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Abstract
Entropy is a well-studied concept and the literature contains a vast amount of material
on this concept in the context of actions of countable discrete amenable groups. In
this thesis we extend several statements about entropy and topological pressure to the
context of unimodular amenable groups. This allows us to study a notion of complexity
of aperiodic ordered structures, called patch counting entropy.

One of the main tools in order to study topological and measure theoretical entropy
and topological pressure is the so called Ornstein-Weiss Lemma. This statement can be
considered as a generalization of Fekete’s lemma. In Chapter 3 we provide two proofs of
the statement. The first proof uses that the statement is shown in the discrete context
and assumes the structure of a cut and project scheme in order to provide the tool
for all groups that are relevant in the study of aperiodic order. The second proof is
more technical, based on the Ornstein-Weiss quasi-tiling machinery and provides the
statement in the more general context of all unimodular amenable groups.

In Chapter 4 we present that some classical ideas can be used in order to define
relative topological and measure theoretical entropy for actions of non-discrete groups
and discuss why some other ideas cannot be used. We furthermore discuss several
non-equivalent definitions of entropy in the literature and relate our approach to them.

In Chapter 5 we see that entropy can already be calculated by using only the know-
ledge of how elements of a Delone subset act. We present that this allows to extrapolate
certain results about entropy from the discrete to the general setting. In particular, we
obtain from this method the Rokhlin-Abramov Theorem and Bowen’s formula. How-
ever, we also discuss that this extrapolation causes difficulties at several points. We
show that it is not straightforward to extrapolate statements like the variational prin-
ciple or common sufficient conditions for the upper semi-continuity of the entropy map
and discuss how to resolve some of these problems.

In Chapter 6 we discuss patch counting entropy of Delone sets. We see that this
quantity equals the topological entropy of an associated dynamical system whenever
the acting group is a compactly generated and locally compact Abelian group. We
present examples of Delone sets of p-adic numbers of finite local complexity where this
result and others fail. To construct these Delone sets, we also discuss a geometrical
approach to topological entropy that is inspired by patch counting entropy.

In Chapter 7 we see how to define topological pressure for actions of unimodular
amenable groups. In particular, we present that the Ornstein-Weiss Lemma allows to
define and study topological pressure in this context. We show that the discrete restric-
tion, as mentioned above in the context of entropy, also works for topological pressure
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whenever one appropriately modifies the potential. However, the corresponding extrap-
olation from a uniform lattice does not allow to conclude the variational principle for
non-discrete groups directly. In order to obtain the variational principle for topological
pressure for groups in the context of aperiodic order, we provide a proof of this state-
ment for actions of σ-compact locally compact Abelian groups. In particular, we obtain
the variational principle for the topological entropy of such actions.



Zusammenfassung
Entropie ist ein vielseitig studiertes Konzept und die Literatur enthält eine umfassende
Menge an Resultaten im Kontext von Wirkungen abzählbarer diskreter und mittelbarer
Gruppen. In dieser Arbeit verallgemeinern wir verschiedene Aussagen über Entropie
und über topologischen Druck in den Kontext von Wirkungen unimodularer mittelbarer
Gruppen. Dies erlaubt uns insbesondere einen Begriff von Komplexität aperiodischer
Strukturen, die „Patchzahlentropie” (Patch counting entropy), zu untersuchen.

Eines der Hauptwerkzeuge zur Definition und zum Studium topologischer
Entropie, maßtheoretischer Entropie, sowie des topologischen Drucks ist das Ornstein-
Weiss-Lemma, welches als eine Verallgemeinerung von Feketes Lemma betrachtet
werden kann. In Kapitel 3 stellen wir zwei Beweise für das Ornstein-Weiss-Lemma
bereit. Der erste Beweis nutzt die Struktur von „Cut and project schemes” und die
Tatsache, dass die entsprechende Aussage im diskreten Kontext wohlbekannt und
bewiesen ist. Dieser Beweis liefert die Aussage für alle Gruppen, welche im Studium
aperiodisch geordneter Strukturen relevant sind. Der zweite Beweis ist technischer,
basiert auf der Ornstein-Weiss-quasi-tiling-Maschinerie und liefert die Aussage im all-
gemeineren Kontext von unimodularen mittelbaren Gruppen.

In Kapitel 4 präsentieren wir, dass einige klassische Ideen genutzt werden können um
relative topologische und maßtheoretische Entropie für Wirkungen nicht diskreter Grup-
pen zu definieren und diskutieren warum andere Ideen nicht genutzt werden
können. Wir sehen weiterhin, dass es mehrere nicht äquivalente Definitionen von En-
tropie in der Literatur gibt und verknüpfen diese mit unserem Zugang.

In Kapitel 5 sehen wir, dass die Entropie einer Wirkung bereits berechnet werden
kann, sobald man weiß, wie Elemente einer Delone Teilmenge wirken. Wir diskutieren,
dass dies erlaubt, einige Resultate aus dem diskreten Kontext auch für nicht diskrete
Gruppen zu erhalten. Auf diese Weise erhalten wir das Rokhlin-Abramov-Theorem und
Bowens Formel. Diese Herangehensweise ist allerdings nicht für alle Resultate möglich,
wie wir am Variationsprinzip sowie einer wohlbekannten hinreichenden
Bedingung für die Oberhalbstetigkeit der Entropieabbildung verdeutlichen. Strategien
zur Lösung dieser Probleme werden diskutiert.

In Kapitel 6 wird die Patchzahlentropie von Delone Mengen diskutiert. Wir zeigen,
dass diese der topologischen Entropie entspricht, sobald die wirkende Gruppe eine
kompakt erzeugte und lokalkompakte Abelsche Gruppe ist. Weiterhin präsentieren
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wir Beispiele für Delone Mengen p-adischer Zahlen von endlicher lokaler Komplexität,
für welche dieses und andere Resultate nicht gelten. Um diese Mengen zu konstru-
ieren stellen wir außerdem einen geometrischen Zugang zur topologischen Entropie vor,
welcher von der Patchzahlentropie inspiriert ist.

In Kapitel 7 sehen wir, wie topologischer Druck für die Wirkungen unimodularer
mittelbarer Gruppen definiert werden kann. Wir diskutieren insbesondere, wie das
Ornstein-Weiss-Lemma genutzt werden kann, um den topologischen Druck zu definieren
und zu studieren. Wir zeigen, dass man auch den topologischen Druck mittels be-
stimmter diskreter Teilmengen berechnen kann sobald man das Potential anpasst. Wie
im Falle der topologischen Entropie kann man auch hier nicht einfach das Variation-
sprinzip des Druckes aus dem diskreten Kontext erhalten. Um dieses wichtige Resul-
tat für das Studium aperiodischer Ordnung zur Hand zu haben, werden wir deshalb
einen Beweis des Variationsprinzips für Wirkungen von σ-kompakten lokalkompakten
Abelschen Gruppen geben. Insbesondere erhalten wir damit das Variationsprinzip für
die topologische Entropie von Wirkungen solcher Gruppen.
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1 Introduction
Walking through a gallery filled with pictures of Maurits Cornelis Escher, such as ’Horse-
men’, ’Sun and moon’ or ’Ghosts’ [Esc75], one might wonder about the mathematics
behind these beautiful works. In fact, the artist had a correspondence with several
mathematicians such as Roger Penrose. These mathematicians influenced and in turn
were influenced by his work in their studies [CEPT86, Pen86]. The mathematical struc-
ture behind some of the graphical works of M. C. Escher is called nowadays a tiling.
Roughly speaking, tilings are infinite partitions of the plane (or other Euclidean spaces)
with a finite number of shapes that appear. Most often these shapes are polyhedra,
but as richly illustrated by M. C. Escher, these shapes can take very interesting and
well-known other forms, like the form of the silhouette of a horseman or fish.

Mathematically, one often studies the strongly related concept of a Delone set instead
of the tiling itself [BG13]. Delone sets ω are subsets of Rd such that two points in ω
cannot be arbitrarily close and that there are not arbitrarily large gaps. To be more
precise about the notion of a Delone set, note that these sets are characterized by the
existence of an open neighbourhood U of 0 and a compact subset K of Rd such that the
family of translates {U + g; g ∈ Rd} is a disjoint family and that for any g ∈ Rd there
exist k ∈ K and v ∈ ω such that g = k + v.

Beyond the interpretation in the context of tilings there is a physical interpretation
of Delone sets as sets of atoms, which underlies the research about crystals and qua-
sicrystals. These investigations have received a lot of attention since the discovery of
aperiodic ordered structures as real solids by Dan Shechtman [SBGC84] and the related
Nobel prize.

As the Euclidean structure of Rd seems to be important only for some aspects of the
study of aperiodic order, one often encounters that Delone sets are studied in the context
of locally compact Abelian groups (LCA groups). This leads to a natural generalization
of the shift spaces known for sequences, as discussed for example in [BL04]. These
associated Delone dynamical systems yield a source of actions of more exotic groups,
like the additive group of the p-adic numbers, and they are thus also of interest from
the dynamical perspective.

In order to study the complexity of Delone sets, one often considers the notion of
patch counting entropy [Lag99, LP03, BLR07, HR15, BH15]1. An A-patch of a Delone
set ω is a set of the form (ω − g) ∩ A, where A is a compact subset of G and g ∈ ω.
The set of all A-patches of a Delone set ω is denoted by Patω(A). Clearly, an arbitrary

1 Note that patch counting entropy is called configurational entropy in [Lag99, LP03].

1



1 Introduction

Delone set can have infinitely many A-patches for a given compact subset A. It is thus
natural to restrict to Delone sets for which Patω(A) is finite for all compact subsets
A ⊆ G. Such Delone sets are said to be of finite local complexity or FLC for short.

Patch counting entropy of FLC Delone sets is studied for σ-compact and metrizable
LCA groups, for example in [HR15]. In order to define this concept, one needs the
notion of a Van Hove sequence2. This notion will be defined below, but for the moment
it is sufficient to know that Van Hove sequences are sequences of compact subsets of G
that can be used for averaging similar to the sequence of sets ({0, · · · , n})n∈N in Z. The
most prominent examples of Van Hove sequences in Rd are the sequence (Bn(0))n∈N of
closed centred balls and the sequence (Cn)n∈N of closed centred cubes. Considering a
Van Hove sequence A = (An)n∈N one can compute the patch counting entropy along A
as

lim sup
n→∞

log |Patω(An)|
θ(An) , (1.1)

where here (and below) θ denotes the Haar measure of G. In [LP03], it was claimed
(for FLC Delone sets in Rd) that one can use a subadditivity argument to show that
the limit superior in this formula is always a limit, whenever we consider the Van Hove
sequence of closed centred balls. Aside from asking for a proof of this statement, it is
thus natural to ask the following questions.

Question 1.1. For which Van Hove sequences is the limit superior in (1.1) a limit?

Question 1.2. Is the formula for the patch counting entropy (1.1) independent of the
choice of the Van Hove sequence?

We will see in Example 6.30 that Question 1.2 can easily be answered. We will see
that (1.1) depends on the choice of the Van Hove sequence already for FLC Delone
sets in R. Note that this observation also gives a partial answer to Question 1.1, as
the dependence of (1.1) implies that this limit cannot exist for all Van Hove sequences.
The problem seems to be that the Van Hove sequences need to be ’centred’ in order to
guarantee the existence of the limit. To make this precise we will introduce the notion
of being ’compactly connected to 0’. We will give the precise definition in Chapter 6, but
for the moment it is sufficient to know that any Van Hove sequence in Rd that consists
of connected sets containing 0 is compactly connected to 0. In particular, we obtain
the sequence of closed centred balls and the sequence of closed centred cubes in Rd as
examples. The notion of compact connectedness to 0 can also be applied in the context
of non-connected groups such as Zd and allows to give the following partial answer to
the Questions 1.1 and 1.2 in Theorem 6.4.

2 In this introduction we assume all topological groups to be metrizable and σ-compact. This allows
to avoid the concept of nets. Nevertheless, we will henceforth avoid these countability assumptions
and work with nets. See Chapter 2 for the definition of a net and note that every sequence is a net.
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Theorem. Whenever ω is a FLC Delone set in a compactly generated LCA group (for
example Rd or Zd), then the limit in (1.1) exists and is independent of the choice of a
Van Hove sequence that is compactly connected to 0.

We will discuss the strategy to prove the theorem in a second. For the moment note
that

A 7→ log |Patω(A)| (1.2)

is subadditive3 for all LCA groups and not only for Rd. Unfortunately the sequence of
closed and centred balls is not always a Van Hove sequence for all LCA groups4, but it
still seems natural to ask the following.

Question 1.3. Does the limit in (1.1) exist whenever we consider the sequence of closed
and centred balls (instead of (An)n∈N) and whenever this sequence is a Van Hove se-
quence?

We will see in Theorem 6.51 that this is not the case. Considering FLC Delone
sets in the metrizable and σ-compact LCA group Q2 of 2-adic numbers we will see the
following.

Theorem. There exists a FLC Delone set ω in Q2 such that

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ
(
Bn(0)

)
does not converge as n tends to ∞.

Let us next discuss the strategies to achieve these results. In order to fix ideas,
consider the case of Delone sets in Z. A brief look into the literature, for example
[BS02], yields that Question 1.1 is indeed answered by a subadditivity argument which
can be formalized as Fekete’s lemma5. In Chapter 3 we will thus discuss various versions
of this technique in the context of aperiodic order. We will see that the versions from
[Oll85, PS16] are not suitable for our purposes. The somehow most suitable version
is the Ornstein-Weiss Lemma. This technique is based on the quasi-tiling technique
developed in [OW87] and a sketch of a proof is presented in [Gro99]. In the context
of discrete amenable groups, there are various publications, like for example [WZ92,
LW00, Kri07, Buf11, CSCK14], presenting a proof based on the ideas from [Gro99].
However, beyond this context there seems no work on the statement in the context of

3 We denote by K(G) the set of all compact subsets of G. A map f : K(G)→ R is called subadditive,
whenever for all A,B ∈ K(G) there holds f(A ∪B) ≤ f(A) + f(B).

4 Consider for example the closed ball of radius 1 in any infinite countable abelian group equipped
with the discrete metric d with d(g, g′) = 1 for g 6= g′.

5 See Chapter 3 for the statement of Fekete’s lemma.
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unimodular amenable groups except for the aforementioned sketch of a proof in [Gro99].
In Chapter 3 we thus give two proofs for the Ornstein-Weiss Lemma for all groups that
appear in the study of aperiodic order. The first proof uses the discrete result and the
structure of a cut and project scheme6. The second proof is more technical, based on a
slightly modified version of the Ornstein-Weiss quasi-tiling results as well as the ideas
of [Gro99], and completely self-contained.

Theorem (Ornstein-Weiss Lemma). Let f : K(G)→ R be a monotone, right invariant
and subadditive mapping.7 Then whenever (An)n∈N is a Van Hove sequence in G, then
the limit

lim
n→∞

f(An)
θ(An)

exists, is finite and does not depend on the choice of the Van Hove sequence.

As remarked above, the patch counting map (1.2) is subadditive and it is furthermore
straightforward to see that this map is monotone. Nevertheless, we will see in Exam-
ple 6.1 that this function is not right invariant. A straightforward application of the
Ornstein-Weiss Lemma to our problem is thus not possible. However, in [BLR07] it is
discussed that the topological entropy and the patch counting entropy of a FLC Delone
set (in Rd) are equal. To be more precise, one can associate an action with a Delone set
ω (in an LCA group) as follows. One first considers the set of all translates of ω and
then takes the closure Xω of this set with respect to a suitable topology. Xω is then a
compact Hausdorff space that consists of Delone sets. Acting by translation on Xω we
obtain the associated G-action. For details see Chapter 2.

As well-known in the discrete context and for example presented in [CSCK14], the
Ornstein-Weiss Lemma can be applied in order to define topological entropy indepen-
dently of a particular Van Hove sequence8. We will thus present in Chapter 4 that one
can use the Ornstein-Weiss Lemma in order to define topological entropy also for actions
of unimodular amenable groups. This detailed treatment of the matter is motivated by
the lack of a detailed treatment of entropy theory for actions of unimodular amenable
groups that are not necessarily discrete in the literature. Based on our current knowl-
edge the only references in this direction are [Fel80, OW87, TZ91, Sch15, Sin16] and
unfortunately in none of these the required techniques are discussed. We thus present in
Chapter 4 the straightforward generalizations of some well-known techniques of entropy
theory and furthermore discuss why other parts of the theory cannot easily be gener-
alized. In particular, we discuss several non-equivalent notions of topological entropy.
Having the right concept9 of topological entropy at hand, the following question has to

6 For a definition see Chapter 2.
7 The function f is called monotone, whenever f(A) ≤ f(B) for A,B ∈ K(G) with A ⊆ B. f is called
right invariant, whenever f(A) = f({ag; a ∈ A}) for all A ∈ K(G) and all g ∈ G.

8 In the discrete context the concepts of Følner and Van Hove sequences are equivalent.
9 Note that the differences in the approaches to topological entropy that we will discuss in Chapter 4
already appear for actions of Rd, where Question 1.4 is answered affirmatively by [BLR07].
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be raised.

Question 1.4. Does the patch counting entropy (along a specified Van Hove sequence,
for example a Van Hove sequence of closed centred balls) of a FLC Delone set always
equal the topological entropy of the corresponding action?

This question is of particular interest in the following context. In [BLR07] the state-
ment is shown and used (in the context of FLC Delone sets in Rd) in order to show
that pure point diffraction implies zero patch counting entropy. As recent interest in
diffraction in LCA groups beyond Rd [BHP18] and other techniques in this direction
are also generalizable [FGL18], a positive answer to Question 1.4 would shed light on
the general situation. In Corollary 6.22 we will present the following.

Theorem. Whenever ω is a FLC Delone set in a (non-compact) compactly generated
LCA group (for example Rd or Zd) and whenever A is a Van Hove sequence that is
compactly connected to 0, then the patch counting entropy of ω (along A) equals the
topological entropy of the associated dynamical system.

As already considered, a natural choice for an averaging sequence in a metrizable
LCA group is the sequence of closed and centred balls whenever this sequence is a Van
Hove sequence. One would thus expect that patch counting entropy along such a Van
Hove sequence always yields the associated topological entropy. It is thus surprising
that one can construct the following FLC Delone sets of 2-adic numbers. For reference
see Theorem 6.47.

Theorem. There exists a FLC Delone set ω in Q2 such that the topological entropy of
the dynamical system associated with ω is 0, but for which the following limit exists and
satisfies

lim
n→∞

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ
(
Bn(0)

) = log(2).

As the study of Delone sets uses certain parts of entropy theory, like the variational
principle [BLR07] or Bowens formula [JLO16], it is natural to ask for proofs of these
statements in the context of actions of LCA groups and in particular for actions of Rd.
Unfortunately the literature seems to contain no such proofs, which seems to be justified
by the following observation. Whenever one wants to consider an action π of Rd, then
one can also consider the restricted action π|Zd of Zd and obtains the topological entropy
and the measure theoretical entropy of π as the topological and measure theoretical
entropy of π|Zd respectively. A similar statement can also be given more generally. To
formulate this, observe that Zd is a Delone subgroup in Rd. Delone subgroups are also
called uniform lattices, which allows us to formulate the result as follows. For reference
see Theorem 5.21 and Lemma 3.6.
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Theorem. If Λ is a uniform lattice in a unimodular amenable group G, then

E(π) = dens(Λ) E (π|Λ) .

Furthermore, any G-invariant Borel probability measure µ on X is also Λ-invariant and
we obtain

Eµ(π) = dens(Λ) Eµ (π|Λ) .

Here dens(Λ) := limn→∞ |Λ ∩ An|/θ(An) denotes the uniform density of Λ, which can
be computed independently from the choice of a Van Hove sequence (An)n∈N.

The theory of entropy is well-developed in the context of discrete amenable groups.
Statements like the Rokhlin-Abramov Theorem, the Kolmogorov-Sinai generator theo-
rem, Bowens formula, the variational principle, and sufficient conditions for the upper
semi-continuity10 of the entropy map µ 7→ Eµ(π) are given in the literature. We could
thus hope that one can easily obtain all these results for LCA groups by restricting to
a uniform lattice [TZ91]11. Nevertheless, one encounters problems as we will discuss
in more detail in Chapter 5. As already remarked by Y. Meyer in [Mey72] there are
(metrizable and σ-compact) LCA groups, like the additive group Qp of p-adic numbers
that contain no uniform lattices. We will discuss strategies to partially solve this prob-
lem in a second. Compactly generated LCA groups like Rd, however, contain uniform
lattices. We will discuss in Chapter 5 that the Bowen formula or the Rokhlin-Abramov
Theorem can be obtained with the discussed strategy for such groups. Nevertheless,
another problem arises whenever one wants to know whether the variational principle
holds for actions of Rd or whenever one asks for conditions to ensure the upper semi-
continuity of the entropy map. Before we discuss strategies to solve these problems, let
us shed some light on the situation.

The variational principle relates the topological entropy and the measure theoretical
entropy of an action. Considering the supremum over all invariant Borel probability
measures µ, we can formulate the variational principle as

E(π) = sup
µ

Eµ(π).

The problem is that, whenever one restricts the action to a uniform lattice Λ, the set
of invariant Borel probability measures can enlarge. Considering an LCA group G and
a uniform lattice Λ in G, we thus only obtain

E(π) = E(π|Λ) = sup
ν

Eν(π|Λ) ≥ sup
µ

Eµ(π|Λ) = sup
µ

Eµ(π),

10 Note that we equip the set of all invariant Borel probability measures with the weak-* topology
induced by the Riesz-Markov-Kakutani representation theorem.

11 In [TZ91] it was suggested that the variational principle can be obtained by this technique for actions
of Rd.
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where the suprema are taken over all Λ- and G-invariant Borel probability measures ν
and µ respectively and it remains open how to obtain the second half of the variational
principle for actions of arbitrary unimodular amenable groups.

A second problem appears whenever one wants to formulate sufficient conditions for
the upper semi-continuity of the entropy map. This property is important in the study of
equilibrium states and equivalent to the converse variational principle for the topological
pressure, as we will see in Chapter 7. It is thus natural to also ask for such sufficient
conditions for actions of Rd. As we will discuss in more detail in Chapter 5, one obtains
for actions of discrete amenable groups from the Kolmogorov-Sinai generator theorem
that for the upper semi-continuity in a measure µ of the entropy map it is sufficient
to find a generating partition that has almost no boundary with respect to µ. Here
and below we call a (Borel measurable) finite partition α of the phase space generating,
whenever the Borel σ-algebra is the σ-algebra generated by all intersections of the form⋂
g∈F{ag; a ∈ Ag} for finite subsets F of G and Ag ∈ α. It is thus natural to ask the

following.

Question 1.5. Let µ be an invariant Borel probability measure. Does the existence of a
finite generating partition α with almost no boundary with respect to µ imply the upper
semi-continuity in µ for the entropy map of an action of an LCA group?

In Proposition 5.52 we present, that all Delone sets in Rd allow the construction of a
finite generating partition that has almost no boundary with respect to a given invariant
Borel probability measure µ on the phase space Xω of the associated dynamical system.
Unfortunately we will see the following in Example 6.37, which answers Question 1.5
negatively.

Example. There exists a Delone set in R such that the entropy map of the associated
dynamical system is not upper semi-continuous.

It remains open to give a sufficient condition on the upper semi-continuity for actions
of Rd and in particular whether FLC Delone sets in Rd always have an upper semi-
continuous entropy map. Unfortunately these questions will not be solved in this thesis.

Let us now return to the question of how to treat actions of groups that contain no
uniform lattice. In fact for non-discrete groups Van Hove sequences never consist of
finite sets and some important approaches to entropy are not at hand. In the non-
discrete setting one needs to consider the infinite refinement of a finite measurable
partition and cannot expect to obtain a finite partition. As various techniques for
entropy depend on the finiteness of Van Hove sets, one needs to find an analogue. For
groups that contain uniform lattices the idea is to compute the entropy of the action
restricted to the uniform lattice, as presented above. Now recall that uniform lattices
are precisely the Delone subgroups. We will see in Chapter 5 that the group structure
is not necessary. In fact we will see in Theorem 5.14 and Theorem 5.5 that one can
compute entropy even if one only has the knowledge how a Delone subset of the acting
group acts. With this observation we will see that one can replace the Van Hove sets
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by the finite intersections of a Van Hove set with a Delone set. This allows us to use
various approaches to entropy that depend on the finiteness of Van Hove sets, like the
classical approaches from [Kol58, Sin59, AKM65]. Having these approaches to measure
theoretical entropy at hand, we will then be able to show the following half of the
variational principle for the topological pressure in full generality.

Theorem (Goodwyn’s theorem). Whenever π is an action of a unimodular amenable
group G and whenever µ is an invariant Borel probability measure on the phase space
of π, then there holds Eµ(π) ≤ E(π). Furthermore, for any f ∈ C(X) there holds
Eµ(π) + µ(f) ≤ pf (π), where pf (π) denotes the topological pressure of the potential f
with respect to π.

Unfortunately, it remains open how to show the variational principle for actions of
general unimodular amenable groups with the methods developed. However, we present
a proof of the variational principle for all groups that occur in the study of aperiodic
order.

Theorem. Whenever π is an action of a σ-compact LCA group and whenever f ∈
C(X), then there holds

pf (π) = sup
µ

Eµ(π) + µ(f),

where we consider the supremum over all invariant Borel probability measures µ. In
particular, there holds

E(π) = sup
µ

Eµ(π).

Both proofs are presented in Chapter 7. It remains open whether the variational
principle holds for all actions of all unimodular amenable groups.

We would like to mention that the material of this thesis was published so far only in
parts. The less general proof of the Ornstein-Weiss Lemma involving cut and project
schemes appeared in [Hau20c]. [Hau20c] also contains the parts of the content of Sections
4.1 and 4.2 about topological entropy as well as most of the results about restriction
to Delone subsets of the acting group for topological entropy of Chapter 5. The article
was published in the Journal of Dynamics and Differential Equations. Furthermore,
[Hau20a] contains the results of the Sections 6.1, 6.2 and partly of Section 6.3 about
the patch counting entropy are contained . [Hau20a] has been accepted for publication
in Mathematische Nachrichten and will be published soon. The results about FLC
Delone sets of p-adic numbers of Section 6.4 are contained in the preprint [Hau20b].
The general proof of the Ornstein-Weiss Lemma, the original results about measure
theoretical entropy and topological pressure from Chapters 4 and 7 and in particular
the considerations about the variational principle in Section 7.4 and about generating
partitions of Section 5.3 have not been published yet. The unpublished results seem
to provide material for at least one further publication. We would furthermore like to
mention that the content of the joint work of the author with his supervisor [HJ19] was
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not included in this thesis as recommended by the supervisor and as it seemed slightly
off-topic.
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2 Preliminaries
In this chapter we introduce notation and background that we will need in the following
and present some proofs, whenever the statements seem to appear nowhere in the lit-
erature. Note that Lemma 2.6, Proposition 2.26 and Proposition 2.45 are original and
key results to later theorems. These results are presented in this chapter as they seem
to fit best here. This chapter contains furthermore a detailed discussion of the concepts
of ergodic, Følner and Van Hove nets continuing the discussion by [Tem92, PS16] and
presents some results concerning such nets that seem to be new.

We start by introducing some set theoretic notions and denote by N the set of all
positive integers without 0 and by N0 the set of positive integers with 0. We furthermore
write |M | for the cardinality of a set M . We abbreviate by P(M) the power set, i.e.
the set of all subsets and by F(M) the set of all finite subsets of M respectively. We
furthermore denote by χM the characteristic function of M . For a map f : A→ B and
M ⊆ A we write f |M for the restriction f |M : M → B : a 7→ f(a).

2.1 Topological spaces

2.1.1 Basic notions
Let X be a topological space. It is called locally compact, whenever each point has a
compact neighbourhood. It is called metrizable, whenever there exists a metric that
induces the topology of X. We denote by A(X) the set of all closed subsets of X. For
the set of all compact subsets we furthermore write K(X). We denote by D(X) the set
if all discrete subsets. For a subset A ⊆ G we denote A for its closure. The interior
will be denoted by int(A). We write ∂A for the topological boundary and Ac for the
complement (w.r.t. X) of A. A subset M ⊆ X is called precompact, whenever M is
compact. For further reference on topological spaces we recommend [Kel55].

We denote by C(X) the Banach space of all real valued continuous functions on X
equipped with the supremum norm. We order C(X) with the pointwise order, i.e. f ≤ g,
if and only if f(x) ≤ g(x) for all x ∈ X. We denote the constant 0 function also by 0
and call f ∈ C(X) positive, whenever f ≥ 0. Let furthermore C(X)∗ be the space of
all linear bounded functionals on C(X) equipped with the weak-* topology.

For M ⊆ X a family U of subsets of X is called a cover of M and said to cover M , if⋃
U∈U U ⊇ M . A family of subsets of X consisting of open sets is called open. A cover

of X consisting of disjoint Borel measurable sets is called a partition of X.
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2 Preliminaries

2.1.2 Nets and convergence
A partially ordered set (I,≥) is said to be directed, if I is not empty and if every finite
subset of I has an upper bound. A map f from a directed set I to a set X is called
a net in X. We also write xi for f(i) and (xi)i∈I for f . Another net (yj)j∈J is called
a subnet of (xi)i∈I , whenever there exists a map φ : J → I, such that yj = xφ(j) for all
j ∈ J and such that for each i ∈ I there exists j ∈ J such that φ(j′) ≥ i for all j′ ≥ j.
In this case we also write

(
xφ(j)

)
j∈J

for the subnet.
A net (xi)i∈I in a topological space X is said to converge to x ∈ X, if for every open

neighbourhood U of x, there exists j ∈ I such that xi ∈ U for all i ≥ j. In this case we
also write limi∈I xi = x. A cluster point of a net (xi)i∈I in X is a convergence point of
a subnet. It can be shown that (xi)i∈I converges to x ∈ X, if and only if every subnet
converges to x.

For a net (xi)i∈I in R ∪ {−∞,∞}, we define lim supi∈I xi := infi∈I supj≥i xj and
similarly lim infi∈I xi. Then, if finite, lim supi∈I xi is the maximum of all cluster points,
i.e. there exists a subnet of (xi)i∈I that converges to lim supi∈I xi. Note that (xi)i∈I
converges to x ∈ R∪{−∞,∞}, if and only if there holds lim supi∈I xi = x = lim infi∈I xi.
For more details on these notions see [DS88] and [Kel55].

2.1.3 Upper semi-continuous functions
Let X be a topological space, x ∈ X and consider a function f : X → R. The function f
is called upper semi-continuous in x, whenever for all ε > 0 there exists a neighbourhood
U of x such that for all y ∈ U there holds f(y) ≤ f(x) + ε and easily obtain that f is
upper semi continuous in x if and only if f(x) = lim supy→x f(y) := infU supy∈U f(y),
where the infimum is taken over all neighbourhoods U of x. The function f is called
upper semi-continuous (u.s.c.), whenever it is upper semi-continuous in all x ∈ X, which
is equivalent to [f ≥ t] := {x ∈ X; f(x) ≥ t} being closed for all t ∈ R.

Note that a upper semi-continuous map is bounded on a compact set and furthermore
attains a maximum. The point wise infimum of functions that are upper semi-continuous
in a point x ∈ X is upper semi-continuous in x (whenever this infimum is a real valued
function). For reference and further details on upper semi-continuous functions we
recommend [Dow11, Appendix A.1.4].

2.2 Compact Hausdorff spaces
In this section let X be a compact Hausdorff space.

2.2.1 The uniformity of a compact Hausdorff space
Denote by UX the uniformity (of X), i.e. the set of all neighbourhoods η ⊆ X×X of the
diagonal ∆X := {(x, x); x ∈ X}. Note that one can define general ”uniform spaces”,
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but as we are only interested in compact Hausdorff spaces, this definition works for us.
For details and the general definition we recommend [Kel55]. Note that we obtain our
definition to be a restriction of the general definition from [Kel55, Theorem 6.22] and
[Mun00, Theorem 32.3].

We call the elements of UX entourages and denote η−1 := {(y, x); (x, y) ∈ η} and
ηκ := {(x, z); ∃y ∈ X : (x, y) ∈ η and (y, z) ∈ κ} for entourages η, κ ∈ UX . An
entourage η is called symmetric, whenever η = η−1. It is furthermore called open,
whenever it is open with respect to the product topology of X × X and one similarly
defines the notion of a closed entourage. From [Kel55] we obtain that every η ∈ UX

contains a κ ∈ UX such that κκ ⊆ η.

2.2.2 Bases of the uniformity
A subfamily BX ⊆ UX is called a base of UX , if every η ∈ UX contains a member of BX .

Example 2.1. The set of all symmetric and open entourages is a base of UX . Another
base is the set of all symmetric and closed entourages. For reference see [Kel55, Theorem
6.6] and [Kel55, Theorem 6.8].

Example 2.2. When d is a metric that is compatible with the topology of X, then
{[d < ε]; ε > 0} and {[d ≤ ε]; ε > 0} are bases of UX , where we define [d < ε] :=
{(x, y) ∈ X2; d(x, y) < ε} and similarly [d ≤ ε].

Example 2.3. The family {〈U〉; U finite open cover of X} is a base of UX , where we
denote 〈U〉 := ⋃

U∈U U
2.

Example 2.4. Let P be the set of all continuous pseudometrics on X, i.e. the set
of all continuous maps d : X × X → [0,∞) that satisfy d(x, z) ≤ d(x, y) + d(y, z)
and d(x, y) = d(y, x) for all x, y, z ∈ X. Then the family that consists of all finite
intersections ⋂Nn=1[dn < εn] with dn ∈ P and εn > 0 is a base of UX . Here we define
[d < ε] similarly as above. For reference see [Kel55, Theorem 6.14] and [Kel55, Theorem
6.29].

2.2.3 Some geometric definitions
For x, y ∈ X we denote [x]η := {y′ ∈ X; (x, y′) ∈ η and η[y] := {x′ ∈ X; (x′, y) ∈ η}. If
η is symmetric we call Bη(x) := η[x] the ball with radius η and centre x. From [Kel55,
Theorem 6.5] we obtain that for any open subset U ⊆ X and any x ∈ X there exists
an η ∈ UX such that Bη(x) ⊆ U . To obtain some further geometric intuition we say
that x is η-close to y, whenever (x, y) ∈ η and think of two elements to be ”very close”,
whenever the pair is η-close for ”many” entourages η. Note that if x is η-close to y and
y is κ-close to z, then x is ηκ-close to z.

Whenever d is a continuous pseudometric on X we denote by Bd
ε (x) := B[d<ε](x) =

{y ∈ X; d(x, y) < ε} the open ball of radius ε and centre x, where ε > 0 and x ∈ X and
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2 Preliminaries

define similarly the closed ball Bd

ε (x). We omit the d in these definitions whenever the
metric is understood implicitely.

2.2.4 Uniform continuity
If f : X → Y is a continuous mapping between compact Hausdorff spaces X and Y ,
then f is uniformly continuous, i.e. for all entourages η ∈ UY there holds {(x, x′) ∈
X2; (f(x), f(x′)) ∈ η} ∈ UY . For reference see [Kel55, Theorem 6.31].

2.2.5 Lebesgue entourages
If U is an open cover of a compact Hausdorff space, then we call a symmetric η ∈ UX a
Lebesgue entourage of U , whenever for any x ∈ X there is U ∈ U such that Bη(x) ⊆ U .
As we do not know of any reference for this concept we include the short proof of the
existence of Lebesgue entourages for the convenience of the reader.

Lemma 2.5. For every open cover U of a compact Hausdorff space X there exists a
Lebesgue entourage.

Proof. For each x ∈ X choose a symmetric and open entourage ηx ∈ UX such that
ηxηx[x] ⊆ U for some U ∈ U . As {ηx[x]; x ∈ X} is an open cover of X there exists a
finite F ⊆ X such that {ηx[x]; x ∈ F} covers X. Setting η := ⋂

x∈F ηx one easily shows
that η is a Lebesgue entourage for U .

2.2.6 Borel measures on X

By BX we denote the Borel σ-algebra of the compact Hausdorff space X. Furthermore,
we denote the set of all regular Borel probability measures by M(X). By the Riesz-
Markov theorem we can identify M(X) with the set of all positive (and continuous)
functionals on C(X) that map the unit (X → R; x 7→ 1) to 1. We equip M(X)
with the restricted weak-* topology and obtain a compact topological space from the
Banach-Alaoglu theorem. For further reference see [EFHN15, Theorem E.11].

For a Borel measure µ on X and a continuous map p : X → Y we define p∗µ(A) :=
µ(p−1(A)) for all Borel sets A ⊆ X. Note that p∗µ is a Borel measure on Y . We call
p∗µ the push forward of µ. We furthermore define the support of a Borel measure µ on
a Hausdorff space as

supp(µ) := {x ∈ X; µ(U) > 0 for any open neighbourhood U of x}.
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2.2.7 On neighbourhoods with boundary of measure 0
It is well-known that from Froda’s theorem1 it follows that whenever X is metrizable
and µ is a Borel measure on X we can find for all x ∈ X and all open neighbourhoods U
of x some radius r > 0 such that the open ball Br(x) is contained in U and has almost
no boundary with respect to µ. In fact we next show that one can use Froda’s theorem
to obtain a similar statement for general compact Hausdorff spaces.

Lemma 2.6. Let µ be a finite Borel measure of a compact Hausdorff space X and K ⊆
X be compact. Then for any neighbourhood U of K there exists a compact neighbourhood
M of K that is contained in U and satisfies µ(∂M) = 0.

Proof. We first show the lemma in the case where K = {x} is a singleton. Denote by
P the set of all continuous pseudometrics d on X and recall from Example 2.4 that
the family BP that consists of all finite intersections ⋂Nn=1[dn < εn] with dn ∈ P and
εn > 0 is a base of UX . Thus, for x ∈ X and a neighbourhood U of x there are
continuous pseudometrics d1, · · · , dN on X and ε > 0 such that η := ⋂N

n=1[dn < ε]
satisfies Bη(x) ⊆ U .

For n ∈ {1, · · · , N} the pseudometric dn is continuous and we obtain that the closed
ball Bdn

r (x) is indeed a closed set and in particular compact. Now consider the map

(0, ε) 3 r 7→ µ
(
B
dn
r (x)

)
.

From Froda’s theorem we obtain that this map has at most countably many disconti-
nuities and thus there is a rn ∈ (0, ε) such that

sup
s∈(0,rn)

µ
(
B
dn
s (x)

)
= µ

(
B
dn
rn (x)

)
.

We know that Bdn
s (x) ⊆ Bdn

rn (x) for all s ∈ (0, rn) and in particular that

µ
(
Bdn
rn (x)

)
≥ sup

s∈(0,rn)
µ
(
B
dn
s (x)

)
= µ

(
B
dn
rn (x)

)
,

which shows
0 ≤ µ

(
∂B

dn
rn (x)

)
≤ µ

(
B
dn
rn (x)

)
− µ

(
Bdn
rn (x)

)
≤ 0.

Thus, also M := ⋂N
n=1 B

dn
rn (x) has almost no boundary with respect to µ. As rn < ε we

furthermore see that there holds M ⊆ ⋂N
n=1 B

dn
ε (x) ⊆ U . From ⋂N

n=1[dn < rn] ∈ BP we
obtain furthermore that M is a compact neighbourhood of x. This shows the statement
whenever K is a singleton.

1 Froda’s theorem can be stated as follows. Whenever f : I → R is a monotone map on an interval I,
then f has at most countably many discontinuities [Rud76, Theorem 4.30].
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For general K and x ∈ K let Kx be a compact neighbourhood of x with µ(∂Kx) = 0
and Kx ⊆ U . As K is compact there exists a finite subset F ⊆ K such that K ⊆M :=⋃
x∈F Kx ⊆ U holds. Clearly, M is compact and µ(∂M) = 0.

2.3 Topological groups

2.3.1 Basic notions
Consider a group G. We write eG for the neutral element in G. For subsets A,B ⊆ G
the Minkowski product is defined as AB := {ab; (a, b) ∈ A×B}. For A ⊆ G and g ∈ G
we denote Ag := A{g}, gA := {g}A, Ac := G \ A and A−1 := {a−1; a ∈ A}. We call
A ⊆ G symmetric, if A = A−1. In order to omit brackets, we will use the convention,
that the inverse and the complement are stronger binding than the Minkowski product,
which is stronger binding than the remaining set theoretic operations. Note that the
complement and the inverse commute, i.e. (Ac)−1 = (A−1)c.

A topological group is a group G equipped with a Hausdorff topology, such that the
multiplication · : G × G → G and the inverse function (·)−1 : G → G are continuous.
With our definition every topological group is regular, as shown in [HR79, Theorem
4.8]. An isomorphism of topological groups is a homeomorphism that is a group homo-
morphism as well. We denote N (G) for the set of all open neighbourhoods of eG.

A topological group is called σ-compact, whenever G can be written as the countable
union of compact sets. A topological group is called compactly generated, whenever
there exists a compact subset K ⊆ G, such that G = ⋃

n∈NK
n, where we abbreviate

K1 := K and Kn+1 := KKn.

2.3.2 Locally compact Abelian groups
We abbreviate the term locally compact abelian group by LCA group and usually denote
the operation of an LCA groups G by +, the inverse of g ∈ G by −g and the neutral
element by 0. Therefore we write A+B for the Minkowski ”product” of subsets A,B ⊆ G
and similar notation. From [DE14, Theorem 4.2.2] we cite the following structural result.

Proposition 2.7. For every compactly generated LCA group G there are a, b ∈ N0 and
a compact group H, such that G is isomorphic as a topological group to Ra × Zb ×H.

For further details and results on LCA groups we recommend [DE14].

2.3.3 Haar measure and unimodular groups
If G is a locally compact group, a left Haar measure on G is a non-zero regular Borel
measure θ on G, which satisfies θ(gA) = θ(A) for all g ∈ G and all Borel sets A ⊆ G.
Similarly one defines a right Haar measure. A measure that is a left Haar measure and

16



2.3 Topological groups

also a right Haar measure will be called a Haar measure. A topological group is called
unimodular , whenever it admits a Haar measure. This terminology will be suitable for
us, as most of the groups we deal with will be unimodular. A Borel measurable subset
M ⊆ G will be called regular , whenever θ(∂A) = 0.

For a Haar measure θ there holds θ(U) > 0 for all non-empty open subsets U ⊆ G
and for subsets A ⊆ G there furthermore holds θ(A) < ∞, whenever A is precompact.
A Haar measure is unique up to scaling, i.e. if θ and ν are Haar measures on G, then
there is c > 0 such that θ(A) = cν(A) for all Borel measurable sets A ⊆ G. If nothing
else is mentioned, we denote a Haar measure of a topological group G by θ. All LCA
groups are unimodular. If G is discrete, then the cardinality | · | is a Haar measure and
we equip G with this choice of a Haar measure. For further reference see [Fol99].

Note that there holds θ(A) = θ(A−1) for all Borel measurable subsets A of a unimod-
ular group G. Indeed we obtain that A 7→ θ′(A) := θ(A−1) is also a Haar measure and
as θ(K) = θ′(K) holds for any compact and symmetric K we obtain that there holds
θ = θ′.

2.3.4 The p-adic numbers
We next introduce the structure of the p-adic numbers, which is actually much richer
than the structure of a topological group and should be better discussed in a section
called ”topological fields”. Nevertheless, the additive group of this structure will often
suit us as an interesting example of a metrizable and σ-compact LCA group and we
thus introduce the p-adic numbers in this section.

To do this recall first that Q is a field and usually equipped with the standard absolute
value | · |, which allows to turn Q into a metric space. Realizing that this metric space
is incomplete one then performs a completion to reach the set of real numbers R and
observes that one can equip R with the structure of a field and an absolute value | · |
to obtain Q as a dense subfield of R and the absolute value on Q as a restriction of the
absolute value on R. The standard absolute value satisfies the following properties for
x, y in R.

(i) |xy| = |x||y|.

(ii) |xy| ≤ |x|+ |y|.

(iii) |x| = 0 if and only if x = 0.

Replacing the field R above by any other field K, we call any map | · | : K→ [0,∞) an
absolute value, whenever it satisfies (i), (ii) and (iii) for x, y ∈ K. As usual an absolute
value can be used to construct a metric and thus a topology on K. We say that two
absolute values on a field are equivalent, whenever they introduce the same topology.
In particular, one can ask for the possible absolute values on Q up to equivalence and
obtain from the Ostrowski theorem [Gou97, Theorem 3.1.3] that the only absolute values
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on Q up to equivalence are the trivial absolute value2, the standard absolute value and
the p-adic absolute values for prime numbers p. The latter are defined as follows. For
a prime number p we can write any rational number uniquely in the form x = pna/b
with a, b, n ∈ Z and such that p does not divide a and b. We then define |x|p := p−n

and obtain an absolute value | · |p on Q. In fact one can now perform the standard
construction of R via equivalence classes of Cauchy sequences also for the absolute
values | · |p for any prime p and obtains the field of p-adic numbers, which we denote
by Qp. As for R we consider Q as a subset of Qp. To be more precise we quote from
[Gou97, Theorem 3.2.13] that for each prime p there exists a field Qp with an absolute
value | · |p, such that the following statements are valid.

(i) Q ⊆ Qp is a dense subfield and | · |p extends the p-adic absolute value on Q.

(ii) Qp is complete with respect to the metric introduced by | · |p.

Note that one can also show that Qp with the mentioned properties is unique up to a
unique isomorphism of fields with absolute values. We define the p-adic integers Zp as
the closed ball of radius 1 in Qp. It can be shown that this subgroup is compact and
the closure of Z.

Now recall that the standard absolute value is Archimedian, i.e. for x, y and x 6= 0
there is a n ∈ N such that |nx| > |y|. Clearly, the Archimedian property can be defined
for any absolute value on any field K and it can be shown that an absolute value is
non-Archimedian, whenever there holds |x+y| ≤ max{|x|, |y|} for any x, y ∈ K [Gou97,
Theorem 2.2.2]. The trivial absolute value on Q and the p-adic absolute values on Q
and Qp are non-Archimedian.

Let us denote the smallest subring of Q that contains Z and p−1 by Z[p−1]. This
subring consists of all rational numbers that have a finite expansion with base p, i.e.
which can be written in the from ∑m

i=−n xip
i for a finite sequence (xi)mi=−n in {0, · · · , p−

1}. Using the topological structure given by the standard absolute value on R one
can extend this expansion to all elements of R by considering series that converge with
respect to the topological structure of R. From [Gou97, Corollary 3.3.12] we obtain the
following analogue for Qp.

Proposition 2.8. For every g ∈ Qp there exists n ∈ N and a unique sequence (gi)∞i=−n
in {0, · · · , p − 1} such that the following series converges in Qp and such that g =∑∞
i=−n gip

i.

Remark 2.9. Note that for x ∈ Q \ Z[p−1] ⊆ R ∩ Qp the expansion in base p depends
on the chosen topology. For example the binary expansion (p = 2) of 1/3 with respect
to the standard absolute value is 0.01. Nevertheless, there holds 1/3 = p0 + ∑∞

i=0 p
2i+1,

which can be denoted by 011.0 in Q2. Note that the addition of Z[p−1] is given by the
classical carry over rule and this rule can also be applied to infinite terms as considered
above to be used to define the addition of Qp.

2 The trivial absolute value is defined by |x| = 1 for x 6= 0 and |0| = 0.
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Let us next collect some properties about the structure of Qp, which are shown for
example in [Gou97].

Proposition 2.10. The absolute value |·|p (and thus also the metric) on Qp takes values
in {pk; k ∈ Z}. Thus, for n ∈ Z, r ∈ [pn, pn+1) and x ∈ Qp there holds Br(x) = Bpn(x).

Proposition 2.11. For r > 0 and g ∈ Qp the closed ball Br(g) is topologically open
and compact. Furthermore, whenever B and B′ are two closed balls that intersect then
there holds B ⊆ B′ or B′ ⊆ B. For n ∈ Z and g ∈ Qp the closed ball Bpn+1(g) contains
p disjoint closed balls of radius pn. Similar statements hold for open balls.

Proposition 2.12. Qp is metrizable, σ-compact, totally disconnected and locally com-
pact. Every closed ball and every open ball in Qp which contains 0 is a compact and
open subgroup of Qp.

Let us close this little introduction of the p-adic numbers with some geometric intu-
ition. It is well-known that R can be imagined as a line and for our purposes it will be
useful to have a similar image for Qp at hand. The following image is inspired by the
well-known picture of the odometers given for example in [Dow05] but as we are not
aware of any reference that interprets Qp geometrically we chose to include this image
here.

We will present the following for p = 2, but note that the involved ideas can easily also
be given for any prime p. Let us first consider the closed and centred 1-ball B1(0) = Z2
in Q2. It contains 2 closed and centred balls of radius 2−1. Each of these balls contains
two closed and centred 2−2-balls and so on. We thus imagine B1(0) as the well-known
middle third Cantor set C that arises by removing the middle third from the unit interval
[0, 1], then removing the middle thirds from the remaining two intervals and proceeding
inductively. We identify the points contained in the remaining of the left interval on the
first level of this construction with the elements B2−1(0) and the remaining of the right
interval is identified with B2−1(1). One can also localize the integers in this image. In
fact they are precisely the end points of intervals at a certain level of this construction.
If these end points are on the left of the respective interval, then they are identified with
positive integers (or 0) and right end points are identified with the negative integers.
The structure of all of Q2 can now be imagined as follows. The closed and centred
ball B2(0) consists of two copies of B1(0). So one simply draws two copies of C beside
each other. The new image just looks as C, but the interpretation changed. Now the
end points of the intervals are given by 1/2Z. The end points of the left copy of C
are given by Z as just discussed and the end points in the right are given by Z + 1/2.
Copying our image again we imagine B4(0) as four copies of C and interpret the end
points of the intervals of this image as the elements of 1/4Z. We continue with this
construction and obtain a image of Qp that similarly to the infinite line of R does not
fit on our paper, but which actually gives a lot of geometrical intuition for the object.
Note however that the field operations are difficult to trace in this image. Nevertheless,
one has some properties, which can be seen. Note for example that for any g ∈ Q2 the
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mapping g′ 7→ g′ + g is a bijective isometry and thus maps closed balls of a certain size
bijectively to closed balls of the same size. We thus obtain that the intervals at a certain
level of the construction of the infinitely many copies of C are actually only permuted
by such an operation. Nevertheless, what happens inside them is somehow not encoded
in our image.

2.4 Amenable groups
We only define amenability in the context of unimodular groups and use the approach
of [Føl55]. We refer to [Pie84] for the general notion. In this section we assume that G
is a unimodular group and denote a Haar measure on G by θ.

2.4.1 Van Hove boundary and symmetric difference
For K,A ⊆ G we define the K-boundary of A (Van Hove boundary) as

∂KA :=
(
KA

)
∩
(
KAc

)
.

Note that KA is the set of all g ∈ G such that (K−1g) ∩ A is not empty. Thus, ∂KA
is the set of all elements g ∈ G such that K−1g intersects both A and Ac. We use the
convention, that the Minkowski product is stronger binding than the operation of taking
the K-boundary and that the set theoretic operations, except from complementation,
are weaker binding. Let us summarize some well-known properties of the Van Hove
boundary in the following lemma. For reference see for example [Kri07, Kri10, PS16].

Lemma 2.13. Let G be a locally compact group. Then for g ∈ G, subsets A,B ⊆ G, a
family of subsets (Ai)i∈I of G, and all compact subsets K,M ⊆ G there holds

(a) ∂MA ⊆ ∂KA, whenever M ⊆ K.

(b) ∂KA = ∂KA
c.

(c) ∂K (⋃i∈I Ai) ⊆ ⋃i∈I ∂KAi.
(d) ∂K (⋂i∈I Ai) ⊆ ⋃i∈I ∂KAi.
(e) ∂K(A \B) ⊆ ∂KA ∪ ∂KB.

(f) g∂KA = ∂gKA and M∂KA ⊆ ∂MKA.

(g) ∂K(gA) = ∂KgA and ∂K(MA) ⊆ ∂KMA.

(h) ∂K(Ag) = (∂KA)g and ∂K(AM) ⊆ (∂KA)M .

(i) KA ⊆ kA ∪ ∂KA for all k ∈ K.

20



2.4 Amenable groups

Remark 2.14. Note that for a family of precompact sets (Ai)i∈I and a precompact
subset A ⊆ G there holds A (⋃i∈I Ai) ⊆ ⋃

i∈I(AAi) and A (⋂i∈I Ai) ⊆ ⋂
i∈I(AAi), which

can be seen from a straightforward argument.

Proof. One obtains (a) and (b) directly from the definition of the Van Hove boundary.
As (⋃i∈I Ai)c = ⋂

i∈I A
c
i ⊆

⋂
i∈I A

c
i and

⋃
i∈I Ai = ⋃

i∈I Ai a straightforward application
of the first inclusion mentioned in Remark 2.14 shows (c). From (c) and (b) one easily
obtains (d). Furthermore, (e) is a direct consequence of (b) and (d). A straightforward
argument shows (f) and the first statements of (g) and of (h) respectively. The second
statement of (g) is trivial wheneverM is empty and otherwise one considers m ∈M and
obtains (MA)c ⊆ (mA)c = mAc ⊆ MAc. With this observation it is straightforward
to show the second statement of (g). The second statement of (h) can be obtained by
combining (c) with the first statement of (h). To see (i) note that (f) allows to restrict
to the the case k = eG ∈ K. In this case assume for g ∈ KA that g /∈ A. Then
g ∈ Ac ⊆ KAc and we obtain g ∈ ∂KA.

For K,A ⊆ G we define the symmetric difference as A∆K := (A \ K) ∪ (K \ A).
Similarly as for the Van Hove boundary we will use the convention that the symmetric
difference is weaker binding than the Minkowski operations and taking the complement,
but stronger binding than all the other set theoretic operations. We summarize some
ideas contained in [Pie84] in the following lemma.

Lemma 2.15. Let A be a precompact subset of G and K be a compact subset of G.
Then there holds

(a) KA∆A ⊆ ∂KA, whenever eG ∈ K.

(b) θ(KA∆A) ≤ 2θ(KA \ A), whenever K is non-empty.

Proof. Whenever eG ∈ K, then there holds A ⊆ KA and thus

KA∆A = KA \ A = KA ∩ Ac ⊆ KA ∩KAc = ∂KA

and we obtain (a). Now whenever K is non-empty there exists k ∈ K and we compute

θ(A ∩KA) + θ(A \KA) = θ(A) = θ(kA) ≤ θ(KA) = θ(KA ∩ A) + θ(KA \ A)

and thus θ(A\KA) ≤ θ(KA\A), which implies θ(KA∆A) = θ(KA\A)+θ(A\KA) ≤
2θ(KA \ A) and we have shown (b).

For K ∈ K(G) and ε > 0 we say that a Borel measurable subset A ⊆ G of positive
Haar measure is (ε,K)-invariant, whenever

α(A,K) := θ(∂KA)
θ(A) < ε.
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Lemma 2.16. Let K be a compact subset of G and ε ∈ (0, 1). Then any (ε,K)-invariant
subset A ⊆ G satisfies θ(K) ≤ θ(A).

Proof. The statement is trivial wheneverK = ∅ and we assume without lost of generality
that there exists k ∈ K−1. Then there holds θ(A \ ∂kKA) ≥ θ(A)− θ(∂kKA) = θ(A)−
θ(∂KA) ≥ θ(A)(1 − ε) > 0 and in particular there is g ∈ A \ ∂kKA. Such g satisfy
(kK)−1g ⊆ A and we conclude θ(K) = θ((kK)−1g) ≤ θ(A).

2.4.2 Ergodic, Følner and Van Hove nets
Let (Ai)i∈I be a net of compact subsets of G such that for sufficiently large i ∈ I
there holds θ(Ai) > 0. The net (Ai)i∈I is called (left) ergodic, whenever there holds
limi∈I θ((gAi)∆Ai)/θ(Ai) = 0 for all g ∈ G. It is called (left) Følner , whenever there
holds limi∈I θ((KAi)∆Ai)/θ(Ai) = 0 for all non-empty and compact subsets K ⊆ G. It
is furthermore said to be (left) Van Hove, whenever there holds limi∈I θ(∂KAi)/θ(Ai) = 0
for all compact subsets K ⊆ G. As statements about ergodic, Følner and Van Hove
nets are somehow scattered over the literature, we next present some characterizations of
these concepts and furthermore relate them. We include the short and straightforward
proof for the convenience of the reader and as we are not aware of a reference for some
of the statements.

Proposition 2.17. Let (Ai)i∈I be a net of compact subsets of G such that for large
i ∈ I there holds θ(Ai) > 0.

(a) The net (Ai)i∈I is ergodic, if and only if there holds limi∈I θ((gAi) \Ai)/θ(Ai) = 0
for all g ∈ G.

(b) The following statements are equivalent.
(i) (Ai)i∈I is Følner.
(ii) limi∈I θ(KAi∆Ai)/θ(Ai) = 0 for all compact and symmetric K ⊆ G that

satisfy eG ∈ K.
(iii) limi∈I θ(KAi \ Ai)/θ(Ai) = 0 for all compact K ⊆ G.
(iv) limi∈I θ(KAi \ Ai)/θ(Ai) = 0 for all compact and symmetric K ⊆ G that

satisfy eG ∈ K.

(c) The following statements are equivalent.
(i) (Ai)i∈I is Van Hove.
(ii) limi∈I θ(∂KAi)/θ(Ai) = 0 for all compact and symmetric subsets K ⊆ G that

contain eG.
(iii) (Ai)i∈I is ergodic and satisfies limi∈I θ(∂WAi)/θ(Ai) = 0 for some precompact

neighbourhood W of eG.
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(d) Every Følner net is ergodic and every Van Hove net is Følner.

(e) Whenever G is discrete, then every ergodic net is Van Hove.

Proof. The statement (a) follows from Lemma 2.15 as singletons are compact in G. To
show (b) note first that (i) trivially implies (ii). As KAi \Ai ⊆ KAi∆Ai we obtain that
(ii) implies (iv). Considering K∪K−1∪{eG} for a compact subset one obtains that (iv)
implies (iii) and from Lemma 2.15 one obtains that (iii) implies (i). This shows (b).

The equivalence between (i) and (iii) of (c) is shown in [Tem92, Appendix 3.K] and
considering K ∪K−1 ∪ {eG} for a compact subset K one easily obtains the equivalence
of (i) and (ii).

As singletons are compact in G we obtain that any ergodic net is Følner. Furthermore,
considering Lemma 2.15 one sees that (c)(ii) implies (b)(ii) and thus every Van Hove net
is Følner. This shows (d). As {eG} is a precompact neighbourhood of eG in a discrete
group we obtain from ∂{eG}A = A ∩ Ac = A ∩ Ac = ∅ and (d) that any ergodic net is
Van Hove in a discrete group. This shows (e).

We will see in Proposition 2.33 below that a unimodular (and non-compact) group
G is discrete if and only if the concepts of Følner and Van Hove nets coincide for G.
Proposition 2.34 will furthermore give a similar characterization with respect to ergodic
and Følner nets respectively. As a foretaste we consider the following examples, which
are special cases of the constructions presented below. The example that separates the
notions of Følner nets and Van Hove nets is inspired by [Tem92, Appendix; (3.4)].

Example 2.18. Consider An := [0, n] ∪ ([n+ 1, n+ 1 + n2] ∩ Z) and A′n := [0, n] \
(Bn−2(0) + Z) for n ∈ N. Then (An)n∈N is a Følner sequence in R that is not Van
Hove; and (A′n)n∈N is an ergodic sequence in R that is not Følner.

2.4.3 Amenability
We define G to be amenable, whenever G contains a Van Hove net.

Remark 2.19. Whenever G is a σ-compact unimodular amenable group, then G con-
tains a Van Hove sequence. Indeed, as every Van Hove net is ergodic we obtain the
statement from [Tem92, Appendix (3.H)] and [Tem92, Appendix (3.L)].

The mentioned statements furthermore allow to conclude that the existence of Van
Hove nets is equivalent to the existence of ergodic nets whenever G is assumed to be
σ-compact and unimodular. In Proposition 2.35 below we will see that this statement
is also true without the assumption of σ-compactness and thus in particular shows that
our definition of amenability is equivalent to the definition given in [Tem92] and in
[Pie84]. As we do not know of a reference of the statement we include a full proof for
the convenience of the reader. From [Tem92, Appendix (3.A)] we cite the following, but
note that this statement can also be deduced from Proposition 3.4 below, for which we
present a full proof.
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Proposition 2.20. Every LCA group is amenable.

2.4.4 Van Hove nets in the literature
The following lemma connects different approaches to the K-boundary given in the
literature and was found in a discussion with C. Oertel. In particular, it shows in
combination with Proposition 2.17 that our notion of Van Hove nets is equivalent to
the notions in [Tem92], in [Sch00] and in [FGJO18].

Lemma 2.21. Let K,A be compact subsets of G. Then there holds ∂KA = KA \
(int (⋂k∈K kA)) . Furthermore, whenever K is assumed to be symmetric and to contain
eG, then there holds ∂KA =

((
KA

)
\ int(A)

)
∪
((
K−1Ac

)
\ int(Ac)

)
.

Proof. We have (int (⋂k∈K kA))c = ⋃
k∈K(kA)c = KAc. Thus, as K is compact, there

holds ∂KA = KA ∩ KAc = KA ∩ KAc = KA \ (int (⋂k∈K kA)) . To see the second
equality note A ⊆ KA and Ac ⊆ KAc and calculate

∂KA = KA ∩KAc

= G ∩
(
KA ∪ A

)
∩
(
Ac ∪KAc

)
∩G

=
(
KA ∪KAc

)
∩
(
KA ∪ A

)
∩
(
Ac ∪KAc

)
∩
(
Ac ∪ A

)
=
(
KA ∩ Ac

)
∪
(
KAc ∩ A

)
=
(
(KA) \ int(A)

)
∪
(
(KAc) \ int(Ac)

)
=
(
(KA) \ int(A)

)
∪
(
(K−1Ac) \ int(Ac)

)
.

2.4.5 Stability properties
Stability of ergodic nets

Proposition 2.22. Whenever (Ai)i∈I is a ergodic net and (Fi)i∈I is a net (with the same
index set) of compact subsets of G such that limi∈I θ(Fi)/θ(Ai) = 0, then (Ai ∪Fi)i∈I is
also ergodic.

Remark 2.23. This construction in particular applies, whenever (Fi)i∈I is a net of
finite sets in any non-discrete unimodular amenable group, as finite sets in such groups
always have Haar measure 0.

Proof of Proposition 2.22. For g ∈ G a straightforward computation shows

(g(Ai ∪ Fi))∆(Ai ∪ Fi) ⊆ F ∪ (gFi) ∪ ((gAi)∆Ai) .
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As (Ai)i∈I is ergodic we thus conclude

0 ≤ θ((g(Ai ∪ Fi))∆(Ai ∪ Fi))
θ(Ai ∪ Fi)

≤ 2θ(Fi) + θ(gAi∆Ai)
θ(Ai)

→ 0.

Stability of Følner nets

Proposition 2.24. Let (Ai)i∈I be a Følner net and M ⊆ G be non-empty and compact.
Then (MAi)i∈I is also Følner and satisfies limi∈I θ(MAi)/θ(Ai) = 1.

Proof. Let m ∈M and set N := m−1M . From

Ai ∪ ((NAi)∆Ai) = Ai ∪ ((NAi) \ Ai) ∪ (Ai \ (NAi))
= Ai ∪ ((NAi) \ Ai) ⊇ NAi

for all i ∈ I we obtain

1 ≤ θ(MAi)
θ(Ai)

= θ(NAi)
θ(Ai)

≤ 1 + θ((NAi)∆Ai)
θ(Ai)

→ 1,

which shows limi∈I θ(MAi)/θ(Ai) = 1. To show that (MAi)i∈I is Følner let K ⊆ G be
a non-empty and compact subset. Then by Lemma 2.15 there holds

θ((KMAi)∆(MAi)) ≤ 2θ((KMAi) \ (MAi)) ≤ 2θ((KMAi) \ (mAi))
= 2θ((m−1KMAi) \ Ai) ≤ 2θ((m−1KMAi)∆Ai)

and as limi∈I θ(MAi)/θ(Ai) = 1 there holds

0 ≤ lim sup
i∈I

θ((KMAi)∆(MAi))
θ(MAi)

≤ 2 lim
i∈I

θ((m−1KMAi)∆Ai)
θ(Ai)

= 0.

Stability of Van Hove nets

Proposition 2.25. Let (Ai)i∈I be a Van Hove net and M ⊆ G be non-empty and
compact. Then (MAi)i∈I is also Van Hove and satisfies limi∈I θ(MAi)/θ(Ai) = 1.

Proof. As every Van Hove net is Følner we obtain limi∈I θ(MAi)/θ(Ai) = 1 from Propo-
sition 2.24. To show that (MAi)i∈I is Van Hove let K ⊆ G be compact. Then for large
i there holds θ(Ai) > 0 and in particular Ai 6= ∅. Thus, θ(Ai) ≤ θ(MAi) and we obtain
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from KM being compact and ∂KMAi ⊆ ∂KMAi that

0 ≤ θ(∂KMAi)
θ(MAi)

≤ θ(∂KMAi)
θ(Ai)

i∈I→ 0,

which proofs (MAi)i∈I to be a Van Hove net.

