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Zusammenfassung

In den letzten Jahrzehnten wurden Fahrzeuge einem tiefgreifenden Einfluss auf die
Anforderungen an Sicherheit, Komfort und Umweltfreundlichkeit ausgesetzt. Heutzutage
hat der starke Trend zur Umwandlung traditioneller Fahrzeuge in komplexe Systeme
und die ständig steigende Anzahl von Elektro- und Elektronikkomponenten die Industrie
dazu gezwungen, neue Regelmethoden und deren Entwicklungsprozesse zu entwerfen.
Die Optimierung der Bremsverteilung in elektrischen Antrieben mit Brake-by-Wire-
Systemen erfordert die Entwicklung fortgeschrittener Schätzfunktionen. Darüber hinaus
fördern die Trends zu strengeren Abgasvorschriften und das nachgewiesene Wachstum
der Fahrzeugzulassungen den Bedarf an neuen Anwendungen, die die Hersteller über die
Umweltfreundlichkeit ihrer Fahrzeugflotte informieren.

In diesem Rahmen werden in der vorliegenden Arbeit Steuerungs- und Schätzlö-
sungen für emissionsarme, multi-aktuierte Fahrzeuge vorgestellt, um die Bremsleistung
bei gleichzeitiger Überwachung des Bremsverschleißes und der bremsbedingten Par-
tikelemissionen zu verbessern. Die Erreichung dieses Ziels führt zu interdisziplinären
Methoden, die von Fortschritten bei numerischen Modellierungs- und Simulationswerkzeu-
gen über die Anwendung innovativer experimenteller und sensorischer Fusionstechniken
bis hin zur Entwicklung und Verifizierung neuartiger Algorithmen zur Zustandsschätzung
und -steuerung reichen. Die Entwicklung von Steuerungs- und Schätzfunktionen wird
durch Modell-, Software- und Hardware-in-the-Loop-Techniken unterstützt, die durch ein
neuartiges, an der Technischen Universität Ilmenau entwickeltes Scheibenbremsmodell
verbessert werden.

Auf dem Prüfgelände durchgeführte Experimente zeigen, dass die Bremsleistung
in Brake-by-Wire-Systemen durch Kompensation unerwünschter Schwankungen des
Bremsreibungskoeffizienten verbessert werden kann. Die Kompensationsfunktion bi-
etet dem Fahrer eine Bremsservounterstützung, wenn die erforderliche Verzögerung
nicht zu erreichen ist. In Hybrid- und Vollelektrofahrzeugen verbessert die Bremsrei-
bungskompensation das Blending mit Elektromotoren, indem eine bessere Verfolgung
der Referenzverzögerung sichergestellt wird. Außerdem ermöglicht die Schätzung des
Bremsreibungskoeffizienten zusätzliche Bremsüberwachungsfunktionen. Durch neuartige
Design-of-Experiments und Data-Mining-Verfahren werden die relevanten Einflüsse auf
den Bremsverschleiß und die Partikelbildung erfasst. Die experimentellen Beweise treiben
die Implementierung und Identifizierung fortschrittlicher Schätzverfahren voran, die
früheren Schätzverfahren überlegen sind. Die vorgeschlagenen Kontroll- und Schätzfunk-
tionen weisen im Vergleich zu anderen Ansätzen nach dem jüngsten Stand der Technik
eine höhere Leistung unter realen Fahrbedingungen aus.
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Abstract

During the past decades, on-road vehicles have undergone profound restrictions in safety,
comfort and environmental friendliness requirements. Nowadays, the strong trend towards
the transformation of traditional on-road vehicles to complex systems interconnected with
the environment and users and the constantly increasing number of electric and electronics
components has forced the industry to devise new control functions and development
processes thereof. Advanced estimation functions are necessary to optimise the control
demand distribution in brake-by-wire systems also in the event of blended operation with
electric motors. Moreover, the trends in stricter tailpipe emissions standards and the
proven growth in vehicle registrations motivate the need for new tools that inform the
original equipment manufacturers about the environmental friendliness of their vehicle
fleet.

Under this framework, the present work introduces control and estimation solutions
for low-emission multi-actuated ground vehicles to improve braking performance with
simultaneous monitoring of brake-related wear and particle emissions. The achievement of
this goal brings up interdisciplinary methods ranging among advancements in numerical
modelling and simulation tools, application of innovative experimental and sensors
fusion techniques and development and verification of novel state estimation and control
algorithms. The development of control and estimation functions is supported by model-,
software- and hardware-in-the-loop techniques enhanced by means of a novel disc brake
model developed at Technische Universität Ilmenau.

Experiments performed on the proving ground shows that braking performance can
be improved in brake-by-wire systems through compensation of undesired variations in
the brake lining coefficient of friction. The compensation function provides the driver
with brake servo assistance when the required deceleration cannot be achieved. In the
case of hybrid and full electric vehicles, the brake lining friction compensation improves
the control of brake blending with electric motors by ensuring a better tracking of the
driver’s reference deceleration. Moreover, the availability of an estimate of the brake
lining coefficient of friction enables additional brake monitoring functions. Clever design
of experiments and advanced data mining techniques allow identifying the relevant factors
influencing brake-related wear and the process of particle formation. The experimental
evidence drives the implementation and identification of advanced estimation techniques
never dealt with in the past. The proposed control and estimation functions exhibit
superior performance when compared to state-of-the-art approaches under real driving
conditions.

ii



Acknowledgements

This work is the result of five years of continuous research and development as research
associate at Technische Universität Ilmenau. During these years I have had the op-
portunity to meet wonderful people who have contributed to the achievement of my
PhD. I would like to thank my Doktorvater, Prof. Dr. Ing. Klaus Augsburg, for giving
me the opportunity to pursue a PhD research in innovative fields of engineering and
use cutting-edge testing facilities. I would also like to thank Dr. Valentin Ivanov for
guiding me through the Marie Curie ITEAM Project, which granted me with a top-notch
technical training in automotive technologies.

The realisation of this research was only possible thanks to a close collaboration with
the colleagues of ThIMo and participation in numerous conferences, summer schools
and workshops. In this regard, I would like to thank my colleagues Viktor, David,
Peter, Sebastiaan and Cyrano, who helped with the instrumentation of the test benches
and vehicle demonstrators, and Ludwig, who was always available to address IT issues.
Special thanks also go to my friends Eugenia, Manuel, Andrei, Toni, Alessandro and
Cassio for the precious time spent together.

The support of my family was essential to dealing with the challenges of living abroad.
I will always be grateful to my wife Olena for the role she played in my professional
development. Without her, I would have never achieved this result.

iii



Contents

1 Introduction 1
1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transport-related emissions . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Real driving conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Standards and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Brake friction coefficient estimation in automotive applications 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Construction of disc brakes . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Tribology of disc brakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Estimation of the friction coefficient of disc brakes . . . . . . . . . . . . . 14

2.4.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Benchmarking of state-of-the-art estimation algorithms . . . . . . 19

2.5 Research objectives and methodology . . . . . . . . . . . . . . . . . . . . . 25
2.6 Originality and innovative aspects of the research . . . . . . . . . . . . . . 27
2.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 A novel semi-empirical dynamic brake model 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Experiments on the brake dynamometer . . . . . . . . . . . . . . . . . . . 32
3.3 Analysis of experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Enhanced lumped capacitance model . . . . . . . . . . . . . . . . . . . . . 37
3.5 Proposed model of the brake lining coefficient of friction . . . . . . . . . . 39
3.6 Model identification and benchmarking . . . . . . . . . . . . . . . . . . . . 44
3.7 Model validation and results . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 Characteristics of the model-based approach . . . . . . . . . . . . . . . . . 48
3.9 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 A novel brake friction coefficient observer 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Observer of the brake lining coefficient of friction . . . . . . . . . . . . . . 52

4.3.1 Kalman filter theory . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iv



Contents

4.3.2 Estimation variants . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Wheel slip estimation . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.4 Tyre vertical forces estimation . . . . . . . . . . . . . . . . . . . . 62
4.3.5 Estimation of the tyre longitudinal slip stiffness . . . . . . . . . . . 63

4.4 Observability analysis and observer tuning . . . . . . . . . . . . . . . . . . 64
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Fault tolerance and sensitivity analysis . . . . . . . . . . . . . . . . . . . . 67
4.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Hardware-in-the-loop verification 72
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Hardware-in-the-loop setup . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Control structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Observer verification and robustness analysis . . . . . . . . . . . . . . . . 77
5.5 Sensitivity analysis under brake blending . . . . . . . . . . . . . . . . . . . 78
5.6 Compensation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7.1 Single brake application . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7.2 Repeated brake application . . . . . . . . . . . . . . . . . . . . . . 82

5.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Experimental validation on the proving ground 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Tests on the proving ground . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Fixed pedal braking . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.2 Fixed deceleration braking . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.3 Brake fade test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 A novel brake wear prognosis function 96
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 A novel brake lining wear model . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.1 Real driving cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.2 Brake dynamometer tests . . . . . . . . . . . . . . . . . . . . . . . 102
7.3.3 Wear measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5 Data reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6.1 Brake temperature estimation . . . . . . . . . . . . . . . . . . . . . 114
7.6.2 Brake wear prediction . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

v



Contents

8 A novel estimator of brake particle emissions 118
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3 Measurement equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.6 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.7 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Discussion and Conclusion 132

A MIL/SIL/HIL simulation frameworks 140
A.1 Full electric vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1.1 Vehicle planar dynamics . . . . . . . . . . . . . . . . . . . . . . . . 140
A.1.2 Vehicle vertical dynamics . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 Vehicle subsystems models . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2.1 Modelling the tyre-road interaction . . . . . . . . . . . . . . . . . . 145
A.2.2 Powertrain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.2.3 Electrohydraulic brake system . . . . . . . . . . . . . . . . . . . . 149
A.2.4 Brake lining friction coefficient model . . . . . . . . . . . . . . . . 153

B Principal component analysis 155
B.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2 Identification of the principal components . . . . . . . . . . . . . . . . . . 155
B.3 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C Data driven method for model identification 161
C.1 Problem discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

D Experimental vehicles 165
D.1 Full electric sport utility vehicle . . . . . . . . . . . . . . . . . . . . . . . . 165
D.2 Conventional ICE sedan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
D.3 Conventional ICE light commercial vehicle . . . . . . . . . . . . . . . . . . 168

Bibliography 170

vi



List of Abbreviations and Symbols

Abbreviations

ABS Anti-Lock Braking System
ADAS Advanced Driver Assistance Systems
AMS Auto Motor und Sport
ANN Artificial Neural Networks
BBC Base Brake Control
BLCF Brake lining coefficient of friction
CAN Controller Area Network
CPC Constant Pressure Cycle
DoF Degree-of-Freedom
DOE Design of Experiments
DS dSPACE
EBD Electronic Brake Force Distribution
ECE Economic Commission for Europe
EF Emission Factor
EHB Electrohydraulic Brake
EHCU Electrohydraulic Control Unit
EKF Extended Kalman Filter
EM Electric Motor
HIL Hardware-in-the-Loop
ICE Internal Combustion Engine
ILVO Ilmenau Volvo Brake Model
ISO International Organisation for Standardisation
KF Kalman Filter
KPI Key Performance Index
MIL Model-in-the-Loop
MSE Mean Square Error
NVH Noise-Vibration-Harshness
OBS Observer

vii



Contents

PC Principal Component
PCA Principal Component Analysis
PCU Powertrain Control Unit
PEMS Portable Emissions Measurement System
PM Particulate Matter
PNC Particle Number Concentration
PSNR Peak Signal-to-Noise ratio
RDE Real Driving Emissions
RLS Recursive Least Square
nRMSE (Normal) Root Mean Square Error
SAE Society of Automotive Engineers
SCB Slip Control Boost
SIL Software-in-the-Loop
SUV Sport Utility Vehicle
TM Tyre Model
VCU Vehicle Control Unit
VS Virtual Sensor
WLTP Worldwide harmonized Light vehicles Test Procedure

Nomenclature

Symbol Quantity Unit
Ak Brake calliper piston(s) area m2

Aeff Effective brake disc convective area m2

Apad Real pad-disc contact area m2

Areal Geometrical pad-disc contact area m2

ax Longitudinal vehicle deceleration m/s2

adem
x Demanded longitudinal vehicle deceleration m/s2

b Vehicle wheel track m

Bi Biot number [/]
cp Disc specific heat capacity J kg−1 K−1

cs Equivalent suspensions damping N sm−1

CL Tyre longitudinal slip stiffness N

CS Tyre lateral slip stiffness N

dp Calliper piston(s) diameter m

Eb Dissipated brake energy J

EF Brake particle number emission factor [/]
f Brake blending factor [/]
FL Wheel longitudinal contact force1 N

viii



Contents

FS Wheel lateral contact force1 N

FX Wheel longitudinal contact force2 N

FY Wheel lateral contact force2 N

FZ Wheel vertical force N

FV Suspensions reaction forces N

FX,drag Frontal air drag resistance N

FY,drag Lateral air drag resistance N

Fn Calliper clamping force N

hCoG Vehicle center of gravity m

hht Brake convective heat transfer coefficient W m−2 K−1

Ixx Vehicle roll inertia kg m2

Iyy Vehicle pitch inertia kg m2

Izz Vehicle yaw inertia kg m2

Iω Wheel rotational inertia kg m2

Jf Equivalent vehicle inertia on a front wheel kg m2

kb Specific brake pad wear g J−1

kht Brake disc conductivity W m−1 K−1

ks Equivalent suspensions stiffness N m−1

Kf Force allocation factor [/]
KL Longitudinal tyre stiffness N m−1

KS Lateral tyre stiffness N m−1

KZ Vertical tyre stiffness N m−1

lf Vehicle front semi wheel base m

lr Vehicle rear semi wheel base m

mb Brake pad wear mass g

mdisc Brake disc mass g

mv Vehicle mass kg

ms Vehicle sprung mass kg

mus Vehicle unsprung mass kg

np Number of pistons per side per calliper [/]
lf Front semi wheelbase m

lr Rear semi wheelbase m

p0 Brake calliper push-out pressure bar

pb Brake calliper pressure bar

pdem
b Required brake calliper pressure bar

PN Number of brake emitted particles s−1

PNC Brake particle number concentration cm−3

Q̇conv,air Convective heat W

Q̇fric Heat converted friction power W

ix



Contents

Q̇rad Radiated heat W

rω Tyre effective radius m

r0 Tyre undeformed radius m

reff Brake disc effective radius m

rin Brake pad inner radius m

rout Brake pad outer radius m

RL Wheel rolling resistance Nm

sped Brake pedal position [/]
t Time s

Tb Brake torque at wheel Nm

T dem
b Demanded brake torque at wheel Nm

Td Drive torque at wheel Nm

TEHB Foundation brake torque Nm

T dem
EHB Demanded foundation brake torque Nm

TEM Electric motor torque Nm

T dem
EM Demanded electric motor torque Nm

Tw Wheel applied torque Nm

TR Residual brake dynamometer torque Nm

vin Initial vehicle speed m s−1

vt Target vehicle speed m s−1

vx Vehicle longitudinal velocity m s−1

vy Vehicle lateral velocity m s−1

vz Vehicle body vertical velocity m s−1

vCoG Vehicle velocity resultant at CoG m s−1

vL Wheel longitudinal velocity m s−1

α Wheels side slip angle rad

αb Pad-disc adimensional real contact area [/]
β Vehicle side slip angle at CoG rad

δht Brake disc cooling coefficient s−1

δ Steering angle rad

∆t Integration time step s

∆tb Brake application duration s

θ Vehicle pitch angle rad

θf Brake pad circumferential angle rad

κ Brake lining adhesion coefficient [/]
λ Longitudinal tyre slip [/]
µb Brake lining coeff. of friction (BLCF) [/]
µb0 Previous µb estimate [/]
µroad Maximum road grip potential [/]

x



Contents

ν Disc infinitesimal element sliding speed m s−1

ξ Normalised braking power to heat fraction K N−1 m−1

σ Braking power to heat fraction [/]
σzθ Disc infinitesimal element tangential stress

component
N m−2

σzz Disc infinitesimal element normal stress com-
ponent

N m−2

ΣPN Emitted brake particle number per km km−1

τ Brake disc temperature K

τenv Ambient temperature K

τin Initial brake disc temperature K

τrl,L Longitudinal tyre relaxation constant s

τrl,S Lateral tyre relaxation constant s

ϕ Vehicle roll angle rad

χroad Road slope %
ψ Vehicle yaw angle rad

ω Wheel rotational velocity rad s−1

1Wheel Reference Frame
2Vehicle Reference Frame

xi



Chapter 1

Introduction

1.1 Research background

During the past decades, on-road vehicles have been subject to a profound impact on
safety, comfort and environmental friendliness requirements [1]. Nowadays, the strong
trend towards the transformation of traditional on-road vehicles to complex systems
interconnected with the environment, infrastructures and users and the constantly
increasing number of electric and electronics components has forced the industry to devise
new development processes and/or conform to best practices, which allow for a standard
compliant product or service. New technologies such as hybrid and electric powertrains,
advanced driver assistance systems (ADAS) and x-by-wire systems have become focus
of great research effort and noticeable industrial investments. Moreover, the trends in
stricter tailpipe emissions standards and the proven growth in vehicle registrations suggest
that brake and tyre wear and road resuspension have gained a remarkable impact over
the global vehicle emissions. Under this framework, the present work introduces control
and estimation solutions for low-emission multi-actuated ground vehicles to improve
braking performance with simultaneous monitoring of brake-related wear and particle
emissions. The achievement of a low-emission paradigm is made possible due to the
presence of several chassis actuators (i.e. electric motors and brake-by-wire), which
coexist on the vehicle and can cooperate to enhance driving performance and improve the
vehicle environmental friendliness. The concept of low-emission multi-actuated ground
vehicle includes:

• novel vehicle subsystems featuring fast-dynamics actuators;

• advanced control algorithms robust against external disturbances;

• advanced estimation functions monitoring the actuators operation.

This work brings up interdisciplinary methods ranging among advancements in numerical
modelling and simulation tools, application of innovative experimental and sensors

1



1.2. Transport-related emissions

fusion techniques and development and verification of novel state estimation and control
algorithms.

1.2 Transport-related emissions

Transport related emissions are associated with adverse health effects and environmental
hazards [2]. Among the main pollutants, fine particulate matter (PM2.5) and ultra-fine
particles (PM0.1) show the greatest impact on human health. The ultrafine particles
are proven to pass the alveoli, placental and brain barriers to generate serious health
impacts [3]. Motor vehicle emissions, which represent the main source of urban pollutant
emissions, can be divided into two main categories according to their source: engine
exhaust emissions and non-exhaust emissions. Engine exhaust emissions result from fuel
combustion and lubricant volatilisation that occur during the combustion process. Non-
exhaust emissions are generated through the resuspension of road dust or road surface
wear as the vehicle travels over the road surface, corrosion of vehicle components or during
the mechanical processes associated with driving. Particularly, several studies underline
the significance of brake-related non-exhaust emissions and the need for legislation and
abatement strategies to reduce their contribution to ambient PM concentrations [4].

The European Monitoring and Evaluation Programme stresses the importance of
reviewing and maintaining the emission inventory guidebook by reporting the emissions by
year, pollutant and country [5]. Among others, the current source categorisation includes
exhaust emissions for different vehicle classes (e.g. 1.A.3.b.i for passenger cars, 1.A.3.b.ii
for light duty vehicles and 1.A.3.b.iii for heavy duty vehicles), tyre and brake wear as
one source category (1.A.3.b.vi), road surface abrasion emissions without considering the
resuspension effect (1.A.3.b.vii), railways exhaust-related emissions (1.A.3.c) and non-
road mobile machinery associated emissions (1.A.4.a.ii) [6]. Figure 1.1a and Figure 1.1b
report the PM10 and PM2.5 emission trends in the period 2000-2016 for the EU28
countries.

In Figure 1.1a and Figure 1.1b, it is noticeable that the stricter regulations have had
a remarkable impact on the reduction of exhaust emissions, whereas there is a noticeable
increase in non-exhaust brake emissions mainly due to greater vehicle use. Moreover,
the impact of non-exhaust particulate matter is assumed to become dominant in the
short-term as the exhaust particulate matter has been progressively reduced thanks to
the fleet turn-over and the replacement of non-DPF diesels [7]. This proves that the
increasingly stringent policies on traffic related emissions, promulgated during the past
years, succeeded in reducing the exhaust related emissions but did not address adequately
the non-exhaust component such as the brake wear, tyre wear and road dust resuspension
[7]. The contribution of non-exhaust particulate matter is reported to be significant in
big cities and urban environments because of the frequent occurrence of braking events
[8].

2
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(a) Emissions of PM10 in kilotonnes in EU28 countries.
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1.A.3.b.i: Passenger cars

1.A.3.b.ii: Light duty vehicles

1.A.3.b.iii: Heavy duty vehicles

1.A.3.b.vi: Tyre and brake wear 

1.A.3.b.vii: Road abrasion

1.A.3.c: Railways

1.A.4.a.ii: Non-road mobile machinery

(b) Emissions of PM2.5 in kilotonnes in EU28 countries.

Figure 1.1: PM10 and PM2.5 emissions in EU28 countries for different sources. Road non-
exhaust emissions are predominant, whilst railways and non-road mobile machinery represent only
a tiny fraction.

The achievement of the low-emission multi-actuated ground vehicle paradigm requires
extensive effort towards the development of low-emission vehicle technologies and advanced
control functions capable of exploiting their full potential. Figure 1.2 reports a typical
urban scenario where, among all road participants, a low-emission multi-actuated full
electric vehicle (in green color) achieves a reduction in brake-related emissions with
simultaneous fulfilment of the velocity constraints by blended operation of electric motors
and friction brakes. This is made possible by brake-by-wire technologies such as the
decoupled electrohydraulic brake system (EHB), aimed at providing additional flexibility
to the distinctive functions of brake blending and regeneration. To achieve a smooth and
coordinated control of regenerative and conventional friction brakes, the brake lining
coefficient of friction (BLCF) shall be estimated. The availability of a reliable BLCF
estimate may enable advanced control functions of brake systems for the optimisation of
braking performance [9], brake-related wear and particle emissions [10].
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1.3. Real driving conditions

Figure 1.2: Typical urban scenario featuring several road participants where the low-emission
multi-actuated full electric vehicle brakes with blended control of electric motors.

1.3 Real driving conditions

On May 3rd, 2018, the EU member states adopted the latest amendment to regulation
EU 2017/1151 [11]. This latter introduced the real driving emissions (RDE) tests as
a mandatory part of the type-approval procedure for new passenger cars and light-
commercial vehicles in Europe. The on-road RDE test complements the laboratory test
and is intended to ensure that the emission levels of vehicles under real-world driving
conditions stay within the not-to-exceed limits. Under the new type-approval system,
manufacturers must demonstrate that new vehicle models pass the RDE test to obtain
a certificate of conformity with Euro 6 standards. The directive establishes air quality
objectives for improving human health and environmental quality up to 2020; however,
the directive does not account for the non-exhaust emission sources, which, at the time
of writing, are being investigated to understand whether regulatory actions need to be
taken [12].

RDE-compliant driving cycles must fulfil a series of requirements in accordance with
EU 2016/427 [13] and conveniently reported in Table 1.1. RDE-compliant cycles are
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becoming the standard in real world conditions testing and complement the Worldwide
harmonised Light vehicle Test Procedure (WLTP) in use for emissions measurement on
chassis dynamometers in controlled laboratory conditions [13]. During RDE, the vehicle
is being tested under various driving and external conditions, which include driving
style, road slopes and banking, varying weather conditions and varying traffic conditions.
The RDE-compliant driving cycle developed at Technische Universität Ilmenau, namely
Ilmenau cycle [12], is used as a basis for validating the solutions herein proposed. In
accordance with the RDE requirements of Table 1.1, Ilmenau cycle is characterised
by urban, rural and motorway sections with a total length of 87 km, which occur on
public roads in the vicinity of Technische Universität Ilmenau. Compared to WLTP,
the RDE-compliant Ilmenau cycle replicates real driving conditions, resulting in greater
speed and deceleration values [14]. Moreover, the driving style, weather conditions and
traffic characteristics determine the cycle-to-cycle repeatability. Based on more than
200 cycles, the experiments show that the Ilmenau cycle features an average duration of
100min with a standard deviation of 15min.

Table 1.1: RDE requirements and Ilmenau cycle compliance (after Commission Regula-
tion EU 2016/427 and EU 2017/1154).

RDE-conformity Requirement RDE-Ilmenau
Duration 90 min < t < 120 min ≈ 100 min
Urban trip distance s > 16 km ≈ 32 km
Rural trip distance s > 16 km ≈ 31 km
Motorway trip distance s > 16 km ≈ 24 km
Share of urban window 29% < p < 44% ≈ 37%
Share of rural window 23% < p < 43% ≈ 35%
Share of motorway window 23% < p < 43% ≈ 27%
Share of stop time t > 10% ≈ 12%
Time on motorway t > 5 min ≈ 12 min
Average veh. speed (urban sec.) 15 km/h < vx < 40 km/h ≈ 28 km/h
Maximum speed vx < 145 km/h ≈ 120 km/h
Positive altitude gain < 1200 m/100 km = 1062 m/100 km

The RDE-compliant Ilmenau cycle is used in this thesis to infer driving features
under real conditions. Experiments demonstrate that BLCF is not constant. BLCF is
subject to dynamics at various time scales, caused by complex processes taking place
in the pad-disc contact layer. Figure 1.3 reports an inference analysis of three Ilmenau
cycles performed by three different drivers on the sedan of Appendix D, with special
focus on braking events. The deceleration and BLCF values for each brake application
are computed in accordance with ECE R90 and SAE J2522, respectively. The mean
and standard deviation of deceleration and BLCF values are reported for each trip in
Table 1.2.

It is worth noticing that the average deceleration lays for each trip around 1.7m/s2 and
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Figure 1.3: Statistical inference of RDE-compliant Ilmenau cycle during brake applications.
The upper figure a) reports the initial vehicle speed upon braking occurrence. The right figures, b)
and d), report the probability density function of the vehicle deceleration values and its cumulative.
Figure c) reports the probability density function of the observed BLCF. The dashed line in c)
represents the nominal BLCF value, in accordance with SAE J2522.

Table 1.2: Statistical inference for three RDE-compliant Ilmenau cycles.

Vehicle deceleration BLCF
Mean Standard deviation Mean Standard deviation

Trip 1 1.59 m/s2 0.35 m/s2 0.46 0.05
Trip 2 1.70 m/s2 0.61 m/s2 0.47 0.06
Trip 3 1.82 m/s2 0.51 m/s2 0.45 0.05

it often reaches peaks up to 2m/s2. From experimental data, the following conclusions
can be drawn:

• deceleration values that lay between 1m/s2 and 2m/s2, identified herein as gentle
braking manoeuvres, occur between 60% and 80% of the time;

• between 10% and 30% of the deceleration values reach an intensity of up to 3m/s2;

• very rarely higher deceleration values can be recorded under real driving conditions.
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This analysis shows that clear variations in BLCF occur during real driving conditions.
Therefore, treating BLCF as a steady-state parameter, or even as a constant, represents
a major reduction [15]. Although this topic will be addressed with more details later
in the thesis, the knowledge of BLCF plays a crucial role in the performance of base
brake control algorithms in brake-by-wire systems. Figure 1.4 reports a simplified brake
control scheme of an electric vehicle equipped with an electrohydraulic brake-by-wire.
This architecture provides additional flexibility to the base brake functionality as the
brake torque request can be allocated between braking axles and blended with the
regenerative torque from the powertrain control unit (PCU) without the driver noticing.
However, large BLCF deviations from the reference value employed in the controller lead
to undesirable deterioration of the brake control functions [16]. In fact, the individual
pressure control done by the electrohydraulic control unit (EHCU) requires the provision
of BLCF.

Figure 1.4: Schematics of in-vehicle communication network with respect to base brake func-
tions. A BLCF estimator allows compensating undesired BLCF variations, improving braking
performance and enabling brake-related wear monitoring functions.

For a pure friction brakes deceleration, Figure 1.5 shows that a wrong BLCF estimate
has a direct impact on the achieved deceleration level. Depending on the BLCF estimation
error ∆µb, the vehicle might exhibit overbraking, when the actual deceleration is larger
than the requested, or underbraking, when the actual deceleration is smaller than the
requested. In both cases, in absence of any BLCF compensation function, the driver
him-/herself shall compensate for undesired BLCF variations. Hence, an on-board,
real-time capable BLCF estimator could be used to compensate the individual calliper
pressure control in the EHCU, also in presence of blending with electric motors. The
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BLCF estimator along with signals from the vehicle control unit (VCU) allows for novel
brake monitoring functions, which provide information on brake-related wear and particle
emissions.

Figure 1.5: Effect of the BLCF estimation error (∆µb) on the base brake functionality. A
negative error represents underestimated BLCF; a positive error stands for overestimated BLCF.

1.4 Standards and terminology

The adopted nomenclature is reported at the beginning of this work. The unit of
measurements follow the SI reference, unless otherwise stated in the text. Vectors and
matrices are differentiated from scalar variables by using bold characters and capital bold
characters, respectively. As an example, x may represent a scalar variable, whilst x and
X represent its vector and matrix variants, respectively. Time-discrete variables feature
the subscript k (e.g. the discrete state vector xk). The adopted engineering vocabulary
refers to the following standards:

• ISO 8855 and SAE J670 for the vehicle dynamics;

• ECE R90 for the brake system and components thereof;

• ECE R13H for the brake system architecture and control solutions;

• SAE J2522 for the brake performance characterisation and dynamometer tests.
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Chapter 2

Brake friction coefficient estima-
tion in automotive applications

2.1 Introduction

In recent decades, phenomenological and empirical approaches, along with experimental
techniques, have evolved compared to the first friction studies of Coulomb more than
200 years ago. Friction estimation has undergone consistent development in industrial
applications involving small displacements and velocities where the static friction and pre-
sliding displacement play crucial roles. On the contrary, friction estimation in automotive
application involving large displacements and high speeds has been rarely addressed.

Upon providing an overview of automotive disc brakes and basic mechanisms ruling the
friction phenomena, this chapter surveys and examines existing brake friction coefficient
estimation techniques. Thereafter, a benchmark analysis demonstrates that the instances
established in the literature do not exhibit satisfactory performance and a novel approach
enabling real-time, on-board, inexpensive and robust estimation of the brake friction
coefficient is required.

2.2 Construction of disc brakes

A vehicle requires a brake system to stop or adjust its speed. The basic principle used in
a brake system is to convert the kinetic energy of the vehicle into other forms of energy,
including but not limited to thermal energy and wear. Although two types of brakes can
be generally identified, namely drum brakes and disc brakes, these latter have become
the popular solution in passenger cars thanks to their superior performance. In a disc
brake system, the braking action is achieved by pressing a set of brake pads against a
rotating disc. A friction force arises at the pad-disc interface. The produced work is
converted into heat and this latter transferred to the environment. The brake calliper
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2.2. Construction of disc brakes

represents the fundamental element of a brake system as it is the component where the
control actuation is realised. The brake calliper houses the brake pads and provides the
channel for the brake fluid, which actuates the pistons.

A schematic representation of typical brake system architectures is reported in
Figure 2.1. It is worth mentioning that a floating calliper houses the piston only on the
inboard side of the disc (Figure 2.1a). When the pressure is exerted, the piston acts
on the inboard pad. The force reaction brought about in the calliper pushes the outer
pad against the outer disc surface. Fixed brake calliper does not move relative to the
brake disc and houses the pistons on both sides of the disc (Figure 2.1b). The brake
fluid must therefore reach both pistons to perform the required brake actuation. In a
system with fixed callipers, not only is the mounting much more rigid but the stiffness
of the calliper itself is greatly increased. This results in enhanced braking performance
and pedal feel. Since the fixed calliper is more suited for a multi-piston configuration,
the improved pressure distribution also guarantees more uniform pad wear. The fixed
calliper architecture is generally used on high performance vehicles where its higher costs
are justified.

Independently of the calliper architecture, it is possible to distinguish characteristic
elements. When the brake fluid pressure is increased in the master cylinder, perfect seal
between the piston-calliper crevices must be ensured. Typical configurations include the
use of one or more o-ring seal(s) rated for the specific maximum calliper pressure. In
order to prevent outer dust from entering the fluid chamber, a dust seal is employed. The
fluid acts on the calliper piston(s), which in turn lead the pads to move toward the disc.
The brake discs are generally made of grey cast iron because it provides good castability
and machinability, high thermal conductivity, heat capacity and resistance to brake fade.
Nonetheless, the aluminium has been recently discovered as an innovative light-weight
material with good NVH properties and reduced wear [17]. Although it cannot guarantee
the same fading resistance of the grey cast iron, it contributes to dramatically abate the
unsprung mass of the vehicle.

Inboard 
pad

Dust 
seal

Square-cut 
o-ring seal

Piston

Brake 
fluid

Outboard 
pad

(a) Schematic of a floating calliper
brake system.

Inboard 
pad

Dust seal Square-cut 
o-ring seal

Piston

Brake 
fluid

Outboard 
pad

(b) Schematic of a fixed calliper brake
system.

Figure 2.1: Schematics of brake systems architecture typically used in passenger cars.
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A brake pad consists of a friction material, also referred to as brake lining, attached
to a stiff backing plate (Figure 2.2). A brake pad can incorporate one or more slots on its
surface and chamfers in correspondence of the leading edge (tip of the pad coming into
contact with a point of the disc surface first) and trailing edge (tail of the pad coming
into contact with the same point last). Slots and chamfers are realised to reduce NVH
and to improve the removal of wear material [18]. Moreover, the slots allow the pad to
bend, reducing the risk of cracks formation. Very often, an additional layer of material,
called underlayer, is placed between friction material and backing plate (Figure 2.2).
Its main purpose is to damp vibrations originating at the pad-disc interface [19]. The
backing plate is solidly bounded to the friction material, either by adhesive bonding
or mechanical retention, and transmit the actuation force. The shim is a viscoelastic
laminate attached mechanically to the backing plate. During the brake operation it is in
contact with the calliper piston or calliper housing, depending on the calliper architecture.
The shim dampens vibrations arising from unstable dynamics at the pad-disc interface
[20].

Slot

Chamfer

Positioning spring

Fixing 
abutment

Shim

Adhesive

Chamfer

Backing 
plate

Underlayer

Friction 
material

Figure 2.2: Schematic of a brake pad.

After the ban of asbestos was officially promoted due to its widespread acknowledge-
ment as a carcinogenic [21], the brake lining manufacturers began to produce a multitude
of different brake pads, each with their own special composition. The main components
constituting the brake linings are: (i) the binder, often composed of phenolic resins,
holds the components of the lining together; (ii) the reinforcing fibres provide mechanical
strength and can be made of metal, carbon, glass, aramid or ceramic material; (iii) the
filler, commonly constituted of mica, vermiculite or barium sulphate, is used to improve
the machinability of the lining; (iv) the additives, mainly represented by graphite or
metal sulphides, are used to improve the thermal stability and to control the wear rate.
In particular, the reinforcing fibres provide mechanical strength to the friction material;
in fact, the braking load is carried by tiny plateaus of reinforcing material, which make
up only a fraction of the total pad surface [22]. The binder maintains the brake lining
structural integrity under mechanical and thermal stresses: it must exhibit a high heat
resistance because it has to remain structurally intact during the braking operations [22].
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The fillers are used to improve the lining manufacturability and to reduce the entire
cost of the pad itself. The additives represent another ingredient and are used to modify
the friction coefficient and the brake behaviour during transient operations [22]. The
additive is responsible for the enhancement of the lubricant or the abrasive behaviour of
the brake lining.

