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Abstract

In this dissertation, we consider models with low-rank and group-sparse components.

First, we investigate robust principal component analysis, where the low-rank com-

ponent represents the principal components, and the group-sparse component ac-

counts for corruptions in the data. We propose a model for the general setting, where

groups of observed variables can be corrupted. Second, we generalize fused latent

and graphical models to the class of conditional Gaussian distributions with mixed

observed discrete and quantitative variables. Fused latent and graphical models are

characterized by a decomposition of the pairwise interaction parameter matrix into

a group-sparse component of direct interactions and a low-rank component of indi-

rect interactions due to a small number of quantitative latent variables. All models

in this thesis can be learned by solving convex optimization problems with low-rank

and group-sparsity inducing regularization terms. For fused latent and graphical

models, there is an additional likelihood term. We show that under identifiabil-

ity assumptions, a given true model can be recovered exactly (principal component

analysis) or consistently (fused latent and graphical models, high-dimensional set-

ting) by solving the respective optimization problems. We also present heuristics for

selecting the regularization parameters that appear in the optimization problems.

We conduct experiments on synthetic and real-world data to support our theory.

Zusammenfassung

Gegenstand dieser Dissertation sind Modelle mit low-rank und group-sparse Kom-

ponenten. Zuerst betrachten wir robuste Hauptachsenanalyse, wobei die low-rank

Komponente die Hauptachsen repräsentiert und die group-sparse Komponente Ver-

unreinigungen in den Daten widerspiegelt. Wir untersuchen ein allgemeines Modell,

in dem Gruppen von beobachteten Variablen verunreinigt sein können. Als nächstes

verallgemeinern wir fusionierte latente und graphische Modelle auf Verteilungen mit

sowohl diskreten als auch quantitativen beobachteten Variablen. Fusionierte latente

und graphische Modelle sind durch eine Zerlegung der paarweisen Interaktionspa-

rametermatrix in eine group-sparse Komponente für direkte Interaktionen und eine

low-rank Komponente für indirekte Interaktionen charakterisiert. Die indirekten

Interaktionen hängen mit einer kleinen Zahl an latenten quantitativen Variablen

zusammen. Alle Modelle in dieser Dissertation können durch das Lösen von kon-

vexen Optimierungsproblemen mit low-rank und group-sparsity induzierenden Re-

gularisierungstermen gelernt werden. Für fusionierte latente und graphische Mo-

delle kommt ein zusätzlicher Likelihood-Term hinzu. Wir zeigen, dass unter Iden-

tifizierbarkeitsannahmen ein wahres Modell durch das Lösen der entsprechenden

Optimierungsprobleme exakt (Hauptachsenanalyse) oder konsistent (fusionierte la-

tente und graphische Modelle, im hochdimensionalen Setting) rekonstruiert werden

kann. Außerdem stellen wir Heuristiken zur Wahl der in den Optimierungsproble-

men auftretenden Regularisierungsparameter vor. Experimente mit synthetischen

und realen Daten bestätigen unsere theoretischen Erkenntnisse.
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Chapter 1

Introduction

1.1 Sparse and Low-Rank Modeling

William of Ockham (1287 - 1347) was an English Franciscan friar, theologian, and a

main figure of scholasticism. Scholasticism was the predominant school of philosophy

and teaching in medieval European universities between 1100 and 1700. It places a

strong emphasis on the dialectical method. This method constitutes a disputation

of a subject between two or more people who have different points of view, but have

the common wish to establish the truth about the subject by means of reasonable

argumentation. William of Ockham’s most notable contribution to scholasticism

was the idea that from multiple competing hypotheses with the same conclusion,

one should select the one with the least assumptions. In other words, the simplest

explanation should be preferred. This problem-solving principle has been named the

law of parsimony or, in honor of the Franciscan friar, Ockham’s razor. In his time,

William of Ockham used the principle to advocate the existence of divine miracles.

As a general and intuitive principle however, nowadays Ockham’s razor is widely

adopted across many domains and disciplines.

Machine learning is one such discipline. It is driven by technological progress and

modern measurement methods, which have enabled the collection of vast amounts

of data. However, usually insights are gained only after compression and reduction

of the presumably complex data. Machine learning models that perform the tasks

of compression and data reduction make use of Ockham’s razor by assuming simple

structures in the data. The two structures of interest in this thesis are sparsity

and low rank. Here, sparse models have only a small fraction of parameters that

are non-zero, and low-rank models exhibit a special type of sparsity that concerns

the singular values of a matrix. A low-rank matrix has only few non-zero singular

values. Since sparsity and low rank are central for this thesis, in the following we

give a broad and conceptual overview on sparse and low-rank models. Afterwards,

we outline the contributions of this thesis.



Sparse models. First, let us consider a typical example of sparse modeling: In a

high-dimensional dataset, one may be interested in the selection of a small subset

of features that are predictive for a target variable. For example, from among

the numerous variables in a census dataset, one might identify age, education, and

gender to be predictive for income. This reveals a central benefit of sparse models:

Because of their small number of active features (non-zero parameters), they can be

interpreted more easily by humans. In addition, learning sparse models often comes

with the statistical benefit that fewer observations are required in order to learn the

model parameters reliably. Besides, a reduced number of features also means less

chance of overfitting.

The feature-selection problem above can be addressed by the lasso, which is a

sparse regression model that was popularized by the highly influential work of Tib-

shirani [1996]. In its basic form, the lasso jointly minimizes a squared-error term

and an ℓ1-norm regularization term. Here, the squared-error term is the sum over

the training samples of the squared differences between the actual and predicted

(regressed) values of the target variable, respectively. Moreover, the ℓ1-norm regu-

larization term adds up the absolute values of the parameters, which induces spar-

sity on them. The lasso is theoretically well-founded and equipped with strong

learning guarantees [Wainwright, 2009]. It poses a feature-selective alternative to

ordinary least squares regression, which uses no regularization, and ridge regres-

sion [Tikhonov, 1943], which is based on ℓ2-norm regularization, that is, Euclidean-

norm regularization.

In regression models, only the interactions with one designated target variable are

considered. More generally, one can be interested in the interactions between all the

variables from a dataset. This yields graphical models that can serve more general

queries. Graphical models are often represented using a (conditional) dependence

graph. In this graph, the nodes represent variables, and the edges encode dependen-

cies between these variables. Usually one assumes a sparse dependency graph, which

results in sparse graphical models. They are often found in the natural sciences. For

example, the Ising model of ferromagnetism in statistical mechanics [Ising, 1925]

consists of binary variables that model the two states of magnetic dipole moments

of atomic ’spins’. The spins are aligned in a grid structure. Hence, they interact

only with a few neighbors, inducing an overall sparse graphical model structure.

Sparse graphical models can be estimated from data by the graphical lasso [Mein-

shausen and Bühlmann, 2006; Ravikumar et al., 2011; Jalali et al., 2011; Lee and

Hastie, 2015]. The graphical lasso estimates a multivariate probability distribution

that is parametrized by a symmetric matrix of pairwise interaction parameters. The

objective function of the graphical lasso consists of two components: First, there

is a likelihood term, which fits the distribution to the data. Second, similarly to

the objective function of the lasso for sparse regression models, there is an ℓ1-norm

regularization term that induces sparsity on the matrix of pairwise interaction pa-

rameters. In this matrix, a zero entry indicates the absence of a dependence.
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As a last model from the fast-growing sparse modeling literature we consider

the sparse coding problem. In sparse coding, signals are represented as linear

combinations of only a few elements (called atoms) from an over-complete ba-

sis/representation. For example, the atoms used for representing images can consist

of small image patches with different edge patterns. Signal representations (sparse

codes) for a given over-complete representation can be learned via basis pursuit

[Chen et al., 2001]. The learnable parameters of basis pursuit are the coefficients of

the atoms in the linear combination. Specifically, approximate basis pursuit mini-

mizes a squared error, which makes sure that the signal is represented well by the

linear combination of the atoms, and an additional ℓ1-norm regularization term,

which ensures that the coefficients are sparse. Interestingly, the objective function

of basis pursuit formally coincides with the one of the lasso. Hence, basis pursuit

and the lasso can be solved in the same way. This may be surprising since sparse

coding and sparse regression are clearly not conceptually equivalent.

Low-rank models. Next, let us consider low-rank models. A typical task in low-

rank modeling is matrix completion. A famous example is the Netflix challenge

(Netflix prize), which took place between 2007 and 2009. The aim of the challenge

was to predict user ratings for movies, where the only available data were previous

ratings from the users. This data was given in form of an incomplete matrix that

is indexed by the users and movies, respectively. Consequently, the task was to

complete the matrix of user-movie ratings. Under the assumption that there are

only a few prototypical user profiles from which individual profiles can be obtained

as linear combinations, the matrix of user-movie ratings is low rank. In Fazel [2003],

it was suggested to solve problems that involve low-rank matrices via convex opti-

mization with nuclear-norm regularization. The nuclear norm can be understood as

the ℓ1-norm of the singular values. Consequently, it induces sparsity on the singular

values, that is, it induces low rank on the matrix. For the matrix completion prob-

lem, a solution that involves convex optimization with nuclear-norm regularization

was analyzed in [Candès and Recht, 2009].

Another important low-rank model that was introduced in [Pearson, 1901] is prin-

cipal component analysis (PCA). It seeks to approximate a matrix by a low-rank

matrix in the Frobenius-norm sense, that is, it minimizes the sum of the squared

errors of the entries. The solution to PCA is the low-rank matrix that is constructed

from the principal components whose corresponding singular values are of the largest

magnitude. PCA is related to factor analysis [Spearman, 1904]. In contrast to PCA,

factor models assume a small number of unobserved (latent) quantitative variables

called factors. In factor models, interactions among the observed variables reflect

indirect interactions due to the latent factors. As before, the interactions among the

observed variables can be described by a matrix of pairwise interaction parameters.

This matrix is low rank if there are only a few latent factors.

Estimating latent variables is especially important in the social sciences. This is

because some quantities, such as, economic behavior or intelligence, do not allow
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for direct measurement. They represent latent constructs that require surrogate

measurements. For example, personality traits are often measured by collecting

answers of test takers to items of questionnaires. Here, the effect of the latent

quantitative variables is modeled using item response theory, see [Embretson and

Reise, 2013]. The items are commonly assumed to be conditionally independent

given the typically small number of latent variables. Hence, the pairwise interaction

parameter matrix of item response models is also low rank.

Sparse and low-rank models. Finally, we discuss models that have both sparse

and low-rank components. The first model is motivated by the fact that principle

component analysis is not robust with respect to gross data corruption. This brought

up research on robust principle component analysis (RPCA). The first tractable

definition of RPCA was independently introduced by Wright et al. [2009]; Candès

et al. [2011], and Chandrasekaran et al. [2011]. They respectively decompose a

data matrix into a low-rank and a sparse component, using convex optimization

with the previously discussed nuclear-norm and ℓ1-norm regularization techniques

on the components. Here, as before, the low-rank component represents the principal

components, whereas the sparse component accounts for the corrupted data. McCoy

and Tropp [2011] and Xu et al. [2010] extended RPCA models to the setting where

whole data points can be corrupted, that is, they go beyond the corruption of

individual entries. In Chapter 2 of this thesis, we consider RPCA models with

even more general data corruption mechanisms.

RPCA models with sparse and low-rank matrix decompositions inspired many

subsequent works, where sparse and low-rank modeling coalesced [Chen et al., 2011;

Sprechmann et al., 2015; Yu et al., 2017]. Of particular interest for this thesis are

fused latent and graphical models that were first introduced by Chandrasekaran et al.

[2012]. Fused latent and graphical models combine models with latent quantitative

variables (factor and item response theory models) with graphical models. They can

be useful because sparse graphical models may fail to account for spurious influences

of non-observed quantities. Likewise, factor and item response theory models may

fail to include direct dependencies between the observed variables. Fused latent

and graphical models address these potential flaws by decomposing the pairwise

interaction parameter matrix into direct and indirect interactions, where the indi-

rect interactions are due to the latent variables. Typically, one assumes a small

number of latent variables and that only a few of the observed variables interact

directly. Hence, the parameter matrix is decomposed into a sparse and a low-rank

component. In practice, such decompositions can be learned by solving a convex

regularized likelihood optimization problem with the usual sparsity- and low-rank-

inducing regularization terms. The analysis of this learning method for general fused

latent and graphical models is the primary subject of Chapter 3 and of this thesis.

In the following, we outline the contributions of this thesis.
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1.2 Contributions

Robust principle component analysis. In many applications, data points con-

sist of several measurements that can be naturally divided into groups. For example,

the color of a pixel is described by the values from all color channels in multi-channel

images. If a pixel is corrupted (or more generally the group of measurements), then

likely all measurements from the group are corrupted. Hence, it makes sense to

consider a data corruption mechanism that affects groups of measurements. This

data corruption mechanism generalizes the previously considered mechanisms [Chan-

drasekaran et al., 2011; Candès et al., 2011; McCoy and Tropp, 2011; Xu et al., 2010].

In Chapter 2, which is based on the work [Nussbaum and Giesen, 2021], we show

that the approach of decomposing a data matrix by means of convex optimization

and regularization remains computationally tractable for the generalized data cor-

ruption mechanism. For that, the ℓ1-norm is replaced by the ℓ1,2-norm, which is

defined as the sum of the ℓ2-norms of the groups that are prescribed by the assumed

data corruption mechanism. Hence, the ℓ1,2-norm induces structured sparsity that is

also called group sparsity. In summary, the generalized RPCA problem uses nuclear-

norm and ℓ1,2-norm regularization to learn a decomposition of the corrupted data

matrix into a low-rank and a group-sparse component.

We investigate when the generalized RPCA problem allows to exactly recover

the components. Here, exact recovery can only be guaranteed if the low-rank and

group-sparse components cannot be confused, that is, if the decomposition is iden-

tifiable. As Chandrasekaran et al. [2011] noticed, identifiability can be characterized

by studying geometric objects, particularly tangent spaces to algebraic matrix vari-

eties. We extend the characterization from sparse to group-sparse matrices. After-

wards, we provide deterministic and probabilistic conditions for exact recovery. We

corroborate our theoretical findings with experiments on synthetic data. Moreover,

experiments on several real-world datasets from different domains demonstrate the

wide applicability of our generalized approach.

Fused latent and graphical models. The results in Chapter 3 are based on

the seminal work by Chandrasekaran et al. [2012], who considered fused latent and

graphical models with Gaussian observed variables. However, many real-world ap-

plications exhibit different types of variables. Particularly, discrete variables are

important as they can represent arbitrary categories, states, or choices. This has

laid the foundation to consider fused latent and graphical models for the more gen-

eral class of pairwise conditional Gaussian distributions in this thesis. Conditional

Gaussian distributions, see [Lauritzen, 1996], allow for observed quantitative and

discrete variables. Their name is due to the fact that the quantitative variables

always follow a Gaussian distribution when conditioned on a fixed set of values for

the discrete variables.

Let us briefly discuss pairwise interactions when discrete variables are involved.

Discrete variables can be equivalently represented by indicator variables for their
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outcomes, where an indicator variable of an outcome is set to one if the discrete

variable takes on the value of the outcome, and is set to zero else. It is convenient

to define pairwise interactions with discrete variables on their indicator variables.

Therefore, the interaction of any variable with a discrete variable is described by

several parameters that form a group. The complete absence of the interaction

means that all interaction parameters from this group must be zero. Therefore, the

sparse graphical modeling component of the interaction parameter matrix of fused

latent and graphical models is group sparse in the presence of discrete variables.

The decomposition of the pairwise interaction parameter matrix of fused latent and

graphical models can be estimated using a convex likelihood optimization problem

with the usual group-sparsity and low-rank-inducing regularization. We show that

under suitable identifiability conditions, this optimization problem allows to recover

fused latent and graphical models consistently from data, that is, asymptotically

and with high probability. We prove consistency in the high-dimensional setting,

where the dependence on the number of observed variables, the number of latent

variables, and the number of sample points is explicitly considered. The results in

Chapter 3 are based on several published works that consider different types of ob-

served variables, namely, models with observed binary variables in [Nussbaum and

Giesen, 2019a], models with observed discrete variables in [Nussbaum and Giesen,

2020a], and models with observed binary and quantitative variables in [Nussbaum

and Giesen, 2020b]. However, the consistency result for models with observed dis-

crete and quantitative variables presented in this thesis is still more general than

any of the published works so far.

Next, we support our theoretical findings with experiments on synthetic and real-

world data from item response theory studies. These experiments are mostly bor-

rowed from [Nussbaum and Giesen, 2020a]. Afterwards, we consider the problem of

selecting suitable regularization parameters for the regularized likelihood optimiza-

tion problem. Here, based on our work [Giesen et al., 2019b], we offer a principled

alternative to grid search or random search. It builds upon Benson’s algorithm,

which approximates the set of all possible solutions that can be obtained by using

different combinations of regularization parameters. Particularly, we introduce an

adaptive variant of Benson’s algorithm that is efficient and also works out of the

box for a large class of optimization problems.

Altogether, many different optimization problems are considered in this thesis. To

practically solve these problems, we have designed and implemented various solvers.

These solvers are mostly based on the alternating direction method of multipliers

(ADMM), see [Boyd et al., 2011]. The code for learning fused latent and graphical

models has been made publicly available in form of an online Python code repository,

see https://github.com/franknu/cgmodsel. This code repository also contains

solvers for learning other conditional Gaussian distributions, for example, purely

sparse graphical models. Hopefully, the available code and the overall work presented
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in this thesis will be found useful. Perhaps, they will even motivate further research

at the intersection of sparse and low-rank modeling.
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Chapter 2

Multi-View Robust Principal

Component Analysis

2.1 Introduction

Principal component analysis (PCA) is a classical data dimension reduction tech-

nique based on the assumption that given high-dimensional data lies near some low-

dimensional subspace, see [Pearson, 1901]. Formally, assume observed data points

x(1), . . . ,x(n) ∈ Rm that are combined into a data matrix X ∈ Rm×n. Approximat-

ing the data matrix X by a low-rank matrix L can be formulated as an optimization

problem

min
L∈Rm×n

∥X −L∥ subject to rank(L) ≤ k, (2.1)

where ∥·∥ is some suitable norm. The classical and still popular choice, see [Hotelling,

1933; Eckart and Young, 1936], uses the Frobenius norm ∥ · ∥F , which renders the

optimization problem tractable. However, because of the squared penalty, the Frobe-

nius norm does not perform well for grossly corrupted data. A single grossly cor-

rupted entry in X can change the estimated low-rank matrix L significantly, that

is, the Frobenius norm approach is not robust against data corruption. An obvious

remedy is replacing the Frobenius norm by the ℓ1-norm ∥ · ∥1, but this renders the
optimization problem intractable because of the non-convex rank constraint. An al-

ternative way to achieve robustness is to explicitly model a component that captures

data corruption. This leads to a decomposition of the data matrix

X = L+ S

into a low-rank component L as before and a matrix S of outliers. The structure

of the outlier matrix S depends on the data corruption mechanism and is com-

monly assumed to be sparse. In practice, low-rank + sparse decompositions can be



computed efficiently through the convex optimization problem

min
L,S ∈Rm×n

∥L∥∗ + γ∥S∥1,2 subject to X = L+ S, (2.2)

where γ > 0 is a trade-off parameter. The nuclear norm ∥ · ∥∗ can be seen as a

convex relaxation of a rank constraint and thus promotes low rank on L, and the

ℓ1,2-norm

∥S∥1,2 =
∑︂
g

∥sg∥2

promotes structured sparsity on S given a partitioning of the entries into groups sg.

The groups are determined by the assumed data corruption mechanism.

In the simplest data corruption mechanism, individual components of the data

points can be corrupted. Under this model, the ℓ1,2-norm reduces to the ℓ1-norm,

that is, the groups sg consist of single elements. Wright et al. [2009]; Candès et al.

[2011], and Chandrasekaran et al. [2011] were first to investigate this model. They

show that exact recovery using the specialized version of Problem (2.2) is possible,

that is, in many cases the corruptions can be separated from the data.

An alternative corruption mechanism that was introduced independently by Mc-

Coy and Tropp [2011] and Xu et al. [2010] corrupts whole data points, which are

referred to as outliers. Here, the groups sg for the ℓ1,2-norm are the columns of the

data matrix X. Xu et al. [2010] showed that exact recovery is also possible in the

column-sparse scenario, where only a few data points are outliers.

In this chapter, which is based on the work Nussbaum and Giesen [2021], we study

a more general data corruption mechanism, where the data points are partitioned

into d groups:

x(i) = (x
(i)
1 , . . . ,x

(i)
d ) ∈ Rm1 × . . .× Rmd = Rm.

We assume that every group for each data point can be individually corrupted.

Hence, the groups in Problem (2.2) are given by

S =

⎛⎜⎜⎜⎜⎜⎜⎝
s11 s12 · · · s1n

...
...

. . .
...

sd1 sd2 · · · sdn

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Rm×n with sij ∈ Rmi .

In Section 2.2, we show that exact recovery is still possible for our more general

data corruption mechanism. This mechanism has a natural interpretation in terms

of generalized multi-view models [Sun, 2013; Zhao et al., 2017; Zhang et al., 2019],

where each data point is obtained by measurements from different sensors, and every

sensor can measure several variables. Sensor failures in this model result in corrupted

measurements for the group of variables measured by the failing sensor, but only for
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the data points that were measured while the sensor was not working correctly. Of

course, data corruption and sensor failures are an abstraction for what can also be

anomalies or outliers in applications, see Figure 2.1 for a real-world example.

Figure 2.1: The electrical load profiles of four households from one week. Power consumption
for each household is measured in terms of six quantities per time step (three phases of active and
reactive power, respectively), which form groups of six elements. In the plot of the data, these
groups respectively span six rows, whereas the columns represent time steps. Note that for this
data, we expect data corruption (outliers) in the form of short-term usage of electrical devices.
More details can be found in Section 2.4.

Note that the approach in [Candès et al., 2011; Chandrasekaran et al., 2011]

corresponds to the special case where each sensor just measures a single variable,

and the approach in [McCoy and Tropp, 2011; Xu et al., 2010] corresponds to the

special case where a single sensor measures all variables. Of course, it is possible to

think of data corruption mechanisms that correspond to even more general group

structures, for example, rectangular groups formed by sub-matrices of the data

matrix. The latter case does not pose any extra technical challenges. Hence, here we

keep the exposition simple and stick with the generalized multi-view setting, calling

the resulting models multi-view robust principle component analysis (MV-RPCA)

models. These models are flexible and suitable for many real-world applications.

We provide some examples in Section 2.4.

Some of the applications have data in the form of tensors. Therefore, we briefly

discuss some additional important related work that concerns robust tensor principle

component analysis (RTPCA). The most closely related works follow the convex

optimization approach. Their main modeling effort lies in the generalization of low

rank and the nuclear norm to tensors. For example, Huang et al. [2014] propose

RTPCA using the sum of nuclear norms (SNN), which is based on Tucker rank. For

3D tensors, Zhang et al. [2014]; Lu et al. [2016, 2019]; Zhou and Feng [2017] use a

nuclear norm based on t-SVD and tensor tubal rank. Most works, including [Huang

et al., 2014; Lu et al., 2016, 2019], assume the simple data corruption mechanism

that corrupts individual entries of the data tensor. [Zhang et al., 2014; Zhou and

Feng, 2017] consider outliers distributed along slices of 3D tensors. The latter data

corruption mechanism is a special case of our multi-view models when all groups

have the same size (and the data matrix is viewed as a flattened version of a tensor).

However, our general multi-view models allow for different group sizes, which gives

them additional flexibility and distinguishes them from all existing RTPCA models.
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2.2 Exact Recovery

In this section, we assume a data matrix X that has an underlying true decom-

position X = L⋆ + S⋆ into a low-rank matrix L⋆ and a group-sparse matrix S⋆.

We investigate under which conditions the pair (L⋆,S⋆) can be obtained as the

guaranteed solution to Problem (2.2) with a suitably chosen regularization param-

eter γ. The outline of the analysis is as follows: In Section 2.2.1, before analyzing

Problem (2.2) itself, we aim at answering the general question when low-rank and

group-sparse matrix decompositions are identifiable. At the same time, we also con-

template Problem (2.2) on an intuitive level. We present the main result on exact

recovery in Section 2.2.2, followed by some corollaries that concern the recovery of

random decompositions in Section 2.2.3.

2.2.1 Identifiability and a non-convex problem version

In order to have a chance in separating the low-rank and group-sparse components

in Problem (2.2), we must understand under which circumstances decompositions

into low-rank and group-sparse matrices are identifiable. Here, identifiability of the

decomposition means that it should not be possible to confuse the components. In

this section, we formalize identifiability and derive conditions on the low-rank and

group-sparse matrices that lead to identifiability.

For the study of identifiability, it turns out to be useful to consider Problem (2.2)

as a convex relaxation of a problem that, instead of using nuclear-norm and ℓ1,2-

norm regularization, constrains the component L to have a certain low rank and S

to have a certain degree of group sparsity. These constraints can be expressed in

terms of algebraic matrix varieties [Harris, 2013]. Here, we briefly introduce these

varieties. First, the low-rank matrix variety of matrices with rank at most r is given

by

L(r) = {L ∈ Rm×n : rank(L) ≤ r},

and second, the variety of group-structured matrices with at most s non-zero groups

is given by

S(s) = {S ∈ Rm×n : | gsupp(S)| ≤ s}.

Here,

gsupp(S) = {(i, j) : 1 ≤ i ≤ d, 1 ≤ j ≤ n, sij ̸≡ 0}

is the group support of S. Remember that sij is the sub-vector of the j-th column

of S that corresponds to the i-th group of variables. Note that we assume the group

structure to be fixed throughout, which is why the symbol S(s) of the group-sparse
matrix variety does not include the dependency on the group structure.
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In the sequel, we will discuss the identifiability of low-rank and group-sparse matrix

decompositions based on the non-convex feasibility problem of finding L and S such

that

L ∈ L(r), S ∈ S(s), and X = L+ S (2.3)

for given fixed r and s. The regularized Problem (2.2) can be seen as a convex re-

laxation of Problem (2.3). Note that Netrapalli et al. [2014] tried to directly solve a

non-convex problem similar to Problem (2.3) for the non-group case, where individ-

ual entries can be corrupted. They assumed a priori estimates of rank and sparsity.

Indeed, clearly the true decomposition (L⋆,S⋆) solves Problem (2.3) when the true

varieties with r = rank(L⋆) and s = | gsupp(S⋆)| are used in Problem (2.3). How-

ever, these true varieties are unknown in practice. Nevertheless, the hypothetical

Problem (2.3) provides valuable insights into the conditions that are necessary for

successful recovery. This is because it allows us to define identifiability in the follow-

ing sense: We call a decomposition (L,S) ∈ L(r)×S(s) identifiable in the product

variety L(r)×S(s) if (L,S) uniquely solves Problem (2.3) with input X = L+S.

Moreover, we call a pair (L,S) ∈ L(r) × S(s) locally identifiable if it is a locally

unique solution to Problem (2.3), that is, if there exists some small ball such that

it holds

(L−∆,S +∆) /∈ L(r)× S(s)

for all ∆ ̸= 0 from this small ball. We aim at a better understanding of local

identifiability first. For that, observe that for determining local identifiability of a

pair (L,S) ∈ L(r)×S(s), it is sufficient to consider points within the varieties that

are close to L and S, respectively. Hence, we need to characterize nearby points,

which requires knowledge about the local geometry of the varieties. If L ∈ L(r) has
rank r and S ∈ S(s) has s non-zero groups, then both are smooth points within their

respective varieties. In this case, local geometry is determined by tangent spaces

and local curvature. We discuss both for the respective varieties. First, the tangent

space to the low-rank matrix variety L(r) at a rank-r matrix L ∈ L(r) is given by

T (L) =
{︁
UXT + Y V T : X ∈ Rn×r,Y ∈ Rm×r

}︁
,

where L = UDV T is the (restricted) singular value decomposition of L with U ∈
Rm×r, V ∈ Rn×r, and diagonal D ∈ Rr×r. For a proof, see Appendix B.1. Second,

the tangent space to the group-sparse matrix variety S(s) at S with | gsupp(S)| = s

is given by

Q(S) = {A ∈ Rm×n : gsupp(A) ⊆ gsupp(S)}.

The group-sparse matrix variety has zero local curvature. Hence, if S +∆ ∈ S(s)
for small ∆, then it must hold ∆ ∈ Q(S). However, in contrast to the group-sparse

matrix variety, the low-rank matrix variety is locally curved. Because of the local

curvature, if L −∆ ∈ L(r) for small ∆, we can only conclude that ∆ must be a

direction from some tangent space T (L′) to L(r) at a matrix L′ ∈ L(r) that is close
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to L. Nevertheless, for local identifiability it suffices to only consider the tangent

spaces T (L) and Q(S).

Lemma 2.1. Let L ∈ L(r) and S ∈ S(s) be smooth points, that is, L has rank r

and S has s non-zero groups. Assume that the tangent spaces T (L) and Q(S) are
transverse, which means that

T (L) ∩Q(S) = {0}.

Then, the pair (L,S) is locally identifiable in L(r)× S(s).

To establish this result, one can prove that transversality of the tangent spaces

extends to nearby tangent spaces, that is, one can show that the assumption Q(S)∩
T (L) = {0} also implies that Q(S)∩T (L′) = {0} as long as L′ is sufficiently close

to L. This is precisely what the proof in Appendix B.2 does.

Now, considering only points (L,S) ∈ L(r)×S(s) with T (L)∩Q(S) = {0} in our

analysis leads to locally identifiable decompositions, though not globally identifiable.

Let us consider a simple illustrative example for which we assume n = d = 3

and groups that consist of individual entries. For the example, assume that L =

e3e
T
3 ∈ L(1) and let S = e1e

T
1 ∈ S(1), where ei is the i-th standard basis vector.

One can easily check that it holds T (L) ∩ Q(S) = {0}. Hence, the pair (L,S)

is locally identifiable in L(1) × S(1), that is, the decomposition X = L + S is

locally unique around (L,S). However, exchanging the roles of L and S yields a

different decomposition that is also in L(1) × S(1). Indeed, if the input matrix is

X = e1e
T
1 + e3e

T
3 , then Problem (2.3) and Problem (2.2) (with γ = 1) are both

solved by (e1e
T
1 , e3e

T
3 ) and (e3e

T
3 , e1e

T
1 ), that is, their solutions are non-unique. This

example shows that local identifiability is not yet enough to guarantee the unique

recovery of the true components.

The problem in the example above is that both components are group sparse and

low rank at the same time. Thus, they can easily be confused. It is much harder

to find an alternative valid decomposition that still satisfies the group-sparsity and

rank constraints in Problem (2.3) if the low-rank matrix is not (group) sparse since

then taking away a sparse part likely increases rank. Similarly, if the group-sparse

matrix is not low rank, then taking away a low-rank component is likely to increase

the group support. In the following, we provide conditions to avoid that either

component is simultaneously low rank and group sparse.

First, to ensure that L is not group sparse, we want its entries to be spread-

out. This is the case if the row and column spaces of L are incoherent. Here,

the incoherence of a subspace V ⊆ Rn is defined as coh(V ) = maxi ∥PV ei∥2, that
is, the maximum length of the projection of a standard-basis vector ei of Rn on

the space V . Incoherence thus measures how well the subspace is aligned with the

standard coordinate axes. A high value indicates that the subspace is well-aligned.

For example, if V contains a standard basis vector, then it holds coh(V ) = 1. As
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noted by Chandrasekaran et al. [2011], in general it holds√︃
k

n
≤ coh(V ) ≤ 1

for a k-dimensional subspace. Now, we define the incoherence of L as

coh(L) = max {coh(rowspace(L)), coh(colspace(L))} ,

where rowspace(L) is the row space of L and colspace(L) is the column space of L.

We want coh(L) to be small since then the column respectively row vectors cannot

be well-aligned with the respective standard basis vectors, which means that the

entries must be spread-out. In this case, L is likely not group sparse.

Second, we define the maximum group degree gdegmax(S) as the maximum number

of non-zero groups that appear in a row or column of S. We want gdegmax(S) to

be small since it implies that the non-zero groups are not concentrated in just a few

rows and columns, which means that the matrix S is likely not low rank.

Having introduced these notions, the next lemma shows that bounding the prod-

uct coh(L) gdegmax(S) implies transversality of the tangent spaces and thus local

identifiability by Lemma 2.1.

Lemma 2.2. Let L ∈ L(r) and S ∈ S(s) be smooth points as before. Let T (L) be

the tangent space to the low-rank matrix variety at L, and let Q(S) be the tangent

space to the group-sparse matrix variety at S. Define η = maxdi=1 mi to be the

maximum number of variables that a group spans. If

coh(L) gdegmax(S) <
1

2η3/4
,

then the tangent spaces are transverse, that is, T (L) ∩Q(S) = {0}.

Observe that for (L,S) = (e3e
T
3 , e1e

T
1 ) from the previously discussed example it

holds coh(L) gdegmax(S) = 1 such that the condition of Lemma 2.2 is not satisfied.

In the next section, we will see that a slightly stronger upper bound on the product

coh(L⋆) gdegmax(S
⋆) even allows the exact recovery of (L⋆,S⋆) by solving instances

of Problem (2.2).

Below, we will use a stronger result to prove Lemma 2.2. For the stronger re-

sult we will formulate a weaker assumption that relies on more technical notions

that measure how elements from different tangent spaces compare. Specifically, for

smooth L ∈ L(r) and S ∈ S(s) with corresponding tangent spaces T (L) and Q(S),
we define the following quantities:

ξ(T (L)) = max
M∈T (L), ∥M∥=1

∥M∥∞,2 and

µ(Q(S)) = max
M∈Q(S), ∥M∥∞,2=1

∥M∥.
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These quantities are norm-compatibility constants of the ℓ∞,2- and spectral norms

when restricted to elements from different tangent spaces. Note that these norms are

the dual norms of the regularizing norms that appear in Problem (2.2). Using these

norms later facilitates the analysis of Problem (2.2). Also note that the definitions

of the norm-compatibility constants generalize the ones in [Chandrasekaran et al.,

2011] by replacing the non-group ℓ∞-norm (maximum norm) by the group ℓ∞,2-norm

to account for the more general data corruption mechanism. The following lemma

shows that incoherence and maximum group degree can be bounded from below in

terms of the norm-compatibility constants, which will allow us to interpret these

constants.

Lemma 2.3. Let L ∈ L(r) and S ∈ S(s) be smooth points as before. Then, the

following bounds hold:

coh(L) ≥ 1/2η−1/2 ξ(T (L)) and gdegmax(S) ≥ η−1/4µ(Q(S)).

Lemma 2.3, which is proven in Appendix B.3, helps to connect the intuition that we

have about the incoherence of L and the maximum group degree of S to the technical

norm-compatibility constants. Remember that we want coh(L) to be small to avoid

confusion of L with a group-sparse matrix. Hence, ξ(T (L)) must be small since

otherwise coh(L) is large because of the lower bound from Lemma 2.3. Similarly,

we want gdegmax(S) to be small in order to ensure that S cannot be confused with

a low-rank matrix. Therefore, µ(Q(S)) must be small since otherwise gdegmax(S)

is large because of the lower bound from Lemma 2.3. In summary, we want both

ξ(T (L)) and µ(Q(S)) to be small. This is reflected in the assumption of the following

result that is stronger than Lemma 2.2.

Lemma 2.4. Let L ∈ L(r) and S ∈ S(s) be smooth points as before. Suppose that

it holds

ξ(T (L))µ(Q(S)) < 1.

Then, the tangent spaces are transverse, that is, it holds T (L) ∩Q(S) = {0}.

Proof. Let 0 ̸= M ∈ T (L). We calculate

∥PQ(S)M∥ ≤ µ(Q(S))∥PQ(S)M∥∞,2

≤ µ(Q(S))∥M∥∞,2

≤ µ(Q(S))ξ(T (L))∥M∥ < ∥M∥,

where the first inequality uses the definition of µ(Q(S)), the second inequality is easy

(it also follows from the projection Lemma B.2 in Appendix B), the third inequality

follows from M ∈ T (L) and the definition of ξ(T (L)), and the last inequality

follows from the assumption. It follows that PQ(S)(M) ̸= M such that M cannot

be contained in Q(S). This implies transversality of the tangent spaces. ■

Lemma 2.2 can now be proven as a simple corollary of Lemma 2.4.
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Proof of Lemma 2.2. It holds

ξ(T (L))µ(Q(S)) < 2η3/4 coh(L) gdegmax(S) < 1,

where the first inequality follows from Lemma 2.3, and the second inequality from

the assumption of Lemma 2.2. Hence, the claim follows from Lemma 2.4. ■

Let us now redirect our attention to the convex Problem (2.2), where we want to

show that only slightly stronger assumptions than the ones from Lemma 2.2 and

Lemma 2.4 for the true decomposition (L⋆,S⋆) allow guaranteed exact recovery of

(L⋆,S⋆) by Problem (2.2) with input X = L⋆ + S⋆.

2.2.2 Main results on unique and exact recovery

Before we present the main results, we state a sufficient condition that warants that

(L⋆,S⋆) is the unique solution to Problem (2.2) (with suitably chosen γ). This

condition is based on the first-order optimality conditions of Problem (2.2), which

any solution to Problem (2.2) must satisfy. We derive it from the Lagrangian

L(L,S,Z) = ∥L∥∗ + γ∥S∥1,2 + ⟨Z,X −L− S⟩ ,

where Z are the dual variables for the constraint X = L + S, and ⟨·, ·⟩ denotes
the standard scalar product on matrices. The first-order optimality conditions with

respect to L and S require that Z is a subgradient from the ℓ1,2-norm and the

nuclear norm subdifferentials, that is, it must hold Z ∈ ∂∥L∥∗ and Z ∈ γ∂∥S∥1,2.
The norm subdifferentials can be characterized using dual norms, see [Watson, 1992]

and Lemma C.13 in Appendix C.3.5. First, it holds Z ∈ ∂∥L∥∗ if and only if

PT (L)(Z) = UV T and ∥PT (L)⊥(Z)∥ ≤ 1,

where L = UDV T is a singular value decomposition of L, and ∥ · ∥ denotes the

spectral norm, which is dual to the nuclear norm. Next, it holds Z ∈ γ∂∥S∥1,2 if

and only if

PQ(S)(Z) = γ gsign(S) and ∥PQ⊥(S)(Z)∥∞,2 ≤ γ,

where the group-sign function maps a matrix A ∈ Rm×n onto the matrix gsign(A) ∈
Rm×n with

gsign(A)ij =

{︄
aij/∥aij∥2, aij ̸≡ 0

0, else
, i ∈ [d], j ∈ [n].

Note that Q⊥(S) are the matrices with complementary group support.
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Based on the first-order optimality conditions, the following result states that

(L⋆,S⋆) uniquely solves Problem (2.2) provided that the tangent spaces T (L⋆) and

Q(S⋆) are transverse and given a dual Z that strictly satisfies the subgradient

conditions above.

