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Zusammenfassung
Zwei (pseudo-)Riemannsche Metriken heißen projektiv äquivalent, wenn sie die sel-
ben Geodätischen (als unparametrisierte Kurven betrachtet) besitzen. C-projektive
Äquivalenz ist eine natürliche Übertragung des Begriffs projektiver Äquivalenz von Rie-
mannschen Mannigfaltigkeiten auf Kählersche Mannigfaltigkeiten. Eine reguläre Kurve
γ auf einer Kählersche Mannigfaltigkeit (M, g, J) heißt J-planar, wenn ihr Beschleu-
nigungsvektor in der Ebene liegt, die durch den Tangentialvektor der Kurve und den
Vektor, der durch Anwendung der komplexen Struktur J auf den Tangentialvektor
hervorgeht, aufgespannt wird. Zwei Kählersche Metriken auf einer Mannigfaltigkeit
von reeller dimension echt grösser als zwei heißen c-projektiv äquivalent, wenn jede
J-planare Kurve der einen Metrik auch bezüglich der anderen Metrik J-planar ist.

Es werden zunächst grundlegende Eigenschaften c-projektiv äquivalenter Metriken
besprochen, sowie die Integrale des geodätischen Flusses, die aus der Existenz einer
c-projektiv äquivalenten Metrik hervorgehen.

Im Hauptteil der Arbeit werden die folgenden Probleme behandelt:
Erstens: Kommutieren die den Integralen durch eine Quantisierungsvorschrift zugewiese-

nen Differentialoperatoren? Diese Frage konnte mit Ja beantwortet werden.
Zweitens: Ist eine Verallgemeinerung zu natürlichen Hamiltonschen Systemen möglich?

Das heißt: Gibt es Potentialfunktionen, die sich zu den Integralen der Bewegung hinzuad-
dieren lassen, sodass die neu entstandenen Funktionen auf dem Kotangentialbündel
weiterhin bezüglich der Poisson Klammer kommutieren? Weiterhin: Kommutieren auch
die durch Quantisierung aus diesen Funktionen hervorgehenden Differentialoperatoren?
Die Antwort ist Ja, und sowohl auf der Ebene klassischer Integrabilität als auch auf der
Quantenebene sind die selben Potentiale zulässig. Für gewisse Fälle konnten sämtliche
zulässige Potentiale gefunden werden. In den anderen Fällen geben wir eine Schar
zulässiger Potentiale an, es kann aber sein, dass neben diesen noch mehr existieren.

Drittens: Für Kählersche Metriken, die nichttrivial c-projektiv äquivalente Metriken
besitzen, wurde die Separation der Variablen für die Schrödingergleichung untersucht.
Es wurde gezeigt, dass sich die Suche nach Funktionen, die gleichzeitige Eigenfunktio-
nen der in den vorigen Abschnitten betrachteten Operatoren sind, auf das Lösen von
Differentialgleichungen in niedrigeren Dimensionen zurückführen lässt. Als besondere
Anwendung der erzielten Resultate lässt sich im Fall, dass die Anzahl der so konstru-
ierten unabhängingen Integrale maximal ist, unter Voraussetzung einer positiv definiten
Metrik die Konstruktion einer Orthonormalbasis im Raum der quadratintegrablen
Funktionen auf das Lösen gewöhnlicher Differentialgleichungen zurückführen.



Abstract
Two (pseudo-) Riemannian metrics are called projectively equivalent, if they possess
the same geodesics (considered as unparametrized curves). C-projective eqivalence is a
natural translation of projective equivalence to Kähler manifolds: A regular curve γ on
a Kähler manifold (M, g, J) is called J-planar, if the acceleration lies within the span
of the tangent vector and J applied to the tangent vector. Two Kähler metrics on a
complex manifold of real dimension larger than four are called c-projectively equivalent,
if every J-planar curve of one metric is also J-planar with respect to the other metric.

In the first section we will introduce c-projectively equivalent metrics and fundamental
properties. We will also introduce the integrals of the geodesic flow that arise as a
consequence of the existence of a c-projectively equivalent structure.

In the main part we will tackle the following questions:
Firstly: Do the integrals of the geodesic flow commute as quantum operators? This

could successfully be answered with yes.
Secondly: Is a generalization to natural Hamiltonian systems possible? This means:

is it possible to add potentials to the integrals of the geodesic flow such that the
resulting functions still commute with respect to the Poisson bracket? Furthermore
do the assigned quantum operators still commute? The answer is yes. The admissible
potentials are the same at the level of classical integrability as well as at the quantum
level. For certain cases all admissible potentials could be described. For other cases
a family of admissible potentials will be given, but there may be more admissible
potentials.

Thirdly: For Kähler metrics that possess c-projectively equivalent metrics the
separation of variables for Schrödinger’s equation was investigated: We showed that
the search for simultaneous eigenfunctions of the previously constructed quantum
operators can be reduced to differential equations in lower dimension, in the case of
maximal integrability a reduction to ordinary differential equations is possible. In the
maximally integrable case this provides a possibility to construct an orthonormal basis
of eigenfunctions of the Laplace-Beltrami operator in the space of square-integrable
functions by solving ordinary differential equations.
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1 Foundations

1.1 C-projective equivalence and the canonical Killing tensors
In all our work we assume that the manifold we are working on is connected.

Definition 1 (Kähler manifold) A Kähler manifold (of arbitrary signature) is a
manifold M2n of real dimension 2n endowed with the following objects and properties:

• a (pseudo-)Riemannian metric g and its associated Levi-Civita connection ∇

• a complex structure J , i.e. an endomorphism on the space of vector fields with
J2 = −Id

• g and J must be compatible in the sense that g(JX, Y ) = −g(X, JY ) and ∇J = 0

• We denote by Ω the two-form Ω(X,Y ) = g(JX, Y ) which is called the Kähler
form.

We do not need to dig overly deep into the theory of Kähler manifolds, but two
properties of the Riemann and Ricci tensor will be required:

Proposition 1 (Symmetries of the Riemann and Ricci tensor on Kähler
manifolds) In addition to the usual symmetries of the Riemann and Ricci tensor on
a Kähler manifold (M, g, J) the relations

Ri
jkl = −J i

sR
s
tklJ

t
j = Ri

jabJ
a
kJ

b
l

J i
sR

s
j = Ri

sJ
s
j

(1)

are true. Here and throughout the rest of the work we use the Einstein sum convention.

Proof of proposition 1: Because J is ∇-parallel:

0 = (∇k∇l −∇l∇k)J
i
j = Ri

sklJ
s
j −Rs

jklJ
i
s

Using the block symmetry Rabcd = Rcdab of the Riemann tensor gives the second
equality. Consequently Ri

jkl = J i
pR

p
qrsJ

q
j J

r
kJ

s
l and contraction of i with k shows that

the Ricci tensor is Hermitian, concluding the proof.

Definition 2 (J-planar curves) A regular curve γ : I → M is called J-planar if
there exist functions α, β : I → R such that

∇γ̇ γ̇ = α(t)γ̇ + β(t)J(γ̇) (2)

is fulfilled on I where γ̇ denotes the tangent vector to γ.

This is a natural generalization of geodesics on (pseudo)-Riemannian manifolds that in
arbitrary parametrization are solutions of the equation ∇γ̇ γ̇ = α(t)γ̇. Similarly, the
property of a curve to be J-planar survives under reparametrization.
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Definition 3 (C-projective equivalence) Let g, g̃ be two Kähler metrics (of arbi-
trary signature) on (M, J) with dimR M ≥ 4 They are called c-projectively equivalent
if and only if every J-planar curve of g is also a J-planar curve of g̃.

It is clear that if all J-planar curves of g are J-planar curves of g̃ then every J-planar
curve of g̃ is also a J-planar curve of g, justifying the word equivalence in the definition.
C-projective equivalence is the Kähler analogue of projective equivalence on (pseudo-)
Riemannian manifolds and was proposed by T. Otsuki and Y. Tashiro [14]. For a
thorough introduction to c-projective geometry see [4]. For completeness, we recall the
definition of projective equivalence, since the theorem 12 is the projective analogue of
theorem 11. Because their proofs run in parallel, all statements about the projective
setting will be phrased as remarks placed after their c-projective counterparts.

Definition 4 (Projective equivalence) Let g, g̃ be two (pseudo-)Riemannian met-
rics on a manifold M. They are called projectively equivalent if and only if every
unparametrized geodesic of g is also an unparametrized geodesic of g̃.

In the definition of c-projective equivalence we made two restrictions:
Firstly we imposed that the real dimension should be at least 4. We excluded the case
of dimension 2n = 2, because in two dimensions any curve is J-planar, so in that case
c-projective equivalence would be a tautological property of any two Kähler structures
and there is no information that can be extracted from this and it is not interesting to
us.
Secondly we imposed that the two metrics shall be Kähler with respect to the same
complex structure J . This is actually not a restriction: While in dimension 2n = 2 there
exist Kähler metrics (g, g̃) with distinct complex structures (J, J̃) and they trivially
have the same J-planar or J̃-planar curves this cannot occur in higher dimensions, as
the following proposition shows:

Proposition 2 Let (g, J) and (g̃, J̃) be two Kähler structures on M of real dimension
2n ≥ 4. Then if every J-planar curve of g is a J̃-planar curve of g̃ and vice versa then
J̃ = ±J . The signature of g, g̃ may be arbitrary.

Proof of proposition 2: From the definition 2 it is clear that any J-planar curve
γ is uniquely determined by a starting point γ(0) = p, a tangent vector at this point
γ̇(0) = X and functions α(t), β(t). At the same time any J-planar curve that goes
through p may be reparametrized such that the tangent vector at p is rescaled by an
arbitrary non-zero factor. We now choose an arbitrary point p, an arbitrary non-zero
vector X and arbitrary functions α1(t), α2(t), β1(t), β2(t). We consider the two J-planar
curves γ1, γ2 of g, given by the data

γ1 : γ1(0) = p, γ̇1(0) = X, α1(t), β1(t)

γ2 : γ2(0) = p, γ̇2(0) = X, α2(t), β2(t)

Then by our assumption there exist functions α̃1(t), α̃2(t), β̃1(t), β̃2(t) such that
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γ̈i1 + Γi
jkγ̇

j
1 γ̇

k
1 =α1γ̇

i
1 + β1J

i
kγ̇

k
1 (3)

γ̈i1 + Γ̃i
jkγ̇

j
1 γ̇

k
1 =α̃1γ̇

i
1 + β̃1J̃

i
kγ̇

k
1 (4)

γ̈i2 + Γi
jkγ̇

j
2 γ̇

k
2 =α2γ̇

i
2 + β2J

i
kγ̇

k
2 (5)

γ̈i2 + Γ̃i
jkγ̇

j
2 γ̇

k
2 =α̃2γ̇

i
2 + β̃2J̃

i
kγ̇

k
2 (6)

Subtracting (4) from (3) and (6) from (5) we get

(Γ− Γ̃)ijkγ̇
j
1 γ̇

k
1 =(α1 − α̃1)γ̇

i
1 + β1J

i
kγ̇

k
1 − β̃1J̃

i
kγ̇

k
1 (7)

(Γ− Γ̃)ijkγ̇
j
2 γ̇

k
2 =(α2 − α̃2)γ̇

i
2 + β2J

i
kγ̇

k
2 − β̃2J̃

i
kγ̇

k
2 (8)

We evaluate these equations at the parameter t = 0. Because γ1(0) = γ2(0) = p,
equations (7) and (8) are equations on the tangent space at p and we can subtract (8)
from (7). Because we assumed that γ̇1(0) = γ̇2(0) = X the left hand side becomes zero
and we get:

0 = (α1 − α̃1 − α2 + α̃2)|t=0X + (β1 − β2)|t=0J|pX − (β̃1 − β̃2)|t=0J̃|pX (9)

This equation tells us that J̃|pX lies in the span of {X, J|pX}. But X could be chosen
arbitrarily, so for any tangent vector Z at p its image under J̃|p lies in the span of
{Z, J|pZ}.
We now choose a basis (X1, . . . , Xn, Y1, . . . , Yn) of TpM, such that for i = 1, . . . , n we
have JXi = Yi. Then because of the above there exist coefficients (ζi, ηi,κi, λi|i =
1, . . . , n) such that for i = 1, . . . , n:

J̃|pXi =ζiXi + ηiYi

J̃|pYi =κiYi − λiXi

(10)

Consider an arbitrary tangent vector Z at p and decompose it according to the chosen
basis:

Z =

n
i=1

(µiXi + νiYi)

We shall denote by µ the tuple (µ1, . . . , µn), likewise ν = (ν1, . . . , νn). From the
discussion above we know that the image of Z under J̃|p lies in the span of {Z, J|pZ}.
Thus there must be φ(µ, ν), ψ(µ, ν) such that

J̃|pZ = φ(µ, ν)Z + ψ(µ, ν)J|pZ (11)

Because we chose our basis such that J|pXi = Yi we have J|pYi = −Xi and thus we
have:

J̃|pZ =

n
i=1

(φ(µ, ν)µiXi + φ(µ, ν)νiYi + ψ(µ, ν)µiJ|pXi + ψ(µ, ν)νiJ|pYi)

=

n
i=1

((φ(µ, ν)µi − ψ(µ, ν)νi)Xi + (φ(µ, ν)νi + ψ(µ, ν)µi)Yi)

(12)
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But by linearity of J̃|p we also have:

J̃|pZ =

n
i=1

(µiJ̃|pXi + νiJ̃|pYi)

=

n
i=1

(µiζiXi + µiηiYi + νiκiYi − νiλiXi)

=

n
i=1

((µiζi − νiλi)Xi + (µiηi + νiκi)Yi)

(13)

Equating the last lines of (12) and (13) gives:

n
i=1

((φ(µ, ν)µi − ψ(µ, ν)νi)Xi + (φ(µ, ν)νi + ψ(µ, ν)µi)Yi)

=

n
i=1

((µiζi − νiλi)Xi + (µiηi + νiκi)Yi) (14)

Because (Xi, Yi|i = 1, . . . , n) is a basis and thus linearly independent we must have
that:

φ(µ, ν)µi − ψ(µ, ν)νi =µiζi − νiλi

φ(µ, ν)νi + ψ(µ, ν)µi =µiηi + νiκi


∀i = 1, . . . , n (15)

We look at these equations for particular choices of (µ, ν): those that have only one or
two entries equal to one and all others are zero. The positions where the ones are will
be put in the upper indices

µi1
i =


1 i = i1
0 else

νi1i =


1 i = i1
0 else

µi1,i2
i =


1 i = i1 or i = i2
0 else

νi1,i2i =


1 i = i1 or i = i2
0 else

By µi1 we mean the collection (µi1
1 , . . . , µ

i1
n ) etc.

Now consider equations (15) for µ = µi1,i2 , ν = 0. Then the only nontrivial equations
are those for i = i1 and i = i2:

φ(µi1,i2 , 0) =ζi1

ψ(µi1,i2 , 0) =ηi1

φ(µi1,i2 , 0) =ζi2

ψ(µi1,i2 , 0) =ηi2

4



But this implies that for all i1, i2 ∈ {1, . . . , n} the constants ζi1 and ζi2 must be equal.
We also see that for any i1, i2 we have ηi1 = ηi2 .
Next we consider equations (15) for (µ = 0, ν = νi1,i2). In the same way as before we
can conclude that for all i1, i2 ∈ {1, . . . , n} the equalities λi1 = λi2 and κi1 = κi2 must
hold.
Then we look at (15) with µ = µi1 , ν = νi2 with i1 ̸= i2. This is the moment where we
use that the dimension of M is at least 4.

φ(µi1 , νi2) =ζi1

φ(µi1 , νi2) =κi2

ψ(µi1 , νi2) =λi2

ψ(µi1 , νi2) =ηi1

Thus each of the ζi is equal to one of the κj . But the κj are all the same. Thus
ζ1 = . . . = ζn = . . . = κ1 = . . . = κn.
In the same fashion we get that λ1 = . . . = λn = η1 = . . . = ηn. Inserting this in
equation (10) and using J2

|p = −Id|p we get

J̃|pXi =ζ1Xi + η1J|pXi

J̃|pYi =ζ1Yi + η1J|pYi

Because a linear operator is uniquely determined by its action on the basis vectors we
must have that

J̃|p = ζ1Id|p + η1J|p

Because J̃2
|p = −Id|p it followst that

−Id|p = (ζ21 − η21)Id|p + 2ζ1η1J|p

Since Id|p and J|p are linearly independent the product ζ1η1 must be zero. But working
in real coordinates, η1 cannot be zero because otherwise (ζ21 − η21) ≥ 0 and the equation
cannot hold. Thus ζ1 = 0. Inserting this into the equation we get that η21 = 1. Thus
J̃|p = ±J|p.
As the point p was chosen arbitrarily, the equation must be true on all of M. It follows
from the smoothness of J̃ that the sign is the same at every point and the proof is
complete.

1.1.1 The tensor A

Proposition 3 [6], see also section 5 of [4]. Two Kähler metrics (of arbitrary sig-
nature) on a manifold (M, J) are c-projectively equivalent if and only if the tensor

Ai
j
def
=

det g̃det g

 1
2(n+1)

g̃ilglj , where g̃ilg̃lm = δim (16)
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satisfies the equation

∇kAij = λigjk + λjgik + λ̄iΩjk + λ̄jΩik (17)

where

λ
def
=

1

4
trA, λi

def
= ∇iλ and λ̄i

def
= Jj

i λj (18)

Raising and lowering indices is always by means of g: λi = gijλj , where gisgsj = δij .
The sole exception to this is when we speak about a covariant (c-)projectively equivalent
metric g̃, for which we will define the symbol with upper indices via g̃isg̃sj = δij .

Corollary 3.1 Let A be a nondegenerate Hermitian solution of (17) then we can
construct a metric g̃ that is c-projectively equivalent to g via g̃ij = Ai

sg
sj
√
detA. By√

detA we mean taking the eigenvalues of A and multiplying them with powers equal
to half of their algebraic mulitplicities(Because J2 = −Id and A commutes with J all
multiplicities are even).