It is worth reporting that friction material manufacturers currently use more than
one hundred different components for the production of a brake lining. The brake
lining composition is set in order to match safety, noise and wear requirements such as
short running-in period, stability of friction coefficient under combined high speed-load,
stability of the friction under high temperature, stability of friction under wet conditions.
Regardless, the brake pads can be classified under three main categories: (i) low-steel
linings are generally referred to as ECE linings in Europe, whose reinforcing fibers are
mainly made of steel and copper, where the latter acts as a lubricant; (ii) non-asbestos
organic, also known as NAO linings, are composed of mineral fibres or other composition
modifiers such as rubber and graphite and used in USA, China, Japan; (iii) semi-metallic
linings represent a mixture of metallic and organic materials.

2.3 Tribology of disc brakes

The BLCF value is linked to the number and size of contact patches involved in the
pad-disc interface [23]. The plateaus can grow or decay in relation to processes of
agglomeration, compaction and disintegration of the wear debris. As described by
Gramstat in [24], this dynamics is not only dependent on the lining chemical composition
but also on the brake operating conditions.

With reference to the pad-disc tribological contact, two main theories have been
proposed to describe the processes taking place at the pad-disc interface. The first
approach is based on the studies of Eriksson in [25, 22], which relate the brake performance
to the formation, growth and degradation of contact plateaus. The second approach is
based on the studies of Österle in [26], which relate the brake performance to the third
body layers formed during a brake application. In accordance with this latter, the pad
and disc are separated by a layer of third body material that consists of load-bearing
patches and fine grained wear debris, whose thickness is function of the temperature.
Based on in-situ investigations conducted at Technische Universität Ilmenau, the two
mechanisms coexist under the same braking event [24]. Particularly, wear debris motion
in the third body layer is responsible for the compaction, formation and destruction of
load-bearing locations, which constitute the real area of contact. The stability of the
third body layer hinges upon the pad and disc surface characteristics, which are improved
after the bedding-in has taken place. During this phase, the average BLCF is not stable
because its value is a function of the tribo-layer thickness [24].
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The general consensus among the brake community is that the real contact area
consists of primary and secondary plateaus [25]. The primary plateaus are made of
structural components of the friction materials (e.g. metal fibres) and principally form
during the initial run-in of a green (unused) pad, thus causing a large increase in BLCF
during the first stops. The secondary plateaus are composed of wear debris, compacted
and agglomerated in front of the more stable primary plateaus (their constituents may
differ from the lining chemical components). The debris are composed of less wear
resistant pad constituents and might agglomerate and compact to form new secondary
plateaus.

As depicted in Figure 2.3, the area of real contact is confined within the plateaus
that generally constitute a fraction of the geometric surface area of the pad [25].

Disc

Pad

Debris

Secondary contact plateau
(compacted debris)

Primary contact plateau
(worn fibre)

Figure 2.3: Schematic of the contact situation at the interface between an organic brake pad
and a grey cast iron disc, involving plateaus of primary and secondary type (after [25]).

In-situ analysis performed at Technische Universität Ilmenau on a brake dynamometer
equipped with transparent borosilicate brake disc enables optical investigation of the
friction mechanisms at the pad-disc interface. By means of a high speed camera, a
section of approximately 10 mm2 on the pad surface can be visualized with up to 100X
magnification [27]. The pad surface topography at successive time steps for a drag brake
test with 8 bar brake pressure and a disc rotation of 35 min−1 is reported in Figure 2.4.
With reference to this latter, the speed vector indicates the disc direction of rotation
relative to the pad. The test is performed on a bedded-in brake pad. The secondary
plateau in Figure 2.4a has already formed and constitute the base of agglomeration and
compaction of additional debris. The experimental test demonstrates that upon pressure
application at t = 0 s, a flow of wear debris is generated. Thereafter, the agglomeration
and compaction of wear debris leads to the enlargement of the secondary plateau and
thus to a widening of the real contact area (Figure 2.4b and Figure 2.4c). Upon reaching
a critical size at t = 25 s, the small area of real contact experiences plastic deformation
and is disintegrated by wear (Figure 2.4d and Figure 2.4e). The process might stop or, as
in this case, proceed until complete destruction of the secondary plateau (Figure 2.4f). It
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2.4. Estimation of the friction coefficient of disc brakes

is worth pointing out that this in-situ analysis only focuses on an area corresponding to
approximately 0.2% of the pad area. Hence, the same phenomenon occurs simultaneously
at microscopic scales in other locations of the pad surface.

Figure 2.4: Phenomena interaction at the pad-disc contact interface for ECE lining and
borosilicate brake disc. Graph a) to c) report the wear debris agglomeration and compaction
dynamics on a secondary patch. Graph d) to f) show the destruction dynamics due to plastic
deformation, taking place upon achieving a critical patch size (after [24]).

The agglomeration - compaction - disintegration dynamics of the secondary plateaus
rules well-known mechanisms such as brake fading [28, 29], brake bedding-in [22], brake
wear [30, 31]. Other instances demonstrate that the contact patch formation is also
influenced by humidity [32] and local pressure [25]. In relation to the plateaus birth-
growth-destruction dynamics, the coefficient of friction can range between 0.3 and 0.7
[24, 33].

2.4 Estimation of the friction coefficient of disc brakes

Only few literature instances address the estimation of the brake lining coefficient of
friction in automotive applications. The proposed solutions have been mainly developed
for simulation and design purposes [15], the majority of which has not undergone
experimental assessment but only simulation tasks. Moreover, many of the proposed
approaches stem from experiments conducted on pin-on-disc tribometers under controlled
laboratory environment where real braking conditions are hardly reproducible [34, 35].
Studying the BLCF dynamics is certainly a challenging task as it is the result of several
mechanisms taking place at the pad-disc interface, such as bedding-in [22], fading [28]
and stick-and-slip [36]. The BLCF dynamics not only depends on the brake operating
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conditions but also on the environmental conditions [37], brake ageing [22] and brake
lining material composition [33]. In this section, a literature review of state-of-the-art
BLCF estimation methods is provided. Thereafter, the most popular solutions are
compared under real driving conditions.

2.4.1 Literature review

The sought literature instances suggest that BLCF estimation techniques can be classified
into three main categories, namely look-up-tables, static and dynamic models and neural
networks [15].

Look-up-tables are widely used in the automotive industry for control purposes. They
demand an accurate design of experiments on the brake dynamometer and usually do
not include more than two inputs because of the data curse of dimensionality. In [38, 39],
the authors propose a look-up-table linking the brake disc speed and brake pressure
to BLCF. An illustration is reported in Figure 2.6. This approach cannot account for
the combination of thermal and mechanical behaviour of the pad-disc contact since the
temperature does not appear as an influencing factor.

Static and dynamic models correlate BLCF with system inputs, such as the brake
pressure, and with system states, such as the disc temperature and speed. Static models
imply an algebraic dependence between the friction force and input and state variables,
whilst dynamic models describe the memory effect by means of a complementary differen-
tial equation ruling the dynamics of the friction forces. Model based approaches require an
ad-hoc parameters calibration with respect to the specific plant. The experimental burden
necessary to the model identification depends strongly on the number of parameters
and on the analytical dependencies. In general, strong non-linearities and differential
equations lead to an increased experimental burden [40]. In [41], a static formulation
based on the stick and slip dynamics is proposed by considering a rate-dependent damping
term for the Stribeck effect and an elastic term for the pre-sliding modelling [42]. In
[43], a simple quadratic model in the velocity state is used. In [44], an analytical formu-
lation considering only the friction dependence against the speed is proposed. A very
simple analytical formulation based on steady-state experimental tests that correlates
pressure, speed and temperature with friction and wear is also assessed in [45]. In [46],
an alternative algebraic formulation is put forth that, in addition to the sliding speed,
involves thermal effects due to the increase in temperature of the friction materials. In
[47, 48], a simplified static LuGre model is used to determine the friction force between
disc and pad. The authors in [49] propose a novel static friction formulation as a function
of the brake disc temperature, brake pressure and braking speed. In [50], Ostermeyer
proposes a dynamic model that relies on two differential equations in the BLCF and
brake disc temperature states, respectively. This dynamic model tries to capture the
transient behaviour of the friction and its dependence against the temperature during
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braking occurrence. The frame of the model dwells on the assumption that the friction
coefficient is the result of the equilibrium between the flow of formation and destruction
of contact patches, as presented in Figure 2.4. The model is as follows:

{
µ̇b = −p1 [(Fn ω reff + p2) µb − p3 τ ] ,
τ̇ = ξ ∥2 np Fn µb ω reff ∥ − δht (τ − τenv),

(2.1a)
(2.1b)

where, the normal clamping force Fn is defined as,

Fn = pb Ak, (2.2)

and pb is the applied brake pressure, np is the number of calliper pistons per side and Ak

is the calliper piston(s) area. Equation (2.1a) is the dynamic equation in the BLCF state
µb. Equation (2.1b) is better known as lumped capacitance model [29] and describes the
thermal dynamics of the brake rotor, where τ represents the lumped disc temperature and
τenv is the ambient temperature. In Equation (2.1a), the term in round brackets describes
the destroying effect linked to the friction power and the extent of the patches area
supposed proportional to BLCF itself, where ω is the disc angular speed and reff is the
brake effective radius. The parameter p1 is a time constant ruling the growth/destruction
rate of the contact area and its current value; p2 is a correlation parameter between
the change rate of the contact area and its current value; the parameter p3 correlates
the change rate of the contact area and temperature. The strictly positive sign of the
parameters is driven by stability consideration, although this might not reflect the real
nature of the friction process. As shown by the author of the present thesis in [40], the
parameters introduced by Ostermeyer cannot be considered constant during a braking
manoeuvre and further dependencies shall be explored. Moreover, Equation (2.1) derives
from experimental results conducted on the pin-on-disc where the temperature dynamics
is much different from a real brake system.

Artificial neural networks, herein referred to as ANN, have found extensive application
for the estimation of BLCF as a function of braking pressure, sliding velocity and disc
temperature [51]. ANN differ from traditional modelling approaches since they are trained
to learn the right solutions rather than being designed to model specific phenomena.
Modelling non-linear relationships using ANN is generally simpler in comparison with
other non-linear regression approaches as they offer high adaptability and do not require
knowledge of the friction mechanisms. The literature examples show that ANN can predict
with sufficient accuracy the effect of braking conditions on tribological performance,
provided that a demanding experimental campaign is a justified mean. The explanatory
Figure 2.5 shows that ANN are composed of nodes (or neurons), responsible for the
processing of information through the layer and branches (i.e. synapses), responsible
for the transmission of signals between layers. The neurons between the input and the
output layers constitute hidden layers that add non-linearity to the system and ramify
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the interactions among the variables of the previous layer. It is obvious that the network
performance depends on its structure in terms of both number of neurons per each layer
and number of hidden layers. The transmission of the signals is performed in analogy
with the way biological neural systems operate. The signals are generated in the neurons
when the information coming from the previous layer exceeds a certain threshold (bias).
Once the signal is generated, it is transmitted through the synapses to the next layer;
the synapses modulate the relative importance of the signals flowing between two layers.
Drawing on the analytical representation, the threshold crossing is modelled through an
activation function, generally a sigmoid function; the transmission across the layer is
realised through a weighted summation of the signals coming from the previous layer.
The choice of activation function is particularly important to capture the non-linearities
of the modelled mechanisms.

Figure 2.5: Schematic of a fully-connected two-hidden layer neural network. It is worth noticing
that the subscripts i, j and k refer to the connections between adjacent layers.

ANN exist in several shapes and architectures. ANN usually employed by the tribology
community feature a two-layered structure, as per Figure 2.5. In this case, the input layer

17



2.4. Estimation of the friction coefficient of disc brakes

has N inputs, the two hidden layers have M (1) and M (2) neurons, respectively, and the
output layer provides the estimated BLCF. As mentioned above, the activation function
in the hidden layers is generally represented by the sigmoid functions of Equations (2.3b)
and (2.3d), while linear functions are used for the output layers:

O(1)
j =

N∑
i=1

w(1)
ij xi + b(1)

j ,

aj = φ(O(1)
j ) = 1

1 + e−O
(1)
j

,

O(2)
k =

M(1)∑
i=1

w(2)
jk a

(1)
j + b(2)

k ,

ak = φ(O(2)
k ) = 1

1 + e−O
(2)
k

,

y =
M(2)∑
i=1

w(3)
k a(2)

k + b(3).

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

The output of each j − th neuron to the first hidden layer, Equation (2.3a), stems from
a weighted summation that passes through the activation function of Equation (2.3b),
where aj is the output of the neurons of the previous layer, Nu is the number of inputs
to the neuron and w(1)

ij is the weight between input i− th and neuron j − th. The sum in
Equation (2.3a) is biased by the factor b(1)

j . The same algorithm holds for the output
of the second hidden layer, where, this time, the previous layer of M (1) is weighted by
the factors w(2)

jk . The sum in Equation (2.3c) is biased by the factor b(2)
k . Finally, the

output layer performs an algebraic summation, where the outputs of the M (2) neurons
are weighted by the factors w(3)

k and biased by b(3), as per Equation (2.3e). ANN output
is represented by the variable y (Figure 2.5).

ANN must be trained on a set of experimental data defining the relationships among
the friction material behaviour and different formulations, environmental conditions and
operating conditions. In other words, before its direct application, it is required to teach
the network analytical relations between input and output to ensure results with the
lowest error possible. The number of training data pairs has a significant influence on
the networks generalisation capability. ANN require that the training examples span
the domain of interest completely; indeed, as a general rule of thumb, the operation of
interpolation is always preferred to extrapolation. The non-linearity of ANN also implies
the existence of many sub-optimal solutions, which correspond to local minima of the
associated error function. Therefore, depending on the initial choice of the networks
parameters, namely weights and biases, multiple solutions are allowed. One of the most
common approaches for the training of a network is based on the back propagation
method, whose basic principle is to reduce the square error between the expected and
measured output of the network by modifying the weight and bias vectors [52]. Hence, the
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2.4. Estimation of the friction coefficient of disc brakes

squared error between the measured and the estimated output is differentiated against the
weights and biases in order to define the direction of error reduction. After the training
procedure has completed, two additional steps must be performed for the achievement of
good estimation performance, namely validation and testing. A validation dataset is used
to exit the ANN training process by criteria of estimation accuracy. A test dataset is used
to examine the final quality of the developed ANN and to evaluate their generalisation
and prediction capabilities.

In [53], the author focuses on the analysis of the influence of the ANN architectures
on its generalisation capability and conclude that an insufficient number of neurons
in the hidden layers leads to inability to solve the problem. On the other hand, too
many neurons lead to over-fitting and consequently to a worsening of the generalisation
capability. In [54], ANN are proposed to predict BLCF by using as input parameters the
brake lining composition, the manufacturing process conditions and the brake operating
conditions. In [45], experiments performed on a brake dynamometer are used to identify a
static ANN relating pressure-speed-temperature with BLCF. In [55], the authors consider
the hysteresis phenomenon by including the sliding acceleration influence. Moreover,
the authors of [55] envisage applying ANN to generate 3D maps of BLCF for the
implementation of advanced control algorithms in the brake control units. In [56], ANN
are used to estimate the tribological properties of frictional materials, in particular BLCF
and wear rate. The author of [57] puts forth an estimator of the BLCF mean value for
non-asbestos brake linings with different compositions. In [58], ANN have been used
to model BLCF by considering several influencing factors such as the friction material
composition, the manufacturing parameters and the operating conditions. Further
studies concern the use of dynamic ANN to sift out the influence of disc brake operating
conditions and material characteristics on the generated braking torque [53, 59]. The listed
literature instances require very expensive experimental campaigns for the parameters
identification and may provide wrong results when the operating conditions lay far from
the identification data set.

In the next section, the functionality of the most popular state-of-the-art BLCF
estimation techniques is tested under real driving conditions. This analysis allows
identifying the applicability limits of the surveyed methods and motivates the necessity
to devise a novel estimation approach, free from ad-hoc parametrisations and thus robust
against changing plant characteristics.

2.4.2 Benchmarking of state-of-the-art estimation algorithms

The estimation capabilities of a second-order surface response model, the Ostermeyer
model and a fully-connected ANN are analysed in the present section. In this regard,
real driving data from the instrumented sedan in Appendix D is used. The true BLCF
reference value for the benchmark is provided by the estimation approach later addressed
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2.4. Estimation of the friction coefficient of disc brakes

in Chapter 4. With reference to the inference analysis presented in Chapter 1, the
surveyed approaches are identified on Trip 1 and validated on Trip 2. It is also worth
noting that the second-order response surface is extracted from quasi-static braking
conditions in accordance with SAE J2707, the Ostermeyer model is parametrised against
the true BLCF values and ANN features a common two hidden layer architecture with
eight and six neurons. Graphical representations of the second-order surface response
and ANN are provided in Figures 2.6 and 2.7, respectively. The second-order surface
approximation only considers vehicle speed and brake pressure as input variables. ANN,
on the contrary, allows for the inclusion of multiple inputs without incurring curse of
dimensionality. Moreover, Ostermeyer model and ANN require estimation of the disc
temperature, which is normally not available on commercial vehicles. For this reason, the
benchmark also addresses the impact that a wrong temperature estimate has on BLCF.
For the sake of space, only the results corresponding to the front-left wheel of the sedan
in Appendix D are reported. It is however worth noting that the methods under analysis
require different parametrisations for the rear wheels.

Figure 2.6: Second-order response surface
based on quasi-static braking conditions ex-
tracted from experimental data.

Figure 2.7: Two-layered ANN trained
against the collected data.

Four manoeuvres extracted from RDE-compliant Trip 2 are considered: braking (A)
consists of a mild deceleration at low speed; braking (B) identifies a mild deceleration
at high speed; braking (C) is a gentle deceleration at low speed; braking (D) features a
gentle deceleration at high speed. Figures 2.8a to 2.8d report the benchmark results with
reference to the second-order response surface, Ostermeyer model and ANN. Moreover, the
results also include the estimated disc temperature by means of the lumped capacitance
model in Equation (2.1b). The estimation performance of the techniques under analysis
are quantified in terms of normal round mean square error in Table 2.1.

The results clearly show that ANN exhibits better performance under all circumstances.
Nevertheless, the results also demonstrate that ANN is more susceptible to a wrong
estimate of the disc temperature, as per Figure 2.9, when compared to other approaches.
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(a) Braking manoeuvre (A) characterised by low initial vehicle speed and mild deceleration
level.
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(b) Braking manoeuvre (B) characterised by high initial vehicle speed and mild decelera-
tion level.
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(c) Braking manoeuvre (C) characterised by low initial vehicle speed and gentle deceler-
ation level.
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(d) Braking manoeuvre (D) characterised by high initial vehicle speed and gentle decel-
eration level.

Figure 2.8: Braking manoeuvres extracted from Trip 2 of RDE-compliant Ilmenau cycle (please,
refer to Chapter 1). The upper figures relate to the vehicle kinematics; the bottom-left figures
show the measured and estimated disc temperature; the bottom-right figures report reference and
estimated BLCF.
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2.4. Estimation of the friction coefficient of disc brakes

ANN also outperforms other methods during BLCF transients. This is particularly
noticeable in Figure 2.8a. In accordance with Table 2.1, the method based on the surface
response does not guarantee acceptable estimation performance, being unable to capture
the BLCF dynamics and featuring a relatively high estimation error. Similarly, Ostermeyer
model shows poor estimation performance, particularly in the case of manoeuvre (A)
characterised by a progressively decaying deceleration intensity. Although Figure 2.9
indicates that Ostermeyer model exhibits good robustness against temperature estimation
errors, this latter performs poorly at tracking the BLCF dynamics.

Table 2.1: Normalised RMSE of the analysed BLCF estimation techniques. The
estimation error is computed with respect to a true BLCF estimate.

Response
surface Ostermeyer ANN Ostermeyer* ANN*

Driving
section

A 28.14% 36.99% 14.06% 35.70% 14.67%
B 17.74% 13.19% 6.68% 13.96% 7.85%
C 18.35% 20.03% 10.95% 21.78% 11.48%
D 12.27% 13.52% 10.05% 14.61% 9.71%

*enhanced with lumped capacitance model for temperature estimation.
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Figure 2.9: Sensitivity of the employed estimation approaches against error in the temperature
estimate. Errors refer to whole Trip 2.

The following conclusions can be drawn from the benchmark results:

• estimation techniques based on look-up-tables and ANN do not provide rightful
physical insight on the friction mechanisms but only describe the effects;

• look-up-tables are of simple interpretation; however, similarly to ANN, a high
experimental effort is demanded to their implementation;
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2.4. Estimation of the friction coefficient of disc brakes

• model-based approaches may be designed to be robust against wrong temperature
estimates; however, they require a high experimental burden for the parameter
identification;

• ANN may exhibit high sensitivity against wrong input (e.g. wrong temperature
estimate) and the associated computational burden may not comply with the
hardware requirements;

• all previous methods require a plant-specific parametrisation;

• the analysed approaches become unreliable when the plant characteristics change
due to brake wear itself or in case of replacement with after market brake pads;

• the analysed methods feature poor extrapolation performance and are limited by
the necessity of estimating the disc temperature.

These considerations motivate the need for a novel estimation approach that is robust
against external sources of error (e.g. wrong temperature estimate or noisy speed
measurement) and does not require costly experimental campaigns for its parametrisation.
For this purpose, the present work focuses on the development of a state observer, which
provides a BLCF estimate based on information readily available from vehicle sensors
without the need to model friction mechanisms. In accordance with the schematic of
Figure 2.10, the observer design consists in creating a reference system model, whose
state variables are to be observed. The reference system model shall be arranged so
that output and input variables are known. To contain the model error with respect to
the real system, the former is corrected with the error between measured and observed
output variables. Depending on the observer type, the reference tracking error may be
used under different shapes to correct the states estimation.

Figure 2.10: Schematic of a state observer.

Although this will be made clear next in Chapter 4, it is worth mentioning that
the proposed observer considers the chassis and wheels rotational dynamics as reference
system models, assumes the brake pressure as known system input and relies upon the
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wheel speed sensors and the inertia measurement unit as measurable outputs. Thanks
to this scheme, unlike the above listed methods, the analytical description of non-linear
phenomena occurring at the pad-disc interface is avoided. The features of a state observer
can be summarised as follows:

• it uses measurements coming directly from the vehicle sensors by avoiding an
analytical description of the brake phenomenology;

• it does not require high experimental burden for the parameters identification and
its calibration can be directly performed on the target vehicle;

• it is easily adaptable to new or constantly changing plant characteristics (e.g.
replacement with aftermarket brake pads);

• it is valid for any brake systems independently of the calliper geometry, friction
material composition and brake architecture;

• it can be designed so as not to rely on temperature or friction models, which are
source of errors.

2.5 Research objectives and methodology

The knowledge of BLCF plays a crucial role in the performance of base brake control
algorithms in brake-by-wire systems since large deviations in the BLCF from the reference
value employed in the controller could lead to undesirable deterioration of the brake
control functions [16]. The main research objective of this thesis is a novel BLCF
observer that enhances braking performance and enables advanced brake monitoring
functions. This is achieved by compensating for undesired BLCF variations in vehicles
equipped with brake-by-wire systems and monitoring thermal and wear state of the brake
components. The compensation function cooperates with existing active safety systems
and enhances braking performance in presence of brake blended operation with electric
motors, uncertain environment and driving behaviour.

At present, there is no general norm or consensus regulating BLCF estimation accuracy
requirements in vehicle dynamics control applications. Nevertheless, in accordance with
the experimental results in Figure 1.3 and Table 1.2, it can be concluded that the BLCF
true value falls within 25% deviation from its nominal value with 95% confidence interval
(two-sigma rule). In accordance with the simulation results of Figure 1.5, if a constant
BLCF estimate equal to its nominal value is used in the controller, in absence of any
BLCF compensation, the driver experiences a normally distributed deviation in the actual
deceleration from its requested value up to 25% with 95% confidence interval. Hence, the
knowledge of BLCF is necessary to maintain the vehicle deceleration close to the desired
value and to enable advanced brake monitoring functions. The estimation accuracy of
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the on-board, real-time capable BLCF observer shall enable the compensation function
and outperform the case where a constant BLCF estimate, equal to its nominal value, is
used.

The achievement of the above mentioned research objectives requires a modelling
framework for the development, verification and validation of estimators and controllers.
Model-in-the-loop (MIL), software-in-the-loop (SIL) and hardware-in-the-loop (HIL) are
integrated in different stages of the research activity. Details of the vehicle dynamics
model and subsystems thereof are reported in Appendix A. The proposed functions are
developed and tested under MIL/SIL environment, whilst their functionality is verified
under HIL environment. Finally, on-road tests reveal necessary to fine-tune and validate
the developed functions. Under the framework of this work, the development, verification
and validation of vehicle control and estimation functions follows industry compliant
standards and processes that more generally relate to ISO/IEC 15504-2 (Automotive
SPICE). The standard software development process specified in ISO/IEC 15504-2 is
the V-cycle. This latter prescribes the activities to be performed and the results that
have to be produced during the functions development. In Figure 2.11, the left side
of the V-cycle represents the decomposition of requirements and creation of functional
specifications for the function development. The right side of the V-cycle represents the
software integration and its validation. Due to the complexity and size of the developed
control functions, the V-cycle improves the overall quality of the function, increases
development efficiency and eliminates systematic software errors.

Figure 2.11: Depiction of the function development process.

To achieve the listed goals, this research made use of top-notch facilities at Technische
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Universität Ilmenau (Ilmenau, Germany), among others a modern HIL test-rig for
real-time verification of brake functions, a brake dynamometer for brake-related wear
analysis, two vehicles for testing under real driving conditions. Important research
contributions were provided by Volvo Cars (Göteborg, Sweden), which supported the
experimental campaign on the brake dynamometer aimed at formulating and validating
a novel BLCF model to enable loyal MIL/SIL/HIL simulations [40]. The University of
Liverpool (Liverpool, England) supported the investigation of novel meta-models capable
of predicting brake-related particle emissions under real driving conditions. Finally, tests
conducted in collaboration with Flander’s Make (Lommel, Belgium) at the Ford Lommel
proving ground were used to test the functionality of the proposed BLCF observer. In
the framework of this work, the design of experiments relevant to the development of
the proposed control and estimation functions complies with SAE J2522 and SAE J2707
standards for brake dynamometer testing and ECE R13H guidelines for vehicle dynamics
simulations and proving ground tests.

As basic performance index for the quantification of estimation performance, the
round mean square error (RMSE) is considered. This latter is widely used in control
applications because it provides a second degree loss function that incorporates the
estimation bias. On the contrary, the RMSE emphasizes greater errors than smaller
ones, which makes it very sensitive to outliers. For this reason, depending on the use
case, additional key performance indexes such as the average absolute deviation and the
variance accounted for are used.

2.6 Originality and innovative aspects of the research

The present work introduces numerous novelty elements. Relevant literature instances
are brought up in each dedicated chapter and the innovative contributions specified in
the introductory section of each chapter. For the sake of clarity, the distinctive research
contributions are herein summarized.

The literature features inconsistent and sometimes contradictory results when it comes
to the BLCF dependencies against brake operating conditions [40]. As a consequence,
existing modelling frameworks fail at describing the underlying BLCF dynamics under
varying operating conditions [60]. In the framework of this work, experiments are
conducted on a cutting-edge brake dynamometer at Volvo Cars (Göteborg, Sweden) to
study the impact of the brake operating conditions on the BLCF dynamics. A novel
BLCF dynamics model that outperform state-of-the-art techniques is thus introduced to
enhance the modelling fidelity of model-, software- and hardware-in-the-loop tests for
the brake functions development and verification.

Existing BLCF estimation techniques are not able to correctly capture the BLCF
dynamics under real driving conditions [16] or are only validated under very limited
test conditions [61]. In this work, a novel BLCF observer based on a non-linear Kalman
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filter is developed and tested under the enhanced SIL/MIL simulation frameworks. The
observer robustness against fault injection is proved.

Multiple literature instances addressing brake-related control functions assume a
constant BLCF [16]. This approximation does not hold true for scenarios involving
multiple braking applications, varying operating conditions and brake blending with
electric motors [16]. In the present work, a novel BLCF compensation algorithm for
base brake functions is presented and verified in real-time on the brake-by-wire HIL
platform at Technische Universität Ilmenau (Ilmenau, Germany). The BLCF observer
functionality in presence of blended braking with electric motors is demonstrated.

The few literature instances addressing BLCF estimators do not prove their function-
ality under real driving conditions [47, 61]. In this work, the proposed BLCF observer is
calibrated by means of genetic algorithms and validated on the proving ground. Different
braking manoeuvres are performed to test the observer robustness against vehicle speed,
deceleration intensity and brake thermal conditions.

The literature lacks of consolidate brake wear prognosis functions, the majority of
which refer to pin-on-disc studies where the BLCF dynamics and the associated wear
process is far from reality [38]. This work proposes a semi-empirical wear model that
makes use of the BLCF observer to predict brake-related wear. Experimental wear data
collected from the brake dynamometer lead to an algebraic model, which is then validated
against 30.000 km of real driving conditions.

Recent literature instances address the estimation of brake-related particle emissions
from vehicle fleets by means of static maps. These latter cannot capture the epistemic
uncertainty associated with the brake particle formation mechanisms [38]. The present
thesis deals with advanced machine learning techniques to handle the highly stochastic
process of brake-related particle emissions, which is a topic never dealt with in the past.

2.7 Thesis outline

The present Chapter 2 puts forth the basic mechanisms ruling the friction phenomena
at the pad-disc interface. Experiments conducted on a special tribometer at Technische
Universität Ilmenau (Ilmenau, Germany) allow for in-situ investigation of the contact
zone. Chapter 2 also examines BLCF estimation techniques frequently employed in the
literature, ranging from model-based to advanced machine learning approaches. These
latter are then benchmarked under real driving conditions, showing that a BLCF observer,
real-time capable and robust against real operating conditions is demanded. The rest of
the thesis is organised in accordance with the flowchart of Figure 2.12.

Aiming at the creation of a high-fidelity MIL/SIL/HIL simulation framework for
the development of advanced estimation functions, Chapter 3 introduces a new BLCF
dynamic model stemming from a thorough experimental campaign conducted at Volvo
Cars (Göteborg, Sweden). The data-driven model results in a set of three differential

28



2.7. Thesis outline

Figure 2.12: Flowchart of the thesis outline.

equations that are parametrised and validated against brake dynamometer data and
embedded in SIL/MIL/HIL environments for successive analysis. A detailed description
of the simulation framework is provided in Appendix A. The inclusion of the BLCF
model in the simulation environment represents a required task to enable BLCF and disc
temperature dynamics and to ensure a reliable and loyal vehicle dynamics simulation.
The procedure leading to the formulation of the novel BLCF dynamic model are detailed
in Appendices B and C. The modelling framework proposed in Chapter 3 outperforms
state-of-the-art techniques being able to better capture the BLCF dynamics under all
investigated conditions.

In Chapter 4, a novel BLCF observer is put forth and its functionality proven under
different operating conditions in SIL/MIL environment. The simulation includes real
sensors noise and real actuators dynamics; the signal acquisition complies typical CAN-Bus
communication speeds. Chapter 5 follows with the BLCF observer real-time verification
and fault injection test on the HIL platform at Technische Universität Ilmenau (Ilmenau,
Germany). This chapter is dedicated to BLCF compensation for improved braking
performance, also in presence of blended braking with electric motors. In Chapter 6,
the developed observer is then validated with a full electric SUV at the Ford’s Lommel
(Lommel, Belgium) proving ground.

Thereafter, the work proves that the BLCF observer enables advanced monitoring
functions of brake wear and particle emissions. In Chapter 7, a novel brake wear model
is presented, whose formulation is driven by data collected on the brake dynamometer
at Technische Universität Ilmenau (Ilmenau, Germany). Particularly, a new design of
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experiments is introduced, which consists in reproducing real driving cycles on the brake
dynamometer. The functionality of the wear monitoring tool is demonstrated with respect
to 30.000 km under real driving conditions.

Finally, advanced meta-modelling techniques, i.e. neural networks, are introduced in
Chapter 8 for the estimation of the number of emitted brake particles. The proposed
neural networks outperform state-of-the-art solutions and demonstrate to be capable of
satisfactorily predicting the brake-related particle emission number. Appendix D reports
the technical specifications of the experimental vehicles used in the framework of this
research.

The dissertation terminates with the conclusive remarks of Chapter 9, which sum-
marises the progress made within this work and highlights the potential industrial
applications of the proposed control and estimation functions. Relevant recommendations
for future investigations and associated research topics are also provided.
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Chapter 3

A novel semi-empirical dynamic brake
model

3.1 Introduction

This chapter reports the results of an extensive experimental campaign conducted at Volvo
Cars (Göteborg, Sweden), which ultimately led to a novel model of the BLCF dynamics.
The model formulation is based on state-of-the-art knowledge of the friction problem and
is data driven, that is, its realisation is supported by experimental evidence. A complex
design of experiments (DOE) is proposed to assess the BLCF variability with respect to
brake line pressure, sliding speed and disc temperature. Principal Component Analysis
(PCA) is then used to extract meaningful information from large set of experimental data.
This latter allows for an intuitive understanding of the sought functional dependencies of
pressure, temperature and speed with respect to BLCF.

Three passenger cars brake systems featuring different ECE lining compositions,
among which two floating callipers and one fixed calliper, are tested on the brake
dynamometer at Volvo Cars (Göteborg, Sweden) to generate experimental data and
assess the model performance. All tests are performed under dry sliding conditions in
controlled laboratory environment. The formulation of the brake pads cannot be publicly
shared; however, the brakes geometrical data are reported in Table 3.1. The employed
brake discs feature a base grey cast iron composition.

The proposed model, named ILVO, takes its name after the partners who contributed
to its development, namely Technische Unviersität Ilmenau (Ilmenau, Germany) and
Volvo Cars (Göteborg, Sweden). ILVO model outperforms the state of the art outside the
investigated region of braking conditions. The integration of ILVO in the vehicle dynamics
simulation software enhances the simulation fidelity of MIL/SIL/HIL frameworks by
enabling the BLCF and disc temperature dynamics.
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Table 3.1: Technical specification of the brakes under analysis.

Brake A Brake B Brake C
Composition ECE 1 ECE 2 ECE 3
Construction type Floating Floating Fixed
Disc diameter 366 mm 340 mm 400 mm
Calliper piston(s) diameter 60 mm 42 mm 32/34/36 mm
Calliper piston(s) area 2827 mm2 1385 mm2 2730 mm2

Pad area 7125 mm2 2984 mm2 5460 mm2

N. of pistons 1 1 6
Effective radius 145.9 mm 144 mm 154.2 mm
Equivalent tyre radius 360 mm 360 mm 340 mm
Nominal µb (SAE J2522) 0.47 0.43 0.42

3.2 Experiments on the brake dynamometer

A schematic of the employed brake dynamometer is reported in Figure 3.1. The dy-
namometer is controlled through the manufacturer’s proprietary software that ensures a
seamless control of the system actuators. The compressed air hydraulic actuator increases
the pressure up to 210 bar within the master cylinder. The system is equipped with a
flow meter of the brake fluid and a pressure sensor that measures the actual pressure at
the master cylinder. The brake torque is measured through a sensor positioned inside
the inertial hub and corresponds to the output torque. The brake dynamometer allows
for a maximum operating regime of 2500 rpm and features a peak power of 200 kW
and a maximum torque of 6000Nm. The temperature of the brake system is acquired
in different points. Particularly, both the pad and disc temperatures are measured by
means of embedded thermocouples located underneath the surfaces. The dynamometer
is capable of simulating the inertia corresponding to the quarter curb vehicle mass.