The following reverse of Proposition 2.25 holds and allows to shrink the elements of
a Van Hove net without loosing the limiting behaviour. This possibility will be the key
to the results in Chapter 5 and furthermore to some results in Chapter 3.
Proposition 2.26. Whenever (Ai)i∈I is a Van Hove net and M ⊆ G is a compact and
non-empty subset of G, then there exists a Van Hove net (Bi)i∈I with the same index
set such that there holds MBi ⊆ Ai and Bc

i ⊆ M−1Aci for all i ∈ I and which satisfies
limi∈I θ(Bi)/θ(Ai) = 1.
Proof. As M is non-empty there exists a m ∈ M . Then M ′ := Mm−1 contains eG and
for a Van Hove net (B′i)i∈I that satisfies M ′B′i ⊆ Ai and (B′i)c ⊆ (M ′)−1Aci for all i ∈ I,
and limi∈I θ(B′i)/θ(Ai) = 1, we can set Bi := m−1B′i to obtain a Van Hove net (Bi)i∈I
with the required properties. We thus assume without lost of generality that eG ∈ M
and set Bi := {g ∈ G; Mg ⊆ Ai} for i ∈ I. As Ai is closed, we obtain MBi ⊆ Ai for all
i ∈ I. Furthermore, for g ∈ Bc

i there holds Mg 6⊆ Ai, i.e. Mg∩Aci 6= ∅. As Mg∩Aci 6= ∅
is equivalent to g ∈M−1Aci we obtain Bc

i ⊆M−1Aci and it remains to show that (Bi)i∈I
is a Van Hove net that satisfies limi∈I θ(Bi)/θ(Ai) = 1.

As eG ∈ M and Ai is closed we easily obtain Bi ⊆ Ai. Now assume that g ∈ Ai and
observe that there holds g ∈M−1Ai. Hence, whenever g /∈ ∂M−1Ai = M−1Ai ∩M−1Aci ,
then g /∈ M−1Aci ⊇ M−1Aci . As g /∈ M−1Aci is equivalent to Mg ∩ Aci = ∅ we obtain
Mg ⊆ Ai, which implies g ∈ Bi. We have shown that for all i ∈ I there holds Bi ⊆
Ai ⊆ Bi ∪ ∂M−1Ai. As (Ai)i∈I is assumed to be Van Hove we know that for sufficiently
large i there holds θ(Ai) > 0 and compute

1 ≥ θ(Bi)
θ(Ai)

≥ θ(Ai)− θ(∂M−1Ai)
θ(Ai)

≥ 1− θ(∂M−1Ai)
θ(Ai)

→ 1

for large i. Hence, there holds limi∈I θ(Bi)/θ(Ai) = 1 and we obtain in particular that
θ(Bi) > 0 for sufficiently large i.

To show that (Bi)i∈I is a Van Hove net, let K ⊆ G be a compact subset. From
eG ∈ M and Ai being closed we get that there holds Bi ⊆ Ai ⊆ M−1Ai and above it
was presented that Bc

i ⊆M−1Aci . As M−1 is compact we thus obtain Bc
i ⊆M−1Aci and

compute
∂KBi = KBi ∩KBc

i ⊆ KM−1Ai ∩KM−1Aci = ∂KM−1Ai.

From limi∈I θ(Bi)/θ(Ai) = 1 and as (Ai)i∈I is Van Hove we finally obtain

0 ≤ lim sup
i∈I

θ(∂KBi)
θ(Bi)

≤ lim
i∈I

θ(∂KM−1Ai)
θ(Ai)

= 0,
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which shows (Bi)i∈I to be a Van Hove net.

Counterexamples

It is natural to ask, whether the presented statements can be achieved in greater gen-
erality. The next example shows that the stability statement about ergodic nets in
Proposition 2.22 cannot be drawn for Følner or Van Hove nets respectively.

Example 2.27. Consider the Van Hove net ([0, n]n∈N) in R and furthermore the finite
sets Fn := [n + 1, n + 1 + n2] ∩ Z. Then ([0, n] ∪ Fn)n∈N is not Følner. Indeed for the
compact set K = [0, 1] we obtain

θ(K([0, n] ∪ Fn) \ ([0, n] ∪ Fn))
θ([0.n] ∪ Fn) = θ([n, 2 + n+ n2])

θ([0, n]) →∞.

The following example shows that one cannot enlarge ergodic nets similar to Følner
or Van Hove nets as presented in the Propositions 2.24 and 2.25 respectively.

Example 2.28. Consider An := [0, n] ∪ ([n + 1, n + 1 + n2] ∩ Z). From Proposition
2.22 we obtain that (An)n∈N is an ergodic sequence in R. Nevertheless, for the compact
neighbourhood M = [−1/4, 1/4] of 0 the net (M + An)n∈N is not ergodic, as

θ ((1/2 +M + An) ∆ (M + An))
θ(M + An) → 2.

From Proposition 2.26 the question arises, whether a similar construction can be
done for Følner nets, i.e. whether for all Følner nets (Ai)i∈I and for all compact M ⊆ G
there exists a Følner net (Bi)i∈I with MBi ⊆ Ai and limi∈I θ(Bi)/θ(Ai) = 1. The next
example shows that this is not the case.

Example 2.29. Let (Ai)i∈I be a Følner net in R such that Ai is disjoint from Z for all
i ∈ I. One could for example consider An = [0, n] \ (Z+B1/n(0)) and I := N. Then for
all compact neighbourhoods M of 0 there does not exist a Følner net (Bi)i∈I such that
M + Bi ⊆ Ai and such that limi∈I θ(Bi)/θ(Ai) = 1. Note that this implies that (Ai)i∈I
is not Van Hove.
Indeed, if there would exist such a sequence (Bi)i∈I , then M + Bi is disjoint from

Z for all i. Letting K := [0, 1] we thus obtain (M +Bi)c ⊇ (M + Bi)c ⊇ Z, hence
K(M +Bi)c = R. Therefore ∂K(M + Bi) = K(M + Bi) ⊇ (M + Bi) and (M + Bi)i∈I
cannot be Van Hove in contradiction to Proposition 2.30, which we will show next.

2.4.6 Interplay of these notions
Van Hove nets can be seen as ”fat” Følner nets. Whenever (Ai)i∈I is a Følner net, then
one can thicken it an arbitrary tiny bit to turn it into a Van Hove net. The following
statement makes this idea precise and was found in a discussion with Gabriel Fuhrmann.
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Proposition 2.30. Whenever (Ai)i∈I is a Følner net in G and M ⊆ G is a compact
neighbourhood of eG, then (MAi)i∈I is a Van Hove net.

Proof. By Proposition 2.24 we know that (MAi)i∈I is Følner and in particular ergodic
and satisfies limi∈I θ(MAi)/θ(Ai) = 1. Thus, by Proposition 2.17 it is sufficient to show
that there exists a compact neighbourhoodW of 0 such that limi∈I θ(∂W (MAi))θ(MAi) =
0. Choose a compact and symmetric neighbourhood W of eG such that WW ⊆ M .
Then for g ∈ ∂W (MAi) there holds g ∈ WMAi and g ∈ W (MAi)c and thus there is
u ∈ W = W−1 such that ug ∈ (MAi)c. As W is a neighbourhood of eG there is v ∈ W
such that vug ∈ (MAi)c and thus g /∈ (vu)−1MAi ⊇ Ai. This shows g ∈ (WMAi) \ Ai
and we obtain ∂W (MAi) ⊆ (WMAi) \Ai = (WMAi)∆Ai. Thus, the statement follows
from (Ai)i∈I being Følner.

As a corollary we obtain the following.

Corollary 2.31. For every Følner net (Ai)i∈I there holds limi∈I θ(Ai) = θ(G). In
particular, if G is non-compact, there holds limi∈I θ(Ai) =∞.

Proof. LetM ⊆ G be a compact neighbourhood of eG. Then (MAi)i∈I is a Van Hove net
and we obtain θ(MAi)→ θ(G) from the regularity of θ and Lemma 2.16. As Proposition
2.24 furthermore implies limi∈I θ(MAi)/θ(Ai) = 1 we obtain the statement.

Remark 2.32. It remains open, whether a similar statement holds for ergodic nets.
Whenever G is compact also the reverse statement of Corollary 2.31 holds, i.e. (Ai)i∈I

is Følner, if and only if θ(Ai) → θ(G). For compact G one can furthermore show that
(Ai)i∈I is Van Hove, if and only if Ai = G for sufficiently large i.

2.4.7 Ergodic, Følner and Van Hove nets in non-discrete
groups

As presented above the concepts of ergodic, Følner and Van Hove nets coincide for
discrete groups. We will see next that this coincidence actually characterizes discrete
groups. We first present that a unimodular group is discrete if an only if the concepts
of Van Hove and Følner nets coincide. Note that the idea of the following construc-
tion originates from [Tem92, Appendix Example 3.4] where Van Hove nets in Rd are
discussed.

Proposition 2.33. Every non-discrete unimodular amenable group G contains a Følner
net that is not Van Hove. If G is in addition σ-compact and and first countable3, then
G contains a Følner sequence that is not Van Hove.

3 A topological space is called first countable, whenever every point has a countable neighbourhood
basis.
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Proof. Let ω be a discrete subset of G such that there exists a compact set C and an
open neighbourhood W of eG such that Cω = G and such that {Wv; v ∈ ω} is disjoint.
We will see in Remark 2.37 below that such ”Delone sets” exist in all locally compact
groups and assume without lost of generality that W and C are symmetric and contain
eG. As G is assumed to be unimodular amenable we obtain that there exists a Van Hove
net (Bj)j∈J in G. As θ(Bj) > 0 for large j and as we can translate each Bj we assume
without lost of generality that there holds θ(Bj) > 0 and that ω and Bj intersect for all
j ∈ J .

To construct the index set of our net let N be the set of all open and symmetric
neighbourhoods of eG that are contained inW . We order N by the reversed set inclusion
and obtain from the regularity of the Haar measure θ and as G is non-discrete that there
holds

0 = θ({eG}) = inf
V ∈N

θ(V ) = lim
V ∈N

θ(V ). (2.1)

We furthermore define I as the set of all tuples (j, V ) ∈ J ×N that satisfy

θ(V ) ≤ θ(Bj)
2|ω ∩WBj|

. (2.2)

Recall that for j ∈ J the sets ω and Bj ⊆ WBj intersect and thus |ω ∩ WBj| ≥ 1.
Furthermore, there holds θ(Bj) > 0 and thus we obtain from (2.1) the existence of
V ∈ N such that (j, V ) ∈ I. This shows that I is non-empty. Furthermore, for
(j, V ), (j′, V ′) ∈ I we obtain from the directedness of J that there exists j̃ ∈ J such that
j, j′ ≤ j̃ and obtain with similar arguments as above that there exists Ṽ ∈ N such that
(j̃, Ṽ ∩ V ∩ V ′) ∈ I. Thus, we can equip I with the component wise order of J ×N to
obtain a directed set. Setting A(j,V ) := Bj \ V ω for all (j, V ) ∈ I we then obtain a net
of compact sets.
Claim 1: (Ai)i∈I is a Følner net.
Let K be a compact subset of G that contains eG and consider (j, V ) ∈ N . For

g ∈ Bj ∩ V ω there exist v ∈ V and w ∈ ω such that g = vw. Thus, w = v−1g ∈ V Bj

and hence g = vw ∈ V (V Bj ∩ ω). We thus obtain Bj ∩ V ω ⊆ V (V Bj ∩ ω). As V ⊆ W
and as {V g; g ∈ ω} is disjoint we get

θ(Bj ∩ V ω) ≤ θ(V (V Bj ∩ ω)) = θ(V )|V Bj ∩ ω| ≤ θ(V )|WBj ∩ ω|. (2.3)
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Thus, the definition of I implies

θ(A(j,V )) ≥ θ(Bj)− θ(Bj ∩ V ω)
≥ θ(Bj)− θ(V )|WBj ∩ ω|

≥ θ(Bj)−
1
2θ(Bj)

= 1
2θ(Bj).

Furthermore, as {Wv; v ∈ ω} is disjoint we obtain from (2.3) that there holds

θ(Bj ∩ V ω) ≤ θ(V )|WBj ∩ ω| =
θ(V )
θ(W )θ(W (WBj ∩ ω)) ≤ θ(V )

θ(W )θ(WWBj).

AsK contains eG there holds Bj ⊆ KBj and henceKBj\A(j,V ) = (KBj\Bj)∪(Bj∩V ω)
and we compute

θ(KA(j,V ) \ A(j,V )) ≤ θ(KBj \ A(j,V ))
≤ θ(KBj \Bj) + θ(Bj ∩ V ω)

≤ θ(KBj \Bj) + θ(V )
θ(W )θ(WWBj).

As (Bj)j∈J is a Følner net we observe limi∈I θ(WWBj)/θ(Bj) = 1 from Proposition
2.24. Thus, (2.1) implies

0 ≤ θ(KA(j,V ) \ A(j,V ))
θ(A(j,V ))

≤ 2θ(KBj \Bj)
θ(Bj)

+ 2 θ(V )
θ(W )

θ(WWBj)
θ(Bj)

→ 2 · 0 + 2 · 0 · 1 = 0.

and we obtain that (Ai)i∈I is indeed a Følner net.
Claim 2: (Ai)i∈I is not Van Hove.
Let (j, V ) ∈ I and consider g ∈ A(j,V ). As Cω = G there exists v ∈ ω such that

g ∈ Cv. Note that eG ∈ V and thus ω and A(j,V ) = Bj\V ω are disjoint. Thus, v ∈ Ac(j,V )
and we obtain g ∈ Cv ⊆ CAc(j,V ). As eG ∈ C this implies that g ∈ CA(j,V ) ∩ CAc(j,V ) =
∂CA(j,V ). This shows that A(j,V ) ⊆ ∂CA(j,V ) and we obtain that

θ(∂CA(j,V ))
θ(A(j,V ))

≥ 1

for all (j, V ) ∈ I. Thus, (Ai)i∈I is not Van Hove.
If G is in addition assumed to be σ-compact and first countable, then we can choose

(Bj)j∈J to be a sequence, i.e. J = N and furthermore a sequence (Vj)j∈N in N such
that (j, Vj) ∈ I and such that for every V ∈ N there holds Vj ⊆ V for sufficiently large
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j. Then the diagonal sequence (A(j,Vj))j∈N is a subnet of (Ai)i∈I and thus in particular
Følner. This sequence still satisfies θ(∂CA(j,Vj))/θ(A(j,Vj)) ≥ 1 for all j ∈ N and can thus
not be Van Hove.

The next result shows that a (non-compact) unimodular group is discrete if an only
if the concepts of Følner and ergodic nets coincide.

Proposition 2.34. Every non-discrete and non-compact unimodular group G contains
an ergodic net that is not Følner. If G is in addition σ-compact, then G contains an
ergodic sequence that is not Følner.

Proof. Let ω a discrete subset of G such that there exist a compact subset K and an
open neighbourhood V of eG such that Kω = G and such that {V v; v ∈ ω} is disjoint.
Such ”Delone sets” exist as we will discuss in Remark 2.37 below and without lost of
generality we assume that V ⊆ K. As G is assumed to be amenable there exists a Van
Hove net (Bi)i∈I in G and this net can be chosen such that there holds θ(Bi) > 0 for
all i ∈ I. For i ∈ I the compactness of Bi implies that ω ∩ Bi is finite and as G is
not compact we obtain that ω \ Bi is infinite. Thus, for i ∈ I we can choose a finite
subset Fi ⊆ ω \ Bi that satisfies |Fi| ≥ θ(Bi)2. We set Ai := Bi ∪ Fi and obtain from
Proposition 2.22 that (Ai)i∈I is an ergodic net.

As {V v; v ∈ ω} is disjoint and as V ⊆ K it follows that θ(KFi) ≥ θ(V Fi) =
θ(V )|Fi| ≥ θ(V )θ(Bi)2. The non-discreteness of G furthermore implies that θ(Ai) =
θ(Bi) and we obtain from Corollary 2.31 that there holds

θ(KAi \ Ai)
θ(Ai)

≥ θ(KFi \ Ai)
θ(Ai)

≥ θ(KFi)
θ(Ai)

− 1 ≥ θ(V )θ(Bi)2

θ(Bi)
− 1→∞.

Thus, (Ai)i∈I cannot be Følner. If G is in addition σ-compact, then (Bi)i∈I can be
assumed to be a sequence, i.e. I = N and the construction yields a sequence (Ai)i∈N.

2.4.8 Existence of ergodic, Følner and Van Hove nets
We have seen that for non-discrete groups the concepts of Van Hove, Følner and ergodic
nets differ and it is natural to ask, whether every amenable group, i.e. every group that
contains a Van Hove net also contains Følner or even ergodic nets. From Proposition
2.30 we obtain that G contains a Van Hove net (sequence) if and only if G contains a
Følner net (sequence). This statement can also be found in [PS16, Lemma 2.7.], where
Følner sequences are called ”weak Følner sequences” and Van Hove sequences are called
”strong Følner sequences”. In [Tem92, Appendix 3.L] it is presented that the existence
of a Van Hove sequence is equivalent to the existence of an ergodic sequence, whenever
G is σ-compact. As we do not know of a reference for the general case we include
a proof without countability assumptions for the convenience of the reader. Note that
Proposition 2.35 holds for sequences if G is assumed to be σ-compact [Tem92, Appendix
3.L].

31



2 Preliminaries

Proposition 2.35. For a unimodular group G the following statements are equivalent.

(i) G is amenable, i.e. G contains a Van Hove net.

(ii) G contains a Følner net.

(iii) G contains an ergodic net.

(iv) For all ε > 0 and all finite F ⊆ G there exists a compact set A ⊆ G such that
θ(gA \ A)/θ(A) < ε for all g ∈ F .

(v) For all ε > 0 and all compact K ⊆ G with eG ∈ K there exists a compact set
A ⊆ G such that θ(KA \ A)/θ(A) < ε.

Remark 2.36. In particular, this shows that our definition is equivalent to the defini-
tion of amenability in the monograph [Pie84]. In order to see this compare (iv) with
[Pie84, Theorem 7.3(F*)] in combimantion with [Pie84, Proposition 7.4]. Furthermore,
it implies that the notion of ”left-amenability” in [Tem92] is equivalent to our notion of
amenability.

Proof. Clearly, (i) implies (ii), (ii) implies (iii), and (iii) implies (iv). The equivalence
of (iv) and (v) can be found in [Pie84] by combining [Pie84, Theorem 7.3 (F ∗)] , [Pie84,
Proposition 7.4], [Pie84, Theorem 7.9 (SFe)] and [Pie84, Proposition 7.11]. It thus
remains to show that (v) implies (i).

If G is compact, then (G)n∈N is a Van Hove net in G. We can thus assume G to
be not compact. Let W be a compact and symmetric neighbourhood W of eG and I
be the set of all finite subsets of G containing eG, ordered by set inclusion. For i ∈ I
define Ki := ⋃

g∈iWg. Note that there hold θ(Ki) ≥ θ(W ) > 0 and eG ∈ Ki for all
i ∈ I. Thus, by (v) for every i ∈ I there exists a compact set Ai ⊆ G such that
θ(KiAi \ Ai)/θ(Ai) < 1/θ(Ki). We now show that (Ai)i∈I is a Følner net, which implies
(WAi)i∈I to be a Van Hove net in G by Proposition 2.30. To show this let K ⊆ G
compact and note that {Wg; g ∈ G} is an open cover of K. Thus, the compactness of
K implies the existence a j ∈ I with K ⊆ ⋃

g∈jWg = Kj. Note that Kj ⊆ Ki for all
i ≥ j and hence

0 ≤ θ((KAi)∆Ai)
θ(Ai)

≤ 2θ(KAi \ Ai)
θ(Ai)

≤ 2θ(KiAi \ Ai)
θ(Ai)

<
2

θ(Ki)

for all i ≥ j. As θ is regular there holds limi∈I θ(Ki) = ∞ and we obtain (Ai)i∈I to be
Følner.
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2.5 Discrete substructures of topological groups

2.5.1 Delone sets
Let G be a locally compact group. A subset ω ⊆ G is called locally finite, whenever
ω ∩ K is finite for all compact subsets K ⊆ G. For M ⊆ G a subset ω ⊆ G is called
M-dense in G, if Mω = G. It is furthermore called M-discrete, if {Mg; g ∈ ω} is a
disjoint family. The set ω is called relatively dense, if ω is K-dense for some compact
K ⊆ G. It is called uniformly discrete, if it is V -discrete for some open neighbourhood
V of eG. If ω is relatively dense and uniformly discrete, we call ω a Delone set. For a
compact subset K ⊆ G and an open neighbourhood V of eG we denote by DV (G) the
set of all V -discrete subsets of G and by DK,V (G) the set of all K-dense and V -discrete
subsets of G. Note that DK,V (G) ⊆ DV (G) ⊆ A(G).
Remark 2.37. Whenever G is a locally compact group and V is a compact neighbour-
hood of eG, then there exists a Delone set ω in G that is V -discrete and V −1V -dense.
Indeed, let us order DV (G) by set inclusion. To apply Zorn’s lemma, we consider a chain
C in DV (G), i.e. a subset C ⊆ DV (X) that satisfies that two elements ω, ω′ ∈ C satisfy
ω ⊆ ω′ or ω′ ⊆ ω. We consider furthermore the union ξ := ⋃

ω∈C ω. If ξ /∈ DV (X), then
there are distinct g, g′ ∈ ξ such that V g and V g′ intersect. As C is a chain we obtain that
there is ω ∈ C such that g, g′ ∈ ω, which contradicts the fact that ω is V -discrete. Thus,
ξ ∈ DV (G) and as ω ⊆ ξ for all ω ∈ C we have found that each chain in DV (G) has an
upper bound. Thus, Zorn’s lemma yields a maximal element in DV (G), i.e. a V -discrete
set ω that is maximal with respect to set inclusion. For g ∈ G we then obtain that there
is g′ ∈ ω such that V g and V g′ intersect. Thus, there holds g ∈ V −1V g′ ⊆ V −1V ω and
we obtain ω to be V −1V -dense.

Uniform density

A Delone set ω ⊆ G is said to have a uniform density, whenever for every Van Hove
net (Ai)i∈I the limit limi∈I |ω ∩ Ai|/θ(Ai) exists in (0,∞) and whenever this limit is
independent of the choice of a Van Hove net. In this case we define the uniform density
of ω as this limit and denote it by dens(ω).

Delone sets in LCA groups

Let G be an LCA group. For A ⊆ G compact and g ∈ ω, we call (ω−g)∩A an A-patch
of ω ⊆ G and denote the set of all A-patches by Patω(A). A Delone set is said to have
finite local complexity (FLC ), if Patω(A) is finite for every compact set A ⊆ G.

2.5.2 Uniform lattices
Let G be a locally compact topological group. A discrete subgroup Λ ⊆ G is called
a uniform lattice, whenever it is cocompact, i.e. whenever the quotient G

/
Λ is a com-
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pact topological space. Every locally compact group that contains a uniform lattice is
unimodular, i.e. there exists a (left and right invariant) Haar measure on G [DE14, The-
orem 9.1.6]. A Borel measurable subset C ⊆ G is called a fundamental domain (of Λ),
whenever every g ∈ G has a unique representation as g = cl with c ∈ C and l ∈ Λ. In
[Mor15, Lemma 4.1.1] it is stated that every uniform lattice has a fundamental domain
and we obtain from [Mor15, Proposition 4.1.3] that θ(C) does not depend on the choice
of a fundamental domain.

Remark 2.38. Assume that C is a fundamental domain of a uniform lattice Λ. If
F ⊆ Λ is finite, then the finite union ⋃z∈F Cz is disjoint and measurable. Thus, by the
right invariance of the Haar measure there holds

θ(CF ) =
∑
z∈F

θ(Cz) = θ(C)|F |.

We next present examples of uniform lattices. For further details see [CdlH16, Chap-
ter 5.C].

Example 2.39. Zd is a uniform lattice in Rd with fundamental domain [0, 1)d.

Example 2.40. The multiplicative group R× := R \ {0} contains the uniform lattice
{2n; n ∈ Z} with fundamental domain (−2,−1] ∪ [1, 2).

Example 2.41. Every compactly generated LCA group contains a uniform lattice. In-
deed, such groups are topologically and algebraically isomorphic to Ra × Zb × H for
some a, b ∈ N0 and a compact group H, which contains the countable uniform lattice
Za+b × {eH}.

The following example4 shows that there are metrizable σ-compact LCA groups that
contain no uniform lattice.

Example 2.42. The additive group of the p-adic numbers Qp contains no uniform
lattice.

Proof. Consider a discrete subgroup Λ of G and g ∈ Λ. Now recall that Qp actually
carries the structure of a field and that |pn · g|p = p−n|g|p. Thus, pn · g → 0 as n→∞.
As furthermore pn ·g = ∑pn

j=1 g ∈ Λ the discreteness of Λ implies g = 0. This shows that
{0} is the only discrete subgroup of Qp and in particular that Qp contains no uniform
lattice.

Example 2.43. The multiplicative group Q×p contains the uniform lattice {pn; n ∈ Z}.

4 This example was presented by Yves de Cornulier in a correspondence.
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Example 2.44. The discrete Heisenberg group H3(Z) is a uniform lattice in H3(R)
with fundamental domain H3([0, 1)), where we denote

H3(M) :=


1 a c

0 1 b
0 0 1

 ; a, b, c ∈M


for M ⊆ R and equip H3(Z) and H3(R) with the matrix multiplication.

The presented examples have fundamental domains that satisfy further properties,
such as precompactness or regularity, i.e. vanishing boundary with respect to the Haar
measure. These properties will be useful in the following and we will see next that
for all uniform lattices in a locally compact group such a choice of a fundamental is
possible. Using ideas from the proof in [Mor15] we will present next that there always
exist fundamental domains with these additional properties. As we do not know of any
reference for this statement we include a full proof.

Proposition 2.45. Let G be a locally compact topological group. Then for any uniform
lattice in G there exists a regular and precompact fundamental domain that is also a
neighbourhood of eG.

Remark 2.46. In particular, we obtain that there holds θ(C) ∈ (0,∞) for all funda-
mental domains C of Λ, as all fundamental domains have the same Haar measure.

Proof of Proposition 2.45. As we assume that G is locally compact and as Λ is discrete
there exists a compact neighbourhood M̃ of eG such that M̃−1M̃ ∩ Λ = {eG}. The
Haar measure restricted to M̃ is a finite Borel measure on a compact Hausdorff space
and we thus obtain from Lemma 2.6 that there exists a compact neighbourhood M
of eG that is contained in M̃ and satisfies θ(∂M) = 0. This M in particular satisfies
M−1M ∩ Λ = {eG}.

Now U := int(M) is a precompact neighbourhood of eG and gUΛ is open in G for all
g ∈ G. Denoting the quotient map by q we thus obtain that {q(gU); g ∈ G} is an open
cover of the compact space G

/
Λ. Thus, there exists a finite sequence (gn)Nn=1 in G such

that ⋃Nn=1 q(gnU) = G
/

Λ. This sequence then in particular satisfies

N⋃
n=1

gnMΛ =
N⋃
n=1

gnUΛ = G.

Setting g0 := eG we define

C :=
N⋃
n=0

gnM \
 ⋃

0≤i<n
giMΛ

 .
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We will first show that every g ∈ G can be written uniquely as a product g = cl with
c ∈ C and l ∈ Λ. Indeed for g ∈ G = ⋃N

n=0 gnMΛ there is a minimal n ∈ {0, · · · , N}
such that g ∈ gnMΛ. We choose l ∈ Λ such that g ∈ gnMl. As g /∈ giMΛ = giMΛl
for all i < n we obtain that gl−1 ∈ gnM \

(⋃
0≤i<n giMΛ

)
⊆ C and thus in particular

that g ∈ Cl ⊆ CΛ. To show that this representation is unique let c, c′ ∈ C and
l, l′ ∈ Λ be such that cl = c′l′. As c, c′ ∈ C there are unique n,m ∈ {0, · · · , N}
such that c ∈ gnM \

(⋃
0≤i<n giMΛ

)
and c′ ∈ gmM \

(⋃
0≤i<m giMΛ

)
. If m 6= n we

assume without lost of generality that m < n. Then c = c′l′l−1 ∈ amMΛ establishes a
contradiction to c ∈ gnM \

(⋃
0≤i<n giMΛ

)
. Thus, there holds n = m and we obtain

c−1c′ = l(l′)−1 ∈ Λ ∩M−1g−1
n gmM = Λ ∩M−1M = {eG}.

It follows that c = c′ and l = l′. This shows that every g ∈ G has a unique representation.
Setting furthermore L := Λ ∩

(⋃N
n=0 gnM

)−1 (⋃N
n=0 gnM

)
we obtain a finite subset and

one easily sees that

C =
N⋃
n=0

gnM \
 ⋃

0≤i<n
giML

 .
As θ(∂M) = 0 we thus obtain that C is a Borel measurable set that also satisfies
θ(∂C) = 0. From C ⊆ ⋃N

n=0 gnM we see that C is precompact. As M = a0M ⊆ C
is a neighbourhood of eG we have shown that the constructed fundamental domain C
satisfies the additional properties.

2.5.3 Cut and project schemes
Consider locally compact groups G and H and a uniform lattice Λ in G × H. Then
(G,H,Λ) is called a cut and project scheme (CPS), whenever the projections πG and
πH satisfy the following properties. The restriction πG|Λ is injective and πH(Λ) is dense
in H. In this context we call G the physical space and H the internal space of (G,H,Λ).

Given a relatively compact subset W ⊆ H, usually called a window in this context,
such a CPS produces a subset of G via Λ(W ) := πG(Λ∩(G×W )). Subsets of G that arise
by this construction are called (uniform) weak model sets. It is called a (uniform) model
set, wheneverW has non-empty interior. A model set is said to be regular , whenever the
window is regular, i.e. the window has a topological boundary of Haar measure 0. Note
that every uniform lattice Λ in a locally compact group G is a regular model set, as one
can consider the CPS (G, {0},Λ×{0}) to obtain Λ = Λ({0}). A relatively dense subset
of a model set is called a Meyer set. Note that we assume that Λ is a uniform lattice for
all CPS. Thus, our definition implies that G and H are unimodular and in particular
differs slightly from the notions developed in [BHP18]. Model sets are usually studied
in the context of commutative groups. For further reference on commutative CPS we
recommend [Mey72] and [BG13, Chapter 7]. For a reference in the non-commutative
case see [BHP18, BH18].
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2.5.4 Uniform approximate lattices
Let G be a locally compact group. A uniform approximate lattice in G is a symmetric
Delone set ω ⊆ G that contains eG and for which there exists a finite set F ⊆ G
that satisfies ωω ⊆ Fω. Note that whenever ζ is a K-dense and symmetric subset
of a uniform lattice ω, then one easily shows ζζ ⊆ (K ∩ ζζζ)ζ and obtains that ζ is
also a uniform approximate lattice. Thus, we obtain in particular all symmetric Meyer
sets that contain eG to be uniform approximate lattices from [BH18, Proposition 2.13].
In particular, any locally compact group that is the physical space of a CPS contains
uniform approximate lattices. The reverse of this statement is shown for LCA groups
in [Mey72, Chapter II]. It is shown that for every LCA group G that contains a uniform
approximate lattice one can construct a CPS that has G as a physical space (and Rd

as an internal space), but it seems open, whether a similar statement holds for general
locally compact groups [BH18, Problem 1]. A further partial result can be found in
[Mac20].

There are examples such as Qp that contain no uniform lattices but uniform approx-
imate lattices. An example of a metrizable and separable LCA group G that contains
no uniform approximate lattices and therefore is not a physical space of a CPS is given
in [Mey72, Chapter II.11]. For further reference on uniform approximate lattices we
recommend [Mey72, BHP18, BH18, Mac20].

2.6 Convex geometry
Let X be a topological vector space, i.e. a (real) vector space equipped with a topology,
such that X equipped with addition is a topological group and such that the scalar
multiplication R × X → X is continuous. A subset K ⊆ X is called convex , whenever
λx+ (1− λ)y ∈ K for all x, y ∈ K and λ ∈ [0, 1].

A subset F of a convex set K is called a face of K, if for any x, y ∈ K there holds
x, y ∈ F as soon as there is λ ∈ (0, 1) with λx + (1 − λ)y ∈ F . Furthermore, x ∈ K
is called an extreme point of K, whenever {x} is a face of K. We denote the set of all
extreme points of K by ex(K).

Let K be a convex subset of X . A mapping f : K → (−∞,∞] is said to be affine,
whenever f preserves convex combinations, i.e. whenever f(λx + (1 − λ)y) = λf(x) +
(1−λ)f(y) for all x, y ∈ K and λ ∈ [0, 1]. Here we use the convention that r+∞ :=∞
for r ∈ (−∞,∞]. Let µ be a Borel probability measure on the Borel subsets of K. Then
there is a unique xµ ∈ K such that f(xµ) = µ(f)(=

∫
f(x)dµ(x)) for every continuous

and affine real function f on K [Phe01]. We write xµ =
∫
K xdµ(x) and call xµ the

barycenter of the measure µ.
A Choquet simplex is a compact convex set K such that for every x ∈ K there exists

a unique Borel probability measure x̂ supported on ex(K) such that x is the barycenter
of x̂.
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2.7 Dynamical systems

2.7.1 Basic notions
Let G be a topological group and X be a topological space. A continuous map π : G×
X → X is called an action of G on X (also dynamical system or flow), whenever for all
x ∈ X and all g, g′ ∈ G there holds π(eG, x) = x and π(gg′, x) = π(g, π(g′, x)). We write
πg := π(g, ·) : X → X for all g ∈ G and furthermore g.x := π(g, x) whenever the action
π is understood implicitely. In this context X is called the phase space of the action.
A subset A ⊆ X is called invariant, whenever πg(A) = A for all g ∈ G. If π and φ are
actions of a topological group G on topological spaces X and Y respectively, we call a
surjective continuous map p : X → Y a factor map, if p ◦ πg = φg ◦ p for all g ∈ G. We
then refer to φ as a factor of π and write π p→ φ. If p is in addition a homeomorphism,
then p is called a topological conjugacy and we call π and φ topologically conjugated.

2.7.2 Invariant Borel measures
Let π be an action of a topological group G on a compact Hausdorff space X. We call a
Borel probability measure µ on X invariant (with respect to π), whenever for all g ∈ G
and all Borel measurable subsets A ⊆ X there holds µ(g.A) = µ(A). An invariant
Borel probability measure µ is furthermore called ergodic, whenever µ(A) ∈ {0, 1} for
all invariant Borel sets A ⊆ X. The action π is called uniquely ergodic, if there exists
exactly one ergodic measure on X, which is equivalent to the existence of exactly one
invariant measure.

The set of all invariant Borel probability measures is denoted by MG(X). This set
is a convex subset ofM(X) and the extreme points ofMG(X) are exactly the ergodic
measures of π. Recall furthermore that we equip M(X) with the weak-* topology.
Equipping MG(X) ⊆ M(X) with the induced weak-* topology we obtain MG(X) to
be a Choquet simplex. For reference of the statements see for example [Phe01, Chapter
12].

2.7.3 Delone actions
Consider an LCA group G and recall that we denote by A(G) the closed subsets of G.
For K ⊆ G compact, an open neighbourhood V of 0 and ξ, ζ ∈ A(G) we write

ξ
K,V
≈ ζ,

whenever there is ξ ∩K ⊆ ζ + V and ζ ∩K ⊆ ξ + V . Furthermore, we define

ε(K,V ) :=
{

(ξ, ζ) ∈ A(G)2; ξ
K,V
≈ ζ

}
.
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Then there exists a compact Hausdorff topology, called the local rubber topology, such
that

Blr := {ε(K,V ); (K,V ) ∈ K(G)×N (G)}

is a base for the corresponding uniformity UA(G) on A(G). See [BL04, Theorem 3] for
reference. We call this base the local rubber base. The uniformity is called the local
rubber uniformity. Note that DV (G) and DK,V (G) are compact subsets of A(G) for
every compact subset K ⊆ G and every open neighbourhood V of 0.

Consider now the action π : G×A(G)→ A(G) with π(ω, x) := ω + x, which we call
the full shift on G. For a proof of the continuity of this action see for example [BL04].
For every compact invariant set X ⊆ A(G) we obtain an action by restricting the action
of π to an action on X. We refer to this action as the shift on X. For a Delone set
ω ⊆ G we denote Xω for the closure of Dω := {ω + g; g ∈ G} with respect to the local
rubber topology. The shift on Xω is also called the Delone dynamical system or Delone
action of ω and denoted by πω. We denote εX(K,V ) := ε(K,V ) ∩ X2 for invariant
compact subsets X ⊆ A(G) and εω(K,V ) := εXω(K,V ) for Delone sets ω ⊆ G.

If ω ⊆ G is a FLC Delone set there is another base of UXω that allows more control
over the considered sets. For K ⊆ G compact and any open neighbourhood V of 0 let

ηω(K,V ) := {(ξ, ζ) ∈ X2
ω; ∃x, z ∈ V : (ξ + x) ∩K = (ζ + z) ∩K}.

If ω ⊆ G is a FLC Delone set, then

Blm(ω) := {ηω(K,V ); (K,V ) ∈ K(G)×N (G)}

is a base of UXω . This easily follows from [BL04, Prop. 4.5]. We will refer to this base
as the local matching base of UXω .
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3 Generalizations of Fekete’s lemma
In order to define the measure theoretical entropy of an action of Z it is common to
use a subadditivity argument, which is often referred to as Fekete’s lemma [Wal82] and
which can be stated as follows.

Lemma 3.1 (Fekete’s lemma). Let (an)n∈N be a subadditive sequence in [0,∞), i.e. a
sequence that satisfies an+m ≤ an + am for all n,m ∈ N. Then the limit limn→∞ an/n
exists and equals infn∈N an/n.

If one is also interested in defining measure theoretical entropy of actions of more
general groups one needs to generalize this technique. This generalization can be done
in different directions, which we will discuss in this chapter. To do this we will need
the following notions. Recall that we denote by K(G) the set of all compact subsets of
a locally compact group G. A map f : K(G)→ R ∪ {∞} is called

positive, whenever f(A) ≥ 0 for all A ∈ K(G).

monotone, if f(A) ≤ f(B) holds for all A,B ∈ K(G) with A ⊆ B.

right invariant, if f(Ag) = f(A) holds for all A ∈ K(G) and all g ∈ G.

subadditive1, if f(A ∪ B) ≤ f(A) + f(B) holds for all A,B ∈ K(G).

strongly subadditive2, if f(A∪B)+f(A∩B) ≤ f(A)+f(B) holds for A,B ∈ K(G).

amenable along a Van Hove net (Ai)i∈I , if the limit limi∈I f(Ai)/θ(Ai) exists in R.

bounded, if supA∈K(G) f(A) <∞.

We define x/0 :=∞ for x ∈ [0,∞) and abbreviate f/θ : K(G)→ [0,∞] with f/θ(A) :=
f(A)/θ(A) for all functions f : K(G) → [0,∞). The main question of this chapter will
be under which assumptions on a function f : K(G)→ R∪{∞} and on a Van Hove net
(Ai)i∈I we obtain that f is amenable along (Ai)i∈I .

The first and probably the most direct answer is due to B. Weiss and given in [Wei03,
Theorem 5.9] in the context of countable and discrete amenable groups. It is presented

1 A subadditive function is automatically positive. For a compact subset K ⊆ G the function K(G) 3
A 7→ θ(∂KA) can be seen to be subadditive and right invariant. This function however is not
monotone.

2 A strongly subadditive function is automatically subadditive.
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that any monotone, right invariant and subadditive map is amenable along any Van
Hove net that consists of tiles. A subset A ⊆ G is said to be a tile in G, or to tile G,
whenever there exists a subset ω ⊆ G, such that Aω = G and such that θ(Au∆Av) = 0
holds for all u, v ∈ ω with u 6= v. In particular, if G is a countable discrete group A
tiles, if and only if {Av; v ∈ ω} is a partition of G. We will present the generalization
of this technique to unimodular amenable groups in Section 3.1. This generalization
is straightforward, but we include the short proof into this thesis for the convenience
of the reader and as the proof gives a good intuition for the more involved quasi-tiling
techniques that we will discuss later. In Theorem 3.3 below we present the following.

Theorem (Weiss Lemma). Let G be a unimodular amenable group. If f : K(G) → R
is a subadditive, right invariant and monotone function and (Ai)i∈I is a Van Hove net
that consists of tiling sets in G, then there holds

lim
i∈I

f(Ai)
θ(Ai)

= inf
i∈I

f(Ai)
θ(Ai)

= inf
A

f(A)
θ(A) ,

where the last infimum is taken over the set of all compact sets A that tile G.

Note that Weiss’ technique also generalizes the feature of Fekete’s lemma, that the
limit can actually be seen as an infimum. This property is important in studying upper
semi-continuity of the measure theoretical entropy map.

Naturally the question arises whether all unimodular amenable groups contain Van
Hove nets that consist of tiling sets. Unfortunately this question seems open even if one
restricts to countable discrete amenable groups [DHZ19]. Nevertheless, in the context
of aperiodic order we are most often interested in Abelian groups. In Section 3.1 we
will present that all LCA groups contain such a net.

A second generalization of Fekete’s lemma is given by J. M. Ollagnier in [Oll85]. The
statement of Ollagniers technique is similar to Weiss’ statement. Restricting from the
assumption of subadditivity to strong subadditivity we obtain the convergence for all
Van Hove nets, i.e. also without the assumption that the net has to consist of tiling sets.
This statement can be used to define and study measure theoretical entropy [Oll85], but
it is not suitable for the context of topological entropy and pressure [DFR16]. In [Oll85]
it is presented in the context of discrete amenable groups. As we will not need this
statement beyond this setting we state Ollagniers technique without generalization to
the non-discrete setting and it remains open, whether this generalization can be proven.
A proof in the discrete setting can be found in [Oll85].
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Theorem 3.2 (Ollagnier lemma). Let G be a discrete amenable group. If f : K(G)→ R
is a strongly subadditive3, right invariant and monotone function and (Ai)i∈I is a Van
Hove net in G, then there holds

lim
i∈I

f(Ai)
θ(Ai)

= inf
i∈I

f(Ai)
θ(Ai)

.

A third generalization fo Fekete’s lemma is given in [Pog13, PS16], where the authors
consider also unimodular amenable groups but Banach spaces instead of R. We will
not present the precise statement but shortly discuss why this result cannot be used to
define entropy of continuous groups such as R. In fact a simplification of the statement
to the Banach space R and right invariant functions yields that a map f : K(G) → R
that is right invariant, ”almost subadditive” and for which f/θ is bounded is amenable
along any Van Hove net. If G is a discrete group, then positivity, subadditivity and
right invariance can be used to show that f/θ is bounded but this is not possible for
non-discrete groups. Consider for example a map that is constant on K(R) \ {∅} and
satisfies f(∅) = 0. If f is positive and not constant 0, then f([0, ε])/θ([0, ε]) tends to
infinity as ε tends to 0 and thus f/θ is not bounded. Note that we want to consider such
maps in order to define topological entropy of actions of R as we will see in Remark
4.17 and thus cannot use this generalization of Fekete’s Lemma.

The for our purposes most suitable generalization of Fekete’s lemma that we encoun-
tred is based on the quasi-tiling machinery developed by D. Ornstein and B. Weiss in
[OW87]. This version can be stated as follows. Every positive, monotone, right invari-
ant and subadditive map is amenable along any Van Hove sequence. In this formulation
the statement was first phrased in [LW00] in the context of countable discrete amenable
groups. In [Gro99] M. Gromov claims that the statement can be strengthened in the
following way. He claims, considering a metrizable unimodular amenable group, that
any right invariant and subadditive map is amenable along any Van Hove sequence.
Note that in [Gro99] a short sketch for a proof is given. Working out the details of this
sketch, it is presented in [Kri07, Kri10, HYZ11, CSCK14] that the statement is valid
whenever we consider discrete amenable groups. In particular, these proofs use the
fact that f/θ is bounded whenever one considers discrete amenable groups and right
invariant and subadditive f . This boundedness cannot be assumed for non-discrete
unimodular amenable groups, such as R as we have seen above and it remained open,
whether the sketch also works in the non-discrete setting. We will thus present two
proofs of the statement in Section 3.2. We did not succeed in showing the claim of
M. Gromov in full generality and need to add the assumption of monotonicity to our
assumptions on f . However, the statement that we will present is sufficient in order to
define and study measure theoretical entropy, topological entropy and topological pres-
sure of a measure theoretical or topological action respectively as discussed for discrete

3 Note that this statement was improved in [DFR16], where the strong additivity assumption could
be replaced by a strictly weaker assumption called ”Shearers inequality”.
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amenable groups for example in [WZ92, LW00, Buf11, CSCK14]. The precise statement
of the Ornstein-Weiss Lemma can be stated as follows.

Theorem (Ornstein-Weiss Lemma). Let G be a unimodular amenable group. If the
function f : K(G)→ R is subadditive, right invariant and monotone and if (Ai)i∈I is a
Van Hove net in G, then the limit

lim
i∈I

f(Ai)
θ(Ai)

(3.1)

exists, is finite and independent of the choice of a Van Hove net.

In fact we will give two proofs of the Ornstein-Weiss Lemma for groups that arise
in the study of aperiodic order. The first proof will be presented in Subsection 3.2.1
and yields the Ornstein-Weiss Lemma for unimodular amenable groups that allow the
construction of a cut-and-project scheme (CPS), such that the group is a physical space
of this group. Using the classical quasi-tiling machinery and the ideas of M. Gromov one
can show that the Ornstein-Weiss Lemma holds for discrete amenable groups [Kri07,
Kri10, HYZ11, CSCK14]. One then shows that the Ornstein-Weiss Lemma holds in a
group with a uniform lattice by extrapolation from the lattice. Thus, whenever (G,H,Λ)
is a CPS, one obtains that the Ornstein-Weiss Lemma holds in G × H and a careful
projection argument yields that the statement of the Ornstein-Weiss Lemma also holds
in G. The advantage of this proof is that it is simpler than the second proof.

Nevertheless, as shown by Y. Meyer [Mey72], there are metrizable and σ-compact
LCA groups that do not allow the construction of a CPS, i.e. which are not the physical
space of a CPS. In order to get the Ornstein-Weiss Lemma for all unimodular amenable
groups we thus present a second proof in Subsection 3.2.2. This proof follows ideas of M.
Gromov [Gro99]. In order to perform this proof we will need to strengthen the quasi-
tiling result from [OW87] and thus study quasi-tilings. Note that our proof actually
shows the Ornstein-Weiss Lemma without any countability assumption on G and in
particular without the assumption of metrizability, which M. Gromov used to define
Van Hove nets.

3.1 The Weiss Lemma
We next show the Weiss Lemma as presented above and that every LCA group contains
a Van Hove net that consists of tiling sets. Recall that a subset A of a unimodular
amenable group G is said to be a tile in G or to tile G, whenever there exists a subset
ω ⊆ G, such that Aω = G and such that there holds θ(Au∆Av) = 0 for all u, v ∈ ω
with u 6= v. In this context we call ω a set of tiling centres for A. For finite subsets

44



3.1 The Weiss Lemma

F ⊆ ω we obtain the following relation between the cardinality and the Haar measure

θ(AF ) = θ

 ⋃
f∈F

Af

 =
∑
f∈F

θ(Af) = θ(A)|F |.

The following proof of the Weiss Lemma follows closely the arguments from [Wei03,
Theorem 5.9], which are given there in the context of discrete amenable groups. We
restated the Weiss Lemma and included the short proof to give the reader the possibility
to gain some intuition before we discuss the more involved quasi-tilings.

Theorem 3.3 (Weiss Lemma). Let G be a unimodular amenable group. If f : K(G)→ R
is a subadditive, right invariant and monotone function and (Ai)i∈I is a Van Hove net
that consists of tiles in G, then there holds

lim
i∈I

f(Ai)
θ(Ai)

= inf
i∈I

f(Ai)
θ(Ai)

= inf
A

f(A)
θ(A) ,

where the last infimum is taken over the set of all compact sets A that tile G.

Proof. As lim infi∈I f(Ai)/θ(Ai) ≥ infi∈I f(Ai)/θ(Ai) ≥ infA f(A)/θ(A) it is sufficient to
show that for all compact and tiling subsets A of G there holds lim supi∈I f(Ai)/θ(Ai) ≤
f(A)/θ(A). To do this let ε > 0 and consider a set of tiling centers ω with respect to A.
Set F̂i := {g ∈ ω; Ag ∩Ai 6= ∅} and F̌i := {g ∈ ω; Ag ⊆ Ai}. It is then straightforward
to obtain that

∂A−1Ai = A−1Ai ∩ A−1Aci

= {g ∈ G; Ag ∩ Ai 6= ∅, Ag ∩ Aci 6= ∅}
⊇ {g ∈ ω; Ag ∩ Ai 6= ∅, Ag ∩ Aci 6= ∅}
= F̂i \ F̌i.

As ω is a set of tiling centers and as F̌i ⊆ F̂i it follows that

θ
(
A
(
F̂i \ F̌i

))
= θ(A)

∣∣∣F̂i \ F̌i∣∣∣ = θ(A)
(∣∣∣F̂i∣∣∣− ∣∣∣F̌i∣∣∣).

Since AA−1 is compact and since A∂A−1Ai ⊆ ∂AA−1Ai one thus obtains from the Van
Hove property of (Ai)∈I for large i ∈ I that

∣∣∣F̂i∣∣∣− ∣∣∣F̌i∣∣∣ ≤ θ (A∂A−1Ai)
θ(A) ≤ θ (∂AA−1Ai)

θ(Ai)
θ(Ai)
θ(A) ≤ ε

θ(Ai)
θ(A) . (3.2)
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As clearly AF̌i ⊆ Ai we obtain
∣∣∣F̌i∣∣∣ ≤ θ(Ai)/θ(A). Using (3.2) we get for large i that

∣∣∣F̂i∣∣∣ ≤ ∣∣∣F̌i∣∣∣+ ε
θ(Ai)
θ(A) ≤ (1 + ε)θ(Ai)

θ(A) .

As ω is A-dense for a ∈ Ai there is g ∈ ω such that a ∈ Ag. For such g there holds
a ∈ Ag ∩ Ai and thus it follows that g ∈ F̂i. Hence, a ∈ Ag ⊆ AF̂i and we have shown
that there holds Ai ⊆ AF̂i. Using the assumptions on f we thus obtain for large i that

f(Ai)
θ(Ai)

≤
f
(
AF̂i

)
θ(Ai)

≤
∑
g∈F̂i

f(Ag)
θ(Ai)

=
∣∣∣F̂i∣∣∣ f(A)

θ(Ai)
≤ (1 + ε)f(A)

θ(A) .

Thus, lim supi∈I f(Ai)/θ(Ai) ≤ (1 + ε)f(A)/θ(A) and we obtain the statement since
ε > 0 was arbitrary.

Naturally the question arises whether all unimodular amenable groups contain Van
Hove nets of tiling sets. Unfortunately even in the case of discrete groups this question
seems open [DHZ19]. In [Wei01] it is shown that residually finite groups contain Van
Hove nets of tiling sets and it is noted that discrete abelian groups always contain Van
Hove nets of tiling sets. If G is a compactly generated LCA group then G is isomorphic
as topological groups to Ra × Zb × C for some a, b ∈ N0 and a compact group C. As
([−n, n]a × {−n, · · · , n}b × C)n∈N is a Van Hove sequence that consists of symmetric
and tiling sets, we obtain that all compactly generated LCA groups contain Van Hove
sequences that consist of symmetric and tiling sets. The next proposition yields that
we can apply the Weiss Lemma in all LCA groups.

Proposition 3.4. Every LCA group contains a Van Hove net of symmetric and tiling
sets. If the group is assumed to be σ-compact, then there exists a Van Hove sequence of
symmetric and tiling sets.

Proof. Assume that G is an LCA group and order I := K(G)× (0, 1) such that (K, ε) ≤
(K ′, ε′) whenever K ⊆ K ′ and ε ≥ ε′. Clearly, I is directed. For (K, ε) ∈ I denote by
〈K〉 the subgroup of G generated by K. Then 〈K〉 is a compactly generated LCA group
and thus contains a Van Hove sequence of symmetric and tiling sets. In particular, we
can choose a symmetric subset A(K,ε) ⊆ 〈K〉 that is (ε,K)-invariant and a tiling with
respect to 〈K〉. Furthermore, as 〈K〉 is a subgroup of G we can choose ω′ such that
G = ⋃

g∈ω′〈K〉 + g is a disjoint union. Considering tiling centres ω ⊆ 〈K〉 we obtain
ω+ω′ to be a set of tiling centres for A(K,ε). This shows that Ai tiles G for all i ∈ I. To
show that (Ai)i∈I is a Van Hove net let ε > 0 and K ∈ K(G). Then for (K ′, ε′) ≥ (K, ε)
there holds

α(A(K′,ε′), K) ≤ α(A(K′,ε′), K
′) ≤ ε′ ≤ ε

and we have shown that (Ai)i∈I is indeed a Van Hove net of symmetric and tiling sets.
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If additionally G is assumed to be σ-compact, then there is a sequence of compact
sets (Kn)n∈N such that ⋃n∈NKn = G. Without lost of generality we assume Kn ⊆ Kn+1
and choose Bn := A(Kn,1/n). Then (Bn)n∈N is a sequence and a subnet of (Ai)i∈I and
thus in particular a Van Hove sequence that consists of symmetric and tiling sets.

3.2 The Ornstein-Weiss Lemma
In this section we present two proofs of the Ornstein-Weiss Lemma. As discussed in the
introduction of this chapter the first one will be simpler and uses the structure of a CPS
and the discrete version of the statement which can be found in [Kri07, CSCK14]. The
second one gives a more general statement, is based on ideas of [Gro99] and involves an
improved version of the quasi-tiling machinery of [OW87].

3.2.1 A proof in the context of cut and project schemes
For this proof we use that all discrete groups satisfy the Ornstein-Weiss Lemma, which
we cite from [Kri07, Kri10, HYZ11, CSCK14].

Proposition 3.5 (Ornstein-Weiss Lemma - discrete version). Let G be a discrete
amenable group and let f : K(G) → R be a monotone, right invariant and subaddi-
tive map. Then for any Van Hove net (Ai)i∈I the limit limi∈I f(Ai)/|Ai| exists, is finite
and furthermore independent of the choice of the Van Hove net.

As uniform lattices in unimodular amenable groups are discrete amenable groups, we
can use that the statement holds within the uniform lattice to obtain the Ornstein-Weiss
Lemma for the surrounding group. In order to do this, we relate Van Hove nets in the
group and the uniform lattice by the following lemma. Note that this lemma will be
also important in later chapters, which motivated us to include the statements about
the fundamental domains here.

Lemma 3.6. Let Λ be a uniform lattice in a unimodular amenable group G. Let (Ai)i∈I
be a Van Hove net and set Fi := Ai ∩Λ. Then Λ has a uniform density and (Fi)i∈I is a
Van Hove net in Λ that satisfies dens(Λ) = limi∈I |Fi|/θ(Ai). For regular and precompact
fundamental domains C of Λ there furthermore holds θ(C) = dens(Λ)−1 ∈ (0,∞).

Remark 3.7. In [Moo02] it is shown that whenever (G,H,Λ) is a CPS (and G and H
are LCA groups), then every regular model set is a Delone set and posesses a uniform
density. In particular, if W ⊆ H is a precompact and regular window with non-empty
interior, then Λ(W ) has uniform density θH(W ). Note that this in particular implies
uniform lattices Λ in an LCA group G to have a uniform density as one can consider
the trivial CPS (G, {0},Λ× {0}).

To have the result also in the non-commutative case at hand and for the convenience
of the reader we include a full proof.
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Proof of Lemma 3.6. From Proposition 2.45 we know that there exists a regular and
precompact fundamental domain C of Λ and the regularity of C and Remark 2.46 yield
θ
(
C
)

= θ(C) ∈ (0,∞). By Proposition 2.26 there exists a Van Hove net (Bi)i∈I such
that C−1Bi ⊆ C

−1
Bi ⊆ Ai and limi∈I θ(Bi)/θ(Ai) = 1. It is straightforward to show

that C−1Bi ⊆ Ai and CΛ = G ⊇ Bi imply that there holds Bi ⊆ CFi. Furthermore,
by Proposition 2.25 there holds limi∈I θ

(
CAi

)
/θ(Ai) = 1. From Bi ⊆ CFi ⊆ CAi one

thus obtains limi∈I θ(CFi)/θ(Ai) = 1. As θ(C)|Fi| = θ(CFi) by Remark 2.38 we obtain
that limi∈I |Fi|/θ(Ai) = 1/θ(C) is independent of the choice of a Van Hove net and thus
that Λ has a uniform density which satisfies dens(Λ) = 1/θ(C).

To show that (Fi)i∈I is a Van Hove net in Λ let F ⊆ Λ be a compact subset. We
denote by ∂Λ

FFi the F -boundary of Fi with respect to Λ and compute

C∂Λ
FFi ⊆ (CFFi) ∩

(
CFΛ \ Fi

)
= (CFFi) ∩

(
CF (Λ ∩ (G \ Ai))

)
⊆
(
CFAi

)
∩
(
CFG \ Ai

)
= ∂G

CF
Ai,

where we furthermore denote by ∂G the Van Hove boundary with respect to G. Recall
that there holds Bi ⊆ CFi and limi∈I θ(Bi)/θ(Ai) = 1. Thus,

0 ≤ lim sup
i∈I

∣∣∣∂Λ
FFi

∣∣∣
|Fi|

= lim sup
i∈I

θ
(
C∂Λ

FFi
)

θ(CFi)

≤ lim sup
i∈I

θ
(
∂G
CF
Ai
)

θ (Bi)
= lim

i∈I

θ
(
∂G
CF
Ai
)

θ(Ai)
= 0

and we obtain (Fi)i∈I to be Van Hove in Λ from the arbitrary choice of F ∈ K(Λ).

We can now show that one can extrapolate the Ornstein-Weiss Lemma from a uniform
lattice.

Theorem 3.8 (Ornstein-Weiss Lemma - uniform lattice version). Let G be a unimodular
amenable group that contains a uniform lattice and let f : K(G) → R be a monotone,
right invariant and subadditive map. Then for any Van Hove net (Ai)i∈I the limit
limi∈I f(Ai)/θ(Ai) exists, is finite and independent of the choice of the Van Hove net.

Proof. Let K be a compact and symmetric subset of G such that Λ is K-dense. From
Proposition 2.26 we obtain the existence of a Van Hove net (Bi)i∈I such that KBi ⊆ Ai
and such that limi∈I θ(Bi)/θ(Ai) = 1. Furthermore, by Proposition 2.25 (KAi)i∈I is
a Van Hove net that satisfies limi∈I θ(KAi)/θ(Ai) = 1. Thus, setting F̌i := Bi ∩ Λ
and F̂i := (KAi) ∩ Λ for all i ∈ I we obtain by Lemma 3.6 Van Hove nets (F̌i)i∈I and
(F̂i)i∈I in Λ that satisfy dens(Λ) = limi∈I

∣∣∣F̌i∣∣∣/θ(Bi) = limi∈I

∣∣∣F̌i∣∣∣/θ(Ai) and dens(Λ) =
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limi∈I

∣∣∣F̂i∣∣∣/θ(KAi) = limi∈I

∣∣∣F̂i∣∣∣/θ(Ai). For i ∈ I there holds KF̌i ⊆ KBi ⊆ Ai. Since
G = KΛ for a ∈ Ai there are k ∈ K and l ∈ Λ such that a = kl. We therefore obtain
from the symmetry of K that l = k−1a ∈ KAi. Hence, l ∈ F̂i and we have shown
Ai ⊆ KF̂i.

In order to use that every discrete amenable group satisfies the Ornstein-Weiss Lemma,
we define fΛ : K(Λ) → R;F 7→ f (KF ) . It is straightforward to see, that fΛ is right
invariant and monotone. In order to show, that fΛ is subadditive let F,E ∈ K(Λ). As
K(F ∪ E) ⊆ KF ∪ KE we obtain from the monotonicity and the subadditivity of f
that fΛ(F ∪ E) ≤ f(KF ∪KE) ≤ fΛ(F ) + fΛ(E).

As Λ is a discrete amenable group it satisfies the Ornstein-Weiss Lemma, as shown
in [Kri07, Kri10, HYZ11, CSCK14]. This implies the existence of the following limits
and their equality

lim
i∈I

fΛ
(
F̌i
)

∣∣∣F̌i∣∣∣ = lim
i∈I

fΛ
(
F̂i
)

∣∣∣F̂i∣∣∣ . (3.3)

In particular, the Ornstein-Weiss Lemma for discrete amenable groups implies that
the value of (3.3) can also obtained by replacing

(
F̌i
)
i∈I

by any other Van Hove net
in Λ. It is thus in particular independent of the choice of (Ai)i∈I . Using dens(Λ) =
limi∈I |F̌i|/θ(Ai) = limi∈I |F̂i|/θ(Ai) and KF̌i ⊆ Ai ⊆ KF̂i we obtain

dens(Λ) lim
i∈I

fΛ
(
F̌i
)

∣∣∣F̌i∣∣∣ ≤ lim inf
i∈I

f(Ai)
θ(Ai)

≤ lim sup
i∈I

f(Ai)
θ(Ai)

≤ dens(Λ) lim
i∈I

fΛ
(
F̂i
)

∣∣∣F̂i∣∣∣
and thus the limit limi∈I f(Ai)/θ(Ai) exists, is finite and independent of the choice of
the Van Hove net (Ai)i∈I .

Theorem 3.8 is sufficient whenever one considers compactly generated LCA groups.
In the context of aperiodic order one is among other structures interested in model sets
in LCA groups and one can ask, whether all physical spaces G of a CPS (G,H,Λ) satisfy
the Ornstein-Weiss Lemma. As G × H contains the uniform lattice Λ one could hope
to somehow project this lattice in order to obtain a uniform lattice in G and thus the
Ornstein-Weiss Lemma from Theorem 3.8. This is not possible as we will see in the
next example. This example was already studied by Yves Meyer in [Mey72, Chapter
II.10] and can be found in [CdlH16, Example 5.C.10(2)]. We include a short proof of
the claims for the convenience of the reader.

Example 3.9. Consider the additive group of the p-adic numbers Qp for some prime
p. As presented in Chapter 2 this group is a metrizable σ-compact LCA group and we
have seen in Example 2.42 that this group contains no uniform lattice. Nevertheless, it
is the physical space of the following CPS. Denote by Z[p−1] the smallest subring of Qp
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3 Generalizations of Fekete’s lemma

(or R) that contains Z and p−1. Then (Qp,R,Λ) with Λ := {(x, x); x ∈ Z[p−1]} is a cut
and project scheme.

Proof. As πR(Λ) = Z[p−1] is dense in R and as πQp |Λ is clearly injective it remains to
show that Λ is a uniform lattice in Qp × R. Note first that Λ is a subgroup of Qp × R.
To show that this subgroup is discrete let x ∈ Z[p−1] such that |x|p < 1 and such that
|x|R < 1. Now recall that x ∈ Z[p−1] and thus there is a finite sequence (xi)mi=−n such
that x = ∑m

−n xip
i = ∑n

−m x−ip
−i. From |x|p < 1 we obtain that xi = 0 for i ≥ 0 and

from |x|R < 1 we obtain x−i = 0 for i ≥ 0. Thus, x = 0 and we have shown Λ to be
B1/2(0)× (−1/2, 1/2)-discrete. Here we denote the open ball in Qp by the usual notion
and use the interval notion for R. It remains to show that Λ is co-compact. To see this
consider the closed centred ball B1(0) in Qp and C := B1(0)× [0, 1]. As Z ⊆ B1(0) and
as B1(0) is a subgroup of Qp we obtain C + {(n, n); n ∈ Z} = B1(0)× R. As Z[p−1] is
dense in Qp we thus obtain that C + Λ = Qp × R. Being the continuous projection of
the compact set C we then observe that (Qp × R)/Λ is compact. This shows that Λ is
a uniform lattice.

We next show that even if one cannot project the uniform lattice, one can use that
the Ornstein-Weiss Lemma is valid in G×H to show the statement also for G. To do
this we need to relate Van Hove nets in G with some Van Hove nets in the product
space G×H.
Lemma 3.10. Let G and H be unimodular groups and assume that (Ai)i∈I and (Bj)j∈J
are Van Hove nets in G and H respectively. Then (Ai×Bj)(i×j)∈I×J is a Van Hove net
in G×H, where I × J is ordered component wise.

Proof. Consider a compact subset M ⊆ G×H and let K := πG(M) and C := πH(M)
the projections. A straightforward computation shows

∂M(Ai × Bj) ⊆ (∂KAi × ∂CBj) ∪ (KAi × ∂CBj) ∪ (∂KAi × CBj).

for all i ∈ I and j ∈ J and we compute

0 ≤ θG × θH(∂M(Ai × Bj))
θG × θH(Ai × Bj)

≤ θG(∂KAi)θH(∂CBj)
θG(Ai)θH(Bj)

+ θG(KAi)θH(∂CBj)
θG(Ai)θH(Bj)

+ θG(∂KAi)θH(CBj)
θG(Ai)θH(Bj)

(i,j)∈I×J−→ 0

We can now show that all physical spaces of CPS satisfy the Ornstein-Weiss Lemma.
Theorem 3.11 (Ornstein-Weiss Lemma - CPS version). If (G,H,Λ) is a cut and project
scheme and f : K(G) → R is a monotone, right invariant and subadditive map, then
for any Van Hove net (Ai)i∈I in G the limit limi∈I f(Ai)/θ(Ai) exists, is finite and
independent of the choice of a Van Hove net.
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Proof. Consider a monotone right-invariant and subadditive mapping f : K(G) → R
and a Van Hove net (Ai)i∈I . Denote by θH the Haar measure of H and choose the Haar
measure θG×H as the product measure θG× θH . Let (Bj)j∈J be any Van Hove net in H.
It is easy to see that h : K(G×H)→ R with

h(Q) := inf
{

N∑
n=1

f(Cn)θH(Dn); N ∈ N, Cn ∈ K(G), Dn ∈ K(H), Q ⊆
N⋃
n=1

Cn ×Dn

}

is monotone and right invariant. To see that it is also subadditive let Q and R be
compact subsets of G×H. Then whenever Q ⊆ ⋃Nn=1 Cn×Dn and R ⊆ ⋃Mm=1 Em×Fm
for N,M ∈ N and Cn, Dn, Em, Fm in K(G) and K(H) respectively there holds Q∪R ⊆⋃N
n=1 Cn ×Dn ∪

⋃M
m=1 Em × Fm and we obtain

h(R ∪Q) ≤
N∑
n=1

f(Cn)θH(Dn) +
M∑
m=1

f(Em)θH(Fm).

