.2 on the variable count from the
dataset, 19 terms were filtered from the idf list. These terms are:
[’area’, ’species’, ’leaf’, ’plot’, ’scientific’, ’seedling’, ’plant’, ’site’,’number’, ’helper’,
’biomass’, ’damage’, ’height’, ’dead’, ’ground’,’name’, ’understand’, ’set’, ’data’]

Running this list through the BiodivTagger, we removed all unwanted terms like
"scientific", "data", "number", "helper" etc. and kept useful terms as shown below:

[’plot’,’species’,’area’,’biomass’,’height’ ’leaf’,’dead’,’seedling’,’damage’]

8.1.4 Filtering the variable subset based on keyword simil-
arity

Once we have a refined list of keywords, the next step is to use them to filter the
variables. Standard similarity checks are used to find the term-similarity between

3https://data.botanik.uni-halle.de/bef-china/datasets/577

https://data.botanik.uni-halle.de/bef-china/datasets/577
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the keywords and the tokens of definitions and ids. They are presented in the
Algorithm 1.

Algorithm 1 Variable Selection Algorithm
Ensure: Set KEYWORD as Keyword list
Ensure: Set ID as Variable Id set
Ensure: Set DEF as Variable Definition set

1: for k in KEYWORD do
2: for id in ID and def in DEF do
3: if k in id then
4: FIL_V AR← ID
5: else if length(id) == length(def) then
6: if k in def then
7: FIL_V AR← ID
8: end if
9: else if length(id) != length(def) then
10: if SIM_SCORE(id,k) >= 0.8 then
11: FIL_V AR← ID
12: end if
13: if SIM_SCORE(id,k) < 0.8 then
14: SIM_NOM ← SIM_NORM(def, k)
15: if SIM_NOM >=0.7 then
16: FIL_V AR← ID
17: end if
18: end if
19: end if
20: if length(FIL_VAR)<=2 then
21: if k in id/def then
22: NEW_FILV AR← ID
23: end if
24: end if
25: end for
26: end for

8.1.4.1 Similarity Condition

In Algorithm 1, we have applied three types of keyword similarities. After careful
analysis of different styles by which text in variable ids and definitions are defined
in biodiversity metadata files, these conditions were formed.

1. Keyword similarity: It is a straightforward similarity condition, stated in
Algorithm 1 Line 3. If any of the keywords are present in the id term, then,
those ids are filtered. For example: consider we have an id soil_d with def
soil depth. If we have keyword soil, then, this id will be filtered.

2. Length based similarity: It is a special ad-hoc similarity condition that
we have introduced in our algorithm (see Algorithm 1 Line 5). It is based on
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the similarity between the length of id tokens and respective def tokens. For
example, continuing with the same example above, if we now have a keyword
depth, then the ‘Keyword similarity’ will not work. Therefore we introduce
this condition, wherein if the length of the id tokens are same as length of def
tokens (which in our case is true after normalization or removing underscore),
then the keyword similarity with def tokens will be checked. This will then
filter out the variables.

3. Distance based similarity: At this stage of the similarity check, we used dif-
ferent empirical similarity measures to do an intensive keyword search (Line 10,
13 and 14). It is named SIM_SCORE and SIM_NORM_SCORE. SIM_SCORE
function takes two tokens as input and produces a similarity score between 0.0
to 1.0. To find the similarity, this function uses two state-of-the-art string
distance metrics.

Levenshtein: Levenshtein function finds the smallest number of insertions,
deletions, and substitutions required to change one string or tree into
another. It is a Θ(mÖn) algorithm to compute the distance between
strings, where m and n are the lengths of the strings [Levenshtein, 1966].

Jaro-Winkler: Jaro method measures the weighted sum of percentage of
matched and transposed characters from two strings. Winkler modified
this algorithm to support the idea that differences near the start of the
string are more significant than differences near the end of the string
[Winkler, 1999]. The Jaro-Winkler distance uses a prefix scale which
gives more favourable ratings to strings that match from the beginning
for a set prefix length.

function SIM_SCORE(id,k)
LEV_SIM ← levenshtein(id, k)
ed← 1− LEV_SIM
JW_DIS ← JARO_WINKLER(id, k)
MAXI_DIS ← maximum_value(LEV _SIM, JW_DIS)

end function

SIM_SCORE function gets id and keyword tokens as an input. Then it cal-
culates the Levenshtein and Jaro-Winkler distance. From these two distances,
it only selects the maximum value (MAX function i.e., maximum of two func-
tions). For a variable to be selected at this stage, its id should have atleast
80% similarity to the keyword. Apart from using the MAX function, we have
also tried to calculate the average of these two scores with an average function.
However, we found that MAX function can filter more true positive variables.
Therefore we used it for further development.
SIM_NORM_SCORE is a short form for normalized similarity score. In
the case of def where there are more than one token, this function uses the
SIM_SCORE to calculate the distance between two tokens and normalize the
score based on the token count in the definition. This reduces the effect of
definition length on the similarity scores. If this SIM_NORM_SCORE is
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function SIM_NORM_SCORE(def,k)
CAL_FREQ← TOKEN_FREQ
NORM_WGT ← CAL_F REQ

def_T OKEN_COUNT

alpha← 0
SIM_SCORE ← SIM_SCORE(k, def)
SIM_NORM_SCORE ← alpha+ (SIM_SCORE ∗NORM_WGT )

end function

more than 70% or 0.7 for any keyword and its definition, then the variable will
be filtered out else it would not.

These filtered variables are then represented by different visualizations based on
the provided visual goals from Chapter 7.

8.2 Summary
In this chapter, we have presented our biodiversity context-aware variable selec-
tion algorithm. We have presented a workflow by which any domain-based variable
selection algorithm can be created to visualize the datasets. While observing the
state-of-the-art of the feature selection algorithms in Chapter 3, we have observed
that such algorithms are rarely used for the development of the visualization re-
commendation system. In this chapter, we have discussed the importance of these
algorithms in decreasing the variable space and in return the visualization space in
the recommendation systems. This algorithm is strictly based on the data’s context
by extracting important keywords from the metadata files, labeling them with the
BiodivTagger, and using different text-matching techniques to filter the variables
based on these keywords. It is an ad-hoc algorithm that is not based on some pre-
derived corpus. Therefore, it’s efficiency is based on the currently available metadata
files and their quality. In Chapter 10, we have presented this algorithm’s evaluation
based on the ground truth gathered from the biodiversity community.



Chapter 9

Knowledge-based Visualization
Recommendation System

This research provides the biodiversity community with a visualization recommend-
ation tool for visual data exploration. These recommendations are based on the
domain as well as the context of the dataset. In Chapter 6, we presented the mech-
anism through which we have gathered the biodiversity domain knowledge from the
publications. These text-based visualization classifier gets a text from the field of
biodiversity and suggests appropriate visualizations. Chapter 7 showed how we used
these predictions from the classifier to realize the visual goals or visual tasks. In
Chapter 8, we showed the mechanism through which we contextually select the sub-
set of the variables to reduce the dimensions of the dataset to be visualized. This
chapter discusses our final software solution, which has been created by connected
all these modules.

9.1 Architecture
As also discussed in Chapter 5, we have extended the original visualization reference
model provided by [Heer and Agrawala, 2006] into a Knowledge-based visualization
model by including a knowledge engine module (Figure 26).

Figure 26: Knowledge-based visualization recommendation model
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In the following, we describe each component of this model:

• Data source: Data source component is a database connectivity interface or
a file reader that loads a dataset to be visualized.

• Dataset: It is a dataset that needs to be visualized. For us, it is a combo of
.xml1 formatted metadata files and tabular raw data files in a .csv2 format.

• Knowledge Engine: This component is a core component of our model.
It integrates the domain knowledge in the model. It is an intelligent system
that takes in the .xml data files and infers two essential components of our
visualization system: visual tasks and a subset of variables to be visualized.

• Visualization Gallery: The visualization gallery provides the necessary code
and visual mappings to run a visualization. As per the defined visual goals,
appropriate visualizations from the visualization gallery is selected. Visualiz-
ation code then calls the actual dataset to retrieve the needed data columns.

• View: View is an interactive interface to show the visualizations to the user.

• Control: A user uses different controls provided on the interface to select
and configure the visualization. Control callbacks to the visualization gallery
whenever a new visualization is selected. This triggers different functions as
per the selected visualization, which calls for the dataset columns to show up
on the interface.

9.2 System Configuration
In Figure 27, we show the configuration of our visualization recommendation sys-
tem. It runs on the flask3 application programming interface (API), which can be
either deployed online or offline. Flask is a lightweight WSGI (Web Server Gateway
Interface) web application framework. It is designed to make getting started quick
and easy, with the ability to scale up complex applications. It has become one of the
most popular Python web application frameworks. Flask offers suggestions but does
not enforce any dependencies or project layout. It is up to the developer to choose
the tools and libraries they want to use. There are many extensions provided by the
community that makes adding new functionality easy. The flask server initiates the
main file, which reads in the request from the front end or the view and sends it to
the different functions that activate the back-end files. These files then send their
responses to the main file, which are further sent to the front-end or view.

The backend files are all Python files, which are directly connected to the dataset
or data source. For our system, these backend files perform the whole logic of
the Knowledge Engine as shown in Figure 12. The front end (see Figure 28) is a
javascript file that defines the layout and the different graphical elements. Using
different javascript event handlers, these elements speak with the main file, which
further calls to the backend files. Further, we have defined the various calls that it
makes to the API:

1Extensible Markup Language
2Comma-separated Value Files
3https://palletsprojects.com/p/flask/

https://palletsprojects.com/p/flask/
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1. Selected Data: A drop-down is provided with the list of different datasets,
configured to be visualized on this interface. As the user clicks on any dataset
number, it sends that number to the API. API further sends this to the backend
files.

2. Visual Goals: Based on the selected dataset number, the backend files send
out the list of visual goals that could be appropriate to explore this dataset.
This list is further sent to the interface in the sequence of its suitability to the
dataset, which is then displayed on the screen (see Figure 28).

3. Selected Visual Goal: From the displayed list of visual goals, the user selects
a goal of its interest. This information is sent back to the API, which further
triggers the backend files.

4. Related Visualization: As a response to the call of the selected visual goal,
the backend files then send out the list of all the corresponding visualizations
that can visualize the selected goal. The list is then displayed as clickable
thumbnail pictures of the visualizations (see Figure 28).

5. Selected Visualization: The user then selects the visualization of its in-
terest. This information is sent to the backend files via flask API.

6. Rendering: The backend file then sends out the python code for the selec-
ted visualization to render it on the screen. The user then explores these
interactive visualizations and use different controls to manipulate them.

Figure 27: System configuration
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Figure 28: Biodiversity visualization recommendation tool

We have used different Python visualization libraries to render visualizations and
show different controls to interact with the application:

HoloViews is an open-source Python library designed to make data analysis
and visualization seamless and straightforward. In HoloViews4, the declaration of
data is entirely independent of the plotting implementation. HoloViews plots are

4www.holoviews.org

www.holoviews.org
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based on another visualization library Bokeh5. bokeh.models component provides a
powerful platform to generate interactive plots using HTML5 canvas and WebGL
and is ideally suited towards an interactive exploration of data. By combining the
ease of generating interactive, high-dimensional visualizations with interactive wid-
gets and fast rendering provided by Bokeh, HoloViews is a powerful visualization
library. hvPlot is a high-level plotting API built on HoloViews that provides a
general and consistent API for plotting data in different data formats. hvPlot6 can
integrate neatly with the individual libraries if an extension mechanism for the nat-
ive plot APIs is offered or used as a standalone component. hvPlot provides an
alternative for the static plotting API provided by Pandas and other libraries, with
an interactive Bokeh-based plotting API that supports panning, zooming, hovering,
and clickable/selectable legends. Plotly Express is a terse, consistent, high-level
API for creating figures. The plotly.express7 module contains functions that create
seamless figures and is referred to as Plotly Express. Plotly Express is built as a part
of the plotly library. Every Plotly Express function uses graph objects internally and
returns a plotly.graph_objects.Figure instance, which then creates different graph-
ics. Panel is an open-source Python library that can create custom interactive web
applications and dashboards by connecting user-defined widgets to plots, images,
tables, or text. Panel8 supports nearly all plotting libraries, can work both in a
Jupyter notebook as on a standalone secure web server, uses the same code for both
those cases, supports both python backend and static HTML/JavaScript exported
applications and can be used to develop rich interactive applications without tying
domain-specific code to any particular GUI or web tools. The panel provides a wide
range of widgets to provide precise control over parameter values. The widget classes
use a consistent API that allows treating broad categories of widgets as interchange-
able. For instance, to select a value from a list of options, one can interchangeably
use a Select widget, a RadioButtonGroup, or a range of other equivalent widgets.
Like all other Panel components, widget objects render and sync their state both
in the notebook and on the Bokeh server. By the use of the Bokeh visualization
server, we put different visualization libraries on one platform. The purpose of the
bokeh.server is to make it easy for Python users to create interactive web applica-
tions that can connect the front-end to running Python code. A bokeh application
is a Python code run by a bokeh.server when new sessions are created. Bokeh’s
architecture is such that high-level model objects (representing plots, ranges, axes,
glyphs and other chart elements) are made in Python and converted to a JSON. This
capability to synchronize between Python and the browser is the primary purpose
of the Bokeh server.

9.3 Summary
This chapter provides a system configuration of our biodiversity knowledge-based
visualization recommendation system, which results from our research presented in
this thesis. We presented various technologies through which we were able to develop
our research prototype. It is a flask-based application with a backend of Python

5http://docs.bokeh.org/
6http://hvplot.holoviz.org
7www.plotly.com/python/plotly-express
8www.github.com/holoviz/panel

http://docs.bokeh.org/
http://hvplot.holoviz.org
www.plotly.com/python/plotly-express
www.github.com/holoviz/panel
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script and a front-end of a JavaScript application. This prototype is available to
explore online9.