To ensure repeatability of the data, the brake pads underwent a bedding-in procedure
in accordance with SAE J2522 Sec. 2. The brake manoeuvres have variable duration
depending on the boundary operating conditions. The signals are acquired with 200Hz
frequency. The manoeuvres exit condition may be either based on a target final tempera-
ture or a target final speed. To determine the global BLCF behaviour, a recursive least
square (RLS) filter is used to post-process the raw data [62]. The experimental campaign
consists of two test sessions designed together with Volvo Cars and realised for each brake
system. The constant pressure cycle (CPC) is a full factorial design that allows for a
thorough investigation of the influence of the control variables initial vehicle speed, initial
disc temperature and brake line pressure (5 × 7 × 9). The control variables tested levels
are conveniently reported in Figure 3.2 together with the average BLCF computed in
accordance with SAE J2522, as the fourth dimension on the coloured bar. The modified
Auto Motor und Sport (AMS) for dynamometer test rigs consists of consecutive full-stop
braking manoeuvres from an initial speed of 100 km/h with a fixed deceleration of 1G.
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Figure 3.1: Brake dynamometer with climatic chamber, employed for experimental tests at Volvo
Cars. 1-Drive Motor, 2-Flywheels, 3-Inertial hub, 4-Torque sensor, 5-Temperature sensor, 6-Brake
disc, 7-Brake calliper, 8-Brake pressure sensor, 9-Flow meter, 10-Master cylinder, 11-Compressed
air hydraulic actuator, 12-Pressure accumulator.

The first dataset is of general-purpose and is herein used to feed the data driven approach
and to identify the model parameters. The second dataset is specifically used to validate
the model extrapolation capability as it involves a higher brake line pressure and disc
temperature.

120100

vin [km/h]

806040
0τin [◦C ]

200

0

20

40

60

80

400

p
b
[b
a
r]

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

µ̄b [/]

Figure 3.2: DOE of CPC with full factorial design. The average BLCF values refer to Brake A.
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3.3 Analysis of experimental data

The patch formation and destruction dynamics is mainly confined to secondary plateaus,
which, along with the primary plateaus, constitute the real are of contact. Formation
and growth of the secondary plateaus depends upon temperature, normal pressure and
shear forces [22]. In accordance with the in-situ experiments conducted at Technische
Universität Ilmenau, the change in size and number of the secondary plateaus is the
reason for BLCF variations [23, 27]. The model herein presented sets out to describe the
slow increase of BLCF due to variation in the real area of contact.

The friction mechanisms entails highly stochastic processes, thus a good measurement
reproducibility across consecutive measurements in hardly achievable. However, large
brake dynamometer data allows identifying a general trend between BLCF and brake
operating conditions. CPC data are employed to extract meaningful information about
the BLCF behaviour both under steady-state and transient conditions. Figure 3.3 reports
the results of the CPC test. It can be noted that average BLCF tends to increase with
increasing pressure. Indeed, the increasing pressure leads to the formation of more
patches and thus to a widening of the real contact area [63], [64]. The effect of initial
sliding speed is not clearly reflected in the average BLCF; nevertheless, higher speed
values play a detrimental role on the patch formation. The temperature contributes to
the formation of more patches until a critical temperature is reached where BLCF begins
to decay.

Twelve braking manoeuvres are extracted from CPC data to analyse the BLCF
behaviour under transient conditions. Figure 3.4 reports the BLCF values for Brake A
recorded at the target speeds (vt) of 60km/h and 30km/h for twelve braking manoeuvres
featuring three levels of initial temperature (50◦C, 150◦C and 200◦C), two levels of
initial vehicle speed (80 km/h and 120 km/h) and two levels of pressure (20 bar and
60 bar). In accordance with SAE J2522, the braking initial condition is set as the instant
at which the measured pressure achieves 90% in value of the reference pressure signal.
The experimental results show that BLCF increases with a faster rate at higher pressure
values. Indeed, higher pressure values correspond to higher deceleration rates and, thus,
enhanced agglomeration of debris. From Figure 3.4, another important evidence is that
higher speed values hinder the agglomeration of patches and, thus, lower the formation of
new contact area. This effect is much more pronounced at higher pressure values [64, 65].

In addition to this analysis, the relative importance of each input variable has been
quantitatively assessed by means of PCA (the reader is referred to Appendix B for details
on the implemented algorithm). PCA takes high-dimensional data and represents it in a
lower-dimensional form without losing too much information. This is done by identifying
the directions of maximum data variation in a reduced order dimensional space. For
this reason, only the first three principal components (PCs) are selected, which together
account for more than 80% variation in the BLCF (Table 3.2). In this 3-dimensional
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Figure 3.3: Results of CPC test for the brake systems under analysis. From lower to top,
sub-figures a), b) and c) render the dependence of the average BLCF against the brake line
pressure, initial disc speed and initial disc temperature, respectively.

space, one can identify the direction of maximum variation of each input variable initial
vehicle speed, brake pressure and initial disc temperature, respectively, and the output
variable average BLCF, computed in accordance with SAE J2522. The projections of the
input variables onto the PCs reference system represent an orthogonal reference as the
input variables are varied one at a time (refer to Figure B.3). The relative importance of
each input variable can be computed by projecting the associated vector onto the average
BLCF vector. The results of this procedure carried out across the CPC data demonstrate
that the contact temperature accounts for more than 60% variance in the average BLCF
computed for each manoeuvre, in accordance with SAE J2522. The relative importance
of input variables on the average BLCF is conveniently reported in Table 3.2.

Table 3.2: Relative importance of the input variables resulting from PCA conducted
across the CPC data set. For details, the reader is referred to Appendix B.

Variable Relative weight
Brake A Brake B Brake C

Initial vehicle speed -9.61% 3.46% 1.22%
Brake pressure 36.6% 35.1% 12.6%
Initial disc temperature 59.8% 61.3% 69.6%
Total variance identified by the first three PCs 92.8% 89.5% 87.7%
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Figure 3.4: Partial results of CPC test of Brake A allow analysing the BLCF dynamic behaviour.
The upper graphs, a) and b), refer to braking from an initial vehicle velocity of 120 km/h. The
lower graphs, c) and d), refer to an initial vehicle velocity of 80 km/h. The BLCF values at
the initial condition, at the intermediate target speed of 60 km/h and at the final target speed of
30 km/h are identified by blue, red and yellow lines, respectively.

Table 3.2 shall be read as follows: "the initial disc temperature is responsible for
more than 60% of the variance in the measured average BLCF". It is worth noticing
that PCA not only describes the absolute magnitude but also the expected direction
of variation. In other words, one can conclude that for Brake A, a higher initial speed
leads to a reduction in BLCF, whilst for Brake B and C the speed account just for a tiny
variation in BLCF. Moreover, for Brake C, the pressure does not play an important role
because of the more even pressure distribution provided by the fixed calliper architecture
with multiple pistons. This analysis motivates the choice of the functional dependencies
rendering the average BLCF, which is better discussed later in the text. Although
the experimental evidence of Figure 3.3 demonstrates that BLCF entails stochastic
phenomena, a deterministic modelling approach is herein proposed. Due to BLCF
stochastic nature and the necessary plant-specific model parametrisation, the scope of
ILVO is a tool to be included in MIL/SIL/HIL simulation frameworks. The experimental
evidence guides the model development, which is expressed formulaically by the data
driven approach of Appendix C.
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3.4 Enhanced lumped capacitance model

The lumped capacitance model has been widely used in the literature to render the brake
temperature dynamics [66]. The basic assumption of the lumped capacitance is that an
uniform temperature field is assumed in the disc; therefore, the temperature is a function
of time only. This statement is valid if the Biot number of the brake disc is smaller than
0.1 [67]. The Biot number is defined as the ratio between the convective heat transfer
coefficient and the conductive heat transfer coefficient, as per Equation (3.1):

Bi = hht rout

kht
, (3.1)

where, Bi is the Biot number, hht is the disc convective heat transfer coefficient, kht

is the disc conductive heat transfer coefficient and rout is the critical dimension over
which conduction occurs, generally the radial disc direction across which the highest
temperature gradient is measured (Figure 3.5). For the brake systems under analysis,
a Biot number of 0.08 is calculated, making the lumped capacitance model applicable.
If the Biot number exceeds the threshold, the temperature gradients within the disc
may influence the heat transfer behaviour making the lumped capacitance model not
applicable.

Figure 3.5: Energy balance of a cast iron brake disc.

The temperature dynamics of the brake system is concerned mostly with the cooling
and heating of the disc as it is the primary storage for thermal energy and its temperature
influences the nearby components. Due to its higher thermal conductivity if compared to
the brake pads, the disc dissipates almost 96% of the generated heat [29]. The brake disc
thermal dynamics accounts for the energy equilibrium between heat provided by means
of frictional power and the heat removed by convection with the surrounding air. The
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3.4. Enhanced lumped capacitance model

lumped capacitance model also assumes that the heat dissipated through conduction into
the wheel carrier is negligible and the radiation effect can be neglected if compared to the
convection with air. Given these assumptions, the following model can be formulated:

cp mdisc τ̇ = Q̇fric − Q̇out, (3.2)

where,

Q̇fric = σ ∥Tb ω∥ , Q̇out = Q̇conv,air + Q̇cond + Q̇rad ≈ Q̇conv,air. (3.3)

The model in Equations (3.2) and (3.3) gives rise to Equation (3.4):

cp mdisc τ̇ = σ ∥Tb ω∥ − hht Aeff (τ − τenv), (3.4)

which can in turn be rewritten as Equation (3.5):

τ̇ = σ

cp mdisc
∥Tb ω∥ − hht Aeff

cp mdisc
(τ − τenv), (3.5)

and,

τ̇ = ξ ∥Tb ω∥ − δht (τ − τenv). (3.6)

where, σ represents the heat portion dissipated by the disc, mdisc is the mass of the disc,
cp is the disc specific heat capacity (generally between 450 J

kgK and 550 J
kgK for normal

brake disc operating conditions), hht is the convective heat transfer coefficient (usually
between 1 W

m2K
and 100 W

m2K
) [67], Aeff represent the effective brake disc area subject

to convective heat transfer, τ and τenv represent the disc and ambient temperature
respectively, Tb is the brake torque and ω the disc speed. The first term in Equation (3.6)
is replaced with ξ which identifies the portion of frictional power converted into disc
temperature variation. The second term is defined as the characteristic disc cooling
coefficient δht.

The lumped model can well perform under a restricted temperature range corre-
sponding to relatively modest energy inputs. At high temperatures, where the grey
cast iron thermal properties change dramatically, such model tends to break down and
provides an inaccurate representation of the brake thermal behaviour. With this in mind,
data collected from the dynamometer at Volvo Cars are used to identify and validate
an improved lumped capacitance model that accounts for variation in the disc specific
heat and cooling coefficient against varying temperature and sliding speed, respectively.
Experimental data shows that the relationship between disc material specific heat capacity
cp and disc temperature τ can be represented by a linear function, as in Figure 3.6a.
Data collected from the proving ground at Volvo Cars show that the cooling coefficient of
the disc δht can be expressed as a linear function of the relative air speed, herein assumed
equal to the vehicle linear velocity, as in Figure 3.6.
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Figure 3.6: Thermal properties of the cast iron disc under analysis.

In accordance with the experimental evidence, the lumped capacitance model is
corrected as:

τ̇ = ξ(τ) ∥Tb ω∥ − (δht,0 + δht,1 vx) (τ − τenv). (3.7)

The performance of the corrected lumped model of Equation (3.7) are reported in
Figures 3.7 and 3.8 for the disc cooling and heating case, respectively. The disc cooling
data, in Figure 3.7, refer to measurements at constant cruising speed, performed on a
proving ground at Volvo Cars (Göteborg, Sweden). The experimental data in Figure 3.8
refers to constant deceleration manoeuvres with a brake pressure of 30 bar, performed on
the dynamometer at Volvo Cars. For the sake of space, only two sets of measurement are
reported for each case, corresponding to a low and high speed braking, respectively. It is
noticeable that the steady state error is reduced when the corrected lumped model is
used. This is mostly valid for braking manoeuvres performed from higher speed values.

For a matter of simplicity and to ensure stability in the numerical solution, the disc
specific heat coefficient is assumed almost constant, leading to the parametrisation in
Appendix C. This assumption does not affect the validity of the model. Based on the
results reported later in the document, the lumped capacitance model functionality is
proven up to a disc temperature of 350◦C.

3.5 Proposed model of the brake lining coefficient of
friction

As shown in Chapter 2, dry friction stems from different mechanisms occurring at the
microscale. Although the friction is a result of numerous phenomena, the extended
Amonton’s law well describes the friction force between dry surfaces that slide over each
other in presence of adhesion [68]. The adhesion contribution is proportional to the
number of bonds that are broken and reformed when the surfaces slide relatively to
each other. The number of bonds is proportional to the apparent contact area only
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Figure 3.7: Comparison between the modelling performance of the conventional lumped capaci-
tance model and its corrected version from an initial disc temperature of 400◦C. Sub-figures a)
and b) refer to cruising at low and high speed, respectively.

Figure 3.8: Comparison between the conventional lumped capacitance model and its corrected
version from an initial temperature of 220◦C. Sub-figures a) and b) refer to braking from low and
high speed, respectively.

if the surfaces are completely smooth. For rough surfaces, the real contact area Areal

differs dramatically from the apparent contact area Apad as the former could be much
larger or much smaller depending on the surfaces material hardness and applied normal
pressure [22]. In this case, the area is referred to as the real contact area and its increase
corresponds to a higher BLCF [23, 27]. Henceforth, the ratio between the real and
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3.5. Proposed model of the brake lining coefficient of friction

apparent contact area is herein defined as the normalised real contact area as follows:

αb ∝ Areal

Apad
. (3.8)

An infinitesimal element lying at the pad-disc contact interface is selected and studied.
A schematic of the proposed differential approach is presented in Figures 3.9a and 3.9b.

(a) A disc brake and infinites-
imal element at the pad-disc
interface, in yellow.

ω
σzz

σzθ

dr

dθ
r

(b) Depiction of the infinitesimal ele-
ment at the pad-disc interface together
with stress components.

Figure 3.9: Schematic of the proposed differential approach.

The sought functional dependencies stem from a data driven approach, which is based
on the minimisation of a cost function in accordance with criteria of both generalizability
and fitting performance (please, refer to Appendix C). For the generic infinitesimal
element, one can define the relation between normal and tangential stress components as
follows:

σzθ = −µb(σzz, τ, ν, t) σzz sign(ν), (3.9)

where,

ν = r ω. (3.10)

The stress component σzθ in the tangential direction is associated with the friction
force experienced by the element at the contact interface; the stress component σzz in the
vertical direction is caused by the pressure distribution in the contact zone when pressure
is applied; τ represents the local disc temperature in correspondence of the infinitesimal
element; ν represents the local sliding speed of the infinitesimal element located on the
circumference of radius r, given the angular disc velocity ω. At microscopic level, the real
contact area is not constant, which directly affects the friction coefficient. PCA across
CPC data demonstrates that the temperature plays an important role on the adhesion
friction as a varying temperature causes different levels of surface interaction. To account
for the adhesion effect, BLCF is expressed as a combination of two variables, viz:

µb(σzz, τ, ν, t) = κ(τ) αb(σzz, τ, ν, t), (3.11)
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3.5. Proposed model of the brake lining coefficient of friction

where, the normalised real contact area αb is dynamically being modified by local
deformation and flow of wear debris, the contact coefficient κ expresses the adhesion
between pad and disc. The adhesion coefficient can be extracted from CPC by considering
a unitary contact area and computing the average BLCF in accordance with SAE J2522,
for a fixed initial sliding speed and initial disc temperature. The same procedure is
repeated for different brake line pressure values, leading to the results in Figure 3.10.
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Figure 3.10: Adhesion coefficient κ against disc temperature for the brake systems under
analysis. From left to right brakes A, B, C, respectively.

Based on the results of Figure 3.10, the adhesion coefficient is approximated as a
linear function of the brake disc temperature. The analytical expression is given by
Equation (3.12):

κ(τ) = κ1τ + κ0, (3.12)

This equation carries the inherent property of increased interactions due to higher atomic
kinetic energy represented by temperature. At this point, the data driven approach of
Appendix C leads to the following differential equation for the normalised real contact
area dynamics:

α̇b = a σzθ ν + b ν̇ − g(σzz, τ), (3.13)

which can be rewritten as,

α̇b = a κ αb σzz ν + b ν̇ − g(σzz, τ). (3.14)

In its preliminary version, the model also included a pressure gradient dependent term,
which was then removed because the data driven approach assigned a low significance to
it. This conclusion was also supported by experiments conducted on the dynamometer at
Volvo Cars for varying pressure gradients and pressure levels. The results in Figure 3.11
show that the pressure gradient does not play a visible role in the average BLCF value
computed in accordance with SAE J2522. Hence, its effect is neglected.
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3.5. Proposed model of the brake lining coefficient of friction

Figure 3.11: Effect of the pressure gradient on the average BLCF. The results refer to Brake A.

The resulting expression is composed of three terms: (i) the first one associated with
the shear stress, which can contribute to the creation of new contact area; (ii) the second
term is associated with the accumulation of debris in the contact area induced by the disc
deceleration and contributes to increasing the effective contact area; (iii) the third term
is associated with thermo-plastic effects, which lead to a reduction in the real contact
area. It is worth noticing that the function g(σzz, τ) is specific for each brake system as it
describes the frictional behaviour under steady conditions (no area growth/destruction).
Based on the results of PCA, the data driven approach maximises the fitting for:

g(σzz, τ) = c σzz τ. (3.15)

By substituting Equations (3.12) and (3.15) in Equation (3.14), the expression follows:

α̇b = a (κ1τ + κ0) αb σzz ν + b ν̇ − c σzz τ. (3.16)

Finally, one can combine BLCF with shear stress and calculate the torque applied to
each differential area elements dA of the pad, leading to the following expression:

dTb = r σzθ dA = −r κ(τ) αb(σzz, τ, ν, t) σzz sign(ν) dA. (3.17)

To identify the parameter of the proposed model, Equation (3.17) shall be brought
to the integral form by integrating over the pad area in polar coordinates:

Tb = 2
∫∫

Apad

dTb = 2
∫ rout

rin

∫ θf

0
−r2 κ(τ) αb(σzz, τ, ν, t) σzz(r, θ) sign(ν) dθdr. (3.18)

At this stage, an important and practical simplification is to move the problem to
the macroscopic scale by dismissing the radial and angular distribution of temperature,
normal stress and normalised real contact area:

τ(r, θ) = τ, σzz(r, θ) = σzz, αb(σzz, τ, ν, t) = αb(σzz, τ, reff ω, t), sign(ν) = sign(ω).

(3.19)
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As a result, Equation (3.18) becomes:

Tb = −2 sign(ω) κ(τ) αb(σzz, τ, reffω, t) σzz θf
r3

out − r3
in

3 . (3.20)

where,

σzz = pb Ak

Apad
, Apad = θf

r2
out − r2

in

2 , reff = 2
3
r3

out − r3
in

r2
out − r2

in

. (3.21)

Finally, a complete definition of the dynamic system is given by Equations (3.22a)
to (3.22c): 

ω̇ = − 1
Iω

(Tb +
∑

Text),

τ̇ = ξ ∥Tb ω∥ − δht(vx) (τ − τenv),
α̇b = a (κ1τ + κ0) αb σzz reff ω + b reff ω̇ − c σzz τ.

(3.22a)

(3.22b)
(3.22c)

Equation (3.22a) describes the disc rotational dynamics. In accordance with the
previous section, the brake temperature dynamics is rendered by Equation (3.6) and
conveniently rewritten as Equation (3.22b). Equation (3.22c) is the proposed dynamics
for the normalised real contact area. The model features seven parameters, which need
to be identified based on the brake system under consideration: the fraction of the brake
power that is converted into heat (ξ), the brake cooling coefficient (δht), two parameters
associated with the adhesion coefficient (κ1 and κ0) and three parameters related to the
real contact area dynamics (a, b and c). The equations comprised above are a set of
non-linear differential equations where line pressure is seen as an input to trigger the
braking mechanism. In accordance with SAE J2522, a brake line pressure of 0.5 bar is
set to trigger the integration start. The formulation proposed conveys that the particles
flow increases the size of the contact patches due to friction power, whilst pressure and
temperature modulate the wear and thus the destruction process of the contact patches
[50].

3.6 Model identification and benchmarking

In [50], Ostermeyer proposes a dynamic model for BLCF that relies on two differential
equations in the BLCF and temperature sate variables (please, refer to Chapter 2).
The experimental evidence demonstrates that the parameters introduced by Ostermeyer
cannot be considered constant during the braking manoeuvre and further dependencies
shall be explored. To this effect, the authors in [69] propose a revised model based on
nine parameters. Nevertheless, both models are derived from experiments conducted
on the pin-on-disc where the temperature dynamics is much different from that of disc
brakes. Thereafter, ILVO model is benchmarked against the Ostermeyer model and its
revised version. The reader is referred to the work in [69] for more details.

During the development stage, several optimisation methods were deployed for the
models identification. Herein, the set of differential equation are integrated by means
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of the fourth-order Runge-Kutta algorithm with a fixed step of 0.01 s, which ensures
at the same time low computational burden and improved convergence stability. It is
proved that both the constrained least square method (LSQ) and the unconstrained
derivative-free simplex search method (DSS) [70] converge to the same global minimum.
The reader is referred to Appendix C for more details.

The normalised effective area of ILVO model is initialised to the unitary value at the
beginning of each braking manoeuvre. The initial brake temperature τ0 must be specified
before the simulation starts to account for the initial brake thermal state. Moreover,
the Ostermeyer model and its revised variant require the knowledge of the initial BLCF
to ensure convergence of the solution. This represents an important limitation of the
Ostermeyer model where the initial BLCF value must be set upon integrating. In the
case of ILVO, the initial BLCF condition is left to the identification of Equation (3.15)
in the optimisation routine. The CPC fitting performance of the models under analysis
are herein quantified by the normalised round mean square error (nRMSE). The results
reported in Table 3.3 demonstrate ILVO superior performance. Moreover, no noticeable
improvement is brought about by the revised Ostermeyer model in [69] when compared
to its original version.

Table 3.3: CPC fitting performance of the models under analysis for the three brake
systems.

CPC nRMSE(µb)
Brake A Brake B Brake C

Ostermeyer 12.91% 13.86% 15.34%
Revised Ostermeyer 12.87% 15.23% 16.56%
ILVO 4.35% 7.51% 8.70%

As an example, two CPC braking manoeuvres characterised by low and high brake
pressure are reported in Figures 3.12a and 3.12b, respectively. The results show that
ILVO model can reproduce well the effective contact area dynamics when compared with
an estimate extracted from the experimental data. The resulting models parametrisations
are reported in Tables C.2 and C.3 of Appendix C.

3.7 Model validation and results

In this section, the model validation is carried out against the AMS data set. This
latter involves temperature and pressure values beyond the CPC investigated domain.
Therefore, AMS also allows to assess the models extrapolation performance. For the sake
of space, only the graphical results corresponding to Brake A are reported in Figure 3.13.
The extended validation results are instead reported under the form of Table 3.4. In
addition to nRMSE, capturing the transient BLCF behaviour, another performance
index is considered, namely the average BLCF, computed in accordance with SAE J2522.
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(a) Fitting performance of the benchmarked models at low brake pressure.
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Figure 3.12: Fitting performance of the models. Input variables BLCF and contact area dynamics
are reported in the upper, middle and lower graphs, respectively.
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Figure 3.13 shows that whilst the Ostermeyer model fails upon reaching a brake disc
temperature of 200◦C, ILVO model can reproduce well BLCF decay due to the increasing
temperature, which is particularly evident above 250◦C.
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Figure 3.13: Validation results for Brake A. ILVO model renders the friction phenomenon
for a wider range of temperatures when compared with the Ostermeyer’s model and its improved
variant.

In accordance with the extended results in Table 3.4, the improved Ostermeyer model
shows good prediction performance for a relatively restricted temperature range, up
to 150◦C. Upon reaching a brake disc temperature of 200◦C, this latter starts failing,
whilst ILVO model keeps exhibiting a very low prediction error. The capability of ILVO
model of capturing both the steady state friction and its dynamics is demonstrated by
the low average BLCF prediction error and nRMSE, which are kept within 15% margin.
This is particularly evident for Brake A and Brake B. The higher error values that can
be noticed for Brake C suggest that a different formulation in Equation (3.15) may be
necessary. The results demonstrate that ILVO model can depict decaying BLCF due
to increasing disc temperature, which results in a remarkable reduction in the effective
contact area [71].
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Table 3.4: Validation results of the models under analysis with respect to AMS data.

AMS µ̄b nRMSE(µb)

τin Meas. Ost. Ost.
imp. ILVO Ost. Ost.

imp. ILVO

50◦C 0.4338 0.3757
(-13.4%)

0.4263
(-1.73%)

0.4601
(+6.05%) 15.10% 5.34% 7.92%

100◦C 0.4711 0.4090
(-13.18%)

0.4436
(-5.85%)

0.4717
(+0.12%) 15.50% 7.14% 8.64%

150◦C 0.4584 0.4681
(+2.11%)

0.4947
(+7.91%)

0.4678
(+2.04%) 11.00% 10.91% 8.34%

200◦C 0.4291 0.5239
(+22.09%)

0.5478
(+27.67%)

0.4491
(+4.65%) 26.55% 30.14% 6.40%

Br
ak

e
A

250◦C 0.4030 0.5727
(+42.11%)

0.5956
(+47.80%)

0.4215
(+4.60%) 45.81% 50.41% 7.03%

300◦C 0.3775 0.6161
(+63.19%)

0.6378
(+68.93%)

0.3911
(+3.59%) 66.97% 71.83% 8.62%

50◦C 0.3929 0.3330
(-15.24%)

0.3044
(-22.53%)

0.3921
(+0.2%) 17.5% 25.86% 5.36%

100◦C 0.4843 0.3844
(-20.63%)

0.3375
(-30.30%)

0.4406
(-9.03%) 22.36% 33.03% 11.36%

150◦C 0.5424 0.4447
(-18.02)

0.3803
(-29.87%)

0.4853
(-10.52%) 19.75% 32.22% 15.36%

200◦C 0.5303 0.4975
(-6.19%)

0.4220
(-20.42%)

0.4997
(-5.77%) 8.75% 22.18% 11.73%

Br
ak

e
B

250◦C 0.5094 0.5429
(+6.58%)

0.4592
(-9.86%)

0.4957
(-2.7%) 8.61% 10.89% 6.36%

300◦C 0.4959 0.5690
(+14.73%)

0.4804
(-3.13%)

0.4917
(-0.85%) 16.68% 4.41% 4.04%

50◦C 0.3756 0.3217
(-14.35%)

0.3488
(-7.15%)

0.4056
(+7.98%) 18.85% 11.69% 6.38%

100◦C 0.4229 0.3846
(-9.05%)

0.4059
(-4.02%)

0.4304
(+1.79%) 14.40% 8.40% 5.34%

150◦C 0.3843 0.4190
(+9.01%)

0.4424
(+15.12%)

0.4182
(+8.82%) 14.04% 14.28% 9.50%

200◦C 0.3340 0.4639
(+38.89%)

0.4877
(+46.02%)

0.4013
(+20.15%) 43.55% 46.25% 19.14%

Br
ak

e
C

250◦C 0.3005 0.4982
(+65.77%)

0.5233
(+74.13%)

0.3812
(+26.85%) 73.44% 76.77% 25.12%

300◦C 0.2773 0.5378
(+93.97%)

0.5637
(+103.3%)

0.3589
(+29.45%) 104.6 108.3% 27.90%

3.8 Characteristics of the model-based approach

The achievement of ILVO model represents an important advancement in the field of
tribology and vehicle dynamics studies. The formulation of a loyal BLCF dynamic model
can not only support the brake design but also increase the simulation fidelity of vehicle
dynamics simulation software. The main innovative contributions of the proposed model
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can be boiled down to the following statements:

• ILVO model provides a description of the effective contact area dynamics, which
represents the birth-destruction dynamics of contact patches at the pad-disc inter-
face;

• ILVO model considers a contact coefficient reproducing the adhesion property
of the frictional contact, which enhances the modelling performance for a wide
temperature range;

• ILVO model with fixed parametrisation is capable of capturing BLCF decay for
increasing disc temperature, although this information is not provided during the
model identification procedure.

In this analysis, the model operational range is limited to a brake disc temperature of
around 350◦C. This limit does not affect the model applicability (e.g. for HIL simulation)
as the disc temperature commonly reached in service lies beneath 250◦C [72]. Higher
temperature values can be achieved when the brake undergoes severe braking conditions
such as extended braking on a down-hill.

3.9 Chapter summary

This chapter introduces a novel BLCF model that outperforms the state of the art in
capturing both the average BLCF and its dynamics. Although the BLCF dynamics entails
highly stochastic phenomena, the proposed deterministic data-driven model features a
good fitting of the investigated braking conditions. The results demonstrate that the
proposed method outperforms state-of-the-art solutions. Particularly, the proposed model
extrapolates well BLCF for brake temperature values laying far from the investigated
region.

Although the proposed model does not account for high frequency phenomena, it
provides a novel modelling framework, which allows for the inclusion of additional
phenomena. NVH-related mechanisms may be included by adding limit-cycle oscillations
terms to the effective area dynamics; the local pressure distribution shall be also taken
into account for a more accurate formulation of the integral problem. The proposed model
is embedded in the vehicle dynamics simulation software to enhance the modelling fidelity
of SIL/MIL/HIL frameworks. The enhanced modelling framework can be therefore used
for brakes controls and design purposes in Chapter 4.
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Chapter 4

A novel brake friction coefficient
observer

4.1 Introduction

The present chapter features a novel BLCF observer based on the extended Kalman
filter. This latter encompasses the chassis and wheels rotational dynamics and relies
upon the wheel speed sensors and the inertia measurement unit (IMU) by avoiding the
analytical description of non-linear phenomena occurring in the pad-disc interface. The
functionality of the developed estimator is proved in MIL/SIL environment by means of
the vehicle dynamics simulator IPG CarMaker® with experimentally validated model of
a full electric SUV equipped with four on-board motors and EHB. Information on the
model implementation and subsystems thereof is reported in Appendix A. In accordance
with the results of Chapter 3, ILVO model allows for improved fidelity of the MIL/SIL
frameworks due to inclusion of the BLCF and disc temperature dynamics. Under this
framework, straight-line braking tests as per ECE R13H [73], involving different initial
braking speed and deceleration values, are used as reference test scenario to assess the
functionality of the developed observer. The brake pedal actuation speed is set equal
to 150mm/s. The statistical analysis in Chapter 1 shows that the actual BLCF value
might exhibit deviations up to 25% from its nominal value with 95% confidence interval
under real driving conditions. To this effect, the BLCF observer shall exhibit superior
performance when compared to the case where a constant BLCF estimate, equal to its
nominal value, is used.

4.2 Vehicle model

The vehicle model used for MIL/SIL and also HIL investigations is the full electric SUV
equipped with the decoupled electrohydraulic brake system (EHB) and four on-board
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4.2. Vehicle model

electric motors (EM). Information on the model implementation and subsystems thereof
is reported in Appendix A. The vehicle model parametrisation is based on experimental
data collected from the full electric SUV demonstrator provided by Flander’s Make. For
details, the reader is referred to Appendix D. The schematics of the vehicle under study
is reported in Figure 4.1. The vehicle features four on-board motors connected to the
wheels by means of half shafts. Braking action can be provided both by EHCU and EM.
The regenerative torque can be requested upon checking the battery availability via the
battery management unit (BMU). The required control signals are made available by the
VCU, in accordance with the description already provided in Chapter 1. The brakes are
composed of grey cast iron disc and ECE linings. The on-board motors are synchronous
machines of switched reluctance type.
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Figure 4.1: Architecture of the full electric sport utility vehicle.

Legal requirements demand that the braking system of road vehicles provides stable
behaviour under all driving scenarios [73]. ECE R13H defines two important features,
namely the adhesion utilisation and basic braking stability based on wheel-lock sequence.
It is important that rear wheels do not saturate during braking occurrence as this might
lead to vehicle spin-out. EHB allows the distribution between front and rear axles to
be flexibly adjusted according to the driving conditions. This enables optimised vehicle
handling stability under all payload conditions, even wear between front and rear axles
and improved vehicle deceleration with the same pedal force. An ideal force distribution
ensures equal tyre-road friction utilisation between front and rear axles (see Figure 4.2).
The associated calculation stems from the quasi-static equations of pure longitudinal
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4.3. Observer of the brake lining coefficient of friction

motion during braking occurrence [74]. Conventional electronic brake force distribution
systems (EBD) feature a reduction in the rear wheel torque at higher deceleration levels
so to approximate the ideal brake force distribution (see Figure 4.2).
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Figure 4.2: The fixed brake distribution (conventional EBD) is reported as solid black line,
whilst the ideal distribution follows the coloured bar. Stability and friction utilisation limits on dry
road are reported as dashed black lines. Iso-deceleration conditions are represented by dash-dotted
lines.

Under the framework of MIL/SIL and also HIL simulations, the ideal distribution
curve is implemented in the base brake controller [75]. Figure 4.2 reports the ideal brake
force distribution curve spanned for different vehicle deceleration levels. Figure 4.2 also
reports the vehicle stability limits set by ECE R13H [73] during braking occurrence and
the tyre-road friction utilisation limits on dry conditions. These constraints set the limits
to avoid rear wheels lock during braking. Other distributions are suitable for the scope
of this work, provided that they comply with ECE R13H [73].

4.3 Observer of the brake lining coefficient of friction

State observers have been applied during the past years for the estimation of vehicle
dynamics states in control applications [76]. However, the potential benefits of an on-line
BLCF observer have very rarely been addressed by the research community and BLCF
has often been assumed known and constant [16]. In [47], the author proposes a tool
based on the extended Kalman filter to estimate the brake torque for the enhancement
of blending between the conventional and regenerative brakes. Particularly, the author
applies a linear Kalman filter to observe the temperature of each brake disc. A LuGre
friction model that takes into account the speed and temperature dependence of BLCF
is then used to predict the brake torque [77]. The method relies upon a friction model
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4.3. Observer of the brake lining coefficient of friction

that cannot reproduce the underlying BLCF mechanisms. Indeed, in case of variation in
the plant characteristics or environmental conditions, the model leads the linear Kalman
filter to a wrong estimate. In [61], the authors propose and validate a wheel torque
observer that ultimately lead to the estimation of BLCF. Although the methodology does
not make use of any temperature or BLCF model, it is only valid for a fixed brake torque
distribution and requires the execution of expensive experiments on the real vehicle to
extract characteristic chassis kinematics curves.

The present work proposes the Kalman filter under a new shape [16]. The proposed
observer encompasses the chassis and wheels rotational dynamics and relies upon the wheel
speed sensors and the inertia measurement unit by avoiding the analytical description
of non-linear phenomena occurring in the pad-disc interface. Unlike [47], the proposed
observer does not hinge upon a brake temperature model and, unlike [61], the estimation
scheme is independent of any brake torque allocation strategy. Such an estimator
represents a cost-effective solution suitable for current production vehicles, provided that
an accurate wheel slip estimation is available. As it will be later shown in this work,
a robust estimation of BLCF leads to improved braking performance, reduced driver’s
workload and enables novel brake monitoring functions.