Proposition 2.5. Suppose that X = L⋆ + S⋆. Then, (L⋆,S⋆) is the unique mini-

mizer of Problem (2.2) if the following conditions are satisfied:

1. The tangent spaces are transverse, that is, it holds T (L⋆) ∩Q(S⋆) = {0}.

2. There exists a subgradient Z ∈ ∂∥L⋆∥∗ ∩ γ∂∥S⋆∥1,2 that satisfies the strict

dual-feasible conditions

∥PT ⊥(L⋆)(Z)∥ < 1 and ∥PQ⊥(S⋆)(Z)∥∞,2 < γ.

The first condition ensures uniqueness in tangential directions. The second con-

dition intuitively ensures uniqueness in normal directions: When one component is

perturbed in a normal direction, then the corresponding subgradient changes in a

non-continuous way because of the strict inequalities.

The idea for the proof of uniqueness, which can be found in Appendix B.4.1,

is to assume the existence of another minimizer (L⋆ −∆,S⋆ + ∆) with the goal

of showing that ∆ = 0. For that, the proof uses the subgradient property and

the subgradient characterizations to show that ∆ ∈ T (L⋆) ∩ Q(S⋆). This implies

that L⋆ − ∆ ∈ T (L⋆) and S⋆ + ∆ ∈ Q(S⋆). However, from the transversality

T (L⋆) ∩Q(S⋆) = {0} it follows that ∆ must be zero.

Proposition 2.5 requires the existence of a strictly dual feasible Z, where the

strict dual feasibility conditions depend on the regularization parameter γ. We now

present the main result, which determines a range of values for γ for which a strictly

dual feasible Z exists. The main result makes an assumption that is only slightly

stronger than the one of Lemma 2.4.

Theorem 2.6. Suppose that X = L⋆ + S⋆. If

ξ(T (L⋆))µ(Q(S⋆)) < 1/6,

then the range

(γmin, γmax) =

(︃
ξ(T (L⋆))

1− 4ξ(T (L⋆))µ(Q(S⋆))
,
1− 3ξ(T (L⋆))µ(Q(S⋆))

µ(Q(S⋆))

)︃
is non-empty. Moreover, for any γ in that range, Problem (2.2) with regularization

parameter γ is uniquely solved by (L⋆,S⋆).

We prove this theorem in Appendix B.4.2, where the goal is to show the existence

of a dual variable Z as required by Proposition 2.5. In conjunction with Lemma 2.3,

Theorem 2.6 yields an immediate corollary.
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Corollary 2.7. Suppose that X = L⋆ + S⋆. Let

coh(L⋆) gdegmax(S
⋆) < 1/12 η−3/4.

Then, the interval

(γ◦
min, γ

◦
max) =

(︃
2η1/2 coh(L⋆)

1− 8η3/4 coh(L⋆) gdegmax(S
⋆)
,
1− 6η3/4 coh(L⋆) gdegmax(S

⋆)

η1/4 gdegmax(S
⋆)

)︃
is non-empty. Moreover, for any γ in that range, Problem (2.2) with regularization

parameter γ has the unique solution (L⋆,S⋆).

Proof. This is straightforward using the lower bounds on gdegmax(S
⋆) and coh(L⋆)

from Lemma 2.3, which imply that

ξ(T (L⋆))µ(Q(S⋆)) ≤ η
1
4 coh(L⋆) gdegmax(S

⋆)2η
1
2 <

1

6
,

where the last inequality follows from the assumption. Hence, we can apply Theo-

rem 2.6. One can check by plugging in the lower bounds from Lemma 2.3 that the

range (γ◦
min, γ

◦
max) of values for γ is a non-empty sub-range of the range (γmin, γmax)

given in Theorem 2.6. ■

It should be noted that in real-world situations the true maximum group degree

and incoherence are unknown. This leaves the choice of γ up to the user. In the

experimental Section 2.4.1, we investigate two heuristics for selecting the regulariza-

tion parameter γ. In preparation for the experiments, we consider random low-rank

and group-sparse decompositions in the next section.

2.2.3 Random decompositions

Since we intend to experiment also with synthetic data, we need to generate random

low-rank + group-sparse decompositions. Therefore, we introduce a random decom-

position model next, and we provide a theoretical result that concerns the recovery

of random decompositions drawn from this model.

As in [Candès and Recht, 2009], we assume that a rank-r-matrix L⋆ is drawn from

the random orthogonal model, that is, by settingL⋆ = UV T/
√
mn, whereU ∈ Rm×r

and V ∈ Rn×r are drawn at random with independent standard Gaussian entries.

The column spaces of U and V are incoherent with high probability. Indeed, by

[Candès and Recht, 2009, Lemma 2.2], there exists a constant c such that it holds

coh(L⋆) = max{coh(colspace(U)), coh(colspace(V ))}

≤ cmax

{︃
max(r, logm)

m
,
max(r, log n)

n

}︃
(2.4)
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with high probability, that is, with a probability that converges to one as m and n

grow to infinity.

Next, we sample S⋆ as follows: First, the group support gsupp(S⋆) is sampled at

random using independent Bernoulli variables, where each group is non-zero with

probability p. Note that this type of sampling is characteristic for G(n, p) random

graph models, see for example [Bollobás, 2001]. As in [Candès et al., 2011], we

sample the entries of the groups that belong to the support uniformly at random

from {−1, 1}. Under this random group sparsity model, the maximum group degree

is independent from the precise values of the non-zero entries. Specifically, the

following holds:

Lemma 2.8. Let a = max{n, d}. If S⋆ is drawn from the random group sparsity

model, then the maximum group degree satisfies with high probability (that converges

to one as n and d grow to infinity) that

gdegmax(S
⋆) ≤ 2ap+ 3

√
ap.

Proof. To bound the maximum group degree, we must bound the number of non-

zero groups in each row and column. We bound the number of non-zero groups for

a single row first. The result then follows from applying a union bound.

The number of non-zero groups in a fixed row is a binomially-distributed random

variable Z ∼ Bin(n, p). A consequence of Talagrand’s inequality is that for 0 ≤ t ≤
np = EZ it holds

P(Z ≥ np+ t+ 3
√
np) ≤ exp

(︁
−t2/(16np)

)︁
,

see [Habib et al., 2013]. We set t = np and obtain

P(Z ≥ 2np+ 3
√
np) ≤ exp (−np/16) .

Similarly, we have for the columns that

P(Z ≥ 2dp+ 3
√︁

dp) ≤ exp (−dp/16) .

Hence, with a = max(n, d) and by the union bound, the probability that any row

or column has more than 2ap+3
√
ap non-zero groups is at most m exp (−np/16) +

n exp (−dp/16), which is small for (comparably) large n and d. ■

The following corollary shows that if the group-selection probability p is not too

high, then random decompositions can be recovered exactly with high probability.

Corollary 2.9. Let (L⋆,S⋆) be sampled from the random decomposition model (with

sufficiently large n and d). Let

p <

(︂√︁
9 + 2/3η−3/4/κ− 3

)︂2
16a

,
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where

κ = cmax

{︃
max(r, logm)

m
,
max(r, log n)

n

}︃
is as in Inequality (2.4). Then, the assumption of Corollary 2.7 holds with high

probability. Hence, with high probability, the components (L⋆,S⋆) are the guaranteed

solution to Problem (2.2) with input X = L⋆ + S⋆ and γ ∈ (γ◦
min, γ

◦
max).

Proof. We show that the assumption

coh(L⋆) gdegmax(S
⋆) < 1/12 η−3/4

of Corollary 2.7 holds with high probability. Using the upper bound on the maximum

group degree from Lemma 2.8 and that by Inequality (2.4) the incoherence satisfies

coh(L⋆) ≤ κ with high probability, it suffices to show that

(2ap+ 3
√
ap)κ < 1/12 η−3/4.

This is equivalent to

p+
3

2
√
a

√
p− 1

24a
η−3/4κ−1 < 0,

which is a quadratic inequality in
√
p. Solving it yields

√
p <

−3
4
√
a
+

√︃
9

16a
+

1

24a
η−3/4κ−1.

Taking squares, it follows that

p <

(︂√︁
9 + 2/3η−3/4κ−1 − 3

)︂2
16a

.

This finishes the proof after applying Corollary 2.7. ■

Note that the right-hand side of the inequality in Corollary 2.9 becomes small

if the rank r is large. Hence, for large rank r, the group-selection probability p

is required to be small in order to guarantee exact recovery with high probability.

Moreover, if r and p are both small, then exact recovery should be easy.
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2.3 ADMM Algorithm

Similar to [Candès et al., 2011], we derive an alternating direction method of multipli-

ers (ADMM) algorithm for Problem (2.2). This problem has augmented Lagrangian

L(S,L,Z) = γ∥S∥1,2 + ∥L∥∗ + ⟨Z,X − S −L⟩+ 1

2κ
∥X − S −L∥2F

= γ∥S∥1,2 + ∥L∥∗ +
1

2κ
∥X − S −L+ κZ∥2F −

κ

2
∥Z∥2F ,

where Z are the dual variables for the constraint X = L+S and κ > 0. Minimiza-

tion of the augmented Lagrangian w.r.t. S and L is equivalent to solving proximal

operators with known solutions. Consequently, after initialization, ADMM performs

the following updates:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Sk+1 = argminS L(S,Lk,Zk)

= gShrink(X −Lk + κZk, γκ),

Lk+1 = argminL L(Sk+1,L,Zk)

= sShrink(X − Sk+1 + κZk, κ),

Zk+1 = Zk + κ−1(X − Sk+1 −Lk+1).

Here, the group soft-shrinkage operation acts on the (i, j)-th group as

[gShrink(Z, κ)]ij = zij ·max

{︃
1− κ

∥zij∥2
, 0

}︃
. (2.5)

Remember that zij is the sub-vector that corresponds to the i-th group of variables

in the j-th column of Z. Moreover, the spectral shrinkage operator is given by

sShrink(Z, κ) = U Shrink(E, κ)V T,

where Z = UEV T is the singular value decomposition of Z and

Shrink(z, κ) = sign(z) max {z − κ, } .

ADMM is known to converge under mild assumptions and we use the termination

criteria from [Boyd et al., 2011]. The main computational burden of the presented

algorithm lies in the computation of all singular values that are greater than the

threshold κ, along with their left and right singular vectors. To accelerate our

solver, we performed this task using fast randomized singular value thresholding

based on [Halko et al., 2011]. While this can be quite efficient, it only provides an

approximate solution. This means that it is not clear whether ADMM still converges.

As long as the number of singular values that must be computed is not too high,

our experiments indicate that convergence is not harmed. However, for a generic
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solver that can deal with large scale problems it would be desirable to guarantee its

robustness for all kinds of input data.

2.4 Experiments

In this section, we perform experiments with synthetic and real-world data for robust

principle component analysis. We use the ADMM algorithm from Section 2.3 for

solving Problem (2.2).

2.4.1 Synthetic data

In our first experiment, we intent to experimentally verify the theory from Sec-

tion 2.2. For that, we generate synthetic data in the form of random pairs (L⋆,S⋆)

that we sample according to the random decomposition model that we introduced

in Section 2.2.3. For each random decomposition (L⋆,S⋆), we check if Problem (2.2)

can be used to exactly recover (L⋆,S⋆), using only the compound matrix L⋆ + S⋆

as input. Here, our main goal is to vary the rank r of L⋆ and the group-selection

probability p for S⋆, where as a consequence of Corollary 2.9, we expect that suc-

cessful recovery is more likely possible if (L⋆,S⋆) is sampled with not too large r

and p.

More specifically for this experiment, we fix n = 500 variables and the group struc-

ture x = (x1, . . . ,x100) ∈ R500, where each group xi ∈ R5 consists of five features.

Hence, X = L⋆ + S⋆ ∈ R500×500. Then, for selected pairs (r, p), we respectively

create 10 different random decompositions to average out sampling effects. We try

to recover these decompositions by solving instances of Problem (2.2). However, we

still need to choose a suitable regularization parameter γ for each problem. In the

following, we compare the rates of successful recovery of two different heuristics for

choosing γ.

For the first heuristic, observe that according to Theorem 2.7 exact recovery is

possible for a range of values for γ. Hence, if successful recovery is possible for a

problem, then we expect that there exists an interval of regularization parameters

that respectively yield the correct solution. In particular, the solution is the same

for all γ from this interval: We say that the solution is stable in this interval. As

in [Chandrasekaran et al., 2011], we use this fact to search for an interval of values

for the regularization parameter γ, where the solution to Problem (2.2) is stable

(and both components are non-zero). If the search for such an interval is successful,

then we check if the solution, which is the same for all γ from the interval, has the

correct algebraic properties. If this is the case, we consider the recovery for the

given problem as successful. Otherwise, we declare failure.

For convenience, we rewrite the objective of Problem (2.2) as (1−α)∥L∥∗+α∥S∥1,2
and denote its solution by (Lα,Sα), where α is in the compact interval [0, 1]. Then,
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we equivalently search for an interval of values for α, where the solution does not

change. For that, we track how the solution changes by calculating the differences

diffα = ∥Lα−δ −Lα∥F + ∥Sα−δ − Sα∥F

along the solution path obtained from a grid search with step size δ = 10−2, see

Figure 2.2. The change of the solution follows a typical pattern, which can also be

Figure 2.2: Search for a stable solution to Problem (2.2). The blue line respectively shows the
change of the solution at each step of the grid search. Left (synthetic data, step size δ = 10−2):
The additional red line shows the recovery error, which is unknown in practice. For roughly α ∈
[0.1, 0.2], the solution is stable with almost zero recovery error. Hence, for this range, the solution
is correct. Right (loadprofiles real-world data, step size δ = 10−3): For roughly α ∈ [0.01, 0.015]
the solution does not change much. The change is not completely zero. Still, the solution is
relatively stable, particularly, the same structural discoveries (a low-rank day-and-night pattern)
can be made for all values of α in the stable range. Note that the change diff α is larger for the
loadprofiles dataset because its dimensions are also larger.

seen in Figure 2.2. There are three intervals, where the solution is stable: First, for

very small values of α, there is little group-sparse regularization, hence the solution

has a zero low-rank component. Likewise, for too large values of α, the solution

always has a zero group-sparse component. The third interval with a stable solution

in the middle is the one that we are looking for. In the example shown in Figure 2.2,

the recovery error

errorα = ∥Lα −L⋆∥F + ∥Sα − S⋆∥F

is close to zero for all values in this interval. Note that the recovery error is unknown

in practice.

The search for γ (or equivalently α) as outlined above requires solving several

instances of Problem (2.2). Therefore, as a second heuristic, we also compare the rate

of successful recovery to the rate when the ad-hoc choice γ = 1/
√︁

max(m,n) is used

instead of searching. This value was suggested for learning RPCA decompositions

under entry-wise data corruption, see [Candès et al., 2011].

The results of the experiment, see Figure 2.3, support the theory and effectively

demonstrate that exact recovery is possible. Moreover, they confirm that for smaller

r and p, that is, for smaller ranks and group-selection probabilities, successful re-

covery becomes easier.

Comparison of the first two plots in Figure 2.3 shows that exploiting prior knowl-

edge about corruptions leads to improved results: The area for successful recovery
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Figure 2.3: Recovery results for varying rank r (displayed as fractions r/max(m,n) of the
maximum possible rank) and varying group-selection probability p. Trials were repeated 10 times
for selected pairs (r, p). Empirical success probabilities are encoded as grey values, where white
indicates a probability of 1 and black a probability of 0. The plots show from left to right: (a) the
results when γ is selected based on a search for a stable solution, (b) the results when the ℓ1-norm
is used instead of the ℓ1,2 group-norm for regularization, and (c) the results that correspond to the

ad-hoc choice γ = 1/
√︁
max(m,n).

is larger for multi-view robust principle component analysis (MV-RPCA) compared

standard robust PCA with ℓ1-norm regularization (l1-RPCA). This is because intu-

itively it easier to find a group of corrupted entries than to find each entry of the

corrupted group individually.

Finally, comparing the first and last plot in Figure 2.3 it turns out that it may also

pay off to perform the search for an interval, where the solution is stable. This is

because decompositions with much greater ranks and group-selection probabilities

can still be recovered successfully, though using the ad-hoc choice fails. On the other

hand, the ad-choice can be tuned by hand if there is a priori knowledge about the

solution. For example, if the outlier matrix is very sparse, then a larger value of γ

can be used.

2.4.2 Real-world data

In the following, our goal is to demonstrate the wide applicability of robust principal

component analysis for generalized multi-view models that have group-structured

observations. For that, we briefly discuss four real-world applications.

Identification of periods of power consumption. In households, aside from

the base load, power consumption usually takes place infrequently and during a

limited period of time when electrical devices are turned on. Thus, momentary

power consumption in households has characteristic features of outliers. Hence,

we aim at showing that our model can be used to identify periods of large power

consumption from electrical grid data. Specifically, we use a dataset that contains

the electrical load profiles of 74 representative German residential buildings from the

year 2010. The dataset, which was obtained from [Tjaden et al., 2015], constitutes
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a time series with a temporal resolution of one second. For illustrative purposes,

we restrict the dataset to the first week. For each residential building, the electrical

load profile consists of six quantities that correspond to three phases, respectively,

of active and reactive power. Hence, each of the 74 residential buildings entails a

group of six elements. Thus, at each time step a 444-dimensional vector is observed.

In total, the data matrix X is of size 444 × 10 080, including one observation for

each second of the week. Note that sample data from the first four households is

shown in Figure 2.1.

The solution to Problem (2.2) is stable around γ = 10−2. Figure 2.4 shows the

corresponding decomposition. There is a noticeable general pattern of electrical

load profiles that is explained by the alternation of day and night: During sleeping

hours there are few devices that consume power. However, during day-time hours

there generally is increased activity, with the most electrical power being consumed

in the evening hours. The low-rank component of the decomposition in Figure 2.4

captures the repeated general pattern. Meanwhile as intended, the group-sparse

component identifies periods of larger electrical loads, caused by electrical devices

that momentarily consumed power.

MO TU WE TH FR SA SU MO TU WE TH FR SA SU

Figure 2.4: Decomposition of the electrical load profiles of 74 households over the course of one
week. The left plot shows a typical repeated low-rank day-and-night pattern. The right plot shows
the outlier component that captures periods of large loads, when some electrical devices consumed
power. On the bottom, the decomposition for a single households is shown.

Cloud removal. Here, we investigate the task of detecting/removing clouds from

satellite data. For this task, it makes sense to apply robust PCA because the surface

does not change much (besides seasonal shifts in vegetation), while clouds cover parts

of the surface only temporarily. We perform our experiments on a multi-spectral

image time series that consists of 20 observations of Fort Wayne (Indiana, USA)

from the years 2019 and 2020. The data was obtained from the Copernicus Open

Access Hub [ESA, 2020]. After cropping and downsampling, each image has a size

of 1000× 1000 pixels and uses four bands: red, green, blue, and near infrared (these

correspond to the bands 2, 3, 4, and 8 from the 13 available bands of the Sentinel-2

mission). To apply multi-view robust PCA, we group the four channels such that
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each pixel forms a group. In total, the data matrix has dimensions X ∈ R4 000 000×20.

The results for γ = 10−3 are shown in Figure 2.5. The outlier components capture

the clouds such that the low-rank components are cloud-free images.

Figure 2.5: Robust PCA for a multi-spectral image time series (Sentinel-2 data). From left to
right, the original images, the low-rank components, and the group-sparse components are shown.
The outlier components separate the clouds from the surface.

Reconstruction of RGB images (multi-view data). Here, we briefly show

that robust PCA for generalized multi-view models can be used to improve RGB

images. We work with a multi-view dataset that consists of images from the Ams-

terdam Library of Object Images [Geusebroek et al., 2005], which is equipped with

additional views from [Schubert and Zimek, 2019]. In the dataset, the data points

are RGB images of the same object under 36 different light conditions. Each image

has 144 × 192 pixels, where each pixel constitutes a different view of the image.

Apart from that for each image, the first additional view consists of the first 13 Har-

alick features (radius 1 pixel), see [Haralick, 1979], and the second additional view

is a standard RGB color histogram with 8 uniform bins. The whole data matrix has

dimensions 82 965× 36.

Exemplary results of applying multi-view robust PCA with γ = 10−2 for two

typical objects of the Amsterdam Library of Object Images are shown in Figure 2.6.

In the low-rank component, spotlights and shadows have been reduced.

Figure 2.6: Robust recovery of RGB images for two objects from the Amsterdam Library of
Object Images. From left to right, respectively, the original images, the reconstructed low-rank
RGB images, and the outlier components are shown. Overexposures and shadows have been
removed from the original images in the low-rank component and appear in the outlier component.
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Detection of weather anomalies. The wave hindcast dataset coastdat1, which

was obtained from [Helmholtz Centre for Materials and Coastal Research, 2012],

contains a time series of wave conditions in the southern North Sea. The data

that we use covers the year 2007 with a resolution of one hour. The covered area is

51.0N to 56.5N and −3.0W to 10.5E, using a grid size of approximately 0.05 degrees

latitude and 0.10 degrees longitude. At each grid point, the sea state is described

by the variables significant weight height (hs) and mean wave period (mp), which

are derived from 2D wave spectra [Groll and Weisse, 2016].

The sea state at each grid position naturally defines a group of two parameters.

Hence, to apply multi-view robust PCA for these groups, we change the data repre-

sentation for a single time step from grid to a vector that contains the groups from all

6 324 sea-side grid positions. Hence, the data matrix has overall size 12 648× 8 760,

where each column corresponds to the data of one hour of the year.

The resulting decomposition for γ = 10−3 can be found in Figure 2.7. Here, we

only show the decomposition for selected time steps, and instead of the columns of

the data matrix we directly show the covered area for the mp feature. We picked

November, 9th as a special date since at this time there was a cyclone called Tilo

that caused severe floods, that is, a strong weather anomaly. This is reflected in

the outlier component in Figure 2.7, which highlights areas, where the storm was

particularly strong. This experiment shows that generalized RPCA models with

structured observations can also be used to detect anomalies.
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Figure 2.7: Wave hindcast data: The mp feature is shown from four time steps of November
9th, 2007 when cyclone Tilo caused severe North Sea floods (storm surges). From left to right,
the columns show the original data, the low-rank components, and the outlier components. In the
outlier components, the coastal lines show increased energy (red).
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2.5 Concluding Remarks

In this chapter, we introduced robust principal component analysis for generalized

multi-view models, where observations are structured in groups of measurements.

A theoretically well-founded convex optimization problem can be used to separate

principal components from groups of outliers. We empirically evaluated the rates of

successful recovery for different decompositions using synthetic data. We presented

a variety of real-world applications with naturally arising groups. The learned de-

compositions yield insights into the data, such as, general patterns and anomalies.

Future directions. The low-rank and group-sparse matrix decompositions from

this chapter can be further generalized. In the introduction, we already mentioned

general group structures that concern sub-matrices. Such group structures can stem

from a data corruption mechanism, where sensor failures persist for several time steps

in a time series of observations. As noted before, not much additional effort has to

be placed in the theoretical analysis in order to show that exact recovery remains

also possible when sub-matrices of the data matrix are corrupted. Next, we briefly

introduce another possible extension of the model.

Groups with weights. In the generalized RPCA model of this chapter, we assumed

data corruption caused by sensor failures that affects groups of measurements. In a

scenario, where one has prior beliefs about sensor functionality, it may be useful to

encode these beliefs in the learning problem. This can be done by using a weighted

ℓ1,2-group norm

∥S∥W1,2 =
∑︂
i,j

wij∥sij∥2,

where W = (wij)i∈[d],j∈[n] is the matrix of weights. Here, a large weight wij means

a low prior belief that the i-th sensor is malfunctioning for the j-th observation. If

the prior belief of sensor functionality does not change over time, then wij = wi for

all j ∈ [n]. A robust PCA model with prior beliefs can be learned by solving the

problem

min
L,S ∈Rm×n

∥L∥∗ + γ∥S∥W1,2 subject to X = L+ S, (2.6)

where γ > 0 as usual. Another reason to use a weighted group norm may be that

if all entries are of the same magnitude (which is the case after standardization

of the data), the groups may be unbalanced in the sense that on average they

have different norms. To balance out the effect of different group sizes, the (i, j)-

th group could be weighted with wij = wi = 1/
√
mi. Similar weights have been

used in [Lee and Hastie, 2015]. More generally, any non-negative weights can be

used in Problem (2.6). It is possible to obtain similar theoretical guarantees for

Problem (2.6) as for Problem (2.2) by following the same proof scheme. We briefly

outline the changes to the proof in Appendix B.5.
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It is not clear whether learning RPCA models using Problem (2.6) can improve

upon results when learning with the basic Problem (2.2). Designing experiments to

address this question could be the subject of future research.

Model evaluation. Finally, in Section 2.4 of this chapter, we demonstrated that

the generalized RPCA model has many potential applications. However, the ex-

periments on real-world data have been of a qualitative nature so far. Hence, it

would be interesting to also quantitatively evaluate the learned RPCA models, that

is, beyond visual inspection. For that, of course, suitable metrics would need to be

defined. An example metric can be the peak signal-to-noise ratio, which has been

used for image recovery in Lu et al. [2019].
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Chapter 3

Fused Latent and Graphical

Models

3.1 Introduction

In this chapter, we consider multivariate probability distributions with observed

continuous and discrete variables that model pairwise interactions. Typically, not

all the variables interact with each other. Hence, often one is interested in learning a

sparse graphical model [Meinshausen and Bühlmann, 2006; Ravikumar et al., 2010,

2011; Jalali et al., 2011; Lee and Hastie, 2015]. However, learning sparse graphical

models may fail in the presence of latent variables because they induce indirect

interactions of the observed variables. In the case of only a few latent quantitative

variables, these interactions contribute an additional low-rank component to the

interaction parameters of the marginal model for the observed variables. Hence,

the pairwise interaction parameter matrix of the marginal model is characterized

by a decomposition into a (group-)sparse component of direct interactions and a

low-rank component of indirect interactions. Following [Chen et al., 2018], we call

the resulting models fused latent and graphical models.

In the sequel of this introductory section, we approach fused latent and graphi-

cal models from two different perspectives: The first perspective in Section 3.1.1 is

based on the work [Nussbaum and Giesen, 2020b]. It relates fused latent and graph-

ical models to factor models. In the course, we introduce a convex optimization

problem for learning fused latent and graphical models. The second perspective in

Section 3.1.2 is based on the work [Nussbaum and Giesen, 2019a]. It shows that

the same optimization problem can be obtained as the dual of a maximum-entropy

problem with a new type of relaxation, where the sample means collectively need to

match the expected values only up to a given tolerance. Finally, in Section 3.1.3 we

summarize fused latent and graphical models and give an overview of the remaining

content of this chapter.



3.1.1 Factor models with direct interactions

In this section, we deduce fused latent and graphical models from factor models. As

special cases we discuss Gaussian, discrete, and mixed-type distributions.

Gaussian models. Multivariate Gaussians p(y) ∼ N (µ,Σ) are still among the

most popular probabilistic models on multidimensional quantitative sample spaces

Y = Rq. A single model has q parameters for the mean vector µ and

(︃
q

2

)︃
+ q

pairwise parameters for the symmetric covariance matrix Σ. Hence, since the num-

ber of parameters is fairly large, estimating them is prone to overfitting. Moreover,

the maximum likelihood estimate of the covariance matrix given by the empirical

covariance matrix is not regular if there are less than q data points. Factor analysis

that was developed by Spearman [1904] while working on a theory of human abili-

ties, is used to address these shortcomings. Factor models assume a small number of

unobserved (latent) variables called factors. These factors describe all correlations

among the observed variables.

The sample space Y × Z = Rq × Rr of a Gaussian factor model decomposes into

an observed part Y = Rq and an unobserved part Z = Rr, typically with r much

smaller than q. The Gaussian factor model is a multivariate Gaussian on Y × Z
with marginals p(y) ∼ N (µ,Ψ + ΓΓT) and p(z) ∼ N (0, I), where Γ ∈ Rq×r,

Ψ ∈ Rq×q is a full-rank diagonal matrix, and I ∈ Rr×r is the identity matrix. Thus,

the covariance matrix of the marginal distribution p(y) for the observed variables

is the sum of the diagonal (sparse) matrix Ψ and the low-rank matrix ΓΓT, where

Γ describes the correlation of the observed variables with the unobserved variables.

Typically, the parameters µ, Γ, and Ψ of the Gaussian factor model are estimated

using the expectation maximization (EM) algorithm, see [Dempster et al., 1977].

Chandrasekaran et al. [2012] introduced an alternative to the Gaussian factor

model that also addresses the shortcomings of multivariate Gaussians. As in the

standard Gaussian factor model, they assume that the joint distribution p(y, z) of

the observed and unobserved variables is a multivariate Gaussian. The precision

matrix (inverse of the covariance matrix) of the marginal distribution p(y) for the

observed variables can be obtained from the precision matrix of the joint distribu-

tion Λ =

(︃
Λy Λyz

Λzy Λz

)︃
as the upper Schur complement Λy − ΛyzΛ

−1
z Λzy. Thus,

the precision matrix of the marginal distribution p(y) is the sum of the matrix Λy,

which Chandrasekaran et al. [2012] assume to be sparse, and the low-rank matrix
−ΛyzΛ

−1
z Λzy. Note that while entries in the covariance matrix measure correlation,

they measure conditional dependence in the precision matrix. Still, we refer to a

low-rank approximation of either matrix as a factor model. Chandrasekaran et al.

[2012] show that the parameters S = Λy and L = ΛyzΛ
−1
z Λzy can be estimated con-

sistently in the high-dimensional setting, where the dimensions q and r are allowed

to grow with the number of sample points. They learn the parameters through the
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convex optimization problem

min
S,L∈ Sym(q)

ℓ(S −L) + λ
(︁
γ∥S∥1 + tr(L)

)︁
subject to S −L ≻ 0, L ⪰ 0,

where Sym(q) is the set of symmetric (q × q)-matrices, and

ℓ(S −L) = ⟨S −L, Σ̂⟩ − log det(S −L)

is the negative log-likelihood of a zero-mean multivariate Gaussian distribution that

uses the standard inner product ⟨·, ·⟩ for matrices. Here, the empirical second-

moment matrix Σ̂ = 1/n
∑︁n

k=1 y
(k)[y(k)]T has been computed from observed data

points y(1), . . . ,y(n) ∈ Y . Moreover, as before, the ℓ1-norm regularization term ∥S∥1
induces sparsity on S, and the trace/nuclear norm regularization term tr(L) induces

low rank for positive semidefinite L ⪰ 0. Note that for L ⪰ 0 it holds ∥L∥∗ = tr(L).

Finally, λ > 0 and γ > 0 are regularization parameters that provide trade-offs be-

tween the different parts of the objective function. Specifically, the parameter λ

controls the influence of the negative log-likelihood term in relation to the regular-

ization terms. The second trade-off parameter γ determines the relative weights of

the regularization terms.

It is worth noting that the standard Gaussian factor model induces a sparse +

low-rank structure on the precision matrix as well. The joint probability density

function for the observed and unobserved variables of the Gaussian factor model is

given as

p(y, z) ∼ N
(︃(︃

µ

0

)︃
,

(︃
Ψ+ ΓΓT Γ

ΓT I

)︃)︃
.

It can easily be checked by inverting the covariance matrix that the precision matrix

of the joint model is given by

(︃
Ψ−1 −Ψ−1Γ

−ΓTΨ−1 I + ΓTΨ−1Γ

)︃
. Therefore, the precision

matrix of the marginal distribution, again given by the upper Schur complement,

reads as Ψ−1 −Ψ−1Γ(I + ΓTΨ−1Γ)ΓTΨ−1. Note that S = Ψ−1 is a sparse diag-

onal matrix that does not permit direct interactions among the observed variables.

Moreover, the matrix L = Ψ−1Γ(I + ΓTΨ−1Γ)ΓTΨ−1 has at most rank r. Thus,

the sparse + low-rank decomposition in the fused latent and graphical model that

Chandrasekaran et al. [2012] proposed is more flexible than the standard Gaussian

factor model since it allows for direct interactions among the observed variables.

Binary and discrete models. Factor models have also been discussed for other

distributions, among them Ising models on the sample space X = {0, 1}d. Ising

models are specified by a symmetric pairwise interaction matrix Q ∈ Sym(d), that

is, p(x) ∝ exp
(︁
1/2xTQx

)︁
for x ∈ X . As in the Gaussian case, the number of

parameters in the interaction matrix Q can be too large to be estimated faithfully

from a small data sample. A common approach for dealing with this is to assume

that Q is sparse, which induces a sparse graphical model structure.
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While a sparse graphical model structure is often a good choice when modeling

phenomena in physics, Marsman et al. [2015] emphasized that a low-rank struc-

ture serves many social science applications better. Low-rank structures are usually

induced by unobserved latent traits such as, for example, the intelligence or ex-

troversion of test takers. In fact, many psychometric tests are modeled using item

response theory (IRT), see [Embretson and Reise, 2013]. In [Marsman et al., 2018] it

is shown that IRT models are intimately related to Ising models. While classical IRT

only considers the dichotomized outcomes right and wrong for each question, poly-

tomous IRT, see Ostini and Nering [2006], allows more general discrete outcomes.

Apart from right and wrong there can, for instance, be an additional no-choice

option. Alternatively, all available options from multiple-choice questions can be

taken into account. Hence, in general, IRT considers models with observed and

unobserved parts. The observed part consists of variables x from a discrete sample

space X =
∏︁d

i=1Xi, where the Xi = {0, . . . ,mi} are finite sets of choice options.

The unobserved part is composed of additional latent variables z from a continuous

sample space Z = Rr. IRT models can be seen as low-rank factor models due to the

usually small number of latent variables. On the sample space X×Z =
∏︁d

i=1Xi×Rr,

we consider a joint probability distribution that is a pairwise conditional Gaussian

(CG) distribution, see [Lauritzen, 1996]. It is defined as

p(x, z) ∝ exp

(︃
1

2
xTQx+ zTRx− 1

2
zTΛz

)︃
, (x, z) ∈ X × Z, (3.1)

where Q ∈ Sym(m) with m =
∑︁d

i=1 mi describes interactions among the observed

discrete variables, R ∈ Rr×m describes interactions between the observed discrete

and unobserved quantitative variables, and 0 ≺ Λ ∈ Sym(r) describes interactions

among the unobserved quantitative variables. Moreover, for x ∈ X , we define the

concatenated indicator variables as

x = (x1, . . . ,xd) ∈ {0, 1}m, where

xi = (1[xi = 1], . . . ,1[xi = mi]) ∈ {0, 1}mi . (3.2)

Here, we left out the indicator variables for the state zero, respectively. This is to

ensure a unique parametrization of Model (3.1). The conditional densities p(z |x)
in Model (3.1) are r-variate Gaussians on Z, hence the name CG (conditional Gaus-

sian) distribution. Now, the marginal distribution of the discrete variables in X is

obtained by integrating over the unobserved variables in Z (see Appendix C.2). It

is given as

p(x) ∝ exp

(︃
1

2
xT
(︂
Q+RTΛ−1R

)︂
x

)︃
, x ∈ X .

The matrix L = RTΛ−1R is symmetric and positive semidefinite. Hence, in the

marginal model the interaction matrix is the sum Q + L, where Q describes di-

rect interactions among the observed variables and L describes additional indirect

interactions induced by the unobserved variables. For a purely low-rank model

44



one assumes that Q is diagonal, prohibiting direct interactions. In [Nussbaum and

Giesen, 2019a] (binary variables) and [Nussbaum and Giesen, 2020a] (general dis-

crete variables), we considered fused latent and graphical models, where S = Q is

(group) sparse. Here, the groups are given by

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
S11 S12 · · · S1d

...
...

. . .
...

Sd1 Sd2 · · · Sdd

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ Sym(m),

where for i, j ∈ [d] the group Sij ∈ Rmi×mj contains the parameters that describe

the interaction between the i-th and j-th observed variable. Similarly as for the

Gaussian case [Chandrasekaran et al., 2012], discrete fused latent and graphical

models can be learned using the following convex optimization problem:

min
S,L∈ Sym(m)

ℓ(S +L) + λ (γ∥S∥1,2 + tr(L)) subject to L ⪰ 0. (3.3)

Here, again λ, γ > 0 are trade-off parameters, ∥S∥1,2 =
∑︁

i,j∈[d] ∥Sij∥2 is the ℓ1,2-

norm that specializes to the ℓ1-norm if all observed variables are binary, and as we

show in Appendix C.2,

ℓ(S +L) = 2a(S +L)− ⟨S +L, Σ̂⟩

is the (rescaled) negative log-likelihood for the model p(x) = exp(1/2xT(S +

L)x − a(S + L)) with log-partition (normalization) function a and the empiri-

cal second-moment matrix Σ̂ = 1/n
∑︁n

k=1 x
(k) [x(k)]T, which has been computed

from n indicator-encoded observations x(1), . . . ,x(n) ∈ {0, 1}m.

Mixed models. In this thesis, we consider a general pairwise model that can

account for observed discrete variables in X =
∏︁d

i=1Xi =
∏︁d

i=1{0, . . . ,mi} as

well as for observed quantitative variables in Y = Rq. Factor models have also

been investigated in this setting, see, for example, [Bartholomew and Knott, 1999].

Particularly, they are special cases of general exponential family factor models

with mixed observed variables that have been considered in [Sammel et al., 1997]

and [Wedel and Kamakura, 2001]. As above, the low-rank structure can be ob-

tained by marginalizing out the latent variables in Z = Rr from the full model on

X × Y × Z =
∏︁d

i=1{0, . . . ,mi} × Rq × Rr with distribution

p(x,y, z) ∝ exp

(︃
1

2
xTQx+ (y, z)TRx− 1

2
(y, z)TΛ(y, z)

)︃
,

where now the interaction parameter matrices Λ and R respectively decompose into

interactions with the observed and with the latent quantitative variables, that is,
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they are structured as R =

(︃
Ry

Rz

)︃
∈ R(q+r)×m and Λ =

(︃
Λy Λyz

Λzy Λz

)︃
∈ Sym(q + r).

The marginal distribution on X ×Y , see again Appendix C.2, is given by the fused

latent and graphical model

p(x,y) ∝ exp

(︃
1

2
(x,y)T (S +L) (x,y)

)︃
, (x,y) ∈ X × Y ,

where S =

(︃
Q RT

y

Ry −Λy

)︃
and L =

(︁
Rz −Λzy

)︁T
Λ−1

z

(︁
Rz −Λzy

)︁
⪰ 0. Denote

by Λ[S + L] the interaction parameters between the quantitative variables in the

marginal model. Then, the model above is only normalizable if Λ[S+L] ≻ 0. Note

that technically, for an interaction parameter matrix of the form Θ =

(︃
Q RT

R −Λ

)︃
∈

R(m+q)×(m+q), we let Λ[Θ] = Λ, that is, Λ[S+L] extracts the interaction parameters

between the quantitative variables from the bottom right block of the parameter

matrix.