Taking the infimum over the considered families we see h(Q ∪ R) ≤ h(Q) + h(R) and
we have shown the subadditivity of h. We next show that for compact subsets A ⊆ G
and B ⊆ H there holds h(A × B) = f(A)θH(B). Clearly there holds h(A × B) ≤
f(A)θH(B). To show the other inequality let Cn ∈ K(G) and Dn ∈ K(H) such that
A× B ⊆ ⋃N

n=1 Cn ×Dn. As θH is monotone we assume without lost of generality that
there holdsDn ⊆ B for n ∈ N := {1, · · · , N}. Let furthermore {E1, · · · , EM} be a finite
Borel partition of B s.t. ⋃m∈M;Em⊆Dn Em = Dn for all n ∈ N , where we denoteM :=
{1, · · · ,M}. We denoteMn := {m′ ∈M; Em′ ⊆ Dn} and Nm := {n′ ∈ N ; Em ⊆ Dn′}
for n ∈ N and m ∈M and obtain

A× Em ⊆
⋃

n∈Nm
Cn ×Dn.

Thus, there holds A ⊆ ⋃
n∈Nm Cn for all m ∈ M. As f is subadditive we get f(A) ≤∑

n∈Nm f(Cn) for all m ∈M and hence there holds∑
n∈N

f(Cn)θH(Dn) =
∑
n∈N

∑
m∈Mn

f(Cn)θH(Em) =
∑

n∈N ,m∈M,
Em⊆Dn

f(Cn)θH(Em)

=
∑
m∈M

∑
n∈Nm

f(Cn)θH(Em) ≥
∑
m∈M

f(A)θH(Em) = f(A)θH(B).

This shows h(A×B) = f(A)θH(B) for compact subsets A ⊆ G and B ⊆ H. By Lemma
3.10 we obtain that (Ai × Bj)(i,j)∈I×J is a Van Hove net in G×H. As G×H satisfies
the Ornstein-Weiss Lemma this implies that

f(Ai)
θG(Ai)

= f(Ai)θH(Bj)
θG(Ai)θH(Bj)

= h(Ai × Bj)
θG×H(Ai × Bj)
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converges to a finite limit which is independent of (Ai)i∈I .

Remark 3.12. The proof of Theorem 3.11 also shows that whenever G and H are two
unimodular amenable groups and G × H satisfies the statement of the Ornstein-Weiss
Lemma, then so do G and H. Thus, we can also deduce from the arguments presented
in this section that all internal spaces of CPS satisfy the Ornstein-Weiss Lemma.

3.2.2 A proof using quasi-tilings
We next present a proof for general unimodular amenable groups, which is self-contained
and independent of the results in Subsection 3.2.1.

On quasi-tilings

Let G be a unimodular amenable group and ε > 0. A finite family (Ai)i∈F of compact
subsets of G is called ε-disjoint if for any i ∈ F there exists a compact subset Bi ⊆ Ai
such that (Bi)i∈F is a disjoint family and such that θ(Bi) > (1− ε)θ(Ai). For A ∈ K(G)
a finite family (Ai)i∈F of compact subsets of G is an ε-quasi-tiling of A, whenever there
exists a family of finite sets (Ci)i∈F such that

(a) {Aig; , g ∈ Ci} is an ε-disjoint family for all i;

(b) {AiCi; i ∈ F} is a disjoint family; and

(c) θ(A ∩ ⋃i∈F AiCi) ≥ (1− ε)θ(A).

A family (Ci)i∈F satisfying these conditions is referred to as a family of ε-quasi-tiling
centres of (Ai)i∈F (with respect to A). In [OW83, OW87, LW00] it is shown that for
any Van Hove sequence (An)n∈N in a metrizable unimodular amenable group and any
ε > 0 one can find a finite subset F ⊆ N, δ > 0 and a compact subset D ⊆ G such
that for any (δ,D)-invariant A we obtain that (Ai)i∈F ε-quasi-tiles A. We will follow
the ideas that lead to this result and show that one can also construct ε-quasi-tiling
centres Ci such that R := A \ ⋃i∈F AiCi is ”relatively invariant”, i.e. that allows to
control θ(∂KR)/θ(A) for some given K ∈ K(G). We begin this investigation with the
following statement about ε-disjointness. It appears in [OW87] in the discrete setting
and we present the simple proof for the convenience of the reader.

Lemma 3.13. Let G be a unimodular amenable group and (Ai)i∈F be an ε-disjoint
family in G. Then there holds

(1− ε)
∑
i∈F

θ(Ai) ≤ θ

(⋃
i∈F

Ai

)
.

Furthermore, if A ⊆ G is a compact subset that satisfies θ
(
A ∩

(⋃N
n=1 An

))
< εθ(A),

then also {A} ∪ {An; n = 1, · · · , N} is an ε-disjoint family.
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Proof. As (Ai)i∈F is assumed to be ε-disjoint there exists a family of compact disjoint
sets (Bi)i∈F such that θ(Bi) ≥ (1−ε)θ(Ai) and Bi ⊆ Ai holds for all i ∈ F . We compute

(1− ε)
∑
i∈F

θ(Ai) ≤
∑
i∈F

θ(Bi) = θ

(⋃
i∈F

Bi

)
≤ θ

(⋃
i∈F

Ai

)
.

To show the second statement note that the assumption on A implies

θ

(
A \

(
N⋃
n=1

An

))
= θ(A)− θ

(
A ∩

N⋃
n=1

An

)
> (1− ε)θ(A)

and thus there is ρ > 0 such that there holds (1 − ρ)θ
(
A \ ⋃Nn=1 An

)
> (1 − ε)θ(A).

As θ is regular there exists furthermore a compact subset B ⊆ A \ ⋃Nn=1 An such that
θ(B) ≥ (1 − ρ)θ

(
A \ ⋃Nn=1 An

)
≥ (1 − ε)θ(A). This B is disjoint from all An and in

particular from all Bn and we obtain {A} ∪ {An; n = 1, · · · , N} to be ε-disjoint.

We next present how invariance properties of sets of an ε-disjoint family are inherited
by the union over these sets. This can be found in [Kri07, Kri10, CSCK14] in the
context of discrete amenable groups and the proof is a straightforward generalization.
Nevertheless, we included the proof for the convenience of the reader and to keep the
proof of the Ornstein-Weiss Lemma self-contained. Recall that we define α(A,K) :=
θ(∂KA)/θ(A) for precompact subsets A,K ⊆ G.

Lemma 3.14. Let K ∈ K(G) and ε ∈ (0, 1). If (Ai)i∈F is a finite and ε-disjoint family
of non-empty and compact subsets of G, then there holds

α

(⋃
i∈F

Ai, K

)
≤ maxi∈F α(Ai, K)

1− ε .

Proof. Abbreviate
M := max

i∈F
α(Ai, K) = max

i∈F

θ(∂KAi)
θ(Ai)

.

Recall from Lemma 2.13 that there holds ∂K (⋃iAi) ⊆ ⋃i ∂KAi and thus

θ

(
∂K

(⋃
i∈F

Ai

))
≤ θ

(⋃
i∈F

∂KAi

)
≤
∑
i∈F

θ(∂KAi) =
∑
i∈F

θ(Ai)
θ(∂KAi)
θ(Ai)

≤M
∑
i∈F

θ(Ai).

As the considered family is ε-disjoint we obtain that (1 − ε)∑i θ(Ai) ≤ θ (⋃iAi) and
conclude

α

(⋃
i∈F

Ai, K

)
= θ (∂K

⋃
iAi)

θ (⋃iAi) ≤ M
∑
i θ(Ai)

(1− ε)∑i θ(Ai)
= 1

1− εM.
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We will also need to control the invariance of R\B, whenever we know how invariant
precompact subsets R,B ⊆ G are. This is possible whenever θ(R\B) is not negliagable
with respect to θ(R). Again the statement can be found in [Kri07, Kri10, CSCK14] in the
context of discrete amenable groups and we include the straightforward generalization
to unimodular amenable groups.

Lemma 3.15. Let R,B ⊆ G be precompact subsets that satisfy 0 < θ(B) ≤ θ(R). If
there exists ε > 0 such that θ(R \ B) ≥ εθ(R), then for every compact subset K ⊆ G
there holds

α(R \B,K) ≤ α(R,K) + α(B,K)
ε

.

Proof. From Lemma 2.13 we know that ∂K (R \B) ⊆ ∂KR ∪ ∂KB. Hence,

θ (∂K (R \B))
θ(R \B) ≤ 1

ε

θ(∂KR) + θ(∂KB)
θ(R) ≤ 1

ε

(
θ(∂KR)
θ(R) + θ(∂KB)

θ(B)

)
.

On fillings

The key to prove the Ornstein-Weiss quasi-tiling result mentioned above is to consider
fillings [OW87]. We will thus consider this concept next. Let A,R ⊆ G be precompact
subsets with positive Haar measure and ε > 0. We call C ⊆ G an (ε, A)-filling of R,
whenever AC ⊆ R and {Ag; g ∈ C} is ε-disjoint. The ideas of the proof of the next
lemma is sketched in [Gro99] and given in detail for discrete groups in [Kri07, Kri10,
CSCK14].

Lemma 3.16. Let A ⊆ G be a compact subset, R ⊆ G be a precompact subset and
assume both sets to have positive Haar measure. Let furthermore ε ∈ (0, 1). Then for
every finite (ε, A)-filling C of R of maximal cardinality (among all (ε, A)-fillings of R)
there holds

θ(AC) ≥ ε
(
1− α(R,A−1)

)
θ(R).

Proof. As θ(A) > 0 there is a ∈ A−1 such that Aa contains the identity eG. Then
θ(∂(Aa)−1R) = θ(a−1∂A−1R) = θ(∂A−1R) and by translating also C we can assume with-
out lost of generality that A contains eG. For g ∈ R \ ∂A−1R there holds g ∈ R ⊆ A−1R
and thus g /∈ A−1Rc. In particular, Ag ∩Rc is empty and we deduce Ag ⊆ R. If g /∈ C
we obtain θ(Ag∩AC) ≥ εθ(Ag), as otherwise by Lemma 3.13 {Ag′; g′ ∈ C∪{g}} would
be an ε-disjoint family, a contradiction to the maximal cardinality of C. For g ∈ C we
furthermore obtain Ag ⊆ AC and thus θ(Ag ∩ AC) = θ(Ag) ≥ εθ(A) from ε ∈ (0, 1).
This shows that for all g ∈ R \ ∂A−1R there holds

θ(Ag ∩ AC) ≥ εθ(A).
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Recall that we denote by χM the characteristic function of a subsetM ⊆ G. We compute
for any g′ ∈ G that

θ(A) = θ(A−1) =
∫
G
χA−1dθ =

∫
G
χA(g−1)dθ(g) =

∫
G
χA(g′g−1)dθ(g).

Thus, Tonelli’s theorem implies

θ(A)θ(AC) =
∫
G
θ(A)χAC(g′)dθ(g′)

=
∫
G

∫
G
χA(g′g−1)dθ(g)χAC(g′)dθ(g′)

=
∫
G

∫
G
χA(g′g−1)χAC(g′)dθ(g′)dθ(g)

=
∫
G

∫
G
χAg∩AC(g′)dθ(g′)dθ(g)

=
∫
G
θ(Ag ∩ AC)dθ(g)

≥
∫
R\∂A−1R

εθ(A)dθ(g)

= εθ(A)θ(R \ ∂A−1R).

We thus obtain

θ(AC) ≥ εθ(R \ ∂A−1R) ≥ ε(θ(R)− θ(∂A−1R)) = ε

(
1− θ(∂A−1R)

θ(R)

)
θ(R).

For ε > 0, compact subsets A and precompact subsets R of positive Haar measure it is
thus natural to ask, whether there exist finite (ε, A)-fillings of R of maximal cardinality.
If G is discrete, then every compact set is finite and we obtain the cardinality of every
(ε, A)-filling C of R to be bounded by |R|. The next lemma shows that we can bound
the cardinality of C also without the assumption of discreteness to obtain the existence
of finite (ε, A)-fillings of R of maximal cardinality.

Lemma 3.17. Let ε > 0, A ⊆ G be a compact subset of positive Haar measure and
R ⊆ G be a precompact subset. Then every (ε, A)-filling C of R satisfies

|C| ≤ θ(R)
(1− ε)θ(A) .

In particular, there are finite (ε, A)-fillings of R of maximal cardinality.
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3 Generalizations of Fekete’s lemma

Proof. As {Ag; g ∈ C} is an ε-disjoint family we obtain

θ(R) ≥ θ(AC) = θ

⋃
g∈C

Ag

 ≥ (1− ε)
∑
g∈C

θ(Ag) = (1− ε)|C|θ(A).

A slightly improved quasi-tiling result

Recall that in [OW87] it is shown that for any small ε > 0 and any Van Hove sequence
(An)n∈N in a metrizable unimodular group there exists a subset F ⊆ N, δ > 0 and
a compact subset D ⊆ G such that any compact and (δ,D)-invariant subset A ⊆ G
can be ε-quasi-tiled by (Ai)i∈F . We are now ready to show that one can construct the
corresponding ε-quasi-tiling centres Ci such that we can control the Haar measure of the
K-boundary of the remaining set R := A \⋃i∈F AiCi. As there holds θ(∂KR) ≤ θ(KR)
for all precompact subsets R,K ⊆ G, we formulate our result as follows.

Theorem 3.18. For any Van Hove net (Ai)i∈I , any ε ∈ (0, 1/2) and any non-empty
and compact subset K ⊆ G, there exist a finite subset F ⊆ I, δ > 0 and a compact
subset D ⊆ G with the following property. For any (δ,D)-invariant and compact subset
A ⊆ G the finite family (Ai)i∈F is an ε-quasi-tiling of A such that the ε-quasi-tiling
centres (Ci)i∈F can be chosen to satisfy ⋃i∈F AiCi ⊆ A and such that furthermore R :=
A \ ⋃i∈F AiCi satisfies θ (KR) ≤ εθ(A).

Proof. As ε ∈ (0, 2) there is N ∈ N such that there holds (1− ε/2)N ≤ ε/2 and we
set δ := ε2N+1. As (Ai)i∈I is a Van Hove sequence we can choose inductively in for
n = N, · · · , 1 such that θ(An) > 0, the in are pairwise distinct and such that

α(An, Kn) = θ(∂KnAn)
θ(An) ≤ ε2(N−n)+4, (3.4)

where we abbreviate An := Ain and Kn := K ∪
(⋃N

m=n+1 A
−1
m

)
for n = N, · · · , 0. We set

D := K0 and F := {i1, · · · , iN} and obtain that D = K0 ⊇ K1 ⊇ · · · ⊇ KN = K and
A−1
n ⊆ Kn−1 for n = 1, · · · , N .
Consider now a compact and (δ,D)-invariant subset A of G. Set R0 := A. Using

Lemma 3.17 we now choose inductively for n = 1, · · · ,M finite (ε, An)-fillings Cn of
Rn−1 of maximal cardinality, where we abbreviate Rn := Rn−1 \AnCn. Here M ≤ N is
the smallest integer where our choices lead to

θ(RM) = θ(RM−1 \ AMCM) ≤ εθ(RM−1)

andM = N if we never encounter this situation. Thus, in particular for n = 1, · · · ,M−1

56



3.2 The Ornstein-Weiss Lemma

there holds θ(Rn) > εθ(Rn−1). Note furthermore that

R = RM ⊆ RM−1 ⊆ · · · ⊆ R0 = A.

For n ∈ {M + 1, · · · , N} we set Cn := ∅. We will now show that defining Cin := Cn we
get that (Ci)i∈F = (Cn)Nn=1 is a family of ε-quasi-tiling centres that fulfils the required
properties.

We first show inductively that for n = 0, · · · ,M − 1 we obtain Rn to be
(ε2(N−n)+1, Kn)-invariant, i.e. that there holds

α(Rn, Kn) ≤ ε2(N−n)+1. (3.5)

This is clearly satisfied for n = 0, as R0 = A, K0 = D and ε2(N−0)+1 = δ. To proceed
inductively we assume Rn to be (ε2(N−n)+1, Kn)-invariant for some n < M − 1 and as
Kn+1 ⊆ Kn we obtain

α(Rn, Kn+1) ≤ ε2(N−n)+1.

Now recall from (3.4) that An+1 is (ε2(N−(n+1))+4, Kn+1)-invariant. As Cn+1 is an (ε, An+1)-
filling we obtain that {An+1g; g ∈ Cn+1} is ε-disjoint. We apply Lemma 3.14 to see

α(An+1Cn+1, Kn+1) ≤ 1
1− ε max

g∈Cn+1
α(An+1g,Kn+1)

= α(An+1, Kn+1)
1− ε

≤ ε2(N−(n+1))+4

1− ε
≤ ε2(N−n)+1.

For this we have used that ε < 1/2 yields that ε/(1− ε) < 1. As we assume n < M − 1
we obtain θ(Rn \ An+1Cn+1) = θ(Rn+1) > εθ(Rn). Thus, Lemma 3.15 yields

α(Rn+1, Kn+1) = α (Rn \ An+1Cn+1, Kn+1)

≤ α(Rn, Kn+1) + α(An+1Cn+1, Kn+1)
ε

≤ 2ε2(N−n)

≤ ε2(N−n)−1

= ε2(N−(n+1))+1

and we have completed the induction to show (3.5).
We next show that there holds

θ(R) ≤ ε

2θ(A). (3.6)
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This statement is satisfied whenever M < N , as in this case there holds

θ(R) = θ(RM) ≤ εθ(RM−1) ≤ εθ(A).

In order to show (3.6) we thus assume without lost of generality that M = N and that
θ(R) > 0. Then there holds θ(RN) = θ(R) > 0 and for n ∈ {1, · · · , N − 1} we obtain

θ(Rn) > εθ(Rn−1) > εnθ(R0) = εnθ(A) > 0.

For n ≤ M = N we have chosen Cn to be an (ε, An)-filling of Rn−1 of maximal cardi-
nality. Thus, we obtain from Lemma 3.16, (3.5) and A−1

n ⊆ Kn−1 that

θ(AnCn)
θ(Rn−1) ≥ ε

(
1− α(Rn−1, A

−1
n )

)
≥ ε (1− α(Rn−1, Kn−1))
≥ ε

(
1− ε2(N−(n−1))+1

)
≥ ε

2 .

Thus, there holds

θ(Rn) = θ(Rn−1)− θ(AnCn) ≤
(

1− ε

2

)
θ(Rn−1)

and we obtain from our choice of N that

θ(R) = θ(RN) ≤
(

1− ε

2

)N
θ(R0) ≤ ε

2θ(A).

This shows the claimed statement (3.6).
As Cn is an (ε, An)-filling of Rn−1 we obtain from the construction Rn = Rn−1 \AnCn

that {Ang; g ∈ Cn} is ε-disjoint for all n ≤M and that {AnCn; n ≤ N} = {AnCn; n ≤
M} ∪ {∅} is a disjoint family. Furthermore, one obtains

N⋃
n=1

AnCn =
M⋃
n=1

AnCn ⊆
M⋃
n=0

Rn = R0 = A.

Thus, (3.6) allows to compute

θ

(
A ∩

N⋃
n=1

AnCn

)
= θ(A)− θ(R) ≥ (1− ε)θ(A).

This shows that (Ai)i∈F is an ε-quasi-tiling of A and that ⋃i∈F AiCi ⊆ A. It remains to
show that θ(KR) ≤ εθ(A). To do this we show next that R = RM is (ε/2, K)-invariant.
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Recall from (3.4) that AM is (ε2(N−M)+4, KM)-invariant. As K ⊆ KM we obtain

α(AM , K) ≤ ε4.

As CM is an (ε, AM)-filling we obtain that {AMg; g ∈ CM} is ε-disjoint and apply
Lemma 3.14 to see

α(AMCM , K) ≤ 1
1− ε max

g∈CM
α(AMg,K)

= α(AM , K)
1− ε

≤ ε4

1− ε
≤ ε3.

Furthermore, we have

∂KRM = ∂K(RM−1 \ AMCM) ⊆ ∂KRM−1 ∪ ∂K(AMCM).

Since K ⊆ D we obtain that A is (δ,K)-invariant and as δ ∈ (0, 1) there holds θ(K) ≤
θ(A). Thus, (3.5) and K ⊆ KM ⊆ KM−1 allow to compute

θ(∂KR)
θ(A) ≤ θ(∂KRM−1)

θ(A) + θ(∂KAMCM)
θ(A)

≤ α(RM−1, K) + α(AMCM , K)
≤ α(RM−1, KM−1) + ε3

≤ ε3 + ε3 ≤ ε

2 .

From KR ⊆ ∂KR ∪ kR for any k ∈ K and (3.6) we thus conclude

θ(KR) ≤ θ(∂KR) + θ(kR) ≤
(
ε

2 + ε

2

)
θ(A) = εθ(A).

In the proof of the Ornstein-Weiss Lemma below it will be convenient to consider the
following corollary of Theorem 3.18.

Corollary 3.19. Let (Ai)i∈I be a Van Hove net and (Aφ(j))j∈J be a subnet. Let fur-
thermore ε ∈ (0, 1/2) and K ⊆ G be a non-empty and compact subset. Then there exist
a finite subset F ⊆ φ(J)(⊆ I), δ > 0 and a compact subset D ⊆ G with the follow-
ing property. For any (δ,D)-invariant and compact subset A ⊆ G the family (Ai)i∈F
is an ε-quasi-tiling of A and the ε-quasi-tiling centres (Ci)i∈F can be chosen such that⋃
i∈F AiCi ⊆ A and such that R := A \ ⋃i∈F AiCi satisfies θ(KR) ≤ εθ(A).
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Proof. As (Aφ(j))j∈J is a Van Hove net we apply Theorem 3.18 to obtain a a finite
subset E ⊆ J , δ > 0 and a compact and non-empty subset D ⊆ G such that any (δ,D)-
invariant and compact subset A ⊆ G can be ε-quasi-tiled and the ε-quasi-tiling centres
can be chosen such that the additional requirements of Theorem 3.18 are satisfied. Now
we set F := φ(E) and Ei := {j ∈ E; φ(j) = i} for i ∈ F . If then A is a compact
and (δ,D)-invariant subset, then A can be ε-quasi-tiled by (Aφ(j))j∈E and the tiling
centres C ′j can be chosen such that the additional requirements are satisfied. Setting
now Ci := ⋃

j∈Ei C
′
j for all i ∈ F one easily shows that A is also ε-quasi-tiled by (Ai)i∈F

with respect to the ε-quasi-tiling centres Ci. As a straightforward argument furthermore
yields that these Ci also satisfy the additional properties we obtain the statement of the
corollary.

The Ornstein-Weiss Lemma for general unimodular amenable groups

With Theorem 3.18 and Corollary 3.19 we have now a slightly improved quasi-tiling ma-
chinery at hand that allows to show the Ornstein-Weiss Lemma also for non-discrete uni-
modular amenable groups. As mentioned above we cannot assume that f/θ is bounded,
a property that follows from right invariance and subadditivity whenever G is discrete.
We will next give a lemma that can serve in combination with the improved quasi-tiling
machinery given in Theorem 3.18 as a replacement for the boundedness of f/θ also in
the non-discrete setting.

Lemma 3.20. Let f : K(G) → [0,∞) be a monotone, right invariant and subadditive
mapping, K a compact neighbourhood of eG. Then there exists a constant cK > 0 such
that for all non-empty and precompact subsets R ⊆ G there holds

f
(
R
)
≤ cKθ(KR).

Proof. Note first that the subadditivity of f implies that f is positive. Let V be a
compact and symmetric neighbourhood of eG that satisfies V V ⊆ K and set cK :=
f(V V )/θ(V ). For a non-empty and precompact subset R ⊆ G we let F ⊆ R be a V -
discrete subset of maximal cardinality. As such subsets in particular satisfy R ⊆ V V F
there holds

f
(
R
)
≤ f(V V F ) ≤

∑
g∈F

f(V V g) = |F |f(V V ).

As F ⊆ R is V -discrete we obtain V F = ⋃
g∈F V g to be a disjoint union and thus

θ
(
V R

)
≥ θ(V F ) =

∑
g∈F

θ(V g) = |F |θ(V ).

As V R ⊆ V V R ⊆ KR we compute

f
(
R
)
≤ f(V V )

θ(V ) θ(V R) ≤ cKθ(KR).
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Theorem 3.21 (Ornstein-Weiss Lemma - general version). Let G be a unimodular
amenable group and let f : K(G) → R be a monotone, right invariant and subadditive
mapping. Whenever (Ai)i∈I is a Van Hove net in G, then the limit

lim
i∈I

f(Ai)
θ(Ai)

exists, it is finite and it does not depend on the choice of the Van Hove net.

Remark 3.22. In [Gro99] a stronger statement is claimed. In fact it is claimed that
it is sufficient to assume that f is right invariant and subadditive. Nevertheless, we
need the monotonicity in the proof of Lemma 3.20. Note furthermore that in [GK82]
an example4 of a right invariant but not monotone function f : K(R)→ R is presented
that satisfies f(A ∪ B) ≤ f(A) + f(B) for disjoint compact subsets A,B ⊆ G and for
which f/θ is not amenable along any Van Hove sequence. Nevertheless, this function
is not subadditive and it remains open whether the statement can be shown without the
assumption of monotonicity.

Proof of Theorem 3.21. Let ε ∈ (0, 1/2) and choose an arbitrary compact neighbour-
hood K of eG. Then by Lemma 3.20 there exists a constant c > 0 such that f(A) ≤
cθ(KA) for all non-empty and precompact subsets A ⊆ G. As (KAi)i∈I is a Van Hove
net in G that satisfies limi∈I θ(KAi)/θ(Ai) = 1, we obtain

λ := lim inf
i∈I

f(Ai)
θ(Ai)

= lim inf
i∈I

f(Ai)
θ(KAi)

≤ c <∞.

In particular, there exists a subnet (f(Aφ(j))/θ(Aφ(j)))j∈J of (f(Ai)/θ(Ai))i∈I that con-
verges to λ. Thus, there is ι ∈ J such that

f(Aφ(j))
θ(Aφ(j))

≤ λ+ ε (3.7)

for all j ∈ J≥ι := {j ∈ J ; j ≥ ι}. As (Aφ(j))j∈J≥ι is a Van Hove net, we apply Corollary
3.19 to obtain a finite subset F ⊆ φ(J≥ι) ⊆ I, δ > 0 and a compact and non-empty
subset D ⊆ G such that any (δ,D)-invariant and compact subset A ⊆ G can be ε-
quasi-tiled and such that the corresponding ε-quasi-tiling centres can be chosen with
the additional properties as in Corollary 3.19.

We now consider a compact and (δ,D)-invariant subset A ⊆ G and choose ε-quasi-
tiling centres Ci such that these additional properties are satisfied, i.e. such that⋃
i∈F AiCi ⊆ A and such that R := A \ ⋃i∈F AiCi satisfies θ(KR) ≤ εθ(A). As

4 The author would like to thank Prof. Aernout van Enter for pointing out this intriguing example to
him.
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F ⊆ φ (J≥ι) we obtain from (3.7) that there holds f(Ai)/θ(Ai) ≤ λ+ ε for all i ∈ F and
we compute

f (⋃i∈F AiCi)
θ(A) ≤

∑
i∈F

∑
g∈Ci

f(Aig)
θ(A)

=
∑
i∈F

∑
g∈Ci

f(Ai)
θ(Ai)

θ(Ai)
θ(A)

≤ (λ+ ε)
∑
i∈F

∑
g∈Ci

θ(Ai)
θ(A) .

From the properties of ε-quasi-tiling centres we obtain that {Aig; g ∈ Ci, i ∈ F} is an
ε-disjoint family. Thus, ⋃i∈F AiCi ⊆ A implies that

∑
i∈F

∑
g∈Ci

θ(Ai)
θ(A) =

∑
i∈F

∑
g∈Ci

θ(Aig)
θ(A) ≤

1
1− ε

θ(⋃i∈J AiCi)
θ(A) ≤ 1

1− ε .

We have shown

f (⋃i∈F AiCi)
θ(A) ≤ λ+ ε

1− ε . (3.8)

As we require the ε-quasi-tiling centres to satisfy θ(KR) ≤ εθ(A) we obtain from the
choice of the constant c at the beginning of the proof that

f
(
R
)
≤ cθ(KR) ≤ εcθ(A).

Thus, (3.8) yields

f(A)
θ(A) ≤

f(⋃i∈F AiCi)
θ(A) +

f
(
R
)

θ(A) ≤
λ+ ε

1− ε + εc

for all (δ,K)-invariant and compact subsets A ⊆ G. Thus, considering another Van
Hove net (Bι)ι∈Ĩ , we get

lim sup
ι∈Ĩ

f(Bι)
θ(Bι)

≤ λ+ ε

1− ε + εc.

As ε > 0 was arbitrary we have shown that for any two Van Hove nets (Ai)i∈I and
(Bι)ι∈Ĩ there holds

lim sup
ι∈Ĩ

f(Bι)
θ(Bι)

≤ λ = lim inf
i∈I

f(Ai)
θ(Ai)

≤ c,

which clearly implies the statement of the theorem.

We also obtain the following statement about Følner nets.
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Corollary 3.23. Let f : K(G) → R be a monotone, right invariant and subadditive
mapping. Then whenever (Ai)i∈I is a Følner net in G and K is a compact neighbourhood
of eG, then the limit

lim
i∈I

f(KAi)
θ(Ai)

exists, is finite, equals the limit in Theorem 3.21 and does not depend on the choice of
the Følner net. Furthermore, there holds

lim sup
i∈I

f(Ai)
θ(Ai)

≤ lim
i∈I

f(KAi)
θ(Ai)

.

Proof. From Proposition 2.30 we obtain that (KAi)i∈I is a Van Hove net in G and
Proposition 2.24 yields that limi∈I θ(KAi)/θ(Ai) = 1. We thus obtain the existence of
the limit limi∈I f(KAi)/θ(Ai) from Theorem 3.21. The claimed inequality follows from
the monotonicity of f .

Remark 3.24. It remains open, whether the limit limi∈I f(Ai)/θ(Ai) exists for all Føl-
ner nets.
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4 On relative entropy
One of the most important concepts in the study of complexity of dynamical systems
is the concept of entropy. The concept of measure theoretical entropy is due to A. N.
Kolmogorov and J. G. Sinai [Kol58, Sin59]. Inspired by the measure theoretical version
the concept of topological entropy appeared first in [AKM65]. These concepts were
related in [Goo69], where it was shown that the topological entropy always bounds the
measure theoretical entropy of an invariant Borel probability measure. Completing the
variational principle in [Goo71, Din71] it was shown that the supremum over the measure
theoretical entropies with respect to all invariant Borel probability measures yields the
topological entropy. The short and elegant proof of the variational principle that can
be found nowadays in most of the literature was first given in [Mis76] and already
studies the concept of relative entropy. The work [Mis76] also shows the beginning
interest into more general (semi-) groups as it already considers actions of Nd

0. In
the context of actions of countable discrete amenable groups the concepts of measure
theoretical and topological entropy (as well as topological pressure) seem to appear first
in [STZ80], where furthermore a general version of the variational principle was shown.
Independently from this work a proof of the variational principle for actions of countable
discrete amenable groups appeared in [OP82, Oll85].

Even though entropy has been studied extensively in the context of actions of discrete
amenable groups ever since as for example in [STZ80, OP82, Oll85, OW87, WZ92,
LW00, HYZ11, CSCK14, Yan15, YZ16], it seems that actions of non-discrete groups
such as Rd or more general unimodular amenable groups have received few attention.
Up to our knowledge the only references treating these actions are [OW80, TZ91, Sch15]
and important concepts like Bowens formula, sufficient conditions for the upper semi-
continuity of the entropy map as well as a proof of the variational principle seem to be
missing in this context. This somehow surprises as it is for example presented in [Mey72]
that there are unimodular amenable groups that contain no discrete subgroups other
then the trivial one element group and thus there seems no direct possibillity to obtain
the statements from the discrete setting. As statements of entropy theory in the context
of non-discrete groups are useful in the study of aperiodic order [BLR07, JLO16] we will
thus present in this chapter that some of the techniques of the classical theory can easily
be lifted to the non-discrete setting. Others, as for example the standard definitions of
topological entropy and measure theoretical entropy as given in [Kol58, Sin59, AKM65],
seem not to be directly at hand as we will see next.

In order to see this let us first discuss these well-known approaches for an action π
of a discrete amenable groups G on a compact Hausdorff space X. For an open cover
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U of X one defines the shifted open cover Ug := {(πg)−1(U); U ∈ U} for g ∈ G. For
a finite subset F ⊆ G one furthermore denotes by UF the common refinement1 of the
open covers Ug with g ∈ F and obtains an open cover of X. Similarly one defines αg
and αF for a finite partition α of X and a finite set F ⊆ G and obtains finite partitions
αg and αF of X. As G is assumed to be discrete all compact sets are finite and any Van
Hove net (Fi)i∈I consists of finite sets. As one easily shows that2 K(G) 3 F 7→ H∗(UF )
and K(G) 3 F 7→ H∗µ(αF ) are monotone, right invariant and subadditive, one uses the
Ornstein-Weiss Lemma to define the topological entropy3 of π as

sup
U

lim
i∈I

H∗(UFi)
|Fi|

and the measure theoretical entropy4 of π as

sup
α

lim
i∈I

H∗µ(αFi)
|Fi|

,

where the suprema are taken over all open covers U of X and all finite partitions α of
X respectively.

The problem with this approach is that only the finite refinement of translates of an
open cover is necessarily an open cover. As clearly a similar statement holds for finite
partitions this approach depends on the finiteness of the Van Hove sets. We will see in
this chapter and in Chapter 5 strategies to overcome this problem and use less prominent
approaches for our definition. As the topology of the phase space of Delone actions is
defined by a uniformity and in order to avoid unnecessary countability assumptions on
the phase spaces we will follow ideas of [Hoo74] and use the structure of the uniformity
of a compact Hausdorff space. We will furthermore use the concept of relative entropy
that seems to originate from [Mis76, LW77] in order to state the Bowen entropy formula.

In this chapter we assume that G is a unimodular amenable group and that π and
φ are actions of G on compact Hausdorff spaces X and Y respectively such that φ is a
factor of π via a factor map p : X → Y .

1 Whenever U and V are two families of subsets of X, then one defines the common refinement of
U and V as the set of all intersections U ∩ V with U ∈ U and V ∈ V . Similarly one defines the
common refinement of a finite number of families.

2 For an open cover U of X we let H∗(U) be the logarithm of the minimal cardinality of a subcover
of U . Furthermore, for a finite partition α of X we define H∗µ(α) := −

∑
A∈α µ(A) log(µ(A)), where

we use the convention 0 log 0 = 0.
3 We will see in Remark 4.29 below that this approach is equivalent to the general one discussed below
whenever we consider discrete amenable groups.

4 We will see in Corollary 5.17 below that this approach is equivalent to the general one discussed
below for actions of discrete amenable groups.
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4.1 Static relative entropy
In this section we follow well-known5 ideas in order to define the static (relative) topo-
logical and measure theoretical entropy of finite partitions and finite open covers re-
spectively. We will furthermore present some results from the literature for later use
concerning these concepts. However, as discussed above, these concepts cannot directly
be used in order to define topological and measure theoretical entropy. We thus follow
ideas presented for example in [BS02] in order to define the static (relative) topological
entropy at a given scale. Inspired by this approach we also define the static (relative)
measure theoretical entropy at a given scale. Recall that X and Y are assumed to
be compact Hausdorff spaces and that p : X → Y is assumed to be continuous and
surjective.

4.1.1 Some more preliminaries
For families U and V that consist of subsets of X we say, that U is finer than V , if for
every U ∈ U there is V ∈ V with U ⊆ V . In this case we write V � U . This defines
an order relation on the set of all families of subsets of X. We define furthermore the
common refinement U ∨V as the family consisting of all intersections U ∩V with U ∈ U
and V ∈ V . Similarly one defines the common refinement of finitely many families of
subsets of X. If these families are partitions; finite; a cover; or open, then also the
common refinement is a partition; finite; a cover; or open, respectively.

Note that every finite σ-algebra of Borel sets is generated by a unique finite partition.
This allows us to identify finite partitions with finite sub-σ-algebras of BX , which we
will do in the following. With this identification we obtain easily that α � β holds if and
only if α ⊆ β holds in the interpretation as σ-algebras; and that α ∨ β is the σ-algebra
generated by α and β.

Recall that the uniformity UX of X is the set of all neighbourhoods of the diagonal
in X ×X. For η ∈ UX we say that M ⊆ X is η-small, if M2 ⊆ η. A set U of subsets
of X is said to be at scale η, if every U ∈ U is η-small. Note that if U and V are two
families of subsets of X at scale η and κ respectively, then U ∨ V is at scale η ∩ κ. In
metric spaces this concept can be reformulated as follows. Whenever X is metric and
ε > 0, then U is at scale [d ≤ ε], whenever the diameter diam(U) := sup(x,y)∈U2 d(x, y)
of every U ∈ U is less then or equal to ε.

Remark 4.1. Recall from Example 2.3 that for a cover U of M we define 〈U〉 :=⋃
U∈U U

2 and that 〈U〉 ∈ UX , whenever U is open. Using this notion we obtain that a
cover U is at scale η, if and only if 〈U〉 ⊆ η. It is thus natural to ask for finite open
covers (and finite partitions) U and V how U � V and 〈U〉 ⊆ 〈V〉 relate. In fact it is
straightforward to show that whenever we consider finite partitions α and β of X, then
there holds α � β, if and only if 〈α〉 ⊆ 〈β〉. Whenever we consider finite open covers

5 See for example [Wal82, Oll85, BS02].
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of X, then the matter is more complicated. In fact for all covers U and V of X with
V � U there holds 〈U〉 ⊆ 〈V〉, but the converse fails in general. To see this consider for
example the open cover {{−1, 1}, {0, 1}, {−1, 0}} of {−1, 0, 1} equipped with the discrete
topology. Note furthermore that usually 〈α〉 /∈ UX for a finite partition α of X.

4.1.2 Static relative topological entropy
For an open cover U of X and M ⊆ X we define NM(U) as the minimal cardinality of
a subset of U that covers M . Furthermore, we define Np(U) := supy∈Y Np−1(y)(U) and
H∗p (U) := log (Np(U)) . For η ∈ UX we define the static topological entropy of p at scale
η as

Hp(η) := inf
U
H∗p (U),

where the infimum is taken over all open covers U of X at scale η. If Y is a singleton,
we call H(η) := Hp(η) the static topological entropy of X at scale η.

Remark 4.2. Let η ∈ UX . As X is compact there is a finite open cover of X at scale
η. Thus, for every M ⊆ X there exists a family of open and η-small subsets of X that
covers M . For M ⊆ X and η ∈ UX we denote by covM(η) the minimal cardinality of
such a family. We will see next that there holds

Hp(η) = log
(

sup
y∈Y

covp−1(y)(η)
)
.

Indeed, whenever U is an open cover of X at scale η, then every subset of U consists
of open and η-small sets. Thus, Np−1(y)(U) ≥ covp−1(y)(η) for every y ∈ Y and we
obtain Hp(η) ≥ log(supy∈Y covp−1(η)). To show the remaining inequality, consider for
y ∈ Y a family Uy consisting of open and η-small subsets of X that covers p−1(y) and
which is of minimal cardinality covp−1(y)(η). Then U := ⋃

y∈Y Uy is an open cover of X.
Furthermore, as Uy is a subset of U that covers p−1(y), we obtain Np−1(y)(U) ≤ |Uy| =
covp−1(y)(η) for every y ∈ Y and it follows that

Hp(η) ≤ H∗p (U) ≤ log
(

sup
y∈Y

covp−1(y)(η)
)
.

4.1.3 Static relative measure theoretical entropy
Consider a Borel probability measure µ on X. Let α a finite partition of X. Let A
be a sub-σ-algebra of the Borel σ-algebra BX . We denote by Eµ(f |A) the conditional
expectation of f given A in L1(X,µ). For α ∈ PX we define

H∗µ(α|A) := −
∑
A∈α

∫
X
Eµ(χA|A) log(Eµ(χA|A))dµ.
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Furthermore, we define

H∗µ(α) := H∗µ(α|{∅, X}) = −
∑
A∈α

µ(A) log(µ(A)).

As p : X → Y is a continuous map p−1(BY ) is a sub-σ-algebra of BX and we define
H∗µ,p(α|A) := H∗µ(α|p−1(BY )∨A) and H∗µ,p(α) := H∗µ(α|p−1(BY )) for a finite partition α
of X and a sub σ-algebra A of BX . For η ∈ UX we define the static measure theoretical
entropy of X at scale η as

Hµ(η) := inf
α
H∗µ(α),

where the infimum is taken over all finite partitions α at scale η. Similarly we define
the static measure theoretical entropy of p at scale η as

Hµ,p(η) := inf
α
H∗µ,p(α).

4.1.4 Properties of static relative entropy
In this subsection we cite some well-known statements about static entropy.

Basic properties

The statement of the following lemma gives the link between measure theoretical and
topological entropy and can be found for example in the proof of [HYZ06, Lemma
2.3.(2)].

Lemma 4.3. Let µ be a Borel probability measure on X. For every finite open cover
U of X there exists a finite partition α, which is finer than U and for which there holds
H∗µ,p(α) ≤ H∗p (U).

The following proposition collects some well-known statements about static relative
topological entropy which are straightforward to prove. For reference see [Wal82, Section
7.1].

Proposition 4.4. For finite open covers U and V of X there holds

(i) H∗p (U) ≤ H∗(U).

(ii) H∗p (U ∨ V) ≤ H∗p (U) +H∗p (V).

(iii) If V is finer than U , then H∗p (U) ≤ H∗p (V).

The following proposition is the counterpart of Proposition 4.4 for measure theoretical
entropy and its statements are also straightforward to proof. For reference for the non-
relative versions of the statements of (ii), (iii), and (iv) see [Wal82, Theorem 4.3]. From
a remark below [Wal82, Definition 4.8] one then easily deduces the relative statements
and (i).
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Proposition 4.5. Let µ be a Borel probability measure. For finite partitions α, β and
γ of X there holds

(i) H∗µ,p(α|β) ≤ H∗µ(α|β), in particular H∗µ,p(α) ≤ H∗µ(α).

(ii) H∗µ,p(α ∨ β|γ) = H∗µ,p(α|γ) +H∗µ,p(β|α ∨ γ), in particular H∗µ,p(α ∨ β) = H∗µ,p(α) +
H∗µ,p(β|α).

(iii) If β is finer than α, then H∗µ,p(α|γ) ≤ H∗µ,p(β|γ), in particular H∗µ,p(α) ≤ H∗µ,p(β).

(iv) If γ is finer than β, then H∗µ,p(α|β) ≥ H∗µ,p(α|γ), in particular H∗µ,p(α) ≥ H∗µ,p(α|γ).

Whenever we consider a chain of factor maps we furthermore obtain the following.
We omit the straightforward proof.

Proposition 4.6. Let ψ be a factor of φ via a factor map q and note that this yields the
situation π p→ φ

q→ ψ. Then for any η ∈ UX there holds Hp(η) ≤ Hq◦p(η). Furthermore,
for η ∈ UX and any invariant Borel probability measure µ on X there holds Hµ,p(η) ≤
Hµ,q◦p(η).

The non-relative version of the following is contained in [BS02, Proposition 9.2.2].
Since there holds H∗µ,p(α|β) ≤ H∗µ(α|β) for all finite partitions α, β, as we have seen in
Proposition 4.5(i) above, we can also deduce the following relative version from [BS02].

Lemma 4.7. Let µ be a Borel probability measure on X and r ≥ 0 be a fixed integer.
Then for every ε > 0 there is a δ > 0 such that for any two partitions α = {A1, · · · , Ar}
and β = {B1, · · · , Br} of X in r sets that satisfy ∑r

i=1 µ(Ai∆Bi) < δ there holds
H∗µ,p(α|β) +H∗µ,p(β|α) < ε.

Below we will also need the following statement which follows a straightforward adap-
tation of the arguments of [Wal75, Theorem 4.7].

Lemma 4.8. Let µ be a Borel probability measure on X. Let (βi)i∈I be a net of finite
partitions of X such that βi is finer than βj, whenever i ≥ j. If α is a finite partition and
A is the σ-algebra generated by ⋃i∈I βi, then there holds limi∈I H

∗
µ,p(α|βi) = H∗µ,p(α|A).

On upper semicontinuity

Recall that we equip M(X) with the weak-* topology. It is well-known that the non-
relative version H(·)(α) is continuous in all points µ ∈M(X) as soon as X is metrizable,
whenever the finite partition α has almost no boundary with respect to µ, i.e whenever
µ(∂α) = 0 with ∂α = ⋃

A∈α ∂A. The proof of the following lemma is inspired by [HYZ06,
Lemma 3.4], where α is assumed to have empty boundary, i.e. that ∂α = ∅ and X is
assumed to be metrizable. We next present how to avoid these assumptions.
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Lemma 4.9. Let α and β be finite partitions of X and assume µ to be a Borel probability
measure on X such that α and β have almost no boundary with respect to µ. Then the
map H∗(·),p(α|β) : M(X)→ [0,∞) is upper semi-continuous in µ.

Proof. Let ε > 0 and recall that we denote the push forward of µ along p as p∗µ.
We furthermore denote by I the set of all finite partitions of Y that have almost no
boundary with respect to p∗µ. Now for any open subset U ⊆ X we obtain from the
regularity of µ that there is a compact subset Kn ⊆ U such that p∗µ(U \ Kn) < 1/n.
Furthermore, by Lemma 2.6 there is a compact neighbourhood Mn of Kn such that Mn

has almost no boundary with respect to p∗µ and such that Mn ⊆ U . Thus, clearly
αn := {Mn, X \Mn} ∈ I and we obtain that M := ⋃

n∈NMn satisfies p∗µ(U∆M) =
p∗µ(U \ M) = 0. We denote by ∨

γ∈I γ the sigma algebra generated by ⋃
γ∈I γ and

obtain that ∨γ∈I γ is up to p∗µ identical with BY . We order I with the order � and
set βγ := β ∨ p−1(γ) for γ ∈ I to obtain a net (βγ)γ∈I of finite partitions of X with
almost no boundary with respect to µ. This net clearly satisfies βγ � βγ′ , whenever
γ � γ′. Furthermore, we obtain that up to µ that the σ-algebra ∨γ∈I βγ generated
by ⋃γ∈I βγ satisfies ∨γ∈I βγ = β ∨ p−1

(∨
γ∈I γ

)
= β ∨ p−1 (BY ) and thus in particular

that H∗µ(α|∨γ∈I βγ) = H∗µ(α|β ∨ p−1(BY )) = H∗µ,p(α|β). By Lemma 4.8 we thus obtain
that there is γ ∈ I such that Hµ(α|βγ) ≤ Hµ,p(α|β) + ε. As α and βγ have almost
no boundary with respect to µ one easily obtains the continuity of H(·)(α|βγ) in µ and
there is an open neighbourhood V of µ such that Hν(α|βγ) ≤ Hµ(α|βγ) + ε is satisfied
for all ν ∈ V . As clearly βγ is a partition of (β ∨ p−1(BY ))-measurable sets we compute
Hν,p(α|β) = Hν(α|β ∨ p−1(BY )) ≤ Hν(α|βγ) ≤ Hµ(α|βγ) + ε ≤ Hµ,p(α|β) + 2ε for
ν ∈ V .

Properties of entropy at a certain scale

We finish this section with some statements about static relative topological and measure
theoretical entropy at a certain scale, which are a direct consequence of Lemma 4.3,
Proposition 4.4 and Proposition 4.5.

Proposition 4.10. Let µ be a Borel probability measure. For η, κ ∈ UX there holds

(i) Hµ,p(η) ≤ Hp(η) <∞.

(ii) Hp(η) ≤ H(η) and Hµ,p(η) ≤ Hµ(η).

(iii) Hp(η ∩ κ) ≤ Hp(η) +Hp(κ) and Hµ,p(η ∩ κ) ≤ Hµ,p(η) +Hµ,p(κ).

(iv) Hp(η) ≤ Hp(κ) and Hµ,p(η) ≤ Hµ,p(κ), whenever κ ⊆ η.

Remark 4.11. For η ∈ UX there holds supµ∈M(X) Hµ,p(η) < ∞. Indeed, note that the
map (0, 1] 3 x 7→ −x log(x) attains a maximum at x = 1/e and that −(1/e) log(1/e) =
1/e ≤ 1. Thus considering any finite partition α at scale η we obtain for every Borel
probability measure µ on X that Hµ,p(η) ≤ Hµ(η) ≤ H∗µ(α) ≤ |α| .
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4.2 Relative entropy
In this section we consider an action π of a unimodular amenable group G on a compact
Hausdorff space X. We furthermore consider a factor φ of π via a factor map p : X → Y ,
i.e. π p→ φ.

4.2.1 Bowen entourages
For a precompact subset A ⊆ G and η ∈ UX we define the Bowen entourage as

ηA :=
⋂
g∈A

{
(x, y) ∈ X2; (g.x, g.y) ∈ η

}

and abbreviate ηg := η{g} for g ∈ G. This notion seems to origin from [Oll85], where it
is studied in the context of discrete amenable groups. Clearly, whenever G is discrete,
then ηA is a neighbourhood of the diagonal ∆X in X2 as it is a finite intersection of
neighbourhoods of the diagonal. We thus obtain ηA ∈ UX , whenever G is discrete.
Using the continuity of π and the compactness of X and A we will show in Lemma 4.12
below that this also holds true for non-discrete groups, which justifies the name ”Bowen
entourage”. As we have not encountered the statement in the literature we include a
full proof for the convenience of the reader. In order to omit brackets we will use the
convention, that the operation of taking a Bowen entourage is stronger binding than
the product of entourages.

Lemma 4.12. For every η ∈ UX and every precompact subset A ⊆ G we have ηA ∈ UX .

Proof. Note that ηA ⊆ ηA. We can thus assume without lost of generality that A is
closed and hence compact. Note that π : A × X → X is uniformly continuous as a
continuous mapping between compact Hausdorff spaces. Thus,

{((a, x), (a′, x′)) ∈ (A×X)2; (a.x, a′.x′) ∈ η}

is a neighbourhood of the diagonal ∆A×X in A × X. By the definition of the product
topology we obtain the existence of κ ∈ UA and ρ ∈ UX such that for (a, a′) ∈ κ
and (x, x′) ∈ ρ there holds (a.x, a′.x′) ∈ η. In particular, for (x, x′) ∈ ρ there holds
(a.x, a.x′) ∈ η for all a ∈ A and we obtain (x, x′) ∈ ηA. This shows ηA ⊇ ρ ∈ UX and
we conclude ηA ∈ UX .

The following lemma summarizes some basic properties of the Bowen entourage that
we will use frequently below. In particular, it justifies to write ηAB for η(AB) = (ηA)B.
The proofs are straightforward, but as we do not know of any reference we included
them for the convenience of the reader.
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Lemma 4.13. For η, κ ∈ UX and precompact subsets A,B ⊆ G there holds

(i) ηA ⊆ ηB, whenever B ⊆ A,

(ii) ηA ⊆ κA, whenever η ⊆ κ,

(iii) η(AB) = (ηA)B,

(iv) ηA∪B = ηA ∩ ηB and

(v) ηAκA ⊆ (ηκ)A.

Proof. The statements of (i) and (ii) follow directly from the definition. For x, y ∈ X
there holds ((ab).x, (ab).y) = (a.(b.x), a.(b.y)) ∈ η for all a ∈ A and b ∈ B, from which
we obtain that there holds (x, y) ∈ η(AB) if and only if (x, y) ∈ (ηA)B. This shows (iii).
Furthermore, (x, y) ∈ ηA ∩ ηB is equivalent to (g.x, g.y) ∈ η for all g ∈ A ∪ B, i.e.
(x, y) ∈ ηA∪B and (iv) follows. To show (v) let (x, z) ∈ ηAκA. Then there exists y ∈ X
with (x, y) ∈ ηA and (y, z) ∈ κA. Thus, for all a ∈ A there holds (a.x, a.y) ∈ η and
(a.y, a.z) ∈ κ and we obtain (a.x, a.z) ∈ ηκ for all a ∈ A, i.e. (x, z) ∈ (ηκ)A.

The structure of the set of all Bowen entourages with respect to a fixed compact set
can be described as follows.

Proposition 4.14. For any non-empty and compact subset K of G the set {ηK ; η ∈
UX} is a base of the uniformity UX .

Proof. Note first that Lemma 4.12 implies that BK := {ηK ; η ∈ UX} ⊆ UX . We need
to show that any η ∈ UX contains an element of BK . To do this we consider g ∈ K−1.
As eG ∈ gK we obtain from Lemma 4.13 that there holds ηgK ⊆ η and it remains to
show ηgK ∈ BK . This however follows as Lemma 4.13 and ηg ∈ UX allow to conclude
ηgK = (ηg)K ∈ BK .

Remark 4.15. The definition of the Bowen entourage is inspired by the definition of
the Bowen metric dA. This consept origins from R. Bowens visionary article [Bow71]
and the related definition of topological entropy became in particular important in the
elegant proof of the variational principle by M. Misiurewicz [Mis76]. To introduce this
concept assume that X is metrizable and equipped with a metric d that generates the
topology of X. For A ⊆ G compact we define

dA(x, y) := max
a∈A

d(a.x, a.y)

for x, y ∈ X. This notion is well-defined as A 3 g 7→ d(πg(x), πg(y)) is a continuous
function on a compact space for all x, y ∈ X. It is straightforward to show, that dA is a
metric. The connection to the Bowen entourage can be formalized by [dA < ε] = [d < ε]A
and [dA ≤ ε] = [d ≤ ε]A for all compact A ⊆ G and ε > 0. Note that Lemma 4.12 can

73



4 On relative entropy

be seen as the natural generalization of the fact that all Bowen metrics with respect to π
induce the same topology, as it easily follows from this lemma that they induce the same
uniformity and the topology of a compact Hausdorff space can be reconstructed from the
uniformity.

We omit the straightforward proof of the following invariance properties of H∗p , H∗µ,p,
Hp andHµ,p. For the stataments in (i) and (ii) in the non-relative case see [Wal82, BS02].
The statement of (iii) follows from (i) and (ii).

Lemma 4.16. Let µ be an invariant Borel probability measure. Then for any finite
open cover U , any finite partition α, any η ∈ UX and any g ∈ G there holds

(i) H∗p (Ug) = H∗p (U).

(ii) H∗µ,p(αg|βg) = H∗µ,p(α|β) and in particular H∗µ,p(αg) = H∗µ,p(α).

(iii) Hp(ηg) = Hp(η) and Hµ,p(ηg) = Hµ,p(η).

4.2.2 Relative topological and measure theoretical entropy
We can now define entropy for actions of non-discrete unimodular amenable groups. We
will present below that this definition is equivalent to the classical one in the discrete
case. Let µ be an invariant Borel probability measure on X and η ∈ UX . From
Lemma 4.13(i) and Proposition 4.10(iv) we obtain that K(G) 3 A 7→ Hp(ηA) and
K(G) 3 A 7→ Hµ,p(ηA) are monotone. Furthermore, from Lemma 4.16(iii) it follows
that these maps are right invariant and Lemma 4.13(iv) and Proposition 4.10(iii) imply
the subadditivity. As G satisfies the Ornstein-Weiss Lemma the following limits exist
independently from the choice of a Van Hove net (Ai)i∈I in G. We call

E
(
η
∣∣∣π p→ φ

)
:= lim

i∈I

Hp(ηAi)
µ(Ai)

the relative topological entropy of p at scale η and

Eµ

(
η
∣∣∣π p→ φ

)
:= lim

i∈I

Hµ,p(ηAi)
µ(Ai)

the relative measure theoretical entropy of p at scale η. Furthermore, we define

E
(
π

p→ φ
)

:= sup
η∈UX

E
(
η
∣∣∣π p→ φ

)
the relative topological entropy of p and

Eµ

(
π

p→ φ
)

:= sup
η∈UX

Eµ

(
η
∣∣∣π p→ φ

)
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the relative measure theoretical entropy of p. If φ is an action on a single point, we write
E(π) := E

(
π

p→ φ
)
and Eµ(π) := Eµ

(
π

p→ φ
)
for the topological entropy of π and the

measure theoretical entropy of π respectively and define similarly E(η|π) and Eµ(η|π).

Remark 4.17. (i) From Proposition 4.10(iv) and Lemma 4.13(ii) we obtain that
there holds E

(
η|π p→ φ

)
≥ E

(
κ|π p→ φ

)
and Eµ

(
η|π p→ φ

)
≥ Eµ

(
κ|π p→ φ

)
,

whenever η ⊆ κ. Thus, there holds

E
(
π

p→ φ
)

= sup
η∈BX

E
(
η
∣∣∣π p→ φ

)
and a similar statement about measure theoretical entropy for any base BX of UX .

(ii) If (X, d) is a compact metric space, we can choose the base {[d < ε]; ε > 0}.
Whenever G is a discrete amenable group this yields the usual notion of topological
entropy and measure theoretical entropy as discussed for example in [Wal75, BS02]
for actions of Z and in [Oll85] for discrete amenable groups.

(iii) Recall that we denote 〈U〉 := ⋃
u∈U U

2 for any open cover U of X. Then the set
of all 〈U〉, where U is a finite open cover of X, is a base of the uniformity UX .
Using this base one obtains the approach of [TZ91].

(iv) From Proposition 4.10(i) we obtain Goodwyn’s half of the variational principle
[Goo71]. For every η ∈ UX and every invariant Borel probability measure µ on X
there holds Eµ(η|π p→ φ) ≤ E(η|π p→ φ) and in particular Eµ(π p→ φ) ≤ E(π p→ φ).

(v) Consider the continuous rotation R × T → T with (g, x) 7→ g + x mod 1 and
T := R

/
Z. Then A 7→ H ([d < δ]A) = H ([dA < δ]) = H ([d < δ]) is constant on

K(R) \ {∅}. Hence,

sup
A∈K(R)

log(H ([d < δ]A))
θ(A)

is not bounded. In order to define topological entropy we thus cannot add the
assumption that f/θ is bounded to the assumptions on f in the Ornstein-Weiss
Lemma if we want to apply this technique in order to define entropy.

(vi) Clearly, one would expect that the topological entropy of an action of a compact
group is 0. Nevertheless, this is not satisfied for the given definition. Indeed, note
that whenever G is a compact group, then (G)n∈N is a Van Hove net in G and
normalizing θ(G) = 1 we obtain that

E
(
π

p→ φ
)

= sup
η∈UX

Hp (ηG) = sup
η∈UX

Hp (η) .
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In particular, whenever there is y ∈ Y such that p−1(y) consists of more than one
element, then E

(
π

p→ φ
)
> 0 and in particular, whenever X consists of more than

one element, then E(π) > 0.

(vii) From Proposition 4.6 it is straightforward to conclude that whenever π p→ φ
q→ ψ

is a chain of factor maps and µ is an invariant Borel probability measure on the
phase space of π, then there holds E

(
π
q◦p→ ψ

)
≥ E

(
π

p→ φ
)
and Eµ

(
π
q◦p→ ψ

)
≥

Eµ

(
π

p→ φ
)
.

It is natural to ask, whether entropy can also be defined using Følner or ergodic
nets. These concepts are equivalent whenever G is discrete but already pairwise non-
equivalent in Rd. We will see in Remark 4.20 below that the concept of ergodic nets is
not suitable in order to define entropy but present next, that one can indeed use Følner
nets.

Proposition 4.18. For every Følner net (Ai)i∈I there holds

E
(
π

p→ φ
)

= sup
η∈UX

lim inf
i∈I

Hp(ηAi)
θ(Ai)

= sup
η∈UX

lim sup
i∈I

Hp(ηAi)
θ(Ai)

and the statement remains valid, whenever we consider Eµ and Hµ,p for an invariant
Borel probability measure µ.

Proof. For a compact neighbourhood M of 0 we obtain (MAi)i∈I to be a Van Hove net.
As ηM ∈ UX for all η ∈ UX and limi∈I θ(MAi)/θ(Ai) = 1 we compute

E
(
π

p→ φ
)

= sup
η∈UX

lim
i∈I

Hp(ηMAi)
θ(MAi)

= sup
η∈UX

lim
i∈I

Hp((ηM)Ai)
θ(Ai)

≤ sup
ε∈UX

lim inf
i∈I

Hp(εAi)
θ(Ai)

≤ sup
ε∈UX

lim sup
i∈I

Hp(εAi)
θ(Ai)

≤ sup
ε∈UX

lim
i∈I

Hp(εMAi)
θ(MAi)

= E
(
π

p→ φ
)
.

The proof of the statement about measure theoretical entropy is similar.

Remark 4.19. It remains open, whether one can define relative entropy at a certain
scale via Følner nets and whether the limit superior is a limit in the above formulas.

Remark 4.20. The formulas for topological and measure theoretical entropy as pre-
sented for Følner nets do not hold for ergodic nets. We will discuss this next for the
case of topological entropy, but note that the arguments can be drawn similarly for mea-
sure theoretical entropy. Consider any action π of R with E(π) ∈ (0,∞) as for example
presented in Example 6.32 below. In Theorem 5.5 we will see that Fn := {1, · · · , n}
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allows to compute
E(π) = sup

η∈UX
lim inf
n→∞

Hp(ηFn)
n

.

As E(π) > 0 there is η ∈ UX such that lim infn→∞H(ηFn)/n =: c > 0. In particular, we
thus observe

lim inf
n→∞

H
(
ηFn2

)
/n2 ≥ c > 0.

From Proposition 2.22 we obtain that (An)n∈N with An := [0, n] ∪ Fn2 is an ergodic net
and conclude from An ⊇ Fn2 that

sup
η∈UX

lim inf
n→∞

H(ηAn)
θ(An) ≥ lim inf

n→∞

H(ηAn)
θ(An) ≥ lim inf

n→∞

H
(
ηFn2

)
n

=∞ > E(π).

4.3 Some approaches to entropy
Topological and measure theoretical entropy are well-studied concepts. In this section
we present that generalizing the classical theory of actions of Z to more general groups
can be done into different non-equivalent directions. We will furthermore see that the
well-known approach of [Bow71] via spanning and separating sets can be used in order
to obtain a different approach to our notion of topological entropy.

4.3.1 Entropy along thin Følner nets
In [ST18] a variation of Følner nets is presented that is not equivalent to our definition
but which we want to discuss next as this notion allows a non-equivalent approach to
entropy. In order to separate this concept from our concept of Følner nets, we will refer
to it as ”thin Følner nets”. To define it let us consider finite subsets E,F of a unimodular
group G and an open neighbourhood V of eG. We define the V -matching number of E
and F as the maximal cardinality of a subset M of E such that there exists an injection
b : M → F such that φ(e) ∈ V e holds for any e ∈ M . We denote mV (E,F ) for this
number. We say that a net (Fi)i∈I of non-empty and finite subsets of G is a thin Følner
net, whenever for any g ∈ G and any open neighbourhood V of eG there holds

lim
i∈I

mV (Fi, gFi)
|Fi|

= 1.

In [ST18, Remark 4.6] it is presented that a unimodular group is amenable if and only
there exists a thin Følner net in G. Furthermore, as one can consider V = {eG} in
a discrete group the concepts of thin Følner nets and of Følner nets agree for discrete
groups.

The advantage of thin Følner nets in comparison with Følner or Van Hove nets is that
they consist of finite sets, which allows to use the concept of the common refinement
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UF and αF for open covers U and finite partitions α respectively. It is natural to ask,
whether taking the supremum over all finite open covers U in

sup
U

lim sup
i∈I

H∗µ(αFi)
|Fi|

(4.1)

yields the topological entropy E(π) for all thin Følner nets (Fi)i∈I . Similarly one can
ask, whether taking the supremum over all finite partitions α in

sup
α

lim sup
i∈I

H∗µ(αFi)
|Fi|

(4.2)

yields the measure theoretical entropy Eµ(π) for an invariant Borel probability measure
µ. We will see in this subsection that this is not the case already for actions of R.

Remark 4.21. Whenever G is a discrete amenable group, then we have already seen
above that the concepts of thin Følner nets and Følner nets agree. From Remark 4.29
in combination with Proposition 4.28 and Corollary 5.17 below we will see that (4.1)
and (4.2) indeed yield the topological and the measure theoretical entropy for actions of
discrete groups. We will furthermore see that the Ornstein-Weiss Lemma can be applied
for actions of discrete amenable groups to yield that the limit superior is a limit and
that the notions are independent of the choice of a Følner net. It remains open, whether
(4.1) and (4.2) are independent of the choice of a thin Følner net for all unimodular
amenable groups and whether the limit superior is always a limit.
In a communication Friedrich Martin Schneider suggested to consider the approach in

[Oll85] and explained how to follow ideas of [Oll85, Proposition 3.1.9] to show that one
can generalize another generalization of Fekete’s lemma (Theorem 3.2) for thin Følner
nets. To be a bit more precise it seems that one can show that for maps f : F(G) →
[0,∞), that are strongly subadditve, right invariant and furthermore continuous with
respect to a suitable topology on F(G), the limit limi∈I f(Fi)/|Fi| exists, is finite and
independent of the choice of a thin Følner net (Fi)i∈I . Such a theorem would be applicable
to (4.2) (but not to (4.1) [DFR16]) and could be used to yield the existence of the limit
as well as the independence from a thin Følner net in (4.2).
Following the ideas of [Oll85, Section 5.2] it also seems that one can show a version

of the variational principle for the entropy along thin Følner nets, which could yield that
(4.1) is also independent of the choice of a thin Følner net. Unfortunately carrying out
these ideas would leave it open, whether the limit superior in (4.1) is a limit. As we will
see next that this approach is not suitable in order to study the patch counting entropy,
we did not include further details or investigations into this direction into this thesis.