9www.visapps.de

www.visapps.de


Chapter 10

Evaluation

This chapter presents a quantitative and qualitative evaluation of our Knowledge-
based Visualization Recommendation System. We estimate the quality of our recom-
mendation system in three sub evaluations. These three sub evaluations correspond
to the three important aspects of this system and are three main contributions of
this thesis:

• The Biodiversity Visualization Text Classifier

• The Context-aware Variable Selection Algorithm

• The Knowledge-based Visualization Recommendation System

10.1 Evaluation of the Biodiversity Visualization
Text Classifier

In Chapter 6, we have provided the quantitative evaluation of our biodiversity visu-
alization text classifier. From Table 6.2, we know that our classifier has an average
F1-score (accuracy) of 92.2% on the test dataset. Next, we were interested to see
how well it performs with our users from the biodiversity domain? This evaluation
aimed to know the level of agreement between the classifier’s learned concepts and
human understanding. For this evaluation, we conducted an online survey. The
preview version of which is available online1. We randomly selected five publicly
available metadata files from the BEF-China data portal [Klein and Staab, 2017,
Seitz, 2017, Kühn et al., 2016, Staab et al., 2016, Staab et al., 2019]. Content from
these metadata files were then fed to our biodiversity visualization text classifier2.
The classifier’s output is a list of visualization labels ordered by decreasing probab-
ilities of their suitability to the dataset.

There were five questions in the survey, each of which corresponded to the five
metadata files. Each question contained information about one metadata (dataset
abstract and dataset design) and the classifier’s predicted list. A sample of the
questions can be accessed at the survey preview. In order to avoid information
overload, in this survey, only the first seven visualization options from the predicted
list were provided. These options were presented in the form of a drop-down list.

1http://tinyurl.com/bvcpreview
2http://github.com/fusion-jena/Biodiv-Visualization-Classifier
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Survey participants were required to go through the description and then choose
the suitable visualization types, i.e., those that can depict the information in the
description well. Participants had to rank these options in the decreasing order
of their suitability to the question. Drag and drop, and drop-down buttons were
available for the participants to allocate a rank (a number) to each option. An
example of a completed answer is provided in Figure 29, where the user assigned
sequence numbers to each visualization name or label.

Figure 29: Screenshot of the survey answer

Out of the seven provided options, participants were asked to choose at least
the five most suitable visualizations. For the rest of the options, they could also
choose N/A. Complete information about the survey and the underlying research was
provided on the welcome screen of a survey. The survey was open from October 2019
until December 2019. It was advertised to biodiversity domain scientists via various
mediums: the most important German biodiversity research conference GFÖ20193,
the 2019 assembly of the GFBio4 project, tagged to the social media accounts for
different biodiversity research institutions via Twitter and Facebook, sent via email
to the mailing lists of various biodiversity research projects and scientists.

10.1.1 Results

In total, 37 responses were received from the survey. Out of these 37 responses, only
11 respondents completed the survey. We consider a survey to be completed if the
respondents have spent at least 5 minutes to answer 3-5 questions. A question wise
breakdown of the responses is presented in Table 10.1. A resultant data sheet is
available online5.

As not all respondents had selected five options, which was a prerequisite for
this survey, therefore, for our primary analysis, we had only included those responses
where the participants had at least selected the first four options. The frequency per
question for those filtered responses are provided in the last column of Table 10.1.

3http://gfoe.org/de/node/1562
4www.gfbio.org
5https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-

Tool

http://gfoe.org/de/node/1562
www.gfbio.org
https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-Tool
https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-Tool
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Table 10.1: Questionwise breakdown of the responses
Questions Number of responses Filtered responses

1 11 9
2 7 4
3 6 4
4 7 4
5 6 3

10.1.1.1 Metrics

Before we look into the metrics, it is important to recall what the goal of the survey
is: by looking just at the domain-specific text, can our algorithm predict the same
visualization type as humans select? To evaluate this, we aim to answer two main
questions: 1) how many users have selected the same visualization options from the
list as predicted by the classifier? 2) how similar is the ordering or ranking between
the classification prediction and the human responses?
To answer the first question, we have used classical precision scores.

Precision: In our case, precision is based on the total number of relevant options
(Relevant_Options) chosen by the participants from the seven provided visualization
options (Retrieved_Options). The relevant options are the ones that fall between
the rank from 1 to 4 as predicted by the classifier.

Precision = Relevant_Options uRetrieved_Options
Retrieved_Options (10.1)

To answer the second question, we have used.
Ranked Biased Overlap (RBO): RBO is the similarity metric that counts

the ratio between the overlap (in terms of a number of predicted outputs) at the
top-k ranks of the retrieved ranked lists [Webber et al., 2010]. In our case, it is
the similarity ratio between the predicted list until the first four options and the
user-provided list. There are two methods for evaluating the effectiveness of the
ranked list: (1) Rank Correlation and (2) Set Based Measures. Rank correlation-
based approaches such as Kendall Tau measure the probability of two items being
in the same order in the two ranked lists. However, there is a problem with the top-
weightedness with this approach. The problem is that an item’s rank or position
does not affect the final similarity score. In set-based measures, the concept of a
set intersection has been used to quantify the similarity between two ranked lists.
The idea is to determine the fraction of content overlapping at different depths or
descending positions in the ranked list [Agrawal, 2013]. RBO measure is one such
method. The advantages of using it compared to other methods are: (1) it removes
the problem of top weightedness by using geometric series whose values decrease
with the increasing depth or number of options in the ranked list. Thus it explicitly
models the likelihood of going from a given rank position to position i+1.

∞∑
d=1

pd+1 = 1
1− p (10.2)

Rank-biased overlap scores as computed with Equation 10.2, fall in the range
[0, 1], where 0 means disjoint or different, and 1 means identical. The parameter p
determines how steep is the decline in weights: the smaller p, the more top-weighted
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the metric is. When p = 0, only the top-ranked item is considered, and the score
is either zero or one. On the other hand, as p approaches arbitrarily close to 1,
the weights become arbitrarily flat, and the evaluation becomes arbitrarily deep.
For in-depth knowledge about this metric, readers are encouraged to follow this
publication [Webber et al., 2010]. For our calculation, we have kept the p high, i.e,
0.98, to assign equal weights to all the options in the list.

10.1.1.2 Metrics results

Table 10.2 provides the result of precision and metrics. The average precision is
62% and the average RBO is 61% (decimals are transformed into percentiles). The
results show that there is no correlation between the number of respondents and the
scores. Q1 has the highest responses, but it has an average of 61.8%, whereas Q5
has the least responses but has the highest average score of 80%.

We have also observed that our classifier has scored better for those questions
where more information was provided than the one with lesser information content.
We investigated further to see any relationship between the length of the information
and the scores. The result is shown in Figure 30. It shows a somewhat positive
connection between the word count and the average scores from RBO and Precision.
The only exception to this result is with Q2, which has a word count of 146, but
upon closer inspection, it contains less information content and more references. We
found that our classifier has worked better on those questions where information
quantity was dense, and quality was good. This confirms that if enough proper
textual content is provided to the classifier, then it performs best. When we started
this survey, we intended not to provide lengthy questions that can take a long time
for participants to read and then answer.

Table 10.2: Questionwise Precision and RBO results
Questions Q1 Q2 Q3 Q4 Q5 Mean
Responses 9 4 4 4 3 -
RBO Mean 0.62 0.54 0.61 0.48 0.81 0.61

Precision Mean 0.67 0.56 0.63 0.50 0.75 0.62

10.1.1.3 Treatment of N/A’s

For each question in our survey, we asked the users to select the first five visualization
options and then leave the rest blank. That was the sole purpose of providing N/A as
an option in the survey design, which for us meant non-applicable and was planned to
be eliminated in the analysis process. However, some participants had only selected
two to three options and had left the rest as N/A. Therefore, after the initial analysis,
we wanted to know the effect of those N/A’s. In our analysis, we have used two
state-of-the-art techniques to deal with incomplete or missing responses. First is
listwise deletion [Roth, 1994], which is presented in the previous section wherein we
have excluded all N/A options from the analysis. The second approach to deal with
N/A is to consider it as another category or factor and analyze the whole result set.
In this section, we will present the result on the whole dataset, including N/A’s.
We considered all N/A’s and calculated Precision and RBO on that. It was done in
such a way that each N/A is treated as a wrong answer. Thus, we have considered
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Figure 30: Bar chart depicting dependency of scores on the questions’ length

the complete dataset as presented in Table 10.1 column 2. The result of applying
Precision and RBO calculation is as follows:

Table 10.3: Questionwise results from Precision and RBO metrics on the whole
dataset including N/A’s.

Questions Q1 Q2 Q3 Q4 Q5 Mean
Responses 11 7 6 7 6 -

Precision Mean 0.60 0.48 0.49 0.48 0.60 0.53
RBO Mean 0.64 0.54 0.50 0.50 0.58 0.55

The table shows the mean scores of RBO (55%) and Precision (53%) on the whole
dataset. This result shows some differences from the result presented in Table 10.2,
where the average Precision is 62%, and the average RBO is 61%, which is better
than the analysis with NA’s. We used a two-tailed Wilcoxon matched-pairs signed-
rank test (WSR) to see if these differences are significant. WSR is a special case of a
non-parametric test which checks whether two dependent distributions are the same
or not. It is used when the data size is small and has repeated responses. In our case,
we are now comparing the mean values of 5 questions of two groups: 1) with N/A’s
and 2) without N/A’s. Our dataset is small, and these groups are not independent
of each other. Thus our dataset complies with the condition of the WSR test. Our
null hypothesis for this test is, does the difference between two mean distributions
(as shown in Table 10.3 and Table 10.2) is significant or not? In other words, are
two distributions (mean values) from the two groups are significantly different?

For this significance test, if the p-value is less than 0.05, then two mean dis-
tributions are significantly different. However in our case p-value = 0.125. We
can conclude that there is no statistical evidence that these two distributions are
different. Thus, we can not reject our null hypothesis with a reasonable probability.
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10.1.2 Discussion on the evaluation of the Biodiversity Visu-
alization Text Classifier

From our evaluation, we can conclude that:

• 62% of the time, our classifier has selected the same visualizations as what
humans have selected.

• 61% of the time, our classifier has ranked the visualizations in the same order
as humans do.

• Even on the metadata files with minimal content, our classifier could be ac-
curate for at-least half of the time.

For getting statistically significant results, evaluation with more participants
needs to be done, which we could not accomplish within our timeframe. Moreover,
the visualization list from the classifier is not directly used in our system. First, we
derive the visual goals from the predicted visualization list and then use these goals
in our system. Based on the user-selected visual goal, a richer set of visualizations are
presented. The visual goal generation workflow is presented in Chapter 7. In Section
10.3.3.5, we evaluated the recommended visual goals based on the visualization list
predicted by our classifier. Wherein our Precision scores are not as good as this
evaluation (56%). However, our RBO scores have incredibly improved (86%). The
improved RBO score shows that the methodology of visual goals derivation has
improved the overall system performance. The improved scores could be described as
though the visualizations are different, but their cumulative visual goals are similar.
As visual goals directly represent the user’s intent, therefore it is more significant
for our system. For example, Scatterplot, Histogram, Boxplot, Hexagonal Binning
derive a common goal of the data distribution.

10.2 Evaluation of Context-aware Variable Selec-
tion Algorithm (CVS)

The Context-aware Variable Selection Algorithm reduces the dataset’s dimension by
choosing only a subset of the variables that could provide a good overview and under-
standing of the data. After developing this algorithm (presented in Chapter 8), we
wanted to compare the results with the ground truth data. We generated the ground
truth from the participants of the 2020 Biodiversity Exploratories (BEO)6 Assembly
in Germany. We selected four datasets — 5777, 376 [Seitz et al., 2016], 20106
[Schall and Ammer, 2017], 24209 [Noll et al., 2016] — from two different biodiversity
projects and printed the content from the metadata files on a sheet in a booklet
format. The exemplar questionnaire file is attached in Appendix F. Resultant data
sheet is available online8. On one side of the sheet were the contents from the in-
dividual metadata files. While, on the other side, a table was provided with all the
variable ids and descriptions from the same file. Participants were asked to read

6https://www.biodiversity-exploratories.de/
7https://data.botanik.uni-halle.de/bef-china/datasets/577
8https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-

Tool

https://www.biodiversity-exploratories.de/
https://data.botanik.uni-halle.de/bef-china/datasets/577
https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-Tool
https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-Tool
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the metadata’s content and then mark the variables that they would like to explore
from this dataset.

10.2.1 Results
In total, we received 41 responses from this evaluation. The distribution of the
responses per dataset is provided in Table 10.4.

Table 10.4: Total number of responses for each dataset
Dataset Responses

376 12
577 9

24209 10
20106 10

From these responses, we wanted to calculate the following metrics.

1. Coverage: The fraction of the variables filtered from the total available vari-
ables [Valdez et al., 2016].

2. Standard evaluation metrics: Precision, Recall or Sensitivity, Accuracy
and False Positive Rate (FPR).

3. Inter-rater reliability: It is the extent to which two or more raters (or
observers, coders, participants) agree. We needed it to see the consistency of
our ground truth data.

10.2.1.1 Coverage

Coverage is the fraction of the values that have been covered by a recommenda-
tion algorithm [Valdez et al., 2016]. In our case, we are interested to know what
percentage of variables have been filtered from the original variable set? Then, we
compared this value from our algorithm and the participants. The interpretation
of the resultant values differs based on the task. For our task, it should not be too
little to the point of information loss. It should also be not too big to diminish
the purpose of the algorithm. It should be optimized to the level where it conveys
the necessary information about the dataset well. Coverage for our algorithm is
calculated by dividing the total number of predicted variables from the dataset’s
total variable count. Coverage for one user for one dataset is: division of count
of user filtered variables (UserCount) and total number of variables in the dataset
(VariableCount). The cumulative Coverage for each dataset is calculated according
to the Equation 10.3. It is an average of an individual rater’s coverage score. The
result is presented in Table 10.5.