4.3.1 Kalman filter theory

In accordance with numerous literature instances, the Kalman theory has been widely
used as a state observer because it ensures good robustness for tolerating differences
between models and real dynamics of the vehicle, variations of model parameters and
signal errors. The Kalman filter is the minimum variance state estimator for linear
dynamic systems with Gaussian noise. It comprises two stages: the prediction step,
based on the model of the process; the update step, based on sensor measurements. The
noise on the input variables makes the model of the process less accurate; the noise of
the sensors deteriorates the correction provided during the update step. For the sake of
clarity, this section briefly reports an overview of the Kalman filter theory. Let be the
system:

xk+1 = Akxk + Bkuk + wk,

yk = Ckxk + vk,

(4.1a)
(4.1b)

where, Ak is the state transition matrix applied to the previous state xk, Bk defines
the control-input matrix applied to the control vector uk, and wk is the process noise
assumed zero mean multivariate normal with covariance Qk. Moreover, yk and Ck

are the output vector and output matrix, respectively, and vk is the observation noise
assumed zero mean Gaussian with covariance Rk. Thus, the Kalman filter is composed
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4.3. Observer of the brake lining coefficient of friction

of a prediction stage defined as:

x̂k+1|k = Akx̂k|k + Bkuk,

Pk+1|k = AkPk|kAT
k + Qk,

(4.2a)
(4.2b)

where, x̂k+1|k represents the predicted state vector at time step k + 1 from the previous
best estimate; Pk+1|k is the covariance matrix of the state updated with the best previous
estimate. Equations (4.2a) and (4.2b) are responsible for the information content of the
"model predicted component" of the Kalman filter. This is followed by the updating
stage:

Sk = Rk + CkPk+1|kCT
k ,

Kk = Pk+1|kCT
k S−1

k ,

x̂k+1|k+1 = x̂k+1|k + Kk(yk+1 − Ckx̂k+1|k),
Pk+1|k+1 = Pk+1|k − KkSkKT

k ,

(4.3a)
(4.3b)
(4.3c)
(4.3d)

where, the new subscript means that both state vector and its covariance matrix are
updated with the sensors information. Kk represents the Kalman gain. It is worth
remarking that Qk and Rk are the filter tuning parameters. The higher Qk with respect
to Rk is, the more the Kalman filter will rely on the sensors measurements.

In presence of non-linear processes, the linear Kalman filter cannot be directly
employed. The most common solution relies on the linearisation of the associated state
equations by Langrangians calculation. This is also known as the extended Kalman filter
(EKF). Let be the system:

xk+1 = f(xk,uk) + wk,

yk = h(xk) + vk.

(4.4a)
(4.4b)

The function f(·) can be used to compute the predicted state from the previous estimate
and, similarly, the function h(·) can be used to compute the predicted measurement
from the predicted state. These functions cannot be applied directly to the covariance
matrices; thus, partial derivatives matrices for the states and outputs, are computed:

Ak = ∂f
∂x |x̂k|k,uk

,

Ck = ∂h
∂x |x̂k+1|k .

(4.5a)

(4.5b)

Hence, the EKF is composed of a prediction stage:

x̂k+1|k = f(x̂k|k,uk), (4.6)

and Pk+1|k is already defined in Equation (4.3d), followed by the update stage:

ỹk+1|k+1 = yk+1 − hk(x̂k+1|k), (4.7)
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4.3. Observer of the brake lining coefficient of friction

with Sk, Kk, Pk+1|k+1 and x̂k+1|k+1 being defined as for the linear Kalman filter. It is
worth noting that the Kalman filter tuning parameters shall be properly set to ensure
the filter functionality. Rk accounts for uncertainty in the measured data, while Qk is
generally tuned depending on the quality of the developed model. The right selection of
Qk represents an awkward problem and in most cases a good state estimation can be
achieved even in presence of a poor model, provided that enough uncertainty is injected
into the model via the right selection of Qk. Although conventionally Rk and Qk are
obtained heuristically by trial and error, the present work adopts a systematic approach
based on genetic algorithms, which is later discussed in Chapter 6. This latter leads the
Kalman filter to a suboptimal solution by minimising the prediction error. A schematic
of the embedded Kalman filter is reported in Figure 4.3.

Figure 4.3: Scheme of the Kalman filter implemented in Simulink®.

4.3.2 Estimation variants

The state-space formulation associated with the observer stems from a quarter-car model
for the vehicle longitudinal and lateral dynamics with fixed parameters. In this section,
two estimation variants are proposed:

• Observer 1, direct measurement of the tyre longitudinal forces;

• Observer 2, virtual sensing of the tyre longitudinal forces;
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where, the first design requires expensive wheel force transducers [78], whilst the second
design relies on inexpensive commercially available sensors. For this reason, Observer 2 is
further developed for successive analysis and Observer 1 is only confined to this chapter
for benchmarking purposes.

A schematic of the developed observer architectures is reported in Figure 4.4. Hence-
forth, the hat superimposition denotes an estimated or observed quantity; the "(S)"
apex refers to a measured variable, "(V S)" to a virtually sensed variable and "(T M)" to
a tyre-model variable. The subscripts "ij" identifies the wheel of the vehicle and "k" is
the generic simulation step. In the first design, it is assumed that the tyre longitudinal
forces can be measured by means of wheel force transducers or hub-force sensors [78].
Despite hub-force sensors and wheel force transducers have been continuously subject to
technological enhancements during the last years, the technology is still expensive and
has not been implemented in production vehicles. In Observer 2, the direct measurement
of the longitudinal forces is replaced with a virtual sensor that relies on readily available
measurements such as the vehicle body acceleration and estimates of the vehicle mass,
tyre slip, tyre vertical load and tyre longitudinal slip stiffness.

Figure 4.4: Scheme of the developed observer architectures. Dash-dotted lines refer to Observer
1; dashed lines refer to Observer 2. The longitudinal slip stiffness estimation block and BLCF
observer are triggered subsystems. The numbers in parenthesis point to the associated equations.

The filter state, measurement and input vectors are defined in Equations (4.8) to (4.10),
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respectively.

xk =
{
ω̂ijk

, F̂L,ijk
, µ̂b,ijk

}T
,

yk =
{
ω

(S)
ijk
, F

(S or V S)
L,ijk

}T
,

uk =
{
p

(S)
b,ijk

, F
(T M)
L,ijk

, T̂d,ijk

}T
,

(4.8)

(4.9)

(4.10)

where ω̂ijk
represents the wheel speed estimate, F̂Lijk

is the wheel longitudinal force
estimate and µ̂b,ijk

is the BLCF estimate. The measurements vector includes the wheel
speed sensors measurements ω(S)

ijk
and the longitudinal force, which can be either measured

F
(S)
Lijk

(Observer 1) or virtually sensed F
(V S)
Lijk

(Observer 2). At last, the input vector
contains the longitudinal force prediction F

(T M)
Lijk

stemming from the quasi-static linear
tyre model [79], the measured EHB calliper pressure p(S)

b,ijk
and the drive or regenerative

torque component T̂d,ijk
. The state variables, in discrete time space, evolve in accordance

with the dynamics described in Equations (4.11a) to (4.11c):

ω̂ijk+1 = ω̂ijk
− ∆t T̂b,ijk

− rω,ijF̂L,ijk
− T̂d,ijk

Iω,ij
,

F̂L,ijk+1 =
(

1 − ∆t
τRL

)
F̂L,ijk

+ ∆t
τRL

F
(T M)
L,ijk

(λ̂ijk
, ĈL,ijk

),

µ̂b,ijk+1 = µ̂b,ijk
.

(4.11a)

(4.11b)

(4.11c)

The above-defined set of equations represents the observer prediction model in discrete
time rendering the wheel rotational dynamics in Equation (4.11a) and the tyre relaxation
model in Equation (4.11b). With reference to the adopted terminology, ∆t is the
simulation time step, rω,ij is the wheel radius and Iω,ij represents the wheel inertia. It
is worth remarking that the quasi-static tyre model F (T M)

L,ijk
is function of the estimated

longitudinal slip λ̂ij,k and the estimated longitudinal slip stiffness ĈL,ijk
. The tyre rolling

resistance is assumed as process noise. The applied brake torque follows the definition
given in Equation (A.19), whilst the presence of a drive or regenerative torque T̂d,ijk

during braking occurrence depends upon the vehicle drivetrain architecture. When
braking, T̂d,ijk

is equal to the electric motor regenerative torque, whilst in conventional
ICE vehicles it is equal to the engine drag torque. With reference to the employed
tyre model, as long as the braking action occurs within the tyre linear region limits
(Figure A.6) the longitudinal force can be approximated by the linear tyre model:

F
(T M)
L,ij = ĈL,ij λ̂ij . (4.12)

In case excessive wheel slip or even wheel lock occurs, a non-linear tyre model shall be
employed. With reference to this scenario, an example will be shown next in Chapter 5.
For the sake of simplicity, the tyre relaxation coefficient is assumed inverse function of
the vehicle speed, in accordance with Equation (A.14). Its identification is based on
open-loop braking manoeuvres at varying deceleration levels and initial vehicle velocity
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values. At last, a random-walk approach is used for the BLCF state variable, whose
value will be thereafter corrected in the update phase.

In order to initiate the execution of the state space in Equation (4.11), the initial
states condition must be provided upon the observer activation:

x0 = {ωij0 , FL,ij0 , µb,ij0}, (4.13)

where, ωij0 equals the wheel rotational speed at the beginning of a braking manoeuvre,
FL,ij0 is set equal to a quarter of the longitudinal vehicle body force upon braking, µb,ij0

is equal to the last BLCF estimate. In case no previous estimated value is available, µb,ij0

is set equal to the average BLCF determined by the manufacturer in accordance with
SAE J2522.

In this work, it is assumed that the brake calliper pressure is available. Nonetheless,
in case a direct measurement of the calliper pressure is not available, the master cylinder
pressure can be used as a mean to estimate the former [80]. Due to hydraulic dynamics,
this choice may results in different estimation performance and, thus, require a proper
observer tuning. In accordance with the linearisation required by the extended Kalman
filter, the state Ak and output Ck matrices, in discrete time, are defined as follows:

Aijk
=


1 ∆t

Iw
rω,ij −2npπ

d2
p

4 pb,ijk

∆t
Iω,ij

reff,i

0
(
1 − ∆t

τRL

)
0

0 0 1

 (4.14)

Cijk
=
[
1 0 0
0 1 0

]
(4.15)

Observer 2 relies on a global force virtual sensor that uses the measured longitudinal
acceleration to compute a global tyre-road force, in accordance with Equations (4.16)
and (4.17):

F
(V S)
X = m̂va

(S)
x − F̂X,drag,

F
(V S)
Y = m̂va

(S)
y − F̂Y,drag,

(4.16)

(4.17)

where F̂X,drag and F̂Y,drag represent the estimated air drag forces in the longitudinal and
lateral directions and a(S)

x and a(S)
y are the measured longitudinal and lateral accelerations.

It is worth remarking that the road slope and inertial effects shall not be considered in
the previous equations as they are already captured by the body acceleration sensors.
Moreover, the vehicle mass m̂v shall be estimated upon applying Equations (4.16)
and (4.17). This can be done by using a linear Kalman observer, provided that the drive
torque can be estimated with less than 10% accuracy during acceleration manoeuvres
[81]. Therefore, the global longitudinal and lateral body forces can be computed by
subtracting the air drag resistance from the vehicle inertial forces.
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It is worth noting that whilst Equations (4.16) and (4.17) provide a global value
for the longitudinal and lateral forces, the output vector in Equation (4.9) requires
longitudinal forces in the wheel reference F (V S)

L,ijk
for each wheel. This is addressed by

introducing an allocation factor that stems from the ratio between two global chassis
forces, namely the global virtually sensed force and the global modelled body force [16]:

Kf =

√(
F

(V S)
X

)2
+
(
F

(V S)
Y

)2

√(
F

(T M)
X

)2
+
(
F

(T M)
Y

)2
. (4.18)

A filter based on the recursive least square method is applied across a finite set of
time steps in order to capture the time-varying properties of the correction factor by
simultaneously mitigating its rapid variations. Equation (4.18) can be rewritten in a
linear fashion as follows:

yk = Xk · θk, (4.19)

where, yk =
√(

F
(V S)
Xk

)2
+
(
F

(V S)
Yk

)2
, Xk =

√(
F

(T M)
Xk

)2
+
(
F

(T M)
Yk

)2
and θk = [Kfk

].
The filtered correction factor K̂f is obtained by applying the recursive least square routine
(RLS):

θ̂k = θ̂k−1 + gk ·
[
yk − Xk · θ̂k−1

]
,

gk =
[
λRLS + XT

k · Pk−1 · Xk

]−1
· Pk−1 · Xk,

Pk = 1
λRLS

· [1 − gk · Xk] · Pk−1.

(4.20)

(4.21)

(4.22)

The RLS estimation constant, λRLS , namely forgetting factor, produces a delay in
the filtered correction factor. As a consequence, the observer adaptation time against
changing road conditions depends on the RLS settings. Upon solving the optimisation
problem in Equation (4.19), the virtually sensed tyre-ground forces can be estimated in
accordance with Equations (4.23) and (4.24):

F
(V S)
X,ij = K̂f F

(T M)
X,ij ,

F
(V S)
Y,ij = K̂f F

(T M)
Y,ij .

(4.23)

(4.24)

The estimation of the correction factor is the key element for the adaptability of
the proposed observer against varying road conditions. The virtual sensor provides the
observer with intrinsic fault tolerance against errors or failures that might affect the linear
tyre model. This feature will be later addressed in Chapter 5. Nevertheless, excessive
longitudinal load transfer and extreme variation in road conditions might still be hard
to compensate by means of the correction factor. In this case, the tyre longitudinal
slip stiffness needs to be newly estimated in accordance with the routine reported in
Section 4.3.5. The routine for the tyre longitudinal slip stiffness estimation is only
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4.3. Observer of the brake lining coefficient of friction

activated if the braking occurs in a straight line and the filtered correction factor exceeds
a threshold. The direct proportionality in Equations (4.23) and (4.24) dictates that the
modelled and virtually estimated global body forces point in the same direction.

Figure 4.5: The reference translation from the chassis (X−Y ) to the wheel (L−S) encompasses
the steering angle δ and the wheel side slip angle αij.

However, the virtually sensed and model predicted components of tyre forces reside
in two different reference systems, which are the chassis and tyre reference systems,
respectively (Figure 4.5). Thus, the virtually sensed force and the Kalman filtered
longitudinal components of the tyre force must be moved to the same reference to
perform a correct observation. As shown in Figure 4.5, the tyre side slip angle α̂ij and
the steering angle δ shall be taken into account to rotate the body virtually sensed force
into the wheel reference. The translation matrix is defined as:


FL,fj

FS,fj

FL,rj

FS,rj

 =


cosα̂fj cosδ ± sinα̂fj sinδ sinα̂fj cosδ − cosα̂fj sinδ

−sinα̂fj cosδ + cosα̂fj sinδ cosα̂fj cosδ + sinα̂fj sinδ

0 0
0 0

0 0
0 0

cosα̂rj sinα̂rj

−sinα̂rj cosα̂rj


−1 

FX,fj

FY,fj

FX,rj

FY,rj

 .
(4.25)

At this point, the virtual forces of Observer 2 can be used to close the loop and
update the final longitudinal force estimation.

It is worth remarking that the proposed observer can only capture BLCF dynamics
occurring at a larger time scale than the characteristic time constant of the filter process
model. The limiting time constant in Equation (4.11) is surely represented by the tyre
relaxation time τRL. Therefore, the proposed observer cannot capture BLCF dynamics
associated with brake disc thickness variation [82] and creep groan vibrations [83], which
are typically characterised by a time constant much smaller than the tyre relaxation
time.
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4.3. Observer of the brake lining coefficient of friction

4.3.3 Wheel slip estimation

The wheel slip estimation relies upon a correct estimation of the vehicle velocity, which
is usually done by averaging the wheel speed sensors information [84], and the correct
processing of the wheel speed sensor measurements. The lack of free rolling wheels
during braking makes the vehicle speed estimation from wheel speed sensors an awkward
task. Therefore, the speed estimation during braking manoeuvres require an appropriate
integration of the accelerometer signal. In this work, the accelerometer signal and wheel
encoders are combined to estimate the vehicle speed: the estimation approach is composed
of the four wheel tangential speeds at the tyre-road contact point and the longitudinal
vehicle acceleration.

For limited vehicle side slip angles, the four tangential speed values at the tyre-road
contact points can be corrected to the vehicle CoG by application of Equation (4.26):

v
(CoG)
ω,fl = v

(S)
ω,fl cosδ + ψ̇(S) b

2 ,

v
(CoG)
ω,fr = v

(S)
ω,fr cosδ − ψ̇(S) b

2 ,

v
(CoG)
ω,rl = v

(S)
ω,rl + ψ̇(S) b

2 ,

v(CoG)
ω,rr = v(S)

ω,rr + ψ̇(S) b

2 ,

(4.26a)

(4.26b)

(4.26c)

(4.26d)

where, v(S)
ω,ij represents the rotational equivalent wheel speed computed as (rω,ij ·ωij) and

ψ̇(S) represents the measured vehicle yaw rate.
With reference to the accelerometer, this latter needs to be corrected by compensating

its tilted position in relation to the inertial coordinate system of the vehicle. Moreover,
road banking and the inertial centripetal forces affect the acceleration measurement.
Therefore, these latter are corrected in accordance with Equation (4.27):

a(C)
x = a(S)

x + g sin(χ̂road) + ψ̇(S)v̂y, (4.27)

where, the apex "(C)" stands for the corrected signal and χ̂road represents the estimated
road banking and v̂y is the estimated lateral vehicle velocity.

The linear Kalman filter proposed in [81] is used for the data fusion. Indeed, all four
corrected rotational equivalent wheel speeds are combined to provide a least variance
estimation of the vehicle speed at the CoG. The filter state and measurement vectors are
defined in Equations (4.28) and (4.29), respectively.

xk = {âxk
, v̂xk

}T ,

yk =
{
a(C)

xk
, v

(CoG)
ω,flk

, v
(CoG)
ω,frk

, v
(CoG)
ω,rlk

, v(CoG)
ω,rrk

, v(S)
xk

}T
,

(4.28)

(4.29)

where, the output vector contains the corrected measured vehicle acceleration, the wheel
speed values translated to the vehicle CoG and, if available, a vehicle speed sensor
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4.3. Observer of the brake lining coefficient of friction

measurement. As it will be shown in the next chapters, v(S)
xk can be either provided via

GPS or via optical measurement sensors. The discrete state space formulation of the
vehicle speed observer is as follows:

{
âxk+1 = âxk

v̂xk+1 = v̂xk
+ ∆t âxk

.

(4.30a)
(4.30b)

The associated representation for the implementation in the Kalman filter follows:

Ak =
[
1 0
1 ∆t

]
, (4.31)

Ck =
[
1 0 0 0 0 0
0 1 1 1 1 1

]T

. (4.32)

Once the vehicle speed vx is observed, Equation (A.6) can be used to estimate the
wheel slip. To avoid undesired oscillation in the slip estimate, this latter is low-pass
filtered at 16 Hz cut-off frequency.

4.3.4 Tyre vertical forces estimation

For the estimation of the tyre vertical forces, a simple open loop scheme is adopted.
Although more sophisticated methods, based on suspensions deflection sensors have been
proposed during the past years [85], in the present work the tyre vertical forces are
estimated by means of the quasi-static weight transfer model presented in [85]. The
proposed estimation scheme draws upon the available measurements of longitudinal and
lateral accelerations. During acceleration, braking and cornering, the load transfer causes
varying vertical force components on the tyres. The estimation scheme neglects the
suspension dynamics and disregards the pitch/roll coupling:

F̂Zfl = m̂vg
lr

2(lf + lr) − m̂va
(S)
x

h

2(lf + lr) − m̂va
(S)
y

hlr
b(lf + lr) ,

F̂Zfr = m̂vg
lr

2(lf + lr) − m̂va
(S)
x

h

2(lf + lr) + m̂va
(S)
y

hlr
b(lf + lr) ,

F̂Zrl = m̂vg
lr

2(lf + lr) + m̂va
(S)
x

h

2(lf + lr) − m̂va
(S)
y

hlr
b(lf + lr) ,

F̂Zrr = m̂vg
lr

2(lf + lr) + m̂va
(S)
x

h

2(lf + lr) + m̂va
(S)
y

hlr
b(lf + lr) .

(4.33a)

(4.33b)

(4.33c)

(4.33d)

A validation of the vertical force estimation scheme against data collected from the
full electric SUV of Appendix D on the proving ground are reported in Figure 4.6. For
the sake of space, only the results corresponding to the double lane change (ISO 3888)
are considered in the present section.
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4.3. Observer of the brake lining coefficient of friction

Figure 4.6: Validation of the vertical force observer with respect to Double Lane Change (ISO
3888). a) Vehicle velocity; b) Vehicle longitudinal and lateral acceleration; c) to f) Vertical tyre
forces on front-left, front-right, rear-left and rear-right corners.

4.3.5 Estimation of the tyre longitudinal slip stiffness

The BLCF observer is initialised with a tyre longitudinal slip stiffness corresponding to
a dry road at nominal vertical load and inflation pressure (Figure 4.7b). If during the
estimation loop the correction factor K̂f exceeds a threshold, that is, the tyre model lays
too far from the information provided by the virtual sensor, the tyre longitudinal slip
stiffness is newly estimated. As shown in Appendix A, the tyre longitudinal slip stiffness
depends upon several variables, among others the wheel vertical force, the tyre inflation
pressure, the camber angle and the road friction conditions. The analytical definition of
the tyre longitudinal slip stiffness has been provided in Equation (A.15).

Under the assumption that the braking action occurs within the tyre linear limits
and an uniform road surface is considered, the tyre longitudinal slip stiffness can be
estimated during straight line braking from Equation (4.34):

F
(V S)
X = ĈL,f λ̂f + ĈL,rλ̂r. (4.34)

Taking into account the load proportionality principle [85], the tyre longitudinal
stiffness can be expressed as a function of the tyre vertical load (CL,f = CL,f0

FZ
FZ0

),
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where C0 is the tyre longitudinal stiffness at the nominal load FZ0. This assumption is
supported by experimental data as reported in Figure 4.7.
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Figure 4.7: Experimental results on a dry surface show that the tyre longitudinal slip stiffness
can be approximated as a linear function of the tyre vertical load.

By expressing the rear longitudinal stiffness as a function of the front longitudinal
stiffness, the following expression can be formulated:

ĈL,r = ĈL,f
F̂Z,r

F̂Z,f

. (4.35)

Eventually, the longitudinal stiffness can be calculated from the measured longitudinal
acceleration, the estimated longitudinal slips and the estimated tyre vertical loads, as
per Equation (4.36):

ĈL,f = F
(V S)
X

λ̂f + λ̂r
F̂Z,f

F̂Z,r

. (4.36)

4.4 Observability analysis and observer tuning

To prove the observer functionality, the observability matrix and observability condition
of the BLCF observers must be proved. The observability of the system holds if the
observability matrix Oµ has rank equal to the number of system states. Given N the
size of the state vector in Equation (4.8), the observation matrix is defined as follows:

Oµ =
[
A AC AC2 AC3 ... ACN−1

]
; (4.37)

The full rank of Oµ can be proved for all equilibrium points where the applied pressure
pb and the resulting BLCF are non-zero. Moreover, at very low speeds, the tyre relaxation
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length, embedded in the observer scheme, might induce numerical instabilities (please,
refer to Equation (A.14)). Hence, the observer is switched off upon reaching low driving
speeds (≈ 15 km/h) and at brake release. In case the filtered correction factor K̂f

exhibits strong variations caused by poor wheel slip estimation, the observer is switched
off and a constant BLCF estimate, equal to the latest BLCF estimate, is provided. This
situation occurs when the intensity of requested deceleration is not enough to produce
detectable wheel slip. In case no previous BLCF estimated value is available, the nominal
BLCF computed in accordance with SAE J2522 is provided.

In case of excessive wheel slip, or even wheel lock, the functionality of the proposed
Observer 2 is limited. Particularly, the observability of the system cannot be proved
because Equation (4.11a) does not hold. Wheel lock condition makes the system not
observable, whilst excessive wheel slip excites the tyre in the non-linear region where
the linear model of Equation (4.12) is not valid. A non-linear Burckhardt tyre model
[81] is employed in Chapter 5 showing that the adoption of a non-linear tyre model in
Observer 2 is necessary in presence of excessive wheel slip. It is also worth noting that
the proposed observation scheme is designed for relatively smooth asphalt roads where
the rolling resistance can be included in the process noise due to its low magnitude.

Concerning the observer tuning, R has been set time invariant depending on the
white noise of the employed sensors. The process covariance matrix Q has been scheduled
so to inject more uncertainty in the model of the process when the model fails at correctly
predicting the states, for example at low driving speed and for deceleration requests lower
than 2 m/s2. The scheduling of the process covariance matrix Q against the requested
deceleration is set so as to produce the maximum filtering effect while meeting the signal
settling time requirements.

4.5 Results

The proposed BLCF observer is implemented in the IPG CarMaker® for preliminary
MIL/SIL simulations. As shown in Appendix A, the powertrain, EHB and base brake
controller are implemented as external Simulink® functions. A fixed time step of 1 ms
is set during the simulations and the signals required by the observer are acquired at
100 Hz. An additive noise model is employed to incorporate white Gaussian noise into
the simulation signals. The standard deviation values of the noise are extracted from
data-sheets of state-of-the-art instrumentation and reported in Table 4.1.

A set of straight-line braking tests, in accordance with ECE R13H [73], are performed.
The braking manoeuvres start from a cruising speed of 120 km/h; the vehicle is then
brought to a full stop by applying a constant deceleration request. The electric motors
are deactivated during the whole manoeuvre. To demonstrate adaptivity of the observer
to varying road conditions, braking manoeuvres are performed on dry and wet road with
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Table 4.1: Sensors white noise implemented in the vehicle model.

Sensor Measured quantity White noise (σ)
GPS sensor Vehicle speed σvx = 0.027 m/s
Wheel encoders Wheel speed σω = 0.1 rad/s
Wheel force transducer Long. wheel force σFX

= 10 N
IMU Vehicle long. acceleration σax = 0.01 m/s2

Pressure sensor (EHCU) Calliper pressure σp = 1.8 bar

µ = 1.2 and µ = 0.7, respectively. The catalogue of manoeuvres is reported in Table 4.2.
The estimation performance is quantified in terms of normal round mean square error.

Table 4.2: Catalog of maneuvers.

Test vin [km/h] Grip ax [m/s2]
#1 120 Dry 3 - 5
#2 120 Dry 6 - 8
#3 120 Wet 3 - 5
#4 120 Wet 6 - 8

Results corresponding to the first test, mild braking on dry road, are depicted in
Figure 4.8. Expectedly, the best estimation performance are achieved by the observer
design based on direct measurement of the longitudinal wheel forces. BLCF is estimated
accurately upon the braking manoeuvre is initiated and follows precisely the evolution
dictated by the employed state space model. Nonetheless, the observer design based
on virtual longitudinal forces features good estimation capability. Noise can be noticed
on the rear axle estimates due to the low excitation level. Moreover, this also causes
a slight delay in reaching the steady state value. The results of the second test, hard
braking on a dry road, are reported in Figure 4.9. In this case, a slight offset appears on
the estimate of the rear longitudinal force provided by the second observer design. The
load proportionality principle is compromised in this test due to high longitudinal load
transfer, thus affecting the accuracy of the rear BLCF estimate. Despite this, the error
remains within reasonable values and can be considered acceptable. The results obtained
in the third test, mild braking on a wet road, are omitted as significant differences with
respect to the first test are not identified. Finally, the results of the hard braking input
on a wet road are depicted in Figure 4.10. In this case, the performance of Observer 2 is
affected by the wheel-lock occurring at the end of the test (t ≈ 4 − 5s).

To conclude, the accuracy of the proposed observers is quantified by means of the
root mean square estimation error and its outcomes are presented in Table 4.3. Overall,
the error of the BLCF estimate remains within reasonable limits. Under the tested
driving scenarios, important differences in terms of BLCF estimation error are not noticed
between the two observers, indicating the advisability of the low-cost observer. Higher
errors can be observed on the rear axle due to limited longitudinal force excitation.
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Figure 4.8: Test #1. Mild braking on dry road: a) vehicle velocity; b) vehicle deceleration;
c) and e) front and rear BLCF, respectively; d) end f) front and rear longitudinal tyre force,
respectively.

Table 4.3: Normalised round mean square error of the observers.

Test Design nRMSE(µb,f ) nRMSE(µb,r) nRMSE(FL,f ) nRMSE(FL,r)

#1 Obs. 1 3.55% 5.68% 0.35% 0.98%
Obs. 2 4.74% 7.23% 5.91% 14.46%

#2 Obs. 1 2.13% 4.04% 0.30% 0.54%
Obs. 2 3.34% 6.96% 5.49% 10.75%

#3 Obs. 1 3.55% 4.68% 0.35% 0.98%
Obs. 2 4.55% 8.51% 6.61% 16.62%

#4 Obs. 1 2.13% 4.04% 0.34% 0.54%
Obs. 2 3.13% 7.87% 5.37% 14.12%

4.6 Fault tolerance and sensitivity analysis

In this section, Observer 2 functionality is tested in presence of fault occurrence and for
a wider deceleration range involving gentle braking manoeuvres. To check Observer 2
fault tolerance capability, a simulation is performed in presence of a failure induced in
the linear tyre model. The vehicle starts from an initial speed of 100 km/h, afterwards a
full stop braking occurs. As from Figure 4.11, an artificial failure is induced in the tyre
longitudinal slip stiffness at (t = 4s), which leads to a wrong tyre model prediction. The
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Figure 4.9: Test #2. Hard braking on dry road: a) vehicle velocity; b) vehicle deceleration;
c) and e) front and rear BLCF, respectively; d) end f) front and rear longitudinal tyre force,
respectively.

results demonstrate that the observer is capable of adapting to a wrong estimate of the
tyre longitudinal slip stiffness thanks to the correction factor K̂f . The virtual sensor
provides the right value of longitudinal body force because it relies on the accelerometer
information, as per Equations (4.16) and (4.17). Hence, after an adaptation time of
around 100 ms, the correct longitudinal tyre force and BLCF are estimated.

Thereafter, a sensitivity analysis with respect to the driver requested deceleration
allows investigating the functionality of Observer 2 against the degree of wheel excitation.
In accordance with ECE R13H [73], straight-line braking tests on a dry surface from an
initial cruising speed of 100 km/h are performed. The maximum deceleration request is
limited to 8 m/s2 in order to avoid excessive wheel slip, beyond the tyre linear limits.
An analysis of the required modifications to the observer in presence of excessive wheel
slip will be provided in the framework of HIL verification in Chapter 5. The observer
performance are quantified by means of the normalised RMSE between the reference
BLCF value and the observed BLCF. The results are reported in Figure 4.12, showing
that Observer 1 features overall a better estimation accuracy. The excitation induced
on the axles, which is in turn proportional to the exerted friction brake force, has an
effect on the BLCF estimation accuracy. This explains why the BLCF observer exhibits
reduced estimation performance on the rear axle. Therefore, depending on the chosen

68



4.6. Fault tolerance and sensitivity analysis

Figure 4.10: Test #4. Hard braking on wet road: a) vehicle velocity; b) vehicle deceleration;
c) and e) front and rear BLCF, respectively; d) end f) front and rear longitudinal tyre force,
respectively.

brake torque allocation strategy, different results are possible.
The analysis also reveals that, whilst for higher vehicle deceleration values Observer 2

features a prediction accuracy comparable with Observer 1, at lower deceleration requests
Observer 2 provides a BLCF estimate far from the true value. The observers performance
are analysed with respect to the case where the nominal BLCF computed in accordance
with SAE J2522 is used. From Figure 4.12, it can be thus concluded that Observer 2
provides a good estimate down to ≈ 1.3 m/s2 on the front axle, where the force excitation
is expectedly higher, and down to ≈ 4 m/s2 on the rear axle. It is also worth remarking
that thanks to the limited temperature variation at the rear axle due to low power input,
BLCF is not expected to lay far from its nominal value. On the contrary, BLCF at
the front axle exhibits much more remarkable variations due to evident temperature
increase. This can be verified by considering the estimation error committed at the front
and rear axles when the observers are switched off and a constant BLCF, defined in
accordance with SAE J2522, is employed. The results suggest that Observer 2 shall be
switched on upon exceeding ≈ 1.3 m/s2 at the front axle and ≈ 4 m/s2 at the rear axle.
Under all other conditions, the previous BLCF estimate is considered. These results
provide important information, which are used for HIL verification in Chapter 5. These
thresholds are instead not considered for the observer validation on the proving ground
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Figure 4.11: Fault tolerance capability of Observer 2 against error injection in the estimated tyre
longitudinal slip stiffness. a) vehicle kinematics; b) reference vs estimated longitudinal wheel slip;
c) and e) reference vs estimated BLCF for front and rear axle, respectively; d) and f) reference,
observed and tyre modelled longitudinal wheel force.

(Chapter 6) where the intent is to explore the observer functionality under real braking
conditions.

4.7 Chapter summary

In this chapter, two observer-based BLCF estimation variants are proposed. Observer
1 demonstrates that a very accurate BLCF estimate can be achieved by measuring the
longitudinal wheel forces. Observer 2 represents the cost-effective estimation variant
that replaces the expensive tyre longitudinal force measurements with a virtual sensor.
MIL/SIL simulations carried out in the vehicle dynamics simulator IPG CarMaker®

demonstrate the suitability of the low-cost state observer at providing a satisfactory
estimate of the BLCF when the vehicle deceleration intensity exceeds certain thresholds.
Particularly, the results show that, whilst a satisfactory estimation accuracy can be
achieved on the front axle for almost all RDE-compliant deceleration values, the BLCF
estimation on the rear axle represents a rather awkward task. The poor estimation
performance at the rear axle may be compensated by using alternative estimation methods
(please, refer to Chapter 2) or dynamically allocating the brake torque in order to perform
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Figure 4.12: Estimation performance of the proposed observer designs with respect to front
brakes a) and rear brakes b). Obs 1 refers to the observer design based on direct measurement of
longitudinal wheel forces; Obs 2 represents the observer design based on the virtual force sensor;
Obs off represents the case when all observer are switched off and a constant BLCF estimate (SAE
J2522) is provided. The coloured areas refer to the regions where Observer 2 shall be deactivated.

an accurate BLCF estimation. Nonetheless, the proposed estimator based on Observer 2
represents a cost-effective solution suitable for current production vehicles. Hereafter,
no further attention is paid to Observer 1 since it relies on expensive and generally
unavailable tyre force transducers. In Chapter 5, Observer 2 is implemented on the HIL
platform and the functionality of the BLCF compensation verified in real time. Chapter 5
also shows that brake blending with electric motors plays an important role in the BLCF
estimation error.
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Chapter 5

Hardware-in-the-loop verification

5.1 Introduction

As seen in the introductory section, automatic brake functions in decoupled brake
architectures require the provision of a BLCF estimate. The BLCF actual value is
necessary to maintain the brake force allocation in the safe region and evaluate the
actual braking torque. In addition, modern electric vehicles require precise tracking of
the regenerative and friction torques for safety and performance requirements [9, 80].
In accordance with ECE R13H [73], regenerative brakes still need to be supported by
conventional friction brakes in case of failure occurrence, fully charged battery and
unexpected variations of tyre-road friction conditions. Chapter 4 proposed a novel
approach that does not require BLCF modelling and parametrisation thereof. The results
demonstrate that the state estimation is robust under a wide range of deceleration values.
The developed tool is independent of the chosen brake torque allocation strategy and
satisfactory BLCF estimation performance can be achieved upon generating detectable
wheel slip.

This chapter puts forth the HIL verification of Observer 2 presented in Chapter 4. The
HIL platform at Technische Universität Ilmenau provides plug-in adaptation of vehicle
subsystems as additional modules. To this effect, ILVO model presented in Chapter 3
is embedded in the HIL platform to simulate the real BLCF dynamics. The HIL setup
includes the real electrohydraulic brake system (EHB) presented in Appendix A and
allows for real time verification of the proposed algorithm. Under this framework, HIL
verification is also used to develop the BLCF compensation function. A method to
compensate disturbances induced by BLCF variations through modification of the brake
torque demand sent to the EHCU is thus shown. Herein, the resulting improvements
in brake control functions are analysed against longitudinal base braking manoeuvres
in presence of blended operation with electric motors. For all manoeuvres, the brake
pedal actuation speed is equal to 150 mm/s. The compensation function shall provide
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a smooth and constant braking deceleration based on the brake pedal position, thus
improving the comfort and braking linearity.