We will discuss next that our approach to entropy and the approach along thin Følner
nets are non-equivalent. Let us start our discussion with an example of a thin Følner
net.

78



4.3 Some approaches to entropy

Example 4.22. Let I := Z × Z be ordered component wise and consider F(n,m) :=
[0, 2n] ∩ (2−mZ). Then (Fi)i∈I is a thin Følner net in R.

Proof. Consider ε > 0, g ∈ R and set V := Bε(0). For δ ∈ (0, 1) we obtain for
sufficiently large m,n ∈ Z that there holds (2−mZ + g) ∩ V 6= ∅ and furthermore
θ([ε, 2n − ε] ∩ [ε+ g, 2n − ε+ g])/2n+1 ≥ δ. Now consider

E := [ε, 2n − ε] ∩ [ε+ g, 2n − ε+ g] ∩ (2−mZ) ⊆ Fn,m.

We choose h ∈ (2−mZ + g) ∩ V . Then for any e ∈ E there holds

e+ h ∈ [ε+ g, 2n − ε+ g] + V ⊆ [g, 2n + g].

Furthermore, we obtain e + h ∈ 2−mZ + 2−mZ + g = 2−mZ + g and conclude that
e+ h ∈ F(n,m) + g. As b : E → F(n,m) + g that maps e 7→ e+ h is an injection we obtain

mV (F(n,m), F(n,m) + g)
|F(n,m)|

≥ |E|
2n+1 · 2m ≥

θ([ε, 2n − ε] ∩ [ε+ g, g + 2n − ε]) · 2m
2n+1 · 2m ≥ δ.

This shows that there holds lim(n,m)∈I mV (F(n,m), F(n,m) + g)/|F(n,m)| = 1.

Let us denote F := (Fi)i∈I for the thin Følner net from Example 4.22 and let π be
an action on X. We denote the topological entropy along F by

Ẽ(F)(π) := sup
U

lim sup
i∈I

Hµ(UFi)
|Fi|

,

where the supremum is taken over all finite open covers U of X. Let us furthermore
denote for all invariant Borel probability measures µ on X the measure theoretic entropy
along F by

Ẽ(F)
µ (π) := sup

α
lim sup

i∈I

Hµ(αFi)
|Fi|

,

where the supremum is taken over all finite partitions α of X.
Let us now consider any action π of R such that the topological entropy of π is finite

but non-zero. From the variational principle (Theorem 5.33 below) we then obtain that
there is also an invariant Borel probability measure µ on X such that the respective
measure theoretical entropy is finite but non-zero. For an example of such an action see
Example 6.32 below. We thus obtain from the following proposition that the approach
along thin Følner nets to entropy and our approach to entropy are non-equivalent. In
particular, this yields that the approach along thin Følner nets is not compatible with
the patch counting entropy considered in the study of aperiodic order [Lag99, LP03,
BLR07, HR15] as we will see in Chapter 6.
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Proposition 4.23. Let π be an action of R and denote for r ∈ (0,∞) by πr(·) the action
of R that is defined by R×X 3 (g, x) 7→ (r · g, x). Then there holds

(i) E
(
πr(·)

)
= r · E(π) for any r ∈ (0,∞) and

(ii) Ẽ(F) (
π2(·)

)
= Ẽ(F)(π).

For any invariant Borel probability measure µ on the phase space of π there holds

(iii) Eµ

(
πr(·)

)
= r · Eµ(π) for any r ∈ (0,∞) and

(iv) Ẽ(F)
µ

(
π2(·)

)
= Ẽ(F)

µ (π).

Proof. We only show the statements (i) and (ii) as the statements (iii) and (iv) can be
achieved with similar arguments. For the proof of (i) we need to keep track of the action
we use to compute the Bowen entourage and thus for η ∈ UX and A ⊆ G compact we
denote η(s)

A := ηA whenever we compute the Bowen entourage with respect to the action
πs(·) for s ∈ R. In particular, we obtain η(1)

A to be the Bowen entourage with respect to
π and furthermore that η(r)

[0,n] = η
(1)
[0,r·n]. As ([0, n])n∈N and ([0, r · n])n∈N are Van Hove

sequences in R we thus compute

E
(
η|πr(·)

)
= lim

n→∞

H
(
η

(r)
[0,n]

)
θ([0, n]) = r · lim

n→∞

H
(
η

(1)
[0,r·n]

)
θ([0, r · n]) = r · E (η|π)

and taking the supremum over all η ∈ UX yields (i). To show (ii) note first that for
(n,m) ∈ I there holds

2 · F(n,m) = 2 ·
(
[0, 2n] ∩ (2−mZ)

)
=
(
[0, 2n+1] ∩ (2−(m−1)Z)

)
= F(n+1,m−1)

and in particular |F(n,m)| = |2 · F(n,m)| = |F(n+1,m−1)|. Similar as above we need to add
which action is considered in order to compute UF for a finite open cover U and a finite
set F ⊆ G. We will write U (s)

F , whenever we consider the action πs(·) for some s ∈ R.
For a finite open cover U we compute

lim sup
(n,m)∈Z2

Hµ

(
U (2)
F(n,m)

)
|F(n,m)|

= lim sup
(n,m)∈Z2

Hµ

(
U (1)
F(n+1,m−1)

)
|F(n+1,m−1)|

= lim sup
(n,m)∈Z2

Hµ

(
U (1)
F(n,m)

)
|F(n,m)|

and taking the supremum over all finite open covers U yields (ii).

4.3.2 Topological generator entropy
In [Sch15] another non-equivalent approach to topological entropy of actions of certain
not necessarily discrete groups was discussed. This approach also generalizes the orig-
inal approach [AKM65] and defines entropy for certain compactly generated but not
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necessary amenable topological groups. It is inspired from the study of finitely gener-
ated (semi)groups, which is done for example in [Ave72, GLW88, Bis92, Bis04, BU06,
MW11, WM15]. To present this approach we drop the assumption on G to be unimod-
ular amenable and assume that G is a compactly generated topological group. Consider
furthermore an action π of such a group on a compact Hausdorff space X. Let A ⊆ G
be a compact subsets and consider families U and V of subsets of X. Recall that we
define Ug := {(πg)−1(U); U ∈ U}. We say that V A-refines U and write U �A V , if for
any g ∈ A there holds Ug � V . It is presented in [Sch15, Lemma 3.2] that whenever A is
a compact subset of G and U is a finite open cover of X, then there exists a finite open
cover V of X that A-refines U . We define NX(U , A) as the minimum cardinality of an
open cover of X that A-refines U . Consider any compact subset S ⊆ G that generates
G, i.e. that satisfies ⋃n∈N Sn with Sn+1 := SSn and S1 := S. We define the topological
generator entropy of U with respect to π (and S) as

Egen(U , π, S) := lim sup
n→∞

log(NX(U , Sn))
n

.

The topological generator entropy of π (and S) is Egen(π, S) := supU Egen(U , π, S), where
the supremum is taken over all open covers U of X. Unfortunately this approach is not
independent of the choice of a generating set S, but it can be shown that whenever the
topological generator entropy is 0 with respect to any generating set, then it is 0 with
respect to any other generating set [Sch15]. Thus, whenever G itself is compact, then
there holds Gn = G and we obtain the topological generator topology to be 0. This is
not satisfied for topological entropy as presented in Remark 4.17 and gives a first hint
that topological entropy and topological generator entropy are not equivalent concepts.
In fact we will see in Subsection 4.3.3 below, that there holds

E
(
π

p→ φ
)

= sup
U

lim
i∈I

log(NX(U , Ai))
θ(Ai)

, (4.3)

where the supremum is taken over all open covers U of X and (Ai)i∈I is a Van Hove
net. We can thus consider the generator S := [−1/2, 1/2]d in Rd and define An :=
Sn = [−n/2, n/2]d to obtain E

(
π

p→ φ
)

= supU limn→∞ log(NX(U , Sn))/nd. Thus, these
approaches are equivalent if and only if d = 1 and a similar argument shows that a
similar statement holds for Zd. As hinted in (4.3) one can use some of the ideas of
[Sch15] to obtain a notion of entropy that is equivalent to ours. We will discuss this
approach next.

81



4 On relative entropy

Remark 4.24. As the topological generator entropy of an action π of R equals the
topological entropy of π we obtain from the considerations in Subsection 4.3.1 that the
topological generator entropy and the topological entropy along thin Følner nets are
non-equivalent concepts. Thus, the concepts of toplogical entropy, topological genera-
tor entropy, and of the topological entropy along thin Følner nets are three pairwise
non-equivalent concepts already for actions of Rd with d 6= 1.

4.3.3 Relative topological entropy via open covers
We return to our standard assumption that G is a unimodular amenable group and
present next how the ideas from [Sch15] can be used to give an approach to our notion
of relative topological entropy that generalizes [AKM65]. Recall that for families U and
V of subsets of X and a compact subset A ⊆ G we say that V A-refines U , whenever
Ug � V holds for all g ∈ A. As mentioned above it is shown in [Sch15, Lemma 3.2] that
whenever U is an open cover of X and A is compact there is an open cover of X that
A-refines U . Thus, in particular for any subset M ⊆ X there is a finite family of open
subsets of X that A-refines U and covers M . Extending the definition of [Sch15] to a
relative setting we define NM(U , A) as the minimal cardinality of such a family. We set

Np(U , A) := sup
y∈Y

Np−1(y)(U , A)

andH∗p (U , A) := logNp(U , A). It is straightforward to show that K(G) 3 A 7→ H∗p (U , A)
is a monotone, right invariant and subadditive mapping. We can thus use the Ornstein-
Weiss Lemma and any Van Hove net to define the relative topological entropy of p and
U as

E∗
(
U|π p→ φ

)
:= lim

i∈I

H∗p (U , Ai)
θ(Ai)

.

We furthermore define the topological entropy of U as the relative topological entropy
with respect to the one point factor and denote E(U|π). We will now show that the
relative topological entropy of p is the supremum over the relative topological entropies
of p of all open covers U of X.

Before we do this recall that we define 〈U〉 := ⋃
U∈U U

2 and thus obtain 〈U〉 ∈ UX

whenever U is an open cover ofX. It is thus natural to ask, whether the defined concepts
agree on a more fundamental level, i.e. whether there holds E∗(U|π) = E(〈U〉|π) or even
H∗(U , A) = H(〈U〉A) for all compact subsets A ⊆ G. The next example shows that this
is not the case.

Example 4.25. Let X = {1, 2, 3}Z, where we equip {1, 2, 3} with the discrete topol-
ogy and X with the the product topology. Considering the shift map π(a, (xn)n∈N) :=
(xa+n)n∈N we obtain an action on X. For i ∈ {1, 2, 3} let Ui be the set of all sequences
(xn)n∈Z such that x0 6= i and U := {U1, U2, U3}. Then for any two sequences x, y ∈ X
there is i ∈ {1, 2, 3} such that x, y ∈ Ui and we obtain (x, y) ∈ 〈U〉. This shows
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〈U〉 = X2 and in particular that 〈U〉A = X2 for all A ⊆ Z compact. As {X} is an open
partition at scale X2 we thus obtain H(〈U〉A) = log 1 = 0 for all A ⊆ Z compact and
we obtain E(〈U〉|π) = 0. Furthermore, for Ai := {−i, · · · , i} consider any open cover
V of X that Ai-refines U . Then for any V ∈ V there exists a sequence (Mn)in=−i of
subsets of {1, 2, 3} of cardinality 2, such that any sequence (xn)n∈Z ∈ V satisfies that
xn ∈ Mn for n ∈ Ai. As one needs more than 22i+1 of such V to cover X we obtain
|V| ≥ 22i+1. Considering {U1, U2}Ai we obtain that in fact there are open covers of X
of cardinality 22i+1 that Ai-refine U . Thus, there holds H∗(U , Ai) = 22i+1. Taking the
cardinality as a Haar measure on Z we thus obtain E∗(U|π) = log(2) and in particular
E∗(U|π) 6= E(〈U〉|π).

In Example 4.25 we we have seen that there can be open covers U of X such that
E∗(U|π) > E(〈U〉|π) and the question remains whether the inequality E∗(U|π) ≥
E(〈U〉|π) is a general phenomenon. In fact as U is at scale 〈U〉 we obtain that the
inequality is always satisfied from the following.

Lemma 4.26. Let U be an open cover of X at scale η ∈ UX . Then there holds
H∗p (U , A) ≥ Hp(ηA) for any compact subset A ⊆ G. In particular, there holds

E∗(U|π p→ φ) ≥ E(η|π p→ φ).

Proof. Let y ∈ Y and choose a family V of open subsets of X that A-refines U and
covers p−1(y) of minimal cardinality Np−1(y)(U , A). As U is at scale η and U �A V we
obtain that V is at scale ηA. Recall that we defined in Remark 4.2 that covp−1(y)(ηA) is
the minimal cardinality of a family of open and ηA-small sets that cover p−1(y). Thus,
there holds Np−1(y)(U , A) = |V| ≥ covp−1(y)(ηA) and Remark 4.2 yields

H∗p (U , A) = log
(

sup
y∈Y

Np−1(y)(U , A)
)
≥ log

(
sup
y∈Y

covp−1(y)(ηA)
)

= Hp(ηA).

Considering Lebesgue entourages we obtain the reverse inequality.

Lemma 4.27. If η is a Lebesgue entourage of an open cover U of X, then there holds
H∗p (U , A) ≤ Hp(ηA) for any compact subset A ⊆ G. Thus, in particular there holds

E∗(U|π p→ φ) ≤ E(η|π p→ φ).

Proof. By Remark 4.2 there holds Hp(ηA) = log(supy∈Y covp−1(y)(ηA)). Let now y ∈ Y .
To show covp−1(y)(ηA) ≤ Np−1(y)(U , A) consider a family of open and ηA-small sets that
cover p−1(y) of cardinality covp−1(y)(ηA). For g ∈ A observe that ηg is a Lebesgue
entourage of Ug. Thus, for non-empty V ∈ V there is v ∈ V and we obtain the existence
of U ∈ Ug such that V = V 2[v] ⊆ ηg[v] ⊆ U . Thus, Ug � V for all g ∈ A and we have
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shown that V is a family of open subsets of X that A-refines U and covers p−1(y). We
thus obtain Np−1(y)(U , A) ≤ |V| = covp−1(y)(ηA) for all y ∈ Y and conclude from Remark
4.2 that there holds

Hp(ηA) = log
(

sup
y∈Y

covp−1(y)(ηA)
)
≥ log (Np(U , A)) = H∗p (U , A).

Proposition 4.28. There holds

E
(
π

p→ φ
)

= sup
U

E∗
(
U|π p→ φ

)
,

where the supremum is taken over all open covers U of X. Furthermore, for any Følner
net (Ai)i∈I there holds

E
(
π

p→ φ
)

= sup
U

lim inf
i∈I

H∗p (U , Ai)
θ(Ai)

= sup
U

lim sup
i∈I

H∗p (U , Ai)
θ(Ai)

.

Proof. The first statement follows directly from the Lemmas 4.26, 2.5 and 4.27. Fur-
thermore, these lemmas imply

sup
U

lim inf
i∈I

H∗p (U , Ai)
θ(Ai)

= sup
η∈UX

lim inf
i∈I

Hp(ηAi)
θ(Ai)

for any Følner net (Ai)i∈I . Thus, Proposition 4.18 yields the statement about the limit
inferior. Similarly one shows the statement about the limit superior.

Remark 4.29. If G is assumed to be discrete then there holds H∗p (UF ) = H∗p (U , F ) for
any compact, i.e. finite subset F ⊆ G. Thus, the approach in this subsection restricts
to the classical approach for discrete amenable groups considered first in [AKM65] and
used for example in [Oll85, HYZ11, Yan15, YZ16], where we are far from giving a full
list of the important references.

4.3.4 Relative topological entropy via spanning and separating
sets

It is well-known that one can also define topological entropy of actions of discrete groups
on compact metric spaces in terms of separated and of spanning sets [Bow71, Yan15]. In
[Hoo74] this approach is generalized to Z-actions of compact Hausdorff spaces. We give
a brief recap as this approach is important in the context of aperiodic order [BLR07,
JLO16, FGJO18] and as it can be studied using the Ornstein-Weiss Lemma implicitly.

For η ∈ UX a subset S ⊆ X is called η-separated, if for every s ∈ S there is no further
element in S that is η-close to s. Furthermore, we say that S ⊆ X is η-spanning for
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M ⊆ X, if for all m ∈M there is s ∈ S such that s is (η ∪ η−1)-close to m.

Remark 4.30. A subset S of a metric space (X, d) is [d < ε]-separated, if any two
distinct points in S are at least ε apart, i.e. d(x, y) ≥ ε for all x, y ∈ S with x 6= y.
Furthermore, S is [d < ε]-spanning for M ⊆ X, if and only if for every m ∈M there is
s ∈ S such that d(s,m) < ε.

Recall from Remark 4.2 that we denote by covM(η) the minimal cardinality of a finite
family of open and η-small sets that covers M . With similar arguments as used in
metric spaces we obtain the following lemma. See [Wal82, BS02] for reference.

Lemma 4.31. For η ∈ UX and M ⊆ X the cardinality of every η-separated subset
S ⊆ M is bounded from above by covM(η) < ∞. In particular, there are finite η-
separated subsets of M of maximal cardinality. Every η-separated subset S ⊆ M of
maximal cardinality is η-spanning for M . In particular, there are finite subsets of M
that are η-spanning for M .

For η ∈ UX and M ⊆ X we define sepM(η) as the maximal cardinality of a subset
of M that is η-separated and spaM(η) as the minimal cardinality of a subset of M that
is η-spanning for M . Furthermore, we define sepp,M(η) := supy∈Y sepM∩p−1(y)(η) and
abbreviate sepp(η) := sepp,X(η). Similarly one defines spap,M(η) and spap(η).

Unfortunately the Ornstein-Weiss Lemma cannot be applied directly to these notions.
One thus relates these notions to Hp to show that they can be used to define entropy
independently from the choice of a Følner net. We will furthermore see that it suffices
to consider only subsets of a dense subset of X. This observation will become useful in
Chapter 6.

Lemma 4.32. Let η ∈ UX and D ⊆ G be such that D ∩ p−1(y) is dense in p−1(y) for
each y ∈ Y . Then there exists an entourage ε ∈ UX with ε ⊆ η such that for every
compact A ⊆ G there holds Hp(ηA) ≤ log spap,D(εA) ≤ log sepp,D(εA) ≤ Hp(εA).

Proof. Recall from Remark 4.2 that there holds

Hp(εA) = log
(

sup
y∈Y

covp−1(y)(εA)
)

for any ε ∈ UX and any compact subset A ⊆ G. Thus, the second and the third
inequality follow from Lemma 4.31. In order to show the first one let ε ∈ UX be
symmetric and such that εεεε ⊆ η. For A ⊆ G compact we calculate εAεAεAεA ⊆
(εεεε)A ⊆ ηA. Let now κ ∈ UX be open and symmetric such that κ ⊆ εA. Let y ∈ Y
and S ⊆ p−1(y) ∩ D be εA-spanning for p−1(y) ∩ D and of minimal cardinality. Then
{κεA[s]; s ∈ S} is an open cover of p−1(y). A straightforward argument shows this cover
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to be at scale κεAεAκ and we obtain covp−1(y)(κεAεAκ) ≤ |S| = spap−1(y)∩D(εA). Thus,

covp−1(y)(ηA) ≤ covp−1(y)(εAεAεAεA)
≤ covp−1(y)(κεAεAκ)
≤ spap−1(y)∩D(εA)
≤ spap,D(εA).

Taking the supremum over all y ∈ Y we obtain from Remark 4.2 that

Hp(ηA) = log
(

sup
y∈Y

covp−1(y)(ηA)
)
≤ log spap,D(εA).

Theorem 4.33. If D is a subset of X such that D ∩ p−1(y) is dense in p−1(y) for all
y ∈ Y , then there holds

E(π p→ φ) = sup
η∈BX

lim inf
i∈I

log(spap,D(ηAi))
θ(Ai)

= sup
η∈BX

lim sup
i∈I

log(spap,D(ηAi))
θ(Ai)

for any Følner net (Ai)i∈I and any base BX of UX . A similar statement holds for sepp,D.
In particular, if D is dense in X we obtain

E(π) = sup
η∈BX

lim sup
i∈I

log(spaD(ηAi))
θ(Ai)

= sup
η∈BX

lim sup
i∈I

log(sepD(ηAi))
θ(Ai)

.

Proof. As η 7→ lim supi∈I log(spap,D(ηAi))/µ(Ai) and the other similar terms are decreas-
ing, it suffices to show the statement for BX = UX . By Lemma 4.32 it is immediate
that for any η ∈ UX there holds

E(η|φ p→ ψ) ≤ sup
ε∈UX

lim inf
i∈I

log(spap,D(εAi))
θ(Ai)

≤ sup
ε∈UX

lim sup
i∈I

log(spap,D(εAi))
θ(Ai)

≤ E(φ p→ ψ).

Taking the supremum over η yields the first equality. Similar arguments show the
statements about sepp,D.

Theorem 4.33 in particular allows to easily show that the entropy of a factor is always
smaller than the entropy of the extension.

Proposition 4.34. For actions π, φ and ψ of G such that φ is a factor of π via p and
ψ is a factor of φ via q, i.e. π p→ φ

p→ ψ, there holds E
(
π
q◦p→ ψ

)
≥ E

(
φ

q→ ψ
)
and in

particular E(π) ≥ E(φ).
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Proof. Let us denote X, Y and Z for the phase spaces of π, φ and ψ respectively. For
η ∈ UY let us furthermore abbreviate η̂ := {(x, x′) ∈ X2; (p(x), p(x′)) ∈ η} and observe
η̂ ∈ UX . Whenever we consider a subset M ⊆ Y and an η̂-spanning set S for p−1(M),
then one easily shows p(S) to be η-spanning for M and we deduce spap−1(M)(η̂) ≥
spaM(η). In particular, for z ∈ Z we obtain spa(q◦p)−1(z)(η̂) ≥ spaq−1(z)(η). This shows
spap◦q(η̂) ≥ spaq(η) for any η ∈ UY .

Now recall that p is a factor map which allows to show that for any compact subset
A ⊆ G there holds η̂A = (η̂)A. Considering any Van Hove net (Ai)i∈I in G we thus
obtain

E
(
π
q◦p→ ψ

)
≥ lim sup

i∈I

log spaq◦p(η̂Ai)
θ(Ai)

≥ lim sup
i∈I

log spaq(ηAi)
θ(Ai)

and taking the supremum over all η ∈ UY yields

E
(
π
q◦p→ ψ

)
≥ sup

η∈UY
lim sup

i∈I

log spaq(ηAi)
θ(Ai)

= E
(
φ

q→ ψ
)
.

Considering the one point flow for ψ we also obtain E(π) ≥ E(φ).

4.4 Properties of the relative entropy map
Consider a factor φ of an action π via factor map p. In this section we will collect
properties of the relative entropy map

E(·)
(
π

p→ φ
)

: MG(X)→ [0,∞] : µ 7→ Eµ

(
π

p→ φ
)

and of the entropy map E(·) (π) for later use.

4.4.1 Affinity
Recall that MG(X) is always a convex set. It is well-known for actions of discrete
amenable groups that the entropy map is always affine [HYZ11]. This statement is a
straightforward generalization from [LW77, Wal82], where it is shown in the context of
actions of Z. Following a straightforward generalization of the corresponding arguments
we next show that the (relative) entropy map is affine in our context. We will need this
statement for later purposes and include the proof for the convenience of the reader.
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4 On relative entropy

Lemma 4.35. Let λ ∈ [0, 1] and let µ and ν be Borel probability measures on X. For
every entourage η ∈ UX there holds

0 ≤ Hλµ+(1−λ)ν,p(η)− λHµ,p(η)− (1− λ)Hν,p(η) ≤ 1.

Proof. For a finite partition α it is standard to show that

0 ≤ H∗λµ+(1−λ)ν,p(α)− λH∗µ,p(α)− (1− λ)H∗ν,p(α) ≤ −λ log(λ)− (1− λ) log(1− λ).

See [Wal82, Theorem 8.1] or [HYZ06, Lemma 3.3] for reference. As −λ log(λ) ≤ 1/e ≤
1/2 for λ ∈ [0, 1], we obtain that for every finite partition α of X there holds

0 ≤ H∗λµ+(1−λ)ν,p(α)− λH∗µ,p(α)− (1− λ)H∗ν,p(α) ≤ 1.

As the statement is trivial for λ ∈ {0, 1} we assume without lost of generality that
λ ∈ (0, 1). Let now ε > 0. Then by definition there are finite partitions α1, α2 and
α3 such that H(λµ+(1−λ)ν),p(η) ≥ H∗(λµ+(1−λ)ν),p(α1) − ε, Hµ,p(η) ≥ H∗µ,p(α2) − ε and
Hν,p(η) ≥ H∗ν,p(α3)− ε. In particular, considering α := α1 ∨ α2 ∨ α3 we obtain

−ε ≤ H∗λµ+(1−λ)ν,p(α)− ε− λH∗µ,p(α)− (1− λ)H∗ν,p(α)
≤ Hλµ+(1−λ)ν,p(η)− λHµ,p(η)− (1− λ)Hν,p(η)
≤ H∗λµ+(1−λ)ν,p(α)− λH∗µ,p(α)− (1− λ)H∗ν,p(α) + ε

≤ 1 + ε.

As ε > 0 was arbitrary we obtain the statement.

With the arguments from [Wal82, Theorem 8.1] we obtain the following.

Theorem 4.36. Whenever G is non-compact, then the relative entropy map E(·)
(
π

p→ φ
)

and the entropy map E(·) (π) are affine. Furthermore, for every entourage η ∈ UX the
maps E(·)

(
η|π p→ φ

)
and E(·) (η|π) are affine.

Proof. As the entropy map is the relative entropy map with respect to an action on a
one point space it is sufficient to show the statements about the relative entropy map.
Let (Ai)i∈I be a Van Hove net in G. From Lemma 4.35 we obtain that

lim
i∈I

H(λµ+(1−λ)ν),p(ηAi)
θ(Ai)

≤ λ lim
i∈I

Hµ,p(ηAi)
θ(Ai)

+ (1− λ) lim
i∈I

Hν,p(ηAi)
θ(Ai)

+ lim
i∈I

1
θ(Ai)

= λ lim
i∈I

Hµ,p(ηAi)
θ(Ai)

+ (1− λ) lim
i∈I

Hν,p(ηAi)
θ(Ai)

≤ lim
i∈I

H(λµ+(1−λ)ν),p(ηAi)
θ(Ai)

.

88



4.4 Properties of the relative entropy map

Thus, we obtain

Eλµ+(1−λ)ν
(
η
∣∣∣π p→ φ

)
= λEµ

(
η
∣∣∣π p→ φ

)
+ (1− λ) Eν

(
η
∣∣∣π p→ φ

)
.

Taking the supremum over all η ∈ UX we obtain

Eλµ+(1−λ)ν
(
π

p→ φ
)
≤ λEµ

(
π

p→ φ
)

+ (1− λ) Eν

(
π

p→ φ
)
.

To show the remaining inequality let ε > 0 and choose ηµ, ην ∈ UX such that

Eµ

(
ηµ
∣∣∣π p→ φ

)
≥

Eµ

(
π

p→ φ
)
− ε, whenever Eµ

(
π

p→ φ
)
<∞

1/ε, whenever Eµ

(
π

p→ φ
)

=∞.

and a similar statement concerning ν. Then η := ηµ ∩ ην ∈ UX . If Eµ(π p→ φ) and
Eν(π

p→ φ) are finite we compute

Eλµ+(1−λ)ν
(
η
∣∣∣π p→ φ

)
= λEµ

(
η
∣∣∣π p→ φ

)
+ (1− λ) Eν

(
η
∣∣∣π p→ φ

)
≥ λEµ

(
π

p→ φ
)

+ (1− λ) Eν

(
π

p→ φ
)
− ε.

As ε > 0 was arbitrary we obtain the statement in this case. Note that the statement
is trivial for λ ∈ {0, 1}. We thus assume w.l.o.g. that λ ∈ (0, 1). If Eµ(π p→ φ) =∞ or
Eν(π

p→ φ) =∞, then

Eλµ+(1−λ)ν
(
η
∣∣∣π p→ φ

)
= λEµ

(
η
∣∣∣π p→ φ

)
+ (1− λ) Eν

(
η
∣∣∣π p→ φ

)
≥ min{λ, (1− λ)}/ε.

As ε > 0 was arbitrary we obtain Eλµ+(1−λ)ν(π
p→ φ) =∞ and the statement follows.

4.4.2 Restriction to invariant subsets
Whenever M ⊆ X is a closed and invariant subset, then π|G×M is an action of G on
M and we can identify an invariant Borel probability measure on X with support in
M with its restriction to BM . This allows to identifyMG(M) as a subset ofMG(X).
The relationship between the entropy maps of π and the restriction π|G×X′ can be
summarized as follows. As we did not encounter this probably well-known statement in
the literature we include a full and detailed proof.

Theorem 4.37. Let M ⊆ X be a closed and invariant subset. Then also p(M) is closed
and invariant andMG(M) is a closed face ofMG(X). Furthermore, the respective rela-
tive entropy map E(·)

(
π|G×M

p|M→ φ|G×p(M)

)
is the restriction of E(·)(π

p→ φ) toMG(M)
and in particular E(·) (π|G×M) is the restriction of E(·) (π) toMG(M).

89
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Before we present a proof we state the following corollary.

Corollary 4.38. Let M ⊆ X be a closed and invariant subset. Whenever the entropy
map of π is upper semi-continuous, so is the entropy map of the restriction π|G×M .

We begin the proof of the theorem with the following lemma.

Lemma 4.39. Let M ⊆ X be a closed subset. Then for all Borel measurable sub-
sets A of X and all Borel measures µ with support in M the conditional expectation
Eµ
(
χA∩M

∣∣∣(p|M)−1(Bp(M))
)
is the restriction of Eµ(χA|p−1(BY )) to L1(M,µ).

Proof. Denote by f the restriction of Eµ(χA|p−1(BY )) to L1(M,µ). We first show that
f is measurable with respect to (p|M)−1(Bp(M)). To do this consider a Borel measurable
subset S of R. As (Eµ(χA|p−1(BY )))−1 (S) is p−1(BY )-measurable there exists N ∈ BY
such that p−1(N) = (Eµ(χA|p−1(BY )))−1 (S). Thus

p−1(N ∩ p(M)) ∩M ⊆ p−1(N) ∩M ⊆ p−1(N) ∩ p−1(p(M)) = p−1(N ∩ p(M))

implies

p−1(N) ∩M = p−1(N ∩ p(M)) ∩M = (p|M)−1(N ∩ p(M)) ∈ (p|M)−1(Bp(M))

and we obtain

f−1(S) =
((

Eµ(χA|p−1(BY ))
)−1

(S)
)
∩M = p−1(N) ∩M ∈ (p|M)−1(Bp(M)).

This shows that f is indeed (p|M)−1(Bp(M))-measurable. As the support of µ is contained
in M we compute∫

M
fdµ =

∫
M
Eµ(χA|p−1(BY ))dµ =

∫
X
Eµ(χA|p−1(BY ))dµ

=
∫
X
χAdµ =

∫
M
χA∩Mdµ =

∫
M
Eµ
(
χA∩M

∣∣∣(p|M)−1(Bp(M))
)
dµ.

This shows that f is the conditional expectation Eµ
(
χA∩M

∣∣∣(p|M)−1(Bp(M))
)
.

We will furthermore need the next lemma.

Lemma 4.40. Let M ⊆ X be a closed subset. Then for all Borel measures µ with
support in M and all η ∈ UX there holds Hµ,p(η) = Hµ,p|M (η ∩ (M)2).

Proof. We first show that Hµ,p(η) ≤ Hµ,p|M (η∩M2). To do so, let α be a finite partition
of M at scale η ∩ M2. Choose any finite partition γ of X at scale η and denote
β := {C \M ; C ∈ γ}. Then α ∪ β is a finite partition of X at scale η and we use
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Lemma 4.39 to compute

Hµ,p(η) ≤ H∗µ,p(α ∪ β)

= −
∑
A∈α

∫
X
Eµ(χA|p−1(BY )) log(Eµ(χA|p−1(BY )))dµ

−
∑
B∈β

∫
X
Eµ(χB|p−1(BY )) log(Eµ(χB|p−1(BY )))dµ

= −
∑
A∈α

∫
M
Eµ
(
χA∩M

∣∣∣(p|M)−1(Bp(M))
)

log
(
Eµ
(
χA∩M

∣∣∣(p|M)−1(Bp(M))
))
dµ

−
∑
B∈β

∫
M
Eµ
(
χB∩M

∣∣∣(p|M)−1(Bp(M))
)

log
(
Eµ
(
χB∩M

∣∣∣(p|M)−1(Bp(M))
))
dµ

= H∗µ,p|M (α) + 0,

where we have used the convention 0 · log 0 = 0. Thus, taking the infimum over all
considered α we obtainHµ,p(η) ≤ Hµ,p|M (η∩M2). To show the remaining inequality let α
be a partition of X at scale η and consider β := {A∩M ; A ∈ α}. A similar computation
as above shows Hµ,p|M (η ∩M2) ≤ H∗µ,p|M (β) = H∗µ,p(α) and taking the infimum over all
considered α we obtain the remaining inequality Hµ,p|M (η ∩M2) ≤ Hµ,p(η).

Proposition 4.41 is the key in order to prove Theorem 4.37 and can be seen as a scale
wise version of the theorem.

Proposition 4.41. Let M ⊆ X be a closed and invariant subset. Then also p(M) is
closed and invariant. For every η ∈ UX the relative entropy map

E(·)

(
η ∩M2

∣∣∣π|G×M p|M→ φ|G×p(M)

)

is the restriction of E(·)(η|π
p→ φ) to MG(M). In particular, E(·)

(
η ∩M2

∣∣∣π|G×M) is
the restriction of E(·) (η|π) toMG(M).

Proof. The set p(M) is compact as the image of a compact set and hence also closed.
It is furthermore straightforward to show that p(M) is invariant. Let µ ∈MG(M) and
η ∈ UX . Then the invariance of M implies that for compact subsets A ⊆ G there holds
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(η ∩M2)A = ηA ∩M2. Hence,

Eµ

(
η
∣∣∣π p→ φ

)
= lim

i∈I

Hµ,p(ηAi)
θ(Ai)

= lim
i∈I

Hµ,p|M (ηAi ∩M2)
θ(Ai)

= lim
i∈I

Hµ,p|M ((η ∩M2)Ai)
θ(Ai)

= Eµ

(
η ∩M2

∣∣∣π|G×M p|M→ φ|G×p(M)

)
.

Proof of Theorem 4.37. Whenever µ and ν are invariant Borel probability measures on
X and whenever there is λ ∈ (0, 1) such that λµ + (1 − λ)ν has a support contained
in M , then also µ and ν have support contained in M which shows that MG(M)
is a face of MG(X). As MG(M) is compact this face is closed. One easily shows
UM = {η ∩ M2; η ∈ UX}. Thus, the restriction statement follows from Proposition
4.41.
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5 On relative entropy via discrete
restriction

It is well-known that calculating entropy of an action π of R one can instead calculate
the entropy of the restricted action π|Z of Z. This simplification allows to observe
various properties of topological and measure theoretical entropy of actions of Zd also
for actions of Rd. Motivated by the fact that not all unimodular amenable groups contain
uniform lattices we have discussed in Chapter 4 approaches that are available in the
general context. Nevertheless, we have also seen in the introduction of Chapter 4 that
some approaches depend on the finiteness of Van Hove sets. As these approaches are
important in the proofs of cornerstones of entropy theory, like the variational principle,
we will thus present in this chapter that instead of considering uniform lattices, i.e.
Delone subgroups, one can also consider certain other discrete substructures like Delone
sets ω. We will show in Section 5.1 that replacing a Van Hove net (Ai)i∈I by the net
of finite intersections (Ai ∩ ω)i∈I allows to reconsider well-known approaches like the
original approaches [Kol58, Sin59, AKM65]. In this chapter we continue our discussion
from the introduction. We discuss to what extend statements like Bowens formula, the
Rokhlin-Abramov Theorem, the variational principle and sufficient conditions for the
upper semi-continuity of the entropy map can be obtained by restricting to a uniform
lattice. In particular, we will see how well-known results and techniques for discrete
amenable acting groups can be used in this context. In this chapter we will consider a
unimodular amenable group G and actions π and φ of G on compact Hausdorff spaces
X and Y respectively such that φ is a factor of π via a factor map p : X → Y .

5.1 Restriction to Delone sets
We start our considerations with the following lemma.

Lemma 5.1. Let ω be a closed subset of G that is K-dense with respect to some compact
subset K of G. Whenever (Ai)i∈I is a Van Hove net in G and whenever we denote Fi :=
ω ∩ Ai for all i ∈ I, then (KFi)i∈I is Van Hove and satisfies limi∈I θ(KFi)/θ(Ai) = 1
and limi∈I θ(KFi∆Ai)/θ(Ai) = 0.

Remark 5.2. We will use the statement of Lemma 5.1 in the following for locally finite
ω in order to obtain finite Fi and in particular for Delone sets. Nevertheless, note that
we do not assume ω to be discrete in the formulation of this lemma.
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Proof. Clearly, K is non-empty. We thus obtain from Proposition 2.26 the existence
of a Van Hove net (Bi)i∈I that satisfies K−1Bi ⊆ Ai and Bc

i ⊆ KAci for all i ∈ I and
furthermore limi∈I θ(Bi)/θ(Ai) = 1. For b ∈ Bi there are k ∈ K and v ∈ ω such that
b = kv and we obtain v = k−1b ∈ K−1Bi ⊆ Ai, hence v ∈ Fi. Thus, b ∈ KFi and we
have shown Bi ⊆ KFi. Furthermore, Proposition 2.25 implies (KAi)i∈I to be a Van
Hove net and limi∈I θ(KAi)/θ(Ai) = 1 and we compute

1← θ(Bi)
θ(Ai)

≤ θ(KFi)
θ(Ai)

≤ θ(KAi)
θ(Ai)

→ 1,

which shows limi∈I θ(KFi)/θ(Ai) = 1 and in particular that θ(KFi) > 0 for sufficiently
large i. Above we have already seen that there holds Bi ⊆ KFi and we thus obtain
(KFi)c ⊆ Bc

i ⊆ KAci for all i ∈ I. For a compact subset M ⊆ G we compute

∂M(KFi) = MKFi ∩M(KFi)c ⊆MKAi ∩MKAci = ∂MKAi.

Thus, there holds

0 ≤ lim sup
i∈I

θ(∂M(KFi))
θ(KFi)

≤ lim
i∈I

θ(∂MKAi)
θ(Ai)

= 0

and we obtain that (KFi)i∈I is Van Hove. It remains to show limi∈I θ(KFi∆Ai)/θ(Ai) =
0. To see this let k ∈ K. As P(X) is an abelian group under ∆, with the identity as
inverse map and neutral element ∅, we compute

KFi∆Ai = KFi∆∅∆Ai
= (KFi∆kAi)∆(kAi∆Ai)
⊆ (KFi∆kAi) ∪ (kAi∆Ai)
⊆ (KAi \ kAi) ∪ (kAi \KFi) ∪ (kAi∆Ai).

Now recall that Bi ⊆ KFi and K−1Bi ⊆ Ai for all i ∈ I. Thus, there holds Bi ⊆ kAi
and we compute

0 ≤ θ(kAi \KFi)
θ(Ai)

≤ θ(kAi \Bi)
θ(Ai)

= θ(kAi)
θ(Ai)

− θ(Bi)
θ(Ai)

→ 1− 1 = 0.

As (Ai)i∈I is Van Hove it is in particular Følner and we obtain

0 ≤ θ(KFi∆Ai)
θ(Ai)

≤ θ(KAi \ Ai)
θ(Ai)

+ θ(kAi \KFi)
θ(Ai)

+ θ(kAi∆Ai)
θ(Ai)

→ 0.

A Delone set ω does not necessarily have a uniform density. To see this consider
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for example the set (−N0) ∪ (2N0) and the Van Hove nets ([−n, 0])n∈N and ([0, n])n∈N.
Nevertheless, the following lemma allows to control |ω∩Ai|/θ(Ai) for any Van Hove net
(Ai)i∈I .

Lemma 5.3. Let ω be a Delone set in G, V be an open neighbourhood of 0 and K ⊆ G
be a compact subset such that ω is V -discrete and K-dense. Consider a Van Hove net
(Ai)i∈I and abbreviate Fi := ω ∩ Ai.

(i) Whenever E is a finite subset of G such that K ⊆ EV , then there holds

0 < 1
|E|θ(V ) ≤ lim inf

i∈I

|Fi|
θ(Ai)

.

(ii) Whenever V is precompact, then there holds

lim sup
i∈I

|Fi|
θ(Ai)

≤ 1
θ(V ) <∞.

Remark 5.4. Note that as K is compact and V is open there always exist finite subsets
E such that K ⊆ EV . Furthermore, as G is locally compact there always exist precom-
pact open neighbourhoods V of 0 such that ω is V -discrete. Thus, we obtain that for
any Delone set ω there are constants a, b ∈ (0,∞) such that for any Van Hove net there
holds

a ≤ lim inf
i∈I

|ω ∩ Ai|
θ(Ai)

≤ lim sup
i∈I

|ω ∩ Ai|
θ(Ai)

≤ b.

Proof of Lemma 5.3. As Fi = Ai ∩ ω is V -discrete we compute

θ(KFi) ≤ θ(EV Fi) ≤ θ

⋃
g∈E

gV Fi

 ≤ |E|θ(V Fi) = |E|θ(V )|Fi|.

Now recall from Lemma 5.1 that limi∈I θ(KFi)/θ(Ai) = 1, which allows to observe (i).
Furthermore, we obtain from the V -discreteness of V that there holds

|Fi|θ(V ) = θ(V Fi) ≤ θ
(
V Ai

)
.

For (ii) we assume that V is precompact and obtain that V is compact. Thus, there
holds limi∈I θ(V Ai)/θ(Ai) = 1 and we observe (ii).
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5.1.1 Topological entropy
Via scaled open covers

Theorem 5.5. Let ω be a closed and relatively dense subset of G and let (Ai)i∈I be a
Van Hove net in G. Set Fi := Ai ∩ ω for any i ∈ I. Then there holds

E(π p→ φ) = sup
η∈UX

lim sup
i∈I

Hp(ηFi)
θ(Ai)

.

This statement remains valid whenever we consider a limit inferior instead of a limit
superior.

Remark 5.6. Note that we do not assume ω to be discrete and that the statement also
holds whenever Fi is not finite. This is somehow natural, as this approach to topological
entropy does not depend on the finiteness of the Van Hove net.

Remark 5.7. One cannot expect Theorem 5.5 to holds whenever one considers Følner
nets instead of Van Hove nets. Indeed, considering the Følner net (An)n∈N with An :=
[0, n] \ (Z + B2−n(0)) in R and the uniform lattice Z we obtain Fn := An ∩ Z = ∅ and
thus the above formula always yields 0. As there are clearly R-actions with non-zero
topological entropy we observe that Følner nets are not the right concept for the above
theorem.

Proof of Theorem 5.5. Let K be a compact subset of G such that ω is K-dense and
such that eG ∈ K. Then for η ∈ UX and i ∈ I there holds ηFi ⊇ ηKFi = (ηK)Fi and
ηK ∈ UX . We thus see that there holds

lim sup
i∈I

Hp(ηFi)
θ(Ai)

≤ lim sup
i∈I

Hp((ηK)Fi)
θ(Ai)

≤ sup
ε∈UX

lim sup
i∈I

Hp(εFi)
θ(Ai)

.

Taking the supremum over η ∈ UX we therefore obtain

sup
η∈UX

lim sup
i∈I

Hp(ηFi)
θ(Ai)

= sup
η∈UX

lim sup
i∈I

Hp(ηKFi)
θ(Ai)

. (5.1)

Recall from Lemma 5.1 that (KFi)i∈I is a Van Hove net which furthermore satisfies
limi∈I θ(KFi)/θ(Ai) = 1. Thus, for any η ∈ UX we obtain from (5.1) that

E
(
π

p→ φ
)

= sup
η∈UX

lim
i∈I

Hp(ηKFi)
θ(KFi)

= sup
η∈UX

lim
i∈I

Hp(ηKFi)
θ(Ai)

= sup
η∈UX

lim sup
i∈I

Hp(ηFi)
θ(Ai)

.

A similar argument shows the statement for the limit inferior.
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Via refined open partitions

Theorem 5.8. Let ω be a relatively dense and locally finite subset of G and let (Ai)i∈I
be a Van Hove net in G. For i ∈ I set Fi := Ai ∩ ω. Then there holds

E(π p→ φ) = sup
U

lim sup
i∈I

H∗p (UFi)
θ(Ai)

,

where the supremum is taken over all open covers U of X. The formula remains valid,
whenever we consider a limit inferior.

Remark 5.9. The approach via refining open covers depends on the finiteness of the
Van Hove net and we thus need to assume ω to be locally finite. Note however that we
can also use the notion H∗p (U , Fi), introduced in Subsection 4.3.3, in order to obtain the
statement for general closed and relatively dense ω.

Remark 5.10. Note that every Delone set is relatively dense and locally finite. An
example of a relatively dense and locally finite set that is not Delone is Z∪{1/n; n ∈ N}.

Proof. We will use the notation and ideas from Subsection 4.3.3 to obtain this statement.
As ω is assumed to be locally finite we obtain all Fi to be finite sets and we have already
observed in Remark 4.29 that there holds H∗p (U , Fi) = H∗p (UFi) for all i ∈ I. For an
open cover U of X we can thus consider a Lebesgue entourage η of U and obtain from
Lemma 4.27 that there holds H∗p (UFi) ≤ Hp(ηFi). We thus obtain from Theorem 5.5
that there holds

lim sup
i∈I

H∗p (UFi)
θ(Ai)

≤ sup
η∈UX

lim sup
i∈I

Hp(ηFi)
θ(Ai)

= E(π p→ φ).

Taking the supremum over all open covers U reveals

sup
U

lim sup
i∈I

H∗p (UFi)
θ(Ai)

≤ E(π p→ φ).

Furthermore, whenever we consider η ∈ UX and an open cover U of X at scale η, then
UFi is at scale ηFi for any i ∈ I and we obtain from the definition of Hp(ηFi) that
H∗p (UFi) ≥ Hp(ηFi). Thus, we obtain from Theorem 5.5 that there holds

sup
U

lim sup
i∈I

H∗p (UFi)
|Fi|

≥ sup
η∈UX

lim sup
i∈I

Hp(ηFi)
|Fi|

= E(π p→ φ).
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Via spanning and separating sets

In Subsection 4.3.4 we have already seent that ideas of [Bow71] can be used in the
general setting. We next present that a similar statement as Theorem 5.5 can also be
achieved along this approach.

Theorem 5.11. Let ω be a closed and relatively dense subset of G and let (Ai)i∈I be a
Van Hove net in G. For i ∈ I set Fi := Ai ∩ ω. Then there holds

E(π p→ φ) = sup
η∈UX

lim sup
i∈I

log(sepp(ηFi))
θ(Ai)

= sup
η∈UX

lim sup
i∈I

log(spap(ηFi))
θ(Ai)

.

Remark 5.12. Also this approach does not depend on the finiteness of the Van Hove
sets and we obtain the statement without any discreteness assumptions on ω.

Remark 5.13. The given formulas remain valid, whenever we consider a limit inferior
instead of a limit superior. Furthermore, the formulas are also valid whenever we con-
sider log(sepp,D(·)) and log(spap,D(·)) for a subset D ⊆ X such that D∩ p−1(y) is dense
in p−1(y) for all y ∈ Y . Thus, in particular for a dense subset D ⊆ X we obtain similar
formulas for log(sepD(·)) and log(spaD(·)).

Proof of Theorem 5.11. From Remark 4.2 and Lemma 4.32 we obtain that for η ∈ UX

there exists ε ∈ UX such that for all i ∈ I there holds Hp(ηFi) ≤ log(spap(εFi)) ≤
log(sepp(εFi)) ≤ Hp(εFi). We thus obtain from Theorem 5.5 that there holds

lim sup
i∈I

Hp(ηFi)
θ(Ai)

≤ sup
ε∈UX

lim sup
i∈I

log(spap,D(εFi))
θ(Ai)

≤ sup
ε∈UX

lim sup
i∈I

log(sepp,D(εFi))
θ(Ai)

≤ sup
ε∈UX

lim
i∈I

Hp(εFi)
θ(Ai)

= E(π p→ φ).

Taking the supremum over η thus yields the statement.
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5.1 Restriction to Delone sets

5.1.2 Measure theoretical entropy
Via scaled finite partitions

Theorem 5.14. Let ω be a closed and relatively dense subset of G and let (Ai)i∈I be
a Van Hove net in G. Set Fi := Ai ∩ ω for any i ∈ I. Then for any invariant Borel
probability measure µ on X there holds

Eµ(π p→ φ) = sup
η∈UX

lim sup
i∈I

Hµ,p(ηFi)
θ(Ai)

.

These statements remain valid if we consider a limit inferior instead of a limit superior.

Proof. The statement can be shown with similar arguments as presented in the proof
of Theorem 5.5.

Via refined finite partitions

As discussed above we have seen that the measure theoretical entropy is classically
defined by considering certain refinements of finite partitions. This approach depends
on the finiteness of the Van Hove sets for discrete amenable groups and it is natural
to ask, whether it can be used also in the non-discrete context. We will see next that
this is possible whenever we replace, similarly as for topological entropy, the Van Hove
sets by the intersection of Van Hove sets with certain discrete substructures of G. To
be more precise recall that we consider relatively dense and locally finite subsets of G
in the case of the topological entropy. This is not possible for the measure theoretical
entropy as we will see in the next example. Nevertheless, we will show below that one
can consider the more restrictive class of Delone sets in order to give a formula for
measure theoretical entropy.

Example 5.15. Let us reconsider the action discussed in Remark 4.17, i.e. π : R×T→
T that maps π(g, x) 7→ g + x mod 1. Let us denote the Lebesgue measure on T by λ
and the Lebesgue measure on R by θ. Consider now the partition α = {[0, 1/2), [1/2, 1)}
of T and the relatively dense and locally finite set

ω := Z ∪
⋃
n∈N

(
[n, n+ 1] ∩ 2−nZ

)
.

We furthermore consider the Van Hove sequence ([0, n])n∈N and denote as usual Fn :=
[0, n] ∩ ω. Then αFn = α[0,1]∩2−nZ consists of 2n intervals of Lebesgue measure 2−n and
we obtain H∗λ(αFn) = −2n · 2−n log(2−n) = n log(2). Thus,

lim sup
n→∞

Hλ(αFn)
θ([0, n]) = log(2).
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5 On relative entropy via discrete restriction

Nevertheless, one easily shows that Eλ(π) = 0. Thus, one cannot expect to compute
measure theoretical entropy via the restriction to such general ω.

Considering Delone sets we next show the following formula.

Theorem 5.16. Let µ be an invariant Borel probability measure on X. Let ω be a
Delone set in G. Let furthermore Ai be a Van Hove net and define Fi := Ai ∩ω for any
i ∈ I. Then there holds

Eµ(π p→ φ) = sup
α

lim sup
i∈I

H∗µ,p(αFi)
θ(Ai)

,

where the supremum is taken over all finite partitions α of X. The formula remains
valid if a limit inferior is considered.

Before we present a proof note that whenever G is discrete, then G is a Delone set in
G and furthermore any Følner net in G is Van Hove. As furthermore F(G) = K(G) 3
F 7→ H∗µ,p(αF ) is monotone, right invariant and subadditive for any finite partition α,
which can be seen from Proposition 4.5, Lemma 4.13 and Lemma 4.16, we can apply the
Ornstein-Weiss Lemma to obtain that the following limit exists and its independence
from the choice of a Følner net. We denote the relative measure theoretical entropy of p
and α by

E∗µ
(
α|π p→ φ

)
:= lim

i∈I

Hµ,p(αFi)
|Fi|

.

We furthermore denote themeasure theoretical entropy of α as E∗µ (α|π) := E∗µ
(
α|π p→ φ

)
,

whenever Y is a one point flow and obtain as a corollary of Theorem 5.16 that our defini-
tion of measure theoretical entropy is equivalent to the probably most common definition
in the literatureas for example discussed in [Kol58, Sin59, Oll85].

Corollary 5.17. Let µ be an invariant Borel probability measure on X. Whenever G
is a discrete amenable group, then there hold Eµ(π p→ φ) = supα E∗µ

(
α|π p→ φ

)
, and

Eµ(π) = supα E∗µ (α|π) , where the suprema are taken over all finite partitions α of X.

We will need the following lemma in order to give a proof of Theorem 5.16. The
techniques that are used to show this lemma can be found at several places in the
literature, for example in the proof of the variational principle in [Wal82, Theorem 8.6],
or in [HYZ11, Theorem 3.5.].

Lemma 5.18. Let µ be a Borel probability measure on X. For every ε > 0 and every
finite partition α of X there exists η ∈ UX such that α is at scale η and such that
H∗µ,p(α|β) < ε holds for every finite partition β of X at scale η.

Remark 5.19. Note that in the proof of [HYZ11, Theorem 3.5.] it is shown that for
every ε > 0 and every finite partition α there exists an open cover U of X such that for
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5.1 Restriction to Delone sets

any finite partition β that is finer than U there holds H∗µ(α|β) < ε. If we now consider a
Lebesgue entourage η with respect to U , then every open cover β at scale η is finer than
U and thus satisfies the claimed properties. Nevertheless, to keep the proof self-contained
and to present a proof that avoids the use of Lebesgue entourages, we include a full proof
for the convenience of the reader.

Proof of Lemma 5.18. Let r be the number of elements of α and write α = {A1, · · · , Ar}.
By Lemma 4.7 there is δ > 0 such that if βj := {Bj

1, · · · , Bj
r}, j = 1, 2 are two parti-

tions with ∑r
i=1 µ(B1

i ∆B2
i ) < δ, then H∗µ,p(β1|β2) < ε. As µ is regular there are compact

subsets Di ⊆ Ai with µ(Ai \Di) < δ/(2r2). Set D0 := X \ ⋃ri=1 Di and Ui := D0 ∪Di.
Furthermore, set U := {U1, · · · , Uk} and η := 〈U〉 = ⋃

U∈U U
2. As U is an open cover of

X we obtain η ∈ UX . Clearly, U � α and hence α is at scale η. Note furthermore that
µ(D0) < δ/(2r).

Let now β ∈ PX be at scale η. We show first, that there actually holds U � β and
consider B ∈ β. If B ⊆ D0, then B ⊆ Ui for all i ∈ {1, · · · , r} and otherwise there
exists d ∈ B \D0. By the construction of D0 this d is then contained in some Di with
i ∈ {1, · · · , r}. As d /∈ D0 and as all the Di are disjoint, we obtain that d /∈ Uj for j 6= i.
Thus, for b ∈ B we obtain from (b, d) ∈ B2 ⊆ η = ⋃r

i=1 U
2
i that there also holds b ∈ Ui

and hence B ⊆ Ui. This shows that there holds indeed U � β.
From this we conclude, that there is a finite partition γ in r sets with U � γ � β. We

denote γ = {C1, · · · , Cr} with Ci ⊆ Ui = D0 ∪Di. Thus, we obtain Di = X \⋃j 6=i Uj ⊆
Ci ⊆ Ui and Di ⊆ Ai implies

Ci∆Ai ⊆ (Ui \Di) ∪ (Ai \Di) = D0 ∪ (Ai \Di).

Thus, µ(Ci∆Ai) ≤ µ(D0) + µ(Ai \Di) ≤ δ
2r + δ

2r2 ≤ δ
r
. Hence,

r∑
i=1

µ(Ci∆Ai) < δ.

We conclude by the choice of δ that H∗µ,p(α|β) ≤ H∗µ,p(α|γ) < ε.

Proof of Theorem 5.16. If η ∈ UX and if α is a finite partition at scale η, then αFi is at
scale ηFi for every i ∈ I. Thus, there holds Hµ,p(ηFi) ≤ H∗µ,p(αFi) and we obtain from
Theorem 5.14 that

Eµ(π p→ φ) = sup
η∈UX

lim sup
i∈I

Hµ,p(ηFi)
θ(Ai)

≤ sup
α

lim sup
i∈I

H∗µ,p(αFi)
θ(Ai)

,

where the last supremum is taken over all finite partitions α of X. To show the reverse
inequality let ε > 0 and α be a finite partition of X. From Lemma 5.18 we obtain that
there exists an entourage η ∈ UX such that for any partition γ at scale η there holds
H∗µ,p(α|γ) < ε. For i ∈ I, g ∈ Fi and a finite partition β at scale ηFi we obtain that βg−1
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5 On relative entropy via discrete restriction

is at scale η, which implies H∗µ,p(α|βg−1) < ε. We thus compute

H∗µ,p(αFi) ≤ H∗µ,p(β) +H∗µ,p(αFi |β)
≤ H∗µ,p(β) +

∑
g∈Fi

H∗µ,p(αg|β)

= H∗µ,p(β) +
∑
g∈Fi

H∗µ,p(α|βg−1)

≤ H∗µ,p(β) + |Fi|ε.

Taking the infimum over all considered β, we obtain H∗µ,p(αFi) ≤ Hµ,p(ηFi) + |Fi|ε for
all i ∈ I. Consider now a precompact and open neighbourhood V of eG such that ω is
V -discrete. From Lemma 5.3 and Theorem 5.14 we see

lim sup
i∈I

H∗µ,p(αFi)
θ(Ai)

≤ sup
η∈UX

lim sup
i∈I

Hµ,p(ηFi)
θ(Ai)

+ ε lim sup
i∈I

|Fi|
θ(Ai)

≤ Eµ(π p→ φ) + ε

θ(V ) .

As ε > 0 was chosen arbitrary we obtain the statement by taking the supremum over all
finite partitions α. A similar argument shows that one can also consider a limit inferior
instead of the limit superior.

5.2 Restriction to uniform lattices
Recall that a Delone set ω is said to possess a uniform density, whenever for all Van
Hove nets (Ai)i∈I the limit limi∈I |Ai ∩ω|/θ(Ai) exists and does not depend on the Van
Hove net. Recall furthermore that this limit is denoted by dens(ω). All regular model
sets possess a uniform density [Moo02]. Thus, the following corollary of the Theorems
5.5, 5.8, 5.11, 5.14 and 5.16 can be applied in this context.

Corollary 5.20. Let ω be a Delone set that possesses a uniform density dens(ω) and
consider a Van Hove net (Ai)i∈I . Set Fi := ω ∩ Ai. Then there holds

E(π p→ φ) = dens(ω) sup
η∈UX

lim sup
i∈I

Hp(ηFi)
|Fi|

= dens(ω) sup
U

lim sup
i∈I

H∗p (UFi)
|Fi|

,

where the second supremum is taken over all finite open covers U of X. Similar formu-
las are valid, whenever we consider log(sepp(·)) or log(spap(·)). Furthermore, for any
invariant Borel probability measure µ on X there holds

Eµ(π p→ φ) = dens(ω) sup
η∈UX

lim sup
i∈I

Hµ,p(ηFi)
|Fi|

= dens(ω) sup
α

lim sup
i∈I

H∗µ,p(αFi)
|Fi|

,
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5.2 Restriction to uniform lattices

where the second supremum is taken over all finite partitions α of X.
Now recall from Lemma 3.6 that uniform lattices are Delone sets that possess a

uniform density. In Lemma 3.6 it was furthermore shown that in this case Fi is a Van
Hove sequence in the uniform lattice. We thus obtain from the definition of topological
and measure theoretical entropy and Corollary 5.20 the following.
Theorem 5.21. If Λ is a uniform lattice in G, then there holds

E(π p→ φ) = dens(Λ) E
(
π|Λ×X

p→ φ|Λ×Y
)
.

Furthermore, any G-invariant Borel probability measure µ on X is also Λ-invariant and
we obtain

Eµ(π p→ φ) = dens(Λ) Eµ

(
π|Λ×X

p→ φ|Λ×Y
)
.

Remark 5.22. Whenever g : X → X is a homeomorphism on a compact Hausdorff
space we denote by E(g) the topological entropy of the action φ : Z × X → X with
φ(n, x) = gn(x). As {0, · · · , n− 1} is a fundamental domain for the uniform lattice nZ
in Z for any n ∈ N we thus obtain from Theorem 5.21 the well-known statement that
for every homeomorphism f : X → X there holds nE(f) = E(fn). Similarly one obtains
the respective measure theoretical formula as a special case.
Remark 5.23. Entropy theory can also be studied in the context of actions of countable
discrete sofic groups as demonstrated for example in [Bow10, KL11, Bow12, KL13],
where we are far from giving a full list of the important references. It is well-known that
the notion of measure theoretical and topological entropy from [Oll85] (for actions of
countable amenable groups) is equivalent to the sofic measure theoretical and topological
entropy respectively [Bow12, KL13]. From Remark 4.29 and Corollary 5.17 it thus fol-
lows that these notions are also equivalent to our notions whenever we consider actions
of countable discrete amenable groups.
In [Sin16] entropy theory for actions of (not necessarily discrete) locally compact sofic

groups is studied. Theorem 5.21 allows to see that our notion of topological entropy is
equivalent to the notion of topological entropy in [Sin16], whenever we consider an action
π of a unimodular amenable group that contains a (countable) uniform lattice. Indeed,
let us denote by EΣ(π) for the sofic topological entropy1 of π. In [Sin16, Theorem 5.3],
in analogy to Theorem 5.21, it is presented that whenever Λ is a uniform lattice in
the acting group, then there holds EΣ(π) = dens(Λ) EΣ(π|Λ×X). We thus obtain from
Theorem 5.21 that there holds

EΣ(π) = dens(Λ) EΣ(π|Λ×X) = dens(Λ) E(π|Λ×X) = E(π).

In [Sin16] also a notion of sofic measure theoretical entropy EΣ
µ (π) is presented. It

seems open, whether a similar statement as in Theorem 5.21 also holds for sofic measure
1 We will not present the technical definition of this notion or the notion of sofic measure theoretical
entropy and refer to [Sin16] for the definition.
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theoretical entropy. Nevertheless, it is shown in [Sin16, Theorem 6.2.1] that there holds
EΣ
µ (π) ≥ dens(Λ) EΣ

µ (π|Λ×X), whenever Λ is a uniform lattice. We thus only obtain

EΣ
µ (π) ≥ dens(Λ) EΣ

µ (π|Λ×X) = dens(Λ) Eµ(π|Λ×X) = Eµ(π).

and it remains open, whether there holds EΣ
µ (π) = E(π) for all actions of unimodular

amenable groups that contain countable uniform lattices. This is of particular interest,
as it is shown in [Sin16, Theorem 4.2.1] that the variational principle holds for sofic
entropy, i.e. that there holds EΣ(π) = supµ∈MG(X) EΣ

µ (π). It furthermore remains open,
whether the notions of sofic entropy of [Sin16] are equal to our respective notions for
actions of general unimodular amenable groups.

Remark 5.24. With a similar argument as in Remark 5.23 one also shows that the
notion of measure theoretical entropy of [Fel80] is equivalent to our notion of measure
theoretical entropy. Note that the notion of [Fel80] is also used in [Oll85].

Clearly the question arises, whether a similar statement as in Theorem 5.21 can be
drawn also for entropy at a certain scale. This is the case, whenever we incorporate a
modification of the ”scale” into our formula.

Theorem 5.25. If Λ is a uniform lattice in G and K is a compact subset such that Λ
is K-dense, then for any η ∈ UX there holds

E(η|π p→ φ) = dens(Λ) E
(
ηK

∣∣∣∣π∣∣∣Λ×X p→ φ
∣∣∣
Λ×Y

)
and furthermore for any G-invariant Borel probability measure µ on X there holds

Eµ(η|π p→ φ) = dens(Λ) Eµ

(
ηK

∣∣∣∣π∣∣∣Λ×X p→ φ
∣∣∣
Λ×Y

)
.

Proof. Let (Ai)i∈I be a Van Hove net and consider Fi := Λ ∩Ai. From Lemma 3.6 and
Lemma 5.1 we know that (Fi)i∈I and (KFi)i∈I are Van Hove in Λ and G respectively
and that there holds

lim
i∈I

|Fi|
θ(KFi)

= lim
i∈I

|Fi|
θ(Ai)

lim
j∈I

θ(Aj)
θ(KFj)

= dens(Λ) · 1 = dens(Λ).

We can thus use the invariance of the topological entropy at a certain scale from the
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Van Hove net to compute

Eµ(η|π p→ φ) = lim
i∈I

Hp(ηKFi)
θ(KFi)

= dens(Λ) lim
i∈I

Hp

(
(ηK)Fi

)
|Fi|

= dens(Λ) Eµ

(
ηK

∣∣∣∣π∣∣∣Λ×X p→ φ
∣∣∣
Λ×Y

)
.

A similar argument shows the formula for the measure theoretical entropy.

Whenever G is a discrete amenable group all uniform lattices in G are F -dense with
respect to a finite set F . We can thus show the following using the notion of relative
entropy of open covers and finite partitions, introduced on page 82 and on page 100.