Coveragedataset =
n∑

i=1
( UserCounti
V ariableCount

) (10.3)
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where

– n = number of raters for one dataset.

– UserCounti = number of variables filtered by one rater for one dataset.

Table 10.5: This table shows for each evaluated dataset: actual variable count,
an average of variable count from all the raters (User Count), count of predicted
variables by our algorithm (CVS Count), an average of Coverage from all the raters
(User Cov) and Coverage scores from our algorithm (CVS Cov).

Dataset Variable Count User Count CVS Count User Cov CVS Cov
376 40 13 15 32.9 37.5
577 27 11 10 41.5 37
24209 52 19 16 36.09 30.7
20106 35 10 8 33.1 22.8

Grand Mean - - - 36 32

The Grand Mean is the mean of the means. Table 10.5 shows that the User Cov
covers 36% of the whole Variable Count. The user coverage score is also close to the
CVS coverage scores. This shows that our algorithm has filtered an optimal number
of the variables from the dataset alike users. In Figure 31, we show the Coverage
distribution from all four datasets. In comparison to other datasets, 20106 has the
lowest number of range and variance. It conveys that for 20106 raters’ coverage
scores are uniform. The mean coverage of this dataset is 33. This figure also shows
no dependency of raters’ count to the range of the coverage scores. For example,
dataset 577 has the lowest number of respondents and has the highest maximum
value.

Coverage analysis does not ensure the similarity between the filtered variables
and the ground truth from the raters. To get those results, we have used empirical
metrics, as described in the next section.

Figure 31: Coverage distribution for all raters for all four datasets
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10.2.1.2 Empirical Metrics

To evaluate our Context-aware Variable Selection Algorithm, we have calculated
Precision, Recall, Accuracy, and False Positive Rate [Bolón-Canedo et al., 2015].
To get these scores, we need to first consider the results from the CVS as a binary
classification problem [Bolón-Canedo et al., 2015], where positive values are those
filtered variables that match with the ground truth. The negative values are the one
which do not. With this assumption, we can calculate the following scores:

• True Positive (TP): Percentage of variables filtered by CVS which were also
there in the ground truth.

• False Positive (FP): Percentage of variables filtered by CVS which were not
there in the ground truth.

• True Negative (TN): Percentage of variables that were not filtered by CVS
and that were not in the ground truth.

• False Negative (FN): Percentage of variables that were not filtered by CVS
and that were present in the ground truth.

Based on these scores, we have calculated the following metrics:
Precision: Precision is the positive predicted value and is calculated by the

following equation:
Precision = TP

TP + FP
(10.4)

Sensitivity: It is also known as recall. It indicates how well the results predict
the actual positives. It is also known as a true positive rate.

Sensitivity = TP

TP + FN
(10.5)

Accuracy: It measures how well the algorithm has predicted both above cat-
egories.

Accuracy = TN + TP

TN + TP + FN + FP
(10.6)

FPR: FPR is also known as False Positive Rate. The value indicates the number
of times the negatives values are wrongly categorized as positive.

FPR = FP

FP + TN
(10.7)

In Table 10.6, we show the scores from each of these measures on all four datasets.
Like the Coverage scores, each measure in Table 10.6 is first calculated for individual
rater and then averaged for all raters. Grand Mean is then calculated as a cumulative
average from all the datasets.

The mean Precision value is 36% and the mean Accuracy of our algorithm on
this evaluation is 56%. Figure 32 shows the individual distribution over all the raters
for each dataset and each metrics. The provided data conveys that out of all the
datasets, our algorithm has performed well on 577. Moreover, the accuracy of our
algorithm is relatively uniform for all the datasets.
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Table 10.6: This table shows for each dataset the following scores: Precision, Sens-
itivity, Accuracy and FPR scores.

Dataset Precision Sensitivity Accuracy FPR
376 0.32 0.28 0.54 0.69
577 0.53 0.41 0.60 0.24

24209 0.30 0.39 0.51 0.40
20106 0.32 0.24 0.62 0.21

Grand Mean 0.36 0.33 0.56 0.38

Figure 32: Boxplot shows the distribution of Precision, Sensitivity, Accuracy and
FPR from all four datasets.
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It is important to note that it is not a machine learning model trained on some
preset data. It is an algorithm whose performance can considerably change by
various input factors like better semantically annotated metadata, quality of the
metadata files or dataset variable count. Elements used in the algorithm’s construc-
tion have been discussed in Chapter 8. The other important factor that had directly
affected the algorithm’s performance is the agreement among the participants, which
we explain in the next section.

10.2.1.3 Inter-rater reliability

Inter-rater reliability (IRR) or agreement is the extent to which two or more raters
(or observers, participants, examiners) agree. As we have used the data from the
biodiversity experts as ground truth; therefore, the rater reliability is very significant
to us. It shows us the extend of variability among human observers. It is seldom to
achieve a perfect agreement, and confidence in study results is partly a function of
the amount of disagreement [McHugh, 2012].

For measuring the IRR, we have used the most famous kappa (k) statistics. The
kappa is a squared correlation coefficient known as the coefficient of determina-
tion (COD) [McHugh, 2012]. Cohen’s Kappa is a robust statistic useful for either
inter-rater or intra-rater reliability testing. However, it is only limited to measure
agreement between 3 raters. In our study, for each dataset, we have more than three
participants. Therefore, we have used the Fleiss Kappa measure, an adaptation of
Cohen Kappa for three or more raters. The interpretable value usually falls between
0 to 1, where 0 is no agreement.

Kappa(k) = Pr(a)− Pr(e)
1− Pr(e) (10.8)

– where Pr(a) represents the observed agreement, and Pr(e) represents a chance
agreement

Continuing with our assumption of the binary classification problem, the raters
(participants) have to select a variable in the evaluation form to indicate if they want
to explore them or not. If the variable is selected, then it is considered positive, and
if not, then it is deemed to be negative. Here Kappa will count the correlation
between all the raters’ agreement over the variables taken from datasets’ variables.
The results are presented in Table 10.7.

Table 10.7: Inter-rater reliability or agreement
Dataset Variable Count k

376 40 0.10
577 27 0.14

24209 52 0.11
20106 35 0.05

Grand Mean - 0.10

From the interpretation table by [Landis and Koch, 1977], we know that if the
value falls between 0.0 - 0.20, there is only a little agreement among the participants.
This is true in our case, as our grand mean for this evaluation is 0.10.
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Further, we wanted to look for any particular patterns that can describe the
current results. For that, we looked at the percentage of agreed upon variables that
were also predicted by our algorithm. The result is presented in Figure 33.

Figure 33: Percentage (Fraction of agreed variables) of variables the raters agreed
upon and our algorithm also predicted that.

Each plot in this figure, shows for one dataset – the fraction of variables predicted
by our algorithm and selected by at least one participant. From Figure 33, we can
only provide one explanation that though our algorithm is not able to select the
most voted variables, it has chosen more diverse variables, which are at least picked
up by one rater. Even if we cannot fully explain the reason for this behavior of
our algorithm, we can foresee the main problem in the future development of this
algorithm, i.e., if not even humans can agree on which variables are important, how
can we expect an algorithm to find them. What would need to be investigated here
is:

1. Is the algorithm smarter than the users? That is, if users look at the variables
they picked and the ones the algorithm picked do they say "Oh yes, that choice
is much better"?

OR

2. Maybe what variables one picks depends on what one wants to learn from the
dataset. Do we need to provide as input not only the dataset but also the
purpose before selecting variables?

10.2.2 Discussion on the evaluation of the Context-aware
Variable Selection Algorithm

To summarize the result of this evaluation, we can say that our algorithm has filtered
the optimum number of variables from the dataset. It has sub-optimal Precision,
Recall, Accuracy, and FPR score with the ground truth. It has low inter-rater
reliability scores, which could also be the reason for its bad quantitative results. We
have also observed that though the raters’ consensus on the predicted variables is
not high, the predicted variables still cover the diverse variables within the dataset.
More extensive experiments and tests, and further improvement of the algorithm
are needed.

Also it is important to note that our algorithm produces results not based on
some pre-derived corpus. The results are entirely based on the quality and quantity
of the provided input — chosen metadata file, the project metadata files, and the
known biodiversity terms. Thus, its efficiency can change based on the current set
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of inputs. There are no benchmark techniques to evaluate such domain-specific
algorithms. In our evaluation, we used the same metrics as used by feature selection
algorithms for machine learning. Empirical methods for variable or feature selection
do not provide statistics based on the diversity of information filtered.

Such domain-specific algorithms can be improved by using machine learned
domain-specific concepts and their related vocabulary (for example, which variables
and terms are more often used to describe a particular domain concept). Apart
from that, by using interactive machine learning techniques, such algorithms can be
online trained by the users at the run time. This will improve the performance of
the algorithm for the future recommendations. Moreover, we should also not forget
the main aim of this algorithm: to provide a subset that can help get a better insight
into the dataset. From this evaluation, we are not sure how the overall system will
help in data exploration. The comprehensive system evaluation is provided in the
next section.

10.3 Evaluation of the Knowledge-based Visual-
ization Recommendation System

On the evaluation of recommender systems, [Valdez et al., 2016] emphasized that
when considering the whole system in real usage scenarios, it is not the algorithm
that needs to be evaluated but also the other related factors: interface, HCI, and
technology acceptance [Pu et al., 2012]. The technological acceptance criteria in-
clude a perceived quality based on users’ beliefs and attitudes. The users’ beliefs
concern the perceived ease of use, perceived usefulness, and control of the system.
The users’ attitudes are overall satisfaction, confidence, and trust in the recommend-
ations. As the primary purpose of visualization is insight generation [Spence, 2001],
for a visualization system, apart from the quality mentioned above, the overall
perceived insight measure is the most prominent one. The primary consideration
for any life science researcher is discovery [Saraiya et al., 2005]. Arriving at an in-
sight often sparks the critical breakthrough that leads to discovery: suddenly seeing
something previously passed unnoticed or seeing something familiar in a new light.
The primary function of any visualization and analysis tool is to make it easier
for an investigator to glean insight, whether from their data or external databanks
[Saraiya et al., 2005]. Beyond predefined data analysis tasks, a measure of an ef-
fective visualization can also be its ability to generate unpredicted new insights.
The visualization should not only enable biologists to find answers but also to find
questions that identify new hypotheses [Saraiya et al., 2005].

For evaluating insights generated through our tool, we partially used some eval-
uation protocols and insight criteria from the study by [Saraiya et al., 2004]. We
then evaluated our system based on the user beliefs and attitudes, which we had
captured via user comments and feedback. We will be comparing the insight gen-
erated from our tool with that of Microsoft Excel. From the result of our previous
study [Kaur et al., 2018], we found that Excel is the second most prominent visual-
ization tool used by biodiversity scientists for data visualization. The first one is R,
and because it is a scripting language, it cannot be compared with a graphical user
interface. To quantify the qualitative insights, we have used some insight categories
developed by [Saraiya et al., 2005]. They consider an insight as an individual ob-



100

servation, a unit of the discovery of the data. We will be using different levels of
observations and will count the scores for each dataset. As domain scientists were
not comfortable recording their voice or video; therefore, the insight calculation is
done based on the answers provided in the questionnaire and the screen recording
analysis. For this evaluation, we will be analyzing the following insight categories:

• Observation: The actual finding of the data from the visualization. Based
on that, we counted the total number of insights for each dataset.

• Domain value: The value, importance or significance of the insight. Simple
observations such as "intense precipitation is negatively correlated to precipita-
tion duration" is a relatively trivial observation that one can directly know by
looking at the chart. Whereas, more global observation of ecological signific-
ance is "intense precipitation leads to more soil erosion than less precipitation
for a longer duration of time". The frequency of such responses was counted
for each dataset and then was compared between Excel and our tool.

• Hypothesis: Some insights lead users to identify a new ecologically relevant
hypothesis and direction of research. These are most critical because they
suggest an in-depth data understanding, relationship to ecology, and inference.
They lead participants to analyze the data with the next experimental iteration
[Heath and Ramakrishnan, 2002].

• Unexpected insight: They are those insights that unexpectedly pop up
while doing the data exploration. Unexpected insights are additional explor-
atory or serendipitous discoveries that were not being specifically searched for
[Saraiya et al., 2005].

• New insight: New insight is a new observation that participants have found
during their data exploration. New insight conforms to a discovery about
data that is fulfilled by the dataset’s information and does not need further
examination like hypotheses testing.

• Time: The duration of data exploration on Excel as well as on our tool.

10.3.1 Experimental setup
The main aim of the study is to evaluate the effectiveness of the visualization recom-
mendation tool based on its insights generation. The above-mentioned parameters
measure this insight about the data on the basis of the used tool. Along with these
parameters, a new tool must perform better than the standard tool being used by
the biodiversity community. For us, the tool for comparison is Microsoft Excel’s
graphing module (Figure 34). For this evaluation, we had:

1. Four publicly available biodiversity datasets.

(a) 5779 is a seedling dataset from the grasslands. Data dimensions are
60000*2710. However, we had to reduce this dataset to only 25000 obser-
vations due to latency issues while loading and manipulating it on both
Excel and our visualization tool.

9https://data.botanik.uni-halle.de/bef-china/datasets/577
10 rows*columns

https://data.botanik.uni-halle.de/bef-china/datasets/577
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(b) 37611 is a soil erosion dataset from forests. Data dimensions are 1295*4010.

(c) 2010912 is a dataset related to forest management and forest structure
attributes. Data dimensions are 150*3510.

(d) 2420913 deals with the enzymatic reactions on different wood types and
tree types in forests. Data dimensions are 82*4910.