Remark 1 (for the projective case) [2, theorem 2] Two (pseudo-)Riemannian met-
rics g, g̃ on a manifold M are projectively equivalent if and only if the tensor

Ai
j
def
=

det g̃det g

 1
n+1

g̃ilglj , where g̃ilg̃lm = δim (19)

satisfies the equation

∇kAij = λigjk + λjgik, with λ
def
=

1

2
trA λi

def
= ∇iλ (20)

If A is a nondegenerate g-self-adjoint solution of (20) then a metric that is projectively
equivalent to g can be constructed via the formula g̃ij = Ai

sg
sj detA

Definition 5 (C-compatibility) We shall call Hermitian (g-self-adjoint and
J-commuting) solutions of (17) and (18) c-projectively compatible or simply
c-compatible with (g, J). As in the definition of c-projective equivalence we shall require
that the real dimension of the manifold be at least 4. Likewise symmetric solutions of
(20) shall be called projectively compatible or simply compatible with g.

Remark 2 It is also possible to define c-compatibility in the following sense: a tensor
A is called c-compatible with (g, J) if there exists a covector λi, such that the triplet
(A, λi, λ̄i = Jj

i λi) satisfies (17). This may seem like a less restrictive definition but
taking the trace of (17) shows that λi = 1

4∇i trA, making this definition equivalent to
the one given above.
Similarly one could call a tensor A projectively compatible, if there exists a covector field
λi, such that ∇kAij = λigjk + λjgik is satisfied. But taking the trace of this equation
reveals that then λi =

1
2∇i trA.

Before we procede to prove proposition 3 we shall first establish some properties of
Hermitian solutions of (17) that will be used at several points later on.
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1.1.2 Basic properties of (c-)compatible structures

Lemma 4 Let (g, J,A) be c-compatible. Then

1. ∇k det(A) = 4 det(A)A−1s
kλs

2. A is self-adjoint w.r.t. the Hessian of λ: Ai
jλi,k = λj,sA

s
k [4, lemma 5.13]. For real

numbers t the (1, 1)-tensors (tId−A), A−1 and (tId−A)−1 are also self-adjoint
w.r.t. ∇2λ (the latter of course assuming that A and tId−A are invertible).

3. Additionally let S be an endomorphism on the space of vector fields on M with
the following properties: J ◦ S = S ◦ J , A ◦ S = S ◦ A, ∇2λ(S·, ·) = ∇2λ(·, S·)
and g(S·, ·) = g(·, S·). Then the formula

Rr
ijkArlS

ij −Rr
ijlArkS

ij = 0 (21)

is valid. In particular (taking Sij = gij) A commutes with the Ricci tensor:
Ri

sA
s
k = Ai

sR
s
k.

4. The Hessian of λ is Hermitian: λi,j = λj,i = Js
j λs,tJ

t
i

Here and further on, an index preceded by a comma is meant to indicate a covariant
derivative. This lemma contains by no means new wisdom. Item 1 will be proven in a
straightforward computation, the others can be found in [6, 3, 4]. The proofs that will
be given also recyle the ideas of the cited sources. Only the proof of item 2 appears to
be a new one, although fairly simple.

Corollary 4.1 Linear algebra applied to (21) provides the formula:

(tId−A)−1lrRk
jirS

ij − (tId−A)−1krRl
jirS

ij = 0 (22)

Proof : Consider the endomorphism Rr
ijlS

ij on the space of vector fields. Raising
and lowering indices in (21) shows that it commutes with A. Consequently it also
commutes with (tId−A) and thus with (tId−A)−1. Standard index manipulations
using the symmetries of the curvature tensor imply the result. We will see this argument
recurring in the proof of item 2 of lemma 4.

Remark 3 (for the projective case) Let (g,A) be compatible. Then

1. ∇k det(A) = 2 det(A)A−1s
kλs

2. A is self-adjoint w.r.t. the Hessian of λ: Ai
jλi,k = λj,sA

s
k. The same is true for

(tId−A), A−1 and (tId−A)−1 (the latter of course assuming that A and tId−A
are invertible).

3. Additionally let S be an endomorphism on the space of vector fields on M with
the following properties: J ◦ S = S ◦ J , A ◦ S = S ◦ A, ∇2λ(S·, ·) = ∇2λ(·, S·)
and g(S·, ·) = g(·, S·). Then the formula

Rr
ijkArlS

ij −Rr
ijlArkS

ij = 0 (23)

is valid.
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4. Equation (22) is true in the projective case as well.

Proof of lemma 4, item 1: We use Jacobi’s formula d detM = tr(Ad(M) dM):

∇k det(A) =det(A)A−1q
r∇kA

r
q

=det(A)A−1q
r


λrgqk + λqδ

r
k + grsλ̄sΩqk + λ̄qg

rsΩsk


=4det(A)A−1s

kλs

(24)

Equation (17) was used to expand the covariant derivative of A and then the properties
of J interacting with g were exploited to obtain this.

Remark 4 (for the projective case) The procedure is the same in the projective
case. In the second line of (24) the terms involving λ̄ do not appear, resulting in a
factor of 2 rather than 4 in the third line.

Proof of lemma 4, item 2: To the author’s knowledge the proof that we present here
is a new one. The advantage of the proof given here is that it uses only the statements
we have already established in the earlier sections of this document.
Without loss of generality we may assume that A is invertible. Otherwise we may
choose ε, such that εId− A is invertible. Then we can apply the same procedure to
ln det(εId−A) instead of ln detA. This will show that (εId−A)−1 is self-adjoint with
respect to ∇2λ. And thus by linear algebra εId − A and consequentially A are also
∇2λ-self-adjoint.
Now to the main argument: We compute the second covariant derivative of ln detA
using (24), (17) as well as the general identity dA−1 = −A−1 · (dA) · A−1 and the
antisymmetry of J with respect to g:

1

4
∇k∇l ln detA =− λjA

−1j
pg

psλsA
−1q

l gqk − λjA
−1j

kA
−1q

l λq

− λjA
−1j

pg
psλ̄sA

−1q
lΩqk + λjA

−1j
pJ

p
k λ̄qA

−1q
l +A−1j

lλj,k

(25)

The left hand side is symmetric with respect to (k ↔ l). The first, second and
fourth term on the right hand side are symmetric as well. The third term vanishes.
Consequently the last term must be symmetric as well. By means of linear algebra,
the self-adjointness with respect to λj,k is also true for (tId−A) or (tId−A)−1. The
latter of course is only true, provided that t is not chosen to be within the spectrum of
A. This concludes the proof of item 2.

Remark 5 (for the projective setting) Performing the same computations as above
gives the intermediate result

1

2
∇k∇l ln detA = −λjA−1j

pg
psλsA

−1q
l gqk − λjA

−1j
kA

−1q
l λq +A−1j

lλj,k

to which the same logic is applied as in the c-projective case.
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Proof of lemma 4, item 3: In the proof we reuse and extend the ideas used in the
proof of equation (12) in [10]. We inspect the second derivative of A:

Rr
jklAir +Rr

iklArj =(∇l∇k −∇k∇l)Aij

=λi,lgjk − λi,kgjl + λj,lgik − λj,kgil

+ λ̄i,lΩjk − λ̄i,kΩjl + λ̄j,lΩik − λ̄j,kΩil

(26)

The first equality is the Ricci identity and is true for any (0, 2)-tensor. The second
equality comes from differentiating (17). We continue by adding the equation with
itself three times after performing cyclic permutations of (j, k, l). The three terms rising
from the first term on the left hand side of (26) vanish due to the Bianchi identity. On
the right hand side only terms involving λ̄ remain:

Rr
iklArj +Rr

ijkArl +Rr
iljArk =(+λ̄i,lΩjk + λ̄i,kΩlj + λ̄i,jΩkl

− λ̄i,kΩjl − λ̄i,lΩkj − λ̄i,jΩlk) + (i↔ j)
(27)

+(i↔ j) means that the preceding term is to be added again, but with indices i and j
interchanged. We now multiply this equation with Sij . Since S is g-self-adjoint and
commutes with J we have λ̄i,jSij = 0. Using this and using again that S commutes
with J the right hand side simplifies as follows:

Rr
iklArjS

ij +Rr
ijkArlS

ij +Rr
iljArkS

ij = 4(Sj
kλj,l − Sj

l λj,k)

S◦A is g-self-adjoint because S and A are g-self-adjoint and commute. As a consequence,
we know that Rr

iklArjS
ij vanishes on the left hand side. Further utilizing the symmetry

of the curvature tensor as well as the self-adjointness of S with respect to ∇2λ we reach
the desired result:

Rr
ijkArlS

ij −Rr
ijlArkS

ij = 0

Remark 6 (for the projective case) To prove item 3 of remark 3 we perform the
same steps as in the proof of item 3 of lemma 4. Removing the terms involving Ω
from (26) gives the intermediate step for the projective case. Equation (27) trivially
simplifies to Rr

iklArj +Rr
ijkArl +Rr

iljArk = 0. After multiplication with Sij the first
term vanishes with the same argument as in the c-projective case and the result is
obtained. For the proof of item 4 of remark 3 we observe that the proof of corollary 4.1
only involves linear algebra. Thus the proof is exactly the same in the projective and
the c-projective case.

Proof of lemma 4, item 4: We covariantly differentiate (17) and use the Ricci
identity:

Rr
jklAir +Rr

iklArj =(∇l∇k −∇k∇l)Aij

=λi,lgjk − λi,kgjl + λj,lgik − λj,kgil

+ λ̄i,lΩjk − λ̄i,kΩjl + λ̄j,lΩik − λ̄j,kΩil

9



Contracting with gjk and rearranging terms gives

−Rr
lAir +Rr

iklArjg
jk + gjkλj,kgil − Js

i λs,tJ
t
l = (2n− 1)λi,l

We subtract λi,l on both sides:

−Rr
lAir +Rr

iklArjg
jk + gjkλj,kgil − λi,l − Js

i λs,tJ
t
l = (2n− 2)λi,l

Because A commutes with J and R (see item 3 with Sij and Sij = Aij) and because of
the way J interacts with g and the Riemann and Ricci tensor (1) we see that the left
hand side is Hermitian. Thus λi,j must be Hermitian as well (remember we excluded
dimension two in the definition of c-projective equivalence, so (2n − 2) is non-zero),
concluding the proof.

Proof of proposition 3 The idea of this proof is based on the ideas in section 40 of
[8]. We first show that if two metrics g, g̃ are c-projectively equivalent then A formed
as in (16) satisfies (17). We start off with the equation for J-planar curves:

γ̈i + Γi
jkγ̇

j γ̇k = α(t)γ̇i + β(t)J i
kγ̇

k

We multiply with γ̇l, then alternate (l ↔ i) and subtract both equations:

γ̇lγ̈i − γ̇iγ̈l +

Γi
jkγ̇

l − Γl
jkγ̇

i

γ̇j γ̇k = β


γ̇lJ i

kγ̇
k − γ̇iJ l

kγ̇
k


(28)

Because we assumed that g, g̃ are c-projectively equivalent, for any curve γ there exist
α̃, β̃ such that the same operations can be performed, putting a tilde on Γ, α, β without
compromising the validity of the equations. Taking the “∼” analogue of (28) and
subtracting it from (28) leaves us with

P i
jkγ̇

lγ̇j γ̇k − P l
jkγ̇

iγ̇j γ̇k = (β − β̃)γ̇lJ i
kγ̇

k − (β − β̃)γ̇iJ l
kγ̇

k (29)

Here we have introduced P i
jk as a shorthand for Γi

jk − Γ̃i
jk.

At the same time we can multiply (28) with Jm
l J

n
i :

Jm
l γ̇

lγ̈iJn
i − Jm

l γ̈
lγ̇iJn

i + Jm
l γ̇

lΓi
jkJ

n
i γ̇

j γ̇k − Jm
l Γl

jkγ̇
iJn

i γ̇
j γ̇k

= β(−Jm
l γ̇

lγ̇n + Jn
i γ̇

iγ̇m) (30)

From this we subtract its “∼” equivalent. After renaming some indices we obtain

J i
nP

n
jkγ̇

j γ̇kJ l
mγ̇

m − J l
nP

n
jkγ̇

j γ̇kJ i
mγ̇

m = (β − β̃)J i
mγ̇

mγ̇l − (β − β̃)J l
mγ̇

mγ̇i (31)

from (28). Subtracting (31) from (29) gives:

γ̇sγ̇j γ̇k

δlsP

i
jk − δisP

l
jk − J i

nP
n
jkJ

l
s + J l

nP
n
jkJ

i
s


= 0 (32)

This equation is valid for any J-planar curve γ and thus γ̇ may be considered to be
arbitrary. This implies that the symmetric part of the expression in the parentheses
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must vanish. Because the expression in the parentheses is symmetric when exchanging
(j ↔ k) this is equivalent to the following condition:

δlsP
i
jk − δisP

l
jk − J i

mP
n
jkJ

l
s + J l

nP
n
jkJ

i
s

+δlkP
i
sj − δikP

l
sj − J i

mP
n
sjJ

l
k + J l

nP
n
sjJ

i
k

+δljP
i
ks − δijP

l
ks − J i

mP
n
ksJ

l
j + J l

nP
n
ksJ

i
j = 0

(33)

i.e. we took the expresion in parentheses, took cyclic permutations of (s, j, k) and added
them together. Contracting l with k and using that P is symmetric in the lower indices
it follows that

0 = 2(n+ 1)P i
js − δisP

k
jk − δijP

k
ks + J i

sJ
m
j P

k
km + J i

jJ
m
s P

k
km

Because P i
jk = Γi

jk − Γ̃i
jk and Γk

kl = 1/2∂l ln | det g|, Γ̃k
kl = 1/2∂l ln | det g̃| we have

P i
js = δjsφj + δijφs − J i

sJ
m
j φm − J i

jJ
m
s φm (34)

where we have introduced

φ =
1

4(n+ 1)
ln

det gdet g̃

 , φs = ∇sφ (35)

We can then use equation (34) to work out ∇j g̃
il in terms of g̃ and the derivatives of φ

via
0 = ∇̃j g̃

il = ∇j g̃
il − P i

jsg̃
sl − P l

jsg̃
is

and use the result to compute

∇je
−2φg̃ilglp = δije

−2φφsg̃
slglp + e−2φφsg̃

isgjp

− e−2φJ i
jJ

m
s φmg̃

slglp − e−2φJ l
jglpg̃

isJm
s φm

We see that the left hand side is just ∇jA
i
p. So by contracting i with p in this equation

and defining λ = 1/4 trA and λj = ∇jλ we get λj = e−2φφsg̃
slglj . Reinserting this

into the equation above, introducing the shorthand λ̄j = Js
j λs and renaming indices

gives
∇kAij = λigjk + λjgik + λ̄iΩjk + λ̄jΩik

as we have claimed.
Now we show the other direction: we assume that two metrics g, g̃ are given, such that
A formed with (16) fulfills (17) and then show that g, g̃ are c-projectively equivalent.
The computation is straightforward, starting with the well known formula for the
Christoffel symbols of g̃:

Γ̃i
jk =

1

2
g̃il(∂j g̃lk + ∂kg̃jl − ∂lg̃jk)

11



We express the partial derivatives of g̃ in terms of the covariant derivatives of the
Levi-Civita connection of g: ∂j g̃jk = ∇j g̃jk + Γs

jlg̃sk + Γs
jkg̃ls. The result simplifies to

Γi
jk − Γ̃i

jk = −1

2
g̃il(∇j g̃lk +∇kg̃jl −∇lg̃jk)

We can express g̃ on the right hand side via g̃ij = Ai
sg

sj
√
detA and use the properies

(17) and (24) of A as well as the general formula ∇A−1 = A−1 · (∇A) ·A−1. Then we
use that A is Hermitian to reduce the terms to

Γi
jk − Γ̃i

jk = δik(A
−1)αj λα + δij(A

−1)αkλα − (A−1)αj λ̄αJ
i
k − (A−1)αk λ̄αJ

i
j

We then use the fact that A commutes with J , the previously established formula
(A−1)αj λα = 1/4∂j ln detA and that detA = | det g̃/ det g|−1/(n+1). In terms of the
quantity φ = 1/(4(n+ 1)) ln(det g/ det g̃) the above becomes

Γi
jk − Γ̃i

jk = δik∂jφ+ δij∂kφ− J i
jJ

s
k∂sφ− J i

kJ
s
j ∂sφ

With this formula we show that all J-planar curves of g are also J-planar curves of g̃.
Suppose γ satisfies

γ̈i + Γi
jkγ̇

j γ̈k = α(t)γ̈i + β(t)J i
kγ̇

k

for some functions α(t), β(t). We can now compute γ̈i + Γ̃i
jkγ̇

j γ̇k:

γ̈i + Γ̃i
jkγ̇

j γ̇k =γ̈i + Γi
jkγ̇

j γ̇k − (Γi
jk − Γ̃i

jk)γ̇
j γ̇k

=α(t)γ̇i + β(t)J i
sγ̇

s − 2γ̇iγ̇j∂jφ− 2J i
j γ̇

j γ̇kJs
k∂sφ

Thus γ satisfies ∇̃γ̇ γ̇ = α̃(t)γ̇ + β̃(t)J(γ̇) for α̃(t) = α(t)− 2γ̇j∂jφ and β̃(t) = β(t)−
2γ̇kJs

k∂sφ and γ is also a J-planar curve of g̃. The fact that any J-planar curve of g̃ is
also a J-planar curve of g is obvious and proposition 3 is proven.

1.1.3 Conserved quantities of the geodesic flow

Throughout this work we shall canonically identify symmetric covariant tensors with
polynomials on T ∗M via the isomorphisms ♭ and ♯:

♭ :T a1...al →→ T a1...alpa1
. . . pal

♯ :T a1...alpa1
. . . pal

→→ T (a1...al)

By the parentheses we mean symmetrisation with the appropriate combinatorial factor:
T (a1...al) = 1/l!


(b1,...,bl)=π(a1,...,al)

T b1...bl (π means permutation here).
Let (g, J,A) be c-compatible on M and consider the one-parameter family

t

K
ij def

=


det(tId−A) (tId−A)−1i

lg
lj (36)

Throughout this work the root is to be taken in such a way that we simply halve the
powers of the eigenvalues in det(tId − A). This is well defined because A is g-self-
adjoint and commutes with J and thus all eigenvalues of A are of even multiplicity.
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In particular

det(tId−A) can be negative and it is smooth also near points where

det(tId−A) = 0. With the tensors
t

K we associate the functions
t

I: T ∗M → R
t

I
def
=

t

K
ijpipj (37)

Theorem 5 P. Topalov[17], see also [4, §5]. Let (g, J,A) be c-compatible. Then for
any pair of real numbers (v, w) the quantities

v

I and
w

I are Poisson commuting integrals

of the geodesic flow i.e. {
v

I,
w

I} = 0 and {
t

I, gijpipj} = 0

The tensors
t

K defined above are called the canonical Killing tensors for the c-compatible
structure (g, J,A). Killing tensors and integrals of the geodesic flow that are homoge-
neous in momenta are in one to one correspondence.