Theorem 5.26. Let Λ be a uniform lattice in a discrete amenable group G and F be a
finite subset such that Λ is F -dense. For any open partition U of X there holds

E∗(U|π p→ φ) = dens(Λ) E∗
(
UF
∣∣∣∣π∣∣∣Λ×X p→ φ

∣∣∣
Λ×Y

)
and furthermore for any G-invariant Borel probability measure µ on X and any finite
partition α there holds

E∗µ(α|π p→ φ) = dens(Λ) E∗µ
(
αF

∣∣∣∣π∣∣∣Λ×X p→ φ
∣∣∣
Λ×Y

)
.

Proof. Using the independence of the definition of relative topological entropy of an open
cover from the choice of a Van Hove net we obtain the first statement from Lemma 3.6
and Lemma 5.1 with a similar argument as presented in the proof of Theorem 5.26. The
statement for measure theoretical entropy follows analogously.

5.3 Extrapolation of properties of entropy from
uniform lattices

In Theorem 5.21 we have seen that one can compute entropy also by restricting to a
uniform lattice that sits in the acting group. This allows an extrapolation technique
for statements, i.e. to use results from the discrete theory and to restate them in the
general context, whenever there exist uniform lattices in the acting group. The existence
of a uniform lattice is in particular satisfied for the additive group Rd and the hope is
that one easily generalizes the whole theory with this technique and in particular the
variational principle as claimed in [TZ91]. In this section we will see that technique
can indeed be performed for some theorems like for example the Rokhlin-Abramov
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Theorem. Furthermore, we will see that the extrapolation technique causes problems
with other statements, which unfortunately include the variational principle and the
Kolmogorov-Sinai generator theorem. We will see below that some, but not all parts
of these theorems can be drawn as a corollary. In fact it seems open, whether these
statements hold in their full strength for all unimodular amenable groups and even
under the assumption of the existence of a uniform lattice.

5.3.1 The Rokhlin-Abramov Theorem
For actions of Z this result was obtained by V. A. Rokhlin and J. G. Sinai in 1962
[WZ92]. In [WZ92, Theorem 4.4] the authors then extended the result to the context
of countable discrete amenable groups and in this context the statement reappears in
[GTW00, Dan01, DZ15, Yan15].

Theorem 5.27 (Rokhlin-Abramov Theorem - discrete version). Assume that G is a
countable and discrete amenable group. Let ψ be a factor of φ via a factor map q : Y → Z
and recall that we assume that φ is a factor of π via the factor map p, i.e. π p→ φ

q→ ψ.
Let µ be an invariant Borel probability measure on X. Then there holds

Eµ

(
π
q◦p→ ψ

)
= Eµ

(
π

p→ φ
)

+ Ep∗µ

(
φ

q→ ψ
)
.

This statement seems to be open for actions of unimodular amenable groups. When-
ever G is a unimodular amenable group and Λ is a uniform lattice in G, then any
G-invariant Borel probability measure µ is also Λ-invariant. Thus, Theorem 5.21 and
Theorem 5.27 imply

Eµ

(
π
q◦p→ ψ

)
= dens(Λ) Eµ

(
π
∣∣∣
Λ×X

q◦p→ ψ
∣∣∣
Λ×Z

)
= dens(Λ) Eµ

(
π
∣∣∣
Λ×X

p→ φ
∣∣∣
Λ×Y

)
+ dens(Λ) Ep∗µ

(
φ
∣∣∣
Λ×Y

q→ ψ
∣∣∣
Λ×Z

)
= Eµ

(
π

p→ φ
)

+ Ep∗µ

(
φ

q→ ψ
)
.

We obtain the following version of the Rokhlin-Abramov Theorem from the discussed
extrapolation technique.

Corollary 5.28 (Rokhlin-Abramov Theorem - extrapolated version). Assume that G
is a unimodular amenable group that contains a countable uniform lattice. Let ψ be a
factor of φ via a factor map q : Y → Z and recall that we assume that φ is a factor of π
via the factor map p, i.e. π p→ φ

q→ ψ. Let µ be an invariant Borel probability measure
on X. Then there holds

Eµ(π q◦p→ ψ) = Eµ(π p→ φ) + Ep∗µ(φ q→ ψ).
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Remark 5.29. It remains open, whether the Rokhlin-Abramov Theorem holds for all
unimodular amenable groups and in particular for actions of the additive group Qp of
p-adic numbers.

5.3.2 The variational principle
The variational principle is the main link between the topological and the measure theo-
retical entropy. In the non-relative context it was shown in [Goo69] by L. W. Goodwyn
that topological entropy bounds measure theoretical entropy. In [Din71, Goo71] it was
shown by E. I. Dinabourg and T. N. Goodman that considering all invariant Borel
probability measures one obtains the topological entropy as the supremum over the
respective measure theoretical entropies. A short and elegant proof of the variational
principle is due to M. Misiurewicz and can be found in [Mis76]. Note that this proof
already considers conditional entropy. In the context of actions of discrete amenable
groups the statement seems to appear first in [STZ80, OP82] but we also need to men-
tion the important work of [Goo72, Den72, Den74, Rue73, Wal75, Els77, OP79] that
lead to this result. Clearly the question should be raised, whether this result holds for
actions of all unimodular amenable groups. We are not able to answer this question
completely. In [TZ91] it was claimed that the extrapolation technique can be used to
obtain the statement at least for all unimodular amenable groups that contain uniform
lattices. We will present below that this technique seems to allow to extrapolate only
the result of L. W. Goodwyn, i.e. that topological entropy bounds measure theoretical
entropy. As we are not aware how to easily extrapolate the full statement of the vari-
ational principle and as we need it in the context of aperiodic order we will present in
Chapter 7 that the variational principle holds for actions of σ-compact LCA groups.
We begin our discussion with the following citation of the discrete version of the vari-
ational principle. For a reference of the variational principle for relative entropy see
[Yan15, Theorem 5.1], where a proof is given for compact metric spaces and note that
the arguments easily generalize to compact Hausdorff spaces.

Theorem 5.30 (Variational Principle - discrete version). Whenever G is a countable
discrete amenable group, then there holds

E
(
π

p→ φ
)

= sup
µ∈MG(X)

Eµ

(
π

p→ φ
)
.

Unfortunately this statement cannot be extrapolated in its full strength. The reason
behind this is that whenever we consider a unimodular amenable group G and assume
that there exists a countable uniform lattice Λ in G, then any G-invariant measure is
Λ-invariant, but the converse is not necessarily true. Thus, restricting to a uniform
lattice and applying the variational principle for countable discrete amenable groups we
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5 On relative entropy via discrete restriction

simply obtain that

E(π p→ φ) = dens(Λ) E
(
π
∣∣∣
Λ×X

p→ φ
∣∣∣
Λ×Y

)
= dens(Λ) sup

µ∈MΛ(X)
Eµ

(
π
∣∣∣
Λ×X

p→ φ
∣∣∣
Λ×Y

)
≥ dens(Λ) sup

µ∈MG(X)
Eµ

(
π
∣∣∣
Λ×X

p→ φ
∣∣∣
Λ×Y

)
= dens(Λ) sup

µ∈MG(X)
Eµ

(
π

p→ φ
)

= sup
µ∈MG(X)

Eµ(π p→ φ),

but it is not immediately clear why this inequality is an equality. Furthermore, care
has to be taken also as Eµ

(
π

p→ φ
)
is not defined for µ ∈MΛ(X) \MG(X). With the

extrapolation technique we obtain the following.

Corollary 5.31 (Goodwyn’s theorem - extrapolated version). Whenever G is a uni-
modular amenable group and Λ is a uniform lattice in G, then there holds

E(π p→ φ) ≥ sup
µ∈MG(X)

Eµ

(
π

p→ φ
)
.

Remark 5.32. From Remark 4.17 we actually obtain that the statement of this corollary
is also valid without the assumption of the existence of a uniform lattice. Thus, the
extrapolation technique seems to give no new insights into the relation of topological and
measure theoretical entropy.
In Theorem 7.43 we will furthermore present a full proof of Goodwyn’s theorem in the

context of the topological pressure for arbitrary unimodular amenable groups. Corollary
5.31 is a special case of this statement.

In Chapter 7 we show the variational principle for the topological pressure in the
context of actions of σ-compact LCA groups. As the following version of the variational
principle is a special case of the statement of Theorem 7.49 we will see a proof for the
following below.

Theorem 5.33 (Variational principle - LCA version). Whenever G is a σ-compact LCA
group, then

E(π p→ φ) = sup
µ∈MG(X)

Eµ

(
π

p→ φ
)
.

Remark 5.34. Note that Theorem 5.33 is also satisfied for actions of the p-adic numbers
Qp, an LCA group that contains no uniform lattice.
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5.3 Extrapolation of properties of entropy from uniform lattices

5.3.3 The Kolmogorov-Sinai generator theorem
The Kolmogorov-Sinai generator theorem is an important tool that simplifies the cal-
culation of measure theoretical entropy for various examples. Recall that whenever G
is a discrete amenable group it is common to use the formula

Eµ

(
π

p→ φ
)

= sup
α

E∗µ
(
α|π p→ φ

)
,

from Corollary 5.17 as the definition of measure theoretic entropy. Recall furthermore
that in this formula the supremum is taken over all finite open covers α of X. Naturally
the question arises, whether this supremum can be a maximum and one might ask for
sufficient conditions on α to attain this maximum. The matter was solved already by A.
N. Kolmogorov and J. G. Sinai and they state in their pioneering works (for Z-actions)
that a sufficient condition is that α is generating [Kol58, Sin59]. To define this notion
let M ⊆ G. A finite partition α of X is called generating along M , if ⋃F αF generates
the topology of X, where the union is taken over all finite subsets F ⊆ M . If α is
generating along G, we simply say that α is generating. The Kolmogorov-Sinai theorem
allows to reduce the computational afford in computing the entropy with respect to a
certain measure. For a proof of the statement in the context of discrete amenable groups
see [Oll85, Theorem 4.3.14] but note that the statement can also be seen as a special
case of Theorem 5.37 below for which we present a full proof.
Theorem 5.35 (Kolmogorov-Sinai generator theorem - discrete version). Assume that
G is a discrete amenable group and let α be a finite generating partition of X. Then
there holds

Eµ

(
π

p→ φ
)

= E∗µ
(
α|π p→ φ

)
.

If one wishes to generalize the Kolmogorov-Sinai generator theorem beyond discrete
groups one first encounters the problem that the definition of E∗µ

(
α|π p→ φ

)
depends

heavily on the fact that the Følner nets in discrete groups consist of finite sets. Never-
theless, this theorem serves in order to simplify the computation of measure theoretical
entropy. It is thus natural to ask, whether for an action of a unimodular amenable group
G, a uniform lattice Λ in G and a suitable finite partition α of X one can calculate
the (relative) measure theoretical entropy by simply computing E∗µ

(
α
∣∣∣π|Λ×X p→ φ|Λ×Y

)
scaled by the uniform density of the uniform lattice. Imposing the assumption on α
that it is already generating along the uniform lattice Λ, we obtain from the extrapo-
lation technique, i.e. from Theorem 5.21 and the discrete version of the statement, the
following.
Corollary 5.36 (Kolmogorov-Sinai generator theorem - extrapolated version). When-
ever G is a unimodular amenable group and α is a finite partition that is generating
along a uniform lattice Λ, then there holds

Eµ

(
π

p→ φ
)

= dens(Λ) E∗µ
(
α

∣∣∣∣π∣∣∣Λ×X p→ φ
∣∣∣
Λ×X

)
.
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5 On relative entropy via discrete restriction

A generator theorem along a net of uniform lattices

We consider next the weaker assumption that the partition is generating along a certain
dense subgroup and obtain the following formula to compute the topological entropy. In
Proposition 5.44 below we will see that such partitions always exist for Delone dynamical
systems of (not necessarily FLC) Delone sets in Rd.

Theorem 5.37. Let (Λj)j∈J be a net of uniform lattices in G such that Λj ⊆ Λj′

whenever j ≤ j′ and such that H := ⋃
j∈J Λj is dense in G. If α is a finite partition

that is generating along H, then for any µ ∈MG(X) the net(
dens(Λj) E∗µ

(
α
∣∣∣∣π|Λj×X p→ φ|Λj×X

))
j∈J

is monotone increasing in j and converges to Eµ

(
π

p→ φ
)
.

Remark 5.38. One can for example consider the sequence of uniform lattices (2−nZd)n∈N
in Rd. The statement can furthermore be applied considering the sequence (H3(2−nZ))n∈N
in the Heisenberg group H3(R). For details on the notions concerning the Heisenberg
group see Example 2.44. Whenever G is discrete, then we can consider the trivial se-
quence (G)n∈N and obtain the classical Kolmogorov-Sinai generator theorem as stated in
Theorem 5.35.

Remark 5.39. We will see in Remark 5.54 below that the convergence is not necessarily
uniform in µ.

In order to show this theorem we present the following generalization of [Wal82,
Theorem 4.12(iv)]. We include the slightly adapted proof for the convenience of the
reader.

Proposition 5.40. If G is discrete and µ is an invariant Borel probability measure on
X, then for all finite partitions α and β of X there holds

E∗µ
(
α
∣∣∣π p→ φ

)
≤ E∗µ

(
β
∣∣∣π p→ φ

)
+H∗µ,p(α|β).

Proof. Let (Fn)n∈N be a Van-Hove net in G and note that H∗µ,p(αFn) ≤ H∗µ,p(αFn∨βFn) ≤
H∗µ,p(βFn) +H∗µ,p(αFn |βFn). Furthermore, there holds

H∗µ,p(αFn |βFn) ≤
∑
f∈Fn

H∗µ,p(αf |βFn) ≤
∑
f∈Fn

H∗µ,p(αf |βf ) = |Fn|H∗µ,p(α|β).

We thus have Hµ,p(αFn)/|Fn| ≤ Hµ,p(βFn)/|Fn|+H∗µ,p(α|β) and taking the limit n→∞
we obtain the statement.

We will furthermore need the following lemma.
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5.3 Extrapolation of properties of entropy from uniform lattices

Lemma 5.41. Let Λ and Λ′ be uniform lattices in G with uniform densities dens(Λ)
and dens(Λ′) respectively. Whenever there holds Λ ⊆ Λ′, then Λ is a uniform lattice in
Λ′ with respective uniform density dens(Λ)/ dens(Λ′).

Proof. To show that Λ is a uniform lattice in Λ′ note first that Λ is a discrete subgroup
of Λ′. Let us consider a compact subset K of G such that Λ is K-dense. As Λ′ is discrete
we obtain F := K ∩Λ′ to be finite. Furthermore, for l′ ∈ Λ′ ⊆ G = KΛ there are k ∈ K
and l ∈ Λ such that l′ = kl and we obtain k = l′l−1 ∈ Λ′Λ = Λ′. Hence, k ∈ F and we
have shown Λ′ ⊆ FΛ ⊆ Λ′. As F is finite this shows Λ to be cocompact in Λ′. Thus, Λ
is a uniform lattice in Λ′. From Lemma 3.6 we obtain that Λ has a uniform density with
respect to Λ′. To compute this value consider a Van Hove net (Ai)i∈I in G and denote
F ′i := Ai ∩ Λ′ and Fi := Ai ∩ Λ = F ′i ∩ Λ. From Lemma 3.6 we obtain that (F ′i )i∈I and
(Fi)i∈I are Van Hove nets in Λ′ and Λ respectively and furthermore that the density of
Λ with respect to Λ′ can be calculated as

lim
i∈I

|Fi|
|F ′i |

= lim
i∈I

|Fi|
θ(Ai)

θ(Ai)
|F ′i |

= lim
i∈I

|Fi|
θ(Ai)

lim
j∈I

θ(Aj)
|F ′j |

= dens(Λ)
dens(Λ′) .

Proof of Theorem 5.37. For j ∈ J let us abbreviate πj := π|Λj×X and similarly φj :=
φ|Λj×Y . Consider j, j′ ∈ J such that j ≤ j′. Then Λj ⊆ Λj′ and we obtain from Lemma
5.41 that Λj is a uniform lattice in Λj′ with respective uniform density dens(Λj)/ dens(Λj′).
Considering any respective (finite) fundamental domain C ⊆ Λ′ Theorem 5.26 yields

dens(Λj) E∗µ
(
α
∣∣∣πj p→ φj

)
≤ dens(Λj) E∗µ

(
αC
∣∣∣πj p→ φj

)
= dens(Λj′) E∗µ

(
α
∣∣∣πj p→ φj

)
.

This shows that the considered net is indeed monotone increasing and it remains to
show that the supremum over this net is Eµ(π p→ φ). To show this we fix l ∈ J and
consider ε > 0. From Corollary 5.17 we obtain that there exists a finite partition β
of X such that E(β|πl

p→ φl) + ε ≥ E(πl
p→ φl). We denote by I the set of all finite

subsets ofM and order I by inclusion. As we assume that α generates along H we apply
Lemma 4.8 to the net (αF )F∈I to obtain that there exists a finite set F ∈ I such that
H∗µ,p(β|αF ) ≤ ε + H∗µ,p(β|BX) = ε. As F is finite there exists j ≥ l such that F ⊆ Λj.
Considering any Van Hove net (Eι)ι∈Ĩ in Λj we thus obtain

E∗µ
(
αF |πj

p→ φj
)

= lim
ι∈Ĩ

H∗µ,p(αFEι)
|Eι|

= lim
ι∈Ĩ

H∗µ,p(αFEι)
|FEι|

= E∗µ
(
α|πj

p→ φj
)
. (5.2)
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From Proposition 5.40 we obtain the following

E∗µ
(
π

p→ φ
)

= dens(Λl) E∗µ
(
φl

p→ φl
)

≤ dens(Λl)
(
E∗µ
(
β|φl

p→ φl
)

+ ε
)

≤ dens(Λl)
(
E∗µ
(
αF |πl

p→ φl
)

+H∗µ,p(β|αF ) + ε
)

≤ dens(Λl) E∗µ
(
αF |πl

p→ φl
)

+ dens(Λl)2ε.

From the already shown monotonicity and (5.2) we then compute

E∗µ
(
π

p→ φ
)
≤ dens(Λj) E∗µ

(
αF |πj

p→ φj
)

+ dens(Λl)2ε

= dens(Λj) E∗µ
(
α|πj

p→ φj
)

+ dens(Λl)2ε

≤ sup
j∈J

dens(Λj) E∗µ
(
α|πj

p→ φj
)

+ dens(Λl)2ε.

As ε > 0 was arbitrary and independent of l we thus observe

E∗µ
(
π

p→ φ
)
≤ sup

j∈J
dens(Λj) E∗µ

(
α|πj

p→ φj
)
.

From Corollary 5.17 and Theorem 5.21 we furthermore see for any j ∈ J that there
holds

dens(Λj) E∗µ
(
α|πj

p→ φj
)
≤ dens(Λj) E∗µ

(
πj

p→ φj
)

= E∗µ
(
π

p→ φ
)

and we have proven the statement.

Naturally one asks whether the existence of a uniform lattice is sufficient to guarantee
the existence of a monotone sequence of uniform lattice with dense union. We will next
see that this is not the case even for compactly generated LCA groups.

Example 5.42. Consider the additive group of p-adic integers Zp for some prime p. As
argued in Example 2.42 Qp has no non-trivial discrete subgroup and we obtain that also
Zp contains no non-trivial discrete subgroup. Thus, there is no net of uniform lattices
such that the union over this family is dense in Zp. Nevertheless, as Zp is compact
we obtain that {0} is a uniform lattice. Similarly one argues that the non-compact but
compactly generated LCA group R×Zp contains no net of uniform lattices with a dense
union.
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5.3 Extrapolation of properties of entropy from uniform lattices

Generating partitions for Delone actions of Rd

Naturally the question arises which actions allow the construction of a generating par-
tition. It is well-known that the full shift on a discrete group has a generating partition.
See for example [Kel98, Example 3.2.20] for the case of Zd. The following can also be
seen from a simple and similar argument.

Example 5.43. Let G be a discrete LCA group and ω be a Delone set in G. Then it is
straightforward to show that the partition of Xω that consists of the sets {ξ ∈ Xω; 0 ∈ ξ}
and {ξ ∈ Xω; 0 /∈ ξ} is a generating partition for the Delone action πω.

The matter somehow complicates whenever one considers non-discrete groups. We
illustrate this considering the case of Rd and present next that Theorem 5.37 can be
applied to the Delone actions of Rd.

Proposition 5.44. Let ω be a Delone set in Rd. Then there exists a finite partition
α of Xω that is generating along any dense subgroup H of Rd. In particular, for any
open neighbourhood V of 0 such that ω is V -discrete and any δ > 0 that satisfies
[−δ, δ]d ⊆ V the partition α that consists of the sets {ξ ∈ Xω; ξ ∩ [−δ, δ]d 6= ∅} and
{ξ ∈ Xω; ξ ∩ [−δ, δ]d = ∅} satisfies the claimed properties.

Remark 5.45. It remains open, whether one can also construct generating partitions
for Delone actions of arbitrary LCA groups.

For the proof of Proposition 5.44 we will need the following lemma. Recall that we
abbreviate 〈α〉 = ⋃

A∈αA
2 for any partition α of a set X.

Lemma 5.46. Let {αi}i∈I be a countable family of finite partitions of a compact Haus-
dorff space X and B be a base of the uniformity UX . If for any η ∈ B there exists
i ∈ I such that 〈αi〉 ⊆ η, then the σ-algebra σ(⋃i∈I αi) generated by ⋃i∈I αi is the Borel
σ-algebra.

Proof. As αi consists of Borel measurable sets for any i ∈ I we obtain that σ(⋃i∈I αi) is
contained in the Borel σ-algebra. To show the reverse let O be an open set and consider
for any x ∈ X an ηx ∈ B such that Bηx(x) ⊆ O. Our assumption furthermore allows to
choose ix ∈ I such that 〈αix〉 ⊆ ηx and we obtain in particular that for any x ∈ X there
holds x ∈ 〈αix〉[x] ⊆ ηx[x] = Bηx(x) ⊆ O. Thus, O = ⋃

x∈O〈αix〉[x]. Now recall that I is
assumed to be countable and that all αi are finite. Thus,

⋃
i∈I αi is countable. As αix [x]

is the set in the partition αix that contains x we thus obtain {〈αix〉[x]; x ∈ O} ⊆ ⋃i∈I αi
to be countable and thus O = ⋃

x∈O〈αix〉[x] is contained in σ(⋃i∈I αi).
Proof of Proposition 5.44. Let V be an open neighbourhood of 0 such that ω is V -
discrete and let δ > 0 such that C := [−δ, δ]d ⊆ V . Consider the partition α that consists
of the sets {ξ ∈ Xω; ξ∩[−δ, δ]d 6= ∅} and {ξ ∈ Xω; ξ∩[−δ, δ]d = ∅}. In order to show that
this partition consists of measurable sets we will show that A := {ξ ∈ Xω; ξ ∩ C 6= ∅}
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is a closed subset of Xω. To do this consider a net (ξi)i∈I in A that converges to some
ξ ∈ Xω. For i ∈ I we know that there holds ξi ∩ C 6= ∅ and we can choose gi ∈ ξi ∩ C.
As C is compact and as V is a neighbourhood of C there exists an open neighbourhood
U of 0 such that C + U ⊆ V and we assume without lost of generality that U ⊆ V .
For an open neighbourhood W of 0 with W ⊆ −U we then know that for large i there
holds (ξi, ξ) ∈ ε(C,W ) and in particular gi ∈ ξi ∩ C ⊆ ξ + W . Thus, there is vi ∈ W
such that gi ∈ ξ + vi. We obtain gi − vi ∈ ξ ∩ (C −W ) ⊆ ξ ∩ (C + U) ⊆ ξ ∩ V and
as ξ is V -discrete there is a unique g ∈ ξ with g = gi − vi for all sufficiently large i. In
particular, there holds gi − g ∈ W for all large i and we have shown that gi converges
to g. As C is closed we thus obtain g ∈ ξ ∩ C and we have shown ξ ∈ A. This shows
that A is indeed closed and we have proven α to be measurable.

To show that α is generating let Ȟ be a countable and dense subgroup of H and
consider the set I of all finite subsets of Ȟ. Then I is countable and we can apply
Lemma 5.46 to the local rubber base to obtain that it is sufficient to show that for
all compact K ⊆ G and all open neighbourhoods U of 0 there exists F ∈ I such that
〈αF 〉 ⊆ ε(K,U).

Let W be an open neighbourhood of 0 such that W −W ⊆ U . Choose furthermore
E ⊆ (−δ, δ)d ∩ H finite such that ⋂e∈E(C − e) = ⋂

e∈E[−δ, δ]d − e ⊆ W . Note that⋂
e∈E(C − e) is a neighbourhood of 0 and we thus obtain from the compactness of

K that there is M ⊆ Ȟ finite such that K ⊆ (⋂e∈E(C − e)) + M . We then obtain
F := E −M ⊆ Ȟ − Ȟ = Ȟ, i.e. F ∈ I.

Let (ξ, ζ) ∈ 〈αF 〉. We only show that ξ∩K ⊆ ζ+U as the other inclusion can be shown
similarly. Let g ∈ ξ ∩K. As g ∈ K there is m ∈ M such that g ∈ ⋂e∈E (C − e+m).
For e ∈ E there holds g + (e − m) ∈ C, which implies πe−m(ξ) = ξ + (e − m) ∈
A. This shows ξ ∈ ⋂

e∈E π
−(e−m)(A). Now recall that F = E − M ⊇ E − m and

thus αF is a finer partition than αE−m. From (ξ, ζ) ∈ 〈αF 〉 we thus obtain that ξ
and ζ are contained in the same partition element ⋂e∈E π−(e−m)(A) of αE−m and in
particular ζ ∈ ⋂

e∈E π
−(e−m)(A). Thus, for any e ∈ E there holds ζ + (e − m) ∈ A,

i.e. (ζ + (e − m)) ∩ C 6= ∅. For each e ∈ E choose he ∈ ζ ∩ (C − e+m). Then for
e, e′ ∈ E ⊆ (−δ, δ)d ⊆ V there holds he − he′ ∈ V − V . As ζ is V -discrete we obtain
he = he′ and there is h ∈ ζ ∩⋂e∈E ((C − e+m)) ⊆ (⋂e∈E C − e) +m ⊆ W +m. Recall
that also g ∈ W +m. Thus, h− z ∈ W −W ⊆ U and hence g ∈ h+ U ⊆ ζ + U . This
proves ξ ∩ C ⊆ ζ + U and we have shown the statement.

Remark 5.47. Note that with similar arguments one also shows that for an open neigh-
bourhood V of 0 there always exists a finite partition α of DV (Rd) that is generating
along any dense subgroup H of Rd with respect to the shift on DV (Rd).

5.3.4 On upper semi-continuity of the entropy map
We will see in Chapter 7 that the upper semi-continuity of the entropy map µ 7→ Eµ(π)
is an important property of an action that simplifies many aspects of the thermodynamic
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formalism. It is well-known that for discrete actions the Kolmogorov-Sinai generator
theorem can be used to formulate sufficient conditions for the upper semi-continuity of
the entropy map. To discuss how this condition can be extrapolated we present next
the following well-known statement. We include the short proof for the convenience of
the reader. For reference see [Wal82].

Proposition 5.48. Let G be a discrete amenable group and µ be an invariant Borel
probability measure on X. Then, whenever α is a finite partition that has almost
no boundary with respect to µ the map MG(X) 3 ν → Eν (α|π → φ) is upper semi-
continuous in µ.

Proof. As discussed above we know that K(G) 3 F 7→ H∗µ,p(αF ) is monotone, right
invariant and subadditive. In fact it can be shown that this map is even strongly
subadditive [Wal82]. Considering any Van Hove net (Fi)i∈I in G we thus obtain from
Theorem 3.2 that there holds

Eµ (α|π → φ) = inf
i∈I

H∗µ,p(αFi)
|Fi|

.

As α has almost no boundary with respect to µ the same is valid for all refinements αF
with F ⊆ G finite. Thus, we obtain from Lemma 4.9 thatMG(X) 3 µ 7→ Hµ,p(αF )/|F |
is upper semi-continuous. As the infimum of a family of functions which are upper
semi-continuous in µ is upper semi-continuous µ the statement follows.

From the discrete version of the Kolmogorov-Sinai generator theorem formulated in
Theorem 5.35 we conclude the following.

Corollary 5.49. Let G be a discrete amenable group and µ be an invariant Borel
probability measure. Then whenever there exists a finite partition of X that is generating
and that has almost no boundary with respect to µ, then the entropy map MG(X) 3
µ 7→ Eµ (π → φ) is upper semi-continuous in µ.

From Theorem 5.21 we thus obtain the following.

Corollary 5.50. Let G be a unimodular amenable group and µ be an invariant Borel
probability measure. Then whenever there exists a finite partition that is generating
along a uniform lattice in G and that has almost no boundary with respect to µ, then
the entropy mapMG(X) 3 µ 7→ Eµ (π → φ) is upper semi-continuous in µ.

Remark 5.51. Considering a non-discrete unimodular amenable group G and an in-
variant Borel probability measure it is natural to ask whether the existence of a finite
partition that is generating (along G) and that has almost no boundary with respect to
µ is sufficient to ensure that that the entropy mapMG(X) 3 µ 7→ Eµ (π → φ) is upper
semi-continuous in µ. This is not the case already for G = R. Indeed, we will discuss in
Example 6.37 below an action on a compact Hausdorff space X with an entropy map that
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is not upper semi-continuous but such that for any invariant Borel probability measure
µ on X there exists a finite partition that is generating along R and that has almost no
boundary with respect to µ.

To be more precise we will consider Delone actions of R to observe this situation. In
fact we will see next that all Delone actions allow the construction of a finite partition
that has almost no boundary with respect to a given invariant Borel probability measure,
but which is generating along R.

Proposition 5.52. Let ω be a Delone set in Rd and consider a πω-invariant Borel
probability measure µ on Xω. Then there exists a finite partition α of Xω with almost
no boundary respect to µ such that α is generating along any dense subgroup of Rd.

Proof. Let δ > 0 such that
[
−2δ, 2δ

]d
⊆ V . For δ ∈

(
0, δ

)
define Oδ := {ξ ∈ Xω; ξ ∩

(−δ, δ)d 6= ∅} and Aδ := {ξ ∈ Xω; ξ ∩ [−δ, δ]d 6= ∅}. Now recall from Proposition 5.44
that for any δ ≤ δ the partition {Aδ, Xω \ Aδ} is generating along any dense subgroup
of Rd. It thus suffices to find δ such that Aδ has no boundary with respect to µ. We
will do this by applying Froda’s theorem.

We first show that Oδ is open for any δ ∈ (0, δ). Let ξ ∈ Oδ. As any ξ ∈ Xω is
[−δ, δ]d ⊆ V -discrete and ξ ∩ (−δ, δ) 6= ∅ there is x ∈ Rd such that {x} = ξ ∩ (−δ, δ)d =
ξ ∩ [−δ, δ]d. Let ε > 0 such that Bε(x) ⊆ (−δ, δ)d and set η := εω([−δ, δ]d, Bε(0)). Then
for ζ ∈ η[ξ] there holds ζ + Bε(0) ⊇ ξ ∩ [−δ, δ]d = {x}. Thus, there exists b ∈ Bε(0)
such that x − b ∈ ζ. As x − b ∈ Bε(x) ⊆ (−δ, δ)d this yields ζ ∈ Oδ. This shows that
η[ζ] ⊆ Oδ and we obtain Oδ to be open.

Let us next show that Aδ is the topological closure Oδ of Oδ for δ ∈ (0, δ). We
first show Aδ ⊇ Oδ. Let ξ ∈ Oδ. Then there exists a net (ξi)i∈I in Oδ such that
ξi → ξ. For i ∈ I we obtain as above the existence of xi ∈ Rd such that {xi} =
ξi ∩ (−δ, δ)d = ξi ∩ [−δ, δ]d. As (xi)i∈I is a net in the compact set [−δ, δ]d there exists a
subnet that converges to some x ∈ [−δ, δ]d. Restricting to the corresponding subnet of
(ξi)i∈I we thus assume without lost of generality that already xi → x. As ξi → ξ and
by the V -discreteness of ξ we know {x} = ξ ∩ (−δ, δ)d = ξ ∩ [−δ, δ]d and in particular
ξ ∈ Aδ. To show the reverse inclusion let ξ ∈ Aδ. As above there is x ∈ Rd such
that {x} = ξ ∩ [−δ, δ]d. Let (xi)i∈I be any net in (−δ, δ)d such that xi → x. Then
ξi := ξ − x+ xi ∈ Oδ satisfies ξi → ξ and we obtain ξ ∈ Oδ.

We can now show that there is indeed δ ∈ (0, δ) such that µ(∂Aδ) = 0. Consider
f : (0, δ) → [0, 1] : δ 7→ µ(Aδ) and note that f is monotone. Thus, by Froda’s theorem
there is δ ∈ (0, δ0) such that f is continuous in δ and we obtain µ(Aδ) = supr∈(0,δ) µ(Ar).
Note that Ar ⊆ Oδ for r ∈ (0, δ). Furthermore, for r ∈ (0, δ) we know that Ar is closed
as the closure of Oδ and as Xω is compact we obtain Ar to be compact. As Oδ is open
and µ is regular we get

µ(Oδ) = sup
A⊆Oδ compact

µ(A) ≥ sup
r∈(0,δ)

µ(Ar) = µ(Aδ) ≥ µ(Oδ).
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5.3 Extrapolation of properties of entropy from uniform lattices

Thus, 0 ≤ µ(∂Aδ) ≤ µ(Aδ)− µ(Oδ) = 0 and we have shown the statement.

Remark 5.53. As above one obtains with similar arguments the analogue statement for
the shift on DV (Rd) for any open neighbourhood V of 0.

Remark 5.54. Whenever (fi)i∈I is a sequence of maps that are upper semi-continuous
in x that converges uniformly2 to a function f , then it can be seen with an easy ε/3-
argument that f is also upper semi-continuous in x. From Proposition 5.48 we know
that whenever α is a finite partition with almost no boundary with respect to µ, then

MG(X) 3 ν 7→ E∗ν
(
α

∣∣∣∣π∣∣∣Λ×X p→ φ
∣∣∣
Λ×X

)
is upper semi-continuous in µ for all uniform lattices Λ ⊆ G. Hoping to prove the en-
tropy map to be upper semi-continuous it is thus natural to ask, whether the convergence
of the net (

dens(Λj) E∗µ
(
α

∣∣∣∣π|Λj×X p→ φ|Λj×X
))

j∈J

to Eµ

(
π

p→ φ
)
as shown in Theorem 5.37 for finite partitions α that generate along the

dense subgroup ⋃j∈J Λj is actually uniform in µ. Proposition 5.52 allows to see that this
already fails for G = R. Indeed in Example 6.37 we will see that there are Delone sets
ω in R such that the entropy function of πω is not upper semi-continuous. Nevertheless,
from Proposition 5.52 we obtain that for any invariant Borel probability measure µ there
exists a finite partition that is generating along ⋃j∈J Λj and which has furthermore no
boundary with respect to µ.

5.3.5 Bowen’s formula
Bowens’s formula can be seen as the topological analogue of the Rokhlin-Abramov
Theorem. In fact it is not hard to deduce it from the Rokhlin-Abramov Theorem via
the variational principle. Unfortunately we do not know of a reference of Bowen’s
formula in the case of discrete amenable groups. For the convenience of the reader we
thus include a proof, but note that some of the corresponding ideas can be found in the
literature, such as for example the proof of [Yan15, Theorem 5.7].

For the proof we will need to consider the push forward p∗µ of a Borel probability
measure µ along p : X → Y . As p is assumed to be a factor map we obtain that
p∗µ ∈ MG(Y ), whenever µ ∈ MG(X). With a Krylov–Bogolyubov argument one can
show that p∗ is a surjection. We include the argument for the convenience of the reader.

Proposition 5.55. The map p∗ : MG(X) → MG(Y ) is surjective whenever G is a
discrete amenable group.

2 A sequence (fi)i∈I of maps fi : K → [0,∞) is said to converge uniformly to f : K → [0,∞) whenever
for all ε > 0 there exists j ∈ I such that for all i ≥ j and for any y ∈ K there holds |fi(y)−f(y)| < ε.
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5 On relative entropy via discrete restriction

Remark 5.56. With some more technical afford the statement can also be shown with
similar methods for general unimodular amenable groups. As we do not need the state-
ment in this generality we only present the proof for discrete groups.

Remark 5.57. Taking φ as the one point flow, we obtain the Krylov–Bogolyubov theo-
rem, i.e. thatMG(X) is non-empty for discrete amenable groups.

Proof of Proposition 5.55. Note first that the pull back p∗ : C(Y ) → X(Y ) that maps
p∗(f) := f ◦ p is an injective, linear and continuous operator and thus C(Y ) can be
identified with a subspace of C(X). As we identify the topological dual of C(X) with
M(X) the Hahn-Banach theorem allows to deduce that p∗ : M(X) → M(Y ) is sur-
jective. Thus, for ν ∈ MG(Y ) ⊆ M(Y ) there is µ ∈ M(X) such that p∗µ = ν.
Considering an ergodic net (Fi)i∈I in G we define

νi := 1
|Fi|

∑
g∈Fi

(πg∗ν)

for any i ∈ I. Then clearly (νi)i∈I is a net in the weak-* compact set M(Y ) and thus
there exists a weak-* limit point ν̂ and we can assume without lost of generality that
νi → ν̂. Now for any g ∈ G and any f ∈ C(Y ) there holds |πg∗ν(f)| ≤

∫
X |f |dπg∗ν ≤

‖f‖∞. Thus, for any g′ ∈ G we compute

∣∣∣(πg′∗ ν̂ − ν̂)(f)
∣∣∣ ≤ 1
|Fi|

∑
(g′Fi)∆Fi

|πg∗ν(f)|dθ(g) ≤ |(g
′Fi)∆Fi|
|Fi|

‖f‖∞.

As we assume (Fi)i∈I to be ergodic we obtain from the arbitrary choice of f that πg′∗ ν̂ = ν̂
for any g′ ∈ G. This proves ν̂ ∈MG(Y ) and it remains to show that p∗µ = ν̂. For this
we use that p is a factor map and that µ is invariant and compute for g ∈ G that

φg∗ν = φg∗p∗µ = (φg ◦ p)∗µ = (p ◦ πg)∗µ = p∗π
g
∗µ = p∗µ.

As p∗ is affine we thus obtain that for any i ∈ I there holds p∗µ = φg∗νi. As νi → ν̂ we
obtain from the weak-* continuity of p∗ that there also holds p∗µ = ν̂.

Theorem 5.58 (Bowen’s formula - discrete version). Assume that G is a countable
discrete amenable group. Let ψ be a factor of φ via a factor map q : Y → Z and recall
that we assume that φ is a factor of π via the factor map p, i.e. π p→ φ

q→ ψ. There
holds

max{E(π p→ φ),E(φ q→ ψ)} ≤ E(π q◦p→ ψ) ≤ E(π p→ φ) + E(φ q→ ψ).

Whenever φ is uniquely ergodic, then there holds

E(π q◦p→ ψ) = E(π p→ φ) + E(φ q→ ψ).
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5.3 Extrapolation of properties of entropy from uniform lattices

Proof. The first inequality follows from Remark 4.17 and Proposition 4.34. As p∗ : MG(X)→
MG(Y ) is surjective we furthermore observe

E
(
φ

q→ ψ
)

= sup
ν∈MG(Y )

Eν

(
φ

q→ ψ
)

= sup
µ∈MG(X)

Ep∗µ

(
φ

q→ ψ
)
.

We thus obtain the statement from Theorem 5.27 and the following computation

E(π q◦p→ ψ) = sup
µ∈MG(X)

Eµ

(
π
q◦p→ φ

)
= sup

µ∈MG(X)

(
Eµ

(
π

p→ φ
)

+ Ep∗µ

(
φ

q→ ψ
))

≤ sup
µ∈MG(X)

(
Eµ

(
π

p→ φ
))

+ sup
µ∈MG(X)

(
Ep∗µ

(
φ

q→ ψ
))

= E
(
π

p→ φ
)

+ E
(
φ

q→ ψ
)
.

To show the second statement let us denote by ν the unique invariant Borel probability
measure on Y . Then there holds p∗µ = ν for any µ ∈MG(X) and thus Ep∗µ

(
φ

p→ ψ
)

=
E
(
φ

p→ ψ
)
by the variational principle and we compute

E(π q◦p→ ψ) = sup
µ∈MG(X)

(
Eµ

(
π

p→ φ
)

+ Ep∗µ

(
φ

q→ ψ
))

= sup
µ∈MG(X)

(
Eµ

(
π

p→ φ
))

+ E
(
φ

q→ ψ
)

= E
(
π

p→ φ
)

+ E
(
φ

q→ ψ
)
.

The proof of the previous theorem shows that the combination of the variational
principle and the Rokhlin-Abramov Theorem gives the Bowen formula. As we know of
neither to hold for actions of general unimodular amenable groups we cannot deduce
the general version of the Bowen formula so far. Nevertheless, it is straightforward to
extrapolate the first statement of the theorem with Theorem 5.21.

Corollary 5.59 (Bowen’s formula - extrapolated version). Assume that G is a unimod-
ular amenable group that contains a countable uniform lattice. Let ψ be a factor of φ
via a factor map q and recall that we assume that φ is a factor of π via the factor map
p, i.e. π p→ φ

q→ ψ. There holds

max{E(π p→ φ),E(φ q→ ψ)} ≤ E(π q◦p→ ψ) ≤ E(π p→ φ) + E(φ q→ ψ).

Remark 5.60. Note that E(π p→ φ) ≤ E(π q◦p→ ψ) and E(φ q→ ψ) ≤ E(π q◦p→ ψ) also hold
without the assumption of the existence of a uniform lattice as seen in Remark 4.17 and
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5 On relative entropy via discrete restriction

Proposition 4.34. Nevertheless, it remains open, whether we also have

E(π q◦p→ ψ) ≤ E(π p→ φ) + E(φ q→ ψ)

for all actions of unimodular amenable groups.

Remark 5.61. Note that whenever φ is uniquely ergodic, then the restriction of φ to a
uniform lattice is not necessarily uniquely ergodic. To see this consider for example the
rotation φ : R×T→ T with φ(r, x) = x+ r and note that φ is uniquely ergodic (already
the restriction to αZ is uniquely ergodic for α irrational) while the restriction to Z is not
uniquely ergodic. Thus, one cannot use the extrapolation technique to show that there
holds E(π q◦p→ ψ) = E(π p→ φ) + E(φ q→ ψ) whenever φ is uniquely ergodic. Nevertheless,
whenever the variational principle holds in G, then one can use the extrapolated version
of the Rokhlin-Abramov Theorem as stated in Corollary 5.28 to argue as in the proof of
Theorem 5.58 to obtain the statement also for G. In particular, by Theorem 5.33 there
holds E(π q◦p→ ψ) = E(π p→ φ) + E(φ q→ ψ) whenever φ is uniquely ergodic and G is a
σ-compact LCA group.

Letting ψ be the one point flow we obtain Bowen’s formulation for unimodular
amenable groups that contain uniform lattices.

Corollary 5.62 (Bowen’s formula - classical version). Assume that G is a unimodular
amenable group that contains a countable uniform lattice. Then there holds

E(π) ≤ E(π p→ φ) + E(φ).

We have already seen that whenever φ is uniquely ergodic (and whenever the vari-
ational principle holds in G), then we obtain an equality in Corollary 5.62. We next
extrapolate some sufficient conditions that ensure this equality. Note first that the equal-
ity is satisfied whenever the relative topological entropy of p is 0, i.e. E(π p→ φ) = 0.
In the context of countable discrete amenable groups this topic is discussed in [Yan15].
To discuss the results from [Yan15] we will need the following notions. Recall that
p : X → Y is assumed to be a factor map. We say that p is countable to one, whenever
p−1(y) is countable for all y ∈ Y . We furthermore call two points x, x′ ∈ X distal,
whenever there is η ∈ UX such that (g.x, g.x′) /∈ η for all g ∈ G. The factor map p is
said to be distal, whenever for all y ∈ Y two distinct points in p−1(y) are distal. From
[Yan15, Theorem 5.7] and [Yan15, Corollary 6.7] we quote the following result.

Proposition 5.63. If G is a (non-compact) countable discrete amenable group and X
and Y are metrizable, then E(π p→ φ) = 0 is satisfied, whenever p is countable to one
or distal.

Note that the property that p is a countable to one factor map is independent of the
acting group. We thus obtain from the extrapolation technique the following corollary.
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Corollary 5.64. If G is a (non-compact) unimodular amenable group that contains a
countable uniform lattice and whenever X and Y are metrizable, then E(π) = E(φ) and
E(π p→ φ) = 0, whenever p is countable to one.

Distality of a factor map clearly depends on the acting group. Nevertheless, whenever
Λ is a subgroup of G and x, x′ ∈ X are distal with respect to the action of G, then they
are also distal with respect to the action of Λ. In particular, one obtains that whenever
p is a distal factor map with respect to the action of G, then it is also a distal factor
map with respect to the action of Λ. We can thus apply the extrapolation technique to
obtain the following.

Corollary 5.65. If G is a (non-compact) unimodular amenable group that contains a
countable uniform lattice and whenever X and Y are metrizable, then E(π) = E(φ) and
E(π p→ φ) = 0, whenever p is distal.
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6 On entropy of Delone sets
In this chapter we will use the developed tools in order to answer the questions raised in
the introduction of this thesis concerning the patch counting entropy. In order to do this
we present in Section 6.1 a geometric approach to the topological entropy of a Delone
set that avoids the construction of the Delone dynamical system and works for all LCA
groups. In Section 6.2 this approach will be related to the patch counting entropy for
FLC Delone sets as discussed in the introduction and it will be shown that whenever one
computes the patch counting entropy in a compactly generated LCA group and along
a certain type of Van Hove net, then the patch counting entropy equals the topological
entropy. Note that this extends the result of [BLR07], where it is shown that the patch
counting entropy equals the topological entropy for FLC Delone sets in Rd, whenever
computed along a Van Hove sequence of centred closed balls. We show furthermore that
in this context the patch counting entropy can be computed as a limit. In Section 6.3
we will see that already for FLC Delone in R the patch counting entropy depends on
the choice of a Van Hove sequence. In Section 6.4 we will present different Delone sets
in the additive group of the 2-adic numbers Q2. Computing the patch counting entropy
along the Van Hove sequence of closed centred balls we will see that the limit in the
formula does not always exist and furthermore that the patch counting entropy is not
always the topological entropy of the associated action. These examples heavily use the
geometrical approach to topological entropy of Section 6.1 as this one allows to define
FLC Delone sets in Q2 inductively while controlling the topological entropy. We finish
this chapter with the computation of the topological entropy of the full shift. We show
that this entropy is finite if and only if the considered LCA group is discrete.

Recall that Patω(A) is the set of all A-patches of a Delone set ω in an LCA group G,
where A is a compact subset of G. Recall furthermore that we define the patch counting
entropy of ω along a Van Hove net A = (Ai)i∈I as

lim sup
i∈I

log |Patω(Ai)|
θ(Ai)

.

We consider next different approaches to patch counting in order to see that the Ornstein-
Weiss Lemma can indeed not be applied directly in order to study patch counting en-
tropy.

Example 6.1. Let ω := {5n; n ∈ Z}∪{5n+1; n ∈ Z}. Then ω is a FLC Delone set in
R. For A := [0, 1] we obtain Patω(A) = {{0}, {0, 1}} and Patω(A+ 2) = Patω([2, 3]) =
{∅}. This shows that K(R) 3 A 7→ |Patω(A)| is not right invariant. Note that one can
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6 On entropy of Delone sets

interpret ω as a FLC Delone set in Z and consider F = {0, 1} and F + 2 = {2, 3} in
order to see that K(Z) 3 F 7→ |Patω(F )| is also not right invariant.

In order to overcome the lack of right invariance one could consider the following.
Let us denote by NPatω(A) the non-centred A-patches of ω, i.e. all sets of the form
(ω− g)∩A for g ∈ G. It is then straightforward to show that K(R) 3 A 7→ |NPatω(A)|
is monotone right invariant and subadditive. Unfortunately the considered cardinality
|NPatω(A)| is infinite whenever A contains an infinite open set and in particular for
all sufficiently invariant subsets of a non-discrete group such as R. In particular, we
would always obtain lim supi∈I log |NPatω(Ai)|/θ(Ai) = ∞, whenever we consider a
FLC Delone set in a non-discrete LCA group G and a Van Hove net (Ai)i∈I in G.
One can try to resolve this problem by considering the non-centred patches only up
to translation. We denote by |NPat∼ω (A)| the number of elements of NPatω(A) up to
translation. Then A 7→ log |NPat∼ω (A)| is still monotone and right invariant and one
could hope that it is also subadditive. The next example shows that this is not the case
for FLC Delone sets in R or Z.

Example 6.2. Let ak := 5 + (k mod 5) for k ∈ N and ω := {∑n
k=1 ak; k ∈ N} ∪ {0} ∪

{−∑n
k=1 ak; k ∈ N}. Then ω is a subset of R and easily seen to be an FLC Delone

set in R. Consider now A := [0, 4]. As two points in ω are at least 5 apart we obtain
that NPatω(A) = {∅} ∪ {{x}; x ∈ A}, i.e. all non-centred A-patches of ω are either
empty or consist of one point. In particular, we obtain that |NPat∼ω (A)| = 2. Similarly
one obtains |NPat∼ω (B)| = 2 for B := [5, 9]. Note that all distances 5, 6, 7, 8 and 9
can be realized between points in ω. Thus, considering A ∪ B = [0, 4] ∪ [5, 9] we note
that NPatω(A ∪ B) contains the sets {0, x} with x ∈ {5, 6, 7, 8, 9} and thus even up to
translation at least 5 elements. We thus observe

log |NPat∼ω (A)|+ log |NPat∼ω (A)| = log(2) + log(2) = log(4)
< log(5) ≤ log |NPat∼ω (A ∪ B)|

and thus K(R) 3 A 7→ |NPat∼ω (A)| is not subadditive. Note that ω ⊆ Z and that one can
argue similarly considering E = {0, 1, 2, 3, 4} and F = {5, 6, 7, 8, 9} in order to obtain
that K(Z) 3 F 7→ |NPat∼ω (F )| is not subadditive.

Remark 6.3. Clearly, one can also consider the number |Pat∼ω (A)| of centred A-patches
up to translation. Note that the arguments from Example 6.2 also shows that the map
K(R) 3 A 7→ |Pat∼ω (A)| is not subadditive for the considered ω.

In this chapter we assume G to be a non-compact LCA group.

6.1 Topological entropy via patch counting
We will start our considerations by presenting a geometrical approach to topological
entropy which is inspired by the concept of patch counting entropy. This is motivated
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as we will see in Example 6.30 and in Theorem 6.47 that the patch counting entropy
along certain Van Hove sequences and the topological entropy are not necessarily equal,
even for FLC Delone sets.

For a closed subset ω ⊆ G, a compact subset A ⊆ G and an open neighbourhood V
of 0 we say that F ⊆ ω is an A-patch representation at scale V for ω, if for any g ∈ ω
there is f ∈ F s.t.

ω − f
A,V
≈ ω − g.

Note that F ⊆ ω is an A-patch representation if and only if {ω − g; g ∈ F} is ε(A, V )-
spanning for {ω − g; g ∈ ω}. Considering the compact Hausdorff space A(G) Lemma
4.31 thus yields that there exists a finite A-patch representation at scale V for ω and we
denote patω(A, V ) for the minimal cardinality of an A-patch representation at scale V
for ω. Clearly, {ω− g; g ∈ ω} is a much simpler object than Xω. In this section we will
show that the topological entropy of πω can be simplified and computed using patω.

Theorem 6.4. For every Delone set ω and every Van Hove net (Ai)i∈I in a non-compact
LCA group G there holds

E(πω) = sup
V

lim inf
i∈I

log(patω(Ai, V ))
θ(Ai)

= sup
V

lim sup
i∈I

log(patω(Ai, V ))
θ(Ai)

,

where the suprema are taken over all open neighbourhoods V of 0.

We start our investigations concerning the proof of the theorem with the following
formula, which simplifies the computation of Bowen entourages of members of the local
rubber base and thus gives a link between the dynamics of the full shift on G and a
static notion like the local rubber base.

Lemma 6.5. For compact subsets A and K of G and any open neighbourhood V of 0
there holds

ε(K,V )A = ε(K − A, V ).

In particular, there holds εω(K,V )A = εω(K − A, V ) for any Delone set ω in G.

Proof. Let us denote the full shift on G by π. To show ε(K − A, V ) ⊆ ε(K,V )A, let
(ξ, ζ) ∈ ε(K − A, V ). For g ∈ A we obtain ξ ∩ (K − g) ⊆ ξ ∩ (K − A) ⊆ ζ + V , hence

πg(ξ) ∩K = (ξ + g) ∩K ⊆ ζ + g + V = πg(ζ) + V.

Similarly one shows πg(ζ) ∩K ⊆ πg(ξ) + V . This proves (πg(ξ), πg(ζ)) ∈ ε(K,V ), i.e.
(ξ, ζ) ∈ ε(K,V )g for every g ∈ A. We thus obtain

ε(K − A, V ) ⊆
⋂
g∈A

ε(K,V )g = ε(K,V )A.
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We next show ε(K,V )A ⊆ ε(K−A, V ). For (ξ, ζ) ∈ ε(K,V )A there holds (πg(ξ), πg(ζ)) ∈
ε(K,V ) for every g ∈ A, hence

(ξ + g) ∩K = πg(ξ) ∩K ⊆ πg(ζ) + V = ζ + g + V.

We obtain ξ ∩ (K − g) ⊆ ζ + V for all g ∈ A and compute

ξ ∩ (K − A) = ξ ∩

⋃
g∈A

(K − g)
 =

⋃
g∈A

(ξ ∩ (K − g)) ⊆ ζ + V.

As one shows similarly that ζ ∩ (K − A) ⊆ ξ + V , we conclude (ξ, ζ) ∈ ε(K − A, V ).
For a Delone set ω in G we compute

εω(K,V )A =
⋂
g∈A

εω(K,V )g =
⋂
g∈A

ε(K,V )g ∩X2
ω = ε(K,V )A ∩X2

ω

= ε(K − A, V ) ∩X2
ω = εω(K − A, V )

and the second statement follows.

6.1.1 Topological entropy and non-centred patch counting
In order to show that the topological entropy of a Delone dynamical system can be
calculated using patω we introduce the following intermediate concept between A-patch
representations and spanning sets in the corresponding Delone dynamical system. Let
A ⊆ G be a compact subset and V be an open neighbourhood of 0. For a closed subset
ω ⊆ G we say that F ⊆ G is a non-centred A-patch representation at scale V for ω, if
for any g ∈ G there is f ∈ F s.t.

ω − g
A,V
≈ ω − f.

Note that this is equivalent to {ω − f ; f ∈ F} being ε(A, V )-spanning for Dω = {ω +
g; g ∈ G}. Thus, by Lemma 4.32 we obtain that there is a finite non-centred A-patch
representation at scale V for ω. We define npatω(A, V ) as the minimal cardinality of a
non-centred A-patch representation at scale V for ω, i.e. npatω(A, V ) := spaDω(ε(A, V ))
with respect to the full shift on G. In particular, we obtain that whenever ω is a
Delone set, then there holds npatω(A, V ) := spaDω(εω(A, V )). Using Lemma 6.5 and
the considerations about entropy and dense subsets from Subsection 4.3.4 we next show
the following formulas for the topological entropy of a Delone dynamical system.

Proposition 6.6. For every Van Hove net (Ai)i∈I there holds

E(πω) = sup
V ∈N (G)

lim inf
i∈I

log(npatω(Ai, V ))
θ(Ai)

= sup
V ∈N (G)

lim sup
i∈I

log(npatω(Ai, V ))
θ(Ai)

.
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Proof. Let V be an open neighbourhood of 0 and set ε := εω({0}, V ). Then Lemma 6.5
yields

npatω(Ai, V ) = spaDω(εω(Ai, V )) = spaDω(ε(−Ai))

and we obtain from Proposition 4.33 that

E(πω) ≥ lim sup
i∈I

log(spaDω(ε(−Ai)))
θ(Ai)

= lim sup
i∈I

log(npatω(Ai, V ))
θ(Ai)

.

Taking the supremum over all open neighbourhoods V of 0 we thus obtain

E(πω) ≥ sup
V ∈N (G)

lim sup
i∈I

log(npatω(Ai, V ))
θ(Ai)

.

Let now η ∈ UX and choose ε ∈ UX as in Lemma 4.32, i.e. such that H(ηA) ≤
log

(
spaDω(εA)

)
is satisfied for all compact subsets A ⊆ G. There are K ⊆ G com-

pact and an open neighbourhood V of 0 such that εω(K,V ) ⊆ ε. As also (−Ai)i∈I is
a Van Hove net in G we obtain from Proposition 2.26 the existence of a Van Hove net
(Bi)i∈I that satisfies limi∈I θ(Bi)/θ(Ai) = 1 and Bi + (−K) ⊆ −Ai for all i ∈ I. Lemma
6.5 thus allows to see eH(ηBi ) ≤ spaDω(εω(K,V )Bi) = npatω(K −Bi, V ) ≤ npatω(Ai, V ).
Hence,

E(η|πω) = lim
i∈I

H(ηBi)
θ(Bi)

≤ lim inf
i∈I

log(npatω(Ai, V ))
θ(Ai)

and taking the supremum over all open neighbourhoods V of 0 yields

E(η|πω) ≤ sup
V ∈N (G)

lim inf
i∈I

log(npatω(Ai, V ))
θ(Ai)

.

Taking the supremum over all η ∈ UX we obtain

E(πω) ≤ sup
V ∈N (G)

lim inf
i∈I

log(npatω(Ai, V ))
θ(Ai)

≤ sup
V ∈N (G)

lim sup
i∈I

log(npatω(Ai, V ))
θ(Ai)

and the statement follows.

6.1.2 Centred and non-centred patch counting
We now establish the connection between non-centred and centred A-patch representa-
tions. To do this we will need the following version of the triangle inequality for the
local rubber base.
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6 On entropy of Delone sets

Lemma 6.7. For all compact subsets K of G and all precompact open neighbourhoods V
of 0 there holds ε

(
K − V , V

)
ε
(
K − V , V

)
⊆ ε (K,V + V ). In particular, for a Delone

set ω in G there holds εω
(
K − V , V

)
εω
(
K − V , V

)
⊆ εω (K,V + V ).

Proof. Let (ξ1, ξ2) ∈ ε
(
K − V , V

)
ε
(
K − V , V

)
. Then there exists ζ ∈ A(G) such that

(ξ1, ζ), (ζ, ξ2) ∈ ε
(
K − V , V

)
and in particular there holds

ξ1 ∩K = ξ1 ∩K ∩K ⊆ ξ1 ∩
(
K − V

)
∩K ⊆ (ζ + V ) ∩K

As (ζ, ξ2) ∈ ε
(
K − V , V

)
any v ∈ V satisfies ζ ∩ (K − v) ⊆ ζ ∩

(
K − V

)
⊆ ξ2 + V and

we compute

ξ1 ∩K ⊆ (ζ + V ) ∩K =
⋃
v∈V

(ζ + v) ∩K ⊆
⋃
v∈V

(ξ2 + V + v) = ξ2 + V + V.

Similarly one shows ξ2 ∩K ⊆ ξ1 + V + V and we conclude (ξ1, ξ2) ∈ ε (K,V + V ). This
shows the first statement. The second statement easily follows from the first one as
εω
(
K − V , V

)
εω
(
K − V , V

)
⊆ X2

ω ∩
(
ε
(
K − V , V

)
ε
(
K − V , V

))
.

Note that a non-centred A-patch representation at scale V is not necessarily contained
in ω and thus not necessarily an A-patch representation at scale V . Nevertheless, we
have the following.

Lemma 6.8. Let ω be a Delone set. Let A ⊆ G be a compact subset of G and consider a
precompact and open neighbourhood V of 0. Then for every non-centred

(
A− V

)
-patch

representation F at scale V for ω there exists an A-patch representation E at scale
V + V for ω such that |E| ≤ |F |.

Proof. For f ∈ F let [f ] be the set of all g ∈ ω such that ω − g is ε
(
A− V , V

)
-close

to ω − f . For f ∈ F choose gf ∈ [f ], whenever [f ] 6= ∅. Otherwise choose gf ∈ ω

arbitrary. Set E := {gf ; f ∈ F}. As F is a non-centred
(
A− V

)
-patch representation

for any g ∈ ω there is f ∈ F such that ω − g and ω − f are ε
(
A− V , V

)
-close. Such

an f in particular satisfies g ∈ [f ], i.e. [f ] 6= ∅ and we thus know gf ∈ [f ]. Then ω − g
is ε

(
A− V , V

)
-close to ω− f and ω− f is ε

(
A− V , V

)
-close to ω− gf . Thus, Lemma

6.7 allows to conclude that ω − g and ω − gf are ε (A, V + V )-close, i.e.

ω − g
A,V+V
≈ ω − gf

and we obtain E to be an A-patch representation at scale V + V .

The following Lemma shows that one can also control the minimal cardinality of
certain non-centred patch representations by certain centred patch representations.
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6.1 Topological entropy via patch counting

Lemma 6.9. Let ω be a Delone set. Consider a compact subset K of G such that ω
is K-dense. Consider furthermore an open neighbourhood V of 0. Then there exists
a finite set E ⊆ K such that F + E is a non-centred A-patch representation at scale
V +V for ω, whenever F is an (A+K)-patch representation at scale V for ω and A is
a compact subset of G.

Proof. As K is compact and as V ∩ (−V ) is an open neighbourhood of 0, there is a
finite set E ⊆ K such that K ⊆ E + (V ∩ (−V )). Let now A be a compact subset
of G and F be an (A + K)-patch representation at scale V . To show that F + E is a
non-centred A-patch representation at scale V + V let g ∈ G. Then as ω is K-dense
we obtain the existence of k ∈ K and u ∈ ω such that g = k + u. Furthermore, from
the choice of E we obtain that there are e ∈ E and v ∈ V ∩ (−V ) such that k = e+ v.
As F is an (A+K)-patch representation at scale V there exists f ∈ F such that ω− f
and ω − u are εω(A + K,V )-close. We will now show that ω − g and ω − (e + f) are
ε(A, V +V )-close. As e+f ∈ E+F this will allow to conclude that E+F is an A-patch
representation at scale V + V .

As ω − f and ω − u are ε(A+K,V )-close and as e ∈ E ⊆ K we observe

(ω − f) ∩ (A+ e) ⊆ (ω − f) ∩ (A+K) ⊆ (ω − u) + V.

From e+ u = k − v + g − k = g − v we thus compute

(ω − (f + e)) ∩ A ⊆ (ω − u) + V − e
= ω − g + v + V

⊆ (ω − g) + (V + V ).

As e+ v = k ∈ K and as ω − u and ω − f are ε(A+K,V )-close we furthermore know
that there holds

(ω − u) ∩ (A+ e+ v) ⊆ (ω − u) ∩ (A+K) ⊆ (ω − f) + V.

From g = k + u = e+ v + u and v ∈ −V we thus obtain

(ω − g) ∩ A = ((ω − u) ∩ (A+ e+ v))− e− v
⊆ (ω − f) + V − e− v
⊆ (ω − (f + e)) + (V + V )

and we conclude that ω − g and ω − (e+ f) are indeed εω(A, V + V )-close.
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6 On entropy of Delone sets

The previous lemmas allow to relate patω and npatω in the following way.

Proposition 6.10. Let ω be a Delone set in G and consider a compact subset K of G
such that ω is K-dense and furthermore a precompact and open neighbourhood V of 0.
Then there exists a constant N ∈ N such that for all compact subsets A ⊆ G there holds
patω(A, V + V ) ≤ npatω

(
A− V , V

)
and npatω(A, V + V ) ≤ N · patω(A+K,V ).

Proof. From Lemma 6.8 we obtain that the minimal cardinality of an A-patch represen-
tation at scale V +V is smaller than the minimal cardinality of a non-centred

(
A− V

)
-

patch representation at scale V , i.e. the first inequality. Furthermore, we choose a finite
set E ⊆ K as in Lemma 6.9. Setting N := |E| we then obtain that whenever F is
an (A + K)-patch representation at scale V of minimal cardinality, then F + E is an
A-patch representation at scale V + V . As |F + E| ≤ N |F | = N patω(A + K,V ) we
thus obtain the second statement.

We have now collected all tools that we will need for the proof of Theorem 6.4.

Proof of Theorem 6.4. First recall that we assume G to be non-compact and thus there
holds limi∈I 1/θ(Ai) = 0 for the Van Hove net (Ai)i∈I . Let K ⊆ G be compact such that
ω is K-dense and choose a Van Hove net (Bi)i∈I such that limi∈I θ(Bi)/θ(Ai) = 1 and
such that Bi +K ⊆ Ai for all i ∈ I. Let V ⊆ G be an open neighbourhood of 0. Then
there exists a precompact and open neighbourhood W of 0 such that W +W ⊆ V . By
Proposition 6.10 there is N ∈ N such that for all i ∈ I there holds

npatω(Bi, V ) ≤ npat(Bi,W +W ) ≤ N patω(Bi +K,W ) ≤ N patω(Ai,W )

and we obtain

lim inf
i∈I

log(npatω(Bi, V ))
θ(Bi)

≤ lim inf
i∈I

log(N) + log(patω(Ai,W ))
θ(Ai)

= lim inf
i∈I

log(patω(Ai,W ))
θ(Ai)

≤ sup
U∈N (G)

lim inf
i∈I

log(patω(Ai, U))
θ(Ai)

.