2. Tools: We created a research prototype for the implementation of our biod-
iversity visualization recommendation system. It is available to explore on-
line14. The front-end of this interface is shown in Figure 28.

Detailed information about the construction of this tool is available in Chapter
9. As shown in Figure 28, first, the user has to select the dataset, then based
on the selection, the visual goals are shown in the left panel. Based on the
selected goals, various visualizations are displayed as thumbnail images. Each
thumbnail has the name of the visualization, its picture, represented variables,
and its short description. Then the user chooses the desired visualization by
clicking on the thumbnail. Once clicked, it shows the visualization with a
drop-down list to change the dimensions.

The second tool was the Microsoft Excel charting tool. We used Microsoft
Excel 2013 on Windows 10. Within the Excel tool, our target module of com-
parison was the Microsoft Excel Chart Recommendation module (Figure 34).
Users were asked to start their visual exploration via only this module first.
If they cannot find their suitable charts or if the recommendation provides
nothing, they were allowed to use the manual charting modules or other func-
tionalities available in Excel.

3. Visualizations: In Excel charting tool, there are 49 different visualizations.
In our tool, we only had 20 visualizations. These visualizations were grouped
and placed under different visual goals based on our visualization taxonomy
(Chapter 7). The visualizations used for the evaluation are enlisted in Table 10.8.
The goal list was shown based on 1) visual goal realization (topic explained in
Chapter 7) and 2) suitability of variables’ data types filtered by our variable
selection algorithm (see Table 5.1).

4. Participants: An invitation email was sent to various biodiversity scientists.
A personal meeting was requested from all the interested scientists who are at
the level of Ph.D. or above and who have some knowledge of Microsoft Excel.
The evaluations were conducted between 22nd June till 10th August 2020.
Out of all invitations, we received eight interested participants. 50% of whom
were Ph.D. students, and the rest had different positions at post-doctorate
levels.

11https://data.botanik.uni-halle.de/bef-china/datasets/376
12https://www.bexis.uni-jena.de/PublicData/ShowPublicXml.aspx?DatasetId=20106
13https://www.bexis.uni-jena.de/PublicData/ShowPublicXml.aspx?DatasetId=24209
14www.visapps.de

https://data.botanik.uni-halle.de/bef-china/datasets/376
https://www.bexis.uni-jena.de/PublicData/ShowPublicXml.aspx?DatasetId=20106
https://www.bexis.uni-jena.de/PublicData/ShowPublicXml.aspx?DatasetId=24209
www.visapps.de
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Figure 34: Microsoft Excel Chart Recommendation module

Table 10.8: Visual goals and their respective visualizations
Visual Goals Visualizations
Distribution Scatterplot, Hexagonal Binning, Line Chart, Multiline Chart, Area Chart,

Stacked Area Chart, Multi Boxplot and Multi Violinplot
Clustering Hexagonal Binning, Heatmap

Composition Stacked Area Chart, Stacked Bar Chart, Sunburst Diagram, Tree Diagram,
2D-Pie Charts

Comparison Bar Chart, Grouped Bar Chart, Stacked Bar Chart, Stack Area Chart,
Multi Boxplot and Multi Violinplot

Network Network Diagram, Alluvial Diagrams
Hierarchy Tree Diagram, Sunburst Diagram
Overview Histogram, Kernel Density Plot, Boxplot, Violinplot and

Pie Chart

10.3.2 Protocols and measures
To evaluate our tool in terms of its ability to generate insights and compare it with
Excel, a set of experimental measures were used:

Lab usability testing: Participants were encouraged to test the tool in a
peaceful laboratory environment. A moderator who is also the author of this thesis
was present throughout the session, helping them with the overall process, making
notes of user interactions, and specific queries.

Interviewing or contextual inquiry: Participants were allowed to perform
the task and mention their findings in the think-aloud format by answering ques-
tionnaires and directly providing feedback.

Repeated measures within/between groups: Each participant was as-
signed two different datasets, one to explore on our tool and one on Excel. The
participant was asked to perform the evaluation in the provided sequence; for ex-
ample, the first participant will start with the tool and finish with the Excel. Then
this sequence of tools and datasets was shuffled for the second participant. So, the
dataset assigned to the Excel with the previous participant would be used by the
new participant on our tool. However, now, the participant first has to evaluate
Excel and then with the tool. In this way, we evaluated four datasets from 8 par-
ticipants and have eight evaluations on the tool and the same on Excel. Wherein
four times, the evaluation was started with Excel, and for the next four times, the
evaluation was started with the tool.

Session recording: Screen recording of each session was done for an in-depth
analysis of variables and visualizations used. The initial 10-20 minutes were used to
introduce the whole evaluation process and a short tutorial of our tool. No introduc-
tion for Excel was needed as it was one of the qualifying factors to participate in this
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study. First, they were asked to read the metadata for the assigned data and then
mention the analytic questions they would like to ask from this dataset. Afterward,
they were told to perform their exploration via tool and Excel and mention their
insights in the questionnaire. The sample questionnaire is provided in Appendix
E. No external tasks were assigned, and participants were encouraged to visually
explore the data as per their understanding of the metadata. There was no time
limit, and the participants were instructed to continue to examine the data until
they are satisfied.

Once participants were done with the exploration, they were asked to fill in
the questionnaire regarding all the key findings from the dataset and their overall
experience. At the end of the session, they were also asked to provide feedback
about our tool’s strengths and weaknesses.

10.3.3 Results
Results are presented in terms of the different insight criteria, visualization usage,
user background, and experiences. Resultant data sheet is available online15.

10.3.3.1 Initial questions

For each dataset, users were told to study the metadata first and formulate the
questions that they would like to explore in the dataset. They were told to mention
these questions in the questionnaire. They were not allowed to explore the tool at
this stage.

We have observed that in all the datasets and for all the participants, there were
at least two common questions. In Table 10.9 column Count, common denominator
4 implies the number of participants who observed this dataset. So 3/4 for first row
means that out of 4 participants, 3 had the same question.

Table 10.9: Common questions from each dataset by the participants
Dataset Common Questions Count

577 How do different response variables (height, biomass, leaves)
differ between sites (A and B)? 3/4

577 How does density affect height, leaves and biomass measurements? 2/4
376 Correlation or relationship between runoff to

species number, LAI, altitude and precipitation. 2/4
376 Identity of species affecting the soil erosion 2/4
24209 How do solid content or biomass are affected

by enzymes or enzymatic reactions? 3/4
24201 What is the distribution of the variables? 2/4

As shown in Table 10.9 for dataset number 577 and 24209, more than 75% had
the same questions. Moreover, most of these questions fall under the category of
correlations and distribution or relationship between two or more variables. In our
visualization taxonomy, these goals fall under the broad category of distribution.
For all these four datasets, distribution was recommended as the prominent visual
goal, by our tool. The sequence of the goal in a list is based on each visualization’s

15https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-
Tool

https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-Tool
https://github.com/PawandeepKaur/Biodiversity-Visualization-Recommendaton-Tool
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probability score predicted by our biodiversity visualization text classifier. Please see
Chapter 7 for more details. Therefore, we can confidently claim that our biodiversity
visualization classifier has done a good job from this perspective.

10.3.3.2 Evaluation on insight characteristics

In Figure 35, we have presented the scores for different insight characteristics, both
for Excel and our visualization recommendation tool. Since we are doing a qualitat-
ive analysis; the general comparison of tendencies in the results is most appropriate
as it was also in our reference study [Saraiya et al., 2005]. We have further analyzed
these insights from different dependent variables (number of visualizations used, the
dataset used, and their expertise level) in the later sections. In the following, we
have discussed the results of each insight category shown in Figure 35.

Figure 35: Bar Chart showing the scores of different characteristics of the insight
evaluation both for our tool and Excel.

• Insights: We counted the total number of insights, i.e., distinct observations
from each participant’s data for all the datasets. Moreover, we have also com-
pared it with those insights that they initially wanted to get after reading the
metadata (Initial insights observed). As shown in Figure 35, Excel has outper-
formed our tool in this category. Nonetheless, Total insights from our tool are
more than Excel. The reason for low Initial insights observed could be, most
participants have views against showing only the subset of the whole variable
set and not showing all the dataset variables. They said that the recommended
subset is relevant for the dataset and provides general or obvious information.
Yet, not useful for more in-depth analysis. However, when we looked deeper
into this issue, we could not find a consensus on the same variables from even
two participants. In any case, we understand that our algorithm needs to be
better configured to show as many diverse variables as possible.
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• Domain Value: It shows the total number of those insights which has some
domain value. Domain value insight was incredibly higher for our tool. It
shows that the participants using our tool have gained significantly more
domain-relevant insights than the Excel.

• New and unexpected insight: The total number of new and unexpected in-
sights is higher for our tool than Excel. Though the difference is not significant
here, however, it must be noted that most of the participants (6 out of 8) have
used different transformations and built-in Excel analytical functions, which
was not available on our tool. From our tool, participants gained all these
insights by only mouse-operated visual exploration on the raw datasets that
were directly visualized without any middleware functions or transformation.

• Exploration time: Exploration time is the average total time users spent on
the tool until they felt they could not gain more insight. The lower the time,
the more efficient it is, or possibly that users gave up on the tool due to a lack
of further insight. However, considering that our tool has a lower exploration
time but more total insights, the latter does not seem to be the case. Ideally, a
visualization tool should provide the maximum amount of information in the
shortest possible time [Saraiya et al., 2005]. This criterion is better fulfilled
by our tool in comparison to Excel.

Apart from the above criteria, we have also observed that out of 8 participants, 5
(60%) have deduced some hypothetical questions they would like to analyze further.
These insights are vital because they suggest future research areas and could result in
real scientific contributions. For example, from dataset number 577, one user would
like to know, "What drives allometry between above and below ground?", another
participant wanted to know from dataset 24209 "Do all enzymes affect dry mass the
same way as Xylosidase does?". Some more users mentioned yes to this question but
could not formulate it better because they wanted to see more multi-dimensional
correlations or further in-depth analysis to better formulate their hypothesis. From
376 dataset, two users observed the same phenomenon: "when it rains less but more
intense, there is more soil erosion than when the rainfall is less intensive for a long
time." However, one user wanted to investigate this further, for which he needed
more variables and analytical functions.

Altogether, our tool has resulted in producing the most qualitative insights in
lesser time. Thus its performance is better than Excel charting module. Further-
more, we have also observed that the total number of visualization created by our
tool for exploration is also more than Excel, which might be the reason for lesser
observations in Excel.

10.3.3.3 Insights per dataset

In Figure 36, we have shown the comparison among different datasets based on
different insight criteria, on our tool. There are some hints but not very distinctive
patterns to hypothesize much. We have observed that dataset number 20106 has
the lowest value in all the insight categories except the Initial insights observed.
Moreover, the average time spent on this dataset is also the lowest in comparison
to other datasets. The reason could be, this dataset has the lowest number of the
recommended variables, i.e., 8 (see Table 10.5). We have found that users have spent
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more time exploring dataset 376. Furthermore, 376 has not many Total insights but
has the highest insights with domain value. Total number of recommended variables
for 376 is 15, which is similar to 24206, i.e. 16. Dataset 24206 had most Total insight
and Initial insight observed. Moreover it is second to 376 in Exploration Time.

Figure 36: Bar chart showing the scores of the different insight criteria for each
dataset.

10.3.3.4 Insights per expertise

In Figure 37, we have compared the insight scores on our tool based on users from
PhD and Postdoctoral levels. By chance, out of eight evaluated users, four were
PhD students (PhDs), and four were Postdoctoral researchers (Postdocs), giving us
a 50% ratio. There are some intriguing elements to notice from Figure 37. Firstly,
though PhDs have spent less time with the tool, they were able to get a higher Total
Insights. This further could be the reason that they had more hypothetical inquiries
and more domain value questions. We have observed that the PhDs were more
motivated to do analyses based on their exploratory questions, and postdocs, in
general, were more interested in doing exploration based on the tool characteristics.
For example, they used more different types of visualization than PhDs (see Table
10.10). The second thing to notice here is that both groups have the same value
for New insight and Unexpected insight. We were expecting these values higher
for Postdocs because of their certain level of expertise in understanding the domain
and the dataset. On the other hand, Postdocs were able to get more initial insights
that they have planned from the exploration than PhDs. Overall from this analysis,
we can say that this tool has been more helpful to the PhDs than Postdocs, which
we had not expected. In general, people with more expertise will do more intense
analysis than the other group. However, Postdocs were more efficient in exploring
their Initial insights.



107 Chapter 10. Evaluation

Figure 37: Bar chart showing the scores of the different insight criteria between
PhDs and Postdocs.

10.3.3.5 Insights based on visualizations and visual goals

To analyze the results based on visualizations and visual goals, we have collected the
data from the questionnaires, wherein they have mentioned the visualizations they
have used to infer observations from the datasets (step 3 in Appendix G). These
observations are also included in the Total Insight criteria mentioned in the previous
section. Figure 38 shows that our tool has provided more distinctive visualizations
for the users to explore various aspects of the dataset in lesser time than Excel (see
Figure 35).

Furthermore, we have observed that the Postdocs have explored more variant
visualizations and visual goals than PhDs (see Table 10.10). This could also be due
to their expertise in the domain as well as with the visualizations. Moreover, in
comparison to PhDs, during the evaluation, Postdocs had enquired more questions
regarding the usefulness of the different visualizations. From Table 10.11, we know

Table 10.10: Total number of distinct visualizations used by PhDs and Postdocs for
data exploration on our tool. Scores are shown based on the respective visual goals
of the visualizations.

Visual Goals Postdoc PhD
Distribution 4 4
Comparison 1 2
Clustering 2 0
Network 1 0

Composition 1 0
Overview 1 0

that, scientists have used scatterplot the most both with Excel and our tool. After
the scatterplots, the same number of bar charts and histograms have been used.