5.2 Hardware-in-the-loop setup

The hardware subsystem included in the HIL test rig is the EHB presented in Appendix A.
The EHB is a brake-by-wire based on the slip control boost (SCB) technology of ZF TRW
[86]. Compared to a conventional brake system, the EHB offers a much faster dynamics
and represents a necessary component on hybrid and full electric vehicles provided with
energy recuperation where the brake blending shall occur without the driver noticing
it. In accordance with Appendix A, the vehicle model, subsystems and controllers have
software realisation in MATLAB/Simulink®. The dSPACE® hardware components for
digital and analogue data input/output as well as for controller area network (CAN) bus
protocol communication compose the framework reported in Figure 5.1.

EHB

DS817
PCI host interface

DS4004
96 Chn Digital I/O PWM

DS4302
4 Chn CAN-Bus

1Chn FlexRay

DS1006
4 cores processor board

DS2002
32 Chn MUX A/D I/O

Subsystems models
(e.g. Friction brakes and 

EMs)

     Multi-body Vehicle Model

Pressure sensors signals

CAN Communication

Electronic/Electric

Software

RTI Modules – dSPACE Control Desk 

DS2302
Direct digital synthesis

Valve actuation 
signals

SP
A
C
E

d

Figure 5.1: Schematic of the HIL test rig at Technische Universität Ilmenau (after [87]).

The DS1006® board represents the main element of the HIL platform and is capable
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of distributing computing tasks between four core processors that guarantee real-time
simulation. This board communicates via UDP with a local host computer. Analog
input signals information from the pressure sensors of the EHB are digitalised by multi-
channel A/D board DS2002®. The DS2002® features a total of 32 A/D channels at 16-bit
resolution with an ADC conversion time of less than 5 µs.

A set of pressure sensors allow measurement of brake pressure in the master cylinder
as well as in each brake calliper. The EHB does not require the actuation of the brake
pedal since the pressure request can be generated directly via software and sent via CAN
bus to the EHB control module. For this task, one of the four CAN interfaces of the
DS4302® is used. To configure the CAN network and to combine dSPACE® boards with
CAN networks, the real-time interface (RTI CAN) multi-message blockset is used. The
control on the ZF TRW SCB unit uses the direct digital synthesis board DS2302®. This
board can generate waveform signals and is required for the operation of emulators of
wheel angular speed sensors. The communication between dSPACE® platform and the
host computer is organised through the link board DS817® (32-bit PCI host interface).

5.3 Control structure

The real EHB is interfaced with the IPG CarMaker® vehicle model in accordance with
Figure 5.1. A schematic of the implemented vehicle controller is reported in Figure 5.2,
where the EHB finds physical realisation in the HIL platform and estimation and control
functions are implemented in the MATLAB/Simulink® and integrated via host PC.

The base brake controller is responsible for the correct operation of the service braking
in a decoupled brake-by-wire system. It includes the generation of the torque demand
according to the brake pedal position and distribution of the torque demand among
the wheels. The relation between the brake pedal and overall torque demand follows a
non-linear function of the brake pedal position.

The calculation leading the overall demanded brake torque, T dem
b , as a function of

the brake pedal is as follows:

T dem
b = m̂v a

dem
x (sped) r̂ω (5.1)

where, m̂v is the estimate vehicle mass, adem
x is the reference deceleration as function

of the brake pedal displacement and r̂ω is the wheel radius, herein assumed constant.
The brake force distribution block allocates the demanded brake torque on the front
and rear wheels, T dem

b,ij , in accordance with the guidelines provided in ECE R13H [73].
Without loss of generality, in the framework of HIL simulations, the ideal brake force
distribution of Chapter 4 is adopted. In case of excessive wheel slip or yaw rate, the
ABS/ESP controller reduces the wheel torque in order to keep the wheel slip close to
the reference value [88, 89]. As analysed in Chapter 4, the BLCF observability might
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Figure 5.2: Schematic of the brake controller employed for HIL verification.

not hold in case wheel lock occurs. Therefore, the ABS/ESP reference slip tracking
performance under emergency braking might have a detrimental impact on the BLCF
observability and are for this reason kept out of the scope of the present work.

The brake blending block coordinates EHB and EMs by providing the demanded
torque signals T dem

EHB,ij and T dem
EM,ij , respectively. It is worth noting that ECE R13H

[73] prescribes that in vehicles where electric motors can concur to service braking, any
variation in the torque output from the regenerative braking must be automatically com-
pensated by the foundation brakes. In fact, an electric regenerative braking system might
not be able to produce sufficient braking force under certain operating conditions (e.g.
low vehicle speed and under emergency braking). Hence, a combination of conventional
friction braking and regenerative braking is always necessary to provide full braking
capability. Foundation brakes might be actuated concurrently with the electric motors
(i.e. parallel phasing) or in succession (series phasing). Figure 5.3 graphically reports the
blending strategies. In the parallel model, electric motors and EHB are actuated at the
same time. EMs provide regenerated energy in accordance with the set blending share.
The maximum regenerated torque is a dynamic variable, which not only depends on the
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5.3. Control structure

battery state of charge but also on the EM operating speed. As reported in Figure A.7
of Appendix A, at high driving speed, the EM is not able to provide high torque values,
whilst at very low speed the EM is switched off because incapable of regenerating energy.
In the serial phasing, EHB is activated upon saturating the EM regenerative torque
reservoir.

Figure 5.3: Brake blending strategies. On the left, parallel phasing; on the right, serial phasing.
The maximum regenerative torque depends upon the EM speed and the battery state of charge.

A brake blending factor, namely fij , is defined to allocate the actuators level of
intervention at each corner. When fij is equal to one, the series type phasing is enabled.
All other blending configurations are of parallel type. In accordance with ECE R13H
[73], the intervention of EHB is always requested upon saturating the EMs regeneration
capability, even in the case of pure series configuration (fij = 1). The generic blending
law follows: 

T dem
EM,ij = sat

(T max
EM,ij)

0 (fij T
dem
b,ij ),

T dem
EHB,ij = (1 − fij) T dem

b,ij +max
(
0,
[
T dem

EM,ij − Tmax
EM,ij

])
︸ ︷︷ ︸

ECE R13H

,

(5.2a)

(5.2b)

where, 
Disabled blending if fij == 0;
Series phasing if fij == 1;
Parallel phasing if 0 < fij < 1.

(5.3a)
(5.3b)
(5.3c)

In the previous equations, (Tmax
EM,ij) represents the EM torque limit, as per Figure 5.3.

The demanded EM and EHB torques are then sent to the actuators controllers, which
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take care of converting the torque requests into a control signal understandable from
the actuators. The actuation undergoes the physical limits of both EHB and EM. To
ensure that the actuators provide an actual brake torque close to the demanded signal, an
additional close loop control shall be implemented. To this effect, the motor torque can
be easily estimated from the electric motors current; whilst, for the foundation brakes,
the BLCF observer presented in Chapter 4 is used.

5.4 Observer verification and robustness analysis

A preliminary test involves a simple straight-line braking manoeuvre on a dry road
(µ = 1) with fixed brake pedal displacement. In this test, the blending factor is null;
therefore, only EHB is activated. The simulation starts from an initial vehicle speed of
75 km/h. Thereafter, the driver steps on the brake pedal and keeps its position to a fixed
value so to induce a deceleration of around 4 m/s2. Below, the BLCF estimate is omitted,
instead the estimated wheel brake torque computed in accordance with Equation (A.19) is
considered. Figure 5.4 reports a comparison between reference and observed signals. The
results of longitudinal force estimation and wheel brake torque prove the functionality of
the proposed observer in real-time.
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Figure 5.4: Result of braking test performed in real-time on the HIL platform. Graph a) reports
the vehicle speed; b) reports the vehicle deceleration; c) and e) report the estimated brake torque;
d) and f) report the estimated wheel longitudinal force.
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The observer robustness is verified with respect to a braking manoeuvre typically
used for the evaluation of ABS performance, i.e. braking on a low-grip patch. To preserve
BLCF observability, ABS/ESP controller is deactivated. Hence, the vehicle transition on
the slippery surface at t = 2 s induces wheel lock. To account for the consequent excessive
wheel slip, Observer 2 needs to be modified by inclusion of a non-linear tyre model. For
this analysis, the non-linear Burckhardt tyre model with fixed parametrisation is used
due to its compact form and ease of implementation [81]. The observer scheme remains
unchanged. The tyre model is initialised for a dry road surface. The results are reported
in Figure 5.5. During the braking manoeuvre, the vehicle crosses a slippery surface
(µ = 0.2) that induces a rapid deterioration of the maximum tyre-road contact force.
During the whole manoeuvre, the brake pedal is kept fixed. The results demonstrate
that Observer 2 based on the linear tyre model (EKF) fails at providing the right brake
torque and longitudinal force estimate. Instead, Observer 2 enhanced with a non-linear
tyre model (EKF - NNTM) is capable of adapting to the changing road conditions thanks
to the correction factor K̂f presented in Chapter 4.

As from the results, the algorithm adaptation time to changing road conditions is of
finite type (≈ 300 ms) and hinges upon the forgetting factor of the K̂f RLS estimation.
The same process occurs when the vehicle returns to dry road conditions. The correction
factor makes up for variations in road conditions by conveniently scaling the longitudinal
tyre forces provided by the non-linear tyre model. The observer with embedded non-linear
tyre model attains around 50% reduction in the nRMSE of longitudinal tyre force and
wheel brake torque.

The results presented in this section underline the limitations of the proposed observer
when the tyre is excited beyond the linear limit. In the event of excessive wheel slip, the
adoption of a non-linear tyre model reveals necessary.

5.5 Sensitivity analysis under brake blending

In this section, Observer 2 estimation functionality is tested against varying blending
conditions. For these tests, the initial vehicle speed is set lower than 80 km/h to avoid
that the non-linear EM characteristics conflict with the demanded brake blending factors
(refer to Figure A.7). To this effect, the test involves an initial cruising speed of 75 km/h;
thereafter, a braking manoeuvre with 60% pedal displacement is performed. This causes
a deceleration of around 4 m/s2 for the vehicle under analysis. All tests are characterised
by equal brake torque request; nevertheless, different blending conditions cause different
BLCF dynamics. The results of consecutive tests are reported in Figure 5.6.

The results show that higher blending factors produce a deterioration of the estimation
performance. As already seen in Chapter 4, Observer 2 estimation performance deterio-
rates when the frictional brake torque demand is confined to low values. A complete list
of test results is provided in Table 5.1.
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Figure 5.5: Results of braking on a low-grip patch performed in real-time on the HIL platform.
Graph a) reports the vehicle speed and b) the vehicle deceleration. Graphs c) and e) refer to
the torque estimation provided by the observer and its enhanced version with inclusion of the
non-linear tyre model. Graphs d) and f) report the estimated longitudinal wheel force in compliance
with the observer and its upgraded version including the non-linear tyre model.

Table 5.1: Normalised round mean square error of Observer 2 with respect to varying
blending conditions.

Test f nRMSE(µb,f ) nRMSE(µb,r)
#1 0 3.12% 6.26%
#2 0.2 5.42% 8.16%
#3 0.4 8.27% 11.33%
#4 0.6 11.89% 15.87%
#5 0.8 13.43% 20.46%

5.6 Compensation function

The base brake controller requires the provision of the BLCF estimate for the calculation
of the reference pressure to be sent to each calliper. This is done in accordance with the
non-linear Equation (5.4) where the BLCF estimate appears at the denominator.

pdem
b,ij =

T dem
EHB,ij

2np µ̂b,ij π
d2

p

4 reff,i

+ p0, (5.4)
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Figure 5.6: Analysis of the observer estimation performance with respect to varying blending
factor. Graph a) and b) report the vehicle kinematics variable; c), e) and g) relate to the BLCF
estimation performance for the front axle; d), f) and h) refer to the BLCF estimation performance
for the rear axle.

where "dem" superscript indicates demanded quantities. Hereunto, three situations may
arise for a given driver’s deceleration request:

• under-braking, that is, the BLCF estimate provided in the base brake controller is
larger than the true value, leading to a reduced braking action;

• over-braking, that is, the BLCF estimate provided in the base brake controller is
smaller than the true value, leading to an increased braking action;

• compensated braking, that is, the BLCF estimate provided in the base brake
controller lays close to its true value.
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5.7. Results

It is clear that the definitions given above require the introduction of an ideal case of
braking without any disturbances where the vehicle realises the deceleration demanded
by the driver. This condition is only achievable when the estimated BLCF equals its true
value.

Under all circumstances, to avoid numerical instabilities that might be caused by
a noisy BLCF estimate, Equation (5.4) is linearised around the BLCF estimate of the
last braking manoeuvre µ̂b0. In case no previous estimate is available, the nominal
BLCF (SAE J2522) is provided. The algorithm allows a maximum compensation of
±30% around the previous BLCF estimate. By Tylor expansion, Equation (5.4) can be
approximate as follows:

pdem∗
b,ij = pdem

b0,ij − pdem
b0,ij

∆µ̂b

µ̂b0
+ pdem

b0,ij

(∆µ̂b

µ̂b0

)2
+O3, (5.5)

where, pb0,ij represents the control signal that would be sent to the EHCU if BLCF did
not change from its last estimate; pdem∗

b,ij represent the compensated pressure demand
in presence of BLCF variations; ∆µ̂b represents the BLCF variation with respect to its
previous estimate defined as:

∆µ̂b = sat±30% (µ̂b − µ̂b0) , (5.6)

Equation (5.5) can also be rewritten as:

pdem∗
b,ij = pdem

b0,ij

[
1 − ∆µ̂b

µ̂b0
+
(∆µ̂b

µ̂b0

)2]
+O3. (5.7)

Given the BLCF estimate µ̂b from the BLCF observer and by truncating to second order
Taylor, the compensation algorithm in Equation (5.8) can be applied:

pdem∗
b,ij =

 T dem
b,ij

2np µ̂b0,ij π
d2

p

4 reff,i

+ p0

[1 − ∆µ̂b

µ̂b0
+
(∆µ̂b

µ̂b0

)2]
. (5.8)

In the next section, the compensation function is implemented in the framework of
HIL verification tests. To this effect, the results of the compensated case will be compared
with the undesired cases without compensation, namely under-braking and over-braking.
It is worth noting that the undesired braking behaviour is simulated by providing a
constant BLCF estimate 15% greater than the true value in the case of under-braking
and 15% smaller than the true value in the case of over-braking. The nominal BLCF
value for the vehicle under analysis can be found in the technical specification of the full
electric SUV in Appendix D.

5.7 Results

To test the BLCF compensation function in real-time on the HIL platform, two test
cases are devised. The first test involves straight line braking until vehicle standstill from
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an initial speed of 75 km/h and an initial disc temperature of 150◦C. This manoeuvre
is repeated for different blending factors. The second test includes a series of repeated
brake applications that lead to increasing brake disc temperature and noticeable BLCF
variations. The vehicle starts from an initial speed of 130 km/h and the brakes are at
an initial temperature of 150◦C. To assess the system compensation capability under
different working conditions, the second test is conducted for two blending configurations,
namely full frictional brake intervention (f = 0) and blending at 70% (f = 0.7). In
accordance with previous HIL studies [9], a blending factor of 70% represents for the
vehicle under analysis a good compromise between energy recuperation and braking
performance. The brake pedal displacement is limited to 60% of the maximum travel
to prevent excessive wheel slip. It is also worth noting that the observer activation
thresholds defined in Chapter 4 are considered in the framework of HIL simulations.

5.7.1 Single brake application

The results of the first test for pure intervention of foundation brakes (f = 0) are reported
in Figure 5.7. The upper graphs refer to the vehicle kinematics for the three braking
situations, under-braking, over-braking and compensated braking, respectively. The lower
graphs put into comparison the simulated BLCF values and longitudinal wheel forces
for the front and rear axles, respectively. Moreover, the estimated friction coefficient
provided for compensation purposes in the base brake controller is also reported (red
profile).

The results show that the compensation function allows tracking the ideal profile by
keeping the vehicle velocity very close to the driver’s desired trajectory. The previous
test is repeated for different blending configurations. The compensation capability of
the proposed approach is quantified through the normalised RMSE between the overall
demanded and simulated torque. As shown in Figure 5.8, the compensation function
abates the error between the driver requested deceleration and the actual deceleration
level. Since all sources of disturbances are attributed to BLCF variations, it is clear that
the higher the blending with EM is, the lower the disturbances on the brake control are.

5.7.2 Repeated brake application

The second test case involves several pedal actuations, which lead to a remarkable
variation in the BLCF. The results of this trial are reported in Figures 5.9 and 5.10 for
the case of pure conventional brake intervention and blending at 70%, respectively. The
results show that the proposed observer allows for an effective compensation action even
in case of large BLCF variations and blending conditions.

Based on the results of the previous simulations, Figure 5.11 reports the brake
pedal travel against the vehicle deceleration. For the non-compensated cases, the
driver’s workload is increased and the pedal-deceleration curve lays far from the ideal
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Figure 5.7: Results of BLCF compensation function for a pure friction straight line braking
manoeuvre with respect to three operating instances, underbraking, overbraking and compensated
case. Electric motors are deactivated, full brake power is used to decelerate the vehicle. Graphs a)
and b) report the vehicle kinematics; c) and e) refer to the simulated BLCF for front and rear
axle, respectively; d) and f) report the simulated wheel longitudinal force for front and rear axle,
respectively.
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Figure 5.8: The BLCF compensation function drastically abates the error between demanded
and actual torque for all blending conditions.

profile. Particularly, in the under-braking case, higher brake pedal travel must be
applied to realise the same deceleration level. Conversely, in the over-braking case,
the same pedal actuation leads to higher deceleration levels. In the non-compensated
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Figure 5.9: Results of BLCF compensation function in case of repeated brake actuation with
respect to three operating instances, underbraking, overbraking and compensated case. Electric
motors are deactivated and only foundation brakes are used to decelerate the vehicle. Graphs a)
and b) report the vehicle kinematics; c) and e) refer to the simulated BLCF for front and rear
axle, respectively; d) and f) report the simulated wheel longitudinal force for front and rear axle,
respectively.

cases, the deviations in deceleration are directly dependent on the current BLCF value.
The compensation algorithm, by detecting BLCF variations, aligns the pedal travel-
deceleration curve to the ideal profile. Therefore, the curve for the compensated case
lays closer to the ideal characteristic. It is also worth noting that in presence of blending,
the disturbances induced by BLCF variations on the vehicle deceleration are drastically
reduced (Figure 5.11b).

The same test is repeated by lowering the brake pedal actuation speed down to
50 mm/s in Figure 5.12. The results confirm that the compensation algorithm aligns
the pedal-travel deceleration curve to the desired profile.
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Figure 5.10: Results of BLCF compensation function in case of repeated brake actuation
with respect to three operating instances, underbraking, overbraking and compensated case. The
electric motor are phased in parallel with 70% intervention. Graphs a) and b) report the vehicle
kinematics; c) and e) refer to the simulated BLCF for front and rear axle, respectively; d) and f)
report the simulated wheel longitudinal force for front and rear axle, respectively.
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Figure 5.11: Deceleration-pedal position characteristic curves for different operating modes.
Graph a) refers to full friction brakes actuation; b) refers to blending with parallel phasing at
70%. The brake pedal actuation speed is equal to 150 mm/s.
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Figure 5.12: Deceleration-pedal position characteristic curves for different operating modes.
Graph a) refers to full friction brakes actuation; b) refers to blending with parallel phasing at
70%. The brake pedal actuation speed is equal to 50 mm/s.

5.8 Chapter summary

A reliable BLCF estimate allows for an optimal blended control of foundation brakes
with electric motors, in accordance with ECE R13H. The results show that the proposed
controller effectively abates disturbances induced by BLCF variations. HIL simulation
results confirm the real-time functionality of the developed BLCF observer and disturbance
compensator. The compensation mechanism during brake torque generation in presence
of brake blending enhances braking performance by reducing the reference deceleration
tracking error. The results also demonstrate that the driver’s workload can be either
reduced by compensating the BLCF or by increasing the EM blending share during
decelerations.
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Chapter 6

Experimental validation on the prov-
ing ground

6.1 Introduction

This chapter deals with the experimental validation of the BLCF observer introduced
in Chapter 4. The full electric SUV demonstrator was provided by Flander’s Make
(Lommel, Belgium). Technical specifications are reported in Appendix D. The tests were
performed at the Ford proving ground in Lommel (Belgium) by a professional driver, who
was properly briefed before the tests execution. The braking tests involved straight-line
braking manoeuvres under clean environmental conditions on a dry flat road. During
all manoeuvres, the ABS mode was deactivated, the regenerative mode disabled and
the braking intensity limited to 6 m/s2 to avoid wheel lock, condition under which the
observability of the states cannot be proved (please, refer to Chapter 4). The observer
functionality is demonstrated by means of two KPIs, namely the BLCF normal round
mean square error and the average BLCF deviation, computed in accordance with SAE
J2522. The experimental BLCF is extracted from brake torque measurements of the
wheel force transducers. The data post-processing is performed in accordance with Annex
5 - Appendix 2 of ECE R13H [73]: torque signals are filtered using a five-point, on-centre
moving average for each data channel and a recursive least square algorithm is then
used to estimate the BLCF based on the measured torque output as a function of the
measured line pressure. Only torque output values obtained from data collected when
the vehicle deceleration is within the range of 0.15 G to 0.8 G are used in the regression
analysis. For the sake of simplicity, despite the required post-processing action, the
reference BLCF estimated from direct wheel torque and brake pressure measurements is
herein referred to as measured.
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6.2 Tests on the proving ground

The measurement campaign consists of three test sessions:

• the first test session involving a series of full-stop braking manoeuvres characterised
by fixed pedal displacement is used to calibrate a suboptimal observer;

• the second test session includes full-stop braking manoeuvres characterised by
constant deceleration and is employed to validate the observer robustness with
respect to different braking conditions;

• the third test session is an AMS type test, herein referred to as fade test, where con-
secutive full-stop braking manoeuvres are performed to test the observer robustness
against increasing brake temperature.

It is worth noting that during the first two test sessions, a pause of 5 min is set between
consecutive test runs to let the brakes cool down. The suboptimal observer stemming
from the first test is then validated against the successive ones. The third test is
conducted without any pause between runs; however, the braking intensity is limited to
3 − 4 m/s2 to avoid excessive brake overheating, which could in turn damage the wheel
force transducers. The high precision optical speed sensor, employed during the test
sessions, allows for accurate estimation of the wheel slip. The vehicle setup also includes
ABS mode deactivation and disabled regeneration. The observer being validated in this
chapter corresponds to the design 2 introduced in Chapter 4. The reader is therefore
referred to Chapter 4 for details on the BLCF observer scheme.

6.2.1 Fixed pedal braking

The first test session involves three full-stop brake runs from an initial vehicle speed
of 100 km/h. Three runs are performed by keeping the brake pedal to fixed position
with 20%, 40% and 60% of the pedal displacement limit, respectively. The keeping of a
reference pedal displacement is ensured by a visual feedback provided via host PC to the
expert driver. This session also includes three additional runs where the brake pedal is
repeatedly actuated with 40% of its displacement limit with bursts of 2 s. This second
test is employed to excite the vehicle pitch dynamics, which might play a detrimental
role on the vehicle global longitudinal force estimation.

Numerous techniques were considered to optimise the choice of the process covariance
matrix components and, thus, define a suboptimal observer [62]. In the present study,
a first tuning of the observer covariance matrices is manually attempted. The process
covariance matrix features three components reflecting the uncertainty associated with
the model of the process. The measurement covariance matrix is constituted by two
variance components associated with the wheel encoders white noise and the virtually
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sensed wheels longitudinal force. In accordance with common practice, the measurement
covariance matrix components are set equal to the wheel encoders white noise. The
virtual force sensor associated variance and the process covariance matrix are instead
optimised by means of genetic algorithms to find the suboptimal observer that minimises
the normal round means square error of the BLCF estimate [90].

For the sake of space, only partial results of the third and fifth runs are herein
graphically included; the full results are instead reported under the form of Table 6.1.
Figures 6.1 and 6.2 report the results of the third and fifth run, respectively, where the
manually tuned observer is referred to as EKF and its suboptimal variant as GA EKF.

Figure 6.1: Third run of the first test session featuring a full stop braking with a maximum
pedal displacement of 60%. Graph a) and b) report the vehicle kinematics; c) and e) report
the estimated BLCF for front and rear axle, respectively; d) and f) report the estimated wheel
longitudinal force for front and rear axle, respectively. GA EKF is the suboptimal observer; EKF
represents the manually tuned observer.

The suboptimal GA EKF exhibits superior tracking performance when compared to
its manually tuned variant. The suboptimal observer gets rid of undesired overshoots
in the BLCF estimation that instead occurs in the case of manually tuned EKF. With
respect to the fifth run in Figure 6.2, several braking applications are performed to first
decelerate the vehicle and later, after a second acceleration, lead it to a full stop. Due
to increasing disc temperature, it can be noted that the front BLCF exhibits a sinking
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behaviour, which leads to a decreasing deceleration intensity for a fixed brake pedal
displacement. Compared to the manually tuned variant, the suboptimal observer allows
for superior tracking performance.

Figure 6.2: Fifth run of the first test session featuring repeated brake actuations with a maximum
pedal displacement of 40%. Graphs a) and b) report the vehicle kinematics; c) and d) report the
estimated BLCF for front and rear axle, respectively. GA EKF is the suboptimal observer; EKF
represents the manually tuned attempt.

The results corresponding to the first test session are reported in Table 6.1. The
observer functionality is quantified in terms of two KPIs, namely the BLCF nRMSE
and the BLCF average value, computed in accordance with SAE J2522. The results
show that the suboptimal observer allows for improved estimation accuracy under all
investigated operating conditions. It is also worth noting that the high precision optical
speed sensor, employed during these tests, allows for accurate estimation of the wheel
slip, which reflects into a very accurate BLCF estimation even for limited deceleration
values. It can be also noted that the estimation accuracy at the rear axle is worse under
all operating conditions; nevertheless, the suboptimal observer succeeded at reducing the
estimation error.
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Table 6.1: Results of the proposed observer with respect to fixed pedal braking tests.
The table vertically divides the results of the manually tuned observer and its suboptimal
variant.

nRMSE(µb) µ̄b

Front RearRun # Pedal āx Front Rear Meas. Obs. Meas. Obs.

Run 1 20% ≈ 1 m/s2 18.78% 31.70% 0.446 0.512
(+14.80%) 0.443 0.595

(+34.31%)

Run 2 40% ≈ 1.5 m/s2 13.52% 20.70% 0.415 0.453
(+9.16%) 0.427 0.526

(+23.18%)

Run 3 60% ≈ 3 m/s2 7.01% 10.74% 0.436 0.409
(−6.19%) 0.393 0.427

(+8.65%)

M
an

ua
lly

tu
ne

d
ob

se
rv

er

Run 4 40% ≈ 1.6 m/s2 12.42% 20.90% 0.446 0.489
(+9.64%) 0.412 0.506

(+22.82%)

Run 5 40% ≈ 1.5 m/s2 12.12% 20.36% 0.345 0.388
(+12.46%) 0.405 0.467

(+15.31%)

Run 6 40% ≈ 1.6 m/s2 12.50% 20.33% 0.367 0.408
(+11.17%) 0.391 0.445

(+13.81%)

Run 1 20% ≈ 1 m/s2 8.84% 22.44% 0.446 0.417
(−6.50%) 0.443 0.529

(+19.41%)

Run 2 40% ≈ 1.5 m/s2 7.35% 15.88% 0.415 0.399
(−3.86%) 0.427 0.485

(+13.58%)

Run 3 60% ≈ 3 m/s2 3.75% 10.11% 0.436 0.419
(−3.99%) 0.393 0.429

(+9.16%)

Su
bo

pt
im

al
ob

se
rv

er

Run 4 40% ≈ 1.6 m/s2 7.96% 18.13% 0.446 0.433
(−2.91%) 0.412 0.489

(+18.69%)

Run 5 40% ≈ 1.5 m/s2 8.33% 15.27% 0.345 0.335
(−2.99%) 0.405 0.457

(+12.96%)

Run 6 40% ≈ 1.6 m/s2 9.33% 14.98% 0.367 0.364
(−0.82%) 0.391 0.439

(+12.28%)

6.2.2 Fixed deceleration braking

The suboptimal observer is here validated against the second test session, which includes
six deceleration controlled full-stop braking manoeuvres characterised by different initial
braking speeds and braking intensities. Similarly to the first test, the expert driver,
by means of visual feedback on the host PC, makes sure that the deceleration level is
kept close to the desired value. The purpose of this test is to validate the suboptimal
observer with respect to different braking conditions. The experiments involve two initial
speed values, i.e. 50 km/h and 100 km/h, and three deceleration levels, in the range
(1 − 2) m/s2, (3 − 4) m/s2 and (5 − 7) m/s2. For the sake of space, graphic results are
omitted. The suboptimal observer validation results are reported in Table 6.2.

In accordance with the simulation results, higher deceleration levels allow for improved
estimation accuracy. The experimental results also suggest that the initial braking speed
value does not affect the BLCF estimation performance, provided that the wheel slip
can be estimated with great accuracy. It is also worth pointing out that a reduction in
the estimation performance can be noted on the front axle in case of higher deceleration
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Table 6.2: Validation results of the suboptimal observer with respect to fixed deceleration
braking.

nRMSE(µb) µ̄b

Front RearRun # vx,in āx Front Rear Meas. Obs. Meas. Obs.

Run 1 50 km/h ≈ 1.3 m/s2 14.08% 35.02% 0.392 0.348
(−11.22%) 0.399 0.540

(+35.34%)

Run 2 50 km/h ≈ 3.5 m/s2 4.31% 16.80% 0.457 0.448
(−1.97%) 0.459 0.543

(+18.30%)

Run 3 50 km/h ≈ 6 m/s2 10.10% 12.70% 0.409 0.465
(+13.69%) 0.354 0.379

(+7.06%)

Run 4 100 km/h ≈ 1.3 m/s2 13.70% 45.40% 0.465 0.409
(−12.04%) 0.422 0.661

(+56.63%)

Run 5 100 km/h ≈ 3.5 m/s2 3.87% 16.40% 0.468 0.450
(−3.85%) 0.483 0.575

(+19.05%)

Run 6 100 km/h ≈ 6 m/s2 9.70% 10.19% 0.404 0.449
(+11.14%) 0.490 0.475

(−3.06%)

requests, namely Run 3 and 6, due to the excessive load transfer, which in turn might
compromise the assumption of load proportionality principle considered in the observer
scheme.

6.2.3 Brake fade test

The fade test session consists of ten identical runs and is used to verify the observer
robustness against increasing disc temperature. In accordance with the experimental
results of Chapter 3, the increasing brake temperature leads to a BLCF decay, which
results in reduced braking performance. In accordance with experimental data of
Figure 6.3, while moving to successive braking manoeuvres, the driver needs to increase
the pedal displacement to ensure equal braking intensity. All test runs are characterised
by an initial braking speed of 100 km/h down to a final speed of 20 km/h. During the
braking, the driver keeps the deceleration between 3 m/s2 and 4 m/s2.

The results are conveniently reported in Figure 6.4 where the acceleration phases
are removed for the sake of space. It can be easily noted that consecutive braking
applications feature a decreasing BLCF. This phenomenon can be accurately captured
by the suboptimal observer. After the fourth brake application, the BLCF has decreased
by 20% below its nominal value. At the rear axle, the suboptimal observer exhibits an
overestimating behaviour. Nevertheless, the reader must be informed that due to the
limited axle excitation level, the very estimation of the BLCF from the wheel torque
measurement might be affected by error. Table 6.3 conveniently reports the results of
the fade test.

The experimental results show that the decaying BLCF causes the pedal-deceleration
to shift to the right, as per Figure 6.3. As a consequence, the driver needs to increase
the brake pedal displacement to achieve the same deceleration level. HIL simulations in
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Figure 6.3: Results of the fade test show that the pedal-deceleration curve is affected by the
increased disc temperature τ , which corresponds to a BLCF decay. The driver needs to increase
the pedal displacement to ensure the same deceleration level.

Figure 6.4: Results of the fade test. Graphs a) and b) report the measured and observer BLCF
with respect to the front and rear axle. GA EKF is the suboptimal observer; Nominal is the brake
BLCF computed in accordance with SAE J2707.
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Table 6.3: Validation results of the suboptimal observer with respect to fade test.

nRMSE(µb) µ̄b

Front RearRun # vx,in āx Front Rear Meas. Obs. Meas. Obs.

Run 1 100 km/h 3.7 m/s2 9.55% 19.02% 0.517 0.482
(−6.77%) 0.560 0.624

(+11.43%)

Run 2 100 km/h 3.2 m/s2 7.78% 18.80% 0.500 0.480
(−4.00%) 0.548 0.629

(+14.78%)

Run 3 100 km/h 3.2 m/s2 8.45% 22.00% 0.453 0.423
(−6.62%) 0.466 0.566

(+21.46%)

Run 4 100 km/h 3.2 m/s2 6.65% 17.60% 0.416 0.397
(−4.57%) 0.459 0.529

(+15.25%)

Run 5 100 km/h 3.2 m/s2 6.85% 19.40% 0.383 0.356
(−7.05%) 0.390 0.472

(+21.03%)

Run 6 100 km/h 3.5 m/s2 4.94% 7.94% 0.362 0.347
(−4.14%) 0.422 0.449

(+6.40%)

Run 7 100 km/h 3.2 m/s2 6.80% 18.60% 0.346 0.332
(−4.05%) 0.386 0.456

(+18.13%)

Run 8 100 km/h 3.4 m/s2 3.75% 4.72% 0.339 0.335
(−1.18%) 0.447 0.446

(−0.22%)

Run 9 100 km/h 3.3 m/s2 5.63% 14.60% 0.341 0.328
(−3.81%) 0.374 0.432

(+15.51%)

Run 10 100 km/h 3.1 m/s2 8.99% 14.30% 0.357 0.356
(−0.28%) 0.428 0.472

(+10.28%)

Chapter 5 have shown that such disturbances can be avoided by compensating BLCF.
Hence, the BLCF compensation function can ensure that the brake system always provide
the desired feedback to the driver, preventing the pedal-deceleration curve from shifting.

6.3 Chapter summary

The BLCF observer functionality is validated on the proving ground with respect to
several braking manoeuvres performed by a professional driver. Genetic algorithms are
used to find the sub-optimal extended Kalman filter for the vehicle under analysis. In
accordance with the simulations of Chapter 4, the experimental results demonstrate
that gentle and mild deceleration values play a detrimental role on the rear axle BLCF
estimation. Nonetheless, the proposed BLCF estimator reveals robust against repeated
braking manoeuvres, despite the dramatic increase in the disc temperature and consequent
BLCF decay.

Chapters 7 and 8 demonstrate applicability of the proposed BLCF observer to enable
advanced brake monitoring functions through estimation of the actual brake torque. The
BLCF observer is switched on, upon achievement of the minimum deceleration requests
identified in Chapter 4. Under all other conditions, a constant BLCF equal to its last
estimate is used. Particularly, in Chapter 7, a novel wear prognosis function driven by
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data collected on the brake dynamometer and validated on an experimental vehicle is
presented. In Chapter 8, a novel estimation tool for brake-related particle emissions
stemming from on-road measurement is put forth and validated.
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Chapter 7

A novel brake wear prognosis func-
tion

7.1 Introduction

Former investigations performed by Archard in 1953 demonstrate that normal load,
sliding velocity and hardness of the rubbing materials play a role in the mechanisms
of wear [91]. Despite his conclusions, studies published during the past 70 years do
not provide satisfactory results on modelling brake-related wear and do not support
the proposed theories with experimental evidence. Wear tests imply high costs and
time-spending measurement protocols as the wear can only be assessed upon completion
of a brake test. Moreover, brake tests must be designed so that the produced wear
volume is order of magnitudes larger than the measurement equipment precision. For
this reason, existing wear studies feature very elementary design of experiments, the
majority of which relates to pin-on-disc [92, 93].