Remark 7 The quantities
t

K are well-defined for all values of t: if we denote by 2n

the dimension of the manifold, then
t

K is a polynomial of degree n − 1. This is a
consequence of J2 = −Id, the antisymmetry of J with respect to g, the commutativity

of A with J and the construction of
t

K from A.

Remark 8 (for the projective case) Let (g,A) be compatible. We shall define
t

K ij def
= det(tId−A) (tId−A)−1i

lg
lj for the projective case. Then for any pair s, t ∈ R

the quantities
s

I
def
=

s

K ijpipj and
t

I
def
=

t

K ijpipj are commuting integrals of the geodesic
flow for g [2, 13]. The projective and the c-projective case differ merely by the power
of the determinant.

Theorem 6 See [4, theorem 5.11] and [3, lemma 2.2]. Let (g, J,A) be c-compatible.

Then the quantities
t

L given by
t

L=
t

V
jpj ,

t

V
j = Jj

kg
ki∇i


det(tId−A) (38)

form a one-parameter family of commuting integrals of the geodesic flow: for all values
of s, t ∈ R the following relation is true:

{
s

L,
t

L} = 0 and {
s

L, g
ijpipj} = 0 (39)

The vector fields
t

V are called the canonical Killing vector fields for the c-compatible
structure. Killing vector fields and integrals of the geodesic flow that are linear in
momenta are in one to one correspondence.

Proposition 7 Let (g, J,A) be c-compatible. Then for all values of s, t ∈ R the

integrals
t

I and
t

L of the geodesic flow (see (36), (37) and (38) for the definition)
Poisson commute:

{
t

L,
s

I} = 0 (40)
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Corollary 7.1

• Let (g, J,A) be c-compatible. Then the flow of the canonical Killing vector fields
t

V in (38) preserves A.

• Let g, g̃ be c-projectively equivalent on (M, J). Then the canonical Killing vector
fields (38) of g are also Killing vector fields for g̃.

This is of course nothing new and can be found in [4, 3]. In lemma 2.2 of [3] a
particularly elegant proof of the second statement of the corollary is given which then
implies the first item and proposition 7.

Definition 6 (Functional independence) Let (f1, . . . , fk) be a set of functions on
the cotangent bundle. They are called functionally independent near a point p on
the cotangent bundle if their differentials are linearly independent at p. They are
called functionally independent, if their differentials are linearly independent almost
everywhere on the cotangent bundle.

Theorem 8 [4, theorem 5.18] Let (g, J,A) be c-compatible and consider the integrals

of the geodesic flow
t

I and
s

L from (36), (37) and (38). Then

1. The number of functionally independent integrals in the family
s

L is equal to the
number of non-constant Eigenvalues of A.

2. The number of functionally independent integrals within the family
t

I is equal to
the degree of the the minimal polynomial of A.

3. The integrals
s

L are functionally independent of the integrals
t

K, so the total
number of independent integrals within the two families is equal to the number of
non-constant eigenvalues of A plus the degree of the minimal polynomial of A.

Remark 9 Let (g,A) be compatible. Then the number of independent integrals in the

family
t

I is equal to the degree of the minimal polynomial of A [16].

Proofs

Definition 7 (Schouten-Nijenhuis bracket) Let (x, p) denote a set of canonical
coordinates on the cotangent bundle of a smooth manifold M. Let P,Q be homogeneous
polynomials in the momentum variables of degrees k, l. Then we define the Schouten-
Nijenhuis bracket of their associated tensors P ♯, Q♯ as

[P ♯, Q♯]S = {P,Q}♯ (41)

Proposition 9 Let (x, p) denote a set of canonical coordinates on the cotangent bundle
of a smooth manifold. Then two homogeneous polynomials P = P i1···ikpi1 · · · pik and
Q = Qj1···jlpj1 · · · pjl (P i1···ik , Qj1···jl are symmetric) have a vanishing Poisson bracket
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if and only if the Schouten-Nijenhuis bracket of P ♯ and Q♯ vanishes. The Schouten-
Nijenhuis bracket can be expressed via the formula

[P ♯, Q♯]i2···ikj2···jlbS = −lP a(i2···ik∇aQ
j2···jlb) + kQa(j2···jl∇aP

i2···ikb) (42)

The parentheses indicate the symmetrization of the indices with the appropriate
combinatorial factor. Proposition 9 is a well known fact, see e.g. [7]. A proof is given
for completeness.
Proof of proposition 9: We compute:

{P,Q} =(kQaj2···jl∇aP
j2···jkb − lP aj2···jk∇aQ

j2···jlb)

× pbpi2 · · · pikpj2 · · · pjl
=(kQa(j2···jl∇aP

j2···jkb) − lP a(j2···jk∇aQ
j2···jlb))

× pbpi2 · · · pikpj2 · · · pjl

In the first step we used the definition of the Poisson bracket and the symmetry of
P i1···ik , Qj1···jl . The Christoffel symbols all cancel out, ther is no difference in writing
the first step with partial or covariant derivatives. In the second step we can symmetrize
all upper indices except a because the product of the p’s is obviously symmetric with
respect to index permutation. Because homogeneous polynomials on T ∗M are in one
to one correspondence with symmetric contravariant tensors we see that {P,Q}♯ must
be equal to the term in parentheses, proving formula (42). Now because symmetric
contravariant tensors and polynomials in momenta on T ∗M are isomorphic it is clear
from the definition of the Schouten-Nijenhuis bracket that [P ♯, Q♯] vanishes if and only
if {P,Q} vanishes as well. Proposition 9 is proven.
Proof of theorem 5: We will prove the theorem by direct calculation, using the
relations that have already been proven on the previous pages. When looking at the
proof of the main theorem 11, the reader will already be familiar with much of the
technique after this proof. Without loss of generality we may prove it for the cases

where s and t in
s

K and
t

K are chosen such that they are not in the spectrum of A.

Otherwise we recall the fact that
s

K and
t

K are polynomials and therefore smooth. Then
we can consider sequences (si), (ti), i ∈ N that have elements outside the spectrum of
A and converge towards the values s and t that we want to and take the limit. We
introduce a shorthand notation:

Λ =gradλ = (gijλj), Λ̄ = J gradλ,
t

M = (tId−A)−1 (43)

for any t outside the spectrum of A. (
s

M Λ)i denotes the ith component of
s

M Λ etc.
We get

∇k det(tId−A) = −4 det(tId−A)
t

M
s
kλs (44)

in the same way as we have obtained formula (24). Using this, the general matrix
identity dC−1 = −C−1 · dC · C−1 and (17), the covariant derivative of the Killing

tensor
t

K evaluates to:
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∇k

t

K
jl =


det(tId−A)[−2

t

M
s
kλs

t

M
j
rg

rl

+
t

M
j
pλ

p
t

M
l
k+

t

M
j
k

t

M
l
qλ

q−
t

M
j
pg

psλ̄s
t

M
l
qJ

q
k−

t

M
l
rg

rqλ̄q
t

M
j
pJ

p
k ]

(45)

With this we form
s

K aj∇a

t

K jb−
t

K aj∇a

s

K jb:

s

K
ai∇a

t

K
jb−

t

K
ai∇a

s

K
jb =


det(tId−A)


det(sId−A)

×

−2(

s

M
t

M Λ)i
t

M
j
rg

rb

+(
t

M Λ)j
s

M
i
m

t

M
m
a g

ab + (
t

M Λ)b
s

M
i
m

t

M
m
a g

ai

+(
t

M Λ̄)j
s

M
i
m

t

M
m
a g

acJb
c + (

t

M Λ̄)b
s

M
i
m

t

M
m
a g

acJj
c


− (s↔ t)

The parentheses −(s↔ t) mean that the previous term is to be subtracted with s and
t interchanged. We use the identity

(t− s)(sId−A)−1(tId−A)−1(sId−A)−1 − (tId−A)−1 (46)

This is true for any matrix A and numbers s, t for which (sId−A) and (tId−A) are
invertible and can be verified by elementary computation. In our notation this is

(t− s)
s

M
t

M =
s

M −
t

M (47)

We apply it to each term and its (s↔ t)-conjugate to combine them:

s

K
ai∇a

t

K
jb−

t

K
ai∇a

s

K
jb =


det(tId−A)


det(sId−A)(s− t)

×

−2(

s

M
t

M Λ)i
t

M
j
r

s

M
r
l g

lb

+(
t

M
s

M Λ)j
s

M
i
m

t

M
m
a g

ab

+(
t

M
s

M Λ)b
s

M
i
m

t

M
m
a g

ai

+(
t

M
s

M Λ̄)j
s

M
i
m

t

M
m
a g

acJb
c

+(
t

M
s

M Λ̄)b
s

M
i
m

t

M
m
a g

acJj
c


− (s↔ t)

Now we look at what happens upon symmetrization of the free indices (i, j, b): The first
three terms produce into the same summands, but with different signs and prefactors,
such that they cancel out. The fourth term is antisymmetric in (i ↔ b) and the
fifth term is antisymmetric in (i↔ j), so they vanish when symmetrizing. Thus the
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Schouten-Nijenhuis bracket of
s

K and
t

K vanishes and so does the Poisson bracket

{
s

I,
t

I}. To show that the
s

I are integrals of the geodesic flow we observe that gij is the

coefficient of tn−1 in
t

K ij (2n is the dimension of the manifold). Thus gij is in the span
of the canonical Killing tensors and must therefore have a vanishin Schouten-Nijenhuis

bracket with them. This implies {
t

I, gijpipj} = 0. Theorem 5 is proven.
Proof of theorem 6: We use a direct computation, using the formulae that were
proven earlier in this document. We first show that

s

L is an integral of the geodesic
flow. This is equivalent to

s

V having a vanishing poisson bracktet with g, as we have
established already. The Schouten-Nijenhuis bracket of

s

V with gij is simply the Lie
derivative L of gij along the flow of

s

V . If A is c-compatible then (sId − A) is also
c-compatible. Thus it suffices to show that J grad

√
detA is a Killing vector field.

Otherwise we can simply rename (sId − A). We may further restrict ourselves to
sets where A is invertible: on non-empty open sets where detA = 0 there would be
nothing to show. If detA = 0 on a set of volume zero, then we can prove the statement
everywhere else and infer it everywhere by smoothness.
We are ready to compute:

LJ grad
√
detAgjk =gij∇j

s

V
i + gji∇k

s

V
i

=− J l
k∇j∇l

√
detA− J l

j∇k∇l

√
detA

(48)

Here we have used that J is parallel and antisymmetric with respect to g. From
equations (24) and (17) we get

∇k∇l

√
detA = 2

√
detA[A−1s

lλsλrA
−1r

k − gksA
−1s

lλag
abA−1c

bλc

+A−1s
l J

r
sλsλpA

−1p
mJ

m
k +A−1s

lλs,k]
(49)

by similar means as we have obtained (25). We insert this into (48) and use the
antisymmetry of J with respect to g, the Hermitian nature of A and J2 = −Id. Then
all terms except those with second derivatives of λ cancel out. We are left with

LJ grad
√
detAgjk = −2

√
detA[J l

jA
−1s

lλs,k + J l
kA

−1s
lλs,j ] (50)

But J commutes with A and item 4 of lemma 4 tells us that the Hessian of λ is
Hermitian. Thus both terms cancel each other and J grad

√
detA is Killing. As

explained above this immediately proves that
s

V is Killing for all values of s ∈ R.

We now show that for any s, t ∈ R the relation {
s

L,
t

L} = 0 holds. We do so by computing

the Schouten-Nijenhuis bracket of
s

V and
t

V , which is simply the commutator of the

two vector fields (with the same argument that we made when showing that the
t

V
are Killing vector fields, we may assume without loss of generality that (sId−A) and
(tId−A) are invertible):

[
s

V ,
t

V ]i =
s

V
a∇a

t

V
i−

t

V
a∇a

s

V
i

=Ja
b g

bc(∇c


det(sId−A) )∇aJ

i
dg

dc∇c


det(tId−A)− (s↔ t)

(51)
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We use the properties (44) and (17) of A and the general identity ∇XA
−1 = −A−1 ·

(∇XA) ·A−1 which is true for any (1, 1) tensor A and any vector field X. We sort the
resulting terms and cancel out those that vanish due to the Hermitian nature of A and
the antisymmetry of J w.r.t. g. The result is expressed in the previously introduced
shorthand (43):

[
s

V ,
t

V ]i =4


det(sId−A)

det(tId−A)

× J i
dg

de[−
t

M
m
e λmλn

t

M
n
a+

t

M
r
egra g(Λ,

t

M Λ)

−
t

M
q
eJ

m
q λmλn

t

M
n
pJ

p
a+

t

M
m
e λm,a]J

a
b g

bc
s

M
k
cλk − (s↔ t)

With the way that g, J,A interact with one another the result further refines to

[
s

V ,
t

V ]i =− 4

det(sId−A)


det(tId−A)

× [(
s

M
t

M Λ)ig(
t

M Λ,Λ)− (
t

M Λ)i g(
s

M
t

M Λ,Λ)

gidJe
d

t

M
s
eλs,aJ

a
b g

bc
s

M
m
c λm]− (s↔ t)

(52)

When pairing each term on the second line with its “−(s ↔ t)” counterpart we can

apply the matrix identity
t

M −
s

M = (s− t)
s

M
t

M and the terms cancel out each other.
The last term is symmetric with respect to (s↔ t) because of lemma 4, item 2. Thus
it is eliminated by the (s↔ t)-antisymmetrization. Theorem 6 is proven.

Proof of proposition 7: Note that both the
s

L and the
t

I are polynomials of degree

n−1 in s, t respectively (where the dimension of the manifold is 2n). Then {
s

L,
t

I} is also
a polynomial of degree n− 1 in s and t. Let (si|i = 1, . . . , n), (tj |j = 1, . . . , n) be two
tuples and let si ̸= sj and ti ̸= tj for every i ̸= j. Then by application of the Lagrange
interpolation formula with respect to s and t it is clear that this polynomial in two
variables is uniquely determined by its values at the n2 points {(si, tj)|i, j = 1, . . . n}.
At any arbitrary point p we can find a sufficiently small neighbourhood where we
can choose n pairwise different values for s and n pairwise different values for t such
that (sId−A) and (tId−A) are nondegenerate in that neighbourhood of p, because
the eigenvalues of A are smooth. Thus it is sufficient to consider a sufficiently small
neighbourhood of an arbitrary point and assume that (tId − A) and (sId − A) are
invertible and prove the statement for this case.

We compute the Schouten-Nijenhuis bracket of [
s

V ,
t

K]S which is the Lie derivative of
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t

K in the direction of
s

V . With the shorthand notation (43) we get:

[
s

V ,
t

K]ijS =
s

V
a∇a

t

K
ij−

t

K
aj∇a

s

V
i−

t

K
ia∇a

s

V
j

=− 2


det(sId−A)


det(tId−A)

× [(
s

M Λ̄)a[−2
t

M
p
aλp

t

M
j
rg

ri + (
t

M Λ)j
t

M
i
a + (

t

M Λ)i
t

M
j
a

+ (
t

M Λ̄)j
t

M
i
qJ

q
a + (

t

M Λ̄)i
t

M
j
qJ

q
a ]

+ [−
t

M
a
bg

bj [−
s

M
p
aλp(

s

M Λ̄)i + J i
l

s

M
l
a g(

s

M Λ,Λ)

− (
s

M Λ)iJq
a

s

M
m
q λq + J i

l

s

M
l
mg

mnλn,a]] + (i↔ j)]

There is no new technique in this, we proceeded exactly as we did in the proof
of theorem 6: we used the properties (44) and (17) of A and the general identity
∇XA

−1 = A · (∇XA) ·A which is true for any (1, 1) tensor A and any vector field X.
We sorted the resulting terms and cancel out those that vanish due to the Hermitian
nature of A and the antisymmetry of J w.r.t. g. Expanding the brackets and using the
way how g, J,A interact with one another this simplifies to

[
s

V ,
t

K]ijS =− 2

det(sId−A)


det(tId−A)

× [(
s

M
t

M Λ̄)i((
t

M −
s

M )Λ)j − (
s

M
t

M Λ)i((
t

M −
s

M )Λ̄)j

+ J i
l

s

M
l
mg

mnλn,a
t

M
a
bg

bj ] + (i↔ j)

Now we see that after the application of
t

M −
s

M = (s − t)
t

M
s

M to the first two
terms they cancel each other out after the addition of the (i↔ j) terms. Because the

Hessian of λ is Hermitian (lemma 4, item 4) and because
t

M and
s

M are self-adjoint
with respect to it (lemma 4, item 2 we see that the last term is antisymmetric in (i↔ j)

and consequentially we have [
s

V ,
t

K]S = 0, concluding the proof.
Before we prove theorem 8 we will establish some properties c-compatible structures
that will be used at later times as well.

Definition 8 (Regular point) Let (g, J,A) be c-compatible. A point x ∈ M is called
regular with respect to A if in a neighbourhood of x the number of different eigenvalues of
A is constant and for each eigenvalue ϱ either d ϱ ̸= 0 or ϱ is constant in a neighbourhood
of x. The set of regular points shall be denoted M0.

Lemma 10 (Eigenvectors and eigenvalues of A) See lemma 2.2 of [3], see also
[4]. Let (g, J,A) be c-compatible on M. Then

1. Suppose for a smooth function ϱ on an open subset U ⊆ M and for any point
p ∈ U the number ϱ(p) is an eigenvalue of A at p of algebraic multiplicity ≥ 4.
Then this function ϱ is a constant on U . Moreover, for any point of the manifold
the constant ϱ is an eigenvalue of A.
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2. Let ϱ be an eigenvalue of A. Then at all points where ϱ is smooth the vectors
grad ϱ and J grad ϱ are eigenvectors of A with eigenvalue ϱ.

