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Chapter 1

Introduction, state of the art and goals

Second-harmonic generation (SHG) is the simplest and most widely studied nonlinear optical process,
when the incident electromagnetic wave at the fundamental frequencyl is converted in a medium into
the wave at the doubled frequency 2l [1, 2] (Fig. 1.1). The observation of SHG usually requires high-
power light beams due to the weakness of the nonlinear effects and correspondingly low intensity of
the generated wave at the second-harmonic (SH) frequency. Due to this reason SHG has been only
experimentally detected after the invention of first lasers in 1960s [3], which made it possible to pro-
duce intense coherent light beams [4, 5]. SHG has found a number of practical applications, especially
due to its sensitivity to the symmetry properties of the medium. Among them are second-harmonic
imaging microscopy [6, 7, 8, 9], frequency doubling [10, 11, 12], spectroscopy [13, 14], probing of
interfaces [15, 16], characterization of crystalline materials [17] and ultrashort pulse measurement
with autocorrelators [18].

Second-harmonic generation can be considered as a particular case of sum-frequency generation
(SFG), when two photons with frequencies l1 and l2 are converted inside a nonlinear medium into a
single photon with the sum frequencyl3 =l1+l2. The relation between the frequencies implies, that
the energy is conserved during this process. Second-harmonic generation is thus the sum-frequency
generation with l1 = l2. However, in contrast to SFG, when at least two light beams with frequen-
cies l1 and l2 have to overlap inside the volume of a nonlinear medium, for the SHG to occur only
a single optical beam is needed. Besides, SHG is the simplest case of the harmonic generation phe-
nomena, i.e. generation of the light waves with frequencies =l for different positive integers = ≥ 2.
SHG corresponds to = = 2 and the second harmonic is often the most intense harmonic in the output
of a nonlinear crystal. Sometimes, however, higher-order harmonics could prevail. For instance, this
happens in inversion-symmetric media, since inversion symmetry leads to the greatly reduced conver-
sion into the second-harmonic wave (SHW). In this case the third-harmonic generation (THG) with
= = 3 becomes the major nonlinear process.

In order to describe the property of media to produce SHG, the so-called nonlinear polarization of
the media ®%NL is used, i.e. the extra contribution to the medium polarization beyond the usual linear
one. As the result, the electric flux density ®� in a nonlinear medium can be written as [2]:

®� = Y0Ŷ ®� + ®%NL,
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Figure 1.1: General scheme of the second-harmonic generation.

where ®� is the applied electric field and Ŷ is the tensor of the linear relative dielectric permittivity.

In general the description of nonlinear optical properties of a medium would then need extra
equations for the dynamics of ®%NL. In the simplest case of a non-resonant excitation, the nonlinear
polarization can be expanded into the series of the electric field in the pump wave. The corresponding
general expression for the polarization of a nonlinear medium can be written as:

%NL
9 = Y0Y 9 :�: + Y0j

(2)
9 :;
�:�; + Y0j

(3)
9 :;<

�:�;�< + ... (1.1)

The first term here is the usual relative dielectric permittivity, which has in general tensor form. The
second term contains the third-rank tensor j(2)

9 :;
, which is called the second-order nonlinear suscep-

tibility tensor and is responsible for the second-order nonlinear processes. Similarly the third term
incorporates the fourth-rank tensor j(3)

9 :;<
called third-order nonlinear susceptibility tensor. Further

higher-order terms can be added in the Eq. (1.1) to treat other harmonic generation processes.

The expansion Eq. (1.1) yields the following term for the second-order nonlinear polarization:

®%NL = Y0 ĵ
(2) ®� ®�, (1.2)

where the tensor notation for ĵ(2) is introduced. However, Eq. (1.2) does not always suffice and has
to be generalized. Indeed, the term on the right-hand side of Eq. (1.2) is the so-called electric dipole
term and represents just the first term of the expansion of the second-order nonlinear polarization.
The full expansion into multipole components has the following form:

®%NL = Y0 ĵ
(2)
�
®� ®� − Y0 ®∇ ·

(
ĵ
(2)
&
®� ®�

)
+ Y0`0
8l
®∇ ·

(
ĵ
(2)
"
®� ®�

)
+ ... (1.3)

Here the second-order nonlinear susceptibility tensor in the electric-dipole approximation from Eq. (1.2)
is denoted as ĵ(2)

�
. The second and the third terms in Eq. (1.3) contain the electric quadrupole tensor
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ĵ
(2)
&

and the magnetic dipole tensor ĵ(2)
"

and are proportional to the spatial derivatives of the pump
field. The relative amplitudes of the terms in Eq. (1.2) are sensitive to the symmetry properties of
the material. In media without inversion symmetry the electric dipole tensor ĵ(2)

�
≠ 0 and the cor-

responding contribution prevails. By contrast, in media with inversion symmetry the electric dipole
term vanishes ĵ(2)

�
= 0 and only the electric quadrupole and magnetic dipole terms are responsible for

SHG [19]. It should be also noted, that in the regime of the extreme nonlinear optics [20] SHG can
occur in a bulk inversion-symmetric material through, e.g., the conical second-harmonic generation
[21] or the photon-drag-effect [22], but the consideration of these topics goes far beyond the scope of
this thesis.

The wave equation for the electric field in the presence of a nonlinear medium attains the form:

1
22
m2 ®�
mC2
+ ®∇× ®∇× ®� + 1

Y022
m2 ®%!
mC2

= − 1
Y022

m2 ®%#!
mC2

. (1.4)

Eq. (1.4) in general has to be supplemented with the expression for the nonlinear polarization, like
Eq. (1.1). If the second-order nonlinearity only is considered and if the pump wave at the fundamental
frequency can be treated as quasi-monochromatic, the electric field can be represented as a dual-
frequency one as follows:

®� (®A, C) = ®�l (®A)48lC + ®�2l (®A)428lC . (1.5)

Upon substituting Eq. (1.5) into the wave equation Eq. (1.4), one obtains the following two cou-
pled equations for the amplitudes of the electric field components ®�l and ®�2l:

−®∇× ®∇× ®�l +
Ŷll

2

22
®�l = −2ĵ(2)l2

22
®�2l ®�∗l, (1.6)

−®∇× ®∇× ®�2l +
4Ŷ2ll

2

22
®�2l = −4ĵ(2)l2

22
®�l ®�l. (1.7)

The system of equations Eqs. (1.6)-(1.7) is the central one for both analytical and numerical stud-
ies of SHG effects. It must be stated that Eqs. (1.6)-(1.7) are not exact and are not equivalent to
the wave equation Eq. (1.4). The substitution Eq. (1.5) implied only two frequency components in-
volved. In fact, the fundamental wave (FW) at the frequency l interacts with the second-harmonic
wave through the nonlinear polarization Eq. (1.1) to produce third-harmonic, fourth-harmonic and
so on. Eqs. (1.6)-(1.7) inherently neglect the generation of these higher-order harmonics. This ap-
proximation is not only well justified in many real-world situations, where second-order nonlinearity
is present, but also largely reduces the complexity of the theoretical treatment. At the same time,
the inclusion of the extra harmonics into Eq. (1.5) would result in a much more complex system of
nonlinear equations instead of Eqs. (1.6)-(1.7).

The system of equations Eqs. (1.6)-(1.7) allows for an exact analytical solution for a homogeneous
medium in 1D geometry. The result exhibits the consecutive energy transfer between the FW and
SHW upon propagation in a nonlinear crystal, while the fraction of the converted FW is determined
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by the value [2]:

Δ: = :2l −2:l =
2l
2
(√Y2l −

√
Yl). (1.8)

If Δ: = 0, the full transfer of the FW into SHW is possible. This condition is called phase-matching

condition (PMC) and means that the phase velocities for the FW and SHW are the same. The violation
of PMC, i.e. a phase mismatch Δ: ≠ 0, leads to the much less efficient nonlinear conversion into the
SHW. In real nonlinear crystals it is very challenging to achieve PMC due to the significant dispersion.
In uniaxial crystals PMC can be exactly reached at specific propagation angles with respect to the
crystal axis. In practice, however, the perfect phase-matching is often not a realistic condition and the
PMC needs to be relaxed. There are several ways proposed to circumvent the strict PMC. One of the
most widely used is Quasi-phase-matching (QPM), which uses a periodically poled crystal to ensure
the phase shift between two optical waves (FW and SHW) is always less than 180◦ along the length
of the crystal [23, 24]. The PMC is not exactly fulfilled in this case, but periodic poling guarantees
the constant energy flow from the pump FW to the signal (SHW).

Even though SHG phenomena are studied for a long time already after the creation of first lasers,
there is now growing interest to this topic in the field of nonlinear nanooptics. Nanostructures exhibit
strong resonances throughout the visible (VIS) and mid-infrared (MIR) spectral ranges. Excitation of
these resonances results in the large confinement of the energy of the electromagnetic field in the tiny
volume of the nanostructures. Due to the quadratic dependence of the nonlinear polarization on the
pump electric field, the efficiency of the energy conversion into a SHW depends on the pumping field.
Specifically, the conversion efficiency is quadratically proportional to the pumping field. Therefore
the field enhancement in the nanostructures leads to the drastic increase of the conversion efficiency
and reduces the excitation intensity needed to produce a required SH intensity. Both plasmonic [25,
26] and all-dielectric [27, 28] nanostructures and metasurfaces are considered for SHG applications.
All-dielectric optical nanostructures, which are usually made of semiconductor materials, have several
advantages, when compared to the metallic ones. In particular, those include small dissipative losses,
low Joule heating and high-Q Mie resonances [29, 30]. Hence, all-dielectric nanostructures can serve
as alternatives to the plasmonic nanostructures in a number of applications. Specifically, in the area of
nonlinear nanophotonics the usage of the metal-less nanostructures could bring great benefits [27, 28].

As stated above, in traditional nonlinear optics the energy conversion efficiency to the SHW is
mainly enhanced, when the PMC is fulfilled. It provides the unidirectional energy flow from the FW
into the SHW upon propagation through a nonlinear crystal. At the same time, the characteristic prop-
agation distance required for this energy transfer to occur is orders of magnitude larger than the light
wavelength. Nanostructures, on the other hand, have typically subwavelength sizes. As the result,
PMC ceases to be crucial for efficient SHG in the nanoscale components and totally different ap-
proaches are needed. The most promising approach seems to be the excitation of high-Q resonances
in all-dielectric nanopillars usually made of III-V semiconductors [31, 32]. The strong resonances
lead to a huge field enhancement inside the nanostructures. Together with the large bulk nonlinearity
in III-V semiconductor materials it allows to achieve high conversion efficiency for experimentally
accessible pump intensities. For example, a conversion efficiency ∼ 10−4 was obtained for the exci-



Chapter 1. Introduction, state of the art and goals 5

tation of the electric dipole (ED) and magnetic dipole (MD) resonances in AlGaAs nanodiscs [31].
More recently, the conversion efficiency in GaAs nanodiscs was increased by at least 2 orders of mag-
nitude by means of the so-called bound states in continuum (BIC) with even higher Q-factors [32].
Alternative approaches include, for instance, the multiple-quantum-well structures, which suppress
the band-gap absorption, but the achieved conversion efficiency in this way is still significantly lower
[33].

1.1 Surface and bulk SHG

One typically assumes two sources of SHG: bulk and surface nonlinearity [2]. Bulk nonlinearity is
the standard one, arising in the volume of the nonlinear medium. In contrast, surface SHG (SSHG)
arises at the interfacial layer in the vicinity of the interface between two adjacent media due to the
discontinuity of both the medium structure and the normal component of the electric field across
the interface thus resulting in the huge electric field gradient nearby the surface [34, 35, 36]. While
the bulk nonlinearity in centrosymmetric media disappears in the electric-dipole approximation, the
surface nonlinearity does not. Indeed, the inversion symmetry is broken close to the surface of the
centrosymmetric media as well, what leads to the strong electric-dipole second-order nonlinearity in
the interfacial region. Such independence of the surface SHG on the symmetry properties of the bulk
of the medium makes surface SHG an efficient tool for probing interfaces [16].

SHG from different materials is mainly driven by different nonlinear contributions. In centrosym-
metric optical materials, like silicon and different metals, the bulk nonlinearity is prohibited in the
electric-dipole approximation, therefore the surface SHG is typically dominating [37, 38, 39]. More-
over, in plasmonic nanostructures the electric field can only penetrate into the medium for the skin
depth for the frequencies below the ultraviolet (UV) transparency threshold. Therefore the elec-
tric field gets concentrated close to the metal surface, which increases the nonlinear polarization in
the surface region and the overall nonlinear response [25]. In all-dielectric nanostructures made of
centrosymmetric materials, e.g. widely used Si, SiO2, TiO2, the field absorption is low below the
fundamental band-gap and the field is not confined in the vicinity of the interface.

In noncentrosymmetric semiconductors the situation becomes different. Since these materials
possess the strong bulk nonlinearity, the surface SHG is often assumed to play just a minor role.
For example, SHG from nanostructures made of III-V semiconductor materials (like GaAs, GaP,
InAs, AlGaAs and others) could be described assuming only the bulk nonlinearity and neglecting
the surface nonlinearity [40, 41, 42]. However, further studies have demonstrated that this is not
always correct and even in nanostructures made of noncentrosymmetric semiconductors the surface
SHG can also play a significant role and must be treated accordingly [43, 44, 45]. Specifically,
noticeable or even prevailing surface contributions were found at frequencies close to the surface
resonance ones [46], dielectric metasurfaces for SHG wavelengths above the fundamental band-gap
[44] as well as in the opaque region of the semiconductor [47, 45]. In general the surface and bulk
SHG in noncentrosymmetric semiconductors exhibit a quite nontrivial interplay, which has not been
comprehensively studied to date and deserves more detailed consideration.
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1.2 Simulation of SHG in nanooptics: overview

Modeling of any nonlinear optical phenomena requires correct treatment of the nonlinear optical
polarization. In the simplest case of the nonresonant nonlinearity one can use Eq. (1.1), which relates
the instantaneous electric field strength with the instantaneous value of the nonlinear polarization.
It is worth noting that the instantaneous value of the nonlinear polarization would in general also
depend on the earlier values of the electric field strength, then one would need instead of Eq. (1.1) a
differential equation for the temporal dynamics of ®%#! in the external electric field ®� . Eq. (1.1) is
still well justified, when the frequency of the pump wave is far away from any of the natural resonant
frequencies of the nonlinear medium [2].

One of the most crucial issues in the modeling of SHG is how one treats the interaction between
the generated second-harmonic wave and incident pump wave. The point is that the expression for
the second-order nonlinear optical polarization in general includes the term:

Y0j
(2)�2l�

∗
l ∼ 48lC ,

i.e. oscillating with the pump frequency (see the right-hand side of Eq. (1.6)). If one has to take this
term into account, one has to solve the system of nonlinearly-coupled equations Eqs. (1.6)-(1.7). Such
approach is needed, if the conversion efficiency into the SHW is high enough, so that this term gets
comparable with the linear medium polarization at the pump frequency. In nanooptics, however, the
situation is usually just the opposite. Low conversion efficiency allows to reliably neglect the right-
hand side of Eq. (1.6). This case is called undepleted-pump approximation (UPA), since it assumes
the pump wave to keep constant amplitude upon propagation in the nonlinear medium. When UPA
is justified, the solution of Eqs. (1.6)-(1.7) largely simplifies. Now one gets two uncoupled linear
equations, which can be solved separately. Namely, one first solves the linear homogeneous Eq. (1.6)
for the pump wave, then calculates the nonlinear polarization term on the right-hand side of Eq. (1.7)
and finally solves the linear inhomogeneous Eq. (1.7) for the SH field.

As potentially the most suitable method for modeling SHG serves finite-difference time-domain
method (FDTD) [48, 49]. The FDTD method is based on the discretization of the Maxwell’s equations
both in time-domain and over spatial dimensions and inherently allows generalization to the 3D fully-
vectorial case. The main property of the FDTD method is the usage of two rectangular meshes for the
values of the electric and magnetic field, which are shifted both in the spatial and temporal dimensions
with respect to each other. Introducing two different meshes results in the second-order accuracy of
the FDTD method over both the spatial and temporal steps. In the presence of the second-order
nonlinearity as in Eq. (1.2), the calculation of the electric field values at a certain time step (# +1)ΔC
from the electric field values at the time step #ΔC would lead in 3D vectorial case to a system of three
coupled quadratic equations at each spatial point. The solution of this system of equations would give
the values of �G , �H, �I at the time step (# +1)ΔC at every spatial point and would allow to calculate
the field at the time step (# + 2)ΔC and so on. For an arbitrary form of the second-order nonlinear
susceptibility tensor ĵ(2)

�
the respective system of three coupled quadratic equations for �G , �H, �I

cannot be solved analytically and extra numerical efforts are needed.



Chapter 1. Introduction, state of the art and goals 7

The FDTD method has several significant advantages. As it directly follows from its name, the
simulations in the FDTD method run in the time domain. This property is especially needed for
addressing applications in ultrafast optics. For example, the modeling of the propagation of an ul-
trashort pulse, up to few-cycle or even subcycle, can be easily performed with the FDTD method.
In such a manner different types of optical nonlinearities could be considered, like resonant, Kerr or
Raman nonlinearities [50, 51, 52, 53, 54]. Also, the described algorithm of the FDTD method can be
easily extended to higher-order nonlinearities. The main limitations are related to the regular rectan-
gular mesh used in the FDTD method. This drawback may look inessential in traditional nonlinear
optics, but becomes important in the nonlinear nanophotonics. Indeed, the accurate simulation of
the light propagation through subwavelength nanoparticles requires fine discretization of the volume
of the nanoparticle, what leads to the fine mesh in the whole computational domain. Therefore one
would prefer to use some non-uniform mesh, which is finer within the volume of the nanoparticle
and coarser in the outer region with much smaller field gradients. Although several subgridding algo-
rithms for FDTD, which allow for the local mesh refinement, have been proposed to date [55, 56, 57],
they require complicated meshing schemes as well as complex code management, what limits the
performance of the FDTD method. Moreover, the nanoparticles of non-rectangular shape can be just
loosely covered with the rectangular meshes and more flexibility in the accessible mesh geometry is
needed. Such flexibility is naturally provided in the finite-element methods (FEM) [58].

The finite-element methods currently represent the often used standard for simulations of Maxwell’s
equations in the frequency domain. In FEM the electric field components are approximated by poly-
nomial functions, while the computational domain is divided into tetrahedra or prisms. FEMs there-
fore allow to easily tune the mesh sidelength in a certain part of the computational domain, where the
higher accuracy of the simulations is needed. Another degree of freedom for adjusting the computa-
tional accuracy is provided by the degree of the approximating polynomials. The simulations of SHG
with the finite-element methods without UPA would be increasingly complicated, since the finite-
element methods in contrast to the FDTD method cannot be so easily extended to the nonlinear case.
However, when UPA is applicable, the SHG simulations split into two consecutive linear simulations,
where FEM can be naturally used. Since UPA is usually well justified in nanophotonic applications
and FEM provides great flexibility in dealing with the complex geometries and non-uniform meshes,
FEM is widely used nowadays for SHG simulations in the nanostructures.

However, the reasoning above applies to the modeling of the bulk nonlinearity only. The accurate
treatment of the surface nonlinearity needs the mesh nodes to be densely located on the surface of
the nanostructure. As the result, the simulations of the surface SHG would be greatly sensitive to the
ability of a numerical method to deal with the curved surfaces of the arbitrary-shape nanostructures.
Particularly, the FDTD method turns out to be barely applicable, since the treatment of the curved
surfaces by the uniform rectangular meshes is hardly possible. At the same time, as far as I know,
modeling of the surface SHG with FEM has not been reported so far.

Several methods have been proposed to date for the modeling of the surface SHG. Those include
volume integral formulations [59, 60], boundary element methods [61] and different kinds of the
surface integral method [62, 63, 64, 65]. These methods usually rely on considering the surface non-
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linear polarization as the surface current density and solving the integral form of Maxwell’s equations.
Therefore the problem gets reduced to the boundary integral equation, which then needs to be solved
numerically. The main advantage of such an approach is that volume discretization is not needed,
and only the surfaces have to be discretized. This approach was found to yield quite good perfor-
mance and relatively low computational costs. At the same time, there are also several limitations,
like the complex incorporation of the bulk nonlinearity in the media, relatively slow convergence rates
(especially compared to the exponential convergence of FEM simulations) and limited flexibility in
handling the surface discretization.

1.3 Goals of the PhD thesis

The major question that this thesis addresses is the development of efficient numerical techniques for
the simulation of the surface SHG phenomena from nanostructures and metasurfaces. There are a
number of limitations that currently existing numerical methods possess. Among them are difficulty
of dealing with the complex geometries and inability to easily incorporate both the bulk and surface
nonlinear properties of the nanostructures. The geometry issues arise due to the subwavelength sizes
of the nanostructures and the necessity to simulate the surface nonlinear polarization for an arbitrary
curved surface of the realistic nanostructures. Therefore the appropriate numerical methods should
be well suited to treat surfaces, rather than volumes inside the computational domain. On the other
hand, as discusssed in the previous sections, interplay of the bulk and surface nonlinearities is quite
typical in nanophotonic applications. It means that proper numerical methods have to provide the
possibility to simulate the bulk nonlinear effects in the volume of the nanostructures as well. These
two requirements in general seem to be in certain contradiction with each other. Hence, one needs to
find a trade-off between the efficient treatment of the surface effects and the ability to equally account
for the bulk effects. Finite-element methods seem to be the proper candidate for this role. To the best
of my knowledge, finite-element methods have not been applied so far for the modeling of the SSHG.
Thus, the development of such numerical method is one of the main goals of the thesis.

Besides that, one of the geometries, which was proposed for the consideration in the thesis and
looks promising in the context of boosting the surface nonlinear effects, is the multilayer structure.
One can intuitively expect the possibility of the constructive interference of the SH signals from the
multiple interfaces inside such multilayer structure, leading to a large enhancement of the SSHG.
Moreover, as some previous studies showed, for thin layers (already ∼ 100 nm or smaller) the bulk
nonlinearity can be neglected even in noncentrosymmetric semiconductors [66]. Therefore the devel-
opment of proper numerical algorithms for the modeling of the SSHG in such geometry is in demand.
The inherent 1D geometry in this case makes the application of both FDTD or FEM methods for the
modeling of the SHG process overcomplicated as long as one does not deal with complex illuminating
beams. Particularly, this is the case for the plane-wave illumination. To the best of my knowledge,
there have been no methods proposed so far for the modeling of the SSHG in such multilayer struc-
tures. As a result, the development of this numerical method was also taken as one of the goals of the
thesis.
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Besides the issues related with the development of the numerical algorithms themselves, the main
question that this thesis addresses is the finding of the optimal conditions for the detection of the
surface SH signal and finding ways to enhance the surface nonlinear response. In order to address
this question, this work focuses on the following several issues in this context. Firstly, I aim to find a
reliable way to identify the surface SHW against the background of bulk SHW, when such separation
is nontrivial, namely in noncentrosymmetric semiconductors with a strong bulk nonlinearity. Studies
on this question are lacking, so I intend to find out the typical signatures of the surface optical nonlin-
earity for different available illumination geometries. Secondly, the enhancement of the conversion
efficiency of the SSHG is to be examined with an appropriate optical device, namely a multilayer
structure. The choice of the multilayer arrangement is inspired by the expected constructive role of
the interference effects in this geometry. The main goal here is to optimize the layer composition of
a multilayer structure to obtain possibly high conversion efficiency into the surface-driven SHW. As
far as I know, such problem has not been suggested and analysed before.

To summarize, this work is intended to reach the following goals:

– development of a transfer matrix method for the modeling of the surface second-harmonic gen-
eration from arbitrary multilayer structures under the plane-wave illumination, with the possible ex-
tension to other more complex illuminating beams;

– development of an adaptive finite-element method for the modeling of the surface second-
harmonic generation from plasmonic or dielectric nanostructures of an arbitrary shape;

– investigation of the optimal illumination parameters for the reliable identification and quantita-
tive estimation of the strength of the surface nonlinearity in noncentrosymmetric semiconductors;

– numerical optimization of the conversion efficiency of the surface second-harmonic generation
in periodic and nonperiodic multilayer structures of different composition.

The thesis is structured as follows.

Chapter 2 is dedicated to the development of a numerical approach based on the transfer matrix
method for modeling of surface SHG from multilayer structures. The influence of the surface sources
of the nonlinear polarization is implemented through the generalized boundary conditions for the
tangential components of the electric and magnetic field, imposed at the boundaries between the
media in multilayer structures. The performance of the developed transfer matrix method is tested for
several exemplary stacks.

Chapter 3 is devoted to the development of a fully finite-element numerical method for efficient
modeling of surface SHG effects. This method treats the surface nonlinear polarization as the delta-
surface source embedded into the respective interfaces between two media. It is shown that the
proposed method allows modeling of surface nonlinear effects from arbitrary-shaped all-dielectric
and plasmonic isolated nanoparticles, as well as metasurfaces.

Chapter 4 focuses on the numerical investigation of the symmetry properties of the bulk and sur-
face nonlinear tensors in noncentrosymmetric semiconductors, which result in specific signatures in
the polarization-resolved far-field SHG pattern. It is demonstrated that under the plane-wave illu-
mination of a slab of a noncentrosymmetric III-V semiconductor the differences arise in the angu-
lar dependence of the emitted second-harmonic radiation on the angle of the crystal axis rotation.
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The results are then extended to the case of an illumination by a linearly polarized tightly-focused
Gaussian beam and the specific signatures of surface and bulk nonlinearities are also obtained in the
polarization-resolved far-field SHG patterns.

Finally, Chapter 5 is devoted to the numerical studies of the surface SHG from multilayer struc-
tures of different possible compositions. Using the transfer matrix method developed earlier in Chap-
ter 2 the optimal geometry of the multilayer structures is sought for the efficient surface-driven SHG.
Both nonperiodic and periodic multilayer structures with different number of layers in a single period
are considered and analysed with respect to the achievable SHG conversion efficiency.



Chapter 2

Transfer matrix method for modeling of
surface SHG from multilayer structures

Surface nonlinearity is manifested only inside a very thin interfacial layer nearby the medium inter-
face due to the discontinuity of both the medium and the normal component of the electric field across
the interface leading to the large electric field gradient at the surface [34, 35, 36]. The symmetry of the
medium is always broken nearby the surface resulting in the pronounced dipole second-order nonlin-
earity in the surface region. Because of that, the surface SHG is dominating in the nonlinear response
of centrosymmetric materials, including plasmonic structures [37, 38, 39]. Many centrosymmetric
materials are widely used in nanophotonics, e.g., Si, SiO2, TiO2, Ge and others. Therefore the en-
hancement of SHG in structures made of centrosymmetric materials requires boosting the surface
nonlinear response. Along with that, in III-V semiconductors with strong bulk nonlinearity the sur-
face contribution to the SHG can also be important, for instance, in the opaque region of the medium
[47, 45], close to the surface resonances [46] and for SH frequencies above the fundamental bandgap
[44]. In order to enhance the SSHG one needs both larger surface-to-volume ratio and strong pump
field at the surface. The first condition is fulfilled in nanostructures or nanometer-thick layers. The
enhancement of the pump field can be also achieved in nanostructures, which can concentrate the
energy of the electromagnetic field inside their volume due to the excitation of resonances in the VIS
or MID-IR spectral ranges [67]. It should be mentioned that the PMC is not expected to play a major
role for the enhancement of the SSHG. The PMC is crucial for gaining the conversion efficiency of
SHG in bulk nonlinear crystals since it guarantees the constant energy flow from FW to the SHW
upon propagation. In nanophotonics in general the nanoscale structures possess subwavelength di-
mensions and the energy transfer can not efficiently occur over so small distances, greatly reducing
the effect of the PMC.

In nanostructures made of III-V semiconductors the SHG conversion efficiency was mainly en-
hanced thanks to the excitation of high-Q resonances [31, 32], which results in an intense fundamental
field inside the volume of the nanostructure. However, when dealing with the surface nonlinearities
only, the excitation of resonances does not in general provide the gaining of the field nearby the inter-
face as well as the large overlap of the surface nonlinear polarization with the nanostructure resonant
modes at the SH frequency. Therefore I aim here to investigate an alternative approach, namely the
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interference of the sources of the surface nonlinear polarization inside a multilayer structure. Com-
bining many interfaces can bring several advantages. On one hand, if the constructive interference of
the surface sources is achieved, their nonlinear responses can sum up resulting in the enhancement of
the SSHG. On the other hand, one-dimensional photonic crystalls (PhC) are known to exhibit differ-
ent resonances, which can also enhance the pump field inside the stack [68]. As the result, multilayer
stacks, even composed of centrosymmetric semiconductors or dielectrics, can be expected to yield
beneficial performance for the frequency conversion at the nanoscale. Existing fabrication techniques
nowadays make it possible to grow layered structures of different materials with high precision and
material purity with variable thickness down to a few nanometers [69, 70, 71]. It should be noted
that third-order nonlinear effects can arise at some semiconductor interfaces due to the presence of
the constant electric field in the surface region because of the charge trapping or interface charging.
These third-order nonlinear phenomena are eventually manifested as the surface-like second-order
nonlinear effects [72, 73, 74]. All these and other similar effects can be formally described in the
same way as the usual surface second-order nonlinearity by adding them to the usual surface nonlin-
ear tensor. It is therefore assumed that all effectively second-order nonlinear phenomena inside the
surface region are accounted for in the treatment below.

For modeling of SSHG from multilayer structures it seems especially convenient to apply the
transfer-matrix formalism. The transfer matrix method (TMM) is widely used for numerical sim-
ulations of the light propagation in different one-dimensional structures, like PhCs, Bragg mirrors,
defect structures or other layered media. Some papers have addressed the extension of the TMM for
the modeling of nonlinear effects, like SHG or third-harmonic generation (THG). THG in PhC struc-
tures was analyzed using the transfer matrix method under the UPA in Ref. [75]. Then, the TMM
was elaborated and generalized in a number of works to second-order nonlinear processes as well
and to account for the pump depletion [76, 77, 78, 79, 80, 81, 82]. However, as far as I know, the
modeling of the SHG in multilayer structures has been limited so far to the bulk nonlinearities only,
while surface nonlinearities were always neglected. In several works [83, 84, 85, 86] both nonlinear-
ities were assumed thanks to the solving of the dynamical equations in the time domain for coupled
Drude-Lorentz oscillators describing free and bound charges in the medium. Such approach inher-
ently incorporates both surface and bulk contributions simultaneously, though without their explicit
separation, and was able to demonstrate the enhancement of the conversion efficiency from a stack
due to the larger number of surfaces and the localization of the pump field. Still such modeling by
solving the dynamical equations for the media is much more complicated and resource-consuming
and is mainly interesting to shed a clearer light on the origin of the nonlinear optical properties and
their relation with the crystal properties.