Taking the supremum over all open neighbourhoods V of 0 we thus obtain from Propo-
sition 6.6 that there holds

E(πω) = sup
V ∈N (G)

lim inf
i∈I

log(npatω(Bi, V ))
θ(Bi)

≤ sup
U∈N (G)

lim inf
i∈I

log(patω(Ai, U))
θ(Ai)

.

To show the reverse inequality let V be an open neighbourhood of 0. Then V contains a
precompact open neighbourhood W of 0 that satisfies W +W ⊆ V and we can consider
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6.2 Patch counting for FLC Delone sets

a Van Hove net (Bi)i∈I such that Bi −W ⊆ Ai. Thus, Proposition 6.10 yields

patω(Bi, V ) ≤ pat(Bi,W +W ) ≤ npatω
(
Bi −W,W

)
≤ npatω(Ai,W ).

Another application of Proposition 6.6 thus allows to see that there holds

E(πω) ≥ lim sup
i∈I

log(npatω(Ai,W ))
θ(Ai)

≥ lim sup
i∈I

log(patω(Bi, V ))
θ(Ai)

= lim sup
i∈I

log(patω(Bi, V ))
θ(Bi)

.

Taking the supremum over all open neighbourhoods V of 0 we obtain the statement.

6.2 Patch counting for FLC Delone sets
In this section we study the classical definition of patch counting entropy presented in
the introduction and at the beginning of this chapter. To give a representation analogue
of the classical notion of patch counting we define the following. For closed subsets ω
and compact subsets A ⊆ G we call a subset F ⊆ ω an exact A-patch representation,
if for all g ∈ ω there is f ∈ F such that (ω − g) ∩ A = (ω − f) ∩ A. Then the
minimal cardinality of an exact A-patch representation is |Patω(A)|. Furthermore, for
every open neighbourhood V of 0 we obtain that every exact A-patch representation
is an A-patch representation at scale V . Thus, for every compact A ⊆ G there holds
patω(A, V ) ≤ |Patω(A)| and we obtain from Theorem 6.4 the following general relation
between the patch counting entropy of a Delone set ω and the topological entropy of
the corresponding Delone dynamical system πω.

Proposition 6.11. For every Van Hove net (Ai)i∈I there holds

E(πω) ≤ lim inf
i∈I

log |Patω(Ai)|
θ(Ai)

≤ lim sup
i∈I

log |Patω(Ai)|
θ(Ai)

.

The equality in Proposition 6.11 cannot be achieved for all Van Hove nets as we will
present below. In order to give a condition on the Van Hove net that ensures equality
we will need the following notion. Let C ⊆ G be a compact subset. We say that A ⊆ G
is C-connected to 0, if for all a ∈ A there are a1, · · · , an ∈ A that satisfy an = a such
that defining a0 := 0 yields ai − ai−1 ∈ C for every i ∈ {1, · · · , n}. Furthermore, we
say that a net of compact sets (Ai)i∈I is C-connected to 0, if Ai is C-connected to 0 for
all i ∈ I. A net is called compactly connected to 0, if it is C-connected to 0 for some
compact set C ⊆ G.
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6 On entropy of Delone sets

Example 6.12. Let us consider a Van Hove net (Ai)i∈I in Rd. (Ai)i∈I is compactly
connected to 0, if and only if there exists R ≥ 0 such that for all i ∈ I the set BR(0)+Ai
is connected and contains 0. In particular any Van Hove net (Ai)i∈I in Rd that consists
of connected sets that contain 0 is compactly connected to 0.
Indeed, if we assume that (Ai)i∈I in Rd is compactly connected to 0 there exists a

compact set K ⊆ Rd such that Ai is K-connected to 0 for all i ∈ I. Let R ≥ 0 such that
K ⊆ BR(0). Let i ∈ I. Clearly BR(0) + Ai contains 0. Considering F := {BR(a); a ∈
Ai} we obtain a family of connected sets with the property that for B,B′ ∈ F there is
always a finite sequence (Bj)kj=1 such that B1 = B, Bk = B′ and Bj ∩ Bj+1 6= ∅ for all
j = 1, · · · , k − 1. With a standard argument1 we obtain that BR(0) + Ai = ⋃

B∈FB is
connected.
To also show the reverse direction let R ≥ 0 such that BR(0) + Ai is connected and

contains 0 for all i ∈ I. To show that each Ai is BR(0)-connected to 0 let i ∈ I and notice
that Ai is compact. Thus there is a finite set F ⊆ Ai such that BR(0) + F ⊇ Ai ∪ {0}.
As Ai is connected we obtain that BR(0) +F = Ai ∪ (BR(0) +F ) = Ai ∪

(⋃
x∈F BR(x)

)
is connected. From this one easily observes Ai to be BR(0)-connected to 0.

Example 6.13. The sequences ({1, · · · , n})n∈N and ({−n, · · · , n})n∈N are Van Hove
sequences in Z that are compactly connected to 0.

Example 6.14. All compactly generated LCA groups contain a Van Hove sequence that
is compactly connected to 0. Indeed, a compactly generated LCA group is isomorphic
(as a topological group) to Ra × Zb × H for a, b ∈ N0 and a compact group H. As
the latter contains the Van Hove sequence ([0, n]a × {0, · · · , n}b ×H)n∈N that is clearly(
[0, 1]a × {0, 1}b ×H

)
-connected to 0, we obtain the statement.

Example 6.15. Let p be a prime. The additive group of the p-adic numbers Qp is
a metrizable, σ-compact LCA group that contains no Van Hove net that is compactly
connected to 0. We omit the proof of this claim as the statement can be deduced from
Proposition 6.23 below.

Example 6.16. Let p be a prime. The additive group G := R × Qp is a metrizable,
σ-compact LCA group but contains no Van Hove net that is compactly connected to
0. We will also obtain this statement from Proposition 6.23 below. Note that G even
contains a uniform lattice as we have seen in Example 3.9 above.

We will use the local matching base Blm(ω) of UXω in order to establish the equality
in Proposition 6.11 for Van Hove nets that are compactly connected to 0. Unfortunately
the formula in Lemma 6.5, which gives the tool to calculate the Bowen entourages of
members of the local rubber base Blr(ω) seems not to hold for members of the local
matching base Blm(ω). Nevertheless, it is straightforward to show the following.

1 See [Kel55, Problem 1.R].
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Lemma 6.17. For all compact K ⊆ G and every open neighbourhood V of 0, and g ∈ G
there holds ηω(K,V )g = ηω(K − g, V ).

We can now proof the following key lemma.

Lemma 6.18. Let ω be a FLC Delone set. Let C be a compact subset of G such that ω is
C-dense. Then there is η ∈ UXω such that for all compact A ⊆ G that are C-connected
to 0 and contain 0 there holds

|Patω(A)| ≤ sepDω(η(−A)).

Proof. Let V be a precompact and open neighbourhood of 0 such that ω is V -discrete.
We set K := C + C + V − C − C − V and η := ηω(K,V ). To show the statement it is
sufficient to show that every exact A-patch representation F ⊆ ω of minimal cardinality
|Patω(A)| satisfies that {ω − g; g ∈ F} is η(−A)-separated. To argue by contraposition
assume F ⊆ ω to be an exact A-patch representation F ⊆ ω for which {ω − g; g ∈ F}
is not η(−A)-separated. Thus, there are x, y ∈ F such that (ω − x, ω − y) ∈ η(−A). We
will argue below that (ω−x)∩A = (ω−y)∩A and thus obtain that F is not a minimal
exact A-patch representation.

It remains to show that (ω − x) ∩ A = (ω − y) ∩ A. Assume a ∈ (ω − x) ∩ A. As A
is C-connected to 0 and contains 0 there are a0, · · · , an ∈ A such that a0 = 0, an = a
and ai+1 − ai ∈ C for all i = 0, · · · , n − 1. Set x0 := 0 and xn := a. As ω − x is
C-dense there are xi ∈ ω − x such that ai − xi ∈ C for i = 1, · · · , n − 1. Note that
x0 = 0 ∈ (ω− y)∩A. We will show a = xn ∈ (ω− y) by induction and thus obtain that
(ω − x) ∩ A ⊆ (ω − y) ∩ A.

Assume now xi ∈ ω − y for some i = 0, · · · , n − 1. As ai ∈ A we obtain that
(ω − x, ω − y) ∈ η(−A) ⊆ η(−ai) = ηω(K + ai, V ). Thus, there are u, v ∈ V such that
(ω−x+u)∩ (K+ai) = (ω− y+ v)∩ (K+ai). From ai−xi ∈ C we obtain furthermore
xi + u = (xi − ai) + ai + u ∈ −C + ai + V ⊆ K + ai. Now recall that we have chosen xi
such that xi ∈ ω − x, which allows to observe

xi + u ∈ (ω − x+ u) ∩ (K + ai) = (ω − y + v) ∩ (K + ai) ⊆ ω − y + v.

We have thus shown that xi + (u − v) ∈ ω − y. Recall from the hypothesis of our
induction that there furthermore holds xi ∈ ω − y. As ω − y is V -discrete and u, v ∈ V
we thus obtain xi = xi+u−v, i.e. u = v. In particular, we obtain (ω−x+u)∩(K+ai) =
(ω − y + u) ∩ (K + ai) and observe

(ω − x) ∩ (K + ai + u) = (ω − y) ∩ (K + ai + u).

Now abbreviate M := C + C − C. We then obtain from

M + xi = M + (xi − ai)− u+ (ai + u) ⊆M − C − V + (ai + u) ⊆ K + (ai + u)
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that there holds (ω − x) ∩ (M + xi) = (ω − y) ∩ (M + xi). Then

xi+1 − xi = (xi+1 − ai+1) + (ai+1 − ai) + (ai − xi) ∈ −C + C + C = M

implies xi+1 ∈M + xi. As by construction xi+1 ∈ ω − x we thus observe

xi+1 ∈ (ω − x) ∩ (M + xi) = (ω − y) ∩ (M + xi) ⊆ ω − y,

which finishes the step of our induction. From this induction we obtain that a = xn ∈
ω−y for all a ∈ (ω−x)∩A and have thus shown that (ω−x)∩A ⊆ (ω−y)∩A. As one
obtains the reversed inclusion similarly we thus know that (ω− x)∩A = (ω− y)∩A is
valid, which yields that F can indeed not be of minimal cardinality.

We can now show that the topological entropy equals the patch counting entropy
along Van Hove nets that are compactly connected to 0 and contain 0. To also include
Van Hove nets that are compactly connected to 0 but do not necessarily contain 0, such
as ({1, · · · , n})n∈N in Z we will need the following lemma.

Lemma 6.19. Let (Ai)i∈I be a Van Hove net and set Bi := Ai∪{0} for all i ∈ I. Then
(Bi)i∈I is a Van Hove net and there holds

lim sup
i∈I

log |Patω(Ai)|
θ(Ai)

= lim sup
i∈I

log |Patω(Bi)|
θ(Bi)

.

Proof. Let K ⊆ G be compact. From

∂KBi = (K + (Ai ∪ {0})) ∩K + (Ai ∪ {0})c

⊆ ((K + Ai) ∪K) ∩ (K + Aci) ⊆ (∂KAi) ∪K

we obtain that 0 ≤ θ(∂KBi)/θ(Bi) ≤ (θ(∂KAi) + θ(K))/θ(Ai) →i∈I 0. Thus, (Bi)i∈I
is a Van Hove net. Furthermore, 1 ≤ θ(Bi)/θ(Ai) ≤ (θ(Ai) + θ({0}))/θ(Ai) → 1 + 0
implies limi∈I θ(Bi)/θ(Ai) = 1. As Patω(Bi) ⊆ Patω(Ai) ∪ {P ∪ {0}; P ∈ Patω(Ai)}
for all i ∈ I we obtain |Patω(Ai)| ≤ |Patω(Bi)| ≤ 2|Patω(Ai)| and a straightforward
argument yields the statement.

Theorem 6.20. Let G be a non-compact LCA group and ω be a FLC Delone set in G.
For all compact subsets C ⊆ G there exists an entourage η ∈ UX such that for every
Van Hove net (Ai)i∈I that is C-connected to 0 the following limit exists and there holds

E(πω) = E(η|πω) = lim
i∈I

log |Patω(Ai)|
θ(Ai)

.

Remark 6.21. To give a precise formula for η we need to consider a precompact open
neighbourhood V of 0 such that ω is V -discrete and a compact subset K ⊆ G such that
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ω is K-dense. Then a carefull look into the following proof and the proof of Lemma 6.18
allows to conclude that we can consider

η = ηω
(
(K ∪ C) + (K ∪ C) + V − (K ∪ C)− (K ∪ C)− V , V

)
.

Proof of Theorem 6.20. Let C be a compact subset of G. Let furthermore K ⊆ G be a
compact subset such that ω is K-dense. Then ω is K ∪C-dense and Lemma 6.18 yields
the existence of η ∈ UX such that for all compact subsets B ⊆ G that are (K ∪ C)-
connected to 0 and furthermore contain 0 there holds |Patω(B)| ≤ sepDω(η(−B)). Now
recall from Lemma 4.32 that we have sepDω(η(−B)) ≤ eH(η(−B)) for any compact subset
B ⊆ G. As any Van Hove net (Ai)i∈I that is C-connected to 0 is in particular (K ∪C)-
connected to 0 we denote Bi := Ai ∪ {0} and obtain from Lemma 6.19 that there
holds

lim sup
i∈I

log |Patω(Ai)|
θ(Ai)

= lim sup
i∈I

log |Patω(Bi)|
θ(Bi)

≤ lim sup
i∈I

log(sepDω(η(−Bi)))
θ(Bi)

≤ lim
i∈I

H(η(−Bi))
θ(Bi)

= lim
i∈I

H(η(−Bi))
θ(−Bi)

= E(η|πω) ≤ E(πω).

We thus conclude from Proposition 6.11 that

E(πω) ≤ lim inf
i∈I

log |Patω(Ai)|
θ(Ai)

≤ lim sup
i∈I

log |Patω(Ai)|
θ(Ai)

≤ E(η|πω) ≤ E(πω)

and the statement follows.

Corollary 6.22. Let G be a non-compact LCA group and ω be a FLC Delone set in G.
For every Van Hove net (Ai)i∈I that is compactly connected to 0 there holds

E(πω) = lim
i∈I

log |Patω(Ai)|
θ(Ai)

.

Naturally the question arises which LCA groups contain Van Hove nets that are com-
pactly connected to 0. In Example 6.14 above we have already seen that all compactly
generated LCA groups do. We next show that we have already found all examples.

Proposition 6.23. An LCA group G is compactly generated if and only if it contains
a Van Hove net that is compactly connected to 0.
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Proof. By Example 6.14 it is sufficient to show that the existence of a Van Hove net
(Ai)i∈I which is K-connected to 0 for some compact subset K ⊆ G implies G to be
generated by K, i.e. G = ⋃

n∈NKn, where we abbreviate K1 := K and Kn+1 := Kn+K.
We assume without lost of generality that K is symmetric and contains 0. To show that
G is generated by K let us consider g ∈ G. As (Ai)i∈I is in particular ergodic we know
that there exists i ∈ I such that θ(Ai) > 0 and such that θ((Ai + g) \ Ai)/θ(Ai) < 1.
This in particular implies that Ai and Ai + g intersect and there is h ∈ Ai ∩ (Ai + g).
Now recall that Ai is K-connected to 0 and thus there are a1, · · · , an ∈ Ai with an = h
and such that a0 := 0 gives aj − aj−1 ∈ K for all 1 ≤ j ≤ n. Furthermore, also
h − g ∈ Ai and we find b1, · · · , bm ∈ Ai with bm = h − g and such that b0 := 0 gives
bl− bl−1 ∈ K for all 1 ≤ l ≤ m. We define aj := bn+m−j + g for all n ≤ j ≤ n+m. Note
that an = bn+m−n + g = h − g + g = h fits our earlier choice of an and that we have
an+m = b0 + g = g. Furthermore, there holds aj − aj−1 = bn+m−j + g − bn+m−j+1 − g =
−(bn+m−j+1 − bn+m−j) ∈ −K = K for all n ≤ j ≤ m + n. Summarizing we have found
elements a0, · · · , an+m in G with a0 = 0, an+m = g and such that aj − aj−1 ∈ K for
all 1 ≤ j ≤ n + m. Clearly, a0 ∈ K = K1 and we can proceed inductively to obtain
that aj ∈ K + aj−1 ⊆ K + K(j−1)+1 = Kj+1 for any 1 ≤ j ≤ n + m. We thus observe
g = an+m ∈ Kn+m+1. As g ∈ G was arbitrary we have shown G to be compactly
generated.

Remark 6.24. Note that the proof of Proposition 6.23 only uses that the considered net
is ergodic and thus also shows that an LCA group is compactly generated if and only if
it contains an ergodic net that is compactly connected to 0. The same argument also
gives that a similar statement holds about Følner nets.

From Proposition 6.23 and Theorem 6.20 we obtain the following corollary.

Corollary 6.25. Let G be a non-compact but compactly generated LCA group. Then
for any FLC Delone set ω there exists η ∈ UXω such that E(πω) = E(η|πω).

Remark 6.26. It remains open, whether a similar statement is valid, whenever G is
not compactly generated, i.e. whenever it contains no Van Hove net that is compactly
connected to 0.

As another consequence of Theorem 6.20 we obtain the following.

Corollary 6.27. Let G be a non-compact but compactly generated LCA group. Let
furthermore ω be a FLC Delone set G. Then there exists an open neighbourhood V of
0 such that for all Van Hove nets (Ai)i∈I and all open neighbourhoods W of 0 that are
contained in V the following limit exists and satisfies

E(πω) = lim
i∈I

log(patω(Ai,W ))
θ(Ai)

.
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6.2 Patch counting for FLC Delone sets

Remark 6.28. Note that the Van Hove nets considered in Corollary 6.27 are not as-
sumed to be compactly connected to 0. Again the statement remains open for LCA
groups that are not compactly generated.
Proof of Corollary 6.27. By Corollary 6.25 there exists η ∈ UX such that there holds
E(πω) = E(η|πω). By Lemma 4.32 there is ε ∈ UX that satisfiesH(ηA) ≤ log

(
spaDω(εA)

)
for all compact subsets A ⊆ G. Let K ′ ⊆ G be a compact subset and V ′ be an open
neighbourhood of 0 such that εω(K ′, V ′) ⊆ ε. Let K ⊆ G be compact such that ω
is K-dense and V a precompact, symmetric and open neighbourhood of 0 such that
V + V ⊆ V ′.

Now consider a Van Hove net (Ai)i∈I . Then by Proposition 2.26 there exists a
Van Hove net (Bi)i∈I such that Bi + K ′ + K ⊆ Ai for all i ∈ I and such that
limi∈I θ(Bi)/θ(Ai) = 1. From Proposition 6.10 we obtain the existence of a N ∈ N
such that for all i ∈ I there holds

eH(η(−Bi)) ≤ spaDω(εω(K ′, V ′)(−Bi)) = spaDω(εω(Bi +K ′, V ′)) = npatω(Bi +K ′, V ′)
≤ npatω(Bi +K ′, V + V ) ≤ N patω(Bi +K ′ +K,V ) ≤ N patω(Ai, V ).

Thus, for any open neighbourhood W of 0 that is contained in V we obtain H(η(−Bi)) ≤
log(N) + log(patω(Ai, V )) ≤ log(N) + log(patω(Ai,W )). As we assume that G is non-
compact we know that log(N)/θ(Ai)→ 0. Furthermore, there holds limi∈I θ(Ai)/θ(−Bi) =
limi∈I θ(Ai)/θ(Bi) = 1. Thus, our choice of η and Theorem 6.4 yield

E(πω) = E(η|πω)

= lim
i∈I

H(η(−Bi))
θ(−Bi)

≤ lim inf
i∈I

log(N) + log(patω(Ai,W ))
θ(Ai)

= lim inf
i∈I

log(patω(Ai,W ))
θ(Ai)

≤ lim sup
i∈I

log(patω(Ai,W ))
θ(Ai)

≤ E(πω).

Remark 6.29. Clearly, it would be also interesting to have a formula for V in terms
of parameters of ω in Corollary 6.27. Unfortunately we do not know how to give such
a formula. The problem seems to be, that for compact K and an open neighbourhood V
of 0 one would need formulas for a compact subset C(K,V ) and an open neighbourhood
W (K,V ) of 0 which satisfy εω(C(K,V ),W (K,V )) ⊆ ηω(K,V ). Nevertheless, we are
not aware of such formulas. The fact that the local matching base yields the local rubber
topology for FLC Delone sets is achieved everywhere, where we encountered it, by an
abstract topological argument [BL04].
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6 On entropy of Delone sets

6.3 Patch counting in R
We will next demonstrate that the classical formula of the patch counting entropy yields
different values for different choices of Van Hove sequences already for FLC Delone sets
in R.

Example 6.30. Consider the FLC Delone set ω := (−N0) ∪ αN0 ⊆ R for α ∈ [0, 1]
irrational. Then for κ ∈ [0,∞] there exists a Van Hove sequence (An)n∈N such that

lim
n→∞

log |Patω(An)|
θ(An) = κ.

Proof. Let us first consider the case κ < ∞ and define An := [0, n] + eκn for any
n ∈ N. We will now show that Fn := Z ∩ [−(n + 1) − eκn, 0] is an exact An-patch
representation for ω. To do this we consider g ∈ ω \ Fn. If g > 0, then (ω − g) ∩ An =
(αZ) ∩ An = (ω − 0) ∩ An and we can represent g by 0 ∈ Fn. If g ≤ 0, then g ∈ Z
and we obtain from g /∈ Fn that there holds g < −(n + 1) − eκn. Thus, we obtain
g, (minFn) ≤ −n − eκn and observe (ω − g) ∩ An = Z ∩ An = (ω − minFn) ∩ An.
This shows that Fn is indeed an exact An-patch representation for ω and we obtain
|Patω(An)| ≤ |Fn| ≤ (n + 1) + eκn. Now as κ ≥ 0 for sufficiently large n there holds
1 ≤ eκn and we get log |Patω(An)| ≤ log((n + 2)eκn) = log(n + 2) + κn. Thus, there
holds

lim sup
n→∞

log |Patω(An)|
θ(An) ≤ lim sup

n→∞

(
log(n+ 2)

n
+ κn

n

)
= κ

and the statement follows, whenever κ = 0. Otherwise let us consider En := Z ∩
(−eκn, 0] ∩ Z. Then for g ∈ En there holds |g| < eκn = minAn. Thus, the elements
of (ω − g) ∩ An are of the form |g| + kα for k ∈ N. Furthermore, as α ≤ 1 there is at
least one such number contained in (ω − g) ∩ An. Thus, whenever we consider distinct
g, g′ ∈ En we obtain from α being irrational, that the corresponding patches (ω−g)∩An
and (ω − g′) ∩ An do not agree. This yields that |Patω(An)| ≥ |En| ≥ eκn − 1. Now as
we assume that κ > 0 we obtain that for large n there holds 2 ≤ eκn and in particular
that log |Patω(An)| ≥ log(eκn − (1/2)eκn) = log(1/2) + κn. This allows to compute

lim inf
n→∞

log |Patω(An)|
θ(An) ≥ lim inf

n→∞

log(1/2) + κn

n
= κ

and we obtain the claimed statement for all κ <∞. Similarly one shows the result for
κ =∞ using An := [0, n] + e(n2).

With the observations from Example 6.30 we also obtain that the limit superior in
the formula for the patch counting entropy is not always a limit.
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6.3 Patch counting in R

Example 6.31. Consider again the finite local complexity Delone set ω := (−N0) ∪
αN0 ⊆ R for α ∈ [0, 1] irrational. Then there exists a Van Hove sequence (An)n∈N such
that log |Patω(An)|/θ(An) does not converge.
Proof. For n ∈ N we define An := [0, n] + e(1+(−1)n)n. We then obtain from Example
6.30 and A2n+1 = [0, n] + e0·(2n+1) that there holds

lim inf
n→∞

log |Patω(An)|
θ(An) ≤ lim

n→∞

log |Patω(A2n+1)|
θ(A2n+1) = 0.

Similarly we obtain from A2n = [0, n] + e2·(2n) that

lim sup
n→∞

log |Patω(An)|
θ(An) ≥ lim

n→∞

log |Patω(A2n)|
θ(A2n) = 2

and the statement follows.

Recall from Proposition 4.18 that one can also use Følner nets instead of Van Hove
nets in order to define topological entropy. It is thus natural to ask, whether one can use
Følner nets that are compactly connected to 0 in order to compute the patch counting
entropy. The following example shows that this is not possible.
Example 6.32. Consider the Delone set of finite local complexity

ω := {n ∈ N; ξn = 1} ∪ (Z + 1/2),

where (ξn)n∈N is a sequence containing all finite words in {0, 1}, i.e. for all finite
sequences (xj)nj=1 there exists i ∈ N such that ξi+j = xj for j = 1, · · · , n. Then
Epc(ω) = log(2) and for all κ ∈ [0, log(2)] there is a Følner sequence (An)n∈N, which is
compactly connected to 0, such that

lim sup
n→∞

log |Patω(An)|
θ(An) = κ.

Remark 6.33. Note that for any FLC Delone set ω and for any Følner net that is
compactly connected to 0 there holds

lim sup
n→∞

log |Patω(An)|
θ(An) ≤ E(πω).

Indeed, this can be seen by considering any compact neighbourhood K of 0. Then
(KAi)i∈I is a Van Hove net that is compactly connected to 0. As this Van Hove net
furthermore satisfies limi∈I θ(KAi)/θ(Ai) = 1 we obtain from Corollary 6.22 that

lim sup
i∈I

log |Patω(Ai)|
θ(Ai)

≤ lim sup
i∈I

log |Patω(KAi)|
θ(Ai)

= lim
i∈I

log |Patω(KAi)|
θ(KAi)

= E(πω).
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6 On entropy of Delone sets

Remark 6.34. Note that with a similar construction as in Example 6.31 above we
obtain from Example 6.32 that there are Følner sequences (An)n∈N that are compactly
connected to 0 such that the limit superior in the patch counting entropy formula is not
a limit, i.e. such that log |Patω(An)|/θ(An) does not converge.

Proof of the claims of Example 6.32. We abbreviate ρ := κ/ log(2) ∈ [0, 1] and set

An := [0, ρn] ∪
(

[0, n] \
(1

2Z +B(n+2)−1(0)
))

.

We first show that (An)n∈N is a Følner sequence and thus consider a compact and non-
empty subset K ⊆ R. Then there is k ∈ N such that K ⊆ [−k, k] and we compute

θ(KAn \ An) ≤ θ
(

[−k, n+ k] \
(

[0, n] \
(1

2Z +B(n+2)−1(0)
)))

≤ θ
(

[−k, 0] ∪ [n, n+ k] ∪
(

[0, n] ∩
(1

2Z +B(n+2)−1(0)
)))

≤ 2 n

n+ 2 + 2k.

Thus, it follows that limn→∞ θ(KAn \An)/θ(An) = 0 and we have shown (An)n∈N to be
a Følner net.

Note next that ω is contained in (1/2)Z, which implies Patω(An) = Patω([0, ρn]) for
n ∈ N. This allows to observe

Patω(An) =
{
W ∪

(
[0, ρn] ∩

(1
2 + Z

))
; W ⊆ [0, ρn] ∩ Z

}
∪
{
W ∪ ([0, ρn] ∩ Z) ; W ⊆ [0, ρn] ∩

(
Z + 1

2

)}
.

We thus obtain that 2ρn ≤ |Patω(An)| ≤ 2ρn+2 and a straightforward argument shows
lim supn→∞ log |Patω(An)|/θ(An) = κ.

Now for κ = log(2) we obtain An = [0, ρn] for any n ∈ N and thus (An)n∈N is a
Van Hove net that is compactly connected to 0. We thus see from Corollary 6.22 that
E(πω) = lim supn→∞ log |Patω(An)|/θ(An) = log(2).

Now recall that we have seen that the patch counting at a certain scale via patω is a
concept which is closely related to the topological entropy of the corresponding Delone
dynamical system and that the corresponding formula can be used for all Van Hove nets.
Furthermore, the topological entropy is a concept that can be computed via Følner nets
as we have seen in Proposition 4.18. It is thus natural to ask, whether the formula of
Theorem 6.4 also holds for all Følner nets (Ai)i∈I , i.e. whether there holds

E(πω) = sup
V

lim inf
i∈I

log(patω(Ai, V ))
θ(Ai)

= sup
V

lim sup
i∈I

log(patω(Ai, V ))
θ(Ai)

,

140



6.3 Patch counting in R

where the suprema are taken over all open neighbourhoods V of 0. In the next example
we present that this is not the case.
Example 6.35. Consider the FLC Delone set ω ⊆ R as in Example 6.32. Then for
all κ ∈ [0, log(2)] there is a Følner sequence (An)n∈N, which is compactly connected to 0
such that there holds

sup
V

lim sup
n→∞

log(patω(An, V ))
θ(An) = κ,

where the supremum is taken over all open neighbourhoods V of 0.
Proof. Clearly, it suffices to consider open neighbourhoods V of 0 that are contained in
B1/2(0). Let V be such a neighbourhood and consider the Følner sequence (An)n∈N as
in the proof of the claims of Example 6.32. Now recall that ω is contained in 1/2Z and
consider g, g′ ∈ ω such that ω−g and ω−g′ are ε(An, V )-close. Then for x ∈ (ω−g)∩An
we know that x is also contained in 1/2Z and observe furthermore

x ∈ (ω − g) ∩ An ⊆ ω − g′ + V ⊆ ω − g′ +B1/2(0).

Thus, there is b ∈ B1/2(0) such that x ∈ ω−g′+b. We have b ∈ −ω+g′+x ⊆ 1/2Z and we
obtain b = 0. Thus, there holds x ∈ ω−g′ and we have shown (ω−g)∩An ⊆ (ω−g′)∩An.
A similar argument gives the reversed inclusion and we have shown that for g, g′ ∈ ω the
An-patches (ω− g)∩An and (ω− g′)∩An are actually equal, whenever ω− g and ω− g′
are ε(An, V )-close. Thus, whenever F is an An-patch representation at scale V , then it
is actually an exact An-patch representation. As any exact An-patch representation is
an An-patch representation at scale V we thus obtain patω(An, V ) = |Patω(An)|. Now
our choice of (An)n∈N yields that

lim sup
n→∞

log(patω(An, V ))
θ(An) = lim sup

n→∞

log |Patω(An)|
θ(An) = κ.

Taking the supremum over all considered V thus yields the statement.

We have already seen, that one cannot use Følner nets, which are compactly connected
to 0 in the patch counting formula. Nevertheless, we have seen in Remark 6.33 that
this formula always yields a value which is bounded by the topological entropy of the
corresponding Delone dynamical system. Thus, naturally the question arises, whether
this can also be achieved for the more general class of ergodic nets that are compactly
connected to 0. We next show that this is not the case.
Example 6.36. Consider ω ⊆ R as in Example 6.32. Then for all κ ∈ [0,∞] there is
an ergodic sequence (An)n∈N, which is compactly connected to 0, such that

lim sup
n→∞

log |Patω(An)|
θ(An) = κ.
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6 On entropy of Delone sets

Proof. As every Følner sequence is ergodic it remains to consider κ ∈ [log(2),∞]. We
first consider the case κ <∞, set ρ := κ/ log(2) and define

An :=
(

[0, n] \
(1

2Z +B(n+2)−1(0)
))
∪
(
[0, ρn] ∩ Z

)
.

Then with a similar argument as presented in Example 6.32 we show that the sequence(
[0, n] \

(
1
2Z +B(n+2)−1(0)

))
n∈N

is a Følner sequence in R. We thus obtain that (An)n∈N
is ergodic from Proposition 2.22. This net is clearly [0, 1]-connected.

As ω is contained in 1/2Z we obtain |Patω(An)| = |Patω([0, ρn] ∩ Z)|. We thus ob-
serve Patω(An) = {W ; W ⊆ [0, ρn] ∩ Z} and in particular 2ρn ≤ |Patω(An)| ≤ 2ρn+1.
Thus, a straightforward argument shows lim supn→∞ log |Patω(An)|/θ(An) = κ. When-
ever κ =∞ we use

An :=
(

[0, n] \
(1

2Z +B(n+2)−1(0)
))
∪
(
[0, n2] ∩ Z

)
and a similar argument as above yields the statement.

The following example will serve to answer the questions raised around the upper
semi-continuity and the Kolmogorov-Sinai generator theorem in Section 5.3.

Example 6.37. There exists a Delone set ω in R such that E(πω) =∞ and such that
the entropy map µ 7→ Eµ(πω) is not upper semi-continuous.

Remark 6.38. Recall from Proposition 5.52 that for any invariant Borel probability
measure µ on Xω there exists a finite partition with almost no boundary with respect
to µ that is generating along any dense subgroup of R. Nevertheless, for any uniform
lattice Λ in R there exists an invariant Borel probability measure µ on Xω such that
there is no finite partition that is generating along Λ and which has no boundary with
respect to µ. Indeed, whenever for each µ ∈ MG(X) there would exist such a finite
partition, then Corollary 5.50 would imply the entropy map to be upper semi-continuous,
a contradiction.

Proof of the claims of Example 6.37. Let us first see that it is sufficient to construct a
Delone set ω such that πω has infinite topological entropy. Indeed, any upper semi-
continuous function attains its maximum on a compact set. Thus, if the entropy map
would be upper semi-continuous the variational principle as stated in Theorem 5.33
would imply E(πω) to be finite.

It remains to construct a Delone set ω in R that satisfies E(πω) = ∞. To do this
consider the countable set D := ⋃

M∈N ((0, 1] ∩ (M−1Z)) . Thus, the set of all finite
sequences s = (xi)ni=1 in D is countable and there exists a sequence (s(k))k∈N of finite
sequences in D such that any finite sequence in D appears as s(k) for some k ∈ N. Let
now (am)m∈N be the sequence in D that is constructed by first following the sequence
s(1), then s(2) and so on. To be precise denote by nk the length of the finite sequence
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6.3 Patch counting in R

s(k) = (s(k)
i )nki=1 and set N0 := 0 and Nk := ∑k

i=1 ni. Then for any m ∈ N there is a
unique k ∈ N such that Nk−1 < m ≤ Nk and we define am := s

(k)
m−Nk−1

. We furthermore
set g0 := 0 and gm := ∑m

i=1(1 + ai) for m ∈ N and define

ω := (−N) ∪ {gm; m ∈ N0} .

As am ∈ D ⊆ [0, 1] one easily observes that ω is (−1/2, 1/2)-discrete and [0, 2]-dense.
Thus, ω is a Delone set.

Let us denote An := [−2n, 0], VM := (−1/M, 1/M) and ε(M) := εω({0}, VM) for
n,M ∈ N. Then by Lemma 6.5 there holds

ε
(M)
An = εω({0}, VM)−[0,2n] = εω([0, 2n], VM).

To show that there holds sepXω
(
ε

(M)
An

)
≥ Mn consider all finite sequences in (0, 1] ∩

(M−1Z) of length n and note that there are Mn such sequences as (0, 1]∩ (M−1∩Z) has
cardinality M . By the construction of (am)m∈N there exist m1, · · · ,m(Mn) in N0 such
that (amj+k)nk=1 with j = 1, · · · ,Mn are exactly the finite sequences in (0, 1] ∩ (M−1Z)
of length n. Now consider distinct j, j′ ∈ {1, · · · ,Mn}. As (amj+k)nk=1 6= (amj′+k)

n
k=1

there is a minimal k ∈ {1, · · · , n} such that amj+k 6= amj′+k and we assume without lost
of generality that amj+k < amj′+k. As amj+k and amj′+k are contained in (0, 1]∩ (M−1Z)
we thus obtain in particular that amj+k + 1/M ≤ amj′+k. Let us consider h := ∑k

i=1(1 +
amj+i). There holds 0 ≤ h ≤ ∑k

i=1 2 ≤ 2k ≤ 2n. Furthermore, we compute

h =
mj+k∑
i=1

(1 + ai)−
mj∑
i=1

(1 + ai) = gmj+k − gmj ∈ ω − gmj

and obtain h ∈ (ω − gmj) ∩ [0, 2n]. As

g(mj′+k−1) − gmj′ + 1
M
≤
(
k−1∑
i=1

(1 + amj′+i)
)

+ 1 =
(
k−1∑
i=1

(1 + amj+i)
)

+ 1 ≤ h

and

h =
k∑
i=1

(1 + amj+i)

≤
(
k−1∑
i=1

(1 + amj+i)
)

+ (1 + amj′+k)−
1
M

=
k∑
i=1

(1 + amj′+i)−
1
M

= g(mj′+k) − gmj′ −
1
M
,

we observe that h /∈ ω− gmj′ +VM . This shows that (ω− gmj)∩ [0, 2n] 6⊆ ω− gmj′ +VM

143



6 On entropy of Delone sets

and we have shown that for distinct j, j′ ∈ {1, · · · ,Mn} the sets ω−gmj and ω−gmj′ are
not ε(M)

An = εXω([0, 2n], VM)-close. In particular, we have shown that sepXω
(
ε

(M)
An

)
≥Mn.

As (An)n∈N is a Van Hove net in R we then obtain from Theorem 4.33 that for any
M ∈ N there holds

E(πω) ≥ lim sup
n→∞

log
(
sepXω

(
ε

(M)
An

))
θ(An) ≥ lim sup

n→∞

n log(M)
2n = log(M)

2 .

This shows E(πω) =∞.

Remark 6.39. It is shown in [Lag99, Theorem 2.3] that the patch counting entropy
of a FLC Delone set in Rd is always finite. We thus obtain from Proposition 6.11
that the topological entropy of the Delone dynamical system of a FLC Delone set is also
always finite. It remains open, whether FLC Delone sets have an upper semi-continuous
entropy map with respect to the corresponding Delone system. This is in particular of
interest as some of the statements of Chapter 7 like the converse variational principle
or statements about the existence of equilibrium states depend on this property.

6.4 Patch counting in Q2

Recall from Example 6.15 that Q2 contains no Van Hove net that is compactly connected
to 0. Thus, in particular the Van Hove sequence of closed centred balls

(
Bn(0)

)
n∈N

is
not uniformly compactly connected to 0 in Q2 and we cannot apply Corollary 6.22 to
obtain that the sequence log |Patω(Bn(0))|/θ(Bn(0)) converges to E(πω). Nevertheless,
Q2 is actually a complete field whose topology comes from an absolute value. One could
thus hope that these strong properties, which are similar to the ones of R, are sufficient
to show that the formula for the patch counting entropy along the sequence of centred
closed balls (Bn(0))n∈N yields the topological entropy or that log |Patω(Bn(0))|/θ(Bn(0))
converges as n tends to ∞. In this section we will construct examples of Delone sets
such that these properties are not satisfied. In particular, we will see in Theorem 6.47
that there are examples of FLC Delone sets in Q2 for which log |Patω(Bn(0))|/θ(Bn(0))
converges to log(2), but whose Delone dynamical system has 0 topological entropy. Fur-
thermore, we will see in Theorem 6.51 that there exist FLC Delone sets ω in Q2 such
that log |Patω(Bn(0))|/θ(Bn(0)) does not converge. Note that we restrict to 2-adic
numbers for simplicity and that similar examples can constructed also within Qp for
any prime number p. It remains open, whether one can construct model sets in Q2 with
the mentioned properties.
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6.4.1 Construction tools
The construction of the Delone sets below will be done by first constructing inductively
a monotone family (ωn)n∈N0 of finite subsets of Q2 with appropriate properties such that
the union ⋃n ωn is a FLC Delone set with the required properties. In particular, in the
induction step we will need to expand from ωn to ωn+1. In this subsection we summarize
the technical tools to do this. We will construct the ωn to consist of rational numbers.
This will allow us to consider the ωn also as subsets of R and in particular to use the
metric structure of R. In order to get not confused with the closed balls in Q2, we say
real ball, whenever we mean a closed ball in R. We furthermore denote Rr(g) for the
real ball of radius r and centre g ∈ R. Nevertheless, we will most of the times consider
closed balls in Q2 for which we shortly say ball and use the usual notation Br(g) in this
section. Recall that the metric of Q2 only takes values in {2z; z ∈ Z}. It will be thus
convenient to use the notation An := B2n(0) for n ∈ N0. We furthermore abbreviate
an := 22n and Vn := B2−n(0) for any n ∈ N0.

Basic tools

Let us start with the following observation which links balls and centred real balls.

Lemma 6.40. Whenever B ⊆ Q2 is a (not necessarily centred) ball and R ⊆ R is a
centred real ball and both have a radius which is greater or equal to 1, then they intersect.

Proof. Choose any b ∈ B such that B1(b) ⊆ B. Now recall that b can be written as∑∞
i=−n bi2i for some n ∈ N0 and a sequence (bi)∞i=−n in {0, 1}. Note that the convergence

of the series is given with respect to the topology of Q2. We now define b̃ := ∑−1
i=−n bi2i.

Then there holds ∣∣∣b̃− b∣∣∣
2

=
∣∣∣∣∣
∞∑
i=0

bi2i
∣∣∣∣∣
2
≤ 1

and in particular we obtain that b̃ ∈ B1(b) ⊆ B. Clearly, b̃ = ∑−1
i=−n bi2i = ∑n

i=1 b−i2−i
is contained in Q and thus also in R. Furthermore, interpreting b̃ and the following
series as elements of R we obtain 0 ≤R b̃ ≤R

∑∞
i=1 2−i = 1, which implies b̃ ∈ R1(0) ⊆ R

and we have shown b̃ ∈ R ∩ B.
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We will furthermore frequently use the following observations.
Lemma 6.41. Let m ∈ N and M ⊆ Q2 and consider F := M ∩ A2m. Then for any
n ≤ 2m the following statements are valid.
(i) For any g ∈ A2m there holds

(F − g) ∩ An = (M − g) ∩ An.

(ii) For any g ∈ A2m and any open neighbourhood V of 0 there holds

F − g
An,V≈ M − g.

(iii) Every An-patch of F is an An-patch of M , i.e.

PatF (An) ⊆ PatM(An).

Proof. For g ∈ A2m we use that A2m is a subgroup to obtain that A2m + g = A2m . We
thus compute

(F − g) ∩ A2m = (F ∩ A2m)− g = (M ∩ A2m)− g = (M − g) ∩ A2m .

As for n ≤ 2m there holds An ⊆ A2m we thus obtain (F − g) ∩ An = (M − g) ∩ An,
which proves (i). To show (ii) consider any g ∈ A2m and any open neighbourhood V of
0 and observe that (i) implies (F − g) ∩ An = (M − g) ∩ An ⊆ (M − g) + V. As one
observes similarly (M −g)∩An ⊆ (F −g) +V we have shown (ii). To see (iii) note that
the An-patches of F are of the form (F − g) ∩ An for g ∈ F ⊆ A2m . We then obtain
from (i) that (F − g) ∩ An = (M − g) ∩ An and thus also conclude (iii).

In order to handle A2n-patch representations at scale Vn the following observation will
become useful.
Lemma 6.42. For all n ∈ N the set ε(A2n , Vn) ⊆ A(Q2)2 is an equivalence relation.
Proof. Clearly, ε(A2n , Vn) is a reflexive and symmetric relation. To show that it is also
transitive consider (ξ1, ξ2) ∈ ε(A2n , Vn) and consider furthermore ξ3 such that (ξ2, ξ3) ∈
ε(A2n , Vn). For v ∈ Vn there holds v ∈ Vn ⊆ A2n and as A2n is a subgroup we obtain
A2n − v = A2n . Thus, there holds ξ2 ∩ (A2n − v) = ξ2 ∩ A2n ⊆ ξ3 + Vn. As Vn is also a
subgroup we therefore compute

ξ1 ∩ A2n ⊆ (ξ2 + V ) ∩ A2n =
⋃
v∈Vn

((ξ2 + v) ∩ A2n) =
⋃
v∈Vn

(ξ2 ∩ (A2n − v)) + v

⊆
⋃
v∈Vn

ξ3 + Vn + v = ξ3 + Vn.

Similarly one shows ξ3 ∩ A2n ⊆ ξ1 + Vn and we have shown (ξ1, ξ3) ∈ ε(A2n , Vn).
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The expanding lemmas

We will next present three lemmas, which are the corner stones of the constructions in
this section. Lemma 6.43 gives the tool to expand from ωn to ωn+1 without improving
the number of a certain type of patches.

Lemma 6.43. Let n ∈ N0 and let F ⊆ Q2 be a finite subset. Assume that F is contained
in A2n ∩ Q and that F contains exactly one element from each ball of radius 1 that is
contained in A2n. Then there exists a finite subset E of Q2 such that

(a) F = E ∩ A2n.

(b) E is contained in A2n+1 ∩ Q and contains exactly one element from each ball of
radius 1 that is contained in A2n+1.

(c) F is an exact A2n-patch representation for E.

Proof. Let us denote by B̂ the set of all balls of radius an that are contained in A2n+1

and that do not intersect A2n . As Q is dense in Q2 we can choose a rational number
gB̂ ∈ B̂ for each B̂ ∈ B̂. We set

E := F ∪
⋃
B̂∈B̂

(F + gB̂).

Now observe that F + gB̂ ⊆ A2n + gB̂ = B̂ is disjoint from A2n for each B̂ ∈ B̂. This
implies F = E ∩ A2n and we have shown (a). Now note that A2n+1 ∩ Q is a subgroup
of Q2 that contains F and all gB̂ for B̂ ∈ B̂. We thus obtain that E is contained in
A2n+1 ∩ Q. To show the rest of (b) let B be a ball of radius 1 contained in A2n+1 . If
B ⊆ A2n , then the statement follows from (a) and the respective assumption on F . We
thus assume without lost of generality that B ⊆ A2n+1 \A2n and obtain that there exists
B̂ ∈ B̂ such that B ⊆ B̂. As g 7→ g + gB̂ is a bijective isometry it maps the balls of
radius 1 contained in A2n bijectively to the balls of radius 1 contained in A2n + gB̂ = B̂.
Using that B̂ ∪ {F} is a partition of A2n+1 it is furthermore straightforward to see that
there holds B̂ ∩ E = F + gB̂. This allows to use the respective assumption on F to
observe that E contains exactly one element of B and we have shown (b).

To show (c) let g ∈ E \ F . Then there is B̂ ∈ B̂ such that g ∈ B̂. We then obtain
that g ∈ E ∩ B̂ = F + gB̂ and thus h := g − gB̂ ∈ F . As F ⊆ A2n and as A2n is a
subgroup we thus obtain A2n + g = A2n + h+ gB̂ = A2n + gB̂ = B̂ and compute

(E − g) ∩ A2n =
(
E ∩ B̂

)
− g = (F + gB̂)− g = F − h = (F − h) ∩ A2n .

This shows that F is indeed an exact A2n-patch representation for E.

The next lemma will allow us to introduce complexity into the FLC Delone sets.
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Lemma 6.44. Let n ∈ N0 and let F ⊆ Q2 be a finite subset. Assume that F is contained
in A2n ∩ Q and that F contains exactly one element from each ball of radius 1 that is
contained in A2n. Then there exists a finite subset E of Q2 such that

(a) F = E ∩ A2n.

(b) E is contained in A2n+1 ∩ Q and contains exactly one element from each ball of
radius 1 that is contained in A2n+1.

(c) F is an exact An-patch representation for E.

(d) F is an A2n-patch representation for E at scale Vn.

(e) an+1/2n+2 ≤ |PatE(An+1)|.

Proof. Again we denote the set of all balls of radius an that are contained in A2n+1 and
that do not intersect A2n by B̂. The set of all balls of radius 2n+1 that are contained in
A2n+1 and which do not intersect A2n will be denoted by B. As Q is dense in Q2 we can
choose a rational number gB̂ ∈ B̂ for each B̂ ∈ B̂.

Let us next consider B ∈ B. Then there is B̂ ∈ B̂ such that B ⊆ B̂ and we compute
B − gB̂ ⊆ B̂ − gB̂ = Ban(0) = A2n . Considering a ball of radius 1 contained in B − gB̂
we thus obtain from our assumption on F that F ∩ (B − gB̂) is non-empty and we can
choose hB ∈ (F + gB̂)∩B. Then B2n(hB) is one of the two balls of radius 2n contained
in B. With a similar argument as above one shows that also the other ball intersects
F + gB̂, chooses h′B from this intersection, and identifies the second ball of radius 2n
contained in B as B2n(h′B).

As F ⊆ Q is finite we know that there exists r ∈ N with r ≥ n such that F is contained
in the centred real ball R2r(0). We denote W := {5 · 2r · j; j ∈ {1, · · · , an+1}}. Then
any v ∈ W satisfies |v|2 ≤ 2−r ≤ 2−n and we obtain W ⊆ Vn(⊆ B1(0)). Furthermore,
B contains less then 22n+1

/2n+1 = an+1/2n+1 elements and thus the cardinality of B is
bounded by the cardinality an+1 of W . We thus obtain the existence of an injective
mapping B 7→ vB from B to W . Having collected these notions we can now define

E := F ∪
⋃
B̂∈B̂

⋃
B∈B;B⊆B̂

[
(F + gB̂) ∩B2n(hB)

]
∪
[
(F + gB̂ + vB) ∩ B2n(h′B)

]
.

As
{
B2n(hB); B ∈ B

}
∪
{
B2n(h′B); B ∈ B

}
is a partition of A2n+1 \ A2n we obtain (a).

As above it is furthermore straightforward to show that E is contained in A2n+1 ∩Q. To
show that E contains exactly one element from each ball of radius 1 that is contained
in A2n+1 let B̌ be such a ball. If B̌ is contained in A2n , then we use the respective
property of F and (a) to obtain that B̌ ∩ E = B̌ ∩ F contains exactly one element. If
B̌ is not contained in A2n , then there exist B ∈ B and B̂ ∈ B̂ such that B̌ ⊆ B ⊆ B̂.
Recall that B consists of the balls B2n(hB) and B2n(h′B). If B̌ ⊆ B2n(hB) we obtain
B̌ ∩ E = B̌ ∩ (F + gB̂). As B̌ − gB̂ is a ball of radius 1 contained in A2n we thus have

148



6.4 Patch counting in Q2

that B̌ ∩ E contains exactly one element from our assumptions on F . Similarly one
considers the case B̌ ⊆ B2n(h′B) and obtains B̌ ∩ E = B̌ ∩ (F + gB̂ + vB). In this case
we use that B̌ − gB̂ − vB is a ball of radius 1 contained in A2n and conclude (b).

To show (c) we need to show that F is an exact An-patch representation for E. To
do this consider g ∈ E \F . Then there exist B ∈ B and B̂ ∈ B̂ such that g ∈ B ⊆ B̂. If
g ∈ B2n(hB), then we obtain g ∈ B2n(hB) ∩ E = B2n(hB) ∩ (F + gB̂) and in particular
h := g − gB̂ ∈ F . As B2n(hB) = B2n(g) = An + g we compute

((E − g) ∩ An) + g = E ∩ B2n(hB)
= (F + gB̂) ∩ B2n(hB)
= ((F + gB̂ − g) ∩ An) + g

= ((F − h) ∩ An) + g.

Now recall from (a) and our assumptions on F that F ∩ A2n = F = E ∩ A2n . As A2n

is furthermore a subgroup we observe that A2n = A2n + h = A2n − h, which allows to
compute

(F − h) ∩ A2n = (F ∩ A2n)− h = (E ∩ A2n)− h = (E − h) ∩ A2n . (6.1)

We thus combine our observations to compute

(E − g) ∩ An = (F − h) ∩ An = (F − h) ∩ A2n ∩ An
= (E − h) ∩ A2n ∩ An = (E − h) ∩ An.

Similarly one considers the case g ∈ B2n(h′B), shows that h′ := g− gB̂ − vB is contained
in F , and obtains that there holds (E − g) ∩An = (E − h′) ∩An. This shows that F is
indeed an exact An-patch representation for E, i.e. (c).

To show (d) we need to show that F is an A2n-patch representation for E at scale Vn.
Let g ∈ E \ F and consider B ∈ B and B̂ ∈ B̂ such that g ∈ B ⊆ B̂. Then whenever
g ∈ B2n(hB), we can argue as above to obtain that h := g−gB̂ is contained in F and an
argument as in (6.1) yields that (F−h)∩A2n = (E−h)∩A2n . As g ∈ B̂ we furthermore
obtain that

A2n = B̂ − g =
⋃

C∈B;C⊆B̂

[
B2n(hC − g) ∪B2n(h′C − g)

]
.
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Using vC ∈ W ⊆ Vn for all C ∈ B this allows to compute

(E − h) ∩ A2n

= (F − h) ∩ A2n

= (F − (g − gB̂)) ∩
 ⋃
C∈B;C⊆B̂

[
B2n(hC − g) ∪ B2n(h′C − g)

]
=

 ⋃
C∈B;C⊆B̂

[
(F + gB̂) ∩ B2n(hC)

]
∪
[
(F + gB̂) ∩ B2n(h′C)

]− g
A2n ,Vn≈

 ⋃
C∈B;C⊆B̂

[
(F + gB̂) ∩ B2n(hC)

]
∪
[
(F + gB̂ + vC) ∩B2n(h′C)

]− g
=

(
E ∩ B̂

)
− g

= (E − g) ∩ A2n .

We have thus shown that E − g and E − h are ε(A2n , Vn)-close. Similarly we argue
whenever g ∈ B2n(h′B). In this case we consider h′ := g − gB̂ − vB and obtain h′ ∈ F
and furthermore that E−g and E−h′ are ε(A2n , Vn)-close. This shows that F is indeed
an A2n-patch representation at scale Vn for E and we have shown (d).

To show (e) we need to show an+1/2n+2 ≤ |PatE(An+1)|. To do this recall that B is the
set of all balls of radius 2n+1 that are contained in the ball A2n+1 = Ban+1(0) but which
do not intersect the ball A2n = Ban(0). Thus, B contains exactly an+1/2n+1 − an/2n+1

elements. Now an ≥ a0 = 2 implies 2an − 2 ≥ an and we obtain

an+1 = a2
n ≤ an(2an − 2) = 2(a2

n − an) = 2(an+1 − an).

Thus, B contains at least an+1/2n+2 elements. Note furthermore that for any B ∈ B
and B̂ ∈ B̂ with B ⊆ B̂ there holds hB ∈ (F + gB̂) ∩ B2n(hB) ⊆ E and thus the sets
(E − hB) ∩ An+1 with B ∈ B are An+1-patches of E. In order to show

an+1/2n+2 ≤ |B| ≤ |PatE(An+1)|,

i.e. (e) it is thus sufficient to show that for distinct balls B and B′ in B we have
(E − hB) ∩ An+1 6= (E − hB′) ∩ An+1.

To show this we first consider B ∈ B and B̂ ∈ B such that B ⊆ B̂. Now recall from
our choice of r that F ⊆ R2r(0). Recall furthermore that we have chosen hB to be
contained in (F + gB̂)∩B. We thus obtain An+1 + hB = B2n+1(hB) = B and that there

150



6.4 Patch counting in Q2

holds

(E − hB) ∩ An+1 = (E ∩ (An+1 + hB))− hB
= (E ∩ B)− hB
=
[(

(F + gB̂) ∩ B2n(hB)
)
∪
(
(F + gB̂ + vB) ∩ B2n(h′B)

)]
− hB

⊆ (F + gB̂ − hB) ∪ (F + gB̂ + vB − hB)
⊆ (F + gB̂ − (F + gB̂)) ∪ (F + gB̂ + vB − (F + gB̂))
= (F − F ) ∪ (F + vB − F )
⊆ R2·2r(0) ∪R2·2r(vB).

We furthermore observe h′B + vB ∈ h′B + Vn = h′B + B2n(0) ⊆ h′B + B2n(0) = B2n(h′B).
As also h′B ∈ (F + gB̂)∩B this implies h′B + vB ∈ (F + gB̂ + vB)∩B2n(h′B) ⊆ E. From

h′B − hB + vB ∈ B − hB + vB ⊆ An+1 +B1(0) = An+1

we therefore obtain h′B − hB + vB ∈ (E − hB) ∩ An+1. As

h′B − hB + vB ∈ (F + gB̂)− (F + gB̂) + vB = F − F + vB ⊆ R2·2r(vB),

we have thus shown that ((E − hB) ∩ An+1) ∩ R2·2r(vB) is not empty. Furthermore,
for distinct B,B′ ∈ B we know that vB and vB′ are distinct and contained in W and
thus have at least R-distance 5 · 2r. Thus, whenever B,B′ ∈ B are distinct, then the
non-empty sets ((E − hB) ∩ An+1) ∩ R2·2r(vB) and ((E − hB′) ∩ An+1) ∩ R2·2r(vB′) do
not intersect, which shows in particular that (E − hB) ∩An+1 6= (E − hB′) ∩An+1. We
have thus shown (e).

We next present a third lemma of this sort, which will help us to construct a FLC
Delone set in Q2 with an infinite patch counting entropy along (Bn(0))n∈N. Note that
we expand this time from balls of radius 2an = 222n to balls of radius 2an+1 .

Lemma 6.45. Let n ∈ N0 and let F ⊆ Q2 be a finite subset. Assume that F is contained
in Aan ∩ Q and that F contains exactly one element from each ball of radius 1 that is
contained in Aan. Then there exists a finite subset E of Q2 such that

(a) F = E ∩ Aan.

(b) E is contained in Aan+1 and contains exactly one element from each ball of radius
1 that is contained in Aan+1.

(c) F is an exact An-patch representation for E.

(d) 2an ≤ |PatE(An+1)|.
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Proof. Let us this time denote the set of all balls of radius 2n+1 that are contained in
Aan+1 but do not intersect Aan by B. Note that F ⊆ Q is finite and hence bounded in
R. Thus, there exists r ∈ N such that F is contained in the real ball Rr(0). We define
W := {5rk; k = 1, · · · , 2an+1}. Then W contains 2an+1 ≥ (2an+1 − 2an)/2n+1 = |B|
elements and thus there exists an injection B 7→ vB from B to W . We furthermore
choose a rational number gB ∈ B for each B ∈ B. Then B̌(1) := B2n(gB) is a ball of
radius 2n contained in B. We denote by B̌(2) the other ball of radius 2n contained in
the ball B. Let us define

E := F ∪
⋃
B∈B

(
(F + gB) ∩ B̌(1)

)
∪
(
(F + gB + vB) ∩ B̌(2)

)
.

Similarly as above we then deduce (a) and (b).
To show (c) we argue similarly as above. We consider g ∈ E \ F , choose B ∈ B that

contains g and distinguish the cases g ∈ B̌(1) and g ∈ B̌(2). In the first case one shows
as above that h := g − gB ∈ F satisfied (E − g) ∩ An = (A − h) ∩ An. In the second
case one shows that h′ := g − gB − vB ∈ F satisfies (E − g) ∩ An = (A− h′) ∩ An and
concludes (c).

It remains to show (d). We use (b) to observe that (F + gB)∩ B̌(1) is non-empty and
choose hB ∈ (F + gB) ∩ B̌(1). Similarly as above we next show that the An+1-patches
(E − hB) ∩ An+1 and (E − hB′) ∩ An+1 are distinct for distinct B,B′ ∈ B. As above it
is straightforward to deduce that

(E − hB) ∩ An+1 ⊆ (F − F ) ∪ (F − F + vB) ⊆ R2·r(0) + R2·r(vB)

and that there are elements from (E−hB)∩An+1 contained in R2·r(vB). By construction
ofW we know that for distinct B,B′ the elements vB and vB′ have a real distance which
is at least 5r and thus R2·r(vB) and R2·r(vB′) cannot intersect. We thus obtain that the
corresponding An+1 are indeed distinct. Thus,

|PatE(An+1)| ≥ |B| ≥ (2an+1 − 2an)/2n+1.

Note now that n+ 2 ≤ 22n = an and thus an+1 = a2
n ≥ 2an ≥ an + n+ 2. From this we

compute 2an+1 ≥ 2an2n+2 ≥ 2an(2n+1 + 1) and hence

|PatE(An+1)| ≥ (2an+1 − 2an)/2n+1 ≥ 2an .

We have thus shown (d).
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6.4.2 About patch counting and topological entropy
In this subsection we construct an example of a Delone set ω in Q2 for which

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ
(
Bn(0)

)
converges to log(2) but for which the corresponding Delone dynamical system has 0
topological entropy. Recall that we abbreviate an := 22n , An := B2n(0) and Vn :=
B2−n(0) for n ∈ N0.

Lemma 6.46. There exists a family (ωn)n∈N0 of finite subsets of Q2 such that for all
n ∈ N0 there holds

(i) ωn = ωn+1 ∩ A2n.

(ii) ωn is contained in A2n ∩ Q and contains exactly one element from each ball of
radius 1 that is contained in A2n.

(iii) ωn is an exact An-patch representation for ωm, whenever m ≥ n.

(iv) ωn is an A2n-patch representation for ωm at scale Vn, whenever m ≥ n.

(v) There holds an/2n+1 ≤ |Patωn(An)|.

Proof. We start our induction by defining ω0 := {0, 1/2}. Then A20 = A1 = B2(0)
contains two balls of radius 1. As |0− 1/2|2 = |2−1|2 = 2 we obtain that each such ball
contains exactly one element of ω0, i.e. (ii) for n = 0. Now whenever ωn is chosen for
some n ∈ N such that (ii) is satisfied we apply Lemma 6.44 in order to obtain ωn+1 with
the following properties.

(a) ωn = ωn+1 ∩ A2n .

(b) ωn+1 is contained in A2n+1 ∩Q and contains exactly one element from each ball of
radius 1 that is contained in A2n+1 .

(c) ωn is an exact An-patch representation for ωn+1.

(d) ωn is an A2n-patch representation for ωn+1 at scale Vn.

(e) an+1/2n+2 ≤ |Patωn+1(An+1)|.

Then (i) and (ii) are trivially satisfied. Furthermore, ω0 has trivially at least one A0-
patch and we obtain (v) from a0/20+2 = 220

/4 = 1/2 and (e). It remains to show (iii)
and (iv).

To show (iii) we fix n ∈ N0. We will perform an induction over m ≥ n. Clearly, ωn
is an exact An-patch representation for itself and we obtain the statement for m = n.
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Let us now assume that ωn is an exact An-patch representation for ωm for some m ≥ n.
To proceed inductively we consider g ∈ ωm+1. Now recall from (c) that ωm is an exact
Am-patch representation for ωm+1 and thus there is g′ ∈ ωm such that (ωm+1−g)∩Am =
(ωm+1 − g′) ∩ Am. From m ≥ n we thus obtain in particular that (ωm+1 − g) ∩ An =
(ωm+1 − g′) ∩ An. As g′ ∈ ωm we obtain from the induction hypothesis the existence
of some g′′ ∈ ωn such that (ωm − g′) ∩ An = (ωm − g′′) ∩ An. Now recall from (i) that
ωm+1 ∩ A2m = ωm. As g′, g′′ ∈ A2m and as n ≤ 2m we can apply Lemma 6.41 to obtain
that

(ωm+1 − g) ∩ An = (ωm+1 − g′) ∩ An = (ωm − g′) ∩ An
= (ωm − g′′) ∩ An = (ωm+1 − g′′) ∩ An.

As g′′ ∈ ωn this shows that ωn is indeed an exact An-patch representation for ωm+1 and
we have shown (iii).

To show (iv) we argue similarly as for (iii). Let us fix n ∈ N0 and note again
that the statement is trivial for m = n. Let us now assume that ωn is an A2n-patch
representation for ωm at scale Vn for some m ≥ n. To proceed with an induction we
consider g ∈ ωm+1. Then (d) yields the existence of g′ ∈ ωm such that ωm+1 − g and
ωm+1 − g′ are ε(A2m , Vm)-close. As A2m ⊇ A2n and as Vm ⊆ Vn we obtain in particular
that ωm+1 − g and ωm+1 − g′ are ε(A2n , Vn)-close. Now g′ ∈ ωm and our induction
hypothesis give the existence of g′′ ∈ ωn such that ωm − g′ and ωm − g′′ are ε(A2n , Vn)-
close. As g′ ∈ A2m and as 2n ≤ 2m we can furthermore use Lemma 6.41 in order to see
that ωm− g′ and ωm+1− g′ are ε(A2n , Vn)-close. Similarly we observe that also ωm− g′′
and ωm+1 − g′′ are ε(A2n , Vn)-close and summarize

ωm+1 − g
A2n ,Vn≈ ωm+1 − g′

A2n ,Vn≈ ωm − g′
A2n ,Vn≈ ωm − g′′

A2n ,Vn≈ ωm+1 − g′′.

From Lemma 6.42 we know that ε(A2n , Vn) is an equivalence relation and obtain that
ωm+1 − g and ωm+1 − g′′ are ε(A2n , Vn)-close. As g′′ ∈ ωn we have proven that ωn is
indeed an A2n-patch representation for ωm+1 at scale Vn and conclude (iv).

Theorem 6.47. There exists a FLC Delone set ω in Q2 such that the topological entropy
E(πω) is 0, but for which the following limit exists and satisfies

lim
n→∞

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ
(
Bn(0)

) = log(2).

Remark 6.48. Recall from Proposition 6.11 that for all Van Hove nets A and all Delone
sets the patch counting entropy along A is always larger than the topological entropy, a
behaviour that we also observe in the previous theorem.

Remark 6.49. In [BLR07] it is shown that for FLC Delone sets in Rd (with ”uniform
cluster frequencies”) ”pure point diffraction” implies 0 patch counting entropy (along
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(Bn(0))n∈N). In order to do this the authors show first that the measure theoretical
entropy of the unique ergodic measure of the Delone dynamical system is 0. Then they
apply the variational principle for actions of Rd cited from [TZ91] and conclude that
also the topological entropy of the considered dynamical system is 0. Showing that the
topological entropy and the patch counting entropy are equal in this context they then
conclude the statement. Note that parts of the proof can be generalized via [FGL18], but
it seems open, whether the variational principle holds for actions of Q2. Theorem 6.47
shows that an analogue of the proof of [BLR07] does not work for the metrizable and
σ-compact LCA group Q2. It remains open, whether ”pure point diffraction” implies 0
patch counting entropy (along (Bn(0))n∈N) also in Q2 for all FLC Delone sets.