When S is group sparse in the fused latent and graphical model above, then this

model can be learned using the familiar problem

min
S,L∈ Sym(m+q)

ℓ(S +L) + λ (γ∥S∥1,2 + tr(L)) s.t. Λ[S +L] ≻ 0, L ⪰ 0, (3.4)

where again λ, γ > 0 are trade-off parameters and

ℓ(S +L) = 2a(S +L)− ⟨S +L, Σ̂⟩

is the (rescaled) negative log-likelihood with log partition-function a and empirical

second-moment matrix Σ̂ of the observed (indicator-encoded) discrete and quantita-

tive variables, see again Appendix C.2. Observe that Problem (3.4) generalizes the

respective problems for learning discrete and Gaussian fused latent and graphical

models that we have discussed earlier.

3.1.2 A new relaxation of the maximum-entropy principle

Here, we provide another perspective on fused latent and graphical models that is

based on the principle of maximum entropy, which was proposed by Jaynes [1957]

for probability density estimation. It states that from the probability densities that

represent the current state of knowledge one should choose the one with the largest

entropy, that is, the one which does not introduce additional biases. The state

of knowledge is often given by sample points from a sample space and some fixed

functions (sufficient statistics) on the sample space. The knowledge is then encoded

naturally in form of constraints on the probability density by requiring that the

expected values of the functions equal their respective sample means.
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Here, we consider discrete distributions only because entropy is something that we

believe is inherently discrete (although generalizations to non-discrete variables have

been attempted, see Appendix C.1.2 for a short discussion). The binary case was

covered in [Nussbaum and Giesen, 2019a]. Here, we consider the general discrete

case that uses the multivariate sample space X =
∏︁d

i=1Xi with Xi = {0, . . . ,mi}
and functions

fij;kl : X ↦→ {0, 1},x ↦→ 1[xi = k, xj = l] for i, j ∈ [d], k ∈ [mi], l ∈ [mj].

Suppose we are given sample points x(1), . . . ,x(n) ∈ X . Then formally, for estimating

the distribution from which the sample points are drawn, the principle of maximum

entropy suggests solving the following entropy maximization problem

max
p∈P

H(p) s.t. E[fij;kl] =
1

n

n∑︂
k=1

fij;kl(x
(k)) for all i, j ∈ [d], k ∈ [mi], l ∈ [mj],

where P is the set of all probability distributions on X , the expectation is with

respect to the distribution p ∈ P , and H(p) = −E[log p] is the entropy. We denote

the matrix of functions
(︁
fij;kl

)︁
k∈[mi], l∈[mj ]

: X → {0, 1}mi×mj that correspond to the

variables i and j by Σij. We summarize all functions as

Σ : X → {0, 1}m×m, x ↦→

⎛⎜⎜⎜⎝
Σ11(x) Σ12(x) · · · Σ1d(x)

...
...

. . .
...

Σd1(x) Σd2(x) · · · Σdd(x)

⎞⎟⎟⎟⎠ ,

where as before m =
∑︁d

i=1 mi. Similarly, we use the compact notation

Σ̂ =

(︄
1

n

n∑︂
a=1

fij;kl(x
(a))

)︄
i,j∈[d], k∈[mi], l∈[mj ]

for the (m×m)-matrix of sample means. Now, the entropy maximization problem

becomes

max
p∈P

H(p) s.t. E[Σ]− Σ̂ = 0.

Dud́ık et al. [2004] observed that invoking the principle of maximum entropy tends

to overfit when the number of features is large. Requiring that the expected values

of the functions equal their respective sample means can be too restrictive. Con-

sequently, in the binary case, where mi = 1 for all i, they proposed to relax the

constraint using the maximum norm as

∥E[Σ]− Σ̂∥∞ ≤ c

for some c > 0. The relaxation implies that for every function, the expected value

only needs to match the sample mean up to a tolerance of c. In the general discrete
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case, instead of using the ℓ∞-norm, it makes more sense to relax the constraint as

∥E[Σ]− Σ̂∥∞,2 ≤ c,

where the ℓ∞,2-norm is defined as ∥A∥∞,2 = maxi,j∈[d] ∥Aij∥2 for a matrix A ∈
Rm×m with groups Aij ∈ Rmi×mj . With this relaxation, for each pair of variables,

the associated functions that describe an interaction between these variables are

grouped. Thus, the parameter c specifies how much the expected values are allowed

to deviate from their corresponding sample means, separately for each group in the

ℓ2-norm sense.

The dual of the relaxed problem has a natural interpretation as a group-selective

ℓ1,2-regularized log-likelihood maximization problem

max
S ∈ Sym(m)

ℓ(S)− c∥S∥1,2.

Here,

ℓ(S) = ⟨S, Σ̂⟩ − a(S) (3.5)

is the log-likelihood function for the discrete model p(x) = exp
(︁
xTS x− a(S)

)︁
(note that here we omitted the factor 1/2 that we elsewhere include in the model

definition). The normalizer (log-partition function) is a(S) = log(
∑︁

x∈X ⟨S,Σ(x)⟩).

The key to our model is a restriction of the relaxation of the entropy maximization

problem, which is obtained by also enforcing the alternative constraint

∥E[Σ]− Σ̂∥ ≤ λ,

where λ > 0 and ∥ · ∥ denotes the spectral norm. A difference to the ℓ∞,2-norm

constraint is that now the expected values of all functions only need to collectively

match their sample means up to a tolerance of λ, instead of group-wise. The dual

of the more strictly relaxed entropy maximization problem

max
p∈P

H(p) s.t. ∥E[Σ]− Σ̂∥∞,2 ≤ c and ∥E[Σ]− Σ̂∥ ≤ λ

is the regularized log-likelihood maximization problem

max
S,L∈ Sym(m)

ℓ(S +L)− c∥S∥1,2 − λ∥L∥∗,

see Appendix C.1. Here, as before ∥ · ∥∗ is the nuclear norm, which promotes low

rank on L. Thus, a solution of the dual problem is the sum of a group-sparse

matrix S and a low-rank matrix L. Again, this can be interpreted as follows: The

variables interact indirectly through the low-rank matrix L, while some of the direct

interactions through the matrix S are turned off by setting groups of entries in S

to zero.
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We get a more intuitive interpretation of the dual problem if we consider a weaker

version of the spectral norm constraint. The spectral norm constraint is equivalent

to the two constraints

E[Σ]− Σ̂ ⪯ λI and Σ̂− E[Σ] ⪯ λI

that bound the spectrum of the matrix E[Σ] − Σ̂ from above and below. If we

replace the spectral norm constraint by only the second of these two constraints in

the maximum-entropy problem, then the dual problem becomes

max
S,L∈ Sym(m)

ℓ(S +L)− c∥S∥1,2 − λ tr(L) s.t. L ⪰ 0.

This problem is equivalent to Problem (3.3) from Section 3.1.1.

3.1.3 Setting and outlook for this chapter

To summarize, we consider fused latent graphical models for pairwise conditional

Gaussian distributions on the sample space X×Y =
∏︁d

i=1{0, . . . ,mi}×Rq. They are

characterized by a decomposition of the pairwise interaction parameter matrix Θ

into a group-sparse component S of direct interactions and a low-rank component

L of indirect interactions. Consequently, we consider fused and latent graphical

models of the form

p(x,y) = exp

{︃
1

2
(x,y)TΘ(x,y)− a(Θ)

}︃
= exp

{︃
1

2
(x,y)T(S +L)(x,y)− a(S +L)

}︃
, (x,y) ∈ X × Y . (3.6)

Here, x are the concatenated indicator variables, see (3.2), and a is the log-partition

function. Using w = m + q =
∑︁d

i=1 mi + q, the parameters are restricted to S ∈
Sym(w) and 0 ⪯ L ∈ Sym(w). Moreover, (3.6) only defines a valid model if

the interaction parameters Λ[S + L] between the quantitative variables satisfy the

condition Λ[S + L] ≻ 0 that is necessary for normalizability. Given n observations

(x(k),y(k)) ∈ X ×Y , we estimate fused latent and graphical models using the convex

problem

min
S,L∈ Sym(w)

ℓ(S +L) + λ (γ∥S∥1,2 + tr(L)) s.t. Λ[S +L] ≻ 0, L ⪰ 0. (3.7)

Here, the (rescaled) negative log-likelihood is given by

ℓ(S +L) = 2a(S +L)− ⟨S +L, Σ̂⟩,

where Σ̂ = 1/n
∑︁n

k=1(x
(k),y(k))(x(k),y(k))T is the empirical second-moment matrix.
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In the remaining part of this chapter, we study Problem (3.7). For that, we proceed

as follows: In Section 3.2, we show that fused latent and graphical models can be

recovered consistently by solving instances of Problem (3.7). In the spirit of previous

works on sparse graphical models [Meinshausen and Bühlmann, 2006; Ravikumar

et al., 2010, 2011; Lee and Hastie, 2015] and the seminal paper on fused latent and

graphical models by Chandrasekaran et al. [2012], we consider the high-dimensional

setting. In this setting, the number of observed variables and the number of latent

quantitative variables are allowed to grow with the number of observed samples. In

the seminal work [Chandrasekaran et al., 2012], consistency was shown for Gaussian

variables. In [Nussbaum and Giesen, 2019a, 2020a,b], we generalized the consistency

result to distributions with observed binary and quantitative variables. In this thesis,

we consider the even more general case of distributions with observed discrete and

quantitative variables. Thus, the consistency result that we formulate in Section 3.2

encompasses all previously examined cases as special cases.

After the theoretical analysis, we introduce a practical solver for learning general

fused latent and graphical models in Section 3.3. Next, in Section 3.4, we support

our theoretical findings with experiments on synthetic and real-world data from

polytomous item response theory studies. Finally, we venture on an excursion to

a variant of Benson’s algorithm [Benson, 1998] that we develop for selecting the

regularization parameters of Problem (3.7) in a principled and efficient way.

3.2 Consistency Results

In this section, we motivate and state our main result that can be summarized as

follows: The convex optimization Problem (3.7) allows for consistent recovery of

a (group-)sparse + low-rank decomposition of the pairwise interaction parameter

matrix of a conditional Gaussian (CG) distribution. This consistency holds in the

high-dimensional setting, where we permit the number of data points n, the number

of observed discrete variables d, the number of observed quantitative variables q,

and the number of latent variables r to grow simultaneously. At the same time,

we assume the geometry of the problem, which is given by the curvature of the

likelihood function, to be fixed. Now, before we state our result, we specify the

framework of our consistency analysis in more detail and elaborate conditions that

need to be satisfied for consistent recovery.

Throughout we assume a true hypothetical pairwise CG distribution with true

interaction parameter matrix S⋆ +L⋆. Hence, the true model is a fused latent and

graphical model whose interactions are decomposed into a group-sparse matrix S⋆ of

direct interactions among the observed variables and a low-rank matrixL⋆ of indirect

interactions. Given n samples drawn from this hypothetical true distribution, we

try to recover (S⋆,L⋆) by solving Problem (3.7) with suitably chosen regularization

parameters. In the following, we denote the solution of Problem (3.7) by (Sn,Ln).
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If the estimator given by solving Problem (3.7) succeeds in recovering the true

components S⋆ and L⋆ in the high-dimensional setting, that is, asymptotically and

with high probability, then it is called consistent. More specifically, we are interested

in two types of consistency. The first type is parametric consistency. It holds if the

errors Sn − S⋆ and Ln − L⋆ are small at the same time. As in [Chandrasekaran

et al., 2012], we measure the size of the errors in the dual norm of the regularizing

norm γ∥S∥1,2 + tr(L) from the objective function. This dual norm is the γ-norm

defined by

∥(M ,N )∥γ = max
{︁
γ−1∥M∥∞,2, ∥N∥

}︁
, (M ,N ) ∈ Sym(w)× Sym(w),

where w = m + q is the dimension of the interaction parameter matrix, ∥ · ∥∞,2

is the ℓ∞,2-norm, and ∥ · ∥ is the spectral norm. Note that the same γ as in the

objective function of Problem (3.7) is used. The second type of consistency is

algebraic consistency. It holds if Sn has the same group support as S⋆ and if Ln

retrieves the true rank of L⋆.

Consistent recovery is not always possible. A first challenge is controlling the

sampling error, which is given by ∇ℓ(S⋆ +L⋆) = ∇a(S⋆ +L⋆)− Σ̂ = E[Σ]− Σ̂, see

Appendix C.2. Here, the expectation is w.r.t. the true model. If the sampling error

is small, then it follows from a Taylor expansion that

ℓ(S⋆ +L⋆ +∆) = ℓ(S⋆ +L⋆) +∇ℓ(S⋆ +L⋆)T∆+
1

2
∆T∇2ℓ(S⋆ +L⋆)∆+R(∆)

≈ ℓ(S⋆ +L⋆) +
1

2
∆T∇2ℓ(S⋆ +L⋆)∆+R(∆),

≈ ℓ(S⋆ +L⋆) +
1

2
∆T∇2ℓ(S⋆ +L⋆)∆, (3.8)

where the last approximation holds locally since the remainder R(∆) is small if ∆

is small. The quadratic form in the last line is obviously minimized at ∆ = 0, which

would entail consistent recovery of the compound matrix S⋆ + L⋆ in a parametric

sense. Thus, the likelihood term in Problem (3.7) ensures that the compound matrix

Sn+Ln is close to the true compound matrix S⋆+L⋆. However, reliable recovery of

the compound matrix is only possible if the trade-off parameter λ is not too large.

Indeed, the regularization terms should only encourage small adjustments to the

algebraic structure of the components. Hence, later we assume an upper bound on

the regularization parameter λ.

A second challenge is telling the group-sparse and low-rank components apart.

This can be addressed by restricting the analysis to identifiable models, similarly

as we did in the analysis of RPCA models in Section 2.2.1 of Chapter 2. Over-

all, we make assumptions as in [Chandrasekaran et al., 2012] and in [Nussbaum

and Giesen, 2019a, 2020a,b]. These assumptions differ depending on the types of

observed variables.
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3.2.1 An intuitive version of the problem and assumptions

Problem (3.7) can be intuitively understood as minimizing the negative log-likelihood

subject to S having a certain group sparsity and L having a certain low rank. As in

Section 2.2.1, we use group-sparse and low-rank matrix varieties to formalize these

constraints. The only difference to the definitions in Section 2.2.1 lies in the different

group structure and that here, we have symmetric matrices. First, the variety of

(group-)sparse symmetric matrices with at most s non-zero entries is given as

S(s) = {S ∈ Sym(w) : | gsupp(S)| ≤ s},

where

gsupp(S) = {(i, j) ∈ [d+ q]× [d+ q] : Sij ̸≡ 0}

is the group support of S (here, Sij is the group of interaction parameters for the

i-th and j-th variable of the model, see also Appendix C.2). Second, the variety of

matrices with rank at most r is given as

L(r) = {L ∈ Sym(w) : rank(L) ≤ r}.

Let us now consider the problem

min
S,L∈ Sym(w)

ℓ(S +L) s.t. S ∈ S(| gsupp(S⋆)|) and L ∈ L(rank(L⋆)). (3.9)

Similar as the non-convex Problem (2.3) in Chapter 2, this problem is hypothetical

since the true sparse and low-rank varieties are not known beforehand. Nevertheless,

it offers valuable insights. The important observation is that (S,L) can only be

(locally) optimal for this intuitive but hypothetical non-convex problem if it satisfies

the following optimality condition: The gradient of the negative log-likelihood at

S + L (which is the same with respect to S and L) is normal to both the group-

sparse matrix variety at S and the low-rank matrix variety at L. The optimality

conditions are visualized in Figure 3.1.

S(| gsupp(S⋆)|)

Q(S)

∇ℓ(S +L)

S
�

L(rank(L⋆))

T (L)

∇ℓ(S +L)

L �

Figure 3.1: Illustration of the optimality conditions for Problem (3.9). The gradient of the nega-
tive log-likelihood must be normal to the group-sparse and low-rank matrix varieties. Equivalently,
the gradient must be normal to the respective tangent spaces Q(S) and T (L).
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Stability. For successful recovery, we want the solution of the intuitive Prob-

lem (3.9) to be (locally) unique. To guarantee local uniqueness, the optimality

condition should be violated at any slightly perturbed solution, that is, the gradient

at such a perturbed solution should be non-normal to at least one of the varieties.

We refer to this property as stability (of the solution).

Of particular interest are perturbations in directions of tangent spaces to the

respective varieties because the normal spaces to the varieties at tangentially per-

turbed solutions barely change, if at all. We have already seen the tangent spaces

in Section 2.2.1. Here, the tangent spaces take a slightly simpler form since in this

chapter we embed the varieties in the set of symmetric matrices Sym(w). First, the

tangent space at a matrix S to the group-sparse matrix variety S(| gsupp(S)|) is

given by

Q(S) = {M ∈ Sym(w) : gsupp(M ) ⊆ gsupp(S)}.

Second, a rank-r matrix L is a smooth point of the low-rank matrix variety L(r)
with tangent space

T (L) =
{︁
UXT +XUT : X ∈ Rw×r

}︁
,

featuring a restricted eigenvalue decomposition L = UEUT of L, that is, U ∈
Rw×r consists of eigenvectors in its columns and E ∈ Rr×r is a diagonal matrix of

corresponding eigenvalues.

Now certainly, the optimality condition at a tangentially perturbed solution is

violated if the gradient at the perturbed solution is tilted in the sense that it is not

normal to the varieties anymore. This is the case if the gradient at the perturbed

solution has tangential components that are large compared to its components in the

respective normal spaces. In the following, we only consider perturbations from the

true solution (S⋆,L⋆). The intuition is that stability for this true solution carries

over to the solutions of Problems (3.7) and (3.9), provided that they are close to the

true solution. For perturbations of the true solution, differentiating Equation (3.8)

yields

∇ℓ(S⋆ +L⋆ +∆)−∇ℓ(S⋆ +L⋆) ≈ ∇2ℓ(S⋆ +L⋆)∆ = H⋆∆

for small ∆. Hence, the Hessian H⋆ = ∇2ℓ(S⋆ + L⋆) locally governs the change

of the gradient. Therefore, in the following we present conditions on the Hessian

that imply that the gradient for (tangentially) perturbed solutions is tilted, see

Figure 3.2. A first requirement is that the minimum gains of the Hessian H⋆ in the

respective tangential directions

αQ = min
∆∈Q, ∥∆∥∞,2=1

∥PQH
⋆∆∥∞,2, αT ,ε = min

ρ(T ,T ′)≤ε
min

∆∈T ′, ∥∆∥=1
∥PT ′H⋆∆∥

should be large since they imply a large tangential component of the gradient at the

perturbed solution. Here, we denote projections onto matrix subspaces by P with
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Q(S⋆)

Q(S⋆)⊥

∇ℓ(S⋆ +L⋆)

∇ℓ(S⋆ +L⋆ +∆)

< δ

> α

Figure 3.2: Tilting of the gradient for a perturbed solution, here in the tangential direction
∆ ∈ Q(S⋆). To avoid normality of the gradient at the perturbed solution, the tangential component
of the change ∇ℓ(S⋆ +L⋆ +∆)−∇ℓ(S⋆ +L⋆) ≈ ∇2ℓ(S⋆ +L⋆)∆ of the gradient should be large,
and the normal component should be small. The same should hold for perturbations in directions
of low-rank tangent spaces that are close to T (L⋆).

corresponding subscript. Moreover, we set Q = Q(S⋆) and T = T (L⋆), and given

some ε > 0, we considered tangent spaces T ′ ⊆ Sym(w) to the low-rank matrix

variety that are close to T in terms of the twisting

ρ(T , T ′) = max
∥M∥=1

∥[PT − PT ′ ] (M )∥

between these subspaces. This is necessary because the low-rank matrix variety is

locally curved such that the tangent spaces for nearby points are often different.

Next, we also need the maximum effects of the Hessian H⋆ in the respective normal

directions

δQ = max
∆∈Q, ∥∆∥∞,2=1

∥PQ⊥H⋆∆∥∞,2, δT ,ε = max
ρ(T ,T ′)≤ε

max
∆∈T ′, ∥∆∥=1

∥PT ′⊥H⋆∆∥

to be small. This is because otherwise the gradient of the negative log-likelihood at

the perturbed (true) solution could still be almost normal to the respective varieties.

Here, we used the superscript ⊥ to denote the respective orthogonal/normal spaces.

Note that in our definitions of the minimum gains and maximum effects we used

the ℓ∞,2- and the spectral norm. These norms are respectively dual to the ℓ1,2-

and the nuclear norm used in the regularization. Eventually, we want to express the

stability assumption in the γ-norm which is the dual norm to the joint regularization

term in Problem (3.7). This makes a comparison of the ℓ∞,2- and the spectral norms

on the tangent spaces necessary. The following norm compatibility constants, which

are analogous to the ones in Section 2.2.1, serve this purpose:

µ(Q(S)) = max
M∈Q(S): ∥M∥∞,2=1

∥M∥ and ξ(T (L)) = max
N∈T (L): ∥N∥=1

∥N∥∞,2.

Here, Q(S) and T (L) are the tangent spaces at points S and L from the group-

sparse matrix variety S(| gsupp(S)|) and the low-rank matrix variety L(rank(L)),

respectively.
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Let us now specify our first main assumption that assures that the ratio of the

maximum orthogonal effects and minimum tangential gains is not too large. This

makes sure that the gradient at a solution of which a single component has been

tangentially perturbed is no longer normal to the varieties.

Assumption 1 (Stability). Let η = maxi∈[d] mi. Setting ε = ξ(T )/(2η), we assume

that

α = min
{︁
αQ, αT , ξ(T )/(2η)

}︁
> 0 and that

δ

α
< 1,

where δ = max
{︁
δQ, δT , ξ(T )/(2η)

}︁
.

To quantify the degree to which Assumption 1 holds, we define ν = (1− δ/α)/2.

It holds ν ∈ (0, 1/2] and the closer ν is to 1/2, the better. Note that the stability

assumption is a generalization of the irrepresentability assumption as, for instance,

used by Ravikumar et al. [2011] for Gaussian sparse graphical model selection.

Feasible values for γ. Our next goal is to find values of γ for which we can ensure

that the gradient at a solution of which both components have been simultaneously

perturbed in tangential directions is also not normal to the varieties any longer. The

choice of γ is relevant since for simultaneous tangential perturbations we want to

measure the maximum orthogonal effects and the minimum tangential gains of the

Hessian H⋆ in the γ-norm.

Working with the γ-norm requires us to compare the ℓ∞,2- and spectral norms.

Hence, we can get further insights into the realm of problems for which consistent

recovery is possible by taking a look at the norm compatibility constants µ(Q(S⋆))

and ξ(T (L⋆)). Here, a similar result as Lemma 2.3 holds, where the maximum

(group) degree and incoherence are defined in the same way as in Section 2.2.1.

Lemma 3.1. Let L ∈ L(rank(L)) and S ∈ S(| gsupp(S)|). Then, the following

bounds on the norm compatibility constants hold

coh(L) ≥ 1/(2η) ξ(T (L)) and gdegmax(S) ≥ η−1/2µ(Q(S)).

Proof. The proof follows the lines of the proof of Lemma 2.3. The qualitative differ-

ences of the bounds are due to the different group structures, specifically, to prove

Lemma 3.1, the norm bound ∥ · ∥∞,2 ≤ η∥ · ∥∞ is used. ■

As in Section 2.2.1, to avoid confusion of S⋆ with a low-rank matrix, µ(Q) =

µ(Q(S⋆) should be small since otherwise gdegmax(S
⋆) is large because of the lower

bound from Lemma 3.1 in terms of µ(Q). Similarly, to avoid confusion of L⋆ with

a group-sparse matrix, ξ(T ) = ξ(T (L⋆)) should be small since otherwise coh(L⋆) is

large given the lower bound from Lemma 3.1. The fact that both norm compatibility

constants should be small is reflected in our second main assumption.
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Assumption 2 (γ-feasibility). We assume that

µ(Q)ξ(T ) ≤ 1

6

(︃
αν

β(2− ν)

)︃2

,

where β = max{βQ, βT } with

βQ = max
M∈Q, ∥M∥=1

∥H⋆M∥ and βT = max
ρ(T ,T ′)≤ ξ(T )/(2η)

max
M∈T ′, ∥M∥∞,2=1

∥H⋆M∥∞,2.

We introduced the problem-specific constant β since it facilitates the necessary

coupling of the ℓ∞,2- and the spectral norm when we measure the change of the

gradient in the γ-norm for simultaneous perturbations of (S⋆,L⋆) in tangential

directions. This is because βQ measures elements from Q in the spectral norm that

is typical for elements from low-rank tangent spaces, and vice versa, βT measures

elements from low-rank tangent spaces in the ℓ∞,2-norm that is typical for elements

from Q. Now, the γ-feasibility assumption implies that the range

[γmin, γmax] =

[︃
3β(2− ν)ξ(T )

να
,

να

2β(2− ν)µ(Q)

]︃
is non-empty. The following proposition shows that for γ ∈ [γmin, γmax] we can bound

the minimum gains and the maximum effects of the Hessian H⋆ = ∇2ℓ(S⋆ + L⋆)

on the direct sum of the tangent space Q = Q(S⋆) and any tangent space T ′ close

to the true tangent space T = T (L⋆). Similarly as the stability assumption does

for individual perturbations, these bounds ensure that the gradient of the negative

log-likelihood at a simultaneously tangentially perturbed (S⋆ + M ,L⋆ + N ) with

small M ∈ Q and small N ∈ T ′ cannot be normal to the varieties any longer.

Proposition 3.2 (Coupled stability). Suppose that Assumption 1 (stability) and

Assumption 2 (γ-feasibility) hold and let γ ∈ [γmin, γmax]. Let T ′ be a tangent space

to the low-rank matrix variety with bounded twisting ρ(T , T ′) ≤ ξ(T )/(2η). Let

J = Q× T ′. Then,

(i) the minimum gain on J of H⋆ restricted to the direct sum Q⊕ T ′ is bounded

from below, that is, for all (M ,N ) ∈ J it holds that

∥PJDH⋆(M +N )∥γ ≥
α

2
∥(M ,N )∥γ ,

where D : Sym(w)→ Sym(w)× Sym(w),A ↦→ (A,A) is the duplication oper-

ator, and

(ii) the maximum effect on J ⊥ of H⋆ restricted to Q⊕ T ′ is bounded from above,

that is, for all (M ,N ) ∈ J it holds that

∥PJ⊥DH⋆(M +N )∥γ ≤ (1− ν) ∥PJDH⋆(M +N )∥γ .
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The proof of Proposition 3.2 can be found in Appendix C.3.3. We remark that

coupled stability implies transversality. To see this, suppose there exists 0 ̸= A ∈
Q ∩ T ′. Then, choosing M = A and N = −A in Proposition 3.2(a) contradicts

the stability assumption because

0 = ∥PJDH⋆(A+ (−A))∥γ ≥
α

2
∥(A,−A)∥γ =

α

2
max

{︃
∥A∥∞,2

γ
, ∥A∥

}︃
> 0

since α > 0. Hence, we have transversality, that is, Q∩ T ′ = {0}.

Gap assumption. We make a final assumption that is necessary for obtaining

algebraic consistency. It concerns the smallest-magnitude of the non-zero groups of

S⋆ given by smin = min(i,j)∈ gsupp(S⋆) ∥S⋆
ij∥2, and it concerns the smallest non-zero

eigenvalue σmin of L⋆. If they are too small, it will be difficult to recover the true

support of S⋆ and the true rank of L⋆. Hence, we assume a lower bound on both.

Assumption 3 (Gap). We require that

smin ≥
CSλ

µ(Q)
and σmin ≥ CLmax

{︃
η

ξ(T )2
, 1

}︃
λ,

where CS and CL are problem-specific constants that are defined in Appendix C.3.2.

3.2.2 Consistency of pairwise sparse + low-rank models

In this section, we state a number of consistency results for pairwise sparse + low-

rank models. Recall that w = m + q is the number of observed variables (counting

the number of interacting indicator variables for discrete variables). As before, we

denote the tangent space to the variety of symmetric sparse matrices at S⋆ by

Q = Q(S⋆) and the one to the variety of symmetric low-rank matrices at L⋆ by

T = T (L⋆). In this section, we use some problem-specific constants C1, . . . , C5

whose exact definitions can be found in Appendix C.3.2.

For consistent recovery, the sample must represent the underlying distribution

well. This is the case if the sampling error Σ⋆ − Σ̂ of the second-moment matrix

is small, where Σ⋆ = E[Σ] is the expected and Σ̂ is the empirical second-moment

matrix. Remember that the gradient of the negative log-likelihood coincides with

the sampling error, that is, it holds ∇ℓ(S⋆+L⋆) = Σ⋆−Σ̂. Hence, first we explicitly

assume that the sample is ‘good’ in the sense that its sampling error is small. For

such samples, the following theorem shows that the solution to Problem (3.7) is

consistent.
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Theorem 3.3. Let (S⋆,L⋆) such that the stability, γ-feasibility, and the gap as-

sumption (for λ as chosen below) are satisfied. Suppose that we observed samples

(x(1),y(1)), . . . , (x(n),y(n)) ∈ X × Y =
d∏︂

i=1

{0, . . . ,mi} × Rq

drawn from a pairwise CG model with interaction parameter matrix S⋆+L⋆. More-

over, let λ ≤ min{C1, C2 ξ(T )} and γ ∈ [γmin, γmax]. Then, if the gradient at the

true parameters S⋆ +L⋆ is bounded in the γ-norm via

∥D∇ℓ(S⋆ +L⋆)∥γ =
⃦⃦⃦
D(Σ⋆ − Σ̂)

⃦⃦⃦
γ
≤ C3λ,

the solution (Sn,Ln) to the convex Problem (3.7) with regularization parameters λ

and γ exists and is unique. Furthermore, it is

a) parametrically consistent by virtue of satisfying ∥(Sn − S⋆,Ln −L⋆)∥γ ≤ C4λ

and

b) algebraically consistent, that is, the group supports of Sn and S⋆ are the same,

and the ranks of Ln and L⋆ coincide.

We make a few comments to explain this theorem: First, we assumed an upper

bound on λ to make sure that the shrinkage effects on the solution caused by the

regularization terms from the objective function are not too large. Second, we did

not assume a lower bound for λ, but for small λ it will be difficult to achieve algebraic

consistency. This is reflected in the assumed bound on the sampling error that we

formulated in terms of λ. Here, if λ is small, then the number of (random) samples

that are required so that the bound actually holds with high probability is large.

This number of samples depends on the types of observed variables (binary-only,

quantitative-only, both binary and quantitative).

The proof of Theorem 3.3 in Appendix C.3.2 - C.3.6 generalizes the proof in [Chan-

drasekaran et al., 2012] for models with observed Gaussian, the proof in [Nussbaum

and Giesen, 2019b] for models with observed binary, and the proof in [Nussbaum

and Giesen, 2020b] for models with observed binary and quantitative variables. The

proof is a version of the primal-dual witness technique, which has originally been

used for the Lasso [Wainwright, 2009] and later for sparse graphical model selec-

tion, see, for example, [Ravikumar et al., 2010]. It proceeds by first restricting

Problem (3.7) to a (non-convex) correct model set M chosen in a way such that

any solution (SM,LM) to the restricted problem is algebraically and parametrically

consistent. The non-convexity is due to a rank constraint, which is subsequently

linearized by replacing it with a tangent-space constraint to the low-rank matrix

variety at a fixed solution (SM,LM). Then, it is shown that the solution to the

linearized problem is unique and coincides with (SM,LM). Finally, it is shown that

the original Problem (3.7) is also solved by the same consistent solution (SM,LM).

Moreover, this solution is shown to be strictly dual feasible, which ensures that
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there cannot be other solutions. A more detailed outline of the proof can be found

in Appendix C.3.1.

In the following, we derive explicit regimes for the different types of variables.

They will allow us to see that Theorem 3.3 can be used to determine the asymptotic

behavior when the number of variables q and/or d, the number of samples n, and

the number of latent variables r grow. For that, we make a specific choice for λ

given by

λ = λn,f =
C5

ξ(T )

√︃
f

n
,

where f may functionally depend on q if quantitative observed variables are present,

and f may also depend on d and m in the presence of discrete observed variables.

We define explicit expressions of f for the different types of observed variables below,

where f can only grow in q, d, and m. Here, provided that the lower bound

n ≥ C2
5 f

ξ(T )2min{C1, C2 ξ(T )}2
(3.10)

holds, then the assumption λn,f ≤ min{C1, C2 ξ(T )} of Theorem 3.3 is satisfied.

We will respectively choose the scaling f such that also the bound on the gradi-

ent/sampling error from Theorem 3.3 holds with high probability, assuming that

the number of samples n satisfies a lower bound with the same dependence on

(q, d,m) as in (3.10). Note that the dependence on (q, d,m) in (3.10) is completely

specified by the choice of f . Hence, the lower bound (3.10) and the scaling f deter-

mine the sample complexity for the respective scenarios: Larger f implies a stronger

lower bound on n. Let us further discuss the asymptotic behavior obtained from

Theorem 3.3 with the choice λ = λn,f . First, observe that for n → ∞ and fixed

(q, d,m), that is, fixed f , it follows that

∥(Sn − S⋆,Ln −L⋆)∥γ ≤ C4 λn,f → 0.

This means that asymptotically the errors become zero. Second, for a larger number

of variables, f is larger. Hence, achieving the same error bound requires more

samples. This is natural because the number of parameters to be estimated is also

larger.

Now, the following corollaries state the scalings f for the special cases with

quantitative-only, discrete-only (binary-only), and both discrete and quantitative

observed variables. All corollaries use λ = λn,f as a regularization parameter (for

the respectively chosen scaling f) and assume a lower bound on n as in (3.10). The

first result matches the one in [Chandrasekaran et al., 2012].

Corollary 3.4 (Consistency Gaussian model). Let there only be observed quanti-

tative, Gaussian variables (w = q), that is, points y(1), . . . ,y(n) ∈ Rq are observed.

Let f = f(q) = Cq for some constant C (defined in the proof). Then, under the

assumptions of Theorem 3.3 with λ = λn,f(q), the claims of Theorem 3.3 (parametric

and algebraic consistency) hold with probability at least 1− 2 exp(−q).
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Corollary 3.5 (Consistency discrete model). Let there only be observed discrete

variables (w = m) such that the sample consists of points x(1), . . . ,x(n) ∈ X =∏︁d
i=1{0, . . . ,mi}. Moreover, let κ ≥ 1. Let the scaling be given by f = f(d,m) =

Cκd logm for some constant C (defined in the proof). Then, under the assumptions

of Theorem 3.3 with λ = λn,f(d,m), the claims of Theorem 3.3 hold with probability

at least 1−m−κ.

Note that this second result encompasses the result from [Nussbaum and Giesen,

2019a] for the Ising model as a special case since for binary variables Corollary 3.5

simplifies given that d = m. The third and final result concerns models with mixed

discrete and continuous variables.

Corollary 3.6 (Consistency mixed model). Let κ > 0 and let the scaling be given

by f(w) = C(1+κ/2)w2 logw, where w = q+m and C is a constant (defined in the

proof). Then, under the assumptions of Theorem 3.3 with λ = λn,f(w), the claims of

Theorem 3.3 hold with probability at least 1− 2w−κ.

The proofs of the corollaries can be found in Appendix C.3.7. They bound the

sampling error Σ⋆ − Σ̂ in the spectral norm (or rather D(Σ⋆ − Σ̂) in the γ-norm

as required by Theorem 3.3) for the respective scenarios. Afterwards they apply

Theorem 3.3. Here, we just note that the different scalings and sample complexities

are due to the fact that bounding the sampling error is more challenging for non-

Gaussian distributions since the strong Gaussian tail bounds cannot be used. Indeed,

if there are only observed binary variables, the resulting random vector is not even

sub-Gaussian, but at least it is bounded. The situation is even more complicated if

there are observed discrete and quantitative variables. This is because in this case

the distribution is neither sub-Gaussian nor bounded.

Note that we can only assume in theory that the constants from the theorem

and its corollaries are known—in practice, they cannot be computed, particularly

since the true pair (S⋆,L⋆) is unknown. However, a good starting point for choosing

regularization parameters is trying λ = k
√︁

f/n for different values of k. Overall, the

two-dimensional search space of the regularization parameters can, for example, be

traversed by using grid search, random search, or even more sophisticated methods

such as Benson’s algorithm [Giesen et al., 2019b]. We present the latter method in

Section 3.5.

3.3 Solvers

3.3.1 ADMM algorithm with proximal-gradient steps

Let us first consider a reformulation of Problem (3.7)

min
Θ : Λ[Θ]≻0,W

ℓ(Θ) + φ(W ) s.t. Θ = [I, I]W (3.11)
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where we grouped W = (S,L) into one variable, I is the (w × w)-identity matrix,

and

φ(W ) = α∥S∥1,2 + β tr(L) + χ[L ⪰ 0].

Here, χ is the indicator function that takes the value zero if the condition is satisfied,

and infinity otherwise. The regularization parameters of the problem are α, β > 0.

Let κ > 0 and let Φ be the dual variables for the constraint Θ = [I, I]W . First,

the algorithm is initialized with variables (Θ0,W 0,Φ0), for example, Θ0 = −I,
W 0 = Φ0 = 0 is a feasible starting point. Then, the ADMM updates for k ≥ 1 are

given by⎧⎪⎪⎨⎪⎪⎩
Θk+1 = argminΘ : Λ[Θ]≻0 ℓ(Θ)−

⟨︁
Φk,Θ− [I, I]W k

⟩︁
+ 1

2κ

⃦⃦
Θ− [I, I]W k

⃦⃦2
F
,

W k+1 = argminW φ(W )−
⟨︁
Φk,Θk+1 − [I, I]W

⟩︁
+ 1

2κ

⃦⃦
Θk+1 − [I, I]W

⃦⃦2
F
,

Φk+1 = Φk − κ−1(Θk+1 − [I, I]W k+1),

which is equivalent to⎧⎪⎪⎨⎪⎪⎩
Θk+1 = argminΘ : Λ[Θ]≻0 ℓ(Θ) + 1

2κ

⃦⃦
Θ− [I, I]W k − κΦk

⃦⃦2
F
,

W k+1 = argminW φ(W ) + 1
2κ

⃦⃦
Θk+1 − [I, I]W − κΦk

⃦⃦2
F
,

Φk+1 = Φk − κ−1(Θk+1 − [I, I]W k+1).

(3.12)

In the following, we discuss how the optimization problems that appear in the indi-

vidual updates can be solved (or at least approximately solved).

The first update. The first update is the proximal mapping of the likelihood:

min
Θ : Λ[Θ]≻0

ℓ(Θ) +
1

2κ
∥Θ−Z∥2F ,

where Z = [I, I]W k + κΦk. For purely Gaussian models, the zero-mean Gaussian

negative log-likelihood is given by

ℓ(Θ) = − log detΘ+ ⟨Θ, Σ̂⟩+ χ[Θ ≻ 0]

with empirical covariance matrix Σ̂. In this case, the proximal operator has the

solution

argmin
Θ : Λ[Θ]≻0

ℓ(Θ) +
1

2κ
∥Θ−Z∥2F = U diag(γ)UT,

where

γi = −
σi

2
+

√︃
σ2
i

4
+ κ, for i = 1, . . . , q

and U diag(σ)UT is a singular value decomposition of κΣ̂ − Z. The solution can

be derived from the first-order optimality condition, see [Ma et al., 2013] for the

details.
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The situation is more complicated in the presence of discrete variables. In this

case, an iterative optimization algorithm needs to be applied. Most iterative al-

gorithms, like the Broyden-Fletcher-Goldfarb-Shanno (BFGS ) algorithm [Fletcher,

2013] and variants thereof use at least first-order information, that is, the gradient

of the objective function. Computing the likelihood function can already be compu-

tationally expensive because sums over the discrete states in X must be evaluated.