This chapter is organized as follows. The basic theoretical framework of the proposed TMM and
the problem statement are given in Section 2.1. In Section 2.2 transfer matrices for TE- and TM-
polarized fields at the SH frequency are presented and the expressions relating the emitted fields at
the SH frequency with the source vectors and the transfer matrices are derived. In Section 2.3 it is
discussed, how the source terms are calculated from the fundamental field, by solving the linear scat-
tering problem at the fundamental frequency with the TMM. Section 2.4 summarizes all steps of the
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proposed numerical method and provides its general computational procedure as well as discussion of
its applicability and possible extension. Section 2.5 is devoted to the specific case of ultrathin layers
in the stack and it is shown how the analytical treatment can be simplified for this case. In Section
2.6 the effective nonlinear parameters of the whole stack for the case of ultrathin layers are provided.
The results of the numerical simulations with the proposed numerical method are given in Section
2.7, where the conversion efficiency of SSHG from an exemplary multilayer stack is compared with
a single layer of GaAs of similar thickness as well as with a single interface with effective surface
nonlinearity of the whole stack. Finally, the summary and some concluding remarks are presented in
Section 2.8.

2.1 Model and problem statement

The typical structure to be considered represents a stack of # dielectric layers located on top of a
semi-infinite substrate, as schematically shown in Fig. 2.1. The <-th layer in the stack possesses the
thickness ℎ< and the relative permittivity Y<. The semi-infinite substrate has the dielectric permittivity
Ysub, and the medium in the upper half-space is assumed to be air. The stack is illuminated from the
top side by a wave at the fundamental frequency. I mainly examine here the simplest case, when the
illuminating field is a plane wave with the wavevector ®:FW and the angle of incidence \.

In the following, it is assumed that the surface nonlinearity is dominating in the nonlinear re-
sponse of the stack and the bulk nonlinearity can be thus neglected. This assumption is well justified
in the case of centrosymmetric semiconductors or dielectrics even for thick layers, because the bulk
nonlinearity due to the higher-order multipoles is much weaker than the surface nonlinearity. How-
ever, for thin enough layers of noncentrosymmetric materials it is also reasonable to keep the surface
nonlinearity only. The general condition, when the bulk nonlinearity is to be neglected in the layer of
the thickness ℎ<, can be written as:

j
(2)
bulkℎ< � j

(2)
surf, (2.1)

where j(2)bulk and j(2)surf are the bulk and surface second-order nonlinear coefficients respectively. The
prevailing contribution of the surface nonlinearity in nanoscale structures made of noncentrosymmet-
ric semiconductors has been found in experiments. For instance, in Refs. [43, 87] it was experimen-
tally measured that the surface contribution becomes dominating in GaP nanopillars for diameters
below ∼ 170 nm. In Ref. [66] the surface contribution was experimentally found to prevail in the
SHG response from 50-nm and 100-nm-thick layers of GaAs. These values can be used as the order-
of-magnitude estimates of the threshold thickness in Eq. (2.1). One can also expect these estimates to
hold for different noncentrosymmetric materials, including other III-V semiconductors.

In the presence of the surface nonlinear polarization the standard boundary conditions for the
components of the electric and magnetic fields have to be replaced with the generalized boundary
conditions. The generalized boundary conditions, when the source of the medium polarization is
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Figure 2.1: Considered multilayer structure consisting of # layers of thicknesses ℎ< and relative permittivities
Y< and placed on the top of a semi-infinite substrate of relative permittivity Ysub.

embedded into the interface, were derived in Ref. [88] as:

Δ ®� | | = −
1
Y0Y′
®∇‖%NL

(,⊥,

Δ ®�| | = −28l ®%NL
( × ®A⊥, (2.2)

where ®%NL
(

is the vector of the surface nonlinear polarization, subindices ⊥ and | | stand for the or-
thogonal and in-plane components of the corresponding vector, Δ is the jump of the corresponding
quantity across the interface and ∇| | denotes the two-dimensional gradient calculated in the plane of
the interface. The relative permittivity Y′ corresponds to the medium, where the sheet of the surface
nonlinear polarization is located. Boundary conditions Eq. (2.2) are derived for the surface of an
isotropic medium. However, they can be easily extended for the case of the surface of an anisotropic
optical material. The corresponding derivation and the respective form of Eq. (2.2) are provided in
the Appendix A.

Several remarks must be added here regarding the application of the generalized boundary con-
ditions Eq. (2.2) to the multilayer structures. As it was stated, the sheet of the surface nonlinear
polarization is assumed to be placed inside the medium with the relative permittivity Y′. For any
interface inside the stack two options are possible, when the permittivity Y′ corresponds either to the
medium above or below the interface. I will follow hereafter the standard approach, when the com-
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ponents of the vector of the surface nonlinear polarization are calculated using the pump electric field
just below the interface and the sheet of the surface nonlinear polarization is placed just above the in-
terface. Hence, at the interface between <-th and < +1-th layer inside the multilayer stack the value
Y′ = Y< is accepted. Such choice is done for convenience and potentially one can also place the sheet
of the surface nonlinear polarization below the respective interface and/or use the components of the
pump electric field above the interface. In this case the surface nonlinear tensor has to be rescaled in
a proper way to guarantee the consistency of the calculations regardless of the specific choice [38].

The most important case of the illuminating field is a plane wave at the fundamental frequency.
For the plane-wave illumination the generalized boundary conditions Eq. (2.2) allow obtaining cer-
tain conclusions for the generated SH field. Specifically, for the normal component of the surface
nonlinear polarization at each interface one finds:

%NL
(,⊥ ∼ 4

28®:FW
| | ®A , (2.3)

where ®:FW
| | is the tangential component of the wavevector of the incident plane wave. Following the

standard boundary conditions for the electric field, which are still valid at the fundamental frequency,
the vector ®:FW

| | is constant throughout the whole stack. Therefore the following equalities hold:

Δ ®� | | ‖ ®∇| |%NL
(,⊥ ‖ ®:

FW
| | , (2.4)

i.e., the jump of the tangential components of the electric field has a fixed direction at all interfaces
inside the considered multilayer stack. From Eq. (2.3) one can also conclude that all SHWs inside the
stack obey the following equation:

®:SH
| | = 2®:FW

| | . (2.5)

Eqs. (2.4) and (2.5) determine which second-harmonic plane waves can be emitted. For example, a
TE-polarized plane wave with the electric field in the direction of Δ ®� | | cannot be radiated, because
in this case one would get a plane wave with ®� · ®:SH ≠ 0. For the same reason a TM-polarized plane
wave with the magnetic field in the direction of ®:FW

| | cannot be generated, even though Δ ®�| | in general
can possess a nonzero component in this direction at each interface.

Having obtained the equalities above, one is ready now to proceed with the analytical formalism
for the transfer matrix method. Let us assume for definiteness, that the electric field at SH frequency
is directed along the G-axis and the magnetic field is directed along the H-axis. Using the transfer
matrix for the <-th layer in the stack [68], one arrives to the following relation between the fields in
the <-th and < +1-th layers: [

�G

�H

]
<+1,+

= "̂< ·
[
�G

�H

]
<,+
+ (̂<(<+1) , (2.6)
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where "̂< is the transfer matrix of the <-th layer, and the source vector is

(̂<(<+1) =

[
−Δ� | |,<(<+1)
−Δ�| |,<(<+1)

]
, (2.7)

where the minus sign appears because the field below the interface is expressed through the field
above. The subscript "+" in Eq. (2.6) denotes the field just below the top interface of the respective
layer, while the subscript "-" would stand for the field just above the bottom interface of the layer.
Eq. (2.6) differs from the matrix equations in the conventional transfer-matrix analysis by the extra
source vector in the right-hand side, arising thanks to the presence of the surface nonlinear polarization
at the interfaces. Combining together Eq. (2.6) for each single interface in the stack, one arrives to an
equation connecting the SHWs emitted into the upper medium and into the substrate:[

�G

�H

]
#+1,+

= "̂Σ ·
[
�G

�H

]
0,−
+ (̂Σ (2.8)

with matrices

"̂Σ =

#∏
<=1

"̂<,

(̂Σ = (̂# (#+1) + "̂# × (̂# (#−1) + "̂# × "̂#−1× (̂(#−1) (#−2) + ...+ "̂Σ × (̂01. (2.9)

Every term in the sum for (̂Σ in Eq. (2.9) describes the partial contribution of the interface between
<-th and < + 1-th layers into the overall SHW from the whole stack. Eq. (2.9) attains a particularly
simple form in the case of only one interface, i.e., in the absence of any layers on the top of the
substrate:

"̂Σ =

[
1 0
0 1

]
; (̂Σ =

[
−Δ� | |,01

−Δ�| |,01

]
.

Here it becomes obvious, how Eqs. (2.8) and (2.9) connect the fields above and below the single
interface.

The emitted SH field in general has mixed polarization, i.e. contains TE- and TM-polarized
components. The generalized boundary conditions Eq. (2.2), on the other hand, provide the jump of
the total field only. Therefore it is necessary to split Eq. (2.2) into two terms corresponding to the
jumps of the electric and the magnetic fields for different polarizations of the SHW. This separation
can be easily done for the illumination by the plane wave at the fundamental frequency, while for an
arbitrary incident field this can be a challenging task and requires extra efforts. Eq. (2.4) states that
the jumps of the tangential component of the electric field Δ� | |,<(<+1) have a fixed direction at each
interface inside the stack, namely the direction of ®:FW

| | . Besides that ®:SH
| | = 2®:SH

| | in each layer. Let

us assume the G-axis to be directed along ®:FW
| | , then both ®:SH

| | and all the jumps of the electric field
Δ� | |,<(<+1) are also directed along the G-axis. The electric field in a plane wave has to be orthogonal
to the wavevector and thus cannot possess a non-zero G-component. This contradiction implies that
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a TE-polarized SHW with electric field along the G-axis cannot be generated at any interface inside
the stack. Therefore, the jumps Δ� | |,<(<+1) can only produce the TM-polarized SHWs in every layer
inside the stack with the vector of the electric field in the GI-plane and the vector of the magnetic field
along H-axis. The respective form of the boundary conditions from Eq. (2.2) for TM-polarized SHW
is: 

Δ ®� | |,TM = Δ ®� | |
Δ ®�| |,TM = Δ ®�| | |H .

(2.10)

Since the jumps of the tangential components of the electric and the magnetic field in Eq. (2.2)
are independent, Δ�| |,<(<+1) at every interface would in general possess both G- and H-components.
While its H-component contributes to the emission of the TM-polarized SHW, the G-component would
generate the TE-polarized SHW with magnetic field in the GI-plane and the electric field along the
H-axis. Due to the equality Δ� | |,<(<+1) ‖ ®4G for any <, the boundary conditions for TE-polarized
SHW are given as: 

Δ ®� | |,TE = 0

Δ ®�| |,TE = Δ ®�| | |G .
(2.11)

The transfer matrices for TE- and TM-polarized fields are different, therefore both polarizations
of the FW have to be treated separately. The corresponding expressions for the implementation of the
proposed TMM are derived in the next sections both for TE- and TM-polarized FWs and SHWs.

2.2 Calculation of the emitted SHW by TMM

In this section both possible polarizations of the emitted second-harmonic wave are dealt with sepa-
rately. I begin with the case of a TE-polarized SHW. Following the notation above, it is assumed that
the electric field is directed along the H-axis, so that Eq. (2.8) yields:[

�TE,H

�TE,G

]
#+1,+

= "̂TE
Σ ·

[
�TE,H

�TE,G

]
0,−
+ (̂TE

Σ . (2.12)

For TE-polarization the transfer matrix of the <−th layer "̂TE
< has the following form:

"̂TE
< =

[
cos :SH

<,Iℎ< 8/′< sin :SH
<,Iℎ<

8
/ ′<

sin :SH
<,Iℎ< cos :SH

<,Iℎ<

]
, (2.13)

where

/ =

√
`0`

Y0Y
(2.14)
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is the wave impedance of the material of the <−th layer and:

/′ = / · :<
:<,I

. (2.15)

The transfer matrix of the whole stack for TE-polarized SHW attains the form:

"̂TE
Σ =

#∏
<=1

"̂TE
< . (2.16)

I would like to state here, that another implementation of the TMM exists, where the matrices are
written for forward- and backward-propagating waves inside each layer. This approach is often used
for simulations of bulk SHG in multilayer structures [75, 76, 78, 79, 80, 81, 82]. In this work the more
common approach is used instead and the transfer matrices are written for the tangential components
of the electric and magnetic fields inside the stack [68]. There are several reasons for this choice.
Firstly, the generalized boundary conditions Eq. (2.2) provide the jump of the total electric and mag-
netic fields. When decomposing the fields inside each layer into forward- and backward-propagating
waves, the boundary conditions Eq. (2.2) have to be split into two terms respectively, what can be dif-
ficult for complex illuminating fields. Secondly, the surface nonlinear polarization at each interface
inside the stack depends on the components of the total field, i.e. the sum of the fields of the forward-
and backward-propagating waves. Hence, the transfer matrices for the tangential components of the
electric and magnetic fields (without their separation into forward- and backward-propagating com-
ponents) appear to be more convenient for simulations.

Eq. (2.12) allows direct calculation of the amplitudes of the outgoing SHW for the plane-wave FW.
Indeed, both above (in the upper space) and below the stack (in the substrate) one gets an outgoing
plane wave at the SH frequency. Let us denote respective amplitudes of the electric field strength in
both waves as �+ and �−. The electric and magnetic fields in the plane wave are related with each
other by: [

�TE,H

�TE,G

]
#+1,+

=

[
�−

�−//′sub

]
and

[
�TE,H

�TE,G

]
0,−
=

[
�+

−�+//′0

]
, (2.17)

where �Σ = ℎ1+ℎ2+ ...+ℎ# is the overall thickness of the multilayer structure. Now one can substitute
the obtained expressions Eq. (2.13)-(2.17) into Eq. (2.12) and arrives to the system of linear equations
for the unknown amplitudes �+ and �−:[

�−

�−//′sub

]
= "̂TE

Σ ·
[

�+

−�+//′0

]
+ (̂TE

Σ . (2.18)

From Eq. (2.18), for instance, the field in the upper space �+ is readily found as:

�+ =
(TE
Σ,2/

′
0/
′
sub− (

TE
Σ,1/

′
0

"11/
′
0 +"22/

′
sub−"12−"21/

′
0/
′
sub
. (2.19)
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where the entries of the total transfer matrix "8 9 = "̂
TE
Σ
(8, 9) are used.

Next, let us move on to the case of TM-polarization of the emitted SHW. The electric field in the
TM-polarized SHW is assumed to be located in the GI-plane with the magnetic field directed along
the H-axis, therefore Eq. (2.8) is given as:[

�TM,G

�TM,H

]
#+1,+

= "̂TM
Σ ·

[
�TM,G

�TM,H

]
0,−
+ (̂TM

Σ . (2.20)

For TM-polarization the transfer matrix of <−th layer "̂TM
< has the following form:

"̂TM
< =

[
cos :SH

<,Iℎ< −8/′′< sin :SH
<,Iℎ<

− 8
/ ′′<

sin :SH
<,Iℎ< cos :SH

<,Iℎ<

]
, (2.21)

where it is denoted

/′′< = /< ·
:<,I

:<
. (2.22)

The transfer matrix of the whole stack for TM-polarized SHW is:

"̂TM
Σ =

#∏
<=1

"̂TM
< . (2.23)

Again one gets both above and below the stack outgoing plane waves at the SH frequency, and the
amplitudes of the G-component of the electric field strength are denoted as �+ and �− respectively.
The relations between electric and magnetic field in the plane wave yield:

[
�TM,G

�TM,H

]
#+1,+

=

[
�−

−�−//′′sub

]
and

[
�TM,G

�TM,H

]
0,−
=

[
�+

�+//′′0

]
. (2.24)

The expressions Eqs. (2.21)-(2.24) now have to be substituted into Eq. (2.20), which gives the
following system of equations for the unknown amplitudes �+ and �−:

[
�−

−�−//′′sub

]
= "̂TM

Σ ·
[
�+

�+//′′0

]
+ (̂TM

Σ . (2.25)

Now for the field in the upper space �+ one finds:

�+ =
−(TM

Σ,2/
′′
0 /
′′
sub− (

TM
Σ,1/

′′
0

"11/
′′
0 +"22/

′′
sub +"12 +"21/

′′
0 /
′′
sub
, (2.26)

with the entries of the total transfer matrix "8 9 = "̂
TM
Σ
(8, 9).
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2.3 Calculation of the surface nonlinear polarization

Eqs. (2.19) and (2.26) for the amplitudes of the emitted SHW contain the source vectors (̂TE
Σ
, (̂TM
Σ

.
In order to calculate them, one needs to know the surface nonlinear polarization at every interface in
the stack expressed through the parameters of the illuminating FW.

The surface nonlinear polarization is in general given by an expression of the form Eq. (1.2). Here
for simplicity, the surfaces are assumed to be isotropic. At the isotropic surface the general expression
reduces to only three nonzero terms as follows :

®%NL
( (2l, ®A) = Y0j

(2)
⊥⊥⊥�

(l)
⊥ (®A)�

(l)
⊥ (®A) · ®=+ Y0j

(2)
⊥|| | |�

(l)
| | (®A)�

(l)
| | (®A) · ®=

+ Y0j
(2)
| |⊥||�

(l)
⊥ (®A)�

(l)
| | (®A) · ®g, (2.27)

where ®= is the outward normal unit vector and ®g is the surface tangent unit vector at the point ®A,
pointing in the direction of ®� (l)| | (®A). If one takes a noncentrosymmetric semiconductor material,
the surface would not be isotropic and its symmetry would depend on the crystal symmetry and
the orientation of the crystal axes with respect to the surface normal at each specific point on the
surface. This means that other nonzero terms would correspondingly arise in Eq. (2.27). The form of
the surface nonlinear tensor for noncentrosymmetric III-V semiconductors will be discussed later in
chapter 4, but in this chapter this complex case is not considered.

One can see from Eq. (2.27), that one has to calculate the field components � (l)⊥ , �
(l)
| | at every

interface inside the multilayer stack in order to obtain the source vectors (̂TE
Σ
, (̂TM
Σ

. It should be also
emphasized that the standard notation for the surface nonlinearity is used in the following, with the
electric field of the FW in Eq. (2.27) taken just below the corresponding interface, and the sheet of
the surface nonlinear polarization located just above the interface.

First, the case of TE-polarization of the illuminating plane wave is considered. Let �I be the
amplitude of the electric field strength in the FW and 'TE the amplitude reflection coefficient of
the whole stack at fundamental frequency for TE-polarized incident plane wave. According to the
notation in the previous section, vectors ®:FW

| | and ®:SH
| | are assumed to be directed along G-axis. Given

that the incident plane wave is TE-polarized, its electric field therefore has to be directed along the
H-axis and the magnetic field lies in the GI-plane. The transfer matrices from Eqs. (2.13)-(2.16) allow
calculation of the electric field at the fundamental frequency just below the <-th layer:[

�TE,H

�TE,G

]
<+1,+

= "̂TE
<,FW× "̂TE

<−1,FW× ...× "̂
TE
2,FW× "̂

TE
1,FW×

[
�TE,H

�TE,G

]
0,−

=

<∏
9=1
"̂TE
9 ,FW×

[
�I(1+'TE)
�I

1−'TE
/ ′0,FW

]
. (2.28)

Next, TM-polarization of the incident plane wave is considered in the same manner. Let us denote
as �I the amplitude of the electric field strength in the FW and as 'TM the amplitude reflection
coefficient of the whole stack at the fundamental frequency for TM-polarized incident plane wave.
The vectors ®:FW

| | and ®:SH
| | are assumed to be directed along the G-axis, so that the electric field in the
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TM-polarized FW lies in the GI-plane and the magnetic field is directed along the H-axis. With the
transfer matrices Eqs. (2.21)-(2.23) one obtains for the electric field at the fundamental frequency just
below the <-th layer:

[
�TM,G

�TM,H

]
<+1,+

= "̂TM
<,FW× "̂TM

<−1,FW× ...× "̂
TM
2,FW× "̂

TM
1,FW×

[
�TM,G

�TM,H

]
0,−

=

<∏
9=1
"̂TM
9 ,FW×

[
�I,G (1+'TM)
−�I,G

1−'TM
/ ′′0,FW

]
. (2.29)

This expression gives only the tangential component of the electric field inside the stack. The
normal component �TM,⊥ can be calculated using the following relation between the electric and the
magnetic field in a plane wave inside < +1-th layer (i.e. just below <-th layer):

�TM,I = −
:FW
<+1,G

:FW
<+1
· /<+1,FW ·�TM,H, (2.30)

where the tangential component of the magnetic field �TM,H is provided by Eq. (2.29).

Lastly, I would like to present the equations for the amplitude reflection coefficients at the fun-
damental frequency 'TE and 'TM through the respective transfer matrices. If the incident field on
the stack at the fundamental frequency and the transmitted field for TE-polarization are denoted as
�I,TE/TM and �T,TE/TM respectively, both fields can be related through the transfer matrix of the stack
similar to Eqs. (2.18) and (2.28) as follows:[

�T,TE

�T,TE//′sub,FW

]
= "̂TE

Σ,FW×
[
�I(1+'TE)
�I

1−'TE
/ ′0,FW

]
. (2.31)

The indices ”FW” here are written in order to state that matrix "̂TE
Σ,FW as well as all values /′< are

taken at the fundamental frequency, while in all other equations they are assumed to be taken at the
SH frequency. Eq. (2.31) yields for the amplitude reflection coefficient 'TE:

'TE =
"22/

′
sub,FW−"11/

′
0,FW +"21/

′
0,FW/

′
sub,FW−"12

"22/
′
sub,FW +"11/

′
0,FW−"21/

′
0,FW/

′
sub,FW−"12

, (2.32)

where the entries of the total transfer matrix "8 9 = "̂
TE
Σ,FW(8, 9) are used. An analogous derivation for

the TM-polarization gives for the amplitude reflection coefficient 'TM:

'TM =
"22/

′′
sub,FW−"11/

′′
0,FW−"21/

′′
0,FW/

′′
sub,FW +"12

"22/
′′
sub,FW +"11/

′′
0,FW +"21/

′′
0,FW/

′′
sub,FW +"12

, (2.33)

with the entries of the total transfer matrix "8 9 = "̂
TM
Σ,FW(8, 9).
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2.4 Computational procedure with the proposed TMM

Having derived in the previous sections all the necessary equations, I would like now to put them
together and provide a general computational procedure for the proposed transfer matrix method.
The application of the proposed TMM should be done according to the following steps:

1. Finding the transfer matrix for the whole multilayer structure at the fundamental frequency
using Eq. (2.9) and the amplitude reflection coefficient 'TE/TM from Eqs. (2.32) and (2.33).

2. Calculation of the normal and tangential components of the electric field at the fundamental
frequency at each interface inside the stack using Eqs. (2.28)-(2.30).

3. Calculation of the vector of the surface nonlinear polarization with Eq. (2.27) at each interface
using the electric fields obtained at step (2).

4. Finding the jumps of the electric and magnetic fields given by the generalized boundary con-
ditions Eq. (2.2). The boundary conditions then have to be split into two terms, corresponding to the
TE- and TM-polarized SHWs according to Eqs. (2.10)-(2.11)

5. Construction of the matrices "̂Σ, (̂Σ for the whole multilayer structure at the SH frequency
using Eqs. (2.9).

6. Calculation of the amplitude of the outgoing SHW from the multilayer structure using Eq. (2.19)
or (2.26) for TE- and TM-polarized SHW respectively.

Eqs. (2.19) or (2.26) are derived for the upwards emitted SHW. The amplitudes of the SHW
transmitted into the substrate can be found from Eqs. (2.18) or Eqs. (2.25). The described computa-
tional procedure allows calculation of the surface-driven SHG from an arbitrary multilayer structure.
The proposed method by design accounts for the multiple reflections both at the fundamental and the
second-harmonic frequency and is valid for arbitrary angles of incidence of the illuminating field. It
should be also noted that in the treatment above UPA is used, so the reverse action of the SHW on the
FW is neglected, what is typically the case in nanophotonics.

Several remarks have to be made regarding the applicability of the proposed computational method.
All the treatment above dealt with the plane-wave illumination and the isotropic surfaces inside the
stack. Therefore the extension of the method beyond these simplifications has to be addressed. For
example, in order to treat an arbitrary illuminating field, this illuminating field at fundamental fre-
quency has to be expanded into Fourier components. Afterwards the steps (1)-(2) of the procedure
above have to be implemented for every single Fourier component of the illuminating field. Then
the inverse Fourier transform has to be run at each interface to calculate the corresponding vectors
of the surface nonlinear polarization Eq. (2.27) and the generalized boundary conditions Eq. (2.2) at
the steps (3)-(4) of the procedure. Finally, the jumps of the tangential components of the electric and
magnetic fields have to be expanded again into Fourier series at the SH frequency and steps (5)-(6)
should be done for each obtained Fourier component separately. It should be noted that this procedure
can be also directly applied to the case of the sum-frequency generation (SFG).

The extension to the case of anisotropic surfaces can be also readily done. In this case extra terms
must be added to the expression for the surface nonlinear polarization in Eq. (2.27). Such anisotropic
optical properties are inherently present at the surfaces of noncentrosymmetric semiconductors, but
may also arise at the surfaces of centrosymmetric materials due to the surface crystallization or ox-
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idation, presence of defects or other fabrication issues. The rest of the steps of the computational
procedure except for the step (3) stay unchanged.

The proposed procedure is applicable for an arbitrary composition of the stack and arbitrary thick-
nesses of the layers, provided only that the bulk nonlinearity can be neglected. Under these circum-
stances the proposed computational method yields analytically strict results for the amplitudes of the
emitted SHW. However, when the stack consists of ultrathin layers, the obtained equations can be
largely simplified and even explicit expressions for the SHW amplitude can be derived. Therefore the
next section is devoted to this interesting specific case of the multilayer stack.

2.5 Multilayer structure of ultrathin layers

In this section I aim to derive approximate analytical expressions for the emitted SHW, when the
multilayer structure is composed of ultrathin layers. More specifically, the following inequality is
assumed to hold for each layer in the stack:

:SH
< ℎ< � 1, (2.34)

i.e. the SH wavelength inside the materials is much smaller than thickness of the respective layer. If
the condition Eq. (2.34) is fulfilled, Eq. (2.1) can also be expected to be fulfilled, since both of them
put the upper limit on the thicknesses of the layers.