Out of 49 available visualizations in Excel, only 5 distinct visualizations were
helpful. Our tool had 20 visualizations, and 12 were able to provide insightful
observations about the data. We can only understand the one reason behind this:
ease of use of our tool. In our tool, the visualizations were already created for
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Figure 38: Total number of visualizations used by the participants to get insights
from the datasets.

them, and they only had to change the dimensions. It was not the case with the
manual charting tool like in Excel. In the manual creation of the visualization, if the
variable datatype does not match the requirements of visualization type, then the
visualization either cannot be created or will be of no use. For automatic creation
of the visualisation, we have already supported this visual mapping functionality in
our tool (see Table 5.1).

Table 10.11: Frequency distribution of different visualizations used in exploring the
datasets on Excel and our tool.

Visualization Excel Our tool
Scatterplot 7 8
Bar Chart 3 3
Histogram 2 2
Boxplot 1 3

Grouped Bar Chart 1 0
Hexagonal Binning 0 2
Stacked Bar Chart 0 2

Pie Chart 0 1
Violin Plot 0 1
Line Chart 0 1

Multi Line Chart 0 1
Multi Boxplot 0 1

From Excel observations, we created a list of visual goals based on the visualiza-
tion sequence mentioned by the participants in the questionnaire. The visual goals
were derived based on our visualization taxonomy. These results are compared with
the recommended visual goal list from our tool. Then, we have used the same Pre-
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cision and Rank-biased Overlap (RBO) metrics from the Evaluation 1 (see Section
10.1). The only difference is, in Evaluation 1, we calculated the scores based on a
visualization list and here we calculated them based on visual goals. The average
Precision is 56%, and the average RBO score is 86%. The scores from Evaluation
1 is 62% for average Precision and 61% for average RBO. The new precision score
is less in comparison to our Evaluation 1. The improved RBO score states that,
the methodology of visual goals derivation has overall improved the performance of
the system. The improved scores could be interpreted as though the visualizations
are different, but their cumulative visual goals are similar, which matter more than
the visualization itself. For example, Scatterplot, Histogram, Boxplot, Hexagonal
Binning derive the common goal of data distribution.

10.3.3.6 Insights based on the variable selection algorithm

We have observed that overall all participants have mentioned that the recommended
subset of variables is a prominent representative of the dataset. However, it lacks
more profound variables of interest to the domain experts - for example, variables
related to the causation of some ecological phenomena depicted in the dataset.
All our participants felt that some of the variables of their interests are missing.
Moreover, there is not much consensus on a particular missing variable. For example,
for dataset number 577, the first participant said that because of the important
ecological terminology "Jansen-conell effect" in the metadata, the variable "density"
is significant. However, the second participant on the same dataset did not show
any interest in that variable. He mentioned that he would like to see "distance" in
the subset because it is important for exploring this dataset. This is a practical
proof of fewer scores for the IRR or consensus metrics in evaluating the variable
selection algorithm presented in Table 10.7. There are repeated examples of similar
cases with the other datasets. However, one typical critic was that the recommended
subset had missing variables that they would like to explore.

Therefore, we analyzed the session recordings in Excel and have tried to see
which variables have been used for each dataset. We compared this result to our
recommended subset, and the scores are presented in Table 10.2.

Table 10.12: Table shows for each evaluated dataset: Precision, Sensitivity and
Accuracy scores.

Dataset Precision Sensitivity Accuracy
376 0.2 0.29 0.48
577 0.6 0.49 0.70

24209 0.35 0.58 0.75
20106 0.05 0.30 0.26

Grand Mean 0.30 0.42 0.55

Compared to the evaluation results presented in Table 10.6, there is a little
improvement over sensitivity or recall and accuracy scores. Because of the limited
participants, this time, we did not do an inter-rater reliability check.
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10.3.4 Overall feedback
At the end of each session, participants were requested to comment on their overall
experience with our Biodiversity Visualization Recommendation Tool. The com-
ments are provided in Appendix H.

• Feedback on recommended variables: Majority participants believed that
the subset of the variables was interesting and showed the general project
design. However, all mentioned that some of the needed variables were missing.
Many have provided feedback on the improvement of the variable selection
algorithm in the following ways:

– For ecological datasets, the variable selection algorithm should be learned
based on the ecological phenomenon (for example Horizontal Heterogen-
eity, Jensen Effect). As for each phenomenon, certain variables are sig-
nificant. Missing such variables in the recommendation will be a loss of
information.

– The algorithm should include all Spatio-temporal variables as they show
a specific trend. It should consist of all categorical variables as they
show the experimental setup. For measurement or quantitative variables,
apart from a context check, a collinearity check should be done. A better
variable selection algorithm will avoid having too many collinear variables
and would have more diversity.

– Such algorithms should be trained on variable names in the biodiversity
publications (better from similar projects) and the described biodiversity
concepts within the captions.

Our qualitative results are not adequate for the CVS algorithm; however,
due to high total insight scores and good scores of hypothesis and domain
value, we consider the current state of CVS is adequate to be used in the
production environment. For future work, the CVS algorithm can use the
solution mentioned above. Moreover, it can be improved by including the
element of active and interactive learning. Wherein, an algorithm can fine-
tune and train itself from the user’s feedback at a run time.

• Feedback on recommended goals: After observing our participants’ visual-
ization usage pattern, we have found that every user has their sequence of data
exploratory tasks. Some participants started their exploration through com-
parative analysis (Comparison goal), some through univariate analysis (Over-
view goal), and mostly from the data distribution (Distribution goal). Due
to the quantitative nature of all the datasets (which is common in the biod-
iversity domain), all were interested to see the distribution and correlation
among variables (see Table 10.10). Some users wanted to do more intensive
correlation analysis and had reported that our tool needs more multivariate
correlation and clustering visualizations. Some of the mentioned visualiza-
tions were Scatterplot Matrix, Coplots and Parallel Coordinates. Overall, the
users found our tool’s design, i.e., goal-based visualization exploration, very
intriguing and helpful.
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• Feedback on visualizations: In total, we had included 20 visualizations
within the tool. Out of which, 12 visualizations were used by our participants,
giving us a ratio of 60% of usage. There was some critical feedback regarding
the features of the visualizations. For example: zooming out feature of an in-
teractive treemap is not intuitive, size customization attribute for scatterplot
or interactive colormap for scatterplot is missing and hover option for boxplot
is missing. Many users found our system of recommending similar visualiza-
tions based on the visual goals very informative. One user said, "though this
data, if shown in the boxplot, would not make much sense; however, because of
the violin plot (which shows kernel density on different values), I can read the
data well. Had it not been suggested, I would not have thought about this plot."
Some said that "I am not a great friend of the pie chart. However, as the pie
chart shows the categorical distribution, I can see how balance the dataset is.
I would not have used a pie chart to see the structure of the dataset" (see pie
chart created by a participant in Figure 39). One user said that the alluvial
diagram shows the complete experimental setup for data (Figure 40). "I can
see which plot have what types of and how many species planted."

Figure 39: Pie Chart example from evaluation

• Feedback on Tool: Most users found the tool intuitive, easy to use, faster,
and user-friendly. They liked the mouse-driven environment of the tool. One
said, "it identified outlier without doing deep exploration just by plotting with
the mouse". They liked how multiple variables were easy to be selected by the
drop-down list. They also liked that various visualizations were presented to
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Figure 40: Alluvial Diagram example from evaluation

them with different roles. They acknowledge that most of the visualizations are
new to them, and with regular use, they will get to know about it. One said,
"I liked how the tool gives ideas to visualize specific variables and data." Others
said it completely fulfills the question of "What kind of graph to apply for the
variables?" For its improvement, the users have provided some feedback:

– It should also provide quantitative summary statistics like in R.
– The variable description should also be shown on the tool, along with the

variable names. As some variables are shorthanded, one has to look to
the variable names in the metadata files repeatedly.

– For each plot, it should also show how many observations the plot is
based on?

10.3.5 Summary and discussion on the evaluation of the
Knowledge-based Visualization Recommendation Sys-
tem

For the qualitative evaluation of our Knowledge-based Visualization Recommenda-
tion System, we selected 8 participants all from PhD level and above. Participants
were asked to visually explore the data, both on Excel as well as on our tool. To
evaluate and compare the results based on the gathered insights from the dataset,
we used some of the insight criteria from the study by [Saraiya et al., 2004]. These
insight criteria are: total number of observations, insights with some domain value,
insights lead to the formation of some hypothesis, new and unexpected insights and
total time spent. We found that our tool has outperformed Excel on almost all of
the insight criteria. The only exception is with the Initial insights observed, wherein
Excel has scored better (Figure 35). This is because only subset of the variables
were available in our tool in comparison to Excel. We observed that in comparison
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to Postdocs, PhDs have spent less time on the tool and are able to get higher num-
ber of insights. Moreover, their insights had more domain value and contain more
hypothetical inquiries (Figure 37). The reason we observed of this behaviour is that
PhDs were more motivated to do analyses based on their exploratory questions, and
postdocs, in general, were more interested in doing exploration based on the tool
characteristics. That was the reason they have explored more variant visualizations
and visual goals than PhDs (see Table 10.10). In comparison to Excel, our tool
had presented more distinctive visualizations (Figure 38) to the users to explore
various aspects of the dataset in lesser time. We have observed that overall all par-
ticipants have mentioned that the recommended subset of variables is a prominent
representative of the dataset. However, it lacks more profound variables of interest
to the domain experts. All our participants felt that some of the variables of their
interests are missing. Moreover, there is not much consensus on a particular missing
variable. This is practical proof of fewer scores for the IRR or consensus metrics
in evaluating the variable selection algorithm. However, domain experts provide
different strategies from the improvement of this algorithm. They are presented in
Section 10.3.4. Due to the quantitative nature of all the datasets (which is common
in the biodiversity domain), all participants were interested to see the distribution
and correlation among variables (Table 10.10). Overall the users found our tool’s
design, i.e., goal-based visualization exploration and its mouse-driven environment,
very intuitive, intriguing and helpful. Apart from them there were some recom-
mendation of improvement for the inclusion of more multidimensional visualization,
better customization of some of the visualizations and overall tool configuration.

The big challenge we faced in doing the evaluation is the lack of studies to
compare our results. This is due to this tool’s very nature, our research, and limited
insight-based qualitative studies. The study on which our qualitative metrics about
insights have been inferred [Saraiya et al., 2005] is also an old study, and we could
not find any recent advances in this work. However, through this study, we can
fulfill some of the shortcomings of the domain-based visualization research area,
which they have also mentioned in their paper [Saraiya et al., 2005]. Some of the
issues that we have addressed are :

• Higher-level domain-based interface: Our system is a high-level visualiz-
ation interface that is completely dependent on the biodiversity domain.

• Interactive design that emphasizes consistent, usable interaction:
Our tool is interactive with the mouse-driven environment.

• Clear visual feedback: Our tool provides direct visual feedback for each
user selection and interaction.

• Multiple representations: Our system provides multiple representations of
the same dataset as well as alternative visualizations.

Furthermore, our tool and our research fulfill many of the visualization require-
ments gathered from the domain users at the requirement analysis phase in Chapter
2:

• It reduces the visualization selection dilemma by automatically selecting the
variables based on data type and domain knowledge.
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• It tries to bridge the gap of knowledge by offering different alternatives of
similar visualizations.

• It helps visualize the large datasets by automatically selecting the contextual
relevant and interesting variables.

• Instead of being prescriptive, it gives a wide range of visualizations and vari-
ables to explore.

• It is easy to use with an intuitive workflow that clusters the visualizations
based on their representative goals.

• It efficiently helps in data exploration, which can further lead to data analyses.

10.4 Summary and Discussion
This chapter presents the evaluations of three core components or contributions of
our research, i.e., Biodiversity Visualization Text Classifier, Context-aware Variable
Selection Algorithm, and our comprehensive evaluation on the Knowledge-based
Visualization Recommendation System. The first two components were evaluated
by comparing the algorithms’ results with the ground truth data collected from
the biodiversity participants. The third component was evaluated by conducting a
qualitative evaluation of the system based on the overall data insights generation.

The evaluation of the Biodiversity Visualization Classifier showed the score’s
dependency on the quality of the provided metadata files. The mean RBO and
Precision scores vary from 48% to 80% based on the text’s length and quality in the
metadata files. The better the quality is, the good the scores are.

The Context-aware Variable Selection Algorithm evaluation showed neither good
accuracy (54%) nor good inter-rater reliability or agreement scores (16%). To eval-
uate this algorithm, we have collected the ground truth data from 41 different biod-
iversity scientists. Then we compared the collective results from their responses to
the ones from our algorithm. Doing so, we have realized that their mean agreement
on one dataset is very low. This is also reflected in not so good precision-recall
scores.

Our qualitative evaluation of the overall system with the biodiversity scientist
had shown much better results than evaluating the first two components. Compared
with Microsoft Excel graphic system, our tool has produced the most qualitative
insights in lesser time. 60% of the participants were able to form a certain hypothesis
which they would like to investigate further. Furthermore, they were able to create
more visualizations and found more observations in comparison to Excel. Most users
found the tool intuitive, easy to use, faster, and user-friendly. They liked the mouse-
driven environment of the tool. Many users found our system of recommending
similar visualizations based on the visual goals very informative.

From these evaluations, we conclude that our overall quantitative scores are not
very impressive. However, our good qualitative results permit us to tune the software
and use it in our BExIS system.
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Conclusion

In this thesis, we have discussed the problem of visualization selection, which occurs
due to the availability of unlimited choices of visualizations or chart types, due to
large and multidimensional datasets and due to the complexity involved in creating
a visualization. We have discussed these issues in detail in Chapters 1 and 2. As
a solution to these problems, visualization recommendation systems are used. A
review of current literature revealed that, although there are plenty of visualiza-
tion recommendation techniques available today, visualization science still lacks in
providing domain integrated recommendation solutions. We have discussed the need
for such solutions for specialized domains in Chapter 3. Understanding the issues our
biodiversity users face in their visualization process and being aware of the shortcom-
ings of current visualization recommendation technologies, we proposed to provide
a domain knowledge-based visualization recommendation solution for the visual ex-
ploration of biodiversity datasets. Furthermore, this research increases awareness
for using domain knowledge in visualization recommendation systems. Thus, this
research contributed to visualization science by demonstrating various approaches
to integrate specialized domain knowledge into the visualization recommendation
process.