Moreover, using the derivative often causes numerical instabilities (for example, the

derivative of log det(Θ) is Θ−1, which can easily lead to bad numerical condition).

Because of the aforementioned problems, it is often more practical to replace the

likelihood by a more computationally tractable pseudo-likelihood. We introduce it

in the next section. Nevertheless, as we will see, even the proximal operator of the

pseudo-likelihood does in general not have a closed-form solution, making the use

of an iterative solver necessary.

The second update. In the problem from the second update in (3.12), the com-

ponents ofW are coupled in the quadratic Frobenius-norm term. With this coupling

the proximal operator for W is hard to solve. Instead it has been suggested in [Ma

et al., 2013] to solve a step of a proximal-gradient method, that is, for τ > 0 one

solves

min
W

φ(W ) +
1

2κτ

⃦⃦
W −

(︁
W k + τ [I I]T

(︁
Θk+1 − [I, I]W k − κΦk

)︁)︁⃦⃦2
F
.

Now, in this problem, the components S and L are separable. Consequently the

proximal-gradient step reduces to solving two proximal operators, namely the one of

the ℓ1,2-norm and the one of the nuclear norm. We have already seen their solutions

in Section 2.3. Hence, the first update is

Sk+1 = argmin
S

α∥S∥1,2 +
1

2κτ

⃦⃦
S −

(︁
Sk + τGk

)︁⃦⃦2
F

= gShrink(Sk + τGk, ακτ),

where the group shrinkage operator is as in Equation (2.5) (after an easy adaptation

of the group structure). The second update is

Lk+1 = argmin
L

β tr(L) + χ[L ⪰ 0] +
1

2κτ

⃦⃦
L−

(︁
Lk + τGk

)︁⃦⃦2
F
Lk+1

= U max{E − βκτ,0}UT,

where Gk = Θk+1−Sk−Lk−κΦk and Lk+τGk = UEUT is an eigenvalue decom-

position with eigenvectors in U and diagonal matrix E. Note that the maximum in

the last equation is to be understood element-wise.

Convergence. In the original work, Ma et al. [2013] showed convergence of the

original proximal-gradient based ADMM algorithm for Gaussian fused latent and
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graphical models (compare Theorem A.2 in [Ma et al., 2013]). This convergence

is independent from the initialization. The proof of convergence has not yet been

transferred to our setting, however, it should be possible to generalize the proof of

convergence. In practice, we observe convergence of the proposed algorithm.

3.3.2 Pseudo-likelihood

The computation of the standard likelihood function involves a sum over all discrete

states for obtaining the normalization constant. This has a high computational cost

and often prohibits learning larger models using standard likelihood. Besag [1975]

introduced an alternative pseudo-likelihood that is based on conditional probabilities

of, respectively, one variable given all the others. Using the pseudo-likelihood has

since been a common technique in the estimation of sparse graphical models for

discrete variables, see [Jalali et al., 2011; Lee and Hastie, 2015; Ravikumar et al.,

2011]. Chen et al. [2018] also used the pseudo-likelihood for estimating binary fused

latent and graphical models. It is generally believed that likelihood and pseudo-

likelihood behave similarly in applications, see, for example, [Mozeika et al., 2014].

In the following, we present the pseudo-likelihoods for pairwise CG distributions

p(x,y) = exp

{︃
1

2
(x,y)TΘ(x,y)− a(Θ)

}︃
, (x,y) ∈

d∏︂
i=1

{0, . . . ,mi} × Rq,

see also Model (3.6). Remember that the matrix Θ is group structured, where the

groups of discrete-discrete interactions are (qij;kl)k∈[mi], l∈[mj ] ∈ Rmi×mj for i, j ∈ [d],

the groups of quantitative-discrete interactions are (ρsi;k)k∈[mi] ∈ Rmi for i ∈ [d] and

s ∈ [q], and the parameters λst for s, t ∈ [q] describe pairwise interactions between

two quantitative variables, that is, the groups of quantitative-quantitative interac-

tions consist of only single elements. Note that we omitted univariate parameters

for the continuous variables in the model definition above (we did so in general in

this thesis to ease the theoretical analysis). However, they can be included easily in

a practical implementation.

Assume that n data points (x(k),y(k)) ∈ X × Y =
∏︁d

i=1{0, . . . ,mi} × Rq, k =

1, . . . , n have been observed. The negative pseudo log-likelihood is given by

ℓp(Θ) = −
n∑︂

k=1

(︄
d∑︂

i=1

log p(xi = x
(k)
i |x

(k)
−i ,y

(k)) +

q∑︂
s=1

log p(ys = y(k)s |x(k),y
(k)
−s )

)︄
,

(3.13)

where the subscript −i is used to denote the omission of the i-th component of the

vector. Note that we use the negative pseudo-log-likelihood since this allows us to

write down convex minimization problems, and we use the log versions since the

sum of log terms is computationally more stable than large products.
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Let us now take a look at the two types of node conditional distributions that

appear in Equation (3.13), compare [Lee and Hastie, 2015].

First, the node conditional distribution of a discrete variable is given by

p(xi = k|x−i,y) =
exp

(︂
qii;kk +

∑︁
j:j ̸=i qij;kxj

+
∑︁q

s=1 ρsi;k ys

)︂
∑︁

l∈[mi]
exp

(︂
qii;ll +

∑︁
j:j ̸=i qij;lxj

+
∑︁q

s=1 ρsi;l ys

)︂ .
Observe the similarity to multinomial logistic models (multi-class classification).

Second, the node conditional distribution of a quantitative, conditional Gaussian

variable is the univariate Gaussian distribution given by

p(ys|x,y−s) =
λss√
2π

exp

(︄
−
λss

2

(︃
ys −

µs(x,y−s)

λss

)︃2
)︄
,

where

µs(x,y−s) =
d∑︂

i=1

ρsi;xi
−
∑︂
s ̸=t

λstyt =
d∑︂

i=1

ρsi;xi
− 1

2

∑︂
t:t̸=s

(λst + λts) yt

is a regression term for the mean.

Discussion of computational efficiency. An evaluation of the pseudo-likelihood

avoids the costly computation of normalization constants. On the other hand, com-

puting the standard likelihood only requires the sufficient statistics of the data as

input, that is, it is sufficient to know the relevant empirical moments of the data (for

example, the sample mean and the sample second-moment matrix). The empirical

moments often pose a significant reduction of the data. In contrast, each evaluation

of the pseudo-likelihood requires to sum over the data points. This shows that in

the case of many observed samples and only a few discrete variables, computing

the standard likelihood may still be more computationally efficient. Nevertheless,

if any discrete variables are present, we do not use the standard likelihood because

of numerical problems that are imminent in the computation of gradients (as we

mentioned in the previous section). Indeed, likelihood optimization does not have

closed-form solutions when learning pairwise models that involve discrete variables,

hence the gradients are needed to make the application of standard (first-order)

optimization methods possible.

Unfortunately, also pseudo-likelihood optimization does not have closed-form so-

lutions. Particulary, using the pseudo-likelihood in the context of the proximal-

gradient based ADMM solver that we introduced in the previous section comes with

the disadvantage that its proximal mapping

min
Θ : Λ[Θ]≻0

ℓp(Θ) +
1

2κ
∥Θ−Z∥2F (3.14)
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does not permit closed-form solutions (non-regarding of the types of observed vari-

ables). Hence, this proximal mapping must be solved with an iterative solver.

Luckily, pseudo-likelihood optimization generally suffers from fewer numerical is-

sues. Nevertheless, invoking an iterative solver for the proximal mapping given by

Problem (3.14) makes each iteration of the proximal-gradient based ADMM solver

given by the updates in (3.12) rather costly. With some tricks it is possible to

boost the performance to some extent, for example, by warm starting the solver

for Problem (3.14) with the solution from the previous iteration, or even solving

Problem (3.14) only with a moderate accuracy. Hence, using the proximal-gradient

based ADMM algorithm with updates as in (3.12) allows for solving problems with

several hundreds of variables, or even a few thousands, in a considerable amount of

time. Of course, this also depends on the available compute power.

3.3.3 Implementation in Python: the cgmodsel package

The algorithms for learning fused latent and graphical models presented in this

section are implemented in the Python package cgmodsel (the name is derived

from CG model selection), see https://github.com/franknu/cgmodsel. An older

version of this package has also been published alongside our article [Nussbaum

and Giesen, 2020b]. The cgmodsel package contains solvers for estimating the

parameters of different conditional Gaussian distributions. Beyond fused latent and

graphical models, also solvers for sparse graphical models are implemented (mostly

ADMM based). Moreover, the package provides basic maximum-a-posteriori (MAP)

estimators.

A documentation is provided alongside the package. Here, we just give a brief

overview. There are two main components: models and solvers. Models are im-

plemented as Python classes. Each model is characterized by a set of parameters.

Most models, such as, sparse graphical models and fused latent and graphical mod-

els, provide methods for visualizing the parameters. Besides, all kinds of utility

are implemented, for example, conversion methods between different models and

parametrizations. Solvers are also implemented as Python classes. They handle

training data, and they provide an interface to set regularization parameters and to

call methods for fitting the model. The correctness of the solvers has been verified

by unit tests that compare the solutions to reference solutions from external general

purpose solvers, such as, the symmetric cone solver SeDuMi [Sturm, 1999].

3.4 Experiments

We solve Problem (3.7) using the proximal-gradient based ADMM algorithm from

the previous section. For computational efficiency, we replace the likelihood by

the pseudo-likelihood in our experiments. Mozeika et al. [2014] argued that pseudo-
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likelihood and likelihood behave similarly. The experiments in this section are based

on the work [Nussbaum and Giesen, 2020a].

3.4.1 Synthetic data

Here, to verify experimentally that consistent recovery is possible, we generate syn-

thetic data from discrete fused latent and graphical models using Gibbs sampling,

see Casella and George [1992]. For the experiments, we use discrete variables that

take three values, that is, Xi = {0, 1, 2} for all variables. We consider four models

with d = 36 variables, where the direct interactions S⋆ adhere to either chain or grid

graphical model structures (compare Figure 3.3), and the number of latent variables

is either one or two.

Figure 3.3: Chain (left) and grid (right) graphical model structures. Edges respectively corre-
spond to groups of parameters.

Our goal is to test the influence of the maximum group degree gdegmax(S
⋆) of

S⋆ and the incoherence coh(L⋆) of L⋆ on recovery rates. Here, the assumptions

of Theorem 3.3 are stated in terms of the more technical constants µ(Q(S⋆)) and

ξ(T (L⋆)), particularly Assumption 2 requires the product of these constants to be

small. However, it holds

ξ(T (L⋆))µ(Q(S⋆)) ≤ η3/2 gdeg(S⋆) coh(L⋆).

by Lemma 3.1. It is easy to show that the theoretical results also hold if maximum

group degree and incoherence are small (note the similarity to how we obtained

Corollary 2.7 in Chapter 2). Observe that the maximum group degree is two for

the chain and four for the grid model. Moreover, in our experiments, we set the

probability of an interaction between any latent and any observed variable to be

non-zero to 95%. This ensures that the low-rank effect of the latent variables is

spread-out and thus that L⋆ is incoherent. However, L⋆ will be less incoherent for

a growing number of latent variables.

For each model, we sample all of its parameters randomly. More specifically,

we sample the latent-observed interaction parameters uniformly from [−0.5, −0.2] ∪
[0.2, 0.5] and the parameters for the non-zero groups of S⋆ from [−1.5, −0.5]∪[0.5, 1.5].
Then, for each model we test the asymptotic behavior by generating 20 datasets

with kd logm samples (rounded to the nearest integer) for selected ratios k ∈ [1, 50].

Our choice of regularization parameters is guided by Corollary 3.5 and fixed for

all models (λ = 1/50
√︁
d logm/n, γ = 10). Finally, for each model and ratio k, we
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record the average percentage of correctly identified non-zero groups, that is, edges in

the conditional independence graph. For that, we employ the criteria of recall and

precision, where recall = TP /(TP+FN) and precision = TP /(TP+FP). Here,

TP is the number of correctly identified edges (true positives), FN is the number

of undetected edges (false negatives), and FP is the number of edges that were

mistakenly detected as edges (false positives). Likewise, we record the absolute

rank difference | rank(L̂)− rank(L⋆)|, averaged over the 20 trials.

The results are shown in Figure 3.4. Recovery of edges and rank requires rela-

tively few samples for the one-latent-variable chain and grid models. Slightly more

samples are required to recover the rank of the grid model. This is due to the larger

maximum group degree of the grid models compared to the chain models. Next,

for the two-latent-variable chain model considerably more samples are necessary for

successful recovery—because the underlying low-rank matrix is less incoherent. Our

observations back the intuition that for more incoherent L⋆ and smaller maximum

group degree of S⋆, the group-sparse and low-rank components can be confused

less easily. This is supported even more by the recovery results for the two-latent-

variable grid model, where the fact that both the maximum group degree and the

coherence are larger is reflected in significantly worse recovery results. Nevertheless,

overall the results show that consistent recovery is possible.
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Figure 3.4: Recall, precision, and absolute rank difference averaged over 20 trials for each model
and ratio. For each model, the maximum group degree of S⋆ and the coherence of L⋆ are shown.
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3.4.2 Real-world data

We also demonstrate the effectiveness of our fused latent and graphical models on

two real-world datasets. The first dataset from the [Open-Source Psychometrics

Project] is from a non-forced choice vocabulary IQ test (VIQT), where participants

can indicate if they do not know an answer, otherwise answers are either correct or

wrong. The dataset contains d = 45 variables and n = 12 173 samples. The second

dataset contains the answers of n = 165 test takers to the d = 72 questions of the

Cambridge face memory test (CFMT) [Itz et al., 2017]. In this dataset, answers

with response times below the human reaction time or above some threshold (based

on the interquartile range) were assigned to a third category of outliers, otherwise

answers are either correct or wrong. Hence, for both datasets, the observed variables

are discrete with three possible outcomes.

Figure 3.5 shows estimated fused latent and graphical models for both datasets.

The learned models exhibit direct interactions, that is, the answers are not inde-

pendent given the estimated latent variables. This is in contrast to the common

conditional independence assumption in item response theory. Nevertheless, for

both models, most observed interactions are explained by a single latent variable.

Notably, for the CFMT data, the learned low-rank matrix has a block of positively

correlated items in the top left corner. These items correspond to the first block of

the CFMT. This block consists of 18 simple questions that most participants get

right, hence the correlation.

Figure 3.5: Learned decompositions for the VIQT (left) and the CFMT datasets (right). The
group-sparse components correspond to direct local dependencies of the observed discrete variables,
and the low-rank components represent indirect effects due to the latent continuous variables. Here,
red indicates positive and blue indicates negative (conditional) correlations.

3.5 Regularization Parameter Selection

In practice, one fundamental challenge is choosing the regularization parameters λ

and γ in Problem (3.7). This is often done using manual, grid, or random search.

However, all these methods lack performance guarantees. In this section, we under-

take an excursion to a more principled method for selecting regularization parame-

ters. This method is based on Benson’s algorithm [Benson, 1998] and was introduced

in [Giesen et al., 2019a]. We adapted the method to the semidefinite programming

setting in [Giesen et al., 2019b], where we specifically considered fused latent and
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graphical models in a case study. It should be noted, however, that Benson’s al-

gorithm can be used out of the box for regularization parameter selection for any

other machine learning problem that can be formulated as a regularized convex

(semidefinite) program.

In what follows, we provide the details on our extension of Benson’s algorithm in

Sections 3.5.1-3.5.3. In Section 3.5.4, we present selected experimental results from

our work [Giesen et al., 2019b]. Here, it turns out that Benson’s algorithm cannot

only be used out of the box, but is also efficient and can indeed yield good solutions.

3.5.1 Formulation as a bi-level optimization problem

The objective function of Problem (3.7) can be rescaled to obtain an optimization

problem of the form

min
x∈C

fw(x) = w0 ℓ(x) +
k∑︂

i=1

wi ri(x), (Pw)

where C ⊆ V is a convex feasible set that is contained in a vector space V over the

real numbers, the functions ℓ and ri, i = 1, . . . , k, are assumed to be convex, and the

terms in the objective function fw are weighted by the regularization parameters

w = (w0, w1, . . . , wk) ∈ Pk, where

Pk =
{︂
w ∈ Rk+1 |wi ≥ 0 for i = 0, . . . , k and

∑︁k
i=0wi = 1

}︂
is the k-dimensional standard simplex. For some given weights w ∈ Pk, we denote

a globally optimal solution to Problem (Pw) by xw. The goal is to choose good

weights, which is often done in the following two-step procedure:

(1) Solve Problem (Pw) for ’every’ w ∈ Pk on training data.

(2) Choose w such that some type of generalization error GE(w) is minimized

on validation data, where for the computation of the generalization error the

solution xw is used.

These two steps can be jointly understood as the bi-level optimization problem

min
w∈Pk

GE(w) s.t. xw ∈ argmin (Pw). (3.15)

In this hierarchical optimization problem, the upper level strives for a minimal

generalization error GE with variable w. On the lower level, a solution xw of

Problem (Pw) has to be found for each w. In general, Problem (3.15) is non-

convex—even if Problem (Pw) is convex and GE is a convex objective function

[Dempe, 2002]. A practical example is given in Figure 3.8 (see below), where several
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local minima for the generalization error GE exist. In fact, bi-level programming is

known to be NP-hard [Hansen et al., 1992].

For solving Problem (3.15), one has to take the set {xw : w ∈ Pk} of potential
candidates into account, that is, the set of solutions of the lower level Problem (Pw).

In most cases, such as, for fused latent and graphical models, there are no closed-form

solutions xw. Therefore, we use an approximation that is based on the definition of

the solution gamut for Problem (Pw).

Definition 1 (Solution gamut, [Blechschmidt et al., 2015]). Let ε > 0. We call

some function ˆ︁x : Pk → V an ε-approximative solution gamut of Problem (Pw) if

for all w ∈ Pk

ˆ︁x(w) ∈ C and fw(ˆ︁x(w))− fw(x
w) ≤ ε. ▲

Note that the full solution gamut given by the set {xw : w ∈ Pk} corresponds to
the ε-approximative solution gamut with ε = 0.

In the following, we will present a variant of Benson’s dual algorithm, which is an

established method from the area of vector optimization. It can be used to compute

an ε-approximative solution gamut of Problem (Pw). Since the algorithm (if it

converges) yields a finite representation of the ε-approximative solution gamut ˆ︁x,
minimization of the upper level objective function GE just boils down to function

evaluations.

3.5.2 Basics of vector optimization

For applying Benson’s algorithm, we study Problem (Pw) in the context of vector

optimization. For that, consider the following problem

min
x∈C

F (x) =
(︂
ℓ(x), r1(x), . . . , rk(x)

)︂
. (Pvec)

Here, the objective function F : V → Rk+1 is vector-valued and minimized w.r.t. the

component-wise partial ordering ≤Rk+1
+

on Rk+1. It is given by

y1 ≤Rk+1
+

y2 ⇐⇒ y2 − y1 ∈ Rk+1
+ = {y ∈ Rk+1 | yi ≥ 0, i = 1, . . . , k + 1}.

Note that Problem (Pw) is the weighted sum scalarization of Problem (Pvec) with

objective function wTF (x). Let us now define the minimizers of Problem (Pvec):

Definition 2. A point x∗ ∈ C is called a weak minimizer of Problem (Pvec) if

({F (x∗)} − intRk+1
+ ) ∩ F (C) = ∅,

where intRk+1
+ = {y ∈ Rk+1 | yi > 0, i = 1, . . . , k + 1} is the interior of Rk+1

+ , and

F (C) = {F (x) | x ∈ C} ⊆ Rk+1 is the image of the feasible set. ▲
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Some weak minimizers are visualized in Figure 3.6. Giesen et al. [2019a] observed

that the full solution gamut (Definition 1 with ε = 0) coincides with the set of weak

minimizers of Problem (Pvec). The image of the set of all weak minimizers is called

the Pareto set or Pareto frontier.

In general, there are infinitely many weak minimizers. However, without closed-

form solutions, we can compute only a finite number of weak minimizers. This finite

number of minimizers should approximate the set of weak minimizers well. Hence, it

is important to understand the geometry of Problem (Pvec), in particular the upper

image

U = closure(F (C) + Rk+1
+ ).

A non-empty finite set M ⊆ C of weak minimizers yields an inner polyhedral ap-

proximation of the upper image given by

convF (M) + Rk+1
+ .

The following definition can be used to assess how close such an approximation is

to the upper image.

Definition 3. Let c ∈ intRk+1
+ be an arbitrary but fixed direction. Assume that

Problem (Pvec) is bounded in the sense that it holds U ⊆ {y} + Rk+1
+ for some

y ∈ Rk+1. Then, a non-empty finite set M ⊆ C of weak minimizers is called a

(weak) ε-solution to Problem (Pvec) if

U ⊆ convF (M) + Rk+1
+ − εc. ▲

Note that a weak ε-solution is only defined w.r.t. the direction c. For a weak

ε-solution, we denote the inner polyhedral approximation of the upper image U
obtained from M as Iε = Iε(M) = convF (M) + Rk+1

+ , see Figure 3.6. Since M is

a weak ε-solution, no point of U has a distance larger than ε in direction c to Iε.
Hence, a weak ε-solution also yields an outer polyhedral approximation of U given

by Iε − εc.

ℓ(x)

r(
x
)

F (x∗)
−Rk+1

+

ℓ(x)

r(
x
)

Iε⊆ U ⊆Iε − εc

Figure 3.6: Left: Pareto frontier (blue line) with weak minimizers of Problem (Pvec) (red points),
see Definition 2. Right: Upper image U with an inner polyhedral approximation Iε and an outer
polyhedral approximation Iε − εc. Both were obtained from a weak ε-solution, see Definition 3.
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3.5.3 Adaptive Benson algorithm

We want to compute weak ε-solutions for Problem (Pvec). For this, we develop an

adaptive variant of Benson’s dual algorithm. The class of dual Benson algorithms is

designed to approximate the upper image U . It proceeds by iteratively generating

a growing sequence of inner polyhedral approximations until an ε-solution for a

prescribed accuracy ε > 0 is obtained. Details on the class of Benson algorithms

can, for example, be found in [Benson, 1998; Giesen et al., 2019a].

Polyhedra are crucial for Benson’s algorithm. Each non-empty convex polyhedral

set A ⊆ Rk+1 is either given in H-representation, that is, as the intersection of

finitely many half spaces

A =
r⋂︂

i=1

{︁
y ∈ Rk+1 | (wi)Ty ≥ bi

}︁
for 0 ̸= wi ∈ Rk+1, bi ∈ R, i = 1, . . . , r,

or in V-representation, that is, as a set of vertices and directions

A = conv{v1, . . . ,vs}+ cone{d1, . . . ,dt}, s, t ∈ N, s ̸= 0,

where vi ∈ Rk+1 are the vertices and 0 ̸= dj ∈ Rk+1 are the directions. The

conversion between both representations is respectively done by vertex and facet

enumeration [Bremner et al., 1998]. For Algorithm 1 and below, the cone for the

V-representation is always Rk+1
+ .

Algorithm 1 Adaptive Dual Benson Algorithm

Input: Problem data (F , C), initialization V , set of checked hyper-
planes/normals T = {w0}, direction c, initial accuracy ε = ε0
Output: nodes of V-representation V

1: function AdaptiveBensonAlgorithm
2: repeat
3: Vε ← {F (xw) ∈ V | dc(xw) ≥ ε}
4: compute H-representation Iε of V-representation conv(Vε) + Rk+1

+

5: repeat
6: choose w ∈ Iε \ T
7: xw ← argmin (Pw)
8: if dc(x

w) > ε then
9: Vε ← Vε ∪ {F (xw)}
10: update H-representation Iε of V-representation conv(Vε) + Rk+1

+

11: end if
12: T ← T ∪ {w}
13: until Iε \ T = ∅
14: V ← Vε ∪ V
15: ε← ε/2
16: until Stopping Criterion
17: end function
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For the standard Benson algorithm, an approximation accuracy ε must be chosen

beforehand. However, in practice, ε cannot be chosen generically. Therefore, we

propose Algorithm 1 as an adaptive variant of Benson’s dual algorithm. It starts

by calculating an initial ε0-approximation Iε0 of the upper image U for a coarse

accuracy ε0 > 0. Then, the accuracy is successively refined by setting εi+1 = εi/2

until the approximation of U satisfies some stopping criterion. This leads to a

growing sequence of inner polyhedral approximations given by

Iε0 ⊆ Iε1 ⊆ . . . ⊆ Iεi ⊆ . . . ⊆ U .

Here, an (intermediate) inner approximation Iεi is calculated as follows: First, we

choose a hyperplane wTx = b from the H-representation of the current inner ap-

proximation. Then, we move this hyperplane outwards until it becomes a supporting

hyperplane of the upper image U , see Figure 3.7. The supporting hyperplane con-

tacts U in the point F (xw), where xw is the solution to the scalarized Problem (Pw).

ℓ(x)

r(
x
)

I0 ⊆ U

w0

ℓ(x)

r(
x
)

w1

ℓ(x)

r(
x
)

I0 ⊆ I1 ⊆ U

Figure 3.7: Left: Initialization of Algorithm 1 with the solution to Problem (Pw) with weights
w = w0. The dashed line represents the hyperplane that contacts the upper image U in the point
F (xw0). Middle and right: First iteration of Algorithm 1 for the hyperplane with normal w1. The
hyperplane is moved outwards until it becomes a supporting hyperplane of the upper image, where
the weak minimizer F (xw1) is a contact point.

We want to compute an εi-solution w.r.t. a fixed direction c. Therefore, we only

need to refine the current inner polyhedral approximation around the vertex F (xw)

if the hyperplane wTx = b was moved outwards at least distance εi in direction c,

where the distance is given as

dc(x
w) = cos(c,w)

(︁
b−wTF (xw)

)︁
=

cTw

∥c∥2 ∥w∥2

(︁
b−wTF (xw)

)︁
.

Hence, if dc(x
w) ≥ εi, we add the vertex F (xw) to the current V-representation

and then we update the H-representation by facet enumeration. If dc(x
w) < εi, we

continue and check the next hyperplane. The εi-approximation of U is completed

when no unchecked hyperplanes remain in the H-representation.

For the next iteration of Algorithm 1 with accuracy εi+1 = εi/2 , the V-representation

is initialized with all vertices F (xw) where dc(x
w) ≥ εi+1. In the neighborhood of

these vertices the inner polyhedral approximation may need further improvement.
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The other vertices are kept and may be used in a later iteration of Algorithm 1

(moreover, the corresponding solutions may have good generalization errors).

Algorithm 1 can be initialized with a V-representation that has a single node

F (xw0) for some initial weight vector w0 ∈ Rk+1. For instance, one can choose

w0 = (1, . . . , 1)/
√
k + 1 and set the initial nodes of the V-representation to V =

{F (xw0)}. Next, as stopping criteria for Algorithm 1 one of the following can be

used: (i) a target ε-approximation of U is attained, (ii) a maximum number of

iterations has been completed, or (iii) the generalization error has improved by a

certain degree. Note that generalization errors can be computed on the fly by simple

function evaluations.

Convergence and complexity. Löhne et al. [2014] analyzed the case, where

the feasible set C for Problem (Pvec) is exclusively described by polyhedral cone

constraints. They showed that if Benson’s (dual) algorithm terminates, then it also

works correctly, that is, it returns a weak ε-solution. Their result can be extended

to semidefinite constraints since by [Löhne et al., 2014, Remark 3 (Section 4.3)] it

is only required that (i) int C ≠ ∅ (Slater’s condition) and (ii) Problem (Pw) has a

solution for all w ∈ Pk. This is the case in our setting.

A lower bound for the number of optimization problems that must be solved for

obtaining an ε-approximative solution gamut is Ω(ε−k/2) [Blechschmidt et al., 2015].

Theorems 3 and 4 in [Kamenev, 1994] also give the general upper bound O(ε−k) for

Benson-type algorithms, and they give the sharp upper bound O(ε−k/2) provided

that the upper image U has a twice continuously differentiable boundary. These

bounds have not yet been transferred to the exact setting of Algorithm 1. We

investigate the complexity in our experiments.

3.5.4 Experiments

In [Giesen et al., 2019b], the goal was to compare the performance of Algorithm 1

against the solution gamut method from [Blechschmidt et al., 2015], which is the only

other known method to obtain ε-approximative solution gamuts. Here, we do not

show the results of the comparison since the main focus of this thesis are fused latent

and graphical models. Instead, we restrict ourselves to selected experimental results

from [Giesen et al., 2019b] that demonstrate the effectiveness of using Algorithm 1

for fused latent and graphical models. We study two aspects: the quality of the

solutions (in terms of the generalization error GE, here the negative log-likelihood

function value) and the computational efficiency.

Setup and preparation. For solving the optimization problems, we use the ADMM-

based algorithm discussed in [Ma et al., 2013], see also Section 3.3, and we use

CDD [Bremner et al., 1998] for facet enumeration. All experiments were run on a

Linux machine with an Intel Core i5-2500K (4× 3.30GHz) CPU and 16GB RAM.
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In the experiments we use the following data sets [Tsanas et al., 2014; Higuera

et al., 2015; Zhou et al., 2014; Dua and Karra Taniskidou, 2017]

� GENE1 with n = 100 features and m = 255 samples,

� TCGA with n = 500 features and m = 801 samples,

� MICE with n = 81 features and m = 552 samples,

� ROSETTA with n = 100 features and m = 301 samples,

� SONAR with n = 60 features and m = 208 samples,

� OR70 with n = 70 features and m = 1059 samples,

� LSVT with n = 310 features and m = 126 samples,

� S&P500 with n = 471 features and m = 60 samples.

These data sets are from different applied areas: GENE1, TCGA, and MICE are biolog-

ical data sets, ROSETTA and SONAR are geological data sets, OR70 was recorded for

investigating the geographical origins of music, LSVT is about voice rehabilitation

in psychology, and S&P500 includes monthly stock return data from major US com-

panies over the course of 5 years. From S&P500 we removed 29 companies because

their data was incomplete. From the original data sets GENE1, ROSETTA, and TCGA

we selected the n features with the highest variance, similarly as Chandrasekaran

et al. [2012] who also used only subsets of GENE1 and ROSETTA. Note that all data

sets have only continuous features since the paper [Giesen et al., 2019b] considered

only this setting. Data sets were split randomly into training and validation data

in a 2:1 ratio. We also centralized and standardized the data using empirical means

and standard deviations of the training data. The generalization error, here the

negative log-likelihood function value, is computed on the validation data.

For the experiments, we reformulated Problem (3.7) such that it conforms to the

theory in Section 3.5.1, where weights are chosen from a standard simplex. More

specifically, for α, β ≥ 0 with α + β ≤ 1, we used the weight α for the ℓ1-norm, β

for the trace (nuclear) norm, and (1 − α − β) for the negative log-likelihood term.

We always use the fixed direction c = (1, 1, 1)T for the computation of ε-solutions

in Algorithm 1.

Solution quality. Here, we only show the results from the LSVT data set [Tsanas

et al., 2014] after stopping Algorithm 1 at the accuracy of ε = 26 (with starting

ε0 = 210). As a baseline for the evaluation of the solution quality, we performed a

grid search on a fine grid with more than 5 000 points. The generalization errors for

the solutions from the grid points are shown in Figure 3.8. Moreover, Figure 3.8

shows that the accuracy ε = 26 is already sufficient for finding good solutions with

different algebraic properties, that is, different sparsity and rank. Although the

search region for the upper level problem, which minimizes the GE, is non-convex,

Benson’s algorithm found solutions close to all local minima. Hence, in practice the

best solutions returned by Benson’s algorithm should be taken into account because
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Figure 3.8: The left figure shows the generalization errors from the baseline grid solutions for the
LSVT data set. Their corresponding sparsity and rank patterns are shown in the two plots on the
right, where cold colors indicate high sparsity (left) and low rank (right). Solutions from running
Algorithm 1 are marked by circles. The four best solutions are highlighted by stars. The best
solution has a filled star. Its corresponding sparse and low-rank decomposition is shown on the
left in Figure 3.9. The other decomposition in Figure 3.9 belongs to the Benson solution near the
smaller region with a local minimum.

they may provide alternatives in terms of their algebraic properties, see Figure 3.9

for an example.

Figure 3.9: Two decompositions of learned fused latent and graphical models for the LSVT data.
The left decomposition corresponds to the solution that is optimal in terms of the generalization
error (compare Figure 3.8).

Computational efficiency. The pessimistic known theoretical upper bound for

Benson’s algorithm is only in O(1/ε2), while the sharp bound Ω(1/ε) holds only un-

der certain regularity assumption. We performed experiments to see which scenario

is more realistic in practice. For that, for each data set, we counted the number

of iterations of Algorithm 1 until selected ε-approximations of the upper image (ε-

solutions) were achieved. Figure 3.10 shows the resulting log-log complexity plot.

It turns out that the adaptive Benson algorithm experimentally matches the sharp

bound Ω(1/ε). This suggests that the optimistic upper bound for Benson’s algo-

rithm is realistic for fused latent and graphical models. However, we would like to

point out that in practice, there also incurs some overhead for facet enumerations

in the adaptive Benson algorithm. This should be considered when deciding which

method to use for regularization parameter selection.
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Figure 3.10: Log-log complexity plot for the adaptive Benson algorithm (Algorithm 1): The
y-axis shows the number of iterations that were required for obtaining selected ε-solutions for the
respective data sets. Here, an iteration consists of checking one hyperplane.

3.6 Concluding Remarks

In this chapter, we investigated fused latent and graphical models for mixed observed

discrete and quantitative, conditional Gaussian variables. These models are char-

acterized by a group-sparse + low-rank decomposition of the pairwise interaction

parameter matrix. We have shown that learning such models using the convex op-

timization Problem (3.7) can produce consistent estimates in the high-dimensional

setting. Consistent recovery is possible under certain assumptions that we moti-

vated carefully. The assumptions mostly ensure two important prerequisites: First,

that the observations have sufficient quality, and second, that the group-sparse +

low-rank matrix decomposition is identifiable.

To practically estimate fused latent and graphical models, we make use of the

pseudo-likelihood, which does not require the computation of costly normaliza-

tion constants. Moreover, it is often more numerically stable. We implemented

a proximal-gradient based ADMM solver for Problem (3.7), where on default the

pseudo-likelihood is used. The solver is part of the Python code repository for model

selection of conditional Gaussian distributions that we published under https:

//github.com/franknu/cgmodsel.

In this chapter, we conducted several experiments to support the theory. First, we

verified experimentally that consistent recovery becomes easier if there are not too

many non-zero groups per row/column of the group-sparse matrix and if the low-

rank matrix is spread-out. Second, we learned fused latent and graphical models

from real-world data, demonstrating that observed data from item response theory

studies can be conditionally dependent given the latent variables—in contrast to the

common assumption. This shows that modeling direct interactions via fused latent

and graphical models is reasonable. Apart from item response theory models with
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only discrete variables, applications with mixed observed discrete and quantitative

data can be found in many different domains, for instance, in medicine [Sammel

et al., 1997], in biology in form of metabolic networks or gene expression data, or in

economics, such as, census data [Lee and Hastie, 2015].

Finally in this chapter, we introduced a method for selecting the regularization

parameters of Problem (3.7) in an efficient and principled way. This method is based

on Benson’s algorithm. It approximates the set of all possible solutions to Prob-

lem (3.7) that can be obtained from using different regularization parameters. From

among the finite number of solutions that are computed during the approximation,

the best is chosen. Let us now discuss some potential future research directions.

Future directions. Though the class of distributions that we considered in this

chapter is quite general, further generalizations are possible. For example, one

can allow higher-order interactions between the variables. Cheng et al. [2017] al-

ready studied sparse graphical models for CG distributions with triple interactions,

where they allowed a dependence of the precision matrix (quantitative-quantitative

interactions) on the discrete variables. In their most general form, the canonical

representation of a CG distribution on X × Y =
∏︁d

i=1{0, . . . ,mi} × Rq is given by

p(x,y) ∝ exp

(︃
q(x) + ν(x)Ty − 1

2
yTΛ(x)y

)︃
, (x,y) ∈ X × Y , (3.16)

where for all x ∈ X we have 0 ≺ Λ(x) ∈ Sym(q), q(x) defines arbitrary interac-

tions between the discrete variables, and ν(x) ∈ Rq defines the interactions between

discrete and quantitative variables. Similarly as in Appendix C.2, it can be shown

that marginalizing out some of the quantitative, conditional Gaussian variables in

(3.16) yields a marginal model p(x,y′) whose conditional (Gaussian) distributions

p(y′ | x) are still characterized by a sparse + low-rank decomposition of their re-

spective precision matrices. Hence, for each discrete outcome, there is a sparse +

low-rank decomposition. Suitable learning methods for estimating such collections

of sparse + low-rank decompositions would yet need to be devised. It is not known

if the approach by using regularized convex likelihood problems remains tractable.

Moreover, it is not clear if the consistency guarantees can be generalized in some

sense. Because of the significantly larger number of parameters, there will probably

be additional challenges. Nevertheless, the author believes that it should be possi-

ble to obtain similar results as for the pairwise fused latent and graphical models

from this chapter. Note that for practical learning of CG models with higher-order

interactions one would probably need to resort to pseudo-likelihood estimation.

For pseudo-likelihood estimation, it would be interesting to also obtain learning

guarantees for estimating fused latent and graphical models. Chen et al. [2016]

showed consistency for the pseudo-likelihood estimation of binary fused latent and

graphical models. However, their consistency result is much weaker than the results

that follow from Theorem 3.3 in the high-dimensional setting. Instead, the result by
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Chen et al. [2016] only states convergence of the parameters in probability, without

providing convergence rates. While their result is a good justification for using

pseudo-likelihood in practice, it would be interesting to see if similar guarantees

in the high-dimensional setting can be obtained for pseudo-likelihood estimation of

fused latent and graphical models.

As a final thought, one might also consider higher-order interaction models and

try to decompose the parameters in sparse and low-rank parts. In doing so, the

latent-variable interpretation will likely be lost in most cases. However, composing

the presumably large number of parameters in higher-order models can help to bal-

ance model complexity. Since the parameters of higher-order interaction models are

tensors, the regularization techniques in the convex optimization approach must be

generalized to tensors. There are several possibilities, for example, using general-

izations of the nuclear norm to tensors [Tomioka and Suzuki, 2013; Zhang et al.,

2014].
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Chapter 4

Conclusion

In this thesis, we studied robust principal component analysis and fused latent

and graphical models. All models have in common that they feature low-rank and

group-sparse decompositions of matrices. For robust principal component analysis,

a corrupted data matrix is decomposed directly, where the low-rank component

represents the principal components, and the group-sparse component accounts for

the data corruption. In contrast, for fused latent and graphical models, the matrix

of pairwise interaction parameters for the observed variables is decomposed. Here,

the group-sparse component corresponds to direct interactions among the observed

variables, and the low-rank component describes indirect interactions that can be

attributed to a presumably small number of latent quantitative variables.