3. At a generic point, the number of linearly independent canonical Killing vector
fields coincides with the number of non-constant eigenvalues of A.

4. At each regular point the number of eigenvalues ϱ with d ϱ ̸= 0 is the same.

Proof of lemma 10: We did not reinvent the wheel, the proofs given here are taken
from [3] and listed here for convenience of the reader. We prove item 1 first: because
A is smooth, so are the coefficients of its characteristic polynomial and its roots and
almost any point has a neighbourhood in which the algebraic multiplicities of the
eigenvalues of A do not change. We will work in such a neighbourhood of a suitable
point p.
We have shown that for a c-compatible tensor A the Hessian of its trace is Hermititan,
cf. lemma 4, item 4. By equation (49) we see that the Hessian of

√
detA is Hermitian

as well. This implies that the Hessian of

det(tId−A) is Hermitian as well because

for any c-compatible tensor A the tensor tId−A is c-compatible as well.
This also makes sense for complex values of t: if by 2n we denote the dimension of
the manifold then


det(tId−A) is a polynomial of degree n − 1 in t. Because the

Hessian of the polynomial

det(tId−A) is Hermitian for all real values of t all its

coefficients must be Hermitian. For complex values of t the real and imaginary parts
of


det(tId−A) are linear combinations of these coefficients and thus for complex
values of t the Hessian of


det(tId−A) is a complex valued matrix that satisfies

(∇2

det(tId−A))(J ·, J ·) = (∇2


det(tId−A))(·, ·) (53)

The number of distinct eigenvalues ϱk of A shall be denoted by r and the algebraic
multiplicity of the eigenvalue ϱk shall be denoted by m(ϱk). Then in the neighbourhood
of the point p we have


det(tId−A) =

r
k=1

(t− ϱk)
m(ϱk)/2 (54)

and

d

det(tId−A) =

r
i=1

 r
k=1,k ̸=i

(t− ϱk)
m(ϱk)/2


(t− ϱi)

m(ϱi)/2−1 d ϱi (55)

Now without loss of generality we may assume that it is the first eigenvalue ϱ1 which
has algebraic multiplicity m(ϱ1) ≥ 4. For the value of t we choose the value of ϱ1 at p:
t = ϱ1(p). Because we have assumed that m(ϱ1) ≥ 4 we see that d


det(ϱ1(p)Id−A)

is zero at p. Then from the two formulae above we see that at p the Hessian is

∇2

det(tId−A)


p,t=ϱ1(p)

=

 r
k=2

(t−ϱk)m(ϱk)/2


(t−ϱ1)m(ϱ1)/2−2 d ϱ1⊗d ϱ1


p,t=ϱ1(p)
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All other terms except the one proportional to d ϱ1 ⊗ d ϱ1 disappear because they
contain a factor 0 at p.
If ϱ1 is of algebraic multiplicity ≥ 6 then the expression above is zero because the
prefactor of d ϱ1 ⊗ d ϱ1 becomes zero at p.
If the algebraic multiplicity of ϱ1 is 4 then we have to distinguish two cases: if ϱ1 is
real-valued then d ϱ1 ⊗ d ϱ1 has either rank 1 or 0. But it cannot have rank 1 because
∇2

det(tId−A) is Hermitian. Thus d ϱ1 is zero at p.

If ϱ1 is complex and we write it as ϱ1 = α+ iβ then

d ϱ1 ⊗ d ϱ1 = dα⊗ dα− dβ ⊗ dβ + i(dα⊗ dβ + dβ ⊗ dα)

If dα and dβ are linearly dependent then the rank of dα ⊗ dα − dβ ⊗ dβ and
dα⊗ dβ + dβ ⊗ dα must be either one or zero. But rank one cannot occur because
∇2

det(tId−A) is Hermitian.

The case where dα and dβ are linearly independent cannot occur: In this case both
the real and imaginary part of d ϱ1⊗d ϱ1 have signature (1, 1, 2n−2) which contradicts
that they are Hermitian. We have proven that ∇2


det(ϱ1(p)Id−A) = 0 at p.

Remember that for any value of t the vector field J grad

det(tId−A) is a Killing

vector field (even in the case of complex t in the sense that its real and imaginary parts
are Killing vector fields) and that if at one point both the value and the covariant
derivative of a Killing vector field are known, then it is uniquely determined on all the
manifold (provided of course the manifold is connected). But by our endeavours above
we have proven that for t = ϱ1(p) the Killing vector field J grad


det(ϱ1(p)Id−A) and

its covariant derivative vanish at p. Thus it vanishes on the whole manifold, implying
that the function


det(ϱ1(p)Id−A) is a constant on the whole manifold. But because

the function is zero at p it is zero everywhere. Thus the constant ϱ1(p) is an eigenvalue
of A on the whole manifold and item 1 is proven.
We now prove item 2: if ϱ is constant then there is nothing to prove. So let X be an
eigenvector of A with non-constant eigenvalue ϱ. Then we covariantly differentiate the
equation (A− ϱId)X = 0. We use (17) and rearrange terms to obtain

(A− ϱId)∇YX = d ϱ(Y )X − g(Y,X)Λ− g(Λ, X)Y − g(JY,X)JΛ− g(JΛ, X)JY

We choose Y to be orthogonal to X and JX. Then the right hand side is a linear
combination of X, Y and JY . The left hand side is a vector orthogonal to the kernel
of (A− ϱId). As a consequence the coefficient of X must vanish. Thus ϱ is constant in
all directions orthogonal to X, JX. But because ϱ is non-constant the algebraic and
geometric mulitplicity of ϱ is 2 by the first statement. The ϱ-eigenspace of A is spanned
by X, JX. The orthogonal complement of the orthogonal complement of span{X, JX}
is span{X, JX} itself and thus grad ϱ and J grad ϱ must be eigenvectors of A with
eigenvalue ϱ. Statement 2 is proven.
For the third statement: We let the non-constant eigenvalues be denoted by (ϱ1, . . . , ϱr)

and collect the constant eigenvalues in
c

E. Denote the algebraic multiplicity of an
eigenvalue ϱ by m(ϱ). Then at any point where there are no bifurcations and all
non-constant eigenvalues have non-vanishing differentials we can write


det(tId−A)

21



as 
det(tId−A) =


ϱ∈

c
E

(t− ϱ)m(ϱ)/2
r

k=1

(t− ϱk)

because all non-constant eigenvalues are of multiplicity 2 (again r is the number of
non-constant eigenvalues of A and

c

E is the set of constan eigenvalues). So for all values
of t


det(tId−A) is proportional by a constant to

r
k=1(t−ϱk). This is a polynomial

of degree r in t with leading coefficient 1. So there are at most r independent Killing
vector fields. But in view of equation (55) and the proof of the first statement we know
that at every point p for each non-constant eigenvalue ϱ there is a Killing vector field
that is parallel to J grad ϱ at p. So at all points the canonical Killing vector fields have
the same span as the vector fields J grad ϱ of the non-constant eigenvalues. But because
for non-constant eigenvalues ϱi the vector fields J grad ϱi belong to the respective
ϱi-eigenspaces of A they are linearly independent. Thus at each point the dimesion
of their span is equal to the number of eigenvalues with non-vanishing differential.
Consequentially at generic points the span of the canonical Killing vector fields has
dimension equal to the number of non-constant eigenvalues and our claim is proven.
We prove item 4 by contradiction: Assume that there exist two regular points p1, p2
and the number of non-constant eigenvalues at p1 is k1 and at p2 it is k2 (w.l.o.g.
k1 > k2). Then by the previous statement in a neighbourhood of p1 the number of
independent Killing vector fields is k1. Likewise, in a neighbourhood of p2 the number
of independent Killing vector fields is k2. But if a Killing vector field vanishes on an
open set then it vanishes everywhere. This contradicts our assumption k1 > k2 and
the claim is proven.

Proof of theorem 8: We show that the number of functionally independent integrals
in the family

s

L is at least the number of non-constant eigenvalues of A. With canonical
coordinates (x, p) on T ∗M their differentials are

d
s

L= (∂x
s

V
ipi,

s

V ) (56)

We see that if for a tuple of numbers (s1, . . . , sk) the tuple (
si
V |i = 1, . . . , k) is linearly

independent at almost every point on M, then the differentials (d
si
L |i = 1, . . . , k)

are linearly independent almost everywhere on T ∗M. The number of independent
Killing vector fields is the same at each regular point and is equal to the number of
non-constant eigenvalues. Thus there are at least as many functionally independent
integrals in

s

L as there are non-constant eigenvalues. If we denote by
c

E the set of
constant eigenvalues of A, by (ϱ1, . . . , ϱr) the non-constant eigenvalues of A, and by
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m(ϱ) the algebraic multiplicity of the eigenvalue ϱ then we have:
s

L=piJ
i
jg

jk∂k
√
det sId−A

=− piJ
i
jg

jk

ϱ∈

c
E

(s− ϱ)m(ϱ)/2
r

p=1

r
q=1
q ̸=p

(s− ϱq)∂kϱp

=

ϱ∈

c
E

(t− ϱ)m(ϱ)/2
s

L̃

where we have introduced
s

L̃= piJ
i
jg

jk∂k

r
q=1

(s− ϱq)

We see that for all values of s the integral
s

L is a constant multiple of
s

L̃.
s

L̃ is a
polynomial whose degree is r − 1, where r is the number of non-constant eigenvalues

of A. For each value of s, the polynomial
s

L̃ is a linear combination of its coefficients.
Thus the number of functionally independent integrals is at most equal to the number
of non-constant eigenvalues and item 1 is proven.
To prove item 2 we show first that the number of functionally independent integrals is
at most equal to the degree of the minimal polynomial of A: for each eigenvalue ϱ of A
denote by m(ϱ) its algebraic multiplicity and by ε(ϱ) its index. The index ε(ϱ) is the
size of the largest Jordan block corresponding to ϱ or equivalently the multiplicity of
ϱ as a root of the minimal polynomial of A. We shall further denote by E the set of
distinct eigenvalues of A. If we look at the explicit formula for the inverse matrix of a
Jordan block, which is given by

ϱ 1

ϱ 1
. . . . . .

ϱ 1

ϱ





−1

=

ϱ−1 −ϱ−2 ϱ−3 . . . . . .

ϱ−1 −ϱ−2 . . . . . .
. . . . . . ϱ−3

. . . −ϱ−2

ϱ−1




(57)

we see that (because A is Hermitian) the quantity
t

K̃ defined by

t

K̃ ij def
=

ϱ∈E

(t− ϱ)m(ϱ)/2−ε(ϱ)(tId−A)−1i
kg

kj

is a polynomial in t of degree equal to the degree of the minimal polynomial of A.
Because eigenvalues of A of algebraic multiplicity ≥ 4 are constants we know that for
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any value of t the family
t

K̃ is a family of Killing tensors as well. We also see that

for any value t1 the Killing tensor
t1
K is a linear combination of the coefficients of the

polynomial
t

K̃. This implies that the number of functionally independent integrals in

the family
t

I is at most equal to the degree of the minimal polynomial of A.
Now we will show that the number of functionally independent integrals is at least
equal to the number of linearly independent Killing tensors. The differentials of the

quadratic integrals
t

I are

d
t

I= (∂x
t

K
ijpipj , 2

t

K
ijpj) (58)

It thus suffices to show that if for some (t1, . . . , tk) the Killing tensors (
ti
K |i = 1, . . . , k)

are linearly independent, then for almost any cotangent vector p at almost any point x

the covectors (
ti
K i

jpi|i = 1, . . . , k) are linearly independent.
Consider a set of one-forms ϑi,j such that A (considered as a map from one-forms to
one-forms) is in Jordan normal form. Here we make an exception to our notation: the
comma is not a covariant derivative, it merely separates two indices. We denote by ϱl
the eigenvalue of the lth Jordan block (it is possible that several blocks have the same
eigenvalue), by κl the size of the lth Jordan block. The one-forms ϑi,j satisfy

(A− ϱkId)ϑk,j = ϑk,j−1

The first index of the ϑi,j identifies the Jordan block to which it belongs and the second
index denotes the rank of the generalized eigenvector, i.e.

(A− ϱkId)
jϑk,j = 0, (A− ϱkId)

j−1ϑk,j ̸= 0

Here the superscript j denotes a power, not a component index. Because A is Hermitian,
the number of Jordan blocks is even and we shall call it 2q. It also implies that every
Jordan block appears twice and allows that we can choose the ϑ in such a way that

ϑi,j ◦ J =


ϑi+q,j ∀ 1 ≤ i ≤ q

−ϑi−q,j ∀ q + 1 ≤ i ≤ 2q

It follows by direct computation that the Killing tensors (as (1,1) tensors) act on thes
one-forms by:

ts
K ϑi,j =

j−1
l=0

q
m=1

m ̸=imodn

(ts − ϱm)κm(ts − ϱi)
κi−1−lϑi,j−l

We decompose a covector p as

p =

2q
i=1

κi
j=1

pi,jϑi,j
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For almost any covector p all coefficients pi,j are non-zero. We will show that for such

a covector and linearly independent (
ti
K |i = 1, . . . , k) (considered as (1,1)-tensors) the

covectors (
ti
K p|i = 1, . . . , k) are linearly independent. Suppose a linear combination of

(
ts
K p|s = 1, . . . , k) with coefficients (αs) is zero. Then by direct calculation we have

k
s=1

αs

2q
i=1

κi
j=1

κi−j
l=0

q
m=1

m ̸=imod q

(ts − ϱm)κm(ts − ϱi)
κi−1−lpi,j+lϑi,j = 0

But the ϑi,j are linearly independent, thus for all possible combinations of i, j we must
have:

k
s=1

αs

κi−j
l=0

q
m=1

m ̸=imod q

(ts − ϱm)κm(ts − ϱi)
κi−1−lpi,j+l = 0

For each i we consider the equations for j = κi, κi − 1, . . . , 1 in that order and find that
the equations above are equivalent to

k
s=1

αs

q
m=1

m ̸=imod q

(ts − ϱm)κm(ts − ϱi)
κi−1−l = 0

because we assumed all the p’s to be non-zero. This would imply that

k
s=1

αs

ts
K= 0

But because we assumed the
ts
K to be linearly independent it implies that all the α’s

are zero and the covectors
ts
K p are linearly independent, as we wanted to prove. Thus

there are at least as many functionally independent integrals in the family
t

I as there
are linearly independent Killing tensors in the family

s

K.
It remains to show that the number of linearly independent Killing tensors in the family
t

K is equal to the degree of the minimal polynomial of A. The number of linearly

independent Killing tensors in the family
t

K is of course the same as the number of
linearly independent (1,1) tensors in the family (tId − A)−1. Consider any regular
point x and consider for appropriate integers l, j the operators

Bl,j =
1

2πi


C(ϱl(x))

(w − ϱl(x))
j(wId−A)−1 dw

where C(ϱl(x)) is a small circle in the complex plane around ϱl(x) such that it contains
no other eigenvalues of A. Clearly these tensors lie in the span of the family (tId−A).
Considered as (1,1)-tensors in the basis of the ϑ that we have introduced the matrices
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of the Bl,j can be visualized as follows: choose t0, such that (t0Id− A) is invertible.
Take the Jordan normal form of (t0Id−A) and invert it. Remove all entries that do
not belong to blocks corresponding to Jordan blocks with eigenvalue t0 − ϱl and make
these entries 0. Further set to zero all entries except those on the jth superdiagonal
(the 0th superdiagonal means the diagonal). Set all remaining non-zero entries to 1.
From this it follows that the number of linearly independent Killing tensors is equal to
the minimal polynomial of A.
By similar arguments as before it is clear that for (t1, . . . , tk) and (s1, . . . , sm) for which

the Killing tensors (
ti
K |i = 1, . . . , k) are linearly independent and for which the Killing

vector fields (
sj

V |j = 1, . . . ,m) are linearly independent the equation

k
i=1

αi

ti
K

abpb =

m
j=1

βj
sj

V
a

has only trivial solutions (αi, βj) for almost any covector p. Thus the integrals (
ti
I |i =

1, . . . , k) and (
sj

L |j = 1, . . . ,m) are functionally independent.

1.2 Quantization rules
We adopt the quantization rules introduced by B. Carter [5] and C. Duval and G. Valent
[7, §3], see these and their references for a reasoning and more details. It is sufficient
for our purposes to recall the quantization formulae they give: for a homogeneous
polynomial Pm : T ∗M → R of degree m we construct its symmetric contravariant
tensor via ♯ and compose with the covariant derivative:

P0 →→ P̂0
def
= P ♯

0Id

P1 →→ P̂1
def
=

i

2
((P ♯

1)
j ◦ ∇j +∇j ◦ (P ♯

1)
j)

P2 →→ P̂2
def
= −∇j ◦ (P ♯

2)
jk ◦ ∇k

P3 →→ P̂3
def
= − i

2
(∇j ◦ (P ♯

3)
jkl ◦ ∇k ◦ ∇l +∇j ◦ ∇k ◦ (P ♯

3)
jkl ◦ ∇l)

(59)

For polynomials that are not homogeneous the quantization shall be done by quantizing
the homogeneous parts and adding the results.
In the previous sections we have been considering polynomials of degree two on the
cotangent bundle of degree at most two and covariant tensors of valence at most (2, 0).
These correspond to differential operators of degree at most two. But the commutator
of two such second order operators generally is an operator of order three. Later on
we can facilitate the expression for the commutator of the quantum operators of two
polynomials of degree two by using the quantum operator of the Poisson bracket of the
two polynomials of degree two.
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2 Results
Most of the results and proofs that are presented in this work mostly have been
prepublished in [15].
Whenever we are dealing with a c-compatible structure we shall denote the real
dimension of the manifold by 2n.

2.1 Quantum integrals of the geodesic flow
The main result of this work is a quantum version of theorem 5: using the quantization
rules (59) from [5] and [7] we construct differential operators from symmetric covariant
tensors and show that these differential operators commute.

Let (g, J,A) be c-compatible and
t

K,
t

I denote the associated Killing tensors and integrals
of the geodesic flow. By (59) their associated quantum operators are:

t

Î (f)
def
= −∇j◦

t

K
jk ◦ ∇kf

(The differing letters I and K must not confuse the reader, for
t

I ♯ =
t

K.)