When the condition Eq. (2.34) holds for each layer in the stack, the entries of the transfer matrix
Eq. (2.13) for a TE-polarized SHW can be expanded up to the first-order terms of the small parameters
:SH
I,<ℎ<:

"̂TE
< ≈

[
1 8/′<:

SH
<,Iℎ<

8
/ ′<
:SH
<,Iℎ< 1

]
,

and for the transfer matrix of the whole stack "̂TE
Σ

the following approximate expression can be
obtained:

"̂TE
Σ =

#∏
<=1

"̂< ≈
[

1 8
∑#
<=1 /

′
<:

SH
<,Iℎ<

8
∑#
<=1

1
/ ′<
:SH
<,Iℎ< 1

]
. (2.35)

The source vector (̂TE
Σ

for the TE-polarized SHW is also expanded as:

(̂TE
Σ =

#∑
<=0

(̂TE
<(<+1) + (̃

TE
Σ

where the last term is given as:

(̃TE
Σ =

[
8
∑#−1
<=0 (

TE
<(<+1),2 ·

∑#
9=<+1 /

′
<:

SH
<,Iℎ<

8
∑#−1
<=0 (

TE
<(<+1),1 ·

∑#
9=<+1

:SH
<,Iℎ<

/ ′<

]
. (2.36)



Chapter 2. Transfer matrix method for modeling of surface SHG from multilayer structures 24

Now Eq. (2.19) for the amplitude of the electric field in the outgoing SHW can be expanded
into the series over small parameters :SH

I,<ℎ<. Introducing �+0 as the limiting value of �+ when all
:SH
I,<ℎ< −→ 0, one reduces Eq. (2.19) to:

�+ = �+0 − (̃
TE
Σ,1 ·

/′0
/′0 + /

′
sub
+ (̃TE

Σ,2 ·
/′0/

′
sub

/′0 + /
′
sub
+
(̃TE
Σ,2/

′
0/
′
sub− (̃

TE
Σ,1/

′
0

(/′0 + /
′
sub)2

×

("12 +"21/
′
0/
′
sub). (2.37)

The same treatment for a TM-polarized SHW under the same condition Eq. (2.34) yields for the
entries of the transfer matrix Eq. (2.21) up to the first-order terms of small parameters :SH

I,<ℎ<:

"̂TM
< ≈

[
1 −8/′′<:SH

<,Iℎ<

− 8
/ ′′<
:SH
<,Iℎ< 1

]
,

and the transfer matrix of the whole stack is obtained as:

"̂TM
Σ =

#∏
<=1

"̂< ≈
[

1 −8∑#
<=1 /

′′
<:

SH
<,Iℎ<

−8∑#
<=1

1
/ ′′<
:SH
<,Iℎ< 1

]
. (2.38)

Now, the source vector (̂TM
Σ

can be represented in the following form:

(̂TM
Σ =

#∑
<=0

(̂TM
<(<+1) + (̃

TM
Σ

with the last term:

(̃TM
Σ = −

[
8
∑#−1
<=0 (

TM
<(<+1),2 ·

∑#
9=<+1 /

′′
<:

SH
<,Iℎ<

8
∑#−1
<=0 (

TM
<(<+1),1 ·

∑#
9=<+1

:SH
<,Iℎ<

/ ′′<

]
. (2.39)

The expression Eq. (2.26) for the SHW amplitude in the upper space is again to be expanded
into a series over the small parameters :SH

I,<ℎ<. Introducing �+0 as the limiting value of �+ when all
:SH
I,<ℎ< −→ 0, one gets using Eq. (2.26):

�+ = �+0 − (̃
TM
Σ,1 ·

/′′0
/′′0 + /

′′
sub
− (̃TM

Σ,2 ·
/′′0 /

′′
sub

/′′0 + /
′′
sub

+
(̃TM
Σ,2/

′′
0 /
′′
sub + (̃

TM
Σ,1/

′′
0

(/′′0 + /
′′
sub)2

· ("12 +"21/
′′
0 /
′′
sub). (2.40)

To apply the expressions for the emitted SHW Eq. (2.37) and (2.40) one has to get a corresponding
expansion of the source terms, and thus the electric field components at the fundamental frequency at
each interface. For a TE-polarized illuminating plane wave at the fundamental frequency Eq. (2.28)
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for the electric field just below the <-th layer can be simplified using Eq. (2.35) to :

�TE,| |

���
<+1,+

= �I

[
1+'TE + 8

1−'TE

/′0,FW
·
<∑
9=1
/′9 ,FW:

FW
9 ,I ℎ 9

]
. (2.41)

For a TM-polarized incident plane wave at the fundamental frequency Eqs. (2.29) and (2.38) give
for the electric field just below the <-th layer:

�TM,| |

���
<+1,+

= �I,| |
[
1+'TM + 8

1−'TM

/′′0,FW
·
<∑
9=1
/′′9 ,FW:

FW
9 ,I ℎ 9

]
. (2.42)

The magnetic field component �TM,H inside the stack can be found from Eq. (2.29):

�TM,H

���
<+1,+

= �I,G

[
− 1−'TM

/′′0,FW
− 8(1+'TM) ·

<∑
9=1

:FW
9 ,I
ℎ 9

/′′
9 ,FW

]
,

which gives for the normal component �TM,⊥ according to Eq. (2.30):

�TM,⊥

���
<+1,+

= −
:FW
<+1,G

:FW
<+1
· /<+1,FW ·�I,G ·

[
− 1−'TM

/′′0,FW
− 8(1+'TM) ·

<∑
9=1

:FW
9 ,I
ℎ 9

/′′
9 ,FW

]
. (2.43)

In the Eqs. (2.41)-(2.43) the amplitude reflection coefficients for the stack 'TE and 'TM are still
used, which also need to be expanded into a series of small parameters :SH

I,<ℎ<. From Eq. (2.32) one
can obtain for 'TE:

'TE =
/′sub,FW− /

′
0,FW

/′sub,FW + /
′
0,FW
+
"21/

′
0,FW/

′
sub,FW−"12

/′sub,FW + /
′
0,FW

+
/′sub,FW− /

′
0,FW

(/′sub,FW + /
′
0,FW)2

×("21/
′
0,FW/

′
sub,FW +"12)

= '0
TE +

28/′2sub,FW/
′
0,FW

(/′sub,FW + /
′
0,FW)2

·
#∑
9=1

:FW
9 ,I
ℎ 9

/′
9 ,FW
−

28/′0,FW

(/′sub,FW + /
′
0,FW)2

·
#∑
9=1
/′9 ,FW:

FW
9 ,I ℎ 9 , (2.44)

where one introduces

'0
TE =

/′sub,FW− /
′
0,FW

/′sub,FW + /
′
0,FW

as the amplitude reflection coefficient at the interface between air and substrate, i.e. in the absence of
the stack. Eq. (2.44) allows expanding Eq. (2.41) up to first-order small terms as follows:

�TE,| |

���
<+1,+

= �I

[
1+'0

TE +
28/′2sub,FW/

′
0,FW

(/′sub,FW + /
′
0,FW)2

·
#∑
9=1

:FW
9 ,I
ℎ 9

/′
9 ,FW

−
28/′0,FW

(/′sub,FW + /
′
0,FW)2

·
#∑
9=1
/′9 ,FW:

FW
9 ,I ℎ 9 + 8

1−'0
TE

/′0,FW
·
<∑
9=1
/′9 ,FW:

FW
9 ,I ℎ 9

]
. (2.45)
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In a similar way from Eq. (2.33) one can find for the amplitude reflection coefficient 'TM:

'TM =
/′′sub,FW− /

′′
0,FW

/′′sub,FW + /
′′
0,FW
+
−"21/

′′
0,FW/

′′
sub,FW +"12

/′′sub,FW + /
′′
0,FW

−
/′′sub,FW− /

′′
0,FW

(/′′sub,FW + /
′′
0,FW)2

×("21/
′′
0,FW/

′′
sub,FW +"12)

= '0
TM +

28/′′2sub,FW/
′′
0,FW

(/′′sub,FW + /
′′
0,FW)2

·
#∑
9=1

:FW
9 ,I
ℎ 9

/′′
9 ,FW
−

28/′′0,FW

(/′′sub,FW + /
′′
0,FW)2

·
#∑
9=1
/′′9 ,FW:

FW
9 ,I ℎ 9 , (2.46)

where

'0
TM =

/′′sub,FW− /
′′
0,FW

/′′sub,FW + /
′′
0,FW

is the amplitude reflection coefficient between air and substrate in the absence of the stack. Using
Eq. (2.46), Eqs. (2.42) and (2.43) can be expanded up to first-order small terms as follows:

�TM,| |

���
<+1,+

= �I,| |
[
1+'0

TM +
28/′′2sub,FW/

′′
0,FW

(/′′sub,FW + /
′′
0,FW)2

×
#∑
9=1

:FW
9 ,I
ℎ 9

/′′
9 ,FW
−

28/′′0,FW

(/′′sub,FW + /
′′
0,FW)2

·
#∑
9=1
/′′9 ,FW:

FW
9 ,I ℎ 9

+8
1−'0

TM

/′′0,FW
·
<∑
9=1
/′′9 ,FW:

FW
9 ,I ℎ 9

]
,

�TM,⊥

���
<+1,+

= −
:FW
<+1,G

:FW
<+1
· /<+1,FW ·�I,| |

[
−

1−'0
TM

/′′0,FW

+
28/′′2sub,FW

(/′′sub,FW + /
′′
0,FW)2

·
#∑
9=1

:FW
9 ,I
ℎ 9

/′′
9 ,FW
− 28
(/′′sub,FW + /

′′
0,FW)2

·
#∑
9=1
/′′9 ,FW:

FW
9 ,I ℎ 9

−8(1+'0
TM) ·

<∑
9=1

:FW
9 ,I
ℎ 9

/′′
9 ,FW

]
. (2.47)

The obtained expressions can be used to find the source terms and eventually to express the emitted
SHW Eq. (2.37) and (2.40) through the thicknesses and refractive indices of the layers and the
amplitude reflection coefficients in the absence of the stack. Keeping only the first terms of this
expansion allows representing the SHW amplitude through the effective surface nonlinear tensor of
the whole stack. In the next section I proceed with explicit expressions for this effective tensor and
discuss the applicability limits for such approximation.

2.6 Effective surface nonlinear tensor of the stack

If one keeps only zeroth-order terms in the field expansions from the previous section, the results
attain the same form as if the SHW is emitted by a single nonlinear interface between the air and the
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substrate. Let us thus introduce the surface nonlinear tensor of such an interface, which effectively
describes the SSHG from the whole multilayer stack. Summarizing the equations from the previous
section and the analytical solution for a SSHG from a single flat interface [89, 90], one obtains the
following expressions for the effective surface nonlinear tensor:

j
(2)
Σ,8 9 :

=

#∑
<=0

j
(2)
<(<+1), 8 9 : ·

(Yup,SH

Y<,SH

)=2
·
(Ysub,FW

Y<,FW

)=1
, (2.48)

where j(2)
<(<+1) is the surface nonlinear tensor of the interface between <-th and < + 1-th layer in

the stack and Yup is the relative dielectric permittivity of the upper medium. As already mentioned,
this surface nonlinear tensor is to be attributed to the interface between the upper medium and the
substrate. It is important to clarify the origin of both factors arising in Eq. (2.48). The first factor
on the right-hand side, i.e. the ratio of the relative permittivities at the second-harmonic frequency,
appears, since the sheet of the surface nonlinear polarization at the interface between <-th and < +1-
th layer is assumed to be just above the interface, i.e. inside <-th layer with the relative permittivity
Y<. The value of the index of power =2 is correspondingly given as:

=2 = 1, when 8 = I,

=2 = 0, when 8 = G, H.

The second factor on the right-hand side in Eq. (2.48), i.e. the ratio of the relative permittivities at
the fundamental frequency, results from the jump of the normal component of the electric field at
each interface inside the stack, as compared to a single interface between the substrate and the upper
medium, and appears only if the normal component of the electric field �I is used for the calculation
of the surface nonlinear polarization %NL. The value of the index of power =1 is therefore provided
by:

=1 = 2, when 9 = I, : = I,

=1 = 1, when 9 = I, : ≠ I or 9 ≠ I, : = I,

=1 = 0, when 9 ≠ I, : ≠ I.

In the important case of the isotropic surfaces inside the stack the expressions for the surface nonlinear
tensor Eq. (2.48) can be written as:

j
(2)
Σ,⊥⊥⊥ =

#∑
<=0

j
(2)
<(<+1),⊥⊥⊥ ·

Yup,SH

Y<,SH
·
(Ysub,FW

Y<,FW

)2
,

j
(2)
Σ,⊥|| | | =

#∑
<=0

j
(2)
<(<+1),⊥|| | | ·

Yup,SH

Y<,SH
,

j
(2)
Σ,| |⊥| | =

#∑
<=0

j
(2)
<(<+1),| |⊥| | ·

Ysub,FW

Y<,FW
.
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Let us now take a closer look at the effective surface tensor for different polarizations of the
FW. For a TE-polarized incident plane wave at fundamental frequency one gets � (l)⊥ = 0 inside the
stack and only the term ∼ j(2)⊥|| | | in Eq. (2.27) is non-zero at each interface. The surface nonlinear

polarization thus possesses only normal component %NL
(,⊥, therefore one obtains Δ ®�| | = 0 and (TM

<<+1,2 =

0 in Eq. (2.39). Following the reasoning in Eqs. (2.10)-(2.11), it means that only a TM-polarized SHW
is emitted in this case from the stack. The expression for the effective surface nonlinear tensor can be
extended with respect to Eq. (2.48) to include also first-order terms as follows:

j
(2)
Σ,⊥|| | | =

#∑
<=0

j
(2)
⊥|| | |,<(<+1) ·

Yup

Y<
+ Xj(2)

Σ,⊥|| | | +$
[
(:SH

9 ,I ℎ 9 )2
]
.

The explicit expressions for the first-order small terms Xj(2)
Σ,⊥|| | | derived using the field expansions

from the previous section, are quite cumbersome and put to Appendix B.

Next, let us consider similarly TM-polarized incident plane wave at the fundamental frequency.
Here all terms in the expression for the surface nonlinear polarization in Eq. (2.27) are non-zero.
Eqs. (2.2) and (2.27) show that in this case ®%NL

(,| | | | ®�
(l)
| | , and hence Δ ®�| | ⊥ ®� (l)| | and Δ ®�| | ⊥ Δ ®� | |.

According to Eqs. (2.10)-(2.11) one finds again, that only TM-polarized SHW is emitted. The ex-
pressions for the effective surface nonlinear tensor with the inclusion of the first-order terms are given
as:

j
(2)
Σ,⊥⊥⊥ =

#∑
<=0

j
(2)
⊥⊥⊥,<(<+1) ·

Yup

Y<
·
(Ysub,FW

Y<,FW

)2
+ Xj(2)

Σ,⊥⊥⊥ +$
[
(:SH

9 ,I ℎ 9 )2
]
,

j
(2)
Σ,| |⊥| | =

#∑
<=0

j
(2)
| |⊥||,<(<+1) ·

Ysub,FW

Y<,FW
+ Xj(2)

Σ,| |⊥| | +$
[
(:SH

9 ,I ℎ 9 )2
]
,

j
(2)
Σ,⊥|| | | =

#∑
<=0

j
(2)
⊥|| | |,<(<+1) ·

Yup

Y<
+ Xj(2)

Σ,⊥|| | | +$
[
(:SH

9 ,I ℎ 9 )2
]
.

Again the explicit expressions for the first-order small terms Xj(2)
Σ,⊥|| | | derived using the field expan-

sions from Eqs. (2.40) and (2.47) and presented in Appendix B.

The derived expressions for the first-order correction terms of the effective surface nonlinear ten-
sor contain only the imaginary part, even if the absorption in the ultrathin layers is neglected. The
contribution to the real part of j(2)surf,Σ can be thus given by the second-order correction terms. In order
to derive the second-order correction terms, one has to keep correspondingly up to the second-order
small terms in all expansions of the fields inside the stack in the previous section. These second-
order terms, however, turn out to be much more cumbersome and are not provided here. It should be
also noted that Eqs. (B.1)-(B.2) were derived for pure TE- or TM-polarized incident plane wave and
are not directly applicable for other illuminating fields. In particular, in the case of the plane-wave
excitation with the mixed polarization, TE- and TM-polarized field components at the fundamental
frequency will be mixed through the terms j(2)| |⊥||,<(<+1) , resulting in the generation of both TE- and
TM-polarized SHWs. With Eqs. (2.37) and (2.40) it would be possible to generalize the expressions
for the effective surface nonlinear tensor for such incident FW as well.
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An important issue is related to the applicability of the derived expansions for the effective surface
nonlinearity of the stack j(2)surf,Σ. In order to estimate the limits of validity of the simplified Eq. (2.48),
one has to find the ratio between the zeroth-order and first-order correction terms in the expansion for
Eq. (2.48). Using the first-order correction terms in Eqs. (B.1), (B.2) the condition of smallness of
this ratio can be reduced to the smallness of the following quantities:

bTE =
1

/′0,FW/SH + /
′
sub,FW/SH

·
#∑
<=1

/′
<,FW/SH:

FW/SH
<,I ℎ< � 1;

bTM =
1

/′′0,FW/SH + /
′′
sub,FW/SH

·
#∑
<=1

/′′
<,FW/SH:

FW/SH
<,I ℎ< � 1, (2.49)

and
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/′0,FW/SH/
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·
#∑
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:
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′′
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·
#∑
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:
FW/SH
<,I ℎ<

/′′
<,FW/SH

� 1. (2.50)

Given that Eqs. (2.49), (2.50) are fulfilled, the simplest form of the effective nonlinear tensor Eq. (2.48)
can be well justified. As long as the conditions Eqs. (2.49), (2.50) cease to be valid, the first-order
correction terms in Eqs. (B.1), (B.2) must be also accounted.

2.7 Simulation results and discussion

In this section I aim to test the proposed nonlinear TMM with some exemplary multilayer structure.
I take a 10-nm stack composed of five ultrathin layers made of Si, SiO2 and TiO2, which are placed
on the top of a glass substrate (BK7). The thicknesses of all layers together with their materials are
listed in Table 2.1. The fundamental wavelength of the illuminating plane wave is chosen 1 `m, so
that the second-harmonic wavelength is 500 nm. The relative permittivities of all materials both at
fundamental and second-harmonic frequencies are taken from Refs. [91, 92, 93].

Layer, № 1 2 3 4 5 Substrate
Material Si SiO2 TiO2 Si SiO2 BK7

Thickness, nm 1 3 2 1 3 -

Table 2.1: The composition of the considered multilayer stack.

The intensity of the incident FW was taken to 1.33 GW/cm2, meaning that the electric field
strength in the FW is �FW = 108 V/m. The values of the entries of the surface nonlinear tensor
for the top interface between silicon and air were experimentally measured in [94]. Since experimen-
tal data for the frequency dispersion of the surface nonlinear susceptibilities of Si/Air interface is not
available, the Miller rule [2] is applied to calculate the surface nonlinear tensor at the fundamental
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frequency. Miller rule states the following relation to hold:

j(2) (2l)

j(1) (2l) ·
[
j(1) (l)

]2 = const, (2.51)

where j(1) (l) is the usual linear susceptibility of the material. Using Eq. (2.51) one can calculate
the surface nonlinear tensor for Si/Air interface at the frequency of interest, given that its value at
least at one frequency is known. Substituting the experimental values for the pump wavelength 800
nm from [94], one obtains the following values of the tensor components: j(2)⊥⊥⊥ ≈ 7 · 10−18 m2/V,
j
(2)
⊥|| | | ≈ 3.7 ·10−19 m2/V, j(2)| |⊥|| ≈ 3.7 ·10−19 m2/V.

For most interfaces between different material pairs the experimental data for the respective sur-
face nonlinearities is lacking. Therefore it seems to be not possible in general to find experimental
data for the values of the surface nonlinear tensor for different adjacent media in the stack. To over-
come this problem an assumption is taken that the strength of the surface nonlinearity is simply lin-
early proportional to the ratio of the relative permittivities of adjacent materials. This is just a rough
approximation, which is inspired by the fact that the surface nonlinearity originates from the disconti-
nuity of the material properties across the interface. As far as I know, there are no theoretical models
developed so far, which could provide a way to calculate the strength of the surface nonlinearity for
an arbitrary pair of adjacent dielectric media. With the described approximation, the experimental
values for the Si/Air interface above are used to get the estimated values of the entries of the sur-
face nonlinear tensor for each interface inside the considered stack. It is important that the values
of the surface nonlinear tensors are not relevant for testing the performance of the numerical method
itself. Moreover, approximate values of the surface nonlinearities are still expected to yield correct
order-of-magnitude amplitude of the emitted SHW from the stack. Along with that, one has to take
care of the correct direction of the vector of the surface nonlinear polarization at each interface. It is
assumed here that the vector of the surface nonlinear polarization is always directed from the medium
with stronger bulk second-order nonlinearity into the medium with weaker second-order nonlinearity.
This means that, for example, the normal component of the surface nonlinear polarization constantly
changes its sign as moving across the stack and thus the surface sources of the SHG can interfere both
constructively and destructively.

Let us start with simulation of the SSHG from the exemplary stack in Table 2.1 and the comparison
of the simulation results with the analytically obtained SSHG from a single interface with the effective
nonlinear tensor Eq. (2.48). Both plots are shown in Fig. 2.2 for both TE- and TM-polarized incident
plane wave at the fundamental frequency. The angle of incidence of the FW is varied. The agreement
between both curves in Fig. 2.2 is very good, with noticeable deviations only close to the maxima of
the plots. One can also see that the maximal SHW amplitudes for both polarizations of the FW differ
slightly.

It is interesting next to estimate the quantities bTE/TM, ZTE/TM from Eqs. (2.49)-(2.50) in order to
check the validity of the zeroth-order term for the effective nonlinear tensor Eq. (2.48). Both quantities
are plotted in Fig. 2.3 vs. the angle of incidence both for the fundamental and SH frequency. One
can see that the requirement of the smallness of both b and Z can be well enough satisfied within a
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Figure 2.2: Amplitude of the upwards outgoing SHW from the considered stack for: (a) TE-polarized; (b) TM-
polarized incident wave at fundamental frequency, obtained using proposed TMM from the stack (blue solid
line) and using effective surface nonlinear tensor Eq. (2.48) for a single interface between the substrate and the
air (green dashed line).

certain range of the values of the incidence angle close to the normal incidence. For close to grazing
incidence parameters bTM and ZTE at SH frequency significantly grow and cannot be assumed much
smaller than 1 anymore. In this case some terms in the first-order corrections to Eq. (2.48) are not
negligible and must be taken into account. The values of the discrepancies can be reduced further by
selecting materials with smaller refractive index contrast and/or reducing the thicknesses. The extra
simulations were performed and it was checked that with decreasing the thicknesses of all layers in
the stack the blue curves in Fig. 2.2 displaying the SSHG from the considered multilayer stack get
closer to and eventually fuse together with the green curves corresponding to the SSHG from a single
interface possessing the effective surface nonlinearity j

(2)
surf,Σ from Eq. (2.48). The reduction of the

layer thicknesses could be, however, quite challenging and is limited by the fabrication techniques.

Lastly, it would be interesting to compare the amplitude of the SHW emitted from the considered
exemplary stack in Table 2.1 with the one from a bulk layer of comparable thickness made of non-
centrosymmetric material with strong bulk nonlinearity. Thereby one can estimate the efficiency of
the multilayer structures for potential applications in nonlinear photonic devices. For comparison, a
GaAs layer placed on the top of the same glass substrate was selected. The components of the vector
of the bulk nonlinear polarization in GaAs are expressed as follows:

%NL
8 = Y0j

(2)
8 9 :
� 9�: ,

with indices 8, 9 , :, corresponding to the crystal symmetry axes. Due to the zinc-blende crystalline
structure of bulk GaAs, the entries of its bulk second-order nonlinear susceptibility tensor obey the
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Figure 2.3: Values of the discrepancies bTE/TM and ZTE/TM from Eqs. (2.49)-(2.50) both for fundamental (FW)
and second-harmonic (SH) frequencies.

following symmetry relations:

j
(2)
8 9 :
≠ 0 if 8 ≠ 9 ≠ :,

i.e. only entries with all indices different are non-zero. Moreover, all non-zero tensor elements are
equal to each other [41]. The respective value in GaAs was measured as j(2)

8 9 :
= 100 pm/V [95].

The top plane of the considered GaAs layer is assumed to coincide with the (100) crystal face for
simplicity. As the illuminating field at the fundamental frequency TE- and TM-polarized plane waves
are taken. TM-polarized plane wave was taken with the electric field vector in the crystal GI-plane
and for the TE-polarized plane wave the angle 45◦ between the electric field vector and both G- and
H- crystal axis is assumed. The simulation results for GaAs layer are shown in Fig. 2.4 together
with the data for the exemplary stack from Fig. 2.2. The thickness of the GaAs layer was varied
and finally chosen 70 nm in order to get stronger amplitude of the upwards propagating SHW for
TM-polarized incident plane wave. For a thinner GaAs layer, e.g., close to 10 nm for the stack in
Table 2.1, the amplitude of the emitted SHW was even weaker. One can see that even though the
GaAs layer possesses strong bulk nonlinearity and has much larger thickness, the efficiency of the
SHG from the stack is still much higher. It should be recalled here that just approximate values for
the surface nonlinear tensors inside the stack were used. However, the simulated data is expected to be
of the correct order of magnitude, so that the comparison between the conversion efficiencies from the
multilayer structure and GaAs layer still holds. These findings let to expect the considered multilayer
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Figure 2.4: Amplitude of the upwards outgoing SHW from a GaAs layer of thickness 70 nm, located on the
same substrate (BK7). The top plane coincide with (100)-plane of the crystal. TM-polarized incident wave is
polarized in GI-plane; in the case of TE-polarized incident wave the electric field vector forms angles 45◦ both
with G- and H-axis.

structures as promising candidates for applications in nonlinear photonic devices. The conversion
efficiency can be also further boosted, for instance, through the nano-patterning of the stacks as it has
been demonstrated for all-dielectric metasurfaces [44].

2.8 Summary

This chapter has been devoted to SHG from multilayer structures arising due to the surface nonlin-
earities at multiple interfaces between adjacent layers. With such composition of many layers, the
surface sources of the nonlinear polarization interfere, which can result in the strong enhancement
of SHG from multilayer structures. I did not account for the bulk nonlinearity in the layers and fully
concentrated on the surface nonlinearities only. Such assumption is well justified, when the multilayer
structure is made of centrosymmetric semiconductors, dielectrics or metals. The layers of noncen-
trosymmetric semiconductors can be also treated in such a way, provided that the thickness is small
enough, that the bulk nonlinearity can be safely neglected.

For the efficient modeling of the SSHG from multilayer structures there have been no convenient
numerical methods so far. Therefore a transfer matrix method was developed well suited for the
simulations of the SH field from an arbitrary one-dimensional layered stack of any possible compo-
sition. The proposed TMM inherently accounts for such effects, as multiple reflections of the field
both at fundamental frequency and the SH frequency. This TMM was tested for an exemplary mul-
tilayer structure and the simulation results have demonstrated high enough conversion efficiency of
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the SSHG. To be more specific, the SHW amplitude from the stack was compared with the SHW
amplitude from a GaAs layer of comparable or even larger thickness. The calculation showed the
SHW amplitude emitted from the exemplary multilayer structure is several times stronger than SHW
amplitude from the GaAs layer. This means at least one order of magnitude larger energy conversion
efficiency for the multilayer stack, despite neglecting the bulk nonlinearities. The proposed multi-
layer structures can be thus potentially interesting for applications in nonlinear nanophotonics, for
example, for the frequency doubling in nanophotonic devices. Besides that, the nano-patterning of
the stack into a dielectric metasurface can allow to further boost the efficiency of SHG thanks to
the excitation of Mie-type or other resonances. Finally, it is worth noting that the developed TMM
can be potentially applied to examine nonlinear effects in some novel classes of layered materials,
such as multilayered transition metal dichalcogenide monolayer structures (TMDCs) [96] or hyper-
bolic metamaterials [97], which are actively studied in recent years and can be also interesting for
nonlinear optical applications [98, 99].

An important particular case that was addressed is the multilayer structure composed of ultrathin
layers (of the order of tens of nm or smaller). This specific case is interesting for several reasons.
First, for such ultrathin layers even in noncentrosymmetric materials the contribution of the bulk
nonlinearity is negligibly small and the SHG response is fully driven by the surface nonlinearities.
Second, small thicknesses of the layers lead to small phase shifts between the sources of the non-
linear polarization at the neighbouring interfaces and thus facilitate the constructive interference of
the nonlinear surface sources. Third, the analytical derivation can be greatly simplified in this limit
and even explicit approximate equations can be derived for the emitted SHW. The analytical expres-
sions of proposed TMM were reduced in the limit of ultrathin layers and it was shown that in the
zeroth-order approximation the SSHG from an ultrathin stack coincides with the SSHG from a single
interface between the upper medium and the substrate. For this replacement interface the effective
surface nonlinear tensor was derived describing the nonlinear optical properties of the whole stack.
Moreover, the first-order correction terms for the effective surface nonlinear tensor were explicitly ob-
tained. Performed simulations have shown that for an exemplary ultrathin stack the effective surface
nonlinear tensor can indeed describe the nonlinear response with high enough accuracy.

The proposed TMM is only applicable to one-dimensional multilayer structures. Therefore it
cannot be used in a variety of important applications, like the SSHG from plasmonic or dielectric
nanostructures or metasurfaces composed of them. Hence, other numerical methods are needed for
efficient modeling of SSHG from arbitrary-shape structures. In the following chapter I develop such
method based on the finite-element formalism.



Chapter 3

Adaptive finite-element method for modeling
of surface SHG from nanostructures

As discussed in the introduction, different nonlinear mechanisms are primarily responsible for SHG
from different materials depending on the medium symmetry. In noncentrosymmetric semiconductor
materials the inversion symmetry is naturally broken, leading to the strong bulk nonlinearity. The
surface nonlinearity can be often disregarded, even though sometimes the surface contribution is still
able to noticeably effect the total SH response and needs to be accounted for [43, 44, 45]. The surface
nonlinearity, on the contrary, is typically dominating in centrosymmetric media (Si, Ge, TiO2, metals
and others) [39], because the inversion symmetry prohibits the bulk second-order nonlinearity in the
dipole approximation.

Bulk and surface nonlinearities need different numerical methods to be used for their efficient
modeling. The vectorial finite-difference time-domain method (FDTD) with uniform rectangular
mesh is well suited for the bulk SHG [100], but is hardly applicable for the surface SHG from
arbitrary-shaped nanoparticles. There are a number of numerical methods developed so far for the
modeling of the SSHG in nanophotonics. Among these are the boundary element methods (BEM)
[61], volume integral formulations [59, 60] and different versions of the surface integral method
[62, 63, 64, 65]. All these methods have certain advantages for SSHG simulations, but also share
some downsides. The limitations, to mention just a few, include the complexity of incorporating
the bulk nonlinearity in the medium in addition to the surface one, relatively slow convergence rates
compared to FEM, the limited flexibility in handling the surface discretization for complex geome-
tries and often the difficulty to achieve acceptable trade-off between high computational accuracy and
reasonable computational costs.

Besides all the above stated methods, finite-element methods are also widely used for SHG sim-
ulations from different nanostructures, but mainly for the case of the bulk nonlinearity only. FEM
are especially popular in the area of nanophotonics, since their nonuniform discretization meshes (see
Fig. 3.1,a) allow easy handling of the complex geometries. It is also possible to use FEM for SSHG
simulations, if one assumes the finite thickness of the surface layer. In this case the surface nonlin-
earity is modeled as the bulk one, but existing only within the ultrathin surface layer. This approach,
however, harms the FEM performance due to the appearance of the largely different length scales,
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since the light wavelength and the typical dimensions of the nanostructures are orders of magnitude
larger than the efficient thickness of the surface layer. This results in the strongly irregular computa-
tional mesh and very poor efficiency of FEM simulations, since the performance of the FEMs greatly
benefits from the regularity of the computational mesh.

(a) (b)

Medium 1 

Medium 2 

Figure 3.1: (a) An example cut of the discretization grid for FEM simulation of a three-dimensional spherical
nanostructure; (b) an example of the refinement of the finite-element grid in the vicinity of the interface between
two media.

Here a finite-element implementation of the surface nonlinearity is developed, where the surface
nonlinear polarization is treated as a true surface source, embedded in the interface between two ad-
jacent media. This method enables the SSHG simulation from arbitrary-shaped nanostructures, either
isolated or arranged into metasurfaces. Also, both all-dielectric and plasmonic nanostructures can be
considered. Proposed implementation allows taking advantage of the major benefits of FEM in gen-
eral, such as the fast exponential convergence rate, the simplicity of handling complex geometries,
the possibility of the local mesh refinement just in a single subdomain of the computational domain,
for instance close to the interface (an example is shown in Fig. 3.1,b), the feasibility of hp-adaptive
strategies for reducing the computational costs, the direct addressing of each interface between ad-
jacent media and thus the possibility to locally tune the boundary conditions etc. [58]. Along with
that, direct FEM implementation of the surface nonlinear polarization as strictly two-dimensional sur-
face source embedded in the corresponding interface lets us to overcome the problem arising for the
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finite-thickness surface layer, namely the undesirable grid refinement in the vicinity of the interface.

This chapter is organized as follows. Section 3.1 provides the basic introduction into the finite-
element methods. In the following Sections 3.2–3.4 the detailed description of the proposed method
is provided. In particular, in Section 3.2 a general scheme of the proposed FEM is given. Section 3.3
is devoted to the mathematical representation of the surface nonlinear polarization and calculation of
its spatial derivatives. The approach of introducing the generalized boundary conditions into the FEM
code is described in Section 3.4. In Section 3.5 the simulation results for test problem are presented
and the issues related to the uniform and adaptive refinement strategies are discussed. Section 3.6
outlines the extension of the proposed method to the modeling of both linear and nonlinear optical
properties of 2D materials, e.g. graphene or transition metal dichalcogenide monolayers. Finally, in
Section 3.7 the key results are summarized and concluding remarks are provided.