We showed that low-rank and group-sparse matrix decompositions can be learned

efficiently via convex regularized optimization problems. Here, nuclear norm regu-

larization is used to induce low rank, and ℓ1,2-norm regularization is used to promote

group sparsity on a matrix. For fused latent and graphical models, there is an addi-

tional likelihood term in the objective function. This term ensures a good fit of the

learned probabilistic model to the data. In all optimization problems, the different

terms of the objective function are weighted with regularization parameters that

must be chosen beforehand.

As a central contribution of this thesis, we showed that the estimation of models

via convex optimization comes with strong guarantees: In many cases, it is possi-

ble to recover an assumed true decomposition exactly (robust principal component

analysis) or consistently in the high-dimensional setting (fused latent and graphical

models). An important necessary condition that facilitates recovery is the identifi-

ability of the low-rank and group-sparse matrix decomposition. Here, a decomposi-

tion is identifiable if the components cannot be confused. This is the case if neither

component is low rank and group sparse at the same time. We showed that iden-

tifiability requires the respective tangent spaces to the low-rank and group-sparse

matrix varieties to be transverse, which means that their intersection only contains

the origin (zero vector). Moreover, our theoretical results predict that exact and

consistent recovery is respectively possible for a range of regularization parameters.



We experimentally verified the theoretical results on synthetic data, where the true

underlying model is known. For robust principal component analysis, we showed

that successful recovery of a random decomposition is more likely if the rank and

the number of non-zero groups of the respective components are not too large.

To determine if exact recovery is possible, we explicitly searched for the predicted

range of regularization parameters for which the convex learning problem yields the

correct solution. Next, for fused latent and graphical models, we tested the influence

of maximum group degree and incoherence on recovery rates. If these quantities are

small, then the components can be recovered more easily because it is harder to

confuse them. We also performed a variety of experiments on real-world data to

demonstrate the usefulness of the models.

Important previous works for this thesis are Candès et al. [2011]; Chandrasekaran

et al. [2011, 2012]. In many aspects, these works laid the foundations for the models

and techniques used throughout this thesis. However, they considered only regular

sparsity and thus problems with ℓ1-norm regularization. An important contribu-

tion of this thesis was to extend the original models and their respective theoretical

analyses to general settings that involve group sparsity: First, for robust princi-

pal component analysis, previously only corruptions of single entries and whole data

points were considered. Our model allows more general data corruption mechanisms

that affect groups of measurements. Second, we generalized fused latent and graphi-

cal models to distributions with new types of observed variables, namely conditional

Gaussian distributions with observed discrete and quantitative variables.

Most contributions from this thesis are also published in separate works [Nussbaum

and Giesen, 2019a, 2020a,b, 2021]. For fused latent and graphical models, we also

undertook an excursion by adapting Benson’s algorithm to the problem of selecting

suitable regularization parameters [Giesen et al., 2019b]. The proposed variant of

the algorithm can be used out of the box for large classes of optimization problems.

It poses a principled alternative to basic methods, such as, grid or random search.

Future directions. In addition to the directions that we outlined in the respective

chapters, we would like to point out the following directions for future research.

Applications. In this thesis, we demonstrated some real-world applications. We

did so mostly on a qualitative level. Deploying the models in real applications can

be the subject of future research. For example, it could be interesting to make use

of discovered direct interactions among test items from psychometric tests. Classi-

cal item response theory models commonly assume that these direct dependencies

should not exist. Therefore, fused latent and graphical models may even be helpful

for improving psychometric tests. Chen et al. [2018] already sparked research in this

direction, but the methods yet need to develop before becoming a standard.

Large-scale problems. The ADMM-based solvers for the optimization problems in

this thesis work well for moderate problem sizes. However, there are clear limitations

when the problem dimensions become large. The main limitation of the ADMM
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algorithm for robust PCA in Section 2.3 lies in the cost for computing a partial

singular value decomposition. We used an inexact method (randomized singular

value thresholding [Halko et al., 2011]). This method can be efficient, but the

convergence guarantee of ADMM is lost. Our experiments indicate that convergence

is not harmed when only a few singular values are required. However, additional

testing and numerical experiments are required to analyze the correctness of the

solver, especially for larger problems. Next, for learning fused latent and graphical

models, some limitations were already discussed in Section 3.3.2: The proposed

proximal-gradient based ADMM algorithm calls an iterative optimization algorithm

inside its outer loop. It does so to compute the proximal mapping of the pseudo-

likelihood, which does not permit closed-form solutions. The nested iterations are

inefficient and responsible for the fact that the current solver scales only up to several

hundreds of variables, perhaps a few thousands. A more efficient solver might have

to avoid the costly computation of the proximal mapping of the pseudo-likelihood.

This can be the subject of future research.

Model generalizations. The models from this thesis can be generalized further.

We outlined extensions of robust principle component analysis to the more general

data corruption mechanism that affects sub-matrices of the data matrix. Also a

weighted ℓ1,2-norm could be used to encode different prior beliefs about the proba-

bilities that groups of measurements are corrupted. For fused latent and graphical

models, generalizations to higher-order interactions could be the subject of future re-

search. Another direction could be to go beyond conditional Gaussian distributions

by allowing even more general types of observed variables. Particularly interest-

ing are exponential family distributions, for example, based on the Poisson or the

exponential distribution. However, it can already be challenging to define multivari-

ate generalizations of these univariate distributions [Yang et al., 2013, 2015; Inouye

et al., 2016]. An important restriction of fused latent and graphical models is that all

interactions are purely associative, that is, the effect of the latent variables cannot

be interpreted causally. It would be interesting to rigorously establish connections

between fused latent and graphical models and causality. A final promising ex-

tension can be models that, in addition to quantitative latent variables, allow for

discrete latent variables. Discrete latent variables entail mixture distributions on

the observed variables, which can improve the expressive power of the models.

Each of the suggested generalizations can advance probabilistic modeling and

thereby, the tools that we have for understanding the world. Ultimately, we strive

for models that (a) advance our scientific understanding by revealing fundamental

truths, and (b), provide guidance for complex decisions. Better models also tend to

be more useful. To achieve the aforementioned goals, it is crucial that the models

capture essential aspects of our environment and its underlying processes. As there

is always room for improvement, this thesis represents only a small step. However,

every journey consists of small steps. After all, small steps are to be preferred over

too complex and uncontrollable ones. This is much in analogy to the centuries-old

problem-solving principle that endorses simplicity over complexity: Ockham’s razor.
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Appendix A

Notation

A.1 Notational Conventions

Expression Notation

vectors bold lower case: e,v,x,y, z

matrices bold upper case: S,L,X,M ,N ,A, also ∆,Θ,Γ,Λ,Σ

matrix spaces calligraphic letters: Q, T ,J
scalars indices: i, j, k, l, s, t

regularization parameters: λ, γ, α

group structure: m1, m2, . . ., η

number of sample points: n

number of variables/features: d, m, q, w

’problem-specific’ constants: β, δ, α, . . ., C, c0, c1, . . . , C1, C2, . . .



A.2 Specific Notation

Notation Definition

∥X∥ spectral norm

∥X∥∗ nuclear norm (for X ⪰ 0 it holds ∥X∥∗ = tr(X))

∥X∥1,2 ℓ1,2-group norm

∥X∥∞,2 ℓ∞,2-group norm

∥X∥F Frobenius norm

∥(M ,N )∥γ γ-norm, ∥(M ,N )∥γ = max{∥M∥∞,2/γ, ∥N∥}
∂∥X∥ norm sub-differential at point X

Sym(d) the set of symmetric (d× d)-matrices

S(s) group-sparse matrix variety (matrices with as most s non-zero groups)

Q(S) tangent space to the group-sparse matrix variety at point S

gdegmax(S) maximum group degree of group-structured matrix S

gsupp(S) group support of group-structured matrix S (indices of non-zero groups)

gsign(S) group-sign function

L(r) low-rank matrix variety (matrices with at most rank r)

T (L) tangent space to the low-rank matrix variety at point L

coh(L) coherence of (the row-/column spaces of) a matrix L

ξ, µ norm-compatibility constants of the ℓ∞,2- and spectral norms

x vector of discrete variables

y vector of continuous variables

x indicator-coded vector x

ℓ negative log-likelihood (regular log-likelihood in Sections 3.1.2 and C.1)

ℓp negative pseudo log-likelihood

a log-partition/normalization function

Σ̂ empirical second-moment matrix

H(p) discrete (Shannon) entropy of distribution p

E expectation operator

PQ orthogonal projection on subspace Q
ρ(T , T ′) twisting between subspaces
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Appendix B

Additional Material for Chapter 2

B.1 Tangent Spaces and Projections

Low-rank tangent spaces play a fundamental role throughout. Therefore, we char-

acterize the tangent spaces at smooth points of the low-rank matrix variety.

Lemma B.1. Suppose L ∈ L(r) is a rank-r matrix. Then, the tangent space to

L(r) at L is given by

T (L) =
{︁
UXT + Y V T : X ∈ Rn×r,Y ∈ Rm×r

}︁
⊂ Rm×n,

where L = UEV T is the (restricted) singular value decomposition of L, that is,

U ∈ Rm×r and V ∈ Rn×r have orthonormal columns and E ∈ Rr×r is a diagonal

matrix, where the diagonal elements are the non-zero singular values of L.

Proof. The tangent space at L is given by the span of all tangent vectors at 0 to

smooth curves γ : (−1, 1)→ L(r) initialized at L, that is, with γ(0) = L. Because L

is of rank r, it is a smooth point of L(r) and we can write γ(t) = U(t) sign(E)V (t)T,

where for each t ∈ (−1, 1) the matrices U(t) ∈ Rm×r and V (t) ∈ Rm×r have rank r,

and sign(E) ∈ Rr×r is the diagonal matrix with the signs of the non-zero singular

values of L on its diagonal, that is, the diagonal entries are in {−1, 1}. We can

assume the signs of the singular values along the curve to be fixed because we only

consider smooth curves. Note that because of L = γ(0) = U(0) sign(E)V (0)T, we

can assume w.l.og. that U(0) = U |E|1/2 and V (0) = V |E|1/2. Hence, applying the

chain rule yields

γ′(0) = U(0) sign(E)V ′(0)T +U ′(0) sign(E)V (0)T

= U |E|1/2 sign(E)V ′(0)T +U ′(0) sign(E)|E|1/2V T.

Setting X = V ′(0) sign(E)|E|1/2 and Y = U ′(0) sign(E)|E|1/2, the tangent vector

clearly is of the form UXT + Y V T. We still need to show that X and Y can take

any values. For that, let X ∈ Rn×r and Y ∈ Rm×r be arbitrary. Then, consider the



specific curve defined by

U(t) = U |E|1/2 + tY |E|−1/2 sign(E)

V (t) = V |E|1/2 + tX|E|−1/2 sign(E).

For sufficiently small t, both U(t) and V (t) have rank r since U |E|1/2 and V |E|1/2
have rank r and the curve is smooth. Hence, the specific definitions of U(t) and

V (t) yield a valid curve. Its derivative at zero computes as

γ′(0) = U |E|1/2 sign(E)V ′(0)T +U ′(0) sign(E)|E|1/2V T

= U |E|1/2 sign(E)
(︁
X|E|−1/2 sign(E)

)︁T
+
(︁
Y |E|−1/2 sign(E)

)︁
sign(E)|E|1/2V T

= UXT + Y V T.

This completes the proof. ■

It should be noted that in the case, where the embedding space for the low-rank

matrices is Sym(w) instead of Rm×n, then the tangent space has the following simpler

form:

T (L) =
{︁
UXT +XUT : X ∈ Rw×r

}︁
⊂ Sym(w),

where now L = UEUT is the (restricted) eigenvalue decomposition of L.

One consequence of the form of the tangent spaces is the following lemma that

concerns the norms of projections on certain tangent spaces and their orthogonal

complements.

Lemma B.2. Let Q(S) be the tangent space at S ∈ S(| gsupp(S)|). Then, for any

M ∈ Rm×n, it holds that

∥PQ(S)M∥∞,2 ≤ ∥M∥∞,2 and ∥PQ(S)⊥M∥∞,2 ≤ ∥M∥∞,2.

Next, let T (L) be the tangent space at L ∈ L(rank(L)). Then, for N ∈ Rm×n, it

holds that

∥PT (L)N∥ ≤ 2∥N∥ and ∥PT (L)⊥N∥ ≤ ∥N∥.

Proof. We only show the claims concerning the projections on T (L) and T ⊥(L).

The other claims are easy. Recall that by Lemma B.1 we have for smooth L ∈ L(r)
that

T (L) =
{︁
UXT + Y V T : X ∈ Rn×r, Y ∈ Rm×r

}︁
,
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where L = UEV T is the (restricted) singular decomposition of L. Then, we have

more explicitly that

PT (L)N = PUN +NPV − PUNPV = PUN + (Im − PU)NPV ,

where Im is the (m×m) identity matrix, and PU = UUT and PV = V V T project

onto the column spaces of U and V , respectively. Note that PT (L)N ∈ T (L) since

PT (L)N = PUN + (Im − PU)NPV

= U
(︁
UTN

)︁
+ ((Im − PU)NV )V T = UXT + Y V T

with X = NTU ∈ Rn×r and Y = (Im−PU)NV ∈ Rm×r. Moreover, N −PT (L)N

is orthogonal to T (L) since

N − PT (L)N = N − PUN −NPV + PUNPV = (Im − PU)N (In − PV ),

and since for any UXT + Y V T ∈ T (L) we have⟨︁
(Im − PU)N (In − PV ),UXT + Y V T

⟩︁
= tr

(︁
(In − PV )N

T(Im − PU)UXT
)︁
+ tr

(︁
(In − PV )N

T(Im − PU)Y V T
)︁

= tr
(︁
(In − PV )N

T(Im − PU)Y V T
)︁

= tr
(︁
Y V T(In − PV )N

T(Im − PU)
)︁

= 0,

where the second equality follow from (Im − PU)UXT = (Im − UUT)UXT =

UXT − UXT = 0, the third equality uses tr(AB) = tr(BA), and the last

equality follows from Y V T(In − PV ) = Y V T(In − V V T) = Y V T − Y V T = 0.

Thus, PT (L)N is indeed the orthogonal projection of N onto T (L). Now, by sub-

multiplicativity of the spectral norm

∥PT (L)N∥ ≤ ∥PUN∥+ ∥(Im − PU)NPV ∥
≤ ∥PU∥∥N∥+ ∥(Im − PU)∥∥N∥∥PV ∥ ≤ 2∥N∥

because PU , PV , and Im −PU are projection matrices, that is, their operator norm

is bounded by one. Likewise, it holds

∥PT ⊥(L)N∥ = ∥N − PT (L)N∥ = ∥(Im − PU)N (In − PV )∥
≤ ∥(Im − PU)∥∥N∥∥(In − PV )∥ ≤ ∥N∥.

This concludes the proof. ■
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B.2 Proof of Lemma 2.1: Local Identifiability

Proof of Lemma 2.1. To prove local identifiability, we must find a (small) ball such

that for all ∆ ̸= 0 from this ball it holds that (L − ∆,S + ∆) /∈ L(r) × S(s).
Recall that the points that are close to S ∈ S(s) and L ∈ L(r) in the varieties can

be characterized using tangent spaces. Specifically, it can only hold S +∆ ∈ S(s)
for small ∆ ̸= 0 if ∆ ∈ Q(S). Likewise, it can only hold L −∆ ∈ L(r) for small

∆ ̸= 0 if ∆ ∈ T (L′) for some tangent space T (L′) to L(r) at a (smooth) point

L′ ∈ L(r) that is close to L. Note again that due to the local curvature of the

low-rank matrix variety, we also need to consider nearby tangent spaces. Hence, to

prove local identifiability, it is sufficient to show that the tangent spaces T (L′) and

Q(S) are transverse for all smooth L′ ∈ L(r) from some small ball around L. Here,

by definition, the transversality of T (L′) and Q(S) means that T (L′)∩Q(S) = {0},
which is equivalent to

min
M∈Q(S), ∥M∥=1

∥M − PT (L′)M∥ > 0. (B.1)

This is because M = PT (L′)M if and only if M ∈ T (L′) ∩ Q(S). In the following,

we want to verify Condition (B.1) for smooth L′ ∈ L(r) from a small ball around

L. We start by calculating that for any M ∈ Q(S) with ∥M∥ = 1 it holds that

∥M − PT (L′)M∥ = ∥M − PT (L)M +
[︁
PT (L) − PT (L′)

]︁
M∥

≥ ∥M − PT (L)M∥ − ∥
[︁
PT (L) − PT (L′)

]︁
M∥

≥ κ− ρ(T (L), T (L′)),

where the first inequality is the triangle inequality, and for the second inequality we

defined

κ = min
M∈Q(S), ∥M∥=1

∥M − PT (L)M∥

and the twisting between subspaces

ρ(T (L), T (L′)) = max
∥M∥=1

⃦⃦[︁
PT (L) − PT (L′)

]︁
M
⃦⃦
.

Here, the assumed transversality of the tangent spaces T (L) and Q(S) implies that

κ > 0. Hence, a sufficient condition for the transversality of Q(S) and T (L′) is

that ρ(T (L), T (L′)) < κ since then Condition (B.1) is satisfied. Thus, our goal is

to show that ρ(T (L), T (L′)) < κ holds whenever L′ is sufficiently close to L. The

proof is technical, but the main idea is to show that the map from smooth L′ ∈ L(r)
to ρ(T (L), T (L′)) is continuous and since it maps L onto zero, there exists a small

ball around L for which ρ(T (L), T (L′)) < κ.

We now dive into the technical details. For that, we consider the function f that

maps (L′,M) with domain restricted to L′ ∈ L(r), ∥L − L′∥ ≤ 1, and ∥M∥ = 1
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onto R as follows

f(L′,M ) = ∥PT (L)M − (PU(L′)M +MPV (L′) − PU(L′)MPV (L′))∥,

where PU(L′) is the projection matrix that projects onto the column space U(L′) of

L′, and PV (L′) is the projection matrix that projects onto the row space V (L′) of

L′. Note that for a rank-r matrix L′, which is a smooth point in L(r), it holds that

PT (L′)M = PU(L′)M +MPV (L′) − PU(L′)MPV (L′),

see the proof of Lemma B.2. Consequently, we have f(L′,M) = ∥[PT (L)−PT (L′)]M∥
for smooth L′ and in particular f(L,M) = 0 for all M . We now argue that f is

continuous as a composition of continuous functions: First, L′ maps continuously

onto the projection matrices PU(L′), PV (L′) because small changes to L′ only cause

small changes to the row and column spaces of L′ and hence to the corresponding

projections. Second, the remaining composite functions in the definition of f above

are additions, norm functions, or matrix products of PU(L′), PV (L′), and M . All

these operations are continuous, thus overall f is continuous.

Because f is continuous on a compact domain, it is also uniformly continuous.

Hence, there exists δ > 0 (w.l.o.g. δ ≤ 1) such that for all L′
1,L

′
2 with ∥L′

1−L′
2∥ < δ

and for all M1,M2 with ∥M1 −M2∥ < δ it holds that |f(L′
1,M1)− f(L′

2,M2)| <
κ/2. Consequently, it holds for L′ with ∥L−L′∥ < δ independently of M that

f(L′,M ) < f(L,M ) +
κ

2
=

κ

2
.

We can take the supremum over M with ∥M∥ = 1 on the left-hand side of this

equation. If we only consider smooth L′, this implies that

ρ(T (L), T (L′)) = sup
M : ∥M∥=1

∥[PT (L) − PT (L′)]M∥ = sup
M : ∥M∥=1

f(L′,M ) ≤ κ

2
< κ.

This completes the proof because we have shown that for all smooth L′ from the

spectral-norm ball with radius δ around L the tangent spaces T (L′) and Q(S)
are transverse. Particularly, there do not exist small non-zero ∆ ∈ T (L′) ∩ Q(S)
for any L′ from that ball, hence locally around (L,S) there are no alternative

decompositions (L−∆,S +∆) ∈ L(r)×S(s). This establishes local identifiability
of (L,S) in L(r)× S(s). ■

B.3 Proof of Lemma 2.3

Proof of Lemma 2.3. We prove the bound for µ(Q(S)) first. Remember the defini-

tion

µ(Q(S)) = max
M∈Q(S), ∥M∥∞,2=1

∥M∥,
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and recall that the group-sign function gsign maps a matrix A ∈ Rm×n onto the

matrix gsign(A) ∈ Rm×n with

gsign(A)ij =

{︄
aij/∥aij∥2, aij ̸≡ 0

0, else
, i ∈ 1, . . . , d and j = 1, . . . , n.

Now, consider M with ∥M∥∞,2 = 1. Then, the matrix | gsign(M )| has normalized

groups and non-negative entries. Moreover, it satisfies the element-wise inequality

|M | ≤ | gsign(M)|. As a consequence of the Perron-Frobenius theorem [Horn and

Johnson, 2012] it follows that ∥M∥ ≤ ∥| gsign(M )|∥. This allows us to conclude that
to compute µ(Q(S)) we only need to consider non-negative matrices 0 ≤M ∈ Q(S)
that are normalized in the sense that its non-zero groups precisely have norm 1, that

is, M = gsign(M ). Now, we bound the spectral norm of a matrix M , see [Schur,

1911], as follows

∥M∥2 ≤ ∥M∥1∥M∥∞,

where ∥M∥1 is the maximum ℓ1-norm of a column ofM and ∥M∥∞ is the maximum

ℓ1-norm of a row of M . We bound ∥M∥1. W.l.o.g. let c be a column of M with

∥M∥1 = ∥c∥1. Then, it holds

∥M∥1 = ∥c∥1 ≤
√
η∥c∥1,2 ≤

√
η gdegmax(M ) ≤ √η gdegmax(S),

where the first inequality follows since η = maxi∈[d] mi is the maximum number of

elements that belong to a group from the column and hence that
√
η is a norm

compatibility constant for the column (vector) ℓ1-norm and the column (vector)

ℓ1,2-norm. The second inequality follows because the vector ℓ1,2-norm of c is equal

to the number of non-zero groups of c. This number is bounded by gdegmax(M ).

Finally, the last inequality follows from gsupp(M) ⊆ gsupp(S) as M ∈ Q(S).

Similar reasoning for rows instead of columns leads us to conclude that ∥M∥∞ ≤
gdegmax(S) since this time comparison of the ℓ1,2- and ℓ1 row (vector) norms is

not necessary because the intersections of the groups of M with a row respectively

contain at most one element. Therefore, we get the upper bound

∥M∥ ≤
√︁
∥M∥1∥M∥∞ ≤ η1/4 gdegmax(S).

This establishes the claim µ(Q(S)) ≤ η1/4 gdegmax(S).

Proof of (b). The claim about ξ(T (L)) follows from

ξ(T ) = max
M∈T (L), ∥M∥=1

∥M∥∞,2 ≤
√
η max

M∈T (L), ∥M∥=1
∥ vec(M)∥∞ ≤ 2

√
η coh(L),

where the first inequality follows from the general comparison of the (vector) ℓ∞-

norm and the ℓ∞,2-norm which holds because η is the maximum number of elements

of a group. Finally, the last inequality is a consequence of [Chandrasekaran et al.,

2011, Proposition 4]. This finishes the proof. ■
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B.4 Proof of Exact Recovery

In the next sections, we prove Theorem 2.6 by studying the optimality conditions

of Problem (2.2).

B.4.1 Optimality conditions

Before we prove Proposition 2.5, we show a simple claim.

Lemma B.3 (Hoelder-like inequalities for dual norm pairs). Let x,y ∈ Rn. Then,

it holds for any pair of dual norms (∥ · ∥, ∥ · ∥∗) that

| ⟨x,y⟩ | ≤ ∥x∥ · ∥y∥∗.

Proof. This follows quite straightforward from the definition of the dual norm:

| ⟨x,y⟩ | = ∥x∥ · |⟨x/∥x∥,y⟩| ≤ ∥x∥ · sup{⟨y, z⟩ : ∥z∥ ≤ 1} = ∥x∥ · ∥y∥∗.

This concludes the proof. ■

Proof of Proposition 2.5. First, it follows that (L⋆,S⋆) is an optimum since by the

second condition from the assumption there exists a dual Z that satisfies both

optimality conditions. Now, for some matrix ∆, let (L⋆ −∆,S⋆ +∆) be another

minimizer of Problem (2.2). The minimizer must have this form in order to be

feasible. Our goal is to show that the components of ∆ in the normal spaces Q⊥

and T ⊥ vanish, respectively (recall that we write Q = Q(S⋆) and T = T (L⋆)). We

begin by using the subgradient property:

0 = ∥L⋆ −∆∥∗ + γ∥S⋆ +∆∥1,2 − ∥L⋆∥∗ − γ∥S⋆∥1,2
≥ ⟨Z1,2,∆⟩ − ⟨Z∗,∆⟩
= ⟨PQ⊥(Z1,2),∆⟩ − ⟨PT ⊥(Z∗),∆⟩+ ⟨PQ(Z1,2),∆⟩ − ⟨PT (Z∗),∆⟩ ,

where Z1,2 ∈ γ ∂∥S⋆∥1,2 and Z∗ ∈ ∂∥L⋆∥∗ are subgradients whose choices we make

precise later. The idea is to chose them such that the right hand side of the inequal-

ity is maximized. In the last line, we decomposed the terms into their tangential

and normal components. Note that the tangential components ⟨PQ(Z1,2),∆⟩ −
⟨PT (Z∗),∆⟩ do not depend on the choice of the subgradients since by the subgra-

dient characterizations the pair (Z1,2,Z∗) must satisfy

PQ(Z1,2) = γ gsign(S⋆) and PT (Z∗) = UV T,
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where L⋆ = UDV T is a singular value decomposition of L⋆. Hence, this constant

part can be bounded by

⟨PQ(Z1,2),∆⟩− ⟨PT (Z∗),∆⟩ = ⟨Z − PQ⊥(Z),∆⟩ − ⟨Z − PT ⊥(Z),∆⟩
= −⟨PQ⊥(Z),∆⟩+ ⟨PT ⊥(Z),∆⟩
= −⟨PQ⊥(Z), PQ⊥(∆)⟩+ ⟨PT ⊥(Z), PT ⊥(∆)⟩
≥ − |⟨PQ⊥(Z), PQ⊥(∆)⟩| − |⟨PT ⊥(Z), PT ⊥(∆)⟩|
≥ −∥PQ⊥(Z)∥∞,2 ∥PQ⊥(∆)∥1,2 − ∥PT ⊥(Z)∥ ∥PT ⊥(∆)∥∗ ,

where the first equality uses that Z satisfies the subgradient conditions as well,

and the final inequality applies the generalized Hoelder inequality from Lemma B.3

(respectively for the ∥ · ∥1,2, ∥ · ∥∞,2 and the ∥ · ∥, ∥ · ∥∗ dual norm pairs).

Next, we calculate ⟨PQ⊥(Z1,2),∆⟩−⟨PT ⊥(Z∗),∆⟩ after choosing the normal com-

ponents of Z1,2 and Z∗ in Q⊥ and T ⊥, respectively. First, we select PQ⊥(Z1,2) =

γ gsign (PQ⊥(∆)). This yields a valid subgradient because then ∥PQ⊥(Z1,2)∥∞,2 = γ.

Moreover, it holds that

⟨PQ⊥(Z1,2),∆⟩ = ⟨PQ⊥(Z1,2), PQ⊥(∆)⟩ = γ ⟨gsign (PQ⊥(∆)) , PQ⊥(∆)⟩
= γ∥PQ⊥(∆)∥1,2.

Second, we select PT ⊥(Z∗) = −Ũ sign(Σ̃)Ṽ
T
based on a singular value decom-

position PT ⊥(∆) = ŨΣ̃Ṽ
T

of PT ⊥(∆). This forms a valid subgradient since

∥PT ⊥(Z∗)∥ = 1. Besides, we have

− ⟨PT ⊥(Z∗),∆⟩ = − ⟨PT ⊥(Z∗), PT ⊥(∆)⟩ = −⟨−Ũ sign(Σ̃)Ṽ
T
, ŨΣ̃Ṽ

T⟩

= tr

(︃(︂
Ũ sign(Σ̃)Ṽ

T
)︂T

ŨΣ̃Ṽ
T
)︃

= tr
(︂
Ṽ sign(Σ̃)Ũ

T
ŨΣ̃Ṽ

T
)︂

= tr
(︂
Ṽ |Σ̃|Ṽ T

)︂
= tr

(︂
Ṽ

T
Ṽ |Σ̃|

)︂
= tr

(︂
|Σ̃|
)︂
= ∥PT ⊥(∆)∥∗ .

In summary, the specific choices of the subgradients yield

0 ≥ ⟨PQ⊥(Z1,2),∆⟩ − ⟨PT ⊥(Z∗),∆⟩+ ⟨PQ(Z1,2),∆⟩ − ⟨PT (Z∗),∆⟩
≥ γ∥PQ⊥(∆)∥1,2 + ∥PT ⊥(∆)∥∗

− ∥PQ⊥(Z)∥∞,2 ∥PQ⊥(∆)∥1,2 − ∥PT ⊥(Z)∥ ∥PT ⊥(∆)∥∗
= (γ − ∥PQ⊥(Z)∥∞,2) ∥PQ⊥(∆)∥1,2 + (1− ∥PT ⊥(Z)∥) ∥PT ⊥(∆)∥∗.

As a consequence of the strictly-dual-feasible condition we have ∥PQ⊥(Z)∥∞,2 < γ

and ∥PT ⊥(Z)∥ < 1. Thus, if any of PQ⊥(∆) or PT ⊥(∆) are non-zero, then the right-

hand side becomes strictly positive, leading to a contradiction. Therefore, we must

have PQ⊥(∆) = 0 and PT ⊥(∆) = 0. This means that ∆ must be contained in both

Q and T . However, since we assumed transversality, we haveQ∩T = {0}. It follows
that ∆ = 0, which implies the uniqueness of the solution to Problem (2.2). ■
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B.4.2 Proof of Theorem 2.6: Main result on exact recovery

Here, we prove Theorem 2.6 by showing that for any γ ∈ (γmin, γmax) there exists a

strictly dual feasible Z as required by Proposition 2.5.

Proof of Theorem 2.6. Let us first check that the range of values for γ given by(︃
ξ(T )

1− 4ξ(T )µ(Q)
,
1− 3ξ(T )µ(Q)

µ(Q)

)︃
is non-empty. For that, observe that comparing the borders of the interval leads to

the quadratic inequality

12 [ξ(T )µ(Q)]2 − 8 [ξ(T )µ(Q)] + 1 > 0

in ξ(T )µ(Q). The roots of the quadratic polynomial are 1/6 and 1/2, so clearly

under the assumption ξ(T )µ(Q) < 1/6 the given range is non-empty.

Because of the assumption, we can also apply Lemma 2.4 that yields T ∩Q = {0}.
Therefore, there exists a unique Z ∈ T ⊕Q, where ⊕ denotes the direct sum, such

that the orthogonal projections of Z onto the tangent spaces T and Q are consistent

with the subgradient conditions, that is, it holds

PT (Z) = UV T and PQ(Z) = γ gsign(S⋆).

Remember that L⋆ = UDV T is the (restricted) singular value decomposition of

L⋆. The rest of the proof is dedicated to showing that Z also strictly satisfies the

remaining subgradient conditions that concern the orthogonal projections, that is,

we want to show the strict dual-feasible conditions

∥PT ⊥(Z)∥ < 1 and ∥PQ⊥(Z)∥∞,2 < γ

that are required by Proposition 2.5. For that, let Z = ZT + ZQ be the unique

splitting of Z into its components ZT ∈ T and ZQ ∈ Q, see Figure B.1. We

have ZT = PT (Z) − PT (ZQ) = UV T − PT (ZQ) and ZQ = PQ(Z) − PQ(ZT ) =

γ gsign(S⋆)− PQ(ZT ).

Q

T0

Z
ZQ

ZT UV T

γ gsign(S⋆)

Figure B.1: Decomposition of the dual Z in Q⊕ T .
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Now, we start bounding the orthogonal components. The component of Z in Q⊥

can be bounded as

∥PQ⊥(Z)∥∞,2 = ∥PQ⊥(ZT )∥∞,2 ≤ ∥ZT ∥∞,2

≤ ξ(T )∥ZT ∥ = ξ(T )∥UV T − PT (ZQ)∥
≤ ξ(T )(1 + ∥PT (ZQ)∥), (B.2)

where we used the projection Lemma B.2 in the first, the definition of ξ(T ) in the

second, and the triangle inequality in the last inequality. Similarly, we can bound

the component of Z in T ⊥

∥PT ⊥(Z)∥ = ∥PT ⊥(ZQ)∥ ≤ ∥ZQ∥
≤ µ(Q) ∥ZQ∥∞,2 = µ(Q)∥γ gsign(S⋆)− PQ(ZT )∥∞,2

≤ µ(Q) (γ + ∥PQ(ZT )∥∞,2) , (B.3)

where again Lemma B.2 was used in the first, the definition of µ(Q) in the second,

and finally the triangle inequality in the last inequality. To continue the calculations

we bound the norms of PT (ZQ) and PQ(ZT ).

∥PT (ZQ)∥ ≤ 2∥ZQ∥ ≤ 2µ(Q) (γ + ∥PQ(ZT )∥∞,2) ,

∥PQ(ZT )∥∞,2 ≤ ∥ZT ∥∞,2 ≤ ξ(T ) (1 + ∥PT (ZQ)∥) ,

where we used the projection Lemma B.2, bounded ∥ZT ∥∞,2 as in (B.2), and

bounded ∥ZQ∥ as in (B.3). Plugging the bounds on ∥PT (ZQ)∥ and ∥PQ(ZT )∥
into each other yields

∥PT (ZQ)∥ ≤ 2µ(Q) [γ + ξ(T ) (1 + ∥PT (ZQ)∥)] and

∥PQ(ZT )∥∞,2 ≤ ξ(T ) [1 + 2µ(Q) (γ + ∥PQ(ZT )∥∞,2)] .

By solving these inequalities for ∥PT (ZQ)∥ and ∥PQ(ZT )∥∞,2, respectively, we obtain

∥PT (ZQ)∥ ≤
2γµ(Q) + 2ξ(T )µ(Q)

1− 2ξ(T )µ(Q)
(B.4a)

∥PQ(ZT )∥∞,2 ≤
ξ(T ) + 2γξ(T )µ(Q)

1− 2ξ(T )µ(Q)
(B.4b)

Note that the denominators are positive because of

ξ(T )µ(Q) < 1/6 < 1/2.
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Bringing (B.2) and (B.4a) together yields

∥PQ⊥(Z)∥∞,2 ≤ ξ(T )(1 + ∥PT (ZQ)∥)

≤ ξ(T )
(︃
1 +

2γµ(Q) + 2ξ(T )µ(Q)
1− 2ξ(T )µ(Q)

)︃
= ξ(T )

(︃
1 + 2γµ(Q)

1− 2ξ(T )µ(Q)

)︃
=

[︃
ξ(T )

(︃
1 + 2γµ(Q)

1− 2ξ(T )µ(Q)

)︃
− γ

]︃
+ γ

=

[︃
ξ(T ) + 2γξ(T )µ(Q)− γ + 2γξ(T )µ(Q)

1− 2ξ(T )µ(Q)

]︃
+ γ

=

[︃
ξ(T )− γ (1− 4ξ(T )µ(Q))

1− 2ξ(T )µ(Q)

]︃
+ γ < γ,

where the last inequality holds by the assumption γ > ξ(T )/[1−4ξ(T )µ(Q)]. Next,
by (B.3) and (B.4b) we have

∥PT ⊥(Z)∥ ≤ µ(Q) (γ + ∥PQ(ZT )∥∞,2)

≤ µ(Q)
(︃
γ +

ξ(T ) + 2γξ(T )µ(Q)
1− 2ξ(T )µ(Q)

)︃
= µ(Q)

(︃
γ + ξ(T )

1− 2ξ(T )µ(Q)

)︃
< µ(Q)

(︃
[1− 3ξ(T )µ(Q)]/µ(Q) + ξ(T )

1− 2ξ(T )µ(Q)

)︃
=

1− 3µ(Q)ξ(T ) + µ(Q)ξ(T )
1− 2ξ(T )µ(Q)

= 1,

where we used the bound γ < [1 − 3ξ(T )µ(Q)]/µ(Q) from the assumption in the

last inequality. This completes the proof. ■

B.5 Weighted Group Norms

In this section, we present some properties of weighted group norms that are nec-

essary to adapt the assumptions and proofs for exact recovery when Problem (2.6)

is used instead of Problem (2.2) for learning RPCA models. We do not detail all

steps that are necessary to obtain a general result for exact recovery with weighted

group norms. However, with the given information, it should be easy to follow and

generalize the lines of the proof of Theorem 2.6.

Lemma B.4 (duality of weighted group norms). The dual norm of the weighted

ℓ1,2-group norm

∥S∥W1,2 =
∑︂
i,j

wij∥sij∥2, W = (wij)i∈[d],j∈[n],

is given by the weighted ℓ∞,2-group norm

∥Y ∥W∞,2 = max
i,j

w−1
ij ∥yij∥2.
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Remember that we denote the (i, j)-th sub-groups of a group-structured matrix

with bold lowercase letters with corresponding subscript.

Proof. The dual norm (of Y ∈ Rm×n) is defined as max∥S∥W1,2≤1 ⟨Y ,S⟩. First, it

holds

max
∥S∥W1,2≤1

⟨Y ,S⟩ = max
∥S∥W1,2≤1

∑︂
i,j

⟨sij,yij⟩

≤ max
∥S∥W1,2≤1

∑︂
i,j

∥sij∥2 ∥yij∥2

≤ max
∥S∥W1,2≤1

∑︂
i,j

∥sij∥2wij∥Y ∥W∞,2

≤ ∥Y ∥W∞,2,

where the second inequality follows from the definition of the weighted ℓ1,2-group

norm. Second, let (i, j) be such that w−1
ij ∥yij∥2 = ∥Y ∥W∞,2. Let A be zero except

in the (i, j)-th group for which Aij = yij/(wij∥yij∥2). Then, A satisfies ∥A∥W1,2 = 1

and thus

max
∥S∥W1,2≤1

⟨Y ,S⟩ ≥ ⟨Y ,A⟩ = w−1
ij ∥yij∥2 = ∥Y ∥W∞,2.

This completes the proof. ■

Subdifferential. The elements in the subdifferential are given as

∂∥S∥W1,2 =
{︁
Y : ⟨S,Y ⟩ = ∥S∥W1,2, ∥Y ∥W∞,2 ≤ 1

}︁
.