Theorem 11 Let (g, J,A) be c-compatible. Then for any pair (v, w) the operators
v

Î

and
w

Î commute, i.e. [
v

Î ,
w

Î ] = 0

This is a new result for both the Riemannian as well as the pseudo-Riemmanian case.
We remind the reader that for c-compatible structures there also exist integrals of
the geodesic flow that are linear in momenta. We will see that their corresponding
quantum operators also commute with each other and with the quantum operators of
the integrals that are quadratic in momenta, see theorem 13 and its proof, where the
potential is zero.

Theorem 12 Let (g,A) be projectively compatible. Then for any pair (v, w) the

operators
v

Î and
w

Î commute, i.e. [
v

Î ,
w

Î ] = 0

Remark 10 Theorem 12 was already proven by V. Matveev [11, 12]. The proof that
we give however only uses C3-smoothness whereas the original proof used C8. The
proof that will be given here runs in parallel with the proof of theorem 11. A series of
remarks to the proof of theorem 11 will thus provide the proof of theorem 12, giving the
intermediate steps for the projective case and pointing out the analogues and differences.

2.2 Addition of potential | Natural Hamiltonian systems
We improve the result of theorem 11 by adding potential terms to these second order
differential operators, finding commuting quantum observables for certain natural
Hamiltonian systems.
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Theorem 13 Let (g, J,A) be c-compatible. Let

t

Î
def
= −∇j ◦

t

K
jk ◦ ∇k,

t

K
ij def

=

det(tId−A) (tId−A)−1i

lg
lj

be as in theorem 11.
Let

t

L̂=
i

2
(∇j◦

t

V
j+

t

V
j ◦ ∇j),

t

V
j = Jj

kg
ki∇i


det(tId−A) (60)

be the differential operators associated with the canonical Killing vector fields of g. Let
nc

E= {ϱ1, . . . , ϱr} be the set of non-constant eigenvalues of A. Let
c

E= {ϱr+1, . . . , ϱr+R}
be the set of constant eigenvalues and E =

nc

E ∪
c

E. Denote by m(ϱi) the algebraic

multiplicity of ϱi. Let the family of potentials
t

U , parametrized by t, be given by

t

U=

r+R
i=1


ϱl∈E\{ϱi}

(t− ϱl)
m(ϱl)/2

(ϱi − ϱl)m(ϱl)/2
(t− ϱi)

m(ϱi)/2−1fi (61)

with d fl ◦A = ϱl d fl for all l = 1, . . . , r +R and with d fl proportional to d ϱl for all

l for which ϱl is non-constant. Let associated operators
t

Û act on functions by mere

multiplication, i.e. for any point p we have (
t

Û (f))(p) =
t

U (p)f(p). Then the operators

t

Q̂
def
=

t

Î +
t

Û ,
t

L̂ (62)

commute within the one-parameter-families as well as crosswise, i.e. for all values of
t, s ∈ R:

[
t

Q̂,
s

Q̂] = [
t

Q̂,
s

L̂] = [
t

L̂,
s

L̂] = 0 (63)

Remark 11 Since
t

V j = Jj
kg

ki∇i


det(tId−A) is a Killing vector field for any choice

of the real parameter t [4, §5], we have
t

L̂= i
2 (∇j◦

t

V j+
t

V j ◦ ∇j) = i
t

V j ◦ ∇j.

Remark 12

1. We do not discuss whether the
t

U are smooth at all points of the manifold.
Smoothness is guaranteed at points that have a neighbourhood in which the number
of different eigenvalues is constant (see the definition 8 of regular points below),
provided that the fi are smooth.

2. Formula (61) generally allows
t

U to be complex-valued. The conditions under

which
t

U is real for any choice of t ∈ R are the following: for any real eigenvalue ϱi
of A the corresponding function fi must be real-valued. For all pairs (ϱi, ϱj = ϱ̄i)
of complex-conjugate eigenvalues of A the corresponding functions fi and fj must
be complex conjugate to each other: fi = f̄j.
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3. The potentials that are admissible to be added to the quantum operators are the
same that may be added to the Poisson commuting integrals. In the proof we
show that the quantization imposes no stronger conditions on the potential than
classical integrability and then use the conditions imposed by the Poisson brackets
to find the allowed potentials.

Theorem 14 Let (g, J,A) be c-compatible and A semi-simple. Let
t

Î,
t

L̂ be as in
theorem 13. Then, for the operators

t

Q̂
def
=

t

Î +
t

Û and
t

L̂ (64)

the commutation relations [
t

Q̂,
s

Q̂] = [
t

Q̂,
s

L̂] = 0 are satisfied if and only if the potentials
are of the form (61) with the sole exception that a function of t alone may be added to
t

U .

Corollary 14.1 Let (g, J,A),
t

Î,
t

L̂,
t

Û be as in theorem 13. Let Î(l), L̂(l), Û(l) be the

coefficients of tl in
t

Î ,
t

L̂,
t

Û respectively. Then the commutation relations

[
t

Î +
t

Û , Î(l) + Û(l)] = [
t

Î +
t

Û , L̂(l)] = [
t

L̂, Î(m) + Û(m)]

= [
t

L̂, L̂(l)] = [
t

L̂, Î(m) + Û(m)] = 0 (65)

[Î(l) + Û(l), Î(m) + Û(m)] = [L̂(l), L̂(m)] = [Î(l) + Û(l), L̂(m)] = 0 (66)
hold true for any value of t and any values l,m ∈ {1, . . . , n− 1}.
Equations (66) are equivalent to

[
t

Î +
t

Û ,
s

Î +
s

Û ] = [
t

L̂,
s

L̂] = [
t

Î +
t

Û ,
s

L̂] = 0 (67)

Equations (65), (66), (67) remain true if a function of t alone is added to
t

Û and

constants c(l) are added to Û(l). If all eigenvalues of A are non-constant and
t

Î ,
t

V̂

are as in theorem 13 then no other than the described Û(l) can be found such that the
commutation relations above hold.

2.3 Simultaneous eigenfunctions | Separation of variables
Lastly, we shall show how the search for simultaneous eigenfunctions of the operators can
be reduced to differential equations in lower dimension in appropriate coordinates around
regular points. In particular if all eigenvalues of A are non-constant we can reduce it
to ordinary differential equations only. Moreover: the case where all eigenvalues of A
are non-constant provide an example of reduced separability of Schrödinger’s equation
as described in [1].
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Definition 9 (Local normal coordinates) Let (g, J,A) be c-compatible on M. A
local normal coordinate system for M is a coordinate system where (g, J,A) assume
the form of example 1 (see below). Existence of such coordinates in the neighbourhood
of regular points is guaranteed by theorem 1.6 in [3].

Example 1 (General example for c-compatible structures (g, J,Ω, A)) [3, Ex-
ample 5] Let 2n ≥ 4 and consider an open subset W of R2n of the form W =
U × V × S1 × . . .× SL × SL+1 × . . .× SL+Q for open subsets V,U ⊆ Rr, Sγ ⊆ R4mcγ

for γ = 1, . . . , L and Sγ ⊆ R2mcγ for γ = L+ 1, . . . , L+Q. Let the coordinates on U
be separated into l complex coordinates z1 . . . zl and q real coordinates xl+1, . . . xl+q and
introduce the tuple (χ1, . . . χr) = (z1, z̄1, . . . , zl, z̄l, xl+1, . . . xl+q). Suppose the following
data is given on these open subsets

• Kähler structures (gγ , Jγ ,Ωγ) on Sγ for γ = 1, . . . , L+Q

• For each γ = 1, . . . , L+Q, a parallel hermitian endomorphism Aγ : TSγ → TSγ

for (gγ , Jγ). For γ = 1, . . . , L the endormorphism Aγ has a pair of complex
conjugate eigenvalues cγ , c̄γ of equal algebraic multiplicity m(cγ) = m(c̄γ). For
γ = L + 1 . . . L + Q the endomorphism Aγ has a single real eigenvalue cγ of
algebraic multiplicity m(cγ).

• Holomorphic functions σj(zj) for 1 ≤ j ≤ l and smooth functions σj(xj) for
l + 1 ≤ j ≤ r.

Moreover, we choose 1-forms α1, . . . , αr on S = S1 × · · · × SN that satisfy

dαi = (−1)i
L+Q
γ=1

Ωγ(A
r−i
γ ·, ·) (68)

To facilitate the expressions for the c-compatible structure that will be constructed, the
following expressions shall be introduced: the tuple

E=(ϱ1, . . . , ϱn)=(σ1, σ̄1, . . . , σl, σ̄l, σl+1, . . . , σl+q, c1, c̄1, . . . , cL, c̄L, cL+1, . . . , cL+Q)

contains the designated eigenvalues for A. Their algebraic multiplicities shall be denoted
by

(m(ϱl)|l = 1, . . . , r +R) = (2, . . . , 2,m(c1),m(c̄1), . . .)

The non-constant eigenvalues shall be collected in order in
nc

E= (ϱ1, . . . , ϱr) = (σ1, σ̄1, . . . , σl, σ̄l, σl+1, . . . , σl+q)

and the collection of constant eigenvalues shall be referenced as
c

E= E\
nc

E. The quantity
∆i for i = 1, . . . , r is given by ∆i =


ϱ∈

nc
E\{ϱi}

(ϱi − ϱ). The function µi denotes the

elementary symmetric polynomial of degree i in the variables
nc

E and µi(ϱ̂s) denotes the
elementary symmetric polynomial of degree i in the variables

nc

E \{ϱi}. We shall further
define the one-forms ϑ1, . . . ϑr on W via ϑi = d ti + αi.
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Suppose that at every point of W the elements of
nc

E are mutually different and different
from the constants c1, c̄1, . . . , cR and their differentials are non-zero. Then (g, ω, J)
given by the formulae

g =

r
i=1

εi∆i dχ
2
i +

r
i=0

(−1)iµi

L+Q
γ=1

gγ(A
r−i
γ ·, ·)

+

l
i,j=1


r

s=1

µi−1(ϱ̂s)µj−1(ϱ̂s)

εs∆s


∂ϱs
∂χs

2

ϑiϑj

Ω =

r
i=1

dµi ∧ ϑi +
r

i=0

(−1)iµi

L+Q
γ=1

Ωγ(A
r−i
γ ·, ·)

(69)

dχi ◦ J =− 1

εi∆i

∂ϱi
∂χi

r
j=1

µj−1(ϱ̂i)ϑj , ϑi ◦ J = (−1)i−1
r

j=1

εjϱ
r−i
j


∂ϱj
∂χj

−1

dχj

(70)

is Kähler, where (ε1, . . . , ε2l, ε2l+1, . . . , εr) = (−1/4, . . . ,−1/4,±1, . . . ,±1) determine
the signature of g.
With local coordinates

γ
y on Sγ we write αi =


γ,q

γ
αiq d

γ
yq and

Aγ =


p,q(Aγ)
q
p d

γ
yp ⊗∂γ

yq

. Then the endomorphism A given by

A =

r
s=1

ϱs dχs ⊗ ∂χs
+

r
i,j=1

(µiδ1j − δi(j−1))ϑi ⊗ ∂tj

+

L+Q
γ=1


p,q

(Aγ)
q
p d

γ
yp ⊗


∂γ
yq

−
r

i=1

γ
αiq ∂ti


(71)

is c-compatible with (g, J,Ω).

Theorem 15 (Existence of local normal coordinates) [3, Theorem 1.6 / Exam-
ple 5] Suppose (g,J,A) are c-compatible on M of real dimension 2n.
Assume that in a small neighbourhood W ⊆ M0 of a regular point, A has

• r = 2l+ q non-constant eigenvalues on W which separate into l pairs of complex-
conjugate eigenvalues ϱ1, ϱ̄1, . . . , ϱl, ϱ̄l :W → C and q real eigenvalues ϱl+1, . . . ,
ϱl+q :W → R,

• R = 2L+Q constant eigenvalues which separate into L pairs of complex conjugated
eigenvalues c1, c̄1, . . . , cL, c̄L and Q real eigenvalues cL+1, . . . , cL+Q

then the Kähler structure (g, J,Ω) and A are given on W by the formulae of example 1.
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Theorem 16 (Simultaneous eigenfunctions) Let (g, J,A) be c-compatible on M.
Let A be semi-simple and let all constant eigenvalues be real. Let (g, J,Ω, A) be given
by the formulae of example 1 and adopt the naming conventions of example 1.

Let ψ be a simultaneous eigenfunction of

t

Q̂
def
= −∇j ◦

t

K
jk ◦ ∇k+

t

Û ,
t

K
ij def

=

det(tId−A) (tId−A)−1i

lg
lj

and
t

L̂=
i

2
(∇j◦

t

V
j+

t

V
j ◦ ∇j),

t

V
j = Jj

kg
ki∇i


det(tId−A)

for all t, where

t

U=

r
i=1

r
l=1,l ̸=i

(t− ϱl)
m(ϱl)/2

(ϱi − ϱl)m(ϱl)/2
(t− ϱi)

m(ϱi)/2−1fi (72)

with d fi ◦A = ϱi d fi. Then there exist constants λ̃0, . . . , λ̃r+R−1, ω1, . . . , ωr, such that
ψ satisfies the following ordinary differential equations:

−1

εkϱ′k
∂χk

ϱ′k


ϱγ∈
c
E

(ϱk − ϱγ)
m(ϱγ)/2∂χk

ψ

+

r
i,j=1

εk(−ϱk)2r−i−j

(ϱ′k)
2


ϱγ∈

c
E

(ϱk − ϱγ)
m(ϱγ)/2ωiωjψ + frψ =

n−1
i=0

λiϱ
i
kψ

i∂tkψ =ωkψ

(73)

for k = 1, . . . , r, where the λi are given by

n−1
i=0

λis
i =


ϱγ∈

c
E

(s− ϱγ)
m(ϱγ)/2−1

r+R−1
j=0

λ̃j (74)
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and ψ also fulfills the partial differential equations:

r+R−1
j=0

λ̃jϱ
j
γψ =−


ϱc∈

c
E\{ϱγ}

(ϱγ − ϱc)


1

| det gγ |1/2
∂ γ
yi
gijγ | det gγ |1/2∂ γ

yj
ψ

−i
r

q=1

1

| det gγ |1/2
∂ γ
yi
gijγ | det gγ |1/2

γ
αqj ωqψ

−i
r

q=1

gijγ
γ
αqi ωq∂ γ

yj
ψ

−
r

p,q=1

gijγ
γ
αqi

γ
αpj ωqωpψ



+
1

ϱc∈
c
E\{ϱγ}

(ϱγ − ϱc)m(ϱc)/2−1
fγψ

(75)

for γ = r + 1, . . . , r +R.
The converse is also true: if a function ψ satisfies equations (73) and (75) for some

constants λ̃0, . . . , λ̃r+R−1, ω1, . . . , ωr, then it is an eigenfunction of
t

Q̂ and
t

L̂.

A particular application of theorem 16 is in the treatment of the Laplace-Beltrami
operator in the case where the number of integrals is maximal:

Theorem 17 Let M be compact and without boundary. Let (g, J,Ω) a Kähler structure
on M and g be positive definite. Let A be c-compatible with (g, J,Ω). Let all eigenvalues
of A be non-constant.
Then there exists a countable basis (ψm,m ∈ N) in the space of square integrable
functions L2(M), such that in any local normal coordinates (χ1, . . . , χn, t1, . . . , tn) the
elements ψm of the basis can be written as

ψm =

n
k=1

ψm,k

n
l=1

exp(−iωm,ltl) (76)

where for k = 1, . . . , n, ψm,k (here the comma only separates two indices and is not a
covariant derivative) is a function of the single variable χk that satisfies the ordinary
differential equation

−1

εkϱ′k
∂χk

ϱ′k∂χk
ψm,k +

r
i,j=1

εk(−ϱk)2r−i−j

(ϱ′k)
2

ωiωjψm,k =

n−1
i=0

λm,iϱ
i
kψm,k (77)

and (ωm,1, . . . , ωm,n, λm,0, . . . , λm,n−1) (here as well the comma only separates indices,
furthermore the λs here is not related to the trace of A) are real constants. Furthermore
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we have that

∆ψm =λm,n−1ψm

t

Î ψm =

n−1
i=0

tiλm,i

s

L̂ ψm =

n
i=1

sn−iωm,i

(78)

Remark 13 (for the projective case) A similar statement to theorem 17 can be
found in [12].

3 Proof of the results

3.1 Quantum integrals of the geodesic flow | Proof of theorem 11
and 12

We will be working in the c-projective setting. The differences between the projective
and the c-projective setting will be pointed out in remarks.

The family
t

Î is a polynomial in t and therefore continuous. It is therefore sufficient to
show that the commutator vanishes for all v and w that are are not in the spectrum of
A. Otherwise we can consider two sequences (vn)n∈N and (wn)n∈N that converge to v
and w where none of the elements of the sequence are in the spectrum of A. Then for

each of the pairs (vn, wm) from the sequences the commutator [
vn

Î ,
wm

Î ] will vanish and
consequently it will vanish in the limit (m,n) → ∞.
Equations (3.12), (3.13) and (3.14) in [7] give us the general formula for the commutator
of two operators formed from arbitrary homogeneous polynomials P2, Q2 of degree two
in momenta on T ∗M: 

P̂2, Q̂2


=i {P2, Q2}+

2

3
(∇jB

jk
P2,Q2

)∇k (79)

Here {P2, Q2} is the Poisson bracket of the two homogeneous polynomials P2 and Q2

(of degree two) on T ∗M. {P2, Q2} is a polynomial of degree three in momenta. We
recall that the “hat” over {P2, Q2} is explained in (59): This polynomial is mapped to
a differential operator according to

·̂ : P3 →→ P̂3
def
= − i

2
(∇j ◦ P jkl

3 ◦ ∇k ◦ ∇l +∇j ◦ ∇k ◦ P jkl
3 ◦ ∇l)

where for a given polynomial P3 the quantities P jkl
3 are chosen such that they are

symmetric and P3 = P jkl
3 pjpkpl.