3.1 Overview of the finite-element methods

The finite-element methods rely on the so-called weak formulation of the Maxwell’s equations. For
the computational domain Ω ⊂ '3 possessing the boundary mΩ, weak formulation is given as [58]:∫

Ω

[(`−1 ®∇× ®�) · ®∇× ®q∗− l
2

22 (Y ®�) · ®q
∗]3+ +

∫
mΩ

®=× (`−1 ®∇× ®�) · ®q∗)3(

=

∫
Ω

®� · ®q∗3+, ∀ ®q ∈ +, (3.1)

where ®� is the sought electric field, ®� is the source term, vector-valued test functions ®q belong to
the space + = � (curl,Ω) and ®q) = (®=× ®q) × ®= with the surface normal vector ®=. In particular, for
modeling SHG at frequency 2l one has to use the source term:

®� (2l, ®A) = 4l2

22
®%NL(2l, ®A),

with the vector of the second-order nonlinear polarization ®%NL.

Outside the computational domain the homogeneous exterior domain '3\Ωwith relative dielectric
permittivity Yext and permeability `ext is assumed, as sketched in Fig. 3.2. The incident field ®�inc

propagates from the exterior domain '3\Ω and enters the interior domain Ω across its boundary
mΩ. Interaction of the incident field with the scatterers inside the computational domain causes the
scattered field ®�scat. The scattered field ®�scat propagates outwards from the scatterers into the exterior
domain. Therefore the total field represents the sum of two terms, namely the incident field ®�inc and
the scattered field ®�scat:

®� = ®�inc + ®�scat.

If one assumes an arbitrary boundary of the different materials inside the computational domain,
the tangential components of the electric and magnetic field have to satisfy the well-known continuity
boundary conditions coming from the Maxwell’s equations [2]. Specifically, if the limiting values of
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Figure 3.2: Geometry for the scattering problem with a single scatterer � inside the computational domain Ω.

the electric field as the boundary is approached from different sides are denoted as ®�+ and ®�−, the
following equalities have to be fulfilled:

®�+× ®= = ®�−× ®=,
(`−1
+ ®∇× ®�+) × ®= = (`−1

− ®∇× ®�−) × ®=,

where ®= is the unit vector to the boundary at any specific point. In a similar way, at the boundary mΩ
between the internal and external domains the boundary conditions can be written as:

( ®�inc + ®�scat) × ®= = ®� × ®=,
(`−1

ext
®∇× ( ®�inc + ®�scat)) × ®= = (`−1 ®∇× ®�) × ®=.

Here for convenience the total field is written in the internal domain and the superposition of the
scattered and incident fields is written in the external domain. The incident field is prescribed, while
for the scattered field in the external domain one has to impose additional conditions to assure it to be
strictly outgoing. For this purpose the Silver-Müller radiation condition, also known as the "boundary
condition at infinity", is often applied [58]:

lim
A→∞

A

(
®∇× ®�scat(®A) × ®A0− 8

l
√
Yext`ext

2
®�scat(®A)

)
= 0, (3.2)

with the coordinate vector ®A, its norm A and unit vector ®A0 = ®A/A. The Silver-Müller radiation condition
Eq. (3.2) is imposed at the infinitely distant boundary. Since in realistic simulation problem the
computational domain Ω is always finite, the radiation condition Eq. (3.2) must be imposed on a
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surface located at the finite distance far enough from the scatterer. With this assumption, the boundary
condition Eq. (3.2) on mΩ can be turned to the following form:

( ®∇× ®�) × ®=− 8l
2
®� = ( ®∇× ®�inc) × ®=− 8

l

2
®�inc , (3.3)

where ®= is the outward unit normal vector [58]. The boundary condition in the form Eq. (3.3) allows
reducing the infinite computational domain of the scattering problem to the finite one. The solution of
this reduced problem can serve as an approximation of the exact solution to a high accuracy, provided
that the boundary mΩ is located far enough from the scatterer. The expression Eq. (3.3) gives just one
possible way to treat the boundaries of the finite computational domain. Another widely used option is
perfectly-matched layer (PML). PML is an extra layer surrounding the computational domain, which
absorbs (in an ideal case completely) the outgoing radiation suppressing any back-reflection at the
boundary of the computation domain [101]. There are a number of different realizations of PML,
which are designed in order to exhibit the best possible absorption of the outgoing radiation incident
on the boundary at any angle. It has been also proven that PML is a rigorous method of treating the
boundaries of a finite computational domain, meaning that any numerical errors introduced due to the
PML discretization would vanish with the PML refinement [102].

In FEM instead of the exact solution of the scattering problem one aims to find the approximate
solution which belongs to a certain finite-dimensional subspace+ℎ of the space+ . In order to facilitate
the treatment of the functions in+ℎ, the usage of polynomial subspaces is especially suitable, since the
integration and the differentiation are easily performed with the polynomial functions. In particular,
the edge elements of Nedelec are often used as the polynomial subspaces [103]. The initial scattering
problem then reduces to the calculation of such polynomial function ®�ℎ ∈ +ℎ, which obeys the weak
form of Maxwell’s equations Eq. (3.1) for any ®q ∈+ℎ. Let us assume that a set of polynomial functions
{ ®q1, ®q2, ..., ®q#ℎ } is chosen, so that they form a basis in the subspace +ℎ. Given that, the approximate
solution ®�ℎ of the scattering problem is sought as their linear combination with weight factors U8:

®�ℎ =
#ℎ∑
8=1
U8 ®q8 .

Substituting this expansion into Eq. (3.1), one gets the system of linear equations for unknowns U8:

� · ®U = �,

where the matrix and the source vector are given as:

�8 9 =

∫
Ω

[(`−1 ®∇× ®q8) · ®∇× ®q∗9 −
l2

22 (Y ®q8) · ®q
∗
9 ]3+ +

∫
mΩ

®=× (`−1 ®∇× ®q8) · ®q∗9 ,)3(,

�8 9 =

∫
Ω

®� · ®q∗8 3+.

The most convenient choice of the ansatz functions ®q8 is to take the polynomials with the support
restricted just to several patches of the computational domain, so that outside the respective patches
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each ®q8 is strictly zero. With such basic functions one gets the sparse matrix � with $ (#ℎ) nonzero
entries for #ℎ × #ℎ matrix. Finding the inverse matrix �−1 can be then largely simplified. Some
special algorithms, developed for dealing with sparse matrices, enable close to linear scaling of the
computational costs with #ℎ for the computation of the inverse matrix.

FEMs are also known for their advantageous convergence properties. In the absence of field sin-
gularities in the computational domain, FEMs exhibit exponential convergence to the exact solution.
To be more specific, for smooth enough interfaces between different media in the scattering problem
and regular meshes (i.e. the tetrahedra or prisms of the computational domain decomposition do not
flatten out as the mesh is refined), the error of the approximation satisfies the following estimate [58]:√∫

Ω

| ®� − ®�ℎ |23+ +

√∫
Ω

| ®∇× ®� − ®∇× ®�ℎ |23+

≤ �ℎ?
(√√√ ∑
|< |1≤?

∫
Ω

���m ®< ®�
m®G ®<

���3+ +√√√ ∑
|< |1≤?

∫
Ω

���m ®< ®∇× ®�
m®G ®<

���3+ )
, (3.4)

where | ®< |1 = |<1 | + |<2 | + |<3 | for the three-dimensional problem, ? is the degree of the ansatz poly-
nomials, ℎ is the maximum dimension of the subdomains of the mesh (tetrahedra or prisms) and �
is a certain constant which is independent on ℎ and ®� . According to Eq. (3.4), the convergence rate
$ (ℎ?) is to be obtained for the solution of a scattering problem by means of FEM.

3.2 Treatment of the surface SHG

The concept of the surface nonlinearity only applies in the interfacial layer with the thickness of a few
atomic layers, where the breaking of the medium symmetry by the interfaces influence the optical
properties. The surface nonlinearity is described by the vector of the surface nonlinear polarization,
which is only present within the surface region. In order to simulate the SSHG phenomena one needs
an appropriate mathematical treatment of the surface nonlinear polarization.

The most natural way is to consider the surface layer of very small but finite thickness. In this
case the surface nonlinear polarization can be dealt with in the same manner as the bulk one, but the
respective surface nonlinear susceptibility tensor is nonzero only inside the thin surface layer. It was
shown that the exact value of the layer thickness � has only minor effect on the simulation results
if � is much smaller than the SH wavelength [36]. The exact solution of the scattering problem
then corresponds to the limit �→ 0 with j(2)surf� = const, where j(2)surf is the surface nonlinear tensor.
However, in finite-element simulations it seems to be exceedingly inefficient to discretize very thin
surface layer. Indeed, the grid far from the interface is sparse enough with the mesh size several times
smaller than the wavelength, and much finer mesh within the finite-thickness surface layer would lead
to unnecessary grid refinement close to the interface and eventually degrade the performance of FEM.

Alternatively, the surface layer can be regarded as an exactly two-dimensional source of the non-
linear polarization [36]. The implementation of a two-dimensional delta-surface source embedded in
the interface between two subdomains with different materials seems also suitable with FEM. The
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main difference from usual FEM simulations in this case are the modified boundary conditions for
the electric and magnetic fields. The presence of the surface nonlinear polarization results in jumps of
the electric and magnetic field components across the interface, as given by Eq. (2.2) in the previous
chapter.

For the surface nonlinear polarization the expression Eq. (2.27) from the previous chapter is used.
Eq. (2.27) contains only those terms, which are nonzero for the isotropic surface. Other nonzero
terms can arise on the surface of a noncentrosymmetric semiconductors, with their number and values
determined by the crystal symmetry and the orientation of the surface.

In the treatment below the undepleted pump approximation (UPA) is applied, introduced in the
introduction chapter. UPA implies that the inverse action of the SHW on the pump wave can be safely
neglected. With UPA the system of equations Eqs. (1.6)-(1.7) gets uncoupled and one has to sepa-
rately solve the linear Maxwell’s equations for two field components - homogeneous equations for
the fundamental (pump) field and inhomogeneous equations with the surface nonlinear polarization
as the source term for the second-harmonic field. One can thus formulate the following three-step
procedure to run the simulations of SSHG:

1) solve the scattering problem at the fundamental frequency with FEM, using the incident (pump)
field as the source;

2) calculate the vector of the surface nonlinear polarization using Eq. (2.27), in order to use it as
the source for the emitted field at the second-harmonic frequency;

3) solve the scattering problem at the second-harmonic frequency with FEM, using the sur-
face nonlinear polarization calculated in the step (2) as the source term in the weak formulation
of Maxwell’s equations Eq. (3.1).

3.3 Mathematical formalism of the surface nonlinear polariza-
tion

The expression for the surface nonlinear polarization Eq. (2.27) requires the knowledge of the normal
and tangent vectors at every point on the surface. In order to directly implement Eq. (2.27) into the
programming code a more convenient representation of all terms in Eq. (2.27) would be desirable.
One can first simplify Eq. (2.27) from the first term and note that it can be put in the form:

%NL
(, 9 = Y0j

(2)
⊥⊥⊥( ®� ®=) ( ®� ®=) · = 9 = Y0 ®�) · (®= · j(2)⊥⊥⊥ · ®=) ) · ®� · = 9 .

At this point a new second-rank tensor j̃(2)⊥⊥⊥ should be introduced according to:

j̃
(2)
⊥⊥⊥ = ®= · j

(2)
⊥⊥⊥ · ®=) .

The tangential component of the electric field can be calculated from the normal component as:

®� | | = ®� − ®�⊥ = ( �̂ − ®=®=) ) ®�,
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with the identity matrix �̂. Now one can rewrite the second term in Eq. (2.27) as follows:

%NL
(, 9 = Y0j

(2)
⊥|| | | ( ®�

)
| |
®� | |) · = 9 = Y0 ®�) ·

(
( �̂ − ®=®=) )) · j(2)⊥|| | | · ( �̂ − ®=®=

) )
)
· ®� · = 9

= Y0 ®�) · j(2)⊥|| | | · ( �̂ − ®=®=
) ) · ®� · = 9 ,

and again a new second-rank tensor j̃(2)⊥|| | | is to be defined:

j̃
(2)
⊥|| | | = j

(2)
⊥|| | | · ( �̂ − ®=®=

) ).

Finally, the last term in Eq. (2.27) can be written as:

%NL
(, 9 = Y0j

(2)
| |⊥|| ( ®� ®=) ·� | |, 9 = Y0 ®�) · ®= · j(2)| |⊥|| ·

{
( �̂ − ®=®=) ) ®�

}
9

= Y0 ®�) ·
(
®= · j(2)| |⊥|| · ( �̂ − ®=®=

) )( 9 ,:)
)
· ®�,

where ( �̂ − ®=®=) )( 9 ,:) stands for the 9-th row of the matrix �̂ − ®=®=) , 9 ∈ 1,2,3. As before, one should
introduce a new second-rank tensor j̃(2)| |⊥||, 9 , which depends also on the index 9 as the parameter:

j̃
(2)
| |⊥||, 9 = ®= · j

(2)
| |⊥|| · ( �̂ − ®=®=

) )( 9 ,:) .

Bringing together the introduced tensors, one finally obtains the following convenient form for
the surface nonlinear polarization:

%NL
(, 9 = Y0 ®�) · j̃(2)surf, 9 · ®�. (3.5)

with

j̃
(2)
surf, 9 = j̃

(2)
⊥⊥⊥ · = 9 + j̃

(2)
⊥|| | | · = 9 + j̃

(2)
| |⊥||, 9 . (3.6)

In the representation with Eq. (3.5)-(3.6) one only needs to know the normal vector at each patch
of the surface discretization. In FEM the triangulation of the surface allows direct addressing of each
patch of the surface. Hence, the unit normal ®= for each patch is also easily accessible. As long as the
normal vector ®= is known, one is able to readily calculate the nonlinear polarization at every point of
the surface using Eq. (3.5)-(3.6). It is also worth noting that both the normal vector ®= and the electric
field vector ®� can be expressed in the global coordinates on the whole surface.

The generalized boundary conditions Eq. (2.2) demand the calculation of the spatial derivatives
of the surface nonlinear polarization in every specific patch of the surface mesh. Therefore one
has to introduce first the local coordinate system G′H′I′ in every patch and then make a coordinate
transformation from the global coordinates to the local ones. The spatial derivatives in both coordinate
system can be connected through the rotation matrix ' of this transformation. Namely, the Jacobian
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in rotated (local) coordinate system can be expressed as:

�G ′H′I′ = '
−1 · �GHI · ',

where G, H, I and G′, H′, I′ denote the initial global and the rotated local coordinate axis respectively and
' is the corresponding rotation matrix. In the considered case one gets some uncertainty in choosing
the local coordinate system, since only one axis direction provided by the patch normal ®= is fixed.
The rotation in the plane of the patch can be taken arbitrary. In general this may cease to be correct
for anisotropic interfaces.

However, the usage of this general expression for calculation of the right-hand side of Eq. (2.2)
appears to be excessive. Indeed, for an arbitrary scalar field, e.g. the normal component of the surface
nonlinear polarization, the following equality holds:

®∇| | = ®∇GHI − ®=
m

m®= =
®∇GHI − ®= · ( ®∇GHI · ®=),

where ®∇GHI denotes the gradient taken in the global coordinate system. In such a manner the in-plane
gradient gets expressed through the usual gradient of the scalar field. But the gradient of any scalar
field is an invariant vector field, meaning that it does not depend on the choice of the coordinate
system. So one can for convenience calculate it always in the global coordinates G, H, I regardless of
the specific patch on the interface. Finally, one can write down the right-hand side of Eq. (2.2) in the
following form:

®∇| |%NL
(,⊥ =

®∇| |
(
®%NL
( · ®=

)
= ®∇GHI

(
®%NL
( · ®=

)
− ®= ·

(
®= · ®∇GHI

(
®%NL
( · ®=

))
. (3.7)

Eq. (3.7) can be now readily implemented into the code. At every specific patch of the surface
mesh Eqs. (3.5)-(3.6) are to be used to find the surface nonlinear polarization and then Eq. (3.7) to
get the jump of the electric field. In such a way one does not need to make a transformation to the
local coordinates at all, since only normal vector ®= and the components of the fundamental field,
expressed in the global coordinates, are needed. It should be also stated that calculation of the spatial
derivatives in FEM is especially suitable, because the fields are approximated with the polynomial
ansatz functions.

3.4 Implementation of generalized boundary conditions

The next important issue is related with the numerical implementation of the generalized boundary
conditions Eq. (2.2) in the presence of the surface nonlinear polarization, containing the jumps of the
tangential field components. Typically the approximate solution for the electric field in FEM is sought
using polynomial subspaces called edge elements of Nedelec [103]. On important property of these
ansatz functions is that they inherently assure the continuity of the tangential components of electric
and magnetic field across each interface in the computational domain. Therefore the implementation
of the generalized boundary conditions Eq. (2.2) with discontinuous tangential components would
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require significant changes in the basic algorithms of FEM.

However, here a special mathematical trick is applied that allows getting over the discontinuity
of the fields and treat them as well with edge elements of Nedelec. Let us assume that the source
of the surface nonlinear polarization is located on the surface of an arbitrary scatterer �, e.g. an all-
dielectric nanoparticle, inside the computational domain Ω, possessing the boundary Γ = m�. Now
one can write the weak formulation of Maxwell’s equations Eq. (3.1) separately for domains � and
Ω/� and sum them up, keeping in mind the discontinuity of the tangential component of the magnetic
field across the interface Γ, what gives:∫

Ω

[(`−1 ®∇× ®�) · ®∇× ®q∗− l
2

22 (Y ®�) · ®q
∗]3+ −28l

∫
Γ

®=×Δ ®�| | · ®q∗)3(

+
∫
mΩ

®=× (`−1 ®∇× ®�) · ®q∗)3( = 0 (3.8)

for ∀ ®q ∈ + . Next, an auxiliary vector field ®. is defined with support only in the vicinity of Γ, which
is tangentially continuous across the interface Γ together with its spatial derivatives and obeys the
equalities:

®. |Γ = Δ ®� | |
®∇× ®. |Γ = −28`l ·Δ ®�| | . (3.9)

The sought-for electric field ®� can be represented in the following way:

®� = ( ®� + ®. )︸  ︷︷  ︸
= ®�.

−®. = ®�. − ®. . (3.10)

Now it is convenient to introduce instead of the electric field ®� another vector field ®�� as follows:

®�� =

®�, ®A ∈ �;
®�. , ®A ∉ �.

(3.11)

One can see that new electric field ®�� is designed to have continuous tangential components
across Γ. Moreover, the magnetic field ®�� which is related with the electric field ®�� by the Maxwell’s
equation (at the SH frequency):

®∇× ®� = −28`l ®�

also turns out to possess continuous tangential components across Γ.

Using Eq. (3.11) the weak formulation of the electromagnetic scattering problem Eq. (3.1) can be
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rewritten for the introduced electric field ®�� :∫
Ω

[(`−1 ®∇× ®��) · ®∇× ®q∗−
l2

22 (Y ®��) · ®q
∗]3+ +

∫
mΩ

®=× (`−1 ®∇× ®��) · ®q∗)3(

= 28l
∫
Γ
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∫
Ω/�
[(`−1 ®∇× ®. ) · ®∇× ®q∗− l

2

22 (Y ®. ) · ®q
∗]3+

+
∫
mΩ

®=× (`−1 ®∇× ®. ) · ®q∗)3(, (3.12)

for ∀ ®q ∈ + . The surface integral in the left-hand side of Eq. (3.12) taken over the outer boundary
mΩ can be neglected, if a PML is used, which absorbs all outgoing SH radiation. Another surface
integral in the right-hand side in Eq. (3.12) turns to zero because the auxiliary vector field ®. is by
design nonzero only in the vicinity of Γ. Eventually the weak formulation Eq. (3.12) attains the final
form: ∫

Ω

[(`−1 ®∇× ®��) · ®∇× ®q∗−
l2

22 (Y ®��) · ®q
∗]3+ −28l

∫
Γ

®=×Δ ®�| | · ®q∗)3(

=

∫
Ω/�
[(`−1 ®∇× ®. ) · ®∇× ®q∗− l

2

22 (Y ®. ) · ®q
∗]3+, ∀ ®q ∈ +. (3.13)

Direct implementation of Eq. (3.13) demands the explicit functional form of the auxiliary vector
field ®. . Indeed, the function ®. by definition has to fulfill the expressions Eq. (3.9), but no other
conditions are imposed. Therefore one has certain freedom in constructing the exact shape of the
function ®. . It seems especially suitable to consider the limit, when the compact of ®. gets arbitrary
close to Γ, i.e. ®. is nonzero only in the close vicinity of Γ. The equalities Eq. (3.9) still stay valid
upon taking such limit. In this limit the last two integrals in Eq. (3.13) turn to the surface integrals
over the boundary Γ. Therefore upon the numerical integration of the last two integrals in Eq. (3.13)
the evaluation points with nonzero values of the function ®. and its spatial derivatives are only located
on the surface Γ, with the respective values provided by Eq. (3.9). Finally, when the solution of
Eq. (3.13) for the new vector field ®�� is obtained, one can easily find the electric field ®� using the
relations Eq. (3.10)-(3.11).

3.5 Extension to 2D materials

The presented method looks well suited for modeling optical response of the two-dimensional (2D)
materials. 2D materials consist of a single layer of atoms or several layers which are held together
by the weak van der Waals forces. The most well known of them is graphene, a monolayer of carbon
atoms arranged in a 2D honeycomb lattice, which is actively studied since its discovery in 2004 [104]
and is currently gaining increasing interest in electronics. Other important examples include transition
metal dichalcogenide monolayers (TMDCs) with the chemical formula MX2, where M stands for a
transition metal from group IV, V and VI, and X is a chalcogen (e.g. sulfur, selenium or tellurium),
for instance MoS2, MoSe2, MoTe2, WS2 and WSe2. TMDCs have layered structure and their band
gaps changes from indirect to direct depending on the number of layers what can find applications in
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optoelectronics [105, 106]. Due to the inherent lack of symmetry of the monolayers, TMDCs usually
exhibit a strong second-order nonlinear response and their nonlinear properties are therefore actively
investigated [107, 108, 109, 110].

The nonlinear properties of 2D materials can be directly simulated by means of the proposed
finite-element method. Indeed, the presence of a few-atom-thick or single-atom-thick sheet of a
2D material on the top of a substrate is completely analogous to the single-atom-thick surface layer
of any nonlinear material with symmetry properties different from the bulk. Thus, the nonlinear
susceptibility tensor of the 2D material must be simply used in this case in the expression for the
surface nonlinear polarization.

Moreover the proposed method can be extended to describe also the linear optical properties of
2D materials. Here the sheet of 2D material can be treated in the Maxwell’s equations through the
generalized boundary conditions similar to Eq. (2.2):

Δ ®� | | = −
1
Y0Y′
®∇| |%L

(,⊥,

Δ ®�| | = −28l ®%L
( × ®A⊥, (3.14)

where instead of the nonlinear polarization now usual linear polarization of a sheet %L
(

is written.

The calculation of the linear optical response of a sheet would follow the four-step procedure:

1) Solution of the linear scattering problem without contribution of a sheet of 2D material;

2) Calculation of the linear polarization of a sheet;

3) Solution of the linear scattering problem at the same pump frequency as in step (1), but using
the linear polarization calculated in step (2) as the source and applying the generalized boundary
conditions Eq. (3.14);

4) Summing the fields obtained in the step (1) and in the step (3).

Such simulations of the linear properties of 2D materials are not exact ones, since, similar to
UPA for nonlinear simulations, the reverse action of the sheet on the incident field is neglected. This
approximation is justified when the total polarization of the sheet %L

(
is negligibly small as compared

to the total polarization of other materials inside the computational domain. Such condition must be
fulfilled for atomic-thick layers on a substrate.

3.6 Test results for benchmark problem

I aim now to illustrate the performance of the developed FEM for a test problem. There are only few
benchmark problems for SSHG that allow for the exact analytical solution under UPA and can be thus
used for testing the simulation accuracy. Those include the illumination of a semi-infinite slab by a
plane-wave [89, 90] and illumination of a sphere by a plane-wave [111]. The testing with a sphere
can be simplified, if one assumes the illumination by a single vector spherical harmonic (VSH) as
FW. Indeed, exact solution for a plane-wave illumination relies first on the expansion of a plane-wave
into VSHs at fundamental frequency and then on the expansion of the electric field discontinuity due
to the surface nonlinear polarization from Eq. (2.2) into VSHs at SH frequency. For testing of the



Chapter 3. Adaptive finite-element method for modeling of surface SHG from nanostructures 47

numerical method it would be therefore convenient to consider just one VSH as the pump FW, since
it greatly simplifies the analytical solution. The derived exact solution for several low-order VSHs is
presented in Appendix C.

FEMs are mathematically proven to exhibit the exponential convergence as ℎ?, where ℎ is the
sidelength of the computational mesh and ? is the finite-element degree, see Eq. (3.4). The conver-
gence of the approximate finite-element solution �approx(ℎ, ?) is investigated using the parameter of
the relative error Y, defined as:

Y =

����exact−�approx(ℎ, ?)
�exact

���.

(a) (b)

Figure 3.3: Test problem of a plane-wave illumination of a semi-infinite silicon slab; (a) an exemplary uniform
grid; (b) an exemplary cross-section of the real part of the emitted SH field.

As a starting point the case of the plane-wave illumination of a slab of crystalline silicon is taken,
see Fig. 3.3. The dielectric permittivities of the crystalline silicon at both frequencies are taken from
the literature [112]. Different polarizations of the FW as well as different values of the angle of
incidence are considered. Besides that, an interesting issue in the simulations would be the role of
the local mesh refinement in the vicinity of the interface. To address this question the simulations
were also run for the computational mesh, which is a-priori selectively pre-refined close to the Si/Air
interface. Specifically, all the prisms of the computational mesh bordering the interface were divided
each 4 identical prisms with twice shorter sides in the plane of the interface. At the same time all
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other prisms in the mesh were not changed.

Figure 3.4: Relative error of the simulations for a plane-wave illumination of a semi-infinite silicon slab;
uniform and refined meshes are considered for two angles of incidence: \ = 15◦ and \ = 75◦: (a) TE-polarized
FW; (b) TM-polarized FW.

The simulation results are summarized in Fig. 3.4. Here the convergence plots are presented in
the logarithmic scale for both polarization of FW, for both uniform mesh and the pre-refined one
next to the interface and for two angles of incidence \: 15◦ and 75◦. The exponential convergence
is well seen for both cases. The convergence rate does not appear to noticeably depend neither on
the FW polarization, nor on the angle of incidence. Along with that the selectively pre-refined mesh
in all cases yields definitely worse performance compared to the uniform one. This finding seems to
show that for simple geometries introducing of an additional irregularity of the mesh just degrades
the overall FEM performance. However, FEMs are known to be well suitable for complex geometries
with multiple length scales involved. Therefore the pre-refinement of the mesh should still be able to
boost the computational accuracy for more complex arrangements of the nanoparticles.

As multiple comparative studies demonstrate [113, 114, 115], FEMs are in general relatively
time- and memory-efficient, if compared, for example, with the time-domain methods and/or surface-
integral methods. One can especially expect that simulations of SSHG with the FEM would profit in
terms of the computational costs, when complex geometries with multiple length scales are involved
in the calculations. Besides that, other advantages of FEMs can also make a lot difference and favour
the usage of FEMs. Apart from the local mesh refinement and huge flexibility in handling the mesh,
one can, for example, readily add the bulk nonlinear polarization into the simulated problem through
the right-hand side term in Eq. (3.1).

Finally, it should be mentioned that FEMs currently evolve towards the so-called ℎ?-adaptivity.
This property implies that a specially designed algorithm analyses the scattering problem before the
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actual FEM-simulation, and selects for each subdomain of the computational mesh simultaneously
both the local mesh sidelength ℎ and local finite-element degree ? for polynomial ansatz functions.
As the results ℎ and ? are not constant within the computational domain, but vary between different
subdomains in such a way that the accuracy of the final solution is achieved with the possibly small
computational costs. In contrast to the uniform strategy with constant values of ℎ and ?, adaptive
strategy is expected to lead to significant improvement, when the field varies over strongly differ-
ent length scales in different part of the computational domain. Such situation typically arises in
nanophotonics, especially when simulating resonant nanostructures or metasurfaces. Availability of
the elaborated fully ℎ?-adaptive strategies of FEM in the nearest future can be expected to increase
the performance of SSHG modeling with the proposed method.

3.7 Summary

A fully finite-element numerical method was developed for efficient modeling of SSHG. This method
treats the surface nonlinear polarization as the delta-surface source embedded into the respective
interfaces between two media. The influence of this surface source is implemented through the gen-
eralized boundary conditions for the tangential components of the electric and magnetic field, im-
posed at the boundaries of the nonlinear media. The proposed method allows modeling of SSHG
from arbitrary-shaped all-dielectric and plasmonic isolated nanoparticles, as well as from the ones
periodically-arranged into the metasurfaces.

The convergence tests were performed with an analytically solvable benchmark problem, which
confirmed the exponential convergence of the finite-element solution. With the FEM it is possible to
locally refine the mesh, for example, close to the interface and/or sharp edges of the geometry, what
can be barely done with uniform meshes. Also FEM allows to easily include the bulk nonlinearity
in the material into the calculations, what would be difficult to do with BIMs. FEMs are generally
known to exhibit profitable performance in terms of the computational costs compared to time-domain
methods or BIMs for computational problems with complex geometries and multiple length scales.
The performance of the developed FEM can be further improved by means of ℎ?-adaptive strategies.
Once fully available, they would yield better performance in terms of the simulation accuracy and
the computational costs. Also it is important to state that the developed FEM implementation for
modeling SSHG will be included into one of the nearest versions of the commercial software tool for
nanophotonic simulations JCMsuite [116, 117].

Next, the developed numerical methods should be applied to the simulations of SSHG for some
relevant problems, where the corresponding simulations are needed. In the next chapter one of such
problems related to the interplay of the bulk and surface SHG from a slab of a noncentrosymmetric
material is investigated by means of the FEM proposed in the current chapter.



Chapter 4

Signatures of surface nonlinearity in far-field
patterns of SHG from noncentrosymmetric
semiconductors

The interplay of the bulk and surface second-order nonlinearities is proved to be especially compli-
cated in nanophotonics, because the surface-to-volume ratio gets largely increased in the nanostruc-
tures as compared to the bulk crystals. In centrosymmetric optical materials the surface second-order
nonlinearity prevails in the SH response, but even in centrosymmetric semiconductors the bulk con-
tribution arising from the higher-order terms in the multipole expansion of the nonlinear polarization
Eq. (1.3) can sometimes become comparable with the surface contribution, e.g. due to the excita-
tion of optical resonances [39]. That is why the separation and comparison of both nonlinearities
have been studied. For example, it was theoretically demonstrated that the surface and bulk contribu-
tions to SHG in isotropic materials can be unambiguously identified by their polarization signatures
[37, 38]. In such a way the bulk- and surface-induced nonlinear responses were experimentally sepa-
rated and compared by means of a two-beam technique in thin gold films [38] and in poled polymer
films [37]. Though the surface response was shown to play the major role, the bulk nonlinearity under
certain conditions was still found to provide an appreciable contribution.