More precisely, it can be shown that it holds Z ∈ ∂∥S∥W1,2 if and only if

PQ(S)(Z) = W ◦ gsign(S) and ∥PQ(S)⊥(Z)∥W∞,2 ≤ 1,

where ◦ multiplies wij to each element of the (i, j)-th group of the operator’s right-

hand side argument (for all i, j).

Proximal operator. The proximal operator in the ADMM algorithm from Sec-

tion 2.3 is now solved by the group soft-shrinkage operation that acts on the (i, j)-th

group as

[gShrink(Z, κ,W )]ij = zij ·max

{︃
1− wijκ

∥zij∥2
, 0

}︃
.
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Appendix C

Additional Material for Chapter 3

C.1 Entropy and Likelihood Duality

C.1.1 Duality for discrete distributions

In this section, we show that the relaxed maximum-entropy problem

max
p∈P

H(p) s.t. ∥E[Σ]− Σ̂∥∞,2 ≤ c and ∥E[Σ]− Σ̂∥ ≤ λ, (C.1)

from Section 3.1.2 is dual to the following regularized log-likelihood maximization

problem

max
S,L∈ Sym(m)

ℓ(S +L)− c∥S∥1,2 − λ∥L∥∗.

Here, the expectation in the maximum-entropy problem is taken w.r.t. the proba-

bility distribution p on X .

Proof. The proof is done using standard duality theory. For that, instead of Prob-

lem (C.1) we consider the equivalent augmented problem

min
T ≥0, p≥0

−H(p) s.t. ∥Tij∥22 ≤ c2, (γij) for i, j ∈ [d],

Σ̂− E[Σ] ≤ T (S+),

E[Σ]− Σ̂ ≤ T (S−),

Σ̂− E[Σ] ⪯ λI (L1),

E[Σ]− Σ̂ ⪯ λI (L2),∑︁
x∈X p(x) = 1 (θ0),

(C.2)

where

Γ = (γij)
d
i,j=1 ≥ 0, S+,S− ≥ 0, L1,L2 ⪰ 0, and θ0 ∈ R

are the corresponding dual variables for the constraints. The augmentation helps us

to classify the functional form of p as an exponential family distribution. We will



derive this form from the Lagrangian

L = −H(p) + θ0

(︂∑︂
x∈X

p(x)− 1
)︂
+
∑︂
i,j

γij(∥Tij∥22 − c2)

−
⟨︁
S+ + S−,T

⟩︁
+ ⟨S+ − S− +L1 −L2, Σ̂− E[Σ]⟩ − λ ⟨L1 +L2, I⟩

= −H(p) + θ0

(︂∑︂
x∈X

p(x)− 1
)︂
+
∑︂
i,j

γij(∥Tij∥22 − c2)− λ tr(L1 +L2)

− ⟨|S|,T ⟩+ ⟨S +L1 −L2, Σ̂− E[Σ]⟩. (C.3)

For the second equation we wrote S = S+ − S− and |S| = S+ + S−. The latter is

possible because in a solution for each pair of corresponding entries of S+ and S−

at least one must be zero, respectively. Finally we used ⟨L1 +L2, I⟩ = tr(L1+L2).

Note that the Lagrangian is a function of the primal variables T and p, and of the

dual variables.

In what follows, we set Θ = S +L1 −L2. The discrete distribution p is given by

the vector of probabilities (p(x))x∈X . The saddle point condition for the Lagrangian

for p(x) for fixed x ∈ X implies that

0
!
=

∂L
∂p(x)

=
∂

∂p(x)

(︄
−H(p) + θ0

∑︂
x′∈X

p(x′)− ⟨Θ,E[Σ]⟩

)︄

=
∂

∂p(x)

(︄∑︂
x′∈X

p(x′) log(p(x′)) + θ0
∑︂
x′∈X

p(x′)−
⟨︂
Θ,
∑︂
x′∈X

p(x′)Σ(x′)
⟩︂)︄

= log(p(x)) + 1 + θ0 − ⟨Θ,Σ(x)⟩

Therefore, p must be of the form

p(x) = exp (⟨Θ,Σ(x)⟩ − a(Θ))

with normalization function a(Θ) = θ0 + 1. Now,

−H(p) = Ep[log p] =
∑︂
x∈X

p(x)[⟨Θ,Σ(x)⟩ − a(Θ)] = ⟨Θ,E[Σ]⟩ − a(Θ)

= ⟨Θ,E[Σ]⟩+ ℓ(Θ)− ⟨Θ, Σ̂⟩ = ℓ(Θ)− ⟨Θ, Σ̂− E[Σ]⟩,

which follows since the log-likelihood is given by ℓ(Θ) = ⟨Θ, Σ̂⟩ − a(Θ), see Equa-

tion (3.5). We substitute p and H(p) into the Lagrangian (C.3) to obtain

L = ℓ(Θ)− λ tr(L1 +L2) +
∑︂
i,j

γij(∥Tij∥22 − c2)− ⟨|S|,T ⟩

= ℓ(Θ)− λ tr(L1 +L2) +
∑︂
i,j

(︂
γij(∥Tij∥22 − c2)− ⟨|Sij|,Tij⟩

)︂
,

recalling that Tij and Sij are the (i, j)-th sub-blocks of the matrices T and S,

respectively. Next, we minimize the Lagrangian in T . The derivative w.r.t. Tij is
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given by

0
!
=

∂L
∂Tij

= 2γijTij − |Sij|.

Setting the gradient to zero yields Tij =
|Sij |
2γij

if γij > 0. Otherwise, if γij = 0 and

Sij has a non-zero entry, the Lagrangian is unbounded below. In any other case, all

terms that include Tij in the Lagrangian vanish. We substitute in the Lagrangian

which gives us the dual function g = g(Γ,S,L1,L2)

g = ℓ(Θ)− λ tr(L1 +L2) +
d∑︂

i,j=1

⎧⎪⎪⎨⎪⎪⎩
−c2γij − 1

4γij
∥Sij∥22, γij > 0,

0, γij = 0,Sij ≡ 0,

−∞, γij = 0,Sij ̸≡ 0

We eliminate the variables in Γ by finding an analytical solution for them. For

γij > 0 the gradient condition states

0
!
=

∂g

∂γij
= −c2 + 1

4γ2
ij

∥Sij∥22,

which is satisfied for γij = 1
2c
∥Sij∥2. With this γij it holds −c2γij − 1

4γij
∥Sij∥22 =

−c∥Sij∥2. Note that this is also consistent with the second case above, so after the

maximization w.r.t. Γ the dual function becomes

g(S,L1,L2) = ℓ(Θ)− λ tr(L1 +L2)− c
∑︂
i,j

∥Sij∥2

= ℓ(S +L1 −L2)− λ tr(L1 +L2)− c∥S∥1,2, (C.4)

where L1,L2 ⪰ 0. The dual function can be further simplified. To see this, for a

given (symmetric) matrix L ∈ Sym(m), consider the problem

min
L1,L2 ⪰0

tr(L1 +L2) s.t. L = L1 −L2. (C.5)

Let L =
∑︁m

i=1 σiviv
T
i be a singular decomposition of L. Then, Problem (C.5) is

minimized by L1 =
∑︁

i :σi≥0 σiviv
T
i and L2 = −

∑︁
i :σi<0 σiviv

T
i . Clearly, with this

solution it holds tr(L1 +L2) = ∥L∥∗ =
∑︁m

i=1 |σi| in the objective of Problem (C.5).

The solution of Problem (C.5) allows us to write L = L1 − L2 in (C.4) and

to replace the term tr(L1 + L2) by ∥L∥∗. Thereby, the variables L1 and L2 are

eliminated. This leads to the final simplification of the dual function

g(S,L) = ℓ(S +L)− λ∥L∥∗ − c∥S∥1,2.

Maximizing this dual function exactly matches the claimed regularized log-likelihood

maximization problem. This finishes the proof. ■
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If the constraint ∥E[Σ] − Σ̂∥ ≤ λ in Problem (C.1) is replaced by the one-sided

constraint Σ̂−E[Σ] ⪯ λI with dual variable L1, then all terms related to the other

side E[Σ] − Σ̂ ⪯ λI of the spectral norm constraint disappear. In particular, the

corresponding dual variable L2 is removed from the dual function (C.4). Hence, in

this case, the dual problem maximizes the objective function

g(S,L) = ℓ(S +L)− λ tr(L)− c∥S∥1,2 subject to L = L1 ⪰ 0.

C.1.2 Limited generalizability to continuous distributions

In this section, we undertake a small excursion and discuss entropy and relative

entropy of continuous random variables. For simplicity, we limit the discussion to

univariate positive distributions p on R, that is, p > 0 everywhere. Then, the

differential entropy of this distribution is defined as

h(p) = −

∫︂
R
p(x) log p(x) dx.

We first attempt to obtain differential entropy as the limit of discrete Shannon

entropies by quantifying continuous distributions using discrete bins.

Entropy in the limit. Let p be a univariate distribution on R as above and let

ε > 0. By the mean-value theorem, for k ∈ Z, there exist xk = xk(ε) ∈ [kε, (k+1)ε)

such that
∫︁ (k+1)ε

kε
p(x) dx = εp(xk). Define the discrete distributions pε with values

xk and corresponding probabilities pε(xk) = εp(xk) for k ∈ Z. These distributions

are normalized because∑︂
k∈Z

pε(xk) =
∑︂
k∈Z

εp(xk) =
∑︂
k∈Z

∫︂ (k+1)ε

kε

p(x) dx =

∫︂
R
p(x) dx = 1.

Now, the differential entropy of p can be obtained as the limit of Riemann sums,

where for fixed ε > 0 we use the supporting points and intervals xk = xk(ε) ∈
[kε, (k + 1)ε) from above (for k ∈ Z). This gives us

h(p) = −

∫︂
R
p(x) log p(x) dx = lim

ε→0
−
∑︂
k∈Z

εp(xk) log p(xk)

= lim
ε→0

−
∑︂
k∈Z

pε(xk) log
pε(xk)

ε

= lim
ε→0

(︄
−
∑︂
k∈Z

pε(xk) log p
ε(xk) +

∑︂
k∈Z

pε(xk) log ε

)︄

= lim
ε→0

(︄
−
∑︂
k∈Z

pε(xk) log p
ε(xk) + log ε

)︄
= lim

ε→0
(H(pε) + log ε) ,
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where the fifth equality follows from the fact that the distribution pε is normalized for

all ε > 0. Assuming that h(p) is finite, the calculation shows that H(pε) diverges to

infinity in the limit. Hence, a straightforward generalization of the discrete Shannon

entropy by using the limit of Shannon entropies of increasingly fine discretizations

would imply that all (positive) continuous distributions have an entropy of infinity.

This would not be an informative measure, though it intuitively makes sense since

the uncertainty of a continuous distribution can be seen as infinite.

To sum up, differential entropy is not a straightforward generalization of Shannon

entropy. Particularly, it cannot be interpreted in absolute terms as the uncertainty

of a distribution. However, differential entropy can be interpreted relatively to the

differential entropy of another distribution. This is because when approximating

h(p) − h(q) via Riemann sums and discrete distributions as above, then the log ε

term cancels out. Hence, it makes sense to define

h(p)− h(q) = lim
ε→0

(H(pε)−H(qε)) .

This means that the direct comparison of the differential entropies of different dis-

tributions allows us to rigorously say that one or the other distribution is more

chaotic (has more ’uncertainty’). Of course, when estimating a density using the

maximum entropy principle, it does not make a difference if the objective function is

the differential entropy h(p) or the difference h(p)− h(q) because h(q) is a constant

term. However, from a philosophical point of view, it is not clear what a reasonable

choice for the distribution q is, which one may find unsatisfying.

Nevertheless, despite the problems in the interpretation of differential entropy,

it can be shown that the duality of maximum entropy and maximum likelihood

still holds for continuous distributions when the differential entropy is used. We do

not provide a full proof since it mostly follows the lines of the proof given above

in Section C.1.1. Note that in this proof, we classified the functional form of the

maximum-entropy distribution as an exponential family distribution by differenti-

ating w.r.t. the parameters of the discrete distribution. In the case of continuous

distributions, the maximum-entropy distributions are still exponential family dis-

tributions as can be shown using variational calculus, specifically the Euler/Euler-

Lagrange equation, see [Fox, 1987, Theorem 1].

Relative Entropy in the limit. We have seen that the difference of the differ-

ential entropies of two different continuous distributions on the same domain yields

an interpretable measure for the difference of the ’uncertainty’ between these distri-

butions. Here, to round up the discussion of continuous entropy, we also consider

relative entropy (also called Kullback-Leibler divergence), which is a measure of dis-

tance between distributions. It is defined for two distributions p and q on R as

follows

D(p, q) =

∫︂
R
p(x) log

p(x)

q(x)
dx = −h(p) +H(p, q),
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where

H(p, q) = −

∫︂
R
p(x) log q(x) dx

is the cross entropy. For ε > 0, define pε(xk) as above. Note that the discrete density

defined by qε(xk) = εq(xk) for k ∈ Z is not normalized. However, the mass of qε

converges to one as ε→ 0 as can be seen by the following convergence of Riemann

sums:

lim
ε→0

∑︂
k∈Z

qε(xk) = lim
ε→0

∑︂
k∈Z

εq(xk) =

∫︂
R
q(x) dx = 1.

Since ultimately we are interested in the behavior in the limit, we treat qε as a

regular distribution. We now show that cross entropy behaves similarly as differ-

ential entropy when we try to represent it as a limit of cross entropies of discrete

distributions. To see that, we make use of Riemann sums as before:

D(p, q) = −

∫︂
R
p(x) log q(x) dx

= lim
ε→0

−
∑︂
k∈Z

εp(xk) log q(xk)

= lim
ε→0

−
∑︂
k∈Z

pε(xk) log
qε(xk)

ε

= lim
ε→0

(︄
−
∑︂
k∈Z

pε(xk) log q
ε(xk) +

∑︂
k∈Z

pε(xk) log ε

)︄

= lim
ε→0

(︄
−
∑︂
k∈Z

pε(xk) log q
ε(xk) + log ε

)︄
= lim

ε→0
(H(pε, qε) + log ε) .

Here, in the second-to-last equality we used that pε is a normalized distribution,

that is, it holds that
∑︁

k∈Z p
ε(xk) = 1. As a consequence, it holds for the limit of

discrete relative entropies that

D(pε, qε) =
∑︂
k∈Z

pε(xk) log
pε(xk)

qε(xk)
=
∑︂
k∈Z

pε(xk) log p
ε(xk)−

∑︂
k∈Z

pε(xk) log q
ε(xk)

= −H(pε) +H(pε, qε)

= −H(pε)− log ε⏞ ⏟⏟ ⏞
→−h(p), ε→0

+ log ε+H(pε, qε)⏞ ⏟⏟ ⏞
→H(p,q), ε→ 0

ε→0→ −h(p) +H(p, q) = D(p, q)

That means, relative entropy can indeed be seen as the generalization of discrete

relative entropy.
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C.2 Fused Latent and Graphical Models: Details

Pairwise conditional Gaussian distributions. A pairwise conditional Gaus-

sian distribution on the sample space X × Y =
∏︁d

i=1{0, . . . ,mi} × Rq is given by

p(x,y) = exp

{︄
1

2

d∑︂
i,j=1

mi∑︂
k=1

mj∑︂
l=1

qij;kl1[xi = k]1[xj = l]

. . .+

q∑︂
s=1

d∑︂
i=1

mi∑︂
k=1

ρsi;k1[xi = k]ys −
1

2

q∑︂
s,t=1

λstysyt − a(Θ)

}︄

= exp

{︃
1

2
xTQx+ yTRx− 1

2
yTΛy − a(Θ)

}︃
= exp

{︃
1

2
(x,y)TΘ(x,y)− a(Θ)

}︃
,

where we omitted indicators for the 0-th levels of the discrete variables to ensure

a unique parameterization, and we summarized the pairwise interaction parameters

in the symmetric matrix

Θ =

(︃
Q RT

R −Λ

)︃
∈ Sym(m+ q) = Sym(w).

Of course, pairwise densities can also be extended with additional univariate pa-

rameters. However, we leave them out for simplicity since our main interest lies in

modeling pairwise interactions between the variables. Besides, the diagonal of the

discrete-discrete interaction parameters in Q can be seen as univariate parameters

for the discrete variables. Note the group structure of the matrix Θ:

� Q ∈ Sym(m) contains the groups Qij = (qij;kl)k∈[mi], l∈[mj ] ∈ Rmi×mj of

discrete-discrete interactions for i, j ∈ [d],

� R ∈ Rq×m contains the groups rsi = (ρsi;k)k∈[mi] ∈ Rmi of quantitative-discrete

interactions for i ∈ [d] and s ∈ [q], and

� 0 ≺ Λ ∈ Sym(q) contains the quantitative-quantitative interaction parameters

λst for s, t ∈ [q], that is, the groups of quantitative-quantitative interactions

consist of only single elements.

In summary, the group structure reads as

Θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q11 · · · Q1d rT
11 · · · rT

q1

...
. . .

...
...

. . .
...

Qd1 · · · Qdd rT
1d · · · rT

qd

r11 · · · r1d −λ11 · · · −λ1q

...
. . .

...
...

. . .
...

rq1 · · · rqd −λq1 · · · −λqq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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In our model definitions, the discrete variables always precede the quantitative vari-

ables. We denote the (mi × mj)-sub-matrix of the interaction parameter matrix

Θ that describes the interaction between the i-th and j-th variable by Θij. Here,

i, j ∈ [d+q] and we define mi = 1 for i = d+1, . . . , d+q (the quantitative variables).

Marginalization of conditional Gaussian (CG) variables from a CG model.

Based on a partition of the quantitative, conditional Gaussian variables into q ob-

served and r latent variables, the joint model can be written as

p(x,y, z) ∝ exp

(︄
1

2
(x,y, z)T

⎛⎝Q RT
y

−RT
z

Ry −Λy −ΛT
zy

Rz −Λzy −Λz

⎞⎠ (x,y, z)

)︄
,

= exp

(︄
1

2
(x,y)T

(︃
Q RT

y

Ry −Λy

)︃
(x,y) + zT

(︁
Rz −Λzy

)︁
(x,y)− 1

2
zTΛzz

)︄
,

where (x,y, z) ∈ X×Y×Z =
∏︁d

i=1{0, . . . ,mi}×Rq×Rr. Here,

(︃
Q RT

y

Ry −Λy

)︃
are the

interaction parameters for the observed variables with discrete-discrete interaction

parameters in Q ∈ Sym(m), discrete-quantitative interactions in Ry ∈ Rq×m, and

quantitative-quantitative interactions in Λy ∈ Sym(q). Moreover,
(︁
Rz −Λzy

)︁
∈

Rr×(m+q) are the interaction parameters for the quantitative latent variables with

the observed variables, where specifically Rz ∈ Rr×m models the interactions with

the observed discrete variables, and Λzy ∈ Rr×q models the interactions with the

observed quantitative variables. Finally, Λz ∈ Sym(r) with Λz ≻ 0 is the precision

matrix of the quantitative latent variables. The density can also be written as

p(x,y, z) ∝ exp

(︄
1

2
(x,y)T

[︃(︃
Q RT

y

Ry −Λy

)︃
+
(︁
Rz −Λzy

)︁T
Λ−1

z

(︁
Rz −Λzy

)︁]︃
(x,y)

. . .− 1

2

[︁
z −Λ−1

z

(︁
Rz −Λzy

)︁
(x,y)

]︁T
Λz

[︁
z −Λ−1

z

(︁
Rz −Λzy

)︁
(x,y)

]︁)︄
.

Observe that for fixed values of (x,y) this is the unnormalized density of a multi-

variate Gaussian in z with mean vector Λ−1
z

(︁
Rz −Λzy

)︁
(x,y) and precision matrix

Λz. Hence, the marginal distribution is

p(x,y) =

∫︂
Rr

p(x,y, z) dz

∝ exp

(︄
1

2
(x,y)T

[︃(︃
Q RT

y

Ry −Λy

)︃
+
(︁
Rz −Λzy

)︁T
Λ−1

z

(︁
Rz −Λzy

)︁]︃
(x,y)

)︄
,

where we set S =

(︃
Q RT

y

Ry −Λy

)︃
and L =

(︁
Rz −Λzy

)︁T
Λ−1

z

(︁
Rz −Λzy

)︁
⪰ 0, which

has at most rank r.
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Normalization of a pairwise CG density. For Θ =

(︃
Q RT

R −Λ

)︃
we want to

compute a(Θ) such that

p(x,y) = exp

(︃
1

2
(x,y)TΘ(x,y)− a(Θ)

)︃
= exp

(︃
1

2
xTQx+ yTRx− 1

2
yTΛy − a(Θ)

)︃
is a normalized density. We get

a(Θ) = log

(︄∑︂
x∈X

∫︂
Y
exp

(︃
1

2
xTQx+ yTRx− 1

2
yTΛy

)︃
dy

)︄

= log

(︄∑︂
x∈X

∫︂
Y
exp

(︂1
2
xT(Q+RTΛ−1R)x

− 1

2
(y −Λ−1Rx)TΛ(y −Λ−1Rx)

)︂
dy

)︄

= log

(︄
(2π)q/2 det(Λ)−1/2

∑︂
x∈X

exp

(︃
1

2
xT(Q+RTΛ−1R)x

)︃)︄

=
q

2
log(2π)− 1

2
log detΛ+ log

(︄∑︂
x∈X

exp

(︃
1

2
xT(Q+RTΛ−1R)x

)︃)︄
.

Likelihood of a pairwise CG density. Given observations (x(k),y(k)) ∈ X ×Rq

for k = 1, . . . , n, the negative log-likelihood for pairwise parameters Θ is given as

ℓ(Θ) = −

n∑︂
k=1

log p(x(k),y(k)) = −

n∑︂
k=1

(︃
1

2
(x(k),y(k))TΘ(x(k),y(k))− a(Θ)

)︃
= n a(Θ)− 1

2

n∑︂
k=1

⟨︁
(x(k),y(k))(x(k),y(k))T,Θ

⟩︁
= n a(Θ)− 1

2
⟨nΣ̂,Θ⟩,

where Σ̂ = 1/n
∑︁n

k=1(x
(k),y(k))(x(k),y(k))T is the empirical second-moment matrix.

Often, one additionally scales the (negative) log-likelihood with a factor 2/n. In this

thesis, we thus use with a slight abuse of notation

ℓ(Θ) = 2a(Θ)− ⟨Σ̂,Θ⟩,

unless stated otherwise.

Gradient. Finally, in preparation of the theoretical analysis, we calculate the

gradient of the log-partition function/negative log-likelihood function. Let

p̂(x,y) = exp
(︁
1/2 (x,y)TΘ(x,y)

)︁
= exp

(︁
1/2 ⟨Θ, (x,y)(x,y)T⟩

)︁
.
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Let Θij be any entry of Θ. Then,

∂a(Θ)

∂Θij

=
∂

∂Θij

(︄
log

(︄∑︂
x∈X

∫︂
Y
p̂(x,y) dy

)︄)︄

=

∑︁
x∈X

∫︁
Y 1/2 [(x,y)(x,y)T]ij p̂(x,y) dy∑︁

x∈X
∫︁
Y p̂(x,y) dy

=
∑︂
x∈X

∫︂
Y

1

2
[(x,y)(x,y)T]ij p̂(x,y) exp(−a(Θ)) dy

=
∑︂
x∈X

∫︂
Y

1

2
[(x,y)(x,y)T]ijp(x,y) dy =

1

2
E[[(x,y)(x,y)T]ij]

Hence, ∇a(Θ) = 1/2E[Σ], where Σ = (x,y)(x,y)T and the expectation is w.r.t. the

model parameterized with Θ. Consequently, the gradient of the negative log-

likelihood is given by the sampling error ∇ℓ(Θ) = E[Σ]− Σ̂ of the second-moment

matrix.

C.3 Proof of Consistency

C.3.1 Outline for the proof of Theorem 3.3

Here, we sketch the proof of Theorem 3.3, which generalizes the ones in [Chan-

drasekaran et al., 2012; Nussbaum and Giesen, 2019b, 2020b] and reconciles a ver-

sion of the primal-dual witness proof technique. The basic idea for the proof is to

study the optimality conditions of the simplified problem

(S∅,L∅) = argmin
S,L

ℓ(S +L) + λ (γ∥S∥1,2 + ∥L∥∗) s.t. Λ[S +L] ≻ 0, (C.6)

where we drop the constraint L ⪰ 0 from Problem (3.7) and subsequently write

∥L∥∗ for the nuclear norm. It turns out that under our assumptions the solution

will automatically satisfy the dropped constraint. The primal-dual witness technique

proceeds by constructing a primal-dual pair that satisfies the optimality conditions

of Problem (C.6)

0 = ∇ℓ(S∅ +L∅) +Z1,2, Z1,2 ∈ λγ∂∥S∅∥1,2
0 = ∇ℓ(S∅ +L∅) +Z∗, Z∗ ∈ λ∂∥L∅∥∗.

We call (S∅,L∅) a primal solution and the subgradients (Z1,2,Z∗) dual solutions.

We summarize these dual variables as Z = −(Z1,2,Z∗) which allows writing the

optimality condition for Problem (C.6) compactly as

Z = D∇ℓ(S∅ +L∅),
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where the duplication operator D has been defined in Proposition 3.2. We will now

outline the general proof strategy that consists of the following three steps. First,

it is shown that the solution to the problem restricted to a certain correct model set

is consistent. Second, it is proven that the solution remains unchanged when the

correct model set is linearized. Third, it is verified that the solution to the linearized

problem also solves the original Problem (3.7). With some more details these three

steps are as follows:

(1) A version of Problem (C.6) that is additionally restricted to the correct model

set M is considered, where M is constrained such that for (S,L) ∈ M the

errors S − S⋆ and L − L⋆ are small in some sense, the group support of S

is contained in the true group support of S⋆, and the rank of L cannot be

greater than the true rank of L⋆. The last constraint turns the problem into

a non-convex one. However, under the three main assumptions, these con-

straints entail consistency properties for all elements in M, in particular for

any solution (SM,LM) to the (non-convex) problem restricted toM. Specif-

ically, for any (S,L) ∈ M it is shown that S has the correct group support

and that L has the correct rank. Moreover, it it is shown that L ⪰ 0. Hence,

any (S,L) ∈M is feasible for the original Problem (3.7).

(2) A solution (SM,LM) from the previous step is fixed. Let Q(SM) and T (LM)

be the respective tangent spaces to the group-sparse and low-rank matrix

varieties at the solution (SM,LM). Then, a linearized problem, where the

constraint setM is replaced by the new constraint set J = Q(SM)×T (LM),

is considered. This particularly replaces the non-convex rank constraint by

an appropriate linear tangent-space constraint. It is shown that the solution

(SJ ,LJ ) to the convex linearized problem is unique and satisfies all constraints

from M. In fact, this implies that the solution (SJ ,LJ ) equals (SM,LM).

Hence, it inherits the consistency properties from the first step.

(3) It is shown that (SJ ,LJ ) solves Problem (C.6) and qualifies as a primal-dual

witness, that is, Z = D∇ℓ(SJ + LJ ) is shown to be strictly dual feasible

and thus is a valid subgradient for the optimality condition of Problem (C.6).

For showing this, note that the primal solution (SJ ,LJ ) from Step (2) to

the problem restricted to J is already characterized by satisfying the optimal-

ity condition restricted to the components in J . This is because additional

Lagrange multipliers due to the tangent-space constraints lie in J ⊥. Hence,

to verify (strict) dual feasibility, it only remains to show that the optimality

condition restricted to the components in J ⊥ is also satisfied.

Finally, using the primal-dual witness (SJ ,LJ ,Z) it is shown that all primal

solutions to Problem (C.6) must be in J . From that it follows that (SJ ,LJ ),

which has consistency properties from the previous steps and is the unique

solution in J , must also be the unique solution to Problem (C.6). Since

LM = LJ ⪰ 0, it can be concluded that (SJ ,LJ ) also solves Problem (3.7).

The proof given in the following sections follows precisely these three steps.
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C.3.2 Constants

Here, we give an overview of constants that are used in the proof or are necessary

to refine the problem-specific constants that appear in the assumptions and claims

of Theorem 3.3.

First, we frequently encounter the constant

χ = ηmax

{︃
να

3β(2− ν)
, 1

}︃
,

which by Lemma C.4 in Section C.3.4 essentially is a norm compatibility constant

between the γ-norm (for any γ ∈ [γmin, γmax]) and the spectral norm. Besides this

norm compatibility constant, further problem-specific constants appear in the proof.

First, let r0 > 0 be such that all Θ in the spectral-norm ball with radius r0 around

Θ⋆ = S⋆+L⋆ are feasible in the sense that the pairwise CG density parametrized by

Θ is normalizable, that is, Λ[Θ] ≻ 0. Such a r0 exists because the feasible domain

is an open set. If there are no quantitative variables, any r0 can be chosen. Second,

l(r0) > 0 is a Lipschitz constant of the Hessian ∇2ℓ = ∇2a on a ball with radius r0
around Θ⋆, see Lemma C.11. Additionally, the following problem-specific constants

appear in the proof:

c0 = 2l(r0)χmax

{︃
1,

να

2β(2− ν)

}︃2

, c1 = max

{︃
1,

να

2β(2− ν)

}︃−1
r0
2
,

c2 =
40

α
+

1

∥H⋆∥
, c3 =

(︃
6(2− ν)

ν
+ 1

)︃
c22∥H⋆∥χ,

c4 = c2 +
3αc22(2− ν)

16(3− ν)
, c5 =

ναc2
2β(2− ν)

,

where

∥H⋆∥ = max
M ∈Sym(w): ∥M∥=1

∥H⋆M∥

is the operator norm of the Hessian H⋆ = ∇2ℓ(S⋆ + L⋆). Moreover, α and δ are

defined in Assumption 1, ν = (1− δ/α)/2, and β is defined in Assumption 2. Next,

the precise constants for the gap Assumption 3 are given as follows:

smin >
c5λ

µ(Q)
and σmin ≥ max

{︃
c3η

ξ(T )2
, c4

}︃
λ.

The precise definitions of all remaining constants that appear in Theorem 3.3 and

the following discussion are given as follows:

C1 =
3α(2− ν)

32(3− ν)
c1, C2 =

3α2ν(2− ν)

211c0(3− ν)2
,

C3 =
ν

6(2− ν)
, C4 =

32(3− ν)

3α(2− ν)
, C5 =

6(2− ν)χ

ν
.
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Finally, we derive a simple bound on ξ(T (L)). For that, let η = maxi∈ [d] mi such

that η2 is an upper bound for the number of elements in a group of interaction

parameters. Then, we have the general norm bounds ∥ · ∥∞,2 ≤ η∥ · ∥∞ ≤ η∥ · ∥,
which imply that ξ(T (L)) ≤ η.

C.3.3 Proof of Proposition 3.2: Coupled stability

In preparation for the proof of Proposition 3.2, we show a few auxiliary results. The

first lemma is important for the whole proof and is an adaptation of the projection

Lemma B.2 (and hence can be proven similarly).

Lemma C.1. For any two tangent spaces Q(S) at smooth point S ∈ S(s) and

T (L) at smooth point L ∈ L(r) we can bound the norms of projections of matrices

M ,N ∈ Sym(w) in the following manner:

∥PQ(S)M∥∞,2 ≤ ∥M∥∞,2 and ∥PQ(S)⊥M∥∞,2 ≤ ∥M∥∞,2

∥PT (L)N∥ ≤ 2∥N∥ and ∥PT (L)⊥N∥ ≤ ∥N∥.

In particular, for J = Q(S)× T (L) we have

∥PJ (M ,N )∥γ ≤ 2 ∥(M ,N )∥γ and ∥PJ⊥(M ,N )∥γ ≤ ∥(M ,N )∥γ .

The next auxiliary lemma can be used to bound the norm-compatibility constant

ξ for a low-rank tangent space by the one for a nearby low-rank tangent space.

Lemma C.2. Let T1, T2 ⊆ Sym(w) be two matrix subspaces of the same dimension

with bounded twisting in the sense that

ρ(T1, T2) = max
∥M∥=1

∥[PT1 − PT2 ] (M )∥ < 1.

Then, it holds that

ξ(T2) ≤
ξ(T1) + ηρ(T1, T2)

1− ρ(T1, T2)
.

Proof. The proof follows the lines of [Chandrasekaran et al., 2012, Lemma 3.1]. First

note that the projection T1 → T2,M ↦→ PT2M is bijective since T1 and T2 have the

same dimension and the projection is injective since for any 0 ̸= M ∈ T1 it holds

∥PT2M∥ = ∥PT1M + (PT2 − PT1)M∥
≥ ∥PT1M∥ − ∥(PT2 − PT1)M∥
≥ ∥M∥ − ρ(T1, T2)∥M∥ = (1− ρ(T1, T2))∥M∥ > 0,

where the first inequality is the triangle inequality, the second inequality uses the

definition of the twisting ρ, and the last inequality follows from the assumption

ρ(T1, T2) < 1. The calculation also implies that the ball {M ∈ T2 : ∥M∥ ≤ 1} is
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contained in the image of the ball {M ∈ T1 : ∥M∥ ≤ 1/(1− ρ(T1, T2))} under PT2 .

Hence, we have that

ξ(T2) = max
M∈T2, ∥M∥≤1

∥M∥2,∞

≤ max
M∈T1, ∥M∥≤1/(1−ρ(T1,T2))

∥PT2M∥2,∞

=
1

1− ρ(T1, T2)
max

M∈T1, ∥M∥=1
∥PT1M + [PT2 − PT1 ]M∥2,∞

≤ 1

1− ρ(T1, T2)

(︃
max

M∈T1, ∥M∥=1
∥PT1M∥2,∞ + max

M∈T1, ∥M∥=1
∥[PT2 − PT1 ]M∥2,∞

)︃
≤ 1

1− ρ(T1, T2)

(︃
ξ(T1) + η max

∥M∥=1
∥[PT2 − PT1 ]M∥

)︃
=

ξ(T1) + ηρ(T1, T2)
1− ρ(T1, T2)

,

where the second inequality is the triangle inequality, the third inequality follows

from the definition of ξ(T1) and the general bound ∥ · ∥2,∞ ≤ η∥ · ∥∞ ≤ η∥ · ∥, and
the last equality uses the definition of the twisting ρ. ■

An easy corollary is the following:

Corollary C.3. Let T , T ′ be two low-rank tangent spaces (of the same dimen-

sion and to the same low-rank matrix variety) with bounded twisting ρ(T , T ′) ≤
ξ(T )/(2η). Then, it holds that

ξ(T ′) ≤ 3ξ(T ).

Proof. Note that by the general bound ξ(T ) ≤ η it follows from the assumption

that ρ(T , T ′) ≤ ξ(T )/(2η) ≤ 1/2. Hence, the claim follows from Lemma C.2 since

ξ(T ′) ≤ ξ(T ) + ηρ(T , T ′)

1− ρ(T , T ′)
≤ ξ(T ) + ηξ(T )/(2η)

1− 1/2
= 3ξ(T ).

The concludes the proof. ■

Proof of Proposition 3.2. (a) For the first claim note that

PJDH⋆(M +N ) = (PQH
⋆(M +N ), PT ′H⋆(M +N )).
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We need to bound the γ-norm of this tuple. For that, we bound the respective

norms for both tuple entries separately. For the first entry we calculate

∥PQH
⋆(M +N )∥∞,2 ≥ ∥PQH

⋆M∥∞,2 − ∥PQH
⋆N∥∞,2

≥ ∥PQH
⋆M∥∞,2 − ∥H⋆N∥∞,2

≥ αQ∥M∥∞,2 − βT ∥N∥∞,2

≥ α∥M∥∞,2 − βξ(T ′)∥N∥
≥ α∥M∥∞,2 − 3βξ(T )∥N∥,

where the first inequality is the triangle inequality, the second inequality is based on

Lemma C.1, the third and fourth inequality follow from the definitions of αQ, βT ,

α, β, moreover in the fourth inequality we used the definition of ξ(T ′), and the last

inequality follows from Corollary C.3. Similarly, for the second entry in the tuple

we calculate that

∥PT ′H⋆(M +N )∥ ≥ ∥PT ′H⋆N∥ − ∥PT ′H⋆M∥
≥ ∥PT ′H⋆N∥ − 2∥H⋆M∥
≥ αT ,ξ(T )/(2η)∥N∥ − 2βQ∥M∥
≥ α∥N∥ − 2β∥M∥
≥ α∥N∥ − 2βµ(Q)∥M∥∞,2,

using the definitions of αT ,ξ(T )/(2η), βQ, α, β, and µ(Q). Now, in conjunction both

bounds yield

∥PJDH⋆(M +N )∥γ ≥ max

{︃
α∥M∥∞,2 − 3βξ(T )∥N∥

γ
, α∥N∥ − 2βµ(Q)∥M∥∞,2

}︃
≥ α ∥(M ,N )∥γ − βmax

{︃
3ξ(T )∥N∥

γ
, 2µ(Q)∥M∥∞,2

}︃
≥ α ∥(M ,N )∥γ − βmax

{︃
3ξ(T )
γ

, 2µ(Q)γ
}︃
∥(M ,N )∥γ

≥ α ∥(M ,N )∥γ − βmax

{︃
3ξ(T )
γmin

, 2µ(Q)γmax

}︃
∥(M ,N )∥γ

= α ∥(M ,N )∥γ −
να

2− ν
∥(M ,N )∥γ =

(︃
α− να

2− ν

)︃
∥(M ,N )∥γ (C.7)

≥ α

2
∥(M ,N )∥γ ,

where the second-to-last inequality follows from on γ ∈ [γmin, γmax], and the final

inequality is implied by ν ≤ 1/2.