This chapter proposes a novel semi-empirical wear model driven by RDE-compliant
wear data. In accordance with [94], designing wear tests that duplicate the brakes’
real usage conditions enables the formulation of a wear-energy relationship. This latter
constitutes the basis for a wear prognosis function, which relies on the BLCF observer
proposed in Chapter 4. In accordance with the schematic of Figure 7.1, the brake
disc temperature estimate τ̂ is provided by the lumped capacitance model discussed in
Chapter 3 and identified against experimental data collected from the sedan in Appendix D.
This latter requires the vehicle speed v̂x to be estimated in order to account for the
brake cooling coefficient δ̂ht. The ambient temperature τ0 is instead assumed measurable.
The BLCF observer in Chapter 4 allows for estimation of the brake torque T̂b, provided
that the brake calliper pressure pb is measured, in accordance with Equation (A.19).
Ultimately, also the measured wheel speed ω is fed to the pad wear model for the brake
power calculation.
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Figure 7.1: Schematic of the proposed brake pad wear prognosis function based on the BLCF
observer of Chapter 4 and the lumped brake temperature model of Chapter 3.

Wear tests on the brake dynamometer allow investigating the functional dependencies
of the pad wear rate with respect to sliding speed, brake torque and disc temperature. The
model is therefore parametrised with respect to wear data collected from a floating calliper
brake system equipped with gray cast iron disc and ECE linings. The functionality of the
wear model is demonstrated with respect to data collected from the sedan in Appendix D
equipped with the same brake system at the front axle. Under the investigated RDE-
compliant conditions, the collected data demonstrate that brake linings wear down much
faster than the brake discs. For this reason, the brake disc wear is not addressed in this
work.

7.2 A novel brake lining wear model

Scientific studies of the past decade demonstrate that the brake lining wear rate can be
expressed as a function of sliding speed, brake line pressure and brake disc temperature
[95, 96, 38]. These considerations lead to the following equation:

mb =
∫ t0+∆tb

t0
kb(ω, pb, τ) ω Tb dt, (7.1)

where, mb represents the wear mass, kb is the brake lining specific wear rate and
[t0; t0 + ∆tb] represent the absolute braking interval. By expanding Equation (7.1) with
the chain rule, wear rate can be expressed as:

ṁb = ∂mb

∂t
+ ∂mb

∂ω

dω

dt
+ ∂mb

∂pb ✓
✓
✓✼

0
dpb

dt
+ ∂mb

∂τ

dτ

dt
. (7.2)

The third term containing the brake line pressure derivative is assumed to be negligible
when compared to other terms due to short duration of pressure transients when braking.
Hence, Equation (7.2) can be rewritten as:

ṁb = kb,0(ω, pb, τ)︸ ︷︷ ︸
f(ω,pb,τ)>0

ω Tb + ∂mb

∂ω︸ ︷︷ ︸
g(ω,pb,τ)>0

ω̇ + ∂mb

∂τ︸ ︷︷ ︸
h(ω,pb,τ)>0

τ̇ . (7.3)
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The first term f(ω, pb, τ) in Equation (7.3) expresses the quasi-static wear rate, valid for
steady-state sliding speed, brake line pressure and brake disc temperature conditions
(drag test with cooling). The second term g(ω, pb, τ) features the impact of varying
sliding speed under steady-state temperature and pressure conditions and fixed braking
time (time controlled test with cooling). The third term h(ω, pb, τ) represents the impact
of the brake disc temperature dynamics when all other factors and braking time reach
the steady-state (time controlled drag test). All terms are assumed to be strictly positive.

It is now worth transferring the wear problem to the specific use case, that is, the
sedan in Appendix D. The wheel dynamics and lumped capacitance model during a
braking shall be considered. This leads to Equations (7.4a) to (7.4c):

ω̇ = − 1
Iω

(Tb − FLrω − Td),

τ̇ ≃ ξ ω Tb,

ṁb = f(ω, pb, τ) ω Tb + g(ω, pb, τ) ω̇ + h(ω, pb, τ) τ̇ .

(7.4a)

(7.4b)
(7.4c)

Equation (7.4a) represents the wheel dynamics, Equation (7.4b) describes the disc
temperature dynamics by neglecting the cooling effect (please, refer to Chapter 3)
and Equation (7.4c) is the proposed wear model. By replacing Equation (7.4b) in
Equation (7.4c) and including the lumped capacitance model parameter ξ in the function
h(ω, pb, τ), the following equation can be formulated:

ṁb = f(ω, pb, τ) ω Tb + g(ω, pb, τ) ω̇ + h∗(ω, pb, τ) ω Tb. (7.5)

In accordance with the sifted literature instances, pin-on-disc tests performed under
constant sliding speed and steady-state temperature conditions suggest that the quasi-
static term f(ω, pb, τ) is only temperature dependent. In [93, 97, 98], the authors argue
that the wear-energy linearity hypothesis holds upon considering the influence of the
brake temperature. Moreover, in accordance with [99, 94, 100, 101], the wear-energy
linearity shows larger slope at higher temperature values. The second and third terms,
namely g(ω, pb, τ) and h∗(ω, pb, τ), represent the increased wear due to increasing wheel
speed and due to increasing temperature, assumed proportional to the applied brake
torque and to the resulting brake power, respectively. In accordance with the definition
given in Equations (7.1) and (7.2), the previous assumptions lead to the following stances:

f(τ) = γ1(τ), g(ω, pb, τ) = γ2(τ) Tb, h∗(ω, pb, τ) = γ3(τ) ω Tb, (7.6)

where the identification of γ parameters is left with the data driven method.

7.3 Experimental methodology

The experiments on the brake dynamometer are designed so as to duplicate the brakes
usage under real driving conditions. For a better understanding, Figure 7.2 reports the
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methodological flow chart schematic of the reference on-road data generation, model
identification and validation, respectively. On-road tests on the experimental sedan of
Appendix D are used to generate reference driving cycles. These latter are organised
under the form of driving blocks, each of which is composed of two or more driving cycles,
in accordance with minimum detectable wear volume requirements. Real driving data
is then properly selected to constitute a reference identification data set of N driving
blocks. These latter are post-processed under the form of deceleration controlled brake
test for the brake dynamometer. Each i− th = [1, N ] driving block of the identification
data set involves j = [1, Nb,i] brake applications. The reference driving blocks are run
on the brake dynamometer to generate N wear data points, which constitute the model
identification dataset. The dynamometer ensures improved repeatability of the wear
measurements in comparison with on-road tests.

A set of candidate functions, taken from a functions database, constitute the linear
parametric law rendering the wear rate. The model formulation is based on up-to-date
knowledge of the wear process and is data driven. For each i− th driving block, the wear
rate differential model in Equation (7.5) must be rewritten in the linear integral form
by integrating across the j = [1, Nb,i] braking application to solve with respect to M

parameters. The model identification corresponds to a least square problem, which can be
solved upon verifying that the number of linear independent measurements N is greater
than or equal to the model parameters cardinality M . Finally, the model is validated
against newly generated on-road wear measurements under real driving conditions.

7.3.1 Real driving cycles

The instrumented sedan of Appendix D is used to generate real driving data, which are
then provided as a reference for the brake dynamometer tests. In the framework of this
study, different real driving sections, namely urban, rural and motorway span different
regions of brake operating conditions, in terms of sliding speed, brake torque and brake
disc temperature. Moreover, multiple drivers and different traffic conditions enhance
even further the cycle-to-cycle variability. Driving cycle type and driving style allow
generating model inputs representative of real driving conditions. Figure 7.3 reports the
average braking conditions of partial driving data collected on the instrumented sedan.

In accordance with Figure 7.3, urban driving sections involve lower initial braking
speed but higher temperature values due to the limited cooling effect (Figure 7.3b). Rural
sections are characterised by higher initial braking speed values with mild deceleration
levels (Figure 7.3a). Motorway sections feature very high speed values and enhanced brake
cooling effect. However, a general trend cannot be defined without taking the driving
style into consideration. In Figure 7.3, driver B identifies an aggressive driving behaviour
that corresponds to higher cruising velocity on the motorway, higher deceleration intensity
and higher disc temperature due to repeated brake actuation.
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(a) Average braking conditions with respect to initial braking speed and average deceleration level.

(b) Average braking conditions with respect to initial braking speed and initial disc temperature.

Figure 7.3: Variability in braking conditions due to driving style and driving cycle (urban,
rural road and motorway). At the graphs corners, the statistics of initial braking speed, average
deceleration level and initial brake temperature are reported.

The statistical analysis in Figure 7.4 shows that the number of braking applications is
strongly dependent on the drive cycle type, being in the urban section much larger than
other driving scenarios. Moreover, despite the high number of braking applications taking
place in the urban section (Figure 7.4a), the cycle to cycle variability due to driving style
and traffic conditions plays a major role in other driving sections (Figure 7.4b). A 2σ
analysis shows that the driver’s impact on wear rate results dramatically reduced in the
urban section due to stricter speed limits. Conversely, the enhanced brake cooling due
to higher speed values and the greater cycle to cycle variability due to reduced traffic
control measures in rural and motorway driving sections cause an increased impact of the
driver on the wear rate. It is also worth noting that the enhanced cooling in motorway
section improves the specific wear rate of the front linings.

101



7.3. Experimental methodology

Figure 7.4: On-road brake wear cycle dependence with 2σ intervals. Graph a) reports the
average number of brake applications per equivalent 100 km per cycle type and b) the energy
specific wear rate per cycle type.

To ensure compliance with minimum detectable wear requirements, real driving data
collected from the instrumented vehicle are packed into test blocks. Depending on the
braking intensity and driving style, each test block may contain up to four driving cycles.
The data are then post processed to extract the occurred braking manoeuvres. These
latter are fed to the brake dynamometer control system, which performs a reference-
deceleration control between speed levels. Wear measurements on the instrumented sedan
suggest that approximately 250 braking manoeuvres reveal necessary to produce wear
volume one order of magnitude larger than the measurement equipment accuracy.

7.3.2 Brake dynamometer tests

The single-end full-scale inertia brake dynamometer at Technische Universität Ilmenau
is used to generate wear data based on real driving inputs collected on the sedan of
Appendix D. The brake dynamometer reproduces the quarter car vehicle inertia on a front
wheel. The brake dynamometer construction is similar to Figure 3.1. However, climatic
conditions and air cooling cannot be controlled. The full-scale inertia dynamometer
control is based on the real time dSPACE DS1007® platform. The DS2002® A/D multi-
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channel board allows for data acquisition of brake pressure, sliding speed, brake torque
and disc temperature with a sampling rate of 100 Hz. The compressed air hydraulic
actuator increases the pressure up to 210 bar within the master cylinder. A flow meter
measures the consumption of brake fluid and a pressure sensor mounted in the vicinity
of the brake calliper measures the brake line pressure. The disc temperature is measured
by a rubbing thermocouple of the type used on the experimental sedan in Appendix D.
The brake torque is measured through a sensor positioned inside the flywheel. The
dynamometer allows a maximum operating regime of 2500 rpm and features a peak
power of 186 kW and a maximum torque of 5000 Nm. The brake pads are disassembled
after each test in order to assess the linear wear and wear mass. To ensure repeatability
of the wear measurement on the brake dynamometer, the brake pads are bedded before
the test campaign is started, in accordance with SAE J2522 Sec. 2.

The reference cycle for brake dynamometer tests in based on criteria of vehicle
speed and energy reproducibility and real-time capability requirements. A sensitivity
analysis conducted on the brake dynamometer demonstrates that superior on-road tests
reproducibility and cycle to cycle repeatability on the brake dynamometer are achieved
under brake deceleration control mode between speed levels. The implemented rule
based controller is of the form reported in Figure 7.5. The new brake manoeuvre is
started upon reaching the reference initial brake disc temperature τin from on-road tests
measurements. The brake dynamometer accelerates to the reference initial braking speed
vx,in extracted from on-road tests. Thereafter, a deceleration controlled braking takes
place until the reference exit braking speed vx,end from on-road tests is achieved. The
new braking is thereafter loaded. Due to the limited brake cooling effectiveness under
laboratory conditions, the temperature check is switched-off upon reaching a brake disc
temperature of 65 ◦C.

Figure 7.5: Flowchart of the rule based brake dynamometer controller. The new brake manoeuvre
is started upon reaching the reference initial brake disc temperature. The brake dynamometer
accelerates to the reference initial braking speed extracted from on-road tests. The deceleration
controlled braking continues until the reference end speed from on-road tests is achieved.
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Figure 7.6 reports partial results of a real driving wear test conducted on the brake
dynamometer. With respect to on vehicle data, the brake dynamometer features satisfac-
tory tracking performance being able to maintain the nRMSE of the wheel speed under
6%. The brake dynamometer is not able to reproduce the driving resistance forces (e.g.
rolling resistance and air drag) resulting in a slightly longer braking time. Consequently,
the achievement of the reference end braking speed causes a prolonged brake actuation.
This phenomenon and its effect on the wear measurement reproducibility on the brake
dynamometer are further discussed in the text.

Figure 7.6: Partial results of a RDE-compliant brake test on the brake dynamometer (Dyno, red)
compared to the real on-road acquisitions (On-road, blue) for a urban a), rural b) and motorway
c) brake application. All signals refer to the front-left wheel.
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7.3.3 Wear measurements

The wear measurement procedure complies SAE J2707 standards for brake dynamometer
wear tests. Upon test completion, the brake pads of a front brake disc are blown clean
with compressed air and both thickness and mass are assessed. In the case of on-road
tests, the post-treatment in a climatic chamber reveals necessary to free the linings from
excessive humidity absorbed during the test. A micrometer with an accuracy of ±10 µm
is used for measuring the linear pad wear. To ensure accurate measurement of brake
pad wear, six points equally spaced on the contact surfaces are measured. Measurement
locations are numbered starting from the outer leading edge of the finger-side pad and
move in the clockwise direction. The last measurement location is thus on the inner
leading edge of the pad. The average linear wear is calculated taking into account the
average value of the friction material linear wear measured on the defined six points. The
wear mass is measured by means of a scale with an accuracy of ±10 mg.

With reference to on-road wear tests, debris accumulation might compromise the
correctness of wear measurements. Hereunto, a least square approach is used to blend
the linear wear and wear mass measurements to ensure data consistency and reliability.
It is worth considering an auxiliary plane reporting on the x-axis the equivalent wear
mass computed from the linear wear measurements xi ∈ Xw, and on the y-axis the actual
wear mass measurements yi ∈ Yw. The equivalent wear mass can be easily computed
from the linear wear measurements, knowing the rubbing surface area. This latter must
be expressed as a function of the wear depth due to the presence of chamfers. It is worth
remarking that the proposed methods do not require the brake lining density to be known
as it is implicitly accounted for in the least square solution.

With respect to the generic set of wear measurements in Figure 7.7, the least square
curve of slope KLSQ can be computed by applying the following equation:

KLSQ =
(
XT

wXw

)−1
XT

wYw. (7.7)

For the generic wear measurement of coordinates (xi, yi), the projections directions foi

and fvi and the perpendicular projection f⊥i can be formulated as follows:

foi(x) : y = yi; fvi(x) : x = xi; f⊥i(x) : (y − yi) = 1
KLSQ

(xi − x). (7.8)

The generic projection fbi can be expressed as a linear combination of Equation (7.8).
Thereafter, a blending parameter αw is introduced:

fbi(x) : (y − yi) = αw

KLSQ
(xi − x), (7.9)
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where,

fbi =



foi if αw == 0
fvi if αw → +∞

f⊥i if αw == 1

(y − yi) = αw

KLSQ
(xi − x) if otherwise

(7.10)

The generic projection (x̃i, ỹi) onto the LSQ curve is thus equal to:

LSQ ∧ fbi : x̃i =
yi + αw

KLSQ
xi

KLSQ + αw
KLSQ

; ỹi = KLSQ yi + αw xi

KLSQ + αw
KLSQ

(7.11)

Figure 7.7: The generic wear mass measurement (xi, yi) is corrected by projection onto the
least square curve. The projected point is defined by coordinates (x̃i, ỹi). Depending on the
measurement reliability, the projection can take place along the horizontal direction foi if the
linear wear measurement is completely inaccurate, or along the vertical direction fvi if the wear
mass measurement is deemed unreliable. The wear mass and linear wear measurements are
blended if the projection occurs along the direction of fbi.

The wear correction algorithm leads to the results in Figure 7.8. With respect to
on-road wear measurements where tests might occur even under rainy weather conditions,
more weight is given to the linear wear measurements (αw > 1) as the mass measurement
may be affected by accumulated dirt or excessive water absorption. In the case of brake
dynamometer tests, more weight is given to the mass wear (αw < 1) as laboratory tests
are performed under almost constant ambient conditions and in absence of road dust
resuspension or water spill. It is worth noting that the results in Figure 7.8 also show
a difference in the brake pad wear behaviour between the two sides of the brake disc,
which may be attributed to the larger thermal shielding offered by the calliper on the
piston side (refer to Figure 2.1a).
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Figure 7.8: Partial results of the RLS algorithm for fusion of linear wear and wear mass
measurements from brake dynamometer test data. Each marker corresponds to a measurement
performed at the end of a test block on the brake dynamometer. Graph a) reports the results for
the outboard pad (finger side); b) refers to the inboard pad (piston side).

The wear correction algorithm also implies that the correction performance improves
with larger measurement dataset. Alternatively, including multiple driving cycles in the
same driving block may have the same effect due to the higher wear values but to the
detriment of experimental effort.

7.4 Model identification

In accordance with the scheme in Figure 7.2, the differential problem in Equation (7.5)
must be brought to an integral linear form for the regressors and parameters identification.
The initial γ functions candidates are initialised so as to contain linear and quadratic
temperature dependent terms, as follows:

γ1(τ) = γ10 + γ11 τ + γ12 τ
2,

γ2(τ) = γ20 + γ21 τ,

γ3(τ) = γ30 + γ31 τ.

(7.12)

The identification of the newly defined γ parameters is led by a data driven approach. The
identification data set is composed of eight driving blocks, each of which consisting of two
or three identical real driving cycles executed multiple times on the brake dynamometer
in accordance with the minimum detectable wear volume requirements. The driving
cycle employed for identification tasks are the RDE Ilmenau, a pure urban cycle, a
pure countryroad cycle and a pure motorway cycle performed by two different drivers
under similar traffic conditions. By spanning different brake operating conditions as per
Figure 7.3, this choice leads to eight linearly independent equations.
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The brake pad specific wear rate can be defined as:

kb =
(
γ10 + γ11 τ + γ12 τ

2
)

︸ ︷︷ ︸
γ1

+ (γ20 + γ21 τ)︸ ︷︷ ︸
γ2

ω̇

ω
+ (γ30 + γ31 τ)︸ ︷︷ ︸

γ3

Tb ω, (7.13)

where, it is worth reminding, γ1 represent the quasi-static temperature dependent wear
coefficient; γ2 accounts for the speed variation while braking; γ3 account for temperature
variations while braking. It is worth noting that under the hypothesis of pure quasi-static
wear, γ2 and γ3 become null (see Equation (7.3)) and a temperature dependent Archard’s
law is derived:

kb,q.s. =
(
γ10 + γ11 τ + γ12 τ

2
)
. (7.14)

Upon collection of wear data from brake dynamometer tests, the model parameters can
be identified by solution of an optimisation problem led by criteria of error minimisation.
Hereafter, Equation (7.13) is referred to as "Ilmenau extended", whilst its quasi-static
variant in Equation (7.14) is referred to as "Ilmenau". Considering the generic i − th

driving block and corresponding wear measurement, Equation (7.13) can be rewritten in
the integral form:

mb,i =
Nb,i∑
j=1

∫ t0,ij+∆tb,ij

t0,ij

{[(
γ10 + γ11 τ + γ12 τ

2
)

+ (γ30 + γ31 τ)Tb ω
]
Tb ω

+ (γ20 + γ21 τ)Tb ω̇

}
dt,

(7.15)

where, the index j ranges among the braking manoeuvres belonging to the i − th

driving block. In accordance with the experimental methodology overview in Figure 7.2,
the problem can be rearranged in the linear form where the regressors represent the
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combinations of input variables. The previous is rewritten as:

mb,i = γ10

Nb,i∑
j=1


∫ t0,ij+∆tb,ij

t0,ij

Tb ω dt︸ ︷︷ ︸
X10,i

+ γ11

Nb,i∑
j=1


∫ t0,ij+∆tb,ij

t0,ij

Tb ω τ dt︸ ︷︷ ︸
X11,i



+γ12

Nb,i∑
j=1


∫ t0,ij+∆tb,ij

t0,ij

Tb ω τ
2 dt︸ ︷︷ ︸

X12,i

+ γ20

Nb,i∑
j=1


∫ t0,ij+∆tb,ij

t0,ij

Tb ω̇ dt︸ ︷︷ ︸
X20,i



+γ21

Nb,i∑
j=1


∫ t0,ij+∆tb,ij

t0,ij

Tb ω̇ τ dt︸ ︷︷ ︸
X21,i

+ γ30

Nb,i∑
j=1


∫ t0,ij+∆tb,ij

t0,ij

T 2
b ω

2 dt︸ ︷︷ ︸
X30,i



+γ31

Nb,i∑
j=1


∫ t0,ij+∆tb,ij

t0,ij

T 2
b ω

2 τ dt︸ ︷︷ ︸
X31,i

 .

(7.16)

The terms in round brackets are the model regressors and are compute upon the i− th

driving block. The problem can be reformulated for all i = [1, N ] blocks as:



mb,1

mb,2

...

mb,i

...

mb,N


=



X10,1 X11,1 X12,1 X20,1 X21,1 X30,1 X31,1

X10,2 X11,2 X12,2 X20,2 X21,2 X30,2 X31,2

... ... ... ... ... ... ...

X10,i X11,i X12,i X20,i X21,i X30,i X31,i

... ... ... ... ... ... ...

X10,N X11,N X12,N X20,N X21,N X30,N X31,N





γ10

γ11

γ12

γ20

γ21

γ30

γ31


, (7.17)

which can be conveniently rewritten as:

mb = X Γ. (7.18)

Equation (7.18) can be solved with respect to the γ vector by means of the least square
algorithm. Necessary condition for the algorithm to work is that the regressors matrix rank
shall be greater or equal to the model parameters cardinality. Moreover, model regressors
are scaled to normal values to facilitate the elimination of unimportant terms during
the identification procedure. Under these conditions, the solution to the unconstrained
problem is given by:

Γ =
(
XT X

)−1
XT mb. (7.19)
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The data driven identification leads to the parametrisation in Table 7.1 where the
quasi static specific wear is of quadratic type against the temperature. The best fitting
of brake dynamometer data is achieved with a temperature dependent quasi static wear
coefficient (Ilmenau model) and constant speed and temperature dependent parameters
(Ilmenau extended).

Table 7.1: Parametrisation of the wear models.

Ilmenau Ilmenau ext. Unit
γ10 0.1016 0.1016 g/MJ
γ11 0 0 g/MJ/K
γ12 0.3984 10−6 0.3984 10−6 g/MJ/K2

γ20 0 0.4887 g/MW
γ21 0 0 g/MW/K
γ30 0 0 g s/MJ2

γ31 0 0.66 10−2 g s/(MJ2 K)

In accordance with the collected brake dynamometer data, the specific wear rate
has the shape reported in Figure 7.9. The extended wear model in Equation (7.13)
(Ilmenau extended) features a quadratic dependence against the disc temperature and a
non-linear dependence against the speed. The extended wear model suggests that due to
temperature increase during a braking occurrence, in accordance with the dynamics of
Equation (7.4), the expected wear rate can be up to two times larger than the quasi-static
variant under the same operating conditions. The extended wear model also shows that
higher braking intensities lead to increased wear formation. All these mechanisms cannot
be captured by the quasi-static model.

Figure 7.9: Specific wear rate dependence versus braking speed and disc temperature in accordance
with the extended wear model (Ilmenau extended) and its quasi-static variant (Ilmenau).

Figure 7.10 reports the model sensitivity against artificially injected errors in the
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BLCF and disc temperature estimates. The proposed models feature a quasi-linear
dependence against BLCF estimation errors. In the case of Ilmenau extended, the
sensitivity to BLCF estimation errors increases at higher operating brake temperature
values (Figure 7.10a). Moreover, a wrong brake disc temperature estimate has a negligible
effect on the quasi-static wear model and a temperature dependent impact on the extended
wear model (Figure 7.10b). This suggests that the quasi-static model variant might
be preferred to its extended version in case a reliable temperature estimate cannot be
provided. The results also imply that the extended wear model shall be selected whenever
the influence of large temperature variations on the wear rate are to be taken into account.

Figure 7.10: Wear model sensitivity against artificial errors injected in the BLCF estimate,
graph a), and in the estimated disc temperature, graph b). The results stem from a RDE-compliant
Ilmenau cycle.

7.5 Data reproducibility

The methodology schematically depicted in Figure 7.2 includes the analysis of the real
driving cycle and associated wear volume reproducibility on the brake dynamometer.
This analysis is mandatory to assess the feasibility of the proposed development method
and allows for the definition of the prognosis function estimation potentials. Among other
brake dynamometer control strategies, the deceleration based control between speed
levels showed superior performance both in terms of wear measurements reproducibility
and cycle to cycle repeatability. However, the brake dynamometer does not allow for
simulation of the driving resistant forces such as air drag and tyre rolling resistance. It is
therefore worth quantifying the impact that this might have on the wear measurements.
The dissipated energy associated with a generic j−th braking manoeuvre can be computed
in accordance with Equations (7.20) and (7.21) for the instrumented vehicle and brake

111



7.5. Data reproducibility

dynamometer, respectively:

E
(Road)
b,j =

∫ t0,j+∆t
(Road)
b,j

t0,j

T
(Road)
b,f ωf dt

= 1
2 Jf

(
ω2

f,in − ω2
f,end

)
+

−
∫ t0,j+∆t

(Road)
b,j

t0,j

(FL,drag,f rω,f +RL,f ) ωf dt,

(7.20)

E
(Dyno)
b,j =

∫ t0,j+∆t
(Dyno)
b,j

t0,j

T
(Dyno)
b,f ωf dt

= 1
2 Jf

(
ω2

f,in − ω2
f,end

)
−
∫ t0,j+∆t

(Dyno)
b,j

t0,j

TR ωf dt,

(7.21)

where, E(Road)
b,j and E(Dyno)

b,j represent the dissipated brake energy of the j− th manoeuvre
on the experimental vehicle and brake dynamometer, respectively; ∆tRoad and ∆tDyno is
the braking manoeuvre duration from road and dynamometer test, respectively; T (Road)

b,f

represents the estimated brake torque from on-road tests; T (Dyno)
b,f is the controlled

dynamometer brake torque that ensures reproducible deceleration manoeuvres as in
Figure 7.6; Jf is the equivalent vehicle inertia on a front wheel and TR represents the
sum of resistant torques on the brake dynamometer. By subtracting Equation (7.20)
from Equation (7.21) and dividing by Equation (7.21), the reproducibility error ∆Eb can
be represented as a function of the initial braking speed and deceleration intensity, as
per Figure 7.11.
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Figure 7.11: Energy reproducibility error due to neglected driving resistant forces.

Figure 7.11 shows that higher energy reproducibility error occurs under tests involving
high driving speed values and gentle braking applications. This result allows qualitatively
evaluating the expected reproducibility error with respect to RDE-compliant tests. In
accordance with the statistical analysis of Chapter 1, more than 80% of all braking appli-
cations are characterised by a deceleration lower than 2 m/s2. The energy reproducibility
error on the brake dynamometer and the different temperature dynamics account for
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different wear behaviours between on-road tests and dynamometer tests, as reported in
Figure 7.12.

Figure 7.12: Specific wear rate reproducibility on the brake dynamometer. The color represents
the specific wear dependence against the average disc temperature recorded during the driving
block.

After an initial transient, the linings stabilise around a repeatable wear rate value.
Particularly, the value recorded under dynamometer tests results 20% higher than the
corresponding on-road value as anticipated earlier. In accordance with Figure 7.6, the
increased dynamometer brake torque necessary to guarantee the same deceleration profile
recorded on-road in presence of resistant forces is responsible for the increased wear rate.

7.6 Results

In accordance with the flow chart of Figure 7.2, on-road wear measurements constitute
the validation data set. The brake wear models are identified and parametrised against
the data collected on the brake dynamometer. The model calibration shall account for the
offset in the specific wear rate between dynamometer and on-road tests. In this regard,
only one wear measurement point corresponding to a RDE-compliant Ilmenau cycle is
used to proportionally scale the models’ coefficients. It is worth noting that on-road tests
are conducted on public roads under varying traffic and environmental conditions. In
accordance with the schematic of Figure 7.1, the BLCF observer is switched off upon
reaching low deceleration values. The deactivation threshold complies with the results
of Chapter 4, namely 1.3 m/s2 for the front axle. Below this threshold, the previous
BLCF estimate is used to compute the applied brake torque at the wheel. The estimation
chain of Figure 7.1 also includes the brake disc lumped capacitance model, addressed in
Chapter 3. This latter is herein parametrised against data collected on the experimental
sedan to capture the brake disc temperature dynamics at varying driving speed. Technical
specifications of the employed experimental vehicle are reported in Appendix D.
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7.6.1 Brake temperature estimation

In the framework of this analysis, the tests performed under real driving conditions
involve wide temperature variations under different environmental conditions. It is
therefore important to guarantee that the lumped capacitance model parametrisation
ensures satisfactory estimation performance under the whole temperature range and in
presence of varying environmental conditions. Figure 7.13 graphically reports the lumped
capacitance model effectiveness for a front and rear brake of the sedan in Appendix D
with respect to a driving block involving a RDE-compliant Ilmenau cycle and a pure
motorway section.

Figure 7.13: Validation of the lumped brake temperature model with respect to a RDE compliant
Ilmenau and a motorway cycle featuring repeated braking applications. Graph a) reports the
vehicle speed, graphs b) and c) report the average front and rear disc temperature, respectively.

The results show that the lumped capacitance model maintains good estimation
performance along the whole driving cycle and for the whole range of temperatures. The
model is not affected by bias integration error being able to correctly track the measured
temperature until the very end of the driving block. Additional tests performed under
rainy conditions at high driving speed suggest that a new lumped model parametrisation
reveals necessary to account for the improved disc cooling due to rain (Figure 7.14).
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Figure 7.14: Validation of the lumped brake temperature model with respect to a motorway
cycle in presence of rain. Graph a) reports the vehicle speed, graphs b) and c) report the average
front and rear disc temperature, respectively.

Figure 7.15 reports two parametrisation for the brake disc cooling coefficient as a
function of the driving speed under dry and wet ambient conditions, respectively. The
resulting parametrisations confirm that at higher speed values the brake disc cooling due
to rain is enhanced. The performance of the newly parametrised lumped capacitance
model is reported in Figure 7.14. The temperature estimation scheme operates as to switch
from a parametrisation to the other when rain is detected. This can be easily achieved on
the vehicle by means of information provided by commonly used rain sensors. The results
demonstrate that the wet parametrisation features enhanced tracking performance, which
results in a drastic estimation error abatement.

Despite the large brake disc conductivity, thermographic analysis at Technische
Universität Ilmenau demonstrates that the local disc temperature during a braking ma-
noeuvre varies markedly across the radial disc direction [102]. Therefore, the temperature
sensed by the sliding thermocouple represents a local measurement that might lay far
from the actual temperature at the pad-disc interface. For this reason, provided that
the disc brake satisfies the requirements on the Biot number (refer to Chapter 3), the
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Figure 7.15: Parametrisation of the cooling coefficient in case of dry and wet conditions, for
front a) and rear brakes b), respectively.

lumped temperature model is to be deemed as an indicator of the pad-disc contact
temperature, whose parametrisation is directly dependent on the employed temperature
sensing technique.

7.6.2 Brake wear prediction

The brake dynamometer wear measurements lead to the model parametrisation provided
in Table 7.1. In this section, the models prediction capability with respect to wear data
resulting from approximately 30.000 km under real driving conditions is validated. The
employed brake pads feature a friction material thickness of 12 mm in new conditions
and a residual thickness of 3 mm upon replacement. It is worth remarking that the
residual pad thickness refers to the linings thickness without considering the backplate.
The results in Figure 7.16 show that the extended wear model of Equation (7.13) exhibits
improved fitting performance when compared to its quasi-static variant in Equation (7.14).
This translates into correlation coefficients of R2 = 0.988 for Ilmenau and R2 = 0.993 for
Ilmenau extended.

The slope between consecutive measurement points reflects the average wear rate
of a driving block. Different slopes are due to different driving conditions in terms
of average braking speed, applied brake pressure and brake temperature. Although
both models converge to a similar solution, the extended model shows better fitting
performance during the early stages of wear formation. As per Figure 7.10, the higher
temperature sensitivity of the extended Ilmenau model with respect to its quasi-static
variant motivates its superior wear tracking capabilities in presence of larger temperature
variations, which results in a higher correlation coefficient. The results demonstrate that
the model parametrised against brake dynamometer data predicts on-road brake wear
formation within 10% accuracy after 30.000 km under real driving conditions.
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Figure 7.16: Models prediction capability with respect to on-road linear wear data of a front
brake pad.

7.7 Chapter summary

A new in its kind design of experiment allows extracting meaningful information from
on-road brake wear measurements to fit a novel wear model. To ensure good measure-
ment repeatability, real driving cycles are reproduced on the brake dynamometer. The
developed deceleration based controller between speed levels ensures satisfactory energy
reproducibility. However, the driving resistance forces such as air drag and tyre rolling
forces are not emulated under laboratory tests and explain the offset between on-road
and brake dynamometer wear measurements. Thereafter, data collected on the brake
dynamometer drive the formulation of a brake wear model. The identification data set
is composed of eight driving blocks, each of which consisting of two or three identical
real driving cycles executed multiple times on the brake dynamometer, in accordance
with the minimum detectable wear volume requirements. The results demonstrate that
the models parametrised against brake dynamometer experimental data predict on-road
brake wear formation within 10% accuracy after 30.000 km under real driving conditions.
Based on the performed experiments, the prediction errors of Ilmenau extended and its
quasi-static variant are expected to lay below 15% by the end of the brake pad service
life.
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Chapter 8

A novel estimator of brake particle
emissions

8.1 Introduction

The growth of electric propulsion systems motivates the automotive industry to transfer
the focus from exhaust to non-exhaust emissions, with special attention to brake-related
emissions. The factors influencing the particulate formation are still not fully understood
but from recent experimental analysis carried on advanced laboratory equipment at
Technische Universität Ilmenau it is possible to state that: (i) particulate number,
particulate size distribution and the chemical compositions of the emitted brake dust
particulate are mainly dependent on the system temperature and the frictional power [12];
(ii) the particle number per brake event increases with increasing sliding speed [103]; (iii)
the brake pressure value does not directly impact the particle emission behaviour [104];
(iv) above a material-dependent critical temperature threshold between 170 − 200 ◦C,
the formation of ultra fine particles is favoured [103]; (v) the emission behaviour in ECE
linings with cast iron discs highly depends on thermal and mechanical treatments and
duration of the preconditioning [105].

In this chapter, the estimation of brake-related particulate emissions in real driving
conditions is addressed. This is done in the wake of the EU member States amendment
adopted on May 3rd, 2018, to Directive 2007/46/EC, Commission Regulation (EC) No
692/2008 and Commission Regulation (EU) 2017/1151, which introduced the real driving
emissions (RDE) tests as a mandatory part of the type-approval procedure for new
passenger cars and light-commercial vehicles in EU. Due to the high non-linearity and
stochasticity of the problem at hands, a novel meta-modelling approach based on artificial
neural networks (ANN) is adopted for the estimation of particle emissions. Particularly,
two network configurations are tested:

• static ANN, considers as input the average conditions during each braking;
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• dynamic ANN, also accounts for the input variables transient behaviour.