Our visualization recommendation model is based on the biodiversity domain
knowledge and the context of the data. It is one of the core contributions of this
thesis. Based on community feedback, we came to this conclusion that the visu-
alization tool needed for this community should include an element of support in
the visualization selection process. Moreover, we built this model based on the tar-
get community’s domain knowledge to obtain visualization suggestions that closely
corresponded to the user’s knowledge. As it was impossible to collect needed mass
knowledge directly from biodiversity scientists, we relied on knowledge extraction
from publications. This resulted in the construction of the Biodiversity Visualiza-
tion Text Classifier, which represents the second main contribution of this thesis.
These are the first visualization classifiers that can suggest suitable visualizations
by only reading the text from a particular domain. To provide a solution for visu-
alizing high dimensional datasets, we have created our own ad-hoc Context-aware
Variable Selection Algorithm. As current visualization recommendation studies do
not provide any support to visualize high-dimensional datasets, we believe that our
work will encourage future research to develop further techniques to visualize high
dimensional data in visualization recommendation systems.

Our research is very user-centric and has tried to focus on domain users at the
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core of our research: we surveyed domain users at the time of the requirement
gathering phase; each module of our system was thoroughly evaluated by domain
users. We have also performed both qualitative and quantitative evaluations of our
final complete system. For quantitative evaluation, we used current state-of-the-art
evaluation techniques. In qualitative evaluation, we measured our system’s efficiency
based on users’ perception and overall insight collection.

11.1 Challenges and Future Directions
This section summarizes two of our most important contributions, including the
challenges we faced during their constructions and future directions for improving
such work.

11.1.1 Biodiversity visualization text classifier
Summary: The Biodiversity Visualization Text Classifier was constructed to de-
rive different chart type suggestions from a biodiversity text automatically. We also
considered the charts’ conceptual similarities for chart classification and the visual
similarity of different chart types. We manually labeled the chart images and cap-
tions from biodiversity publications. We trained both the image and chart classifiers
on this training data. From the best results of these two classifiers, we have incre-
mentally trained our text classifiers. This resulted in an average F1-score of 92.2%
from the assembly of binary chart classifiers. Next, our classifier was evaluated by
the domain users. The text classifier performed significantly better on those ques-
tions with 80% scores, where the quality and quantity of the textual data was good.
The high level of agreement between predicted and human results indicates that the
classifier learned the concept that fits the human understanding of the data.

Captions have been considered for the first time in visualization research for
chart classification. Before this work, chart type identification was done only based
on the image and its pictorial elements. A comparison between our results and other
studies (see Figure 20) demonstrates that a conceptual/semantic chart classifier can
efficiently differentiate between chart types that are visually similar (e.g., column
chart and histogram) and is as efficient as an image classifier. Such classifiers can
be used for different purposes. One purpose that is described in our research is the
creation of knowledge-based visualization systems.

Future research: Classifying chart types from caption data is still in a novice
state. We identified different use cases in which research in caption analysis could
be beneficial for visualization as well as for linguistics research:

• Visualization research: 1) A machine learning model trained on the visu-
alization captions can be evolved and also used by other users for different
domain knowledge-based visualization products, 2) a text classifier trained on
different chart types can be used for tagging, indexing, and searching doc-
uments, 3) it could be a valuable source for future theoretical visualization
research problems [Chen et al., 2017] like the creation of visualization ontolo-
gies based on classified visualization concepts.
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• Linguistics research: Research on caption classification will help: 1) to bet-
ter understand the requirements of classifications on concise and convoluted
texts, 2) to study the influence of domain-specific languages on classification
and possibly exploit domain-specific regularities to improve classification res-
ults, and 3) to find effective ways to integrate domain expert knowledge into
the classification process.

Challenges: For an enhanced semantic chart recognition systems, several prob-
lems need to be solved:

• As our classifier was only trained on biodiversity texts, we do not know how
well it will perform on general text or text from other domains. Studies are
needed in which a text classifier trained in one domain can be generalized to
other domains. The application of transfer learning1 has already produced
remarkable results in the field of computer vision. However, studies on the
application of transfer learning on textual data and especially on decision
trees and random forests are scarce. These questions are out of scope for our
research and have to be addressed in future studies.

• Apart from only using captions in the training process, using text from the
other parts of the publication referring to the chart images, could improve
results. Moreover, if the data is enriched with more semantic knowledge like
synonyms, concurrent words, domain-based ontological concepts then better
classification accuracy can be achieved. As this research was the first of its
kind in visualization caption classification, we did not apply these techniques
in our experiments. Based on preliminary results, we are confident that further
data enrichment will only improve the classification results.

• Real datasets are not always as homogeneous as the training data used for
the construction of the classifier in our work. Therefore, the accuracy of the
classifier might decrease when applying them to real datasets. More studies are
required to understand the common variations found in visualization images
and captions—for example, hybrid visualizations, multi-embed visualizations,
grammatical irregularities or out of vocabulary text.

11.1.2 Context-aware variable selection algorithm
Summary: For the efficient visualization of high-dimensional datasets based on a
few but relevant and salient features or variables, we have followed the approach of
feature selection in machine learning models. However, unlike data-driven variable
selection approaches, where the importance of variables is counted based on the data
distribution or other statistical features, we applied the domain-specific variable
selection approach. The approach uses the available domain information to retrieve
important keywords from the current metadata and other metadata files from the
same project. These keywords are used to filter out the relevant variables based
on variable definition. The quantitative evaluation of this algorithm resulted in
moderate scores, i.e., accuracy only 55 %. However, at the same time, the inter-
rater agreement result was also very low, i.e., only 16%. It means that there is only

1www.tensorflow.org/tutorials/images/transfer_learning

www.tensorflow.org/tutorials/images/transfer_learning
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16% of agreement between all 41 participants. The qualitative results and feedback
from our participants yet were good, encouraging us to use this algorithm in the
BExIS system.

Our literature review regarding previous visualization recommendation studies
revealed that the data’s domain knowledge and context are not directly considered
to filter salient variables from the dataset to visualize. In these studies, either the
complete variable set is allowed to visualize, or the users have to provide their interest
at runtime interactively. Recent studies about machine-learning based visualization
recommendation (built on rule-based trained models) select important variables for
visualization. However, these studies hardly include domain knowledge or context
in their approaches. Our research has provided a first step in this direction: the
context of the data from the available domain knowledge is used to filter important
variables to visualize. Currently, we are in the process of analyzing feedback from
our domain users to improve this algorithm.

Future research: Some additional aspects could not be dealt within our time-
frame and scope.

• Machine learning-based context-aware variable selection algorithm:
Our current algorithm produces results based on the quality of the text in the
metadata files, the project metadata files, and the known biodiversity terms.
It does not use any pre-learned concept in calculating the results. Training
the algorithms on the different biodiversity concepts and their related textual
vocabulary (for example, which variables and terms are more often used to
describe a beta diversity) might be an option to improve results.

• Context-aware visual data summarization: While working on this al-
gorithm, we realized that apart from filtering the relevant variables from the
dataset, we can also provide a visual summary of these variables. This sum-
mary shows which variables are highly connected based on the respective biod-
iversity concept. In Figure 41, we have presented an example from one of our
experiments.
Figure 41 illustrates the relationship between the filtered variables: there are
two prominent entities in this dataset, i.e., soil and plot. The soil has a total
carbon content (c_t) measured at a certain depth level. Each depth has a
specific label (depth_lb) in the dataset. Furthermore, in this dataset, there
is information about soil acidity (ph_h2o). Plots of a specific size have been
assigned a special tag (csp). Nitrogen has been measured in two forms, i.e,
n_t (nitrogen total) and (c_n) ratio of carbon and nitrogen. Compound kci
(Potassium Chloride) has been measured in the form of ph_kci.
This example indicates that, we can visually show the complicated relationship
between the data variables in the dataset. This approach of data summariza-
tion could be very helpful to understand very high dimensional datasets.

• A domain-specific variable selection algorithm can also be trained at run time
by using interactive machine learning techniques: if the user is not satisfied
with the recommended variables or wants to include more variables, the al-
gorithm can be trained based on the new variable selection from the user.
This could provide better variable recommendations for the same datasets for
future sessions. This technique of tagging variables to data and visualizations
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Figure 41: An example of context-aware visual data summarization.

has already been successfully used in previous machine learning-based visual-
ization recommendation studies. However, these studies have only used offline
training. Online training allows the efficient integration of user knowledge into
the system’s knowledge base at runtime.

Challenges: The biggest challenge we faced concerning this algorithm was
linked with its evaluation. There are no benchmark techniques to evaluate domain-
specific algorithms. In our study, we evaluated it with the same metrics used for
feature selection algorithms in machine learning. Another challenge is related to the
various description standards in the metadata of the biodiversity datasets. Use of
more unconventional short-forms affects the overall understanding of the data.

11.2 Experience from User Study
We followed the principles of user-centric studies throughout this research. We con-
tacted domain users through multiple surveys, meetings at conferences, interviews
and informal chats. This knowledge helped us to construct the system according
to the user’s needs. This concept has also indirectly provided us with helpful cues
in bridging the knowledge gap between the domain scientists and the computer sci-
entist for future domain-specific software projects. We published results from this
experience in a collaborative paper [Jänicke et al., 2020] with other scientists. Some
of the findings are:

• Understanding the domain: Researchers in computer science and visual-
ization, are often unaware of research interests and current workflows in the
targeted domain. For successful construction and implementation of visualiz-
ation systems, it is necessary to attain at least a basic understanding, ideally,
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fascination, for the respective domain field. We should also try to understand
how domain experts use state-of-the-art tools, if present, for their daily work.

• Early prototyping: It can be beneficial to develop a basic functional proto-
type before gathering requirements from domain users. Being provided with
a real system instead of an abstract concept, they are better able to give feed-
back, and they are better able to map their existing workflows and reflect on
conceptual gaps. After completion of the system, they are also more indulged
and provide input on how to amend it to make it more suitable for their
requirements. This early prototyping approach has been proven successful,
especially when targeting technically inexperienced scholars.

• Engage in the domain: A ready-to-use tool designed during an interdis-
ciplinary project does not necessarily reach domain users beyond the project
participants. It is useful to present applicable solutions at conferences of the
targeted domain. This not only potentially increases the user base of a tool,
but also reveals existing visualization gaps in the domain. Additionally, we
can offer our expertise for related tasks leading to novel research directions in
our field.

11.3 Work-in-progress

As evident from our good qualitative results presented in Chapter 10, the ap-
proach presented in the thesis about recommending visualizations based on the
domain knowledge is convincing to a large extend. However, still significant
further development is needed. Currently, we are in the process of the integrat-
ing recent aspects from the user feedback in the system and implementing it in
our BExIS environment. We have also planned to work with other biodiversity
projects and configure our recommendation system to visualize their datasets.
Apart from that, we would like to use the current interface to not just support
biodiversity users but also users of other domains. We would like to reduce
the dependency of the recommendation system on domain specific aspects and
would try to include other non-domain features into the recommendation logic.
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VISUALIZATION SURVEY 
This survey is a part of my PhD work, which is focused on building a framework for recommending visualizations for biodiversity/ecology data, 
under the affiliation of Institute of Computer Science, Friedrich-Schiller-University Jena. It is meant to get visualization usage information from 
ecologists and biodiversity researchers. This data will help us to understand the current practices and patterns from the domain experts.  All 
information will be held secure and will solely be used for the above mentioned research.  

1. Name and Email address (optional) 

___________________________________________________________________________________________________ 
 

2. What is your main research theme? 

____________________________________________________________________________________________________________________ 
 

____________________________________________________________________________________________________________________ 

 

3. What visualization software do you use normally and for what purposes? 

o Visualization software:     Excel          R          SPSS          Cytospace         Tableau          ArcGIS 

         Others (Please specify) __________________________________________________________________________________________ 

o Purposes:      Data Search              Data Exploration              Quality Assurance        Data Analysis         

   Result presentation in publications       Others (Please specify) _______________________________________________________ 

             _____________________________________________________________________________________________________________ 

 

4. What factors do you consider when deciding if a particular visualization is good for your task?  Also, please choose how prominent/important 
is that in the visualization selection process? 

              Factors  Most Prominent   Prominent   Less Prominent  

 

 (a) Data Type    
   

 

 (b) Data Variables    
   

 

 (c) Data Size    
   

 

 (d) It looks good (like colour or graphical 
icons)       

 

 (e) I only know these ones or literature 
shows the same       

 

 (f) Easy to use    
   

 

5.  Do you face difficulties in selecting a visualization for representing your research data (like in publications or in presentations)?  

(Select one option) 

 
 

Yes                                                                                                 Other (please specify)  _________________________________ 

 
 

No 

6.  Would you consider to have a software tool that can guide you in the selection of suitable visualization for your data?  

(Select one option) 

 
 

Yes                                                                                                    Other (please specify)  _________________________________ 

 
 

No 

 

From this point onwards, you will be shown some visualizations. For each visualization, you will be asked to mention some generic studies 
or analysis that you perform through that visualization.  Then rate each on the preference of suitability of that visualization for that 
analysis (in the scale of 1 to 3).  

Question 8 is done as an example for better understanding.   



8. SCATTERPLOT 

           

 Task        Preference  If you don’t use this visualization, reason? 
 