The tensor Bkl
P2,Q2

is given by the formula
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Bjk
P2,Q2

= P l[j∇l∇mQ
k]m + P l[jR

k]
mnlQ

mn − (P ↔ Q)

−∇lP
m[j∇mQ

k]l − P l[jRlmQ
k]m (80)

The brackets around the indices mean taking the antisymmetric part. In the first term
on the second line ∇l only acts on P . The subtraction of (P ↔ Q) is meant to act
upon the two leftmost terms. For the two rightmost terms the antisymmetrization
w.r.t. (j ↔ k) is the same as if one were to antisymmetrize these terms w.r.t. (P ↔ Q).
For formula (80) it is important that the sign of the Riemann tensor is chosen such that
Ri

jkl = ∂kΓ
i
lj − ∂lΓ

i
kj + Γi

ksΓ
s
lj − Γi

lsΓ
s
kj . But the reader may forget about it at once

because it is not needed for our further investigations, as will be seen in the upcoming
lemmata 18 and 19.

We plug the operators
v

Î and
w

Î into formula (79). Using theorem 5 we get:

[
v

Î ,
w

Î ] =
2

3
(∇jB

jk
v
I,

w
I
)∇k (81)

Remark 14 i {P2, Q2} in formula (79) is a differential operator of order 3 while the
other term on the right hand side is a differential operator of order one. Therefore it is
a necessary condition for the quantities

v

I and
w

I to Poisson commute in order for their
associated differential operators to commute. This is of course a long known fact.

Remark 15 (for the projective case) The fact that
t

K is a family of Killing tensors
polynomial of degree n− 1 in t and that their corresponding quadratic polynomials on
T ∗M Poisson commute pairwise can be found in [2]. Employing this instead of theorem
5 brings proof in the projective case to the point where only equation (82) needs to be
verified.

It remains to prove that

∇jB
jk
v
I,

w
I
= ∇j


(
v

K
l[j∇l∇m

w

K
k]m − (v ↔ w))−∇l

v

K
m[j∇m

w

K
k]l

+(
v

K
l[jR

k]
mnl

w

K
mn − (v ↔ w))−

v

K
l[jRlm

w

K
k]m

= 0 (82)

The proof will be split into three steps: first we show that
v

K l[jR
k]
mnl

w

Kmn−(v ↔ w)=0.

In the second step we show that
v

K l[jRlm

w

K k]m = 0. This will be done in the lemmata
18 and 19. These will reduce (82) to

∇j

 v

K
l[j∇l∇m

w

K
k]m − (v ↔ w)−∇l

v

K
m[j∇m

w

K
k]l

= 0 (83)

which we will show in the last step.

Lemma 18
v

K l[jR
k]
mnl

w

Kmn − (v ↔ w) = 0
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Proof of lemma 18: It follows from item 2 of lemma 4 that in corollary 4.1 we may
take S =


det(wId−A)(wId−A)−1, i.e. Sij =

w

K ij . Plugging this into equation (22)
and multiplying with


det(vId−A) gives:

2
v

K
l[jR

k]
mnl

w

K
mn = 0 (84)

Interchanging v and w, subtracting the result from this and dividing by 2 proves lemma
18.

Remark 16 (for the projective case) Lemma 13 is true in the projective and the
c-projective case. The proof for the projective case only requires to take
S = det(wId−A)(wId−A)−1 and multiplying with det(vId−A) instead of

det(vId−A).

Lemma 19
v

K l[jRlm

w

K k]m = 0

Proof of lemma 19 If we let S = Id in corollary 4.1, then in formula (22) the
multiplication with Sij = gij means contraction of the Riemann tensor to the negative
of the Ricci tensor. Raising and lowering indices yields that (vId − A)−1 commutes
with the Ricci tensor when both are considered as endomorphisms on the space of
vector fields:

(vId−A)−1r
lR

k
r − (vId−A)−1k

rR
r
l = 0 (85)

Of course (wId−A)−1 commutes with (vId−A)−1 and the Ricci tensor as well, so by
multiplying (85) with (wId−A)−1l

j and using the commutativity gives

(wId−A)−1k
rR

r
l (vId−A)−1l

j − (vId−A)−1k
rR

r
l (wId−A)−1l

j = 0 (86)

After multiplication of (86) with

det(vId−A) det(wId−A) and raising and lowering

indices, lemma 19 is proven.

Remark 17 (for the projective case) Replacing the multiplication of


det(vId−A)
det(wId−A) with det(vId−A) det(wId−A) is the only difference between the proof

of lemma 19 in the projective and c-projective case.

Having established the lemmata 18 and 19 we now compute the terms
v

K l[j∇l∇m

w

K k]m

− (v ↔ w) and ∇m

v

K l[j∇l

w

K k]m separately and then show that (83) is fulfilled to
prove theorem 11.
Using the shorthand introduced in (43) we have already established that the covariant

derivative of the Killing-tensor
t

K equals (see equation (45)):

∇k

t

K
jl =


det(tId−A)[−2

t

M
s
kλs

t

M
j
rg

rl

+
t

M
j
pλ

p
t

M
l
k+

t

M
j
k

t

M
l
qλ

q−
t

M
j
pg

psλ̄s
t

M
l
qJ

q
k−

t

M
l
rg

rqλ̄q
t

M
j
pJ

p
k ]

(87)
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Contracting the indices k and l we get:

∇k

t

K
jk =


det(tId−A)[−2

t

M
j
l

t

M
l
sλ

s+
t

M
j
lλ

l tr(
t

M )] (88)

For the derivative of this expression we receive

∇l∇m

t

K
km =


det(tId−A)[2

t

M
r
l λrλsg

ps
t

M
m
p

t

M
k
m + 2

t

M
q
l

t

M
r
qλrλsg

ps
t

M
k
p

+ 2
t

M
r
l λ̄rλ̄sg

ps
t

M
m
p

t

M
k
m + 2

t

M
q
l

t

M
r
qλ̄rλ̄sg

ps
t

M
k
p

−
t

M
r
l λrλsg

sp
t

M
k
p tr(

t

M )−
t

M
r
l λ̄rλ̄sg

sp
t

M
k
p tr(

t

M )

− 2
t

M
k
l g(

t

M Λ,
t

M Λ)− 2
t

M
k
r

t

M
r
l g(

t

M Λ,Λ)+
t

M
k
l g(

t

M Λ,Λ) tr(
t

M )

− 2λs,lg
rs

t

M
p
r

t

M
k
p + λs,lg

ps
t

M
k
p tr(

t

M )]

(89)

We shall again denote by (
w

M Λ)k the k-th component of
w

M (Λ). Now multiplying the
previous equation with

v

K lj and antisymmetrizing with respect to (j ↔ k) and (v ↔ w)
gives

v

K
l[j∇l∇m

w

K
k]m − (v ↔ w) =

1

2


det(vId−A)


det(wId−A)

· [[[2(
v

M
w

M Λ)j(
w

M
2Λ)k + 2(

v

M
w

M
2Λ)j(

w

M Λ)k

− (
v

M
w

M Λ)j(
w

M Λ)k tr(
w

M )]

+ (Λ ↔ Λ̄)]− (j ↔ k)]− (v ↔ w)

(90)

Here (Λ ↔ Λ̄) indicates that the previous bracket shall be added with Λ replaced by
Λ̄, (j ↔ k) indicates antisymmetrization with respect to j and k, likewise for (v ↔ w).
In (90) the terms from (89) involving second derivatives of λ have cancelled out as
a consequence of lemma 4, item 2. When forming the right hand side expression
of (90) the terms of the second to last row of (89) cancel each other out after the
antisymmetrization (j ↔ k) due to (vId − A) and (wId − A) commuting and being
self-adjoint to g.

Remark 18 (for the projective case) To get the formula for
v

K l[j∇l∇m

w

K k]m −
(v ↔ w) in the projective case we perform the same steps, using (20) instead of the
c-projective formula (17). The next three equations give projective analogues of the
formulae (87), (89) and (90):

∇k

t

K
jl =det(tId−A)[−2

t

M
s
kλs

t

M
j
rg

rl+
t

M
j
pλ

p
t

M
l
k+

t

M
j
k

t

M
l
qλ

q] (91)
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∇l∇m

t

K
km =det(tId−A)[

t

M
r
l λrλsg

ps
t

M
m
p

t

M
k
m+

t

M
q
l

t

M
r
qλrλsg

ps
t

M
k
p

−
t

M
r
l λrλsg

sp
t

M
k
p tr(

t

M )

−
t

M
k
l g(

t

M Λ,
t

M Λ)−
t

M
k
r

t

M
r
l g(

t

M Λ,Λ)

+
t

M
k
l g(

t

M Λ,Λ) tr(
t

M )

− λs,lg
rs

t

M
p
r

t

M
k
p + λs,lg

ps
t

M
k
p tr(

t

M )]

(92)

v

K
l[j∇l∇m

w

K
k]m − (v ↔ w) =

1

2
det(vId−A) det(wId−A)

· [[(
v

M
w

M Λ)j(
w

M
2Λ)k + (

v

M
w

M
2Λ)j(

w

M Λ)k

− (
v

M
w

M Λ)j(
w

M Λ)k tr(
w

M )]

− (j ↔ k)]− (v ↔ w)

(93)

Resuming the proof in the c-projective case we use
v

M −
w

M = (w − v)
v

M
w

M (see
equations (46), (47)), as well as the trace applied to this matrix identity to expand
(90):

v

K
l[j∇l∇m

w

K
k]m − (v ↔ w) =

1

2


det(vId−A)


(wId−A) · [[[(w − v)−1

[2(
v

M Λ)j(
w

M
2Λ)k − 2(

w

M Λ)j(
w

M
2Λ)k

+ 2(
v

M
w

M Λ)j(
w

M Λ)k − 2(
w

M
2Λ)j(

w

M Λ)k

− (
v

M Λ)j(
w

M Λ)k tr(
w

M ) + (
w

M Λ)j(
w

M Λ)k tr(
w

M )]]

− (v ↔ w)]− (j ↔ k)] + (Λ ↔ Λ̄)

We strike out terms that cancel after antisymmetrization w.r.t. (j ↔ k):

. . . =
1

2


det(vId−A)


det(wId−A) · [[[(w − v)−1 (94)

· [2(
v

M Λ)j(
w

M
2Λ)k + 2(

v

M
w

M Λ)j(
w

M Λ)k

− (
v

M Λ)j(
w

M Λ)k tr(
w

M )]

− (v ↔ w)]− (j ↔ k)] + (Λ ↔ Λ̄)
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We expand (v ↔ w) and (j ↔ k). The sign of the antisymmetrization is caught in the
prefactor (w − v)−1:

. . . =
1

2


det(vId−A)


det(wId−A)(w − v)−1 (95)

· [2(
v

M Λ)j(
w

M
2Λ)k + 2(

w

M Λ)j(
v

M
2Λ)k

+ 2(
v

M
w

M Λ)j(
w

M Λ)k + 2(
w

M
v

M Λ)j(
v

M Λ)k

− 2(
v

M Λ)k(
w

M
2Λ)j − 2(

w

M Λ)k(
v

M
2Λ)j

− 2(
v

M
w

M Λ)k(
w

M Λ)j − 2(
w

M
v

M Λ)k(
v

M Λ)j

− (
v

M Λ)j(
w

M Λ)k tr(
w

M )− (
w

M Λ)j(
v

M Λ)k tr(
v

M )

+ (
v

M Λ)k(
w

M Λ)j tr(
w

M ) + (
w

M Λ)k(
v

M Λ)j tr(
v

M )]

+ (Λ ↔ Λ̄)

We can now apply
v

M −
w

M = (w − v)
v

M
w

M and tr(
v

M )− tr(
w

M ) = (w − v) tr(
v

M
w

M )
in the opposite direction as before, pairing terms (1,8), (2,7), (3,6), (4,5), (9,12), (10,11)
in the bracket:

v

K
l[j∇l∇m

w

K
k]m − (v ↔ w) =

1

2


det(vId−A)


det(wId−A) (96)

· [[−2(
v

M
2

w

M Λ)j(
w

M Λ)k − 2(
v

M Λ)j(
v

M
w

M
2Λ)k

+ (
v

M Λ)j(
w

M Λ)k tr(
v

M ·
w

M )]

− (j ↔ k)] + (Λ ↔ Λ̄)

(97)

Remark 19 (for the projective case) Performing the same steps on (93) gives

v

K
l[j∇l∇m

w

K
k]m − (v ↔ w) =

1

2
det(vId−A) det(wId−A)

· [[−(
v

M
2

w

M Λ)j(
w

M Λ)k − (
v

M Λ)j(
v

M
w

M
2Λ)k

+ (
v

M Λ)j(
w

M Λ)k tr(
v

M ·
w

M )]− (j ↔ k)]

(98)

for the projective scenario.

We have now worked
v

K l[j∇l∇m

w

K k]m − (v ↔ w) into a suitable form. From (87) we
now compute ∇m

v

K l[j∇l

w

K k]m:

∇m

v

K
l[j∇l

w

K
k]m =

1

2


det(vId−A)


det(wId−A)

· [[−2(
v

M
2

w

M Λ)j(
w

M Λ)k − 2(
v

M Λ)j(
v

M
w

M
2Λ)k

+ (
v

M Λ)j(
w

M Λ)k tr(
v

M ·
w

M )]

− (j ↔ k)]− (Λ ↔ Λ̄)

(99)
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In this equation (j ↔ k) yields the same result as (v ↔ w).

Remark 20 (for the projective case) By means of (91) the projective analogue of
(99) evaluates to

∇m

v

K
l[j∇l

w

K
k]m =

1

2
det(vId−A) det(wId−A)

· [[−2(
v

M
2

w

M Λ)j(
w

M Λ)k − 2(
v

M Λ)j(
v

M
w

M
2Λ)k

+ (
v

M Λ)j(
w

M Λ)k tr(
v

M ·
w

M )]− (j ↔ k)]

(100)

We see that the right hand side expression is equal to the right hand side expression
of (98). Thus if we plug (98) and (100) into (83) then both terms cancel each other
and (83) is satisfied without even having to carry out the differentiation, concluding the
proof of theorem 12. The fact that in the projective case Bjk

v
I,

w
I

vanishes, whereas in the

c-projective case ∇jB
jk
v
I,

w
I

vanishes but Bjk
v
I,

w
I

does not is the most significant difference

between the projective and the c-projective case.

We now compare (94) and (99): they are the same except the first is symmetric with
respect to (Λ ↔ Λ̄) while the latter is antisymmetric. Subtracting both consequently
yields:

v

K
l[j∇l∇m

w

K
k]m−(v ↔ w)−∇m

v

I
l[j∇l

w

I
k]m

=

det(vId−A)


det(wId−A)

· [−2(
v

M
2

w

M Λ̄)j(
w

M Λ̄)k − 2(
v

M Λ̄)j(
v

M
w

M
2Λ̄)k

+ (
v

M Λ̄)j(
w

M Λ̄)k tr(
v

M ·
w

M )]− (v ↔ w)

(101)

It remains to show that (83) is fulfilled, that is to apply ∇j to this expression and show
that this vanishes. In the computation we use

• the compatibility condition (17)

• Jacobi’s formula for the derivative of the determinant

• d(A−1) = −A−1 · d(A) ·A−1

to expand the left hand side expression of (83). We then immediately strike out terms
that vanish individually due to the self-adjointness of A with respect to g and the
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antisymmetry of J with respect to g:

∇j(
v

K
l[j∇l∇m

w

K
k]m−(v ↔ w)−∇m

v

K
l[j∇l

w

K
k]m)

=− 2

det(vId−A)


det(wId−A)

· [2g(
v

M
w

M Λ̄,
v

M
w

M Λ̄)(
w

M Λ−
v

M Λ)k

− 2g(
v

M
w

M Λ̄,
w

M Λ̄−
v

M Λ̄)(
v

M
w

M Λ)k

+ 2g(Λ̄,
v

M
w

M Λ̄)](
v

M
w

M (
w

M Λ−
v

M Λ))k

− 2g(Λ̄,
w

M Λ̄−
v

M Λ̄)(
v

M
2

w

M
2Λ)k

+ λ̄sg
ls

v

M
m
l

w

M
t
m

v

M
j
t λ̄p,jg

pq
w

M
k
q

− λ̄sg
ls

w

M
m
l

v

M
t
m

w

M
j
t λ̄p,jg

pq
v

M
k
q

+ λ̄sg
ps

v

M
j
pλ̄t,jg

tr
w

M
l
r

v

M
m
l

w

M
k
m

− λ̄sg
ps

w

M
j
pλ̄t,jg

tr
v

M
l
r

w

M
m
l

v

M
k
m

+ tr(
v

M
w

M ) · [g(Λ̄,
v

M
w

M Λ̄)(
w

M Λ−
v

M Λ)k

− g(Λ̄,
w

M Λ̄−
v

M Λ̄)(
v

M
w

M Λ)k

+ λ̄sg
ps

v

M
j
pλ̄t,jg

tr
w

M
k
r − λ̄sg

ps
w

M
j
pλ̄t,jg

tr
v

M
k
r ]

(102)

As a consequence of item 2 of lemma 4 the terms involving second derivatives of λ
cancel each other out in this expression. The other terms cancel each other out after
applying

v

M −
w

M = (w − v)
v

M
w

M . Thus theorem 11 is proven.

3.2 Addition of potential | Proof of theorem 13 and 14
Throughout this section we will be working on a c-compatible structure (g, J,A).