The functionality of the proposed ANN is demonstrated with respect to emissions data
collected from a light commercial vehicle (LCV) equipped with cast-iron brake discs and
copper-free ECE brake linings. Brake related particulate emission are acquired along the
RDE-compliant Ilmenau cycle by means of a portable emissions measurement system
(PEMS). As discussed in Chapter 1, the reference cycle takes place in the vicinity of
Ilmenau and includes 87 km of mixed urban, rural and motorway sections. The sampling
system is based on the mobile brake enclosure developed at Technische Universität
Ilmenau, whose effectiveness is demonstrated in [12]. More than 800 braking manoeuvres
collected under real driving conditions are used to train the ANN. The variability among
drivers and driving conditions is also accounted in this study.

8.2 Experimental methodology

The measurement of emitted brake dust particulate under real driving conditions is
complex due to external, continuously changing factors (e.g. flow conditions, driving
dynamics, fine dust particulate from other sources). At present, there is still no stan-
dardised testing protocol and/or measurement method. Common procedures for the
characterisation of brake emissions factors generally draw upon receptor modelling that
associates brake particulate to a range of sources that are easy to measure [106, 107].
Nevertheless, studies conducted in the past few years involve direct measurement of
brake particles under controlled laboratory conditions, which require the use of more
sophisticated sensors [108, 17]. In [109], the authors argue that the test reproducibility
represents a critical factor ascribable to the employed test procedure, pad soak, environ-
mental conditions, calliper residual torque and temperature control. In [17], it is instead
demonstrated that the cycle-to-cycle repeatability is affected by the progressive wear of
the brake pad-disc couple, whereby the variability tends to become lower for successive
manoeuvres. The authors also concluded that the repeatability of the brake particulate
measurements at disc temperature above 200◦C is questionable owing to the formation
of unstable friction layer. In [110], the authors conduct measurements of brake-related
particulate emissions produced by a LCV on a chassis dynamometer. Although the
experimental arrangement is very similar to a RDE-type test, the performed braking
manoeuvres are not representative of real driving conditions and the particulate sampling
system is of open type, which does not ensure good measurement repeatability [12].

In this work, on-road tests carried out on a LCV equipped with PEMS allow investi-
gating driver’s influence on brake-related emissions under different driving conditions.
The LCV specifications and measurement setup are reported in Appendix D. The drive
cycles reproducibility under RDE conditions is discussed in [12] where a good correlation
between RDE and laboratory results is quantitatively demonstrated. A training data set
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is back-propagated for the identification of static and dynamic networks architectures.
ANN represent a flexible modelling framework, which enables the continuous training of
the model parameters when new data are available. ANN can predict with satisfactory
accuracy the effect of braking conditions on tribological performance, provided that
a demanding experimental campaign is a justified mean. It is worth remarking that
although brake-related emissions may also occur during vehicle accelerations [110], they
are not accounted in the present study.

8.3 Measurement equipment

The LCV equipped with PEMS allows for measurements of brake-related particulate
number concentration (PNC). A schematic of the test setup is reported in Figure 8.1.
The particulate emitted by the front-right brake system is evacuated by means of the
closed CVS-sampling system engineered and developed at Technische Universität Ilmenau
[12]. The vacuum created by a blower leads the emitted brake particulate through
the measurement tunnel to the external environment. Samples are extracted from
the measurement tunnel using an isokinetic probe compliant to EN 13284-1. At the
outlet of the sample probe, the PEMS-PN MAHA-AIP measures particulate number
concentrations (PNC) in the range 23 nm to 2.5 µm. Although designed for tailpipe
emissions, the measurement device is retrofitted to assess brake-related particle emissions.
The measurement principle is based on particulate condensation counting (CPC) [12].
The brakes are equipped with sliding thermocouples and pressure sensors. The vehicle is
also provided with the RaceLogic VBoX to log relevant kinematics quantities such as
vehicle speed and acceleration. The developed setup allows analysing the influence of
driver, traffic, driving conditions and environment on the emissions level. Relevant vehicle
and brake state variables such as vehicle speed, vehicle acceleration, brake temperature
and brake pressure are sampled at 10 Hz, whilst PEMS samples PNC at 1 Hz. The
measurement system provides the particulate number concentration, expressed as number
of particulate per cubic centimetre, in correspondence of the probed point. Knowing the
volumetric flow rate of the sampling system, and supposing the PNC uniform across the
tunnel section in the sampling point, the absolute number of emitted particulate PN
during a braking manoeuvre can be computed. For a matter of convenience, a logarithmic
transformation is adopted for each j − th brake application to conduct a sensitivity
analysis across the data. This leads to an adimensional quantity, herein referred to as
emission factor (EF).

EFj [/] = log
[∫ t0,j+∆tb,j

t0,j

PN(t) dt
]
. (8.1)

Table 8.1 reports the most relevant features for the RDE-compliant Ilmenau cycles
considered in the present study. The second and third column of the table report the
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Figure 8.1: Depiction of the LCV used for RDE-compliant brake particulate emission tests.
The front-right wheel is equipped with evacuation box (in orange). The particulate is evacuated
and sampled by the probe. PN PEMS counts the particulate and determines their concentration
for a specific evacuated air volume. The air filter ensures that fresh air accesses the evacuation
system.

deceleration mean and standard deviation, respectively; the fourth column reports the
total number of braking events for the specific trip; the fifth and sixth column report
the total fiction energy and the emitted particulate per driven km with respect to the
front-right brake. It is worth noting that the trip-to-trip variability depends on many
factors ranging from the driving style to the traffic conditions. Overall, the performed
cycles account for more than 800 braking events. A sensitivity analysis allows for the
identification of the relative importance of the control variables with respect to the
number of emitted particles. The collected data are organised so that Trip 1 to Trip 7
are used to train and validate the proposed meta-models, whilst Trip 8 is used to test
their prediction performance under RDE-compliant driving conditions. For the sake of
clarity, the particle number concentration measured by PEMS in the partial volume flow
is referred to as PNC, whilst the overall emitted brake particle number per unit time or
per brake application is referred to as PN. The overall emitted brake particle number
per driven km is instead referred to as ΣPN .
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Table 8.1: Dataset used for the model identification (green) and testing (blue). Brake
energy and ΣPN refer to the front-right corner.

Trip # āx

[m/s2]
var(ax)
[m/s2] N. brake applications Eb

[MJ ]
ΣPN

[#/km]
Trip 1 1.18 0.35 78 2.13 2.67 · 109

Trip 2 0.91 0.42 112 5.63 2.04 · 109

Trip 3 0.92 0.41 110 5.59 1.57 · 109

Trip 4 0.97 0.43 82 2.80 0.45 · 109

Trip 5 1.07 0.49 121 4.75 3.17 · 109

Trip 6 0.97 0.44 84 2.75 3.32 · 109

Trip 7 0.99 0.39 86 3.49 3.00 · 109

Trip 8 1.21 0.44 102 4.41 2.77 · 109

8.4 Data pre-processing

As demonstrated in [12], the used RDE measurement equipment features a good cycle-to-
cycle repeatability and satisfactory reproducibility when compared to laboratory test data.
However, given the installation position of the evacuation box, PEMS is more sensitive
to background particulate concentration (BGC). Therefore, before proceeding with the
feature extraction of the driving cycles, BGC is estimated from PEMS measurements by
considering the lowest emission level when cruising. BGC is thus mapped against the
vehicle speed, leading to the results of Figure 8.2. The reported particle concentration
numbers refer to the PEMS measured value in the partial flow.

Figure 8.2: Background concentration when cruising and its linear mapping against the vehicle
speed. PNC refers to the particle concentration number in the partial volume flow.

Afterwards, the raw data are reduced in dimensionality by extracting meaningful
information during braking manoeuvres. Figure 8.3 reports an example of braking
features extraction from one of the recorded RDE cycle. For a matter of clarity, the
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variables of interest are underlined in orange during braking occurrence. The numbering
refers to j − th braking manoeuvre and the black markers refer to the corresponding
average quantity. The feature extraction is limited to the deceleration manoeuvres, whilst
brake-related emissions might also occur during acceleration manoeuvres due to the
release of deposited particulate [110].

Figure 8.3: Example of data feature extraction from one trip. Braking manoeuvres are marked
in orange; the black cross symbols represent average quantities. Graph a) reports the vehicle speed;
b) brake pressure; c) estimated brake torque; d) disc temperature; e) PNC from PEMS partial
flow. Data refer to the front-right corner.

A scheme of the data pre-processing procedure is reported in Figure 8.4. In the case of
static ANN, the input variables are condensed into stationary quantities, characteristics for
the specific brake application. Hence, the average brake torque, the initial braking speed,
the final braking speed, the average disc temperature and the brake duration are computed
for each brake application. In the case of dynamic ANN, the braking manoeuvres are
allocated to an array of fixed length. This step is referred to as sequencing. The length of
this array has been chosen based on the longest braking manoeuvre registered along the
RDE cycles. All other manoeuvres, being characterised by a shorter duration, are scaled
accordingly. The duration of a j − th braking is also provided as input to the network.
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The training is performed upon scaling input and output down to the same range. This
step is necessary to ensure even importance among braking manoeuvres. Thereafter,
the resampling takes place based on the assumption that all braking manoeuvres are
uniformly distributed. This step is fundamental to prevent the model from over-fitting
braking manoeuvres with higher occurrence rates.

Figure 8.4: Flow diagram of data preprocessing to train and validate the proposed ANN.
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8.5 Data analysis

Previous literature instances propose look-up-tables to capture the characteristic emission
behaviour of a brake system [111]. Particularly, in [38] the author shows that PNC
correlates well with disc sliding velocity and applied normal pressure. By adopting
the same representation criterion, a two-sigma benchmark can be performed across the
collected experimental data leading to the results in Figure 8.5. It is worth noting that a
two-sigma analysis requires the PNC to be normally distributed.

Figure 8.5: Two-sigma benchmark of PEMS measured PNC in the partial flow (red dots) . The
interpolating surface identifies the expected emission level for a specific braking condition, whilst
the black bars identify two-sigma values (95%).

The results confirm that initial braking speed and average brake pressure well correlate
with PNC only in the area of more severe braking manoeuvres. This suggests that a simple
map-based approach, as proposed in [38], might not perform accurately in the case of
more gentle braking manoeuvres, which account for more than 80% of the RDE-compliant
driving cycle (see Chapter 1). This result also suggests that other input variables must
be considered to reduce the prediction error and increase the variance accounted for.

A sensitivity analysis conducted across the experimental data shows that initial speed
(vx,in) and brake duration (∆tb) strongly correlated with EF (Figure 8.6). Expectedly,
the friction energy (Eb) also exhibits a remarked correlation being it proportional to
the product of the applied brake torque (Tb), the disc rotational speed and braking
duration. The Spearman coefficients are reported in Figure 8.6 where data are equally
scaled for ease of representation. Although brake torque and disc temperature show
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a weak Spearman correlation with EF, their combined effect might still play a role in
determining its value and are therefore considered in the ANN regression. To this effect,
compared with conventional map-based approaches, ANN represent a promising solution
as they are designed to handle multi-input single-output problems. Depending on the
type of ANN, namely static or dynamic, the input can be provided in a stationary or
dynamic fashion, as later reported.

Figure 8.6: Spearman correlation matrix among the variable under analysis. On the diagonal,
the histograms of the main variables under analysis.

8.6 Artificial neural networks

Upon performing the data pre-processing in accordance with the above mentioned
procedure, the proposed ANN can be trained. For the sake of clarity, a qualitative repre-
sentation of the proposed ANN is reported in Figure 8.7 where neurons are represented
by yellow nodes, whilst input and output are reported in the violet boxes. Both ANN are
fully connected, that is, each layer communicate with the previous and following ones.

Although static and dynamic ANN feature similar structures, they differ in the way
input data are provided. The static ANN is fed with the quasi-static inputs reported
under the bar symbol in Figure 8.7. The index j corresponds to the j − th brake
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8.6. Artificial neural networks

Figure 8.7: Qualitative representation of the ANN proposed in this study. On the left, the
static ANN; on the right, the dynamic ANN.

application. In this scenario, the set of stationary inputs is as follows:
[
ū

(1)
j , ū

(2)
j , ū

(3)
j , ū

(4)
j , ū

(5)
j

]
=
[
vx,inj , vx,endj

, T̄bj
, τ̄j ,∆tbj

]
, (8.2)

In the case of dynamic ANN, dynamic inputs must be provided in a discrete form.
The time varying input are included as set of arrays of fixed length. With reference
to a generic j − th brake application, each time element k − th of the input variables
array counts as a separate input. The input variable array length is set by the longest
braking manoeuvre. All other manoeuvres are scaled accordingly in order to fill the
vector elements. To account for the dynamics of the generic braking manoeuvre, the
brake duration is included as last input. Expectedly, given the higher amount of input
variables, a dynamic ANN lead to a higher parameter cardinality and, thus, increased
computational burden. The input vector for the dynamic ANN is defined as follows:[

u
(1)
k,j , u

(1)
k+1,j , ..., u

(2)
k,j , u

(2)
k+1,j , ..., u

(3)
k,j , u

(3)
k+1,j , ..., u

(4)
j

]
=

=
[
vxk,j , vxk+1,j

, ..., Tbk,j
, Tbk+1,j

, ..., τk,j , τk+1,j , ...,∆tb,j

]
,

(8.3)

In both cases, the output represents the stationary brake-related particulate number
emitted upon completing the j − th brake application, i.e.:

yj = EFj = log10

[∫ t0,j+∆tb,j

t0,j

PN(t) dt
]
, (8.4)
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The problem at hands is an example of supervised learning. The networks weights
and biases are identified by means of the back-propagation algorithm (please, refer to
Chapter 2).

8.7 Results and discussion

The functionality of the proposed meta-models is herein assessed by comparing the
model responses and the experimental data with respect to trip 8. Moreover, ANN are
benchmarked against the look-up-table proposed in [38]. Herein, this latter is referred
to as LUT (look-up-table) and has the form reported in Figure 8.5 where the emitted
particles number pro braking application is related to the initial braking speed and
average brake pressure. The results reported in Figure 8.8 show that all models exhibit
very good correlation with the target values. Nevertheless, ANN feature a much higher
correlation coefficient when compared to the map-based approach. As discussed in the
previous sections, the inputs used in [38] are not sufficient to render the brake-related
emissions under all operating conditions. The PN prediction error per driven km, with
respect to Trip 8, is reported in Table 8.2.

Figure 8.8: ANN and LUT test results compare the measured and predicted PN per braking
manoeuvre. PN refers to the global evacuated flow through the measurement tunnel per brake
application.

The proposed methods are evaluated by means of the performance indexes of Table 8.3.
The training time is defined as the time required to perform ANN training on the used
host PC. Space in memory relates to the number of parameters stored on the hardware
and necessary to implement the estimation method. This index also affects the real time
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Table 8.2: Overall ΣPN prediction error, Trip 8.

Target Static ANN Dynamic ANN LUT

2.77 · 1e9 [#/km] 2.52 · 1e9 [#/km]
(−9.07%)

2.66 · 1e9 [#/km]
(−3.95%)

1.86 · 1e9 [#/km]
(−32.68%)

capability of the method. The average EF prediction error is computed by means of the
nRMSE. EF refers to the target and ÊF to the model response. The j index ranges
among Nb braking applications characterising Trip 8. The cumulate PN prediction error
relates to the model capability of correctly predicting the emitted PN with respect to
the whole driving cycle. PN refers to the target and ˆPN to the models response. At
last, the variance accounted for (VAF) reflects the model capability of explaining the
variance in the target signal. If the residual VAF is close to one, the model exhibits a
high correlation with experimental data.

Table 8.3: Key performance indexes used to evaluate models performance.

KPI Definition

Training time Time required to complete ANN training
(Not defined for LUT-based method)

Space in memory Number of stored parameters

Average EF prediction error nRMSE =

√
1

Nb

∑Nb
j=1(EFj−ÊF j)2

1
Nb

∑Nb
j=1 EFj

Cumulate PN prediction error ∆ΣPN = 1 −
∑Nb

j=1
ˆPN j/

∑Nb
j=1 PNj

Variance accounted for V AF = 1 − var
(
PN − ˆPN

)
/var(PN)

For the sake of clarity, the benchmark results are graphically reported in Figure 8.9.
The time dependence of dynamic ANN explains the low cumulated error, as reported
in Table 8.2. Moreover, because of dynamic ANN capability of following transient
manoeuvres, it also exhibits a higher VAF index. However, compared to static ANN,
dynamic ANN requires a much larger number of parameters to be stored in memory,
which negatively affects its real-time capability. As anticipated in the previous sections,
the map-based approach accounts only partially for the variance in the brake-related
emissions (low VAF index). The map-based approach requires limited space in memory to
the detriment of prediction error. The results suggest that a static ANN complies criteria
of error minimisation and computational burden. In consideration of its satisfactory
PN prediction performance, static ANN are indicated as the optimal solution for the
estimation of brake-related particle emissions.

The method based on ANN correlates well with the experimental data; however,
it might not well reproduce the emissions behaviour when the actual brake operating
conditions are far from the investigated ones. Moreover, ANN are purely black box,
therefore they are not able to describe the actual phenomenology of the tribological
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Figure 8.9: ANN benchmark analysis with respect to the defined KPIs.

contact. Hence, although the propose approach can reproduce the effect of brake-related
particulate emissions, it is not capable of describing its causes.

The concept of brake particle emissions estimation lays the groundwork for a control
method aimed at reducing brake wear emissions. Depending on the traffic situation,
the driver’s deceleration request and the vehicle actuators status, the control method
may enable wear-optimised deceleration manoeuvres. Such a procedure is especially
suitable for vehicles that allow semi-autonomous or autonomous driving and where
situation-dependent driving decisions have to be implemented with safety prioritisation
but with minimization of fine dust emissions. In the first instance, a clear reduction of
brake particle emissions can be achieved by limiting the friction brake power through
more frequent intervention of the electric motors. In the second instance, the brake
force distribution between the front and rear axles could be adjusted so as to avoid
critical temperature levels that cause a significant increase in the amount of fine dust
emissions. In the third instance, semi-autonomous and autonomous vehicles equipped
with environmental sensors may guarantee a more conservative driving style by limiting
the vehicle deceleration intensity when cruising with simultaneous fulfilment of the vehicle
safety requirements.

8.8 Chapter summary

In this chapter artificial neural networks are deployed to predict the brake-related
particulate emissions under RDE-compliant driving conditions. To this effect, the model
identification is performed on data collected from a light commercial vehicle equipped
with a portable emissions measurement system at Technische Universität Ilmenau. Two
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neural networks are benchmarked against the state-of-the-art approach based on look-
up-table. The most promising solution is found under criteria of error minimisation
and computational burden. The results are graphically presented and supported by
performance indexes and indicate that static neural networks comply both criteria of error
minimisation and variance accounted for by simultaneously guaranteeing an acceptable
computational burden.

The results also suggest that there is a clear reduction potential in brake-related
emissions. Limiting the friction brake power by blending with electric motors and
minimising the brake intervention time may result in a clear reduction of brake-related
particle emissions. The optimal control is to be regarded as a compromise between
fulfilling the driver’s request and reducing brake-related emissions. Such a method
reveals especially suitable for vehicles equipped with environmental sensors, which enable
semi-autonomous or autonomous driving and where driving situation-dependent decisions
could be implemented without compromising vehicle safety.
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Chapter 9

Discussion and Conclusion

Novel control and estimation solutions for low-emission multi-actuated ground vehicles
serve to improve braking performance and monitor brake-related wear and particle
emissions. Unexpected disturbances induced by variations in the brake lining coefficient
of friction can lead to unpredictable vehicle behaviour and deterioration of the braking
performance and vehicle safety. The knowledge of the brake lining coefficient of friction
plays a crucial role in the performance of base brake control algorithms since large
deviations in its actual value from the reference value employed in the controller may
lead to undesirable deterioration of the brake control functions. Experiments performed
on the proving ground shows that a decaying brake lining coefficient of friction causes a
reduced brake effectiveness. As a consequence, the driver needs to increase the brake
pedal displacement to achieve the same deceleration level. Existing brake lining coefficient
of friction estimation approaches are not validated under real driving conditions and
imply high costs for their identification. Moreover, existing approaches completely
fail if the operating conditions lay far from the identification data set or when the
plant characteristics change due to replacement of system components with aftermarket
products. For these reasons, this work proposes a novel brake lining coefficient of friction
observer, real time capable and robust against external disturbances. Achieving this
goal brings up interdisciplinary methods ranging among advancements in numerical
modelling and simulation tools, and application of innovative experimental and sensors
fusion techniques.

Under the framework of this research, the development of control and estimation
functions is supported by model-, software- and hardware-in-the-loop techniques enhanced
by means of a novel brake friction coefficient model resulting from a collaboration between
Technische Universität Ilmenau (Ilmena, Germany) and Volvo Cars (Göteborg, Sweden).
A full factorial design of experiments on the brake dynamometer at Volvo Cars leads to a
dynamic brake model that outperforms state-of-the-art solutions. To prove its robustness,
the model is identified and validated on three different brake systems composed of cast
iron discs and ECE brake linings. The model also includes an enhanced version of the

132



well-known disc brake lumped temperature model. The proposed model is capable of
extrapolating the dynamics of the brake lining coefficient of friction in correspondence
of large braking temperatures where state-of-the-art approaches fail. The integration
of this latter in the IPG CarMaker® software ensures reliable and more realistic vehicle
dynamics simulations.

The sought brake lining friction coefficient observer is developed under model- and
software-in-the-loop environments. The proposed non-linear Kalman observer demon-
strates that a reliable brake friction coefficient estimate can be either obtained by
measuring the longitudinal tyre forces or by using a cost-effective virtual sensor of longi-
tudinal tyre forces. The state-space formulation associated with the observer stems from
the quarter-car model and the linear tyre model with relaxation length. The observability
and robustness of the brake lining friction coefficient observer is demonstrated under
different operating conditions and in presence of artificially injected faults. The results
show that lower estimation errors result from larger deceleration requests and, due to
typical brake force allocation strategies, a greater estimation accuracy is achieved on
the front axle. The estimation based on longitudinal tyre force virtual sensing achieves
5% accuracy on the front axle and 10% accuracy on the rear axle for a deceleration
request of approximately 4m/s2. Below this deceleration threshold, the observer based
on longitudinal tyre forces virtual sensing slowly decays on the front axle up to 17%
error, whilst it is switched off on the rear axle and the previous brake lining coefficient of
friction estimate is provided. In accordance with the identified activation thresholds for
the front and rear axles, the observer exhibits superior performance when compared to
the case where a constant estimate of the brake lining coefficient of friction, equal to its
nominal value, is used.

Thereafter, the brake lining coefficient of friction compensation function is imple-
mented and verified on the brake-by-wire hardware-in-the-loop platform at Technische
Universität Ilmenau. The compensation algorithm updates the brake lining coefficient of
friction estimated value in the brake-by-wire controller, ensuring that the brake system
always provides the desired feedback to the driver. The experiments demonstrate that the
proposed observer based on longitudinal tyre force virtual sensing shall be enhanced with
a non-linear tyre model in case of excessive wheel slip. The functionality of the compensa-
tion method is demonstrated under different operating conditions, also including blended
braking with electric motors. The proposed observer features satisfactory estimation
performance in case of repeated brake actuations. Hardware-in-the-loop verification
results demonstrate that higher blending factors go to the detriment of the brake lining
friction coefficient estimation accuracy. Nonetheless, the brake lining coefficient of friction
compensation function improves the reference deceleration tracking performance under
all brake blending conditions by simultaneously reducing the driver’s workload on the
brake pedal.

The developed observer is then validated on the full electric sport utility vehicle
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provided by Flander’s Make. Three test sessions carried out on the Ford’s Lommel
(Lommel, Belgium) proving ground allows for the observer tuning and validation under
fixed pedal braking and constant deceleration braking. Genetic algorithms lead to a
suboptimal observer with an estimation performance increased by 50% if compared to
the manually tuned variant. The observer robustness against large brake temperature
variations is proved by means of a fade test where consecutive full-stop braking manoeuvres
are performed. Under all operating conditions, the observer features an estimation
accuracy consistent with the model-, simulation- and hardware-in-the-loop results.

The availability of a brake lining coefficient of friction estimate enables advanced
estimation functions for brake-related wear and particle emissions. Extensive measurement
campaigns carried out on the brake dynamometer at Technische Universität Ilmenau
lead to a data driven brake wear model. Particularly, two formulations are proposed: the
quasi-static wear model and its extended version, which takes into account temperature
and speed variations during braking occurrence. Despite evident difficulties in mining
brake wear data, a complex design of experiments allows capturing the influence that
brake control and state variables have on the wear formation process. A proper control of
the brake dynamometer based on real driving data collected from a sports sedan allows
good reproducibility and superior cycle-to-cycle repeatability. The functionality of the
novel brake wear models is validated with respect to on-road wear measurements resulting
from approximately 30.000 km under real driving conditions. The results suggest that
the wear prognosis function can predict the brake pad wear with 15% accuracy by the
end of its service life.

Finally, a particle emissions measurement system typically used for tail pipe emissions
is retrofitted on a light commercial vehicle to assess brake-related particle emissions
under real driving conditions. Real driving emissions data resulting from more than 800
braking manoeuvres are employed to define a correlation between relevant brake control
variables and the number of emitted brake particles. Due to the high non-linearity and
stochasticity of the brake particle formation mechanisms, complex regression models
based on artificial neural networks are devised. Particularly, two fully-connected neural
architectures are proposed, namely static and dynamic, which differ in the way input
data are provided. The proposed regression models exhibit superior performance when
compared to state-of-the-art approaches, being able to predict the overall number of
emitted particles per driven km with 10% accuracy for the static architecture and 4%
for the dynamic architecture. Nonetheless, the results suggest that a static neural
network might be preferred as it complies both criteria of error minimisation and reduced
computational burden. The developed brake wear and particle emissions monitoring
functions could be applied as a basis for motion control algorithms in semi-autonomous
and autonomous vehicles aimed at abating non-exhaust emissions.

The research objectives are thereby accomplished and the following conclusions can
be drawn:
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• the novel brake model allows for enhanced simulation fidelity of model-, software-
and hardware-in-the-loop frameworks by inclusion of the pad-disc contact dynamics;

• the proposed controller of brake-by-wire architectures compensates for variations
in the brake lining coefficient of friction, also in presence of blended actuation with
electric motors;

• a reliable and robust brake lining coefficient of friction estimate enables advanced
monitoring functions of brake-related wear and particle emissions;

• the enhanced version of the lumped capacitance model, which accounts for vehicle
speed and environmental conditions, is required for brake-related wear monitoring
functions;

• meta-modelling techniques such as neural networks are necessary to account for
the high non-linearity and stochasticity of the brake particle formation process.

Outlook

By pursuing control and estimation solutions for brake systems, important issues such
as states observability, virtual sensing techniques and data-driven models are addressed
in this thesis. The feasibility and functionality of a real-time, on-board estimation of
the brake lining coefficient of friction is demonstrated. Despite the innovative contri-
butions to the tribology and control communities, the author acknowledges that the
proposed solutions may require further investigations. The following list provides the
main recommendations that complement this research.

• Enhanced control functionality in decoupled brake architectures of electric vehicles.
The proposed compensation function can be integrated with already existing brake-
by-wire systems to enhance braking performance in presence of blended operation
with electric motors. A proper experimental validation of the compensation function
shall be carried out under real driving situations on a large fleet of vehicles with
decoupled brake architectures. Among others, the effect of the compensation
function on the driving experience shall be quantified.

• Improvement of the brake temperature measurements. The lumped capacitance
model is identified with respect to temperature data provided by a sliding thermo-
couple. Despite the large brake disc conductivity, the temperature profile in the
brake discs can exhibit high spatial non-uniformity. This can bring limitations to
commonly used sliding thermocouples. Therefore, alternative temperature sensing
techniques (e.g. pyrometer remote temperature sensing) shall be investigated and
their influence on the lumped model estimation performance quantified.
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• Improvement of the brake particle emissions estimator. Numerous studies addressing
the health impact of brake-related particle emissions argue that deeper attention
shall be paid to particle mass rather than particle number, also under a regulatory
point of view. Without loss of generality, the proposed artificial neural networks
can be upgraded to account for brake particle mass emissions in addition to the
number of emitted particles.

• Development of a control method for reduced brake wear. From an application
perspective, numerous solutions to reduce brake-related emissions are possible.
In addition to brake blending, a more conservative driving style, reduced brake
intervention when cruising, variable brake force distribution between axles and mit-
igation of brake temperature peaks are factors contributing to emissions reduction.
A motion control algorithm for semi-autonomous and autonomous vehicle shall
include the previously mentioned mechanisms to enable wear-optimised deceleration
control with simultaneous fulfilment of safety requirements.
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Appendix A

MIL/SIL/HIL simulation frameworks

A.1 Full electric vehicle model

The experimentally validated model of full electric SUV is simulated under the proprietary
software IPG CarMaker®. Its experimental validation has been carried out under the
framework of E-VECTOORC Project (Seventh Framework Programme 284708). For the
interested readers, the validation results can be found at [112]. Additional subsystems such
as the brakes, electric motors and the brake hydraulic circuit, are modelled as external
Simulink® blocks, directly interfaced with the IPG CarMaker®. Although the proprietary
IPG CarMaker® vehicle model features more than 14-DoF, here it is worth reporting,
without loss of generality, the vehicle dynamics laws relevant to the MIL/SIL/HIL
simulations of the present study. The two-track model represents a simplified problem,
which has been used in several applications ranging from state estimation to vehicle
control [85, 81]. A schematic of the 14-DoF two-track model is reported in Figure A.1.
This model considers the longitudinal, lateral, vertical, pitch, roll and yaw dynamics of
the vehicle body, together whith vertical and rotational dynamics of the wheels.

This simplified model describes the relative motion of sprung and unsprung mass.
The unsprung part includes the suspensions, wheels, brakes and suspension knuckles.
The sprung part is fundamentally composed of all the components supported by the
suspensions, such as the vehicle body, internal components, passengers and load. Due
to the absence of an accurate brake model in the IPG CarMaker® vehicle dynamics
simulator, particular attention has been put to its development and integration for
simulation purposes. More details can be found in Chapter 3.

A.1.1 Vehicle planar dynamics

For a clear understanding of the basic vehicle dynamics laws, it is worth starting from the
planar dynamics. This represent a reduced order problem of 7-DoF, which is obtained by
projecting the 14-DoF dynamics (Figure A.1) into the vehicle plane of motion. It reveals
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A.1. Full electric vehicle model

Figure A.1: 14-DoF vehicle model identifies the vehicle dynamics states relevant to this study.

particularly suitable for the analysis of braking, acceleration and handling manoeuvres
in case of non-critical driving situations where pitch and roll dynamics are confined to
small displacements. The resulting problem is conveniently depicted in Figure A.2.

The side-slip at the vehicle center of gravity β is the angle between the velocity vector
vCoG (direction of travel) and the vehicle longitudinal axis. The yaw rate ψ̇ is the angular
velocity of the vehicle about its vertical axis, with Izz being the yaw moment of inertia.
The longitudinal and lateral velocity vectors are referred to as vx and vy, respectively.
The simplified two-track model for planar motion is formulated by the following set of
Equations (A.1a) to (A.1c):

v̇x = 1
mv

[(FLfl + FLfr)cosδ − (FSfl + FSfr)sinδ

+(FLrl + FLrr) + ψ̇vy − FX,drag

] ,

v̇y = 1
mv

[(FSfl + FSfr)cosδ + (FLfl + FLfr)sinδ

+(FSrl + FSrr) − ψ̇vx + FY,drag

] ,

ψ̈ = 1
Izz

[lf (FLfl + FLfr)sinδ − lr(FSrl + FSrr) + lf (FSfl + FSfr)cosδ

+ b

2(FLfr − FLfl)cosδ + b

2(FLrr − FLrl) + b

2(FSfl − FSfr)sinδ
] ,

(A.1a)

(A.1b)

(A.1c)

where, the total vehicle mass mv represents the sum of the vehicle body (sprung) ms

and wheel corner (unsprung) mus masses; FX,drag and FY,drag are the aerodynamic drag
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Figure A.2: Two-track 7-DoF vehicle model.

forces in the longitudinal and lateral directions, respectively.
The tyre side slip angles αij can be computed from Equations (A.2a) to (A.2d):

αfl = δ − arctan
[
vy + lf ψ̇

vx − ψ̇b/2

]
,

αfr = δ − arctan
[
vy + lf ψ̇

vx + ψ̇b/2

]
,

αrl = − arctan
[
vy − lf ψ̇

vx − ψ̇b/2

]
,

αrr = − arctan
[
vy − lf ψ̇

vx + ψ̇b/2

]
.

(A.2a)

(A.2b)

(A.2c)

(A.2d)

This model also includes the rotational wheel dynamics, yielding the 7-DoF vehicle
model. The wheel dynamics must be taken into account to enable the tyre-road interaction.
In general, the tyre feature a rotational inertia of around 1 − 2 kgm2, which makes its
dynamics not negligible, especially for manoeuvres involving fast dynamics.

The four wheel rotational speeds are therefore included as additional dynamics
according to Equation (A.3):

ω̇ij = 1
Iω

(Tω,ij − FL,ij rω,ij −RL,ij) , (A.3)
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ijwT
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Figure A.3: Wheel dynamics where the i-th index refers to one wheel.

where,

rω,ij =
sin

[
arccos

(
1 − FZ,ij

r0,ij KZ,ij

)]
arccos

(
1 − FZ,ij

r0,ij KZ,ij

) . (A.4)

It is worth noting that the frictional forces are defined in the wheel reference frame. The
effective tyre radius rω,ij relates the angular velocity of the wheel to its linear longitudinal
velocity and differs from the undeformed tyre radius r0,ij . Equation (A.4) stems from
geometrical consideration on the wheel kinematics and is relevant to the estimation of
the tyre longitudinal slip. The effective rolling radius takes into account the vertical tyre
deformation equal to the wheel ground contact force FZ,ij divided by the tyre vertical
stiffness KZ,ij . Using the the vehicle kinematics, the translational velocity of each wheel
hub in the rolling direction can be derived through Equations (A.5a) to (A.5d):

vL,fl = vfl cosαfl =
(
vx − ψ̇b

2

)
cos δ +

(
vy + ψ̇lf

)
sin δ,

vL,fr = vfr cosαfr =
(
vx + ψ̇b

2

)
cos δ +

(
vy + ψ̇lf

)
sin δ,

vL,rl = vrl cosαrl = vx − ψ̇b

2 ,

vL,rr = vrr cosαrr = vx + ψ̇b

2 .

(A.5a)

(A.5b)

(A.5c)

(A.5d)

The previous equations allow defining the longitudinal wheel slip ratio λij , computed as
the difference between the wheel rotational velocity and the wheel translational velocity
in the rolling direction:

λij = rω,ij ωij − vL,ij

max(rω,ij ωij , vL,ij) (A.6)
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A.1.2 Vehicle vertical dynamics

During normal driving situations, the vertical forces acting on the wheels are a composition
of the sprung weight and inertial forces acting on the suspension strut. During acceleration,
braking and cornering, the vehicle body undergoes sensible translational and rotational
displacements, known as heave zs, pitch θ and roll ϕ. Road unevenness might affect
the unsprung mass vertical position through the stiffness and damping characteristics
of the tyre. In the schematics of Figure A.1, it is worth noticing that the suspensions
are modelled as spring-damper connections between the sprung and unsprung masses,
whilst the tyre rubber is modelled as a pure elastic component (with negligible damping).
The suspensions reaction forces, herein referred to as FV ij , and the tyre vertical ground
forces FZij determine the unsprung mass vertical dynamics. The road hight is herein
referred to as zr,ij ; however, its modelling is not directly accounted in this work. The
equations describing the additional dynamics are Equations (A.7a) to (A.7d):

v̇z = 1
ms

[msg − FV,fl − FV,fr − FV,rl − FV,rr] ,

θ̈ = 1
Iyy

[hf (FL,fl + FL,fr) cos δ + hf (FS,fl + FS,fr) sin δ

−hr(FL,rl + FL,rr) − lf (FS,fl + FS,fr) + lr(FS,rl + FS,rr)] ,

ϕ̈ = 1
Ixx

[hf (FS,fl − FS,fr) sin δ + hf (FL,fr − FL,fl) cos δ

−hr(FL,rr − FL,rl) − b

2(FS,fr + FS,rr) + b

2(FS,fl + FS,rl)
]
,

z̈us,ij = 1
mus,ij

[−FV,ij + FZ,ij ] ,

(A.7a)

(A.7b)

(A.7c)

(A.7d)

where, the tyre vertical ground force follows:

FZij = −kt,ij (zus,ij − zr,ij) . (A.8)

The suspension reaction forces consider the spring, damper and the stabiliser (anti rollbar)
as follows:

FV ij = ks,ij (zs,ij − zus,ij) + cs,ij (żs,ij − żus,ij) + kst,ij (zs,il − zus,il + zs,ir − zus,ir) ,

(A.9)
where, ks,ij is the stiffness of the suspension spring, cs,ij is the damping of the shock
absorber and kst,ij is the stiffness of the anti-roll bar. The characteristics of the modelled
passive suspension derive from the experimental vehicle and for confidentiality reasons
adimensional force values are reported in Figure A.4.