Proof of Theorem 6.47. Let (ωn)n∈N be a family of finite subsets of Q2 that satisfies the
properties (i),· · · ,(v) of Lemma 6.46. We define ω := ⋃

n∈N ωn and obtain from (i) and
(ii) that ω contains exactly one element from each ball of radius 1. Thus, ω is 1-discrete
and 1-dense and in particular a Delone set. Furthermore, for n ∈ N and g ∈ ω there is
m ≥ n such that g ∈ ωm and we obtain from (iii) that there exists g′ ∈ ωn such that
(ωm − g) ∩ An = (ωm − g′) ∩ An. As g, g′ ∈ A2m and as (i), (ii) and the definition of ω
yield ωm = ω ∩ A2m we obtain from Lemma 6.41 that

(ω − g) ∩ An = (ωm − g) ∩ An = (ωm − g′) ∩ An = (ω − g′) ∩ An.

As g ∈ ωn we obtain that ωn is an exact An-patch representation for ω for any n ∈ N.
Thus, (ii) implies

|Patω(An)| ≤ |ωn| = 22n .

Clearly, for compactK ⊆ Q2 there is n ∈ N such thatK ⊆ An and thus |Patω(K)| ≤ 22n

and we have proven ω to be FLC. Furthermore, this observation allows to compute

lim sup
n→∞

log |Patω(An)|
θ(An) ≤ lim sup

n→∞

log
(
22n
)

2n = log(2). (6.2)

Now recall that for any n ∈ N there holds ωn = ω ∩ A2n . As clearly n ≤ 2n Lemma
6.41 implies that Patωn(An) ⊆ Patω(An) and we observe from (v) that

22n−(n+1) = an/2n+1 ≤ |Patω(An)|.

This allows to compute

lim inf
n→∞

log |Patω(An)|
θ(An) ≥ lim inf

n→∞

log(22n−(n+1))
2n

= lim inf
n→∞

(2n
2n −

n+ 1
2n

)
log(2)

= log(2).
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As the metric of Q2 only takes values in {2n; n ∈ Z} we conclude from (6.2) that there
holds

lim
n→∞

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ
(
Bn(0)

) = lim
n→∞

log |Patω(An)|
θ(An) = log(2).

Consider now an open neighbourhood V of 0. Then there exists N ∈ N that satisfies
VN ⊆ V and we consider n ≥ N . To show that ωn is an A2n-patch representation for ω
at scale V let us consider g ∈ ω. Clearly, there exists m ≥ n such that g ∈ ωm and (iv)
allows to observe the existence of g′ ∈ ωn such that ωm − g and ωm − g′ are ε(A2n , Vn)-
close. We use once more that ωm = ω ∩ A2m , that g ∈ A2m and furthermore 2n ≤ 2m
to apply Lemma 6.41 in order to obtain that ωm − g and ω − g are ε(A2n , V )-close.
Similarly we see that ωm − g′ and ω − g′ are ε(A2n , V )-close. We thus summarize

ω − g
A2n ,V≈ ωm − g

A2n ,V≈ ωm − g′
A2n ,V≈ ω − g′.

Thus, by Lemma 6.42 the sets ω− g and ω− g′ are ε(A2n , V )-close. As g′ ∈ ωn we have
shown that ωn is indeed an A2n-patch representation for ω at scale V for any n ≥ N .
We thus obtain from (ii) that there holds patω(A2n , V ) ≤ |ωn| = 22n for all n ≥ N and
compute

0 ≤ lim sup
n→∞

log (patω(A2n , V ))
θ(A2n) ≤ lim sup

n→∞

log
(
22n
)

θ
(
B22n (0)

) = log(2) lim
n→∞

2n
22n = 0.

As (A2n)n∈N is a Van Hove net in Q2 Theorem 6.4 allows to compute

E(πω) = sup
V

lim sup
n→∞

log (patω(A2n , V ))
θ(A2n) = 0,

where the supremum is considered over all open neighbourhoods V of 0.

6.4.3 About the limit in the patch counting formula
We will now use the developed tools to construct an example of a FLC Delone set for
which

log
∣∣∣Patω(Bn (0))

∣∣∣
θ
(
Bn(0)

)
does not converge. Again we abbreviate an := 22n , An := B2n(0) and Vn := B2−n(0) for
n ∈ N0.

Lemma 6.50. There exists a family (ωn)n∈N0 of finite subsets of Q2 and a strictly
increasing sequence (bn)n∈N in N0 such that for all n ∈ N0 there holds

156



6.4 Patch counting in Q2

(i) ωn = ωn+1 ∩ A2n.

(ii) ωn is contained in A2n ∩ Q and contains exactly one element from each ball of
radius 1 that is contained in A2n.

(iii) ωbn is an exact A2bn -patch representation for ωm, whenever m ≥ bn.

(iv) There holds abn/2bn+1 ≤ |Patωbn (Abn)|.

Proof. We define b0 := 0 and inductively bn+1 := 2bn + 1 for any n ∈ N0 and obtain a
strictly increasing sequence (bn)n∈N. We define ω0 := {0, 1/2} and obtain (ii) for n = 0
as above.

Now whenever ωn is chosen to satisfy (ii) for n ∈ N0 we distinguish two cases. When-
ever n is of the form bk − 1 for some k ∈ N0, then we use Lemma 6.44 to obtain a finite
set ωn+1 that satisfies2

(a) ωn = ωn+1 ∩ A2n .

(b) ωn+1 is contained in A2n+1 ∩Q and contains exactly one element from each ball of
radius 1 that is contained in A2n+1 .

(c) ωn is an exact An-patch representation for ωn+1.

(e) an+1/2n+2 ≤ |Patωn+1(An+1)|.

Whenever n is not of the form bk − 1 for some k ∈ N0, we use Lemma 6.43 to obtain a
finite set ωn+1 that satisfies (a), (b) and furthermore

(c)’ ωn is an exact A2n-patch representation for ωn+1.

Then (i) and (ii) are trivially satisfied. Furthermore, from b0 = 0 we obtain ab0/2b0+1 =
220
/20+1 = 1 and as ω0 has at least one A0-patch we obtain ab0/2b0+1 ≤ |Patωb0 (Ab0)|.

Furthermore, for k ≥ 1 we know that bk ≥ 3 and thus bk− 1 ∈ N. Thus, ωbk = ω(bk−1)+1
was chosen via Lemma 6.44 and in particular satisfies

abk/2bk+1 = a(bk−1)+1/2(bk−1)+2 ≤ |Patω(bk−1)+1(A(bk−1)+1)| = |Patωbk (Abk)|.

This shows (iv) and it remains to show (iii).
Before we show (iii) let us fix k ∈ N0 and first show that ωm is an exact A2(bk)-patch

representation for ωm+1 for all m ≥ bk. Whenever m is not of the form bj − 1 for some
j ∈ N0, then (c)’ implies that ωm is an exact A2m-patch representation for ωm+1. As we
assumem ≥ bk we obtain A2bk ⊆ A2m and we have shown the statement in this case. We
next consider the case wherem = bj−1 for some j ∈ N0. We then obtain bk ≤ m = bj−1
and in particular bk < bj. As (bn)n∈N is a strictly increasing sequence we thus obtain

2 Note that we did not recite (d). This property will not be used here.
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k < j and in particular k+ 1 ≤ j. An application of the monotonicity of (bn)n∈N as well
as the definition of this sequence thus yields that there holds 2bk +1 = bk+1 ≤ bj = m+1
and we observe 2bk ≤ m. In particular, we obtain A2(bk) ⊆ Am. As m = bj − 1 for some
j ∈ N0 we have constructed ωm+1 from ωm via Lemma 6.44. In particular, we recall
from (c) that ωm is an exact Am-patch representation for ωm+1. We thus obtain from
A2(bk) ⊆ Am that ωm is an exact A2(bk)-patch representation for ωm+1. We have thus
shown that for any m ≥ bk the set ωm is an exact A2(bk)-patch representation for ωm+1.

To show (iii) we will fix k ∈ N0 and perform an induction over allm ≥ bk. Trivially ωbk
is an exact A2(bk)-patch representation for itself. To proceed inductively let us assume
that ωbk is an exact A2(bk)-patch representation for ωm for some m ≥ bk and consider
g ∈ ωm+1. We have shown above that ωm is an exact A2(bk)-patch representation for ωm+1
and thus there is g′ ∈ ωm such that (ωm+1−g)∩A2(bk) = (ωm+1−g′)∩A2(bk) . Furthermore,
from our induction hypothesis we obtain that g′ ∈ ωm implies that there is g′′ ∈ ωbk such
that (ωm− g′)∩A2(bk) = (ωm− g′′)∩A2(bk) . Now recall from (i) that ωm = ωm+1 ∩A2m .
As 2m ≥ 2bk and g′, g′′ ∈ ωm ⊆ A2m we thus obtain from Lemma 6.41 that there holds
(ωm − g′) ∩ A2(bk) = (ωm+1 − g′) ∩ A2(bk) and (ωm − g′′) ∩ A2(bk) = (ωm+1 − g′′) ∩ A2(bk) .
We can now combine our observations to compute

(ωm+1 − g) ∩ A2(bk) = (ωm+1 − g′) ∩ A2(bk) = (ωm − g′) ∩ A2(bk)

= (ωm − g′′) ∩ A2(bk) = (ωm+1 − g′′) ∩ A2(bk) .

As g′′ ∈ ωbk we have shown that ωbk is an exact A2(bk)-patch representation for ωm+1
and conclude (iii).

Theorem 6.51. There exists a FLC Delone set ω in Q2 such that

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ
(
Bn(0)

)
does not converge as n tends to ∞.

Proof. Let (ωn)n∈N be a family of finite subsets of Q2 that satisfies the properties
(i),· · · ,(iv) of Lemma 6.50. Again we define ω := ⋃

n∈N ωn and obtain as above that
ω is a Delone set.

To show that for any n ∈ N the set ωbn is an exact A2(bn)-patch representation for
ω we consider g ∈ ω. Then there exists m ≥ bn such that g ∈ ωm and (iii) gives the
existence of an g′ ∈ ωbn such that (ωm − g) ∩ A2(bn) = (ωm − g′) ∩ A2(bn) . Now recall
from (i), (ii) and our definition of ω that ω ∩ A2m = ωm. As there holds furthermore
2(bn) ≤ 2m and g, g′ ∈ ωm ⊆ A2m we thus obtain from Lemma 6.41 that there holds

(ω − g) ∩ A2(bn) = (ωm − g) ∩ A2(bn) = (ωm − g′) ∩ A2(bn) = (ω − g′) ∩ A2(bn) .

As g′ ∈ ωbn we have thus shown that ωbn is an exact A2(bn)-patch representation for ω
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for all n ∈ N and obtain in particular from (ii) that

|Patω(A2(bn))| ≤ |ωbn | = 22bn . (6.3)

Whenever K is a compact subset of Q2 we can use that (bn)n∈N is strictly increasing
to obtain that ⋃n∈NA2bn . Thus, in particular there exists n ∈ N such that K ⊆ A2bn .
Hence, |Patω(K)| ≤ |Patω(A2(bn))| ≤ 22bn and we obtain ω to be FLC. Furthermore,
(6.3) allows to compute

lim inf
n→∞

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ
(
Bn(0)

) ≤ lim inf
n→∞

log |Patω(A2(bn))|
θ(A2(bn))

≤ lim inf
n→∞

log
(
22bn

)
22bn

= 0.

Let us now consider n ∈ N. Then (i) and our definition of ω yield ωbn = ω ∩ A2bn . As
bn ≤ 2bn Lemma 6.41 allows to observe Patωbn (Abn) ⊆ Patω(Abn) and we obtain from
(iv) that

22bn−(bn+1) = abn/2bn+1 ≤ |Patωbn (Abn)| ≤ |Patω(Abn)|.

As any strictly increasing sequence in N0 tends to ∞ we compute

lim sup
n→∞

log |Patω(Bn(0))|
θ(Bn(0))

≥ lim sup
n→∞

log |Patω(Abn)|
θ(Abn)

≥ lim sup
n→∞

log
(
22bn−(bn+1)

)
2bn

= log(2) lim
n→∞

(
2bn − (bn + 1)

)
2bn

= log(2).

Remark 6.52. Note that it it follows from Proposition 6.11 that for FLC Delone sets
in Q2 there holds

E(πω) ≤ lim inf
n→∞

log
∣∣∣Patω(Bn(0))

∣∣∣
θ(Bn(0))

.

Thus, also the FLC Delone set ω constructed in the proof of Theorem 6.51 satisfies
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E(πω) < Epc(ω). Nevertheless, note that Theorem 6.47 shows in addition that also

lim inf
n→∞

log
∣∣∣Patω(Bn(0))

∣∣∣
θ(Bn(0))

can be strictly larger than E(πω) for FLC Delone sets in Q2.

6.4.4 About the finiteness of patch counting entropy
It is well-known that the patch counting entropy along (Bn(0))n∈N of a FLC Delone set
in Rd is always finite [Lag99, Theorem 2.3]. Furthermore, it is known that any model
set in Q2 has finite patch counting entropy (along (Bn(0))n∈N) [HR15, Theorem 4.5]. It
is thus surprising that this statement does not hold for general FLC Delone sets in Q2.
We will next construct a FLC Delone set in Q2 with infinite patch counting entropy
along (Bn(0))n∈N. Again we abbreviate an := 22n and An := B2n(0) for n ∈ N0.

Lemma 6.53. There exists a family (ωn)n∈N0 of finite subsets of Q2 such that for all
n ∈ N0 there holds

(i) ωn = ωn+1 ∩ Aan.

(ii) ωn is contained in Aan ∩ Q and contains exactly one element from each ball of
radius 1 that is contained in Aan.

(iii) ωn is an exact An-patch representation for ωm for any m ≥ n.

(iv) 2an ≤ |Patωn+1(An+1)|.

Proof. Let ω0 := {0, 1/2, 1/4, 3/4}. As Aa0 = B22(0) we obtain that ω0 indeed contains
exactly one element from each ball of radius 1 contained in Aa0 . As ω0 is contained in
Q it thus satisfies (ii). To proceed inductively assume that ωn is chosen such that (ii) is
satisfied and choose ωn+1 according to Lemma 6.45, i.e. such that (i), (ii) and (iv) are
fulfilled and such that

(c) ωn is an exact An-patch representation for ωn+1.

Then (iii) can be shown similarly as above by fixing n and performing an induction over
m ≥ n while using (c) and (i) in the induction step.

Theorem 6.54. There exists a FLC Delone set ω in Q2 such that the following limit
exists and such that

lim
n→∞

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ
(
Bn(0)

) =∞.
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Proof. Similarly as above we show that the union ω over the family (ωn)n∈N constructed
in Lemma 6.53 is a Delone set. An induction as above also allows to deduce from (iii)
and Lemma 6.41 that ω is FLC. From (i), (iv) and Lemma 6.41 we obtain as above
2an ≤ |Patω(An+1)| and compute

lim inf
n→∞

log |Patω (An)|
θ(An) ≥ lim inf

n→∞

log (2an−1)
2n

= log(2) lim
n→∞

an−1

2n =∞.

As the metric of Q2 only takes values in {2n; n ∈ Z} we thus obtain

lim inf
n→∞

log
∣∣∣Patω

(
Bn(0)

)∣∣∣
θ(Bn(0))

=∞.

6.5 About the topological entropy of the full shift
In this subsection we will briefly consider the full shift on an LCA group. We will see
that the topological entropy of this action is finite if and only if the group is discrete.
It is well-known that it takes the value log(2) in the discrete case. Nevertheless, for
the convenience of the reader, we include the short proof of this statement. Note that
one does not need the assumption of commutativity for the arguments of this section.
Nevertheless, we only present the statements for abelian groups as we want to stick to
our additive notion.

Example 6.55. The topological entropy of the full shift on a discrete LCA group is
log(2).

Proof. Note first that B := {ε(K, {0}); K ∈ K(G)} is a base for UA(G). Now consider
K,F ∈ K(G) and note that F +K is finite. Then S = {E ⊆ F +K} consists of finite
and closed sets and is a maximal ε(F + K, {0})-separated set. From Lemma 6.5 we
obtain that

sepA(G)(ε(K, {0})(−F )) = sepA(G)(ε(K + F, {0})) = |S| = 2|F+K|.

As limi∈I |Fi +K|/|Fi| = 1 for any Van Hove net (Fi)i∈I we obtain

lim sup
i∈I

log(sepA(G)(ε(K, {0})(−Fi)))
|Fi|

= log(2) lim sup
i∈I

|Fi +K|
|Fi|

= log(2).
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We thus obtain from Theorem 4.33 that

E(π) = sup
ε∈B

lim sup
i∈I

log(sepA(G)(ε(−Fi)))
|Fi|

= log(2).

It is less well-known how the topological entropy of the full shift on a non-discrete
LCA group behaves.
Example 6.56. The topological entropy of the full shift on a non-discrete LCA group
is infinite.
Remark 6.57. This in particular implies that the entropy map of the full shift as
considered in Section 4.4 is never upper semi-continuous whenever G is a non-discrete
LCA group.
Proof of the claims of Example 6.56. Let ω be a Delone set in G and consider a neigh-
bourhood V of 0 such that ω is V -discrete. Now consider a finite set E ⊆ V such that
0 /∈ E. From the finiteness of E we know that there exists an open neighbourhood U of
0 such that E ∪{0} is U -discrete and we assume without lost of generality that U ⊆ V .
It is straightforward to show that E + ω and ω are disjoint and that (E + ω) ∪ ω is
U -discrete. For a compact subset A ⊆ G let us now consider

S := {F ∪ ω; F ⊆ E + (A ∩ ω)}.

To show that S is ε(E,U)(−A)-separated in A(G) let us consider F, F ′ ⊆ E + (A ∩ ω)
such that F ∪ω and F ′ ∪ω are ε(E,U)(−A)-close. We need to show that F ∪ω = F ′ ∪ω
and consider g ∈ F ∪ ω. Let us assume without lost of generality that g ∈ F . Then
g ∈ F ⊆ E + (A ∩ ω) and we can choose e ∈ E and a ∈ A ∩ ω such that g = e+ a. As
π−a(F ∪ ω) and π−a(F ′ ∪ ω) are ε(E,U)-close there holds

e = g − a ∈ ((F ∪ ω)− a) ∩ E ⊆ (F ′ ∪ ω)− a+ U.

We observe g ∈ (F ′∪ω) +U and there is u ∈ U such that g−u ∈ F ′∪ω ⊆ (E+ω)∪ω.
We thus obtain from g ∈ F ∪ ω ⊆ (E + ω) ∪ ω and from (E + ω) ∪ ω being U -discrete
that there holds g = g− u ∈ F ′ ∪ ω. We have thus shown F ∪ ω ⊆ F ′ ∪ ω and similarly
one shows the other inclusion and obtains S to be ε(E,U)(−A)-separated. Now recall
that E + (A ∩ ω) and ω are disjoint. Thus, different F ⊆ E + (A ∩ ω) yield different
F ∪ ω. This shows that sepA(G)(ε(E,U)−A) ≥ |S| = 2|E|2|A∩ω| for any compact subset
A ⊆ G.

Considering a Van Hove net (Ai)i∈I in G we know limi∈I θ(Ai)/θ(−Ai) = 1 and obtain
from Lemma 5.3 that there exists a constant c > 0 only dependent on ω, such that

E(π) ≥ lim inf
i∈I

log sepA(G)(ε(E,U)−Ai)
θ(Ai)

≥ |E| log(2) lim inf
i∈I

|Ai ∩ ω|
θ(Ai)

≥ |E| log(2)c.
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Now recall that we assume G to be non-discrete. Thus, there are finite sets E ⊆ V of
arbitrary finite cardinality and we obtain E(π) =∞.

Remark 6.58. Note that the previous proof can be simplified by considering

S′ := {F ; F ⊆ E + (A ∩ ω)}

instead of S. Nevertheless, we chose to consider S as it consists of Delone sets. The
proof thus shows that already the Delone sets in A(G) force the topological entropy to
be infinite.
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7 On topological pressure
The concept of topological pressure is the natural generalization of topological entropy
and sheds new light on statements like the variational principle as illustrated in [Wal75,
Wal82, Oll85]. In this chapter we first show that the Ornstein-Weiss Lemma can be used
in order to define the topological pressure for actions of unimodular amenable groups.
In Section 7.1 we discuss the generalizations of several approaches and their equivalence
to topological pressure. Clearly, one can discuss similarly as in Section 4.3 further non-
equivalent approaches but to avoid unnecessary repetition we did not include such a
discussion into this thesis. In Section 7.2 we follow the ideas of [Wal75, Wal82] and show
with some minor changes on well-known arguments that one can easily generalize some
properties of the topological pressure from the context of actions of discrete amenable
groups as for example studied in [Oll85]. In Section 7.3 we show that similar results as in
Chapter 5 can also be observed for the topological pressure whenever one modifies also
the potential. In Section 7.4 we then give a proof for Goodwyn’s half of the variational
principle for actions of unimodular amenable groups. We also present a proof of the
variational principle for actions of σ-compact LCA groups. In order to give these proofs
we will use the results of Chapter 5. The Sections 7.5 and 7.6 are used to demonstrate
that several well-known ideas about equilibrium states and the converse variational
principle as presented in [Wal82] also work in the context of aperiodic order.

7.1 Topological pressure
In this section we define the topological pressure of a function f ∈ C(X) for actions
of a unimodular amenable group G following ideas from [Wal75, STZ80, Wal82, Oll85,
Kel98, Buf11]. In particular, we will see that one can use the Ornstein-Weiss Lemma
to achieve that the topological pressure can be defined by averaging over a Van Hove
net and furthermore that this notion is independent of the choice of a Van Hove net.
This independence is well know in the context of actions of countable discrete amenable
groups but we have encountered no reference which shows the statement using the
Ornstein-Weiss Lemma. Most of the proofs we found in the literature use the variational
principle for the topological pressure to achieve this independence but note that there
also exists a direct proof in the context that uses tiling methods [Buf11]. In this section
consider an action π of a unimodular amenable groupG on a compact Hausdorff spaceX.
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7.1.1 Via Bowen entourages
To define the topological pressure consider f ∈ C(X), which is called a potential in this
context. For an open cover U of X we denote

P∗f (U) := log
(∑
U∈U

sup
x∈U

ef(x)
)
.

For η ∈ UX we define the static topological pressure of f at scale η as

Pf (η) := inf
U

P∗f (U),

where the infimum is taken over all finite open covers U of X, which are at scale η.

Remark 7.1. There holds P∗f (U) ≤ P∗f ′(U) and Pf (η) ≤ Pf ′(η) for potentials f, f ′ ∈
C(X) that satisfy f ≤ f ′.

For f ∈ C(X), x ∈ X and a precompact and measurable subset A of G the map A 3
g 7→ f(g.x) is continuous and we define1 (fA) (x) := (

∫
A f) (x) :=

∫
A f(g.x)dθ(g), where

θ denotes the restricted Haar measure of G to A. We furthermore define (∑F f) (x) :=∑
g∈F f(g.x) for finite sets F ⊆ G.

Lemma 7.2. Let f ∈ C(X) and A be a precompact subset of G. Then fA : X → R is
continuous and satisfies ‖fA‖∞ ≤ θ(A) ‖f‖∞. Furthermore, for any G-invariant Borel
probability measure there holds µ(fA) = θ(A)µ(f).

Proof. We obtain from the uniform continuity of the map A × X → R that sends
(g, x) 7→ f(g.x), that for any ε > 0 there are η ∈ UA and δ ∈ UX such that for (g, h) ∈ η
and (x, y) ∈ δ there holds |f(g.x) − f(h.y)| ≤ ε/(θ(A) + 1). Thus, in particular for
(x, y) ∈ δ we obtain

|fA(x)− fA(y)| ≤
∫
A
|f(g.x)− f(g.y)|dθ(g) ≤ ε.

This shows that fA ∈ C(X). Furthermore, we compute

‖fA‖∞ = sup
x∈X

∣∣∣∣∫
A
f(g.x)dθ(g)

∣∣∣∣ ≤ sup
x∈X

∫
A
|f(g.x)| dθ(g)

≤
∫
A
‖f‖∞ dθ(g) = θ(A) ‖f‖∞ .

1 See [Rud91, Theorem 3.27] for an approach to this notion via vector-valued integration.
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For µ ∈MG(X) we observe

µ(fA) =
∫
X

∫
A
f(g.x)dθ(g)dµ(x) =

∫
A

∫
X
f(g.x)dµ(x)dθ(g)

=
∫
A
µ(f)dθ(g) = θ(A)µ(f).

We will now apply the Ornstein-Weiss Lemma to define the topological pressure.

Theorem 7.3. Let f ∈ C(X). Then the following limit exists, is finite and does not
depend on the choice of a Van Hove net (Ai)i∈I . We define the topological pressure of
f at scale η as

pf (η|π) := lim
i∈I

PfAi
(ηAi)

θ(Ai)
.

We define the topological pressure of a potential f ∈ C(X) with respect to π as

pf (π) := sup
η∈UX

pf (η|π).

Before we can show this we will need to show the following standard statements. We
include a proof for the convenience of the reader.

Lemma 7.4. Let U and V be open covers of X, A be a compact subset of G and
f, f ′ ∈ C(X) be potentials.

(i) There holds P∗fAg(Ug) = P∗fA(U) for all g ∈ G.

(ii) There holds P∗f+f ′(U ∨ V) ≤ P∗f (U) + P∗f ′(V).

(iii) There holds P∗(f+c)A(U) = P∗fA(U) + cθ(A) for all c ∈ R.

Proof. In order to show (i) we consider g ∈ G and compute

fAg(x) =
∫
Ag
f(h.x)dθ(h) =

∫
A
f((ag).x)dθ(a) = fA(g.x).

Thus, there holds

P∗fAg(Ug) =
∑
V ∈Ug

sup
x∈V

efAg(x) =
∑
U∈U

sup
x∈(πg)−1(U)

efA(g.x)

=
∑
U∈U

sup
y∈U

efA(g.(g−1.y)) =
∑
U∈U

sup
y∈U

efA(y) = P∗fA(U).
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To show (ii) we compute

e
P∗
f+f ′ (U∨V) =

∑
W∈U∨V

sup
x∈W

e(f+f ′)(x) =
∑

U∈U ,V ∈V:U∩V 6=∅
sup

x∈U∩V
ef(x)+f ′(x)

≤
∑

U∈U ,V ∈V:U∩V 6=∅
sup

x∈U,y∈V
ef(x)+f ′(y) ≤

∑
U∈U ,V ∈V

sup
x∈U,y∈V

ef(x)+f ′(y)

=
∑

U∈U ,V ∈V

(
sup
x∈U

ef(x)
)(

sup
y∈V

ef
′(y)
)

=
(∑
U∈U

sup
x∈U

ef(x)
)(∑

V ∈V
sup
y∈V

ef
′(y)
)

= eP∗f (U) · eP∗
f ′ (V) = e

P∗f (U)+P∗
f ′ (V)

.

To see (iii) let c ∈ R and note that there holds (f + c)A = fA + cθ(A). Thus,

e
P∗(f+c)A

(U) =
∑
U∈U

sup
x∈U

e(f+c)A(x) =
∑
U∈U

sup
x∈U

efA(x)+cθ(A)

=
(∑
U∈U

sup
x∈U

efA(x)
)
ecθ(A) = e

P∗fA (U)+cθ(A)
.

Proof of Theorem 7.3. We will first show the statement under the additional assumption
that the potential f is positive, i.e. f ≥ 0. Let us consider the map

K(G) 3 A 7→ PfA(ηA) (7.1)

and note that by the Ornstein-Weiss Lemma it suffices to show that this map is mono-
tone, right invariant and subadditive. To show the monotonicity consider compact
subsets A and B of G that satisfy A ⊆ B. As f is positive we obtain that fA ≤ fB.
Furthermore, any open cover at scale ηB is at scale ηA and considering in the following
all open cover U and V at scale ηA and ηB respectively we compute

PfA(ηA) = inf
U
P ∗fA(U) ≤ inf

V
P ∗fA(V) ≤ inf

V
P ∗fB(V) = PfB(ηB),

which shows the claimed monotonicity. To show the right invariance let g ∈ G. Then
an open cover U is at scale η, if and only if Ug is at scale ηg and considering the infima
over all finite open cover U and V at scale η and ηg respectively we obtain from Lemma
7.4 that

PfAg(ηAg) = inf
V

P∗fAg(V) = inf
U

P∗fAg(Ug) = inf
U

P∗fA(U) = PfA(ηA).

To show that (7.1) is subadditive let A and B be subsets of G and observe that the
positivity of f implies that there holds fA∪B ≤ fA + fB. Now let U and V be finite
open covers of X at scale ηA and ηB respectively and note that U ∨ V is at scale ηA∪B.
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Thus, we consider an infimum over all open cover W of X at scale ηA∪B to obtain from
Lemma 7.4 that there holds

PfA∪B(ηA∪B) = inf
W

P∗fA∪B(W) ≤ P∗fA∪B(U ∨ V) ≤ P∗fA+fB(U ∨ V) ≤ P∗fA(U) + P∗fB(V).

Taking the infima over all considered U and V respectively, we obtain

PfA∪B(ηA∪B) ≤ PfA(ηA) + PfB(ηB),

i.e. the subadditivity of (7.1). This proofs the claimed statement under the additional
assumption that f ≥ 0.

To obtain the statement for all f ∈ C(X) note that for general f ∈ C(X) there exists
c ∈ R such that f+c is positive. Thus, the already proven statement yields the existence
and finiteness of the limit limi∈I P(f+c)Ai (ηAi)/θ(Ai) and furthermore its independence
from the choice of a Van Hove net. Considering infima over all open cover U at scale
ηAi in the following we obtain from Lemma 7.4 that there holds

P(f+c)Ai (ηAi) = inf
U
P ∗(f+c)Ai

(U) = inf
U
P ∗fAi

(U) + cθ(Ai) = PfAi
(ηAi) + cθ(Ai).

Thus,

PfAi
(ηAi)

θ(Ai)
=

P(f+c)Ai (ηAi)
θ(Ai)

− c (7.2)

converges to a finite limit independent of the choice of a Van Hove net.

Remark 7.5. (i) Note that pf (κ|π) ≤ pf (η|π) for κ, η ∈ UX with κ ⊇ η. We thus
obtain for any base BX of UX that pf (π) = supη∈BX pf (η|π).

(ii) From (7.2) above one easily obtains that for f ∈ C(X), c ∈ R and η ∈ UX there
holds pf+c(η|π) = pf (η|π) + c. It follows that pf+c(π) = pf (π) + c.

7.1.2 Via open covers
In Subsection 4.3.3 we have seen that topological entropy can also be defined using
open covers that refine other open covers. As this approach is the natural generalization
of the approach of [AKM65] to topological entropy, it is natural to ask, whether the
corresponding ideas can also be used to define topological pressure. We will present
next that this is the case. Recall that for open covers U and V of X and a compact
subset A ⊆ G we say that V A-refines U , whenever V is finer than Ug for all g ∈ A,
and that for all open covers U of X and all compact subsets A ⊆ G there exists a finite
open cover that A-refines U . Let f ∈ C(X) be a potential and U be an open cover of
X. We define P∗f (U , A) := infV P∗f (V), for compact subsets A ⊆ G, where the infimum
is taken over all finite open covers V that cover X and that A-refine U .

169



7 On topological pressure

Proposition 7.6. Let f ∈ C(X), U an open cover of X and (Ai)i∈I be a Van Hove net
in G. Then the following limit exists, is finite and does not depend on the choice of the
Van Hove net. We define the topological pressure of f with respect to U as

p∗f (U|π) := lim
i∈I

P∗fAi (U , Ai)
θ(Ai)

.

Proof. Considering the following infima over all open covers V of X that Ai-refine U ,
we obtain from Lemma 7.4 that for any i ∈ I and any c ∈ R there holds

P∗(f+c)Ai
(U , Ai) = inf

V
P∗(f+c)Ai

(V) = inf
V

P∗fAi (V) + cθ(Ai) = P∗fAi (U , Ai) + cθ(Ai)

and thus as above it suffices to show the statement for positive f ∈ C(X). Again this
will be done by an application of the Ornstein-Weiss Lemma. We consider the map

K(G) 3 A 7→ P∗fA(U , A) (7.3)

and it remains to show that this map is monotone, right invariant and subadditive.
For compact subsets A and B of G with A ⊆ B the positivity of f implies fA ≤ fB.
Furthermore, a finite open cover V that B-refines U , also A-refines U . Thus, considering
the infima over all finite open cover V and W that A-refine and B-refine U respectively
we obtain

P∗fA(U , A) = inf
V

P∗fA(V) ≤ inf
W

P∗fA(W) ≤ inf
W

P∗fB(W) = P∗fB(U , B)

and (7.3) is monotone. Furthermore, for g ∈ G and a compact subset A ⊆ G we obtain
that an open cover V A-refines U if and only if Vg Ag-refines U . Considering the infima
over all finite open covers V andW that A-refine and Ag-refine U respectively we obtain
from Lemma 7.4 that

P∗fAg(U , Ag) = inf
W

P∗fAg(W) = inf
V

P∗fAg(Vg) = inf
V

P∗fA(V) = P∗fA(U , A).

To show that (7.1) is subadditive let A and B be subsets of G and observe that the
positivity of f implies that there holds fA∪B ≤ fA+fB. Now let V andW be finite open
covers of X that A-refine and B-refine U respectively and note that V ∨ W (A ∪ B)-
refines U . Thus, we consider the infimum over all open cover Ũ that (A ∪ B)-refine U
to obtain from Lemma 7.4 that there holds

P∗fA∪B(U , A∪B) = inf
Ũ

P∗fA∪B(Ũ) ≤ P∗fA∪B(V∨W) ≤ P∗fA+fB(V∨W) ≤ P∗fA(V)+P∗fB(W).
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Taking the infimum over all considered V and W respectively, we obtain

P∗fA∪B(U , A ∪B) ≤ P∗fA(U , A) + P∗fB(U , B),

i.e. the subadditivity of (7.1).

The following lemma allows to relate the presented notion to topological pressure at
a certain scale.

Lemma 7.7. Let f ∈ C(X), U be an open cover of X and η ∈ UX .

(i) If U is at scale η, then there holds Pf (ηA) ≤ P∗f (U , A) for any compact subset
A ⊆ G and we obtain

pf (η|π) ≤ p∗f (U|π).

(ii) If η is a Lebesgue entourage of U , then there holds P∗f (U , A) ≤ Pf (ηA) for any
compact subset A ⊆ G and thus there holds

p∗f (U|π) ≤ pf (η|π).

Proof. Clearly, it suffices to show the static statements about Pf (ηA) and P∗f (U , A) for
compact subsets A of G. Whenever U is at scale η and V is an open cover of X that
A-refines U , then V is at scale ηA. One thus obtains the first statement. To show the
second statement consider an open cover V at scale ηA. Then V is at scale ηA ⊆ ηg for
all g ∈ A. Furthermore, ηg is a Lebesgue entourage of Ug for every g ∈ A and we obtain
that for V ∈ V and x ∈ V there exists U ∈ Ug such that V ⊆ ηg[x] ⊆ U , i.e. that V is at
scale Ug. This shows that V A-refines U and we obtain P∗f (U , A) ≤ P∗f (V). Taking the
infimum over all open covers V at scale ηA we thus obtain the second statement.

As for every entourage η there exists a finite open cover of X at scale η, and as for
every open cover of X there exists a Lebesgue entourage we obtain the following as a
direct consequence of Lemma 7.7.

Theorem 7.8. For every potential f ∈ C(X) there holds

pf (π) = sup
U

p∗f (U|π),

where the supremum is taken over all finite open covers U of X.

Remark 7.9. Whenever G is a discrete amenable group and f ∈ C(X) is a potential,
then for any Følner net (Fi)i∈I and any open cover U of X the following limit exists
and satisfies p∗f (U|π) = limi∈I P∗fFi (UFi)/|Fi|. Thus, Theorem 7.8 yields

pf (π) = sup
U

lim
i∈I

P∗fFi (UFi)
|Fi|

,
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where we consider again a supremum over all open covers U of X. To see this observe
that, whenever G is discrete amenable, then G is a relatively dense subset of itself.
Furthermore, any Følner net (Fi)i∈I is Van Hove and consists of finite sets and we can
simplify P∗fAi (U , Fi) = P∗fFi (UFi). We thus obtain the claimed formula from Proposition
7.3.
Note that this in particular shows that our notion of topological pressure is equiva-

lent to the standard notion [Wal82, Oll85, Buf11] in the context of actions of discrete
amenable groups.

7.1.3 Via separated sets
In Subsection 4.3.4 we have seen that topological entropy can also be defined via sepa-
rated subsets of X. We will need this approach to show the variational principle of the
topological pressure for actions in the context of aperiodic order. Many of the arguments
are analogous to the ones given in the standard literature [Rue73, Wal75, OP82, Wal82,
Oll85, Kel98], but as we need some statements hidden in the proofs and for convenience
of the reader, full proofs are presented. For a potential f ∈ C(X) and η ∈ UX we define

Qf (η) := sup
E

log
(∑
x∈E

ef(x)
)
,

where the supremum is taken over all η-separated finite subsets E ⊆ X. We furthermore
define

qAf (η|π) := lim sup
i∈I

QfAi
(ηAi)

θ(Ai)
for a Van Hove net A = (Ai)i∈I .

Remark 7.10. Here we have to keep track of Van-Hove nets, as there seems to be no
possibility to use the Ornstein-Weiss Lemma to show independence.

Remark 7.11. For all f ∈ C(X) and η ∈ UX there holds Qf (η) ≤ Pf (η). Thus, for
all f ∈ C(X), all η ∈ UX and all Van Hove nets A in G there holds

qAf (η|π) ≤ pf (η|π).

Indeed, whenever E is an η-separated subset of X and V is an open cover at scale
η, then each V ∈ V cannot contain more than one element of E. Thus, we obtain
log

(∑
x∈E e

f(x)
)
≤ log

(∑
V ∈V supx∈V ef(x)

)
= P∗f (V) and taking the the infimum over

all considered V and the supremum over all considered E we conclude the first statement.
The second statement is a direct consequence.

Theorem 7.12. Let A be a Van Hove net in G and f ∈ C(X). Then there holds

pf (π) = sup
η∈UX

qAf (η|π).
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Before we present a proof we will need to show some technical lemma. The arguments
of the following lemma are inspired from [Oll85, Theorem 5.2.2] and seem to go back to
[Rue73] and [Wal75].

Lemma 7.13. Let A be a Van Hove net in G and f ∈ C(X). Let ε > 0 and δ ∈ UX

and consider a symmetric η ∈ UX that satisfies ηηηη ⊆ δ. If for all (x, y) ∈ δ there
holds |f(x)− f(y)| < ε, then we obtain

pf (δ|π) ≤ qAf (η|π) + ε.

Proof. Let A ⊆ G be compact and consider a maximal ηA-separated subset E ⊆ X. As
E is maximal one obtains that E is also ηA-spanning. Fixing an open and symmetric
κ ∈ UX with κ ⊆ ηA we obtain that U := {κηA[x]; x ∈ E} is an open cover of X.
Furthermore, U is at scale ηAηAηAηA ⊆ (ηηηη)A ⊆ δA. Thus, for x ∈ E and y ∈ κηA[x]
we obtain (x, y) ∈ δA, i.e. (g.x, g.y) ∈ δ and in particular |f(g.x) − f(g.y)| < ε for all
g ∈ A. We thus compute

|fA(x)− fA(y)| ≤
∫
A
|f(g.x)− f(g.y)dθ(g)| ≤ εθ(A).

Hence,

PfA(δA) ≤ log
(∑
U∈U

sup
x∈U

efA(x)
)

≤ log
(∑
x∈E

efA(x)+εθ(A)
)

= log
(∑
x∈E

efA(x)
)

+ εθ(A)

≤ QfA
(ηA) + εθ(A).

Dividing by θ(A) and considering the limit superior along A yields the statement.

Proof of Theorem 7.12. By Remark 7.11 it remains to show pf (π) ≤ supη∈UX qAf (η|π).
Let ε > 0. As X is compact we obtain that f is uniformly continuous and thus there
is κ ∈ UX such that (x, y) ∈ κ implies |f(x) − f(y)| < ε. Let δ ∈ UX such that
δ ⊆ κ. Thus, from Lemma 7.13 we obtain that for any symmetric η ∈ UX that satisfies
ηηηη ⊆ δ there holds

pf (δ|π) ≤ qAf (η|π) + ε ≤ sup
η∈UX

qAf (η|π) + ε.
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Thus, considering the base Bκ = {δ ∈ UX ; δ ⊆ κ} of UX we obtain

pf (π) = sup
δ∈Bκ

pf (δ|π) ≤ sup
η∈UX

qAf (η|π) + ε.

As ε > 0 was arbitrary we conclude the claimed inequality.

7.2 Properties of the topological pressure
In this section we present properties of the topological pressure map

p(·)(π) : C(X)→ R ∪ {∞},

which we will use in the following. These properties are shown in [Wal75] in the con-
text of actions of Z and in this section we follow closely [Wal75, Wal82]. See also
[Oll85, Kel98] for the context of actions of Zd or countable discrete amenable groups
respectively. For the convenience of the reader we present the proofs, which are inspired
from [Wal82] and use similar methods. Nevertheless, note that these proofs use a differ-
ent approach to topological pressure which also allows to also investigate the topological
pressure map at scale η ∈ UX

p(·)(η|π) : C(X)→ R.

7.2.1 Basic properties
Proposition 7.14. Let π be an action of a unimodular amenable group G on a compact
Hausdorff space X.

(i) The topological pressure of the potential constant 0 is the topological entropy, i.e.
there holds E(π) = p0(π). Furthermore, for η ∈ UX there holds E(η|π) = p0(η|π).

(ii) The topological pressure map is monotone, i.e. there holds pf (π) ≤ pf ′(π) for all
f, f ′ ∈ C(X) that satisfy f ≤ f ′. For η ∈ UX there furthermore holds pf (η|π) ≤
pf ′(η|π), whenever f ≤ f ′.

(iii) For any f ∈ C(X) there holds

E(π) + inf
x∈X

f(x) ≤ pf (π) ≤ E(π) + sup
x∈X

f(x).

For η ∈ UX there holds E(η|π) + infx∈X f(x) ≤ pf (η|π) ≤ E(η|π) + supx∈X f(x).

Proof. Note that P∗0(U) = log (∑U∈U supx∈U e0) = log (|U|) for all finite open cover U
of X. Thus, whenever U is an open cover of X at scale η ∈ UX of minimal cardinality,
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then there holds P0(η) = log (|U|) = H(η) and (i) follows. The statement of (ii) is a
consequence of Remark 7.1. From (i), (ii) and Remark 7.5 we obtain

pf (π) ≤ p(supx∈X f(x))(π) = p0(π) + sup
x∈X

f(x) = E(π) + sup
x∈X

f(x)

and similarly E(π)+infx∈X f(x) ≤ pf (π). A similar argument shows the statement with
respect to a certain scale.

Later we will also need the following statement, which can also be found in [Wal82,
Theorem 9.7] in the context of actions of Z. Another proof in the context of actions of
discrete abelian groups can be found in [Oll85, Corollary 5.2.6].

Proposition 7.15. For f, f ′ ∈ C(X) and g ∈ G there holds pf (π) = pf+f ′◦πg−f ′(π).

Proof. Let f, f ′ ∈ C(X) and g ∈ G. Then for compact subsets A ⊆ G there holds

(f + f ′ ◦ πg − f ′)A = fA + f ′(Ag)∆A ≤ fA + θ((Ag)∆A) ‖f ′‖∞

and for any η ∈ UX we get from Remark 7.5 that

P(f+f ′◦πg−f ′)A(ηA) ≤ PfAi+θ((Ag)∆A)‖f ′‖∞(ηA) = PfAi
(ηA) + θ((Ag)∆A) ‖f ′‖∞ .

As any Van Hove net (Ai)i∈I is ergodic we thus compute

pf+f ′◦πg−f ′(η|π) = lim
i∈I

P(f+f ′◦πg−f ′)Ai (ηAi)
θ(Ai)

≤ lim sup
i∈I

PfAi
(ηAi) + θ((Aig)∆Ai) ‖f ′‖∞

θ(Ai)

= lim
i∈I

PfAi
(ηAi)

θ(Ai)
+ 0 = pf (η|π).

Similarly one shows pf (η|π) ≤ pf+f ′◦πg−f ′(η|π) and obtains the statement by considering
the supremum over all η ∈ UX .

7.2.2 Continuity
It is presented in [Wal82, Theorem 9.7] that the topological pressure map of an action
of Z is continuous. This statement seems to go back to [Rue73, Wal75]. We present
next that this is also the case for actions of any unimodular amenable group.
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Theorem 7.16. Whenever E(π) = ∞, then the topological pressure map is constantly
∞. Whenever E(π) <∞, then the topological pressure map only takes values in R and
satisfies ∣∣∣pf (π)− pf ′(π)

∣∣∣ ≤ ‖f − f ′‖∞
for any f, f ′ ∈ C(X). Thus, the topological pressure map is continuous for any topology
on R ∪ {∞} that extends the topology of R.

In order to show this and for later purposes we will need the following lemma.

Lemma 7.17. For f, f ′ ∈ C(X), an open cover U of X and η ∈ UX there holds∣∣∣P∗f (U)− P∗f ′(U)
∣∣∣ ≤ ‖f − f ′‖∞ and |Pf (η)− Pf ′(η)| ≤ ‖f − f ′‖∞ .

Remark 7.18. In the following proof we will use the following simple inequalities,
which are also used in [Wal82]. For two families (ai)i∈I and (bi)i∈I in (0,∞) there
holds supi∈I ai/ supj∈I bj ≤ supi∈I ai/bi and

∑
i∈I ai/

∑
j∈I bj ≤ supi∈I ai/bi. Indeed, for

i ∈ I there holds ai/bi ≥ ai/ supj∈I bj and we obtain the first statement by consid-
ering the supremum over all i ∈ I. Furthermore, ∑i∈I ai ≤

∑
i∈I (bi supl∈I(al/bl)) =

(∑i∈I bi) (supl∈I(al/bl)) yields the second statement.

Proof. We compute

P∗f (U)− P∗f ′(U) = log
(∑

U∈U supx∈U ef(x)∑
U∈U supx∈U ef

′(x)

)

≤ log
(

sup
U∈U

supx∈U ef(x)

supx∈U ef
′(x)

)

≤ log
(

sup
U∈U

sup
x∈U

ef(x)

ef ′(x)

)
= sup

x∈X
(f(x)− f ′(x))

≤ ‖f − f ′‖∞ .

Similarly one shows P∗f ′(U) − P∗f (U) ≤ ‖f − f ′‖∞ and the first statement follows. To
see the second statement consider ε > 0 and choose an open cover U of X such that
P∗f ′(U) ≤ Pf ′(η) + ε. One obtains from the first statement that

Pf (η)− Pf ′(η) ≤ P∗f (U)− P∗f ′(U) + ε ≤ ‖f − f ′‖∞ + ε.

As ε > 0 was arbitrary we observe Pf (η)− Pf ′(η) ≤ ‖f − f ′‖∞ and a similar argument
shows Pf ′(η)− Pf (η) ≤ ‖f − f ′‖∞. Thus, the second statement follows.

We can now deduce the following continuity properties of the topological pressure at
a certain scale or with respect to an open cover.
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Proposition 7.19. There holds
∣∣∣pf (η|π)− pf ′(η|π)

∣∣∣ ≤ ‖f − f ′‖∞ for any η ∈ UX and
any f, f ′ ∈ C(X).

Remark 7.20. Recall from Theorem 7.3 that the map C(X) 3 f 7→ pf (η|π) takes values
in R. The proposition shows that this map is (Libschitz) continuous for any η ∈ UX .

Proof of Proposition 7.19. Considering a Van Hove net (Ai)i∈I Lemma 7.17 yields for
any i ∈ I that∣∣∣PfAi

(ηAi)− Pf ′Ai
(ηAi)

∣∣∣ ≤ ∥∥∥fAi − f ′Ai∥∥∥∞ ≤ θ(Ai) ‖f − f ′‖∞ .

Recall from Theorem 7.3 that pf (η|π)and pf ′(η|π) are finite, which allows to compute

∣∣∣pf (η|π)− pf ′(η|π)
∣∣∣ ≤ lim sup

i∈I

∣∣∣PfAi
(ηAi)− Pf ′Ai

(ηAi)
∣∣∣

θ(Ai)
≤ ‖f − f ′‖∞ .

Proof of Theorem 7.16. From Proposition 7.14 one easily obtains that the topological
pressure map is finite valued if and only if the topological entropy is finite. In this case
Proposition 7.19 yields that for f, f ′ ∈ C(X) there holds∣∣∣pf (π)− pf ′(π)

∣∣∣ ≤ ‖f − f ′‖∞
and the statement follows.

Remark 7.21. With similar arguments as presented above one can also show that for
any open cover U of X and f, f ′ ∈ C(X) there holds

∣∣∣p∗f (U|π)− p∗f ′(U|π)
∣∣∣ ≤ ‖f − f ′‖∞ .

7.2.3 Subadditivity
In [Wal75] it is presented that the topological pressure map is affine for actions of Z.
The corresponding proof can be easily adopted in order to obtain the statement for
all discrete amenable groups. With some minor changes but following closely ideas of
[Wal75, Wal82] we next present that the topological pressure map is subadditive for all
unimodular amenable groups.

Theorem 7.22. For f, f ′ ∈ C(X) there holds pf+f ′(π) ≤ pf (π) + pf ′(π).

Remark 7.23. Note that by Theorem 7.16 the statement is only interesting in the
case where the topological entropy is finite, as otherwise the topological pressure map is
constantly ∞.

Again we will use similar methods as in [Wal82] applied to our approach to obtain
the statement. We first show that the subadditivity holds at every scale.
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Proposition 7.24. There holds pf+f ′(η ∩ η′|π) ≤ pf (η|π) + pf ′(η′|π) for all η, η′ ∈ UX

and all f, f ′ ∈ C(X).

Remark 7.25. For η = η′ one obtains pf+f ′(η|π) ≤ pf (η|π) + pf ′(η|π).

Proof. Consider a Van Hove net (Ai)i∈I and let i ∈ I. Whenever U and V are open
covers at scale ηAi and η′Ai respectively, then U ∨V is at scale ηAi ∩ η′Ai = (η ∩ η′)Ai and
Lemma 7.4 yields

Pf+f ′((η ∩ η′)Ai) ≤ P∗f+f ′(U ∨ V) ≤ P∗f (U) + P∗f ′(V).

Taking the infima over all considered U and V respectively we obtain Pf+f ′((η∩η′)Ai) ≤
Pf (ηAi) + Pf ′(η′Ai). We thus compute

pf+f ′(η∩η′|π) = lim
i∈I

Pf+f ′((η ∩ η′)Ai)
θ(Ai)

≤ lim
i∈I

Pf (ηAi)
θ(Ai)

+lim
i∈I

Pf ′(η′Ai)
θ(Ai)

= pf (η|π)+pf ′(η′|π)

and we obtain the statement of the proposition.

Proof of Theorem 7.22. For η ∈ UX and f, f ′ ∈ C(X) we obtain from Proposition 7.24
that there holds

pf+f ′(η|π) ≤ pf (η|π) + pf ′(η|π) ≤ pf ′(π) + pf (π).

Thus, taking the supremum over all η ∈ UX yields the statement.

Remark 7.26. With similar arguments as presented in Proposition 7.24 one can also
show that for all open covers U and U ′ of X there holds p∗f+f ′(U ∨ U ′|π) ≤ p∗f (U|π) +
p∗f ′(U ′|π).

7.2.4 Convexity
Also the convexity of the topological pressure map of an action of Z is shown in [Wal82]
and we present a full proof which uses classical arguments adjusted to our context.
Recall from Theorem 7.16 that the topological pressure map is constantly ∞, whenever
the topological entropy is not finite. It is thus natural to assume that the topological
entropy is finite in the following.

Theorem 7.27. The topological pressure map is convex whenever E(π) is finite, i.e.
for f, f ′ ∈ C(X) and λ ∈ [0, 1] there holds pλf+(1−λ)f ′(π) ≤ λ pf (π) + (1− λ) pf ′(π).

Again we will first present that the statement holds at all scales. To do this we use
the following lemma.

Lemma 7.28. There holds Pλf+(1−λ)f ′(η) ≤ λPf (η) + (1 − λ) Pf ′(η) for η ∈ UX ,
potentials f, f ′ ∈ C(X) and λ ∈ [0, 1].
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7.2 Properties of the topological pressure

Proof. Let ε > 0. Let U be an open cover at scale η such that P∗f (U) ≤ Pf (η) + ε and
P∗f ′(U) ≤ Pf ′(η) + ε. Using Hölders inequality we compute

e
P∗
λf+(1−λ)f ′ (η) =

∑
U∈U

sup
x∈U

eλf(x)+(1−λ)f ′(x)

≤
∑
U∈U

(
sup
x∈U

eλf(x)
)(

sup
y∈U

e(1−λ)f ′(y)
)

≤
(∑
U∈U

sup
x∈U

ef(x)
)λ (∑

U∈U
sup
y∈U

ef
′(y)
)(1−λ)

= eλP∗f (U)e
(1−λ) P∗

f ′ (U)

= e
λP∗f (U)+(1−λ) P∗

f ′ (U)
.

Thus, there holds

Pλf+(1−λ)f ′(η) ≤ P∗λf+(1−λ)f ′(U)
≤ λP∗f (U) + (1− λ) P∗f ′(U)
≤ λPf (η) + (1− λ) Pf ′(η) + ε.

As ε > 0 was arbitrary the statement follows.

Proposition 7.29. For η ∈ UX , potentials f, f ′ ∈ C(X) and λ ∈ [0, 1] there holds
pλf+(1−λ)f ′(η|π) ≤ λ pf (η|π) + (1− λ) pf ′(η|π).

Proof. Let (Ai)i∈I be any Van Hove net in G. Then there holds (λf + (1 − λ)f ′)Ai =
λfAi + (1− λ)f ′Ai . Thus, Lemma 7.28 allows to compute

pλf+(1−λ)f ′(η|π) = lim
i∈I

P(λf+(1−λ)f ′)Ai (ηAi)
θ(Ai)

≤ lim
i∈I

λPfAi
(ηAi)

θ(Ai)
+ lim

i∈I

(1− λ) Pf ′Ai
(ηAi)

θ(Ai)
= λ pf (η|π) + (1− λ) pf ′(η|π).

Proof of Theorem 7.27. For η ∈ UX we obtain from Proposition 7.29 that there holds

pλf+(1−λ)f ′(η|π) ≤ λ pf (η|π) + (1− λ) pf ′(η|π) ≤ λ pf (π) + (1− λ) pf ′(π)

and taking the supremum over all η ∈ UX yields the claimed statement.

Remark 7.30. A similar argument shows that for an open cover U , potentials f, f ′ ∈
C(X) and λ ∈ [0, 1] there holds p∗λf+(1−λ)f ′(U|π) ≤ λ p∗f (U|π) + (1− λ) p∗f ′(U|π).
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7.3 Topological pressure via discrete restriction
In Chapter 5 we have seen that measure theoretical and topological entropy can be
calculated also along the finite intersections of Van Hove sets with Delone sets. In
this section we will present similar statements in the context of topological pressure.
These results will allow us to obtain further approaches to topological pressure and in
particular allow us to show Goodwyn’s half of the variational principle for actions of
general unimodular amenable groups in Subsection 7.4.1.

7.3.1 Via scaled open covers
Generalizing Theorem 5.5 we next proof the following.

Theorem 7.31. Let ω ⊆ G be a relatively dense subset and let (Ai)i∈I be a Van Hove
net. Set Fi := Ai ∩ ω. Then for all f ∈ C(X) there holds

pf (π) = sup
η∈UX

lim sup
i∈I

log PfAi
(ηFi)

θ(Ai)

and the formula remains valid, whenever the limit superior is replaced by a limit inferior.

For the proof of this statement we will need the following lemma.

Lemma 7.32. Let f ∈ C(X) and η ∈ UX . Then for any Van Hove nets (Ai)i∈I and
(Bi)i∈I , which satisfy limi∈I θ(Ai∆Bi)/θ(Bi) = 0 the topological pressure of f at scale η
can be computed as

pf (η|π) = lim
i∈I

PfAi
(ηBi)

θ(Bi)
.

Proof. For i ∈ I with θ(Bi) > 0 we get from Lemma 7.17 that∣∣∣∣∣PfBi
(ηBi)

θ(Bi)
−

PfAi
(ηBi)

θ(Bi)

∣∣∣∣∣ ≤ ‖fBi − fAi‖∞θ(Bi)

≤
supx∈X

∫
Ai∆Bi |f(g.x)|dθ(g)
θ(Bi)

≤
∫
Ai∆Bi ‖f‖∞ dθ(g)

θ(Bi)

= θ(Ai∆Bi) ‖f‖∞
θ(Bi)

→ 0.

As PfBi
(ηBi)/θ(Bi) converges to pf (η|π) as presented in Theorem 7.3 we obtain the

statement.
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7.3 Topological pressure via discrete restriction

Proof of Theorem 7.31. Let K be a compact subset of G such that ω is K-dense and
such that eG ∈ K. From Lemma 5.1 we know that (KFi)i∈I is a Van Hove net that
satisfies limi∈I θ(KFi)/θ(Ai) = 1 and limi∈I θ(KFi∆Ai)/θ(Ai) = 0. We thus obtain
from Lemma 7.32 that for η ∈ UX there holds

pf (η|π) = lim
i∈I

PfAi
(ηKFi)

θ(KFi)
= lim

i∈I

PfAi
(ηKFi)

θ(Ai)
.

Note that eG ∈ K implies εFi ⊇ εKFi for all ε ∈ UX and all i ∈ I. As there holds
furthermore ηK ∈ UX , we see

pf (η|π) ≤ sup
ε∈UX

lim sup
i∈I

PfAi
(εFi)

θ(Ai)
≤ sup

ε∈UX
lim
i∈I

PfAi
(εKFi)

θ(Ai)
= pf (π).

Thus, taking the supremum over all η ∈ UX yields the statement.

7.3.2 Via open covers
Also the following generalization of Theorem 5.8 is valid. We will use this generalization
in order to show Goodwyn’s half of the variational principle.

Theorem 7.33. Let ω be a relatively dense and locally finite subset of G and (Ai)i∈I
be a Van Hove net in G. Abbreviate Fi := ω ∩ Ai. Then for all f ∈ C(X) there holds

pf (π) = sup
U

lim sup
i∈I

P∗fAi (UFi)
θ(Ai)

,

where the supremum is taken over all open covers U of X. The formula remains valid,
whenever the limit superior is replaced by a limit inferior.

Proof. Note that Fi is finite for all i ∈ I as we assume ω to be locally finite. Thus,
whenever an open cover U is at scale η ∈ UX , then UFi is at scale ηFi and we obtain
PfAi

(ηFi) ≤ P∗fAi (UFi). Thus, taking the supremum over all open covers U we get that
for all η ∈ UX there holds

lim sup
i∈I

PfAi
(ηFi)

θ(Ai)
≤ sup

U
lim sup

i∈I

P∗fAi (UFi)
θ(Ai)

.

We can now take the supremum over all η ∈ UX and apply Theorem 7.31 to see pf (π) ≤
supU lim supi∈I P∗fAi (UFi)/θ(Ai).To show the reverse inequality let U be an open cover of X and consider a Lebesgue
entourage η of U . For such η we know from Lemma 7.7 that there holds P∗fAi (UFi) =
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P∗fAi (U , Fi) ≤ PfAi
(ηFi). We thus obtain from Theorem 7.31 that

lim sup
i∈I

P∗fAi (UFi)
θ(Ai)

≤ sup
η∈UX

lim sup
i∈I

PfAi
(ηFi)

θ(Ai)
= pf (π)

and taking the supremum over all open covers U yields the statement.

7.3.3 Via separated sets
Theorem 7.34. Let ω be a relatively dense subset of G and (Ai)i∈I be a Van Hove net
in G. Abbreviate Fi := ω ∩ Ai. Then for all f ∈ C(X) there holds

pf (π) = sup
η∈UX

lim sup
i∈I

QfAi
(ηFi)

θ(Ai)
.

The formula remains valid, whenever the limit superior is replaced by a limit inferior.

Proof. From Remark 7.11 and Theorem 7.31 we obtain that for all η ∈ UX there holds

lim sup
i∈I

QfAi
(ηFi)

θ(Ai)
≤ lim sup

i∈I

PfAi
(ηFi)

θ(Ai)
≤ sup

η′∈UX
lim sup

i∈I

PfAi
(η′Fi)

θ(Ai)
= pf (π)

and taking the supremum over all η ∈ UX we obtain

sup
η∈UX

lim sup
i∈I

QfAi
(ηFi)

θ(Ai)
≤ pf (π).

To show the reverse inequality let ε > 0. Let K be a compact subset of G such that
ω is K dense and recall from Lemma 5.1 that (KFi)i∈I is a Van Hove net in G that
satisfies limi∈I θ(KFi)/θ(Ai) = 1 and limi∈I θ(KFi∆Ai)/θ(Ai) = 0. As X is compact
we obtain that f is uniformly continuous and thus there is δ ∈ UX such that (x, y) ∈ δ
implies |f(x)− f(y)| ≤ ε. We consider the base Bδ := {η ∈ UX ; η ⊆ δ} of UX .

Then for η ∈ Bδ there exists κ ∈ UX symmetric such that κκκκ ⊆ η. For i ∈ I we
consider an κKFi-separated subset E of X of maximal cardinality. Such E are also κKFi-
spanning. We can thus consider an open and symmetric ρ ∈ UX that satisfies ρ ⊆ κKFi
to obtain an open cover U := {ρκKFi [x]; x ∈ E} at scale ρκKFiκKFiρ ⊆ (κκκκ)KFi ⊆
ηKFi . In particular, for x ∈ E and y ∈ ρκKFi [x] there holds (x, y) ∈ δKFi and thus
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7.3 Topological pressure via discrete restriction

(g.x, g.y) ∈ δ for all g ∈ KFi. From Ai ⊆ KFi ∪ (KFi∆Ai) we thus obtain

|fAi(x)− fAi(y)| ≤
∫
Ai
|f(g.x)− f(g.y)|dθ(g)

≤
∫
KFi
|f(g.x)− f(g.y)|dθ(g) +

∫
KFi∆Ai

|f(g.x)− f(g.y)|dθ(g)

≤
∫
KFi

εdθ(g) +
∫
KFi∆Ai

2 ‖f‖∞ dθ(g)

= εθ(KFi) + 2 ‖f‖∞ θ(KFi∆Ai).

Since U is at scale ηKFi we compute

PfAi
(ηKFi) ≤ PfAi

(U)

= log
(∑
U∈U

sup
y∈U

efAi (y)
)

≤ log
(∑
x∈E

efAi (x)+εθ(KFi)+2‖f‖∞θ(KFi∆Ai)
)

= log
(
eεθ(KFi)+2‖f‖∞θ(KFi∆Ai)

∑
x∈E

efAi (x)
)

= log
(∑
x∈E

efAi (x)
)

+ εθ(KFi) + 2 ‖f‖∞ θ(KFi∆Ai)

≤ QfAi
(κKFi) + εθ(KFi) + 2 ‖f‖∞ θ(KFi∆Ai).

As κK ∈ UX we thus obtain

lim sup
i∈I

PfAi
(ηKFi)

θ(Ai)
≤ lim sup

i∈I

QfAi
(κKFi)

θ(Ai)
+ ε lim

i∈I

θ(KFi)
θ(Ai)

+ 2 ‖f‖∞ lim
i∈I

θ(KFi∆Ai)
θ(Ai)

= lim sup
i∈I

QfAi
(κKFi)

θ(Ai)
+ ε · 1 + 2 ‖f‖∞ · 0

≤ sup
η′∈UX

lim sup
i∈I

QfAi
(η′Fi)

θ(Ai)
+ ε.

As (Ai)i∈I and (KFi)i∈I are Van Hove nets in G that satisfy limi∈I θ(KFi)/θ(Ai) = 1
and limi∈I θ(KFi∆Ai)/θ(Ai) = 0 we thus obtain from Lemma 7.32 that

pf (η|π) = lim
i∈I

PfAi
(ηKFi)

θ(KFi)
= lim

i∈I

PfAi
(ηKFi)

θ(Ai)
≤ sup

η′∈UX
lim sup

i∈I

QfAi
(η′Fi)

θ(Ai)
+ ε.
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As η ∈ Bδ was arbitrary we consider the supremum over all η and obtain

pf (π) = sup
η∈Bδ

pf (η|π) ≤ sup
η′∈UX

lim sup
i∈I

QfAi
(η′Fi)

θ(Ai)
+ ε.

As ε > 0 was arbitrary we have shown the remaining inequality

pf (π) ≤ sup
η∈UX

lim sup
i∈I

QfAi
(ηFi)

θ(Ai)
.

7.3.4 Discrete restriction to uniform lattices
If ω is a uniform lattice the formulas simplify as follows. Note that we have shown in
Proposition 2.45 that for any uniform lattice there always exists a regular and precom-
pact fundamental domain.

Theorem 7.35. Let f ∈ C(X), Λ be a uniform lattice in G and K be the closure of a
regular and precompact fundamental domain of Λ. Then for all η ∈ UX there holds

pf (η|π) = dens(Λ) pfK
(
ηK
∣∣∣π|Λ×X) .

Furthermore, there holds

pf (π) = dens(Λ) pfK (π|Λ×X).