Noncentrosymmetric semiconductor materials are widely used in nonlinear nanophotonic appli-
cations because of their strong second-order nonlinearities [30]. Together with the typically low ab-
sorption of semiconductors it allows for increasing the energy conversion efficiency of SHG by orders
of magnitude compared to the plasmonic structures [118, 119]. In contrast to centrosymmetric semi-
conductors, for noncentrosymmetric ones the surface SHG is often assumed negligible as compared
to the bulk SHG [120]. Some recent studies demonstrate, however, that this assumption may become
invalid. In particular, comparable surface and bulk contributions to the SHG signal due to the strong
interband resonances were observed at semi-insulating and N+-doped GaAs-oxide interfaces [121].
In Refs. [43, 122] the surface nonlinear response was found to dominate in the SHG signal from GaP
nanopillars for small enough nanostructures with diameters below 200 nm. In Ref. [66] it was experi-
mentally shown that the surface SHG prevails in the nonlinear response from 50-nm and 100-nm-thick
GaAs layers. The strong contribution of the surface resonances to the spectrum of the second-order
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nonlinear susceptibility of GaAs in a wide frequency range was experimentally measured in Ref. [46].
In Ref. [44] it was found that resonantly enhanced SHG from GaAs dielectric metasurfaces cannot
be adequately described with only bulk nonlinearity, because the surface nonlinearity gives a notice-
able contribution. The strong surface-bulk interference was recently observed in the sum-frequency
generation from a GaAs crystal with incident visible and infrared pulses [47]. A significant surface
contribution to SHG was also measured in a number of experiments at the interface between GaAs
and aqueous electrolyte [123, 124, 125]. Finally, the interplay between comparable surface and bulk
nonlinear contributions was experimentally detected in thin van der Waals crystals [126]. It should
be noted that the presence of the static electric fields within the surface depletion region of a doped
GaAs was found to largely enhance the surface-like SHG response from the near-surface region due
to the third-order nonlinearity, which significantly contributes to the measured SHG and can even
dominate in highly-doped samples [72, 73]. The listed findings point out that the surface nonlinearity
in noncentrosymmetric semiconductors cannot generally be neglected. Moreover, it can even prevail
in the the total SHG nonlinear signal, at least for the nanoscale structures and ultrathin films with
large surface-to-bulk ratio and/or for the pump frequencies close to the surface resonances. Hence,
the experimental evaluation of the surface optical nonlinearity is essential for different applications
related with the frequency conversion in the nanophotonic devices.

Only a few works so far have addressed the question of the efficient separation of the surface- and
bulk-driven contributions to the SHG in noncentrosymmetric semiconductors and the quantitative
evaluation of the ratio of the surface and bulk nonlinearities. The feasibility of the polarization-
resolved analysis for the identification of surface nonlinearities in noncentrosymmetric semiconduc-
tors based on the distinct symmetry properties of the surface and the bulk nonlinear tensors of a crystal
was first proposed by Stehlin et al. [127]. They showed theoretically and confirmed experimentally,
that for a certain polarization of the illuminating FW the total second-order nonlinear response of a
GaAs slab can be entirely determined by the surface nonlinearity. Following a similar idea, Holler-
ing [128] and Takebayashi et al. [129] experimentally separated and compared the surface and bulk
nonlinear optical responses in GaAs crystals. The angular dependence of the surface SHG from non-
centrosymmetric cubic crystals as the crystal is rotated was theoretically examined in Refs. [130, 131]
for varying ratios of the surface and bulk nonlinearities and the influence of the surface orientation
was studied. In Ref. [87] the surface nonlinearity was experimentally estimated in GaP nanopil-
lars using some simplified assumptions related to the relative contributions of both nonlinearities to
the total SHG. The proposed evaluation scheme, however, neglected the varying normal directions
of the curved nanopillar sidewalls. Despite all listed works, comprehensive studies devoted to the
separation of the bulk and surface SHG in noncentrosymmetric semiconductors as well as to the
quantitative evaluation of the ratio of the surface and bulk nonlinearities are still lacking. Specifically,
despite some qualitative estimations of the surface nonlinearity from experimental rotation-angle de-
pendencies of the SHG intensity [128, 129], no attempts have been made to optimize the sensitivity of
these approaches and to find their limits of applicability in terms of the reliably detectable values of
the elements of the surface nonlinear tensor. Furthermore, no efforts have been put into extending this
detectable range with alternative illumination geometries. The better understanding of the interplay
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and mutual effect of the surface and bulk nonlinearities in semiconductor nanostructures is of definite
interest for improving the design of nonlinear nanoscale components.

This chapter is concerned therefore with the possibility of the identification and the quantitative
comparison of the bulk and surface contributions to SHG in noncentrosymmetric semiconductors.
Proposed approach is based on finding the specific signatures in the polarization-resolved far-field
SHG patterns attributed to the bulk and surface optical nonlinearities, respectively. A semi-infinite
slab of a noncentrosymmetric semiconductor possessing a single flat top interface is considered to get
rid of the interference of the multiple sources of the surface nonlinear polarization. I start with the
plane-wave illumination and theoretically analyse the characteristic features in the dependences of
the bulk- and surface-induced SH responses on the illumination geometry. This analysis should allow
optimizing the illumination parameters in order to maximize the sensitivity of this setup in terms of
the detectable signal of the surface SHG. Then this approach is extended to the case of other pump
field, namely a linearly-polarized tightly-focused Gaussian beam (TFGB).

The chapter is organized as follows. In Section 4.1 the problem statement together with the basic
idea of proposed approach is described. Moreover, the analytical results for the bulk and surface SHG
under plane-wave illumination are presented here. In Section 4.2 the far-field SHG pattern under
plane-wave illumination is analysed and the optimal illumination parameters for the detection of the
surface-driven SH field are found as well as the estimates of the detectable threshold for the ratio of
both nonlinearities. Next, the illumination by a linearly-polarized TFGB is considered. The issues
related with the representation of the TFGB and its implementation as the input field for numerical
simulations are addressed in Section 4.3. In Section 4.4 the signatures of the surface- and bulk-driven
SH signals in the simulated polarization-resolved far-field SHG patterns are found and it is shown,
how the quantitative evaluation of the surface nonlinearity can be performed. Finally, Section 4.5
provides the discussion of the obtained results together with some concluding remarks.

4.1 Model and analytical solution

The setup that is considered represents a flat unstructured interface between an upper medium (air)
and a semi-infinite slab made of a noncentrosymmetric semiconductor, as shown in Fig. 4.1. The
slab is illuminated from the top side by a FW at the fundamental frequency. In particular case of the
plane-wave illumination, which is studied below, the incident plane wave possesses the wavevector
®:FW and its angle of incidence is denoted as \. Let now introduce two coordinate systems that are
suitable for further calculations. The first coordinate system is determined by the illuminating FW.
The direction of the surface normal is fixed as I-axis and for the plane wave as FW the plane of
incidence is taken, formed by the wavevector ®:FW and the surface normal, as the GI-plane of this
coordinate system (see Fig. 4.1). Therefore, the G-axis of the FW coordinate system is directed along
the tangential component of the wavevector of the FW ®:FW, and H-axis is correspondingly directed
orthogonal to it. For a linearly-polarized FW it is convenient to decompose the electric field into
TE- and TM-polarized components. It is also suitable to introduce the auxiliary polarization angle U,
defined as the angle between the full electric field vector and its TM-component. With such notation
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Figure 4.1: Schematic picture of the considered slab of a nonlinear medium (NM), illuminated by a plane wave
at the fundamental frequency with the wavevector ®:FW. The inset at the upper left illustrates the polarization
components of the fundamental plane wave ®�TE and ®�TM.

one can express the field components of different polarization in the FW coordinate system as:

�
(l)
G = �TM cos\ = � cosU cos\,

�
(l)
H = �TE = � sinU,

�
(l)
I = �TM sin\ = � cosU sin\. (4.1)

Next, let introduce the coordinate system of the crystal (G2, H2, I2), i.e. coinciding with the crystal
symmetry axis. For definiteness the I-axis of the nonlinear crystal is assumed oriented normal to the
interface, i.e. I2 = I. In the plane of the interface the rotation between the crystal coordinate axes
G2, H2 and the axes G, H of the FW coordinate system is described by the angle X, as shown in Fig. 4.1.
Now one can express the components of the electric field in the crystal coordinate system through the
field components in the FW coordinate system Eq. (4.1):

�
(l)
G2 = �

(l)
G cosX+� (l)H sinX,

�
(l)
H2 = −� (l)G sinX+� (l)H cosX,

�
(l)
I2 = �

(l)
I . (4.2)

Here two parts of the nonlinear polarization of the medium, namely bulk and surface ones, should
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be accounted for. Therefore, the second-order nonlinear susceptibility j(2)
8 9 :
(®A) can be written as the

sum of the bulk and surface contributions, i.e., j(2)
8 9 :
= jbulk

8 9 :
+ jsurf

8 9 :
, where the surface term is non-zero

only inside the interfacial surface region and the bulk term is non-zero in the rest of the medium
volume. The overall nonlinear polarization of the medium has to be written in the crystal coordinate
system and is given as:

%NL
8 (2l, ®A) = %NL

bulk,8 (2l, ®A) +%
NL
surf,8 (2l, ®A) = Y0j

(2)
8 9 :
(®A)� (l)

9
(®A)� (l)

:
(®A)

= Y0j
bulk
8 9 : (®A)�

(l)
9
(®A)� (l)

:
(®A) + Y0j

surf
8 9 : (®A)�

(l)
9
(®A)� (l)

:
(®A), (4.3)

where 8, 9 , : ∈ G2, H2, I2. It is more suitable for calculations to express the medium nonlinear polar-
ization also in the FW coordinate system. Performing the respective transformation of the coordinate
system, one obtains for the components of the nonlinear polarization:

%NL
G = %NL

G2
cosX−%NL

H2
sinX,

%NL
H = %NL

G2
sinX+%NL

H2
cosX,

%NL
I = %NL

I2
. (4.4)

In the treatment below a III-V semiconductor is taken as the nonlinear material, since this class
of semiconductors is especially widely used in photonics. All III-V semiconductors possess a zinc-
blende crystal lattice with the 4̄3< symmetry group. The symmetry properties of the crystal determine
a certain symmetry of the tensor of the nonlinear susceptibility. In the bulk nonlinear tensor in III-V
semiconductors only elements with all indices different are non-zero, i.e. j(2)

8 9 :
≠ 0 if 8 ≠ 9 ≠ : , and all

of them are equal: j(2)G2H2I2 = j
(2)
G2I2H2 = j

(2)
H2G2I2 = j

(2)
H2I2G2 = j

(2)
I2G2H2 = j

(2)
I2H2G2 = j

(2)
bulk. Furthermore, the

bulk nonlinear tensor is homogeneous in the whole volume of the nonlinear material. As a specific
semiconductor AlGGa1−GAs is used in the simulations. AlGaAs is one of the most promising material
platforms for nanophotonic applications, since it exhibits a number of beneficial optical properties,
including strong second-order nonlinearity, direct band gap, operation without two-photon absorption
at 1.55 `m for a molar fraction of Al of G ≥ 0.18 and the mature nanostructuring technology [31, 40].
SHG from the semiconductor metasurfaces made of AlGGa1−GAs is actively studied over last years
[44, 31, 40, 132, 42, 133, 41, 134]. The molar fraction of Al is fixed to G = 0.18 and the medium
dispersion is taken from the experimental work [135]. The following values of the complex relative
permittivity were obtained at the fundamental and the SH frequencies: Yl = 11.46 and Y2l = 20.44+
3.688. However, the specific choice of the Al molar fraction G influences noticeably only the linear
properties of the material. Therefore the simulation results for the differentiation of the bulk and
surface nonlinearities are expected to hold at least qualitatively for different values of the Al content
G as well as for other III-V semiconductors.

The surface nonlinearity arises due to symmetry breaking at the surface of the slab, which is only
felt by the few closest atomic layers. The consistent treatment of this thin surface layer is crucial for
any theoretical study dealing with the surface nonlinearity. As was discussed in the chapter 2, for
modeling of the surface nonlinearity thin interfacial layer can be either considered as possessing very
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small but finite thickness (as shown in Fig. 4.1) or as an exactly two-dimensional surface source [36].
In the case of a deeply subwavelength thickness of the surface layer both approaches have to yield the
same results. Specifically, one has to take a limit for the thickness � of the surface layer, when �→ 0
with jsurf

8 9 :
� = const. The simulation results for the SSHG in this limiting case should then coincide

with the simulation results with the two-dimensional surface source and the value of the constant
product jsurf

8 9 :
� represents the surface nonlinear tensor of the truly two-dimensional surface source,

which is used, for example, in Eq. (2.27). Besides that, the sheet of the surface nonlinear polarization
can be optionally placed on any side of the interface provided that the corresponding rescaling of the
surface nonlinear tensor jsurf is done [38]. I hold onto the reasoning in the chapter 3 and keep using
the standard approach, when the nonlinear polarization sheet is located above the interface. Along
with that an exactly two-dimensional source is assumed again, i.e. it is supposed in Eq. (4.3):

jsurf
8 9 : (®A) = j

2D
8 9 : · X(I).

It is worth mentioning that the dimension of the elements of the surface second-order susceptibility
tensor should be multiplied by the length dimension with respect to the bulk tensor.

Since the symmetry of the bulk crystal is always broken at the interface, the surface layer pos-
sesses different symmetry properties with respect to the bulk of the crystal. In the considered setup in
Fig. 4.1, one finds the <<2 symmetry group of the surface layer. The tensor of the surface nonlinear
susceptibility then has the following non-zero components: j(2)I2I2I2 , j

(2)
I2G2G2 , j

(2)
I2H2H2 , j

(2)
G2I2G2 , j

(2)
G2G2I2 ,

j
(2)
H2H2I2 and j

(2)
H2I2H2 , which have to be accounted for [2]. Here a different notation is used for the

subscripts than before in order to emphasize that the tensor entries are tied to the crystal coordinate
system. However, some available experimental data for the surfaces of III-V semiconductors demon-
strate the possibility to simplify the treatment of the surface nonlinearity. In particular, in papers
[44, 43, 122, 87] the tensor component j(2)I2I2I2 was found to give the major contribution to the overall
surface nonlinear response. One can also come up with a simple physical explanation for this fact.
Indeed, only normal component of the fundamental field � (l)I undergoes a jump at the interface and
also the material properties at the interface have a discontinuity only along normal I-axis. Therefore
the element j(2)I2I2I2 of the surface nonlinear tensor has to play the prevailing role, which allows to
limit the treatment of the surface nonlinearity to this term only, while neglecting all other non-zero
tensor entries.

A few important remarks have to be made now regarding the radiation pattern of the SHG. SHW
produced by the surface nonlinear polarization in the setup under consideration is roughly equally
emitted upwards into the the air and downwards into the substrate. This is, however, not the case for
the SHG in the volume of the slab. Here, the phase mismatch between the pump FW and the generated
SHW comes into play. FW in the considered setup propagates downwards into the substrate, hence
SHW due to the bulk nonlinearity is generated more efficiently in the same direction. For the upwards
outgoing SHW (in the reflection mode) the phase mismatch between FW and SHW is very large
because of the opposite propagation directions. Therefore the upwards outgoing SHW seems to be
appropriate for the analysis of the interplay between the surface and bulk nonlinearities, since the
contribution of the bulk nonlinearity to this SHW is much smaller than to the downwards outgoing
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Figure 4.2: Diagram illustrating the dependence of the normalized amplitude of the SHW generated by the
bulk second-order nonlinearity only in Eq. (4.5) on the angle of incidence \ and on the angle of the crystal
axis rotation X. The different columns correspond to the different values of the polarization angle U. Top row:
normalized amplitude of the TM-polarized component of the SHW. Bottom row: normalized amplitude of the
TE-polarized component of the SHW. All subplots are normalized to the maximal value among all, which is
achieved in the leftmost subplot in the bottom row.

SHW, and the surface contribution must be much better pronounced against the bulk one.

The analytical expressions for the SHW emitted from a nonlinear slab under illumination by a
plane wave were derived in Ref. [89]. If one considers both nonlinear sources separately, the TE- and
TM-polarized components of the upwards outgoing SHW are given as:

�
(2l)
TE,surf = 0,

�
(2l)
TM,surf =

48(:FW)2Y2l%
NL
surf,I sin\

,0Y2l +,2
,

�
(2l)
TE,bulk = −

4(:FW)2%NL
bulk,H

Y0(,0 +,2) (,2 +2,1)
,

�
(2l)
TM,bulk = −

4(:FW)2
(
%NL

bulk,G

√
Y2l − sin2 \ +%NL

bulk,I sin\
)

√
Y2lY0(,0Y2l +,2) (,2 +2,1)

, (4.5)

with
,0 = 2:FW cos\, ,1 = :

FW
√
Yl − sin2 \, ,2 = 2:FW

√
Y2l − sin2 \. (4.6)

Eqs. (4.5)-(4.6) allow to calculate the emitted SHW from an arbitrary nonlinear medium under illu-
mination at an arbitrary angle of incidence.

In Figs. 4.2 and 4.3 the SHW amplitudes Eq. (4.5) emitted from the AlGaAs slab are plotted,
when only bulk and surface nonlinearities are taken into account respectively. The wavelength of the
FW was fixed to _ = 1 `m, so that the SH wavelength is 500 nm. Fig. 4.2 shows the amplitude of
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the upwards outgoing SHW generated solely by the bulk nonlinear polarization, i.e. upon assuming
the surface nonlinear tensor equal to zero. Each column in Fig. 4.2 corresponds to a specific value
of the polarization angle U, so that U = 0◦ corresponds to the pure TM-polarization of the FW and
U = 90◦ corresponds to the pure TE-polarized FW. Similarly the top and bottom rows correspond
to the TM- and TE-polarized component of the emitted SHW. Each subplot in Fig. 4.2 shows the
SHW amplitude vs. the angle of incidence \ of the FW and the angle X between the crystal axis
and the plane of incidence (see Fig. 4.1). All figures are normalized to the maximal value of the
SHW amplitude among both field polarizations and all values of U in order to illustrate their relative
amplitudes. Such normalization is deliberately done, since the absolute values of the SHW amplitude
are linearly proportional to the strength of the bulk nonlinear tensor of the specific chosen material
and here only the dependence of SHW on the illumination parameters is to be analysed. The SHW
amplitude appears to be a harmonic function of the rotational angle X with a period of 180◦, what
may be easily found from Eqs. (4.2)-(4.4). At the same time for the absolute value of the SHW
amplitude the period amounts to 90◦, that is why in all subplots only the range from X = 0◦ to X = 90◦

is displayed. Remarkably, the SHW amplitude in Fig. 4.2 vanishes in both polarizations of SHW,
when \ = 0◦ and \ = 90◦. The case \ = 0◦ means the normal incidence of the FW, and the plane
SHW in the upper domain cannot be excited, because the normally incident FW has the electric field
parallel to the surface and consequently only a normal component of the bulk nonlinear polarization
%NL
I is induced through the j(2)I2G2H2 element of the bulk nonlinear tensor. This normal component of

the nonlinear polarization can only generate SH fields polarized in the same I-direction, which cannot
propagate upwards. In the case of the glancing incidence \ = 90◦, both TE- and TM-polarized FWs
get fully reflected from the interface, meaning that the pump field at the fundamental frequency does
not penetrate into the nonlinear medium and cannot induce a bulk nonlinear polarization. One can
also see some other points in the diagrams in Fig. 4.2, where the emitted SHW amplitude turns to
zero. Their location on the diagram can be analysed with Eq. (4.5). So, for example, the SHW in
TE-polarization (bottom row in Fig. 4.2) vanishes for those combinations of angles \ and X, which
give a zero value for the component %NL

H in Eq. (4.4). Since Fresnel reflection coefficients for both
polarizations of the FW are not equal, for U > 0 this condition is fulfilled for varying values of the
angle of incidence \, when plotted vs. the angle X.

Similar plots for the SHW emitted solely by the surface nonlinear polarization are given in
Fig. 4.3. Since for the employed form of the surface nonlinear susceptibility tensor a TE-polarized
SHW cannot be emitted, only the amplitude of the TM-polarized upwards outgoing SHW is dis-
played. One can see that all subplots in Fig. 4.3 coincide up to a scaling factor driven by the polariza-
tion angle U. This result appears, because the surface nonlinear polarization is determined only by the
TM-polarized component of the FW. Moreover, no dependence on the crystal rotation angle X arises.
It should be noted that other weaker components of the surface nonlinear tensor besides j2D

zzz would in
general introduce a dependence of the surface-driven SHW on the angle X as well. The dependence
of the surface-only SHW on the angle of incidence \ exhibits a single pronounced maximum. This
angular dependence is governed by the joint action of two factors: the Fresnel reflection of the FW
and the dependence of the surface nonlinear polarization on the I-component of the electric field of
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Figure 4.3: Diagram illustrating the dependence of the normalized amplitude of the TM-polarized SHW gen-
erated by the surface nonlinearity only in Eq. (4.5) on the angle of incidence \ and on the angle of the crystal
axis rotation X. The different columns correspond to the different values of the polarization angle U. All values
are normalized to the maximal field amplitude for U = 0.

the FW . For the normal incidence \ = 0◦ the normal field component �I turns to zero and the surface
nonlinear polarization can not be induced through the term j

(2)
I2I2I2 . For the glancing incidence \ = 90◦

the FW is fully reflected and also cannot induce a nonlinear polarization in the medium, exactly as for
the bulk-induced SHW. For all intermediate values of \ the non-zero surface nonlinear polarization
appears and thus the SHW can be emitted.

4.2 SHG patterns for plane-wave illumination

Up to now the SH response provided solely by the surface and bulk nonlinearities was studied, and
now their interference should be examined in order to find the optimal illumination conditions, which
would allow the most efficient detection of the surface-driven SH signal from a slab of the non-
centrosymmetric semiconductor. Let introduce the following dimensionless ratio [ of the bulk and
surface nonlinearities of the medium:

[ =
j2D

zzz

j
(2)
bulk_

, (4.7)

where the pump wavelength _ is added in the denominator. It is assumed in the following that the
bulk nonlinearity of a noncentrosymmetric semiconductor is known from the experimental studies, so
that one has to determine the value of [ to obtain the strength of the surface nonlinearity. It is worth
to mention again that the bulk nonlinear tensor has all non-zero components equal to j(2)bulk, while for
the surface nonlinear tensor only the term j2D

zzz is kept. It should be emphasized that the bulk and
surface nonlinear polarizations appear as separate terms in the right-hand side of the system of the
linear Maxwell’s equations. Therefore, the overall SHG radiation pattern can be obtained just as the
linear superposition of bulk-induced and surface-induced complex second-harmonic fields. Since the
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evaluation of the ratio of the surface and bulk nonlinear coefficients [ is of main interest, the distinct
features in the total far-field SHG radiation pattern are to be analysed to allow for the unambiguous
separation of the surface contribution and for quantification of the desired ratio from experimental
far-field measurements.

In order to find suitable measurement conditions for finding the value of [, Figs. 4.2 and 4.3
should be compared for the specific features of the surface nonlinearity in the SHG radiation pattern.
First of all, one can see that the surface nonlinearity only results in the SHW emission for the TM-
polarized FW. Next, the main qualitative difference between the bulk- and surface-driven SHWs in
Figs. 4.2 and 4.3 is their distinctive dependences on the angle X of the crystal rotation. Namely, the
surface-induced SHW remains constant when varying X, whereas the bulk-induced SHW exhibits the
harmonic dependence. It is worth noticing that taking into account other smaller components of the
surface nonlinear tensor would also introduce a weak dependence of the surface signal on X. Therefore
the measurement of the emitted SHW vs. the crystal rotation angle X with fixed incidence angle \
under the illumination by the TM-polarized plane wave appears to be the best suited experimental
layout for the detection of the surface contribution. Figs. 4.2 and 4.3 show that the strongest SHG
signal from both nonlinear sources is found for the values of the incidence angle in the range \ ∼
50◦ − 70◦, while for the normal incidence \ ≈ 0◦ as well as for the glancing incidence \ ≈ 90◦ both
bulk- and surface-induced SHWs vanish. Now one can proceed to determine the optimal values of
the angles \ and U, which allow maximizing the surface contribution to the measured SHG radiation
pattern.

Summarizing the above, one can conclude that the polarization-resolved measurement of the SHG
amplitude, while rotating the crystal sample around the I-axis (and hence changing the X angle) should
enable to quantitatively compare the surface and bulk contributions. The analytical dependence of the
total SHG intensity on the crystal rotation angle X is given as:

�SHG(X,U, \) ∼
����surf(U, \) + �bulk(U, \) sin

(
2[X− X0]

)���2 , (4.8)

where the dependence on the crystal rotation angle X only is explicitly stated. The terms �bulk(U, \)
and �surf(U, \) that are introduced here represent the complex amplitudes of the X-dependence of the
fields from Eq. (4.5). The value X0(\,U) represents the angular shift of the maximum of �bulk. The
dependence of the bulk-induced SH field on 2X directly follows from Eqs. (4.2)-(4.4). Since � (2l)TM,surf

in Eq. (4.5) does not depend on the crystal rotation angle X, one finds:

�surf(U, \) = � (2l)TM,surf(U, \) =
48(:FW)2Y2l%

NL
surf,I (U, \) · sin\

,0Y2l +,2
. (4.9)

At the same time �bulk(U, i) depends on the angle X and from Eqs. (4.2)-(4.6) one can derive the
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Figure 4.4: (a) Dependence of the SHW intensity �SHG on the rotation-angle X for the different [ and the
parameter values \ = 60◦ and U = 0◦, i.e. the pure TM-polarization of the incident plane wave. (b) Normalized
values of the difference of the maxima shown in (a), defined by Eq. (4.13), in dependence on the polarization
angle U and the angle of incidence \.

following expressions:

�bulk(U, \) = −
4j(2)bulk(:

FW)2
√
Π2

1 +Π
2
2

Y0(,0Y2l +,2) (,2 +2,1)
,

tan(2X0) = −
Π1
Π2
, (4.10)

with

Π1 =
Y0√
Y2l

(
�G�H sin\ +�H�I

√
Y2l − sin2 \

)
,

Π2 =
Y0√
Y2l

(
�2
G −�2

H

2
sin\ −�G�I

√
Y2l − sin2 \

)
.

In order to find the ratio of the bulk and surface nonlinearities [, one has to measure first the SHG
intensity as the function of the angle X and then fit Eq. (4.8) to the experimental data. The treatment
above as well as the diagrams in Figs. 4.2 and 4.3 can be considered as the generalization of the earlier
studies [128, 129, 130, 131], where only the rotational-angle dependence of SHG response (angle X
in the notation here) was examined. One can thus improve the performance of measurements in terms
of the detectable contribution of the surface nonlinearity by considering also the dependence on the
angle of incidence \ and the polarization angle U. Indeed, from the comparison of the dependences
of the bulk- and surface-driven SHWs in TM-polarization in Figs. 4.2-4.3 on the angle of incidence
\, one can see that for certain values of the angles \ and U the surface contribution can be expected to
be especially strongly pronounced against the background of the bulk-driven SH signal. Particularly,
close to the maximum of the surface-induced SHW in Fig. 4.3, the bulk-driven SH signal can be much
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weaker than its maximal value. Therefore, the dependence of the total SHG response on the angle X
should be more sensitive to the surface contribution for these values of the angles \ and U and weaker
surface nonlinearities can be detected.

Fig. 4.4,a demonstrates the calculated dependence of the total SHG intensity on the crystal rotation
angle X for the illumination by the TM-polarized FW (i.e. U = 0◦) with the angle of incidence \ = 60◦

and for different ratios of the bulk and surface nonlinearities [. One can see alternating maxima and
minima of the intensity every 90◦, but due to the interference of the bulk and surface contributions
with a certain phase shift between them the neighboring maxima have different intensities. Let denote
them as �max,1 for the larger one and �max,2 for the smaller one. To achieve the highest sensitivity to the
contribution of the surface nonlinearity, the difference between these alternating maxima of Eq. (4.8),

) =
���max, 1− �max, 2

�� , (4.11)

has to be maximized. Assuming that the surface contribution is much weaker than the bulk one,
i.e. |�surf |/|�bulk | � 1, for both maxima �max,1 and �max,2 one directly finds from Eq. (4.8) up to a
nonrelevant constant factor:

�max,1 = |�surf(U, \) |2 + |�bulk(U, \) |2 +2 |�bulk(U, \) |2 ·
����Re

(
�surf(U, \)
�bulk(U, \)

)���� ;
�max,2 = |�surf(U, \) |2 + |�bulk(U, \) |2−2 |�bulk(U, \) |2 ·

���Re
(
�surf(U, \)
�bulk(U, \)

) ���, (4.12)

where the last terms arise due to the phase shift between the bulk- and surface-induced SH fields,
which is in turn caused by their specific dependences on the complex relative permittivities of AlGaAs
both at the fundamental and SH frequencies. Finally, one gets for the difference of both maxima in
Eq. (4.11):

) = 4 |�bulk(U, \) |2 ·
���Re

(
�surf(U, \)
�bulk(U, \)

) ���. (4.13)

The normalized difference of the SHG maxima ) from Eq. (4.13) is plotted in Fig. 4.4,b vs. the
polarization angle U and the angle of incidence \. One can clearly get the optimal values of the angles
\ and U, which give the maximum of ) :

\optim ≈ 70◦,

Uoptim = 0◦. (4.14)

The optimal polarization angle Uoptim corresponds to the TM-polarized FW as has been discussed
before. From Fig. 4.4,b one concludes that the target function ) describing the detectability of the
surface contribution in the total SHG signal can be largely increased with the optimized values of the
angles Eq. (4.14) as compared to an arbitrary set of their values. It is important to emphasize, that
since the function ) is linearly proportional to �surf according to Eq. (4.13), the parameters Eq. (4.14)
maximize the target function Eq. (4.13) regardless of the value of j(2)surf. In other words, no matter
how weak is the surface nonlinearity in a specific noncentrosymmetric semiconductor, the function
Eq. (4.13) would anyway have its maximum for the parameter values given by Eq. (4.14).



Chapter 4. Signatures of surface nonlinearity in far-field patterns of SHG from noncentrosymmetric
semiconductors 62

Figure 4.5: Minimal dynamic range of a measurement system � needed to detect the surface contribution to
the SHW intensity for the different ratios [ of the surface and bulk nonlinearities in the medium.