The previous set of equations complete the 14-DoF dynamics. The sprung mass
position zs,ij identifies the suspensions top mount positions. Assuming a rigid vehicle
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Figure A.4: Non-linear characteristics of the suspension system for the front and rear axles as
modelled in the proprietary software IPG CarMaker®.

body, the following set of equations can be drawn:

zs,fl = zs − lf sinϕ+ b

2 sin θ,

zs,fr = zs − lf sinϕ− b

2 sin θ,

zs,rl = zs + lr sinϕ+ b

2 sin θ,

zs,rr = zs + lr sinϕ− b

2 sin θ.

(A.10a)

(A.10b)

(A.10c)

(A.10d)

A.2 Vehicle subsystems models

This section features the models of tyres, electrohydraulic brake system and electric
motors used in the framework of MIL/SIL/HIL simulations. It is worth noting that
the electrohydraulic brake system model has been experimentally validated against the
real system and is replaced by this latter in case of HIL simulations. The brake friction
processes are rendered by means of the model introduced in Chapter 3. In the framework
of this work, the transition between EMs and EHB is handled by the brake blending
controller in Chapter 5.

A.2.1 Modelling the tyre-road interaction

The most recognised and widely used semi-empirical tyre model is the so-called Magic
tyre model proposed by Pacejka in [113]. This model has contributed to a better
understanding of the tyre behaviour during the past 40 years. The model describes
the characteristics of longitudinal force, lateral force and self-aligning torque in pure
and combined slip situations. The model is based on the physicality of the tyre-road
interaction and requires experimental data for its identification. The basic Magic formula
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is represented by Equations (A.11) and (A.12):

y = D sin [arctanBx− E(Bx− arctanBx)] , (A.11)

with
Y (x) = y(x) + Sv, and x = X + Sh. (A.12)

In the previous equations, Y is the generic output variable, which stands for longitudinal
force FL, lateral force FS or aligning moment Mz. X is the input variable, which stands
for the longitudinal slip ratio λij or lateral slip angle αij . In the framework of this
work, it is worth mentioning that the model parameters, namely D,B,E, Sv, Sh, have
been identified against experimental data collected on the proving ground. Figures A.5
and A.6 depicts the tyre forces on a dry surface in accordance with the Magic Formula
employed in the framework of this work. The forces are expressed in terms of friction
coeff. utilisation. Thus, the peak shown by the curves refers to the maximum friction
coefficient on dry road, here assumed equal to 1.2.

Figure A.5: Kamm circle defines the limits of vehicle grip on dry road. The figure reports grip
limits for different tyre lateral slip values.

Among others, the model proposed by Pacejka in [113], accounts for variation in the
tyre vertical load, cornering stiffness and camber angle. Figure A.5 show the vehicle
grip limits (viz. Kamm circle) for a dry surface for different tyre side slip conditions.
Expectedly, larger side slip values allow for the achievement of higher lateral forces to
the detriment of longitudinal forces. Figure A.6 reports the longitudinal and lateral
friction utilisation coefficients as functions of the longitudinal wheel slip at varying side
slip angle, camber angle, and load conditions. It is worth noting that higher tyre load
conditions lead to a reduced friction peak, whilst negative camber angle increases the
lateral force of the outer tyre when cornering. The effects of camber is neglected in the
present framework for the sake of simplicity. Nevertheless, the effect of combined tyre
slip and varying vertical load is accounted.
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Figure A.6: Features of the Pacejka tyre model. Figures a) and b) report the longitudinal and
lateral friction utilisations, respectively, as a function of the tyre longitudinal slip at varying side
slip angles and tyre load conditions.

Tyre forces are not developed instantaneously when a certain input is applied but
require a certain time to build up. The dynamic behaviour of the tyre-road force
development to certain inputs can be well described by means of a transfer function.
Such inputs include the applied wheel torque as well as the tyre vertical load, the steer
angle and the camber angle. The vehicle dynamics simulation software IPG CarMaker®

includes a transient tyre model based on a first order transfer function parametrised
against the tyre relaxation length. This latter is defined as the distance needed to
build-up the tyre forces:

τrl,(•)Ḟ(•) + F(•) = F
(T M)
(•) , (A.13)

where, the (•) symbol stands either for a longitudinal or lateral component, τrl,(•)
represents the relaxation time constant, F(•) is the dynamic tyre-road force and F (T M)

(•) is
the quasi-static tyre model force. In accordance with [85], the relaxation time constant
can be approximated as:

τrl,L,ij = CL,ij

KL|vx|
and τrl,S,ij = CS,ij

KS |vx|
, (A.14)

where, KL and KS represent the longitudinal and lateral tyre stiffness, thus, the elastic
compliance of the tyre to external longitudinal and lateral loads, respectively; whilst,
CL,λi,j

and CS,αi,j represent the tyre longitudinal and lateral slip stiffness, respectively:

CL,ij = ∂FL,ij

∂λij
and CS,ij = ∂FS,ij

∂αij
. (A.15)

It is worth remarking that whilst the tyre stiffness can be easily characterised and assumed
constant for a sufficiently large range of load conditions, the tyre slip stiffness depends
on several variables, among others the side slip angle, the road friction conditions, the
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vertical tyre load, the camber angle. In the framework of the present work, the tyre
relaxation length is assumed pure function of the vehicle speed.

A.2.2 Powertrain model

The full electric SUV is equipped with four on-board switched reluctance motors. The
EMs feature a nominal power of 42 kW (135 Nm) although they can operate up to
100 kW (200 Nm) for a limited period of time (peak 30 s). The maximum rotational
speed is rated at 14000 rpm. The supply voltage is assumed equal to 800 V . Figure A.7
shows the quasi-static characteristics map of the EMs. The map describes the behaviour
of the motor under quasi-static operating conditions. This latter has been obtained by
dynamometer testing with under varying rotational speed and different load conditions.
With reference to Figure A.7, the coloured regions refer to EMs functioning under peak
conditions, which can be achieved by increasing the supplied current. The upper quadrant
represents the EMs operation in motor mode. The positive iso-power lines reflect that
energy expenditure is necessary to power the motor. The maximum motor efficiency is
reached at higher torque levels and at an equivalent vehicle speed of about 100 km/h.
The lower quadrant shows the EMs operation in generator mode. The negative iso-power
lines reflect that energy can be stored into the batteries when the EMs work in this
region. It is worth noting that when the motor is working in the lower quadrant, at
low speeds, it cannot regenerate. However, a braking action can be still exerted upon
providing energy from the battery (red triangle in Figure A.7).

Table A.1: Specifications of the employed motor model

Torque/Power @ 800 V
Motor type Switched reluctance
Peak (30 s) 200 Nm, 100 kW
Nominal (continuous) 135 Nm, 42 kW
Maximum speed 14000 rpm
Motor weight 50 kg

The on-board EMs architecture implies a connection to the wheels through a gearbox
and half-shafts (Figure 4.1). Half-shafts have been demonstrated to produce a negative
influence of the vehicle drivability and braking comfort [114]. The effect of the half-shaft
dynamics are not explicitly investigated in the framework of this study as major attention
is paid to the EHB. For this reason, the half-shafts dynamics is combined with the
EMs dynamics and modelled by means of a first order transfer function. For a better
understanding of the half-shaft dynamics and its validation, the interested reader is
referred to [112]. The transient operation of EMs is described by means of a first-order
transfer function:

TEM,ij

T dem
EM,ij

= 1
0.0022s+ 1e

−0.0022s, (A.16)
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Figure A.7: Characteristics of the switched reluctance on-board motors used in the simulation
framework.

where, T dem
EM,ij represents the torque demand and TEM,ij is the actual torque provided by

the EMs.

A.2.3 Electrohydraulic brake system

The electrohydraulic brake (EHB) at Technische Universität Ilmenau is based on the slip
control boost (SCB) technology by ZF TRW. A schematic of the EHB system is reported
in Figure A.8. The notations FL, FR, RL and RR indicate the front left, front right, rear
left and rear right corners respectively. The experimental campaign herein presented is
aimed at exploring the dynamics of the EHB and realising a model that can be used for
MIL/SIL simulations. In the case of HIL simulations the EHB finds physical realisation.

The EHB system finds wide use in electric vehicles because it ensures smooth co-
ordination between conventional and regenerative brakes without the driver noticing
it. The EHB has very good dynamics characteristics and accurate pressure tracking
capabilities relative to a conventional automotive braking system with vacuum booster.
Such a system also ensures faster response time, more flexible packaging and better
integration with other chassis and powertrain control systems. This system features
several operational modes; among others, the base brake control (BBC) and the anti-lock
braking system (ABS).

In the BBC mode, when the driver steps on the brake pedal, the pedal stroke is
measured, sent to the vehicle control unit (VCU) and converted into the reference vehicle
deceleration level. A brake pedal force emulator provides force feedback to the driver.
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Figure A.8: Simplified hydraulic schematic of the SCB unit. N/O: Normally open; N/C:
Normally closed. P symbol represents a pressure sensor, T indicates hydraulic connection with
the fluid reservoir.

The VCU determines the total demanded braking torque and, according to the brake
torque distribution rule, calculates the demanded brake pressure for each calliper. During
this mode, the base brake valves are activated and the boost valve proportionally controls
the pressure from the high pressure accumulator. The high pressure accumulator is
charged up to 180 bar by the electric pump to ensure a fast system response during
the pressure increase phases. Hence, the brake pressure on the wheels is continuously
modulated in accordance with the algorithm of the electrohydraulic control unit (EHCU).

During the ABS mode, the four apply valves are activated due to excessive wheel
slip to isolate the brake callipers from the boost valve. Thereafter, all apply and dump
valves are individually controlled to modulate the pressure for each brake and reach the
required wheel slip reference. The ABS is activated as soon as the wheel slip reaches a
certain threshold. In order to reduce the wheel slip, by producing an acceleration of the
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wheel, the pressure in the corresponding brake calliper is released until a certain system
state is reached, corresponding to either a wheel slip or acceleration threshold. After the
new state is reached, pressure can be increased again. The frequency of these control
loops is about 3Hz [115] as long as significant deviations between the actual speed and
the reference wheel speed occur.

EHB system characterisation

An experimental campaign was conducted at Technische Universität Ilmenau to investigate
the dynamics of the EHB. The experimental campaign was aimed at identifying a model
of the hydraulic brake pressure dynamics to be used for MIL/SIL simulations. The tests
were aimed at determining the brake pressure response characteristics by considering:

• the dead time td, i.e. the time required to achieve 1 bar variation of the actual
calliper pressure from the instant when a pressure step is requested;

• the rise time tr, i.e. the time required for the actual pressure to reach 90% of the
steady state reference value.

The above-defined time constants were assessed from a test repeated 10 times, consisting
of 13 steps with 10 bar pressure increase across consecutive manoeuvres. For a matter of
clarity, only the results referring to the front-left calliper are reported in Figure A.9a
and Figure A.9b for the dead time td and the rise time tr, respectively. The error
bars represent the mean and standard deviation of the measured values for the 10 test
repetitions. Figure A.10a shows the demanded and actual pressure profiles averaged
across 10 tests. During the test, it was noticed that the system features different dead
time characteristics during the build-up and release phases, respectively. Conversely,
a clear separation in the rise time was not noticed between the build-up and release
phases. No remarkable differences were noticed between front and rear brakes in terms
of pressure dynamics.

The results prove the non-linearity of the system and demonstrate a clear dependence
of the time constants versus the demanded pressure. For the sake of simplicity, the
circuit dynamics and the overshoot during pressure build-up were captured by means of
second order linear transfer functions with time delay [47]. To ensure good modelling
performance, two models were identified for the build-up and release phases, respectively.
The model was defined so that the demanded pressure represents the system input
and the actual pressure is the output. This leads to the second-order linear model in
Equations (A.17) and (A.18):

pb,ij

pdem
b,ij ↑

= 1
0.00075s2 + 0.037s+ 1e

−0.026s, (A.17)

pb,ij

pdem
b,ij ↓

= 1
0.00021s2 + 0.045s+ 1e

−0.015s. (A.18)
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(a) Error bars of the front-left calliper pressure dead time
for the build-up and release phase, respectively.

(b) Error bars of the front-left calliper pressure rise time.

Figure A.9: Time constants of the EHB unit. The results refer to 10 repeated staircase tests
consisting of 13 steps with 10 bar pressure increase.

It is worth pointing out that during the measurement campaign a clear offset between
demanded and measured pressure was observed for higher pressure values as reported
in Figure A.10a. This is due to the limitations of the proprietary low-level control
algorithm embedded into the EHB unit. Nevertheless, the model includes an inverse map
to compensate the pressure offset. A qualitative assessment of the estimation accuracy of
the proposed model is reported in Figure A.10a and conveniently zoomed in Figure A.10b.
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(b) Zoom on the 7th staircase manoeuvre.

Figure A.10: Results of the characterisation procedure of the EHB dynamics by means of second
order transfer functions. The profiles refer to the front-left brake calliper.

A.2.4 Brake lining friction coefficient model

ILVO model presented in Chapter 3 is employed to render the disc brake temperature and
BLCF dynamics. The model allows for improved fidelity of the SIL/MIL/HIL simulations
because it accounts for the BLCF dependence against speed, pressure and temperature.
The pressure set by the EHCU in the callipers actuates the brake cylinders, which in
turn produce a friction force between brake pad and disc. Upon calculating the BLCF,
the brake torque follows Equation (A.19):

Tb,ij = 2npµb,ij

πd2
p

4 (pb,ij − p0)reff,i, (A.19)
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where, np is the number piston calliper per side, µb is the BLCF, dp is the calliper piston
diameter, p0 is the push-out pressure, reff is the effective brake disc radius. In the
framework of these simulations, the parametrisations of Brake A and B of Chapter 3
have been used to simulate the front and rear brakes of the full electric SUV model. The
initial brake temperature must be specified before the simulation starts to account for
the initial brake thermal state.
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Appendix B

Principal component analysis

B.1 General remarks

The principal component analysis (PCA) is a statistical tool that takes high-dimensional
data and represents it in a lower-dimensional space. The main goal of PCA is to
summarise the correlations among a set of observed variables with a smaller set of linear
combinations, namely principal components (PCs). The first principal components is
defined as the direction along which the data exhibit their maximum variation. The seond
principal component is the direction that maximises the variance among all directions
orthogonal to the first. Analogously, the jth components is the direction orthogonal to all
previous jth − 1 components that maximises the variance. Therefore, the identification of
the PCs reduces to the solution of an optimisation problem where the function variance
should be maximised. This chapter presents the approach that led to the identification
of the PCs for the case study in Chapter 3.

B.2 Identification of the principal components

Considering a p−dimensional space, the first step consists in selecting a generic direction
in this space, identified by the unit vector v. A p−dimensional space means that each
i− th point xi has p dimensions. The same holds for the sought variance-maximising
direction v. The dinstance orthogonal to the unit vector v of a generic point xi is defined
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B.2. Identification of the principal components

in accordance with Equations (B.1a) to (B.1f):

di = ∥xi − v(xi · v)∥2 ,

= (xi − v(xi · v)) · (xi − v(xi · v),
= xi · xi − xi · v(xi · v) − v · xi(xi · v) + v · v(xi · v)2,

= ∥xi∥2 − 2(xi · v)2 + v · v(xi · v)2,

= ∥xi∥2 − 2(xi · v)2 + (xi · v)2,

= ∥xi∥2 − (xi · v)2.

(B.1a)
(B.1b)
(B.1c)
(B.1d)
(B.1e)
(B.1f)

This holds for any point belonging to the data (Figure B.1). Thereafter, it is possible to
define the average distance MSE of the points in the p−dimensional space with respect
to the the direction identified by v:

MSE(v) = 1
n

n∑
i=1

(
∥xi∥2 − (xi · v)2

)
,

= 1
n

(
n∑

i=1
∥xi∥2 −

n∑
i=1

(xi · v)2
)
.

(B.2a)

(B.2b)

The original problem of fiding the variance-maximising direction is totally equivalent
to looking for the projection with the smallest average mean squared distance, Equa-
tion (B.2a), between the data point and their orthogonal projections on to the vector v.
As the first term in Equation (B.2b) does not depend on v, the mean squared distance
can only be reduced by maximising the second term, viz.

(
1
n

∑n
i=1(xi · v)2

)
. Using the

definition of variance of a variable, the problem therefore reduces to Equation (B.3):

1
n

n∑
i=1

(xi · v)2 =
(

1
n

n∑
i=1

xi · v
)2

+ V ar[xi · v]. (B.3)

As the sought direction v, will be centered with respect to the data point, the first term
of Equation (B.3) is zero. Hence, minimising the residuals, Equation (B.2), turns out to
be equivalent to maximising the variance of the projections, Equation (B.3). Hereafter, it
is worth adopting a matrix representation where the data point are stacked into a n× p

matrix X. The variance is therefore expressed as:

σ2
v = 1

n

n∑
i=1

(xi · v)2,

= 1
n

(Xv)T (Xv),

= 1
n

vT XT Xv,

= vT XT X
n

v,

= vT cov(X,X)v,

(B.4a)

(B.4b)

(B.4c)

(B.4d)

(B.4e)
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B.3. Correlation analysis

where the term Xv represents the projections and XT X
n is the covariance matrix of the

given data. The optimisation problem is of constrained type as the solution only accepts
unit vectors for v. The constrained problem is turned into an unconstrained problem by
using the Lagrange multipliers [116]. For the problem under consideration:

L(v, λ) = σ2
v − λ(vT v − 1),

∂L
∂λ

= vT v − 1,
∂L
∂v = 2 cov(X,X) v − 2λ v.

(B.5a)

(B.5b)

(B.5c)

By imposing the derivatives in Equations (B.5b) and (B.5c) to zero, the following
Equations (B.6a) and (B.6b) hold valid:

vT v = 1,
cov(X,X) v = λ v.

(B.6a)
(B.6b)

Hence, the sought vector v is seen as the eigenvector of the covariance matrix, which also
represent the PCs of the data point. The eigenvectors alone describe the PCs of the data
points in the p−dimensional space; the eigenvalues define the relative contribution of each
PC to the data variance. The first PC is therefore associated with the largest eigenvalue
λ1. The second principal component, is the direction orthogonal to the first component
with the most variance. As the PCs are orthogonal to each other, their projections are
not correlated. The dimensionality reduction can be performed by truncating the system
to a few PCs, leading to a subspace of q−dimensionality. The variance of the projections
on to the first q principal components is thus ∑q

j=1 λj . As an example, PCs are found for
the reduced CPC experimental set of Chapter 3, composed of the control variable initial
temperature and the computed average BLCF in the two-dimensional space (Figure B.1).

In Figure B.1, the normalised data, indicated as red dots in the two-dimensional
space, feature two PCs. PC1 identifies more than 80% of the variance in the data, whilst
PC2 is liable for less than 20%. Although the PCs have been computed by solving
Equation (B.6), it can be visually assessed that the PCs identify the direction along
which Equation (B.2) is minimised, thus in accordance with the premises of this section.

It is worth pointing out that the PCA provides different results depending on whether
the variable under analysis are standardised. In presence of variables featuring different
scales, the PCA must be performed on the correlation matrix, rather than the covariance
matrix. The correlation matrix provides a proper standardisation of the data, making
these latter comparable to each other.

B.3 Correlation analysis

In Chapter 3, the PCA is used to assess the relative importance of the control variables
initial disc sliding speed, initial disc temperature and brake pressure against the average
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Figure B.1: PCs for the two-dimensional space defined by the control variable initial disc
temperature and the computed average BLCF.

BLCF. The latter variables are extracted from the CPC data set and stacked in the
form of a n× 4 matrix X, being n the number of observations. PCA is then applied to
compute the PCs, showing that more than 90% of the variance is described by the first
three PCs (Figure B.2). Therefore, without loss of too much information, the system can
be reduced to a three-dimensional space.
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Figure B.2: Pareto diagram for the four PCs in the space of data identified by CPC on Brake
A.

The PCs represent a linear combination of the four variables (Table B.1) and the
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B.3. Correlation analysis

corresponding eigenvalues provide information of the contribution of each PC to the data
variance (Figure B.2). Additional information is drawn by visualising the new variable in
the reduced order space. The reference of representation is changed, so that the PCs
form the new orthogonal reference. The system variables are represented on a graph by a
vector, and the direction and length of the vector indicate how each variable contributes
to the three PCs (Figure B.3).

Table B.1: Orthonormal PC coefficients for each variable. From CPC, Brake A.

PC1 PC2 PC3
vin -0.0961 0.9907 0
pb 0.3656 0.0709 0.8530
τin 0.5976 0.1159 -0.5218
µ̄b 0.7071 0 0

For example, the first principal component, which is on the horizontal axis in Fig-
ures B.3a and B.3b, has positive coefficients for all variables, except the initial sliding
speed. The largest coefficient in the first principal component is the fourth (Table B.1),
corresponding to the BLCF. The second principal component, which is on the vertical
axis in Figure B.3a, has a very clear positive coefficient for the variable initial sliding
speed and very small coefficients for other variables. The third principal component,
which is on the vertical axis in Figure B.3b, has a very clear positive coefficient for the
variable brake pressure and a negative coefficient for the variable initial disc temperature.
This type of visual tool also allows to visualise the experimental data point, with coordi-
nates indicating the score of each observation for the three principal components. For
example, points near the left edge of the plot have the lowest scores for the first principal
component.

It is important noticing that the control variables vectors, i.e. initial sliding speed,
brake pressure and initial brake temperature, represent an orthogonal reference. This is
by definition due to the full factorial DOE, where the control variables are varied one at
a time. The relative importance of each input variable can be computed by projecting,
through a scalar product, the vector of a control variable onto the vector of the average
BLCF:

ri = µ̄b · {vin,pb, τin}
∥µ̄b∥

. (B.7)

The results of this procedure carried out across the CPC data demonstrates that the
contact temperature identifies more than 60% of the variance in the average BLCF.
Although the results are well comparable with the rank partial correlation analysis [117],
this tool allows for a graphical assessment of the interdependence between variables.
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Figure B.3: Graphic visualisation of the variables’ vectors (blue markers) and the data point
(red dots) in the orthogonal reference identified by the PCs. From CPC, Brake A.
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Appendix C

Data driven method for model iden-
tification

C.1 Problem discretisation

Data driven methods (DDM) are capable of extracting functional relationships from
measurement data [118]. In the present work, the optimisation problem aims at identifying
the differential equations that better fit the experimental data. The generic differential
equation for the state variable x̄ can be formulated according to C.1:

ẋ = f (x,u,w) , (C.1)

where, the right hand contains the time invariant functions that resembles various linear
and nonlinear components in accordance with the true state variables, input variables
and the model parameters, x, u and w respectively. With reference to the developed
friction model, the state and input vectors can be expressed as C.2 and C.3, respectively:

x = [ω, τ, αb]T , (C.2)

u = pb, (C.3)

and w represent the set of sought parameters. To derive the function, a library of candidate
terms F (x,u,w) is considered. Furthermore, each candidate term is normalised so that
the magnitude of each element in w reflects the relative importance of the corresponding
component.

Equation (C.1) is rewritten with reference to the estimated state variable x̂ and
discretised by means of the explicit Runge-Kutta fourth-order method. The discrete
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C.1. Problem discretisation

differential equation becomes:

x̂k+1 = x̂k + 1
6(z1 + 2z2 + 2z3 + z4),

z1 = ∆t F(x̂k,uk,w),

z2 = ∆t F(x̂k + z1
2 ,

uk + uk+1
2 ,w),

z3 = ∆t F(x̂k + z2
2 ,

uk + uk+1
2 ,w),

z4 = ∆t F(x̂k + z3,uk+1,w),

(C.4a)

(C.4b)

(C.4c)

(C.4d)

(C.4e)

where, the index k refers to a time step of length ∆t and z1 to z4 represent the intermediate
discrete increments. In the case z2 to z4 are zero and the multiplicating coefficient in
Equation (C.4a) is changed to 1

2 , the simple first-order Euler explicit is obtained. In
the fourth-order Runge-Kutta higher accuracy can be reached by averaging the four
increments. Thereafter, the problem reduces to determining the optimal set of parameters
w that minimise the quadratic error function J , defined as:

J = min
w

∥y − ŷ∥2 ,

= min
w

∥y − H x̂∥2 ,

= min
w

N−1∑
k=1

(yk+1 − H x̂k+1)2,

(C.5a)

(C.5b)

(C.5c)

with the initial condition given by:

(x0 = H−1 ŷ0). (C.6)

In the previous equations, N represent the total number of discrete points, y and ŷ
represent the measured and estimated output vector respectively, H is the time-invariant
output matrix, relating the system states and outputs. The initial condition at k = 0 has
been purposely removed from the sum since its value is computed based on the initial
measurment vector (Equation (C.6)). The initial condition must be provided to launch
the optimisation procedure.

With reference to the CPC data of Brake A in Chapter 3, Figures C.1a and C.1b help
visualise the cost function in Equation (C.5c). Because of the quadratic cost function,
the optimisation problem of the models under analysis is of convex type. Figures C.1a
and C.1b also represent the trajectory of the search algorithm in the parameters space
of ILVO and Ostermeyer, respectively. Both the non-linear least square method (LSQ)
[119] and the derivative-free simplex search method (DSS) [70] converge to the same
global minimum. However, being the LSQ a derivative based method, it converges to the
solution much faster. For this reason, this algorithm was selected for the optimisation
tasks.
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C.1. Problem discretisation

(a) Convergence to the optimal solution of ILVO model iden-
tified on CPC data, Brake A.

(b) Convergence to the optimal solution of the Ostermeyer’s
model identified on CPC data, Brake A.

Figure C.1: Representation of the error objective function of Equation (C.5c) for the models
benchmarked in Chapter 3. The problem is convex and a global minimum exists. The parameter
have been standardised.

Table C.1 reports the brake lumped temperature model parametrisation and Tables C.2
and C.3 report the BLCF models parametrisations.
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C.1. Problem discretisation

Table C.1: Lumped capacitance model parametrisation.

Parameter Value Unit
Brake A Brake B Brake C

ξ 0.2111 · 10−3 0.2668 · 10−3 0.1700 · 10−3 [m−1N−1K]
δht,0 0.1792 · 10−2 0.1547 · 10−2 0.2141 · 10−2 [s−1]
δht,1 0.9108 · 10−3 0.7859 · 10−3 1.088 · 10−3 [m−1]

Table C.2: ILVO model parametrisation

Parameter Value Unit
Brake A Brake B Brake C

a 10−9 [m3N−1]
κ0 0.2687 0.1127 0.1854 [/]
κ1 0.3075 · 10−3 0.6395 · 10−3 0.4405 · 10−3 [K−1]
b 0.2302 · 10−1 0.1640 · 10−1 0.2034 · 10−1 [m]
c 1.226 · 10−10 1.380 · 10−10 0.9605 · 10−10 [m4N−1K−1s−1]

Table C.3: Ostermeyer’s model parametrisation.

Parameter Value Unit
Brake A Brake B Brake C

p1 0.1123 · 10−4 2.918 · 10−4 0.2161 · 10−4 [m−1N−1]
p2 0.3604 · 107 0.6679 · 106 0.1528 · 107 [mNs−1]
p3 0.3599 · 104 0.7008 · 103 0.1478 · 104 [mNK−1s−1]
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Appendix D

Experimental vehicles

D.1 Full electric sport utility vehicle

The full electric sport utility vehicle modelled in the IPG CarMaker® and used as vehicle
demonstrator for the BLCF observer validation in Chapter 6 is the Range Rover Evoque
of Figure D.1 provided by Flander’s Make (Lommel, Belgium). The vehicle powertrain
consists of 4 switched reluctance motors, each with a separate switched reluctance
inverter unit. During the tests, the two on-board motors powering the front semi-axles
are deactivated. The drivetrain is connected to a 600 V battery pack. The EHB is the
ZF TRW SCB discussed in Appendix A and features a variable torque distribution that
depends on the braking conditions. The vehicle technical specifications are reported in
table D.1.

Figure D.1: Range Rover Evoque at Flander’s Make.

The main motor generator unit is controlled by dSPACE MicroAutoBox®. The digital
acquisition system is based on the processor board dSPACE DS1007®. For the CAN
communication, the interface board DS4302® is used. Analog input signals information
are digitalised by multi-channel A/D board DS2004®. The control of the brake actuators
is realised through the digital input/output board DS4004®. Signals are sampled with
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D.1. Full electric sport utility vehicle

Table D.1: Specifications of the full electric sport utility vehicle demonstrator.

Vehicle type Range Rover Evoque 5-doors
Curb mass 2105 kg
Driveline Individual 4 wheel drive
Tyre size 235/55 R19
Wheelbase 2665 mm
Track width 1625 mm
Drag coefficient 0.35
Frontal surface 2.32 m2

Motor type 4 Switched Reluctance motors
Nominal/Peak power 42 kW (135 Nm)/100 kW (200 Nm)
Maximum motor speed 15000 rpm
Gearbox Single-speed 1 : 10
Battery cell type Lithium-titanate Oxide
Battery pack 600 V DC

Foundation brake Floating callipers, cast-iron discs,
copper-free ECE brake linings

Brake type Slip Control Boost (ZF TRW)
Torque allocation front/total Variable
Nominal brake µb front/rear 0.45/0.45
Effective brake radius front/rear 120.5/128.8 mm
N. of pistons front/rear 1/1
Calliper piston(s) diameter front/rear 60/34 mm

typical fast CAN Baud rate of 500 kbit/s. The EHB unit, in analogy with the HIL
platform introduced in Chapter 5, uses the driver’s braking request via the pedal travel
sensor, calculates the total braking torque required to achieve the desired deceleration,
and apportions the torque to the four wheels. The demand can be either a conventional
pressure request or a reference torque for the electric motors.

The vehicle is equipped with the following measurement devices: wheel speed sensors
on each wheel; inertial measurement unit (IMU) for acceleration and yaw rate; brake
pressure sensors. A CORREVIT S350® non-contact 2-axis optical sensor is fitted to the
vehicle to measure the vehicle ground speed. The measurement provided by the optical
sensor is then used to estimate the wheels longitudinal slip. For direct measurement of
wheel forces in longitudinal, lateral and vertical directions and wheel moments, the vehicle
demonstrator is instrumented with two wheel force sensors RoaDyn S635® produced by
Kistler. During the tests execution, the wheel force sensors have been mounted on the
front axles. The technical data of the sensor are given in table D.2.
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Figure D.2: Kistler RoaDyn S635® wheel force sensor.

Table D.2: Kistler RoaDyn S635® wheel force sensor specifications.

Measuring range Accuracy
FX −35...35 kN Crosstalk
FY −20...20 kN FY → FX , FZ ≤ 1 %
FZ −35...35 kN FX ↔ FZ ≤ 1 %
MX −5...5 kNm FX , FZ → FY ≤ 0.2 %
MY −5...5 kNm Linearity ≤ 0.5 % v.E
MZ −5...5 kNm Hysteresis ≤ 0.5 % v.E
Rotary angle accuracy ≈ 0.1◦ Maximum speed 2300 rpm (≈ 280 km/h)

D.2 Conventional ICE sedan

The conventional internal combustion engine sedan is used to assess brake-related wear
under real driving conditions. The vehicle technical specifications are reported in
Table D.3. The data logging of relevant vehicle kinematics quantities is performed by
means of the proprietary RaceLogic VBoX®. The VBoX-Datalogger® allows for CAN-bus
data communication with a sampling rate up to 100Hz. This device also includes a high
accuracy GPS for the tracking of the vehicle speed with a resolution up to 0.1km/h. The
acquisition of relevant data via CAN is done by National Instruments cDAQ (9178)®.
This latter is also used to log analogue signals coming from pressure and temperature
sensors. The brake pressure is measured with a pressure transducer connected to the
brake calliper, while two rubbing thermocouple of type K (NiCr-Ni) are surface-mounted
on the inner and outer disc side of each corner for temperature measurements. The data
acquired via CAN bus include IMU accelerations and yaw rate, brake pedal position,
steering wheel angle, wheel speed signals.
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Table D.3: Specification of the sports sedan.

Vehicle type Sedan
Curb mass 2100 kg
Driveline RWD with automatic transmission
Tyre size 275/40 R19
Wheelbase 3070 mm
Track width 1649 mm
Drag coefficient 0.26
Frontal surface 2.54 m2

Engine type Turbo diesel 3 l

Foundation brake Floating callipers, cast-iron discs,
copper-free ECE brake linings

Torque allocation front/total 0.685
Nominal brake µb front/rear 0.43/0.39
Effective brake radius front/rear 133/138 mm
N. of pistons front/rear 1/1
Calliper piston(s) diameter front/rear 60/42 mm

Figure D.3: Schematic of the instrumented sedan used for RDE-compliant brake-related wear
tests.

D.3 Conventional ICE light commercial vehicle

The light commercial vehicle equipped with a portable emissions measurement system
(PEMS) in Figure D.4 is used to assess brake-related particulate number concentration
under RDE-compliant driving conditions. The vehicle technical specifications are reported
in table D.4.

The particulate emitted by the front-right brake system is evacuated by means of the
closed CVS-sampling system engineered and developed at Technische Universität Ilmenau
[12]. The PEMS-PN MAHA-AIP is used to measure particulate number concentrations
(PNC) in the range 23 nm to 2.5 µm. The brakes are equipped with rubbing thermocouples

168



D.3. Conventional ICE light commercial vehicle

Figure D.4: Depiction of the LCV used for RDE-compliant brake-related emissions tests. The
front-right brake system is enclosed in the evacuation box. PN PEMS counts the particulate and
determines their number for a specific evacuated air volume.

of type K (NiCr-Ni). The pressure sensors are mounted at each corner and allow pressure
measurements up to 250 bar. The vehicle is also equipped with the RaceLogic VBoX® to
log relevant kinematics quantities such as vehicle speed and acceleration. The developed
setup allows analysing the influence of driver, traffic, driving conditions and environment
on the emissions level. Relevant vehicle and brake state variables such as vehicle speed,
vehicle acceleration, brake temperature and brake pressure are sampled at 10 Hz, whilst
PEMS provide the PNC at 1 Hz sampling rate.

Table D.4: Specification of the light commercial vehicle.

Vehicle type Light commercial vehicle
Curb mass 1900 kg
Driveline FWD with manual transmission
Tyre size 255/45 R18
Wheelbase 3000 mm
Track width 1904 mm
Drag coefficient 0.44
Frontal surface 3.1 m2

Engine type Turbo diesel 1.9 l

Foundation brake Floating callipers, cast-iron discs,
copper-free ECE brake linings

Torque allocation front/total 0.687
Nominal brake µb front/rear 0.42/0.41
Effective brake radius front/rear 126/126 mm
N. of pistons front/rear 1/1
Calliper piston(s) diameter front/rear 60/41 mm
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