Remark 7.36. The second formula is shown in [Wal75, Theorem 2.2] in the context of
actions of Z.

Proof. Let (Ai)i∈I be a Van Hove net in G and denote Fi := Ai ∩Λ. Let C be a regular
and precompact fundamental domain such that C = K. As θ(∂C) = 0 we compute

θ(C)|Fi| = θ(CFi) ≤ θ(KFi) ≤
∑
g∈Fi

θ(Kg) = θ(K)|Fi|

≤ (θ(C) + θ(∂C))|Fi| = θ(C)|Fi|

and obtain θ(KFi) = θ(C)|Fi| = θ(CFi). As CFi ⊆ KFi this implies θ(KFi \CFi) = 0.
Furthermore, as C is regular we know θ(K \ C) = 0 and compute for x ∈ X that

fKFi(x) =
∫
KFi

f(g.x)dθ(g) =
∫
CFi

f(g.x)dθ(g) =
∑
g∈Fi

∫
Cg
f(h.x)dθ(h)

=
∑
g∈Fi

∫
C
f((hg).x)dθ(h) =

∑
g∈Fi

∫
K
f((hg).x)dθ(h) =

∑
g∈Fi

fK(g.x).
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This shows fKFi = ∑
Fi fK for all i ∈ I. From Lemma 3.6 we furthermore obtain that

(Fi)i∈I is a Van Hove net in Λ and that dens(Λ) = θ(C)−1. As C is assumed to be
precompact we know that K is compact and thus as Λ is K-dense we get from Lemma
5.1 that (KFi)i∈I is a Van Hove net. As the definition of the topological pressure at
scale η does not depend on the choice of a Van Hove net we thus compute

pf (η|π) = lim
i∈I

PfKFi
(ηKFi)

θ (KFi)
= 1
θ(C) lim

i∈I

P(∑
Fi
fK

) ((ηK)Fi
)

|Fi|
= dens(Λ) pfK

(
ηK
∣∣∣π|Λ×X) ,

which shows the first formula. Now recall from Proposition 4.14 that B := {ηK ; η ∈ UX}
is a base of UX . Considering Remark 7.5 we thus compute

pf (π) = sup
η∈UX

pf (η|π)

= dens(ω) sup
η∈UX

pfK
(
ηK
∣∣∣π|Λ×X)

= dens(ω) sup
ε∈B

pfK
(
ε
∣∣∣π|Λ×X)

= dens(ω) pfK (π|Λ×X) .

7.4 The variational principle
A first proof of the variational principle of the topological pressure goes back to the
pioneering works [Rue73, Wal75]. [Mis76] gives a short and elegant proof of the varia-
tional principle for actions of Zd which has influenced heavily other works, for example
[DGS76, LW77, OP82]. The variational principle of the topological pressure of actions
of countable amenable groups can be found in [STZ80, OP82, Tem84, Oll85, Kel98]
and finer statements related to this variational principle are discussed in [Buf11, Zha18,
HLZ19]. In [Chu13] the topic is considered for actions of countable discrete sofic groups.

The variational principle is one of the cornerstones of the thermodynamic formal-
ism and well-known for actions of discrete amenable groups. For reference see [Oll85,
Theorem 5.2.7]. In this setting it states as follows.

Theorem 7.37 (Variational principle for pressure - discrete version). Whenever G is
a discrete amenable group and f ∈ C(X) is a potential there holds

Pf (π) = sup
µ∈MG(X)

(Eµ(π) + µ(f)) .

Note that applying Proposition 7.14 with f = 0 this formula reduces to the variational
principle of (non-relative) topological entropy. Similarly as in the context of topological
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entropy one can now use the structure of a uniform lattice in a unimodular amenable
group via Theorem 7.35 in order to obtain the following.

Theorem 7.38. (Goodwyn’s theorem - extrapolated version) Whenever G is a unimod-
ular amenable group and Λ is a uniform lattice in G, then there holds

Pf (π) ≥ sup
µ∈MG(X)

(Eµ(π) + µ(f)) .

Proof. Let K be the closure of a precompact and regular fundamental domain of Λ. As
K is the closure of a regular fundamental domain Lemma 3.6 implies that there holds
dens(Λ) = θ(K)−1. Thus, Lemma 7.2 yields µ(fK) = θ(K)µ(f). As every G-invariant
measure is Λ-invariant, Theorem 7.35 and Theorem 7.37 allow to conclude

Pf (π) = dens(Λ) PfK (π|Λ×X)
= dens(Λ) sup

µ∈MΛ(X)
(Eµ(π|Λ×X) + µ(fK))

≥ dens(Λ) sup
µ∈MG(X)

(Eµ(π|Λ×X) + θ(K)µ(f))

= sup
µ∈MG(X)

(Eµ(π) + µ(f)) .

Recall that the entropy map is not necessarily upper semi-continuous. We thus can-
not simply use integration techniques in order to construct G-invariant measures from
Λ-invariant measures in order to obtain G-invariant measures of sufficiently large en-
tropy. It is thus not clear how to use the extrapolation technique in order to show the
variational principle.

Another problem occurs as there are groups, like Qp, which are important in the study
of aperiodic order, but which contain no uniform lattice. Clearly, the extrapolation
technique cannot be used in order to obtain even Goodwyn’s half of the variational
principle for such groups. We thus present next that Goodwyn’s theorem holds without
the assumption of the existence of a uniform lattice. We will furthermore present that
the variational principle holds for actions of σ-compact LCA groups.

To prove Goodwyn’s theorem for general actions of unimodular amenable groups we
will follow techniques from [Oll85]. These techniques depend heavily on the finiteness
of Følner nets and in order to recycle them we will replace the uniform lattice with a
Delone set, which exists in all locally compact groups. We will then carefully adjust the
methods to the new setting. Care has to be taken as the lack of the group structure
of the discrete subset causes difficulties. This investigation will be done in Subsection
7.4.1 below.

The proof of the variational principle for actions of σ-compact LCA groups does also
use this discretization technique. In addition to the techniques to overcome the lack of
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a group structure on the Delone set, it also requires a careful analysis of the interplay of
static entropy and integration of measure-valued functions. The arguments are carried
out in Subsection 7.4.2 below.

7.4.1 Goodwyn’s theorem for actions of unimodular amenable
groups

We will need the following notions for the proof of Godwyn’s theorem. Note that these
notions are studied in more detail in [Oll85]. A finite partition α of X is said to be
adapted to an open cover U of X, whenever there exists an injective mapping U : α→ U
such that A ⊆ U(A) for all A ∈ α. For a Borel probability measure µ on X and an open
cover U on X we define the overlap ratio as

R∗µ(U) := sup
α,β

H∗µ(α|β),

where the supremum is taken over all finite open covers α and β of X, which are adapted
to U . The overlap ratio satisfies the following simple invariance property.

Lemma 7.39. For an open cover U of X and a Borel probability measure µ on X there
holds R∗µ(U) = R∗µ(Ug) for any g ∈ G.

Proof. If α and β are finite partitions of X adapted to U and g ∈ G, then αg and βg are
adapted to Ug and we obtain H∗µ(α|β) = H∗µ(αg|βg) ≤ R∗µ(Ug). Taking the supremum
over the considered α and β we see R∗µ(U) ≤ R∗µ(Ug). Similarly one shows the reverse
inequality and obtains the statement.

Slightly modifying arguments presented in [Oll85, 5.2.12] we obtain the following.

Lemma 7.40. Let µ be a Borel probability measure on X. For any finite open cover α
of X and any ε > 0 there exists an open cover U such that α is adapted to U and such
that R∗µ(U) ≤ ε.

Proof. We assume without lost of generality that ∅ /∈ α and denote r := |α|. From
Lemma 4.7 we obtain the existence of δ > 0 such that for any two finite partitions
β(1) = {B(1)

1 , · · · , B(1)
r } and β(2) = {B(2)

1 , · · · , B(2)
r } that satisfy

r∑
j=1

µ
(
B

(1)
j ∆B(2)

j

)
< δ

there holds H∗µ(β(1)|β(2))+H∗µ(β(2)|β(1)) < ε. As µ is regular we can choose for all A ∈ α
an open neighbourhood OA of A and a non-empty and compact subset KA ⊆ A such
that

µ(OA \KA) = µ(OA \ A) + µ(A \KA) < δ

3r .
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We define UA := OA \
(⋃

A′∈α;A′ 6=AKA

)
for A ∈ α and set U := {UA; A ∈ α}. Now note

that for each A ∈ α the set UA is an open neighbourhood of A and furthermore that KA

is disjoint from UA′ for all A′ ∈ α with A′ 6= A. In particular, we observe that A 7→ UA
is injective and obtain that α is adapted to U . Our observation furthermore allows to
see that U is an open cover without proper subcovers. Thus, for any finite partition β
that is adapted to U satisfies |β| = |U| = |α|.

Let us now consider two finite partitions β and β′ that are adapted to U and write
β = {BA; A ∈ α} and β′ = {B′A; A ∈ α} such that BA ⊆ UA and such that B′A ⊆ UA.
As KA is disjoint from UA′ for all A′ ∈ α with A′ 6= A we obtain KA ⊆ BA and KA ⊆ B′A
for all A ∈ α. We compute

∑
A∈α

µ (BA∆B′A) ≤
∑
A∈α

(µ (UA \KA) + µ (UA \KA)) ≤ 2r δ3r < δ

From the choice of δ we thus obtain H∗µ(β|β′) + H∗µ(β′|β) < ε. Taking the supremum
over all considered β and β′ we conclude R∗µ(U) ≤ ε.

The following combinatorial lemma and its proof can be found in [Wal82]. We include
the short proof for the convenience of the reader.

Lemma 7.41. Let k ∈ N and a1, · · · , ak, p1, · · · , pk be given real numbers such that
pi ≥ 0 and ∑k

i=1 pi = 1. Then there holds

k∑
i=1

pi(ai − log(pi)) ≤ log
(

k∑
i=1

eai
)

and equality holds, if and only if pi = eai/(∑k
i=1 e

ai).

Proof. It is straightforward to show with elementary methods of calculus that

Φ(x) :=

x log(x) , x > 0
0 , x = 0

is strictly convex, i.e. that Φ(∑k
i=1 λixi) ≤

∑k
i=1 λiΦ(xi) holds for k ∈ N, xi ∈ [0,∞)

and λi ∈ [0, 1] with ∑k
i=1 λi = 1. With the same methods one shows that equality holds,

if and only if all the xi corresponding to non-zero λi are equal. For details see [Wal82,
Theorem 4.2]. Letting M := ∑k

i=1 e
ai and setting λi := eai/M and xi := piM/eai we

thus obtain

0 = Φ(1) ≤
k∑
i=1

eai

M

piM

eai
log

(
piM

eai

)
=

k∑
i=1

pi(log(pi) + logM − ai),

i.e. ∑k
i=1 pi(ai − log(pi)) ≤ logM . We furthermore obtain that equality holds, if and

only if (piM/eai) is independent of i, i.e. pi = eai/M .
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Remark 7.42. Let F ⊆ G be a finite set, β be a finite partition and U be a finite
open cover such that β is adapted to UF . Then for any g ∈ F there exists a finite
partition γ that is adapted to Ug and satisfies γ � β. Indeed, from our assumptions we
obtain Ug � UF � β. Thus, for each B ∈ β there exists UB ∈ Ug such that B ⊆ UB.
Considering γ :=

{⋃
B∈β;UB=U B; U ∈ Ug

}
\{∅} we obtain a finite partition that is clearly

adapted to Ug and such that β is finer than γ.
The proof of Goodwyn’s theorem presented in [Oll85] uses the approach to measure

theoretical entropy via the (finite) refinement of finite partitions and thus depends on
the finiteness of Van Hove nets. In Section 5.1.2 we have seen how this approach can be
recycled also for general unimodular amenable groups by considering the intersections
of Van Hove sets with Delone sets. We are now ready to prove Goodwyn’s theorem for
actions of general unimodular amenable groups. For this we use the Theorems 5.16 and
7.33 in combination with a modification2 of the arguments from [Oll85, Section 5.2].
Theorem 7.43 (Goodwyn’s theorem - general version). Let G be a unimodular amenable
group and let π be an action of G on a compact Hausdorff space X. Then for all
f ∈ C(X) and all µ ∈MG(X) there holds

Eµ(π) + µ(f) ≤ pf (π).

Proof. From Remark 2.37 we get the existence of a Delone set ω in G and we choose a
compact neighbourhood V of eG such that ω is V -discrete. Let furthermore (Ai)i∈I be
a Van Hove net in G and denote Fi := ω ∩ Ai.

Let ε > 0 and consider a finite partition α of X. From Lemma 7.40 we obtain
the existence of an open cover U of X such that α is adapted to U and such that
R∗µ(U) ≤ θ(V )ε. Let i ∈ I and consider a finite partition β that is adapted to UFi .
Using Lemma 7.41 we compute

H∗µ(β) + µ(fAi) ≤
∑
B∈β

µ(B)
(

sup
x∈B

fAi(x)− log(µ(B))
)

≤ log
∑
B∈β

esupx∈B fAi (x)


= log

∑
B∈β

sup
x∈B

efAi (x)

≤ log
∑

U∈UFi

sup
x∈U

efAi (x)

= P∗fAi (UFi).

From Remark 7.42 we obtain that for any g ∈ Fi there exists a finite partition γ(g) that
is adapted to Ug and such that γ(g) � β. Clearly, also αg is adapted to Ug. Thus, the

2 See Remark 7.44 below.
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basic properties of the static entropy summarized in Proposition 4.5 and the invariance
of the overlap ratio allow to estimate

H∗µ(αFi |β) ≤
∑
g∈Fi

H∗µ(αg|β) ≤
∑
g∈Fi

H∗µ(αg|γ(g)) ≤
∑
g∈Fi

R∗µ(Ug) ≤ |Fi|R∗µ(U) ≤ |Fi|θ(V )ε.

Combining our observations we thus obtain

H∗µ(αFi) + µ(fAi) ≤ H∗µ(β) + µ(fAi) +H∗µ(αFi |β) ≤ P∗fAi (UFi) + |Fi|θ(V )ε.

Recall from Lemma 7.2 that there holds µ(fAi) = θ(Ai)µ(f). Using Lemma 5.3 and
Theorem 7.33 we thus conclude

lim sup
i∈I

H∗µ(αFi)
θ(Ai)

+ µ(f) ≤ lim sup
i∈I

P∗fAi (UFi)
θ(Ai)

+ lim sup
i∈I

|Fi|
θ(Ai)

θ(V )ε

≤ pf (π) + ε.

Taking the supremum over all finite partitions α of X we obtain from Theorem 5.16
that

Eµ(π) + µ(f) = sup
α

lim sup
i∈I

H∗µ(αFi)
θ(Ai)

+ µ(f) ≤ pf (π) + ε.

The statement follows as ε > 0 was arbitrary.

Remark 7.44. In [OP82] and in [Oll85, 5.2.12] the proof of Goodwyn’s half of the
variational principle makes heavy use of subadditivity properties of the overlap ratio
[Oll85, Proposition 5.2.11] and the following claim. For µ ∈ MG(X) and all finite
open covers U it is claimed that whenever α is a finite partition that is adapted to U via
an injective map U : α→ U such that µ(U(A)\A) is small, then αF is adapted to UF for
any finite set F ⊆ G. Considering X = {1, 2, 3} and the action of Z on X introduced by
π1(1) = 3, π1(2) = 2 and π1(3) = 1 we can consider the partition α = {{1, 2}, {3}} that
is adapted to U = {X, {1, 3}} via U : α → U that sends {1, 2} 7→ X and {3} 7→ {1, 3}.
Considering the Dirac measure δ2 we obtain furthermore an invariant Borel probability
measure that satisfies δ2(U(A) \A) = 0 for all A ∈ α. Nevertheless, there holds α{0,1} =
{{1}, {2}, {3}, ∅} and U{0,1} = U and thus clearly α{0,1} is not adapted to U{0,1}.
In a correspondence with J. M. Ollagnier it was discussed how to repair the proof for

the statement in the context of actions of discrete amenable groups. The new ideas in
combination with the techniques from [OP82, Oll85] are worked out in details above and
presented in combination with the Theorems 5.16 and 7.33 in order to give the statement
also for all unimodular amenable groups.
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7.4 The variational principle

7.4.2 The variational principle for actions of σ-compact LCA
groups

In this subsection let G be a σ-compact LCA group and let π be an action of G on
a compact Hausdorff space X. We will now present a full proof of the variational
principle for π. Note that [Oll85] contains a proof of the variational principle which
works also for uncountable discrete groups. Unfortunately we are not aware how to use
the corresponding ideas in order to give a proof in the non-discrete setting. Instead we
will follow the ideas of [Mis76] and use that all σ-compact LCA groups contain Van Hove
sequences which consist of tiling sets. In order to construct Borel probability measures
we will need to take averages. In our setting we need to define them by integration.
Unlike in the discrete context, where one can use sums instead, care has to be taken as
the mapM(X) 3 µ 7→ H∗µ(α) is not necessarily upper semi-continuous. We thus begin
our investigations with some results on the interplay of integration theory and static
entropy, which are trivial in the discrete context.

Considering a compact subset A ⊆ G and a Borel probability measure σ on X we
denote

∫
A π

g
∗σdθ(g) for the mapping

C(X) 3 f 7→
∫
A
πg∗σ(f)dθ(g).

Lemma 7.45. For A ⊆ G compact with θ(A) > 0 and σ ∈M(X) we have

1
θ(A)

∫
A
πg∗σdθ(g) ∈M(X).

Proof. Clearly µ := 1/θ(A)
∫
A π

g
∗σdθ(g) is linear, positive and satisfies µ(x 7→ 1) = 1.

For any f ∈ C(X) we furthermore have |πg∗σ(f)| = |σ(f ◦ πg)| ≤ ‖f‖∞. We thus obtain
the continuity of µ from |µ(f)| ≤ 1/θ(A)

∫
A |πg∗σ(f)|dθ(g) ≤ ‖f‖∞.

Remark 7.46. Note that
∫
A π

g
∗σdθ(g) can be interpreted via the theory of vector-valued

integration. For reference see [Rud91, Chapter 3] and [EW11, Appendix B]. We chose
to avoid the application of this abstract machinery in order to simplify the presentation.

A Borel probability measure σ is called finitely supported, whenever there exists a
finite set E and px ∈ [0, 1] with x ∈ E such that ∑x∈E px = 1 and σ = ∑

x∈E pxδx.
Lemma 7.47. Let A ⊆ G be a compact subset with θ(A) > 0. Let σ ∈M(X) be finitely
supported and denote µ := 1/θ(A)

∫
A π

g
∗σdθ(g).

(i) For any f ∈ C(X) there holds µ(f) = 1/θ(A)σ(fA).

(ii) Let α be a finite partition of X that has almost no boundary with respect to µ.
The map A 3 g 7→ H∗πg∗σ(α) is Lebesgue integrable and satisfies

1
θ(A)

∫
A
H∗πg∗σ(α)dθ(g) ≤ H∗µ(α).
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Proof. There is a finite set E ⊆ X and px ∈ [0, 1] with ∑
x∈E px = 1 such that σ =∑

x∈E pxδx. For f ∈ C(X) we observe πg∗σ(f) = ∑
x∈E pxf(g.x) for any g ∈ A. We

obtain (i) from

µ(f) = 1
θ(A)

∫
A

∑
x∈E

pxf(g.x)dθ(g) = 1
θ(A)

∑
x∈E

px

(∫
A
f(g.x)dθ(g)

)

= 1
θ(A)

∑
x∈E

pxfA = 1
θ(A)σ(fA).

To show (ii) note first that the map G 3 g 7→ H∗πg∗σi(αFj) is constant on the elements
of the finite and measurable partition ∨x∈E{π(·, x)−1(A); A ∈ α} of G. Restricted to
the compact subset A this map is thus Lebesgue integrable.

In order to show the claimed inequality and rescaling the Haar measure if necessary,
we assume without lost of generality that there holds θ(A) = 1. Let R be the set of
all pairs (β, g) such that β is a finite (and measurable) partition of A and such that
g : β → A satisfies g(B) ∈ B for any B ∈ β. We order R by setting (β, g) ≤ (β′, g′),
whenever β′ is finer than β and obtain R to be a directed partially ordered set. We will
now show that the net ∑

B∈β
θ(B)πg(B)

∗ σ


(β,g)∈R

converges to µ with respect to the weak*-topology. We thus consider f ∈ C(X) and let
ε > 0. Note that A 3 g 7→ πg∗σ(f) = ∑

x∈E f(g.x) ∈ R is continuous. Thus there exists
a finite partition β1 of A such that for any B ∈ β1 and g, g′ ∈ B there holds∣∣∣πg∗σ(f)− πg′∗ σ(f)

∣∣∣ ≤ ε.

By the definition of the Lebesgue integral there is furthermore a finite partition β2 of A
that is finer than β1 and satisfies∣∣∣∣∣∣

∫
A
πg∗σ(f)dθ(g)−

∑
B∈β2

θ(B)ιB

∣∣∣∣∣∣ ≤ ε,

where we abbreviate ιB := infg∈B πg∗σ(f) for B ∈ β2. Now let (β, g) ∈ R such that β is
finer than β2. From our choice of β1 we then obtain that ιB̂ ≤ π

g(B)
∗ σ(f) ≤ ιB̂ + ε for

any B ∈ β and B̂ ∈ β2 with B ⊆ B̂. We thus observe∑
B∈β2

θ(B)ιB ≤
∑
B∈β

θ(B)(πg(B)
∗ σ(f)) ≤

∑
B∈β2

θ(B)(ιB + ε) =
∑
B∈β2

θ(B)ιB + ε
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and hence ∣∣∣∣∣∣
∑
B∈β2

θ(B)ιB −
∑
B∈β

θ(B)(πg(B)
∗ σ(f))

∣∣∣∣∣∣ ≤ ε

follows. From our choice of β2 we thus obtain∣∣∣∣∣∣
∫
A
πg∗σ(f)dθ(g)−

∑
B∈β

θ(B)(πg(B)
∗ σ(f))

∣∣∣∣∣∣ ≤ 2ε.

As ε > 0 was arbitrary we have shown that for any f ∈ C(X) we have∑
B∈β

θ(B)πg(B)
∗ σ

 (f) =
∑
B∈β

θ(B)
(
πg(B)
∗ σ(f)

) (β,g)∈R→
∫
A
πg∗σ(f)dθ(g) = µ(f).

Thus we have indeed ∑
B∈β

θ(B)πg(B)
∗ σ

(β,g)∈R→ µ

with respect to the weak*-topology. Now recall that α has almost no boundary with
respect to µ. We thus obtain M(X) 3 ν 7→ H∗ν (α) to be continuous in µ and in
particular that

H∗∑
B∈β θ(B)πg(B)

∗ σ
(α) (β,g)∈R→ H∗µ(α).

For (β, g) ∈ R with β finer than the induced partition of ∨x∈E π(·, x)−1(α) on A we
observe from Lemma 4.35 that∫

A
H∗πg∗σ(α)dθ(g) =

∑
B∈β

θ(B)H∗
π
g(B)
∗ σ

(α) ≤ H∗∑
B∈β θ(B)πg(B)

∗ σ
(α)

and the claimed inequality follows.
Lemma 7.48. Let M ⊆ M(X) be a countable subset and η ∈ UX . Then there exists
a finite measurable partition α of X that has almost no boundary with respect to all
µ ∈M and that is at scale η.
Proof. Denote M := {µn; n ∈ N} and µ := ∑

n∈N 2nµn. Then there holds µ ∈ M(X)
and it suffices to find a finite measurable partition α at scale η that has almost no
boundary with respect to µ.

Let ε ∈ UX be an open and symmetric entourage that satisfies εεεε ⊆ η. As X
is compact there exist k ∈ N and x1, · · · , xk ∈ X such that ⋃ki=1 Bε(xi) = X. For
i = 1, · · · , k we obtain from Lemma 2.6 the existence of a measurable set Bi with
µ(∂Bi) = 0 and that satisfies Bε(xi) ⊆ Bi ⊆ Bεε(xi). A straight forward computations
shows B2

i ⊆ εεεε ⊆ η. Considering A1 := B1 and Ai := Bi \ Ai−1 for i = 2, · · · , k we
obtain a finite partition α = {A1, . . . , Ak} at scale η that has no boundary with respect
to µ.
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We are now prepared to prove the variational principle in the mentioned setting.

Theorem 7.49 (Variational principle for pressure - LCA version). Let π be an action
of a σ-compact LCA group G. For any f ∈ C(X) there holds

pf (π) = sup
µ∈MG(X)

(Eµ(π) + µ(f)) .

Proof. From Proposition 3.4 we know that any σ-compact LCA group contains a Van
Hove sequence A = (Ai)i∈N of symmetric and tiling sets. Recall that we denote

qAf (η|π) = lim sup
i→∞

QfAi
(ηAi)

θ(Ai)
.

From Theorem 7.12 we furthermore recall pf (π) = supη∈UX qAf (η|π). In order to show
the theorem it thus suffices to show that for any η ∈ UX and any ε > 0 there exists
µ ∈MG(X) such that qAf (η|π)− ε ≤ Eµ(π) + µ(f).

Let η ∈ UX and ε > 0. For i ∈ N let us consider a finite (ηAi)-separated subset
Ei ⊆ X such that

QfAi
(ηAi)− ε ≤ log

∑
x∈Ei

efAi (x)

 .
For i ∈ I we denote Zi := ∑

y∈Ei e
fAi (y). We define

σi :=
∑
x∈Ei

efAi (x)

Zi
δx

and furthermore
µi := 1

θ(Ai)

∫
Ai
πg∗σidθ(g).

Restricting to a subsequence of (Ai)i∈N if necessary we assume without lost of generality
that (µi)i∈N converges inM(X) to some µ and that qAf (η|π) = limi→∞QfAi

(ηAi)/θ(Ai).
With a Krylov-Bogolyubov argument3 we obtain that µ ∈MG(X). In order to complete
the proof it remains to show that µ indeed satisfies qAf (η|π)− ε ≤ Eµ(π) + µ(f).

Let ω be a Delone set in G that is K-dense with respect to some compact and
symmetric subset K ⊆ G. Furthermore Lemma 7.48 allows to choose a finite partition
α at scale ηK that has almost no boundary with respect to µ and to all µi with i ∈ N.
We abbreviate Fi := (K + Ai) ∩ ω, A[2]

i := Ai + Ai and A[3]
i := Ai + Ai + Ai for i ∈ I.

Consider now i, j ∈ I. As Aj is a tile there is ωj ⊆ G such that Aj + ωj =
G and such that θ((A + v)∆(A + v′)) = 0 for all distinct v, v′ ∈ ω. We denote

3 See [EW11, Theorem 8.10].
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Č := {g ∈ ωj; (g + A
[2]
j ) ⊆ Ai} and Ĉ := {g ∈ ωj; (g + A

[2]
j ) ∩ Ai 6= ∅} and observe

Ĉ \ Č ⊆ {g ∈ G; (g + A
[2]
j ) ∩ Ai 6= ∅, g + A

[2]
j 6⊆ Ai}

= (A[2]
j + Ai) ∩ (A[2]

j + Aci) ⊆ ∂
A

[2]
j
Ai.

We thus have Aj + (Ĉ \ Č) ⊆ Aj∂A[2]
j
Ai ⊆ ∂

A
[3]
j
Ai and obtain

Aj + Ĉ ⊆ (Aj + Č) ∪ ∂
A

[3]
j
Ai.

We next show that for all a ∈ Aj the partition αFj+Ĉ+a is at scale ηAi . For g ∈ Ai − a
we obtain from G = Aj +ωj the existence of a′ ∈ Aj and v ∈ ωj such that g = a′+v. In
particular there holds v = g−a′ ∈ Ai−a−a′ and we observe v+a+a′ ∈ (v+A

[2]
j )∩Ai

and hence v ∈ Ĉ. Thus there holds g = a′+v ∈ Aj + Ĉ and we observe Ai ⊆ Aj + Ĉ+a.
For a′ ∈ Aj and G = K + ω we furthermore know that there are k ∈ K and v ∈ ω such
that a′ = k + v. From the symmetry of K we obtain v = a − k ∈ ω ∩ (Aj + K) = Fj
and hence a′ = k + v ∈ K + Fj. We obtain

Ai ⊆ Aj + Ĉ + a ⊆ K + Fj + Ĉ + a.

Thus αFj+Ĉ+a is indeed at scale

ηAi ⊇ ηK+Fj+Ĉ+a = (ηK)Fj+Ĉ+a.

As Ei was chosen to be ηAi-separated we thus obtain that every element of the partition
αFj+Ĉ+a contains at most one element of Ei. This observation in combination with
Lemma 7.41 allows to compute

QfAi
(ηAi)− ε ≤ log

∑
x∈Ei

efAi (x)


=
∑
x∈Ei

efAi (x)

Zi

(
fAi(x)− log

(
efAi (x)

Zi

))
= H∗σi(αFj+Ĉ+a) + σi(fAi)
≤
∑
g∈Ĉ

H∗
π

(g+a)
∗ σi

(αFj) + σi(fAi).

From a similar argument as in Remark 4.11 we observe(
sup

ν∈M(X)
H∗ν (αFj)

)
≤ |αFj | <∞.
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Now recall that αFj has almost no boundary with respect to µi and that σi is finitely sup-
ported. From Lemma 7.47(ii) we thus know that g 7→ H∗πg∗σi(αFj) is Lebesgue integrable
on any compact subset of G and that∫

Ai
H∗πg∗σi(αFj)dθ(g) ≤ θ(Ai)H∗µ(αFj).

Integrating over all a ∈ Aj with respect to θ we thus obtain

θ(Aj)(QfAi
(ηAi)− ε− σi(fAi)) ≤

∫
Aj

∑
g∈Ĉ

H∗
π

(g+a)
∗ σi

(αFj)dθ(a)

=
∫
Aj+Ĉ

H∗πg∗σi(αFj)dθ(g)

≤
∫
Aj+Č

H∗πg∗σi(αFj)dθ(g) +
∫(

∂
A

[3]
j

Ai

)H∗πg∗σi(αFj)dθ(g)

≤
∫
Ai
H∗πg∗σi(αFj)dθ(g) + |αFj |θ

(
∂
A

[3]
j
Ai

)
≤ θ(Ai)H∗µi(αFj) + |αFj |θ

(
∂
A

[3]
j
Ai

)
.

From Lemma 7.47 we know µi(f) = 1/θ(Ai)σi(fAi) and thus µ(f) = limi∈I σi(fAi)/θ(Ai).
Now recall that the partition αFj has no boundary with respect to µ. We thus observe
that ν 7→ H∗ν (αFj) is continuous in µ. As (Ai)i∈I is a Van Hove sequence we compute

qAf (η|π)− µ(f) = lim
i∈I

QfAi
(ηAi)− σi(fAi)
θ(Ai)

≤ 1
θ(Aj)

(
lim
i→∞

H∗µ(αFj)
)

+ 1
θ(Aj)

lim
i→∞

|αFj |θ
(
∂
A

[3]
j
Ai

)
θ(Ai)

+ ε

θ(Ai)


≤
H∗µ(αFj)
θ(Aj)

+ ε

θ(Aj)
.

In the last inequality we have used that there holds θ(Ai) → ∞ whenever G is not
compact. In case G is compact we can rescale θ such that θ(Ai) → θ(G) = 1,
which yields the last inequality in both settings. From the same arguments we observe
limj→∞ ε/θ(Aj) ≤ ε. As (K +Aj)j∈N is a Van Hove sequence and θ(K +Ai)/θ(Ai)→ 1
we obtain from Theorem 5.16 that

qAf (η|π)− µ(f)− ε ≤ lim sup
j→∞

H∗µ(αFj)
θ(Aj)

≤ sup
α′

lim sup
j→∞

H∗µ(α′Fj)
θ(K + Aj)

= Eµ(π),

where the supremum is taken over all finite partitions α′ of X.
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Remark 7.50. It remains open to give a proof of the variational principle for actions
of general unimodular amenable groups. It seems possible that one can use the slightly
improved version of the quasi-tiling technique, developed in Chapter 3, in order to provide
a proof also in the general context. Nevertheless, note that the given proof is sufficient
for the setting of aperiodic order and shows the statement also for groups like Qp that
contain no uniform lattice.

7.5 The converse variational principle
The variational principle shows that the pressure map can be constructed from the
knowledge of the entropy map (and its domain, the set of all invariant Borel probability
measures). The following shows that this construction can also be reversed as long as
p0(π) = E(π) < ∞ and as long as the entropy map is upper semi-continuous. The
ideas behind this converse variational principle are already contained in [Rue73] and
[DGS76] in the context of actions of Zd. In [Oll85, Remark 5.3.8] the converse variational
principle can be found for actions of discrete amenable groups. Following closely the
proofs given in [Kel98, Theorem 4.2.9] and [Wal82, Theorem 9.11 and Theorem 9.12]
we next investigate under which assumptions the converse variational principle holds in
our context.

Recall from Theorem 7.16 that the topological pressure map is either constantly ∞
or real valued. Clearly, one cannot expect the topological pressure map to contain a
lot of information in the first case. In the latter case however the information whether
a measure is invariant or not is contained in the knowledge of the topological pressure
map. To show this we follow ideas from [Wal82] and apply our version of Goodwyn’s
theorem (Theorem 7.43).

Theorem 7.51. Let π be an action of a unimodular amenable group G on a compact
Hausdorff space X such that the topological entropy of π is finite. Then a Borel prob-
ability measure µ on X is invariant if and only if there holds µ(f) ≤ pf (π) for all
f ∈ C(X).

Proof. To show the first statement note first that whenever µ is invariant we obtain
from the Theorem 7.43 that

µ(f) ≤ Eµ(π) + µ(f) ≤ pf (π) (7.4)

holds for all f ∈ C(X). It thus remains to show that this condition is also sufficient and
we assume that µ(f) ≤ pf (π) for all f ∈ C(X). To show that µ is invariant let g ∈ G.
Then by Proposition 7.15 for n ∈ Z and f ∈ C(X) there holds

nµ(f ◦ πg − f) = µ(n(f ◦ πg − f)) ≤ pn(f◦πg−f)(π) = p0(π) = E(π).
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7 On topological pressure

As the topological entropy E(π) is finite we obtain for positive n that

µ(f ◦ πg)− µ(f) = µ(f ◦ πg − f) ≤ 1
n

E(π) n→∞→ 0.

Similarly one obtains with n→ −∞ that

µ(f ◦ πg)− µ(f) ≥ 1
n

E(π) n→−∞→ 0

and we conclude that µ is invariant.

To reverse the variational principle it is natural to assume that the action satisfies
the variational principle. This assumption is automatically satisfied whenever G is a
discrete amenable group or a σ-compact LCA group, but as we do not know whether
the variational principle holds for all actions of unimodular amenable groups we need to
add the variational principle to our assumptions. Following exactly the proof of [Wal82]
we obtain the following converse variational principle. We include the proof for the
convenience of the reader.

Theorem 7.52 (Converse variational principle). Let π be an action of a unimodular
amenable group G that satisfies the variational principle

pf (π) = sup
µ∈MG(X)

(Eµ(π) + µ(f))

for any potential f ∈ C(X) and furthermore E(π) <∞. Then for any µ ∈MG(X) the
measure theoretical entropy can be calculated via the converse variational principle as

Eµ(π) = inf
f∈C(X)

(
pf (π)− µ(f)

)
,

if and only if the entropy map is upper semi-continuous in µ.

Proof. Let us first show that the upper semi-continuity in µ is necessary for the converse
variational principle. Let ε > 0 and consider f ∈ C(X) such that pf (π) − µ(f) ≤
Eµ(π) + ε. Then for any net (µi)i∈I in MG(X) that converges to µ with respect to
the weak-* topology we know in particular that µi(f) → µ(f) and use the variational
principle to compute

lim sup
i∈I

Eµi(π) ≤ lim sup
i∈I

(
pf (π)− µi(f)

)
= pf (π)− µ(f) ≤ Eµ(π) + ε.

As ε > 0 was arbitrary this shows that lim supν→µ Eν(π) ≤ Eµ(π), i.e. the upper semi-
continuity of the entropy map in µ.

To show that the upper semi-continuity in µ of the entropy map is also sufficient for
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the converse variational principle let E > Eµ(π) and set

C := {(ν, t) ∈MG(X)× R; 0 ≤ t ≤ Eν(π)}.

Recall from Theorem 4.36 that the entropy map µ 7→ Eµ(π) is affine. We thus observe
that C is a convex set. Let us now consider t ∈ R with (µ, t) ∈ C. For ε > 0 we
obtain from the upper semi-continuity of the entropy map in µ that there exists an
open neighbourhood U of µ such that any ν ∈ U satisfies Eν(π) ≤ Eµ(π) + ε. Now
U × (t − ε, t + ε) is an open neighbourhood of (µ, t) in C(X)∗ × R and thus intersects
C. Considering any (ν, s) in this intersection we compute

t ≤ s+ ε ≤ Eν(π) + ε ≤ Eµ(π) + 2ε

and as ε was arbitrary we conclude that t ≤ Eµ(π) and in particular that there holds
(µ,E) /∈ C. Now recall that we identify MG(X) as a subset of the topological dual
C(X)∗ equipped with the weak-* topology via the Riesz–Markov–Kakutani represen-
tation theorem. Thus, C is a closed and convex subset of the locally convex linear
topological space C(X)∗ × R. By a standard theorem about separation of points from
compact convex sets in locally convex topological spaces [DS88, V.2. Theorem 10], we
obtain the existence of a continuous and linear functional F : C(X)∗ × R → R such
that F (ν, t) < F (µ,E) for all (ν, t) ∈ C. As F is linear and continuous with respect to
the weak-* topology, we obtain the existence of f ∈ C(X) and c ∈ R such that there
holds F (ν, t) = ν(f) + tc for (ν, t) ∈ C(X)∗ × R. In particular, as (µ, 0) ∈ C there
holds µ(f) + 0c < µ(f) + Ec and as E > Eµ(π) ≥ 0 we obtain c > 0. Furthermore,
for ν ∈ MG(X) there holds (ν,Eν(π)) ∈ C and thus ν(f) + Eν(π)c < µ(f) + Ec. Di-
viding by c > 0 we obtain ν(f/c) + Eν(π) < µ(f/c) + E for all ν ∈ MG(X). Thus,
taking the supremum over all such ν we obtain from the variational principle that
pf/c(π) ≤ µ(f/c) + E. As E > Eµ(π) was arbitrary we thus see

inf
g∈C(X)

(
pg(π)− µ(g)

)
≤ pf/c(π)− µ

(
f

c

)
≤ Eµ(π).

From the variational principle we furthermore obtain Eµ(π) ≤ pf (π) − µ(f) for all
f ∈ C(X) and thus conclude the statement.

Remark 7.53. The assumption that E(π) < ∞ is necessary in Theorem 7.52, even
for Delone actions. Indeed, consider the Delone set ω constructed in Example 6.37
and recall that E(πω) = ∞ and that ω ∩ (−∞, 0] = −N0. From the latter property we
obtain in particular that Xω contains the closed and invariant set XZ = {Z + g; g ∈
R}. Considering any invariant Borel probability measure µ on XZ we obtain that 0 ≤
Eµ(πω) = Eµ(πZ) ≤ E(πZ) = 0. Nevertheless, as E(πω) = ∞ we observe that the
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7 On topological pressure

topological pressure map is constantly ∞ and thus

Eµ(πω) = 0 6=∞ = inf
f∈C(Xω)

(pf (πω)− µ(f)).

As the variational principle is satisfied in the context of aperiodic order we next
summarize the results concerning aperiodic order.

Corollary 7.54 (Converse variational principle - LCA version). Let π be an action of
a σ-compact LCA group G of finite topological entropy. We have

MG(X) = {µ ∈M(X); ∀f ∈ C(X) : µ(f) ≤ pf (π)}.

For any µ ∈MG(X) we have

Eµ(π) = inf
f∈C(X)

(
pf (π)− µ(f)

)
,

if and only if the entropy map of π is upper semi-continuous in µ.

7.6 Equilibrium states
For a potential f ∈ C(X) we call µ ∈ MG(X) an equilibrium state for f , whenever
Eµ(π) +µ(f) is maximal. Note that whenever the variational principle is satisfied for π
this maximum is pf (π) but as we do not know whether the variational principle holds in
full generality we define this notion independent of the variational principle. We denote
the set of all equilibrium states for f byMf

G(X). The study of this important concept
is another cornerstone of the thermodynamic formalism as illustrated by [Wal82, Oll85,
Kel98] and we next present that the statements from [Wal82] can easily be generalized
to the non-discrete context.

7.6.1 The structure of equilibrium states
The basic structure statements about the set of the equilibrium states can be sum-
marized as follows and the arguments of the statements (except (ii)) can be found in
[Wal82]. We include the short proof for the convenience of the reader.

Proposition 7.55. Let π be an action of a unimodular amenable and non-compact
group G and consider a potential f ∈ C(X). The setMf

G(X) is

(i) convex.

(ii) a face ofMG(X), whenever the entropy map of π is bounded.

(iii) a closed and non-empty face ofMG(X), whenever the entropy map of π is upper
semi-continuous.
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(iv) non-empty, whenever the entropy map of π is unbounded.

Remark 7.56. Note that we define the notion of a face such that empty sets are also
faces. This aspect differs slightly from the notion in [JL01]. For examples of actions of
Z such thatMf

G(X) is empty see [Wal82, Section 8.3].

Proof of Proposition 7.55. Let us abbreviate M := supµ∈MG(X)(Eµ(π) + µ(f)). Recall
from Theorem 4.36 that the entropy map is affine. Thus, also the map µ 7→ Eµ(π)+µ(f)
is affine and for µ, ν ∈Mf

G(X) and λ ∈ [0, 1] we obtain

Eλµ+(1−λ)ν(π) + (λµ+ (1− λ)ν)(f) = λ(Eµ(π) + µ(f)) + (1− λ)(Eν(π) + ν(f))
= λM + (1− λ)M = M.

This shows λµ+ (1− λ)ν ∈Mf
G(X) and we have provenMf

G(X) to be convex.
Recall that MG(X) is compact with respect to the weak-* topology and that µ 7→

µ(f) is continuous with respect to the weak-* topology. Thus, µ 7→ µ(f) is bounded and
whenever the entropy map is bounded we obtainM <∞. To show thatMf

G(X) is a face
consider µ, ν ∈MG(X) and furthermore λ ∈ (0, 1) such that λµ+ (1− λ)ν ∈Mf

G(X).
Now if µ /∈Mf

G(X), then there is ε > 0 such that Eµ(π) + µ(f) ≤M − ε. Thus,

M = Eλµ+(1−λ)ν(π) + (λµ+ (1− λ)ν)(f)
= λ(Eµ(π) + µ(f)) + (1− λ)(Eν(π) + ν(f))
≤ λ(M − ε) + (1− λ)M = M − λε,

a contradiction. Thus,Mf
G(X) is indeed a face ofMG(X), whenever E(π) is finite and

we have shown (ii).
To show (iii) note first that any upper semi-continuous map on a compact set is

bounded and thus (ii) implies that Mf
G(X) is a face of MG(X). Furthermore, in this

case also the map MG(X) 3 µ 7→ Eµ(π) + µ(f) is upper semi-continuous. As upper
semi-continuous maps on compact sets attain there finite maximum on a closed and
non-empty set we obtainMf

G(X) to be closed and non-empty.
To show (iv) let we assume that the entropy map is unbounded. Then for n ∈ N

there exists µn ∈ MG(X) such that Eµn(π) ≥ 2n. Let us consider µ := ∑
n∈N 2−nµn,

which is easily seen to be an invariant Borel probability measure. From the affinity of
the entropy map shown in Theorem 4.36 we obtain for any N ∈ N that

Eµ(π) + µ(f) =
N∑
n=1

2−n Eµn(π) + E∑∞
n=N+1 2−nµn(π) + µ(f) ≥ N + µ(f),

which shows Eµ(π) + µ(f) =∞, i.e. µ ∈Mf
G(X).
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7 On topological pressure

Remark 7.57. Note that the assumption of boundedness of the entropy map in (ii)
cannot be dropped. To see this consider again the Delone set ω from Example 6.37. As
the variational principle is satisfied for R-actions and as the topological entropy of πω
is infinite we obtain that the entropy map is unbounded. Thus, Proposition 7.55 implies
that there exists µ ∈ M0

G(X) which satisfies Eµ(π) = ∞. Now recall from Remark
7.53 that XZ ⊆ Xω, which implies the existence of ν ∈ MG(X) such that Eν(π) = 0.
Nevertheless, for any λ ∈ (0, 1) there holds Eλµ+(1−λ)ν(π) = λ · 0 + (1− λ) ·∞ =∞ and
we deduce λµ + (1 − λ)ν ∈ M0

G(X). As µ /∈ M0
G(X) we obtain that M0

G(X) is not a
face ofMG(X).

We have just seen that whenever the entropy map is bounded, thenMf
G(X) is a face

ofMG(X). It is thus natural to consider the relation of faces of convex sets. For further
details see [JL01]. We include the short proof for the convenience of the reader.

Lemma 7.58. If X is a topological vector space and K is a convex subset of X , then
the following statements are valid.

(i) Whenever F is a face of K and E is a face of F , then E is a face of K.

(ii) Whenever F ⊆ K is a convex subset and whenever E is a face of K that is
contained in F , then E is a face of F .

Proof. To show (i) let x, y ∈ K and λ ∈ (0, 1) such that λx + (1− λ)y ∈ E. As E is a
face of F we obtain λx+ (1−λ)y ∈ E ⊆ F and as F is a face of K we observe x, y ∈ F .
Using that E is a face of F and λx+ (1−λ)y ∈ E ⊆ F we obtain x, y ∈ E and we have
shown that E is a face of K.

To show (ii) let x, y ∈ F and λ ∈ (0, 1) such that λx+(1−λ)y ∈ E. As x, y ∈ F ⊆ K
we obtain from E being a face of K that x, y ∈ E, which shows E to be a face of F .

As singleton faces are exactly the extreme points of a convex set we obtain the fol-
lowing corollary from Proposition 7.55.

Corollary 7.59. Let π be an action of a non-compact unimodular amenable group G
and consider a potential f ∈ C(X). Whenever E(π) is finite, then the extreme points
ofMf

G(X) are exactly the extreme points ofMG(X) that are contained inMf
G(X).

Remark 7.60. Note that the extreme points of MG(X) are exactly the ergodic mea-
sures, i.e. invariant Borel probability measures µ on X such that µ(A) ∈ {0, 1}, for all
Borel sets A that satisfy πg(A) = A for all g ∈ G [Phe01, Proposition 12.4]. Thus, the
previous corollary can be reformulated as follows. The extreme points of Mf

G(X) are
exactly the ergodic equilibrium states for f . For further details on the notion of ergodic
measures see [Wal82, Phe01].
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7.6.2 On uniqueness of equilibrium states
The variational principle gives the tool to relate the entropy map with the topological
pressure. Again we add the statement to our assumptions to present the theory in the
context of unimodular amenable groups. As before this assumption can be dropped
whenever we consider actions of σ-compact LCA groups. The following can be found in
[Wal82, Theorem 9.14 and Theorem 9.15]. We include the proof for the convenience of
the reader.

Theorem 7.61. Let π be an action of a unimodular amenable group G and assume that
π satisfies the variational principle

pf (π) = sup
µ∈MG(X)

(Eµ(π) + µ(f))

for all potentials f ∈ C(X) and that the entropy map of π is upper semi-continuous.
Then a Borel measure µ on X is en equilibrium state for a potential f ∈ C(X), if and
only if for all h ∈ C(X) there holds

µ(h) ≤ pf+h(π)− pf (π). (7.5)

Proof. Let us first consider µ ∈ Mf
G(X). Then by the assumed variational principle

there holds pf (π) = Eµ(π)+µ(f). From the variational principle we furthermore obtain
that for all h ∈ C(X) there holds

pf+h(π)− pf (π) ≥ Eµ(π) + µ(f + h)− Eµ(π)− µ(f) = µ(h)

and we have shown (7.5).
Let us next consider a Borel measure µ that satisfies (7.5) for all h ∈ C(X). From

(7.5) and Remark 7.5 it follows with h = 1 that

µ(X) = µ(1) ≥ pf+1(π)− pf (π) = pf (π) + 1− pf (π) = 1.

With h = −1 one furthermore computes

µ(X) = −µ(−1) ≤ − pf−1(π) + pf (π) = − pf (π) + 1 + pf (π) = 1.

and we obtain µ to be a probability measure. To show that µ is invariant let h ∈ C(X)
and g ∈ G. Then by Proposition 7.15 and (7.5) there holds

±(µ(h ◦ πg)− µ(h)) = µ(±(h ◦ πg − h)) ≤ pf±(h◦πg−h)(π)− pf (π) = 0,

hence µ(g ◦ πg) = µ(g) and it remains to show that µ is an equilibrium state.
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7 On topological pressure

From (7.5) we obtain that for h ∈ C(X) there holds

ph(π)− pf (π) = pf+(h−f)(π)− pf (π) ≥ µ(h− f) = µ(h)− µ(f).

As we assume that the entropy map is upper semi-continuous (and that the variational
principle holds for π) we obtain from the converse variational principle, i.e. Theorem
7.52, that

Eµ(π) = inf
h∈C(X)

(ph(π)− µ(h)) ≥ pf (π)− µ(f).

We thus obtain pf (π) ≥ Eµ(π) + µ(f) ≥ pf (π) from the variational principle, which
proves that µ is an equilibrium state for f .

Remark 7.62. Recall that we identify C(X)∗ with the space of all finite signed Borel
measures on X by the Riesz–Markov representation theorem and equip this space with
the weak-* topology. In fact if a finite signed Borel measure µ on X satisfies (7.5) for
all g ∈ C(X), then µ is called a tangent functional (on the pressure map f 7→ pf (π))
in the literature [DS88, Wal82, Kel98]. Such tangent functionals µ are always positive,
i.e. finite Borel measures. Indeed, for positive h ∈ C(X) and ε > 0 we obtain from the
basic properties of the pressure map that

µ(h) + εµ(1) = µ(h+ ε)
= −µ(−(h+ ε))
≥ − pf−h+ε(π) + pf (π)
≥ − pf (π)− inf

x∈X
h(x) + ε+ pf (π)

= inf
x∈X

h(x) + ε > 0

and as ε > 0 was arbitrary we observe µ(h) ≥ 0, i.e. that µ is positive. Thus, the previous
theorem can be rephrased as follows. Mf

G(X) is the set of all tangent functionals to the
pressure map, whenever the entropy map is upper semi-continuous (and whenever the
variational principle holds). See [DS88] for further details on the notion of a tangent
functional.

Similarly to [Wal82, Corollary 9.15.1] we can draw the following corollary. From
[DS88, V.9. Theorem 8] we know that a convex function on the separable Banach space
C(X) has a unique tangent functional at a dense set of points.

Corollary 7.63. Let π be an action of a unimodular amenable group G such that
the entropy map is upper semi-continuous (and that satisfies the variational principle).
Then there exists a dense subset of C(X) such that each member f of this set has a
unique equilibrium state, i.e. such thatMf

G(X) consists of a single measure.

We will finish our discussion by discussing which forms Mf
G(X) can take. From

[Dow91] we obtain the following.
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Example 7.64. For any metrizable Choquet simplex K there exists an action of Z and
a non-zero potential f on the corresponding phase space such that Mf

Z(X) is affinely
homeomorphic4 to K. Indeed, in [Dow91] it is shown that for any metrizable Choquet
simplex there exists a model set5 in Z, such that MZ(X) is affinely homeomorphic
to K. As stated in [DS03] the constructed actions have 0 topological entropy. Thus,
the variational principle implies the entropy map to be constant 0 and considering the
potential f that is constantly c we obtain that

MZ(Xω) 3 µ 7→ Eµ(πω) + µ(f) = 0 + c

is constant. Thus, there holds MZ(Xω) = Mf
Z(Xω) and Mf

Z(Xω) is also affinely
homeomorphic to K.

Remark 7.65. Naturally the question arises, whether for any unimodular amenable
group G and any metrizable Choquet simplex K one can find an action π of G and
a non-zero potential f on the respective phase space X, such that Mf

G(X) is affinely
homeomorphic to K. From Theorem 7.43 we know that whenever an action of a uni-
modular amenable group has zero topological entropy, then the entropy map is constantly
0. With similar arguments as in Example 7.64 this question can thus be answered, when-
ever one shows that for any metrizable Choquet simplex K there exists an action π of
G with E(π) = 0 and such that MG(X) is affinely homeomorphic to K. This question
is partially answered in the literature but seems open in full generality.
In [Cor06] it is shown that such a realization of metrizable Choquet simplices is pos-

sible whenever one considers G = Zd or G = Rd and it is in particular shown that one
obtains such examples considering actions associated with Delone sets in the respective
groups. The matter was pushed further in [Dow08, CP14, FH18, CC19] where certain
countable discrete amenable groups are studied. Unfortunately the matter remains open
in particular for all LCA groups that contain no uniform lattice.

Example 7.66. Note that with a result of [DS03] one can deduce that whenever K is
a metrizable Choquet simplex and whenever F is a closed face of K, then there exists
an action π of Z and a non-zero potential f on the respective phase space X such that
MZ(X) is affinely homeomorphic to K and such that this affine homeomorphism re-
stricted toMf

Z(X) is a homeomorphism onto F . Indeed, consider a metrizable Choquet
simplex K and a closed face F of K. Then by [JL01, Corollary 3.13] there exists a non-
negative, continuous and affine map a : K → [0,∞) such that F = {x ∈ K; a(x) = 0}.
As K is compact we obtain a to be bounded and consider the non-negative continu-
ous and affine map b : K → [0,∞) with b(x) = a(x) − maxy∈K a(y). Applying [DS03,
Theorem 1] to (K, b) we then obtain an action π of Z on a compact Hausdorff space

4 Two convex sets K and K ′ are called affinely homeomorphic, whenever there exists an affine home-
omorphism between K and K ′.

5 This model set can actually be chosen to be a ”Toeplitz set”. Note that all Toeplitz sets in Z are
model sets. For the definition of Toeplitz sets and reference see [Dow05, BJL16].
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7 On topological pressure

X such that there exists a affine homeomorphism ι : K → MZ(X) such that the en-
tropy map satisfies E(·)(π) ◦ ι = b. Now recall from the definition of b that F = {x ∈
K; b(x) = maxy∈K b(y)}. One thus easily obtains that ι(F ) = {µ ∈ MZ(X); Eµ(π) =
maxν∈MZ(π) Eν}. Considering any non-zero and constant potential f = c, we obtain
Eµ(π) + µ(f) = Eµ(π) + c for any µ ∈MZ(X) and deduce ι(F ) =Mf

Z(X).
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Index

absolute value, 17
p-adic absolute value, 18
trivial absolute value, 18
Archimedian absolute value, 18

action, 38
adapted partition, 187
p-adic integer, 18
p-adic number, 18
affine map, 37
affinely homeomorphic sets, 205
amenable, 23

ball, 13
closed ball, 14
open ball, 13

barycenter of a measure, 37
base of a uniformity, 13
boundary of a set, 11

almost no boundary, 70
topological boundary, 11
Van Hove boundary/K-boundary, 20

boundedness of a map, 41
Bowen entourage, 72

centre of a ball, 13
chain, 33
Choquet simplex, 37
η-close, 13
closure of a set, 11
cluster point, 12
cocompact uniform lattice, 33
common refinement, 67
σ-compact topological group, 16
compactly connected to 0, 131

compactly generated top. group, 16
complement of a set, 11
C-connected to 0, 131
convergence of a net, 12
convex set, 37
countable to one factor map, 120
cover of a set (to cover a set), 11
CPS, 36
cut and project scheme, 36

Delone action, 39
Delone dynamical system, 39
Delone set, 33
relatively dense set, K-dense set, 33
directed net, 12
uniformly discrete set, V -discrete set, 33
ε-disjoint family, 52
distal points, 120
distal factor map, 120
dynamical system, 38

entourage, 13
entropy map, 87
equilibrium state, 200
ergodic measure, 38
ergodic net, 22
extreme point of a convex set, 37

Følner net, 22
face of a convex set, 37
factor of an action, 38
factor map, 38
(ε, A)-filling of a set, 54
U is finer than V , 67
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Index

finite local complexity, 33
first countable group, 28
FLC, 33
flow, 38
Froda’s theorem, 15
fundamental domain, 34

generating partition, 109
generating along M , 109

Haar measure, 17

interior of a set, 11
internal space of a CPS, 36
invariant measure, 38
invariant set, 38
(ε,K)-invariant set, 21
isomorphism of topological groups, 16

LCA, 16
Lebsegue entourage of an open cover, 14
local matching base, 39
local rubber base, 39
local rubber topology, 39
local rubber uniformity, 39
locally compact group, 11
locally finite set, 33

matching number, 77
measure theoretical entropy, 75

of an action, 75
of a finite partition, 100
along a thin Følner net, 79

metrizability, 11
Meyer set, 36
Minkowski product, 16
model set, 36
monotonicity of a map, 41

net, 12

open family, 11
overlap ratio, 187

partition, 11

patch, A-patch, 33
patch counting entropy along A, 2
patch representation, 125

exact patch representation, 131
non-centred patch representation, 126

phase space of an action, 38
physical space of a CPS, 36
positive real valued function, 11
positivity of a map, 41
potential, 166
power set, 11
precompact set, 11
pseudometric, 13
push forward of a measure, 14

quasi-tiling, 52
quasi-tiling centres, 52

radius of a ball, 13
A-refining open cover, 81
regular model set, 36
regular set, 17
relative entropy map, 87
relative measure theoretical entropy, 75

at a scale, 74
of a finite partition, 100

relative topological entropy, 74
at a scale, 74
of an open cover, 82

right invariance of a map, 41

scale, 67
of a family of subsets, 67
of a patch representation, 125
of a non-centred patch rep., 126

η-separated, 84
shift, 39

full shift, 39
on a subset, 39

η-spanning, 84
static measure theoretical entropy, 69
static topological entropy, 68
static topological pressure, 166
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Index

strong subadditivity of a map, 41
subadditive sequence, 41
subadditivity of a map, 41
subnet, 12
support of a measure, 14
symmetric difference, 21
symmetric, 13

entourage, 13
set, 16

tangent functional, 204
thin Følner net, 77
tile, tiling set, 42
tiling centres, 44
topological conjugacy of actions, 38
topological entropy, 75

along a thin Følner net, 79
of an action, 75
of an open cover, 82

topological generator entropy, 81
of an action, 81
of an open cover, 81

topological group, 16
topological pressure, 167

at a certain scale, 167
w.r.t. an open cover, 170

topological pressure map, 174
at a certain scale, 174

topological vector space, 37
topologically conjugated actions, 38

u.s.c., 12
uniform approximate lattice, 37
uniform density, 33
uniform lattice, 33
uniformity, 12
uniform continuity of a map, 14
unimodular group, 17
uniquely ergodic action, 38
upper semi-continuity of a map, 12

point wise, 12

Van Hove net, 22

weak model set, 36
window of a model set, 36
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Symbol index

Sets of numbers

N set of natural numbers excluding 0
N0 set of natural numbers including 0
Z set of integer numbers
Q set of rational numbers
R set of real numbers
C set of complex numbers
T torus
Zp set of p-adic integers
Qp set of p-adic numbers

Sets and functions

|A| cardinality of a set A 11
Ac complement of a set A (in another set) 11
χA characteristic function of A 11
A∆B symmetric difference 21
f |M restriction of a function f to a subset M of the domain 11

Sets of subsets

P(X) set of all subsets of X (power set) 11
F(X) set of all finite subsets of X 11
A(X) set of all closed subsets of X 11
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Index

K(X) set of all compact subsets of X 11
D(X) set of all discrete subsets of X 11
BX set of all Borel measurable subsets of X (Borel σ-algebra) 11
DV (G) set of all V -discrete subsets of G 33
DK,V (G) set of all V -discrete and K-dense subsets of G 33
N (G) set of all neighbourhoods of the unit element in G 16
Patω(A) set of A-patches of the Delone set ω 33

Topological spaces

A topological closure of A 11
int(A) topological interior of A 11
∂A topological boundary of A 11
d (usually) a (pseudo) metric 13
µ, ν (usually) Borel probability measures (often invariant) 14
p∗µ push forward of the measure µ 14
C(X)∗ space of all linear bounded functionals on C(X) equipped with

the weak-* topology
11

M(X) set of Borel probability measures on X with weak-* topology 11
Eµ(f |A) conditional expectation of a real valued function f given a sub

σ-algebra A of BX
68

U ,V (usually) finite open covers 11
α, β, γ (usually) finite Borel measurable partitions 11
∂α

⋃
A∈α ∂A for a Borel measurable partition α 70

� ”finer”-relation 67
C(X) Banach space of all bounded and continuous real valued func-

tions equipped with supremum norm and component wise or-
der

11

f ≤ g componentwise order relation on C(X) 11
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Index

Compact Hausdorff spaces

X, Y, Z (usually) compact Hausdorff spaces 12
UX uniformity of a compact Hausforff space X 12
∆X diagonal in X ×X 12
B,BX (usually) bases of uniformities 13
η, κ, θ (usually) entourages 12
ηκ {(x, z) ∈ X2; ∃y ∈ X : (x, y) ∈ η, (y, z) ∈ κ} for η, κ ∈ UX 13
η−1 {(y, x); (x, y) ∈ η} for η ∈ UX 13
〈U〉 ⋃

U∈U U
2 for a family of sets U 13

η[x] {x′ ∈ X; (x′, x) ∈ η} for η ∈ UX 13
Bη(x) ball with radius η ∈ UX and center x ∈ X 13
Bd
ε (x) open ball of radius ε > 0 and centre x ∈ X 14

B
d
ε (x) closed ball of radius ε > 0 and centre x ∈ X 14

[d < ε] {(x, y) ∈ X2; d(x, y) < ε} for a (pseudo) metric d 13
[d ≤ ε] {(x, y) ∈ X2; d(x, y) ≤ ε} for a (pseudo) metric d 13

Topological groups

G,H (usually) unimodular amenable groups 16
e, eG, eH (usually) neutral elements in groups 16
0 (usually) the neutral element in an Abelian group 16
θ, θG, θH (usually) Haar measures 16
A+B,AB,A−1 Minkowski operations 16
Λ (usually) a uniform lattice 33
dens(ω) uniform denisty of a Delone set ω 33
∂KA K-boundary/ Van Hove boundary of a set A 20
α(A,K) θ(∂KA)/θ(A) 21
mV (E,F ) V -matching number of E and F 77
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Index

Dynamical systems

π, φ, ψ (usually) actions 38
πg π(g, ·) 38
p, q (usually) factor mappings 38
π

p→ φ φ is factor of π via factor mapping p 38
MG(X) set of all invariant Borel probability measures on X with

weak-* topology
38

Delone dynamical systems

ω, ξ, ζ (usually) Delone sets 33
Dω {ω + g; g ∈ G} 39
Xω closure of Dω with respect to local rubber topology of A(G) 39
πω Delone dynamical system of a Delone set ω 39
ξ
K,V
≈ ζ, abbreviates ξ ∩K ⊆ ζ + V and ζ ∩K ⊆ ξ + V 38

ε(K,V ) set of all (ξ, ζ) ∈ A(G)2 that satisfy ξ
K,V
≈ ζ 39

εX(K,V ) set of all (ξ, ζ) ∈ X2 that satisfy ξ
K,V
≈ ζ for X ⊆ A(G) 39

εω(K,V ) set of all (ξ, ζ) ∈ X2
ω that satisfy ξ

K,V
≈ ζ for a Delone set ω 39

Blr local rubber base 39
ηω(K,V ) {(ξ, ζ) ∈ X2

ω; ∃x, z ∈ V : (ξ + x) ∩K = (ζ + z) ∩K} 39
Blm local matching base 39

Topological entropy

U ∨ V common refinement of open covers 67
Ug {(πg)−1(U); U ∈ U} 66
UF

∨
g∈F Ug 66

ηA, ηg Bowen entourage 72
NM(U) minimal cardinality of a subset of U that covers M 68
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Index

NM(U , A) minimal cardinality of a finite family of open subsets of X
that A-refines U and covers M

82

Np(U) supy∈Y Np−1(y)(U) for a factor map p and an open cover U 68
Np(U , A) supy∈Y Np−1(y)(U , A) for a factor map p and an open cover U 82
covM(η) minimal cardinality of a family of open and η-small subsets

of X that cover M
68

H∗p (U) logNp(U) for a factor map and an open cover U 68
H∗p (U , A) logNp(U , A) for a factor map and an open cover U 82
H(η) static topological entropy of X at scale η 68
Hp(η) static topological entropy of p at scale η 68
E∗ (U|π) topological entropy of U 82
E (η|π) topological entropy at scale η of an action π 75
E (π) topological entropy of an action π 75
E∗
(
U|π p→ φ

)
relative topological entropy of p and U 82

E
(
η
∣∣∣π p→ φ

)
relative topological entropy at scale η of a factor map p 74

E
(
π

p→ φ
)

relative topological entropy of a factor map p 74

Measure theoretical entropy

α ∨ β common refinement of partitions 67
αg {(πg)−1(A); A ∈ α} 66
αF

∨
g∈F αg 66

ηA, ηg Bowen entourage 72
H∗µ(α) −∑A∈α µ(A) log(µ(A)) 69
H∗µ(α|A) −∑A∈α

∫
X Eµ(χA|A) log(Eµ(χA|A))dµ 69

H∗µ,p(α) H∗µ(α|p−1(BY )) 69
H∗µ,p(α|A) H∗µ(α|p−1(BY ) ∨ A) 69
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E∗µ (α|π) measure theoretical entropy of a finite partition α 100
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Topological pressure
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fA fA(x) :=
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Mf

G(X) set of equilibrium states of a potential f 200
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