3.2.1 Four equivalent problems

Lemma 20 Let K = gijpipj,

t

I
def
=

t

K
jkpjpk,

t

K
ij def

=


det(tId−A) (tId−A)−1i

lg
lj

and
t

L=
t

V
jpj ,

t

V
j = Jj

kg
ki∇i


det(tId−A)

as well as the corresponding differential operators according to the quantization rules
stated earlier.
Then the following four problems are equivalent: describe all functions U ,

t

U , such that
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1. {
s

I +
s

U,K + U} = 0 and {
s

I +
s

U,
t

L} = 0 ∀t, s ∈ R

2. [
s

Î +
s

Û , K̂ + Û ] = 0 and [
s

Î +
s

Û ,
t

L̂] = 0 ∀t, s ∈ R

3. {
s

I +
s

U,
t

I +
t

U} = 0 and {
s

I +
s

U,
t

L} = 0 ∀t, s ∈ R

4. [
s

Î +
s

Û ,
t

Î +
t

Û ] = 0 and [
s

Î +
s

Û ,
t

L̂] = 0 ∀t, s ∈ R

Proof of lemma 20: To do so, we show that

i. {
t

I +
t

U,K + U} = 0 ∀t ∈ R ⇔ [
t

Î +
t

Û , K̂ + Û ] = 0 ∀t ∈ R

⇔
t

K i
j
∂U
∂xi = ∂

t
U

∂xj ∀t ∈ R

ii. {
t

I +
t

U,K + U} = 0 ∀t ∈ R ⇔ {
t

I +
t

U,
s

I +
s

U} = 0 ∀s, t ∈ R

iii. {
t

I +
t

U,
s

I +
s

U} = 0 ∀s, t ∈ R ⇔ [
t

Î +
t

Û ,
s

Î +
s

Û ] = 0 ∀s, t ∈ R

⇔
t

K i
j
∂

s
U

∂xi =
s

K i
j
∂

t
U

∂xi ∀s, t ∈ R

iv. {
t

I +
t

U,
s

L} = 0 ∀t, s ∈ R ⇔ [
t

Î +
t

Û ,
s

L̂] = 0 ∀t, s ∈ R
⇔ d

t

U (
s

V ) = 0 ∀s, t ∈ R

It is implied that all equations are to hold for all choices of their parameters, we shall
not specify it each and every time again.
To iii: We use the linearity of the commutator:

[
s

Î +
s

Û ,
t

Î +
t

Û ] = [
s

Î ,
t

Î] + [
s

Î ,
t

Û ] + [
s

Û ,
t

Î] + [
s

Û ,
t

Û ] (103)

The term [
s

Î ,
t

Î] vanishes due to theorem 11 and [
s

Û ,
t

Û ] vanishes trivially since the
operators corresponding to the potentials act merely by multiplication. In [7] or by direct

computation we have [
s

Î ,
t

Û ] =

{
s

I,
t

U}. Consequently [
s

Î +
s

Û ,
t

Î +
t

Û ] =

{
s

I,
t

U}+

{

s

U,
t

I}.
Since quantization is a linear map and only the zero polynomial is mapped to a vanishing

differential operator, we have that [
s

Q̂,
t

Q̂] = 0 if and only if {
s

I,
t

U}+ {
s

U,
t

I} = 0. This in

turn is true if and only if {
s

I,
t

U}♯ + {
s

U,
t

I}♯ = 0. Expressing this in terms of
t

K,
t

U,
s

K,
s

U

and lowering an index and rearranging terms yields
t

K i
j
∂

s
U

∂xi =
s

K i
j
∂

t
U

∂xi . Likewise using

the fact that {
s

I,
t

I} = 0, we have {
t

I +
t

U,
s

I +
s

U} = {
s

I,
t

U}+ {
s

U,
t

I}.
Statement i can be seen analogously to iii since K lies in the span of

t

K.
To ii: It suffices to show the equivalence of the rightmost equations of items i and

iii: Fix an arbitrary value for t in
t

K i
j
∂

s
U

∂xi =
s

K i
j
∂

t
U

∂xi and choose pairwise different
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values (s1, . . . , sn) for s. Add the resulting equations, weighting the ith equation with
(−1)n−1µn−1(ŝi)/


i ̸=j(si − sj). Here µn−1(ŝi) is the elementary symmetric polynomial

of degree n− 1 in the variables (s1, . . . , si−1, si+1, . . . sn). On the right hand side this
gives the coefficient of sn−1 of

s

K which is the identity operator (when considered as a

(1,1)-tensor) acting on the differential of
t

U . On the left hand side we identify the sumn
i=1(−1)n−1µn−1(ŝi)/(


i ̸=j(si − sj))

∂
si
U

∂xi with the differential of U and thus arrive at
t

K i
j
∂U
∂xi = ∂

t
U

∂xj .
For the other direction, consider two arbitrary values s and t and the equations

t

K
i
j

∂U

∂xi
=
∂

t

U

∂xj
,

s

K
i
j

∂U

∂xi
=
∂

s

U

∂xj
(104)

We multiply the first equation with
s

K
j
k, and use the commutativity of

t

K with
s

K
(again considered as mapping one-forms to one-forms):

t

K
j
k

s

K
i
j

∂U

∂xi
=

s

K
j
k

∂
t

U

∂xj
(105)

Now we can use the second equation of (104) to replace
s

K i
j
∂U
∂xi with ∂

s
U

∂xj arriving back

at
t

K i
j
∂

s
U

∂xi =
s

K i
j
∂

t
U

∂xi , as we desired.

To iv: Whenever one applies the quantization rules (59) to a linear polynomial
s

L and

a polynomial
t

I of second degree in the momentum variables on T ∗M and takes the
commutator of the operators, then combining equations (3.8) and (3.9) from [7] gives
us the formula

[
t

Î ,
s

L̂] = i

{
t

I,
s

L} −
i

2
∇j(

t

K
jk∇k(∇l

s

V
l)) (106)

It can be obtained via explicit calculation. The first term on the right hand side

vanishes because {
t

I,
s

L} = 0 (theorem 6). The second term on the right hand side of

(106) acts on functions by mere multiplication. It vanishes in our case because
t

V is a

Killing vector field and thus divergence free. Using [
t

Î ,
s

L̂] = 0 and {
t

I,
s

L} = 0, a direct

calculation immediately reveals that both {
t

I +
t

U,
s

L} = 0 and [
t

Î +
t

Û ,
s

L̂] = 0 reduce to

the same expression, namely d
t

U (
s

V ) = 0 ∀s, t ∈ R, concluding the proof of lemma 20.

Lemma 21 Let (g, J,A) be c-compatible and
t

K be defined as in (36). Consider a
simply connected domain where the number of different eigenvalues of A is constant.
Let A be semi-simple. Let

nc

E= {ϱ1, . . . , ϱr} be the set of non-constant eigenvalues of A.
Let

c

E= {ϱr+1, . . . , ϱr+R} be the set of constant eigenvalues and E =
nc

E ∪
c

E. Denote by
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m(ϱi) the algebraic multiplicity of ϱi. Let U be a function such that
t

K i
j
∂U
∂xi is exact

for all values of t and let
t

U be such that

t

K
i
j

∂U

∂xi
=
∂

t

U

∂xj
(107)

is satisfied for all values of t. Then up to addition of a function of the single variable t

the family of functions
t

U (t, x) may be written as

t

U=

ϱl∈

c
E

(t− ϱl)
m(ϱl)/2−1

t

Ũ (108)

where
t

Ũ is a polynomial of degree r − 1 in t. Equally
t

U can be written as

t

U=

r+R
i=1


ϱl∈E\{ϱi}

(t− ϱl)
m(ϱl)/2

(ϱi − ϱl)m(ϱl)/2
(t− ϱi)

m(ϱi)/2−1fi (109)

where fi are functions on M. The functions fi may however not be chosen arbitrarily.

Proof of lemma 21: Because we assumed that A is semi-simple, we can factorize
t

K

into
t

K=
r+R

l=1 (t− ϱl)
m(ϱl)/2−1

t

K̃, with
t

K̃ being a polynomial of degree r +R− 1.


ϱl∈

c
E

(t− ϱl)
m(ϱl)/2−1

t

K̃ i
j

∂U

∂xi
=
∂

t

U

∂xi
∀t ∈ R (110)

We used that the non-constant eigenvalues ϱ1, . . . , ϱr all have multiplicity 2(lemma
10, item 1). Thus in the product on the left hand side all factors corresponding to
non-constant eigenvalues are equal to 1. We observe that upon addition of a function of

the single variable t to
t

U the equation above is still satisfied. This allows us to choose

an arbitrary point x0 and an arbitrary function U0(t) and assume that
t

U (x0, t) = U0(t).
Since the left hand side of (110) is a polynomial in t and is exact for all t, each of the
coefficients must be exact. This allows us to integrate the terms of (110) individually:

t

U (t, x) = U0(t) +

 x

x0

t

K (dU) = U0(t) +

ϱl∈

c
E

(t− ϱl)
m(ϱl)/2−1

r
i=0

ti
 x

x0

K̃(i)(dU)

(111)
The last step of this calculation makes use of the fact that if ϱl is of multiplicity
m(ϱl) ≥ 4 then ϱl is constant (lemma 10, item 1). The integral is meant to be taken

along any path connecting x0 and x and the K̃(i) is the coefficient of ti in
t

K̃. Again
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t

K̃ and K̃(i) are considered as (1, 1) tensors mapping 1-forms to 1-forms. So for any

value of t the value of
t

U at x is uniquely defined by its value at x0 and the function U .

Formula (111) proves the claim that
t

U can be written in the form (108) where on the
right hand side U0(t) takes the role of the possible addition of a function of t alone.

Evidently, we have
t

Ũ (x) =
r+R

i=0 ti
 x

x0
K̃(i)(dU). Since

t

Ũ is a polynomial of degree
r + R − 1 it is uniquely defined by its values at the r + R different eigenvalues of A.
Via the Lagrange interpolation formula we have

t

Ũ=

r+R
i=1


ϱl∈E\{ϱi}

(t− ϱl)

(ϱi − ϱl)
f̃i (112)

for some funcions f̃i. Introducing fi =


ϱl∈E\{ϱi}(ϱi − ϱl)
m(ϱl)/2−1f̃i the potential U

can be written as

t

U=

r+R
i=1


ϱl∈E\{ϱi}

(t− ϱl)
m(ϱl)/2

(ϱi − ϱl)m(ϱl)/2
(t− ϱi)

m(ϱi)/2−1fi (113)

concluding the proof of lemma 21.

Lemma 22 Let (g, J,A) be c-compatible and
t

K as in (36). Let A be semi-simple. Let
nc

E= {ϱ1, . . . , ϱr} be the set of non-constant eigenvalues of A. Let
c

E= {ϱr+1, . . . , ϱr+R}
be the set of constant eigenvalues and E =

nc

E ∪
c

E. The multiplicity of ϱl is denoted by
m(ϱl). Let

t

U=

r+R
i=1


ϱl∈E\{ϱi}

(t− ϱl)
m(ϱl)/2

(ϱi − ϱl)m(ϱl)/2
(t− ϱi)

m(ϱi)/2−1fi (114)

and let
t

K
i
j

∂U

∂xi
=
∂

t

U

∂xj
(115)

be satisfied for all values of t. Then for all values of i the relation d fi ◦ A = ϱi d fi
must be satisfied. In other words: the differentials of the functions fi are eigenvectors
of A with eigenvalues ϱi, where A is considered as to map one-forms to one-forms.

Proof of lemma 22: We consider
t

K as a (1, 1) tensor field. Using our assumption

that A is semi-simple we rewrite equation (115) in terms of the quantities
t

Ũ , f̃i and
t

K̃
defined by

t

Ũ =

r+R
i=1


ϱl∈E\{ϱi}

(t− ϱl)

(ϱi − ϱl)
f̃i
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fi =


ϱl∈E\{ϱi}

(ϱi − ϱl)
m(ϱl)/2−1f̃i

t

K =


ϱl∈E\{ϱi}

(t− ϱl)
m(ϱl)/2−1

t

K̃

Then we use the fact that eigenvalues of multiplicity m(ϱl) ≥ 4 are constant (lemma
10, item 1) and equation (115) transforms into

t

K̃ (dU) = d
t

Ũ (116)

by dividing out the common factors.

The right hand side can be rewritten: consider
t

Ũ where, rather than choosing a constant

value for the parameter t we fill in the lth eigenvalue of A. Then we have
ϱl

Ũ= f̃l. Taking
the differential and rearranging the terms gives

d f̃l −
∂

t

Ũ

∂t


t=ϱl

d ϱl = d
ϱl

Ũ − ∂
t

Ũ

∂t


t=ϱl

d ϱl = d
t

Ũ |t=ϱl
(117)

We evaluate (116) at t = ϱl and plug in (117):

ϱl

K̃ (dU) = d f̃l −
∂

t

Ũ

∂t


t=ϱl

d ϱl (118)

Because we assumed A to be semi-simple we can decompose dU into one-forms υl such

that υl◦A = ϱlυl. From the definition of
t

K̃ we have that
t

K̃ (υl) =


ϱm∈E\{ϱl}(t−ϱm)υl,
again because we assumed A to be semi-simple. Evaluating at t = ϱk yields

ϱk

K̃ (υl) =

 
ϱm∈E\{ϱl}

(ϱk − ϱm)

 υl (119)

In particular this means that if k ̸= l then
ϱk

K̃ (d ϱl) is zero. Plugging this into (118) we

get that on the left hand side
ϱl

K̃ (dU) =
ϱl

K̃ (υl) holds, which we express via (119): 
ϱm∈E\{ϱl}

(ϱl − ϱm)

 υl = d f̃l −
∂

t

Ũ

∂t


t=ϱl

d ϱl (120)

Since d ϱl◦A = ϱl d ϱl (lemma 10, item 2) and υl◦A = ϱlυl, we have that d f̃l◦A = ϱl d f̃l.
The way in which f̃l was constructed then implies d fl ◦ A = ϱl d fl, concluding the
proof of lemma 22.
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Lemma 23 Let (g, J,A) be c-compatible,
t

K as in (36) and
t

V as in (38).
nc

E= {ϱ1, . . . , ϱr}
denotes the set of non-constant eigenvalues of A.

c

E= {ϱr+1, . . . , ϱr+R} denotes the set
of constant eigenvalues and E =

nc

E ∪
c

E. The multiplicity of ϱl is denoted by m(ϱl). Let

t

U=

r+R
i=1


ϱl∈E\{ϱi}

(t− ϱl)
m(ϱl)/2

(ϱi − ϱl)m(ϱl)/2
(t− ϱi)

m(ϱi)/2−1fi (121)

Let furthermore d fl ◦ A = ϱl d fl for all values of l = 1, . . . , r + R. Let d
t

U (
s

V ) = 0

be satisfied for all values of s, t ∈ R. Then d
t

U (
s

V ) = 0 is satisfied for all values of
s, t ∈ R if and only if for each eigenvalue ϱk of A the differential d fk is proportional
to d ϱk at all points where d ϱk ̸= 0.

Corollary 23.1 If ϱl is a non-constant real eigenvalue and d ϱl ̸= 0 in the neigh-
bourhood of a given point then locally fl can be expressed as a smooth function of ϱl.
Likewise, if ϱl is a non-constant complex eigenvalue and d ϱl ̸= 0 in the neighbourhood
of a given point, then locally fl can be expressed as a holomorphic function of ϱl.

Proof of lemma 23: The condition d
t

U (
s

V ) = 0 ∀ s, t ∈ R is equivalent to

d
t

U (span{J grad ϱi|i = 1, . . . , r}) = 0, because

span{
t

V , t ∈ R} = span{J grad ϱi|i = 1, . . . , r}

From (121) we see that d
t

U involves (with some coefficients) only the differentials of the

eigenvalues of A and the differentials of the functions fi. Thus d
t

U (J grad ϱi) is a linear
combination of d ϱj and d fj applied to J grad ϱi. But d ϱj(J grad ϱi) is zero for all values
of i, j. Firstly if i = j, then d ϱj(J grad ϱi) = 0 due to the fact that J is antisymmetric
with respect to g. Secondly if i ̸= j then d ϱj(J grad ϱi) = 0, because A is g-self-
adjoint and grad ϱi and grad ϱj are eigenvectors of A with different eigenvalues. Thus

d
t

U (J grad ϱi) is a linear combination of {d fj(J grad ϱi)|j = 1, . . . , r+R}. But because
we assumed that d fl ◦A = ϱl d fl for all l and because A grad ϱi = ϱi grad ϱi (lemma

10, item 2) and A commutes with J and is g-self-adjoint, we get that d
t

U (J grad ϱi) is
some coefficient times d fi(J grad ϱi).
From (121) we see that this coefficient is


ϱl∈E\{ϱi}

(t− ϱl)
m(ϱl)/2

(ϱi − ϱl)m(ϱl)/2
(t− ϱi)

m(ϱi)/2−1 (122)

But for a given value of t this can only vanish at points on M where t is equal to an
eigenvalue of A. So at each point on the manifold we can choose a value for t such
that expression (122) is non-zero. Thus d fi(J grad ϱi) must vanish for all values of i.
If we consider a value i such that ϱi is constant, then d fi(J grad ϱi) = 0 is trivially
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satisfied. From lemma 10 we know that if ϱi is non-constant, then its multiplicity is 2
and at all points where d ϱi ≠ 0 the set {grad ϱi, J grad ϱi} is an orthogonal basis of
the ϱi-eigenspace of A. It follows that at such points d fi may be written as a linear
combination of d ϱi and d ϱi ◦ J . Plugging this decomposition into d fi(J grad ϱi) = 0
we conclude that d fi is proportional to d ϱi at all points where d ϱi ≠ 0 and lemma 23
is proven.

Lemma 24 Let (g, J,A) be c-compatible.
nc

E= {ϱ1, . . . , ϱr} denotes the set of non-
constant eigenvalues of A.

c

E= {ϱr+1, . . . , ϱr+R} denotes the set of constant eigenvalues
and E =

nc

E ∪
c

E. The multiplicity of ϱl is denoted by m(ϱl). Let

t

K
ij def

=

det(tId−A) (tId−A)−1i

lg
lj ,

t

V
j def
= Jj

kg
ki∇i


det(tId−A)

and
t

U=

r+R
i=1


ϱl∈E\{ϱi}

(t− ϱl)
m(ϱl)/2

(ϱi − ϱl)m(ϱl)/2
(t− ϱi)

m(ϱi)/2−1fi (123)

with d fl ◦A = ϱl d fl for all l = 1, . . . , r and d fl proportional to d ϱl for all l for which
ϱl is non-constant.
Then

t

K
i
j

∂
s

U

∂xi
=

s

K
i
j

∂
t

U

∂xi
∀s, t ∈ R and d

t

U (
s

V ) = 0 ∀s, t ∈ R (124)

Proof of lemma 24: d
t

U (
s

V ) = 0 ∀s, t ∈ R is fulfilled because d fi and d ϱi evaluate
to zero when applied to J grad ϱj for all i, j = 1, . . . , r +R.