(b) For the second claim we write

PJ⊥DH⋆(M +N ) = (PQ⊥H⋆(M +N ), PT ′⊥H⋆(M +N )).
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Again, we bound the respective norms of both tuple entries. For the first entry we

calculate

∥PQ⊥H⋆(M +N )∥∞,2 ≤ ∥PQ⊥H⋆M∥∞,2 + ∥PQ⊥H⋆N∥∞,2

≤ ∥PQ⊥H⋆M∥∞,2 + ∥H⋆N∥∞,2

≤ δQ∥M∥∞,2 + βT ∥N∥∞,2

≤ δ∥M∥∞,2 + βξ(T ′)∥N∥
≤ δ∥M∥∞,2 + 3βξ(T )∥N∥,

where again the first inequality is the triangle inequality, the second inequality is

based on Lemma C.1, the third and fourth inequality follow from the definitions of

δQ, βT , δ, β, moreover in the fourth inequality we used the definition of ξ(T ′), and

the last inequality follows from Corollary C.3. The analogous calculation for the

second entry is

∥PT ′⊥H⋆(M +N )∥ ≤ ∥PT ′⊥H⋆M∥+ ∥PT ′⊥H⋆N∥
≤ ∥H⋆M∥+ ∥PT ′⊥H⋆N∥
≤ βQ∥M∥+ δT ,ξ(T )/(2η)∥N∥
≤ βµ(Q)∥M∥∞,2 + δ∥N∥
≤ 2βµ(Q)∥M∥∞,2 + δ∥N∥,

using the definitions of δT ,ξ(T )/(2η), βQ, δ, β, and µ(Q). Putting the two bounds

together implies

∥PJ⊥DH⋆(M +N )∥γ ≤ max

{︃
δ∥M∥∞,2 + 3βξ(T )∥N∥

γ
, δ∥N∥+ 2βµ(Q)∥M∥∞,2

}︃
≤ δ ∥(M ,N )∥γ + βmax

{︃
3ξ(T )∥N∥

γ
, 2µ(Q)∥M∥∞,2

}︃
≤ δ ∥(M ,N )∥γ + βmax

{︃
3ξ(T )
γ

, 2µ(Q)γ
}︃
∥(M ,N )∥γ

≤ δ ∥(M ,N )∥γ + βmax

{︃
3ξ(T )
γmin

, 2µ(Q)γmax

}︃
∥(M ,N )∥γ

=

(︃
δ +

να

2− ν

)︃
∥(M ,N )∥γ

≤
(︃
δ +

να

2− ν

)︃(︃
α− να

2− ν

)︃−1

∥PJDH⋆(M +N )∥γ

= (1− ν) ∥PJDH⋆(M +N )∥γ ,

where once again we applied the bounds on γ in the fourth inequality, the fifth

inequality uses the inequality from (C.7), and the last equality follows from the

stability assumption, specifically ν = (1− δ/α)/2, which implies that δ = (1− 2ν)α
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such that

δ +
να

2− ν
= (1− 2ν)α +

να

2− ν

= (1− ν)α +
να− (2− ν)να

2− ν
= (1− ν)

(︃
α− να

2− ν

)︃
.

This finishes the proof. ■

From now on, we generally assume that the stability assumption and the γ-

feasibility assumption are satisfied (and hence coupled stability holds for nearby

tangent spaces).

C.3.4 Step 1: Constraining the problem to consistency

In this section, we consider the restricted problem

(SM,LM) = argmin
S,L

ℓ(S +L) + λ (γ∥S∥1,2 + ∥L∥∗)

s. t. (S,L) ∈M, Λ[S +L] ≻ 0,
(C.8)

where parametric and algebraic consistency of the solution are explicitly enforced

by virtue of the non-convex constraint set

M =
{︂
(S,L) : S ∈ Q(S⋆), rank(L) ≤ rank(L⋆),

∥DH⋆(∆S +∆L)∥γ ≤ 9λ, and ∥PT ⊥(∆L)∥ ≤
ξ(T )λ
χ∥H⋆∥

}︂
.

Here, ∆S = S−S⋆ and ∆L = L−L⋆ are the errors, and the constants χ and ∥H⋆∥
are defined in Section C.3.2. Whereas the first two constraints inM restrict S and

L to be within the correct algebraic varieties, the last two help enforcing parametric

consistency. Later in the proof, it will turn out that the additional constraints are

actually inactive at the optimal solution (SM,LM). Note that at this point we do

not actually know that this solution is unique. We will show uniqueness later.

Parametric and algebraic consistency

Let us first discuss how the last two constraints in the description of M enforce

parametric consistency. For that, we need the following lemma that shows that χ

is closely related to a norm compatibility constant between the γ- and the spectral

norm.

Lemma C.4. For γ ∈ [γmin, γmax] and M ∈ Sym(w) it holds that

∥DM∥γ ≤
χ

ξ(T )
∥M∥,
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where χ = ηmax {(να)/(3β(2− ν)), 1} as we defined in Section C.3.2.

Proof. By our choice of γ it holds

∥DM∥γ = max

{︃
∥M∥∞,2

γ
, ∥M∥

}︃
≤ max

{︃
η

γ
, 1

}︃
∥M∥

≤ max

{︃
η

γmin

,
η

ξ(T )

}︃
∥M∥

= ηmax

{︃
να

3β(2− ν)ξ(T )
,

1

ξ(T )

}︃
∥M∥

=
χ

ξ(T )
∥M∥,

where we used ∥M∥∞,2 ≤ η∥M∥∞ ≤ η∥M∥ in the first inequality, which also

implies ξ(T ) ≤ η that we used in the last inequality. ■

Proposition C.5 (parametric consistency). Let γ ∈ [γmin, γmax] and let (S,L) ∈
M. Then, it holds that

∥(∆S,∆L)∥γ ≤
(︃
40

α
+

1

∥H⋆∥

)︃
λ = c2λ.

Proof. Let J = Q× T .

(∆S,∆L) = PJ (∆S,∆L) + PJ⊥(∆S,∆L)

= PJ (∆S,∆L) + (PQ⊥(∆S), PT ⊥(∆L)) = PJ (∆S,∆L) + (0, PT ⊥(∆L))

since ∆S ∈ Q. Hence, it holds by the triangle inequality that

∥(∆S,∆L)∥γ ≤ ∥PJ (∆S,∆L)∥γ + ∥(0, PT ⊥(∆L))∥γ ≤ ∥PJ (∆S,∆L)∥γ + ∥PT ⊥(∆L)∥,

First, the component in the orthogonal direction can be bounded as

∥PT ⊥(∆L)∥ ≤
ξ(T )λ
χ∥H⋆∥

≤ λ

∥H⋆∥

which uses the fourth constraint in the definition ofM and ξ(T ) ≤ χ, which holds

because ξ(T ) ≤ η and that by definition η ≤ χ. Next, the component in the

tangential direction can be bounded via

∥PJ (∆S,∆L))∥γ =
⃦⃦(︁

PQ(∆S), PT (∆L)
)︁⃦⃦

γ

≤ 2

α

⃦⃦
PJDH⋆

(︁
PQ(∆S) + PT (∆L)

)︁⃦⃦
γ

≤ 4

α

⃦⃦
DH⋆

(︁
PQ(∆S) + PT (∆L)

)︁⃦⃦
γ
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=
4

α

⃦⃦
DH⋆

(︁
∆S +∆L − PT ⊥(∆L)

)︁⃦⃦
γ

≤ 4

α

(︂
∥DH⋆(∆S +∆L)∥γ + ∥DH⋆PT ⊥(∆L)∥γ

)︂
≤ 4

α

(︂
9λ+ ∥DH⋆PT ⊥(∆L)∥γ

)︂
≤ 4

α
(9λ+ λ) =

40λ

α
,

where the first inequality is implied by Proposition 3.2 (i), the second inequality

follows from Lemma C.1, the third inequality is the triangle inequality, the fourth

inequality is the third constraint in the definition of M, and the last inequality

follows from

∥DH⋆PT ⊥(∆L)∥γ ≤
χ

ξ(T )
∥H⋆PT ⊥(∆L)∥ ≤

χ

ξ(T )
∥H⋆∥ ∥PT ⊥(∆L)∥ ≤ λ,

where here the first inequality follows from Lemma C.4, and the last inequality

follows from the fourth constraint in the definition ofM. Now, the claimed bound

on ∥(∆S,∆L)∥γ follows by putting together the bounds of the components in the

directions of J ⊥ and J . ■

Note that Proposition C.5 implies parametric consistency when λ is chosen such

that it goes to zero as n goes to infinity. Next, for obtaining algebraic consistency

we also require the gap assumption to be satisfied.

Proposition C.6 (algebraic consistency). Under the gap assumption (and the sta-

bility and γ-feasibility assumptions) we have for (S,L) ∈M that

(i) S has the same group support as S⋆. For groups that consist of only one ele-

ment, it even holds sign consistency. This means that these individual entries

have the same sign in S and S⋆.

(ii) L has the same rank as L⋆ such that L is a smooth point in L(rank(L⋆)).

Furthermore, it holds L ⪰ 0.

Proof. (i): The matrix S has the same group support as S⋆ since S ∈ Q = Q(S⋆)

and

∥S − S⋆∥∞,2 = ∥∆S∥∞,2 ≤ γ ∥(∆S,∆L)∥γ ≤ γc2λ

≤ να

2β(2− ν)µ(Q)
c2λ =

c5
µ(Q)

λ < smin,

where the first inequality holds by the definition of the γ-norm, the second inequality

holds by Proposition C.5, the third inequality is implied by γ ≤ γmax, and the last

inequality follows from the gap assumption. Sign consistency for groups with only

one entry holds because of the sharp inequality.
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(ii): We have

σmin ≥
c3ηλ

ξ(T )2
=

(︃
6(2− ν)

ν
+ 1

)︃
c22∥H⋆∥χ ηλ

ξ(T )2

≥ 19c22∥H⋆∥χ ηλ

ξ(T )2
≥ 19c2λ

ηχ

ξ(T )2
≥ 19c2λ ≥ 19∥∆L∥,

where the first inequality follows from the gap assumption, the second inequality

follows from ν ≤ 1/2, the third inequality follows from c2 ≥ ∥H⋆∥−1, the fourth

inequality follows from ξ(T ) ≤ η ≤ χ, and the last inequality follows from Proposi-

tion C.5. Now, note that ∥∆L∥ is the largest eigenvalue of ∆L. Hence, the rank of

L = L⋆+∆L cannot decrease and subsequently must be the same as the one of L⋆.

Moreover, positive semidefiniteness of L follows from the positive semidefiniteness

of L⋆. ■

Further properties

We can draw some further conclusions from the properties of the elements in M.

The conclusions are also based on the following lemma.

Lemma C.7 (Propositions 2.1 and 2.2 in [Chandrasekaran et al., 2012]). Let M ∈
Sym(w) be a rank-r matrix with smallest non-zero singular value σ. Moreover, let

∆ be a perturbation to M such that ∥∆∥ ≤ σ/8 and M+∆ is still a rank-r matrix.

Then,

(i) the twisting between the two tangent spaces can be controlled via

ρ(T (M +∆), T (M)) ≤ 2∥∆∥
σ

, and

(ii) the component of the perturbation in the normal direction can be bounded by

∥PT (M)⊥(∆)∥ ≤ ∥∆∥
2

σ
.

First, we conclude that the fourth constraint in the definition ofM is non-binding.

Corollary C.8. Under the stability, γ-feasibility, and gap assumptions we have that

the fourth constraint in the definition ofM is non-binding, or more precisely

∥PT ⊥(∆L)∥ ≤
ξ(T )λ

19χ∥H⋆∥
.

Proof. The proof of Proposition C.6 (ii) shows that ∥∆L∥ ≤ σmin/19 ≤ σmin/8 and

that L = L⋆+∆L has the same rank as L⋆. Hence, we can use Lemma C.7 (ii) and

get

∥PT ⊥(∆L)∥ ≤
∥∆L∥2

σmin

≤ c22λ
2

σmin

≤ c22ξ(T )2λ
c3η

≤ c22ξ(T )λ
c3

≤ ξ(T )λ
19χ∥H⋆∥

,
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where the second inequality follows from Proposition C.5, the third inequality follows

from the gap assumption, the fourth inequality follows from ξ(T ) ≤ η, and the last

inequality follows from the definition of c3 and ν ≤ 1/2. Observe that

ξ(T )λ
19χ∥H⋆∥

<
ξ(T )λ
χ∥H⋆∥

,

that is, we have shown a stronger bound than the fourth constraint in the definition

ofM, which therefore is non-binding. ■

We collect further properties of elements in M that we will use later on in the

following corollary. Particularly, we show that low-rank tangent spaces to elements

in M are close to T = T (L⋆), that is, the true tangent space. This is important

since it allows to work with Proposition 3.2.

Corollary C.9. Under the stability, γ-feasibility, and gap assumptions we have that

(i) ρ(T , T (L)) < ξ(T )/(2η),

(ii)
⃦⃦
DH⋆PT (L)⊥(L

⋆)
⃦⃦
γ
≤ (λν)/(6(2− ν)), and

(iii) ∥PT (L)⊥(L
⋆)∥ ≤ 16(3−ν)λ

3α(2−ν)
.

Proof. (i): In the proof of Corollary C.8 we have seen that ∥∆L∥ ≤ σmin/8. There-

fore, we can apply Lemma C.7 (i) such that

ρ(T , T (L)) ≤ 2∥∆L∥
σmin

≤ 2c2λ

σmin

≤ 2c2ξ(T )2

c3η
≤ 2ξ(T )2

19χc2∥H⋆∥η
≤ 2ξ(T )

19η
<

ξ(T )
2η

,

where the second inequality follows from Proposition C.5, the third from the gap

assumption, the fourth from the definition of c3 and ν ≤ 1/2, and the fifth from

ξ(T ) ≤ η ≤ χ and c2 ≥ ∥H⋆∥−1, that is, c2∥H⋆∥ ≥ 1.

(ii): Let σ′ denote the minimum non-zero singular value of L. From the proof of

Proposition C.6(ii) we have σmin ≥ 19∥∆L∥ and thus

σ′ ≥ σmin − ∥∆L∥ ≥ 19∥∆L∥ − ∥∆L∥ = 18∥∆L∥.

This allows us to apply Lemma C.7 (ii), where we consider L⋆ as a perturbation of

L. In doing so we get

∥PT (L)⊥(L
⋆)∥ = ∥PT (L)⊥(L−∆L)∥ = ∥PT (L)⊥(∆L)∥

≤ ∥∆L∥2

σ′ ≤ c22λ
2

σ′ ≤
νξ(T )λ

6(2− ν)χ∥H⋆∥
,
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where the second inequality follows from Proposition C.5, and the last inequality

follows from

σ′ ≥ σmin − ∥∆L∥ ≥
(︃

c3η

ξ(T )2
− c2

)︃
λ =

(︃(︃
6(2− ν)

ν
+ 1

)︃
c22χ∥H⋆∥η
ξ(T )2

− c2

)︃
λ

≥ 6(2− ν)

ν

c22χ∥H⋆∥
ξ(T )

λ+

(︃
c22χ∥H⋆∥
ξ(T )

− c2

)︃
λ ≥ 6(2− ν)

ν

c22χ∥H⋆∥
ξ(T )

λ,

where the second inequality follows from the gap assumption and Proposition C.5,

the equality follows from the definition of c3, the third inequality follows from ξ(T ) ≤
η, and the last inequality follows from c2 ≥ ∥H⋆∥−1 and ξ(T ) ≤ χ.

Hence, we have

⃦⃦
DH⋆PT (L)⊥(L

⋆)
⃦⃦
γ
≤ χ

ξ(T )
∥H⋆PT (L)⊥(L

⋆)∥ ≤ χ∥H⋆∥
ξ(T )

∥PT (L)⊥(L
⋆)∥ ≤ νλ

6(2− ν)
,

where the first inequality follows from Lemma C.4, the second inequality follows

from the definition of ∥H⋆∥, and the last inequality follows from the upper bound

on ∥PT (L)⊥(L
⋆)∥ that we have just derived above.

(iii): We have bound ∥PT (L)⊥(L
⋆)∥ in Part (ii) of the proof. Here we use an

alternative lower bound on σ′, namely

σ′ ≥ σmin − ∥∆L∥ ≥ (c4 − c2)λ ≥
3αc22(2− ν)

16(3− ν)
λ,

where the second inequality follows from the gap assumption and from Proposi-

tion C.5, and the last inequality follows from the definition of c4. Using this alter-

native bound on σ′ produces the claim as a consequence of

∥PT (L)⊥(L
⋆)∥ ≤ ∥∆L∥2

σ′ ≤ c22λ
2

σ′ ≤
16(3− ν)

3α(2− ν)
λ,

where the first inequality follows from Lemma C.7 (ii) as in the proof of Part (ii)

above, the second inequality follows from Proposition C.5, and the last inequality

follows from the alternative lower bound on σ′. ■

The claims in this section hold for all (S,L) ∈ M and hence also apply to any

minimizer (SM,LM) of Problem (C.8). In the following, we work with an arbitrary

fixed solution (SM,LM). Later, we show that the solution is unique. In fact, we

show that it is the unique solution to the original Problem (3.7).

C.3.5 Step 2: Relaxation to tangent spaces

Our goal is to successively remove all constraints from the previously analyzed Prob-

lem (C.8). As an intermediate step, we simplify the problem by passing over to a
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convex relaxation of the non-convex rank constraint in the definition of M. This

rank constraint is replaced by a low-rank tangent-space constraint at the solution of

Problem (C.8). Specifically, we now focus on the following tangent-space constrained

problem
(SJ ,LJ ) = argmin

S,L
ℓ(S +L) + λ (γ∥S∥1,2 + ∥L∥∗)

s. t. (S,L) ∈ J , Λ[S +L] ≻ 0,
(C.9)

where J = Q×T (LM). Note that the other constraints fromM have been omitted

as well. In the analysis of Problem (C.9), we proceed as follows: First, we show

uniqueness of the solution. Then, we introduce some tools that will make it easier to

work with optimality conditions and motivate the choice of the trade-off parameter λ.

Afterwards, we show parametric consistency of the solution (SJ ,LJ ), particularly

since at this point we do not know that it is inM. Finally, we show that (SJ ,LJ )

is indeed inM and thus must coincide with (SM,LM).

Uniqueness of the solution. Here, we show how transversality of the tangent

spaces implies uniqueness of the solution.

Proposition C.10 (uniqueness of the solution). Under the stability and γ-feasibility

assumptions, Problem (C.9) is feasible and has a unique solution.

Proof. Instead of showing uniqueness of the solution to Problem (C.9), we consider

the equivalent constrained form of the problem, that is,

min
S,L

ℓ(S +L) subject to (S,L) ∈ J , Λ[S +L] ≻ 0, ∥S∥1,2 ≤ τ1, ∥L∥∗ ≤ τ2,

where τ1, τ2 > 0 are constants that depend on λ and γ. We show that this problem

has a unique solution. First observe that the constraint Λ[S + L] ≻ 0 is also

implicitly enforced by a logdet-barrier from the likelihood term, see Appendix C.2.

The other constraints of this problem describe a non-empty convex and compact

subset of Sym(w) × Sym(w). Hence, the existence of a solution follows from the

convexity of the objective function, which is the composition of the negative log-

likelihood function and the linear addition function.

Now, uniqueness follows from strict convexity of the objective function as follows.

Let (S,L), (S′,L′) ∈ J be distinct such that at least one of S−S′ ∈ Q and L−L′ ∈
T (LM) is non-zero. For the compound matrices Θ = S + L and Θ′ = S′ + L′ we

have that

Θ−Θ′ = S +L− (S′ +L′) = (S − S′) + (L−L′) ̸= 0

since by Proposition 3.2 and the following remark the tangent spaces are transverse,

that is, Q ∩ T (LM) = {0}. Proposition 3.2 can be applied because the necessary

condition ρ(T , T (LM)) < ξ(T )/(2η) holds by Corollary C.9 (i) as T (LM) is the

tangent space at LM with (SM,LM) ∈ M. Now, by Taylor expansion with the
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mean-value form of the remainder there exists some t ∈ [0, 1] such that

ℓ(Θ′) = ℓ(Θ) +∇ℓ(Θ)T(Θ−Θ′) +
1

2
(Θ−Θ′)T∇2ℓ (tΘ+ (1− t)Θ′) (Θ−Θ′)

> ℓ(Θ) +∇ℓ(Θ)T(Θ−Θ′),

where the inequality follows from Θ −Θ′ ̸= 0 and the positive definiteness of the

Hessian at any parameter matrix Θ, that is, M∇2ℓ(Θ)M > 0 for all 0 ̸= M ∈
Sym(w). This inequality establishes strict convexity of the objective as a function

of (S,L) ∈ J .

Finally, for showing uniqueness suppose for a contradiction that (S,L), (S′,L′) ∈
J are two distinct solutions. Then, strict convexity and equality of the objective

function values imply that

ℓ

(︃
1

2
(S +L) +

1

2
(S′ +L′)

)︃
<

1

2
ℓ(S +L) +

1

2
ℓ(S′ +L′) = ℓ(S +L) = ℓ(S′ +L′).

This contradicts that (S,L) and (S′,L′) are solutions. Hence, there can be only

one unique solution. ■

Supporting results for first-order optimality conditions. In our analysis we

frequently use first-order optimality conditions. In this section, we present some

tools that turn out to be useful when analyzing these optimality conditions.

First, we rewrite the gradient of the negative log-likelihood by Taylor-expansion.

Using Θ⋆ = S⋆ +L⋆, ∆S = SJ − S⋆, and ∆L = LJ −L⋆ we have

∇ℓ(SJ +LJ ) = ∇ℓ(Θ⋆ +∆S +∆L) = ∇ℓ(Θ⋆) +H⋆(∆S +∆L) +R(∆S +∆L)

= ∇ℓ(Θ⋆) +H⋆(∆S + PT (LM)∆L)−H⋆PT (LM)⊥L
⋆

+R(∆S + PT (LM)∆L − PT (LM)⊥L
⋆) (C.10)

with the remainder R(∆S +∆L) = ∇ℓ(SJ +LJ )−∇ℓ(Θ⋆)−H⋆(∆S +∆L). In the

last line, we split ∆L into its tangential and normal components for reasons that

will become evident later in the proof. The remainder can be bounded using the

following lemma. Remember that r0 > 0 is chosen such that all parameter matrices

Θ in the spectral-norm ball of radius r0 around Θ⋆ = S⋆ + L⋆ are feasible for the

likelihood.

Lemma C.11. Let ∆S ∈ Q and γ ∈ [γmin, γmax] such that

∥(∆S,∆L)∥γ ≤ max

{︃
1,

να

2β(2− ν)

}︃−1
r0
2

= c1.

Then, there exists a constant c0 > 0 such that the remainder can be bounded via

∥DR(∆S +∆L)∥γ ≤
c0

ξ(T )
∥(∆S,∆L)∥2γ .
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Proof. First note that the gradients of the negative log-likelihood and of the log-

partition (normalizing) function a(·) differ only by a constant since ∇ℓ(·) = ∇a(·)−
Σ̂. In particular, it holds H⋆ = ∇2ℓ(Θ⋆) = ∇2a(Θ⋆). Hence, the gradient of the

log-partition function can be expanded similarly as

∇a(Θ⋆ +∆S +∆L) = ∇a(Θ⋆) +∇2a(Θ⋆)(∆S +∆L) +R(∆S +∆L)

with the same remainder. The remainder can be expressed using a definite-integral

representation

R(∆S +∆L) = ∇a(Θ⋆ +∆S +∆L)−∇a(Θ⋆)−∇2a(Θ⋆)(∆S +∆L)

=

∫︂ 1

0

[︁
∇2a (Θ⋆ + t(∆S +∆L))−∇2a(Θ⋆)

]︁
(∆S +∆L) dt.

For bounding the remainder, observe that the Hessian ∇2a is Lipschitz-continuous

on any compact set since a is twice continuously differentiable. Let l(r0) denote the

Lipschitz constant for ∇2a on the compact ball B(Θ⋆) = {Θ : ∥Θ−Θ⋆∥ ≤ r0} such
that for all Θ,Θ′ ∈ B(Θ⋆) it holds

∥∇2a(Θ)−∇2a(Θ′)∥ = max
M ∈ Sym(w): ∥M∥=1

∥
[︁
∇2a(Θ)−∇2a(Θ′)

]︁
M∥

≤ l(r0)∥Θ−Θ′∥.

Now, we establish that Θ⋆+∆S+∆L is contained in B(Θ⋆). We do so by bounding

∥∆S +∆L∥ ≤ ∥∆S∥+ ∥∆L∥

≤ γµ(Q)∥∆S∥∞,2

γ
+ ∥∆L∥

≤ max {γµ(Q), 1}
(︃
∥∆S∥∞,2

γ
+ ∥∆L∥

)︃
≤ 2max {γµ(Q), 1} ∥(∆S,∆L)∥γ

≤ 2max

{︃
να

2β(2− ν)
, 1

}︃
∥(∆S,∆L)∥γ ≤ r0,

where in the third inequality we bounded the respective norms on∆S and∆L by the

γ-norm, in the fourth inequality we used γ ≤ γmax, and in the last inequality we used

the bound on ∥(∆S,∆L)∥γ from the assumption. Next, we bound the remainder in

the spectral norm with the help of the Lipschitz constant l(r0) as follows

∥R(∆S +∆L)∥ ≤
∫︂ 1

0

⃦⃦[︁
∇2a (Θ⋆ + t(∆S +∆L))−∇2a(Θ⋆)

]︁
(∆S +∆L)

⃦⃦
dt

≤
∫︂ 1

0

⃦⃦
∇2a (Θ⋆ + t(∆S +∆L))−∇2a(Θ⋆)

⃦⃦
∥∆S +∆L∥ dt

≤
∫︂ 1

0

l(r0)t ∥∆S +∆L∥2 dt =
l(r0)

2
∥∆S +∆L∥2 .
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This entails a bound on the γ-norm of the remainder in the following way

∥DR(∆S +∆L)∥γ ≤
χ

ξ(T )
∥R(∆S +∆L)∥

≤ l(r0)χ

2ξ(T )
∥∆S +∆L∥2

≤ 2l(r0)χ

ξ(T )
max

{︃
να

2β(2− ν)
, 1

}︃2

∥(∆S,∆L)∥2γ

=
c0

ξ(T )
∥(∆S,∆L)∥2γ ,

where the first inequality is a consequence of Lemma C.4, the second inequality is

based on the bound on the remainder from above, and the third inequality makes

use of the bound for ∥∆S +∆L∥ also shown above. Finally, to conclude the result

we define

c0 = 2l(r0)χmax

{︃
να

2β(2− ν)
, 1

}︃2

.

This finishes the proof. ■

Next, for our work with the first-order optimality conditions some characteriza-

tions of norm subdifferentials will turn out to be useful.

Lemma C.12. Let ∥ · ∥ be a norm on Rn and let ∥ · ∥∗ be its dual norm. Let y be

in the subdifferential ∂∥x∥ for some x ∈ Rn. Then, for the dual norm it holds that

∥y∥∗ = sup
x:∥x∥=1

yTx ≤ 1.

Proof. Since y ∈ ∂∥x∥, the convexity of ∥ · ∥ implies for all z that

∥z∥ ≥ ∥x∥+ yT(z − x) ⇐⇒ yTx− ∥x∥ ≥ yTz − ∥z∥.

Hence, we can also take the supremum over all z to obtain

yTx− ∥x∥ ≥ sup
z

{︁
yTz − ∥z∥

}︁
=

{︄
0, ∥y∥∗ ≤ 1

∞, else
.

This follows because supz

{︁
yTz − ∥z∥

}︁
is the Fenchel conjugate of the norm ∥ · ∥,

which is given by the indicator function of the unit ball of the dual norm, see, for

example, [Bach et al., 2012, Proposition 1.4]. Now, as the left hand side in the

inequality above is always finite it must hold ∥y∥∗ ≤ 1. ■

Next we record the subgradient characterizations for the ℓ∞,2-norm and the nuclear

norm. They are straight-forward adaptations of the characterizations in Section 2.2.2

to the embedding space Sym(w) with the group-structure prescribed by the graphical

model part.

124



Lemma C.13. The following holds:

(i) For S ∈ S(| gsupp(S)|) with tangent space Q(S) at S it holds Z ∈ ∂∥S∥1,2 if

and only if

PQ(S)(Z) = gsign(S) and ∥PQ(S)⊥(Z)∥∞,2 ≤ 1,

where the group-sign function is defined as

[gsign(S)]ij =

{︄
Sij/|Sij|, Sij ̸≡ 0,

0, otherwise
, i, j ∈ [d+ q].

(ii) For a rank-r matrix L ∈ L(r) with tangent space T (L) at L it holds Z ∈
∂∥L∥∗ if and only if

PT (L)(Z) = UUT and ∥PT (L)⊥(Z)∥ ≤ 1,

where L = UEUT is a restricted eigenvalue decomposition of L with orthog-

onal matrix U ∈ Rw× r and diagonal matrix E ∈ Rr× r.

In the above characterizations, we call a subgradient (that is, an element from the

subdifferential) strictly feasible if the inequality for the projection of the subgradient

onto the normal space holds strictly.

Proof of Lemma C.13. (i) The subdifferential of a sum of convex functions is just

the Minkowski sum of the respective subdifferentials. The ℓ1,2-norm is such a sum

of convex functions, each of which maps onto the (vectorized) ℓ2-norm of a single

particular group. Elements in the subdifferential of such a function can only be non-

zero in entries that belong to the particular group. Moreover, the possible values

these entries can take are characterized by the subdifferential of the ℓ2-norm which

is given as follows. Let x have the same dimension as the group. Then, if x is

non-zero, it holds ∂∥x∥2 = gsign(x), which corresponds to a group being in the

group support of S. If otherwise x is zero, we have ∂∥x∥2 = {y : ∥y∥2 ≤ 1}, which
corresponds to a group not being in the group support of S. Hence, the form of

the ℓ1,2-norm subdifferential follows by noting that PQ(S) precisely projects onto the

entries that belong to the group support and that PQ(S)⊥ projects on the ones that

are not contained in the group support.

(ii) See [Watson, 1992, page 41]. ■

Parametric consistency of the solution. Let us now establish parametric con-

sistency for the unique solution of Problem (C.9).
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Proposition C.14. Next to the stability, γ-feasibility, and gap assumptions also

assume

∥D∇ℓ(Θ⋆)∥γ ≤ (νλ)/(6(2− ν)) and λ ≤ min{C1, C2 ξ(T )}.

Then, the errors ∆S = SJ − S⋆ and ∆L = LJ −L⋆ satisfy

∥(∆S,∆L)∥γ ≤
32(3− ν)

3α(2− ν)
λ ≤ c1.

Proof. Similar to the proof of Proposition C.5, we decompose the error (∆S,∆L)

into its tangential part in J = Q × T (LM) and its normal part in J ⊥ = Q⊥ ×
T (LM)⊥ and bound these parts separately. We have

(∆S,∆L) = PJ (∆S,∆L) + PJ⊥(∆S,∆L).

The γ-norm of the second term is easily bound by Corollary C.9 (iii) since

∥PJ⊥(∆S,∆L)∥γ =
⃦⃦
−(0, PT (LM)⊥L

⋆)
⃦⃦
γ
=
⃦⃦
PT (LM)⊥L

⋆
⃦⃦
≤ 16(3− ν)

3α(2− ν)
λ.

We now aim at establishing the same bound in the γ-norm for the first term, that

is, for PJ (∆S,∆L). For this more challenging task the optimality conditions of

Problem (C.9) will be helpful. For that, let us first take a look at the Lagrangian

of Problem (C.9). It reads as

L(S,L,AQ⊥ ,AT (LM)⊥) = ℓ(S+L)+λ(γ∥S∥1,2+∥L∥∗)+⟨AQ⊥ ,S⟩+⟨AT (LM)⊥ ,L⟩,

where AQ⊥ ∈ Q⊥ and AT (LM)⊥ ∈ T (LM)⊥ are the Lagrange multipliers. We leave

the constraint Λ[S + L] ≻ 0 implicit since it is enforced by the logdet-barrier that

is part of the log-likelihood. Now, the optimality conditions of Problem (C.9) for

the optimal solution (SJ ,LJ ) state that

0 = ∇ℓ(SJ +LJ ) +Z1,2 +AQ⊥ , Z1,2 ∈ λγ∂∥SJ ∥1,2,
0 = ∇ℓ(SJ +LJ ) +Z∗ +AT (LM)⊥ , Z∗ ∈ λ∂∥LJ ∥∗.

Projecting onto J and J ⊥, a compact representation of these conditions is given by

PJD∇ℓ(SJ +LJ ) = −PJ (Z1,2,Z∗)

and

PJ⊥D∇ℓ(SJ +LJ ) = −PJ⊥(Z1,2,Z∗)− (AQ⊥ ,AT (LM)⊥).

Since the Lagrange multipliers are undetermined, the second of these projected equa-

tions does not constitute a restriction on the optimal solution (SJ ,LJ ). Instead,

the optimal solution is fully characterized by the first equation that henceforth we

refer to as the projected optimality condition (projected onto J ). It follows that the
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solution to the first equation is also unique. In fact, the important observation about

the projected optimality condition is that it represents a condition on the projected

error PJ (∆S,∆L) =
(︁
∆S, PT (LM)∆L

)︁
. This is an immediate consequence of

∇ℓ(SJ +LJ ) = ∇ℓ(SJ − S⋆ + S⋆ +LJ − PT (LM)L
⋆ + PT (LM)L

⋆)

= ∇ℓ(∆S + S⋆ + PT (LM)∆L + PT (LM)L
⋆)

which does only depend on ∆S and PT (LM)∆L because S⋆ and PT (LM)L
⋆ are both

constants.

We now show the desired bound ∥PJ (∆S,∆L)∥γ ≤
16(3−ν)
3α(2−ν)

λ by constructing a

map whose only fixed point is PJ (∆S,∆L) and that maps a γ-norm ball with radius
16(3−ν)
3α(2−ν)

λ onto itself. These prerequisites will then allow the application of Brouwer’s

fixed-point theorem [Brouwer, 1911], guaranteeing the existence of a fixed point

within this small ball. This fixed point must be the unique one, that is, PJ (∆S,∆L).

Hence, the projected error is contained in the γ-norm ball which, yields the desired

bound.

To construct the map, we define J : J → J , (M ,N ) ↦→ PJDH⋆(M +N ). Note

that the inverse operator J−1 is well-defined since by Proposition 3.2 the operator

J is injective and thus also bijective on J . Proposition 3.2 (i) can be applied

because by Corollary C.9 (i) it holds ρ(T , T (LM)) < ξ(T )/(2η). Now, setting

Z = −PJ (Z1,2,Z∗), we consider the continuous map

F (M ,N ) = (M ,N )− J−1
(︁
PJD∇(SJ +LJ )−Z

)︁
= (M ,N )− J−1

(︁
PJD

[︁
∇ℓ(Θ⋆) +H⋆(M +N )−H⋆PT (LM)⊥L

⋆

+R(M +N − PT (LM)⊥L
⋆)
]︁
−Z

)︁
= J−1

(︁
PJD

[︁
−∇ℓ(Θ⋆) +H⋆PT (LM)⊥L

⋆

−R(M +N − PT (LM)⊥L
⋆)
]︁
+Z

)︁
,

where in the second inequality we rewrote the gradient and in the last equality used

that J−1PJDH⋆(M +N ) = (M ,N ) by definition. Observe that by construction

any fixed point (M ,N ) of F must satisfy the projected optimality condition. Hence,

as desired, the projected error PJ (∆S,∆L) is the unique fixed point. As outlined

above, we now show that F maps a γ-norm ball with radius 16(3−ν)
3α(2−ν)

λ onto itself,

which then allows the application of Brouwer’s fixed-point theorem. For (M ,N )

with ∥(M ,N )∥γ ≤
16(3−ν)
3α(2−ν)

λ this follows from

∥F (M ,N )∥γ ≤
2

α

⃦⃦
PJD

[︁
∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆

+R(M +N − PT (LM)⊥L
⋆)
]︁
−Z

⃦⃦
γ

≤ 2

α

{︂
∥PJD∇ℓ(Θ⋆)∥γ +

⃦⃦
PJDH⋆PT (LM)⊥L

⋆
⃦⃦
γ

+
⃦⃦
PJDR(M +N − PT (LM)⊥L

⋆)
⃦⃦
γ
+ ∥Z∥γ

}︂
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≤ 4

α

{︂
∥D∇ℓ(Θ⋆)∥γ +

⃦⃦
DH⋆PT (LM)⊥L

⋆
⃦⃦
γ
+ λ
}︂

+
4

α

⃦⃦
DR(M +N − PT (LM)⊥L

⋆)
⃦⃦
γ

≤ 4

α

(︃
2(3− ν)

3(2− ν)
λ+

2(3− ν)

3(2− ν)
λ

)︃
=

16(3− ν)

3α(2− ν)
λ,

where the first inequality follows from Proposition 3.2 (i) since the operator norm

of J−1 is bounded by the reciprocal minimum gain of J , the second inequality is the

triangle inequality, and the third inequality is implied by Lemma C.1 and

∥Z∥γ = ∥−PJ (Z1,2,Z∗)∥γ = max
{︁
γ−1∥PQ(Z1,2)∥∞,2, ∥PT (LM)(Z∗)∥

}︁
≤ 2λ,

which holds since by the subgradient characterizations in Lemma C.13 we have

that ∥PQ(Z1,2)∥∞,2 = ∥λγ gsign(Z1,2)∥∞,2 ≤ λγ and since by Lemma C.12 it holds

∥Z∗∥ ≤ λ, which yields ∥PT (LM)(Z∗)∥ ≤ 2∥Z∗∥ ≤ 2λ in conjunction with the

projection Lemma C.1. Note that for bounding ∥PT (LM)(Z∗)∥, the subgradient

characterization in Lemma C.13 is not sufficient and we need Lemma C.1 because

Z∗ is a subgradient at LJ , and the tangent space at LJ may be different from

T (LM) despite having LJ ∈ T (LM). The fourth and last inequality above follows

on the one hand from

∥D∇ℓ(Θ⋆)∥γ +
⃦⃦
DH⋆PT (LM)⊥L

⋆
⃦⃦
γ
+ λ ≤

(︃
2 · ν

6(2− ν)
+ 1

)︃
λ =

2(3− ν)

3(2− ν)
λ,

(C.11)

which is a consequence of the assumed bound ∥D∇ℓ(Θ⋆)∥γ ≤
νλ

6(2−ν)
on the gradient

and
⃦⃦
DH⋆PT (LM)⊥L

⋆
⃦⃦
γ
≤ νλ

6(2−ν)
by Corollary C.9 (ii), and on the other hand from

a bound on the remainder based on Lemma C.11 given by⃦⃦
DR(M +N − PT (LM)⊥L

⋆)
⃦⃦
γ
≤ c0

ξ(T )
⃦⃦
(M ,N )− (0, PT (LM)⊥L

⋆)
⃦⃦2
γ

≤ c0
ξ(T )

(︂
∥(M ,N )∥γ + ∥PT (LM)⊥L

⋆∥
)︂2

≤ c0
ξ(T )

(︃
32(3− ν)

3α(2− ν)

)︃2

λ2

≤ c0
ξ(T )

(︃
32(3− ν)

3α(2− ν)

)︃2

λ
3α2ν(2− ν)

211c0(3− ν)2
ξ(T )

=
ν

6(2− ν)
λ ≤ 2(3− ν)

3(2− ν)
λ, (C.12)

where the second inequality is the triangle inequality, the third inequality uses that

(M ,N ) belongs to the γ-norm ball with radius 16(3−ν)
3α(2−ν)

λ and that from Corol-

lary C.9 (iii) we have ∥PT (LM)⊥L
⋆∥ ≤ 16(3−ν)

3α(2−ν)
λ, the fourth inequality applies λ ≤

C2 ξ(T ), and the last inequality uses ν < 4(3− ν) as ν ≤ 1/2. Lemma C.11 can be
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applied since λ ≤ C1 implies that

⃦⃦
(M ,N − PT (LM)⊥L

⋆)
⃦⃦
γ
≤ ∥(M ,N )∥γ + ∥PT (LM)⊥L

⋆∥ ≤ 32(3− ν)

3α(2− ν)
λ ≤ c1.