The values of the illumination angles Eq. (4.14) provide the optimal conditions for the experimen-
tal identification of the weak surface contribution to the overall SH response. It is then interesting to
estimate quantitatively the range of the detectable values of the surface nonlinearity. It should be no-
ticed first that in an experimental setup one has to ensure the difference of the alternating maxima in
Eq. (4.13) to be measured to exceed the noise level in the setup. Only with this requirement fulfilled
one can reliably separate the actual surface SH signal from the technical noise. This condition can
be expressed in mathematical terms through the dynamic range of the detection system �, which is
defined as the ratio of the saturation signal level to the noise level and represents a characteristic of
the experimental setup itself. In order to reliably identify the difference of the alternating maxima in
the X-dependence of the SHG intensity, the following requirement has to be fulfilled:

� >
�max, 1

|�max, 1− �max, 2 |
. (4.15)

In this inequality it is implicitly assumed that the larger maximum in the measured SHG signal �max, 1

can be increased up to the saturation level of the experimental setup by increasing the pump (FW)
intensity. To be on the safe side, one can relax the condition Eq. (4.15) and assume that the SHG
signal to be measured should be larger than the noise level by an extra factor ^ > 1. In this case one
arrives at the following condition

�max, 1

|�max, 1− �max, 2 |
=
�

^
, (4.16)

with the parameter ^ > 1, which actually describes the accuracy of the evaluation of the surface
signal against the background of the noise in the camera. Eq. (4.16) implicitly contains the minimum
measurable ratio of the nonlinearities [lower.

The lower detectable limit [lower as obtained from Eq. (4.16) for the optimized parameter values
Eq. (4.14) and several exemplary values of ^ is shown in Fig. 4.5 vs. the dynamic range of the detector
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�. The smallest value of [lower, which can be potentially measured with the proposed experimental
scheme, corresponds to ^ = 1. With larger values of ^ and thus the higher accuracy of the experimental
results, sensitivity of the measurements degrades in terms of the detectable range of the strength of
the surface nonlinearity. For example, with the camera possessing the dynamic range � = 100, the
lower limit [lower can be estimated to be around:

[lower ≈ 0.01 ,

if assuming that ^ = 3 is sufficient to reliably identify the surface SHG signal in the experimental
curve. One can also find with Eq. (4.16) that for the fixed parameters provided by Eq. (4.14) the
detection threshold [lower is almost inversely proportional to the dynamic range � and linearly pro-
portional to the accuracy parameter ^.

The results presented in this section describe an optimized way of measuring the surface non-
linearity. The case of the plane-wave illumination of a single flat medium interface is the only one,
which allows for the explicit analytical treatment. However, the optimized plane-wave illumina-
tion with large angle of incidence as in Eq. (4.14) may be hard to achieve experimentally. Thus, in
the following a focused FW beam will be considered, which experimentally is readily available and
would also yield high conversion efficiency. More realistic finite-sized beams can in principle also
be expanded into multiple plane-wave components, but the nonlinearity in the problem makes the
theoretical analysis increasingly cumbersome. However, the results of this section can provide the
analytical framework for a qualitative explanation of the far-field signatures of the surface nonlin-
earity for other types of illuminating beams at the fundamental frequency. In the next sections these
findings are extended to more complex focused pump beams and it is examined, how the detectable
range of [ values changes for such pump sources.

4.3 Representation of tightly-focused Gaussian beam

Following the reasoning in the previous section, I proceed with the illumination of the same slab made
of a noncentrosymmetric semiconductor by a focused beam at the fundamental frequency. Specifi-
cally, a normally-incident linearly-polarized tightly-focused Gaussian beam (TFGB) was chosen as
the pump source. The motivation for such choice is governed by several reasons. Firstly, TFGB seems
to be the most widely studied focused beam and multiple analytical approximations for its field have
been derived so far beyond the paraxial approximation. Secondly, the results of the previous section
show that large angles of incidence \ are needed for the efficient detection of the surface SH signal.
However, using of the obliquely incident focused beam would greatly complicate the detection of
the reflected SH signal in the experimental setup. With the normally-incident focused beam, on the
other hand, the detection can be directly done with the same objective, which is used for the focusing
of the incident beam. Therefore the incident beam has to be tightly focused to assure that the beam
incorporates field components with large incidence angles. Thirdly, the major difference between the
surface- and bulk-induced SHWs, as it was found above, is their angular dependence on the angle X
between the crystal axis and the plane of incidence of the illuminating wave. The plane-wave Fourier
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Figure 4.6: Near-field images of the TFGB used in the simulations on the transverse plane through the focus:
(a) G-component; (b) H-component; (c) I-component of the electric field. Beam waist is equal to F0 = 750 nm.
The beam is linearly-polarized along G-axis. All field components are normalized to the field value at the beam
center.

components of a normally-incident TFGB cover the whole range of values of the angle X. Thus
one does not have to do the angular scan over the angle X, instead the illumination by a normally-
incident TFGB would allow performing the whole quantitative comparison of both nonlinearities by
the polarization-resolved analysis of the measured far-field SHG radiation pattern.

The interplay of the bulk and surface SHG under TFGB illumination has been already considered
in different materials, such as the metal nano-objects [136], glass slides [137, 138], silicon nanowires
[139] or isolated centrosymmetric nanospheres [140, 141]. It was shown that the analysis of the SHG
radiation patterns allows for the separation of the surface and bulk SH signals [140, 138], second-
harmonic fields stemming from the different entries of the surface nonlinear susceptibility tensor
[140, 141, 139] or different contributing terms in the bulk quadrupolar tensor [140, 141, 137]. Im-
portantly, all these studies were concerned with SHG from centrosymmetric materials. To the best of
my knowledge, SHG under TFGB illumination has not been considered and analysed so far in non-
centrosymmetric semiconductors. Because of this fact and the experimental data, demonstrating the
possible significant contribution of the surface nonlinearity in nanostructures made of noncentrosym-
metric semiconductors, here the characteristic signatures of the bulk and surface nonlinearities in the
far-field SHG radiation patterns from AlGGa1−GAs slabs are examined under the TFGB illumination.

Since the analytical solution for the SHG induced by a pump TFGB is not available even for a sin-
gle flat interface, one has to perform numerical simulations of the SHG under the UPA to figure out the
characteristic signatures of the surface nonlinearity in the SHG radiation pattern. For the numerical
simulations the FEM developed in chapter 3 for modeling the SSHG is used. This method was im-
plemented into the commercial finite-element software for optical simulations JCMsuite [116, 117].
JCMsuite was also used for modeling of the purely bulk SHG from the considered slab, representing
the vector of the bulk nonlinear polarization as the spatially distributed source for the SH field. TFGB
was introduced as the source of the input field at the fundamental frequency.

As long as the exact analytical solution for the fields of a linearly-polarized TFGB is lacking,
it is worth to address in more detail the numerical representation of an illuminating TFGB. When
a Gaussian beam is focused to the subwavelength waist radius, the standard paraxial approximation
appears to be not valid anymore, because it cannot accurately describe the longitudinal component of
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the electric field. Indeed, a standard expression for a linearly-polarized Gaussian beam is derived from
the scalar Helmholtz equation, so that the Gaussian beam is assumed to possess only one non-zero
component of the electric field. When a linearly-polarized Gaussian beam gets tightly focused, this
assumption, i.e. the paraxial approximation, is not applicable and the longitudinal field component
becomes significant and cannot be neglected.

Beyond the paraxial approximation the fields of a Gaussian beam can be described using expan-
sions into a series over a small parameter Y, also known as Lax series, with:

Y =
F0
I'
=

2
:F0

< 1, (4.17)

where F0 is the beam waist and I' = :F2
0/2 is the Rayleigh length [142, 143, 144, 145, 146, 147].

It is interesting to note that in the limit of the paraxial approximation the parameter Y Eq. (4.17)
coincides with the tangent of the beam divergence angle. As it was found in Ref. [146], the electric
field of a linearly-polarized Gaussian beam beyond the paraxial approximation can be obtained from
a linearly-polarized vector potential of the form:

®�(G, H, I, C) = ®4G�0Ψ(G, H, I)48(lC−:I) ,

with a constant amplitude �0. Substituting this expression into the wave equation for the vector
potential one arrives to:

ΔΨ−28:
mΨ

mI
= 0. (4.18)

For small values of the parameter Y Eq. (4.17), it can be used as an expansion parameter for the
sought-for function Ψ:

Ψ =

+∞∑
==0

Y2=Ψ2=. (4.19)

The series expansion for the function Ψ now has to be inserted into Eq. (4.18) and the terms of the
same power of Y2= have to be grouped together, which results in the following relations:

∇2
⊥Ψ0−48

mΨ0
mZ

= 0, if = = 0,

∇2
⊥Ψ2=−48

mΨ2=
mZ
+ mΨ2=−2

mZ2 = 0, if = ≥ 1, (4.20)

with the rescaled coordinates:

b =
G

F0
, h =

H

F0
, Z =

I

I'
, d2 = b2 +h2. (4.21)

The first equation in Eq. (4.20) for Ψ0 provides the standard solution for a Gaussian beam in the
paraxial approximation. The first terms of the expansion Eq. (4.19) were obtained as follows [142,
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143, 144]:

Ψ0 = 5 4
− 5 d2

,

Ψ2 =
( 5 2

2
− 5

4d4

4

)
4− 5 d

2
, (4.22)

where it is denoted:

5 =
8

Z + 8 .

The standard paraxial approximation corresponds to the limit Y → 0. With tighter focusing of the
Gaussian beam the beam waist F0 becomes smaller and Y from Eq. (4.17) increases respectively. For
larger Y one cannot neglect the correction higher-order terms in the expansion Eq. (4.19) to assure the
high enough accuracy of the simulations. For very tight focusing as Y→ 1 the convergence of the
Lax series is in doubt, but for moderate levels of focusing the truncated Lax series was shown to yield
a reasonable analytical approximation for the fields of the TFGB [148]. In the simulations a TFGB
with the beam waist F0 = 750 nm was taken, which gives the value of the parameter Eq. (4.17):

Y ≈ 0.42.

It is also assumed that the beam waist is located exactly in the top interface of the considered slab
of AlGaAs. The number of the expansion terms in Eq. (4.19) is selected to meet the accuracy of
the finite-element simulations. The expected relative accuracy of the simulations in the software was
taken as 0.01, which determines the settings of the PML. According to the accuracy estimates for
the Lax series obtained in [144], one correspondingly keeps the higher-order corrected terms for a
linearly-polarized TFGB up to Y3. The respective expressions for the components of the electric field
in the transverse plane through the focus are [146]:

�G = �04
−d2

(
1+ Y2

[
b2− d

4

4

] )
,

�H = �04
−d2 · Y2bh,

�I = �04
−d2
b

(
Y + Y3

[
− 1

2
+ d2− d

4

4

] )
. (4.23)

The near-field images of the TFGB used in the simulations on the transverse plane through the focus
were calculated with Eq. (4.23) and are plotted in Fig. 4.6. It is convenient to expand the electric field
in the transverse plane through the focus into the two-dimensional Fourier series, then the electric
field can be written as the superposition of the plane-wave components as:

®� (G, H, I) =
∫ +∞

−∞

∫ +∞

−∞
®� (:G , :H) · 48(:GG+:HH+:I I)3:G3:H, (4.24)
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where

�G =
1

4c2

∫ +∞

−∞

∫ +∞

−∞
�G (G, H, I)4−8(:GG+:HH)3G3H,

�H =
1

4c2

∫ +∞

−∞

∫ +∞

−∞
�H (G, H, I)4−8(:GG+:HH)3G3H,

�I = −
�G:G +�H:H

:I
,

:I =

√
(:FW)2− :2

G − :2
H .

Using Eq. (4.23) one readily finds:

�G (:G , :H) =
�0F

2
0

4c
4−

F2
0 (:

2
G+:2

H )
4

(
1+ Y2

[2− :2
GF

2
0

4
− 3

16

(
1−F2

0(:
2
G + :2

H) +
F4

0(:
4
G + :4

H)
12

)
− 3

32
(2− :2

GF
2
0) (2− :

2
HF

2
0) +

:G:HF
2
0

16
(12−F2

0(:
2
G + :2

H))
] )
,

�H (:G , :H) = −
1

16c
�0Y

2:G:HF
4
04
−
F2

0 (:
2
G+:2

H )
4 . (4.25)

For the numerical simulations the TFGB is to be represented as the sum of its multiple plane-wave
components, i.e. through the discrete form of the integral Eq. (4.24):

®� (G, H, I) ≈
;1=+ G∑
;1=− G

;2=+ H∑
;2=− H

®� (:G (;1), :H (;2)) · 48(:G (;1)G+:H (;2)H+:I (;1,;2)I)Δ:GΔ:H, (4.26)

where indices ;1, ;2 numerate the discretization points along :G- and :H-axis. It is reasonable to turn
this equation into the cylindrical coordinates as:

®� (G, H, I) ≈
;A= A∑
;A=0

;i=+c∑
;i=−c

®� (:G (;A , ;i), :H (;A , ;i)) · 48(:G (;A ,;i)G+:H (;A ,;i)H+:I (;A ,;i)I):AΔ:AΔi, (4.27)

with

:G (;A , ;i) = :A (;A) cosi(;i),
:H (;A , ;i) = :A (;A) sini(;i).

The upper integration boundary for :A is taken as:

 A =
6
F0
,

i.e. three times the width of the Gaussian profile in the Fourier transform of a Gaussian beam in
the paraxial limit. Eqs. (4.25) and (4.27) together provide the required representation of an incident
linearly-polarized TFGB for the simulations.
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4.4 Far-field SHG patterns under TFGB illumination

When the slab is illuminated by the linearly-polarized normally-incident TFGB, the only varying
parameter is the angle between the direction of the beam polarization and the crystal axis. Here the
notation similar to the case of the plane-wave illumination shown in Fig. 4.1 is applied. Namely, the
angle X is defined between the polarization direction of the TFGB and the crystal G2-axis. In order
to find out the specific features of the bulk- and surface-driven SHG in the total radiation pattern the
simulations are first performed separately, when only the bulk or surface nonlinearity acts.

Figure 4.7: Near-field SHG patterns induced by the bulk nonlinearity only, as calculated in the horizontal plane
I = 0.7 `m above the surface for X = 0◦ : the intensity distributions of (a) G-component; (b) H-component; (c)
I-component of the electric field. All plots are normalized to the largest value among all, which is achieved in
the subplot (b).

Firstly the case of the bulk nonlinearity only is considered. Fig. 4.7 demonstrates the near-field
SHG pattern obtained in the horizontal plane I = 0.7 `m above the interface for the value of the rota-
tion angle X = 0◦. It seems more appropriate, however, to analyse the far-field pattern as if measured
in the focal plane of a collection lens or objective. The respective far-field SHG patterns for different
values of the rotation angle X are brought together in Fig. 4.8. The top row shows the intensity of
the SH field polarized along the G2-direction, while the bottom row shows the intensity of the SH
field polarized along the H2-direction. When plotting Fig. 4.8, the presence of the longitudinal field
component was accounted for, as illustrated in Fig. 4.7. Therefore subplots in Fig. 4.8 do not repre-
sent just the Fourier transforms of the G- and H-components of the electric field from Fig. 4.7, but are
calculated as:

�G (:G , :H) =
:I

:FW�) [�G (G, H)] −
:G

:FW�) [�I (G, H)] ,

�H (:G , :H) =
:I

:FW�)
[
�H (G, H)

]
−
:H

:FW�) [�I (G, H)] .

The G2H2-coordinate system is fixed to the crystal axes in the interface plane. Since the illuminating
TFGB is linearly-polarized under an angle X with respect to the crystal G2-axis, its polarization direc-
tion is anticlockwise rotating from left to right in Fig. 4.8. All subplots in Fig. 4.8 are normalized to
the largest value among all, which is achieved twice in the leftmost subplot in the bottom row and in
the rightmost subplot in the top row.

Fig. 4.8 shows the largest SHG intensity in H2-polarization for the TFGB polarized along G2-
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Figure 4.8: Polarization-resolved far-field SHG intensity distributions induced by the bulk nonlinearity only
for different values of the angle X; top row: G2-polarization, bottom row: H2-polarization. The FW wavelength
is _ = 1 `m, thus the SH wavelength is 500 nm. All subplots are normalized to the maximal value among all,
which is achieved both in the rightmost subplot in the top row and in the leftmost subplot in the bottom row.

axis as well as in G2-polarization for the TFGB polarized along H2-axis. In both cases, when the
pump TFGB is polarized along one of the crystal axes, i.e. for X = 0◦ and X = 90◦, the amplitudes
of the strongest peaks in the intensity patterns for both polarizations differ by a factor of around
250. The radiation patterns for all values of the angle X have two-lobed form in both polarizations.
The appearance of such two-lobed far-field pattern results from the symmetry properties of the bulk
nonlinear susceptibility tensor of III-V semiconductors. Indeed, when illuminating TFGB is, for
instance, linearly-polarized along the crystal G2-axis, i.e. X = 0◦, the largest components of the electric
field are the G2- and I2-components (see Fig. 4.6), what results in a dominant H2-component of the
bulk nonlinear polarization ®%NL

bulk. Moreover, from the images of the TFGB in Fig. 4.6 one can see
that the product of G2- and I2- electric field components consists of two domains shifted along G2-
axis with respect to each other. Since these domains of the bulk nonlinear polarization have the
primary direction along H2-axis, one can expect the radiation pattern to be qualitatively similar to the
interference radiation pattern of two classical dipoles. The corresponding radiation pattern from two
dipoles exhibits a two-lobed H2-polarized far-field pattern with lobes aligned along the :G-direction.
At the same time the G2-polarized SH field turns out to be much weaker, because the component of
the bulk nonlinear polarization %NL

bulk,G2
is much weaker than %NL

bulk,H2
. As the angle X is increased, the

dominant direction of the bulk nonlinear polarization rotates, but the two-lobed shape of the far-field
pattern is still preserved.

In a similar way the case of the surface nonlinearity only is considered next. Respective far-field
SHG intensity patterns are plotted in Fig. 4.9. As before the top row corresponds to the intensity of
the SH field polarized along the G2-direction, while the bottom row displays the intensity of the SH
field polarized along the H2-direction. All subplots are scaled again to the maximum value among
all, which is achieved twice in the leftmost subplot in the top row and in the rightmost subplot in the
bottom row. The symmetry properties of the surface-driven far-field patterns appear to be significantly
different as compared to the case of the bulk-induced SH field. Particularly, two domains of the
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Figure 4.9: Polarization-resolved surface-induced far-field SHG intensity distributions for different values of
the rotation angle X. Top row: G2-polarization, bottom row: H2-polarization. The FW wavelength is _ = 1
`m, thus the SH wavelength is 500 nm. All subplots are normalized to the maximal value among all, which is
achieved both in the leftmost subplot in the top row and in the rightmost subplot in the bottom row.

normal component of the surface nonlinear polarization %NL
surf,I2

prevail due to the dominating j
(2)
III

element of the surface nonlinear susceptibility tensor. One gets two domains of %NL
surf,I2

, since I-
component of the illuminating TFGB vanishes at the beam symmetry axis and exhibits two maxima
symmetrically located along the polarization direction, see Fig. 4.6. The interference of two domains
of the surface nonlinear polarization directed along the surface normal leads to the multi-lobed SHG
radiation patterns with the comparable far-field amplitudes in both polarizations and for all values of
the rotation angle X.

The SH field emitted, when both the bulk and surface nonlinearities are included in the simula-
tions, is simply obtained as the linear superposition of the bulk- and surface-induced fields shown in
Figs. 4.8 and 4.9. It should be noted that this statement is valid for the complex amplitudes of the
electric field, but not for the intensities of both SH fields. If one assumes the bulk nonlinearity known,
this superposition can be considered as the sum of two fields, where the second one has a weight
factor proportional to the unknown ratio of the surface and bulk nonlinear coefficients Eq. (4.7). It
is interesting here to find the illumination conditions that allow for the best possible spatial isolation
of the far-field lobes coming from the bulk and surface sources of the nonlinear polarization. Such
separation would let to reliably identify and analyse the surface-induced and bulk-induced features in
the total far-field SHG intensity distribution. From the comparative analysis of Figs. 4.8 and 4.9 one
can conclude that the bulk- and surface-induced lobes are maximally separated for the polarization
angles X = 0◦ and X = 90◦, i.e. when the TFGB is linearly-polarized along one of the crystal axes. It is
also worth noting that thanks to the symmetry of the problem the far-field SHG patterns for these two
values of X can be obtained from each other by rotating for 90◦ and exchanging both polarizations. In
particular, when X = 0◦ the surface-induced and bulk-induced peaks in the G2-polarized far-field SHG
pattern are symmetrically shifted from the beam axis along the :G- and :H-axis, respectively, what
minimizes their mutual overlap. The overlap of the surface-induced and bulk-induced lobes in the H2-
polarized far-field SHG pattern is much larger, but the contributions are still distinguishable, because
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Figure 4.10: Polarization-resolved far-field SHG intensity distributions for different values of the parameter [
with X = 0◦. Top row: G2-polarization, bottom row: H2-polarization. The FW wavelength is _ = 1 `m, thus the
SH wavelength is 500 nm.

the bulk-induced far-field possesses its main lobes on the :G-axis and vanishes on the :H-axis, while
the surface-induced far-field possesses its main lobes on the :H-axis and vanishes on the :G-axis.

In the following the treatment is limited to the specific case of X = 0◦, when the illuminating TFGB
is polarized along G2-axis. Fig. 4.10 shows the total far-field SHG intensity patterns for different
values of the parameter [ from Eq. (4.7). Again, in the top row the G2-polarized SH field is plotted
and in the bottom row the H2-polarized SH field. All plots are scaled to the largest amplitude in the
bulk-induced far-field pattern. Different values of [ for both polarizations were used to illustrate the
transition from the pure-bulk to the pure-surface SHG patterns in G2- and H2-polarization, since the
maxima of the bulk-induced far-field patterns in the two polarizations in Fig. 4.8 were found to be
largely different. Fig. 4.10 demonstrates that in each polarization the obtained far-field pattern closely
follows the pure-bulk pattern for small values of [ and undergoes the gradual transition towards the
pure-surface far-field pattern with the increase of [. The intermediate range of [ values, where the
specific features of both contributions can be identified, is of main interest. Within this range of [
values each specific far-field intensity distribution with certain relative amplitudes of the bulk-induced
and surface-induced lobes is unambiguously connected to a certain value of [. The boundaries of the
relevant range of [ values are governed by the condition of the pure-bulk/pure-surface characteristic
lobes being still safely distinguishable against the background of the far-field pattern from another
nonlinear source.

In particular, in G2-polarization the surface-induced lobes are located on the :G-axis in the far-field,
where the bulk-induced SH field vanishes. In contrast to this, the bulk-induced lobes are the strongest
on the :H-axis , where the surface-induced SH field vanishes. This fact enables measurement of the
surface-to-bulk ratio from the G2-polarized SHG radiation pattern. Indeed, the ratio of the maxima
along :G- and :H-axis in the far-field intensity distribution is linearly proportional to [. In Fig. 4.11 the
cross-sections of the far-field SHG intensity pattern in G2-polarization for [ = 0.01 from the leftmost
subplot in the top row in Fig. 4.10 are shown. Fig. 4.11,a gives the SH intensity along the :G-axis
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Figure 4.11: Cross-sections through the far-field intensity pattern in G2-polarization for [ = 0.01 in Fig. 4.10:
(a) SH intensity along the :G-axis for :H = 0 and (b) along the :H-axis for :G = 0.

for :H = 0 and Fig. 4.11,b displays the SH intensity along the :H-axis for :G = 0. As the value of
[ gets increased, the bulk-induced SH field in Fig. 4.11,b remains unchanged, while the surface-
induced SH field in Fig. 4.11,a grows linearly in amplitude without changing its profile. Similar to
the plane-wave illumination in the previous section, now the estimated boundaries of the range of
the measurable values of [ are to be calculated. These boundaries are determined by the ratio of the
amplitudes of the lobes in the SHG intensity patterns induced solely by the bulk and surface nonlinear
polarizations. Let us denote the respective maxima along the :G- and :H-axes in the far-field pattern as
�max
1 for the stronger one and �max

2 for the weaker one. Typically, one expects in noncentrosymmetric
semiconductors the surface nonlinearity to be weaker, so that �max

2 corresponds to the surface-induced
SH field. Now one can state the following condition to quantify the detectable range of the surface
nonlinearities:

�max
1
�max
2

=
�

^
, (4.28)

where � is again the dynamic range of the measurement system and ^ is a constant. Eq. (4.28) is to be
separately evaluated for the far-field SHG intensity patterns measured in the G2- and H2-polarizations,
what would give accordingly the upper and the lower boundaries of the detectable range of [.

The values of [ obtained from the relation Eq. (4.28) for ^ = 1 are plotted in Fig. 4.12 for both
polarizations. The curves in Fig. 4.12 were calculated numerically using the simulated far-field SHG
intensity patterns for the bulk- and surface-induced SH fields shown in Fig. 4.8-4.11. For each polar-
ization the lower limit [lower implies that �max

2 corresponds to the surface-driven lobe, and the upper
limit [upper implies that �max

2 corresponds to the bulk-driven lobe. If, for example, the dynamic range
� = 100 is fixed, then for the lower detectable limit [lower in G2-polarization one gets:

[lower ≈ 0.01.

Calculating in exactly the same way the upper limit for [, one obtains the following range, where the
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Figure 4.12: The diagrams, showing the upper and lower detection thresholds of [ Eq. (4.28) vs. the dynamic
range of the camera for ^ = 1 for G2-polarization (a) and H2-polarization (b).

surface nonlinearity can be quantified from the G2-polarized far-field SHG pattern:

0.01 . [ . 1 .

Performing analogous calculations for the H2-polarized far-field distribution, one can find the follow-
ing range of the detectable [ values:

0.1 . [ . 10 .

Remarkably, the detectable ranges of [ values largely differ in both polarizations and just slightly
overlap. According to Fig. 4.12 this conclusion holds for all considered values of the dynamic range
�. Hence, the far-field signatures of the surface nonlinearity have to be predominantly manifested
in one polarization only depending on the value of [ in a specific semiconductor. For � = 100 one
can estimate the detectable range of the surface-to-bulk ratios, as expressed through the parameter [,
from the polarization-resolved measurements to cover:

0.01 . [ . 10 , (4.29)

i.e. more than 3 orders of magnitude of [ values. The specific upper and lower boundaries of the
detectable values of [ range would depend on the specific material, namely on the refractive indices
of the slab both at the fundamental and the SH frequencies. However, this range is expected to always
span more than 3 orders of magnitude. It is notable that the range Eq. (4.29) closely matches the
range found in the previous section for the polarization-resolved rotation-angle scan under the plane-
wave illumination. The main advantage of the TFGB illumination can be attributed to its relative
simplicity, because one does not need to rotate the crystal in order to measure the angular dependence
of the emitted SHW. Instead a single measurement of the far-field SHG radiation pattern in different
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polarizations without any further movements in the setup would suffice to quantify the ratio of the
surface and bulk nonlinearities.

It seems reasonable to compare the obtained range Eq. (4.29) of the detectable ratios of the non-
linearities with values obtained in the literature. Values of the bulk nonlinear coefficients j(2)bulk in
noncentrosymmetric semiconductor materials are usually of the order of 10−12 m/V, though for III-V
semiconductors it achieves ∼ 10−10 m/V [46]. The strength of the surface nonlinearity j2D

zzz in dif-
ferent solids varies quite strongly [149, 129, 94, 87, 38, 39], mainly attaining values in the range
∼ 10−20 − 10−17 m2/V. For the parameter [ from Eq. (4.7) this would give the range 0.01 . [ . 10
for j(2)bulk ∼ 10−12 m/V and respectively smaller values for larger j(2)bulk. Along with that, experimental
measurements in [87] for III-V semiconductor, namely GaP nanopillars, yielded in current notation
[ ∼ 0.1, what allows to expect [ in other III-V semiconductors to also fall within the same limits. One
can therefore see that the expected values of [ in different noncentrosymmetric media correlate well
with the detectable range in Eq. (4.29).

It would be interesting to discuss the ways to extend the detectable range given by Eq. (4.29). The
most natural approach is to get larger longitudinal component of the electric field, provided by more
complex illuminating beams. Stronger longitudinal field would increase the surface contribution to
the total far-field SHG pattern, because the surface nonlinear polarization scales quadratically with
the �I-component of the illuminating beam due to the dominating j(2)III tensor element, while the bulk
nonlinear polarization scales linearly, since all entries of the bulk nonlinear tensor with more than one
I-index are zero. The longitudinal component of the electric field can be enlarged by the oblique in-
cidence of the TFGB, but the measurement of the SH radiation with such arrangement would become
more complicated. Alternatively, a number of more complex beams have been shown to possess the
strong longitudinal electric field, including optical needles [150, 151], spatially phase-shaped beams
[152], radially-polarized tightly-focused beams [153, 154, 155], polarization vortices [156], higher-
order cylindrical beams [157] or photonic nanojets [158]. With these alternative illuminating beams
the boundaries of the detectable surface nonlinearity can be stretched even further.

4.5 Summary

In nanostructures and ultrathin films made of noncentrosymmetric semiconductors the largely in-
creased surface-to-volume ratio makes it important to account for the surface nonlinearity, despite
the strong bulk second-order nonlinearity. Besides, the surface signal can be additionally gained in
certain wavelength ranges, for instance, in the vicinity of surface resonances or for the SH frequencies
above the fundamental bandgap. Therefore the separation and the quantitative comparison of the sur-
face and bulk contributions to the SHG appears to be the relevant problem for the efficient frequency
conversion.

The findings demonstrate that the different symmetry properties of the bulk and surface nonlin-
ear tensors in noncentrosymmetric semiconductors result in specific signatures in the polarization-
resolved far-field SHG pattern. Under the plane-wave illumination of a slab of a noncentrosymmetric
semiconductor the differences arise in the angular dependences of the emitted SHW on the angle of
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incidence and the polarization angle. It is shown that the surface and bulk contributions can be un-
ambiguously separated and quantitatively compared from the polarization-resolved angular scans of
SHG within a wide range of surface-to-bulk ratios, which spans over at least three orders of magni-
tude.

Using a normally-incident linearly-polarized TFGB as the pump field, the distinct features in
the far-field SHG intensity patterns were also obtained. The polarization-resolved analysis of the
SHG radiation patterns thus enables to reliably identify, separate and compare the strength of both
nonlinearities. With the setup with an illuminating TFGB the surface optical nonlinearity can be
evaluated in a wide range of its strengths from just a couple of the polarization-resolved far-field SHG
radiation patterns. The applicability of this approach could be further boosted by devising special
configurations of the illumination field allowing to selectively increase the surface response in the
total SHG field.