To see
t

K i
j
∂

s
U

∂xi =
s

K i
j
∂

t
U

∂xi , we compute d
t

U using the fact that non-constant eigenvalues
of A are of multiplicity 2 (lemma 10, item 1):

d
t

U=

r+R
i=1


ϱl∈E\{ϱi}


t− ϱl
ϱi − ϱl

m(ϱl)/2

(t− ϱi)
m(ϱi)/2−1

d fi −
ϱp∈E\{ϱi}

m(ϱp)/2

ϱi − ϱp
fi d ϱi


−

r+R
i=1


ϱl∈E\{ϱk}

t− ϱl
(ϱi − ϱl)m(ϱl)/2


ϱp∈

nc
E\{ϱi}


ϱl∈E\{ϱp}

(t− ϱl)
m(ϱl)/2fi

d ϱp
ϱp − ϱi

(125)

Considering
s

K as a (1, 1)-tensor mapping one-forms to one-forms and using that for all
i = 1, . . . , r: d ϱi ◦A = ϱi d ϱi and d fi ◦A = ϱi d fi we have

s

K (d ϱi) =

 
ϱl∈E\{ϱi}

(s− ϱl)
m(ϱl)/2


(s− ϱi)

m(ϱi)/2−1 d ϱi

s

K (d fi) =

 
ϱl∈E\{ϱi}

(s− ϱl)
m(ϱl)/2


(s− ϱi)

m(ϱi)/2−1 d fi

(126)

48



Again we consider
s

K as a (1, 1)-tensor acting on the differential of
t

U . By combining
(125) and (126) and using that the non-constant eigenvalues have multiplicity 2 we get:

s

K (d
t

U) =

r+R
i=1


ϱl∈E\{ϱi}


(s− ϱl)(t− ϱl)

ϱi − ϱl

m(ϱl)/2

((t− ϱi) (s− ϱi))
m(ϱi)/2−1

×

d fi −
p ̸=i

m(ϱp)/2

ϱi − ϱp
fi d ϱi


−

r+R
i=1


ϱl∈E\{ϱk}

1

(ϱi − ϱl)m(ϱl)/2

×


ϱp∈
nc
E\{ϱi}


ϱl∈E\{ϱp}

((s− ϱl)(t− ϱl))
m(ϱl)/2 fi

d ϱp
ϱp − ϱi

(127)

The right hand side is apparently symmetric when exchanging s and t and as a

consequence
t

K i
j
∂

s
U

∂xi =
s

K i
j
∂

t
U

∂xi is fulfilled, concluding the proof of lemma 24.
Proof of theorem 13: The theorem results as a combination of the proofs of lemmata
20 and 24.
Proof of theorem 14: combining the proofs of lemmata 20, 21, 22, 23 and 24.

3.3 Simultaneous eigenfunctions | Proof of theorem 16 and 17

Proof of theorem 16: We first show that ψ is an eigenfunction of
s

L̂ for all values of
s, if and only if it is an eigenfunction of ∂ti for all values of i.
A direct computation from (69), (70), (71) shows:

s

L̂ ψ = i


ϱp∈
c
E

(s− ϱp)
m(ϱp)

r
q=1

sr−q∂tqψ (128)

Now suppose that ψ is an eigenfunction of
s

L̂ for all values of s and denote the eigenvalue

by
s
ω. Then

s
ω must be a polynomial in s of degree r+R− 1, because

s

L̂ is a polynomial
in s of degree r + R − 1. From the equation above we see that

s
ω must have a

zero of order m(ϱp) at s = ϱp for all constant eigenvalues ϱp. Thus we can write
s
ω=


ϱp∈

c
E
(s− ϱp)

m(ϱp)
r

q=1 s
r−qωq. But because polynomials are equal if and only

if all their coefficients are equal, we get that
s

L̂ ψ =
s
ω ∀s ∈ R if and only if i∂tqψ = ωqψ

for q = 1, . . . , r.
To obtain the other separated equations we work with the family of second order
differential operators

s

K. Since the metric is not given in terms of the coordinate basis
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and the one-forms α and ϑ are not unique it poses an obstruction to using the standard

formula for the Laplacian and
t

K̂. The workaround is quick and simple though.
Let {Xi|i = 1, . . . , n} be a set of n linearly independent differentiable vector fields on a
manifold Mn and denote by {βi|i = 1, . . . , n} its dual basis, i.e. βi(Xj) = δij . We shall
denote by T the matrix relating the coordinate vector fields ∂i and the vector fields
Xi: T i

jXi = ∂j . Then for an arbitrary symmetric (2, 0)-tensor the following formula is
easily obtained via the product rule for partial derivatives:

1
|det g|

∂i


|det g|
s

K
ij∂j =

detT
|det g|

Xp


|det g|
detT

T p
i

s

K
ijT k

j Xk

−Xp(T
p
i )

s

K
ijT k

j Xk +
Xp(detT )

detT
T p
i

s

K
ijT k

j Xk

(129)

where on the right hand side the X’s are to be interpreted as the directional derivative
in the sense Xs = (T−1)is∂i and in the last two terms Xs(·) is meant as to only act on
the expression in the parentheses.
The quantity det g

detT 2 is simply the determinant of the matrix with (i, j)th component

g(Xi, Xj) and T s
i

s

K ijT k
j are the components of

s

K in the basis {Xi|i = 1, . . . , n}. If
{Xi|i = 1, . . . , n} are the coordinate vector fields belonging to some coordinate system
then the last two terms cancel out and one arrives at the well known fact that the left
hand side expression is independent of the choice of coordinates.
In our case we choose (Xi) = (∂χi , ∂ti , ∂γ

yi

−
r

p=1

γ
αpi ∂tp). The dual basis consists

of the one-forms (dχi, d ti + αi, d
γ
yi). Taking i as the column index and j as the row

index we have the components T i
j given by Id 0 0

0 Id 0
0 ∗ Id


The ∗-block contains the components of αl as the lth column and the Id-blocks are of
dimensions equal to the number of χ-, t- and y-coordinates.
From this we can conclude that Xs(T

s
i ) = (T−1)js∂jT

s
i = 0 because the one-forms α do

not depend on the t-variables. Furthermore detT = 1 and thus Xs(detT ) = 0 for all
values of s.
For our specific case (129) simplifies to

1
|det g|

∂i


|det g|
s

K
ij∂j =

detT
|det g|

Xs


|det g|
detT

T s
i

s

K
ijT k

j Xk (130)

Here
√

| det g|
detT is the determinant of the matrix of g in the basis (dχi, d ti, d

γ
yi) and

T s
i K

ijT k
j is the matrix of

s

K in the basis (Xi). These quantities can be obtained from
the formulae (69), (70) and (71). We can then express the vector fields (Xi) in terms
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of the coordinate basis to get the following result (we use that Aγ = ϱγId, because we
assumed that A is semi-simple and that all constant eigenvalues are real.):

∇i

s

K
ij∇j =

1
|det g|

∂i


|det g|
s

K
ij∂j =


ϱk∈

nc
E


ϱl∈E\{ϱk}(s− ϱl)

m(ϱl)/2

εk∆k


ϱγ∈

c
E
(ϱγ − ϱk)m(ϱγ)/2ϱ′k

∂χk
ϱ′k


ϱγ∈
c
E

(ϱγ − ϱk)
m(ϱγ)/2∂χk

+

r
i,j=1


ϱk∈

nc
E

εk(−ϱk)2r−i−j

∆k(ϱ′k)
2


ϱl∈E\{ϱk}

(s− ϱl)
m(ϱl)/2∂ti∂tj

+


γ:ϱγ∈
c
E

1
| det gγ |

∂γ
yi


| det gγ |

 
ϱl∈E

(s− ϱl)
m(ϱl)/2(sId−Aγ)

−1


ϱk∈

nc
E

(Aγ − ϱkId)
−1g−1

γ

ij

∂γ
yj

−


γ:ϱγ∈
c
E

1
| det gγ |

∂γ
yi


| det gγ |

 
ϱl∈E

(s− ϱl)
m(ϱl)/2(sId−Aγ)

−1


ϱk∈

nc
E

(Aγ − ϱkId)
−1g−1

γ

ij r
q=1

γ
αqj ∂tq

−


γ:ϱγ∈
c
E

 
ϱl∈E

(s− ϱl)
m(ϱl)/2(sId−Aγ)

−1


ϱk∈
nc
E

(Aγ − ϱkId)
−1g−1

γ

ij r
q=1

γ
αqi ∂tq∂γ

yj

−


γ:ϱγ∈
c
E

 
ϱl∈E

(s− ϱl)
m(ϱl)/2(sId−Aγ)

−1


ϱk∈
nc
E

(Aγ − ϱkId)
−1g−1

γ

ij r
p,q=1

γ
αqi

γ
αpj ∂tq∂tp

(131)

If now we suppose that ψ simultaneously satisfies the family of eigenvalue equations

−∇i

s

K
ij∇jψ+

s

U ψ =
s

λ ψ (132)

then the left hand side is a polynomial in s and for the equations to hold
s

λ must be
a polynomial of degree n− 1 in s as well and we shall write

s

λ=
n−1

l=0 λls
l. Because

of our assumption that all constant eigenvalues are real and that A is semi-simple we
have Aγ = cγId = ϱr+γId for γ = 1, . . . , R. Thus for all values of γ where m(ϱγ) > 2

the left hand side of −∇j

s

K jk∇kψ+
s

U ψ =
s

λ ψ has a zero of multiplicity m(ϱγ)/2− 1

at s = ϱγ . We can thus write
s

λ=


ϱγ∈
c
E
(s− ϱγ)

m(ϱγ)/2−1
s

λ̃ where
s

λ̃ is a polynomial

of degree r +R− 1 in s.
s

λ̃ can be written as
s

λ̃=
r+R−1

j=0 sj λ̃j . Because we assumed
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that the eigenvalue equation (132) is satisfied for all values of s we can split (132) into
n equations, one for each coefficient. We choose a non-constant eigenvalue ϱk ∈

nc

E and
multiply the equation for the coefficient of sl with ϱlk. We do this for all n equations

and add them up. If we use ∇i

s

K ij∇j =
1√

|det g|
∂i


|det g|
s

K ij∂j in (132), then the

result of these steps is equal to replacing ∇i

s

K ij∇jψ via (131) and substituting s with
ϱk. We end up with

−1

εkϱ′k
∂χk

ϱ′k


ϱγ∈
c
E

(ϱk − ϱγ)
m(ϱγ)/2∂χk

ψ

−
r

i,j=1

εk(−ϱk)2r−i−j

(ϱ′k)
2


ϱγ∈

c
E

(ϱk − ϱγ)
m(ϱγ)/2∂ti∂tjψ + frψ =

n−1
i=0

λiϱ
i
kψ (133)

Because ∂tqψ = −iωqψ, ψ satisfies the ordinary differential equations that have been
claimed.
To obtain the separated partial differential equations that we have claimed, we divide
−∇j

s

K jk∇kψ+
s

U ψ =
s

λ ψ by


ϱγ∈
c
E
(s − ϱγ)

m(ϱγ)/2−1. Then we choose a constant

eigenvalue ϱγ and evaluate the result at s = ϱγ ∈
c

E in the same way as before:

r+R−1
j=0

λ̃jϱ
j
γψ =−


ϱc∈

c
E\{ϱγ}

(ϱγ − ϱc)


1

| det gγ |1/2
∂ γ
yi
gijγ | det gγ |1/2∂ γ

yj
ψ

−
r

q=1

1

| det gγ |1/2
∂ γ
yi
gijγ | det gγ |1/2

γ
αqj ∂tqψ −

r
q=1

gijγ
γ
αqi ∂tq∂ γ

yj
ψ

+

r
p,q=1

gijγ
γ
αqi

γ
αpj ∂tq∂tpψ


+

1
ϱc∈

c
E\{ϱγ}

(ϱγ − ϱc)m(ϱc)/2−1
fγψ

(134)

Again: using ∂tiψ = −iωiψ gives us the desired result.
The last thing to do is to show that if ψ fulfills (73) and (75) for some constants

λ̃0, . . . , λ̃r+R−1, ω1, . . . , ωr then it is also an eigenfunction of
s

K̂ for all real values s. To
do so, we use ∂tiψ = −iωiψ to obtain (133) and (134) from (73) and (75). Then for
all non-constant eigenvalues ϱk we multiply the corresponding equation of (73) by

ϱi∈E\{ϱk}


s− ϱi
ϱk − ϱi

m(ϱi)/2

and for each constant eigenvalue ϱγ we multiply the corresponding equation of (134)
by 

ϱi∈E\{ϱγ}


s− ϱi
ϱk − ϱi

 
ϱi∈

c
E

(s− ϱγ)
m(ϱγ)/2−1
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and add up the results. Then we use the product rule for differentiation and the

Lagrange interpolation formula for polynomials and arrive at
s

K̂ ψ+
s

Û ψ =
n−1

k=1 λks
kψ.

Theorem 16 is proven.

Proof of theorem 17: Because we assumed M to be compact (without boundary)
and g to be positive definite, there exist a countable basis (ψm|m ∈ N) in L2(M), such
that each element of the basis is an eigenfunction of the Laplace-Beltrami operator:

∆ψm = ξmψm

see e.g. [9]. In this reference it is also proven that the eigenfunctions of ∆ are C∞-
smooth. Furthermore each eigenvalue of the Laplace-Beltrami operator is of finite
multiplicity, that is for each m ∈ N the set {m′|ξ′m = ξm} is finite. Consider the
operators {Î(j)|j = 0, . . . n− 1} and {L̂(j)|j = 1, . . . , n− 1}, as explained in corollary
14.1. In particular we have Î(n−1) = −∆. They all commute, and so we can consider
them on an eigenspace of ∆ which is a finite-dimensional vector space of smooth
functions, so we can reduce our problem to finite dimensional linear algebra and skip
all trouble with functional analysis: Consider the Hermitian product

⟨φ,ψ⟩ =

M
φ̄ψ dV (135)

on an eigenspace of ∆. Here the bar means complex conjugation. This is clearly a
positive definite and we can choose an orthonormal basis. By partial integration it can
be verified that for any φ,ψ in this eigenspace of ∆

⟨φ, Î(j)ψ⟩ =⟨Î(j)φ,ψ⟩ j = 0, . . . , n− 2

⟨φ, L̂(j)ψ⟩ =⟨L̂(j)φ,ψ⟩ j = 0, . . . , n− 1

(remember that each eigenspace of ∆ consists of smooth functions and that we as-
sumed that our manifold was without boundary). On such an eigenspace of ∆, in an
orthonormal basis we the operators {Î(j)|L̂(j), j = 1, . . . , n− 1} are given by Hermitian
matrices (În−1 is given by a real multiple of the identity matrix). But Hermitian
matrices are diagonalizable by means of unitary transformations. So we choose a
unitary transformation such that Î(n−2) is diagonal (unitary transformations retain
the property of the basis to be orthonormal). Because the operators we consider all
commute, we can then consider them on the eigenspaces of Î(n−2) and choose a unitary
transformation such that Î(n−3) is diagonal as well. Iteration of this procedure tells
us: There is a countable orthonormal basis in L2(M) such that all basis vectors are
simultaneous eigenfunctions of all the operators {Î(j), L̂(j)|j = 0, . . . , n− 1}.
By corollary 14.1 a function that is a simultaneous eigenfunction of {Î(j), L̂(j)|

j = 0, . . . , n− 1} if and only if it is a simultaneous eigenfunction of {
t

Î |t ∈ R} and
{
s

L |s ∈ R}.
This means that we can apply theorem 16 with U = 0. Furthermore because we
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assumed that all eigenvalues of A are non-constant a local normal coordinate system
only has χ− and t− coordinates. This means that for any element φm of our basis
there exist constants {λm,i|i = 0, . . . , n− 1} and {ωm,i|i = 1, . . . , n}(here the comma
only separates indices), such that φm satisfies the ordinary differential equations

−1

εkϱ′k
∂χk

ϱ′k∂χk
ψm +

r
i,j=1

εk(−ϱk)2r−i−j

(ϱ′k)
2

ωiωjψm =

n−1
i=0

λm,iϱ
i
kψm (136)

and

i∂tkψm =ωm,kψm (137)

for k = 1, . . . , n.
This implies that ψm is a product:

ψm =

n
k=1

ψk,m(χk)

n
l=1

φm,l(tl) (138)

where ψm,k satisfies the kth equation of (136) and φm,l satisfies the lth equation of
(137). But equations (137) can easily be solved, and we have that φm,l = exp(−ωm,ltl).
We still have to show that the constants λm,k and ωm,k are real: firstly the eigenvalues
of In−1 = −∆ are real (even more, nonnegative). Secondly because on the eigenspaces
of ∆ the operators {Î(j)|j = 0, . . . , n− 2} and {L̂(j)|j = 1, . . . , n− 1} are represented
by hermitian matrices, they must have real eigenvalues. An inspection of the proof of
theorem 16 reveals that λm,i is the eigenvalue of ψm with respect to Î(i) (in particular
∆ψm = λm,n−1ψm) and that ωm,i is the eigenvalue of ψm with respect to L̂(n−i).

Finally this implies that we have
t

Î ψm =
n−1

i=0 t
iλm,i and

s

L̂ ψm =
n

i=1 s
n−iωm,i.

Theorem 17 is proven.
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4 Conclusion
We have shown that the integrals of the geodesic flow, quadratic in momenta, that were
found by Topalov [17] for the geodesic flow of c-compatible structures also commute as
quantum operators. They also commute with the quantum operators of the integrals
of the geodesic flow that are linear in momenta.
We have then generalized the result to a class of natural Hamiltonian systems: in
the case where the tensor A is semi-simple we have described all potentials that may
be added to the kinetic energy term such that the resulting functions on T ∗M still
Poisson commute pairwise and their quantum operators commute pairwise as well. The
potentials that are admissible in the quantum problem are the same as for the question
of classical integrability on the level of Poisson brackets.
In the case that A is not semi-simple, we could present some potentials that may be
added to the kinetic energy such that the modified integrals still commute in both the
classical and the quantum sense; it is however not clear whether there exist more and
this shall be subject to further investigation.
We have tackled the question of the separation of variables for simultaneous eigenfunc-
tions of the constructed differential operators in the case where A is semi-simple and all
constant eigenvalues are real. If all eigenvalues of A are non-constant, we get complete
reduction to ordinary differential equations. The case where A has constant non-real
eigenvalues or Jordan blocks still needs investigation.
In the case of maximal integrability we also have described a way in which the construc-
tion of an orthonormal basis of L2 of eigenfunctions of the Laplace-Beltrami operator
can be reduced to solving ordinary differential equations.
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