Hence, the unique fixed point PJ (∆S,∆L) of F , which must be contained in the

ball that F maps onto itself, indeed satisfies that ∥PJ (∆S,∆L)∥γ ≤
16(3−ν)
3α(2−ν)

. To

wrap it all up, we now have

∥(∆S,∆L)∥γ ≤ ∥PJ (∆S,∆L)∥γ + ∥PJ⊥(∆S,∆L)∥γ ≤ 2 · 16(3− ν)

3α(2− ν)
λ ≤ c1.

This finishes the proof. ■

Coinciding solutions. Here, we show that the solutions of the linearized Prob-

lem (C.9) and of the variety-constrained Problem (C.8) indeed coincide. Since in

particular we need to show that (SJ ,LJ ) ∈M, we begin by showing that (SJ ,LJ )

satisfies the third constraint in the description ofM.

Proposition C.15. Under the previous assumptions, the third constraint of M is

strictly satisfied by the solution (SJ ,LJ ) to Problem (C.9), that is, for the errors

∆S = SJ − S⋆ and ∆L = LJ −L⋆ it holds that

∥DH⋆(∆S +∆L)∥γ < 9λ.

Proof. We compute that

∥DH⋆(∆S +∆L)∥γ =
⃦⃦
DH⋆(∆S + PT (LM)∆L − PT (LM)⊥L

⋆)
⃦⃦
γ

≤
⃦⃦
PJDH⋆(∆S + PT (LM)∆L)

⃦⃦
γ

+
⃦⃦
PJ⊥DH⋆(∆S + PT (LM)∆L)

⃦⃦
γ
+
⃦⃦
DH⋆PT (LM)⊥L

⋆
⃦⃦
γ

≤ 40

9
λ+

40

9
λ+

νλ

6(2− ν)

≤ 80

9
λ+

1

18
λ

< 9λ,

where the equality follows from ∆L = PT (LM)∆L − PT (LM)⊥L
⋆ as in the proof of

Proposition C.14, the first inequality is the triangle inequality, and the third inequal-

ity is implied by ν ≤ 1/2. The second inequality follows from
⃦⃦
DH⋆PT (LM)⊥L

⋆
⃦⃦
γ
≤

νλ
6(2−ν)

by Corollary C.9 (ii), from Proposition 3.2 (ii) that gives⃦⃦
PJ⊥DH⋆(∆S + PT (LM)∆L)

⃦⃦
γ
≤ (1− ν)

⃦⃦
PJDH⋆(∆S + PT (LM)∆L)

⃦⃦
γ

≤
⃦⃦
PJDH⋆(∆S + PT (LM)∆L)

⃦⃦
γ
,
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and finally from the rewritten form of the likelihood gradient (C.10) that produces⃦⃦
PJDH⋆(∆S + PT (LM)∆L)

⃦⃦
γ

=
⃦⃦⃦
PJD

[︂
∇ℓ(SJ +LJ )−∇ℓ(Θ⋆) +H⋆PT (LM)⊥L

⋆

−R(∆S + PT (LM)∆L − PT (LM)L
⋆)
]︂⃦⃦⃦

γ

=
⃦⃦
Z − PJD

[︁
∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆ +R(∆S + PT (LM)∆L − PT (LM)L
⋆)
]︁⃦⃦

γ

≤ ∥Z∥γ + ∥PJD∇ℓ(Θ⋆)∥γ +
⃦⃦
PJDH⋆PT (LM)⊥L

⋆
⃦⃦
γ

+
⃦⃦
PJDR(∆S + PT (LM)∆L − PT (LM)L

⋆)
⃦⃦
γ

≤ 2
⃦⃦
DR(∆S + PT (LM)∆L − PT (LM)L

⋆
⃦⃦
γ

+ 2
[︂
∥D∇ℓ(Θ⋆)∥γ +

⃦⃦
DH⋆PT (LM)⊥L

⋆
⃦⃦
γ
+ λ
]︂

≤ 2

[︃
2(3− ν)λ

3(2− ν)
+

2(3− ν)λ

3(2− ν)

]︃
=

8(3− ν)

3(2− ν)
λ ≤ 40

9
λ,

where the second equality is implied by the projected optimality condition

Z = −PJ (Z1,2,Z∗) = PJD∇ℓ(SJ +LJ ),

the first inequality is the triangle inequality, the second inequality does some re-

ordering and uses Lemma C.1 as well as ∥Z∥γ ≤ 2λ from the proof of Proposi-

tion C.14, the third inequality reuses the bounds (C.11) and (C.12) from the proof

of Proposition C.14, which is possible since the projected error PJ (∆S,∆L) =

(∆S, PT (LM)∆L) is bounded by 16(3−ν)
3α(2−ν)

λ, and the last inequality uses 0 < ν ≤ 1/2

and thus (3− ν)/(2− ν) ≤ 5/3. ■

We need two additional lemmas for proving that the solutions coincide. They are

helpful for relaxing variety constraints into tangent-space constraints.

Lemma C.16 (linearization lemma). Let V ⊂ E be a variety and let f : E → R
be a convex continuous function. Assume that x̂ is a smooth point in V and that it

minimizes the function f over the restricted domain V, that is,

x̂ ∈ argmin
x∈V

f(x).

Then, x̂ is also a solution to the problem

x̂ ∈ argmin
x∈ x̂+Tx̂V

f(x)

with linearized domain x̂+ Tx̂V, where Tx̂V is the tangent space at x̂ to the variety

V.

Proof. The tangent space at x̂ is given by the derivatives of differentiable curves

passing through x̂, that is, Tx̂V = {γ′(0) : γ : (−1, 1)→ V , γ(0) = x̂}. Now,
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let 0 ̸= ν ∈ Tx̂V be a direction, and let γ be any associated curve with γ :

(−1, 1) → V , γ(0) = x̂, and γ′(0) = ν. By the definition of a derivative it holds

ν = limt→0 [γ(t) − γ(0)] /t and consequently it also holds x̂ + ν = limt→0

(︁
x̂ +

[γ(t) − γ(0)] /t
)︁
. Since ν ̸= 0 we can assume w.l.o.g. that x̂ = γ(0) ̸= γ(t)

for all t ̸= 0. Then, observe that for 0 < t < 1 the points γ(0), γ(t), and

x̂+[γ(t) − γ(0)] /t = (1− 1/t) γ(0)+γ(t)/t are collinear in that order (as 1/t > 1).

Next, since x̂ = γ(0) minimizes the variety-constrained problem, the scalar func-

tion f ◦ γ : (−1, 1) → R must be minimized at t = 0 implying that for any t it

holds that f(x̂) = f(γ(0)) ≤ f(γ(t)). Hence, by the convexity of f and collinearity

it also holds that f(x̂) = f(γ(0)) ≤ f(γ(t)) ≤ f (x̂+ [γ(t) − γ(0)] /t). Now, from

the continuity of f and after taking the limit t→ 0 it follows that f(x̂) ≤ f(x̂+ν).

The proof is completed by the arbitrariness of ν ∈ Tx̂V . ■

Now, let us see what happens in the presence of another convex constraint.

Lemma C.17 (linearization with an additional convex constraint). Let V ⊂ E be

a variety, let f : E → R be a convex continuous function, and let C ⊂ E be convex.

Assume that x̂ is a smooth point in V and that it minimizes f over the domain

C ∩ V, that is,
x̂ ∈ argmin

x∈C∩V
f(x).

Suppose that x̂ does not minimize f over the linearized domain, that is,

x̂ /∈ argmin
x∈C ∩ (x̂+Tx̂V)

f(x).

Then, any minimizer of f over the linearized domain must be on the boundary of C.

Proof. Let 0 ̸= ν ∈ Tx̂V such that x̂ + ν minimizes the linearized problem. Let

γ : (−1, 1) → V be a smooth curve with γ(0) = x̂, and γ′(0) = ν. First, assume

for a contradiction that f ◦ γ : (−1, 1) → R has its minimum at zero. Then,

by the proof of the previous lemma it would follow that f(x̂ + ν) ≥ f(x̂), which

contradicts the assumption that x̂ does not solve the linearized problem. Therefore,

the value of f must decrease locally around x̂ along γ and we can assume w.l.o.g. that

f(γ(t)) < f(γ(0)) = f(x̂) for all t ∈ (0, 1), that is, the curve enters the area where

f decreases for positive t. Now, since x̂ solves the variety-constrained problem, it

follows that γ(t) for t ∈ (0, 1) cannot be feasible for this problem, that is, γ(t) /∈ C

for t ∈ (0, 1).

Next, similarly to the proof of the previous lemma, for 0 < t < 1 we con-

sider the collinear points γ(0) = x̂ ∈ C, γ(t) /∈ C, and x̂ + [γ(t) − γ(0)] /t.

Then, the convexity of C implies that x̂ + [γ(t) − γ(0)] /t /∈ C. Thus, since

x̂ + [γ(t) − γ(0)] /t → x̂ + ν as t → 0, we have shown that there are points

arbitrarily close to x̂+ ν that are not in C. Hence, the solution x̂+ ν cannot be in

the interior of C. ■
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Now, we can finally show that the solutions coincide.

Proposition C.18. Under the assumptions made previously in Proposition C.14,

the solutions of Problems (C.9) and (C.8) coincide, that is, (SJ ,LJ ) = (SM,LM).

Proof. Let us suppose for a contradiction that the solutions are not the same. We

want to apply Lemma C.17 to the product V = Q×L(rankL⋆) and the convex set

C =
{︂
(S,L) : ∥DH⋆(∆S +∆L)∥γ ≤ 9λ and Λ[S +L] ≻ 0

}︂
.

We know that (SM,LM) is a solution to the variety-constrained problem

min
(S,L)∈C ∩V

ℓ(S +L) + λ (γ∥S∥1,2 + ∥L∥∗)

since the constraint ∥PT ⊥(∆L)∥ ≤ ξ(T )λ
χ∥H⋆∥ in the description of M is non-binding

by Corollary C.8 and dropping this constraint fromM yields the overall constraint

set C ∩ V . By Proposition C.6 we also know that the solution x̂ = (SM,LM) is a

smooth point in the variety V . Note that in this case the tangent space is given by

x̂+ Tx̂V = (SM,LM) +Q× T (LM) = Q× T (LM) = J .

Hence, the linearized problem is

min
(S,L)∈C ∩J

ℓ(S +L) + λ (γ∥S∥1,2 + ∥L∥∗) ,

which is Problem (C.9) constrained to C, that is, with the additional constraint that

∥DH⋆(∆S +∆L)∥γ ≤ 9λ. Nevertheless, this problem is also uniquely solved by the

solution (SJ ,LJ ) to Problem (C.9) since by Proposition C.15 it holds for the errors

∆S = SJ − S⋆ and ∆L = LJ − L⋆ that ∥DH⋆(∆S +∆L)∥γ < 9λ. Because we

assumed for a contradiction that (SM,LM) is different from (SJ ,LJ ), it follows

that (SM,LM) does not solve the linearized problem. Therefore, we can apply

Lemma C.17, which states that the solution (SJ ,LJ ) to the linearized problem

must be on the boundary of C. However, the inequality from Proposition C.15 is

strict, yielding the contradiction that (SJ ,LJ ) must be contained in the interior of

C. Hence, it must hold (SM,LM) = (SJ ,LJ ). ■

A consequence of the fact that the solutions coincide is that the consistency prop-

erties from Proposition C.6 hold for the solution to Problem (C.9). In particular,

we have rank(LJ ) = rank(L⋆), and we have T (LJ ) = T (LM). Next, concern-

ing parametric consistency we now have the bound ∥(∆S,∆L)∥γ ≤
32(3−ν)
3α(2−ν)

λ from

Proposition C.14 and since we showed that the solution is also inM, we also have

the bound ∥(∆S,∆L)∥γ ≤ c2λ = (40/α + ∥H⋆∥−1)λ from Proposition C.5. An easy

calculation demonstrates that the first bound is always better:

32(3− ν)

3α(2− ν)
≤ 40

α
≤ 40

α
+

1

∥H⋆∥
.

132



C.3.6 Step 3: Removing tangent-space constraints

In this section, we show that the tangent-space constraints are actually inactive at

the solution (SJ ,LJ ) to the linearized Problem (C.9) such that (SJ ,LJ ) also solves

the problem

min
S, L

ℓ(S +L) + λ (γ∥S∥1,2 + ∥L∥∗) subject to Λ[S +L] ≻ 0 (C.13)

without the tangent-space constraints. Moreover, since LJ = LM ⪰ 0 by Proposi-

tion C.6 (i), it then also automatically solves the original Problem (3.7). To show

that (SJ ,LJ ) is also the unique solution we use the fact that it is a strictly dual

feasible solution to Problem (C.13) in J in the sense of the subgradient characteri-

zations from Lemma C.13 and the remark thereafter. This qualifies the solution as

a primal-dual witness for the primal-dual witness proof technique.

Primal-dual witness condition. Here, we show that given a strictly dual feasible

solution to Problem (C.13) that is contained in the linearized correct model space

J there cannot be other solutions to Problem (C.13) that are not contained in J .

Proposition C.19 (primal-dual witness). Let (S∅,L∅) be a solution in J = Q ×
T (LM) to Problem (C.13) with corresponding subgradients Z1,2 ∈ λγ∂∥S∅∥1,2 and

Z∗ ∈ λ∂∥L∅∥∗ such that it holds ∇ℓ(S∅+L∅)+Z1,2 = 0 and ∇ℓ(S∅+L∅)+Z∗ = 0.

Suppose that the subgradients satisfy the strict dual feasibility condition

∥PJ⊥(Z1,2,Z∗)∥γ = max
{︁
γ−1∥PQ⊥Z1,2∥∞,2, ∥PT (LM)⊥Z∗∥

}︁
< λ.

Then, all solutions to Problem (C.13) must be in J .

Intuitively, the strict dual feasible condition implies that perturbing (S∅,L∅) ∈ J
infinitesimally into a direction from the normal space J ⊥ causes a sudden non-

continuous change of the subgradients at the perturbed (S∅,L∅) by virtue of the

subgradient characterizations from Lemma C.13. At the same time, the gradient of

the negative log-likelihood at the perturbed (S∅,L∅) changes only infinitesimally

since it is continuous. This ensures that the orthogonally perturbed solution cannot

satisfy the optimality condition for Problem (C.13) and hence cannot be a solution.

It is therefore that the term witness was coined for the solution (S∅,L∅) along with

its strictly dual feasible subgradient.

Proof of Proposition C.19. Let (S∅ + M ,L∅ + N ) be another solution to Prob-

lem (C.13). Our goal is to show that M ∈ Q and N ∈ T (LM). First, it follows
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from the equality of the optimal objective function values that

0 = ℓ(S∅ +M +L∅ +N ) + λ (γ∥S∅ +M∥1,2 + ∥L∅ +N∥∗)
− ℓ(S∅ +L∅)− λ (γ∥S∅∥1,2 + ∥L∅∥∗)

≥ ⟨∇ℓ(S∅ +L∅) +Q1,2,M⟩+ ⟨∇ℓ(S∅ +L∅) +Q∗,N⟩
= ⟨Q1,2 −Z1,2,M⟩+ ⟨Q∗ −Z∗,N⟩
= ⟨PQ⊥(Q1,2 −Z1,2),M⟩+

⟨︁
PT (LM)⊥(Q∗ −Z∗),N

⟩︁
= ⟨PQ⊥(Q1,2 −Z1,2), PQ⊥M⟩+

⟨︁
PT (LM)⊥(Q∗ −Z∗), PT (LM)⊥N

⟩︁
,

where in the inequality we bounded the objective function value at (S∅+M ,L∅+N )

using a subgradient of the convex objective function at (S∅,L∅). The subgradient

of the objective function is composed of the gradient ∇ℓ(S∅ + L∅) of the negative

log-likelihood (note that the derivatives w.r.t. to S and L coincide) and of some

subgradients Q1,2 ∈ λγ∂∥S∅∥1,2 and Q∗ ∈ λ∂∥L∅∥∗ that we can choose. We will

make explicit choices later. In the further steps of the calculation above, we used the

optimality condition for the solution (S∅,L∅) in the second equality. In the third

equality, we used that Q1,2,Z1,2 ∈ λγ∂∥S∅∥1,2 and Q∗,Z∗ ∈ λ∂∥L∅∥∗ which implies

that their components in the respective tangent spacesQ and T (LM) coincide by the

subgradient characterizations in Lemma C.13. Therefore, these components cancel

out and only the projections onto the orthogonal complements of the tangent spaces

remain (note the similarities to the proof of Proposition 2.5 in Appendix B.4.1).

We now choose suitable components of Q1,2 and Q∗ in Q⊥ and T (LM)⊥, respec-

tively. By the subgradient characterization in Lemma C.13 our only restriction is

that ∥PQ⊥Q1,2∥∞,2 ≤ λγ and ∥PT (LM)⊥Q∗∥ ≤ λ must hold. We choose the orthog-

onal components PQ⊥Q1,2 = λγ gsign (PQ⊥M) and PT (LM)⊥Q∗ = λO sign(E)OT,

where PT (LM)⊥N = OEOT is an eigenvalue decomposition of PT (LM)⊥N with or-

thogonal O ∈ Rw×w and diagonal E ∈ Rw×w. It can be readily checked that with

these choices indeed ∥PQ⊥Q1,2∥∞,2 ≤ λγ and ∥PT (LM)⊥Q∗∥ ≤ λ. Now, we continue

the calculation from above with the specific subgradients

⟨PQ⊥(Q1,2 −Z1,2), PQ⊥M⟩+
⟨︁
PT (LM)⊥(Q∗ −Z∗), PT (LM)⊥N

⟩︁
= ⟨PQ⊥Q1,2, PQ⊥M⟩ − ⟨PQ⊥Z1,2, PQ⊥M⟩

+
⟨︁
PT (LM)⊥Q∗, PT (LM)⊥N

⟩︁
−
⟨︁
PT (LM)⊥Z∗, PT (LM)⊥N

⟩︁
= λγ∥PQ⊥M∥1,2 − ⟨PQ⊥Z1,2, PQ⊥M⟩

+ λ∥PT (LM)⊥N∥∗ −
⟨︁
PT (LM)⊥Z∗, PT (LM)⊥N

⟩︁
≥ λγ∥PQ⊥M∥1,2 − ∥PQ⊥Z1,2∥∞,2∥PQ⊥M∥1,2

+ λ∥PT (LM)⊥N∥∗ − ∥PT (LM)⊥Z∗∥∥PT (LM)⊥N∥∗
= (λγ − ∥PQ⊥Z1,2∥∞,2) ∥PQ⊥M∥1,2 +

(︁
λ− ∥PT (LM)⊥Z∗∥

)︁
∥PT (LM)⊥N∥∗,

where the second equality follows from

⟨PQ⊥Q1,2, PQ⊥M⟩ = ⟨λγ gsign (PQ⊥M ) , PQ⊥M⟩ = λγ∥PQ⊥M∥1,2
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and ⟨︁
PT (LM)⊥Q∗, PT ⊥N

⟩︁
=
⟨︁
λO sign(E)OT,OEOT

⟩︁
= λ tr

(︂(︁
O sign(E)OT

)︁T
OEOT

)︂
= λ tr

(︁
O sign(E)OTOEOT

)︁
= λ tr

(︁
O sign(E)EOT

)︁
= λ tr

(︁
O|E|OT

)︁
= λ tr

(︁
|E|OTO

)︁
= λ tr(|E|) = λ∥PT (LM)⊥N∥∗,

and the inequality follows from (the generalized) Hölder’s inequality in Lemma B.3

for the respective dual norm pairs (ℓ∞,2- and ℓ1,2-norm, and nuclear and spectral

norm). In summary, we now have

0 ≥ (λγ − ∥PQ⊥Z1,2∥∞,2) ∥PQ⊥M∥1,2 +
(︁
λ− ∥PT (LM)⊥Z∗∥

)︁
∥PT (LM)⊥N∥∗.

From the assumption that max
{︁
γ−1∥PQ⊥Z1,2∥∞,2, ∥PT (LM)⊥Z∗∥

}︁
< λ it follows

that ∥PQ⊥Z1,2∥∞ < λγ and ∥PT (LM)⊥Z∗∥ < λ. Therefore, the inequality above

can only be valid if ∥PQ⊥M∥1,2 = 0 = ∥PT (LM)⊥N∥∗, that is, if M ∈ Q and

N ∈ T (LM). This implies that S∅ + M ∈ Q and L∅ + N ∈ T (LM). In other

words, the second solution (S∅+M ,L∅+N ) is also contained in J = Q×T (LM).

This finishes the proof. ■

Coinciding solutions. Finally, we show that the solution (SJ ,LJ ) to the tangent-

space constrained Problem (C.9) is also the unique solution to the original Prob-

lem (3.7).

Proposition C.20 (coinciding solutions). Assume that λ ≤ min{C1, C2 ξ(T )} and
assume that ∥D∇ℓ(Θ⋆)∥γ ≤ (νλ)/(6(2−ν)). Then, under the stability, γ-feasibility,
and gap assumptions, the solution (SJ ,LJ ) to the tangent-space constrained Prob-

lem (C.9) also uniquely solves Problem (3.7).

Proof. It suffices to show that (SJ ,LJ ) uniquely solves Problem (C.13). This is

because (SJ ,LJ ) is in M by Proposition C.18 and therefore it holds LJ ⪰ 0 by

Proposition C.6 (i). Hence, on the one hand we need to prove that (SJ ,LJ ) solves

Problem (C.13), and on the other hand we must show that it is the unique solution.

We show that (SJ ,LJ ) solves Problem (C.13) by verifying the first-order opti-

mality conditions. They require that ∇ℓ(SJ + LJ ) ∈ −λγ∂∥SJ ∥1,2 and ∇ℓ(SJ +

LJ ) ∈ −λ∂∥LJ ∥∗. Hence, we need to check that ∇ℓ(SJ + LJ ) satisfies the norm-

subdifferential characterizations in Lemma C.13 that can be written as

PJD∇ℓ(SJ +LJ ) = −λ(γ gsign(SJ ),UUT) and ∥PJ⊥D∇ℓ(SJ +LJ )∥γ ≤ λ,
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where LJ = UEUT is an eigenvalue decomposition of LJ . The first condition

that projects onto the components in J is equivalent to the optimality condition of

Problem (C.9). In fact, it is the projected optimality condition from Problem (C.9)

in terms of the subgradient characterizations. We already know that (SJ ,LJ ) is

the unique solution in J to this projected optimality condition.

For showing that (SJ ,LJ ) solves Problem (C.13), it remains to establish the

second condition ∥PJ⊥D∇ℓ(SJ +LJ )∥γ ≤ λ. Here, by showing the stronger sharp

inequality we actually establish strict dual feasibility. This immediately implies that

the only solution to Problem (C.13) must be (SJ ,LJ ) because then (SJ ,LJ ) can be

used as a witness in the sense of Proposition C.19 which implies that all solutions to

Problem (C.13) must be in J . Thus, (SJ ,LJ ) must be the unique solution since we

already know that it is the only solution in J to the projected optimality condition,

that is, the optimality condition restricted to the components in J .

The rest of the proof is dedicated to showing strict dual feasibility. We do so by

making use of the Taylor expansion as in (C.10) and in the proof of Proposition C.14,

namely

∥PJ⊥D∇ℓ(SJ +LJ )∥γ
=
⃦⃦
PJ⊥D[∇ℓ(Θ⋆) +H⋆(∆S + PT (LM)∆L)−H⋆PT (LM)⊥L

⋆ +R(∆S +∆L)]
⃦⃦
γ

≤
⃦⃦
PJ⊥DH⋆(∆S + PT (LM)∆L)

⃦⃦
γ

+
⃦⃦
PJ⊥D[∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆ +R(∆S +∆L)]
⃦⃦
γ

< λ,

where the first inequality is the triangle inequality, and the second one needs some

more elaboration. To show it we start by applying Proposition 3.2 (ii), which yields⃦⃦
PJ⊥DH⋆(∆S + PT (LM)∆L)

⃦⃦
γ
≤ (1− ν)

⃦⃦
PJDH⋆(∆S + PT (LM)∆L)

⃦⃦
γ

= (1− ν)
⃦⃦
PJD∇ℓ(SJ +LJ )

− PJD
[︁
∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆ +R(∆S +∆L)
]︁⃦⃦

γ

≤ (1− ν)
{︂
∥PJD∇ℓ(SJ +LJ )∥γ

+
⃦⃦
PJD

[︁
∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆ +R(∆S +∆L)
]︁⃦⃦

γ

}︂
≤ (1− ν)

{︂
λ+ 2

⃦⃦
D
[︁
∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆ +R(∆S +∆L)
]︁⃦⃦

γ

}︂
≤ (1− ν)

{︃
λ+

νλ

2− ν

}︃
=

2λ(1− ν)

2− ν
= λ− νλ

2− ν
< λ− νλ

2(2− ν)

≤ λ−
⃦⃦
D[∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆ +R(∆S +∆L)]
⃦⃦
γ

≤ λ−
⃦⃦
PJ⊥D[∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆ +R(∆S +∆L)]
⃦⃦
γ
,

where the equality is based on the Taylor expansion of the gradient, the second

inequality is the triangle inequality, the third and last inequality use Lemma C.1
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and

∥PJD∇ℓ(SJ +LJ )∥γ = ∥−λ(γ gsign(SJ ),UUT)∥γ ≤ λ,

and the fourth and second-to-last inequality follow from⃦⃦
D
[︁
∇ℓ(Θ⋆)−H⋆PT (LM)⊥L

⋆ +R(∆S +∆L)
]︁⃦⃦

γ

≤ ∥D∇ℓ(Θ⋆)∥γ +
⃦⃦
DH⋆PT (LM)⊥L

⋆
⃦⃦
γ
+ ∥DR(∆S +∆L)∥γ

≤ 3
νλ

6(2− ν)
=

νλ

2(2− ν)
,

which follows from the triangle inequality and from ∥D∇ℓ(Θ⋆)∥γ ≤
νλ

6(2−ν)
by as-

sumption, from Corollary C.9 (ii) that yields
⃦⃦
DH⋆PT (LM)⊥L

⋆
⃦⃦
γ
≤ νλ

6(2−ν)
, and since

the remainder too can be bounded

∥DR(∆S +∆L)∥γ ≤
c0

ξ(T )
∥(∆S,∆L)∥2γ

≤ c0λ
2

ξ(T )

(︃
32(3− ν)

3α(2− ν)

)︃2

≤ c0λ

(︃
32(3− ν)

3α(2− ν)

)︃2

C2 = c0λ

(︃
32(3− ν)

3α(2− ν)

)︃2
3α2ν(2− ν)

211c0(3− ν)2

=
νλ

6(2− ν)
,

where the first inequality uses Lemma C.11, which is possible since from Proposi-

tion C.14 it follows that ∥(∆S,∆L)∥γ ≤
32(3−ν)
3α(2−ν)

λ ≤ c1. This also explains the second

inequality. Finally, the last inequality follows from λ ≤ C2 ξ(T ). This finishes the

proof. ■

This concludes also the proof of Theorem 3.3 since we have shown that under the

assumptions from Theorem 3.3, particularly the assumed bound on the gradient,

the solution to Problem (3.7) is algebraically consistent in light of Proposition C.6

and parametrically consistent in the sense that ∥(∆S,∆L)∥γ ≤
32(3−ν)
3α(2−ν)

λ by Propo-

sition C.14.

C.3.7 Proof of corollaries via probabilistic analyses

In this section, we prove Corollaries 3.4, 3.5, and 3.6. For each proof, a probabilistic

analysis is necessary with the aim of bounding the sampling error in the γ-norm.

This sampling error is given as the gradient

∇ℓ(Θ⋆) = ∇ℓ(S⋆ +L⋆) = ∇
(︂
a(Θ)− ⟨Θ, Σ̂⟩

)︂
|Θ=Θ⋆

= Σ⋆ − Σ̂

of the respective likelihood functions. Here, Σ̂ = n−1
∑︁n

k=1(x
(k),y(k))

[︁
(x(k),y(k))

]︁T
is the empirical and Σ⋆ = E

[︁
(x,y)[(x,y)]T

]︁
is the population version of the second-
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moment matrix, where the expectation is taken w.r.t. the true pairwise CG distri-

bution with parameter matrix Θ⋆ = S⋆ +L⋆.

Gaussian case: probabilistic analysis

Proof of Corollary 3.4. Note that in this special case w = q. By [Chandrasekaran

et al., 2012, Corollary 5.5] it holds

P
(︂
∥Σ⋆ − Σ̂∥ ≤

√︁
128q∥Σ⋆∥2/n

)︂
≤ 1− 2 exp(−q),

provided that n ≥ 2q. Hence, with the choice of f(q) = 128q∥Σ⋆∥2 and

n > max
{︁
C2

5 f(w) [ξ(T )min{C1, C2 ξ(T )}]−2 , 2q
}︁

the lower bound (3.10) on n is satisfied, and we have with probability at least

1− 2 exp(−q) that

∥D∇ℓ(Θ⋆)∥γ ≤
χ

ξ(T )
∥∇ℓ(Θ⋆)∥ = χ

ξ(T )
∥Σ⋆ − Σ̂∥

≤ χ

ξ(T )

√︃
128q∥Σ⋆∥2

n
=

χ

ξ(T )

√︃
f(q)

n
=

ν

6(2− ν)
λn,f(q),

where the first inequality follows from Lemma C.4, and we used the definition

λn,f(q) = C5/ξ(T )
√︁
f(q)/n

with C5 = 6(2 − ν)χ/ν in the last equality. An application of Theorem 3.3 with

λ = λn,f(q) concludes the proof of Corollary 3.4. ■

Discrete case: probabilistic analysis

For the proof, we will use the following lemma that is based on [Vershynin, 2010,

Corollary 5.52]. The constant cI that appears in the lemma is independent of d and

is defined in [Vershynin, 2010, Corollary 5.52].

Lemma C.21. Let Σ⋆ and Σ̂ be defined as before, where we assume Σ⋆ to be

invertible. Let κ ≥ 1. Then, assume that it holds n > cIκ∥Σ⋆∥−1d logm for an

absolute constant cI . Then, if we set δn =
√︁

cIκ∥Σ⋆∥d logm/n it holds that

P
(︂
∥Σ̂−Σ⋆∥ > δn

)︂
≤ m

−κ.

Proof. First, observe that ∥x∥22 ≤ d for all x ∈ X since any concatenated indicator

representation contains at most d ones. We build the remaining proof upon the

classical result [Vershynin, 2010, Corollary 5.52] for bounded random vectors. This
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result implies that for any 0 < ε < 1 we have

P
(︂
∥Σ̂−Σ⋆∥ > ε∥Σ⋆∥

)︂
≤ exp (−κ+ logm) = m

−κ

as long as the number of samples satisfies n ≥ cIκε
−2∥Σ⋆∥−1d logm (the absolute

constant cI is independent of d and m and is defined in [Vershynin, 2010, Corollary

5.52]). We intend to use this result with

ε = εn =
δn
∥Σ⋆∥

=

√︄
cIκd logm

∥Σ⋆∥n
.

For εn chosen in this way, one can check that the lower bound on n required by

[Vershynin, 2010, Corollary 5.52] is trivially satisfied. It also follows that εn < 1 by

plugging in the lower bound on n that we assumed for this lemma:

ε2n =
cIκd logm

∥Σ⋆∥n
<

cIκd logm

∥Σ⋆∥cIκ∥Σ⋆∥−1d logm
= 1.

Now, applying [Vershynin, 2010, Corollary 5.52] yields the claim

P
(︂
∥Σ̂−Σ⋆∥ > εn∥Σ⋆∥

)︂
= P

(︂
∥Σ̂−Σ⋆∥ > δn

)︂
≤ m

−κ.

This finishes the proof. ■

We are now ready to prove Corollary 3.5.

Proof of Corollary 3.5. Note that here, the scaling f depends on the number of

discrete variables d and m. Let f(d,m) = cIκ∥Σ⋆∥d logm and

n > max
{︁
C2

5 f(d,m) [ξ(T )min{C1, C2 ξ(T )}]−2 , cIκ∥Σ⋆∥−1d logm
}︁
.

That way, the lower Bound (3.10) on n is satisfied (and the second term does not

change the asymptotics). Now, it follows that the required bound on the gradient

also holds with high probability since

∥D∇ℓ(Θ⋆)∥γ ≤
χ

ξ(T )
∥∇ℓ(Θ⋆)∥ ≤ χ

ξ(T )
δn =

χ

ξ(T )

√︃
f(d,m)

n
=

ν

6(2− ν)
λn,f(d,m),

where the first inequality is a consequence of Lemma C.4, and the second inequality

holds with probability at least 1−m−κ by Lemma C.21 which can be applied because

of the assumed lower bound on n (second term in the max). This concludes the proof

of Corollary 3.5 after an application of Theorem 3.3 with λ = λn,f(d,m). ■
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Mixed case: probabilistic analysis

Bounding the spectral norm of the sampling error turns out to be quite challeng-

ing for the CG distribution that includes both discrete and unbounded continuous

variables. In the following, we derive bounds similar to the ones given in [Lee et al.,

2015] for the maximum norm. For that, we first present a lemma that is based on

[Vershynin, 2010, Corollary 5.17].

Lemma C.22 (concentration lemma by exponential type tail and union bound).

For some constant K independent of n and for some cM > 0, for any ε > 0 the

random vector ∇ℓ(Θ⋆) = Σ⋆ − Σ̂ satisfies

P (∥∇ℓ(Θ⋆)∥∞ > ε) ≤ 2 exp

(︃
2 logw − cMnmin

{︃
ε2

K2
,
ε

K

}︃)︃
.

Proof. Observe that the derivative w.r.t. the (i, j)-th matrix entry (this time not

the group) satisfies

∂ℓ(Θ⋆)

∂Θij

=
1

n

n∑︂
k=1

(︃
E
[︁
Σ⋆

ij

]︁
−
(︂
(x(k),y(k))

[︁
(x(k),y(k))

]︁T)︂
ij

)︃
, i, j ∈ [w].

This is a sum of i.i.d. centered subexponential random variables by [Lee et al.,

2015, Lemma B.1]. By applying the subexponential bound from [Vershynin, 2010,

Corollary 5.17] we see that

P
(︃⃓⃓⃓⃓

∂ℓ(Θ⋆)

∂Θij

⃓⃓⃓⃓
> ε

)︃
≤ 2 exp

(︃
−cMnmin

{︃
ε2

K2
ij

,
ε

Kij

}︃)︃
, i, j ∈ [w],

where Kij is the Orlicz 1-norm of the random variable E
[︁
Σ⋆

ij

]︁
− (x,y)i(x,y)j, and

cM is an absolute constant that is defined in [Vershynin, 2010, Corollary 5.17]. Let

K = maxi,j Kij. By a union bound we have

P
(︁
∥∇ℓ(Θ⋆)∥∞ > εη−1

)︁
= P

(︃
for some (i, j) ∈ [w]× [w] :

⃓⃓⃓⃓
∂ℓ(Θ⋆)

∂Θij

⃓⃓⃓⃓
> ε

)︃
≤

w∑︂
i,j=1

P
(︃⃓⃓⃓⃓

∂ℓ(Θ⋆)

∂Θij

⃓⃓⃓⃓
> ε

)︃
≤ 2w2 exp

(︃
−cMnmin

{︃
ε2

K2
,
ε

K

}︃)︃
= 2 exp

(︃
2 logw − cMnmin

{︃
ε2

K2
,
ε

K

}︃)︃
.

This finishes the proof. ■

As a consequence we have:

Corollary C.23 (bound on the CG log-likelihood gradient). Assume that the data is

drawn from the true pairwise CG distribution with interaction matrix Θ⋆ = S⋆+L⋆.
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Let κ > 0 and n ≥ 2c−1
M (1 + κ/2) logw. Then, it holds that

P

(︄
∥D∇ℓ(Θ⋆)∥γ >

√︃
2c−1

M K2(1 + κ/2)w2 logw

n

χ

ξ(T )

)︄
≤ 2w

−κ.

Proof. With some more generality we show that if it holds n ≥ K−2g(w) for some

function g(w) > 0, then we have that

P

(︄
∥D∇ℓ(Θ⋆)∥γ >

√︃
w2g(w)

n

χ

ξ(T )

)︄
≤ 2 exp

(︁
2 logw − cMK−2g(w)

)︁
.

To prove this, set εn =
√︁

g(w)/n. Then,

P
(︃
∥D∇ℓ(Θ⋆)∥γ > wεn

χ

ξ(T )

)︃
≤ P (∥∇ℓ(Θ⋆)∥ > w εn) ≤ P (∥∇ℓ(Θ⋆)∥∞ > εn)

≤ 2 exp

(︃
2 logw − cMnmin

{︃
ε2n
K2

,
εn
K

}︃)︃
= 2 exp

(︃
2 logw − cMn

ε2n
K2

)︃
= 2 exp

(︁
2 logw − cMK−2g(w)

)︁
,

where the first inequality follows from Lemma C.4, the second inequality follows

from the general bound ∥ · ∥ ≤ w∥ · ∥∞, and the third inequality follows from the

preceding Lemma C.22. If εn =
√︁
g(w)/n ≤ K, that is, if n ≥ K−2g(w), then the

first term in the minimum is active: This yields the first equality. Now, the claim

follows with the specific choice g(w) = 2c−1
M K2(1 + κ/2) logw since then

2 logw − cMK−2g(w) = 2 logw − 2(1 + κ/2) logw = −κ logw.

Moreover, the lower bound on n above becomes n ≥ K−2g(w) = 2c−1
M (1+κ/2) logw.

This finishes the proof. ■

In the previous result, we used the weak bound ∥ · ∥ ≤ w∥ · ∥∞ which caused an

additional factor of w in comparison to the sampling error bound in the maximum

norm for sparse graphical model estimation from [Lee and Hastie, 2015; Lee et al.,

2015]. We conjecture that the spectral norm actually can be bounded with the

same strength as the maximum norm. However, classical results for spectral norm

bounds of the sampling error from random matrix theory, see [Vershynin, 2010] and

[Adamczak et al., 2010], typically require subgaussian, log-concavity, or boundedness

assumptions on the distribution. Unfortunately, given that here the observed data

consists of both discrete and unbounded quantitative variables all these assumptions

are not satisfied. Let us now prove Corollary 3.6.

141



Proof of Corollary 3.6. Let f(w) = 2c−1
M K2(1 + κ/2)w2 logw and

n > max
{︁
C2

5 f(w) [ξ(T )min{C1, C2 ξ(T )}]−2 , 2c−1
M (1 + κ/2) logw

}︁
.

Again, the lower bound (3.10) is satisfied (and the asymptotics remain the same).

Moreover, by Corollary C.23 (ii) it follows with probability at least 1− 2w−κ that

∥D∇ℓ(Θ⋆)∥γ ≤
√︃

f(w)

n

χ

ξ(T )
=

ν

6(2− ν)
λn,f(w).

Hence, the bound on the gradient required by Theorem 3.3 holds with high prob-

ability and thus the proof of Corollary 3.6 can be concluded by an application of

Theorem 3.3 with λ = λn,f(w). ■
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