      Never needed 
      Don’t know about it 

a. Spatial Distribution 3 (Least Preferred) 
b. PCA 1 (Most Preferred) 
c. RDA 2 (Neutral) 

For example: You use Scatterplot to represent Spatial Distribution, for doing PCA and RDA. Your preference for using Scatterplot for PCA is 
more, in comparison to RDA and Spatial Distribution. Third column is not filled, as you use this visualization.  

9. HEATMAP 

 

 Task        Preference  If you don’t use this 
visualization, reason? 
 

      Never needed 
      Don’t know about it 

a.   
b.   
c.   

 

Any comments about the visualization: 
____________________________________________________________________________________________________________________ 

____________________________________________________________________________________________________________________ 
 

10. PIE CHART                                                                

                                                                                                    

 Task        Preference  If you don’t use this 
visualization, reason? 
 

      Never needed 
      Don’t know about it 

a.   
b.   
c.   

 

Any comments about the visualization: 
____________________________________________________________________________________________________________________ 

____________________________________________________________________________________________________________________ 
 

11. LINE GRAPH  

        

 Task        Preference  If you don’t use this 
visualization, reason? 
 

      Never needed 
      Don’t know about it 

a.   
b.   
c.   



VISUALIZATION SURVEY 
This survey is a part of my PhD work, which is focused on building a framework for recommending visualizations for biodiversity/ecology data, under the 
affiliation of Institute of Computer Science, Friedrich-Schiller-University Jena. It is meant to get visualization usage information from ecologists and biodiversity 
researchers. This data will help us to understand the current practices and patterns from the domain experts.  All information will be held secure and will solely 
be used for the above mentioned research.  

1. Name and Email address (optional)

____________________________________________________________________________________________________________________ 

2. What is your main research theme?

____________________________________________________________________________________________________________________ 

____________________________________________________________________________________________________________________ 

3. What visualization software do you use normally and for what purposes?

o Visualization software:     Excel          R          SPSS          Cytospace         Tableau          ArcGIS

Others (Please specify) __________________________________________________________________________________________

o Purposes:  Data Search    Data Exploration              Quality Assurance        Data Analysis  

 Result presentation in publications      Others (Please specify) _______________________________________________________ 

    _____________________________________________________________________________________________________________ 

4. What factors do you consider when deciding if a particular visualization is good for your task?  Also, please choose how prominent/important is that in the
visualization selection process? 

  Factors  Most Prominent  Prominent  Less Prominent 

(a) Data Type 

(b) Data Variables 

(c) Data Size 

(d) It looks good (like colour or graphical 
icons) 

(e) I only know these ones or literature 
shows the same 

(f) Easy to use 

5. Do you face difficulties in selecting a visualization for representing your research data (like in publications or in presentations)?

(Select one option) 

Yes       Other (please specify)  _____________________________________ 

No 

6. Would you consider to have a software tool that can guide you in the selection of suitable visualization for your data?

 (Select one option) 

Yes       Other (please specify)  _____________________________________ 

No 

From this point onwards, you will be shown some visualizations. For each visualization, you will be asked to mention some generic studies or 
analysis that you perform through that visualization.  Then rate each on the preference of suitability of that visualization for that analysis ( in the scale 
of 1 to 3).  

Question 8 is done as an example for better understanding.  Its explanation is also available in italics after the table 



                                                            
 
8. SCATTERPLOT 

      

 Task        Preference  If you don’t use this visualization, reason? 
 

      Never needed 
      Don’t know about it 

a. Spatial Distribution 3 (Least Preferred) 
b. PCA 1 (Most Preferred) 
c. RDA 2 (Neutral) 

For example: You use Scatterplot to represent Spatial Distribution, for doing PCA and RDA. Your preference for using Scatterplot for PCA is more, in 
comparison to RDA and Spatial Distribution. Third column is not filled, as you use this visualization. 

 

9. TREE 

                   

 Task        Preference  If you don’t use this 
visualization, reason? 
 

      Never needed 
      Don’t know about it 

a.   
b.   
c.   

             

Any comments about the visualization: 
____________________________________________________________________________________________________________________ 

____________________________________________________________________________________________________________________ 

 

10. VENN DIAGRAM                                                                

                                                                                              

 Task        Preference  If you don’t use this 
visualization, reason? 
 

      Never needed 
      Don’t know about it 

a.   
b.   
c.   

 

Any comments about the visualization: 
____________________________________________________________________________________________________________________ 

____________________________________________________________________________________________________________________ 

 

11. DENSITY PLOT 

  

       

 Task        Preference  If you don’t use this 
visualization, reason? 
 

      Never needed 
      Don’t know about it 

a.   
b.   
c.   
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Scatterplot DendrogramDensity PlotBoxplot Scatterplot MatrixCoPlot Heatmap

PCA Phylogenetic AnalysisPopulation DynamicsCarbon Stock Covariation ExplorationRegression3D variable analysis

PCA Cluster AnalysisSpatial DistributionStatistical Analysis Collinearity Detection2 way interationIntensity analysis

Regression Collinnearity ExplorationData DistributionGroup Comparison RegressionPopulation Genomics3D variable analysis

Spatial DistributionPhylogenetic AnalysisBayesian EstimationFactorial Design Data ExplorationCorrelationSpatial Distribution

CA Cluster AnalysisData DistributionOutlier Presentation Data DistributionData Investigation2 way interation

Phylogenetic AnalysisClassificationVegetation CoverageFactorial Design Quality ControlData OverviewSpatial Distribution

Cluster AnalysisCluster AnalysisOverview Fatorial Design Data ExplorationMultivariate StatisticsRegression

PCA Vegetation CompositionTrend Statistical Comparison Covariation ExplorationComparisonSpatial Distribution

RDA Phylogenetic AnalysisData DistributionData Overview RegressionComparison3D variable analysis

GLM Cluster AnalysisDensity DistributionCategorical Data DistributionRelationship ComparisonData ExplorationRegression

Spatial DistributionCategorical classificationData DistributionCategorical Data DistributionData ExplorationAssociationSpatial Distribution

RDA Cluster AnalysisTrend Numerical Pattern Data Distribution Abundance

PCA Cluster AnalysisLandscape ChangesFactorial Design Correlation Spatial Mapping

Spatial DistributionCommunity ClusteringNormality TestComparison DistributionData Overview Comparison

RDA Phylogenetic AnalysisSpatial DistributionData Exploration Correlation Statistical Analysis

PCA Kinship AnalysisData DistributionExperimental Data Data Distribution Spatial Statistics

RDA Phylogenetic AnalysisData DistributionGroup Comparison Data Exploration Data Distribution

Cluster AnalysisPhylogenetic AnalysisData ExplorationSpecies Abundance PresentationCorrelation Heterogeneity

Phylogenetic AnalysisPhylogeographyNormality TestSpecies Richness PresentationCorrelation Spatial Distribution

RDA Cluster AnalysisData DistributionGroup Comparison Linear Modelling Correlation

Spatial DistributionWorkflow Density DistributionGroup Comparison Quality Control Trend

Spatial DistributionSpecies RelationData ExplorationData Distribution Spatial Correlation Data Exploration

PCA Cluster AnalysisAltitudinal DistributionOutlier Presentation Correlation Data Distribution

RDA Phylogenetic AnalysisData DistributionGroup Comparison Independence Test

PCA Cluster AnalysisBayesian EstimationGroup Comparison Data Investigation

PCA Phylogenetic AnalysisTemporal DistributionData Exploration Correlation

Spatial DistributionSpecies RelationData DistributionFactorial Design Regression

RDA Cluster AnalysisPosterior DistributionSummary Statistics Data Overview

RDA Phylogenetic AnalysisData DistributionOutlier Presentation Correlation

PCA Distance ExplorationData InspectionData Overview Covariation Exploration

RDA Cluster AnalysisRoot Growth DepthGroup Comparison Data Exploration

Spatial DistributionTwinspan Data DistributionGroup Comparison Correlation

Correlation ClassificationComparisonData Exploration Correlation

Cluster AnalysisRelatednessStatistical AnalysisSummary Statistics Data Exploration

PCA Phylogenetic AnalysisStatistical AnalysisData Description Temporal Distribution

Cluster AnalysisTrait AllocationData DistributionVariance Analysis Correlation

PCA Diversity Data DistributionStatistical Comparison Multivariate Statistics

Ecological GroupingWard's DistanceData DistributionStatistical Comparison Overview

Spatial DistributionPhylogenetic AnalysisComparisonStatistical Comparison Trend

PCA Evolutionary Analysis Data Exploratiom Trend

Spatial DistributionSpecies Description Data Dispersion Data Distribution

Spatial Analysis Phylogenetic Analysis Group Comparison Data Exploration

Multivariate StatisticsNestedness Overflow Trend

Correlation Similarity Significance Test Multivariate Statistics

Distribution Phylogenetic Analysis Factorial Design Correlation

Distribution Species Relation Summary Statistics Multivariate Statistics

Correlation Hierarchy Summary Statistics Regression

PCA Data Exploration HSD Test Correlation

Correlation Clustering T test Correlation



Data Exploration Wilcoxon Test Comparison

Association Data Exploration Outlier Identification

CCA Data Exploration Temporal Distribution

DCA Significance Test Comparison 

Group Comparison ANOVA

Factorial Design Correlation

Data Distribution Data Exploration

Group Comparison

Biomass Distribution

Species Abundance Presentation

Group Comparison

Group Comparison

Group Comparison

Summary Statistics

Culturability values

Culturability values

Group Comparison

Group Comparison

Comparison

Data Distribution

Data Exploration



LineChart Pie Chart Bar Chart

2D variable analysis Proportion Presentation Data Distribution

Temporal Analysis 1D variable analysis 2D variable analysis

Correlation Proportion Presentation Factorial Design

Temporal Analysis Proportion Presentation Data Exploration

1D variable analysis Comparison Comparison

Trend Proportion Presentation Group Comparison

Correlation Composition Proportion 

Regression Proportion Presentation Factorial Design

Temporal Analysis Composition Relative Abundance

Temporal Analysis Composition Temporal Analysis

Temporal Analysis Distribution Factorial Design

Temporal Analysis Proportion Presentation Phylogenetic Distribution

Comparison Simple Statistics Relative Abundance

Correlation Composition ANOVA

Growth Curves Proportion Presentation Statistical Analysis

3D Analysis Taxonomic Richness

Temporal Analysis Trends

Temporal Analysis Comparison

Trend Comparison

Trend Distribution

Comparison Association

Association

Correlation
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Chapter C. Different visualization types found in biodiversity

publications

1. 100% stacked area chart

2. Alluvial diagram

3. Area chart

4. Bar Chart

5. Bar Chart with error bars

6. Beanplot

7. Bifurcation diagram

8. Bubble chart

9. Bubble map

10. Boxplot

11. Chord diagram

12. Choropleth map

13. Circular dendrogram

14. Column chart

15. Column chart with error bars

16. Contour map

17. Contour plot

18. Correlogram

19. Dendrogram

20. Density chart

21. Dot map

22. Dot plot

23. Error plot

24. Flow map

25. Grid heatmap

26. Heatmap

27. Histogram

28. Line chart

29. Map

30. Mosiac bar chart

31. Mosiac column chart

32. Mosiac plot

33. Multiset bar chart

34. Multiset bar chart with error bars

35. Multiset column chart

36. Multiset column chart with error bars

37. Multiset stacked column chart

38. Multiset stacked column chart with er-
ror bars

39. Node-link diagram

40. Notched boxplot

41. Ordination scatterplot

42. Pie chart

43. Polar area chart

44. Population pyramid

45. Scatterplot

46. Scatterplot matrix

47. Scatterplot with regression line

48. Span chart

49. Spectogram

50. Stacked area chart

51. Stacked bar chart

52. Stacked column chart

53. Stacked column chart with error bars

54. Streamgraph

55. Taylor diagram

56. Timeseries

57. Triangle diagram

58. Violin plot

59. Waterfall diagram
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Classes Caption Classes
Ordination Plot Ordination plot for CCA at facet scale. Only

variables with the highest interset correlations are
drawn. Species are identified using four letter keys
(see Additional file 1: Table S1). Species with un-
derlined keys and square symbols are exotic to the
Pampas. Ordination explains 2.8% of total vari-
ance.

Map Species distributions and environmental layers.
Figure (a–d) are distribution maps of species
pooled to genera Pinus, Abies, Larix and Picea,
respectively, superimposed over background di-
gital elevation model (DEM) maps with 50%
transparence. Figure (e) and (f) are maps of the
environmental factors gross degree days (GDD)
and aridity respectively.

Scatterplot a) Scatterplots of observed species densities and
Chao 2 estimates of species richness at replicates
in the four habitat types along the transect and b)
a scatterplots of species densities collected at the
11 sites as a function of the chronological order of
surveys.

Line Chart Model logP2-2 uses three hidden neurons and 45
descriptors as input. The horizontal dotted lines
running across the thresholds indicate where an
error rate of 0.5 would fall. (A) Distribution of
predictions (blue) and errors (red) for the external
validation set. Dashed lines represent the fitted
beta binomial distributions for the corresponding
training pool results.

Dendrogram Ecological and phylogenetic clustering of the 15
macroperforate species that overlap between the
Tohoku University dataset and the coretop/ex-
emplar dataset. (a) Consensus cluster dendro-
gram of the full-3D Tohoku University specimen
morphospace (same as figure 10 c ). (b) Ecological
cluster dendrogram built using Jaccard distances
calculated from three ecological traits ( table 1
). (c) The phylogenetic relationships between the
15 macroperforate species, as pruned and redrawn
from Aze et al. ’s [ 22 ] stratophenetic phylo-
geny. Dendrogram tip label colours correspond to
morphospace species colours from figure 9.

Column Chart Comparing the performance of the proposed
method with our previous methods. A: indicated
the prediction results of defensin family; B: indic-
ated the prediction results of vertebrate defensin
subfamily.