Obtained findings are directly applicable to other III-V semiconductor materials that belong to the
4̄3< crystal symmetry group, e.g., GaAs, GaP, InSb, InAs, AlAs, or InP. Besides that, the extension
to other noncentrosymmetric media is also straightforward and can be done with due regard for the
specific type of the bulk crystal symmetry. One can believe these results to provide an appreciable
contribution to gaining the SHG conversion efficiency from the nanoscale semiconductor structures.

In the next chapter, I aim to numerically investigate another interesting computational problem,
namely the SSHG from multilayer structures of different possible compositions. The TMM developed
earlier in chapter 2 is to be used for the simulations. The main issue to be solved is finding the optimal
geometry of the multilayer structures for the efficient SSHG.



Chapter 5

Optimization of surface SHG from
multilayer structures

The enhancement of the SHG from nanooptic components can be achieved in several ways, but mainly
based on the excitation of resonant modes in the nanostructures. However, one can also think of us-
ing the surface SHG to achieve efficient frequency conversion, especially when multiple surfaces are
brought together. Then the constructive interference of the surface-driven second-harmonic waves
from multiple interfaces can serve as an efficient way of boosting the SHG conversion efficiency from
the nanoscale optical elements, especially made of centrosymmetric materials. The most efficient en-
hancement of SHG should take place when the spatial separation between interfaces is much smaller
then the wavelength. Then the phase shift between the SHWs originating from the sources of surface
nonlinear polarization can be neglected and the SHWs interfere in-phase. As the distance between
the interfaces is increased, new effects come into play. The phase shifts now become important and
the interference of the emitted SHWs starts to strongly depend on the separation between layers.
Still certain resonances can also appear for non-negligible separation between interfaces when the
constructive interference of a number of sources is reached.

In Chapter 2, a transfer-matrix-based method was developed for the efficient modeling of SSHG
from arbitrary multilayer structures. Moreover, with an exemplary stack the possibility to obtain
strong enough SH signal was demonstrated. It was even found that an exemplary structure consisting
of 5 layers with total thickness of 10 nm yields stronger SH response than a GaAs layer with bulk non-
linearity and larger thickness. In this chapter I aim to investigate in more detail the SHG enhancement
in multilayer structures of different compositions. In particular, periodic stacks of nonlinear materials
with several layers in each period can exhibit interesting behaviour. It is worth noting that existing
deposition techniques nowadays, like atomic layer deposition or molecular beam epitaxy, make it pos-
sible to grow layered structures of largely variable composition and required layer thicknesses with
high precision down to just a few nanometers [69, 70, 71].

The enhancement of SHG in layered structures has been already studied before. However, as far
as I know only bulk nonlinearities have been considered in this respect. It was shown, that the phase-
matching condition plays an important role in this case. Besides that, SHG is additionally enhanced
if the fundamental frequency and SH frequency are resonant with the band-edge states in the finite
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periodic structure [159, 160, 161, 162, 163]. Combining the field enhancement at the fundamental
frequency and SH frequency results in a scaling of the SHG conversion efficiency as ∼ #6 [161] with
the number of periods # . If additionally the PMC is fulfilled, scaling up to ∼ #8 can be achieved
[164]. Moreover, ∼ #8 scaling of SHG was even obtained in properly designed Bragg multilayers
without PMC [165]. An additional way for enhancing SHG can be provided by the optimal modu-
lation of the nonlinear optical coefficient, e.g., through modulated polarization directions in a PhC
consisting of ferroelectric domains [166, 167]. Along with that, the strong enhancement of the SHG
conversion was also predicted in planar microcavities with periodic dielectric mirrors, when double
resonances for the pump and harmonic fields, as well as phase matching, are achieved [168, 169].

In this chapter the treatment is limited to the surface second-order nonlinearity only. For cen-
trosymmetric optical materials the bulk nonlinearity can be safely neglected in nanophotonic applica-
tion. As stated in Chapter 2, this reasoning can be also applied to layers made of noncentrosymmetric
semiconductors provided that the thicknesses of the layers are small enough (below ∼ 100 nm). In the
following, centrosymmetric semiconductor materials will be mainly used for simulations. Since only
media with bulk nonlinearity can support the propagation of inhomogeneous waves at the second-
harmonic frequency and thus the efficient energy transfer [2], the standard PMC plays an essential
role in such media only. Given that the bulk nonlinearity is not taken into account in this chapter,
the PMC ceases to play a significant role in the considered layout. Therefore, the scaling laws found
for layered media with bulk nonlinearities are not fulfilled anymore. With the surface nonlinearities
the outcome of the interference of the multiple interfaces would rely on the strengths of the surface
nonlinear polarization at different interfaces as well as on the spatial separation between them.

This chapter is organized as follows. In Section 5.1 several exemplary nonperiodic stacks are
considered and the SHG enhancement is searched for with varying the layer thicknesses and the
incidence angle. Section 5.2 deals with a periodic stack consisting of 2 layers in each period and the
optimization of the SHG vs. the number of periods and thicknesses of both layers in the period is
performed. The generalization to the periodic stack with 3 layers in each period is done in Section
5.3. The discussion of the main findings is given in the concluding Section 5.4.

5.1 Nonperiodic stacks

The expected constructive interference of the surface SHWs from multiple interfaces should in general
arise regardless of the composition of the stack. The total emitted field would depend on both the
strengths of the surface nonlinearities and the linear transmission properties of the stack both at the
fundamental and the second-harmonic frequency. The periodicity of the structure can also bring
new properties due to the presence of the photonic band gaps and corresponding transmission dips.
Therefore the dependence of the SSHG from the multilayer structures deserves detailed investigation.

In order to clarify the role of the top interfaces on the total response let us begin with the simplest
case of a single flat layer on a substrate. A silicon layer located on the top of a glass (BK7) sub-
strate is selected. Such choice of materials provides high contrast of the refractive indices between
the silicon layer and both the air above and the substrate below. For simulations, the transfer-matrix
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Figure 5.1: Amplitude of the upwards outgoing SHW from a silicon layer on a glass (BK7) substrate [in kV/m]
for: (a) TE-polarized; (b) TM-polarized incident wave at fundamental frequency vs. the angle of incidence \
and the thicknesses of the layer. The amplitude of the FW (pump) �FW = 108 V/m.

method described in Chapter 2 is used. The glass substrate is again assumed semi-infinite and the
thickness of the silicon layer is varied. The fundamental wavelength of the illuminating plane wave
is 1 `m, so that the second-harmonic wavelength is 500 nm. The intensity of the incident FW was
again taken to 1.33 GW/cm2, so that the electric field strength in the FW is �FW = 108 V/m. The
simulation results are presented in Fig. 5.1 for TE- and TM-polarized incident plane wave at the fun-
damental frequency. Here, the amplitude of the upwards outgoing plane wave at the second-harmonic
frequency is plotted vs. the angle of incidence and the thickness of the silicon layer. For arbitrary
thickness one gets a single maximum in the angular dependence with zero field at \ = 0◦ and \ = 90◦.
Regarding the layer thickness one can intuitively expect the appearance of alternating maxima and
minima because of the varying phase shift leading to constructive or destructive interference between
two sources of the surface nonlinear polarization. Similar dependence is indeed obtained along the
vertical axis in Fig. 5.1. The differences between the dependences for TM- and TE-polarized incident
waves at the fundamental frequency seem to be related to the fact that for TE-polarization only one
term in the expression for the surface nonlinear polarization Eq. (2.27) given by the tensor element
j
(2)
⊥|| | | contributes to SSHG. On the other hand, for TM-polarization, all three terms in Eq. (2.27) are

contributing, leading to a more complex interference pattern.
As the next step, let us move to a more complex multilayer example. Namely, the multilayer

stack from section 2.7 is taken, the corresponding parameters for convenience are provided again in
Table 5.1. Now one tries to numerically optimize the SHG efficiency by changing the thicknesses
of the layers. In order to do it, it is assumed that the thicknesses of all layers from Table 5.1 are
multiplied by an additional factor U, which is a fixed constant for all layers. The amplitude of the
upwards outgoing SHW from the considered stack vs. the angle of incidence \ and the extra factor
U is plotted in Fig. 5.2. The case of U = 1 in Fig. 5.2 then matches the plots in Fig. 2.2. Within the
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Figure 5.2: Amplitude of the upwards outgoing SHW from the considered stack from Table 5.1 [in :+/<]
for: (a) TE-polarized; (b) TM-polarized incident wave at the fundamental frequency (respective wavelength is
1 `m) vs. the angle of incidence \ and the scaling factor U of the thicknesses of the layers in the stack. The
amplitude of the FW (pump) �FW = 108 V/m.

considered range of the values of U one gets a few pronounced maxima here. One can notice that the
achievable strength of the SH field is larger than the one from a single silicon layer in Fig. 5.1 due to
the larger number of interfaces.

Layer, № 1 2 3 4 5 Substrate
Material Si SiO2 TiO2 Si SiO2 BK7

Thickness, nm 1 3 2 1 3 -

Table 5.1: The composition of the considered nonperiodic multilayer stack.

It would be important to relate the location of the maxima in Fig. 5.2 with the linear optical prop-
erties of the stack both at the fundamental and second-harmonic frequencies. Therefore in Figs. 5.3
and 5.4 the reflectivities of the stack for both TE- and TM-polarized incident waves at both frequen-
cies are plotted. It should be noted that Fig. 5.3,b shows the reflectivity for TM-polarization at the
SH frequency, since in the considered example for an incident TE-polarized FW one gets only TM-
polarized SHW. Even though the maxima in Fig. 5.2 and minima in Figs. 5.3 and 5.4 are slightly
shifted with respect to each other, one can still notice the correlation between the SHG from the
considered stack and the reflection properties of the stack. Therefore, one can conclude that the ap-
pearance of the maxima in Fig. 5.2 is largely related to the linear reflection/transmission of the stack
both at the fundamental and at the SH frequencies. Specifically, one can see that the maxima of the
emitted SHW for both polarizations of the incident wave in Fig. 5.2 are located near the positions,
where the stack has dips in reflection at both frequencies simultaneously. Certain discrepancies be-
tween the locations of the maxima in the diagrams result from the complex interplay of the surface
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Figure 5.3: Reflectivity of the multilayer stack from Table 5.1 for: (a) TE-polarization at the fundamental
frequency (respective wavelength is 1 `m); (b) TM-polarization at the SH frequency (respective wavelength is
500 nm) vs. the angle of incidence \ and the scaling factor U of the thicknesses of the layers in the stack.

nonlinear polarizations at different interfaces inside the stack, which is not directly related with the
maxima in the reflection/transmission.

5.2 Periodic stack of SiO2/TiO2 layer pairs

In contrast to the stacks of an arbitrary composition, the periodic ones are known to exhibit multiple
resonances and can be thus expected to exhibit better enhancement of the surface SHG as well. Let
us start with considering periodic stacks consisting of two layers in each period. As the material
pair SiO2/TiO2 is selected in order to provide high enough refractive index contrast. Specifically
at the pump wavelength 1 `m the refractive index of TiO2 is 2.49, while the refractive index of
SiO2 is 1.45. Also in contrast to silicon, which absorbs strongly at the wavelengths below 400 nm,
SiO2 and TiO2 are transparent in the whole optical range. Besides that, SiO2 and TiO2 are widely
used materials in photonic technologies. The stack is assumed to be placed on the top of a SiO2

substrate for convenience in fabrication. In the following, the SSHG from a multilayer periodic stack
of alternating SiO2/TiO2 layers is investigated by varying the number of layers and their thicknesses.
Therefore both the layers of equal thickness in each period and different ratios of the thicknesses of
SiO2- and TiO2-layers are considered.

Firstly, the case of equal thicknesses of both layers is taken. Fig. 5.5 shows the amplitude of the
upwards outgoing SHW from a stack of 2 periods vs. the angle of incidence and the thickness of the
layers for TE- and TM-polarizations of the pump plane wave (FW). One can see that the dependence
on the angle of incidence exhibits a single well-pronounced maximum in both polarizations. It is
interesting to note that the angular position of this maximum does not noticeably change when varying
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Figure 5.4: Reflectivity of the multilayer stack from Table 5.1 for TM-polarization at the: (a) fundamental
frequency (respective wavelength is 1 `m); (b) SH frequency (respective wavelength is 500 nm) vs. the angle
of incidence \ and the scaling factor U of the thicknesses of the layers in the stack.

the thickness of the layers in wide limits. The dependence of the SHW on the thicknesses turns out
to be much more complicated. One can observe here a non-monotonous function with alternating
maxima and minima. Importantly, the maximal SHW amplitude for TM-polarized FW is almost one
order of magnitude larger than for TE-polarized (i.e. the ratio of the corresponding intensities is
around 100). The largest maximum in Fig. 5.5,b gives the SHW amplitude �SHG ≈ 150 kV/m, and
with the amplitude of the FW �FW = 108 V/m (i.e. the pump intensity is 1.33 GW/cm2) one obtains
the energy conversion efficiency ��SHG:

��SHG =

����SHG

�FW

���2 ≈ 2.25 ·10−6.

Such values exceed by several orders of magnitude the typical values of the conversion efficiency in
plasmonic and in all-dielectric nanostructures made of centrosymmetric semiconductors.

As it was shown in the previous section, the dependence of the SHW on the thicknesses can be to a
large extent connected to the usual resonances of the multilayer structure at both the fundamental and
the second-harmonic frequencies. The radiated field, however, results not only from the transmission
properties of the stack at both frequencies, but also from the relative values and signs of the surface
nonlinear polarization sources at each interface. The latter depends crucially on the nonlinear optical
properties of the respective material pair. Specifically when the period of the stack consists of just two
layers, one has the same pair of adjacent media at every interface inside the stack, but with alternating
relative location of both materials. As it was stated in Chapter 2, in the simulations the vector of the
surface nonlinear polarization is assumed to be always directed from the medium with weaker second-
order nonlinearity into the medium with stronger second-order nonlinearity. Therefore in the case of
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Figure 5.5: Amplitude of the upwards outgoing SHW [in kV/m] from the stack of 2 periods of SiO2/TiO2 layer
pairs, ℎ1 = ℎ2: (a) TE-polarized FW; (b) TM-polarized FW. The amplitude of the FW (pump) �FW = 108 V/m.

a material pair one can conclude that the surface nonlinear polarization at neighbouring interfaces
has opposite directions. At the same time, the relative values of the components of the vector of
the surface nonlinear polarization stay in general unknown and would vary for different number of
periods in the stack.

Let us increase now the number of periods in order to figure out their role on the simulation
findings. Fig. 5.6 demonstrates the amplitude of the upwards outgoing SHW from the stacks of 5
periods vs. the angle of incidence and the thickness of the layers. One sees that the dependence
on the angle of incidence does not change as compared to the case of 2 periods in Fig. 5.5. At the
same time the dependence of SHW on the thickness yields now more maxima and minima. From
comparison of Figs. 5.5 and 5.6 one can infer that with increasing the number of periods the maxima
split into several ones with corresponding minima in between. The maximal amplitudes for TM-
polarization increases just slightly when going from 2 periods to 5 periods. For TE-polarization
significant increase of the maximal SHW amplitude is found when going from 2 periods to 5 periods
and negligible further growth for larger number of periods. Increasing the number of layers even
further leads to further splitting and shrinking of maxima in the diagram due to interference effects.
This is illustrated by the blue curves in Fig. 5.7, which show the maximal amplitude of the upwards
outgoing SHW (among all values of the angle of incidence) from the stack of 10 periods with equal
layer thicknesses.

It is important to address the question of the experimental verification of the simulation results.
Furthermore, it would be useful for applications to be able to determine the components of the surface
nonlinear tensor from the measurements of the emitted SHW from the stack. From Figs. 5.5, 5.6
and 5.7 one can see that experimental measurements of SSHG from periodic multilayer structures
would be most suitable for the number of layers in the range # ≈ 5− 10. For smaller number of
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Figure 5.6: Amplitude of the upwards outgoing SHW [in kV/m] from the stack of 5 periods of SiO2/TiO2 layer
pairs, ℎ1 = ℎ2: (a) TE-polarized FW; (b) TM-polarized FW. The amplitude of the FW (pump) �FW = 108 V/m.

layers the maximal SHW amplitude can be significantly smaller. On the other hand, for larger # the
emitted SHW becomes much more sensitive to inaccuracies of the thickness measurements (due to
the large number of maxima in Fig. 5.7) with no significant increase in the SHW amplitude due to the
interference effects. Therefore the optimal trade-off is achieved at medium values of the number of
layers.

In order to obtain the nonlinear tensor from the measured SH field, one would need to perform
a fit of simulated data to the experimental ones. If the period of the multilayer structure consists of
2 layers, one gets in general 6 unknowns, namely the tensor entries j(2)⊥⊥⊥, j

(2)
⊥‖‖ , j

(2)
‖⊥‖ for material

interfaces SiO2/TiO2 and SiO2/Air. It is assumed here that the interfaces are isotropic, since all media
are centrosymmetric. If one measures, for instance, the dependence of the outgoing SH field on the
angle of incidence for several fabricated structures with different thicknesses and/or number of layers,
the numerical fit must be obtained to the measured curves with 6 unknown parameters. The problem
can be greatly simplified, if the surface nonlinear tensor for one of the material pair, e.g. SiO2/Air, is
already known from the literature. In this case the fit to the experimental data with just 3 unknown
tensor entries for SiO2/TiO2 interface has to be performed.

Secondly, I proceed with the case of different thicknesses of both layers. The thickness of the top
layer is fixed now and the diagram for 10 periods is calculated for varying thickness of the bottom
TiO2 layer. Fig. 5.8 corresponds to the fixed thicknesses ℎ1 = 2 nm. Similar figures were also obtained
for other values, e.g. ℎ1 = 1 nm and ℎ1 = 3 nm (not shown), and showed no noticeable differences.
Hence for such small thicknesses the value ℎ1 has just minor influence on the SHW and the locations
of maxima on the diagram. Next, a fixed ratio between the thicknesses ℎ1 and ℎ2 is examined. In
Fig. 5.7 the plots for the several values of this ratio are put together, namely ℎ2 = 2ℎ1, ℎ2 = ℎ1 and
ℎ1 = 2ℎ2. I have checked that the angular dependence of the SHW amplitude in all these cases
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Figure 5.7: Maximal amplitude of the upwards outgoing SHW (among all values of the angle of incidence)
from the stack of 10 periods of SiO2/TiO2 layer pairs for different ratios of the thicknesses: (a) TE-polarized
FW; (b) TM-polarized FW. The amplitude of the FW (pump) �FW = 108 V/m.

exhibits a single maximum and therefore plotted the maximal amplitude of the upwards outgoing
SHW (among all values of the angle of incidence) vs. the thickness of the first layer ℎ1. When
ℎ2 = 2ℎ1 a certain increase in the maximal SHW amplitude for TM-polarization with respect to the
case of equal thicknesses of both layers is found here. In the case ℎ1 = 2ℎ2 one does not observe any
improvement both for TM-polarized FW and for TE-polarized FW as compared to the equal layer
thicknesses.

Having checked that for different ratios of thicknesses one gets a single isolated maximum in
the angular dependence, whose location changes insignificantly with the thicknesses, I now aim to
generalize the findings for the different thicknesses of both layers by plotting a two-dimensional
diagram of the maximal SH amplitude among all values of the angle of incidence vs. the thicknesses
ℎ1 and ℎ2. This diagram is shown in Fig. 5.9. One sees a number of "fringes", corresponding to the
maxima of the SH field. For both polarizations of the FW one gets a pronounced strongest peak on
the diagram, with much stronger one for TM-polarized FW in Fig. 5.9,b. This largest maximum in
Fig. 5.9,b amounts to the SHW amplitude �SHG ≈ 240 kV/m, what gives for the best value of the
energy conversion efficiency ��SHG:

��SHG =

����SHG

�FW

���2 ≈ 6 ·10−6.

Another interesting issue is the role of the layer ordering in the periodic stack. Specifically, one
can consider a similar SiO2/TiO2 multilayer structure with a TiO2 layer on the top. Fig. 5.10 shows
the corresponding amplitude of the outgoing SHW from such stack composed of 9.5 periods, i.e. a
TiO2 layer plus 9 periods of SiO2/TiO2 layer pairs, placed on the top of the SiO2 substrate. The
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Figure 5.8: Amplitude of the upwards outgoing SHW [in kV/m] from the stack of 10 periods of SiO2/TiO2
layer pairs, ℎ1 = 2 nm (SiO2): (a) TE-polarized FW; (b) TM-polarized FW. The amplitude of the FW (pump)
�FW = 108 V/m.

thicknesses of both layers were taken equal. One can see again the maximal SHW amplitude for TM-
polarized FW to be several times larger than for TE-polarized FW. Comparison with Fig. 5.7 yields
smaller maximal SHW amplitude for the inverted case, therefore the usual arrangement of SiO2/TiO2

layers in Fig. 5.7 turns out to be more advantageous in this respect.

Finally, the interesting point would be the scaling of the second-harmonic radiation with the num-
ber of layers in the stack. This should clarify the effect of the increasing the number of interfaces
as well as the effect of the top interface on the emitted SHW. The stack containing # periods of
SiO2/TiO2 and located on the same SiO2 substrate is taken. In Fig. 5.11,a the maximal amplitude of
the outgoing SHW over the angle of incidence is depicted as the function of the number of periods
# , when ℎ1 = ℎ2 = 1 nm. For ultrathin layers one can naturally expect that the emitted field would
exhibit close to linear dependence on # , at least for moderate values of # until the total thickness of
the stack becomes large enough. When the thickness of the whole stack gets comparable to the SH
wavelength in the materials of the layer, more complex nonmonotonic behaviour is to be expected due
to the interference of multiple reflected waves inside the stack both at the fundamental frequency and
at the second-harmonic frequency. Fig. 5.11,a indeed confirms the monotonic increasing dependence
for # . 20 for TE-polarized pump FW and until almost # . 40 for TM-polarized FW as well as
the nonmonotonic functional dependence for larger # . Similar behaviour is observed in Fig. 5.11,b,
where the same curves are depicted for different thicknesses ℎ1 = 2 nm, ℎ2 = 1 nm. The values of
the SHW amplitude change slightly, but the linear dependence on # now breaks for smaller number
of periods thanks to larger thickness of a single period of the stack. Hence, one can conclude that
for ultrathin layers the outgoing SHW scales roughly linearly with the number of layers, where the
constant term of this linear function corresponds to the contribution of the top SiO2/Air interface.
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Figure 5.9: Maximal amplitude of the upwards outgoing SHW (among all values of the angle of incidence) from
the periodic stack of 10 periods of SiO2/TiO2 layer pairs [in kV/m] vs. the thicknesses ℎ1, ℎ2: (a) TE-polarized
FW; (b) TM-polarized FW. The amplitude of the FW (pump) �FW = 108 V/m.

5.3 Periodic stack of SiO2/Al2O3/TiO2 layer triples

I proceed with considering periodic stacks of SiO2/Al2O3/TiO2 layer triples. A layer of Al2O3 was
added here compared to the previous section, since its refractive index (1.67 at the pump wavelength
1 `m) falls in between the refractive indices of SiO2 and TiO2. Introducing an extra layer into each
period would give an extra source of the surface nonlinear polarization interfering with the contribu-
tions of the rest interfaces. I will follow the treatment in the previous section here and consider both
the layers of equal thickness in each period and different ratios between the thicknesses of the layers
in each period.

Fig. 5.12 shows the amplitude of the upwards outgoing SHW from the stack of 2 periods vs. the
angle of incidence and the thickness of the layers, when ℎ1 = ℎ2 = ℎ3. Similar to the periodic stack
in the previous section, one gets a single maximum in the angular dependence and multiple maxima
over the thickness of the layers. The angle of the maximal SH field for TM-polarized pump FW
gets shifted to much smaller values. The obtained field amplitude in the maxima are significantly
smaller than the ones obtained for SiO2/TiO2 stack with 2 periods at TM-polarization. Also the field
amplitudes turn out to be comparable in their values for both polarizations of the FW.

The respective results for the increased number of periods # = 5 are depicted in Fig. 5.13. The
field amplitude at the resonances gets almost doubled at both polarizations, however the positions
of the maxima on the diagram change slightly. It should be noticed again that maxima split into
several narrower ones when taking larger number of periods. The further increase of the number of
periods leads to very slow growth of the maximal amplitudes of the diagram together with the ongoing
splitting and shrinking of the maxima. It should be stated that for the selected 3 layers in the period
the achieved SH field strengths for both polarizations of the pump plane wave have close values, so
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Figure 5.10: Amplitude of the upwards outgoing SHW [in kV/m] from the stack of 9.5 periods of SiO2/TiO2
layer pairs, i.e. with a TiO2 layer on the top, ℎ1 = ℎ2: (a) TE-polarized FW; (b) TM-polarized FW. The
amplitude of the FW (pump) �FW = 108 V/m.

that no definite preferable polarization is found.

Fig. 5.14 shows the amplitude of the outgoing SHW from the stack of 10 periods for the fixed ratio
of the thicknesses of SiO2 layer ℎ1, Al2O3 layer ℎ2 and TiO2 layer ℎ3, namely ℎ1 = ℎ2 = 2ℎ3. One sees
that the obtained values of the SH field strength here are smaller then ones for the equal thicknesses
above. Also one gets a noticeable difference in the SHW amplitudes for both polarizations of FW, and
the maximal SH field for TM-polarized FW becomes much stronger. As before for the periodic stack
of 2 layers in each period, I proceed to generalize the results to the case of different thicknesses of the
layers by plotting a two-dimensional diagram of the maximal SH amplitude among all values of the
angle of incidence vs. the thicknesses. Since there are three layers in every period now, the thickness
of the SiO2 layer ℎ1 is fixed and the diagram is plotted vs. the thicknesses ℎ2 and ℎ3. An exemplary
diagram is shown in Fig. 5.15 for the value ℎ1 = 20 nm. Similarly to the case of SiO2/TiO2 layers,
one gets a picture of "fringes", since the generated SHW exhibits oscillatory-type dependence on
each thickness separately. Again for both polarizations of the FW a definite largest maximum is seen,
which is significantly stronger for TM-polarized FW in Fig. 5.15,b. Still the maximal SHW amplitude
in Fig. 5.15,b turns out to be much smaller than the one for periodic SiO2/TiO2 layers in Fig. 5.9,b.
The diagrams like in Fig. 5.15 were calculated for many other values of the thickness ℎ1. In all cases
the obtained diagrams look similar to Fig. 5.15 and the maximal achieved SHW amplitude does not
noticeably alter when varying ℎ1. As an example, also the diagram for the fixed value ℎ1 = 60 nm is
added in Fig. 5.16. As one can easily see, the "fringes" in the diagrams get shifted with increasing ℎ1,
but the SHW amplitudes in the maxima remain almost unchanged.

In total, introducing the third layer of Al2O3 does not bring any benefits in terms of the conversion
efficiency. The highest achieved SHW amplitude for SiO2/TiO2 turns out to be larger for the same
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Figure 5.11: Maximal amplitude of the upwards outgoing SHW (among all values of the angle of incidence)
from the SiO2/TiO2 periodic stack [in kV/m] vs. the number of layer pairs: (a) ℎ1 = 1 nm (SiO2), ℎ2 = 1 nm
(TiO2); (a) ℎ1 = 2 nm (SiO2), ℎ2 = 1 nm (TiO2). The amplitude of the FW (pump) �FW = 108 V/m.

# , despite the proportionally smaller number of interfaces inside the whole structure. This increased
number of interfaces is confronted with the smaller contrast of the refractive indices between the in-
termediate Al2O3 layer and other layers. The simulations show that the latter effect prevails resulting
in reduced SHW amplitude.

5.4 Summary

In this chapter the possibility of the enhancement of the emitted surface-driven SHW from multilayer
structures of different compositions was studied. I have searched through several arrangement of the
layers of Si, SiO2 and TiO2 layers, specifically two-layer periodic structures made of SiO2/TiO2 layers
and three-layer periodic structures made of SiO2/Al2O3/TiO2 layers. The varying of the layer thick-
nesses, the number of the periods as well as the incidence angle were considered to find the strongest
amplitude of the SSHG. The performed simulations provide therefore the optimized parameters for
the highest achievable energy conversion efficiency into the SHW for the considered compositions of
the multilayer structures.

In all cases the dependence on the angle of incidence was found with a single maximum at oblique
incidence. The dependence on the thicknesses of the layers appears typically complex with multi-
ple maxima as the layer thicknesses are varied. The dependences of the emitted SHW on both the
angle of incidence and on the layer thicknesses exhibit obvious correlation with the linear reflec-
tion/transmission of the stack both at the fundamental and at the SH frequency, namely the maxima
of the emitted SHW closely follow the minima of the reflection of the stack at both frequencies. The
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Figure 5.12: Amplitude of the upwards outgoing SHW [in kV/m] from the stack of 2 periods of
SiO2/Al2O3/TiO2 layer triples, ℎ1 = ℎ2 = ℎ3: (a) TE-polarized FW; (b) TM-polarized FW. The amplitude of
the FW (pump) �FW = 108 V/m.

specific dependence on the thicknesses of all layers in the period allows the best optimization of the
SH signal. In the case of the periodic SiO2/TiO2 stack optimal thicknesses were found that give the
strongest SH field for a fixed number of layers. At the same time the dependence on the number of
layers exhibits several conflicting features. On one hand, increasing the number of layers results in
the growth of the maximal amplitude of the SHW. This dependence is close to linear for small number
of periods, but around # ∼ 5 one usually gets a saturation and the further increasing of the number of
periods # leads to the increasingly slow growth of the maximal SH field strength. On the other hand,
for larger # the maxima over the thicknesses of the layer split into several narrower maxima. As the
result for large enough number of layers, for instance several tens of periods, the maxima and minima
over the layer thicknesses are located too densely, so that the separation between the neighbouring
maxima amounts to around 1 nm or even smaller. Given that the fabrication techniques possess some
limited precision, it seems challenging to assure the required accuracy of the thicknesses of the grown
layers. Hence, the periodic stack with the large number of periods can be considered to be hardly
suitable for the experimental investigations.