Heatmap The heatmap shows the adjacent correlation of
13 reduced amino acids for five different defensin
families.
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Boxplot Boxplots of the effects of species richness on
respiratory activity under constant temperature
conditions.

Area Chart Initial aerosol (a) number density and (b) mass
density size distributions for all simulations.

Network Soil food web diagram representative for all
three land use types in the Koiliaris Critical
Zone Observatory (Crete, GR). Boxes represent
the presence of trophic groups in the soil food
web, arrows represent feeding interactions based
on diet information (the arrow points from the
group eaten to the group that eats). Groups
with drawn boxes were present at all sites,
groups with dashed boxes were only present at
some sites.

Histogram Histograms of gap frequency by duration for (a)
drivers and (b) fluxes and histograms of the frac-
tion of total gap length for (c) drivers and (d)
fluxes.

Timeseries Timeseries of anomalous SLP at 40 0 W; 60 0 S
(black line) and timeseries of NE SPI (blue line).

No-viz Conceptual diagram of macrofaunal diversity,
density and composition patterns along a fluid-
flux gradient in the chemosynthetic ecosystems
of the Guaymas Basin.

Pie Chart Pie chart showing the functional classifications.
The 44 identified proteins were categorized into
8 different functional categories. The pie chart
represents the percentage of identified proteins
under each category. The percentages are shown
within the pie chart.

Stack Area Chart Model Energy Budget . Area chart showing
breakdown of energy usage stacked to show con-
tribution to total predicted energy delivered.
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1 
Pawandeep Kaur, pawandeep.kaur@uni-jena.de 
 

CHOOSE THE INTERESTING VARIABLES FROM THIS DATASET 
 

About our research: We have created a system that reads the metadata 
from the biodiversity domain and then automatically selects the input 
variables for the dataset visualizations. The goal of these 2-D visualizations is to 
provide meaningful insight into the data and provide initial data exploration 
without any model hypothesis formation.  
 

About the task: To evaluate this algorithm, we would like the participants 
to go through the description of the dataset provided in the section below. 
Then select the interesting variables from the next page. Please choose those 
variables that can best fit to visualize this dataset. 
  

Dataset Abstract 

In soil erosion research, it is widely accepted that vegetation is a key factor for 
the type and intensity of erosion. Thus, scientists have long recognized the 
importance of forests for erosion control and afforestation is a common 
measure of soil protection. However, the mechanisms of how forests protect 
the soil remain debated, and especially the role of biodiversity is unclear. 
In this experiment, we quantified the initial soil erosion under forest using 
micro-scale runoff plots (ROPs, 40 cm x 40 cm). 70 study plots have been 
equipped with 5 ROPs each (350 ROPs in total). The study plots represent 
different levels of tree diversity ranging from 1 to 24 tree species mixtures and 
bare ground. The measurements took place during the rainy season from May 
to June 2013, with rainfall events showing intensities up to 85 mm h-1. We 
measured sediment discharge, runoff volume, soil surface cover and canopy 
cover in the field. In addition, organic carbon and nitrogen contents in eroded 
sediments were analysed. 

Dataset Design  

350 runoff plots on 70 VIPs covering tree diversity levels from 0 to 24. 

 

Dataset Analysis 

GLM, LME 

 



 
 

2 
Pawandeep Kaur, pawandeep.kaur@uni-jena.de 
 

  

Tick(X) Variable Id. Variable definition 
 PTAG BEF China plot identification 
 site Experimental Site 
 plot VIP number 
 rop runoff plot identification 
 timestep timestep 
 slope_rop slope angle at every ROP 
 slope slope angle VIP 
 asp exposition 
 asp_com exposition class (N, S, W, E) 
 altitude VIP altitude 
 surface_cov_tot surface cover total 
 surface_cov_crust surface cover biocrusts 
 surface_cov_stone surface cover stones 
 soil_dens soil density 
 spec_numbers number of tree species within the respective experimental plot 

(also "plot diversity level") 
 tree_cmp tree composition surrounding the runoff plots. Species names in 

Latin annotated in a consecutive way with genus abbreviated 
 ground_cover leaf canopy cover 
 lai leaf area index 
 start_date start measurement 
 sample_date date of sampling 
 days days between start and sampling date 
 precip rainfall amount climate station A 
 precip_hours hours of rainfall 
 intensity_mean mean intensity 
 intensity_peak peak intensity 
 precip_eros rainfall amount classified erosive 
 precip_eros_hours hours of classified rainfall 
 intensity_eros_mean mean intensity (erosive event) 
 intensity_eros_peak peak intensity (erosive event) 
 precip_events Rainfall event no. (erosive) 
 precip_rop rainfall on ROP 
 precip_rop_eros precip_rop_eros 
 runoff surface runoff (1600 cm2) 
 infiltration infiltration (1600cm2) 
 sed_dis sediment discharge 
 sed_dis_stan sediment discharge standardized 
 N_dis_t N total in sediment 
 N_dis_pc N percentage in sediment 
 C_dis_t C total in sediment 
 C_dis_pc C percentage in sediment 
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VISUAL EXPLORATION THROUGH 
BIODIV VIS TOOL 

As a part of the evaluation of the thesis „Knowledge-Assisted visualization 
recommendation.“ 

Prerequisite: Biodiversity domain knowledge at Ph.D. level or above.  

Step 1: Please read the metadata for dataset no……. provided by the evaluator. 

Step 2: After you have read the metadata, list below the various insights that you would like 
to get from the corresponding dataset 

Insights: 

              
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________ 

Step 3: Once done, enlisting the insights, visually explore the corresponding dataset in our 
visualization recommendation tool. For each visualization that you use produce, please fill 
the information below. 

      Visualization Name                                    Observation 

          _______________________                _______________________________________          

          _______________________                _______________________________________ 

          _______________________                _______________________________________ 

          _______________________                _______________________________________ 

          _______________________                _______________________________________ 

          _______________________                _______________________________________ 

          _______________________                _______________________________________ 

          _______________________                _______________________________________ 

 

 

 

 

 



Step 4: Once finished with the visual exploration, answer the questions below based on the 
insights you have gained. 

A. Were you able to find all insights that you initially wanted to gain after reading 
the metadata? 
__________________________________________________________________
__________________________________________________________________ 
__________________________________________________________________
__________________________________________________________________ 
__________________________________________________________________
__________________________________________________________________ 
__________________________________________________________________
__________________________________________________________________ 
 

B. Did you find any unexpected insight while exploring the dataset? 
__________________________________________________________________
__________________________________________________________________ 
__________________________________________________________________
__________________________________________________________________ 
__________________________________________________________________ 
 

C. Did you find any new insight? 
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________ 
 

D. Visualizations that you find helpful in understanding the data? 
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________ 
 

E. Do these visualizations and subset of the data trigger further analytical 
questions/queries or understanding? 
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________ 
 

Any information you would like to provide that does not fall into any of the above questions? 

___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________ 

 
 

 

Thank you very much for participating in this survey. 
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Excel Chart Recommendation tool - ERT 

Participant 1  

577 Excel 

• Participant used ERT but it did not show anything to them, then he used manual charting 
option. 

• Boxplot was not readable by Participant. It needs transformation to show better boxplots. 
• Switching between metadata and dataset for better understanding. 

24209 Our tool 

• There is no hover functionality for boxplot. 
• He asked about why only the subset was shown. He wanted more variables. 

Overall 

• Some needed variables were missing. 
• Mostly interesting variables were shows by the tool.  
• Great for exploration. 
• Ways to include colour manually. 

Participant 2 

577 Our Tool 

• Data shown by boxplot was not much helpful. However, he liked the violin plot. He might 
have not thought about it if it was not included in the list of recommended viz. Adding 
alternative visualization aid in better data recommendation. 

• Size in scatterplot should also change by integer and not only by other variables. 
• Currently scatterplot is showing only for categories and not for discrete data or linear 

measurement values. 
• Participant said it is a difficult and complex data. 

24209 Excel 

• Helped Participant to select X and Y categories as he was not able to find the option. 
• Raw data does not provide the complete information as it is mentioned in the metadata. 
• He used data transformation and other Excel analytic function to understand the data best. 

Overall 

• Tool did better as compare to Excel as Excel is more for business or financial domain and 
does not suit to the demand of biodiversity analysis. 

• Jensel effect needs density which was missing in the recommended subset and BefChina has 
less dataset related to density. 

• Variable subset algorithm should be learned based on the phenomenon like spatial 
heterogeneity and horizontal heterogeneity. 

• Selected variables show general project design and project based interesting variables but 
not in-hand dataset based. 

 



Participant 3 

577 Our tool 

• Participant was navigating between tool /raw data / metadata while exploration. 
• Participant could not find distance variable which he wanted to explore in the data. Told that 

we have only taken subset of variables suggested by our algorithm. 

24209 Excel 

• Participant said it is easier dataset than 577. 
 

Overall 

• Liked environment of tool.  
• There should be option to select more explanatory variables. 
• After using both Excel and the biodiversity visualization tool, I would prefer the second one 

due to the inclusion of multiple explanatory variables at once in an easy way. 

 

Participant 4 

577 Excel 

• The screen recording stopped twice. Paused the evaluation and had to start again. 
• Participant used ERT twice but it did not show anything. Then he moved to MCT and 

transformation and Excel functions. 
• Participant prefer first to ask the data owner to describe the dataset and then Participant 

will start exploring the data by its own. 
 

24209 Our tool 

• Participant asked about why only the subset was shown. Participant would want more 
variables. 

• When asked, the difference between Hexagonal Binning and Scatterplot was told. 
• He said that zoom out in in treemap is not very intuitive. 
• Node-link dataset not showing all values of edges with water_content. 
• When asked told that no transformation of the raw data is done before visualizing. 
• Participant was doing more of tool driven exploration than data driven exploration. 
• Alluvial diagram shows experimental setup and not analysis and exploration. 

Overall 

• Participant found tool to be easy and intuitive.  
• When told how the tool will be used in future, Participant said that it is better to use the tool 

and plot randomly rather than downloading each dataset. 
• Participant wanted to see more multidimensional plots for correlation like Scatterplot Matrix 

and Parallel Coordinates 
• Certain columns are not enough and need whole dataset. 
• The recommended subset of variables were reasonable but not enough. 



• Liked freedom of selection of variables with drop down buttons. 

Participant 5 

20106 Our tool 

• Switching between tool to metadata to understand the variable definition better. 
• Participant asked about why only the subset was shown. Participant would want more 

variables. 
• When asked, the Hexagonal Binning was explained. 

 

376 Excel 

• Participant was not able to understand some of the variables in the metadata like 
precip_eros and ground_cover. Coordinator being not biodiversity person could not help 
much in that. 

• Participant was more interested in exploratory through Excel viz thumbnails rather than 
enlarged viz. 

• Build in functions for grouping and filtering were used. 

Overall 

• Convenient as with Excel too many variables need too much scrolling and then viz 
construction. In tool, it is all in one list. 

• New plots and new experience with tool. 
• Some variables like mean_dbh was not there due to which important viz cannot be created. 
• Variable definition should also be included in the plotted area. 
• She recommended to create variable selection algorithm trained on variable names in the 

visualizations of the biodiversity publication and the described concept within the caption. 
Better to use publications from the same project for better subsetting. 

• Variable subset algorithm should be learned based on the phenomenon like spatial 
heterogeneity and horizontal heterogeneity. 

• People can get more merits of software when they know it much better. 
 
 

Participant 6 

20106 Our tool 

• Participant would prefer to have variable definition in the plotting area. 
• Participant prefer first to ask the data owner to describe the dataset and then will start 

exploring the data by its own 
 

376 Excel 

• Participant did exploration on its own Mac as Participant was more convenient in it. 
Therefor no recording for this session is available.  

• Participant was creating lots of composite variables and using lots of transformation. 



• Participant was not able to use build in functions for grouping as she is not much use to 
Excel. 
 

Overall 

• It shows lots of relationships but it is not possible to know from tool the cause of these 
relation. Need corrections (statistical correction of estimates) for that. 

• It should also show how many observations (n) the plot is based on. 

 

Participant 7 

376 Our tool 
• Participant asked about why only the subset was shown. Participant would want more 

variables like species_number.  

Overall 

• Liked how tool gives ideas to visualize specific variables and data. 
• User friendly 
• It had eliminated the variables which could be useful. 
• It is good to explore all the variables. 
• Hover option are good to see the specific values on the chart.  
• Hover option should also be available for scatterplot. 
• It identified outlier without doing deep exploration just by plotting with mouse. 
• Liked clustering visualizations based on goals. Like goal-based visualization exploration 

technique. 
• It should also give statistical summary of a dataset when one clicks on the dataset number. 

 

Participant 8 

376  Our tool 
• Participant asked about why only the subset was shown. Participant would want more 

variables like altitude, tree_cover and slope. 
•  Recommended variable sets tells obvious things about the dataset. Available variables are 

common or general variables. They are output related variables but they don’t give deeper 
understanding that could give more hint about the reasons or causation. 

• Participant would prefer to have variable definition in the plotting area. 

20106 Excel 

• All variables are available there is also lots of redundancy. Still it is better to have more 
than less. 

• Some variables like no. of tree, basal area and volume are important for forest inventory 
and they are missing in the dataset. 

 

Overall 



• A better variable selection algorithm will avoid having too many collinear variables like 
erosion_mean and erosion_peak. It could do collinearity check for that. It should include 
spatial variables like altitude, aspect(N,W,E,S) and temporal variables. It should include all 
categorical variables and do collinearity check for measurement variables. 

• For general users the recommended variables are fine but for experts it is not. 
• Easy to use 
• Good for overall goal of the research like what kind of graph can I apply? It answers this 

question very well. 
• Spatial dimension is missing. Should have provisions of maps. 
• Temporal dimension is missing. It should include that. 
• Distribution to understand data is good goal for this dataset. 
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Figure 43: Breakdown of the downloaded publications from different journals
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