The scaling law of the SHG with the number of periods # can also represent an interesting ques-
tion for studies. An important issue here is related with the presence of a substrate. The power scaling
as ∼ #8 has been theoretically found for the finite periodic multilayer structures with the bulk nonlin-
earity. However, the presence of the substrate breaks the symmetry together with the corresponding
scaling law. In the simulations for the ultrathin layers close to linear scaling in the field amplitude (i.e.
quadractic scaling in the intensity) was shown for SiO2/TiO2 layers, see Fig. 5.11. The faster scaling
can be expected to be barely possible for a stack on a substrate, since the presence of a substrate
breaks the periodicity of the structure and leads to more complicated interference effects. Although
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Figure 5.13: Amplitude of the upwards outgoing SHW [in kV/m] from the stack of 5 periods of
SiO2/Al2O3/TiO2 layer triples, ℎ1 = ℎ2 = ℎ3: (a) TE-polarized FW; (b) TM-polarized FW. The amplitude of
the FW (pump) �FW = 108 V/m.

the stack is normally grown on the top of a substrate, it could be also of interest to search for the
scaling law faster than ∼ #2 also in the multilayer structures with the surface nonlinearities in the
absence of a substrate. This issue is outside the scope of the current work.

Among the considered compositions SiO2/TiO2 periodic multilayer structure was found to yield
the highest SH field strength. The largest obtained energy conversion efficiency amounts to almost
10−5 for the intensity of the incident FW of 1.33 GW/cm2, which is comparable to the values achieved
in resonant GaAs nanostructures with similar intensities [31, 40]. The efficient surface-driven SHG
in such stacks seemingly comes from the high contrast in the refractive indices between the consti-
tuting materials, what results in the strong surface nonlinearity at their interface. These findings thus
demonstrate the potential of the multilayer stacks made of centrosymmetric materials as promising
optical components for nonlinear nanophotonic applications.
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Figure 5.14: Amplitude of the upwards outgoing SHW [in kV/m] from the stack of 10 periods of
SiO2/Al2O3/TiO2 layer triples, ℎ1 = ℎ2 = 2ℎ3: (a) TE-polarized FW; (b) TM-polarized FW. The amplitude
of the FW (pump) �FW = 108 V/m.

Figure 5.15: Maximal amplitude of the upwards outgoing SHW (among all values of the angle of incidence)
from the periodic stack of 10 periods of SiO2/Al2O3/TiO2 layer triples [in kV/m] for fixed ℎ1 = 20 nm vs. the
thicknesses ℎ2, ℎ3: (a) TE-polarized FW; (b) TM-polarized FW. The amplitude of the FW (pump) �FW = 108

V/m.
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Figure 5.16: Maximal amplitude of the upwards outgoing SHW (among all values of the angle of incidence)
from the periodic stack of 10 periods of SiO2/Al2O3/TiO2 layer triples [in kV/m] for fixed ℎ1 = 60 nm vs. the
thicknesses ℎ2, ℎ3: (a) TE-polarized FW; (b) TM-polarized FW. The amplitude of the FW (pump) �FW = 108

V/m.



Conclusion and outlook

The research efforts in this thesis have been primarily focused on the implementation of efficient
numerical methods for the modeling of surface second-harmonic generation in nanophotonic applica-
tions. Therefore the research was performed towards the main goals stated in the introduction section.
The first case considered was just a one-dimensional stack of multiple flat layers of nonlinear mate-
rials. This layout is expected to be promising for boosting the SSHG. However, the discretization
of the whole computational domain for such structure is unreasonable. For simulation of the SSHG
from such multilayer structures an analytical framework was formulated based on the transfer matrix
method (TMM). TMM allows treating the field propagation through an arbitrary layered structure,
including the effects of the multiple reflections. The developed TMM approach enables the analytical
calculation of the SSHG from the multilayer structure of an arbitrary composition within UPA and
with only surface nonlinearity considered. Moreover, it was shown that in the case of the ultrathin
layers in the multilayer structure the analytical results can be greatly simplified. As a result, it is
possible to derive the tensor of the effective surface nonlinear susceptibility. The derived effective
tensor acts as the surface nonlinear tensor of the whole stack and provides the correct expression for
the generated SHW in the limit of vanishing thicknesses of all layers. The first-order correction terms
were obtained over the small parameters, namely, the normalized thicknesses, which allow estimating
the applicability limits of the effective surface nonlinear tensor.

The developed numerical method was tested with an exemplary multilayer structure. In particular,
the applicability of the effective surface tensor for the ultrathin layers was demonstrated. Importantly,
it was shown that in the multilayer structure the surface nonlinear responses of single interfaces can
efficiently sum up, which leads to the strongly enhanced conversion efficiency of the SSHG. The
simulation results were compared with a GaAs layer of similar thickness and it was found that fully
surface-driven SHG in the multilayer stack turns out to yield much better performance than a bulk-
driven SHG from a layer of a noncentrosymmetric semiconductor.

TMM can only be applied to modeling of layered one-dimensional structures. For more complex
geometries other numerical methods are needed. Here, an alternative finite-element implementa-
tion of the surface second-order nonlinear polarization has been developed, which allows efficient
simulations of SSHG from both all-dielectric and plasmonic nanoparticles and metasurfaces. The
implementation was done in the collaboration with JCMwave GmbH and was based on the realisation
of FEM in the JCMsuite solver. For this purpose, an analytical framework was developed for the im-
plementation of the surface nonlinearity as a surface-localized 2D source, which introduces the jump
of the tangential components of the electric and magnetic field.
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The developed FEM was then applied to several test problems, which also allow for an analytical
solution. The performed tests confirmed the expected exponential convergence rate of the numerical
solution with the polynomial degree of the ansatz functions. The implemented method provides
the possibility to treat the geometrical parameters of the discretization mesh in a flexible way. In
particular, the mesh can be easily refined close to the interface between two media, nearby the corners
of the nanostructure or in any other places, where large gradients of the electric field can be expected
to occur. Furthermore, a bulk nonlinearity can be incorporated in a simple way into the simulation
without any extra costs.

FEMs are well known to exhibit advantageous performance with respect to many other numerical
simulation techniques. FEMs provide the possibility to not only adapt the mesh settings over a wide
range, but also to vary the polynomial degree of the ansatz functions and the PML settings. Selecting
coarser mesh and PML discretization together with the smaller polynomial degree would strongly
reduce the computation time and resources needed at the cost of the accuracy of the simulations.
Therefore one usually is able to find an optimal trade-off between the required computational costs
and the achievable numerical accuracy. Finally, it should be noted that FEMs enable the ℎ?-adaptive
strategy, when the discretization grid is adaptively refined in every part of the computation domain
and at the same time the polynomial degree is also accordingly adjusted in every part of the compu-
tation domain. This approach provides the optimal performance of FEM for the required accuracy of
the solution. Such ℎ?-adaptive strategies are currently actively studied for FEM and could potentially
represent a powerful tool to boost the performance of any FEM-based simulation. In total, it is ex-
pected that the developed FEM-based implementation of the surface nonlinearity can be successfully
applied for modeling SSHG in different problems in nonlinear nanophotonics.

The developed numerical methods have made it possible to proceed with considering several spe-
cific problems related to the modeling of SSHG. The first of these problems was related to the reliable
detection of the surface nonlinear signal from noncentrosymmetric semiconductor materials. This
problem has arised, since some recent experiments demonstrated the interplay of both bulk and sur-
face contribution in nanoparticles and metasurfaces made of noncentrosymmetric semiconductors. At
the same time, the question of the separation of both contribution has not been theoretically studied
well enough. Therefore this issue required more detailed numerical investigation to determine the
anticipated signatures of the surface and bulk contributions to the total nonlinear response. A detailed
numerical analysis was performed for the illumination of a semi-infinite slab of a noncentrosymmetric
semiconductor with two experimentally feasible illumination sources: plane-wave and tightly-focused
Gaussian beam. It was demonstrated that in III-V semiconductors the surface and bulk optical non-
linearities exhibit specific features in the polarization-resolved far-field pattern, which can be used to
not only identify and separate both contributions, but also for the direct comparison of the strengths
of both nonlinearities. Finally, a numerical measure was introduced for the ratio of the surface and
bulk nonlinearities and it was connected to the amplitude parameters of the observed characteristic
signatures in the far-field. With these findings the applicability limits of this approach were esti-
mated, namely, the strength of the surface nonlinearity, which can be measured. The proposed setup
both with a plane wave and with a tightly-focused Gaussian beam allows quantifying the strength
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of the surface optical nonlinearity in a wide range from several polarization-resolved measurements
of the far-field radiation pattern. Moreover, the obtained estimates show that the expected values of
the surface nonlinearity of the widely-used nonlinear materials should be covered with the presented
approach.

Finally, the enhancement of surface-driven SHG from the multilayer structures was investigated
using the developed transfer-matrix-based method. Both periodic and nonperiodic compositions of
the stack were considered with varying number of layers and the dependence of the SHG response
on the parameters of the layers was studied. In particular, the nonperiodic compositions of Si, SiO2

and TiO2 layers were studied together with the periodic structures made of SiO2/TiO2 layer pairs
and periodic structures made of SiO2/Al2O3/TiO2 layer triples. The dependence on the incidence
angle in all cases yields a single maximum. At the same time the dependence on the thicknesses
of the layers in general shows a complex behaviour with multiple maxima. It was found that the
SiO2/TiO2 periodic multilayer structure provides the highest efficiency of SHG among the considered
compositions. The relatively efficient SSHG in this case seems to be related with the high refractive
index contrast between the neighbouring layers in the stack. The performed simulation have thus
confirmed that multilayer structures made of centrosymmetric materials with high refractive index
contrast between the layers enable boosting the conversion efficiency into SHG for the applications
in the nanoscale optical devices.

In conclusion, it would be worth to outline the prospects for the future research and the devel-
opment of the findings of the thesis. Specifically the further elaboration of the proposed numerical
methods for modeling of SSHG could be of interest. The developed finite-element method for SSHG
simulations can be further improved through the application of ℎ?-adaptive algorithms. This topic
currently represents the mainstream research direction in the area of the finite-element numerical
methods. Applying ℎ?-adaptive strategies allows significant optimization of the required computa-
tional resources for the fixed accuracy of the simulations as compared to the standard FEM. Such
improvement is obtained thanks to the efficient algorithm of the apriori estimates, which adaptively
selects the varying mesh sidelength and varying polynomial degree of the ansatz functions within the
computational domain to assure the best possible performance of the method with lowest possible
costs. The usage of a ℎ?-adaptive strategy for modeling of SSHG would be particularly promising,
since the simulations of SSHG are inherently very sensitive to the treatment of the geometry and the
calculated field close to the interfaces and much less sensitive to their treatment in the rest of the
computational domain.

The analysis of SSHG from multilayer structures can be also further evolved. First of all, the
contribution of the bulk nonlinearity should be accounted for. This would imply the modification of
the source matrices in the transfer-matrix method to include the bulk nonlinear polarization. Although
in ultrathin layers of several nm or tens of nm the surface nonlinearity should prevail, this may cease
to be true for the thicker layers (hundreds of nm). In such intermediate case the interplay of the
bulk and surface nonlinear contributions can become important. Hence, the correct modeling of
SHG phenomena would rely on the elaborated TMM. The possibility to gain high SHG conversion
efficiency in the intermediate-thickness stacks can be an interesting problem to address. Moreover,
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the possibility of the power scaling law for the emitted SHW in the multilayer structures with the
surface nonlinearities in the absence of a substrate deserves more detailed consideration. A power
scaling up to ∼ #8 has been theoretically found for finite periodic multilayer structures with bulk
nonlinearity, when the fundamental frequency and the SH frequency are resonant with the band-edge
states in the finite periodic structure and the PMC is fulfilled simultaneously. It would be therefore
of certain interest to examine the possible enhancement of the SSHG, when similar resonances are
excited in the finite periodic multilayer structures with the surface nonlinearities.



Deutschsprachige Zusammenfassung

In meiner Promotion habe ich die nichtlineare Frequenzkonversion, insbesondere die Erzeugung der
zweiten Harmonischen einer einfallenden Welle, durch Oberflächennichtlinearitäten an Grenzflächen
dielektrischer Materialien untersucht. Dabei habe ich für die Berechnung der zweiten Harmonischen
optimierte numerische Verfahren entwickelt und diese auf verschiedene Strukturen angewendet um
deren Eigenschaften für die Frequenzkonversion zu bestimmen.

Im Speziellen habe ich ein Transfer-Matrix-Verfahren für die Berechnungen von mehrschichtigen
Strukturen beliebiger Zusammensetzung entwickelt, welches die Erzeugung der zweiten Harmonis-
che an deren Grenzflächen berechnet. Darauf aufbauend habe ich analytische Gleichungen für den
effektiven nichtlinearen Tensor der Oberflächennichtlinearität zweiter Ordnung abgeleitet, welcher
die nichtlineare Wechselwirkung der Gesamtstruktur beschreibt. Ich habe das entwickelte Verfahren
mit einigen exemplarischen Strukturen getestet, um seine Leistung zu überprüfen. Dabei konnte ich
zeigen, dass mehrschichtige Strukturen mit ultradünnen Schichten die zweite Harmonische mit hoher
Effizienz erzeugen können, obwohl nur die relativ schwache Oberflächennichtlinearität genutzt wird.

Danach habe ich ein numerisches Verfahren für die Berechnungen der Erzeugung der zweiten Har-
monische in Nanostrukturen entwickelt. Das entwickelte Verfahren basiert auf der Finite-Elemente-
Methode und ermöglicht Berechnungen unter Berücksichtigung sowohl von Oberflächen- als auch
Volumennichtlinearitäten. Der Vorteil der Finite-Elemente-Methode ist dabei, dass das numerische
Gitter zur Berechnung umfassend an das zu analysierende Problem angepasst werden kann. Das en-
twickelte Verfahren wurde mit einigen Beispielproblemen getestet, die exponentielle Konvergenz der
berechneten Lösung konnte dabei nachgewiesen werden.

Ich habe das entwickelte Finite-Elemente-Verfahren angewandt, um die Signaturen von inter-
ferierenden Oberflächen- und Volumennichtlinearitäten in nicht-zentrosymmetrischen Halbleitern von-
einander abzugrenzen. Dabei habe ich entdeckt, dass beide Arten der Nichtlinearität wesentlich un-
terschiedliche räumliche Verteilungen der ins Fernfeld emittierten zweiten Harmonischen aufweisen,
wenn eine Grenzflächen eines nicht-zentrosymmetrischen Halbleiters, z.B. AlGaAs, mit einer ebenen
Welle oder mit einem Gaussstrahl angeregt wird. Ich konnte zeigen, dass es für beide Anregungen
einen breiten Parameterbereich von mehr als drei Größenordnungen der Stärke der Oberflächennicht-
linearität gibt, in dem beide Nichtlinearitäten experimentell sicher voneinander unterschieden werden
können. Es ist erwartbar, dass diese Ergebnisse nicht nur für AlGaAs, sondern auch für andere III-V-
Verbindungshalbleiter nutzbar sind.

Schlussendlich habe ich mithilfe des entwickelten Transfer-Matrix-Verfahrens mehrschichtige
Strukturen mit Oberflächennichtlinearitäten für die Erzeugung der zweiten Harmonische optimiert.
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Insbesondere habe ich periodische Strukturen aus SiO2/TiO2 und SiO2/Al2O3/TiO2 Schichten er-
forscht. Davon hat ein periodischer Schichtstapel aus abwechselnden SiO2/TiO2 Schichten die höch-
ste Konversionseffizienz. Basierend auf meinen Ergebnissen können periodischen Mehrschichtsys-
teme nun für die nichtlineare Frequenzkonversion in verschiedenen Anwendungen verwendet wer-
den.
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Appendix A

Generalized boundary conditions for an
anisotropic medium

Generalized boundary conditions Eq. (2.2) were derived upon assuming the medium is isotropic. Here
I aim to extend Eq. (2.2) for the case of surfaces of optically anisotropic crystals. In an anisotropic
crystal the electric displacement vector ®� can be written in the following form:

� 9 (®A,2l) = Y0Y
(2l)
9 :
(®A)�: (®A,2l) +%NL

(, 9 (G
′, H′) · X(I′), (A.1)

where G′, H′, I′ are assumed to be the local coordinate system at certain point on the interface and
I′-axis is pointing along the surface normal (see Fig. A.1). The first term in Eq. (A.1) represents
usual linear displacement in the anisotropic medium with dielectric permittivity tensor Y 9 : , while the
second term corresponds to the surface nonlinear polarization.

Following Heinz [88], one can state that the continuity of the normal component of the electric
displacement vector �⊥ implies: ∫ 0+

0−
�⊥3I

′ = 0,

what gives:

Y0Y
(2l)
9 :

= 9

∫ 0+

0−
�:3I

′ = −%NL
(,I′ (A.2)

From the continuity of the tangential component of the electric field across the interface it follows
that: ∫ 0+

0−
®� | |3I′ =

∫ 0+

0−

(
®� − ( ®� ®=) ®=

)
3I′ = ®0.

This vectorial expression is equivalent to the set of three scalar equations:

 · ®D = ®0, (A.3)
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Figure A.1: Integration contour ! at certain point of the surface of the nonlinear slab; local coordinate system
G ′H′I′ for the selected point and global coordinate system GHI are depicted.

with

 =


(1−=2

G) −=G=H −=G=I
−=G=H (1−=2

H) −=H=I
−=G=I −=H=I (1−=2

I )

 , ®D =

BG

BH

BI

 ,
where:

BG =

∫ 0+

0−
�G3I

′, BH =

∫ 0+

0−
�H3I

′, BI =

∫ 0+

0−
�I3I

′. (A.4)

It is worth noting, that the set of equations Eq. (A.3) is overdetermined. Thus one can now bring
together Eq. (A.2) and, for example, two first equations in Eq. (A.3) to get the closed set of equations
for unknowns BG , BH and BI:

" · ®D = ®E, (A.5)

where

" =


Y0Y
(2l)
9G

= 9 Y0Y
(2l)
9 H

= 9 Y0Y
(2l)
9 I

= 9

(1−=2
G) −=G=H −=G=I

−=G=H (1−=2
H) −=H=I

 , ®D =

BG

BH

BI

 , ®E =

−%NL

(,I′

0
0

 . (A.6)

If one denotes Δ" the determinant of the matrix ": Δ" = det " , and Δ"
8, 9

the minors of the
matrix " , then the solution of Eq. (A.6) according to the Cramer’s rule yields:

B 9 = (−1) 9 ·
Δ"1, 9

Δ"
·%NL

(,I′ . (A.7)



Appendix A. Generalized boundary conditions for an anisotropic medium 116

I introduce now the jumps of the electric field components across the interface:

Δ�G = �G (I′ = 0+) −�G (I′ = 0−),
Δ�H = �H (I′ = 0+) −�H (I′ = 0−).

If now the contour integral over the contour ! is considered, one finds:

Δ�G ′ =
m

mG′

∫ 0+

0−
®� ®= 3I′ = m

mG′
B 9= 9 , Δ�H′ =

m

mH′

∫ 0+

0−
®� ®= 3I′ = m

mH′
B 9= 9 .

Using Eq. (A.6) and Eq. (A.7) the above equations can be rewritten as:

Δ ®� | | = (−1) 9 ·
= 9Δ

"
1, 9

Δ"
· ®∇| |%NL

(,I′ . (A.8)

From Eq. (A.6) one can directly find:

Δ"1,1 = =G=I; Δ"1,2 = −=H=I; Δ"1,3 = =
2
I ;

Δ" = Y0=I (Y(2l)9G
=G= 9 + Y(2l)9 H

=H= 9 + Y(2l)9 I
=I= 9 ).

Now Eq. (A.8) simplifies to:

Δ ®� | | = −
1

Y0(Y(2l)9G
=G= 9 + Y(2l)9 H

=H= 9 + Y(2l)9 I
=I= 9 )

· ®∇| |%NL
(,I′ . (A.9)

Specifically, if the global coordinate system G, H, I coincides with the crystal axis, one gets:

Δ ®� | | = −
1

Y0(Y(2l)GG =2
G + Y(2l)HH =2

H + Y(2l)II =2
I )
· ®∇| |%NL

(,I′ . (A.10)

Finally, in the case of optically isotropic medium, i.e. Y(2l)GG = Y
(2l)
HH = Y

(2l)
II , one arrives to the first

equation in Eq. (2.2).

It is important to notice here that expression Eq. (A.9) is readily generalized for the case of the in-
terface between two anisotropic media. Indeed, in the derivation above the integration was performed
over the ultrathin surface layer which is fully located inside the anisotropic medium. This reasoning
is quite natural for an interface between an anisotropic medium and vacuum. On the other hand, when
an interface between two adjacent anisotropic media is considered, the choice of the medium where
the surface layer is located is in principle arbitrary. Then the actual jump of the electric field across
the interface would be still given by expression Eq. (A.9) but one has to take into account that the
surface nonlinear tensor must be rescaled accordingly with the choice of the medium. It is also worth
noting here that in the case of two adjacent anisotropic media the simple representation Eq. (2.27) is
not valid and the full third-rank tensor of surface second-order nonlinearity must be taken.

The rescaling of the surface nonlinear tensor depends in general on two issues. Firstly, one has
to fix on which side from the interface the pump field for the calculation of the surface nonlinear
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polarization is evaluated. Specifically, the usual boundary conditions for the fundamental (pump)
wave give the following equalities connecting the field on both sides from the interface:

�
(l)
G (I′ = 0+) = �

(l)
G (I′ = 0−),

�
(l)
H (I′ = 0+) = �

(l)
H (I′ = 0−),

Y
(l),+
9 :

= 9�
(l)
:
(I′ = 0+) = Y

(l),−
9 :

= 9�
(l)
:
(I′ = 0−), (A.11)

where Y(l),+
9 :

and Y(l),−
9 :

stand for the dielectric permittivity tensors of both media at the pump fre-
quency and the last expression in Eq. (A.11) yields:

�
(l)
I (I′ = 0+) =

Y
(l),−
9 I

= 9

Y
(l),+
9 I

= 9

�
(l)
I (I′ = 0−) +

= 9 (Y(l),−9G
− Y(l),+

9G
)

Y
(l),+
9 I

= 9

�
(l)
G (I′ = 0−)

+
= 9 (Y(l),−9 H

− Y(l),+
9 H
)

Y
(l),+
9 I

= 9

�
(l)
H (I′ = 0−). (A.12)

If one wants to use the field on another side from the interface, the surface nonlinear tensor should
be changed respectively according to Eqs. (A.11)-(A.12) so that the final expression for the surface
nonlinear polarization stays the same. Secondly, the sheet of nonlinear polarization can be placed on
any side from the interface. From the above Eq. (A.9) it follows that the components j(2)⊥ 9 : of the
surface nonlinear tensor should be multiplied by the factor:

^ =
Y
(2l),−
9G

=G= 9 + Y(2l),−9 H
=H= 9 + Y(2l),−9 I

=I= 9

Y
(2l),+
9G

=G= 9 + Y(2l),+9 H
=H= 9 + Y(2l),+9 I

=I= 9

,

if one wants to move the polarization sheet from I′ = 0− to I′ = 0+ and vice versa.
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First-order correction terms for the effective
surface nonlinear tensor j(2)

Σ,8 9 :

For TE-polarized incident wave at fundamental frequency combining Eqs. (2.40) and (2.45) and
keeping zeroth- and first-order small terms one finds:

j
(2)
Σ,⊥|| | | =

#∑
<=0

j
(2)
⊥|| | |,<(<+1) ·

Yup

Y<
+
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j
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·

[ 48/′2sub,FW/
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0,FW

(1+'0
TE) (/′sub,FW + /

′
0,FW)2

·
#∑
9=1

:FW
9 ,I
ℎ 9

/′
9 ,FW
−

48/′0,FW

(1+'0
TE) (/′sub,FW + /

′
0,FW)2

·

#∑
9=1
/′9 ,FW:

FW
9 ,I ℎ 9 +28

1−'0
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(1+'0
TE)/′0,FW

·
<∑
9=1
/′9 ,FW:

FW
9 ,I ℎ 9

]
−

8/′′sub ·
#−1∑
<=0

j
(2)
⊥|| | |,<(<+1) ·

YD?
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·
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9=<+1

:SH
9 ,I
ℎ 9

/′′
9

+

8

/′′0 + /
′′
sub
·
#∑
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j
(2)
⊥|| | |,<(<+1) ·

Yup

Y<
·
#∑
<=0

:SH
<,Iℎ<

(
/′′< +

/′′0 /
′′
sub

/′′<

)
. (B.1)

Here it is assumed for simplicity, that all parameters without ”FW” subscript are taken at the second-
harmonic frequency. The first term in Eq. (B.1) represents the zeroth-order effective nonlinear tensor
from Eq. (2.48), while the rest terms give the first-order correction.

For TM-polarized incident wave at the fundamental frequency combining Eqs. (2.40) and (2.47)
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and keeping only zeroth-order and first-order small terms one obtains:
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Surface SHG from a dielectric sphere under
VSH illumination

I assume a dielectric sphere made of a nonlinear material and illuminated by the FW, which represents
a vector spherical harmonic (VSH). The material is assumed to be centrosymmetric, so that the bulk
nonlinearity can be neglected and only surface nonlinearity should be taken into account. I start here
with the case j(2)⊥‖‖ ≠ 0, and all other components of the surface nonlinear susceptibility tensor equal
to zero. Two different vector spherical harmonics "11 and #11 are considered below. Solution for
any other VSH could be found in a similar way.

Incident FW vector spherical harmonic #11 is given as:

#�,11 =

√
3

16c
1
:A

m (A · 91(:A))
mA

48i (8 · ®4i + cos\ · ®4\),

where : is the wavenumber in the outer medium (vacuum or air). Nonrelevant normal component of
the electric field, which is also nonzero, was skipped for clarity. The field inside the sphere is given
by the same function, but with the wavenumber : replaced by the wavenumber :1 inside the sphere
with the permittivity Y:

:1 = :
√
Y.

The amplitude of the incident field is assumed equal to unity, then the field inside the sphere of radius
':

��, = 0�,#�,11 ,

where 0�, is the amplitude factor. Surface nonlinear polarization is given as:

®%#! = j(2)⊥|| | | (�
�,
| | )

2 · ®4A = j(2)⊥|| | | (0
�,#�,11 )

2 · ®4A , (C.1)
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and the jump of the SH electric field at the interface according to Eq. (2.2):

Δ� | | = −∇| |%#!⊥ = −
3j(2)⊥|| | |

16c

( 0�,
:�,1 '

m (A · 91(:1A))
mA

���
A='

)2
· ∇| | (428i · (−1+ cos2 \) =

3j(2)⊥|| | |
16c'

( 0�,
:�,1 '

m (A · 91(:�,1 A))
mA

���
A='

)2
·2sin\ · 428i · (8 · ®4i + cos\ · ®4\).

As the next step, the jump of the electric field has to be expanded into the VSHs. Each term in the
expansion would generate the same VSH at the SH frequency. Since the VSHs form an orthonormal
function system on the sphere surface, the generalized boundary conditions Eq. (2.2) have to be
written separately for each VSH term. In particular, for the considered VSH #11 one can see that the
field at the SH frequency contains only one vector spherical harmonic, namely:

#(�22 =
1
4

√
5
c

1
:(�1 '

m

(
A ·

{
92(:(�1 A)
ℎ2(:(�A)

})
mA

· sin\ · 428i (8 · ®4i + cos\ · ®4\).

Here spherical Bessel function 92(:1A) describes the field inside the sphere and spherical Hankel
function ℎ2(:A) – the field outside the sphere.

If corresponding amplitude coefficients inside and outside (scattered field) the sphere of radius '
are 0(�

8=B834
and 0(�B20C respectively, the boundary conditions yield:
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,

what gives for the sought amplitude 0(�B20C :
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I proceed with the analogous analysis for the incident vector spherical harmonic "11:

"�,
11 =

√
3

16c
91(:1A)48i (8 · ®4\ − cos\ · ®4i).

Given that the amplitude of the incident VSH is unity, the field inside the sphere is:

��, = 0�,"�,
11 ,
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and the expression for the surface nonlinear polarization is analogous to Eq. (C.1):

®%#! = j(2)⊥|| | | (�
�,
| | )

2 · ®4A = j(2)⊥|| | | (0
�,"�,

11 )
2 · ®4A .

The jump of the tangential component of the SH electric field at the interface is now obtained as:

Δ� | | = −∇| |%#!⊥ = −
3j(2)⊥|| | |

16c

(
0�, · 91(:�,1 ')

)2
· ∇| | (428i · (−1+ cos2 \) =

3j(2)⊥|| | |
16c'

(
0�, · 91(:�,1 ')

)2
·2sin\ · 428i · (8 · ®4i + cos\ · ®4\). (C.2)

From Eq. (C.2) one can see that the radiated field at the SH frequency contains again only one vector
spherical harmonic #(�22 .

If corresponding amplitude coefficients inside and outside (scattered field) the sphere of radius '
are again 0(�

8=B834
and 0(�B20C respectively, the boundary conditions yield:
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,

thus the sought amplitude 0(�B20C is obtained:

0(�B20C =
3j(2)⊥|| | |
2'
√
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(
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Now let assume the case j(2)⊥‖‖ = 0, j(2)⊥⊥⊥ ≠ 0. Since VSH "11 possesses zero normal component
of the electric field, illumination with this VSH does not result in any SHG. Therefore one can proceed
in this case only with the illumination by the VSH #11. The normal component of the incident VSH
#11 is given as:

#�,11,A =

√
3

4c
91(:1A)
:�,1 A

48i sin\.

Expression for the surface nonlinear polarization is analogous to Eq. (C.1) and the jump of the SH
electric field at the interface:

Δ� | | = −∇| |%#!⊥ =
3j(2)⊥⊥⊥
4c'

(0�, · 91(:�,1 ')
:�,1 '

)2
·2sin\ · 428i · (8 · ®4i + cos\ · ®4\).
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The boundary conditions in this case give:
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and for the sought amplitude 0(�B20C one finds:

0(�B20C =
5j(2)⊥⊥⊥
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Abbreviations and conventions

Abbreviations

BEM boundary element method
BIC bound states in continuum
BP backward-propagating
CW continuous wave
ED electric dipole

FDTD finite-difference time-domain (method)
FEM finite-element method
FP forward-propagating
FW fundamental wave
MD magnetic dipole
MIR mid-infrared (range)
PhC photonic crystall
PMC phase-matching condition
PML perfectly matched layer

Q quality (factor)
QPM quasi-phase-matching
SFG sum-frequency generation
SH second-harmonic

SHG second-harmonic generation
SHW second-harmonic wave
SSHG surface second-harmonic generation

TE transverse electric
TFGB tightly-focused Gaussian beam

TH third-harmonic
THG third-harmonic generation
TM transverse magnetic

TMM transfer matrix method
UPA undepleted-pump approximation
UV ultraviolet (range)
VIS visible (range)
VSH vector spherical harmonic
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